
Mathematical Study of Complex Networks: Brain, Internet,
and Power Grid

Thesis by

Somayeh Sojoudi

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended May 15, 2013)

ii

c© 2013

Somayeh Sojoudi

All Rights Reserved

iii

To my husband, Javad Lavaei

iv

Acknowledgements

I would like to express my deepest gratitude and appreciation to my PhD advisor, John

Doyle, for his constant support and guidance throughout my PhD studies. I am very

thankful to John for giving me the unique opportunity of working in his research group.

John’s passion for groundbreaking research has always inspired me to fearlessly work on

fundamental research problems. I would also like to extend my gratitude to Richard Murray

for his kind support at all stages of my academic life. My collaboration with him on fault-

tolerant controller design was truly fruitful and enjoyable.

I am thankful to Steven Low for introducing me to the world of communication networks

and for his generous support during the course of my studies. I sincerely thank Mani Chandi

for being on my thesis committee. I am grateful to Jerrold Marsden for being a wonderful

teacher and an inspiring role model. I would also like to express my gratitude to my Master’s

advisor, Amir Aghdam, for his constant encouragement and support.

I am thankful to all my colleagues and friends at Caltech who made my academic life

exciting. In particular, I would like to thank my friends Nafiseh Khoram and Pooran Memari

for making my time at Caltech much more enjoyable. I would also like to acknowledge the

great help of Anissa Scott, Maria Lopez and the rest of administrative staff at CDS and

ACM.

I am grateful to my family for their unconditional love and support. I am deeply indebted

to my mother for being my best friend, teacher, and supporter, and to my brother for his

kindness and encouragement. Finally, I would like to thank my wonderful husband and

colleague, Javad Lavaei, whom this thesis is dedicated to. Certainly, this thesis would not

have been completed without his generous help and support.

v

Abstract

The dissertation is concerned with the mathematical study of various network problems.

First, three real-world networks are considered: (i) the human brain network (ii) commu-

nication networks, (iii) electric power networks. Although these networks perform very

different tasks, they share similar mathematical foundations. The high-level goal is to ana-

lyze and/or synthesis each of these systems from a “control and optimization” point of view.

After studying these three real-world networks, two abstract network problems are also ex-

plored, which are motivated by power systems. The first one is “flow optimization over a

flow network” and the second one is “nonlinear optimization over a generalized weighted

graph”. The results derived in this dissertation are summarized below.

Brain Networks: Neuroimaging data reveals the coordinated activity of spatially

distinct brain regions, which may be represented mathematically as a network of nodes

(brain regions) and links (interdependencies). To obtain the brain connectivity network, the

graphs associated with the correlation matrix and the inverse covariance matrix—describing

marginal and conditional dependencies between brain regions—have been proposed in the

literature. A question arises as to whether any of these graphs provides useful information

about the brain connectivity. Due to the electrical properties of the brain, this problem

will be investigated in the context of electrical circuits. First, we consider an electric circuit

model and show that the inverse covariance matrix of the node voltages reveals the topology

of the circuit. Second, we study the problem of finding the topology of the circuit based on

only measurement. In this case, by assuming that the circuit is hidden inside a black box

and only the nodal signals are available for measurement, the aim is to find the topology of

the circuit when a limited number of samples are available. For this purpose, we deploy the

graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that

the graphical lasso may find most of the circuit topology if the exact covariance matrix is

well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To

vi

deal with ill-conditioned matrices, we propose a small modification to the graphical lasso

algorithm and demonstrate its performance. Finally, the technique developed in this work

will be applied to the resting-state fMRI data of a number of healthy subjects.

Communication Networks: Congestion control techniques aim to adjust the trans-

mission rates of competing users in the Internet in such a way that the network resources

are shared efficiently. Despite the progress in the analysis and synthesis of the Internet con-

gestion control, almost all existing fluid models of congestion control assume that every link

in the path of a flow observes the original source rate. To address this issue, a more accurate

model is derived in this work for the behavior of the network under an arbitrary conges-

tion controller, which takes into account of the effect of buffering (queueing) on data flows.

Using this model, it is proved that the well-known Internet congestion control algorithms

may no longer be stable for the common pricing schemes, unless a sufficient condition is

satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing

mechanism is used.

Electrical Power Networks: Optimal power flow (OPF) has been one of the most

studied problems for power systems since its introduction by Carpentier in 1962. This

problem is concerned with finding an optimal operating point of a power network minimizing

the total power generation cost subject to network and physical constraints. It is well known

that OPF is computationally hard to solve due to the nonlinear interrelation among the

optimization variables. The objective is to identify a large class of networks over which

every OPF problem can be solved in polynomial time. To this end, a convex relaxation is

proposed, which solves the OPF problem exactly for every radial network and every meshed

network with a sufficient number of phase shifters, provided power over-delivery is allowed.

The concept of “power over-delivery” is equivalent to relaxing the power balance equations

to inequality constraints.

Flow Networks: In this part of the dissertation, the minimum-cost flow problem over

an arbitrary flow network is considered. In this problem, each node is associated with some

possibly unknown injection, each line has two unknown flows at its ends related to each other

via a nonlinear function, and all injections and flows need to satisfy certain box constraints.

This problem, named generalized network flow (GNF), is highly non-convex due to its

nonlinear equality constraints. Under the assumption of monotonicity and convexity of the

flow and cost functions, a convex relaxation is proposed, which always finds the optimal

vii

injections. A primary application of this work is in the OPF problem. The results of this

work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery)

is not needed in practice under a very mild angle assumption.

Generalized Weighted Graphs: Motivated by power optimizations, this part aims to

find a global optimization technique for a nonlinear optimization defined over a generalized

weighted graph. Every edge of this type of graph is associated with a weight set correspond-

ing to the known parameters of the optimization (e.g., the coefficients). The motivation

behind this problem is to investigate how the (hidden) structure of a given real/complex-

valued optimization makes the problem easy to solve, and indeed the generalized weighted

graph is introduced to capture the structure of an optimization. Various sufficient conditions

are derived, which relate the polynomial-time solvability of different classes of optimization

problems to weak properties of the generalized weighted graph such as its topology and the

sign definiteness of its weight sets. As an application, it is proved that a broad class of real

and complex optimizations over power networks are polynomial-time solvable due to the

passivity of transmission lines and transformers.

viii

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Modeling of Brain Connectivity Networks 1

1.2 Buffering Dynamics and Stability of Internet Congestion Control 3

1.3 Network Topologies with Zero Duality Gap for Optimal Power Flow 4

1.4 Convexification of Generalized Network Flow Problem 5

1.5 Semidefinite Relaxation for Nonlinear Optimization over Graphs 7

2 Modeling of Brain Connectivity Networks 9

2.1 Introduction . 10

2.2 Mapping of Data into Graphs . 12

2.2.1 Concentration Graph . 13

2.3 Circuit Model . 13

2.3.1 Modified Graphical Lasso . 18

2.4 FMRI data: Graphical Lasso vs. Modified Graphical Lasso 19

2.5 Summary . 28

2.6 Appendix . 28

3 Buffering Dynamics and Stability of Internet Congestion Control 30

3.1 Introduction . 30

3.2 Preliminaries and Existing Models . 32

3.3 Modeling of Buffer Occupancies . 36

3.3.1 Parameter θls(t) for Different Service Disciplines 37

ix

3.3.2 Dynamics of Buffer Sizes . 40

3.4 Congestion Control and Buffering Effect . 46

3.4.1 Instability of Primal-Dual Algorithm 46

3.4.1.1 Constant Buffer Partitioning 47

3.4.1.2 State-Dependent Buffer Partitioning 51

3.4.2 Stability of Dual Algorithm . 53

3.5 Discussions . 54

3.5.1 Alternative Congestion Feedback . 54

3.5.2 Nonzero Buffer Assumption . 56

3.6 Summary . 58

4 Network Topologies with Zero Duality Gap for Optimal Power Flow 59

4.1 Introduction . 59

4.1.1 Motivating Example . 61

4.1.2 Contributions . 63

4.1.3 Notations . 64

4.2 Problem Formulation . 64

4.3 Main Results . 67

4.3.1 Various SDP Relaxations and Zero Duality Gap 67

4.3.2 Acyclic Networks . 70

4.3.3 General Networks . 73

4.4 Examples . 77

4.5 Summary . 79

4.6 Appendix . 80

5 Convexification of Generalized Network Flow Problem 82

5.1 Introduction . 82

5.1.1 Application of GNF in Power Systems 84

5.1.2 Notations . 85

5.2 Problem Statement and Contributions . 85

5.3 Main Results . 89

5.3.1 Illustrative Example . 90

5.3.2 Geometry of Injection Region . 92

x

5.3.3 Relationship between GNF and CGNF 101

5.3.4 Optimal Power Flow in Electrical Power Networks 107

5.4 Summary . 110

6 Semidefinite Relaxation for Nonlinear Optimization Over Graphs 111

6.1 Introduction . 112

6.2 Problem Statement and Contributions . 113

6.2.1 Notations . 114

6.2.2 Problem Statement . 115

6.2.3 Related Work . 119

6.2.4 Contributions . 120

6.3 SDP, Reduced-SDP and SOCP Relaxations 122

6.4 Real-Valued Optimization . 124

6.4.1 Low-Rank Solution for SDP Relaxation 127

6.5 Complex-Valued Optimization . 130

6.5.1 Acyclic Graph with Complex Edge Weights 131

6.5.2 Weakly Cyclic Graph with Real Edge Weights 133

6.5.3 Cyclic Graph with Real and Imaginary Edge Weights 134

6.5.4 Weakly Cyclic Graph with Imaginary Edge Weights 135

6.5.5 General Graph with Complex Edge Weight Sets 138

6.5.6 Roles of Graph Topology and Sign Definite Weight Sets 139

6.6 Application in Power Systems . 142

6.7 Examples . 145

6.8 Summary . 149

6.9 Appendix . 150

7 Conclusions and Future Work 156

Bibliography 160

xi

List of Figures

1.1 (a) A brain image created from fMRI data (b) A graphical representation of

the whole-brain functional network , borrowed from [1]. 2

2.1 (a) The resistive circuit studied in Example 1. (b) The concentration graph

representing the inverse covariance matrix. 15

2.2 (a) The concentration graph obtained from the exact inverse covariance matrix.

(b) The estimated concentration graph from 4 samples using graphical lasso

algorithm. 16

2.3 (a) The graph for Σ−1
s in the case Σ− Σs = 0. (b) The estimated concentra-

tion graph obtained from optimization (2.1) for α = 0.01. (c) The estimated

concentration graph obtained from optimization (2.1) for α = 2. 18

2.4 The estimated concentration graph obtained from the modified graphical lasso

for α = 5.4 and β = 2. 19

2.5 2-D picture of the 140 brain regions. 20

2.6 (a) The sparsest connected graph for the resting-state-fMRI data of Subject 1

obtained from optimization (2.1) for α = 0.315. (b) The sparseness of the

off-diagonal entries of the solution of optimization (2.1) for Subject 1 after

taking the absolute value of its elements. 21

2.7 (a) The sparsest connected graph for the resting-state-fMRI data of Subject 2

obtained from optimization (2.1) for α = 0.355. (b) The sparseness of the

off-diagonal entries of the solution of optimization (2.1) for Subject 2 after

taking the absolute value of its elements. 22

xii

2.8 (a) The sparsest connected graph for the resting-state-fMRI data of Subject 3

obtained from optimization (2.1) for α = 0.275. (b) The sparseness of the

off-diagonal entries of the solution of optimization (2.1) for Subject 3 after

taking the absolute value of its elements. 23

2.9 (a) The sparsest connected graph for the resting-state-fMRI data of Subject 1

obtained from optimization (2.3) for α = 0.445 and β = 5. (b) The sparseness

of the off-diagonal entries of the solution of optimization (2.3) for Subject 1

after taking the absolute value of its elements. 24

2.10 (a) The sparsest connected graph for the resting-state-fMRI data of Subject 2

obtained from optimization (2.3) for α = 0.356 and β = 5. (b) The sparseness

of the off-diagonal entries of the solution of optimization (2.3) for Subject 2

after taking the absolute value of its elements. 25

2.11 (a) The sparsest connected graph for the resting-state-fMRI data of Subject 3

obtained from optimization (2.3) for α = 0.275 and β = 5. (b) The sparseness

of the off-diagonal entries of the solution of optimization (2.3) for Subject 3

after taking the absolute value of its elements. 26

2.12 The 62 edges that are in common among the graphs of Subjects 1-3 obtained

from optimization (2.3). 27

3.1 Network studied in Example 1. 42

3.2 Network studied in Example 2. 44

3.3 Network studied in Examples 3 and 4. 48

3.4 This figure illustrates the instability of the primal-dual algorithm with the

buffer-size pricing mechanism for Example 3. 49

3.5 This figure illustrates the stability of the primal-dual algorithm using the mod-

ified buffer-size pricing mechanism for Example 3. 56

3.6 This figure illustrates the stability of the primal-dual algorithm using the mod-

ified buffer-size pricing mechanism for Example 3. 57

4.1 The three-bus power network studied in Section I-A. 63

4.2 Power network used to illustrate Theorem 2. 78

5.1 The graph G studied in Section 5.3.1. 89

xiii

5.2 (a) Injection region P for the GNF problem given in (5.8). (b) The set Pc

corresponding to the GNF problem given in (5.8). 89

5.3 (a) This figure shows the set Pc corresponding to the GNF problem given

in (5.8) together with a box constraint (p1, p2) ∈ B for four different positions

of B. (b) This figure shows the injection region P for the GNF problem given

in (5.8) but after changing (5.8b) to (5.10). 90

5.4 (a) A particular graph ~G. (b) The matrix M(p̄d, p̃d) corresponding to the

graph ~G in Figure (a). (c) The (j, (i, j))th entry of M(p̄d, p̃d) (shown as “*”)

is equal to the slope of the line connecting the point (p̄ij , p̄ji) to (p̃ij , p̃ji). . . 93

5.5 Figures (a) and (b) show the feasible sets T (1)
c and T (2)

c for the example studied

in Section 5.3.1, respectively. Figure (c) aims to show that CGNF may have

an infinite number of solutions (any point in the yellow area may correspond

to a solution of a given GNF). 105

5.6 An example of electrical power network. 107

5.7 (a) Feasible set for (pjk, pkj). (b) Feasible set for (pjk, pkj) after imposing lower

and upper bounds on θjk. 108

6.1 In Figure (a), there exists a line separating x’s (elements of T) from o’s (ele-

ments of −T) so the set T is sign definite. In Figure (b), this is not the case.

Figure (c) shows the weighted graph G studied in Example 2. 114

6.2 (a) This figure shows the cones Cij and −Cij , in addition to the position of the

complex point X∗
ji. (b) An example of the power circuit studied in Section 6.6. 141

6.3 (a) This figure illustrates that each transmission line has four flows. (b) Graph

G corresponding to minimization of f0(x1, x2) given in (6.41). 143

6.4 Function f0(x1, x2) given in (6.41) for a = 3, b = −2 and c = 3. 147

xiv

List of Tables

2.1 This table shows the number of edges for the graphs obtained from optimiza-

tion (2.1) and optimization (2.3) for Subjects 1-3. 27

1

Chapter 1

Introduction

Real-world systems from human brains to the Internet to power systems are complex net-

works that can all be mathematically represented as abstract graphs. Although these net-

works perform very different tasks, they share similar mathematical foundations. The main

goal of this PhD dissertation is to explore each of these systems from a ”control and opti-

mization” perspective. This thesis is composed of five chapters, where the two first chapters

study the brain and communication networks, and the remaining chapters are concerned

with three problems inspired by electrical power systems. In what follows, each of the

problems studied in this work will be spelled out.

1.1 Modeling of Brain Connectivity Networks

Neuroimaging technologies such as structural MRI, functional MRI (fMRI) and EEG/MEG,

allow for a non-invasive study of the structure and function of the human brain. This

provides a great opportunity for understanding both healthy and disordered states of the

brain as one of the most complex systems. Neuroimaging data reveals the coordinated

activity of spatially distinct brain regions, which may be represented mathematically as a

network of nodes (brain regions) and links (interdependencies). Figure (1.1) illustrates an

image of the brain created from fMRI and also a graphical representation of the whole-brain

functional connectivity. Various approaches have been proposed for assessing the functional

connectivity (statistical dependencies) and effective connectivity (causal interactions) of the

brain extracted from noisy and limited data, including general linear model [2], correlation

thresholding [3], clustering [4, 5, 6], multivariate auto-regression [7, 8], dynamical causal

modelling [9, 10, 11, 12], Bayesian network [13, 14] and sparse regression.

2

(a) (b)

Figure 1.1: (a) A brain image created from fMRI data (b) A graphical representation of
the whole-brain functional network , borrowed from [1].

To assess the brain connectivity network, some methods such as the correlation matrix

thresholding are based on the marginal dependencies among the random variables assigned

to the brain regions, while some other techniques such as Bayesian networks and sparse

regression methods are concerned with the conditional dependencies of Gaussian random

variables obtained from the inverse covariance matrix. One may wonder whether the sparsity

pattern of a correlation matrix or an inverse covariance matrix can partially or fully reveal

the structure of the brain network. In Chapter 2, we study this problem in the context of

electrical circuits as it is believed that the brain has certain electrical properties. To this

end, we construct an electrical circuit (a resistive circuit) in which the resistors are assumed

to be subject to thermal noise. We then show that the sparsity of the inverse covariance

matrix (and not the correlation matrix) conforms with the circuit topology.

Assuming that the circuit is hidden inside a black box and only the nodal signals of

the circuit are available for measurement, it is desirable to find the topology of the circuit

given a limited set of measurements. We use the graphical lasso algorithm to estimate a

sparse inverse covariance matrix. A challenge in using the graphical lasso (or other sparse

regression techniques) is the choice of the regularization parameters. In this work, we choose

this parameter in such a way that the sparsest solution is found while its corresponding graph

is still connected. It is shown through some experiments that the graphical lasso may be

able to find an estimated inverse covariance matrix revealing most of the circuit topology,

provided the exact covariance matrix is well-conditioned. However, it may fail to work well

when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a

3

small modification to the graphical lasso algorithm and show that the small change in the

algorithm enables us to find most of the circuit topology. Eventually, we apply both the

graphical lasso and the modified algorithms to the resting-state fMRI data acquired from

three healthy subjects to estimate a connectivity graph for each subject. A comparison of

the graphs of these subjects demonstrates that the modified graphical lasso outperforms the

graphical lasso algorithm in the sense that the graphs obtained from the modified graphical

lasso are noticeably sparser than the ones obtained from the graphical lasso.

1.2 Buffering Dynamics and Stability of Internet Congestion

Control

In computer networks, queues build up when the input rates are larger than the available

bandwidth. This causes congestion leading to packet loss and long delays. Congestion

control techniques aim to adjust the transmission rates of competing users in such a way

that the network resources are shared efficiently. The Internet congestion control has two

main components: (i) transmission control protocol (TCP), (ii) active queue management

(AQM). TCP adapts the sending rate (or window size) of each user in response to the

congestion signal from its route, whereas AQM provides congestion information to the

users by manipulating the packets on each router’s queue.

Since the seminal works [15] and [16], a great deal of effort has been devoted to the

modeling and synthesis of Internet congestion control. This is often performed for a fluid

model of the network by solving a proper resource allocation problem in a distributed way.

Different resource allocation algorithms, such as primal, dual, and primal-dual algorithms

have been proposed in the literature, which enable every user to find its optimal transmis-

sion rate asymptotically using local feedback from the network. From a dynamical system

perspective, each of these congestion control algorithms corresponds to an autonomous dis-

tributed system that is globally asymptotically stable, where its unique equilibrium point

is a solution to the resource allocation problem [17, 18].

Despite the progress in the analysis and synthesis of Internet congestion control, an

important modeling issue is often neglected for the sake of simplicity. Specifically, most

existing fluid models of congestion control assume that all links in the path of a flow see

the original source rate. Nonetheless, a fluid flow in practice is modified by the queueing

4

processes on its path, so that an intermediate link will generally not see the original source

rate. Although it is possible to study the buffering effects for any given network through

simulations, it is very advantageous to develop a fundamental theory for an arbitrary service

discipline relating the buffering effects to various parameters of the network (say the routing

matrix or the link capacities). Our goal is to derive a closed-form model for the buffer’s

dynamics, based on which the stability of congestion control algorithms can be deduced via

simple conditions.

Chapter 3 of this dissertation studies the congestion control problem taking the buffer-

ing effect into account. To this end, a general model is derived to account for the time

evolution of the buffer sizes. This model can be used for different service disciplines such as

weighted fair queueing (WFQ) [19, 20] and first-in first-out (FIFO). The dual and primal-

dual algorithms are studied, where the pricing mechanism is considered to be based on

either queueing delays or queue sizes. It is shown that although these algorithms are stable

when the buffering effect is ignored, they can become unstable otherwise. Several issues

arising from the precise modeling of buffers are investigated. A new pricing mechanism is

also proposed to guarantee the global stability of the dual and primal-dual algorithms.

1.3 Network Topologies with Zero Duality Gap for Optimal

Power Flow

The optimal power flow (OPF) problem is concerned with finding an optimal operating

point of a power system, which minimizes a certain objective function such as power loss or

generation cost subject to network and physical constraints. This optimization problem has

been extensively studied since 1962 [21]. Due to the nonlinear interrelation among active

power, reactive power and voltage magnitude, OPF is described by nonlinear equations and

may have a nonconvex/disconnected feasibility region. Several algorithms have been pro-

posed for solving this highly nonconvex problem, including linear programming, quadratic

programming, nonlinear programming, Lagrange relaxation and interior point methods.

In order to solve OPF more efficiently, different conic and convex relaxations have been

proposed in the past decade [22, 23, 24].

Recently, it has been shown in [25] that the Lagrangian dual of OPF may be used to

find a globally optimal solution of OPF for several power networks due to their physical

5

properties. The primary goal of Chapter 4 is to identify a broad class of networks over

which every OPF problem can be solved in polynomial time. To this end, it is first shown

that the dual of OPF could be simplified significantly, depending on the number of cycles

in the graph of a power network. It is then proved that adding a certain controllable

power electronic device, known as phase shifter, to certain lines of the power network has a

noticeable effect on reducing the computational complexity of solving OPF. In particular,

if a sufficient number of phase shifters are incorporated in the topology of the network,

the OPF problem is guaranteed to be solvable in polynomial time, provided power over-

delivery is allowed. This result implies that every network topology can be modified by

the integration of phase shifters to make OPF solvable in polynomial time for all possible

values of loads, physical limits and convex cost functions.

1.4 Convexification of Generalized Network Flow Problem

The minimum-cost flow problem aims to optimize the flows over a flow network that is

used to carry some commodity from suppliers to consumers. In a flow network, there is

an injection of some commodity at every node, which leads to two flows over each line

(arc) at its endpoints. The injection—depending on whether it is positive or negative,

corresponds to supply or demand at the node. The minimum-cost flow problem has been

studied thoroughly for a lossless network, where the amount of flow entering a line equals

the amount of flow leaving the line. However, since many real-world flow networks are lossy,

the minimum-cost flow problem has also attracted much attention for generalized networks,

also known as networks with gain [26, 27, 28]. In this type of network, each line is associated

with a constant gain relating the two flows of the line through a linear function. From the

optimization perspective, network flow problems are convex and can be solved efficiently

unless there are discrete variables involved [29].

There are several real-world network flows that are lossy, where the loss is a nonlinear

function of the flows. An important example is power distribution networks for which the

loss over a transmission line (with fixed voltage magnitudes at both ends) is given by a

parabolic function due to Kirchhoff’s circuit laws [30]. The loss function could be much

more complicated depending on the power electronic devices installed on the transmission

line. To the best of our knowledge, there is no theoretical result in the literature on the

6

polynomial-time solvability of network flow problems with nonlinear flow functions, except

in very special cases. Chapter 5 is concerned with this general problem, named generalized

network flow (GNF). Note that the term “GNF” has already been used in the literature for

networks with linear losses, but it corresponds to arbitrary lossy networks in this work.

GNF aims to optimize the nodal injections subject to flow constraints for each line and

box constraints for both injections and flows. A flow constraint is a nonlinear equality

relating the flows at both ends of a line. To solve GNF, we make the practical assumption

that the cost and flow functions are all monotonic and convex. The GNF problem is

still highly non-convex due to its equality constraints. Relaxing the nonlinear equalities

to convex inequalities gives rise to a convex relaxation of GNF. It can be easily observed

that solving the relaxed problem may lead to a solution for which the new inequality flow

constraints are not binding. One may speculate that this observation implies that the convex

relaxation is not tight. However, the objective of this chapter is to show that as long as GNF

is feasible, the convex relaxation is tight. More precisely, the convex relaxation always finds

the optimal injections (and hence the optimal objective value), but probably produces wrong

flows leading to non-binding inequalities. However, once the optimal injections are obtained

at the nodes, a feasibility problem can be solved to find a set of feasible flows corresponding

to the injections. Note that the reason why the convex relaxation does not necessarily find

the correct flows is that the mapping from flows to injections is not invertible. The main

contribution of this chapter is to show that although GNF may be NP-hard (since the flow

equations can have an exponential number of solutions), the optimal injections can be found

in polynomial time.

Energy-related optimizations with embedded power flow equations can be regarded as

nonlinear network flow problems, which are analogous to GNF. The results derived in this

chapter for a general GNF problem lead to the generalization of the result of Chapter 4 of

this dissertation to networks with virtual phase shifters. This proves that in order to use

the SDP relaxation for OPF over an arbitrary power network, it is not necessary to relax

power balance equalities to inequality constraints under a very mild angle assumption.

7

1.5 Semidefinite Relaxation for Nonlinear Optimization over

Graphs

Several classes of optimization problems, including polynomial optimization and quadratically-

constrained quadratic program (QCQP) as a special case, are nonlinear/non-convex and

NP-hard in the worst case. Due to the complexity of such problems, several convex re-

laxations based on linear matrix inequality (LMI), semidefinite programming (SDP) and

second-order cone programming (SOCP) have gained popularity [31, 29]. These techniques

enlarge the possibly non-convex feasible set into a convex set characterizable via convex

functions, and then provide the exact or a lower bound on the optimal objective value.

The SDP relaxation converts an optimization with a vector variable to a convex opti-

mization with a matrix variable, via a lifting technique. The exactness of the relaxation

can then be interpreted as the existence of a low-rank (e.g., rank-1) solution for the SDP

relaxation. Several papers have studied the existence of a low-rank solution to matrix op-

timizations with linear and LMI constraints [32, 33]. The papers [34] and [35] provide an

upper bound on the lowest rank among all solutions of a feasible LMI problem. A rank-1

matrix decomposition technique is developed in [36] to find a rank-1 solution whenever the

number of constraints is small. This technique is extended in [37] to the complex SDP

problem. The paper [38] presents a polynomial-time algorithm for finding an approximate

low-rank solution.

Cahpter 6 is motivated by the fact that real-world optimization problems are highly

structured in many ways and their structures could in principle help reduce the computa-

tional complexity. For example, transmission lines and transformers used in power networks

are passive devices, and as a result optimizations defined over electrical power networks have

certain structures which distinguish them from abstract optimizations with random coef-

ficients. The high-level objective of this chapter is to understand how the computational

complexity of a given nonlinear optimization is related to its (hidden) structure.

This chapter is concerned with a broad class of nonlinear real/complex optimization

problems, including QCQP. The main feature of this class is that the argument of each

objective and constraint function is quadratic (as opposed to linear) in the optimization

variable and the goal is to use three conic relaxations (SDP, reduced SDP and SOCP) to

convexify the argument of the optimization. In this chapter, the structure of the nonlinear

8

optimization is mapped into a generalized weighted graph, where each edge is associated

with a weight set constructed from the known parameters of the optimization (e.g., the

coefficients). First, it is shown that the proposed relaxations are exact for real-valued

optimizations, provided a set of conditions is satisfied. These conditions need each weight

set to be sign definite and each cycle of the graph has an even number of positive weight

sets. It is also shown that if some of these conditions are not satisfied, the SDP relaxation is

guaranteed to have a rank-2 solution for weakly cyclic graphs, from which an approximate

rank-1 solution may be recovered. To study the complex-valued case, the notion of “sign-

definite complex weight sets” is introduced and it is then proved that the relaxations are

exact for a complex optimization if the graph is acyclic with sign definite weight sets (with

respect to complex numbers). The complex case is further studied for general graphs and it

is proved that if the graph can be decomposed as the union of some edge-disjoint subgraphs

in such a way that each subgraph possesses one of the four proposed structural properties,

then the SDP relaxation is tight. As an application of this work in optimization for power

systems, it is also shown that a broad class of energy optimizations can be convexified due

to the physics of power networks.

9

Chapter 2

Modeling of Brain Connectivity
Networks

Various neuro-imaging technologies combined with different mathematical tools are avail-

able to model the brain functional connectivity. The brain connectivity graph is often

constructed based on either a correlation matrix or an inverse covariance (also known as

concentration) matrix, which describe the marginal and conditional dependencies between

the random variables associated with the brain regions, respectively. A question of interest

is: Which of these matrices could reveal the topology of the brain network? Due to the

electrical properties of the brain, we investigate this question in the context of circuits. In

particular, we construct an electric circuit for which the inverse covariance matrix reveals

the topology of the circuit. Assuming that the circuit is hidden inside a black box and

only the nodal signals are available for measurement, the aim is to find the topology of the

circuit when a limited number of samples are available. For this purpose, we deploy the

graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that

the graphical lasso might be able to find an estimated inverse covariance matrix revealing

most of the circuit topology, provided the exact covariance matrix (not the sample covari-

ance) is well-conditioned. However, it may fail to work well when the exact covariance

matrix is ill-conditioned. To deal with ill-conditioned matrices, we modify the graphical

lasso algorithm and show that the small change in the algorithm enables us to find the

topology of the circuit even when the number of samples is very low. Finally, we apply

both the graphical lasso and the modified algorithm to the resting-state fMRI data of three

different healthy subjects and show that the graphs obtained from the modified graphical

lasso are sparser than the ones obtained from the graphical lasso algorithm.

10

2.1 Introduction

A variety of different imaging technologies such as structural MRI, functional MRI (fMRI)

and EEG/MEG, are available to study brain functional/effective connectivity. Neuroimag-

ing data reveals the coordinated activity of spatially distinct brain regions, which may be

represented mathematically as a network/graph of nodes (brain regions) and links (interde-

pendencies). Various approaches have been proposed for assessing functional and effective

connectivity of the brain using noisy and limited data, including general linear model [2],

correlation thresholding [3], clustering [4, 5, 6], multivariate auto-regression [7, 8], dynamical

causal modelling [9, 10, 11, 12], Bayesian networks [13, 14], and sparse regression.

In the general linear model, data is assumed to be a linear combination of explanatory

variables (also known as predictors) plus error or noise which is assumed to follow a Gaussian

distribution. The explanatory variables are assumed to have known shapes but their weights

(coefficients) are unknown and need to be estimated (see [39] for a review of the general linear

model and its application to fMRI data). Correlation thresholding directly examines the

correlation of image values between pairs of voxels. These correlations are then thresholded

to some pre-specified level to reveal the statistically significant connections. Clustering

technique attempts to form clusters of voxels whose values over time (or over subject) are

similar. This is closely related to the correlation thresholding method, since thresholding

correlations simply clusters together all voxels whose similarity exceeds a threshold value.

Given multiple time series data, consecutive measurements contain information about

the process that has generated it. Multivariate auto-regression modeling is a technique that

can describe this underlying order by modeling the vector of current values of all variables

as a linear sum of previous values. Dynamical causal modelling is based upon a bilinear

approximation to neuronal dynamics. In this method, each brain region is assumed to have

at least one state variable which is considered as a summary of neuronal activity in that

region. This activity induces a hemodynamic response which is described by an extended

Balloon model [40]. Unlike other techniques such as auto-regressive that assume inputs are

unknown and stochastic, dynamic causal modelling assumes the inputs to be known.

A Bayesian network is a graphical model for stochastic processes, encoding the condi-

tional independence/dependence relationships among some random variables with a directed

acyclic graph. A Bayesian network can be visualized as a graph whose nodes denote brain

11

regions and whose directed edges denote connections between the regions. Lasso [41] is

one of the most popular sparse regression techniques that exploits the sparsity enforcing

property of l1 regularization to shrink the most irrelevant or redundant features to zero.

Graphical lasso is another method proposed by [42] to estimate sparse undirected graphical

models using the lasso penalty (l1 regularization). For a given sample covariance matrix

which is computed from data that is assumed to follow a Gaussian distribution, graphical

lasso estimates a sparse inverse covariance matrix by minimizing the negative log-likelihood

of the data distribution over the space of positive definite matrices while imposing an l1

penalty on the covariance matrix.

To assess the brain connectivity network, some methods such as correlation thresholding

are proposed for encoding the marginal independence/dependence relationships among ran-

dom variables while some other techniques such as Bayesian networks and sparse regression

techniques aim to show the conditional dependencies of Gaussian random variables using

inverse covariance. A question that may arise is: which of these methods provides better

information about the structure of the brain network? We study this problem in the context

of electrical circuits as it is believed that the brain has certain electrical properties. To this

end, we construct an electrical circuit (a resistive circuit) in which the resistors are assumed

to be subject to thermal noise. We then show that the sparsity of the inverse covariance

matrix (and not the correlation matrix) conforms with the circuit topology.

Assuming that the circuit is hidden inside a black box and only the nodal signals of

the circuit are available for measurement, the problem of finding the circuit topology given

a limited set of measurements is studied next. We use the graphical lasso algorithm to

estimate a sparse inverse covariance matrix. A challenge in using graphical lasso (or other

sparse regression techniques) is the choice of the regularization parameters. In this work,

we choose this parameter in such a way that the sparsest solution is found while its corre-

sponding graph is still connected. It will be shown through some experiments that graph-

ical lasso may be able to find an estimated inverse covariance matrix which reveals most

of the circuit topology, provided the exact covariance matrix (not the sample covariance)

is well-conditioned. However, it may fail to work well when the exact covariance matrix is

ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to

the graphical lasso algorithm and show that the small change in the algorithm enables us

to find the topology of the circuit even when only a small number of samples is available.

12

We apply both the graphical lasso and the modified algorithm to the resting-state fMRI

data of three different healthy subjects. A comparison of the graphs of these subjects shows

that the modified graphical lasso outperforms the graphical lasso algorithm in the sense

that the graphs obtained from the modified graphical lasso are noticeably sparser than the

ones obtained from graphical lasso.

2.2 Mapping of Data into Graphs

Let y1, y2, ..., yn denote n scalar random variables representing the brain activity in n dis-

parate regions. One can regard the brain as an interconnected system S composed of n

interacting subsystems S1, S2, ..., Sn, where yi represents the output of Si for i = 1, 2, ..., n.

Let R and Σ denote the correlation matrix and covariance matrix of these random variables,

respectively. The graph associated with the matrices R and Σ is identical, and is called the

correlation graph. Moreover, the graph associated with the inverse covariance matrix Σ−1

(or alternatively R−1) is called the concentration (partial correlation) graph.

Assume that y1, ..., yn have been sampled N times. The objective is to discover the

interrelationship between subsystems S1, S2, ..., Sn (i.e., the n brain regions) from the given

data. This problem can be tackled from two different perspectives: (i) control theory, (ii)

statistics. Control theory regards this problem as “system identification”, where a static

or dynamic n-channel system is designed whose output matches the measurements up to

an acceptable level of error. This reverse engineering problem is challenging because no a

priori knowledge of the structure of the brain system is available and in addition the system

is subject to unknown noise and disturbances. Instead of fully characterizing S, statistics

deals with the weaker, yet very important, problem of studying which subsystems in S

affect each other directly. In other words, the goal is to identify the graph topology of the

interconnected system modeling the brain.

To solve the latter problem, one can easily compute a sample covariance matrix Σs for

the n-dimensional random variable
[

y1 y2 · · · yn

]T
. As an attempt to visualize the

brain connectivity network, some methods (e.g., correlation thresholding) investigate the

graph corresponding to Σs, while some other techniques (e.g., Bayesian networks or sparse

regression) explore Σ−1
s instead of Σs. The graphs obtained from Σs and Σ−1

s approximate

the correlation and concentration graphs, respectively.

13

Since any given data can be mapped into multiple graphs, a question arises: What graph

preserves the structural properties of the brain? Alternatively, it is desirable to discover

whether the topology of the interconnected system S modeling the brain can be fully or

partially recovered from the sparsity pattern of either Σs or Σ−1
s . In Section 2.3, we answer

this question in the context of electrical circuits, where it will be shown that the sparsity

pattern of the concentration graph has rich information. Before preceding to the circuit

model section, we briefly review the graphical lasso algorithm that can be used to estimate

a sparse concentration graph from a given sample covariance matrix.

2.2.1 Concentration Graph

The concentration graph is based on the non-zero entries of Σ−1. The main motivation

behind the introduction of this graph is that the entries of the inverse covariance matrix

(known as concentration matrix) show the conditional (as opposed to marginal) dependen-

cies of Gaussian random variables. For a given sample covariance matrix Σs, the graphical

lasso estimates a sparse inverse covariance matrix by minimizing the negative log-likelihood

of the data distribution over the space of positive definite matrices while imposing an l1

penalty on the matrix solution. This optimization is as follows:

min
S

trace(SΣs)− log(det(S)) + α‖S‖1

subject to: S � 0
(2.1)

where α is the regularization parameter and S is a matrix variable that plays the role of

Σ−1. The optimization variable S is a symmetric matrix, ‖.‖1 denotes the element wise

l1-norm and � denotes the matrix positive semi-definite sign. The graph associated with S

is an estimate of the concentration graph, which depends on the regularization parameters

α. In the next section, this technique will be applied to some synthetic data derived from

an electrical circuit.

2.3 Circuit Model

Consider a resistive circuit (network) composed of n nodes, m+n resistors and the ground,

where each node of the circuit is connected to the ground via a resistor and there are m

14

resistors connecting the nodes of the network. Suppose that every node of the network

is connected to an external device, which is able to exchange electrical current with the

network. Assume that every resistor is subject to thermal noise, namely Johnson-Nyquist

(J-N) noise. One common method for modeling the J-N noise is to replace a non-ideal

resistor with an ideal resistor in parallel with a current source whose value is white noise.

Figure 2.1(a) exemplifies the model of a noisy circuit for n = 4 and m = 3. Let V denote the

vector of the voltages seen at nodes 1, ..., n of the circuit, which can be regarded as a random

variable. Consider the admittance matrix of this circuit, denoted as Y (see the appendix

for the definition of this matrix). The matrix Y has the property that its sparsity pattern

is the same as the topology of the circuit. On the other hand, as shown in the appendix,

the covariance of the voltage vector V , denoted as Σ, is equal to Y −1. By assuming that

the circuit under study has a sparse structure, it can be concluded that:

• Σ is generically a dense matrix, being the inverse of the sparse matrix Y .

• Σ−1 is sparse and more importantly its sparsity conforms with the circuit topology.

This example illustrates the fact that the topology of a system may have been encoded in

the inverse covariance matrix.

Now, assume that the circuit under study is inside a black box hiding the topology of

the circuit, while the nodes of the circuit are available for measuring nodal signals. The

question of interest is: Can measuring the node voltages help recover the circuit topology?

To address this problem, one can sample the vector V multiple times and construct a sample

covariance matrix Σs. Due to the error Σs−Σ, the inverse of Σs may not reveal the circuit

topology. Another challenge is that Σs may not be invertible due to the lack of enough

samples. This is usually true for some neuroimaging data such as fMRI data as a result

of limited acquisition time. Hence, the question of interest is how to estimate a sparse

inverse covariance matrix from Σs (note that Σ−1
s , if it exists, is normally non-sparse due

to the error Σs −Σ). To address this problem, a powerful technique is to use the graphical

lasso algorithm. We have done extensive simulations on this algorithm in the context of the

circuit problem posed above and made the following observations:

• Graphical lasso may find a sparse covariance matrix that reveals most of the topology

of the circuit provided the exact covariance matrix Σ is well-conditioned. Note that

the well conditioning of Σ highly depends on the values of the resistors in the circuit.

15

4

1 2 3

1
1

1

ε ε ε

ε

(a)

4

1

2
3

ε1ε1ε1

ε3

1-
1-

1-

(b)

Figure 2.1: (a) The resistive circuit studied in Example 1. (b) The concentration graph
representing the inverse covariance matrix.

• If the exact covariance matrix Σ is ill-conditioned, graphical lasso may fail to find a

sparse inverse covariance matrix. This issue can be fixed by modifying the graphical

lasso algorithm via an extra term.

