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Abstract

Quantum computing offers powerful new techniques for speeding up the calculation of many clas-
sically intractable problems. Quantum algorithms can allow for the efficient simulation of physical
systems, with applications to basic research, chemical modeling, and drug discovery; other algo-
rithms have important implications for cryptography and internet security.

At the same time, building a quantum computer is a daunting task, requiring the coherent
manipulation of systems with many quantum degrees of freedom while preventing environmental
noise from interacting too strongly with the system. Fortunately, we know that, under reasonable
assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve
an arbitrary reduction in the noise level.

In this thesis, we look at how additional information about the structure of noise, or “noise bias,”
can improve or alter the performance of techniques in quantum error correction and fault tolerance.
In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust
with respect to errors in their operation. This naturally leads to structured noise where certain
gates can be implemented in a protected manner, allowing the user to focus their protection on the
noisier unprotected operations.

In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits
in the presence of dephasing biased noise, where dephasing errors are far more common than bit-
flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the
amount of error reduction and decrease the physical resources required for error correction.

In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal
quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy
of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled
states which decreases as the states are distilled to better quality. The interplay of of these different

rates sets limits on the achievable distillation and how quickly states converge to that limit.
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Chapter 1

Background

Plans are worthless, but planning is everything.

~Dwight D. Eisenhower [3]

This chapter aims to give a brief introduction to the terminology and techniques of quantum
computing, error correction and fault tolerance, with particular focus on material relevant for the

rest of the thesis. For a fuller overview see [4-6].

1.1 Overview

It was first noted by Feynman [7,8] and Deutsch [9,10] that simulating quantum systems on a
classical computer seems to require a calculation whose time scales exponentially with the size
of the simulated system; whereas the nature is able to efficiently “simulate” such a system by
the system itself. Therefore a computer designed to take full advantage of laws of nature, in
particular the laws of quantum mechanics, might offer a fundamentally more powerful mode of
computation than a classical computer, offering a counter-argument to the strong Church-Turing
hypothesis [11,12]. This intuition was further strengthened by the discovery of quantum algorithms
with no classical analogue, especially by Shor’s discovery of polynomial-time algorithms for finding
the factors of prime numbers and computing discrete logarithms [13]. Since then, more and more
quantum algorithms have been found, with applications ranging from searches of unstructured
databases [14] to simulations of quantum field theories [15,16] and molecular properties [17-19].
A quantum computer is an interference device, a baroque elaboration of the classic double-

slit experiment. The quantum bits of a quantum computer can be put into a superposition of
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many different states, and, by a carefully designed pattern of interference, paths corresponding to
the correct answer to the calculation interfere constructively while paths corresponding to wrong
answers interfere destructively and cancel out to some degree. In many cases, the entanglement
of different subsystems of the quantum computer with each other plays a key role in quantum
algorithms.

A quantum state is a far more fragile state than its classical counterpart. It can be destroyed
not only by disturbing the system directly, but also by measuring the system. Just as the inter-
ference fringes of the double-slit experiment are destroyed if it is possible to learn which path the
particle has passed through, the interference necessary for a quantum calculation can be destroyed
if information about the state of the computer leaks into its environment. Nevertheless, the theory
of quantum error correcting codes and quantum fault tolerance have shown that, in principle, a suf-
ficiently isolated quantum calculation can be protected against errors arising from its environment
to an arbitrary degree. This is achieved by encoding the state of the calculation non-locally in a
quantum error correcting code. Once encoded, the environment cannot access the computational
state without measuring an extensive number of bare systems.

In this thesis, I look at how additional information about the structure of noise, or “noise bias,”
can improve or alter the performance of techniques in quantum error correction and fault tolerance.
In Chapter 2, I explore the possibility of designing qubits and quantum gates to be extremely robust
with respect to errors in their operation. This naturally leads to structured noise where certain
gates can be implemented in a protected manner, allowing the user to focus their protection on the
noisier unprotected operations. In Chapter 3, I examine how to tailor error-correcting codes and
fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are
far more common than bit-flip errors. By using an appropriately asymmetric code, I demonstrate
the ability to improve the amount of error reduction and decrease the physical resources required
for error correction. In Chapter 4, I analyze a variety of protocols for distilling magic states, which
enable universal quantum computation, in the presence of faulty Clifford operations. Here again
there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors
in the distilled states which decreases as the states are distilled to better quality. The interplay of
of these different rates sets limits on the achievable distillation and how quickly states converge to

that limit.



1.2 Quantum computation

The state of a classical computer is a string of bits, each of which can take one of two values, 0 or
1. Equivalently, its state is a vector over the binary field Zs. A computation is a process which
maps bit strings to other bit strings, either in a deterministic way, or with some probability. We
can decompose any classical computation into a sequence of fundamental operations, called gates,
and a connectivity diagram, a wiring, indicating how the outputs of one gate are mapped into the
inputs of future gates.

The fundamental unit of quantum information is the quantum bit, or qubit. Unlike its classical

analogue, the bit, which can take two values, the qubit can be described by a vector
[¥) = al0) +b[1), (1.1)

where the components a and b are both complex numbers, called amplitudes. This state is called

normalized if

1) = (@l) = lal® + bl (1.2)

the norm of the qubit, is equal to 1.

We can perform a measurement on our qubit, which returns a classical bit, 0 or 1. The “logical
basis” or “computational basis” measurement returns the value 0 with probability |a|* and the
value 1 with probability |b°. After the measurement, if we received the result 0, then we will find
our qubit in the state |0), and if we received the result 1, then we will find our qubit in the state
[1). In effect, the measurement projects the state of the qubit onto the two basis states, |0) and
|1). The normalization condition means that we will always find our qubit in one of the two states.

We can also perform a measurement in a different basis. One important basis is the “dual basis”

measurement, which projects onto the two states

1

+) = — (10) + 1)) (1.3)

S

2
1

|_> \/5

(l0) - 1)), (1.4)

where we will receive the first outcome with probability |a + b\Q, leaving the qubit in the state |+),

and the second with probability |a — b|*, leaving the qubit in the state |—). In general, we can



project onto any orthogonal set of basis states.
The state of the qubit can be reversibly manipulated by applying a unitary operation— a linear
map from one state |¢)) to a new state |p). For a single qubit, such a map can be thought of as a

2 X 2 complex matrix

U= : (1.5)

a* ¢
Ut = : (1.6)
b*  d*
and I is the identity matrix
10
1= , (1.7)
0 1

which maps any state [¢) to itself.
The state of n qubits requires 2™ complex numbers to specify, one for each of the 2" classical
length-n bit strings, just as a probabilistic state of n bits would require 2" real numbers (probabil-

ities) to describe. Some states, such as the state

1

5(|00> +[01) + [10) + [11)) = |+) ® [+), (1.8)
can be decomposed into states on each individual qubit; such a state is called a product state.

Other states, such as the “EPR pair” [20] state

1

\/§(|00> +]11)), (1.9)

cannot be decomposed in this way, and are called entangled states.

For any orthonormal basis {|s;)}, there is a natural complex inner product on states, defined



for states |a) = >, a;|s;) and |B) = >, bils;) as
(o] B) = Za;‘bﬂsi\sj) = Zc;‘di. (1.10)
i i

The Hermetian adjoint, defined earlier, is the adjoint with respect to this inner product, so that
the “ket” Uly) corresponds to the “bra” (1|UT. In this notation, we can decompose any operator

as

Z|ai><5i\, (1.11)

7

which acts on the state |¢) as

?

K2

<Z|ai><5i> ) = Z<5z|¢> |ovi). (1.12)

When considering a quantum system with two subsystems H 4 ® Hp, we cannot always describe
the state of one subsystem H 4 as some “pure state” |i). For example, the EPR state

BN

ﬁ(|00> + [11)),

from the perspective of an observer of one half of the system, looks like a probabilistic (non-coherent)
mixture of |0) and |1), each with probability 1/2. To describe such a state, we can introduce the
density matrix description of a state. A pure state |¢) has density matrix p = |¢)(¢)|. For a state
Y oalta) @ |@a), the “reduced state” on subsystem H,4 has density operator p = > |¥a)(¥a]. A

unitary operator acts on a density matrix p as

U:p—UpUT. (1.13)



1.2.1 The Pauli operators

It is helpful to understand a system of qubits by studying how various operators act on the states

of the system. One useful set of states are the Pauli matrices
X = Y = Z = , (1.14)

where by convention the empty entries are zeros. In bra-ket notation they can be written as
X =[0)A[+ 1O ¥ ==i|0)(A[ +i1)(0]  Z =|0){0] — [1){1], (1.15)

We can describe the computational basis measurement as a measurement of the eigenvalues of Z,
and the dual basis measurement corresponds to measuring the eigenvalues of X; we could similarly
measure the eigenvalues of the Y operation. For a qubit consisting of a particle’s spin, these three
measurements correspond to measuring the spin along the x, y and z axes.

Each Pauli operation describes a useful basis, defined by its eigenvectors. The eigenvectors of

Z are |0) and |1), while the eigenvalues of X are given by
1

5 (10) +11)) (1.16)
L

+) =

S

=) (10) = 11)), (1.17)

V2
with X|+) = |[+) and X|—) = —|—). The eigenvalues of Y are given by
. 1 ,
i) = 2(\0} +i[1)) (1.18)

|—i) = (J0y —i|1)), (1.19)

2

s~ 8

with Y |4i) = =|+4).

The Pauli matrices anti commute with each other, obeying

{04,0;} =0,0; +0;0,=0 (1.20)
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(where 01 = X, 09 =Y, and 03 = Z.) They form a group, in the sense that any product of Pauli
operators is itself a Pauli operator, up to an irrelevant phase. The Pauli group on n qubits, P,,
is any operation which can be written as the tensor product of single-qubit Pauli operators and
identity operators.

More generally, we can measure the eigenvalues of any operator A whose eigenvalues are real,;
such an operator is called Hermetian and obeys AT = A. If two operators A and B commute, so
that

[A,B]= AB— BA =0, (1.21)

then both of their eigenvalues can be measured simultaneously. Similarly, all of the eigenvalues of a
set of mutually commuting operators may be measured simultaneously. In general, operators may

neither commute nor anticommute.

1.2.2 The Clifford group

Another useful group of operations are the Clifford group of operations C;, which are defined to be

the operations which transform Pauli operations into Pauli operations:
CPCT € P, for P P,, CcC(. (1.22)

Examples of Clifford operations include the Hadamard operation

H=— : (1.23)

S = ; (1.24)
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and the two-qubit controlled-NOT or CNOT gate

—e—
CNOT = = (1.25)

which in the logical basis flips the value of the second qubit based on the value of the first. In fact,
any operation in the Clifford group can be decomposed into these elementary operations. Another

useful Pauli operation is the controlled-Z operation

CZ = = . (1.26)
D

-1

In terms of their effect on the Pauli operations, these Clifford operations can be described as

H:X—>Z
Y—>Y (1.27)
Z — X,

S: X =Y
Y- X (1.28)

Z = 7,



and

CNOT: IX = IX 1Z =77

XI XX  ZI— ZI, (1.29)

where the rest of the CNOT relations follow from linearity.
While the Clifford operations are insufficient for universal computation, they are useful for

describing error correcting circuits.

