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Abstract

Disorder and interactions both play crucial roles in quantum transport. Decades ago,

Mott showed that electron-electron interactions can lead to insulating behavior in materials

that conventional band theory predicts to be conducting [105]. Soon thereafter, Anderson

demonstrated that disorder can localize a quantum particle through the wave interference

phenomenon of Anderson localization [11]. Although interactions and disorder both sepa-

rately induce insulating behavior, the interplay of these two ingredients is subtle and often

leads to surprising behavior at the periphery of our current understanding. Modern exper-

iments probe these phenomena in a variety of contexts (e.g. disordered superconductors,

cold atoms, photonic waveguides, etc.); thus, theoretical and numerical advancements are

urgently needed. In this thesis, we report progress on understanding two contexts in which

the interplay of disorder and interactions is especially important.

The first is the so-called “dirty” or random boson problem. In the past decade, a

strong-disorder renormalization group (SDRG) treatment by Altman, Kafri, Polkovnikov,

and Refael has raised the possibility of a new unstable fixed point governing the superfluid-

insulator transition in the one-dimensional dirty boson problem [7, 8, 9]. This new critical

behavior may take over from the weak-disorder criticality of Giamarchi and Schulz when

disorder is sufficiently strong [58]. We analytically determine the scaling of the superfluid

susceptibility at the strong-disorder fixed point and connect our analysis to recent Monte
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Carlo simulations by Hrahsheh and Vojta [70]. We then shift our attention to two dimen-

sions and use a numerical implementation of the SDRG to locate the fixed point governing

the superfluid-insulator transition there. We identify several universal properties of this

transition, which are fully independent of the microscopic features of the disorder.

The second focus of this thesis is the interplay of localization and interactions in sys-

tems with high energy density (i.e., far from the usual low energy limit of condensed matter

physics). Recent theoretical and numerical work indicates that localization can survive in

this regime, provided that interactions are sufficiently weak. Stronger interactions can de-

stroy localization, leading to a so-called many-body localization transition [17, 109, 111].

This dynamical phase transition is relevant to questions of thermalization in isolated quan-

tum systems: it separates a many-body localized phase, in which localization prevents

transport and thermalization, from a conducting (“ergodic”) phase in which the usual as-

sumptions of quantum statistical mechanics hold. Here, we present evidence that many-

body localization also occurs in quasiperiodic systems that lack true disorder.
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Chapter 1

Introduction

1.1 Noninteracting Particles in Perfect Media

The most basic theories of many-body and solid-state physics treat noninteract-

ing particles propagating in perfectly periodic environments (e.g., electrons in crystal

lattices). This thesis concerns situations in which this picture fails completely. More

precisely, it examines physical systems where particle-particle interactions and ape-

riodicity (e.g., disorder) combine to lead to novel phenomena. Before delving into

the effects of these two ingredients, it is useful to revisit the simplified theories that

ignore them and recall their successes and inadequacies1.

1.1.1 Electrons in a Metal as an Ideal Fermi Gas

In 1900, Drude formulated the first model of conduction in metals by considering

a classical gas of conduction electrons moving in a static background of positive ions.

He assumed that electrons propagate freely between collisions with the ionic back-

1Readers who are familiar with the important roles that disorder and interactions individually
play in many-body physics may wish to skip to 1.4.2, where we begin discussing the specific systems
that we study in Chapters 2 and 3.
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ground, that each electron’s collisions are typically separated by a mean scattering

time τ , and that the electrons emerge from these scattering events with velocities

obeying the classical Maxwell-Boltzmann distribution. Using these assumptions, he

was able to make predictions for certain quantities that roughly match experimen-

tal observations. Nevertheless, other measurements deviated strongly from Drude’s

predictions. Most notably, experimental values of the specific heat cv did not show

the classically expected value of 3
2
kB per conduction electron. This particular defi-

ciency was remedied in the early years of quantum mechanics by Sommerfeld, who

replaced the Maxwell-Boltzmann distribution in Drude theory with the Fermi-Dirac

distribution for the occupation of a single-particle state of energy E:

fFD(E) =
1

e
E−µ
kBT + 1

(1.1)

Nevertheless, several quantitative and qualitative mysteries remained. Most funda-

mentally, the theories of Drude and Sommerfeld failed to explain why some solid-state

materials are nonmetallic [12].

To begin to classify materials as metals and insulators, it was necessary to treat

the positive ions of Drude and Sommerfeld’s theories more carefully. X-ray diffrac-

tion experiments suggested that these ions are often arranged in periodic lattices,

motivating the study of the quantum mechanics of a particle in a perfectly periodic

potential:

− ~2

2m
∇2Ψ(~r) + U(~r)Ψ(~r) = EΨ(~r) (1.2)
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Here, U(~r+ ~R) = U(~r), where ~R is any of the elementary lattice vectors that translate

the lattice into itself. The eigenstates of this problem satisfy Bloch’s theorem:

ψn,k(~r + ~R) = ei
~k·~Rψn,k(~r) (1.3)

where ~k is a vector within the unit cell of the reciprocal lattice defined by ei
~K·~R = 1

(known as the first Brillouin zone). Bloch’s theorem allows us to solve the Schrödinger

equation within a single unit cell, because up to a phase, the eigenstates are peri-

odic between unit cells. The eigenenergies En(~k) typically segregate into a series of

bands, labeled by the index n, separated by energetic band gaps. In the case of the

Schrödinger equation (1.2), there are an infinite number of bands, corresponding to

the discrete, but infinite, solutions within a unit cell. An example for a particles in a

weak periodic potential is shown in Figure 1.1.

Often, the problem is simplified further by making the tight-binding approximation

that there are only a fixed number of orbitals that a particle can occupy within each

unit cell:

Ĥtb = J

L∑

j=1

(ĉ†j+1ĉj + ĉ†j ĉj+1)−
L∑

j=1

µjn̂j (1.4)

If the potential µj repeats every n lattice sites, then there is an n-site unit cell, and

correspondingly, there will be n bands. In this tight-binding approximation, Bloch’s

theorem guarantees that the eigenstates will be periodic (again, up to a phase) each

n sites.

Each band can hold two electrons per unit cell, corresponding to the two possible

3
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2U

Figure 1.1: The energy E vs. quasimomentum k for particles in 1D in a weak periodic
potential of period a and strength U . The quadratic dispersion for a free particle is
folded into the first Brillouin zone, and degenerate states whose quasimomenta differ
by an integer number of reciprocal lattice vectors get split by the potential. This
induces band gaps of size 2U .

values of electronic spin. Suppose there is an odd number of conduction electrons

per unit cell. Then, in the ground state, the highest occupied band will only be half

filled. In the limit of an infinitely large system, there will be no energetic barrier to

adding another electron. In other words, the Fermi energy EF lies in the conduction

band, and the material conducts at low temperatures. Alternatively, suppose there

is an even number of conduction electrons per unit cell. Then, the highest occupied

band is fully filled, and it is necessary to pay the energetic cost of the band gap to add

another electron. Therefore, EF lies in a band gap, and the system is an insulator

at low temperatures. This forms the most basic band classification of solid-state

materials into metals and insulators [12].
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1.1.2 Bose-Einstein Condensation

In parallel with these studies of the properties of solid-state materials, the obser-

vation of viscosity-free flow in liquid helium at low temperatures motivated the study

of systems composed of many bosons. The occupation of single-particle energy levels

by bosons is described the Bose-Einstein distribution:

fBE(E) =
1

e
E−µ
kBT − 1

(1.5)

Meanwhile, the density of states of an ideal gas scales like ρ(E) ∼ E
d−2
2 . Einstein

noted that, in three dimensions and at low enough temperature, there is a bound to

the number of particles that can be accommodated in excited single-particle states.

Hence, there will be a macroscopic accumulation of bosons in the single-particle

ground state, a phenomenon now known as Bose-Einstein condensation [48]. The

ground state condensate can be thought of as a single coherent quantum state with

an overall number and phase.

Important experimental properties of helium-4 deviate from the predictions for

the ideal Bose gas. For instance, helium-4 has a divergence in the specific heat

at the transition to the so-called superfluid state instead of a cusp at the Bose-

Einstein condensation temperature [62]. Furthermore, superfluidity can occur in two

dimensions [83, 40]. Nevertheless, the ideal Bose gas treatment gives a rough estimate

of the transition temperature in helium-4 and was recognized as being the conceptual

foundation for the understanding of superfluid helium-4 [95].

5



1.2 The Role of Interactions

1.2.1 From Fermi gases to Fermi liquids

At least in the case of electrons in metals, it may seem like a miracle that the band

theory picture is ever useful. After all, electrons interact strongly through Coulomb

forces. Indeed, the typical Coulomb energy per particle in a good metal is typically

three to five times the Fermi energy [42]. Why then is an independent electron picture

often applicable?

Landau answered this question by arguing that there are indeed entities that can

be treated as independent in a metal, but that these are not the bare electrons. In-

stead, in Landau’s Fermi Liquid Theory, the bare electrons effectively get “dressed”

by weak interactions, giving rise to emergent quasiparticles. These quasiparticles are

in one-to-one correspondence with the bare electrons and are therefore also described

by Fermi-Dirac statistics. However, these quasiparticles are effectively free (i.e., non-

interacting). Landau showed that these emergent particles are stable to quasiparticle-

quasiparticle scattering, due to the difficulty of constructing momentum-conserving

scattering events with particles near the effective Fermi surface. Thus, the difference

between the noninteracting and interacting electron systems could be encapsulated in

a few renormalized parameters describing the quasiparticles (e.g., an effective quasi-

particle mass m∗ that differs from the bare electron mass me) [12]. Figure 1.2 shows

the ground state momentum occupation function in a Fermi Liquid. In terms of the

bare electrons, interactions induce some filling of momenta beyond the Fermi mo-

6



k

fFD(k)

1

kF

Z

Figure 1.2: The ground state momentum occupation for noninteracting fermions (blue
dashed line) and for a Fermi liquid (red solid line). In terms of the bare electrons,
there is some filling of momenta beyond the Fermi wavenumber kF , but there is a
relic of the step function occupation in the noninteracting system (the “quasiparticle
residue,” here called Z). This feature is a reflection of the fact that the momentum
occupation in terms of quasiparticles is indeed that of a noninteracting system.

mentum kF of the non-interacting problem; however, in terms of quasiparticles, only

momenta up to kF are filled.

1.2.2 From Bose-Einstein Condensates to Superfluidity

To explain the discrepancies between experimental observations on helium-4 and

Bose-Einstein condensation, it was also necessary to study the role of interactions

in many-boson systems. Bogoliubov introduced weak interactions to a Bose gas and

showed that excitations on top of the Bose-Einstein condensate obey a linear dis-

persion ω~k ∼ |~k| at small wavevector |~k| [26]. Then, it was possible to invoke an

argument by Landau that, to preserve energy and momentum conservation, the con-

densate cannot exchange energy with its environment through low-energy processes

if it flows at velocities less than a critical value vc [62, 6]. Thus, the condensate will

flow without dissipation.
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Eventually, the interacting Bose gas picture was also recognized as being inti-

mately related to superconductivity and to superfluidity in helium-3. Electrons and

helium-3 atoms are both fermions; thus, for a superfluid to form, a mechanism is

required to “pair” these fermions into effective bosons. In ordinary superconductors,

this is due to effective attractive electron-electron interactions mediated by phononic

modes of the lattice [33, 16]. In helium-3, the pairing mechanism instead involves

magnetic interactions between atoms of the same spin [62, 91].

1.2.3 Fundamental Failures of Noninteracting Models

We have seen above that, for sometimes rather subtle reasons, noninteracting

models can provide useful starting points for the study of weakly interacting systems

of bosons and fermions. There are circumstances, however, where noninteracting

pictures fail completely. We will now discuss two such situations.

1.2.3.1 The Tomonaga-Luttinger Liquid in One Dimension

For instance, consider the low temperature properties of fermions in one spatial

dimension. Here, no finite interaction strength can truly be considered weak. The

Fermi surface in one dimension consists of only two points at ±kF . These degenerate

states will be split by even weak interactions, destroying the entire Fermi surface and

rendering the Fermi Liquid Theory inapplicable [139].

Tomonaga realized that the emergent “particles” in one dimension are not the

quasiparticles of Fermi Liquid Theory but rather collective bosonic modes. He used

the process of bosonization to map the system to a harmonic chain that describes

8



these modes:

Ĥb =
u

2π

∫
dx

[
1

K
(πΠφ)2 +K(∂xφ)2

]
(1.6)

The Hamiltonian (1.6) represents the case of spinless fermions, and the bosonic op-

erators φ̂ and Π̂φ obey [φ̂(x), Π̂φ(x′)] = iδ(x − x′). The parameter K depends on

the microscopic interactions: K < 1 corresponds to attractive interactions, K = 1

corresponds to noninteracting fermions, and K > 1 corresponds to repulsive interac-

tions [136]. Luttinger calculated the ground state momentum distribution and showed

that it is a power law that depends on K [97]. This is in contrast to the occupation

function for a Fermi Liquid in Figure 1.2.

Later, Haldane realized that the model (1.6) is much more generally applicable

to one-dimensional systems. In particular, it can also be applied to repulsively inter-

acting bosons, but the relationship of K to the microscopic interactions is different:

K = ∞ corresponds to the noninteracting limit, and K decreases with interaction

strength [64].

1.2.3.2 The Mott Insulator

There is another fundamental limitation of noninteracting models that applies in

arbitrary dimensions: the Fermi and Tomonaga-Luttinger Liquid Theories can break

down at nonperturbative interaction strengths. Landau’s argument, for example,

relies on an adiabatic continuity between the bare electrons of the truly noninteracting

model and the quasiparticles of the weakly interacting model [12]. It is important to

question when this assumption of adiabatic introduction of interactions holds.
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In fact, when Fermi Liquid Theory was proposed, experiments had already shown

that there are insulating materials that band theory incorrectly classifies as con-

ductors. Classic examples are the transition metal oxides with an odd number of

electrons per unit cell (e.g., V2O3). Since these materials often exhibit antiferromag-

netism at low temperatures, Slater proposed that the unit cell gets “doubled” due to

the spin structure. Then, the insulating behavior would still follow from band the-

ory since there would now be an even number of particles per unit cell. There was,

however, a problem of scales: the antiferromagnetic ordering does not set in until

T ∼ 102K while the insulating behavior can persist until much higher temperatures

of the order T ∼ 103 − 104K [42]. This motivated Mott to look outside the band

theoretic paradigm for an explanation for the insulating behavior. He reasoned that

electrons cannot be mobile if they do not have enough kinetic energy to overcome

strong electron-electron Coulomb repulsion. Instead, the electrons get localized in a

particular unit cell, forming an insulating state known as the Mott insulator [105].

Each localized electron still carries a spin degree of freedom, and these spins can

order at low temperatures, giving rise to the antiferromagnetic ground state. Thus,

the insulating state sets the stage for the spin ordering and not vice versa [42].

Although motivated by the inadequacies of band theory in describing certain elec-

tronic systems, Mott’s argument is clearly not restricted to fermions. Many-boson

systems can also transition from the superfluid state to a Mott insulating state at

strong interaction strengths, and we will now proceed to discuss models that can

capture this physics in both fermionic and bosonic systems.
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1.2.4 The Fermi and Bose Hubbard Models

A minimal model for studying the role of interactions in electronic systems is the

Fermi-Hubbard model :

ĤFH = J
∑

〈j,k〉,σ
(ĉ†j,σ ĉk,σ + ĉ†k,σ ĉj,σ) + U

∑

j

n̂j,↑n̂j,↓ − µ
∑

j,σ

n̂j,σ (1.7)

Here, we introduce on-site interactions between electrons to a tight-binding model

(1.4) with a single-site unit cell. The operators ĉj and ĉ†j obey the fermionic anti-

commutation relation {ĉj, ĉ†k} = δj,k and the number operator n̂j = ĉ†j ĉj. The ground

state of the one-dimensional model at half-filling (i.e., one particle per unit cell) was

obtained by Lieb and Wu, who showed that there is no conducting state for U > 0

[93]. In higher dimensions, no such exact solution has been found, and the Fermi-

Hubbard model has inspired decades of numerical and theoretical work. The relevance

of this model to the high-temperature superconductors and heavy fermion materials

has especially motivated efforts to understand its phase diagram.

A somewhat simpler2 variant of the Fermi-Hubbard model is the Bose-Hubbard

model, where the particles hopping on the lattice are (typically spinless) bosons:

ĤBH = J
∑

〈j,k〉
(b̂†j b̂k + b̂†kb̂j) +

U

2

∑

j

n̂j(n̂j − 1)− µ
∑

j

n̂j (1.8)

Here, the operators b̂j and b̂†j obey the bosonic commutation relation [b̂j, b̂
†
k] = δj,k

2The Bose-Hubbard model is simpler because it is amenable to quantum Monte Carlo, while
fermionic models often suffer from the so-called “sign” problem that precludes efficient numerical
simulation [94].
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and the number operator n̂j = b̂†j b̂j. The ground state phase structure of this model

was studied in the late 1980s by Fisher, Weichman, Grinstein, and Fisher and is

shown in Figure 1.3 [55]. These authors began by examining the model at zero

hopping strength, J = 0. Here, the model is trivially insulating with a fixed density

of bosons per site that is determined by minimizing U
2
n(n− 1)− µn. As the hopping

is raised, isolated boson-hole pairs are added on top of this inert background, but the

overall density stays fixed. There remains a finite gap to the addition of single bosons

or holes, and the system remains a Mott insulator. The transition to superfluity

generically occurs when the gap to the addition of single bosons or holes closes, and

then, any additional particles added to the system propagate freely on top of the

inert background. This determines the general phase structure seen in Figure 1.3,

with “Mott lobes” at small hopping. The superfluid-insulator transition takes on a

special character at the tip of each lobe, where there is an emergent particle-hole

symmetry. For this reason, the overall density of bosons stays fixed even after exiting

the Mott lobe, and the ground state instead becomes a superposition of different ways

to redistribute the same density around the system [55].

1.3 Aperiodicity and Localization

We have seen above that strong interactions can drive otherwise metallic or even

superfluid systems into a Mott insulating state. There is another distinct route to

insulating behavior that does not require interactions. To understand this mechanism,

we need to relax the assumption of a perfectly periodic medium.
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BOSON LOCALIZATION AND THE SUPERFLUID-INSULATOR. . .

quence of the competition between the kinetic energy,
which tries to delocalize the particles and reduce the
phase fiuctuations of the Bose field, and the combination
of the interactions and the random potential which try to
localize the particles and make the number density Auc-
tuations small. This competition plays an essential role
in the scaling analysis of the superAuid onset transition
which was briefiy introduced in Ref. 3 and is discussed in
more detail here.
In this paper we discuss the behavior of bosons with

short-range repulsive interactions moving in both ran-
dom and periodic external potentials. We argue that, in
general, there can be three types of phases at zero tem-
perature: a superAuid phase, commensurate Mott insu-
lating phases in which there is a gap for particle-hole ex-
citations and zero compressibility, and a "Bose glass"
phase in which there is no gap, the compressibility is
finite, but the system is an insulator because of the locali-
zation eft'ects of the random potential. This Bose glass
phase, which is rather analogous to the Fermi glass phase
of interacting fermions in a strongly disordered potential,
with the repulsive interactions playing the role of Pauli
exclusion, has some rather surprising properties, particu-
larly an infinite superAuid susceptibility. The principal
focus of this paper is the onset of superQuidity at zero
temperature as the parameters of the system are varied.
Two groups have recently studied the onset of

superAuidity in a random potential. Ma, Halperin, and
Lee (MHL) have attempted a Landau theory and dimen-
sionality expansion about a mean-field theory; we believe
(and will argue) that this work contains an error which
invalidates the conclusions. Giamarchi and Schulz, on
the other hand, have analyzed the interacting Bose prob-
lem in one dimension by a renormalization-group calcula-
tion perturbation in the strength of the disorder. We will
rely heavily on this calculation as a cornerstone on which
to test more general scaling arguments.
We will argue that, in contrast to natural expectations,

the onset of superfiuidity at zero temperature is generally
not in the universality class of the 0+1-dimensional XY
model (with, in the presence of randomness, a random
time-independent potential). Instead, we will show that
in the absence of randomness, such 4+1-dimensional XY
models describe only special multicritical transitions
while generically the behavior is that of a zero-density
transition such as that which occurs as the density of bo-
sons is increased from zero in the absence of an external
potential. (This is also the case for the generic quan-
tum XYmagnet without time reversal invariance. ) In the
presence of randomness, we expect the transition to
superAuidity always to occur from the Bose glass phase.
This transition, as argued in Ref. 3, is characterized by a
dynamic critical exponent z which because of number-
phase competition turns out to be equal to the spatial di-
mension d, a correlation length exponent v~ 2/d, and an
order-parameter exponent g. This latter exponent is ar-
gued here to satisfy the bound g ~ 2—d. These exponent
relations, when placed in the framework of a scaling
theory, enable explicit and verifiable predictions for vari-
ous static and dynamic properties near the zero-
temperature superfluid onset transition. Some measur-

able exponents, depending only on z, are predicted exact-
ly.
We present arguments that there may, in fact, be no

simple high-dimensional limit of this transition —at least
not of a conventional G-aussian or mean-field kind —and
that the equality z =d holds in all dimensions. We also
outline an alternate possibility, discussed by Weichman
and Kim in Ref. 8, that for d) 4 there are two universali-
ty classes, one for strong disorder with presumably z =d
and the other for weak disorder with mean-field ex-
ponents.
The outline of this paper is as follows: In Sec. II the

basic model of bosons hopping on a lattice is introduced.
Its relation to the usual charging models of granular
superconductivity ' is brieAy explained. By treating the
kinetic energy (i.e., hopping) as a perturbation, the phase
diagram in the hopping strength, J, and chemical poten-
tial, p, plane is worked out. For the pure, nonrandom,
system we find two types of phases: a set of incompressi-
ble Mott insulating phases in which the density is fixed
commensurately at a positive integer, n, per site; and a
superAuid phase with the usual ofMiagonal long-range
order (Fig. 1). In the random case we argue that a gap-
less, insulating Bose glass phase with nonzero compressi-
bility, must intervene between the Mott and superAuid
phases (Fig. 2), and that, in fact, the Mott phase can be
destroyed completely if the randomness is su%ciently
strong (this is almost certainly the relevant case for the
phase diagram of He adsorbed in porous media). In Ap-
pendix A we derive the exact phase diagrams within a
mean-field theory (i.e., an infinite-range hopping model),
verifying many of the general details, but finding no Bose
glass phase. This, however, is hardly surprising since lo-
calization e6'ects are absent when hopping can occur be-
tween any two sites, particularly those with degenerate
onsite energy.

yQN0'=0

J /V

FIG. 1. Zero-temperature phase diagram for the lattice mod-
el of interacting bosons, (2.1), in the absence of disorder. For an
integer number of bosons per site the superAuid phase (SF) is
unstable to a Mott insulating (MI) phase at small J/V.

Figure 1.3: The general phase structure of the Bose-Hubbard model (1.8), as worked
out by Fisher, Weichman, Grinstein, and Fisher [55]. Note that V in their phase
diagram is the interaction strength that we call U in our definition of the Bose-
Hubbard model (1.8).

1.3.1 Anderson Localization

In 1958, Anderson was motivated by Feher’s experiments on spin diffusion in

silicon to examine the role of disorder in quantum transport [11]. He studied a tight-

binding single-particle model of the form (1.4) where µj varies randomly from site

to site. Anderson sampled the µj randomly from a box distributions of width W .

This serves as a toy model of the situation in real materials where the environment

(e.g., a crystalline lattice) is never perfect: impurities and structural imperfections

are inevitable. Anderson showed that, below some ratio of the hopping to the disorder

strength, the single-particle eigenstates will all be localized. This means that their

amplitude decays exponentially in space with a characteristic length ξ, the localization

length [11]. This is in contrast to the extended states (1.3) that form in periodic
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systems where Bloch’s theorem holds. Soon thereafter, Mott and Twose argued that

all eigenstates will be localized in one spatial dimension for arbitrarily weak disorder

in the potential [107]. This reveals an important aspect of Anderson localization:

it occurs even when J >> W , meaning that the kinetic energy is great enough to

surmount any barriers imposed by the potential. Anderson localization is thus not

due to any form of classical trapping and is instead a wave interference phenomenon.

In 1979, the nature of Anderson localization in higher dimensions was clarified

by Abrahams, Anderson, Licciardello, and Ramakrishnan [2], who built on earlier

ideas of Thouless and collaborators [45, 135, 92]. These authors formulated a scaling

theory of localization by considering how the conductance g varies with the linear

system size L in dimension d. At small disorder strength, the conductance should be

ohmic:

g(L) ∼ Ld−2 (1.9)

Meanwhile, at strong disorder, localization implies that the conductance decays ex-

ponentially with L:

g(L) ∼ exp

(
−L
ξ

)
(1.10)

Abrahams et al. examined the function:

β(g) ≡ d ln g

d lnL
(1.11)

which describes how the conductance varies as the system size is changed. The goal

is then to connect the ohmic (1.9) and localized (1.10) behaviors, from which it is

14



Figure 1.4: The beta function vs. conductance g, as derived in the paper by Abrahams
et al. [2].

possible to extract a picture like the one in Figure 1.4. In one dimension, the β

function (1.11) is always negative, indicating that the system flows towards lower and

lower conductances as the sample size is raised. This is consistent with the notion that

that one-dimensional disordered systems are always localized. In three dimensions,

the β function crosses zero at some finite value of the conductance g. This indicates

that the presence of an Anderson transition between localized and ohmic behavior.

The case of two dimensions is marginal, because the level of analysis in equation

(1.9) suggests that the ohmic conductance is independent of system size. Thus, the

sign of the β function is determined by logarithmic corrections to equation (1.9).

Abrahams et al. showed that this correction is typically negative, meaning that the

two-dimensional model is always localized3 [2].

Let us now focus on the nature of the Anderson transition in three dimensions.

Figure 1.5 shows a caricature of the density of states of the three-dimensional An-

3The correction can become positive in models with spin-orbit coupling, leading to a transition
[69].
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Figure 1.5: Sketch of the density of states of the three-dimensional Anderson model.
Mobility edges separate the localized and extended states in the spectrum.

derson model. Whereas in one and two dimensions the entire spectrum would be

localized, here extended and localized states can coexist. However, they generally

cannot coexist at the same energy: as argued by Mott, if there were degenerate ex-

tended and localized states, they would be strongly mixed by small perturbations.

This mixing would render both states extended [108]. Consequently, localized and

extended states are typically separated by so-called mobility edges, as shown in Figure

1.54. For a system of electrons, the conductance properties will be determined by the

location of the Fermi energy (i.e., whether EF lies in a region of localized or extended

states). The Anderson transition can be tuned by changing the disorder strength,

thus moving the mobility edge past EF. Alternatively, the transition can be tuned

by changing the number of electrons in the system at fixed disorder strength, thus

tuning EF past the mobility edge.

The scaling theory (as presented in Figure 1.4), suggests that the conductance

4At sufficiently strong disorder strength, the entire spectrum can be localized even in three
dimensions, and in this case, there would be no mobility edge.
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will go to zero as we approach the thermodynamic limit in a localized regime. In real

solid-state systems, it is important to remember that the electrons interact with a

phononic bath. By absorbing and emitting phonons, electrons can hop between dis-

tant localized orbitals. The probability of such an event depends upon the splitting in

energy between the orbitals (i.e., hopping is more favored between nearly degenerate

states) and on the distance separating the orbitals, because the overlap of the orbital

wavefunctions decays exponentially in space. Mott determined how to balance these

effects and thereby obtained the variable-range hopping conductivity :

σ ∝ exp

[
−
(
T0

T

) 1
d+1

]
(1.12)

in d dimensions. Here, T is the temperature of the phononic bath, and T0 is a

characteristic temperature related to the typical energy splitting of orbitals within

a localization volume ξd [106]. The variable-range hopping process is ultimately

responsible for bringing the electrons into thermal equilibrium with the phononic

bath. The problem of many-body localization, which we will discuss in Section 1.4.2.2

below, is intimately tied to the question of whether electron-electron interactions can

induce variable-range hopping in the absence of coupling to phonons [17].
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1.3.2 Other Models of Localization

1.3.2.1 Localization with Hopping Disorder

Localization is a general wave phenomenon that occurs in many disordered quan-

tum systems; it is not special to the model studied by Anderson. For instance,

localization also occurs with “off-diagonal” disorder in the hopping term:

Ĥrh = −
L∑

j=1

Jj(ĉ
†
j+1ĉj + ĉ†j ĉj+1) (1.13)

This one-dimensional random hopping model has a particle-hole symmetry that is

missing in the Anderson model. The related classical problem of the random harmonic

chain was studied in the early 1950s by Dyson [43], and the quantum model received

attention in the following decades [133, 46]. More recently, higher-dimensional ver-

sions of this model have been studied [103]. Furthermore, the model has been realized

experimentally in photonic waveguides [89], and there is also a proposal to engineer

it in atomic lattices [150].

Perhaps the most intriguing feature of the one-dimensional model is that all eigen-

states are localized except one: the E = 0 state. This can be shown by setting

Ĥrh|ψ〉 = 0, which yields the equation:

−Jjψj+1 − Jj−1ψj−1 = 0⇒ ψj+1

ψj−1

= −Jj−1

Jj
(1.14)
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This in turn implies that the localization length ξ near E = 0 obeys:

1

ξ
= − lim

n→∞
1

2n
ln

∣∣∣∣
ψ2n+1

ψ1

∣∣∣∣

= − lim
n→∞

1

2n
[(ln |J2n−1|+ ln |J2n−3|+ · · ·+ ln |J1|)

−(ln |J2n|+ ln |J2n−2|+ · · ·+ ln |J2|)] (1.15)

For uncorrelated disorder, the limit goes to zero. This means that ξ diverges, indicat-

ing the presence of an extended zero energy state. As a function of E, the localization

length is known to diverge as ξ(E) ∼ − ln |E| and this divergence is accompanied by

a Dyson singularity ρ(E) ∼ 1
|E ln3 E| in the density of states [43, 133, 149].

1.3.2.2 Aubry-André Localization

A couple of decades after Anderson’s original work on localization, Aubry and

André demonstrated that localization can even occur without “true” disorder. They

studied a tight-binding model of the form:

ĤAA = J
∑

j

(ĉ†j+1ĉj + ĉ†j ĉj+1) + h
∑

j

cos (2πkj + δ)n̂j (1.16)

with irrational wavevector k. This makes the potential incommensurate with the lat-

tice, which in turn means that the potential pattern is deterministic but nonrepeating

[13]. Harper had studied a similar model much earlier, but he had focused on a special

ratio of hopping to potential strength [65]. Aubry and André showed that this point

actually lies at a localization transition. It separates a weak potential phase, where
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all single-particle eigenstates are extended, from a strong potential phase, where all

eigenstates are localized.

The easiest way of demonstrating that the transition exists is by noting that

the model (1.16) is self-dual when δ = 0. On a finite size lattice, it is conven-

tional to enforce periodic boundary conditions by choosing k = `
L

such that ` and L

are mutually prime. The self-duality can be realized by switching to Fourier space

(cj = 1√
L

∑
q e

iqjcq) and then performing a rearrangement of the wavenumbers q such

that the real-space potential term looks like a nearest-neighbor hopping in Fourier

space and vice versa. The duality construction reveals that, if the AA model has a

transition, it must occur at J
h

= 1
2
. In the thermodynamic limit, there is indeed a

transition at this value for nearly all irrational wavenumbers k [134]. When J
h
> 1

2
,

all single-particle eigenstates are spatially extended, and by duality, localized in mo-

mentum space; when J
h
< 1

2
, all single-particle eigenstates are spatially localized, and

by duality, extended in momentum space. Exactly at J
h

= 1
2
, the eigenstates are

multifractal [127, 67]. The spatially extended phase of the AA model is characterized

by ballistic, not diffusive, transport [13]. Recently, Albert and Leboeuf have argued

that localization in the AA model is a fundamentally more classical phenomenon than

disorder-induced Anderson localization, and that the AA transition at g = 1
2

is most

simply viewed as the classical trapping that occurs when the maximum eigenvalue of

the kinetic (or hopping) term crosses the amplitude of the incommensurate potential

[4].

In the 1980s and 1990s, physicists continued to study this quasiperiodic local-
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ization transition for its own peculiarities and because it mimics the situation in

disordered systems in d ≥ 3, where there is also a single-particle localization tran-

sition5 [134, 30, 49, 1, 47, 127, 67, 138]. It is important to keep in mind that, in

contrast to the three-dimensional Anderson model, the Aubry-André model (1.16)

lacks a mobility edge. However, a mobility edge is introduced by many perturbations

to the model (1.16) [116].

1.4 Disorder, Interactions, and Phase Transitions

We have seen above that interactions and disorder can both localize particles,

leading to Mott and Anderson insulators respectively. We might, consequently, be

led to believe that the combination of both ingredients would favor insulating behavior

even more strongly. This naive assumption underestimates the considerable richness

of the disordered many-body problem. Interactions can destroy disorder-induced

localization, and disorder can transform Mott insulators into exotic glassy states. We

will now discuss these fascinating phenomena. We will first address some general

aspects of the role of disorder at and near phase transitions; then, we will concretize

these ideas to two issues of special relevance to this thesis.

5The AA model was also actively investigated in the mathematical physics literature, because it
involves a Schrödinger operator (i.e., the “almost Mathieu” operator) with particularly rich spectral
properties. The contributions of mathematical physicists put the initial work on Aubry and André
on more rigorous footing [128, 20, 77, 76].
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1.4.1 Disorder at Phase Transitions

1.4.1.1 The Harris Criterion

Suppose we introduce disorder into a system that exhibits a continuous phase

transition in the clean limit. Two questions immediately arise: does a sharp transition

survive the presence of disorder, and if so, how do the universal properties of the

transition change? In 1974, Harris formulated a general criterion that can guide

the effort to address these questions. Harris originally formulated his argument in

the context of thermal phase transitions tuned by the temperature. Here, we use

the thermodynamic language for convenience, but Harris’ argument applies equally

well to a quantum phase transition tuned by some other parameter. At the clean

transition, the correlation length ξ diverges as |T −Tc|−ν . Meanwhile, in a disordered

system, there is actually a “local” critical temperature Tc,loc that varies spatially,

because of local variations in the couplings. To maintain the integrity of the clean

critical point, the typical fluctuation of Tc,loc in a correlation volume ξd ought to be

smaller than the distance to criticality |T − Tc|. The central limit theorem suggests

that fluctuations of the mean of Tc,loc in a localization volume decay as ξ−
d
2 . Thus,

we require:

ξ−
d
2 = |T − Tc|−

dν
2 < |T − Tc| (1.17)

This yields an inequality, the Harris criterion, that must be obeyed by the critical

point of any disordered system:

νd > 2 (1.18)
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If a clean critical point obeys the condition (1.18), then the universal properties will

be unaffected by introducing weak disorder. Alternatively, if the clean critical point

violates the condition, there are two possibilities: weak disorder may completely smear

the transition away, or a critical point with new universality may emerge [66, 120].

1.4.1.2 Griffiths Phases and Rare Events

Let us consider the case where a transition survives in the disordered system.

Irrespective of whether or not the universality changes, there will be consequences

for the phases that the transition separates. We label these abstract phases A and

B. Due to the spatial variation in the couplings, when the bulk of the system is in

phase B, there can still be regions that are locally in phase A, as shown in Figure

1.6. These regions are known as Griffiths regions, and the phase in which they appear

is known as a Griffiths phase. If the disorder is spatially uncorrelated, the Griffiths

regions get exponentially rare as their size increases. Nevertheless, arbitrarily large

Griffiths regions can appear [61, 140].

Pollet et al. have recently argued that Griffiths regions exclude the possibility

of standard phase transitions between energetically gapped and gapless phases in

disordered systems. As we approach the transition from the side that is gapped in

the clean system, there will appear arbitrarily large regions of the competing gapless

phase, driving the system gapless [113]. According to Pollet et al., any transition

between gapped and gapless phases in a disordered system must be of the “Griffiths

type.” This means that the transition occurs when the disorder distribution first al-

lows the possibility of a region of the competing phase. To concretize this further,
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Figure 1.6: Schematic depiction of a Griffiths phase in a disordered system. The bulk
of the system is in phase B, a gapped phase of the clean system. However, there are
regions that are locally in the phase A, and these regions can get arbitrarily large in
the thermodynamic limit. Since phase A is gapless, the Griffiths phase will also be
gapless due to the presence of these rare regions.

suppose phases A and B are gapless and gapped phases of the clean system respec-

tively, as shown in panel (a) of Figure 1.7. In the disordered system, two Griffiths

phases will flank the “true” phase transition. This situation is shown in panel (b).

Both Griffiths phases will be gapless, so the only transition between gapped and

gapless phases is the transition out of the pure phase B, which is indeed of Griffiths

type. Note that, if the disorder distributions are unbounded, it is always possible

to find regions of the competing phase, so the gapped phase B will, presumably, be

completely destroyed, as in panel (c) of Figure 1.7 [63].

Griffiths regions are examples of rare events in disordered systems, and these

rare events can lead to very unusual behavior: average values of physical properties

can behave very differently from their typical values. An instructive example was

found by Fisher, who studied the paramagnet-ferromagnet phase transition of the

random transverse field Ising model. He examined the two-point spin-spin correlation
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Figure 1.7: Schematic depictions of the impact of disorder around a phase diagram.
In panel (a), we show a clean system with a transition between phase B and phase A
at the tuning parameter g = gc. With disorder, the tuning parameter varies randomly
with mean g. When the bulk of the system is in phase B, there can be rare regions of
phase A if the maximum value of the tuning parameter is on the phase A side of the
clean phase transition. This situation, with Griffiths phases flanking the transition,
is shown in panel (b). With unbounded disorder distributions, there can always be
rare regions of the competing phase, as shown in panel (c).

25



function 〈σ̂zj σ̂zj+r〉 in the paramagnetic phase, and showed that the typical and mean

correlations both decay exponentially. However, the correlation lengths over which

these decay occur are very different, because the mean correlation at large distances

is dominated by exponentially rare pairs that are perfectly correlated [54].

1.4.1.3 Infinite-Disorder Fixed Points and the Strong-Disorder Renor-

malization Group

The most extreme impact of disorder upon phase transitions occurs when a system

exhibits a so-called infinite-disorder fixed point. These special fixed points are often

identified through a powerful technique for studying strongly disordered systems, the

strong-disorder renormalization group (SDRG). This method was originally developed

by Dasgupta and Ma [37] and Bhatt and Lee [22]. Later, it was used extensively by

Fisher to study a variety of one-dimensional quantum spin models [52, 54].