The above results will be elaborated here in a simple example. Consider the star circuit

depicted in Figure 2.1(a). In this circuit, nodes 1, 2 and 3 are connected to node 4 (named

central node) via three resistors with values of 1 . In addition, each node is grounded via a

resistor with value ε (this will allow the exact covariance matrix Σ to be invertible). Note

that since each resistor is subject to thermal noise by assumption, it has been replaced by an

ideal resistor in parallel with a current source whose value is white noise. The admittance

matrix Y of this circuit is:

Y =

1 + ε 0 0 −1

0 1 + ε 0 −1

0 0 1 + ε −1

−1 −1 −1 3 + ε

 , (2.2)

The concentration graph representing the inverse covariance matrix Σ−1 = Y is depicted

in Figure 2.1(b) (the nonzero entries of Σ−1 are shown on the corresponding nodes and

edges of the graph). It is easy to verify that Σ = Y −1 is dense even though Σ−1 = Y is

sparse. Now, consider the problem of finding the topology of the circuit through voltage

measurements. Given ε and a sample covariance matrix Σs, the graphical lasso algorithm

(2.1) will be used to find an estimate of Σ−1. The condition number (i.e., the ratio of the

largest singular value of the matrix to the smallest one) of Σ is equal to 4+ε
ε . Therefore, Σ

16

4

1 2 3

5

7

1-
1-

1-

5 5

(a)

4

1 2 3

4.97

12.4

2.10- 2.12-

11.20

8.32

0.57-

0.13-

(b)

Figure 2.2: (a) The concentration graph obtained from the exact inverse covariance matrix.
(b) The estimated concentration graph from 4 samples using graphical lasso algorithm.

will be ill-conditioned for a small ε (say ε = 0.01), while for a large ε (say ε = 4) this matrix

is well-conditioned. Given a sample covariance matrix Σs, the goal is to understand how

much of the topology could be revealed using optimization (2.1) in both ill-conditioned and

well-conditioned cases.

I) Well-conditioned Σ

Consider ε as 4 and assume that Σs is constructed based on only 4 samples of the

voltage vector V . Using optimization (2.1), a sparse invariance covariance can be estimated

for an appropriate choice of the regularization parameter α. The exact concentration graph

(the graph obtained from the exact covariance matrix Σ) and the graph which is obtained

by solving optimization (2.1) for α = 0.05 are depicted in Figure 2.2. The regularization

parameter α is chosen in such a way that the obtained graph has the sparsest structure

while the graph is still connected (i.e., there is a path from any point to any other point

in the graph). To check the connectivity of the graph, we simply check the eigenvalues of

the Laplacian matrix of the graph. The graph is not connected if its Laplacian matrix has

more than one zero eigenvalue.

Comparing the exact graph with the estimated one in Figure 2.2, one can conclude that

the estimated graph reveals most of the topology. More precisely, the graphical lasso algo-

rithm (2.1) is able to detect all of the connections and has given only one extra (undesired)

connection. By inspecting the numbers on the edges of the graph in Figure 2.2(a), it can be

observed that the signs of the connections (corresponding to the nonzero off-diagonal ele-

ments of the estimated invariance covariance matrix) are also found correctly. This suggests

that although the number of samples is small and hence taking the inverse of Σs directly

does not provide useful information about the topology of the circuit (due to the error

17

Σ − Σs being large), optimization (2.1) is able to reveal most of the topology. For ε = 4

the condition number of Σ is equal to 2 and therefore it is a well-conditioned matrix. For a

well-conditioned matrix, more accurate models can be obtained by increasing the number

of samples.

II) Ill-conditioned Σ

Consider again the circuit depicted in Figure 2.1(a) and assume that ε = 0.01. As men-

tioned earlier, a small ε results in an ill-conditioned matrix Σ. For instance, the condition

number of Σ is equal to 401 for ε = 0.01. In this case, the solution of optimization (2.1) is

extremely sensitive to the value of the regularization parameter α. To explore this property,

first consider the case where the error Σ− Σs is zero. In this case, Σs is invertible and its

inverse has a sparse structure due to the relation Σ−1
s = Σ−1 = Y . Not surprisingly, the

solution of optimization (2.1) becomes Σ−1 = Y if the regularization parameter α is equal

to zero. However, this solution quickly becomes dense for a small nonzero regularization pa-

rameter α. This issue is demonstrated in Figure 2.3. For ε = 0.01 and Σs = Σ, Figure 2.3(a)

shows the sparse concentration graph obtained from Σ−1
s = Σ−1 = Y . Figures 2.3(b) and

(c) show that increasing the regularization parameter α makes the sparse matrix Σs com-

pletely dense. In fact, increasing α makes the weights of the redundant (wrong) connections

comparable to the weights of the true connections. This implies that the l1 penalty term in

the graphical lasso algorithm fails to enforce sparsity on the solution. This issue seems to

be related to the ill conditioning of Σ. Similar issues with graphical lasso algorithm have

also been observed in [43].

So far, it was assumed that Σ−Σs = 0. Obviously, the above-mentioned issue becomes

worse when only a very limited number of samples are available. Since Σs can be rank

deficient and optimization (2.1) may fail to find a sparse solution, the question of interest

is how to find a sparse graph estimating the topology of the desired network in such cases.

In the next subsection, we answer this question by modifying optimization (2.1).

18

4

1 2 3

1.01

01.3

1-
1-

1-

1.01 1.01

(a)

4

1 2 3

0.97

79.2

0.92-

02.0

0.97 0.97

02.0

02.0

0.92-
0.92-

(b)

4

1 2 3

0.15

18.0

04.0

0.06-

0.15 0.15

0.06-
0.06-

04.0

04.0

(c)

Figure 2.3: (a) The graph for Σ−1
s in the case Σ−Σs = 0. (b) The estimated concentration

graph obtained from optimization (2.1) for α = 0.01. (c) The estimated concentration graph
obtained from optimization (2.1) for α = 2.

2.3.1 Modified Graphical Lasso

Consider the graphical lasso algorithm given in (2.1) and make a small modification to it

as follows:
min

S
trace(SΣs)− log(det(S)) + α‖S − βI‖1

subject to: S � 0
(2.3)

where β is a positive scalar and I is an n× n identity matrix. Since S − βI and S have the

same off-diagonal entries, the last penalty term still aims to sparsify S. It is easy to verify

that optimization (2.3) is equivalent to:

min
S

trace((S + βI)Σs)− log(det(S + βI)) + α‖S‖1

subject to: S + βI � 0
(2.4)

This implies that the modification of graphical lasso algorithm is based on adding a positive-

definite matrix βI to each of the two terms in the log-likelihood function and the positivity

constraint. As verified in extensive simulations, this modification reduces the sensitivity

of the solution to the regularization parameter α and makes it possible to find a sparse

solution independent of the conditioning of Σ.

To understand how well the modified algorithm (2.3) behaves, consider again the exam-

19

4

1 2 3

2

1.47-
1.11-

0.17-

0.222

2

Figure 2.4: The estimated concentration graph obtained from the modified graphical lasso
for α = 5.4 and β = 2.

ple studied before in the ill-conditioned case for ε = 0.01. Recall that the graph associated

with the exact inverse covariance matrix Σ−1 is given Figure 2.3(a). Given 4 samples of

the voltage vector V , it is desirable to estimate the topology of the circuit. Since Y is

ill-conditioned, optimization (2.1) fails to find a sparse solution as discussed before. There-

fore, we use the modified optimization (2.3) to estimate the structure of the circuit. The

graph depicted in Figure 2.4 is obtained from optimization (2.3) for α = 5.4 and β = 2.

Comparing this graph with the exact graph given in Figure 2.3(a), the modified graphical

lasso was clearly able to fully detect the topology of the circuit (note also the signs of the

connections weights). An interesting observation is that although the exact covariance ma-

trix Σ is ill-conditioned (remember that its condition number is equal to 401) and there is

only a very small number of samples available, optimization (2.3) detects the right structure

of the circuit. In the next section, the graphical lasso algorithm and its modified version

will be applied to fMRI data for comparison.

2.4 FMRI data: Graphical Lasso vs. Modified Graphical

Lasso

Consider the data set available in [44] in which resting state fMRI data was acquired for

a group of 20 healthy subjects. 134 samples of the low frequency neurophysiological os-

cillations were taken at 140 cortical brain regions in the right hemisphere. The 140 × 140

sample covariance matrix Σs can be computed for each subject from this data set. Note

that the number of samples is smaller than the number of variables, and therefore Σs is

ill-conditioned and non-invertible. Figure 2.5 shows the 2-D picture of the 140 nodes (brain

regions).

The aim of this section is to model the brain connectivity network using the graphical

20

0 10 20 30 40 50 60
−100

−80

−60

−40

−20

0

20

40

60

80

Figure 2.5: 2-D picture of the 140 brain regions.

lasso algorithm (2.1) and the modified graphical lasso (2.3). For both of these two opti-

mization problems, the regularization parameter α is to be chosen in such a way that the

resulting graph will have the sparsest possible structure and yet be a connected graph. We

will solve optimizations (2.1) and (2.3) for resting-state fMRI data of three different sub-

jects, called Subject 1, Subject 2 and Subject 3. The connectivity (concentration) graph of

each subject will then be plotted as follows:

• The strong connections are plotted in black (we consider a connection strong if its

weight is at least 10 times larger than average of the absolute values of all weights).

Furthermore, the width of each black line in the graph represents the strength of the

connection, which means stronger connections are shown with thicker lines.

• The rest of the edges (weak connections) are shown in gray.

As mentioned before, the graphs of the inverse correlation matrix (R−1) and the inverse

covariance matrix (Σ−1) have the same sparsity pattern. Therefore, one may feed the

sample correlation matrix Σs instead of the sample covariance matrix into the graphical

lasso algorithm (2.1) and the modified optimization (2.3). Simulations on the fMRI data

show that the graphs based on the sample correlation matrix are much sparser (by a factor

of 2) than the ones based on the sample covariance matrix. Therefore, we substitute the

sample covariance matrix Σs in optimizations (2.1) and (2.3) with the sample correlation

matrix of the resting state fMRI data of each subject. Note that each of graphs obtained

from these algorithms is an estimated concentration graph.

21

0 10 20 30 40 50 60
−100

−80

−60

−40

−20

0

20

40

60

80

(a)

20 40 60 80 100 120 140

20

40

60

80

100

120

140 0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 2.6: (a) The sparsest connected graph for the resting-state-fMRI data of Subject 1
obtained from optimization (2.1) for α = 0.315. (b) The sparseness of the off-diagonal
entries of the solution of optimization (2.1) for Subject 1 after taking the absolute value of
its elements.

I) Graphical lasso and brain connectivity

Subject 1: For the resting-state fMRI data acquired from Subject 1, the sparsest con-

nected graph that can be obtained from optimization (2.1) is depicted in Figure 2.6(a).

This graph, corresponding to α = 0.315, has 987 edges connecting the 140 spatially disjoint

brain regions. The color map depicted in Figure 2.6(b) illustrates the sparseness of the

off-diagonal entries of the matrix solution obtained from optimization (2.1) after taking the

absolute value of the matrix elements.

Subject 2: For the resting-state fMRI data acquired from Subject 2, the sparsest con-

nected graph that can be obtained from optimization (2.1) is depicted in Figure 2.7(a). This

22

0 10 20 30 40 50 60
−100

−80

−60

−40

−20

0

20

40

60

80

(a)

20 40 60 80 100 120 140

20

40

60

80

100

120

140 0

0.05

0.1

0.15

0.2

(b)

Figure 2.7: (a) The sparsest connected graph for the resting-state-fMRI data of Subject 2
obtained from optimization (2.1) for α = 0.355. (b) The sparseness of the off-diagonal
entries of the solution of optimization (2.1) for Subject 2 after taking the absolute value of
its elements.

graph, corresponding to α = 0.355, has 764 edges. Figure 2.7(b) illustrates the sparseness

of off-diagonal entries of the solution of optimization (2.1) after taking the absolute value

of the matrix elements.

Subject 3: For the resting-state fMRI data of Subject 3, the sparsest connected graph

that can be obtained from optimization (2.1) is depicted in Figure 2.8(a). This graph,

corresponding to α = 0.275, has 998 edges. Figure 2.8(b) illustrates the sparseness of off-

diagonal entries of the solution of optimization (2.1) after taking the absolute value of the

matrix elements.

23

0 10 20 30 40 50 60
−100

−80

−60

−40

−20

0

20

40

60

80

(a)

20 40 60 80 100 120 140

20

40

60

80

100

120

140 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

Figure 2.8: (a) The sparsest connected graph for the resting-state-fMRI data of Subject 3
obtained from optimization (2.1) for α = 0.275. (b) The sparseness of the off-diagonal
entries of the solution of optimization (2.1) for Subject 3 after taking the absolute value of
its elements.

24

0 10 20 30 40 50 60
−100

−80

−60

−40

−20

0

20

40

60

80

(a)

20 40 60 80 100 120 140

20

40

60

80

100

120

140 0

0.5

1

1.5

2

(b)

Figure 2.9: (a) The sparsest connected graph for the resting-state-fMRI data of Subject 1
obtained from optimization (2.3) for α = 0.445 and β = 5. (b) The sparseness of the off-
diagonal entries of the solution of optimization (2.3) for Subject 1 after taking the absolute
value of its elements.

II) Modified graphical lasso and brain connectivity

Subject 1: For the resting-state fMRI data acquired from Subject 1, the sparsest con-

nected graph that can be obtained from optimization (2.3) is depicted in Figure 2.9(a).

This graph, obtained for α = 0.315 and β = 5, has 608 edges. This graph has 595 edges

in common with the graph depicted in Figure 2.6(a) for the same subject but obtained by

solving the graphical lasso algorithm (2.1). Figure 2.9(b) illustrates the sparseness of the

off-diagonal entries of the solution of optimization (2.3) after taking the absolute value of

its elements.

25

0 10 20 30 40 50 60
−100

−80

−60

−40

−20

0

20

40

60

80

(a)

20 40 60 80 100 120 140

20

40

60

80

100

120

140 0

0.5

1

1.5

2

2.5

(b)

Figure 2.10: (a) The sparsest connected graph for the resting-state-fMRI data of Subject 2
obtained from optimization (2.3) for α = 0.356 and β = 5. (b) The sparseness of the off-
diagonal entries of the solution of optimization (2.3) for Subject 2 after taking the absolute
value of its elements.

Subject 2: For the resting-state fMRI data acquired from Subject 2, the sparsest con-

nected graph that can be obtained from optimization (2.3) is depicted in Figure 2.10(a).

This graph, obtained for α = 0.356 and β = 5, has 540 edges and is a subset of the graph

depicted in Figure 2.7(a) for the same subject but obtained by solving the graphical lasso

algorithm (2.1). Figure 2.10(b) illustrates the sparseness of the off-diagonal entries of the

solution of optimization (2.3) after taking the absolute value of its elements.

Subject 3: For the resting-state fMRI data acquired from Subject 3, the sparsest con-

nected graph that can be obtained from optimization (2.3) is depicted in Figure 2.11(a).

This graph, obtained for α = 0.275 and β = 5, has 688 edges out of which 680 edges are

26

0 10 20 30 40 50 60
−100

−80

−60

−40

−20

0

20

40

60

80

(a)

20 40 60 80 100 120 140

20

40

60

80

100

120

140 0

0.5

1

1.5

2

2.5

3

(b)

Figure 2.11: (a) The sparsest connected graph for the resting-state-fMRI data of Subject 3
obtained from optimization (2.3) for α = 0.275 and β = 5. (b) The sparseness of the off-
diagonal entries of the solution of optimization (2.3) for Subject 3 after taking the absolute
value of its elements.

in common with the graph depicted in Figure 2.8(a) for the same subject but obtained by

solving the graphical lasso algorithm (2.1). Figure 2.11(b) illustrates the sparseness of the

off-diagonal entries of the solution of optimization (2.3) after taking the absolute value of

its elements.

The above simulations are summarized in Table 2.1. In summary, the graph obtained

from the modified graphical lasso for each subject is not only sparser than but also mostly

a subgraph of the one obtained from the graphical lasso. It can be verified that the graphs

of Subjects 1-3 obtained from the modified graphical lasso have 62 common edges. The

common subgraph of these three graphs is shown in Figure 2.12.

27

0 10 20 30 40 50 60
−100

−80

−60

−40

−20

0

20

40

60

80

Figure 2.12: The 62 edges that are in common among the graphs of Subjects 1-3 obtained
from optimization (2.3).

Subject Optimization α β Edges
1 (2.1) 0.315 0 987
1 (2.3) 0.315 5 608
2 (2.1) 0.355 0 764
2 (2.3) 0.356 5 540
3 (2.1) 0.275 0 998
3 (2.3) 0.275 5 688

Table 2.1: This table shows the number of edges for the graphs obtained from optimization
(2.1) and optimization (2.3) for Subjects 1-3.

28

2.5 Summary

Two popular methods for assessing the brain functional connectivity are: (i) mapping the

thresholded correlation matrix into a graph, which shows the marginal independence/dependence

relationships among random variables, (ii) mapping the inverse covariance matrix into a

graph, which shows the conditional dependencies of Gaussian random variables. The latter

method is based on Bayesian networks and sparse regression. An important question arises

as to which of these methods provides better information about the structure (topology)

of the brain network. Due to the electrical properties of the brain, we study this problem

in the context of circuits and show that the inverse covariance matrix reveals the topol-

ogy of a circuit subject to thermal noise. We then use the graphical lasso technique to

estimate a sparse inverse covariance matrix from the measurements taken from the circuit.

It is shown that the graphical lasso algorithm may find an estimated inverse covariance

matrix revealing most of the circuit topology, provided that the exact covariance matrix

(not the sample covariance) is well-conditioned. It is also shown that this algorithm may

fail to work satisfactorily when the exact covariance matrix is ill-conditioned. To deal with

ill-conditioned matrices, we modify the graphical lasso algorithm and then show that the

modified algorithm is able to find most of the topology of the circuit even in the case when

a very limited number of samples are available. Finally, the graphical lasso algorithm and

the modified algorithm are both applied to the resting-state fMRI data of three different

healthy subjects. Simulations show that the graphs obtained from the modified graphical

lasso are sparser than the ones obtained from the graphical lasso.

2.6 Appendix

To find the covariance of the voltage vector V corresponding to the circuit introduced in

Section 2.3, we need to define the admittance matrix of the circuit. This matrix, denoted

as Y , is an n× n matrix whose (i, j)th entry is given as follows:

• This entry is zero provided that i 6= j and that nodes i and j are not directly connected

(via a resistor) in the circuit.

• If i 6= j and nodes i and j are directly connected in the circuit, then the (i, j)th entry

of Y is equal to − 1
zij

, where zij denotes the value of the resistor between nodes i and

29

j.

• If i = j, then the (i, j)th entry of Y is equal to 1
zii

+
∑

k∈N (i)
1

zik
, where zii denotes

the value of the resistor connected to the ground at node i and N (i) denotes the set

of the neighboring nodes of node i in the circuit.

Let N denote the vector of the currents injected to the nodes from the external devices. In

order to relate N to V , we need to define some matrices:

• B: n×m incidence matrix associated with the circuit,

• Ye: m×m diagonal edge admittance matrix,

• Yg: n× n diagonal node-to-ground admittance matrix,

• We: m dimensional edge current unit white noise vector (corresponding to the series

resistors in the circuit),

• Wg: n dimensional node-to-ground current unit white noise vector (corresponding to

the shunt resistors in the circuit).

It turns out that Y = BYeB
T + Yg and

N = B
√

YeWe +
√

YgWg (2.5)

(a constant 2KT has been removed from the above modeling to simplify the presentation).

In the circuit, N and V are related to one another through the relation V = Y −1N . The

vector N can be regarded as the noisy input of the network, which makes V a random

variable. It follows from the equation (2.5) and V = Y −1N that the covariance of V is

equal to Y −1.

30

Chapter 3

Buffering Dynamics and Stability
of Internet Congestion Control

Many existing fluid-flow models of the Internet congestion control algorithms ignore the

effects of buffers on the data flows for simplicity. In particular, they assume that all links in

the path of a flow are able to see the original source rate. However, a fluid flow in practice

is modified by the queueing processes on its path, so that an intermediate link will generally

not see the original source rate. In this chapter, a more accurate model is derived for the

behavior of the network under a congestion controller, which takes into account of the effect

of buffering on output flows. It is shown how this model can be deployed for some well-

known service disciplines such as first-in first-out and generalized weighted fair queueing.

Based on the derived model, the dual and primal-dual algorithms are studied under the

common pricing mechanisms, and it is shown that these algorithms can become unstable.

Sufficient conditions are provided to guarantee the stability of the dual and primal-dual

algorithms. Finally, a new pricing mechanism is proposed under which these congestion

control algorithms are both stable.

3.1 Introduction

In computer networks, queues build up when the input rates are larger than the available

bandwidth. This causes congestion leading to packet loss and long delays. Congestion

control techniques aim to adjust the transmission rates of competing users in such a way

that the network resources are shared efficiently. Internet congestion control has two main

components: (i) transmission control protocol (TCP) and (ii) active queue management

31

(AQM). TCP adapts the sending rate (or window size) of each user in response to the

congestion signal from its route, whereas AQM provides congestion information to the users

by manipulating the packets on each router’s queue. DropTail and random early detection

(RED) are two examples of AQM schemes [45]. TCP-Reno [46, 47], TCP-NewReno [48]

and SACK TCP [49] are different versions of TCP congestion control protocols that have

been deployed in the Internet. Mathematical models of these algorithms can be found

in [50, 51, 52]. Congestion control protocols are either based on explicit feedback (which

requires explicit communications between sources and links) or implicit feedback (which

only requires end-to-end communications). For instance, packet loss in TCP Reno and

queueing delay in TCP Vegas [53] are two congestion signals that can be provided to the

users without needing explicit communication. However, the explicit congestion notification

(ECN), as an extension of TCP, allows that each router writes some congestion information

in the IP header of a packet and then the congestion signal is explicitly communicated to

the users [54].

Since the seminal works [15, 16], a great deal of effort has been devoted to the modeling

and synthesis of Internet congestion control. This is often performed for a fluid model of

the network by solving a proper resource allocation problem in a distributed way. Different

resource allocation algorithms, such as primal, dual and primal-dual algorithms, have been

proposed in the literature, which enable every user to find its optimal transmission rate

asymptotically using local feedback from the network. From a dynamical system perspec-

tive, each of these congestion control algorithms corresponds to an autonomous distributed

system that is globally asymptotically stable, where its unique equilibrium point is a solution

to the resource allocation problem [17, 18].

Despite the progress in the analysis and synthesis of Internet congestion control, an

important modeling issue is often neglected for the sake of simplicity. Specifically, most

existing fluid models of congestion control assume that all links in the path of a flow see the

original source rate. Nonetheless, a fluid flow in practice is modified by the queueing pro-

cesses on its path, so that an intermediate link will generally not see the original source rate.

Reference [55] acknowledges such buffering effects on TCP/AQM networks, incorporating

the model in [56] to account for the nature in which competing flows pass through congested

links. In [57] and [58], the linear stability of such networks was analyzed for RED and PI

AQM. Reference [59] proposes a form of deterministic nonlinear dynamic queue model and

32

studies how instability of deterministic fluid flow models for congestion control analysis

leads to a significant increase in the variance of the flow in stochastic networks. Although

it is possible to study the buffering effects for any given network through simulations, it

is very advantageous to develop a fundamental theory for an arbitrary service discipline

relating the buffering effects to various parameters of the network (say the routing matrix

or the link capacities). Our goal is to derive a closed-form model for the buffers dynamics,

based on which the stability of congestion control algorithms can be deduced via simple

conditions.

The main objective of this chapter is to study congestion control taking this buffering

effect into account. To this end, a general model is derived to account for the time evolution

of the buffer sizes. This model can be used for different service disciplines such as weighted

fair queueing (WFQ) [19, 20] and first-in first-out (FIFO). Then, the dual and primal-dual

algorithms are studied, where the pricing mechanism is considered to be based on either

queueing delays or queue sizes. It is shown that although these algorithms are stable when

the buffering effect is ignored, they can become unstable otherwise. Several issues arising

from the precise modeling of buffers are investigated here. A new pricing mechanism is also

proposed to guarantee the global stability of dual and primal-dual algorithms.1

3.2 Preliminaries and Existing Models

Consider a network with the set L := {1, ..., L} of unidirectional links, where each link

l ∈ L has a finite capacity cl. Assume that the network is shared by a set S := {1, ..., S}

of sources such that each source s ∈ S is identified by an origin, a destination and a fixed

route. Let xs denote the transmission rate associated with source s ∈ S, L(s) denote the

collection of the links belonging to the route of source s ∈ S, and S(l) denote the set of

those sources whose route passes through link l ∈ L. Moreover, let R be the routing matrix

of the network, defined as an L× S matrix whose (l, s) entry (l ∈ L and s ∈ S) is 1 if link

l belongs to the route of source s and is 0 otherwise. In addition, define c as the vector of

the link capacities c1, ..., cL. Suppose that each source s ∈ S is accompanied by a utility

function Us : R → R, which is assumed to be continuously differentiable, strictly concave

and increasing. The utility function Us(xs) specifies the benefit that source s gains for data
1See [60] for the preliminary results of this work.

33

transmission at an arbitrary rate xs.

From the mathematical perspective, the objective of the congestion control is to allocate

network resources among the users in an optimal way:

max
xs≥0

∑
s∈S

Us(xs) (3.1)

subject to the network constraints

∑
s∈S(l)

xs ≤ cl, ∀l ∈ L. (3.2)

Define the aggregate flow rate yl, the route price qs and the Lagrangian L(x,p) as

yl :=
∑

s∈S(l)

xs, l ∈ L, (3.3a)

qs :=
∑

l∈L(s)

pl, s ∈ S, (3.3b)

L(x,p) :=
∑
s∈S

Us(xs)−
∑
l∈L

pl(yl − cl), (3.3c)

where p is the vector of the Lagrange multipliers p1, ..., pL and x is the vector of the

transmission rates x1, ..., xS . The Karush-Kuhn-Tucker (KKT) optimality conditions for

the resource allocation problem can be written as

U ′(xs)− qs ≤ 0 with equality if xs > 0, (3.4a)

pl(yl − cl) = 0, (3.4b)

yl − cl ≤ 0, (3.4c)

xs ≥ 0, pl ≥ 0, (3.4d)

for all s ∈ S and l ∈ L. Suppose that the matrix R has full row rank. Under this assumption,

the KKT conditions (3.4) have a unique solution (x∗,p∗). Solving (3.4) in a centralized

way is not feasible because the routing matrix R and the utility functions U1(x1), ..., US(xS)

may not be known globally. Hence, different distributed/decentralized protocols have been

proposed in the literature to solve the KKT conditions, each of which enables every user

to obtain its optimal transmission rate asymptotically by receiving local feedback from

34

the network. Mathematically, a typical distributed congestion control algorithm can be

expressed as

ẋs(t) = fs(xs(t), qs(t)) ∀s ∈ S, (3.5a)

ṗl(t) = gl(pl(t), yl(t)) ∀l ∈ L, (3.5b)

for some functions f1, ..., fS and g1, ..., gL. Since xs(t), qs(t) are local information for user s

and pl(t), yl(t) are local information for link l, this algorithm is naturally distributed. Note

that although it is assumed that all users and links employ dynamic local controllers in the

above algorithms to update their corresponding transmission rates and link prices, one can

replace some of them with static local controllers. A special type of the controller (3.5) is

referred to as the “primal-dual controller”, which has the control law

ẋs(t) = ks(xs(t))(U ′
s(xs(t))− qs(t)), ∀s ∈ S, (3.6a)

ṗl(t) = hl(pl(t))(yl(t)− cl)+pl(t)
, ∀l ∈ L, (3.6b)

where ks, hl are some non-decreasing continuous functions and (·)+a is the positive projection

operator, i.e.

(yl(t)− cl)+pl(t)
=

 yl(t)− cl pl(t) > 0

max(yl(t)− cl, 0) pl(t) = 0.
(3.7)

Note that a projection operator can be incorporated into the dynamics of xs(t) in (3.6a)

to ensure the nonnegativity of the transmission rates; however, we do not consider such an

operator here for simplicity. Under mild assumptions, the above dynamical control system

has the unique equilibrium point (x∗,p∗) that is globally asymptotically stable [51]. This

implies that if each user s ∈ S updates its rate based on (3.6a) by starting from an arbitrary

initial rate xs(0) and each link l ∈ L adjusts its price using (3.6b) by commencing from

any initial price pl(0), then the transmission rate xs(t) converges to the optimal value x∗s

as t goes to infinity. This interesting property also holds for the dual congestion control

algorithm, which is as follows [51]:

xs(t) = U ′
s
−1(

qs(t)
)
, ∀s ∈ S, (3.8a)

ṗl(t) = hl(pl(t))(yl(t)− cl)+pl(t)
, ∀l ∈ L. (3.8b)

35

In order for the dual and primal-dual algorithms to work, each source should know the

sums of the link prices in its route. This, in general, requires communication from routers

to sources. Similarly, communication from sources to links might also be necessary for the

above algorithms. Due to the overheads of such communications, it is desirable to choose

hl(pl(t)) in such a way that the communication between links and sources is obviated. Two

particular values for hl(pl(t)) which achieve this goal have been studied in this literature, 1

and 1
cl

. These values for the weighting parameter hl(pl(t)) make the price pl(t) have very

interesting properties under the simplifying assumption that the dynamics of the buffer of

link l is governed by:

ḃl(t) = (yl(t)− cl)+bl(t)
(3.9)

where bl(t) denotes the queue length at time t. More precisely, under the above assumption,

two important scenarios can be considered as follows:

• First scenario: [53, 61, 62]

Let hl(pl(t)) be 1
cl

for every l ∈ L. In this case, the price pl(t) is the same as the

queueing delay at link l, and therefore qs(t) is equal to the aggregative queueing delay

for source s. As a result, qs(t) can be approximated from the round-trip time without

having to receive explicit feedback from links.

• Second scenario: [45, 63, 64]

Let hl(pl(t)) be equal to K for every l ∈ L, where K is a given positive constant. In

this case, the price pl(t) can be interpreted as pl(t) = Kbl(t), where bl(t) denotes the

queue length of link l at time t. To connect this case to the existing protocols, consider

an AQM algorithm (e.g. RED), which drops or marks every packet at a router’s queue

with a certain probability depending on the queue length (say Kbl(t)). The price pl(t)

represents the marking/dropping probability for RED and interestingly qs(t) can be

reported to source s using a binary feedback.

As can be observed from the above scenarios, two important pricing mechanisms for

congestion control algorithms are queue sizes and queueing delays. There is a common belief

that the dual and primal-dual algorithms based on these pricing mechanisms are stable for

a fluid model of the network because the systems (3.6) and (3.8) are globally asymptotically

stable. However, it is essential to note that the unrealistic modeling assumption (3.9) has

36

been used to draw this conclusion. These algorithms would be stable if the rate of a fluid

flow at the input of every link on its path were the same as its (source) rate at the input of

its first link. To be more precise, an exact model for the buffer size bl(t) is as follows;

ḃl(t) = (ỹl(t)− cl)+bl(t)
, (3.10)

rather than the one given in (3.9), where ỹl(t) denotes the incoming flow rate of buffer l.

This is due to the buffering process at each link.

Most existing fluid models do not consider the above-mentioned fact that the flow rate

of every user changes along its path due to the presence of buffers. Motivated by this

shortcoming, the objective of this work is to study the stability of the dual and primal-dual

algorithms with buffer-size and queueing-delay pricing mechanisms, where the dynamics of

buffers are taken explicitly into account. In particular, we show that congestion control

based on a realistic model of buffers leads to a hard problem with unexpected results on

the stability of the network.

3.3 Modeling of Buffer Occupancies

For simplicity and with no loss of generality, assume that every link of the network is

unidirectional so that all flows over each link go in the same direction. Under this assump-

tion, every link has only one buffer as opposed to two buffers at its endpoints. For every

s ∈ S, l ∈ L, t ≥ 0, let the following notations be introduced:

• xls(t): Input rate associated with source s at the buffer of link l at time t.

• bls(t): Backlog associated with source s at link l at time t.

• bl(t) =
∑

s∈S(l) bls(t): Aggregate backlog at link l at time t.

• ỹ(t) =
∑

s∈S(l) xls(t): Aggregate flow rate at the input of the buffer of link l.

• g(s, j): The jth link in the path of source s, for every j ∈ {1, ..., |L(s)|}.

• q(s, l): A natural number showing the position of link l in the path of source s if

l ∈ L(s).

37

Note that xls(t) and bls(t) are both zero if s 6∈ S(l). Given l ∈ L, since the buffer of link l

is shared by its incoming flows, it is useful to specify at what relative rates different flows

leave the buffer. To this end, define the parameter θls(t) via the equation

ḃls(t) = θls(t)ḃl(t), ∀l ∈ L, s ∈ S, t ≥ 0. (3.11)

Notice that θls(t) is contingent upon the queueing strategy deployed by the routers.

There are two special, nonetheless important, cases in which θls(t) is a constant or a function

of x(t), where x(t) denotes the set of the source transmission rates xs(t), ∀s ∈ S. To

emphasize the type of θls(t), the notations θls and θls(x(t)) will be used throughout this

chapter for these two cases. θls(t) plays a significant role in modeling the time evolution of

buffer sizes.

3.3.1 Parameter θls(t) for Different Service Disciplines

Before proceeding with the dynamics of buffers, let θls(t) be calculated for some well-known

service disciplines, namely WFQ and FIFO. To simplify the derivation of θls(t), it will be

implicitly assumed in this subsection that bls(t) and xls(t) are both nonzero at a given time

t for all s ∈ S(l).

• WFQ :

Recall that xls(t), ∀s ∈ S(l), are |S(l)| active flows entering the buffer of link l with the

capacity cl at time t. Let wls(t), ∀s ∈ S(l), denote some arbitrary weights associated

with each of these flows. The output flow rate at the link l corresponding to source s

is equal to
wls(t)∑

s′∈S(l) wls′(t)
cl (3.12)

This implies that the output flow rate associated with each source is proportional to

the link rate cl. To derive the equation for θls(t), we consider a special, nonetheless

interesting, case where wls(t) = xls(t),∀s ∈ S, l ∈ L. We call this scheme special

WFQ (S-WFQ). To find θli(x(t)) corresponding to the S-WFQ scheduling, one can

38

write
ḃls(t) = xls(t)−

wls(t)∑
s′∈S(l) wls′(t)

cl

= xls(t)−
xls(t)∑

s′∈S(l) xls′(t)
cl.

(3.13)

On the other hand, the time evolution of the aggregate backlog at link l is given by

ḃl(t) =
∑

s′∈S(l)

xls′(t)− cl. (3.14)

It follows from (3.13) and (3.14) that

θls(t) =
ḃls(t)
ḃl(t)

=
xls(t)∑

s′∈S(l) xls′(t)
, ∀s ∈ S(l). (3.15)

Now, note that the output flow at each link l corresponding to any arbitrary flow is a

function of the input flows of the link (due to (3.12) and wls(t) = xls(t)), and moreover

the input flow rates at a link are the same as the output rates of its previous links.

This implies that one can write recursive algebraic equations to obtain each xls′(t) as

a function x(t) (although this function can be complicated). As a result of this fact

and (3.15), θls(t) is indeed state dependent and therefore the notation θls(x(t)) can

be used for its representation. The scheme S-WFQ will be studied in detail later in

this chapter. Note that the same methodology used above can be deployed to derive

θls(t) for a more general WFQ scheme.

• FIFO :

In the FIFO scheduling, the data flows are served in a first-come, first-served basis.

In other words, whatever comes in first is handled first, and what comes in next waits

until the first is finished. Consider again the flows xls(t), ∀s ∈ S(l), entering the buffer

of link l with the capacity cl. To simplify the formulation, assume that the buffer has

always been nonempty up to the time t, which implies that

∫ t

0

(∑
s′∈S(l)

xls′(σ)
)

dσ ≥ t · cl. (3.16)

Note that the left side of the above inequality shows the amount of data that entered

the buffer of link l in the time duration [0, t], whereas its right side indicates the

39

amount of data that left the buffer in that period. Define τ(t) as a nonnegative

number satisfying the equation

∫ t−τ(t)

0

(∑
s′∈S(l)

xls′(σ)
)

dσ = t · cl. (3.17)

The interpretation behind the parameter τ(t) is as follows: the data leaving the buffer

of link l at time t had arrived at the buffer at time t− τ(t) and therefore was subject

to the delay τ(t). Taking the time derivatives of both sides of (3.17) yields

d(t− τ(t))
dt

×
(∑

s′∈S(l)

xls′(t− τ(t))
)

= cl. (3.18)

On the other hand, the backlog at link l from source s can be obtained as

bls(t) =
∫ t

t−τ(t)
xls(σ)dσ, ∀s ∈ S(l). (3.19)

The time evolution of the buffer at link l corresponding to source s can be found by

taking the time derivative of the above equation and combining it with (3.18). This

leads to the relation

ḃls(t) = xls(t)− xls(t− τ(t))× d(t− τ(t))
dt

= xls(t)− xls(t− τ(t))× cl∑
s′∈S(l) xls′(t− τ(t))

.
(3.20)

Moreover, the aggregate backlog at link l is given by

ḃl(t) =
∑

s′∈S(l)

xls′(t)− cl. (3.21)

It follows immediately from (3.22) and (3.21) that θls(t) is equal to

θls(t) =
xls(t)− xls(t−τ(t))P

s′∈S(l) xls′ (t−τ(t)) · cl∑
s′∈S(l) xls′(t)− cl

. (3.22)

It can be seen from (3.13) and (3.20) that ḃls(t) had the same expression for both S-

WFQ and FIFO if the delay term τ(t) were zero. However, this term has a significant

role, as witnessed by the non-trivial definition (3.17), which makes θls(t) very different

40

for FIFO and S-WFQ.

3.3.2 Dynamics of Buffer Sizes

In the preceding subsection, it was explained how θls(t) can be obtained for some well-

known service disciplines. Given θls(t) associated with some arbitrary service discipline,

the objective of this subsection is to study the evolution of the buffer sizes in time. More

precisely, the goal is to relate the buffer sizes directly to the original source rates xs(t),

∀s ∈ S, rather than the intermediate rates xls(t), ∀l ∈ L, s ∈ S.

Definition 1. For every t ≥ 0, define R(Θ(t)) as an L × S matrix whose (l, s) entry is

equal to θls(t) for every l ∈ L and s ∈ S.

Definition 2. For every t ≥ 0, define Φ(t) as an L× L matrix with the (l1, l2) entry equal

to φl1l2 =
∑

θl2s(t) (for every l1, l2 ∈ L), where the sum is taken over all sources s that

pass first through link l2 and then through link l1 not necessary immediately. In particular,

all diagonal entries of Φ(t) are equal to 1.

Some remarks regarding the above definitions:

• The matrix R(Θ(t)) inherits its structure from the routing matrix R, meaning that if

an entry of R is zero, the corresponding entry of R(Θ(t)) is also zero.

• The matrix Φ(t) specifies the effect of each buffer on the remaining buffers. Indeed, the

(l1, l2) entry of Φ(t) shows what portion in the rate of change of buffer l2 corresponds

to the flows passing first through l2 and then through l1.

In this work, we assume that the matrix Φ(t) is nonsingular for every t ≥ 0. As will be

shown later in Remark 2, this assumption is always satisfied for an important subclass of

routing matrices.

Theorem 1. The buffer occupancies satisfy the differential equation

ḃ(t) =
((

I − Φ(t)
)
ḃ(t) + Rx(t)− c

)+

b(t)

, ∀t ≥ 0 (3.23)

where b(t) denotes the vector of queue sizes b1(t), ..., bL(t). In particular, if the vector b(t)

is strictly positive, then

ḃ(t) = Φ(t)−1 (Rx(t)− c) . (3.24)

41

Proof: For every s ∈ S and j ∈ {1, 2, ..., |L(s)| − 1}, one can write

ḃg(s,j)s(t) = xg(s,j)s(t)− xg(s,j+1)s(t). (3.25)

Adding up the above equations over j yields that

xg(s,k)s(t) = xs(t)−
k−1∑
j=1

ḃg(s,j)s(t), k ∈ {2, ..., |L(s)|},

where, by convention, the sum in the right side of the above equation is considered as zero

if k = 1. Hence, given l ∈ L, it holds that

ỹl(t) =
∑

s∈S(l)

xls(t)

=
∑

s∈S(l)

(
xs(t)−

q(s,l)−1∑
j=1

ḃg(s,j)s(t)
)

=
∑

s∈S(l)

(
xs(t)−

q(s,l)−1∑
j=1

θg(s,j)s(t)ḃg(s,j)(t)
)

=
∑

s∈S(l)

xs(t)−
∑

l′∈L\{l}

φll′(t)ḃl′(t).

