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Impact-induced phase transformations

in elastic solids:

a continuum study including numerical simulations for

GeO2

by

Nancy A. Winfree

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

This thesis applies recently developed continuum theories of diffusionless phase

transformations in solids to the study of impact problems involving materials which

can experience such phase changes. Our objective is to compare the theoretical

predictions against certain experimental results.

In the experiments of interest, a face-to-face impact occurs between a disk of

amorphous germanium dioxide and another material, either tungsten or an alu-

minum alloy. The GeO2 is believed to transform to another phase if sufficient

compressive stress is achieved.

We model these experiments using one-dimensional finite elasticity. Phase-

changing materials are represented by non-convex potential energy functions. This

can produce phase boundaries that propagate subsonically or supersonically with

respect to the slower longitudinal wave speed of the two phases. When a subsonic

phase boundary is possible, it is not uniquely determined by the fundamental field

equations and jump conditions. Uniqueness is obtained by invoking a nucleation

criterion to control the initiation of the new phase, and a kinetic relation to govern
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its evolution.

The experiments considered here are sufficiently long in duration (≈ 3 μs) that

several reflections and wave interactions occur, and the analysis becomes analytically

intractable. Accordingly, a finite-difference method of Godunov type is employed

to analyze these experiments numerically. Methods of Godunov type treat adjoin-

ing discretized spatial elements as the two sides of a Riemann problem, which is

typically solved approximately by linearizing around the initial conditions on each

side. Fortuitously, all constitutive models employed in this thesis are such that the

required Riemann problems can be solved exactly without too much effort.

Simulations utilizing the numerical method demonstrate that the impact re-

sponse of a material is sensitive to the kinetic relation that enters the model. It

appears the theory may offer a plausible description of the experiments, though the

restrictions placed on the constitutive models herein seem too severe to provide a

good quantitative match to the experimental results.
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Chapter 1

Introduction

In 1975, J. L. Ericksen published Equilibrium of Bars [31]; the droll title belies

this paper’s considerable influence on mechanicians and mathematicians over the

ensuing two decades.

Ericksen considered classical equilibrium problems: load controlled or displace-

ment controlled deformations of a one-dimensional bar of elastic material. The elas-

tic material he employed is characterized by a non-monotonic stress-strain curve;

continuum mechanicians often excluded such constitutive functions as physically

unreasonable, but Ericksen emphasized their connection to displacive phase trans-

formations. With this non-monotonic stress-strain curve, there is a range of loads

over which the bar may exist in either of two states of uniform strain; solutions to

load controlled problems are thus non-unique. Solutions to the displacement con-

trolled problems are also non-unique, because the bar can achieve a given overall

elongation through an infinite combination of spatial intervals that alternate be-

tween two phases.

Mechanicians thrive on nonuniqueness.

Thus commenced a storm of theoretical exploration into the mechanics of solids

with non-monotonic stress-strain curves. Such up-down-up stress-strain curves are

natural models of solids which transform between two phases by the application

of prescribed stress or deformation. Early work was largely motivated by shape

memory alloys, the remarkable properties of which depend upon transformations
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between high and low temperature phases; the material displacively transforms from

one phase variant to another in response to the loading upon it. These alloys return

to their original configuration upon heating above a critical temperature at which

they displacively transform back to the high-temperature phase.

There are now models of solid-solid phase transformations which consider both

elastic and thermal effects [3,8–10], investigations of multiple losses of monotonicity

in the stress-strain curve [1, 100], treatments of stress-strain curves that suffer a

change in the sign of the curvature but remain monotonic [78, 98], considerations

of surface energy effects at phase interfaces [62], and advances in modeling ferro-

electric materials [52]. The theory has even suggested the possibility of developing

magnetostrictive materials with far larger mechanical responses than those available

today [48, 49, 96]. An excellent bibliography has been assembled by Šilhavý [85].

Successes of the theories for shape memory alloys include modeling their com-

plicated hysteresis behavior [2], accounting for the needle-like, cusp-ended forms

of their phase inclusions [77], and the qualitative description of experimentally-

observed creep enhanced by a phase transition [53, 80].

The mission herein is to examine how these theories perform for phase transform-

ing materials other than shape memory alloys in situations where inertial effects are

important. In particular, we will utilize the purely mechanical models of Abeyaratne

and Knowles [3] in exploring shock compression problems in GeO2, a material known

to suffer pressure induced phase transformations [45, 60, 70].

Abeyaratne and Knowles consider the nonuniqueness in solutions to initial-

boundary value problems as a constitutive deficiency in the theory, remedied by

the introduction of additional constitutive information in the form of a nucleation

criterion to control the initiation of a new phase, and a kinetic relation to govern

its evolution. Other workers, also viewing the nonuniqueness as a constitutive defi-

ciency, have restored uniqueness by augmenting the theory such that stress depends

not only on strain, but also depends linearly on strain rate (viscosity) and strain

gradient (capillarity) [47, 82–84, 88–90, 97]. Although much of the work with such
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augmented theories focuses on van der Waals fluids, the method can be applied to

solids as well. In the case of the purely mechanical theory, it has been shown that

augmenting the theory with linear viscosity and capillarity is equivalent to imposing

a particular kinetic relation on a subsonic phase boundary [4, 99]. Recent work has

begun to suggest the same for thermoelastic models [72, 101].

This study builds on other efforts to model impact-induced solid to solid phase

transformations with the modern theories [12, 29, 58, 74]. The primary extension

offered here is the implementation of the theory in a finite difference algorithm de-

veloped previously [108,109] with constitutive models that are reasonably descriptive

of the behavior of the materials involved in the shock compression experiments we

consider.

1.1 Shock compression of solids

The study of shock compression of solids began in earnest with the advent of nu-

clear weapons in World War II, which required the shock compression of solids by

high explosives [17]. Major series of experiments were soon underway, leading to

the acquisition of thermodynamic data for many materials, discoveries of new phase

transitions, shock-induced chemical synthesis, powder consolidation, and the obser-

vation of shock-induced changes in electronic, magnetic, and optical properties.

Properties obtained by experimental shock compression are now utilized in other

military applications, particularly the design and analysis of projectiles and armor.

Shock compression results have gained new significance with the signing of the

Nuclear Test Ban Treaty and the consequent directive that the national laboratories

maintain the nuclear stockpile using the best technology available without nuclear

testing. Many of the thermomechanical properties required for scientific stewardship

of the stockpile are furnished by shock compression research.

Shock compression research extends to civilian applications; explosive welding,

compaction, forming, cutting and metal hardening are all industrial techniques in-
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volving the shock compression of solids, as is the shock synthesis of industrial-grade

diamonds [68].

Geophysicists have been involved in the shock compression of solids from its in-

fancy, as it is the only laboratory technique by which pressures comparable to those

deep within the Earth and other planets can be obtained. For the measurement

of properties at pressures from 1–3.7 Mbar (the estimated pressure at the center

of the Earth), shock compression methods have no competitors [76]. The shock

compression behavior of geomaterials provides properties needed to model the ther-

momechanical behavior of planets.

The literature on the shock compression of solids is vast. Overviews and exten-

sive bibliographies are provided in [17, 68]. Shock compression in phase-changing

materials was treated theoretically as early as 1942 by Bethe [20].

1.2 Why study the shock compression of GeO2?

Historically, the primary motivation for studying the shock compression of GeO2

has been that germanium-containing systems are structural analogs of silicates, the

high-pressure behavior of which is of interest because of its abundance in the Earth.

Among the dioxides, only GeO2 and SiO2 exhibit both quartz and rutile structures

[70]. Both are readily quenched from the melt to form glass, and both combine with

other oxides to form the same types of structures. At atmospheric pressure, systems

containing GeO2 often exhibit behaviors found in silicates at much higher pressures

[71]. Phase transformations and elastic properties of silicates at high pressures have

been predicted from the properties of germanates at lower pressures [70].

The military is interested in GeO2 because it changes phase near pressures it

would experience in an encounter with a ballistic object, and since phase changes

generally dissipate energy, it is a candidate for an armor material.
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1.3 Phases of GeO2

At atmospheric conditions, GeO2 is stable in the rutile form [104], a crystalline

structure in which the oxygen ions are hexagonally close packed with germanium

ions occupying half the octahedral interstitial positions [54]. Each germanium ion

therefore sits in the center of an octahedron with an oxygen ion at each apex. The

rutile structure has tetragonal symmetry.

Upon heating above 1033 ◦C at atmospheric pressure, the rutile form transforms

to a quartz form of hexagonal symmetry, with each germanium ion at the center of

a tetrahedron and an oxygen ion at each apex [71]. The corners of the tetrahedra

are shared. This transformation is reconstructive, requiring the breaking of bonds

and the formation of new ones. The quartz form can be retained upon returning

the material to atmospheric conditions. Though it is merely metastable at these

conditions, the transformation to the rutile form is so sluggish that the quartz is

quite stable [104].

At room temperature and pressure, the density of the rutile and quartz forms

are respectively 6.28 g/cm3 and 4.28 g/cm3 [104].

The glass formed by quenching from the melt is metastable at room conditions,

with a density around 3.62–3.66 g/cm3 [81, 104]. The local structure is similar to

the quartz form in that the germanium ions are at the centers of corner-shared

tetrahedra, but the Ge-O-Ge angles are consistent with the absence of long-range

ordering [45].

The pressure-temperature phase diagram, Figure 1.1 shows the regions of sta-

bility of the rutile, quartz and liquid phases. We are interested in pressures three

orders of magnitude greater than those shown in this figure, in a region where the

phases are less well understood.

In hydrostatic experiments, some workers have reported that the rutile form

transforms to an orthorhombic phase at 28 GPa upon heating to ≈1000 ◦C [70].

The orthorhombic phase was retained by quenching to room temperature then

slowly unloading to atmospheric pressure. At 33 GPa and ambient temperature, the
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Figure 1.1: Phase diagram for GeO2, after Wang [104].

densities of the orthorhombic and rutile phases were 6.97 g/cm3 and 6.79 g/cm3,

respectively. At room conditions, their respective densities were 6.62 g/cm3 and

6.32 g/cm3. These findings are controversial [60].

The glass has been found to transform at a hydrostatic pressure of 25 GPa to

a phase consistent with the Fe2N structure, a hexagonally close packed structure

of anions with cations randomly distributed in half the octahedral sites [45, 70]. A

mechanism has been proposed by which a fourfold coordinated glass can be trans-

formed to a sixfold coordinated structure without the breaking of bonds [92]. Some

workers have reported that this new phase transforms back to the glasseous state

upon release to ambient conditions [45, 61], but others have retained it [70]. When

the new phase was retained, its room temperature density was 6.82 g/cm3 at 32 GPa

and 6.23 g/cm3 at ambient pressure. Because this hexagonal phase forms only from

the glass, and because it has a lower bulk modulus than the rutile phase, it is

thought to be less stable at high pressure than the orthorhombic phase formed from

the rutile phase [70].

In shock-compression experiments, Jackson and Ahrens [46] exposed both rutile

and amorphous GeO2 to pressures of 11–165 GPa. They found that the rutile form

appears to transform to a denser phase above 70 GPa, and the amorphous form ap-

pears to transform to a denser phase above 35 GPa. Assuming a particular equation
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of state model, the authors show that these results may be explained in terms of

both forms transforming to a common high-pressure phase. They predicted that

the density of this new phase was about 5% greater than the zero-pressure density

of the rutile phase. This agrees well with the density of the orthorhombic structure

that was later produced under hydrostatic compression from the rutile phase.

The difference between the findings of the hydrostatic and dynamic experiments

is significant. Under hydrostatic pressure, the rutile and glass forms of GeO2 change

to two different phases, but in dynamic loading they seem to transform to a common

phase that is consistent with the high pressure phase of the rutile material in the

hydrostatic experiments.

There are several possibilities for this discrepancy, the first being that the exper-

iments are suspect. The specimens survive the hydrostatic experiments, and their

structure is determined by x-ray diffraction or spectrometry. In shock-compression

studies, the specimen is destroyed; predictions about its transformation behavior

are based on a particle velocity versus time record that lasts only a few microsec-

onds. One might therefore be inclined to take the hydrostatic work as definitive and

ignore the shock compression work. But Jackson and Ahrens argue convincingly

that, whatever structure the glass transforms to, it must be more dense than the

rutile phase. In the hydrostatic experiments, the glass transformed to a phase less

dense than the rutile phase.

To a mechanician knowledgeable about recent theoretical developments in mod-

eling phase transformations, the difference in the results of the two types of exper-

iments may not be a concern, but rather a testimony to the importance of inertial

effects in phase transitions. With an appropriate model to describe all four phases

(the glass, the rutile, the orthorhombic, and the Fe2N-like phases) it might be pos-

sible to demonstrate that both the static and dynamic results are consistent with

modern theories of phase transformations, though some extension of the theories

would be necessary.

In this work, the theories employed are sophisticated enough to describe only two
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stable or metastable phases. Thus, we have a quandary: we suspect that four or more

phases might be relevant in the experiments we examine, but we can accommodate

only two. So, what two phases to model? One of our choices is the glasseous form, as

the GeO2 is initially glass in the experiments we will study. Since we are interested

in shock compression experiments, the other phase we will try to describe is the

high-pressure phase that Jackson and Ahrens predicted in their work. Our model

will be presented in Chapter 5.

1.4 Computational methods for phase transfor-

mations

Various approaches have been used in computational studies of phase transforma-

tions.

Silling [86] employed a finite-difference dynamic relaxation method to model

phase changes and localization in elastostatics. He presented results for sample

problems involving failure of a soil slope, propagation of shear bands in a soil,

necking and Lüders banding, and dendritic formation of phase inclusions near a

crack tip. He extended the technique to model the dynamic growth of martensitic

plates at a crack tip [87].

Mamiya and Simo [63] incorporated the theories of Abeyaratne and Knowles in a

finite element method to model the quasi-static evolution of a maximally dissipative

phase boundary in a purely mechanical setting. They later proposed a new element

for the description of phase boundaries, using it to consider transformations in anti-

plane shear [64]. Their model predicted dendritic formation of the new phase around

a screw dislocation.

Swegle [94] considered phase transformations induced by shock compression in

quartz. He assumed that the material immediately behind the shock front was a

mixture of the quartz and a high-density phase, and used a mass fraction of the high

pressure phase to quantify the mixture. The specific volume and internal energy of
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the mixture were taken to be the mass-weighted averages of these properties for

the individual phases. He examined various kinetics, embodied in expressions that

quantified the change of the mass fraction with respect to other parameters, such as

time or volume. Such expressions play the role of Abeyaratne and Knowles’ kinetic

relation in restoring uniqueness.

This thesis makes use of a finite-difference method developed by Zhong, Hou,

and LeFloch incorporating the models of Abeyaratne and Knowles for the treatment

of propagating phase boundaries in a purely mechanical one-dimensional setting

[108,109]. The method of Zhong, Hou, and LeFloch is a modified Godunov technique

in which phase boundaries are tracked while shocks are captured.
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Chapter 2

Impact experiments

We will examine planar impact experiments conducted by W. Yang and T.

J. Ahrens [107] in the 40 mm-bore propellant gun at Caltech’s Lindhurst

Laboratory of Experimental Geophysics. These experiments have been discussed in

a recent publication [22]. The experimental equipment and methods are similar to

those described elsewhere [27]. Overviews of experimental techniques can be found

in [13, 17].

In brief, a cylindrical LexanR© sabot with a disk called the flyer plate mounted

on its face is accelerated along an 8 meter gun barrel that extends into an evacuated

chamber, where the flyer plate impacts a target assembly. Impact velocities of 1.0–

2.5 km/s can be achieved.

Two types of experiments were performed. In a forward experiment, a tungsten

flyer plate 2–3 mm thick strikes the face of a GeO2 disk, which is backed by a

thin (<2 mm) Al6061-T6 buffer plate, in turn backed by a thick (≈12 mm) LiF

window, Figure 2.1. In a reverse experiment, a GeO2 flyer plate 3–4 mm thick

strikes the buffer plate, which is backed by the window, Figure 2.2. All plates are

disks approximately 25–32 mm in diameter. In both types of experiments, the flyer

plate is backed by a disk of polyurethane foam, which provides support to the flyer

plate during the sabot’s launch but approximates a free surface during impact.

The primary output—known as a VISAR record—is a particle velocity versus

time history of the buffer at its interface with the window, obtained through fiber-
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Figure 2.1: Configuration of a forward experiment. VISAR is an acronym for Velocity

Interferometer System for Any Reflector.
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Figure 2.2: Configuration of a reverse experiment.

optic based velocity interferometry. The measurements are taken from a small area

surrounding the center of the buffer’s diameter. The flyer plate and target are

destroyed during the experiment; not even small pieces are recovered afterwards.

A forward experiment provides information about the short-term response of the

GeO2 to impact loading, while a reverse experiment provides information about its
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unloading behavior.

One may inquire into the purpose of the buffer plate and window, the choice of

materials for them, and their relative thicknesses. Ideally, particle velocities within

the sample would be recorded, but this is not possible. If velocities were recorded

at a free surface, compressive waves encountering the free surface would reflect back

into the material as rarefaction waves. This is difficult to analyze, particularly if

the rarefaction waves interact with other rarefaction waves reflected from the flyer

plate’s far side and cause either plate to spall. The solution is to back the stationary

sample or buffer plate by a thick layer of material which can transmit laser light

for interferometry; the thickness is chosen so that the compressive waves encounter

the free surface nearest the fiber optics at a “late” time (after the events of interest

have occurred). Lithium fluoride is usually the window material of choice because

it remains transparent to laser light during the shock loading event.

The buffer provides the necessary reflective surface for the laser light. Al6061-

T6 is used because its dynamic compressive response is nearly identical to that of

lithium fluoride, minimizing the influence of the buffer. To simplify analysis, the

difference in response between the two materials is sometimes ignored.

The disks of the target assembly are bonded at each interface by a thin layer of

cyanoacrylate, commonly known as Super GlueR©. The influence of the cyanoacrylate

is neglected in this thesis. The entire assembly is held in the target chamber by

compression at several points on its circumference.

The diameters of the plates are much greater than their thicknesses in order

to provide a state of one-dimensional strain surrounding the longitudinal axis.

Throughout this work, we assume that the diameters are sufficiently large so that

waves emanating from the lateral surfaces do not reach regions near the longitudi-

nal axis—including the region from which the VISAR record is taken—during the

duration of the experiments. Within each disk, the material that is unaffected by

such edge effects responds as if it were within a disk of infinite lateral extent.

It is important to emphasize that the time of impact is not known. In later
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chapters, the experimental velocity versus time histories will be freely translated

along the time axis to provide the best matches to the simulations.

Before continuing, we address a conflict in terminology. In fields specialized to

the shock compression of solids, it is common to refer to the disks in the projectile

and target as “plates.” In the field of solid mechanics, “plate” is used in a class of

problems to describe a body in which one dimension is small, but not negligible,

compared to the other two, and the deformation of the body involves a bending

deflection normal to the small dimension. Where “plate” is used in this thesis, it is

in the first sense.
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2.1 Forward shots

Yang and Ahrens [107] obtained the particle velocity histories of Figure 2.3 for the

two forward shots described in Table 2.1.

2 2.5 3 3.5
0

0.25
0.5

0.75
1

1.25
1.5

Shot 955

Shot 953

Forward Shots

Velocity,
km/s

Time, μs

Figure 2.3: Particle velocity histories recorded from the forward experiments.

Forward Shots

Foam Tungsten GeO2 Al6061 LiF

Width Velocity Width Width Density Width Width

Shot mm km/s mm mm g/cm3 mm mm

953 2.90 1.53 2.627 3.835 3.632 0.743 11.957

955 2.72 1.99 2.645 4.059 3.631 0.923 11.993

Table 2.1: Parameters of the forward experiments.
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2.2 Reverse shots

Yang and Ahrens [107] obtained particle velocity histories for four reverse shots,

three of which are described in Table 2.2 and presented in Figure 2.4.
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0.4
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0.8

Shot 957

Shot 958

Shot 965

Reverse Shots

Velocity,
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Time, μs

Figure 2.4: Particle velocity histories recorded from the reverse experiments.

Reverse Shots

Foam GeO2 Al6061 LiF

Width Velocity Width Density Width Width

Shot mm km/s mm g/cm3 mm mm

957 3.18 1.47 4.087 3.631 1.459 12.029

958 3.18 1.96 4.128 3.633 1.354 12.007

965 3.99 0.62 3.029 3.618 0.774 11.958

Table 2.2: Parameters of the reverse experiments.

In the shot not presented (Shot 956), a 4 mm thick GeO2 plate reached a velocity

of 1.05 km/s. X-ray photographs taken prior to impact indicate that the GeO2 had
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shattered after launch.

Judging from the appearance of the velocity history profiles for Shots 957 and

958, W. Yang suspects that the flyer plates were damaged in these two shots as

well [106], though no apparent damage is seen in the X-ray images.

Shot 965 was a fortunate miscircumstance. The experiment had been prepared

to achieve a flyer plate velocity of 1 km/s but the velocity actually achieved was only

0.62 km/s. This provides one reverse shot in which there is no reason to suspect

any launch-induced damage in the GeO2.
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Chapter 3

Preliminaries

This chapter presents concepts from the purely mechanical, nonlinear contin-

uum theory of elastic bodies in motion. It begins with the basic field equa-

tions and constitutive assumptions for the three dimensional theory. A dissipation

inequality is introduced, which in turn motivates the introduction of the driving

traction acting on a discontinuity. This is followed by a brief discussion of how ther-

modynamic effects would be included in a more complete treatment. The purely

mechanical equations are then specialized to the situation of one-dimensional strain

in order to model the experiments described in Chapter 2. In this setting, discontinu-

ities in the mechanical fields are classified as either shocks or phase boundaries, and

phase boundaries are further categorized as subsonic, sonic or supersonic. Finally,

fans are defined and relevant expressions derived.

3.1 Kinematics and balance laws

Consider a body B that occupies a region R in a reference configuration. In a

motion of the body, a particle at x in the reference configuration is carried to

y(x , t) = x + u(x , t) at time t, where u is the displacement vector. We assume

that the displacement u is continuous with piecewise continuous first and second

derivatives.
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The deformation gradient tensor and the particle velocity vector are respectively

F (x , t) = Grady , (3.1)

V (x , t) =
∂y(x , t)

∂t
. (3.2)

To ensure that the deformation is one-to-one, the restriction

J = detF > 0 (3.3)

is required to hold everywhere for all time.

Where F is smooth, kinematic compatibil-

+− front
state

back
state

W

NΠ

Π(t)

Figure 3.1: A moving discontinuity.

ity requires that

GradV = ∂F/∂t . (3.4)

At any moving regular surface Π(t) in the ref-

erence configuration across which F is discon-

tinuous, continuity of displacements requires

that

[[F ]]� = 0 , (3.5)

[[V ]] = −W [[F ]]NΠ , (3.6)

where � is any vector tangent to the surface, and W is the normal velocity of

the surface, Figure 3.1. The unit normal to the surface is NΠ, chosen so that

W ≥ 0. This formulation is purely Lagrangian, but the surface Π(t) does have an

image in the current (“laboratory”) configuration across which the Eulerian fields

are discontinuous.

These last expressions employ the jump notation, where the jump in some quan-
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tity Φ across a surface of discontinuity Π(t) is

[[Φ]] = Φ+ − Φ− . (3.7)

Here Φ+ and Φ− are the limiting values of a field Φ on Π(t) when approached from

the positive and negative sides, respectively. We use the convention that the positive

side is that side into which NΠ is directed, Figure 3.1. We say that the material on

the “+” side of the discontinuity is ahead of the discontinuity and is in the front

state. The material on the “−” side is behind the discontinuity and in the back state.

Let ρ◦ denote the referential mass density of the body. Let σ(x , t) be the

nominal stress tensor, also known as the Piola or engineering stress tensor, with

units of force per original area.

For all regular subregions R ⊂ R, conservation of linear and angular momentum

in the absence of body forces require

d

dt

∫
R

ρ◦V dV =
∫

∂R

σN dA , (3.8)

d

dt

∫
R

y × ρ◦V dV =
∫

∂R

y × σN dA , (3.9)

where N is the field of outward pointing unit normals on the surface ∂R.

At points (x , t) where F is continuous, localization of these balance laws yields

Div σ = ρ◦V̇ , (3.10)

σF T = FσT . (3.11)

At a surface of discontinuity, Π(t), localization of the balance of linear momentum

(3.8) yields the jump condition

[[σ]]NΠ + ρ◦[[V ]]W = 0 . (3.12)

Localization of angular momentum yields no new information.
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Derivations of the results of this section can be found in many texts. See, for

example [21, 65].

3.2 Hyperelastic materials

The consideration of kinematics and the balance laws in the previous section required

no specification of the mechanical properties of the material involved, beyond as-

suming that the material is incapable of supporting contact moments. Connections

between the kinematic and mechanical fields are provided by constitutive equations

which mathematically represent idealized material responses.

Where fields are smooth, kinematic compatibility (3.4) and the balance laws

(3.10)–(3.11) for linear and angular momenta provide fifteen scalar equations for

twenty-one unknown scalar fields, namely the components of F , V and σ. It is

then assumed that the stress is uniquely determined by the motion of the body

through constitutive equations, providing an additional six equations for the un-

knowns. Thus, we have twenty-one equations for twenty-one unknowns.

Constitutive models in a purely mechanical setting attempt to account for various

effects including elasticity, viscosity, capillarity, and plasticity. We shall restrict our

scope to hyperelastic constitutive behaviors in homogeneous materials.

In a homogeneous hyperelastic material, the nominal stress derives from an elas-

tic potential or strain energy per unit mass, Ψ = Ψ̃(F ), through

σ = σ̃(F ) = ρ◦
∂Ψ

∂F
, (3.13)

where σ̃, the stress response function, is a material property. The reader is cautioned

that this same title will be bestowed upon a slightly different function for convenience

in Section 3.5.2 and will be used only in that sense thereafter.
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3.3 The dissipation inequality and the driving

traction

Let Γ be the difference between the rate of work of the external forces acting on a

subregion R ⊂ R and the rate of storage of mechanical energy,

Γ(t) =
∫

∂R

σN ·V dA− d

dt

∫
R

ρ◦

{
Ψ +

1

2
V ·V

}
dV . (3.14)

Thus, Γ represents the rate of dissipation of mechanical energy in the region R. We

will impose the dissipation inequality,

Γ(t) ≥ 0 , for all t and for all R , (3.15)

which is a statement that the instantaneous rate of dissipation must be non-negative.

Localization of (3.14) subject to (3.15) yields a trivial result in regions where F

is smooth. Across a surface of discontinuity, localization yields

Γ(t) = [[σNΠ ·V ]] + ρ◦[[Ψ]]W +
1

2
ρ◦[[V ·V ]]W ≥ 0 . (3.16)

Applying the identity

[[a · b]] = [[a ]] · 〈b〉 + 〈a〉 · [[b]] , (3.17)

where 〈·〉 denotes the average,

〈a〉 =
1

2

(
a+ + a−

)
, (3.18)

to expand the first and last terms in (3.16), then using the jump conditions (3.5),
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(3.6) and (3.12), we arrive at

Γ(t) = {ρ◦[[Ψ]] − 〈σ〉 · [[F ]]}W ≥ 0 , (3.19)

where, 〈σ〉 · [[F ]] = tr (〈σ〉[[F ]]T ) is the scalar product of the tensors 〈σ〉 and [[F ]].

