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Abstract

We present a novel account of the theory of commutative spectral triples and their two closest

noncommutative generalisations, almost-commutative spectral triples and toric noncommutative

manifolds, with a focus on reconstruction theorems, viz, abstract, functional-analytic characteri-

sations of global-analytically defined classes of spectral triples. We begin by reinterpreting Connes’s

reconstruction theorem for commutative spectral triples as a complete noncommutative-geometric

characterisation of Dirac-type operators on compact oriented Riemannian manifolds, and in the pro-

cess clarify folklore concerning stability of properties of spectral triples under suitable perturbation

of the Dirac operator. Next, we apply this reinterpretation of the commutative reconstruction the-

orem to obtain a reconstruction theorem for almost-commutative spectral triples. In particular, we

propose a revised, manifestly global-analytic definition of almost-commutative spectral triple, and,

as an application of this global-analytic perspective, obtain a general result relating the spectral

action on the total space of a finite normal compact oriented Riemannian cover to that on the base

space. Throughout, we discuss the relevant refinements of these definitions and results to the case

of real commutative and almost-commutative spectral triples. Finally, we outline progess towards a

reconstruction theorem for toric noncommutative manifolds.
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Chapter 1

Introduction

I tell them that if they will occupy themselves with the

study of mathematics, they will find in it the best

remedy against the lusts of the flesh.

— T. Mann apud M. Reed and B. Simon, Methods of

Mathematical Physics I

Vetustam fecit pellem meam et carnem meam;

contriuit ossa mea.

— Lamentations 3:4 (Vulgate)

The starting point of operator-algebraic noncommutative geometry is Gel’fand’s observation that

the continuous complex-valued functions on a compact Hausdorff spaceX form a commutative unital

C∗-algebra C(X); Gel’fand–Năımark duality then establishes that the assignmentX 7→ C(X) defines

a contravariant equivalence of categories between the category of compact Hausdorff spaces and

continuous maps and the category of commutative unital C∗-algebras and unital ∗-homomorphisms.

This, together with related results such as the Serre–Swan theorem on vector bundles and Rieffel’s

theory of strong Morita equivalence and noncommutative quotients, has motivated the functorial

identification in operator-algebraic noncommutative geometry of C∗-algebra theory as a theory of

noncommutative topology.

Given such a theory of noncommutative topology, one can seek to refine it into a theory of non-

commutative differential geometry, especially in light of possible applications to theoretical physics.

With the Atiyah–Singer index theorem in mind, Connes proposed a candidate notion of noncom-

mutative manifold in the form of a spectral triple, that is, a triple (A,H,D) where A is a unital

pre-C∗-algebra, H is a Hilbert space admitting a faithful unital ∗-representation of A by bounded

operators, and D is an essentially self-adjoint operator on H with compact resolvent, such that [D, a]

is bounded for all a ∈ A. The archetypal example of a spectral triple is (C∞(X), L2(X,S), /D) for

X a compact spin manifold, S → X the spinor bundle, and /D the Dirac operator on S.
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To justify an identification of the theory of spectral triples as a theory of noncommutative dif-

ferential geometry, one would need an analogue of Gel’fand–Năımark for suitable spectral triples.

Indeed, at the level of objects, Connes [27] has defined a notion of commutative spectral triple,

motivated by the spectral triple of a compact spin manifold, and proved the reconstruction the-

orem, which shows that a commutative unital Fréchet pre-C∗-algebra A is isomorphic to C∞(X)

for some compact oriented manifold X if and only if there exists a commutative spectral triple of

the form (A,H,D) with the same algebra A. The primary goal of this thesis is to obtain analo-

gous reconstruction theorems for the two classes of spectral triples closest to the commutative case,

almost-commutative spectral triples and toric noncommutative manifolds.

We begin in Chapters 2 and 3 with a telegraphic review of necessary differential- and noncom-

mutative-geometric background for the theory of spectral triples. In particular, Section 2.3, which

has been adapted from [10, § 2.1], provides the differential-geometric motivation for the notion of

real spectral triple from the perspective of Plymen’s noncommutative-geometric characterisation of

spinC and spin manifolds.

Next, Chapter 4, which incorporates the material related to commutative spectral triples from [9,

10], mostly consists of an account of the theory of commutative spectral triples from an emphati-

cally Riemannian perspective. In particular, we propose a weakening of the orientability condition

in the definition of commutative spectral triple to accommodate Dirac-type operators in full gener-

ality, and provide the following re-interpretation of Connes’s reconstruction theorem as precisely a

complete noncommutative-geometric characterisation of Dirac-type operators on compact oriented

Riemannian manifolds:

Corollary ([9, Cor. 2.19]). Let (A,H,D) be a p-dimensional commutative spectral triple. Then

there exist a compact oriented Riemannian p-manifold X and a Hermitian vector bundle E → X

such that (A,H,D) ∼= (C∞(X), L2(X, E), D), where D is identified with an essentially self-adjoint

Dirac-type operator on E.

We conclude the chapter by proposing and discussing the following conservative noncommutative

generalisation of the definition of commutative spectral triple, for later use in our discussion of toric

noncommutative manifolds:

Definition. Let (A,H,D) be a spectral triple; we call (A,H,D) two-sided spectral triple if H

admits a faithful unital ∗-representation of the opposite algebra Ao making H into an A-bimodule,

and

AH∞ ⊂ H∞, H∞A ⊂ H∞.

We then call (A,H,D) a p-dimensional Dirac-type spectral triple for p ∈ N if it is two-sided and if

the following conditions hold:
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1. Dimension: The spectral triple (A,H,D) has metric dimension p.

2. Order one: For any a, b ∈ A, [[D, a], bo] = 0.

3. Finiteness: The right A-module H∞ is finitely generated projective.

4. Strong regularity: One has that EndAo(H
∞) ⊂ ∩k Dom(ad |D|)k.

5. Orientability: There exists an antisymmetric Hochschild p-cycle c ∈ Zp(A,A) such that

χ = πD(c) is a self-adjoint unitary on H, satisfying aχ = χa and [D, a]χ = (−1)p+1χ[D, a] for

all a ∈ A.

6. Absolute continuity: The right A-module H∞ admits a Hermitian structure (·, ·)A, satisfy-

ing 〈ξ, η〉A =
ffl

(ξ, η)A (D2 + 1)−p/2 for ξ, η ∈ H∞.

In Chapter 5, which incorporates the results of [9, Appendix A], we provide the necessary machin-

ery that allows us to weaken the orientability hypothesis in Connes’s reconstruction theorem. This

consists of establishing the stability of various properties of spectral triples under suitable pertur-

bation of the Dirac operator; whilst some of these questions have already been explicitly considered

by Chakraborty–Mathai [14], the others have been folkloric results at best. In short, what we prove

is the following:

Theorem ([9, Appendix A]). Let (A,H,D) be a p-dimensional Dirac-type spectral triple (v. supra),

and let M be a self-adjoint element of EndAo(H
∞) for H∞ := ∩k DomDk, such that

[(D +M)2 −D2, T ] ∈ D(EndAo(H
∞), D2)k+1

for all T ∈ D(EndAo(H
∞), D2)k (cf. Chapter 5). Then DM := D+M extends to an essentially self-

adjoint operator on H with smooth core H∞, making (A,H,DM ) into a p-dimensional Dirac-type

spectral triple satisfying the following:

1. For each k ∈ N, DomDk
M = DomDk, and hence ∩k DomDk

M = H∞;

2. For each k ∈ N,

Dom (ad |DM |)k = Dom (ad |D|)k ⊂ B(H),

and hence ⋂
k

Dom (ad |DM |)k =
⋂
k

Dom (ad |D|)k .

3. For all ξ, η ∈ H∞,

 
(ξ, η) (D2

M + 1)−p/2 =

 
(ξ, η) (D2 + 1)−p/2 = 〈ξ, η〉 .
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In Chapter 6, which incorporates the relevant material from [9, 10], we finally turn to almost-

commutative spectral triples, which we present from the perspective first proposed in [9]. These

were first proposed by Connes [23, 24] to provide semi-classical spacetimes for high energy physics

models, morally constructed as the Cartesian products of classical (Euclidean) spacetimes with 0-

dimensional noncommutative “internal” space. More precisely, an almost-commutative spectral triple

is conventionally defined as the Cartesian product of the canonical spectral triple of a compact spin

manifold, the classical spacetime, with a finite spectral triple, namely, a spectral triple with finite-

dimensional Hilbert space (see [8,46,55] for the general theory, and [40–44] for classification results).

The application of almost-commutative spectral triples to high energy physics is epitomised by

the project of reformulating the classical field theory of the Standard Model in noncommutative-

geometric terms, which culminated in 2006 with the near-simultaneous papers by Barrett [1] and by

Chamsedinne–Connes–Marcolli [18] (see also [25,30]).

Our first goal is to motivate and then translate into noncommutative-geometric terms the fol-

lowing modified definition of almost-commutative spectral triple:

Definition ([9, Def. 2.3]). A concrete almost-commutative spectral triple is a spectral triple of the

form (C∞(X,A), L2(X, E), D), where X is a compact oriented Riemannian manifold, A → X is an

algebra bundle, E → X is a Clifford A-module, and D is a Dirac-type operator on E .

This expanded definition still encompasses the original definition and still allows for the use of

exactly the same heat-theoretic tools in computations related to applications to high energy physics.

On the other hand, the new definition turns out to be stable under inner fluctuations of the metric,

unlike the old one, and encompasses a number of global-analytically defined spectral triples already

considered in the literature, for instance, by Zhang [70] and by Boeijink–Van Suijlekom [5]. Most

importantly, because of its manifestly global-analytic nature, this definition lends itself immediately

to the statement and proof of a suitable reconstruction theorem:

Theorem ([9, Thm. 2.17]). Let (A,H,D) be a p-dimensional abstract almost-commutative spectral

triple with base B, so that B is a central unital ∗-subalgebra of A such that (B,H,D) is a p-

dimensional Dirac-type commutative spectral triple and A is a finitely generated projective unital

B-module-∗-subalgebra of EndB(∩k DomDk) satisfying [[D, b], a] = 0 for a ∈ A, b ∈ B. Then

(A,H,D) is unitarily equivalent to a concrete almost-commutative spectral triple, that is, there exist

a compact oriented Riemannian p-manifold X, an algebra bundle A → X, a Clifford A-module

E → X, such that

(A,H,D) ∼= (C∞(X,A), L2(X, E), D),

where D is identified with a symmetric Dirac-type operator on E.

In Sections 6.4-5, consisting of the main content of [10], we consider the implications of these re-
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vised definitions of commutative and almost-commutative spectral triples for real almost-commutative

spectral triples [10]. In particular, the correct abstract definition of real almost-commutative spectral

triple turns out to have the following form:

Definition ([10, Def. 2.29]). A real almost-commutative spectral triple of KO-dimension n mod 8

and metric dimension p is a real spectral triple (A,H,D, J) of KO-dimension n mod 8, such that

(A,H,D) is a p-dimensional (abstract) almost-commutative spectral triple with base

ÃJ := {a ∈ A | Ja∗J∗ = a} .

The significance of this definition is that a real almost-commutative spectral triple automatically

comes with a canonical commutative algebra encoding the base manifold; in the general case, by

contrast, such a commutative algebra must be specified separately. This is a feature that had

been observed in all the real almost-commutative spectral triples appearing in the literature on

applications to high energy physics, but only on a case-by-case basis.

In Section 6.5, which incorporates the author’s contribution to [11], we then apply this em-

phatically global-analytic perspective on almost-commutative spectral triples to provide a general

explanation for the relationship between the spectral action on S3 and the spectral action on the quo-

tients of S3 by the various finite subgroups of SU(2) that had been observed by Teh in the course of

explicit computations using explicit Dirac spectra and the Poisson summation formula [11,50,51,65].

By applying general heat kernel estimates, we are able to prove the following, together with a slight

generalisation:

Theorem ([11, Thm. 3.6, cf. Thm. 3.10]). Let X̃ → X be a finite normal Riemannian covering with

X̃ and X compact, connected and oriented, and let Γ be the deck group of the covering. Let Ẽ → X̃

be a Γ-equivariant Clifford module, and let D̃ be a Γ-invariant symmetric Dirac-type operator on Ẽ.

Let E := Ẽ/Γ → X̃/Γ =: X, and let D be the pushforward of D̃ to D. Finally, let f : R → C be of

the form f(x) = L[φ](x2) for φ ∈ S(0,∞). Then for Λ > 0,

Tr (f(D/Λ)) =
1

#Γ
Tr
(
f(D̃/Λ)

)
+O(Λ−∞), as Λ→ +∞.