One way to motivate the procedure is to note that strong disorder makes the

problem of finding the quantum ground state of a model more local. Having identified

the strongest of all the disordered couplings in the Hamiltonian, we can then use the

assumption of strong disorder to argue that other couplings in the real-space vicinity

of this coupling are likely to be much weaker. This means that the ground state can

locally be approximated by satisfying just this dominant coupling. Other terms in the

Hamiltonian can then be incorporated as corrections6. This procedure generates new

effective couplings in the model and thereby yields a new effective Hamiltonian. Since

6Quite often, these other terms are treated by means of perturbation theory, but this need not
always be the case.
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part of the ground state is specified in this step, some degrees of freedom of the system

are decimated away. By repeating the procedure, we can iteratively specify the entire

ground state [37, 22]. Moreover, we can examine the way in which the probability

distributions of the disordered couplings flow as the renormalization proceeds. One

possibility is that the model looks more and more disordered at larger length scales

near criticality, thus flowing towards “infinite disorder.” If this occurs, the strong

disorder renormalization group becomes asymptotically exact near criticality, and it

is sometimes even possible to predict quantities for which the corresponding behavior

in the clean model is unknown [52, 53].

Fisher used the SDRG to show that several one-dimensional quantum spin models

exhibit this type of fixed point. These include the random transverse-field Ising chain

and various random antiferromagnets [52, 54]. Numerical work by Motrunich et al.

subsequently provided evidence that infinite-disorder criticality also characterizes the

two-dimensional random transverse-field Ising model [104]. The discrepancy between

typical and mean values is most dramatic at infinite-disorder criticality. Again, a

striking example was found by Fisher: in the random transverse-field Ising chain, the

typical two-point correlations at criticality obey ln〈σ̂zj σ̂zj+r〉 ∼ −
√
x while the mean

two-point correlations obey 〈σ̂zj σ̂zj+r〉 ∼ 1
x2−φ

where φ =
√

5−1
2

is the golden mean.

Since the latter is what is measured in neutron-scattering experiments, it is crucial to

keep this distinction between mean and typical values in mind when confronted with

infinite-disorder criticality [52, 54].
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1.4.2 The Disordered, Interacting Many-Body Problem

We will now focus on two challenging problems of current theoretical and experi-

mental interest: the dirty boson and many-body localization problems. In both cases,

the interplay of disorder and interactions is absolutely crucial for characterizing the

phases and phase transitions, but the inherent difficulty of each problem has left a

full understanding elusive.

1.4.2.1 Superfluid-Insulator Transition for Disordered Bosons

In the 1980s, seminal experiments on helium adsorbed in Vycor first attracted

the attention of theorists to the “dirty” or random boson problem [35, 115]. These

experiments seemed to show a superfluid-insulator transition with some striking sim-

ilarities to ideal Bose gas behavior7. Thus, in the decade before the realization of

Bose-Einstein condensation in cold atomic gases, the helium in Vycor system was ac-

tually proposed as a possible realization of this elusive phenomenon. While studies of

disordered bosons did not ultimately lead to the observation of Bose-Einstein conden-

sation, the considerable richness of the dirty boson problem continued to stimulate

theoretical interest.

Both this richness and the difficulty of the dirty boson problem originate in the

volatility of the combination of disorder, interactions, and Bose statistics at low tem-

peratures. The single-particle ground state in a disordered potential is generically

localized [11]. The protocol for constructing the ground state of many noninteracting

7The most important similarity was the vanishing of the superfluid density ρs ∼ |T − Tc|v near
criticality. In particular, a crossover from the interacting exponent of v = 2

3 to the ideal Bose gas
value of v = 1 was observed as the density of helium was reduced [146].
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bosons is to simply deposit all of them in this localized state, but such a configuration

is intrinsically unstable to weak interactions. Thus, the noninteracting, disordered

limit is pathological and cannot be the starting point for a perturbative analysis.

Instead, Giamarchi and Schulz pioneered the study of dirty bosons in one di-

mension by introducing weak disorder to a strongly interacting many-boson system

[58]. The starting point of their analysis was a Hamiltonian of the form (1.6). Gia-

marchi and Schulz added a perturbative term describing a disordered potential and

decomposed it into terms describing forward and backward scattering by impurities.

They showed that the backward scattering leads to renormalization of the Luttinger

parameter K and disorder strength D. Their proposed renormalization group flow

diagram is shown in Figure 1.8. The superfluid-insulator transition is described by

a fixed point at a universal value of the Luttinger parameter and vanishing disor-

der strength. For generic systems, the universal Luttinger parameter at criticality

is K = 3
2
, and for particle-hole symmetric systems, it is K = 2. In either case, the

transition is of Kosterlitz-Thouless type, meaning that superfluidity is destroyed by

the proliferation of phase slips in the superfluid order parameter [83]. Disorder is

dangerously irrelevant at the transition, because on the insulating side, the disorder

strength grows under renormalization. Unfortunately, when this occurs, the perturba-

tive approach of Giamarchi and Schulz breaks down and the insulating phase cannot

be characterized [58].

The task of identifying the insulating phase was taken up by Fisher, Weichman,

Grinstein, and Fisher, who studied the disordered Bose-Hubbard model in arbitrary
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V. I.GCAI.IZATION TRANSITION
IX W OXK-DIMKXSIOX+r.

BQSGN SYSTEM

The method developed here can be applied to a one-
dln1enslonal system of 1Ilteractlng bosons 1Il a randonl
potential, and speci6c ally to the localized-super Quid
transition in such a system. %e use a representation of
boson operators in terms of phase fields introduced by
Haldane. ' The single-boson creation operator is written
RS

and ri and g are the parts of the random potential with
Fourier components around q =0 and q =+2mpo, respec-
tively. We will take for i) and g the same probability
distributions as in (2.10). A unitary transformation
which exchanges P and 0 [p (p)~ —p (p) in Eq. (2.3)]
turns the complete problem [Eqs. (5.4) and (5.8)], into
the one discussed in Sec. II, Eqs. (2.4) to (2.11) (or more
precisely its spinless analogue). Following the same
route as before, we find the scaling equations

dK

+ (x)=[p(x)]'~ e'~'"' (5.1) (5.10)

1 BO(x) +"
p(x ) =— g exp[2im 8(x )],Bx

(5.2)

where 88(x)/Bx =n.[pa+ II(x)], pu is the average densi-
ty, and II(x) obeys the canonical commutation relations,

[P(x), II( x)]=i5( x—x') . (5.3)

The 1ong-wavelength-low-energy properties are de-
scribed by the Hamiltonian, '

0 = f dx (uK)(mII) + —(B„P)
2m E (5.4)

where from Galilean invariance one has /u(nK)=po/m,
and muK =a/(m pu), where a is the compressibility.
Clearly, the excited states of H are sound waves with
phase velocity u, which from Eq. (5.1) are the phonon
modes typical of a Bose superAuid. As already pointed
out in the preceding section, the existence of such modes
is suScient for true superAuidity to exist. ' The
coeNcient E determines the asymptotic behavior of the
correlation functions,

(p(r)p(0) ) =—(2~por)

where p(x) is the particle-density operator and P(x) the
phase of the boson field. Taking the discrete nature of
the particle density into account, the density operator is

where 2)=2)&/ir u 'po. Thus for K ~ —,
' the disorder

scales to zero, indicating a delocalized, superAuid phase
with renormalized exponents due to the renormalization
of E For E p 3 the disorder grows under scaling, indi-
cating that the properties of the system are qualitatively
di8'erent from the region K g —', . In analogy with the
previous chapter, we interpret this as the localized re-
gion. The phase diagram in the disorder EC plane is
shown in Fig. 5. Along the superAuid-localized transi-
tion line, the fixed-point value of K is E' =-'„and conse-
quently the single-boson correlation function, Eq. (5.5)
decays with a uniuersa/ power —, along this line. This is
the same exponent as found along the SS-PCD% limit
before. This equivalence certainly is not unexpected, as
in the SS region fermions are bound into singlet pairs,
with binding energy 5, and these pairs behave like bo-
sons, at least at large length scales.
The coefBcient K increases with increasing repulsion

between bosons (K-x'' ), and consequently the transi-
tion discussed above occurs with increasing repulsion.
In this context we may note than an external potential
with period 1/po (1 boson per site) is a relevant pertur-
bation, i.e., leads to a long-range ordered state, for
K ~ —,, i.e., within the stable (against disorder) superfluid
region. On the other hand, a potential with period —,'po
(one boson per two sites) needs K y2 to lead to an or-
dered state, and this can only be achieved for a very
strong repulsion with a finite range [5-function repulsion
leads to K & 1 (Ref. 18)].

+ A pu(pur) cos(2~par), (5.6)

with son1e numerical constants A and 8.
%'e now introduce a random potential V, described by

an additional term

H„= dx Vxpx (5.7)

in the Hamiltonian. Inserting from (5.2) and retaining
only the most important terms (m =0, m =1), this be-
comes

Ja

/r S UPSY F LU10
/

LOCA L12 K 0

a„= I dx [q(x)II(x)+[g(x)p,e'""+H.c. ]I, (5.8)

88(x) =nil(x),
X

(5.9)

where in 9 the linearly increasing part of 8 is subtracted,
FIG. 5. Phase diagrams for a one-dimensional boson system.

The thin lines indicate the qualitative shape of scaling trajec-
tories, as discussed in the text. The dashed lines are for parts
of the diagram that cannot be obtained by the present method.
The Inulticritical point can also be located at I( =0.

Figure 1.8: Renormalization group flows for weakly disordered bosons in one dimen-
sion, as derived by Giamarchi and Schulz [58]. The superfluid-insulator transition is
described by a fixed point at vanishing disorder strength D. This transition separates
a nearly uniform superfluid from an insulator in which the disorder strength grows
with length scale, rendering the approach of Giamarchi and Schulz invalid.

dimension:

ĤBH = J
∑

〈j,k〉
(b̂†j b̂k + b̂†kb̂j) +

U

2

∑

j

n̂j(n̂j − 1)−
∑

j

µjn̂j (1.19)

Their proposed phase diagram, as presented in a review by Weichman, is shown

in Figure 1.9 [146]. A Griffiths phase emerges and separates the Mott insulator

and superfluid in the phase diagram. This phase is globally insulating but contains

arbitrarily large regions of superfluid ordering. Thus, the phase is gapless. A finite

fraction of the regions sit at the threshold for adding an additional boson; hence, in

contrast to the Mott insulator, the phase has a finite compressibility:

κ ≡ 1

Ld

∑

j

∂〈n̂j〉
∂µ

(1.20)

Furthermore, in the thermodynamic limit, the largest regions of superfluid ordering
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Fig. 3. Left: Schematic illustration of lattice bosons near unit filling in the presence of bounded
site disorder. If the disorder is not too strong (δ ≡ ∆/V < 1

2
), there is still a (shrunken) Mott

lobe with a finite energy gap for adding or removing particles. Unlike in the pure case (Fig.
2), superfluidity is not generated immediately outside this lobe. For sufficiently small n − 1, the
additional particles are Anderson localized by the residual random background potential of the
effectively inert layer. A finite compressibility distinguishes this new insulating Bose glass (BG)
phase from the MI. The superfluid critical point µsf (J) occurs only once the added particles have
sufficiently smoothed the background potential that its effective lowest lying single particle states
become extended. Right: Associated phase diagram, with MI, BG and SF phases. The transition
to superfluidity is always from the BG phase, is in the same universality class along the entire
transition line, and is ultimately the correct description of helium in Vycor.

3.2. Disordered system

Consider now the addition of site disorder. The left panel of Fig. 3 motivates the

existence of a third phase, the Bose glass (BG) phase,d that intervenes between the

Mott and superfluid phases.7 Beginning again with the J = 0 limit, for sufficiently

bounded disorder, ∆ < V/2, there remains an interval (n0−1)V +∆ < µ < n0V −∆

over which every site still has exactly n0 particles. However, for µ just outside this

interval, some sites with have an extra particle (or hole), and the fraction of such

sites will vary continuously with µ—even at J = 0 the state is now compressible.

For small J , there will still be an interval µ−
c (J, ∆, n0) < µ < µ+

c (J, ∆, n0) where

mutual repulsion continues to the dominate the disorder, and the incompressible

Mott lobe, though shrunken, still survives (right panel of Fig. 3). A rare region

argument will be used in Sec. 4 to show that µ±(J, ∆, n0) = µ±(J, 0, n0) ∓ ∆ are

dThe term “Bose glass” may have originated in the early work of Ref. 25, who studied a Hartree-
Fock approximation to (1). It transpires that such an effective single-particle treatment of the
interactions is a very poor approximation for disordered bosons, and their main conclusions were
disputed in Ref. 26.

Figure 1.9: The phase diagram proposed by Fisher et al. for the disordered Bose-
Hubbard model with µj ∈ (µ − δ, µ + δ). The Mott insulator and the superfluid
are always separated by a new Griffiths phase, the Bose glass. This phase diagram is
taken from a review by Weichman and also includes an estimate of where the helium-4
in Vycor system might fall in the phase diagram [146].
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give the phase an infinite susceptibility:

χ ≡ 1

Ld

∑

j

∂〈cos (φ̂j)〉
∂h

(1.21)

when perturbed by an ordering field that couples to the phase of the superfluid order

parameter8:

Ĥ ′ = −h
∑

j

cos (φ̂j) (1.22)

This gapless, compressible, infinitely susceptible insulator is known as the Bose glass9

[55]. Fisher et al. considered the possibility of a direct Mott insulator to superfluid

transition in the presence of disorder, but this possibility appears to be excluded by

the arguments of Pollet et al. [113].

There has been substantial progress on the dirty boson problem in the two and a

half decades since the work of Giamarchi and Schulz and Fisher et al. For instance, the

Bose-Hubbard model is amenable to quantum Monte Carlo, and in 2009, a numerical

phase diagram for the three-dimensional model at unit filling was determined by

Gurarie et al. This phase diagram is reproduced in Figure 1.10. It exhibits a highly

nontrivial phase boundary and strong robustness of the superfluid phase to disorder

[63]. Despite this progress, the dirty boson problem still presents many challenges.

Most importantly, the universal properties of the superfluid-insulator transitions in

8As we will note later in the thesis, the boson creation and annihilation operators can be reex-

pressed in a phase-number representation b̂j =
√
n̂je

iφ̂j .
9In principle, there is a Griffiths phase also on the superfluid side of the transition, with large

rare regions of insulator embedded in a superfluid bulk. However, because this phase maintains the
long-range correlation properties of the superfluid phase, it is conventionally just referred to as a
superfluid.
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the middle of the gap, != !!+−!−" /2, in which case Ep
=Eh=Eg/2=Eg /2. Therefore, below we always assume this
choice of !.

The above-mentioned "c=Eg/2 conjecture is based on the
assumption that the state remains gapped for "#Eg/2. For
"$Eg/2 the state can be shown to be gapless because rare
statistical fluctuations guarantee the existence of arbitrarily
large homogeneous regions with disorder mimicking
chemical-potential shifts exceeding particle or hole gaps. In
other words the conjecture was that the transition is of the
Griffiths type. An alternative scenario would claim that the
transition point happens at smaller values of " due to subtle
interplay between disorder and interactions.

In this paper, we show that the theorem of inclusions
forces one to conclude that the Griffiths-type scenario is the
only one possible for the gapped-to-gapless transitions. That
is, the vanishing of the gap at the critical point is exclusively
due to a zero concentration of rare regions in which extreme
fluctuations of disorder reproduce a regular gapless system.
In the vicinity of the critical point, the gapless phase must
necessarily be “glassy” because it consists of large gapless
!in our case superfluid" domains embedded in a gapped state.
The absence of phase coherence between domains is caused
by their diverging distance between at the critical line. To
illustrate these general conclusions, we consider the exactly
solvable random transverse field Ising model in one dimen-
sion.

Though the topology of the phase diagram for the Bose-
Hubbard model is fixed by theorems, it is both interesting
and important to determine transition lines and properties of
phases numerically. In particular, this is necessary for reveal-
ing potential difficulties in observing and identifying the
phases. To this end, we have calculated the full phase dia-
gram of the disordered three-dimensional !3D" Bose-
Hubbard model, shown in Fig. 1, by quantum Monte Carlo
simulations based on the worm algorithm.31,32 This phase

diagrams shows a few remarkable features: an infinite slope
of the superfluid—Bose-glass line "c!U", in the weakly in-
teracting gas U / t%1, as predicted by the scenario of perco-
lating superfluid lakes developed in Ref. 29 and an enormous
scale for the superfluid—Bose-glass transition, " / t#300 at
intermediate coupling strength, 1%U / t%30. Here U is the
strength of the on-site repulsion between bosons and t is the
amplitude of hopping transitions between the nearest-
neighbor sites !see Fig. 1". The percolation character of su-
perfluidity in the vicinity of the superfluid to Bose-glass tran-
sition, is most likely the reason for the enormous scale. In
this range of parameters, the localized states have a localiza-
tion length of the order of one lattice spacing as opposed to
the picture of large superfluid lakes of Ref. 29.

The nature of the transitions and small superfluid fraction
in the SF phase have profound implications for the experi-
mental observation of the phase diagram. We focus here on
cold-atom experiments, where recent experimental claims
are partly in line, partly in contradiction with the phase dia-
gram shown above. We argue that present-day cold-atom ex-
periments face numerous difficulties in obtaining the full
phase diagram; for example, the Griffiths-type Bose-glass—
Mott-insulator transition requires macroscopically large sys-
tem sizes to properly identify the Bose-glass phase. We also
provide arguments why experiments seem to have missed the
superfluid “finger” above the Mott insulator in Fig. 1, though
the right scale for the transition between the superfluid phase
and the Bose-glass phase for very strong disorder has been
revealed.33

The paper is organized as follows. In Sec. II we introduce
the model and recapitulate the theorem of inclusions. The
transition between the Mott-insulator and Bose-glass phases
is discussed in Sec. III and illustrated by the exactly solvable
random transverse Ising model in one dimension. We pro-
ceed with a discussion of the full phase diagram in Sec. IV
and results of cold-atom experiments in Sec. V. The conclu-
sions are presented in Sec. VI.

II. MODEL AND THEOREM OF INCLUSIONS

The disordered Bose-Hubbard model on a simple-cubic
lattice is defined as the Hamiltonian

H = − t$
%jk&

âj
†âk + $

j
!& j − !"n̂j +

U

2 $
j

n̂j!n̂j − 1" , !1"

where âj
† is the creation operator of a boson on a site j; the

symbol % . . . & denotes summation over nearest-neighbor pairs
of sites; n̂j = âj

†âj is the boson density operator; and & j is the
disordered on-site potential. Without loss of generality, we
take & j to be independent random variables distributed ac-
cording to the probability density p!& /"". The probability
distribution satisfies the normalization condition '−1

1 dup!u"
=1, has zero first moment '−1

1 duup!u"=0 !otherwise it is
absorbed in the definition of !", and is taken to be bounded,
that is, p!u"=0 if (u($1. Formally, the disorder bound " and
the disorder distribution dispersion ' are independent param-
eters. For the most common choice of the uniform distribu-
tion p!u"=const !used in our numerical simulations as well",
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FIG. 1. !Color online" Phase diagram of the disordered three-
dimensional Bose-Hubbard model at unity filling, obtained by a
finite-size analysis of winding numbers, similar as was done in Ref.
1. In the absence of disorder, the system undergoes a quantum
phase transition between SF and MI phases. The presence of disor-
der allows for a compressible, insulating BG phase, which always
intervenes between the MI and SF phases because of the theorem of
inclusions !Ref. 1". The transition between MI and BG is of the
Griffiths type, as an exception implied by the theorem. At U / t→0,
the SF-BG transition line has an infinite slope !Ref. 29". The data
for the BG-MI transition line are taken from Ref. 30 with error bars
that are smaller than the line thickness.

GURARIE et al. PHYSICAL REVIEW B 80, 214519 !2009"

214519-2

Figure 1.10: The phase diagram in the disorder ∆
t

vs. interaction U
t

plane, as deter-
mined numerically by Gurarie et al. [63].

various dimensions are still contentious.

1.4.2.2 Thermalization and the Problem of Many-Body Localization

One of the goals of Anderson’s original work on localization was to show that

an isolated, disordered quantum system can fail to serve as its own heat bath. In

a noninteracting localized phase, the system can get trapped near a nonequilibrium

initial condition. Consequently, local quantities simply cannot equilibrate with their

surroundings and never reach a thermal distribution [11]. Anderson’s point is par-

ticularly crucial if it is also true in interacting systems. To determine if it is, it

is necessary to understand the impact of interactions upon the full spectrum of a

disordered system.

This issue has received renewed interest in recent years due to theoretical work

by Basko, Aleiner, and Altshuler. In 2005, these authors studied a model in which

all single-particle eigenstates are localized and considered the effect of introducing

interactions. Suppose the operators ĉ†α and ĉα are fermionic creation and annihilation
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operators in the single-particle localized state indexed by α, and Eα is the energy

of this single-particle state. Basko et al. proposed studying a model of the following

form:

ĤBAA =
∑

α

Eαĉ
†
αĉα +

1

2

∑

α,β,γ,δ

Vαβγδ ĉ
†
αĉ
†
β ĉγ ĉδ (1.23)

Here, the interaction terms Vαβγδ, which have characteristic strength λ, induce hop-

ping on a high-dimensional lattice whose vertices represent different occupations of

the single-particle localized states. We can consider the dynamics of the system

beginning on one these vertices. In the absence of interactions, the system clearly

remains localized, irrespective of the energy content. Basko et al. found that this

picture changes qualitatively in the interacting problem. Figure 1.11 schematically

depicts their surprising theoretical prediction for the behavior of the conductivity as a

function of T . At low T 10, the system remains a perfect insulator, with σ = 0. Ther-

malization is impossible in this many-body localized phase. At larger T , interactions

induce a finite σ, giving rise to a metallic or many-body ergodic phase in which ther-

malization is restored. The dividing point between these two regimes is now known

as the many-body localization (MBL) transition [17].

This proposed metal-insulator transition is rather unique for several reasons. It is

a quantum phase transition, as it involves a qualitative change in the nature of the

many-body eigenstates; however, it occurs at finite energy density above the ground

state. As such, it falls outside the usual paradigm of T = 0 quantum phase transitions

[120]. Consequently, it also falls outside the usual paradigm of metal-insulator tran-

10The temperature T is more naturally interpreted as the energy density of the system.
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Fig. 1. Schematic temperature dependence of the dc conductivity σ(T ). Below the
point of the many-body metal-insulator transition, T < Tc, σ(T ) = 0, as shown in
Sec. 6. Temperature interval T > T (in) > Tc corresponds to the developed metallic
phase, where Eq. (17d) is valid. In this regime for the model described in Sec. 3
σ(T ) is given analytically by Eqs. (93)–(99) and plotted on Fig. 10. At T > T (el)

the high-temperature metallic perturbation theory of Ref. [15] is valid.

Results of Ref. [16] strongly indicate that the case (ii) is realized. We will
review, extend and refine the arguments of Ref. [16] in the next subsection;
here, we simply proceed with the discussion of the macroscopic manifestations
of this scenario. Let us assume that the equilibrium occupation is given by the
Gibbs distribution (16). One could think that it would still imply the Arrhenius
law (7) for the conductivity. However, this is not the case for the many-body
mobility threshold. In fact, in the limit V → ∞

σ(T ) = 0; T < Tc, (22a)

where the critical temperature is determined by Eq. (18):

∫ Tc

0
dT1 CV (T1) = Ec. (22b)

The schematic temperature dependence of the conductivity is summarized on
Fig. 1. Therefore, the temperature dependence of the dissipative coefficient in
the system shows the singularity typical for a phase transition.

To prove Eqs. (22) we use the Gibbs distribution and find

σ(T ) =
∑

k

Pkσ(Ek) =

∫∞
0 dE eS(E)−E/T σ(E)
∫∞
0 dE eS(E)−E/T

,

where the entropy S(E) is proportional to volume, and E is counted from the
ground state. The integral is calculated in the saddle point or in the steepest

13

Figure 1.11: The DC conductivity σ vs. “temperature” T for an interacting system
in which all single-particle eigenstates are localized, as depicted by Basko, Aleiner,
and Altshuler [17]. The single particle localization length is ζloc and the interaction
strength is λ.

sitions, which are smeared into crossovers at any finite temperature [42]. Meanwhile,

the many-body localization transition evades the arguments that prohibit T 6= 0

phase transitions in 1D, because it is precisely equilibrium statistical mechanics that

breaks down when the transition occurs [109, 111]. This fact points to a final in-

triguing aspect of this phenomenon: work on the general problem of thermalization

in quantum systems has led to the formulation of the so-called eigenstate thermaliza-

tion hypothesis (ETH), which states that individual eigenstates of a generic quantum

system should already encode thermal distributions of local quantities [129, 41]. The

ETH is generically expected to hold in interacting quantum systems [117], but the

many-body localized phase is an example of a situation in which this hypothesis fails.

Since 2005, the work of Basko et al. has inspired many numerical studies to confirm

their predictions [109, 72, 78, 110, 111, 101, 21, 29, 15, 39, 79, 24]. These efforts are

often confined to methods that scale in the same manner as exact diagonalization,

because the problem demands information about highly excited states of the system.

35



Exact diagonalization studies have been fruitful: Oganesyan and Huse were able to

identify a crossover in level statistics between localized and ergodic regimes, and

Pal and Huse measured several other quantities that even provided estimates of the

location of the transition in a spin model [109, 111]. Nevertheless, so far, it has

been impossible to treat large systems and definitively characterize the transition.

As such, many fundamental questions regarding the existence and nature of MBL

remain unanswered and even unexplored.

1.5 Experimental Situation

This is a particularly exciting time to study localization and interaction effects

in many-body systems, because these phenomena are being actively probed in the

laboratory. We will now briefly discuss three particularly important experimental

frontiers: solid-state systems, cold atoms, and photonic waveguides11.

1.5.1 Solid-State Systems

We begin with the traditional domain of application of condensed-matter physics:

the solid-state material. Here, the dirty boson problem, for instance, could be relevant

to the low temperature behavior of disordered superconductors. A long-standing

issue in understanding these materials has been to determine if the superconductor-

insulator transition is “bosonic” in nature: in other words, do Cooper pairs survive on

11Note that the discussion in this section is definitely not representative of the state of the field
as a whole. Instead, it is definitely biased towards experiments of possible relevance to the work
reported in this thesis.
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both sides of the transition, or alternatively, is the transition driven by pair breaking?

In 2007, Crane et al. experimentally measured a finite-frequency superfluid stiffness

on the insulating side of the superconductor-insulator transition in highly disordered

indium oxide thin films. This indicates that Cooper pairs survive the transition and,

consequently, that the transition may be understood in terms of the two-dimensional

dirty boson problem [34]. This possibility has also been explored by Frydman et al.

and Sherman et al. [56, 125].

Relatively recently, experimentalists have also realized superconductivity in a

graphene sheet through proximity coupling to inhomogeneous puddles of tin deposited

on its surface. A transmission electron microscope image of a sample of this “tin-

decorated graphene” is shown in Figure 1.12. The resulting material behaves like a

granular superconductor, with clean graphene separating the proximity-induced su-

perconducting puddles. It is possible to probe the superconductor-insulator transition

in this material by varying a gate voltage. Allain, Han, and Bouchiat have done so

and found evidence for a transition that is bosonic in nature (i.e., it is driven by lo-

calization of Cooper pairs). Intriguingly, this transition exhibits properties similar to

those we find in our analysis of the two-dimensional dirty boson problem in Chapter

2 below.

An entirely new experimental paradigm for the exploration of dirty boson physics

has been developed by Yu et al., who built on theoretical work by Roscilde and Haas

[148, 119]. Their work exploits an analogy between dirty bosons and certain nickel-

based spin-one antiferromagnets in an applied magnetic field. Yu et al. have reported
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Figure 1. Self-assembled graphene/tin nanohybrids. a : Atomic Force Micrograph of an

1µm2 area of the device, obtained by dewetting of an evaporated tin film of nominal thickness

10nm. b : Transmission Electron Micrograph (TEM) of a the decorated sample showing the self-

organized network of tin nanoparticles (scale bar 200 nm) separated by clean graphene. c : TEM of

the sample transferred on a membrane and observed at a grazing angle (the dashed line corresponds

to the graphene surface). The negative wetting angle of tin nanoparticles on graphene (black arrow)

can be clearly seen. d Scanning Electron Micrograph (SEM) of the Sn nanoparticles network on

graphene (scale bar is 300 nm). e,f Sketches of the device. Changing the gate voltage modulates

the extension of phase coherent domains in graphene. g Photograph of the studied device. The

dark region between the four electrodes is the decorated graphene sheet. The blue cast is due to

the presence of tin nanoparticles on the whole surface. The enhanced contrast of the graphene

sheet with respect to the silica sides comes from the di↵erence of grain sizes and gaps between

nanoparticles on graphene and on SiO2.

12

Figure 1.12: A transmission electron microscope image of tin-decorated graphene,
as prepared in an experiment by Allain, Han, and Bouchiat [5]. The image shows
puddles of tin on a graphene sheet. The scale bar is 200nm long.

evidence for a Bose glass in the spin system, and they have even reported evidence

for an exotic incompressible Mott glass in the zero field limit12. Their finding is

consistent with the relationship of exotic glassy phases to special symmetries of the

dirty boson problem, a link that we explore later in this thesis.

There have even been proposals to study the physics of many-body localization

in solid-state systems. Here, the interacting system of electrons is inevitably coupled

to an external heat bath of phonons. Basko, Aleiner, and Altshuler have argued

that, with this coupling, the transition gets smeared into a sharp crossover that

nevertheless retains interesting signatures of the MBL phenomena. Specifically, the

many-body localized phase survives as a regime in which conduction occurs only by

phonon-induced hopping. Meanwhile, the many-body ergodic phase is characterized

12In the spin language, the compressibility (1.20) is actually a spin susceptibility to a longitudinal
field, while the superfluid susceptibility (1.21) is a spin susceptibility to a transverse field.
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by metallic transport. Basko et al. have suggested silicon doped with yttrium as a

possible experimental system where these effects may be observable [18].

Finally, more peripheral to the focuses of this thesis, disorder effects have also been

identified as crucial to certain technologically promising effects in complex oxides, for

instance colossal magnetoresistance (CMR) in manganites. Experiments have shown

that disorder leads to nanoscale phase separation in these materials, with different

types of order coexisting precariously in different spatial regions. Then, small pertur-

bations can tip the balance in favor of one type of order, inducing dramatic changes

in physical quantities such as resistance. The CMR phenomenon is potentially very

useful for constructing more powerful computer memories, so understanding disorder

effects in these materials could be of significant practical relevance [36, 3].

1.5.2 Cold Atoms

In the mid-1990s, the first true Bose-Einstein condensates were realized in cold

atomic gases by the groups of Wieman and Cornell at the University of Colorado,

Boulder and Ketterle at MIT [10, 38]. Cold atomic gases have since developed

into versatile experimental simulators of quantum condensed matter systems. These

systems offer unprecedented control over parameters that cannot be easily tuned in

conventional solid-state systems (e.g., particle-particle interaction strengths). In 2002,

Greiner et al. were able to directly realize the Bose-Hubbard model (1.8) in a gas of

rubidium-87 atoms and observe the three-dimensional Mott insulator to superfluid

transition [60]. Following this milestone, several groups have introduced disorder into
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their experimental setups in the hopes of observing Anderson localization and the

Bose glass phase.

There are two primary methods of introducing disorder into cold atomic setups.

The first is the method of optical speckle. Here, a primary lattice is generated by

counterpropagating laser beams with wavelengths on the order of several hundred

nanometers. Then, a random potential is superimposed on this lattice by passing

another laser beam through a diffuser, which randomly scatters the light. This leads

to random intensities of light in various spatial locations, generating a potential energy

shift for the atoms which is proportional to the local intensity. Using this method, it is

possible to generate disorder which varies on the scale of the lattice spacing. Beginning

with the Inguscio group in 2005 [98], experimentalists have used speckle potentials

to observe noninteracting Anderson localization [23, 82] and have also introduced

strong interactions into the setup [147]. They have probed the superfluid-insulator

transition [31] and have reported evidence of the superfluid to Bose glass transition

[112].

The other commonly used method of introducing “disorder” into optical lattices

is to superimpose an incommensurate modulating lattice on the primary lattice. This

was proposed by Schulte et al. as an experimentally promising way of realizing local-

ization physics [122], but it should be noted that this approach realizes the Aubry-

André model (1.16) and not the Anderson model. In recent years, this experimental

approach has been actively pursued by Inguscio and collaborators, who have ob-

served the noninteracting Aubry-André transition [118] and have reported evidence
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for a Bose glass [50]. They have additionally explored nonequilibrium physics within

this setup by observing nonlinearity-induced subdiffusive expansion of a cloud of

potassium atoms in the regime in which the noninteracting model is localized.

1.5.3 Photonic Waveguides

In the past decade, nonlinear light has emerged as another experimental tool to

explore the physics of disorder. The essential idea is to fabricate single-mode photonic

waveguides and then arrange them in an array such that their modes overlap. This re-

alizes a tight-binding model with hopping terms between adjacent waveguides. Next,

a potential can be introduced by varying the refractive index within each waveguide.

Nonlinear interactions can also be incorporated by fabricating the waveguides from

media that exhibit the optical Kerr effect, where the refractive index gets modified by

the local intensity of light. An exciting feature of these systems is that the temporal

propagation of light through the waveguide array is coupled to spatial propagation

along the axis parallel to the waveguides. This allows for a direct imaging of dynamics

[32]. Figure 1.13 provides a diagram of a typical experimental setup from a paper by

Lahini et al. [87].

In 2007, the Segev group at the Technion reported the direct observation of An-

derson localization in a two-dimensional lattice of waveguides [123]. Since then, the

Silberberg group at the Weizmann Institute has made several important advance-

ments. Figure 1.13 includes some images from their experiment showing Anderson

localization in disordered waveguides [87]. This group has also experimentally realized
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We experimentally investigate the evolution of linear and nonlinear waves in a realization of the
Anderson model using disordered one-dimensional waveguide lattices. Two types of localized eigen-
modes, flat-phased and staggered, are directly measured. Nonlinear perturbations enhance localization in
one type and induce delocalization in the other. In a complementary approach, we study the evolution on
short time scales of !-like wave packets in the presence of disorder. A transition from ballistic wave
packet expansion to exponential (Anderson) localization is observed. We also find an intermediate regime
in which the ballistic and localized components coexist while diffusive dynamics is absent. Evidence is
found for a faster transition into localization under nonlinear conditions.
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The propagation of waves in periodic and disordered
structures is at the foundation of modern condensed-matter
physics. Anderson localization is a key concept, formu-
lated to explain the spatial confinement due to disorder of
quantum mechanical wave functions that would spread
over the entire system in an ideal periodic lattice [1– 4].
Although Anderson localization was studied experimen-
tally, the underlying phenomena—the emergence of local-
ized eigenmodes and the suppression of wave packet
expansion—were rarely observed directly [5,6]. Instead,
localization was usually studied indirectly by measure-
ments of macroscopic quantities such as conductance [2],
backscattering [7,8], and transmission [9,10].

An interesting issue concerns the effect of nonlinearity
on Anderson localization. Nonlinear interactions between
the propagating waves and nonlinearly accumulated phases
can significantly change interference properties, thus fun-
damentally affecting localization. The theoretical study of
the nonlinear problem advanced using several approaches:
the study of the transmission problem [11], the study of the
effect of nonlinear perturbations on localized eigenmodes
[12], and the study of the effect of nonlinearity on wave
packet expansion in the presence of disorder [13]. Only a
few experiments were reported [5]. Recently, optical stud-
ies enabled the study of wave evolution in nonlinear dis-
ordered lattices [14–16], using a scheme discussed in
[17,18]. In particular, Schwartz et al. [16] reported the
observation of Anderson localization of expanding wave
packets in 2D lattices.

In this work we investigate directly linear and nonlinear
wave evolution in one-dimensional (1D) disordered pho-
tonic lattices, using two different approaches. In the first
part of this work, all the localized eigenmodes of a weakly
disordered lattice are selectively excited. Nonlinearity is
then introduced in a controlled manner, to examine its
effect on localized eigenmodes. The second part of this

work presents a study of the effect of disorder on the
evolution of !-like wave packets (single site excitations).
A transition from free ballistic wave packet expansion to
exponential localization is observed, as well as an inter-
mediate regime of coexistence. We then measure the effect
of nonlinearity on this process.

Our experimental setup is a one-dimensional lattice of
coupled optical waveguides patterned on an AlGaAs sub-
strate [19,20], illustrated in Fig. 1(a). Light is injected into
one or a few waveguides at the input and can coherently
tunnel between neighboring waveguides as it propagates
along the z axis. Light distribution is then measured at the
output [see, for example, Fig. 1(b)–1(d)].

The equations describing light dynamics in these struc-
tures are identical (in the linear limit) to the equations
describing the time evolution of a single electron in a
lattice under the tight binding approximation [19], i.e., a
set of coupled discrete Schrödinger equations:

FIG. 1 (color online). (a) Schematic view of the sample used in
the experiments. The red arrow indicates the input beam. (b)–
(d) Images of output light distribution, when the input beam
covers a few lattice sites: (b) in a periodic lattice, (c) in a
disordered lattice, when the input beam is coupled to a location
which exhibits a high degree of expansion, and (d) in the same
disordered lattice when the beam is coupled to a location in
which localization is clearly observed.

PRL 100, 013906 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
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Figure 1.13: On top, a drawing of the experimental photonic waveguide setup from
a paper by Lahini et al. [87]. The waveguides are arranged along the x-axis, and
the light propagates along the z-axis. The red arrow shows the direction of the input
beam. The three images below show experimental output patterns. The first is for
periodic waveguides. The bottom two show localization in disordered waveguides;
the two images correspond to cases where the input beam is aimed at weakly and
strongly localized sites respectively.

the Aubry-André transition and explored the effects of nonlinearities upon Anderson

and Aubry-André localized phases [87, 90]. Furthermore, they have been able to

study differences in density-density correlation functions between light traveling in

waveguides with diagonal and off-diagonal disorder13 [89]. Finally, very recently, they

have pioneered the study of topological edge states in quasiperiodic photonic waveg-

uide lattices [85, 137]. These developments have opened an exciting new frontier in

localization physics.