This result may be found in [56]; see also [3] and the works of Eshelby [32–34].

In the previous equation, the quantity in braces is defined as the driving traction,

f , acting on the discontinuity,

f = f̃(F−,F+) = ρ◦[[Ψ]] − 〈σ〉 · [[F ]] . (3.20)

The dissipation inequality (3.16) can thus be written

fW ≥ 0 . (3.21)

A motion of the body is admissible if (3.21) holds at each discontinuity and for

all time.

A moving discontinuity (W �= 0) is dissipation-free when f = 0.

3.4 If thermal effects were included

In general, the assumption of constant temperature violates the conservation of

energy unless there is a suitable volumetric heat supply. While this violation is usu-

ally not severe for slow, or quasi-static, motions, the assumption that the motion is

isothermal is not realistic for situations of high-velocity impact [74]. Nonetheless, we

adopt it as a useful starting point for examining a new theory, a strategy which has

been fruitfully employed by others: see for example [40, 41,74]. In the following we

outline the additional balance principle and the constitutive modifications by which

thermal effects could be incorporated if the material were modeled as thermoelastic

rather than elastic.
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A more complete treatment of a high-velocity impact problem would require

that, in addition to the momenta (3.8) and (3.9), thermal and mechanical energies

be balanced for all regular subregions R ⊂ R,

d

dt

∫
R

(ρ◦ε+
1

2
ρ◦V ·V )dV =

∫
∂R

ρ◦σN ·V dA+
∫

∂R

q ·N dA , (3.22)

where q(x , t) is the nominal heat flux vector and ε(x , t) the internal energy per

unit mass. This expression holds in the absence of body forces and volumetric heat

supply. Localization yields

σ · Ḟ + Div q = ρ◦ε̇ , (3.23)

[[σN ·V ]] + ρ◦[[ε+ V ·V ]]W + [[q ·N ]] = 0 , (3.24)

where fields are smooth and across a surface of discontinuity, respectively.

Where fields are smooth, balance of thermal and mechanical energy has added

one equation and two unknowns, for a total of 16 scalar field equations and 23

unknowns. It can be motivated that stress, internal energy and heat conduction

depend not only upon the motion of the body but also upon a scalar field not

present in the equations [21]. Thus the new scalar field of temperature, θ = θ(x , t),

is introduced, increasing the unknowns to 24 scalar fields.

The dissipation inequality, (3.14), is replaced by an entropy inequality expressing

the second law of thermodynamics. The Clausius-Duhem version of the second law

requires that for all regular subregions R ⊂ R,

d

dt

∫
R

ρ◦ηdV −
∫

∂R

q ·N dA ≥ 0 , (3.25)
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where η = η(y , t) is the entropy per unit mass. Localization yields

ρ◦η̇ ≥ Div q/θ , (3.26)

ρ◦[[η]]W + [[q ·N /θ]] ≤ 0 , (3.27)

where fields are smooth and across a surface of discontinuity, respectively.

Introducing the Helmholtz free energy per unit mass Ψ = ε − θη, and using

(3.24), (3.27) can be manipulated into the form

fW ≥ 0 , (3.28)

where

f = ρ◦[[Ψ]] − 〈σ〉[[F ]] (3.29)

is the driving traction.

The constitutive equations must now connect stress, internal energy, and heat

flux to the motion and temperature of the body. In a thermoelastic material, the

stress and entropy derive from a Helmholtz potential, Ψ̆ = Ψ̆(F , θ), through

σ = σ̆(F , θ) = ρ◦Ψ̆F (F , θ) , (3.30)

η = η̆(F , θ) = −Ψ̆θ(F , θ) . (3.31)

Detailed derivations can be found in [3, 85].

One can consider hypothetical materials for which Ψ̆θF = 0. Deformation and

temperature are uncoupled for such materials, and a high-velocity shock compression

occurs isothermally without violating the conservation of energy.
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3.5 Specialization to one-dimensional deforma-

tions

We now specialize the governing equations and constitutive model of the purely me-

chanical formulation to the problem at hand, namely the analysis of the experiments

described in Chapter 2.

3.5.1 Field equations

The disks are regarded as continua of finite thickness in the longitudinal direction

and infinite extent radially. Select an orthonormal basis E = (ex, ey, ez) with ex in

the direction of the common axis of the disks. The deformation is assumed to be

uniaxial ; a particle at the point (x, y, z) in a reference configuration is carried at

time t to the point (x + u, y, z), where u = u(x, t) is the only non-zero component

of the displacement vector u .

The displacement gradient in the longitudinal direction is

γ = ux. (3.32)

Subscripts here and elsewhere denote partial differentiation unless otherwise stated.

In this thesis, γ will frequently be called strain for convenience, though it is not

a component of the Lagrangian strain tensor Φ = (F TF − 1 )/2. This is not

particularly immoral, since there is a one-to-one correspondence between γ and

the component Φxx = γ + (γ2)/2 for all γ > −1.

The components of F can be written in matrix form,

[
F

]
=

⎡
⎢⎢⎢⎢⎢⎣
1 + γ 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (3.33)
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For the deformation to be one-to-one, the restriction (3.3), detF > 0, implies that

γ > −1 . (3.34)

The only non-zero component of the particle velocity vector is

V = ut . (3.35)

Where fields are smooth, kinematic compatibility (3.4) reduces to

γ̇ − Vx = 0 . (3.36)

We will assume that the symmetry group of the material allows it to sustain

uniaxial deformation in the x-direction with no components of shear stress in the

x, y or z directions. This is true for uniaxial deformation in any direction for an

isotropic material, and in certain directions for some anisotropic materials provided

the specimen is properly oriented. Conservation of linear momentum (3.10) then

reduces to

σx − ρ◦V̇ = 0 , (3.37)

where σ is the normal component of σ acting on a surface perpendicular to the ex

direction. The balance of angular momentum, (3.11), provides no new information.

We will allow only surfaces of discontinuity which are perpendicular to the lon-

gitudinal direction, i.e., (NΠ) = (1, 0, 0). The jump conditions for continuity of

displacement (3.6) and conservation of linear momentum (3.12) each provide one

non-trivial scalar result when applied to uniaxial displacement,

[[V ]] +W [[γ]] = 0 , (3.38)

ρ◦[[V ]]W + [[σ]] = 0 . (3.39)
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For later use, note that these imply

ρ◦W
2 =

[[σ]]

[[γ]]
, (3.40)

ρ◦[[V ]]2 = [[σ]][[γ]] . (3.41)

Observe that the right side of (3.40) is the slope of the chord passing through the

two points (γ−, σ−) and (γ+, σ+) in the σ, γ plane. Thus, the velocity W of a

discontinuity is monotonically related to the slope of this chord.

Since the discontinuity velocity W is real, (3.40) implies that

sign ([[σ]]) = sign ([[γ]]) . (3.42)

We also have

[[V ]] = −sign (W [[σ]])
1√
ρ◦

√
[[σ]][[γ]] . (3.43)

The shock compression literature often utilizes the “pressure” P rather than σ,

where

P = −σ . (3.44)

This conflicts with the standard definition of pressure in continuum mechanics as

P = −(τxx + τyy + τzz)/3, where τ = σF/J is the actual or Cauchy stress tensor.

One must be cautious when reading the shock compression literature because either

definition of pressure might be encountered and not clearly distinguished.

In the shock compression literature one may also encounter the compression η,

the current density ρ, and the current specific volume v, where

η =
ρ

ρ◦
=
v◦
v

= J−1 > 0 . (3.45)

Here, v◦ = 1/ρ◦ is the specific volume in the reference configuration. By the def-
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inition (3.3) of J and the expression (3.33) for the components of F , in uniaxial

deformation we have

η = (1 + γ)−1 . (3.46)

Thus, in compression γ < 0 and η > 1, while in extension γ > 0 and η < 1.

3.5.2 Hyperelastic material

The normal stress σ acting on a surface perpendicular to the longitudinal direction

ex is computed from the expression (3.13) for the response of a hyperelastic material

and the expression (3.33) for the components of F in uniaxial deformation. The

result is

σ = σ̃(F ) = ρ◦ΨFxx(F ) , (3.47)

where the subscripts on F designate components of the tensor F , not differentiation.

Since F is a function only of γ, we simplify notation by defining ψ = ψ̂(γ) = ρ◦Ψ,

so that

σ = σ̂(γ) = ψ ′(γ) . (3.48)

For the remainder of this thesis, σ̂(γ) will be referred to as the stress response

function.

The Lagrangian longitudinal wave speed, c = ĉ(γ), which we shall also call the

sound speed, is defined by

c2 =
σ̂ ′(γ)

ρ◦
. (3.49)

The sound speed is real only if σ̂ ′(γ) is non-negative.

The state of stress in a solid under uniaxial deformation is in general not hy-
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drostatic. To illustrate, compare the normal components of stress in the x direction

with those in the y and z directions for infinitesimal uniaxial deformations in an

isotropic linearly elastic solid. We have:

σxx = (κ+
4

3
μ)γ , (3.50)

σyy = σzz = (κ− 2

3
μ)γ < σxx , (3.51)

where κ is the bulk modulus and μ is the shear modulus. Here, subscripts on σ

designate the components of the stress tensor σ, rather than our usual convention

that they designate differentiation. Because the three normal components are not

equal, the state of stress is not hydrostatic.

No attempt is made in this thesis to determine the lateral normal components

σyy and σzz. These components cannot be computed with the little experimental

knowledge that we have of the elastic potential Ψ for the materials encountered here.

3.5.3 Driving traction

In uniaxial deformation, the driving traction (3.20) is

f = f̂(γ+, γ−) = [[ψ]] − 〈σ〉[[γ]] =

γ+∫
γ−

σ̂(γ)dγ − 〈σ〉[[γ]] . (3.52)

Thus, f(t) may be interpreted as the area under the curve σ̂(γ) from (γ−, σ−) to

(γ+, σ+) minus the area under the chord connecting these same points.

Note that the driving traction changes sign but its magnitude stays the same

when the discontinuity changes its direction of travel,

f̂(γa, γb) = −f̂(γb, γa) , (3.53)

for any strain pair (γa, γb).
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The expression for the dissipation inequality, (3.21), is unchanged:

fW ≥ 0 . (3.54)

3.6 Single and multiple phase materials

Our model of a single phase material is one for which the stress σ is a strictly

convex or strictly concave, monotonically increasing function of the displacement

gradient γ, Figure 3.2(a). For prescribed longitudinal stress σ on a disk of infinite

lateral extent composed of such a material, there is only one equilibrium stress,

corresponding to the minimum of the potential energy,

G(γ, σ) = ψ(γ) − σγ. (3.55)

The graph of G(γ, σ) as a function of γ for fixed σ is convex with a single well.

In such materials, the conservation principles and dissipation inequality suffice to

ensure uniqueness in the problems we will examine [57, 73]. We have little interest

in single-phase materials in this work, but it is helpful to understand their behavior,

so a brief treatment that applies to them may be found in Appendix A.4.

Two-phase materials will be described by an “up-down-up” stress-strain curve,

Figure 3.2(b). In this model, two intervals of the stress-strain curve have posi-

tive slope and no inflection points. Each of these intervals represents a distinct

metastable phase. They are separated by an interval of negative slope, representing

an unstable phase. For any longitudinal stress σ at which the material can exist in

either stable phase, the potential energy G(γ, σ) will have two minima. The mate-

rial at some location x of our disk of infinite lateral extent is in equilibrium in the

stable phase if it is in the state corresponding to the absolute minimum. It is in a

metastable equilibrium at the state corresponding to the other minimum. In such

materials, the conservation principles and dissipation inequality are not sufficient

to ensure uniqueness in the problems we will examine. In the next chapter, we will
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γ

σ

(a) Strictly concave.

γ

σ

(b) Up-down-up.

γ

σ

(c) Monotonic with a

change of curvature.

Figure 3.2: Classification of stress response functions. (a) A single phase material is

represented by a strictly convex or strictly concave (shown) stress response function.

(b) A two phase material is represented by an “up-down-up” stress response function.

(c) A material with a monotonic stress response function that is neither strictly concave

nor strictly convex is also a phase-changing material.

investigate a particular initial-boundary value problem involving a nonmonotonic

stress response function and find that there are an infinite number of solutions that

satisfy the dissipation inequality (3.54).

We shall also consider models for which the stress-strain curve is monotonic but

neither strictly convex nor strictly concave, Figure 3.2(c). While not commonly

associated with phase-changes, solutions to dynamic problems in such materials

suffer a lack of uniqueness similar to that for nonmonotonic materials [78]. Abusing

terminology in the pursuit of conciseness, intervals demarcated by inflection points

will be considered distinct phases.

In the impact experiments of interest, most of the action is in compression.

Accordingly, we consider stress-response functions that extend mostly over com-

pression. All of our material models will have three phases. The nomenclature is

presented in Figure 3.3. The interval of least compression is the low pressure phase

(LPP), that of greatest compression the high pressure phase (HPP). The interval
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between them is the middle phase or, in the case of a nonmonotonic stress response

function, the unstable or spinodal phase.

In an equation, the phases are designated with the subscripts 1 for the HPP, 2

for the middle phase, and 3 for the LPP. On a plot of σ̂(γ), these subscripts increase

from left to right. This convention allows the interested reader to readily compare

expressions in this thesis to those in publications of Abeyaratne and Knowles, who

often describe nonmonotonic materials with phases numbered left to right. The

endpoints of the middle phase are (γm, σm) and (γM , σM), with the subscript M

denoting the endpoint at the more positive stress.

γ

σ

−1

Phase 1

HPP

Phase 2 Phase 3

LPP

(γm, σm)

(γM , σM )

middle
phase

(unstable)

γ

σ

−1

Phase 1

HPP

Phase 2 Phase 3

LPP

(γm, σm)

(γM , σM)

middle
phase

Figure 3.3: Nomenclature for up-down-up stress-strain curves and monotonic stress-

strain curves having two inflection points.

The following sections provide a short discussion of discontinuities and fans in

phase-changing materials of the type described here. A slightly more general treat-

ment may be found in Appendix A.
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3.6.1 Shocks and phase boundaries

In the materials described above, strain discontinuities in the one-dimensional set-

ting can be classified as shocks or phase boundaries. The following discussion applies

only to models that have at most one unstable phase; the situation may be more

complicated in many-phased materials.

A shock is a strain discontinuity for which γ+ and γ− are in the same phase.

A phase boundary is a strain discontinuity for which γ+ and γ− are in different

phases.

Where an expression applies to any discontinuity, whether a shock or a phase

boundary, the discontinuity velocity will be denoted by W . When an expression

applies only to phase boundaries, the phase boundary velocity will be denoted by ṡ

instead of W .

An equilibrium phase boundary (ṡ = 0) can exist in an up-down-up material

but not in a material for which the stress response function changes convexity but

remains monotonic. Consider a body of infinite lateral extent at equilibrium in

a uniaxial deformation. By the expressions (3.37) and (3.39) for conservation of

linear momentum, the uniaxial normal stress must everywhere be some constant

value σ = σ∗. If the body is of an up-down-up material, and if σ∗ is within the

range of stress where the horizontal line σ = σ∗ intersects the graph of σ = σ̂(γ)

more than once, then stationary phase boundaries can exist in the body. The body

may be in a single phase or in an infinite combination of alternating stable phases of

various thicknesses. If, however, the stress response function of the material changes

convexity but remains monotonic, then there is no σ∗ for which the material can

support a stationary phase boundary. In equilibrium, such a body is necessarily in

a single phase.

Moving phase boundaries can be categorized as subsonic, sonic or supersonic.

A subsonic phase boundary is one for which the Lagrangian speed of propagation
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is less than the local sound speed on either side of the phase boundary,

| ṡ |≤ min
(
ĉ(γ+), ĉ(γ−)

)
. (3.56)

A sonic phase boundary is one for which the speed of propagation is equal to

the lesser of the local wave speeds on either side of the phase boundary,

| ṡ |= min
(
ĉ(γ+), ĉ(γ−)

)
. (3.57)

A supersonic phase boundary is one for which the speed of propagation is greater

than the local wave speed on one side of the phase boundary,

| ṡ |> min
(
ĉ(γ+), ĉ(γ−)

)
. (3.58)

3.6.2 Fans

For problems that involve no length or time scales, we introduce the similarity

variable ξ = ±x/t and assume that

γ̂(x, t) = γ̃(ξ) , V̂ (x, t) = Ṽ (ξ) , (3.59)

corresponding to scale invariant solutions. Observe that ξ = constant is a ray in the

x, t plane, and we are seeking solutions that are constant on any ray. Where fields

are smooth, the compatibility equation (3.36) and the equation of motion (3.37)

become ordinary differential equations,

Vξ + ξγξ = 0 , (3.60)

ρ◦ξVξ + σγγξ = 0 . (3.61)
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Solving for ξ,

ξ = ±
√
σ̂ ′(γ)

ρ◦
. (3.62)

We will be interested exclusively in solutions that involve only stable phases, i.e.,

σ̂ ′(γ) ≥ 0 everywhere. Under this restriction, any non-constant smooth solution of

the ordinary differential equations (3.60) and (3.61) is called a fan.

If the particle velocity V is known on any ray in a fan, it can be calculated on

every other ray in the fan. Consider any two positive rays, ξ+ > ξ− > 0. By (3.60)

and (3.62),

ξ−∫
ξ+

Vξdξ = − 1√
ρ◦

ξ−∫
ξ+

√
σξ γξdξ .

Integrating the left side and changing the variable of integration on the right

V − − V + = − 1√
ρ◦

γ−∫
γ+

√
σ̂ ′(γ)dγ . (3.63)

The superscripts “+” and “-” indicate the value of a quantity at ξ+ and ξ−, respec-

tively.

For negative rays, ξ+ < ξ− < 0, the corresponding result is

V − − V + = +
1√
ρ◦

ξ−∫
ξ+

√
σ̂ ′(γ)dγ . (3.64)

Appendix A provides an additional, short treatment of fans and discontinuities.

3.6.3 The Maxwell stress

Consider a two-phase material with a non-monotonic stress response function. In

an equilibrium mixture, two phases are separated by a stationary phase boundary,
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ṡ = 0. By the jump condition (3.38), the stress must be identical on the two sides of

the phase boundary: σ+ = σ−. The stress σ◦ at which the driving traction vanishes

is the Maxwell stress. It is found by solving for σ◦ = σ+ = σ− with f = 0 in the

expression (3.52) for the driving traction. On a stress-strain curve, the two areas

between the curve and the line segment from (γ−, σ−) to (γ+, σ+) are equal at the

Maxwell stress, Figure 3.4.

σ

γ
γ+ γ−

σ◦
A1

A2

Figure 3.4: The driving traction on a stationary phase boundary vanishes at the Maxwell

stress σ◦. The area A1 above the horizontal line segment from (γ+, σ◦) to (γ−, σ◦) but

below the curve σ = σ̂(γ) equals the area A2 below the horizontal line segment and

above the curve.
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Chapter 4

Loci of contact states and constitutive

models

This chapter introduces an initial-boundary value problem that is the corner-

stone to understanding predictions of the present model as regards the re-

sponse of the plates in the impact experiments. Once we are able to solve this

initial-boundary value problem, it is a trivial step to treat impact problems and Rie-

mann problems. Initial-boundary value problems, impact problems, and Riemann

problems are the foundation of the numerical method introduced in Chapter 6.

We begin with an initial-boundary value problem with either a constant pre-

scribed velocity boundary condition or a constant prescribed stress boundary con-

dition. In this context, the notions of possible state, contact states and the locus of

contact states are introduced. The locus of contact states will be particularly useful,

as it describes all boundary conditions that can be accommodated by similarity so-

lutions for prescribed initial conditions. This locus is related to the Hugoniot curve

and release isentrope of the shock compression literature.

We then consider a particular form of the nonmonotonic stress response function,

used in later chapters to describe GeO2. For this material, we construct all forms

of possible states and examine a representative locus of contact states in the σ, V

plane. It will be seen that there are initial-boundary value problems for which the

locus of contact states does not select a unique solution.
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This lack of uniqueness motivates the introduction of new constitutive informa-

tion, in the form of kinetic relations and nucleation criteria. Suitably restricted,

these constitutive properties restore uniqueness.

We next consider the 3-phase monotonic stress response function that will be

our model for the ancillary materials. Solutions to initial-boundary value problems

for this type of stress-response function are also not unique. To restore uniqueness,

we prescribe a priori a particular kinetic relation and nucleation criterion. We

construct all forms of possible states that satisfy these restrictions and present a

representative locus of contact states.

Finally, we describe how loci of contact states are used to solve impact problems

and Riemann problems.

4.1 An initial-boundary value problem

We will consider an initial-boundary value problem that has been well examined

[11, 74, 75, 79]. The presentation here closely follows that of Pence [74, 75].

Consider the half-space x > 0 with constant initial conditions

γ̂(x, 0) = γR , V̂ (x, 0) = VR for x ≥ 0 . (4.1)

The subscript R refers to the right-hand problem, Figure 4.1. For times t > 0, either

0 x
0

t

Initial
conditions:
γ = γR and V = VR

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V = V

�

or
σ = σ

�

Prescribed
boundary
condition

Figure 4.1: An initial-boundary value problem.
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a constant velocity or a constant stress condition is prescribed on x = 0:

V̂ (0, t) = V
�

for t > 0 , (4.2)

or

σ̂(0, t) = σ
�

for t > 0 . (4.3)

The superscript P indicates a “prescribed” quantity.

We wish to satisfy the field equations and jump conditions (3.36)-(3.39), for all

x > 0, t > 0 subject to the initial conditions (4.1) and either (4.2) or (4.3).

Because the formulation of the problem involves no length or time scales, intro-

duce ξ = x/t and assume that the fields are scale-invariant:

γ̂(x, t) = γ̃(ξ) , V̂ (x, t) = Ṽ (ξ) . (4.4)

For a given stress response function, σ̂(γ), we call any pair of piecewise smooth

functions (γ̃(ξ), Ṽ (ξ)) defined for ξ ≥ 0 a possible state if the pair

1. satisfies the initial conditions,

2. satisfies the field equations,

3. satisfies the dissipation inequality (3.54) at any strain discontinuity.

Our definition of a possible state is the same as Pence’s notion of a candidate dy-

namical state [74, 75], except that we include the last requirement.

Thus, a possible state is an admissible scale-invariant solution to the field equa-

tions in the quadrant x > 0, t > 0, subject to the initial conditions but not subject

to boundary conditions. It is composed of some combination of elementary waves,

namely fans, shocks, and phase boundaries, as in Figure 4.2.

The particular composition of a possible state depends on the initial conditions,

the stress response function and, for a phase changing material, on the material
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W
ṡ

fan

0 x
0

t

(γR, VR, σR)

(γ
�

, V
�

, σ
�

)
contact state:

Initial phase

New phase

Figure 4.2: A similarity solution to an initial-boundary value problem is composed of

some combination of elementary scale-invariant solutions to the balance equations. The

elementary solutions are shocks, phase boundaries, and fans.

properties that govern phase nucleation and propagation.

For each possible state, let γ
�

, V
�

, and σ
�

denote the values of the deformation

gradient, particle velocity and stress on the contact interface x = 0,

γ
�

= γ̃(0) , V
�

= Ṽ (0) , σ
�

= σ̂(γ
�

) . (4.5)

The superscript C denotes a contact value, and the trio (γ
�

, V
�

, σ
�

) will be called

a contact state.

A possible state is a solution to the initial-boundary value problem with pre-

scribed contact velocity V
�

if :

V
�

= V
�

. (4.6)

A possible state is a solution to the initial-boundary value problem with pre-

scribed contact stress σ
�

if:

σ
�

= σ
�

. (4.7)
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4.2 Locus of contact states

Pence [74, 75] considered the set of all V
�

σ
�

Fans

Shocks
(σR, VR)

x

x

t

t

Figure 4.3: Locus of contact states for

a concave material. The axes cross

at (σR, VR), i.e., where the locus is

based. The only solutions supported

by this material are those composed

of a single shock or a single fan.

contact states in the σ, V plane; an example

of this locus of contact states or contact locus

is shown in Figure 4.3 for a single-phase con-

cave material model σ̂(γ). The topography

of a locus of contact states is dependent on

the material, on the initial deformation gra-

dient γR and the initial velocity VR. We will

say that a locus of contact states is based at

the initial state (γR, VR). The locus based at

(0, 0) is the principal locus of contact states.

Changes in the initial particle velocity VR

merely translate the figure vertically.

As shown in Appendix A, the locus of contact states on the right half-space x > 0

for any single-phase material is a curve of negative slope passing through the initial

state (γR, VR). The intersection of this locus with a horizontal line at the prescribed

contact velocity, V
�

, selects a unique solution V
�

= V
�

. Likewise, a vertical line at

the prescribed contact stress selects a unique solution σ
�

= σ
�

.

The shock compression literature has long embraced the locus of contact states,

but with different terminology. Occasionally, the term wave curve appears in a sense

nearly equivalent to that of the locus of contact states [67]. More typically, the terms

Hugoniot and release isentrope substitute for the locus in specific circumstances.

If a possible state is constructed of a single compressive strain discontinuity, then

the contact state (γ
�

, V
�

, σ
�

) is known in the shock compression literature as a Hugo-

niot state for the isothermal problem. For prescribed initial conditions (γR, VR), the

locus of all Hugoniot states is the Hugoniot based at the initial conditions (γR, VR).

The principal Hugoniot is based at (0, 0).

The locus of all contact states (γ
�

, V
�

, σ
�

) for possible states constructed only
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of expansive fans is the release isentrope from the prescribed initial conditions in

the isothermal problem.

4.3 The trilinear model

We will describe GeO2 with a special up-down-up model known as the trilinear

model, Figure 4.4. Its stress response function is:

σ̂(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined for γ < γZ ,

σ̂1(γ) for γZ ≤ γ ≤ γM ,

σ̂2(γ) for γM < γ < γm ,

σ̂3(γ) for γm ≤ γ ≤ γF

undefined for γ > γF ,

(4.8)

where each function σ̂i(γ) is of the form

σ̂i(γ) = Ēiγ + di . (4.9)

We will require the tangent modulus to be negative in the middle interval and

positive in the other two phases:

Ē1 > 0 , Ē2 < 0 , Ē3 > 0 . (4.10)

This model has been used extensively by Abeyaratne and Knowles: see, for example,

[4, 5, 7].

Each of the segments σ̂i(γ) is invertible. Each inverse is represented by γ̂i(σ).

We will insist that σ̂(γ) be continuous over γ ∈ [γZ , γF ]. This requires that

Ē2 =
σm − σM

γm − γM
, (4.11)

d2 =
1

2
{σM + σm − Ē2(γM + γm)} . (4.12)
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γ

σ

−1

(γM , σM)

(γm, σm)

Phase 1

HPP

Phase 2

middle
phase

Phase 3

LPP

(γF , σF )

(γZ , σZ)

�A

(γA, σA)

Figure 4.4: Stress response function of a trilinear material.

The equations for the stable branches intersect at (γA, σA),

γA = − d1 − d3

Ē1 − Ē3
, (4.13)

σA =
d3Ē1 − d1Ē3

Ē1 − Ē3

. (4.14)

Define the transformation strain γT by

γT = γ̂1(0) − γ̂3(0) =
d3Ē1 − d1Ē3

Ē1Ē3

. (4.15)

For a material like that of Figure 4.4, for which σM > 0, γT is the static trans-

formation strain at σ = 0. For other materials, the meaning is less physical. The

definition of transformation strain varies between authors.