(3.26)

By defining ỹ(t) as the vector of the link rates ỹ1(t), ..., ỹl(t), it can be concluded from the

above equation that

ỹ(t) = Rx(t) + (I − Φ(t))ḃ(t). (3.27)

As a result,

ḃ(t) =
(
ỹ(t)− c

)+

b(t)

=
((

I − Φ(t)
)
ḃ(t) + Rx(t)− c

)+

b(t)

.
(3.28)

It follows immediately from the above nonlinear differential equation that if b(t) is strictly

positive, then ḃ(t) can be obtained from the equation (3.24). This completes the proof. �

Theorem 1 describes how all buffer occupancies evolve in time. As explained in Sec-

tion II, the existing results for a fluid model of the network simplify the model of a buffer

size from ḃl(t) = (ỹl(t) − cl)+bl(t)
to ḃl(t) = (yl(t) − cl)+bl(t)

. It can be shown that this ap-

proximation amounts to replacing the matrix Φ(t) in (3.24) with the identity matrix, which

42

11 ,cp

2
2
,c

p

33 , cp

4
4
,c

p

1x

2x

3x

4x

Figure 3.1: Network studied in Example 1.

might be a very poor approximation at times. Before studying the underlying differential

equation for b(t), we illustrate Theorem 1 with an example.

Example 1: Consider the 4-edge ring network depicted in Figure 3.1 consisting of 4 flows,

where each flow passes through 3 consecutive links. For every l ∈ {1, 2, 3, 4}, assume that

θls(t), ∀s ∈ S(l), are all constant and equal to each other. Assume also that the capacity

of each link is normalized to 1. The matrix Φ(t) for this network can be obtained as

Φ(t) =

1 0 1

3
2
3

2
3 1 0 1

3

1
3

2
3 1 0

0 1
3

2
3 1

 . (3.29)

It can be concluded from Theorem 1 that if the vector b(t) is strictly positive at a time

t ≥ 0, then b1(t) evolves according to the following differential equation

ḃ1(t) =
9
8
x1(t)−

3
8
x2(t) +

3
8
x3(t) +

3
8
x4(t)−

1
2
. (3.30)

This equation implies that flows 1, 2, 3, 4 contribute to the buffer size at link 1 with the

factors 9
8 ,−3

8 , 3
8 , 3

8 , respectively. Interestingly, the contribution of flow 2 to the buffer size

of link 1 is negative, meaning that the size of buffer 1 decreases if the flow rate of source 2

43

increases.

The above example demonstrates the power of Theorem 1 in formulating how the buffer

size of each link reacts to any change in the transmission rates at the edges of the net-

work. Now, when b(t) is strictly positive, the differential equation (3.24) describes how

b1(t), ..., bL(t) evolve. However, if some entries of b(t) turn out to be zero, the non-

conventional differential equation (3.23) must be solved. Since the term ḃ(t) appears nonlin-

early in the right side of this equation, the equation (3.23) can have no solution or multiple

solutions for ḃ(t). In light of (3.24), one may use a continuity argument and speculate that

ḃ(t) can be obtained as follows:

ḃ(t) =
(

Φ(t)−1 (Rx(t)− c)
)+

b(t)

. (3.31)

Unfortunately, the equations (3.23) and (3.31) are not identical as the next example shows.

Example 2: Consider the network shown in Figure 3.2, which comprises three sources

and two links with the routing matrix

R =

 1 0 1

0 1 1

 . (3.32)

The matrix Φ(t) for this network turns out to be:

Φ(t) =

 1 0

θ13(t) 1

 . (3.33)

If b1(t) and b2(t) are strictly positive at a time t ≥ 0, then it follows from Theorem 1 that

the governing differential equations for the buffer sizes are

ḃ1(t) = x1(t) + x3(t)− c1

ḃ2(t) = −θ13(t)(x1(t) + x3(t)− c1) + x2(t) + x3(t)− c2.

Now, consider the case when some buffers are empty and therefore the above equations

44

1x

3x

2x

11 , cp 22 , cp

Figure 3.2: Network studied in Example 2.

cannot be used. To this end, assume that x(0) and c are such that

b1(0) = b2(0) = 0, θ13(0) = 0.5,

Rx(0)− c =
[
−4 −1

]T
.

(3.34)

As can be argued intuitively, the time evolutions of b1(t) and b2(t) at t = 0 are

ḃ1(0) = ḃ2(0) = 0, (3.35)

which also satisfy the nonlinear equation (3.23). However, the solution of (3.31) is as follows

ḃ1(0) = 0, ḃ2(0) = 1, (3.36)

which is different from the true solution (3.35).

Example 2 demonstrates that the nonlinear equation (3.23) cannot be simplified into

(3.31). Now, why could the equation (3.23) describing the dynamics of buffer sizes have

multiple or no solutions while the time evolution of buffer sizes must be unique in a real

network? This is because (3.23) is an approximation that ignores delays between links, i.e.,

when a source changes its rate at its first link l, its effect is felt immediately at all the links

it affects (all links l′, s.t. φll′ 6= 0). With this approximation, ḃ(t) appears in both sides of

the equation (3.23) in a nonlinear way, causing ambiguity. However, due to the existence

of delays in practice, the term ḃ(t) in the right side of the equation must be replaced by

some delayed version of this vector, which resolves the source of ambiguity and makes the

equation have a unique solution (because ḃ(t) appears only once in that case). To bypass

45

this issue, we make the following assumption:

Assumption 1. Assume that the vector b(t) either is always positive or is allowed to be

negative so that its dynamic can be described with the equation (3.24).

Under this assumption, none of the buffers becomes empty at a transient time t so that

the projection operator can be eliminated from the equations characterizing the dynamics

of the buffer sizes. As will be explained later, this is a reasonable assumption for studying

the local behavior of congestion control algorithms as long as all links of the network are

bottleneck links at the equilibrium point where p∗ > 0. Hence, assume hereafter that

p∗ > 0.

Remark 1. Since the primary goal of this chapter is to study the instability as well as the

local stability of the network, the assumption p∗ > 0 is made with no loss of generality.

The reason is that if some links are not bottlenecked at the equilibrium, they will not affect

instability or local stability of the network and therefore such links can be simply ignored.

The same argument applies to Assumption 1 as well. Note that if it turns out that the

congestion control algorithm is locally stable, then studying the global stability of the network

necessitates the consideration of model (3.28) precisely without making Assumption 1.

Remark 2. Recall that the matrix R(Θ(t)) inherits its structure from the routing matrix R.

Nonetheless, it is not obvious whether Φ(t) can be constructed from R and R(Θ(t)) using

common matrix operations. To investigate this problem, consider a special, but important,

case where there exist no two distinct sources s1, s2 ∈ S and two distinct links l1, l2 such

that l1, l2 ∈ L(s1) ∩ L(s2) and

• l1 appears before l2 in the flow of source s1,

• l2 appears before l1 in the flow of source s2.

In this case, the network is acyclic from a flow perspective, meaning that there are not two

links whose buffers are mutually dependent. Now, it is possible to renumber the links of

the network such that every flow passes through links in an ascending order, i.e. g(s, 1) <

g(s, 2) < · · · < g(s, |L(s)|) for every s ∈ S. By assuming that the links have been already

arranged this way, it can be shown that Φ(t) is a lower triangular matrix satisfying the

equality

Φ(t) = Lower
{
R×R(Θ(t))T

}
, (3.37)

46

where Lower{·} is a matrix operator that returns the lower part of its matrix argument

(including its diagonal).

3.4 Congestion Control and Buffering Effect

The focus of the section is to show that while the congestion control algorithms have been

proved to be stable using popular models that ignore the effect of buffering on output

process, they can be unstable in a more realistic model that explicitly models the buffering

effect. To this end, the primal-dual and dual algorithms are studied separately in the

following subsections.

3.4.1 Instability of Primal-Dual Algorithm

Consider the primal-dual algorithm

ẋs(t) = ks(U ′
s(xs(t))− qs(t)) ∀s ∈ S (3.38a)

pl(t) = hlbl(t) ∀l ∈ L, (3.38b)

for some positive constants ks and hl, where bl(t) denotes the buffer size at link l whose

dynamics was studied in the preceding section. In the pricing update (3.38b), if hl is equal

to 1, pl(t) is the lth buffer size, and if hl is equal to 1
cl

, pl(t) is the queuing delay at the lth

buffer. In this section, with no loss of generality, assume that ks and hl are both equal to 1.

The goal of this subsection is to show that the primal-dual algorithm can become unstable.

Since the stability analysis provided here is based on linearizing the nonlinear primal-dual

algorithm, the projection operator can be removed from the nonlinear differential equation

(3.23) describing the dynamics of bl(t) (see Section V-A for more details). Hence, with

no loss of generality, assume in the rest of this chapter that the buffer dynamics can be

modeled as

ḃ(t) = Φ(t)−1 (Rx(t)− c) . (3.39)

Note that the dynamical system corresponding to the primal-dual algorithm has two compo-

nents (3.38) and (3.39), where (3.38) is time-invariant but (3.39) could be time-varying due

to the term Φ(t). However, as long as Φ(t) is constant (denoted by Φ) or state-dependent

(denoted by Φ(x(t)), then the primal-dual algorithm becomes time-invariant and there-

47

fore both time domain and frequency domain analyses can be performed to study its local

behavior. These two important cases for Φ(t) will be studied in the sequel.

3.4.1.1 Constant Buffer Partitioning

Assume that Φ(t) is constant, i.e. Φ(t) = Φ. One can linearize the dynamical system

corresponding to the primal-dual algorithm around its unique equilibrium point (x∗,p∗) to

obtain the linearized system

 ẋ(t)

ṗ(t)

 =

 −Diag {U ′′
1 (x∗1), . . . , U

′′
S(x∗S)} −RT

Φ−1R 0

 x(t)− x∗

p(t)− p∗

 , (3.40)

where the operator Diag{·} makes a diagonal matrix from its arguments. If the above

linearized system has unstable modes, then the primal-dual algorithm must be unstable.

As stated after Theorem 1, if Φ is the identity matrix, the above system becomes the

standard primal-dual algorithm which is known to be stable (in the absence of feedback

delay). However, it will be shown next that the above system might become unstable for a

general buffer-partitioning matrix Φ.

Example 3: Consider the network shown in Figure 3.3 consisting of seven sources and

six links, with the routing matrix

R =

1 0 0 0 0 0 1

1 1 0 0 0 0 1

1 1 1 0 0 0 1

1 1 1 1 0 0 1

1 1 1 1 0 1 1

1 1 0 1 1 1 0

. (3.41)

Assume that the matrix R(θ) describing the buffer partitions is as follows:

48

2x

5x

3x

1x

4x
6x

7x

11 , cp 22 ,cp 44 ,cp
55 , cp 66 , cp33,cp

Figure 3.3: Network studied in Examples 3 and 4.

R(θ) =

0.8 0 0 0 0 0 0.2

0.3 0.5 0 0 0 0 0.2

0.4 0.2 0.3 0 0 0 0.1

0.1 0.3 0.3 0.2 0 0 0.1

0.1 0.3 0.3 0.1 0 0.1 0.1

0.2 0.4 0 0.1 0.2 0.1 0

. (3.42)

In light of Remark 2, the matrix Φ can be obtained as

Φ = Lower
{
RR(θ)T

}
=

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

0.8 0.8 0.6 0.6 0.6 1

.

Let c be equal to [
10 20 30 40 50 60

]T
(3.43)

and the utility functions be taken as Us(xs) = ws log xs, s ∈ 1, ..., 7, where

w1 = 15, w2 = 12.5, w3 = 7.5, w4 = 7.5,

w5 = 5, w6 = 5, w7 = 5.
(3.44)

49

0 10 20 30 40 50
0

10

20

30

40

Time

T
ra

ns
m

is
si

on
 r

at
e

x
5
(t) x

7
(t)

Figure 3.4: This figure illustrates the instability of the primal-dual algorithm with the
buffer-size pricing mechanism for Example 3.

The linearized system (3.40) in this case has six eigenvalues 0.4060± 1.7721i, 0.2590±

1.0134 and 0.0279 ± 0.6940 whose real parts are positive. Thus, the linearization of the

primal-dual algorithm around its equilibrium point leads to an unstable system. Therefore,

the nonlinear system corresponding to the primal-dual algorithm must be unstable. To

observe this instability phenomenon in simulation, assume that the initial value of every

buffer size is equal to its optimal value (i.e. b(0) = p∗), whereas the initial value of

every transmission rate is perturbed from its optimal value by a small amount 0.001 (i.e.

x(0) = 1.001 x∗). The signals x5(t) and x7(t) are plotted in Figure 3.4 to show how this

small deviation from the equilibrium point makes the transmission rates oscillate.

Example 3 demonstrates that the primal-dual algorithm can experience instability even

in the very simple case of constant Φ(t). The origin of this issue is studied mathematically

in the next theorem.

Theorem 2. For a constant Φ(t) = Φ, the following two cases can occur for the primal-dual

algorithm given by (3.38) and (3.39):

i) All eigenvalues of RT Φ−1R are real and nonnegative. In this case, the congestion

algorithm is globally stable if Φ is symmetric.

ii) At least one eigenvalue of RT Φ−1R is complex or negative real. In this case, there

exists a strictly positive number α such that the primal-dual algorithm becomes unstable

if Us(xs) is taken as α log(xs) for every s ∈ S.

50

Proof of Part (i): By assumption, R has full row rank, and in addition RT Φ−1R is

symmetric and has nonnegative eigenvalues. Hence, Φ is a positive definite matrix. The

global stability of the primal-dual algorithm can be shown using the Lyapunov function

V (x,p) = (x(t)−x∗)T (x(t)−x∗)+ (P(t)−P∗)T Φ(P(t)−P∗) (see Theorem 4 for a similar

proof). The details are omitted for brevity.

Proof of Part (ii): It follows from (3.40) that the primal-dual algorithm is unstable if

the matrix A defined as αD −RT

Φ−1R 0

 (3.45)

has some unstable eigenvalues, where D is a negative definite diagonal matrix with the (s, s)

entry equal to − 1
(x∗s)2

. Decompose the matrix A as follows:

A =

 −αD 0

0 0

 +

 0 −RT

Φ−1R 0

 . (3.46)

Let λ denote an arbitrary eigenvalue of the second matrix in the right side of the above

equation, i.e. 0 −RT

Φ−1R 0

 (3.47)

The parameter λ should satisfy the relation

0 = determinant

λI−

 0 −RT

Φ−1R 0

= determinant

(
λ2I + RT Φ−1R

)
.

(3.48)

Hence, λ2 is an eigenvalue of the matrix −RT Φ−1R. Conversely, if λ̄ denotes any eigenvalue

of RT Φ−1R that is either complex or negative real, then ±
√
−λ̄ are both eigenvalues of

the matrix (3.47) and at least one of them lies on the open right-half complex plane. This

implies that the matrix (3.47) is unstable. Therefore, if the positive number α is chosen to

be sufficiently small, the matrix A given in (3.46) will definitely have unstable eigenvalues.

This completes the proof. �

The matrix Φ in practice is very likely to be non-symmetric, and it can even be lower

triangular (see Remark 2). Thus, the matrix RT Φ−1R might generically have complex

51

eigenvalues. Now, Theorem 2 states that under this circumstance, the users can choose

their utility functions in such a way that the primal-dual algorithm will not be able to solve

the resource allocation problem given in (3.1) and (3.2) asymptotically, due to the buffering

effects.

3.4.1.2 State-Dependent Buffer Partitioning

As shown earlier, the primal-dual algorithm is not always stable under constant buffer

partitioning coefficients. A question arises as whether this instability issue can be resolved

if Φ(t) depends on the state of the system. To address this problem, let Φ(t) be state-

dependent and denote it as Φ(x(t)). The linearization of the primal-dual algorithm given

in (3.38) and (3.39) leads to

 ẋ(t)

ṗ(t)

 =

 Diag {U ′′
1 (x∗1), . . . , U

′′
S(x∗S)} −RT

Φ(x∗)−1R 0

 x(t)− x∗

p(t)− p∗

 ., (3.49)

By comparing the above system with (3.40), it can be observed that in order to analyze

local stability of the primal-dual algorithm with a state-dependent Φ(x(t)), one can replace

Φ(x(t)) with the constant matrix Φ(x∗). In other words, as far as the local stability is con-

cerned, state-dependent buffer partitioning reduces to constant buffer partitioning, where

the constant matrix Φ is obtained by evaluating Φ(x(t)) at the equilibrium point. Having

observed this fact, the next example shows that the primal-dual algorithm can still become

unstable.

Example 4: Consider the network given in the Example 3 and let the coefficients θls(x)

be taken according to the S-WFQ scheduling technique explained in Section III-A. Recall

that Φ(t) corresponding to this service discipline is state-dependent and time-invariant.

It is straightforward to justify that all rates xls(t), l ∈ L(s), become equal to x∗s at the

equilibrium point, for every s ∈ S. Now, if Φ(x∗) is calculated for this example, one

can observe that the linearized system (3.49) has six unstable modes with the eigenvalues

0.3838± 1.7096i, 0.2427± 1.0384i and 0.0517± 0.7018i. Hence, the nonlinear primal-dual

algorithm is not locally stable under the S-WFQ scheduling.

One can generalize Theorem 2 to a non-constant matrix Φ(t).

Theorem 3. Let x∗ denote the solution of the resource allocation problem introduced

52

in (3.1) and (3.2), associated with the utility functions U1(x1), ..., US(xS). For a state-

dependent Φ(t) = Φ(x(t)), the following two cases can occur for the primal-dual algorithm

given by (3.38) and (3.39):

i) All eigenvalues of RT Φ(x∗)−1R are real and nonnegative. In this case, the congestion

algorithm is locally stable if Φ(x∗) is symmetric.

ii) At least one eigenvalue of RT Φ(x∗)−1R is complex or negative real. In this case,

there exists a strictly positive number α such that the primal-dual algorithm becomes

unstable if each user s ∈ S takes its utility function as αUs(xs) rather than Us(xs).

Proof: If the utility function of each user s ∈ S changes from Us(xs) to αUs(xs), the

optimal resource allocation vector will be still x∗. Hence, this uniform change in all of the

utility functions yields the linearized system associated with the primal-dual algorithm as

follows

 ẋ(t)

ṗ(t)

 =

 αDiag {U ′′
1 (x∗1), . . . , U

′′
S(x∗S)} −RT

Φ(x∗)−1R 0

 x(t)− x∗

p(t)− p∗

 , (3.50)

where x∗ is the optimal solution to the resource allocation problem for α = 1. After

noticing this fact, one can prove this theorem using the same arguments as in the proof of

Theorem 2. �

Remark 3. As discussed in Section III-A, the matrix Φ(t) corresponding to the S-WFQ

scheme is state-dependent and can be expressed in terms of x(t). Hence, the results of this

part are applicable to this service discipline. However, as explained in Section III-A, Φ(x(t))

will have a complicated form, which makes the global analysis of the primal-dual algorithm

very difficult. To mitigate this issue, let the parameter θls(x(t)) for the S-WFQ scheme be

given by

θls(x(t)) =
xls(t)∑

s′∈S(l) xls′(t)
, ∀s ∈ S(l), (3.51)

approximated as

θls(x(t)) =
xs(t)∑

s′∈S(l) xs′(t)
, ∀s ∈ S(l), (3.52)

which allows for expressing Φ(t) in terms of x(t) in a much easier way. A question arises as

to whether this new service discipline is a good approximation for the S-WFQ. To answer this

53

question, notice that Φ(x∗) is identical for both (3.51) and (3.52), because x∗ls = x∗s (meaning

that the intermediate flow rates are the same as the original source rates at equilibrium).

As a result of (3.49), the S-WFQ scheduling can be approximated in such a way that its

local behavior is unchanged, while its global behavior can be approximately analyzed with a

much lower complexity.

3.4.2 Stability of Dual Algorithm

Consider the dual algorithm

xs(t) = U ′
s
−1(qs(t)) ∀s ∈ S, (3.53a)

pl(t) = hlbl(t) ∀l ∈ L, (3.53b)

where bl(t) is governed by the equation (3.39). Unlike the primal-dual algorithm which

can become unstable in presence of buffers, we have not been able to find any unstable

example for the dual algorithm. Hence, it seems that the dual algorithm is almost always

stable. This conjecture might be true because of two reasons: (i) the matrix Φ is highly

structured and (ii) since the transmission rates of users are updated in a static way via the

dual algorithm, this algorithm has far fewer dynamics involved compared to the primal-dual

algorithm. Although it is hard to prove or disprove this conjecture, a sufficient condition will

be provided in the sequel to guarantee the stability of this algorithm for a state-dependent

Φ(t) (note that constant Φ(t) is a special case of state-dependent Φ(t)).

Theorem 4. Given Φ(t) = Φ(x(t)), assume that Φ(x(t)) is a continuous function at

the point x(t) = x∗. The dual algorithm (3.53) is locally stable, provided the matrix

Φ(x∗)+Φ(x∗)T is positive definite. In addition, if Φ(t) is constant, the algorithm is globally

asymptotically stable.

Proof: Assume that the matrix Φ(x∗) + Φ(x∗)T is positive definite. Consider the can-

didate Lyapunov function

V (p) =
∑
s∈S

∫ qs

q∗s

(x∗s − (U ′
s)
−1(σ))dσ. (3.54)

This function is nonnegative, radially unbounded, and equal to zero only at p = p∗. One

can write

54

dV

dt
=

∑
s∈S

(x∗s − (U ′
s)
−1(qs))q̇s

= (x∗ − x)T q̇ = (x∗ − x)T RT ṗ

= −(Rx− c)T Φ(x(t))−1(Rx− c)

= −1
2
(Rx− c)T

(
Φ(x(t))−1 + Φ(x(t))−T

)
(Rx− c)

= −1
2
(Rx− c)T Φ(x(t))−1

(
Φ(x(t)) + Φ(x(t))T

)
×

Φ(x(t))−T (Rx− c).

(3.55)

Hence, due to the continuity of Φ(x(t)) at x(t) = x∗, positive definiteness of Φ(x∗)+Φ(x∗)T ,

and radially unboundedness of V (p), there exists an invariant set in <L containing p∗ such

that V̇ (p) is non-positive for every p in this invariant set. Now, it follows from the Lyapunov

theorem that the unique equilibrium point (x∗,p∗) of the dual algorithm is locally stable.

In the case when Φ(x(t)) is constant, it can be concluded from (3.55) that this equilibrium

point is globally stable. �

3.5 Discussions

3.5.1 Alternative Congestion Feedback

So far, it is proved that distributed congestion control algorithms (e.g. the primal-dual

algorithm) might become unstable when buffers are modeled explicitly. To remedy this

issue, a slightly different pricing mechanism will be proposed below to ensure the stability

under both the primal-dual and dual algorithms. For simplicity, the result will be explained

for a constant Φ. Here, we again assume that the buffer dynamics can be modeled as (3.39).

Theorem 5. The dual algorithm (3.53) and the primal-dual algorithm (3.38) are both

globally asymptotically stable with the unique equilibrium point (x∗,Φ−1p∗), provided the

source price vector q(t) is taken as RT Φp(t) as opposed to RTp(t).

Proof: The proof will be provided here only for the primal-dual algorithm because the

proof for the dual algorithm is similar. By defining p̃(t) as Φp(t) and considering the source

price q(t) as RT p̃(t), it can be shown that the modified primal-dual algorithm turns out to

55

be

ẋs(t) = ks

(
U ′

s(xs(t))− qs(t)
)
, ∀s ∈ S (3.56a)

˙̃pl(t) = hl (yl(t)− cl) , ∀l ∈ L, (3.56b)

where p̃1, ..., p̃L denote the entries of p̃(t). Notice that the above algorithm is a special

type of the standard primal-dual algorithm given in (3.6), for which it is known that

xs(t) → x∗s and p̃l(t) → p∗l as t goes to infinity. This result implies that x(t) → x∗ and

p̃(t) = Φp(t) → p∗ as t increases. Consequently, the states x(t) and p(t) of the modified

primal-dual algorithm with q(t) = RT Φp(t) converge to x∗ and Φ−1p∗, respectively. This

completes the proof. �

As illustrated in Examples 3 and 4, if each source s ∈ S updates its transmission rate

xs(t) based on the price qs(t) obtained by just adding up the link prices along the route

of source s, the corresponding congestion control algorithm may not be stable. Instead,

Theorem 5 suggests taking the source price qs(t) as the sth entry of the vector RT Φp(t).

This can be implemented using the following scheme.

For every s ∈ S, let a zero price value be initially assigned to the flow of source s. As

this flow passes through every link, say link l, it reports its price value to the link and then

increases its price by θlsbl(t). On the other hand, each link maintains a price for itself (say

p̃l(t)) by adding up the source prices reported to the link by its incoming flows. Now, the

acknowledgment of the flow in the return path accumulates the new link prices in its route

and reports it back to the source.

It can be verified that the above strategy corresponds to the new price updating q(s) =

RT Φp(t) that is needed in the strategy proposed by Theorem 5.

To illustrate the aforementioned idea, let the new pricing mechanism proposed in Theo-

rem 5 be deployed to fix the instability of the primal-dual algorithm for the network studied

in Example 3. To this end, consider the initial parameters

x(0) =
[

10 10 · · · 10
]
,

b(0) = v =
[

20 20 · · · 20
]
.

(3.57)

The transmission rates and buffer sizes associated with the modified primal-dual algorithm

56

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

Time

T
ra

ns
m

is
si

on
 R

at
e

Figure 3.5: This figure illustrates the stability of the primal-dual algorithm using the mod-
ified buffer-size pricing mechanism for Example 3.

are plotted in Figures 3.5 and 3.6 to demonstrate that all these signals converge and therefore

the resulting congestion control algorithm is stable.

3.5.2 Nonzero Buffer Assumption

Despite the fact that Theorem 1 derives a mathematical model for buffer sizes in a general

setting, the main results developed in this work (say in Sections IV-A and IV-B) rely on

the assumption that the buffer sizes b1(t), ..., bL(t) never become zero. In what follows, we

elaborate on the validity of this assumption and justify why the removal of this assumption

does not change the conclusions drawn in this chapter.

First, consider the constant-buffer-partitioning case studied in Subsection IV-A-1. A

mild assumption used in this part was that all links of the network would be bottleneck

links under the optimal transmission rates of all users. This implies that p∗ is a strictly

positive vector and as a result b∗ > 0. Hence, if the initial buffer sizes b1(0), ..., bL(0) as

well as the initial transmission rates x1(0), ..., xS(0) are all in the neighborhood of their

optimal values, then the assumption of positivity of b1(t), ..., bL(t) at all times t ≥ 0 would

be met as long as the algorithm is stable. The same argument also holds for the case with

state-dependent buffer partitioning coefficients studied in Subsection IV-A-2.

Recall that Examples 3 and 4 demonstrate that the primal-dual algorithm may not be

stable for both constant and state-dependent partitioning coefficients. Since the assumption

of strict positivity of all buffer sizes is used in these examples, it could be conjectured that

57

0 10 20 30 40 50 60 70 80
5

10

15

20

25

30

Time

B
uf

fe
r

si
ze

Figure 3.6: This figure illustrates the stability of the primal-dual algorithm using the mod-
ified buffer-size pricing mechanism for Example 3.

this instability phenomenon may not occur in practice due to the underlying assumption not

being valid. Nonetheless, it can be argued that the primal-dual algorithm is still unstable

for Examples 3 and 4 even if the buffer sizes are allowed to become zero. Indeed, it follows

from the definition of stability that if the network in either Example 3 or Example 4 is stable

(in the absence of the aforementioned assumption), then b1(t), ..., bL(t) always stay positive

and bounded for the initial values b1(0), ..., bL(0), x1(0), ..., xS(0) sufficiently close to their

optimal values. Now that the buffer sizes are always positive in the transient time, the

underlying assumption is automatically satisfied, under which the instability of the network

was already proved.

As far as the primal-dual algorithm with the new pricing mechanism q(t) = RT Φp(t)

given in Theorem 5 is concerned, the relation b∗ = Φ−1p∗ is satisfied. Now, notice that

although p∗ is a positive vector, Φ−1p∗ might have some negative entries. This yields

the contradictory result that the optimal buffer sizes b∗1, ..., b
∗
L may not be all nonnegative,

which implies that some of the buffers 1, ..., L must become empty during transient time.

To remedy this problem, note that if the pricing mechanism q(t) = RT Φ(p(t) − ν) is

used instead, for some positive vector ν, then the steady-state vector b∗ becomes equal to

Φ−1p∗ + ν. Hence, a proper choice of ν makes the buffer sizes at the equilibrium point

strictly positive and, therefore, it resolves the problem. Note that the interpretation of this

technique is simply as follows: the buffer size that each link reports to the corresponding

users should be less than the true value so that users transmit data at higher rates to keep

58

the buffers nonempty. This idea of reporting some virtual values for buffer sizes is also

applicable to the primal-dual algorithm with the standard pricing mechanism.

3.6 Summary

Congestion control algorithms aim to allocate resources to demands in a network in such

a way that the total utilization is optimized. The existing stability results for congestion

control algorithms are derived for a fluid model of the network under the assumption that the

same flow appears on an end-to-end basis in the network. However, buffers in the network

might cause the flows to be thinned as they pass through. In this chapter, the buffers are

first modeled for well-known service disciplines such as first-in first-out and weighted fair

queuing, and then the effect of buffers on the stability of the dual and primal-dual congestion

control algorithms is studied accordingly. It is shown that these algorithms might no longer

be stable if the effect of buffering is taken explicitly into account. Sufficient conditions

are also provided to guarantee the stability of these algorithms under the common pricing

techniques. Finally, a new pricing mechanism is introduced, which makes the dual and

primal-dual algorithms stable.

59

Chapter 4

Network Topologies with Zero
Duality Gap for Optimal Power
Flow

It has been recently observed and justified that the optimal power flow (OPF) problem

with a quadratic cost function may be solved in polynomial time for a large class of power

networks, including IEEE benchmark systems. In this work, this result is extended to OPF

with arbitrary convex cost functions and then a more rigorous theoretical foundation is

provided accordingly. First, a necessary and sufficient condition is derived to guarantee the

solvability of OPF in polynomial time through its Lagrangian dual. Since solving the dual

of OPF is expensive for a large-scale network, a far more scalable algorithm is designed by

utilizing the sparsity in the graph of a power network. The computational complexity of

this algorithm is related to the number of cycles of the network. Furthermore, it is proved

that due to the physics of a power network, the polynomial-time algorithm proposed here

always solves every full AC OPF problem precisely or after two mild modifications.

4.1 Introduction

The optimal power flow (OPF) problem is concerned with finding an optimal operating

point of a power system, which minimizes a certain objective function (e.g., power loss or

generation cost) subject to network and physical constraints [65, 66]. This optimization

problem has been extensively studied since 1962 [21]. Due to the nonlinear interrelation

among active power, reactive power and voltage magnitude, OPF is described by nonlinear

equations and may have a nonconvex/disconnected feasibility region [67]. Several algorithms

60

have been proposed for solving this highly nonconvex problem, including linear program-

ming, quadratic programming, nonlinear programming, Lagrange relaxation, interior point

methods, artificial intelligence, artificial neural network, fuzzy logic, genetic algorithms,

evolutionary programming and particle swarm optimization [68, 69, 65, 66, 70, 71, 72]. In

order to solve OPF more efficiently, different conic and convex relaxations have been pro-

posed in the past decade [22, 23, 24]. An efficient algorithm for solving OPF should possess

two properties: (i) polynomial-time complexity, (ii) ability to find a global solution. As will

be demonstrated later in Section I-A, the second property is highly desirable because the

cost for a local solution could be much larger than the cost for a globally optimal solution.

The classical OPF problem with a quadratic cost function has been recently studied in

[25, 73, 74]. The Lagrangian dual of OPF is obtained in [25] as a semidefinite program

(SDP), from which a globally optimal solution of OPF can be found (in polynomial time)

if the duality gap between OPF and its dual is zero (i.e., if strong duality holds). It is

then shown that the duality gap is zero for IEEE benchmark systems with 14, 30, 57,

118 and 300 buses, in addition to several randomly generated power networks. The paper

[25] proves that the duality gap is expected to be zero for a large class of power networks

due to the passivity of transmission lines and transformers. In particular, there exists

an unbounded set of network topologies (admittance matrices) that make the duality gap

zero for all possible values of loads, provided load over-satisfaction (power over delivery) is

allowed. Note that allowing load over-satisfaction means that the power balance equations

are expressed as inequality constraints rather than equality constraints [71, 75, 25]. In [73],

the results were extended to the case when there are more sources of non-convexity in OPF,

such as variable transformer ratios, variable shunt elements and contingency constraints.

Note that the convexification of OPF through its Lagrangian dual, if possible, has two main

advantages. In terms of operation planning, this means that a global solution can be found

efficiently. In terms of electricity market, this means that the Lagrange multipliers used for

selling or buying power are meaningful pricing signals.

The above-mentioned convex relaxation approach has been further developed in a num-

ber of recent papers to handle other energy-related optimization problems such as multi-

period optimal dispatch [76], state estimation in power systems [77], optimal power flow

with distributed energy storage dynamics [78], transmission system planning [79], optimal

charging of plug-in hybrid electric vehicles [80], distributed control for power networks [81],

61

and optimal power balance under uncertainty [82]. Moreover, the SDP program proposed

in [25] has also been explored by various researchers in the context of OPF to both enhance

the underlying theory and resolve practical issues. For instance, the paper [83] proposes a

distributed algorithm for solving this SDP problem. [84] and [85] prove that the SDP relax-

ation is guaranteed to work for tree networks under certain assumptions. A similar result is

also derived in [86] using a different formulation for the OPF problem. Moreover, the work

[87] studies possible issues associated with the SDP formulation and also demonstrates the

application of this method in finding multiple solutions of a power flow problem.

Before spelling out the contribution of the current work, we first present a motivating

example in the sequel.

4.1.1 Motivating Example

Consider the three-bus network depicted in Figure 4.1 with the following line impedances

(z) and total shunt susceptances (b):

z12 = 0.42 + 0.9i, z23 = 0.25 + 0.75i, z13 = 0.55 + 0.9i,

b12 = 0.3, b23 = 0.7, b13 = 0.45,

where every bus is associated with a constant-active-power load, while buses 1 and 2 are also

associated with two generators with the active-power outputs PG1 and PG2 . This network is

adopted from [87] with a 100 MVA base. Assume that reactive power can be compensated

arbitrarily at every bus. The goal is to find the optimal values of PG1 and PG2 in such a way

that the generation cost 5PG1 + PG2 is minimized and that the load demand is satisfied at

every bus. Denote the complex voltages at buses 1, 2 and 3 as V1, V2 and V3, respectively.

We consider two cases in the following:

• Case 1: Assume that the voltage magnitudes |V1|, |V2|, |V3| must all be equal to the

nominal value 0.8. The MATLAB interior point solver called by the toolbox MAT-

POWER yields the local solution

V opt
1 = 0.8]0, V opt

2 = 0.8]− 67.50o,

V opt
3 = 0.8]− 115.72o, P opt

G1
= 272.79, P opt

G2
= 138.70,

62

associated with the generation cost 1502.64. In contrast, using the method proposed

in [25], one can show that the global solution to the above-mentioned optimization is

given by

V opt
1 = 0.8]− 2.94o, V opt

2 = 0.8]56.86o,

V opt
3 = 0.8]0, P opt

G1
= 70.45, P opt

G2
= 249.93,

corresponding to the optimal generation cost 602.20. Observe that the local solution

found by MATPOWER is physically meaningless, and more importantly the genera-

tion cost associated with this local solution is at least twice more than the cost for

the global solution.

• Case 2: Assume that the voltage magnitudes |V1|, |V2|, |V3| are confined to the interval

[0.8, 1.2]. The toolbox MATPOWER gives the same local solution as before with

the generation cost 1502.64, whereas the generation cost corresponding to the global

solution (obtained using [25]) is equal to 338.

So far, it has been demonstrated that a global solution can be far better than a local

solution. Note that more than one local solution may be attained in practice depending on

the type of the algorithm used together with its initialization. Now, assume that there is a

limit on the active flow transferred on the line (2, 3), say P23, P32 ≤ Pmax
23 = Pmax

32 . It can

be shown that the duality gap is always zero in both Case 1 and Case 2 for all nonnegative

values of Pmax
23 . Note that the duality gap being zero does not imply that the OPF problem

is feasible. For instance, the OPF problem in Case 1 becomes infeasible if Pmax
23 ≤ 23.11,

but zero duality gap implies that this infeasibility can be detected using a polynomial-time

algorithm by obtaining an unbounded optimal objective value for the dual of OPF. On

the other hand, as observed in [87], the duality gap might become nonzero if the apparent

power (as opposed to active power) on the line (2, 3) is upper bounded by a small number.

However, as will be shown later in this work, if there is a phase shifter in this network, the

duality gap will always be zero. It is worth mentioning that even if the line (2, 3) is removed

to make the network radial, the original OPF problem is still nonconvex.

Motivated by this example, the goal of this chapter is to perform a deeper study of the

duality gap for the OPF problem.

63

G1 G2
110 MW110 MW

50 MW

Bus 1 Bus 2

Bus 3

Figure 4.1: The three-bus power network studied in Section I-A.

4.1.2 Contributions

This chapter extends the previous results on the zero duality gap of OPF in several im-

portant directions. The first goal is to generalize the results to an arbitrary convex cost

function. To this end, the dual of OPF in the general case is derived as the maximization

of a concave function subject to a linear matrix inequality (LMI) (see [29] or [25] for the

definition of LMI). In the case when the cost function is quadratic, this dual optimization

simply becomes an SDP. Necessary and sufficient conditions are derived to guarantee zero

duality gap. Since solving the dual of OPF is hard for a very large-scale network, the sec-

ond goal is to design a more scalable algorithm by exploiting the sparsity in the topology

of the network. The third goal of this chapter is to understand what reasonable approxi-

mation on the OPF problem guarantees its solvability in polynomial time. To address this

problem, it is shown that adding phase shifters to certain lines of the network reduces the

computational complexity of OPF. Moreover, if every cycle of the network contains a line

with a controllable phase shifter, then the duality gap can be verified by solving a simple

generalized SOCP problem. It is also shown that if load over-satisfaction is allowed, then

the duality gap is always zero for all possible values of loads, physical limits and cost func-

tions, due to the physics of a power network. This result implies that an OPF problem can

always be solved efficiently after two modifications: (i) expressing power balance equations

as inequality constraints, (ii) adding (virtual) phase shifters to the network. As stated in

[71, 75, 25], modification (i) often has a negligible effect (see Chapter 15 of [75] for more

details). We will also show that only a few phase shifters are needed in practice through

modification (ii) (for instance, 1 or 2 phase shifters are enough for IEEE systems with 30

and 118 buses). Note that phase shifters are used in practice to improve controllability of

64

the network for relieving congestion and routing active power, but this work substantiates

their role in convexifying the OPF problem.

4.1.3 Notations

The following notations will be used throughout this chapter.

• i : Imaginary unit.

• R: Set of real numbers.

• Hn×n: Set of n× n Hermitian matrices.

• Re{·} and Im{·}: Real and imaginary parts of a complex matrix.

• ∗ : Conjugate transpose operator.

• T : Transpose operator.

• (·)opt: Notation used to denote a globally optimal solution.

• � : Matrix inequality sign in the positive semidefinite sense [29].

Moreover, given complex values a1 and a2, the inequality a1 ≥ a2 used in this chapter means

Re{a1} ≥ Re{a2} and Im{a1} ≥ Im{a2}.

4.2 Problem Formulation

Consider a power network with the set of buses N := {1, 2, ..., n} and the set of flow lines

L ⊆ N ×N . Define:

• PDk
+ QDk

i: Complex power of the load connected to bus k ∈ N .

• PGk
+ QGk

i: Output complex power of the generator connected to bus k ∈ N .

• Vk: Complex voltage at bus k ∈ N .

• Plm: Active power transferred from bus l ∈ N to bus m ∈ N through the line

(l,m) ∈ L.

• Slm: Complex power transferred from bus l ∈ N to bus m ∈ N through the line

(l,m) ∈ L.

65

• fk(PGk
): A convex function representing the cost associated with generator k ∈ G.

