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Abstract

A series of experiments was conducted on the use of a device to passively generate vortex

rings, henceforth a passive vortex generator (PVG). The device is intended as a means of

propulsion for underwater vehicles, as the use of vortex rings has been shown to decrease

the fuel consumption of a vehicle by up to 40% (Ruiz 2010).

The PVG was constructed out of a collapsible tube encased in a rigid, airtight box. By

adjusting the pressure within the airtight box while fluid was flowing through the tube, it was

possible to create a pulsed jet with vortex rings via self-excited oscillations of the collapsible

tube. A study of PVG integration into an existing autonomous underwater vehicle (AUV)

system was conducted. A small AUV was used to retrofit a PVG with limited alterations

to the original vehicle. The PVG-integrated AUV was used for self-propelled testing to

measure the hydrodynamic (Froude) efficiency of the system. The results show that the

PVG-integrated AUV had a 22% increase in the Froude efficiency using a pulsed jet over a

steady jet. The maximum increase in the Froude efficiency was realized when the formation

time of the pulsed jet, a nondimensional time to characterize vortex ring formation, was

coincident with vortex ring pinch-off. This is consistent with previous studies that indicate

that the maximization of efficiency for a pulsed jet vehicle is realized when the formation

of vortex rings maximizes the vortex ring energy and size.

The other study was a parameter study of the physical dimensions of a PVG. This study
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was conducted to determine the effect of the tube diameter and length on the oscillation

characteristics such as the frequency. By changing the tube diameter and length by factors

of 3, the frequency of self-excited oscillations was found to scale as f ∼ D
−1/2
0 L0

0, where D0

is the tube diameter and L0 the tube length. The mechanism of operation is suggested to

rely on traveling waves between the tube throat and the end of the tube. A model based

on this mechanism yields oscillation frequencies that are within the range observed by the

experiment.
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Chapter 1

Introduction

1.1 Vortices in Nature

Nature yields a seemingly unending array of animals that travel through fluid environments

by flying and swimming. As animals propel themselves, many create vortices in their wake.

These vortices can take many forms and are dependent on the morphology of the generating

animal. Flying animals, such as bats, birds, and insects, have vortex rings as a prominent

feature in their wake based on experimental observation (Brodsky 1991; Dickinson 1996;

Ellington 1978; Hedenström et al. 2007; Rayner 1979a, b, 1988; Spedding, Rayner & Pen-

nycuick 1984; Tian et al. 2006). Swimming animals such as eels and fish (Bainbridge 1961;

Lighthill 1960; Rosen 1959; Wu 1961), frogs (Johansson & Lauder 2004), birds (Johansson

& Norberg 2003), and even swimming insects (Brackenbury 2001, 2002, 2003, 2004) have

also been reported to have vortex structures in their wake and the locomotive performance

of swimming insects is well matched by vortex-based models (Whittlesey 2011).

We can characterize the kinematics of the locomotion of a particular animal by examin-

ing the stroke frequency. The frequency of jetting, flapping, rowing, or undulating can be
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expressed in nondimensional form as the Strouhal number,

St =
fa

U∞
, (1.1)

where f is the stroke frequency, a is the stroke amplitude, and U∞ is the speed of the

vehicle or animal. Taylor et al. (2003) found that despite the significant differences in size,

morphology, and stroke kinematics between insects, birds, bats, sharks, fish, and dolphins,

they all cruised in a fairly narrow range of St = 0.2–0.4 with a peak at 0.3. This has been

suggested by Dabiri (2009) to be a direct consequence of the vortex structure formation in

the wake; specifically, a consequence of wake-structure optimization.

Because of the ubiquity of vortices in the wake of these animals and the suggestion that

these vortices may be optimized for efficient propulsion, it is appropriate to consider the

consequences of a vortex-dominated wake. However, before we address that, let us first

enter into a discussion on some of the fundamentals of vortices and their properties.

1.2 Vortex Pinch-off

The strength of a vortex element is known as the vortex circulation and is defined as

Γ ≡ ∫
Q
ω ⋅ n⃗ dQ, (1.2)

where Q is the area of integration, ω is the vorticity of the fluid, n⃗ is the outward-facing

normal to the area of integration (Saffman 1995, pg. 8). Gharib et al. (1998) showed that

there is a limit to the amount of circulation a vortex ring can contain. For their experiments,

Gharib et al. (1998) created vortex rings using a piston-cylinder arrangement where ejections
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of greater amounts of fluid yielded larger vortex rings with increased circulation. However,

at a critical value of the circulation, the vortex ring would no longer accept any more

vorticity and would instead “pinch-off” from the shear layer that was feeding it—wherein

the shear layer would create subsequent secondary vortices. Gharib et al. (1998) expressed

the amount of fluid ejected as a volume of a cylinder with diameter D0 and length L equal

to the distance the piston traveled. This can be expressed in a nondimensional form as

L/D0 and is called the formation time, t̂GRS . Gharib et al. (1998) found that the critical

value of the formation time for vortex ring pinch-off, known as the formation number, F ,

is approximately equal to 4. Formation times less than the formation number yield solitary

rings whereas formation times greater than the formation number yield a primary ring with

a trailing jet behind.

1.3 Vortex Rings as Propulsion

Analytical work considering the influence of vortices on animal locomotion was conducted

by Siekmann (1962) who considered 2D vortex dipoles and later by Weihs (1977) who

considered axisymmetric vortex rings. Weihs found an analytical expression predicting the

thrust of a pulsed jet compared to an equal mass flux rate continuous jet. This expression,

which depends on the spacing between subsequent vortex rings, predicts a thrust increase

of 25%–60% for pulsed jets that use a formation time of 4 and a thrust increase of over

100% for small ring spacing. This analytical work appears to have been largely ignored

until relatively recently, with a plethora of experimental and numerical work exploring the

concept of using vortex rings for propulsion in just the last decade.

Krueger (2001) used a piston-cylinder arrangement mounted to a force balance to explore

the vortex ring formation process. He found an increase in thrust production ranging
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from 20% to 90%, with the maximal thrust enhancement for very short stroke ratios and

relatively low pulsing frequencies. Krueger (2001) also developed a model to explain the

mechanism behind the increase in thrust. The model showed that an increase in pressure at

the nozzle exit for a pulsed jet, which does not exist for a steady jet, was responsible for the

improvement in thrust. This “nozzle exit over-pressure,” as it was called, accelerated two

classes of fluid: the ambient fluid that is entrained in the vortex ring and the ambient fluid

surrounding the vortex ring, expressed as the added mass of the vortex bubble. The ambient

fluid entrainment and added mass of the vortex bubble are not present in continuous jets

and represent fundamental mechanisms through which vortex rings enhance propulsion.

Choutapalli (2007) studied a free continuous jet, a free pulsed jet, and a pulsed jet in a

thrust augmenting ejector using air as the working fluid. With the ejector, he found that

thrust could be increased up to 130%. Choutapalli’s experiments used a “flow chopper”—a

rotating plate with six holes in it that are of equal diameter to the exit nozzle. As this plate

was driven by a motor, it would rotate and with each rotation of the plate six pulses of air

would be ejected. However, the pulses generated were not like that of Krueger (2001), as

the setup created a base mean flow with significant perturbations overlaid (i.e., it was not

a fully pulsed jet where the jet velocity is zero between pulses).

Concomitant with the aforementioned studies is a body of work exploring synthetic jets.

These jets are zero-mass flux in a time-averaged sense as they are driven by reciprocating

diaphragms, generally by piezoelectric actuators on the microscale and magnetic actuators

(e.g., an acoustic loudspeaker) for larger scales. Synthetic jets have been studied for some

time and have been well reviewed by Glezer & Amitay (2002). They originally were studied

for use in flow control applications; but Muggeridge & Hinchey (1992) suggested the use

of a synthetic jet for propulsion. Later, Müller et al. (2000b) published data on thrust
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production characteristics of synthetic jets (Müller et al. 2001, 2000a). Müller et al. (2000b)

was followed by a series of studies using larger scale synthetic jets for propelling small

underwater vehicles (Polsenberg Thomas et al. 2005a, b). However, all of the work studying

synthetic jets in regards to propulsion has only considered the use of synthetic jets for very

low speed propulsion. For example, Polsenberg Thomas et al. (2005a) describes a design

for a hypothetical vehicle that would travel on the order of 5 cm s−1 (approximately 0.2

body lengths per second). Mohseni et al. has built on this foundation and explored the

use of synthetic jets quite extensively for propulsion (Finley & Mohseni 2004; Krieg et al.

2005; Krieg & Mohseni 2008, 2010; Krishnan & Mohseni 2009a, b; Mohseni 2004, 2006). The

studies by Mohseni et al., however, have only focused on using synthetic jets for maneuvering

purposes and have not used them as the primary means of propulsion on a given vehicle.

Several studies have been done using a squid-based biomimetic platform called “ro-

bosquid” (Krueger et al. 2008; Moslemi 2010; Moslemi & Krueger 2009, 2010, 2011; Nichols

2011; Nichols, Moslemi & Krueger 2008). The benefit of this platform, compared to the syn-

thetic jet work, is that this was a completely self-propelled vehicle which used vortex rings

as its sole source of propulsion. The “robosquid” was propelled using vortex rings from a

piston-cylinder arrangement where the piston was driven by a stepper motor. Check valves

in the piston and in the vehicle body allowed for the piston to return to its starting position

before initiating the next pulse while minimizing the amount of fluid ingested through the

nozzle exit. The advantage of this type of an experiment is that a transition from merely

measuring the thrust produced to measuring the hydrodynamic efficiency of the vehicle can

be made. Another benefit of this system is the opportunity to independently control the

frequency of pulsation, jet speed, and stroke length of the pulses. In general, the results

from “robosquid” showed an increase of up to 20% in the hydrodynamic efficiency of the
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vehicle using vortex rings over a theoretical vehicle using a continuous jet; the efficiency of

the vehicle was defined as

ηP ≈
F TU∞

F TU∞ + Ėex
, (1.3)

where F T is the time-averaged jet thrust and Ėex is the rate at which excess kinetic energy

is shed into the system. They conducted DPIV measurements of the vehicle wake and used

the vorticity field to calculate F T and the kinetic energy in the wake after jet termination

provided the value for Ėex. To calculate an efficiency relative to a steady jet, the equivalent

steady-state jet velocity, Uj , was calculated from the average thrust of the vehicle and the

steady jet efficiency was calculated using the Froude efficiency, defined as

η ≡
2

1 +
Uj

U∞

, (1.4)

where Uj is the average jet velocity and U∞ is the speed of the vehicle (Prandtl 1952, pgs.

221–228). Thus the Froude efficiency for the “robosquid” vehicle is an equivalent steady

jet efficiency, as the system is incapable of operating with a steady jet. The measured

increases in efficiency were maximized for smaller stroke ratio pulses and higher frequencies

(nondimensionalized by the pulse duration) for the “robosquid” vehicle.

Ruiz (2010) also studied a vortex-enhanced, self-propelled vehicle (also Ruiz et al. 2011).

Ruiz’s vehicle also used vortex rings as a fundamental element in its propulsion, however

the vortex rings were created using a much different mechanism. Ruiz’s vehicle was based

around a submarine with an internal propeller. This is similar to a pump jet with inlets

spaced azimuthally around the body of the submarine. In order to generate the pulsed flow

to create vortex rings, Ruiz (2010) incorporated a rotating shell at the inlet section which

was driven by the propeller shaft. By adjusting the shape of the rotating shell, Ruiz (2010)
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was able to modulate the inlet area and subsequently affect the resulting flow through the

nozzle. This created a steady jet with large perturbations and the formation of vortex rings

in the wake of the vehicle.

While Ruiz’s vehicle did not have as many parameters to control as “robosquid,” as the

shell rotation (and thus pulsation frequency) was directly tied to the propeller speed (and

thus jet velocity), the design of vehicle allowed for a direct comparison of steady versus

unsteady propulsion, as the rotating shell could be removed to provide a canonical steady

jet. The results of the Froude efficiency measurements showed that Ruiz’s vehicle obtained

up to a 50% increase in efficiency using the unsteady jet with vortex rings over the steady

jet case. Ruiz (2010) also investigated the overall vehicle efficiency as measured by the

power coefficient,

Cp =
IV

1
2ρAoutU

3
∞

, (1.5)

where I is the motor current, V is the motor voltage, ρ is the density of the test fluid (water),

and Aout is the area of the jet nozzle exit. The value of Cp is a nondimensional expression of

the electrical power input into the system, which quantifies the electrical power required to

maintain the kinetic energy of the system. When the Cp of the unsteady case was compared

to the steady case without the rotating shell, Ruiz’s vehicle showed the potential to reduce

the energy input into the system by over 30% while maintaining the same vehicle speed.

This was the first and so far the only experiment to show that the benefits of vortex ring

propulsion extend beyond thrust or hydrodynamic efficiency improvements but also into

a full systematic definition of efficiency, akin to a “well-to-wheels” analysis. One of the

downsides of the work of Ruiz (2010) is that the vehicle only occupied a narrow range of

formation time, and the potential to explore a broader range of formation times would also
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be beneficial.

Another approach to using vortex rings for propulsion can be found by adopting a

biomimicry approach, where researchers directly mimic the body forms and mechanisms

from nature. Under this approach there have been numerous efforts at creating pulsed

jet vehicles, such as those mimicking jellyfish (Nawroth et al. 2012; Tadesse et al. 2010,

2012; Villanueva, Smith & Priya 2011; Yeom & Oh 2009), octopus (Serchi et al. 2013),

and cuttlefish (Wang, Wang & Li 2011) in addition to the “robosquid” platform previously

discussed (Nichols et al. 2008). If one extends the notion of a vortex-ring enhanced vehicle

to include propulsion via the control of vortex structures and not just rings, this list becomes

considerably larger with attempts at mimicking penguins (Man et al. 2012), tuna (Anderson

& Chhabra 2002), carp (Ichiklzaki & Yamamoto 2007), knifefish (Low 2006), generic fish (Hu

2006), lamprey (Ayers et al. 2000), bees (Finio & Wood 2012; Wood 2008), and stingrays

(Valdivia y Alvarado et al. 2010).

1.4 Pulsed Jet Generation Mechanisms

Two primary mechanisms have been used for generating pulsed jets: piston actuation and

flow chopping. The former mechanism was used for the “robosquid” vehicle (Nichols et al.

2008) (and to a degree, synthetic jets can be considered a variant of this) while the latter for

the work of Choutapalli (2007) and Ruiz (2010). There are trade-offs to each. The benefit

of the piston mechanism is that there is control over the pulse length (both in time and

space, and hence control over jet velocity) and velocity program (e.g., a square-wave or a

sinusoid; cf. Krueger (2001)). However, it is difficult to make a proper comparison between

a steady jet and a pulsed jet from a piston-actuated vehicle as the vehicle is intrinsically

incapable of generating a steady jet. Modeling can help account for this deficiency (Nichols
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et al. 2008), however for experiments it is convenient to have an alternative experiment as

the control case, rather than theoretical models.

The flow chopping mechanism was used successfully in the stationary experiments by

Choutapalli (2007) and the self-propelled vehicle of Ruiz (2010). The shortcomings of this

particular mechanism is that the two examples mentioned yielded a jet with significant

perturbations rather than a fully pulsed jet, as that obtained by the piston actuation mech-

anism. The benefit from this type of mechanism is through careful design one can control

the pulse length and velocity program. A particular benefit of this design for comparing

against a steady jet is that it is straightforward to make the comparison. Either one locks

the flow chopper such that the nozzle experiences nonperturbed flow or one replaces the flow

chopping element with a nearly open design so as to not perturb the flow. These designs

were both used successfully in Choutapalli (2007) and Ruiz (2010) to yield an experimental

control case for comparison with the pulsed data sets.

One of the other shortcomings of the flow chopping mechanism is its energy use, this was

addressed by Ruiz (2010). Since Ruiz was investigating the energy use of the entire vehicle,

it was important to consider the energy consumed in generating the pulsed flow, that is, the

energy used in rotating the flow chopping element. It was found that the energy required

to rotate the flow chopper was substantial and that the energetic cost of running the flow

chopper could outweigh the benefit gained from the vortex rings produced. Because of the

energetic expense of existing mechanisms, the current work has the aim of creating greater

improvements in efficiency through a new mechanism. In particular, a passive mechanism

for generating the flow pulsatility was desired as it was believed that this would help reduce

the energetic losses from generating the pulsatility.
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Figure 1.1: Schematic of experimental setup from Conrad (1969)©1969 IEEE. In the center
is the Starling resistor with the collapsible tube encased in an airtight box. Present in this
image are micrometers used to control upstream and downstream resistance, indicated by R1

and R2, respectively. Two flowmeters measure the upstream and downstream flow velocity,
indicated by Q1 and Qn, respectively. Finally, the pressures of interest are marked as the
upstream pressure, P1, the downstream pressure P2, and the pressure external to the tube,
Pe.

1.5 Starling Resistor

As a means of generating flow pulsatility, the current work has developed a device based

on the Starling resistor. The Starling resistor was first described in a paper by Knowlton

& Starling (1912) and was intended to be provide resistance to an isolated dog’s heart in

the same manner as the peripheral load would normally provide in vivo. In essence it is

a collapsible tube under external pressure, as seen in figure 1.1. The schematic of Conrad

(1969), shown in figure 1.1, shows a very common bench-top setup for studying a Starling

resistor, visible in the center of the figure. The device is driven by a constant-pressure-head

tank with the flow modulated by the upstream and downstream resistances as well as the

pressure external to the tube, Pe. The tube can be made of any elastic material such as

latex or silicone.



11

For most flow and external pressure conditions, the Starling resistor provides variable

resistance through modulating the cross-sectional area of the tube. One of the first to

explore and report an additional phenomenon in the Starling resistor was Holt (1941).

Holt reported that the device produced self-excited oscillations at certain values of the flow

rate and external pressure. Although the self-excited oscillations were first described in

the jugular vein of a horse in 1824 by Barry (cf. Brecher 1956, pgs. 8 and 66), this was

their first description from a lab experiment. This work was followed up by Conrad (1969)

who conducted a systematic investigation of the oscillation criteria and also modeled the

oscillations as a Van der Pol’s oscillator. The self-excited oscillations makes the Starling

resistor of particular interest as a means of generating vortex rings for propulsion. Because

of the focus on the formation time in regards to vortex ring development, the current work

has had a focus on the frequency of oscillation, as the pulse length is a key attribute for

calculating the vortex ring formation time. Furthermore, the current work will aim to create

large amplitude self-excited oscillations as these will create more defined vortex rings.

In the past several decades, there have been many experimental (Bertram 2003 and

references therein, Bertram & Tscherry 2006, and Bertram et al. 2008) and numerical (Heil

& Jensen 2003 and references therein, Heil & Boyle 2010, Heil & Hazel 2011, Heil & Waters

2006, 2008, Liu et al. 2011, 2009, Stewart et al. 2010, 2009, and Whittaker et al. 2010a,

b) studies to better understand the self-excited oscillations of the Starling resistor. Despite

the plethora of studies, there has been little conclusion as to the mechanism of the self-

excited oscillations. Experiments have considerable difficulty elucidating the internal flow

field as traditional dye visualization or PIV methods have challenges due to poor optical

access to the inside of the rapidly deforming collapsible tube. Numerics, on the other hand,

also have challenges as the complexity of time-dependent, 3D, moderate Reynolds number
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(O(102–104)) fluid flow is already an on-going research problem, even without the need to

also model a rapidly deforming, hyperelastic collapsible tube.

Because of these restrictions, many experiments have been restricted to evaluating the

bulk properties of the flow and tube geometry rather than the detailed flow field (Bertram

1986; Bertram & Castles 1999; Bertram & Godbole 1995; Bertram et al. 1990, 1991, 1994;

Bertram & Tscherry 2006). More recent studies at experimentally measuring the flow field

have been conducted, but due to limited optical access, the results are limited to the region

just downstream of the collapsible tube exit (Bertram et al. 2001; Bertram & Nugent 2005;

Bertram et al. 2008). There have been some studies that have measured the flow field

within the tube by clever techniques using laser doppler velocimetry (LDV) (Ohba et al.

1989; Ohba, Sakurai & Oka 1997), however they were limited in their spatial resolution

as LDV is only a point-wise measurement and thus they only obtained a small number of

points along the tube axis.

The earliest work in modeling was using lumped-parameter models (Bertram & Pedley

1982; Conrad 1969), which then led to 1D (Cancelli & Pedley 1985; Hayashi et al. 1998),

2D (Jensen & Heil 2003; Liu et al. 2011, 2009; Luo et al. 2008; Luo & Pedley 1995, 1998,

2000; Stewart et al. 2010), and most recently 3D modeling efforts (Heil & Boyle 2010; Heil

& Waters 2008; Marzo et al. 2005; Whittaker et al. 2010a, b). However, existing numerical

studies have been limited in scope due to the computational complexity of solving the fluid-

structure interaction problem at sufficiently high Reynolds number and in three dimensions.

It is still generally believed that the mechanism of operation has not been adequately

described. At first, one might suspect that traveling waves along the tubes dictate the

frequency of oscillation. This would yield a mechanism that is similar to the resonance wave

phenomenon of the impedance pump (Avrahami & Gharib 2008; Hickerson, Rinderknecht
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& Gharib 2005). However, tests examining the effect of tube length found little significant

change in the oscillation frequency due to changing the tube length (Bertram et al. 1990).

Thus end-to-end wave propagation in the tube is not the primary driver of the self-excited

oscillations.

One mechanism that has been identified in the numerical literature creates oscillations

known as the “sloshing” mode (Jensen & Heil 2003). This mode was first identified for a 2-D

collapsible channel (Jensen & Heil 2003) and later shown to exist also for 3-D collapsible

tubes (Heil & Waters 2006, 2008). This mode operates when the tube is in high tension, the

Reynolds number is O(102), and the axial length of the tube is significantly larger than the

tube length. The mechanism for this flow oscillation is described as the fluid within the tube

consisting of an unsteady inviscid core in which the traversely oscillating collapsible wall

generates axial “sloshing” motions (oscillations). A necessary condition of this mechanism,

however, is that the axial sloshing amplitude must be greater at the influx to the tube than

at the efflux in order for there to be a net kinetic energy input into the system to keep the

system running. Furthermore, it is necessary that the tube oscillate in a “mode 1” shape—

which yields a single maxima or minima in tube displacement near the midline of the tube’s

axial direction. This mode has been studied extensively numerically (Heil & Boyle 2010;

Heil & Waters 2006, 2008; Jensen & Heil 2003; Liu et al. 2011; Luo et al. 2008; Stewart

et al. 2010; Whittaker et al. 2010a, b) however has never been recreated in an experiment.

Furthermore, the amplitude of the oscillations generated tend to be quite small.

For larger amplitude oscillations, many of the mechanisms suggested in the literature

point (Cancelli & Pedley 1985; Luo et al. 2008; Luo & Pedley 1995; Stewart et al. 2010)

to Bernoulli’s effect acting on the tube during the collapse phase of the oscillation cycle as

follows: the tube is narrowed due to the external pressure, and the axial pressure gradient
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along the tube accentuates this narrowing or collapse at the downstream end of the tube;

through mass conservation, the decreasing cross-sectional area increases the fluid velocity,

lowering the local fluid static pressure; this in turn starts a closed-feedback loop that rapidly

accelerates reduction of both the tube internal cross-sectional area and the local static

pressure. This completes the collapse phase of the oscillation cycle. However, the mechanism

of the tube’s recovery or relaxation, allowing for another oscillation cycle, is still elusive.

There have been theories and suggestions as to the mechanism behind the relaxation phase,

but none have been properly validated. These relaxation mechanisms will be described in

the following paragraphs.

A mode of oscillation that has been explored numerically was first described by Luo &

Pedley (1995) although it will be referred to as “slamming” per Stewart et al. (2010). In this

oscillation mode, the tube tension is low and the oscillation magnitude becomes so large as to

break down the earlier numerical scheme of Luo & Pedley (1995) but is sustained in the later

work of Stewart et al. (2010). Additionally, it should be noted that in Luo & Pedley (1995),

the upstream condition had an imposed steady Poiseuille flow with a fixed downstream

pressure, thus allowing for velocity oscillations to occur in the downstream segment. Stewart

et al. (2010) followed up on this work recreating the large-amplitude “slamming” oscillations

using only proscribed pressure boundary conditions. Stewart et al. (2010) also suggests a

mechanism for these large amplitude oscillations, where one sees significant deformation

of the tube or membrane surface. The proposed mechanism of Stewart et al. is that

the deformation of the collapsible segment (particularly in the downstream-most end of

it) causes a significant increase in the curvature of the surface and is accompanied by

a drop in the pressure locally. This generates an adverse pressure gradient in the rigid

tubing downstream of the collapsible section. The adverse pressure gradient then drives
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fluid back into the collapsed section, which pushes the constriction upstream, reducing the

wall curvature and the magnitude of the adverse pressure gradient with it. The cycle then

repeats the pressure feedback loop to sustain the oscillation.

Yet another proposed mechanism for the oscillations can be found in the work of Cancelli

& Pedley (1985). In this 1-D modeling work, they model the self-excited oscillations via the

consideration of separation downstream of the tube constriction. In particular, they found

that the key mechanism of the oscillations was dependent on the location of separation.

