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Abstract

The Daya Bay Reactor Antineutrino Experiment observed the disappearance of reactor ν̄e from six

2.9 GWth reactor cores in Daya Bay, China. The Experiment consists of six functionally identical ν̄e

detectors, which detect ν̄e by inverse beta decay using a total of about 120 metric tons of Gd-loaded

liquid scintillator as the target volume. These ν̄e detectors were installed in three underground

experimental halls, two near halls and one far hall, under the mountains near Daya Bay, with

overburdens of 250 m.w.e, 265 m.w.e and 860 m.w.e. and flux-weighted baselines of 470 m, 576 m

and 1648 m. A total of 90179 ν̄e candidates were observed in the six detectors over a period of 55

days, 57549 at the Daya Bay near site, 22169 at the Ling Ao near site and 10461 at the far site. By

performing a rate-only analysis, the value of sin22θ13 was determined to be 0.092± 0.017.
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Chapter 1

Introduction

The neutrino is among the most intriguing fundamental particles. Over fifty years since its discovery,

some of its properties are known while many mysteries still remain. In this chaper, I will discuss

the current knowledge about the neutrino, and then I will briefly summarize previous endeavors

of understanding this elusive particle, and describe the role of the Daya Bay reactor antineutrino

experiment in this big puzzle.

1.1 The Theory of the Neutrino

In the Standard Model of particle physics, the neutrino is a neutral fermion with spin 1
2 . Being

electrically neutral, the neutrino does not interact electromagnetically nor through strong interac-

tion. It only interacts weakly1, through the coupling with W± (charged current) and Z0 (neutral

current). Therefore, neutrinos can only be detected through the feeble weak interaction. This is why

the neutrino is considered elusive. The neutrino comes in three flavors [36], the electron neutrino

(νe), the muon neutrino (νµ) and the tau neutrino (ντ ). They form doublets with their respective

charged lepton counterparts: (
e−

νe

)
,

(
µ−

νµ

)
,

(
τ−

ντ

)
.

Each pair can be assigned a lepton number corresponding to its flavor: the particle is assigned +1

while the antiparticle is assigned -1. The Standard Model asserts that each of these flavor lepton

1Also gravitationally, but only does so extremely feebly.
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numbers is always individually conserved.

The neutrinos are prescribed as massless in the Standard Model, which implies that they always

travel at the speed of light. However, neutrino oscillation experiments over the decades have pro-

vided strong evidence against a massless neutrino. In the following sections, I will describe some

implications of a massive neutrino, loosely following the discussions in [1] and [37].

1.1.1 The Massive Neutrino

1.1.1.1 Majorana or Dirac

For charged particles, their antiparticles always have opposite charge. Since the neutrino is neutral,

it is possible for the neutrino to be its own antiparticle. In such a case, the neutrino would be called a

Majorana particle, otherwise a Dirac particle. A particle’s antiparticle partner is its CPT conjugate,

meaning that by applying charge conjugation (C), parity (P) and time reversal (T) operators to

the particle, one gets the antiparticle. Suppose we have a left-handed neutrino (νL) and we apply

CPT conjugation on it. We will get a right-handed antineutrino (ν̄R). (As an empirical fact, only

left-handed neutrinos and right-handed antineutrinos have ever been observed.) On the other hand,

since the neutrino is massive, there exists an inertial reference frame which travels at a higher speed

than νL. In such a reference frame, νL would appear to be traveling backwards. However, since the

spin direction is unchanged by this change of reference frames (or Lorentz boost), the helicity would

change from left-handed to right-handed, and we get a right-handed neutrino (νR). Now, are νR

and ν̄R the same particle? If they are the same particle, then we have Majorana neutrinos. This

means that the neutrino and “antineutrino” that we are seeing are simply neutrinos in two different

helicity states (νL and νR). If they are distinct particles, then we have Dirac neutrinos. In this case,

we can apply CPT conjugation to νR, obtaining its antiparticle the left-handed antineutrino (ν̄L).

So, we would have four distinct states (νL νR, ν̄L and ν̄R). This is illustrated in Figures 1.1 and 1.2.
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Figure 1.1: The four distinct states of a Dirac neutrino (adapted from [1]).

Figure 1.2: The two distinct states of a Majorana neutrino (adapted from [1]).

1.1.1.2 Neutrino Oscillation

Another phenomenon enabled by non-zero neutrino mass is neutrino oscillation. As mentioned

earlier, lepton numbers for each flavor are conserved individually. Direct violation has never been

observed. However, if neutrinos of various flavors are, in fact, superpositions of different mass

eigenstates, neutrino oscillation become possible. Mathematically,

| νl〉 =
∑
i

Uli | νi〉

where | νl〉 is the flavor eigenstate for the neutrino corresponding to lepton l, | νi〉 is the ith mass

eigenstate and Uli specifies the composition of the ith mass eigenstate in the lepton l eigenstate.

The unitary matrix U = (Uli) is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix,

or simply, the mixing matrix. As the neutrino propagates, the relative compositions of the mass

eigenstates will change as the mass eigenstates propagate differently:

| νfinal〉 =
∑
i

Ulie
−iEit | νi〉
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The probability that the neutrino after propagation to be detected as the original flavor can be

calculated as:

P (νl → νl) = |〈νl | νfinal〉|2 = |
∑
i

U∗liUlie
−iEit|2 < 1

This gives rise to neutrino oscillation. Notice that if neutrinos were all massless or had the same

mass, Ei would be all equal and hence P (νl → νl) = 1 (i.e. no oscillation) since U is unitary. Thus,

neutrino oscillation occurs only if neutrinos have mass.

Currently, the model with 3 flavors and 3 mass eigenstates best describe observed data. Such

a model is described by a 3x3 mixing matrix U which is often decomposed into four matrices as

follows:

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e

−iδ

0 1 0

−s13e
−iδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1



×


e−iα1/2 0 0

0 e−iα2/2 0

0 0 1


where sij = sin θij , cij = cos θij ; θij are the mixing angles, δCP is the CP violating phase and

αi are the Majorana phase factors. Also relevant to neutrino oscillation are ∆m2
ij = m2

i −m2
j , the

difference between the neutrino masses squared, also known as mass splittings. The ordering of

the neutrino masses is referred to as the mass hierarchy. Under the current understanding of the

mixing parameters, there are two possible mass hierarchies: normal (m1 < m2 < m3) or inverted

(m3 < m1 < m2).

Matter effect The discussion above describes neutrino oscillation in vacuum. However, when

neutrinos propagate through matter, their interactions with matter will modify the effects of neutrino

oscillation. This is referred to as Mikheyev-Smirnov-Wolfenstein effect (MSW effect) or matter effect

[1, 38].
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Matter is made of quarks and electrons. As neutrinos propagates in matter, they interact with

these particles through the neutral current (Z0) or the charged current (W±). Muon neutrinos and

tau neutrinos interact with quarks and electrons only through the neutral current, which is identical

for all flavors. However, in addition to the neutral current, electron neutrinos also interact with

electrons through the charged current. This asymmetry would skew the apparent mixing angle and

mass splitting. In the two-flavor scenario,

∆m2
M = ∆m2

√
sin22θ + (cos2θ − x)2 and

sin22θM =
sin22θ

sin22θ + (cos2θ − x)2

where

x ≡ ±2
√

2GFNeE

∆m2

(positive sign for neutrinos and negative sign for antineutrinos), GF is the Fermi coupling constant,

Ne is the electron density in the material, E is the energy of the neutrino and the parameters with

subscript M are the in-matter (effective) versions of their respective in-vacuum counterparts [39].

Not only does matter effect distort mixing angles and mass splitting, it also affects meausurements

of δCP [39]. The CP-violating phase δCP describes the intrinsic difference between the neutrino and

the antineutrino with regard to propagation. When describing the antineutrino, the matter effect

parameter x defined in the previous paragraph would have an opposite sign compared to the neutrino.

This would result in different ∆m2
M and θM than in the neutrino case, thereby creating an apparent

CP-violation even when there is none.

However, the matter effect is relevant only when the electron density is high or when the neu-

trino energy is high. The strength of the matter effect depends on the parameter x which can be

approximated as,

x =


E × n

0.5 GeV
for solar mixing (∆m2 = ∆m2

12 ∼ 7.59× 10−5eV 2)

E × n
16 GeV

for atmospheric mixing (∆m2 = ∆m2
23 ∼ 2.43× 10−3eV 2)

where n is the electron number density in units of the Avogadro’s number.
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Given that the typical energy of an antineutrino from a nuclear reactor (such as the case for

Daya Bay) is in the order of several MeV and n ∼ 1, x � 1. Matter effect is therefore negligible.

While for the center of the sun, since n can be as high as 100 [40], matter effect becomes important

in this regime.

1.2 A Brief History of the Neutrino

1.2.1 From Postulation to Discovery

The story of the neutrino began in 1914, when Chadwick [41] discovered that the energy spectrum

of the electron produced in a beta decay is in fact a continuum, despite the discrete energy levels

expected of the nucleus. Pauli proposed in 1931 that along with the electron, a neutral, highly

penetrating particle is also emitted, which carries a variable fraction of the total decay energy,

which can produce a continuum. Built upon Pauli’s hypothesis, in 1933, Fermi [42, 43] formulated

the theory of beta decay and named this “invisible” particle the neutrino.

Two decades later, in 1953, Reines and Cowan [44] attempted to detect antineutrinos (ν̄e) pro-

duced by the Hanford nuclear reactor using a 300-liter tank of cadmium loaded scintillator equipped

with photomultiplier tubes (PMTs). Herr Auge, as the detector was nicknamed, made use of inverse

beta decay to detect antineutrinos from the reactor:

ν̄e + p → e+ + n

The positron would annihilate, producing two 0.511 MeV gamma rays, while the neutron would

be captured by some cadmium nucleus, emitting some gamma rays with a total energy of about

9 MeV. The positron and the neutron signals would form a clear timing signature. Unfortunately,

due to the high background rate, they didn’t produce convincing proof of the existence of the (anti-

)neutrino. In 1956, Reines and Cowan [45] made a second attempt at the Savannah River nuclear

facility. This time, they used, as detectors, a total of 4200 liters of scintillator separated in three

layers and two layers of cadmium loaded water as targets inserted in between (like a Big Mac), as

shown in Figure 1.3. With better background suppression, convincing evidence for the existence of
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Figure 1.3: Savannah River neutrino detector [2]

the (anti-)neutrino was finally found. [45]

1.2.2 Missing Neutrinos from the Sun

The sun produces energy predominantly by nuclear fusion of protons, known as proton-proton cycle

(pp). The pp cycle consists of several steps. First, two protons are fused into deuterium, giving a

positron and a neutrino in addition to some energy:

p + p → D + e+ + νe + 0.42 MeV

The deuterium nucleus would then combine with another proton to become 3He:

D + p → 3He + γ + 5.49 MeV

From here, 4He would be produced via four possible branches, some of which would produce addi-

tional neutrinos. Table 1.1 shows the neutrino fluxes from various recent solar models, and Figure

1.4 shows the neutrino energy spectrum predicted by the solar model BS05(OP).

In the late 1960s, Davis, motivated by Bahcall’s calculations, attempted to detect these solar neu-

trinos with 380 m3 of tetrachloroethlyene (CCl2=CCl2), a common dry cleaning fluid. They placed
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Model pp pep hep 7Be 8B 13N 15O 17F
BP04(Yale) 5.94 1.40 7.88 4.86 5.79 5.71 5.03 5.91
BP04(Garching) 5.94 1.41 7.88 4.84 5.74 5.70 4.98 5.87
BS04 5.94 1.40 7.86 4.88 5.87 5.62 4.90 6.01
BS05(14N) 5.99 1.42 7.91 4.89 5.83 3.11 2.38 5.97
BS05(OP) 5.99 1.42 7.93 4.84 5.69 3.07 2.33 5.84
BS05(AGS,OP) 6.06 1.45 8.25 4.34 4.51 2.01 1.45 3.25
BS05(AGS,OPAL) 6.05 1.45 8.23 4.38 4.59 2.03 1.47 3.31

Table 1.1: Neutrino fluxes from seven solar models [3]. The units are 1010(pp), 109(7Be), 108(pep,
13N,15O), 106(8B,17F), and 103(hep) cm−2s−1.

Figure 1.4: Neutrino energy spectrum predicted by the solar model BS05(OP). [3]
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it 1478 m underground in the Homestake mine [46] to shield against cosmic radiations. Chlorine

nuclei in the chemical could capture neutrinos, converting into a radioactive isotope of argon.

37Cl + νe → 37Ar + e−

The number of detected neutrinos can be deduced by counting the number of 37Ar atoms in the

periodically drawn samples from the detector. However, they only detected about one third of what

the Standard Solar Model predicted. This is known as the solar neutrino problem.

1.2.3 Confirmations of the Solar Neutrino Deficit

There were three possible explanations for such discrepancy:

1. The prediction of the solar model was not accurate.

2. Detector calibrations were flawed.

3. The behavior of the neutrino was not fully understood.

In fact, the Homestake experiment was sensitive only to a tiny fraction of solar neutrinos. The

threshold for neutrino capture on 37Cl is 0.814 MeV which lies above the endpoint energy of the

pp cycle, as seen in Figure 1.4. In order to increase the fraction of detectable neutrinos, the next

generation of experiments in the 1990s made use of 71Ga which can capture neutrinos in a similar

manner:

71Ga + νe → 71Ge + e−

but with a lower energy threshold of 0.233 MeV, so that pp neutrinos could also be detected. The

SAGE experiment (Soviet-American Gallium Experiment) located in Baksan, Russia used metallic

gallium as the target, whereas the GALLEX experiment (GALLium EXperiment) in LNGS (Labo-

ratori Nazionali del Gran Sasso), Italy chose gallium trichloride-hydrochloric acid solution (GaCl3)

as detector. These two experiments were consistent with each other, but both measured only about

one half of the neutrino flux predicted by the solar model. Inaccurate solar model still remained a

possibility. In 1994, GALLEX used a 51Cr neutrino source to calibrate the their detector and found
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that it measured 97% ± 11% of the expected neutrino rate. This suggested that imperfections in

detector calibration could not account for the discrepancy. The puzzle then became whether our

understanding about the sun was wrong, or our understanding about the neutrino was. (Of course,

in hindsight, we know the culprit was the neutrino.)

1.2.4 Searches on the Reactor Front

Over the years, measurements of reactor antineutrinos were also made in order to look for neutrino

oscillation. On the other hand, they could also see if there were similar deficits, which could provide

clues to the solar neutrino problem.

1.2.4.1 Institut Laue-Langevin and Gösgen

In the late 1970s at Institut Laue-Langevin (ILL), a scintillator and 3He based detector was built

[4]. It aimed to detect the antineutrinos generated by a 57 MW fission reactor 8.76 m away. The

inverse beta decay reaction was used for detecting antineutrino: ν̄e + p → n + e+. However, the

observed flux was consistent with the expected flux with no oscillation. Later, the upgraded ILL

detector was relocated to Gösgen, which was home to a much more powerful reactor with 2.8GWth

[47]. Measurements were made at three different distances (37.9 m, 45.9 m and 64.7 m) from the

reactor. All were consistent with the no oscillation scenario.

1.2.4.2 Rovno

Using a detector consisted of Gd-loaded scintillator, measurements of the antineutrino flux was made

at the Rovno nuclear power plant in 1987 [48]. The antineutrino flux were measured at 18 m and 25

m from the core. These results were combined as one measurement, and was consistent with the no

oscillation scenario. Another measurement involved two separate detectors placed at 12 m and 18

m from the core [49]. Reactor-related uncertainties can be reduced by looking at the relative rates

at the two detectors. However, the result was still consistent with no oscillation.
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Figure 1.5: ILL and Gösgen detector [4]

1.2.4.3 Bugey

To further reduce systematic uncertainties, the Bugey experiment used three identical detectors, con-

sisting of 600 liters of 6Li-loaded liquid scintillator, to detect antineutrinos produced by a 2800MWth

reactor. One detector was placed at 15 m from the core, the other two at 40 m [50, 51]. The 6Li

was used to detect the delayed neutron:

n + 6Li → 4He + 3H + 4.8 MeV

Although Bugey accumulated much higher statistics than the previous experiments, no breakthrough

was seen: the result was consistent with no oscillation.

1.2.4.4 Krasnoyarsk

The Krasnoyarsk experiment [5] used 513 liters of water/heavy water as antineutrino target and 3He

filled proportional tubes were used for neutron detection. The detector was placed 34 m from the

Krasnoyarsk reactor under an overburden of 600 m.w.e. Water (H2O) was used in the first (testing)

phase. Since only neutrons were detected, the detector was sensitive only to charged current events:

ν̄e + p → n + e+ (CC)
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Figure 1.6: Krasnoyarsk detector [5]. 1: photomultipliers, 2: muon veto system, 3: tank with water
(target), 4: proportional counters, 5: Teflon, 6: channel for counters, 7: steel shots, 8: graphite, 9:
boron polyethylene.

In the second phase, heavy water (D2O) was used. Now both charged current and neutral current

events could be seen by the detector, and were discriminated by neutron multiplicity.

ν̄e + d → n + n + e+ (CC)

ν̄e + d → p + n + ν̄e (NC)

The results of both phases were consistent with theoretical calculations assuming no oscillation.

1.2.5 On the Verge of Discovery

Over the decades, reactor based experiment did not show any solid evidence of neutrino oscillation.

Using kiloton scale detectors, the search continued on the solar frontier. These experiments were

eventually proven to be fruitful.

1.2.5.1 Kamiokande

Kamiokande (Kamioka Nucleon Decay Experiment) was a 2.14-kt water Cherekov detector placed 1

km underground, originally intended for proton decay studies [52, 53]. However, it was later realized

that it could be used to detect solar neutrinos. Neutrinos from the sun can elastically scatter on the

electrons and the recoiled electron would produce Cherenkov radiation that could be observed.

νx + e− → νx + e−
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Kamiokande’s huge volume means that it can capture a far greater number of neutrinos than previous

experiments. Besides, neutrinos could now be studied event-by-event, which was not possible in

previous radiochemical experiments. Unfortunately, the 2079-day worth of data Kamiokande took

between 1987 and 1995 showed only about one half of the flux predicted by the standard solar

model [53], and hence it did not resolve the solar neutrino problem. One important limitation of

Kamiokande was that although neutrinos of all flavors can elastically scatter on electrons, their

cross-sections were different [54], so there was no easy way to deduce the total number of neutrinos

of any flavor. Moreover, it could only detect neutrinos of energy above 7 MeV due to background

radiation, therefore only a tiny fraction of the solar neutrinos could be observed.