We will require expressions for the driving traction, derived in the next section.
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4.3.1 Driving traction

Consider a phase boundary with the + side in phase 3 and the − side in phase 1,

Figure 4.5(a). From the expression (3.52) for the driving traction in uniaxial defor-

mation and the expressions (4.8)-(4.15) for the stress response function of a trilinear

material, the following equivalent expressions can be found for the driving traction

f̂(γ+, γ−) =
1

2

{(
σM − σ+

) (
γm − γ−

)
+
(
σm − σ−

) (
γ+ − γM

)}
, (4.16a)

=
1

2
{ (d1 − d3)

(
γm + γM − γ− − γ+

)

+
(
Ē1 − Ē3

) (
γmγM − γ−γ+

)
} ,

(4.16b)

=
1

2
{ γT

(
σ+ + σ− − σm − σM

)

+
Ē1 − Ē3

Ē1Ē3

(
σMσm − σ+σ−

)
} ,

(4.16c)

=
γT

2σA

{
σA

(
σ+ + σ− − σm − σM

)
+ σMσm − σ+σ−

}
. (4.16d)

Now consider a phase boundary with the + side in phase 1 and the − side in

phase 3, Figure 4.5(b). Recalling that f̂(γa, γb) = −f̂(γb, γa) by (3.53), the driving

+-

ṡ

Phase 3Phase 1

LPPHPP

(a) A low pressure to high

pressure phase boundary.

+-

ṡ

Phase 1Phase 3

HPPLPP

(b) A high pressure to low

pressure phase boundary.

Figure 4.5: Phase boundaries in a trilinear material.
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traction is easily found to be

f̂(γ+, γ−) = − 1

2

{(
σM − σ−

) (
γm − γ+

)
+
(
σm − σ+

) (
γ− − γM

)}
, (4.17a)

= − 1

2
{ (d1 − d3)

(
γm + γM − γ+ − γ−

)

+
(
Ē1 − Ē3

) (
γmγM − γ+γ−

)
} ,

(4.17b)

= − 1

2
{ γT

(
σ− + σ+ − σm − σM

)

+
Ē1 − Ē3

Ē1Ē3

(
σMσm − σ−σ+

)
} ,

(4.17c)

= − γT

2σA

{
σA

(
σ− + σ+ − σm − σM

)
+ σMσm − σ−σ+

}
. (4.17d)

4.3.2 The Maxwell stress

The Maxwell stress for a trilinear material is

σ◦ = σA +
√

(σA − σM) (σA − σm) . (4.18)

This was found by setting f = 0 in the expression (4.16d) or (4.17d) for the driving

traction, then assuming that σ◦ = σ+ = σ− and solving for σ◦.

4.3.3 Possible states for any initial-boundary value problem

It will be assumed that the material is initially in a stable phase:

γR ≤ γM , or γR ≥ γm . (4.19)

The forms of possible states for any initial-boundary value problem depend on

the relative values of the moduli Ē3 and Ē1 of the low and high pressure phases,

and on whether the intersection point (γA, σA) lies within the bounds [γZ , γF ]. For

definiteness, we assume that the high pressure phase is stiffer than the low pressure

phase, and that the intersection of the line segments of the two stable phases lies
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within the high pressure phase:

Ē1 > Ē3 , (4.20)

−1 < γZ < γA < γM < γm . (4.21)

The possible states are found by constructing every combination of waves that

satisfies the initial conditions and the boundary conditions, then eliminating those

that violate the dissipation inequality. If the material is initially in the low pressure

phase, three types of solutions survive this procedure, Figures 4.6(a)–4.6(c):

1. If the contact strain γ
�

is in the LPP, then the solution is a shock, Figure 4.6(a).

2. If the contact strain γ
�

is in the HPP and γ
�

> γA, then the solution is a

shock followed by a subsonic phase boundary, Figure 4.6(b). Solutions with

σ
�

> σ◦ violate the dissipation inequality, so we have σ
� ≤ σ◦.

3. If the contact strain γ
�

is in the HPP and γ
� ≤ γA, then the solution is a

sonic or supersonic phase boundary, Figure 4.6(c).

If the material is initially in the high pressure phase, there are only two survivors,

Figures 4.6(d)–4.6(e):

1. If the contact strain γ
�

is in the HPP, then the solution is a shock, Fig-

ure 4.6(d).

2. If the contact strain γ
�

is in the LPP, then the solution is a shock followed by

a subsonic phase boundary, Figure 4.6(e). Solutions with σ
�

< σ◦ violate the

dissipation inequality, so we have σ
� ≥ σ◦.

The procedure by which these possible states are found was nicely detailed by

Lin [58] for a Riemann problem involving a more general up-down-up material, and

by Abeyaratne and Knowles [5] for a Riemann problem in a particular trilinear

material.
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W = c3

0 x
0

t

(a) Shock.

W = c3

ṡ ≤ c3

0 x
0

t

(b) Shock followed by

subsonic phase bound-

ary.

ṡ ≥ c3

0 x
0

t

(c) Supersonic phase

boundary.

W = c1

0 x
0

t

(d) Shock.

W = c1

ṡ ≤ c3

0 x
0

t

(e) Shock followed by

subsonic phase bound-

ary.

Low pressure phase

High pressure phase

Figure 4.6: Forms of the possible states to an initial-boundary value problem for a trilin-

ear material initially in the low pressure phase (top) or the high pressure phase (bottom).

4.3.4 Locus of contact states

To determine the locus of contact states for prescribed initial conditions, we find in

the next several sections the contact locus for each of the different types of solutions

just presented. The locus we seek is the union of the individual ones. Figure 4.7

shows the result for the principal locus of contact states.

Some of the resulting expressions are similar whether the material is initially in
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Supersonic
phase
boundary

Shock

Shock followed by
subsonic
phase boundary

σ+ = σm,
f �= constant

A

B

C

ṡ = 0

V
�

σ
�

f = 0

σA σm σR = 0 σ◦

x

x

x

t

t

t

Figure 4.7: Principal locus of contact states for a trilinear material on the positive half
space x > 0. To reach contact stresses σ

�

< σA, the similarity solution must be a
supersonic phase boundary, Figure 4.6(c). For contact stresses σ

�

> σ◦, the similarity
solution must be a shock, Figure 4.6(a). For contact values (σ

�

, V
�

) in ABC or on
the boundaries AC or BC, the similarity solution must be a shock followed by a phase
boundary of nonzero velocity, Figure 4.6(b). Contact values on the AB boundary of
ABC can be reached by two different forms of similarity solutions, either a shock or a
shock followed by a phase boundary of zero velocity ṡ = 0. The principal Hugoniot is
the union of the loci for compressive shocks and supersonic phase boundaries: namely
the line segment AB and the locus σ

�

< σA.

the low pressure phase or the high pressure phase. When this is true, the expression

is written in a general way using ĒR, dR for parameters in the initial phase.
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Locus of contact states for shocks

Specializing the jump conditions to the case of a linear phase, the locus of contact

states for solutions composed of a single shock is found to be a straight line segment

in the (σ
�

, V
�

) plane,

V
�

= VR − 1√
ĒRρ◦

(σR − σ
�

) , (4.22)

σ
�

∈

⎧⎪⎪⎨
⎪⎪⎩

[−1, σM ] if γR ∈ Phase 1

[σm, σF ] if γR ∈ Phase 3

(4.23)

Equation (4.22) will be called the shock locus. In Figure 4.7, it is the line segment

on which A and B lie; it extends from point A to σ
�

= σF , which is off the right

side of the figure.

Because σ̂i(γ) is linear in each phase, every shock travels at the known charac-

teristic wave speed of the phase,

W = cR . (4.24)

Locus of contact states for supersonic phase boundaries

Since we are focusing on materials for which the high pressure phase is stiffer than

the low pressure phase, a phase boundary can be supersonic only if the material on

the + side is in phase 3, the low pressure phase.

Specializing the jump condition (3.41) for γR ∈ Phase 3 and γ
� ∈ Phase 1, the

contact values (σ
�

, V
�

) are found to lie on a hyperbola in the σ, V plane:

(
σ

� − α
)2

(√
ρ◦K

)2 − [[V ]]2(√
K/Ē1

)2 = 1 , (4.25)
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where

σ
�

< σA , (4.26)

[[V ]] = VR − V
�

, (4.27)

α =
Ē3 (σR + d1) + Ē1 (σR − d3)

2Ē3
, (4.28)

K =

(
Ē1d3 − d1Ē3 + σR

(
Ē3 − Ē1

))2

4ρ◦Ē2
3

≥ 0 . (4.29)

Properties of this hyperbola include:

center:
(
σ

�

= α, [[V ]] = 0
)
, (4.30)

asymptotes: [[V ]] = ± 1√
Ē1ρ◦

(
σ

�

− α
)
, (4.31)

vertical tangents: σ
�

=

⎧⎪⎪⎨
⎪⎪⎩
σR ,

d1 + Ē1

Ē3
(σR − d3) .

(4.32)

Two special points (σ
�

, V
�

) lie on the hyperbola:

(σ
�

, V
�

) = (σR , VR) , (4.33)

(σ
�

, V
�

) =

⎛
⎝σA , VR − 1√

Ē3ρ◦
(σR − σA)

⎞
⎠ . (4.34)

By (4.32) and (4.33), the hyperbola and one of its vertical tangents passes through

the front state. By (4.34) and (4.22), it intersects the expression for the shock locus

at σ
�

= σA.

The dissipation inequality is satisfied by the portion of the locus (4.25)-(4.29)

where [[σ]][[V ]] ≥ 0. In Figure 4.7, this is the solid curve to the left of point C.
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Locus of contact states for subsonic phase boundaries

A subsonic phase boundary is in general preceded by a shock, Figures 4.6(b) and

4.6(e). Denote the constant state of the material between the shock and the phase

boundary by (γ+, V +, σ+). The jump conditions must be satisfied across both the

shock with propagation velocity W = cR and the phase boundary with propagation

velocity ṡ,

V + − VR +
1√
ĒRρ◦

(σR − σ+) = 0 , (4.35)

W = cR , (4.36)

V + − V
�

+ ṡ(γ+ − γ
�

) = 0 , (4.37)

ρ◦(V
+ − V

�

)ṡ+ (σ+ − σ
�

) = 0 , (4.38)

σR ∈ [−1, σM ] , σ
�

∈ [σ◦, σF ] if γR ∈ Phase 1 , (4.39)

σR ∈ [σm,∞] , σ
�

∈ [σ◦, σA] if γR ∈ Phase 3 , (4.40)

subject, of course, to f̂(γ+, γ−) ≥ 0 from the dissipation inequality.

Equations (4.35)-(4.40) provide four equations for the five unknowns γ+,V +, ṡ,

γ−, and V −. The locus of contact states is therefore not a curve but a region in

the σ, V plane. In Figure 4.7 this is ABC. The region is bounded by three special

contact loci, AB, BC and CA. The first of these, AB, is the locus of stationary

phase boundaries ṡ = 0: it lies on the shock locus. The second boundary locus, BC,

is the one on which the driving traction vanishes. It is found by enforcing f = 0 in

the appropriate expression (4.16c) or (4.17c) for the driving traction, in conjunction

with (4.35)-(4.38) and either (4.39) or (4.40). The result is a lengthy polynomial of

third order in σ
�

and second order in V
�

. On the final locus, CA, the driving traction

takes the maximum possible value for each subsonic phase boundary velocity. This

maximum value is found by exploiting the interpretation of f as the signed area

between σ̂(γ) and the chord connecting the two points γ− and γ+. For a given ṡ < c3,

this area is maximized when (γ+, σ+) = (γm, σm) for a LPP to HPP transformation,
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and when (γ+, σ+) = (γM , σM) for a HPP to LPP transformation. Thus, the CA

boundary is found by fixing (γ+, σ+) appropriately. The resulting expression is a

hyperbola identical in form to the one for supersonic phase boundaries, (4.25), but

with σ+ = σm substituting for σR if the initial state is in the LPP or with σ+ = σM

substituting for σR if the initial state is in the HPP , and with V + computed from

(4.35) substituting for VR.

It is important to emphasize that the intermediate state (γ+, V +, σ+) between the

shock wave and the phase boundary is not represented in Figure 4.7. Because this

is a state behind a shock passing into material at the initial state, all intermediate

pairs (σ+, V +) lie on the shock locus. Thus, though two contact states may be close

together in ABC, their phase boundary velocities and their corresponding “+”

states can be dramatically different. Consider two extremes. If the contact state

(σ
�

, V
�

) lies anywhere on CA in Figure 4.7, then the intermediate state (σ+, V +)

lies at the point A. On the other hand, if the contact state (σ
�

, V
�

) lies on BC,

then the intermediate pair (σ+, V +) varies as the contact state varies along BC. In

particular, if the contact state (σ
�

, V
�

) is at the point B, then the intermediate pair

(σ+, V +) is also at B. But as the contact state moves toward C, the intermediate

pair (σ+, V +) moves in the positive σ direction along the shock locus. It is possible,

then, that the intermediate + state can be less compressed than the initial state

even though the contact state is more compressed than the initial state. In other

words, a compressive phase boundary can be preceded by a rarefactive shock!

4.3.5 Kinetic relations

Consider Figure 4.7. A horizontal line drawn at any velocity V
�

= V
�

above point

C or below point B has a unique intersection with the locus of contact states.

Likewise, a vertical line drawn at any stress left of point C or right of point B

has a unique intersection with the locus. Thus, there is a unique solution to any

initial-boundary value problem with initial conditions γR = 0, VR = 0 and constant

boundary conditions if the prescribed boundary conditions V
�

or σ
�

fall outside of
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the region ABC.

On the other hand, if the prescribed boundary conditions fall within the re-

gion ABC or on its boundaries, then there is an infinite set of admissible solutions

available for the initial-boundary value problem. Solutions to these initial-boundary

value problems are not unique.

Abeyaratne and Knowles, viewing this lack of uniqueness associated with the

presence of a phase boundary as a constitutive deficiency, introduce a kinetic rela-

tion [5]. A kinetic relation prescribes that the driving traction on a subsonic phase

boundary is related to the phase boundary velocity through a kinetic response func-

tion, Fab,

f = Fab(ṡ) , (4.41)

where a indicates the phase ahead of the phase boundary (the + or parent phase)

and b the phase behind it (the − or product phase).

The kinetic relation is relevant only for subsonic phase boundaries, as there is no

lack of uniqueness and therefore no need for this additional constitutive information

for supersonic phase boundaries or in the absence of phase changes.

The kinetic relation must satisfy the dissipation inequality (3.54), and we expect

that Fab(ṡ) = −Fab(−ṡ). With these restrictions, the region comprising the set of

all available pairs (ṡ,Fab(ṡ)) for specified parent and product phases a and b can

be determined, Figure 4.8. The kinetic response function (4.41) must lie in the

shaded region of this figure. If the graph of f = Fab(ṡ) coincides with the boundary

f = 0, the kinetic relation is said to be non-dissipative. If the graph of f = Fab(ṡ)

lies on the top boundary of the first quadrant and on the bottom boundary in the

third quadrant, the kinetic relation Fab(ṡ) maximizes the driving traction for any

prescribed phase boundary velocity. This last kinetic relation is called the maximum

dissipation kinetic relation, also affectionately known as the roof.

The roof has a useful interpretation. Recall by (3.52) that the driving traction

f = f(γ+, γ−) is the sum of the signed areas between σ̂(γ) and the chord connecting
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Driving traction, f
max F31

−c3
c3

Phase boundary

velocity, ṡ

Figure 4.8: The region of possible pairs (ṡ, f) for the trilinear material initially in phase

3, the low pressure phase. The curve for the kinetic response function expressed by

(4.41) must lie in the shaded region. The top boundary in the first quadrant and the

bottom boundary in the third quadrant is “the roof.”

the points (γ−, σ−) and (γ+, σ+). By inspection, |f | is maximized for a given phase

boundary velocity ṡ when a chord of slope ρ◦ṡ
2 = [[σ]]/[[γ]] connects (γ+, σ+) and

(γ−, σ−) without crossing σ̂(γ). For a transformation from the low to the high

pressure phases, this can only happen when the strain ahead of the phase boundary

is γ+ = γm. For a transformation from the high to the low pressure phases, this can

only happen when the strain ahead of the phase boundary is γ+ = γM . Therefore,

the intermediate values (γ+, σ+) are always known when the roof is the kinetic

relationship.

Figure 4.9 will help us to understand how a kinetic relation in the f , ṡ plane

maps onto the contact locus. Here, loci for several constant values of driving traction

f and for different constant phase boundary velocities ṡ are shown. The former are

described by polynomials similar to the one which describes the locus f = 0, and

the latter are all straight lines.

We will consider only kinetic response functions that are continuous for all sub-

sonic phase boundary velocities | ṡ |≤ c3 except possibly for a discontinuity at ṡ = 0.
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σ+ = σm ,
f �= constant

A

B

C

ṡ = 0

V
�

σ
�

f ↑

ṡ↑

f = 0

σA σm σR = 0

Curves of constant
driving traction, f

Curves of constant
phase boundary velocity, ṡ

σ◦

Figure 4.9: In the region ABC, loci of contact states for constant driving traction and

for constant phase boundary velocity can be found.

We will also restrict attention to kinetic response functions that are increasing func-

tions of the phase boundary velocity ṡ:

F
′
ab(ṡ) ≥ 0 . (4.42)

As we can tell by the loci of constant driving traction and the loci of constant phase

boundary velocity in Figure 4.9, any kinetic relation subject to these restrictions
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selects a locus of contact states in ABC that is continuous and of negative slope

dV
�

/dσ
�

< 0. One end of this locus is at some point X on the line AB and the

other is at C, Figure 4.10. At most one solution is available on this curve for any

prescribed contact stress or particle velocity.

Kinetic response functions that relinquish (4.42) can select a nonmonotonic locus

of contact states in ABC, and there will be cases in which two (or more) solutions

are available on this curve for prescribed boundary conditions. These nonmonotone

kinetic relations can produce stick-slip behavior in the phase boundary motion [79].

We will introduce nomenclature for the discontinuities associated with the fastest

and slowest phase boundaries that can be supported by a kinetic relationship. A

value φ associated with the fastest phase boundary supported by a kinetic relation-

ship Fab(ṡ) will be designated φab
(fastest). For example, the velocity for a low pressure

to high pressure phase boundary will be ṡ
(fastest)
31 and the stress ahead of the phase

boundary will be σ+
31

(fastest)
. Because σ̂(γ) is not defined for all γ, we may have

ṡ
(fastest)
ab < min (c1, c3): this will be discussed in Section 4.3.7.

A value φ associated with the slowest phase boundary supported by a ki-

netic relation Fab will be designated φab
(slowest). For our trilinear materials,

ṡ
(slowest)
31 = ṡ

(slowest)
13 = 0: it would be a greater velocity for a phase-changing material

with monotonic σ̂(γ).
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Locus for
subsonic phase boundaries
when a kinetic relation
satisfying (4.42)
is enforced.

A

B

C

V
�

σ
�

σR = 0σA σm σ◦

X

Y

Z

Figure 4.10: Principal locus of contact states for a trilinear material with a kinetic rela-

tion enforced. The points Y and Z are described in Section 4.3.6.

4.3.6 Nucleation criteria

Even with (4.42) in force, non-uniqueness remains. In general, there are still two

loci that satisfy the initial-boundary value problem with prescribed contact velocity

V
�

if a horizontal line V
�

= V
�

intersects both the contact locus and the locus for

subsonic phase boundaries with a kinetic relation enforced. In Figure 4.10, this is

the situation when V
�

= V
�

intersects both AX and XZ. On AX, solutions consist
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A

B

C

V
�

σ
�

σR = 0σA σm σ◦

X

Figure 4.11: Principal locus of contact states for a trilinear material with a kinetic rela-

tion and nucleation criterion enforced.

of a single shock with no phase boundary. On XZ, they involve a shock followed

by a subsonic phase boundary. Likewise, both AX and XY offer solutions for the

initial-boundary value problem with prescribed contact stress σ
�

between σm and

the stress at point X.

This remaining lack of uniqueness is resolved by introducing a nucleation crite-

rion. This criterion decrees that a new subsonic boundary appears when the driving
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traction is at least as great as some critical value,

f ≥ f c
ab . (4.43)

In this thesis, the critical driving traction for nucleation f c
ab is always chosen to

be equal to the traction that overcomes the resistance Fab(0
+) to phase boundary

motion,

f c
ab = Fab(0

+) . (4.44)

This ensures continuity of the locus of contact states, Figure 4.11. When the driving

traction equals or exceeds f c
ab = Fab(0

+), a subsonic phase boundary nucleates and

the solution on CX is chosen. Otherwise, a solution on AX is selected.

Other values of the critical driving traction f c
ab cause the locus of contact states

to be discontinuous; it was anticipated that this situation would cause numerical

instabilities and it was avoided in this work.

In summary, a monotonic kinetic relation, coupled with a properly restricted

nucleation criterion, selects a particular continuous monotonic locus. Uniqueness

has been achieved.

4.3.7 The alternate kinetic relation

There are situations when a kinetic relationship requires the strain γ+ ahead of the

phase boundary or the strain γ− behind the phase boundary to fall outside of the

defined range γ ∈ [γZ , γF ] of our trilinear model. We will demonstrate this with an

example.

Consider a transformation from the low-pressure phase to the high-pressure

phase in a trilinear material for which the high-pressure phase is stiffer than the

low pressure phase, Ē1 > Ē3, and the stress-response function of the low-pressure

passes through the origin, d3 = 0. Assume that the phase boundary is governed by a

dissipation-free kinetic relationship: F31(ṡ) = 0. Set f̂(γ+, γ−) = 0 in the expression
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(4.16c) for the driving traction and solve for γ+. The result is

γ+ = − d1γ
− − d1(γM + γm) + γMγm(Ē3 − Ē1)

d1 + (Ē1 − Ē3)γ−
. (4.45)

Evaluating the derivative of the right side with respect to γ−, we find that it is

always negative and that it approaches −∞ as γ− → γA. Thus, as γ− decreases in

the high-pressure phase toward the limiting value γA for a subsonic phase boundary,

γ+ increases toward +∞ in the low-pressure phase. Since the low-pressure phase is

undefined for γ > γF , we have a problem. Solving (4.45) for γ+ = γF , we find that

any

γ− <
d1(γF − γM − γm) + (Ē3 − Ē1)γMγm

d1 + (Ē1 − Ē3)γF
(4.46)

forces γ+ > γF .

Other kinetic relationships can also force γ+ > γF , though at different values of

γ−. Furthermore, if the expressions for the low and high pressure phases intersect

at γA < γZ , the same type of problem occurs for the transformation from the low

pressure to the high pressure phase.

We can think of these situations as truncating the space f , ṡ in which a kinetic

relationship Fab(ṡ) can lie, Figure 4.12.

In this work, when a prescribed kinetic response function Fab(ṡ) can only be

enforced with a value of γ+ for which the stress response function σ̂(γ) is undefined,

the boundary of the truncated space is prescribed as an alternate kinetic relation.

The alternate kinetic relation is conveniently enforced by setting γ+ = γ+
ab

(fastest)
.
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f

c3 ṡ

F31

max F31

(a) Low pressure to high pressure trans-

formation.

f

c3 ṡ

F13

max F13

(b) High pressure to low pressure trans-

formation.

Figure 4.12: Because the trilinear model is undefined outside of γ ∈ [γZ , γF ], the space

of possible kinetic relationships is truncated. Light shading indicates the space still

available, dark shading the space that would be available if σ̂(γ) were defined for all γ.

Where a kinetic relationship enters one of these missing areas, we will instead enforce

the boundary of the missing space as the alternate kinetic relationship. Examples are

shown by the heavy lines. (Only the first quadrants are shown, the reflections in the

third quadrants are identical.)
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4.4 The concave-convex model

Materials other than GeO2 to be encountered here will be described by a concave-

convex material model, Figure 4.4. The stress response function is:

σ̂(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined for γ < γZ ,

σ̂1(γ) = K̄γ (1 + s1γ)
−2 for γl ≤ γ ≤ γm ,

σ̂2(γ) = a− b (−γ)n n �= −1 for γm < γ < γM ,

σ̂3(γ) = Ēγ for γM ≤ γ ≤ γF ,

undefined for γ > γF > 0 .

(4.47)

We will require that the slope of the middle phase be less than that of the low

pressure phase,

σ′
2(γM) < σ′

3(γM) . (4.48)

The expressions for the low and high pressure phases intersect in the low pressure

phase at the origin (0, 0) and in the high pressure phase at (γA, σA). The tangent

to the middle phase at (γM , σM) intersects the high pressure phase at (γB, σB). The

points (γA, σA) and (γB, σB) are significant because the form of the solution can

depend on the value of the contact stress σ
�

relative to σA and σB.

4.4.1 Possible states for the initial-boundary value problem

Though σ̂(γ) is monotonic, its curvature changes sign. While not commonly identi-

fied with phase-changing materials because equilibrium mixtures of phases cannot

occur, solutions to dynamic problems with these types of stress response functions

suffer the same lack of uniqueness observed for nonmonotonic stress response func-

tions [78]. In particular, the non-uniqueness arises in an initial-boundary value

problem when the initial strain is in segment 1 or 3. As it did for a nonmonotonic
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Figure 4.13: Stress response function of a concave-convex material.

σ̂(γ), the introduction of a kinetic relationship and a nucleation criterion restores

uniqueness.

We consider only one type of kinetic relation for this monotonic model, namely

the kinetic relation that maximizes the driving traction f for any subsonic phase

boundary velocity ṡ. This choice will be motivated in Chapter 5.

As it did for the trilinear model, this particular kinetic relation has a useful

geometric property for the concave-convex model. Recall that by (3.52) the driv-

ing traction f = f(γ+, γ−) is the sum of the signed areas between σ̂(γ) and the

chord connecting the points (γ−, σ−) and (γ+, σ+). By inspection, for a given phase

boundary velocity ṡ, the driving traction | f | is maximized when a chord of slope
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ρ◦ṡ
2 = [[σ]]/[[γ]] connects (γ+, σ+) and (γ−, σ−) without crossing σ̂(γ). Therefore,

the only subsonic phase boundaries this kinetic relation permits are those for which

the deformation gradient ahead of the boundary is at a point of discontinuity in the

slope of the stress-strain curve, i.e., at γM or γm. (Indeed, since the wave speed is

discontinuous at these values of γ, the phase boundary velocity could be classified

subsonic or supersonic, but perhaps should not be classified at all. We use subsonic

for convenience.) All other phase boundaries are either sonic or supersonic.

Because this kinetic relationship can be implemented through this geometrical

understanding, it is not necessary here to write an expression specializing it to the

concave-convex material model. This is fortunate, as the expression would be quite

cumbersome.

We now find all possible states for our initial-boundary value problem, imposing

this kinetic relation when necessary to ensure uniqueness. The solutions can be

classified according to the initial phase of the material.

If the material is initially in the low pressure phase, five distinct forms of possible

states satisfy the maximum driving traction kinetic relation, Figure 4.14. These

solutions are shown in relationship to the stress-strain curve in Figure 4.15. They

are:

1. If the contact strain γ
�

is in the LPP, then the solution is a shock, Fig-

ures 4.14(a) and 4.15(a).