1.6 Overview of Thesis

The remainder of this thesis focuses on our own progress in understanding the

dirty boson and many-body localization problems. Chapters 2 and 3 are devoted to

the dirty boson problem in one and two dimensions respectively. First, in Chapter

13Off-diagonal (or hopping) disorder is realized by randomizing the spacing between adjacent
waveguides[89].
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2, we discuss the application of the strong-disorder renormalization group to the

dirty boson problem by Altman, Kafri, Polkovnikov, and Refael [7, 9]. This work

has raised the possibility that, in one dimension, the weak-disorder transition of

Giamarchi and Schulz [58] could give way to a different critical behavior beyond

a certain disorder strength. We analytically calculate the superfluid susceptibility

(1.21) at the strong-disorder fixed point of Altman et al. Then, in Chapter 3, we

numerically extend the approach of Altman et al. to higher dimensions, identify a

new fixed point that governs the two-dimensional superfluid-insulator transition, and

extract various universal properties of this transition. In Chapter 4, we turn our

attention to the many-body localization problem and numerically investigate the real-

time dynamics of a many-body quasiperiodic system. We provide evidence that the

noninteracting Aubry-André transition becomes a many-body localization transition

upon the introduction of interactions. We additionally develop toy models of the

many-body localized and ergodic regimes and use our data to extract estimates for

the phase boundary in the interactions versus hopping plane.

This thesis interpolates material from three papers by the author [74, 75, 73].

Chapter 2 uses material from References [74] and [75], both coauthored with David

Pekker and Gil Refael. Meanwhile, Chapter 3 is based on Reference [75]. Finally,

Chapter 4 is based on Reference [73], coauthored with Vadim Oganesyan, Gil Refael,

and David Huse. Some material from each of these papers has also been incorporated

into this introductory Chapter.
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Chapter 2

Critical Susceptibility for
Strongly-Disordered Bosons in One
Dimension

2.1 Introduction

2.1.1 Motivation

In their seminal work on one-dimensional dirty bosons, Giamarchi and Schulz

showed that perturbative disorder is irrelevant at the clean transition between the

Mott insulating and superfluid phases [58]. Their analysis remains hugely influen-

tial in our understanding of the role of disorder in one-dimensional bosonic systems.

Nevertheless, it is possible that the picture developed by Giamarchi and Schulz is not

complete. Since their perturbative method cannot handle strong disorder, it cannot

tell us whether the nature of the superfluid-insulator transition changes in this regime.

This possibility motivated Altman, Kafri, Polkovnikov, and Refael to formulate a

strong-disorder renormalization group (SDRG) for the one-dimensional dirty boson

problem. Using this approach, Altman et al. were able to identify a novel fixed point,
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which may describe the superfluid-insulator transition in the strong-disorder regime.

The transition proposed by Altman et al., while still being of Kosterlitz-Thouless

type, occurs at a nonuniveral value of the Luttinger parameter. This difference from

the transition of Giamarchi and Schulz is physically very significant: it suggests that,

in the strong-disorder regime, superfluidity is destroyed by a process other than phase

slips [7, 9].

The strong-disorder fixed point of Altman et al. remains controversial. It is not

of the infinite-randomness class, and the SDRG procedure does not become asymp-

totically exact near criticality. Therefore, it is important to check the conclusions of

the SDRG using other methods. The initial Monte Carlo simulations that followed

the work of Altman et al. did not yield evidence in favor of strong-disorder criticality

[14], motivating some to conclude that the transition is always of the type found

by Giamarchi and Schulz. More recently however, Hrahsheh and Vojta performed a

new Monte Carlo analysis, focusing on a stronger-disorder regime than was explored

in the earlier simulations [70]. Their measurements of two quantities, the Luttinger

parameter and the superfluid susceptibility, appeared to show the first independent

evidence of strong-disorder criticality.

As we mentioned above, the nonuniversal critical Luttinger parameter was calcu-

lated by Altman et al. and was, in one sense, the key prediction of their work [9]. On

the other hand, these authors did not calculate the critical superfluid susceptibility.

To make closer contact between the SDRG and the Monte Carlo results of Hrahsheh

and Vojta, we undertake a calculation of the susceptibility in this chapter.
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2.1.2 Preview of the Results

Our principal result is that, at the strong-disorder transition, the divergence of

the superfluid susceptibility is characterized by an anomalous dimension:

lim
L→∞

d lnχ

d lnL
= 2− ηsd (2.1)

Here, the exponent:

ηsd ≈
1

2π

√
yi + y2

i (2.2)

depends upon the bare disorder strength, parametrized by the quantity yi. We plot

ηsd as a function of yi in Figure 2.1. The meaning of the parameter yi will become

more clear when we introduce the attractor distributions of the SDRG flows in Sec-

tion 2.3 below. For now, note that yi = 0 corresponds to a flat distribution of bare

Josephson couplings. As yi increases, the bare Josephson coupling distribution be-

comes progressively more strongly peaked near the RG scale, effectively reducing the

disorder strength. Thus, the anomalous dimension monotonically increases as the

disorder strength decreases.

The nonuniversal anomalous exponent (2.2) differs from the value at the transition

of Giamarchi and Schulz, which is the Kosterlitz-Thouless value of η = 1
4

[58]. As yi

is increased, eventually our estimate (2.2) will reach the Kosterlitz-Thouless value,

presumably indicating the crossover to the weak-disorder regime. This crossover was

indeed seen in the numerics of Hrahsheh and Vojta [70]. Regardless of the disorder

strength, Hrahsheh and Vojta also observed that the anomalous dimension is related

46



0.2 0.4 0.6 0.8 1.0yi

0.05

0.10

0.15

0.20

hsd

Figure 2.1: The anomalous exponent ηsd(yi), as approximated in the small yi regime
by (2.2).

to the Luttinger parameter as η ≈ 1
2K

. Our estimate (2.2) approximately matches

the Luttinger parameter of Altman et al. via this relation [9].

However, our work also points to the need for some caution in interpreting nu-

merical results. When tuning the transition near yi = 0, the wideness of the initial

distribution of Josephson couplings prohibits efficient self averaging of the anomalous

exponent. Cleanly observing the “true” exponent ηsd requires exploring very large

lattices, or equivalently, doing a very large amount of statistical sampling on smaller

lattices.

2.1.3 Organization of the Chapter

We begin in Section 2.2 by introducing our model of dirty bosons, the disordered

rotor model1, and its relationship to the more familiar Bose-Hubbard model (1.19).

Next, in Section 2.3, we describe the application of the strong-disorder renormal-

ization group to this model. We present the renormalization group flows that were

1This is also the model that we will study in two dimensions in Chapter 3.
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derived analytically by Altman et al. and also comment on the important relationship

that these authors found between symmetry properties of the rotor Hamiltonian and

the nature of the insulating phase.

We proceed to our calculation of the superfluid susceptibility in Section 2.4. We

outline the general structure of our calculation, derive some intermediate results, and

then piece together the calculation of χ and the anomalous dimension η. At key stages

in the calculation, we compare to a numerical implementation of the SDRG. Then,

in Section 2.5, we discuss the relationship of our results with the work of Altman et

al. and Hrahsheh and Vojta. Finally, in Section 2.6, we summarize and examine the

implications of our work for the superfluid-insulator transition.

2.2 Model

The model that we will study in this chapter and the next is the so-called dis-

ordered rotor model. We can motivate this model by beginning with a disordered

Bose-Hubbard Hamiltonian that includes randomness in the interaction and hopping

along with the usual chemical potential disorder2:

ĤBH = −
∑

〈jk〉
tjk(b̂

†
j b̂k + b̂†kb̂j) +

∑

j

Uj b̂
†
j b̂j(b̂

†
j b̂j − 1)

−
∑

j

µj b̂
†
j b̂j (2.3)

2We leave the dimension unspecified for the moment, because we will eventually study this model
in both 1D and 2D.
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Here, the creation and annihilation operators satisfy bosonic commutation relations:

[b̂j, b̂
†
k] = δjk (2.4)

and the hopping is between all nearest-neighbor sites on the lattice. An alternative

representation of this model is given by the number and phase operators:

b̂j = eiφ̂j
√
N̂j (2.5)

[φ̂j, N̂k] = iδjk (2.6)

In terms of these operators:

ĤBH = −
∑

〈jk〉
tjk

(√
N̂je

−iφ̂jeiφ̂k
√
N̂k

+

√
N̂ke

−iφ̂keiφ̂j
√
N̂j

)

+
∑

j

Uj(N̂j − 1)N̂j −
∑

j

µjN̂j (2.7)

To obtain a large, commensurate boson filling N0, the chemical potential is tuned such

that the on-site interaction and chemical potential terms are minimized for N̂j = N0.

This consideration fixes µj = (2N0− 1)Uj. Then, if we expand the number operators
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around this large filling as N̂j = N0 + n̂j, the Hamiltonian becomes:

ĤBH = −
∑

〈jk〉
tjkN0

(√
1 +

n̂j
N0

e−iφ̂jeiφ̂k
√

1 +
n̂k
N0

+

√
1 +

n̂k
N0

e−iφ̂keiφ̂j
√

1 +
n̂j
N0

)

+
∑

j

Ujn̂
2
j + (const.) (2.8)

The operators n̂j now correspond to the particle number deviations from the large

filling N0. As such, nj can take on any integer value from −N0 to ∞, but we assume

that N0 is so large that we can let nj run from −∞ to ∞. The same approximation

allows us to drop subleading terms in the hopping. We finally define the couplings

Jjk = 2tjkN0 to arrive at the quantum rotor Hamiltonian:

Ĥrot = −
∑

〈jk〉
Jjk cos(φ̂j − φ̂k) +

∑

j

Ujn̂
2
j (2.9)

This model, constructed as the large filling limit of a Bose-Hubbard Hamiltonian, can

also be viewed as a description of an array of superconducting islands connected by

Josephson junctions [7, 9].

When the Josephson couplings Jjk and charging energies Uj are uniform, the

rotor model (2.9) exhibits a quantum phase transition between superfluid and Mott

insulating phases at zero temperature. This transition is in the universality class

of the classical XY transition in one higher dimension [146, 55, 28]. Consequently,

the transition of the clean, one-dimensional rotor model is of Kosterlitz-Thouless

type [83]. The critical exponent ν at a Kosterlitz-Thouless transition is effectively
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infinite, meaning that the Harris criterion (1.18) is satisfied. From this perspective,

it is perhaps unsurprising that weak disorder is irrelevant at this transition [58].

Nevertheless, this does not exclude the possibility that new physics may emerge at

strong disorder, as we shall see in Section 2.3.

Irrespective of the disorder strength, the Hamiltonian (2.9) respects two important

symmetries. First, there is the global U(1) phase rotation symmetry:

φ̂j → φ̂j + ϕ (2.10)

This means that the Hamiltonian conserves total particle number:

n̂tot =
∑

j

n̂j (2.11)

The model is also globally particle-hole symmetric:

n̂j → −n̂j

φ̂j → −φ̂j (2.12)

The particle-hole symmetry exists because the chemical potential coupling to the

true particle number N̂j has been tuned precisely to the value that enforces the large,

commensurate filling. If this chemical potential is allowed to deviate from this value,

then it would manifest in a disordered potential coupling to the particle number

fluctuation n̂j, or equivalently, in offsets to the large filling. For simplicity, we do not
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consider random offsets in our work. However, in this chapter and the next, we will

occasionally comment on the likely influence of reintroducing these offsets.

2.3 Methodology: SDRG for the Disordered Ro-

tor Model

In Chapter 1, we conceptually introduced the basic idea of the strong-disorder

renormalization group (SDRG). Now, we will concretely describe the application of

the method to the disordered rotor model (2.9). Our discussion follows the approach

of Altman, Kafri, Polkovnikov, and Refael [7, 8, 9].

2.3.1 The Basic RG Steps

There are two types of disordered couplings in the rotor model: charging ener-

gies and Josephson couplings. In each step of the renormalization, we identify the

maximum of all of these couplings, which defines the RG scale:

Ω = max [{Uj}, {Jjk}] (2.13)

How we then proceed depends upon which type of coupling is dominant.

2.3.1.1 Site Decimation

Consider the case where the charging energy on site X is dominant. We define a

local Hamiltonian in which this charging energy term is chosen to be the unperturbed
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piece. All Josephson couplings entering the corresponding site are considered to be

perturbations3:

ĤX = UX n̂
2
X −

∑

k

JXk cos (φ̂X − φ̂k) (2.14)

Satisfying the dominant coupling means setting nX = 0 to leading order. This defines

a degenerate manifold of local ground states: |0, {nk}〉. In these kets, the first term

corresponds to zero number fluctuation on site X and the second specifies the number

fluctuations on all sites connected to X by a Josephson coupling. The degenerate

space is infinitely large, corresponding to all possible choices of {nk}. However, all

matrix elements of the perturbative Josephson couplings in this ground state manifold

vanish. The leading corrections then come from second order degenerate perturbation

theory, in which we calculate corrections coming from excited states:

|0, {nk}〉′ ≈ |0, {nk}〉 (2.15)

+
∑

m∈k

JXm
2UX

(|1, nm − 1〉+ | − 1, nm + 1〉)

In the terms giving the perturbative corrections, we assume that the number fluc-

tuations on all neighboring sites except m remain unmodified from their values in

{nk}. We next consider the matrix elements of these states in ĤX . Up to a constant

term, these matrix elements are identically those that would result from an effective

Josephson coupling:

J̃jk =
JjXJXk
UX

(2.16)

3In 1D, there always only two Josephson couplings penetrating this site, and this property is
strictly preserved by the RG.
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Figure 2.2: The site decimation RG step in 1D.

between each two sites that were coupled to site X before the decimation step [7].

This process of site decimation is illustrated in Figure 2.2.

2.3.1.2 Link Decimation

Now, suppose that a Josephson coupling sets the RG scale. In this case, the local

Hamiltonian is:

Ĥjk = Ujn̂
2
j + Ukn̂

2
k − Jjk cos (φ̂j − φ̂k) (2.17)

The local approximation to be made here is that, to lowest order, the phases on these

adjacent sites should be locked together. In other words, the degree of freedom to

be specified is the relative phase φj − φk. This motivates the introduction of new

operators:

n̂C = n̂j + n̂k

φ̂C =
Ukφ̂j + Ujφ̂k
Uj + Uk

n̂R =
Ujn̂j − Ukn̂k
Uj + Uk

φ̂R = φ̂j − φ̂k (2.18)

These operators satisfy the commutation relations:

[φ̂C , n̂C ] = i
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Figure 2.3: The link decimation RG step in 1D.

[φ̂R, n̂R] = i (2.19)

with all other commutators vanishing. Thus, the transformation preserves the algebra

of number and phase operators. A subtlety arises for the relative coordinate operators

n̂R and φ̂R because, as defined above, nR need not be an integer and φR ∈ [−2π, 2π)

as opposed to φR ∈ [0, 2π). To deal with this difficulty, we may make the additional

approximation of treating φR as a noncompact variable. This makes nR continu-

ous instead of discrete. Then, in terms of the new cluster and relative coordinate

operators, the local Hamiltonian (2.17) reads:

Ĥjk =
UjUk
Uj + Uk

n̂2
C + (Uj + Uk)n̂

2
R − Jjk cos (φ̂R) (2.20)

To lowest order, we set φR = 0. This decimation of the relative phase leaves the

cluster phase φC unspecified; thus, two phase degrees of freedom have been reduced

to one. The first term in Ĥjk shows that the inverse charging energies add like the

capacitances of capacitors in parallel to give the charging energy for the cluster:

ŨC =
1

1
Uj

+ 1
Uk

=
UjUk
Uj + Uk

(2.21)

Figure 2.3 depicts this process of link decimation [7].
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2.3.2 Flow Equations, Their Solutions, and the Superfluid-

Insulator Transition

In one dimension, it turns out that the SDRG can be implemented analytically.

In other words, it is possible to translate the rules (2.16) and (2.21) into equations

describing how the distributions of charging energies and Josephson couplings flow

under the RG. We can then identify solutions to these flow equations which reveal

universal features of the phases and phase transitions of the model (2.9) [7, 8, 9].

We will now describe this analytical approach, in preparation for applying it to our

calculation of the susceptibility in Section 2.4.

Before formulating the flow equations, some preparatory work is necessary. First,

it is helpful to define an RG “time”:

Γ = ln

(
Ωi

Ω

)
(2.22)

Here, Ωi is the RG scale at the beginning of the procedure. In one dimension, the RG

scale Ω monotonically decreases as the RG proceeds, and Γ monotonically increases

from zero. It is also convenient to define the quantities:

ζ =
Ω

U
− 1 (2.23)

and

β = ln

(
Ω

J

)
(2.24)

56



In terms of the quantities ζ and β, the RG rules become additive. For instance, the

site decimation rule (2.16) can be written as:

βjk = βjX + βXk (2.25)

Similarly, the link decimation rule (2.21) becomes:

ζC = ζj + ζk + 1; (2.26)

The goal is then to examine how the probability distributions of ζ and β, called

f(ζ,Γ) and g(β,Γ) respectively, evolve as a function of Γ. This evolution is tracked

by the flow equations:

df

dΓ
= (1 + ζ)

∂f

∂ζ
+ g(0,Γ)

∫
dζ1dζ2f(ζ1,Γ)f(ζ2,Γ)

×δ(ζ − ζ1 − ζ2 − 1) + f(ζ,Γ)(f(0,Γ) + 1− g(0,Γ)) (2.27)

dg

dΓ
=

∂g

∂β
+ f(0,Γ)

∫
dβ1dβ2g(β1,Γ)f(β2,Γ)δ(β − β1 − β2)

+f(ζ,Γ)(g(0,Γ)− f(0,Γ)) (2.28)

These integrodifferential equations look imposing, but in fact, all the terms have

straightforward interpretations. In each case, the first term comes from the redefini-

tion of ζ or β as Γ grows. Meanwhile, the second term encodes the creation of new

links or clusters via the decimation processes (2.25) and (2.26). Finally, the last term
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accounts for the removal of sites and/or bonds and keeps the distributions normalized.

Altman et al. found that there exists an attractor set of solutions to the equations

(2.27) and (2.28)4:

f(ζ,Γ) = f0(Γ)e−ζf0(Γ) (2.29)

g(β,Γ) = g0(Γ)e−βg0(Γ) (2.30)

It is worthwhile to keep in mind what this means in terms of the unscaled couplings

J and U : the distribution of Josephson couplings flows to a power law with exponent

g0−1, and the distribution of charging energies flows to 1
U2 with an exponential cutoff

at small U . The latter property indicates that clusters become exponentially rare at

small energies. The parameters f0(Γ) and g0(Γ) satisfy the differential equations:

df0

dΓ
= f0(1− g0) (2.31)

dg0

dΓ
= −f0g0 (2.32)

The quantity:

ε = f0 − g0 + ln g0 + 1 (2.33)

is an invariant of the flows (2.31) and (2.32). It thus serves as a natural tuning

parameter for the problem. Altman et al. worked out the flows for various values of

ε, and the resulting flow diagram is shown in Figure 2.4.

4For these to be solutions to flow equations, it is necessary to drop the 1 inside the delta function
in equation (2.27). This is a reasonable approximation if most cluster formation occurs far away
from the RG scale (i.e., involving sites with high ζ or, equivalently, low charging energies).
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Repeated decimations gradually reduce the cutoff from
its initial value !0 to a lower energy scale !. Depending
on the initial distributions of the couplings, two scenarios
emerge: (i) Sites are joined together into ever growing
superfluid clusters [see Fig. 1(a)] leading to a superfluid
phase; (ii) A growing number of sites are eliminated to
form disconnected clusters, leading to an insulating
phase [see Fig. 1(b)].

It is convenient to describe the progression of the RG
transformations and the cutoff energy scale with the
parameter " ! log"!0=!#. In addition, we shall work
with dimensionless coupling constants !i $ Ci % 1 and
"i $ log"!=Ji#, characterized by probability distribu-
tions f"! ;"# and g"";"# [16]. Their flow with the decreas-
ing energy scale is given by the master equations:

@f"! ;"#
@"

$ "1& !# @f"! ;"#
@!

& g0""#
Z

d!1d!2f"!1;"#f"!2;"##"!1 & !2 & 1% !# & f"! ;"#"f0""# & 1% g0""##;

@g"";"#
@"

$ @g"";"#
@"

& f0""#
Z

d"1d"2g""1;"#g""2;"##""1 & "2 % "# & g"";"#"g0""# % f0""##;
(4)

where g0""# ! g"0;"# and f0""# ! f"0;"#. The first term
in each of these equations describes the flow of the
distribution due to redefinition of the cutoff following
elimination of large couplings. The second term imple-
ments the recursion relations adding the renormalized
coupling constants to the distribution. The last term re-
moves the couplings neighboring the decimated ones and
takes care of normalization of the distributions.

If either typical ! ' 1 or " ' 1, one can use #"!1 &
!2 % !# instead of #"!1 & !2 & 1% !# in (4). Then the
master equations are solved using the ansatz:

f"! ;"# $ f0""#e%!f0""#; g"";"#e%"g0""#; (5)

where f0 and g0 obey:

df0""#
d"

$ f0""# % f0""#g0""#; (6)

dg0""#
d"

$ %g0""#f0""#: (7)

Thus,

f0""# $ g0""# % lng0""# % 1& $: (8)

It is interesting to note that Eqs. (6) and (7) acquire the
form of the KT flow equations, when written in terms of

y $ !!!!!

f0
p

and x $ g0. The integration constant $ controls
the flow as depicted in Fig. 2. Distributions with $> 0
flow to f0 ! 1 and g0 ! 0. This corresponds to vanish-
ing Josephson coupling and U ! !, namely, an insulat-
ing phase. For $< 0 and g0 > 1, the flow approaches a
line of fixed points with a nonuniversal g0"1# $ 1& %,
%> 0, and f0"1# $ 0. This corresponds to an array of
Josephson junctions with no charging energy and a
power-law distribution of couplings p"J# / "J=!#%. The
critical flow occurs when $ $ 0. It terminates at the
unstable fixed point g( $ g0"1# $ 1 (% $ 0) and f( $
f0"1# $ 0. Note that even a system with vanishingly
small charging energy and random tunneling can be
tuned through the critical point by changing the disorder
distribution. When %< 0, the system flows to the insulat-
ing phase.

We now apply Eqs. (6) and (7) together with the asymp-
totic forms of g0""#; f0""# to show that the transition has
KT-like universal properties and dynamical exponent z $
1. First, we establish a connection between energy and
length scales. As the RG flow proceeds, more sites are
eliminated or joined into larger superfluid clusters. Thus,

(b)

(a)

FIG. 1 (color online). Possible fates of the chain after re-
peated application of the RG rules. (a) Superfluid phase: sites
are joined into ever growing clusters. (b) Insulating phase:
clusters become effectively disconnected at low energy scales.
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f
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0

FIG. 2. Flow of the parameters f0""# and g0""#. Lines of
constant $ are plotted. The axis f0 ! 0 represents a stable fixed
line for g0 > 1 and unstable for g0 < 1.
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Figure 2.4: Schematic flow diagram for the one-dimensional disordered rotor model,
as drawn in a paper by Altman, Kafri, Polkovnikov, and Refael [7]. See the text for
details.

When ε = 0, the flow terminates at an unstable fixed point at (f0, g0) = (0, 1).

To the left of the flow diagram, for ε > 0, flows propagate towards an stable fixed

point at (f0, g0) = (∞, 0). The system partitions into many small and disconnected

superfluid islands, with no phase coherence between them. This is an insulating

regime. Meanwhile, to the right of the fixed point, flows terminate at a line of

fixed points with f0 = 0. The RG builds ever larger and larger clusters, eventually

absorbing most bare sites into a spanning cluster5. These fixed points correspond

to superfluids with vanishing charging energies and various power law distributions

of Josephson couplings. Interestingly, this point also corresponds to a model with

vanishing charging energies (i.e., a classical model). This implies that the transition

can be tuned at arbitrarily weak interaction strength by varying the distribution

of Josephson couplings. It is also important to note that, at the unstable fixed

5In 1D, this cluster will not have true long-range order but rather power-law correlations [83].
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point, the Josephson coupling distribution is flat. This is not an infinite-randomness

distribution, and the SDRG is not asymptotically exact near criticality. Instead, it is

an approximation whose predictions ought to be checked by other methods.

The most important predictions of Altman et al. concern the universality of the

strong-disorder transition. In the vicinity of the fixed point, we can define v(Γ) =

√
f0(Γ) and expand g0(Γ) around one to find the flow equations:

dv

dΓ
=
v

2
(1− g0) (2.34)

dg−1
0

dΓ
= v2 (2.35)

This rewriting reveals that the flow equations take on the Kosterlitz-Thouless form

near criticality [83]. We have already noted that the weak-disorder transition of

Giamarchi and Schulz is also of Kosterlitz-Thouless type, and the two transitions share

this property [58]. However, elsewhere there are important technical and conceptual

differences. In particular, Altman et al. used the SDRG to calculate the effective

Luttinger parameter at criticality and found:

K = π

√
2

exp 4
Γ0
− 1

(2.36)

Here, Γ0 is a measure of the disorder strength in the bare system (i.e., before appli-

cation of the SDRG). The Luttinger parameter (2.36) is therefore nonuniversal. This

conflicts with the picture of Giamarchi and Schulz, where the critical Luttinger pa-

rameter in the particle-hole symmetric model is always 2. Altman et al. argued that

60



(a)

trolled by its weakest hopping link. Given a strongly disor-
dered bosonic chain in its superfluid phase, we can apply the
real-space RG until the effective coupling distirbutions ap-
proach their universal behavior and, in particular, the distri-
bution !Eq. "75#$ for the Jospehson energies of each bond
and with negligible charging effects.

Let us now calculate the scaling of the critical current on
the bare length of the system. Given a particular disorder
distribution, the universal distributions are obtained once the
UV cutoff is !0, and only a fraction 1 /! of the chain is still
active, and the chain is of length L /!. The scaling behavior
of the weakest Josephson energy expectation value, Jmin, is
obtained by requiring that the probability of having at least
one bond with an energy J"Jmin is of order 1, which trans-
lates to the condition,

L

!
%

0

Jmin dJ

!0

g0

"J/!0#1−g0
= 1. "76#

Carrying out the integral we obtain

Jmin & ' !

L
(1/g0

. "77#

In the weak disorder regime, where g0#1 we see that the
critical current is almost size independent. While at strong
disorder near the transition g0→1+ the critical current scales
as the inverse system size. This prediction can be directly
tested in experiments. Using extreme value statistics one can
even find the whole Gumbel distribution of the critical cur-
rent in the SF regime,

P"Jmin# &
g0

Jmin
1−g0

exp)−
L

!
"Jmin#g0* . "78#

B. Resistance at finite temperatures

By a similar argument, we can guess the finite-
temperature behavior of a disordered superfluid chain. First,
we make the following simplifying assumptions: if a bond
strength is J$T, we can neglect its finite-temperature
resistance but if J"T, a bond will give a finite resistance r,
which is T independent. Furthermore, we ignore, for the sake
of this discussion, the dependence of r on J.

Under these simple assumptions, the resistivity % at tem-
perature T is given by the density of bonds of strength
J"T. Therefore,

% & r%
0

T dJ

!0

g0

"J/!0#1−g0
= r"T/!0#g0, "79#

where, as defined above, !0 is the rough energy scale at
which the chain is exhibiting the universal low-energy be-
havior.

In finite chains, we expect that Eq. "79# would only be
valid when T#Jmin. Very crudely, by replacing the lower
limit of the integral in Eq. "79# by Jmin as given by Eq. "77#,
we obtain for T$Jmin,

% & r+' T

!0
(g0

−
!

L
+ . "80#

VIII. CONCLUSIONS

In this paper we extend the real-space RG analysis of
Ref. 33 to the case of noncommensurate chemical potential.
We find that remarkably, the symmetry and details of the
diagonal disorder are irrelevant for the SF-INS transition in a
system with only onsite interactions. Nevertheless, the sym-
metry of the disorder completely determines the type of in-
sulator that the system obtains. The superfluid phase will
break down at a Kosterlitz-Thouless critical point and will
become: "i# a gapless, incompressible, Mott glass if the
chemical potential is commensurate "n̄j =0#, "ii# a gapless,
compressible Bose glass with diverging superfluid suscepti-
bility if 1 /2" n̄j &1 /2 is unrestricted, and "iii# a gapless
random-singlet glass with a diverging compressiblity and su-
perfluid susceptibilty in the case of p-h symmetric chemical
potential "n̄j =0,1 /2#.

An important question about our approach is its connec-
tion with the seminal work of Giamarchi and Schulz,27 we
calculated the properties of the superfluid phase using the
real-space RG analysis. By considering the Luttinger-
parameter K, we showed that at strong disordered the SF-
INS transition occurs at a finite value of K, larger than the
universal GS value, and that the universality of the Luttinger
parameter is replaced with a universality of the power-law
distribution of effective hopping at low energies. The real-
space RG approach is thus not complementary to the GS
approach, but provides a description of the SF-INS transition
at strong disorder, and allows direct access to the insulating
phases, where the GS approach fails.

An interesting direction to pursue in the future is the uti-
lization of the RSRG approach for calculation of transport

Randomness

(Γ )0

Κ

Lutt. Par.

1

Insulator

SF

strong randomness
transition

weak randomness
transition

3/2

FIG. 5. "Color online# From all the analyses we carried out it
seems that our transition does not happen at a universal value of the
Luttinger parameter, but rather, at a universal value of the power
law of the J distribution "g0=1#. From the discussion, it seems that
there are two scenarios for the breakdown of the SF. At weak ran-
domness it is the G-S single-vortex proliferation mechanism that
first destabilizes the SF. In this range, the scenario we present would
destabilize the SF at lower K than single-vortex proliferation
"dashed gray# and is therefore not a true boundary. At larger ran-
domness, our scenario is the first to stabilize the SF, as it occurs at
larger K’s than the universal G-S value. A concequence is that the
universality of the Luttinger parameter at criticality is lost.
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We investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-

diagonal disorder by means of large-scale Monte Carlo simulations. For weak disorder, we find the

transition to be in the same universality class as the superfluid-Mott insulator transition of the clean

system. The nature of the transition changes for stronger disorder. Beyond a critical disorder strength, we

find nonuniversal, disorder-dependent critical behavior. We compare our results to recent perturbative and

strong-disorder renormalization group predictions. We also discuss experimental implications as well as

extensions of our results to other systems.
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Bosonic many-particle systems can undergo quantum
phase transitions between superfluid and localized ground
states due to interactions and lattice effects. These
superfluid-insulator transitions occur in a wide variety of
experimental systems ranging from helium in porous
media, Josephson junction arrays, and granular supercon-
ductors to ultracold atomic gases [1–8]. In many of these
applications, the bosons are subject to quenched disorder
or randomness. Understanding the effects of disorder on
the superfluid-insulator transition and on the resulting
insulating phases is thus a prime question.

The case of one space dimension is especially interest-
ing because the superfluid phase is rather subtle and dis-
plays quasi-long-range order instead of true long-range
order. Moreover, the Anderson localization scenario for
noninteracting bosons suggests that disorder becomes
more important with decreasing dimensionality.

Giarmarchi and Schulz [9] studied the influence of weak
disorder on the interacting superfluid by means of a per-
turbative renormalization group analysis. They found the
superfluid-insulator transition to be of Kosterlitz-Thouless
(KT) type [10], with universal critical exponents and a
universal value of the Luttinger parameter g ¼ !

ffiffiffiffiffiffiffiffi
"s#

p
at

criticality ("s denotes the superfluid stiffness and # the
compressibility). This analysis was recently extended to
second order in the disorder strength, with unchanged
conclusion [11].

A different scenario emerges, however, from the real-
space strong-disorder renormalization group approach.
In a series of papers [12], Altman et al. studied one-
dimensional interacting lattice bosons in various types of
disorder. In all cases, they found that the superfluid-
insulator transition is characterized by KT-like scaling of
lengths and times, but it occurs at a nonuniversal, disorder-
dependent value of the Luttinger parameter. The transition
is thus in a different universality class than the weak-
disorder transition [9]. However, Monte Carlo simulations
[13] did not find any evidence in favor of the strong-
disorder critical point.

In view of these seemingly incompatible results, it is
important to determine whether or not both types of
superfluid-insulator critical points indeed exist in systems
of interacting disordered bosons in one dimension.
Moreover, it is important to study whether they can be
reached for realistic disorder strengths.
In this Letter, we employ large-scale Monte-Carlo simu-

lations to address these questions. We focus on the case of
off-diagonal disorder at large commensurate filling; other
types of disorder will be discussed in the conclusions. Our
results can be summarized as follows (see Fig. 1). For weak
disorder, we find a KT critical point in the universality
class of the clean (1þ 1)-dimensional XY model, with
universal exponents and a universal value of the
Luttinger parameter at the transition. This agrees with the
predictions of the perturbative renormalization group. If
the disorder strength is increased beyond a threshold value,
the nature of the transition changes. While the scaling of
length and time scales remains KT-like, the critical

FIG. 1 (color online). Critical Luttinger parameter g and ex-
ponent $ [plotted as 1=ð2$Þ] of the superfluid-insulator transi-
tion as functions of the disorder strength 1! r. The critical
behavior appears universal for weak disorder while it becomes
disorder-dependent for strong disorder. The lines are guides to
the eye only.
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Figure 2.5: In panel (a), a schematic depiction of the crossover between weak and
strong-disorder transitions, as depicted in a paper by Altman et al. [9]. Note that
this figure shows the generic scenario and that, in the particle-hole symmetric case,
the weak-disorder value of K is 2, not 3

2
. In panel (b), Monte Carlo results from

Hrahsheh and Vojta that are suggestive of the crossover [70]. The quantity 1− r is a
measure of the initial disorder in Hrahsheh and Vojta’s simulations, and and 1

2η
are

proxies for the Luttinger parameter.

the strong-disorder transition may take over when the Luttinger parameter (2.36)

exceeds the Giamarchi-Schulz value. Panel (a) of Figure 2.5 shows this scenario

schematically, while panel (b) presents the numerical results of Hrahsheh and Vojta

that seem to support the existence of the two transitions [9, 70].

What would this imply for the physics driving the transition? The transition of

Giamarchi and Schulz is driven by phase slips in the superfluid order parameter. The

strong-disorder transition therefore occurs in the regime in which phase slips are irrel-

evant, and another process must be driving the transition. Altman et al. interpreted
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the site decimation step as the formation of a “phase-slip dipole,” consisting of a

phase slip and anti-phase slip pair, on adjacent bonds. They then reasoned that the

strong-disorder transition to the insulating state is driven by the proliferation of these

dipoles, as opposed to the proliferation of individual phase slips. As such, the ques-

tion of whether the strong-disorder transition exists is a very important, fundamental

question about how superfluidity can be destroyed in a disordered system [7, 8, 9].

2.3.3 Insulating Phases

Let us momentarily consider the impact of introducing random offsets to the filling

of the disordered rotor model:

Ĥrot = −
∑

〈jk〉
Jjk cos(φ̂j − φ̂k) +

∑

j

Uj(n̂j − n̄j)2 (2.37)

Altman et al. found that the character of the superfluid-insulator transition is inde-

pendent of the properties of the random offsets n̄j. It is always of Kosterlitz-Thouless

type, with a Luttinger parameter that depends on the bare disorder strength. How-

ever, they found that the symmetry properties of the n̄j are crucial for identifying the

glassy Griffiths phase that intervenes between the superfluid and Mott insulator. Be-

fore proceeding to calculate the susceptibility at criticality, we will discuss the various

glassy phases that can be realized.

Consider the structure of the on-site charging spectrum:

Ej(nj) = Uj(nj − n̄j)2 (2.38)
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The integer value of nj that minimizes this energy changes at half-integer values of n̄j.

Suppose n̄j are randomly distributed in the interval [−1
2
, 1

2
)6. Then, the introduction

of an arbitrarily small global chemical potential shift will bring a finite fraction of

sites j arbitrarily close to these density changing points. Thus, a finite density of

particles will be added to the system, making it compressible. Nevertheless, these

particles will be localized by the disordered environment, leaving the system globally

insulating. This is the mechanism behind the formation of the Bose glass [55].

The situation changes at two special particle-hole symmetric points. For example,

consider the case where n̄j is restricted to be integer (n̄j = 0) or half-integer (n̄j = 1
2
).

Then, at the half-integer sites, there is a degeneracy: Ej(0) = Ej(1). Decimation of a

half-integer site thus leaves two possibilities for the local particle number, and this can

be treated as an effective spin-1
2

degree of freedom. These “spins” can form singlets

over arbitrarily large distances; physically, this corresponds to delocalization of a

boson between two distant sites. The resulting glassy phase was termed a random-

singlet glass by Altman et al., in analogy to the phase found in spin systems by

Fisher [52, 8]. Like the Bose glass, the random-singlet glass has a diverging superfluid

susceptibility (1.21). It differs from the Bose glass in that the compressibility (1.20)

also diverges with system size.

By setting all n̄j = 0, we exclude the possibility of these effective spins and return

to our original particle-hole symmetric model (2.9). Now, if the Uj are distributed

6There are two points to note here. First, it is not necessary to consider offsets outside of
these bounds, because offsets of greater magnitude can be removed by a redefinition of the local
filling. Thus, considering offsets within the specified interval is generic. We also should consider the
case where the offsets are randomly distributed in a subset of the interval [− 1

2 ,
1
2 ). Then, cluster

formation will induce effective offsets that span the whole interval, again leading to a Bose glass via
the mechanism described in the text.
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such that Umin > 0, the on-site charging spectrum always has a unique minimum

that is protected by a gap. A cluster needs to become infinitely large to have a

vanishing local gap. The resulting insulating phase has only a finite susceptibility and

a vanishing compressibility in the thermodynamic limit. Nevertheless, it is gapless

because arbitrarily large clusters can appear in the thermodynamic limit. This exotic

gapless, incompressible phase has been termed a Mott glass [7]. Such a phase was

first found in disordered fermionic systems by Giamarchi, Le Doussal, and Orignac

[57], but the work of Altman et al. indicated that it can be found in bosonic systems

as well.

Thus, there are three possible glassy phases in the one-dimensional dirty boson

problem: arranged in order of increasing “proximity” to superfluidity, they are the

Mott glass, the Bose glass, and the random-singlet glass. The Mott glass is most

directly relevant to the work that we will report in Chapter 3. We direct the reader

to the work of Altman et al. for a more complete description of scaling behavior in

all three glassy phases [8].

