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Abstract

Quantum computing o↵ers powerful new techniques for speeding up the calculation of many clas-

sically intractable problems. Quantum algorithms can allow for the e�cient simulation of physical

systems, with applications to basic research, chemical modeling, and drug discovery; other algo-

rithms have important implications for cryptography and internet security.

At the same time, building a quantum computer is a daunting task, requiring the coherent

manipulation of systems with many quantum degrees of freedom while preventing environmental

noise from interacting too strongly with the system. Fortunately, we know that, under reasonable

assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve

an arbitrary reduction in the noise level.

In this thesis, we look at how additional information about the structure of noise, or “noise bias,”

can improve or alter the performance of techniques in quantum error correction and fault tolerance.

In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust

with respect to errors in their operation. This naturally leads to structured noise where certain

gates can be implemented in a protected manner, allowing the user to focus their protection on the

noisier unprotected operations.

In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits

in the presence of dephasing biased noise, where dephasing errors are far more common than bit-

flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the

amount of error reduction and decrease the physical resources required for error correction.

In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal

quantum computation, in the presence of faulty Cli↵ord operations. Here again there is a hierarchy

of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled

states which decreases as the states are distilled to better quality. The interplay of of these di↵erent

rates sets limits on the achievable distillation and how quickly states converge to that limit.
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Chapter 1

Background

Plans are worthless, but planning is everything.

–Dwight D. Eisenhower [3]

This chapter aims to give a brief introduction to the terminology and techniques of quantum

computing, error correction and fault tolerance, with particular focus on material relevant for the

rest of the thesis. For a fuller overview see [4–6].

1.1 Overview

It was first noted by Feynman [7, 8] and Deutsch [9, 10] that simulating quantum systems on a

classical computer seems to require a calculation whose time scales exponentially with the size

of the simulated system; whereas the nature is able to e�ciently “simulate” such a system by

the system itself. Therefore a computer designed to take full advantage of laws of nature, in

particular the laws of quantum mechanics, might o↵er a fundamentally more powerful mode of

computation than a classical computer, o↵ering a counter-argument to the strong Church–Turing

hypothesis [11,12]. This intuition was further strengthened by the discovery of quantum algorithms

with no classical analogue, especially by Shor’s discovery of polynomial-time algorithms for finding

the factors of prime numbers and computing discrete logarithms [13]. Since then, more and more

quantum algorithms have been found, with applications ranging from searches of unstructured

databases [14] to simulations of quantum field theories [15, 16] and molecular properties [17–19].

A quantum computer is an interference device, a baroque elaboration of the classic double-

slit experiment. The quantum bits of a quantum computer can be put into a superposition of
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many di↵erent states, and, by a carefully designed pattern of interference, paths corresponding to

the correct answer to the calculation interfere constructively while paths corresponding to wrong

answers interfere destructively and cancel out to some degree. In many cases, the entanglement

of di↵erent subsystems of the quantum computer with each other plays a key role in quantum

algorithms.

A quantum state is a far more fragile state than its classical counterpart. It can be destroyed

not only by disturbing the system directly, but also by measuring the system. Just as the inter-

ference fringes of the double-slit experiment are destroyed if it is possible to learn which path the

particle has passed through, the interference necessary for a quantum calculation can be destroyed

if information about the state of the computer leaks into its environment. Nevertheless, the theory

of quantum error correcting codes and quantum fault tolerance have shown that, in principle, a suf-

ficiently isolated quantum calculation can be protected against errors arising from its environment

to an arbitrary degree. This is achieved by encoding the state of the calculation non-locally in a

quantum error correcting code. Once encoded, the environment cannot access the computational

state without measuring an extensive number of bare systems.

In this thesis, I look at how additional information about the structure of noise, or “noise bias,”

can improve or alter the performance of techniques in quantum error correction and fault tolerance.

In Chapter 2, I explore the possibility of designing qubits and quantum gates to be extremely robust

with respect to errors in their operation. This naturally leads to structured noise where certain

gates can be implemented in a protected manner, allowing the user to focus their protection on the

noisier unprotected operations. In Chapter 3, I examine how to tailor error-correcting codes and

fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are

far more common than bit-flip errors. By using an appropriately asymmetric code, I demonstrate

the ability to improve the amount of error reduction and decrease the physical resources required

for error correction. In Chapter 4, I analyze a variety of protocols for distilling magic states, which

enable universal quantum computation, in the presence of faulty Cli↵ord operations. Here again

there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors

in the distilled states which decreases as the states are distilled to better quality. The interplay of

of these di↵erent rates sets limits on the achievable distillation and how quickly states converge to

that limit.
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1.2 Quantum computation

The state of a classical computer is a string of bits, each of which can take one of two values, 0 or

1. Equivalently, its state is a vector over the binary field Z2. A computation is a process which

maps bit strings to other bit strings, either in a deterministic way, or with some probability. We

can decompose any classical computation into a sequence of fundamental operations, called gates,

and a connectivity diagram, a wiring, indicating how the outputs of one gate are mapped into the

inputs of future gates.

The fundamental unit of quantum information is the quantum bit, or qubit. Unlike its classical

analogue, the bit, which can take two values, the qubit can be described by a vector

| i = a|0i + b|1i, (1.1)

where the components a and b are both complex numbers, called amplitudes. This state is called

normalized if ��| i
�� = h | i = |a|2 + |b|2, (1.2)

the norm of the qubit, is equal to 1.

We can perform a measurement on our qubit, which returns a classical bit, 0 or 1. The “logical

basis” or “computational basis” measurement returns the value 0 with probability |a|2 and the

value 1 with probability |b|2. After the measurement, if we received the result 0, then we will find

our qubit in the state |0i, and if we received the result 1, then we will find our qubit in the state

|1i. In e↵ect, the measurement projects the state of the qubit onto the two basis states, |0i and

|1i. The normalization condition means that we will always find our qubit in one of the two states.

We can also perform a measurement in a di↵erent basis. One important basis is the “dual basis”

measurement, which projects onto the two states

|+i =
1p
2

(|0i + |1i) (1.3)

|�i =
1p
2

(|0i � |1i) , (1.4)

where we will receive the first outcome with probability |a + b|2, leaving the qubit in the state |+i,
and the second with probability |a � b|2, leaving the qubit in the state |�i. In general, we can
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project onto any orthogonal set of basis states.

The state of the qubit can be reversibly manipulated by applying a unitary operation— a linear

map from one state | i to a new state |'i. For a single qubit, such a map can be thought of as a

2 ⇥ 2 complex matrix

U =

0BBB@a b

c d

1CCCA , (1.5)

satisfying U †U = I, where U† is the Hermetian adjoint

U † =

0BBB@a⇤ c⇤

b⇤ d⇤

1CCCA , (1.6)

and I is the identity matrix

I =

0BBB@1 0

0 1

1CCCA , (1.7)

which maps any state | i to itself.

The state of n qubits requires 2n complex numbers to specify, one for each of the 2n classical

length-n bit strings, just as a probabilistic state of n bits would require 2n real numbers (probabil-

ities) to describe. Some states, such as the state

1

2

�
|00i + |01i + |10i + |11i

�
= |+i ⌦ |+i, (1.8)

can be decomposed into states on each individual qubit; such a state is called a product state.

Other states, such as the “EPR pair” [20] state

1p
2

�
|00i + |11i

�
, (1.9)

cannot be decomposed in this way, and are called entangled states.

For any orthonormal basis {|s
i

i}, there is a natural complex inner product on states, defined
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for states |↵i =
P

i

a
i

|s
i

i and |�i =
P

i

b
i

|s
i

i as

h↵|�i =
X
i,j

a⇤
i

b
j

hs
i

|s
j

i =
X

i

c⇤
i

d
i

. (1.10)

The Hermetian adjoint, defined earlier, is the adjoint with respect to this inner product, so that

the “ket” U | i corresponds to the “bra” h |U †. In this notation, we can decompose any operator

as X
i

|↵
i

ih�
i

|, (1.11)

which acts on the state | i as

 X
i

|↵
i

ih�
i

|
!

| i =
X

i

h�
i

| i |↵
i

i. (1.12)

When considering a quantum system with two subsystems H
A

⌦H
B

, we cannot always describe

the state of one subsystem H
A

as some “pure state” | i. For example, the EPR state

1p
2

�
|00i + |11i

�
,

from the perspective of an observer of one half of the system, looks like a probabilistic (non-coherent)

mixture of |0i and |1i, each with probability 1/2. To describe such a state, we can introduce the

density matrix description of a state. A pure state | i has density matrix ⇢ = | ih |. For a stateP
a

| 
a

i ⌦ |�
a

i, the “reduced state” on subsystem H
A

has density operator ⇢ =
P

a

| 
a

ih 
a

|. A

unitary operator acts on a density matrix ⇢ as

U : ⇢ ! U⇢U †. (1.13)
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1.2.1 The Pauli operators

It is helpful to understand a system of qubits by studying how various operators act on the states

of the system. One useful set of states are the Pauli matrices

X =

0BBB@ 1

1

1CCCA Y =

0BBB@ �i

i

1CCCA Z =

0BBB@1

�1

1CCCA , (1.14)

where by convention the empty entries are zeros. In bra-ket notation they can be written as

X = |0ih1| + |1ih0| Y = �i|0ih1| + i|1ih0| Z = |0ih0| � |1ih1|, (1.15)

We can describe the computational basis measurement as a measurement of the eigenvalues of Z,

and the dual basis measurement corresponds to measuring the eigenvalues of X; we could similarly

measure the eigenvalues of the Y operation. For a qubit consisting of a particle’s spin, these three

measurements correspond to measuring the spin along the x, y and z axes.

Each Pauli operation describes a useful basis, defined by its eigenvectors. The eigenvectors of

Z are |0i and |1i, while the eigenvalues of X are given by

|+i =
1p
2

�
|0i + |1i

�
(1.16)

|�i =
1p
2

�
|0i � |1i

�
, (1.17)

with X|+i = |+i and X|�i = �|�i. The eigenvalues of Y are given by

|ii =
1p
2

�
|0i + i|1i

�
(1.18)

|�ii =
1p
2

�
|0i � i|1i

�
, (1.19)

with Y |±ii = ±|±ii.
The Pauli matrices anti commute with each other, obeying

{�
i

,�
j

} = �
i

�
j

+ �
j

�
a

= 0 (1.20)
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(where �1 = X, �2 = Y , and �3 = Z.) They form a group, in the sense that any product of Pauli

operators is itself a Pauli operator, up to an irrelevant phase. The Pauli group on n qubits, P
n

,

is any operation which can be written as the tensor product of single-qubit Pauli operators and

identity operators.

More generally, we can measure the eigenvalues of any operator A whose eigenvalues are real;

such an operator is called Hermetian and obeys A† = A. If two operators A and B commute, so

that

[A, B] = AB � BA = 0, (1.21)

then both of their eigenvalues can be measured simultaneously. Similarly, all of the eigenvalues of a

set of mutually commuting operators may be measured simultaneously. In general, operators may

neither commute nor anticommute.

1.2.2 The Cli↵ord group

Another useful group of operations are the Cli↵ord group of operations C1, which are defined to be

the operations which transform Pauli operations into Pauli operations:

CPC† 2 P
n

for P 2 P
n

, C 2 C1. (1.22)

Examples of Cli↵ord operations include the Hadamard operation

H =
1p
2

0BBB@1 1

1 �1

1CCCA , (1.23)

which exchanges the logical and dual bases; the phase gate

S =

0BBB@1

i

1CCCA ; (1.24)
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and the two-qubit controlled-NOT or CNOT gate

CNOT =
•

=

0BBBBBBBBBBBB@

1

1

1

1

1CCCCCCCCCCCCA
, (1.25)

which in the logical basis flips the value of the second qubit based on the value of the first. In fact,

any operation in the Cli↵ord group can be decomposed into these elementary operations. Another

useful Pauli operation is the controlled-Z operation

CZ = •

•

=

0BBBBBBBBBBBB@

1

1

1

�1

1CCCCCCCCCCCCA
. (1.26)

In terms of their e↵ect on the Pauli operations, these Cli↵ord operations can be described as

H : X ! Z

Y ! Y

Z ! X,

(1.27)

S : X ! Y

Y ! X

Z ! Z,

(1.28)
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and

CNOT : IX ! IX IZ ! ZZ

XI ! XX ZI ! ZI, (1.29)

where the rest of the CNOT relations follow from linearity.

While the Cli↵ord operations are insu�cient for universal computation, they are useful for

describing error correcting circuits.

1.2.3 Universal computation

We would like to be able to implement or approximate an arbitrary unitary operation U , to arbitrary

precision ✏, by decomposing it into a sequence of fundamental operations or gates, just as an

ordinary computation can be decomposed into logic gates from a finite set. The Cli↵ord operations

of Section 1.2.2 are insu�cient for the task, because they generate only a finite group of unitaries.

It can be shown [4] that the Cli↵ord operations together with any one non-Cli↵ord single qubit

gate is su�cient for universality. Moreover, an ✏-approximation to a unitary U can be constructed

e�ciently [6, 21–23]. One common choice for a universal set of gates is

C1 [ {T}, (1.30)

where T is the gate

T =

0BBB@1

ei⇡/4

1CCCA . (1.31)

A more streamlined set is

{H, T, CNOT}, (1.32)

which is universal because H, S = T 2 and CNOT complete the Cli↵ord group, while T is non-

Cli↵ord.
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1.3 Error correcting codes

Error correcting codes, both classical and quantum, are methods of storing information redundantly

so that, even though a part of the information has been corrupted or lost, the stored information

can be recovered with high probability.

1.3.1 Classical error correction

The simplest classical error correcting code is the repetition code, which encodes the message (0)

as (000), and the message (1) as (111). If a single bit of the encoded message is flipped, the

correct message can still be recovered by taking a majority vote of the bits. If each bit is flipped

independently with probability p, then we will recover correctly with probability

P � 1 � 3p2, (1.33)

since at least two errors are required to fail, and there are
�
3
2

�
= 3 ways to chose the two errors.

This is an improvement over the unencoded case if 3p2 < p.

A set of classical error-correcting codes which generalize the concept of a repetition code are

linear codes. These codes can be described by a binary matrix G, called the generator of the code.

A code with a k ⇥ n generator matrix will encode a k-bit message into an n-bit encoded message.

The encoding of the k-bit message x is the n-bit message y = xG, where x is viewed as a row

vector. The rows of G form a basis for the k-dimensional subspace of the n-dimensional binary

vector space. The possible messages y = xG are called the codewords of the code, C.

Equivalently, we can describe a binary code by a set of linear constraints that the codewords y

must satisfy. These constraints can be written using an (n � k) ⇥ n binary matrix H, called the

parity check matrix or check matrix, as Hy = 0, which means that H and G must satisfy

HGT = 0, (1.34)

where GT is the matrix transpose of G.

The e↵ect of an error can be described as flipping some of the bits of the message string y, or

taking

y ! ỹ = y + e. (1.35)
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If y is a codeword, then

H(y + e) = Hy + He = He. (1.36)

Typically, the error will not satisfy all of the constraints, so He 6= 0. He = s is called the syndrome

of the error e. If the syndrome is nontrivial, we have detected the presence of the errors.

We would like to not only detect errors, but correct our corrupted codeword back to the original

codeword. We cannot hope to correct all possible errors, because some errors will look exactly

like codewords, but we can specify some smaller set of errors {e
i

} that we would like to be able

to correct. If all of the errors e
i

have distinct syndromes, then we can determine which error has

occurred by examining the syndrome. Upon seeing the syndrome s
i

, we apply correction e
i

, and

restore the state correctly:

ỹ ! ỹ + e
i

= (y + e
i

) + e
i

= y. (1.37)

On the other hand, if two errors e1 and e2 have the same syndrome, then our correction will not

succeed:

ỹ ! ỹ + e1 = (y + e1) + e2 = y + e1 + e2 6= y. (1.38)

The recovered message is a codeword, but not the one that we originally stored, so the encoded

message has been corrupted.

Typically, we are interested in errors that arise independently from each other on each bit of the

message. A natural class of errors to protect against is all the errors of some small weight (where

the weight of a bit string y is the number of 1’s in y.) This is natural because higher weight errors

require more independent events to occur, and so are less likely.

The distance of our code, d, is the minimum weight of any codeword y 2 C. If a linear code has

distance d = 2t + 1, then each error of weight t or less has a distinct syndrome. This can be seen

by noting that if He1 = He2 = s, then

H(e1 + e2) = He1 + He2 = s + s = 0, (1.39)

so the string e1 + e2 is a codeword, and therefore has weight at least d = 2t + 1. On the other

hand, if each codeword has weight less than t, then wt(e1 + e2)  wt(e1) + wt(e2)  2t; therefore,

two such codewords cannot be identical. A codeword which encodes k bits into n and has distance

d can be denoted as an [n, k, d] code.
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Every code C has a dual code C?, whose generator is HT and whose check matrix is GT ; this is

a well-defined code since

GT (HT )T = GT H = (HGT )T = 0. (1.40)

The codewords C? are the set of all strings which are orthogonal to the codewords in C. Since a

binary string is self-orthogonal if its weight is even, C and C? can have non-trivial intersection.

1.3.2 CSS codes

Classical binary codes, and their duals, are useful for defining a large class of quantum error-

correcting codes, known as CSS codes for their inventors Calderbank, Shor, and Steane [24,25].

If C1 is a classical linear code with (n � k1) ⇥ n parity check matrix H1, we can add additional

constraints to H1 to form a subcode C2 ⇢ C1 of C1, with (n � k2) ⇥ n check matrix H2, where

k2 < k1. The subcode C2 defines an equivalence relation over C1, where u ⌘ v if and only if there

exists w 2 C2 such that u = v + w. Then the corresponding CSS code encodes k = k1 � k2 qubits,

associating a codeword with each equivalence class. The logical basis codewords |xi are encoded as

|xi
L

=
1p
2k

2

X
v2C

2

|x + vi, (1.41)

a superposition of all the words in the coset w + C2.

Applying the Hadamard operation to each qubit, H⌦n, we transform to the dual basis state

H⌦n|xi
L

=
1p
2n

X
u2Zn

2

1p
2k

2

X
v2C

2

(�1)u(̇x+w)|ui

=
1p

2n�k

2

X
u2C

?
2

(�1)u·w|ui, (1.42)

where we have used the identity [5]

X
v2C

(�1)v·u =

8><>:2k u 2 C?

0 u /2 C?
. (1.43)

Therefore, the dual basis codewords consist of codewords in the dual code C?
2 . If the code C1 has

distance d1 = 2t
X

+1 and the code C?
2 has distance d?

2 = 2t
Z

+1, then the CSS code can correct t
X
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independent X errors and t
Z

independent Z errors. Such a code would be denoted as an [[n, k, d]]

code, where d = min(d1, d?
2 ).

1.3.3 Stabilizer codes and subsystem codes

A more general class of quantum error-correcting codes, containing the CSS codes, are the stabilizer

codes [26,27]. The codespace of an [[n, k, d]] stabilizer code is the simultaneous +1 eigenspace of a

set S of stabilizer operations, an Abelian group of Pauli operations from P
n

with 2n�k elements.

The stabilizer can be characterized by a set of n � k independent generators. The +1 eigenspace

of the stabilizers has dimension k.

The set of Pauli operators that commute with every element of S is called the centralizer C(S)

of S in P
n

. Elements L in C(S)/S act as logical operations, changing the encoded information

without leaving the codespace. We can find k pairs of logical operators {X
i

, Z
i

} satisfying

[X
i

, X
j

] = 0 (1.44)

[Z
i

, Z
j

] = 0 (1.45)

[X
i

, Z
j

] = 0 (i 6= j) (1.46)

{X
i

, Z
i

} = 0 (1.47)

An arbitrary operator E 2 P
n

will generically anticommute with some stabilizer operations,

and act as an error. We can detect this error by measuring a set of generators for the stabilizer

group; because the stabilizers commute with the logical operations, doing so will not disturb the

encoded information, and because the stabilizers commute with each other, we can measure them

simultaneously. The set of measurement results will be called the syndrome. We can attempt to

correct an error by applying the lowest weight operator E0 that agrees with the syndrome. A code

will have distance d if and only if C(S) \ S contains only elements of weight d and higher.

A subsystem code [28] is a stabilizer code where we reclassify some logical qubits as gauge

degrees of freedom. Unlike the logical qubits, we do not attempt to store any information in the

gauge degrees of freedom; they are allowed to vary arbitrarily. By moving low-distance logical

operations into gauge operations, we can increase the distance of the code. Gauge degrees of

freedom can often be useful for measuring stabilizers indirectly, as will be seen in Section 3.4.
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1.4 Fault tolerance

Quantum fault-tolerance [5, 29, 30] is concerned not only with protecting information not only for

storage, but also processing information in an encoded form. This can be achieved by replacing

every physical gate in a quantum circuit with an encoded version of the gate, and also adding

error-correction steps where syndromes are measured and corrections applied. If done correctly,

encoded circuits can drastically reduce the error rates of circuits at the logical level. If the physical

error rate is low enough, threshold theorems establish that an arbitrarily low error rate can be

achieved [26,30–36].

The goal of fault-tolerant circuit design is to ensure that errors at the physical level cannot

build up to errors at the logical level over the course of a computation, even while the operations

and measurements used to diagnose and correct errors are themselves faulty. Properly designed,

fault-tolerant circuits can guarantee that each faulty location in the circuit can introduce no more

than one error to the output (or more loosely, a constant number of errors.)

A key ingredient to making a computation fault tolerant is to avoid interacting a single physical

qubit to too many other qubits. If a single qubit were to interact with every other qubit in the same

code block, for example, then it is possible that an error on the single qubit could propagate to

every other qubit in the code block, creating a correlated logical error from a single physical error.

One strategy for avoiding correlated errors is to use transversal encoded gates. A single-qubit

encoded gate is called transversal if the only gates at the physical level are single-qubit gates —

typically the same gate that is being implemented at the logical level. A transversal encoded gate

on multiple logical qubits should only contain physical gates where no physical qubit is coupled to

another physical qubit in the same code block, or two more than one physical qubit in any other

code block. Equivalently, a transversal gate can be implemented by a depth 1 circuit with no two-

qubit gates within a code block. Typically, this means that the ith qubit in the first block couples

to the ith qubit in the second block, and so on, but a permutation of this arrangement would also

be transversal. Examples of transversal single- and two-qubit gates are shown in Figure 1.1.

1.4.1 Syndrome extraction techniques

Realizing that syndrome measurements themselves can fail due to errors, a critical strategy for

achieving fault-tolerance is to repeat syndrome measurements multiple times. There are a few
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Figure 1.1: (a) Transversal H gate and (b) transversal CNOT gate, for a hypothetical 3-qubit code.

techniques for syndrome extraction.

In Shor error-correction [29], a cat state

|cati =
1p
2

�
|00 . . . 0i + |11 . . . 1i

�
(1.48)

is prepared for each syndrome operation, using a circuit similar to Figure 1.2 where the length of

the cat state is equal to the weight of the stabilizer being measured. The cat state can be tested to

verify that it has been prepared correctly; if not, we throw it away and try again. After preparing

a verified cat state, we can apply either a CNOT (for Z stabilizers) or a CZ gate (for X stabilizers)

from separate qubits of the the cat state to the nontrivial qubits of the stabilizer being measured.

Then the stabilizer can be obtained by measuring the cat state in the X basis; the parity of the

physical measurement outcomes is the stabilizer measurement outcome. This measurement should

be repeated to ensure fault tolerance.

An alternative method of syndrome extraction for CSS codes is Steane style error correction [37],

which extracts all of the X or Z syndrome information simultaneously. As depicted in Figure 1.3, a

verified logical |+i or |0i state is prepared (and verified), and a transversal CNOT gate is performed

between the ancilla block and the data block. This CNOT gate is chosen so that it has no logical

e↵ect, but will copy errors in either the X or Z basis onto the ancilla block. Finally, a measurement

is performed and the syndrome information extracted.
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Figure 1.2: Preparation of a verified 4-qubit cat state.
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Figure 1.3: Steane error correction.

A third alternative is Knill style teleported error correction [38]. This approach uses a quantum

teleportation circuit [39]. E↵ectively, errors are corrected by teleporting a state with errors onto

a fresh ancilla qubit. Teleported error correction will be discussed in more detail in Section 3.5.6,

where a variant of the approach is used extensively.

Depending on the code and situation, each of these techniques may have advantages and dis-

advantages. Shor style error correction can be applied to any code, while the other techniques will

only be useful for codes with a transversal two-qubit operation such as the CNOT gate. When ap-

plicable, Steane and Knill error correction may o↵er smaller, more compact circuits for extracting

all of the syndrome. Each of these methods will find use at di↵erent points in this thesis.



17

Chapter 2

Protected Gates for
Superconducting Qubits

Ecce ancilla Domini.

–Luke 1:38

This chapter is based on work that was published in [1].

2.1 Introduction

Building a scalable quantum computer is a formidable challenge because quantum systems decohere

readily and because their interactions are hard to control accurately, yet we hope to succeed some-

day by prudently applying the principles of quantum error correction and fault-tolerant quantum

computing. In the standard “software” approach to quantum fault-tolerance [29], the deficiencies of

noisy quantum hardware (if not too noisy) are overcome through clever circuit design, while in the

alternative “topological” approach [21], the hardware itself is intrinsically resistant to decoherence.

Both approaches exploit the idea that logical qubits can be stored and processed reliably when

suitably encoded in a quantum system with many degrees of freedom; perhaps both approaches

will be employed together in future quantum computing systems.

The best known version of the topological approach is based on nonabelian anyons, with quan-

tum information stored in the fusion spaces of the anyons and processed by braiding the anyons,

but it is important to search for other ways to realize quantum hardware such that intrinsic ro-

bustness results from how the information is physically encoded. One intriguing possibility is to
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use superconducting circuits for this purpose. Specifically, several authors [40–42] have proposed

designs for a superconducting “0-⇡ qubit,” a circuit containing Josephson junctions. The circuit’s

energy is a function of the superconducting phase di↵erence ✓ between the two leads of the circuit,

and there are two nearly degenerate ground states, localized near ✓ = 0 and ✓ = ⇡ respectively.

The splitting of this degeneracy is exponentially small as a function of extensive system parameters,

and stable with respect to weak local perturbations. Thus the 0-⇡ qubit should be highly resistant

to decoherence arising from local noise.

For reliable quantum computing we need not just very stable qubits, but also the ability to apply

very accurate nontrivial quantum gates to the qubits. A method for achieving protected single-

qubit and two-qubit phase gates acting on 0-⇡ qubits, exploiting the error-correcting properties of

a continuous-variable quantum code [43], was suggested in [42], and it was claimed that the gate

errors can be exponentially small as a function of extensive system parameters. In this chapter we

further develop and explore the ideas behind this protected gate.

Protected phase gates are executed by turning on and o↵ a tunable Josephson coupling between

an LC oscillator and a qubit or pair of qubits. Assuming the qubits are perfect, we show, using

analytic arguments validated by numerical simulations, that the gate errors are exponentially small

when the oscillator’s impedance
p

L/C is large compared to ~/4e2 ⇡ 1 k⌦, where L is the induc-

tance and C is the capacitance of the oscillator. The gates are robust against small deformations

of the device Hamiltonian and against small thermal fluctuations of the oscillator. The very large

inductance in the superconducting oscillator, which is crucial for the high gate accuracy, may be

quite challenging to achieve in practice, but the potential rewards are correspondingly substantial.

The internal structure of the 0-⇡ qubit is not relevant to our analysis, but for completeness we

nevertheless explain in Section 2.2 the idea behind the qubit design proposed in [42], which also

requires a large inductance in a superconducting circuit. We describe how a protected phase gate is

executed in Section 2.3, and in Section 2.4 we outline our strategy for estimating the gate accuracy.

We review the properties of continuous-variable quantum error-correcting codes in Section 2.5,

and explain in Section 2.6 how the code provides protection against imperfect timing in the pulse

that executes the gate. We analyze contributions to the gate error due to diabatic transitions and

squeezing in Section 2.7 and Section 2.8, then compare our predictions with numerical simulations in

Section 2.9. We discuss robustness with respect to thermal e↵ects in Section 2.10 and with respect

to Hamiltonian perturbations in Section 2.11. In Section 2.12 we explain how to obtain a complete
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scheme for universal fault-tolerant quantum computation by augmenting the protected phase gates

with measurements and unprotected noisy phase gates. Section 2.13 contains our conclusions, and

some further details are contained in Appendices.

2.2 The 0-⇡ qubit

For most of this chapter we will be concerned with the dynamics of gates built from the 0-⇡ qubit,

and will treat the qubit itself as a black box. In this section we will outline the ideas behind the

qubit itself, which was proposed in [42].







 

Figure 2.1: The energy E(✓) of the 0-⇡ qubit. The energy is a periodic function with period ⇡ of
the phase di↵erence ✓ between its two leads, aside from exponentially small corrections. The two
basis states {|0i, |1i} of the qubit, localized near the minima of the energy at ✓ = 0 and ✓ = ⇡
respectively, are nearly degenerate.

The goal in designing the qubit is to have a system which is naturally robust against both bit-

flips and dephasing errors. The qubit itself will be a superconducting circuit with two leads, whose

energy E(✓) is a function of the phase di↵erence ✓ between the two leads. The circuit is designed

so that this energy, which is naturally a periodic function of ✓ with period 2⇡, is in fact very close

to a function with period ⇡, having two minima at ✓ = 0 and ✓ = ⇡, separated by a large energy

barrier. This energy barrier ensures that there are two well-localized states, one centered around

each minima, which we will take to be the basis states |0i (centered at ✓ = 0) and |1i (centered
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Figure 2.2: Two-rung superconducting circuit underlying the 0-⇡ qubit. If
p

L/C is large, C1

is large compared to C, and JC is not too large, then the circuit’s energy is a function of the
combination of phases (✓2 + ✓4) � (✓1 + ✓3), aside from corrections that are exponentially small inp

L/C.

at ✓ = ⇡) of an encoded qubit, as shown in Figure 2.1. The largeness of the barrier suppresses

the odds of a bit flip error, and the degeneracy of the two states, enforced by the ⇡ periodicity,

suppresses the odds of a dephasing error. The system is designed so that this degeneracy is robust

against generic local perturbations, so that the error protection is not broken.

To get such a system, we start with the four-lead circuit shown in Figure 2.2. This circuit has two

identical rungs, connected by a large capacitance C1. Each rung consists of a Josephson junction,

with Josephson energy J and intrinsic capacitance C, connected in series with an inductance L,

chosen such that
p

L/C is large compared to the natural unit of impedance ~/(2e)2 ⇡ 1.03 k⌦,

and hence much larger than its “geometric” value 4⇡/c ⇡ 377 ⌦ (where c is the speed of light),

the impedance of free space. Achieving such a “superinductance” may be a daunting experimental

challenge, but we take it for granted here that it is possible. The properties of a single rung, which

can operate as an adiabatic switch when J varies, is discussed in more detail in Appendix 2.A.

We denote the value of the superconducting phase on the circuit’s four leads as ✓1, ✓2, ✓3, ✓4

as shown, and the phase on either side of the capacitor connecting the rungs by '1, '2. Then the

phase '+ = ('1 + '2) /2 is insensitive to the value of the capacitance C1, which we assume is much

larger than C. Therefore the sum '+ is a “light” variable with large fluctuations (assuming JC

is not too large), while in contrast the di↵erence '� = '1 � '2, which does feel the e↵ect of the

large capacitance C1, is a well localized “heavy” variable. We assume that phase slips through the

inductors are suppressed, so that we may regard '± as real variables rather than periodic phase

variables with period 2⇡.
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A circuit with capacitance Cconv and inductance Lconv has Hamiltonian

H =
q2

2Cconv
+

�2

2Lconv
, (2.1)

where q is the charge on the capacitor and � is the magnetic flux linking the circuit. We use the

subscript “conv” to indicate that capacitance and inductance are expressed here in conventional

units, while we will find it more convenient to use rationalized units such that

C = Cconv/(2e)2, L = Lconv/ (~/2e)2 , (2.2)

so that

H =
Q2

2C
+
'2

2L
, (2.3)

where the charge Q = q/2e is expressed in units of the Cooper pair charge 2e, and ' = (2e/~)� is

the superconducting phase, such that ' = 2⇡ corresponds to the quantum h/2e of magnetic flux.

Then [', Q] = i, and

p
L/C =

p
Lconv/Cconv /

�
~/4e2

�
⇡
p

Lconv/Cconv / (1.03 k⌦)
(2.4)

is dimensionless. The ground state of the Hamiltonian Equation (2.3), with energy E0 = 1/2
p

LC,

has Gaussian wave function  (') such that

| (')|2 =
1p
⇡h'2i

e�'2

/2h'2i, (2.5)

where

h'2i =
1

2

r
L

C
. (2.6)

There is also a Josephson energy term proportional to cos', but for
p

L/C � 1 the wiggles of the
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cosine nearly average out, aside from an exponentially small correction:

hcos'i =
1p
⇡h'2i

Z 1

�1
cos' e�'2

/2h'2i d'

=
1p
⇡h'2i

Z 1

�1
e�'2

/2h'2i+i' d'

= e�h'2i/2

= exp

 
�1

4

r
L

C

!
. (2.7)

The e↵ective capacitance controlling the light phase '+ is Ce↵ = 2C, and the e↵ective inductance

is Le↵ = L/2. Therefore, in the circuit’s ground state we have

h'2
+i =

1

2

r
Le↵

Ce↵
=

1

4

r
L

C
. (2.8)

The dependence of the Josephson energy on the strongly fluctuating light variable '+ is proportional

to

hcos'+i = exp

 
�1

8

r
L

C

!
, (2.9)

which is negligible when
p

L/C is large. We therefore need only consider the dynamics of the well

localized heavy variable '�, which locks to the value

�� = (✓4 � ✓1) � (✓3 � ✓2) = (✓2 + ✓4) � (✓1 + ✓3) , (2.10)

determined by the phases on the leads, so that the energy stored in the circuit is

E = f (✓2 + ✓4 � ✓1 � ✓3) + O

 
exp

 
�1

8

r
L

C

!!
, (2.11)

where f(✓) is a periodic function with period 2⇡.

Now, to devise a qubit, we twist the upper rung relative to the lower one and connect the leads

as shown in Figure 2.3, thus identifying ✓2 with ✓4 and ✓1 with ✓3. In addition, we add another

large capacitance to ensure that tunneling events changing ✓2 �✓1 by ⇡ are heavily suppressed. The
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Figure 2.3: The circuit for the 0-⇡ qubit is obtained from the circuit in Figure 2.2 by twisting
one of the rungs and connecting the leads, thus identifying ✓2 with ✓4 and ✓1 with ✓3. In addition,
another large capacitance is added to further suppress tunneling events that change ✓2 � ✓1 by ⇡.

energy of the resulting circuit is

E = f(2(✓2 � ✓1)) + O

 
exp

 
�1

8

r
L

C

!!
, (2.12)

where the ellipsis represents exponentially small corrections. Therefore, the energy is very nearly a

periodic function with period ⇡ of the phase di↵erence ✓2 � ✓1, with two nearly degenerate minima

as in Figure 2.1.