Kamiokande was also sensitive to atmospheric neutrinos. Using the technique of “ratio of ratios”

(See Section 1.2.5.4 below), the atmospheric neutrino rate was observed to be less than theoretical

prediction. This was known as the atmospheric neutrino anomaly.

1.2.5.2 CHOOZ

The CHOOZ experiment [6, 55] aimed to tackle the atmospheric neutrino anomaly using reactor

neutrinos: an absence of ν̄e deficit would indicate that νµ ↔ νe oscillation is not the dominant cause

of the anomaly.

Previous reactor based experiments typically had shorter baselines (detector-reactor distance

< 100 m). In order to probe longer baselines while maintaining decent statistics, detectors with

a larger target mass or more powerful reactors were needed. CHOOZ had both. The CHOOZ

experiment used a detector consisting of 5 ton Gd loaded liquid scintillator. It was located 1 km

from two reactors with a total thermal power of 8.5 GW. The detector was placed underground with

an overburden of 300 m.w.e. to reduce the effects of cosmogenic background.

Over the 8210 hours of data-taking which included times with 0, 1 or 2 reactors running, 2991

neutrino events were seen. The result showed good agreement with the expected spectrum assuming

no oscillation. This removed the possibility of explaining the atmospheric neutrino anomaly by

νµ ↔ νe oscillations.
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Figure 1.7: Location of CHOOZ detector and reactor [6].

Figure 1.8: The CHOOZ result showed good agreement with expected positron spectrum [6].
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Figure 1.9: The left shows the Palo Verde detector, and the right shows the result by Palo Verde [7].

1.2.5.3 Palo Verde

Similar to CHOOZ, the Palo Verde experiment [7, 56, 57] also aimed to tackle the atmospheric neu-

trino anomaly. The Palo Verde experiment had a more powerful antineutrino source than CHOOZ

and used an even bigger detector. The experiment was located near the Palo Verde Nuclear Gen-

erating Station in Arizona which was home to three reactors with a total thermal power of 11.6

GW. The Palo detector was a 11.34 ton detector consisting of Gd loaded liquid scintillator, placed

at 750 m from one reactors and 890 m from the other two. After analyzing 350 days worth of data,

no evidence of neutrino oscillation was found. This indicates that νµ ↔ νe oscillations was not

responsible for the atmospheric neutrino anomaly.

1.2.5.4 Super-Kamiokande

Being the successor of Kamiokande, Super-Kamiokande (Super-K) was a scaled up version of Kamiokande,

consisting of 50 kt ultra-pure water located 1 km underground [8, 58, 59, 60, 61, 62]. Although the

energy threshold had been lowered to 5 MeV, Super-K suffered from the problem of unequal sen-

sitivity to neutrino of different flavors, like Kamiokande. Super-K measured about a half of the

expected flux.

In addition to solar neutrinos, Super-K was also sensitive to atmospheric neutrinos produced by

cosmic rays. Atmospheric neutrinos can, for example, be produced in the following way:
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Figure 1.10: Up-down asymmetry in neutrino flux observed by Super-K [8].

π+ → µ+ + νµ

µ+ → e+ + ν̄µ + νe

A neutrino of flavor l can produce its corresponding lepton upon interaction with a nuclei AZX in

the detector:

νl + A
ZX → l− + A

Z+1X

ν̄l + A
ZX → l+ + A

Z−1X

Therefore, the flavor of the incoming neutrino could be deduced by identifying the resulting charged

lepton. The ratio of detected ν̄µ + νµ to ν̄e + νe, Nµ/Ne, was compared with the expected ratio

predicted by Monte Carlo simulation, forming the following “ratio of ratios” R.

R =
(Nµ/Ne)data
(Nµ/Ne)MC

This ratio R was found to be significantly smaller than 1. To investigate, they looked into the

up-down asymmetry of ν̄µ + νµ and ν̄e + νe flux. It was found that the up-down asymmetry of the

µ-like events deviated significantly from 0.

This data was found to be consistent with a two-flavor (νµ ↔ ντ ) oscillation model with param-

eters (sin22θ = 1.0, ∆m2 = 2.2×10−3eV 2). This was the first convincing evidence for the existence
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Figure 1.11: The Sudbury Neutrino Observatory detector [9].

of neutrino oscillation. This also strongly suggest that the atmospheric neutrino anomaly is due to

νµ ↔ ντ oscillations (assuming no sterile neutrinos).

1.2.5.5 Sudbury Neutrino Observatory (SNO)

The breakthrough to the solar neutrino problem came in 2002 from the Sudbury Neutrino Obser-

vatory (SNO) [9, 10, 63, 64, 65, 66]. SNO used 1 kt D2O placed at a depth of about 6 km water

equivalent. SNO detected neutrinos using three reactions:

νe + d → p + p + e− (CC)

νx + d → p + n + νx (NC)

νx + e− → νx + e− (ES)

The charged current (CC) reaction is sensitive only to electron neutrinos. Both the neutral current

(NC) reaction and elastic scattering (ES) are sensitive to all three flavors. While elastic scattering

has different sensitivities to neutrinos of different flavors, neutral current reaction is equally sensitive

to all three flavors. Therefore, the neutral current channel serves as a unique tool for testing whether

solar neutrinos oscillate. In 2002, SNO observed a 5.3σ excess of non-electron neutrino, and the total

number of observed neutrinos of all flavors agreed with the prediction of the standard solar model

as shown in Fig 1.12. This resolved the solar neutrino problem by confirming that solar neutrinos
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Figure 1.12: The final result from the Sudbury Neutrino Observatory detector showing agreement
between the total neutrino flux detected through the neutral current channel and the flux predicted
by the Standard Solar Model [10].

undergo flavor transformation, which can be interpreted as the result of neutrino oscillation, and

suggested that the standard solar model was accurate.

1.2.6 Precision Era

After the discovery of some convincing evidence for the neutrino oscillation phenomenon, the natural

next step was to perform precise measurements on the neutrino mixing parameters which characterize

the phenomenon. Two of the three mixing angles (θ12 and θ23) and the two mass splittings were the

first to be precisely measured.

1.2.6.1 Solar Mixing Angle θ12 and Mass Splitting ∆m2
12

A global analysis [11] which included data from Homestake, SAGE, GALLEX/GNO, Kamiokande

and Super-Kamiokande, suggested four regions where the oscillation parameters (∆m2
12, θ12) were

likely to be found (Table 1.2). KamLAND aimed at probing the so-called LMA region which was

considered to be the most promising (as shown in Figure 1.13).

KamLAND was charged to measure δm2 and tan2θ12. KamLAND consists of a 1 kt liquid

scintillator enclosed in a 13 m diameter balloon, placed among 55 reactor cores with an average

distance of 180 km, under an overburden of 2700 m.w.e. [13, 14, 67, 68]. KamLAND used the inverse
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Solution δm2 [eV 2] tan2θ12 χ2
pull ∆χ2

pull

LMA 5.5× 10−5 0.42 73.4 0 (global minimum)
LOW 7.3× 10−8 0.67 83.8 10.4
QVO 6.5× 10−10 1.33 81.2 7.8
SMA 5.2× 10−6 1.1× 10−3 96.9 23.5

Table 1.2: Position and values of the global minimum (LMA) and three local minima (LOW, QVO,
SMA). [11]

Figure 1.13: Confidence level contours in the (δm2,tan2θ12) parameter space [11]. The blob near
the top right hand corner correspond to the LMA solution. Note that the SMA solution does not
appear in this figure because of its low confidence level.
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Figure 1.14: KamLAND detector [12].

beta decay process to detect antineutrinos and the delayed neutron was captured by hydrogen atom

which gave out a 2.2 MeV gamma ray.

1H + n→ 2D + γ(2.2MeV )

The energy in the gamma ray would be transferred to a charged particle, mainly to an electron

through Compton scattering. The charged particles would produce scintillations in the liquid scin-

tillator, which would be detected by the 1879 PMTs lined the inner part of the detector.

After accumulating 162 ton-yr worth of data, a significant deficit in the observed neutrino rate

was found:

Nobs−NBG
Nexp

= 0.611± 0.085(stat)± 0.041(syst)

This suggested that reactor neutrinos also undergo oscillation. On the other hand, the result of a two-

flavor analysis strongly favors the LMA solution, rejecting the other three (Figure 1.15). KamLAND

was also the first to observe spectral distortion in antineutrino energy [68]. With more data, in 2008,

KamLAND produced an improved measurement of the solar mixing parameters (Figure 1.16).

1.2.6.2 Atmospheric Mixing Angle θ23 and Mass Splitting ∆m2
23

As described in the previous section, Super-K was the first experiment to provide convincing evidence

for the oscillation of atmospheric neutrinos. However, θ23 and ∆m2
23 were not very precisely measured
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Figure 1.15: First result from KamLAND [13]

Figure 1.16: Latest result from KamLAND [14]
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Figure 1.17: Result from K2K [15]

[8]. To increase statistics and to gain more control over neutrino source, in collaboration with the

High Energy Accelerator Research Organization (Kou Enerugi Kasouki Kenkyuu Kikou, KEK),

the KEK-to-Kamioka (K2K) experiment was established [15, 69, 70, 71, 72, 73]. K2K used the

12 GeV proton synchrotron at KEK to generate a νµ beam, which passes through a near detector

at KEK. The beam would reach Super-K, located 250 km away, which served as the far detector.

Disappearance of νµ was measured. With the analysis of 0.922 × 1020 protons-on-target (POT)

worth of data, the value of θ23 was not tied down, but sin22θ23 was expected to be close to 1, while

|∆m2
23| was estimated to be between 1.9 and 3.5× 103eV 2 at the 90% CL.

Another accelerator-based experiment Main Injector Neutrino Oscillation Search (MINOS) also

aimed at improving the measurements of θ23 and ∆m2
23 [16, 74, 75]. The Neutrinos at the Main

Injector (NuMI) νµ beam produced by 120 GeV protons from the Main Injector at Fermilab would

first passes through the 0.98 kt near detector located 1 km away and would then reach the 5.4 kt

far detector located 735 km away in the Soudan Iron Mine in Minnesota. Both the near and the far

detector were tracking calorimeters, composed of alternating layers of steel and scintillator. Over

six years of data taking, 7.25 × 1020 POT were collected. By looking for νµ disappearance, the

experiment produced more precise estimate of ∆m2
23 (2.32+0.12

−0.08 × 10−3eV 2) and a lower bound for
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Figure 1.18: Result from MINOS [16]

sin22θ23 (sin22θ23 > 0.9 at 90% C.L.). To date, these are the best measurements of these two

oscillation parameters.

1.2.7 The Last Mixing Angle θ13

Being the last unknown mixing angle, θ13 is, of course, important in its own right. In fact, having

a precise measurement of θ13 would enable us to study the other parameters in the MNSP matrix,

for example, the CP-violating phase δCP , which is essential to understanding CP-violation in lepton

sector. The matter effect, which also depends on θ13, is important for determining the mass hierarchy.

From a broader perspective, this mass mixing model for neutrino oscillation would serve as useful

inputs to the building of the next Standard Model of particle physics, and a precise measurement of

θ13 would open the door to all these.

1.2.7.1 Tokai-to-Kamioka (T2K)

T2K [17], the successor to K2K, aims at measuring θ13 by looking for the appearance of νe in a

νµ beam. Like K2K, T2K uses Super-K as the far detector which is 295 km away, but rather than

KEK it uses the more powerful main synchrotron at J-PARC as the source of νµ. In 2011, with

1.43 × 1020 protons on target, T2K observed 6 νe candidates, in excess of the expected 1.5 ± 0.3
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Figure 1.19: The left plot shows 6 νe events seen by T2K in 2011 [17], and the right plot is an
update in 2013 with 11 events [18]. The blue arrow in both plots represents the selection criterion
Erecν < 1250 MeV, which aimed to minimize the intrinsic νe background.

assuming no oscillation [17]. This translates into 0.03 < sin22θ13 < 0.28 at 90% C.L. for normal

hierarchy. A recent update [18] reported that a total of 11 events have been observed, yielding

sin22θ13 = 0.088+0.049
−0.039.

1.3 The Daya Bay Experiment

The Daya Bay Experiment aimed to improve the precision of the θ13 measurement using a relative

flux measurement of reactor neutrinos. The following simplified example illustrates this strategy.

1.3.1 An Illustration: One-reactor Two-detector Case

It is instructive to consider the simplified situation where we only have one detector at a far site

and one detector at a near site observing antineutrinos from one reactor core. In this situation, we

have the following equation which describes how our measurements relates to sin22θ13, the quantity

that we want to determine.

Nn =
Φ

L2
n

nnεnPsur(E,Ln)

Nf =
Φ

L2
f

nf εfPsur(E,Lf )
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where

Nn/Nf is the number of detected antineutrinos by the near/far detector.

Φ is the total 4π antineutrino flux from the reactor core.

Ln/Lf is the distance between the reactor core and the near/far detector.

nn/nf is the number of target protons in the near/far detector.

εn/εf is the detection efficiency of the near/far detector.

Psur(E,L) is the survival probability of the antineutrino of energy E over a distance L.

From this equation, we can identify some sources of uncertainty. First, notice that sin22θ13 is

buried inside the factor Psur(E,L). The first factor on the left hand side of the equation, Φ
L2
d

(where

d = n or f), is related to reactor flux and reactor location while the factor ndεd (where d = n or f)

stems from detector properties. Nd (where d = n or f), on the right hand side, will be determined

with the data. So, in addition to statististical uncertainty in Nd, uncertainty due to background

subtraction would also contribute.

If we take the ratio of these two equations, we can obtain the following equation.

Nf
Nn

=

(
nf
nn

)(
Ln
Lf

)2(
εf
εn

)[
Psur (E,Lf )

Psur (E,Ln)

]
Now the dependence on reactor flux has been completely eliminated, and those factors are replaced

with their near/far ratios. That means instead of the absolute uncertainty in those factors, our

concern now should be the uncertainty in their ratios, or the relative uncertainty.

1.3.2 Other Contemporary θ13 Experiments

There are two other reactor-based experiments that are similar to Daya Bay: Double CHOOZ and

RENO. Both of them employ strategies similar to Daya Bay’s for measuring θ13. They will be briefly

discussed in the next chapter.



26

Chapter 2

The Experiment

The Daya Bay reactor neutrino experiment aims to determine sin22θ13 with a sensitivity of 0.01 at

the 90% confidence level by comparing relative neutrino rates and spectra at various baselines.

2.1 Sites

The Daya Bay Nuclear Power Complex is located at Daya Bay, about 50 km northeast of Hong Kong

and about 40 km east of Shenzhen. It consists of 6 reactor cores, located at 3 power plants as shown

in Figure 2.1: Daya Bay Nuclear Power Plant, Ling Ao I Nuclear Power Plant and Ling Ao II Nuclear

Power Plant; each having 2 cores. Each core produces a thermal power of about 2.9 GW, emitting

roughly 6 × 1020 ν̄e per second. This is a good source of reactor neutrinos that the Experiment

can make use of. On the other hand, the hilly terrain in the region provides adequate overburden

for shielding against cosmogenics. This makes Daya Bay an attractive location for establishing a

reactor neutrino experiment.

To maximize the disappearance effect in the antineutrino flux, the locations for the two near sites

and the far site had to be carefully chosen. As seen in Figure 2.2, the probability of disappearance

due to θ13 attains a maximum at about 2 km, which indicates that this is a good location to establish

the far site. When combined with a measurement of the antineutrino flux in close proximity to the

reactors (near site), the uncertainty in reactor antineutrino flux can be greatly reduced, enabling a

precise measurement of sin22θ13.

Optimizing the site locations requires balancing different factors, for example, reactor neutrino
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Figure 2.1: Site map showing the Daya Bay Reactor Cores, Ling Ao Reactor Cores and the antineu-
trino detectors.

Daya Bay Near Ling Ao Near Far
(EH1) (EH2) (EH3)

Overburden [m.w.e.] 250 265 860
Muon rate [Hz] 1.27 0.95 0.056
Mean muon energy [GeV] 57 58 137
Distance from D1/D2 [m] 364 1348 1912
Distance from L1/L2 [m] 857 480 1540
Distance from L3/L4 [m] 1307 528 1548

Table 2.1: Site information including baselines and overburdens.

Figure 2.2: Antineutrino disappearance probability as a function of distance from reactor core. The
blue and the green lines show respectively the contribution from θ12 and θ13 while the red line shows
the sum of the two.
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flux, amount of overburden, systematics and other uncertainties. For the near sites, apart from

placing them as close to the reactors as possible while having good overburden, each of them should

also be situated such that it is equidistant from the cores it monitors, so that the uncorrelated part

of the reactor-related uncertainties could be minimized. While for the far site, it is best to locate it

at the distance of about 2 km from all cores where the disappearance attains a maximum. However,

at such a location, the overburden is only 200 m. To gain more overburden, the far site was, instead,

positioned about 500 m east of that equidistant point. The site locations were optimized by using

a global χ2 analysis. Their amounts of overburden are shown in Table 2.1.

2.2 Reactor

The Daya Bay and Ling Ao reactor cores are used as sources of antineutrinos. These reactor cores

generate heat and hence electricity mainly from the fission of 235U, 238U, 239Pu and 241Pu, and the

fission fragments of these isotopes can often beta-decay producing antineutrinos:

“n” → p + e− + ν̄e

where “n” indicates a bound neutron. The emitted antineutrinos would then propagate away from

the core, a tiny fraction of which would be detected by our detectors.

2.3 Detector

Eight movable, modular, functionally identical antineutrino detectors (ADs) are constructed for

observing the antineutrinos. The ADs detect antineutrinos via inverse beta decay (IBD). When

traversing matter, an antineutrino can, with a very small cross-section (Figure 2.3), weakly-interact

with a proton, giving a positron and a neutron.

ν̄e + p → e+ + n

The AD designed to capture both the positron and the neutron from inverse beta decay. The

target volume in the AD composes of a LAB-based liquid scintillator loaded with 0.1% Gd (GdLS).
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Figure 2.3: Inverse beta decay cross-section as a function of antineutrino energy. [19]

Figure 2.4: Diagram illustrating the inverse beta decay (IBD).

When an IBD occurs in GdLS, the positron would promptly annihilate with an electron, giving

out some 511 keV annihilation photons (prompt signal). Some of the neutrons would eventually

be captured by Gd nuclei, giving out characteristic capture gammas with a total energy of about 8

MeV (delayed signal). With the designed Gd concentration the two signals would occur about 30

µs apart.