2. If the contact strain γ
�

is in the middle phase, then the solution is a shock in

the LPP to (γM , σM), followed by a fan in the middle phase, Figures 4.14(b)

and 4.15(b).

3. If the contact strain γ
�

is in the HPP and γ
�

> γB, then the solution is a

shock to (γM , σM ), followed by a fan in the middle phase and a sonic phase

boundary on the fan’s trailing edge, Figures 4.14(c) and 4.15(c). Ahead of

the phase boundary, γ = γt, the strain at the tangent point of a chord drawn

tangent to the middle phase from (γ
�

, σ
�

).
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W = c3

0 x
0

t

(a) A shock.

W = c3

ξ = ĉ2(γM)
ξ =

ĉ2(γ
�

)

0 x
0

t

(b) Shock followed by a fan.

W = c3

ξ = c2(γM)
ṡ = c2(γt)

0 x
0

t

(c) Shock followed by a fan.

The fan’s trailing edge is a

sonic phase boundary.

W = c3

ṡ < c3

0 x
0

t

(d) Shock followed by

a phase boundary.

ṡ > c3

0 x
0

t

(e) Supersonic phase

boundary.

Low pressure phase

Middle phase

High pressure phase

Figure 4.14: The kinetic relation that maximizes the driving traction f results in five

forms of possible solutions in a concave-convex material initially in the low pressure

phase.

4. If the contact strain γ
�

is in the HPP and γB > γ
�

> γA, then the solution

is a shock to (γM , σM), followed by a phase boundary, supersonic with respect

to the middle phase at (γM , σM), Figures 4.14(d) and 4.15(d).

5. If the contact strain γ
�

is in the HPP and γ
�

< γA then the solution is a phase

boundary, supersonic with respect to the LPP, Figures 4.14(e) and 4.15(e).
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shock

x

t

(γM , σM)

σ

γ

(γ
�

, σ
�

)

(γR, σR)

(a) Shock in the LPP.

shock

fan

x

t

σ

γ
(γ

�

, σ
�

)

(γR, σR)

(γM , σM)

(b) Shock followed by a fan.

shock

fan

x

t

(γB, σB)

σ

γ

(γ
�

, σ
�

)

(γR, σR)

γ = γt

(γM , σM )phase
boundary

(c) Shock followed by a fan with a sonic

phase boundary on the trailing edge of the

fan.

Figure 4.15: Relation between the stress-strain curve and the five types of possible states

shown in Figure 4.14 for initial conditions in the low pressure phase.



67

shock

x

t

(γB, σB)

(γA, σA)

σ

γ

(γ
�

, σ
�

)

(γR, σR)

phase
boundary

(γM , σM )

(d) Shock followed by a phase boundary.

x

t(γA, σA)

σ

γ

(γR, σR)

phase
boundary

(γ
�

, σ
�

)

(e) Supersonic phase boundary.

Figure 4.15: (Continued)
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ṡ > ĉ2(γR)

0 x
0

t

(a) Supersonic phase

boundary.

W > ĉ2(γR)

0 x
0

t

(b) Shock.

ξ = ĉ2(γR)

ξ =

ĉ2(γ
�

)

0 x
0

t

(c) Fan.

ξ = ĉ2(γR)

ṡ = ĉ2(γt)

0 x
0

t

(d) Fan. The trailing

edge is a sonic phase

boundary.

ṡ > ĉ2(γR)

0 x
0

t

(e) Supersonic phase

boundary.

Low pressure phase

Middle phase

High pressure phase

Figure 4.16: Possible states in a concave-convex material initially in the middle phase.

All phase boundaries for which the middle phase is the parent phase are sonic or super-

sonic with respect to the middle phase, and the solutions are uniquely determined by

the balance equations and the entropy inequality. A kinetic relation is not needed and

cannot be accommodated.

If the material is initially in the middle phase, then five other forms arise. It is

helpful to construct a line tangent to σ̂(γ) at γR. The intersection of this tangent

with the HPP occurs at γ = γB
′. When γ

�

is in the HPP but greater than γB
′, it is

also helpful to construct a chord from (γ
�

, σ
�

) tangent to the middle phase at some

value γ = γt. The five forms of the possible states, shown in Figure 4.16, are then:
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1. If the contact strain γ
�

is in the LPP, the solution is a supersonic phase

boundary, Figure 4.16(a).

2. If the contact strain γ
�

is in the middle phase but more positive than the

initial strain, γ
�

> γR, then the solution is a shock, Figure 4.16(b).

3. If the contact strain γ
�

is in the middle phase but more negative than the

initial strain, γ
�

< γR, then the solution is a fan, Figure 4.16(c).

4. If the contact strain γ
�

is in the HPP and γ
�

> γB
′, then the solution is a fan

that ends at γ = γt. On the trailing edge of the fan is a sonic phase boundary,

Figure 4.16(d).

5. If the contact strain γ
�

is in the HPP and γ
�

< γB
′ then the solution is a

supersonic phase boundary, Figure 4.16(e).

Finally, if the high pressure phase is the initial phase, four forms of solutions are

possible, Figure 4.17:

1. If the contact strain γ
�

is in the HPP and more negative than the initial strain,

γ
�

< γR, then the solution is a shock, Figure 4.17(a).

2. If the contact strain γ
�

is in the HPP and more positive than the initial strain,

γ
�

> γR, then the solution is a fan, Figure 4.17(b).

3. If the contact strain γ
�

is in the middle phase then the solution is a fan to

γ = γm followed by a supersonic phase boundary, Figure 4.17(c).

4. If the contact strain γ
�

is in the LPP then the solution is a fan to γ = γm

followed by a supersonic phase boundary, Figure 4.17(d).



70

W > ĉ1(γR)

0 x
0

t

(a) Shock.

ξ = ĉ1(γR)

ξ = ĉ1(γ
�

)

0 x
0

t

(b) Fan.

ξ = ĉ1(γR)

ξ = ĉ1(γm)

ṡ < ĉ2(γ
�

)

0 x
0

t

(c) Fan followed by a

phase boundary.

ξ = ĉ1(γR)

ξ = ĉ1(γm)

ṡ < c3

0 x
0

t

(d) Fan followed by a

phase boundary.

Low pressure phase

Middle phase

High pressure phase

Figure 4.17: Forms of possible solutions in a concave-convex material initially in the high

pressure phase with the kinetic relation that maximizes the driving traction.

4.4.2 Locus of contact states

The locus of contact states for prescribed initial conditions is the union of the loci

for each of the different types of solutions compatible with the initial conditions.

Figure 4.18 shows the result for the principal locus of contact states. The following

sections present some of the equations needed to determine the loci for shocks and

fans.

For an arbitrary elastic material, it is not possible to find analytic expressions

for the change in particle velocity across a fan, as the expression (3.63) for fans

requires integration of
√
σ̂ ′(γ). Fortuitously, this integral can be found analytically
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Shock

Shock
followed by
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phase
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t
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t
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�
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Figure 4.18: Principal locus of contact states for a concave-convex material.

for each of the three phases of the concave-convex material model; the resulting

expressions are provided in this section and are coded into the program described

in later chapters.

In this material model, any phase can transform to any other phase across a

phase boundary, for a total of six kinds of transformations. Since the form of

the expression for σ̂(γ) is different for each phase, the jump conditions give rise

to a unique expression for each of these six kinds of transformations. These six

expressions are not presented here, as there is little to be gained from them: they are

awkward, not readily simplified, and not explicitly coded into the computer program

used in later chapters. When a phase boundary is involved, the contact stress σ
�

and contact particle velocity V
�

are better expressed by the jump conditions and

the stress-strain relationship σ̂(γ) as parametric functions of γ
�

.
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Elementary waves within the LPP

Within the low pressure phase, the stress and strain are linearly related, and there

is no distinction between a shock and a fan. The balance equations are satisfied by

V + − V − =
sign (W )√

Ēρ◦
(σ+ − σ−) , (4.49)

W 2 = Ē/ρ◦ , (4.50)

across any discontinuity.

Elementary waves within the middle phase

The expression σ̂(γ) for the middle phase can be inverted, yielding

γ̂2(σ) = −
(
a− σ

b

)1/n

. (4.51)

The local wave speed c = ĉ(γ) is given by

c2 =
bn(−γ)n−1

ρ◦
. (4.52)

Within a fan, the change in particle velocity between any two positive rays ξ+

and ξ− is calculated from (3.63),

V = V + − 2
√
nb1/n

√
ρ◦ (1 + n)

{(
a− σ−

) 1+n
2n −

(
a− σ+

) 1+n
2n

}
. (4.53)

Terms in γ were eliminated by (4.51).

To find the jump in particle velocity across a shock and to determine the shock

propagation velocity, use (4.51) in the jump conditions (3.40) and (3.41) to find the
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jump in particle velocity in the σ, V plane. The result is:

V − = V + + sign ([[σ]])
1√
ρ◦b1/n

√
(σ+ − σ−)

{
− (a− σ+)1/n + (a− σ−)1/n

}
, (4.54)

W 2 =
− (σ+ − σ−) b1/n

ρ◦
{
(a− σ+)1/n − (a− σ−)1/n

} . (4.55)

(4.56)

Elementary waves within the HPP

Within the high pressure phase, the inverse of σ̂(γ) is

γ̂(σ) =
K̄ − 2s1σ −

√
K̄(K̄ − 4s1σ)

2s2
1σ

. (4.57)

The local wave speed c = ĉ(γ) in this phase is given by

c2 =
K̄(1 − s1γ)

ρ◦(1 + s1γ)3
. (4.58)

The change in particle velocity between any two positive rays ξ = c+ and ξ = c−

within a fan is calculated from (3.63).

V − = V + −
√
K̄

ρ◦s1

(
−2

√
1 − s1γ

1 + s1γ
+ arcsin(−s1γ)

)γ−

γ+

, (4.59)

where γ− and γ+ are evaluated on ξ = c− and ξ = c+, respectively.

This expression, in conjunction with σ̂(γ) for this phase, parametrically describes

the locus of available (V −, σ−) for prescribed (V +, σ+).
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4.5 Riemann problems and impact problems

A Riemann problem is an initial value problem for a single material occupying the

interval on −∞ < x <∞, Figure 4.19. The initial conditions are piecewise constant

with a discontinuity only at x = 0.

x

t
σ̂R(γ)σ̂L(γ)

(γR, VR)(γL, VL)

Figure 4.19: A single-material or bimaterial Riemann problem. In a single-material

Riemann problem, the stress response function σ̂L(γ) for x < 0 is identical to the stress

response function σ̂R(γ) for x > 0. In a bimaterial Riemann problem, the stress response

functions are different on the left and right half-spaces.

We will define a bimaterial Riemann problem as a problem identical to a Riemann

problem except that the material in x < 0 differs from the material in x > 0.

In either type of Riemann problem, the jump conditions (3.38)-(3.39) must be

satisfied across the contact discontinuity at x = 0 with W = 0. The jump conditions

become:

[[V ]] = 0 , (4.60)

[[σ]] = 0 . (4.61)

Thus, the solution to either the single material or bimaterial Riemann problem is

the intersection of the locus of contact states for the right-hand problem and the

locus for the left-hand problem, as shown in Figure 4.20.

In this thesis, an impact problem is either a Riemann problem or a bimaterial

Riemann problem with the constraint that the interface x = 0 cannot support ten-
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sion. If the jump conditions (4.60)-(4.61) at x = 0 are satisfied by σ+ = σ− > 0

at some time t†, the two half spaces must separate. The Riemann solution is then

discarded, and the Riemann problem is replaced by two initial-boundary value prob-

lems, each with the boundary conditions σ
�

= 0 for times t > t†. After separation,

the current spatial positions y must be computed for each of the newly free surfaces,

as a “re-impact” may occur. Thus, the solution to an impact problem is found by

solving

[[V ]] = 0 , if σ+ = σ− < 0 , (4.62)

σ+ = 0 , σ− = 0 otherwise , (4.63)

subject to the prescribed initial conditions.

V
�

σ
�

(σR, VR)

(σL, VL)

σ
�

R = σ
�

L, V
�

R = V
�

L

Figure 4.20: The intersection of the contact locus for each half space x < 0 and x >

0 provides the solution for a single material or bimaterial Riemann problem. This

technique is known as the impedance match method in the shock compression literature

[14]. In this example, the upper curve is the locus of contact states based at (σL, VL)

for a trilinear material on the left half space x < 0. The lower curve is the locus based

at (σR, VR) for a concave-convex material on the right half space x > 0.
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Chapter 5

Elastic models for the experimental

materials

Each of the five different plate materials utilized in the experiments will be de-

scribed by a stress response function σ̂(γ) intended to represent the material’s

experimentally observed response to uniaxial compression at high strain rates.

The phase-changing material, germanium dioxide, is modeled as an up-down-up

trilinear material. In Section 4.3.3 we saw that an initial-boundary value problem

in this type of material gives rise to massive non-uniqueness in the solution space.

This non-uniqueness is remedied by the introduction of a kinetic relation and a

nucleation criterion. Since one of our primary objectives is to illustrate the effect

of changing the kinetic relation in the model for GeO2, we utilize three forms of

kinetic relation for this material. The first is the roof, introduced in Section 4.3.5.

This kinetic relation maximizes the driving traction for any given phase boundary

velocity, and has been shown to be analogous to the concept of maximum plastic

work [6]. We also use a linear kinetic relation,

Fab(ṡ) = gab + hab ṡ , gab ≥ 0 , hab ≥ 0, (5.1)

where gab and hab are positive parameters which may be chosen freely so long as

the resulting expression lies within the region of possible (ṡ, f) pairs for a subsonic
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phase boundary, Figure 4.8. Recall that the first subscript refers to the phase ahead

of the phase boundary and the second subscript to the phase behind it, as described

in Section 4.3.5. The final kinetic relation considered is the non-dissipative kinetic

relation, also introduced in Section 4.3.5: it is a special case of (5.1) with gab = 0,

hab = 0.

The kinetic relation governing the transformation from one phase to the other is

prescribed independently of that for the reverse transformation, i.e., F31(ṡ) �= F13(ṡ).

The nucleation criterion utilized in this work is always

f c
ab = Fab(0

+) . (5.2)

This nucleation criterion always selects a solution with a phase change over a solution

with no phase change when both solutions are possible. More general nucleation

conditions were avoided as they were expected to cause difficulties numerically.

With the exception of some very special kinetic relations, the stress ahead of a

phase boundary is problem-dependent, and it is inappropriate to speak of a unique

stress at which transformation occurs. The kinetic relation we call the roof is one of

these special cases: with the roof, the (γ, σ) pair ahead of a phase boundary always

assumes a particular value, either (γm, σm) or (γM , σM).

In the shock compression literature, many materials are considered to possess

a well-defined Hugoniot elastic limit at which yield occurs in uniaxial shock com-

pression tests. For the reasons given in the previous paragraph, using the roof to

model the kinetic relation in these materials allows imitation of this behavior in

compression. Of the four ancillary materials we must model, both of the metals

and the lithium fluoride are thought to yield at a unique Hugoniot elastic limit.

Therefore, the roof is the only kinetic relation considered for these three materials

in this thesis. The roof also has the benefit of being simple to implement, as it can

be enforced without computing the driving traction.

This same kinetic relation is chosen for the foam, which exhibits a “lock-up”

behavior when the open pores in it collapse under compression to some particular



78

uniaxial deformation [38]. The roof does a reasonable job of mimicking this behavior

as well.

5.1 Elastic model for germanium dioxide

The trilinear model is used to represent germanium dioxide because of the simplicity

of the model as regards phase transitions. In truth, neither phase of the germanium

dioxide has a linear behavior. Our challenge is to rationally select linear relationships

for each phase such that significant features of the experimentally obtained velocity-

time histories of Chapter 2 are adequately reproduced.

We begin by choosing an unstressed reference configuration in the low pressure

phase. Requiring σ̂3(0) = 0 necessitates that the intercept d3 in this phase be zero:

d3 = 0 . (5.3)

We will utilize data from eight shock compressions experiments on GeO2 glass

by Jackson and Ahrens [46]. The initial density of the GeO2 was ρ◦ = 3.655 g/cm3.

The deformation in these experiments was longitudinal, and the resulting stress σ

ranged from -4.1 GPa to -142 GPa.

In one of Jackson and Ahrens’ experiments, the impact produced two discon-

tinuities in the GeO2. Assuming that the faster of these two discontinuities, at

W = 3.53±0.04 km/s, is a shock in the glass phase, we find that the longitudinal

modulus is 45.5±1 GPa. In the simulations, the value used is Ē3 = 45.2 GPa.

Ultrasonic measurements of wave speeds in hydrostatic experiments suggest that

the longitudinal wave speed is around 3.6–3.7 km/s in the reference configuration,

decreases with increasing pressures to about 3.5 km/s at ≈ 2 GPa, then increases

with increasing pressures to 7 km/s at 8 GPa [35,93,105]. These are measurements

taken in the current configuration, and it is difficult to assess their applicability to

the shock compression experiments because the loading is different. Nonetheless,

they hint that the real low pressure behavior is not linear.
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Now consider the high pressure phase. In Jackson and Ahrens’ experiments, it

appears that at least the five data points with the greatest compression, from σ =

-35 GPa to σ = -142 GPa, belong to the high pressure phase. Each of these data

points corresponds to a single experiment, and in each experiment, impact produced

only one detectable discontinuity in the GeO2. It was found that the discontinuity

velocity and the jump in particle velocity across the discontinuity were linearly

related. This behavior is common to many materials; in Section 5.3, it is seen

to lead to the concave, high-pressure expression for the concave-convex materials.

Thus, over the interval in which these five data points lie, the GeO2 responds in a

manner that can be attributed to a single phase.

The challenge here is to represent the high pressure phase by a linear stress re-

sponse function. Several different linear functions were investigated, and simulations

of Shot 955 were run for each. This shot is special in that the impact is predicted

to initiate a supersonic phase boundary for most material models. When this oc-

curs, kinetic relations do not enter into the early part of the simulation, and we can

concentrate on refining the high pressure phase to best capture the experimental

results. Indeed, depending on the material model, it often occurs that no kinetic

relationship is utilized during the entire simulation.

Options that were examined for modeling the high pressure phase included fitting

a line to Jackson and Ahrens’ five strongest shots, to their six strongest shots, and

to their three shots in the range σ = -16 GPa to σ = -35 GPa. Hopes were high for

this latter fit, because simulations for the experiments described in Chapter 2 were

predicting stresses no more compressive than about -40 GPa; tuning the model to

the data available in this range seemed a clever thing to do. Hopes were dashed

when none of these relationships produced satisfactory predictions: Figure 5.1.

Another technique was explored, based on Jackson and Ahrens’ estimation that

the density of the high pressure phase would be 6.59 g/cm3 in a stress-free state

σ =0. To achieve this density by one-dimensional deformation, we must have γT ≈
-0.446 . Therefore, models with γT ≈ -0.446 were tested, selecting a slope by
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Figure 5.2: Particle velocity versus time prediction for Shot 955 using a concave-convex

model for GeO2. Prediction is shown in the thinner line, and the experimentally obtained

VISAR record in the heavier line.

averaging the slopes from (γT , 0) to each point of some subset of Jackson and Ahrens’

high pressure phase data. Predictions with these types of models did not show much

improvement.

Here it was hypothesized that the fidelity we sought just could not be obtained

with a trilinear model. The hypothesis was tested by turning briefly to concave-

convex models of GeO2. Keeping Ē3 = 45.2 GPa in the low pressure phase, the

parameters for the high pressure phase were taken from Jackson and Ahrens’ fit

to their high pressure data: K̄ = 1.44 GPa, s1 = 1.84. The strains γm and γM

were adjusted to obtain the best match to Shot 955. When kinetics were required,

maximum dissipation kinetics were utilized, as this is the only option written into

the numerical program for concave-convex models.

The best prediction resulting from this procedure for Shot 955 (Figure 5.2) and

an accurately constructed x, t diagram (Figure 5.3) confirm the hypothesis: in the

x, t diagram, notice the broad fan that forms in the GeO2 from the wave that enters
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Figure 5.4: Predicted particle-velocity history of Shot 965 using a concave-convex model

for GeO2.

it at x = 0 and t ≈ 1.2 μs. It is difficult to extend this diagram much farther in

time, but this fan is clearly responsible in part for a better match to the slope of the

experimentally recorded VISAR profile between t = 1.4–1.7 μs than was achieved

with any trilinear model.

It is important to emphasize that this concave-convex model of GeO2 produced

a supersonic phase boundary in Shot 955. The GeO2 remained in the high pressure

phase for the duration of the simulation. No kinetic relationship was required or uti-

lized. Thus, all differences between the predictions of the concave-convex model and

the predictions of trilinear models that produced supersonic phase boundaries with

no reverse phase change are caused strictly by the differences in their high pressure

phases. The differences in their middle phases and in their kinetic relationships are

irrelevant. Even their low pressure phases are irrelevant.

In contrast to the reasonable predictions for Shot 955, the combination of this

concave-convex model for GeO2 with the maximum dissipation kinetic relation gave

poor results for Shot 965 and especially for Shot 953, Figures 5.4 and 5.5.
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Figure 5.5: Predicted particle-velocity history of Shot 953 using a concave-convex model

for GeO2.

These were both exciting and discouraging discoveries. They were exciting be-

cause they suggested that a kinetic relation other than the roof might really be

involved in the transformations. They were discouraging because they created a de-

sire to study kinetic relations in materials with curvature in the high-pressure phase,

but by this time, key routines of the program had been customized to accommodate

only trilinear up-down-up materials. Perhaps it would suffice to vary kinetic rela-

tions in concave-convex materials, but this possibility was even more remote: there

had never been an accommodation in the program for any kinetic relation besides

the roof for monotonic materials.

Conceding that the trilinear model would not reproduce some of the features

of the experimental VISAR profile, it was decided to select a linear high pressure

phase that would at least reproduce the peak velocity of the VISAR record of Shot

955 and dwell at that velocity for about the right length of time. Largely through

trial and error, this was achieved with Ē1 = 800 GPa, d1 ≈ 330 GPa, Figure 5.6.

These are the parameters that will be used most extensively in Chapter 7.
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Figure 5.6: Predicted particle-velocity history of Shot 955 using the chosen trilinear

model of GeO2: Ē1 = 800 GPa, d1 ≈ 330 GPa.

The x, t diagram of Figure 5.3 was constructed after a considerable number of

simulations had been conducted with this new trilinear model. When the diagram

was completed, it was realized that it could have aided in selecting a linear high

pressure phase to meet our goals. This x, t diagram was constructed with the help

of routines that solve Riemann problems, and these provided the strain, stress, and

particle velocity at each of the numbered locations. Our requirement to reproduce

the peak velocity of the VISAR record is met by forcing the high pressure phase

to reproduce states 1 and 2. This results in Ē1 = 700 GPa, d1 = 294 GPa. To

capture the duration of the peak VISAR velocity, the wave that travels from point

6 to point 11 should travel through the GeO2 in the same time as the front of the

fan that currently leaves point 11. Since this fan encounters several other waves in

the GeO2, we do not know its velocity exactly, but we can graphically estimate that

its average velocity is around 13.5 km/s. Achieving this velocity in a linear high

pressure phase requires that Ē1 = 664 GPa. Though we can’t reproduce both the

peak VISAR velocity and it’s dwell time at the peak with just a linear high pressure
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phase, at least the moduli estimated by the two different methods are in the same

ballpark.

A simulation of Shot 955 was conducted with this last model, Ē1 = 700 GPa,

d1 = 294 GPa. The prediction was at best only a minor improvement over that

obtained with the model that had already been chosen, so no more simulations were

run with the new model.

We should expect either of these models to do poorly for the other shots: the

other shots achieve lower pressures in the GeO2, and the data points of Jackson

and Ahrens indicate that the high pressure phase is much less stiff at these lower

pressures: for instance, Ē1 ≈ 682, 355, and 207 GPa at σ ≈ -27, -17, and -11 GPa,

respectively.

5.1.1 Choosing extents of each phase

Having selected Ē1, d1, Ē3, and d3, all that remains is to prescribe the limiting

strains γZ , γM , γm, and γF .

We will select γZ = −0.510, the most compressed state achieved in the experi-

ments of Jackson and Ahrens [46]. To suppress “fracture” during the simulations,

we choose the ridiculous value γF = 100.0.

The best we are able to do for γM and γm is to estimate bounds from the

literature.

Jackson and Ahrens argued that the high pressure phase was retained when it

was returned to a stress-free state. We will accept this, which requires

σM > 0 . (5.4)

Their lowest pressure shot induced two discontinuities in the GeO2: their data

indicates that σ = 4.1 GPa behind the first discontinuity. If we assume that the
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material behind the first discontinuity was in the low pressure phase, we have:

σm ≤ 4.1 GPa . (5.5)

The low pressure and high pressure phases are not allowed to overlap in γ:

γM ≤ γm . (5.6)

Jackson and Ahrens, utilizing results of their own experiments and enthalpies

of transformation obtained by Navrotsky [71], estimated that the transformation

energy from the glassy phase to the high pressure phase is Ψ(γT ) = -0.253 kJ/g. We

will impose this as a requirement on the trilinear model

ψ(γT ) =

0∫
γT

σ̂(γ)dγ . (5.7)

By the expression (3.52) for the driving traction in uniaxial deformation,

ψ(γT ) = f̂(0, γT ) +
1

2
(σ̂(γT ) + σ̂(0))(−γT ) . (5.8)

But σ̂(γT ) = σ̂(0) = 0, and by (4.16c) for the driving traction in a trilinear material,

2ψ(γT ) + γTσm = σM (σm
Ē1 − Ē3

Ē1Ē3
− γT ) . (5.9)

This is a strong constraint: the selection of either σm or σM determines the other.

We use the principal contact locus to impose a final requirement. For any pair

(γM , σM) and (γm, σm) selected, draw the contact locus in the σ, V plane. On

the plot, overlay the data points obtained by Jackson and Ahrens. As shown in

Figure 5.7, when γM is near to γm, two data points lie within the region ABC

that corresponds to subsonic phase boundaries. As γM and γm move apart subject

to (5.9), the CA boundary moves toward the BC boundary, and the region ABC

shrinks, Figure 5.8. Eventually, the two data points no longer lie within ABC, nor
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do they lie anywhere on the contact locus. Therefore, we eliminate any combination

of γM and γm that cause either of these two data points to lie outside of ABC.

Satisfying (5.9), we find that preventing these two data points from falling left

of the CA boundary is a much greater restriction than (5.4) or (5.5). In particular,

(γM , σM) and (γm, σm) can be no farther apart in γ than:

(γM , σM) = (−0.3929, 15.9 GPa) , (γm, σm) = (−0.25, -11.3 GPa) . (5.10)

The pair that is closest together in strain without violating (5.6) is:

(γM , σM) = (−0.346, 53.4 GPa) , (γm, σm) = (−0.346, -15.6 GPa) . (5.11)

For definiteness, select:

(γM , σM ) = (−0.352, 48.86 GPa) , (γm, σm) = (−0.340, -15.368 GPa) . (5.12)

This pair of points satisfies the all of the constraints and each point of the pair is

between their respective extremes in (5.10)-(5.11).