2.2.1 Achieving superinductance

This robust degeneracy derives from the “superinducting” properties of each rung, i.e., the large

value of
p

L/C. One way to achieve a superinductor, suggested in [42], is to construct a long

chain of N Josephson junctions, each with Josephson coupling J̄ and capacitance C̄. Then the

inductance of the chain is linear in N , and the capacitance is proportional to 1/N , so
p

L/C / N ,

and the breaking of the degeneracy is exponentially small in the chain length. This suppression
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arises because the correction terms in Equation (2.12) that break the ⇡-periodicity are associated

with quantum tunneling from one end to the other in the two-rung ladder. We also require J̄ C̄ to

be large, to suppress phase slips due to tunneling across the chain, thus ensuring that '+ can be

regarded as a real variable rather than a periodic variable with period 2⇡.

An impedance
p

L/C ⇡ 20 has been achieved using long chains of devices [44–46]. Another

possibility for achieving large
p

L/C is to use a long wire, thick enough to suppress phase slips,

built from an amorphous superconductor with a large kinetic inductance. Whatever method is

used, reaching, say,
p

L/C of order 100 may be quite challenging, but in this thesis we take it for

granted that a robust 0-⇡ qubit can be realized. In fact, our scheme for implementing accurate

quantum gates will also be based on superinducting circuits.

2.2.2 Measurements

We will need to be able to measure the qubit, in either the standard {|0i, |1i} basis (measurement

of the Pauli operator Z) or in the dual basis {|+i, |�i} (measurement of the Pauli operator X). In

principle, the Z measurement could be performed by connecting the two leads of the qubit with

a Josephson junction, while inserting 1/4 of a flux quantum through the loop; then the current

through the junction is proportional to sin (✓2 � ✓1 � ⇡/2), with sign dependent on whether ✓2 � ✓1

is 0 or ⇡.

For measuring X, we envision “breaking” the connection between ✓1 and ✓3 and then measuring

the charge conjugate to the phase di↵erence ✓1 � ✓3. The energy of the circuit is f(✓1 + ✓3 � 2✓2),

so that if ✓1 advances adiabatically by 2⇡ with ✓3 fixed, then ✓2 advances by ⇡; if X = 1 the

wave function is invariant and if X = �1 the wave function changes sign. Correspondingly, the

dual charge is either an even or odd multiple of 1/2. In practice, the X and Z measurements are

bound to be noisy, but the limitations on measurement accuracy can be overcome by repeating the

measurements or by using appropriate coding schemes, as we describe in Section 2.12.

2.3 Phase gate

Following [42], we will explain how to execute with high fidelity the single-qubit phase gate exp
�
i⇡4 Z

�
and the two-qubit phase gate exp

�
i⇡4 Z ⌦ Z

�
. These gates are not su�cient by themselves for uni-

versal quantum computation, but we will discuss in Section 2.12 how they can be used as part of
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

Figure 2.4: A phase gate can be applied to a qubit by coupling it to a Josephson junction, but the
gate is not protected against pulse errors and other noise sources.

a universal fault-tolerant scheme.

First, for contrast, consider an example of an unprotected single-qubit gate implementation.

As shown in Figure 2.4, we could close a switch that couples the qubit for time t to a Josephson

junction with Josephson coupling J , in e↵ect turning on a term J cos ✓ = JZ in the Hamiltonian,

where ✓ 2 {0,⇡} is the phase di↵erence across the qubit. After time t the unitary transformation

exp(�itJZ) has been applied. By choosing the time t appropriately, we can rotate the qubit about

the z axis by any desired angle. However, this gate is sensitive to errors in the pulse that closes

and opens the switch, and to other fluctuations in the circuit parameters. For example, if we leave

the gate on for too long, the accumulated error is linear in the gate mistiming.

The protected single-qubit phase gate is executed as shown in Figure 2.5, by coupling the qubit

to a “superinductive” LC circuit via a switch that pulses on and o↵. The switch is actually a

tunable Josephson junction, which can be realized, as in Figure 2.6, by a loop containing two

identical junctions, each with Josephson coupling J , linked by the magnetic flux (⌘/2⇡)�0, where

�0 = h/2e is the flux quantum. The Josephson energy of this tunable junction is

E(✓, ⌘) = �J cos(✓ � ⌘/2) � J cos(✓ + ⌘/2)

= �2J cos(⌘/2) cos ✓

= �Je↵(⌘) cos ✓, (2.13)
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Figure 2.5: A protected phase gate is executed by coupling a qubit (or a pair of qubits connected
in series) to a “super-quantum” LC circuit with

p
L/C � 1.





Figure 2.6: An e↵ective Josephson junction can be tuned by adjusting the flux (⌘/2⇡)�0 inserted
in a circuit containing two identical junctions.

where ✓ is the phase di↵erence between the two leads on the loop. Thus the switch is “on” for ⌘ = 0

and “o↵” for ⌘ = ⇡. The “o↵” setting can be fairly soft — it is good enough for Je↵ to be comparable

to 1/L rather than strictly zero — while in the “on” position we require Je↵C to be large. The

inductance L and capacitance C of the circuit are unrelated to the inductance and capacitance for

the 0-⇡ qubit discussed in Section 2.2, though we will again demand that
p

L/C � 1. From now

on we will assume the 0-⇡ qubit is perfect, and will focus on realizing the robust phase gate under

this assumption.
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
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Figure 2.7: The profile of the tunable Josephson coupling J(t) in the execution of the protected
phase gate.

2.3.1 Ideal protected phase gate

We will first describe how the protected phase gate works in the ideal case with no errors. In the

following section we will discuss the e↵ects of the imperfections and argue that their e↵ects are

minor.

Using the same normalization conventions as in Section 2.2, the Hamiltonian for the circuit can

be expressed as

H(t) =
Q2

2C
+
'2

2L
� J(t) cos('� ✓), (2.14)

where now J(t) is the time-dependent e↵ective Josephson coupling of the tunable junction, ✓ is the

phase di↵erence across the qubit, and ' is the phase di↵erence across the inductor. We assume

that phase slips through the circuit are strongly suppressed, so that ' can be regarded as a real

variable rather than a periodic phase variable — when ' winds by 2⇡ the flux linking the LC circuit

increases by one flux quantum. Depending on whether the state of the qubit is |0i or |1i, the phase

✓ is either 0 or ⇡; hence, the Hamiltonian can be expressed as

H0,1(t) =
Q2

2C
+
'2

2L
⌥ J(t) cos', (2.15)

with the ⌥ sign conditioned on the qubit’s state.

Suppose the initial state | ini of the oscillator is its ground state, a Gaussian wave function

which is broad in ' space. We now begin to ramp on the tunable Josephson coupling J(t), with

the form shown in Figure 2.7: starting at zero, ramping on smoothly and then rounding o↵ to
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Figure 2.8: Coupling the qubit to the oscillator prepares a grid state in ' space, a superposition
of narrowly peaked functions governed by a broad envelope function. The peaks occur where ' is
an even multiple of ⇡ if the qubit’s state is |0i, and where ' is an odd multiple of ⇡ if the qubit’s
state is |1i.

the constant value J0. We assume that J(t) ramps up slowly enough to prepare adiabatically the

ground state in each local minimum of the cosine potential, yet quickly enough to prevent the state

from collapsing to just a few local minima with the smallest values of '2/2L. Thus, as J(t) turns

on, the initial state of the oscillator evolves to become a “grid state,” as shown in Figure 2.8, a

superposition of narrowly peaked functions governed by a broad envelope function. The width of

the broad envelope is h'2i ⇡ 1
2

p
L/C � 1, as for the oscillator’s initial state, while the width of

each narrow peak is h(' � '0)2i ⇡ 1
2

p
1/J0C ⌧ 1, the width of the ground state supported near

the local minimum of the cosine potential.

If the state of the 0-⇡ qubit is |0i and the coe�cient of the cosine in Equation (2.15) is negative,
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then the narrow peaks occur where ' is an even multiple of ⇡. We denote this grid state of the

oscillator as |0
C

i; the subscript stands for “code,” since, as we will explain later, this state can be

regarded as a basis state for a quantum error-correcting code. If the state of the qubit is |1i and the

coe�cient of the cosine is positive, then the narrow peaks occur where ' is an odd multiple of ⇡; in

that case we denote the grid state as |1
C

i. Thus, if the initial state of the 0-⇡ qubit is a|0i + b|1i,
then when J(t) turns on, the joint state of the qubit and oscillator evolves according to

(a|0i + b|1i) | ini ! a|0i ⌦ |0
C

i + b|1i ⌦ |1
C

i. (2.16)

After the Gaussian grid state has been prepared, the Josephson coupling J(t) maintains its

steady-state value J0 for a time t ⌘ Lt̃/⇡, where t̃ is a rescaled time variable. While the coupling is

on, each narrowly peaked function is stabilized by the strongly confining cosine potential, but the

state is subjected to the Gaussian operation e�it'

2

/2L = e�it̃'

2

/2⇡, due to the harmonic potential

'2/2L, which alters the relative phases of the peaks. As t̃ increases the oscillator states |0
C

i and

|1
C

i evolve, but when t̃ reaches 1, each returns to its initial value, apart from a state-dependent

geometric phase. For the grid state |0
C

i, the peaks in ' space occur at ' = 2⇡n, where n is an

integer, and the Gaussian operation

|' = 2⇡ni ! e�2⇡it̃n

2 |' = 2⇡ni

= e�2⇡in

2 |' = 2⇡ni

= |' = 2⇡ni (2.17)

acts trivially. But for the grid state |1
C

i, the peaks occur at ' = 2⇡(n + 1
2 ), and the operation

|' = 2⇡ni ! e
�2⇡it̃

⇣
n+

1
2

⌘
2

|' = 2⇡(n + 1
2 )i

= e
�2⇡i

⇣
n

2+n+
1
4

⌘

|' = 2⇡(n + 1
2 )i

= e�i

⇡

2 |' = 2⇡(n + 1
2 )i (2.18)

therefore modifies the phase of the state by the factor �i. Hence, the joint state of the qubit and
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oscillator becomes

a|0i ⌦ |0
C

i + b|1i ⌦ |1
C

i ! a|0i ⌦ |0
C

i � ib|1i ⌦ |1
C

i. (2.19)

To complete the execution of the phase gate, the tunable coupling J(t) ramps down from J0 to

zero, again with a characteristic time scale ⌧
J

subject to the constraints specified above. As the

coupling turns o↵, the state |0
C

i of the oscillator evolves to | fin
0 i and the state |1

C

i evolves to

| fin
1 i; the final joint state of the qubit and oscillator is

a|0i ⌦ |0
C

i � ib|1i ⌦ |1
C

i ! a|0i ⌦ | fin
0 i � ib|1i ⌦ | fin

1 i. (2.20)

Thus, a perfect phase gate exp
�
i⇡4 Z

�
has been applied to the qubit if | fin

0 i = | fin
1 i. If, on the other

hand, |h fin
1 | fin

0 i| < 1, then the qubit and oscillator are entangled in the final state, compromising

the gate fidelity. Even if |h fin
1 | fin

0 i| = 1 so that there is no entanglement, the gate may be imperfect

because the phase of h fin
1 | fin

0 i deviates from zero.

The two-qubit phase gate exp(i⇡4 Z ⌦ Z) is executed using a similar procedure, but now two

qubits connected in series are coupled to the LC oscillator. The total phase di↵erence across the

pair of qubits is either 0 for the states |0i ⌦ |0i and |1i ⌦ |1i, in which case the oscillator evolves to

the final | fin
0 i, or ⇡ for the states |0i ⌦ |1i and |1i ⌦ |0i, in which case the oscillator evolves to the

final state | fin
1 i. Again, the gate is executed perfectly if | fin

0 i = | fin
1 i.

2.3.2 E↵ects of protected phase gate imperfections

Suppose for now that the initial state | ini of the oscillator is its ground state, a Gaussian wave

function with h'2i = 1
2

p
L/C and hQ2i = 1

2

p
C/L. (Other harmonic oscillator energy eigenstates

will be considered in Section 2.10.) Because
p

L/C � 1, the wave function is broad in ' space and

narrow in Q space. Hence, when the switch pulses on, the contribution to the expectation of the

energy arising from the cosine potential is highly suppressed by the factor

hcos'i = e�h'2i/2 = exp

 
�1

4

r
L

C

!
, (2.21)
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as derived in Equation (2.7). Correspondingly, the energy is very insensitive to the state of the

qubit, which determines the sign of the cosine potential. This suppression factor determines the

characteristic scale of the error in the phase gate.

As we turn on the Josephson coupling J(t) with the form shown in Figure 2.7, the characteristic

time ⌧
J

for the coupling to ramp on and o↵ is subject to some constraints, which we will specify

shortly. With J at its steady state value J0, phase slips (tunneling events between successive minima

of the cosine potential) are suppressed by the WKB factor

exp

✓
�
Z 2⇡

0

d'
p

2J0C(1 � cos')

◆
= exp(�8

p
J0C). (2.22)

We assume that
p

J0C is large enough so that phase slips can be safely neglected.

A diabatic transition that excites the oscillator in the cosine well is most likely to occur while

J(t)C is approximately one and the frequency of oscillations in the well is approximately 1/C.

We will pass through this regime once when ramping up the gate and once again ramping down.

Landau-Zener theory indicates that the probability Pdiab of such a transition scales like

Pdiab(⌧
J

) ⇠ exp
⇣
�(constant)

⌧
J

C

⌘
, (2.23)

where ⌧
J

is the characteristic time for J(t) to ramp on. (We will discuss this error in more detail

in Section 2.7.) Since diabatic e↵ects also contribute to the error in the phase gate, we require

⌧
J

� C. Indeed, the diabatic error is comparable to the intrinsic error in Equation (2.21) for

⌧
J

⇠
p

LC; (2.24)

that is, when the ramping time is on the order of the period of the LC oscillator. During this

ramping time, the envelope function of the Gaussian grid state is squeezed somewhat in ' space

(and correspondingly spreads somewhat in Q space), but stays broad enough for the intrinsic error

to remain heavily suppressed. In Section 2.8 we argue that the error arising from squeezing scales

like

Psq(⌧J) ⇠ exp

✓
�(constant)

L

⌧
J

◆
; (2.25)

hence, it too is comparable to the intrinsic error for ⌧
J

⇠
p

LC.
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We will argue that under appropriate conditions h fin
1 | fin

0 i ⇡ 1 to extremely high accuracy so

that the phase gate is nearly perfect. Note that we need not require the final state of the oscillator to

match the initial state | ini; noise terms in the Hamiltonian may excite the oscillator, but the phase

gate is still highly reliable as long as the oscillator’s final state depends only very weakly on the

state of the 0-⇡ qubit, i.e., on whether the sign of J(t) is positive or negative. Indeed, the oscillator

serves as a reservoir that absorbs the entropy introduced by noise. If not too badly damaged, the

oscillator can be reused a few times for the execution of additional protected gates. Eventually,

though, it will become too highly excited, and will need to be cooled before being employed again.

A gate error may arise if the coupling between qubit and oscillator remains on for too long or

too short a time, i.e., if t̃ = 1 + " rather than t̃ = 1. But we will see that such timing errors

do not much compromise the performance of the gate when " is small; specifically, the gate error

is exp
⇣
� 1

4

p
L/C

⌘
⇥ O(1) provided |"| < 2⇡ (L/C)�3/4. Slightly overrotating or underrotating

contributes to the damage su↵ered by the oscillator, but without much enhancing the sensitivity

of the oscillator’s final state to the qubit’s state, and hence without much reducing the fidelity of

the gate. We study the consequences of overrotation/underrotation in Section 2.6, and we confirm

our findings using numerical simulations in Section 2.9. We also argue, in Sections 2.10 and 2.11,

that the phase gate is robust against a su�ciently small nonzero temperature and against small

perturbations in the Hamiltonian.

Let us summarize the su�cient conditions for the phase gate to be well protected. Just as

for the realization of the 0-⇡ qubit itself, the execution of the protected phase gate relies on the

construction of a “superinducting” circuit with
p

L/C � 1. This is a daunting experimental

challenge, as we have already noted at the end of Section 2.2. To ensure high gate accuracy, we

also assume that the steady state value J0 of the Josephson coupling between the 0-⇡ qubit and the

oscillator satisfies
p

J0C � 1, and that the characteristic time scale ⌧
J

for the coupling to ramp

on and o↵ is O(
p

LC); thus ⌧
J

is also small compared to the time L/⇡ needed to execute the gate.

Under these conditions, the error in the phase gate scales as exp
⇣
�O

⇣p
L/C

⌘⌘
, and is stable

with respect to small fluctuations in the implementation of the gate.
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2.4 Sketch of the error estimate

A noisy quantum gate realizes a quantum operation Nactual, and a useful way to quantify the error

in the gate is to specify the deviation kNactual �Nidealk⌃ from the ideal gate Nideal in the “diamond

norm” [6]. As explained in Appendix 2.B, for the protected phase gate this diamond norm distance

(assuming there are no bit flips) is

kNactual � Nidealk⌃ = |1 � h fin
1 |, i fin

0 | (2.26)

where | fin
0,1i denotes the final state of the oscillator when |0i, |1i is the state of the 0-⇡ qubit, as in

Equation (2.20). Thus, we assess the gate accuracy by estimating the deviation of h fin
0 | fin

1 i from

1.

To perform this estimate we track how the oscillator states | 0(t)i and | 1(t)i are related through

three stages of evolution:

| ini J(t) turns on��������! | begin
0 i J(t)=J

0�����! | end
0 i J(t) turns o↵��������! | fin

0 i,

| ini J(t) turns on��������! | begin
1 i J(t)=J

0�����! �i| end
1 i J(t) turns o↵��������! �i| fin

1 i.
(2.27)

In the first stage J(t) ramps on and the grid states are prepared – the initial state | ini evolves

to | begin
0 i if the 0-⇡ qubit’s state is |0i and to | begin

1 i if the qubit’s state is |1i. In the second

stage J(t) = J0 and the grid state | begin
0 i evolves to | end

0 i while the grid state | begin
1 i evolves

to �i| end
1 i, where ideally | end

0,1 i = | begin
0,1 i. In the third stage J(t) ramps o↵ and the grid states

| end
0,1 i evolve to the final oscillator states | fin

0,1i, where ideally | fin
1 i = | fin

0 i.
Consider the first (or third) stage of the evolution, where the coupling J(t) ramps on (or o↵) in

a time of order ⌧
J

. If ⌧
J

is not too large compared to the period 2⇡
p

LC of the oscillator, then the

harmonic potential term '2/2L may be treated perturbatively during this evolution stage. Hence,

in first approximation the Hamiltonian is one of

H0 =
Q2

2C
� J(t) cos', H1 =

Q2

2C
+ J(t) cos', (2.28)

depending on whether the state of the 0-⇡ qubit is |0i or |1i. This Hamiltonian commutes with

the operator e�2⇡iQ, which translates ' by 2⇡; therefore e�2⇡iQ and the Hamiltonian can be
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simultaneously diagonalized. We may express the eigenvalue of this translation operator as e�2⇡iq,

where q = Q� [Q] 2 [� 1
2 , 1

2 ] is the conserved Bloch momentum, and [Q] denotes the nearest integer

to Q; thus [Q] labels the distinct bands in the Hamiltonian’s spectrum.

A diabatic transition between bands may be excited while J(t) varies, changing the value of [Q]

by an integer, most likely ±1. If such transitions occur with nonnegligible probability, the final state

of the oscillator will contain, in addition to a primary peak supported near Q = 0, also secondary

peaks supported near Q = ±1; the phases of the secondary peaks depend on whether the Hamilto-

nian is H0 or H1, and therefore diabatic transitions contribute to the gate error. The probability

of a diabatic transition cannot be computed precisely, but, as we will explain in Section 2.7, it can

be analyzed semi-quantitatively, and is very small if ⌧
J

is su�ciently large.

For the purpose of discussing this diabatic error and other contributions to the deviation of

h fin
1 | fin

0 i from 1, we will find it useful to consider the operator

X̄ ⌘ (�1)[Q] = ⇧Q

even � ⇧Q

odd

= 2⇧Q

even � I = I � 2⇧Q

odd.
(2.29)

Here ⇧Q

even projects onto values of Q such that the nearest integer value [Q] is even and ⇧Q

odd

projects onto values of Q such that [Q] is odd. We denote this operator as X̄ because it can be

regarded as the error-corrected Pauli operator �X acting on a qubit encoded in the Hilbert space

of the oscillator, as we explain in Section 2.5. (Note that X̄2 = I.) Another (related) important

property is that, since e⌥i' translates Q by ±1, X̄ anticommutes with cos':

X̄ cos'X̄ = � cos'. (2.30)

Our argument showing that | fin
1 i ⇡ | fin

0 i has two main elements. On the one hand, we use

approximate symmetries and properties of grid states to see that | 1(t)i ⇡ X̄| 0(t)i at each stage

of the oscillator’s evolution, so that in particular | fin
1 i ⇡ X̄| fin

0 i. On the other hand, we argue

that if the time scale ⌧
J

for J(t) to turn on and o↵ is suitably chosen, then the oscillator’s final

state is mostly supported near Q = 0, so that in particular X̄| fin
0 i ⇡ | fin

0 i.
We note that the approximate Hamiltonians H0 and H1 in Equation (2.28) are related by

H1 = X̄H0X̄. (2.31)
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By integrating the Schrödinger equation using the Hamiltonian H0 or H1 during the first stage of

evolution while J(t) ramps on, we obtain the unitary time evolution operators U0, U1, which are

related by

U1 = X̄U0X̄. (2.32)

Thus, the initial oscillator state | ini evolves to one of the states

| begin
0 i = U0| ini

| begin
1 i = U1| ini = X̄U0X̄| ini,

(2.33)

and therefore

h begin
1 |X̄| begin

0 i = h in|X̄| ini

= h in|I � 2⇧Q

odd| ini

= 1 � 2h in|⇧Q

odd| ini. (2.34)

We conclude that if the initial state is almost fully supported on even values of [Q] (for example,

the oscillator ground state, a Gaussian in Q-space with width much less than 1/2), then | begin
1 i is

very close to X̄| begin
0 i.

So far, we have ignored the e↵ects of the quadratic term '2/2L in the potential. This term

can cause the wave function to broaden in Q-space and be squeezed in ' space, but we argue

in Section 2.8 that this squeezing is a relatively small e↵ect, so that the conclusion | begin
1 i ⇡

X̄| begin
0 i still holds accurately. Specifically, the contribution to the gate error due to squeezing

scales according to Equation (2.25), and hence becomes comparable to the other sources of error

when we choose ⌧
J

⇠
p

LC.

During the second stage of the evolution, while J(t) = J0 is held constant, distinct peaks in the

grid state acquire relative phases, and the condition | 1(t)i = X̄| 0(t)i becomes badly violated.

However, after a time t ⇡ L/⇡, the initial states | begin
0 i and | begin

1 i are restored, aside from the

state dependent phase �i, and hence | end
1 i = X̄| end

0 i, apart from a small error. Equivalently, the

beginning states

| begin
± i =

1p
2

⇣
| begin

0 i ± | begin
1 i

⌘
(2.35)
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are very nearly X̄ eigenstates with eigenvalues ±1, and this property is preserved by the ending

states

| end
± i =

1p
2

�
| end

0 i ± | end
1 i

�
. (2.36)

The X̄ eigenvalues of these states are highly stable with respect to timing errors in the gate, in

which the coupling is left on for too short or too long a time, because these states are approximate

codewords of a quantum code, well protected against logical phase errors. We study the errors

resulting from imperfect timing in detail in Section 2.6, because they can be calculated explicitly

and are the dominant errors in some parameter regimes.

In the third stage of the evolution, as in the first stage, it is a good first approximation to ignore

the harmonic '2/2L term in the potential as the coupling J(t) ramps o↵. Using this approximation,

the time evolution operators V0,1, obtained by integrating the Schrödinger equation during the third

stage when the state of the 0-⇡ qubit is |0i, |1i, are related by

V1 = X̄V0X̄; (2.37)

hence, the final oscillator states are

| fin
0 i = V0| end

0 i, | fin
1 i = X̄V0X̄| end

1 i, (2.38)

and we conclude that

h fin
1 |X̄| fin

0 i = h end
1 |X̄| end

0 i. (2.39)

Again, this conclusion is not modified much when the '2/2L term is properly taken into account,

so we may infer that the condition | 0(t)i ⇡ X̄| 1(t)i is well preserved during the final stage of

evolution.

We have now seen that | fin
1 i ⇡ X̄| fin

0 i, and it remains to show that X̄| fin
0 i ⇡ | fin

0 i. This

condition will be well satisfied, provided that the final state | fin
0 i of the oscillator, like the initial

state | ini, is almost fully supported in the interval Q 2 [� 1
2 , 1

2 ]. Logical errors may occur because of

diabatic transitions between bands, which may change Q by an odd integer, or because of spreading

in Q space, which may enhance the tails of the wave function outside [� 1
2 , 1

2 ]. However, if diabatic

transitions are rare and spreading is modest, as we expect if ⌧
J

lies in the appropriate range, then

the gate will be highly accurate.
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That our criterion for achieving | fin
1 i ⇡ | fin

0 i involves the operator X̄, which has a sharp

discontinuity at Q = 1
2 + integer, is really an artifact of an insu�ciently careful treatment of

diabatic transitions. The transitions occur with enhanced probability for Q close to 1
2 + integer,

replacing the sharp edge in Q space by a rounded step with width of order C/⌧
J

, as we will explain

in Section 2.7.

2.5 Encoding a qubit in an oscillator

A continuous-variable quantum error-correcting code [43] underlies the robustness of the protected

phase gate. The theory of quantum codes is not really essential for understanding our estimate of

the gate accuracy, but this theory provides motivation for our construction of the protected gate,

as well a convenient language for explaining how it works. Therefore, we will now review some of

the relevant features of a code first described in [43].

In the version of the code we will use, a two-dimensional encoded qubit is embedded in the

infinite-dimensional Hilbert space of a harmonic oscillator with position ' and conjugate momentum

Q, satisfying [', Q] = i. The code space can be specified as the simultaneous eigenspace with

eigenvalue 1 of the two commuting operators

M
Z

= e2i', M
X

= e�2⇡iQ; (2.40)

we say that M
Z

and M
X

are the generators of the code’s “stabilizer group.” Using the identity

eAeB = e[A,B]eBeA (2.41)

(where A and B commute with their commutator), we can easily verify that M
X

and M
Z

commute.

The logical Pauli operators acting on the encoded qubit are

Z̄ = ei', X̄ = e�i⇡Q. (2.42)

One sees that X̄ and Z̄ commute with the stabilizer generators M
X

and M
Z

, and hence preserve

the code space; furthermore they anticommute with one another, as the logical Pauli operators

should.
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Figure 2.9: Ideal codewords of the continuous variable code. The Z̄ = ±1 eigenstates |0
C

i, |1
C

i,
expressed in ' space, are uniform superpositions of position eigenstates with ' an even or odd
multiple of ⇡, respectively. The X̄ = ±1 eigenstates |+

C

i, |�
C

i, expressed in Q space, are uniform
superpositions of momentum eigenstates with Q an even or odd integer, respectively.

The (unnormalizable) state |0
C

iideal is the unique Z̄ eigenstate with eigenvalue 1 in the code

space. The condition Z̄ = 1 requires the variable ' to be an integer multiple of 2⇡, and the condition

M
X

= 1 requires the codeword to be invariant under translation of ' by 2⇡. Hence, |0
C

iideal is

represented in ' space as the uniform superposition of delta functions

|0
C

iideal =
1X

n=�1
|' = 2⇡ni; (2.43)

the Z̄ = �1 eigenstate |1
C

iideal = X̄|0
C

iideal, obtained from |0
C

iideal by displacing ' by ⇡, is

|1
C

iideal =
1X

n=�1
|' = 2⇡(n + 1

2 )i. (2.44)

Similarly, the X = ±1 eigenstates |±
C

iideal, invariant under translation of Q by 2, are represented

in Q space as

|+
C

iideal =
1X

n=�1
|Q = 2ni,

|�
C

iideal =
1X

n=�1
|Q = 2(n + 1

2 )i.
(2.45)

This is depicted in Figure 2.9.

Weak noise may displace ' slightly, but the codewords |0
C

iideal and |1
C

iideal remain perfectly
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distinguishable, and the error is correctable, as long as the value of ' shifts by less than ⇡/2 in

either direction. Similarly, a shift in Q by less than 1/2 is correctable. In principle, we could

diagnose the error by measuring M
Z

to determine the value of ' modulo ⇡, and M
X

to determine

the value of Q modulo 1, and then perform active error correction by applying the minimal shifts

in ' and Q that return the damaged code state to the code space. (In our protected phase gate,

however, the error correction will be passive rather than active.)

The unnormalizable ideal codewords, with infinite h'i and hQi, are unphysical. But if we

coherently apply Gaussian distributed small shifts in ' and Q to the ideal codewords, we obtain

the normalizable approximate codewords shown in Figure 2.10. The wave function in ' space is a

superposition of narrow Gaussians, each of width � ⌧ ⇡/2 (i.e., h(�')2i = 1
2�2, where �' denotes

the deviation from the center of the narrow Gaussian), governed by a broad Gaussian envelope with

width �1 � 2 (i.e., h'2i = 1
2

�2). The Fourier dual wave function in Q space is a superposition

of narrow Gaussians, each of width  (i.e., h(�Q)2i = 1
2

2, where �Q denotes the deviation from

the center of the narrow Gaussian), governed by a broad Gaussian envelope with width ��1 (i.e.,

hQ2i = 1
2��2). If � and  are su�ciently small, these approximate codewords retain good error

correction properties. However, there is now an intrinsic error arising from the tails of the narrow

Gaussians, with the probability of a logical Z̄ error (a shift in ' by more than ⇡/2) suppressed by

e�⇡2

/4�2

, and the probability of a logical X̄ error (a shift in Q by more than 1/2) suppressed by

e�1/42

.

Note that in Section 2.4 we used the notation X̄ = (�1)[Q] for the logical X operator, where

[Q] denotes the nearest integer to the real variable Q. The operator (�1)[Q] acts in the same

way as e�i⇡Q on ideal codewords for which Q is an integer. By expressing the logical operator as

X̄ = (�1)[Q], we are implicitly correcting phase errors that displace Q. That is, a Q eigenstate is

decoded by shifting Q to the nearest integer value, and the eigenvalue of X̄ is determined by this

ideal shifted value of Q, rather than the actual value of Q prior to the shift.

The first step in the execution of the protected phase gate described in Section 2.3 is the

preparation of just such approximate codewords; compare Figure 2.8. If the state of the 0-⇡

qubit is |0i, then the approximate Z̄ = 1 eigenstate |0
C

i is prepared, and if the state of the 0-

⇡ qubit is |1i, then the approximate Z̄ = �1 eigenstate |1
C

i is prepared. The narrowly peaked

functions have width �2 = (J0C)�1/2 in ' space (though, because the potential is a cosine rather

than harmonic, the tail of the peaked function decays more slowly than the tail of a Gaussian),
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Figure 2.10: Approximate codewords of the continuous variable code. The codeword |0
C

i, ex-
pressed in ' space, is a superposition of Gaussian peaks, each of width �, governed by a broad
Gaussian envelope with width �1. The codeword |+

C

i, expressed in Q space, is a superposition
of Gaussian peaks, each of width , governed by a broad Gaussian envelope with width ��1.

and width 2 = (L/C)�1/2 in Q space. Hence, the intrinsic logical X̄ error of the approximate

codewords, which is central to our estimate of the error in the phase gate, is suppressed by the

factor exp
⇣
� 1

4

p
L/C

⌘
.

After the approximate codeword is prepared, the Gaussian unitary operator e�it'

2

/2L = e�it̃'

2

/2⇡

is applied (where t̃ = ⇡t/L is a rescaled time variable). This unitary operator rotates the code space,

transforming the stabilizer generator M
X

= e�2⇡iQ according to

M
X

! M 0
X

= e�it̃'

2

/2⇡e�2⇡iQeit̃'

2

/2⇡

= e�2⇡i(Q+'t̃/⇡) = M
X

e�2i't̃e�2⇡it̃. (2.46)

Recalling that M�1
Z

= e�2i' is also a stabilizer generator, we see that the state returns to the code

space at (rescaled) time t̃ = 1, but during its excursion the codeword acquires a Berry phase, and

thus a nontrivial logical operation is applied. Specifically, the logical operator X̄ is transformed
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according to

X̄ ! X̄ 0 = e�i'

2

/2⇡e�i⇡Qei'

2

/2⇡

= e�i⇡(Q+'/⇡) = X̄e�i'e�i⇡/2

= �iX̄Z̄ = exp
�
i⇡4 Z̄

�
X̄ exp

�
�i⇡4 Z̄

�
, (2.47)

while Z̄ remains invariant; hence, the logical operation acting on the code space is exp
�
i⇡4 Z̄

�
. An

error in the logical gate arises if the coupling remains on for too long or too short a time (i.e., if

t̃ is not precisely 1). However, this error is correctable with high probability if the timing error is

small. We will study the consequences of overrotation/underrotation in Section 2.6.

2.6 Imperfect grid states

Now we will analyze the intrinsic phase errors in approximate codewords of the continuous variable

code, and, in particular, how the phase error is a↵ected by errors in the timing of the pulse that

executes the phase gate.

In Section 2.5 we considered approximate codewords that can be described as “Gaussian grid

states,” where the codeword is a superposition of narrow Gaussian peaks governed by a broad

Gaussian envelope. The Fourier transform of such a wave function is also a Gaussian grid state, so

that both logical bit flip errors and logical phase errors are suppressed.

But it actually su�ces for the approximate codeword to be a superposition of narrow functions

with a broad envelope; neither the peak nor the envelope needs to be Gaussian. Even a non-

Gaussian grid is mapped to a conjugate non-Gaussian grid by the Fourier transform, so there is good

protection against both X̄ and Z̄ errors. A Gaussian grid state could result from coherently applying

Gaussian-distributed ' and Q shifts to an ideal codeword, assuming large shifts are suppressed.

But we can also get a reasonable approximate codeword by applying more general small errors to

the ideal codeword, with a distribution that is not necessarily Gaussian. What is important is that

large shifts in both ' and Q are improbable, not the detailed form of the distribution.