1.2.3 Universal computation

We would like to be able to implement or approximate an arbitrary unitary operation U, to arbitrary
precision €, by decomposing it into a sequence of fundamental operations or gates, just as an
ordinary computation can be decomposed into logic gates from a finite set. The Clifford operations
of Section 1.2.2 are insufficient for the task, because they generate only a finite group of unitaries.

It can be shown [4] that the Clifford operations together with any one non-Clifford single qubit
gate is sufficient for universality. Moreover, an e-approximation to a unitary U can be constructed

efficiently [6,21-23]. One common choice for a universal set of gates is

CLU{T}, (1.30)
where T is the gate
1
T = . (1.31)
e1'71'/4
A more streamlined set is
{H, T, CNOT}, (1.32)

which is universal because H, S = T? and CNOT complete the Clifford group, while T is non-
Clifford.
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1.3 Error correcting codes

Error correcting codes, both classical and quantum, are methods of storing information redundantly
so that, even though a part of the information has been corrupted or lost, the stored information

can be recovered with high probability.

1.3.1 Classical error correction

The simplest classical error correcting code is the repetition code, which encodes the message (0)
as (000), and the message (1) as (111). If a single bit of the encoded message is flipped, the
correct message can still be recovered by taking a majority vote of the bits. If each bit is flipped

independently with probability p, then we will recover correctly with probability
P>1-3p% (1.33)

since at least two errors are required to fail, and there are (g) = 3 ways to chose the two errors.
This is an improvement over the unencoded case if 3p? < p.

A set of classical error-correcting codes which generalize the concept of a repetition code are
linear codes. These codes can be described by a binary matrix G, called the generator of the code.
A code with a k x n generator matrix will encode a k-bit message into an n-bit encoded message.
The encoding of the k-bit message x is the n-bit message y = xG, where x is viewed as a row
vector. The rows of G form a basis for the k-dimensional subspace of the n-dimensional binary
vector space. The possible messages y = xG are called the codewords of the code, C.

Equivalently, we can describe a binary code by a set of linear constraints that the codewords y
must satisfy. These constraints can be written using an (n — k) x n binary matrix H, called the

parity check matrix or check matrix, as Hy = 0, which means that H and G must satisfy
HGT =0, (1.34)

where G7 is the matrix transpose of G.
The effect of an error can be described as flipping some of the bits of the message string y, or
taking
y—=y=y+e. (1.35)
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If y is a codeword, then

H(y+e)=Hy+ He = He. (1.36)

Typically, the error will not satisfy all of the constraints, so He # 0. He = s is called the syndrome
of the error e. If the syndrome is nontrivial, we have detected the presence of the errors.

We would like to not only detect errors, but correct our corrupted codeword back to the original
codeword. We cannot hope to correct all possible errors, because some errors will look exactly
like codewords, but we can specify some smaller set of errors {e;} that we would like to be able
to correct. If all of the errors e; have distinct syndromes, then we can determine which error has
occurred by examining the syndrome. Upon seeing the syndrome s;, we apply correction e;, and
restore the state correctly:

g—ogte=y+e)+te=y. (1.37)

On the other hand, if two errors e; and es; have the same syndrome, then our correction will not
succeed:

g—oyter=yte)te=yte te#y. (1.38)

The recovered message is a codeword, but not the one that we originally stored, so the encoded
message has been corrupted.

Typically, we are interested in errors that arise independently from each other on each bit of the
message. A natural class of errors to protect against is all the errors of some small weight (where
the weight of a bit string y is the number of 1’s in y.) This is natural because higher weight errors
require more independent events to occur, and so are less likely.

The distance of our code, d, is the minimum weight of any codeword y € C. If a linear code has
distance d = 2t + 1, then each error of weight ¢ or less has a distinct syndrome. This can be seen

by noting that if He; = Hes = s, then

H(ey+e3) =Hey + Hes =s+s=0, (1.39)

so the string e; + e is a codeword, and therefore has weight at least d = 2t + 1. On the other
hand, if each codeword has weight less than ¢, then wt(e; + e2) < wt(ey) + wt(ez) < 2¢; therefore,
two such codewords cannot be identical. A codeword which encodes k bits into n and has distance

d can be denoted as an [n, k,d] code.
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Every code C has a dual code C*, whose generator is H” and whose check matrix is G”'; this is
a well-defined code since

GT(HT =GTH = (HGTT =0. (1.40)

The codewords Ct are the set of all strings which are orthogonal to the codewords in C. Since a

binary string is self-orthogonal if its weight is even, C and C*+ can have non-trivial intersection.

1.3.2 CSS codes

Classical binary codes, and their duals, are useful for defining a large class of quantum error-
correcting codes, known as CSS codes for their inventors Calderbank, Shor, and Steane [24,25].

If C; is a classical linear code with (n — k1) X n parity check matrix H;, we can add additional
constraints to H; to form a subcode C; C C; of Cq, with (n — k3) X n check matrix Hy, where
ko < k1. The subcode Cy defines an equivalence relation over Cy, where v = v if and only if there
exists w € Cy such that uw = v + w. Then the corresponding CSS code encodes k = k; — ko qubits,

associating a codeword with each equivalence class. The logical basis codewords |z) are encoded as

1
|z}, = Vo >l +v), (1.41)

a superposition of all the words in the coset w + Cs.

Applying the Hadamard operation to each qubit, H®", we transform to the dual basis state

1 1 i
H¥"|z), = —= = > ()"
2 e V2R e,
1
- —1)"®|u) (1.42)
\/on—k Z ( ’
e ueCy-
where we have used the identity [5]
2k yect
> (== : (1.43)
veC 0 U ¢ Cl

Therefore, the dual basis codewords consist of codewords in the dual code Cy . If the code C; has

distance d; = 2tx +1 and the code CQL has distance dQL = 2tz +1, then the CSS code can correct tx
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independent X errors and ¢z independent Z errors. Such a code would be denoted as an [[n, k, d]]

code, where d = min(dy, dy ).

1.3.3 Stabilizer codes and subsystem codes

A more general class of quantum error-correcting codes, containing the CSS codes, are the stabilizer
codes [26,27]. The codespace of an [[n, k, d]] stabilizer code is the simultaneous +1 eigenspace of a
set S of stabilizer operations, an Abelian group of Pauli operations from P, with 2"~* elements.
The stabilizer can be characterized by a set of n — k independent generators. The +1 eigenspace
of the stabilizers has dimension k.

The set of Pauli operators that commute with every element of S is called the centralizer C(S)
of § in P,. Elements L in C(S)/S act as logical operations, changing the encoded information

without leaving the codespace. We can find k pairs of logical operators {X;, Z;} satisfying

X, X;]=0 (1.44)
[Z:,Z;]=0 (1.45)
[Xi,Z;] =0 (i#)) (1.46)
{X:,Z;} =0 (1.47)

An arbitrary operator F € P, will generically anticommute with some stabilizer operations,
and act as an error. We can detect this error by measuring a set of generators for the stabilizer
group; because the stabilizers commute with the logical operations, doing so will not disturb the
encoded information, and because the stabilizers commute with each other, we can measure them
simultaneously. The set of measurement results will be called the syndrome. We can attempt to
correct an error by applying the lowest weight operator E’ that agrees with the syndrome. A code
will have distance d if and only if C(S) \ S contains only elements of weight d and higher.

A subsystem code [28] is a stabilizer code where we reclassify some logical qubits as gauge
degrees of freedom. Unlike the logical qubits, we do not attempt to store any information in the
gauge degrees of freedom; they are allowed to vary arbitrarily. By moving low-distance logical
operations into gauge operations, we can increase the distance of the code. Gauge degrees of

freedom can often be useful for measuring stabilizers indirectly, as will be seen in Section 3.4.
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1.4 Fault tolerance

Quantum fault-tolerance [5,29,30] is concerned not only with protecting information not only for
storage, but also processing information in an encoded form. This can be achieved by replacing
every physical gate in a quantum circuit with an encoded version of the gate, and also adding
error-correction steps where syndromes are measured and corrections applied. If done correctly,
encoded circuits can drastically reduce the error rates of circuits at the logical level. If the physical
error rate is low enough, threshold theorems establish that an arbitrarily low error rate can be
achieved [26,30-36].

The goal of fault-tolerant circuit design is to ensure that errors at the physical level cannot
build up to errors at the logical level over the course of a computation, even while the operations
and measurements used to diagnose and correct errors are themselves faulty. Properly designed,
fault-tolerant circuits can guarantee that each faulty location in the circuit can introduce no more
than one error to the output (or more loosely, a constant number of errors.)

A key ingredient to making a computation fault tolerant is to avoid interacting a single physical
qubit to too many other qubits. If a single qubit were to interact with every other qubit in the same
code block, for example, then it is possible that an error on the single qubit could propagate to
every other qubit in the code block, creating a correlated logical error from a single physical error.

One strategy for avoiding correlated errors is to use transversal encoded gates. A single-qubit
encoded gate is called transversal if the only gates at the physical level are single-qubit gates —
typically the same gate that is being implemented at the logical level. A transversal encoded gate
on multiple logical qubits should only contain physical gates where no physical qubit is coupled to
another physical qubit in the same code block, or two more than one physical qubit in any other
code block. Equivalently, a transversal gate can be implemented by a depth 1 circuit with no two-
qubit gates within a code block. Typically, this means that the ith qubit in the first block couples
to the ¢th qubit in the second block, and so on, but a permutation of this arrangement would also

be transversal. Examples of transversal single- and two-qubit gates are shown in Figure 1.1.

1.4.1 Syndrome extraction techniques

Realizing that syndrome measurements themselves can fail due to errors, a critical strategy for

achieving fault-tolerance is to repeat syndrome measurements multiple times. There are a few
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Figure 1.1: (a) Transversal H gate and (b) transversal CNOT gate, for a hypothetical 3-qubit code.

techniques for syndrome extraction.
In Shor error-correction [29], a cat state

1

\/5(|00...0>+|11...1>) (1.48)

|cat) =
is prepared for each syndrome operation, using a circuit similar to Figure 1.2 where the length of
the cat state is equal to the weight of the stabilizer being measured. The cat state can be tested to
verify that it has been prepared correctly; if not, we throw it away and try again. After preparing
a verified cat state, we can apply either a CNOT (for Z stabilizers) or a CZ gate (for X stabilizers)
from separate qubits of the the cat state to the nontrivial qubits of the stabilizer being measured.
Then the stabilizer can be obtained by measuring the cat state in the X basis; the parity of the
physical measurement outcomes is the stabilizer measurement outcome. This measurement should
be repeated to ensure fault tolerance.