2.4 Calculation

We now proceed to describe our calculation of the superfluid susceptibility (1.21)

at the critical point of the disordered, particle-hole symmetric rotor model (2.9).
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2.4.1 General Structure of the Calculation

Our general strategy for calculating the susceptibility is based on the following

intuition: the SDRG builds clusters of various sizes (through link decimation steps)

and then removes these clusters from the chain (through site decimation steps). Each

cluster that is removed from the chain behaves as an independent superfluid island

that contributes to the susceptibility (1.21). Our goal is to keep track of all the

contributions to χ as the RG proceeds.

This approach motivates writing the formula:

χ =
1

L

[
Xf +

∫ Γf

0

dΓρ(Γ)Xclust(Γ)

]
(2.39)

Here, ρ(Γ)dΓ is the density of clusters that are decimated at a scale Γ and Γf is the RG

time necessary to renormalize an L-site chain to a single site. The quantity Xclust(Γ) is

the extensive susceptibility7 of these decimated clusters. Thus, the integral accounts

for the contribution of all but one superfluid cluster to χ. We must take that final

cluster into account separately, and this contribution is represented as Xf
8.

To use equation (2.39), we need a way of calculating Xclust(Γ). One way to do this

is to track the evolution of the perturbation (1.22) under the RG, and then evaluate

the susceptibility of the isolated cluster at the moment of site decimation9. This

7The extensive susceptibility is the susceptibility that we introduced in equation (1.21) but with-
out normalization by the system size.

8We will see below that the final cluster needs to be treated rather differently from the others.
This ultimately stems from the fact that the analytical RG does not know anything about the finite
size of the system.

9We will use a variant of this approach to calculate the susceptibility numerically in Chapter 3.
See Appendix 3.B for details.
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implies Xclust(Γ) ∼ s̄(Γ)2

Ω
. Such a calculation neglects quantum fluctuations within

the cluster, which are expected to be very important in 1D. It is, therefore, prefer-

able to work with a Hamiltonian that describes the internal degrees of freedom and

directly calculate the susceptibility. Since this Hamiltonian will itself be disordered,

this could be as challenging as calculating the susceptibility of the full chain. There

is, however, one possible simplification: the absence of phase slips within the clus-

ter implies that the effective cluster Hamiltonian is quadratic. A uniform quadratic

Hamiltonian would be easy to treat analytically, and if we could devise an appropri-

ate uniformization procedure, we could analytically approximate Xclust(Γ). We will

follow such an approach below. At first glance, this method may seem fundamentally

contradictory to the assumption of strong disorder. In fact, it is only necessary to

assume that X is a self-averaging quantity, not that the disorder is weak. Numerical

checks10 on systems of size L = 100 suggest that this assumption is valid, but for

very strong disorder, the self-averaging may require a prohibitively large amount of

statistical sampling. We will elaborate on this point later. It is important to keep

in mind that the uniformization procedure is an uncontrolled approximation whose

ultimate justification is that it produces a result that is consistent with the numerical

observations of Hrahsheh and Vojta.

At various stages of this calculation, it will be useful to check our progress by

comparison to a numerical implementation of the strong-disorder renormalization

group11. In this chapter, we always start our numerical RG with distributions that

10In these checks, we compare numerical predictions of correlation functions in the disordered,
quadratic Hamiltonian to the analogous predictions in the uniformized model.

11This is the same numerical implementation that we use to study the 2D problem in Chapter 3.
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have the universal forms (2.29) and (2.30). Furthermore, we focus exclusively on

critical flows with ε = 0 and tune the initial value of g0 to explore how quantities

depend nonuniversally on the bare disorder strength. We study lattices of sizes L =

1000 to L = 32000 and always pool 100 realizations of the randomness12.

2.4.2 Ingredients

Here, we describe the preparatory work that is needed to piece together the cal-

culation (2.39).

2.4.2.1 Critical Flows, the Cluster Density ρ(Γ), and the Renormalization

Time Γf

We begin by calculating the critical flows f0(Γ) and g0(Γ). We imagine beginning

at Γ = 0 somewhere on the critical manifold in Figure 2.4 and near to the unstable

fixed point. Using ε = 0 in equation (2.33) and expanding g0(Γ) = 1 + y(Γ), we can

find the flow equation:

dy

dΓ
≈ −1

2
y2 (2.40)

This differential equation is easily solved:

y(Γ) ≈ 2

Γ + 2
yi

≡ 2

γ(Γ)
(2.41)

12In Chapter 3, we will do far more sampling to get better statistics, but here we only do numerics
to verify our theoretical predictions.
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where y(0) = yi is the initial deviation of g0 from one, and we have implicitly defined

the “shifted” RG time:

γ(Γ) ≡ Γ +
2

yi
(2.42)

Translating back to the flows in terms of f0(Γ) and g0(Γ):

f0(Γ) ≈ 2

γ(Γ)2
(2.43)

g0(Γ) ≈ 1 +
2

γ(Γ)
(2.44)

Using the solutions (2.43) and (2.44), we can compute the number of effective

sites in the chain at a time Γ:

N(Γ) = L exp

[
−
∫ Γ

0

dΓ′(f0(Γ) + g0(Γ))

]

≈ L exp

[
−Γ− 2 ln

(
1 +

yiΓ

2

)]

= L
4e

2
yi

y2
i

e−γ(Γ)

γ(Γ)2
(2.45)

We can then reason that, in the time interval (Γ,Γ + dΓ), a proportion f0(Γ) of the

effective sites get decimated. Thus, the density of clusters decimated in this time

interval is:

ρ(Γ)dΓ =
f0(Γ)N(Γ)

L
dΓ

≈ 8e
2
yi

y2
i

e−γ(Γ)

γ(Γ)4
dΓ (2.46)
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Finally, using equation (2.45), we can deduce how long the RG needs to be run

to renormalize the entire chain to a single site by setting N(Γf ) = 1. This yields an

expression that can be iteratively inverted to yield:

γ(Γf ) ≈ ln

(
4e

2
yi

y2
i

L

)
− 2 ln ln

(
4e

2
yi

y2
i

L

)
(2.47)

2.4.2.2 Internal Variables: Cluster Sizes and Internal Coupling Sums

In order to calculate the susceptibility, we will also need to compute some “in-

ternal” properties of the superfluid clusters formed by the RG. For instance, we will

need to know the typical size of clusters that are decimated at RG time Γ. Moreover,

to implement the uniformization procedure for the cluster susceptibility, we will also

need to assign a uniformized charging energy and Josephson coupling to each cluster;

this requires keeping track of internal couplings in the cluster. We will now show how

these quantities can be calculated analytically in the SDRG.

To assign a uniformized charging energy to a cluster of size s, we simply ask which

uniform value of U satisfies:

1

Uunif

≡ 1

s

∑

j∈c

1

Uj
(2.48)

where the sum runs over all bare sites that belong to the cluster. For clusters at the

RG scale, the sum on the right-hand side of equation (2.48) is simply 1
Ω

. There is

no variance in this sum at all, because having effective charging energy Ω is precisely
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the condition for being decimated. Hence:

Uunif = sΩ (2.49)

for clusters at the RG scale. It should be noted that this is essentially the inverse

compressibility of one of these clusters:

κ =
1

2Uunif

(2.50)

The uniformized Josephson coupling for a cluster is defined as the average:

1

Junif

≡ 1

s

∑

j∈c

1

Jj
≡ 1

s
R (2.51)

where the sum runs over all Josephson couplings that are “internal” to the cluster.

In other words, these couplings were those involved in the link decimations that built

the cluster13. This definition makes Junif equivalent to the superfluid stiffness of the

cluster:

ρs = Junif. (2.52)

We would like to keep track of the distribution of the sum R in equation (2.51) as the

RG proceeds. This requires extending the RG to follow the distribution f̃(ζ, R,Γ).

Altman et al. wrote an integrodifferential equation that describes the evolution of

13These Josephson couplings may themselves have been effective couplings that were generated
by one or more previous site decimations.
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this distribution:

df̃

dΓ
= (1 + ζ)

∂f̃

∂ζ
+ f̃(ζ, R,Γ)(f0(Γ) + 1− g0(Γ))

+g0(Γ)

∫
dζ1dζ2dR1dR2f̃(ζ1, R1,Γ)f̃(ζ2, R2,Γ)

×δ(ζ − ζ1 − ζ2 − 1)δ
(
R−R1 −R2 − Ω−1

)
(2.53)

They then solved this equation for the quantity:

R̄(Γ) =

∫ ∞

0

dζ

∫ ∞

0

dRRf̃(ζ, R,Γ) (2.54)

which is an average over clusters of all charging energies. Since our calculation of the

susceptibility focuses on processes occurring at the RG scale, we are instead interested

in the average:

R̄(ζ,Γ) =

∫
dRRf̃(ζ, R,Γ)∫
dRf̃(ζ, R,Γ)

≡ QR(ζ,Γ)

f(ζ,Γ)
(2.55)

evaluated at ζ = 0.

We begin by focusing on the quantity QR(ζ,Γ), which was implicitly defined on the

right-hand side of equation (2.55). We can obtain an equation governing the evolution

of QR(ζ,Γ) by differentiating the numerator of equation (2.55) and inserting equation
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(2.53):

dQR

dΓ
= (1 + ζ)

∂QR

∂ζ
+QR(ζ,Γ)(f0(Γ) + 1− g0(Γ))

+2g0(Γ)

∫ ζ

0

dζ ′QR(ζ ′,Γ)f(ζ − ζ ′,Γ)

+
g0(Γ)

Ω

∫ ζ

0

dζ ′f(ζ ′,Γ)f(ζ − ζ ′,Γ) (2.56)

Now, using the definition in (2.55) to write QR(ζ,Γ) = f(ζ,Γ)R̄(ζ,Γ), we can write:

dR̄

dΓ
= (1 + ζ)

∂R̄

∂ζ
+ R̄(ζ,Γ)

[
f0(Γ) + 1− g0(Γ) + (1 + ζ)

∂ ln f

∂ζ
− ∂ ln f

∂Γ

]

+2f0(Γ)g0(Γ)

∫ ζ

0

dζ ′R̄(ζ ′,Γ) + ζ
f0(Γ)g0(Γ)

Ω
(2.57)

We now perform a power series expansion of R̄(ζ,Γ) in ζ:

R̄(ζ,Γ) = R0(Γ) + ζR1(Γ) +
ζ2

2
R2(Γ) + · · · (2.58)

Plugging the expansion (2.58) into (2.57), we can write the differential equations:

dR0

dΓ
= R1 (2.59)

dR1

dΓ
= R1 +R2 + f0(Γ)g0(Γ)R0 +

f0(Γ)g0(Γ)

Ωi

eΓ (2.60)

dR2

dΓ
= 2R2 +R3 (2.61)
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and so on. Note that the initial condition is Rj(0) = 0 for all j, because at time

Γ = 0, all sites are bare. Therefore, Rj(Γ) = 0 for all Γ for all j ≥ 2. Remarkably,

the power series terminates. We can therefore solve equations (2.59) and (2.60) to

find:

R̄(ζ,Γ) ≈ eΓ

Ωi

(1 + ζ)

[
exp

(
yi −

2

γ(Γ)

)
− 1

]
(2.62)

The expression (2.62) implies a relationship between R̄(0,Γ) and Ω = Ωie
−Γ: we use

our numerical implementation of the RG to check this relationship in panel (a) of

Figure 2.6. The plot shows qualitative agreement. However, the analytical prediction

clearly overestimates the numerical result.

The reason for this discrepancy reveals an important aspect of the SDRG. The

clusters that are represented in panel (a) of Figure 2.6 are the largest clusters in

their respective lattices, because for small values of yi and on finite lattices, smaller

clusters rarely get decimated. They do form at intermediate stages of the RG, but

they almost always get absorbed into the largest cluster. This largest cluster only

gets decimated at the very end of the numerical procedure, when it is the only cluster

remaining. Nevertheless, from the perspective of the analytical RG this cluster is

in fact embedded in an infinite lattice in which still larger clusters exist. This as-

sumption can distort statistical predictions from their numerical reality on finite-size

systems. Meanwhile, this reasoning implies that the relationship (2.62) should hold

quantitatively for the smaller clusters that form in intermediate stages of the RG. We

check this in panel (b) of Figure 2.6 and find that the analytical relationship holds

well. We will return to the question of how to estimate R̄ for the final cluster in
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Figure 2.6: Check of the result (2.62) for R̄(ζ,Γ). In panel (a), we monitor the local
gap (which is equivalent to the RG scale Ω) and value of R for all clusters decimated

in the numerical RG for yi = 0.01. Note that α =
[
exp

(
yi − 2

γ(Γ)

)
− 1
]
, and the

legend in panel (a) refers to different values of the lattice size L. There is a factor
of 2 discrepancy with the theoretical prediction, which is explained in the text. In
panel (b), we stop the numerical RG on an L = 32000 lattice after 28800 RG steps.
Then, R̄ closely follows the theoretical prediction as a function of ζ, or equivalently
the charging energy U .

Section 2.4.2.3 below.

It is also important to consider the variance of the sum R for clusters at the RG

scale, because this will, in turn, tell us whether it makes sense to assign all of these

clusters the same uniformized Josephson coupling (2.51). To evaluate this variance,

we need to compute the second moment of the distribution:

uR(ζ,Γ) ≡ R̄2(ζ,Γ) =

∫
dRR2f(ζ, R,Γ)∫
dRf̃(ζ, R,Γ)

(2.63)

Proceeding along the same lines as above, we can construct an equation that governs
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the evolution of uR:

duR
dΓ

= (1 + ζ)
∂uR
∂ζ

+ uR(ζ,Γ)

[
f0(Γ) + 1− g0(Γ) + (1 + ζ)

∂ ln f

∂ζ
− ∂ ln f

∂Γ

]

+f0(Γ)g0(Γ)

(
2

∫ ζ

0

dζ ′uR(ζ ′,Γ) + 2

∫ ζ

0

dζ ′R̄(ζ ′,Γ)R̄(ζ − ζ ′,Γ)

)

+
4

Ω
f0(Γ)g0(Γ)

∫ ζ

0

dζ ′R̄(ζ ′,Γ) + ζ
1

Ω2
(2.64)

The power series expansion for uR(ζ,Γ) terminates at second order in ζ. Numerical

integration of the differential equations obtained from the power series expansion14

suggests that the standard deviation of R(0,Γ) settles to a small fraction of the mean.

Hence, the ln R̄(0,Γ) is very well defined.

A simpler calculation of the type outlined above yields the behavior of the mean

cluster size as a function of ζ and Γ:

s̄(ζ,Γ) ≈ y2
i

2
(1 + ζ)eΓ (2.65)

In Figure 2.7, we use the numerical RG to check this result and find excellent agree-

ment. Constructing the analog of equation (2.64), we can furthermore show that the

standard deviation of s(0,Γ) settles to a small fraction of the mean at late Γ. As such,

there is also a very well-defined relationship between RG time Ω and ln s̄(0,Γ). In-

deed, this is consistent with the numerical observations in Figure 2.7 as the numerical

results more tightly cluster around the theoretical prediction for larger lattice sizes.

Furthermore, for s̄, the analytical prediction holds even for all clusters, subleading

14These are the analogs of equations (2.59)-(2.60).
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Figure 2.7: A check of the relationship (2.65) between s̄(0,Γ) and Ω. We monitor the
local gap (which is equivalent to the RG scale Ω) and the size all clusters decimated
in the numerical RG for yi = 0.01. The legend refers to different values of the lattice
size L, and the dashed line follows the theoretical prediction.

and final. At least for the subleading clusters, the relationships (2.62) and (2.65) can

be used to find:

Junif(Γ) =
s̄(0,Γ)

R(0,Γ)
(2.66)

Uunif(Γ) = s̄(0,Γ)Ω (2.67)

2.4.2.3 Adjustments for the Final Cluster

We saw above that our prediction for R̄(ζ,Γ) qualitatively matches the behavior

of all decimated clusters. However, it quantitatively matches only the subleading

clusters, while there is a discrepancy for the final cluster (see Figure 2.6). Here, we

show how to fix our prediction R̄ for this final cluster.

As a preliminary step, we ask how many sites of the bare chain get incorporated

into the final cluster. The fraction of bare sites that are decimated as parts of sub-

leading clusters can be easily calculated via the integral:

f =

∫ Γf

0

dΓρ(Γ)s̄(0,Γ) =

∫ γ(Γf )

2
yi

dγρ(Γ)s̄(0,Γ) (2.68)
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Figure 2.8: A check of the theoretical prediction (2.69) of the fraction of the lattice
included in the largest cluster. We plot the fraction not covered by this cluster versus
yi for various system sizes. The legend refers to different values of the lattice size L,
and the dashed line follows the theoretical prediction.

Plugging in equation (2.65)15, we find that:

f ≈ 1

2
y2
i (2.69)

Therefore, the final cluster must include:

smax = (1− f)L ≈
(

1− 1

2
y2
i

)
L (2.70)

sites. We use the numerical RG to check that this approximates the maximal cluster

size well in Figure 2.8 and find good agreement.

The key point here is that, in the small yi limit, the largest cluster includes

nearly all bare sites. Hence, the average of 1
J

for bonds within this cluster can be

approximated by the mean in the bare distribution, and then this can be inverted to

15In fact, we also use the fact that s̄(0,Γ) stays pinned at 1 until a time of order ln
(

2
y2i

)
until

it begins growing according to equation (2.65). This turns out to be important for the numerical
prefactor multiplying y2i in equation (2.69).
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Figure 2.9: A comparison of R for clusters decimated in the numerical RG vs. Rna

estimated by naive averaging over the bare distribution of 1
J

. Here, yi = 0.01, and in
both the numerical RG and the naive averaging, we use 100 samples. The legend refers
to different values of the lattice size L, and the dashed line follows the theoretical
prediction.

yield Junif for the cluster:

Junif ≈
Ωiyi

1 + yi
(2.71)

If we wish, we can also extract the corresponding value of R̄ using equations (2.71)

and (2.70):

R̄ ≈ 1 + yi
Ωiyi

(
1− 1

2
y2
i

)
L (2.72)

In interpreting both (2.71) and (2.72), it is important to note that the bare distribu-

tion of 1
J

is a power law with a very long tail at high values of 1
J

: P ( 1
J

) ∝
(

1
J

)−2−yi .

Consequently, the average of this quantity will converge very slowly to its mean.

Therefore, to check the approximation (2.72), we directly sample from the bare dis-

tribution, naively average, and compare to the same data from numerical RG that we

used in Figure 2.6. We show this in Figure 2.9, where we can see that the quantitative

agreement has improved.
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We can also naively average the bare charging energy distribution to find Uunif:

Uunif ≈
Ωi

1 + 2
y2i

(2.73)

This quantity, however, agrees quantitatively with the predictions of Section 2.4.2.2.

2.4.2.4 The Cluster Susceptibility Xclust(Γ)

We now adopt the uniformization perspective to calculate the susceptibility of a

cluster decimated at some stage of the RG. We can write a Hamiltonian for each of

these clusters:

Hclust =
Junif

2

s̄∑

j=1

(φ̂j − φ̂j+1)2 + Uunif

s̄∑

j=1

n̂2
j (2.74)

Note that we have expanded the cosine in the Josephson coupling term because the

link decimation procedure implies the absence of phase slips within the cluster. The

Hamiltonian (2.74) is intended to represent some set of bare sites which are effectively

isolated from the rest of the lattice, and therefore, we ought to impose open boundary

conditions on this subsystem. However, the advantage of the uniformization proce-

dure is that it restores translational invariance; for analytical convenience, we will

use periodic boundary conditions under the assumption that the difference does not

matter for sufficiently large clusters.

Our goal is now to calculate the ground-state susceptibility (1.21) for the uni-

formized model (2.74). This can be achieved by adding the perturbation (1.22) and
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then constructing the path integral for the zero-temperature partition function:

Zclust =

∫
Dφe−Sclust (2.75)

where the action Sclust is:

Sclust =
s̄∑

j=1

∫ ∞

0

dτ

[
Junif

2
(φj+1(τ)− φj(τ))2 +

1

4Uunif

(∂τφj)
2 − h cosφj(τ)

]
(2.76)

We can then apply the definition of the superfluid susceptibility (1.21) to find:

Xclust =
1

2

s̄∑

j=1

s̄∑

m=1

∫ ∞

−∞
dτ〈ei(φj(0)−φm(τ)〉h=0 (2.77)

where the expectation value is taken in the unperturbed Hamiltonian. Standard

techniques lead to:

− ln 〈ei(φj(0)−φm(τ)〉 =
2Uunif

πs̄

∫ ∞

0

dω
1− cos (ωτ)

ω2

+
1

πs̄

∑

q 6=0

∫ ∞

0

dω
1− cos

(
2πq
s̄

(j −m) + ωτ
)

2Junif(1− cos
(

2πq
s̄

)
) + 1

2Uunif
ω2

(2.78)

The second sum runs over values of q from −Q to Q where Q ≡ s̄−1
2

, excluding q = 0

(which is taken care of in the first sum). The discrete sum over momenta q is due to

the finite size of the cluster. The q = 0 term in this sum must be treated separately,

because it is responsible for the exponential decay of correlations in imaginary time.

For the remaining momenta, the discreteness is not so important (at least for large
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clusters) and the sum may be replaced by an integral. This yields:

− ln 〈ei(φj(0)−φm(τ)〉 ≈ Uτ

s̄
+ η ln

(
πeγE

√
(j −m)2 + 2Uunifτ 2

)
(2.79)

where γE ≈ 0.5772 is the Euler gamma and :

η ≡ 1

2π

√
2Uunif

Junif

=
1

2π

√
1

ρsκ
(2.80)

Finally, we can obtain the cluster susceptibility when η is small:

Xclust ≈
(πeγE)−ηs̄3−η

Uunif

[1 + η ln η + η ln (πeγE)] (2.81)

Equation (2.81) is the first hint of the role of η (2.80). Roughly, when we apply the

formula (2.39) to calculate the susceptibility of the full chain, we will find that the

exponent of L in the result will inherit the exponent of s̄ in equation (2.81).

2.4.3 Piecing Together the Susceptibility

Using equations (2.71), (2.73), and (2.80, we can identify η for the final cluster.

This coincides with the value of ηsd that we reported at the beginning of the chapter

in equation (2.2). Meanwhile, using results from Section 2.4.2.2, we can derive the

value of η for subleading clusters as a function of Γ:

η(Γ) ≈ 1

2π

√[
2

(
exp

(
yi −

2

γ(Γ)

)
− 1

)]
(2.82)
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Interestingly, for small yi, limΓ→∞ η(Γ) =
√

2ηsd.

First, we compute the final cluster’s contribution to the susceptibility. We can

use equation (2.77) to find:

χf =
Xf

L
≈ 2

y2
i Ωi

(πeγE)−ηsd
(

1− y2
i

2

)3−ηsd
L2−ηsd [1 + ηsd ln(πeγE) + ηsd ln ηsd] (2.83)

On the other hand, evaluating the contribution of the subleading clusters requires

evaluating the integral:

χsl =
Xsl

L

=

∫ Γf

0

dΓρ(Γ)Xclust(Γ)

≈ 2

Ωiy2
i

∫ γ(Γf )

2
yi

dγ(πeγE)−η(γ)

(
y2
i

2

)3−η(γ)
e(2−η(γ))γ

γ4

×[1 + η(γ) ln(πeγE) + η(γ) ln η(γ)] (2.84)

At small yi, the density of subleading clusters is strongly suppressed. These clusters

rarely form and, therefore, have little opportunity to contribute to the susceptibility.

In any case, in the thermodynamic limit, the contribution of the final cluster diverges

as L2−ηsd , whereas the contribution of subleading clusters diverges as L2−
√

2ηsd . Hence,

the contribution of the final cluster dominates and the anomalous exponent ηsd is the

principal result of our work.

Nevertheless, it may be difficult to cleanly observe the anomalous exponent ηsd

in numerics. The reason was already mentioned in Section 2.4.2.3 above. The distri-

bution of 1
J

within the cluster is well approximated by the bare Josephson coupling
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Figure 2.10: The anomalous exponent ηχ extracted from measurements of χ(L) in
a numerical implementation of the SDRG. We explore lattices from L = 1000 to
L = 32000 with various values of yi at criticality (ε = 0). We always average over
100 realizations of the randomness. Two reference lines are included in the plot. The
dashed-dotted line follows the theoretical prediction (2.2). The dashed reference line
follows the prediction of η from a mock susceptibility calculated by naively averaging
the bare coupling distributions and applying equation (2.83). This reference line
follows the line from numerical RG closely, suggesting that the discrepancy with
the theoretical prediction is due to slow convergence under sampling of the random
distributions. See the text for details.

distribution, which is very wide for small yi. A mean of 1
J

exists for yi > 0, but

estimates of this mean converge very slowly as a function of the number of samples.

When averaging over a moderate number of samples, we will typically obtain an un-

derestimate of the mean, leading to an effectively lower value of η. We illustrate this

in Figure 2.10. Note that a lower value of the anomalous exponent is actually further

from the Giamarchi-Schulz value of η = 1
4

and closer to the scaling result of η = 0.

2.5 Discussion

It is instructive to compare our result (2.2) to the Luttinger parameter (2.36)

found by Altman, Kafri, Polkovnikov, and Refael. To do so, we need to note the

correspondence between our measure of initial disorder, yi, and theirs, Γ0. In the

papers of Altman et al., Γ0 is essentially the RG time that it takes for the initial
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nonuniversal distributions to evolve into their universal forms. Our critical flows

(2.43) and (2.44) suggest that the appropriate correspondence is:

yi =
2

Γ0

(2.85)

In fact, if we insert this relationship into the expression for the Luttinger parameter

(2.36), we find:

1

2K
≈ 1

2π

√
e2yi − 1

2

≈ 1

2π

√
yi

≈ ηsd (2.86)

To leading order, our result thus matches the Luttinger parameter of Altman et al.

through η = 1
2K

. This relationship was also reflected in the Monte Carlo results of

Hrahsheh and Vojta [70].

The agreement of our result with that of Altman et al. is not accidental or even

surprising. In calculating the susceptibility, we have essentially used the same ma-

chinery that Altman et al. used in their calculation of K. The quantities Junit(Γ)

and Uunit(Γ) are essentially the superfluid stiffness and inverse compressibility of the

clusters being decimated at a scale Γ. The stiffness and compressibility determine the

effective Luttinger parameter K, and in a clean system, η = 1
2K

follows from using

linear response theory for the susceptibility. Our uniformization procedure naturally

guarantees that this relationship is maintained in our result. What is more surprising
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is that the relationship between η and K is reflected in the Monte Carlo data of

Hrahsheh and Vojta [70]. This implies that the one uncontrolled approximation in

our calculation, the uniformization procedure, may be reasonable.

In turn, our work has potentially important implications for interpreting the nu-

merics of Hrahsheh and Vojta. Specifically, as we have noted above, our results

suggest that Monte Carlo estimates of η cannot necessarily be taken to reflect the

“true” thermodynamic value of the anomalous dimension ηsd. Numerical values of

this exponent will inevitably be plagued by strong finite sampling corrections. It is

worthwhile to get a sense of how large of a system or how much statistical sampling

is necessary to obtain an accurate prediction of the anomalous dimension. We do this

in Figure 2.11 by asking how many times we need to randomly draw 1
J

from the bare

Josephson coupling distribution for the mean to converge. For yi = 0.32, the mean

converges relatively quickly, and on the order of 10 samples of an L = 3200 lattice are

probably sufficient to observe ηsd. For yi = 0.04, the mean once reaches its analytic

value, presumably due to the random sampling of an anomalously large value of 1
J

,

but it thereafter drops below and does not recover. For yi = 0.005, we would expect

considerable underestimation of the mean, even if we were able to study 1000 samples

of an L = 3200 system, which is on the order of what Hrahsheh and Vojta explore

using Monte Carlo [70]. Therefore, we ought to expect underestimation of the critical

exponent in the strong-disorder limit, as we saw in Figure 2.10. Naively, it may then

seem strange then that the relationship η = 1
2K

is captured reasonably well in the

Monte Carlo results, even if we assume that it holds in disordered systems. However,
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Figure 2.11: A test of the circumstances in which the exponent ηsd can be cleanly
observed. We sample 1

J
from the bare Josephson coupling distribution and follow the

convergence of the mean to the analytical value, indicated by the dashed reference
lines. We plot data for the three values of yi given in the legend. See text for details.

the argument above suggests that η and K will be affected by finite sampling results

in the same way, suggesting that the relationship between them will be maintained

even as these quantities slowly drift to their true values.

2.6 Conclusion

In this chapter, we have presented a detailed calculation of the superfluid suscep-

tibility at the critical point of the one-dimensional disordered rotor model, within the

strong-disorder renormalization framework. Our calculation implies that the suscepti-

bility diverges with system size as χ ∼ L2−ηsd(yi), where the strong-disorder anomalous

dimension ηsd(yi) depends upon the bare disorder strength. This prediction contrasts

sharply with the situation at the weak-disorder transition of Giamarchi and Schulz,

where the anomalous dimension is always the universal Kosterlitz-Thouless value of

1
4
.

In addition to our principal result, we found several other interesting properties

of the strong-disorder critical point. For instance, we were able to find an expression,
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s̄(ζ,Γ), for the mean size of clusters with any charging energy. Furthermore, we found

evidence that the variance of s̄(0,Γ) vanishes at late RG time, suggesting a well-

defined relationship between the size of superfluid islands and their local charging

gap. We were similarly able to find a well-defined relationship between the gap and

the superfluid stiffness, at least for the subleading superfluid islands that “dress” the

largest cluster.

On the other hand, we also found an important qualification of our principal result:

the “true” thermodynamic value of ηsd may not be observed on systems that are

accessible to numerics. The observed value of η is polluted by a finite sampling error

which dies off very slowly due to the wide distribution of internal 1
J

. This distribution

gets wider and wider as we tune the transition progressively closer to the unstable

fixed point16. Hence, this effect must be kept in mind when interpreting Monte

Carlo results. Since experiments on ultracold atoms, for instance, work with only

moderately sized systems, this difficult could affect interpretation of these experiments

as well.

16Indeed, as yi → 0, the mean of 1
J diverges.
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Chapter 3

Mott Glass to Superfluid
Transition for Dirty Bosons in Two
Dimensions

3.1 Introduction

3.1.1 Motivation

As we noted in Chapter 2, the strong-disorder renormalization group (SDRG)

of Altman, Kafri, Polkovnikov, and Refael has raised the exciting possibility of a

strong-disorder transition in the one-dimensional dirty boson problem [7, 9], and

recent numerical simulations may be capturing the emergence of this novel criticality

[70]. This naturally motivates the question of what the SDRG can tell us about the

superfluid-insulator in higher dimensions.

This problem is tantalizing for several reasons: first, experiments are obviously

not restricted to one-dimensional systems, so it is imperative to refine our understand-

ing of higher-dimensional bosonic systems. Second, when implemented numerically,

SDRG can access larger system sizes than many other methods. Therefore, it can
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be a valuable tool in extracting universal properties of the superfluid-insulator tran-

sition. Finally, suppose we consider the two-dimensional version of the rotor model

that we studied in Chapter 2. The clean version of this model is characterized by an

exponent ν ≈ 0.663 that violates the Harris criterion (1.18) [59]. Hence, in contrast

to the one-dimensional case, we expect even weak disorder to be relevant, perhaps

indicating the presence of strong-disorder physics.

In this chapter, we numerically extend the SDRG of Altman et al. to study the

disordered rotor model in two dimensions. Our work is aimed at resolving two physical

questions. Most importantly, we want to understand the character and universal

properties of the superfluid-insulator transition. Here, “universal” refers to those

properties that are independent of the structure of the microscopic distributions of

couplings in the model. We also want to identify the glassy phase that intervenes

between the superfluid and the Mott insulator. Intuition from the one-dimensional

problem suggests that, in this particle-hole symmetric model, we ought to expect the

incompressible Mott glass to appear in place of the Bose glass [7]. We would like to

confirm this through the SDRG analysis1.

Application of the SDRG in d > 1 has historically been rare2. In part, this is

because analytical approaches are usually not tractable. More importantly, there are

few known transitions that exhibit infinite randomness, the property that ensures that

1Note that the numerical SDRG is a very ideal method for examining the effects of rare regions
of superfluid ordering, because it explicitly constructs these regions in real space. Furthermore,
because the method can reach larger systems than other numerical techniques, Griffiths effects can
be more easily observed.

2Examples which do apply the method in d > 1 include papers by Motrunich et al. and Kovács
and Iglói, which treat the transverse field Ising model [104, 84].
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Figure 3.1: A schematization of the universal features of the proposed flow diagram.
The x-axis gives the ratio of the mean of the renormalized Josephson coupling dis-
tribution to the mean of the renormalized charging energy distribution. The y-axis
gives the ratio of the standard deviation of the Josephson coupling distribution to its
mean. In this context, the Josephson coupling distribution only includes the domi-
nant 2Ñ couplings in the renormalized J distribution, where Ñ is the number of sites
remaining in an effective, renormalized lattice. See the text of Section 3.2 for the
reasoning behind the exclusion of weaker Josephson couplings from statistics.

the SDRG becomes asymptotically exact near criticality3. The superfluid-insulator

transition for dirty bosons is not expected to be of the infinite randomness class:

indeed, the one-dimensional transition of Altman et al. occurs at finite disorder [7],

and as we will see below, the same is true of the transition that we find in two

dimensions. Hence, in addition to the physical questions that we posed above, our

work also aims to address a methodological question: might the SDRG give useful

information about a model, even when confronted with the twin difficulties of higher

dimensionality and the absence of infinite randomness?
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3.1.2 Preview of the Results

Our main results are as follows: we present numerical evidence for the existence of

an unstable finite-disorder fixed point of the RG flow, near which the distributions of

Josephson couplings and charging energies in the rotor model flow to universal forms.

A schematic picture of this unstable fixed point and the flows in its vicinity is given

in Figure 3.1.

To the left of the diagram, flows propagate towards a regime in which the ratio of

J̄ , the mean of the Josephson couplings, to Ū , the mean of the charging energies, van-

ishes; meanwhile, the ratio of ∆J , the width of the Josephson coupling distribution,

to J̄ grows very large. These flows terminate in one of two insulating phases. The

first is a conventional Mott insulator, in which it is energetically unfavorable for the

particle number to fluctuate from the large filling at any site. The other is a glassy

phase, in which there exist rare Griffiths regions of superfluid ordering. As the ther-

modynamic limit is approached, arbitrarily large rare regions appear, driving the gap

for charging the system to zero. However, the density of the largest clusters decays

exponentially in their size, and the size of the largest cluster in a typical sample does

not scale extensively in the size of the system. Moreover, the largest clusters are so

rare that they cannot generate a finite compressibility. Thus, the phase is a Mott

glass.

This insulating phase gives way to global superfluidity when the rare regions of

superfluid ordering percolate, producing a macroscopic cluster of superfluid ordering.

3See 1.4.1.3 for a discussion of infinite-disorder fixed points.
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The appearance of the macroscopic cluster is associated with flows that propagate

towards the lower right of Figure 3.1, indicating that the unstable fixed point governs

the glass-superfluid transition. Our numerical implementation of the SDRG allows us

to extract estimates for the critical exponents that characterize this transition. We

are thus able to construct a compelling picture of the superfluid-insulator transition:

a picture that must, however, be checked by other methods because of the perils of

employing the SDRG method in the vicinity of a finite-disorder fixed point.

3.1.3 Organization of the Chapter

In Chapter 2, we have already introduced the disordered rotor model and the

SDRG method. As such, we begin our two-dimensional study in Section 3.2 by de-

scribing the modifications that are necessary to apply the SDRG in 2D. Next, in Sec-

tion 3.3, we present data collected from our numerical implementation of the SDRG.

Our data is suggestive of striking universality in the superfluid-insulator transition,

and in Section 3.4, we proceed to use the data to characterize the phase transition

and the phases it separates. We then conclude in Section 3.5 by summarizing the

results, making connections to experiments, and giving an outlook.

Appendices 3.A-3.D report supplementary material. In Appendix 3.A, we elabo-

rate on an important difference between our numerical implementation of the SDRG

and those used in previous studies 4. Then, in Appendix 3.B, we provide technical

details regarding our calculation of physical properties in the SDRG. Appendix 3.C is

devoted to details regarding a choice of microscopic distributions that we use exten-

4The significance of this difference will become more apparent in Section 3.2

92



sively in the body of the paper. Finally, in Appendix 3.D, we take up the important

tasks of identifying and testing potential weaknesses of the SDRG and comparing to

exact diagonalization of small systems.

3.2 Methodology: Numerical Application of the

SDRG

In this Section, we describe our numerical application of the SDRG to the two-

dimensional disordered rotor model. The fundamentals of the SDRG approach have

already been introduced in Chapter 2. Here, we begin by describing the modifications

to this procedure that are necessary to move to higher dimensions. Then, we describe

an approach for including the effects of quantum fluctuations within clusters. Fi-

nally, we collect some details of the initial distributions that we use in our numerical

simulations5.

3.2.1 Adaptations for 2D

Many of the challenges in applying the SDRG in dimensions greater than one

originate in the RG’s modification of the lattice structure. Suppose we begin with

a two-dimensional model on a square lattice. Site and link decimations will imme-

diately destroy this structure locally, as shown in Figures 3.2 and 3.3. Over time,

the global square lattice structure will be lost, and the RG will instead yield a more

5Throughout this section, we use notation that was introduced in Sections 2.2 and 2.3. It may
be helpful to refer back to those sections to recall the conventions.
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Figure 3.2: The site decimation RG step in 2D: The site marked with the X has the
dominant charging energy and is decimated away, generating bonds between neigh-
boring sites j and k. The new local structure of the lattice is shown to the right.

!" #" $"

Figure 3.3: The link decimation RG step in 2D: The crossed link has the dominant
Josephson coupling. The two sites it joins are merged into one cluster, resulting in
the effective lattice structure shown to the right.

general, highly connected network structure. This forces adaptations in the numerical

implementation of the SDRG and in the analysis of the data.

3.2.1.1 Sum Rule

As the first example, consider the situation depicted in Figure 3.4: decimation of

a site X produces an effective Josephson coupling between two sites j and k that are

!" #" !" #"

Figure 3.4: Site decimation with the sum rule: The site with the dominant charging
energy (marked with an X) is coupled to two sites (j and k) that are already coupled
to one another. After site decimation, the effective Josephson coupling between sites
j and k is the sum of the old coupling and the effective coupling generated through
decimation of site X (see equation (3.1)).
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Figure 3.5: Link decimation with the sum rule: The two sites connected by the
dominant Josephson coupling (sites j and k) are both coupled to a third site m.
Following link decimation, the effective Josephson coupling between site m and the
cluster C is the sum of the two preexisting couplings between site m and sites j and
k (see equation (3.2)), up to corrections coming rom Debye-Waller factors.

already linked to one another by a preexisting Josephson coupling. How should we

treat this situation? In our numerics, we sum the preexisting and new coupling to

form the effective coupling between the remaining sites:

J̃jk = Jjk +
JjXJXk
UX

(3.1)

This choice to sum the preexisting and effective couplings is known as the sum rule.