In summary, this material is described by:

ρ◦ = 3.629 g/cm3 , (5.13)

σ̂(γ)[GPa] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined for γ < −0.510 ,

σ̂1(γ) = 800.0γ + 330.212 for − 0.510 < γ ≤ −0.352 ,

σ̂2(γ) = −5494.807γ − 1883.602 , for − 0.352 < γ ≤ −0.340 ,

σ̂3(γ) = 45.2γ , for − 0.340 < γ ≤ 100.0,

undefined for γ > 100.0 .

(5.14)

It has a longitudinal wave speed of c3 = (Ē3/ρ◦)
1/2 = 3.53 km/s.
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5.2 Kinetic relations for the germanium dioxide

In Chapter 7 we will examine results of a number of simulations that have been

conducted using the material model (5.14). Linear kinetic relations Fab(ṡ) = gab +

hab ṡ are prescribed, and the coefficients gab and hab are varied between simulations.

The roof Fab(ṡ) = Froof
ab (ṡ) is also prescribed in some simulations.

All kinetic relations that we examine will remain below the roof; that is Fab(ṡ) <

Froof
ab (ṡ) for all | ṡ |< c3 = 3.53 km/s. The roof Froof

ab (ṡ) is plotted for the transforma-

tion from the low pressure phase to the high pressure phase in Figure 5.10 and for

the reverse transformation (from the high pressure phase to the low pressure phase)

in Figure 5.11.

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2.5

2

3

ṡ, km/s

F31(ṡ),
GPa

F31(ṡ) = Froof
31 (ṡ)

Figure 5.10: The roof or maximum-dissipation kinetic relation for the transformation

from the low pressure phase to the high pressure phase.
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Figure 5.11: The roof or maximum-dissipation kinetic relation for the transformation

from the high pressure phase to the low pressure phase.

5.3 Elastic models for the ancillary materials

Under uniaxial shock compression, lithium fluoride, Al6061-T6, and tungsten each

exhibit three regimes of behavior: a linearly elastic regime, a regime with plasticity,

and a highly compressed regime which is usually modeled as thermoelastic. (Under

conditions of high confining pressures, plastic-like deformation occurs even in nor-

mally brittle materials like ceramics [23, 43].) In this work, no attempt is made to

accurately describe plastic or thermoelastic behavior; all three regimes are taken to

be elastic. In particular, these materials will be modeled with the concave-convex

material model.

The foam responds in a similar fashion, except that “crushing” replaces plasticity,

and will also be modeled with the concave-convex model.
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Recall the σ̂(γ) relation for the concave-convex model:

σ̂(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined for γ < γZ , (5.15a)

σ̂1(γ) = K̄γ (1 + s1γ)
−2 for γl ≤ γ ≤ γm , (5.15b)

σ̂2(γ) = a− b (−γ)n n �= −1 for γm < γ < γM , (5.15c)

σ̂3(γ) = Ēγ for γM ≤ γ ≤ γF , (5.15d)

undefined for γ > γF > 0 . (5.15e)

We now discuss the motivation for the form of each segment of this stress response

function, and how the expression for each was obtained.

The low pressure phase models the longitudinal response for small deformations,

|γM |� 1, where it is adequate to describe the material by linear elasticity. In

particular, the deformation gradient γ is approximately equal to the longitudinal

component ε of the linearized strain tensor:

γ ≈ ε if |γM |� 1 . (5.16)

The modulus Ē is the usual longitudinal modulus of linear elasticity for isotropic

materials:

Ē = λ+ 2μ = κ+
4

3
μ , (5.17)

where λ, μ, and κ are Lame’s modulus, the shear modulus, and the bulk modulus,

respectively.

The lower bound (γM , σM) for this interval of the stress response function is the

value at which yield is thought to occur. This point is computed from published

values of the yield stress Y◦ at very high strain rates. The von Mises yield criterion

predicts that for loading in longitudinal strain in the x direction, yield first occurs



95

when

σ − σL = −Y◦ , (5.18)

where the subscript L indicates either of the equivalent lateral directions.

Imposing the usual assumptions that volumetric strain is purely elastic and that

the elastic deformation can be described by linear isotropic theory, the lateral stress

can be computed,

σL = λ(εe + εp) + μεp . (5.19)

The strains εe and εp are respectively the elastic and plastic strains in the longitu-

dinal direction, so that ε = εe + εp.

When yield first occurs, εp = 0 and εe = εM . Equations (5.16), (5.18), (5.19),

and the expression (5.15d) of σ̂(γ) in the low pressure phase can be solved at this

condition to obtain

(γM , σM) =

(−Y◦
2μ

,−Ē Y◦
2μ

)
. (5.20)

The linear segment can end at a tensile “fracture” limit, γF > 0 above which

σ drops to zero for any γ. This is intended to imitate a spall behavior, but in all

simulations γF was taken to be sufficiently great that γF was never reached.

The middle phase is modeled by a power law relation intended to mimic the

loading behavior in plasticity. Unfortunately, it is difficult to determine values for

a, b, and n from the literature, and in the end all simulations were done with this

segment taken to be a straight line by setting n = 1. The parameters a and b

were then set to produce a line between the adjoining two segments from γm to γM ,

where γm is the upper bound for which the expression (5.15b) of the stress response

function in the high pressure segment is experimentally verified.

The expression for the high pressure phase derives from a response common to
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many materials, including those here. For a great variety of materials, it has been

found that, over a substantial range of data, the velocity W of a single compres-

sive discontinuity passing through an initially unstressed material at rest is linearly

related to the resulting particle velocity V − behind that discontinuity. For a right-

traveling discontinuity (W > 0),

W = s0 + s1V
− . (5.21)

Discussions of this remarkable relationship can be found in [28,50,51]. The param-

eters s0 and s1 have been compiled for many materials [16, 66, 91].

Satisfying the jump conditions (3.38)-(3.39) subject to (5.21) leads to the ex-

pression (5.15b) for σ̂(γ) in the high pressure phase, where

K̄ = ρ◦s
2
0 . (5.22)

The bounds γm and γZ are the extremes for which (5.21) has been verified exper-

imentally. No extrapolation of (5.15b) beyond these bounds was required in this

thesis; any extrapolation must be done with caution, especially since (5.15b) is

singular at γ = −s−1
1 and has negative slope for γ > s−1

1 .

Table 5.1 lists the parameters for the ancillary material models, and Figure 5.12

depicts their stress response functions.

Parameters for the foam warrant a brief discussion. The values s0 and s1 were

approximated with expressions in the appendices of [38]:

s0 =
ρ◦◦

ρ◦◦ − ρ◦
, (5.23)

s1 =

√
s0Pc

ρ◦
, (5.24)

where ρ◦◦ is the density of the matrix material and Pc is a characteristic crush

parameter. (Readers referring to [38] are advised that the definitions of ρ◦ and

ρ◦◦ in that report are interchanged with respect to those here.) Assume that
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Figure 5.12: Stress response models of the ancillary materials, plotted over the range of

stress encountered in the simulations of later chapters.



98

ρ◦◦ = 1.2 g/cm3 [18]. Take Pc = 22.5 MPa, based on properties for a 40 lb/ft3

polyurethane foam in Table II-1 of [38].

For the low pressure phase, the longitudinal modulus Ē is calculated from (5.17)

by taking Young’s modulus to be 0.06 GPa [18] and assuming that Poisson’s ratio is

1/3. The resulting expression for the low pressure phase intersects the high pressure

phase at γA ≈ -0.14. We will arbitrarily divide the interval between this point and

the origin equally between the low pressure phases and the middle phase, and will

force the middle phase to have a slope equal to half of that of the low pressure phase.

These bold assumptions can be tolerated because the foam plays a relatively minor

role in the particle-velocity histories of the experiments.
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Al6061 LiF Tungsten Foam

ρ◦, g/cm3 2.703 [91] 2.638 [91] 19.235 0.61

Ē, GPa 111 [59, 91] 128 [55, 91] 523 [66] 0.09 [18]

a, GPa -0.105472 -0.156736 -1.12036 -.00315

b, GPa 91.124 85.3662 360.039 0.045

n 1 1 1 1

s0, km/s [91] 5.24 5.15 4.03 2.034 [38]

s1 1.40 [91] 1.35 [91] 1.237 [91] 0.273 [38]

Y◦, GPa 0.29 [91] 0.36 [91] 2.2 [91] –

γM -0.00525362 -0.00367347 -0.006875 -0.07

σM , GPa -0.584203 -0.470327 -3.59563 -0.0063

γm -0.0746 [66] -0.0779 [66] -0.0713 [66] -0.1073

σm GPa -6.90332 -6.80677 -26.791 -7.977

Table 5.1: Model parameters for the ancillary materials. The longitudinal modulus, Ē,

was computed for Al6061 from μ [91] and κ [59], for lithium fluoride from μ [91] and

κ [55], and for tungsten from the wave speeds and density in [91]. Tungsten and foam

densities were measured in the experiments of Chapter 2. Parameters a, b, and n for

the power law segment were determined so that (γM , σM ) and (γm, σm) were connected

with a straight line (see text). The values γm, σm, γM , σM were found as described in

the text. See the text for a discussion of the foam’s parameters. Other values are from

the references cited in the table.

5.4 Summary

Figure 5.13 shows the stress response functions described by σ = σ̂(γ) for the five

materials. Figure 5.14 illustrates their principal contact loci in compression.
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Figure 5.13: Stress response models of all materials over the range of stress encountered

in the simulations.
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Chapter 6

Numerical method

The computational method employed in this work is based on one developed by

Zhong, Hou and LeFloch [109] for the treatment of one-dimensional problems

involving both phase boundaries and shocks. Their technique builds on front track-

ing and shock capturing methods utilized for shock waves in computational fluid

dynamics.

Front tracking schemes compute a shock front sharply without numerical dis-

sipation, but they are difficult to implement when shock wave interactions are in-

volved [108].

Shock capturing schemes spread shock fronts out over a few mesh cells, adequate

for many applications. Implementation is relatively straight-forward, and no modifi-

cations are required to accommodate shock wave interactions. Of particular interest

to us are the shock capturing methods based on the first-order Godunov method

and its higher order extensions, which have received a great deal of attention in

recent years [19, 24, 25, 30, 37, 39, 103].

In capturing, strain and velocity are averaged within each cell. In a cell con-

taining multiple phases, the average strain could fall in a range corresponding to an

unstable phase, but unstable phases do not arise in the physical model if they aren’t

there initially [5]. Näıve application of capturing schemes may lead to unphysical

solutions when phase transformations are involved.

One treatment for this difficulty is to approximate the behavior of a multiphase
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cell by an effective single phase, the properties of which are computed from the

stable phases within the cell. This is the approach taken in most codes of which the

author is aware, both “research codes” [69] and established “production codes” like

CTH, Wondy, and SHARC.

Zhong, Hou and LeFloch’s approach is a hybrid scheme; phase boundaries are

tracked, and shocks are captured. When a phase boundary is present, gridpoints

are adjusted so that the boundary passes between cells rather than through a cell.

In this way, mixed-phase cells are not generated.

Any numerical method based on a Godunov scheme must find the solution of

certain canonical initial-boundary value problems, Riemann problems, and impact

problems at the cell boundaries. For a general elastic material, finding the exact

solution to these problems requires costly numerical integration of the
√
σ̂′(γ) term

that arises in the expression (3.63) for fans. To make matters worse, this integral

must be evaluated repeatedly as the program iterates to find the intersection of the

loci of contact states for the right and left sides of a Riemann problem or impact

problem. For these reasons, an important part of most Godunov-based methods is

the implementation of an approximate Riemann solver to find these solutions.

Bucking the trend, no approximate Riemann solver is employed here. Recall

from Chapter 4 that the integral that causes the grief can be found analytically

for the material models we consider. We take advantage of this to construct exact

Riemann solvers for these models, using bisection algorithms to find the crossings of

the contact loci. The bisection algorithm was chosen as a root-finder for robustness;

it is guaranteed to find the root of an equation of one variable in a prescribed interval

if the function is continuous and has a single root in that interval.

This chapter presents the numerical approach used in this work. It begins by re-

viewing Godunov methods, working from the first-order to the second order method.

Next, the hybrid scheme of Zhong, Hou, and LeFloch is introduced. Then a section

highlights the features that are special to our particular implementation, including

remedies for some time-step problems caused by phase boundaries. Two sections
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then outline some of the mechanics of the code, describing data structures and

routines that are utilized by the exact Riemann solvers. These mechanics aid in un-

derstanding the program and the Riemann solvers in particular. The final section

presents an overview of the exact Riemann solvers.

The phrase “Riemann solver” is used loosely: in this document it includes not

only routines that solve Riemann problems, but also routines that solve initial-

boundary value problems.

6.1 Godunov methods

In a landmark paper of 1959, Godunov proposed that the local characteristic struc-

ture obtained by solving a Riemann problem could be used to define a numerical

method of treating balance equations [36].

element J

time

⇑
tn

tn+1

⇐initial conditionsû(x, tn)

⇐element indexjj − 1 j + 1

⇐node indexj − 1/2j − 3/2 j + 1/2 j + 3/2

x

xj−1/2xj−3/2 xj+1/2 xj+3/2

Figure 6.1: Numerical grid and notation.

Consider the element J on the discretized space and time grid of Figure 6.1. For

an elastic material, an integral form of the balance laws for this element is

∫∫
J

{ut + gx(u)}dxdt = 0 . (6.1)
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Here u is the vector of conserved quantities and g is the flux vector,

u = û(x, t) =

⎧⎪⎨
⎪⎩
V

γ

⎫⎪⎬
⎪⎭ , g(u) = ĝ(x, t) =

⎧⎪⎨
⎪⎩
−σ̂(γ)/ρ◦

−V

⎫⎪⎬
⎪⎭ , (6.2)

and

gx(u) = g ′(u)ux =

⎛
⎜⎝ 0 −σ̂′(γ)/ρ◦

−1 0

⎞
⎟⎠
⎧⎪⎨
⎪⎩
Vx

γx

⎫⎪⎬
⎪⎭ . (6.3)

Applying Green’s Theorem to (6.1),

∫
∂J

{g(u)dt− udx} = 0. (6.4)

Writing this out for each of the four sides of the element J ,

xj+1/2∫
xj−1/2

û(x, tn)dx+

tn+1∫
tn

ĝ(xj+1/2, t)dt+

xj−1/2∫
xj+1/2

û(x, tn+1)dx+

tn∫
tn+1

ĝ(xj−1/2, t)dt = 0 (6.5)

Denote the duration of the nth time-step by

(Δt)n = tn+1 − tn , (6.6)

and the width of cell J at time tn by

(Δx)n
j = xn

j−1/2 − xn
j+1/2 . (6.7)
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The cell average of u in cell J at time tn is

Ū n
j =

1

(Δx)n
j

xj+1/2∫
xj−1/2

û(x, tn)dx . (6.8)

The time average flux on the j + 1/2 boundary from time tn to tn+1 is

Gn
j+1/2 =

1

(Δt)n

tn+1∫
tn

ĝ(xj+1/2, t)dt . (6.9)

Solving (6.5) for the cell average of the conserved quantities at the end of the

time-step,

Ū n+1
j = Ū n

j − (Δt)n

(Δx)n
j

(
Gn

j+1/2 −Gn
j−1/2

)
. (6.10)

6.1.1 First-order Godunov method

In the first-order Godunov method, the conditions u(x, tn) at the start of each

time-step are approximated by the averages in each cell, . . . Ū n
j−1, Ū n

j , Ū n
j+1 . . . .

Neighboring cells are then treated as the two halves of a Riemann problem. Assume

that the solutions to all of the Riemann problems can be found, and let U
∗,n
J,j+1/2

be the solution at the cell boundary xj+1/2 in the cell J . Now assume that all

solutions are constant along the grid boundaries over the time interval t ∈ (tn, tn+1).

Then the flux vectors computed from (6.2)2 are constant on each cell boundary, and

computation of the average flux vector (6.9) is a trivial matter. The cell averages

for the next time-step are computed from (6.10), and the process repeats.

The solution U
∗,n
J,j+1/2 will not be constant if waves arising from neighboring

Riemann problems propagate to xj+1/2. If waves cross the cell boundaries, the

solution is no longer constant on the boundaries, oscillations arise and the numerical

method becomes unstable. This difficulty is prevented by restricting the time-step
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(Δt)n such that

(Δt)n < min
j

(Δx)n
j

cnj
for all elements J , (6.11)

where cnj is the highest wave speed of the material in cell J during the nth time-step.

In practice, the wave speed cnj is not known everywhere in a cell and the maximum

wave speed in any cell is only approximated, perhaps by the wave speed at the start

of the time-step, (c)n
j ≈ (σ̂ ′(γn

j )/ρ◦)
1/2 = ±λn

j . Here, ±λn
j are the eigenvalues of

g ′(Ū n
j ). The restriction is then expressed as the CFL condition,

λn
j

(Δt)n

(Δx)n
j

< 1 . (6.12)

In a linear system, the restriction (6.12) allows waves from neighboring Riemann

problems to interact during a time-step, but the interaction and resulting waves are

entirely contained within a cell during the time-step. In non-linear systems, the

interaction within a cell may produce waves that travel faster than the interacting

waves, and (6.12) is inadequate to contain these new waves within the cell. In

non-linear systems, then, (6.12) is replaced by

λn
j

(Δt)n

(Δx)n
j

< τ , (6.13)

where the Courant number τ < 1 is chosen (often by trial and error) to prevent

numerical oscillations from arising. The more strongly non-linear the problem, the

lower τ must be.

In the simulations for this thesis, a Courant number of τ = 0.8 is typical.

6.1.2 Second-order Godunov method

Considerable effort has been expended to extend Godunov’s approach to higher order

[102,103]. In brief, the method is made higher order in space by approximating the

conditions at the start of each time-step by piecewise polynomial functions of higher-
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order than the piecewise constant functions used above (which are of order zero).

Neighboring cells are still treated as the two halves of a Riemann problem, with

initial conditions prescribed by the polynomial functions evaluated at the boundary

between the cells.

We consider only the second-order extension of the Godunov method. At the

start of the nth time-step, û(x, tn) is approximated within each cell by a linear

function U n
j (x):

U n
j (x) = Ū n

j +
1

(Δx)n
j

(x− xj)δ
n
j U for xj−1/2 < x < xj+1/2 , (6.14)

where δn
j U is an estimate of the first derivative within the cell,

δn
j U =

Ū n
j+1 − Ū n

j−1

(Δx)n
j + 1

2
((Δx)n

j+1 + (Δx)n
j−1)

. (6.15)

At each cell boundary, the flux vector g is approximated by solving the Riemann

problem defined by the cell boundary values. If the first order numerical flux at the

j + 1/2 cell boundary is defined by

G∗n
j+1/2 = G∗(Ū n

j , Ū
n
j+1) , (6.16)

then the spatially second-order numerical flux is:

G∗∗n
j+1/2 = G∗(U n

j (xj+1/2),U
n
j+1(xj−1/2)) . (6.17)

The cell average Ū n+1
j at the end of the time-step is found from (6.10):

Ū n+1
j = Ū n

j − (Δt)n

(Δx)n
j

(
G∗∗n

j+1/2 −G∗∗n
j−1/2

)
. (6.18)

Unfortunately, this scheme is linearly unconditionally unstable, though “weakly

so” [42]! It is remedied by second-order time differencing, achieved by adding a

correction to the flux term G∗∗n
j+1/2. The correction term used in this thesis is the
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flux for first-order Riemann problems at the half-time-step. In particular, the recipe

is:

Step 1. Begin the nth time-step with the average value Ū n
j in each cell J computed

from (6.18).

Step 2. Use (6.14)–(6.15) to define a linear approximation U n
j (x) to the solution

in each cell J . The spatial average of U n
j (x) across the cell must equal

Ū n
j .

Step 3. Define a Riemann problem at each cell interface, using U n
j (xj+1/2) and

U n
j+1(xj−1/2) as initial values for the left and right sides of the Riemann

problem at j + 1/2.

Step 4. Solve each Riemann problem. Let G∗∗n
j+1/2 be the computed flux vector at

the j + 1/2 interface.

Step 5. Estimate the time-step (Δt)n by (6.13), where λn
j is the maxiumum value

of the eigenvector in the cell J between xn
j−1/2 and xn

j+1/2 at time tn.

Step 6. Compute the cell average Ū
n+1/2
j at the half time-step,

Ū
n+1/2
j = Ū n

j − (Δt)n

2(Δx)n
j

(
G∗∗n

j+1/2 −G∗∗n
j−1/2

)
. (6.19)

Step 7. At the half time-step, define another Riemann problem at each cell inter-

face, using Ū
n+1/2
j and Ū

n+1/2
j+1 as the initial values for the left and right

sides of the Riemann problem at j + 1/2.

Step 8. Solve each of these half-time-step Riemann problems. Let G
∗n+1/2
j+1/2 be the

computed flux vector at the j + 1/2 cell boundary.

Step 9. Compute the new cell average Ū n+1
j at the end of the time-step using the

cell average at the half time-step and the flux computed for the second
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half of the time-step, so that

Ū n+1
j = Ū

n+1/2
j − (Δt)n+1/2

(Δx)n
j

(
G

∗n+1/2
j+1/2 −G

∗n+1/2
j−1/2

)
. (6.20)

Step 10. Repeat for the (n+ 1)st time-step.

We now have a scheme that is second-order in both time and space. This method,

however, produces numerical oscillations when the estimated gradient δn
j U in a cell

is larger than, or of sign opposite to, the gradient computed using the cell’s mean

value Ū n
j and only one of the two adjacent mean values Ū n

j+1 or Ū n
j−1. These

oscillations are annoying in some types of problems, but in considering a phase-

changing material, they are disastrous: in benchmark problems that can be solved

analytically, they nucleate phase transformations in locations where transformations

should not appear. The oscillations are prevented by limiting δn
j U in each cell with

a function known as a slope limiter [42]. In this thesis, the minmod slope limiter is

used.

The minmod slope limiter is

δn
j U = 2 minmod

(
Ū n

j+1 − Ū n
j

(Δx)n
j+1 + (Δx)n

j

,
Ū n

j − Ū n
j−1

(Δx)n
j + (Δx)n

j−1

)
(6.21)

where the minmod function is

minmod (a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a if |a |<|b | and ab > 0 ,

b if |b |<|a | and ab > 0 ,

0 if ab < 0 ,

=
1

2
(sign (a) + sign (b)) min (|a |, |b |) .

(6.22)

Equation (6.21) is used in place of (6.15) in Step 2, providing an oscillation-free,

second-order Godunov method.
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6.1.3 Adjustment for cells with a neighbor of a different

material

When a cell has either a free boundary or a neighbor involving a different material,

the scheme must be first-order in this cell to avoid oscillations. This is readily

accomplished by prescribing that the slope δn
j U = 0 in any such cell.

6.2 Zhong, Hou, and LeFloch’s hybrid scheme

The Godunov method requires the computation of cell averages of U . This aver-

age should not be used when a cell contains both stable phases of an up-down-up

material, as the resulting average γ may fall in the unstable phase.

Zhong, Hou, and LeFloch resolved this with a hybrid scheme [109]. They em-

ployed a second-order Godunov method in any cell with no phase boundary. In a

cell of mixed phase, the position of the phase boundary or boundaries is tracked,

and the grid points are shifted to follow each phase boundary. In this way, a phase

boundary passes between cells rather than through them, and cells of mixed phases

are avoided.

tn

tn+1

⇐element indexj j + 1

⇐node index

⇐node index

j − 1/2

j − 1/2

j + 1/2

j + 1/2

j + 3/2

j + 3/2

ṡ

Figure 6.2: Shifting scheme of Zhong, Hou, and LeFloch.
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They accomplished the tracking with a shifting scheme, Figure 6.2. The vertical

dotted line at j + 1/2 indicates the boundary between the cells in the absence

of a phase boundary. The interface j + 1/2 is shifted with the phase boundary

propagating at velocity ṡ. The new average Ū n+1
j in the cell J is found by applying

Green’s theorem to the balance equations over the cell.

When neighboring cells are of different phases, the scheme must again revert to

first-order to avoid oscillations.

6.3 Modifications in this thesis

In concave-convex materials, the second-order, slope-limited Godunov method de-

scribed above is applied without modification, as there is no difficulty with the cell

average of γ falling in an unstable phase.

For a trilinear material, Zhong, Hou, and LeFloch’s scheme is implemented with

a minor modification. Rather than shifting grid points to track a phase boundary, we

split any cell containing a phase boundary. The concept is illustrated in Figure 6.3,

where the shaded areas represent a new left cell (index l) and a new right cell (index

r) in the original cell J . The borders of the new cells lie on the phase boundaries,

which propagate at velocities ṡl and ṡr. Two boundaries are shown so the expressions

can be written for a general case, but usually only one is present in a given cell.

At the end of the time-step, the widths of the new cells are (Δx)n+1
l = ṡl(Δt)

n

and (Δx)n+1
r = −ṡr(Δt)

n. The width of cell J decreases to (Δx)n+1
j = (Δx)n

j −
(Δx)n+1

l − (Δx)n+1
r .

The numerical method reverts to first order in these cells and computation of

the cell average of u is made only at the full time-step. This is trivial for the new

cells: the solutions U
∗,n
l,j−1/2 and U

∗,n
r,j+1/2 behind the left and right phase boundaries

are constant during the time-step. The cell averages are simply these solutions:

Ū n
l = U

∗,n
l,j−1/2 , Ū n

r = U
∗,n
r,j+1/2 . (6.23)
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For the element J , the average at the end of the time-step is:

Ū n+1
j =

({
Ū n

j − (Δt)n

(Δx)n
j

(
Gn

j+1/2 −Gn
j−1/2

)}
(Δx)n

j

− Ū n
l (Δx)n+1

l − Ū n
r (Δx)n+1

r

)
/(Δx)n+1

j . (6.24)

Note that the term in {} on the first line is the right side of (6.10).

Splitting a cell increases the number of cells by one at each time-step for each

phase boundary. These new cells can be extremely small for a slowly moving phase

boundary. The time-steps can become too small to be useful unless some remedies

are applied.

If a given small cell J has a neighboring cell of the same material and phase, the

two cells can be combined. At the end of each time-step, the program used here

looks for cells of widths below a specified fraction (typically 0.4) of the original mesh

width. If such a cell has a neighboring cell of the same phase, it is merged with that

neighbor. In the (rare) cases when both neighbors are of the same phase, the given

cell is merged with the smaller of the neighbors, but all three are merged if the two

neighbors are of equal width. The width of a merged cell is the sum of the widths

of the individual cells, and the new cell average value Ū n+1
j is the width-weighed

sum of the averages of the individual cells.

We have just created a new difficulty. After several time-steps, so many small

cells may have merged into a continually growing neighbor that the neighbor cell

becomes much wider than the initial mesh. Accordingly, before the start of the

new time-step, the program splits any cell of width greater than a specified multiple

(typically slightly more than 2) of the original mesh width into two halves.

Another time-step difficulty arises either when two phase boundaries are ap-

proaching each other, or one phase boundary is approaching the edge of the plate.

At some point, only one cell remains between the two phase boundaries or between

the phase boundary and the boundary of the plate. From that time forward, the

CFL condition prevents the phase boundary from ever traversing the intervening
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tn
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⇐element index

j

j

j − 1 j + 1

⇐node index

j − 1/2

j − 1/2

j − 1/2

j − 3/2 j + 1/2

j + 1/2

j + 1/2

j + 3/2

ṡl ≥ 0 ṡr ≤ 0

new cells

l r

Figure 6.3: Splitting of a grid element that contains phase boundaries. In the lower

figure, the phase boundaries are propagating into the cell during the time-step. At the

end of the time-step, the cell is split into the three cells shown in the upper figure.