An alternative method of syndrome extraction for CSS codes is Steane style error correction [37],
which extracts all of the X or Z syndrome information simultaneously. As depicted in Figure 1.3, a
verified logical |+) or |0) state is prepared (and verified), and a transversal CNOT gate is performed
between the ancilla block and the data block. This CNOT gate is chosen so that it has no logical
effect, but will copy errors in either the X or Z basis onto the ancilla block. Finally, a measurement

is performed and the syndrome information extracted.
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Figure 1.2: Preparation of a verified 4-qubit cat state.
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Figure 1.3: Steane error correction.

A third alternative is Knill style teleported error correction [38]. This approach uses a quantum
teleportation circuit [39]. Effectively, errors are corrected by teleporting a state with errors onto
a fresh ancilla qubit. Teleported error correction will be discussed in more detail in Section 3.5.6,
where a variant of the approach is used extensively.

Depending on the code and situation, each of these techniques may have advantages and dis-
advantages. Shor style error correction can be applied to any code, while the other techniques will
only be useful for codes with a transversal two-qubit operation such as the CNOT gate. When ap-
plicable, Steane and Knill error correction may offer smaller, more compact circuits for extracting

all of the syndrome. Each of these methods will find use at different points in this thesis.
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Chapter 2

Protected (Gates for
Superconducting Qubits

Fcce ancilla Domini.

—Luke 1:38

This chapter is based on work that was published in [1].

2.1 Introduction

Building a scalable quantum computer is a formidable challenge because quantum systems decohere
readily and because their interactions are hard to control accurately, yet we hope to succeed some-
day by prudently applying the principles of quantum error correction and fault-tolerant quantum
computing. In the standard “software” approach to quantum fault-tolerance [29], the deficiencies of
noisy quantum hardware (if not too noisy) are overcome through clever circuit design, while in the
alternative “topological” approach [21], the hardware itself is intrinsically resistant to decoherence.
Both approaches exploit the idea that logical qubits can be stored and processed reliably when
suitably encoded in a quantum system with many degrees of freedom; perhaps both approaches
will be employed together in future quantum computing systems.

The best known version of the topological approach is based on nonabelian anyons, with quan-
tum information stored in the fusion spaces of the anyons and processed by braiding the anyons,
but it is important to search for other ways to realize quantum hardware such that intrinsic ro-

bustness results from how the information is physically encoded. One intriguing possibility is to
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use superconducting circuits for this purpose. Specifically, several authors [40-42] have proposed
designs for a superconducting “0-m qubit,” a circuit containing Josephson junctions. The circuit’s
energy is a function of the superconducting phase difference 6 between the two leads of the circuit,
and there are two nearly degenerate ground states, localized near § = 0 and 0 = 7 respectively.
The splitting of this degeneracy is exponentially small as a function of extensive system parameters,
and stable with respect to weak local perturbations. Thus the 0-7 qubit should be highly resistant
to decoherence arising from local noise.

For reliable quantum computing we need not just very stable qubits, but also the ability to apply
very accurate nontrivial quantum gates to the qubits. A method for achieving protected single-
qubit and two-qubit phase gates acting on 0-7m qubits, exploiting the error-correcting properties of
a continuous-variable quantum code [43], was suggested in [42], and it was claimed that the gate
errors can be exponentially small as a function of extensive system parameters. In this chapter we
further develop and explore the ideas behind this protected gate.

Protected phase gates are executed by turning on and off a tunable Josephson coupling between
an LC oscillator and a qubit or pair of qubits. Assuming the qubits are perfect, we show, using
analytic arguments validated by numerical simulations, that the gate errors are exponentially small
when the oscillator’s impedance \/L/T is large compared to h/4e? ~ 1 kQ, where L is the induc-
tance and C' is the capacitance of the oscillator. The gates are robust against small deformations
of the device Hamiltonian and against small thermal fluctuations of the oscillator. The very large
inductance in the superconducting oscillator, which is crucial for the high gate accuracy, may be
quite challenging to achieve in practice, but the potential rewards are correspondingly substantial.

The internal structure of the 0-m qubit is not relevant to our analysis, but for completeness we
nevertheless explain in Section 2.2 the idea behind the qubit design proposed in [42], which also
requires a large inductance in a superconducting circuit. We describe how a protected phase gate is
executed in Section 2.3, and in Section 2.4 we outline our strategy for estimating the gate accuracy.
We review the properties of continuous-variable quantum error-correcting codes in Section 2.5,
and explain in Section 2.6 how the code provides protection against imperfect timing in the pulse
that executes the gate. We analyze contributions to the gate error due to diabatic transitions and
squeezing in Section 2.7 and Section 2.8, then compare our predictions with numerical simulations in
Section 2.9. We discuss robustness with respect to thermal effects in Section 2.10 and with respect

to Hamiltonian perturbations in Section 2.11. In Section 2.12 we explain how to obtain a complete
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scheme for universal fault-tolerant quantum computation by augmenting the protected phase gates
with measurements and unprotected noisy phase gates. Section 2.13 contains our conclusions, and

some further details are contained in Appendices.

2.2 The 0-m qubit

For most of this chapter we will be concerned with the dynamics of gates built from the 0-7 qubit,
and will treat the qubit itself as a black box. In this section we will outline the ideas behind the

qubit itself, which was proposed in [42].

AE

0)

Figure 2.1: The energy E(0) of the 0-m qubit. The energy is a periodic function with period = of
the phase difference 6 between its two leads, aside from exponentially small corrections. The two
basis states {|0),|1)} of the qubit, localized near the minima of the energy at ¢ = 0 and 6 = «
respectively, are nearly degenerate.

The goal in designing the qubit is to have a system which is naturally robust against both bit-
flips and dephasing errors. The qubit itself will be a superconducting circuit with two leads, whose
energy E(0) is a function of the phase difference 6 between the two leads. The circuit is designed
so that this energy, which is naturally a periodic function of # with period 27, is in fact very close
to a function with period 7, having two minima at & = 0 and 6 = 7, separated by a large energy
barrier. This energy barrier ensures that there are two well-localized states, one centered around

each minima, which we will take to be the basis states |0) (centered at § = 0) and |1) (centered
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Figure 2.2: Two-rung superconducting circuit underlying the 0-r qubit. If \/L/C is large, C;
is large compared to C, and JC' is not too large, then the circuit’s energy is a function of the
combination of phases (62 4+ 04) — (61 + 03), aside from corrections that are exponentially small in

VI/C.

at # = 7) of an encoded qubit, as shown in Figure 2.1. The largeness of the barrier suppresses
the odds of a bit flip error, and the degeneracy of the two states, enforced by the 7 periodicity,
suppresses the odds of a dephasing error. The system is designed so that this degeneracy is robust
against generic local perturbations, so that the error protection is not broken.

To get such a system, we start with the four-lead circuit shown in Figure 2.2. This circuit has two
identical rungs, connected by a large capacitance C;. Each rung consists of a Josephson junction,
with Josephson energy J and intrinsic capacitance C, connected in series with an inductance L,
chosen such that \/L/T is large compared to the natural unit of impedance h/(2¢)? ~ 1.03 k€,
and hence much larger than its “geometric” value 47 /c ~ 377 Q (where ¢ is the speed of light),
the impedance of free space. Achieving such a “superinductance” may be a daunting experimental
challenge, but we take it for granted here that it is possible. The properties of a single rung, which
can operate as an adiabatic switch when J varies, is discussed in more detail in Appendix 2.A.

We denote the value of the superconducting phase on the circuit’s four leads as 61, 62, 63, 0,
as shown, and the phase on either side of the capacitor connecting the rungs by ¢1, 2. Then the
phase ¢4 = (¢1 + p2) /2 is insensitive to the value of the capacitance Cy, which we assume is much
larger than C. Therefore the sum @ is a “light” variable with large fluctuations (assuming JC
is not too large), while in contrast the difference p_ = ¢1 — @2, which does feel the effect of the
large capacitance C1, is a well localized “heavy” variable. We assume that phase slips through the
inductors are suppressed, so that we may regard ¢4 as real variables rather than periodic phase

variables with period 2.



21

A circuit with capacitance Cyopny and inductance Loy, has Hamiltonian

q2 (I)Q
+ ;
2C(conv 2Lconv

H= (2.1)

where ¢ is the charge on the capacitor and ® is the magnetic flux linking the circuit. We use the
subscript “conv” to indicate that capacitance and inductance are expressed here in conventional

units, while we will find it more convenient to use rationalized units such that

C= Cconv/(2e)27 L= Lconv/ (h/26)2 ) (22)
so that
_ Q¢
=356 o0 (2.3)

where the charge ) = q/2e is expressed in units of the Cooper pair charge 2e, and ¢ = (2¢/h)® is
the superconducting phase, such that ¢ = 27 corresponds to the quantum h/2e of magnetic flux.

Then [p, Q] =4, and

VL/C = \/Leon/Coonv | (h/4€?)
~ \/Leony/Ceonv / (1.03 k)

(2.4)

is dimensionless. The ground state of the Hamiltonian Equation (2.3), with energy Ey = 1/2v LC,

has Gaussian wave function ¥(¢) such that

1 2 2
(o) = i /267 (2.5)
where
1 /L
(¥%) = Vo (2.6)

There is also a Josephson energy term proportional to cos ¢, but for \/L/C > 1 the wiggles of the
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cosine nearly average out, aside from an exponentially small correction:

1 © 2 2 2
(cosp) = 7/ cospe ¥ 127 dyp
V(p?) J-oo

- 1 /OO e P2 /2(p%) +ip dp
) o

_ e oN/2

- (—i g) (2.7

The effective capacitance controlling the light phase ¢ is Cog = 2C', and the effective inductance

is Leg = L/2. Therefore, in the circuit’s ground state we have

W =p/as-1le e

The dependence of the Josephson energy on the strongly fluctuating light variable ¢ is proportional

to

(cos o) = exp (—; g) , (2.9)

which is negligible when /L/C is large. We therefore need only consider the dynamics of the well

localized heavy variable ¢_, which locks to the value
- = (04 —01) — (05— 03) = (02 +04) — (61 + 03), (2.10)

determined by the phases on the leads, so that the energy stored in the circuit is

E=f(0y+0,—06,—05)+0 (exp (—; g)) , (2.11)

where f(0) is a periodic function with period 27.
Now, to devise a qubit, we twist the upper rung relative to the lower one and connect the leads
as shown in Figure 2.3, thus identifying 65 with 64 and 6; with f5. In addition, we add another

large capacitance to ensure that tunneling events changing 6> — 6, by m are heavily suppressed. The
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Figure 2.3: The circuit for the 0-m qubit is obtained from the circuit in Figure 2.2 by twisting
one of the rungs and connecting the leads, thus identifying 65 with 64 and 6, with #3. In addition,
another large capacitance is added to further suppress tunneling events that change 65 — 6, by 7.

energy of the resulting circuit is

E=f(2(6: —01))+ O (exp <; é)) , (2.12)

where the ellipsis represents exponentially small corrections. Therefore, the energy is very nearly a
periodic function with period 7 of the phase difference 6 — 81, with two nearly degenerate minima

as in Figure 2.1.