In particular, this is likely one of the very first general qualitative results concerning the spectral

action on almost-commutative spectral triples anywhere in the literature.

Finally, in Chapter 7, we describe progress towards a reconstruction theorem for toric noncom-

mutative manifolds. In Sections 7.1-2 we generalise Yamashita’s noncommutative generalisation [69]

of Connes–Landi’s original construction [29] of toric noncommutative manifolds, to accommodate

TN -actions for N ≥ 2. Then, in Section 7.3, we consider toric noncommutative manifolds specifi-

cally. First, we check that toric noncommutative manifolds satisfy the following proposed abstract
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definition:

Definition. Let (A,H,D) be a TN -equivariant p-dimensional Dirac-type spectral triple, and let

θ ∈ so(N). We call (A,H,D) a p-dimensional toric noncommutative manifold with deformation

parameter θ if

∀a ∈ A, ao := λ−2θ(a).

Remark. The condition that the right A-action on H by given by ao := λ−2θ(a) is equivalent to

requiring that the undeformed algebra A−θ be commutative and that for any a−θ ∈ A−θ, ao :=

λθ(aθ)
o = λ−θ(aθ), which is precisely what holds in the concrete case.

Then, we describe our progress to date towards a reconstruction theorem, which takes the following

form:

Theorem. Let (A,H,D) be a p-dimensional toric noncommutative manifold with deformation pa-

rameter θ ∈ so(N). Suppose, moreover, that the orientation cycle c ∈ Zp(A,A) corresponds to a

TN -invariant antisymmetric cycle cθ ∈ Zp(A−θ, A−θ) such that πD(c) = πD(cθ). Then there exists

a concrete TN -equivariant commutative spectral triple such that

(A−θ, H,D) ∼= (C∞(X), L2(X, E), D), (A,H,D) ∼= (C∞(Xθ), L
2(Xθ, E), D),

i.e., (A,H,D) is unitarily equivalent to a concrete p-dimensional toric noncommutative manifold.

Whilst this is already a reconstruction theorem for toric noncommutative manifolds insofar as

it provides a complete noncommutative-geometric characterisation thereof, a genuinely satisfactory

reconstruction theorem would be obtained only after removal of the awkward and artificial additional

orientability-related hypothesis.
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Chapter 2

Differential-geometric preliminaries

J’ai de sérieuses raisons de croire que la planète d’où

venait le petit prince est l’astéroïde B 612. Cet

astéroïde n’a été aperçu qu’une fois au télescope, en

1909, par un astronome turc. Il avait fait alors une

grande démonstration de sa découverte à un Congrès

International d’Astronomie. Mais personne ne l’avait

cru à cause de son costume. . .

— A. de Saint-Exupéry, Le Petit Prince

In this brief section, we recall some relevant differential-geometric background for the theory of

spectral triples, particularly commutative spectral triples, almost-commutative spectral triples, and

toric noncommutative manifolds.

2.1 Clifford modules and Dirac-type operators

Let us first recall a few definitions and facts from the theory of Dirac-type operators, mostly to

establish notation and terminology; for a full account, see [2, §§ 3.1–3; 36, Chapter 5, §§ 9.1–3].

Throughout, we shall use the conventions of super-linear algebra [2, § 1.3]. Thus, if H is a Z2-graded

vector bundle, we consider End(H) as Z2-graded as well, and we shall consider the Z2-graded tensor

product of Z2-graded vector bundles and operators on them, which we denote by ⊗̂. If a vector

bundle is not explicitly Z2-graded, as shall often be the case, we consider it as trivially Z2-graded.

Let us first recall the notion of Clifford module:

Definition 2.1.1. Let X be a Riemannian manifold with Riemannian metric g. A Clifford module

over X is a Hermitian vector bundle E → X together with a bundle morphism c : T ∗X → End(X),

the Clifford action, satisfying the following:

1. for all ξ, η ∈ Ω1(X), c(ξ)c(η) + c(η)c(ξ) = −g−1(ξ, η);
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2. for all ξ ∈ Ω1(X), c(ξ)∗ = −c(ξ).

If, moreover, E is Z2-graded, then we require c(ξ) to be odd for all ξ ∈ Ω1(X).

Example 2.1.2. If X is spin, then the spinor bundle S → X is a Clifford module. More generally,

∧T ∗X → X is a Clifford module with Clifford action c(ξ)η := ξ ∧ η − iξη for η ∈ Ω(X), ξ ∈ Ω1(X).

Let us now recall the central differential-geometic definition of this thesis:

Definition 2.1.3. Let E be a Clifford module bundle over a Riemannian manifold (X, g). A Dirac-

type operator on E is a first-order differential operator on E such that

[D, f ] = c(df), f ∈ C∞(X),

where c : Cl(X)→ End(E) denotes the Clifford action on E.

Example 2.1.4. If X is spin, then the Dirac operator is a Dirac-type operator. More generally,

d+ d∗ defined a Dirac-type operator on ∧T ∗X.

An immediate consequence of this definition is that if D is Dirac-type, then D2 is a generalised

Laplacian, that is, a second order differential operator such that in local coordinates,

D2 = −gij ∂

∂xi
∂

∂xj
+ lower order terms.

The basic analytic properties of a Dirac-type operator are summarised as follows:

Proposition 2.1.5. Let X be a compact oriented Riemannian manifold, let E → X be a Clifford

module, and let D be a symmetric Dirac-type operator on E.

1. D is essentially self-adjoint with smooth core C∞(X, E) = ∩k DomDk, and for each k, DomDk

yields the k-th Sobolev space Hk(X, E) of E → X.

2. D is elliptic as a partial differential operator.

3. D has compact resolvent, namely, (D2 + 1)−1/2 is a compact operator. In particular, D has

pure point spectrum, and the eigenvalues of D have finite multiplicity and accumulate only at

infinity.

Much deeper is the following, the relevant version of Weyl’s famous result:

Theorem 2.1.6 (Weyl’s law for Dirac-type operators). Let X be a compact oriented p-Riemannian

manifold, let E → X be a Clifford module, and let D be a symmetic Dirac-type operator on E. Let λk
denote the k-th eigenvalue of the positive operator D2 in increasing order, counted with multiplicity.

Then ∑
k

e−tλk = (4πt)−p/2 rank(E) vol(M) +O(t−p/2+1), t→ +∞.
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In particular, λk = O(k−2/p) as k → +∞.

For more on Dirac-type operators, see the monographs by Roe [61] and by Berline, Getzler

and Vergne [2], as well as the notes by Roepstorff and Vehns [62, 63]. Note that [2] and [62, 63]

consider only odd Dirac-type operators on Z2-graded Clifford module bundles, a restriction that is

unnecessary for our purposes.

2.2 SpinC and spin manifolds

We now recall Plymen’s noncommutative-geometric characterisation of spin and spinC manifolds in

differential geometric language. To state it, we shall need the following definition:

Definition 2.2.1. Let X be a compact manifold.

1. A finite rank Azumaya bundle is a bundle C → X with fibreMn(C) and structure group PU(n)

for some n, where the projective unitary group PU(n) acts on Mn(C) by ([u], a) 7→ uau∗ for

[u] ∈ PU(n) and a ∈Mn(C).

2. Let C → X be a finite rank Azumaya bundle. Then a Hermitian vector bundle E → X is

called an irreducible C-module if End(E) ∼= C, where the isomorphism is given fibrewise by an

adjoint-preserving algebra automorphism of Mn(C).

Now, recall that if X is a compact oriented Riemannian manifold, we may define a finite rank

Azumaya bundle Cl(+)(X)→ X by

Cl(+)(X) :=

Cl(X), if dimX is even,

Cl+(X), if dimX is odd,

where Cl(X) is the Clifford bundle of X, formed from the cotangent bundle T ∗X. The bundle

Cl(+)(X) admits a canonical C-linear anti-involution τ defined by

τ(ξ1 · · · ξm) := (−1)mξm · · · ξ1, m ∈

N, if dimX is even,

2N, if dimX is odd,
ξi ∈ Ω1(X),

so that if E is a Cl(+)(X)-module with Cl(+)(X)-action denoted by

c : Cl(+)(X)→ End(E),

then the dual bundle E∨ is also a Cl(+)(X)-module with Cl(+)(X)-action given by

c∨(ω) := c(τ(ω))T , ω ∈ C∞(X,Cl(+)(X)).
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Plymen’s characterisation then takes the following form:

Theorem 2.2.2 (Plymen [54, § 2]). Let X be a compact oriented Riemannian manifold.

1. X is spinC if and only if there exists an irreducible Cl(+)(X)-module, which is precisely a spinC

spinor bundle.

2. X is spin if and only if there exists an irreducible Cl(+)(X)-module S such that S ∼= S∨ as

irreducible Cl(+)(X)-modules, in which case the choice of isomorphism class of such an S

corresponds to a choice of spin structure, for which S is the spinor bundle.

Now, for ε′ = ±1, define a C-linear anti-involution τε′ on Cl(X) by

τε′ |Ω1(X) = −ε′ IdΩ1(X);

by construction, τε′ defines an extension to Cl(X) of τ on Cl(+)(X). Since for a Hermitian vector

bundle E , the dual bundle E∨ is canonically isomorphic to the conjugate bundle E , it is traditional in

the noncommutative-geometric literature to reformulate Plymen’s characterisation of spin manifolds

as follows:

Corollary 2.2.3 (cf. [36, Thms. 9.6, 9.20]). Let X be a compact oriented Riemannian n-manifold.

Then X is spin if and only if there exists an irreducible Clifford module S together with an antiunitary

bundle endomorphism C on S satisfying

1. C2 = ε IdS ,

2. Cc(ω∗)C∗ = c(τε′(ω)) for all ω ∈ C∞(X,Cl(X)),

3. Cχ = ε′′χC for χ ∈ C∞(X,Cl(X)) the chirality element, when n is even,

where (ε, ε′, ε′′) := (ε(n), ε′(n), ε′′(n)) ∈ {±1}3 are determined by n mod 8 as follows (with ε′′ ≡ 1

is suppressed for n odd):

n 0 1 2 3 4 5 6 7

ε(n) + + − − − − + +

ε′(n) + − + + + − + +

ε′′(n) + − + −

(2.2.1)

The above folkloric result is the origin of Connes’s notion of real structures on spectral triples,

to be discussed in § 4.3 and, in particular, the above table is the origin of the notion of the KO-

dimension of a real spectral triple.

Remark 2.2.4. Condition (2) in the above result can be viewed as specifying the compatibility of

C with the Clifford action on S, for C, a priori, defines a C-linear anti-involution T 7→ CT ∗C∗ on

End(S).
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Remark 2.2.5. Suppose that X is spin, and that S and C are as above. Then /DC = ε′C /D for /D

the Dirac operator on S.

Finally, suppose that X is a compact spin n-manifold for n even, and that S and C are as given

in the above corollary; in particular, we necessarily have that ε′ = 1. Let C− = Cχ. Then C− is an

antiunitary bundle automorphism on S satisfying

1. C2
− = ε− IdS ,

2. C−c(ω∗)C∗− = c(τε′(ω)) for all ω ∈ C∞(X,Cl(X)),

3. C−χ = ε′′−C−χ, when n is even,

for (ε−, ε
′
−, ε
′′
−) := (εε′′,−1, ε′′). Thus, as Dąbrowski–Dossena first observed, one could readily

expand the above table to

n 0+ 0− 1 2+ 2− 3 4+ 4− 5 6+ 6− 7

ε(n) + + + − + − − − − + − +

ε′(n) + − − + − + + − − + − +

ε′′(n) + + − − + + − −

(2.2.2)

where for n even, n+ and n− denote the two (interchangeable!) possibilities, namely n+ the “conven-

tional” KO-dimension and n− the new “exotic” KO-dimension. Since replacing C with Cχ takes us

reversibly between n+ and n− [32, § 2.3], the “exotic” KO-dimensions would seem to offer nothing

more than additional notational flexibility. However, as Dąbrowski–Dossena show, we will need to

consider both possibilities simultaneously in order to define consistently products of real spectral

triples in Section 6.3.
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Chapter 3

Noncommutative-geometric
preliminaries

. . .Heureusement pour la réputation de l’astéroïde B

612, un dictateur turc imposa à son peuple, sous

peine de mort, de s’habiller à l’Européenne.

L’astronome refit sa démonstration en 1920, dans un

habit très élégant. Et cette fois-ci tout le monde fut

de son avis.