115

cell. The intervening cell and the time-step get smaller and smaller, and the pro-

gram soon crashes.

There is a remedy for this very serious problem. If a phase boundary is entering

the last cell of a plate, or if a phase boundary is entering on each side of a cell,

the program ignores the CFL condition in this cell. Instead, it allows a time-step

that causes the phase boundary to exactly cross the last cell, or that allows the two

phase boundaries to exactly meet. The troublesome intervening cell then has zero

width and is removed. Of course, if this time-step would violate the CFL condition

in any other cell, the CFL condition is honored instead. Eventually, however, the

intervening cell becomes so small that the time-step computed by this alternative

method is less than that required by the CFL condition in any other cell.

The other common situation in which a phase boundary causes very small time-

steps is when a very slowly moving phase boundary nucleates. The new phase

initially fills one small cell, which grows slowly. The time-steps must be small to

satisfy the CFL condition in the small cell. As long as the cell grows, the time-

step slowly increases, and the reasonable time-steps may may be recovered in a

reasonable period of computational time. No special provisions were added to the

program to handle this situation: as a result, cases involving certain combinations

of impact conditions, kinetic relations and material models were encountered for

which the simulations could not be completed. Sub-cycling in time would be an

appropriate improvement for this situation.

6.4 Data structures

In the last section, the element indices . . . j−1, j, j+1 . . . were used for discussion:

they are not actually used in the program. Instead, the program defines a data

structure for each element. A data structure is a collection of various types of

variables that can be treated as a single unit within the program. More details

about structures and lists in the “C” language can be found in texts such as [26,44].
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The data structures for all of the elements are in a doubly linked list: the data

structure for each element points to the data structures for its left and right neigh-

boring elements. A new cell is readily inserted by allocating the memory for its

structure, setting its links to point to its neighbors, then changing the neighbors’

links to point to it. A cell is removed by changing the links that point to it to point

to the new neighboring cells, then freeing the memory for the data structure of the

cell being removed. It is not necessary to know how many cells there are, nor the

index j of any cell. The program progresses from one cell to another by starting at

the first cell and following the links to the end. There are special pointers to the

first and last cells so the program knows where in memory the list begins and ends.

Data structures are used extensively in the program, and they tell a great deal

about the program’s operation. The use of pointers within these structures avoids

many time-consuming conditional statements (if, else, case, switch).

The most important structures and their most important contents are:

material Describes a material. There is one of these structures for each

material in the simulation. This structure contains:

• The density ρ◦.

• The intersection point (γA, σA) of the expressions for the low pressure

phase and the high pressure phase, and a pointer to the phase in

which it occurs.

• Pointers p slowest phase boundary[0]-[1], to two

discontinuity structures describing the slowest phase boundaries

ṡ
(slowest)
31 and ṡ

(slowest)
13 allowed by the forward and reverse kinetic

relationships F31(ṡ) and F13(ṡ).

• Pointers p fastest phase boundary[0]-[1] to the

discontinuity structures describing the fastest phases boundaries

ṡ
(fastest)
31 and ṡ

(fastest)
13 that can be supported by the foward and reverse

kinetic relationships F31(ṡ) and F13(ṡ).
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• Pointers to the first phase and last phase of the material.

• p compressive function, a pointer to the routine that computes a

similarity solution in this material when it undergoes a compressive

deformation. (Here, compressive refers to the strain in the deformed

state relative to the initial state, namely γ
�

< γ◦.)

In particular, p compressive function points to

ConcaveConvexCompression, TrilinearRoofCompression, or

TrilinearGeneralKineticsCompression.

• p expansive function, a pointer to the routine that computes a

similarity solution in this material when it undergoes an expansive

deformation. (Again, the deformation is defined relative to the initial

condition, so an expansive deformation has γ
�

> γ◦)

In particular, p expansive function points to

ConcaveConvexExpansion, TrilinearRoofExpansion, or

TrilinearGeneralKineticsExpansion.

• Pointers to the user-specified parameters (g13 and h13), and (g31 and

h31). A pointer is set to NULL if the transformation is governed by the

roof kinetic relation.

• Pointers p kinetic relationship[0]-[1] to routines that compute

F31(ṡ) and F13(ṡ). A pointer is set to NULL if the transformation is

governed by the roof kinetic relation.

phase Describes a phase. In this work, there are three of these structures for

each material, though the data structures were designed to accommodate

more. Each contains:

• The parameters (Ē and d or K̄ and s1) for the phase.

• The values of strain and stress at each endpoint of this phase.

• The area under the curve σ̂(γ) in this phase, and the velocity changes
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across compressive and expansive deformations that span the phase.

These are used to speed up calculations for waves that span an entire

phase.

• Pointers to functions that compute σ̂(γ), γ̂(σ), σ̂ ′(γ),
∫ γ
0 σ̂(γ∗)dγ∗, and∫ γ

0

√
σ̂ ′(γ∗)dγ∗ for this phase. For our materials, these are all analytical

functions, but other functions such as table look-up or numerical

integration could be used.

• Pointer to the material to which this phase belongs.

• Pointers to the “previous” (more compressed) phase and the “next”

(less compressed) phase.

plate Describes a plate. It contains:

• The user-specified Courant number for this plate.

• Pointer to the material that makes up this plate.

• Pointer to the previous plate (smaller x) and next plate (larger x).

• Pointers to the first element and last element of this plate.

• Pointer to the routine for solving Riemann problems between

elements within this plate.

• Pointer to the routine for solving the Riemann problem between the last

element of this plate and the first element of the next plate. If

this is the last plate, the pointer is NULL.

• Pointer to the routine for solving initial-boundary value problems on

free-surfaces of this plate. Though a given plate may have no free

surfaces at the start of the simulation, free surfaces can develop by

fracture within a plate or by separation between plates.

• Pointer to the slope limiter function for this plate. Only the

MINMOD limiter is currently implemented.
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• A flag to indicate the current boundary condition (free, in contact and

tension allowed, in contact but no tension allowed) on the right side of

the plate.

element Describes an element. It contains:

• The current width (Δx)n of the element.

• The Lagrangian location x of the right side of the element.

• The current (Eulerian) location y(x, t) = x+ u(x, t) of the right side of

the element.

• The current slope computed from the slope limiter function.

• Pointers to solution structures for the left and right side problems.

There is one pointer to the solution within the element at its left

side and one to the solution within the element at its right side. In

the indicial notation of the previous sections, these would be the

solutions U
∗,n+1/2
j,j−1/2 and U

∗,n+1/2
j,j+1/2 or U

∗,n+1
j,j−1/2 and U

∗,n+1
j,j+1/2 for cell J ,

though our solution structure holds more information than just U .

• Pointer to the plate in which this element lies.

solution Describes a solution to an initial-boundary value problem or a

Riemann problem. During a root-finding process, initial conditions and

current guesses are held in these type of structures (a smaller structure with

a name like “state” would suffice for the initial conditions). This structure

contains:

• Values of γ, V , σ for some state.

• Status flags to indicate which of these values have or have not yet been

computed.

• p phase, a pointer to the phase that the material is in for the

given γ or σ. This pointer is especially important for up-down-up
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materials: since the phase cannot necessarily be determined from σ, the

program must have another way of indicating the phase.

• Speeds of the fastest and slowest waves computed in the solution. The

fastest wave is used in computing the time-step. If a phase boundary

occurs, its velocity (required to split the cell) is given by the slowest

wave.

• type of phase boundary, an integer that flags the kind of phase

change. The integers are referred to by name: NoPhaseChange,

Subsonic, Supersonic.

discontinuity This structure describes a discontinuity. The program uses it

only for subsonic phase boundaries in up-down-up materials. It contains:

• The driving traction f .

• The phase boundary velocity ṡ.

• The jump in particle velocity across the discontinuity [[V ]] = V + − V −.

• The strain and stress on each side of the discontinuity: γ+, σ+, γ−, σ−.

6.5 Routines used by the Riemann solvers

The Riemann solvers seek intersections of the contact loci for the left and right sides

of a problem. Let V
�

L = VL(γ
�

) and V
�

L = VR(γ
�

) be the contact velocities at the

contact strain γ
�

for the left and right sides of a Riemann problem, respectively.

Let V
�

◦ = V◦(γ
�

) be the contact velocity for the contact strain γ
�

when we are

discussing a general case. By virtue of the relations presented in Chapter 4, these

functions are known for all of the model materials and for all initial conditions.

In the program, calculation of the contact velocity involves a number of routines,

outlined in the remainder of this section.
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6.5.1 Routines that determine the current phase

Two routines can determine what phase a particular strain or stress lies in:

PhaseForGivenStrain This routine receives a value of strain γ and a pointer

to the material, then returns a pointer to the phase for that strain.

PhaseForGivenStress This routine receives a value of stress σ and a pointer

to the material, then returns a pointer to the phase for that stress. It

works only for monotonic materials.

6.5.2 Routines that compute stress or strain in a phase

Recall that the phase structure holds pointers pstressfunction and pstrain-

function to routines that compute σ̂(γ) and γ̂(σ). Since there are currently three

types of phases (the linear phases, the concave phase of the concave-convex mate-

rial, and the convex phase of the concave-convex material), there are six routines.

Rather than name and describe each of the six, we just name and describe the two

categories:

StressForGivenStrain These types of routines receive a value of strain γ

and a pointer to a phase i, then return the stress σ̂i(γ).

Each pointer phase→pstressfunction points to a routine of this type.

StrainForGivenStress These types of routines receive a value of stress σ

and a pointer to a phase i, then return the strain γ̂i(σ).

Each pointer phase→pstrainfunction points to a routine of this type.

6.5.3 A routine to compute f , W , and [[V ]]

The following utility is called from many other routines:

DrivingTractionAndVelocityOfDiscontinuity This routine receives a

discontinuity structure in which γ+, σ+, γ−, σ− have been set. From
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these values, it computes and sets all other members of the

discontinuity: f , ṡ, and [[V ]].

6.5.4 Routines that find contact velocity at prescribed con-

tact strain or stress for monotonic materials

Two routines find similarity solutions and compute the particle velocity on a contact

locus for initial-boundary value problems in concave-convex materials.

For concave-convex materials, material→p compressive function points

to ConcaveConvexCompression, and material→p expansive function

points to ConcaveConvexExpansion.

ConcaveConvexCompression The purpose of this routine is to compute the

contact velocity V◦(γ
�

) at a specified contact strain γ
�

or contact stress σ
�

for prescribed initial conditions (γ◦, V◦) in a concave-convex material. It is

called for compressive deformations (i.e., when γ
�

< γ◦ or σ
�

< σ◦). The

maximum dissipation kinetic relationship is enforced.

ConcaveConvexCompression receives pointers to two solution

structures, frontstate and backstate. The structure frontstate

contains the initial state γ◦, σ◦, V◦. In backstate, either a contact strain

γ
�

and/or a contact stress σ
�

has been set. (If both are set, they are

consistent, i.e., σ
�

= σ̂(γ
�

).) ConcaveConvexCompression also receives

a pointer to the material, and an integer whatside, where

whatside=−1 if the initial conditions are on the left-side of an

initial-boundary value problem, and whatside=+1 if the initial conditions

are on the right-side.

The routine examines the status flags in backstate that indicate whether

γ
�

and/or σ
�

is current. Then it calls PhaseForGivenStrain or

PhaseForGivenStress as appropriate to set the pointer

backstate→phase to the correct phase. Next,
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StressForGivenStrain or StrainForGivenStress is called if

needed to calculate the current value of σ
�

from γ
�

or vice-versa. The

corresponding status flag is toggled to indicate that the newly computed

value is now current.

With this housekeeping complete, ConcaveConvexCompression

determines what kind of solution is required to reach γ
�

from γ◦ with

maximum dissipation kinetics (the roof). The situations presented in

Section 4.4, and the resulting forms of the possible states, are explicitly

coded into the routine. Once the form of the solution is determined,

ConcaveConvexCompression calls other routines to compute the

particle velocity V◦
�

.

For example, if ConcaveConvexCompression determines that the

solution must be a shock, it calls a routine named SinglePhaseShock,

which works for any shock (compressive or expansive) in any phase in any

material. SinglePhaseShock computes

V◦
�

= V◦ + sign (W [[σ]])
1√
ρ◦

√
[[σ]][[γ]] ,

W = whatside

√√√√ [[σ]]

ρ◦[[γ]]
,

where

[[σ]] = σ◦ − σ
�

, [[γ]] = γ◦ − γ
�

.

It stores V
�

and W in backstate and returns control to

ConcaveConvexCompression, which then returns control to the routine

that called it.

ConcaveConvexExpansion This routine is identical to

ConcaveConvexCompression except that it works for expansive
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deformations.

6.5.5 Routines that describe a kinetic relation

Most kinetic relationships require a routine that returns Fab(ṡ) for specified ṡ and

specified front phase a and back phase b. The roof is a notable exception, as it can

be implemented without knowing the form of Fab(ṡ).

If kinetics other than the roof are utilized for a material, then a pointer in that

material structure points to one of these routines. There is one pointer for the

LPP→HPP transformation and one for the HPP→LPP, so the kinetic relationship

is specified independently for each transformation. Their coefficients (gab and hab

for a linear kinetic relationship) are also specified independently.

Since the program currently implements only one type of kinetic relationship

other than the roof, the only routine in this category is:

LinearKineticRelation Receives ṡ, a pointer to the material, and an

integer that flags whether to compute F13(ṡ) or F31(ṡ). Computes and

returns the appropriate choice of F13(ṡ) = g13 + h13ṡ or F31(ṡ) = g31 + h31ṡ .

6.5.6 Routines that find a discontinuity to satisfy a kinetic

relation

In this section we encounter two root-finding algorithms based on the bisection

method. The principle of the bisection algorithm is simple. Start with a continuous

function ĥ(w) on some interval w ∈ [w1, w2]. If ĥ(w1) and ĥ(w2) have opposite signs,

then the function must have a zero in that interval. Evaluate ĥ(wm) at the midpoint

wm of the interval and examine its sign. The root must lie in the half-interval where

ĥ(w) changes sign. Replace the original interval with this half-interval and repeat

the process. When the interval is “small enough,” the zero has been found to within

the required accuracy.

The routines here return a discontinuity that satisfies the material’s kinetic
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relationship Fab(ṡ) for a specified transformation (LPP to HPP or vice versa). Both

routines work in the first quadrant of the ṡ, f plane—the calling routine must change

the signs of ṡ and f for left-going phase boundaries—and require that Fab(ṡ) be a

non-decreasing function of ṡ. Each routine receives pointers to the phase structures

on the “+” and “-” sides of the discontinuity.

These routines are only used for kinetic relations expressed as an equation re-

lating f and ṡ. In particular, they are not used for the roof (maximum dissipation)

kinetic relationship: in a general up-down-up material, we might not even be able

to find the equation relating f and ṡ on the roof. Fortunately, the maximum dis-

sipation kinetic relationship can be implemented by forcing γ+ = γM or γ+ = γm

ahead of a phase boundary.

SatisfyKineticRelationForPhaseBoundaryVelocity This routine

receives a specified phase boundary velocity ṡ and finds the pair (γ−, γ+)

that satisfies the kinetic relationship for this ṡ. It returns NULL if no such

pair exists.

It begins by calling LinearKineticRelation to find F = Fab(ṡ) for this

transformation. (Actually, it calls whatever routine is pointed to by

material→p kinetic relationship for this transformation, but

LinearKineticRelation is the only such routine implemented.)

Then the routine constructs the function ĥ(γ+) = f̂(γ−, γ+) − F and iterates

in γ+ to find the root of the function. Here, γ− = γ̃(γ+) is the strain in the

product phase that satisfies the jump conditions across a phase boundary of

specified velocity ṡ for strain γ+ in the parent phase. Geometrically, γ− is

the intercept of the “−” phase of the stress response function σ̂(γ) with a

chord of slope ρ◦ṡ
2 drawn through (γ+, σ+). Because we are interested only

in trilinear up-down-up models, the routine explicitly calculates

γ− = γ̃(γ+) = (d− − σ+ − ρ◦ṡ
2γ+)/(ρ◦ṡ

2 − Ē−) .



126

The routine’s search interval is γ+ ∈ [γ+
1 , γ

+
2 ], where γ+

1 , γ
+
2 are the smallest

and greatest values of γ on the “+” phase of σ̂(γ) for which a line of slope

ρ◦ṡ
2 intercepts the “−” phase.

For each guess of γ+ tested as a root, the routine computes γ− = γ̃(γ+), then

calls a StressForGivenStrain routine twice to compute σ+ = σ̂(γ+)

and σ− = σ̂(γ−). It places all four of these quantities into a

discontinuity structure, then calls

DrivingTractionAndVelocityOfDiscontinuity to get the driving

traction f̂(γ−, γ+). If f̂(γ−, γ+) = F within the requested accuracy, then the

phase boundary satisfies the kinetic relationship, and the discontinuity

structure is returned to the calling routine. Otherwise, another guess of γ+ is

made and the process repeats.

The only use of this routine is to fill in the discontinuity structures

pointed to by material→p slowest phase boundary[0]-[1] and

material→p fastest phase boundary[0]-[1] for the up-down-up

materials before the program starts looping in time. To fill in the structures

pointed to by material→p slowest phase boundary[0]-[1], this

routine is called with ṡ = 0 for both the low-to-high ([0]) and high-to-low

pressure ([1]) transformations. To fill in

material→p fastest phase boundary[0]-[1], it is called for both

transformations with ṡ = min (c1, c3). Because the stress-response models are

undefined outside of γ ∈ [γZ , γF ], the routine may return null in this latter

case. If this happens, a bisection algorithm iterates in ṡ to find the

maximum phase boundary velocity that can be supported by the material

model with the kinetic relationship enforced.

SatisfyKineticRelationForStressMinus This routine receives a

specified stress σ− and finds the pair (γ+, σ+) that satisfies the kinetic

relationship. It returns NULL if no such pair exists.
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The routine begins by calling—through the pointer it received to the “−”

phase—a StrainForGivenStress routine to compute γ−. It sets the

values of γ− and σ− in a discontinuity structure.

It next checks whether σ− ∈ [σ−
ab

(slowest)
, σ−

ab
(fastest)

] (these values are accessed

by the pointers material→p slowest phase boundary[0]-[1] and

material→p fastest phase boundary[0]-[1]).

If σ− is not in this range, then the kinetic relation specified by the user

forces γ+ to fall outside of γ ∈ [γZ , γF ]. The routine abandons the user’s

kinetic relation and instead enforces the alternate kinetic relationship

described in Section 4.3.7 by setting γ+ = γ+(fastest)
ab , σ+ = σ+(fastest)

ab . Then it

returns control to the routine that called it.

If σ− is in this range, the routine constructs the function

ĥ(γ+) = f̂(γ−, γ+) − Fab(ṡ
†) and iterates in γ+ to find the root of this

function. Here, ṡ† = Ṡ(γ+) =
√

[[σ]]/(ρ◦[[γ]]) is the speed of the phase

boundary for the current guess γ+.

The search interval is better understood in terms of stress σ+ than strain γ+.

For a low-pressure phase to high-pressure phase transformation,

σ+ ∈ [max (σ−, σm), σF ] ⇒ γ+ ∈ [γ̂3(max (σ−, σm)), γF ] . (6.25)

For a high-pressure phase to low-pressure phase transformation,

σ+ ∈ [σA,min (σ−, σM)] ⇒ γ+ ∈ [γA, γ̂1(min (σ−, σM))] (6.26)

For each guess of γ+ tested as a root, the routine calls

StressForGivenStrain to compute σ+. It sets γ+ and σ+ in the

discontinuity structure (which already contains γ− and σ−) and calls

DrivingTractionAndVelocityOfDiscontinuity to compute

f̂(γ−, γ+) and ṡ† for this discontinuity. Then it passes ṡ† to
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LinearKineticRelation to find Fab(ṡ
†). If f̂(γ−, γ+) = Fab(ṡ

†) within

the requested accuracy, then the root has been found, and the

discontinuity is returned to the calling routine. Otherwise, another

guess of γ+ is made and the process repeats.

6.5.7 Routines that find contact velocity at prescribed con-

tact stress in a trilinear material

There are four routines that find similarity solutions to initial-boundary value prob-

lems in trilinear materials, enforcing the kinetic relationships at subsonic phase

boundaries.

If F31(ṡ) = Froof
31 (ṡ), material→p compressive function points to Tri-

linearRoofCompression. For any other forward kinetic relationship F31, this

pointer points to TrilinearGeneralKineticsCompression.

If F13(ṡ) = Froof
13 (ṡ), material→p expansive function points to Tri-

linearRoofExpansion, otherwise it points to TrilinearGeneralKinetic-

sExpansion.

TrilinearGeneralKineticsCompression The purpose of this routine is

to compute the particle velocity V◦
�

= V◦(γ
�

) on the contact locus at a

specified contact strain γ
�

for prescribed initial conditions (γ◦, V◦). It is

called for compressive deformations in a trilinear material. The calling

routine must have already determined whether the solution will contain a

phase boundary, and whether the phase boundary is subsonic or supersonic.

This routine enforces the kinetic relationship F31(ṡ) for subsonic phase

boundaries.

TrilinearGeneralKineticsCompression receives pointers to

frontstate, containing the initial state γ◦, σ◦, V◦, and to backstate,

containing a contact strain γ
�

and a contact stress σ
�

. The pointer

backstate→phase has been set to indicate the phase for γ
�

. The routine
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also receives a pointer to the material, and the integer whatside, which

it passes along to routines that it calls. The

backstate→type of phase boundary has been set before this routine

is called.

This routine switches on backstate→type of phase boundary.

If backstate→type of phase boundary= Nophasechange, then the

routine calls SinglePhaseShock, which was briefly described on page 123.

If backstate→type of phase boundary= Supersonic, then the

routine calls MultiPhaseDiscontinuity, a routine identical to

SinglePhaseShock except that γ+ and γ− may be in different phases.

If backstate→type of phase boundary= Subsonic, then the routine

passes backstate to SatisfyKineticRelationForStressMinus to

find the strain γ+ and stress σ+ ahead of the phase boundary, and the jump

in particle velocity across it. It sets γ+ and σ+ into a discontinuity

named intermediatestate, the passes this and frontstate to

SinglePhaseShock to find the particle velocity V of the

intermediatestate. Finally, it calls MultiPhaseDiscontinuity

with intermediatestate and backstate to update the particle

velocity V of backstate.

TrilinearGeneralKineticsCompression then returns to the

program that called it.

TrilinearGeneralKineticsExpansion This routine is nearly identical to

TrilinearGeneralKineticsCompression, but it works for expansive

deformations. (In retrospect, there is no need for seperate routines, they

differ only in whether they call material→p kinetic relationship[0]

or [1]. An integer variable ForwardOrReverse, either 0 or 1, could be

passed in to indicate the correct function.)
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TrilinearRoofCompression This routine is identical

TrilinearGeneralKineticsCompression, except for its behavior in

this situation:

If backstate→type of phase boundary= Subsonic, the routine sets

γ+ = γm and σ+ = σm into a discontinuity named

intermediatestate, the passes intermediatestate and

frontstate to SinglePhaseShock to find the particle velocity V of the

intermediatestate. Finally, it calls MultiPhaseDiscontinuity

with intermediatestate and backstate to update the particle

velocity V of the backstate.

There is no need to call a root-finding algorithm to satisfy the kinetic

relationship.

TrilinearRoofExpansion This routine is nearly identical to

TrilinearRoofCompression, but since it works for expansive

deformations, it sets γ+ = γM and σ+ = σM into intermediatestate.

6.5.8 A routine that determines the form of solution for

prescribed contact stress in a trilinear material

The variable backstate→type of phase boundary must be set before any of

the four routines described in the previous section are called. The following routine

is responsible for setting this variable, and for calling these four functions.

FindSolutionGivenContactStressInNonMonotonicMaterial This

routine receives frontstate, which points to a solution containing the

initial state γ◦, σ◦, V◦, and backstate, which points to a solution

containing a contact stress σ
�

. Neither the contact strain γ
�

nor the phase

are known: this routine must determine them. The routine also receives a

pointer to the material, and the integer whatside, which it passes along

to routines that it calls.
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For clarity, the description that follows assumes the initial conditions are in

the low pressure phase of a trilinear material for which the intersection point

(γA, σA) occurs within the high pressure phase. In truth, the routine is

written to accommodate any up-down-up material, and it differentiates the

phases not by which one is high or low pressure, but by where their

expressions intersect.

The routine must determine whether the contact stress can be reached by a

supersonic phase boundary, a subsonic phase boundary, or no phase

boundary at all, then set the flag

backstate→type of phase boundary appropriately.

First the routine checks whether σ
�

< σA: if so, the solution must be a

supersonic phase boundary, and backstate→type of phase boundary

is set to Supersonic.

If the solution is not a supersonic phase boundary, the routine checks

whether σA ≤ σ
�

< σm: if so, the solution must involve a subsonic phase

boundary and the routine sets backstate→type of phase boundary

to Subsonic.

If neither of these cases is true, the routine then checks whether

σ
�

> σ31
(slowest): if so, no phase change is involved, and it sets

backstate→type of phase boundary to Subsonic.

Finally, if σm ≤ σ
�

< σ31
(slowest), the solution can be either a shock or it can

involve a subsonic phase boundary. The nucleation criteria is applied to

choose between these two solutions. The only nucleation criteria currently

implemented selects the solution with a phase boundary over the one

without, so the routine sets backstate→type of phase boundary to

Subsonic.

Having determined whether a phase boundary is present, the routine sets

backstate→phase, and calls StrainForGivenStress to compute γ
�
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from σ
�

. Finally, it calls material→p compressive function or

material→p expansive function to compute the particle velocity at

the contact state, then returns to the routine that called it.

6.6 Riemann solvers

Having described the routines that the Riemann solvers utilize, we can now describe

the Riemann solvers themselves.

Let us list the types of problems that may be encountered at any time-step:

1. Initial-boundary value problem with stress-free surface in a concave-convex ma-

terial. This type of problem must be solved for any element adjacent to a free

surface of a concave-convex material.

2. Single material Riemann problem in a concave-convex material. Within any

of the ancillary materials, all the Riemann problems between neighboring el-

ements are of this type.

3. Bimaterial Riemann problem involving only concave-convex materials. The

elements adjacent to the interface between plates of two different ancillary

materials define a Riemann problem of this type.

4. Initial-boundary value problem with stress-free surface in a trilinear material.

This situation occurs for any element adjacent to a free surface in a trilinear

material.

5. Single or bimaterial Riemann problem involving a trilinear material. This

occurs if either (or both) of two adjoining cells involves a trilinear material.

There is a different routine for each of these situations:

FreeEdgeInMonotonicMaterial This routine is for case 1, where the

free-surface requirement that σ
�

= 0 implies γ
�

= 0. The routine sets the
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initial conditions γ◦, σ◦, V◦ into a solution structure named

frontstate, sets the free-surface conditions γ
�

= 0, σ
�

= 0 into another

solution structure named backstate. Then it determines whether the

deformation will be expansive or compressive, and calls the routine pointed

to by material→p expansive function or

material→p compressive function as appropriate. (Currently, these

are ConcaveConvexExpansion and ConcaveConvexCompression.)