2.2.1 Achieving superinductance

This robust degeneracy derives from the “superinducting” properties of each rung, i.e., the large
value of \/L/C. One way to achieve a superinductor, suggested in [42], is to construct a long
chain of N Josephson junctions, each with Josephson coupling .J and capacitance C. Then the
inductance of the chain is linear in N, and the capacitance is proportional to 1/N, so \/L/icV x N,

and the breaking of the degeneracy is exponentially small in the chain length. This suppression
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arises because the correction terms in Equation (2.12) that break the m-periodicity are associated
with quantum tunneling from one end to the other in the two-rung ladder. We also require JC' to
be large, to suppress phase slips due to tunneling across the chain, thus ensuring that ¢ can be
regarded as a real variable rather than a periodic variable with period 2.

An impedance \/L/iCV ~ 20 has been achieved using long chains of devices [44-46]. Another
possibility for achieving large \/L/iC’ is to use a long wire, thick enough to suppress phase slips,
built from an amorphous superconductor with a large kinetic inductance. Whatever method is
used, reaching, say, \/L/T of order 100 may be quite challenging, but in this thesis we take it for
granted that a robust 0-m qubit can be realized. In fact, our scheme for implementing accurate

quantum gates will also be based on superinducting circuits.

2.2.2 Measurements

We will need to be able to measure the qubit, in either the standard {|0), |1)} basis (measurement
of the Pauli operator Z) or in the dual basis {|+),|—)} (measurement of the Pauli operator X). In
principle, the Z measurement could be performed by connecting the two leads of the qubit with
a Josephson junction, while inserting 1/4 of a flux quantum through the loop; then the current
through the junction is proportional to sin (f; — 61 — 7/2), with sign dependent on whether 65 — 6
is 0 or 7.

For measuring X, we envision “breaking” the connection between #; and 63 and then measuring
the charge conjugate to the phase difference §; — 03. The energy of the circuit is f(61 + 03 — 2605),
so that if 6; advances adiabatically by 27 with 63 fixed, then #; advances by 7; if X = 1 the
wave function is invariant and if X = —1 the wave function changes sign. Correspondingly, the
dual charge is either an even or odd multiple of 1/2. In practice, the X and Z measurements are
bound to be noisy, but the limitations on measurement accuracy can be overcome by repeating the

measurements or by using appropriate coding schemes, as we describe in Section 2.12.

2.3 Phase gate

Following [42], we will explain how to execute with high fidelity the single-qubit phase gate exp (i%Z )
and the two-qubit phase gate exp (Z%Z R Z ) These gates are not sufficient by themselves for uni-

versal quantum computation, but we will discuss in Section 2.12 how they can be used as part of
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Figure 2.4: A phase gate can be applied to a qubit by coupling it to a Josephson junction, but the
gate is not protected against pulse errors and other noise sources.

a universal fault-tolerant scheme.

First, for contrast, consider an example of an unprotected single-qubit gate implementation.
As shown in Figure 2.4, we could close a switch that couples the qubit for time ¢ to a Josephson
junction with Josephson coupling J, in effect turning on a term Jcosf = JZ in the Hamiltonian,
where 6 € {0, 7} is the phase difference across the qubit. After time ¢ the unitary transformation
exp(—itJZ) has been applied. By choosing the time ¢ appropriately, we can rotate the qubit about
the z axis by any desired angle. However, this gate is sensitive to errors in the pulse that closes
and opens the switch, and to other fluctuations in the circuit parameters. For example, if we leave
the gate on for too long, the accumulated error is linear in the gate mistiming.

The protected single-qubit phase gate is executed as shown in Figure 2.5, by coupling the qubit
to a “superinductive” LC circuit via a switch that pulses on and off. The switch is actually a
tunable Josephson junction, which can be realized, as in Figure 2.6, by a loop containing two
identical junctions, each with Josephson coupling J, linked by the magnetic flux (n/27)®q, where

Oy = h/2e is the flux quantum. The Josephson energy of this tunable junction is

E(0,n) = —Jcos(0 —n/2) — Jcos(8 +n/2)

—2J cos(n/2) cos §

= —Jot(n) cos 6, (2.13)
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Figure 2.5: A protected phase gate is executed by coupling a qubit (or a pair of qubits connected
in series) to a “super-quantum” LC circuit with /L/C > 1.

X

(n/2m) %o

/_:—U—
X

Figure 2.6: An effective Josephson junction can be tuned by adjusting the flux (/27)®, inserted
in a circuit containing two identical junctions.

where 6 is the phase difference between the two leads on the loop. Thus the switch is “on” for n =0
and “oft” for n = m. The “off” setting can be fairly soft — it is good enough for Jeg to be comparable
to 1/L rather than strictly zero — while in the “on” position we require JogC to be large. The
inductance L and capacitance C' of the circuit are unrelated to the inductance and capacitance for
the 0-7 qubit discussed in Section 2.2, though we will again demand that \/m > 1. From now
on we will assume the 0-7 qubit is perfect, and will focus on realizing the robust phase gate under

this assumption.
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Figure 2.7: The profile of the tunable Josephson coupling J(t) in the execution of the protected
phase gate.

2.3.1 Ideal protected phase gate

We will first describe how the protected phase gate works in the ideal case with no errors. In the
following section we will discuss the effects of the imperfections and argue that their effects are
minor.
Using the same normalization conventions as in Section 2.2, the Hamiltonian for the circuit can
be expressed as
Q?

H(t)= %—&———J( ) cos(p — 0), (2.14)

where now J(t) is the time-dependent effective Josephson coupling of the tunable junction,  is the
phase difference across the qubit, and ¢ is the phase difference across the inductor. We assume
that phase slips through the circuit are strongly suppressed, so that ¢ can be regarded as a real
variable rather than a periodic phase variable — when ¢ winds by 27 the flux linking the LC circuit
increases by one flux quantum. Depending on whether the state of the qubit is |0) or |1), the phase
0 is either O or 7; hence, the Hamiltonian can be expressed as

Q2

Hy1(t) = 20 —|— — $ J(t) cos p, (2.15)

with the F sign conditioned on the qubit’s state.
Suppose the initial state |[¢)'™™) of the oscillator is its ground state, a Gaussian wave function
which is broad in ¢ space. We now begin to ramp on the tunable Josephson coupling J(t), with

the form shown in Figure 2.7: starting at zero, ramping on smoothly and then rounding off to
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Figure 2.8: Coupling the qubit to the oscillator prepares a grid state in (¢ space, a superposition
of narrowly peaked functions governed by a broad envelope function. The peaks occur where ¢ is
an even multiple of 7 if the qubit’s state is |0), and where ¢ is an odd multiple of 7 if the qubit’s
state is |1).

the constant value Jy. We assume that J(¢) ramps up slowly enough to prepare adiabatically the
ground state in each local minimum of the cosine potential, yet quickly enough to prevent the state
from collapsing to just a few local minima with the smallest values of ©?/2L. Thus, as J(t) turns
on, the initial state of the oscillator evolves to become a “grid state,” as shown in Figure 2.8, a
superposition of narrowly peaked functions governed by a broad envelope function. The width of
the broad envelope is (¢?) ~ %\/I//T > 1, as for the oscillator’s initial state, while the width of
each narrow peak is ((¢ — ¢0)?) ~ 31/1/JoC < 1, the width of the ground state supported near
the local minimum of the cosine potential.

If the state of the 0-m qubit is |0) and the coefficient of the cosine in Equation (2.15) is negative,
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then the narrow peaks occur where ¢ is an even multiple of 7. We denote this grid state of the

oscillator as |0¢); the subscript stands for “code,”

since, as we will explain later, this state can be
regarded as a basis state for a quantum error-correcting code. If the state of the qubit is |1) and the
coefficient of the cosine is positive, then the narrow peaks occur where ¢ is an odd multiple of 7; in
that case we denote the grid state as |1¢). Thus, if the initial state of the 0-m qubit is a|0) + b|1),

then when J(¢) turns on, the joint state of the qubit and oscillator evolves according to
(al0) +b11)) [™) — al0) ® [0c) +b1) @ [1c). (2.16)

After the Gaussian grid state has been prepared, the Josephson coupling J(t) maintains its
steady-state value Jy for a time t = Lt/m, where £ is a rescaled time variable. While the coupling is
on, each narrowly peaked function is stabilized by the strongly confining cosine potential, but the
state is subjected to the Gaussian operation e~ite*/2L — e‘ing/%, due to the harmonic potential
©? /2L, which alters the relative phases of the peaks. As f increases the oscillator states [0¢) and
|1c) evolve, but when # reaches 1, each returns to its initial value, apart from a state-dependent
geometric phase. For the grid state |0¢), the peaks in ¢ space occur at ¢ = 2wn, where n is an

integer, and the Gaussian operation

lp = 2wn) — e 2miin® lp = 27n)
= g~ 2min’ | = 2mn)
= |p = 27n) (2.17)

acts trivially. But for the grid state |1¢), the peaks occur at ¢ = 27(n + 1), and the operation

- 1\2
—2mit(n+35
o =2mn) > e ( 2) |g0:27r(n+%)>

_ 6727”' (n2+n+%>

o =2m(n + 3))

=2 |p =2r(n+ 1)) (2.18)

therefore modifies the phase of the state by the factor —i. Hence, the joint state of the qubit and
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oscillator becomes
al0) ® [0¢) + b|1) @ |1¢) — a|0) @ [0¢) —ib|1) @ |1¢). (2.19)

To complete the execution of the phase gate, the tunable coupling J(t) ramps down from Jy to
zero, again with a characteristic time scale 7; subject to the constraints specified above. As the
coupling turns off, the state |0c) of the oscillator evolves to [¢fi") and the state |1¢) evolves to

|4fin): the final joint state of the qubit and oscillator is
al0) ® [0c) — ib|1) ® [1c) — al0) @ |v6™) — bl1) ® [yi™). (2:20)

Thus, a perfect phase gate exp (i%Z) has been applied to the qubit if [pfi") = [fn). If, on the other
hand, |(f"[fm)| < 1, then the qubit and oscillator are entangled in the final state, compromising
the gate fidelity. Even if [(f"[1f1)| = 1 so that there is no entanglement, the gate may be imperfect
because the phase of (¥{"[1)f") deviates from zero.

The two-qubit phase gate exp(i§Z ® Z) is executed using a similar procedure, but now two
qubits connected in series are coupled to the LC oscillator. The total phase difference across the
pair of qubits is either 0 for the states |0) ® |0) and |1) ® |1), in which case the oscillator evolves to
the final [1)f"), or 7 for the states |0) ® |1) and |1) ® |0), in which case the oscillator evolves to the
final state |f"). Again, the gate is executed perfectly if |fi") = |fn).