This observation will be useful when we consider in Section 2.10 the execution of the protected

phase gate in the case where the initial state of the harmonic oscillator is an excited state rather than

the ground state. In that case, the envelope of the approximate codeword in ' space is not strictly
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Gaussian, but rather Gaussian modulated by a Hermite polynomial, and its Fourier transform is

also Gaussian modulated by a Hermite polynomial. Thus, in Q space, the narrow functions peaked

at integer values of Q are also oscillator excited states. These functions have highly suppressed

tails, ensuring that encoded phase errors are rare. In any event, considering more general kinds of

grid states helps to clarify conceptually why the phase gate is robust.

2.6.1 Bit-flip and phase errors

Let f denote a narrow function in ' space, and F̃ denote a broad envelope function in ' space. We

express the approximate codewords as

|0
C

i =
p

2⇡
X

n even

F̃ (⇡n)

Z
d' f('� ⇡n)|'i,

|1
C

i =
p

2⇡
X

n odd

F̃ (⇡n)

Z
d' f('� ⇡n)|'i.

(2.48)

The function f is normalized so that

Z
|f(')|2 d' = 1, (2.49)

and if the overlap between peaks centered at distinct integer multiples of ⇡ can be neglected, then

|0
C

i and |1
C

i are normalized, provided

2⇡
X

n even

|F̃ (⇡n)|2 ⇡ 1, 2⇡
X

n odd

|F̃ (⇡n)|2 ⇡ 1. (2.50)

The intrinsic bit-flip error of the approximate codeword |0
C

i arises from the probability that ' lies

closer to an odd multiple of ⇡ than to an even multiple, which can be estimated as

P |0Ci
error ⇡ 2⇡

X
n even

|F̃ (⇡n)|2 ⇥
 Z �⇡/2

�1
d' |f(')|2 +

Z 1

⇡/2

d' |f(')|2
!

⇡
Z �⇡/2

�1
d' |f(')|2 +

Z 1

⇡/2

d' |f(')|2; (2.51)

the intrinsic error in |1
C

i can be estimated similarly. Thus, logical bit-flip errors are highly sup-

pressed if f(') is a narrow, rapidly decaying function supported near zero.
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The approximate codewords in the conjugate basis are

|+
C

i =
1p
2

(|0
C

i + |1
C

i)

=
p
⇡
X

n

F̃ (⇡n)

Z
d' f('� ⇡n)|'i, (2.52)

|�
C

i =
1p
2

(|0
C

i � |1
C

i)

=
p
⇡
X

n

F̃ (⇡n)(�1)n

Z
d' f('� ⇡n)|'i, (2.53)

where

⇡
X

n

|F̃ (⇡n)|2 ⇡ 1. (2.54)

We show in Appendix 2.C that these codewords can be expressed as

|+
C

i =
p

2

Z
dQ f̃(Q)

X
m even

F (Q � m)|Qi,

⇡
p

2
X

m even

f̃(m)

Z
dQ F (Q � m)|Qi, (2.55)

|�
C

i =
p

2

Z
dQ f̃(Q)

X
m odd

F (Q � m)|Qi,

⇡
p

2
X

m odd

f̃(m)

Z
dQ F (Q � m)|Qi, (2.56)

where

2
X

m even

|f̃(m)|2 ⇡
Z

dQ |f̃(Q)|2 ⇡ 1,

2
X

m odd

|f̃(m)|2 ⇡
Z

dQ |f̃(Q)|2 ⇡ 1.
(2.57)

The intrinsic phase error of the approximate codeword |+
C

i arises from the probability that Q lies
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closer to an odd integer than an even integer, which can be estimated as

P |+Ci
error ⇡ 2

X
m even

|f̃(m)|2 ⇥
 Z �1/2

�1
dQ |F (Q)|2 +

Z 1

1/2

dQ |F (Q)|2
!

⇡
Z �1/2

�1
dQ |F (Q)|2 +

Z 1

1/2

dQ |F (Q)|2; (2.58)

the intrinsic error in |�
C

i is estimated similarly. Thus logical phase errors are highly suppressed if

F (Q) is a narrow, rapidly decaying function supported near zero.

2.6.2 Gate error estimate

As explained in Section 2.4, the error in the protected phase gate can be expressed as

|1 � h fin
1 | fin

0 i|, (2.59)

where | fin
0,1i denotes the final state of the oscillator (modulo the state dependent phase �i applied

by the gate) when the state of the 0-⇡ qubit is |0i, |1i. Under conditions enumerated in Section 2.4,

this quantity can be well approximated by the modulus of

⌘ ⌘ 1 � h end
1 |X̄| end

0 i, (2.60)

where | end
0,1 i denotes the state of the oscillator as the coupling J(t) between oscillator and qubit

starts to turn o↵, and X̄ = ⇧Q

even � ⇧Q

odd denotes the error-corrected logical operator.

Let us suppose that the states | begin
0,1 i, prepared when the coupling J(t) turns on, are the

approximate codewords |0
C

i, |1
C

i depicted in Equation (2.48), where f(') is a narrow rapidly

decreasing function and F̃ (') is a broad envelope function. The coupling remains on for time

t = (1 + ")L

⇡

, where " is the fractional error in the timing of the gate. Then, as explained in

Appendix 2.C, the states | end
0,1 i have the same form as |0

C

i, |1
C

i, but with F̃ (') replaced by the

function

F̃
"

(') = e�i"'

2

/2⇡F̃ ('). (2.61)

We define states

| end
± i =

1p
2

�
| end

0 i ± | end
1 i

�
; (2.62)
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note that | end
0,1 i are normalized, since each is obtained by applying a unitary time evolution operator

to the normalized state | ini of the oscillator, but they are not necessarily orthogonal and hence

the states | end
± i are not necessarily normalized. We may write

h end
1 |X̄| end

0 i =
1

2

�
h end

+ |X̄| end
+ i � h end

� |X̄| end
� i + h end

+ |X̄| end
� i � h end

� |X̄| end
+ i

�
, (2.63)

which, using Equation (2.29), has real part

Reh end
1 |X̄| end

0 i =
1

2

⇣
h end

+ |I � 2⇧Q

odd| end
+ i � h end

� |2⇧Q

even � I| end
� i

⌘
= 1 � h end

+ |⇧Q

odd| end
+ i � h end

� |⇧Q

even| end
� i. (2.64)

Therefore, using Equation (2.60) we may estimate the real part of the gate error as in Equa-

tion (2.58):

Re ⌘
"

⇡ 2

 Z �1/2

�1
dQ |F

"

(Q)|2 +

Z 1

1/2

dQ |F
"

(Q)|2
!

. (2.65)

To estimate the imaginary part we note that

Im ⌘
"

=
1

2i

⇣
h end

� |X̄| end
+ i � h end

+ |X̄| end
� i

⌘
. (2.66)

As in Equation (2.55), we express

| end
� i ⇡

p
2
⇣ Z
[Q] even

dQ +

Z
[Q] odd

dQ
⌘
f̃(Q)

X
m odd

F
"

(Q � m)|Qi,

X̄| end
+ i ⇡

p
2
⇣ Z
[Q] even

dQ �
Z

[Q] odd

dQ
⌘
f̃(Q)

X
m even

F
"

(Q � m)|Qi,
(2.67)

and therefore obtain

h end
� |X̄| end

+ i ⇡ 2

Z
[Q] even

dQ|f̃(Q)|2
X

m even

n odd

F
"

(Q � n)⇤F
"

(Q � m)

� 2

Z
[Q] odd

dQ|f̃(Q)|2
X

m even

n odd

F
"

(Q � n)⇤F
"

(Q � m).
(2.68)

Thus, Im ⌘
"

is dominated by overlaps between sharply peaked functions {F
"

(Q � m)} centered at
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neighboring values of m; we show in Appendix 2.C that

Im ⌘
"

⇡ 4 Im

Z 1

0

dQ Odd
⇥
F
"

(Q + 1
2 )⇤F

"

(Q � 1
2 )
⇤
, (2.69)

where Odd[G(Q)] ⌘ 1
2 (G(Q) � G(�Q)) denotes the odd part of the function G(Q).

2.6.3 Gaussian case

The gate error estimate in Equations (2.65) and (2.69) is expressed in terms of the narrow function

F
"

(Q), whose Fourier transform F̃
"

(') is the broad envelope function that governs the grid state of

the oscillator. To be concrete, let us now suppose that this function is Gaussian, the relevant case

where the oscillator’s initial state | ini is the ground state.

The normalized ground state wave function is

F̃ (') =

✓
2

⇡

◆1/4

e�2

'

2

/2,

F (Q) =

✓
1

⇡2

◆1/4

e�Q

2

/22

,

(2.70)

where

�2 =

r
L

C
. (2.71)

Therefore, for " = 0 the probability of an intrinsic phase error in the grid state is

P |+Ci
error ⇡ 2

Z 1

1/2

dQ |F (Q)|2 ⇡ 2

r
2

⇡
e�1/42

, (2.72)

using the leading asymptotic approximation to the error function.

To find the probability of a phase error for " 6= 0, we evaluate

F
"

(Q) =
1p
2⇡

Z
d' e�iQ'F̃

"

(')

=
1p
2⇡

Z
d' e�iQ'

✓
2

⇡

◆1/4

e�2

'

2

/2e�i"'

2

/2⇡

=

✓
2

⇡04

◆1/4

exp
�
�Q2/202� , (2.73)
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where

02 = 2 +
i"

⇡
. (2.74)

Thus,

0�2 = �2

✓
1 +

i"

⇡2

◆�1

= ̄�2

✓
1 � i"

⇡2

◆
, (2.75)

where

̄2 = 2

✓
1 +

"2

⇡24

◆
; (2.76)

therefore

|F
"

(Q)|2 =

 
2

⇡|0|4

!1/2

exp
�
�Q2 Re(0�2)

�
=

1p
⇡̄2

e�Q

2

/̄

2

. (2.77)

From Equation (2.65), our estimate of the real part of the gate error becomes

Re ⌘
"

⇡ 4p
⇡̄2

Z 1

1/2

dQ e�Q

2

/̄

2 ⇡ 4

r
̄2

⇡
e�1/4̄2

. (2.78)

For " small compared to ⇡2, we may expand

̄�2 = �2 � "2

⇡26
+ · · · , (2.79)

so that

Re ⌘
"

⇡ exp

✓
"2

4⇡26

◆
Re ⌘

"=0; (2.80)

the overrotation of the gate has little e↵ect on the real part of the gate error for " ⌧ 2⇡3. On the

other hand, when " is large compared to ⇡2, we have

̄�2 ⇡ ⇡22

"2
; (2.81)
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thus, Re ⌘
"

= O(1) for " ⇡ ⇡.

To see that these results are reasonable, note that

e�i"'

2

/2⇡Qei"'

2

/2⇡ = Q + '"/⇡. (2.82)

Thus, crudely speaking, overrotation by " shifts Q by

�Q ⇡ ("/⇡)h'2i1/2 = "/(⇡
p

22). (2.83)

We expect this shift to have a small e↵ect if the amount of the shift is small compared to the width

hQ2i1/2 =
p
2/2 of the narrow peaks in Q-space, i.e., for " ⌧ ⇡2. On the other hand, for " ⇡ ⇡,

the shift in Q is O(1), and we expect the error probability to be large.

To estimate the imaginary part of the gate error, we note that

F
"

(Q + 1
2 )⇤F

"

(Q � 1
2 ) =

1p
⇡̄2

exp


�

(Q � 1
2 )2

202 �
(Q + 1

2 )2

20⇤2

�
=

1p
⇡̄2

exp
⇥
�(Q2 + 1

4 ) Re(0�2) + iQ Im(0�2)
⇤

=
1p
⇡̄2

e�1/4̄2

e�Q

2

/̄

2

exp

✓
�i"Q

⇡̄22

◆
, (2.84)

and from Equation (2.69) we obtain

Im ⌘
"

= � 4p
⇡̄2

e�1/4̄2

Z 1

0

dQ e�Q

2

/̄

2

sin
�
"Q/⇡̄22

�
= � 4p

⇡
e�1/4̄2

I
⇣ "

⇡̄2

⌘
, (2.85)

where

I(↵) ⌘
Z 1

0

dx e�x

2

sin(↵x). (2.86)

The integral I(↵) can be expressed in terms of Gamma functions with imaginary arguments, but,

for our purposes, it will su�ce to observe some of its properties. For small ↵ it has the power series

expansion

I(↵) =
↵

2
� ↵3

12
+ · · · , (2.87)



49

for large ↵ it has the asymptotic expansion

I(↵) =
1

↵
+

2

↵3
+ · · · , (2.88)

and it attains its maximum value I = .5410 . . . at ↵ = 1.8483 . . . .

Combining the real part in Equation (2.78) with the imaginary part in Equation (2.85), our

estimate of the gate error becomes

|⌘
"

| =
4p
⇡

e�1/4̄2

r
̄2 +

h
I
⇣ "

⇡̄2

⌘i2
. (2.89)

The ratio of the imaginary and real parts is

Im ⌘
"

Re ⌘
"

= �̄�1I
⇣ "

⇡̄2

⌘
⇡ � "

2⇡̄22
, (2.90)

expanding to linear order in ↵. Thus, the imaginary part of the error is smaller than the real part

when " is su�ciently small, but dominates by a factor of order �1 for " ⇠ ⇡3. The error |⌘
"

| is

bounded above by e�1/4̄2 ⇥ O(1) for all ", and hence by e�1/42 ⇥ O(1) for " < 2⇡3.

In Figures 2.11 and 2.12, we plot the gate error estimate |⌘
"

| as a function of " for �2 = 40

and �2 = 80. Recall that, in the case where the LC circuit is initially in its ground state, we can

identify �2 with
p

L/C.

2.7 Diabatic error

As explained in Section 2.4, the protected phase gate is very accurate if the final state vector of the

oscillator depends only very weakly on the state of the 0-⇡ qubit: | fin
1 i ⇡ | fin

0 i. Our argument

establishing high gate accuracy has two elements — we show that | 1(t)i ⇡ X̄| 0(t)i at each stage

of the oscillator’s evolution, and also that X̄| fin
0 i ⇡ | fin

0 i. In Section 2.6 we have seen that the

condition | 1(t)i ⇡ X̄| 0(t)i is stable with respect to imperfections in the timing of the pulse that

executes the gate. Now we will consider rare diabatic transitions, occurring as the coupling J(t)

ramps on and o↵, that contribute to the deviation of X̄| fin
0 i from | fin

0 i.
While the coupling J(t) turns on or o↵, the harmonic '2/2L term in the potential can be

treated perturbatively, where in first approximation the Hamiltonian is given by Equation (2.28);
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Figure 2.11: The estimated gate error |⌘
"

| (on a log scale) as a function of the rotation error ", for
�2 = 40.

we will consider the consequences of the harmonic term in Section 2.8. This Hamiltonian commutes

with the operator e�2⇡iQ, which translates ' by 2⇡; therefore, e�2⇡iQ and the Hamiltonian can

be simultaneously diagonalized. We express the eigenvalue of this translation operator as e�2⇡iq,

where q = Q � [Q] 2 [� 1
2 , 1

2 ] is the conserved Bloch momentum, and the integer [Q] labels the

distinct bands in the Hamiltonian’s spectrum.

A diabatic transition between bands may be excited while J(t) varies, changing the value of [Q]

by an integer, typically ±1. If such transitions occur with nonnegligible probability, the final state

of the oscillator will contain, in addition to a primary peak supported near Q = 0 (where X̄ = 1),

also secondary peaks supported near Q = ±1 (where X̄ = �1). We will discuss the probability of

a transition between bands while J(t) ramps on; a similar analysis applies to transitions occurring

as J(t) ramps down.

The probability of a diabatic transition can be computed most reliably for q close to ± 1
2 , since

in that case the splitting between the lowest band and the first excited band is small when J(t)

is small, and the continuous variable system can be well approximated by a two-level system. For

example, when J = 0, the state in the lowest band with Bloch momentum q slightly less than 1
2 has
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Figure 2.12: The estimated gate error |⌘
"

| (on a log scale) as a function of the rotation error ", for
�2 = 80.

charge Q = q, while the state in the first excited band has Q = q � 1. Hence, the splitting between

bands is
1

2C

�
(q � 1)2 � q2

�
=

1
2 � q

C
. (2.91)

Since e⌥i' translates Q by ±1, the perturbation J(t) cos' has matrix elements

hq � 1|J(t) cos'|qi =
J(t)

2
= hq|J(t) cos' |q � 1i, (2.92)

and the e↵ective two-level Hamiltonian is

He↵
0,1 = �

1
2 � q

2C
�Z ⌥ J(t)

2
�X , (2.93)

where �Z,X are Pauli matrices. The energy eigenstates are �Z eigenstates for J(t) ! 0 and �X

eigenstates for J(t) ! 1.

The time-dependent Schrödinger equation for this e↵ective Hamiltonian can be solved exactly
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if J(t) increases exponentially with time, as

J(t) = J0 exp(t/⌧ e↵
J

); (2.94)

we show in Appendix 2.E that if the initial state as t ! �1 is the ground state, then the probability

that the final state is excited as t ! 1 is

Pdiab(q, ⌧ e↵
J

) =
1

2
� 1

2
tanh

✓
⇡
�

1
2 � q

� ⌧ e↵
J

2C

◆
⇡ exp

✓
�⇡

�
1
2 � q

� ⌧ e↵
J

C

◆
, (2.95)

where the second equality holds when the argument of the tanh is large and positive.

We recall that if the initial state of the oscillator is the ground state or a low-lying excited state,

then the probability distribution for q decays as

P (q) ⇠ exp

 
�
r

L

C
q2

!
; (2.96)

hence, expanding in � = 1
2 � q, we find

P (q) Pdiab(q, ⌧ e↵
J

) ⇠ exp

 �
� � 1

4

�rL

C

!

⇥ exp

✓
�⇡� ⌧

e↵
J

C

◆
.

(2.97)

Therefore, if

⌧ e↵
J

>
1

⇡

p
LC, (2.98)

the most likely diabatic transitions occur for q ⇡ 1
2 , where the two-level approximation is reasonable;

we conclude in that case that the probability of a diabatic transition is suppressed by the factor

exp(� 1
4

p
L/C). If, on the other hand, ⌧ e↵

J

< 1
⇡

p
LC, then the most likely diabatic transitions

occur for q far from ± 1
2 , and the two-level approximation cannot be justified.

If J(t) does not ramp on exponentially, then the exact solution in Appendix 2.E does not apply
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directly. To estimate roughly the probability of a diabatic transition for more general pulse shapes,

we note that the transition typically occurs when �Z and �X in the e↵ective Hamiltonian have

comparable coe�cients, so that

⌧ e↵
J

⇡
✓

J

J̇

◆
JC⇡1�2q

. (2.99)

If J(t) turns on like an error function with width ⌧
J

, then

J(t) =
J0p
⇡

Z
t/⌧J

�1
dx e�x

2 ⇡ ⌧
J

J0

2|t|p⇡ e�t

2

/⌧

2

J (2.100)

asymptotically for t/⌧
J

! �1, and we have

J/J̇ ⇡ ⌧2
J

/2|t|; (2.101)

combining Equations (2.99) to (2.101), we obtain

2⌧ e↵
J

⌧
J

=
⇣
ln
⇣

J

0

C

1�2q

⌘
� O

⇣
ln ln

⇣
J

0

C

1�2q

⌘⌘⌘�1/2

. (2.102)

Although ⌧ e↵
J

given by Equation (2.102) does not satisfy Equation (2.98) when q is very close to

1
2 , the dominant diabatic transitions may still occur for q ⇡ 1

2 , where the two-level approximation

is applicable, provided ⌧
J

� 1
⇡

p
LC is positive and su�ciently large. Otherwise, if the dominant

value of q is far from 1
2 , we can anticipate that typical diabatic transitions occur for J(t)C = O(1),

where the band gap is O(1/C) and the transition probability is

Pdiab(⌧
J

) = exp
⇣
�O

⇣⌧
J

C

⌘⌘
. (2.103)

In the two-level approximation, which applies for |Q| ⇡ 1
2 , the probability of a jump from the

lowest band (|Q| < 1
2 ) to the first excited band (|Q| > 1

2 ) matches the probability of a jump from

the first excited band to the lowest band. Therefore, neglecting transitions to other bands and the

higher-order probability of multiple transitions, and also ignoring other sources of error aside from

diabatic jumps, we infer from Equation (2.95) that the probability of X̄ = 1 (i.e., |Q| < 1
2 ) in the
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final state of the oscillator can be expressed as

P (|Qfin| < 1
2 ) ⇡

Z
dQin P (Qin) tanh

✓
⇡
�

1
2 � |Qin|

� ⌧ e↵
J

2C

◆
; (2.104)

a factor of two has been included to take into account that the transition could occur during

either the ramping-up phase or the ramping-down phase. Because of the enhanced probability of a

transition for |Q| ⇡ 1
2 , the Qin integral has support extending beyond the range [� 1

2 , 1
2 ]; the tanh

function smooths out the sharp edges at Q = ± 1
2 , replacing them by rounded steps with width of

order C/⌧ e↵
J

.

2.8 Squeezing error

In Section 2.4 we discussed how the state of the oscillator evolves as the coupling J(t) ramps on

and o↵. There we used the idea that, because the oscillator’s period is long compared to the time

scale ⌧
J

for the coupling to turn on and o↵, we may as a first approximation ignore the '2/2L term

in the potential as in Equation (2.28). Under that assumption we concluded that

h begin
1 |X̄| begin

0 i = h in|X̄| ini ⇡ 1, (2.105)

where | ini is the oscillator’s initial state, and | begin
0,1 i denotes the state just after the coupling

turns on, where |0i, |1i is the state of the 0-⇡ qubit. The second equality follows if the initial state

of the oscillator has negligible support outside the interval Q 2 [� 1
2 , 1

2 ].

How is this conclusion a↵ected when the quadratic term '2/2L is included? If the coupling

turns on slowly enough, this term can cause some squeezing of the wave function in ' space and,

correspondingly, some spreading in Q space. To model crudely the e↵ect of the spreading, consider

first turning on J(t) using H0 or H1 in Equation (2.28), then applying the operator e�i↵' (which

shifts Q by an amount ↵ that does not depend on the state of the 0-⇡ qubit). Denoting the time

evolution operator as J(t), turning on by U0 or U1 = X̄U0X̄ as in Section 2.4, we then have

| begin
0 i = e�i↵'U0| ini,

| begin
1 i = e�i↵'X̄U0X̄| ini,

(2.106)
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and therefore

h begin
1 |X̄| begin

0 i = h in|X̄U�1
0 X̄ei↵'X̄e�i↵'U0| ini. (2.107)

Now we note that

X̄ei↵'X̄e�i↵' = (�1)�[Q]ei↵'(�1)[Q]e�i↵'

= (�1)�[Q](�1)[Q�↵] = (�1)[Q�↵]�[Q]; (2.108)

furthermore, [Q � ↵] � [Q] commutes with cos' and hence with U0, because e�i', acting by

conjugation, increases both [Q � ↵] and [Q] by 1 (while ei' decreases both by 1). Hence, we find

h begin
1 |X̄| begin

0 i = h in|ei↵'X̄e�i↵'| ini

= h in|(�1)[Q�↵]| ini; (2.109)

in particular, if | ini is almost fully supported in the interval Q 2 [�1/2 + |↵|, 1/2 � |↵| ], then

| begin
1 i is very close to X̄| begin

0 i. If | ini is the Gaussian ground state with hQ2i = 1
2

p
C/L, the

deviation of h begin
1 |X̄| begin

0 i from 1 is suppressed by the exponential factor

|1 � h begin
1 |X̄| begin

0 i| ⇡ exp

✓�
1
2 � |↵|

�2 q
L

C

◆
⇡ exp

✓
|↵|

q
L

C

◆
exp

✓
� 1

4

q
L

C

◆
.

(2.110)

How much spreading in Q space should be expected? To make a crude estimate of how the

harmonic term a↵ects the distribution in Q space, we note that

e�i�'

2

Qei�'

2

= Q + 2�', (2.111)

and choose � ⇡ ⌧
J

/2L, where ⌧
J

is the time scale for the coupling to turn on; using h'2i = 1
2

p
L/C

in the Gaussian ground state, we infer that Q is shifted by an amount of order

↵ ⇠ ⌧
J

L

✓
L

C

◆1/4

. (2.112)
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Assuming ⌧
J

⇠
p

LC in order to suppress the diabatic error, we find that squeezing enhances the

gate error by a factor

exp

 
(constant)

✓
L

C

◆1/4
!

; (2.113)

that is, it contributes a subleading correction to the logarithm of the gate error.

More realistically, treating the harmonic term as a perturbative correction to the zeroth-order

Hamiltonian, which has ' ! ' + 2⇡ periodicity, the dynamics is governed by the e↵ective Hamil-

tonian

He↵ = ✏
J,C

(q) +
'2

2L
, (2.114)

where q 2 [� 1
2 , 1

2 ] is the Bloch momentum and ✏
J,C

(q) is the energy of the lowest band. Expanding

this band energy to quadratic order, we have

✏
J,C

(q) ⇡ q2

2Ce↵
. (2.115)

The e↵ective capacitance Ce↵ is approximately C for J small, but for JC ⇡ 1, the band curvature

begins to flatten rapidly; correspondingly, Ce↵ increases sharply, as does the oscillator’s period

2⇡
p

LCe↵. The oscillator evolves adiabatically for J small, but its evolution freezes when its pe-

riod becomes comparable to ⌧
J

, the characteristic time scale for the variation of the Hamiltonian.

Therefore, the squeezing error is determined by the wave function’s width in q-space at the time

when the oscillator freezes; hence,

Psq ⇠ exp

 
�(constant)

r
L

Ce↵

!

⇠ exp

✓
�(constant)

L

⌧
J

◆
⇠ exp

 
�(constant)

r
L

C

!
, (2.116)

where we obtain the last equality by choosing ⌧
J

⇠
p

LC to suppress the diabatic error. Thus the

contribution to the gate error due to squeezing is comparable to the other sources of error. We can

use a similar argument to conclude that the squeezing error arising as the coupling J(t) turns o↵

is also of the same order.
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2.9 Simulations

We have compared the predictions from Sections 2.4 and 2.6 to numerical simulations of the single-

qubit phase gate exp(i⇡4 Z). We solved the time-dependent Schrödinger equation for the Hamilto-

nians H0,1 in Equation (2.15), assuming the oscillator starts in the ground state (excited states will

be considered in Section 2.10). These simulations were done in MATLAB using the fourth-order

split-operator method, which is based on the identity

exp(it(A + B)) = exp(i
�

2
tA) exp(i�tB) exp(i

1 � �

2
tA)

⇥ exp(i(1 � 2�)tB) exp(i
1 � �

2
tA) exp(i�tB) exp(i

�

2
tA) + O(t4), (2.117)

where

� =
1

2 � 3

p
2
, (2.118)

and where A and B are the portions of the Hamiltonian that are diagonal in the position and

momentum eigenbases, respectively. The full time evolution is broken up into many small steps

with the Hamiltonian alternating between A and B and the Fourier transform or its inverse applied

between successive steps.

We assume that the coupling ⌥J(t) cos' between the oscillator and the 0-⇡ qubit turns on with

an error-function profile,

J(t) = J0

✓
1

2
+

1

2
erf(t/⌧

J

)

◆
, (2.119)

and that the coupling turns o↵ after the time delay ⌧ ⇡ L/⇡, according to the time-reversed function

J(⌧ � t); the time scale ⌧
J

for turning the coupling on and o↵ and the time delay ⌧ were chosen to

optimize the gate accuracy. Then we varied the time delay ⌧ = ⌧0 (1 + "), where ⌧0 is the optimal

value, to study the e↵ect of overrotation/underrotation on the gate accuracy.

Figure 2.13 shows the results for a series of simulations with
p

L/C = 80,
p

J0C = 8 and ⌧
J

=
p

LC, plotted together with the analytic prediction Equation (2.89), arising from the overrotation

error alone. For small ", the gate error is

|⌘
"

| ⇡ 2 ⇥ 10�8 ⇡ 10 exp

 
�1

4

r
L

C

!
, (2.120)
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Figure 2.13: Blue diamonds show on a logarithmic scale the numerically computed diamond-norm
deviation from the ideal phase gate, for �2 =

p
L/C = 80, ��2 =

p
J0C = 8, and ⌧

J

/C = 80,
as a function of the overrotation parameter ". The solid green line is the analytic prediction from
Equation (2.89) for the overrotation error alone. The discrepancy for small " arises from corrections
due to diabatic transitions and squeezing.
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substantially larger than the analytic prediction |⌘
"

| ⇡ 5 ⇥ 10�10, but roughly compatible with our

expectations for the scale of the error due to diabatic transitions and squeezing, the dominant errors

in this regime, when we choose ⌧
J

⇡
p

LC. For larger values of " the overrotation error dominates

and the numerical results agree well with the analytic prediction.

The simulations verify that the protected phase gate is much more robust than an unprotected

gate. For an unprotected gate, executed by coupling the 0-⇡ qubit to a Josephson junction, as

described in Section 2.3, achieving a gate error less 10�4 in the diamond norm requires a pulse

timing accuracy of order 10�4. In contrast, for a protected gate with the parameters specified

above, 4% accuracy in the pulse timing su�ces for achieving a gate error less than 10�4. When the

pulse timing accuracy is better than 1%, the gate error is below 4 ⇥ 10�8.

2.10 Nonzero temperature

Our estimate of the intrinsic gate error in Equations (2.65) and (2.69) applies to any grid-like

state of the form Equation (2.55). In Equations (2.78) and (2.85) we treated the specific case of

a Gaussian grid state, which is what arises during the execution of the protected phase gate in

the case where the initial state | ini of the harmonic oscillator is the ground state. Let us now

consider the case where the initial state is excited, as occurs with nonzero probability at any nonzero

temperature. To keep things simple, we will ignore the e↵ects of overrotation, setting " = 0. In

that case, Im ⌘
"

= 0 because F
"

(Q) is real, so we only need to worry about the real part of the gate

error. In this section we also neglect the corrections due to diabatic transitions and squeezing.

When the coupling to the 0-⇡ qubit is turned o↵, the harmonic oscillator Hamiltonian is

H =
Q2

2C
+
'2

2L
, (2.121)

and its ground state | 0i obeys

h'| 0i =

 
1

⇡

r
C

L

!1/4

e� 1

2

p
C
L '

2

,

hQ| 0i =

 
1

⇡

r
L

C

!1/4

e� 1

2

p
L
C Q

2

.

(2.122)
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Our estimate diamond norm deviation from the ideal gate becomes

|⌘(0)| ⇡ 4

Z 1

1/2

dQ |hQ| 0i|2

= 4

 
1

⇡

r
L

C

!1/2 Z 1

1/2

dQ e�
p

L
C Q

2

⇡ 4p
⇡

✓
L

C

◆�1/4

e� 1

4

p
L
C . (2.123)

Numerically, we have, e.g., |⌘(0)| ⇡ 1.6 ⇥ 10�5 for
p

L/C = 40 and |⌘(0)| ⇡ 5.2 ⇥ 10�10 forp
L/C = 80.

The oscillator’s nth excited state is

| 
n

i =

�
a†�n

p
n!

| 0i, (2.124)

where

a† =

✓
C

4L

◆1/4

'� i

✓
L

4C

◆1/4

Q, (2.125)

which becomes

a† = i

✓
C

4L

◆1/4 d

dQ
� i

✓
L

4C

◆1/4

Q (2.126)

in the Q representation. Therefore, the nth harmonic oscillator excited state can be expressed in

Q space as

hQ| 
n

i = 1p
n!

⇣
�
�

C

4L

�1/4
d

dQ

+
�

L

4C

�1/4
Q
⌘

n

hQ| 0i

= 2n/2
⇡

�1/4
p

n!

✓q
L

C

◆n
2

+ 1

4

(Qn + · · · ) e� 1

2

p
L
C Q

2

, (2.127)

where in the second line we have retained only the leading power of Q in the prefactor of the

exponential. To estimate the probability of a logical phase error, we assume that this leading power

dominates, and we also use the leading term in the asymptotic expansion

Z 1

x

dt t2ne�↵t

2

=

✓
x2n�1

2↵

◆
e�↵x

2

�
1 � O(1/x2)

�
(2.128)
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to calculate

|⌘(n)| ⇡ 4

Z 1

1/2

dQ |hQ| 
n

i|2

⇡ 2n+2

n!
p
⇡

✓
L

C

◆n
2

+ 1

4

Z 1

1/2

dQ Q2ne�
p

L
C Q

2

⇡ 1
2n�2

n!
p
⇡

✓
L

C

◆n
2

� 1

4

e� 1

4

p
L
C

=
1

2nn!

✓
L

C

◆
n/2

|⌘(0)|. (2.129)

Thus, for example, the intrinsic gate error for the first excited (n = 1) state is enhanced relative to

the ground state by the factor 1
2

p
L/C. This approximation is applicable when n is not too large,

so that the leading power of Q dominates the prefactor of the exponential in the tail of the wave

function at |Q| > 1/2; in particular, we require that

hQ2i
n

= nhQ2i0 =
n

2

✓
L

C

◆�1/2

⌧ 1

2
, (2.130)

or

n ⌧
p

L/C. (2.131)

The energy of the nth oscillator state is E
n

= n/
p

LC; therefore, in the thermal ensemble with

inverse temperature �, the probability that the oscillator is in the nth state is

P
n

=
⇣
1 � e��/

p
LC

⌘
e�n�/

p
LC . (2.132)

Thus, if the oscillator is in a thermal state, while the intrinsic phase error probability for the

nth state is enhanced by the factor (L/C)n/2/2nn!, it is also suppressed by the Boltzmann fac-

tor e�n�/

p
LC . Summing up the error probabilities for all oscillator states, with the appropriate
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Boltzmann weights, we find

|⌘(�)| =
⇣
1 � e��/

p
LC

⌘ 1X
n=0

e�n�/

p
LC |⌘(n)|

⇡
⇣
1 � e��/

p
LC

⌘
|⌘(0)|

1X
n=0

e�n�/

p
LC

1

2nn!

✓
L

C

◆
n/2

=
⇣
1 � e��/

p
LC

⌘
exp

 
1

2

r
L

C
e��/

p
LC

!
|⌘(0)|. (2.133)

The real part of ⌘ (and in the case we are considering there is no imaginary part) is essentially

the probability of a logical phase error in the grid state, and hence to compute the gate error we

need only compute this logical error probability for the thermal ensemble. Thus, the error at finite

temperature is comparable to the zero-temperature error, provided that

r
L

C
e��/

p
LC ⌧ 1. (2.134)

If, for example, �/
p

LC ⇡ 3, then compared to the zero-temperature case, thermal e↵ects enhance

the phase error probability by the factor 2.6 for
p

L/C = 40 and 7.0 for
p

L/C = 80. We expect,

then, that the protected phase gate remains reasonably robust, provided the temperature is smaller

than or comparable to the frequency of the superinductive LC circuit.