The sum rule also may also need to be invoked during link decimation. In Figure 3.5,

a cluster is formed by two sites j and k, each of which is connected to a third site m.

We choose the effective coupling between the cluster and site m to be:

J̃mC = Jmj + Jmk (3.2)

The sum rule is not always used in implementations of the SDRG. Some authors

replace it with a maximum rule [104, 84, 53]. The motivation behind the maximum
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rule is that, in the strong-disorder limit:

max

[
Jjk,

JjXJXk
UX

]
≈ Jjk +

JjXJXk
UX

(3.3)

This should be a good approximation in an infinite-disorder context. For our model

however, we find that the sum rule increases the class of distributions that find the

unstable fixed point depicted schematically in Figure 3.1. For further discussion of

the difference between the sum and maximum rules, please consult Appendix 3.A.

3.2.1.2 Thresholding

In dimensions greater than one, there is a tendency for the numerics to slow down

considerably if the renormalization procedure involves a lot of site decimation. If a

site X is decimated, then effective links are generated between each pair of sites that

were previously coupled to X. Thus, site decimation generates many new couplings,

increasing the coordination number of the effective lattice. At the same time, the site

decimation step takes quadratic time in the coordination number of the site being

decimated. To apply the procedure to large lattices, it is necessary to find a way to

circumvent this difficulty.

At the beginning of the RG, we specify a thresholding parameter, which we call

α. During a site decimation, if a new Josephson coupling is created between sites j

and k such that:

J̃jk =
JjXJXk
UX

< αUX = αΩ (3.4)
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then the coupling is thrown away. For convenience in implementation, the new bond

is ignored only if it does not sum with a preexisting Josephson coupling. If α is chosen

to be very small, then ignoring the coupling will hopefully not affect the future course

of RG. However, to be more careful, it is better to perform an extrapolation in the

threshold α to see if the numerics converge. Using this thresholding procedure, we

are able to reach lattices up to size 300 × 300 if we additionally require averaging

over a reasonably large number of disorder samples. In this chapter, unless otherwise

stated, we always use 103 samples for any given choice of distributions.

3.2.1.3 Distribution Flows

Typically, in an application of the SDRG, it is interesting to monitor the flow of

the distributions of the various couplings as the RG proceeds. As we saw in Chapter

2, this is straightforward for a 1D chain. In higher dimensions, there is yet again a

complication from the evolving lattice structure. As the renormalization proceeds, it

is possible to generate very highly connected lattices. Many of the effective Josephson

couplings will, however, be exceedingly small. Incorporating these anomalously small

couplings into the statistics can be misleading. Despite the large number of weak

bonds, there may exist a number of strong bonds sufficient to produce superfluid

clusters. In fact, including the weak bonds in statistics is analogous to polluting the

statistics with the inactive next-nearest neighbor Josephson couplings of the original

lattice. It is more appropriate to follow Motrunich et al. and focus on the largest

O(Ñ) Josephson couplings, where Ñ is the number of sites remaining in the effective

lattice [104]. In the remainder of the chapter, the “Josephson coupling distribution”
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will therefore refer solely to the dominant 2Ñ effective Josephson couplings at any

stage in the SDRG, and all statistics will be done only on these 2Ñ couplings.

3.2.2 Fluctuations within Clusters: Debye-Waller Factors

Consider the link decimation procedure, as discussed in Section 2.3 of Chapter 2.

There we approximated the relative phase between the two clustered sites as zero:

φR ≡ φj − φk ≈ 0 in Figure 3.3. We later noted that this is not a good approx-

imation in low dimensions: true long range order is absent due to the fluctuations

within clusters. We incorporated these fluctuations into our calculation by evaluating

the susceptibility for a cluster directly from a uniformized Hamiltonian (2.74). How-

ever, in a numerical application of the SDRG, these fluctuations can be incorporated

directly into the RG rules. We will describe this approach below.

Higher order corrections to the link decimation procedure, arising from harmonic

vibrations of the phases that make up the cluster, can be obtained by considering the

part of the local Hamiltonian (2.20) involving the relative coordinate:

ĤR = (Uj + Uk)n̂
2
R − Jjk cos (φ̂R) (3.5)

These terms act approximately like a simple harmonic-oscillator Hamiltonian on the

basis of n̂R eigenstates6. Thus, the ground state for the relative coordinate can be

6Note that clustering implies that there will not be phase slips between site j and k. Hence, φR
may be treated as noncompact.
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approximated by a simple harmonic-oscillator ground state:

|ψR〉 ≈
γ

1
8

π
1
4

∫ ∞

−∞
dnR exp

[
−γ

1
2

2
n2
R

]
|nR〉 (3.6)

with:

γ =
2(Uj + Uk)

Jjk
(3.7)

We use this approximation in our numerics to compute Debye-Waller factors that

modify Josephson couplings entering the newly formed cluster. Quantum fluctuations

of φR weaken the phase coherence of the cluster, and consequently, suppress these

Josephson couplings. Mathematically, the Debye-Waller factors arise because, in

writing down the local, two site Hamiltonian (2.17), we have neglected that φ̂R also

appears in the other links penetrating the two sites j and k. Consider a Josephson

coupling from a third site m to the site j. This corresponds to a term in the full

Hamiltonian (2.9):

cos (φ̂m − φ̂j) = cos
(
φ̂m − φ̂C − µ1φ̂R

)

= cos
(
φ̂m − φ̂C

)
cos
(
µ1φ̂R

)

+ sin
(
φ̂m − φ̂C

)
sin
(
µ1φ̂R

)

≈ cos
(
φ̂m − φ̂C

)
〈cos

(
µ1φ̂R

)
〉+

sin
(
φ̂m − φ̂C

)
〈sin

(
µ1φ̂R

)
〉 (3.8)
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with:

µj =
Uj

Uj + Uk
(3.9)

The angle brackets in the final line of equation (3.8) refer to averages taken in the

relative coordinate ground state (3.6). The expectation value of the sine vanishes,

and the expectation value of the cosine yields the Debye-Waller factor:

cDW,j ≈
sin2(πµj)

π2

∞∑

q=−∞

(q2 + µ2
j)

(q2 − µ2
j)

2
exp

(
−γ

1
2

4
q2

)
(3.10)

In the numerics, we truncate the calculation of this sum at a specified order, |qmax| =

20, and multiply the Josephson coupling Jmj by the result to find the new Josephson

coupling J̃mC penetrating the cluster. Note that the Debye-Waller factor for links

penetrating the site k is, in general, not equal to cDW,j, but its calculation is completely

analogous.

3.2.3 Initial Disorder Distributions

At the beginning of the numerical procedure, we specify the bare “microscopic”

couplings of the rotor model by sampling them from various distributions. We specif-

ically choose the initial distributions Pi(U) and Pi(J) to have one of the following

forms:

1. Gaussian distributions truncated at three standard deviations:

Pi(x) ∝ exp

[
−(x− x0)2

2σ2
x

]
(3.11)
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for x ∈ (x0 − 3σx, x0 + 3σx).

2. Power law distributions with upper and lower cutoffs:

Pi(x) =
η + 1

xη+1
max − xη+1

min

xη (3.12)

for x ∈ (xmin, xmax).

3. Flat distributions with upper and lower cutoffs:

Pi(x) =
1

xmax − xmin

(3.13)

for x ∈ (xmin, xmax). Of course, this is just a power law with exponent η = 0.

4. “Bimodal” distributions consisting of two flat peaks centered at x` and xh:

Pi(x) =
1

2δx
(3.14)

for x ∈ (x` − δx
2
, x` + δx

2
) and x ∈ (xh − δx

2
, xh + δx

2
).

All of these distributions have positive lower and upper cutoffs (xmin and xmax respec-

tively) and have zero weight for x outside of these bounds. This restriction avoids

the complications of frustration in the phase degrees of freedom and the pathologies

of the particle sinks that result from on-site charging spectrums that are unbounded

from below.
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3.3 Numerical Results

We now proceed to present numerical data collected from our implementation of

the SDRG. First, we explore the SDRG flows of the distributions of charging energies

and Josephson couplings. This investigation points to the existence of an unstable

fixed point of the RG flow. We find that the presence of this fixed point is robust to

many different changes in the choices of the initial distributions. Next, we examine

the distributions generated by the RG near this fixed point and find that universal

physics arises in its vicinity. Subsequently, we proceed away from the fixed point to

study properties of the phases of the disordered rotor model. We find phases that

we tentatively identify as Mott insulating, glassy, and superfluid, and furthermore,

we find that the unstable fixed point governs the putative glass-superfluid transition.

We defer detailed interpretation of the data and analysis of the transition to Section

3.4.

3.3.1 Flow Diagrams and the Finite Disorder Fixed Point

In Figures 3.6-3.8, we plot flows of quantities that characterize the Josephson cou-

pling and charging energy distributions. We emphasize again that, in the context of

our study of distribution flows, the “Josephson coupling distribution” actually only

includes the greatest 2Ñ Josephson couplings, where Ñ is the number of sites remain-

ing in the effective lattice. After M decimation steps of the RG, we stop the procedure

and look at the remaining charging energies and these dominant Josephson couplings.

We then use these values to update estimates for the mean and standard deviation
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Figure 3.6: The projection, in the ∆J/J̄ vs. J̄/Ū plane, of the flows of the coupling
distributions at different stages of the RG. The initial distributions Pi(U) and Pi(J)
are both truncated Gaussians, and J0 (the center of the initial J distribution) is used
as the tuning parameter. Each flow corresponds to a different choice of the tuning
parameter. The flows start at the bottom of the figure and go up and to the left
or up and to the right. A smaller value of the thresholding parameter is used near
criticality as indicated by the legend. All runs were done on L = 100 lattices.
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Figure 3.7: Same as Figure 3.6, except Pi(U) is Gaussian and Pi(J) ∝ J−1.6, with
cutoffs chosen to make the latter distribution very broad. The parameter U0 is used
to tune through the transition. The flows begin near the center of the figure. To the
left of the figure, flows initially propagate towards the bottom left but eventually turn
around and propagate towards the top left. To the right of the figure, flows initially
propagate towards the bottom left but eventually turn around and propagate towards
the bottom right. All runs were done on L = 300 lattices.
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Figure 3.8: Same as Figure 3.6, except Pi(U) ∝ U5 and Pi(J) ∝ J−3. The tuning
parameter is Jmin, the lower cutoff of Pi(J). All runs were done on L = 150 lattices.
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corresponding to that step in the RG. For each realization of the randomness (i.e.,

each sample), we do this for many different choices of M , and we repeat the process

for 103 realizations of the randomness. Ultimately, this procedure gives a “flow” that

characterizes the disorder-averaged evolution of the distributions at different stages

of the renormalization.

The x-axes of Figures 3.6-3.8 give the ratio of the means of the two distributions.

Meanwhile, the y-axes give the ratio of the standard deviation of the Josephson

coupling distribution to the mean of the distribution. The plots actually show 2D

projections of flows that occur in the space of all possible distributions. At the

very least, these plots imply the existence of a third axis, namely ∆U
Ū

, which may

carry important information. Nevertheless, these highly simplified 2D pictures are

surprisingly effective in describing the fate of the model with different choices of

parameters. In interpreting Figures 3.6-3.8, the reader will likely find it helpful to

glance back to Figure 3.1, which shows a schematization of the flows.

Figure 3.6 specifically corresponds to flows for initial distributions Pi(U) and Pi(J)

that are Gaussian. The center of the Josephson coupling distribution is used as the

tuning parameter. To the left of the plot are two flows that propagate to the top left of

the diagram, towards small J̄
Ū

and large ∆J
J̄

. Because these flows propagate towards

high Ū , it is tempting to identify them as flowing towards an insulating regime.

Meanwhile, to the right of the plot, there are seven flows that propagate towards high

J̄ , and it is tempting to identify these as propagating towards a superfluid regime. At

the interface between these two behaviors, the flows “slow down” and travel a shorter
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distance in the plane. This behavior is suggestive of a separatrix flow that terminates

at an unstable fixed point, as shown in Figure 3.1.

Our next goal will be to show that the behavior indicating the presence of this

unstable fixed point is robust to changes in the choice of the initial distributions. In

Figure 3.7, Pi(U) is a Gaussian, and Pi(J) ∝ J−1.6. The center of the charging energy

distribution, U0, is used as the tuning parameter. The numerical choices place the

flows initially above and to the right of the location of the unstable fixed point in

the previous figure. From the point of view of the SDRG procedure, this choice of

initial distributions is advantageous: the flows begin in a regime of high disorder in J ,

where the procedure is more accurate. Later in the chapter, after presenting evidence

of the universal physics that emerges in the disordered rotor model, we will focus on

this choice of distributions exclusively. Therefore, we have collected additional details

about these distributions in Appendix 3.C. Note that the leftmost flows in Figure 3.7

initially propagate towards the lower left hand corner of the figure; then, they turn

upward, continuing onward to lower J̄
Ū

but now also towards high ∆J
J̄

. Hence, they

share the same qualitative fate as the leftmost flows in Figure 3.6. To the right of

Figure 3.7, the flows initially also propagate towards the lower left; however, these

flows ultimately turn around and propagate towards high J̄
Ū

. The separatrix that

divides these two classes of flows appears to terminate in the same critical region that

was seen in Figure 3.6.

In Figure 3.8, we make yet another choice of initial distributions. Now, Pi(J) ∝

J−3 and Pi(U) ∝ U5. The resulting flow diagram again suggests the presence of an
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unstable fixed point in the same critical region. It would be misleading, however, to

suggest that every flow diagram generated by the RG will have the nice properties

of Figures 3.6-3.8. We provide a counterexample in Figure 3.9, in which Pi(U) is

bimodal and Pi(J) ∝ J−1.6. Panel (a) shows the extremely complicated behavior

of some of the flows. These features are reflections of the structural details of the

bimodal distribution. We will see shortly that, at least in the vicinity of criticality,

the RG works to wash away these details and construct universal distributions. After

these universal distributions are somewhat well approximated, the flows should be

more well behaved, but in Figure 3.9, we see a nonuniversal era of the flows, where

the complexities of the initial distributions can manifest in complicated flows. To

bring out this point more clearly, we have removed data for the early stages of the

RG in panel (b). Now, the behavior at late RG time falls more nicely in line with

what is seen in Figure 3.7.

3.3.2 Universal Distributions

Near the unstable finite-disorder fixed point of the RG flow, we expect universal

physics to emerge. Certain aspects of the critical behavior should be independent

of microscopic details, including the structure of the initial distributions. The uni-

versality of the fixed point should become evident in the forms of the renormalized

distributions generated through the RG: whatever the initial distributions may be,

they should evolve towards universal forms, provided that they put the system near

criticality.
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Figure 3.9: In these numerical flow diagrams, Pi(U) is bimodal and Pi(J) ∝ J−1.6,
with cutoffs chosen to make the latter distribution very broad. In panel (a), we
show a few sample flows that start near the top of the figure and initially propagate
towards the lower left hand corner. The complex features of these flows reflect the
structural details of the bimodal U distribution. In panel (b), we exhibit the flows
at late RG times, when the procedure has had an opportunity to renormalize away
the microscopic details of the initial distributions. Then, the flows are, at least
qualitatively, more similar to those seen in Figure 3.7. All runs were done on L = 200
lattices.
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We first focus on determining the universal form of the fixed point Josephson

coupling distribution. Figure 3.10 shows data for the four different choices of the

initial distributions that we explore in this chapter. In panels (a), (c), and (d), Pi(U)

and Pi(J) have the same qualitative form as one another, and in panel (b), Pi(J) ∝

J−1.6 and Pi(U) ∝ U1.6. We tune the parameters characterizing the distributions such

that the flows propagate near the unstable fixed point, run the numerics on 100×100

lattices, and plot the initial distributions alongside the renormalized distributions

when 100 sites remain in the effective lattice. For the renormalized distributions, we

again only include the dominant 2Ñ = 200 Josephson couplings for each sample. The

renormalized distributions suggest that the RG indeed washes away the details of the

initial choices, leaving a power law in each case. The universality of this power law

is more striking in Figure 3.11, where we plot the renormalized distributions for the

four cases together. In this plot, we scale J for each of the four cases by the mean RG

scale Ω when only 100 sites remain. This scaling causes the distributions to nearly

collapse onto one another, revealing the universal form:

Puniv

(
J

Ω

)
∝
(
J

Ω

)−ϕ
(3.15)

We will momentarily defer providing a numerical estimate of ϕ, in anticipation of

presenting higher quality data, taken from runs on larger lattices, below.

We have not plotted the renormalized charging energy distributions for the four

cases shown in Figure 3.10. Were we to do so, we would see that these distributions,

while showing hints of universality, are not as strikingly universal as the corresponding
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Figure 3.10: Log-log plots of initial and renormalized Josephson coupling distributions
for near-critical flows. All runs were done on L = 100 lattices with α = 5×10−6. Each
plot shows the initial distribution and the distribution when the effective lattice has
1% of the original number of sites. The initial distributions have four different forms,
but the distributions after renormalization show a universal power law. Note that
the plots of initial distributions in these plots were not constructed from actual data
(i.e., actual numerical sampling of the distributions), but were instead constructed
by hand.
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Figure 3.11: The distributions from Figure 3.10, with the Josephson coupling strength
scaled by the mean RG scale Ω at the corresponding stage of the RG. The near collapse
of the distributions reveals the universal power law form of the Josephson coupling
distribution near the unstable fixed point. A refined version of this plot, showing data
for larger lattices (but also different choices of initial distributions), can be found in
panel (b) of Figure 3.13.

renormalized Josephson coupling distributions. The reason for this is the following:

in three out of the four cases, the initial distributions have Jmax < Umax. Several

of the initial distributions we study in this chapter satisfy this property, because in

dimensions greater than one, interesting choices of distributions typically have most

bare charging energies greater than most bare Josephson couplings. Otherwise, they

almost certainly yield superfluid behavior. Consequently, for three out of the four

cases in Figure 3.10, the RG begins with only site decimations. These site decimations

dramatically modify the Josephson coupling distribution, but the charging energy

distribution is, to a large extent, only truncated from above by the renormalization

scale. Later on in the procedure, after many sites have been decimated away, the RG

enters a regime where the charging energy and Josephson coupling scales compete.

Only then do link decimations begin to occur, and only then can the charging energy

distribution begin to evolve in a nontrivial way. However, by this point, there is far

less RG time remaining for the fixed point distribution to emerge.
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There are two ways to circumvent this difficulty. One strategy is to note that this

problem of insufficient RG time would not arise if we had access to arbitrarily large

lattices. We could follow the renormalization as long as necessary to construct the

universal distributions. Thus, we can try to explore larger lattices up to the limits

set by our computational capabilities. On the other hand, another solution is to work

with very wide initial distributions of Josephson couplings. These are distributions

which have large ∆J
J̄

. As such, they correspond to flows that begin above the unstable

fixed point in our ∆J
J̄

vs. J̄
Ū

flow diagrams. Using such distributions, it is possible to

engineer situations where most bare charging energies exceed most bare Josephson

couplings, but where, due to the presence of a small fraction of anomalously large

Josephson couplings, Jmax > Umax at the beginning of the RG. If the parameters

are chosen appropriately, the renormalization procedure will begin with a few link

decimations until the charging energy and Josephson coupling scales meet. After this

point, the RG will feature an interplay of site and link decimations. Thus, both the

Josephson coupling and charging energy distributions will evolve nontrivially.

To target the fixed point charging energy distribution, we apply both of the strate-

gies. We proceed to 200× 200 lattices and compute renormalized distributions when

the effective lattice has 200 sites remaining. Additionally, we work with very wide

initial Josephson coupling distributions. In order to achieve large initial ∆J
J̄

, we re-

strict our attention to power law distributions of Josephson couplings of the form

Pi(J) ∝ J−1.6. We vary the choice of the initial charging energy distribution and

tune the parameters near criticality. The results are shown in Figure 3.12. Now,
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the RG does generate a universal form for the charging energy distribution, and in

Figure 3.13, we scale the renormalized distributions by the corresponding RG scales

to expose the universality more clearly. Figure 3.13 suggests that the functional form

of the fixed point charging energy distribution may be:

Puniv

(
U

Ω

)
∝
(

Ω

U

)β
exp

[
−
(
fU
Ω

)
×
(

Ω

U

)]
(3.16)

where fU is an energy scale below which the charging energies are exponentially rare.

We have been unable to extract a good estimate of β. Panel (a) of Figure 3.13

presupposes β ≈ 1, and the linearity of the plots suggests that this may be close to

the actual value. Taking β = 1 and focusing on the case where Pi(U) is Gaussian

(because that is the choice of initial distributions for which we have most accurately

targeted criticality), we fit:

fU
Ω
≈ 0.66± 0.02 (3.17)

We should note that qualitatively similar charging energy distributions to those seen

in Figure 3.12 still emerge near criticality if we relax the restrictions of initially power

law J distributions and initially high ∆J
J̄

. This is true of the distributions studied

in Figure 3.10, even in the flat and bimodal cases where Jmax < Umin initially and

clusters can only form due to the use of the sum rule. As argued above, the additional

restrictions we impose on Pi(J) in Figure 3.12 simply allow the RG to construct the

fixed point distributions more cleanly.

In the lower panel of Figure 3.13, we additionally present data for the Josephson
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coupling distributions at the same stage of the RG. Again focusing on the data for

the case where Pi(U) is Gaussian, we can estimate:

ϕ ≈ 1.15± 0.01 (3.18)

Before proceeding, we should note that the form of the fixed point J distribution

allows us to construct an argument for the validity of the RG near criticality. We

expand upon this argument greatly in Appendix 3.D, but we will sketch the basic

premise here. Essentially, we should consider the implications of the fixed point distri-

butions for the reliability of each of the RG steps. The validity of site decimation rests

on the reliability of the perturbative treatment of the Josephson couplings entering

the site with the dominant charging energy. The form of the critical Josephson cou-

pling distribution immediately guarantees that most Josephson couplings are much

weaker than the RG scale. For the Gaussian case in Figure 3.13, the ratio of the

median J to the RG scale is Jtyp
Ω
≈ 0.11± 0.01. Hence, the site decimation is usually

very safe. In the case of link decimation, a similar argument allows us to ignore, to

leading order, other Josephson couplings penetrating the sites joined by the domi-

nant coupling. However, the structure of the critical charging energy distribution,

shown in Figure 3.13, actually suggests that there can be a large number of charging

energies of the same order as the RG scale; in particular, the ratio of the median U

to the RG scale is Utyp

Ω
≈ 0.67± 0.01. Consequently, the question of the reliability of

link decimation reduces to the following: in a single junction (or two-site) problem,

how reliable is cluster formation when both charging energies are weaker than the
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Josephson coupling but potentially of the same order-of-magnitude? We address this

question in Appendix 3.D and find that the link decimation step also seems to be

reasonably safe.

3.3.3 Physical Properties and Finite Size Scaling

To determine a preliminary classification of the phases of the model, we now

measure four physical properties. First, we measure smax, the size of the largest cluster

formed by link decimations during the renormalization procedure. This corresponds

to the largest domain of superfluid ordering in the system. We also measure s2, the

size of the second largest cluster. We will see that the behavior of this quantity

differs dramatically from that of smax in the superfluid phase, and therefore, both are

interesting quantities to measure.

The third quantity that we measure is the charging gap for the system, ∆min. We

can estimate this quantity by simply measuring the charging energy of the final site

remaining in the RG.

Finally, we measure the superfluid susceptibility χ (1.21). Contributions to χ are

calculated during site decimation, in a process that closely parallels that one that we

used analytically in Chapter 2. Perturbation theory gives a single-site susceptibility

of 1
UX

, where X is the site being decimated. Neglecting corrections from harmonic

fluctuations, we can find the contribution of a cluster to the susceptibility by multi-

plying the perturbative result by s2, where s is the size of the cluster. One factor of s

arises from the fact that the cluster represents s terms in the original sum (1.21), and
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Figure 3.12: Log-log plots of initial and renormalized charging energy distributions
for near-critical flows. All runs were done on L = 200 lattices with α = 5×10−6. Each
plot shows the initial distribution and the distribution when the effective lattice has
0.5% of the original number of sites. The initial charging energy distributions have
four different forms, but the distributions after renormalization show a universal form.
Note that the plots of initial distributions in these plots were not constructed from
actual data (i.e., actual numerical sampling of the distributions), but were instead
constructed by hand.
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Figure 3.13: In panel (a), the renormalized distributions from Figure 3.12 are plotted
together, with the charging energies U scaled by the mean RG scale Ω. In panel
(b), we provide a similar plot for the renormalized Josephson coupling distributions
produced by the runs in Figure 3.12.

the other follows from the fact that the effective field coupling to the cluster phase

is enhanced s times when s phases rotate together. When harmonic fluctuations are

taken into account, both of these factors of s should be replaced by a renormalized

factor which we denote as b. This b-factor accounts for the fact that quantum fluc-

tuations weaken the phase coherence of the cluster. For a bare site, b = 1, and when

two sites j and k merge, the renormalized b-factor for the cluster C is:

bC = bjcDW,j + bkcDW,k (3.19)

where cDW,j and cDW,k are the Debye-Waller factors (3.10). Hence, the total contri-
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bution of the cluster to the susceptibility, before the normalization by 1
L2 , is:

χC =
b2
C

UC
(3.20)

where bC and UC are the b-factor and charging energy of the cluster respectively.

Further details of this calculation can be found in Appendix 3.B.

For each lattice size, we obtain an estimate for the four quantities smax, s2, ∆min,

and χ. Then, we examine how these estimates vary as we raise L. For certain types of

distributions, computational limitations force us to work on relatively small lattices.

This occurs, for example, when both Pi(U) and Pi(J) are bimodal, and we study this

case in Figure 3.14.

In panel (a) of Figure 3.14, there is no cluster formation whatsoever. Hence,

smax = s2 = 1. This results in a gap ∆min that remains asymptotically constant as

it cannot be lower than the lower bound of the initial charging energy distribution.

The susceptibility χ also remains asymptotically constant.

Next, in panel (b), we find a regime in which link decimations do occur and clus-

ters do form. Moreover, smax and s2 grow with system size, with what appears to

be a power law for the largest lattice sizes that we explore. This growth is, however,

subquadratic in L, meaning that smax grows subextensively with lattice size. Mean-

while, ∆min decays with a power slower than L−2, and the susceptibility χ remains

constant with L.

In panel (c), all quantities show power law behavior out to L = 100, including the

susceptibility which appears to grow with a very slow power. The growth of smax is
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Figure 3.14: Four characteristic behaviors of smax, s2, ∆min, and χ as a function
of system size. Here, Pi(U) and Pi(J) are both bimodal, and Jh, the center of the
higher peak of the Josephson coupling distribution, is used as the tuning parameter.
All quantities have been normalized by their value for L = 10, and data is shown
for L = 10 to L = 100. In panel (a), the quantities reflect the purely local physics
of the Mott insulator. In panel (b), smax and s2 grow subextensively with system
size, with what appears to be a power law. The gap also decays with a slow power,
and the susceptibility remains constant. In panel (c), all quantities show power law
behavior out to L = 100. The reference line shows L2 growth. Panel (d) reflects the
macroscopic clusters of the superfluid phase. The cluster size smax is parallel to the
L2 reference line, and the susceptibility χ is parallel to the L4 reference line for large
L.
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still slower than L2, so the largest cluster is still subextensive.

Finally, in panel (d), we find a regime in which smax grows as L2, reflecting the

formation of macroscopic clusters that scale extensively with the size of the lattice.

The gap ∆min decays as L−2, and the susceptibility shows an approximately L4 growth

for large L. Perhaps surprisingly, although s2 grows with system size, it does so more

slowly than it does in panel (c).

We now turn to a class of distributions for which we can reach larger lattice sizes.

In particular, we return to the data set described in Appendix 3.C, in which Pi(U) is

Gaussian and Pi(J) ∝ J−1.6. Data for this choice of distributions is shown in Figure

3.15.

Panel (a) of this figure qualitatively reproduces the features of panel (a) of Figure

3.14. Panel (b) of the new figure, on the other hand, differs from panel (b) of Figure

3.14 in an important way. For large L, the power law behaviors of smax, s2 and ∆min

are lost, and all three quantities vary more slowly. In Figure 3.14, this effect may

have been hidden by the use of smaller system sizes.

If the parameters are tuned such that the corresponding flow propagates very close

to the unstable fixed point, then we do find a regime in which all quantities show

nearly power law behavior out to L = 300. This regime is depicted in panel (c) of

Figure 3.15.

Tuning past this point, we enter a regime in which macroscopic clusters form.

Panel (d) of Figure 3.15 shows the behavior of the four quantities in this regime, and

we see that most of the essential features of the corresponding panel of Figure 3.14
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are reproduced. An important feature of the plot in panel (d) is that we can clearly

see that the behavior of s2 in this regime is closer to that observed in panel (b) than

in the intervening panel (c).

The plots in Figures 3.14 and 3.15 are suggestively labeled with their correspond-

ing phase identifications. We will provisionally use these labels for convenience in

referring to these regimes, in advance of presenting arguments for these classifica-

tions in Section 3.4. In the flow diagrams that we presented earlier, choices of initial

distributions that correspond to the Mott insulating and glassy behaviors shown in

panels (a) and (b) of Figures 3.14 and 3.15 flow to the stable insulating region where

J̄
Ū
→ 0. The superfluid behavior in panel (d) of the figures corresponds to flows to-

wards the high J̄
Ū

regime of the flow diagrams. The pure power law behavior of panel

(c) emerges for flows that propagate very close to the proposed unstable fixed point.

This suggests that this fixed point may control the glass to superfluid transition of

the disordered rotor model.

For now, we assume that this is the case and investigate more closely the behavior

of physical quantities in the vicinity of this proposed transition. Having provided

evidence of the universality that emerges near the critical point, here and in the

remainder of this chapter, we will focus exclusively on the choice of distributions

detailed in Appendix 3.C. In Figure 3.16, we show that plots of physical quantities

vs. tuning parameter, taken for different L, can be collapsed onto universal curves.

We will use this scaling collapse in Section 3.4 to determine the critical exponents

governing the putative transition between glassy and superfluid phases.
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Figure 3.15: Four characteristic behaviors of smax, s2, ∆min, and χ as a function
of system size. The initial distributions are those described in Appendix 3.C. All
quantities have been normalized by their value for L = 25, and data is shown for
L = 25 to L = 300. In the four panels, U0 = 400, 9.2, 8.97, and 8.8 respectively.
Panel (a) reflects the purely local physics of the Mott insulator. Panel (b) shows
a glassy regime characterized by rare-regions clusters that grow subextensively in
system size. The reference line shows the power law that smax obeys near criticality.
This nearly critical regime is shown in in panel (c). The reference line here shows L2

growth. Finally, panel (d) shows the superfluid regime, in which smax is asymptotically
parallel to the L2 reference line. The susceptibility χ is expected to grow as L4 for
very large L, but it does not quite reach this behavior (indicated with a reference
line) for L ≤ 300.
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Figure 3.16: Panel (a) shows the scaling collapse of smax as a function of tuning
parameter, and panel (b) shows a similar collapse of s2. Each line corresponds to a
different value of the lattice size. We show data for L = 25, 50, 75, 100, 150, 200,
and 300. The insets show magnified views of the vicinity of the critical point for the
four largest lattice sizes. The error bars, which are difficult to see in the larger plots,
are clearly visible in the insets. To see the values of the exponents ν and df used in
each panel, consult equations (3.48), (3.49), (3.53), and (3.54).
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3.3.4 Cluster Densities and b-factors

The physical property that distinguishes the Mott glass from the Bose glass is the

compressibility. Later, we will show that, in order to calculate the compressibility, it is

insufficient to consider just the minimum charging gap. Within each sample, the RG

may form several clusters, each of which implies a local gap for adding and removing

bosons. We will need to monitor all of these local gaps to find the compressibility.

More specifically, in this section, we will calculate the density (number per unit

area) of clusters of a given size and of clusters with gaps in a given range of energy. We

call these densities ρ(s) and ρ(∆) respectively. The latter quantity gives a “density

of states” for addition of single bosons or holes to the system. For a single sample

corresponding to a specific choice of initial distributions, we monitor the size and

local charging gap for all the clusters formed during the renormalization, excluding

bare sites that are not clustered by the RG. In the case of the local charging gap,

we again estimate this quantity as the charging energy of a cluster at the time of

decimation. In principle, we could also include perturbative corrections to this local

gap, but we omit these and do not anticipate that they would affect the behavior of

the density at low ∆. We pool data for 103 samples, compute histograms of gaps and

cluster sizes, and normalize these histograms by the total simulated surface area: L2

times the number of samples.

Our study of these densities will bring into focus the crucial difference between two

types of clusters formed by the RG: rare-regions clusters and the macroscopic clusters

that characterize the superfluid phase. We will, therefore, also take the opportunity
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to examine how the b-factors, which quantify the effect of harmonic fluctuations on

the susceptibility, vary as a function of s for the two types of clusters.

3.3.4.1 The Charging Gap Density ρ(∆)

Note that ρ(s) and ρ(∆) are not particularly interesting for choices of distributions

and parameters that yield the Mott insulating behavior from Figures 3.14 and 3.15.

The profile of ρ(∆) will be identical to the profile of the initial charging energy

distribution, and because we choose this distribution to be bounded from below by

some positive Umin, it can be shown that this always corresponds to an incompressible

phase. Hence, we begin by focusing on the glassy regime.

Figure 3.17 shows the gap density for a choice of parameters in the glassy phase.

As the size of the lattice is raised, the density profile remains essentially invariant at

large ∆, but smaller gaps, corresponding to larger clusters, begin to appear. However,

these smaller gaps simply fill out a decay to 0 as ∆→ 0.

Now, we turn our attention to the putative superfluid phase. The gap density in

this phase is shown in Figure 3.18. In panel (a), there is an invariant piece to the

distribution, but at very low ∆, a second peak appears as well. Panel (b) of Figure

3.18 shows a magnified view of this low ∆ peak. This peak propagates towards

∆ = 0 as the system size is raised. Accompanying the propagation is a shrinking: the

integrated weight of the low ∆ peak shrinks as L−2. The consequences of these two

effects need to be taken into account carefully to calculate the compressibility.
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Figure 3.17: The number per unit area of clusters with local gap near ∆ for a choice
of parameters in the glassy phase. The initial distributions are those described in
Appendix 3.C, with Pi(U) Gaussian and Pi(J) ∝ J−1.6. Data is shown for L = 75,
150, and 300 lattices. The density decays faster than a power law at small ∆.
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Figure 3.18: In panel (a), the density (number per unit area) of clusters with a given
gap ∆ for a choice of parameters in the superfluid phase. The initial distributions
are those described in Appendix 3.C, with Pi(U) Gaussian and Pi(J) ∝ J−1.6. Data
is shown for L = 75, 150, and 300 lattices. The density profiles exhibit two peaks.
The broad peak that is visible in panel (a) remains invariant with L. To expose the
second peak, we provide a magnified view of the low ∆ part of the density in panel
(b). This peak simultaneously shrinks and propagates towards ∆ = 0 as the system
size is raised.
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Figure 3.19: Sweeps of ρ(s) as the system is tuned through the superfluid-insulator
transition on L = 300 lattices. The initial distributions are those described in Ap-
pendix 3.C, with Pi(U) Gaussian and Pi(J) ∝ J−1.6. The tuning parameter is U0, the
center of Pi(U). Panel (a) shows the sweep from deep in the glassy phase (U0 = 20)
to the transition (U0 = 8.97). The closest data set to the transition is indicated by
the black line with large data point markers. This line is reproduced in panel (b),
which shows the sweep from the transition into the superfluid phase (up to U0 = 6.5).
In the superfluid phase, the density plot is characterized by a peak at large s and a
remnant decay at low s.

3.3.4.2 The Cluster Size Density ρ(s)

We now consider how ρ(s), the density of clusters of size s, varies as we sweep

through the glassy regime and into the superfluid. Panel (a) of Figure 3.19 shows

the approach to the transition from the glassy side. Very close to the transition at

U0 ≈ 8.97, ρ(s) exhibits a striking power law decay. Proceeding into the proposed

glassy phase, the power law decay persists at small s. However, this behavior is cut

off by some scale s̃, beyond which ρ(s) decays very rapidly, essentially exponentially.

In panel (b), we proceed in the other direction from the putative transition, into

the superfluid regime. A peak, corresponding to the macroscopic clusters, appears at
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Figure 3.20: Scaling collapse of the ρ(s) curves from Figure 3.19. Small cluster sizes
(s < 30) need to be discarded, because they are nonuniversal. Large cluster sizes
(s > 100) need to be discarded, because they are noisy. Then, the remaining ρ(s)
curves, taken for different values of the tuning parameter, collapse onto a universal
curve.

large s. The macroscopic cluster in each sample is dressed by rare-regions clusters,

and these clusters are represented by the remnant decay at small s. While the large

s peak is related to the low ∆ peak in Figure 3.18, the remnant decay at small s is

the analogue of the high ∆ feature that stays invariant with system size. The low

s decay in panel (b) of Figure 3.19 qualitatively resembles the decay well inside the

glassy regime. In summary, ρ(s) exhibits a pure power law decay in the vicinity of the

proposed glass-superfluid transition; tuning away from criticality in either direction,

and excluding the macroscopic clusters of the superfluid phase, the power law form

of ρ(s) only survives up to a scale s̃. For s > s̃, clusters become exponentially rare.

A type of scaling collapse can be performed for the ρ(s) curves from Figure 3.19,

and this collapse is shown in Figure 3.20. We will see below that this collapse gives

a complementary set of critical exponents. These exponents are connected by scaling

relations to those that can be extracted from Figure 3.16.
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3.3.4.3 Susceptibility b-factors

The data presented above for the cluster densities ρ(s) and ρ(∆) highlights the

difference between the rare regions and macroscopic clusters generated by the RG. A

study of how the b-factors for the clusters vary as a function of s can bring out another

difference between the two types of clusters. Recall that the b-factor was introduced

in equation (3.20) to quantity the effect of harmonic fluctuations on the susceptibility

of a superfluid cluster. As such, understanding the behavior of the b-factors will also

be essential in explaining the behavior of χ in the various phases of our model.