Define V, PG, QG, PD and QD as the vectors {Vk}k∈N , {PGk
}k∈N , {QGk

}k∈N , {PDk
}k∈N

and {QDk
}k∈N , respectively. The power network has some controllable parameters which

can all be recovered from V, PG and QG. In order to optimize these controllable parameters,

the optimal power flow (OPF) problem can be solved. Given the known vectors PD and

QD, OPF minimizes the cost
∑

k∈N fk(PGk
) over the unknown parameters V, PG and QG

subject to the power balance equations at all buses as well as the physical constraints

Pmin
k ≤ PGk

≤ Pmax
k , ∀ k ∈ N (4.1a)

Qmin
k ≤ QGk

≤ Qmax
k , ∀ k ∈ N (4.1b)

V min
k ≤ |Vk| ≤ V max

k , ∀ k ∈ N (4.1c)

Plm ≤ Pmax
lm , ∀ (l,m) ∈ L (4.1d)

where the limits Pmin
k , Pmax

k , Qmin
k , Qmax

k , V min
k , V max

k , Pmax
lm = Pmax

ml are given. Instead of

the flow limit constraint (4.1d), one may impose a restriction on the value of |Vl − Vm| or

Slm. The results to be presented in this work can be easily generalized to handle these

constraints. Define the following notations:

• Let ylm denote the mutual admittance between buses l and m, and ykk denote the

admittance-to-ground at bus k, for every k ∈ N and (l,m) ∈ L.

• Let Y represent the admittance matrix of the power network (see [25] for an explicit

expression of Y).

• Define the current vector I :=
[

I1 I2 · · · In

]T
as YV, where Ik is the net current

injected to bus k ∈ N .

• Define e1, e2, ..., en as the standard basis vectors in Rn.

One can write:
(PGk

− PDk
) + (QGk

−QDk
)i = VkI∗k

= (e∗kV)(e∗kI)
∗ = trace{VV∗Y∗eke

∗
k}, k ∈ N .

(4.2)

Since the above equality constraint is nonlinear in V, one may replace VV∗ with a new

matrix variable W ∈ Hn×n to make this constraint linear. However, in order to make the

66

map from V to W invertible, W must be constrained to be both positive semidefinite and

rank-one. Hence, OPF can be formulated as:

OPF: Minimize the function ∑
k∈G

fk(PGk
) (4.3)

over W ∈ Hn×n, PG ∈ Rn and QG ∈ Rn, subject to

Pmin
k ≤ PGk

≤ Pmax
k , (4.4a)

Qmin
k ≤ QGk

≤ Qmax
k , (4.4b)

(V min
k)2 ≤ Wkk ≤ (V max

k)2, (4.4c)

Re {(Wll −Wlm)y∗lm} ≤ Pmax
lm , (4.4d)

trace{WY∗eke
∗
k} = PGk

− PDk
+ (QGk

−QDk
)i, (4.4e)

W = W∗ � 0, (4.4f)

rank {W} = 1 (4.4g)

for every k ∈ N and (l,m) ∈ L.

The details of the above formulation can be found in [25]. Note that if there is a trans-

former on the line (l, m), an extra term may be required in the left side of (4.4d), depending

on how the transformer is modeled. Recall that transmission lines and transformers are

passive (dissipative) devices. This implies that

Re{Y} � 0, y∗lm ≥ 0, ∀ (l,m) ∈ L. (4.5)

It has been shown in [25] that although OPF is NP-hard in the worst case, it may be solved

in polynomial-time for a large class of admittance matrices Y due to the above-mentioned

physical properties of a power circuit, provided the cost function fk is quadratic. Under the

assumption (4.5), the objective of this chapter is threefold:

• The first goal is to extend the results of [25] to every convex function fk.

• The second goal is to design a scalable algorithm for solving a large-scale OPF by

exploiting the topology of the power network.

• The third goal is to show that due to the physics of a power network, every OPF

67

problem can be solved in polynomial time after the following approximations: (i)

write power balance equations as inequalities, and (ii) place virtual (fictitious) phase

shifters in certain loops of the network. As will be discussed later, approximation (i)

does not change the solution to the OPF problem in many practical situations, and

moreover a few virtual phase shifters are often enough in approximation (ii).

4.3 Main Results

Given an index k ∈ N , define the convex conjugate function f̄k(x) : R → R as:

f̄k(x) = −min
PGk

(fk(PGk
)− xPGk

) , ∀ x ∈ R. (4.6)

Let λk, λk and λk denote the Lagrange multipliers for the power constraints Pmin
k ≤ PGk

,

PGk
≤ Pmax

k and Re{trace(WY∗eke
∗
k)} = PGk

− PDk
, respectively. Define Θ as the vector

of all Lagrange mutipliers associated with OPF. In line with the technique used in [25], the

Lagrangian dual of OPF can be written as:

max
Θ

{
−

∑
k∈N

f̄k(λk − λk + λk) + h(Θ)

}
(4.7a)

subject to A(Θ) � 0 (4.7b)

where h(Θ) ∈ R is a linear function and A(Θ) ∈ Hn×n is a linear matrix function. The

above convex optimization, referred to as Dual OPF, has a concave objective and an LMI

constraint. Hence, this optimization can be solved efficiently in polynomial time [29]. How-

ever, its optimal objective value is only a lower bound on the optimal objective value of

OPF. Whenever OPF and Dual OPF have the same optimal values, it is said that strong du-

ality holds or duality gap is zero for OPF. The duality gap will be studied in the subsequent

subsections.

4.3.1 Various SDP Relaxations and Zero Duality Gap

Define G := (N ,L) as the graph corresponding to the power network. With no loss of

generality, assume that G is a connected graph (otherwise, it can be partitioned into a

set of disconnected sub-networks). This graph may have several cycles, which all together

68

establish a cycle space of dimension |L|−|N |+1. Let {C1, C2, ..., C|L|−|N |+1} be an arbitrary

basis for this cycle space, meaning that C1, ..., C|L|−|N |+1 are all cycles of G from which every

other cycle of G can be constructed.

Definition 1. Define the subgraph set S as

S := L ∪ {C1, C2, ..., C|L|−|N |+1} (4.8)

(note that since each edge of G can be regarded as a two-vertex subgraph, L is indeed a set

consisting of |L| subgraphs).

Definition 2. Given a Hermitian matrix W ∈ Hn×n and an arbitrary subgraph Gs ∈ S,

define W(Gs) as a matrix obtained from W by removing those columns and rows of W

whose indices do not appear in the vertex set of Gs. Note that W(Gs) is a submatrix of W

corresponding to the subgraph Gs of G.

To clarify Definition 2, let Gs be a single edge (l,m) ∈ L. Since the vertex set of this

subgraph has only two elements l and m, one can write:

W(Gs) =

 Wll Wlm

Wml Wmm

 (4.9)

where Wlm denotes the (l,m) entry of W. Three convex relaxations of OPF will be intro-

duced below.

Relaxed OPF 1 (ROPF 1): This optimization is obtained from the OPF problem

formulated in (4.3)–(4.4) by removing its rank constraint (4.4g).

Relaxed OPF 2 (ROPF 2): This optimization is obtained from ROPF 1 by replacing

its constraint W � 0 with the set of constraints

W(Gs) � 0, ∀ Gs ∈ S. (4.10)

Relaxed OPF 3 (ROPF 3): This optimization is obtained from ROPF 2 by replacing

its constraint (4.10) with

W(Gs) � 0, ∀ Gs ∈ L (4.11)

69

or equivalently

W11,W22, ...,Wnn ≥ 0, (4.12a)

WllWmm ≥ |Wlm|2 , ∀ (l,m) ∈ L. (4.12b)

Note that ROPF 1 and ROPF 2 have convex objectives with SDP constraints, whereas

ROPF 3 has a convex objective with SOCP constraints. ROPF 2 has a lower computational

complexity compared to ROPF 1 because only submatrices of W corresponding to edges

and certain cycles of the network are required to be positive semidefinite. ROPF 3 is

even simpler than ROPF 2 because it imposes constraints only on the submatrices of W

corresponding to the edges of the network. The relations among OPF, Dual OPF and

ROPF 1-3 will be studied in the sequel.

Theorem 1. The following statements hold:

• The duality gap is zero for OPF if and only if ROPF 1 has a solution (Wopt,Popt
G ,Qopt

G)

with the property rank{Wopt} = 1, in which case a global solution Vopt can be found

using the equation Wopt = Vopt(Vopt)T .

• The duality gap is zero if A(Θopt) in Dual OPF has rank n−1, in which case a global

solution Vopt can be found using the equation A(Θopt)Vopt = 0.

Proof: This theorem is a natural extension of the results of [25], which were developed

for quadratic cost functions and real-valued Dual OPF (rather than complex Dual OPF).

The techniques used in [25] can be used to prove this theorem. �

Although ROPF 1 can be solved in polynomial time, it has a matrix variable W with n2

unknown entries. Since the number of scalar variables of ROPF 1 is on the order of O(n2),

this optimization may not be solved efficiently for a large value of n. The same argument

is valid for Dual OPF. Due to this drawback, the goal is to reduce the computational

complexity of these optimizations.

Lemma 1. Given a Hermitian matrix W ∈ Hn×n, the following two statements are equiv-

alent:

70

i) There exists a matrix W(1) ∈ Hn×n such that

W
(1)
lm = Wlm, ∀ (l, m) ∈ L ∪ {(1, 1), ..., (n, n)} (4.13a)

W(1) � 0, (4.13b)

rank{W(1)} = 1. (4.13c)

ii) There exists a matrix W(2) ∈ Hn×n such that

W
(2)
lm = Wlm, ∀ (l, m) ∈ L ∪ {(1, 1), ..., (n, n)} (4.14a)

W(2)(Gs) � 0, ∀ Gs ∈ S (4.14b)

rank{W(2)(Gs)} = 1, ∀ Gs ∈ S. (4.14c)

Proof: The proof has been moved to the appendix of Chapter 4. �

Lemma 1 will be exploited next to propose a simpler method for checking the duality

gap of OPF, as an alternative to solving ROPF 1,

Theorem 2. The duality gap is zero for OPF if ROPF 2 has a solution (Wopt,Popt
G ,Qopt

G)

with the property that rank{Wopt(Gs)} = 1 for every Gs ∈ S.

Proof: Given an arbitrary matrix W, notice that an entry Wlm of the matrix W does

not appear in the constraints (4.4a)–(4.4e) of OPF unless l = m or (l,m) ∈ L, which means

that some entries of W may not be important. The proof follows from this fact, Lemma 1

and Theorem 1. �

4.3.2 Acyclic Networks

Throughout this subsection, assume that the power network is radial so that the graph G

has no cycle. Note that this network does not necessarily represent a distribution network

with a single feeder (generator), and indeed it can have an arbitrary number of generators.

Theorem 3. The duality gap is zero for OPF if and only if ROPF 3 has an optimal solution

for which every inequality in (4.12b) becomes an equality.

Proof: Since a cyclic graph is chordal, it can be inferred from the matrix completion

theorem that ROPF 1 and ROPF 3 have the same optimal objective value. The proof

follows from this fact, Theorem 1 and Lemma 1. �

71

As pointed out earlier, the SDP constraint W � 0 in ROPF 1 makes it hard to solve

the problem numerically for a large value of n. Nonetheless, Corollary 3 states that this

constraint can be replaced by the SOCP constraint (4.12), and yet the zero duality gap of

OPF can be verified from this optimization.

Remark 1. The paper [22] proposes an SOCP relaxation for the power flow problem in the

radial case, by formulating the problem in terms of the variables |Vk|2, |Vl||Vm| cos(]Vl −

]Vm) and |Vl||Vm| sin(]Vl −]Vm) for every k ∈ N and (l,m) ∈ L. It can be shown that

this relaxation is tantamount to ROPF 3. As a result, the SOCP relaxation provided in

[22] for solving the power flow problem in radial networks works correctly if and only if the

duality gap is zero for the corresponding power flow problem.

The power balance equations

trace{WY∗eke
∗
k} = PGk

− PDk
+ (QGk

−QDk
)i (4.15)

∀ k ∈ N , appear in OPF and ROPF 1–3. It is said that load over-satisfaction (power

over-delivery) is allowed if these equality constraints in the aforementioned optimizations

are permitted to be replaced by

trace{WY∗eke
∗
k} ≤ PGk

− PDk
+ (QGk

−QDk
)i. (4.16)

The main idea behind this notion is that power over delivery to a bus is allowed, in which

case the excess power should be thrown away (wasted/stored). However, it is generally true

that even when load over-satisfaction is permitted, a practical power network is maintained

in a normal condition so that almost all nodes of the network receive no extra power for

free. This is due to two properties: (i) transmission lines are lossy, and (ii) cost funcntions

are monotonically increasing. Note that the notion of load over-satisfaction has already

been used by other researchers [71, 75]. This notion has also been studied in the recent

work [25] via the name modified OPF (MOPF). In the case when some of the power balance

inequalities do not bind at an optimal solution of MOPF due to highly congested trans-

mission lines, the obtained solution can still be used as an approximation of the globally

optimal solution of OPF. In the rest of this chapter, MOPF and RMOPF 1–3 will refer to

the optimizations OPF and ROPF 1–3 in the load over-satisfaction case. It can be easily

72

shown that all of the results derived so far hold true when load over-satisfaction is allowed.

The goal of this part is to show that the duality gap is zero for acyclic networks, when

load over-satisfaction is allowed. To this end, the following lemma is needed, which holds for

both acyclic and cyclic networks. This lemma is primarily based on the physical properties

of a power network (i.e., passivity of transmission lines).

Lemma 2. RMOPF 3 has an optimal solution for which every inequality in (4.12b) becomes

an equality.

Proof: Consider an arbitrary solution (Wopt,Popt
G ,Qopt

G) of RMOPF 3. Define Ŵopt as

a matrix whose (l,m) ∈ N ×N entry, denoted by Ŵ opt
lm , is equal to W opt

lm if (l,m) 6∈ L and

Ŵ opt
lm =

√
W opt

ll W opt
mm −

(
Im{W opt

lm }
)2

+ Im{W opt
lm }i

otherwise. It is evident that inequality (4.12b) becomes an equality for W = Ŵopt. Fur-

thermore, given an index (l,m) ∈ L, since (4.12b) is satisfied for W = Wopt, one can

write (
Ŵ opt

ll − Ŵ opt
lm

)
y∗lm −

(
W opt

ll −W opt
lm

)
y∗lm

=
(

Re{W opt
lm } −

√
W opt

ll W opt
mm − Im{W opt

lm }2

)
y∗lm ≤ 0.

(4.17)

Note that the above inequality is inferred from the non-negativity of the real and imaginary

parts of y∗lm. Besides,

trace{ŴoptY∗eke
∗
k} − trace{WoptY∗eke

∗
k}

=
∑

l∈N (k)

(
Re{W opt

kl } −
√

W opt
kk W opt

ll − Im{W opt
kl }2

)
y∗kl ≤ 0

for every k ∈ N . This inequality, together with (4.17), yields that (Ŵopt,Popt
G ,Qopt

G) is

another solution of RMOPF 3 for which every inequality in (4.12b) becomes an equality. �

Theorem 4. The duality gap is zero for OPF if load over-satisfaction is allowed.

Proof: The proof follows immediately from Theorem 3 and Lemma 2. �

73

4.3.3 General Networks

In this part, the results of the preceding subsection will be generalized to the case when the

graph G has at least one cycle (loop). As proved earlier, RMOPF 3 always has a desirable

solution because of the physical properties of a power network. On the other hand, RMOPF

1 is the exact formulation of MOPF in the case of zero duality gap. Nonetheless, RMOPF 3

may not be equivalent to RMOPF 1 unless there is no cycle in the network. To fix this, we

aim to study what minor modifications are needed in the topology of the network so that

RMOPFs 1-3 all give the same solution in the absence of a duality gap.

Define controllable phase shifter as an ideal (lossless) phase-shifting transformer with

the ratio eγi, where the phase shift γ is a variable of the OPF problem. If there are some

controllable phase shifters in the network, the term OPF refers to the optimal power flow

problem with the variables V,PG,QG and the phase shifts of these transformers. Note that

adding a controllable phase shifter to a transmission line may require reformulating OPF

to incorporate the unknown phase shift of the transformer. The objective is to investigate

the role of controllable phase shifters in diminishing the duality gap of OPF.

A bridge of the graph G is an edge of this graph whose removal makes G disconnected.

The next theorem studies the importance of a phase shifter installed on a bridge line.

Lemma 3. Assume that (l,m) ∈ L is a bridge of the graph G and that the line (l, m) of the

power network has a controllable phase shifter. The OPF problem has a globally optimal

solution for which the optimal phase shift of the phase shifter is 0.

Proof: Define N1 and N2 as the sets of vertices of the two disconnected subgraphs

obtained by removing the edge (l,m) from the graph G. Assume that l ∈ N1 and that the

phase shifter of the line (l,m) is located on the side of bus l. Let (Vopt,Popt
G ,Qopt

G , γopt)

denote an optimal solution of OPF, where γ represents the phase of the phase-shifting

transformer on the line (l, m). Define Ṽopt ∈ Rn with the entries

Ṽ opt
j =

 V opt
j eγopti if j ∈ N1

V opt
j if j ∈ N2.

Note that Ṽ opt
j is uniquely defined above, because of the relations N1 ∪ N2 = N and

N1 ∩ N2 = φ. It is straightforward to observe that (Ṽopt,Popt
G ,Qopt

G , 0) is another solution

of OPF. This completes the proof. �

74

Lemma 3 states that a controllable phase shifter on a bridge line of the power network

has no effect on the optimal value of OPF. In particular, since every line of a radial network

is a bridge, as far as the OPF problem is concerned, phase shifters are not useful for this type

of network. In contrast, adding a phase shifter to a non-bridge line of a cyclic network may

improve the performance of the network. From the optimization perspective, this addition

may require the modification of the formulation of OPF by introducing new variables.

Given a natural number t, assume that t phase shifters are added to the lines (lj ,mj)

for j = 1, ..., t. Let each phase shifter j be located on the side of bus lj , with the variable

phase shift γj . One can write:

Sljmj
= |Vlj |

2

(
y∗ljmj

+
1
2
bljmj

i
)
− VljV

∗
mj

y∗ljmj
eγj i (4.18)

where bljmj
denotes the charging susceptance of the line (lj ,mj). In the previous formulation

of OPF, Wljmj
= W ∗

mj lj
represented the parameter VljV

∗
mj

. In order to account for the

inclusion of the phase shifters, the equation (4.18) suggests two modifications:

• Use the new notations W ljmj
= W

∗
ljmj

for VljV
∗
mj

.

• Use the previous notations Wljmj
= W ∗

mj lj
for VljV

∗
mj

eγj i.

This implies that the following modifications must be made to the OPF problem formulated

in (4.3) and (4.4):

• Introduce a new matrix variable W ∈ Hn×n.

• Replace the constraints W � 0 and rank{W} = 1 with W � 0 and rank{W} = 1.

• Add the new constraints

W(Gs) � 0, rank{W(Gs)} = 1, ∀ Gs ∈ L.

• Impose the constraint that the corresponding entries of W and W are equal to each

other, with the exception of the entries (l1,m1), ..., (lt,mt) and (m1, l1), ..., (mt, lt).

One can drop the rank constraints in the above formulation of OPF to obtain a convexified

problem. We prove in the next theorem that if the phase shifters are added to the network

75

in a certain way, the formulation of OPF becomes even simpler than the case with no phase

shifters and indeed the new variables W ljmj
’s need not be introduced.

Theorem 5. Consider a subset of the cycle basis {C1, ..., C|L|−|N |+1}, say C1, ..., Ct for a

given number t ≤ |L| − |N |+ 1. For every j ∈ {1, 2, ..., t}, assume that a controllable phase

shifter is added to a line (lj ,mj) of the cycle Cj such that

i) The graph G remains connected after removing the edges (l1,m1), ..., (lt,mt).

ii) The set {lj ,mj} is not a subset of the vertex set of any of the reminding cycles

Ct+1, , ..., C|L|−|N |+1.

Consider the optimization obtained from ROPF 2 by replacing its constraint (4.10) with the

reduced set of constraints

W(Gs) � 0, ∀ Gs ∈ S\{C1, ..., Ct}. (4.19)

The duality gap is zero for OPF if every submatrix W(Gs) in the above inequality becomes

rank-one at an optimal solution.

Proof: Let (Wopt,PG,QG) denote an optimal solution of the optimization in Theorem 5

for which every matrix W(Gs) becomes rank-one. In line with the argument made in the

proof of Lemma 1, it can be shown that

∑
(l,m)∈ ~Cj

]W opt
lm = 0, ∀ j ∈ {t + 1, ..., |L| − |N |+ 1}. (4.20)

By Assumption (i) of the theorem, if the edges (l1,m1), ..., (lt,mt) are removed from G,

then {Ct+1, ..., C|L|−|N |+1} forms a cycle basis for the resulting subgraph. In light of (4.20),

this implies that there exist angles θopt
1 , ..., θopt

n such that θl − θm =]W opt
lm for every edge

(l, m) of this subgraph. Now, define the following phase shifts and voltage parameters:

γopt
j =]W opt

ljmj
− θopt

lj
+ θopt

mj
, ∀ j ∈ {1, ..., t}

V opt
k =

√
W opt

kk]θopt
k , ∀ k ∈ N .

It can be verified that the above parameters correspond to a global solution of OPF and

that the duality gap is zero. �

76

An implication of Theorem 5 is that adding phase shifters to the network in a certain

way simplifies the formulation of OPF, instead of increasing the number of variables and/or

constraints. This theorem shows that the phase shifters added to the cycles C1, ..., Ct give

rise to the exclusion of the t constraints W(Cs) � 0, s = 1, ..., t, from ROPF 2.

A spanning tree of the connected graph G is an acyclic subgraph of G with |N | vertices

and |N | − 1 edges. Note that G might have an exponential number of spanning trees.

Corollary 1. Given a spanning tree T of the graph G, assume that a controllable phase

shifter is added to every line of the network not belonging to this tree. The duality gap is

zero for OPF if and only if ROPF 3 has an optimal solution for which every inequality in

(4.12b) becomes an equality.

Proof: Let (l1,m1), ..., (lt,mt) denote those edges of the graph G that do not belong to T ,

where t = |L|−|N |+1. Adding each edge (lj ,mj), j = 1, ..., t, to the tree T creates a cycle.

With a slight abuse of notation, let Cj denote this cycle. Theorem 5 can be applied to the

power network with the phase shifters installed on its lines (l1,m1), ..., (lt,mt). The proof

is completed by noting that constraint (4.19) is equivalent to (4.12), i.e., the optimization

introduced in Theorem 5 and ROPF 3 are identical for this set of phase shifters. �

In the case of OPF with no controllable phase shifters, one needs to solve Dual OPF,

ROPF 1 or ROPF 2, which have SDP constraints. Nonetheless, Corollary 1 states that

if a sufficient number of phase shifters is added to the network, then it suffices to solve

ROPF 3 with simple SOCP constraints. Hence, phase shifters can significantly reduce the

computational complexity of OPF if they are formulated properly. Note that ROPF 3

is independent of the choice of the non-unique spanning tree T . This introduces some

flexibility in the locations of the phase shifters.

Theorem 6. Given an arbitrary spanning tree T of the graph G, assume that a controllable

phase shifter is added to every line of the network that does not belong to this tree. The

duality gap is zero for OPF if load over-satisfaction is allowed.

Proof: The proof can be deduced from Lemma 2 and Corollary 1. The details are

omitted for brevity. �

It can be inferred from Corollary 1 and Theorem 6 that adding a sufficient number of

phase shifters guarantees that a global solution of OPF can be found by solving an SOCP

77

optimization. Note that this zero-duality-gap property is due to the (weighted) topology

of the network and holds for all possible values of loads, physical limits and cost functions.

The application of this result is twofold:

• Every OPF problem can be solved in polynomial time after two approximations: (i)

convert the power balance equations to inequality constraints, (ii) assume the presence

of a sufficient number of virtual phase shifters in the network.

• Every network topology can be turned into a “good” one by adding phase shifters to

achieve two goals: improve the performance of the network (e.g., to relieve congestion),

(ii) make every OPF problem defined on the modified network solvable in polynomial

time. This result could be used for transmission system planning.

As will be shown in simulations, only a few actual or virtual phase shifters may be

sufficient in practice.

4.4 Examples

Example 1: To illustrate the efficacy of Theorem 2, consider the network depicted in Fig-

ure 4.2. This network consists of three acyclic (radial) subnetworks 1 − 10, 11 − 20 and

21−30, which are interconnected via the cycle (transmission network) {1, 11, 21}. Zero du-

ality gap can be verified from both ROPF 1 and ROPF 2. In fact, the solutions of ROPF 1

and ROPF 2 are identical as the graph under study is chordal. Note that ROPF 2 exploits

the sparsity of the network and therefore is much easier to solve. More precisely,

• ROPF 1 has a 30× 30 matrix constraint W � 0 in which 30×31
2 = 465 scalar complex

variables are involved.

• The graph G has 30 edges (i.e. |L| = 30) and a single cycle {1, 11, 21}. Thus, ROPF 2

has 31 matrix constraints Wll Wlm

Wml Wmm

 � 0, ∀ (l, m) ∈ L, l < m (4.21)

78

2

3

10

1 11
12

13

20

21

22

23

30

Figure 4.2: Power network used to illustrate Theorem 2.

and
W1,1 W1,11 W1,21

W11,1 W11,11 W11,21

W21,1 W21,11 W21,21

 � 0 (4.22)

(note that Wl,m stands for Wlm). In light of (4.22), constraint (4.21) need not be

written for the edges (1, 11), (1, 21) and (11, 21). Hence, ROPF 2 is nearly an SOCP

optimization with 28 non-redundant 2× 2 and 3× 3 matrix constraints in which only

60 scalar variables are involved. Therefore, several entries of W never appear in the

constraints of ROPF 2 and can be simply ignored.

Example 2: Let the results of this chapter be illustrated on IEEE systems [88]. Similar

to [25], a small amount of resistance (10−5 per unit) is added to a few purely-inductive lines

of these networks. The simulations performed here are run on a computer with a Pentium

IV 3.0 GHz and 3.62 GB of memory. The toolbox “YALMIP”, together with the solvers

“SEDUMI” and “SDPT3”, is used to solve different LMI problems, where the numerical

tolerance is chosen as 10−15.

Consider the IEEE 30-bus system with fk(PGk
) = PGk

, ∀k ∈ G, which has 30 buses

and 41 lines. Dual OPF can be solved in 1.2 seconds for this power network to detect

the zero duality gap and attain the optimal generation cost 191.09. Alternatively, one can

solve ROPF 1 in 9.3 seconds to verify the zero duality gap. Assume now that every line

of the network has a controllable phase shifter. Due to the results developed here, at most

41 − 30 + 1 of the 41 phase shifters are important and the remaining ones can be simply

ignored. The duality gap is zero for OPF with 12 controllable phase shifters. Indeed,

79

ROPF 3 can be solved in only 0.4 second, leading to the optimal value 190.66. Note that

(i) most of the phase shifters have negligible effect, and (ii) even if load over-satisfaction is

allowed, it will never occur. As another experiment, suppose that fk(PGk
) is the quadratic

cost function specified in [88]. The solutions of ROPF 1 and ROPF 3 turn out to be 576.90

and 573.59, respectively. To substantiate that most of the 12 controllable phase shifters are

not important, notice that

• OPF with a single variable phase shifter on the line (25, 27) has the optimal cost

573.92, corresponding to the phase 7.82◦.

• OPF with two variable phase shifters on the lines (25, 27) and (8, 28) gives the optimal

cost 573.67, corresponding to the optimal phases 5.70◦ and −0.30◦.

We have repeated the above experiment for several random cost functions and observed

that OPF with 1-2 phase shifters is a good approximation of ROPF 3.

Consider now the IEEE 118-bus system with fk(PGk
) = PGk

, ∀k ∈ G. A global solution

of OPF is found by solving Dual OPF in 11.2 seconds, leading to the optimal cost 4251.9.

ROPF 1 can also detect the zero duality gap, but its running time is more than 1 minute.

In contrast, ROPF 3 is solved in 0.9 seconds to attain the optimal value 4251.9. Note that

(i) OPF and ROPF 3 have the same optimal value, and (ii) the duality gap is zero for OPF

without phase shifters. Hence, the total generation
∑

k∈G PGk
is never reduced by adding

phase shifters to the lines of the network. However, phase shifters may have an important

role for other types of cost functions.

4.5 Summary

It has been recently shown that several practical instances of the optimal power flow (OPF)

problem can be solved in polynomial time as long as the objective function is quadratic. The

present work first generalizes this result to arbitrary convex functions and then studies how

the presence of phase shifters in the network guarantees solvability of OPF in polynomial

time. A global solution of OPF can be found from the dual of OPF if the duality gap is

zero, or alternatively if a linear matrix inequality (LMI) optimization derived here has a

specific solution. It is shown that the computational complexity of verifying the duality gap

may be reduced significantly by exploiting the sparsity of the power network’s topology. In

80

particular, if the network has no cycle, the LMI problem can be equivalently converted to a

generalized second-order cone program. It is also proved that the integration of controllable

phase shifters with variable phases into the cycles of the network makes the verification

of the duality gap easier. More importantly, if every cycle (loop) of the network has a

line with a controllable phase shifter, then OPF with variable phase shifters is guaranteed

to be solvable in polynomial time, provided load over-satisfaction is allowed. This result

implies that every OPF problem is guaranteed to be solvable in polynomial time after two

modifications.

4.6 Appendix

Proof of Lemma 1: In order to prove that Condition (i) implies Condition (ii), consider

a matrix W(1) satisfying the relations given in (4.13). Since W(1) is both rank-one and

positive semidefinite, its principal minors W(1)(Gs), Gs ∈ S, are also rank-one and positive

semidefinite. Hence, Condition (ii) holds if W(2) is taken as W(1).

Now, assume that Condition (ii) is satisfied for a matrix W(2). The goal is to find a

matrix W(1) for which Condition (i) holds. To this end, notice that

∑
(l,m)∈~Cj

]W
(2)
lm = 0, j = 1, ..., |L| − |N |+ 1 (4.23)

where ~Cj denotes a directed cycle obtained from Cj by giving an appropriate orientation to

each edge of the cycle and] represents the phase of a complex number. Regard the graph

G as a weighted directed graph, where the weights]W
(2)
lm and]W

(2)
ml are assigned to each

edge (l, m) ∈ L in the forward and backward directions, respectively. Equation (4.23) can

be interpreted as the directed sum of the edge weights around every cycle ~Cj being zero.

Since the set {C1, ..., C|L|−|N |+1} constitutes a basis for the cycle space of the graph G, it can

be concluded that the relation (4.23) holds even if the cycle ~Cj is replaced by an arbitrary

directed cycle of the graph G. Therefore, it is straightforward to show that the n vertices

of the graph G can be labeled by some angles θ1, ..., θn such that

]W
(2)
lm = θl − θm, ∀ (l,m) ∈ L. (4.24)

81

Define W(1) to be a matrix with the (l,m) ∈ N ×N entry

W
(1)
lm =

√
W

(2)
ll

√
W

(2)
mm](θl − θm). (4.25)

It is easy to observe that (4.13b) and (4.13c) are satisfied for this choice of W(1). On the

other hand, (4.13a) obviously holds for an index (l, m) ∈ {(1, 1), ..., (n, n)}. It remains to

show the validity of (4.13a) for an edge (l,m) ∈ L. One can write (4.14c) for the subgraph

Gs = (l,m) to obtain

W
(2)
ll W (2)

mm =
∣∣∣W (2)

lm

∣∣∣2 .

Thus, it follows from (4.14a), (4.24) and (4.25) that

Wlm = W
(2)
lm =

√
W

(2)
ll W

(2)
mm]W

(2)
lm

=
√

W
(2)
ll W

(2)
mm](θl − θm) = W

(1)
lm .

(4.26)

This completes the proof. �

82

Chapter 5

Convexification of Generalized
Network Flow Problem

This chapter is concerned with the minimum-cost flow problem over an arbitrary flow net-

work. In this problem, each node is associated with some possibly unknown injection, each

line has two unknown flows at its ends related to each other via a nonlinear function, and

all injections and flows need to satisfy certain box constraints. This problem, named gener-

alized network flow (GNF), is highly non-convex due to its nonlinear equality constraints.

Under the assumption of monotonicity and convexity of the flow and cost functions, a con-

vex relaxation is proposed, which always finds the optimal injections. This relaxation may

fail to find optimal flows because the mapping from injections to flows may not be unique.

A primary application of this work is in optimization over power networks. Recent work

on the optimal power flow (OPF) problem has shown that this non-convex problem can be

solved efficiently using semidefinite programming (SDP) after two approximations: relaxing

angle constraints (by adding virtual phase shifters) and relaxing power balance equations

to inequality constraints. The results of this work on GNF prove that the second relaxation

(on balance equations) is not needed in practice under a very mild angle assumption.

5.1 Introduction

The area of “network flows” plays a central role in operations research, computer science

and engineering [89, 26]. This area is motivated by many real-word applications in as-

signment, transportation, communication networks, electrical power distribution, produc-

tion scheduling, financial budgeting, and aircraft routing, to name only a few. Started

83

by the classical book [90] in 1962, network flow problems have been studied extensively

[91, 92, 93, 94, 95, 96, 97, 98, 99].

The minimum-cost flow problem aims to optimize the flows over a flow network that is

used to carry some commodity from suppliers to consumers. In a flow network, there is an

injection of some commodity at every node, which leads to two flows over each line (arc)

at its endpoints. The injection—depending on being positive or negative, corresponds to

supply or demand at the node. The minimum-cost flow problem has been studied thoroughly

for a lossless network, where the amount of flow entering a line equals the amount of flow

leaving the line. However, since many real-world flow networks are lossy, the minimum-

cost flow problem has also attracted much attention for generalized networks, also known

as networks with gain [26, 27, 28]. In this type of network, each line is associated with

a constant gain relating the two flows of the line through a linear function. From the

optimization perspective, network flow problems are convex and can be solved efficiently

unless there are discrete variables involved [29].

There are several real-world network flows that are lossy, where the loss is a nonlinear

function of the flows. An important example is power distribution networks for which

the loss over a transmission line (with fixed voltage magnitudes at both ends) is given by a

parabolic function due to Kirchhoff’s circuit laws [30]. The loss function could be much more

complicated depending on the power electronic devices installed on the transmission line. To

the best of our knowledge, there is no theoretical result in the literature on the polynomial-

time solvability of network flow problems with nonlinear flow functions, except in very

special cases. This chapter is concerned with this general problem, named generalized

network flow (GNF). Note that the term “GNF” has already been used in the literature for

networks with linear losses, but it corresponds to arbitrary lossy networks in this work.

GNF aims to optimize the nodal injections subject to flow constraints for each line and

box constraints for both injections and flows. A flow constraint is a nonlinear equality

relating the flows at both ends of a line. To solve GNF, this work makes the practical as-

sumption that the cost and flow functions are all monotonic and convex. The GNF problem

is still highly non-convex due to its equality constraints. Relaxing the nonlinear equalities

to convex inequalities gives rise to a convex relaxation of GNF. It can be easily observed

that solving the relaxed problem may lead to a solution for which the new inequality flow

constraints are not binding. One may speculate that this observation implies that the con-

84

vex relaxation is not tight. However, the objective of this work is to show that as long as

GNF is feasible, the convex relaxation is tight. More precisely, the convex relaxation always

finds the optimal injections (and hence the optimal objective value), but probably produces

wrong flows leading to non-binding inequalities. However, once the optimal injections are

obtained at the nodes, a feasibility problem can be solved to find a set of feasible flows

corresponding to the injections. Note that the reason why the convex relaxation does not

necessarily find the correct flows is that the mapping from flows to injections is not invert-

ible. For example, it is known in the context of power systems that the power flow equations

may not have a unique solution [100]. The main contribution of this work is to show that

although GNF may be NP-hard (since the flow equations can have an exponential number

of solutions), the optimal injections can be found in polynomial time.

5.1.1 Application of GNF in Power Systems

The operation of a power network depends heavily on various large-scale optimization prob-

lems such as state estimation, optimal power flow (OPF), contingency constrained OPF,

unit commitment, sizing of capacitor banks and network reconfiguration. These problems

are highly non-convex due to the nonlinearities imposed by the laws of physics [67, 101].

For example, each of the above problems has the power flow equations embedded in it,

which are nonlinear equality constraints. The nonlinearity of OPF, as the most fundamen-

tal optimization problem for power systems, has been studied since 1962, leading to various

heuristic and local-search algorithms [21, 102, 65, 66, 103, 75, 70, 23, 104]. These algorithms

suffer from sensitivity and convergence issues, and more importantly they may converge to

a local optimum that is noticeably far from a global solution.

Recently, it has been shown in [25] that the semidefinite programming (SDP) relaxation

is able to find the global solution of the OPF problem under a sufficient condition, which

is satisfied for IEEE benchmark systems with 14, 30, 57, 118 and 300 buses and many ran-

domly generated power networks. The papers [25] and [101] show that this condition holds

widely in practice due to the passivity of transmission lines and transformers. In particular,

[101] shows that in the case when this condition is not satisfied (see [87] for counterexam-

ples), OPF can always be solved globally in polynomial time after two approximations: (i)

relaxing angle constraints by adding a sufficient number of actual/virtual phase shifters to

the network, (ii) relaxing power balance equalities at the buses to inequality constraints.

85

OPF under Approximation (ii) was also studied in [85] and [105] for distribution networks.

The paper [106] studies the optimization of active power flows over distribution networks

under fixed voltage magnitudes and shows that the SDP relaxation works without Approx-

imation (i) as long as a very practical angle condition is satisfied. The idea of convex

relaxation developed in [107] and [25] can be applied to many other power problems, such

as voltage regulation [108], state estimation [109], calculation of voltage stability margin

[110], charging of electric vehicles [80], SCOPF with variable tap-changers and capacitor

banks [73], dynamic energy management [30], and electricity market [111].

Energy-related optimizations with embedded power flow equations can be regarded as

nonlinear network flow problems, which are analogous to GNF. The results derived in this

work for a general GNF problem lead to the generalization of the result of [106] to networks

with virtual phase shifters. This proves that in order to use SDP relaxation for OPF over

an arbitrary power network, it is not needed to relax power balance equalities to inequality

constraints under a very mild angle assumption.

5.1.2 Notations

The following notations will be used throughout this chapter:

• R and R+ denote the sets of real numbers and nonnegative numbers, respectively.

• Given two matrices M and N , the inequality M ≤ N means that M is less than or

equal to N element-wise.

• Given a set T , its cardinality is shown as |T |.

• Lowercase, bold lowercase and uppercase letters are used for scalars, vectors and

matrices (say x, x and X).

5.2 Problem Statement and Contributions

Consider an undirected graph (network) G with the vertex set N := {1, 2, ...,m} and the

edge set E ⊆ N ×N . For every i ∈ N , let N (i) denote the set of the neighboring vertices

of node i. Assume that every edge (i, j) ∈ E is associated with two unknown flows pij and

pji belonging to R. The parameters pij and pji can be regarded as the flows entering the

86

edge (i, j) from the endpoints i and j, respectively. Define

pi =
∑

j∈N (i)

pij , ∀i ∈ N . (5.1)

The parameter pi is called “nodal injection at vertex i” or simply “injection”, which is equal

to the sum of the flows leaving vertex i through the edges connected to this vertex. Given

an edge (i, j) ∈ E , we assume that the flows pij and pji are related to each other via a

function fij(·) to be introduced later. To specify which of the flows pij and pji is a function

of the other, we give an arbitrary orientation to every edge of the graph G and denote the

resulting graph as ~G. Denote the directed edge set of ~G as ~E . If an edge (i, j) ∈ E belongs

to ~E , we then express pji as a function of pij .

Definition 1. Define the vectors pn, pe and pd as follows:

pn = {pi | ∀i ∈ N}, (5.2a)

pe = {pij | ∀(i, j) ∈ E}, (5.2b)

pd = {pij | ∀(i, j) ∈ ~E} (5.2c)

(the subscripts “n”, “e” and “d” stand for nodes, edges and directed edges). The terms pn,

pe and pd are referred to as injection vector, flow vector and semi-flow vector, respectively

(note that pe contains two flows per each line, while pd has only one flow per line).

Definition 2. Given two arbitrary points x,y ∈ Rn, the box B(x,y) is defined as follows:

B(x,y) = {z ∈ Rn |x ≤ z ≤ y} (5.3)

(note that B(x,y) is non-empty only if x ≤ y).

Assume that each nodal injection pi must be within the given interval [pmin
i , pmax

i] for

every i ∈ N . We use the shorthand notation B for the box B(pmin
n ,pmax

n), where pmin
n and

pmax
n are the vectors of the lower bounds pmin

i ’s and the upper bounds pmax
i ’s, respectively.

This chapter is concerned with the following problem.

87

Generalized network flow (GNF):

min
Pn∈B,Pe∈R|E|

∑
i∈N

fi(pi) (5.4a)

subject to pi =
∑

j∈N (i)

pij , ∀i ∈ N (5.4b)

pji = fij(pij), ∀(i, j) ∈ ~E (5.4c)

pij ∈ [pmin
ij , pmax

ij], ∀(i, j) ∈ ~E (5.4d)

where

1) fi(·) is convex and monotonically increasing for every i ∈ N .