This recovery mechanism relies on the presence of a separation bubble downstream of the

throat increasing the local pressure and thus allowing for the collapsible tube to expand

during the recovery portion of the cycle. Once the tube has expanded enough that the

separation bubble is eliminated (or significantly reduced), ostensibly due to the reduced

curvature of the tube allowing the flow to remain attached along more of the tube, the

cycle can repeat itself by entering into the collapse phase (driven by Bernoulli’s effect),

creating self-excited oscillations. Thus Cancelli & Pedley (1985) put forth that separation

is essential for self-excited oscillations. However later work by Hayashi et al. (1998) were

able to obtain oscillations in a similar model by modeling the viscous friction rather than

the separation. Thus while separation may be evident in collapsible-tubes during self-

excited oscillations (Kounanis & Mathioulakis 1999), it is not guaranteed to be a sufficient

or necessary condition for self-excited oscillations to occur.

Another mechanism for the self-excited oscillations is suggested by Luo et al. (2008)

and is similar to the mechanism of Stewart et al. (2010) but in reverse. In essence: a

positive feedback loop between the velocity, pressure, and tube area works to collapse the

tube, then due to the significant viscous resistance at the tube throat (a region of very high

velocity with a very small cross-sectional area) the pressure drop axially along the tube
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increases and causes the pressure upstream of the constriction to rise, this rising pressure

makes the upstream section bulge out and ultimately forces open the constriction. Once

the constriction has been opened, the cycle then repeats to sustain the oscillations.

Experimentally determining the primary mechanism is challenging as one can envision

a scenario where at the end of the collapse phase the pressure drop along the tube increases

(per Luo et al. (2008)) simultaneously with the flow separating in the downstream end of

the tube (per Cancelli & Pedley (1985)) and flow reversal (per Stewart et al. (2010)). Thus

elements of all three mechanisms may be seen experimentally. The determination of which

factor is the main cause can be difficult.

As a means to help elucidate the mechanism at work, experimental parameters studies

have been done, although they are few. As mentioned previously, Bertram et al. (1990) ex-

amined the effect of changing the tube length, L0. They found that as the tube lengths were

changed within the range of L0/D0 = 4 to 34, that there was little change in the oscillation

frequency, which ranged from 2.0 to 4.3 Hz for the minimum low frequencies of each tube,

respectively. Bertram et al. (1990) did suggest that the tube length appears to play a role of

which oscillation modes were excited, with the longest tube displaying the largest number of

unique modes, however the actual frequency value was unchanged between tubes oscillating

using the same mode. Additionally from this study, the many oscillation modes that were

reported leads to the suggestion that different physical mechanisms could dominate in some

modes and not others. Thus a search for the mechanism of oscillation should instead be

considered as a search for proof of a mechanism. Another experimental parameter study

conducted was by Sakurai et al. (1996), who considered the effect of longitudinal tension on

the self-excited oscillations. For a range of tube strains, which ranged from 0 to 1, Sakurai

et al. (1996) found a decrease in oscillation frequency with increasing tension (strain) for
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the same flow rate through the tubes. This was explained due to the larger tension causing

the tube deformation to extend along more of the tube axially, whereas in the zero-tension

case the tube deformation is localized to the downstream-most end of the collapsible tube.

Because the deformation is more spread out for the higher tension tubes, a larger mass of

fluid is involved in the oscillation providing a larger resistance to oscillation and ultimately

a lower oscillation frequency.

The existing literature provides no design rules by which to predict the oscillation fre-

quency of a collapsible-tube based device. Even if we consider the possibility of using scaling

laws for identifying which parameters affect the oscillation frequency, it would be challeng-

ing to identify which scaling is correct. A scaling for the frequency of oscillation from Jensen

& Heil (2003) suggests that the frequency goes as f ∼
√
T ′D0/ρL4

0 where T ′ is the tension,

D0 is the tube diameter, ρ is the fluid density, and L0 is the length of the tube. Heil &

Waters (2008) find that f ∼ ρU2
j . Additionally, a simple balance of fluid inertia against the

wall stiffness, mentioned in Heil & Waters (2008), provides that f ∼
√
Eh3/ρD5

0, where E

is the Young’s modulus, and h the tube-wall thickness. The model of Cancelli & Pedley

(1985) shows that f ∼
√
Eh3/ρD5

0, in agreement with the balance shown in Heil & Waters

(2008).

The effect the diameter of the tube has on the frequency is uncertain as the scaling law

from Jensen & Heil (2003) suggest that the frequency and diameter are positively related

whereas Heil & Boyle (2010), Heil & Waters (2008), and Cancelli & Pedley (1985) suggest

that they are negatively related. Similarly, the effect of changing the flow rate, Uj , appears

to be in conflict as Heil & Waters (2008) suggest f ∼ U2
j whereas Heil & Boyle (2010) state

f ∼ U−1
j .
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1.6 Objective

The goal of this research is to develop a means for generating pulsed flow passively with

the aim of creating a vortex-ring-enhanced wake. With this goal in mind, we are primarily

concerned with designing a collapsible-tube-based device that generates large-amplitude

oscillations with minimal flow losses.

The current work will build off these two fundamental areas of study: vortex rings

for propulsion and self-excited oscillations in collapsible tubes. Due to the potential for

reducing the energetic cost of producing pulsed jets, the current work embarks on the use

of a collapsible-tube based device for generating vortex rings passively. Furthermore, the

potential to explore the formation time space in regards to vehicle efficiency is desired as

Ruiz et al. (2011) considered only a narrow range of formation time for their vehicle.

Additionally, this research has also extended the basic knowledge of self-excited oscilla-

tions in collapsible tubes. In particular, if one was to attempt to design a collapsible tube

device and wanted it to oscillate at a given frequency, there are no means of accomplishing

that except through iterative design. Since the frequency of oscillation is an important pa-

rameter in regards to the vortex ring formation, it is a parameter that we have focused on

as part of this work. The goal is to develop a passive device suitable for propelling vehicles

on the order of O(100–103) m in size, whereas existing literature on collapsible tubes only

has studied tubes on the order of O(10−3–10−2) m in diameter. Thus if one is to scale up

a passive device to propel much larger vehicles, it is essential to know how this will affect

the oscillation frequency and subsequently the vortex ring formation. Another goal of this

work is to explore the effect that tube dimensions have on the frequency of self-excited

oscillations. As mentioned previously, the current literature provides conflicting results. In
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an attempt to help resolve some of these conflicts, an experimental parameter study of a

collapsible tube nozzle was undertaken as part of the current work.

The rest of this thesis is laid out into two general parts. The development of a passive

vortex generator (PVG) for integration into an existing autonomous underwater vehicle

(AUV) is discussed in chapter 2. The PVG-integrated AUV was used for testing and

optimizing the vehicle efficiency. Chapter 3 aims to extend the existing experimental results

for collapsible tubes by conducting a parameter study of a collapsible-tube-based propulsion

nozzle. In particular, the effect of changing tube diameter and length were studied. Lastly,

a summary and discussion of the impact of these findings along with suggestions for future

work are included in chapter 4.
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Chapter 2

Integrated Passive Vortex
Generator Tests

2.1 Introduction

On the basis of the parameter study results, discussed in chapter 3, it was found that

the frequency of self-excited oscillations from collapsible-tubes under external pressure was

only weakly affected by changing physical dimensions. This knowledge opened up the

ability to design a passive vortex generator (PVG) to integrate into a full-scale autonomous

underwater vehicle (AUV). The work integrating the PVG into the AUV and the impact

the PVG had on the vehicle propulsion will be discussed in this chapter. The chapter will

begin by an overview of the experimental setup, followed by the methods by which the

experiments were conducted, and finally the results will be presented with a discussion.

2.2 Experimental Setup

2.2.1 PVG Design and AUV integration

The complete vehicle can be divided into two parts: the main vehicle and the add-on PVG.

As such, the sections covering the vehicle will use this same division to discuss aspects of
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the PVG-integrated AUV.

2.2.1.1 Main Vehicle

For conducting the tests of integrating a PVG to a self-propelled vehicle, a small autonomous

underwater vehicle (AUV) was acquired from Professor Stilwell at Virginia Tech and shown

in figure 2.1. The vehicle, known as the Virginia Tech 475 AUV, has a hull diameter of

12.06 cm, a length of 1 m, and is capable of traveling at a nominal speed of 1.5 m s−1 (Gadre

et al. 2008; Petrich 2009; Petrich, Neu & Stilwell 2007; Petrich & Stilwell 2010). The aim of

the integration was to retrofit an existing AUV with a PVG. As such, limited modification

to the main vehicle was desired. In order to attach the PVG, the control surfaces and

strakes from the aft end of the vehicle were removed and the propeller shaft was extended.

The AUV was installed upside down, with its sail pointed toward the ground, in order to

easily mount the vehicle to a sting using tapped holes that were on the (previously) ventral

side of the AUV. A 10-wire umbilical cable was used to supply the AUV with power and

control commands to the motor. Four of these wires were used for the USB connection to

the servo controller, four other wires were used for delivering power to the motor controller

(positive and negative line each used two wires), and the remaining two umbilical wires

were wired up to another aspect of the AUV that was not used in this application. At the

distal end of the umbilical, a USB cable was wired for connecting a computer to the servo

controller and two male banana plugs were wired for supplying power to the AUV. The

power for the AUV system (and also used for other electrical sensors) was generated by a

power supply (Agilent 6674A) that had the capability to output 0–60 V at 0–35 A. This

power supply was located to the side of the test tank and the wires for delivering power

traveled along a 20 m long energy snake. Because of the long length of the power wires, the
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Figure 2.1: Photograph of the VT 475 AUV, the main vehicle used in the PVG-integrated
AUV experiments.

power supply used a remote sensing feature to ensure that the voltage delivered to the AUV

was the desired value of 13.0 V. This remote sensing feature enabled the power supply to

overdrive the voltage at the supply in order to compensate for the significant voltage drop

experienced through the long wires.

Inside the AUV, the components used in these experiments were based on standard

remote-control hobby parts. A servo controller (Pololu Micro Maestro) was connected via

a USB connection to the controlling computer. The servo controller commanded a motor

controller (Hyperion Titan 20A Hi-Pro) attached to the AUV propeller motor (Hyperion

ZS2209-30). This motor was geared down in a 40:19 ratio to the propeller shaft. Control of

the motor was obtained by sending serial commands from a computer to the servo controller.

The motor speed could be controlled manually and as part of an automated computer script.

The input to the motor, called the “throttle setting” and hereafter denoted T , was related

to the pulse width for a servo control (e.g., a servo running a control surface) which is

translated by the motor controller into a three-phase, pulse-width-modulated signal for

driving the motor. The throttle setting, T , ranged from 1000 (off) to 2000 (full throttle),
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with 1100 being the onset of motor rotation. It should be noted that these throttle values

have no direct physical significance (e.g., RPM, torque, etc). Due to the concern of over-

driving the thin wires in the umbilical, T was never set to its full setting of 2000 and hence

the data presented is limited to a lower throttle setting.

The selection and axial location of the propeller was carefully chosen based on the design

of the integrated PVG. A variety of propellers were tested with varying pitch, diameter,

and blade number. In the end, maximal thrust was produced by a three-bladed, 47 mm

diameter propeller with a pitch of 1.4 constructed of fiberglass-reinforced plastic. It was

mounted as far aft as possible without striking the sides of the PVG contraction (cf. figure

2.2).

2.2.1.2 Integrated PVG Design

The primary goal of adapting a PVG to an AUV was to enable an AUV to produce the

vortex rings necessary for improving propulsion by using the flow generated by the propeller

to drive the PVG. A secondary goal was to minimize the amount of losses from the device—

both from changes to the overall vehicle drag as well as from resistance to the internal flow.

Three designs were tested with different configurations (two with the propeller upstream

of the collapsible tube and one downstream). The final design was chosen as it yielded the

best propulsion characteristics.

The ratios of the inlet area to nozzle exit area and the contraction ratio and angle were

adapted from the submarine developed by Ruiz (2010). Thus it must be noted that the PVG

designed and developed for integration to this AUV is in no way an optimal design in terms

of reducing the losses to the overall system. This was not pursued as the primary focus

of this work was on the PVG and the resulting vortex dynamics. Furthermore the PVG
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design was constrained to the AUV provided. It is possible that should one be designing

an integrated system from scratch, or modifying a pump-jet system, that one could attain

a more optimal arrangement.

The overall design of the PVG-integrated AUV is shown in figure 2.2a with detailed

drawings available in appendix A. The integrated PVG has a nozzle and tube diameter of 4

cm and a collapsible tube length of 16 cm, which gives the device an L0/D0 value of 4. The

tube-wall thickness had a value of h = 0.5 mm. The outer diameter of the PVG matches the

diameter of the main vehicle to maximize the internal air chamber volume while minimizing

form drag. Additionally, the integrated PVG adds approximately 50 cm of length to the

vehicle, making the total vehicle length nearly 1.5 m. The final design aimed to minimize

the number of seals required to properly seal the air chamber from leaks and thus the

PVG is constructed out of only two pieces: an internal frame and a cover. This design

yields only two sealing joints while also providing maximal access to the collapsible tube

for mounting. Another goal of the design was to maximize the internal chamber volume,

and thus the amount of solid material used for construction was minimized. In order to

obtain all of these goals, the two-piece integrated PVG was manufactured using a rapid

prototyping technique called stereolithography. This method yielded a very smooth surface

finish, appropriate for minimizing friction drag.

Prior personal experience with building PVG devices showed that the volume of the

PVG air chamber has a significant influence on the kinematics and dynamics of the system.

The volume ratio between the air chamber and the collapsible tube of the nozzles is defined

as

λ ≡
V– c

V– t
, (2.1)
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where V– c is the volume of the chamber and V– t is the volume of the distended tube. When

calculating V– c, it is necessary to account for the volume of any instrumentation, cabling,

hardware; V– c is only the volume of the air within the chamber. The effect λ has on the

chamber pressure, Pe, can be represented as

∆Pe =
β

λ
, (2.2)

where ∆Pe is the magnitude of the chamber pressure oscillation in one period (in percent)

and β is a nondimensional factor relating to the amount of tube collapse during one oscil-

lation period (cf. appendix B for derivation of ∆Pe). This equation shows that for very

small λ, that the variation in the chamber pressure can become quite significant over one

oscillation period. As such, small λ can affect the tube kinematics. The maximization of

the internal chamber volume of the integrated PVG also maximized the volume ratio λ.
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Cut-away

Exterior

(a) Side view of the PVG-integrated AUV. Top figure shows the complete system exterior with the lower figure showing the system with a
cut plane parallel to the page through the middle of the system. The left inset drawing highlights the different components making up the
assembly. In black is the AUV, red is the PVG internal frame, green is the PVG cover, and grey denotes the collapsible tube. The right
inset shows the different media within the device. In blue is water, yellow is air, and black is solid material. The section line in the top
figure corresponds to the section view in figure 2.2b.

(b) Section view of the integrated PVG system. As in 2.2a, the colors in the inset highlight the different components making up the assembly.
For the top inset, black is the AUV, red is the PVG internal frame, green is the PVG cover, and grey denotes the collapsible tube. For the
bottom inset, blue is water, yellow is air, and black is solid material.

Figure 2.2: Schematic drawings of PVG-integrated AUV.
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The PVG was instrumented with pressure transducers for measuring the chamber, driv-

ing, and transmural pressures. Pressure taps were located in the rigid tube 2 cm (one-half of

the tube diameter) upstream and downstream of the collapsible tube. These pressure trans-

ducers were attached to an instrumentation amplifier circuit and read by a data acquisition

system (DAQ, K in figure 2.6). The pressure transducers and amplifier were calibrated us-

ing a water manometer. The DAQ system (National Instruments USB-6221) was connected

to a computer (hereafter the DAQ computer) that accessed the DAQ system via the MAT-

LAB (Mathworks) software program. The DAQ system was set up to record the pressure

transducer signals at 5 kHz for the duration of a self-propelled run. This high sampling

rate was sufficiently high to capture all the higher order modes of the signal and ensure

that software-based post-filtering would remove the noise within the signal sufficiently. The

DAQ system also recorded the voltage and current entering into the AUV vehicle. The

current was measured from the voltage drop across a 0.05 Ω shunt resistor that was placed

“upstream” of the power supply’s remote voltage sensor connection, so as to ensure that

the power entering the umbilical of the AUV was at the proper voltage.

Ballast weight was added to the air chamber of the PVG to make the PVG approximately

neutrally buoyant. The combination of the ballast weight and the pressure transducers

yielded a PVG air chamber volume of 2600 ± 50 cm3. This gave the PVG a volume ratio

of λ = 13 ± 0.2.

For filling and draining the air in the chamber, two solenoid valves were used. One

solenoid valve connected the PVG air chamber to a high-pressure line regulated at 75 kPa

through a 0.25 mm diameter flow-control orifice. This solenoid was used for filling the

chamber. The other solenoid valve exhausted the PVG air chamber to the ambient. Both

of these solenoid valves were controlled using a MOSFET-based circuit that drove the high-
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current, 13 V solenoid using a low-current, 5 V digital signal from the DAQ board.

As the fill and exhaust solenoids are simply on-off and not proportional, it was un-

realistic to try to precisely control the pressure in the chamber either with a controller

or manually (the latter was done in the parameter experiments of chapter 3). Thus the

amount of time the fill solenoid was open, hereafter referred to as the chamber fill time,

τ , was the independent variable used in the tests. One can think of τ as being roughly

analogous to controlling the amount of air in the chamber as the pressure upstream of the

flow-control orifice was nearly sufficient to choke the flow through the orifice and yielded

an approximately constant mass flow rate. This is particularly advantageous for the PVG

as collapsible tubes under external pressure are especially compliant once they have az-

imuthally buckled, as seen in figure 2.3a, and have increased sensitivity to pressure during

these partially collapsed phases (Kececioglu, Mcclurken, Kamm & Shapiro 1981). The area

fraction, α, plotted in figure 2.3 is defined as

α ≡
A(Pt, τ)

A0
, (2.3)

where A(Pt, τ) is the cross-sectional area of the tube and A0 is the nominal cross-sectional

area of the tube without external forces applied (i.e., Pt = 0). We expect that if the tube

cross-sectional area is changing significantly while the pressure is relatively constant, then

the volume of the chamber must be changing and thus the amount of air within the chamber

is changing significantly.

To verify the magnitude of the tube collapse as a function of the chamber fill time,

photos looking along the axial direction of the tube were taken with different chamber fill

times, τ . A set of photos were taken with the PVG dry and another set with the PVG
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(a) Plot of the cross-sectional area fraction of
a collapsible tube versus the transmural pres-
sure, non-dimensionalized by the infinite bend-
ing stiffness parameter, KP,∞, modified from
Kececioglu et al. (1981). Images depict the
tube cross-section shape at indicated condi-
tions.
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(b) Plot of the cross-sectional area fraction of
the collapsible tube from the PVG versus the
chamber fill time τ in seconds. Areas calculated
from images shown in figures 2.4 and 2.5.

Figure 2.3: Plots of the area fraction of the collapsible tube.

submerged and installed on the AUV as shown in figures 2.4 and 2.5, respectively. Using

these photos, the area of the tube cross-sectional area was calculated and then normalized

by the area of the tube at τ = 0 seconds. These results are plotted in figure 2.3b for both

the dry and submerged PVG.

It is noted that there appears to be a discrepancy between the tube cross-sectional area

of the dry conditions and the submerged conditions. For a chamber fill time of τ = 0 s, this

means that the chamber pressure is equal to the ambient pressure in the lab. However, the

pressure within the collapsible tube differs between the dry and submerged cases. For the

dry case, the pressure is identical to the ambient pressure in the lab and thus τ = 0 s for the

dry case corresponds to a transmural pressure, Pt, of identically 0. The discrepancy between

the dry and submerged cases can likely be resolved if one considers that the submerged

tube has a pressure within the tube equal to the hydrostatic pressure from the tank. Thus

for τ = 0, Pt < 0 for the submerged case. The onset of significant area reduction in the

submerged tube (at τ ≈ 6 s) is likely the point where Pt = 0 for the submerged case.
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It is apparent that, as predicted, the chamber fill time reduces the sensitivity of α com-

pared to using the transmural pressure. Because of this decreased sensitivity, the chamber

fill time is a better independent variable for ensuring reproducible results.

It should also be noted from figures 2.4 and 2.5 that the tube undergoes buckling and

collapse with an mode 3 azimuthal collapse. This is apparent from the tri-lobed shape of

the tube’s cross-section. This is distinct from many of the earlier works in collapsible tubes,

both numeric and experimental that observed in their experiments or constrained their

simulations to have a mode 2 azimuthal collapse (Bertram & Nugent 2005; Bertram et al.

2008; Bertram & Tscherry 2006; Heil & Boyle 2010; Heil & Waters 2008; ?). The critical

pressure for collapse of a thin cylindrical tube under uniform external pressure loading can

be shown to be

Pt,crit =
4Eh

D0
{

4(n2 − 1)h2

3(1 − σ2)D2
0

+
π4D4

0

16L4
0n

4(n2 − 1)
} (2.4)

using the current nomenclature where Pt,crit is the critical transmural pressure for collapse

and n is the azimuthal mode of the collapse (Love 1944, Article 341). From this equation,

we can see that the critical pressure for a given collapse mode is purely a function of the

geometry and material properties of the tube. The assumption of uniform external pressure

is not maintained for the PVG experiments, as there is an axial pressure gradient along the

inside of the tube due which leads to a spatially-varying transmural pressure, Pt. However,

conceptually we can evaluate the criteria under which the tube will collapse with a mode 3

azimuthal mode before a mode 2 azimuthal mode as

Pt,crit,3 <Pt,crit,2 (2.5)

{
4(32 − 1)h2

3(1 − σ2)D2
0

+
π4D4

0

16L4
03

4(32 − 1)
} <{

4(22 − 1)h2

3(1 − σ2)D2
0

+
π4D4

0

16L4
02

4(22 − 1)
} (2.6)
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(a) τ = 0 s (b) τ = 1 s (c) τ = 2 s

(d) τ = 3 s (e) τ = 4 s (f) τ = 5 s

(g) τ = 6 s (h) τ = 7 s

(i) τ = 8 s (j) τ = 9 s

Figure 2.4: Axial view of tube collapse at different chamber fill times, τ , for the PVG
exposed to the ambient atmosphere and not submerged underwater.
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(a) τ = 0 s (b) τ = 1 s (c) τ = 2 s (d) τ = 3 s

(e) τ = 4 s (f) τ = 5 s (g) τ = 6 s (h) τ = 7 s

(i) τ = 8 s (j) τ = 9 s (k) τ = 10 s (l) τ = 11 s

(m) τ = 12 s (n) τ = 13 s (o) τ = 14 s (p) τ = 15 s

(q) τ = 16 s (r) τ = 17 s (s) τ = 18 s (t) τ = 19 s

Figure 2.5: Axial view of tube collapse at different chamber fill times, τ , for the installed
and submerged PVG with the propeller stationary. Photos are aligned such that gravity
points down.
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if we assume that σ = 0.5 for our rubber material

(
128h2

9D2
0

+
π4D4

0

10368L4
0

) < (
16h2

3D2
0

+
π4D4

0

768L4
0

) (2.7)

80

9
(
h

D0
)

2

< π4 (
1

768
−

1

10368
)(

D0

L0
)

4

(2.8)

and say, for the tube we used in the integrated PVG, we have h = 0.5 mm and D0 = 4

cm. This means we can predict the required tube length, L0, where we expect to see a

mode 3 collapse as L0 < 12 cm. Our actual tube had a length of 16 cm, which does not

satisfy the inequality and thus equation (2.6) would predict that our tube should have a

mode 2 collapse state. This disagreement, while small, is likely because the tube used in

our experiments was not fully axisymmetric as the seam from constructed tube yielded

a region of thicker wall stiffness that may have predisposed the tube toward a particular

azimuthal buckling mode. Furthermore, the derivation of equation (2.6) involves dropping

higher order terms and these may have been necessary to bring the results into quantitative

agreement. However, even from this exercise one can see that a mode 3 azimuthal mode is

possible for a sufficiently short tube and that appears to be the explanation for our results.

2.2.2 Test Facility and Cart System

All of the experiments using the PVG-integrated AUV were conducted in a 40 m long

water tunnel, shown in figures 2.6 and 2.7. For the vast majority of the tests, the tunnel’s

recirculating pumps were turned off and thus created a tank of quiescent fluid. The AUV

was mounted to a motorized cart system that moved on rails extending along the length of

the tank test section. The cart’s motor (G in figure 2.6) was mounted to the cart and moved

the cart through the use of a toothed belt that extended along the length of the flume. The
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cart system was retrofitted to incorporate a controller system such that self-propelled tests

could be conducted (I in figure 2.6). To allow for completely self-propelled motion, the

AUV mounted to the slider of an air bearing (Nelson Air Corp, RAB6) that restricted the

AUV’s motion along the longitudinal direction of the test section to 10 cm of travel (F

in figure 2.6). The carriage of the air bearing was mounted to the cart. Attached to the

slider of the air-bearing was an optical target. A short-range laser sensor (optoNCDT 1302,

E in figure 2.6), rigidly mounted to the cart, measured the distance to the optical target

and thus provided the cart system with the position of the AUV relative to the cart. The

cart controller read the current relative position of the AUV and moved the cart such that

the relative position of the AUV is kept at a reference value. In this way, the cart system

provided the AUV self-propelled motion with minimal interference.