Numerical results, plotted in Figure 2.14, show that the gate performance remains robust for

excited eigenstates. In addition to the enhancement of the intrinsic phase error predicted by Equa-

tion (2.129), there is also a contribution to the gate error arising from diabatic transitions and

squeezing, which becomes less important for more highly excited eigenstates.

Up until now, we have addressed how the accuracy of the phase gate is a↵ected if, due to thermal

fluctuations, the initial state of the LC oscillator is not the ground state, but we have not considered

thermally excited transitions that might occur while the qubit and oscillator are coupled during the

execution of the gate. A thermally activated transition between bands, like a diabatic transition,

could flip the value of X̄ = (�1)[Q] and cause the gate to fail. But, as in Section 2.7, the relevant
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Figure 2.14: The minimum diamond-norm deviation of the protected phase gate from the ideal
gate, as a function of the initial oscillator eigenstate n, for

p
L/C = 80 and

p
J0C = 8. Results

from numerical simulations are shown in blue, and the analytic prediction Equation (2.129) is shown
in red. The discrepancy arises from corrections due to diabatic e↵ects and squeezing, which are
neglected in the derivation of Equation (2.129).
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band gap is of order 1/C, so such transitions are suppressed by a Boltzmann factor

Pthermal(�) = exp

✓
�O

✓
�

C

◆◆
= exp

 
�O

 
�p
LC

·
r

L

C

!!
, (2.135)

exponentially small in
p

L/C if �/
p

LC = O(1). On the other hand, spontaneous decay of the

oscillator during the execution of the gate is not likely to flip the value of X̄, and hence has little

impact on the gate accuracy.

2.11 Perturbative stability

Aside from its stability with respect to pulse timing errors and thermal e↵ects, we also expect

the protected phase gate to be robust against small deformations in the Hamiltonian of the LC

oscillator and of the switch coupling the oscillator to the qubit. Suppose, for example, that the

oscillator’s potential energy V includes a small anharmonic term so that

V =
'2

2L
+ �'4. (2.136)

Over time t, the e↵ect of the anharmonic term on the charge Q is

e�i�'

4

tQei�'

4

t = Q + 4�t'3; (2.137)

thus, the charge spreads by an amount

�Q ⇡ 4�th'6i1/2 = 4�t
p

15 h'2i3/2. (2.138)

Comparing the contribution in Equation (2.83) to �Q arising from overrotating the gate, and

choosing t ⇡ L/⇡, we see that the e↵ect of the anharmonic term is roughly comparable to the e↵ect

of an overrotation error

" ⇡ 4
p

15 �Lh'2i = 2
p

15 �L
p

L/C ⇡ 7.75↵, (2.139)
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where ↵ ⌘ �L
p

L/C is a dimensionless parameter characterizing the strength of the anharmonic

correction. For
p

L/C = 80 and
p

J0C = 8, as in Section 2.9, numerical results plotted in Fig-

ure 2.15 confirm that the gate accuracy is not much a↵ected by the anharmonic term for ↵ . 10�3,

as expected. In these simulations, we assumed that the initial state of the oscillator is the ground

state of the unperturbed oscillator Hamiltonian, which for ↵ small has a large overlap with the

ground state of the perturbed Hamiltonian.

The Josephson coupling between the 0-⇡ qubit and the oscillator is a periodic function of '

with period 2⇡, but need not be a pure cosine potential. If we include a next-to-leading harmonic

correction, the time-dependent Hamiltonian has the form

H0,1(t) =
Q2

2C
+
'2

2L
⌥ f(t)J0 [cos'± � cos 2'] , (2.140)

where f(t) varies between 0 and 1 as the coupling turns on or o↵, and � is a dimensionless parameter

characterizing the strength of the perturbation. (Note that shifting ' by ⇡ changes the sign of cos'

but not the sign of cos 2'.) For
p

J0C � 1 and � ⌧ 1, we expect the wave function to be well

localized near even or odd integer multiples of ⇡ in ' space (depending on whether the Hamiltonian

is H0 or H1) while the coupling is turned on; hence, it should be a good approximation to expand

the potential in a power series about these local minima, and therefore the perturbation is roughly

equivalent to rescaling J0 according to

J0 ! J0 (1 + 4�) . (2.141)

The precise value of J0 does not strongly influence the phase error probability, as long as it is

large enough to allow discrete peaks to form in ' space (i.e., to strongly suppress phase slips); it

instead determines the probability of an intrinsic bit flip error, as in Equation (2.51).

Numerical simulations confirm that the phase gate accuracy is insensitive to the perturbation

in Equation (2.140) when � is small. For
p

L/C = 80 and
p

J0C = 8, we find that the e↵ect on

the gate error is negligible for |�| . 0.05.
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Figure 2.15: The minimum diamond-norm deviation of the protected phase gate from the ideal
gate, as a function of the oscillator’s anharmonicity parameter ↵ = �L

p
L/C. Here, as in Fig-

ure 2.13,
p

L/C = 80 and
p

J0C = 8.
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2.12 Universality

We have focused so far on performing the single-qubit gate exp(i⇡4 Z) and the two-qubit gate

exp(i⇡4 Z ⌦Z); in principle, these can be executed with very high fidelity by coupling a 0-⇡ qubit or

a pair of such qubits to a superinductive LC circuit. Unfortunately, these gates are not adequate

by themselves for universal quantum computing.

One way to obtain a universal gate set is to augment these gates by the following operations [42]:

1. Preparation of the single-qubit states |0i and |+i (the Z = 1 and X = 1 eigenstates).

2. Measurement of the single-qubit Pauli operators Z and X.

3. The single-qubit gate exp(i⇡8 Z).

(In fact (1) need not be regarded as independent of (2), since repeated noncommuting measurements

can be used to achieve the state preparation, but we list these operations separately for clarity and

completeness.)

The operation exp(i⇡8 Z) could be executed by coupling the 0-⇡ qubit to a Josephson junction

for a specified time, as in Figure 2.4. This unprotected gate might be fairly noisy. However, if all

the other operations in the universal set were perfect, then scalable quantum computing would be

possible, provided the noisy exp(i⇡8 Z) gate meets the loose fidelity criterion F > .93 [47]. Therefore,

if the gates exp(i⇡4 Z) and exp(i⇡4 Z ⌦ Z) are well protected, it follows that highly reliable universal

quantum computation can be achieved, provided that the measurements, like these gates, have a

very low error rate.

In practice, the measurements are likely to be noisy. However, if they can be performed non-

destructively (with only a very low probability of changing the eigenvalue of measured operator),

then they can be repeated multiple times to improve reliability.

We note that the CZ gate, the two-qubit gate, diagonal in the computational basis, with eigen-

values {1, 1, 1, �1}, can be constructed from protected gates using the decomposition

CZ = exp
�
i⇡4 (Z � I) ⌦ (Z � I)

�
= exp

�
i⇡4 Z ⌦ Z

�
exp

�
�i⇡4 Z ⌦ I

�
exp

�
�i⇡4 I ⌦ Z

�
(2.142)
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(up to an overall phase). One way to perform a nondestructive measurement of Z is to use the

property

CZ : |0i ⌦ |+i ! |0i ⌦ |+i,

|1i ⌦ |+i ! |1i ⌦ |�i; (2.143)

we may apply CZ to the target qubit (the one to be measured) and an ancilla qubit prepared in the

state |+i, then perform X measurement on the ancilla qubit. If the CZ gate is not likely to induce

a bit flip on the target qubit, this procedure can be repeated many times, and the measurement

result can be determined by a majority vote of the outcomes.

If we are limited to using our protected gates, we cannot use the same trick to amplify an X

measurement. Perhaps the charge measurement described in Section 2.2, though the outcome is

noisy, can be done fault tolerantly, meaning that measurement procedure is not likely to flip the

eigenvalue of X. In that case, amplification by repetition and majority voting will work. Otherwise,

there are alternative ways to boost the measurement accuracy, using repetition coding.

For example, Chapter 3 and Ref. [2,48,49] describe a scheme for universal fault-tolerant quantum

computing built from the CZ gate, |+i preparation, X measurement, and, in addition, preparation

of the single-qubit states

|�ii =
1p
2

(|0i � i|1i) ,

|T i =
1p
2

⇣
|0i + e�i⇡/4|1i

⌘
,

which can be achieved by applying exp(i⇡4 Z) or exp(i⇡8 Z) to |+i. The main point of [2, 48, 49] is

that this scheme works e↵ectively when the noise in the CZ gate is highly biased, i.e., when Z errors

are much more common than X errors. The point we wish to emphasize here is that the scheme

remains e↵ective when the X measurement error rate is much higher than the CZ gate error rate.

The crucial element of the construction in [48,49] is a “teleported” encoded CNOT gate acting

on blocks of a repetition code, shown in Figure 2.16 (and see related figure Figure 3.5.) In Chapter 3

this construction is extended to Bacon-Shor codes. The probability of a logical error in the CNOT
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Figure 2.16: Logical CNOT gate acting on two blocks of the repetition code, shown here for code
length n = 3. Ancilla qubits are prepared in the X = 1 eigenstate |+i, interact via CZ gates with
the data qubits, then are measured in the X basis. (These preparations, gates, and measurements
are repeated several times, and the result is determined by a majority vote; the measurement
repetition is not shown.) Finally, each qubit in the two input blocks is measured in the X basis, the
results are decoded by a majority vote in each block, and logical Pauli errors in the output blocks
are inferred from the results.

gate can be bounded above as [48]

"CNOT  4

✓
n

n+1
2

◆
(3n"

g

+ 2"
m

)(n+1)/2 + 7n2"0
g


r

8

⇡n
(12n"

g

+ 8"
m

)(n+1)/2 + 7n2"0
g

, (2.144)

where "
g

is the probability of a dephasing error and "0
g

is the probability of a bit flip error in the

CZ gate, and "
m

is the error probability in a |+i preparation or an X measurement. Here n is

the length of the repetition code, and we assume that each measurement is repeated n times; the
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prefactor of 4 arises because the CNOT gadget contains four measurements decoded by majority

vote, any of which might fail, and the factor 3n"
g

+ 2"
m

is an upper bound on the probability of

error for each bit in each decoded block, neglecting the bit flip errors. (The second inequality is

obtained from the Stirling approximation.) The term 7n2"0
g

is an upper bound on the probability

that one or more CZ gates in the CNOT gadget have bit flip errors.

Just to illustrate the robustness of the CNOT gadget with respect to measurement and prepa-

ration errors (assuming bit flips are highly suppressed), note that for "
m

= .01, "
g

= 10�5, and

"0
g

= 10�9, by choosing n = 11, we find "CNOT < 10�6. The analysis in [48] then shows that,

by applying the state distillation ideas from [47], scalable quantum computing can achieved by

augmenting the CNOT gadget with |�ii and |T i preparations having the relatively high error rate

"
m

. This example indicates one possible way in which noisy measurements can be tolerated if

appropriate gates are highly reliable.

2.13 Conclusions

A “0-⇡ qubit,” is a two-lead superconducting device whose energy is minimized when the supercon-

ducting phase di↵erence between the leads is either 0 or ⇡. This qubit, if properly designed, can

be very robust with respect to weak local noise [40–42]. In this thesis, we have taken it for granted

that near-perfect 0-⇡ qubits are attainable, and have asked whether quantum information encoded

in such qubits can be processed fault tolerantly. Our conclusion, fleshing out a suggestion in [42],

is that highly accurate nontrivial quantum gates can be executed by coupling one or two qubits to

a superconducting LC oscillator with very large inductance. In principle, the gate error becomes

exponentially small when
p

L/C is large compared to ~/4e2 ⇡ 1.03 k⌦, where L is the inductance

and C is the capacitance of the oscillator.

We have estimated the gate accuracy using both analytic arguments and numerical simulations.

The analytic arguments use approximations, in particular for the analysis of errors due to diabatic

transitions and squeezing, which are validated by the simulations. The point of the simulations

is not necessarily to capture fully the behavior of realistic devices, but rather to verify that the

analytic arguments are on solid ground. The analysis applies to any su�ciently robust 0-⇡ qubit,

regardless of its internal structure.

The protected gates are the single-qubit phase gate exp
�
i⇡4 Z

�
and the two-qubit phase gate
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exp
�
i⇡4 Z ⌦ Z

�
. In both cases, the oscillator starts out in a low-lying energy state; then turning on a

tunable Josephson coupling between the qubit(s) and the oscillator prepares a state of the oscillator

protected by a continuous variable quantum error-correcting code. The coupling is kept on for a

specified time, during which the code state acquires a nontrivial Berry phase, inducing a nontrivial

encoded operation, with error probability exponentially small in
p

L/C. Then the coupling turns

o↵, returning the oscillator to a low-lying state slightly di↵erent from the initial one.

The ramping of the coupling on and o↵ takes place over a time scale ⌧
J

= O(
p

LC), chosen to

achieve an optimal compromise between errors due to diabatic transitions (which favor large ⌧
J

)

and errors due to squeezing (which favor small ⌧
J

). The gates are robust against generic small

errors in the Hamiltonian and thermal e↵ects, due to the good error-correcting properties of the

quantum code. Entropy due to noise is mostly absorbed by the oscillator, inflicting little damage

on the 0-⇡ qubit. These protected phase gates are not a universal gate set by themselves, but a

universal fault-tolerant scheme can be built from the protected gates together with single-qubit

measurements and noisy unprotected phase gates.

We do not know whether a very robust 0-⇡ qubit, and/or the superinductive LC circuit needed

for protected phase gates, will prove to be feasible in superconducting devices. We hope that other

settings will be found in which highly reliable quantum gates can be realized by using tunable

couplings between qubits and oscillators.
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Appendix 2.A Adiabatic switch

Here we describe the static properties of a single rung of the two-rung circuit depicted in Figure 2.2.

This single-rung circuit is of independent interest; because its e↵ective Josephson energy depends

sensitively on circuit parameters, it can serve as an “adiabatic switch,” which turns the coupling

on and o↵ between superconducting qubits.

Figure 2.17: Adiabatic switch. For
p

L/C � 1, the e↵ective Josephson energy Je↵ of the switch
is depends sensitively on circuit parameters.

The circuit shown in Figure 2.17 is described by the Hamiltonian

H =
Q2

2C
+
'2

2L
� J cos('� ✓), where Q = �i

@

@'
. (2.145)

The dynamical variable is the superconducting phase ' at the indicated point, and the phase

di↵erence ✓ between the leads is fixed; Q is the electric charge operator in units of 2e. While ✓ is

defined modulo 2⇡, the variable ' is a real number because the states |'i and |' + 2⇡i di↵er by

the phase winding in the inductor. We choose units such that ~ = 1 and express the capacitance

and inductance in rationalized units such that C�1 and L�1 have dimensions of energy (or inverse

time). Specifically,

C =
Cconv

(2e)2
, L =

Lconv

(~/2e)2
, (2.146)

where the subscript “conv” refers to conventional units. We can also relate the parameters J , C to

the commonly used charging energy E
C

and Josephson energy E
J

:

E
C

=
e2

2Cconv
=

1

8C
, E

J

= Jconv = J. (2.147)

In most of the chapter we have studied this same Hamiltonian, where ✓ = 0 or ⇡ and J pulses on

and o↵ during the execution of a quantum gate. But here we focus on the case where J is time

independent.
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In the d.c. regime, the whole device behaves like an e↵ective Josephson element — its ground

state energy E(✓) depends on the phase di↵erence ✓ between the leads. The e↵ective Josephson

energy can be characterized by

Je↵ = E00(0) =
@2E

@✓2

����
✓=0

. (2.148)

We will see that this number varies by orders of magnitude when the circuit parameters change in

a much narrower range.

Suppose that C and L are fixed, while J may vary from very small to very large values. In

the limit J ! 0, we may treat the Josephson energy as a small perturbation of the LC oscillator,

obtaining

E(✓) = �Je↵ cos ✓ + const, (2.149)

where

Je↵ = Jhcos'i, = Je�h'2i/2 = J exp
⇣
� 1

4

p
L/C

⌘
. (2.150)

In the opposite limit J ! 1, the dynamical phase is locked: ' ⌘ ✓ (mod 2⇡), and therefore

E(✓) = min
n

(✓ + 2⇡n)2

2L
+ const, Je↵ = L�1. (2.151)

If L is large, the e↵ective Josephson coupling is suppressed in both limits, but the suppression is

exponential only in the limit J ! 0.

We say that the circuit is superinducting if the dimensionless characteristic impedance is large,

or equivalently if the impedance in conventional units is large compared to the superconducting

impedance quantum R
Q

= ~/(2e)2 ⇡ 1.03 k⌦. Reaching this superinducting regime is a signifi-

cant engineering challenge, quite hard to achieve using geometric inductance (except perhaps by

constructing a coil with a very large number of turns). Indeed, the inductance of a loop of wire is

accompanied by a parasitic capacitance such that
p

Lconv/Cconv ⇠ 4⇡/c ⇡ 377 ⌦ (where c is the

speed of light). This is the impedance of the free space, smaller than R
Q

by the factor 16⇡↵, where

↵ = e2/~c ⇡ 1/137 is the fine structure constant. One possible way to realize a superinductor is to

build a long chain of Josephson junctions [44–46]. Another is to use a long wire, thick enough to

suppress phase slips, built from a material with large kinetic inductance.

In the case where
p

L/C � 1, we can compute the ground state energy of the Hamiltonian

Equation (2.145) semi-analytically. First we note that in the limit L ! 1 the problem reduces to
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a particle moving in a periodic potential:

H 0 =
Q2

2C
� J cos e', where e' = '� ✓. (2.152)

This approximate Hamiltonian H 0 preserves the quasimomentum q = Q mod 1, and therefore can

be solved using Bloch wave functions. In the lowest Bloch band, the energy can be expressed as a

function of the quasimomentum q 2
⇥
� 1

2 , 1
2

⇤
in two di↵erent limits:

JC ⌧ 1 : "(q) =
q2

2C
, (2.153)

JC � 1 : "(q) = �J +
!

2
� 2� cos(2⇡q), (2.154)

where

! =
p

J/C, � =
4p
⇡

J3/4C�1/4 e�8
p

JC . (2.155)

In the case JC � 1, the system stays near a minimum of the cosine potential at e' = 2⇡n and

occasionally tunnels to an adjacent minimum through the potential barrier. In Equation (2.155), !

is the angular frequency for small oscillations about the potential minimum, and � is the amplitude

tunneling amplitude.

To compute � we recall the semiclassical analysis [50] for a particle of mass m tunneling through

a symmetric double-well potential V (x) with minima at x = a, b, which yields

� =
!p
⇡

e�S+!⌧/2, (2.156)

where

S =

Z
b

a

dx
p

2mV (x), ⌧ =

Z
b��x

a+�x

dx

r
m

2V (x)
; (2.157)

here ! =
p

V 00(a)/m and �x = (V 00(a) m)�1/4 is the width of the ground state localized around

the potential minimum. We obtain Equation (2.154) using m = C and V (e') = J(1 � cos e').

Defining the e↵ective capacitance Ce↵ by

1

Ce↵
= "00(0), (2.158)
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Figure 2.18: The inverse e↵ective capacitance of a Josephson junction as a function of JC.

we obtain from Equations (2.154) and (2.155) the asymptotic values

C

Ce↵
=

8>>><>>>:
1, if JC ⌧ 1,

32⇡3/2(JC)3/4e�8
p

JC , if JC � 1.

(2.159)

The numerically computed value of Ce↵ as a function of JC is plotted in Figure 2.18.

Now we return to the original Hamiltonian H in Equation (2.145). For small but nonzero L�1.

the quasimomentum q, though not exactly conserved, is a slow variable which can be treated using

the adiabatic approximation. We obtain the e↵ective Hamiltonian

He↵ =
'2

2L
+ "(q), where ' = i

@

@q
+ ✓. (2.160)

This problem is similar to the one we have just solved, Equation (2.152); now the variable q is

periodic (defined modulo 1), and the parameter ✓ plays the role of quasimomentum.

If
p

L/Ce↵ � 1, i.e. JC ⌧ ln(L/C), the ground state energy is given by the formula E(✓) =
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�Je↵ cos ✓ + const, where Je↵ is twice the tunneling amplitude. This expression is analogous to

Equation (2.154), except that now we consider tunneling through the periodic “potential” "(q)

from an integer value of q to an adjacent integer value. From Equation (2.156) we find

Je↵ = ⌫ C�3/4
e↵ L�1/4 exp

⇣
�µ

p
L/Ce↵

⌘
, (2.161)

where

µ = 2

Z 1/2

0

q
2Ce↵

�
"(q) � "(0)

�
dq, (2.162)

⌫ =
1p
⇡

exp

 Z 1/2

0

⇣�
2Ce↵

�
"(q) � "(0)

���1/2 � q�1
⌘
dq

!
. (2.163)

The parameters µ and ⌫ are numbers of order 1: As JC increases from zero to infinity, µ changes

from 1/4 = 0.25 to 2/⇡2 ⇡ 0.2026, and ⌫ changes from 1/
p
⇡ ⇡ 0.564 to 4/⇡3/2 ⇡ 0.718.

For Equation (2.161) to apply, we also need that J not be too small: JC � (L/C)�1/4. For

smaller J , the adiabatic approximation breaks down near the point q = ±1/2, where two branches

of the parabola "(q) = q2/(2C) meet each other. However, the exponential factor e�S is still correct

and coincides with hcos'i from Equation (2.150).

To summarize, we have calculated the e↵ective Josephson coupling in three di↵erent regimes,

finding

JC ⌧ (L/C)�1/4 : Je↵ = J exp
⇣
� 1

4

p
L/C

⌘
, (2.164)

(L/C)�1/4 ⌧ JC ⌧ ln(L/C) : Je↵ = ⌫ C�3/4
e↵ L�1/4 exp

⇣
�µ

p
L/Ce↵

⌘
, (2.165)

JC � ln(L/C) : Je↵ = L�1. (2.166)

The numerical results for
p

L/C = 40, together with plots of Equations (2.164) to (2.166), are

shown in Figure 2.19.

Appendix 2.B Quantifying the gate error

The protected phase gate is executed by coupling the qubit to an oscillator for a prescribed time

interval. We assume that the initial state of qubit and oscillator is a product state | i ⌦ | ini,
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Figure 2.19: The e↵ective Josephson parameter of the adiabatic switch as a function of JC forp
L/C = 40.
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where | i = a|0i + ib|1i is the initial (normalized) state of the qubit and | initi is the initial state

of the oscillator. After the coupling between qubit and oscillator is switched o↵, the joint state of

qubit and oscillator becomes

| 0i = a|0i ⌦ | 0i + b|1i ⌦ | 1i, (2.167)

where h 0| 0i = hpsi1| 1i = 1. We assume that there are no bit flip errors, but there may be a

phase error. If the gate is ideal, then h 0| 1i = 1, and the gate rotates the phase of |1i by the angle

�⇡/2 relative to the phase of |0i. We wish to quantify the error, using some appropriate measure

of the deviation of h 0| 1i from 1.

2.B.1 Fidelity

One way to quantify the error is to use the fidelity of the actual state with the ideal state. Tracing

out the oscillator, we obtain the final density operator for the qubit

⇢ = trosc| 0ih 0| =

0BBB@h 0| 0i|a|2 h 1| 0iab⇤

h 0| 1ia⇤b h 1| 1i|b|2

1CCCA =

0BBB@ |a|2 Ce�i�ab⇤

Cei�a⇤b |b|2

1CCCA , (2.168)

where

h 0| 1i = Cei�, (2.169)

and C = |h 0| 1i| is real and nonnegative. The fidelity F with the ideal state | ideali = a|0i + b|1i
is

F = h ideal|⇢| ideali

= |a|4 + |a|2|b|2
�
Cei� + Ce�i�

�
+ |b|4

=
⇣
|a|2 + |b|2

⌘2

� 2 (1 � C cos�) |a|2|b|2. (2.170)

Thus the “infidelity” (the deviation of F from 1) is maximal when |a|2 = |b|2 = 1/2, and we

conclude that

1 � F  1

2
(1 � C cos�) . (2.171)
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Denoting � = 1 � C, we have

1 � F ⇡ 1

2
� +

1

4
�2. (2.172)

assuming �,� ⌧ 1.

2.B.2 Trace norm

Another useful measure is the deviation of ⇢ from the ideal density operator ⇢ideal = | idealih ideal|
in the trace norm. We see that

⇢ideal � ⇢ =

0BBB@ 0
�
1 � Ce�i�

�
ab⇤

�
1 � Cei�

�
a⇤b 0

1CCCA , (2.173)

whose eigenvalues

± |a||b|
p

1 + C2 � 2C cos� (2.174)

have maximal absolute value for |a| = |b| = 1/
p

2. Hence, the trace norm satisfies

k⇢ideal � ⇢k1 
p

1 + C2 � 2C cos�

= |1 � h 0| 1i|. (2.175)

Denoting � = 1 � C, we have

k⇢ideal � ⇢k1 
p

(1 � C)2 + 2C(1 � cos�)

⇡
p
�2 + �2, (2.176)

assuming �,� ⌧ 1.

2.B.3 Kraus operators

It is also useful to have a Kraus operator decomposition of the noise process. We may define states

| 0
0i and | 0

1i such that

| 0i = e�i�/2| 0
0i, | 1i = ei�/2| 0

1i, (2.177)
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and therefore

h 0
0| 0

1i = C � 0. (2.178)

In terms of these states,

| 0i = a|0i ⌦ | 0i + b|1i ⌦ | 1i

=
⇣
e�i�/2a|0i + bei�/2|1i

⌘
⌦ 1

2
(| 0

0i + | 0
1i)

+
⇣
e�i�/2a|0i � bei�/2|1i

⌘
⌦ 1

2
(| 0

0i � | 0
1i) , (2.179)

where ����1

2
(| 0

0i ± | 0
1i)

���� =

r
1

2
(1 ± C),

(h 0
0| + h 0

1|) (| 0
0i � | 0

1i) = 0. (2.180)

Therefore,

⇢ = N (⇢ideal) = M0⇢idealM
†
0 + M1⇢idealM

†
1 , (2.181)

where

M0 =

r
1

2
(1 + C)

0BBB@e�i�/2 0

0 ei�/2

1CCCA ,

M1 =

r
1

2
(1 � C)

0BBB@e�i�/2 0

0 �ei�/2

1CCCA . (2.182)

Note that we have rotated away the ideal phase gate in our definition of the noise operation N , so

that N = I corresponds to the ideal gate.
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2.B.4 Diamond norm

In some versions of the quantum accuracy threshold theorem, the strength of Markovian noise is

characterized by the deviation

" = kN � Uk⌃ (2.183)

of a noisy gate N from the corresponding ideal gate U in the “diamond norm” [6]. The advantage

of the diamond norm is that it quantifies the damage inflicted by an operation that acts on a

subsystem that might be entangled with a complementary subsystem, e.g., a noisy gate acting on

a qubit or pair of qubits that is entangled with the rest of the qubits in a quantum computer. The

diamond norm kEk⌃ is defined as the L1 norm of the extended operator E ⌦ I; that is,

kEk⌃ = max
�

kE ⌦ I(�)k1. (2.184)

If E acts on a Hilbert space H of dimension d, then I denotes the identity operator acting on another

Hilbert space H0 of dimension d, and � is a state on H ⌦ H0.

For the operation defined by Equation (2.181), the two-qubit state � that maximizes the L1

distance between (N ⌦ I)(�) and � is a maximally entangled pure state, which we may choose to

be |�+i = 1p
2

(|00i + |11i). Letting N act on the first qubit, we obtain an ensemble of two pure

states,

1p
2

⇣
e�i�/2|00i + ei�/2|11i

⌘
, prob =

1

2
(1 + C),

1p
2

⇣
e�i�/2|00i � ei�/2|11i

⌘
, prob =

1

2
(1 � C),

(2.185)

and the density operator can be expressed as a 2 ⇥ 2 matrix acting on the span of |00i and |11i:

N ⌦ I(|�+ih�+|) =

0BBB@
1
2

1
2Ce�i�

1
2Cei�

1
2

1CCCA ,

(N ⌦ I � I ⌦ I)(|�+ih�+|) =

0BBB@ 0 1
2 (Ce�i� � 1)

1
2 (Cei� � 1) 0

1CCCA . (2.186)
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Comparing with Equation (2.173) in the case a = b = 1p
2
, we find

kN � Ik⌃ = maxk⇢ideal � ⇢k1 =
p

1 + C2 � 2C cos� = |1 � h 0| 1i|. (2.187)

Evidently, extending E to E ⌦ I does not increase its maximal L1 norm; hence, the noisy gate’s

deviation from the ideal gate in the diamond norm coincides with the maximal trace distance

deviation of the density operator ⇢ from the ideal density operator ⇢ideal.

The accuracy of the two-qubit phase gate can be analyzed in the same way. Now the final state

of the oscillator depends on the total phase di↵erence across a pair of 0-⇡ qubits; it is | 0i for the

two-qubit states |00i and |11i, and | 1i for the two-qubit states |01i and |10i. The eigenvalues of

⇢ideal � ⇢ become doubly degenerate, and hence the diamond norm deviation from the ideal gate is

twice as large as for the single-qubit phase gate.

Both the fidelity and the diamond norm are useful measures of the gate error. The significant

di↵erence is that the diamond norm deviation (⇡
p

(1 � C)2 + �2) is linear in � (for � small

and C ⇡ 1), while the infidelity is quadratic in �. The threshold theorem establishes a su�cient

condition for scalable quantum computing, expressed as an upper bound on the diamond norm, and

it applies under the pessimistic assumption that phase errors accumulate linearly with the circuit

size. But if the phase errors are actually random, we might expect them to add in quadrature, and

in that case the infidelity may be a more appropriate way to quantify the gate error.

Appendix 2.C Grid states

Here we provide additional details concerning the properties of grid states, which were omitted from

the discussion in Section 2.6.
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2.C.1 Approximate codewords in ' space and Q space

Let f denote a narrow function in ' space, and F̃ denote a broad envelope function in ' space. We

express the approximate codewords of the continuous variable code as

|0
C

i =
p

2⇡
X

n even

F̃ (⇡n)T (⇡n)

Z
d' f(')|'i,

|1
C

i =
p

2⇡
X

n odd

F̃ (⇡n)T (⇡n)

Z
d' f(')|'i, (2.188)

where T (a) denotes the ' translation operator whose action is T (a)|'i = |'+ ai. The function

f is normalized so that Z
d' |f(')|2 = 1, (2.189)

and if the overlap between peaks centered at distinct integer multiples of ⇡ can be neglected, then

|0
C

i and |1
C

i are normalized provided

2⇡
X

n even

|F̃ (⇡n)|2 ⇡ 1, 2⇡
X

n odd

|F̃ (⇡n)|2 ⇡ 1. (2.190)

The approximate codewords in the conjugate basis are

|+
C

i =
1p
2

(|0
C

i + |1
C

i)

=
p
⇡
X

n

F̃ (⇡n)T (⇡n)

Z
d' f(')|'i,

|�
C

i =
1p
2

(|0
C

i � |1
C

i)

=
p
⇡
X

n

F̃ (⇡n)(�1)nT (⇡n)

Z
d' f(')|'i,

(2.191)

where

⇡
X

n

|F̃ (⇡n)|2 ⇡ 1. (2.192)
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To express these states in the Q basis, we use

Z
d' f(')|'i =

Z
dQ

Z
d' f(')|QihQ|'i

=

Z
dQ f̃(Q)|Qi, (2.193)

where

f̃(Q) =
1p
2⇡

Z
d' e�iQ'f('),

f(') =
1p
2⇡

Z
dQ eiQ'f̃(Q); (2.194)

since the function f is narrow in ' space, its Fourier transform f̃ is broad in Q space. The translation

operator is represented in Q space as T (a) = exp(�iQa), and therefore

|+
C

i =
p
⇡
X

n

F̃ (⇡n)T (⇡n)

Z
d' f(')|'i

=
p
⇡
X

n

F̃ (⇡n)

Z
dQ e�i⇡nQf̃(Q)|Qi,

|�
C

i =
p
⇡
X

n

F̃ (⇡n)(�1)nT (⇡n)

Z
d' f(')|'i

=
p
⇡
X

n

F̃ (⇡n)

Z
dQ e�i⇡n(Q�1)f̃(Q)|Qi.

(2.195)

Now we reverse the order of the summation and integration, and use the Poisson summation

formula, in the form (see Appendix 2.D):

p
⇡
X

n

e�i⇡nQF̃ (⇡n) =
p

2
X
m

F (Q � 2m), (2.196)

where

F (Q) =
1p
2⇡

Z
d' e�iQ'F̃ ('),

F̃ (') =
1p
2⇡

Z
dQ eiQ'F (Q).

(2.197)
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The codewords |+
C

i and |�
C

i can now be expressed as

|+
C

i =
p

2

Z
dQ f̃(Q)

X
m even

F (Q � m)|Qi,

|�
C

i =
p

2

Z
dQ f̃(Q)

X
m odd

F (Q � m)|Qi.
(2.198)

Here F is a narrow function centered at zero in Q space, so that |+
C

i has support near even integer

values of Q, and |�
C

i has support near odd integer values of Q. Because f̃(Q) is slowly varying, it

is nearly constant within each peak, and the codewords can be well approximated as

|+
C

i ⇡
p

2
X

m even

f̃(m)

Z
dQ F (Q � m)|Qi,

|�
C

i ⇡
p

2
X

m odd

f̃(m)

Z
dQ F (Q � m)|Qi,

(2.199)

where

2
X

m even

|f̃(m)|2 ⇡
Z

dQ |f̃(Q)|2 ⇡ 1,

2
X

m odd

|f̃(m)|2 ⇡
Z

dQ |f̃(Q)|2 ⇡ 1.
(2.200)

2.C.2 Phase gate overrotation

We wish to study the performance of the encoded phase gate, which rotates the relative phase of

|0
C

i and |1
C

i by �⇡/2. For ideal codewords, this gate is achieved by applying the unitary operator

e�i'

2

/2⇡, which has the value 1 when ' is an even multiple of ⇡, and has the value �i when ' is

an odd multiple of ⇡. Loosely speaking, this operation arises from the harmonic potential of the

superinductor, turned on for a specified time interval. An error could occur because the timing is

not precisely correct, so that e�i'

2(1+")/2⇡ is applied instead, where " ⌧ 1.