Prompt signal: e+ + e− → γ + γ

Delayed signal: n + nGd → n+1Gd∗ → n+1Gd + Σγ
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Both the prompt and the delayed signal would produce scintillations and are viewed by photo-

multiplier tubes (PMTs) lined along the inner wall of the AD. There would be two phases of op-

eration: Phase 1 would be a partial configuration with 6 ADs, and Phase 2 would be the full

configuration with all 8 ADs. In the first phase, 2 ADs are placed at the Daya Bay Near Site, 1 at

the Ling Ao Near Site and 3 at the Far Site (2-1-3 arrangement). In the second phase, one more

will be placed at the Ling Ao Near Site and another at the Far Site (2-2-4 arrangement).

2.4 Background

Given the timing structure of the IBD signal (prompt + delayed), backgrounds can be categorized

into two types: correlated and uncorrelated. Correlated background refers to backgrounds, orig-

inating from a single source, which can mimic the IBD timing structure, while uncorrelated (or

accidental) backgrounds refer to those originating from different sources, which can only mimic the

timing structure accidentally.

There are four major sources of correlated backgrounds in the current experiment: 9Li/8He, fast

neutrons, 241Am-13C and natural radioactivity.

9Li/8He, which are produced by cosmogenic muons, have significant branching fraction for beta-

neutron decay. The emitted beta can mimic a prompt signal, while the neutron produces a delayed

signal.

Fast neutrons are also produced by cosmogenic muons through spallation in matter. One scenario

of correlated background is when the neutron produced in the surrounding rock diffuses into the

detector, and generates a proton recoil signal in the detector which, mimics the prompt signal. Then

the neutron is later captured on a Gd nucleus, which produces a delayed signal.

241Am-13C (or simply AmC) is a neutron source intended to be used for detector calibration.

Neutrons from the AmC can inelastically scatter in the stainless steel vessel, which contains the

detector, and are eventually captured by some nuclei in the the stainless steel, giving out energetic

gamma rays. This could mimic the prompt-delayed timing signature if both gamma rays enter the

AD.
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Natural radioactive isotopes outside the detector can normally only contribute to accidental

background through gamma emissions. However, if the there are radioactive contaminants present

in the detector, alpha emitters in the decay chains can cause (α,n) reaction, e.g. 13C(α,n)16O. In

addition to the neutron, the resulting isotope can sometimes emit a gamma almost immediately

(< 1ns) after neutron emission. This additional gamma can mimic a prompt signal, while the

neutron produces a delayed signal.

Accidental background is produced by single hits (or simply singles) of the detector. An ac-

cidental coincidence is formed when a pair of singles happen to survive all selection cuts and is

(mis-)categorized as an IBD candidate. Due to its stochastic nature, accidental background can be

precisely estimated with measured singles rate and is then statistically subtracted.

2.5 Uncertainties

There are two types of uncertainties: statistical and systematic. Due to the proximity to the reactor

cores, we anticipate copious amount of antineutrinos. This allows us to collect high statistics, hence,

limiting the effect of statistical uncertainty. In the long run, however, systematic uncertainties

dominate.

The experiment is designed to make relative flux and spectral measurements among detectors at

various sites. Hence we are more concerned with relative systematic uncertainies among detectors.

In other words, systematic uncertainties that are correlated among detectors are more “benign”

because they tend to “cancel” each other out in the case of a relative measurement.

Systematic uncertainties can be further classified according to their source. Below is a brief

description of these categories of systematic uncertainties.

2.5.1 Reactor-related Uncertainty

The placement of the experimental halls, by design, should have largely cancelled the correlated

uncertainty in antineutrino flux from reactor cores, though some residual uncorrelated uncertainty

remains. For example, fluctuations in power, fission fractions, and the amount of spent fuel nearby
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could be uncorrelated among reactor cores. The accuracy in locating the reactor cores relative to the

detector also contributes albeit small. The uncorrelated uncertainty in the reactor flux is estimated

to be 0.8%. The residual uncertainty in sin22θ13 is about 0.05 of this value. (See Chapter 3)

2.5.2 Detector-related Uncertainty

The ADs are designed to be functionally identical, which means that the properties of the detector,

mechanical, chemical or optical, should be “as identical as possible”. As discussed above, relative

difference in the number of target protons and the detection efficiency is the main source of un-

certainty. The detector-related uncertainty is estimated to be 0.2%. (See Chapter 4 and Chapter

8)

2.5.3 Background-related Uncertainty

As mentioned in Section 2.4, there are several major sources of background. Accidental background

ranges from about 3 per day per AD in the far site and about 10/7 per day per AD in the Daya

Bay/Ling Ao near sites. The uncertainties are very small due to the relatively high singles rates. The

rates of the correlated backgrounds are low, often in the order of 1 per day which is about 0.1%/1%

of the expected IBD rate at a near/far detector. Due to the complex production mechanism of some

backgrounds, it is sometimes not easy to determine the systematic uncertainty of their rates. (See

Chapter 9 for details)

2.6 Other Contemporary θ13 Experiments

2.6.1 Double CHOOZ

In fact, CHOOZ, the predecessor of Double CHOOZ [76], was among the earliest to produce an

upper limit for sin22θ13 by comparing the observed ν̄e flux with expected ν̄e flux from the reactor

core. (sin22θ13 < 0.17 for large ∆m2
23)

In addition to the original CHOOZ detector, a near detector was planned to be constructed 280 m
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from the reactor cores. Double CHOOZ would look for ν̄e disappearance by comparing ν̄e fluxes the

near detector and the far detector. But before the completion of the near detector, a measurement of

sin22θ13 was made, using only the data from its far detector. In this far-only phase, the sensitivity

was limited by the uncertainty in the average IBD cross-section 〈σf 〉 which is defined as the sum of

the average IBD cross-section of all fission isotopes 〈σf 〉k weighted by the respective fission fractions

αk; and the average IBD cross-section of each fission isotopes is defined as the convolution of its ν̄e

spectrum Sk(E) and the IBD cross-section σIBD(E). This can be written as,

〈σf 〉 =
∑
k

αk〈σf 〉k =
∑
k

αk

∫ ∞
0

dESk(E)σIBD(E)

The main source of uncertainty, which is about 3%, comes from Sk(E). The effect of this uncertainty

was reduced by a technique referred to as “anchoring”. The rate measurement of Bugey4 [77] is

used as an anchor for calculating the average IBD cross-section for reactor R in the following way:

〈σf 〉R = 〈σf 〉Bugey +
∑
k

(αRk − α
Bugey
k )〈σf 〉k

The Bugey4 anchor point has a relatively small uncertainty of 1.4%. Together with the smallness of

the difference in fission fractions (αRk − α
Bugey
k ), the uncertainty in 〈σf 〉R can be reduced. In July

2012, Double CHOOZ published a measurement of sin22θ13, using the anchoring technique:

sin22θ13 = 0.109 ± 0.030 (stat) ± 0.025 (syst)

2.6.2 RENO

RENO is reactor based experiment located near the Yonggwang Nuclear Power Plant in Korea

[20, 78]. Compared with Double Chooz, RENO’s design more closely resembles Daya Bay’s. It

has two identical detectors, one located at 294 m from the reactor cores and the other 1383 m.

Each detector contains 16 t of Gd-loaded liquid scintillator as the target. The detectors also have

a similar three-zone design, but instead of reflective panels on the top and bottom of the detector,

additional PMTs are installed there. There are a total of 354 10”-PMTs per detector giving a

14% photocoverage. Taking everything together, RENO would have a similar ν̄e detection rate per
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Figure 2.5: Layout of the RENO experiment. [20]

Figure 2.6: RENO detector. [20]

detector as Daya Bay. In April 2012, using 229 days worth of data, RENO published a measurement

of sin22θ13:

sin22θ13 = 0.113 ± 0.013 (stat) ± 0.019 (syst)
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2.6.3 Summary

The following table shows the comparison among Daya Bay, Double CHOOZ and RENO.

Total Reactor Detector Overburden Target Mass

Experiment Thermal Output Distance Near/Far (Near/Far)

(GWth) Near/Far (m) (m.w.e.) (t)

Daya Bay 17.4 364(480)/1912(1540) 250/860 20×2/80

Double CHOOZ 8.7 260/1050 115/300 10/10

RENO 16.4 292/1380 110/450 16/16
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Chapter 3

The Reactor Cores

Although the experiment is set up so that the reactor-related uncertainties that are correlated can

be neglected, there are still some residual uncorrelated uncertainties originating from reactors that

cannot be neglected. This prompted us to better understand how neutrinos are produced in the

reactors and how this would affect the accuracy in estimating the expected flux and energy spectrum

of the anti-neutrinos passing through our detectors.

3.1 Antineutrino Production at the Reactor Cores

The Daya Bay reactors cores are Pressurized Water Reactors (PWR) (Figure 3.1), which generally

produce electricity using nuclear fissions of heavy isotopes, e.g. 235U, 238U, 239Pu and 241Pu. Heat

is first generated from fission products, mainly through neutrons. The pressurized water in which

the fuel rod are immersed, are passed to the steam generator, which in turn produces steam (the

primary loop). The steam then drives a turbine which is connected to a generator that eventually

produces electricity (the secondary loop).

Typically for a fresh fuel rod, 69% of the fissions come from 235U, 7% from 238U, 21% from 239Pu

and 3% from 241Pu [34]. As the reactor runs, fuel composition would change and the fission fragment

would gradually build up. The fission fragments can often beta-decay: n→ p+e−+ ν̄e. These fission

fragments beta-decay at various energies and half-lives, and hence the antineutrino spectra differ.

Therefore, we expect that the overall energy spectrum of antineutrinos produced would evolve over

time. Mathematically [79],
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Figure 3.1: An illustration of a Pressurized Water Reactor (PWR). [21]

S(Eν , t) =
Wth

Σifi(t)ei

∑
i

fi(t)Si(Eν)

where

ei: Energy produced by one fission of isotope i

Wth: Total heat generated by the reactor core

fi(t): Fractional contribution of isotope i to the total number of fissions

Si(Eν): Antineutrino energy spectrum of isotope i

3.2 Estimating the Expected Antineutrino Spectrum

In order to estimate the antineutrino spectrum, there are several parameters that we need to de-

termine: Energy produced by one fission of isotope i, ei; the total thermal power generated by the

reactor core, Wth; the fractional contribution of isotope i to the total number of fissions, fi(t); the

antineutrino energy spectrum of isotope i, Si(Eν).



38

Isotope Energy per Fission [MeV]
235U 201.92 ± 0.46
238U 205.52 ± 0.96

239Pu 209.99 ± 0.60
241Pu 213.60 ± 0.65

Table 3.1: Energy produced by one fission of isotope each isotope (ei). [34]

3.2.1 Energy Produced by One Fission of Isotope i (ei)

The energy produced in the fission of these isotopes has been calculated in [34] and is tabulated in

Table 3.1. This is expected to contribute a 0.2% correlated uncertainty.

3.2.2 Total Thermal Power Generated (Wth)

The daily thermal power measurement is provided by the nuclear power plant. There are two systems

that measures the heat balances in the core, namely, the KIT/KDO system and the KME system.

The thermal power data that the power plant provides comes from the KIT/KDO system, which

based on the measurement of the temperature, pressure, and the input water flow rate in the primary

loop. The KME system, which measures similar quantities in the secondary loop and has a higher

accuracy than the KIT/KDO system, serves as a monthly calibration benchmark for the KIT/KDO

system. The uncorrelated uncertainty of such measurements are estimated to be 0.5% [80].

3.2.3 Fractional Contribution of Isotopes (fi(t))

The evolution of isotopic composition in a fuel rod is related to how reactors operate. Generally, the

235U and the 238U content would decrease over time, while the 239Pu and the 241Pu content would

increase. However, to accurately estimate the fuel composition, simulations of the reactor cores

are typically performed by the power plant company. For Daya Bay, reactor core simulations were

performed by the power plant company using SCIENCE [81], a simulation package developed by

CEA France with APOLLO2 as its core component. The isotopic compositions from the simuation

are also provided by the nuclear power plant. The fission fractions are assumed to be proportional to

the isotopic compositions. The uncertainty in isotopic composition, and hence the fission fractions, is

estimated to be 5% [82]. To understand the uncorrelated uncertainties between the fission fractions,
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Figure 3.2: Energy spectrum of antineutrinos from fission.

a DRAGON [83] model was constructed. By varying the input fission fractions to the model, the

correlation between fission fractions can be studied. The uncorrelated uncertainty in antineutrino

flux between reactor cores can be calculated to be 0.6% [80]. The spatial distribution of the isotopes

in the core was found to have negligible effect.

3.2.4 Antineutrino Energy Spectrum of Isotopes (Si(Eν))

The antineutrino energy spectrum for the isotopes 235U, 239Pu and 241Pu were measured at ILL

[84, 85, 86]. They were shown to agree with the Bugey 3 measurement [87]. Huber [88] improved the

ILL-measured spectra. A theoretical calculation for 238U was done by Vogel [89] and was improved

by Mueller et al. with an ab initio calculation [90]. The reactor flux models are expected to have a

correlated uncertainty of about 3%.

3.2.5 Non-equilibrium and Spent Nuclear Fuel

The duration of the ILL measurements were around 1 to 2 days. With this short duration, short-lived

isotopes, which could beta-decay, would have a stronger contribution to the antineutrino spectrum

than in an actual reactor. Meanwhile, the relatively long-lived isotopes would not have sufficient
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Figure 3.3: Expected antineutrino energy spectrum.

time to equilibrate. On the other hand, in the actual reactor, spent nuclear fuel, which still continues

to beta decay, is stored near the reactor core. These modify the antineutrino spectrum as follows:

Si(Eν) = SILL(Eν) + Slong-lived(Eν)− Snon-eq(Eν)

Due to the lack of information, the effect due to spent nuclear fuel cannot be easily corrected and is

therefore treated as an uncertainty [91, 92]. The effect due to non-equilibrium is corrected according

to [90]. The contribution by spent fuel to the antineutrino flux of each reactor core is about 0.3%

and this is taken as an uncorrelated uncertainty.

3.2.6 Expected Antineutrino Spectrum

Combining the quantities obtained above, we can construct the energy spectrum of antineutrinos

expected to be detected by convolving the IBD cross-section with the expected antineutrino energy

spectrum (Figure 3.3).

3.3 Baselines

The coordintes of the reactor cores relative to the detectors are determined with a system of GPS

and total stations to a precision of 18 mm [93]. Table 3.2 shows all the baselines between each



41

D1 D2 L1 L2 L3 L4
AD1 362.377 371.759 903.470 817.162 1353.622 1265.319
AD2 357.937 368.411 903.351 816.900 1354.233 1265.890
AD3 1332.475 1358.144 467.571 489.574 557.580 499.207
AD4 1919.630 1894.335 1533.177 1533.625 1551.381 1524.937
AD5 1917.516 1891.974 1534.916 1535.029 1554.764 1528.043
AD6 1925.253 1899.859 1538.927 1539.465 1556.341 1530.076

Table 3.2: Baselines between each detector and each reactor core in meters. [35]

detector and each reactor core. Uncertainties in baselines are clearly negligible. The baselines were

initally blinded before the analysis method was finalized.

3.4 Summary of Uncertainty

The reactor-related uncertainties are summarized below.

Correlated Uncertainty [%] Uncorrelated Uncertainty [%]

Energy per fission 0.2 Power 0.5

ν̄e per fission 3 Fission fraction 0.6

Spent fuel 0.3

Combined 3 Combined 0.8

The residual uncertainty in the final measurement of sin22θ13 can be further reduced if we

consider the following combination of ratios of event rates:

ρ =

α
∑
r

φr
(LDYBr )2

+
∑
r

φr
(LLAr )2∑

r

φr
(LFarr )2

where φr is the total antineutrino flux from core r, LXr (X=DYB, LA, Far) are the baselines and α

is a constant that can be tuned so that ρ has minimal sensitivity to antineutrino flux fluctuations.

Notice that without oscillations, ρ is determined completely by geometry once α is given. For the

Daya Bay configuration, α can be determined to be about 0.4. With this α, the uncertainty in ρ

is about 0.05 of the original uncorrelated uncertainty in antineutrino flux. This procedure was not

explicitly performed in the final analysis as the fluxes were allowed to vary in the χ2 minimization
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to achieve optimal weighting.
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Chapter 4

The Antineutrino Detectors

The AD consists of three nested concentric cylindrical containers. The innermost one, known as

Inner Acrylic Vessel (IAV), contains 0.1% Gd-loaded liquid scintillator (GdLS). The IAV is made of

acrylic and has a diameter and a height of about 3.1 m. This region serves as the target volume,

where IBD events would be detected. The Outer Acrylic Vessel (OAV), having a diameter and a

height of about 4 m, contains unloaded liquid scintillator (LS) in addition to the IAV which serves

as a gamma catcher. The outermost one is the Stainless Steel Vessel (SSV) which contains mineral

oil (MO), used as a buffer for shielding the LS from external radiation. A total of 192 Hamamatsu

8” PMTs are mounted on removable ladders that are secured on the inner wall of the SSV with rails.

A radial light shield, made of black tyvek, was installed on the PMT ladders, to simplify the light

propagation in the AD, and hence, reconstruction algorithms. Inside the SSV, two reflective panels

were mounted at the top and at the bottom of the MO buffer region, to enhance photo-coverage

and uniformity of the detector. Three Automated Calibration Units (ACU) sit on top of each AD:

one at the center of the AD, one at the edge of the target volume, and one at the gamma catcher

region. Each ACU houses some radioactive sources and an LED, for periodic calibrations of the

AD. The AD is also equipped with various sensors for monitoring temperature and liquid levels,

etc. At each site, the ADs are submerged in an octagonal water pool (or water shield) for shielding

against ambient background. The water shield is lined with some 8” PMTs (288 at each of the near

sites, 368 at the far site) and is partitioned into two optically separate parts, the Inner Water Shield

(IWS) and Outer Water Shield (OWS). Both the IWS and the OWS act as Cherenkov detectors for
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r=1350 r=0 

r=1772.5 

Figure 4.1: Internal structure of the Daya Bay antineutrino detector. The inner acrylic vessel (IAV)
holds the Gd-loaded liquid scintillator which serves as the target. The outer acrylic vessel (OAV)
holds regular liquid scintillator which serves as the gamma catcher. The outermost zone inside the
stainless steel tank where PMTs are located is filled with mineral oil. The target zone is monitored
by two ACUs, A (r=0 cm) and B (r=135.0 cm). ACU C (r=177.25 cm) monitors the gamma catcher
zone. Three vertical source deployment axes are indicated by the dashed lines.