RiemannProblemForOneMonotonicMaterial This routine is for case 2. It

uses a bisection algorithm that exploits the fact that the stress-response

function σ̂(γ) is monotonic and identical on both sides of the Riemann

problem. This allows the routine to iterate in the variable γ
�

rather than σ
�

because the jump condition [[σ]] = 0 implies [[γ]] = 0. The bisection algorithm

finds the root of ĥ(γ
�

) = VR(γ
�

) − VL(γ
�

). The search interval could be set

to γ
� ∈ [γZ , γF ], but it is narrowed significantly by recognizing that the

solution must lie in a region accessible to both sides of the problem. Utilizing

results of Appendix A, Figure 6.4 is constructed as an example. In this

figure, the intersection of the loci for the right and left sides of the problem

must lie in one of the two open regions, and the search interval is therefore

restricted to γ ∈ [γR, γF ]. Going even further, we test whether the contact

locus for the right side passes above or below the initial conditions (σL, VL)

for the left side. If VR(γL) − VL > 0 then the bisection algorithm searches

only over γ ∈ [γL, γF ]. If VR(γL) − VL < 0 then the search is restricted to

γ ∈ [γL, γR]. Once the search interval has been restricted, the routine

determines whether material→p compressive function or

material→p expansive function should be called for each half of the

Riemann problem to compute VR(γ
�

) and VL(γ
�

) for each guess γ
�

.

Indeed, the ability to restrict the search in this way was the motivation for

writing separate compression and expansion routines for each material

model. If a single routine were written, it would have to make a decision
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each time it was called as to whether the deformation was going to be

compressive or expansive. Since these functions are called many times during

a root-finding process, placing the decision at a higher level saves many

conditional statements (if, else, case, switch) for each grid interface and for

each time-step.
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Figure 6.4: For a Riemann problem involving materials with monotonic stress response

functions, the striped regions cannot be accessed via the locus of contact states for the

left side, and solid regions are inaccessible for the right side. The solution must lie in

one of the two open areas. The σ and V arrows indicate the direction of the axes but

are not intended to imply an origin.

RiemannProblemForTwoMonotonicMaterials This is a bisection

algorithm for case 3. It is similar to

RiemannProblemForOneMonotonicMaterial except that now the
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search for a root must be done in the variable stress σ
�

rather than strain

γ
�

, since the material is different on the two sides of the problem. In

particular, the search is for a root of ĥ(σ
�

) = VR(γ
�

R) − VL(γ
�

L), where

γ
�

R = γ̂R(σ
�

) and γ
�

L = γ̂L(σ
�

). The search interval is again restricted, this

time to the interval of stress σ
�

that can be reached by both the right and

left contact loci. As the search interval must be defined for both materials, it

cannot extend beyond σ
� ∈ [max{(σZ)L, (σZ)R},min{(σF )L, (σF )R}].

FreeEdgeInUpDownUpMaterial This routine is for case 4. It receives a

solution named frontstate and sets the boundary condition σ
�

= 0

into a solution named backstate. Then it calls

FindSolutionGivenContactStressInNonMonotonicMaterial.

RiemannProblemForUpDownUpMaterial This routine is for case 5. It is

similar to RiemannProblemForTwoMonotonicMaterials, but the

search interval cannot be restricted. The root finding algorithm searches over

the entire range of stress σ
�

for which the stress response function is defined

for both the left and right materials,

σ
� ∈ [max{(σZ)L, (σZ)R},min{(σF )L, (σF )R}].
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Chapter 7

Numerical investigations

This chapter investigates how the response of the trilinear model we developed

for GeO2 in Chapter 5 is influenced by the kinetic relationships that govern

subsonic phase boundaries. In particular, we will simulate the impact experiments

described in Chapter 2 with the numerical method described in Chapter 6. Unless

otherwise stated, the model for GeO2 is held fixed and only the kinetic relations are

varied.

Recall that five experiments were conducted. In the two forward experiments,

Shots 955 and 953, a tungsten flyer plate traveling at 1.99 km/s or 1.53 km/s, re-

spectively, impacted a stationary GeO2 plate. In the three reverse experiments,

Shots 965, 957, and 958, a GeO2 flyer plate traveling at 0.62 km/s, 1.47 km/s, or

1.96 km/s, respectively, impacted a stationary plate of Al6061. Predictions for each

of these shots are presented in individual sections in the order just listed.

Using the model described by (5.14), each experiment was simulated with several

different forward kinetic relations f = F31(ṡ). The first goal was to find a forward

kinetic relation with no dependence on the phase boundary velocity ṡ to optimize the

match between the predicted particle-velocity history and the experimental VISAR

recording for that shot. After the kinetic relations F31(ṡ) = g31 that result in the

best match for each shot are identified, linear kinetic relations F31(ṡ) = g31 + h31ṡ

are examined in a separate section.

The kinetic relation f = F13(ṡ) governing the reverse transformation was also
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varied for each experiment, but usually only after the forward kinetic relation that

provided the best match to the early part of the experimental VISAR record was

found.

In the final two sections of the chapter, modifications are made to the trilinear

model of GeO2 to force certain phenomena otherwise absent in the simulations to

occur. The first modification allows the low pressure to nucleate from the high

pressure phase in a simulation of Shot 955. The second modification suppresses

phase transitions in the simulations altogether, and will be used in simulations of

Shots 955 and 953. (With the proper choice of the forward kinetic relation, phase

transformations can be avoided with our current model for the other three shots, so

this modified model is not applied to those three shots.)

In this chapter, where we discuss kinetic relations in simulations, it is to be

understood that these kinetic relations are used for subsonic phase boundaries only.

The input file for the program specifies kinetic relations for both forward and reverse

transformations, but the program enforces them only at subsonic phase boundaries.

Reference to any material is intended to be a reference to its model as described

in Chapter 5, and descriptions of events refer to the events in the simulations as

opposed to the actual experiments.

The critical driving traction f c
ab selected for the nucleation criterion is always the

driving traction prescribed by the kinetic relation at a stationary phase boundary,

f c
ab = Fab(0

+). When two similarity solutions to an initial-boundary value problem

are possible, one involving a phase boundary and the other involving only a shock,

this nucleation criterion selects the solution with the phase boundary.

For each shot, contact loci for the initial impact will be presented. In terms of

a bimaterial Riemann problem, our convention for these loci will be that the flyer

plate is on the left side (x < 0) and the plate it hits is on the right side (x > 0).

Likewise, in the simulations, the flyer plate and foam backing have Lagrangian

coordinates x < 0, and the stationary plates have Lagrangian coordinates x > 0.

The impact of the flyer plate and target occurs at x = 0.
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Figure 7.1: An example of predicted spatial distributions of particle-velocity, stress, and

strain.

Predicted spatial distributions of particle-velocity, stress and strain in Lagrangian

coordinates will be presented for some of the simulations: an example is shown in

Figure 7.1. The time given in the figure is the time elapsed since the initial impact

of the flyer plate and target. Plate boundaries are shown as vertical lines, and the

material of each plate is indicated above the topmost frame. Though the lithium

fluoride window is shown in Figure 7.1, in the remainder of this chapter most of the

window will be cropped to increase the size of the figures, and the time since impact

will be given below the figures.

In Figure 7.1, the average value of particle-velocity, stress and strain in each
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discretized element is indicated with a small “+” marker. Where the elements are

especially fine, the markers can overlap and appear to be a heavy solid line.

In the strain frame, a dashed line and a solid line are drawn across each plate at

the respective strains γ = γm and γ = γM that delimit the phases for the material of

that plate. At any position x, these lines allow a visual determination of the phase

of the particle whose referential location is x. In particular, the GeO2 is in the low

pressure phase when its strain is above the dashed line, and in the high pressure

phase when the strain is below the solid line. In our example, Figure 7.1, the GeO2

is in the low pressure phase for x � -2.3 mm and in the high pressure phase for x �

-2.3 mm. The discontinuity at x ≈ -2.3 mm is a phase boundary.

Dashed and solid lines are also drawn at σm and σM respectively in the stress

frames, though the solid line at σM = 48.86 GPa for the GeO2 is off the scale.

7.1 Shot 955

Because their contact loci intersect to the left of point C in Figure 7.2, it is predicted

that the impact of the tungsten flyer plate onto the GeO2 produces a supersonic

phase boundary in the GeO2. This phase boundary does not require and cannot

be subjected to a forward kinetic relation f = F31(ṡ) unless its velocity drops into

a subsonic range, and this can happen only if other waves interact with the phase

boundary, abruptly changing its velocity, before it travels across the GeO2. This

does not happen in simulations of this shot: as seen in the spatial distributions of

Figure 7.3, the GeO2 fully transforms to the high pressure phase before the wave

that reflects from the tungsten-foam interface can reach the phase boundary. As

expected, the strain discontinuity propagating across the GeO2 in the bottom frames

of Figures 7.3(a) and 7.3(b) is a supersonic phase boundary: its propagation velocity

is ṡ ≈ 3.87 km/s, greater than the maximum speed possible for a subsonic phase

boundary, c3 = 3.529 km/s. Notice that no wave propagates ahead of the phase

boundary, in agreement with the presentation of Section 4.3.3 and Figure 4.6(c).
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Figure 7.2: The loci of contact states for tungsten and GeO2 based at the initial impact

conditions in Shot 955. Because their intersection is left of point C, there will be a

supersonic phase boundary in the GeO2.

In the spatial distributions, we see that the predicted particle-velocity and stress

behind the waves that propagate away from the impact interface agree well with the

values of V
�

= 1.71 km/s and σ
�

= -23.95 GPa estimated from the intersection of

the contact loci in Figure 7.2.

The predicted particle-velocity history for this model is given in Figure 7.4.

Since the phase boundary propagates entirely across the GeO2 undisturbed from

its nucleation site, there is no opportunity for it to reverse direction and, there-

fore, no opportunity for the reverse kinetic relationship f = F13(ṡ) to influence its

propagation. The reverse kinetic relationship can still play a role at later times

if the low pressure phase nucleates from the high pressure phase, but even in the

situation most favorable for this—namely the combination of the dissipation-free



141

-5
0

5

-0
.4

-0
.2

-0
.0

Strain

-5
0

5

-2
00

Stress, GPa

-5
0

5
0.

0

0.
5

1.
0

1.
5

2.
0

2.
5

Particle velocity, km/s 

x,
 m

m

fo
am

W
G

eO
2

A
l6

06
1

(a
)

t=
0
.1

5
1

μ
s

-5
0

5

-0
.4

-0
.2

-0
.0

Strain

-5
0

5

-2
00

Stress, GPa

-5
0

5
0.

0

0.
5

1.
0

1.
5

2.
0

2.
5

Particle velocity, km/s 

x,
 m

m

fo
am

W
G

eO
2

A
l6

06
1

(b
)

t=
0
.5

5
1

μ
s

-5
0

5

-0
.4

-0
.2

-0
.0

Strain

-5
0

5

-2
00

Stress, GPa

-5
0

5
0.

0

0.
5

1.
0

1.
5

2.
0

2.
5

Particle velocity, km/s 
x,

 m
m

fo
am

W
G

eO
2

A
l6

06
1

(c
)

t=
1
.0

5
2

μ
s

F
ig

u
r
e

7
.3

:
P

re
d
ic

te
d

sp
at

ia
l
d
is

tr
ib

u
ti
on

s
of

p
ar

ti
cl

e-
ve

lo
ci

ty
,

st
re

ss
an

d
st

ra
in

in
S
h
ot

95
5.

T
h
e

su
p
er

so
n
ic

p
h
as

e
b
ou

n
d
ar

y,
se

en

in
(a

)
an

d
(b

),
h
as

tr
av

el
ed

co
m

p
le

te
ly

ac
ro

ss
th

e
G

eO
2

in
(c

)
b
ef

or
e

an
y

re
fl
ec

te
d

w
av

e
co

u
ld

re
ac

h
it
.



142

0 2
microseconds

0.0

0.5

1.0

1.5
Pa

rti
cl

e 
ve

lo
ci

ty
, k

m
/s 

Figure 7.4: Predicted particle-velocity history (light curve) at the interface between the

Al6061 and LiF compared to the VISAR record (heavy curve) for Shot 955. (This figure

is identical to Figure 5.6.)

reverse kinetic relation F13(ṡ) = 0 with a critical driving traction of f c
13 = 0 for

nucleation—the low pressure phase does not reappear. The results of simulations

with the dissipation-free reverse kinetic relation were identical to those with the

maximum-dissipation reverse kinetic relation, confirming that the reverse kinetic

relation played no role at all during the duration of the simulation.

In conclusion, the model predicts a supersonic phase boundary in the GeO2

that fully transforms it to the high pressure phase, no reverse transformation is

predicted for any choice of reverse kinetic relation, and subsonic phase boundaries

are not predicted. Neither a forward nor reverse kinetic relation is ever utilized.

7.2 Shot 953

Because the contact locus for the tungsten flyer plate crosses the region ABC of

the locus for the GeO2 target, Figure 7.5, the impact can induce a subsonic phase
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boundary but not a supersonic phase boundary. Furthermore, since there is no point

of intersection on the shock locus AB, there is no solution that involves only a shock

and no phase boundary: impact must nucleate a subsonic phase boundary for all

choices of kinetic relations f = F31(ṡ) and any nucleation criteria chosen for the

forward transformation.
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Figure 7.5: The intersection of the loci of contact states for the initial impact of Shot

953 indicates that the solution must involve a subsonic phase boundary.

Using the lines of constant phase boundary velocity in Figure 7.5, we can esti-
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mate the velocities of the slowest and fastest phase boundaries that can be nucle-

ated by the impact. In this figure and all remaining similar figures in this chapter,

these lines are drawn at increments of Δṡ = 0.882 km/s. In the enlargement of

Figure 7.5(b), it is seen that tungsten’s contact locus crosses the AC boundary

between ṡ = 0.882–1.765 km/s: the velocity of the slowest phase boundary that

can be induced by the impact lies in this range. The intersection on the BC lo-

cus indicates that the velocity of the fastest phase boundary will be in the range

ṡ = 2.647–3.528 km/s, below the maximum speed possible for a subsonic phase

boundary, c3 = 3.529 km/s.

Over a dozen simulations, each using a different foward kinetic relation, were

conducted for this shot. The maximum dissipation kinetic relation F31(ṡ) = Froof
31 (ṡ)

and the dissipation-free kinetic relation F31(ṡ) = 0 were included amongst these. As

expected, all simulations did indeed predict that a phase transition was nucleated.

Until the phase boundaries were disturbed by other waves, their velocities were

within the ranges predicted in the previous paragraph: the velocity of the slowest

phase boundary, achieved with the maximum dissipation forward kinetic relation,

was ṡ = 1.54 km/s, while the velocity of the fastest phase boundary, achieved with

the dissipation-free forward kinetic relation, was ṡ = 3.41 km/s.

Particle-velocity histories for four of these simulations, using forward kinetic

relationships F31(ṡ) having no dependence on ṡ, are presented in Figure 7.6. Only the

roof F13(ṡ) = Froof
13 (ṡ)was used for the reverse kinetic relationship in the simulations

shown in this figure.

The driving traction f = F̂31(ṡ) = g31 is constant for each of the kinetic relations

used for Figure 7.6; there is no dependence on the phase boundary velocity ṡ. The

constant values differ by only Δg31 = 0.05 GPa between Figures 7.6(b) and 7.6(c),

and by only Δg31 = 0.025 GPa between Figures 7.6(c) and 7.6(d). The resulting

predictions of particle-velocity history are very similar for these three simulations,

except between times t ≈ 1.2–1.3 μs. In Figure 7.6(b), the predicted particle veloc-

ity becomes negative in this period of time. In Figure 7.6(d), it becomes positive,
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(ṡ

)
=

2
.2

5
0
,
F

1
3
(ṡ
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and in Figure 7.6(c), the material remains nearly quiescent in this period of time. In

the following paragraphs, we discuss how the sign of the predicted particle-velocity

in this time interval depends on whether a tensile or compressive shock wave prop-

agates ahead of the phase boundary.

Recall that a subsonic phase boundary in a trilinear material is in general pre-

ceded by a shock wave. When a forward kinetic relation f = g31 with no depen-

dence on ṡ is prescribed, there is a special value of g31 ≈ 2.25 GPa at which the

predicted jumps in particle-velocity, stress, and strain vanish across the shock. In

this situation, though the phase boundary is subsonic, there is no shock ahead of it,

Figure 7.7(b). When the phase boundary reaches the aluminum buffer, it creates a

compressive wave in the aluminum. This compressive wave causes the rapid increase

in the particle-velocity at t ≈ 1.3 μs in Figure 7.6(c).

If a forward kinetic relationship f = g31, with g31 � 2.25 GPa is prescribed, then

the shock ahead of the phase boundary is predicted to take the material into tension,

Figure 7.7(a). Behind the shock, the particle-velocity is negative. This shock wave

passes into the aluminum and encounters the lithium fluoride at t ≈ 1.2 μs, causing

the particle-velocity to become negative in the predicted particle-velocity histories

of Figures 7.6(a) and 7.6(b).

When a forward kinetic relationship f = g31, with g31 � 2.25 GPa is prescribed,

the shock ahead of the phase boundary is predicted to take the material into com-

pression, Figure 7.7(c). The particle-velocity is positive behind this shock. The

shock causes the predicted particle-velocity to become positive at t ≈ 1.2 μs, Fig-

ure 7.6(d). Larger values of f = g31 caused greater increases in this initial part of

the particle-velocity history.

Thus we see that the initial change in the predicted particle-velocity history for

this shot is very sensitive to the forward kinetic relationship. Observe that the

experimental VISAR record for this experiment displays a small rise in particle-

velocity followed by a much larger jump. Of the simulations conducted for this

shot, Figure 7.6(d) comes the closest to capturing this feature of the experimental
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recording, so we choose it as the best that our trilinear model is capable of for this

shot.

In all the predictions of Figure 7.6, the velocity decreases from its peak value

much more rapidly than in the experimental record. This is consistent with the

limitation imposed by using a linear stress-strain curve for the high pressure phase,

as discussed in Section 5.1. This limitation causes more discrepancy in the forward

shots than in the reverse shots. Using a model with a lower modulus, the predicted

velocity history can be made to remain longer at its peak value, but the decrease is

still too rapid because the release wave is prevented by the model from generating

a fan in the GeO2.

The simulations discussed so far all utilized the roof for the kinetic relation gov-

erning the reverse transformation (from the high pressure phase to the low pressure

phase). Simulations using the same two forward kinetic relationships as Figure 7.6(c)

and Figure 7.6(d) were repeated with the dissipation-free kinetic relation F13(ṡ) = 0

for the reverse transformation, but there was no change in the results. For either

of these two forward kinetic relations, the initial impact initiates a fast but sub-

sonic phase boundary that propagates entirely across the GeO2 before any large

disturbance can reach it. The disturbances that the phase boundary does encounter

are too small to reverse its direction even when the dissipation-free reverse kinetic

relation, which presents no barrier to a reversal of direction of the phase boundary,

is prescribed. Thus, for these two forward kinetic relations, there is no opportunity

for any reverse kinetic relation to influence the propagation of the phase boundary

nucleated by the impact. Furthermore, for these two forward kinetic relations, once

the low pressure phase is gone, it is gone for good: it never nucleates from the high

pressure phase even for the dissipation-free reverse kinetic relation, which is the re-

verse kinetic relation that is most favorable for the low pressure phase to reappear.

In summary, changing the reverse kinetic relation does not change the results of

these simulations because the phase boundary nucleated by the impact never has

the opportunity to reverse direction, and no other phase boundaries ever nucleate.
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A simulation of this shot using a Mie-Grüneisen equation of state for both the low

and high pressure phases of GeO2 has recently been published by Chen et al. [22]. In

the Mie-Grüneisen equation of state, the internal energy is a function of temperature

and density. Furthermore, this equation of state is capable of describing a non-linear

relationship between pressure and volume. In these senses it is more sophisticated

than the trilinear model used in this thesis. Phase transformations in the GeO2

were described by a mixed phase, with the percentage of the high pressure phase

linearly increasing with compression.

Chen and colleagues compared an “irreversible phase change” model to a “re-

versible phase change model.” In the irreversible model, the high pressure phase does

not transform back to the glass phase upon release, while in the reversible model

it does. In both models, the GeO2 “enters a mixed phase at ∼ 8 GPa.” They find

that predictions with the irreversible phase change model are a much closer fit to

the experiment than predictions with the reversible phase change model. Their fit

to the VISAR record for this shot with the irreversible model is considerably better

than any obtained here for this shot with the trilinear model.

Chen et al. also report that simulations were conducted for the other shots

in this series, but that the predictions were best for Shot 953. This is especially

interesting, as our predictions using the trilinear model are much worse for Shot

953 than for any of the other shots.

7.3 Shot 965

In Shot 965, the contact locus of the aluminum buffer intersects the region ABC

of the contact locus of the GeO2 impactor, Figure 7.2. Therefore, this impact can

nucleate a subsonic but not a supersonic phase boundary. Since the contact locus of

the aluminum crosses the boundary AB, which is part of the shock locus for GeO2,

there are also solutions that involve only a shock and no phase boundary. Thus,

there will be some threshold value of the critical driving traction f c
31 that allows a
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Figure 7.8: The loci of contact states for aluminum and GeO2 based at the initial impact

conditions in Shot 965. Because the locus of the aluminum crosses the region ABC, any

phase boundary in the GeO2 will be subsonic. Solutions with no phase boundary are also

possible, since the locus of the aluminum crosses shock locus which lies on the boundary

AB.

phase boundary to nucleate. If a critical driving traction greater than this threshold

value is prescribed, no phase boundary nucleates.

The loci of constant driving traction in Figure 7.2 help us estimate what the
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threshold value of the critical driving traction must be. In this figure and all similar

figures to follow, these loci are at increments Δf = 0.591 GPa. The contact locus of

the aluminum intersects AB just left of the curve f = 0.591 GPa. Thus, the impact

can nucleate a phase boundary only if we prescribe f c
31 � 0.6 GPa.

Since the only critical driving traction implemented in the computer program

is of the form f c
ab = Fab(0

+), we can only vary the critical driving traction f c
31 by

varying the kinetic relation f = F31(ṡ). We will stick to kinetic relations that have

no dependence on the phase boundary velocity ṡ, so that our threshold value of the

critical driving traction is the greatest value of g31 that allows a phase boundary to

nucleate.

The fastest phase boundary occurs with a dissipation-free kinetic relation, the

locus for which lies on the BC boundary of the region ABC. The contact locus of

the aluminum intersects the BC boundary near the line of constant phase boundary

velocity ṡ = 0.882 km/s. Therefore, any phase boundary induced by this impact can

propagate no faster than ṡ ≈ 0.88 km/s unless and until it encounters other waves.

Simulations were conducted using kinetic relationships with no dependence on

ṡ, F31(ṡ) = g31. The roof was used as the kinetic relationship for the reverse trans-

formation. Phase boundaries nucleated for all g31 ≤ 0.6, and for no g31 ≥ 0.75, in

good agreement with the prediction made in the previous paragraphs. The simula-

tions predict a decrease in the particle-velocity history with decreasing g31 ≤ 0.6,

Figure 7.9. Figure 7.10 presents spatial distributions of particle-velocity, stress and

strain at approximately equivalent times for the kinetic relations used in the predic-

tions of Figures 7.9(a), 7.9(b) and 7.9(d). These spatial distributions depict three

extreme cases: no phase boundary, a very slow phase boundary, and the fastest

phase boundary possible. The fastest phase boundary velocity was ṡ = 0.78 km/s,

consistent with the upper bound estimated from Figure 7.2.

The velocity of the very slow phase boundary seen in Figure 7.10(b) was ṡ =

0.119 km/s, and its velocity decreased at later times when other waves disturbed it.

The high pressure phase behind this phase boundary never grew wider than Δx =
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0.2 mm. It is remarkable that the generation of this sliver of high pressure phase

dissipated enough energy to decrease the predicted particle-velocity at the top of the

“plateau” in Figure 7.9(b) by approximately 4% compared to the prediction with

no phase boundary, Figure 7.9(a). This sliver of high pressure phase resulted in the

best match to the experimental VISAR record for this shot, based on a comparison

of predicted and measured particle velocities along most of the “plateau.”

Now we examine the effect of the reverse kinetic relationship. As long as the

phase boundary travels undisturbed from its nucleation site, the reverse kinetic rela-

tionship plays no role. The first disturbance encountered by the phase boundary is

a wave reflected from the interface between the aluminum and the lithium fluoride,

but it is very weak and does not cause the phase boundary to reverse direction for

any of the simulations. The next disturbance to the phase boundary occurs when the

shock wave that precedes the phase boundary in the GeO2 reflects from the interface

with the foam, and this is sufficient to reverse the direction of the phase boundary

transformation if the reverse kinetic relationship allows it. When the phase bound-

ary reverses direction, the material through which it passes is transformed from the

high pressure phase back to the low pressure phase.

In the spatial distributions of Figures 7.11 and 7.12, we see—for a particular

choice of a forward kinetic relation—that the phase boundary changes direction

when the transformation from the high pressure phase to the low pressure phase

is governed by a dissipation-free kinetic relation, Figure 7.11, but not when it is

governed by the maximum-dissipation kinetic relation, Figure 7.12. The influence

of the reverse kinetic relation manifests itself in the “tail” of the predicted particle-

velocity history, Figure 7.13. Even when the phase boundary slows down or reverses

direction, this information may not reach the interface between the aluminum and

the lithium fluoride—where we compare the predicted particle-velocity history to

the VISAR record—during the time of the simulation. This occurred for the com-

bination of F31(ṡ) = 0, F13(ṡ) = 0 : the predicted particle-velocity history profile

from this simulation is identical to that with F31(ṡ) = 0, F13(ṡ) = Froof
13 (ṡ), but their
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spatial distributions become different sometime in the interval t = 2.42-2.47 μs.

A simulation was conducted for a forward kinetic relationship having a linear

dependence on ṡ, namely F31(ṡ) = 1.500+0.388ṡ . This kinetic relation lies entirely

above the threshold for nucleation; as expected, no phase boundary nucleated, and

the result was identical to that of Figure 7.9(a).

The particle velocity in the VISAR record of the experiment increases near the

end of the plateau, at about t = 1.3–1.7 μs in Figure 7.9. No simulation of Shot

965 using this trilinear model predicted an increase in this time interval. As shall

be seen in the following sections, a rise was found for the other reverse shots: the

increase was caused by the reflection of an expansive shock that precedes the phase

boundary. It is expected that an expansive wave could be produced for Shot 965

with a different trilinear model. A likely candidate for this different model could

be found by modifying the current model, retaining the expressions for the low and

high pressure phases but making the delimiting strains γM and γm less negative.

For a prescribed kinetic relation of the form f = g31 = constant, this forces the

strain γ+ ahead of a phase boundary moving into the low pressure phase to become

less negative. As γM and γm are increased subject to the constraint γM ≤ γm < 0,

then γ+ is eventually forced to become positive for f = g31 = 0 and for other

values of g31 that are “small enough.” When γ+ is positive, the shock in front of

the phase boundary is expansive, and this could lead to an increase in the predicted

particle-velocity near the end of the plateau.
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(ṡ

)
=

0
.3

0
0,

F
1
3
(ṡ
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(ṡ

)
=

F
r
o
o
f

1
3

(ṡ
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7.4 Shot 957

The contact loci for this shot, Figure 7.14, are similar to those we examined for

Shot 965: their intersection occurs in the region ABC and the contact locus of the

aluminum crosses the AB boundary of this region. Thus, the impact will produce

a subsonic phase boundary in the GeO2 when a critical driving traction f c
31 below

some threshold value is enforced, but not when the critical driving traction is above

this threshold.