— A. de Saint-Exupéry, Le Petit Prince

We now review the noncommutative-geometric background for the description and discussion of

our work. Gracia-Bondía–Várilly–Figueroa [36] is still the standard reference, though Khalkhali’s

recent introductory text [38] provides a more focussed and accessible account.

3.1 Noncommutative topology

Let us begin by recalling some basic definitions from the theory of C∗-algebras, so that we can state

Gel’fand–Năımark duality, the starting point for functional-analytic noncommutative geometry.

The basic notion is that of a C∗-algebra, which, we shall soon see, can be interpreted as a

noncommutative topological space.

Definition 3.1.1. A C∗-algebra if a C-algebra A together with:

1. a norm ‖·‖ on A making (A, ‖·‖) into a Banach space, such that for all a, b ∈ A, ‖ab‖ ≤ ‖a‖ ‖b‖;

2. a conjugate-linear map (involution) ∗ : A → A, such that ∗2 = IdA and, for all a, b ∈ A,

(ab)∗ = b∗a∗;

such that for all a ∈ A, ‖a∗a‖ = ‖a‖2.
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A Fréchet pre-C∗-algebra is a a dense ∗-closed subalgebra A∞ of a C∗-algebra A equipped with

a family of submultiplicative seminorms making A∞ into a nuclear Fréchet space such that the

multiplication, involution, and the inclusion A∞ ↪→ A are all continuous on A∞ as a Fréchet space.

One usually requires a Fréchet pre-C∗-algebra to be closed under the holomorphic functional calculus,

a condition equivalent to requiring that a ∈ A∞ be invertible in A∞ whenever it is invertible in A,

with the same inverse.

Remark 3.1.2. In the absence of a norm, we shall call such an algebra simply a ∗-algebra.

Remark 3.1.3. In addition to complex ∗-algebras, one also encounters real ∗-algebras in the noncom-

mutative-geometric literature, especially in applications to theoretical high energy physics, e.g., [18].

Everything we do can be made to accommodate real ∗-algebras, though for simplicity of exposition,

we shall only consider complex ∗-algebras.

For our purposes, the following is the canonical example of a C∗-algebra:

Example 3.1.4. Let X be a compact Hausdorff space, and let C(X) be the C-algebra of continuous

complex-valued functions on X. Then C(X) is a commutative unital C∗-algebra for the supremum

norm

‖f‖ := sup
x∈X
|f(x)| , f ∈ C(X),

the involution

f∗ :=
(
x 7→ f(x)

)
, f ∈ C(X),

and the unit

1C(X) := (x 7→ 1) .

Moreover, if X is a smooth manifold, then C∞(X) is a Fréchet pre-C∗-algebra in C(X), for instance,

with submultiplicative seminorms given by the Sobolev norms on the Sobolev spaces Hk(X) ⊃

C∞(X).

From a more general, noncommutative-geometric standpoint, the following is the quintessential

example of a noncommutative C∗-algebra:

Example 3.1.5. Let H be a Hilbert space, and let B(H) be the C-algebra of continuous linear

operators H → H. Then B(H) is a unital C∗-algebra for the operator norm

‖A‖ := sup
0 6=ξ∈H

‖Aξ‖
‖ξ‖

, A ∈ B(H),

the involution ∗ given by taking the adjoint of an operator, and the unit 1B(H) := IdH .

Remark 3.1.6. By the (i.e., another) Gel’fand–Năımark theorem [34], any abstract C∗-algebra can

be realised, up to isomorphism, as a C∗-subalgebra (viz, norm-closed, ∗-closed subalgebra) of B(H)
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for some Hilbert space H.

The following, then, turns out to be the correct notion of morphism for C∗-algebras.

Definition 3.1.7. Let A and B be unital C∗-algebras. A unital C-algebra homomorphism φ : A→

B is called an ∗-homomorphism if for any a ∈ A, φ(a∗) = φ(a)∗; if A and B are unital, we require

that φ(1) = 1.

Example 3.1.8. Let X and Y be compact Hausdorff spaces, and let f : Y → X be continuous.

Then C(f) : C(X)→ C(Y ) defined by C(f)(a) := a ◦ f is a ∗-homomorphism.

Examples 3.1.4 and 3.1.8 are highly suggestive of a relation between the category of compact

Hausdorff spaces and continuous maps and the category of commutative unital C∗-algebras and

∗-homomorphisms. The relation, which is as strong as could possibly be hoped for, is given by

Gel’fand–Năımark duality:

Theorem 3.1.9 (Gel’fand–Năımark [34]). Let CpctHaus denote the category of compact Hausdorff

spaces and continuous maps, and let CommC∗Alg1 denote the category of commutative unital C∗-

algebras and ∗-homomorphisms. Then the cofunctor C : CpctHaus→ CommC∗Alg1 defined by

X 7→ C(X), (f : Y → Z) 7→ (C(f) : C(Z)→ C(Y ))

is a contravariant equivalence of categories.

From this, we see that the category of C∗-algebras can be cofunctorially identified with a category

of noncommutative topological spaces. Operator-algebraic noncommutative geometry, in general,

can be considered as an attempt to expand this Gel’fand–Nauımark paradigm to cover as much of

topology and geometry as possible.

3.2 Noncommutative vector bundles

In this section, we recall how to extend the Gel’fand–Năımark paradigm to accomodate vector

bundles. The key observation is that for E → X a vector bundle over a compact Hausdorff space X,

the vector space of C(X, E) is a finitely-generated projective module over C(X). One way to see this

is to recall that E → X is necessarily a direct summand of some globally trivial vector space X ×V ,

which implies that C(X, E) is a direct summand, as a C(X)-module, of C(X,X ×V ) ∼= C(X)⊗C V ,

which is manifestly free. Moreover, a bundle map φ : E → F covering IdX immediately defines a

C(X)-linear map of C(X)-modules by

C(X, E) 3 ξ 7→ C(X,φ)ξ := (x 7→ φ(ξ(x))) .
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In a manner directly analogous to Gel’fand–Năımark, these observations motivate the following

result of Swan, adapting to the topological context an algebro-geometric result of Serre:

Theorem 3.2.1 (Serre–Swan [64]). Let X be a compact Hausdorff space, let CVect(X) be the cate-

gory of continuous vector bundles over X and bundle maps covering IdX , and let FGPMod(C(X)) be

the category of finitely generated projective C(X)-modules and C(X)-linear maps. Then the functor

C(X, ·) : CVect(X)→ FGPMod(C(X)) defined by

E 7→ C(X, E), (φ : E → F) 7→ (C(X,φ) : C(X, E)→ C(X,F))

is an equivalence of categories.

Suppose, moreover, that X is a smooth manifold. Let Vect(X) be the category of smooth vector

bundles over X and smooth bundle maps covering IdX , and let FGPMod(C∞(X)) be the category of

finitely generated projective C∞(X)-modules and C∞(X)-linear maps. Then the functor C∞(X, ·) :

Vect(X)→ FGPMod(C∞(X)) defined by

E 7→ C∞(X, E), (φ : E → F) 7→ (C∞(X,φ) : C∞(X, E)→ C∞(X,F))

is an equivalence of categories.

Of particular importance are Hermitian vector bundles; the following definition will provide the

correct noncommutative-geometric analogue thereof.

Definition 3.2.2. Let A be a ∗-algebra. Then a pre-Hilbert A-module is a finitely generated

projective right A-module E together with a Hermitian metric, a sesquilinear map (·, ·) : E×E → A

such that:

1. for all ξ, η ∈ E, a ∈ A, (ξ, ηa) = (ξ, η) a,

2. for all ξ, η ∈ E, (ξ, η) = (η, ξ)
∗,

3. for all ξ ∈ E, (η, η) > 0 is positive (i.e., takes the form b∗b for some b ∈ A);

we use the mathematical physics convention that (·, ·), like our inner products, is linear in the second

argument and conjugate-linear in the first.

Moreover, if A is a C∗-algebra and E is complete in the norm E 3 ξ 7→
√
‖(ξ, ξ)‖, then E is

called a Hilbert A-module.

For instance, if E → X is a Hermitian vector bundle, then the Hermitian metric on C∞(X, E) is

given by

∀ξ, η ∈ C∞(X, E), (ξ, η) := (x 7→ (ξx, ηx)x) .

The appropriate refinement of Serre–Swan, therefore, is as follows:
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Corollary 3.2.3. Let X be a compact Hausdorff space, let CHVect(X) be the category of contin-

uous Hermitian vector bundles over X and bundle maps covering IdX , and let Hilb(C(X)) be the

category of Hilbert C(X)-modules and C(X)-linear maps. Then the functor C(X, ·) : CHVect(X)→

Hilb(C(X)) defined by

E 7→ C(X, E), (φ : E → F) 7→ (C(X,φ) : C(X, E)→ C(X,F))

is an equivalence of categories.

Suppose, moreover, that X is a smooth manifold. Let HVect(X) be the category of smooth Her-

mitian vector bundles over X and smooth bundle maps covering IdX , and let PreHilb(C∞(X)) be

the category of pre-Hilbert C∞(X)-modules and C∞(X)-linear maps. Then the functor C∞(X, ·) :

HVect(X)→ PreHilb(C∞(X)) defined by

E 7→ C∞(X, E), (φ : E → F) 7→ (C∞(X,φ) : C∞(X, E)→ C∞(X,F))

is an equivalence of categories.

3.3 Noncommutative de Rham complexes

Now we recall what will turn out to be the relevant way to generalise the de Rham complex of a

manifold in noncommutative geometry. The main definition is the following, adapted by Connes

from the corresponding definition in commutative algebra:

Definition 3.3.1. Let A be an algebra. Then the Hochschild complex of A is the chain complex

(C•(A,A), b) defined as follows:

• For n ≥ 0, Cn(A,A) := A⊗(n+1).

• One has that b0 : C0(A,A)→ 0 is the zero map, whilst for n > 0, bn : Cn(A,A)→ Cn−1(A,A)

is given by

b(a0 ⊗ a1 ⊗ · · · ⊗ an) := a0a1 ⊗ a2 ⊗ · · · ⊗ an +

n−1∑
k=1

a0 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

The Hochschild homology HH•(A) is therefore the homology of this chain complex; in particular,

Zn(A,A) = Ker bn is the space of Hochschild n-cycles. If A is a Fréchet pre-C∗-algebra, we take the

A⊗p to be topological tensor products of nuclear Fréchet spaces.
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Theorem 3.3.2 (Hochschild–Kostant–Rosenberg–Connes [20]). Let X be a compact manifold. Then

the maps µn : C∞(X)⊗(n+1) → Ωn(X) defined by

µn(a0 ⊗ a1 ⊗ · · · ⊗ an) := a0da1 ∧ · · · ∧ dan, ak ∈ C∞(X),

define a morphism of complexes µ : (Z•(C
∞(X), C∞(X)), b) → (Ω•(X), 0) that descends to an

isomorphism HH•(C
∞(X)) ∼= Ω•(X).

Remark 3.3.3. In order to recover the de Rham cohomology of a manifold X from the Hochschild

homology of C∞(X), one needs to pass to a refinement of Hochschild homology called periodic cyclic

homology.

Finally, for future reference, we shall record the following definition:

Definition 3.3.4. A p-cycle c :=
∑n
i=1 ai,0 ⊗ ai,1 ⊗ · · · ⊗ ai,p ∈ Zp(A,A) is antisymmetric if for all

permutations σ ∈ Sp on p elements, π(c) :=
∑n
i=1 ai,0⊗ai,σ(1)⊗· · ·⊗ai,σ(p) satisfies π(c) = (−1)πc.

3.4 Noncommutative integration

Finally, we recall what will turn out to be the relevant way to generalise integration on a manifold.

In short, we shall define a distinguished ideal of noncommutative “integrands,” within the ideal of

compact operators on a Hilbert space and containing all the trace-class operators, and then define

a notion of “integration” of such “integrands” by defining a class of traces on this ideal that vanish

on trace-class operators.

Before continuing, let us recall the following standard definition from functional analysis:

Definition 3.4.1. Let H be a Hilbert space, and let 0 < p <∞. Then the Schatten p-class Lp(H) is

the ideal in B(H) of all T ∈ K(H), the ideal of all compact operators onH, such that
∑∞
k=0 σk(T )p <

∞, where σk(T ) denotes the k-th singular value of T in decreasing order, counted with multiplicity.

In particular, if p ≥ 1, then Lp(X) is a Banach space with norm ‖T‖ := (
∑∞
k=0 σk(T )p)

1/p for

T ∈ Lp(H).