It should be noted that the cart system as a whole has difficulty moving at low speeds

(approximately less than 5 cm s−1). This is attributed to both the poor-low-RPM perfor-

mance of the cart motor and belt stretching by the toothed belt by which the cart motor

pulls the cart. Since the toothed belt runs the length of the water tunnel (40 m) there can

be significant belt stretch which is more of an issue for lower cart speeds as at higher cart

speeds the belt has sufficiently acquired enough tension to have prestretched the belt.
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Figure 2.6: Schematic drawings of facility for the experiments using the PVG-integrated AUV. Letters indicate the item as follows: A,
main vehicle (AUV); B, PVG; C, LDV probe for jet measurements; D, traverse for moving LDV probe; E, short-range laser distance
sensor; F, air bearing carriage (slide in black); G, cart motor showing toothed belt and pulleys used to move cart; H, laser beam
from long-range laser distance sensor; I, cart controller box which interfaces to cart computer; J, LDV processing engine receives back
scattered light from LDV probe (C) and interfaces to DAQ computer; and K, DAQ system which interfaces to DAQ computer.
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In order to ensure that the system stays within predefined bounds of the tank, a long-

range laser distance sensor (optoNCDT 1182, H in figure 2.6) measures the location of the

cart along the flume. The long-range distance sensor readings are used by the controller to

disable the cart should the cart move past its predefined bounds. The combined values of

the short- and long-range distance sensors accurately give the exact position of the vehicle in

the tank. This position is then Kalman-filtered and used to obtain the position and velocity,

U∞, of the vehicle during self-propelled runs. The system is controlled by an independent

computer (hereafter the cart computer) that enabled communication to the cart’s on-board

microprocessor controller and recording of cart’s position and velocity. The cart computer

was also responsible for controlling the servo controller in the AUV.

The air bearing is considered frictionless so the only resistance to the AUV motion would

be fluid drag from the AUV’s movement in the water and a minimal amount of influence

from cables that are attached to the AUV (umbilical, tubing to air chamber, etc.). To

prevent the cables from affecting the AUV’s motion, a simple procedure was used to tare

the setup. The cart system is activated such that the cart moves based on the AUV’s

position to a reference point but the AUV throttle is kept off. The cables are then adjusted

until the cart is nearly motionless. This ensures that the cables do not significantly affect

the results of the self-propelled runs. While the force from these cables is eliminated as

much as possible via this procedure, in practice the cables tend to produce a small force.

The force from the cables is generally completely overwhelmed by the magnitude of the

vehicle’s thrust and drag, yielding reliable results for high vehicle speeds. However, the

cable force can become of significant magnitude in the presence of equally small vehicle

thrust. Furthermore, the cart controller has challenges at low velocities due to backlash

and lag from the toothed belt, as mentioned previously. Thus the results for U∞ less than
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(a) Overall view of the water tunnel facility.

(b) Close-up view of the cart system for enabling self-propelled motion. Please
refer to figure 2.6 for explanations of key components.

Figure 2.7: Photographs of the facility for the experiments using the PVG-integrated AUV.
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10 cm s−1 are difficult to obtain.

Another feature of the cart system is that it was possible to command the cart system to

follow a specified trajectory, rather than using the feedback of the vehicle’s position to con-

trol the cart. This, in conjunction with a force transducer, allowed for drag measurements

of the PVG-integrated AUV.

2.2.3 Drag Measurements

In order to measure the impact the addition of the PVG has on the entire AUV system, the

drag force, FD, on the overall vehicle was measured using a force transducer for both the

AUV alone and the PVG-integrated AUV system. For these tests, the cart was run using a

prescribed-position program that moved the cart at a specified velocity, U∞, while the model

was dragged through the water and mounted to the air-bearing and force transducer. The

force transducer (Transducer Techniques LSP-10) measured the force in the axial-direction

only. Each test was repeated once.

2.2.4 Laser Doppler Velocimeter Setup

For measurements of the jet velocity, a laser Doppler velocimeter (LDV) was used (C in

figure 2.6). The LDV system (Measurement Science Enterprise, Inc. miniLDV) used fre-

quency shifting to obtain the fluid velocity in the measurement volume. The LDV probe

used a backscatter photo detector that was integrated into the probe body, allowing for

permanent alignment of the system. The probe was mounted to a two-axis traverse system

(D in figure 2.6) that gave the system 100 mm of travel in the two directions lateral to

the axial direction of the AUV. The traverse and its attached LDV probe was mounted

directly to the AUV cart using modular aluminum framing. As the AUV system was able
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to travel many centimeters along the air bearing, there was the potential for variability in

the distance of the probe volume from the aft-most tip of the PVG. However, recordings

of the short-range laser distance sensor (measuring the relative position of the cart to the

AUV) showed that the measurement volume was 0.23±0.05 nozzle diameters (9.3±2.0 mm)

downstream of the PVG nozzle exit across all runs. The LDV system was controlled by a

vendor-provided software program which controlled the traverse and data acquisition.

As figure 2.5 shows, the tube cross section can become very nonuniform. To evaluate

the influence of the tube’s nonuniform cross section on the flow exiting the nozzle, two

high-spatial-resolution profiles were taken of the jet exit. Each profile consisted of a 11×14

grid of sampling locations spaced 5 mm apart. At each sampling location, 250 samples

would be obtained before moving to the next location. These 250 samples were time-

averaged to obtain the local flow velocity and showed good convergence to their time-

averaged value. As each self-propelled run only generated a few tens of seconds of test

time during which the submarine was steadily moving (∂U∞/∂t ≈ 0), only a few locations

would be sampled during each self-propelled run. It was decided that it would be excessively

time-consuming to conduct the high-spatial-resolution tests under self-propelled conditions,

and thus the submarine was kept fixed in the tank while the recirculation pumps were

turned. The two run conditions chosen for analysis used τ = 0 and 10 seconds and both had

T = 1300. Generally, these run conditions would result in a self-propelled AUV speed of 42

and 12 cm s−1, respectively (cf. figure 2.14). Since the test was aimed at evaluating the

nonuniformity of the jet exit, rather than obtaining accurate jet exit velocities for the self-

propelled cases, the flow in the tank was set to approximately 20 cm s−1. This discrepancy

between the flume water velocity and AUV velocity was considered acceptable, again, due

to the motivation behind these tests.
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The results of the high-resolution LDV jet profiles are shown in figure 2.8. The spatial

average of the time-averaged local velocities yielded Uj values of 1.2 and 0.74 m s−1 for τ = 0

and 10 s, respectively. It should be noted these values differ from the results shown later

(in figure 2.15) due to differing freestream speeds between the current static tests and the

later self-propelled tests. The figures show that there was nonuniformity in the resulting

jet, particularly for the τ = 10 s case, and the standard deviation of local mean velocities

across the exit was 5.4% and 13% of the mean of all local mean velocities for τ = 0 and 10

s, respectively. Because of the variation across the jet exit, measurements of the average

jet exit velocity used the LDV probe volume centered on the jet exit and are assigned an

additional error of 13% to account for the jet exit nonuniformity. This allowed for single

runs to yield a complete set of results rather than having to span data collection across

several runs for a given experimental condition (T, τ). It should be noted, however, that

the difference between the time-averaged center line velocity and the spatially-and-time-

averaged velocity across the interior of the jet yielded differences of only 4%; thus the 13%

added error is considered conservative.

From the center-line velocity data obtained from the self-propelled runs, phase-averaged

plots were made of the center-line velocity as a function of time. The velocity data as a

function of time has significant noise, due to the turbulent nature of the jet flow and hence

phase averaging is an appropriate technique to apply. These plots used the frequency

obtained from the transmural pressure transducer as this frequency had less error than that

obtained using the LDV velocity data. Because of the non-uniform sampling of the LDV

data (sampling occurs when a particle arrives through the sampling volume, not based on

a clock), the velocity data was first super-sampled using a linear interpolation technique

with a sampling interval based on the smallest interval between neighboring samples from
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(a) Contour plot showing the spatial variation in the mean jet exit velocity. The left image is for
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m s−1and is matched between each plot. The lateral directions, y and z are scaled by the diameter
of the jet nozzle and the outline of the nozzle exit is shown as the white ring in each of the plots.
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indicates different z positions, both of which have been normalized by the jet diameter, D0.
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indicates different z positions, both of which have been normalized by the jet diameter, D0.

Figure 2.8: Plots of the jet exit profile for T = 1300 and τ = 0 and 10 s.
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the original data. This super-sampled data thus preserves the original data and provides a

uniformly sampled dataset to facilitate phase averaging.

Each phase included in the averaging is obtained by taking subsets of the oscillation pe-

riod and their contributions to the mean. Additionally, the standard deviation of that phase

of the cycle is also obtained. This provides the mean and standard deviation calculated at

the precise phase of each oscillation cycle from 50 oscillations.

2.2.5 Dye Visualization

Gharib et al. (1998) showed that the formation time of a vortex ring has implications for

its wake structure, especially as the criterion for vortex ring pinch-off when the formation

time exceeds the formation number. However, since the formation number is only approx-

imately defined and can vary (Dabiri & Gharib 2004a; Krueger et al. 2006; Mohseni et al.

2001; Rosenfeld et al. 1998), it is appropriate to not rely solely on the formation number

criterion as the formation number has not been calculated for vortex rings generated from

PVG devices. Thus it is necessary to visually evaluate the resulting flow field to determine

the presence of vortex ring pinch-off. In order to visually interrogate the flow field, dye

visualizations of the wake of the PVG-integrated AUV were done. These dye visualizations

were made using a gravity-fed solution of slightly diluted food coloring. The high speed

camera used in these experiments (Photron APS-RX) recorded the dye visualizations at

125 Hz and a resolution of 1024×1024 pixels. The camera recordings were activated using

a software trigger that detected the nose of the submarine in the image frame and began

recording. To assist in minimizing clouding of the tank by the dye, the exhaust solenoid was

replumbed to instead control the dye being supplied to the vehicle. This solenoid was acti-

vated by the DAQ computer once the AUV was near the high-speed camera and remained
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on for a specified duration of time. The PVG chamber was then manually exhausted at the

end of each run using a needle valve.

The resulting videos show the AUV vehicle passing by the camera followed by the PVG

and its dyed wake. Example frames can be seen in figure 2.9(a). As individual frames can

be hard to interpret and a periodic process is being investigated, the dyed wakes were phase

averaged. In order to accomplish this, the frequency of oscillation was determined from

the transmural pressure data, Pt, and was used to select the frames for averaging. Because

the PVG-integrated AUV is in a different position in every frame, each frame of interest

was cross-correlated with a smaller cropped frame of just the aft-most portion of the PVG

nozzle. This allowed for accurate tracking of the vehicle in each frame. Frames that were

integer periods apart were stacked and aligned by the cross-correlated nozzle exit positions,

as demonstrated in figure 2.9(b). The stacked frames were then summed in their pixel

intensity values and divided by the number of frames stacked. Because each frame added to

the overall phase-averaged image covered a different area of the vehicle (e.g., one frame may

show mostly PVG and little of the wake whereas another frame may show mostly wake and

little of the PVG), different regions of the phase-averaged frames have different numbers of

phases averaged (e.g., all frames show the wake near the vehicle whereas less frames show

the wake far from the vehicle). This is visible in the resulting phase-averaged dye frames

as vertical bars as seen in figure 2.9(c).

2.2.6 Procedure for Self-Propelled Runs

For each self-propelled run of the AUV, two independent parameters controlled its behavior:

the throttle setting, T , and the chamber fill time, τ . The general procedure for a run was

as follows:



44

(a) Example raw frames from dye-visualization run with T = 1700, τ = 10. Each frame is from
approximately the same phase of the oscillation cycle and are approximately 0.16 seconds apart.

(b) Simulated stacking of dye visualization frames from Part (a), above.

(c) Final phase-averaged result including frames from part (a) after stacking (demonstrated in part
(b)) and image correction (brightness and contrast). Vertical bars are present in the wake due to
video frame border (cf. part (b)).

Figure 2.9: Example results from dye visualizations of PVG wake.
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1. Move cart to its starting position.

2. Fill the air chamber of the PVG for the duration specified by τ using the fill solenoid,

controlled by the DAQ computer.

3. Commence data recording on both the DAQ and cart computers as the AUV propeller

motor turns on and quickly spins up to specified throttle setting.

4. The AUV moves in a self-propelled manner via the cart system.

5. When the cart reaches a specified location along the tank, the cart computer turns

off the AUV motor to allow the system to coast and slow down before the run halts

to a finish or before the vehicle encounters the end of the tank.

6. Cart system halts once the run time elapses (generally set between 50 and 100 sec-

onds).

7. The DAQ computer opens the exhaust solenoid to allow the air chamber pressure to

recover to ambient pressure.

8. The cart system slowly returns the system to its starting position in the tank.

9. The system waits 15 seconds for the air chamber pressure of the PVG, Pe, to com-

pletely recover to ambient before ending the run.

The settling time of the tank between subsequent runs was evaluated to ensure that

each run was independent. Tests were conducted at a variety of vehicle speeds and found

no significant difference in results from sets of runs performed with no delay versus sets of

runs performed with a delay on the order of several minutes between runs. Thus all future

runs were conducted without any additional delay. For taking measurements of the jet exit
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velocity, the AUV is first started on a self-propelled run. Once the cart has reached a steady

velocity, the LDV recording is manually started. Before the steady velocity portion of the

run ends, the LDV recording is then manually stopped.

An algorithm was developed to find the range of time at which the vehicle is steadily

moving (∂U∞/∂t ≈ 0) and, once this time segment is found, to obtain time averages of

the various quantities during this time. The steady segment was found by analyzing the

position and velocity data. Based on the procedure for a run, the vehicle motor turns off

either at a specified position or when the duration of the run elapses (cf. step 5 above).

This point marks the end of the steady segment, tstop in figure 2.10. The beginning of the

steady segment, tstart in figure 2.10, is found by finding the point early in the run where

the velocity is 98% of the velocity averaged over [tstop − 1, tstop]. This yields the beginning

and end points in our data where the vehicle is steadily moving itself in the tank, however

is only applicable for the data from the cart computer. The cart computer recorded the

vehicle speed and position, whereas the DAQ computer recorded the pressure signals and the

AUV motor’s current and voltage. It was initially attempted to use simultaneous recording

triggers, however due to inconsistent start-up delays in recording on both of the computers,

the recorded data signals were used for synchronization during processing.

Fortunately, there are landmarks in the recorded data that were able to be used to

synchronize the data. To find tstart and tstop in the data from the DAQ computer we

compare two data series. The AUV motor current, I, has a square wave pattern of one

period during a run, as depicted in figure 2.10. The motor turns on at the beginning of a

run, which quickly drives the current high, and stays at that same speed until the vehicle

reaches the specified coasting position within the tank or, less commonly, the run time

elapses. For either case, as illustrated in figure 2.10, the knee in the velocity data (or the
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Figure 2.10: Schematic illustrating how the data is synchronized between the two computers.
The top plot shows the velocity data and is taken from the cart computer with its time,
tcart. The bottom plot shows the AUV motor current data, I, and is taken with the DAQ
computer with its time, tDAQ. The dotted lines show how the steady time segment is found
and how time is synchronization between the two computers.

end of the run) results from the motor turning off, which is reflected in the plot of the motor

current. Thus to synchronize the data from the two computers, identifying the point where

the motor current decreases significantly and aligning it with the specified coasting position

from the cart computer data is all that is required. This aligns tstop, as shown in figure

2.10. The error in this alignment is dependent on the thresholds used in the synchronization

algorithm and is approximately 0.5 s. This error is primarily on the side of finding tstart and

tstop from the vehicle velocity data as the motor current signal yields a very reliable form.

Since we already know the duration of the steady run, tsteady = tstop − tstart, the bounds

for time averaging the steady portion of the self-propelled runs for all of the data collected

from both computers are set.
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2.2.7 Formation Time

As discussed previously (cf. section 1.2), the formation time of the ejected fluid characterizes

the vortex rings that are produced. To calculate the formation time for a pulsed jet,

adjustments have to be made to the standard definition of formation time, t̂GRS , given as

t̂GRS =
Uptp

D0
, (2.9)

where Up is the average piston velocity, tp is the discharge time, and D0 is the nozzle

diameter as defined in Gharib et al. (1998). This definition is based on the use of a piston-

cylinder arrangement for producing vortex rings in a quiescent tank. However, because the

present system creates a train of vortex rings from a moving system, two adjustments have

to be made.

Krueger et al. (2003) considered the creation of vortex rings created in co-flow, where the

ambient fluid is flowing parallel and in the same direction as the jetting fluid, and revised

the formation time, t̂GRS , to be

t̂KDG =
tp (Up + Vc)

D0
, (2.10)

where Vc is the average co-flow velocity. This revised form of the formation number is

appropriate for application to propulsion in particular as at steady state, the vehicle will

be moving and thus the vortex rings will be formed in the presence of co-flow. A derivation

of this form of the formation time is provided in appendix C.

The second adjustment is to redefine the formation time for a pulsed system rather than

a one-pulse setup. Since the ejection time tp ∼ 1/f , where f is the oscillation frequency, we
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can redefine the formation time for self-propelled pulsed jets (which are in co-flow) as

t̂ =
Uj +U∞

fD0
, (2.11)

where Up and Vc have been replaced by Uj and U∞, respectively. In reality, the period

of pulsation, 1/f , is greater than the ejection time, tp, and would tend to overpredict the

formation time; however, this overprediction is not present in the current experiments and

the definition given is correct (cf. appendix D). The oscillation frequency is calculated

from the peak in the fast-Fourier transform of the mean-subtracted transmural pressure,

Pt, during the steady-state portion of the self-propelled run. Furthermore, a threshold

was applied to the amplitude of the Fourier-transformed Pt in order to ensure that there

was a significant periodic signal present in the pressure signal. Only runs with frequency

amplitudes exceeding this threshold are considered oscillating cases. It should also be noted

that the wake structure behind the vehicle could affect the co-flow velocity that the vortex

ring experiences during roll-up (e.g., the wake of the vehicle could cause a velocity deficit

at the nozzle edge). This phenomena was not explored as a part of this study, however is

something to consider.

Figure 2.11 shows both the (false-color) planar laser-induced fluorescence image of vortex

ring ejection for three formation times and an illustrated silhouette depicting the expected

image of the same event using food coloring as dye and room lighting (as was done with

the AUV dye visualization). For figures 2.11(a) and (b), one can see that for formation

times less than the formation number (t̂/F < 1), one expects to see the primary vortex ring

along with a minimal amount of dye in its wake. Additionally, as the formation number is

increased, the size of the vortex ring created increases as well. However for fluid ejections
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that are greater than the formation number (t̂/F > 1), as seen in figure 2.11(c), “bumps”

along the trailing jet form. These bumps correspond to secondary vortex rings that are

created after the primary vortex ring has pinched off. The example in figure 2.11(c) is from

a sufficiently high formation time (t̂/F = 2) that many secondary rings have been created

in the trailing jet.

Additionally, Krueger et al. (2006) showed that the formation number, F , at which a

vortex ring pinches off from its trailing jet, is dependent on the co-flow conditions. They

expressed the co-flow conditions in terms of a velocity ratio, Rv, where

Rv =
U∞
Uj

, (2.12)

using the current nomenclature. In particular, they conducted a series of experiments

measuring the formation number at various velocity ratios ranging from Rv = 0.0 − 0.9

(figure 2.12). The significant feature of this plot shows that there is a sharp transition in

the formation number around Rv = 0.6. However, above and below this transition point,

the data shows a nearly linear trend. Below the transition point, a least-squares fit was

obtained (using the data points marked in red) and yielded the equation F = 4.0 − 1.8Rv

(0 ≤ Rv ≤ 0.6).

The explanation for the drop-off of the formation time with increasing velocity ratio

was found to result from the high level of the co-flow effectively stripping the vortex ring

from the shear layer, thus discontinuing any addition of the shear layer into the vortex ring.

This was shown to be the case by consideration of the self-induced velocity of the vortex

ring added to the co-flow velocity and compared against the shear layer velocity (Krueger

et al. 2006). At the point of vortex ring pinch-off, the vortex ring’s combined velocity (both
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Figure 2.11: Top image is of a false-color planar laser-induced fluorescence (PLIF) of vortex
ring ejection from Gharib et al. (1998) © Cambridge University Press, reproduced with
permission. The bottom image is a simulated dye visualization image of the same event
created using a silhouette of the PLIF image.
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Figure 2.12: Plot of the formation number, F , versus the velocity ratio, Rv, from Krueger
et al. (2006). For velocity ratios less than 0.6, as indicated by the red dots, a linear fit of
the data was obtained and is shown as the red line.

self-induced and from the ambient co-flow) would be greater than the velocity of the shear

layer and thus the vortex ring would pinch-off.

2.2.8 Error Analysis

The error for the measurements was calculated a few different ways. For measurements

that yield a Gaußian distribution, the error bounds are given by the use of Student’s t-

distribution to obtain a 95% confidence interval for the measurement (Beckwith et al. 2007,

pgs 55-6). A Gaußian distribution applies to the measurements of: U∞, FD, I, and V during

the period of the run when the vehicle is moving steadily (∂U∞/∂t ≈ 0). For the jet velocity,

Uj , the distribution of these measurements is in fact Gaußian, even for the oscillating

regimes, owing the significant level of turbulence in the jet. As such, the error bars for

the mean jet velocity are the 95% confidence interval using the Student t-distribution in
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addition to 13% of the mean value, where the latter addition is due to the non-uniformity of

the jet as observed in section 2.2.4. For any quantity that is calculated based on measured

values, the error is propagated by summing the product of the error in the measured value

and the sensitivity of the calculated quantity to that measured value in a root-mean squared

fashion (Beckwith et al. 2007).

2.3 Results and Discussion

2.3.1 Drag

The results for a range of velocities for the two system configurations are shown in figure

2.13(a). One can normalize the drag force by the dynamic pressure and the cross-sectional

area of the AUV to yield a drag coefficient,

CD =
FD

1
2ρU

2
∞AV

, (2.13)

where CD is the drag coefficient, ρ is the density of water, and AV is the cross sectional

area of the AUV (taken to be the area of a circle with diameter 12 cm), plotted in figure

2.13(b).

The drag tests were in a range of ReV = 200,000–900,000 based on the total vehicle

length. Due to its high Reynolds number, it was expected that the drag coefficient would

remain constant throughout all velocities. However, one can see that the drag coefficient

only becomes constant at higher velocities, i.e., over 40 cm s−1. This is believed to be due

to the significant amount of mechanical vibrations that the cart experiences as it moves

and are transmitted to the force transducer; i.e., vibrations from the support side of the

transducer, not on the vehicle side of transducer. As the vehicle increases in speed, the
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(a) Plot of the measured drag force of the AUV
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(b) Plot of the drag coefficient for the AUV
alone and the PVG-integrated AUV system.
The drag coefficient is given by equation 2.13
using the data from 2.13a. Error bars indicate
range of 95% confidence interval.

Figure 2.13: Results of the drag measurements for the AUV and PVG-integrated AUV
system configurations for two runs at each configuration and vehicle speed.

strength of the fluid drag force begins to dominate the mechanical vibrations and yields the

expected plateau in the drag coefficient, as seen in figure 2.13(b). Assuming that the value

of the drag coefficient at 60 cm s−1 is correct (as the fluid drag will have more adequately

suppressed mechanical noise in the measurements), then the addition of the PVG to the

AUV does not significantly affect the overall drag of the vehicle as seen by the overlapping

error bars. Additionally, the divergence of the drag coefficient, CD, for at low velocities is

of note as the PVG-integrated AUV shows a lower drag coefficient than the AUV alone.

This could be due to the more massive PVG-integrated AUV dampening the mechanical

vibrations better than the less massive AUV alone.

2.3.2 Vehicle Speed

The mean vehicle speed measured from the combined long- and short-range distance sensor

while the AUV was in steady operation is plotted in figure 2.14 for a range of T and τ . This

yields a range of ReV = 8900–1,000,000. For T = 1600–1750, there is an absence of results for

low chamber fill times as these runs were attempted but they were not fully self-propelled,
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Figure 2.14: Plot of the vehicle velocity, U∞, versus the chamber fill time for the variety
of throttle settings tested. Error bars showing the bounds of a 95% confidence interval are
also plotted but are hidden by the marker size.

as the cart reached maximum speed which saturates the controller output. As such, these

conditions are omitted from the data set. However, the higher T settings of 1300–1750 along

with sufficiently high τ slows down the AUV system enough for the cart system to provide

a self-propelled run, as seen in figure 2.14. For each throttle setting tested, the chamber fill

time was increased until forward propulsion was essentially extinguished.

In general, it is clear that increasing T increases the vehicle speed. Furthermore, it is

seen that there is a critical τ , τcrit, after which the vehicle speed begins to decrease. The

value of τcrit decreases with increasing throttle setting and ranges from approximately 4 to

6 s at the high to low range of T , respectively. The value of τcrit also corresponds well to

the onset of significant tube cross-sectional area reduction as seen in figure 2.3b. Thus the

plateau in the AUV velocity at low τ is due to the tube being in an uncollapsed state and

acting as a straight tube.



56

0 5 10 15 20
0

50

100

150

200

250

τ [s]

U
j
[c
m

s−
1
]

 

 

1750
1700
1650
1600
1550
1500
1450
1400
1350
1300
1250
1200

T

Figure 2.15: Plot of the jet velocity, Uj , versus the chamber fill time for the variety of
throttle settings tested. Error bars showing the bounds of a 95% confidence interval are
also plotted but are mostly hidden by the marker size.

2.3.3 Jet Velocity

The jet velocity, Uj , was measured by the LDV probe and is given in figure 2.15. These

results yield a jet Reynolds number, defined as

Rej =
UjD0

ν
, (2.14)

in the range of Rej = 7000–86,000, indicating that the jet was fully turbulent. The results

seam to mimic the general trends of the vehicle speed, shown in figure 2.14, where larger

T yields higher velocities and that after τcrit, the velocities drop quickly. This is primarily

related to the increased resistance to flow due to tube collapse as τ is increased.