In ' space, each narrow peak in the approximate codeword is stabilized by the cosine potential,

but when the phase gate is overrotated, the relative phases of the peaks are modified, with the

peak localized near ' = n⇡, acquiring the phase e�i"⇡n

2

/2. Thus, instead of Equation (2.195), the
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approximate X̄ eigenstates become

|±
C

i
"

=
p
⇡
X

n

(±1)ne�i"⇡n

2

/2F̃ (n⇡) ⇥
Z

dQ e�i⇡nQf̃(Q)|Qi. (2.201)

We again use the Poisson summation formula

p
⇡
X

n

e�i⇡nQF̃
"

(⇡n) =
p

2
X
m

F
"

(Q � 2m), (2.202)

but now applied to the modified function

F̃
"

(') = e�i"'

2

/2⇡F̃ ('), (2.203)

such that

F̃
"

(n⇡) = e�i"⇡n

2

/2F̃ (n⇡). (2.204)

Therefore, as in Equation (2.55), the approximate codewords |±
C

i
"

can be expressed as

|+
C

i
"

⇡
p

2
X

m even

f̃(m)

Z
dQ F

"

(Q � m)|Qi,

|�
C

i
"

⇡
p

2
X

m odd

f̃(m)

Z
dQ F

"

(Q � m)|Qi,
(2.205)

where

F
"

(Q) =
1p
2⇡

Z
d' e�iQ'F̃

"

('). (2.206)

2.C.3 Imaginary part of overrotation error

As explained in Section 2.6.2, the imaginary part of the gate error due to overrotation is estimated

as

Im ⌘
"

= Im h end
� |X̄| end

+ i, (2.207)
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where

h end
� |X̄| end

+ i ⇡ 2

Z
[Q] even

dQ|f̃(Q)|2
X

m even

n odd

F (Q � n)⇤F (Q � m)

� 2

Z
[Q] odd

dQ|f̃(Q)|2
X

m even

n odd

F (Q � n)⇤F (Q � m). (2.208)

We evaluate this expression as follows:

h end
� |X̄| end

+ i ⇡ 2
X

m even

|f̃(m)|2
Z

m+
1
2

m� 1
2

dQ (F (Q � m � 1)⇤ + F (Q � m + 1)⇤) F (Q � m)

� 2
X

n odd

|f̃(n)|2
Z

n+
1
2

n� 1
2

dQ F (Q � n)⇤ (F (Q � n � 1) + F (Q � n + 1))

⇡
 

2
X

m even

|f̃(m)|2
!✓Z 0

�1

dQ F (Q � 1
2 )⇤F (Q + 1

2 ) +

Z 1

0

dQ F (Q + 1
2 )⇤F (Q � 1

2 )

◆

�
 

2
X

n odd

|f̃(n)|2
!✓Z 0

�1

dQ F (Q + 1
2 )⇤F (Q � 1

2 ) +

Z 1

0

dQ F (Q � 1
2 )⇤F (Q + 1

2 )

◆

⇡ 2

Z 1

0

dQ
�
Odd

⇥
F (Q + 1

2 )⇤F (Q � 1
2 )
⇤
� c.c.

�
⇡ 2

Z 1

0

dQ
�
Odd

⇥
F (Q + 1

2 )⇤F (Q � 1
2 )
⇤
� c.c.

�
. (2.209)

To obtain the first equality, we suppose that the integral is dominated by the overlaps of peaked

functions {F (Q � m)} centered at neighboring integer values of m, and approximate the slowly

varying function f̃(Q) by a constant in each integral. We obtain the second equality by shifting the

integration variable in each integral, and the third equality by using the normalization condition

2
P

m even|f̃(m)|2 ⇡ 1 ⇡ 2
P

n odd|f̃(n)|2, while noting that the integral of the even part of F (Q +

1
2 )⇤F (Q� 1

2 ) cancels between the integrals over [�1, 0] and [0, 1]. (Odd[G(Q)] ⌘ 1
2 (G(Q) � G(�Q))

denotes the odd part of the function G(Q), and c.c. denotes the complex conjugate.) Finally, because

the integrand decays rapidly, we make a negligible error by extending the upper limit of integration

from 1 to infinity. Thus we conclude that

Im ⌘
"

⇡ 4 Im

Z 1

0

dQ Odd
⇥
F (Q + 1

2 )⇤F (Q � 1
2 )
⇤
.
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Appendix 2.D Poisson summation formula

To derive Equation (2.196), we note that

G(Q) ⌘
X
m

F (Q � 2m) (2.210)

is a periodic function of Q with period two, and therefore has a Fourier series expansion

G(Q) =
X

n

e�i⇡nQG̃
n

, (2.211)

where

G̃
n

=
1

2

Z 2

0

dQ ei⇡nQG(Q)

=
1

2

Z 2

0

dQ
X
m

F (Q � 2m)ei⇡nQe�i2⇡mn (2.212)

(in the last equality we have inserted e�i2⇡mn = 1). Now we can combine the integral over Q from

0 to 2 and the sum over m, obtaining an integral over Q from �1 to 1; therefore,

G̃
n

=
1

2

Z 1

�1
dQ F (Q)ei⇡Qn =

r
⇡

2
F̃ (⇡n), (2.213)

and combining Equation (2.210) with Equation (2.211) yields

G(Q) =
X
m

F (Q � 2m) =

r
⇡

2

X
n

e�i⇡nQF̃ (⇡n). (2.214)

A more general formula is also sometimes useful:

X
m

F (Q � 2m)ei⇡(Q�2m)↵ =

r
⇡

2

X
n

e�i⇡QnF̃ (⇡ (n + ↵)). (2.215)

We may obtain Equation (2.215) from Equation (2.214) by observing that multiplying F (Q) by

ei⇡Q↵ is equivalent to shifting the argument of its Fourier transform F̃ (') by ⇡↵.
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Appendix 2.E Diabatic transitions in a two-level system

Here we derive a formula for the probability of a diabatic transition in a time dependent two-level

system, used in Section 2.7 to estimate the probability of a transition in the oscillator as the coupling

between the oscillator and the 0-⇡ qubit ramps on or o↵.

We consider the Schrödinger equation

d

dt
| (t)i = �i H(t)| (t)i (2.216)

(with ~ = 1) for the two-level time-dependent Hamiltonian

H(t) = �� �Z � V0e
t/⌧�X , (2.217)

where �Z ,�X are the Pauli matrices. If we express the time t in units of ⌧ , and absorb V0 by shifting

the time variable, the Hamiltonian becomes (assuming V0 > 0)

H(t) = �u �Z � et�X , (2.218)

where

u = ⌧�. (2.219)

In the limit t ! �1, the second term is negligible, and the general solution becomes

| (t)i = c0 eiut

0BBB@ 1

0

1CCCA+ c1 e�iut

0BBB@ 0

1

1CCCA , (2.220)

while in the limit t ! 1, the first term is negligible and the solution is

| (t)i = c+ eie

t 1p
2

0BBB@ 1

1

1CCCA+ c� e�ie

t 1p
2

0BBB@ 1

�1

1CCCA . (2.221)
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Our goal is to find the S-matrix relating these two asymptotic solutions:0BBB@ c+

c�

1CCCA = S

0BBB@ c0

c1

1CCCA . (2.222)

Defining

| (t)i ⌘

0BBB@ c0(t)

c1(t)

1CCCA =

0BBB@ eiut c̃0(t)

e�iut c̃1(t)

1CCCA , (2.223)

the Schrödinger equation becomes

dc̃0

dt
= i e(1�2iu)t c̃1

dc̃1

dt
= i e(1+2iu)t c̃0.

(2.224)

Assuming u > 0, the solution | (0)(t)i that starts out in the ground state obeys the initial conditions

c̃0 ! 1 and c̃1 ! 0 as t ! �1; expanded as a power series in et, this solution is

c̃0(t) =
1X

n=0

(�1)n

n!

�( 1
2 + iu)

�( 1
2 + iu + n)

✓
et

2

◆2n

c̃1(t) =

✓
i

2

◆
e(1+2iu)t

1X
n=0

(�1)n

n!

�( 1
2 + iu)

�( 3
2 + iu + n)

✓
et

2

◆2n

.

(2.225)

Matching this formula to the power series expansion for the Bessel function

J
⌫

(x) =
1X

n=0

1

n! �(⌫ + 1 + n)

⇣x

2

⌘
⌫+2n

, (2.226)

we find

c̃0(t) = �( 1
2 + iu)

✓
et

2

◆ 1

2

�iu

J� 1

2

+iu

(et),

c̃1(t) =
i

2
e(1+2iu)t �( 1

2 + iu)

✓
et

2

◆� 1

2

�iu

J 1

2

+iu

(et),

(2.227)
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and therefore

| (0)(t)i = 2� 1

2

+iu et/2 �( 1
2 + iu)

0BBB@ J� 1

2

+iu

(et)

i J 1

2

+iu

(et)

1CCCA .

To find the solution | (1)(t)i that starts out in the excited state, it su�ces to change the sign of u

and interchange c0, c1; hence,

| (1)(t)i = 2� 1

2

�iu et/2 �( 1
2 � iu)

0BBB@ i J 1

2

�iu

(et)

J� 1

2

�iu

(et)

1CCCA .

From the asymptotic behavior

J
⌫

(x) ⇡
r

2

⇡x
cos

�
x � (⌫ + 1

2 )⇡2
�

(2.228)

of the Bessel function as x ! 1, we find how the solutions | (0,1)(t)i behave for t ! 1:

| (0)(t)i ⇡
2iu �( 1

2 + iu)p
2⇡

0BBB@e
⇡
2

u eie

t 1p
2

0BBB@ 1

1

1CCCA+ e�⇡
2

u e�ie

t 1p
2

0BBB@ 1

�1

1CCCA
1CCCA ,

| (1)(t)i ⇡
2�iu �( 1

2 � iu)p
2⇡

0BBB@e�⇡
2

u eie

t 1p
2

0BBB@ 1

1

1CCCA+ e
⇡
2

u e�ie

t 1p
2

0BBB@ �1

1

1CCCA
1CCCA .

(2.229)

Hence, we conclude that the S-matrix is0BBB@ f(u) f(�u)

f(�u)⇤ �f(u)⇤

1CCCA , (2.230)

where

f(u) =
1p
2⇡

2iu �( 1
2 + iu) e

⇡
2

u. (2.231)
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The probability of a transition from the ground state |0i to the excited state |�i, or from the

excited state to the ground state, is

P (0 ! �) = |f(�u)|2 =
1

2⇡
�( 1

2 + iu)�( 1
2 � iu)e�⇡u; (2.232)

from the identity �(x)�(1 � x) = ⇡

sin⇡x

, we obtain

P (0 ! �) = P (1 ! +) =
e�⇡u

2 cos(i⇡u)
=

e�⇡u

e⇡u + e�⇡u

=
1

2
(1 � tanh⇡u) . (2.233)

(The probability that no transition occurs is given by the same formula, but with u replaced by

�u.) For u large, i.e., when the initial energy splitting 2� is large compared to the time scale ⌧

for the perturbation to turn on, the transition probability is exponentially suppressed:

P (0 ! �) = P (1 ! +) ⇡ e�2⇡u = e�2⇡⌧�. (2.234)
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Chapter 3

Asymmetric Bacon-Shor Gadgets
for Biased Noise

go dreamless knaves on Shadows fed,

your Harry’s Tom, your Tom is Dick;

while Gadgets murder squawk and add,

the cult of Same is all the chic;

—E.E. Cummings [51]

This chapter is based on work that was published in [2].

3.1 Introduction

The theory of fault-tolerant quantum computation [29, 52] has established that noisy quantum

computers can operate reliably provided the noise is neither too strong nor too strongly correlated.

In a fault-tolerant quantum circuit, carefully designed gadgets process logical qubits protected by

quantum error-correcting codes.

Typical fault-tolerant gadgets are designed to work e↵ectively against generic noise without any

special structure. But in some physical settings, the noise is expected to be highly biased, with

dephasing in the computational basis far more likely than bit flips. This chapter addresses how

noise bias can be exploited to improve the reliability of fault-tolerant quantum circuits.

Specifically, we have in mind a setting in which, to an excellent approximation, the computa-

tional basis states {|0i, |1i} are the energy eigenstates for an unperturbed qubit, and single-qubit
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gates which are diagonal in this basis can be performed by adiabatically adjusting the energy split-

tings between these states. Similarly, diagonal two-qubit gates are performed by adjusting the

energy splittings of the four (approximate) energy eigenstates {|00i, |01i, |10i, |11i}. Various noise

sources may induce fluctuations in these energy spacings, and pulse imperfections may cause gates

to be over-rotated or under-rotated; in either case the noisy gate deviates from the ideal gate, but

remains diagonal. Other physical processes may induce transitions between energy eigenstates, but

we will assume that this non-diagonal noise is far weaker than the dominant diagonal noise.

Our scheme for fighting biased noise is based on asymmetric Bacon-Shor codes [53–55]. These

quantum codes combine together a length-m repetition code protecting against dephasing and a

length-n repetition code protecting against bit flips; by “asymmetric” we mean m > n, so the

code works more e↵ectively against dephasing than against bit flips. A complete universal set of

fault-tolerant gates can be constructed using only diagonal gates, plus single-qubit measurements

in the X eigenstate basis {|±i = 1p
2

(|0i ± |1i)} and preparation of single-qubit |+i states.

In most previous studies of quantum fault-tolerance based on Bacon-Shor codes, these codes

have been concatenated to build a hierarchy of codes within codes [56, 57]. Here we will mainly

study the performance of a single large block code rather than a concatenated scheme. For the

Bacon-Shor code family, used without concatenation, there is no accuracy threshold; rather, for a

fixed value of the noise strength and noise bias, there is an optimal block size which achieves the

best performance.

Our gadget constructions and analysis extend the results in [48, 49], where the case n = 1

was regarded as the bottom layer of a concatenated code. In contrast to [48, 49], we consider the

case where the gates are required to be geometrically local in a two-dimensional array. In the

geometrically local case, logical blocks can be transported as needed via teleportation, with the

fundamental operations still limited to diagonal gates, X measurements, and |+i preparations.

We have obtained upper bounds on the optimal performance and overhead cost of logical gates

by deriving analytic formulas, and our estimates are far from tight. We expect that significantly

better results could be obtained using numerical simulations assuming independent biased noise,

which we have not attempted. In particular, our analysis includes quite conservative estimates of

the probability of failure for preparations of cat states that are used for measurements of logical

Pauli operators.

Another particularly attractive approach to achieving quantum fault tolerance with geomet-
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rically local gates is based on topological codes [58–60], which unlike Bacon-Shor codes have an

accuracy threshold and hence can reach arbitrarily low error rates per logical gate. Topological

codes can be adapted for optimized protection against biased noise, and they perform well against

biased noise even without any such adaptation. Our current results do not conclusively identify

noise parameter regimes for which Bacon-Shor codes are clearly superior to topological codes. How-

ever, our scheme has several appealing features — for example, the optimal error rate per logical

gate is achieved with a relatively modest number of physical qubits per code block, and is not too

adversely a↵ected when qubit measurements are noisier than quantum gates. Furthermore, only

relatively modest classical computational resources are needed to interpret error syndromes.

Typical fault-tolerant gadgets are designed to work e↵ectively against generic noise without any

special structure. But in some physical settings, the noise is expected to be highly biased, with

dephasing in the computational basis far more likely than bit flips. This chapter addresses how

noise bias can be exploited to improve the reliability of fault-tolerant quantum circuits.

We describe our biased noise model in Section 3.2, discuss appropriate gate sets in Section 3.3,

and review Bacon-Shor codes in Section 3.4. In Section 3.5, we construct a set of fault-tolerant

gadgets for logical CSS operations. We obtain upper bounds on the performance of our fault-

tolerant logical CNOT gate in Section 3.6, repeat the analysis in Section 3.7 for the case where

two-qubit gates are required to be geometrically local, and report numerical values in Section 3.8.

In Sections 3.9 and 3.10 we discuss the state injection and state distillation procedures needed to

complete our fault-tolerant universal gate set.

Fault-tolerant gadgets protecting against biased noise have also been discussed previously in

[61–63].

3.2 Dephasing biased noise

Most quantum error correcting codes and fault tolerant circuits are designed without assuming any

structure in the noise. For storing information, it is common to model the e↵ects of noise as a

depolarizing noise channel

Ndep(⇢) = (1 � p) ⇢+ p I/2, (3.1)

on each qubit, which replaces each qubit with the totally mixed state with some probability p. For

error-correcting circuits, another useful class of error models are stochastic error models, where r
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locations are specified to be faulty, with probability  pr and the resulting error at each location

can be chosen arbitrarily— even adversarially— from some specified set, usually the Pauli errors

{X, Y, Z}.

In the absence of more information about the structure of the noise, it is reasonable to take

the attitude of assuming as little about the noise as possible, and these models are well justified.

However, in practice, any physical implementation of a quantum computer will have additional

noise structure, and it will be extremely beneficial to take into account as much of this structure

as possible when designing and choosing codes and fault-tolerant gadgets. Details of the noise

structure can be observed by the techniques of quantum process tomography [64–67].

Often knowledge about additional noise structure can make it harder to use error correction and

fault tolerance e↵ectively. For instance, the presence of faults which are correlated in time or space

can reduce the e↵ective distance of an error-correcting code, necessitating a larger code to achieve

the same level of error correction. In other cases, this additional structure can lead to improvements

in the e↵ectiveness of error correction, as one can tailor the choice of code and gadget to the noise

situation at hand.

One common such instance is where noise can be modeled by an amplitude damping channel

Ndamp(⇢) = E0⇢E
†
0 + E1⇢E

†
1, (3.2)

with

E0 =

0BBB@1 0

0
p

1 � �

1CCCA E1 =

0BBB@0
p
�

0 0

1CCCA , (3.3)

which describes an energy dissipating process, where there is a probability � of relaxing from the

excited state |1i to the ground state |0i. Under this noise model, it has been shown that an

approximate recovery map can be easily constructed, allowing a simpler error correction procedure

which compares favorably to other methods using exhaustive search [68]. Additionally, one can

use “refrigeration” techniques to compute for an exponentially long time in the number of qubits,

without an external supply of fresh ancillas [69]. Essentially this is because the amplitude damping

channel itself provides the refrigeration capability to produce fresh qubits.

The noise structure we will be particularly interested in is the case of dephasing biased noise,
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or simply “biased noise.” In this case, the probability " of a dephasing error Z, which causes an

unexpected phase di↵erence between the |0i and |1i states, is larger than the probability "0 of other

errors like the bit-flip error X, which flips the states |0i and |1i to each other. The ratio of these

two rates will be called the bias �:

� = "/"0. (3.4)

More precisely, when we consider faults that happens in circuits, we will consider a local stochas-

tic biased noise model, which distinguishes between two groups of faults. The first group, dephasing

faults or diagonal faults, can be modeled by inserting after the gate a trace-preserving completely

positive map, whose Kraus operators are all diagonal in the computational basis. Because our

fault-tolerant circuits consist of Cli↵ord gates and measurements, we can always assume that the

most harmful such fault would produce a Pauli Z error (or some product of Pauli Z errors on

a multi-qubit gate) after the gate. These faults will be associated with the probability ". The

second group of faults, which we will call general or non-diagonal faults, are associated with the

smaller probability "0. They may consist of any trace-preserving completely positive map, with no

restriction on the form of the Kraus operators. The most harmful of these faults will be something

that produces a Pauli error. The argument also applies to more general non-diagonal faults—by

expanding each Kraus operator in terms of Pauli operators, and noting that all syndrome bits are

measured in the X basis, we can bound the probability for each syndrome measurement outcome

in terms of " and "0 as above. We will assume the local stochastic condition, which says that the

sum of the probabilities for all fault paths with r dephasing faults and s general faults at specified

circuit locations obeys

P  "r("0)s. (3.5)

In our fault analysis, we will assume that, once the locations of the faults have been specified, the

fault can be chosen adversarially to be most likely to cause an overall failure.

It is quite easy to envision situations in which there is a substantial dephasing noise bias when

storing information for some period. In particular, it is very common to identify the computational

basis {|0i, |1i} with the low-lying energy eigenstates of some physical system. In that case, there is

an energetic penalty associated with flipping the state from |0i to |1i— namely, the energy gap �

between the two states. For thermal noise with temperature T , the probability of a bit flip will be

suppressed by a factor like e��/kT . By contrast, dephasing errors correspond to the measuring of
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the qubit by its environment in the computational basis, which we can expect to be fairly common.

3.3 Bias-compatible computation

In the course of a computation, it is possible for much of the noise bias structure to be washed out

by the complex action of a sequence of unitary evolutions. Gates such as the Hadamard operation

H can flip Z-type errors into X-type errors, while other operations like the CNOT gate can copy

one X error into many, according to the propagation rule

CNOT : XI ! XX. (3.6)

Such gates can cause the resulting noise to more closely resemble an unbiased noise model. Further-

more, errors that occur in the middle of a particular operation can be transformed by the remaining

portion into a di↵erent type of error. Nevertheless, by restricting to an appropriate gate set, one

can maintain a noise bias throughout a computation. An appropriate set of gates, Gfund, first noted

in [48], consists of the following operations:

Gfund = {P|+i, MZ

, CZ}. (3.7)

The preparation P|+i of a qubit in the +1 X-basis eigenstate

|+i =
1p
2
(|0i + |1i) (3.8)

preserves a bias because an error in the preparation is equivalent to some probability of producing

|�i = Z|+i, and so behaves like a correct preparation followed by a Z error. Similarly, an erroneous

result of an X-basis measurement, M
X

, is equivalent to a Z error just before a correct measurement.
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The final operation, the two-qubit controlled Z operation

CZ =

0BBBBBBBBBBBB@

1

1

1

�1

1CCCCCCCCCCCCA
, (3.9)

is manifestly diagonal in the computational basis. It can be performed by a unitary evolution

that never leaves the computational basis, so a dephasing Z error occurring partway through the

evolution would remain a Z-type error.

The CZ operation also has helpful commutation properties that help preserve the dephasing

bias:

CZ : XI ! XZ (3.10)

IX ! ZX (3.11)

ZI ! ZI (3.12)

IZ ! IZ. (3.13)

Z errors commute with the CZ operation, while X errors propagate add a Z error on the partner

qubit. This ensures while X errors propagate, they propagate into the more common Z errors.

The gate set Gfund is highly restrictive: it does not even generate the entire Cli↵ord group, let

alone enough operations for universal quantum computation. Even the operations that are possible,

such as the CNOT gate and Z-basis measurement, require extra ancillas and multiple fundamental

operations to perform. Nevertheless, it is a su�cient set of operations to perform error correction on

CSS type codes. With the appropriate use of state distillation and teleportation, discussed further

in Chapter 4, we can complete a universal basis of gates.
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



Figure 3.1: Bacon-Shor qubits arranged in an n ⇥ m lattice.

3.4 Bacon-Shor codes

Bacon-Shor codes are a family of quantum subsystem codes. Conceptually the simplest possible

quantum code, they can be constructed by concatenation of two classical repetition codes, one

protecting against dephasing Z errors and one protecting against bit-flip X errors. By choosing the

distances of these two codes separately, we can independently tailor the amount of error correction

for each type of error. The code is called symmetric when these distances are chosen to be the

same, and antisymmetric when they di↵er.



 

     

   

Figure 3.2: X-type stabilizer operator (left) and Z-type stabilizer operator (right).

A convenient way to think about this code is to picture the qubits as arranged in a rectangular

lattice with n rows and m columns, as in Figure 3.1. A single qubit is encoded into this block. The

X-type stabilizer generators apply an X operation to each qubit in a pair of adjacent columns, while

the Z-type stabilizer generators do the same for Z operations over the rows. Examples are pictured
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in Figure 3.2. Any X- and Z-type stabilizers intersect nontrivially on four qubits and therefore

commute. The logical X and Z operators look similar to the stabilizers of the corresponding type,

except that they act on a single row or single column. Each intersects nontrivially twice with any

stabilizer generator and once with its logical partner, giving the appropriate commutation statistics.

As a subsystem code, the code block also contains extra gauge degrees of freedom that commute

with the logical operator and the stabilizers, but not necessarily each other. These operations could

be formed into logical pairs themselves, but they would have low distance and so are not useful to

encode any information. The Z-type gauge operators are generated by weight-two operators, which

apply a Z operation to a any pair of adjacent qubits in the same row, and the X-type operators

are generated by similar operators, which apply an X operation to any pair of adjacent qubits in

the same column.

It is very useful to note that each X-type stabilizer generator is a product of n weight-two gauge

operators, and each Z-type stabilizer generator is a product of m weight-two gauge operators. This

allows one to measure the error syndrome by measuring only the gauge operators, which are weight-

two and, if our mental picture of the block also corresponds to a physical layout, geometrically

neighboring. By taking the parity of the gauge measurement results for all the gauge operators in a

particular pair of rows or columns, we determine the value of the corresponding stabilizer for that

pair.

3.5 Fault-tolerant gadgets

This section will explain fault-tolerant circuits using the fundamental bias-compatible gate set

Gfund = {P|+i, MZ

, CZ}. (3.14)

to implement the logical gate set

GCSS = {PL

|0i, PL

|+i, CNOTL, ML

X

, ML

Z

}. (3.15)
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•

|+i • M
X

1

Figure 3.3: Z measurement performed with X measurement and an ancilla.

To achieve universal computation, we will supplement the logical gate set GCSS with the ability to

prepare noisy copies of the physical states

|ii =
1p
2

(|0i + i|1i) (3.16)

and

|T i =
1p
2

⇣
|0i + ei⇡/4|1i

⌘
. (3.17)

In Section 3.9 and Section 3.10, we will use the ideas of state injection and distillation to produce

high-fidelity logical copies of these states. These states can be consumed to perform gates that

complete a universal set.

3.5.1 Logical X measurement gadget.

To perform a destructive logical X measurement ML

X

, we first perform independent measurements

M
X

on all qubits in the code block, and then compute the parity of the n measurement outcomes

in each column. With no errors, each of these parity results would be the same, but some may

be corrupted due to errors. Taking a majority vote of the m column parities yields the logical

measurement outcome. The result agrees with an ideal measurement if the sum of the number of

Z errors in the block and the number of faulty M
X

measurements is no larger than (m � 1)/2, so

that there are errors in less than half of the columns.

3.5.2 Logical Z measurement gadget.

A destructive logical Z measurement ML

Z

could be performed in much the same manner as the

X measurement, with two modifications: using physical M
Z

measurements instead of M
X

, and

taking parities of rows instead of columns. If we can only use M
X

as the fundamental measurement,

we can use the circuit of Figure 3.3 to get a measurement in the Z basis indirectly, using an ancilla
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qubit.

A non-destructive ML

Z

measurement can be performed by measuring (non-destructively) the

Z-basis parity of each length-m row of the code block, and taking a majority vote of the n row

outcomes. (We say the measurement is “non-destructive” if the ideal measurement procedure

leaves encoded ZL eigenstates intact.) In principle, the row parity measurement could be done by

preparing a single ancilla qubit in the state |+i, performing m CZ gates in succession acting on the

ancilla qubit and the m qubits in the row, and finally measuring the ancilla qubit in the X basis.

However, this procedure is not fault-tolerant for two reasons. First, a single X error acting on the

ancilla can propagate multiple times, producing a high-weight Z error acting on the qubits in the

row. Second, a single Z error acting on the ancilla qubit can flip the measurement outcome.

This first problem can be addressed by replacing the single-qubit ancilla with an m-qubit cat

state

|+cati =
1p
2

⇣
|0i⌦m + |1i⌦m

⌘
, (3.18)

so that each ancilla qubit interacts via a CZ gate with only one data qubit, limiting the error

propagation. The fault-tolerant preparation of the cat state is discussed below. After the m CZ

gates, the cat state is read out in the basis |±cati = 1p
2

⇣
|0i⌦m ± |1i⌦m

⌘
to determine the row

parity. This measurement of X⌦m is performed destructively by measuring each of the m ancilla

qubits in the X basis and computing the parity of the outcomes.

A cat state of this sort is essentially the most fragile possible state in the presence of dephasing

noise: a single Z error on any of the cat state qubits can flip its state from |+cati to |�cati. At the

same time, the problem it was meant to solve comes from the more rare X error events. Therefore

it is not too surprising that, depending on the rates for diagonal and non-diagonal faults, it may be

advantageous to use a shorter ancilla, prepared in a cat state of length p, where 1  p < m. In that

case, some ancilla qubits interact with more than one data qubit, increasing the danger of error

propagation, but, on the other hand, errors are less likely to occur during the preparation of the

(shorter) cat state. However, using a length-m cat state has the significant advantage that the ML

Z

measurement can be conveniently executed using geometrically local gates on the two-dimensional

lattice, as we will discuss in Section 3.7.

To address the second problem, that a single fault can flip the measured parity, the parity

measurement is repeated r times for each row, each time with a fresh cat state, and the majority of
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Figure 3.4: Gadget for a single row of the non-destructive ML

Z

measurement, including cat state
preparation, where the cat state ancilla length p is equal to the row length m.
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the results is computed. The repetition provides protection against Z errors in the ancilla, but, of

course, there may also be (relatively rare) X errors acting on the data qubits due to faults during

the ZL measurement circuit. These faults cause a logical XL error only if X errors occur in a

majority of the n rows. The complete circuit is shown in Figure 3.4.

This procedure for measuring ZL can easily be extended to build gadgets that perform the

parity measurements ML

ZZ

, ML

ZZZ

on multiple logical qubits.

3.5.3 Cat state preparation gadget

The length-p cat state |+cati = 1p
2

⇣
|0i⌦p + |1i⌦p

⌘
may be characterized as the simultaneous

eigenstate with eigenvalue 1 of X⌦p and of (p � 1) ZZ operators, each one acting on a pair of

neighboring qubits. To prepare the cat state, we start by preparing the product state |+i⌦p (an

eigenstate of X⌦p), and proceed to measure the (p� 1) ZZ operators. Each of these measurements

is executed using yet another ancilla qubit. If every measurement has the outcome ZZ = +1, then

the cat state has been prepared successfully, assuming the measurements are flawless. Otherwise,

the measurement outcomes provide a syndrome pointing to X errors in the cat state: each ZZ = �1

outcome identifies the endpoint of a chain of X errors. These X errors in the cat state need not be

corrected; instead, we can keep track of their propagation as the computation proceeds. Specifically,

the X errors in the cat state propagate to become Z errors acting on the measured row of the data

block, which should be taken into account when we decode a later XL measurement of that block.

Following Knill [38], we say that the measured syndrome is used to update the “Pauli frame” of

the computation.

To improve robustness, we add one more (redundant) ZZ measurement, acting on the first and

last qubit in the cat state. Then an even number among the p ZZ measurements should have the

outcome �1 if all measurements are correct; if, in fact, we find an odd number of �1 outcomes, then

we reject the syndrome. Adding further redundant checks would further improve the reliability of

the syndrome extraction, but this extra check can be performed without increasing the time we have

to wait to do measurements. We conduct r0 rounds of syndrome measurement, including rejected

rounds, so that the number of accepted rounds may be fewer than r0.

In principle, the cat state Pauli frame could be determined by performing a perfect matching on

a two-dimensional graph representing the space-time history of the cat state syndrome measurement

[58]. Instead, we will consider a much simpler and less e↵ective method for decoding the syndrome



106

history. Though far from optimal, our procedure has two advantages over the perfect matching

algorithm — it requires only very modest (classical) computational resources compared to perfect

matching, and it is also much easier to study analytically.

In our unsophisticated scheme, we determine the Pauli frame using whichever syndrome occurs

most frequently among the accepted rounds, which we call the “winning” syndrome. Our analysis

does not depend on what rule is used when two or more syndromes tie for the distinction of being

most frequent, since we pessimistically assume that the preparation gadget fails catastrophically in

the event of such a tie. The state preparation protocol is deterministic in the sense that ancillas

are never discarded, and the number of rounds of syndrome measurement is always r0 irrespective

of the measurement outcomes.

X errors in the ancilla during the preparation can cause the cat state syndrome to evolve as

it is measured repeatedly, and therefore the syndrome that occurs most often, even if valid when

measured, may di↵er from the syndrome that is applicable when the cat state interacts with the

data. The e↵ect of this syndrome “drift” needs to be included in our error analysis.

3.5.4 |+iL preparation gadget

The logical state |+iL, for a particular “choice of gauge,” is a product of m length-n cat states, one

for each column of the block. This state is an eigenstate with eigenvalue 1 of XL = X⌦n acting on

any column, and of the gauge operator ZZ acting on a pair of neighboring qubits in any column

(and hence also a +1 eigenstate of all the Z-type check operators). We prepare these m length-n

cat states in parallel, using the same procedure for preparing length-p cat states described above.

In this case, we repeat the syndrome measurement for each column r+ times.

3.5.5 |0iL preparation gadget.

The preparation of the logical state |0iL may be achieved by first preparing the state |+iL and

performing the non-destructive measurement ML

Z

. If the measurement outcome is �1, we update

the Pauli frame to account for the XL di↵erence.
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Figure 3.5: Four versions of the CNOT gadget.
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Figure 3.6: One-bit teleportation circuit.

3.5.6 CNOTL gadget.

The gadget shown in Figure 3.5 applies a fault-tolerant “teleported” CNOTL logical operation,

up to a known Pauli error determined by the measurement outcomes [48]. Aside from executing

the logical gate, the gadget also achieves error correction by measuring both incoming blocks and

preparing fresh outgoing blocks.

To better understand how the gadget works, it is helpful to divide it into two parts. One part is

the “one-bit teleportation” gadget shown in Figure 3.6, which performs error correction on a single

block. This circuit transfers the single-qubit state | i from qubit 2 to qubit 1. We prepare qubit

1 in the state |+i = 1p
2

(|0i + |1i), perform the joint measurement M
Z

1

Z

2 on the two qubits, and

then perform the single-qubit measurement M
X

2 . After applying Pauli operators conditioned on

the two measurement outcomes, the result is that the input state | i of qubit 2 is moved to qubit 1.

The conditional X and Z gates in this teleportation gadget need not actually be executed; instead
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Figure 3.7: Teleported CNOT gate.

the Pauli frame is updated to reflect the measurement outcomes.

The other component of the CNOT gadget is shown in Figure 3.7, where again the Pauli frame

updates are explicitly indicated. We may verify that this circuit realizes a CNOT gate by checking

that it propagates Pauli operators according to the rule

CNOT : XI ! XX (3.19)

IX ! IX

ZI ! ZI

IZ ! ZZ.

We denote the measurement outcomes of M
X

and M
ZZZ

as (�1)a and (�1)b respectively. Since

|+i is an eigenstate of X with eigenvalue +1, XI acting on the input qubits is equivalent to XIX

acting on the three qubits in the circuit, which commutes with M
ZZZ

and hence becomes XX

acting on the output qubits. Likewise, IX acting on the input qubits is equivalent to IXX, which

commutes with M
ZZZ

and becomes (�1)aIX acting on the output qubits using the measurement

outcome IXI = (�1)a. ZI acting on the input qubits commutes with M
ZZZ

and trivially maps

to ZI acting on the output qubits, while IZ acting on the input qubits becomes IZI, which maps

to (�1)bZIZ, using the measurement outcome ZZZ = (�1)b. Hence, we have found

CNOT : XI ! XX (3.20)

IX ! (�1)aIX,

ZI ! ZI

IZ ! (�1)bZZ,
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which is corrected to Equation (3.19) by applying Za to both output qubits and Xb to the sec-

ond qubit. When we combine the CNOT gate with one-bit teleportation of the first qubit, the

measurements M
ZZ

and M
ZZZ

commute and hence can be done in either order.