In Figure 3.21, we plot the average value of b for a cluster of size s and plot

it against s. Again, we work with L = 300 lattices and the choice of distributions

described in Appendix 3.C. Panel (a) shows data for the glassy phase and for the

nonmacroscopic clusters of the superfluid phase. We see that b̄ varies with s as a

power law:

b̄(s) ∼ sζ (3.21)

and that the power is consistent for seven different choices of the tuning parameter

U0. We will provide an estimate of ζ in Section 3.4. Panel (b) of Figure 3.21 shows

data for the macroscopic clusters when U0 = 8.8. Now, b̄(s) ∝ s. This behavior can

be anticipated from a simple picture of macroscopic cluster growth, which we will

discuss in Section 3.4.
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Figure 3.21: The behavior of the mean b-factor for clusters of size s as a function of s.
In panel (a), we show data for the glassy regime and for the nonmacroscopic clusters of
the superfluid regime. The initial distributions are those described in Appendix 3.C,
and data is shown for seven values of the tuning parameter U0 on L = 300 lattices.
The log-log plot shows power law behavior of b̄(s) vs. s. In panel (b), we show data
for the macroscopic clusters when U0 = 8.8. The plot indicates that b̄(s) ∼ s for
macroscopic clusters. In both plots, the error bars indicate the error on the mean
b̄(s) over all clusters of size s. For some of the largest and smallest values of s in
each plot, the absence of an error bar indicates that only one cluster of that size was
generated in all of the samples.

129



3.4 Phases and Quantum Phase Transitions

Having collected representative numerical data in the previous section, we now

assess what the data tells us about the phases and phase transitions of our model.

Our first task will be to confirm the association of phases with the behaviors of

physical properties that we observed in Figures 3.14 and 3.15. To this end, we will

have to preemptively introduce one of the main conclusions of the discussion below:

that our data points to a superfluid-insulator transition driven by a percolation-type

process. The rare-regions clusters of the glassy phase find one another, and their

phases cohere, producing a macroscopic cluster of superfluid ordering and driving the

transition to long range order and global superfluidity.

Motivated by this intuitive picture of the transition, the logic of the discussion

below will be the following: in the proposed glassy and superfluid regimes of Figure

3.15, the cluster size density ρ(s) exhibits the universal features that we would expect

from nonpercolating and percolating phases of standard models of percolation. We

can use these correspondences to extrapolate the behaviors seen in Figure 3.15 to the

thermodynamic limit, in the process showing that these phases will indeed have the

properties expected of glassy and superfluid phases. Furthermore, we can analyze the

critical point and extract the critical exponents that govern the superfluid-insulator

transition. After characterizing this transition, we will finally return to the question

of the identity of the glassy phase and determine if a Mott glass is present in two

dimensions.

Before proceeding, we should clarify that, although our RG produces clusters with

130



size distributions similar to models of percolation, our transition is not the standard

percolation transition. Indeed, the exponents that we recover are significantly differ-

ent from the percolation exponents on a 2D square lattice. However, the analogy to

percolation allows us to easily identify the relations between the various exponents

and the scaling functions for the observables.

3.4.1 Phases of the Model

3.4.1.1 Mott Insulator

We briefly digress to describe the phase of our model in which the percolation

picture is irrelevant, simply because there are no regions of superfluid ordering. In a

Mott insulating phase, the system wants to pin the number fluctuation to zero on each

site to avoid the energetic costs of charging. Hence, smax and s2 simply stay pinned

at one as L is raised. Meanwhile, ∆min should asymptote to a constant, reflecting the

fact that the Mott insulator is gapped. A phase without any cluster formation can

be described by completely local physics. This means that the susceptibility can be

approximated by averaging over disorder in a single site problem. In other words, χ

should also stay constant as the system size is increased. Thus, in a Mott insulating

phase, we expect exactly the behavior seen in panel (a) of Figures 3.14 and 3.15.
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3.4.1.2 Glass

In nonpercolating phases of standard models of percolation, the cluster size density

is expected to go as:

ρ(s) = cs−τf
(s
s̃

)
(3.22)

where c is a constant. The function f(x) is expected to be approximately constant for

x < 1 and to rapidly decay for x > 1 [130]. Equation (3.22) is consistent with what

we have observed in our proposed glassy phase in panel (a) of Figure 3.19 and is also

consistent with the expectation that, in a Griffiths phase, the frequency of occurrence

of large rare regions decays exponentially in their size [140]. In our numerics, f(x)

seems to follow a pure exponential decay f(x) ∼ e−x, but the conclusions we present

below would be qualitatively unchanged if, for example, f(x) ∼ e−x
λ
.

With the form of equation (3.22) in hand, we can now formulate a simple argument

for the asymptotic behavior of smax. In particular, the order-of-magnitude of smax is

set by the condition [130]:

L2

L2∑

s=smax

ρL(s) ≈ 1 (3.23)

If the left hand side of equation (3.23) is less than 1, then it is unlikely that even one

cluster of size greater than or equal to smax will be present in a sample of size L2. In

equation (3.23), ρL(s) is the finite size approximant to the function ρ(s) that appears

in equation (3.22). The upper limit of the sum in equation (3.23) is taken as L2

because larger clusters simply cannot appear in the finite size sample. With enough

sampling of the random distributions, it should, in principle, be able to accurately
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represent the approximant ρL(s) out to s = L2. The data indicates that ρL(s) will

simply reproduce ρ(s) out to this value of s, so in the calculations below, we can

replace the approximant ρL(s) by ρ(s). This will not be possible in the superfluid

phase.

For large L, where we also expect smax > s̃, we can use equation (3.23) to find

smax by computing

L2

L2∑

s=smax

ρ(s) ≈ L2

∫ L2

smax

dsρ(s)

= cL2

∫ L2

smax

ds exp
[
−s
s̃
− τ ln(s)

]

≈ cL2

∫ L2

smax

ds exp
[
−s
s̃

]

= cs̃L2
(
e−

smax
s̃ − e−L

2

s̃

)
(3.24)

Setting this expression equal to 1 and inverting for smax, we find that, asymptotically

in L:

smax ∼ lnL (3.25)

For large clusters, the link decimation rule for addition of charging energies (2.21)

implies7 that U ∼ s−1, and therefore:

∆min ∼
1

lnL
(3.26)

An entirely analogous condition to equation (3.23) can be formulated for s2. We

7Note that we justified this result analytically in 1D in equation (2.65).
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simply replace the right hand side of equation (3.23) with two, indicating that we

want to find the value of s such that there are likely to be two clusters of that size or

greater in a typical sample. However, the remainder of the calculation is qualitatively

unaffected by this change. Therefore, s2 should also grow logarithmically in this

regime:

s2 ∼ lnL (3.27)

Finally, we turn to the susceptibility. This can be computed as follows:

χ =
1

L2

∑

C

b2
C

UC

∼ 1

L2

∑

C

sCb
2
C

∼ 1

L2

smax∑

s=1

ρ(s)L2(b̄(s))2s

=
smax∑

s=1

ρ(s)(b̄(s))2s (3.28)

In this calculation, the sum over C is a sum over clusters, with sC being the size of

the cluster. Then, the sum over s is, as before, a sum over cluster sizes, and b̄(s) is

the average value of the b-factor for a cluster of size s. Figure 3.21 shows that, in

the glassy regime, b̄ varies as a power of s and that this power remains the same all

the way up to criticality. While we do not have a complete understanding of this

behavior, we can still understand the asymptotic behavior of χ by reasoning that b̄

can, at most, grow linearly in s. This follows from an interpretation of the b-factor as

the effective number of rotors that order with the field in a cluster of size s. Because
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ρ(s) decays exponentially for large s while b̄(s) grows at most as a power, the sum

(3.28) converges, and χ should be asymptotically constant:

lim
L→∞

χ = χ∞ (3.29)

All of these behaviors are consistent with what has been observed numerically

in panel (b) of Figure 3.15. Moreover, because logarithmic behavior can be difficult

to discriminate from a slow power law at low L, they are also consistent with panel

(b) of Figure 3.14. Thus, under the numerically justified assumption that this regime

corresponds to a nonpercolating phase, we can deduce that, as L increases, arbitrarily

large rare regions of superfluid ordering will appear, driving the gap to zero. However,

the typical size of these regions grows extremely slowly (i.e., logarithmically) with

system size. The fraction of sites occupied by the largest cluster in a typical sample

vanishes as L → ∞, so there is no long range order. The behavior of this phase for

large L corresponds to what we should expect for a glassy phase.

3.4.1.3 Critical Region

At the critical point of a percolation transition, the cluster size scale in equation

(3.22) is expected to diverge as:

s̃ ∼ |g − gc|−
1
σ (3.30)

135



where g is the tuning parameter for the transition. This divergence is related to the

divergence of a correlation length that indicates the typical linear extent of the largest

clusters:

ξ ∼ |g − gc|−ν (3.31)

By equation (3.30), ρ(s) is a power law at criticality:

ρ(s) = cs−τ (3.32)

This means that the critical point is characterized by a scale invariant, fractal struc-

ture of clusters [130]. In turn, this implies that ξ and s̃ are related by a fractal

dimension:

s̃ = ξdf (3.33)

Equations (3.30), (3.31), and (3.33) together imply:

σ =
1

νdf
(3.34)

We will use this scaling law in our analysis of the transition below [130].

For the present purposes, note that equation (3.32) is once again consistent with

what we have observed numerically in Figure 3.19. Now, the calculation for smax

becomes:

L2

L2∑

s=smax

ρ(s) ≈ cL2

∫ L2

smax

dss−τ = 1 (3.35)
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which, when inverted, yields:

ln smax =
2

τ − 1
lnL− 1

τ − 1
ln

(
τ − 1

c

)

+ ln

(
1 +

c

(τ − 1)L2(τ−2)

)
(3.36)

Asymptotically, as long as τ > 2, this simply corresponds to a power law growth of

smax:

smax ∼ L
2

τ−1 (3.37)

On the other hand, because df is the exponent that connects length and cluster size

scales at the transition, equation (3.37) yields another scaling relation:

df =
2

τ − 1
(3.38)

Equations (3.34) and (3.38) are the usual scaling laws connecting exponents at a

percolation transiiton [130].

In accordance with equation 3.37, the gap should close as:

∆min ∼ L−
2

τ−1 = L−df (3.39)

Furthermore, as in the glassy regime, the qualitative behavior of the second largest

cluster size s2 should be identical to that of smax:

s2 ∼ L
2

τ−1 (3.40)
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Turning to the susceptibility, we find that it no longer converges to a finite value.

At criticality, power law behavior of b̄(s) follows naturally from scale invariance.

When ρ(s) ∼ s−τ and b̄(s) ∼ sζ :

χ =
smax∑

s=1

ρ(s)(b̄(s))2s

∼
∫ smax

1

dss1+2ζ−τ

∼ s2+2ζ−τ
max

∼ L
4+4ζ−2τ
τ−1

= Ldf (1+2ζ)−2 (3.41)

From Figure 3.21, we can estimate the exponent ζ:

ζ ≈ 0.68± 0.01 (3.42)

With another choice of initial distributions (Pi(U) bimodal and Pi(J) ∝ J−1.6), we

have found a similar value for ζ. If df (1 + 2ζ) > 2, then χ asymptotically diverges

as a power law, as seen in Figure 3.15. We will provide an estimate of df shortly in

equation (3.49). For now, we note that the power observed for χ vs. L in Figure 3.15

is consistent with this estimate of df and the estimate for ζ that is given above. In

Figure 3.14, the relatively small system sizes likely put us out of the scaling regime

for χ, and this is probably responsible for the extremely slow growth of χ with L.
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3.4.1.4 Superfluid

The percolating phase is characterized by the presence of a macroscopic cluster

that grows with the size of the lattice, so trivially:

smax ∝ L2 (3.43)

and therefore:

∆min ∝ L−2 (3.44)

It is possible to construct an argument along the lines of condition (3.23) for the

behavior of smax in equation (3.43), but in this case, it is important not to substitute

the infinite lattice density ρ(s) for the finite size approximant ρL(s). The subtlety

lies in the high s peak observed in the density plots in panel (b) of Figure 3.19.

Consistent with their low ∆ counterparts in the plots of the gap density, the location

of these peaks propagates as L2 towards high s as L is raised. Simultaneously, the

integrated weight of the peaks shrinks as L−2, reflecting the fact that there is only

one macroscopic cluster in each sample. Balancing the shrinking and propagation, it

is possible to see that, in order to achieve the condition (3.23), smax must scale as

shown above in equation (3.43).

The reasoning above has important implications for the behavior of s2. Because

the weight of the high s peak of ρL(s) shrinks as L−2, the second largest cluster must

be drawn from the remnant low s decay. The physical picture behind this low s decay

is the following: suppose we remove the sites belonging to the macroscopic cluster
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from the original lattice. In doing so, we remove some of the lowest charging energies

and highest Josephson couplings from the bare lattice. Consequently, the remnant

lattice is globally insulating. Nevertheless, rare regions of superfluid ordering can

form exactly as in the glassy phase. It follows that s2 will grow with L as in the

glassy phase:

s2 ∼ lnL (3.45)

Note that s2 actually grows fastest at criticality (i.e., as a power law) and slower on

either side of the transition (i.e., logarithmically). This is responsible for the peak in

s2 at criticality.

To calculate the susceptibility, we first take into account the contribution of the

macroscopic cluster. The behavior of b̄(s) for a macroscopic cluster can be inferred

from a simplified picture of a large cluster merging with single neighbors. As the

macroscopic cluster grows, its charging energy becomes smaller, driving the Debye-

Waller factor for the cluster to one. At the same time, the cluster’s Josephson cou-

plings to other sites grow through link addition processes. This means that the

Debye-Waller factor for another site that is merging with the macroscopic cluster

also approaches unity. Therefore, the b-factor addition rule (3.19) approximately

becomes b̃C = bC + 1, and bC ∼ sC follows. Then:

χmac =
1

L2
× (b̄(smax))2

∆min

∼ 1

L2
× s2

max

∆min

∼ L4 (3.46)
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Mott Insulator Glass Critical Superfluid
smax const. ln(L) Ldf L2

s2 const. ln(L) Ldf ln(L)
∆min const. 1

ln(L)
L−df L−2

χ const. const. Ldf (1+2ζ)−2 L4

Table 3.1: Behavior of physical properties in the three phases and at the critical point
for large lattice sizes L.

The rare-regions clusters dressing the macroscopic cluster add a subleading contribu-

tion to the susceptibility, which we call χrr. The reasoning of equation (3.29) indicates

that this contribution should be asymptotically constant. Thus, the quartic behavior

of equation (3.46) is the correct asymptotic behavior. Finite size corrections from χrr

will modify this behavior, however, and this is probably why we do not quite see χ

reach the L4 behavior in panel (d) of Figure 3.15.

We have now provided arguments for the behaviors observed in each panel of that

figure, and we summarize this information in Table 3.1.

3.4.2 Quantum Phase Transitons

3.4.2.1 Glass-Superfluid Transition

Earlier, we remarked in passing that systems exhibiting the behaviors that we have

now identified as Mott insulating and glassy eventually propagate towards the puta-

tive insulating region to the top left of the numerical flow diagrams. Correspondingly,

the systems exhibiting superfluid behavior propagate towards the putative superfluid

region to the bottom right. We can now verify our tentative identifications of these

stable regions of the diagram. We can also determine that the unstable fixed point
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controls the transition between the glass and the superfluid, the superfluid-insulator

transition of our disordered rotor model. This allows us to draw the schematic picture

of the flow diagram that we presented in Figure 3.1.

We will now focus on the critical region and extract critical exponents governing

the glass-superfluid transition. Estimating these exponents requires formulating scal-

ing hypotheses for the behavior of physical quantities in the critical region. In the

case of smax [130]:

smax = Ldfh1

(
L

ξ

)
= Ldf h̃1(L

1
ν (g − gc)) (3.47)

Exactly at criticality, smax ∼ Ldf asymptotically, so plotting smax

L
df

vs. (g−gc) generates

a crossing of the curves for different lattice sizes. Slightly away from criticality, the

power law behavior should persist if L < ξ. For L > ξ, the system recognizes that it

is not critical and we should see a crossover to logarithmic growth on the glassy side

and L2 growth on the superfluid side. Hence, L
ξ

is the important ratio near criticality,

and this motivates scaling form (3.47). The scaling form, in turn, implies that we can

produce scaling collapse by plotting smax

L
df

vs. (g − gc)L
1
ν . This is what we have done

in panel (a) of Figure 3.16. This scaling collapse leads to the estimates:

ν ≈ 1.09± 0.04 (3.48)

df ≈ 1.3± 0.2 (3.49)

These estimates and error bars are obtained through the following procedure:
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first, to find an estimate of the critical value of the tuning parameter g, we examine

the behavior of the sample average of s2 vs. g. Since s2 varies as a power law in

L exactly at criticality and grows more slowly within the phases, s2 should exhibit

a maximum at gc. We can find the error ∆gc on our estimate of gc by taking the

window of values of g around gc for which the sample average of s2 is within one error

bar of the maximum. To proceed to obtain estimates for ν and df , we now partition

our data into bins of size Nb samples. For example, the first bin may consist of the

first Nb = 50 samples for each value of the tuning parameter and each lattice size

L. Our immediate goal is to find the best values of ν and df for this subset of our

data. We first focus on the data for g = gc and do linear regression to find the best

exponent that describes the power law growth of the average value of smax with L.

This gives an estimate of df for the bin. Next, for two lattice sizes (typically, L = 150

and L = 300), we compute an average of smax over the samples in the bin for several

values of the tuning parameter around gc. Then, using the previous estimate of df

for the bin and the scaling hypothesis (3.47), we test various values of ν until we

achieve the best collapse. Thus, we also obtain an estimate of ν for the bin. From

the distribution of estimates for the different bins, we can find mean values and error

bars for df and ν. However, these error bars do not take into account the error on

our estimate of the critical point. To propagate this error, we need to repeat the

critical point estimation procedure using gc + ∆gc and gc − ∆gc as our estimates of

the critical point.

We have repeated the scaling collapse of smax for a different choice of initial distri-

143



butions: bimodal Pi(U) and Pi(J) ∝ J−1.6. Ultimately, we have been able to recover

estimates for ν and df which are consistent with (3.48) and (3.49):

ν ≈ 1.1± 0.1 (3.50)

df ≈ 1.2± 0.2 (3.51)

A completely analogous scaling hypothesis can be made for s2:

s2 = Ldfh2

(
L

ξ

)
= Ldf h̃2(L

1
ν (g − gc)) (3.52)

Then, the exponents needed to produce the collapse in panel (b) of Figure 3.16 are:

ν ≈ 1.06± 0.09 (3.53)

df ≈ 1.31± 0.07 (3.54)

Since all the estimates (3.48)-(3.54) are consistent, we will proceed using our tightest

estimates on these exponents: (3.48) and (3.54).

We now note that a scaling hypothesis can also be formulated for the density

ρ(s). From equation (3.22), we see that, for fixed lattice size L, sτρ(s) should depend

only on the combination s
s̃
∼ s(g − gc)

1
σ . Hence, by plotting sτρ(s) vs. s(g − gc)

1
σ

and tuning until the curves for different choices of g collapse, we ought to be able to

extract estimates for τ and σ. On the other hand, τ and σ are related to ν and df

through the scaling relations (3.38) and (3.34). Therefore, from the estimates (3.48)
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and (3.54), we can infer:

τ ≈ 2.53± 0.08 (3.55)

σ ≈ 0.70± 0.04 (3.56)

In Figure 3.20, we attempt to produce collapse of ρ(s) for L = 300 lattices using

these estimates of τ and σ. To produce this plot, we need to discard data points

for small cluster sizes (s < 30), because they are nonuniversal, and for large cluster

sizes (s > 100), because they are noisy. Once we do this, the collapse works fairly

well, indicating that we have found a consistent set of critical exponents obeying the

necessary scaling relations.

3.4.2.2 Comments on the Glass-Insulator Transition

Before proceeding further, we should note that our numerics do not accurately

capture the boundary between the Mott insulator and the glass. The “theorem of

inclusions” of Pollet et al. suggests that we should expect glassy behavior to occur

whenever the ratio of the largest bare Josephson coupling to the lowest bare charging

energy Jmax

Umin
exceeds the value of the clean transition, because this condition allows

for the presence of regions in which the system locally looks like it is in the superfluid

phase [113]. However, in the SDRG treatment, some distributions that satisfy this

criterion still produce Mott insulating behavior out to the largest lattice sizes that we

investigate. Because the glassy phase occurs due to rare regions or Griffiths effects,

a finite size system will only look glassy if it is large enough for the rare regions to

appear. This suggests that some choices of parameters that yield Mott insulating be-
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havior on finite size lattices may actually yield glassy behavior in the thermodynamic

limit. Of course, this difficulty necessarily afflicts all numerical methods (except those

that rely on mean-field type approximations [25]), since they are confined to operate

on finite size systems.

We will not comment on this transition further, but we take this opportunity to

refer the reader to chapters by Krüger et al. and Pollet et al., which present two

viewpoints on the Mott insulator to Bose glass transition [86, 113].

3.4.3 Identifying the Glass

Finally, we return to the question of the identity of the glassy phase. Is the

phase a Bose glass or a Mott glass? A definitive diagnosis requires a measurement

of the compressibility (1.20) The compressibility is more subtle to measure than the

quantities that we have already discussed. Strictly speaking, any finite size system

is gapped and therefore incompressible. On the other hand, in the thermodynamic

limit, the gap can vanish and the compressibility need not be zero.

How can we measure the compressibility of the glassy phase in the RG? In Figures

3.17 and 3.18, we presented data for the density (number per unit area) of clusters

with a given gap ∆. With this density profile in hand, we can calculate the density
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of particles introduced to the system by a small chemical potential shift µ:

ρex =

∫ µ

0

d∆ρ(∆)n(∆)

=

∫ µ

0

d∆ρ(∆)b µ
2∆
− 1

2
c

≈
∫ µ

0

d∆ρ(∆)

(
µ

2∆
− 1

2

)
(3.57)

Here, n(∆) is the number of particles added to a cluster with gap ∆ if the chemical

potential is µ. If ρ(∆) stays finite as ∆→ 0, the integral is divergent, and the system

is infinitely compressible. Suppose alternatively that ρ(∆) vanishes as ∆β for small

∆. Then:
∫ µ

0

d∆∆β

(
µ

2∆
− 1

2

)
=

µβ+1

2β(β + 1)
(3.58)

The derivative of the integral vanishes at µ = 0 for β > 0. Thus, the system is

incompressible. Comparing to the data shown in Figures 3.17, we see that there is

no numerical evidence for a finite compressibility in the glassy phase; the gap density

appears to vanish even faster than a power law as ∆→ 0. This is consistent with the

behavior of ρ(s) in equation (3.22), because ∆ is expected to scale as s−1. Hence, the

numerics imply that the Mott glass intervenes between the Mott insulator and the

superfluid in this model.

At first glance, the preceding argument may be troubling. Due to the shrinking

of the low ∆ peak in panel (b) of Figure 3.18, the gap density ρ(∆) also appears to

vanish as ∆ → 0 in the superfluid phase. The caveat is that it is necessary to more

carefully evaluate the competing effects of the shrinking and the propagation. The
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low ∆ peak in Figure 3.18 represents the macroscopic superfluid clusters that form in

the superfluid phase. These clusters do not appear in proportion to the surface area

of the sample, as is the case for rare-regions clusters; instead, one such macroscopic

cluster appears in each sample. Therefore, the density of macroscopic clusters will go

as 1
L2 , and this is responsible for the shrinking of the low ∆ peak. The propagation of

the peak, meanwhile, reflects the fact that the gap closes as L−2. For a fixed choice

of µ, the number of bosons that will be added to these macroscopic clusters scales as:

µ

2∆
− 1

2
∝ µL2 (3.59)

for large L. Then, the density of particles introduced to the system is:

ρex ∝
1

L2
× µL2 = µ (3.60)

This directly implies that the compressibility (1.20) is a constant in the thermody-

namic limit, so we recover the expected result that the superfluid phase is compress-

ible.

3.5 Conclusion

While the interplay of disorder and interactions in bosonic systems has attracted

considerable interest for nearly three decades, the dirty boson problem remains a

fertile source of intriguing physics. In this chapter, we have investigated a partic-

ular model of disordered bosons, the two-dimensional rotor (or Josephson junction)
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model. Our SDRG analysis suggests the presence of an unstable finite-disorder fixed

point of the RG flow, near which the coupling distributions flow to universal forms.

Furthermore, the SDRG indicates the presence of three phases of the model: the

Mott insulating and superfluid phases of the clean model are separated in the phase

diagram by an intervening glassy phase8. The unstable fixed point governs the tran-

sition between the superfluid and this glassy phase, and the transition is driven by a

kind of percolation. The RG procedure also provides evidence that this glassy phase

is, in fact, the incompressible Mott glass.

Our work is a numerical extension into two dimensions of the one-dimensional

study by Altman, Kafri, Polkovnikov, and Refael [7]. The 2D fixed point, however,

differs from the 1D fixed point in an important way. The 1D fixed point occurs at

vanishing interaction strength (all charging energies Uj = 0). Thus, it corresponds to

a completely classical model and reveals that the superfluid-insulator transition can

be tuned by varying the width of the Josephson coupling distribution at arbitrarily

small interaction strength. The 2D fixed point is, in contrast, fully quantum. Indeed,

in the critical distributions generated by the SDRG, the charging energy distribution

is peaked near the RG scale while the Josephson coupling distribution is peaked well

below.

On the other hand, the fixed point that we have identified in this chapter is similar

to its 1D counterpart in that it does not exhibit infinite randomness. Finite disorder

8As we noted in Section 1.4.1.2 of Chapter 1, there is, in principle, also a Griffiths phase with
large rare regions of insulator embedded in a superfluid bulk. Indeed, we have seen numerical
evidence for such a phase. However, since this phase is characterized by macroscopic superfluidity,
it is conventionally just referred to as a superfluid.
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fixed points are not optimal settings for strong-disorder renormalization analyses,

because the procedure does not become asymptotically exact near criticality and

is, in this sense, an uncontrolled approximation. We have proceeded with such an

analysis anyway. In doing so, we have found a robust fixed point controlling the

superfluid-insulator transition and phases exhibiting reasonable physical properties.

While this may be surprising given the perils of the method, we have attempted

to argue for the appropriateness of the method, as an approximation, through an

analysis of the RG steps in light of the forms of the fixed point distributions Puniv(U)

and Puniv(J). We certainly acknowledge that there are other subtleties due to the lack

of infinite randomness; for example, the notion of a superfluid cluster is not completely

sharp, and consequently, percolation of superfluid clusters can only be an approximate

picture of the transition [71]. Nevertheless, the structure of the fixed point Josephson

distribution (3.15) suggests that the picture may be a good approximation, and we

take this opportunity to remind the reader that we extensively discuss the reliability

of the RG, in light of the properties of the fixed point, in Appendix 3.D. Moreover,

the self-consistency of our numerical results, especially the striking universality and

robustness of the unstable fixed point, gives us confidence that our SDRG analysis

provides useful information about the system. With the potential caveats in mind,

we therefore turn to exploring connections with other theoretical, numerical, and

experimental work.

The Mott glass phase of the two-dimensional model is the straightforward analogue

of the phase found in one dimension by Altman et al. The charging gap, the energy
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needed to add or remove a boson from the system, vanishes due to the presence of

arbitrarily large rare regions of superfluid ordering. However, there is no true long

range order because these rare regions grow subextensively with system size. If a

small chemical potential shift is turned on, it becomes energetically preferable to add

bosons somewhere in the system, specifically in the largest of the rare-region superfluid

clusters. Nevertheless, these clusters do not occur with sufficient number to produce a

finite density of bosons, and the glass remains incompressible. In a Monte Carlo study

of a model similar to ours, Prokofiev and Svistunov previously found evidence for a

glassy phase in which the compressibility vanishes for this reason [114]. Moreover,

the Mott glass that was identified by Roscilde and Haas in a related spin-one model

also relies on the same mechanism [119]. The original proposal of Giamarchi, Le

Doussal, and Orignac is, however, fundamentally distinct [57]. In their Mott glass, the

charging gap remains finite, guaranteeing a vanishing of the compressibility; however,

gaplessness is achieved through the closing of a mobility gap for transport of particles

between nearby insulating and superfluid patches. Sengupta and Haas have argued

that particle-hole symmetry, a crucial ingredient in the formation of our Mott glass,

is not necessary for the realization of the phase through this alternative mechanism

[124].

In the superfluid phase, true long range order emerges because the largest cluster

scales with the size of the lattice. In this sense, this cluster is macroscopic. Despite

this, near the transition, the macroscopic cluster may only occupy a small fraction

of the total number of lattice sites. Because the clustering procedure can merge sites
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that are not nearest neighbors in the bare lattice, the fraction of insulating sites may

actually exceed the standard 2D square lattice percolation threshold. Even with such

a large fraction of insulating sites, a superfluid phase can still exist because virtual

tunneling processes can carry supercurrent through the insulating sites, allowing for

macroscopic superfluidity on the “depleted” lattice that forms when the insulating

sites are removed from the lattice by site decimation.

Nevertheless, the Mott glass to superfluid transition of our model should be con-

trasted with transitions that arise when disorder is introduced to a 2D square lattice

by bond or site depletion [119, 51, 27, 143, 144, 121]. Models of the latter type only

have the opportunity to form long range ordered phases when the underlying lat-

tice is percolating. This percolation is purely classical and exhibits all the critical

properties expected of standard site or bond percolation on a square lattice [130].

The superfluid-insulator transition is, in general, distinct from this transition; once

the underlying lattice percolates, the bosonic model defined on that lattice may still

exhibit Mott insulating, glassy, and superfluid phases [119]. In contrast, the only

percolation-type process in our model is the one that actually drives the superfluid-

insulator transition. The critical properties of this transition differ dramatically from

those of classical 2D square lattice percolation, because the transition is not a purely

geometric phenomenon. Instead, there are quantum tunneling processes overlaid on

top of a geometric structure [102].

In Section 1.5, we identified several contexts in which experimental groups are

currently probing disordered bosonic systems. In light of the work that we have
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discussed in this chapter, the experiment on tin-decorated graphene by Allain, Han,

and Bouchiat is particularly intriguing. These authors find a value of the exponent

ν for the superconductor-insulator transition that is consistent with our estimate

(3.48)9. Furthermore, they tie the emergence of superconductivity in their samples

to a percolation process [5]. Hence, the transition described in this chapter may be

describing this system.

We should also highlight again the work on nickel-based spin systems by Yu et

al. These authors are among the first to report experimental evidence of the exotic

Mott glass, and their realization of this phase is, in fact, the particle-hole symmetric

variant. It is exciting that this phase can be observed, given that it requires a special

symmetry. Qualitative aspects of our transition may be relevant to the spin system

studied by Yu et al., but their spin systems are three dimensional [148]. Therefore,

an extension of our work is necessary to characterize their system more thoroughly.

One immediate extension of our study would be to consider adding random filling

offsets to the disordered rotor model, as Altman et al. did in a follow-up to their

work on the 1D model [9]. The intuition from 1D suggests that such a model would

contain a Bose glass phase. On the other hand, recent Monte Carlo work by Wang et

al. indicates that the Mott glass might survive the substitution of exact particle-hole

symmetry with statistical particle-hole symmetry [145]. In one dimension, Altman

et al. found that the universality class of the transition (but not the identity of the

glassy phase) is independent of the symmetry properties of the random filling offsets,

but the situation may differ in d > 1; this remains to be understood.

9Allain et al. actually report the exponent zν ≈ 1.18. Their analysis seems to assume z = 1.
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Another interesting extension may be to study the rotor model defined on random

networks. Suppose we do not begin with a square lattice but rather with a generalized

network of mean connectivity z = 4. At its critical point, would such a model flow

to the same fixed point as the model defined on a square lattice? The fact that the

SDRG modifies the initial lattice structure into a more general network suggests that

this may be the case for at least some types of random networks. Next, suppose we

vary the mean connectivity from z = 4. Is there a range of connectivities for which

random network models access our fixed point?

Perhaps it would be better to precede such investigations with a better character-

ization of the fixed point itself. In one dimension, Altman et al. were able to write

down master equations for the RG flow, solve them to find fixed point distributions,

and then verify numerically that these distributions are stable [7]. In two dimensions,

a direct analytical approach is more difficult, and it remains to be seen whether such

an approach is tractable. Our work provides suggestive numerical evidence regard-

ing the forms of the universal distributions that characterize the critical point of the

disordered rotor model (2.9). A Lyapunov analysis of these distributions, in which

the RG is used as a tool to identify irrelevant directions in the space of possible dis-

tributions, could be a useful step in clarifying the critical forms still further. Then,

analytically verifying these forms as attractor solutions of the RG flow may be an

easier task than analytically identifying them would have been in the absence of any

numerical guidance.

Recent work by Vosk and Altman suggests yet another direction for connecting
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the results of the RG to experiment. These authors have derived the 1D version of the

rotor model as an effective description of continuum bosons. In doing so, they have

established a connection between the SDRG treatment of Altman, Kafri, Polkovnikov,

and Refael and cold atom experiments on rubidium-87. Remarkably, the distributions

that Vosk and Altman derive are of the same form as the fixed point distributions

found by the SDRG [7, 141]. If such a treatment can be extended to the 2D case,

that would be very valuable, both as a clarification of the critical behavior and as an

indication of the relevance of the results to current experiments.

3.A Sum Rule vs. Maximum Rule

In this appendix, we present a short argument for why it may be preferable to

use the sum rule (see equations (3.1) and (3.2)) instead of the maximum rule (see

equation (3.3)). In dimensions greater than one, it should be easier to form ordered

(e.g., superfluid) phases. Indeed, the transition for the clean rotor model occurs when

J
U

is substantially smaller than one [131]. Suppose we begin with the clean model

at its critical point and then disorder it by increasing some Josephson couplings and

decreasing some charging energies. Suppose, further, that we do this such that that

the greatest Josephson coupling Jmax is still less than the weakest charging energy

Umin. Then, using the maximum rule, the strong-disorder renormalization procedure

will predict no cluster formation at all. In other words, it will predict the ground state

to be a Mott insulator, and this result seems inconsistent with the location of the clean
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transition10. With the sum rule, the procedure has a mechanism to circumvent this

inconsistency. The Josephson coupling scale can actually grow through decimation

and compete with the charging energy scale. Thus, there can be cluster formation,

and the procedure can find ground states that are glassy or superfluid, even when

all Josephson couplings of the bare model are less than the minimum bare charging

energy. This indeed occurs in the numerics, as we have noted while presenting the

numerical data above.

The notion of the Josephson coupling scale increasing through the RG may be a

source of concern to some readers. The increase actually corresponds to the genera-

tion of multiple effective couplings between two sites through different paths in the

lattice. This still happens when the maximum rule is used, but it is hidden through

the discarding of certain paths. If the coupling through each path is treated as an

independent Josephson coupling, then the Josephson coupling scale does decrease as

the renormalization proceeds. However, when it is time to determine the next dec-

imation step, it is necessary to consider all of the couplings between any two sites.

For this reason, it makes sense to sum all the couplings into one effective coupling

between the sites.

3.B Measuring Physical Properties in the RG

Here, we work out two examples of how estimates of physical properties can be

extracted from the RG procedure.

10There will, at least, be rare-regions of superfluid ordering in this situation [113].
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3.B.1 Particle Number Variance

First, consider the quantity:

Vn ≡
∑

j

〈n̂2
j〉 (3.61)

This particle number variance gives the mean squared number fluctuation away from

the large filling, summed over all sites in the lattice. When normalized by 1
L2 , we

find numerically that this quantity stays constant as the system size is increased

for all choices of distributions and parameters. As such, this quantity is completely

uninteresting for discriminating between phases of the model, but we do calculate it

for comparison to exact diagonalization in Appendix 3.D.

The calculation of the particle number variance (3.61) is most straightforward

when clusters do not form, so let us first consider the case where some site X is

not clustered with any other site during the renormalization. At some stage in the

procedure, the site is decimated away. The number fluctuation on site X is locked

to zero at leading order with corrections incorporated in second order perturbation

theory. An approximation to the ground state value of 〈n̂2
X〉 can be obtained from

the perturbative expansion of the state. In particular:

〈n̂2
X〉 ≈

1

2

∑

k

J2
Xk

(UX + Uk)2
(3.62)

When clusters do form, the calculation is trickier, but it can be performed by

carefully keeping track of how the operator that we are targeting is written in terms
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of the cluster and relative number operators (2.18) introduced in link decimation. To

illustrate this, suppose we are trying to measure the operator:

〈ajn̂2
j + akn̂

2
k〉 = aj〈n̂2

j〉+ ak〈n̂2
k〉 (3.63)

The factors aj and ak are just numbers. In (3.61), all these factors are one, but we

will motivate the inclusion of more general a factors here shortly. If sites j and k are

merged into a cluster, then we switch to the operators n̂C and n̂R to find:

ajn̂
2
j + akn̂

2
k =

ajU
2
k + akU

2
j

(Uj + Uk)2
n̂2
C +

ajUk − akUj
Uj + Uk

n̂Rn̂C

+(aj + ak)n̂
2
R (3.64)

During link decimation, the relative coordinate is specified, so the expectation value

of the final term can be found immediately from the harmonic approximation:

(aj + ak)〈n̂2
R〉 ≈ (aj + ak)

1

2γ
1
2

(3.65)

Furthermore, the harmonic theory also predicts that the expectation value of the

term linear in n̂R will vanish. The calculation of the term proportional to n̂2
C must

be deferred to later in the renormalization procedure. Thus, we keep the operator

n̂2
C in the portion of the sum (3.61) that remains to be evaluated, where it appears

just like the n̂2 for a bare site, but multiplied by a renormalized aC coefficient. This

was the motivation for including the a factors; though the bare values of these factors
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are all equal, different values can be generated through cluster formation. If the

cluster is merged with another cluster in a future link decimation, we repeat the

procedure above. When the cluster is finally decimated in a site decimation, the

cluster’s contributions to the sum (3.61) are calculated through equation (3.62) and

then multiplied by the appropriate a factor.

The procedure that we have outlined above can run into a difficulty that we can

anticipate by thinking about the two-site problem. Suppose two sites, labelled 1 and

2, are connected by a Josephson coupling J12. Furthermore, suppose U1 > U2, but

both charging energies are greater than J12. Then, we would decimate site 1 first

and obtain an estimate for the site’s contribution to the particle number variance

(3.61) through equation (3.62). Next, we would decimate site 2 and find that it does

not contribute at all to (3.61) because there are no remaining links. However, the

contribution of site 2 should, in fact, be equal to that of site 1, so our estimate is off by

a factor of two. We can verify this by adopting cluster and relative coordinates (2.18)

and then calculating (3.61) by doing perturbation theory for the relative coordinate.