2) fij(·) is convex and monotonically decreasing for every (i, j) ∈ ~E .

3) The limits pmin
ij and pmax

ij are given for every (i, j) ∈ ~E .

In the case when fij(pij) is equal to −pij for all (i, j) ∈ ~E , the GNF problem reduces to the

network flow problem for which every line is lossless. A few remarks can be made here:

• Given an edge (i, j) ∈ ~E , there is no explicit limit on pji in the formulation of the

GNF problem because restricting pji is equivalent to limiting pij .

• Given a node i ∈ N , the assumption of fi(pi) being monotonically increasing is

motivated by the fact that increasing the injection pi normally elevates the cost in

practice.

• Given an edge (i, j) ∈ ~E , pij and −pji can be regarded as the input and output

flows of the line (i, j), which travel in the same direction. The assumption of fij(pij)

being monotonically decreasing is motivated by the fact that increasing the input flow

normally makes the output flow higher in practice (note that −pji = −fij(pij)).

Definition 3. Define P as the set of all vectors pn for which there exists a vector pe such

that (pn,pe) satisfies equations (5.4b), (5.4c) and (5.4d). The set P and P ∩B are referred

to as injection region and box-constrained injection region, respectively.

Regarding Definition 3, the box-constrained injection region is indeed the projection of

the feasible set of GNF onto the space of the injection vector pn. Now, one can express

88

GNF geometrically as follows:

Geometric GNF : min
pn∈P∩B

∑
i∈N

fi(pi) (5.5)

Note that pe has been eliminated in Geometric GNF. It is hard to solve this problem directly

because the injection region P is non-convex in general. This non-convexity can be observed

in Figure 5.2(a), which shows P for the two-node graph drawn in Figure 5.1. To address

this non-convexity issue, the GNF problem will be convexified naturally next.

Convexified generalized network flow (CGNF):

min
Pn∈B,Pe∈R|E|

∑
i∈N

fi(pi) (5.6a)

subject to pi =
∑

j∈N (i)

pij , ∀i ∈ N (5.6b)

pji ≥ fij(pij), ∀(i, j) ∈ ~E (5.6c)

pij ∈ [pmin
ij , pmax

ij], ∀(i, j) ∈ E (5.6d)

where (pmin
ij , pmax

ij) = (fji(pmax
ji), fji(pmin

ji)) for every (i, j) ∈ E such that (j, i) ∈ ~E . Note

that CGNF has been obtained from GNF by relaxing equality (5.4c) to inequality (5.6c)

and adding limits to pij for every (j, i) ∈ ~E . One can write:

Geometric CGNF : min
pn∈Pc∩B

∑
i∈N

fi(pi) (5.7)

where Pc denotes the set of all vectors pn for which there exists a vector pe such that

(pn,pe) satisfies equations (5.6b), (5.6c) and (5.6d).

Two main results to be proved in this chapter are:

• Geometry of injection region: Given any two points pn and p̃n in the injection

region, the box B(pn, p̃n) is entirely contained in the injection region. Similar result

holds true for the box-constrained injection region.

• Relationship between GNF and CGNF: If (p∗n,p
∗
e) and (p̄∗n, p̄

∗
e) denote two

arbitrary solutions of GNF and CGNF, then p∗n = p̄∗n. Hence, although CGNF may

not be able to find a feasible flow vector for GNF, it always finds the correct optimal

89

1 2

)2(
12p

)1(
12p

)1(
21p

)2(
21p

1p 2p

Figure 5.1: The graph G studied in Section 5.3.1.

(a) (b)

Figure 5.2: (a) Injection region P for the GNF problem given in (5.8). (b) The set Pc

corresponding to the GNF problem given in (5.8).

injection vector for GNF.

The application of these results in power systems will also be discussed. Note that this

work implicitly assumes that every two nodes of G are connected via, at most, one edge.

However, the results to be derived later are all valid in the presence of multiple edges

between two nodes. To avoid complicated notations, the proof will not be provided for this

case. However, Section 5.3.1 studies a simple example with parallel lines.

5.3 Main Results

In this section, a detailed illustrative example will first be provided to clarify the issues and

highlight the contribution of this work. In Subsections 5.3.2 and 5.3.3, the main results

for GNF will be derived, whose application in power systems will be later discussed in

Subsection 5.3.4.

90

(a) (b)

Figure 5.3: (a) This figure shows the set Pc corresponding to the GNF problem given in (5.8)
together with a box constraint (p1, p2) ∈ B for four different positions of B. (b) This figure
shows the injection region P for the GNF problem given in (5.8) but after changing (5.8b)
to (5.10).

5.3.1 Illustrative Example

In this subsection, we study the particular graph G depicted in Figure 5.1. This graph

has two vertices and two parallel edges. Let (p(1)
12 , p

(1)
21) and (p(2)

12 , p
(2)
21) denote the flows

associated with the first and second edges of the graph, respectively. Consider the following

GNF problem:

min f1(p1) + f2(p2) (5.8a)

subject to p
(i)
21 =

(
p
(i)
12 − 1

)2
− 1, i = 1, 2 (5.8b)

−0.5 ≤ p
(1)
12 ≤ 0.5, −1 ≤ p

(2)
12 ≤ 1, (5.8c)

p1 = p
(1)
12 + p

(2)
12 , p2 = p

(1)
21 + p

(2)
21 (5.8d)

with the variables p1, p2, p
(1)
12 , p

(1)
21 , p

(2)
12 , p

(2)
21 , where f1(·) and f2(·) are both convex and mono-

tonically increasing. The CGNF problem corresponding to this problem can be obtained

by replacing (5.8b) with p
(i)
21 ≥ (p(i)

12 − 1)2 − 1 and adding the limits p
(1)
21 ≤ 1.52 − 1 and

p
(2)
21 ≤ 22 − 1. One can write:

Geometric GNF: min
(p1,p2)∈P

f1(p1) + f2(p2), (5.9a)

Geometric CGNF: min
(p1,p2)∈Pc

f1(p1) + f2(p2), (5.9b)

where P and Pc are indeed the projections of the feasible sets of GNF and CGNF over the

injection space for (p1, p2) (note that there is no box constraint on (p1, p2) at this point).

91

The green area in Figure 5.2(a) shows the injection region P. As expected, this set is

non-convex. In contrast, the set Pc is a convex set containing P. This set is shown in

Figure 5.2(b), which includes two parts: (i) the green area is the same as P, (ii) the blue

area is the part of Pc that does not exist in P. Thus, the transition from GNF to CGNF

extends the injection region P to a convex set by adding the blue area. Notice that Pc has

three boundaries: (i) a straight line on the top, (ii) a straight line on the right side, (iii) a

lower curvy boundary. Since f1(·) and f2(·) are both monotonically increasing, the unique

solution of Geometric CGNF must lie on the lower curvy boundary of Pc. Since this lower

boundary is in the green area, it is contained in P. As a result, the unique solution of

Geometric CGNF is a feasible point of P and therefore it is a solution of Geometric GNF.

This means that CGNF finds the optimal injection vector for GNF.

To make the problem more interesting, we add the box constraint (p1, p2) ∈ B to GNF

(and correspondingly to CGNF), where B is an arbitrary rectangular convex set in R2. The

effect of this box constraint will be investigated in four different scenarios:

• Assume that B corresponds to Box 1 (including its interior) in Figure 5.3(a). In this

case, P ∩ B = Pc ∩ B = φ, meaning that Geometric GNF and Geometric CGNF are

both infeasible.

• Assume that B corresponds to Box 2 (including its interior) in Figure 5.3(a). In this

case, the solution of Geometric CGNF lies on the lower boundary of Pc and therefore

it is also a solution of Geometric GNF.

• Assume that B corresponds to Box 3 (including its interior) in Figure 5.3(a). In this

case, the solutions of Geometric GNF and Geometric CGNF are identical and both

correspond to the lower left corner of the box B.

• Assume that B corresponds to Box 4 (including its interior) in Figure 5.3(a). In this

case, P ∩B = φ but Pc∩B 6= φ. Hence, Geometric GNF is infeasible while Geometric

CGNF has an optimal solution.

In summary, it can be argued that independent of the position of the box B in R2, CGNF

finds the optimal injection vector for GNF as long as GNF is feasible.

92

Assume now that the relationship between P
(i)
21 and P

(i)
12 is given by

p
(i)
21 =

(
p
(i)
12

)2
− 1, i = 1, 2 (5.10)

instead of (5.8b). The injection region P in the case is depicted in Figure 5.3(b). As before,

we impose a box constraint (p1, p2) ∈ B on GNF, where B is shown as “Box” in the figure.

It is easy to show that the lower left corner of this box belongs to Pc and hence it is a

solution of Geometric CGNF. However, this corner point does not belong to Geometric

GNF. More precisely, Geometric GNF is feasible in this case, while its solution does not

coincide with that of Geometric CGNF. Hence, Geometric GNF and Geometric CGNF are

no longer equivalent after changing (5.8b) to (5.10). This is a consequence of the fact that

the function (p− 1)2− 1 is decreasing in p over the interval [−1, 1] while the function p2− 1

is not. This explains the necessity of the assumption of the monotonicity of fij(·)’s made

earlier.

5.3.2 Geometry of Injection Region

In order to study the relationship between GNF and CGNF, it is beneficial to explore the

geometry of the feasible set of GNF. Hence, we investigate the geometry of the injection

region P and the box-constrained injection region P ∩ B in this part.

GNF-Theorem 1. Consider two arbitrary points p̂n and p̃n in the injection region P.

The box B(p̂n, p̃n) is contained in P. �

The proof of this theorem is based on four lemmas, and will be provided later in this

subsection. To understand this theorem, consider the injection region P depicted in Fig-

ure 5.2(a) corresponding to the illustrative example given in Section 5.3.1. If any arbitrary

box is drawn in R2 in such a way that its upper right corner and lower left corner both lie

in the green area, then the entire box must lie in the green area completely. This can be

easily proved in this special case and is true in general due to Theorem 1. However, this

result does not hold for the injection region given in Figure 5.3(b) because the assumption of

monotonicity of fij(·)’s is violated in this case. The result of Theorem 1 can be generalized

to the box-constrained injection region, as stated below.

93

3

min

p

),(pp

1 2

(a)

12p 21p

min max
p

p

),(

)~

ú
ú
ú

û

ù

ê
ê
ê

ë

é

1*0

01*

*01Node 1

Node 2

Node 3

Edge

(1,2)

Edge

(2,3)
Edge

(3,1)

(b)

min
ijp

max
ijp

ijp

jip

),(jiij pp

)~,~(jiij pp

(c)

Figure 5.4: (a) A particular graph ~G. (b) The matrix M(p̄d, p̃d) corresponding to the graph
~G in Figure (a). (c) The (j, (i, j))th entry of M(p̄d, p̃d) (shown as “*”) is equal to the slope
of the line connecting the point (p̄ij , p̄ji) to (p̃ij , p̃ji).

Corollary 1. Consider two arbitrary points p̂n and p̃n belonging to the box-constrained

injection region P ∩ B. The box B(p̂n, p̃n) is contained in P ∩ B.

Proof: The proof follows immediately from Theorem 1. �

The rest of this subsection is dedicated to the proof of Theorem 1, which is based on a

series of definitions and lemmas.

Definition 4. Define Bd as the box containing all vectors pd introduced in (5.2c) satisfying

the condition pij ∈ [pmin
ij , pmax

ij] for every (i, j) ∈ ~E.

Definition 5. Given two arbitrary points p̄d, p̃d ∈ Bd, define M(p̄d, p̃d) as follows:

• Let M(p̄d, p̃d) be a matrix with |N | rows indexed by the vertices of G and with |~E|

columns indexed by the edges in ~E.

• For every vertex k ∈ N and edge (i, j) ∈ ~E, set the (k, (i, j))th entry of M(p̄d, p̃d) (the

94

one in the intersection of row k and column (i, j)) as

1 if k = i

fij(p̄ij)−fij(p̃ij)
p̄ij−p̃ij

if k = j and p̄ij 6= p̃ij

f ′ij(p̄ij) if k = j and p̄ij = p̃ij

0 otherwise

(5.11)

where f ′ij(p̄ij) denotes the right derivative of fij(p̄ij) if p̄ij < pmax
ij and the left derivative of

fij(p̄ij) if p̄ij = pmax
ij .

To illustrate Definition 5, consider the three-node graph ~G depicted in Figure 5.4(a).

The matrix M(p̄d, p̃d) associated with this graph has the structure shown in Figure 5.4(b),

where the “*” entries depend on the specific values of p̄d and p̃d. Consider an edge (i, j) ∈ ~E .

The (j, (i, j))th entry of M(p̄d, p̃d) is equal to

fij(p̄ij)− fij(p̃ij)
p̄ij − p̃ij

, (5.12)

provided p̄ij 6= p̃ij . As can be seen in Figure 5.4(c), this is equal to the slope of the line

connecting the point (p̄ij , p̄ji) to the point (p̃ij , p̃ji) on the parameterized curve (pij , pji),

where pji = fij(pij). Moreover, f ′ij(p̄ij) is the limit of this slope as the point (p̃ij , p̃ji)

approaches (p̄ij , p̄ji). It is also interesting to note that M(p̄d, p̃d) has one positive entry,

one negative entry and m − 2 zero entries in each column (note that the slope of the line

connecting (p̄ij , p̄ji) to (p̃ij , p̃ji) is always negative). The next lemma explains how the

matrix M(p̄d, p̃d) can be used to relate the semi-flow vector to the injection vector.

Lemma 1. Consider two arbitrary injection vectors p̄n and p̃n in P, associated with the

semi-flow vectors p̄d and p̃d (defined in (5.2)). The relation

p̄n − p̃n = M(p̄d, p̃d)× (P̄d − P̃d) (5.13)

holds.

Proof: One can write

p̄i − p̃i =
∑

j∈N (i)

(p̄ij − p̃ij), ∀i ∈ N . (5.14)

95

By using the relations

p̄ji = fij(p̄ij), p̃ji = fij(p̃ij), ∀(i, j) ∈ ~E , (5.15)

it is straightforward to verify that (5.13) and (5.14) are equivalent. �

The next lemma investigates an important property of the matrix M(p̄d, p̃d).

Lemma 2. Given two arbitrary points p̄d, p̃d ∈ Bd, assume that there exists a nonzero

vector x ∈ Rm such that xT M(p̄d, p̃d) ≥ 0. If x has at least one strictly positive entry,

then there exists a nonzero vector y ∈ Rm
+ such that yT M(p̄d, p̃d) ≥ 0.

Proof: Consider an index i0 ∈ N such that xi0 > 0. Define V(i0) as the set of all vertices

i ∈ N from which there exists a directed path to vertex i0 in the graph ~G. Note that V(i0)

includes vertex i0 itself. The first goal is to show that

xi ≥ 0, ∀i ∈ V(i0). (5.16)

To this end, consider an arbitrary set of vertices i1, ..., ik in V(i0) such that {i0, i1..., ik}

forms a direct path in ~G as

ik → ik−1 → · · · i1 → i0. (5.17)

To prove (5.16), it suffices to show that xi1 , ..., xik ≥ 0. For this purpose, one can expand

the product xT M(p̄d, p̃d) and use the fact that each column of M(p̄d, p̃d) has m − 2 zero

entries to conclude that

xi1 +
fi1i0(p̄i1i0)− fi1i0(p̃i1i0)

p̄i1i0 − p̃i1i0

xi0 ≥ 0. (5.18)

Since xi0 is positive and fi1i0(·) is a decreasing function, xi1 turns out to be positive. Now,

repeating the above argument for i1 instead of i0 yields that xi2 ≥ 0. Continuing this

reasoning leads to xi1 , ..., xik ≥ 0. Hence, inequality (5.16) holds. Now, define y as

yi =

 xi if i ∈ V(i0)

0 otherwise
, ∀i ∈ N . (5.19)

In light of (5.16), y is a nonzero vector inRm
+ . To complete the proof, it suffices to show that

yT M(p̄d, p̃d) ≥ 0. Similar to the indexing procedure used for the columns of the matrix

96

M(p̄d, p̃d), we index the entries of the |~E| dimensional vector yT M(p̄d, p̃d) according to the

edges of ~G. Now, given an arbitrary edge (α, β) ∈ ~E , the following statements hold true:

• If α, β ∈ V(i0), then the (α, β)th entries of yT M(p̄d, p̃d) and xT M(p̄d, p̃d) (i.e., the

entries corresponding to the edge (α, β)) are identical.

• If α ∈ V(i0) and β 6∈ V(i0), then the (α, β)th entry of yT M(p̄d, p̃d) is equal to yα.

• If α 6∈ V(i0) and β 6∈ V(i0), then the (α, β)th entry of yT M(p̄d, p̃d) is equal to zero.

Note that the case α 6∈ V(i0) and β ∈ V(i0) cannot happen, because if β ∈ V(i0) and

(α, β) ∈ ~E , then α ∈ V(i0) by the definition of V(i0). It follows from the above results and

the inequality xT M(p̄d, p̃d) ≥ 0 that yT M(p̄d, p̃d) ≥ 0. �

Definition 6. Consider the graph G and an arbitrary flow vector pe. Given a subgraph

Gs of the graph G, define pe(Gs) as the flow vector associated with the edges of Gs, which

has been induced by pe. Define pd(Gs), pn(Gs) and pi(Gs) as the semi-flow vector, injection

vector and injection at node i ∈ Gs corresponding to pe(Gs), respectively. Define also P(Gs)

as the injection region associated with Gs.

The next lemma studies the injection region P in the case when fij(·)’s are all piecewise

linear.

Lemma 3. Assume that the function fij(·) is piecewise linear for every (i, j) ∈ ~E. Consider

two arbitrary points p̂n, p̄n ∈ P and a vector ∆p̄n ∈ Rm satisfying the relations

p̂n ≤ p̄n −∆p̄n ≤ p̄n. (5.20)

There exists a strictly positive number εmax with the property

p̄n − ε∆p̄n ∈ P, ∀ε ∈ [0, εmax]. (5.21)

Proof: In light of (5.20), we have ∆p̄n ≥ 0. If ∆p̄n = 0, then the lemma becomes

trivial as ε can take any arbitrary value. So, assume that ∆p̄n 6= 0. Let p̂e and p̄e denote

two flow vectors associated with the injection vectors p̂n and p̄n, respectively. Denote the

corresponding semi-flow vectors as p̂d and p̄d. Given an edge (i, j) ∈ ~E , the curve

{
(pij , fij(pij)) | pij ∈ [pmin

ij , pmax
ij]

}
(5.22)

97

is a Pareto set in R2 due to fij(·) being monotonically decreasing. Since (p̂ij , p̂ji) and

(p̄ij , p̄ji) both lie on the above curve, one of the following cases occurs:

• Case 1: p̂ij ≥ p̄ij and p̂ji ≤ p̄ji.

• Case 2: p̂ij ≤ p̄ij and p̂ji ≥ p̄ji.

This fact can be observed in Figure 5.4(c) for the points (p̄ij , p̄ji) and (p̃ij , p̃ji) instead of

(p̂ij , p̂ji) and (p̄ij , p̄ji). With no loss of generality, it can be assumed that Case (1) occurs.

Indeed, if Case (2) happens, it suffices to make two changes:

• Change the orientation of the edge (i, j) in the graph ~G so that (j, i) ∈ ~E instead of

(i, j) ∈ ~E .

• Replace the constraint pji = fij(pij) in (5.4c) with pij = f−1
ij (pji), where the exis-

tence and monotonicity of the inverse function f−1
ij (·) is guaranteed by the decreasing

property of fij(·).

Therefore, suppose that

p̂ij ≥ p̄ij , p̂ji ≤ p̄ji, ∀(i, j) ∈ ~E (5.23)

or

p̂d ≥ p̄d. (5.24)

First, consider the case p̂d > p̄d. In light of Lemma 1, the assumption p̂n ≤ p̄n can be

expressed as

M(p̂d, p̄d)× (p̂d − p̄d) = p̂n − p̄n ≤ 0. (5.25)

In order to guarantee the relation p̄n − ε∆p̄n ∈ P, it suffices to seek a vector ∆p̄d ∈ R|~E|

satisfying

p̄d − ε∆p̄d ∈ Bd (5.26)

and

M(p̄d, p̄d − ε∆p̄d)× (p̄d−(p̄d − ε∆p̄d)) = p̄n − (p̄n − ε∆p̄n) (5.27)

98

(see the proof of Lemma 1), or equivalently

p̄d − ε∆p̄d ∈ Bd (5.28a)

M(p̄d, p̄d − ε∆p̄d)×∆p̄d = ∆p̄n. (5.28b)

Consider an arbitrary vector ∆p̄d ∈ R|~E| with all negative entries. In light of Definition 5,

the inequality p̂d > p̄d and the piecewise linear property of the fij(·)’s, there exists a

positive number εmax such that

p̄d − ε∆p̄d ∈ Bd (5.29a)

M(p̄d, p̄d − ε∆p̄d) = M(p̄d, p̄d) (5.29b)

for every ε ∈ [0, εmax]. To prove the lemma, it follows from (5.28) and (5.29) that it is

enough to show the existence of a negative vector ∆p̄d satisfying the relation

M(p̄d, p̄d)×∆p̄d = ∆p̄n (5.30)

in which ε does not appear. To prove this by contradiction, assume that the above equation

does not have a solution. By Farkas’ Lemma, there exists a vector x ∈ Rm such that

xT M(p̄d, p̄d) ≥ 0, xT ∆p̄n > 0. (5.31)

Since ∆p̄n is nonnegative, the inequality xT ∆p̄n > 0 does not hold unless x has at least

one strictly positive entry. Now, it follows from xT M(p̄d, p̄d) ≥ 0 and Lemma 2 that there

exists a nonzero vector y ∈ Rm such that

yT M(p̄d, p̄d) ≥ 0, y ≥ 0. (5.32)

On the other hand, given an edge (i, j) ∈ ~E , since p̂ij ≥ p̄ij (due to (5.23)), the slope of

the line connecting the points (p̂ij , p̂ji) and (p̄ij , p̄ji) is more than or equal to f ′(p̄ij). This

yields that

M(p̄d, p̄d) ≤ M(p̂d, p̄d). (5.33)

99

Now, it follows from (5.24), (5.25), (5.32), and (5.33) that

0 ≥ yT M(p̂d, p̄d)× (p̂d − p̄d) ≥ yT M(p̄d, p̄d)× (p̂d − p̄d) ≥ 0. (5.34)

Thus,

0 = yT M(p̂d, p̄d)× (p̂d − p̄d) = yT (p̂n − p̄n). (5.35)

This is a contradiction because p̂n − p̄n is strictly negative and the nonzero vector y is

positive.

So far, the lemma has been proven in the case when p̂d > p̄d. To extend the proof to

the case p̂d ≥ p̄d, define Er as the set of every edge (i, j) ∈ E such that

p̂ij 6= p̄ij (5.36)

(note that p̂ij = p̄ij if and only if p̂ji = p̄ji). Define also Gr as the unique subgraph of G

induced by the edge set Er. Let Nr denote the vertex set of Gr, which may be different from

N . It is easy to verify that

p̂d(Gr) > p̄d(Gr), (5.37a)

p̄i − p̂i = p̄i(Gr)− p̂i(Gr), ∀i ∈ Nr. (5.37b)

Therefore,

p̂n(Gr) ≤ p̄n(Gr)−∆p̄n(Gr) ≤ p̄n(Gr) (5.38)

where the relationship between ∆p̄n and the new vector ∆p̄n(Gr) is as follows:

∆p̄i =

 ∆p̄i(Gr) if i ∈ Nr

0 otherwise
∀i ∈ N . (5.39)

In light of (5.37a) and (5.38), one can adopt the proof given earlier for the case p̂d > p̄d to

conclude the existence of a positive number εmax with the property

p̄n(Gr)− ε∆p̄n(Gr) ∈ P(Gr), ∀ε ∈ [0, εmax]. (5.40)

Given an arbitrary number ε ∈ [0, εmax], we use the shorthand notation pn(Gr) for p̄n(Gr)−

100

ε∆p̄n(Gr). Let pe(Gr) denote a flow vector corresponding to the injection vector pn(Gr).

One can expand the vector pe(Gr) into a flow vector pe for the graph G as follows:

• For every (i, j) ∈ Er, the (i, j)th entries of pe and pe(Gr) (the ones corresponding to

the edge (i, j)) are identical.

• For every (i, j) ∈ E\Er, the (i, j)th entry of pe is equal to p̄ij .

It is straightforward to show that pn ∈ P, where pn denotes the injection vector associated

with the flow vector pe. The proof is completed by noting that pn = p̄n − ε∆p̄n. �

The next lemma proves Theorem 1 in the case when fij(·)’s are all piecewise linear.

Lemma 4. Assume that the function fij(·) is piecewise linear for every (i, j) ∈ ~E. Given

any two arbitrary points p̂n, p̃n ∈ P, the box B(p̂n, p̃n) is a subset of the injection region P.

Proof: With no loss of generality, assume that p̂n ≤ p̃n (because otherwise B(p̂n, p̃n)

is empty). To prove the lemma by contradiction, suppose that there exists a point pn ∈

B(p̂n, p̃n) such that pn 6∈ P. Consider the set

{
γ

∣∣∣∣ γ ∈ [0, 1], p̃n + γ(pn − p̃n) ∈ P
}

(5.41)

and denote its maximum as γmax (the existence of this maximum number is guaranteed by

the closedness and compactness of P). Note that p̃n + γ(pn − p̃n) is equal to pn at γ = 1.

Since pn 6∈ P by assumption, we have γmax < 1. Denote p̃n + γmax(pn − p̃n) as p̄n. Hence,

p̄n ∈ P and p̂n ≤ pn ≤ p̄n (recall that γmax < 1). Define ∆p̄n as p̄n − pn. One can write:

p̂n ≤ p̄n −∆p̄n ≤ p̄n, p̂n, p̄n ∈ P. (5.42)

By Lemma 3, there exists a strictly positive number εmax with the property

p̄n − ε∆p̄n ∈ P, ∀ε ∈ [0, εmax] (5.43)

or equivalently

p̃n + (γmax + ε(1− γmax))(pn − p̃n) ∈ P, ∀ε ∈ [0, εmax]. (5.44)

101

Notice that

γmax + ε(1− γmax) > γmax, ∀ε > 0. (5.45)

Due to (5.44), this violates the assumption that γmax is the maximum of the set given

in (5.41). �

Lemma 4 will be deployed next to prove Theorem 1 in the general case.

Proof of Theorem 1: Consider an arbitrary approximation of fij(·) by a piecewise linear

function for every (i, j) ∈ ~E . As a counterpart of P, let Ps denote the injection region in

the piecewise-linear case. By Lemma 4, we have

B(p̂n, p̃n) ⊆ Ps. (5.46)

Since the piecewise linear approximation can be made in such a way that the sets P and

Ps become arbitrarily close to each other, the above relation implies that the interior of

B(p̂n, p̃n) is a subset of P. On the other hand, P is a closed set. Hence, the box B(p̂n, p̃n)

must entirely belong to P. �

5.3.3 Relationship between GNF and CGNF

In this subsection, the relationship between GNF and CGNF will be explored.

Theorem 2. Assume that the GNF problem is feasible. Let (p∗n,p∗e) and (p̄∗n, p̄∗e) denote

arbitrary solutions of GNF and CGNF, respectively. The relation p∗n = p̄∗n holds. �

Before presenting the proof of Theorem 2 in the general case, one special case will be

studied for which the proof is much simpler. Observe that since (p̄∗n, p̄
∗
e) is a feasible point

of CGNF, one can write

p̄∗i ≥ pmin
i , ∀i ∈ N . (5.47)

The proof of Theorem 2 will be first derived in the special case

p̄∗i = pmin
i , ∀i ∈ N . (5.48)

Proof of Theorem 2 under Condition (5.48): (p∗n,p
∗
e) being a feasible point of GNF

implies that

p∗i ≥ pmin
i , ∀i ∈ N . (5.49)

102

Equations (5.48) and (5.49) lead to

p̄∗n ≤ p∗n. (5.50)

Define the vector p̃n as

p̃i =
∑

(i,j)∈~E

p̄∗ij +
∑

(j,i)∈~E

fij(p̄∗ij), ∀i ∈ N . (5.51)

Notice that p̃n belongs to P. It can be inferred from the definition of CGNF that

p̃n ≤ p̄∗n. (5.52)

Since p̃n,p∗n ∈ P, it follows from Theorem 1, (5.50) and (5.52) that p̄∗n ∈ P. On the other

hand, p̄∗n ∈ B. Therefore, p̄∗n ∈ P ∩ B, meaning that p̄∗n is a feasible point of Geometric

GNF. Since the feasible set of Geometric CGNF includes that of Geometric GNF, p̄∗n must

be a solution of Geometric GNF as well. The proof follows from equation (5.50) and the

fact that p∗n is another solution of Geometric GNF. �

Before deriving the proof of Theorem 2 in the general case, some ideas need to be de-

veloped. Since fi(pi) can be approximated by a differentiable function arbitrarily precisely,

with no loss of generality, assume that fi(pi) is differentiable for every i ∈ N . Since CGNF

is convex, one can take its Lagrangian dual. Let λmin
i and λmax

i denote the Lagrange multi-

pliers corresponding to the constraints pmin
i ≤ pi and pi ≤ pmax

i . Using the duality theorem,

it can be shown that

(P̄∗
n, P̄

∗
e) = arg min

Pn∈Rm,Pe∈Be

∑
i∈N

λipi

subject to pi =
∑

j∈N (i)

pij , ∀i ∈ N ,

fij(pij) ≤ pji, ∀(i, j) ∈ ~E ,

pij ∈ [pmin
ij , pmax

ij], ∀(i, j) ∈ E ,

where

λi = f ′i(p̄
∗
i)− λmin

i + λmax
i , ∀i ∈ N . (5.53)

103

Hence,

(p̄∗ij , p̄
∗
ji) = arg min

(pij ,pji)∈R2

λipij + λjpji (5.54a)

subject to fij(pij) ≤ pji, (5.54b)

pij ∈ [pmin
ij , pmax

ij], (5.54c)

pji ∈ [pmin
ji , pmax

ji] (5.54d)

for every (i, j) ∈ ~E .

Definition 7. Define V as the set of every index i ∈ N for which λi ≤ 0. Define V̄ as the

set of every index i ∈ N\V for which there exists a vertex j ∈ V such that (i, j) ∈ G (i.e.,

V̄ denotes the set of the neighbors of V in the graph G).

Since the objective function of optimization (5.54) is linear, it is straightforward to verify

that fij(p̄∗ij) = p̄∗ji as long as λi > 0 or λj > 0. In particular,

fij(p̄∗ij) = p̄∗ji, ∀(i, j) ∈ ~E , {i, j} 6⊆ V, (5.55a)

p̄∗ij = pmin
ij , ∀(i, j) ∈ E , i ∈ V̄, j ∈ V. (5.55b)

If fij(p̄∗ij) were equal to p̄∗ji for every (i, j) ∈ ~E , then the proof of Theorem 2 would be

complete. However, the relation fij(p̄∗ij) < p̄∗ji might hold in theory if (i, j) ∈ ~E and

{i, j} ⊆ V. Hence, is important to study this scenario.

Proof of Theorem 2 in the general case: For every given index i ∈ V, the term λi is

negative by definition. On the other hand, f ′i(·) is strictly positive (as fi(·) is monotonically

increasing), and λmin
i and λmax

i are both nonnegative (as they are the Lagrange multipliers

for some inequalities). Therefore, it follows from (5.53) that λmin
i < 0, implying that

p̄∗i = pmin
i , ∀i ∈ V. (5.56)

Thus,

p∗i ≥ pmin
i = p̄∗i , ∀i ∈ V. (5.57)

Let Gs denote a subgraph of G with the vertex set V∪V̄, which includes every edge (i, j) ∈ E

if

104

• {i, j} ⊆ V, or

• i ∈ V and j ∈ V̄.

Note that Gs includes all edges of G within the vertex subset V and those between the sets

V and V̄, but this subgraph contains no edge between the vertices in V̄. The first objective

is to show that

p∗i (Gs) ≥ p̄∗i (Gs), ∀i ∈ V ∪ V̄. (5.58)

To this end, two possibilities will be investigated:

• Case 1) Consider a vertex i ∈ V. Given any edge (i, j) ∈ E , vertex j must belong to

V ∪ V̄, due to Definition 7. Hence, p∗i (Gs) = p∗i and p̄∗i (Gs) = p̄∗i . Combining these

equalities with (5.57) gives rise to p∗i (Gs) ≥ p̄∗i (Gs).

• Case 2) Consider a vertex i ∈ V̄. Based on (5.55b), one can write:

p̄∗i (Gs) =
∑

j∈V∩N (i)

p̄∗ij =
∑

j∈V∩N (i)

pmin
ij . (5.59)

Similarly,

p∗i (Gs) =
∑

j∈V∩N (i)

p∗ij ≥
∑

j∈V∩N (i)

pmin
ij . (5.60)

Thus, p∗i (Gs) ≥ p̄∗i (Gs).

So far, inequality (5.58) has been proven. Consider p̃n introduced in (5.51). Similar

to (5.52), it is straightforward to show that p̃i(Gs) ≤ p̄∗i (Gs) for every i ∈ V ∪ V̄. Hence,

p̃n(Gs) ≤ p̄∗n(Gs) ≤ p∗n(Gs). (5.61)

On the other hand, p̃n(Gs) and p∗n(Gs) are both in P(Gs). Using (5.61) and Theorem 2 (but

for Gs as opposed to G) yields that p̄∗n(Gs) ∈ P(Gs). Hence, there exists a flow vector p̂e(Gs)

105

−1 0 1

−1

0

1

 p
2
1

(1
)

 p
12

(1)

(a)

−1 0 1

−1

0

1

2

3

 p
2

1

(2
)

 p
12

(2)

(b)

−1 0 1

−1

0

1

 p
2

1

(1
)

 p
12

(1)

(c)

Figure 5.5: Figures (a) and (b) show the feasible sets T (1)
c and T (2)

c for the example studied
in Section 5.3.1, respectively. Figure (c) aims to show that CGNF may have an infinite
number of solutions (any point in the yellow area may correspond to a solution of a given
GNF).

associated with p̄∗n(Gs), meaning that

p̄∗i (Gs) =
∑

j∈N (i)∩(V∪V̄)

p̂ij(Gs), ∀i ∈ V, (5.62a)

p̄∗i (Gs) =
∑

j∈N (i)∩V

p̂ij(Gs), ∀i ∈ V̄, (5.62b)

p̂ji(Gs) = fij(p̂ij(Gs)), ∀(i, j) ∈ ~Gs. (5.62c)

Now, one can expand p̂e(Gs) to p̂e as

p̂jk =

 p̂jk(Gs) if {j, k} ⊆ V ∪ V̄

p̄∗jk otherwise
, ∀(j, k) ∈ E . (5.63)

Let p̂n denote the injection vector associated with the flow vector p̂e. Two observations

can be made:

1) p̂n is equal to p̄∗n.

2) Due to (5.55a), (5.62c) and (5.63), (p̂n, p̂e) is a feasible point of GNF.

This means that p̄∗n is the unique optimal solution of Geometric CGNF and yet a feasible

point of Geometric GNF. The rest of the proof is the same as the proof of Theorem 2 under

Condition (5.48) (given earlier). �

An optimal solution of CGNF comprises two parts: injection vector and flow vector.

Theorem 2 states that CGNF always finds the correct optimal injection vector solving

106

GNF. Now, the aim is to understand the reason why CGNF may not be able to find the

correct optimal flow vector solving GNF. Consider again the illustrative example studied

in Section 5.3.1, corresponding to the graph G depicted in Figure 5.1. Let T denote the

projection of the feasible set of the GNF problem given in (5.8) over the flow space associated

with the vector (p(1)
12 , p

(1)
21 , p

(2)
12 , p

(2)
21). It is easy to verify that T can be decomposed as the

product of T (1) and T (2), where

T (1) =
{

(p(1)
12 , p

(1)
21)

∣∣∣∣ p
(1)
12 ∈ [−0.5, 0.5], p

(1)
21 =

(
p
(1)
12 − 1

)2
− 1

}

and

T (2) =
{

(p(2)
12 , p

(2)
21)

∣∣∣∣ p
(2)
12 ∈ [−1, 1], p

(2)
21 =

(
p
(2)
12 − 1

)2
− 1

}
.

Likewise, define Tc as the projection of the feasible set of the CGNF problem over its flow

space. As before, Tc can be written as T (1)
c × T (2)

c , where T (i)
c is obtained from T (i) by

changing its equality

p
(i)
21 =

(
p
(i)
12 − 1

)2
− 1 (5.64)

to the inequality

p
(i)
21 ≥

(
p
(i)
12 − 1

)2
− 1 (5.65)

for i = 1, 2, and adding the limits p
(1)
21 ≤ 1.52 − 1 and p

(2)
21 ≤ 22 − 1. The sets T (1)

c and

T (2)
c are drawn in Figures 5.5(a) and 5.5(b). Given i ∈ {1, 2}, note that T (i)

c has two flat

boundaries and one curvy (lower) boundary that is the same as T (i). Consider the flow

vector (p̄(1)
12 , p̄

(1)
21 , p̄

(2)
12 , p̄

(2)
21) ∈ Tc defined as:

(
p̄
(1)
12 , p̄

(1)
21

)
=

(
0.5, (0.5− 1)2 − 1

)
,(

p̄
(2)
12 , p̄

(2)
21

)
=

(
−0.5, (−0.5− 1)2 − 1

)
.

(5.66)

Define p̄1 = p̄
(1)
12 + p̄

(2)
12 and p̄2 = p̄

(1)
21 + p̄

(2)
21 . It can be verified that for every point (p̃(1)

12 , p̃
(1)
21)

in the green area of Figure 5.5(c), there exists a vector (p̃(2)
12 , p̃

(2)
21) ∈ T (2)

c such that

p̄1 = p̃
(1)
12 + p̃

(2)
12 , p̄2 = p̃

(1)
21 + p̃

(2)
21 . (5.67)

This means that if (p̄1, p̄2, p̄
(1)
12 , p̄

(1)
21 , p̄

(2)
12 , p̄

(2)
21) turns out to be an optimal solution of CGNF,

107

min max
p

jip

),(

)~

v1 v2

v4 v3

Generator

Generator

Load

Load

g12-b12 i

g34-b34 i

g
2
3 -b

2
3
i

g
1
4 -b

1
4
i

Figure 5.6: An example of electrical power network.

then (p̄1, p̄2, p̃
(1)
12 , p̃

(1)
21 , p̃

(2)
12 , p̃

(2)
21) becomes another solution of CGNF. As a result, although

Geometric CGNF has a unique solution, CGNF may have an infinite number of solutions

whose corresponding flow vectors do not necessarily satisfy the constraints of GNF.

5.3.4 Optimal Power Flow in Electrical Power Networks

In this subsection, the results derived earlier for GNF will be applied to power networks.

Consider a group of generators (sources of energy), which are connected to a group of

electrical loads (consumers) via an electrical power network (grid). This network comprises

a set of transmission lines connecting various nodes to each other (e.g., a generator to a

load). Figure 5.6 exemplifies a four-node power network with two generators and two loads.

Each load requests certain amount of energy, and the question of interest is to find the most

economical power dispatch by the generators so that the demand and network constraints

are met. To formulate the problem, let G denote the flow network corresponding to the

electrical power network, where:

• Each injection pi, i ∈ G, represents either the active power produced by a generator

and injected to the network or the active power absorbed from the network by an

electrical load.

• Each pij , (i, j) ∈ E , represents the active power entering the transmission line (i, j)

from its i endpoint.

The problem of optimizing the flows in a power network is called optimal power flow (OPF).

In this part, the goal is to optimize only active power, but most of the results to be developed

later can be generalized to reactive power as well.

108

)2(

)1()1(

)2(

p p

min max

p

)

)~

*

kjp

jkp

p

p

(a)

min max
p

p

),(

)~

ù*

kjp

jkp

(b)

Figure 5.7: (a) Feasible set for (pjk, pkj). (b) Feasible set for (pjk, pkj) after imposing lower
and upper bounds on θjk.