Four di↵erent versions of the CNOT gadget are shown in Figure 3.5. Let us denote the blocks

appearing in the figure as blocks 1, 2, 3, 4, counting from the top down. Version (a) of the CNOT

gadget contains the preparations and measurements P|+i[1], P|+i[4], M
ZZ

[12], M
ZZZ

[234], M
X

[2],

M
X

[3]. This gadget has some arbitrary features, which are exploited to construct the other versions.

Since ZZII �ZIZZ = IZZZ, we extract the same parity information if M
ZZZ

[234] is replaced

by M
ZZZ

[134]; also, since M
ZZ

acts symmetrically on its two measured blocks, we may permute the

order of the blocks, in e↵ect replacing P|+i[1] and M
X

[2] with P|+i[2] and M
X

[1], thus obtaining

version (b). Similarly, since M
ZZZ

acts symmetrically, we may replace P|+i[4] and M
X

[3] with

P|+i[3] and M
X

[4], thus obtaining versions (c) and (d). In all these realizations of the gadget,

the upper incoming block is the control block and the lower incoming block is the target block; by

replacing M
ZZ

[12] and M
ZZZ

[234] by M
ZZZ

[123] and M
ZZ

[34], we can reverse the order of the

CNOT.

This freedom to choose the incoming control block to be either block 1 or block 2, and to

choose the incoming target block to be either block 3 or block 4, will be useful when we consider

in Section 3.7 how to realize the CNOT gadget using geometrically local gates. No matter how

we configure the gadget, one block participates in both M
ZZ

and M
ZZZ

. However, for versions

(a) and (c) in Figure 3.5, the twice-measured block is an incoming (control) data block, while for

versions (b) and (d), the twice-measured block is an outgoing (control) data block.

The CNOTL gadget is characterized by four parameters: the length p of the cat states used in

the Z-type measurements and the number of times measurements are repeated (r+ for the |+iL

preparation, r0 for the cat state preparation, and r for ZZL and ZZZL measurements). In principle,

we could choose di↵erent values of these parameters in the measurements ML

ZZ

and ML

ZZZ

, but

in practice we have found it optimal or near optimal to use the same parameters for both.

3.5.7 Scheduling

If gate locations are not restricted, and fresh ancilla qubits are always available on demand, then

we can schedule the CZ gates so that no data qubit or ancilla qubit is idle during any time step.

We assume that a preparation, measurement, or CZ gate can be performed in a single time step.
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Suppose, for example, that we use the gadget design in Figure 3.5b, where the outgoing control data

block participates in both ML

ZZ

and ML

ZZZ

, and let us also assume that the [12] cat states have

length 2m while the [234] cat states have length 3m, matching the weight of the measured operators.

We label the r ancilla registers used to measure a row operator r times by a 2 {1, 2, 3, . . . , r} for

the ZZL measurement and by b 2 {1, 2, 3, . . . , r} for the ZZZL measurement. Suppose that PL

|+i[2]

is completed in time step -1 and that PL

|+i[3] is completed in time step 0. Then the CZ gates are

scheduled as follows: The [12] ancilla a interacts with block 2 in time step a � 1 and with block

1 in time step a, while the [234] ancilla b interacts with blocks 2, 3, and 4 in time step b. Hence,

processing of the incoming blocks (1 and 4) begins in time step 1, and processing of the outgoing

blocks (2 and 3) ends in time step r.

The “preparation” of the [234] ancilla b begins in time step b + 1, but the “preparation” of the

[12] ancilla a is “staggered.” The syndrome measurement for the first m qubits in ancilla a (those

that interact with block 1) begins in time step a + 1, while the syndrome measurement for the last

m qubits (those that interact with block 2) begins one step earlier (step a). Despite this one time

step delay, no qubits are ever idle — the ancilla qubit used to measure syndrome bit Z[m]Z[m + 1]

in cat state a interacts with cat state qubit m+ 1 in time step a, and interacts with cat state qubit

m in time step a + 1. Meanwhile, the ancilla qubit used to measure the syndrome bit Z[1]Z[2m] in

cat state a interacts with cat state qubit 2m in time step a + 1, and with cat state qubit 1 in time

step a + 2, etc.

If, instead, we use the CNOT gadget design in Figure 3.5a, where the incoming control data

block participates in both ML

ZZ

and ML

ZZZ

, the processing of the data blocks is not perfectly

synchronized. If ML

ZZ

is performed first, then the incoming and outgoing control blocks are one

time step ahead of the incoming and outgoing target blocks, while, if ML

ZZZ

is performed first, it

is the other way around. Thus, if the incoming control block is either one step ahead or one step

behind the incoming target block, we can perform the CNOT without leaving any qubits idle, while

maintaining the one-step lag between the blocks. But if the two incoming blocks are synchronized,

then, using the gadget in Figure 3.5a one block or the other would have to wait for one time step

before the processing of the block begins.



111

3.5.8 Injection by teleportation

To complete a universal set of protected gates, we will use the magic state distillation procedure

introduced by Bravyi and Kitaev [47]. First, we inject non-Cli↵ord states into the code block

using teleportation, and then we improve the fidelity of these encoded states via distillation. The

distillation protocol is discussed further in Section 3.10; here we briefly describe the state injection

procedure, with further details postponed until Section 3.9.

The state injection makes use of the “one-bit teleportation” circuit depicted in Figure 3.6, but

with a physical qubit coming in and a logical qubit coming out. To inject a state into the Bacon-Shor

block, first the state | i is prepared using a single physical qubit, while a logical block is prepared

in the state |+iL. Then the weight-(m + 1) operator ZLZ is measured on the single qubit and a

single row of the block, and, finally, the single qubit is measured in the X basis. This procedure

prepares the block in the state | iL, up to a logical Pauli operator known from the measurement

outcomes.

There are other possible injection procedures, but this one is particularly simple. A single fault

in the circuit can cause a failure.

3.6 E↵ective error strength

We wish to derive an upper bound on the failure rate of the encoded gadgets of Section 3.5. Because

the CNOT gadget is the most complicated and most likely gadget to fail, we can achieve an overall

upper bound by bounding its failure rate. The CNOT gadget may produce a logical error if any

one of its four measurements deviates from the ideal case. To estimate the failure probability for

the CNOT gadget, we must enumerate the ways in which these measurements might fail.

We can separate the modes of failure into two types. In the first type, a series of faults, diagonal

and non-diagonal, “directly” causes enough errors to flip the inferred measurement away from the

ideal result. The second class consists of a series of failures that cause the inferred Pauli frame

measurement of a cat state or |+iL state to be “catastrophically” bad, a term that will be defined

more precisely in Section 3.6.2. Although the net e↵ect of this second class of failure modes is also

to flip the later measurement results, it is convenient to separate them out because a single such

failure pattern can immediately cause a measurement to fail.

In estimating the failure probability for the logical measurements ML

X

, ML

ZZ

, or ML

ZZZ

, we



112

need to take into account possible faults in circuit locations preceding the CNOT gadget, which

might cause these measurements to deviate from their ideal outcomes. In our fault-tolerant scheme,

a logical CNOT gate is either preceded by teleportation into the code block or by another CNOT

gate; in the worst case, each input block to the CNOT gadget is an output block from an immediately

preceding CNOT gadget. Thus, in the preceding gadget, each block is prepared in the state |+iL,

and then subjected to either ML

ZZ

and ML

ZZZ

(if it is the control block of the CNOT gadget) or

just ML

ZZZ

(if it is the target block of the CNOT gadget).

We will assume that failure of any of its preparation gadgets will cause the CNOT to fail, and

we denote by P ⇤
err the failure probability for a logical measurement due to a cause other than failure

of a preparation gadget. Thus, the failure probability for the CNOT can be bounded as

Perr(CNOTL)  P ⇤
err(ML

ZZ

) + P ⇤
err(ML

ZZZ

) + 2P ⇤
err(ML

X

)

+ 4Perr(P|+i) + Perr(P|ZZ-cati) + Perr(P|ZZZ-cati)

+ 2
⇣
Perr(P|ZZ-cati) + Perr(P|ZZZ-cati)

⌘
. (3.21)

The last term accounts for preparation errors that may have occurred in a ML

ZZ

or ML

ZZZ

imme-

diately preceding the current CNOT gadget, acting on either one of the two input blocks to the

current gadget. In the worst case, both incoming blocks were control blocks in the preceding CNOT

gadgets, and were therefore subjected to both ML

ZZ

and ML

ZZZ

. The coe�cient of Perr(P|+i) is

4 rather than 2 for a similar reason — the logical measurement outcomes in the current CNOT

gadget may di↵er from ideal outcomes due to errors in the preparation of logical blocks either in

the current gadget or in one of the two preceding gadgets.

3.6.1 Measurement failure

For an ML

X

measurement to fail, more than half of the m length-n columns must each have at least

one Z error. In the worst case, each qubit in the block participates in 3r+2r+ +2 circuit locations:

a preparation, a measurement, 2r+ CZ gates contained in the preparation of the logical |+iL state,

r CZ gates in the logical Z measurement in the current gadget, and 2r CZ gates in two logical Z

measurements in the preceding gadget. Each of these locations could be faulty with probability

"+ "0, since either a diagonal or a non-diagonal fault could produce a phase error.

For the moment, let us assume for simplicity that the cat state has length 2m for the ZZL
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measurement and length 3m for the ZZZL measurement, so that no ancilla qubit interacts with

more than one data qubit. (We will consider the case where the cat state is shorter in Section 3.6.3.)

Because the preparation of the cat state actually occurs after the ancilla interacts with the data,

we do not need to worry about X errors arising in the cat state preparation propagating directly

to the data. We do need to worry that the Pauli frame inferred from the “winning” syndrome

after r0 rounds of syndrome measurement actually di↵ers from the ideal Pauli frame. However,

assuming that the syndrome is decoded correctly (as it will be if the preparation succeeds), a

Pauli-frame X error a✏icts a qubit only if at least one X error acted on that qubit during the

multi-round syndrome measurement. The probability of such a Pauli-frame X error on any qubit

in the cat state is therefore bounded above by 2r0"0, since two CZ gates act on each qubit in each

round of syndrome measurement, and the syndrome measurement is repeated r0 times in the cat

state preparation. Because each row measurement is repeated r times, the total probability that

a row measurement fails due to a Pauli-frame X error in a cat state is bounded above by 2rr0"0.

Furthermore, in the worst case there are three logical ZL measurements between the preparation

and measurement of the block, in each of which a cat state interacts with the data.

Combining together the probability per qubit of a Z error caused directly by a fault with the

probability of a Z error that propagates from the cat state, we conclude that the error probabilities

for the XL measurements can be bounded as

P ⇤
err(ML

X

) 
✓

m
m+1

2

◆
[n(2r+ + 3r + 2)("+ "0) + 6nrr0"0]

(m+1)/2
. (3.22)

As explained in Section 3.5.7, there are no time steps in which “resting” qubits are subject to

“storage errors.”

For the ML

ZZ

measurement to fail, more than half of the n weight-2m row parity measurements

must have errors. An X error acting on any one of the 2m qubits in the same row of the two

blocks, either before or during the measurement, could flip the parity of the row. Before the ML

ZZ

is completed, each qubit participates in 2r+ CZ gates during the P|+i operation, r CZ gates during

the ML

ZZ

, and, in the worst case, another 2r CZ gates during the ML

ZZZ

and ML

ZZ

in the preceding

CNOT gadget. Thus, the probability per qubit of a non-diagonal error is (2r+ +3r)"0. There might

also be an X-type Pauli frame error in the |+iL preparation, but we do not have to count that

separately; if the preparation “succeeds,” then a Pauli-frame X error a✏icts a qubit in the block
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only if a non-diagonal fault damaged that same qubit during the preparation circuit.

In the absence of non-diagonal faults, the row parity measurement might still fail because at least

one Z error acts on the cat state in each of (r +1)/2 of the repeated measurements. If the cat state

has length p, then in each repetition of the measurement there are 2m + 2p + 2r0p circuit locations

(2m CZ gates coupling the ancilla to the data, plus p qubit preparations, p qubit measurements

and 2pr0 CZ gates for the cat state preparation). We conclude that the failure probability can be

bounded as

P ⇤
err(ML

ZZ

) 
✓

n
n+1

2

◆
2m(2r+ + 3r)"0 +

✓
r

r+1
2

◆
[(2m + 2p + 2pr0)("+ "0)](r+1)/2

�(n+1)/2

. (3.23)

Similarly,

P ⇤
err(ML

ZZZ

) 
✓

n
n+1

2

◆
3m(2r+ + 4r)"0 +

✓
r

r+1
2

◆
[(3m + 2p + 2pr0)("+ "0)](r+1)/2

�(n+1)/2

.

(3.24)

(The ML

ZZZ

is preceded by a ML

ZZ

acting on one of its input blocks inside the current CNOT

gadget, plus additional Z-type logical measurements in the preceding CNOT gadgets acting on

another one of its input blocks.)

3.6.2 Cat state preparation failure

Now it remains to estimate the probability of failure for the cat state and the logical state |+iL.

Under our simplified procedure for choosing the “winning” syndrome, we first reject any syndrome

that does not have a consistent interpretation— that is, an even number of nontrivial syndrome

bits. Recall that the syndromes ideally detect the boundaries of error chains, so syndromes with

an odd number of bits are inconsistent with this interpretation. Out of the remaining consistent

syndromes, we choose the syndrome that occurs most often to be the “winning” syndrome.

If the winning syndrome leads us to exactly identify the correct Pauli frame, then we have

succeeded. But we could instead identify some other syndrome which is slightly di↵erent than the

correct Pauli frame. If the number of locations l where the inferred Pauli frame di↵ers from the

correct Pauli frame is smaller than the number of non-diagonal faults that occurred during the

preparation, we can reinterpret this as being the same as a perfect syndrome decoding followed

by non-diagonal faults which add the errors. These kinds of failures are already accounted for in
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Section 3.6.1; we call them “valid” syndromes. We are therefore interested in the probability that

the winning syndrome is “catastrophically” di↵erent, such that the previous condition fails.

Suppose that the winning syndrome occurs t times due to faults, and that there are u additional

rounds that each contain at least one fault. Some of these additional rounds might be rejected,

and some may not, but we can assume that they are all rejected because, by definition, they do

not produce the winning syndrome. Suppose that non-diagonal faults occur in s of the r0 rounds of

syndrome measurement; these faults can alter the syndrome. There are r0 � t � u rounds without

any faults, and the number of distinct syndromes detected in these rounds is at most s + 1.

Now we can use the pigeonhole principle to obtain a lower bound on t, expressed in terms of

r0, u, and s. There are at most s + 1 “valid” syndromes that can occur in syndrome measurement

rounds that have no non-diagonal faults. Combining these with the winning syndrome, there are

at most s + 2 possible syndromes that can occur in the r0 � u accepted rounds. Of these s + 2

syndromes, the winning syndrome must occur at least as many times as any other syndrome; hence,

t �
⇠

r0 � u

s + 2

⇡
, (3.25)

where dxe denotes the smallest integer greater than or equal to x.

To bound Perr(P|cati), we sum over s and u in each cat state preparation step, estimating the

number of possible fault histories using the upper bound Equation (3.25) on t. In the first of the

t winning rounds, a particular winning syndrome is found, which di↵ers in at least two bits from

the actual syndrome in the beginning of that round. Then this same syndrome is found again in

each of the remaining winning rounds. The sum over all possible winning syndromes, weighted

by their probabilities, is bounded above by the probability that at least two measured syndrome

bits are faulty in the first of the t winning rounds. Each ZZ measurement is performed using one

|+i preparation, two CZ gates, and one X measurement; therefore, the probability of error in the

measurement of a single syndrome bit is bounded above by 4" + 2"0, and the probability that at

least two syndrome bits are in error is bounded above by
�
p

2

�
(4"+ 2"0)2.

In each of the s rounds that contain X errors, we must sum over all the possible X-error patterns

that can occur in that round. The sum over all X-error patterns, weighted by the probabilities, is

bounded above by the probability that at least one nondiagonal fault occurs in that round. Since

the round contains 2p CZ gates, this probability is in turn bounded above by 2p"0.
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Once the X-error pattern has been chosen in each round that contains X errors, we know the

actual syndrome at the beginning of each round. And once the winning syndrome is chosen in the

first winning round, we know which syndrome bits must have errors in each of the remaining t � 1

winning rounds. If the cat state preparation fails, then, by definition, at least two syndrome bits

have errors in each of these rounds; hence, each winning round after the first has a probability

weight bounded above by (4"+ 2"0)2.

Taking into account that the rounds with non-diagonal faults can be chosen in at most
�
r

0

s

�
ways,

and enumerating the ways to choose which t rounds produce the winning syndrome and which u

additional rounds have faults, we obtain

Perr(P|cati)  nr
r

0X
s=0

r

0X
u=0

✓
r0

s

◆✓
r0

u + t

◆✓
u + t

u

◆✓
p

2

◆
(4"+ 2"0)2t(4p"+ 2p"0)u(2p"0)s, (3.26)

and, similarly,

Perr(P|+i)  m

r

+X
s=0

r

+X
u=0

✓
r+

s

◆✓
r+

u + t

◆✓
u + t

u

◆✓
n

2

◆
(4"+ 2"0)2t(4n"+ 2n"0)u(2n"0)s, (3.27)

where t denotes d r

0�u

s+2 e. The prefactor nr in Equation (3.26) arises because we use n length-p

cat states in each measurement, and each measurement is repeated r times. The prefactor m in

Equation (3.27) arises because the encoded state |+iL is a product of m length-n cat states.

We should add another contribution to the failure probability, because if half of the qubits

(or more) have X errors, we might decode the cat-state syndrome incorrectly. A syndrome of

the repetition code points to two possible X-error patterns, one low weight and one high weight.

We always assume the low-weight interpretation is correct, so if the high-weight interpretation is

actually correct, then a Pauli-frame error X⌦p is applied to the cat state (or worse if the cat state

qubits are used multiple times). The additional contribution, then, is bounded by the probability

that each of dp/2e qubits in the cat state are each hit by X errors at least once in at least one of

the cat state preparations. This upper bound is

Phigh weight  nr

✓
p

dp/2e

◆
(2r0"0)

dp/2e
. (3.28)
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3.6.3 Shorter ancillas

Cat states are used in measurements of the weight-2m logical operator ZZL and the weight-3m

logical operator ZZZL. In the derivation of Equation (3.22) we assumed that the cat states have

length 2m and 3m respectively, so that each of the cat state’s qubits participates in just one CZ

gate during the measurement. But we have found that the CNOT gadget may be more reliable if

a shorter cat state is used instead.

If the length of the cat state is at least m, then each cat-state qubit interacts with only one

qubit in each encoded block. But if the length is p < m, then a single cat-state qubit may interact

with as many as

R = dm/pe (3.29)

data qubits in a single block, and hence an X error on that cat-state qubit may propagate to

produce Z errors in R distinct columns of one block. If k of the cat state’s p qubits have X errors,

these could generate Z errors in kR columns of the block; thus, an XL measurement on the block

could fail if there are

L(k) = (m + 1)/2 � Rk (3.30)

additional columns that each contain at least one Z error.

In each measurement, each data block interacts with the ancilla for R consecutive time steps,

where, in each step, at most p CZ gates act on the data block. The repeated measurements can be

staggered as described in [48], to avoid time steps in which data qubits are idle.

We use the index i 2 {1, 2, 3, . . . , p} to label the positions of the p qubits in the cat state, and

design the measurement circuits so that the cat-state qubit i interacts with the same set of data

qubits in each one of the measured code blocks. Since the ZZL measurement is performed on all n

rows of each block, and also repeated r times, inside a ML

ZZ

there are at most 2nrR CZ gates that

act on a cat-state qubit at position i (not counting CZ gates in the cat state preparation step), any

of which could have a non-diagonal fault. Similarly, inside a ML

ZZZ

there are at most 3nrR CZ

gates that act on a cat-state qubit at position i.

The ML

X

inside a CNOT gadget is preceded by ML

ZZZ

or ML

ZZ

within the CNOT, and, in the

worst case, by both ML

ZZZ

and ML

ZZ

in the preceding gadget, so, at most, there are 8nrR CZ

gates in these measurements where a non-diagonal fault could disturb cat-state qubit i.

An X error acting on cat-state qubit i might also occur because of an error in the winning
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syndrome in one of the cat-state preparation steps, which can occur only if a faulty CZ gate acts

on qubit i at least once during the r0 repeated syndrome measurements. Noting that a damaged

cat-state qubit in position i could cause Z errors in R columns of the encoded block, and that k

damaged qubits in the length-p cat state can be chosen in
�

p

k

�
ways, we conclude that if length-p

cat states are used, then Equation (3.22) should be replaced by

P ⇤
err(ML

X

) 
k

maxX
k=0

✓
p

k

◆
[8nrR"0 + 6nrr0"0]

k

✓
m

L(k)

◆
[n(2r+ + 3r + 2)("+ "0)]

L(k)
, (3.31)

where

kmax = d(m + 1)/2Re. (3.32)

3.7 Geometrically local circuits

In our analysis so far, we have assumed that the two-qubit CZ gates can be performed on any pair

of qubits, with an error rate independent of the distance between the qubits. Now we will consider

how the analysis is modified if CZ gates can be performed only on neighboring pairs of qubits.

There are a variety of possible architectures for fault-tolerant quantum computing using Bacon-

Shor codes. To be concrete, we will consider an e↵ectively one-dimensional arrangement, in which

logical qubits are encoded in a ribbon of physical qubits with constant width in the vertical direction,

and length in the horizontal direction proportional to the total number of logical qubits. Each logical

qubit lives in a “bi-block” — a pair of Bacon-Shor code blocks, one storing the data processed by

the computation, and the other used as an auxiliary block for teleporting gates. If desired, the

data block can be shu✏ed back and forth between the left and right sides of the bi-block via a

“one-bit-teleportation” circuit consisting of a |+iL preparation, a ZZL measurement, and an XL

measurement, as in Figure 3.6.

Each n⇥m logical block is interlaced with an n⇥(2m�1) array of ancilla qubits, as in Figure 3.8.

Of the 2m�1 ancilla qubits in a row, m�1 are used to read out the outcome of a ZZ measurement

performed on the qubit’s two horizontal neighbors, preparing an m-qubit cat state in the row.

In addition, there is a column of n ancilla qubits at the boundary between two adjacent blocks,

allowing the cat states to be extended to length 2m or 3m as needed for the measurements ML

ZZ
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and ML

ZZZ

in the CNOT gadget. In the |+iL preparation gadget, n � 1 ancilla qubits in a column

are used to read out the outcome of a ZZ measurement on the qubit’s two vertical neighbors,

preparing an n-qubit cat state in a column.
Asymmetric Bacon-Shor codes

Data qubit

Ancilla qubit

Potential CZ location

Block 1 Block 2
...

Bacon-Shor gauge structure permits a 
geometrically local architecture with gates 
only acting on nearest neighbors

Figure 3.8: Arrangement of Bacon-Shor qubits for geometrically local computation for 3 ⇥ 5 code
block. Large blue circles indicate data qubits, small green circles ancilla qubits. Solid lines indicate
locations between which CZ gates may be performed. Dotted lines separate qubits into code blocks.
The ribbon may be extended arbitrarily far to the right and left with additional code blocks.

A CNOT gate is performed on a neighboring pair of logical bi-blocks using one of the variants

of the CNOT gadget depicted in Figure 3.5. Let us denote the bi-block on the left as bi-block 1

and the bi-block on the right as bi-block 2. If the data in bi-block 1 is on the right side of the

bi-block and the data in bi-block 2 is on the left side, then we may use the CNOT gadget design in

Figure 3.5a to perform a CNOT gate in either direction (i.e., with either logical qubit as the control

and the other as the target) using cat states of length 2m and 3m, with the output data from the

gate appearing on the left side of bi-block 1 and the right side of bi-block 2. Otherwise, we may use

one of the alternative gadget designs discussed in Figure 3.5 to deal with the cases where the data

in bi-block 1 is on the left side and/or the data in bi-block 2 is on the right side. Whichever design

we choose, the CNOT gadget flips the data from one side to the other in both bi-blocks, and only

the ML

ZZZ

measurement reaches across the boundary between the two bi-blocks.

Note that with this method for performing a logical CNOT gate using geometrically local gates

there is no need to swap the positions of pairs of physical qubits. The CZ gate is the only two-qubit

gate used at the physical level, so that the assumption of highly biased noise remains physically
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plausible. Bacon-Shor blocks can be swapped using circuits of logical CNOT gates.

To complete a universal gate set we also need to be able to inject noisy non-Cli↵ord states into

code blocks, which can then be purified by state distillation. This state injection can be performed

using one-bit teleportation — the state | i is prepared using a single physical qubit, while a logical

block is prepared in the state |+iL; next, the weight-(m + 1) operator ZLZ is measured on the

single qubit and a single row of the block; finally, the single qubit is measured in the X basis.

This procedure prepares the block in the state | iL, up to a logical Pauli operator known from the

measurement outcomes. To perform this task in a bi-block, we prepare |+iL on, say, the left side of

the bi-block, and build a length-(m + 1) cat state using m of the ancilla qubits that accompany a

row of the block on the left side, and one additional ancilla qubit on the right side. The single-qubit

state | i is prepared using one physical qubit on the right side of the bi-block, which is adjacent to

the (m + 1)st qubit of the cat state, allowing the measurement of ZLZ to be complete using local

CZ gates.

If we wish to build a two-dimensional architecture, we may stack horizontal ribbons of logical

qubits on top of one another. To perform CNOT gates on pairs of logical bi-blocks that are stacked

vertically, we need to be able to perform ML

ZZZ

using cat states shared by vertically stacked blocks.

For this purpose we can use ancilla qubits in neighboring bi-blocks to establish a “channel,” linking

the cat states neighboring corresponding rows of the vertically stacked blocks.

We note that in the case of unbiased noise, a two-dimensional architecture might be realized

more simply, using symmetric Bacon-Shor codes. In that case, we can build a CNOT gate using

either the gadget in Figure 3.5 or its Hadamard dual, with X and Z interchanged. The primal

gadget uses horizontal cat states to execute CNOT gates on horizontally neighboring blocks, while

the dual gadget uses vertical (dual) cat states to execute CNOT gates on vertically neighboring

blocks.

For the geometrically local case, our analysis needs to be modified in several ways. As already

indicated, we will not be able to choose the length p of the cat state to optimize the gadget. Rather,

the locality constraint requires that the length of the cat state match the weight of the measured

operator (p = 2m for ML

ZZ

and p = 3m for ML

ZZZ

). Another change is that we must now consider

the consequences of storage errors acting on idle qubits. Previously, we assumed that the o↵-line

preparation of cat states can be scheduled so that the cat states are always available immediately

when needed. But now there is only one set of m ancilla qubits to accompany each row of a data
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block. Each time a cat state is measured, we must prepare a new one, and the preparation involves

a syndrome measurement repeated r0 times. In each round of syndrome measurement, all qubits

except the ones at the ends of the cat state participate in two ZZ measurements, and because the

same ancilla qubits are used for two di↵erent ZZ measurements, four time steps are required for

each one (a preparation, two CZ gates, and an X measurement). Therefore, the data waits for 8r0

time steps before the cat state is ready to interact with the data. While the data qubits wait for the

cat state to be ready, they may be subject to storage errors. We must estimate how these storage

errors contribute to the failure probability of the logical measurements in the CNOT gadget.

We will denote by "
s

the probability per time step of a diagonal storage error and by "0
s

the

probability per time step of a non-diagonal storage error. How many storage steps are included

depends on the gadget design, which, in turn, depends on whether the data is on the left or right

side of the incoming bi-blocks. In the worst case, the measurement ML

X

is performed on a block

that undergoes four logical Z-type measurements between its preparation and measurement—two

in the current gadget plus another two in the immediately preceding gadget, and for each of these

measurements the data waits for 8r0 steps as the cat state is prepared. If each Z-type logical

measurement is repeated r times, then the total contribution to the Z error probability per qubit

due to the identity gates in the circuit is 32rr0("
s

+ "0
s

). Therefore, Equation (3.22) is modified to

become

P ⇤
err(ML

X

) 
✓

m
m+1

2

◆
[n(2r+ + 3r + 2)("+ "0) + 32nrr0("

s

+ "0
s

) + 8nrr0"0]
(m+1)/2

. (3.33)

Furthermore, a non-diagonal storage fault on any of the 2m data qubits can flip the outcome

of ML

ZZ

. This fault can occur in any of the 8r0 time steps while a cat state is prepared in either

the ML

ZZ

or one of the preceding measurements. Similarly, a non-diagonal storage fault on any of

the 3m data qubits can flip the outcome of ML

ZZZ

, where his fault can occur in any of the 8r0 time

steps while the cat state is prepared in either the ML

ZZZ

or one of the preceding measurements.

Thus, Equations (3.23) and (3.24) are replaced by

P ⇤
err(ML

ZZ) 
⇣ n

n+1
2

⌘"
2m(2r+ + 3r)"0 + 2m(24rr0"0s) +

⇣ r
r+1
2

⌘
[(2m+ 2p+ 2pr0)("+ "0)](r+1)/2

#(n+1)/2

, (3.34)

P ⇤
err(ML

ZZZ) 
⇣ n

n+1
2

⌘"
3m(2r+ + 4r)"0 + 3m(32rr0"0s) +

⇣ r
r+1
2

⌘
[(3m+ 2p+ 2pr0)("+ "0)](r+1)/2

#(n+1)/2

. (3.35)
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Note that the number of storage locations in the circuit might be reduced by adding additional

ancilla sites, so that more measurements can be performed in parallel, and/or by combining together

measurement locations with immediately following preparation locations.

Geometric locality also requires that we remove the redundant cat state measurements that

“wrap around” the code block. Thus, there is no syndrome parity check: any syndrome outcome

is accepted, and a single diagonal fault can generate a syndrome error. There are also storage

locations where the cat state qubits wait while ancilla qubits are prepared and measured. Because

of these changes, Equations (3.26) and (3.27) are replaced by

Perr(P|cati)  nr
r

0X
s=0

r

0X
u=0

✓
r0

s

◆✓
r0

u + t

◆✓
u + t

u

◆
[4p"+ 2p"0 + 4p("

s

+ "0
s

)]
t+u

(2p"0 + 4p"0
s

)
s

(3.36)

and

Perr(P|+i)  m

r

+X
s=0

r

+X
u=0

✓
r+

s

◆✓
r+

u + t

◆✓
u + t

u

◆
[4n"+ 2n"0 + 4n("

s

+ "0
s

)]
t+u

(2n"0 + 4n"0
s

)s. (3.37)

3.8 Results for logical CSS gates

3.8.1 Unrestricted gates

With our analytic upper bound on the e↵ective error strength "(1) of the CNOT gadget, we can

find the optimum choice of the code block size n ⇥ m, as well as the four CNOT parameters r, r0,

r+ and p, for any choice of the error strengths " and "0. We did this by brute force search over

the parameter space. Figure 3.9 plots the results of this optimization for five choices of the bias

� = "/"0.

These results were obtained by optimizing the size of a Bacon-Shor code block which is used by

itself, rather than as part of a more complex concatenated code. Alternatively, we may consider

using our Bacon-Shor gadgets at the bottom level of a concatenated coding scheme. In particular,

we may estimate the accuracy threshold for biased noise achieved by such concatenated codes, as

was done in Ref. [48] for the special case of the n = 1 Bacon-Shor code (i.e., the repetition code).

We have extended the analysis of the accuracy threshold performed in [48] to more general Bacon-

Shor codes. However, for bias above 103 we found no improvement over the threshold estimate
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Figure 3.9: Optimal CNOT logical error rate versus physical error rate for various values of the
bias. Labels represent the n⇥m dimensions of the Bacon-Shor code block. For blocks with a single
row, one can use the code studied in [48] which is a special case of the asymmetric Bacon-Shor
code.
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in [48], because the n = 1 code turns out to provide the best threshold value. For values of the bias

between 1 and 103, the optimal value of n turns out to be greater than 1, and for that range of the

bias we found modest improvements in the accuracy threshold estimate compared to [48].

Using asymmetric Bacon-Shor codes, we can exploit the noise bias to improve the number of

physical gates needed to construct a fault-tolerant CNOT gate with a specified logical error rate.

Figure 3.10 shows this overhead factor and also indicates the dimensions of the optimal code block.

This plot includes a comparison with the performance of concatenated codes surveyed in [57] for the

case of unbiased noise. For highly biased noise, asymmetric Bacon-Shor codes achieve a much lower

logical error rate with a smaller number of physical two-qubit gates, compared to the performance

of these previous constructions for unbiased noise.

3.8.2 Geometrically local gates

Optimizing the parameters for the case of geometrically local gates, assuming the storage error rate

is negligible, we obtain the results displayed in Figures 3.11 and 3.12. Enforcing locality significantly

weakens the performance of our constructions — at a bias of 104 and dephasing error strength of

" = 10�4, the optimal e↵ective error strength we can achieve increases from 10�20 to 10�9, while

requiring roughly 8 times as many gates. Therefore, in the geometrically local case our estimated

logical error rate for asymmetric Bacon-Shor codes and highly biased noise is roughly similar to

what can be achieved using surface codes with a similar number of logical gates, while disregarding

the bias [59,60]. The most important reason that nonlocal gates prove to be advantageous is that,

if geometry is ignored, then the cat state used in (for example) the measurement ML

ZZZ

can be

chosen to be much shorter than the length-3m cat state used in our geometrically local construction.

The number of physical qubits per block required to achieve the optimal logical error rate stays

relatively small, as indicated in Figure 3.13.

Our upper bound on the logical error rate is likely to be far from optimal, and we also expect

that the performance could be substantially improved by using a more sophisticated (but harder to

analyze) method like perfect matching for decoding the cat state syndrome history. Suitable lattice

deformations may also make it more feasible to reduce the length of cat states substantially, yielding

further enhancements in performance for the case of geometrically local gates. Such improvements

might make asymmetric Bacon-Shor codes more competitive relative to surface codes.
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Figure 3.10: Optimal CNOT logical error rate versus required number of physical gates for n ⇥ m
asymmetric Bacon-Shor codes, for a physical error rate " = 10�4 at various values of the bias,
plotted alongside results for codes studied in [57] with no bias.



126

10−4 10−310−10

10−8

10−6

10−4

Dephasing error rate ε

En
co

de
d 

er
ro

r r
at

e

 

 

bias = 104

bias = 103

bias = 102

bias = 10
encoded error = ε

Figure 3.11: Optimal CNOT logical error rate versus physical error rate for various values of the
bias, where two-qubit physical gates are assumed to be geometrically local.