To partially resolve this difficulty, we can keep track of which sites are unclustered

by the SDRG process. At the end, we can return to the original lattice and calculate

the contributions of these unclustered sites to (3.61) using the bare couplings. For

sites that are clustered by the RG, we reason that the main contribution to (3.61)

comes from internal fluctuations of the cluster; thus, this correction may not be so

important.

It is possible to raise another objection to our calculation of (3.61). The pertur-
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bation theory that leads to the result in (3.62) incorporates the charging energies on

sites neighboring site X. However, the perturbation theory leading to the RG rule

(2.16) does not. How do we resolve this contradiction? When we calculate effective

Josephson couplings in the RG, what we want to calculate is the effective rate of

tunneling, once a boson has left one neighboring site and before it arrives at another,

through the link-site-link system. For this purpose, it is appropriate to treat the

sites neighboring site X as fictitious charging energy-free islands. On the other hand,

when calculating observable quantities like (3.61), it is important to account for the

fact that the ability to move a particle or hole from site X to a neighboring site also

depends on how hard it is to charge the neighboring site.

3.B.2 Susceptibility

We now turn to our numerical calculation of the susceptibility (1.21). As we

mentioned earlier, our numerical procedure for calculating the susceptibility closely

mirrors the analytical approach of Chapter 2: we accumulate contributions to the

susceptibility from site decimations as the RG proceeds. Where our numerical calcu-

lation differs is in the way that we incorporate internal fluctuations in the superfluid

clusters. We describe this approach below11.

To calculate χ, we consider how to calculate the expectation value:

∑

j

bj〈cos(φj)〉 (3.66)

11Note that this method is completely analogous to the one that we used for the particle-number
variance above.
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in the presence of an infinitesimal ordering field h. As with the a-factors in the

calculation of the particle number variance, all the bare bj = 1. When clusters form,

the effective b-factor for the cluster can differ from unity.

If a bare site is decimated, then perturbation theory in h gives:

〈cos(φX)〉 =
h

UX
(3.67)

Since bX = 1 for a bare site, (3.67) is the contribution of site X to the quantity (3.66).

When a link decimation joins two sites into a cluster, the corresponding terms in

the sum (3.66) merge as:

bj cos(φ̂j) + bk cos(φ̂k) = bj cos(φ̂C + µjφ̂R)

+bk cos(φ̂C − µkφ̂R)

≈ bj cos(φ̂C)〈cos(µjφ̂R)〉 (3.68)

−bj sin(φ̂C)〈sin(µjφ̂R)〉

+bk cos(φ̂C)〈cos(µkφ̂R)〉

+bk sin(φ̂C)〈sin(µkφ̂R)〉

= (bjcDW,j + bkcDW,k) cos(φ̂C)

In this calculation, µj and µk are the ratios introduced in equation (3.9), and cDW,j

and cDW,k are precisely the Debye-Waller factors given in equation (3.10). We can

read off the renormalized b-factor for the cluster from the calculation above, and the
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resulting expression is given in equation (3.19).

Next, it is important to note that the ordering field terms in the Hamiltonian

(1.22) transform in the same way. In other words, the term coupling to cos(φ̂C)

in the Hamiltonian should appear multiplied by bC after a merger. Physically, this

corresponds to the fact that, when the cluster phase rotates, sC bare phases rotate

semi-coherently. Complete coherence is lost due to quantum fluctuations, which are

accounted for by Debye-Waller factors. The factor bC can be thought of as the

effective number of rotors that are coherently ordering with the field. The energetic

cost of φC straying from the direction of the ordering field is therefore amplified by

this factor. When the cluster is finally decimated, the perturbation is amplified by

this amount. Furthermore, cos(φ̂C) appears in the sum (3.66) multiplied by bC , and

the total contribution of the cluster to the sum is:

bC〈cos(φC)〉 =
hb2

C

UC
(3.69)

From equations (3.67) and (3.69), the calculation of the linear response to an in-

finitesimal h (i.e., the susceptibility χ) follows immediately.

3.C The Pi(U) Gaussian, Pi(J) Power Law Data Set

In the work reported above, we have explored the superfluid-insulator transition

of the disordered rotor model using several different species of disorder (see equations

(3.11)-(3.14)). In doing so, we have exposed universal features of the critical behavior.
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After providing numerical evidence of this universality however, we focus on data for

one particular choice of initial distributions. In this appendix, we describe this choice

of distributions in greater detail.

The choice of distributions in question first appears in Figure 3.7. The initial

distribution of charging energies Pi(U) is taken to be a Gaussian with center at U0

and width σU = 2. Hence, the form of the distribution is:

Pi(U) ∝ exp

[
−(U − U0)2

8

]
(3.70)

Recall that the Gaussian distribution is truncated at 3σU = 6, so the distribution

only has weight in the interval U ∈ (U0 − 6, U0 + 6). We leave U0 unspecified for the

moment, because it is the parameter that we use to tune through the transition.

The initial Josephson coupling distribution Pi(J) is a power law of the form J−1.6.

We choose the cutoffs so that the distribution has weight for J ∈ (0.5, 100). This is a

very wide power law distribution, and the corresponding flows begin well above the

unstable finite disorder fixed point in the numerical flow diagrams. Explicitly:

Pi(J) ≈ 0.413J−1.6 (3.71)

For this choice of distributions, we have acquired data for U0 = 400, 20, 18, 16,

14, 12, 10, 9.8, 9.6, 9.4, 9.2, 8.8, 8.6, 8.4, 8.2, 8, 7.5, 7, and 6.5. To more finely target

the transition, we have probed the interval 9.1 ≥ U0 ≥ 8.9 in increments of 0.01. We

have always acquired data for L = 25, 50, 75, 100, 150, 200, and 300. In all cases, we
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have pooled data for 103 disorder samples. The peak in the data for s2 vs. U0 gives

the following estimate of the critical point:

U0,c ≈ 8.97± 0.02 (3.72)

Close to criticality, it is better to use a lower value of the thresholding parameter α.

For several values of U0 such that 10 ≥ U0 ≥ 8, we have run the RG with αh = 10−5

and α` = 5 × 10−6 to test for convergence. Further away from criticality, we have

instead used αh = 5 × 10−5 and α` = 2.5 × 10−5. Figure 3.22 shows a test of the

convergence of the maximum cluster size smax in the thresholding parameter α. We

plot:

υ =
smax(αh)

smax(α`)
(3.73)

vs. the tuning parameter U0. The ratio (3.73) is essentially always within two error

bars of unity. We take this as an indication that physical properties have converged.

3.D Arguments for the Use of the SDRG in a Finite-

Disorder Context

This appendix is devoted to exploring, in further detail, the validity of the RG

procedure. We first expand upon the argument, introduced earlier in the chapter, for

the reliability of the RG near criticality. Then, we move away from criticality and

assess the performance of the RG in the various phases of the disordered rotor model
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Figure 3.22: A test of the convergence of smax in the thresholding parameter α. The
variable υ is the ratio of the estimate of smax for αh, the less conservative value of
the thresholding parameter, to α`, the more conservative value. We plot υ against
the tuning parameter U0. The closest data point to criticality (U0 = 8.97) is indi-
cated with a diamond. Note that υ > 1 typically indicates convergence since less
conservative thresholding (higher α) corresponds to throwing away more bonds and,
therefore, biases the system away from cluster formation. Smaller values of αh and
α` are used in the vicinity of the transition. See the text of Appendix 3.C for details.

(2.9). Next, we focus on each of the RG steps, consider circumstances in which they

may fail to capture important physics, and formulate tests to ensure that the RG is

trustworthy in these situations. Finally, we present a comparison of the RG to exact

diagonalization of small systems.

3.D.1 Review of the Argument for the RG at Criticality

Our confidence in the RG procedure near criticality rests on the form of the critical

Josephson coupling distribution, reported in equations (3.15) and (3.18). Infinite

randomness develops when P (J) ∝ J−1, and our numerical evidence suggests that

the critical distribution of the disordered rotor model decays even more strongly [53].

Nevertheless, the critical distribution does not exhibit infinite randomness, because

as seen in Figure 3.11, it is cut off from below. Recall that the lower cutoff of the

“Josephson coupling distribution” is set by our choice to retain, in statistics, only the

dominant 2Ñ Josephson couplings, where Ñ is the number of sites remaining in the
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effective lattice. Then, the appropriate way to interpret the distributions in Figure

3.10 is the following: penetrating any given site in the effective lattice, there are likely

to be on the order of four Josephson couplings drawn from the depicted distribution.

There may be other links penetrating the site, but these will be even weaker. We can

estimate the typical strength of the four dominant links by comparing the median of

the critical Josephson coupling distribution to the maximum. For the closest approach

to criticality with the initial distributions described in Appendix 3.C, we find that

the ratio Jtyp
Ω

is approximately 0.11 ± 0.01 near the fixed point. Hence, the typical

link is quantitatively weak compared to J
U
≈ 0.345 at the clean transition [131].

The considerations above form a strong argument for the validity of the site dec-

imation RG step. Here, we seek out the dominant effective charging energy in the

effective lattice, and treat the links penetrating the site in perturbation theory. This

perturbation theory is likely a very good approximation, because the Josephson cou-

plings penetrating the site in question are usually extremely weak.

Now, we turn to the link decimation step, in which we seek out the largest Joseph-

son coupling in the lattice and merge the corresponding sites into a cluster. Although,

the Josephson coupling being decimated is the largest energy scale in the system, there

is a high probability that all the other links penetrating the two sites being joined will

be very small. However, the critical distribution of charging energies is not peaked

at low U . The structure of the distributions plotted in Figure 3.12 suggests that it

is quite likely that one or both sites being merged will have a charging energy of the

same order as the RG scale, thus violating the strong-disorder hypothesis. Our treat-
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ment of the quantum fluctuations of the relative phase of the cluster is based on the

harmonic approximation (3.6). Is this approximation appropriate when the charging

energies of the two-site problem are comparable in magnitude to the Josephson cou-

pling? Alternatively, do the quantum fluctuations grow so large that the clustering

becomes meaningless? We address this question as follows: using the fact that the

remaining links are weak, we isolate the two site problem and solve it exactly, treating

the remaining links via second order perturbation theory. Comparing the results of

the RG with the exact solution, we find that, even in this worst case scenario, the

RG produces reasonably accurate effective couplings. The evidence for this claim is

given below in Section 3.D.3 of this appendix.

3.D.2 Reliability of the RG in the Phases

How reliable is the RG when we move away from criticality and into the phases of

the disordered rotor model? To gain some insight into this question, we can consult

Figure 3.23, which expands upon Figures 3.11 and 3.13 by plotting renormalized J

and U distributions away from criticality.

Proceeding into the glassy regime, the arguments presented above for the validity

of the RG near criticality generally become stronger. The primary reason for this is

that the renormalized J distributions become progressively broader than at criticality.

In the flow diagrams (Figures 3.6-3.9), this is reflected in the apparent divergence of

∆J
J̄

. Consequently, the assumption of isolating local degrees of freedom becomes

better as we get deeper into the glass. One complication is that the renormalized
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Figure 3.23: In panel (a), a sweep of renormalized J distribution through the glass
and into the superfluid. The initial distributions are those described in Appendix 3.C:
Pi(U) is Gaussian and Pi(J) ∝ J−1.6. All data is taken for L = 300 lattices, and the
renormalized distribution is computed when 300 sites remain in the effective lattice.
The values of U0 shown are 18, 12, 9.6, 8.97 (near-critical), 8.4, and 7.5. Panel (b)
shows the corresponding sweep of the renormalized U distribution at the same stage
of the RG.
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U distribution becomes more strongly peaked near the RG scale. This may pose

trouble for the link decimation step and makes it especially important to consider

the reliability of this step when a strong Jjk couples two sites with charging energies

Uj ≈ Uk ≈ Jjk. As mentioned previously, we will study this worst-case scenario in

Section 3.D.3 of this appendix and find that the RG still works reasonably well.

Now, we turn to the superfluid phase. As we proceed away from criticality, the

renormalized charging energy distribution becomes flatter and broader. The broaden-

ing of this distribution implies that the likelihood of encountering a strong Josephson

coupling that connects sites with comparably strong charging energies decreases as

we get deeper into the superfluid phase. However, the J distribution also seems to

become flat deep in the superfluid, and this is problematic. For example, during link

decimation, it may not be a reasonable approximation to isolate the two-site problem

centered on the strongest Josephson coupling. As we proceed into the superfluid, it

is necessary to be more dubious of the RG results; nearer to criticality however, the

arguments used at the critical point are probably approximately valid.

The plots in Figure 3.23 attempt to elucidate systematics in the behavior of the

renormalized distributions in the insulating and superfluid regimes, but this figure

should be interpreted with some care. For the choice of distributions in Appendix

3.C, flows terminating in the insulating or superfluid regions of the flow diagram nev-

ertheless propagate in the vicinity of the unstable fixed point along the way. This can

be seen, for instance, in Figure 3.7. For certain choices of initial distributions, there

can be flows towards the insulating or superfluid regimes which never propagate any-
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where near the unstable fixed point. Consequently, the RG never has an opportunity

to wash away the details of the initial distributions and allow the universal properties

of the fixed point to emerge. Hence, the renormalized distributions generated along

such flow trajectories are unlikely to exhibit the clean systematic properties seen in

Figure 3.23.

3.D.3 Analysis of Potential Problems with the RG

Next, we address some potential difficulties with the arguments presented above

for the reliability of the renormalization procedure in the critical region. These dif-

ficulties are rooted in the lack of strong randomness in the critical charging energy

distribution.

Consider the lattice geometry shown in Figure 3.24. Suppose that all links except

the Josephson coupling between sites 1 and 2 are perturbatively weak. Now, suppose

further that J12, U1, and U2 are comparable in magnitude, but J12 is the largest of

the three. We would like to formulate a test of whether the RG appropriately handles

this situation. Within the RG, a link decimation would merge sites 1 and 2 into a

cluster. All links penetrating sites 1 and 2 would be modified by their corresponding

Debye-Waller factors (3.10) cDW,1 and cDW,2. Then, because all the remaining links

are assumed to be very weak, the cluster of sites 1 and 2 will be decimated, producing

an effective coupling between sites 3 and 5:

J̃35,RG = cDW,1cDW,2
J13J25(U1 + U2)

U1U2

(3.74)
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Another approach to calculating this effective coupling would be the following: take

the two-site problem of sites 1 and 2 and exactly diagonalize it. Then, to leading

order, sites 1 and 2 should be locked into the two-site ground state, with perturbative

corrections coming from the Josephson couplings J13, J14, and J25. This perturbation

theory leads to an effective coupling through the sites 1 and 2. This alternative

procedure is perhaps more appropriate, because it does not presuppose the harmonic

approximation. In Figure 3.25, we assess how much of an error we make by adopting

the harmonic approximation. Holding J fixed, we sweep U = U1 = U2 through J ,

comparing the RG with the alternative method outlined above. We see that the usual

RG performs reasonably well, implying that the harmonic approximation is safe.

Finally, we consider another potentially dangerous scenario. We return to the

lattice shown in Figure 3.24. Now, we assume that J12 is greater than all other

Josephson couplings, but it too is much weaker than the charging energies U1 and U2.

In particular, J12
U2

= 0.05. Then, we sweep U1 such that it passes through a regime

where |U1 − U2| < J12. The danger here is that the RG may ignore resonance effects

associated with this region. Within the usual RG, sites 1 and 2 will be decimated in

turn to give:

J̃35,RG ≈
J13J12J25

U1U2

(3.75)

J̃34,RG ≈
J13J14

U1

(3.76)

where we ignore subleading corrections coming from potential applications of the sum

rule, depending on the order of decimation of sites 1 and 2. To consider potential
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Figure 3.24: The graph structure for the tests reported in Figures 3.25 and 3.26.
The links J13, J14, and J25 are assumed to be perturbatively weak. The charging
energies U1 and U2 and the Josephson coupling J12 are varied to explore potentially
troublesome scenarios.
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Figure 3.25: In this test, J = J12 is assumed to be the strongest coupling in the
system, but U = U1 = U2 may be of the same order. An effective coupling between
sites 3 and 5 is calculated using two methods. One is the usual RG scheme used in
this chapter. Another is a hybrid exact diagonalization and RG scheme: The two-
site problem of sites 1 and 2 is exactly diagonalized. Then, the resulting cluster is
decimated away, and perturbation theory is used to calculate an effective coupling
between sites 3 and 5. The two candidate values for the effective coupling J35 are
compared in the plot, as a function of J

U
.

resonance effects, we can also implement the same hybrid exact diagonalization and

RG procedure that we used above. In Figure 3.26, we compare the two methods and

find excellent agreement.

3.D.4 SDRG vs. Exact Diagonalization

As a final test of the RG procedure, we now compare the RG to exact diagonal-

ization of small systems. We truncate the possible number fluctuation on each site
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Figure 3.26: In this test, J12 = 0.05 and U2 = 1. Hence, J12 is relatively quite weak.
However, we vary U1 such that it passes through a regime where |U1 − U2| < J12,
where there may be a danger of resonance effects. We calculate the effective couplings
J34 and J35 using two schemes. One is the usual RG scheme used in this chapter.
Another is a hybrid exact diagonalization and RG scheme: the two-site problem of
sites 1 and 2 is exactly diagonalized. Then, the resulting cluster is decimated away,
and perturbation theory is used to calculate an effective coupling between sites 3 and
4 and between sites 3 and 5. The effective couplings predicted by the two methods
are compared in the plot, as a function of U1

U2
. No resonance effects are observed.

to nj = −1, 0, 1, interpret these three values as possible z-axis spin projections of a

spin-one object, and in doing so, arrive at a “spin-one” model:

Ĥrot-spin = −
∑

〈jk〉

Jjk
2

(Ŝ+
j Ŝ
−
k + Ŝ−j Ŝ

+
k ) +

∑

j

UjŜ
2
zj (3.77)

The Hilbert space of this spin-one model grows with the size of the lattice as 3L
2
.

The particle number conservation of the rotor model manifests here as total spin con-

servation along the z-axis. This means that we can partition the Hilbert space into

different total spin sectors and diagonalize the sectors separately. For most ground

state expectation values, we just need to diagonalize the total spin zero sector, and to

calculate a charging gap, the only additional diagonalization needed is for the total

spin one sector. Despite these simplifications, computational limitations restrict us

to studying 3 × 3 lattices using CLAPACK. Testing the RG against exact diagonal-
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Figure 3.27: A sample-by-sample comparison of the particle number variance pre-
dictions from exact diagonalization and from the renormalization procedure. The
disordered couplings are drawn from three different choices of the distributions, with
100 samples per distribution type. See the text of Appendix 3.D for details on the
distribution choices GG, GP, and FP. Also pictured is the coincidence line y = x,
along which the points would ideally fall for full quantitative agreement.
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Figure 3.28: Same as Figure 3.27, but the quantity being compared is the charging
gap ∆min.

ization cannot directly tell us about the reliability of the RG at criticality, because

exact diagonalization is limited to very small system sizes. However, a comparison

with exact diagonalization can tell us how well the RG captures information about

small patches of a larger lattice, and this information is potentially quite valuable for

building confidence in the RG.

Another complication arises precisely due to the Hilbert space truncation: the

spin-one model may not always approximate the full rotor model well. This is espe-

cially true when there is cluster formation, because then the rotor model has more

of an opportunity to access particle number fluctuations that exceed 1 in magni-
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tude. In other words, the SDRG and the exact diagonalization of the spin-one model

constitute different approximations to the behavior of our dirty boson model. We

cannot expect the two approximations to show full quantitative agreement, but we

proceed with the comparison, despite its limitations, with the hope of at least seeing

qualitative correspondence between the two methods.

Our general approach to comparing the RG with exact diagonalization will be to

measure physical quantities, on individual 3 × 3 samples, using both methods and

assess if there is a correlation between the predictions. The first quantity that we

compare is the particle number variance Vn (3.61)12. We also compare the charging

gap ∆min, the minimum energy needed to add a particle or hole to the system. This

quantity is typically estimated during site decimation. The logic behind site decima-

tion is that the charging energy for some site X is greater than all other scales in the

problem, and therefore, the site can be disconnected from the rest of the lattice to

leading order. Then, the charging energy gives an estimate for the local charging gap

on that site. During the RG, we find many such charging gaps from the various site

decimations. The minimum among all of these gives an estimate for the charging gap

for the whole system. This minimum is always given by the charging energy of the

final remaining site, so an estimate of ∆min can be simply obtained by renormalizing

down to a single site problem and measuring the charging energy of the remaining

site. However, for the purposes of comparison to exact diagonalization, we find that

we obtain better quantitative agreement between the two methods if we renormal-

12The interested reader may consult Appendix 3.B to see how this quantity is calculated during
the renormalization procedure.
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ize down to an effective two-site problem and then perform exact diagonalization on

that system. Exactly diagonalizing the ntot = 0 and ntot = 1 sectors of this two-site

problem then yields a charging gap for the system. In this exact diagonalization, we

need not truncate the on-site number fluctuation to nX = −1, 0, 1. Instead, in the

numerics, we typically truncate to nX = −100 . . . 100.

In Figures 3.27 and 3.28, we present comparisons for three different data sets.

In the first data set, we use take Pi(U) and Pi(J) to be Gaussian. We fix U0 = 10

and σU = 3. Then, we randomly sample J0 in the interval (0, 5) and σJ in the

interval (0, J0
3

). The aim is to approximate some of the environments that the RG

encounters in runs such as those reported in Figure 3.6. The second data set uses

the distributions described in Appendix 3.C: Pi(U) is Gaussian and Pi(J) ∝ J−1.6.

We randomly sample U0 ∈ (6.5, 20). Here, the motivation is to look at the types of

environments that the RG encounters when it approaches the unstable fixed point

from above. In the final data set, we try to mimic 3× 3 patches that the RG might

encounter near criticality. To this end, the initial J distribution is fixed to a power law

P (J) ∝ J−1.16 (see equation (3.18)) and the cutoffs are chosen so that the ratio of Jmin

to Jmax is approximately that observed in panel (b) of Figure 3.13. The distribution

Pi(U) is flat with Umax = Jmax and with Umin randomly sampled such that the ratio

of Umin to Umax lies in (e−2, e−1). Figures 3.27 and 3.28 identify these three data sets

with the labels GG, GP, and FP respectively.

Both figures show that the predictions of the RG are clearly correlated with the

predictions from exact diagonalization, although the level of quantitative correspon-
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dence varies. For the particle number variance, quantitative agreement is lost at

higher values of the variance, essentially corresponding to cases in which there is

clustering. One potential source of error could be the Hilbert space truncation of

the exact diagonalization, although the structure of the harmonic ground state (3.6)

makes it unlikely that this could account for the entire discrepancy. Nevertheless,

these comparisons suggest that the RG is retaining useful information about the

system.
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Chapter 4

Many-Body Localization in a
Quasiperiodic System

4.1 Introduction

4.1.1 Motivation

As we noted in Chapter 1, the many-body localization (MBL) transition is a very

unusual type of phase transition that, in many ways, lies outside the usual paradigm

of quantum criticality [17]. Therefore, the original prediction by Basko, Aleiner, and

Altshuler has motivated many numerical studies aimed at clarifying the existence

and nature of this transition. Most of this work has focused on the disordered prob-

lem. On the other hand, we also saw in Chapter 1 that single-particle localization

does not require disorder; the phenomenon also occurs in quasiperiodic models of

the Aubry-André type (1.16) [13]. Furthermore, we noted that modern experiments

directly realize the Aubry-André model and that the noninteracting transition has

been observed in cold atoms and photonic waveguides. In both of these experimental

contexts, it is possible to explore nonequilibrium dynamics and study the role of in-
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teractions in transport [96, 90]. This means that many-body localization could very

well become experimentally relevant, and consequently, it is imperative to determine

whether quasiperiodic models can also exhibit an MBL transition.

This chapter is devoted to numerically addressing precisely that issue. More

concretely, suppose we begin with a half-filled, one-dimensional system of fermions or

hardcore bosons in a particular randomly chosen many-body Fock state, with some

sites occupied and others empty. Such a configuration of particles is typically far

from the ground state of the system. Instead, by sampling the initial configuration

uniformly at random (i.e., without regard to its energy content), we are actually

working in the so-called infinite temperature limit. If the particles are allowed to hop

and interact for a sufficiently long time, the standard expectation is that the system

should thermalize: that is, all microscopic states that are consistent with conservation

laws should become equally likely and local observables should thereby assume some

thermal distribution [117]. Can this expectation be violated in the presence of a

quasiperiodic potential? In other words, can the system fail to serve as a good heat

bath for itself? If so, can this be traced to the persistence of localization even in the

presence of interactions?

4.1.2 Preview of the Results

Our work indicates that the answer to these questions is yes. We use numerical

simulations of unitary evolution of a many-body quasiperiodic system to measure

three kinds of observables in the limit of very late times: the correlation between the
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initial and time-evolved particle density profiles, the many-body participation ratio,

and the Rényi entropy. Our observations are consistent with the existence of two

phases in the parameter space of our model that differ qualitatively in ergodicity. At

finite interparticle interaction strength u and large hopping g, there exists a phase in

which the usual assumptions of statistical mechanics hold. The initial state evolves

into a superposition of a finite fraction of the total number of possible configurations,

and consequently, local observables approximately assume their thermal values. This

is the many-body ergodic phase. However, at small hopping g, there is a phase in

which particle transport away from the initial configuration is not strongly enhanced

by interactions. The system explores only an exponentially small fraction of config-

uration space, and local observables do not even approximately thermalize. This is

the many-body localized phase. Figure 4.1 presents a schematic illustration of the

proposed phase diagram. Although interactions induce an expansion of the ergodic

regime, the localized phase survives at finite u, and consequently, there is evidence

for a quasiperiodic MBL transition.

Both the many-body ergodic and localized phases differ qualitatively from their

counterparts in the noninteracting AA model. The noninteracting extended phase

is not ergodic, indicating that interactions are necessary for thermalization. Mean-

while, the many-body localized phase is expected to exhibit logarithmic growth of

the bipartite entanglement entropy to an extensive value, albeit with subthermal en-

tropy density. Such behavior is in fact consistent with the recent observations in the

disordered problem [72, 15]. This growth is absent in the AA localized phase with-
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Figure 4.1: The proposed phase diagram of our interacting Aubry-André model at
high energy density. Interactions convert the localized and extended phases of the AA
model into many-body localized and ergodic phases and induce an expansion of the
many-body ergodic phase. The phases of the interacting model differ qualitatively
from their noninteracting counterparts. The differences are explained in Section 4.4
below.

out interactions. Despite this difference, the interacting and noninteracting localized

phases are similar in their inability to thermalize the particle density.

There has certainly been substantial previous work on localization in many-

body quasiperiodic systems. For instance, Vidal et al. [138] adapted the approach

of Giamarchi and Schulz [58] to study the effects of a perturbative quasiperiodic

potential on the low-energy physics of interacting fermions in one dimension. Very

recently, He et al. [68] studied the ground state Bose glass to superfluid transition

for hardcore bosons in a 1D quasiperiodic lattice. Our work differs fundamentally

from these and many other studies precisely because it focuses on nonequilibrium

behavior in the high-energy (infinite temperature) limit and argues that a localization

transition can even occur in this regime.
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4.1.3 Organization of the Chapter

We begin our study in Section 4.2 by introducing our interacting extension of the

standard AA model. Since the MBL transition is a nonequilibrium phase transition,

our goal is to follow the real time dynamics. To simplify this task, we describe a

method of modifying the dynamics of our model, such that numerical integration of

the new dynamics is somewhat easier than the original problem. In Section 4.3, we

introduce the quantities that we measure in our simulations and present the numerical

results. Then, in Section 4.4, we argue that our data points to the existence of many-

body localized and many-body ergodic phases by proposing model late time states for

each of these regimes and comparing to the numerical results from Section 4.3. Next,

in Section 4.5, we extract estimates for the phase boundary from our data, motivating

the phase diagram in Figure 4.1. Finally, we conclude in Section 4.6 by summarizing

our results, drawing connections to theory and experiment, and suggesting avenues

for future extensions of our work.

We relegate two exact diagonalization studies to Appendix 4.A. First, we examine

the impact of our modified dynamics upon the single-particle and many-body prob-

lems. Second, we study the many-body level statistics of the interacting model. We

find evidence for a crossover between Poisson and Wigner-Dyson statistics, consistent

with the usual expectation in the presence of a localization transition [126].
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4.2 Model and Methodology

In this section, we motivate and introduce our model and our numerical method-

ology for studying real time dynamics.

4.2.1 The “Parent” Model

We would like to consider one-dimensional lattice models of the following general

form:

Ĥpm =
L−1∑

j=0

[
hjn̂j + J(ĉ†j ĉj+1 + ĉ†j+1ĉj) + V n̂jn̂j+1

]
(4.1)

Here, ĉj is a fermion annihilation operator, and n̂j ≡ ĉ†j ĉj is the corresponding fermion

number operator. The three terms in the Hamiltonian (4.1) then correspond to an

on-site potential, nearest-neighbor hopping, and nearest-neighbor interaction respec-

tively. For now, we leave the boundary conditions unspecified. In 1D, the Hamil-

tonians (4.1) for hardcore bosons and fermions differ only in the matrix elements

describing hopping over the boundary. With open boundary conditions, the Hamil-

tonians (and consequently all properties of the spectra) are identical.

If we set V = 0 in the Hamiltonian (4.1) and take hj to be genuinely disordered,

we recover the noninteracting Anderson Hamiltonian. If we then turn on a finite

V = J , we obtain a model that is related to the spin models that have been studied

in the context of MBL [111, 15]. Alternatively, suppose we set V = 0 again and take:

hj = h cos(2πkj + δ) (4.2)
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With a generic irrational wavenumber k and an arbitrary offset δ, we obtain the

noninteracting AA model that we first encountered in Section 1.3.2.2 of Chapter 1

[13]. For our purposes, we would like to use an incommensurate potential of the form

(4.2), with h = 1 and g ≡ J
h

and u ≡ V
h

left as tuning parameters to explore different

phases of the model (4.1).

4.2.2 Numerical Methodology and Modification of the Quan-

tum Dynamics

Probing the MBL transition necessarily involves studying highly excited states of

the system, and this precludes the application of much of the extensive machinery that

has been developed for investigating low-energy physics. Consequently, several studies

of MBL have resorted to exact diagonalization or other methods involving similar

numerical cost [109, 111, 101]. In our work, we also use a numerical methodology

that scales exponentially in the size of the system. However, in order to access

longer evolution times in larger lattices, we introduce a modification of the quantum

dynamics. This modification is inspired by a scheme used previously by Oganesyan,

Pal, and Huse in a study of classical spin chains [110]. There, at any given time,

either the even spins in the chain were allowed to evolve under the influence of the

odd spins or vice versa. This provided access to late times that would have been too

difficult to access by direct integration of the standard classical equations of motion.

By analogy, we propose allowing hopping on each bond in turn. At any given
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time, the instantaneous Hamiltonian looks like:

Ĥm = LamJ(ĉ†mĉm+1 + ĉ†m+1ĉm) +
L−1∑

j=0

[hjn̂j + V n̂jn̂j+1] (4.3)

We will specify the value of am in Section 4.2.C below, where we discuss our choice

of boundary conditions. The state of the system is allowed to evolve under this

Hamiltonian for a time ∆t
L

, and this evolution can be implemented by applying the

unitary operator:

Ûm = exp

(
−i∆t

L
Ĥm

)
(4.4)

One full time-step of duration ∆t consists of cycling through all the bonds:

Û(∆t) =
L−1∏

m=0

Ûm (4.5)

Note that, in (4.3), the hopping is enhanced by L because the hopping on any given

bond is activated only once per cycle, while the potential and interaction terms always

act. Therefore, the factor of L ensures that the average Hamiltonian over a time ∆t

has the form (4.1). The advantage of employing the modified dynamics is that the Ĥm

only couple pairs of configurations, so preparing the Ûm reduces to exponentiating

order VH two-by-two matrices, where VH is the size of the Hilbert space. This is

generally a simpler task than exponentiating the original Hamiltonian (4.1). Our

scheme only constitutes a polynomial speedup over exact diagonalization, but that

speedup can increase the range of accessible lattice sizes by a few sites.

The modified dynamics raise several important issues that should be discussed [99].
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The periodic time-dependence of the Hamiltonian induces so-called “multiphoton” (or

“energy umklapp”) transitions between states of the “parent” model (4.1) that differ

in energy by ωH = 2π
∆t

, reducing energy conservation to quasienergy conservation

modulo ωH . We need to question whether this destroys the physics of interest: does

the single-particle Aubry-André transition survive, or do the multiphoton processes

destroy the localized phase?

We take up this question in Appendix 4.A, where we present a Floquet analysis

of the single-particle and many-body problems. We find that, for sufficiently small

∆t, the universal behavior of the single-particle AA model is preserved. At larger

∆t, multiphoton processes can strongly mix eigenstates of the single-particle parent

model, increasing the single-particle density-of-states and destroying the AA transi-

tion. In the spirit of the earlier referenced work on classical spin chains [110], our

perspective in this chapter is to identify whether MBL can occur in a model quali-

tatively similar to our parent model (4.1). Therefore, to explore dynamics on long

time scales, we avoid destroying the single-particle transition, but still choose ∆t to

be quite large within that constraint.

In Appendix 4.A, we also examine the consequences of our choice of ∆t for the

quasienergy spectrum of the many-body model. Our results suggest that multiphoton

processes do not, in fact, strongly modify the parent model’s spectrum for much of

the parameter range that we explore in this chapter1. This means that partial energy

1There is an exception to this statement: multiphoton processes do seem to play an important
role deep in the ergodic phase, where the energy content of the system is especially high. See
Appendix 4.A and the discussion of the time-dependence of the autocorrelator χ in Section 4.3.A
for more details.
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conservation persists in our simulations despite the introduction of a time-dependent

Hamiltonian, and we need to keep this fact in mind when we analyze our numerical

data below.

Finally, we note in passing that several recent studies have focused on the lo-

calization properties of time-dependent models [80, 100, 44], including one on the

quasiperiodic Harper model [81], but that the intricate details of this topic are some-

what peripheral to our main focus.

4.2.3 Details of the Numerical Calculations

In studies of the 1D AA model, it is conventional to approach the thermodynamic

limit by choosing lattice sizes according to the Fibonacci series (L = . . . 5, 8, 13,

21, 34 . . .) and wavenumbers for the potential as ratios of successive terms in the

series (e.g., k = 13
21

on a lattice of size L = 21) [134]. These values of k respect

periodic boundary conditions while converging to the inverse of the golden ratio 1
φ

=

0.618033 . . .. For any finite lattice, the potential is only commensurate with the entire

lattice (since successive terms in the Fibonacci series are mutually prime), and the

duality mapping of the AA model is always exactly preserved. For our purposes

however, this approach offers too few accessible system sizes and complicates matters

by generating odd values of L.

Instead, we found empirically that finite size effects are least problematic if we

use exclusively even L, always keep the wavenumber of the potential fixed at k = 1
φ
,
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and set:

am = 1− δm,L−1 (4.6)

in equation (4.3), thereby forbidding hopping over the boundary2. Note that, with

these boundary conditions, our model describes hardcore bosons as well as fermions.

The bosonic language maintains closer contact with cold atom experiments [50]; the

fermionic language is more in keeping with the MBL literature [17, 109].

Using the approach described above, we have simulated systems up to size L = 20

at half-filling. Our simulations always begin with a randomly chosen configuration

(or Fock) state so that the initial state has no entanglement across any spatial bond

in the lattice (i.e., each site is occupied or empty with probability 1). Except in the

exact diagonalization studies of Appendix 4.A, we always set ∆t = 1. We integrate

out to tf = 9999 and ultimately average the evolution of measurable quantities over

several samples, where a sample is specified by the choice of the initial configuration

and offset phase to the potential (4.2). The sample counts used in the numerics are

provided in Table 4.1.

4.3 Numerical Results

We now introduce the quantities that we measure to characterize the different

regimes of our model. We also present the numerical data along with some quali-

2To appropriately realize open boundary conditions, we should also turn off interactions over
the boundary. When exploring different options for the boundary conditions, we varied J over
the boundary and neglected to vary V . This is unfortunate in that it makes the model somewhat
stranger. However, our boundary conditions are chosen for convenience anyway, and the numerics
suggest that the choice of boundary conditions does not impact the essential physics discussed in
this chapter.
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L N VH samples
8 4 70 500

10 5 252 500
12 6 924 500
14 7 3432 250
16 8 12870 250
18 9 48620 250
20 10 184756 50

Table 4.1: For the various simulated lattice sizes L, the particle number N , the
configuration space size VH , and the number of samples used in the numerics. Note
that we always work at half-filling.

tative remarks about the observed behavior. However, we largely defer quantitative

phenomenology and modeling of the data to Section 4.4.

4.3.1 Temporal Autocorrelation Function

One signature of localization is the system’s retention of memory of its initial

state. Because we simulate the reversible evolution of a closed system, the quantum

state of the entire system retains full memory of its past. Nevertheless, we may still

ask if the information needed to deduce the initial state is preserved locally or if it

propagates to distant parts of the system. A diagnostic measure with which to pose

this “local memory” question is the temporal autocorrelator of site j:

χj(t) ≡ (2〈n̂j〉(t)− 1)(2〈n̂j〉(0)− 1) (4.7)

Here, the angular brackets refer to an expectation value in the quantum state. This

single-site autocorrelator may be averaged over sites and then over samples (as defined
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in Section 4.2.C) to obtain:

χ(t;L) ≡
[

1

L

L−1∑

j=0

χj(t)

]
(4.8)

The sample average is indicated here with the large square brackets. Typically, to

reduce the effects of noise, we also average over a few time steps within each sample

(i.e., perform time binning) before taking the sample average.