2.3.2 Effects of protected phase gate imperfections

Suppose for now that the initial state 1)) of the oscillator is its ground state, a Gaussian wave
function with (p?) = 11/L/C and (Q?) = $,/C/L. (Other harmonic oscillator energy eigenstates
will be considered in Section 2.10.) Because \/L/ic1 > 1, the wave function is broad in ¢ space and
narrow in () space. Hence, when the switch pulses on, the contribution to the expectation of the

energy arising from the cosine potential is highly suppressed by the factor

2 1 /L
(cos ) = e~ {¥)/2 = exp (—4 C> ) (2.21)
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as derived in Equation (2.7). Correspondingly, the energy is very insensitive to the state of the
qubit, which determines the sign of the cosine potential. This suppression factor determines the
characteristic scale of the error in the phase gate.

As we turn on the Josephson coupling J(t) with the form shown in Figure 2.7, the characteristic
time 7; for the coupling to ramp on and off is subject to some constraints, which we will specify
shortly. With J at its steady state value Jy, phase slips (tunneling events between successive minima

of the cosine potential) are suppressed by the WKB factor

oo (- [ " o/ ITOT1 = 5.7 ) = expl(-8v/ ). (222)

We assume that +/JyC is large enough so that phase slips can be safely neglected.

A diabatic transition that excites the oscillator in the cosine well is most likely to occur while
J(t)C is approximately one and the frequency of oscillations in the well is approximately 1/C.
We will pass through this regime once when ramping up the gate and once again ramping down.

Landau-Zener theory indicates that the probability Pgi., of such a transition scales like

Pian(7y) ~ exp (—(constant)%) , (2.23)

where 77 is the characteristic time for J(¢) to ramp on. (We will discuss this error in more detail
in Section 2.7.) Since diabatic effects also contribute to the error in the phase gate, we require

77 > C. Indeed, the diabatic error is comparable to the intrinsic error in Equation (2.21) for
75~ VLC; (2.24)

that is, when the ramping time is on the order of the period of the LC oscillator. During this
ramping time, the envelope function of the Gaussian grid state is squeezed somewhat in ¢ space
(and correspondingly spreads somewhat in @) space), but stays broad enough for the intrinsic error

to remain heavily suppressed. In Section 2.8 we argue that the error arising from squeezing scales

like

Py (1) ~ exp (—(constant)L) ; (2.25)
TJ

hence, it too is comparable to the intrinsic error for 75 ~ v LC.
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We will argue that under appropriate conditions (fi*[1/f") ~ 1 to extremely high accuracy so
that the phase gate is nearly perfect. Note that we need not require the final state of the oscillator to
match the initial state [¢)™); noise terms in the Hamiltonian may excite the oscillator, but the phase
gate is still highly reliable as long as the oscillator’s final state depends only very weakly on the
state of the 0-m qubit, i.e., on whether the sign of J(t) is positive or negative. Indeed, the oscillator
serves as a reservoir that absorbs the entropy introduced by noise. If not too badly damaged, the
oscillator can be reused a few times for the execution of additional protected gates. Eventually,
though, it will become too highly excited, and will need to be cooled before being employed again.

A gate error may arise if the coupling between qubit and oscillator remains on for too long or
too short a time, i.e., if £ = 1 + ¢ rather than £ = 1. But we will see that such timing errors
do not much compromise the performance of the gate when ¢ is small; specifically, the gate error
is exp (—i\/L/iC) x O(1) provided |e| < 27 (L/C)73/4. Slightly overrotating or underrotating
contributes to the damage suffered by the oscillator, but without much enhancing the sensitivity
of the oscillator’s final state to the qubit’s state, and hence without much reducing the fidelity of
the gate. We study the consequences of overrotation/underrotation in Section 2.6, and we confirm
our findings using numerical simulations in Section 2.9. We also argue, in Sections 2.10 and 2.11,
that the phase gate is robust against a sufficiently small nonzero temperature and against small
perturbations in the Hamiltonian.

Let us summarize the sufficient conditions for the phase gate to be well protected. Just as
for the realization of the 0-m qubit itself, the execution of the protected phase gate relies on the
construction of a “superinducting” circuit with \/L/T > 1. This is a daunting experimental
challenge, as we have already noted at the end of Section 2.2. To ensure high gate accuracy, we
also assume that the steady state value Jy of the Josephson coupling between the 0-m qubit and the
oscillator satisfies v/JoC > 1, and that the characteristic time scale 7; for the coupling to ramp
on and off is O(v/LC); thus 7 is also small compared to the time L/7 needed to execute the gate.
Under these conditions, the error in the phase gate scales as exp (—O (\/m )>7 and is stable

with respect to small fluctuations in the implementation of the gate.
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2.4 Sketch of the error estimate

A noisy quantum gate realizes a quantum operation Nyctual, and a useful way to quantify the error
in the gate is to specify the deviation ||Nactual — Nidealll o, from the ideal gate Nideal in the “diamond
norm” [6]. As explained in Appendix 2.B, for the protected phase gate this diamond norm distance

(assuming there are no bit flips) is

HNactual _j\/ideal”Q = |1 - <1/}11C1n|’ >1/J(f;m| (226)

where [1f%) denotes the final state of the oscillator when |0), |1) is the state of the 0-m qubit, as in
Equation (2.20). Thus, we assess the gate accuracy by estimating the deviation of (1" [f?) from
1.

To perform this estimate we track how the oscillator states |1 (t)) and |11 (¢)) are related through

three stages of evolution:

in (t) turns on eoiny  J ()= en J(t) turns off n
i) SR s >—> g ) "), 2.27)
|1/)m> J(t) turns on |1/}bcg1n> J(t)= |¢end> J(t) turns off 7Z|q/}§in> .

In the first stage J(t) ramps on and the grid states are prepared — the initial state [¢)'™™) evolves
to [g®8™) if the O-m qubit’s state is [0) and to [}°®™) if the qubit’s state is [1). In the second
stage J(t) = Jo and the grid state [pg°™) evolves to |1/$"?) while the grid state [1)}°®™) evolves
to —i|yf™?), where ideally [¢§7) = |wbegm> In the third stage J(¢) ramps off and the grid states
[1Eht) evolve to the final oscillator states [ ), where ideally [¢f") = [if").

Consider the first (or third) stage of the evolution, where the coupling J(¢) ramps on (or off) in
a time of order ;. If 7; is not too large compared to the period 2mv/LC of the oscillator, then the
harmonic potential term ¢?/2L may be treated perturbatively during this evolution stage. Hence,
in first approximation the Hamiltonian is one of

Q? Q°

Hy = %—J()cosgo, Hy = %—&-J()cosga, (2.28)

depending on whether the state of the 0-m qubit is |0) or |1). This Hamiltonian commutes with

the operator e~2™Q which translates ¢ by 27; therefore e=2™? and the Hamiltonian can be



34

simultaneously diagonalized. We may express the eigenvalue of this translation operator as e27%,
where ¢ = Q — [Q] € [-3, 3] is the conserved Bloch momentum, and [Q] denotes the nearest integer
to @; thus [@] labels the distinct bands in the Hamiltonian’s spectrum.

A diabatic transition between bands may be excited while J(¢) varies, changing the value of [Q]
by an integer, most likely +1. If such transitions occur with nonnegligible probability, the final state
of the oscillator will contain, in addition to a primary peak supported near @ = 0, also secondary
peaks supported near () = £1; the phases of the secondary peaks depend on whether the Hamilto-
nian is Hy or H;, and therefore diabatic transitions contribute to the gate error. The probability
of a diabatic transition cannot be computed precisely, but, as we will explain in Section 2.7, it can
be analyzed semi-quantitatively, and is very small if 7; is sufficiently large.

For the purpose of discussing this diabatic error and other contributions to the deviation of
(¥fin)fin) from 1, we will find it useful to consider the operator

X=(-n@=n¢

even

_ H?
o ad (2.29)
=2

even

—I=1-219,.

Here TI¢

& en Drojects onto values of @ such that the nearest integer value [Q)] is even and H?dd

projects onto values of Q such that [Q] is odd. We denote this operator as X because it can be
regarded as the error-corrected Pauli operator o acting on a qubit encoded in the Hilbert space
of the oscillator, as we explain in Section 2.5. (Note that X2 = I.) Another (related) important

property is that, since eT*# translates Q by 1, X anticommutes with cos ¢:
X cos X = — cos . (2.30)

Our argument showing that |f") ~ ") has two main elements. On the one hand, we use
approximate symmetries and properties of grid states to see that |11 ()) ~ X|wo(t)) at each stage
of the oscillator’s evolution, so that in particular [f") ~ X|{"). On the other hand, we argue
that if the time scale 7; for J(¢) to turn on and off is suitably chosen, then the oscillator’s final
state is mostly supported near Q = 0, so that in particular X |i?) ~ |fn).

We note that the approximate Hamiltonians Hy and H; in Equation (2.28) are related by

Hy = XHoX. (2.31)
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By integrating the Schrodinger equation using the Hamiltonian Hy or H; during the first stage of
evolution while J(t) ramps on, we obtain the unitary time evolution operators Uy, Uy, which are
related by

U = XUpX. (2.32)

Thus, the initial oscillator state |¢'") evolves to one of the states

g8y = Uplyp™)

s . o (2.33)
[y ) = Ui ™) = XU X [9™),
and therefore
< ll)egin|X|f¢)gegin> — <win|X|,¢in>
= (Y[ — 203 [™)
=1 — 2", [9™). (2:34)

We conclude that if the initial state is almost fully supported on even values of [Q] (for example,
the oscillator ground state, a Gaussian in @-space with width much less than 1/2), then |1/Jlfegin> is
very close to X|[yhE™).

So far, we have ignored the effects of the quadratic term ¢?/2L in the potential. This term
can cause the wave function to broaden in @-space and be squeezed in ¢ space, but we argue
in Section 2.8 that this squeezing is a relatively small effect, so that the conclusion |1/)11°egi“) =
X |1/)gegin> still holds accurately. Specifically, the contribution to the gate error due to squeezing
scales according to Equation (2.25), and hence becomes comparable to the other sources of error
when we choose 75 ~ VLC.

During the second stage of the evolution, while J(t) = Jy is held constant, distinct peaks in the
grid state acquire relative phases, and the condition |11 (t)) = X|1o(t)) becomes badly violated.
However, after a time ¢ ~ L/, the initial states |¢p°®") and [¢}°8™) are restored, aside from the
state dependent phase —i, and hence |/$"?) = X |¢)g"d), apart from a small error. Equivalently, the
beginning states

egin 1
) =

(rgee™) + =) (2.35)

S

2
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are very nearly X eigenstates with eigenvalues 41, and this property is preserved by the ending

states
1
V2

The X eigenvalues of these states are highly stable with respect to timing errors in the gate, in

[WE) = —= (lwg™) £ [¥)) . (2.36)

which the coupling is left on for too short or too long a time, because these states are approximate
codewords of a quantum code, well protected against logical phase errors. We study the errors
resulting from imperfect timing in detail in Section 2.6, because they can be calculated explicitly
and are the dominant errors in some parameter regimes.