Figure 2.16 shows plots of the phase-averaged jet velocity as a function of time. These

plots are from 50 oscillation periods that have been phase-averaged and matched based on
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the trough of the oscillation period. The black line indicates the phase-averaged value of the

velocity and the light gray band indicates one standard deviation from the phase-averaged

value. Additionally, a dot-dashed gray line indicates the value of the overall mean of the jet

velocity from all points in the original LDV data. From this dataset one can see that the

jet velocity during an oscillation cycle can be generally described by a sinusoid, however

there are also higher order modes present as well.

2.3.4 Oscillation Frequency

The oscillation frequencies are plotted in figure 2.17. The value of f can be seen to generally

increase as T is increased. However, for a given T , there does not appear to be a strong

relationship between f and τ—although a slight depression in f appears around τ = 10–12 s.

2.3.5 Efficiency

Using the results for Uj and U∞, both measured during steady state, the Froude efficiency,

η, can be calculated and yields figure 2.18 (cf. equation (1.4)). In general, as one increases

T , η increases as well. Furthermore, at τ less than τcrit, η is nearly constant. This τcrit

from the η data set is again approximately 6 seconds, which corresponds to the onset of

tube collapse as seen in figure 2.3b.

At τ greater than τcrit, where the tube has begun to collapse, the Froude efficiency,

η, and its trend varies significantly depending on the throttle setting. For throttle values

below 1300, the Froude efficiency decreases sharply with increasing chamber fill time. These

decreases appear to be driven primarily by a low U∞ manifesting as a low η. The low U∞

is likely due to the difficulty running the cart system at low velocities (cf. section 2.2.2).

For throttle settings above 1300, the trends of the Froude efficiency appear to exhibit a
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Figure 2.16: Phase-averaged results of the jet velocity measured at the center of the jet.
Each plot shows two phase-averaged oscillation cycles with time normalized by the oscilla-
tion period (thus the data is repeated). Each plot is generated from 50 oscillation periods
averaged together with the phase-averaged velocity given by the thick black line with the
standard deviation of the constitutive data denoted as the light gray banding. Also drawn
as the gray dot-dashed line is the overall time-average from the entire set of data for those
self-propelled conditions.
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Figure 2.17: Plot of the oscillation frequency versus the chamber fill time for the variety
of throttle settings tested. Error bars are plotted, however are mostly obstructed by the
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Figure 2.18: Plot of the calculated Froude efficiency, η, versus the chamber fill time for
the variety of throttle settings tested. Error bars showing the bounds of a 95% confidence
interval of η are also plotted but are mostly hidden by the marker size.
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well-defined, local peak and then either decrease quickly or plateau briefly before dropping

off. In all of these results, the sharp decreases are driven by the very low U∞ (cf. figure

2.14).

It should be noted that the definition of the Froude efficiency in equation (1.4) assumes

that the flow is completely steady (∂/∂t = 0 for all terms). However, it is clear in this case

that this assumption is invalidated. A discussion of this effect and the potential of η to

over- or underestimate the hydrodynamic efficiency is presented in appendix E.

Equation (2.11) was used to calculate the formation time which was used to replot the

efficiency values in figure 2.19. By plotting the data in this way, the peaks that were previ-

ously spread out in figure 2.18 have become more aligned around t̂ = 3.0–3.5. Furthermore,

the plot has flipped along the vertical direction as low values of η are correlated with low

values of t̂. This means for low formation times (t̂ < 2) that η decreases precipitously. The

trend in η for t̂ > 4 appears to level off and plateau.

The measured Rv from the AUV system is plotted in figure 2.20. While the measured

Rv from the AUV system is variable, the maximum Rv is less than 0.5. Thus the linear fit

obtained from the Krueger et al. (2006) can be used to obtain the co-flow specific formation

number, F (Rv), assuming that the formation numbers measured by Krueger et al. (2006)

apply to the PVG-generated vortex rings. For the present data, the Froude efficiency, η,

versus the normalized formation time, t̂/F , is plotted in figure 2.21.

As a comparison of the pulsed jet efficiency against the steady jet efficiency, the Froude

efficiency, η, for the oscillating cases can be normalized by the Froude efficiency for the

nonoscillating case, here taken to be the Froude efficiency when τ = 0 s, denoted as η0. This

is plotted in figure 2.22 and appears sparser than figure 2.21 as T > 1550 do not have an

η0 for comparison (cf. figure 2.14). Figure 2.22 shows the potential for a 15% increase in
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Figure 2.19: Plot of the calculated Froude efficiency, η, versus the formation time, t̂, for the
variety of throttle settings tested. Error bars show the bounds of a 95% confidence interval
for both η and t̂.
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Figure 2.20: Plot of the velocity ratio, Rv, versus the co-flow formation time, t̂, for the
variety of throttle settings tested. Error bars show the bounds of a 95% confidence interval
for both Rv and t̂ are also plotted.
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Figure 2.21: Plot of the Froude efficiency versus the normalized formation time for the
variety of throttle settings tested. Error bars showing the bounds of a 95% confidence
interval for both η and t̂/F .

the Froude efficiency when the formation time for vortex ring formation is aligned with the

formation number.

An alternative means of comparing the pulsed jet to the steady jet can be done by

normalizing the Froude efficiency by the average Froude efficiency for τ = 6, η6, as seen

in figure 2.23. The reason for averaging at τ = 6 is that every throttle setting has a data

point for τ = 6 and that this is within the plateau region for low τ (cf. figure 2.18). This

yields a similar result to that of figure 2.22, however it allows for every throttle setting

to be represented. The data from this plot indicates that an increase in efficiency over a

steady jet of 22% can be obtained for higher throttle settings and when the formation time

is aligned with the formation number.
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Figure 2.22: Plot of the Froude efficiency normalized by the Froude efficiency for τ = 0 s,
η/η0, versus the normalized formation time, t̂/F , for various values of T . Error bars showing
the bounds of a 95% confidence interval for both η/η0 and t̂/F are also plotted.
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Figure 2.23: Plot of the Froude efficiency normalized by the Froude efficiency for τ = 0 s,
η/η0, versus the normalized formation time, t̂/F , for various values of T . Error bars showing
the bounds of a 95% confidence interval for both η/η0 and t̂/F are also plotted.
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2.3.6 Vortex Ring Formation

Figure 2.21 highlights something that was earlier obscure: the peak in the Froude efficiency,

η, corresponds with the vortex ring formation number where t̂/F = 1. To demonstrate that

this is indeed the case, it is illustrative visualize the vortex ring formation at formation

times below, at, and above the formation number where t̂/F < 1, t̂/F ≈ 1, and t̂/F > 1,

respectively.

With figure 2.11 in mind, let us consider the phase-averaged frames from the dye visu-

alization at the end of the pulsation cycle. These are arranged in figure 2.24 according to

their normalized formation time. For the complete set of phase-averaged dye frames, see

appendix F. There are some key differences between the single vortex ring images from

figure 2.11 and the phase-averaged frames of figure 2.24. The first is that the results from

the phase-averaged frames are from a series of vortex ring ejections, which create a train

of vortex rings. This yields much darker images overall. Secondly, the images from figure

2.11 were taken after the vortex ring had advected many diameters away from the vortex

generating nozzle. This yields a relatively thin amount of trailing dye for figures 2.11(a) and

(b). This is in contrast to the images from the phase-averaged frames presented in figure

2.24 where the last vortex ring ejected is only a nozzle diameter away from the nozzle (or

less). Because of this, the trailing dye is more significant than that shown in the example

images of figure 2.11.

Phase-averaged dye visualizations for runs far below the formation number, t̂/F < 1,

are shown in figures 2.24(a) and (b) with normalized formation times of t̂/F = 0.31 and

0.24, respectively. Consultation with figure 2.11(a) suggests that one should see a small

primary vortex ring and negligible amounts of trailing dye. The train of dyed vortex rings

in these images makes the vortex rings harder to discern, however comparison with the other
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T = 1500 T = 1700

t̂/F < 1

(a) t̂/F = 0.31. T = 1500 and τ =

14 seconds (also as figure F.11a).
(b) t̂/F = 0.24. T = 1700 and τ =

16 seconds (also as figure F.16a).

t̂/F ≈ 1

(c) t̂/F = 0.89. T = 1500 and τ =

10 seconds (also as figure F.10a).
(d) t̂/F = 0.96. T = 1700 and τ =

10 seconds (also as figure F.15a).

t̂/F > 1

(e) t̂/F = 1.48. T = 1700 and τ = 7
seconds. Arrow indicates location
of bump in trailing jet (also as fig-
ure F.14a).

Figure 2.24: Phase-averaged dye visualizations frames at the end of the pulsation cycle. For
viewing the rest of the oscillation cycle, see appendix F.
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images of figure 2.24 shows that the conditions in (a) and (b) yield the smallest vortex rings

(compared to their higher-τ counterparts for the same T ) with the least amount of trailing

dye, both of which are consistent with a low-formation-time vortex ring.

Phase-averaged dye visualizations for runs near the formation number, where t̂/F ≈ 1,

are shown in figures 2.24(c) and (d). After consultation with figure 2.11(b), one expects

the primary vortex ring to be individually isolated and the existence of a small trailing jet

may be seen. Furthermore, one should see a larger ring than with the lower formation time

conditions. This is qualitatively in agreement with the phase-averaged dye visualizations.

The dye visualization frames of figures 2.24(c) and (d) depicts vortex rings that appear to

be larger in size than in figures 2.24(a) and (b) and there is in fact a significant amount of

trailing dye. The amount of trailing dye in figures 2.24(c) and (d) is much greater than figure

2.11(b) suggests it should be, however as mentioned previously, this is likely a consequence

of the image being taken when the vortex ring is close to the nozzle rather than advected

further downstream (as in figure 2.11).

Finally, let us consider the case for formation times greater than the formation number

where t̂/F > 1. This is shown in figure 2.24(e) with a normalized formation time of t̂/F =

1.48. As in figure 2.11(c), we expect to see bumps along the trailing jet from the primary

ring that would indicate the formation of secondary vortices. While the primary vortex ring

in figure 2.24(e) is not as coherent as in the other frames in figure 2.24, a bump trailing

behind the primary ring is visible as indicated by the arrow. This bump is not a single

random occurrence, but in fact is present in each pulse as this image is obtained from 4

frames phase-averaged together. This indicates that the primary vortex ring has indeed

pinched off from the trailing jet. In contrast to figure 2.11(c), figure 2.24(e) shows only

one secondary vortex ring is created, but that is consistent with the much lower normalized



67

formation time of figure 2.24(e) (t̂/F = 1.48 versus 2.25).

Other cases where vortex ring pinch-off is expected are shown in figure 2.25. Figure

2.25(a) shows the vortex ring formation for a normalized formation time t̂/F = 1.33. This is

beyond the formation number and, as indicated by the arrow, a small bump can be observed

along the trailing jet; this indicates vortex ring pinch-off. Other runs that yielded very high

formation number are depicted in figures 2.25(b)–(d). The runs depicted in these figures

have measurable oscillations (as measured by the transmural pressure signal), however it

is clear that the amplitude of these oscillations in the velocity are small from the phase-

averaged dye visualizations. Thus even though one may measure pressure oscillations, that

is not sufficient to prove that there is a substantial shear-layer roll-up that creates significant

vortex rings.

Additionally, it should be noted from figure 2.24 that the cases where t̂/F ≈ 1 show a

increased rate of jet spreading which indicates higher entrainment (Ho & Gutmark 1987;

Liepmann & Gharib 1992; Reynolds et al. 2003). Ruiz (2010) also found that a pulsed jet

exhibited increased entrainment over a steady jet for a self-propelled vehicle.

2.3.7 Power Consumption

Following Ruiz (2010), it is useful to consider not only the hydrodynamic efficiency of the

AUV but that of the entire system, including the power losses through the electrical wires,

conversion to mechanical power through the motor, any frictional losses through the drive

shaft, the propeller efficiency, and also any losses from the internal geometry of the PVG.

In order to consider the system as a whole, we evaluate the total efficiency via a power

coefficient

C ′
p ≡

IV
1
2ρSU

3
∞

, (2.15)
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(a) t̂/F = 1.33. T = 1500 and τ =

8 seconds (also as φ = 0 of figure
F.8).

(b) t̂/F = 1.77. T = 1700 and τ =

5 seconds (also as φ = 0 of figure
F.12).

(c) t̂/F = 1.59. T = 1700 and τ =

6 seconds (also as φ = 0 of figure
F.13).

(d) t̂/F = 1.48. T = 1700 and τ =

8 seconds (also as φ = 0 of figure
F.14).

Figure 2.25: Phase-averaged dye visualizations frames at the end of the pulsation cycle
for conditions yielding high normalized formation times, t̂/F . For viewing the rest of the
oscillation cycle, see appendix F.
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Figure 2.26: Plot of the power coefficient versus τ for various values of T . Error bars are
not included, but the maximum error of the data points plotted was 9%.

where S is the external wetted area of the vehicle (Ruiz 2010). This definition physically

yields the amount of electrical power required to sustain the energy of the vehicle, where

lower values indicate more efficient means of propulsion. The values of C ′
p for the conditions

tested are plotted in figure 2.26.

In general one sees that for increasing throttle settings, the power coefficient decreases.

This indicates that higher throttle settings are more efficient, which is consistent with the

results of figure 2.18. Furthermore, figure 2.26 indicates that the lowest power coefficients

are obtained for low values of τ ; in fact, the lowest C ′
p values for a given T are for τ < τcrit.

This indicates that while the hydrodynamic efficiency of the vehicle may have increased 22%

through the addition of the PVG, that the overall system has suffered due to the significant

flow losses through the PVG.



70

2.3.8 Discussion

The observed peak in efficiency shown in figures 2.22 and 2.23 correlates well with the work

of Krueger (2001), who showed that the average thrust per pulse is maximized at pinch-off

and even after normalizing the average thrust by the dynamic pressure the conclusion holds.

Later work by his group involved the use of a pulsed-jet vehicle, named “robosquid,” which

uses a motor-driven piston to propel itself, as mentioned in section 1.3. The current results

of the PVG-integrated AUV are distinct from “robosquid” in several respects. In particu-

lar, work reported by Moslemi & Krueger (2010, 2011) measured the relative efficiency of

“robosquid.” These results have been reproduced in figure 2.27. It should be noted that the

formation number for these studies are actually based on the t̂GRS definition, but for these

tests Rv = 0.05 − 0.10 and thus the t̂/F plotted is expected to be only 5-10% off of the true

value. It is expected that their relative efficiency, ηP /η, is comparable to the normalized

Froude efficiency, η/η0, used in the current study.

The results of Moslemi & Krueger (2010, 2011) show nearly a monotonic decrease in

the normalized efficiency, ηP /η as the formation time t̂/F is increased. This is contrast to

the current study where a peak in efficiency occurs at t̂/F = 1. It should be noted that the

peaks in η/η0 for the PVG-integrated AUV were obtained at ReV ≈ 480,000; a higher ReV

than that of Moslemi & Krueger (2011) by over an order of magnitude. However at the

relatively high ReV of both vehicles one would generally have expected that the flow would

become ReV -independent.

Later work in the same group examined variations in the inlet geometry through aftward

and foreward inlets and variations in the nozzle geometry though a blunted exit and orifices

of two different diameters at ReV = 210–850 (Nichols & Krueger 2012). These results are

shown in figure 2.28 where the normalized propulsive efficiency, ηP /η, is defined the same
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Figure 2.27: Plot of the ratio of the pulsed jet to steady jet propulsive efficiency, ηP /η, versus
the normalized formation time, t̂/F , from Moslemi & Krueger (2010, 2011) where F = 4 is
assumed. As Moslemi & Krueger’s vehicle was driven by a piston, they were able to control
both the formation time of the pulses as well as the speed of pulsation, non-dimensionalized
here such that StL = ftp where tp is the pulsation time duration, which are indicated by
the different markers. The line style indicates the range of Reynolds number from the tests,
where Moslemi & Krueger (2011) yielded ReV = 290–470 (O(102)) and Moslemi & Krueger
(2010) (via (2011)) yielded ReV = 10,200–21,100 (O(104)).
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Figure 2.28: Plot of the ratio of the pulsed jet to steady jet efficiency, ηP /η, versus the
normalized formation time, t̂/F , from Nichols & Krueger (2012) where F = 4 is assumed.
As Nichols & Krueger’s vehicle was driven by a piston, they were able to control both the
formation time of the pulses as well as the speed of pulsation, nondimensionalized here such
that StL = ftp where tp is the pulsation time duration, which are indicated by the different
line styles. The marker and color indicate the variations of the vehicle from the baseline
configuration.

as in Moslemi & Krueger (2010, 2011). Broadly, they found similar results to Moslemi &

Krueger (2010, 2011) where decreases in t̂/F yield increases in ηP /η. In particular, they

found that the inlet variations had little to no effect on the normalized propulsive efficiency,

ηP /η. However, the different nozzles did yield a measurable effect.

In general, the different nozzles show the same characteristic performance trends seen

before, where decreases in the formation time, t̂/F , yield increases in the efficiency, ηP /η, as

seen in figure 2.28. However, of note is the case of the large orifice nozzle. When the ηP /η

is calculated, one can see a slight peak around the formation number for a nondimensional

frequency of StL = 0.5. However, this peak is not nearly as significant as the peak described

in the current study as it is clearly overshadowed by the high efficiencies at lower formation



73

0 0.5 1
0

0.5

1

1.5

t̂/F

η
/
η
S
W

O
S

 

 

Motor 1

Motor 2

Figure 2.29: Plot of the ratio of the pulsed jet to steady jet efficiency, η/ηSWOS , versus the
normalized formation time, t̂/F , from Ruiz (2010) where F is calculated based on the linear
fit to the Rv value from Krueger et al. (2006). In the work of Ruiz, the submarine used two
different motors and the data is segregated based upon the motor used for the tests. As
such, the different colors indicate the different motors used.

time.

The other body of work on self-propelled vehicles that use vortex rings for propulsion was

done by Ruiz et al. (2011). Ruiz et al. used a custom-designed submarine that modulated

the inlets using a rotating shell that was geared to the motor shaft. For the control exper-

iments, the vehicle was operated with the rotating shell removed, a case coined “SWOS”

for “steady [jet] without shell.” Thus the normalized efficiency is plotted as η/ηSWOS and

are plotted against the normalized formation time (using the linear fit to the velocity ratio

from Krueger et al. (2006) to correct for co-flow due to being self-propelled) in figure 2.29.

The definition for the formation time plotted in figure 2.29 uses the current definition given

in equation (2.11), rather than the definition used in the sourced work.

The results plotted in figure 2.29 indicate that the vehicle operated in a fairly narrow

regime in both efficiency and formation time space. It is interesting that while the rotation

rate of the shell ranged from 8.5–12.5 Hz, the jet and vehicle speed adjusted to maintain a
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relatively small range of formation time. Because of the small parameter range explored,

it is not possible to explore any trends in the data. However, it is worth noting that the

data is slightly beyond the formation number, indicating that the vortex ring size was likely

maximized. This could explain why the mean normalized efficiency values of these points

lie above unity.

Figure 2.30 compiles the results of Moslemi & Krueger (2011); Nichols & Krueger (2012)

and Ruiz (2010) along with the current work in a single plot. This allows for easier com-

parison amongst the results of the different researchers and platforms used. In particular,

the results of Ruiz align well with the peak observed in the current data set as mentioned

previously. However, it is also clear from these compiled results that while all of these

vehicles were shown to produce vortex rings, there is no clear overall trend amongst the

different vehicles in regards to the normalized efficiency as a function of the formation time.

In particular a significant variance occurs in the behavior for low formation time. The “ro-

bosquid” vehicle (Moslemi & Krueger 2011; Nichols & Krueger 2012) found that decreasing

formation time yielded a monotonic increase in the efficiency whereas the current results

find the opposite. It is difficult to determine why this discrepancy exists, as it could be

an effect of the different Reynolds number regimes (ReV = O(102–104) for “robosquid”

versus O(105) for the current work) or simply a function of the vehicle geometry and the

mechanism for producing vortex rings.

To help address this discrepancy, we can consider some more recent work in this area.

A study by Krieg & Mohseni (2013) also considered the effects of nozzle geometry and

conducted a series of experiments exploring orifice versus tube geometry. Their findings

showed a 70%–75% increase in the impulse and a 105%–135% increase in the kinetic energy

of a jet produced by an orifice over a tube. Because of the greater increase in the kinetic
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Figure 2.30: Compiled results showing all of the data points from Moslemi & Krueger
(2011); Nichols & Krueger (2012), Ruiz (2010), and the current work.

energy than in the impulse, one would expect that Nichols & Krueger (2012) would have

found that the orifice designs are less efficient in their study of a self-propelled vehicle.

It should be noted that these measurements are only based on the resulting flow field

and without consideration of the pressure field, which has been found to be an important

contribution in unsteady flows (Krueger & Gharib 2005). However, in figure 20 of Krieg &

Mohseni (2013), they show that the overpressure at the exit is sustained for a far longer

time in the orifice geometry than in the tube geometry. This could yield a higher efficiency

for vortex rings created through orifices rather than tubes, due to an increased contribution

to nozzle exit overpressurization.

2.3.9 Model Predictions

Ruiz et al. (2011) developed an analytical model for predicting the efficiency of a pulsed-jet

vehicle. Under various assumptions such as t̂/F < 1 and that the frequency of oscillations f

are sufficiently high such that ∂U∞/∂t ≈ 0, the efficiency of the vehicle, ηR, can be expressed
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as

ηR ≈
2

3
(1 + αxx)

U∞
Uj

, (2.16)

where αxx is the added mass coefficient for the forming vortex ring. Using the dye visual-

izations shown in figure 2.24 of the vortex rings at the end of the pulsation cycle, the shape

of the vortex bubble can be obtained. The vortex bubble is defined as the volume of fluid

that moves with the vortex ring (Maxworthy 1972). Generally, the vortex bubble can be

obtained through streamline analysis (Dabiri & Gharib 2004b; Shariff & Leonard 1992), dye

visualization (Shariff & Leonard 1992), or, more recently, Lagrangian coherent structures

(LCS) (Shadden, Dabiri & Marsden 2006). It was suggested by early observers such as

Maxworthy (1972) that measuring the vortex bubble via dye visualization would produce

an underestimation of the true bubble volume. Olcay & Krueger (2008) conducted a study

of fluid entrainment by vortex rings and measured the vortex bubble size using all three

methods. They found that in all cases, the dye method underestimated the vortex volume

and that the error increased in time, as the vortex volume increased through entrainment

and diffusion of vorticity but that the dye did not reflect this. Olcay & Krueger (2008) also

found that there was close agreement between the streamline and LCS methods but that

in general, the streamline method also underpredicts the vortex bubble volume, which is in

agreement with the results of Shadden et al. (2006).

While it is known that the volume of the vortex bubble will be underpredicted by using

the dye method, Olcay & Krueger (2008) show that at at the end of a pulsation cycle (if

we assume a 50% duty cycle) that this error is, at worst, 10% of the volume and thus we

assume that this results in a 3% error in any one dimension of the vortex ring (e.g., 3%

error in the thickness, and 3% error in each lateral direction from the axis).
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Under the assumption that the vortex ring can be modeled as an oblate ellipsoid of

revolution, the resulting vortex bubbles are approximated using ellipses as shown in figure

2.31. Using the major and minor axes sizes from these fits, a ellipsoid of revolution can be

constructed and used to calculate the added mass coefficient for the vortex bubble. The

equation for the added mass coefficient of an ellipsoid is given by Green (1835) and is

evaluated numerically with the error bounds obtained by perturbing the ellipsoid axes 3%.

The calculated added mass coefficients ranged from 0.98–1.17 which reflect the significant

oblateness of the vortex bubbles. Using equation (2.16), the pulsed jet efficiency can be

calculated and is compared to the standard Froude efficiency as shown in figure 2.32. In

general, one can see that the pulsed jet model yields results that are consistent with the

Froude efficiency. Thus one could expect to see a similar trend in the pulsed jet efficiency,

ηR, with a peak in efficiency around t̂/F = 1 as was found in the Froude efficiency results.
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T = 1500 T = 1700

t̂/F < 1

(a) t̂/F = 0.31. T = 1500 and τ =

14 seconds. αxx = 1.09 ± 0.06 (also
as figure F.11a).

(b) t̂/F = 0.24. T = 1700 and τ =

16 seconds. αxx = 0.98 ± 0.05 (also
as figure F.16a).

t̂/F ≈ 1

(c) t̂/F = 0.89. T = 1500 and τ =

10 seconds. αxx = 1.08± 0.06. (also
as figure F.10a).

(d) t̂/F = 0.96. T = 1700 and τ =

10 seconds. αxx = 1.17± 0.07. (also
as figure F.15a).

Figure 2.31: Ellipses are fit to the dyed vortex ring visible at the end of the pulsation cycle.
These ellipses are representative of the vortex bubble volume.
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Figure 2.32: Plot of the pulsed jet efficiency, ηR, and the Froude efficiency, η, versus the
normalized formation time, t̂/F , for two values of T . The conditions plotted have their
wake structures and vortex bubbles shown in figure 2.31.
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Chapter 3

Parameter Study Experiments

3.1 Introduction

A series of experiments exploring how physical parameters affect the frequency of oscillations

of collapsible-tube based devices was conducted. Section 3.2 presents the setup of the

experiments. Section 3.3 details the methods used to obtain the results. Lastly, section 3.4

describes the results of these experiments followed by a discussion.