Example 3.4.2. One has that L1(H) is the ideal of all trace-class operators with ‖T‖1 := Tr |T | for

all T ∈ L1(H), and that L2(H) is the ideal of all Hilbert–Schmidt operators, with ‖T‖2 = TrT ∗T

for all T ∈ L2(H).

The Schatten ideals were originally defined as a sort of proto-noncommutative-geometric analogue

of Lp spaces. Indeed, as befits such an analogue, the relevant analogue of Hölder’s inequality applies:

Proposition 3.4.3 (Hölder’s inequality). Let α, r, s > 0 with r−1 + s−1 = α−1. Then for all

A ∈ Lr(H) and B ∈ Ls(H), AB ∈ Lα(H), and if α, r, s > 1, then ‖AB‖α ≤ ‖A‖r ‖A‖s. Moreover,

if A ∈ L1(H) and B ∈ B(H), then ‖AB‖ ≤ ‖A‖1 ‖B‖.
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A key technical result related to Schatten ideals that we shall need later is the so-called BKS

inequality, part of which is quoted below:

Theorem 3.4.4 (Birman–Koplienko–Solomjak [3, Thm. 1]). Let A and B ∈ B(H) be positive with

A−B compact. Then for any 0 < α < 1, and p ≥ 1, if |A−B|α ∈ Lp(H) then Aα −Bα ∈ Lp(H).

As it turns out, however, none of the Schatten ideals provide us with the ideal of noncommutative

“integrands” that we want. The correct definition turns out to be as follows:

Definition 3.4.5. Let H be a Hilbert space. Then the Dixmier ideal L1+(H) is the ideal in B(H)

of all T ∈ K(H) such that

‖T‖1+ := sup
k≥2

σk(T )

log k
<∞;

equivalently, T ∈ L1+(H) if
n∑
k=0

σk(T ) = O(log n), n→ +∞.

In particular, T 7→ ‖T‖1+ defines a norm making L1+(H) into a Banach space.

Example 3.4.6. If A ∈ K(H) satisfies σk(A) = O(k−1) as k → +∞, then A ∈ L1+(H).

Remark 3.4.7. For all 1 < p < q, one has inclusions L1(H) ⊂ L1+(H) ⊂ Lp(H) ⊂ Lq(H).

We can now define the notion of noncommutative integration that we shall use:

Definition 3.4.8. Let ω be a dilation-invariant state on `∞, viz, a positive linear functional, such

that

1. ω(a) = c if limn→∞ an = c,

2. ω ◦ σ = ω, where σ ∈ B(`∞) is the dilation σ(a) := (a1, a1, a2, a2, . . . ).

For T ∈ L1+(H) positive, set

Trω(T ) := ω

({
1

log(n)

n∑
k=0

λk(T )

}∞
n=2

)
.

Then T 7→ Trω(T ) extends to a unitarily invariant positive linear functional on L1+(H), vanishing

on L1(H), called the Dixmier trace induced by ω.

In what follows, we shall fix a single dilation-invariant state ω on `∞, and we shall denote Trω(T )

by
ffl
T .

Remark 3.4.9. Let T ∈ K(H), and suppose that T is measurable, that is, limk→∞
σk(T )
logn exists. Then,

not only is T ∈ L1+(H), but necessarily Trω(T ) = limk→∞
σk(T )
log k for all dilation-invariant states ω

on `∞. In the sequel, virtually every operator in L1+(H) of interest will be measurable, at least a

posteriori.



19

The justification for our identification of the theory of Dixmier traces as a theory of noncom-

mutative integration is provided by the following result, a special case of a more general result, the

so-called Connes trace formula:

Theorem 3.4.10 (Connes [21], cf. [37, Thm. 3.23]). Let X be a compact oriented Riemannian

p-manifold and let D be a symmetric Dirac-type operator on a Clifford module E → X. Then for

any B ∈ C∞(X,End(E)), B(D2 + 1)−p/2 ∈ L1+(L2(X, E)) is measurable, and

 
B(D2 + 1)−p/2 =

1

(2
√
π)nΓ(n2 + 1)

ˆ
M

tr(B(x))d vol(x),

where tr(B(x)) denotes the trace of B(x) ∈ EndC(Ex).
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Chapter 4

Commutative and Dirac-type spectral
triples

O wear your tribulations like a rose.

— W. H. Auden, Anthem for St. Cecilia’s Day

In this section, we introduce spectral triples, Connes’s proposal for a notion of noncommuta-

tive smooth manifold, with an emphasis on commutative spectral triples. In particular, we recall

Connes’s reconstruction theorem, which we shall recognise as providing precisely a (not yet func-

torial) noncommutative-geometric characterisation of compact oriented Riemannian manifolds to-

gether with a Dirac-type operator. Then we shall introduce real structures on spectral triples, again

with an emphasis on commutative spectral triples, and then finally we shall propose a close non-

commutative generalisation of the definition of commutative spectral triple, which we shall later see

is applicable to toric noncommutative manifolds.

Recommended references for the basic theory of spectral triples, especially in relation to Dirac-

type operators, are the detailed lecture notes of Várilly [67,68] and Landsman [47], and the excellent

expository article of Carey–Phillips–Rennie [13].

4.1 Commutative spectral triples

Let us begin by introducing the basic definitions of the theory of spectral triples. The starting point

is the following definition, which encapsulates the analytic behaviour of Dirac-type operators:

Definition 4.1.1. A spectral triple is a triple (A,H,D), where A is a unital ∗-algebra faithfully

represented on a Hilbert space H, and D, the Dirac operator, is an essentially self-adjoint operator

with compact resolvent on H, such that [D, a] ∈ B(H) for all a ∈ A. Moreover:

• (A,H,D) is called even if there exists a self-adjoint unitary γ ∈ B(H) such that aγ = γa for

all a ∈ A and Dγ = −γD;
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• (A,H,D) is said to have metric dimension p > 0 if λk((D2 + 1)−1/2) = O(k−1/p) as k → +∞,

where λk(T ) denotes the k-th eigenvalue in decreasing order, counted with multiplicity, of a

positive compact operator T ;

• (A,H,D) is said to be pre-regular if for H∞ := ∩k DomDk, AH∞ ⊂ H∞;

• (A,H,D) is said to be regular if A+ [D,A] ⊂ ∩k Dom(ad |D|)k.

Finally, two spectral triples (A1, H1, H1) and (A2, H2, D2) are said to be unitarily equivalent

(written (A1, H1, D1) ∼= (A2, H2, D2)) if there exists a unitary isomorphism U : H1 → H2 such that

UD1U
∗ = D2 and a 7→ UaU∗ defines an isomorphism A1 → A2 of C∗-algebras.

Remark 4.1.2. It follows from the definition of unitary equivalence that unitarily equivalent spectral

triples share all qualitative behaviour.

An essential point in the sequel is that a spectral triple (A,H,D) gives rise, for each p, to a

representation πD : Zp(A,A)→ ∩k Dom(ad |D|)k ⊂ B(H) of Hochschild p-cycles on H by

πD(a0 ⊗ a1 ⊗ · · · ap) := a0[D, a1] · · · [D, ap], ak ∈ A.

Now, in the case of a compact oriented Riemannian manifold X, a Clifford module E → X, and

a symmetric Dirac-type operator D, (C∞(X), L2(X, E), D) is a spectral triple, since D is essentially

self-adjoint with compact resolvent, and since for all a ∈ A, [D, a] = c(da) is a bundle endomorphism

of E , and hence, in particular, a bounded operator on L2(X, E). However, Connes observed almost

immediately [24], the concrete commutative spectral triple (C∞(X), L2(X, E), D) contains a great

deal more structure than that of a spectral triple simpliciter . The following is our slight modification

(cf. [9, Def. 2.7]) of Connes’s original notion of commutative spectral triple [24,27]:

Definition 4.1.3. Let (A,H,D) be a pre-regular spectral triple. We call (A,H,D) a p-dimensional

commutative spectral triple for p ∈ N if A is commutative and the following conditions hold:

1. Dimension: The spectral triple (A,H,D) has metric dimension p.

2. Order one: For any a, b ∈ A, [[D, a], b] = 0.

3. Finiteness: The A-module H∞ is finitely generated projective.

4. Strong regularity: One has that EndA(H∞) ⊂ ∩k Dom(ad |D|)k.

5. Orientability: There exists an antisymmetric Hochschild p-cycle c ∈ Zp(A,A) such that

χ = πD(c) is a self-adjoint unitary on H satisfying aχ = χa and [D, a]χ = (−1)p+1χ[D, a] for

all a ∈ A.
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6. Absolute continuity: The A-module H∞ admits a Hermitian structure (·, ·) satisfying

〈ξ, η〉 =
ffl
a (ξ, η) (D2 + 1)−p/2 for ξ, η ∈ H∞.

If, in addition, χD + Dχ = 0 if p is even and χ = 1 if p is odd, then we call (A,H,D) strongly

orientable.

Remark 4.1.4. What we call “strong orientability” is the orientability condition originally proposed

by Connes, which models commutative spectral triples specifically on the Dirac operator /D of a com-

pact spin manifold; the orientability condition above was first proposed in the final arXiv version

of [9], in order to accommodate correctly general Dirac-type operators on compact oriented Rie-

mannian manifolds. Note that the orientability condition proposed in the published version of [9] is

insufficiently general in the odd-dimensional case, for it only accommodates Clifford modules that

are locally twisted spinor bundles.

That a concrete commutative spectral triple is indeed a commutative spectral triple in this

abstract sense is then guaranteed by the following standard, indeed folkloric, result:

Proposition 4.1.5 (cf. Gracia-Bondía–Várilly–Figueroa [36, Thm. 11.1], Connes [27, Thm. 11.4]).

Let X be a compact oriented Riemannian p-manifold, let E → X be a Hermitian vector bundle,

and let D be a symmetric Dirac-type operator. Then (C∞(X), L2(X, E), D) is a p-dimensional

commutative spectral triple.

Let us briefly sketch out the main points of the proof:

1. That (C∞(X), L2(X, E), D) has metric dimension p is simply Weyl’s law applied to the gen-

eralised Laplacian D2.

2. The order one condition follows precisely since D is a first-order differential operator.

3. Finiteness follows since ∩k DomDk = C∞(X, E), which in turn follows from the Sobolev theory

applied to the elliptic operator D.

4. Strong regularity is a consequence of the Sobolev theory of the elliptic operator D on the

compact manifold X; the point is that DomDk = Dom |D|k = Hk(X, E), the k-th Sobolev

space of sections of E , and that if T ∈ C∞(X,End(E)), then T ∈ B(Hk(X, E)), and hence

T ∈ Dom(ad |D|)k.

5. Orientability follows from [27, proof of Thm. 11.4], where the Hochschild cycle c is constructed

from the volume form on X, and thus acts as the chirality operator.

6. Absolute continuity follows from the Connes trace formula, Theorem 3.4.10, applied to pseu-

dodifferential operators on the Hermitian vector bundle H of the form a(D2 + 1)−p/2, where

a ∈ C∞(X) (see [36, § 9.4; 61, Chapter 8] for details).
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In general, then, any Dirac-type operator on a compact oriented Riemannian manifold gives rise

to a commutative spectral triple. Let us single out two examples of particular significance:

Example 4.1.6. Let X be a compact spin manifold with fixed spinor structure, let S → X be the

spinor bundle, and let /D be the Dirac operator on S. Then (C∞(X), L2(X,S), /D) is the canonical

commutative spectral triple of X.

Example 4.1.7 (cf. [27, Proof of Thm. 11.4]). Let X be a compact oriented Riemannian manifold.

Then ∧T ∗X → X is a Clifford module for the Clifford action

c(ξ)η := ξ ∧ η − iξη, ξ ∈ Ω1(X), η ∈ Ω(X),

and d+ d∗ is a symmetric Dirac-type operator on ∧T ∗X; the resulting commutative spectral triple

(C∞(X), L2(X,∧T ∗X), D) is called the Hodge–de Rham spectral triple of X.

4.2 Connes’s reconstruction theorem

Let us now see how spectral triples can be used to adapt the Gel’fand–Năımark paradigm to compact

oriented Riemannian manifolds.

Indeed, already in 1996, Connes conjectured [24] that one could recover a commutative manifold

from a commutative spectral triple, just as one can recover a topological space from a commutative

C∗-algebra via Gel’fand–Năımark. Connes finally proved his conjecture, now called the reconstruc-

tion theorem for commutative spectral triples, in 2008 [27], following a substantial attempt by

Rennie–Várilly in 2006 [59]:

Theorem 4.2.1 (Connes [27, Thm. 1.1]). Let (A,H,D) be a strongly orientable p-dimensional

commutative spectral triple. Then there exists a compact oriented manifold X such that A ∼= C∞(X).