Figure 4.2: A photo showing the antineutrino detectors inside the water pool at the far site.
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tagging muons. An array of RPCs are placed over the water pool as an additional muon detection

system. Having multiple muon detectors can not only increase muon veto efficiency, but can also

allow for a more accurate determination of this efficiency.

4.1 Target Volume and the Gamma Catcher

The target volume, is about 20 tons of GdLS, consists primarily of linear alkylbenzene (LAB),

which is used as the scintillator base. 3 g/L of 2,5-diphenyloxazole (PPO) and 15 mg/L of 1,4-bis[2-

methylstyryl]benzene (bis-MSB) are added as wavelength shifters (from UV to 430 nm blue light)

and 0.1% Gd (as a compound with 3,5,5-trimethylhexanoic acid (TMHA) in the form of Gd(TMHA)3

complex) for capturing neutrons. Except for the absence of Gd, the 20 tons of LS used in the gamma

catcher is, otherwise, identical to GdLS. When a charged particle or a high energy photon deposits

energy in the GdLS or LS, the scintillator becomes excited, giving out UV light as it de-excites. The

UV photons are then shifted to visible light at a wavelength of about 430 nm by the fluors PPO and

bis-MSB (Figure 4.3). The light would then be detected by the PMTs. The density of GdLS and

LS are about 0.86 g cm−3. The attenuation length of GdLS at 430 nm is measured to be >20 m.
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Figure 4.3: Emission spectrum of GdLS for different ADs (in different colors).

4.2 Oil Buffer Region (MO)

The oil buffer region consists of 40 tons of mineral oil. The purpose of having this layer is to

shield natural gamma radiation from the PMTs and the surroundings from reaching the scintillating

regions. It also helps shield the detector from neutrons generated outside the detector. The density

of the mineral oil is about 0.85 g cm−3, which closely matches with that of GdLS and LS to reduce

the effect of buoyancy and the stress on the acrylic vessels. The attenuation length is >20 m.

4.3 Photomultiplier Tubes (PMTs)

A total of 192 Hamamatsu R5912 8” low-radioactivity PMTs were installed in each detector in

8 rows (or rings) and 24 columns, each separated by 0.5 m vertically and 15 degrees in azimuth,

providing an effective photocoverage of 12%. Structurally, the PMTs were mounted on 8 ladders,

each with 3 columns of PMTs. The ladder was covered with black Tyvek panels of low reflectivity

mainly to simplify vertex reconstruction due to reflections. Each PMT was wrapped in a 16 µm

thick FINEMET R© foil to reduce the impact of terrestrial magnetic field on the PMTs.
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4.4 Reflective Panels

Two specular reflectors were installed at the top and the bottom of the AD to enhance uniformity and

photocoverage. The reflectors are made of a reflective film (Vikuiti R© Enhanced Specular Reflector,

or ESR), developed by 3M, sandwiched between two acrylic panels. They have reflectivity above

98% across most of the relevant spectrum.

4.5 Calibration System

To better understand the energy response of the detector and to monitor its time variation, two

calibration systems were developed. The automated calibration system can deploy radioactive or

light sources along 3 axes: the central axis (A), the off-center axis (B) and the gamma catcher region

(C). The ACU, which is installed on each axis, contains three deployment capsules: LED, 241Am-13C

with 60Co, and 68Ge. The sources in the ACU were deployed weekly. Three LEDs were mounted

on the PMT ladders (MOLEDs) and six Hamamatsu R7724 2” PMTs were installed at the top and

the bottom of the AD (2” PMTs). These help monitor the clarity of all liquids. To supplement

the automated system, the manual calibration system had also been constructed. It consists of a

robotic arm with a 239Pu-13C and 60Co attached at the tip. The robotic arm could reach into the

AD through the ACU A penetration and would be able to locate the sources essentially anywhere

inside the target volume.

Source Type Energy Half-life Rate [Hz] Auto/Manual System
LED visible γ 430 nm - 500 (adjustable) Auto
68Ge e+ 1.022 MeV 270.95 d 10 Auto
60Co γ 2.5 MeV 1925.28 d 100 Auto and Manual
241Am-13C n ∼8 MeV* 432.6 y ∼0.5 Auto
239Pu-13C n ∼8 MeV* 24110 y ∼1000 Manual

Table 4.1: List of calibration sources. (* Energy of the capture gammas.)
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Neutron source (Am-C)  
+ Gamma source (Co-60) 

Gamma source (Ge-68) 

Turntable 
l For source selection 
l Equipped with forward 
and reverse limit 
switches 

Load cell: Monitors 

tension in the cable 

Limit switch: 
Limits the range of 
source motion 

Camera with 

IR LEDs: 

mounted on the 

inside of the 

bell jar 

SS Bell Jar: 

enclosing ACU 

Borated-Polyethylene neutron shield Stainless gamma shield 

LED (~430 nm)  
with diffuser ball 

Stepper motor with  

worm gear box 

Figure 4.4: An overview picture of an ACU.

4.6 Muon Veto

Some of the major backgrounds are caused by cosmogenic muons. Although the detectors are located

under a mountain, energetic muons can still penetrate, triggering the detectors. Two independent

muon detectors, a water Cherenkov detector (which is further partitioned into two detectors) and a

Resistive Plate Chamber (RPC) detector, are set up to tag muons with an efficiency > 99.5% and

uncertainty < 0.25%.

4.6.1 Water Cherenkov Detectors

Surrounding the ADs is a pool of deionized water. It provides an at least 2.5 m of passive shielding,

in addition to serving as a Cherenkov detector. The water pool is partitioned into two regions, the

inner water shield (IWS) and the outer water shield (OWS), by a layer of opaque tyvek. A total

of 288 8” PMTs were installed in each near sites, and 384 in the far site. Some of these PMTs are

recycled from the MACRO experiment [94].
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Figure 4.5: Structure of an RPC.

4.6.2 Resistive Plate Chambers (RPC)

To supplement the water Cherenkov detectors and to allow cross-calibration between muon tagging

systems, an array of RPC modules are laid on top of the water pool in each site. 54 modules are

installed in each of the near sites, and 81 in the far site. In addition, some more RPC modules,

known as telescope RPC modules, are also installed about 2.0 m above the RPC arrays for better

understand muon direction. An RPC module consists of 4 layers, and each layer contains 8 readout

strips which are aligned to either X-direction or Y-direction.

4.7 Target Protons

As discusses in Chapter 2, the number of protons in the target region is one of the major sources

of uncertainty. This can be accurately measured during filling and during data taking. By target

protons, we mean the number of protons inside the target region: the IAV with radius of ∼3 m and

height of ∼3 m. The number of target protons can be written as,

Np = Mtarget × ρp/kg
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Figure 4.6: Cut-out showing overflow tanks and the bellows [22].

where Np is the number of target protons, Mtarget the mass in the target volume and ρp/kg the

number of protons per kg of GdLS. The value of ρp/kg can be measured by chemical means, while

the target mass, Mtarget can be broken down into several components:

Mtarget = Mtotal −Moverflow −Mbellows

Moverflow = Voverflow(H)× ρkg/L

Mbellows = Vbellows × ρkg/L

where, Mtotal is the mass of GdLS being filled into the AD, Moverflow and Voverflow(H) respectively

the mass and the volume of GdLS in the overflow tank filled with GdLS of height H, Mbellows and

Vbellows respectively the mass and the volume of GdLS in the bellows connecting the IAV to the

overflow tanks, and ρkg/L the mass density of GdLS.

In other words, the number of target protons could be deduced by determining these quantities:

• ρp/kg: Number of proton in one kg of GdLS.

• ρkg/L: Mass density of GdLS.

• Mtotal: The total mass of GdLS filled into the detector

• Voverflow(H): Volume of GdLS in the overflow tank

• Vbellows: Volume of GdLS in the bellows
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AD FP
1 12.01± 0.42%
2 11.97± 0.47%
3 11.95± 0.66%
4 11.95± 0.46%
5 12.00± 0.30%
6 11.97± 0.46%

Table 4.2: Mass fractions of hydrogen atoms determined by combustion analysis.

Proton per kg of GdLS (ρp/kg) The mass fractions of hydrogen atoms, FP , in AD1 to 6 were

determined to be around 12% with combustion analysis (as shown in Table 4.2). The results of these

measurements match with the expected number, 11.77%, determined with theoretical calculation.

The proton density of GdLS, ρp/kg, can be calculated as,

ρp/kg = FP
mp

where mP is the proton mass.

Mass density of GdLS (ρkg/L) The mass density of GdLS, ρkg/L, which changes as a function

of temperature (T), can be described as

ρkg/L(T ) =
ρ0

1 + β(T − T0)

where T0 = 19◦C, ρ0 is the density of GdLS at T0, β is the volumetric thermal expansion coefficient

of GdLS at T0. With the temperature sensors installed in the overflow tank, the mass density of

GdLS is determined with the measured temperature. The uncertainty in ρkg/L is negligble.

Total mass (Mtotal) The total mass of GdLS, Mtotal, filled into the detector is measured in the

filling stage. GdLS is pumped from 5 storage tanks into an intermediate isolation (ISO) tank,

equipped with load cells which monitor the weight of the GdLS in the ISO. The flow rate was also

measured with a Coriolis flow meter as a crosscheck. The main source of uncertainty comes from

the drift in load cell reading. The load cell readings could drift up to 3 kg in several hours [95]. The

total uncertainty in Mtotal is estimated to be 0.015%.

Volume of overflow tanks and bellows (Voverflow(H), Vbellows) Given the dimensions, the

volume of GdLS in the bellows, Vbellows, can be accurately calculated, since the bellows are always
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completely filled with GdLS. The uncertainty is estimated to be 0.0025%. The volume of GdLS

in the overflow tank has to be monitored with various sensors. The measurement of liquid height

in the overflow tank is primarily done with an ultrasonic sensor, which infers the distance to the

liquid surface from the reflected ultrasonic waves. Knowing the geometry of the overflow tank, the

volume of GdLS can be calculated. Some capacitance sensors are employed to cross-check the volume

measurement. Tilt sensors are also used to account for any possible non-levelness of the detector.

Uncertainties in the overflow tank geometry, sensor calibration and tank tilt are estimated to be

0.0066%, 0.0057% and 0.0068% respectively.

4.7.1 Uncertainty in Target Proton Number

The correlated uncertainty in target proton number is dominated by the uncertainty in the number

of protons per kg of GdLS, which is, in turn, due to the uncertainty in mass fraction measurements.

However, the uncorrelated uncertainty is largely due to the uncertainty in total mass. The uncer-

tainties related to target proton number is tabulated below:

Quantity Correlated Uncorrelated

Uncertainty [%] Uncertainty [%]

Protons per kg (ρp/kg) 0.47 negligible

Mass density of GdLS ρkg/L negligible negligible

Total mass (Mtotal) 0.015 0.015

Overflow tank geometry (part of Voverflow(H)) 0.0066 0.0066

Overflow sensor calibration (part of Voverflow(H)) 0.0057 0.0057

Overflow tank tilt (part of Voverflow(H)) 0.0068 0.0068

Bellows Capacity (Vbellows) 0.0025 0.0025

Combined 0.47 0.019
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Chapter 5

The Automated Calibration
System

The calibration system aims to calibrate energy and timing responses of the AD (See Chapter 7 for

discussions on event reconstruction). It is also designed to monitor the stability of the AD responses

on a regular basis.

The focus of this chapter is on the control software and the performance of the calibration system.

(For more details of the calibration system, see [96].

5.1 Design of the Automated Calibration Units (ACU)

Each ACU consists of a stainless steel turntable with three sets of motors and wheels (also known as

deployment axes). Each axis is capable of deploying a source (radioactive sources or LED) into the

detector along the vertical axis (z-axis). For each ACU, access to the detector is provided through

a single port on the lid of the detector.

Each deployment axis is essentially a driving unit (which consists of a motor, a 50:1 gear-box,

a main deployment wheel, and an auxillary deployment wheel) attached to a source. Each source

is enclosed in an acrylic capsule which is attached to the wire wound into the grooves on the main

deployment wheel. To ensure material compatibility with the liquid scintillator, both the coaxial

cable for the LED axis and the stainless steel wire are Teflon-coated.

The turntable consists of a stack of three stainless steel plates. Mounted on the top plate are
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the driving units, and the middle plate houses shielding cylinders in which the sources are stored.

The bottom plate supports the whole ACU and, at the same time, acts as a reservoir for the liquid

scintillator that adheres to and drips from the source enclosures.

The top and the middle plates can turn clockwise or counter-clockwise as a single unit and are

controlled by a motor mounted at the center on the top plate. The bottom plate has a one-inch

diameter penetration through which the ACU sources are deployed into the detector volume.

All these mechanical parts and electronic components are sealed from water by a stainless steel

bell jar with double o-ring. Employed between the ACU bottom plate and the support spool on the

AD lid is another double O-ring which can be pumped out for leak checking and hence ensuring seal

quality.

5.2 Design of the Control Software

In the design of the control software, the main focus was to balance safety and automation. From the

safety point of view, the control software has to prevent or stop operations which can cause harm to

the system, while, to achieve genuine automation, it cannot completely rely on human intervention

when potentially dangerous situations arise. However, whenever there is a conflict, safety always

comes first at the expense of automation.

5.2.1 Design

The control software consists of several application modules written in LabVIEW. This modular

(as opposed to monolithic) nature of the software minimizes coupling between parts and simplifies

the customization for each site. The central piece is the Main Program which consists of two

independent but coupled parts (or loops). Each performs a crucial function: the “Monitor Loop”

periodically monitor sensor readings and the “Control Loop” direct signals to the electronics to

control source motions. The Main Program also provides the main interface for user operation.

The Data Fetcher fetches readings from the sensors, e.g. load cells and encoders, and provides such

readings to the main program. The Watchdog ensures that the Main Program always duly performs
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Figure 5.1: Structure of the control software.

its monitoring function. The Distributed Information Management (DIM) Communication Module

relays information between the main program and the data-acquisition system (DAQ) over TCP/IP,

enabling automatic deployment. The detailed workings of the software will be discussed below from

a functional point of view.

5.2.2 Monitoring

Involved in the monitoring function of the software are the Monitor Loop in the Main Program,

the Data Fetcher and the Watchdog. The Data Fetcher fetches readings from all sensors (See Table

5.1) from the hardware at the highest possible frequency allowed under computer and hardware

contraints. The readings are then transmitted to the Main Program via a local DataSocket server.

On receipt of the readings, the Monitor Loop will look for signs of danger and issues alarms if any

such signs are observed (see Table 5.2). When an alarm is issued, the Main Program will signal

all motors to stop and power down. After processing this set of readings, the Main Program then

signals the Data Fetcher to clear the latched set of readings and to read in another set. Such a cycle

typically runs at 1 to 2 Hz.

To provide an additional layer of security, the Monitor Loop is constantly watched over by

the Watchdog, making sure that the Main Program is running and updates the log file at a fixed

frequency (typically 1 Hz). An alarm will be issued when this frequency is not met.
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Figure 5.2: Screenshot of the Main Program.

Variable name Axis Type Unit
Stepper count All Int Counts
Encoder count All Int Counts
Load cell reading All Double Volts
Motion status All Bool -
Reverse limit switch status All Bool -
Forward limit switch status Turntable Bool -

Table 5.1: Sensor readings from each ACU.

Bit Name Remarks
1 Turntable stepper/encoder mismatch Tolerance = 0.6 deg
2-4 Source 1-3 stepper/encoder mismatch Tolerance = 2.5 mm
5-7 Source 1-3 reaches maximum depth IAV bottom or OAV bottom
8-10 Source 1-3 load cell out of limit below 50% of or 300 g above nominal weight
11 Source moves when turntable is misaligned Prevent misoperation
12 Turntable moves when some source is deployed Prevent misoperation
13 More than one motor move simultaneously Prevent misoperation
14-18 Inconsistent status Ensure internal consistency
19-21 Load cell saturated Load cell offset < -9.0 V

Table 5.2: List of alarms issued by the Main Program
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Figure 5.3: Communication protocol between the control software and DAQ. See text for details.

5.2.3 Control

The Control Loop of the Main Program provides 3 modes of operation: Manual, Diagnostic and

Auto, for controlling the four axes (1-3 for deployment axes and 4 for turntable) of motion for each

ACU, and the voltage and frequency of the LEDs. The Manual mode is restricted to expert use

for non-standard deployments, which requires point-and-click by the user. Any possible operation

can be performed unless forbidden by the Monitor Loop. The Diagnostic mode and the Auto mode

accept an XML script which specifies the sequence of operations to be performed. In Diagnostic

mode, the Control Loop simply performs each operation in the XML script sequentially until the end

of the file. In the Auto mode, the Control Loop and the Daya Bay DAQ system communicate via

DIM. Both systems publish their status on a dedicated DIM server, and listen to the other side with

a handshaking protocol depicted in Figure 5.3. Control Loop listens to the DAQ for the shifter’s

“Start” signal before deploying any source. The Control Loop signals the DAQ to start a run when

the source reaches the designated position and the DAQ replies to the Control Loop when the DAQ

run is done. The Control Loop then executes the next command (if there is any) in the XML script,
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performs the above “handshake” and repeats until the end of the XML script, at which point the

Control Loop informs the DAQ of the end of calibration and returns to the initial state. When an

error occurs during Auto mode, the DAQ is notified, and after recovery the calibration can resume

from the place where it left off without any intervention from the DAQ side in most cases. With this

method, after the shifter commences the weekly calibration program, the entire program (typically

5 hours by deploying three sources in each ACU, one at a time, 3-5 stop per round trip) in all three

halls and eight ADs are executed simultaneously with fully automated data taking at one data run

per source stop in each hall.

5.2.4 Notification and Logging

There are several channels employed in the software for notification. When an alarm is issued, the

Main Program signals the detector-control system (DCS) via DIM, which notifies the shifter. On

the other hand, the Main Program also sends an email notification to the experts with a summary

of alarms issued (See Table 5.2) and recently executed commands, to expedite the recovery process.

While all sensor readings are saved onto the local disk, only a subset of monitoring-related readings

are saved in the DCS database, while another subset of control-related readings are saved to the

online database via DAQ.

5.3 Quality Assurance and Calibration

5.3.1 Mechanical Reliability Tests

The Daya Bay experiment is planned to run for at least three years, with the automated calibration

units running on a weekly basis over this period. This amounts to at least 156 full calibration cycles

for each ACU. We constructed in total 25 (24 and a spare) ACUs. To ensure the robustness of the

ACUs, longevity tests were undertaken at the California Institute of Technology before shipping to

Daya Bay. The longevity test involves running the ACU for 200 consecutive full deployment cycles.