3.2 Experimental Setup

The general design of the passive vortex generator (PVG) used in this study is shown in

Figure 3.1, with the values of key dimensions for each device given in table 3.1. The PVG

consists of a collapsible tube enclosed within an airtight box. A steady flow of water enters

the airtight box through a rigid tube and continues through the collapsible tube, made of

silicone, before exiting via another rigid tube into the ambient liquid. By adjusting the

flow rate through the tube and the pressure within the airtight box, the collapsible tube

spontaneously produces self-excited oscillations. This design is distinct from earlier Starling

resistors (and collapsible-tube experiments) as the flow exits through a nozzle into ambient

fluid rather than through a tube to recirculate within the experiment (Bertram 2003 and
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D0
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J

K
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P1 P2

Figure 3.1: Schematic of the PVG design with key dimensions marked. The collapsible
tube is indicated by the dashed line and water flows from left to right through the device,
as indicated by the grey arrows. Values of the key dimensions are given in table 3.1.

references therein, Bertram & Tscherry 2006, and Bertram et al. 2008).

The pressure within the chamber box and external to the tube is denoted Pe, and the

pressures upstream and downstream of the collapsible segment are denoted P1 and P2,

respectively (figure 3.1). A series of PVGs with tube diameters, D0, of 19, 38, and 57

mm were built and will be referred to henceforth by their relative nozzle size as small (S),

medium (M), and large (L) respectively.

Because the mechanism that drives these oscillations is still undetermined, it was not

immediately apparent whether the length of the collapsible tube should be coupled to the

diameter or left constant. If the length was a constant multiple of the diameter, then the

tubes of various diameter would maintain the same scaled shape. Since flow separation is

a theorized mechanism for the oscillations, then having a constant shape could maintain

the same flow separation characteristics as both the tube length and diameter are scaled.

Alternatively, it is useful to isolate the diameter as the sole variable in a set of experiments.

Because of these two considerations, a set of experiments were conducted with keeping both

the shape of the tube constant and the length of the tube constant. For the constant shape
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Table 3.1: Significant dimensions and parameters for each nozzle tested. The boxed table
cells indicate the two sets for comparison—one set where L0/D0 is constant and another
set where L0 is constant. The PVG dimensions are labelled in figure 3.1.

Case S-4 M-4 L-4 M-6 S-12

Tube Diameter, D0 (mm) 19 38 57 38 19

Tube Length, L0 (mm) 77 152 228 228 228

Chamber Height,a J (mm) 68 145 227 145 68

Chamber Length, K (mm) 129 205 281 281 281

h/D0 × 100 2.6 1.3 0.9 1.3 2.6

L0/D0 4 4 4 6 12

KP (N m−2) 4.0 0.50 0.15 0.22 0.44

KP,∞ (N m−2) 260 32 9.5 32 260

a The depth of the chamber is the same as the height

experiments, a series of nozzles were tested with the length of the collapsible section of the

nozzle fixed at L0 = 4D0. This yielded the series of nozzles denoted as S-4, M-4, and L-4

with the suffix indicating the L0/D0 ratio of the nozzle, as seen in table 3.1. The other

set of experiments was conducted with the length constant and the nozzles used for these

experiments were the L-4, M-6, and S-12 nozzles, as seen in table 3.1. The volume ratio, λ,

was kept constant across all nozzle sizes at approximately λ = 24.

The collapsible tube of each PVG was formed using 0.5 mm thick silicone sheets with a

Shore durometer hardness of 35A (Marian Chicago, Inc. HT6135). The collapsible tube was

constructed by wrapping a rectangular sheet on itself to create a hollow cylinder. The seam

overlap was typically 5 mm in size, and the seams were secured using aquarium silicone

sealant (Dap 00688). The tubes were designed to have nominally the same diameter as the

nozzle, such that at low chamber pressures the PVG would act as a straight tube. This

yielded tubes with a tube thickness to diameter ratio (h/D0) in the range of 8.7 × 10−3–

2.6 × 10−2. This was believed to create tubes that had sufficiently thin walls as to have

negligible effect on the tube bending. However, a later investigation into the tube properties
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explored the bending stiffness of the tubes. A means of nondimensionalizing Pe on the basis

of a finite cylindrical shell was done by Yamaki & Otomo (1973) and Batdorf (1947) who

nondimensionalized Pe by the following,

KP =
π2Eh3

6(1 − σ2)D0L2
0

, (3.1)

where KP is the finite bending stiffness parameter, E is the Young’s modulus, and σ is

Poisson’s ratio. The values for the tubes tested are shown in table 3.1. Alternatively,

Kececioglu et al. (1981) in their work considered extremely long tubes and on the basis of

extremely long tubes, a similar parameter for non-dimensionalizing Pe can be developed,

called here the infinite bending stiffness parameter KP,∞, and is defined as

KP,∞ =
2π2Eh3

3(1 − σ2)D3
0

(3.2)

such that the length of the tube, L0, in KP has been replaced by the diameter of the tube,

D0 (Singer et al. 1998, pg. 58). The values of this parameter are also found in table 3.1. In

light of the bending stiffness parameters for both finite and infinite tubes, we can consider

the order of magnitudes between the different tubes. The finite bending stiffness parameter,

KP , in general is O(10−1) with the exception of tube S-4. For the infinite bending stiffness

parameter, KP,∞, we see that there is an order of magnitude between each of the different

tube diameters, as one might expect given the D−3
0 dependence.

The collapsible tubes were mounted such that the axial tension was minimal. To avoid

axial buckling, a small amount of strain (≈1%–3%) was imparted on the collapsible tube

during installation. This was desirable, because thin-walled tubes buckle easily under axial

compression. The work of Sakurai et al. (1996) found that axial tension significantly affected
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the oscillation frequency, where over a range of tube strains from 0%–100% the frequency

of oscillation was approximately reduced by a factor of 2. However, it is expected that the

effect of the small amount of strain applied presently is negligible. The strain was imparted

by carefully mounting the tube such that the slack tube’s length of the collapsible section

was slightly less than the required, thus when the tube was installed a small amount of strain

was imparted to the tube. This was verified by markings on the tube and photographs that

were taken before and after installation of the tube to the PVG device.

The experiments were conducted in a water tank with a cross-sectional area of 110 cm

in width and up to 60 cm in height, with a test-section length of approximately 40 m.

The nozzles were mounted rigidly and while the test-section was quite long, only a limited

portion was actually utilized in these experiments. A schematic of the experiments is shown

in Figure 3.2.
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Figure 3.2: Schematic drawing of facility for the PVG parameter study experiments. Letters indicate the item as follows: A, passive
vortex generator (PVG); B, pump for delivering fluid to PVG; C, upstream paddle-wheel flowmeter; D, gate valve for modulating flow
rate through PVG; E, water inlet to pump, located away from the experiments; F, tubing to connect to high-pressure air source; G,
needle valve for controlling air delivery to PVG; H, connection to computer DAQ system from pressure transducers and flowmeter; I,
pressure transducers inside PVG chamber.
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It was expected that the dynamic pressure within the nozzle has a significant influence

on the self-excited oscillations of the PVG by affecting the forces on the collapsible tube.

As the dynamic pressure is defined as ρU2
j /2, flow speeds, Uj , in the 0.2–0.8 m s−1 range

were selected for comparison among the different nozzles. This yielded dynamic pressures

in the range of ≈ 20–320 Pa and Reynolds numbers in the range of ≈ 3000–45,000 across

the range of nozzle diameters. Even for the lowest Reynolds number cases, because the flow

was not conditioned before entering the tube, all of the flows were fully turbulent. Due to

the wide range of flow speeds and diameters, the volumetric flow rate necessary for these

experiments ranged from 0.05 to 2.0 L s−1. To accommodate this requirement, two pumps

were used with separate paddle-wheel flowmeters to measure the time-averaged flow rate.

The smaller of the two pumps was an electric motor (Leeson C42D17FK4A) with an

attached impeller and electric motor speed controller (Leeson 174307.00) for controlling the

flow rate and coupled with a flowmeter (Omega FPR303). The smaller pump had a range of

0.01–0.63 L s−1. The large pump (Dolphin DP62502) was modulated using a downstream

gate valve and flow was measured with a flowmeter (Omega FP7001A/FP7015). This

system had a range of 0.45–4.1 L s−1. For each pumping system, the flowmeter was placed

several tube diameters away from the pump to ensure accurate readings of the flow rate, as

illustrated in Figure 3.2.

The transmural pressure, defined as Pt ≡ Pe −P2, is the difference between the chamber

pressure and the pressure inside the downstream end of the collapsible tube. It should

be noted that this is a definition different from what is normally given in the physiology

literature for the transmural pressure in order to obtain only positive values. The driving

pressure, defined as Pd ≡ P1−P2, is the pressure difference between the upstream and down-

stream ends of the collapsible tube. The transmural and driving pressures were measured
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using differential pressure transducers (Omega PX26-005DV). The pressure transducers

were calibrated using a water manometer. The chamber pressure was measured using an

absolute pressure transducer (Omega PX72-030AV) and the manufacturer-supplied calibra-

tion coefficient was used. Due to variations in the hydrostatic pressure caused by changes

in the water depth in the tank and natural variation in the barometric pressure, the values

of the chamber pressure may have a mean offset from one measurement set to the next. A

manual air pump connected to a needle valve and analog gauges allowed for control over

the air pressure in the PVG chamber, as shown in Figure 3.2

Each PVG incorporated a DE-9 serial extension cable that passed through the chamber

sidewall. This cable was used to supply power to the pressure sensors within the PVG and

to connect the outputs of the transducers to the data acquisition system (cf. Figure 3.2).

The cable extended out of the PVG and connected to an amplifier circuit and power supply.

The data acquisition (DAQ) system consisted of a computer running Windows XP and a

USB-based DAQ device (NI USB-6221). The MATLAB software program (Mathworks) was

used for accessing the DAQ device and processing and storing the results. The DAQ system

recorded signals from four channels: one for each pressure transducer and the flowmeter

signal.

3.3 Methods

Measurements of the transmural, driving, and chamber pressures and flow rate were taken

at approximate increments of 500 kPa of the transmural pressure at a range of flow speeds,

Uj . First, the average flow rate was set to within 0.005 L s−1 of the desired value and

the pressure in the chamber was adjusted until a mean transmural pressure of 0 kPa was

obtained. This constituted the first data point for each flow rate, and further data points



88

were collected by increasing the mean transmural pressure in approximate increments of

500 kPa by use of a manual air pump with a needle valve. For each desired condition,

adjustments to the flow rate and transmural pressure were required. Once the desired

conditions were achieved, measurements of the transmural, driving, and chamber pressures

and flow rate were recorded at 10 kHz for 10 seconds. The sampling rate was quite high,

however it ensured that we captured any higher order harmonics and later software-based

low-pass filtering to remove noise essentially downsampled the data. If the mean transmural

pressure for the recording was more than 100 kPa away from the desired value, then the

point was discarded and the setup was adjusted before rerecording that data point; this

occurred periodically due to issues with maintaining the seal on the chamber or tube.

Some data points were considered unobtainable and were skipped. An unobtainable point

typically occurred when the system transitioned from steady to pulsed flow and vice versa. If

significant transients were obtained during recording, then the system was allowed to return

to steady state, adjusted if necessary, then rerecorded. Because of the manual nature of

setting the flow settings (both the pressure and flow rate) and the rather coarse control,

especially over the flow rate, the desired conditions were only approximately obtained (e.g.,

some points are only 400 kPa apart, despite the goal of a 500 kPa interval). However,

because the true value was recorded, this is not a significant issue.

This procedure produced a collection of data at different pressure conditions for each

nozzle, at a given flow speed. The upper limit of Pe was obtained when either the pressure

became so high as to suppress any self-excited oscillations (a possibility for the largest

nozzle at low flow rates) or the transmural pressure transducer saturated its DAQ channel.

Once the limiting Pe was reached, the procedure was repeated, this time by decreasing

the transmural pressure in approximate increments of 500 kPa. This allowed us to obtain
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information on the hysteresis of the oscillation. The entire procedure was repeated for four

different flow rate settings for each of the nozzles tested.

Using MATLAB’s built-in fast-Fourier transform (FFT) algorithm, the fundamental

frequency of the flowmeter signal was found. This frequency was used in conjunction with

the flowmeter manufacturer’s supplied calibration coefficient to determine the average flow

speed through the device.

The tube oscillation frequency was determined from an FFT of the transmural pressure.

Since the goal of the present work was to investigate the oscillatory nature of the PVG, the

waveform shapes were also visually evaluated. Within the portion of the data set which

exhibited a discernible oscillation, the transmural pressure waveforms varied considerably

in amplitude and shape, with most waveforms having only a strong fundamental frequency

and others with strong subharmonics like the “2-out-of-3” beats mode described by Bertram

(1986). To consider the effect that different oscillation modes may have on the results,

isolation of test conditions that yielded similar waveforms (and were thus expected to have

similar self-excited oscillation mechanisms) was conducted. This was accomplished via

applying thresholds to the transmural pressure frequency spectra. However, comparison of

the complete data set versus the thresholded data set showed that although the thresholding

did remove a noticeable number of experimental conditions (19% across all nozzles), the

overall results did not seem greatly impacted by the omissions. Thus the complete data set

is presented despite the possibility of variations in the oscillation mode.

3.4 Results

The results have been divided into two subsections. The first considers the effect of changing

tube diameter on the self-excited oscillations through a set of experiments where the tube
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shape, L0/D0, is kept constant and another set of experiments where the tube length, L0,

is kept constant. The second subsection considers the effect of changing the tube length for

constant tube diameter, D0.

3.4.1 Effect of Tube Diameter

Figures 3.3 and 3.4 compare tubes of the same shape at different tube diameters (S-4, M-4,

and L-4). Figure 3.5 and 3.6 compares tubes of the same length at different tube diameters

(S-12, M-6, and L-4). Figures 3.3 and 3.5 show plots of the tube oscillation frequency versus

the nondimensionalized pressure coefficient based on the mean driving pressure, where

CP =
Pd

1
2ρU

2
j

, (3.3)

and the overline indicates time averaging. Several candidates for the independent variable

were considered, but a pressure coefficient using the driving pressure was found to result in

the best collapse of the data. See appendix G for examples of plots using other variables.

Figures 3.4 and 3.6 show plots of the tube oscillation frequency versus the diameter of

the tube. For figures 3.3–3.6, there is a plot for each flow speed, Uj , ranging from 0.2 to

0.8 m s−1.

To further investigate the diameter-independence of the PVG, results that were in close

proximity within the frequency/flow-speed/pressure-coefficient parameter space and were

present in different nozzles were chosen. These sets of points are shown encircled in figure

3.3. The representative waveforms and frequency spectra for the same encircled conditions

are shown in figure 3.7. The waveforms from different nozzles have been phase-matched

based on the trough of the P2 waveform at t = 0. However, no other time manipulation
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Figure 3.3: Plots of the oscillation frequency versus the pressure coefficient at four different
flow speeds. The marker symbols denote the nozzle being plotted: n for S-4, ▲ for M-4,
and l for L-4. The shape, to scale, of the tube is denoted next to its marker above the plots
for visual reference. The encircled points are the points of comparison in figure 3.7. Data
points are taken only at the marker location and the line connecting the markers indicates
direction of movement in parameter space during the experimental run as moving along
increasing level of darkness (i.e., direction is from white to black). A connecting line means
that the two points were immediately adjacent during the experimental run. Points not
connected by lines mean that there are other point(s) in between that are not displayed due
to a lack of a dominant frequency. The error in the frequency is 0.1 Hz.
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Figure 3.4: Plots of the oscillation frequency versus the tube diameter at four different flow
speeds. The marker symbols denote the nozzle being plotted: n for S-4, ▲ for M-4, and l

for L-4. The shape, to scale, of the tube is denoted next to its marker above the plots for
visual reference. The color indicates the value of CP . Lines connect the average f within
a range of CP and are intended to help demonstrate the effect of D0 on f for constant CP
and L0/D0. The black dashed-dotted line has slope −1/2 for reference. The error in the
frequency is 0.1 Hz.
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Figure 3.5: Plots of the oscillation frequency versus the pressure coefficient at four different
flow speeds. The marker symbols denote the nozzle used: � for S-12, △ for M-6, and l for
L-4. The shape, to scale, of the tube is denoted next to its marker above the plots for visual
reference. The encircled points are the points of comparison in figure 3.7. Data points are
taken only at the marker location and the line connecting the markers indicates direction
of movement in parameter space during the experimental run as moving along increasing
level of darkness (i.e., direction is from white to black). A connecting line means that the
two points were immediately adjacent during the experimental run. Points not connected
by lines mean that there are other point(s) in between that are not displayed due to a lack
of a dominant frequency. The error in the frequency is 0.1 Hz.
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Figure 3.6: Plots of the oscillation frequency versus the tube diameter at four different flow
speeds. The marker symbols denote the nozzle being plotted: � for S-12, △ for M-6, and
l for L-4. The shape, to scale, of the tube is denoted next to its marker above the plots for
visual reference. The color indicates the value of CP . Lines connect the average f within a
range of CP and are intended to help demonstrate the effect of D0 on f for constant CP and
L0. The black dashed-dotted line has slope −1/2 for reference. The error in the frequency
is 0.1 Hz.
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has been applied. Hence, the waveforms diverge over time due to their slightly different

frequencies. Because the chamber pressure is measured using an absolute pressure gauge,

the magnitude of this pressure can vary from day to day due to the barometric pressure.

For simplicity, the mean has been subtracted from the traces of Pe. The values of P1

and P2 were then calculated using P2 = Pe − Pt and P1 = Pd + P2, respectively, using the

mean-subtracted Pe.

3.4.2 Effect of Tube Length

Figures 3.8 and 3.10 show plots of the tube oscillation frequency versus the nondimension-

alized pressure coefficient based on the mean driving pressure, CP for tubes of the smallest

diameter (S-4 and S-12) and medium diameter (M-4 and M-6), respectively, at different

lengths. Figures 3.9 and 3.11 show plots of the tube oscillation frequency versus tube

length for the smallest and medium diameter, respectively. Figures 3.8–3.11 each contain

plots for each flow velocity, ranging from 0.2 to 0.8 m s−1.

To further investigate the length-independence of the PVG, results that were in close

proximity within the frequency/flow-speed/pressure-coefficient parameter space and were

present in different devices were chosen. These sets of points are shown encircled in fig-

ures 3.8 and 3.10. The representative waveforms and frequency spectra for the encircled

conditions are shown in figure 3.12, as done in section 3.4.1.
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(a) Collection of points from the region in the parameter space of Uj = 0.2 m s−1, f = 9.5, CP =
100. The chosen points are encircled in figure 3.3(a). The solid black line is for the L-4 nozzle, the
dashed blue line for the M-4 nozzle, and the dot-dashed red line for the S-4 nozzle.
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(b) Pair of points from the region in the parameter space of Uj = 0.4 m s−1, f = 7.5, CP = 32. The
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Figure 3.7: Full caption available on page 97.
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(c) Pair of points from the region in the parameter space of Uj = 0.6 m s−1, f = 8.5, CP = 19. The
chosen points are encircled in figure 3.3(c). The solid black line is for the L-4 nozzle and the dashed
blue line for the M-4 nozzle.

Figure 3.7: Waveform plots of the measured chamber pressure (mean subtracted), Pe,
transmural pressure, Pt, driving pressure, Pd, and calculated upstream, P1, and downstream,
P2, nozzle pressures. To the right of the waveform plots are the power spectra for the
pressures with the mean component subtracted. Within each subfigure, the ordinate scales
have been matched among all of the waveform and frequency plots, respectively.

3.5 Discussion

3.5.1 Diameter Study Discussion

The results plotted in figure 3.3 show a nearly linear dependence between the oscillation

frequency and the pressure coefficient. Furthermore, the data for the medium and largest

diameter devices, M-4 and L-4, collapse well, particularly for lower values of the pressure

coefficient. However, the M-4 nozzle appears to depart from the L-4 nozzle after a critical

pressure coefficient, and undergoes a swift increase in oscillation frequency thereafter. The

smallest device, S-4, appears to yield a frequency of oscillation that is noticeably higher

than that of the M-4 and L-4 nozzles. Additionally, for the L-4 nozzle, it is apparent from

figures 3.3(c) and (d) that there is some hysteresis in the device as the higher pressure

coefficient values yield different frequencies depending on whether one is on the ascending
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Figure 3.8: Plots of the oscillation frequency versus the pressure coefficient at four different
flow speeds. The marker symbols denote the nozzle being plotted: n for S-4 and � for S-12.
The shape, to scale, of the tube is denoted next to its marker above the plots for visual
reference. The encircled points are the points of comparison in figure 3.12. Data points are
taken only at the marker location and the line connecting the markers indicates direction
of movement in parameter space during the experimental run as moving along increasing
level of darkness (i.e., direction is from white to black). A connecting line means that the
two points were immediately adjacent during the experimental run. Points not connected
by lines mean that there are other point(s) in between that are not displayed due to a lack
of a dominant frequency. The error in the frequency is 0.1 Hz.
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Figure 3.9: Plots of the oscillation frequency versus the tube length at four different flow
speeds. The marker symbols denote the nozzle being plotted: n for S-4 and � for S-12.
The shape, to scale, of the tube is denoted next to its marker above the plots for visual
reference. The color indicates the value of CP . Lines connect the average f within a range
of CP and are intended to help demonstrate the effect of L0 on f for constant CP and D0.
The error in the frequency is 0.1 Hz.
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Figure 3.10: Plots of the oscillation frequency versus the pressure coefficient at four different
flow speeds. The marker symbols denote the nozzle used: ▲ for M-4 and △ for M-6. The
shape, to scale, of the tube is denoted next to its marker above the plots for visual reference.
The encircled points are the points of comparison in figure 3.12. Data points are taken only
at the marker location and the line connecting the markers indicates direction of movement
in parameter space during the experimental run as moving along increasing level of darkness
(i.e., direction is from white to black). A connecting line means that the two points were
immediately adjacent during the experimental run. Points not connected by lines mean
that there are other point(s) in between that are not displayed due to a lack of a dominant
frequency. The error in the frequency is 0.1 Hz.
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Figure 3.11: Plots of the oscillation frequency versus the tube length at four different flow
speeds. The marker symbols denote the nozzle being plotted: ▲ for M-4 and △ for M-6.
The shape, to scale, of the tube is denoted next to its marker above the plots for visual
reference. The color indicates the value of CP . Lines connect the average f within a range
of CP and are intended to help demonstrate the effect of L0 on f for constant CP and D0.
The error in the frequency is 0.1 Hz.
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Figure 3.12: Full caption found on page 103
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(c) Pair of points from the region in the parameter space of Uj = 0.2 m s−1, f = 11, CP = 170.
The chosen points are encircled in figure 3.10(a). The solid black line is for the M-4 nozzle and the
dashed blue line for the M-6 nozzle.
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(d) Pair of points from the region in the parameter space of Uj = 0.4 m s−1, f = 10, CP = 43.
The chosen points are encircled in figure 3.10(b). The solid black line is for the M-4 nozzle and the
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Figure 3.12: Waveform plots of the measured chamber pressure (mean subtracted), Pe,
transmural pressure, Pt, driving pressure, Pd, and calculated upstream, P1, and downstream,
P2, nozzle pressures. To the right of the waveform plots are the power spectra for the
pressures with the mean component subtracted. Within each subfigure, the ordinate scales
have been matched among all of the waveform and frequency plots, respectively.
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or descending branch of the pressure coefficient.

The plots of the oscillation frequency versus diameter for the tubes with constant L0/D0

(figure 3.4) seem to indicate that the oscillation frequency is, at best, a weak function of the

tube diameter for constant shape tubes. In general it appears that the frequency decreases

with increasing tube size, however this is primarily due to the data points from the S-4

nozzle. If these data points were omitted, then there would exist no clear trend between

the oscillation frequency and the diameter of the device. However, with their inclusion, it

appears that there might be an overall trend of f ∼D
−1/2
0 .

The individual data-point analyses, given in figure 3.7, show some interesting attributes

about the operation of the different nozzles with constant L0/D0. Firstly, amongst all of

the points considered, the oscillation in the external pressure, Pe, is discernible, as expected

from equation (2.2). A comparison of the oscillation magnitudes of P1 and P2 shows that,

in general, the oscillation amplitude of P1 is significantly lower than that of P2. This

shows that the fluid velocity at the nozzle inlet is relatively steady and does not oscillate

as significantly as the velocity in the downstream end of the PVG. The plot of P2(t) for

each of the nozzles shows characteristically the same waveform for the crests, however the

depths of the troughs differ. Across all of the sets of points, the depth of the trough (and

thus the peak-to-peak magnitude of the overall waveform) decreases with increasing nozzle

diameter size.

Figure 3.5 explores the oscillation frequency versus the pressure coefficient for the case

of constant length tubes. Again, one finds a nearly linear trend between the oscillation

frequency and the pressure coefficient. Here we find that the collapse of the data is not as

strong as it was in figure 3.3. The smallest nozzle, S-12, continues to have higher oscillation

frequencies than the larger nozzles, as was seen in the constant L0/D0 cases; the medium
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Table 3.2: Summary of results for scaling the oscillation frequency, f , based on the tube
diameter, D0

Study x (where f ∼Dx
0 )

Jensen & Heil (2003) 1/2

Heil & Waters (2008) −5/2

Cancelli & Pedley (1985) −5/2

Current Study −1/2

nozzle, M-6, tends to have oscillation frequencies that are between those of the S-12 and

L-4 nozzles.