Once one has reconstructed the manifold itself, one can proceed to reconstruct the Hermitian

vector bundle too, and realise the operator D as an elliptic first-order differential operator:

Theorem 4.2.2 (Connes [24], Gracia-Bondía–Várilly–Figueroa [36, Thm. 11.2]). Let (A,H,D)

be a strongly orientable p-dimensional commutative spectral triple with A ∼= C∞(X) for some

compact orientable manifold X. Then there exists a Hermitian vector bundle E → X such that

(A,H,D) ∼= (C∞(X), L2(X, E), D), where D is identified with an essentially self-adjoint elliptic

first-order differential operator on E.

In fact, this last result was stated and proved in the context of reconstructing spin manifolds with

spin Dirac operators. The following result of Connes’ gives a concise characterisation of spinC mani-

folds and spinC Dirac operators, possibly with torsion; we shall later recall Plymen’s characterisation

of spin manifolds amongst spinC manifolds and the resulting theory of real spectral triples.
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Corollary 4.2.3 (Connes [27, Thm. 1.2]). If, moreover, A′′ acts on H with multiplicity 2bp/2c (but

without needing to assume strong regularity), then X is spinC, E → X is a spinor bundle, and D is

a Dirac-type operator.

However, the conclusion of Theorem 4.2.2 can be strengthened by means of the following essential

technical lemma, which appears merely as an off-hand observation within Connes’s proof of the

reconstruction theorem1:

Lemma 4.2.4 ([27, p. 28]). Let (A,H,D) be a strongly orientable p-dimensional commutative spec-

tral triple. Then for any a ∈ A, [D, a]2 ∈ A.

Remark 4.2.5. This lemma makes redundant the Dirac-type condition proposed by the author in [9,

Def. 2.9], namely, that [D, a]2 ∈ A for all a ∈ A, as well as the irreducibility condition proposed by

Gracia-Bondía–Várilly–Figueroa [36, Def. 11.2], insofar as they used it to reconstruct the Riemannian

metric on the reconstructed manifold.

Incorporating this into the proof of Theorem 4.2.2 then allows one to conclude that

df 7→ −[D, f ]2, f ∈ A ∼= C∞(X)

defines a Riemannian metric on X, and hence that D is indeed a Dirac-type operator on E → X. In

particular, D will be a Dirac-type operator inducing a Clifford action on E such that Dχ+χD = 0 if

X is even-dimensional and χ = IdE if X is odd-dimensional, where χ denotes the chirality operator

on E as a Clifford module. This condition, however, fails for general Dirac-type operators:

Example 4.2.6. Let X be an even-dimensional compact spin manifold with spinor bundle S → X

and Dirac operator /D, let E be a non-trivially Z2-graded Hermitian vector bundle over N , and let

/DE be the twisted Dirac operator on S⊗̂E corresponding to any self-adjoint (super)connection on

E. Then (C∞(X), L2(X,S⊗̂E), /DE) is not strongly orientable, for any Hochschild p-cycle will act

on S⊗̂E by a bundle endomorphism of the form

T ⊗̂1 ∈ C∞(X,End(S))⊗̂C∞(X,End(E)) ∼= C∞(X,End(S⊗̂E))

with T even, so that it cannot distinguish between S⊗̂E+ and S⊗̂E−, and thus cannot act as the

Z2-grading on S⊗̂E .

In the case of an odd-dimensional compact oriented Riemannian manifold X, one can also readily

construct Clifford modules E → X such that the chirality operator defines a non-trivial Z2-grading

on E [48, § II.5; 56, § 8].

1The author thanks Jan Jitse Venselaar for pointing out Connes’s observation.
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The lesson, then, is that Connes’s reconstruction theorem as stated is tantalisingly close to a

precise noncommutative-geometric characterisation of compact oriented Riemannian manifolds and

Dirac-type operators, but just fails to be sufficiently general. Moreover, Example 4.2.6 will have

the additional upshot that the reconstruction theorem, as stated, cannot be readily applied in the

context of almost-commutative spectral triples. However, as we shall prove in the next chapter, one

can indeed drop the strong orientability hypothesis:

Corollary 4.2.7 ([9, Cor. 2.19]). Let (A,H,D) be a p-dimensional commutative spectral triple. Then

there exist a compact oriented Riemannian p-manifold X and a Hermitian vector bundle E → X

such that (A,H,D) ∼= (C∞(X), L2(X, E), D), where D is identified with an essentially self-adjoint

Dirac-type operator on E.

Thus, Connes’s reconstruction theorem, with the strong orientability hypothesis dropped, really

is a precise (if not obviously functorial) noncommutative-geometric characterisation of compact ori-

ented Riemannian manifolds and symmetric Dirac-type operators, just as Gel’fand–Năımark duality

really is a precise (and robustly functorial) noncommutative-geometric characterisation of compact

Hausdorff spaces.

4.3 Real structures

Let us now consider the implications of the reconstruction theorem for real commutative spectral

triples. Before continuing, let us recall the definition of real spectral triple, which generalises the

example of (C∞(X), L2(X,S), /D,C) for X a compact spin manifold with spinor bundle S → X,

Dirac operator /D, and charge conjugation C.

Definition 4.3.1. A real spectral triple of KO-dimension n mod 8 is a spectral triple (A,H,D),

even with Z2-grading γ if n is even, together with an antiunitary J on H satisfying:

1. J2 = ε IdH ,

2. DJ = ε′JD,

3. Jγ = ε′′γJ (if n is even),

for (ε, ε′, ε′′) := (ε(n), ε′(n), ε′′(n)) ∈ {±1}3 depending on n mod 8 according to Table 2.2.1.

Before continuing on to examples, it is worth mentioning that a real spectral triple (A,H,D, J)

defines, in particular, a canonical central unital ∗-subalgebra of A, a fact that will be key to our

discussion of real commutative and almost-commutative spectral triples:
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Lemma 4.3.2 (cf. [18, Prop. 3.1]). Let (A,H,D, J) be a real spectral triple. Then

ÃJ := {a ∈ A | Ja∗J∗ = a}

defines a central unital ∗-subalgebra of A.

As mentioned above, by Section 2.2, a compact spin p-manifold X with spinor bundle S, charge

conjugation C, and Dirac operator /D gives rise to a real spectral triple (C∞(X), L2(X,S), /D,C)

of KO-dimension p mod 8, the canonical, motivating example of a real spectral triple. Indeed, we

have the following well-known consequence of the reconstruction theorem for commutative spectral

triples, the original form of Theorem 4.2.2:

Corollary 4.3.3 (Connes [24], Gracia-Bondía–Várilly–Figueroa [36, Thm. 11.2]). Let (A,H,D)

be a strongly orientable p-dimensional commutative spectral triple, such that A′′ acts on H with

multiplicity 2bp/2c, so that (A,H,D) ∼= (C∞(X), L2(X,S), D) for X a compact spinC p-manifold

and S → X a spinor bundle, with D identified with an essentially self-adjoint Dirac-type operator

on S. If, in addition, there exists an antiunitary J making (A,H,D, J) a real spectral triple of

KO-dimension p mod 8, with JaJ∗ = a∗ for a ∈ A ∼= C∞(X), then X is spin, S is the spinor

bundle on X, J is the charge conjugation on S, and D = /D + M for /D the Dirac operator on X

and M a suitable symmetric bundle endomorphism on S.

Now, just as in Section 2.2, in the case that n is even, we can go reversibly from the “conventional”

KO-dimension n+ to the “exotic” KO-dimension n− by replacing J with Jγ, so that we can expand

Table 2.2.1 to Table 2.2.2 for free. By abuse of notation and terminology, then, we shall say that

(A,H,D, γ, J) is of KO-dimension n+ mod 8 if (ε, ε′, ε′′) is given by n+ in the above table, and

that it is of KO-dimension n− mod 8 if (ε, ε′, ε′′) is given by n− instead. Indeed, we shall find the

following definition convenient:

Definition 4.3.4. Let (A,H,D, γ, J) be a real spectral triple of KO-dimension n mod 8 for n even,

and let β ∈ {±1}.

• If β = 1, then Jβ is the element of {J, Jγ} such that (A,H,D, γ, J1) has KO-dimension

n+ mod 8;

• If β = −1, then J− is the element of {J, Jγ} such that (A,H,D, γ, J−1) has KO-dimension

n− mod 8.

Thus, we are free to identify a real spectral triple (A,H,D, γ, J) of even KO-dimension n mod 8

simultaneously with the real spectral triple (A,H,D, γ, J1) of KO-dimension n+ mod 8 and the real

spectral triple (A,H,D, γ, J−1) of KO-dimension n− mod 8.
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Let us now consider the case of real commutative spectral triples. We have already seen the

example of the canonical real spectral triple of a compact spin manifold with fixed spin structure.

However, the canonical spectral triple of a compact oriented Riemannian manifold (v. supra) imme-

diately gives rise to a canonical real spectral triple of KO-dimension 0 mod 8, a seemingly trivial

example that shall prove quite instructive indeed:

Example 4.3.5. Let X be a compact oriented Riemannian manifold. Since the operators d + d∗

and (−1)|·| on ∧T ∗CX are simply straightforward C-linear extensions of operators on the real ex-

terior bundle ∧T ∗X, we can realise the Hodge–de Rham spectral triple of X as a real triple

(C∞(X), L2(X,∧T ∗CX), d+ d∗, (−1)|·|,K) of KO-dimension 0 mod 8, where K is the complex con-

jugation operator on ∧T ∗CX qua complexification of the real vector bundle ∧T ∗X.

In light of this last example, we already see that a generalisation of the “charge conjugation”

operator of Cor. 2.2.3 can be usefully defined on more general Clifford modules:

Definition 4.3.6. Let X be a compact oriented Riemannian manifold, let E → X be a Clifford

module, which may or may not be Z2-graded. Let J be an antiunitary bundle automorphism on E ,

and let n ∈ Z8. We call (E , J) a real Clifford module of KO-dimension n mod 8 if E is Z2-graded

with Z2-grading γ when n is even, and C satisfies the following:

1. J2 = ε IdE ,

2. Jc(ω∗)J∗ = c(τε′(ω)) for all ω ∈ C∞(X,Cl(X)),

3. Jγ = ε′′γJ if n is even,

where (ε, ε′, ε′′) ∈ {±1}3 is determined by n mod 8 according Table 2.2.1.

Remark 4.3.7. Just as in the spinor case, if n is even, then we can replace J with Jγ to go reversibly

between the “conventional” KO-dimension n+ and the “exotic” KO-dimension n−.

In both examples, we have a real triple of the form (C∞(X), L2(X, E), D, J), where X is a

compact oriented Riemannian manifold, (E , J) is a real Clifford module, and D is a Dirac-type

operator on E compatible with J in the following sense:

Definition 4.3.8. Let (E , J) be a real Clifford module of KO-dimension n mod 8 over a compact

oriented Riemannian manifoldX. LetD be a Dirac-type operator on E . We shall callD J-compatible

if DJ = ε′JD.

Thus, if (E , J) is a real Clifford module of KO-dimension n mod 8 over X, and D is a Dirac-type

operator on E , then (C∞(X), L2(X, E), D, J) is a real spectral triple of KO-dimension n mod 8 if

and only if D is J-compatible—let us call such a real spectral triple a concrete real commutative

spectral triple. One can therefore ask if a Dirac-type operator on E is necessarily J-compatible. As

it turns out, the answer is yes, up to perturbation by a symmetric bundle endomorphism:
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Proposition 4.3.9. Let X be a compact oriented Riemannian manifold, let (E , J) be a real Clifford

module on X of KO-dimension n mod 8, and let D be a symmetric Dirac-type operator on E. Then

there exists a unique symmetric bundle endomorphism M on E such that D −M is a J-compatible

Dirac-type operator, and MJ = −ε′JM .

Proof. For any f ∈ C∞(X,R), J [D, f ]J∗ = Jc(df)J∗ = ε′c(df) = ε′[D, f ], and hence [D −

ε′JDJ∗, f ] = 0. Thus, M = 1
2 (D − ε′JDJ∗) is a symmetric bundle endomorphism, so that

D−M = 1
2 (D+ε′JDJ∗) is a symmetric Dirac-type operator; if n is even, so that E is Z2-graded, then

D−M is odd since D is, and since J2 = ε commutes with D and with M , J(D−M) = ε′(D−M)J

and JM = −ε′MJ , as required.