3.8.3 Geometrically local gates and measurement bias

In some experimental settings, measurements are noisier than gates, in which case we say the noise

has “measurement bias.” We may consider a noise model in which the dephasing error rate " in

diagonal gates exceeds the rate "0 for non-diagonal faults, while, in addition, the error rate "M for

single-qubit measurements exceeds ". (We also continue to assume that " is the error rate for single-

qubit preparations.) As shown in Figure 3.14, our geometrically local asymmetric Bacon-Shor code

gadgets are somewhat robust against increasing measurement bias, because our gadgets contain

considerably more gates than measurements (or preparations). Relative to the case "M = ", the

performance of the logical CNOT gate is not much a↵ected as the measurement bias "M/" rises

to about 5. In contrast, surface-code gadgets, which contain a higher number of measurements

relative to the number of gates, are more sensitive to measurement bias.
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Figure 3.12: Optimal CNOT logical error rate versus required number of physical gates for geomet-
rically local asymmetric Bacon-Shor codes at various values of the bias, for a physical error rate
" = 10�4.

3.9 State injection

Having analyzed the performance of our fault-tolerant CSS gates, we now turn to the state injection

and distillation protocols needed to complete a universal set of fault-tolerant gates. An arbitrary

single-qubit state | i can be injected into the Bacon-Shor block using the “one-bit teleportation”

circuit depicted in Figure 3.6. Here, a logical qubit is prepared in the state |+iL, the two-qubit

measurement ML

ZZ

is performed jointly on an unprotected qubit and the Bacon-Shor block using a

length-(m+1) cat state, and, finally, the X-basis measurement M
X

is performed on the unprotected

qubit. To estimate the error in the state injection step, we should consider all the ways in which

the outcomes of the measurements ML

ZZ

and M
X

might deviate from their ideal values.

In the state distillation circuit, this injection step is directly followed by a CNOT gate. Hence,

some sources of error in the teleportation circuit need not be attributed to the state injection step,

as they are already included in our error estimate for the CNOT gate that follows. In particular,



128

10−10 10−8 10−6 10−41

10

100

Encoded error rate

Bl
oc

k 
si

ze

 

 

bias = 104

bias = 103

bias = 102

bias = 10

Figure 3.13: Bacon-Shor block size vs optimal (in number of gates) CNOT logical error rate for
geometrically local asymmetric Bacon-Shor codes at various values of the bias, for a physical error
rate " = 10�4.

the possibility of failure in the preparation of |+iL or a cat state is included in Equation (3.21), and

conservatively at that, since we assumed there that the cat states had length 2m or 3m rather than

m + 1. Here we assume that the number of repetitions r0 of the cat state syndrome measurement,

and the number of syndrome measurement repetitions r+ in the |+iL state preparation, match

the number of repetitions in the following CNOT gate. If so, we may bound the injection error

probability Perr(J ) by

Perr(J )  "
 

+ P ⇤
err(ML

ZZ

) + P ⇤
err(MX

), (3.38)

where "
 

bounds the probability of an error in the preparation of the unprotected state | i (we

presume that this error is not necessarily diagonal in the Z basis).

We assume that ML

ZZ

is repeated r times to improve its reliability. In the first measurement
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Figure 3.14: Optimal CNOT logical error rate versus required number of gates for geometrically
local asymmetric Bacon-Shor codes, assuming a physical error rate " = 10�4, bias 104, and various
rates of the measurement error rate "M.

we can time the preparation of the unprotected qubit and the cat state so that there are no storage

errors prior to step in which the cat state interacts with the data. But in subsequent measurements,

storage errors on the data may accumulate during the 8r0 time steps while the cat state is prepared

for the next round. To estimate P ⇤
err(MX

), we note that each of the m + 1 cat-state qubits is

acted upon by two CZ gates during each of r0 rounds of cat-state syndrome measurement, where

a nondiagonal fault in any of these gates could result in a Pauli-frame X error. Furthermore, a

storage fault acting on the unprotected qubit, a fault in final X measurement of the unprotected

qubit, or a fault in the CZ gate that couples the unprotected qubit to the cat state could cause

M
X

to fail. Therefore, we find

P ⇤
err(MX

)  (r + 1)("+ "0) + 8(r � 1)r0("
s

+ "0
s

) + 2(m + 1)rr0"0. (3.39)

A nondiagonal error acting on any data qubit can flip the outcome of ML

ZZ

. Otherwise, a diagonal

fault in each of at least (r + 1)/2 measurement rounds could cause the ML

ZZ

to fail. Since in each
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round there are m + 1 gates coupling the qubits to the data, (m + 1)r0 CZ gates in the cat state

preparation, as well as m + 1 single-qubit preparations and measurements, we find

P ⇤
err(ML

ZZ

)  r"0 + 8r0(r � 1)"0
s

+ m(2r+ + r)"0 +

✓
r

r+1
2

◆
[(m + 1)(r0 + 3)("+ "0)](r+1)/2. (3.40)
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Figure 3.15: Injection error probability for the optimal geometrically local Bacon-Shor codes found
in Figure 3.11, with the probability of an error on the unprotected state | i, "

 

, set to be equal to
the dephasing error probability ".

Figure 3.15 bounds the injection error probability assuming the values of m, r and r0 chosen to

optimize the geometrically local CNOT gadget. For large biases, the injection error probability is

around 1%, well below the thresholds for successful distillation, as will be seen in Section 3.10.

By choosing r = 1 (no repetition of the ZZL measurement), we can avoid storage locations, and

the leading contribution to Perr(J ) linear in " (assuming "0 ⌧ ") is

Perr(J ) = 3"+ (m + 1)(r0 + 3)"+ · · · . (3.41)

Increasing to r = 3 entails increasing the sensitivity to storage errors, while providing better
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protection against diagonal errors in CZ gates:

Perr(J ) = 5"+ 16r0"
s

+ · · · , (3.42)

which might be a significant improvement if "
s

⌧ ".

The probability of error in state injection depends on m and also on r0, the number of times

the cat-state syndrome measurement is repeated, which we assume matches the value of r0 in the

CNOTL gate that follows the state injection step. We note, though, that the value of r0 might

increase gradually as state injection proceeds. If there are multiple rounds of state distillation, we

might be willing to accept a larger CNOTL error rate Perr(CNOTL) in early rounds, where the

error in the distilled state is higher, with Perr(CNOTL) declining in later rounds as the state’s

purity improves. Adjustment of the Bacon-Shor block size, and hence of Perr(CNOTL), is easy to

incorporate in our circuit constructions, as there is no need for the control and target blocks in the

CNOTL circuit to be of equal size. Using a smaller code in early rounds may save on overhead,

but, more importantly, reducing the value of m and r0 used in the first round improves the error

Perr(J ) of the initially injected state. However, for simplicity, we did not invoke this strategy of

gradually increasing the block size in the analysis of state distillation reported in Section 3.10.

3.10 State distillation

So far we have seen how, using asymmetric Bacon-Shor codes, to perform fault-tolerant encoded

versions of the operations in the “CSS set” GL

CSS: the CNOT gate, preparations of the encoded

states |0iL and |+iL, and the measurements ML

X

, ML

Z

. In addition, to perform fault-tolerant

universal quantum computation, we will need to prepare high-fidelity encoded versions of the states

|+ii =
1p
2

(|0i + i|1i) ,

|T i =
1p
2

⇣
|0i + ei⇡/4|1i

⌘
. (3.43)

Using a |+ii ancilla state and CSS operations, we can teleport the Cli↵ord group gates Q =

exp
�
i⇡4 X

�
and S = exp

�
�i⇡4 Z

�
, which su�ce for generating the full Cli↵ord group. Using a |T i

ancilla, the S gate, and CSS operations, we can teleport T = exp
�
�i⇡8 Z

�
, completing a universal
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gate set.

To prepare these encoded ancilla states, we first prepare noisy versions of the encoded states,

and then use a distillation protocol to generate the needed high-fidelity versions of these states [47].

To distill the |+ii ancillas, we need only CSS operations, and can use a circuit based on the [[7,1,3]]

Steane code; it takes 7 noisy |+ii (|�ii) ancillas and produces one clean |�ii (|+ii) ancilla. The

|T i distillation protocol uses both CSS operations and |+ii ancillas and is based on Reed-Muller

codes [47]; it produces one clean |T i ancilla from 15 noisy ones. Other, more e�cient, distillation

protocols have been proposed recently [70–72].
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Figure 3.16: Output error probability after n levels of |T i distillation, with the values of "in and
"CSS taken from the optimal values of Figure 3.15, for " = 10�4 and various biases. Only two
rounds of distillation are required in each case to reach the floor.

In the original analysis [47] of the performance of these state distillation protocols, it was

assumed that the CSS operations were perfect. In Chapter 4, we consider the case in which the

CSS operations are themselves noisy. Here we consider the case where the noise level is set by the

noisy operations protected by an optimally chosen Bacon-Shor code.
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When the CSS operations are perfect, we can attain ancilla states with arbitrarily low error

by performing a su�cient number of rounds of distillation, assuming that the fidelity of the initial

ancilla with the desired ideal state exceeds a threshold value. However, when the CSS operations

are noisy, the error rate "CSS for the CSS operations sets a nonzero floor on the error in the

output ancilla states — once this floor is reached, further rounds of distillation produce no further

improvement, because the error in the output is dominated by the errors in the distillation circuit

rather than the errors in the input ancilla states.

For initial ancillas with errors that are very close to the threshold of the ideal distillation

protocol, it can take many rounds of distillation in principle to reach the floor set by the CSS error

rate. On the other hand, if the initial ancillas are not too noisy, then it will take just a few rounds

of distillation to reach this floor. In Figure 3.16, the error rate of the output ancilla is plotted as

a function of the number of rounds of distillation, where the input error rate is the injection error

probability estimated in Figure 3.15. For the parameters shown, only two rounds of distillation

su�ce to reach the floor set by the logical CSS error rate. This relatively modest overhead cost for

executing non-Cli↵ord logical quantum gates is one of the advantages of our fault-tolerant scheme.
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Chapter 4

Magic State Distillation with
Noisy Cli↵ord Gates

In that Empire, the Art of Cartography attained such Perfection that the map of a single

Province occupied the entirety of a City, and the map of the Empire, the entirety of a

Province. In time, those Unconscionable Maps no longer satisfied, and the Cartogra-

phers Guilds struck a Map of the Empire whose size was that of the Empire, and which

coincided point for point with it. The following Generations, who were not so fond of the

Study of Cartography as their Forebears had been, saw that that vast Map was Useless,

and not without some Pitilessness was it, that they delivered it up to the Inclemencies

of Sun and Winters. In the Deserts of the West, still today, there are Tattered Ruins of

that Map, inhabited by Animals and Beggars; in all the Land there is no other Relic of

the Disciplines of Geography.

—Jorge Louis Borges, “On Exactitude in Science” [73]

4.1 Introduction

If we wish to perform a large-scale quantum calculation, in the presence of a high rate of errors,

we must ensure that we can detect and correct errors before they overwhelm the computation.

Typically, this is achieved by encoding the system of interest into a subspace of a larger system, for

example a quantum error-correcting code. If the error rate is not too big, typical errors will move

the state outside of the code subspace and be correctable, and the rate of errors at the encoded level



135

will be small. If the error rate is small enough—below a threshold which depends on the choice

of code—then we can achieve an arbitrary level of error correction by treating the encoded errors

as physical errors at the next level of error correction. Depending on the code, other methods of

reaching arbitrarily low error rates may also exist [58, 74, 75].

Using an error-correcting code during a computation entails developing encoded gadgets which

replace the ideal circuit’s basic elements. It is important to design these gadgets fault-tolerantly,

so that errors cannot spread out too far over the course of a computation. If errors are allowed

to spread, then a single error could be transformed into a larger set of correlated errors, which

would reduce the e↵ective distance of the code. In the worst case, a small set of uncorrelated errors

could evolve directly into an encoded error, at which point it would be undetectable and could have

adverse e↵ects on the higher-level computation.

One strategy for avoiding correlated errors is to use transversal encoded gates. Unfortunately,

it is known that any local quantum error-correcting code cannot have a universal set of encoded

gates [76]. Even if we replace transversal (depth 1) encoded gates with constant depth encoded

gates, which correspond to finite spread of errors, the set of encoded gates in that form is non-

universal for stabilizer codes in d = 1 or 2 dimensions [77]. Codes with these dimensions are

exactly the codes which are convenient to work with in actual physical implementations, where

the gate arrangement is most naturally 2 dimensional. Therefore, for these code families, at least

one encoded gate which is required for universality must be implemented in a non-transversal and

non-constant-depth manner.

A particularly promising strategy for fault tolerance in the face of these no-go theorems is to

supplement the available transversal gates with the ability to prepare high-quality copies of certain

“magic states” [47]. Combining these states with appropriate teleported gates can enable operations

which complete a universal basis, where the error in the gate depends on the quality of the magic

state. Moreover, even though Cli↵ord operations cannot produce these states, Cli↵ord operations

can distill them, creating some number of higher-fidelity copies from a greater number of low-fidelity

copies. These distillation circuits are based on error-correcting codes with certain symmetries.

Most analyses of Cli↵ord gates assume that the Cli↵ord gates are perfect. In practice, the

presence of noisy Cli↵ord operations can limit the e↵ectiveness of distillation protocols. The e↵ects

of noisy Cli↵ord operations has been studied before for one choice of distillation routine [78]. At

the same time, there has recently been tremendous growth in the discovery of new, more e�cient
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state distillation protocols [70–72, 79–82]. This work aims to extend the number of protocols that

have been analyzed in the presence of noisy Cli↵ord operations, and to analyze the comparative

performance of these techniques.

Section 4.2 introduces magic states in more detail. Section 4.3 discusses codes with S-symmetry,

and their use for distilling a non-magic state which is nonetheless useful for completing the Cli↵ord

group in circumstances where it is not readily available. Sections 4.4 and 4.5 introduce T -symmetric

codes and related symmetries which allow for the distillation of the magic state |T i, while Section 4.6

does the same for H-symmetry. An overview of the e↵ects of noisy Cli↵ord operation is provided

in Section 4.7. We introduce in Section 4.7.1 our error model for noisy Cli↵ord gates, and in Sec-

tion 4.7.2 present our methods for completing the specification of distillation circuits. Section 4.7.3

provides some more details on the analysis of non-Cli↵ord circuit elements used in some distillation

procedures. Sections 4.7.4 to 4.7.6 provide the detailed accounting of upper bounds on various dis-

tillation protocols, and Section 4.7.7 provides a comparative analysis of the protocols. Section 4.8

discusses the results.

4.2 Magic states

Magic states are a set of pure states corresponding to symmetry points on the Bloch sphere. The

single-qubit magic states can be divided into two types. The H-type magic states include the state

|HihH| =
1

2


I +

1p
2
(X + Z)

�
, (4.1)

an eigenstate of the Hadamard operation, and all states obtained from |Hi by the action of single-

qubit Cli↵ord operations. Another prominent H-type magic state is the state

|T i =
1p
2

�
|0i + ei⇡/4|1i

�
. (4.2)

There is one magic state of this type for each of the edges of the polyhedron whose vertices are the

eigenstates of the Pauli operators X, Y and Z (that is, the basis states |0i, |1i, |+i, |�i, |ii and

|�ii.)
The other type of magic states correspond to the symmetry axes of the faces of the Pauli

polyhedron, which represent symmetries under rotation by 2⇡/3. The prototypical magic state of
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this type is the state

|⌥ih⌥| =
1

2


I +

1p
3
(X + Y + Z)

�
, (4.3)

which is an eigenstate of the rotation ⌥ that takes X to Z, Z to Y , and Y to X1.

4.3 S-symmetric codes

An [[n, k, d]] code is S-symmetric if the simultaneous application of the operator S to each physical

qubit is equivalent to the application of the operator S
L

to each logical qubit:

S⌦n = (S
L

)⌦k, (4.4)

where

S = exp(i⇡/4) exp
⇣
�i
⇡

4
Z
⌘

=

0BBB@1 0

0 i

1CCCA (4.5)

and S
L

is the equivalent logical operator. Note that on the left-hand side of Equation (4.4), the

tensor product ⌦ is taken with respect to the physical basis of qubits, while on the right-hand side

it is with respect to the logical basis, and written as ⌦. It could be explicitly defined as as

(S
L

)⌦k =
Y

a2[k]

(S
L

)
a

. (4.6)

The shorthand version will be used throughout without further comment.

A related symmetry is

S⌦n = (S†
L

)⌦k, (4.7)

which I will call S-antisymmetric. There could also be cases where some logical qubits are symmetric

and some antisymmetric: O
i2[n]

A
i

=
Y

a2[k]

B
a

, (4.8)

1
The state |⌥i and corresponding operator ⌥ are elsewhere referred to as |T i and T , where the state we call |T i

is called |Ai.
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where

A
i

2 {S, S†}

B
a

2 {S
L

, S†
L

},
(4.9)

but this mixed symmetry does not occur in any common codes.

4.3.1 Doubly even codes

S-symmetries occur in any CSS code where the X-basis stabilizer generators T
X

and logical oper-

ators L
X

obey the “doubly even” properties

wt(s 2 T
X

) ⌘ 0 (mod 4) (4.10)

wt(l 2 L
X

) ⌘ ±1 (mod 4) (4.11)

wt(s ^ t | s, t 2 L
X

[ T
X

) ⌘ 0 (mod 2), (4.12)

where s ^ t denotes the bitwise and operation

(s ^ t)
i

= s
i

t
i

. (4.13)

The case +1 corresponds to S-symmetry, and �1 to S-antisymmetry. Using the identity

wt(x � y) = wt(x) + wt(y) � 2 wt(x ^ y), (4.14)

where � denotes the bitwise xor operation

(s � t)
i

= s
i

+ t
i

mod 2, (4.15)

we can see that Equations (4.10) and (4.12) together imply that every stabilizer s 2 S
X

(that is,

not just the generators T
X

) obeys

wt(s 2 S
X

) ⌘ 0 (mod 4), (4.16)
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and, furthermore, the combination of logical and stabilizer operations obey

wt(s � t | s 2 S
X

, t 2 S
X

[ L
X

) ⌘ ±1 (mod 4), (4.17)

where the sign ±1 is the same sign for every term, depending only on the choice of symmetry.

Then we can express the operation of S⌦n on the all-zero codeword |0
L

i⌦k as

S⌦n|0
L

i⌦k = S⌦n

X
s2SX

X[s]|0i⌦n

=
X

s2SX

X[s](iSZ)[s]|0i⌦n

=
X

s2SX

X[s]iwt(s)|0i⌦n

= |0
L

i⌦k, (4.18)

where on the second line we have used the commutation property

SX = XS† = XSZ, (4.19)

and on the final line we have used Equation (4.16). In other words, every term in the logical-basis

expansion of |0
L

i⌦k has a number of |1i’s which is a multiple of four, and so applying S to each of

these terms leaves it unchanged. Applying any logical operator XL

i

= X[l] gives

S⌦nXL

i

|0
L

i⌦k = S⌦nX[l]
X

s2SX

X[s]|0i⌦n

=
X

s2SX

X[s � l](iSZ)[s � l]|0i⌦n

=
X

s2SX

X[s � l]iwt(s�l)|0i⌦n

= (i)±1XL

i

|0
L

i⌦k, (4.20)

where the final deduction makes use of Equation (4.17). Now each term in the logical-basis expan-

sion has a number of |1i’s which is 1 or �1 modulo 4. These are exactly the properties that SL

i

or
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(SL

i

)† should obey:

SL

i

|0
L

i⌦k = |0
L

i⌦k

SL

i

XL

i

|0
L

i⌦k = iXL

i

|0
L

i⌦k.
(4.21)

Therefore, any doubly even code has the S-symmetry property

S⌦n = (S
L

)⌦k. (4.22)

S-symmetry occurs, for example, in the [[7,1,3]] Steane code [25], with stabilizer generators

0BBBBBBB@
X · X · X · X

· X X · · X X

· · · X X X X

1CCCCCCCA
(4.23)

and logical X operation  
X X X · · · ·

!
. (4.24)

From the logical operation we can see that this case will have the antisymmetric form.

4.3.2 |ii distillation

Using an S-symmetric code allows us to distill the state

|ii =
1p
2
(|0i + i|1i) = S |+i. (4.25)

The basic distillation circuit is depicted in Figure 4.1. We can break up the initial |ii states into

S|+i, and then use the S-symmetry property Equation (4.4) to push the S through the error

correction and decoder. Since the logical SL operations commute with the syndrome, they do not

change the measured syndromes during the error correction; however, they do change the recovery

operation, changing X operations to Y operations as they are conjugated by S gates.

From the transformed distillation circuit, we can see that in the case of perfect input ancillas,
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|ii

E.C. D

|+i S

E.C. D

|+i

E.C. D

|ii |+i S |+i S

|ii = |+i S = |+i S

|ii |+i S |+i S

|ii |+i S |+i

3

Figure 4.1: Distillation circuit for the state |ii and equivalent circuit transformations. n copies of
the input state |ii are prepared, a cycle of error-correction is performed, and the state is decoded
into k copies.

E

S

E.C. D

|+i S

|+i S

|+i S

S

1

Figure 4.2: Alternate distillation circuit for the state |ii. k copies of the input state |+i are encoded,
and noisy S gates are performed using n noisy |ii states and the teleported S implementation of
Figure 4.3. The circuit of a cycle of error-correction is performed, and the state is decoded into k
copies.

the circuit is equivalent to performing error correction on the state |+i⌦n. This state agrees with all

of the X-type stabilizers, but not in general with the Z-type stabilizers. By measuring the Z-type

stabilizers and determining an appropriate correction (which in this case is Pauli, and so can be

tracked by updating the Pauli frame), we bring the state back to the codespace, and, in particular,

to the logical state |+
L

i⌦k, since

⇣
h+

L

|⌦k

⌘
XL

i

⇣
|+i⌦n

⌘
= 0 (4.26)

for each XL

i

. In the untransformed circuit, this is equivalent to bringing the state to |i
L

i⌦k. Then

the final portion of the circuit, the decoder D, transforms the logical state |i
L

i⌦k into the bare
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state |ii⌦k.

So far we have transformed n ideal copies of the state |ii into k < n ideal copies, which we could

just have easily done by throwing copies away. The usefulness of the distillation circuit comes into

play when we now assume that the input states are noisy. It is useful to assume that the noisy

state ⇢ takes the form

⇢ = (1 � ") |iihi| + " |�iih�i| (4.27)

for some probability " > 0, where

|�ii =
1p
2

(|0i � i|1i) = Z|ii. (4.28)

This can be achieved by applying the “twirling” map

Y(⇢) =
1

2
(⇢+ Y ⇢Y ) , (4.29)

which completely dephases an arbitrary state ⇢ in the {|ii, |�ii} basis. Note that this map is

equivalent to applying the Pauli Y operation to each noisy state with probability 1/2, which we

can keep track of by updating the Pauli frame appropriately. Then all input errors are equivalent

to independent local Z errors, since |�ii = Z|ii. If the error-correcting code has distance d, it can

either correct up to (d� 1)/2 errors or detect up to d� 1 errors, leading in the latter case to output

ancillas that have an error rate

"out = O("d). (4.30)

If the pre-factor of "d is not too large, then we have reduced the e↵ective error rate at the next

level, and can recursively apply this procedure to reach arbitrarily clean input states.

An alternate distillation circuit is shown in Figure 4.2. In this case, the logical state |+
L

i⌦k is

prepared directly, rather than prepared through the syndrome measurement. The advantage is that

now in the absence of errors both syndromes should be trivial, and so we can use both syndromes

of code for error detection instead of error correction. With twirled inputs and negligible gate

errors, we can skip the error correcting cycle for X errors. The disadvantage is the added circuit

complexity of the encoding operation and teleported gates.

For S-antisymmetric codes, copies of the state |±ii can be distilled from many copies of the

state |⌥ii.
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|ii

E.C. D

|+i S

E.C. D

|+i

E.C. D

|ii |+i S |+i S

|ii = |+i S = |+i S

|ii |+i S |+i S

|ii |+i S |+i

| i • M
X

P|ii Y Q| i

| i M
Z

P|ii • Y S| i

3

Figure 4.3: The Cli↵ord gates Q = ei(⇡/4)X and S = ei(⇡/4)Z can be applied using teleportation
and |ii ancillas. The measurement determines a Pauli operator that is used to update the Pauli
frame of the calculation, not actually performed.

The state |ii is not a magic state, since the gates it enables are in the Cli↵ord group, and in

many settings it is taken for granted that we can perform them. Nevertheless, it can be useful to

complete the Cli↵ord group in situations like Chapter 3, where the physical gate set is restricted.

Using the circuits of Figure 4.3, a single copy of the |ii state may be consumed to perform either

the gate S or the gate Q = ei(⇡/4)X . Similarly, the state |�ii may be used to perform the gates S†

and Q†, or may be transformed to |ii by application of the Pauli Z operator.

4.4 T -symmetric codes

An [[n, k, d]] code which is T -symmetric obeys

T⌦n = (T
L

)⌦k, (4.31)

where

T = exp
⇣
i
⇡

8

⌘
exp

⇣
�i
⇡

8
Z
⌘

=

0BBB@1 0

0
p

i

1CCCA (4.32)

is the rotation about the Z axis by ⇡/4. This can be slightly generalized to

T⌦n = (T a

L

)⌦k, a 2 {1, 3, 5, 7}, (4.33)

as well as possibly mixed-symmetric varieties analogous to Equation (4.8).
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4.4.1 Triply even codes

T -symmetry occurs in CSS codes which obey a property called “triply even”, analogous to the

doubly-even codes of Section 4.3.1. The conditions are

wt(s 2 T
X

) ⌘ 0 (mod 8) (4.34)

wt(l 2 L
X

) ⌘ 1 (mod 2) (4.35)

wt(s ^ t | s, t 2 L
X

[ T
X

) ⌘ 0 (mod 4). (4.36)

The four possible values of wt(l 2 L
X

) mod 8 give rise to the four di↵erent symmetries of Equa-

tion (4.31). These conditions guarantee that every term in the logical basis expansion of the

codeword |0
L

i⌦k has a number of |1i’s divisible by 8, so that, in an analogous manner to Equa-

tion (4.18),

T⌦n|0
L

i = |0
L

i, (4.37)

and, in the same manner as Equation (4.20), we can use Equation (4.36) to show that

T⌦nXL

j

|0
L

i = ei⇡/4XL

j

|0
L

i, (4.38)

and therefore codes that obey the triply even property have the appropriate symmetry

T⌦n = (T
L

)⌦k. (4.39)

Examples of triply even codes include the [[15,1,3]] quantum Reed-Muller code [47] which has

X-basis stabilizer generators0BBBBBBBBBBBB@

X · X · X · X · X · X · X · X

· X X · · X X · · X X · · X X

· · · X X X X · · · · X X X X

· · · · · · · X X X X X X X X

1CCCCCCCCCCCCA
, (4.40)
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|T i

E.C. D

|+i T

E.C. D

|+i

E.C. D

|T i |+i T |+i T

|T i = |+i T = |+i T

|T i |+i T |+i T

|T i |+i T |+i

1

Figure 4.4: Distillation circuit for the state |T i and equivalent circuit transformations. n copies of
the input state |T i are prepared, a cycle of error-correction is performed, and the state is decoded
into k copies. The Z basis syndrome determines a correction which consists of applying the Cli↵ord
operation XS† to some physical qubits.

and logical X operation 
X X X X X X X · · · · · · · ·

!
, (4.41)

as well as a [[49,1,5]] code due to Bravyi and Haah [71].

4.4.2 |T i distillation

T -symmetric codes enable the distillation of the state

|T i =
1p
2

⇣
|0i + ei⇡/4|1i

⌘
= T |+i, (4.42)

by an argument exactly analogous to that in Section 4.3.2. As seen in Figure 4.4, we can use circuit

identities to transform the |T i distillation circuit into a circuit which distills |+i states. The major

di↵erence between |ii distillation and |T i distillation is that in the former case the Z syndrome

determines a Pauli frame correction, applying Y to certain physical qubits, while in the latter case

it determines a non-Pauli correction, applying XS† to certain physical qubits. The S† part of the

correction must actually be applied.

When distilling noisy copies ⇢, it is again useful to assume that ⇢ is diagonal in the {|T i, |T †i}
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| i M
Z

P|T i • SX T | i

1

Figure 4.5: Teleported circuit for the non-Cli↵ord gate T .

basis (where |T †i = T †|+i = Z|T i.) This can be achieved by applying the dephasing map

T (⇢) =
1

2

�
⇢+ SX⇢XS†� , (4.43)

which applies the operation SX to each copy of ⇢ with probabiliy 1/2. Unlike |ii-distillation, this is

a non-Cli↵ord operation and must be physically applied if we wish to dephase, although the work

of O’Connor et al. [78] has shown distillation protocols to be robust with regard to the removal of

the dephasing step.

The state |T i may be used to teleport the gate T , using the circuit of Figure 4.5.

4.5 Triorthogonal codes

Triorthogonal codes, introduced by Bravyi and Haah [71], generalize the idea of T -symmetric codes

by noting that it is still useful for distillation to have codes that are not precisely symmetric but

which are symmetric up to Cli↵ord operations. This symmetry has the form

UCli↵ordT⌦n = (T
L

)⌦k, (4.44)

where UCli↵ord is a unitary which is inside the Cli↵ord group.

As discovered in [71], such codes can be found from CSS codes with stabilizer generators T
X
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and logical operators L
X

that obey the conditions

wt(s 2 T
X

) ⌘ 0 (mod 2) (4.45)

wt(l 2 L
X

) ⌘ 1 (mod 2) (4.46)

wt(s ^ t | s 6= t 2 L
X

[ T
X

) ⌘ 0 (mod 2) (4.47)

wt(s ^ t ^ u | s 6= t 6= u 2 L
X

[ T
X

) ⌘ 0 (mod 2). (4.48)

With the exception of the new condition Equation (4.48), these are relaxations of the equivalent

conditions for triply even codes, Equations (4.34) to (4.36). In fact, every triply even code is

necessarily also triorthogonal. Any matrix G with n columns and k odd-weight rows, whose rows

obey Equation (4.36), generates a CSS-type stabilizer code, which encodes k qubits into n, where

the even rows become T
X

and the odd rows become L
X

. (We will assume that the odd weight rows

are the first k rows.) The final condition Equation (4.48) provides the symmetry property.

To see the symmetry property, note that

T⌦n|+
L

i⌦k =
X
f2G

ei⇡wt(g)/4|gi, (4.49)

where wt(s) denotes the weight of the binary string s. G is the set generated by L
X

[ S
X

, or

equivalently the set generated by the rows of the matrix G. We can write each f 2 G as

f =
mX

a=1

x
a

ga (mod 2), (4.50)

where ga is the ath row of G and x
a

is uniquely determined by f . Each component f
i

of i is the

parity of the bit string (x1g1
i

, x2g2
i

, . . . , x
m

gm

i

). We may write the parity ✏(s) of a bit string s as

✏(s) =
1

2

⇣
1 � (1 � 2)wt(s)

⌘
=

wt(s)X
p=1

✓
wt(s)

p

◆
(�2)p�1

=
mX

i=1

s
i

� 2
X
i<j

s
i

s
j

+ 4
X

i<j<k

s
i

s
j

s
k

+ . . . , (4.51)

where in the second line we have used the fact that
�
wt(s)

p

�
is the number of ways to choose p
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non-zero components of s. This leads to the identity

ei⇡✏(s)/4 = exp

24 i⇡

4

X
i

y
i

� i⇡

2

X
i<j

s
i

s
j

+ i⇡
X

i<j<k

s
i

s
j

s
k

35 , (4.52)

where the higher order terms are eliminated because they are integer multiples of 2⇡i. Applying

this identity to the term ei⇡wt(f)/4 in Equation (4.49) leads to the expansion

ei⇡wt(f)/4 = exp

"
i⇡

4

mX
a=1

x
a

wt(ga) � i⇡

2

X
a<b

x
a

x
b

wt(ga ^ gb) + i⇡
X

a<b<c

x
a

x
b

x
c

wt(ga ^ gb ^ gc)

#

= exp

"
i⇡

4

mX
a=1

x
a

wt(ga) � i⇡

2

X
a<b

x
a

x
b

wt(ga ^ gb)

#

= exp

"
i⇡

4

kX
a=1

x
a

+
i⇡

2
Q(x)

#
, (4.53)

where in the second line we have used the triorthogonality condition Equation (4.48), and in the

third line we have collected the desired e↵ect, which is the same e↵ect as the encoded (T
L

)⌦k, and

the undesired additional phase. We would like to show that we can get rid of this phase by the

application of Cli↵ord gates. Introducing the auxiliary tensors

�
a

=

�
wt(ga)

2

⌫
(4.54)

and

�
ab

=
wt(ga ^ gb)

2
, (4.55)

we may rewrite the term Q(x) in Equation (4.53) as

Q(x) =
mX

a=1

�
a

x
a

� 2
X
a<b

�
ab

x
a

x
b

. (4.56)

To see this, it is useful to note that

wt(ga) =

8><>:2�
a

+ 1 if 1  a  k

2�
a

otherwise
. (4.57)
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Using B
ap

, the (non-unique) one-sided inverse over F2 of G
ap

, defined by

X
a

B
ap

G
aq

= �
pq

, (4.58)

we can write x
a

and x
a

x
b

explicitly in terms of f . We have

x
a

=
X

p

B
ap

f
p

(mod 2)

=
X

p

B
ap

f
p

� 2
X
pq

B
ap

B
aq

f
p

f
q

(mod 4) (4.59)

2x
a

x
b

= 2
X
p,q

B
ap

B
bq

f
p

f
q

(mod 4). (4.60)

This allows us to write Q(x) as

Q(x(f)) =
nX

p=1

⇤
p

f
p

� 2
X
p<q

⌦
pq

f
p

f
q

(mod 4), (4.61)

where

⇤
p

=
X

a

�
a

B
ap

� 2
X
a<b

�
ab

B
ap

B
bp

(mod 4) (4.62)

and

⌦
pq

=
X

a

�
a

B
ap

B
aq

�
X
a<b

(B
ap

B
bq

+ B
bp

B
aq

) (mod 2). (4.63)

Then the unwanted phase factor ei⇡Q/2 may be cancelled by applying CZ gates to every pair of

qubits p < q where ⌦
pq

= 1, and the gate (S†)⇤p to each qubit p.