We can discriminate three qualitatively different behaviors of χ vs. t in our in-

teracting model. Figure 4.2 shows examples of each of these behaviors at interaction

strength u = 0.32. Panel (a) is characteristic of the low g regime, where the auto-

correlator stays invariant over several orders of magnitude of time, and there is no

statistically significant difference between time series for different L. At higher g,

as in panel (b), the time series show approximately power law decay culminating in

saturation to a late time asymptote. For the largest systems, the power law is roughly

consistent with the diffusive expectation of t−
1
2 decay. The late time asymptote decays

with L (as expected from energy conservation3 ) suggesting that the power law decay

may continue indefinitely in the thermodynamic limit. Surprisingly, at still larger g,

3The statistical fluctuation of the total energy of the randomly chosen initial configuration is
of order

√
L. Suppose the total energy is conserved by the dynamics. We can write E/

√
L =

x0 + hA0 cos θ0 = x∞ + hA∞ cos θ∞. Here, the subscripts 0 and ∞ refer to the initial and late time
states, x0 and x∞ are bounded random numbers capturing the expectation value of interactions
(and hopping at late times), h is the non-random amplitude of the quasiperiodic potential, and A0

and A∞ are positive bounded amplitudes of the Fourier components at the wavevector k of the
quasiperiodic potential. This ansatz implies a finite correlation between the random phases θ0 and
θ∞. Therefore, one of the Fourier modes of χ remains correlated as L → ∞, and we expect χ ∼ 1

L
in the ergodic phase. Note that this argument truly applies only to the energy-conserving parent
model. In fact, in our numerics, there is only partial energy conservation, and energy non-conserving
events become more prevalent as u, g, or L is raised. This means that χ will generically decay faster
than 1

L at large L in the ergodic phase.
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there is a third behavior, exemplified by panel (c). For the largest lattice sizes, the

power law era is not followed by saturation but by an extremely rapid decay. The

rapid decay is most evident in the large g, large u regime, where the energy density

of the parent model (4.1) is relatively large. This implies that this behavior might be

tied to the multiphoton processes induced by periodic modulation of the Hamiltonian;

correspondingly, it also implies that, for fixed g and u, we might be able to induce

the appearance of the rapid decay by increasing ∆t. We have tested this numerically,

and the results support the connection to the energy non-conserving multiphoton

processes. This suggests that there are only two distinct regimes of the parent model

represented in Figure 4.2, differentiated by the L dependence of the asymptotic value

of the autocorrelator. We will proceed under this working assumption.

The difference between these two regimes is brought out more clearly in Figure

4.3. We focus on a late time t = ttest and probe χ(ttest;L) as a function of g for

different lattice sizes. Panels (a)-(c) show data for u = 0, 0.04, and 0.64 respectively.

All the panels show a “splaying” point of the χ vs. L curves, separating a high g

regime in which χ(ttest;L) decays with L from a low g regime in which it does not.

The value of g at this feature decreases monotonically with u. Most importantly,

in each case, this value is robust to changing ttest; if we halve ttest from the value

that appears in Figure 4.3, the feature appears at approximately the same value of

g. This property of the data is very fortunate: in Section 4.4.C below, we will use

the splaying feature in these plots to put a numerical lower bound on the transition

value of g for different interaction strengths. Since time scales get very long near the
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Figure 4.2: Three characteristic time series for the temporal autocorrelator with
u = 0.32 and ∆t = 1. In each panel, we show time series for a particular value of
the hopping g. Only a few representative error bars are displayed in each time series.
The legend refers to different lattice sizes L. The reference lines in panels (b) and (c)

show diffusive t−
1
2 decay.
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Figure 4.3: The value of χ in the latest time bin (t = 9980 . . . 9999) plotted against
g. In panels (a)-(c), u = 0, 0.04, and 0.64 respectively. The legend refers to different
lattice sizes L.

transition, it is difficult to simulate out to convergence in this regime. Nevertheless,

the fact that the value of g at the splaying feature remains fixed in time implies that

we can deduce the phase structure from our finite-time observations.

4.3.2 Normalized Participation Ratio

One of the commonly used diagnostics for studying single-particle localization is

the inverse participation ratio (IPR). This quantity is intended to probe whether

quantum states explore the entire volume of the system and is often defined as the
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sum over sites of the amplitude of the state to the fourth power:
∑

j |ψj|4. Typically,

the IPR is inversely proportional to the localization volume ξd in a single-particle

localized phase and decays to zero as the inverse of the system volume in an extended

phase.

We now describe how this quantity can be fruitfully exploited in the many-body

context. Let c denote some specific configuration of N particles in L sites. Then, we

can write the state of the system in the configuration basis as:

|Ψ(t)〉 =
∑

{c}
ψc(t)|c〉 (4.9)

The configuration-basis IPR is simply:

P (t;L) ≡
[∑

c

|ψc(t)|4
]

(4.10)

where the square brackets, as usual, denote a sample average. Interpreting P (t;L)

as the inverse of the number of configurations on which |Ψ(t)〉 has support, we now

define the normalized participation ratio (NPR):

η(t;L) ≡ 1

P (t;L)VH
(4.11)

The quantity η(t;L) then represents the fraction of configuration space that the sys-

tem explores. We expect η(t;L) to be independent of L at late times in the ergodic

phase. In the many-body localized phase, we expect η(t;L) to decay exponentially
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Figure 4.4: The value of η in the latest time bin (t = 9980 . . . 9999) plotted against
g. In panels (a)-(c), u = 0, 0.04, and 0.64 respectively. The legend refers to different
lattice sizes L. See equation (4.11) for the definition of η. In the ergodic phase
η ≈ 0.5.

with L.

In Figure 4.4, we plot η(ttest;L) vs. g for u = 0, 0.04, and 0.64. The figure reveals

an important difference between the noninteracting and interacting models. At low

g, both with and without interactions, η decays exponentially with L:

η ∝ exp(−κL) (4.12)

with κ > 0. More surprisingly, η also decays with L at large g in the noninteracting
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Figure 4.5: Estimates of κ from a fit of η ∝ e−κL in the latest time bin (tbin =
9980− 9999). The legend refers to different values of the interaction strength u.

case; all that happens is that κ becomes essentially independent of g. With even

small interactions, however, η becomes system-size independent in the large g regime,

following our ansatz for an ergodic phase. We bring out this point more clearly in

Figure 4.5, in which we extract estimates for the decay coefficient κ for various values

of the interaction strength. Thus, the extended phase of the noninteracting AA model

appears to be a special, non-ergodic limit.

Before proceeding, we should caution that, in panels (b) and (c) of Figure 4.4,

the collapse at high g looks very appealing because of the use of a semilog plot and

would not be so striking on a normal scale. The axes have been chosen to highlight

the exponential scaling at low g, which would not be as apparent if we simply plotted

η vs. g. However, regarding the absence of perfect collapse at high g, note that the

raw data for the IPR differ by several orders of magnitude for different values of the

lattice size L. Given this, the coincidence of the order of magnitude of η for different

values of L is already a good indication of the proposed scaling, and some corrections

to this scaling should be expected given the modest accessible system sizes.
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4.3.3 Rényi Entanglement Entropy

Unlike the normalized participation ratio, which provides a global characteriza-

tion of the time-evolved state, bipartite entanglement is arguably a better proxy for

whether a part of the system can act as a good heat bath for the rest. In the many-

body ergodic phase, we expect the bipartite entanglement entropy to be a faithful

reflection of the thermodynamic entropy. This implies an extensive entropy, pinned

to its thermal infinite temperature value throughout the phase4. In contrast, in the

many-body localized phase, we expect an extensive but subthermal entanglement en-

tropy. This expectation is consistent with the results of three recent papers that focus

on the behavior of entanglement measures in the many-body localized phase of the

disordered problem [72, 15, 142]. These papers also study the time dependence of the

entropy beginning from an unentangled product state. In the many-body localized

phase, this growth is found to be slow, generically logarithmic in time. Because our

model lacks disorder altogether, it may be interesting to explore the entanglement

dynamics here as well. In what follows, we comment on the dynamics, but we pri-

marily use the late time entanglement entropy as yet another tool to help distinguish

between the many-body localized and ergodic phases.

Let subsystem A refer to lattice sites 0, 1, . . . L
2
− 1, and let subsystem B refer

to the remaining sites in the chain. We can compute the reduced density matrix

4This statement should be interpreted with some care. Quantum entanglement entropy measures,
such as the Rényi entropy that we define in equation (4.14), carry information about the off-diagonal
elements in the reduced density matrix. These terms have no classical analog and would not be con-
sidered in a thermodynamic calculation. This difference can result in discrepancies in the subleading
behavior. For instance, consider our calculation of the bipartite Rényi entropy of the model state |Φ〉
in Section 4.4.A: the quantum Rényi entropy is one bit lower than the Rényi entropy calculated by
classical counting of configurations. A more precise analog of the classical entropy would thus be a
“diagonal” entropy in which all off-diagonal elements of the reduced density matrix were neglected.
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of subsystem A by beginning with the full density matrix ρ̂(t) = |Ψ(t)〉〈Ψ(t)| and

tracing out the degrees of freedom associated with subsystem B:

ρ̂A(t) ≡ TrB{ρ̂(t)} (4.13)

The sample-averaged order-2 Rényi entropy of subsystem A is then given by:

S2(t;L) ≡
[
− log2

(
TrA{ρ̂A(t)2}

)]
(4.14)

Both S2 and the standard von Neumann entropy are expected to attain the same

values in the ergodic phase; we choose to focus on the former to save on the compu-

tational cost of diagonalizing the reduced density matrix (4.13).

Our first task is to examine whether the putative localized phase of our model

exhibits the same behavior that was observed with tDMRG [72, 15]. In panel (a) of

Figure 4.6, we focus on a low value of g and plot S2 vs. ln(t) for L = 10 lattices.

At very early times, the time series all tend to coincide, reflecting the formation

of short-range entanglement at the cut between the subsystems. Afterwards, the

noninteracting time series saturates for several orders of magnitude of time, while the

interacting time series show behavior that is consistent with logarithmic growth. In

order to clearly establish the saturation that follows the slow growth, we have had

to focus on small lattices. Panel (b) of Figure 4.6 shows data for large g. Here,

the most striking difference between the noninteracting and interacting models lies

in the saturation value of the entropy: the interacting model is substantially more
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Figure 4.6: Example time series of the Rényi entropy for two values of the tuning
parameter g. The legend refers to different values of the interaction strength u. Panel
(a) shows data for L = 10 lattices at g = 0.2. Panel (b) shows data for L = 20 lattices
at g = 1.1. In the localized regime, we need to use smaller lattices to see convergence
Renyi entropy.

entangled, but the saturation value does not appear to depend on the value of u. We

will see below that this is another indication that thermalization only occurs in the

interacting, large g regime.

Figure 4.7 shows late time values of the Rényi entropy density plotted against

the tuning parameter g. We first focus on the high g regime. In panel (a), u = 0,

and S2(ttest;L) ∝ L for large g. However, the entropy density is less than 1
2
, which is

the thermal result when the system has ergodic access to all configurations consistent

with particle number conservation. The situation is dramatically different in panels

(b) and (c), where u = 0.04 and 0.64 respectively. At high g, the entropy actually

looks superextensive. This is just a finite size effect, because the entropy is well fit to
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a linear growth of the form:

S2(ttest;L) = mL− Sdef (4.15)

where Sdef is a constant deficit, typically around 1.15 − 1.3. In Figure 4.8, we show

that the slope m ≈ 1
2

at large g in the interacting problem. This implies that the

entropy is thermal in the L→∞ limit, where the deficit Sdef is negligible.

Now, we turn to the low g regime. Without interactions, the off-diagonal ele-

ments in the reduced density matrix (4.13) typically contain only a few frequencies

originating from localized single particle orbitals immediately adjacent to the cut.

The number of relevant orbitals is constant in L. As a result, the off-diagonal ele-

ments cannot fully vanish, and the reduced density matrix never thermalizes. The

resulting entanglement entropy is independent of L as shown in the inset of panel (a).

In the interacting problem, while the orbitals immediately adjacent to the cut still

have roughly the same frequencies, the “spectral drift” (i.e., the spread of these lines

due to sensitivity to the configuration of distant particles) allows for a much larger

number of distinct and mutually incoherent contributions to offdiagonal elements of

the reduced density matrix. These off-diagonal elements can dephase more efficiently,

leading to a partial thermalization. This is the mechanism that likely underlies the

extensive but subthermal entropy observed by Bardarson et al. [15]. For small L, our

numerical results in the low g regime agree well with this expectation. For larger L,

the slow dynamics of the entropy formation makes it difficult to observe saturation,

both in our work and in the tDMRG study of Bardarson et al.
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Figure 4.7: The value of S2

L
at t = 9999 plotted against g. In panels (a)-(c), u = 0,

0.04, and 0.64 respectively. The legend refers to different lattice sizes L. In panel (a),
the inset plot shows S2 vs. g in the low g regime. In panels (b) and (c), the insets
show S2

L
vs. g for low L in the low g regime.

If the entropy eventually becomes extensive for all L, then the “crossing” feature

that is present in panels (b) and (c) of Figure 4.7 would become a “splaying” feature,

with the entropy density independent of L at small g. In any case, an interesting

property of the data is that the values of g at the crossing features of the S2(ttest;L) vs.

g plots are consistent with the locations of the splaying features in the corresponding

χ(ttest;L) vs. g plots of Figure 4.3. This seems to be the case for all u. Thus, these

features may be useful in locating the transition.
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Figure 4.8: The estimated slope of S2 vs. L at late times as a function of g. The
legend refers to different values of the interaction strength u.

4.4 Modeling the Many-Body Ergodic and Local-

ized Phases

Above, we presented numerical evidence that our interacting AA model contains

two regimes that show qualitatively distinct behavior of the autocorrelator, normal-

ized participation ratio, and Rényi entropy. Next, we will propose and characterize

model quantum states that qualitatively (and sometimes quantitatively) reproduce

the numerically observed late time behavior in the two regimes. These model states

expose more clearly why the two regimes of our model are appropriately identified as

many-body ergodic and localized phases.

4.4.1 The Many-Body Ergodic Phase

To model the behavior of the putative ergodic phase, we begin by writing down a

generic model state in the configuration basis:

|Φ〉 =
∑

{c}
φc|c〉 =

L
2∑

n=0

∑

{cA,cB}
φ

(n)
AB|c

(n)
A , c

(n)
B 〉 (4.16)
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Here, the c refer to configurations of the full chain, whereas the cA and cB refer to

configurations of the subsystems A and B, as defined in Section 4.3.C above. The

superscripts on the configurations and expansion coefficients refer to the number of

particles in subsystem A. Writing the state in terms of the subsystem configurations

will be useful shortly, but for now we focus on the statistical properties of the ampli-

tude φc. We assume that this amplitude is distributed as a complex Gaussian random

variable:

p(φ) =
1

2πσ2
exp

(
−|φ|

2

2σ2

)
(4.17)

Within this distribution, 〈|φ|2〉 = 2σ2 and 〈|φ|4〉 = 8σ4. From these average values,

it is possible to deduce that:

σ =
1√
2VH

(4.18)

for normalization and that the IPR is PΦ = 2
VH

. This, in turn, implies:

ηΦ =
1

2
(4.19)

This result is reproduced quantitatively in the numerics in Figure 4.4.

Next, suppose we compute the reduced density matrix of subsystem A in the state

|Φ〉:

ρ̂A =
∑

n

∑

{cA,cA′ ,cB}
φ
∗(n)
AB φ

(n)
A′B|c

(n)
A 〉〈c

(n)
A′ | (4.20)

203



To find the Rényi entropy, we need to compute the trace of the square of this operator:

TrA{ρ̂2
A} =

∑

n

∑

{cA,cA′ ,cB ,cB′}
φ
∗(n)
AB φ

(n)
A′Bφ

∗(n)
AB′φ

(n)
A′B′ (4.21)

When we average over our distribution of amplitudes (4.17), only the coherent terms

survive5:

TrA{ρ̂2
A} ≈

∑

n

∑

{cA,cB ,cB′}
〈|φ(n)

AB|2|φ
(n)
AB′|2〉

+
∑

n

∑

{cA,cA′ ,cB}
〈|φ(n)

AB|2|φ
(n)
A′B|2〉

−
∑

n

∑

{cA,cB}
〈|φ(n)

AB|4〉 (4.22)

The final term accounts for the double counting of terms where cA = cA′ and cB = cB′

simultaneously. We now introduce the notation:

γ(P,Q) =
P !

Q!(P −Q)!
(4.23)

and evaluate the expectation values in equation (4.21) to obtain:

TrA{ρ̂2
A} ≈

2

V 2
H

∑

n

γ

(
L

2
, n

)3

(4.24)

Finally, using a Stirling approximation to the combination function and a saddle-point

5Only the first term on the right-hand side of equation (4.22) would appear in a “classical count-
ing” derivation of the thermodynamic entropy. The other two terms account for off-diagonal elements
in the reduced density matrix (4.20). Please see footnote 53 for more details.
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approximation for the sum, we find the entropy:

S2,Φ ≈
L

2
− log2

(
4√
3

)
≈ L

2
− 1.2 (4.25)

This is the same form observed in the numerics (4.15), and the deficit Sdef lies in

the observed range. Asymptotically in L, the entropy (4.25) is maximal, and this is

exactly the expected behavior when the particle number thermalizes.

There is an important caveat to note here: we have argued above that, if multi-

photon processes do not completely destroy energy conservation, then this can lead to

relic autocorrelations at late times. This implies that the assumption of independent

random amplitudes cannot be exactly correct on a finite lattice. However, the numer-

ically observed relic autocorrelations decay with L, suggesting that our assumptions

get better as the system size grows. Therefore, in the thermodynamic limit, this

phase is truly thermal.

4.4.2 The Many-Body Localized Phase

Our model for the time-evolved state in the localized regime is founded upon

the following intuition: there exists a length scale ξ, which is analogous to the single-

particle localization length and beyond which particles are unlikely to stray from their

positions in the initial state. Then, if we partition our lattice of length L into blocks

of size ξ, exchange of particles between blocks is less important than rearrangements

of the particles within each block. Consequently, the total number of configurations

accessed by the state of the full system is approximately the product of the number
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of configurations accessed within each block. This multiplicative assumption should

be very safe in a localized phase. We additionally assume that, within each block, the

dynamics completely scramble the particle configuration. If a certain block of length

ξ contains n particles in the initial state, then the time-evolved state contains equal

amplitude for each of the possible ways of arranging n particles in those ξ sites. In

keeping with our numerical protocol, we randomly select the initial state from the

space of all possible Fock states of a certain global particle number. Then, a block of

ξ sites contains n particles with probability:

w(ξ, n) =
γ(ξ, n)

2ξ

[
1 +O

(
ξ2

L

)]
(4.26)

We will consider the limit L� ξ � 1, where we can approximate the probability by

the first term. The assumptions proposed above motivate writing down a state of the

form:

|Λ〉 =
1√
M

∼∑

{c1,...cL
ξ
}
z
(
c1, . . . cL

ξ

)
|c1, . . . cL

ξ
〉 (4.27)

where the tilde on the sum indicates that it should only run over configurations that

are consistent with the initial distribution of particles among the blocks. The factors

z are complex phases which depend upon the configuration, and M is a normalization

which is equal to the total number of configurations represented in the state |Λ〉.

Before beginning our analysis of the state |Λ〉, we should note that, in contrast

to our calculations in the ergodic phase, our goal in the localized regime will be to

qualitatively tie the numerically observed large L behavior to the existence of the
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length scale ξ. Unfortunately, we cannot achieve the quantitative accuracy of the

ergodic model state |Φ〉 with the localized toy-model described above.

We begin by estimating the autocorrelator between the initial state and the model

time-evolved state |Λ〉. A nonzero autocorrelator emerges, because each block is only

at half-filling on average. Fluctuations away from half-filling (in either direction) yield

a positive typical value of the autocorrelator within a block. Indicating an average

over the distribution (4.26) with an overline, we find the block value χblock ≈ 1
L

. This

is also the average value for the whole system when L� ξ:

χΛ ≈
1

ξ
(4.28)

Next, to estimate the IPR, we need to compute the normalization factor M . We

begin by estimating the number of explored configurations in each block. The average

of the logarithm of the number of explored configurations within a block is:

ln(Mblock) ≈ ln

(√
2

πξ
2ξ
)
− 1

2
(4.29)

Then, using lnM ≈ L
ξ
lnMblock, we can estimate M itself as:

M ≈ elnM ≈ 2L
(
πeξ

2

)− L
2ξ

(4.30)
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Using this normalization, we can estimate the NPR ηΛ:

ln ηΛ ≈ −
L

2ξ
ln

(
πeξ

2

)
+

1

2
lnL+

1

2
ln
(π

2

)
(4.31)

This qualitatively agrees with the numerically observed behavior (4.12) up to sub-

leading corrections, and in the large-L limit:

κ ≈ 1

2ξ
ln

(
πeξ

2

)
(4.32)

Note that equations (4.28) and (4.32) imply a relationship between the scaling

behaviors of χ and κ in the localized regime. This relationship is not reflected in our

numerical data, in part because we cannot truly attain the limit L � ξ � 1. The

numerically computed value of κ, for example, can contain finite size corrections of

order ln(L)
L

or ξ2

L
. Also, we must keep in mind that the state |Λ〉 is just a toy model

that does not capture fine details of the time-evolved states in this regime. Thus,

we must be content with reproducing the qualitative behavior of each measurable

quantity individually, without expecting the relationships between these quantities in

|Λ〉 to be exactly reproduced in the data.

We now turn to the Rényi entropy, the quantity which most strikingly distin-

guishes between the noninteracting and interacting localized phases. To examine this

quantity, we revert to partitioning the system in half, instead of into blocks of size ξ.

As long as ξ � L
2
, the assumptions that we made above about the blocks of size ξ hold

even better for the subsystems A and B. For example, we can assume that there are
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“explored sets” of MA configurations in subsystem A and MB configurations in sub-

system B respectively, with M = MAMB. We consider computing the reduced density

matrix ρ̂A, exactly as in equation (4.20) above. If the off-diagonal elements of this

density matrix remain perfectly phase-coherent, it can easily be shown that Scoh
2,Λ = 0.

In reality, there will be a local contribution to the entropy from particles straying over

the cut between subsystems A and B. This mimics the situation in noninteracting

localized phases. Alternatively, suppose that dephasing is sufficiently strong that we

can proceed by analogy with the ergodic phase, beginning with equation (4.21) and

keeping only coherent terms as in equation (4.22). Thereafter, the calculation for the

model localized state |Λ〉 differs from the calculation for |Φ〉. We need to consider

the statistics of the configuration probabilities |λAB|2. For |λAB|2 6= 0, we need the

configurations on both subsystems to lie within their respective explored sets; this

occurs in subsystem A, for example, with probability MA

γ(L
2
,n)

. This reasoning leads to

the “dephased” entropy:

Sdp
2,Λ ≈ − log2

(
1

MA

+
1

MB

− 1

MAMB

)

≈ − log2

(
2√
M
− 1

M

)

≈ 1

2

[
1− 1

2ξ
log2

(
πeξ

2

)]
L− 1 (4.33)

where we have additionally made the approximation that typically MA ≈ MB ≈
√
M . With only partial loss of coherence, the entropy would lie between these two

limiting cases: Scoh
2,Λ ≤ S2,Λ ≤ Sdp

2,Λ. Thus, dephasing alone, without additional particle

transport, can induce an extensive entropy.
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Indeed, our numerics support the view that the main difference between the non-

interacting and many-body localized phases is the amount of dephasing. There does

not seem to be a qualitative difference in particle transport. The particle configura-

tion stays trapped near its initial state, even with interactions, and the system does

not thermalize.

4.5 Tracing the Phase Boundary

In this section, we use the data from Section 4.3 to extract estimates of the phase

boundary between the localized and ergodic phases. Estimating the location of the

MBL transition is extremely challenging. Given the numerically accessible lattice

sizes, satisfying finite size scaling analyses are difficult to perform. Nevertheless,

rough estimates have been made in the disordered problem [109, 101, 111, 39], and

we will now attempt to extract an approximate phase boundary for our model.

We first consider the autocorrelator. Above, we noted the “splaying” feature in

the late time plots of the autocorrelator vs. g. The value of g at this feature can

be taken as a lower bound for the transition. For g slightly greater than this value,

it is possible that χ only decays with L because ξ > L for accessible lattice sizes.

Considering two lattice sizes (L = 16 and 20) and finding when their values of χ

deviate, we find the values reported in the first column of Table 4.2.

Next, we consider the fitting parameter κ in equation (4.12). In Figure 4.5, we

see that there is a region where κ < 0 for finite interaction strength. Because η ≤ 1,

finite size effects are clearly dominating the estimate in this region. We can use the
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u χ κ m
0.04 0.35 0.45 0.45
0.16 0.30 0.40 0.40
0.32 0.25 0.40 0.40
0.64 0.25 0.40 0.35

Table 4.2: Bounds or estimates of the transition value of gc at various values of u and
based on various measured quantities. The column titled χ gives a lower bound on the
transition value of g based on the autocorrellator. The remaining two columns give
estimates of gc based on κ and m, as defined in Sections 4.3.B and 4.3.C respectively.
See Section 4.5 for the reasoning behind the estimates. All values carry implicit error
bars of ±0.05, as that is the discretization of our simulated values of g. This error
bar should be interpreted, for instance, as the error on our estimate of the location of
the maximum value of m. The error on our estimate of gc is, of course, much larger.

value of g where κ is minimal to track how this region moves as u is varied. This

yields the second column of the table.

Finally, a similar approach can be applied to extract estimates of gc from the fits

(4.15). There exists a region where m > 1
2
, but this is mathematically inconsistent in

the thermodynamic limit. Therefore, if we find the value of g that maximizes m, we

can again estimate the location of the region dominated by finite size effects, yielding

the final column of Table 4.2.

The estimates of the transition value gc in Table 4.2 were obtained using data for

the latest time that we simulated (the time bin tbin = 9980 . . . 9999 for χ and κ and

t = 9999 for m). However, we have also estimated gc for data obtained at a half and

a quarter of this integration time, finding consistent results. Thus, the general phase

structure of the model is invariant to changing the observation time, even though not

all measurable quantities have converged to their asymptotic values. Consolidating

the information from the estimates in Table 4.2, we propose that the phase diagram

qualitatively resembles Figure 4.1.
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Before proceeding, it is worth noting that our rough estimates of the phase bound-

ary do not make assumptions regarding the character of the MBL transition (i.e.,

whether it is continuous or first order). In fact, some of our plots (e.g., panel (c) of

Figure 4.7) hint at the possibility of a discontinuous change in S2 as a function of g in

the thermodynamic limit. We are not aware of any results that rule out a first-order

MBL transition, and we must keep this possibility in mind.

4.6 Conclusion

Recently, evidence has accumulated that Anderson localization can survive the

introduction of sufficiently weak interparticle interactions, giving rise to a many-

body localization transition in disordered systems [17, 19, 109, 111, 39]. The MBL

transition appears to be a thermalization transition: in the proposed many-body

localized phase, the fundamental assumption of statistical mechanics breaks down,

and the system fails to serve as its own heat bath [109, 111]. We have presented

numerical evidence that this type of transition can also occur in systems lacking

true disorder if they instead exhibit “pseudodisorder” in the form of a quasiperiodic

potential.

From one perspective, this may be an unsurprising claim. For g < 1
2

the localized

single-particle eigenstates of the quasiperiodic Aubry-André model have the same

qualitative structure as those of the Anderson model, and the effects of introducing

interactions ought to be similar. By this reasoning, perhaps it is even possible to guess

the phase structure of an interacting AA model using knowledge of an interacting
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Anderson model: we simply match lines of the two phase diagrams that correspond

to the same noninteracting, single-particle localization length.

However, this perspective misses important effects in all regions of the phase dia-

gram. Most obviously, the AA model has a transition at u = 0, and it is interesting to

see how this transition gets modified as it presumably evolves into the MBL transition

at finite u. It is also important to remember that quasiperiodic potentials are com-

pletely spatially correlated. This means that the AA model lacks Griffiths effects, and

this may have subtle consequences for the dynamics. Finally, the AA model contains

a phase that is absent in the one-dimensional Anderson model, the g > 1
2

extended

phase, and we have seen above that interactions have a profound effect upon this

regime.

As we saw in Section 1.5 of Chapter 1, understanding MBL in the quasiperi-

odic context is especially pertinent given the current experimental situation. Some

experiments that probe localization physics in cold atom systems use quasiperiodic

potentials, constructed from the superposition of incommensurate optical lattices, in

place of genuine disorder. The group of Inguscio, in particular, has recently explored

particle transport for interacting bosons within this setup [50, 96]. Meanwhile, the

AA model has also been realized in photonic waveguides, and experimentalists have

studied the effects of weak interactions on light propagation through these systems.

They have also begin to investigate “quantum walks” of two interacting photons in

disordered waveguides [90, 88]. This protocol resembles the one we have implemented

numerically, so similar physics may arise.
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Given the current experimental relevance of localization phenomena in quasiperi-

odic systems, we hope that our study will motivate further attempts to understand

these issues. Unfortunately, our ability to definitively identify and analyze the MBL

transition is limited by the modest lattice sizes and evolution times that we can sim-

ulate. Vosk and Altman recently developed a strong-disorder renormalization group

for dynamics in the disordered problem [142], but the reliability of such an approach

in the quasiperiodic context is unclear. A time-dependent density matrix renormal-

ization (tDMRG) group study of this problem would be a valuable next step. Tezuka

and Garćıa-Garćıa have published tDMRG results on localization in an interacting

AA model, but their focus was not on the thermalization questions of many-body lo-

calization [132]. It would be worthwhile to pose these questions using a methodology

that allows access to much larger lattices. However, even tDMRG may have difficulty

capturing the highly-entangled ergodic phase [72, 15]; thus, an effective numerical

approach for definitively characterizing the transition remains elusive.

4.A Exact Diagonalization

This appendix collects exact diagonalization results that supplement the real time

dynamics study in the main body of the chapter.

4.A.1 Floquet Analysis of the Modified Dynamics

The goal of the first part of this appendix is to examine the consequences of

the modifications to the quantum dynamics described in Section 4.2.B above. We
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first verify that the AA transition survives by diagonalizing the single-particle AA

Hamiltonian (i.e., the Hamiltonian (4.1) with u = V
h

= 0) and the single-particle

unitary evolution operators (4.5) for various choices of the time step ∆t. Subsequently,

we employ the same approach to examine how varying ∆t impacts the quasienergy

spectrum of the interacting, many-body model.

4.A.1.1 Robustness of the Single-Particle Aubry-André Transition

To study the single-particle transition, we focus on the inverse participation ratio:

Psp(g;L) =

(
L−1∑

j=0

|ψj|4
)

(4.34)

Here, ψj denotes the amplitude of the wave function at site j of an L site lattice. We

enclose the sum in equation (4.34) in parentheses to indicate important differences

in the averaging procedure with respect to the many-body inverse participation ratio

(4.10). In the many-body case, we computed the IPR as a sum over configurations in

the quantum state at a particular time in the real time evolution. Then, we averaged

over samples, where a sample was specified by a choice of the offset phase to the

potential (4.2) and an initial configuration. Throughout this appendix, we instead

specify a “sample” solely by the offset phase δ, and we average over eigenstates within

each sample before averaging over samples.

As noted previously, the usual AA model has a transition that must occur, by

duality, at gc = 1
2
. Near the transition, the localization length is known to diverge

with exponent ν = 1 [134]. Our exact diagonalization results indicate that, at the
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Figure 4.9: Collapse of single-particle IPR vs. g, using the scaling hypothesis (4.35).
The legend refers to different lattice sizes L. In panel (a), we show data for the usual
AA Hamiltonian (4.1). In panel (b), we show data obtained from diagonalizing the
unitary evolution operator for one time step in the modified dynamics (4.5). We use
potential wavenumber k = 1

φ
and 50 samples for all lattice sizes. The insets show

magnified views of the curves for the three largest lattice sizes in the vicinity of the
transition.
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transition, Psp(gc, L) ∼ L−
1
2 . Hence, we can make the following scaling hypothesis

for the IPR:

Psp = L−
1
2f((g − gc)L) (4.35)

In panel (a) of Figure 4.9, we show that we can use this scaling hypothesis to collapse

data for the standard AA model. We show data for L = 8 to L = 512, with potential

wavenumber k = 1
φ

and open boundary conditions. For all lattice sizes, we average

over 50 samples.

To establish the stability of the AA transition to the modified dynamics, we now

must ask if the IPR obtained from diagonalizing the unitary evolution operators (4.5)

can be described using the scaling hypothesis (4.35). Panel (b) of Figure 4.9 shows

that this is indeed the case for ∆t = 1. The only parameter that needs to be changed

is gc, which decreases slightly as ∆t is raised. This implies that there is a transition

in the Floquet spectrum of the system that can be tuned by varying ∆t. It would be

a worthwhile exercise to map out the phase diagram of this single-particle problem

in the (g,∆t) plane. We leave this for future work.

4.A.1.2 Properties of the Many-Body Quasienergy Spectrum

We now turn our attention back to the effects of the modified dynamics upon

the full, many-body model. In Section 4.2.B above, we emphasized that our time-

dependent model lacks energy conservation, with multiphoton processes inducing

transitions between states of the parent model (4.1) that differ in energy by ωH = 2π
∆t

.

In this part of the appendix, we will examine how varying ∆t impacts the quasienergy
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Figure 4.10: The density-of-states vs. quasienergy for L = 12 systems at half-filling
with interaction strength u = 0.16. The legend refers to different values of ∆t; the
time-independent, parent model is referred to as “PM.” In panels (a)-(c), g = 0.25,
0.4, and 0.9 respectively.
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spectrum of the time-dependent model, using the approach that we applied to the

single-particle case above: we diagonalize the time-independent Hamiltonian as well

as the unitary evolution operator for one time step of the time-dependent model.

In Figure 4.10, we plot the density-of-states d(∆t, E) in quasienergy space of

the parent model and time-dependent models for different values of ∆t. We focus

on L = 12 systems at half-filling with fermions (or, because we continue to use

the boundary conditions described in Section 4.2.C, hardcore bosons). We fix the

interaction strength to u = 0.16 and tune g to explore different regimes of the model.

In panels (a)-(c), we plot data for g = 0.25, 0.4, and 0.9. According to Table 4.2,

these values of g put the system in the localized phase, near the transition, and in

the ergodic phase respectively.

We first consider the consequences of varying ∆t while holding the other param-

eters fixed. For sufficiently small ∆t, the quasienergy spectrum faithfully reproduces

all the structure of the energy spectrum of the parent model. This is unsurprising,

because if ωH is greater than the bandwidth of the parent model’s spectrum, direct

multiphoton processes will not take place. If we now tune ωH so that it is less than

this bandwidth, the quasienergy spectrum begins to deviate from the parent model’s

spectrum at its edges. This effect can be seen, for instance, by examining the trace

for ∆t = 1 in panels (a) or (b). For even higher values of ∆t (i.e., lower values of

ωH), multiphoton processes strongly mix the states of the parent model, resulting in

a flat quasienergy spectrum.

The effect of multiphoton processes can also be enhanced by broadening the parent
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model’s spectrum, which can be achieved by raising g or u. In panel (c) of Figure

4.10 for instance, multiphoton processes have significantly flattened the spectrum for

∆t = 1, and deviations from the parent model are even visible for ∆t = 0.5. Because

we always use ∆t = 1 in our real time dynamics simulations, it is perhaps fortunate

that g = 0.9 is well within the proposed ergodic phase for u = 0.16 and that, near

the critical point (i.e., in panel (b)), the quasienergy spectrum for ∆t = 1 still retains

much of the structure of the parent model’s spectrum.

However, there is one more caveat to keep in mind: the energy content of the

system also grows with L. At fixed g, u, and ∆t, the properties of the parent and time-

dependent models deviate from one another as the system size grows. If we truly want

to faithfully reproduce the dynamics of the parent model with the modified dynamics,

it may be necessary to scale ∆t down as we raise L. However, recall that our goal is

simply to find MBL in a model qualitatively similar to the parent model (4.1). Even

with this more modest goal in mind, there is still the danger that, on sufficiently

large lattices, multiphoton processes might couple a very large number of localized

states and thereby destroy the many-body localized phase of the parent model. Our

numerical observations indicate that this does not happen for the system sizes that

we can simulate. We can keep ∆t fixed at unity for L ≤ 20 without issues, accepting

the possibility that the sequence of models that we would in principle simulate on

still larger lattices may require progressively smaller values of ∆t.

220



4.A.2 Level Statistics of the Many-Body Parent Model

Localization transitions are often characterized by transitions in the level statistics

of the energy spectrum [126]. Two of us previously looked at the level statistics of the

disordered problem and identified a crossover from Poisson statistics in the many-body

localized phase to Wigner-Dyson statistics in the many-body ergodic phase [109]. The

intuition that underlies this crossover is the following: in a localized phase, particle

configurations that have similar potential energy are too far apart in configuration

space to be efficiently mixed by the kinetic energy term in the Hamiltonian. Therefore,

level repulsion is strongly suppressed, and Poisson statistics hold. Conversely, in

an ergodic phase, there is strong level repulsion which lifts degeneracies, leading to

Wigner-Dyson (i.e., random matrix) statistics.

Along the lines of the aforementioned study of the disordered problem, we focus

on the gaps between successive eigenstates of the spectrum of the many-body parent

model (4.1):

δn ≡ En+1 − En (4.36)

and a dimensionless parameter that captures the correlations between successive gaps

in the spectrum:

rn ≡
min(δn, δn+1)

max(δn, δn+1)
(4.37)

For a Poisson spectrum, the rn are distributed as 2
(1+r)2

with mean 2 ln(2) − 1 ≈

0.386; meanwhile, when random matrix statistics hold, the mean value of r has been

numerically determined to be approximately 0.5295± 0.0006 [109].
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Figure 4.11: The mean of the ratio between adjacent gaps in the spectrum, defined
in (4.37). This data was obtained by exact diagonalization of the parent model (4.1)
for L = 12 systems. All data points have been averaged over 50 samples, and the
legend refers to different values of the interaction strength u. The mean value of 〈rn〉
shows a crossover from Poisson statistics (indicated by the bottom reference line) to
Wigner-Dyson statistics (indicated by the top reference line), for the largest values
of u. Representative error bars have been included in the plot; the absent error bars
have roughly the same size.

In Figure 4.11, we present exact diagonalization results for L = 12 lattices at

half-filling with potential wavenumber k = 1
φ

and the boundary conditions described

in Section 4.2.C above. We show data for the same parameter range examined in the

body of this chapter and average over 50 samples for each value of g and u. For the

largest value of u, the mean value of rn interpolates between the expected values as

g is raised, consistent with the existence of a localization transition. We have also

checked that the distributions of rn have the expected forms in the small and large

g limits in this regime. For smaller values of u, we can speculate that 〈rn〉 grows

with L at large g and approaches the expected value for very large L. To argue

for a MBL transition on the basis of exact diagonalization, we would need to study

this sharpening of the crossover as L is raised. This would indeed be an interesting

avenue for future work. For our present purposes, however, we only want to check

consistency with our real time dynamics data, as we have done in Figure 4.11.
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