In the third stage of the evolution, as in the first stage, it is a good first approximation to ignore
the harmonic ? /2L term in the potential as the coupling .J(¢) ramps off. Using this approximation,
the time evolution operators V; 1, obtained by integrating the Schrédinger equation during the third

stage when the state of the 0-7 qubit is |0}, |1), are related by

Vi =XV X; (2.37)
hence, the final oscillator states are
[00") = Volug™),  [i") = XVoX[ui™), (2.38)
and we conclude that
WX [ye") = W X[wg")- (2.39)

Again, this conclusion is not modified much when the ©?/2L term is properly taken into account,
so we may infer that the condition |t)g(t)) ~ X |1 (t)) is well preserved during the final stage of
evolution.

We have now seen that [/i") ~ X|{i"), and it remains to show that X|[f") ~ [1f"). This

condition will be well satisfied, provided that the final state |¢fi") of the oscillator, like the initial

11

state [1)™™), is almost fully supported in the interval Q € | 55 3] Logical errors may occur because of

diabatic transitions between bands, which may change @) by an odd integer, or because of spreading

in @ space, which may enhance the tails of the wave function outside [—%, %} However, if diabatic

transitions are rare and spreading is modest, as we expect if 7; lies in the appropriate range, then

the gate will be highly accurate.
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That our criterion for achieving |f") ~ |¢fi") involves the operator X, which has a sharp
discontinuity at @ = % + integer, is really an artifact of an insufficiently careful treatment of
diabatic transitions. The transitions occur with enhanced probability for @) close to % + integer,
replacing the sharp edge in @) space by a rounded step with width of order C'/7;, as we will explain

in Section 2.7.

2.5 Encoding a qubit in an oscillator

A continuous-variable quantum error-correcting code [43] underlies the robustness of the protected
phase gate. The theory of quantum codes is not really essential for understanding our estimate of
the gate accuracy, but this theory provides motivation for our construction of the protected gate,
as well a convenient language for explaining how it works. Therefore, we will now review some of
the relevant features of a code first described in [43].

In the version of the code we will use, a two-dimensional encoded qubit is embedded in the
infinite-dimensional Hilbert space of a harmonic oscillator with position ¢ and conjugate momentum
Q, satisfying [p, @] = i. The code space can be specified as the simultaneous eigenspace with

eigenvalue 1 of the two commuting operators
My =e?%, My = e 2™, (2.40)
we say that Mz and My are the generators of the code’s “stabilizer group.” Using the identity
eteB = elABleBeA (2.41)

(where A and B commute with their commutator), we can easily verify that Mx and Mz commute.

The logical Pauli operators acting on the encoded qubit are

Z=e% X =e "9 (2.42)
One sees that X and Z commute with the stabilizer generators My and M, and hence preserve
the code space; furthermore they anticommute with one another, as the logical Pauli operators

should.
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Figure 2.9: Ideal codewords of the continuous variable code. The Z = =1 eigenstates |0¢), |1¢),
expressed in ¢ space, are uniform superpositions of position eigenstates with ¢ an even or odd
multiple of 7, respectively. The X = +1 eigenstates |+¢),|—c), expressed in @ space, are uniform
superpositions of momentum eigenstates with (Q an even or odd integer, respectively.

>idea1

The (unnormalizable) state |0¢ is the unique Z eigenstate with eigenvalue 1 in the code

space. The condition Z = 1 requires the variable ¢ to be an integer multiple of 27, and the condition

Mx = 1 requires the codeword to be invariant under translation of ¢ by 27. Hence, |Oc>idCal is
represented in ¢ space as the uniform superposition of delta functions
yideal Z lp = 2mn); (2.43)

n=—oo

the Z = —1 eigenstate |1¢)'"* = X[0¢)'"**, obtained from |0¢)'*° by displacing ¢ by =, is

yideal Z lp = 2m(n + 1)). (2.44)

n=—oo

Similarly, the X = £1 eigenstates |:|:C> dea , invariant under translation of ) by 2, are represented

in @Q space as

1dea1 Z |Q o 2n

n=—oo

1dca1 Z |Q*2Tl+ )>

n=—oo

(2.45)

This is depicted in Figure 2.9.

> ideal

Weak noise may displace ¢ slightly, but the codewords |0¢ and |1c>ideal remain perfectly
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distinguishable, and the error is correctable, as long as the value of ¢ shifts by less than 7/2 in
either direction. Similarly, a shift in @ by less than 1/2 is correctable. In principle, we could
diagnose the error by measuring Mz to determine the value of ¢ modulo 7, and Mx to determine
the value of @Q modulo 1, and then perform active error correction by applying the minimal shifts
in ¢ and @ that return the damaged code state to the code space. (In our protected phase gate,
however, the error correction will be passive rather than active.)

The unnormalizable ideal codewords, with infinite (¢) and (Q), are unphysical. But if we
coherently apply Gaussian distributed small shifts in ¢ and @ to the ideal codewords, we obtain
the normalizable approximate codewords shown in Figure 2.10. The wave function in ¢ space is a
superposition of narrow Gaussians, each of width A < 7/2 (i.e., ((d¢)?) = 2 A%, where d¢ denotes
the deviation from the center of the narrow Gaussian), governed by a broad Gaussian envelope with
width k71 > 2 (i.e., (9?) = 1x72). The Fourier dual wave function in @ space is a superposition
of narrow Gaussians, each of width & (i.e., ((0Q)?) = 32, where 6Q denotes the deviation from
the center of the narrow Gaussian), governed by a broad Gaussian envelope with width A=1 (i.e.,
(Q?) = %A_Q). If A and « are sufficiently small, these approximate codewords retain good error
correction properties. However, there is now an intrinsic error arising from the tails of the narrow
Gaussians, with the probability of a logical Z error (a shift in ¢ by more than 7/2) suppressed by

e/ 4A2, and the probability of a logical X error (a shift in @ by more than 1/2) suppressed by

e—1/4r%

Note that in Section 2.4 we used the notation X = (—1)[? for the logical X operator, where
[Q] denotes the nearest integer to the real variable Q. The operator (—1)! acts in the same
way as e~ 7@ on ideal codewords for which @ is an integer. By expressing the logical operator as
X = (—1)[Q], we are implicitly correcting phase errors that displace Q). That is, a () eigenstate is
decoded by shifting @ to the nearest integer value, and the eigenvalue of X is determined by this
ideal shifted value of @, rather than the actual value of @) prior to the shift.

The first step in the execution of the protected phase gate described in Section 2.3 is the
preparation of just such approximate codewords; compare Figure 2.8. If the state of the 0-w
qubit is |0), then the approximate Z = 1 eigenstate |0c) is prepared, and if the state of the 0-
7 qubit is |1), then the approximate Z = —1 eigenstate |1¢) is prepared. The narrowly peaked
functions have width A? = (JoC)~1/2 in ¢ space (though, because the potential is a cosine rather

than harmonic, the tail of the peaked function decays more slowly than the tail of a Gaussian),
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Figure 2.10: Approximate codewords of the continuous variable code. The codeword |0¢), ex-
pressed in ¢ space, is a superposition of Gaussian peaks, each of width A, governed by a broad
Gaussian envelope with width x~!. The codeword |+¢), expressed in @ space, is a superposition
of Gaussian peaks, each of width &, governed by a broad Gaussian envelope with width A~!.

and width x? = (L/C)~/? in Q space. Hence, the intrinsic logical X error of the approximate
codewords, which is central to our estimate of the error in the phase gate, is suppressed by the
1
factor exp (_Z L/C).
After the approximate codeword is prepared, the Gaussian unitary operator e~1t%"/2L = g=ite*/2m
is applied (where f = 7t /L is a rescaled time variable). This unitary operator rotates the code space,

transforming the stabilizer generator Mx = e~2™? according to

T2 _ . s 2
My — MS( —e ity /271'6 2771Qeltga /27

— o 2mUQET/T) _ \f o= 2ivto—2mil (2.46)

Recalling that M, ! — =2 i5 also a stabilizer generator, we see that the state returns to the code
space at (rescaled) time # = 1, but during its excursion the codeword acquires a Berry phase, and

thus a nontrivial logical operation is applied. Specifically, the logical operator X is transformed
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according to

X o X = e—i<p2/27re—i7rQeig02/27r
_ o in(Qte/) _ i i/

=—iX7Z =exp (Z%Z)X’exp (fz'%Z), (2.47)
while Z remains invariant; hence, the logical operation acting on the code space is exp (i%Z). An
error in the logical gate arises if the coupling remains on for too long or too short a time (i.e., if
t is not precisely 1). However, this error is correctable with high probability if the timing error is

small. We will study the consequences of overrotation/underrotation in Section 2.6.

2.6 Imperfect grid states

Now we will analyze the intrinsic phase errors in approximate codewords of the continuous variable
code, and, in particular, how the phase error is affected by errors in the timing of the pulse that
executes the phase gate.

In Section 2.5 we considered approximate codewords that can be described as “Gaussian grid
states,” where the codeword is a superposition of narrow Gaussian peaks governed by a broad
Gaussian envelope. The Fourier transform of such a wave function is also a Gaussian grid state, so
that both logical bit flip errors and logical phase errors are suppressed.

But it actually suffices for the approximate codeword to be a superposition of narrow functions
with a broad envelope; neither the peak nor the envelope needs to be Gaussian. Even a non-
Gaussian grid is mapped to a conjugate non-Gaussian grid by the Fourier transform, so there is good
protection against both X and Z errors. A Gaussian grid state could result from coherently applying
Gaussian-distributed ¢ and @ shifts to an ideal codeword, assuming large shifts are suppressed.
But we can also get a reasonable approximate codeword by applying more general small errors to
the ideal codeword, with a distribution that is not necessarily Gaussian. What is important is that
large shifts in both ¢ and @) are improbable, not the detailed form of the distribution.

This observation will be useful when we consider in Section 2.10 the execution of the protected
phase gate in the case where the initial state of the harmonic oscillator is an excited state rather than

the ground state. In that case, the envelope of the approximate codeword in ¢ space is not strictly
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Gaussian, but rather Gaussian modulated by a Hermite polynomial, and its Fourier transform is
also Gaussian modulated by a Hermite polynomial. Thus, in ) space, the narrow functions peaked
at integer values of @) are also oscillator excited states. These functions have highly suppressed
tails, ensuring that encoded phase errors are rare. In any event, considering more general kinds of

grid states helps to clarify conceptually why the phase gate is robust.