Each cycle involves deploying each of the three sources to a distance corresponding to the detector
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center, and then retracting back to the origin. Each cycle took about half an hour, and a complete

longevity test for each ACU took about four days. No noticeable damage was found in any of the

parts after the longevity tests.

Two different stress tests were also performed to emulate situations where parts of ACUs are

damaged. One stress test, dubbed the “extreme test”, targeted the limit switch and the load cell,

involves forcefully pulling the source assembly against a disabled limit switch until the stepper counts

gets out-of-sync with the encoder counts. This forceful pull was repeated at least 200 times for each

of the axes. The objective of this test was to make sure that the functionality of the limit switch

and the load cells would not be affected under such an extreme condition. The other, called “load

test”, aimed at ensuring secure attachment of the sources, involves hanging a weight of about 1

kg (maximum possible pull from the motor) from the source assembly for a duration of at least 15

minutes. No source ever failed any of these tests.

5.3.2 Position Calibration

Source deployment positions are required to have an accuracy of 0.5 cm. The elongation of the

stainless steel wire due to the weight of the sources is negligible, this positional accuracy is primarily

determined by the accuracy in the diameter of the acrylic wheel. There are also some small effects

coming from the depth of the grooves into which the wires are wound and the alignment between the

deployment wheel and the auxiliary wheel. Given that a deployment to the center of the detector

typically requires 4 turns of the wheel, uncertainty in the deployment length can be more than an

order of magnitude greater than that of the wheel diameter. Therefore, a sub-mm uncertainty in

the wheel diameter can possibly jeopardize the required accuracy. We devised a method to precisely

estimate the effective diameter of the wheel. We constructed a calibration ruler, with accurately

measured marks, aligned along the source deployment axis. The positions of the source can then be

compared with the marks on the ruler. Hence, an effective diameter of the wheel can be estimated

accurately with a linear fit.

The calibration ruler is made of a roughly 6 m long Teflon coated stainless steel wire, with a 50 g
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weight attached to one end. Six crimps which served as calibration marks were attached at various

measured positions on the wire. The ruler was then lowered into a mock-up detector, a 5.5 m long

acrylic tube, on which we marked the positions of the crimps. We then offset the ruler by 200 mm,

and a different set of calibration marks were similarly translated onto the tube. We also used the

top surface of the turntable as a calibration point.

For each axis, the source was first deployed close to each calibration mark. The source was then

made to inch along the axis in steps of about 0.1 mm. The encoder counts of the source motor was

recorded when the source was flush with the calibration mark.

The data were then subject to a linear fit of the form y = kDx + C, where k = π
4000×60 (4000

is the encoder count/resolution, and 60 is the gear ratio), x and y are respectively the encoder

counts and position of calibration marks, and the fit parameters D and C are respectively the wheel

diameter and the offset.

Figure 5.4 shows the distribution of wheel diameters with an average of 227.7 mm. Most of

the wheel diameters are in good agreement within 1 mm, except for ACU5A axis 3, which is ∼3

mm smaller in diameter compared to the rest due to machining. One also observes from Figure 5.4

that on average the effective diameter for axis 1 is ∼0.4 mm larger than those for axes 2 and 3,

which is consistent with the different diameters of the deployment cables (0.039” for LED, 0.026”

for radioactive sources).
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Figure 5.4: Effective wheel diameters of all 25×3 ACU axes obtained by the position calibration.

The expected positions for each encoder reading is calculated using the parameters determined.
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For example, the difference between the expected and the actual positions on the ruler for ACU1A,

deployment axis 1, as a function of vertical deployment length is shown in Figure 5.5. The variation

in this difference (RMS) is used as a measure of the positional accuracy for each deployment axis.

Using such method, the distribution of the position accuracy can be determined for all 25×3

deployment axes, including those on the spare ACU, as shown in Figure 5.6.

The position accuracy of the calibration source to its limit switch is conservatively estimated to

be 2 mm. As a final cross-check, the obtained wheel diameters were input into the control software,

and each source was deployed to the nominal AD center in the mock detector. The position of the

source and the marker on the ruler agree within 3 mm.
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The positional accuracy determined above (Figure 5.6) is in the vertical direction only. To find

the absolute source accuracy of a deployed source within an AD involves 1) the ACU mounting

position relative to its support flange, 2) the AD verticality, and 3) the position of the ACU support

flange relative to the general AD coordinate. Given the size of bolt holes on the ACU bottom plate,

the accuracy in 1) is ∼ 2mm in the horizontal plane. The accuracy in 2) and 3) can be obtained

from the AD survey data [97], which translate to an absolute accuracy of <1 mm in x, y, and z

coordinate. Summing these up in quadrature, we reach a final ∼ 4 mm position accuracy of a source

in the AD.
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5.4 Performance

The performance of the antineutrino detector with calibration sources has been thoroughly described

in [28]. In this section, we will show results more directly related to the performance of the calibration

system.

5.4.1 Motion/Sensor Performance

All ACUs have been fully functional since the beginning of Daya Bay data taking. Alarms only occur

infrequently, at a rate of ∼ 2-3 per week for the entire system. All of these alarms were identified as

transient noise pick-up by the sensors, for example, load cell readout could pick up noise occasionally

and triggered an alarm during motor movement.

Figure 5.7 shows the load cell reading during a typical source deployment. As the source dips

into the liquid, the liquid buoyancy would cause a ∼ 30 g change in the load cell reading.After the

source assembly completely submerged into the liquid, the load cell reading gradually increases as

more and more cable unspools and adds to the weight felt by the load cell. It then stops at the target

position and data taking begins. After that, the source is retracted by reversing the motor direction,

which causes a sudden increase in load by about 10 g. This is due to an additional dynamic friction

that has to be overcome. The load gradually reduces as the cable respools until the source assembly

emerges from the liquid surface, and is no longer lifted by the buoyant force. The load cell reading

then returns to roughly the original level. A small decrease in load can be seen thereafter, due to

dripping of liquid back into the detector. The control software then resets the motor to home by

moving the source up until the limit switch is activated by the top weight, at which point a spike in

the load cell reading can be seen. The source is then “parked” by moving down by 5 cm. The load

cell also tends to pick up noise, which typically translates to about a couple of grams, from motors

nearby as shown in Figure 5.7.



63

Time (s)
0 500 1000 1500 2000 2500 3000 3500 4000 4500

L
o
a

d
 c

e
ll 

re
a
d

in
g

 (
g

)

70

80

90

100

110

120

entering liquid

go to position

stationary during data taking
return leaving liquid

liquid dropping
reset home

stationary while turntable moves

Figure 5.7: Strip chart of the load cell reading for a typical source deployment.

5.4.2 Calibration Runs during the AD Dry Run

The LED source and the 137Cs scintillator ball played an important role in detector commissioning,

in particular the “dry run” before liquid scintillator filling.

LEDs can be used to mimic real particle interactions and this allows for a study of detector

electronics. Figure 5.8 shows the measured total charge in an LED intensity scan in an AD. Events

ranging from gamma-like low energy events to muon-like high energy events could be easily simulated

by adjusting the driving voltage of the LED, given a typical AD energy scale of 160 PE/MeV [28].

Low energy events allow for precise determination of PMT gains, and the high energy events allow

for the study of the effect on PMT/electronics due to a large pulse, including baseline overshoot,

ringing and recovery, as well as retriggering.

Timing calibration is facilitated by the narrow timing distribution of the LED flashes relative to

the trigger signal, in particular the rising edge of the light pulse. In Figure 5.9, the TDC distribution

of a PMT channel (relative to the trigger signal generated by the TTL command pulse) is plotted

for a high (black) and low (red) light intensity run. This narrow (RMS ∼ 0.9 ns) TDC distribution

in the high intensity run demonstrates that the emitted light pulse has a very sharp rising edge. The

timing calibration data for all ADs were collected with LEDs pulsing at high intensity.

The TDC spectrum in the low intensity run reveals the overall emitted photon timing distribution.

The primary pulse has a FWHM of 5 ns. The late light from the LED can be observed as a tail

which lasts for about 25 ns from the initial edge. The difference in peak time between the two
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Figure 5.9: TDC distribution of a PMT during a high (black) and low (red) LED intensity run.

However, the LED source is not perfect for all studies. Due to the difference in cable length in

the spool, the LED intensity could fluctuate by a few percent as a function of position. Therefore,

we need some other stable “candle” for position-dependent uniformity studies of the dry detector

and the solution was the 137Cs scintillator ball.

137Cs, which primarily beta-decays into 137mBa which has a half-life of 2.552 m, is deposited

at the center of a spherical scintillator. 137Cs emits K (624 keV) or L (656 keV) shell conversion

electrons with a branching ratio of about 10%. The scintillation light produced by these electrons

would then provide a stable light source. The source is fabricated at the China Institute of Atomic
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Energy with 900 Bq of 137Cs following the design shown in Figure 5.10, as well as a photo of the

scintillator ball in real-life during dry-run preparations.

Cs137 area Æ=3 mm 

Figure 5.10: (Left) Design of the 137Cs scintillator ball; (right) Photo taken during dry run.

The measured total charge spectrum with the scintillator ball deployed at the detector center is

shown in Figure 5.11. A conversion electron peak can be clearly observed around 90 photoelectrons.
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Figure 5.11: Energy spectrum of 137Cs scintillator ball in a dry AD.

5.4.3 Radioactive Sources Calibration in-situ

The 241Am-13C/60Co source and the 68Ge, source spectra in a filled AD are shown in Figure 5.12.

On the 241Am-13C/60Co spectrum, the full absorption peak around 2.5 MeV due to 60Co and n-Gd

capture gamma peak can be seen. Both of them can be used to calibrate the PE to MeV conversion

factor of the ADs. In addition to the n-Gd capture peak, the low energy peaks on the spectrum

were also attributed to the gamma lines (662, 722 keV) from 241Am. However, the n-H capture from
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the Am-C source cannot be observed on the spectrum due to the dominance of the 60Co decay rate

(100 Hz vs 0.7 Hz of Am-C) and the finite energy resolution of the AD. Moreover, effects of the n-H

capture have negligible effects on the 60Co 2.5 MeV peak. Note also that low energy shoulders due

to non-scintillating material on the source assembly can be seen on both spectra.

The variations of the energy scale among all six ADs have been limited to within 0.5% [28]. A

2.5 MeV peak can be seen in the 68Ge spectrum, which could come from imperfect control of the

fabrication environment, where 60Co contaminants were likely introduced. However, it does not

affect effective application of this source.
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Figure 5.12: Energy spectrum of the 241Am-13C/60Co source (a) and the 68Ge source (b) when
deployed at the AD center.

Accurate knowledge of the true position of the ACU sources provide stringent constraints to the

vertex reconstruction (Section 7.3) as well as vertex based energy correction (Section 7.4). These

will be discussed in the relevant sections.



67

Chapter 6

Data readout and data quality

In this chapter, I will describe the data readout chain and data quality checks.

6.1 Data Readout Chain

The data readout chain can be divided into three parts: front-end system, trigger system and the

data acquisition (DAQ) software.

The front-end system directly interfaces to the detector components, such as PMTs and RPCs.

Raw signals are read out. Partial trigger signals are generated and are sent to the trigger system.

The trigger system determines if the signals from the front-end meet the trigger condition. If so,

the trigger system would signal the DAQ software to record the data.

The DAQ software integrates the data from all detectors and save the data into the database for

quality check and further processing. It is also responsible for coordinating with other systems in

routine calibrations.

6.1.1 Front-end System

The front-end system consists of VME-based front-end electronics boards (FEE).

There are two types of FEE boards, one for the PMTs and the other for RPCs. Here I only

discuss the PMT FEE boards.

Every PMT FEE board has 16 channels, each of which serves one PMT. When entering the FEE,

the PMT signal first goes through the discriminator. The discrimator threshold is set to be 0.25
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Figure 6.1: Trigger system

photoelectrons (PE). If the PMT charge signal is above the threshold, it is considered a ”hit”. Each

channel is equipped with a TDC in common stop mode for recording the time of arrival of the PMT

signal; and two 12-bit ADCs, one fine gain and the other coarse gain, for reading out the charge at

40 MSPS. The TDC has a time resolution of 1.5625 ns. The PMT signals are first amplified and are

then sent to the CR-(RC)4 shaping ciruits where the pulse is integrated to give the total number of

PEs. Low charge signals (< 160 pC or 100 PE) are sent to the fine gain ADC, while high charge

signals (> 160 pC or 100 PE) are sent to the coarse gain ADC. The fine gain ADC has a gain of

about 19 ADC counts per PE, while the coarse gain ADC gives about 1 ADC count per PE.

The FEE produces two signals: multiplicity (NHIT) and energy pre-sum (ESUM). The NHIT

represents the number of coincident PMT hits in each 100 ns time window, while the ESUM contains

the analog sum of the 16 PMT signals. These two signal are passed to the local trigger board (LTB)

for trigger logic processing.

6.1.2 Trigger System

The trigger system consists of local trigger boards (LTB) and master trigger boards (MTB). The

LTBs collect and process signals from the FEEs and would generate triggers that are then sent to

the MTB. The MTB at each site relay information among the LTBs and interfaces with external

trigger sources.
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The trigger system distinguishes between two types of triggers: physical and external.

Examples of physical triggers are the multiplicity (NHIT) trigger and the energy sum (ESUM)

trigger. These triggers are generated by the LTB after combining the partial trigger signals from

all FEE boards that it serves. An LTB can serve up to 16 FEE boards, meaning that one LTB can

accomodate an AD.

External triggers are triggers that are issued by the MTB. These include cross triggers and cali-

bration triggers. Cross triggers are initiated by LTB, requesting readout of other LTBs. Calibration

triggers are issued by the calibration system, signaling the LTBs to read out.

6.1.3 DAQ Software

The DAQ software is a set of computer programs that run on a blade server based computing farm.

The DAQ software can run under different run modes: physics mode for regular data taking and

AD or water shield calibration modes for routine calibrations. Detectors in the same site can be

separated into partitions, so that each detector can run in different modes. For example, during AD

calibration the muon detectors can continue to run in physics mode, providing an active muon veto.

6.2 Data Readout Performance

The behavior of the data readout chain can have effects on the final θ13 analysis in several ways.

6.2.1 Blocked Triggers

When the trigger rate is high, the triggering electronics can become “dead” due to full buffers. As

a result, triggers that occur when the buffer is full are blocked and not recorded. This reduces the

overall livetime of the experiment.

When the buffer is full, the trigger electronics would still produce triggers if the trigger condition

is met, and the number of these blocked triggers is recorded by the DAQ. By taking the ratio of block

triggers over the total number of triggers, we can estimate the dead time. This ratio is calculated

to be <0.003%, which means this has negligible effects.
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6.2.2 Trigger Efficiency

The energy deposition of a particle can have an intrinsic spread. Effects due to detector geometry

or electronics also contribute. Therefore, some events which we wish to detect could fail to produce

a trigger. This impacts the overall detection efficiency.

The trigger efficiency can be estimated using the source 68Ge [98]. The characteristic 1.022 MeV

positron annihilation energy from 68Ge was used as a proxy for the prompt signal of an IBD. By

running the detector at two thresholds OR’ed, one at a low level, the other at the level of interest,

the ratio of 68Ge events that pass both thresholds to those that only pass the low threshold could

be calculated. It was found that an efficiency of 99.9± 0.02% can be achieved.

6.3 Data Quality

All data taken went through the data quality check procedure, in order to reject data deemed

unsuitable for physics analysis. The data is organized into runs; and runs are made up of run

segments (also known as run files). A run segment, consisting of about 5 minutes of data, is the

smallest unit of data that the data quality procedure works on - if a problem is found in a segment,

the whole segment is discarded.

6.3.1 Criteria for Good Data

Each run segment is evaluated based on various low-level (electronics) and high-level (physics)

quantities. The inclusion of a run segment into the list of good runs is “loose”, meaning that

segments are discarded only when we are confident that it is bad.

The followings are some general criteria for evaluating the quality of a segment of data.

Trigger rate stability Trigger rate can fluctuate due to interference from other electrical devices,

for example, cranes, pumps or other electrically noisy instruments. Run segments showing excessively

low or high trigger rates are tagged as “bad”, meaning unsuitable for analysis.
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Blocked trigger Some run segments with unusually high fraction of blocked triggers are removed

from the list of good runs.

Time ordering of events Some run segments are found to have triggers which are not properly

ordered in time. These run segments are discarded.

Rates of physics events Some higher-level quantities, such as, IBD rate, spallation neutron rate,

flasher rate (See Section 7.2 for discussion on flashers), are also examined. However, extra attention

was paid when discarding run segments in which an anomalous high-level quantity is identified,

to avoid introducing unnecessary bias. In fact, analysis algorithm further down the analysis chain

should be capable of resolving such scenarios.

6.3.2 Synchronicity

For θ13 analysis, we should only include data where all three halls are taking data at the same

time. Asynchronous data appear because among the three halls, there could be differences in the

duration of calibration or the data in one hall is marked as bad, etc. To remove asynchronous data,

a synchronization procedure is done to discard the portion of data that were taken when not all

three halls are running.
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Figure 6.2: Live time in EH1

Figure 6.3: Live time in EH2
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Figure 6.4: Live time in EH3
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Chapter 7

Event reconstruction

The raw output of the AD is simply a collection of hits, where a hit is just a pair of ADC and

TDC counts. These have little direct physical meaning with regard to antineutrino detection. The

purpose of reconstruction is to extract physics events by understanding these hits. The first step

involves converting ADC and TDC counts in each trigger into charge and time (Section 7.1 PMT

Calibration). Using these charge and time information, we can then determine the energy and vertex

of the physical interaction (if it is the case) which caused these triggers (Section 7.4 Energy and

Section 7.3 Vertex Reconstruction). Finally, the collections of triggers can be classified into various

categories of physics events (See Chapters 8 and 9).

7.1 PMT Calibration

7.1.1 Gain Calibration

In order to reconstruct the charge collected by the PMT from the ADC values read out at the FEE,

we need to develop a mapping between the two. This mapping can be closely approximated by a

linear function. (This has been confirmed to be accurate up to 200 p.e.) The gain refers to the

proportionality constant of this linear function. The purpose of gain calibration is to determine this

gain. To determine the gain, we need a model of the PMT.
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7.1.1.1 PMT Model

A PMT can be considered to be composed of two parts, the photocathode and the dynode chain [99].