Let vi denote the complex (phasor) voltage at node i ∈ N of the power network. Denote

the phase of vi as θi. Given an edge (j, k) ∈ G, we denote the admittance of the transmission

line between nodes j and k as gjk − ibjk, where the symbol i denotes the imaginary unit.

gjk and bjk are nonnegative numbers due to the passivity of the line. There are two flows

entering the transmission line from each of its ends. These flows are given by:

pjk = |vj |2gjk + |vj ||vk|bjk sin(θjk)− |vj ||vk|gjk cos(θjk),

pkj = |vk|2gjk − |vj ||vk|bjk sin(θjk)− |vj ||vk|gjk cos(θjk)

where θjk = θj − θk. As traditionally done in the power area, assume that |vj | and |vk| are

fixed at their nominal values, while θjk is a variable to be designed. If θjk varies from −π to

π, then the feasible set of (pjk, pkj) becomes an ellipse, as illustrated in Figure 5.7(a). It can

be seen from this figure that pkj cannot be written as a function of pjk. This observation

is based on the implicit assumption that there is no limit on θjk. Suppose that θjk must

belong to an interval [−θmax
jk , θmax

jk] for some angle θmax
jk . If the new feasible set for (pjk, pkj)

resembles the partial ellipse drawn in Figure 5.7(b), then pkj can be expressed as fjk(pjk)

for a monotonically decreasing, convex function fjk(·). This happens if

θmax
jk ≤ tan−1

(
bjk

gjk

)
. (5.68)

It is interesting to note that the right side of the above inequality is equal to 45.0◦, 63.4◦

and 78.6◦ for bjk

gjk
equal to 1, 2 and 5, respectively. Note that bjk

gjk
is normally greater than 5

(due to the specifications of transmission lines) and θmax
jk is normally less than 15◦ and very

rarely as high as 30◦ due to stability and thermal limits (this angle constraint is forced either

109

directly or through pmin
jk and pmax

jk in practice). Hence, Condition (5.68) is very practical.

By assuming that this condition is satisfied, there exists a monotonically decreasing, convex

function fjk(·) such that

pkj = fjk(pjk), ∀pjk ∈ [pmin
jk , pmax

jk], (5.69)

where pmin
jk and pmax

jk correspond to θmax
jk and −θmax

jk , respectively.

Given two disparate edges (j, k) and (j′, k′), the phase differences θjk and θj′k′ may not

be varied independently if the graph G is cyclic (because the sum of the phase differences

over a cycle must be zero). This is not an issue if the graph G is acyclic (corresponding

to distribution networks) or if there is a sufficient number of phase-shifting transformers in

the network. If none of these cases is true, then one could add virtual phase shifters to the

power network at the cost of approximating the OPF problem. As soon as the flows (or

phase differences) on various lines can be varied independently, equation (5.69) yields that

the problem of optimizing active flows reduces to GNF. In this case, Theorems 1 and 2 can

be used to study the corresponding approximated OPF problem. As a result, the optimal

injections for the approximated OPF can be found via the corresponding CGNF problem.

This implies two facts about the SDP and SOCP relaxations proposed in [25] and [101] for

solving the OPF problem:

• The relaxations are exact without using the concept of load over-satisfaction (i.e.,

relaxing the flow constraints). This is the generalization of the result derived in [106].

• The relaxations always yield the optimal injections, but the produced flow vector can

be wrong (meaning that the flow inequality constraints are not all binding). It is easy

to contrive such examples.

In addition to active powers, voltage magnitudes and reactive powers are usually variable

in power systems. The following remarks can be made for a general OPF problem:

• Reactive flows can be written as linear functions of active flows (under fixed voltage

magnitudes). This implies that the above conclusions on OPF are valid even if the

reactive power at each bus is upper bounded by a given number.

• In the case when the voltage magnitudes are variable, the flow constraint pkj =

fjk(pjk) needs to be replaced by pkj = fjk(pjk,x), where x is an exogenous input

110

containing the voltage magnitudes at all buses. The technique proposed in this chapter

can be used to show that there is a region for x over which the above conclusions on

OPF are valid. Due to space restrictions, the details are omitted here.

5.4 Summary

Network flow plays a central role in operations research, computer science and engineering.

Due to the complexity of this problem, the main focus has been on lossless flow networks and

more recently on networks with a linear loss function. This chapter studies the generalized

network flow (GNF) problem, which aims to optimize the flows over a lossy flow network.

It is assumed that the two flows over a line are related to each other via an arbitrary convex

monotonic function. The GNF problem is hard to solve due to the presence of nonlinear

equality flow constraints. If the flow constraints are relaxed to convex inequalities, these

constraints may not be binding at optimality (as verified in simulations). This implies that

a natural convex relaxation of GNF may lead to wrong flows. Nonetheless, this work proves

that the nodal injections obtained by solving the convex relaxation are optimal, as long as

GNF is feasible. In other words, this work proposes a polynomial-time algorithm for finding

the optimal injections. Obtaining a set of flows associated with the optimal injections is a

separate problem and has been considered as future work. An immediate application of this

work is in power systems, where the goal is to optimize the power flows at buses and over

transmission lines. Recent work on the optimal power flow problem has shown that this non-

convex problem can be solved via a convex relaxation after two approximations: relaxing

angle constraints (by adding virtual phase shifters) and relaxing power balance equations

to inequality flow constraints. The results on GNF prove that the second relaxation (on

power balance equations) is redundant under a very mild angle assumption.

111

Chapter 6

Semidefinite Relaxation for
Nonlinear Optimization Over
Graphs

This chapter is concerned with finding a global optimization technique for a broad class

of non-linear optimization problems, including quadratic and polynomial optimizations.

The main objective of this chapter is to investigate how the (hidden) structure of a given

real/complex-valued optimization makes the problem easy to solve. To this end, three

conic relaxations are proposed. Necessary and sufficient conditions are derived for the

exactness of each of these relaxations, and it is shown that these conditions are satisfied if

the optimization is highly structured. More precisely, the structure of the optimization is

mapped into a generalized weighted graph, where each edge is associated with a weight set

extracted from the coefficients of the optimization. In the real-valued case, it is shown that

the relaxations are all exact if each weight set is sign definite and in addition a condition is

satisfied for each cycle of the graph. It is also proved that if some of these conditions are

violated, the relaxations still provide a low-rank solution for weakly cyclic graphs. In the

complex-valued case, the notion of “sign definite complex sets” is introduced for complex

weight sets. It is then shown that the relaxations are exact if each weight set is sign

definite (with respect to complex numbers) and the graph is acyclic. Three other structural

properties are derived for the generalized weighted graph in the complex case, each of which

guarantees the exactness of some of the proposed relaxations. It is also shown that this

result holds true if the graph can be decomposed as a union of edge-disjoint subgraphs,

where each subgraph has one of the derived structural properties. As an application, it is

finally proved that a broad class of real and complex optimizations over power networks are

112

polynomial-time solvable due to the passivity of transmission lines and transformers.

6.1 Introduction

Several classes of optimization problems, including polynomial optimization and quadratically-

constrained quadratic program (QCQP) as a special case, are nonlinear/non-convex and

NP-hard in the worst case. The paper [112] provides a survey on the computational com-

plexity of optimizing various classes of continuous functions over some simple constraint sets.

Due to the complexity of such problems, several convex relaxations based on linear matrix

inequality (LMI), semidefinite programming (SDP) and second-order cone programming

(SOCP) have gained popularity [31, 29]. These techniques enlarge the possibly non-convex

feasible set into a convex set characterizable via convex functions, and then provide the

exact or a lower bound on the optimal objective value. The paper [113] shows how SDP

relaxation can be used to find better approximations for maximum cut (MAX CUT) and

maximum 2-satisfiability (MAX 2SAT) problems. Another approach is proposed in [114]

to solve the max-3-cut problem via complex SDP. The approaches in [113] and [114] have

been generalized in several papers, including [115, 116, 117, 118, 119, 120, 121, 122].

The SDP relaxation converts an optimization with a vector variable to a convex opti-

mization with a matrix variable, via a lifting technique. The exactness of the relaxation

can then be interpreted as the existence of a low-rank (e.g., rank-1) solution for the SDP

relaxation. Several papers have studied the existence of a low-rank solution to matrix op-

timizations with linear and LMI constraints [32, 33]. The papers [34] and [35] provide an

upper bound on the lowest rank among all solutions of a feasible LMI problem. A rank-1

matrix decomposition technique is developed in [36] to find a rank-1 solution whenever the

number of constraints is small. This technique is extended in [37] to the complex SDP

problem. The paper [38] presents a polynomial-time algorithm for finding an approximate

low-rank solution.

This work is motivated by the fact that real-world optimization problems are highly

structured in many ways and their structures could in principle help reduce the computa-

tional complexity. For example, transmission lines and transformers used in power networks

are passive devices, and as a result optimizations defined over electrical power networks have

certain structures which distinguish them from abstract optimizations with random coef-

113

ficients. The high-level objective of this chapter is to understand how the computational

complexity of a given nonlinear optimization is related to its (hidden) structure. This

chapter is concerned with a broad class of nonlinear real/complex optimization problems,

including QCQP. The main feature of this class is that the argument of each objective

and constraint function is quadratic (as opposed to linear) in the optimization variable and

the goal is to use three conic relaxations (SDP, reduced SDP and SOCP) to convexify the

argument of the optimization.

In this chapter, the structure of the nonlinear optimization is mapped into a generalized

weighted graph, where each edge is associated with a weight set constructed from the known

parameters of the optimization (e.g., the coefficients). This generalized weighted graph

captures both the sparsity of the optimization and possible patterns in the coefficients.

First, it is shown that the proposed relaxations are exact for real-valued optimizations,

provided a set of conditions is satisfied. These conditions need each weight set to be sign

definite and each cycle of the graph has an even number of positive weight sets. It is also

shown that if some of these conditions are not satisfied, the SDP relaxation is guaranteed to

have a rank-2 solution for weakly cyclic graphs, from which an approximate rank-1 solution

may be recovered. To study the complex-valued case, the notion of “sign-definite complex

weight sets” is introduced and it is then proved that the relaxations are exact for a complex

optimization if the graph is acyclic with sign definite weight sets (with respect to complex

numbers). The complex case is further studied for general graphs and it is proved that

if the graph can be decomposed as the union of some edge-disjoint subgraphs in such a

way that each subgraph possesses one of the four proposed structural properties, then the

SDP relaxation is tight. As an application of this work in optimization for power systems,

it is also shown that a broad class of energy optimizations can be convexified due to the

physics of power networks. The results of this chapter extend the recent works on energy

optimization [25, 73, 123, 80, 106, 105] and general quadratic optimization [124, 125].

6.2 Problem Statement and Contributions

Before introducing the problem, we need to make several notations and definitions.

114

1 2

3

4

1'
2'

3'

4'

(a)

1
2

3
4

1'2'

3'

4'

(b)

1x

2x

3x

4x

5x

7x

6x

12c

13c

23c

14c

15c

45c

16c

17c

(c)

Figure 6.1: In Figure (a), there exists a line separating x’s (elements of T) from o’s (elements
of −T) so the set T is sign definite. In Figure (b), this is not the case. Figure (c) shows
the weighted graph G studied in Example 2.

6.2.1 Notations

Essential notations and definitions will be provided below.

Notation 1. In this work, scalars, vectors and matrices will be shown by lowercase, bold

lowercase and uppercase letters (e.g., x, x and X). Furthermore, xi denotes the ith entry

of a vector x, and Xij denotes the (i, j)th entry of a matrix X.

Notation 2. R, C, Sn and Hn denote the sets of real numbers, complex numbers, n × n

symmetric matrices and n× n Hermitian matrices, respectively.

Notation 3. Re{M}, Im{M}, MH , Rank{M} and Trace{M} denote the real part, imag-

inary part, conjugate transpose, rank and trace of a given scalar/matrix M , respectively.

The notation M � 0 means that M is symmetric/Hermitian and positive semidefinite.

Notation 4. The symbol](x) represents the phase of a complex number x. The imaginary

unit is denoted as “ i”, while “i” is used for indexing.

Notation 5. Given an undirected graph G, the notation i ∈ G means that i is a vertex of

G. Moreover, the notation (i, j) ∈ G means that (i, j) is an edge of G and besides, i < j.

115

Notation 6. Given a set T , |T | denotes its cardinality. Given a graph G, |G| shows the

number of its vertices. Given a number (vector) x, |x| denotes its absolute value (2-norm).

Definition 1. A finite set T ⊂ R is said to be sign definite (with respect to R) if its

elements are either all negative or all nonnegative. T is called negative if its elements are

negative and is called positive if its elements are nonnegative.

Definition 2. A finite set T ⊂ C is said to be sign definite (with respect to C) if when the

sets T and −T are mapped into two collections of points in R2, then there exists a line

separating the two sets (the elements of the sets are allowed to lie on the line).

To illustrate Definition 2, consider a complex set T with four elements, whose corre-

sponding points are labeled as 1, 2, 3 and 4 in Figure 6.1(a). The points corresponding to

−T are labeled as 1’, 2’, 3’ and 4’ in the same picture. Since there exists a line separating

x’s (elements of T) from o’s (elements of −T), the set T is sign definite. In contrast, if

the elements of T are distributed according to Figure 6.1(b), the set will no longer be sign

definite. Note that Definition 2 is inspired by the fact that a real set T is sign definite with

respect to R if T and −T are separable via a point (on the horizontal axis).

Definition 3. Given a graph G, a cycle space is the set of all possible cycles in the graph.

An arbitrary basis for this cycle space is called a “cycle basis”.

Definition 4. In this work, a graph G is called weakly cyclic if every edge of the graph

belongs to at most one cycle in G (i.e., the cycles of G are all edge-disjoint).

Definition 5. Consider a graph G, a subgraph Gs of this graph and a matrix X ∈ C|G|×|G|.

Define X{Gs} as a sub-matrix of X obtained by picking every row and column whose index

belongs to the vertex set of Gs. For instance, X{(i, j)}, where (i, j) ∈ G, has rows i, j and

columns i, j of X.

6.2.2 Problem Statement

Consider an undirected graph G with n vertices (nodes), where each edge (i, j) ∈ G has

been assigned a nonzero edge weight set {c1
ij , c

2
ij , ..., c

k
ij} with k real/complex numbers (note

that the superscripts in the weights are not exponents). This graph is called a generalized

weighted graph as every edge is associated with a set of weights as opposed to a single

116

weight. Consider an unknown vector x =
[

x1 · · ·xn

]
belonging to Dn, where D is either

R or C. For every i ∈ G, xi is a variable associated with node i of the graph G. Define:

y =
{
|xi|2

∣∣ ∀i ∈ G}
, z =

{
Re

{
ct
ijxix

H
j

} ∣∣ ∀(i, j) ∈ G, t ∈ {1, ..., k}
}

.

Note that according to Notation 5, (i, j) ∈ G means that (i, j) is an edge of the graph and

that i < j. The sets y and z can be regarded as two vectors, where

• y collects the quadratic terms |xi|2’s (one term for each vertex),

• z collects the cross terms Re{ct
ijxix

H
j }’s (k terms for each edge).

Although the above formulation deals with Re
{
ct
ijxix

H
j

}
whenever (i, j) ∈ G, it can handle

terms of the form Re{αxjx
H
i } and Im{αxix

H
j } for a complex weight α. This can be carried

out using the transformations:

Re{αxjx
H
i } = Re{(αH)xix

H
j }, Im{αxix

H
j } = Re{(−αi)xix

H
j }.

This work is concerned with the following optimization:

min
x∈Dn

f0(y, z)

subject to fj(y, z) ≤ 0, j = 1, 2, ...,m

(6.1)

for given functions f0, ..., fm. The computational complexity of the above optimization

depends in part on the structure of the functions fj ’s. Regardless of these functions, Op-

timization (6.1) is intrinsically hard to solve (NP-hard in the worst case) because y and

z are both nonlinear functions of x. The objective is to convexify the second-order non-

linearity embedded in y and z. To this end, notice that there exist two linear functions

l1 : Cn×n → Rn and l2 : Cn×n → Rkτ such that y = l1
(
xxH

)
and z = l2

(
xxH

)
, where τ

denotes the number of edges in G. Motivated by the above observation, if xxH is replaced

by a new matrix variable X, then y and z both become linear in X. This implies that

the non-convexity induced by the quadratic terms Re{ct
ijxixj}’s and |xi|’s all disappear if

Optimization (6.1) is reformulated in terms of X. However, the optimal solution X may

not be decomposable as xxH unless some additional constraints are imposed on X. It is

117

straightforward to verify that Optimization (6.1) is equivalent to

min
X

f0(l1(X), l2(X)) (6.2a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ...,m (6.2b)

X � 0, (6.2c)

Rank{X} = 1 (6.2d)

where there is an implicit constraint that X ∈ Sn if D = R and X ∈ Hn if D = C. To

reduce the computational complexity of the above problem, two actions can be taken: (i)

removing the nonconvex constraint (6.2d), (ii) relaxing the convex, but computationally-

expensive, constraint (6.2c) to a set of simpler constraints on certain low-order submatrices

of X. Based on this methodology, three relaxations will be proposed for Optimization (6.1)

next.

SDP relaxation: This optimization is defined as

min
X

f0(l1(X), l2(X)) (6.3a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ...,m (6.3b)

X � 0. (6.3c)

Reduced SDP relaxation: Choose a set of cycles O1,,Op in the graph G such that

they form a cycle basis. Let Ω denote the set of all subgraphs O1,,Op as well as all edges

of G that do not belong to any cycle in the graph (i.e., bridge edges). The reduced SDP

relaxation is defined as

min
X

f0(l1(X), l2(X)) (6.4a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ...,m (6.4b)

X{Gs} � 0, ∀Gs ∈ Ω. (6.4c)

118

SOCP relaxation: This optimization is defined as

min
X

f0(l1(X), l2(X)), (6.5a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ...,m, (6.5b)

X{(i, j)} � 0, ∀(i, j) ∈ G. (6.5c)

The reason why the above optimization is called an SOCP problem is that the condition

X{(i, j)} � 0 can be replaced by the linear and norm constraints

Xii, Xjj ≥ 0, Xii + Xjj ≥
∣∣∣∣ [

Xii Xjj

√
2Xij

] ∣∣∣∣.
The above SDP, reduced SDP and SOCP relaxations are targeted at the non-convexity

caused by the nonlinear relationship between x and (y, z). Note that these optimizations

are convex relaxations only when the functions f0, ..., fm are convex. If any of these func-

tions is nonconvex, additional relaxations might be needed to convexify the SDP, reduced

SDP or SOCP optimization. Define f∗, f∗SDP, f∗r-SDP and f∗SOCP as the optimal solutions of

Optimizations (6.2), (6.3), (6.4) and (6.5), respectively. By comparing the feasible sets of

these optimizations, it can be concluded that

f∗SOCP ≤ f∗r-SDP ≤ f∗SDP ≤ f∗. (6.6)

Given a particular optimization of the form (6.1), if any of the above inequalities for f∗ turns

into an equality, the associated relaxation will be able to find the solution of the original

optimization. In this case, it is said that the relaxation is “tight” or “exact”. The objective

of this chapter is to relate the exactness of the proposed relaxations to the topology of the

graph G and its weights sets {c1
ij , c

2
ij , ..., c

k
ij}’s.

It is noteworthy that the aforementioned problem formulation can be easily generalized

in two directions:

• Allowance of weight sets with different cardinalities: The above problem formulation

assumes that every edge weight set has k elements. However, if the weight sets have

different sizes, the trivial weight 0 can be added to each set multiple times in such a

way that all expanded sets reach the same cardinality.

119

• Inclusion of linear terms in x: Optimization 6.1 is formulated in xxH with no linear

term in x. This issue can be fixed by defining an expanded vector x̃ as
[

1 xH
]H

.

Then, the matrix x̃x̃H needs to be replaced by a new matrix variable X̃ under the

constraint X̃11 = 1.

6.2.3 Related Work

Consider the QCQP optimization:

min
x∈Dn

xHM1x s.t. xHMjx ≤ 0 j = 2, ..., k (6.7a)

for given matrices M1, ...,Mk ∈ Hn. This problem is a special case of Optimization (6.1),

where its generalized weighted graph G has two properties:

• Given two nodes i, j ∈ {1, ..., n} such that i < j, there exists an edge between nodes

i and j if and only if the (i, j) off-diagonal entry of at least one of the matrices

M1, ...,Mk is nonzero.

• For every (i, j) ∈ G, the weight set {c1
ij , c

2
ij , ..., c

k
ij} is the union of the (i, j)th entries

of M1, ...,Mk.

Due to the relation xHMix = Trace{MixxH} for i = 1, ..., k, the SDP relaxation of Opti-

mization (6.7) turns out to be

min
X

Trace{M1X} s.t. Trace{MjX} ≤ 0 j = 2, ..., k, X � 0.

The SOCP relaxation of Optimization (6.7) is obtained by replacing the constraint X �

0 with X{(i, j)} � 0, (i, j) ∈ G. The relationship between Optimization (6.7) and its

relaxations have been studied in two special cases in the literature:

• Consider the case D = R. It has been shown in [124] that f∗SOCP = f∗SDP = f∗ if

−M0, ...,−Mk are all Metzler matrices. This implies that the proposed relaxations

are all exact, independent of the topology of G, as long as the set {c1
ij , c

2
ij , ..., c

k
ij} is

negative for all (i, j) ∈ G.

• Consider the case D = C. It has been shown in the recent work [125] that f∗SDP = f∗

if three conditions hold:

120

1. G is a tree graph.

2. M1 is a positive semidefinite matrix.

3. For every (i, j) ∈ G, the origin (0, 0) is not an interior point of the convex hull of

the 2-d polytope induced by the weight set {c1
ij , c

2
ij , ..., c

k
ij}.

It can be shown that Condition (3) implies that the complex set {c1
ij , c

2
ij , ..., c

k
ij} is sign

definite (see Definition 2). The above results suggest that the polynomial-time solvability of

certain classes of QCQP problems might be inferred from weak properties of their underlying

generalized weighted graphs.

6.2.4 Contributions

Throughout this chapter, we assume that fj(y, z) is monotonic in every entry of z for

j = 0, 1, ...,m (but possibly nonconvex in y and z). With no loss of generality, suppose that

fj(y, z) is an increasing function with respect to all entries of z (to ensure this property, it

may be needed to change the sign of some edge weights and then redefine the functions). A

few of the results to be developed in this work do not need this assumption, in which cases

the name of the function fj will be changed to gj to avoid any confusion in the assumptions.

The objective of this chapter is to study the interrelationship between f∗SOCP, f∗r-SDP,

f∗SDP, and f∗. In particular, it is aimed to understand what properties the generalized

weighted graph G should have to guarantee the exactness of some of the proposed relax-

ations. Another goal is to find out how low rank the solution of the SDP relaxation will be

in the case when the relaxation is not exact.

In section 6.3, we derive necessary and sufficient conditions for the exactness of each of

the three aforementioned relaxations in both real and complex cases.

In Section 6.4, we consider the real-valued case D = R and show that the SOCP, reduced

SDP and SDP relaxations are all tight, provided each weight set {c1
ij , ..., c

k
ij} is sign definite

(with respect to R) and

∏
(i,j)∈Or

σij = (−1)|Or|, ∀r ∈ {1, ..., p}

where σij shows the sign of the weight set associated with the edge (i, j) ∈ G. This condition

is naturally satisfied in three special cases:

121

• G is acyclic with arbitrary sign definite edge sets.

• G is bipartite with positive weight sets.

• G is arbitrary with negative weight sets.

It is also shown that if the SDP relaxation is not exact, it still has a low rank (rank-2)

solution in two cases:

• G is acyclic (but with potentially indefinite weight sets).

• G is a weakly-cyclic bipartite graph with sign definite edge sets.

In section 6.5, we consider the complex-valued case D = C under the assumption that

each edge set {c1
ij , ..., c

k
ij} is sign definite with respect to C. This assumption is trivially met

if k ≤ 2 or the weight set contains only real (or imaginary) numbers. Some of the results

developed in this section are:

• The SOCP, reduced SDP and SDP relaxations are all tight if G is acyclic.

• The SOCP, reduced SDP and SDP relaxations are tight if each weight set contains

only real or imaginary numbers and

∏
(i,j)∈Or

σij = (−1)|Or|, ∀r ∈ {1, ..., p}

where σij ∈ {0,±1,±i} shows the sign of each weight set.

• The reduced SDP and SDP relaxations are exact if G is bipartite and weakly cyclic

with positive or negative real weight sets.

• The reduced SDP and SDP relaxations (and not SOCP relaxation) are exact if G is a

weakly cyclic graph with imaginary weight sets and nonzero signs σij ’s.

We also show that if the graph G can be decomposed as a union of edge-disjoint subgraphs

in an acyclic way in such a way that each subgraph has one of the above four structural

properties, then the SDP relaxation is exact.

In Section 6.6, a detailed discussion is given to demonstrate how the results of this

chapter can be used for optimization over power networks. Finally, four illustrative examples

are provided in section 6.7.

122

6.3 SDP, Reduced-SDP and SOCP Relaxations

In this section, the objective is to derive necessary and sufficient conditions for the exactness

of the SDP, reduced-SDP and SOCP Relaxations. For every r ∈ {1, 2, ..., p}, let ~Or denote

a directed cycle corresponding to Or, meaning that all edges of the undirected cycle Or

have been oriented consistently.

Theorem 1. The following statements hold true in both real and complex cases D = R and

D = C:

i) The SDP relaxation is exact (i.e., f∗SDP = f∗) if and only if it has a rank-1 solution

X∗.

ii) The reduced SDP relaxation is exact (i.e., f∗r-SDP = f∗) if and only if it has a solution

X∗ such that

Rank{X∗{Gs}} = 1, ∀Gs ∈ Ω. (6.8)

iii) The SOCP relaxation is exact (i.e., f∗SOCP = f∗) if and only if it has a solution X∗

such that

Rank{X∗{(i, j)}} = 1, ∀(i, j) ∈ G

and that ∑
]X∗

ij = 0, ∀r ∈ {1, 2, ..., p} (6.9)

where the sum is taken over all directed edges (i, j) of the oriented cycle ~Or. Moreover,

the same result holds even if the condition (6.9) is replaced by (6.8).

Proof of Part (i): The proof is omitted due to its simplicity.

Proof of Part (ii): To prove the “only if” part, let x∗ denote an arbitrary solution of

Optimization (6.1). If f∗r-SDP = f∗, then X∗ = (x∗)(x∗)H is a solution of the reduced SDP

relaxation, which satisfies the condition (6.8).

To prove the “if” part, consider a matrix X∗ satisfying (6.8). For every r ∈ {1, ..., p},

since X{Or} is positive semidefinite and rank-1, it can be written as the product of a vector

and its transpose. This yields that

∑
]X∗

ij = 0, ∀r ∈ {1, 2, ..., p} (6.10)

123

where the sum is taken over all directed edges (i, j) of the oriented cycle ~Or. Let T be

an arbitrary spanning tree of G. The vertices of T can be iteratively labeled by some real

numbers (angles) θ1, ..., θn in such a way that θi − θj =]X∗
ij , ∀(i, j) ∈ T , and that these

numbers belong to the set {0, 1800} in the case C = R. It can be inferred from (6.10) that

θi − θj =]X∗
ij for every (i, j) ∈ G. Now, define x∗ as

[√
X11e

−θ1i
√

X22e
−θ2i · · ·

√
Xnne−θni

]H

Observe that (x∗)(x∗)H and X∗ are the same on the diagonal and have identical off-diagonal

entries (i, j) ∈ G. This implies that (x∗)(x∗)H is a rank-1 solution of the reduced SDP

relaxation. Therefore, the relaxation is exact.

Proof of Part (iii): The proof is omitted due to its similarity to the proof of Part (ii)

provided above. �

Theorem 1 provides necessary and sufficient conditions for the exactness of the SDP,

reduced SDP and SOCP relaxations. As mentioned before, one can write f∗SOCP ≤ f∗r-SDP ≤

f∗SDP ≤ f∗. Using the matrix completion theorem, two conclusions can be made [126]:

• If G is an acyclic graph, then the relation f∗SOCP = f∗r-SDP = f∗SDP holds, independent

of whether or not f∗SDP = f∗.

• Expand the graph G by connecting all vertices inside each cycle Or to each other for

r = 1, 2, ..., p. Then, the relation f∗r-SDP = f∗SDP holds (independent of whether or

not f∗SDP = f∗) if every maximal clique (complete subgraph) of the expanded graph

corresponds to a single edge of G or one of the cycles O1, ...,Op. This mild condition

is met for weakly cyclic graphs as well as a broad class of planar graphs.

Part (iii) of Theorem 1 shows that the SOCP relaxation is exact if two conditions are

satisfied for an optimal solution X∗ of this optimization: (1) every 2 × 2 edge submatrix

X∗{(i, j)} loses rank, and (2) if the phase of X∗
ij is assigned to the edge (i, j) of the graph

G for every (i, j) ∈ G, then the sum of the edge phases becomes zero for every cycle in the

cycle basis. As will be shown throughout this chapter, Condition (1) is satisfied by imposing

a sign definiteness constraint on each edge weight set. In contrast, Condition (2) is strongly

related to the graph topology and weakly related to the structure of each edge weight set.

124

6.4 Real-Valued Optimization

In this section, Optimization (6.1) will be studied in the real-valued case (i.e., D = R).

Since x ∈ Rn, one can write Re
{

ct
ijxix

H
j

}
= Re

{
Re{ct

ij}xix
H
j

}
, for all (i, j) ∈ G and

t ∈ {1, ..., k}. Hence, changing the complex weight ct
ij to Re{ct

ij} does not affect the

optimization. Therefore, with no loss of generality, assume that the edge weights are all

real numbers. For every edge (i, j) ∈ G, define the edge sign σij as follows:

σij =

1 if c1

ij , ..., c
k
ij ≥ 0

−1 if c1
ij , ..., c

k
ij ≤ 0

0 otherwise.

(6.11)

By convention, we define σij = 1 if c1
ij = · · · = ck

ij = 0.

Theorem 2. The relations f∗SOCP = f∗r-SDP = f∗SDP = f∗ hold for Optimization (6.1) in the

real-valued case D = R if

σij 6= 0, ∀(i, j) ∈ G (6.12a)∏
(i,j)∈Or

σij = (−1)|Or|, ∀r ∈ {1, ..., p}. (6.12b)

Proof: In light of the relation f∗SOCP ≤ f∗r-SDP ≤ f∗SDP ≤ f∗, it suffices to prove that

f∗ ≤ f∗SOCP. Consider an arbitrary feasible point X of Optimizations (6.5). It is enough to

show the existence of a feasible point x for Optimization (6.1) with the property that the

objective value of this optimization at x is lower than or equal to the objective value of the

SOCP relaxation at the point X. For this purpose, choose an arbitrary spanning tree T of

the graph G. A set of ±1 numbers σ1, σ2, ..., σn can be iteratively assigned to the vertices

of this tree in such a way that σiσj = −σij for every (i, j) ∈ T (this is because of (6.12a)).

Now, it can be deduced from (6.12b) that

σiσj = −σij , ∀(i, j) ∈ G.

Corresponding to the feasible point X of the SOCP relaxation, define the vector x as

[
σ1

√
X11 σ2

√
X22 · · · σn

√
Xnn

]H
.

125

(note that X11, ..., Xnn ≥ 0 due to the condition X � 0). Observe that

|xi|2 = Xii, i = 1, ..., n. (6.13)

On the other hand, (6.5c) yields

Xij ≤
√

Xii

√
Xjj , ∀(i, j) ∈ G,

and therefore
cijXij ≥ −|cij |

√
Xii

√
Xjj = −cijσij

√
Xii

√
Xjj

= cijσiσj

√
Xii

√
Xjj = cijxixj , ∀(i, j) ∈ G.

(6.14)

It can be concluded from (6.13) and (6.14) that

l1
(
xxH

)
= l1(X), l2

(
xxH

)
≤ l2(X).

Hence, since f0(·, ·) is increasing in its second vector argument, one can write:

fj(y, z) ≤ fj(l1(X), l2(X))

for j = 0, 1, ...,m, where y = l1
(
xxH

)
and z = l2

(
xxH

)
. This implies that x is a feasible

point of Optimization (6.1) whose corresponding objective value is smaller than or equal to

the objective value for the feasible point X of Optimization (6.5). This proves the claim

f∗ ≤ f∗SOCP and thus completes the proof. �

Condition (6.12a) ensures that each edge weight set is sign definite. Theorem 2 states

that the SDP, reduced SDP and SOCP relaxations are exact for the original optimiza-

tion (6.1) under the above sign definite condition, provided that each cycle in the cycle

basis has an even number of edges with positive signs. This holds true in three important

special cases, as explained below.

Corollary 1. The relations f∗SOCP = f∗r-SDP = f∗SDP = f∗ hold for Optimization (6.1) in

the case D = R if one of the following happens:

1) G is acyclic with arbitrary sign definite edge sets (with respect to R).

2) G is bipartite with positive weight sets.

126

3) G is arbitrary with negative weight sets.

Proof: The proof follows immediately from Theorem 2 by noting that a bipartite graph

has no odd cycle. �

Assume that the edge sets of the graph G are all sign definite. Corollary 1 implies a

trade-off between the topology and the edge signs σij ’s. On one extreme, the edge signs

could be arbitrary as long as the graph has a very sparse topology. On the other extreme,

the graph topology could be arbitrary (sparse or dense) as long as the edge signs are all

negative. The following theorem proves that if σij ’s are zero, Optimization (6.1) becomes

NP-hard even for an acyclic graph G.

Theorem 3. Finding an optimal solution of Optimization (6.1) is an NP-hard problem for

an acyclic G with sign-indefinite weight sets (even if k = 2).

Proof: Given a set of real numbers {ω1, ..., ωt}, the number partitioning problem (NPP)

aims to find out whether there exists a sign set {s1, ..., st} with the property

t∑
i=1

siωi = 0, s1, ..., st ∈ {−1, 1}. (6.15)

This decision problem is known to be NP-complete. NPP can be written as the following

quadratic optimization:

min
s1,...,st+1

0 s.t. st+1 ×
t∑

i=1

siωi = 0, s2
1 = · · · = s2

t+1 = 1,

where st+1 is a new slack variable, which is either −1 or 1 and has been introduced to make

the first constraint of the above optimization quadratic. By defining n as t + 1 and x as[
s1 s2 · · · st+1

]
, the above optimization reduces to:

min
x

0 s.t.
n−1∑
i=1

xixnωi ≤ 0,

n−1∑
i=1

xixn(−ωi) ≤ 0, x2
1 = · · · = x2

n = 1.

Since NPP is NP-hard, solving the above optimization is NP-hard as well. On the other

hand, the generalized weighted graph for the above optimization has the following form:

node n is connected to node i with the weight set {ωi,−ωi} for i = 1, ..., n − 1. Hence,

optimization over this acyclic graph is NP-hard. �

127

Theorem 3 states that optimization over a very sparse generalized weighted graph

(acyclic graph with only two elements in each weight set) is still hard unless the weight

sets are sign definite. However, it will be shown in the next subsection that the SDP re-

laxation always has a rank-2 solution for this type of graph, which may be used to find an

approximate solution to the original problem.

6.4.1 Low-Rank Solution for SDP Relaxation

Suppose that the conditions stated in Theorem 2 do not hold. The SDP relaxation may still

be exact (depending on the coefficients of Optimization (6.1)), in which case the relaxation

has a rank-1 solution X∗. A question arises as to whether the rank of X∗ is yet small when-

ever the relaxation is inexact. The objective of this subsection is to address this problem in

two important scenarios. Given the graph G and the parameters x,y, z introduced earlier,

consider the optimization

min
x∈Rn

g0(y, z) s.t. gj(y, z) ≤ 0, j = 1, 2, ...,m (6.16)

for arbitrary functions gi(·, ·), i = 0, 1, ...,m. The difference between the above optimization

and (6.1) is that the functions gi(·, ·)’s may not be increasing in z. In line with the technique

used in Section 6.2 for the nonconvex optimization (6.1), an SDP relaxation can be defined

for the above optimization. As expected, this relaxation may not have a rank-1 solution, in

which case the relaxation is not exact. Nevertheless, it is beneficial to find out how small

the rank of an optimal solution of this relaxation could be. This problem will be addressed

next for an acyclic graph G.

Theorem 4. Assume that the graph G is acyclic. The SDP relaxation for Optimiza-

tion (6.16) always has a solution X∗ whose rank is at most 2.

Proof: The SDP relaxation for Optimization (6.16) is as follows:

min
X∈Sn

g0(l1(X), l2(X)) s.t. gj(l1(X), l2(X)) ≤ 0 j = 1, ...,m, X � 0. (6.17)

This is indeed a real-valued SDP relaxation. One can consider a complex-valued SDP

128

relaxation as

min
X̃∈Hn

g0(l1(X̃), l2(X̃)) s.t. gi(l1(X̃), l2(X̃)) ≤ 0 j = 1, ...,m, X̃ � 0 (6.18)

where its matrix variable, denoted as X̃, is complex. Observe that l1(X̃) = l1(Re{X̃}) and

l2(X̃) = l2(Re{X̃}) for every arbitrary Hermitian matrix X̃, due to the fact that the edge

weights of the graph G are all real. This implies that the real and complex SDP relaxations

have the same optimal objective value (note that Re{X̃} � 0 if X̃ � 0). In particular, if X̃∗

denotes an optimal solution of the complex SDP relaxation, Re{X̃∗} will be an optimal so-

lution of the real SDP relaxation. As will be shown later in Theorem 7, Optimization (6.18)

has a rank-1 solution X̃∗. Therefore, X̃∗ can be decomposed as (x̃∗)(x̃∗)H for some complex

vector x̃∗. Now, one can write:

Re{X̃∗} = Re{x̃}Re{x̃}H + Im{x̃}Im{x̃}H .

Hence, Re{X̃∗} is a real-valued matrix with rank at most 2 (as it is the sum of two rank-1

matrices), which is also a solution of the real SDP relaxation. �

Theorem 4 states that the SDP relaxation of the general optimization (6.16) always

has a rank 1 or 2 solution if its sparsity can be captured by an acyclic graph. This result

makes no assumptions on the monotonicity of the functions gj(·, ·)’s. The SDP relaxation for

Optimization (6.16) may not have a unique solution. Hence, if a sample of this optimization

is solved numerically, the obtained solution may be high rank, in which case the low-rank

solution X∗ is hidden and needs to be recovered (following the constructive proof of the

theorem).

If the functions gj(·, ·)’s are convex, then the SDP relaxation becomes a convex program.

In this case, a low-rank solution X∗ can be found in polynomial time. If X∗ has rank-1,

then the relaxation is exact. Otherwise, X∗ has rank 2 from which an approximate rank-1

solution can be found by making the smallest nonzero eigenvalue of X∗ equal to 0. A more

powerful strategy is to kill the undesired nonzero eigenvalue by penalizing the objective

function of the SDP relaxation via a regularization term such as α × Trace{X} for an

appropriate value of α. The graph of the penalized SDP relaxation is still acyclic and

therefore the penalized optimization will have a rank-1 or 2 solution. Since X∗ has only

129

one undesired eigenvalue that needs to be killed, the wealth of results in the literature of

compressed sensing justifies the idea that this might be an effective heuristic method.

Theorem 4 studies the SDP relaxation for only acyclic graphs. Partial results will be

provided below for cyclic graphs.

Theorem 5. Assume that G is a weakly-cyclic bipartite graph, and that

σij 6= 0 ∀(i, j) ∈ O1 ∪ O2 ∪ · · · ∪ Op.

The SDP relaxation (6.3) for Optimization (6.1) in the real-valued case D = R has a

solution X∗ whose rank is at most 2.

Proof: Consider the complex-valued SDP relaxation:

min
X̃∈Hn

f0(l1(X̃), l2(X̃)), (6.19a)

s.t. fj(l1(X̃), l2(X̃)) ≤ 0, j = 1, ...,m, (6.19b)

X̃ � 0. (6.19c)

As discussed in the proof of Theorem 4, three properties hold:

• The real and complex SDP relaxations have the same optimal objective value.

• If X̃∗ denotes an optimal solution of the complex SDP relaxation, Re{X̃∗} turns out

to be an optimal solution of the real SDP relaxation.

• If X̃∗ is positive semidefinite and rank-1, its real part Re{X̃∗} is positive semidefinite

and rank 1 or 2.