2.6.1 Bit-flip and phase errors

Let f denote a narrow function in ¢ space, and F denote a broad envelope function in ¢ space. We

express the approximate codewords as

o) = VR 3> F(m) [ do 1l - mm)le)
n even~ (2.48)
1) =var Y- Fmn) [ dp flo - m)le)

n odd

The function f is normalized so that

/If(@)lzdw =1, (2.49)

and if the overlap between peaks centered at distinct integer multiples of 7 can be neglected, then

|0¢) and |1¢) are normalized, provided

2r > |F(mn)|* = 1, 2 > |F(mn)* ~ 1. (2.50)
n even n odd
The intrinsic bit-flip error of the approximate codeword |0¢) arises from the probability that ¢ lies

closer to an odd multiple of 7w than to an even multiple, which can be estimated as

5 —m/2 00
Plc)l ~2r Y |F(mn))? x (/ dy |f(w)|2+/ e f(so>|2>

n even - L

—7/2 o
~ / do 1f(0)2 + / dp |1(0)[ (2.51)

—o0 /2

the intrinsic error in |1¢) can be estimated similarly. Thus, logical bit-flip errors are highly sup-

pressed if f(y) is a narrow, rapidly decaying function supported near zero.
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The approximate codewords in the conjugate basis are

o) = % (0c) + [16))
V7 S B(m) [ dp fle—mn)le)
o) = % (l0¢) — [1¢))

— V& S Ban)(-1)" [ do f(o - 7o)

where

7y |F(m)[* ~ 1.

We show in Appendix 2.C that these codewords can be expressed as

+) =x/§/dcz i@ 3 F@Q-mlq),

m even

~VE Y fm) [aQ F@-m)a).

m even

o) = ﬂ/d@ QS F@Q-m)Q),

m odd

~VE Y Fom) [dQ F@-mlQ).

m odd

where

2 3 [fm) ~ / dQ [FQF ~ 1.

m even

2 3 |fm)? = / iQ |F(QF ~ 1.

m odd

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

The intrinsic phase error of the approximate codeword |+¢) arises from the probability that @ lies
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closer to an odd integer than an even integer, which can be estimated as

5 —-1/2 0o
Plrel~2 3 [fm)f x ( / iQ [F@Q)* + /1/2dQ F<Q>|2)

—-1/2 ) [e’s) )
~ / dQ |F(Q)] + /1/2dQ IF(Q); (2.58)

the intrinsic error in |—¢) is estimated similarly. Thus logical phase errors are highly suppressed if

F(Q) is a narrow, rapidly decaying function supported near zero.

2.6.2 GGate error estimate

As explained in Section 2.4, the error in the protected phase gate can be expressed as

1= @1 6™l (2.59)

where |1/)g‘i> denotes the final state of the oscillator (modulo the state dependent phase —i applied
by the gate) when the state of the 0-7 qubit is |0), |1). Under conditions enumerated in Section 2.4,

this quantity can be well approximated by the modulus of
n=1— @5 X |gE), (2.60)

where [¢§%) denotes the state of the oscillator as the coupling J(t) between oscillator and qubit

starts to turn off, and X =119 — H?d q denotes the error-corrected logical operator.

Let us suppose that the states |¢gigin>, prepared when the coupling J(t) turns on, are the
approximate codewords |0¢), |1¢) depicted in Equation (2.48), where f(p) is a narrow rapidly
decreasing function and F(go) is a broad envelope function. The coupling remains on for time
t = (1+¢e)Z, where ¢ is the fractional error in the timing of the gate. Then, as explained in
Appendix 2.C, the states [¢§!) have the same form as |0¢), |1c), but with F(¢p) replaced by the
function

Fe(p) = e /27 o (). (2.61)

We define states

B9 = = (96 £ 1) (262)

S
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note that |¢e“d> are normalized, since each is obtained by applying a unitary time evolution operator
to the normalized state 1)) of the oscillator, but they are not necessarily orthogonal and hence

the states [¢)$d) are not necessarily normalized. We may write

XTee™) = 5 (@PUX ) — (X[ + (9 X [ped) — (ed| X)), (2.63)

M\H

which, using Equation (2.29), has real part

= 1
Re(uf™|X[v5) = 5 (W1 — 20G w5 — (9|20, — Tl )

=1- < end|1_[odd|¢end> < end|Heven|¢ind>‘ (264)
Therefore, using Equation (2.60) we may estimate the real part of the gate error as in Equa-
tion (2.58):
—-1/2 ) oo )
Reno~2( [ dQIR(Q) +// iQ IF@)F ). (2.65)
—o0 1/2
To estimate the imaginary part we note that
e = o (K R) — (g Ky ). (2.66)
As in Equation (2.55), we express

wety = va( [ao + [aQ)fQ Y R@-mlQ)

[Q] even [Q] odd m odd

; (2.67)
Rty =3[ dq - [1Q)f@) 3 Fi@-mIQ),
Q] even [Q] odd m even
and therefore obtain
(WX ) ~ /dQ|f Z F Fa(Q—m)
[Q] even e odd (268)
~2 [af@F X Q- E@-m)
[Q] odd T odd

Thus, Im7. is dominated by overlaps between sharply peaked functions {F.(Q — m)} centered at
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neighboring values of m; we show in Appendix 2.C that

Im 7. ~ 4 Im/ooo dQ 0dd [F.(Q + 1) F.(Q - 1)],

where Odd[G(Q)] = 1 (G(Q) — G(—Q)) denotes the odd part of the function G(Q).

2.6.3 Gaussian case

(2.69)

The gate error estimate in Equations (2.65) and (2.69) is expressed in terms of the narrow function

F.(Q), whose Fourier transform F. (i) is the broad envelope function that governs the grid state of

the oscillator. To be concrete, let us now suppose that this function is Gaussian, the relevant case

where the oscillator’s initial state [¢)™) is the ground state.

The normalized ground state wave function is

T
1TA\YY .
_ —Q°/2k
F(Q) - <7T',‘€2) € / )
where
L
-2 -
K “ = ek

Therefore, for € = 0 the probability of an intrinsic phase error in the grid state is

o 2
Pl ~2 [ dQ |FQ) ~ 2\/76-1/%2’
™

1/2

using the leading asymptotic approximation to the error function.

To find the probability of a phase error for € # 0, we evaluate
FQ) = —— /dso e UE ()
V2T

1 d —iQep K2 A —k2p2 /2 —iep? /2T
=—— [dpe — e e
ous m

o \ 1/4
= < il > exp (—Q*/2k"%),

R4

(2.70)

(2.71)

(2.72)

(2.73)
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where
1€
H/Q — I€2 N
T
Thus,
i€\
K2 =k2 (1 + 2)
TR
__9 1€
=K 1-—,
where
2
_2 2 €
=r |14+ —|;
( + 7r2/£4>
therefore

From Equation (2.65), our estimate of the real part of the gate error becomes

4 o0 2,2 72 _2
Re %7/ dQ e~ Q /" m4\/—e’1/4”.
G VTR2 1/2 Q ™

For ¢ small compared to 7x2, we may expand

-2 _ -2 €
A ;
so that
2
Rene. ~ exp (47?2/16) Rene=o;

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

the overrotation of the gate has little effect on the real part of the gate error for ¢ < 27x3. On the

2

other hand, when ¢ is large compared to wk*, we have

2

(2.81)
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thus, Ren. = O(1) for ¢ = 7k.

To see that these results are reasonable, note that
e_iw?/%Qeis“"Q/27T =Q+ pe/m. (2.82)

Thus, crudely speaking, overrotation by e shifts @ by
6Q ~ (¢/m)(*)"? = ¢/ (nV/2r2). (283)

We expect this shift to have a small effect if the amount of the shift is small compared to the width
<Q2)1/2 = /K22 of the narrow peaks in Q-space, i.e., for ¢ < 7x2. On the other hand, for ¢ ~ 7x,
the shift in @ is O(1), and we expect the error probability to be large.

To estimate the imaginary part of the gate error, we note that

1 1,2 4+ 1y2
F(Q+3)'F(Q-3) = == [— (Q%,i) - (QM*E) ]
1

= eXp [—(Q* + 1) Re(x'7?) +iQ Im(x'?)]

VTR
o 1 _1/4,%2 —QZ/R2 —iEQ
= \/ﬁe e exp| —35 ) (2.84)
and from Equation (2.69) we obtain
4 —1/4R? Oo —-Q?/Rr? —2 2
Imn. = — e/ dQ e sin (eQ/mR*k?)
TR2 0
4 _1/4—2 g
- R p ) , 2.85
o (77/%/@'2 (2.85)
where
I(a) = / dw e sin(az). (2.86)
0

The integral I(«) can be expressed in terms of Gamma functions with imaginary arguments, but,
for our purposes, it will suffice to observe some of its properties. For small « it has the power series

expansion

a o«
I(a)zg_ﬁ_i_...’ (2.87)
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for large « it has the asymptotic expansion

1 2
I =—+—+-- 2.88
@)=t 2, (2.89)
and it attains its maximum value I = .5410... at a = 1.8483....
Combining the real part in Equation (2.78) with the imaginary part in Equation (2.85), our

estimate of the gate error becomes

= g e 1 ()] o

The ratio of the imaginary and real parts is

Im 7.
Rene

_ 1 & S
— =i ()~ - : 2.90
" TRK? 2mR2 K2 (2.90)
expanding to linear order in «.. Thus, the imaginary part of the error is smaller than the real part
when ¢ is sufficiently small, but dominates by a factor of order k=1 for € ~ wx3. The error |n.| is
bounded above by e~1/4%" x O(1) for all &, and hence by e=1/4" x O(1) for & < 2mk3.
In Figures 2.11 and 2.12, we plot the gate error estimate |1.| as a function of ¢ for k=2 = 40

and k2 = 80. Recall that, in the case where the LC circuit is initially in its ground state, we can

identify x=2 with \/L/C.

2.7 Diabatic error

As explained in Section 2.4, the protected phase gate is very accurate if the final state vector of the
oscillator depends only very weakly on the state of the 0-m qubit: [f") ~ [1f"). Our argument
establishing high gate accuracy has two elements — we show that |1 (t)) ~ X[t/ (t)) at each stage
of the oscillator’s evolution, and also that X |¢fi") a [1f"). In Section 2.6 we have seen that the
condition |1 (t)) & X|tpg(t)) is stable with respect to imperfections in the timing of the pulse that
executes the gate. Now we will consider rare diabatic transitions, occurring as the coupling J(¢)
ramps on and off, that contribute to the deviation of X[ from [/).

While the coupling J(t) turns on or off, the harmonic ¢?/2L term in the potential can be

treated perturbatively, where in first approximation the Hamiltonian is given by Equation (2.28);
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Gate error |7]
1 _

Overrotation €
-0.1 0.0 0.1 0.2 03

-03 02

Figure 2.11: The estimated gate error |7.| (on a log scale) as a function of the rotation error ¢, for
-2
Kk~ =40.

we will consider the consequences of the harmonic term in Section 2.8. This Hamiltonian commutes
with the operator e~2™? which translates ¢ by 2m; therefore, e=2™? and the Hamiltonian can
be simultaneously diagonalized. We express the eigenvalue of this translation operator as e™27%,
where ¢ = Q — [Q] € [—3, 4] is the conserved Bloch momentum, and the integer [Q] labels the
distinct bands in the Hamiltonian’s spectrum.