Consideration of the results from figure 3.6 shows that the frequency is now a noticeable

function of the diameter, which explains the greater spread between the different nozzles

of figure 3.5. Figure 3.6 indicates that for constant length tubes, that the frequency of

oscillation decreases as the diameter of the tube increases. Based on the reference line

indicated in figure 3.6, the relationship goes as f ∼D
−1/2
0 , which is far more pronounced for

this data set than in figure 3.4.

This result is in contrast to the previous scaling laws that were obtained from the

literature (cf. section 1.6). For a review of the scaling of f to D0, see table 3.2. One can see

that the majority of the studies were correct in predicting a negative dependence between

the oscillation frequency and the tube diameter. However, the magnitude of the scaling

from the current experiments appears to be less than that predicted by the theoretical

arguments.

3.5.2 Length Study Discussion

Based on the data collected for the diameter study, it is also possible to do an analysis of

the effect of tube length on the oscillation frequency. The results for the smallest diameter

are shown in figure 3.8 and 3.9. The results from the S-4 and S-12 tubes shows the influence
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that tripling the tube length can have on the oscillation frequency. The frequency for the

S-12 tube, in general, is higher than that of the S-4 tube. However, based on the results

plotted in figure 3.9, there is not a very strong relationship between the oscillation frequency

and the tube length. Thus suggesting that the tube length does not have a significant effect

on the oscillation frequency for the conditions tested. It should be noted that the scatter

in figure 3.8(a) for the S-12 case is primarily due to experimental difficulties in manually

setting the flow rate and the pressure within the chamber.

Another look at the effect of changing tube length comes from a comparison of the

M-4 and M-6 data. Figures 3.10 and 3.11 show the results from the M-sized tubes for two

different tube lengths. As the difference in tube length is not nearly as large as for the

length comparison between amongst the S tubes (factor of 3/2 versus 3), the data collapse

in figure 3.10, especially for the two lowest velocities, is much more pronounced. In figure

3.10(a), for example, the overlap is remarkable. The overlap is not quite as pronounced in

the higher velocities, but there is no clear trend between the two tubes.

The collapse of the data in figure 3.10 is confirmed by evaluating the plots of f versus

L0 in figure 3.11. The oscillation frequency does not appear to be a strong function of the

tube length, however it does appear to increase slightly with increasing tube length. In fact,

the oscillation frequency for the M-6 tube must increase if the earlier result that f ∼D
−1/2
0

is to hold. The increase in the frequency appears most pronounced in figure 3.11(c).

As discussed in section 1.5, the work by Bertram et al. (1990) experimentally tested

collapsible tubes with different lengths and found only a very weak dependence of the

oscillation frequency on tube length. However, as the tube lengths from Bertram et al.

(1990) increased from 4D0 to 34D0, the minimum frequency observed decreased from 4.3

to 2.0 Hz. Thus the current results confirm the results of Bertram et al. (1990) in that the
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oscillation frequency is only a weak function of the tube length, however the sign of this

relation appears to be in conflict. Bertram et al. (1990) state that the tube length and

oscillation frequency are negatively related, whereas the current results for the M-4 and

M-6 tubes suggest that the length and frequency may be positively related. This difference

clearly warrants more study.

One suggestion for the oscillation mechanism is that waves traveling axially along the

tube are responsible for modulating the oscillations. Using the Moens-Kurteweg equation

(cf. Fung 1997, pg. 144) for thin-walled (albeit constant diameter) tubes, the speed of

traveling waves, c, in the PVG tube goes as c ∼ D−1
0 , since the tube material, tube-wall

thickness, and fluid density are all constant. Thus the oscillation frequency should be a

function of the wavespeed and the length the wave travels. This would yield f = c/2L0 and

gives an inverse relationship between the self-excited oscillation frequency and tube length.

Based on this mechanism, we would expect f ∼ D−2
0 or f ∼ L−10 for the constant shape or

constant length experiments, respectively. However, the current work did not find this to be

the case experimentally. Our experiments indicate a much weaker dependence on physical

dimensions confirming that wave propagation along the full length of the tube is not an

explanation for the observed self-excited oscillations.

Considering the pressure waveforms shown in figure 3.12, we can inspect more closely

the differences between tubes of different length. Qualitatively, the same conclusions from

section 3.5.1 hold, particularly with regards to the relative magnitudes of the P1 and P2

oscillations. We can see that amongst all of the tubes considered, that in general there is

steady flow entering into the PVG device and pulsed flow exiting.
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3.5.3 General Discussion

As a means of elucidating the possible mechanism, let us consider the current results that

yield the scaling f ∼ D
−1/2
0 L0

0. Previously, the consideration of traveling waves along the

tube suggested that the waves travel upstream and reflect off of the upstream rigid tube

before returning to the tube throat. This yields the result that f = c/2L0 where the Moens-

Korteweg wavespeed (cf. Fung 1997, pg. 144) is defined as

c ≡

√
Eh

ρD0
, (3.4)

which we have already shown from the current experiments and the work of Bertram et al.

(1990) to not be consistent with the experimental findings. However, an alternative mech-

anism could be such that the traveling waves move downstream of the tube throat. This

would result in wave travel distance being the length between the throat of the collapsible

tube (the point of minimum cross-sectional area) and the rigid tube connection downstream,

defined as lt. With 2lt as the complete wave travel length, this yields an expression for the

predicted frequency such that

fp =

¿
Á
ÁÀ Eh

4ρD0l2t
, (3.5)

and gives us the scaling observed in the experiments, assuming that lt is not a function of

D0 or L0. Note, in this assumption, we are neglecting the resistance of the air to the nozzle

during its oscillation cycle. This is done as the inner fluid in our experiments was water

and is likely to impact the oscillations of the PVG to a far higher degree than the exterior

air due to its significantly higher density.

To obtain an approximation of what the length of lt would be and its relation to D0 and

L0, let us consider the pressure drop along different collapsible tubes from the experiments,
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plotted in figure 3.13. As only the pressure at the upstream, P1, and downstream, P2, of

the tube were measured, the axial distribution of the pressure has been approximated as

a straight line. The values of P1 and P2 used the values of the pressure from figures 3.7

and 3.12 at t = 0, which is nearly coincident with the point of maximal collapse at the tube

throat.

If we further assume that there is a critical pressure, Pcrit, where the tube is signif-

icantly collapsed for P (x) < Pcrit, then this provides an approximation for the length of

the downstream collapsed portion of the tube, lt, where lt is shown to be the point where

P (x) = Pcrit. The value of Pcrit and the average wave travel distance, lt, are shown in

figure 3.13. An approximate value of Pcrit could be obtained from an experiment that

yields results similar to that of figure 2.3(a) where Pcrit would be the onset of significant

tube collapse (approximately Pt/KP,∞ > 10 for figure 2.3(a)). However the results of figure

2.3(a) were obtained with tubes that were significantly longer than that used in the current

experiments (L0/D0 = 43). It is believed that the much shorter tubes used in the current

experiment would follow a different collapse curve. It should be noted that for all of the

tubes tested, it was observed that the collapsed portion of the tube was consistently at the

downstream end of the tube, which is consistent with figure 3.13. Furthermore, the value

of P (x) relative to Pcrit does not directly indicate the magnitude of the local tube collapse

(e.g., for P (x) > Pcrit, the tube is not necessarily fully distended and for P (x) < Pcrit the

tube is not necessarily fully collapsed).

From figure 3.13 one can see that for an assumed Pcrit of −4 kPa, that the value of lt does

not vary much. This chosen value of Pcrit is reasonable as it is within the range of observed

P2 (cf. figure 3.13). The average values of the wave travel distance, lt, are both O(10−2) m.

Thus we can consider that lt is not a function of D0 or L0 and that equation (3.5) is a
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(a) Plot of the S-4, M-4, and L-4 tubes using data from figure 3.7(a)
at t = 0. This yields lt = 61 mm for Pcrit = −4 kPa.
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(b) Plot of the S-4 and S-12 tubes using data from figure 3.12(a) at
t = 0. This yields lt = 30 mm for Pcrit = −4 kPa.

Figure 3.13: Plot illustrating the pressure drop as a function of the axial distance, x, along
the collapsible tube. The axial distances have been aligned such that the end of the tube
indicates x = 0. The values of P1 (P (x = −L0)) and P2 (P (x = 0)) are obtained from figures
3.7 and 3.12 at t = 0. The range of P2(t) for all tubes from the respective data set is
indicated by the gray patch on the right hand side of the plot. The location of the mean
wave travel distance, lt is also shown.
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relation for the oscillation frequency that scales according to the observed experimental

results. Even though equation (3.5) may yield the correct scaling, let us consider whether

it is quantitatively correct. If one assumes that lt = 4 cm, which is a reasonable value given

the results of figure 3.13, this yields fp ≈ 16 Hz.∗ This is within the range of observed

frequencies of 10–18 Hz (cf. figures 3.3 and 3.5). Thus this mechanism is reasonable to

explain the experimental results observed.

Based on the aforementioned measurements and theory, we propose that the governing

mechanism for self-excited oscillations is as follows: the sudden collapse of the tube at the

throat due to Bernoulli’s effect generates traveling waves; the downstream traveling wave

reflects off of the boundary between the collapsible tube and the rigid tube; the reflected

wave then travels back upstream and causes the tube throat to open; allowing more fluid to

flow due to a lessened restriction on the flow; and then the cycle repeats repeats itself. The

significance of the tube throat’s axial location, lt, and traveling waves was also speculated by

Cancelli & Pedley (1985) as part of mechanism behind the self-excited oscillations. However,

Cancelli & Pedley (1985) indicated that the separation downstream of the throat was a more

dominant cause.

∗assuming E = O(106) Pa, h = O(10−4) m, ρ = 1000 kg m−3, and D0 = 38 mm
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Chapter 4

Summary and Recommendations

The present work conducted two series of experiments. The first set of experiments in-

tegrated a PVG into a self-propelled autonomous underwater vehicle (AUV). These ex-

periments looked at the hydrodynamic efficiency of the vehicle under various oscillation

conditions, controlled by the propeller throttle setting, T , and amount of air in the PVG

chamber, related to τ . Furthermore, consideration of the vortex dynamics of the produced

vortex rings was addressed. It was found that a maximization of the hydrodynamic effi-

ciency yielded a vortex ring structure was that coincident with the onset of vortex ring

pinch-off. This point yielded a 22% increase in the hydrodynamic efficiency of the same

system without self-excited oscillations.

The second set of experiments considered the effect of changing physical dimensions on

the characteristics of self-excited oscillations produced by a passive vortex generator (PVG).

The effect of changing the tube diameter and the tube length were considered. In the end, it

was found that changing these two significant physical dimensions appeared to have a weak

effect on the frequency of oscillation. This leaves open the possibility of creating devices of

varying size with no significant effects on the oscillation characteristics.

This study, however, still leaves some important questions unanswered. In regards

to the PVG-integrated AUV, the device was able to obtain a significant increase in the
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hydrodynamic efficiency, however the power coefficient (Cp from Ruiz 2010) was worse for

the pulsed jet case over the steady jet case. The lack of an increase in the overall efficiency

shows that this exact embodiment should be refined before considering implementing this

into a future vehicle. However, the results from this work do reinforce the importance of

the vortex formation time as being a key factor when designing a vortex-based propulsion

system.

Another point that needs additional consideration is the issue of the type of jet that

is formed. As mentioned in section 2.3.8, the “robosquid” vehicle has a very different

efficiency versus formation time curve from that of the current vehicle and the vehicle of

Ruiz (cf. figure 2.30). It has been speculated that this could be due to the wake structure

of the vehicles, as “robosquid” generates a fully pulsed jet whereas the current vehicle

and the vehicle of Ruiz generate a steady jet with significant perturbations (i.e., Uj does

not go to zero between pulses). It is not clear if this is a complete explanation for the

difference between the efficiency trends, but two features of the efficiency trends are worth

investigating. The first is the discrepancy at low formation time. The work of Moslemi &

Krueger (2010, 2011) using “robosquid” found that decreases in t̂/F lead to increase in ηp/η.

The opposite was found for the current work. The other feature of the efficiency plots worth

investigating is the significant peak in efficiency for the current vehicle for t̂/F = 1 (this could

also be true for the vehicle of Ruiz (2010)). This is clearly a consequence of maximizing

the vortex ring circulation, however, why it is not as pronounced in the “robosquid” results

is not clear. Further work into identifying the significance of these wake structures in the

context of vehicle propulsion could shed light on these questions.

In regards to the self-excited oscillations, we have shown that for the test conditions

explored here that the oscillation frequency goes as f ∼ D
−1/2
0 L0

0. However, the mechanism
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of the self-excited oscillations is still not well understood. From an experimental stand-

point, part of this issue lies with the difficulty in obtaining optical access to the inside of

the tubes to determine the flow field. This could be resolved by building a “two-dimensional”

collapsible channel experiment. The construction of a very wide channel with the elastic

membrane along the long side of the channel could make the channel two-dimensional

enough (invoking an approximation akin to the thin-gap approximation) and yet still enable

optical access from the side or bottom for obtaining data for particle image velocimetry.

The large width of the channel would allow for the elastic membrane in the center of the

channel to have minimal influence from the edges.

Alternatively, recent advances in three-dimensional experimental velocimetry techniques

could yield considerable new avenues of research in this field. The techniques include de-

focused digital particle image velocimetry (Pereira & Gharib 2002), tomographic particle

image velocimetry (Elsinga et al. 2006), and light-field-based PIV (Lynch 2011). However,

all of these techniques are optical techniques that require a careful experiment to ensure

that optical access to the particle-laden fluid inside of the tube is not distorted. Should

this consideration be accounted for, then the three-dimensional, time-resolved flow field of a

collapsible tube undergoing self-excited oscillations would be of considerable significance. A

better understanding of the complete fluid flow-field would then enable better descriptions

of the mechanism.

In particular, finding experimental proof of the mechanism suggested would be greatly

enhanced by obtaining the flow field in the tube downstream of the throat. This is a region

of significant tube deformation, and thus an experiment to observe flow in this region must

be carefully designed. One could imagine surrounding the collapsible tube with an index-of-

refraction-matched liquid and use the same liquid as the working fluid for the oscillations.
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This is feasible as there are clear silicones available, however an experiment such as this

would sacrifice the kinematics observed in this current work as the fluid surrounding the tube

would surely alter the tube kinematics due to the significant density of the fluid compared

to the density of air.

Another means of obtaining the flow field downstream of the throat would be to use

an open-ended nozzle such as that used in these experiments along with an imaging setup

looking upstream directly into the nozzle. This would allow the camera to visualize all

of the particles in the flow downstream of the throat, which is suggested to be the region

of importance to the self-excited oscillations. This would require a three-dimensional PIV

setup to properly obtain the data set, and careful choice of the equipment would be necessary

to adequately resolve the out-of-plane component as it would be the dominant velocity in

this type of a flow. Should such a setup be obtained, then this would alleviate the need

to index-match the fluids and also would preserve the tube kinematics observed in these

experiments as the chamber could continue to be filled with only air. One can think of

the dynamics of the system being affected through the added-mass from the external fluid

affecting the tube wall accelerations and potentially the creation of secondary external

flows that could affect the tube’s dynamics. These external effects are all proportional to

the density of the external fluid and, since the density of air is generally assumed to 815

times less than that of water, these effects have currently been considered to be negligible

compared to the internal working fluid.

Because the suggested mechanism relies on traveling waves which would likely have

a pressure component to them, the importance of numerical work to this area of study

cannot be mitigated as simulations provide the complete flow field as well as the pressure

field. As improvements to both computational hardware and algorithms improve, it is likely
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that the gap between what the numerics are capable of and what the experiments do will

be narrowed over time. However, the current study suggests simulations that are fully

three dimensional without any geometry assumptions, as the current experiments found

the azimuthal tube buckling to have mode 3 buckling rather than the mode 2 buckling that

is commonly proscribed in current simulations.
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Appendix A

Schematic Drawings of the
PVG-Integrated AUV

This appendix includes schematic drawings of the PVG-integrated AUV. Each figure shows

an element of the system with important dimensions indicated. Figure A.1 shows the overall

vehicle system. Figure A.2 shows a drawing of the recipient vehicle. Figure A.3 shows a

schematic drawing of the inner frame of the PVG where the collapsible tube was mounted.

Figure A.4 shows a schematic drawing of the outer cover of the PVG.
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Figure A.1: Schematic drawing of the entire PVG-integrated AUV.
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Figure A.2: Schematic drawing of the main vehicle.
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Figure A.3: Schematic drawing of the inner frame of the PVG.
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Figure A.4: Schematic drawing of the cover of the PVG.
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Appendix B

Volume Ratio Derivation

If we assume that the flow into the collapsible tube has a fixed velocity profile and is not

a function of time (since the fluid used in these experiments is water, this is synonymous

with having a fixed mass flux) and if we assume that this tube is under going self-excited

oscillations then we expect to have a time-varying, periodic mean velocity through the exit.

We can then express the volume of fluid within the collapsible tube as

V– t(t) = ∫
t

0
{Uin −Uout(t)}A dt + V– t, (B.1)

where V– t(t) is the instantaneous tube volume, Uin is the spatially averaged velocity entering

the collapsible tube, Uout(t) is the spatially averaged, time-varying velocity exiting the

collapsible tube, A is the cross-sectional area of the tube at the inlet and outlet (A = πD2
0/4),

and V– t is the average tube volume.

If we assume that the oscillation of the tube is periodic (and experiments show that it

generally is), then we can show that during a period of oscillation there is a minimum and

maximum of the tube volume, which we will denote as V– −
t and V– +

t , respectively. Then, let
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us define a tube-collapse factor, β, such that

β ≡ 1 −
V– −
t

V– +
t

, (B.2)

which can be interpreted as indicating the amount of tube collapse on a percentage basis

and is always less than unity.

The chamber volume changes in time due to the tube volume oscillating. Thus if we

assume that the chamber is constructed out of a rigid box with dimensions L ×W ×H and

volume V– box, then the chamber volume is given by

V– c ≡ LWH − V– t(t) = V– box −V– t(t), (B.3)

and similarly because the tube volume has a minimum and maximum, the chamber volume

has a minimum and maximum volume given by

V– −
c = V– box −V–

+
t and V– +

c = V– box −V–
−
t , (B.4)

respectively.

The size of the chamber affects the kinematics of the system by changing the external

pressure, Pe, that forces the tube to collapse. We can model this through the ideal gas law

and consider the pressure minimum and maximum during an oscillation cycle as related by

P +
e

P −
e

=
V– +
c

V– −
c

, (B.5)

as the chamber is a closed system.
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Let us approximate the maximum tube volume, V– +
t , as equivalent to the nondeformed

volume of the tube, i.e., V– +
t = πD2

0L0/4, and let us also define a volume ratio, λ, between

the chamber volume and the tube volume, such that

λ ≡
V– −
c

V– +
t

, (B.6)

which can be calculated a priori based on the device geometry. The approximation of the

maximum tube volume, V– +
t , will overestimate from the true value of V– +

t and thus also

overestimate the value of β while underestimating the value of λ.

We can solve for the ratio between the maximum and minimum chamber pressures as

follows:

P +
e

P −
e

=
V– +
c

V– −
c

, (B.7)

P +
e

P −
e

=

V– +

c

V– +

t

V– −

c

V– +

t

, (B.8)

P +
e

P −
e

=

(
V– box −V–

−

t

V– +

t

)

λ
, (B.9)

P +
e

P −
e

=

{
(V– box −V–

+

t )+(V–
+

t −V–
−

t )

V– +

t

}

λ
, (B.10)

P +
e

P −
e

=

V– box −V–
+

t

V– +

t

+
V– +

t −V–
−

t

V– +

t

λ
, (B.11)

P +
e

P −
e

=

V– −

c

V– +

t

+ 1 −
V– −

t

V– +

t

λ
, (B.12)
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and end up with the simple expression that

P +
e

P −
e

=
λ + β

λ
, (B.13)

which can be expressed as a percent change where ∆Pe ≡ (P +
e − P

−
e )/P

−
e to find

∆Pe =
β

λ
, (B.14)

and that ∆Pe ∼ 1/λ. Let us remember that 0 < β < 1 and thus one can see that for

sufficiently large λ, that the chamber pressure remains essentially unchanged during an

oscillation period. One can obtain a conservative prediction of the pressure ratio between

the minimum and maximum pressure during an oscillation if one assumes that β = 1.

This assumes that the tube oscillates between a nominally distended volume (equal to a

cylinder with volume V– +
t = πD2

0L0/4) and zero volume. Figure B.1 shows a plot using

this conservative prediction of the expected pressure change for a range of volume ratio, λ.

From this plot, it is clear that a volume ratio of at least 100 ensures a negligible amount of

variation of the chamber pressure during an oscillation cycle (1%, to be exact). However,

as the volume ratio decreases, the pressure change quickly increases.

For low volume ratios, λ < 10, it is more likely that the varying chamber pressure will

play a significant role in the dynamics of the system. This is because as the tube volume

decreases (due to a positive transmural pressure), the chamber pressure will decrease and

ultimately cease the collapse of the tube (as the transmural pressure would have gone to

zero). It is possible that for very small volume ratios one could imagine this interaction as a

plausible mechanism for the self-excited oscillations, however because λ > 10 in the current

work, it is not a likely mechanism for the oscillations exhibited in the current work.
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Figure B.1: Plot of equation (B.13) with α = 1 to be conservative.
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Appendix C

Derivation of Co-Flow Formation
Time

A derivation of the co-flow formation time (equation (2.11)) can be shown as follows: The

slug model for vortex ring formation from a piston-cylinder apparatus, where the vortex

ring ejection is modeled as a slug of fluid with length L and diameter D0, uses a control

volume as shown in figure C.1. The control volume is assumed to extend to infinity in the

positive r and x directions (i.e., r →∞ along “2” and x→∞ along “3”).

Following the derivation from Krueger (2001, appendix D) for the growth of the total

circulation ejected from the nozzle, we find that integrating the vorticity equation over

the control volume of Figure C.1 yields only contributions from the line marked “1.” The

1

2

3

4
D0

L

Uj

U∞

r

x

Figure C.1: Schematic of vortex ring generator and the control volume used in the slug
model derivation.
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contribution from “1” can be shown to only depend on the vorticity flux across the control

volume’s surface and is equal to

∂Γ

∂t
=

∞

∫

0

[−ux
1

2

∂ux
∂r

−
∂ur
∂t

−
1

ρ

∂P

∂r
]∣
x=0

dr, (C.1)

under assumptions of axisymmetry and that u⃗ → 0 at (∞,∞) and ur = 0 at r = 0. The

subscripts indicate flow velocity direction, e.g., ux is parallel to the x-axis. The circulation

growth can be integrated to obtain

∂Γ

∂t
= −

1

2
u2x∣

∞

0

−
1

ρ
P ∣

∞

0

. (C.2)

Now, for the slug model we assume that the pressure across the jet is constant and thus

P (r = 0) = P (r =∞) and we obtain simply

∂Γ

∂t
=

1

2
[ux(r = 0)2 − ux(r =∞)

2] , (C.3)

or based on flow depicted in Figure C.1

∂Γ

∂t
=

1

2
(U2

j −U
2
∞) . (C.4)

The nondimensional circulation growth was shown by Rosenfeld et al. (1998) to be equal

to:

∂Γ̂

∂t̂
=

1

2
, (C.5)

where hats indicate non-dimensionalized quantities.

If we nondimensionalize the circulation, Γ, by the shear layer strength for our co-flow con-



129

ditions, (Uj −U∞)D0, and if we seek to match the scaling of the nondimensional circulation

growth used by Rosenfeld et al. (1998) we can calculate the required nondimensionalization

of time as follows

∂Γ

∂t
=

1

2
(U2

j −U
2
∞) , (C.6)

∂Γ̂

∂t
=

1

2

(U2
j −U

2
∞)

(Uj −U∞)D0
, (C.7)

∂Γ̂

∂t̂

∂t̂

∂t
=

1

2

(U2
j −U

2
∞)

(Uj −U∞)D0
, (C.8)

∂Γ̂

∂t̂

∂t̂

∂t
=

1

2

(Uj −U∞) (Uj +U∞)

(Uj −U∞)D0
, (C.9)

1

2

∂t̂

∂t
=

1

2

(Uj −U∞) (Uj +U∞)

(Uj −U∞)D0
, (C.10)

t̂

t
=

(Uj +U∞)

D0
, (C.11)

t̂ =
(Uj +U∞) t

D0
. (C.12)

Thus we can see that the proper non-dimensional time requires the addition of the jet

velocity, Uj , to the ambient freestream velocity, U∞.
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Appendix D

Derivation of Pulsed Formation
Time

The assumption of using the frequency in equation (2.11) should be considered. The for-

mation time of a vortex ring is defined by Gharib et al. (1998) as

t̂GRS =
L

D0
, (D.1)

where D0 is the diameter of the cylinder used to form the vortex ring and L is the length

of the fluid slug ejected. The length, L, is defined as

L = ∫

tp

0
Up(t) dt, (D.2)

where tp is the duration of the jet pulsation and U(t) is the speed of the fluid ejection (i.e.,

the speed of the piston ejecting the fluid). Let us now consider the case of a pulsing jet

where there are many pulses and that it may be easier to calculate the average jet velocity,

given by Uj , and the period of oscillation, T , rather than the individual pulse characteristics

tp and Umax; as shown in figure D.1. This assumes constant velocity pulses where T = 2tp.
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Uj

t

Umax
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T
Figure D.1: Plot of the velocity of the jet, U , as a function of time, t. The maximum jet
velocity achieved during a pulse is Umax and the average jet velocity is Uj . The pulsation
duration is given by tp and the oscillation period is T .