Proceeding as for Shot 965, we estimate from the curves of constant driving

traction in Figure 7.14(b) that the threshold value of the critical driving traction

is less than f c
31 = 2.363 GPa. The velocity of the fastest phase boundary that can

be induced by the impact is slightly less than 3.528 km/s, and will occur with the

dissipation-free forward kinetic relation f = 0.

Figure 7.15 shows predictions for four different forward kinetic relations, using

the roof for all reverse kinetic relations. This is one of the shots in which the

GeO2 was thought to be fractured before impact [106], so the experimental record

is suspect. We will select Figure 7.15(b) as the best match, because it does a fair

job in matching the recorded peak velocities. The results were unchanged for this

simulation when the reverse kinetic relationship was varied.

One could easily argue that Figure 7.15(c) is a better match because the duration

of the particle-velocity history it predicts is closer to the experimental record.

The increase in the predicted particle-velocity near the end of the plateau in

Figure 7.15(d) is a delightful result. Recall that an increase in the particle velocity

at the end of the plateau is also seen in the experimental VISAR record of Shot 965.

(Even in the experimental record for Shot 957 there is an increase, but since the

GeO2 may be damaged before the impact we shouldn’t place too much stock in it.)

At first, it’s difficult to believe that the dramatic spike in Figure 7.15(d) has any

relation to the more subtle increase seen experimentally—indeed, it was ignored

as irrelevant for a long time—but we must remind ourselves that the linear high

pressure phase of our model is much stiffer than the real material at these pressures,
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and it cannot generate the fans that the real high pressure phase does.

With our trilinear model, this spike is the result of a tensile wave that precedes

the phase boundary initiated by the impact: see the stress and strain distributions in

Figure 7.16(a). This expansive wave reflects as a compressive wave from the surface

of the foam at its interface with the GeO2, Figure 7.16(b). This compressive wave is

partially transmitted into the high pressure phase of the GeO2, Figure 7.16(c), and

causes the increase in the predicted particle-velocity record at t ≈ 1.8 μs. But the

compressive wave also partially reflects back into the low pressure phase and then

reflects again from the interface with the foam. When it again encounters the high

pressure phase, it causes the increase in the predicted particle-velocity profile at t ≈
2.1 μs. At last, the phase boundary reaches the foam and the reflected signal from

this event causes the large drop from this peak.

The dissipation-free kinetic relationship F31(ṡ) = 0 (not shown) produced similar

results, though the increases in particle-velocity were much greater and occurred

earlier.

If we were able to use a more realistic description of the high pressure phase of

the GeO2, and perhaps account for plasticity in the aluminum buffer, spikes like

these might become less sharp and begin to resemble the experimental recording for

Shot 965. If so, this would raise the intriguing possibility that an expansive wave can

precede a compressive phase boundary. The author is unaware of any experimental

evidence of this reported in the shock compression literature. Unfortunately, with

only one experiment clearly showing this effect, and with our commitment to the

present stress response models, further examination of this exciting possibility was

deemed beyond the scope of this work.
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7.5 Shot 958

Like the other two reverse shots, the intersection of the contact loci for the initial

impact of Shot 958 is in the region ABC, and the contact locus of the aluminum

crosses the AB boundary. Thus, once again, the impact produces a subsonic phase

boundary when a critical driving traction f c
31 for nucleation that lies below some

threshold value is prescribed, but not when the prescribed critical driving traction

is above this threshold.

The contact locus of the aluminum crosses the AB boundary of the contact locus

of GeO2 between the curve of constant driving traction f = 2.363 GPa and the point

A, where f = F31(0
+) = 2.954 GPa for this trilinear model. Thus, we know that

the threshold value of the critical driving traction will be between these two values.

Since the contact locus of the aluminum cross the BC boundary of the contact

locus for the GeO2 between the two lines of constant phase boundary velocity ṡ =

1.772 km/s and ṡ = 2.363 km/s, we anticipate that the velocity of the fastest phase

boundary that can be induced by the impact will be between these limits.

Simulations confirmed that the threshold value of the critical driving traction is

in the range expected: the roof did not induce a phase transition, but all F31(ṡ) =

g31 ≤ 2.690 GPa did.

Figure 7.18 shows predicted particle-velocity histories for different forward ki-

netic relationships. As mentioned in Chapter 2, it was suspected that the flyer plate

was fractured before impact in this experiment [106]. With this in mind, we will

chose Figure 7.18(c) as the best fit to the experiment because both the predicted

particle-velocity and duration of the plateau are similar to those of the experimental

record.

The large spike that peaks at t ≈ 1.7 μs in Figure 7.18(d)—like the spike of

Figure 7.15(d) discussed in the previous section—is the result of a compressive wave

that precedes the phase boundary. The second spike at t ≈ 2.3 μs is caused by

a partial reflection of the first spike back into the GeO2 at the aluminum buffer.

This partially reflected spike reverberates in the GeO2 partially reflecting from
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the interface between the foam and the GeO2 then partially transmitting into the

aluminum, generating the second spike. More spikes would appear if the simulation

were carried out for a longer time, because the spike continues to reverberate from

surface to surface within the GeO2. Only one spike was seen in Figure 7.15(d): more

would have appeared there too if the simulation had been carried out longer.

Figure 7.19 shows the predicted particle-velocity history when the kinetic rela-

tionship F13(ṡ) of the reverse transformation was varied with F31(ṡ) = 1.760 fixed

for the forward transformation.
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(ṡ

)
=

F
r
o
o
f

3
1

(ṡ
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7.6 Kinetic relations with non-constant depen-

dence on phase boundary velocity

This section describes efforts, only partially successful, to prescribe kinetic relation-

ships with a linear dependence on the phase boundary velocity in simulations.

7.6.1 A linear kinetic relation derived from the best predic-

tions of the shots

We would like to prescribe a forward kinetic relationship with a linear dependence

on ṡ, namely F31(ṡ) = g31 + h31ṡ where h31 �= 0 . We will select the parameters g31

and h31 from the four simulations of Shots 953, 965, 957 and 958 that gave the best

match to the VISAR records. We cannot use Shot 955 here because simulations for

this shot predicted a supersonic rather than a subsonic phase boundary.

With the possible exception of Shot 965, it is difficult to select the best predic-

tions for these shots. All of the predictions for Shot 953 are poor, at least in part

because of the limitations imposed by the linear stress-strain relationship in our

model’s high pressure phase. In the high velocity reverse experiments, Shots 957

and 958, the GeO2 flyer plate was suspected of being fractured before impact, and

the VISAR records may not represent uniaxial deformation.

Nonetheless, let us boldly dare to suggest that the best simulations are depicted

in Figures 7.6(d), 7.9(b), 7.15(b) and 7.18(c): the reason each was picked is described

in the section for that shot.

With the help of the Riemann solvers in our program, we can find the velocity ṡ of

the phase boundary nucleated at impact for each of these simulations. Furthermore,

since the prescribed kinetic relationship had no dependence on ṡ for each of these

simulations, we know that the driving traction on each phase boundary was the

prescribed f = g31. Table 7.1 summarizes the (ṡ, f) pairs for these simulations.

A straight line was fit to these (ṡ, f) pairs by the least-squares method, resulting

in the expression f = 0.76 + 0.582ṡ. But we are not interested in this kinetic
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Shot |f |, GPa | ṡ |, km/s

965 0.6 0.119

957 1.76 1.309

958 2.350 2.233

953 2.275 3.119

Table 7.1: Driving traction and propagation velocity of the subsonic phase boundary

induced by impact in the “best” simulations.

0 0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

f = 0.519 + 0.679ṡ

f , GPa

ṡ, km/s

Figure 7.20: Least squares fit to the driving traction and propagation-velocity pairs of the

subsonic phase boundary induced by impact in the best simulations, with the constraint

the line must pass through (ṡ, f) pair for Shot 965. In order of increasing ṡ, the points

shown are from Shots 965, 957, 958, and 953.

relationship because it will not allow a phase boundary to nucleate in Shot 965. So

it was decided that another line should be chosen to fit the data points. This was

accomplished by forcing the line to pass through the (ṡ, f) pair for Shot 965, and

choosing its slope by a least squares fit to the remaining (ṡ, f) pairs. This resulted

in the expression f = 0.519 + 0.679ṡ, as shown in Figure 7.20. This expression

was then prescribed as the linear kinetic relation for a simulation of each shot.

The unexpected result was the production of oscillations in particle velocity, stress
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and strain behind the subsonic phase boundary predicted for each shot. These

oscillations were clearly non-physical, as they appeared before the phase boundary

encountered any disturbance, Figure 7.21. As foretold in Section 6.1.2, the result

was disastrous: the oscillations caused spurious phase boundaries to nucleate, the

time-steps decreased and the program became so slow that even Methuselahs might

have given up hope of seeing them complete. The simulations were aborted.

Non-physical oscillations and spurious phase transitions: a brief investi-

gation

Having encountered the non-physical oscillations and the disastrous phase transi-

tions they nucleate, several other linear kinetic relationships, fit to various subsets

of the (ṡ, f) pairs of Table 7.1 were formulated and prescribed in simulations in

the hopes that the difficulties would somehow be avoided. For all of these kinetic

relations, the program predicted that a subsonic phase boundary nucleated upon

impact for Shots 953, 957, and 958. For some of these kinetic relations, no phase

boundary was predicted in Shot 965, and the simulation of this shot was halted if

no phase boundary appeared.

Of the kinetic relations tested, there were a few for which the program ran to

completion with no difficulty for Shot 953. For a subset of these, the program also

ran to completion for Shot 958. In all simulations of Shot 957 and 965 in which a

phase boundary was predicted, the time-steps became very small, and the decision

was made to stop the simulation.

Since no problems of this sort were encountered for any kinetic relation of the

form F31 = constant, the suspicion arose that the oscillations and spurious phase

boundaries might be related to the coefficient h31 in the kinetic relation F31(ṡ) =

g31 + h31ṡ. So a sensitivity study was conducted holding g31 fixed while varying h31

for simulations of Shots 953, 957, and 958. The constant g31 = 1.49 was chosen:

this is its value in a least-squares fit of the linear kinetic relation to the (f , ṡ) pairs

of Table 7.1 for Shots 953, 957, and 958.
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The sensitivity study supported this suspicion: time-step problems appeared at

early times for h31 “large enough,” but not for h31 “small enough,” Figure 7.22.

Furthermore, the value of h31 above which this time-step problem appeared was

smallest for Shot 957—the least intense of these shots—and greatest for Shot 953—

the most intense of these shots. Oscillations producing spurious phase boundaries

are suspected in all instances where time-steps became small for h31 “large enough.”

The cause of these oscillations has not yet been determined, although there is

reason to suspect that they may be related to the specified precision to which a root

is found in the various root-finding routines.

958 shot953957

0.3

0.4

0.2

0.1

0.5

h31

Increasing strength of impact

Figure 7.22: Results of the sensitivity study described in the text suggest that spurious

phase boundaries caused by the spatial oscillations occur for sufficiently large values

of the coefficient h31. The kinetic relation tested was F31(ṡ) = 1.49 + h31ṡ. Filled

circles indicate values of h31 for which spurious phase boundaries of the type shown in

Figure 7.21 appeared, open circles indicate values of h31 for which these spurious phase

boundaries did not appear.
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Predictions from successful simulations

Predictions from simulations of Shots 953, 957, and 958 that did run to completion

with a non-zero h31 were very similar to predictions from simulations with h31 = 0,

provided the comparison is between simulations that predict identical short-time re-

sults near the interface prior to any wave reflections. This was anticipated because

in these shots, the phase boundary is typically predicted to propagate largely undis-

turbed for much of the time. In the absence of a disturbance, the phase boundary

velocity remains constant, providing no demonstration of the kinetic relationship’s

dependence on phase boundary velocity. In a typical example, Figure 7.23, the

predicted particle-velocity histories are visually indistinguishable.
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7.7 A change to the GeO2 model to force reverse

phase changes

The high pressure phase of the model we have been using can exist in tension up

to σM = 48.86 GPa. This makes it difficult for a transition from the high pressure

phase to the low pressure phase to nucleate. We can force this reverse phase change

by decreasing σM sufficiently. Here we modify our model for GeO2 by choosing

γM =-0.41525, σM = -1.908 GPa to force a reverse phase change in the simulation

of Shot 955.

Prescribing a reverse kinetic relationship F13(ṡ) = 0.050, this modified trilinear

model caused the low pressure phase to nucleate from the high pressure phase at

the interface between the tungsten and the GeO2 when a release wave from the

tungsten-foam interface reached the GeO2. The predicted particle velocity profile is

shown in Figure 7.24.

The low pressure phase first nucleated from the high pressure phase sometime

between t = 1.20–1.25 μs, and disappeared between t = 1.76–1.81 μs, Figure 7.25.

(Spatial distributions are saved at increments of Δt ≈0.05μs, so times are not known

more precisely. It is even possible that a forward and reverse transformation could be

entirely missed in this interval.) The low pressure phase never occupied more than

one cell in the computations: its maximum width could not have exceeded 0.1 mm.

Yet the prediction of particle velocity is clearly affected by this thin interval of

material in the low pressure phase, as we see by comparing Figures 7.24(a) and

7.24(b).

Because of the limited fidelity of our trilinear model, we make no judgement

on whether Figure 7.24(a) or Figure 7.24(b) is a better match to the experimental

record. Rather, we comment that, given a predicted or actual particle-velocity

record, one might be hard-pressed to recognize the manifestation of a reverse phase

transformation in that record if Figure 7.24(a) is any indication of the surprises we

might encounter.
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7.8 A change to the GeO2 model to suppress phase

changes

We have seen predictions with no phase change for the reverse shots, but the impact

conditions of the forward shots necessarily nucleate phase boundaries with the tri-

linear model we have been using. To satisfy our curiosity about what the predicted

results of these shots would be with no phase change, we must modify the trilinear

model.

To completely suppress the possibility of phase boundaries in Shots 953 and 955,

we extend the low pressure phase and force the high pressure phase closer to γ = −1.

Our new model is:

ρ◦ = 3.629 g/cm3 (7.1)

σ̂(γ)[GPa] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

undefined for γ < −0.95 ,

σ̂1(γ) = 550γ + 472.5 for − 0.95 ≤ γ ≤ −0.85 ,

σ̂2(γ) = −823.2γ − 694.72 , for − 0.85 < γ < −0.8 ,

σ̂3(γ) = 45.2γ , for − 0.8 ≤ γ ≤ 100.0,

undefined for γ > 100.0 .

(7.2)

This model lengthens the shock locus of the low pressure phase in the σ, V plane.

It also moves the point B of the region ABC to a much lower stress: the Maxwell

stress, where B lies, is σ◦ = -25.3 GPa. This makes it impossible to nucleate a phase

boundary upon impact in any of the shots, regardless of the nucleation criterion used

for the GeO2.

Figure 7.26 shows the predictions for Shots 953 and 955 using this model. As

expected, the simulations produced no phase boundaries. The match to the experi-

mental record is poor.
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Figure 7.26: Particle-velocity predictions for Shots 953 and 955 when the trilinear model

is modified to prevent any transformation to the high pressure phase.
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Chapter 8

Closing remarks

The theories of Abeyaratne and Knowles have been applied in a finite-difference

algorithm to examine impact experiments on GeO2, a material known to ex-

perience a phase transformation under compression.

Simple constitutive models based on finite elasticity were developed to describe

the response of the materials to one-dimensional deformation. The trilinear model

used for the GeO2 is incapable of developing fans, and this made it impossible

for simulations to reproduce certain notable features of the experimental records.

Despite this limitation, the simulations were able to reproduce many of the dominant

features of the experimental records. This perhaps is the most remarkable finding:

that—without accounting for important phenomena like thermal effects or plasticity,

and even lacking the capability to develop fans in the material we are studying—

these very simple models perform as well as they do.

When a subsonic phase boundary is nucleated within the GeO2 during a simu-

lation, the predictions become very sensitive to the kinetic relations that are pre-

scribed to govern the propagation of the phase boundary. The kinetic relations can

be tuned to best match the experimental record. The forward kinetic relation tends

to dominate the predictions, the influence of the reverse kinetic relation appearing

later in time.

The theories of Abeyaratne and Knowles appear to offer a plausible description

of the experiments. Their performance would likely improve if the curvature known
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to exist in the stress-response function of the high-pressure phase of the GeO2 were

introduced. It is not that surprising that these theories should do well: many results

in the shock compression literature have been explained with assumptions that are

special cases of a kinetic relationship, though they are not always recognized as

such. Utilizing a broader definition of a kinetic relationship that encompasses these

special cases can only improve the explanation of the results.

The numerical method developed in this work makes no use of adaptive meshing

nor of sub-cycling in time. These techniques would greatly reduce the computa-

tional time of the simulations, and allow more practical analysis of certain problems

associated with very slow phase boundaries. Their use is strongly recommended for

future work.
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Appendix A

Fundamentals of discontinuities and fans

This appendix presents some fundamental relationships for discontinuities and fans

in our setting of one-dimensional strain for an elastic material.

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

(σ+, V +)

σ−

V −

Figure A.1: The σ, V plane. Quadrants are labeled relative to the front state coordinates,

(σ+, V +).

We shall seek the loci of states available behind a single discontinuity or fan for

a fixed front state. The front state is denoted (γ+, V +, σ+), and the back state is

(γ−, V −, σ−). Results are represented in a σ, V plane depicting the available (V −,

σ−) pairs behind the discontinuity or fan, Figure A.1.

Stress, σ, is plotted in the horizontal direction, increasing from left to right.

Particle velocity, V , is plotted in the vertical direction, increasing from bottom to

top. References to the quadrants of the σ, V plane indicate the quadrants relative
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to the point (σ+, V +).

A.1 Relations for discontinuities

Consider a discontinuity in an elastic material.

Eliminating [[V ]] from the jump conditions, (3.38) and (3.39), we have

W 2 =
[[σ]]

ρ◦[[γ]]
. (A.1)

Requiring W to be a real number necessitates that

sign ([[σ]]) = sign ([[γ]]) . (A.2)

Also by the jump conditions, we have

sign ([[V ]]) = −sign (W [[σ]]) . (A.3)

If the front state stress and particle velocity, σ+ and V + are given, equation (A.3)

prescribes that a pair of σ ·V quadrants are accessible across any single discontinuity,

Figure A.2. For a discontinuity moving to the left, (σ− ,V −) can lie in quadrants 1

or 3. For a discontinuity moving to the right, (σ−, V −) can lie in quadrants 2 or 4.

Eliminate W from the jump conditions and solve for V −. We have

V − = V + + sign (W [[σ]])
1√
ρ◦

√
[[σ]][[γ]] , (A.4)

where (A.3) was used to determine the sign of the radical.

For the remainder of this section, assume that the phase behind the discontinuity

is in some phase i, which is not spinodal over a range of strain, γI < γ < γJ :

σ̂ ′
i(γ) ≥ 0 for γI < γ < γJ . (A.5)
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σ−σ−

V −V −

Inaccessible

InaccessibleInaccessible

Inaccessible Accessible

AccessibleAccessible

Accessible

W < 0 W > 0

Figure A.2: Odd quadrants are accessible behind a discontinuity traveling to the left

(W < 0), even quadrants are accessible behind a discontinuity traveling to the right

(W > 0).

The phase behind the discontinuity need not be the same as that ahead of it: the

following applies to shocks or phase boundaries.

Label the stresses at γI and γJ by

σI = σ̂i(γI) , σJ = σ̂i(γJ) . (A.6)

The expression σ̂i(γ) is invertible, and we let γ̂i(σ) be its inverse. We have

γ̂ ′
i(σ) ≥ 0 for σI < σ < σJ , (A.7)

γ̂ ′′
i (σ) = −σ̂ ′′

i (γ) . (A.8)

Consider how V − and σ− are related for a fixed front state, (γ+, σ+, V +), when

γ− lies in our non-spinodal phase i. Equation (A.4) can be written as a function of

the back state stress, σ−:

V̂ (σ−) = V + + sign (W [[σ]])
1√
ρ◦

√
[[σ]] (γ+ − γ̂i(σ−)) . (A.9)
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Examining the derivatives of V̂ (σ−) gives insight into its behaviour. Letting ′

denote differentiation with respect to σ−,

V̂ ′(σ−) = sign (W [[σ]])
1

2
√
ρ◦[[σ]][[γ]]

([[σ]]′[[γ]] + [[σ]][[γ]]′) . (A.10)

But,

[[σ]]′ = (σ+ − σ−)′ = −1 , [[γ]]′ = (γ+ − γ̂i(σ
−))′ = −γ̂i

′(σ−) .

Equation (A.10) becomes,

V̂ ′(σ−) = sign (W [[σ]])
1

2
√
ρ◦[[σ]][[γ]]

(
[[γ]] + [[σ]]γ̂i

′(σ−)
)
. (A.11)

Considering the sign of this expression, we have

sign
(
V̂ ′(σ−)

)
= −sign (W ) , (A.12)

where (A.2) and (A.5) were utilized to arrive at this.

For a given front state, (A.12) implies that V̂ (σ−) is monotonically increasing

for left-traveling discontinuities (W < 0), and monotonically decreasing for right-

traveling discontuities (W > 0). Thus, for a discontinuity traveling in a prescribed

direction, if the material behind the discontinuity is in a non-spinodal phase, then

specifying σ− or V − selects a unique solution in that phase if the solution exists.

A.2 Relations for fans

A fan is a similarity solution which satisfies the continuity and momentum conditions

where fields are smooth.

A fan may occur between two strains, γ+ and γ−, in the same non-spinodal

phase, provided there is no inflection point of σ̂(γ) between γ+ and γ−. Inflections
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at γ+ and/or γ− are allowed.

Again consider a material in a fixed front state, (γ+, σ+, V +). What can we

determine about the σ · V pairs that can be achieved behind a fan that passes

through the material?

Seek similarity solutions to (3.36)–(3.37) by letting ξ = x/t and substituting

γ̂(ξ) = γ(x, t), V̂ (ξ) = V (x, t). Equations (3.36) and (3.37) become

Vξ + ξγξ = 0 , (A.13)

ρ◦ξVξ + σγγξ = 0 . (A.14)

Solving for the slope of the characteristics,

ξ = ±
√
σ̂ ′(γ)

ρ◦
, (A.15)

where the sign is positive for fans propagating in the +x direction, and negative for

fans propagating in the −x direction. In what follows, we keep track of the sign by

reserving the upper position for fans propating to the +x direction, and the lower

position for fans propagating to the −x direction.

The front of the fan and the back of the fan propagate with the respective

velocities

ξ+ = ±
√
σ̂ ′(γ+)

ρ◦
, ξ− = ±

√
σ̂ ′(γ−)

ρ◦
. (A.16)

By (A.13) and (A.15),

ξ−∫
ξ+

Vξdξ = ∓ 1√
ρ◦

ξ−∫
ξ+

√
σξγξdξ .
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Integrating the left side, and eliminating ξ on the right,

V − − V + = ∓ 1√
ρ◦

γ−∫
γ+

√
σ̂ ′(γ)dγ . (A.17)

Since we are working within a non-spinodal phase, σ̂(γ) can be inverted to pro-

vide γ̂(σ), and (A.17) can be considered to provide V − as a function of σ− for a fixed

front state. Denoting this function V̂ (σ), and using the chain rule to differentiate it

with respect to σ−,

V̂ ′(σ−) = ∓
√
γ̂ ′(σ−)
√
ρ◦

. (A.18)

Of course,

sign
(
V̂ ′(σ−)

)
= ∓1. (A.19)

Recalling that the upper sign is for fans propagating to the right, and the lower sign

is for fans propagating to the left, we have that quadrants 2 and 4 are accessible to

a right-traveling fan, quadrants 1 and 3 are accessible to a left-traveling fan, and

V − is monotonically related to σ−.

We can establish the curvature of the loci back states for a fixed front state.

Differentiating (A.18),

V̂ ′′(σ−) = ∓ γ̂ ′′(σ)

2
√
ρ◦γ̂ ′(σ)

. (A.20)

The sign of this expression becomes

sign
(
V̂ ′′(σ−)

)
= ±σ̂ ′′(γ) . (A.21)



189

A.3 Fans compared to shocks

Which solution traces out a steeper curve in the σ, V plane for a fixed front state,

the loci of back states for a shock or for a fan? From (A.11) and (A.18), we write

the ratio of the square of their slopes,

{
Vshock

′(σ−)

Vfan
′(σ−)

}2

=
[[γ]]2 + 2[[γ]][[σ]]γ̂ ′(σ−) + {[[σ]]γ̂ ′(σ−)}2

4γ̂ ′(σ−)[[σ]][[γ]]

=
{[[γ]] − [[σ]]γ̂ ′(σ−)}2

4γ̂′(σ−)[[σ]][[γ]]
+ 1

≥ 1 .

(A.22)

We see that states attainable by a fan never trace out a steeper curve in the σ, V

plane than do states attainable by a shock with the same front state. Furthermore,

their curves are tangent at the front state, as found by considering the limit [[γ]] → 0,

[[σ]] → 0 of (A.22). Elsewhere, their slopes are identical when

σ̂ ′(γ−) =
[[σ]]

[[γ]]
. (A.23)

Thus, the V̂ (σ−) curves for a shock and a fan have identical slopes when a line

connecting the front and back states on the σ̂(γ) curve is tangent to σ̂(γ) at σ = σ−.

In particular, the slopes are identical for all back state stresses if the material has a

linear σ̂(γ) relation.

A.4 Shock or fan? Uniqueness in single-phase so-

lutions

In the previous two sections, we found that both fans and discontinuities can satisfy

the balance equations for a given front state when the front and back states are of

the same phase. Here, we review how to determine whether a shock or a fan is the

admissible similarity solution. Figure A.3 summarizes the results.
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Figure A.3: The curvature of σ̂(γ) determines whether a shock or a fan is the unique

similarity solution. The arrows in in the σ̂(γ) diagrams indicate valid solutions, pointing

from (γ+, σ+) to (γ−, σ−).

First consider a fan. Recall that the propagation velocities of the front and the

back of the fan are given by (A.16). To ensure that the front of the fan propagates

faster than its back, we require that σ̂ ′(γ−) ≤ σ̂ ′(γ+). This leads to

for a fan

⎧⎨
⎩

if σ̂ ′′(γ) > 0 then γ+ > γ− , (A.24a)

if σ̂ ′′(γ) < 0 then γ+ < γ− . (A.24b)

Now consider a shock. Enforcing the entropy inequality eliminates those strain

jumps with the same sign as the changes in strain that can be obtained by fans,
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(A.24a) and (A.24b), leaving

for a shock

⎧⎨
⎩

if σ̂ ′′(γ) > 0 then γ+ < γ− , (A.25a)

if σ̂ ′′(γ) < 0 then γ+ > γ− . (A.25b)

Thus, within a single phase, the sign of the curvature of σ̂(γ) determines whether

we have compressive shocks and rarefactive fans—the usual case—or vice versa.
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