A diabatic transition between bands may be excited while J(t) varies, changing the value of [Q]
by an integer, typically +1. If such transitions occur with nonnegligible probability, the final state
of the oscillator will contain, in addition to a primary peak supported near @ = 0 (where X = 1),
also secondary peaks supported near Q = +1 (where X = —1). We will discuss the probability of
a transition between bands while J(t) ramps on; a similar analysis applies to transitions occurring
as J(t) ramps down.

The probability of a diabatic transition can be computed most reliably for ¢ close to :t%, since
in that case the splitting between the lowest band and the first excited band is small when J(¢)

is small, and the continuous variable system can be well approximated by a two-level system. For

example, when J = 0, the state in the lowest band with Bloch momentum ¢ slightly less than % has
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Gate error |7]
1 -

Overrotation €
0.2 03

-02 -0.1 0.0 0.1

-03

The estimated gate error |n.| (on a log scale) as a function of the rotation error &, for

Figure 2.12:
k™2 = 80.
charge Q = ¢, while the state in the first excited band has () = ¢ — 1. Hence, the splitting between
bands is
1 2 9 34
%((q—l) -q¢°) = o (2.91)
Since eT% translates @ by 41, the perturbation J(t) cos ¢ has matrix elements
J(t)
(g = 1]J(t) cosplg) = —= = (gl J(t) cos ¢ [¢ — 1), (2.92)
and the effective two-level Hamiltonian is
1
74 J(t)
Heﬁ —— 2 Z X 2.
0,1 20 + ) g, ( 93)

are Pauli matrices. The energy eigenstates are o eigenstates for J(¢) — 0 and o

where gZX

eigenstates for J(t) — oo.
The time-dependent Schrodinger equation for this effective Hamiltonian can be solved exactly
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if J(t) increases exponentially with time, as
J(t) = Jyexp(t/SH); (2.94)

we show in Appendix 2.E that if the initial state as t — —oo is the ground state, then the probability

that the final state is excited as t — oo is

2

1 "
~ exp (—7r (5 — q) C’ > ) (2.95)

o 1 1 Tt
Pdiab(q,TJE) =573 tanh (7? (% — q) J )

where the second equality holds when the argument of the tanh is large and positive.
We recall that if the initial state of the oscillator is the ground state or a low-lying excited state,

then the probability distribution for ¢ decays as

P(q) ~ exp (— c q2> ; (2.96)

hence, expanding in ¢ = % — ¢, we find

C

eff
X exp <—7réTé ) .

P(q) Paian(q, 75%) ~ exp ((5 - L)

(2.97)

Therefore, if
1
7ot > ;\/LC, (2.98)

the most likely diabatic transitions occur for q ~ %, where the two-level approximation is reasonable;
we conclude in that case that the probability of a diabatic transition is suppressed by the factor
exp(—i\/L/iC). If, on the other hand, 7$% < %\/ﬁ, then the most likely diabatic transitions
occur for ¢ far from :I:%7 and the two-level approximation cannot be justified.

If J(t) does not ramp on exponentially, then the exact solution in Appendix 2.E does not apply
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directly. To estimate roughly the probability of a diabatic transition for more general pulse shapes,
we note that the transition typically occurs when ¢Z and o in the effective Hamiltonian have

comparable coefficients, so that

79 ~ (J) . (2.99)
J/ jom1-24

If J(t) turns on like an error function with width 7, then

JO t/m 2 TJJO _42/72
J(t) = == dr e ™ =~ ey 2.100
=" [ @t g (2.100)

asymptotically for t/7; — —o0, and we have

J)J =~ 72)20t]; (2.101)

combining Equations (2.99) to (2.101), we obtain

2" _ (1n (ifgig{]) —0 (lnln (I{ogq)))’”z. (2.102)

T

Although 7¢% given by Equation (2.102) does not satisfy Equation (2.98) when g is very close to
%, the dominant diabatic transitions may still occur for g =~ %, where the two-level approximation
is applicable, provided 7; — %\/ﬁ is positive and sufficiently large. Otherwise, if the dominant
value of ¢ is far from %7 we can anticipate that typical diabatic transitions occur for J(¢)C = O(1),

where the band gap is O(1/C) and the transition probability is

Paian(77) = exp (—0 (%’)) . (2.103)

In the two-level approximation, which applies for |Q| ~ %, the probability of a jump from the
lowest band (|Q| < %) to the first excited band (|Q| > 3) matches the probability of a jump from
the first excited band to the lowest band. Therefore, neglecting transitions to other bands and the
higher-order probability of multiple transitions, and also ignoring other sources of error aside from

diabatic jumps, we infer from Equation (2.95) that the probability of X =1 (i.e., |Q| < %) in the
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final state of the oscillator can be expressed as

. ) ) . 7_eff
PQ™ < b~ [ag™ ) tann (7 (5 - 10") 3 ) (2104)

a factor of two has been included to take into account that the transition could occur during
either the ramping-up phase or the ramping-down phase. Because of the enhanced probability of a
transition for |Q| ~ %, the Q™ integral has support extending beyond the range [f%, %}, the tanh
function smooths out the sharp edges at QQ = :i:%, replacing them by rounded steps with width of

order C'/7f.

2.8 Squeezing error

In Section 2.4 we discussed how the state of the oscillator evolves as the coupling J(t) ramps on
and off. There we used the idea that, because the oscillator’s period is long compared to the time
scale 7 for the coupling to turn on and off, we may as a first approximation ignore the ¢?/2L term

in the potential as in Equation (2.28). Under that assumption we concluded that
(B X g ) = (60X [g) ~ 1, (2.105)

where [¢') is the oscillator’s initial state, and \¢gagin> denotes the state just after the coupling

turns on, where |0), |1) is the state of the 0-m qubit. The second equality follows if the initial state

)

of the oscillator has negligible support outside the interval Q € |

How is this conclusion affected when the quadratic term ¢?/2L is included? If the coupling
turns on slowly enough, this term can cause some squeezing of the wave function in ¢ space and,
correspondingly, some spreading in ) space. To model crudely the effect of the spreading, consider
first turning on J(t) using Hy or H; in Equation (2.28), then applying the operator e~**? (which
shifts @ by an amount « that does not depend on the state of the 0-m qubit). Denoting the time

evolution operator as J(t), turning on by Uy or U; = XUpX as in Section 2.4, we then have

[6"5") = e~ Uply™),

. S (2.106)
|¢ll)cg1n> _ efwupXUoXh/)m%
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and therefore

<w§)egin|Xv|wgegin> — <win|XUO—1X6iache—iaapUO|win>. (2.107)

Now we note that

Xeloe X e—iap — (_1)—[Q]emso(_1)[Q]e—iw

= (—1)"[Ql(—)lR@=el = (—1)l@Q—el-[0] (2.108)

furthermore, [@ — a] — [Q] commutes with cos¢ and hence with U, because e~%, acting by

conjugation, increases both [Q — ] and [Q] by 1 (while ¢ decreases both by 1). Hence, we find

begin| v~ ; begin in| _iap v, —ia in
(W7 [ X g ™8") = (e XeT )

= (@7 |(=D)@ed ), (2.109)

in particular, if [¢'™) is almost fully supported in the interval Q € [-1/2 + |al,1/2 — |a| ], then
[y 8 ™) s very close to X [g™). If [1™) is the Gaussian ground state with (Q?) = 1./C/L, the

deviation of (1)?*8™| X |5 from 1 is suppressed by the exponential factor

begin| v~ ; begin 2
1= P X~ e (3~ 1) /%)

~ exp (m@) exp <}1\@> .

(2.110)

How much spreading in ) space should be expected? To make a crude estimate of how the

harmonic term affects the distribution in () space, we note that
e PP Qe = Q + 28y, (2.111)

and choose 3 = 7;/2L, where 7; is the time scale for the coupling to turn on; using (p?) = 2./L/C

in the Gaussian ground state, we infer that @ is shifted by an amount of order

1/4
Ty L
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Assuming 75 ~ v/ LC in order to suppress the diabatic error, we find that squeezing enhances the

1/4
exp ((constant) (é) ) ; (2.113)

that is, it contributes a subleading correction to the logarithm of the gate error.

gate error by a factor

More realistically, treating the harmonic term as a perturbative correction to the zeroth-order
Hamiltonian, which has ¢ — ¢ + 27 periodicity, the dynamics is governed by the effective Hamil-

tonian
2

Heg = 6J,C(Q) =+ %7

(2.114)
where ¢ € [—4, 1] is the Bloch momentum and € ¢ (q) is the energy of the lowest band. Expanding

this band energy to quadratic order, we have

q2

2Ceﬁ )

esc(q) ~ (2.115)

The effective capacitance Ceg is approximately C for J small, but for JC = 1, the band curvature
begins to flatten rapidly; correspondingly, C.g increases sharply, as does the oscillator’s period
27/ LC.g. The oscillator evolves adiabatically for J small, but its evolution freezes when its pe-
riod becomes comparable to 7, the characteristic time scale for the variation of the Hamiltonian.
Therefore, the squeezing error is determined by the wave function’s width in g-space at the time

when the oscillator freezes; hence,

Ccff

L L
~ exp <—(constant)> ~ exp (—(Constant)\ / C’) , (2.116)
TJ

where we obtain the last equality by choosing 7; ~ v/ LC' to suppress the diabatic error. Thus the

L
Pyy ~ exp (—(constant) )

contribution to the gate error due to squeezing is comparable to the other sources of error. We can
use a similar argument to conclude that the squeezing error arising as the coupling J(t) turns off

is also of the same order.
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2.9 Simulations

We have compared the predictions from Sections 2.4 and 2.6 to numerical simulations of the single-
qubit phase gate exp(i§Z). We solved the time-dependent Schrédinger equation for the Hamilto-
nians Hy 1 in Equation (2.15), assuming the oscillator starts in the ground state (excited states will
be considered in Section 2.10). These simulations were done in MATLAB using the fourth-order

split-operator method, which is based on the identity

Y
S tA)

exp(it(A + B)) = exp(i%tA) exp(intB) exp(i

x exp(i(1 — 2v)tB) exp(i 3

Tt A) exp(ivtB) exp(z%tA) +O@1Y), (2.117)

where
1

7:m7

and where A and B are the portions of the Hamiltonian that are diagonal in the position and

(2.118)

momentum eigenbases, respectively. The full time evolution is broken up into many small steps
with the Hamiltonian alternating between A and B and the Fourier transform or its inverse applied
between successive steps.

We assume that the coupling FJ(t) cos ¢ between the oscillator and the 0-7 qubit turns on with

an error-function profile,

J(t) = Jo (; + ;erf(t/r])> , (2.119)

and that the coupling turns off after the time delay 7 &~ L/m, according to the time-reversed function
J(7 —t); the time scale 7; for turning the coupling on and off and the time dela<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>