The definition given in the present work for the pulsed jet formation time is

t̂ =
(Uj +U∞)

fD0
, (D.3)

which we can decompose as

t̂ =
Uj

fD0
+
U∞
fD0

, (D.4)

t̂ = t̂jet + t̂co−flow. (D.5)

Using the assumed pulsing conditions given in figure D.1, let us construct the formation

time as follows

ˆtGRS =
L

D0
, (D.6)

ˆtGRS =
∫
tp
0 U dt

D0
. (D.7)
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Let us now consider the definition of a time average for Uj :

Uj =
1

T
∫

T

0
U(t) dt, (D.8)

Uj =
1

T
∫

tp

0
U(t) dt +

1

T
∫

T

tp
U(t) dt, (D.9)

which for our assumed pulse profile reduces to

Uj =
1

T
∫

tp

0
U(t) dt +

1

T��
��

��
�*0

∫

T

tp
U(t) dt, (D.10)

Uj =
1

T
∫

tp

0
U(t) dt, (D.11)

and plugging equation (D.11) into (D.7) we obtain

ˆtGRS =
TUj

D0
, (D.12)

and as f = 1/T , we obtain

ˆtGRS =
Uj

fD0
, (D.13)

ˆtGRS = t̂jet. (D.14)

Thus for pulsed jets in quiescent ambient fluid (no co-flow), t̂jet, which uses the pulse

frequency is identical to the formation time, t̂GRS , defined by Gharib et al. (1998).

However, the pulsed formation time in this work is defined using the co-flow approach

(cf. Equation D.5). Thus we have to consider the t̂co−flow term. For the t̂jet term, because

one is trading off the higher Umax and lower tp for the lower Uj and the higher 1/f , the term

is equivalent to t̂GRS . However, should we encounter a fully pulsed jet (like that shown in
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figure D.1) in the prescence of co-flow, then replacing Uj with U∞ in the derivation shows

that we cannot neglect its contributions between pulses (as U∞ is constant). This will create

an error by using 1/f rather than tp in the t̂coflow term. Let us consider the significance of

that error.

We find the definition of the co-flow portion of the formation time from Krueger et al.

(2003) as follows, using the current nomenclature

t̂KDG,coflow =
U∞tp

D0
, (D.15)

t̂KDG,coflow =
U∞
fD0

tp

T
, (D.16)

t̂KDG,coflow = t̂co−flow
tp

T
, (D.17)

which we can find the relative error in these two terms as

t̂co−flow − t̂KDG,co−flow

t̂KDG,co−flow
=
T

tp
− 1. (D.18)

Thus for the example in figure D.1, tp/T = 0.5 and the formation time of just the co-flow

portion is being overestimated by 100%. We can see the influence on the overall pulsed

formation time by considering the complete definition for the co-flow formation time given

by Krueger et al. (2003) as

t̂KDG =
tpUj

D0
+
tpU∞

D0
(D.19)

in the current nomenclature. This can be rewritten as

t̂KDG = t̂jet + t̂co−flow
tp

T
. (D.20)
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We can find the relative error, ε, between the definition given by Krueger et al. (2003)

versus the current definition as

ε ≡
t̂

t̂KDG
− 1, (D.21)

ε =
t̂jet + t̂co−flow

t̂jet + t̂co−flow
tp
T

− 1, (D.22)

ε =
t̂jet + t̂jet

U∞
Uj

t̂jet + t̂jet
U∞
Uj

tp
T

− 1, (D.23)

and using the definition of the velocity ratio, Rv, this becomes

ε =
1 +Rv

1 +Rv
tp
T

− 1. (D.24)

This gives us the magnitude of the relative error in the formation number as a function

of the velocity ratio Rv and the pulse duty cycle tp/T . For the case presented in figure D.1

where tp/T = 0.5 and if we assume Rv = 0.5, then we find ε = 0.2. So the overestimate of

the co-flow term can certainly be significant, however let us consider the case of the current

experiments.

For the current work, Rv ranged from 0.02 to 0.45 (cf. figure 2.20). To find the duty

cycle of the pulses from the current work, let us consider the velocity trace of the PVG-

integrated AUV shown in figure D.2. From this plot, one can see that the velocity trace is

nearly sinuisoidal, and never touches the x-axis, which yields that tp/T = 1 and thus ε = 0.

This derivation shows that for unsteady jets, such as that used in the current work,

that the definition of the formation time given by t̂ is the correctly defined. However, for

fully pulsed jets, where tp/T < 1, the formation time definition given here will yield an

overprediction of the exact formation time, with its magnitude modulated by the value of
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Figure D.2: Plot of the phase-averaged velocity from the PVG integrated AUV for T = 1450
and τ = 9 alongside the average jet velocity given as the dot-dashed line in grey. The phase-
averaged velocity used the pressure transducer data for obtaining the frequency and is
averaged over 20 periods with the standard deviation of the data from each phase indicated
by the light gray band.

Rv. For higher values of Rv, this overprediction is diminished, however as the values of Rv

decrease, this overprediction will increase.
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Appendix E

Discussion of Unsteady versus
Steady Froude Efficiencies

The Froude efficiency definition used in the current work (equation 1.4) makes several

assumptions for its derivation. The one assumption that is immediately invalidated is the

assumption of steady flow. Because of this invalidated assumption, let us consider a more

thorough derivation of the Froude efficiency for unsteady flows. To begin, consider the

control volume around a propeller depicted in figure E.1.

The control depicted shows fluid moving at the freestream velocity, U∞, entering the

control volume over area 1 and exiting the control volume at the jet velocity, Uj , over area

2. A general form of the derivation for the Froude efficiency compares the useful work,

given by the product of the thrust force, FT , and the freestream velocity, Uj , to the power

Uj

U∞

1 2

Figure E.1: Drawing of the control volume around a propeller



137

consumed by the propeller, P , which can be found by balancing the energy entering and

exiting the control volume. This yields a general relation for the Froude efficiency, η, as

η =
FTU∞
P

. (E.1)

We can substitute the thrust force for the momentum that has been added to the flow and

similarly for the power, P , we can substitute the energy added to the flow as

η =
ρ (A2U

2
j −A1U

2
∞)U∞

ρ
2 (A2U3

j −A1U3
∞)

, (E.2)

where A1 and A2 are the areas of the control volume over the surfaces 1 and 2, respectively.

We have thus far assumed that Uj and U∞ are spatially uniform over surfaces 1 and 2 and

that there is no flow through the sides of the control volume, only at the inlet and exit.

Let us now decompose the jet velocity into a time-averaged component and a time-varying

component, which we will assume is a sinusoid with dimensional magnitude γ′, such that

Uj = U j +U
′
j(t), (E.3)

Uj = U j + γ
′ sin(t), (E.4)

where the overline indicates a time average. We can nondimensionalize the magnitude of

the sinusoid as γ′ = γU j and obtain

Uj = U j (1 + γ sin(t)) . (E.5)

Thus the value of γ′ is the exact value magnitude of the oscillation amplitude whereas γ
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is the value of the oscillation amplitude relative to the magnitude of the time-averaged

jet velocity, U j . This relation can be replaced into our efficiency equation which now is

integrated over one period of oscillation to find

η′ =
2

T

T

∫

0

(A2U
2
j (1 + γ sin(t))2 −A1U

2
∞)U∞

A2U
3
j (1 + γ sin(t))3 −A1U3

∞

dt, (E.6)

where the overline and prime has been added to the left-hand side to indicate the time-

average of the time-varying Froude efficiency.

We can now consider the conservation of mass through the control volume to find

ρA1U∞ = ρA2U j such that our efficiency expression now becomes

η′ =
2

T

T

∫

0

(U j (1 + γ sin(t))2 −U∞)U∞

U
2
j (1 + γ sin(t))3 −U2

∞

dt. (E.7)

Let us make another nondimensional parameter for the velocity where we nondimensionalize

the average jet velocity, U j , by the freestream velocity, U∞, where µ = U j/U∞ to obtain

another form of our unsteady efficiency

η′ =
2

T

T

∫

0

µ (1 + γ sin(t))2 − 1

µ2 (1 + γ sin(t))3 − 1
dt. (E.8)

One cannot easily obtain an analytical expression for this definite integral, and thus we

have chosen to evaluate this expression numerically. However, let us consider the form of

this integral for our unsteady efficiency. First, we find that for certain values of µ and γ,

that the denominator, which is normally positive, can become negative. The zero-crossing of

the denominator causes the integrand to become unbounded and thus we restrict ourselves

to values of µ and γ which ensure that the denominator is always positive and thus never
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equals 0. The range of allowable values can be found from evaluating

µ2 (1 + γ sin(t))3 − 1 > 0, (E.9)

to obtain the maximum γ allowed as

γmax = 1 − µ−2/3, (E.10)

under consideration of the range of values of sin(t) and that µ > 1 for self-propelled vehicles.

Thus we restrict γ < γmax. This criteria can physically be thought of as restricting the

system to ensure that power is delivered to the fluid, rather than extracted from the fluid.

If the system generates power, then the denominator would be negative and the vehicle

would not be self-propelled.

We can obtain an estimate of the error, εη in the steady Froude efficiency, η, compared

to our unsteady Froude efficiency, η′, such that εη = (η − η′)/η′. Values of εη > 0 indicate

that the steady efficiency overestimates the unsteady efficiency whereas εη < 0 indicates

that the steady efficiency underestimates the unsteady efficiency, η′. A plot of εη is given

in figure E.2 for a range of µ from 2 to 64 and γ from 0 to γmax. The results of figure E.2

show that the overall trend for γ varies depending on the value of µ. For µ = 8, the steady

Froude efficiency, η = 0.22, approximates well the unsteady form of the Froude efficiency,

η′, for many values of γ. However, for lower and higher values of µ, the error in the use of

the steady efficiency can be quite large and the sign of the error varies as well.

It should be noted that as γ nears γmax, the behavior of the function η′ becomes rather

unusual. As seen in figure E.2, the error appears to increase rapidly as γ increases, however

there is actually a vertical asymptote in γ after which the values of εη come from negative
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Figure E.2: Plot of the error in the steady efficiency, εη, versus the relative jet velocity
oscillation magnitude, γ, normalized by γmax. The lines indicate varying values of µ ranging
from 2 to 64.

infinity and finally εη → −100% as γ/γmax → 1 (this other “branch” in the curve is not visible

in figure E.2). We define the value of the asymptote as γcrit such that lim
γ→γ−crit

εη → +∞ and

lim
γ→γ+crit

εη → −∞.

This asymptotic behavior is driven by the trough of the numerator approaching 0+ which

causes the unsteady efficiency value to drop, thus yielding high values of εη. This can be

seen by evaluating figure E.3; especially through comparing the relative magnitude of the

troughs between figures E.3(c) for lower γ and E.3(d) for higher γ. For γcrit < γ < γmax,

as in figure E.3(d), the trough of the numerator becomes negative while the trough of the

denominator is positive, but very small, as it approaches 0+. The trough region causes

the integrand to have significant negative contributions to the resulting integral as shown in

figure E.3(d). As γ → γmax, η′ → −∞ which results in εη → −100% as mentioned previously.

A plot of the values of γmax and γcrit versus µ is shown in figure E.4.

For the self-propelled experiments conducted in this current work, µ ranged from 2.25–
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(a) Plot of Uj(t) normalized by U j over two
periods of the oscillation cycle for µ = 2 and
γ = 0.1. For these conditions, γ < γcrit < γmax.
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(b) Plot of Uj(t) normalized by U j over two
periods of the oscillation cycle for µ = 2 and
γ = 0.36. For these conditions, γcrit < γ < γmax.
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(c) Plot of the numerator and denominator con-
tributions and the resulting integrand over two
oscillation cycles for µ = 2 and γ = 0.1. For
these conditions, γ < γcrit < γmax.
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(d) Plot of the numerator and denominator
contributions and the resulting integrand over
two oscillation cycles for µ = 2 and γ = 0.36.
For these conditions, γcrit < γ < γmax. Zero is
indicated by a gray dot-dashed line.

Figure E.3: Plots of the jet velocity and components of the integrand in η′ for µ = 2 and
two values of γ.
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Figure E.4: Plot of γmax and γcrit versus µ. The darkened region indicates the range of µ
observed in the self-propelled PVG experiments.

38.5. However, the actual error in the the Froude efficiency is a function of γ, which

was not calculated for every self-propelled run of the PVG-integrated AUV. However, a

qualitative evaluation of figure 2.16 shows that γ can range from 0–1 just by evaluating the

results for the T = 1500 conditions. A particular condition of interest are the conditions of

T = 1700,τ = 10 s, which yielded the peak in the normalized efficiency, η/η6. For T = 1700

and τ = 10 s, we find µ = 2.3 and by inferring that half the peak-to-peak amplitude of

the phase-average jet velocity signal is γ′ we find γ = 0.25. This yields εη = 6.9%. For

reference, the conservative error bars in figure 2.23 give the range of efficiency improvement

for T = 1700, τ = 10 to be 7.4%–34.8%; thus even with a correction for the unsteadiness in

the Froude efficiency, the concluding result of this work that pulsed jets with vortex rings

improve the hydrodynamic efficiency of a vehicle over steady jets remains unchanged.
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Appendix F

Phase-Averaged Dye Visualizations

Figure F.1: Averaged dye visualization for T = 1300 and τ = 0 s. Phase-averaged frame
consists of 51 frames are stacked.

Figure F.2: Averaged dye visualization for T = 1300 and τ = 4 s. Phase-averaged frame
consists of 51 frames are stacked.
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Figure F.3: Averaged dye visualization for T = 1300 and τ = 6 s. Phase-averaged frame
consists of 69 frames are stacked.

Figure F.4: Averaged dye visualization for T = 1300 and τ = 8 s. Phase-averaged frame
consists of 105 frames are stacked.
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(a) φ = 0 (b) φ = π/10 (c) φ = 2π/10 (d) φ = 3π/10

(e) φ = 4π/10 (f) φ = 5π/10 (g) φ = 6π/10 (h) φ = 7π/10

(i) φ = 8π/10 (j) φ = 9π/10 (k) φ = π (l) φ = 11π/10

(m) φ = 12π/10 (n) φ = 13π/10 (o) φ = 14π/10 (p) φ = 15π/10

(q) φ = 16π/10 (r) φ = 17π/10 (s) φ = 18π/10 (t) φ = 19π/10

Figure F.5: Phase-averaged dye visualization with T = 1300 and τ = 10 s. This yielded a
normalized formation time of t̂/F = 0.70 and a normalized Froude efficiency of η/η0 = 0.78.
Each phase-averaged frame consists of 7–8 frames stacked and are 0.008 seconds apart
(recorded at 125 Hz).
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(a) φ = 0 (b) φ = π/10 (c) φ = 2π/10 (d) φ = 3π/10

(e) φ = 4π/10 (f) φ = 5π/10 (g) φ = 6π/10 (h) φ = 7π/10

(i) φ = 8π/10 (j) φ = 9π/10 (k) φ = π (l) φ = 11π/10

(m) φ = 12π/10 (n) φ = 13π/10 (o) φ = 14π/10 (p) φ = 15π/10

(q) φ = 16π/10 (r) φ = 17π/10 (s) φ = 18π/10 (t) φ = 19π/10

Figure F.6: Phase-averaged dye visualization with T = 1300 and τ = 12 s. This yielded a
normalized formation time of t̂/F = 0.43 and a normalized Froude efficiency of η/η0 = 0.69.
Each phase-averaged frame consists of 13–14 frames stacked and are 0.008 seconds apart
(recorded at 125 Hz).
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Figure F.7: Averaged dye visualization for T = 1500 and τ = 0 s. Phase-averaged frame
consists of 53 frames are stacked.
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(a) φ = 0 (b) φ = 1π/7 (c) φ = 2π/7 (d) φ = 3π/7

(e) φ = 4π/7 (f) φ = 5π/7 (g) φ = 6π/7 (h) φ = π

(i) φ = 8π/7 (j) φ = 9π/7 (k) φ = 10π/7 (l) φ = 11π/7

(m) φ = 12π/7 (n) φ = 13π/7

Figure F.8: Phase-averaged dye visualization with T = 1500 and τ = 8 s. This yielded a
normalized formation time of t̂/F = 1.33 and a normalized Froude efficiency of η/η0 = 1.04.
Each phase-averaged frame consists of 6–7 frames stacked and are 0.008 seconds apart
(recorded at 125 Hz).
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(a) φ = 0 (b) φ = π/7 (c) φ = 2π/7 (d) φ = 3π/7

(e) φ = 4π/7 (f) φ = 5π/7 (g) φ = 6π/7 (h) φ = π

(i) φ = 8π/7 (j) φ = 9π/7 (k) φ = 10π/7 (l) φ = 11π/7

(m) φ = 12π/7 (n) φ = 13π/7

Figure F.9: Phase-averaged dye visualization with T = 1500 and τ = 9 s. This yielded a
normalized formation time of t̂/F = 1.09 and a normalized Froude efficiency of η/η0 = 1.14.
Each phase-averaged frame consists of 8–9 frames stacked and are 0.008 seconds apart
(recorded at 125 Hz).
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(a) φ = 0 (b) φ = 2π/15 (c) φ = 4π/15 (d) φ = 6π/15

(e) φ = 8π/15 (f) φ = 10π/15 (g) φ = 12π/15 (h) φ = 14π/15

(i) φ = 16π/15 (j) φ = 18π/15 (k) φ = 20π/15 (l) φ = 22π/15

(m) φ = 24π/15 (n) φ = 26π/15 (o) φ = 28π/15

Figure F.10: Phase-averaged dye visualization with T = 1500 and τ = 10 s. This yielded a
normalized formation time of t̂/F = 0.89 and a normalized Froude efficiency of η/η0 = 1.07.
Each phase-averaged frame consists of 11–12 frames stacked and are 0.008 seconds apart
(recorded at 125 Hz).
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(a) φ = 0 (b) φ = 2π/15 (c) φ = 4π/15 (d) φ = 6π/15

(e) φ = 8π/15 (f) φ = 10π/15 (g) φ = 12π/15 (h) φ = 14π/15

(i) φ = 16π/15 (j) φ = 18π/15 (k) φ = 20π/15 (l) φ = 22π/15

(m) φ = 24π/15 (n) φ = 26π/15 (o) φ = 28π/15

Figure F.11: Phase-averaged dye visualization with T = 1500 and τ = 14 s. This yielded a
normalized formation time of t̂/F = 0.31 and a normalized Froude efficiency of η/η0 = 0.72.
Each phase-averaged frame consists of 19–20 frames stacked and are 0.008 seconds apart
(recorded at 125 Hz).
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(a) φ = 0 (b) φ = π/6 (c) φ = 2π/6 (d) φ = 3π/6

(e) φ = 4π/6 (f) φ = 5π/6 (g) φ = π (h) φ = 7π/6

(i) φ = 8π/6 (j) φ = 9π/6 (k) φ = 10π/6 (l) φ = 11π/6

Figure F.12: Phase-averaged dye visualization with T = 1700 and τ = 5 s. This yielded a
normalized formation time of t̂/F = 1.77. Each phase-averaged frame consists of 3–4 frames
stacked and are 0.008 seconds apart (recorded at 125 Hz).
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(a) φ = 0 (b) φ = 2π/11 (c) φ = 4π/11 (d) φ = 6π/11

(e) φ = 8π/11 (f) φ = 10π/11 (g) φ = 12π/11 (h) φ = 14π/11

(i) φ = 16π/11 (j) φ = 18π/11 (k) φ = 20π/11

Figure F.13: Phase-averaged dye visualization with T = 1700 and τ = 6 s. This yielded a
normalized formation time of t̂/F = 1.59. Each phase-averaged frame consists of 4–5 frames
stacked and are 0.008 seconds apart (recorded at 125 Hz).
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(a) φ = 0 (b) φ = 2π/11 (c) φ = 4π/11 (d) φ = 6π/11

(e) φ = 8π/11 (f) φ = 10π/11 (g) φ = 12π/11 (h) φ = 14π/11

(i) φ = 16π/11 (j) φ = 18π/11 (k) φ = 20π/11

Figure F.14: Phase-averaged dye visualization with T = 1700 and τ = 7 s. This yielded a
normalized formation time of t̂/F = 1.48. Each phase-averaged frame consists of 4–5 frames
stacked and are 0.008 seconds apart (recorded at 125 Hz).
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(a) φ = 0 (b) φ = π/6 (c) φ = 2π/6 (d) φ = 3π/6

(e) φ = 4π/6 (f) φ = 5π/6 (g) φ = π (h) φ = 7π/6

(i) φ = 8π/6 (j) φ = 9π/6 (k) φ = 10π/6 (l) φ = 11π/6

Figure F.15: Phase-averaged dye visualization with T = 1700 and τ = 10 s. This yielded a
normalized formation time of t̂/F = 0.96. Each phase-averaged frame consists of 5–6 frames
stacked and are 0.008 seconds apart (recorded at 125 Hz).
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(a) φ = 0 (b) φ = 2π/11 (c) φ = 4π/11 (d) φ = 6π/11

(e) φ = 8π/11 (f) φ = 10π/11 (g) φ = 12π/11 (h) φ = 14π/11

(i) φ = 16π/11 (j) φ = 18π/11 (k) φ = 20π/11

Figure F.16: Phase-averaged dye visualization with T = 1700 and τ = 16 s. This yielded
a normalized formation time of t̂/F = 0.24. Each phase-averaged frame consists of 14–15
frames stacked and are 0.008 seconds apart (recorded at 125 Hz).
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Appendix G

Plots of Parameter Study Results

In this appendix, the choice of the plotting variables using in the present work (f vs. CP )

is considered via plotting a myriad of possible parameter combinations. To save space and

declutter the pages, the axes ticks have been removed. This is reasonable as we are currently

just considering relationships, rather than exact values. In particular, one is looking for plots

that collapse the data well.

The data plotted is from figure 3.3(a) of S-4, M-4, and L-4 where Uj = 0.2 m s−1. For

nondimensionalizing the frequency, the Strouhal number and Wormersley number were both

considered and are defined as

St′ =
fD0

Uj
(G.1)

and

α′ =D0

√
f

ν
(G.2)

respectively. An additional form of the Strouhal number was considered, where the velocity

used was the Moens-Korteweg wavespeed, and is defined as

St′c =
fD0

c
, (G.3)
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where c is the Moens-Korteweg wavespeed and c =
√
Eh/ρD0.

In general, the results plotted in figure G.1 show that the selected plotting variables of f

versus CP yield a good collapse of the data. Many of the other variable combinations tested

and shown in figure G.1 do not yield as good of a collapse of the data. However, of note are

the plots of α′ versus the pressures non-dimensionalized by the bending stiffness parameters,

Pt/KP , Pt/KP,∞, Pd/KP , and Pd/KP,∞. The lines appear to follow a nice trend, however

the different nozzles do not identically overlap as they do with the f versus CP plots. This

is perhaps difficult to see at this scale, but one can make out that the markers (indicating

different nozzles) are different at different points along the curve.

We can explore why these variables make such a seemingly nice collapse of the data by

considering the formulation of α′ and Pt/KP . For ease in this derivation, let us consider

that Pt/KP = ξ, which yields:

α′ =D0

√
f

ν
, ξ =

Pt
π2Eh3

6(1−σ2)D0L2
0

. (G.4)

Based on the plot of f versus Pt in figure G.1, let us make the assumption that f ∼ Pt such

that f ≈ γPt where γ is a constant. Thus:

α′ =D0

√
γPt
ν
, (G.5)

α′ =D0

¿
Á
ÁÀ γξπ2Eh3

ν6 (1 − σ2)D0L2
0

, (G.6)

α′

D0
=

¿
Á
ÁÀ γξπ2Eh3

ν6 (1 − σ2)D0L2
0

, (G.7)

α′2

D2
0

=
γξπ2Eh3

ν6 (1 − σ2)D0L2
0

. (G.8)

α′2 =
γπ2Eh3

ν6 (1 − σ2)

D0

L2
0

ξ (G.9)
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For all of the tubes tested, γπ2Eh3/ν6 (1 − σ2) is constant and is replaced by ℵ2 for conve-

nience.

α′2 = ℵ2D0

L2
0

ξ, (G.10)

α′2 = ℵ2 D2
0

L2
0D0

ξ, (G.11)

α′2 = ℵ2
(
L0

D0
)

−2 ξ

D0
, (G.12)

α′ = ℵ(
L0

D0
)

−1
√

ξ

D0
, (G.13)

and replacing ξ with the original variable yields

α′ = ℵ(
L0

D0
)

−1
√

1

D0

√
Pt
KP

. (G.14)

The same procedure for the other bending stiffness parameters yields

α′ = ℵ(
L0

D0
)

−1
√

1

D0

√
Pd
KP

, (G.15)

α′ = ℵ′
√

1

D0

¿
Á
ÁÀ Pt

KP,∞
, (G.16)

α′ = ℵ′
√

1

D0

¿
Á
ÁÀ Pd

KP,∞
, (G.17)

where ℵ′ = 4ℵ. As Pt and Pd both span four orders of magnitude (O(100–104)), they

dominate in these expressions and simply yield

α′ ∼
√
Pt/KP , α′ ∼

√

Pt/KP,∞,

α′ ∼
√
Pd/KP , α′ ∼

√

Pd/KP,∞.

(G.18)
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Thus the seemingly good collapse of the data for α′ versus the bending stiffness parameters

is simply a result of the choice of nondimensional variables.