Finally, suppose that N is another symmetric bundle endomorphism on E such that (D−N)J =

ε′J(D−N) and NJ = −ε′JN . Then (D−M)−(D−N) = N−M both commutes and anticommutes

with J , and thus must vanish.

Finally, let us show that a real commutative spectral triple, in the appropriate abstract sense,

necessarily arises from a real Clifford module together with a compatible Dirac-type operator.

Consider a concrete real commutative spectral triple (C∞(X), L2(X, E), D, J). On the one hand,

C∞(X) is already commutative, while on the other, by Lem. 4.3.2, C∞(X) contains a canonical

central unital ∗-subalgebra

C̃∞(X)J := {a ∈ C∞(X) : Ja∗J∗ = a} ;

that J is an anti-linear bundle endomorphism on E is precisely equivalent to the fact that C̃∞(X)J =

C∞(X). This, then, motivates the following:

Definition 4.3.10. Let (A,H,D, J) be a real spectral triple. We call (A,H,D, J) a real commutative

spectral triple if the following hold:

1. A = ÃJ , or equivalently, JaJ∗ = a∗ for all a ∈ A;

2. (A,H,D) is a commutative spectral triple.

In particular, then, a concrete real commutative spectral triple is automatically a real commu-

tative spectral triple in this abstract sense.

Remark 4.3.11. If one wants A to correspond to C∞(X,R) instead of C∞(X) = C∞(X,C), then one

should take A to be a real (Fréchet) pre-C∗-algebra with trivial ∗-operation, in which case, condition

(1) corresponds simply to the commutation of J with A.

The relevant refinement of the reconstruction theorem for commutative spectral triples is, thus,

the claim that a real spectral triple is real commutative, if and only if it is unitarily equivalent to a

concrete real commutative spectral triple:
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Proposition 4.3.12. Let (A,H,D, J) be a real commutative spectral triple of KO-dimension n mod

8 and metric dimension p. Then there exist a compact oriented Riemannian p-manifold X and a

self-adjoint Clifford module E → X, such that (A,H,D, J) ∼= (C∞(X), L2(X, E), D, J), where D,

viewed as an operator on L2(X, E), is an essentially self-adjoint Dirac-type operator on E, and where

J , viewed as an operator on L2(X, E), makes (E , J) a real Clifford module of KO-dimension n mod 8

such that D is J-compatible.

Proof. Suppose that (A,H,D, J) is a real commutative spectral triple of KO-dimension n mod 8

and metric dimension p. In particular, (A,H,D) is a Dirac-type commutative spectral triple of

metric dimension p, so that by Thm. 4.2.7, there exist a compact oriented Riemannian p-manifold

X and a Hermitian vector bundle E → X, such that (A,H,D) ∼= (C∞(X), L2(X, E), D), where D,

viewed as an operator on L2(X, E), defines an essentially self-adjoint Dirac-type operator on E . In

particular, then, D makes E into a Clifford module, so that it suffices to prove that J , viewed as an

operator on L2(X, E), is an anitunitary bundle automorphism on E , making (E , J) a real Clifford

module of KO-dimension n mod 8.

First, since JaJ∗ = a∗ for all a ∈ C∞(X), J can be viewed as a unitary C∞(X)-linear mor-

phism C∞(X, E) → C∞(X, E) = C∞(X, E), where C∞(X, E) is the conjugate C∞(X)-module to

C∞(X, E), and E is the conjugate bundle to E . Hence, J defines a unitary bundle isomorphism

E ∼= E , that is, an antiunitary bundle automorphism on E . The rest then follows from the fact

that (C∞(X), L2(X, E), D, J) is a real spectral triple of KO-dimension n mod 8; in particular, since

DJ = ε′JD, Jc(df)J∗ = J [D, f ]J∗ = ε′[D, f ] = ε′c(df) for f ∈ C∞(X,R), as required.

Remark 4.3.13. One may ask whichKO-dimensions are possible for real commutative spectral triples

over a given compact oriented Riemannian manifold X. We shall soon see how to use the spectral

triple of Ex. 4.3.5 to construct real commutative spectral triples over X of any KO-dimension.

4.4 Dirac-type spectral triples

We now propose a straightforward generalisation of the precise definition of commutative spectral

triple to accommodate a noncommutative algebra:

Definition 4.4.1. Let (A,H,D) be a spectral triple; we call (A,H,D) two-sided spectral triple if H

admits a faithful unital ∗-representation of the opposite algebra Ao making H into an A-bimodule,

and

AH∞ ⊂ H∞, H∞A ⊂ H∞.

We then call (A,H,D) a p-dimensional Dirac-type spectral triple for p ∈ N, if it is two-sided and the

following conditions hold:
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1. Dimension: The spectral triple (A,H,D) has metric dimension p.

2. Order one: For any a, b ∈ A, [[D, a], bo] = 0.

3. Finiteness: The right A-module H∞ is finitely generated projective.

4. Strong regularity: One has that EndAo(H
∞) ⊂ ∩k Dom(ad |D|)k.

5. Orientability: There exists an antisymmetric Hochschild p-cycle c ∈ Zp(A,A), such that

χ = πD(c) is a self-adjoint unitary on H, satisfying aχ = χa and [D, a]χ = (−1)p+1χ[D, a] for

all a ∈ A.

6. Absolute continuity: The right A-module H∞ admits a Hermitian structure (·, ·)A, satisfy-

ing 〈ξ, η〉A =
ffl

(ξ, η)A (D2 + 1)−p/2 for ξ, η ∈ H∞.

Remark 4.4.2. This definition can be considered as a generalisation of the traditional notion of

noncommutative spin geometry (see, e.g., [36, § 10.5]) to the case where no real structure is available.

In particular, a noncommutative spin geometry with antisymmetric orientation cycle in Zp(A,A)

and satisfying strong regularity and absolute continuity will be a Dirac-type spectral triple.

Of course, a Dirac-type spectral triple with commutative algebra is precisely a commutative

spectral triple. Our discussion of toric noncommutative manifolds in Chapter 7, on the other hand,

will offer a very wide range of genuinely noncommutative examples. In the meantime, however, let

us establish the relation between this proposed definition and two closely related definitions recently

proposed by Lord–Rennie–Várilly [49].

Now, for (A,H,D) a spectral triple, let CD(A) denote the unital ∗-subalgebra of B(H) generated

by A+ [D,A], and recall that H∞ := ∩k DomDk. Lord–Rennie–Várilly’s first definition, modelled

on the spectral triple of a spinC Dirac operator on a spinC manifold, takes the following form:

Definition 4.4.3 ([49, Def. 4.8]). A p-dimensional noncommutative oriented spinC manifold, with

p ∈ N, is a spectral triple (A,H,D) together with a Hochschild p-cycle c ∈ Zp(A,A), satisfying the

following conditions:

1. Dimension: The operator (D2 + 1)−p/2 ∈ B(H) lies in the Dixmier ideal, so that for any

dilation-invariant state ω on `∞, ψω : T 7→ Trω(T (D2 + 1)−p/2) defines a positive linear

functional on CD(A).

2. Regularity: One has that A+ [D,A] ⊂ ∩k Dom(ad |D|)k.

3. Finiteness and absolute continuity: One has that H∞ is a finitely generated projective

left CD(A)-module, and the functional ψω on CD(A) is faithful with H = L2(H∞, ψω).

4. Orientability: One has that χ = πD(c) is a self-adjoint unitary on H satisfying aχ = χa for

all a ∈ A and Dχ = (−1)p+1χD.
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5. SpinC: The dense subspace H∞ of H is a pre-Morita equivalence bimodule between CD(A)

and A, i.e., CD(A) = EndAo(H
∞).

If, in addition, there exists an orthogonal family of central projections p1, . . . , pn ∈ A with
∑
k pk = 1,

such that for any a ∈ A, [D, a] = 0 if and only if a ∈ span {pk}, then (A,H,D, c) is said to satisfy

connectivity.

The relation between this definition and ours is established by the following result:

Proposition 4.4.4. Let (A,H,D, c) be a p-dimensional noncommutative oriented spinC manifold.

Suppose that it has metric dimension p, that it satisfies connectivity, and that c is antisymmetric.

Then (A,H,D) is Dirac-type.

Before proceeding to the proof, we recall the following technical result from [49]:

Lemma 4.4.5 ([49, Prop. 4.10]). Let (A,H,D, c) be a p-dimensional noncommutative oriented spinC

manifold satisfying connectivity. Then H∞ is finitely generated projective as a right A-module and

CD(A) is finitely generated projective as a left or as a right A-module. Moreover,

∀ξ, η ∈ H∞, 〈η, ξ〉 = ψω((ξ, η)A) = Trω

(
(ξ, η)A (D2 + 1)−p/2

)
Proof of Proposition 4.4.4. First, observe that by regularity, (A,H,D) is pre-regular, whilst by the

spinC condition, it is two-sided. Let us now check the conditions for a Dirac-type spectral triple one

by one:

1. By hypothesis, (A,H,D) has metric dimension p.

2. By the spinC condition, A0 ⊂ CD(A)′, and hence [[D, a], bo] = 0 for all a, b ∈ A.

3. By the spinC condition, H∞ is a pre-Morita equivalence bimodule between CD(A) and A, and

hence, in particular, H∞ is a finitely generated projective right A-module.

4. By this last observation, EndAo(H
∞) = CD(A), so that strong regularity immediately follows

from regularity.

5. Orientability immediately follows from orientability as a noncommutative oriented spinC man-

ifold and the hypothesis that c is antisymmetric.

6. By the spinC condition, H∞ is, in fact, a finitely generated projective right Hermitian A-

module. Then, by the connectivity hypothesis, we can apply Lemma 4.4.5 to conclude that,

indeed,

∀ξ, η ∈ H∞, 〈η, ξ〉 = Trω

(
(η, ξ)A (D2 + 1)−p/2

)
.
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Thus, (A,H,D) is Dirac-type, as was claimed.

Let us now recall Lord–Rennie–Várilly’s second definition, modelled on the Hodge–de Rham

spectral triple of a compact oriented Riemannian manifold:

Definition 4.4.6 ([49, Def. 4.11]). A p-dimensional noncommutative oriented Riemannian manifold,

with p ∈ N, is a spectral triple (A,H,D), together with a Hochschild p-cycle c ∈ Zp(A,A) and a

vector Φ ∈ H∞, satisfying the following conditions:

1. Dimension: The operator (D2 + 1)−p/2 ∈ B(H) lies in the Dixmier ideal, so that for any

dilation-invariant state ω on `∞, ψω : T 7→ Trω(T (D2 + 1)−p/2) defines a positive linear

functional on CD(A).

2. Regularity: One has that A+ [D,A] ⊂ ∩k Dom(ad |D|)k.

3. Finiteness and absolute continuity: One has that H∞ is a finitely generated projective

left CD(A)-module, and the functional ψω on CD(A) is faithful with H = L2(H∞, ψω).

4. Orientability: One has that χ = πD(c) is a self-adjoint unitary on H satisfying aχ = χa for

all a ∈ A and Dχ = (−1)p+1χD.

5. Riemannian: The dense subspace H∞ of H contains a cyclic and separating vector Φ for

the action of C := CD(A) in the algebraic sense, so that H∞ = CΦ and w = 0 in C if and only

if wΦ in H∞; in particular, then, H = CΦ is a free left C-module. Moreover, there exists a

Hermitian metric C (·, ·) on H∞ such that

∀η, ξ ∈ C, 〈η, ξ〉 = ψω (C (η, ξ)) = Trω

(
C (η, ξ) (D2 + 1)−p/2

)
,

and C (Φ,Φ) is a strictly positive central element of C; without loss of generality, take ‖Φ‖ = 1.

Finally, one requires that H∞ be finite projective as a left A-module, and that there exist a

grading operator ε on H, making (A,H,D, ε) an even spectral triple.

Now, let (A,H,D, c,Φ) be a noncommutative oriented Riemannian manifold. By the remarks

on [49, p. 1630], the Tomita–Takesaki theory implies the existence of an antiunitary operator JΦ

on H with J2
Φ = 1, such that ω 7→ JΦω

∗JΦ defines an anti-isomorphism C′′ → C′. Moreover, by

[49, Lemma 4.18], it follows that a 7→ ao := Ja∗J defines a right action of A on H, making (A,H,D)

into a two-sided spectral triple. The connection between this definition and ours is established by

the following result:

Proposition 4.4.7. Let (A,H,D, c,Φ) be a p-dimensional noncommutative oriented Riemannian

manifold. Suppose that it has metric dimension p, that c is antisymmetric, and that J EndA(H∞)J ⊂

∩k Dom(ad |D|)k. Then (A,H,D) is Dirac-type.
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Before proceeding to the proof, let us recall the following technical result from [49]:

Lemma 4.4.8 ([49, Cor. 4.20]). Suppose that (A,H,D) satisfies conditions (1), (2), and (5) of

the definition of noncommutative oriented Riemannian manifold. Then (A,H,D) satisfies condition

(3), if and only if the following both hold:

1. CD(A) is a finitely generated projective left A-module,

2. there exists an operator-valued weight Ψ : CD(A)→ A such that ψω = ψω ◦Ψ for all dilation-

invariant states ω on `∞.