Hence, to prove the theorem, it suffices to show that the complex-valued optimization (6.19)

has a rank-1 solution. Since every cycle of G has an even number of vertices (as it is

bipartite), a diagonal matrix T with entries from the set {0, 1, i} can be designed in such a

way that

Tii × Tjj = i, ∀(i, j) ∈ G. (6.20)

The next step is to change the variable X̃ in Optimization (6.19) to TX̄TH , where X̄ is a

130

Hermitian matrix variable. Equation (6.20) yields

X̃ii = X̄ii, ∀i ∈ G, (6.21a)

X̃ij = αijX̄ij , ∀(i, j) ∈ G (6.21b)

where αij ∈ {−i, i}. Therefore, by defining c̄t
ij as αijc

t
ij , one can write:

Re{ct
ijX̃ij} = Re{c̄t

ijX̄ij} (6.22)

for every t ∈ {1, 2..., k}. It results from (6.21a) and (6.22) that if the complex-valued SDP

relaxation (6.19) is reformulated in terms of X̄, its underlying graph looks like G with the

only difference that the weights ct
ij ’s are replaced by c̄t

ij ’s. On the other hand, since ct
ij is a

real number, c̄t
ij is purely imaginary. Hence, it follows from Theorem 11 (stated later in the

chapter) that the reformulated complex SDP relaxation has a rank-1 solution X̄∗ because

its graph is weakly cyclic with purely imaginary weights. Now, X̃∗ = TX̄∗TH becomes rank

one. In other words, the complex SDP relaxation has a rank-1 solution X̃∗. This completes

the proof. �

There are several applications where the goal is to find a low-rank positive semidefinite

matrix X satisfying a set of constraints (such as linear matrix inequalities). Theorems 4

and 5 provide sufficient conditions under which the feasibility problem

fj(l1(X), l2(X)) ≤ 0, j = 1, ...,m,

X � 0,
(6.23)

has a low rank solution, where the rank does not depend on the size of the problem.

6.5 Complex-Valued Optimization

In this section, Optimization (6.1) will be studied in the complex-valued case D = C. Several

scenarios will be explored below.

131

6.5.1 Acyclic Graph with Complex Edge Weights

Consider the case where each edge weight set is complex and sign definite with respect to

C.

Theorem 6. The relations f∗SOCP = f∗r-SDP = f∗SDP = f∗ hold in the complex-valued case

D = C, provided that the graph G is acyclic and the weight set {c1
ij , c

2
ij , ..., c

k
ij} is sign definite

for all (i, j) ∈ G.

Proof: The decomposition technique developed in [123] will be deployed to prove this

theorem. Similar to Theorem 2, it is enough to show that f∗ ≤ f∗SOCP. To this end,

consider an arbitrary feasible solution of optimization (6.5), denoted as X. Given an edge

(i, j) ∈ G, since the set {c1
ij , c

2
ij , ..., c

k
ij} is sign definite, it follows from the hyperplane

separation theorem that there exists a nonzero real vector (αij , βij) such that

Re{ct
ij(αij + βij i)} = Re{ct

ij}αij − Im{ct
ij}βij ≤ 0 (6.24)

for every t ∈ {1, 2, ..., k}. On the other hand, (6.5c) yields

|Xij | ≤
√

Xii

√
Xjj , ∀(i, j) ∈ G. (6.25)

Consider the function ∣∣Xij + γij(αij + βij i)
∣∣2 −XiiXjj

in which γij is an unknown real number. This function is negative at γ = 0 (because of

(6.25)) and positive at γ = +∞. Hence, due to the continuity of this function, there exists

a positive number γij such that

∣∣Xij + γij(αij + βij i)
∣∣2 = XiiXjj . (6.26)

Define θij as the phase of the complex number Xij + γij(αij + βij i). A set of angles

{θ1, θ2, ..., θn} can be found iteratively by exploiting the tree topology of the graph G in

such a way that

θi − θj = θij , ∀(i, j) ∈ G. (6.27)

132

Define the vector x as

[√
X11e

−θ1i
√

X22e
−θ2i · · ·

√
Xnne−θni

]H
. (6.28)

Using (6.24), (6.26) and (6.27), one can write:

Re{ct
ijxix

∗
j} = Re

{
ct
ij

√
Xii

√
Xjje

(θi−θj)i
}

= Re
{

ct
ij

√
Xii

√
Xjje

θij i
}

= Re
{
ct
ij(Xij + γij(αij + βij i))

}
= Re{ct

ijXij}+ γijRe
{
ct
ij(αij + βij i)

}
≤ Re{ct

ijXij}

for every t ∈ {1, 2, ..., k}. Having shown the above relation, the rest of the proof is in line

with the proof of Theorem 2. More precisely, the above inequality implies that

l1
(
xxH

)
= l1(X), l2

(
xxH

)
≤ l2(X)

and therefore

fj(y, z) ≤ fi(l1(X), l2(X)), j = 0, 1, ...,m

where y = l1
(
xxH

)
and z = l2

(
xxH

)
. Hence, x is a feasible point of Optimization (6.1)

whose corresponding objective value is smaller than or equal to the objective value for the

feasible point X of Optimization (6.5). Consequently, f∗ ≤ f∗SOCP. This completes the

proof. �

The quadratically-constrained quadratic optimization (6.7) is a special case of optimiza-

tion (6.1). Hence, the SDP relaxation is tight for this QCQP problem if G is acyclic with sign

definite weight sets. This result improves upon the result developed in [125] by removing

the assumption M0 � 0 (see Section 6.2.3).

Corollary 2. The relations f∗SOCP = f∗r-SDP = f∗SDP = f∗ hold in the complex-valued case

D = C if the graph G is acyclic and k ≤ 2.

Proof: The proof is an immediate consequence of Theorem 6 and the fact that every

complex set with one or two elements is sign definite. �

Corollary 2 states that Optimization (6.1) in the complex-valued case can be solved

through three relaxations if its structure can be captured by an acyclic graph with at most

two weights on each of its edges.

133

6.5.2 Weakly Cyclic Graph with Real Edge Weights

It is shown in the preceding subsection that the SDP relaxation is exact, provided G is

acyclic and each weight set is sign definite with respect to C. This result requires the

assumption of monotonicity of fj(y, z) in z for j = 0, 1, ...,m. The first objective of this

part is to show that this assumption is not needed as long as the weight sets are real. To

this end, consider the optimization

min
x∈Cn

g0(y, z) s.t. gj(y, z) ≤ 0, j = 1, 2, ...,m (6.29)

for arbitrary functions gi(·, ·), i = 0, 1, ...,m. The difference between the above optimization

and (6.1) is that the functions gj(·, ·)’s may not be increasing in z. One can derive the SDP,

reduced SDP and SOCP relaxations for the above optimization by replacing f0, ..., fm with

g0, ..., gm in (6.3)-(6.5). This part aims to investigate the case when the edge weights are

all real numbers, while the unknown parameter x is complex.

Theorem 7. Consider the complex-valued case D = C and assume that the edge weights

of G are all real numbers. The SDP, reduced SDP and SOCP relaxations associated with

Optimization (6.29) are all exact if the graph G is acyclic.

Proof: It is straightforward to show that every real set is sign definite with respect to C.

Therefore, the edge weight sets of G are all sign definite. Let X denote an arbitrary feasible

point of the SOCP relaxation. Define (αij , βij) as (0, 1) for every (i, j) ∈ G. Then,

Re{ct
ij(αij + βij i)} = Re{ct

ij}αij − Im{ct
ij}βij = 0

for every t ∈ {1, ..., k} (note that ct
ij ∈ R by assumption). Following the proof of Theorem 6,

define x as the vector given in (6.28). Therefore,

Re{ct
ijxix

∗
j} = Re{ct

ijXij}+ γijRe
{
ct
ij(αij + βij i)

}
= Re{ct

ijXij}.

Now, the rest of the proof is in line with the proof of Theorem 6. More precisely,

l1
(
xxH

)
= l1(X), l2

(
xxH

)
= l2(X).

134

Given an arbitrary feasible point X for the SOCP relaxation, the above equality implies

that x is a feasible point of the original optimization (6.29) and that X and x both give

rise to the same objective value. This completes the proof. �

Consider the general optimization (6.29) in the case when G is acyclic with real edge

weights. As discussed before, the associated SDP relaxation may not be tight if its variable

x is restricted to real numbers. However, Theorem 7 shows that the relaxation is exact if x

is a complex-valued variable. In what follows, the results of Theorem 7 will be generalized

to cyclic graphs for Optimization (6.1).

Theorem 8. Assume that {c1
ij , ..., c

k
ij} is a positive or negative real set for every (i, j) ∈ G.

The relations f∗r-SDP = f∗SDP = f∗ hold for Optimization (6.1) in the complex-valued case

D = C if the graph G is bipartite and weakly cyclic.

Proof: Following the proof of Theorem 5, consider the matrix T defined in (6.20), and

change the variable X in the SDP relaxation to X̄ through the relation X = TX̄TH . This

implies that the real weights ct
ij ’s will change to the imaginary weights c̄t

ij ’s defined in the

proof of Theorem 5. Hence, the reformulated SDP optimization is over a graph with purely

imaginary weights. The existence of a rank-1 solution X̄∗ (and hence a rank-1 matrix X∗)

is guaranteed by Theorem 10. �

Note that the SOCP relaxation may not be exact under the assumptions of Theorem 8.

As a direct application of this theorem, the class of quadratic optimizations proposed later

in Example 3 is polynomial-time solvable.

6.5.3 Cyclic Graph with Real and Imaginary Edge Weights

In this part, there is no specific assumption on the topology of the graph G, but it is assumed

that each edge weight is either real or purely imaginary. The definition of the edge sign σij

introduced earlier for real-valued weight sets can be extended as follows:

σij =

1 if c1
ij , ..., c

k
ij ≥ 0

−1 if c1
ij , ..., c

k
ij ≤ 0

i if c1
ij × i, ..., ck

ij × i ≥ 0

−i if c1
ij × i, ..., ck

ij × i ≤ 0

0 otherwise

, ∀(i, j) ∈ G.

135

The parameter σij being nonzero implies that the elements of each edge weight set {c1
ij , ..., c

k
ij}

are homogeneous in type (real or imaginary) and in sign (positive or negative).

Theorem 9. The relations f∗SOCP = f∗r-SDP = f∗SDP = f∗ hold for Optimization (6.1) in the

complex-valued case D = C with real and purely imaginary edge weight sets if

σij 6= 0, ∀(i, j) ∈ G, (6.30a)∏
(i,j)∈Or

σij = (−1)|Or|, ∀r ∈ {1, ..., p}. (6.30b)

Proof: Consider an arbitrary feasible point X for the SOCP relaxation. Choose a

spanning tree of G and denote it as T . In light of (6.30a), n numbers σ1, σ2, ..., σn can be

iteratively obtained from σij ’s with the property that σiσj = −σij for every (i, j) ∈ T . This

relation together with (6.30b) yields that σiσj = −σij for every (i, j) ∈ G. Now, define x as[
σ1

√
X11 σ2

√
X22 · · · σn

√
Xnn

]H
. In line with the proofs of Theorems 2 and 6, it can

be shown that l1
(
xxH

)
= l1(X) and l2

(
xxH

)
≤ l2(X); therefore fj(y, z) ≤ fj(l1(X), l2(X))

for j = 0, 1, ...,m, where y = l1
(
xxH

)
and z = l2

(
xxH

)
. This means that corresponding to

every feasible point X of the SOCP relaxation, the original optimization has a feasible point

x with a lower or equal objective value. Therefore, f∗ ≤ f∗SOCP. The proof is complete by

combining this inequality with f∗SOCP ≤ f∗r-SDP ≤ f∗SDP ≤ f∗. �

6.5.4 Weakly Cyclic Graph with Imaginary Edge Weights

If G has at least one odd cycle whose edge weights sets are all imaginary sets, then the

conditions given in Theorem 9 are violated. The reason is that the product of an odd

number of imaginary numbers (edge signs) can never become a real number. The high-level

goal of this part is to show that the SDP relaxation can still be tight in presence of such

cycles, while the SOCP relaxation is not guaranteed to be exact. In this subsection, we

assume that G is weakly cyclic.

To proceed with this chapter, a new SOCP relaxation needs to be introduced. This

optimization assigns one real scalar variable qi to every vertex i ∈ G and one 2 × 2 block

matrix variable U(Gs) V (Gs)

V (Gs)H W (Gs)

136

to every subgraph Gs ∈ Ω, where U(Gs),W (Gs) ∈ S |Gs| and V (Gs) ∈ R|Gs|×|Gs|. Let U , V and

W denote the parameter sets {U(Gs) | ∀Gs ∈ Ω}, {V (Gs) | ∀Gs ∈ Ω} and {W (Gs) | ∀Gs ∈ Ω},

respectively.

Notation 7. For every Gs ∈ Ω, we arrange the elements in the vertex set of Gs in an increas-

ing order. Then, we index the rows and columns of each of the matrices U(Gs), V (Gs), V (Gs)

according to the ordered vertex set of Gs. For example, if Gs has three vertices 5, 7, 1, the

ordered set becomes {1, 5, 7}, and therefore the three rows of U(Gs) are called row 1, row 5

and row 7. As an example, U17(Gs) refers to the last entry on the first row of U(Gs) .

For every r ∈ {1, 2,, p}, let µr denote the largest index in the vertex set of Or. Define

q as the vector corresponding to the set {q1, ..., qn}. Recall that

l2(xxH) =
{
Re

{
ct
ijxix

H
j

} ∣∣ ∀(i, j) ∈ G, t ∈ {1, ..., k}
}

.

Define l̄(V) as a vector obtained from l2(xxH) by replacing each entry Re
{
ct
ijxix

H
j

}
with

a new term Im{ct
ij} × (Vij(Gs) − Vji(Gs)), where Gs denotes the unique subgraph in Ω

containing the edge (i, j) (the uniqueness of such subgraph is guaranteed by the weakly

cyclic property of G).

Expanded SOCP: This optimization is defined as

min
q,U,V,W

f0(q, l̄(V)), (6.31a)

subject to:

fj(q, l̄(V)) ≤ 0, j = 1, 2, ...,m, (6.31b)

Uii(Gs) + Wii(Gs) = qi, ∀Gs ∈ Ω, i ∈ Gs, (6.31c) Uii(Gs) Vij(Gs),

Vij(Gs) Wjj(Gs)

 � 0, ∀Gs ∈ Ω, (i, j) ∈ Gs, (6.31d)

 Ujj(Gs) Vji(Gs)

Vji(Gs) Wii(Gs)

 � 0, ∀Gs ∈ Ω, (i, j) ∈ Gs, (6.31e)

Wµrµr(Or) = 0, r = 1, 2, ..., p. (6.31f)

Similar to the argument made for the SOCP relaxation (6.5), the above optimization

137

is in the form of an SOCP program because its constraints (6.31d) and (6.31e) can be

replaced by linear and norm constraints. Moreover, this optimization can be regarded as

an expanded version of the SOCP relaxation (6.5). Denote the optimal objective value of

this optimization as f∗e-SOCP.

Theorem 10. Consider Optimization (6.1) in the complex-valued case D = C, and assume

that the graph G is weakly cyclic with only purely imaginary edge weights. The following

statements hold:

i) The expanded SOCP is a relaxation for Optimization (6.1), meaning that f∗e-SOCP ≤

f∗.

ii) The expanded SOCP relaxation is exact if and only if it has a solution (q∗, U∗, V ∗,W ∗)

for which all 2× 2 matrices given in (6.31d) and (6.31e) have rank 1.

iii) f∗SOCP ≤ f∗e-SOCP.

iv) f∗e-SOCP ≤ f∗r-SDP.

v) The relations f∗e-SOCP = f∗r-SDP = f∗SDP = f∗ hold if σij 6= 0 for every (i, j) ∈ G.

Proof: Since the proof is long and involved, it has been moved to the appendix of

Chapter 6. �

Assume that the graph G is weakly cyclic and its edge weights are all imaginary numbers.

Theorem 10 shows that f∗SOCP ≤ f∗e-SOCP ≤ f∗r-SDP ≤ f∗SDP ≤ f∗, and that the relations

f∗e-SOCP = f∗r-SDP = f∗SDP = f∗ hold if each edge weight set has homogeneous elements

(σij = i or −i). Note that the SOCP relaxation may not be exact, and one needs to use

the expanded SOCP relaxation in this case. Interestingly, this result makes no assumption

concerning the signs of the edges belonging to the same cycle in the cycle basis (unlike

(6.30b)).

Although Theorem 10 deals with imaginary coefficients, some of the results derived in

this chapter for complex/real optimizations with real coefficients are based on this powerful

theorem. This is due to the fact that real numbers may be converted to imaginary numbers

through a simple multiplication.

138

6.5.5 General Graph with Complex Edge Weight Sets

Given an arbitrary subgraph G̃s of the graph G, four important types will be defined for

this subgraph in the following:

• Type I: G̃s is acyclic with complex weight sets with the property that {c1
ij , ..., c

k
ij} is

sign definite with respect to C for every (i, j) ∈ G̃s.

• Type II: G̃s is weakly cyclic with imaginary weight sets and nonzero sign σij (i.e.,

σij = ±i) for every (i, j) ∈ G̃s.

• Type III: G̃s is bipartite and weakly cyclic with the property that {c1
ij , ..., c

k
ij} is a

real weight set with nonzero sign σij (i.e., σij = ±1) for every (i, j) ∈ G̃s.

• Type IV: G̃s has only real and imaginary weights with the property that

σij 6= 0, ∀(i, j) ∈ G̃s, (6.32a)∏
(i,j)∈Or

σij = (−1)|Or|, ∀Or ∈ {O1, ...,Op} ∩ G̃s. (6.32b)

By assuming G̃s = Gs, it follows from the theorems developed in this section that the

SDP relaxation is exact for Optimization (6.1) if G is Type I, II, III or IV. In this part, the

objective is to show that the relaxation is still tight if G can be decomposed into a number

of Type I-IV subgraphs in an acyclic way.

Theorem 11. Assume that G can be decomposed as the union of a number of edge-disjoint

subgraphs G̃1, ..., G̃ω in such a way that:

i) G̃s is Type I, II, III or IV for every s ∈ {1, ..., ω}.

ii) The cycle Or is entirely inside one of the subgraphs G̃1, ..., G̃ω for every r ∈ {1, ..., p}.

Then, the relations f∗r-SDP = f∗SDP = f∗ hold for Optimization (6.1) in the complex-valued

case D = C.

139

Proof: Given an arbitrary solution X∗ of the reduced SDP relaxation, consider the

optimization:

min
X

f0(l1(X), l2(X)), (6.33a)

s.t. fj(l1(X), l2(X)) ≤ 0, j = 1, ...,m, (6.33b)

X{Or} � 0, r = 1, ..., p, (6.33c)

X{(i, j)} � 0, ∀(i, j) ∈ G, (6.33d)

Xii = X∗
ii, ∀i ∈ G, (6.33e)

Xij = X∗
ij , ∀(i, j) ∈ G\G̃s, (6.33f)

for any subgraph G̃s ∈ {G̃1, ..., G̃ω} (G\G̃s means to exclude the edges of G̃s from G). The

above optimization is obtained from the reduced SDP relaxation by setting certain entries

of the variable X equal to their optimal values extracted from X∗. More precisely, this

optimization aims to optimize the off-diagonal entries of X corresponding to the edges of

G̃s. It is obvious that X = X∗ is a solution of the above optimization. On the other hand,

since G̃s is Type I, II, III or IV, it follows from Theorems 6, 8, 9 and 10 that the above

optimization has an optimal solution for which the matrices given in (6.33c) and (6.33d)

become rank-1 for every (i, j) and Or belonging to G̃s. By making this argument on all

subgraphs G̃1, ..., G̃ω and using Property (ii) stated in the theorem, one can design a solution

for the reduced SDP relaxation for which Condition (6.8) holds. Therefore, the SDP and

reduced SDP relaxations will both be exact in light of Theorem 1. �

6.5.6 Roles of Graph Topology and Sign Definite Weight Sets

Part (iii) of Theorem 1 states that Optimization (6.1) is polynomial-time solvable if the

SOCP relaxation (6.5) has a solution X∗ satisfying two conditions:

1) X∗{(i, j)} has rank 1 for every (i, j) ∈ G.

2)
∑

]X∗
ij is equal to zero for every r ∈ {1, 2, ..., p}, where the sum is taken over all

directed edges (i, j) of the oriented cycle ~Or.

Since X∗{(i, j)} is a 2×2 matrix corresponding to a single edge of the graph, Condition (1)

is strongly related to the properties of the edge set {c1
ij , ..., c

k
ij}. In contrast, the graph

140

topology (namely its cycle basis) plays an important role in Condition (2). The goal of this

part is to understand how these conditions are satisfied for various graphs studied earlier

in the complex-valued case D = C.

To explore Condition (1), consider an edge (i, j) ∈ G. Observe that the set {c1
ij , ..., c

k
ij}

can be mapped into k vectors

~c t
ij =

[
Re{ct

ij} Im{ct
ij}

]H
, t = 1, 2, ..., k

in R2. Define the following vector corresponding to X∗
ji:

~X∗
ji =

[
Re{X∗

ij} −Im{X∗
ij}

]H
.

Recall that X∗
ij plays the role of (x∗i)(x

∗
j)

H whenever the SOCP relaxation is tight. Now,

one can write

Re{ct
ijX

∗
ij} = ~c t

ij · ~X∗
ji = |~c t

ij || ~X∗
ji| cos(]~c t

ij −] ~X∗
ji) (6.34)

where “·” stands for inner product. Define Cij as the smallest convex cone in R2 containing

the vectors ~c 1
ij , ...,~c k

ij . Let B{Cij} denote the boundary of the cone Cij . The set {c1
ij , ..., c

k
ij}

being sign definite is equivalent to the condition

{Cij ∩ (−Cij)} ⊆ B{Cij}, (6.35)

meaning that Cij and its mirror set can have common points only on their boundaries. This

fact is illustrated in Figure 6.2(a). Suppose that the weight set {c1
ij , ..., c

k
ij} is sign definite.

Since f0, ..., fm are all increasing in z or equivalently in ~c t
ij · ~X∗

ji for every (i, j) ∈ G and

t ∈ {1, ..., k}, it is easy to verify that (see the proof of Theorem 6):

~X∗
ji ∈ −Cij . (6.36)

This property is illustrated in Figure 6.2(a). Moreover, the monotonicity of f0, ..., fm forces

| ~X∗
ij | to have the largest possible value, i.e.,

| ~X∗
ji| = |X∗

ij | =
√

X∗
iiX

∗
jj ,

141

x

x

x

x

x

x

x

c

c

c

c

c

c

c

Cone ()

Cone ()

(a)

x1 x2

x4 x3

Generator

Generator

Load

Load

g12+b12 i

g34+b34 i

g
2
3 +

b
2
3
i

g
1
4 +

b
1
4
i

(b)

Figure 6.2: (a) This figure shows the cones Cij and −Cij , in addition to the position of the
complex point X∗

ji. (b) An example of the power circuit studied in Section 6.6.

which makes X∗{(i, j}) rank 1. This implies that the sign definiteness of the set {c1
ij , ..., c

k
ij}

guarantees the satisfaction of Condition (1) stated above.

So far, it is shown that ~X∗
ji belongs to the cone −Cij . Now, to satisfy Condition (2)

required for the exactness of the SOCP relaxation, the sum of the angles of the vectors

~X∗
ji’s must be zero over each cycle in the cycle basis. This trivially happens in two cases:

• If the graph G is acyclic, then there is no cycle to be concerned about.

• Consider the cycle Or for some r ∈ {1, 2, ..., k}. If each cone Cij is one dimensional

for every (i, j) ∈ Or, then it suffices to have
∑

](−Cij) = 0, where the sum is taken

over all directed edges (i, j) of the oriented cycle ~Or (note that](−Cij) denotes the

angle of the 1-d cone −Cij).

To understand the merit of the above insights, consider Optimization (6.1) in the case

when the graph G is bipartite and each complex weight ct
ij has positive real and imaginary

parts for every (i, j) ∈ G and t ∈ {1, ..., k}. Denote the two disjoint vertex sets of the

bipartite graph G as S1 and S2, and with no loss of generality, assume that i ∈ S1 and

j ∈ S2 for every (i, j) ∈ G. Suppose that the constraints of Optimization (6.1) are such that

the inequality

|]x∗i −]x∗j | ≤
π

2
, ∀(i, j) ∈ G (6.37)

is satisfied for an optimal solution x∗ of this optimization. For instance, as will be discussed

later in Example 5, phasor voltages in a power network are forced to satisfy the above

condition due to the operational constraints of such networks. Under this circumstance,

one can modify the SOCP relaxation by including the extra constraints Re{Xij} ≥ 0,

142

∀(i, j) ∈ G, to account for (6.37). Since Cij is a subset of a first quadrant in R2, {c1
ij , ..., c

k
ij}

is a sign definite set and therefore Condition (1) holds. Let X∗ denote a solution of the

modified SOCP problem. Following the argument leading to (6.36), it can be shown that X∗
ji

is a negative imaginary number for every (i, j) ∈ G, meaning that ~X∗
ji has the maximum

possible angle with respect to all vectors ~c 1
ij , ...,~c k

ij . Since G is assumed to be bipartite,

Condition (2) holds as a result of this property. Hence, the SOCP, reduced SDP, and SDP

relaxations are all exact for such graphs G.

The above insight into Conditions (1) and (2) was based on the SOCP relaxation.

The same argument can be made about the expanded SOCP relaxation to understand

Theorem 10 for weakly cyclic graphs with imaginary weights, for which the regular SOCP

relaxation may not be tight.

6.6 Application in Power Systems

A majority of real-world optimizations are naturally “optimization over graph”, meaning

that the optimization is defined over the graph characterizing a physical system. For ex-

ample, optimizations in circuits, antenna systems and communication networks can easily

be regarded as “optimization over graph”. Then, the question of interest is: how does

the computational complexity of an optimization relate to the structure of the system over

which the optimization is performed? This question will be explored here in the context

of electrical power grids. Assume that the graph G corresponds to an AC power network,

where:

• The power network has |G| nodes.

• For every (i, j) ∈ G, nodes i and j are connected to each other in the power network

via a transmission line with the impedance gij + bij i.

• Each node i ∈ G of the network is connected to an external device, which exchanges

electrical power with the power network.

Figure 6.2(b) exemplifies a sample power network in which two external devices generate

power while the remaining ones consume power. As shown in Figure 6.3(a), each line

(i, j) ∈ G is associated with four power flows:

143

xi xjgij+bij i

(a)
xx

-1
1x 2x 4x3xc b

(b)

Figure 6.3: (a) This figure illustrates that each transmission line has four flows. (b) Graph
G corresponding to minimization of f0(x1, x2) given in (6.41).

• pij : Active power entering the line from node i.

• pji: Active power entering the line from node j.

• qij : Reactive power entering the line from node i.

• qji: Reactive power entering the line from node j.

Note that pij + pji and qij + qji represent the active and reactive losses incurred in the line.

Let xi denote the complex voltage (phasor) for node i ∈ G. One can write:

pij(x) = Re
{

xi(xi − xj)H 1
gij − bij i

}
, pji(x) = Re

{
xj(xj − xi)H 1

gij − bij i

}
,

qij(x) = Im
{

xi(xi − xj)H 1
gij − bij i

}
, qji(x) = Im

{
xj(xj − xi)H 1

gij − bij i

}
.

Note that since the flows all depend on x, the argument x has been added to the above

equations (e.g., pij(x) instead of pij). The flows pij(x), pji(x), qij(x) and qji(x) can all be

expressed in terms of |xi|2, |xj |2 and Re
{

ck
ijxix

H
j

}
for k = 1, 2, 3, 4, where

c1
ij =

−1
gij − bij i

, c2
ij =

−1
gij + bij i

, c3
ij =

i
gij − bij i

, c4
ij =

−i
gij + bij i

(note that Re{αxjx
H
i } = Re{αHxix

H
j } and Im{αxjx

H
i } = Re{(−αi)xix

H
j } for every value

of α). Define

p(x) =
{
pij(x), pji(x)

∣∣ ∀(i, j) ∈ G}
, q(x) =

{
qij(x), qji(x)

∣∣ ∀(i, j) ∈ G}
.

144

Consider the optimization

min
x∈Cn

h0(p(x),q(x),y(x))

s.t. hj(p(x),q(x),y(x)) ≤ 0, j = 1, 2, ...,m

(6.38)

for given functions h0, ..., hm, where y(x) is the vector of |xi|2’s. This optimization aims

to optimize the flows in a power grid. The constraints of this optimization are meant

to limit line flows, voltage magnitudes, power delivered to each load, and power supplied

by each generator. Observe that p(x) and q(x) are both quadratic in x. Assume that

hj(·, ·, ·) is increasing (or decreasing) in its first and second vector arguments. Since the

above optimization can be cast as (6.1), the SDP, reduced SDP and SOCP relaxations

introduced before can be used to eliminate the effect of quadratic terms. To study under

what conditions the relaxations are exact, note that each edge (i, j) of G has the weight set

{c1
ij , c

2
ij , c

3
ij , c

4
ij}. Due to the physics of a transmission line, gij and bij are both nonnegative

real numbers. As a result of this property, the set {c1
ij , c

2
ij , c

3
ij , c

4
ij} turns out to be sign

definite (see Definition 2). Now, in light of Theorem 11, the relaxations are all exact as long

as G is acyclic. This result also holds for cyclic power networks with a sufficient number of

phase shifters (the graph for a mesh power network with phase shifters can be converted to

an acyclic one) [123].

Optimization of power flows is a fundamental problem, which is solved every 5 to 15

minutes in practice for power grids. This problem, named Optimal Power Flow (OPF),

has several variants, which are used for different purposes (real-time operation, electricity

market, security assessment, etc.). Nevertheless, a more realistic form of this optimization

often has two more constraints, which cannot be described in terms of p(x),q(x),y(x):

• Line flow constraint: For every (i, j) ∈ G, the line current magnitude
∣∣∣ xi−xj

gij+bij i

∣∣∣ cannot

exceed a maximum number Imax. This constraint can be written as:

|xi|2 + |xj |2 − 2Re{xix
H
j } ≤ |gij + bij i|2I2

max (6.39)

• Angle constraint: For every (i, j) ∈ G. the absolute angle difference |]xi−]xj | should

not exceed a maximum angle θmax
ij ∈ [0, 90◦] (due to stability and thermal limits). This

145

constraint can be written as

Im{xix
H
j } ≤ | tan θmax

ij | × Re{xix
H
j },

or equivalently

− tan θmax
ij × Re{xix

H
j }+ Re{(+i) xix

H
j } ≤ 0,

− tan θmax
ij × Re{xix

H
j }+ Re{(−i) xix

H
j } ≤ 0.

(6.40)

Since (6.39) and (6.40) are quadratic in x, they can easily be incorporated into Optimiza-

tion (6.38) and its relaxations. However, the edge set {c1
ij , c

2
ij , c

3
ij , c

4
ij} should be extended

to {c1
ij , c

2
ij , c

3
ij , c

4
ij ,−1, i,−i} for every (i, j) ∈ G. It is interesting to note that this set is

still sign definite and therefore the conclusion made earlier about the exactness of various

relaxations is valid under this generalization.

Another interesting case is the optimization of active power flows for lossless networks.

In this case, gij is equal to zero for every (i, j) ∈ G. Hence, pji(x) can be simply replaced

by −pij(x). Motivated by this observation, define the reduced vector of active powers as

pr(x) =
{
pij(x)

∣∣ ∀(i, j) ∈ G}
, and consider the optimization

min
x∈Cn

h̄0(pr(x),y(x)) s.t. h̄j(pr(x),y(x)) ≤ 0, j = 1, 2, ...,m

for some functions h̄0(·, ·), ..., h̄m(·, ·), which are assumed to be increasing in their first vector

argument. Now, each edge (i, j) of the graph G is accompanied by the singleton weight set{
−i
bij

}
. Due to Theorem 10, the SDP and reduced SDP relaxations are exact if G is weakly

cyclic. This is the generalization of the result obtained in [105] for optimization over lossless

networks.

6.7 Examples

In this section, four examples will be provided to illustrate various contributions of this

work in certain special cases.

146

Example 1: Consider the problem of minimizing the bivariate polynomial

f0(x1, x2) = x4
1 + ax2

2 + bx2
1x2 + cx1x2 (6.41)

with the real-valued variables x1 and x2, where the parameters a, b, c ∈ R are known. In

order to find the global minimum of this optimization, the standard convex optimization

technique cannot readily be used due to the non-convexity of f(x1, x2) for generic values

of a, b and c. To address this issue, the above unconstrained minimization problem will be

converted to a constrained quadratic optimization. More precisely, the problem of minimiz-

ing f0(x1, x2) can be reformulated in terms of x1, x2 and two auxiliary variables x3, x4 as:

min
x∈R4

x2
3 + ax2

2 + bx3x2 + cx1x2 (6.42a)

subject to x2
1 − x3x4 = 0, x2

4 − 1 = 0 (6.42b)

where x =
[

x1 x2 x3 x4

]H
. The above optimization can be recast as follows:

min
x∈R4,X∈R4×4

X33 + aX22 + bX23 + cX12 (6.43a)

subject to X11 −X34 ≤ 0, X44 − 1 = 0 (6.43b)

and subject to the additional constraint X = xxH . Note that X11 −X34 ≤ 0 should have

been X11 −X34 = 0, but this modification does not change the solution. To eliminate the

non-convexity induced by the constraint X = xxH , one can use an SDP relaxation obtained

by replacing the constraint X = xxH with the convex SDP constraint X = XH � 0. To

understand the exactness of this relaxation, the weighted graph G capturing the structure

of Optimization (6.42) should be constructed. This graph is depicted in Figure 6.3(b). Due

to Corollary 1, since G is acyclic, the SDP relaxation is exact for all values of a, b, c. Note

that this does not imply that every solution X of the SDP relaxation has rank 1. However,

there is a simple systematic procedure for recovering a rank-1 solution from an arbitrary

optimal solution of this relaxation. Note also that one can use an SOCP relaxation instead.

147

−2

0

2

−2
0

2
−20

0

20

40

60

x
1x

2

f 0
(x

1
,x

2
)

Figure 6.4: Function f0(x1, x2) given in (6.41) for a = 3, b = −2 and c = 3.

Now, assume that a set of constraints

fj(x1, x2) = x4
1 + ajx

2
2 + bjx

2
1x2 + cjx1x2 ≤ dj j = 1, ...,m

has been added to Optimization (6.41) for given coefficients aj , bj , cj , dj . In this case, the

graph G depicted in Figure 6.3(b) needs to be modified by replacing its edge sets {b}

and {c} with {b, b1, ..., bm} and {c, c1, ..., cm}, respectively. Due to Corollary 1, the SDP

relaxation corresponding to the new optimization is exact as long as the sets {c, c1, ..., cm}

and {b, b1, ..., bm} are both sign definite. Moreover, in light of Theorem 4, if these sets are

not sign definite, then the SDP relaxation will still have a low rank (rank 1 or 2) solution.

Example 2: Consider the optimization

min
x∈C7

xHMx s.t. |xi| = 1, i = 1, 2, ..., 7 (6.44)

where M is a given Hermitian matrix. Assume that the weighted graph G depicted in

Figure 6.1(c) captures the structure of this optimization, meaning that (i) Mij = 0 for

every pair (i, j) ∈ {1, 2, ...7} such that (i, j) 6∈ G, (j, i) 6∈ G, and i 6= j, (ii) Mij is equal

to the edge weight cij for every (i, j) ∈ G. The SDP relaxation of this optimization is as

follows:

min
X∈C7×7

Trace{MX} s.t. X11 = · · · = X77 = 1, X = XH � 0

148

Define O1 and O2 as the cycles induced by the vertex sets {1, 2, 3} and {1, 4, 5}, respectively.

Now, the reduced SDP and SOCP relaxations can be obtained by replacing the constraint

X = XH � 0 in the above optimization with certain small-sized constraints based on O1

and O2, as mentioned before. In light of Theorem 11, the following statements hold:

• The SDP, reduced SDP and SOCP relaxations are all exact in the case when c12, c13, c14,

c15, c23, c45 are real numbers satisfying the inequalities c12c13c23 ≤ 0 and c14c15c45 ≤ 0.

• The SDP and reduced SDP are exact in the case when c12, c13, c14, c15, c23, c45 are

imaginary numbers (note that the SOCP relaxation may not be tight).

• The SDP, reduced SDP and SOCP relaxations are all exact in the case when each of

the sets {c12, c13, c23} and {c14, c15, c45} has at least one zero element.

The above results demonstrate how the combined effect of the graph topology and the edge

weights make various relaxations become exact for the quadratic optimization (6.44).

Example 3: Consider the optimization

min
x∈Cn

xHMx s.t. |xj | = 1, j = 1, 2, ...,m (6.45)

where M is a symmetric real-valued matrix. It has been proven in [119] that this problem

is NP-hard even in the case when M is restricted to be positive semidefinite. Consider

the graph G associated with the matrix M . As an application of Theorem 8, the SDP

and reduced SDP relaxations are exact for this optimization and therefore this problem is

polynomial-time solvable, provided that G is bipartite and weakly cyclic. To understand how

well the SDP relaxation works, we pick G as a cycle with 4 vertices. Consider a randomly

generated matrix M :

M =

0 −0.0961 0 −0.1245

−0.0961 0 −0.1370 0

0 −0.1370 0 0.7650

−0.1245 0 0.7650 0

 .

149

After solving the SDP relaxation numerically, an optimal solution X∗ is obtained as

X∗ =

1.0000 0.1767 −0.5516 0.6505

0.1767 1.0000 0.7235 −0.6327

−0.5516 0.7235 1.0000 −0.9923

0.6505 −0.6327 −0.9923 1.0000

 .

This matrix has rank-2 and thus it seems as if the SDP relaxation is not exact. However,

the fact is that this relaxation has a hidden rank-1 solution. To recover that solution, one

can write X∗ as the sum of two rank-1 matrices, i.e., X∗ = (u1)(u1)H + (u2)(u2)H for two

real vectors u1 and u1. It is straightforward to inspect that the complex-valued rank-1

matrix (u1 +u2i)(u1 +u2i)H is another solution of the SDP relaxation. Thus, x∗ = u1 +u2i

is an optimal solution of Optimization (6.45).

Example 4: Consider the optimization

min
x∈Cn

xHM0x s.t. xHMjx ≤ 0, j = 1, 2, ...,m

where M0,,Mm are symmetric real matrices, while x is an unknown complex vector.

Similar to what was done in Example 1, a generalized weighted graph G can be constructed

for this optimization. Regardless of the edge weights, as long as the graph G is acyclic, the

SDP, reduced SDP and SOCP relaxations are all tight (see Theorem 6). As a result, this

class of optimization problems is polynomial-time solvable.

6.8 Summary

This work deals with three conic relaxations for a broad class of nonlinear real/complex

optimization problems, where the argument of each objective and constraint function is

quadratic (as opposed to linear) in the optimization variable. Several types of optimizations,

including polynomial optimization, can be cast as the problem under study. To explore the

exactness of the proposed relaxations, the structure of the optimization is mapped into a

generalized weighted graph with a weight set assigned to each edge. In the case of real-

valued optimization, it is shown that the relaxations are exact if a set of conditions are

satisfied, which depend on some weak properties of the underlying generalized weighted

150

graph. A similar result is derived in the complex-valued case after introducing the notion

of “sign-definite complex weight sets”, under the assumption that the graph is acyclic. The

complex case is further studied for general graphs, and it is shown that if the graph can be

decomposed as the union of edge-disjoint subgraphs, each satisfying one of the four derived

structural properties, then two of the relaxations are exact. As an application, it is finally

shown that the weight sets are sign definite for power networks due to the passivity of

transmission lines, and this makes a broad class of energy optimizations easy to solve.

6.9 Appendix

In what follows, Theorem 10 will be proved.

Proof of Part (i): Let x∗ denote an arbitrary solution of (6.1). For every Gs ∈ Ω, define

α(Gs) as:

• If Gs ∈ Ω\(O1 ∪ · · · ∪ Op), then we set α(Gs) equal to any arbitrary complex number

with norm 1.

• If (Gs) = Or for some r ∈ {1, ..., p}, then we set α(Gs) equal to e−(]x∗µr i).

For every i ∈ G, define qo
i as |x∗i |2. In addition, for every Gs ∈ Ω and (i, j) ∈ Gs, define:

Uo
ii(Gs) = Re{x∗i α(Gs)}2, Uo

jj(Gs) = Re{x∗jα(Gs)}2,

W o
ii(Gs) = Im{x∗i α(Gs)}2, W o

jj(Gs) = Im{x∗jα(Gs)}2,

V o
ij(Gs) = Re{x∗i α(Gs)}Im{x∗jα(Gs)}, V o

ji(Gs) = Re{x∗jα(Gs)}Im{x∗i α(Gs)}.

(6.46)

Consider those entries of Uo(Gs), V o(Gs),W o(Gs) that are not specified above as arbitrary.