The photocathode converts a photon to photoelectrons with a certain probability. This probability is

sometimes called quantum efficiency. This conversion process can be described as a Poisson process,

P (n;µ) =
µne−µ

n!

where n is the number of photoelectrons produced at the photocathode and µ is the quantum

efficiency. The dynode chain amplifies the signal in stages. The overall amplification factor is

typically 107 times. Although this is also a Poisson process, it can be approximated by a Gaussian,

Gn(x) =
1

σ1

√
2πn

exp(− (x− nQ1)2

2nσ2
1

)

where x is the variable charge received at the end of the dynode chain, Q1 is the mean charge

received and σ1 is the corresponding standard deviation of the charge distribution. Therefore, the

overall PMT response can be described as the convolution of these two functions,

R(x) = P (n;µ)⊗Gn(x) =

∞∑
n=0

µne−µ

n!

1

σ1

√
2πn

exp(− (x− nQ1)2

2nσ2
1

)

Now what remains is to select appropriate ADC spectra and perform a model fit. Below are two

ways to calibrate the fine gain ADC, and one way to calibrate the coarse gain ADC.

7.1.1.2 Fine Gain ADC: Low-intensity LED

One way to determine the gain involves deploying an LED from the ACU to the center of the AD

and let it flash at a low intensity, such that every PMT detects mostly SPE [23]. Hits that lie in

the main peak in the TDC distribution are selected. The gains can be obtained by fitting the PMT

model to the ADC distribution.

7.1.1.3 Fine Gain ADC: Dark Noise

Another method is to use dark noise [24]. Instead of the main peak in the TDC distribution, we

select the region before the mean peak which contains mainly dark noise. This way, dedicated

calibration runs are not needed. Similarly, the gains can be obtained by fitting.
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Figure 7.1: TDC distribution of LED calibration runs. The blue lines indicate the peak region. [23]

Figure 7.2: An example of SPE ADC spectrum fit using LED data. [23]
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Figure 7.3: The arrow in the above TDC distribution indicates the region to be selected to calculate
the rolling gain. [24]

Figure 7.4: An example of SPE ADC spectrum fit using dark noise. [24]
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7.1.1.4 Coarse Gain ADC

The coarse gain ADC is responsible for the signals with high energy (& 200 p.e.) such as muon

events. The coarse gain ADC can be calibrated by using the self-test pulses from the FEE [100].

A range of pulse heights covering both the fine gain and coarse gain ADCs are generated by FEEs.

The conversion factor from the pulse height to ADC counts for both ADCs can be determined. The

ratio of these two factors can be used to estimate the gain of the coarse gain ADC from that of the

fine gain ADC.

7.1.2 Pedestal

Even when the photocathode is not emitting photoelectrons, the ADC would still give a non-zero

value. This is called the pedestal. Since the pedestal value fluctuates and drifts over time, periodic

measurements are needed. Ususally, we can measure the pedestal with dedicated pedestal runs in

which ADCs with no PMT hit are read out. However, using this approach, we will be susceptible

to random fluctuations and drifts. To solve this problem, we measure it dynamically right before

each ADC hit [101]. This dynamic pedestal, which is called preADC, is the average of 4 ADC values

read out at 100ns, 75ns, 50ns and 25ns before the ADC peak, giving almost real time measurement

of the pedestal.

7.1.3 Timing Calibration

Timing information is obtained by TDCs. Although the TDCs have high resolutions (1.5625 ns),

there is a time offset among TDCs. Timing calibration aims at aligning the TDCs in time. Timing

calibration can be performed using an LED deployed at the center of the AD. As the LED flashes,

a signal is sent to the FEE as a time reference. The time measured by the ith TDC (ti) can be

described as,

ti = t0 + ttof + ti,offset + ttime-walk(Q)
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where t0 is the time reference from the LED pulser, ttof is the time of flight of the photon from

the LED to the PMT, ti,offset is the time offset of the TDC channel, ttime-walk(Q) is the apparent

variation in arrival time due to different amount of charge, also known as time-walk effect. The

time-walk effect is small relative to the the time offset, and is therefore ignored.

7.1.4 Determining the Nominal Charge

The charge collected in a trigger could come from hits that are not directly related to the physical

event that causes the trigger. Since the electronics have rather consistent processing time, the time it

takes from forming a trigger to reading out all channels is roughly constant. Hits that are associated

to the actual triggering event tend to cluster in time. These hits can be selected by summing the

charges of only those hits that lie in the region [-1650,-1250] ns. The charge sum is called “nominal

charge”, and this is the charge value that is used in subsequent analyses.

7.1.5 Quantum Efficiency

PMT quantum efficiency affects the overall detection efficiency of an AD. In particular, the energy

resolution is affected by the variation in quantum efficiency among the PMTs in an AD. A large

variation in quantum efficiency would result in a large variation in detector response to events

occuring in different parts of the AD. This non-uniformity would worsen the AD energy resolution

(More on energy resolution in Section 7.4). Therefore, instead of the actual value, we are more

concerned about the relative quantum efficiency (RQE) of the PMTs in an AD. To understand the

RQE, a study using the 68Ge source has been performed [102]. The 68Ge source was deployed at

various Z positions. The number of 68Ge detected at each PMTs divided by the average of all PMTs

can be used to estimate the RQE. It was found that the RMS of the RQE distribution is about 4%.

7.2 Flasher Events

PMTs are known to spontaneously emit light through a mechanism which is not yet fully understood.

These can trigger the AD and these events are called flasher events. Flasher events can have an
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Figure 7.5: Flasher example. [25]

observed energy ranges from right at the trigger threshold to ∼100 MeV and comprises 5% of all

triggers. Flasher events have characteristic charge patterns which means they can be easily removed

with proper identification scheme.

7.2.1 Identification of Flasher Events

In a flasher event, the flashing PMT typically received the highest number of PEs among all PMTs

in the AD, and this flash of light would be seen by the PMTs located on the opposite side of the AD.

The PMTs can be divided into 4 static quadrants. Each quadrant consists of 6 columns of PMTs.

The quadrant that contains the PMT which receives the highest charge (the potential flasher) is

named quadrant 1, and going clockwise the rest of the quadrants are named 2, 3 and 4. Typically

in a flasher event, quadrant 1 receives the highest charge, the quadrant 3 the next highest, and the

remaining two the least. Using this observation, the charge-based flasher determinant (FIDQ) can

be defined as follows:

FIDQ = log10[(
Q3

Q2 +Q4
)2 + (

MaxQ

0.45
)2]

where Qn is the charge receive in quadrant n, with n = 1,2,3 or 4; MaxQ is the charge received by

the potential flasher. It is considered to be a flasher event if FIDQ > 0. This can be visualized as
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Figure 7.6: Left: Q3

Q2+Q4
vs MaxQ (FIDQ) in data (AD2 at Daya Bay near site). Right: Monte

Carlo simulation. [26]

an ellipse on the Q3

Q2+Q4
-MaxQ plane outside of which are all flasher events. For the 2” PMTs, we

simply look at the charge: if it receives more than 100 PEs, it is considered as a flasher event.

Timing information can also be used which is ignored in the analysis in [103]. It can be seen

that in flasher events, the timing distribution has a thicker tail at later times. Using this feature,

another independent timing-based flasher determinant can be defined:

FIDT = log10[4(1− tPSD)2 + 1.8(1− tPSD1)2]

where tPSD and tPSD1 are the ratios of the integrals of timing distribution in [-1650,-1450] ns and

[-1650,-1500] ns respectively to the integral over the full range. FIDT > 0 indicates a flasher event.

Combining the two determinants above, an event is considered as flasher if any of the determinants

is greater than one, i.e.

Flasher condition: FIDQ > 0 or FIDT > 0

7.2.2 Misidentification

The flasher identification method can introduce uncertainties in two ways:
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Figure 7.7: The blue and the red lines show the FIDQ distribution for AD1 and AD2, and the
arrows indicate extrapolation. [26]

Normal events being misidentified as flasher events. In this case, IBD selection efficiency

would be reduced. To estimate this, a Monte Carlo study has been performed [26, 28]. By applying

the flasher cuts to simulated data, it was shown that the about 1 × 10−4 of the IBD events were

misidentified as flashers.

Flasher events being misidentified as normal events. In this case, flasher events would

contaminate the IBD sample. To understand this, we can extrapolate the FIDQ distribution to the

region FIDQ < 0 with a horizontal line. Similar was done for FIDT . The fraction of flasher events

that leaked into the signal region can be conservatively estimated to be about 1× 10−4.

7.3 Vertex Reconstruction

Vertex refers to the position in the AD where an event occurs. To reconstruct the vertex position,

we make use of charge information. For a given event, the PMTs at different locations would receive

different amounts of light. The vertex position can be deduced from this charge distribution. There

are two ways to find the vertex position:
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Center-of-charge A straightforward way is to use the observation that PMTs closer to the event

would receive more charge than those further. The vertex position can be estimate with the average

of the PMT coordinates weighted by the received charge.

Charge templates Another way to find the vertex position is to use charge templates [27]. Charge

templates are charge distributions that are produced by events occurring at known positions. We can

generate these charge templates using Monte Carlo simulation. By comparing the actual detected

charge distribution with a set of charge templates, the vertex position can be reconstructed.

7.3.1 Vertex Reconstruction: Center-of-charge

The center-of-charge (COC) is defined as:

−−→
Rcoc =

∑PMTs
i Qi

−→
Ri∑PMTs

i Qi

where
−−→
Rcoc is the COC; Qi and

−→
Ri are respectively the charge received and the position of the ith

PMT.

However, using the COC as the reconstructed vertex has a large bias. The COC tends to be

closer to the center of the AD then the actual position of the event.

7.3.1.1 Improved Center-of-charge method

This can be corrected by “stretching” the COC to the appropriate position [104] using an empirical

model. From the results of Monte Carlo simulations, the true vertex position appears to be a function

of
−−→
Rcoc which can be modelled as:

rrec = c1 × rcoc − c2 × r2
coc

zrec = (zcoc − c3 × z3
coc)× (c4 − c5 × rcoc)

where rrec and zrec are the r and z component of the corrected reconstructed vertex position; rcoc

and zcoc are the r and z component of
−−→
Rcoc; ci are the parameters of the model. Using 60Co source

data, the parameters were determined to be:
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Figure 7.8: Examples of charge templates for vertex reconstruction. The left one is for 0.2 m2 <
r2 < 0.4 m2 and −1.2 m < z < −1.0 m, while the right one is for 3.0 m2 < r2 < 3.2 m2 and
0.8 m < z < 1.0 m. [27]

c1 = 1.82, c2 = 1.95× 10−4 c3 = 1.579× 10−7, c4 = 3.128, c5 = 9.64× 10−4

7.3.2 Vertex reconstruction: charge templates

7.3.2.1 Creating charge templates

The region enclosed by the 4m OAV is divided into 20 × 20 × 24 bins in (r2, z, φ) cylindrical

coordinates. With the assumption of azimuthal symmetry, we have effectively 400 bins.

Positron events distributed uniformly over the OAV region were simulated. The charge template

for each bin was obtained by averaging the charge distributions that were produced by the positron

events in that bin.

7.3.2.2 Fitting and interpolation

The first estimate of the vertex position can be obtained by performing a chi-square minimization.

Using the actual detected charge and the expected charge from the templates, the following chi-

square can be formulated:

χ2 = 2

PMTs∑
i

[Nexp
i −Nobs

i +Nobs
i ln(

Nobs
i

Nexp
i

)]

where Nobs
i and Nexp

i are respectively the observed and the expected charge (in p.e.) of the ith

PMT.

After the bin with minimum chi-square is found, the vertex position can be further refined using

a parabolic interpolation. The chi-square values of the bins adjacent to the minimum bin are also
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evaluated. In one of the two dimensions (r2 or z), a parabola that joins the minimum point and the

two adjacent points could be drawn. The minimum of the parabola can be analytically calculated.

The process was repeated in the other dimension, giving a more accurate reconstruction of the

vertex position. This vertex reconstruction is superior to the center-of-charge method and therefore

is chosen in this analysis.

7.4 Energy reconstruction

In Section 7.1 on PMT calibration, we reconstructed the charge received by the PMT from the low

level ADC and TDC values. Building upon the calibrated charge produced in PMT calibration,

energy reconstuction (which is part of the so-called AdSimple reconstruction algorithm) aims to

provide an estimate of the physical energy of the particle detected [105].

Since the AD is designed to work as a calorimeter, meaning that the particle is expected to

deposit all of its energy into the AD. On the other hand, scintillators, the main detection material

of the AD, have an approximately linear response. This means that the scintillation light produced

would be roughly proportional to the energy of the particle. Therefore, we can scale the calibrated

charge with a constant factor (called light yield), giving an estimate of the particle energy. This first

approximation is called visible energy (Evis).

The detector response is not only a function of particle energy, but also of vertex position. This

non-uniformity of detector response can be corrected for using vertex information. This would give

us a (hopefully) better estimate of the particle energy. This improved estimate is called reconstructed

energy (Erec).

The following paragraphs describe how the visible energy and the reconstructed were obtained.

7.4.1 Visible energy (Evis)

To determine the light yield, we need an anchor point. In principle, we can use any source with

known energy and simply divide the detected charge by the particle energy to obtain the light yield.

However, Gd-captured spallation neutron events are a natural choice for the following reason. One
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of the main source of uncertainty is the energy cut for the delayed neutron signal of an IBD event

(See Chapter 8 for details on signal selection). The spallation neutron events are essentially the

same as the delayed neutron events. Although the thermalization process could slightly differ due to

different neutron energy, what is observed at the AD is still the gamma rays from neutron capture.

Moreover, like the delayed neutrons, spallation neutron are expected to distribute uniformly over

the AD. This makes spallation neutrons a suitable choice for determining the light yield [106]. The

Gd-captured spallation neutron events are selected in two steps: first select the muon event and

then the neutron capture event. A trigger is tagged as a muon if,

• Nominal charge > 4000 p.e.,

• Number of PMTs hit in IWS > 10, or

• Number of PMTs hit in OWS > 12.

The n-Gd events are selected by cutting on the time since the last muon (∆t), in the range (20 µs

< ∆t < 200 µs), subtracted by the the background region in the range (2 ms < ∆t < 3 ms).

Figure 7.9: Gd neutron capture peak fitted with a sum of two crystal ball functions.

The peak is then fitted with a sum of two crystal ball functions, corresponding to the 8.54 MeV

peak from 155Gd and the 7.94 MeV peak from 157Gd. The crystal ball function is defined as,
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Figure 7.10: Energy response uniformity of AD1 and AD2 [28].

f(x;α, n, x̄, σ) =


Ne−

(x−x̄)2

2σ2 if x−x̄
σ > −α

NA(B − x−x̄
σ )−n otherwise

where A = ( n
|α| )

ne−
|α|2

2 and B = n
|α| − |α|. The light yield is calculated by requiring that the 157Gd

peak locates exactly at 7.94 MeV (i.e. the anchor point). The calculated light yield is about 170

pe/MeV.

7.4.2 Reconstructed energy (Erec)

To correct for the non-uniformity in detector response and to arrive at Erec, we want to find a

correction function (f(r, z)) such that,

Erec = f(r, z)Evis

where r, z are the r and z components of the vertex position (in meters). For simplicity, this

correction function is assumed to be separable,

f(r, z) = fr(r)fz(z)
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There are different ways to determine the correction function. Below are two ways: one uses the

calibration source 60Co, and the other uses spallation neutrons.

7.4.2.1 Uniformity correction: 60Co source

The r and z components of the correction function are assumed to be respectively a linear function

and a third degree polynomial [104]:

fr(r) = 1 + crr

fz(z) = cz0 + cz1z + cz2z
2 + cz3z

3

The coefficients were determined empirically using 60Co source data taken along the three caibration

axes. They are found to be:

cr = 3.3762× 10−8, cz1 = 1.0005, cz2 = −1.002× 10−5,

cz3 = −1.894× 10−8, cz4 = −1.758× 10−13.

7.4.2.2 Uniformity correction: Charge template method with spallation neutrons

The r and z components of the correction function are assumed to be the reciprocals of third degree

polynomials [105],

fr(r) =
8.05

cr0 + cr1r + cr2r2 + cr3r3

fz(z) =
8.05

cz0 + cz1z + cz2z2 + cz3z3

The coefficients were determined empirically using spallation neutrons data. They are found to be:

cr0 = 7.74687, cr1 = −0.129958, cr2 = −0.355034, cr3 = −0.0337578,

cz0 = 8.09949, cz1 = −0.11702, cz2 = −0.124515, cz3 = −0.0245703.
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Figure 7.11: Erec vs r and z. [29]

7.4.2.3 Comparison

The advantages and disadvantages of using 60Co and spallation neutrons for uniformity correction

are summarized below:

60Co Spallation neutrons

Location Precisely known (. 5 mm) Reconstructed

Statistics High Low

Availability Require dedicated calibration runs Extracted from physics runs

Identicality across ADs Good Depends mainly on overburden

Uniformity over AD Only on the 3 calibration axes Uniform

A direct comparison shows that the reconstructed energy produced by the above two methods are

in fact consistent with each other. The method using spallation neutron was chosen since, arguably,

it is slightly better because of the uniformity of spallation neutron events. This would give a more

accurate estimate of the energy of the IBD neutron.
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Figure 7.12: Energy resolution fit [28].

7.4.3 Energy Resolution

Energy resolution refers to the uncertainty in determining the energy of the event. This is mainly

due to the Poisson error in counting the number of photoelectrons, which is proportional to
√
E.

The energy resolution can be modeled as:

σ

E
= σ0 +

σ1√
E(MeV )

By fitting this model to calibration data, it is shown that σ0 = 0.9%, σ1 = 7.5%
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Chapter 8

Signal selection

Now, having developed event reconstruction, we can make use of the reconstructed information to

select IBD events. To devise a set of selection rules or cuts, there are three important considerations:

Selection efficiency Selection efficiency refers to the fraction of true IBD events being selected

by the cuts. A large selection efficiency is favorable, because it reduces statistical uncertainty.

Background contamination An efficient cut sometimes comes together with a high background

contamination, meaning that non-IBD events could be mistaken as IBDs. Obviously, we need to

minimize background contamination.

Uncertainties After arriving at a set of cuts, we need to estimate the selection efficiency and

background contamination. Equally importantly, their uncertainties.

In the following sections, the IBD selection cuts are described. Their efficiencies and the associ-

ated uncertainties are estimated. The discussions in this and the next two chapters largely follow

those in [107].