161

f
[H

z]
S
t′

S
t′ c

α
′

CP Pt (Pa) Pd (Pa) Pe (Pa)

Figure G.1: Array of plots showing various relations between different expressions for the
frequency of oscillation (on the vertical axis) and different independent variables (on the
horizontal axis). Plot ticks and axis labels have been removed for clarity. The rows of the
plot array correspond to the frequency expression denoted on the left-hand side of the plot
array and the columns of the plot array correspond to the independent variable denoted at
the bottom of each plot array column.
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Figure G.1: Full caption available on page 161
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Figure G.1: Full caption available on page 161
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Figure G.1: Full caption available on page 161



165

Bibliography

Anderson, J. M. & Chhabra, N. K. 2002 Maneuvering and stability performance of a
robotic tuna. Integrative & Comparative Biology 42, 118–26.

Avrahami, I. & Gharib, M. 2008 Computational studies of resonance wave pumping in
compliant tubes. Journal of Fluid Mechanics 608, 139–60.

Ayers, J., Wilbur, C. & Olcott, C. 2000 Lamprey robots. In Proceedings of the
International Symposium on Aqua Biomechanisms.

Bainbridge, R. 1961 Problems of fish locomotion. Symposia of the Zoologica Society of
London 5, 13–32.

Batdorf, S. B. 1947 A simplified method of elastic-stability analysis for thin cylindrical
shells. Tech. Rep.. NACA Report 874.

Beckwith, T. G., Marangoni, R. D. & V, J. H. L. 2007 Mechanical Measurements.
Pearson Prentice Hall.

Bertram, C. D. 1986 Unstable equilibrium behaviour in collapsible tubes. Journal of
Biomechanics 19 (1), 61–69.

Bertram, C. D. 2003 Flow Past Highly Compliant Boundaries and in Collapsible Tubes,
chap. Experimental studies of collapsible tubes, pp. 51–65. Springer.

Bertram, C. D. & Castles, R. J. 1999 Flow limitation in uniform thick-walled collapsi-
ble tubes. Journal of Fluids and Structures 13, 399–418.

Bertram, C. D., Diaz de Tuesta, G. & Nugent, A. H. 2001 Laser-doppler measure-
ment of velocities just downstram of a collapsible tube during flow-induced oscillations.
Journal of Biomechanical Engineering 123, 493–9.

Bertram, C. D. & Godbole, S. A. 1995 Area and pressure profiles for collapsibe-tube
oscillations of three types. Journal of Fluids and Structures 9, 257–77.

Bertram, C. D. & Nugent, A. H. 2005 The flow field downstream of an oscillating
collapsed tube. Journal of Biomechanical Engineering 127, 39–45.

Bertram, C. D. & Pedley, T. J. 1982 A mathematical model of unsteady collapsibe
tube behaviour. Journal of Biomechanics 15, 39–50.

Bertram, C. D., Raymond, C. J. & Pedley, T. J. 1990 Mapping of instabilities for flow
through collapsed tubes of differing length. Journal of Fluids and Structures 4, 125–153.



166

Bertram, C. D., Raymond, C. J. & Pedley, T. J. 1991 Application of nonlinear
dynamics and concepts to the analysis of self-excited oscillations of a collapsible tube
conveying a fluid. Journal of Fluids and Structures 5, 391–426.

Bertram, C. D., Sheppeard, M. D. & Jensen, O. E. 1994 Prediction and measurement
of the area-distance profile of collapsed tubes during self-excited oscillation. Journal of
Fluids and Structures 8, 637–60.

Bertram, C. D., Truong, N. K. & Hall, S. D. 2008 Piv measurement of the flow field
just downstream of an oscillating collapsible tube. Journal of Biomechanical Engineering
130, 061011.

Bertram, C. D. & Tscherry, J. 2006 The onset of flow-rate limitation and flow-induced
oscillations in collapsible tubes. Journal of Fluids and Structures 22, 1029–45.

Brackenbury, J. 2001 The vortex wake of the free-swimming larva and pupa of Culex
pipiens (diptera). Journal of Experimental Biology 204, 1855–67.

Brackenbury, J. 2002 Kinematics and hydrodynamics of an invertebrate undulatory
swimmer: the damsel-fly larva. Journal of Experimental Biology 205, 627–39.

Brackenbury, J. 2003 Escape manoeuvres in damsel-fly llarva: kinematics and dynamics.
Journal of Experimental Biology 206, 389–97.

Brackenbury, J. 2004 Kinematics and hydrodynamics of swimming in the mayfly larva.
Journal of Experimental Biology 207, 913–22.

Brecher, G. A. 1956 Venous Return. Grune & Stratton.

Brodsky, A. K. 1991 Vortex formation in the thethered flight of the peacock butterfly in-
achis io l. (leipidoptera, nymphalidae) and some aspects of insect flight evolution. Journal
of Expeirmental Biology 161, 77–95.

Cancelli, C. & Pedley, T. J. 1985 A separated-flow model for collapsible-tube oscilla-
tions. Journal of Fluid Mechanics 157, 375–404.

Choutapalli, I. M. 2007 An Experimental Study of a Pulsed Jet Ejector . PhD Thesis,
Florida State University.

Conrad, W. A. 1969 Pressure-flow relationships in collapsible tubes. IEEE Transactions
on Bio-medical Engineering BME-16 (4), 284–295.

Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propul-
sion. Annual Review of Fluid Mechanics 41, 17–33.

Dabiri, J. O. & Gharib, M. 2004a Delay of vortex ring pinchoff by an imposed bulk
counterflow. Physics of Fluids 16, L28–30.

Dabiri, J. O. & Gharib, M. 2004b Fluid entrainment by isolated vortex rings. Journal
of Fluid Mechanics 511, 311–331.

Dickinson, M. H. 1996 Unsteady mechanisms of force generation in aquatic and aerial
locomotion. American Zoologist 36 (6), 537–54.



167

Ellington, C. P. 1978 Comparative Physiology: Water, Ions and Fluid Mechanics, chap.
The aerodynamics of normal hovering flight: three approaches, pp. 327–45. Cambridge
University Press.

Elsinga, G. E., Scarano, F., Wieneke, B. & van Oudheusden, B. W. 2006 Tomo-
graphic particle image velocimetry. Experiments in Fluids 41, 933–47.

Finio, B. M. & Wood, R. J. 2012 Open-loop roll, pitch and yaw torques for a robotic bee.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Finley, T. J. & Mohseni, K. 2004 Micro pulsatile jets for thrust optimization. In Pro-
ceedings of IMECE2004, 2004 ASME International Mechanical Engineering Congress and
Exposition.

Fung, Y. C. 1997 Biomechanics: Circulation. Springer.

Gadre, A., Maczka, D., Spinello, D., McCarter, B., Stilwell, D., Neu, W.,
Roan, M. & Hennage, J. 2008 Cooperative localization of an acoustic source us-
ing towed hydrophone arrays. In Autonomous Underwater Vehicles, 2008. AUV 2008.
IEEE/OES , pp. 1–8.

Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring
formation. Journal of Fluid Mechanics 360, 121–140.

Glezer, A. & Amitay, M. 2002 Synthetic jets. Annual Review of Fluid Mechanics 34,
503–29.

Green, G. 1835 Researches on the vibration of pendulums in fluid media. Transactions of
the Royal Society of Edinburgh 13 (1), 54–62.

Hayashi, S., Hayase, T. & Kawamura, H. 1998 Numerical analysis for stability and self-
excited oscillation in collapsible tube flow. Journal of Biomechanical Engineering 120,
468–75.

Hedenström, A., Johansson, L. C., Wolf, M., von Busse, R., Winter, Y. &
Spedding, G. 2007 Bat flight generates complex aerodynamics tracks. Science 316,
894–7.

Heil, M. & Boyle, J. 2010 Self-excited oscillations in three-dimensional collapsible tubes:
simulating their onset and large-amplitude oscillations. Journal of Fluid Mechanics 652,
405–26.

Heil, M. & Hazel, A. L. 2011 Fluid-structure interaction in internal physiological flows.
Annual Review of Fluid Mechanics 43, 141–162.

Heil, M. & Jensen, O. E. 2003 Flow Past Highly Compliant Boundaries and in Collapsible
Tubes, chap. Flows in deformable tubes and channels: theoretical models and biological
applications, pp. 15–49. Springer.

Heil, M. & Waters, S. L. 2006 Transverse flows in rapidly oscillating elastic cylindrical
shells. Journal of Fluid Mechanics 547, 185–214.



168

Heil, M. & Waters, S. L. 2008 How rapidly oscillating collapsible tubes extract energy
from a viscous mean flow. Journal of Fluid Mechanics 601, 199–227.

Hickerson, A. I., Rinderknecht, D. & Gharib, M. 2005 Experimental study of the
behavior of a valveless impedance pump. Experiments in Fluids 38, 534–40.

Ho, C.-M. & Gutmark, E. 1987 Vortex induction and mass entrainment in a small-
aspect-ratio elliptic jet. Journal of Fluid Mechanics 179, 383–405.

Holt, J. P. 1941 The collapse factor in the measurement of venous pressure, the flow of
fluid through collapsible tubes. American Journal of Physiology 134, 292–9.

Hu, H. 2006 Biologically inspired design of autonomous robotic fish at essex. In Proceedings
of the IEEE SMC UK-RI Chapter Conference 2006 on Advances in Cybernetic Systems.

Ichiklzaki, T. & Yamamoto, I. 2007 Development of robotic fish with various swimming
functions. In Symposium on Underwater Technology and Workshop on Scientific Use of
Submarine Cables and Related Technologies.

Jensen, O. E. & Heil, M. 2003 High-frequency self-excited oscillations in a collapsible-
channel flow. Journal of Fluid Mechanics 481, 235–268.

Johansson, L. C. & Lauder, G. V. 2004 Hydrodynamics of surface swimming in leopard
frogs (Rana pipiens). Journal of Experimental Biology 207, 3945–58.

Johansson, L. C. & Norberg, R. A. 2003 Delta-wing function of webbed feet gives
hydrodynamic lift for swimming propulsion in birds. Nature 424, 65–68.

Kececioglu, I., Mcclurken, M. E., Kamm, R. D. & Shapiro, A. H. 1981 Steady,
supercritical flow in collapsible tubes. part 1. experimental observations. Journal of Fluid
Mechanics 109, 367–389.

Knowlton, F. P. & Starling, E. H. 1912 The influence of variations in termperature
and blood-pressure on the performance of the isolated mammalian heart. Journal of
Physiology 44 (3), 206–19.

Kounanis, K. & Mathioulakis, D. S. 1999 Experimental flow study wiwith a self oscil-
lating collapsible tube. Journal of Fluids and Structures 13, 61–73.

Krieg, M., Coley, C., Hart, C. & Mohseni, K. 2005 Synthetic jet thrust optimiza-
tion for application in underwater vehicles. In International Symposium on Unmanned
Untethered Submersible Technology (UUST).

Krieg, M. & Mohseni, K. 2008 Thrust characterization of a bioinspired vortex ring
thruster for locomotion of underwater robots. IEEE Journal of Oceanic Engineering
33 (2), 123–32.

Krieg, M. & Mohseni, K. 2010 Dynamic modeling and control of biologically inspired
vortex ring thrusters for underwater robot locomotion. IEEE Transactions on Robotics
26 (3), 542–54.

Krieg, M. & Mohseni, K. 2013 Modelling circulation, impulse and kinetic energy of
starting jets with non-zero radial velocity. Journal of Fluid Mechanics 719, 488–526.



169

Krishnan, G. & Mohseni, K. 2009a Axisymmetric synthetic jets: An experimental and
theoretical examination. AIAA Journal 47 (10), 2273–83.

Krishnan, G. & Mohseni, K. 2009b An experimental and analytical investigation of
rectangular synthetic jets. Journal of Fluids Engineering 131, 121101.

Krueger, P. S. 2001 The significance of vortex ring formation and nozzle exit over-
pressure to pulsatile jet propulsion. PhD Thesis, California Institute of Technology.

Krueger, P. S., Dabiri, J. O. & Gharib, M. 2003 Vortex ring pinchoff in the presence of
simultaneously initiated uniform background co-flow. Physics of Fluids 15 (7), L49–L52.

Krueger, P. S., Dabiri, J. O. & Gharib, M. 2006 The formation number of vortex
rings formed in uniform background co-flow. Journal of Fluid Mechanics 556, 147–166.

Krueger, P. S. & Gharib, M. 2005 Thrust augmentation and vortex ring evolution in
a fully-pulsed jet. AIAA Journal 43 (4), 792–801.

Krueger, P. S., Moslemi, A. A., Nichols, J. T., Bartol, I. K. & Stewart, W. J.
2008 Vortex rings in bio-inspired and biological jet propulsion. Advances in Science and
Technology 58, 237–46.

Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field
entrainment of round jets. Journal of Fluid Mechanics 245, 643–68.

Lighthill, M. J. 1960 Note on the swimming of slender fish. Journal of Fluid Mechanics
9, 305–17.

Liu, H. F., Luo, X. Y. & Cai, Z. X. 2011 Stability and energy budget of pressure-driven
collapsible channel flows. Journal of Fluid Mechanics 705, 348–70.

Liu, H. F., Luo, X. Y., Cai, Z. X. & Pedley, T. J. 2009 Sensitivity of unsteady col-
lapsible channel flows to modelling assumptions. Communications in Numerical Methods
in Engineering 25, 483–504.

Love, A. E. H. 1944 A treatise on the mathematical theory of elasticity . Dover Publications.

Low, K. H. 2006 Locomotion and depth control of a robotic fish with modular undulating
fins. International Journal of Automation and Computing 4, 348–357.

Luo, X. Y., Cai, Z. X., Li, W. G. & Pedley, T. J. 2008 The cascade structure of
linear instability in collapsible channel flows. Journal of Fluid Mechanics 600, 45–76.

Luo, X. Y. & Pedley, T. J. 1995 A numerical simulation of steady flow in a 2-d collapsible
channel. Journal of Fluids and Structures 9, 149–74.

Luo, X. Y. & Pedley, T. J. 1998 The effects of wall inertia on flow in a two-dimensional
collapsible channel. Journal of Fluid Mechanics 363, 253–280.

Luo, X. Y. & Pedley, T. J. 2000 Multiple solutions and flow limitation in collapsible
channel flows. Journal of Fluid Mechanics 420, 301–24.

Lynch, K. 2011 Development of a 3-D Fluid Velocimetry Technique based on Light Field
Imaging . PhD Thesis, Auburn University.



170

Man, S. G. K., Phillips, A. B., Boyd, S. W., Blake, J. I. R. & Griffiths, G. 2012
Bio-inspired aquatic flight propulsion system for agile and manoeuverable underwater
vehicles. In OCEANS, 2012 - Yeosu.

Marzo, A., Luo, X. Y. & Bertram, C. D. 2005 Three-dimensional collapse and steady
flow in thick-walled flexible tubes. Journal of Fluids and Structures 20, 817–35.

Maxworthy, T. 1972 The structure and stability of vortex rings. Journal of Fluid Me-
chanics 51, 15–32.

Mohseni, K. 2004 Zero-mass pulsatile jets for unmanned underwater vehicle maneuvering.
In AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop & Exhibit .

Mohseni, K. 2006 Pulsatile vortex generators for low-speed maneuvering of small under-
water vehicles. Ocean Engineering 33, 2209–2223.

Mohseni, K., Ran, H. & Colonius, T. 2001 Numerical experiments on vortex ring
formation. Journal of Fluid Mechanics 430, 267–82.

Moslemi, A. A. 2010 Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle.
PhD Thesis, Southern Methodist University.

Moslemi, A. A. & Krueger, P. S. 2009 Effect of stroke ratio and duty cycle on propulsive
efficiency of a pulsed jet underwater vehicle. In 38th AIAA Fluid Dynamics Conference.

Moslemi, A. A. & Krueger, P. S. 2010 Propulsive efficiency of a biomorphic pulsed-jet
underwater vehicle. Bioinspiration & Biomimetics 5 (3), 036003.

Moslemi, A. A. & Krueger, P. S. 2011 The effect of reynolds number on the propulsive
efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspiration & Biomimetics
6 (2), 026001.

Muggeridge, K. & Hinchey, M. J. 1992 A new jet propulsion device for small sub-
sea robots. In Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle
Technology, 1992. AUV ’92..

Müller, M. O., Bernal, L. P., Miska, P. K., Washabaugh, P. D., Chou, T.-
K. A., Parviz, B. A., Zhang, C. & Najafi, K. 2001 Flow structure and performance
of axisymmetric synthetic jets. In AIAA 39th Aerospace Sciences Meeting & Exhibit .

Müller, M. O., Bernal, L. P., Moran, R. P., Washabaugh, P. D., Parviz, B. A.,
Chou, T.-K. A., Zhang, C. & Najafi, K. 2000a Thrust performance of micromachined
synthetic jets. In AIAA Fluids 2000 Conference.

Müller, M. O., Bernal, L. P., Moran, R. P., Washabaugh, P. D., Parviz, B. A. &
Najafi, K. 2000b Micromachined acoustic resonators for microjet propulsion. In AIAA
38th Aerospace Sciences Meeting & Exhibit .

Nawroth, J. C., Lee, H., Feinberg, A. W., Ripplinger, C. M., McCain, M. L.,
Grosberg, A., Dabiri, J. O. & Parker, K. K. 2012 A tissue-engineered jellyfish
with biomimetic propulsion. Nature Biotechnology 30 (8), 792–7.



171

Nichols, J. T. 2011 The Effect of Vehicle Configuration on the Performance of Pulsed Jet
Propulsion. PhD Thesis, Southern Methodist University.

Nichols, J. T. & Krueger, P. S. 2012 Effect of vehicle configuration on the performance
of a submersible pulsed-jet vehicle at intermediate reynolds number. Bioinspiration &
Biomimetics 7 (3), 036010.

Nichols, J. T., Moslemi, A. A. & Krueger, P. S. 2008 Performance of a self-propelled
pulsed-jet vehicle. In AIAA 38th Fluid Dynamics Conference and Exhibit .

Ohba, K., Sakurai, A. & Oka, J. 1989 Self-excited oscillation of flow in collapsible tube.
IV (laser doppler measurement of local flow field). Tech. Rep. 31. Kansai University.

Ohba, K., Sakurai, A. & Oka, J. 1997 Laser doppler measurement of local flow field
in collapsible tube during self-excited oscillation. JSME International Journal, Series C
40 (4), 665–70.

Olcay, A. B. & Krueger, P. S. 2008 Measurement of ambient fluid entrainment during
laminar vortex ring formation. Experiments in Fluids 44, 235–247.

Pereira, F. & Gharib, M. 2002 Defocusing digital particle image velocimetry and the
three-dimensional characterization of two-phase flows. Measurement Science and Tech-
nology 13, 683–694.

Petrich, J. 2009 Improved Guidance, Navigation, and Control for Autonomous Under-
water Vehicles: Theory and Experiment . PhD Thesis, Virginia Polytechnic Institute and
State University.

Petrich, J., Neu, W. & Stilwell, D. 2007 Identification of a simplified auv pitch axis
model for control design: Theory and experiments. In OCEANS 2007 , pp. 1–7.

Petrich, J. & Stilwell, D. J. 2010 Model simplification for auv pitch-axis control design.
Ocean Engineering 37 (7), 638 – 651.

Polsenberg Thomas, A., Burdick, J. & Mohseni, K. 2005a An experimental study
of voice-coil driven synthetic jet propulsion for underwater vehicles. In OCEANS, 2005.
Proceedings of MTS/IEEE , pp. 923–7.

Polsenberg Thomas, A., Milano, M., G’Sell, M. G., Fischer, K. & Burdick, J.
2005b Synthetic jet propulsion for small underwater vehicles. In Proceedings of the 2005
IEEE International Conference on Robotics and Automation.

Prandtl, L. 1952 Essentials of Fluid Dynamics: With Applications to Hydraulics, Aero-
nautics, Meteorology and other Subjects. Hafner.

Rayner, J. M. V. 1979a A vortex theory of animal flight. Part 2. the forward flight of
birds. Journal of Fluid Mechanics 91, 731–63.

Rayner, J. M. V. 1979b A new approach to animal flight mechanics. Journal of Experi-
mental Biology 80, 17–54.

Rayner, J. M. V. 1988 Form and function in avian flight. Current Ornithology 5, 1–66.



172

Reynolds, W. C., Parekh, D. E., Juvet, P. J. D. & Lee, M. J. D. 2003 Bifurcating
and blooming jets. Annual Review of Fluid Mechanics 35, 295–315.

Rosen, M. W. 1959 Water flow about a swimming fish. Tech. Rep. NOTS TP 2298. U.S.
Naval Ordance Test Station. (also MS Thesis, UCLA).

Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of
laminar vortex rings. Journal of Fluid Mechanics 376, 297–318.

Ruiz, L. A. 2010 The role of unsteady hydrodynamics in the propulsive performance of a
self-propelled bioinspired vehicle. PhD Thesis, California Institute of Technology.

Ruiz, L. A., Whittlesey, R. W. & Dabiri, J. O. 2011 Vortex-enhanced propulsion.
Journal of Fluid Mechanics 668, 5–32.

Saffman, P. G. 1995 Vortex Dynamics. Cambridge University Press.

Sakurai, A., Ohba, K., Futagami, Y. & Tsujimoto, M. 1996 The effect of longitudial
tension on flow in collapsible tube. JSME International Journal, Series B 39, 361–367.

Serchi, F. G., Arienti, A. & Laschi, C. 2013 Biomimetic vortex propulsion: Toward
the new paradigm of soft unmanned underwater vehicles. IEEE/ASME Transactions on
Mechatronics 18 (2), 484–93.

Shadden, S. C., Dabiri, J. O. & Marsden, J. E. 2006 Lagrangian analysis of fluid
transport in empirical vortex ring flows. Physics of Fluids 18, 047105.

Shariff, K. & Leonard, A. 1992 Vortex rings. Annual Review of Fluid Mechanics 24,
235–79.

Siekmann, J. 1962 On a pulsating jet from the end of a tube, with application to the
propulsion of certain aquatic animals. Journal of Fluid Mechanics 15 (03), 399–418.

Singer, J., Arbocz, J. & Weller, T. 1998 Buckling Experiments: Experimental Meth-
ods in Buckling of Thin-Walled Structures, Vol. 1 . John Wiley & Sons, Inc.

Spedding, G. R., Rayner, J. M. V. & Pennycuick, C. J. 1984 Momentum and energy
in the wake of a pigeon (Columba livia) in slow flight. Journal of Experimental Biology
111, 81–102.

Stewart, P. S., Heil, M., Waters, S. L. & Jensen, O. E. 2010 Slostube and slamming
oscillations in a collapsible channel flow. Journal of Fluid Mechanics 662, 288–319.

Stewart, P. S., Waters, S. L. & Jensen, O. E. 2009 Local and global instabilities of
flow in a flexible-walled channel. European Journal of Mechanics B/Fluids 28, 541–57.

Tadesse, Y., Brennan, J., Smith, C., Long, T. E. & Priya, S. 2010 Synthesis
and characterization of polypyrrole composite actuator for jellyfish unmanned undersea
vehicle. In Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD)
2010 .

Tadesse, Y., Villanueva, A., Haines, C., Novitski, D., Baughman, R. & Priya,
S. 2012 Hydrogen-fuel-powered bell segments of biomimetic jellyfish. Smart Materials
and Structures 21, 045013.



173

Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals
cruise at a strouhal number tuned for high power efficiency. Nature 425, 707–11.

Tian, X., Iriarte-Diaz, J., Middleton, K., Galvao, R., Israeli, E., Roemer, A.,
Sullivan, A., Song, A., Swartz, S. & Breuer, K. 2006 Direct measurements of the
kinematics and dynamics of bat flight. Bioinspiration & Biomimetics 1, 10–18.

Valdivia y Alvarado, P., Chin, S., Larson, W., Mazumdar, A. & Youcef-Toumi,
K. 2010 A soft body under-actuated approach to multi degree of freedom biomimetic
robots: A stingray example. In 2010 3rd IEEE RAS and EMBS International Conference
on Biomedical Robotics and Biomechatronics (RioRob).

Villanueva, A., Smith, C. & Priya, S. 2011 A biomimetic robotic jellyfish (robojelly)
actuated by shape memory alloy composite actuators. Bioinspiration & Biomimetics 6,
036004.

Wang, Y., Wang, Z. & Li, J. 2011 Initial design of a biomimetic cuttlefish robot actuated
by sma wires. In 2011 Third International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA).

Weihs, D. 1977 Periodic jet propulsion of aquatic creatures. Fortschr. Zool. 24, 171.

Whittaker, R. J., Heil, M., Boyle, J., Jensen, O. E. & Waters, S. L. 2010a The
energetics of flow through a rapidly oscillating tube. part 2. application to an elliptical
tube. Journal of Fluid Mechanics 648, 123–53.

Whittaker, R. J., Waters, S. L., Jensen, O. E., Boyle, J. & Heil, M. 2010b The
energetics of flow through a rapidly oscillating tube. part 1. general theory. Journal of
Fluid Mechanics 648, 83–121.

Whittlesey, R. W. 2011 Wake-based unsteady modeling of the aquatic beetle Dytiscus
marginalis. Journal of Theoretical Biology 291, 14–21.

Wood, R. J. 2008 The first takeoff of a biologically inspired at-scale robotic insect. IEEE
Transactions on Robotics 24, 341–7.

Wu, T. Y.-T. 1961 Swimming of a waving plate. Journal of Fluid Mechanics 10, 321–44.

Yamaki, N. & Otomo, K. 1973 Experiments on the postbuckling behavior of circular
cylindrical shells under hydrostatic pressure. Experimental Mechanics 13 (7), 299–304.

Yeom, S.-W. & Oh, I.-K. 2009 A biomimetic jellyfish robot based on ionic polymer metal
composite actuators. Smart Materials and Structures 085002.