Proof of Proposition 4.4.7. Let us check the conditions for a Dirac-type spectral triple one by one:

1. By hypothesis, (A,H,D) has metric dimension p.

2. By construction, A0 = JAJ ⊂ CD(A)′, and hence [[D, a], bo] = 0 for all a, b ∈ A.

3. By Lemma 4.4.8, H∞ is a finitely generated projective left A-module, so that we have an

isomorphism of left A-modules φ : H∞ ∼= Anq for some n ∈ N a projection q ∈ Mn(A). Then

φ̃ : H∞ → qAn given by φ̃(ξ) := φ(Jξ)∗ is the desired isomorphism of right A-modules.

4. By hypothesis, J EndA(H∞)J ⊂ ∩k Dom(ad |D|)k; since EndAo(H
∞) = J EndA(H∞)J , strong

regularity therefore follows.

5. Orientability immediately follows from orientability as a noncommutative oriented Riemannian

manifold and the hypothesis that c is antisymmetric.

6. By the proof of Lemma 4.4.8, there is an operator-valued weight Ψ : CD(A)→ A such that

A (ξ, η) := Ψ (C (ξ, η)) , ξ, η ∈ H∞

defines a Hermitian metric on AH
∞, and such that ψω = ψω ◦ Ψ for all Dixmier limits ω. In

this light, φ : H∞ ∼= Anq is taken to be an isomorphism of Hermitian left A-modules, yielding

φ̃ : H∞ ∼= qAn as an isomorphism of Hermitian right A-modules, where

(η, ξ)A := A (Jξ, Jη) , ξ, η ∈ H∞.

It therefore follows that for ψω : T 7→ Tr
(
T (D2 + 1)−p/2

)
,

∀ξ, η ∈ H∞, ψω ((η, ξ)A) = ψω (A (Jξ, Jη)) = ψω (C (Jξ, Jη)) = 〈Jξ, Jη〉 = 〈ξ, η〉 ,

as required.

Thus, (A,H,D) is indeed Dirac-type, as was claimed.
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Chapter 5

Stability results

Conclusit uias meas lapidibus quadris; semitas meas

subuertit.

— Lamentations 3:9 (Vulgate)

In this chapter, we finally prove that the orientability hypothesis can be dropped from Connes’s

reconstruction theorem to yield the full generality of Corollary 4.2.7. This will depend on the non-

trivial result that a Dirac-type spectral triple remains a Dirac-type spectral triple with the same

qualitative features, under suitable perturbation of the Dirac operator. To state it, we shall need

the following definition, adapted from Higson [37]:

Definition 5.0.9. Let ∆ be a self-adjoint operator with compact resolvent on a separable Hilbert

space H, and let C be a subset of B(H) that leaves H∞ := ∩k DomDk invariant. Then the algebra

of differential operators generated by C with respect to ∆ is the smallest filtered algebra D(C,∆) of

linear operators on H∞ that contains C and is closed under the operator T 7→ [∆, T ]; this algebra

is defined and filtered inductively as follows:

(a) D(C,∆)0 is the unital algebra generated by C itself.

(b) D(C,∆)1 := D(C,∆)0 [∆,D(C,∆)0]D(C,∆)0.

(c) D(C,∆)k :=
∑∞
j=1D(C,∆)jD(C,∆)k−j +D(C,∆)0 [∆,D(C,∆)k−1]D(C,∆)0.

Moreover, we shall call (D(C,∆),∆) a differential pair if for every X ∈ D(C,∆)k, there exists some

ε > 0, such that for all ξ ∈ H∞,
∥∥∆k/2ξ

∥∥+ ‖ξ‖ ≥ ε ‖Xξ‖.

Example 5.0.10. In the case of a concrete commutative spectral triple (C∞(X), L2(X, E), D), one

has that D := D(C∞(X,End(E), D2) is is indeed an algebra of differential operators on H; that

(D, D2) is a differential pair follows from the Gårding estimates of elliptic regularity theory [61,

Chapter 5].



35

The key technical tool is, thus, the following theorem, collating the technical lemmas of [9,

Appendix A], which in turn consist both of generalisations of folkloric results proved by Chakraborty–

Mathai [14] and Iochum–Levy–Vassilevich [39], as well as folkloric results hitherto unproved in the

literature.

Theorem 5.0.11. Let (A,H,D) be a p-dimensional Dirac-type spectral triple, and let M be a self-

adjoint element of EndAo(H
∞) for H∞ := ∩k DomDk, such that

[(D +M)2 −D2, T ] ∈ D(EndAo(H
∞), D2)k+1

for all T ∈ D(EndAo(H
∞), D2)k. Then DM := D+M extends to an essentially self-adjoint operator

on H with smooth core H∞, making (A,H,DM ) into a p-dimensional Dirac-type spectral triple,

satisfying the following:

1. For each k ∈ N, DomDk
M = DomDk, and hence ∩k DomDk

M = H∞;

2. For each k ∈ N,

Dom (ad |DM |)k = Dom (ad |D|)k ⊂ B(H),

and hence ⋂
k

Dom (ad |DM |)k =
⋂
k

Dom (ad |D|)k .

3. For all ξ, η ∈ H∞,

 
(ξ, η) (D2

M + 1)−p/2 =

 
(ξ, η) (D2 + 1)−p/2 = 〈ξ, η〉 .

Remark 5.0.12. If (A,H,D) is commutative, and M ∈ EndA(H∞) is self-adjoint and satisfies

∀a ∈ A, M [D, a] = −[D, a]M,

thenD2
M−D2 = MD+DM ∈ EndA(H∞), and, hence,M satisfies the hypothesis of Theorem 5.0.11.

The essence of the proof of Corollary 4.2.7 is, then, contained in the following corollary of

Theorem 5.0.11:

Corollary 5.0.13. Let (A,H,D) be a p-dimensional commutative spectral triple with chirality op-

erator χ and Hermitian metric (·, ·) on H∞ := ∩k DomDk, satisfying

∀ξ, η ∈ H∞, 〈ξ, η〉 =

 
(ξ, η) (D2 + 1)−p/2.
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Define an operator D0 on H∞ by

D0 =
1

2
χp (D − (−1)pχDχ) .

Then D0 extends to an essentially self-adjoint operator on H, making (A,H,D0) into a strongly

orientable p-dimensional commutative spectral triple that satisfies the following:

1. For each k ∈ N, DomDk
0 = DomDk, and hence ∩k DomDk

0 = H∞;

2. For each k ∈ N,

Dom (ad |D0|)k = Dom (ad |D|)k ⊂ B(H),

and hence ⋂
k

Dom (ad |D0|)k =
⋂
k

Dom (ad |D|)k .

3. For all ξ, η ∈ H∞,

 
(ξ, η) (D2

0 + 1)−p/2 =

 
(ξ, η) (D2 + 1)−p/2 = 〈ξ, η〉 .

In particular, M := D − χpD0 extends to a self-adjoint element of EndB(H∞) ⊂ B(H) such that

M restricts to an element of B(DomDk) for each k ∈ N.

Proof. Let us begin, rather, by defining M on H∞ by

M := 1
2 (D + (−1)pχDχ) .

Recalling that aχ = χa and [D, a]χ = (−1)p+1χ[D, a] for all a ∈ A, we have that

∀a ∈ A, [M,a] =
1

2
([D, a] + (−1)pχ[D, a]χ) = 0,

so that M ∈ EndA(H∞). Since EndA(H∞) ⊂ B(H) by strong regularity, M is bounded, whilst by

construction, M is symmetric on H∞ ⊂ H and hence self-adjoint as an element of B(H). Moreover,

since

D−M := D −M = 1
2 (D − (−1)pχDχ) ,

it follows that

(D2
−M −D2) = −MD−M −D−MM = χD2χ−D2.

Hence, by construction of D(EndA(H∞), D2), for any T ∈ D(EndA(H∞), D2)k,

[D2
−M −D2, T ] = [χD2χ−D2, T ] = χ[D2, T ]χ− [D2, T ] ∈ D(EndA(H∞), D2)k+1.
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Thus, we can apply Theorem 5.0.11 to conclude that (A,H,D−M ) is a p-dimensional Dirac-type

spectral triple satisfying:

1. For each k ∈ N, DomDk
−M = DomDk, and hence ∩k DomDk

−M = H∞;

2. For each k ∈ N,

Dom (ad |D−M |)k = Dom (ad |D|)k ⊂ B(H),

and hence ⋂
k

Dom (ad |D−M |)k =
⋂
k

Dom (ad |D|)k .

3. For all ξ, η ∈ H∞,

 
(ξ, η) (D2

−M + 1)−p/2 =

 
(ξ, η) (D2 + 1)−p/2 = 〈ξ, η〉 .

In particular, observe that by construction D−Mχ = (−1)p+1χD−M .

Now, set

D0 = χpD−M =
1

2
χp (D − (−1)pχDχ) .

Since D2
0 = D2

−M , it therefore follows that that (A,H,D0) is again a p-dimensional commutative

spectral triple, satisfying

1. For each k ∈ N, DomDk
0 = DomDk, and hence ∩k DomDk

0 = H∞;

2. For each k ∈ N,

Dom (ad |D0|)k = Dom (ad |D|)k ⊂ B(H),

and hence

∩k Dom (ad |D0|)k = ∩k Dom (ad |D|)k .

3. For all ξ, η ∈ H∞,

 
(ξ, η) (D2

0 + 1)−p/2 =

 
(ξ, η) (D2 + 1)−p/2 = 〈ξ, η〉 .

If p is even, then D0 = D−M , and hence Dχ = −χD, so that (A,H,D0) is strongly orientable. If p

is odd, then if

c =

N∑
k=1

ak,0 ⊗ ak,1 ⊗ · · · ⊗ ak,p

is the orientation cycle of (A,H,D), then, since

∀a ∈ A, [D0, a] = [χp(D −M), a] = χp[D, a],
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one has that

πD0(c) =

N∑
k=1

ak,0[D0, ak,1] · · · [D0, ak,p] = χp
2

χ = 1,

as required.

The rest of the chapter amounts to a step-by-step proof of Theorem 5.0.11.

5.1 Spectral triple; metric dimension

We begin by showing that perturbing the Dirac operator of a spectral triple by a bounded self-adjoint

operator still results in a spectral triple.

Lemma 5.1.1 ([14, Lemma 2.1, Proposition 2.2]). Let (A,H,D) be a spectral triple, let M ∈ B(H)

be self-adjoint, and set DM := D +M . Then (A,H,DM ) is a spectral triple.

Proof. First, by the Kato-Rellich theorem, DM is self-adjoint on DomDM = DomD and essentially

self-adjoint on any core of D. Next, since D has compact resolvent, for any λ ∈ C \ R,

(DM − λ)−1 = (D − λ)−1 − (DM − λ)−1M(D − λ)−1 ∈ K(H),

so that DM too has compact resolvent. Finally, for any a ∈ A, since [D, a] ∈ B(H) and since

M ∈ B(H),

[DM , a] = [D, a] + [M,a] ∈ B(H).

Thus, (A,H,DM ) is indeed a spectral triple.

Let us now consider stability of metric dimension.

Lemma 5.1.2. Let (A,H,D) be a spectral triple, let M ∈ B(H) be self-adjoint, and set DM :=

D +M . If (A,H,D) has metric dimension p > 0, then so too does (A,H,DM ).

To prove this, we shall need the following technical lemma from the literature:

Lemma 5.1.3 (Carey–Phillips [12, Lemma B.6]). If D is an unbounded self-adjoint operator on a

Hilbert space H, and M ∈ B(H) is self-adjoint, then for DM := D +M ,

(
D2
M + 1

)−1 ≤ f(‖M‖)
(
D2 + 1

)−1
,

where f(x) := 1 + 1
2x

2 + 1
2x
√
x2 + 4.