The first goal is to show that (q, U, V, W) = (qo, Uo, V o,W o) is a feasible solution of the

expanded SOCP problem. To this end, it is straightforward to verify that (6.31d) and

(6.31e) are satisfied. Moreover, for every Gs ∈ Ω and (i, j) ∈ Gs, one can write:

qo
i = |x∗i |2 = |x∗i α(Gs)|2 = Uo

ii(Gs) + W o
ii(Gs). (6.47)

Besides,

W o
µrµr

(Or) = Im{x∗µr
α(Or)}2 = Im{x∗µr

e−(]x∗µr
i)}2 = 0

151

for every r ∈ {1, 2, ..., p}. Hence, (qo, Uo, V o,W o) satisfies (6.31c)-(6.31f). On the other

hand, for every (i, j) ∈ G, there is a unique subgraph Gs ∈ Ω such that (i, j) ∈ Gs (because

G is weakly cyclic by assumption). Now, since the edge weights are imaginary numbers, one

can write:

Re
{
ct
ij(x

∗
i)(x

∗
j)

H)
}

= −Im{ct
ij} × Im

{
(x∗i α(Gs))(x∗jα(Gs))H)

}
= Im{ct

ij}(V o
ij(Gs)− V o

ji(Gs))
(6.48)

for every t ∈ {1, ..., k}. It follows from (6.47) and (6.48) that

qo = l1
(
(x∗)(x∗)H

)
, l̄(V o) = l2

(
(x∗)(x∗)H

)
. (6.49)

Therefore,

0 ≥ fj

(
l1

(
(x∗)(x∗)H

)
, l2

(
(x∗)(x∗)H

))
= fj(qo, l̄(V o)), j = 1, 2, ...,m

This means that (q, U, V, W) = (qo, Uo, V o,W o) is a feasible solution of the expanded SOCP

problem. Similarly,

f∗ = f0

(
l1

(
(x∗)(x∗)H

)
, l2

(
(x∗)(x∗)H

))
= f0(qo, l̄(V o)) ≥ f∗e-SOCP.

Proof of Part (ii): Given an arbitrary solution x∗ of Optimization (6.1), consider

(qo, Uo, V o,W o) defined in (6.46). As shown in the proof of Part (i), this is a feasible

solution of the expanded SOCP relaxation. Furthermore, observe that

 Uo
ii(Gs) V o

ij(Gs)

V o
ij(Gs) W o

jj(Gs)

 =

 Re{x∗i α(Gs)}

Im{x∗jα(Gs)}

[
Re{x∗i α(Gs)} Im{x∗jα(Gs)}

]
,

 Uo
jj(Gs) V o

ji(Gs)

V o
ji(Gs) W o

ii(Gs)

 =

 Re{x∗jα(Gs)}

Im{x∗i α(Gs)}

[
Re{x∗jα(Gs)} Im{x∗i α(Gs)}

]
.

This implies that the above matrices have rank 1, which completes the proof of the “only

if” part. To prove the “if” part, let (q∗, U∗, V ∗W ∗) be a solution of the expanded SOCP

relaxation satisfying the rank condition stated in Part (ii). Therefore, for every Gs ∈ Ω

and (i, j) ∈ Gs, one can decompose the 2 × 2 matrices in (6.31d) and (6.31e) at the point

152

(q, U, V, W) = (q∗, U∗, V ∗W ∗) as

 U∗
ii(Gs) V ∗

ij(Gs)

V ∗
ij(Gs) W ∗

jj(Gs)

 =

 u∗i (Gs)

w∗
j (Gs)

 u∗i (Gs)

w∗
j (Gs)

H

,

 U∗
jj(Gs) V ∗

ji(Gs)

V ∗
ji(Gs) W ∗

ii(Gs)

 =

 u∗j (Gs)

w∗
i (Gs)

 u∗j (Gs)

w∗
i (Gs)

H

for some real numbers u∗i (Gs), u∗j (Gs), w∗
i (Gs), w∗

j (Gs). Following the proof of Part (i) and

by making a comparison with (6.50), it suffices to show the existence of a vector x∗ and a

complex set {σ(Gs) | ∀Gs ∈ Ω} satisfying the relations:

u∗i (Gs) + w∗
i (Gs)i = x∗i α(Gs), ∀Gs ∈ Ω, i ∈ Gs, (6.51a)

|σ(Gs)| = 1, ∀Gs ∈ Ω\(O1 ∪ · · · ∪ Op), (6.51b)

σ(Or) = e−(]x∗µr i), ∀r ∈ {1,, p}. (6.51c)

It can be verified that

q∗i = |u∗i (Gs) + w∗
i (Gs)i|2, ∀Gs ∈ Ω, i ∈ Gs.

Hence, the equations in (6.51) consistently find |x∗i | as |x∗i |2 =
√

q∗i for every i ∈ G. Now,

it remains to find the phase of x∗i . To this end, (6.51) can be equivalently expressed as:

• If Gs = Or for some r ∈ {1, 2, ..., p}, then

]x∗i −]x∗µr
= tan−1 w∗

i (Or)
u∗i (Or)

. (6.52)

• If Gs ∈ Ω\(O1 ∪ · · · ∪ Op), then

]x∗i +]σ(Gs) = tan−1 w∗
i (Gs)

u∗i (Gs)
. (6.53)

Note that if the index i in (6.52) is chosen as µr, then the left side of this equation becomes

zero. Equation (6.31f) guarantees that the right side of (6.52) is also zero in this case. The

goal is to show that (6.52) and (6.53) have a solution {]x∗1, ...,]x∗n}. For this purpose, we

order the subgraphs in the set Ω in such a way that every two consecutive subgraphs in

153

the ordered set share a vertex. Denote the ordered set as {G1, ...,G|Ω|}. Since the graph

G is weakly cyclic, G1 ∪ · · · ∪ Gs and the subgraph Gs+1 share exactly one vertex for every

r ∈ {1, 2,, |Ω| − 1}. Hence, the following algorithm can be used to find {]x∗1, ...,]x∗n}:

Step 1: Set s = 1 and]x∗i = 0 for an arbitrary vertex i of the subgraph G1.

Step 2: So far, the elements of x corresponding to all vertices of G1 ∪ · · · ∪ Gs−1 and

only one vertex of Gs have been found. Let j denote the index of the only vertex of

Gs for which x∗j has been obtained. Now, depending on whether or not Gs belongs to

Ω\(O1 ∪ · · · ∪ Op), (6.52) or (6.53) can be uniquely solved to find all entries of x∗

corresponding to the vertices of Gs.

Step 3: Increment s unless s = |Ω|.

Proof of Part (iii): Given an arbitrary feasible point (q, U, V, W) of the expanded SOCP

relaxation, consider the entries of X in the SOCP relaxation (6.5) as:

• For every i ∈ G, set Xii equal to qi.

• For every (i, j) ∈ G, find the unique subgraph Gs ∈ Ω such that (i, j) ∈ Gs, and set

Xij = XH
ji = Vji(Gs)− Vij(Gs).

• Choose the remaining entries of X arbitrarily.

By adopting the argument leading to (6.49), it can be shown that

fj(l1(X), l2(X)) = fj(q, l̄(V)), j = 0, 1, ...,m. (6.54)

Thus, it only remains to prove that the defined X is a feasible point of the SOCP relax-

ation (6.5). Given an edge (i, j) ∈ G, let Gs ∈ Ω be the subgraph containing this edge. One

can write:

X{(i, j)} =

 Uii(Gs) −Vij(Gs)i

Vij(Gs)i Wjj(Gs)

 +

 Wii(Gs) Vji(Gs)i

−Vji(Gs)i Ujj(Gs).

Since X{(i, j)} has been expressed as the sum of two positive semidefinite matrices, it must

be a positive semidefinite matrix. This implies that X is a feasible point of the SOCP

relaxation.

154

Proof of Part (iv): Let X denote an arbitrary feasible point of the reduced SDP relax-

ation. Given a subgraph Gs ∈ Ω, the matrix X{Gs} can be decomposed as D{Gs}D{Gs}H ,

where D{Gs} is a matrix in C|Gs|×|Gs| whose last row is entirely real valued. Such a decom-

position can be obtained using the eigen-decomposition method. Now, consider the matrix

variable

 U(Gs) V (Gs)

V (Gs)H W (Gs)

 in the expanded SOCP relaxation as

 Re{D(Gs)}Re{D(Gs)}H Re{D(Gs)}Im{D(Gs)}H

Im{D(Gs)}Re{D(Gs)}H Im{D(Gs)}Im{D(Gs)}H

 .

Moreover, consider qi as Xii for every i ∈ G. It is straightforward to show that (6.54) holds

for this choice of (q, U, V, W), and that (q, U, V, W) is a feasible point of the expanded

SOCP relaxation. This completes the proof.

Proof of Part (v): Consider the optimization

min
u,w

f0(q, l̄(V)) (6.55a)

subject to:

fj(q, l̄(V)) ≤ 0, j = 1, ...,m, (6.55b)

Uii(Gs) + Wii(Gs) = qi, ∀Gs ∈ Ω, i ∈ Gs, (6.55c)

Uii = ui(Gs)2, ∀Gs ∈ Ω, i ∈ Gs, (6.55d)

Wii = wi(Gs)2, ∀Gs ∈ Ω, i ∈ Gs, (6.55e)

Vij = ui(Gs)wj(Gs), ∀Gs ∈ Ω, (i, j) ∈ Gs, (6.55f)

Vji = uj(Gs)wi(Gs), ∀Gs ∈ Ω, (i, j) ∈ Gs, (6.55g)

Wµrµr(Or) = 0, r = 1, 2, ..., p, (6.55h)

where u = {ui(Gs) | ∀Gs ∈ Ω, i ∈ Gs} and w = {wi(Gs) | ∀Gs ∈ Ω, i ∈ Gs}. Note that

U, V,W are considered as implicit (dependent) variables in Optimization (6.55), because

they can be readily expressed in terms of u and w. Optimization (6.55) is real-valued and

can be cast in the form of (6.1). Therefore, one can find its SDP, reduced SDP and SOCP

relaxations. It is easy to verify that the SOCP relaxation for this optimization is indeed

the expanded SOCP relaxation (6.31). Assume that this relaxation is tight for (6.31).

155

Then, it follows from Theorem 1 that the expanded SOCP relaxation has a solution for

which the matrices in (6.31d) and (6.31e) have rank 1. In this case, the proof of Part (v)

is an immediate consequence of Parts (ii)-(iv). Therefore, it suffices to show that the

relaxation (6.31) is tight for Optimization (6.55). To this end, according to Corollary 1, it

is enough to show that the graph capturing the structure of Optimization (6.55) is acyclic.

To construct this graph, notice that not every quadratic term in the matrix

 u

w

 u

w

H

appears in the constraints of Optimization (6.55). The ones creating an edge in the graph of

this optimization are given by the set
{
ui(Gs)wj(Gs), uj(Gs)wi(Gs)

∣∣ ∀Gs ∈ Ω, (i, j) ∈ Gs

}
.

This graph is cyclic. However, since wµr(Or) is equal to zero for r = 1, ..., p, all vertices

associated with wµr(Or)’s can be removed from the graph. Now, the remaining graph

becomes acyclic (given that G is weakly cyclic). This completes the proof. �

156

Chapter 7

Conclusions and Future Work

This dissertation is concerned with the analysis and synthesis of complex networks using

tools and techniques from the broad area of “control and optimization”. The main results

of this dissertation are presented in five chapters. Three chapters are dedicated to the

following real-world networks: (i) the human brain networks, (ii) communication networks,

(iii) electric power networks. The last two chapters aim to further study power networks,

but in a general framework that can be applied to a broad set of complex networks. The

problems investigated in these two chapters are: (i) flow optimization over a flow network,

(ii) nonlinear optimization over a generalized weighted graph. In what follows, the main

results obtained for each of the aforementioned problems will be summarized and possible

future research directions will be discussed accordingly.

Brain Networks: Two popular methods for assessing the brain functional/effective

connectivity are: (1) mapping the thresholded correlation matrix into a graph, which shows

the marginal independence/dependence relationships among random variables, (2) mapping

the inverse covariance matrix into a graph, which shows the conditional dependencies of

Gaussian random variables. The latter method is based on Bayesian networks and sparse

regression. An important question arises as to which of these methods provides better

information about the structure (topology) of the brain networks. Due to the electrical

properties of the brain, this problem is investigated in the context of electrical circuits. An

electric circuit model is considered, for which it is shown that the inverse covariance matrix of

the node voltages reveals the topology of the circuit. Having made this observation, another

question arises as to how to find the topology of the circuit based on noisy measurements

taken from node voltages. In this problem, the aim is to find the topology of the circuit when

a limited number of samples are available. For this purpose, the graphical lasso technique

157

is used to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso

may find most of the circuit topology if the exact covariance matrix is well-conditioned,

and may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned

matrices, a small modification to the graphical lasso algorithm is proposed, which improves

the recovery of the circuit topology significantly. Finally, the technique developed in this

work is applied to the resting-state fMRI data of a number of healthy subjects, and useful

observations are made accordingly. Some problems left for future research are as follows:

• This work assumes that the brain connectivity network is static. As a more realistic

problem, it is important to study the dynamic models of the brain networks.

• Hidden (unobserved) variables play an important role in modeling the brain networks.

Understanding the role of such variables in mathematical modeling of the brain net-

works is an important problem, which needs to be incorporated in the framework

proposed in this work.

Communication Networks: Congestion control algorithms aim to allocate resources

to demands in a communication network in such a way that the total utilization of the

network is optimized. Despite the progress in the analysis and synthesis of the Internet

congestion control, almost all existing fluid models of congestion control assume that every

link in the path of a flow observes the original source rate. To address this issue, a more

accurate model is derived for the behavior of the network under an arbitrary congestion

controller, which takes the effect of buffering on data flows into account. By investigating

this model, it is proved that the well-known Internet congestion control algorithms may no

longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It

is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism

is used. The theories developed in this work are for a fluid model of the network with

no stochastic sources. The removal of these two assumptions in the proposed modeling

technique is considered as future research.

Electrical Power Networks: Optimal power flow (OPF) is concerned with finding

an optimal operating point of a power network minimizing the total power generation cost

subject to network and physical constraints. It has been recently shown that several prac-

tical instances of OPF problem can be solved in polynomial time as long as the objective

function is quadratic. The current work first generalizes this result to arbitrary convex

158

functions and then studies how the deployment of power electronic devices guarantees solv-

ability of OPF in polynomial time. To this end, a convex relaxation is proposed, which

solves the OPF problem exactly for every radial network and every meshed network with

a sufficient number of phase shifters, provided power over-delivery is allowed. The concept

of “power over-delivery” is equivalent to relaxing the power balance equations to inequal-

ity constraints. If a power network has a very limited number of phase shifters, then the

present work suggests adding a sufficient number of virtual phase shifters to the network

in order to find an approximate solution to the OPF problem. Studying the optimality

degree of the obtained solution is left as future work. Another future research direction is

to investigate how the effect of the virtual phase shifters killing the non-convexity of OPF

can be penalized in the objective function.

Flow Networks: The generalized network flow (GNF) problem aims to optimize the

flows over an arbitrary lossy flow network. The GNF problem is hard to solve due to the

presence of nonlinear equality flow constraints. Under the assumption of monotonicity and

convexity of the flow and cost functions, a convex relaxation is proposed, which always finds

the optimal nodal injections. As an application in OPF, it can be concluded from this work

that the relaxation of power balance equations (i.e., load over-delivery) is not needed in

practice under a very mild angle assumption.

Although the convex relaxation proposed in this work is guaranteed to find the optimal

nodal injections (and hence the optimal objective value), it may produce wrong flows. The

reason why the convex relaxation does not necessarily find the correct flows is that the

mapping from flows to injections is not invertible. Obtaining a set of flows associated with

the optimal injections is considered as future work.

Generalized Weighted Graphs: Motivated by power optimizations, this work aims

to find a global optimization technique for a nonlinear optimization defined over a gener-

alized weighted graph. Every edge of this type of graph is associated with a weight set

corresponding to the known parameters of the optimization (e.g., the coefficients). The

motivation behind this problem is to investigate how the (hidden) structure of a given

real/complex-valued optimization makes the problem easy to solve, and indeed the gener-

alized weighted graph is introduced to capture the structure of an optimization. Various

sufficient conditions are derived, which relate the polynomial-time solvability of different

classes of optimization problems to weak properties of the generalized weighted graph such

159

as its topology and the sign definiteness of its weight sets. As an application, it is proved

that a broad class of real and complex optimizations over power networks are polynomial-

time solvable due to the passivity of transmission lines and transformers. Although a broad

class of network topologies has been explored here, this work does not provide any concrete

result for mesh networks with general complex variables. The study of this type of graph

is left as future work.

160

Bibliography

[1] S. Ryalia, T. Chena, K. Supekara, and V. Menon, “Estimation of functional con-

nectivity in fMRI data using stability selection-based sparse partial correlation with

elastic net penalty,” NeuroImage, vol. 59, pp. 3852–3861, 2012.

[2] K. Friston, A. Holmes, K. Worsley, and J. Poline, “Statistical parametric maps in

functional imaging: A general linear approach,” Human Brain Mapping, vol. 2, pp.

189–210, 1995.

[3] J. Cao and K. Worsley, “The geometry of correlation fields, with an application to

functional connectivity of the brain,” Ann. Appl. Probab., vol. 9, pp. 1021–1057, 1999.

[4] C. Goutte, P. Toft, E. Rostrup, F. Nielsen, and L. K. Hansen, “On clustering fMRI

time series,” NeuroImage, vol. 9, pp. 298–310, 1999.

[5] P. Filzmoser, R. Baumgartner, and E. A. Moser, “Hierarchical clustering method for

analyzing functional MR images,” Magn Reson Imaging, vol. 17, p. 81726, 1999.

[6] A. Baune, F. T. Sommer, M. Erb, D. Wildgruber, B. Kardatzki, G. Palm, and

W. Grodd, “Dynamical cluster analysis of cortical fMRI activation,” NeuroImage,

vol. 9, pp. 477–89, 1999.

[7] L. Harrison, W. Penny, and K. Friston, “Multivariate autoregressive modeling of fMRI

time series,” NeuroImage, vol. 19, pp. 1477–1491, 2003.

[8] P. Valdes-Sosa, J. Sanchez-Bornot, A. Lage-Castellanos, M. Vega-Hernandez,

J. Bosch-Bayard, L. Melie-Garcia, and E. Canales-Rodriguez, “Estimating brain func-

tional connectivity with sparse multivariate autoregression,” Phil. Trans. Roy. Soc.

B, vol. 360, pp. 969–981, 2003.

161

[9] K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” NeuroImage,

vol. 19, pp. 1273–1302, 2003.

[10] A. Marreiros, S. Kiebel, and K. Friston, “Dynamic causal modelling for fMRI: A

two-state model,” NeuroImage, vol. 39, pp. 269–278, 2008.

[11] U. Noppeney, C. J. Price, W. Penny, and K. J. Friston, “Two distinct neural mecha-

nisms for category-selective responses,” Cereb. Cortex, vol. 16, pp. 437–445, 2006.

[12] K. Stephan, W. Penny, J. C. Marshall, G. R. Fink, and K. J. Friston, “Investigating

the functional role of callosal connections with dynamic causal models,” Ann. N. Y.

Acad. Sci., vol. 1064, pp. 16–36, 2005.

[13] X. Zheng and J. C. Rajapakse, “Learning functional structure from fMR images,”

NeuroImage, vol. 31, pp. 1601–1613, 2006.

[14] J. C. Rajapakse and J. Zhou, “Learning effective brain connectivity with dynamic

Bayesian networks,” NeuroImage, vol. 37, pp. 749–760, 2007.

[15] F. P. Kelly, “Charging and rate control for elastic traffic,” European Transactions on

Telecommunications, vol. 8, pp. 33–37, 1997.

[16] F. P. Kelly, A. Maullo, and D. Tan, “Rate control in communication networks: shadow

prices, proportional fairness and stability,” Journal of the Operational Research Soci-

ety, vol. 49, pp. 237–252, 1998.

[17] S. Deb and R. Srikant, “Congestion control for fair resource allocation in networks

with multicast flows,” IEEE/ACM Transactions on Networking, vol. 12, pp. 274–285,

2004.

[18] J. Lavaei, J. C. Doyle, and S. H. Low, “Utility functionals associated with available

congestion control algorithms,” IEEE International Conference on Computer Com-

munications, 2010.

[19] A. Demers, S. Keshav, and S. Shenkar, “Analysis and simulation of a fair queueing

algorithm,” Internetworking Research and Experience, vol. 1, pp. 3–26, 1990.

162

[20] A. Parekh and R. Gallager, “A generalized processor sharing approach to flow control

in integrated services networks: The single node case,” IEEE/ACM Transactions on

Networking, vol. 1, pp. 344–357, 1993.

[21] J. Carpentier, “Contribution to the economic dispatch problem,” Bulletin Societe

Francaise Electriciens, 1962.

[22] R. A. Jabr, “Radial distribution load flow using conic programming,” IEEE Transac-

tions on Power Systems, vol. 21, pp. 1458–1459, 2006.

[23] R. A. Jabr, “Optimal power flow using an extended conic quadratic formulation,”

IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1000–1008, 2008.

[24] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinite programming for optimal

power flow problems,” International Journal of Electric Power & Energy Systems,

vol. 30, no. 6-7, pp. 383–392, 2008.

[25] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow problem,” IEEE

Transactions on Power Systems, vol. 27, no. 1, pp. 92–107, 2012.

[26] W. S. Jewell, “Optimal flow through networks with gains,” Operations Research,

vol. 10, pp. 476–499, 1962.

[27] H. Brannlund, J. A. Bubenko, D. Sjelvgren, and N. Andersson, “Optimal short term

operation planning of a large hydrothermal power system based on a nonlinear network

flow concept,” IEEE Transactions on Power Systems, vol. 1, pp. 75–81, 1986.

[28] J. L. Goffin, J. Gondzio, R. Sarkissian, and J. P. Vial, “Solving nonlinear multicom-

modity flow problems by the analytic center cutting plane method,” Mathematical

Programming, vol. 76, pp. 131–154, 1996.

[29] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, 2004.

[30] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic network energy management

via proximal message passing,” To appear in Foundations and Trends in Optimization,

2013, http://www.stanford.edu/∼boyd/papers/pdf/msg pass dyn.pdf.

[31] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, “Linear matrix inequalities in

system and control theory,” Studies in Applied Mathematics, SIAM, 1994.

http://www.stanford.edu/~boyd/papers/pdf/msg_pass_dyn.pdf

163

[32] M. Fazel, H. Hindi, , and S. Boyd, “Log-det heuristic for matrix rank minimiza-

tion with applications to Hankel and Euclidean distance matrices,” American Control

Conference, vol. 3, pp. 2156–2162, 2003.

[33] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum rank solutions to linear

matrix equations via nuclear norm minimization,” SIAM Review, vol. 52, pp. 471–501,

2010.

[34] A. Barvinok, “Problems of distance geometry and convex properties of quadartic

maps,” Discrete and Computational Geometry, vol. 12, pp. 189–202, 1995.

[35] G. Pataki, “On the rank of extreme matrices in semidenite programs and the mul-

tiplicity of optimal eigenvalues,” Mathematics of Operations Research, vol. 23, pp.

339–358, 1998.

[36] J. Sturm and S. Zhang, “On cones of nonnegative quadratic functions,” Mathematics

of Operations Research, vol. 28, pp. 246–267, 2003.

[37] Y. Huang and S. Zhang, “Complex matrix decomposition and quadratic program-

ming,” Mathematics of Operations Research, vol. 32, pp. 758–768, 2007.

[38] W. Ai, Y. Huang, and S. Zhang, “On the low rank solutions for linear matrix inequal-

ities,” Mathematics of Operations Research, vol. 33, pp. 965–975, 2008.

[39] J. Poline and B. Brett, “The general linear model and fMRI: Does love last forever?”

NeuroImage, vol. 62, pp. 871–880, 2012.

[40] R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation

changes during brain activation: the Balloon model,” MRM, vol. 39, pp. 855–864,

1998.

[41] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal

Statistical Society, vol. 58, pp. 267–288, 1996.

[42] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with

the graphical lasso,” Biostatistic, vol. 9, pp. 432–441, 2008.

[43] N. Meinshausen, “A note on the lasso for Gaussian graphical model selection,” Stat.

Probab. Lett., vol. 78, pp. 880–884, 2008.

164

[44] P. Vertes, A. F. Alexander-Bloch, N. Gogtay, J. N. Giedd, J. L. Rapoport, and E. T.

Bullmore, “Simple models of human brain functional networks,” Proceedings of the

National Academy of Sciences, vol. 109, pp. 5868–5873, 2012, (the fMRI data is avail-

able online at http://intramural.nimh.nih.gov/chp/articles/matlab.htm).

[45] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-

ance,” IEEE/ACM Transactions on Networking, vol. 1, pp. 397–413, 1993.

[46] V. Jacobson and M. J. Karels, “Congestion avoidance and control,” ACM Computer

Communication Review, vol. 18, pp. 314–329, 1988.

[47] V. Jacobson, “Berkeley TCP evolution from 4.3-tahoe to 4.3-reno,” In Proceedings of

the Eighteenth Internet Engineering Task Force, 1990.

[48] S. Floyd and T. Henderson, “The new reno modification to TCPs fast recovery algo-

rithm,” RFC 2582, 1999.

[49] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective acknowledgement

options,” RFC 2018, available at http://www.icir.org/floyd/sacks.html, 1996.

[50] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering as optimization

decomposition,” in Proceedings of IEEE, vol. 95, pp. 255–312, 2007.

[51] R. Srikant, “The mathematics of internet congestion control,” Birkhauser, 2004.

[52] S. Shakkottai and R. Srikant, “Network optimization and control,” Foundations and

Trends in Networking, vol. 2, pp. 271–379, 2008.

[53] L. S. Brakmo and L. Peterson, “TCP vegas: End to end congestion avoidance on a

global internet,” IEEE J. Select. Areas Commun., vol. 13, pp. 1465–1480, 1995.

[54] S.Floyd, “TCP and explicit congestion notification,” ACM Computer Communication

Review, vol. 24, pp. 10–23, 1994.

[55] Y. Liu, F. L. Presti, V. Misra, D. Towsley, and Y. Gu, “Fluid models and solutions

for large-scale ip networks,” ACM/SIGMETRICS, 2003.

[56] V. Misra, W. B. Gong, and D. Towsley, “Fluid-based analysis of a network of AQM

routers supporting TCP flows with an application to RED,” ACM/SIGCOMM, 2000.

http://intramural.nimh.nih.gov/chp/articles/matlab.htm

165

[57] H. Han, C. Hollot, Y.Chait, and V. Misra, “Stability of buffer-based aqms: The

effect of routing and departure-rate models,” Sixteenth International Symposium on

Mathematical Theory of Networks and Systems, 2004.

[58] H. Han, “Modelling and analysis of TCP network dynamics,” Elec-

tronic Doctoral Dissertations for UMass Amherst. Paper AAI3254913.

http://scholarworks.umass.edu/dissertations/AAI3254913.

[59] I. Lestas and G. Vinnicombe, “How good are deterministic models for analyzing con-

gestion control in delayed stochastic networks?” IEEE Conference on Decision and

Control, 2004.

[60] S. Sojoudi, S. H. Low, and J. C. Doyle, “Effect of buffers on stability of internet con-

gestion controllers,” IEEE International Conference on Computer Communications,

pp. 471–475, 2011.

[61] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,”

IEEE/ACM Transactions on Networking, vol. 8, pp. 556–567, 2000.

[62] S. H. Low, L. Peterson, and L. Wange, “Understanding vegas: a duality model,” J.

of ACM, vol. 49, pp. 207–235, 2002.

[63] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “Analysis and design of con-

trollers for AQM routers supporting TCP flows,” IEEE Transactions on Automatic

Control, vol. 47, pp. 945–959, 2002.

[64] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle, “Linear stability of TCP/RED and

a scalable control,” Computer Networks Journal, vol. 43, pp. 633–647, 2003.

[65] J. A. Momoh, M. E. El-Hawary, and R. Adapa, “A review of selected optimal power

flow literature to 1993. Part I: Nonlinear and quadratic programming approaches,”

IEEE Transactions on Power Systems, 1999.

[66] J. A. Momoh, M. E. El-Hawary, and R. Adapa, “A review of selected optimal power

flow literature to 1993. Part II: Newton, linear programming and interior point meth-

ods,” IEEE Transactions on Power Systems, 1999.

166

[67] I. A. Hiskens and R. J. Davy, “Exploring the power flow solution space boundary,”

IEEE Transactions on Power Systems, vol. 16, no. 3, pp. 389–395, 2001.

[68] M. Huneault and F. Galiana, “A survey of the optimal power flow literature,” IEEE

Transactions on Power Systems, vol. 6, pp. 762–770, 1991.

[69] H. Wang, C. E. Murillo-Sanchez, R. D. Zimmerman, and R. J. Thomas, “On com-

putational issues of market-based optimal power flow,” IEEE Transactions on Power

Systems, vol. 22, pp. 1185–1193, 2007.

[70] K. S. Pandya and S. K. Joshi, “A survey of optimal power flow methods,” Journal of

Theoretical and Applied Information Technology, 2008.

[71] R. A. Jabr, A. H. Coonick, and B. J. Cory, “A primal-dual interior point method for

optimal power flow dispatching,” IEEE Transactions on Power Systems, vol. 17, pp.

654–662, 2002.

[72] H. Wei, H. Sasaki, J. Kubokawa, and R. Yokoyama, “An interior point nonlinear

programming for optimal power flow problems with a novel data structure,” IEEE

Transactions on Power Systems, vol. 13, pp. 870–877, 1998.

[73] J. Lavaei, “Zero duality gap for classical OPF problem convexifies fundamental non-

linear power problems,” American Control Conference, 2011.

[74] J. Lavaei and S. H. Low, “Relationship between power loss and network topology in

power systems,” Proceedings of the 49th IEEE Conference on Decision and Control,

2010.

[75] R. Baldick, Applied Optimization: Formulation and Algorithms for Engineering Sys-

tems. Cambridge, 2006.

[76] S. Ghosh, D. A. Iancu, D. Katz-Rogozhnikov, D. T. Phan, and M. S. Squillante,

“Power generation management under time-varying power and demand conditions,”

IEEE Power & Energy Society General Meeting, 2011.

[77] H. Zhu and G. B. Giannakis, “Estimating the state of ac power systems using semidef-

inite programming,” North American Power Symposium, 2011.

167

[78] D. Gayme and U. Topcu, “Optimal power flow with distributed energy storage dy-

namics,” Proceedings of the 2011 American Control Conference, 2011.

[79] A. Taylor and F. S. Hover, “Conic relaxations for transmission system planning,”

North American Power Symposium, 2011.

[80] S. Sojoudi and S. H. Low, “Optimal charging of plug-in hybrid electric vehicles in

smart grids,” IEEE Power & Energy Society General Meeting, 2011.

[81] R. Anders, “Distributed control using positive quadratic programming,” 30th Chinese

Control Conference, 2011.

[82] D. Phan and S. Ghos, “A two-stage nonlinear program for optimal electrical grid power

balance under uncertainty,” Proceedings of the 2011 Winter Simulation Conference,

2011.

[83] B. Z. A. Lam and D. Tse, “Distributed algorithms for optimal power flow problem,”

http://arxiv.org/abs/1109.5229, 2011.

[84] B. Zhang and D. Tse, “Geometry of feasible injection region of power networks,”

http://arxiv.org/abs/1107.1467, 2011.

[85] S. Bose, D. F. Gayme, S. Low, and M. K. Chandy, “Optimal power flow over tree

networks,” Proceedings of the Forth-Ninth Annual Allerton Conference, 2011.

[86] M. Farivar, C. R. Clarke, S. H. Low, and K. M. Chandy, “Inverter VAR control

for distribution systems with renewables,” International Conference on Smart Grid

Communications, 2011.

[87] B. Lesieutre, D. Molzahn, A. Borden, and C. L. DeMarco, “Examining the limits of

the application of semidefinite programming to power flow problems,” 49th Annual

Allerton Conference, 2011.

[88] University of Washington, “Power systems test case archive,”

http://www.ee.washington.edu/research/pstca.

[89] A. V. Goldberg, E. Tardos, and R. E. Tarjan, “Network flow algorithms,” Flows,

Paths and VLSI (Springer, Berlin), pp. 101–164, 1990.

168

[90] L. R. Ford and D. R. Fulkerson, “Flows in networks,” Princeton University Press,

1962.

[91] M. Klein, “A primal method for minimal cost flows with applications to the assignment

and transportation problems,” Management Science, vol. 14, pp. 205–220, 1967.

[92] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows: theory, algorithms,

and applications,” Prentice-Hall, 1993.

[93] D. Bertsimas and M. Sim, “Robust discrete optimization and network flows,” Math-

ematical Programming, vol. 98, pp. 49–71, 2003.

[94] D. Bertsimas and S. Stock-Paterson, “The traffic flow management rerouting problem

in air traffic control: A dynamic network flow approach,” Transportation Science,

vol. 34, pp. 239–255, 2000.

[95] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, “Linear programming and network

flows,” John Wiley & Sons, 1990.

[96] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic efficiency for

network flow problems,” Journal of the ACM, vol. 19, pp. 248–264, 1972.

[97] K. E. Nygard, P. R. Chandler, and M. Pachter, “Dynamic network flow optimization

models for air vehicle resource allocation,” American Control Conference, 2001.

[98] D. Goldfarb and J. Hao, “Polynomial-time primal simplex algorithms for the minimum

cost network flow problem,” Algorithmica, vol. 8, pp. 145–160, 1992.

[99] D. Bienstock, S. Chopra, O. Gunluk, and C. Y. Tsai, “Minimum cost capacity instal-

lation for multicommodity network flows,” Mathematical Programming, vol. 81, pp.

177–199, 1998.

[100] A. Araposthatis, S. Sastry, and P. Varaiya, “Analysis of power-flow equation,” Inter-

national Journal of Electrical Power & Energy Systems, vol. 3, pp. 115–126, 1981.

[101] S. Sojoudi and J. Lavaei, “Physics of power networks makes hard optimization prob-

lems easy to solve,” IEEE Power & Energy Society General Meeting, 2012.

169

[102] H. W. Dommel and W. F. Tinney, “Optimal power flow solutions,” IEEE Transactions

on Power Apparatus and Systems, 1968.

[103] T. J. Overbye, X. Cheng, and Y. Sun, “A comparison of the AC and DC power

flow models for LMP calculations,” in Proceedings of the 37th Hawaii International

Conference on System Sciences, 2004.

[104] Y. V. Makarov, Z. Y. Dong, and D. J. Hill, “On convexity of power flow feasibility

boundary,” IEEE Transactions on Power Systems, 2008.

[105] B. Zhang and D. Tse, “Geometry of injection regions of power networks,” To appear

in IEEE Transactions on Power Systems, 2012.

[106] J. Lavaei, B. Zhang, and D. Tse, “Geometry of power flows in tree networks,” IEEE

Power & Energy Society General Meeting, 2012.

[107] J. Lavaei and S. H. Low, “Convexification of optimal power flow problem,” 48th

Annual Allerton Conference, 2010.

[108] A. Y. S. Lam, B. Zhang, A. Dominguez-Garcia, and D. Tse, “Optimal distributed

voltage regulation in power distribution networks,” 2012, Submitted for publication.

[109] Y. Weng, Q. Li, R. Negi, and M. Ilic, “Semidefinite programming for power system

state estimation,” IEEE Power & Energy Society General Meeting, 2012.

[110] D. K. Molzahn, B. C. Lesieutre, and C. L. DeMarco, “A sufcient condi-

tion for power flow insolvability with applications to voltage stability margins,”

http://arxiv.org/pdf/1204.6285.pdf, 2012.

[111] J. Lavaei and S. Sojoudi, “Competitive equilibria in electricity markets with nonlin-

earities,” American Control Conference, 2012.

[112] E. D. Klerk, “The complexity of optimizing over a simplex, hypercube or sphere: a

short survey,” Central Eur J. Oper. Res., vol. 16, pp. 111–125, 2008.

[113] M. Goemans and D. Williamson, “Improved approximation algorithms for maximum

cut and satisability problems using semidefinite programming,” J. ACM, vol. 42, pp.

1115–1145, 1995.

170

[114] M. Goemans and D. Williamson, “Approximation algorithms for max-3-cut and other

problems via complex semidefinite programming,” Journal of Computer and System

Sciences, vol. 68, pp. 422–470, 2004.

[115] Y. Nesterov, “Semidefinite relaxation and nonconvex quadratic optimization,” Optim.

Methods Softw., vol. 9, pp. 141–160, 1998.

[116] Y. Ye, “Approximating quadratic programming with bound and quadratic con-

straints,” Math. Prog., vol. 84, pp. 219–226, 1999.

[117] Y. Ye, “Approximating global quadratic optimization with convex quadratic con-

straints,” J. Glob. Optim., vol. 15, pp. 1–17, 1999.

[118] S. Zhang, “Quadratic maximization and semidefinite relaxation,” Math. Prog. A,

vol. 87, pp. 453–465, 2000.

[119] S. Zhang and Y. Huang, “Complex quadratic optimization and semidefinite program-

ming,” SIAM J. Optim., vol. 87, pp. 871–890, 2006.

[120] Z. Luo, N. Sidiropoulos, P. Tseng, and S. Zhang, “Approximation bounds for

quadratic optimization with homogeneous quadratic constraints,” SIAM J. Optim.,

vol. 18, pp. 1–28, 2007.

[121] S. He, Z. Luo, J. Nie, and S. Zhang, “Semidefinite relaxation bounds for indefinite

homogeneous quadratic optimization,” SIAM J. Optim., vol. 19, pp. 503–523, 2008.

[122] S. He, Z. Li, and S. Zhang, “Approximation algorithms for homogeneous polynomial

optimization with quadratic constraints,” Math. Program., vol. 125, pp. 353–383,

2010.

[123] S. Sojoudi and J. Lavaei, “Physics of power networks makes hard optimization prob-

lems easy to solve,” IEEE Power & Energy Society General Meeting, 2012.

[124] S. Kim and M. Kojima, “Exact solutions of some nonconvex quadratic optimization

problems via SDP and SOCP relaxations,” Computational Optimization and Appli-

cations, vol. 26, pp. 143–154, 2003.

171

[125] S. Bose, D. F. Gayme, S. H. Low, and K. M. Chandy, “Quadratically con-

strained quadratic programs on acyclic graphs with application to power flow,”

arXiv:1203.5599v1, 2012.

[126] R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, “Positive definite completions

of partial hermitian matrices,” Linear Algebra and Its Applications, vol. 58, pp. 109–

124, 1984.

	Acknowledgements
	Abstract
	Introduction
	Modeling of Brain Connectivity Networks
	Buffering Dynamics and Stability of Internet Congestion Control
	Network Topologies with Zero Duality Gap for Optimal Power Flow
	Convexification of Generalized Network Flow Problem
	Semidefinite Relaxation for Nonlinear Optimization over Graphs

	Modeling of Brain Connectivity Networks
	Introduction
	Mapping of Data into Graphs
	Concentration Graph

	Circuit Model
	Modified Graphical Lasso

	FMRI data: Graphical Lasso vs. Modified Graphical Lasso
	Summary
	Appendix

	Buffering Dynamics and Stability of Internet Congestion Control
	Introduction
	Preliminaries and Existing Models
	Modeling of Buffer Occupancies
	Parameter ls(t) for Different Service Disciplines
	Dynamics of Buffer Sizes

	Congestion Control and Buffering Effect
	Instability of Primal-Dual Algorithm
	Constant Buffer Partitioning
	State-Dependent Buffer Partitioning

	Stability of Dual Algorithm

	Discussions
	Alternative Congestion Feedback
	Nonzero Buffer Assumption

	Summary

	Network Topologies with Zero Duality Gap for Optimal Power Flow
	Introduction
	Motivating Example
	Contributions
	Notations

	Problem Formulation
	Main Results
	Various SDP Relaxations and Zero Duality Gap
	Acyclic Networks
	General Networks

	Examples
	Summary
	Appendix

	Convexification of Generalized Network Flow Problem
	Introduction
	Application of GNF in Power Systems
	Notations

	Problem Statement and Contributions
	Main Results
	Illustrative Example
	Geometry of Injection Region
	Relationship between GNF and CGNF
	Optimal Power Flow in Electrical Power Networks

	Summary

	Semidefinite Relaxation for Nonlinear Optimization Over Graphs
	Introduction
	Problem Statement and Contributions
	Notations
	Problem Statement
	Related Work
	Contributions

	SDP, Reduced-SDP and SOCP Relaxations
	Real-Valued Optimization
	Low-Rank Solution for SDP Relaxation

	Complex-Valued Optimization
	Acyclic Graph with Complex Edge Weights
	Weakly Cyclic Graph with Real Edge Weights
	Cyclic Graph with Real and Imaginary Edge Weights
	Weakly Cyclic Graph with Imaginary Edge Weights
	General Graph with Complex Edge Weight Sets
	Roles of Graph Topology and Sign Definite Weight Sets

	Application in Power Systems
	 Examples
	Summary
	Appendix

	Conclusions and Future Work
	Bibliography