8.1 IBD Selection

The IBD events can be selected with the following cuts,

• Prompt energy cut: 0.7 MeV < Ep < 12 MeV. (See Section 8.1.1)

• Delayed energy cut: 6 MeV < Ed < 12 MeV. (See Section 8.1.1)
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• Time correlation cut: 1 µs < ∆t < 200 µs (See Section 8.1.2)

• Flasher cut: Both the prompt and the delayed candidate are not tagged as flashers. (See

Section 7.2)

• Muon cut (See Section 8.1.3)

• Multiplicity cut (See Section 8.1.5)

where Ep and Ed are respectively the reconstructed energy of the prompt and the delayed candidate

and ∆t is the time separation between them.

8.1.1 Energy Cuts

8.1.1.1 Prompt Energy Cut

As seen in the expected prompt energy spectrum, it is not difficult to see that the energy cut 0.7

MeV < Ep < 12 MeV would capture most of the prompt hits. It only has a small effect on efficiency.

From Monte Carlo simulation, the efficiency of such a cut is 99.90%± 0.10%.

8.1.1.2 Non-ideal IBD Events

Before estimating the selection efficiency, we need to understand a bit more about how the delayed

signal is detected. In “ideal” IBD event, the ν̄e is captured by a proton in the target volume, and

the delayed neutron is captured by Gd in the target volume. Consider the following deviations from

this ideal event:

Name Prompt event location Neutron capture location Neutron capture target

Ideal case Target volume Target volume Gd

Gd capture ratio Target volume Target volume 1H or some other isotope

Spill-out Target volume Outside of target volume 1H or some other isotope

Spill-in Outside of target volume Target volume Gd
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Gd capture ratio A neutron in the target volume can be captured by some isotope other than

Gd, for example, by 1H, which has a relatively large neutron capture cross-section. The neutrons

captured by 1H gives out a gamma ray of only 2.2 MeV, evading the delayed energy window [6,12]

MeV.

Spill-out The neutron can drift away from the target volume, avoiding capture by Gd. The spill-

out effect can be evaluated together with the Gd capture ratio effect, since both of them result in

missing Gd capture signal.

Spill-in The neutron from an IBD event happening outside of the target volume can drift into the

target volume and be detected. This would increase the efficiency in selecting the delayed event,

since the apparent target volume becomes larger.

The impacts of the above effects on the detection efficiency can be evaluated using Monte Carlo

simulation. The efficiency due to selecting only Gd capture events and the spill-out effect is found

to be 83.8%± 0.8% and the spill-in effect causes an enhancement of 5.0%± 1.5%.

8.1.1.3 Delayed Energy Cut

After correcting for the factors in the previous section, we are left with the “ideal” events. However,

inefficiencies still exists. Some of the gamma rays from the neutron capture by Gd can escape the

target volume and the gamma catcher, so that the total detected energy fall below the delayed energy

window [6,12] MeV. The finite energy resolution of the AD would also affect the delayed energy cut

efficiency. The delayed energy cut efficiency can be estimated by modeling the Gd capture peaks by

a sum of two crystal ball functions (See Section 7.4.1). By comparing the delayed spectrum in data

and in MC aftering, the efficiency of the delyed energy cut was estimated to be 92.24%±0.51%. The

absolute uncertainty of 0.51% was estimated based on the difference in efficency before and after

MC tuning, while the uncorrelated uncertainty among detectors has two components: one due to

the energy scale uncertainty and the other due to the uncertainty in the low energy tail shape. The

energy scale unceratinty at 6 MeV is estimated to be 0.7% which translates into 0.18% uncertainty
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in delayed energy cut. The variation among detectors in the relative size of the low energy tail can

be interpreted as the tail shape uncertainty and was estimated to be 0.19%. Coombining the two

gives a total uncorrelated uncertainty of 0.26%.

8.1.2 Time Correlation Cut

Before being captured, the delayed neutron from IBD would undergo thermalization: the neutron

elastically scatters mainly on hydrogen and slows down to thermal energies. The neutron capture

cross-section increases as the neutron energy decreases. This means, as the neutron thermalizes, the

probability of neutron capture increase over time. Once the neutron is around thermal energy, the

cross-section of neutron capture by Gd roughly stays constant. The probability of neutron capture

then decreases over time as less and less neutrons remain. The time distribution of neutron capture

can be modelled as:

N(t) = −N0e
− t
t0 +N1e

− t
t1 +Nbg

where the three terms denote respectively thermalization stage, drifting stage and a constant acci-

dental background. The observed time distribution can be fitted to the model to find the neutron

capture time t1, which is found to lie in the range from 25.0 µs to 28.5 µs in different ADs, which

is a 0.5% variation. (A 1 µs cut is included to reduce electronics effects.) This variation in neutron

capture time among ADs can be attributed to the fluctuation in Gd capture ratio among ADs and

this translates to a 0.1% relative uncertainty in Gd capture ratio.

By comparing data with MC, the efficiency of the time correlation cut can then be estimated to

be 98.6%± 0.19%.

8.1.3 Muon Cut

Muons are known to produce spallation neutrons, long-lived isotopes such as 9Li/8He, which can

cause severe background. We can identify muons with the AD and the water shields.
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Figure 8.1: A fit of the time between prompt and delayed event. The red line is the negative of
the thermalization component, the blue line is the drifting component and the green line is the
background.

Muons Muons are characterized by large energy deposition along its track. They are readily

identified by the high energy observed in the AD and the water shields. This large amount of energy

causes spurious triggers. Its effects can be reduced by vetoing the AD for several microseconds.

Spallation neutrons A spallation neutron and an IBD neutron are practically indistinguishable.

Since neutron capture time in the target region is about 30 µs, a sufficiently long muon veto can

reject a large fraction of these spallation neutron.

9Li/8He 9Li/8He beta decays with a half-life of 178.3 ms/119.1 ms and a Q-value of 13.6 MeV/10.7

MeV, into 9Be/8Li, which can emit a neutron. Because of their relatively long half-lives, we need a

muon veto of at least hundreds of milliseconds long. This would significantly reduce the efficiency of

the muon cut. Fortunately, since 9Li/8He are mostly produced by muons which deposit more-than-

average energy to the AD, we could apply this long muon veto only to ”brighter” muons identified

by the AD. These are called shower muons. Three types of muons can be defined as follows:

• WS Muon: IWS PMTs Hit > 12 or OWS PMTs Hit > 12

• AD Muon: Total charge in AD > 3000 PEs but less than 3 ×105 PEs

• Shower Muon: Total charge in AD > 3 ×105 PEs
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Figure 8.2: Muon cut efficiency over time.

For each type of muons, the following cuts can be applied:

• WS Muon: 200 µs following muon hit.

• AD Muon: 1 ms following muon hit.

• Shower Muon: 0.4 s following muon hit.

(These cuts are applied to the delayed signal only. This is to decouple muon cut efficiency with

neutron capture time.) However, some modifications to these cuts are needed. Due to the time

misalignments between the detectors, a 2µs veto before a muon is needed. In addition, as we will see

in Section 8.1.5, an additional 400µs veto after a muon is required to decouple muon cut efficiency

from multiplicity cut efficiency. The final muon cuts are then modified to be:

• WS Muon: [-2 µs, 600 µs] relative to muon hit.

• AD Muon: [-2 µs, 1.4 ms] relative to muon hit.

• Shower Muon: [-2 µs, 0.4 s] relative to muon hit.

(Notice that the veto times differ from the analysis in [103].) The muon cut efficiency can be estimate

by simply adding up the total veto time.
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8.1.4 Flasher Cut

Flashers are identified using the FID metric discussed in Section 7.2. Both the prompt and the

delayed signal are required to be a non-flasher. The efficiency is estimated to be 99.93% [108].

8.1.5 Multiplicity Cut

The signature of an IBD event consists of exactly one prompt positron and one delayed neutron.

Sometimes, a cluster of three or more events are identified as possible candidates of a prompt-

delayed pair. A simple way is to discard all such multiplets. However, the efficiency of such a

selection rule would be diffuclt to estimate, because it would depend on the neutron capture time

and the antineutrino energy. To eliminate this problem, we can remove extra prompt or delayed

candidates that fall winthin fixed time windows relative to the delayed candidate. (Notice that this

method differs from the analysis in [103].) More concretely, the selection rule can be described as

follows: (Times are relative to the delayed candidate)

• Only one prompt candidate in [-200 µs, 0]

• No prompt candidate in [-400 µs, -200 µs]

• No delayed candidate in [0, 200 µs]

This way, the efficiency can be easily evaluated by using Poisson distribution. If we write the Poisson

distribution as P (k;λ) = λke−λ

k! , then the efficiency of this selection rule can be calculated to be:

P (0; 400µs×Rp)P (0; 200µs×Rd)

where Rp and Rd are the singles rates of prompt-like and delayed-like events.

8.1.6 Summary

DYB DYB LA Far Far Far

AD1 AD2 AD1 AD1 AD2 AD3

DAQ Live time [days] 49.5527 49.5527 49.4968 48.9453 48.9453 48.9453

ν̄e candidate [events] 28692 28857 22169 3536 3464 3461
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Figure 8.3: Multiplicity cut efficiency over time.

Figure 8.4: IBD candidate over time.
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Figure 8.5: Reconstructed vertex position for the IBD candidates at the Daya Bay near site. (First
row) prompt signal, (Second row) delayed signal.

Below is a summary of the cut efficiencies.

Cut Efficiency Correlated Uncorrelated

Uncertainty Uncertainty

Prompt energy cut 0.9990 0.10% 0.01%

Gd capture ratio 0.8383 0.60% 0.10%

Spill-in 1.0503 0.10% 0.02%

Delayed energy cut 0.9224 0.51% 0.26%

Time correlation cut 0.9857 0.19% 0.02%

Flasher cut 0.9991 0.02% 0.01%

Total 0.7990 0.94% 0.28%
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Figure 8.6: Comparison among all three sites. Plots for the near sites are normalized to the one for
far site.
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Chapter 9

Backgrounds

As discussed earlier in Section 2.4, various sources of background can affect θ13 measurement. Resid-

ual backgrounds will inevitably be included in the selected antineutrino sample. Therefore, we need

to estimate their rates in the selection region. This chapter is devoted to estimating the residual

background leaking into the antineutrino sample selected according to the rules in Chapter 8.

9.1 Accidental Background

Uncorrelated events can sometimes accidentally coincide in such a way that the pair passes all the

selection cuts, and end up being wrongly considered as an antineutrino candidate. Of course, we

cannot individually identify such misidentified pairs. However, we can statistically subtract the the

fraction of accidentals from the set of antineutrino candidates. More concretely, an accidental would

be included as an antineutrino candidate when the followings are satisfied:

• A delayed-like event happens in the time window [1µs, 200 µs] after a prompt-like event.

• No prompt-like events happen in the time window [200 µs, 400 µs] before the delayed-like

event.

• No delayed-like events happen within 200 µs after the delayed-like event.

• The events are uncorrelated events. (Pure singles events)

• The events survive the flasher cut and the muon cut.
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Figure 9.1: The black line shows the singles rates after muon cut and flasher cut, while the red line
shows the pure singles rate in which correlated hits are also removed, in addition to muon cut and
flasher cut.

The rates of the events satifying the first three conditions can be easily calculated with probabilities

once we obtain the set of pure singles events. This can be found by applying the same selection rules

as antineutrino events, but with time cut and multiplicity cut modifed as follows:

• No prompt-like events within the previous 400 µs.

• No delayed-like events within the following 200 µs.

These are essentailly logical complements to the original time cut and multiplicity cut. Now we

obtain pure singles

The accidental rates can then be calculated as,

Racc = P (1; 199µsRp)P (0; 200µsRp)P (0; 200µsRd)Rd

It turn out that Racc is about 10 per day at the near sites, 4 per day at the far site.
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Figure 9.2: Accidental rates over time.

9.2 Cosmogenic Background

9.2.1 9Li/8He

The electron emitted by the beta emitters 9Li/8He can be mistaken as an IBD prompt signal.

9Li/8He can beta-decay into some excited states of 9Be/8Li with branching ratios of (50.8±0.9)%/(16±

1)% [109]. These excited states are at energy levels higher than the neutron binding energy of the

respective nucleus (9Be: 1.67 MeV, 8Li: 2.03 MeV), making neutron emission energetically favor-

able. The prompt beta and the delayed neutron can be mistaken as an IBD event. Given that the

half-lives of 9Li/8He are 119.1 ms/178.3 ms, the shower muon cut of 0.4 s should have rejected most

of these backgrounds. The remaining background which leaks into the IBD sample can be estimated

by modeling the distribution of the time since the preceding muon [110].

We can first derive the probability Pi(t) of observing a spallation product i (e.g. 9Li/8He) after a

duration of t following a muon event. Suppose λµ is the muon rate, λi is the lifetime of the spallation

product. Also, define t = 0 to be the time at which the spallation product is observed. Now, we can

consider two cases:

Case 1: The preceding muon produced the spallation product. In this case, Pi(t) can be

written as,
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Figure 9.3: Decay schemes for 9Li and 8He [30].

dPi(t) = P(Observing i in the interval [0, dt])×P(Not observing i in the interval [−t, 0])

×P(Not observing any muons in the interval [−t, 0])

Recall that the Poisson distribution can be written as f(k;λ) = λke−λ

k! ,

dPi(t) = f(1;λidt)× f(0;λit)× f(0;λµt)

= λidte
−λidt × e−λit × e−λµt

≈ λie−(λi+λµ)tdt

Case 2: The preceding muon did not produce the spallation product. In this case, the

mother muon is not the preceding muon, but is actually located further back in time, say −t′. That

means, −t′ can be anywhere between −∞ and −t. The probability then becomes,

dPi(t) =
∫ −t
−∞ [P(Observing i in the interval [−t′,−t′ + dt′])×P(Not observing i in the interval

[−t′, 0])]dt’ ×P(Observing a muon in the interval [−t,−t+ dt])×P(Not observing other muons in

the interval [−t, 0])
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Therefore,

dPi(t) = [

∫ ∞
t

f(1;λidt
′)f(0;λit

′)]× f(1;λµdt)× f(0;λµt)

≈
∫ ∞
t

eλit
′
λidt

′ × λµdt× e−λµt

= λµe
−(λi+λµ)tdt

Combining the two cases,

dPi(t) = (λµ + λi)e
−(λi+λµ)tdt

Apart from spallation products, there can also be some other background b that is uncorrelated

with muons. Using similar arguments, we can derive the probability Pb(t) corresponding to this

background,

dPb(t) = λµe
−λµtdt

Therefore, the total probability can be written as,

dP

dt
=

n∑
i

Ni
dPi
dt

+Nb
dPb
dt

=

n∑
i

Ni(λµ + λi)e
−(λi+λµ)t +Nbλµe

−λµt

≈
n∑
i

Niλie
−λit +Nbλµe

−λµt (∵ λµ � λi)

Now we can invert the shower muon cut to obtain the 9Li/8He background, which means that we

look for IBD candidates within the shower muon veto. However, apart from shower muons, muons

that deposit less energy in the AD can also produce 9Li/8He. To estimate that, the muons are

divided into three energy bins: Eµ > 1.75 GeV (shower muons), 0.5 GeV < Eµ < 1.75GeV and

Eµ < 0.5 GeV . Then, the muons are further divided into two categories:

• Muons with detected neutrons (n− µ): Muons which have Gd capture neutron like events in

the following [20,200]µs window after the muons.
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• Muons without detected neutrons (non n−µ): Muons which do not have Gd capture neutron

like events in the following [20,200]µs window after the muons.

For the shower muons in each site, the number of 9Li/8He produced by n − µ as a fraction of the

total number of 9Li/8He produced by both categories of muons was calculated. This fraction was

assumed to be constant over all Eµ, and was used to estimate the 9Li/8He production by lower

energy muons. After considering the muon cuts, the remaining 9Li/8He per AD at each site was

determined to be: 2.74± 0.64 d−1 at EH1, 1.45± 0.89 d−1 at EH2 and 0.16± 0.08 d−1 at EH3.

9.2.2 Fast Neutrons

Fast neutrons can mimic a positron prompt signal, when it causes proton recoil which has an energy

similar to a prompt signal. Depending on the neutron energy, the energy deposited by the recoiled

proton varies and can reach tens of MeV, while the prompt energy spectrum from true IBD events

hardly extends to energy higher than 8.5 MeV. Therefore, IBD candidates with high prompt energy

(& 10 MeV) contain mostly proton recoils. We can then extrapolate the proton recoil spectrum to

the prompt energy region.

There are two approaches to estimating the proton recoil spectrum in the high energy region

[111]. First, we can raise the muon threshold and look for IBD candidates with high prompt energy.

It can be seen that the prompt energy is roughly constant at high energy. Another way is to

look at IBD candidates which are coincident with muons (i.e. a triple coincidence: muon, prompt,

delayed). Muons can be tagged by IWS or RPC. Either way, we see a flat prompt energy spectrum.

The background in the [0.7,12] MeV range can then be estimated by simply extrapolating the flat

spectrum. The fast neutron background per AD at each site was determined to be: 0.95± 0.28 d−1

at EH1, 0.71± 0.22 d−1 at EH2 and 0.07± 0.02 d−1 at EH3.
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Figure 9.4: The energy spectrum of the fast neutron candidates identified using (left) AD and (right)
water pool.

9.3 Calibration Source: 241Am13C

Although the neutron source 241Am13C is designed to emit no correlated gamma, the neutron itself

can also produce correlated background by interacting with stainless steel. One possible scenario

is: a neutron first inelastically scatter on 56Fe giving a high energy gamma as 56Fe de-excites, and

then be captured by 57Fe, giving another high energy gamma. A Monte Carlo study is performed to

estimate this correlated background [31]. Comparing with the uncorrelated background as measured

from data, the correlated background from 241Am13C can be determined to be 0.2±0.2 d−1 for each

AD [112].

Figure 9.5: A possible scenario of 241Am13C causing correlated background [31].
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Figure 9.6: Background caused by 241Am13C [32].

9.4 13C(α,n)16O

Natural radioactive isotopes, which emit α particles, are present in the detector. Most of them are

part of the 238U or the 232Th chain. These α particles can trigger (α,n) reaction. One of them is

13C(α,n)16O. There are several mechanisms which can produce correlated background:

Mechanism 16O state Prompt Delayed

1 Ground Neutron elastically scattering on Neutron capture on Gd

proton causing proton recoil

2 Ground Neutron inelastically scattering Neutron capture on Gd

on γ 12 C giving 4.4 MeV

3 1st excited 16O de-excites to ground state Neutron capture on Gd

giving 6.049 MeV e−e+ pair

4 2nd excited 16O de-excites to ground state Neutron capture on Gd

giving a 6.129 MeV γ

The α rate is measured from data. With the knowledge of the (α,n) cross-section, the background

rate can be estimted. The 13C(α,n)16O background rate per AD in each site was measured to be:

0.04± 0.02 d−1 at EH1, 0.035± 0.02 d−1 at EH2 and 0.03± 0.02 d−1 at EH3 [113].
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9.5 Summary

Below is a summary of all backgrounds.