4.5.1 Explicit triorthogonal codes

A family of triorthogonal codes with parameters [[3k + 8, k, 2]] may be explicitly constructed for

any even k. These codes have stabilizers with the form
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0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

· X · X · X · X X · X X · X . . . X · X

· · X X · · X X · X X · X X . . . · X X

X X X X X X X X · · · · · · . . . · · ·

Z Z · · · · · · · Z Z · · · . . . · · ·

Z Z · · · · · · · · · · Z Z . . . · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Z Z · · · · · · · · · · · · . . . · Z Z

Z · Z · · · · · Z · Z · · · . . . · · ·

Z · Z · · · · · · · · Z · Z . . . · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Z · Z · · · · · · · · · · · . . . Z · Z

Z · · · Z · · · · · Z · · Z . . . · · Z

· Z · · · Z · · · · Z · · Z . . . · · Z

· · Z · · · Z · · · Z · · Z . . . · · Z

· · · Z · · · Z · · Z · · Z . . . · · Z

Z Z Z Z · · · · · · · · · · . . . · · ·

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
and logical operations with the form
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0BBBBBBBBBBBBBBBBBBBBBBBBB@

· · · · X X X X X X X · · · . . . · · ·

· Z Z · · · · · · · Z · · · . . . · · ·

· · · · X X X X · · · X X X . . . · · ·

· Z Z · · · · · · · · · · Z . . . · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

· · · · X X X X · · · · · · . . . X X X

· Z Z · · · · · · · · · · · . . . · · Z

1CCCCCCCCCCCCCCCCCCCCCCCCCA

.

Note that when k is even but not divisible by 4, the resulting code is not only triorthogonal but

triply even, and so no extra Cli↵ord operation is required to get T -symmetry.

4.5.2 |T i distillation from triorthogonal codes

The circuit for distilling based on triorthogonal codes is identical to that of Figure 4.4, with the ad-

dition of the extra Cli↵ord operation above, which is applied before error correction. Triorthogonal

codes can also be used to distill To↵oli states [82].

4.6 H-symmetric codes

An H-symmetric code obeys

H⌦n = (H
L

)⌦k, (4.64)

where H is the Hadamard gate

H =
1p
2

0BBB@1 1

1 �1

1CCCA . (4.65)
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Figure 4.6: Distillation circuit for the state |Hi. k copies of the input state |Hi are prepared and
encoded in an H-symmetric code. An additional 2n |Hi states are consumed to perform controlled-
H tests on an ancilla state, measuring the Hadamard parity of the states, using the circuits of
Figure 4.7. The attempt is aborted if the ancilla state measurement outcome is �1, or if the
syndrome detected during decoding is nontrivial.

Any self-dual classical code (C? = C) gives rise to an H-symmetric CSS code. In such a code, every

X-type stabilizer has a corresponding Z-type stabilizer, found by replacing every X with a Z (or,

equivalently, conjugating the stabilizer by Hadamards on each qubit), and, similarly, the partner

logical Z of each logical X operation is found by bitwise Hadamard conjugation.

Codes with H symmetry appear to be easier to find than codes with T symmetry. Examples

include the [[7, 1, 3]] Steane code [25] and a family of [[k+4, k, 2]] codes [72]. The [[4, 2, 2]] code [83]

has a related symmetry, where H⌦4 = SWAP
L

(H
L

)⌦2, and, similarly, the symmetric [[d2, 1, d]]

Bacon-Shor codes [29, 54] are H-symmetric up to a permutation of the qubits.

4.6.1 |Hi distillation

H-symmetric codes allow distillation of the magic state

|Hi = cos(⇡/8)|0i + sin(⇡/8)|1i, (4.66)

the +1 eigenstate of the Hadamard operation.

It is again convenient to assume that all the input magic states are dephased in the {|Hi, |�Hi}
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Figure 4.7: Circuit consuming two copies of the magic state |Hi to perform a controlled-H gate.

basis, which can be achieved by applying the map

H(⇢) =
1

2

�
⇢+ H⇢H†� = (1 � p)|HihH| + p|�Hih�H| (4.67)

for some value of p which depends on ⇢.

The prototypical distillation circuit is depicted in Figure 4.6. Instead of performing an error

correcting cycle using the chosen code, a simple controlled-H check is performed on the k encoded

magic states |Hi. This is equivalent to a parity check in the {|Hi, |�Hi} basis, where

|�Hi = sin(⇡/8)|0i � cos(⇡/8)|1i = Y |Hi (4.68)

is the �1 eigenstate of the Hadamard operation. To perform the distillation, k copies of the

input state |Hi are prepared and encoded. An additional 2n |Hi states are consumed to perform

controlled-H tests on an ancilla state, measuring the Hadamard parity of the encoded states, using

the circuits of Figure 4.7. Because of the code’s H-symmetry, a transversal controlled-H test is

equivalent to logical controlled-H tests. Each error flips the result of the parity test, so the test can

detect an odd number of errors. The distillation attempt is aborted and resulting states discarded

if the ancilla state measurement outcome is �1, or if the syndrome detected during decoding is

nontrivial. If the test and decoding are both successful, we have produced k |Hi states from

k + 2n states, while reducing the error probability to "out = O("d), in the absence of noisy Cli↵ord

operations.

In some cases, the number of controlled-H tests can be lowered by the prudent application of

circuit identities [70].

Two copies of the state |Hi can be used to perform the non-Cli↵ord operation controlled-H,
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using the circuit of Figure 4.7, or a single |Hi may be transformed by Cli↵ord operations into |T i
and used to perform a T gate using the circuit of Figure 4.5.

4.7 E↵ects of noisy Cli↵ord operations

In the discussion above, and in most analyses of the distillation output error rates, we have assumed

that the Cli↵ord gates needed for distillation behave perfectly. This will never be exactly true,

because in practice there will always be some probability for these gates to fail. However, we know

from error-correcting threshold theorems [26,30–36] that if the physical level of noise is su�ciently

low, then we can reach an arbitrarily low level of noise for encoded Cli↵ord operations. Because of

this, the e↵ects of noise on the Cli↵ord operations can safely be ignored in the limit of arbitrarily

high degree of error correction.

The e↵ects of Cli↵ord errors become more important, however, when we only have a finite degree

of error correction available to us. Likewise, they become important when we wish to characterize

the amount of resources required to reach a particular error rate— whether in terms of number of

physical qubits, number of physical gates, depth of logical circuits, or other measure.

Including the e↵ects of faulty Cli↵ord gates can a↵ect a distillation procedure in a number of

ways. These faults can reduce the distillation threshold error rate, so that more perfect ancillas

are required before distillation becomes viable. They can also set a floor on the achievable level

of distillation, so that distillation protocols become ine↵ective below a certain error rate. Finally,

they can reduce the rate of convergence to this error floor, so that more rounds of distillation are

necessary to reach it. This reduction is achieved both by an increased rate in undetected errors

on the output qubits, as well as more rounds of distillation which will be rejected due to detected

errors.

The e↵ects of noisy Cli↵ord operations have been previously studied for distillation protocols

based on the magic state

|⌥i = cos� |0i + ei

⇡
4 sin� |1i, cos(2�) =

1p
3

(4.69)

and distillation using the five qubit code [47,78]. Here we analyze a set of distillation protocols for

|T i and |Hi states, including some more recent proposals. Specifically, we look at the original |T i
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distillation protocol of Bravyi and Kitaev [47], the |T i distillation protocols of Brayvi and Haah

based on triorthogonal codes [71], and the |Hi distillation protocols of Jones [72].

4.7.1 Error model

We analyze each protocol under a local stochastic error model with error rate p, where the proba-

bility P of gates failing at r specified locations obeys

P  pr. (4.70)

The failure of a particular gate is modeled by replacing the gate by the combination of the ideal

gate, followed by a Pauli error, which we assume can be chosen adversarially, from the set {X, Y, Z}
for single-qubit gates and from the 15 possible nontrivial 2-qubit Paulis for two-qubit gates. A state

preparation failure results in the preparation of the orthogonal state, and a measurement fault of

a two-outcome measurement results in the measurement result being flipped. The probability p

should be interpreted as the probability of failure for the Cli↵ord operations at the highest encoded

level, and can therefore be much smaller than the failure rate p0 of physical gates.

When analyzing |T i distillation protocols, it is useful to focus on pure X and pure Z errors,

because for those circuits any logical error produced with Y faults could also be produced with

only X or only Z faults. For |Hi protocols, a more nuanced approach is required, as explained in

Section 4.7.3.

To achieve an upper bound on the overall failure rate, we will systematically count (aided by

computer) the single faults, pairs of faults, and in some cases triples of faults that can lead to an

encoded error. For each tuple of faults that is not directly a logical error, we will also count the

ways in which input errors can be combined with the faults to produce an encoded error. For larger

tuples of faults, we will pessimistically assume that every such tuple leads to an encoded error.

We will similarly model the input magic states as having uniform input error probability ", so

that on each input the correct state is input with probability 1 � ", and the orthogonal state with

probability ". Where necessary, we will refer to "in as the input error rate, and "out as the (average)

output error rate; or, for multiple rounds of distillation, we will refer to "(j) as the error rate after

the jth round of distillation.
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4.7.2 Distillation circuit design

The distillation protocols discussed in Sections 4.3 to 4.6 above are not entirely specified: even

after choosing the code, there is freedom to choose particular encoding and decoding circuits, and

freedom for |T i distillation to specify the exact procedure for error correction.

For error correction, we will adopt Steane-type error correction, discussed in Section 1.4.1. We

will choose encoding and decoding circuits based on the Latin rectangle scheduling method [57,84];

other methods exist which may be able to find more e�cient and less error-prone circuits for special

cases [85]. We have chosen the encoding and decoding circuits as best as possible to minimize

the constant term in the output distilled error rate, averaged over the output qubits. Future

improvements in choosing these circuits would result in better performance, so our analysis serves

to upper-bound the achievable error rates using these codes.

4.7.3 Controlled-H analysis

The distillation circuits for |T i states involve only Cli↵ord gates at the elementary level. These

gates, by definition, propagate Pauli errors into Pauli errors:

CPC† 2 P for P 2 P, C 2 C1. (4.71)

For that reason, such circuits are particularly amenable to a worst-case Pauli error model, where

the inserted errors are chosen from the Pauli operations.

The distillation protocols for the |Hi state, by contrast, make use of non-Cli↵ord circuit ele-

ments: the controlled H gates CH. A few Pauli operations propagate to Pauli operations:

CH12 · Z1I2 · CH†
12 = Z1I2

CH12 · I1Y2 · CH†
12 = Z1Y2;

(4.72)

however, in general the result is not a Pauli operation, for example a Z error on the target qubit

propagates as

CH12 · I1Z2 · CH†
12 = CY12 · S1Z2, (4.73)

becoming a non-Pauli operation that would then have to be propagated through the circuit.

Fortunately, we will not have to deal with arbitrary circuits of CH gates, and can take advantage
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of the particular structure of the distillation circuits. In each case, we have a single ancilla qubit,

prepared in the |+i state, and a code block state that can be naturally expressed in the basis�
|Hi, |�Hi

 ⌦n

. A series of CH gates act from the ancilla to each of the physical qubits, which act

trivially on a target |Hi and flip the control qubit from |+i $ |�i if the target is |�Hi. Finally,

the ancilla qubit is measured in the X basis, which e↵ectively measures the parity of the code block

state in the
�
|Hi, |�Hi

 
basis, counting whether the number of |�Hi’s is odd or even. Ideally

the state of the codeblock is |Hi⌦n; conditioned on a successful measurement result, the state is

projected onto even parity.

A Y error in the codeblock flips |Hi and |�Hi, flipping the ancilla state. An odd number of Y

errors will be detected, while an even number can pass undetected. The e↵ect of an X error can

be determined as follows (ignoring normalization):

(CH · IX)|+i|Hi = CH
�
|0i ⌦ X|Hi + |1i ⌦ X|Hi

�
=
�
|0i ⌦ X|Hi + |1i ⌦ HX|Hi

�
=
�
|0i ⌦ X|Hi + |1i ⌦ Z|Hi

�
= |+i ⌦ (X + Z)|Hi + |�i ⌦ (X � Z)|Hi

= |+i|Hi + |�i|�Hi (4.74)

and similarly

(CH · IX)|�i|Hi = |�i|Hi + |+i|�Hi (4.75)

(CH · IX)|+i|�Hi = |+i|Hi � |�i|�Hi (4.76)

(CH · IX)|�i|�Hi = |�i|Hi � |+i|�Hi. (4.77)

We can work out similar rules for Z by noting that Z = �iXY . The e↵ect of these Pauli errors

is to create a Bell pair state, in the basis
�
|+i, |�i

 
for the control qubit and

�
|Hi, |�Hi

 
for the

target qubit.

The e↵ect of X errors on an encoded input state |H
L

i⌦n is

(CH · IX)|+i| i = |+i ⌦ (X + Z)| i + |�i ⌦ (X � Z)| i, (4.78)
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and, for a multi-qubit target state with multiple errors, the e↵ect is

�
CH · (I ⌦ X[e])

�
|+i| i = |+i ⌦ (X[e] + Z[e])| i + |�i ⌦ (X[e] � Z[e])| i. (4.79)

Conditioned on measuring the control qubit to be in the |+i state (which occurs with probability

p = 1/4
��h |(X[e]+Z[e])| i

��2), the operation X[e]+Z[e] is applied to the target state. This operator

is not to be understood as a probabilistic mixture of X and Z errors, but rather a coherent mixture,

and the resulting operator is in general a projection followed by a unitary rotation.

When | i is a codeword of an H-symmetric quantum error correcting code, we can use this

additional structure to more closely determine the e↵ect of this non-Pauli error. In this case

(assuming no future errors), if X[e] would be a detected error, then the syndrome measurement

during the decoding of the state will detect a syndrome consistent with either the error X[e] or

the error Z[e], each with probability 1/2. If X[e] is equivalent to a stabilizer operation, then so is

Z[e], and the operation X[e] + Z[e] has no e↵ect on the encoded information. Only when X[e] is

equivalent to a logical error is X[e] + Z[e] a logical error as well (albeit a di↵erent one than X[e].)

This non-Pauli logical error is mapped onto a Y -type Pauli error by a subsequent twirling operator.



159

4.7.4 Reed-Muller |T i distillation

The original |T i distillation protocol of Bravyi and Kitaev [47] utilizes the [[15,1,3]] Reed-Muller

code, which can be fully specified as having stabilizer generators0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

X · X · X · X · X · X · X · X

· X X · · X X · · X X · · X X

· · · X X X X · · · · X X X X

· · · · · · · X X X X X X X X

· Z Z Z Z · · · · · · · · · ·

Z · Z Z · Z · · · · · · · · ·

Z Z · Z · · Z · · · · · · · ·

· Z Z · · · · Z Z · · · · · ·

Z · Z · · · · Z · Z · · · · ·

Z Z · · · · · Z · · Z · · · ·

Z Z Z Z · · · Z · · · Z · · ·

Z · · Z · · · Z · · · · Z · ·

· Z · Z · · · Z · · · · · Z ·

· · Z Z · · · Z · · · · · · Z

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(4.80)

and encoded logical operations

X
L

=

 
X X X X X X X · · · · · · · ·

!

Z
L

=

 
Z Z Z · · · · · · · · · · · ·

!
.

(4.81)
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As the form of Z
L

and X
L

suggest, this code has distance 3 protection against Z errors but distance

7 protection against X errors.

Almost every single fault will cause a detected error and reject the round, so we can get a bound

on this rate by counting the total elementary gates.

The distillation circuit, depicted schematically in Figure 4.4, utilizes a prepared logical |+i
L

state which uses 47 elementary operations. In addition, the use of Steane error correction requires

a transversal CNOT, a transversal Z-basis measurement, and up to 7 single qubit XS† corrections

(up to 14 elementary operations). The final decoding step requires 48 elementary operations.

Altogether, there are 139 elementary operations, so we can bound the probability of a detected

error as

P (detected error)  139p + 15". (4.82)

To bound the probability of an undetected logical error, we will examine all patterns of 3 or

fewer faults and determine how close they are to a logical error. It is useful to distinguish faults

that happen in the non-transversal part of the circuit with faults that occur in the transversal part,

which contribute in the same way as input errors. The probability for any individual qubit of a

non-transversal fault is ptrans = 3p, since there are three such locations per qubit (the transversal

CNOT, the transversal M
Z

measurement, and possibly the correction operator XS†, of which only

the S† is physically performed.)

Counting all patterns with 4 or more faults as leading to undetected failures, we can bound

these higher order terms by

P 
✓

139

4

◆
p4 ⇡ 1.49 ⇥ 107p4, (4.83)

which will be negligible for p ⌧ 0.01.

For the |+i
L

preparation, 20 of the 31 CNOT locations could fail in a way leading to an error

which is one single-qubit Pauli error away from a logical error. The remaining 11 locations are

two errors away, and there are 7 possible patterns of two errors that result in a logical error. The

remaining errors would come from faults in the following transversal CNOT of the circuit, with

probability p per qubit. This gives an overall contribution

P  20p · ("+ 3p) + 7 · 11p · ("+ 3p)2 (4.84)
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to the probability of an undetected error. With two faults in the non-transversal section of the

preparation, 57 of the
�
32
2

�
= 496 pairs of faults can cause a logical error directly, and the remaining

412 pairs will be counted as one error away from a logical error, so these patterns contribute

probability

P  57p2 + 412p2 · p. (4.85)

There are 1,791 ways to choose 3 faults that lead directly to a logical error, adding probability

P  1, 791p3. (4.86)

Similarly, we can count faults that occur in the decoding D itself. 8 of the 34 CNOT gates act

directly on the outgoing qubit. If the circuit is properly arranged, 4 of the 34 CNOT gates can

put an error only on the outgoing qubit, avoiding detection; 21 require one additional error, and 7

require two errors (each with in 7 possible ways to do so.) This contributes

P  4p + 21p("+ 3p) + 7 · 7("+ 3p)2 (4.87)

to the error probability.

Out of the
�
34
2

�
= 561 pairs of faults in the decoder, 84 lead directly to a logical error; the

remaining 477 will be counted as a single error away, which is true for nearly all of them. This

contributes

P  84p2 + 477p2("+ 3p) (4.88)

Similarly, we could pair a non-transversal fault in the decoder with a non-transversal fault in the

logical |+i
L

preparation, such that the decoder fault completes the logical error. Summing up all

of the pairs of faults involving either the encoder, decoder, or both, gives contribution

P  284p2 + 1, 809p2("+ 3p) (4.89)

to the probability of an undetected error.

Including faults in both the encoding and decoding, there are 14798 ways for triples of faults to
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directly cause a logical error, giving a contribution

P  14, 798p3 (4.90)

Finally, there are 35 ways for 3 independent errors to produce a logical error. Each independent

error could come from an input error, with probability ", or from a transversal part of the circuit,

with probability ptrans = 3p. This contributes

P  35("+ 3p)3 (4.91)

to the probability of an undetected error.

Summing up the contributions from Equations (4.83) to (4.91), we find the probability of an

undetected logical error to be

"out = P (undetected error)  4p + 284p2 + 14, 798p3 + 14, 891, 626p4

+ 41p("+ 3p) + 1, 809p2("+ 3p)

+ 126p("+ 3p)2 + 35("+ 3p)3.

(4.92)

For su�ciently small values of p, the threshold "in for successful distillation is around 0.16.

Figure 4.8 depicts the output error probability as a function of input error probability for various

Cli↵ord error rates p. The error rate p sets a floor on the achievable distillation, corresponding

to the "-independent term of Equation (4.92). Above p & 0.003, the noise floor is too high for

distillation to be successful. The slope of the curve, which determines the rate of convergence to

the floor, is largely una↵ected by the presence of noisy Cli↵ord operations, except when close to

the floor, because the noise floor term becomes significant before the slope terms do.

Figure 4.9 plots the output error probability after some number of rounds of distillation, for

various values of p. The distillation rapidly approaches the minimum error rate. For 10�20 
p  10�4—that is, for all practical purposes—and starting with "in = 0.01, this protocol requires

no more than 3 rounds of distillation to reach the minimum error rate. We will require around

15r initial copies of the |T i ancilla to distill a single clean copy through r rounds of distillation,

neglecting the detected error probability. This translates to at most 3,375 noisy ancillas to produce

a single clean copy.
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Figure 4.8: Output error rate "out from Equation (4.92), versus input error rate "in for distillation
based on the [[15,1,3]] Reed-Muller code, for three di↵erent values of the Cli↵ord operation failure
rate p. The dashed line represents the result of no distillation.
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Figure 4.9: Output error rate "out from Equation (4.92) after n rounds of distillation, for distillation
based on the [[15,1,3]] Reed-Muller code and various values of the Cli↵ord operation failure rate p,
starting from a near-threshold input error rate of "(0) = 0.15. Starting from " = 0.01 (round 3), at
most 3 rounds of distillation are required to reach the floor.
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4.7.5 Bravyi-Haah triorthogonal |T i distillation

The distillation protocol of Bravyi and Haah [71] can be used with any triorthogonal code; we will

focus on the [[3k + 8, k, 2]] family of codes proposed in their paper and discussed in Section 4.5.1.

In particular, we will focus on values of k satisfying k = 4a + 2, a 2 N, since these values require

no Cli↵ord unitary to correct.

To bound the overall probability of an error, we again count the total number of circuit locations,

assuming here that every isolated fault can be detected. In the preparation of the state |+i
L

, there

are (3k + 8) preparation locations and (8k + 13) CNOTs, for (11k + 21) total locations. Injecting

the |T i states requires one CNOT, one measurement, and possibly one SX correction per physical

qubit, for up to 3 · (3k+8) total locations. To perform Steane error detection, we use the state |0i
L

,

which has (3k + 8) preparations and (4k + 13) CNOTs, for a total (7k + 21) locations. In addition,

for error detection there is a transversal CNOT and a transversal set of measurements, each with

(3k + 8) locations. Finally, the decoding circuit contains (2k + 8) measurements and (10k + 13)

CNOT gates, for a total (12k + 21) locations. In total we have 45k + 103 circuit locations, giving

P (detected error)  (45k + 103)p + (3k + 8)" (4.93)

for the probability of a detected error. In practical situations, we will expect k to be in the range

2-40, so in the extreme case we should require p ⌧ 5 ⇥ 10�4 and "in ⌧ 0.007 for detected errors to

be negligible.

Instead of the probability of some undetected error, we are interested on the probability of an

error on a given output qubit (averaged over the choice of output qubits) conditioned on having

not detected any error. This quantity depends on the weights of the di↵erent outgoing errors. We

have carefully chosen our preparation and decoding circuits so that a single fault cannot lead to a

correlated error; however, a pair of faults can often do so.

As before, to bound the output error probability, we will count the number of ways in which a

non-transversal fault or pair of faults can create a logical error directly. If a fault or pair of faults

cannot create a logical error, we will look at whether one additional error can complete a logical

error, and in how many ways this might happen. Any triple of fault locations will be assumed to

be able to create a full-weight logical error.

From counting the di↵erent combinations of faults, aided by computer, we can arrive at an
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k "
out

upper bound

2 11p + 42p("+ 3p) + 562p2 + 1, 046p2("+ 3p) +
�
193
3

�
p3

6 12p + 96p("+ 3p) + 1, 656p2 + 7, 540p2("+ 3p) +
�
373
3

�
p3

10 12p + 152p("+ 3p) + 2, 889p2 + 21, 228p2("+ 3p) +
�
553
3

�
p3

14 12p + 208p("+ 3p) + 4, 273p2 + 43, 040p2("+ 3p) +
�
733
3

�
p3

18 12p + 264p("+ 3p) + 5, 806p2 + 73, 994p2("+ 3p) +
�
913
3

�
p3

22 12p + 320p("+ 3p) + 7, 488p2 + 115, 116p2("+ 3p) +
�
1093

3

�
p3

Table 4.1: Explicit upper bounds on output error rate "out, for Bravyi-Haah codes from k = 2 to
k = 22. Bounds for higher values of k become computationally expensive to determine.

expression for the probability of undetected error and the output error probability for di↵erent

values of k, the number of encoded qubits. The output error probability is shown in Table 4.1 and

the relative strengths of di↵erent terms shown in Figure 4.10. Because a single fault cannot lead

to a correlated error, the first term is constant with respect to k; however, higher order faults can

cause correlated errors, leading to the expected linear and quadratic terms. Extracting the trends

from Figure 4.10, we arrive at the approximate bound

"out . 12p + 15kp("+ 3p) + 323kp2 + 233k2p2("+ 3p)

+ (3k + 1)("+ 3p)2 +

✓
45k + 103

3

◆
p3. (4.94)

4.7.6 Jones |Hi distillation

The distillation procedure of Jones [72] uses a [[k + 4, k, 2]] family of H-symmetric codes, possibly

with multiple levels of concatenation. Here we will consider the first level distillation procedure.

The preparation and decoding circuits each use 3k + 4 CNOTs and 4 preparations or measure-

ments, for a total 3k+8 gates. The ancilla requires one preparation and one measurement. Finally,

there are k + 4 controlled-Hadamard operations, each with 7 elementary Cli↵ord operations. This

gives 10k + 38 total locations, for a detected failure probability of

P (detected failure)  (10k + 38)p + (k + 4)", (4.95)
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Figure 4.10: Number of ways to combine one or two non-transverse faults and up to one additional
non-transverse to create an encoded error on a particular output qubit, averaged over choice of
output qubit, for various Bravyi-Haah code sizes k. The lines are guides to the eye, obeying power
laws which are constant, linear, linear, and quadratic from bottom to top.
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which will be negligible for p ⌧ .002 and " ⌧ 0.02 when k  40.

In analyzing undetected errors, it is useful to separately consider the errors before and after

the dephasing operation, as discussed in Section 4.7.3. Errors after the dephasing operation can

produce an arbitrary error on the output. In the decoding step, almost every CNOT gate can fail in

a way leading to an encoded error. However, due to the relatively simple circuit, there are not that

many locations for failure compared to other codes, so this is not a major problem. The decoding

circuit has been designed to ensure that these errors cannot be correlated with a single fault.

Errors resulting from the encoding side of the circuit pass through the controlled-H test. If there

are any X and Z errors, this is detected with probability 1/2 by the parity measurement. This

helps to attenuate the e↵ects of faults in the encoding circuit, as they have increased chances of

being detected. The most e↵ective errors on this side of the circuit are errors errors which produce

an even-weight logical Y operation, which can be produced by as few as two physical Y errors.

However, because of the way CNOTs propagate errors, any Y error is likely to be accompanied by

X and Z errors on other qubits. These facts help ensure that the probability of an undetected error

is small.

Again aided by a computer counting of combinations of faults, we can arrive at an expression

for the probability of undetected error and the output error probability for di↵erent values of k,

the number of encoded qubits. The output error probability is shown in Table 4.2 and the relative

strengths of di↵erent terms shown in Figure 4.11. Extracting the trends from Figure 4.10, we arrive

at the approximate bound

"out . 5p + (3/2k + 3)p("+ 8p) + (3k2 + 21k + 15)p2

+ (3k + 1)("+ 8p)2 +

✓
10k + 38

3

◆
p3. (4.96)

4.7.7 Comparison

The output error rate as a function of the input error rate is depicted for p = 10�12 in Figure 4.12

for representative Bravyi-Haah and Jones codes, as well as for Reed-Muller based distillation. Away

from the noise floor, each Jones and Bravyi-Haah code’s behavior for the same k is nearly identical,

as is the case of perfect Cli↵ord gates. Away from the noise floor, the slope of each curve is quadratic

for Jones and Bravyi-Haah codes, and cubic for Reed-Muller. Due to the more compact circuits
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Figure 4.11: Number of ways to combine one or two non-transverse faults and up to one additional
non-transverse fault to create an encoded error on a particular output qubit, averaged over choice
of output qubit, for various Jones transverse H code sizes k. The dotted lines are fits to constant,
linear, and quadratic polynomials, from bottom to top.
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Figure 4.12: Output error rate "out from Equations (4.94) and (4.96) versus input error rate "in
for distillation based on various Jones and Bravyi-Haah codes, for p = 10�12. The dashed line
represents the result of no distillation.
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Figure 4.13: Output error rate "out from Equations (4.94) and (4.96) versus input error rate "in for
distillation based on various Jones and Bravyi-Haah codes, for p = 10�4. The dashed line represents
the result of no distillation.
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Figure 4.14: Output error probability "out as a function of number of rounds of distillation, for five
di↵erent distillation codes, starting from "in = 0.01 and with p = 10�10.
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Figure 4.15: Distillation limit as a function of the Cli↵ord error rate, for various distillation proce-
dures
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k "
out

upper bound

2 5p + 6p("+ 8p) + 70p2 +
�
58
3

�
p3 + 7("+ 8p)2

4 5p + 9p("+ 8p) + 152p2 +
�
78
3

�
p3 + 13("+ 8p)2

6 5p + 12p("+ 8p) + 260p2 +
�
98
3

�
p3 + 19("+ 8p)2

8 5p + 15p("+ 8p) + 396p2 +
�
118
3

�
p3 + 25("+ 8p)2

10 5p + 18p("+ 8p) + 558p2 +
�
138
3

�
p3 + 31("+ 8p)2

12 5p + 21p("+ 8p) + 746p2 +
�
158
3

�
p3 + 37("+ 8p)2

14 5p + 24p("+ 8p) + 962p2 +
�
178
3

�
p3 + 43("+ 8p)2

16 5p + 27p("+ 8p) + 1, 204p2 +
�
198
3

�
p3 + 49("+ 8p)2

18 5p + 30p("+ 8p) + 1, 472p2 +
�
218
3

�
p3 + 55("+ 8p)2

20 5p + 33p("+ 8p) + 1, 768p2 +
�
238
3

�
p3 + 61("+ 8p)2

40 5p + 63p("+ 8p) + 6, 188p2 +
�
438
3

�
p3 + 121("+ 8p)2

Table 4.2: Explicit upper bounds on output error rate "out, for Jones codes from k = 2 to k = 40.

for the Jones codes, their noise floor is slightly lower than the floor for Bravyi-Haah codes. The

Jones floor is equivalent to the floor for Reed-Muller, to leading order. In Figure 4.13 the same

comparison is plotted for a much higher Cli↵ord error rate of p = 10�4. This plot demonstrates the

larger e↵ect of correlated errors on large block-size codes, rendering the k = 38 Bravyi-Haah code

useless at this error rate, and making the k = 38 Jones code nearly useless. The noise floors of the

large codes are also significantly a↵ected.

In Figure 4.14, the output error probability is given for five di↵erent choices of code, as a function

of the number of rounds of distillation. While each code has a comparable distillation limit, the

[[15, 1, 3]] distillation protocol, with its higher distance, is able to reach the limit in only two rounds,

while each other protocol requires at least three or more. At the same time, the slower-converging

codes can be more e�cient in terms of number of resources. Two rounds of [[15, 1, 3]] distillation

require 152 = 225 input states (ignoring rounds which are rejected due to detected errors), whereas

four rounds of Bravyi-Haah [[38, 10, 2]] or Jones [[14, 10, 2]] distillation require (38/10)4 ⇡ 208 input

states per output state. Three rounds of Bravyi-Haah [[14, 2, 2]] or Jones [[6, 2, 2]] distillation require

73 = 343 input states per output state. Depending on how many output distilled states are required,

either the 38 ! 10 protocols or the 15 ! 1 protocol may be preferred.

Figure 4.15 shows the distillation limit for representative codes, as a function of the Cli↵ord error
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rate p. The lowest floors come from [6, 2, 2]] Jones transverse H code and Reed-Muller [[15, 1, 3]]

code. For error rates above ⇠ 10�4, the k-dependence of the distillation floors of large block

codes begins to limit the usefulness of these codes. This e↵ect is more severe for the Bravyi-Haah

codes than Jones codes. Despite its larger size, the original protocol based on the Reed-Muller

[[15, 1, 3]] code has a lower floor than some larger codes. This suggests that higher-distance codes

may continue to be useful, as long as the size tradeo↵ is not too severe compared to a distance-2

code.

4.8 Discussion

In general, the most useful sequence of protocols will depend on the particular Cli↵ord error rate p,

the ancilla input error rate "in, and the target output error rate "out. The presence of the Cli↵ord

error rate sets a floor on achievable distillation which depends on the choice of code, so it may

be beneficial to switch to a code with the lowest noise floor in the final round of distillation, even

if this is a less e�cient code in terms of resources. As in the case of perfect Cli↵ord operations,

the less e�cient codes also tend to have the highest thresholds, so the best sequence of distillation

protocols will likely start with a less e�cient code, switch to an e�cient code to achieve the best

resource rate, and switch back to an ine�cient code in order to hit the lowest noise floor.

The bounds presented here depend on the choice of encoding and decoding circuits, as well as

the error-correcting technique in some cases. Other choices for these parameters could result in

better codes. It is Further development of the techniques developed here may allow for tighter

bounds on the codes studied, as well as bounds on a wider range of codes, such as the protocol

of Meier, Eastin and Knill [70] which is a relatively small circuit but with a more complicated

structure of gates.

The results of this analysis show that, for the protocols studied, the e↵ects of noisy Cli↵ord

operations do not have a major detrimental impact on their performance. The most prominent

feature is the existence of a distillation noise floor, which for low enough Cli↵ord error rates is a

constant multiple, typically in the range 2 � 20 depending on the code and circuits, of the Cli↵ord

error rate. The convergence of ancilla quality to the noise floor is not significantly impacted by the

presence of noisy Cli↵ord operations. At higher error rates, the noise floor becomes more significant

and, depending on the choice of distillation scheme, can prevent useful distillation.
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Chapter 5

Epilogue

Our imagination is stretched to the utmost, not, as in fiction, to imagine things which

are not really there, but just to comprehend those things which are there.

—Richard Feynman [86]

We have shown that the analysis of noise biases and hierarchies can be a fruitful approach to

studying problems in quantum error correction and fault tolerance. Careful consideration of feature-

rich noise landscapes, like the robust gates of Chapter 2 and the asymmetric circuits of Chapter 3,

can lead to error correcting codes and fault-tolerant circuits with better performance than could

be realized in flatter worlds with simpler, more generic noise models. Increased understanding of

the combined e↵ects of multiple error sources can improve our understanding of quantum circuits

such as the distillation circuits of Chapter 4, and increase our certainty that they will behave as we

hope, not just in ideal models but even in the presence of realistic defects in their operation.

The ability to carefully study and incorporate di↵erent competing sources of noise with di↵erent

strengths will become increasingly important as quantum-mechanical circuits step closer to large-

scale real-world implementations. In some cases, this will require us to be more cautious, taking

care to ensure that our conclusions are unchanged in the face of new sources of errors. In other

cases, we may find that additional knowledge about the structure of noise will allow us to tailor

error-correcting circuits to the situation at hand, potentially using fewer resources than may be

otherwise required.

In every case, designing fault-tolerant circuits in the quantum regime presents new, possibly

unforeseen challenges, and correspondingly new opportunities to improve our understanding of



177

nature, and to innovate with new techniques, all with the hope of moving large-scale quantum

computers closer to reality.
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