DYB DYB LA Far Far Far

AD1 AD2 AD1 AD1 AD2 AD3

DAQ Live time [days] 49.5527 49.5527 49.4968 48.9453 48.9453 48.9453

ν̄e candidate [events] 28692 28857 22169 3536 3464 3461

Accidentals [events] 393.6 396.4 317.4 157.7 160.3 150.1

9Li/8He [events] 107.9 107.4 59.3 7.5 7.5 7.5

Fast Neutron [events] 37.4 37.2 29.0 3.3 3.3 3.3

Correlated 241Am13C [events] 7.9 7.8 8.2 9.4 9.4 9.4

13C(α,n)16O [events] 1.6 1.6 1.4 1.4 1.4 1.4

Total Expected Bkg [events] 548.3 550.5 415.4 179.2 181.8 171.6

Background Uncertainty [events] 28.3 28.2 38.2 10.3 10.2 10.2
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Chapter 10

θ13 Analysis

Now we can proceed to determine θ13. In Chapter 3, we estimated the expected antineutrino

spectrum from the reactor1; and in Chapter 4, we estimated the number of target proton in the AD.

Together with the selection cuts developed in Chapter 8 and the background estimation in Chapter

9, we can calculate the expected number of antineutrinos detected by the ADs. Finally, using a

likelihood model with pull terms, we can deduce the value of θ13.

10.1 Signal Estimation

The expected antineutrino flux Sjk(Eν) at the detector j due to reactor core k can be estimated as,

Sjk(Eν) = Tjεjσ(Eν)
Pee(Eν , Ljk)

4πL2
jk

Sk(Eν)

where Tj is the number of target protons in detector j; εj is the efficiency of detector j; σ(Eν) is

the IBD cross-section; Ljk is the distance between detector j and reactor core k; Pee(Eν , Ljk) is the

survival probability of ν̄e; Sk(Eν) is the antineutrino flux from the reactor core k.

The survival probability Pee can be written as,

Pee = 1− cos2θ12sin
22θ13sin

2∆31 − sin2θ12sin
22θ13sin

2∆32 − cos4θ13sin
22θ12sin

2∆21

where ∆ij ≡ 1.267× 103δm2
ij(eV

2)
L(km)

E(MeV )
. With the approximation δm2

31 ≈ δm2
32,

Pee = 1− sin22θ13sin
2∆31 − cos4θ13sin

22θ12sin
2∆21

1Reactor power provided by Xin Qian in the form of weekly averages.
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To perform a rate-only analysis, we are interested the total expected detection rate of ν̄e,

Rjk =

∫
Sjk(Eν)dEν

=
Tjεj

4πL2
jk

∫
Pee(Eν , Ljk)σ(Eν)Sk(Eν)dEν

= TjεjF̄k
P̄ee,jk
4πL2

jk

where F̄k ≡
∫
σ(Eν)Sk(Eν)dEν and P̄ee,jk ≡ 1

F̄k

∫
Pee(Eν , Ljk)σ(Eν)Sk(Eν). Since we are given

only a weekly average of reactor power output by the reactor company, we can only determine a

weekly average rate. The total number of ν̄e detected at detector j can be expressed as,

Nj =
∑
k

∑
l

Rjk∆tl

=
∑
k

∑
l

TjεjF̄k
P̄ee,jk
4πL2

jk

∆tl

where l denotes week number and ∆tl is the live time in week l.

The expected numbers of ν̄e events without oscillation can be estimated and are summarized in

the following table:

DYB DYB LA Far Far Far

AD1 AD2 AD1 AD1 AD2 AD3

Expected number of ν̄e 28248.1 28680.2 21986 3557.53 3559.94 3526.5

Measured ν̄e candidates 28692 28857 22169 3536 3464 3461
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Figure 10.1: Expected (shown as line) and measured (shown as markers) IBD rates over time.
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10.2 Rate-only θ13 Analysis

10.2.1 Model

The basis of the model is the Gaussian likelihood function:

χ2(θ) =

Detectors∑
j

(Nobs
j −N exp

j (θ)−Bj)2

(σobs
j )2 + (σBj )2

where Nobs
j is the observed ν̄e rate at detector j, N exp

j (θ) is the expected ν̄e rate at detector j for

a given θ, Bj is the background rate at detector j, σobs
j ) is the uncertainty in Nobs

j and σBj is the

uncertainty in Bj .

To account for the systematic uncertainties, the rates are modified to include some penalty terms

(δ) as follows:

R̃jk = Rjk(1 + δnormσnorm)(1 + δeffσeff)(1 + δtarget
j σtarget

j )(1 + δfluxkσflux
k )

where σeff is the uncertainty in detection efficiency, σtarget
j is the uncertainty in target mass of

detector j, σflux
k is the uncertainty in flux from reactor core k, σnorm is the uncertainty in overall

flux and the δ’s are the corresponding penalty terms.

Likewise, the backgrounds are also modified:

B̃j = Bj(1 + δBσBj )

The expected number of detected ν̄e becomes:

Ñ exp
j =

∑
l

∑
k

R̃jk∆tl

Penalty terms (δosc
m ) for other oscillation parameters are also included to account for their uncer-

tainties. All of these penalty terms are added to the likelihood function and are allowed to vary.

Now the model becomes,

χ2(θ) =

Detectors∑
j

(Nobs
j − Ñ exp

j (θ)− B̃j)2

(σobs
j )2 + (σBj )2

+ χ2
penalty

where

χ2
penalty ≡ (δeff)2 + (δB)2 +

∑
j

(δtarget
j )2 +

∑
k

(δflux
k )2 +

∑
m

(δoscm )2
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Notice that δnorm is not included in χ2
penalty since it represents overall flux normalization. To make

a relative measurement, δnorm is allowed to vary unconstrained.

10.2.2 Results

The fit to this model using MINUIT shows that sin22θ13 = 0.092± 0.017, with χ2
min/ndf = 2.21/4

and a p-value of 0.697. The best fit values are tabulated below:

sin22θ13 0.0920823± 0.0169349

δnorm 0.219966± 0.888893

δB −0.00649651± 0.981296 δflux1 −0.0949647± 0.936669

δeff −0.00089939± 0.982688 δflux2 −0.0939421± 0.934799

δtarget −0.000215358± 0.981614 δflux3 0.0386323± 0.97416

sin22θ12 0.00023398± 0.99652 δflux4 0.0373293± 0.974754

∆m2
31 0.000383165± 0.217099 δflux5 0.0500322± 0.96886

∆m2
21 0.000216072± 0.981585 δflux6 0.0630689± 0.961314

Figure 10.2: Chi-square plot for nearby sin22θ13 values.
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Chapter 11

Summary and prospects

The Daya Bay Reactor Neutrino Experiment has measured sin22θ13 to an unprecedented precision,

using 55 days of data obtained from six 2.9 GWth reactor cores. The value of sin22θ13 has been

measured to be:

sin22θ13 = 0.092± 0.017(stat)± 0.004(syst)

Figure 11.1: Projected uncertainty in sin22θ13 over two years of total run time assuming no improve-
ments in systematic uncertainties. The plateau from day 217 to day 300 is due to the temporary
shutdown during the installation of the remaining 2 ADs (Jul 28, 2012 to Oct 19, 2012) and the
data taking rate is assumed to increase by 33% after that.
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In the current analysis, statistical uncertainty still dominates. With increased statistics, the uncer-

tainty will be further reduced to about 0.006% when two years of total run time has been accumu-

lated. At that point, systematic uncertainty becomes more important. Better understanding of the

systematics and shape analysis are necessary to further improve the precision.

11.1 Future Prospects

The neutrino mass hierarchy and the value of δCP still remain unknown. With this relatively large

value of θ13, experiments aimed at resolving thse two puzzles become feasible. There are a number

of proposed experiments with the goal of resolving the mass hierarchy and/or measuring δCP . Here

I will describe a possible extension of Daya Bay. Daya Bay II is a proposed experiment aimed

at resolving the mass hierarchy in addition to further improve the precision of the known mixing

parameters [33, 114]. There will possibly be a new 20-50 kton LS detector, located several tens of

kilometers from various reactor complexes along the southern coast of China. Daya Bay II would

attempt to observe disappearance of ν̄e. The survival probability of ν̄e can be written as,

P (ν̄e → ν̄e) = 1− 4s2
13c

2
13(c212sin

2∆31 + s2
12sin

2∆32)− 4c413s
2
12c

2
12sin

2∆21

where sij = sinθij , cij = cosθij and ∆ij = ∆m2
ij
L
E . Figure 11.2 shows the survival probability of ν̄e

as a function of L
E . We can see that the difference in oscillation pattern between normal hierarchy

and inverted hierarchy is tiny. Considering the finite energy resolution of the detector and its non-

linearity in energy response, the “wiggles” could be smeared out, further reducing our ability to

distinguish the two scenarios. Moreover, the uncertainty in |∆m2
32| could even create a degeneracy,

meaning that the two hierarchy scenarios each coupled with different values of |∆m2
32| would create

(statistically) identical spectra that are indistinguishable given limited statistics. With optimal

placement of the detectors and better understanding of the detector response, these challenges can,

hopefully, be overcome.
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Figure 11.2: Survival probability of ν̄e. [33]



118

Bibliography

[1] F. Boehm and P. Vogel, Physics of Massive Neutrinos, Cambridge University Press, 2nd

edition, 1992.

[2] The Reines-Cowan Experiments: Detecting the Poltergeist, Los Alamos Science, (25), 1997.

[3] J. N. Bahcall, A. M. Serenelli, and S. Basu, New solar opacities, abundances, helioseismology,

and neutrino fluxes, Astrophys. J., 621(L85-L88), 2005.

[4] H. Kwon et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D, 24(1097-

1111), 1981.

[5] Yu. V. Kozlov et al., Antineutrino deuteron experiment at Krasnoyarsk reactor, Phys. Atom.

Nucl., 63:1016–1019, 2000.

[6] M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett.

B, 466:415–430, 1999.

[7] F. Boehm et al., Search for Neutrino Oscillations at the Palo Verde Nuclear Reactors, Phys.

Rev. Lett., 84:3764–3767, 2000.

[8] Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett., 81:1562–

1567, 1998.

[9] J. Boger et al., The Sudbury Neutrino Observatory, Nucl. Instrum. Meth. A, 449:172–207,

2000.

[10] Q. R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current

interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett., 89(011301), 2002.



119

[11] G. L. Fogli et al., Getting the most from the statistical analysis of solar neutrino oscillations,

Phys. Rev. D, 66(053010), 2002.

[12] KamLAND website, http://kamland.lbl.gov/Detector/.

[13] K. Eguchi et al., First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disap-

pearance, Phys. Rev. Lett., 90(021802), 2003.

[14] S. Abe et al., Precision Measurement of Neutrino Oscillation Parameters with KamLAND,

Phys. Rev. Lett., 100(221803), 2008.

[15] M. H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev.

D, 74(072003), 2006.

[16] P. Adamson et al., Measurement of the neutrino mass splitting and flavor mixing by MINOS,

Phys. Rev. Lett., 106(181801), 2011.

[17] K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced

Off-axis Muon Neutrino Beam, Phys. Rev. Lett., 107(041801), 2011.

[18] K. Abe et al., Evidence of Electron Neutrino Appearance in a Muon Neutrino Beam,

arXiv:1304.0841 [hep-ex], 2013.

[19] P. Vogel and J. F. Beacom, The angular distribution of the reaction ν̄e + p→ e+ + n, Phys.

Rev. D, 60(053003), 1999.

[20] J. K. Ahn et al., RENO: An Experiment for Neutrino Oscillation Parameter theta13 Using

Reactor Neutrinos at Yonggwang, arXiv:1003.1391 [hep-ex], 2010.

[21] United States Nuclear Regulatory Commission, Pressurized Water Reactors,

http://www.nrc.gov/reactors/pwrs.html.

[22] H. R. Band et al., Target Mass Monitoring and Instrumentation in the Daya Bay Antineutrino

Detectors, arXiv:1206.7082 [physics.ins-det], 2012.

[23] Z. Yu, PMT Gain Calibration TechNote, Daya Bay Doc-7093, 2012.



120

[24] Z. Wang, RollingGain Note, Daya Bay Doc-7198, 2011.

[25] X. Qian et al., Summary of Flasher Events Rejection, Daya Bay Doc-7434, 2012.

[26] L. Wen et al., Full control of the flashers, Daya Bay Doc-7143, 2011.

[27] Y. Nakajima, Vertex reconstruction using charge templates for AdSimple reconstruction pack-

age, Daya Bay Doc-7536, 2012.

[28] F. P. An et al., A side-by-side comparison of Daya Bay antineutrino detectors, Nucl. Instrum.

Meth. A, 685:78–97, 2012.

[29] Z. Yu et al., Energy Calibration/Reconstruction, Daya Bay Doc-7418, 2011.

[30] F. Ajezenberg-Selove, Energy levels of light nuclei A, Nuclear Physics A490 1 (1988), 1988.

[31] W. Gu and J. Liu, AmC background note, Daya Bay Doc-6779, 2012.

[32] X. Qian, Investigation of ACU single Neutron Rate, Daya Bay Doc-7950, 2012.

[33] C. Zhang, Daya Bay II, http://www.phy.bnl.gov/.

[34] V. I. Kopeikin et al., Reactor as a source of antineutrinos: Thermal fission energy, Physics of

Atomic Nuclei, 67(10):1892, 2004.

[35] J. Cao, Baselines for EH1-2-3 from Survey, Daya Bay Doc-7637, 2012.

[36] J. Beringer et al. (Particle Data Group), The Number of Light Neutrino Types from Collider

Experiments, Phys. Rev. D, 86(010001), 2012.

[37] K. Zuber, Neutrino Physics, CRC Press, 2nd edition, 2012.

[38] L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D, 17(2369), 1978.

[39] B. Kayser, Lecture 4: Neutrino Physics, SLAC Summer Institute on Particle Physics 2004

(SSI04), 2004.

[40] J. N. Bahcall, M. H. Pinsonneault, and S. Basu, Solar Models: Current Epoch and Time

Dependences, Neutrinos, and Helioseimological Properties, Astrophys. J., 555:990–1012, 2001.



121

[41] J. Chadwick, Verh. d. deutschen Phys. Ges., 16:383, 1914.

[42] E. Fermi, Ricercha Scient., 2:12, 1933.

[43] E. Fermi, Z. Physik, 88:161, 1934.

[44] F. Reines and C. L. Cowan, Detection of the free neutrino, Phys. Rev., 92:830–831, 1953.

[45] F. Reines and C. L. Cowan, The Neutrino, Nature, 178:446, 1956.

[46] B. T. Cleveland et. al., Measurement of the Solar Electron Neutrino Flux with the Homestake

Chlorine Detector, Astrophysical Journal, 496:505–526, 1998.

[47] G. Zacek et al., Neutrino oscillation experiments at the Gösgen nuclear power reactor., Phys.

Rev., D, 34:2621–2636, 1986.

[48] A. I. Afonin et al., Anti-electron-neutrino spectra at two distances from the reactor of the

Rovno nuclear power plant: Search for oscillations., JETP Lett., 45:247–251, 1987.

[49] S. N. Ketov et al., Reactor experiments of a new type to detect neutrino oscillations., JETP

Lett., 55:564–568, 1992.

[50] J. F. Cavaignac et al., Indication for neutrino oscillation from a high statistics experiment,

Phys. Lett., B, 148:387–394, 1984.

[51] Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters, and 95-meters from

a nuclear power reactor at Bugey, Nucl. Phys., B, 434:503–534, 1995.

[52] K. S. Hirata et al., Real time, directional measurement of B-8 solar neutrinos in the

Kamiokande-II detector, Phys. Rev. D, 44:2241–2260, 1991.

[53] Y. Fukuda et al., Solar neutrino data covering solar cycle 22, Phys. Rev. Lett., 77:1683–1686,

1996.

[54] D. A. Dwyer, Precision Measurement of Neutrino Oscillation Parameters with KamLAND,

PhD thesis, University of California, Berkeley, 2007.



122

[55] M. Apollonio et al., Initial results from the CHOOZ long baseline reactor neutrino oscillation

experiment, Phys. Lett., B, 420:397–404, 1998.

[56] F. Boehm et al., Final results from the Palo Verde neutrino oscillation experiment, Phys.

Rev., D, 64(112001), 2001.

[57] F. Boehm et al., Results from the Palo Verde Neutrino Oscillation Experiment, Phys. Rev.

D, 62(072002), 2000.

[58] Y. Fukuda et al., Measurements of the solar neutrino flux from Super- Kamiokande’s first 300

days, Phys. Rev. Lett., 81:1158–1162, 1998.

[59] S. Fukada et al., Constraints on neutrino oscillations using 1258 days of Super-Kamiokande

solar neutrino data., Phys. Rev. Lett., 86:5656–5660, 2001.

[60] S. Fukuda et al., Determination of solar neutrino oscillation parameters using 1496 days of

Super-Kamiokande-I data, Phys. Lett. B, 539:179–187, 2002.

[61] M. B. Smy et al., Precise measurement of the solar neutrino day/night and seasonal variation

in Super-Kamiokande-I, Phys. Rev. D, 69(011104), 2004.

[62] J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D,

73(112001), 2006.

[63] Q. R. Ahmad et al., Measurement of the charged current interactions produced by B-8 solar

neutrinos at the Sudbury Neutrino Observatory., Phys. Rev. Lett., 87(071301), 2001.

[64] Q. R. Ahmad et al., Measurement of day and night neutrino energy spectra at SNO and

constraints on neutrino mixing parameters., Phys. Rev. Lett., 89(011302), 2002.

[65] S. N. Ahmed et al., Measurement of the total active B-8 solar neutrino flux at the Sudbury

Neutrino Observatory with enhanced neutral current sensitivity., Phys. Rev. Lett., 92(181301),

2004.



123

[66] B. Aharmim et al., Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar

neutrinos from the 391-day salt phase SNO data set., Phys. Rev., C, 72(055502), 2005.

[67] K. Eguchi et al., A High Sensitivity Search for ē’s from the Sun and Other Sources at Kam-
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