Proof of Lemma 5.1.2. By Lemma 5.1.3 one has that

1

f(‖M‖)
(D2 + 1)−1 ≤ (D2

M + 1)−1 ≤ f(‖M‖)(D2 + 1)−1,
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where f(x) := 1 + 1
2x

2 + 1
2x
√
x2 + 4, so that by [58, Lemma on p. 270], if λn(C) denotes the n-th

eigenvalue of the positive compact operator C ∈ B(H), in decreasing order, then

1

f(‖M‖)
λk((D2 + 1)−1) ≤ λk((D2

M + 1)−1) ≤ f(‖M‖)λk((D2 + 1)−1)

for all n ∈ N. Since λk((D2 + 1)−1) = O(k−2/p), it therefore follows that

λk((D2
M + 1)−1) = O(k−2/p).

Thus, (A,H, DM ) has metric dimension p, as was claimed.

Now, in the context of Theorem 5.0.11, since M is bounded and self-adjoint, it immediately

follows that (A,H,DM ) is a spectral triple of metric dimension p.

5.2 Finiteness

The following lemma will suffice to establish stability of finiteness in the proof of Theorem 5.0.11,

and will also be necessary for our discussion below of [strong] regularity and absolute continuity; we

shall follow the proof by Iochum–Levy–Vassilevich.

Lemma 5.2.1 (Iochum–Lévy–Vassilevich [39, Lemma 2.3]). For k ∈ N, let Hk := DomDk with the

Sobolev inner product

〈ξ, η〉k :=
〈
Dkξ,Dkη

〉
+ 〈ξ, η〉 ,

and similarly let Hk
M := DomDk

M with the Sobolev inner product

〈ξ, η〉M,k :=
〈
Dk
Mξ,D

k
Mη
〉

+ 〈ξ, η〉 .

Suppose now that M restricts to an element of B(Hk) for each k ∈ N. Then Hk = Hk
M for all k ∈ N

with equivalent norms, and thus, in particular, ∩k DomDk = ∩k DomDk
M .

Proof. Let us first prove equality of vector spaces. We proceed by induction on k. First, by the

Kato-Rellich theorem [57, Theorem X.12], DM is self-adjoint on DomDM = DomD and essentially

self-adjoint on any core of D, so that the claim holds for k = 1 . Now, assume by induction that the

claim holds for some m ∈ N. Then, by the induction hypothesis and our restriction on M ,

DomDm+1
M = {ξ ∈ DomDm

M | DMξ ∈ DomDm
M}

= {ξ ∈ DomDm | (D +M)ξ ∈ DomDm}

= {ξ ∈ DomDm | Dξ ∈ DomDm}
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= DomDm+1,

as required.

Let us now prove equivalence of the Sobolev norms. Before continuing, we will find it convenient

to replace 〈·, ·〉k and 〈·, ·〉M,k with (·, ·)k and (·, ·)M,k, respectively, where

(ξ, η)k :=
〈
(D + i)kξ, (D + i)kη

〉
+ 〈ξ, η〉 ,

(ξ, η)M,k :=
〈
(DM + i)kξ, (DM + i)kη

〉
+ 〈ξ, η〉 .

Indeed, let us show, for instance, that 〈·, ·〉k and (·, ·)k define equivalent norms. On the one hand,

for ξ ∈ Hk, ∥∥(D + i)kξ
∥∥ =

∥∥∥∥∥
k∑

m=0

imDk−mξ

∥∥∥∥∥ ≤
k∑

m=0

∥∥Dk−mξ
∥∥ ,

so that by continuity of the inclusions Hk ↪→ Hk−m for the 〈·, ·〉n, there exists some C > 0,

independent of ξ, such that

∥∥(D + i)kξ
∥∥2

+ ‖ξ‖2 ≤ C
(∥∥Dkξ

∥∥2
+ ‖ξ‖2

)
.

On the other hand since the (·, ·)k is also simply the k-th Sobolev inner product for
√
D2 + 1, the

inclusions Hk ↪→ Hk−m are also continuous for the (·, ·)n, and hence, since

∥∥Dkξ
∥∥ =

∥∥((D + i)− i)kξ
∥∥ =

∥∥∥∥∥
k∑

m=0

(−i)m(D + i)k−mξ

∥∥∥∥∥ ≤
k∑

m=0

∥∥(D + i)k−mξ
∥∥ ,

there exists some C ′, independent of ξ, such that

∥∥Dkξ
∥∥2

+ ‖ξ‖2 ≤ C ′
(∥∥(D + i)kξ

∥∥2
+ ‖ξ‖2

)
.

Thus, 〈·, ·〉k and (·, ·)k do indeed define equivalent norms.

Now, fix k ∈ N, and consider the linear map B = (DM − i)k(D− i)−k on H; we claim that B is,

in fact, bounded on H. First, one has that on DomDk = DomDk
M ,

(DM − i)k = ((D − i) +M)k = (D − i)k +

k∑
m=1

Tm,

where for each m, Tm is a product of k operators, each of which is either (D − i) or M . By our

assumption on M , then, each Tm therefore defines a continuous map Hk → H1, so that, since
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(D − i)k : Hk → H and (D − i)−k : H → Hk are continuous,

B = (DM − i)k(D − i)−k = IdH+

k∑
m=1

Tm(D − i)k

defines a bounded operator on H. Since B is bijective, it therefore follows by the bounded inverse

theorem that B has a bounded inverse. Thus, for ξ ∈ DomDk = DomDk
M , since (DM − i)k =

B(D − i)k and (D − i)k = B−1(DM − i)k,

(ξ, ξ)M,k ≤ max
{

1, ‖B‖2
}

(ξ, ξ)k , (ξ, ξ)k ≤ max
{

1,
∥∥B−1

∥∥2
}

(ξ, ξ)M,k ,

which implies, by our earlier observation, that ‖·‖k and ‖·‖M,k are equivalent, as required.

5.3 Regularity and strong regularity

We shall now use Higson’s characterisation of regularity, first to allow us to apply Lemma 5.2.1 in

context, and then to generalise a result on stability of regularity due to Chakraborty–Mathai [14].

We have already stated our adaptation of Higson’s definition of abstract algebra of differential

operators; the relevant stability result therefore is as follows:

Lemma 5.3.1 ([14, Proposition 4.2]). Let (A,H,D) be a spectral triple, and let

C ⊂ ∩k Dom(ad |D|)k ⊂ B(H).

Let M ∈ D(C,D2) be self-adjoint, set DM := D+M , and suppose that [D2
M −D2, T ] ∈ D(C,D2)k+1

for T ∈ D(C,D2)k. Then C ⊂ ∩k Dom(ad |DM |)k ⊂ B(H).

In the case that C = A + [D,A], we get a sufficient condition for stability of regularity, and in

the case that C = EndAo(H
∞), we get a sufficient condition for stability of strong regularity.

Remark 5.3.2. If M is an inner fluctuation of the metric, that is, if

M =

n∑
i=1

ai[D, bi]

for some ai, bi ∈ A, then the condition that [D2
M − D2, T ] ∈ Dk+1 for T ∈ Dk is automatically

satisfied.

As was first observed by Chakraborty–Mathai, the essential tool is Higson’s characterisation of

regularity, stated here in the full generality actually provided for by Higson’s proof:
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Theorem 5.3.3 (Higson [37, Theorem 4.26]). Let D be a self-adjoint operator with compact resolvent

on a separable Hilbert space H, and let H∞ = ∩k DomDk. Let C be a subalgebra of B(H) that leaves

H∞ invariant. Then C ⊂ ∩k Dom(ad |D|)k if and only if (D(C,∆), D2) is a differential pair.

The tool that will allow us to use Lemma 5.2.1 is the following lemma of Higson’s:

Lemma 5.3.4 (Higson [37, Lemma 4.7]). Let ∆ be a self-adjoint operator with compact resolvent on

a separable Hilbert space H. Let C be a subalgebra of B(H) that leaves H∞ = ∩k DomDk invariant,

and let D = D(C,∆). If (D, D2) is a differential pair, then for any T ∈ Dk, T extends to a bounded

operator Hk+m → Hm for all m ∈ N ∪ {0}.

Finally, with Theorem 5.3.3 and Lemma 5.3.4 at our disposal, we can finally prove our stability

result:

Proof of Lemma 5.3.1. For simplicity, let D := D(C,D2), and let DM := D(C,D2
M ). By our hypoth-

esis on D2
M −D2, there is a filtered inclusion DM ⊂ D of filtered algebras, so that by our hypothesis

on C and Theorem 5.3.3, (DM , D2) is a differential pair, in the sense that for every X ∈ (DM )k,

there exists some ε > 0, such that for all ξ ∈ H∞,
∥∥∥|D|k ξ∥∥∥ + ‖ξ‖ ≥ ε ‖Xξ‖. Thus, fix X ∈ DM of

order ≤ k, so that there exists some ε > 0, such that for all ξ ∈ H∞ := ∩k DomDk = ∩k DomDk
M ,

∥∥Dkξ
∥∥+ ‖ξ‖ ≥ ε ‖Xξ‖ .

Then, since DomDk = DomDk
M with equivalent Sobolev norms by Lemmas 5.3.4 and 5.2.1, it

follows that that Dk is bounded as an operator from DomDk
M endowed with the Sobolev k-norm

for DM , to H, implying that
∥∥Dkξ

∥∥ ≤ α
∥∥Dk

Mξ
∥∥ + β ‖ξ‖ for some α, β > 0 independent of ξ, and

hence that ∥∥Dk
Mξ
∥∥+ ‖ξ‖ ≥ ε′ ‖Xξ‖

for some ε′ > 0 independent of ξ. Thus, (DM , D2
M ) is a differential pair, so that by Theorem 5.3.3,

C ⊂ ∩k Dom(ad |DM |)k, as required.

Now, let us apply these results to the proof of Theorem 5.0.11. First, by Theorem 5.3.3 and

Lemma 5.3.4, M restricts to a bounded operator on DomDk with the relevant Sobolev norm, for

each k. Hence, by Lemma 5.2.1, DomDk
M = DomDk with equivalent Sobolev norms for each k,

and thus, in particular, ∩k DomDk
M = ∩k DomDk = H∞, proving pre-regularity and finiteness for

(A,H,DM ). Then, by Lemma 5.3.1 applied to C = EndAo(H
∞), we can conclude that (A,H,DM )

is strongly regular.
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5.4 Absolute continuity

Finally, we consider stability of absolute continuity, which shall depend essentially on the BKS

inequality, Theorem 3.4.4.

Lemma 5.4.1. Let (A,H,D) be a spectral triple of metric dimension p, and let M ∈ ∩kB(Hk) be

self-adjoint, where Hk := DomDk with the Sobolev inner product

〈ξ, η〉k :=
〈
Dkξ,Dkη

〉
+ 〈ξ, η〉 .

Let DM := D +M . Then

∀T ∈ B(H),

 
T (D2

M + 1)−p/2 =

 
T (D2 + 1)−p/2.

Proof. Let

n =


p
2 if p is even,

p+1
2 if p is odd,

α =
p

2n
=

1 if p is even,

p
p+1 if p is odd.

First, we have that

(D2
M + 1)−n − (D2 + 1)−n

= (D2 + 1)−n
(
(D2 + 1)n − (D2

M + 1)n
)

(D2
M + 1)−n

= (D2 + 1)−n

 n∑
i=0

2i−1∑
j=0

(
n

i

)
DjMD2i−1−j

M

 (D2
M + 1)−n

=

n∑
i=0

2i−1∑
j=0

(
n

i

)
(D2 + 1)−n+ j

2

[
D(D2 + 1)−

1
2

]j
M
[
DM (D2

M + 1)−
1
2

]2i−1−j
(D2

M + 1)−n+i− j+1
2 ,

which by Lemma 5.2.1 can be checked on the common core H∞ of D and DM .

Now, consider the term

(D2 + 1)−n+ j
2

[
D(D2 + 1)−

1
2

]j
M
[
DM (D2

M + 1)−
1
2

]2i−1−j
(D2

M + 1)−n+i− j+1
2 ,

where 0 ≤ i ≤ n and 0 ≤ j ≤ 2i− 1. Since (A,H,D) is of metric dimension p, so too is (A,H,DM )

by Lemma 5.1.2, so that

(D2 + 1)−p/2, (D2
M + 1)−p/2 ∈ L1+(H),

and hence, for all ε > 0,

(D2 + 1)−1, (D2
M + 1)−1 ∈ Lαn+ε(H).
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Setting ε = α(n− i+ 1
2 ), we therefore find that

(D2 + 1)−n+ j
2 ∈ Lr(H),

[
D(D2 + 1)−

1
2

]j
M
[
DM (D2

M + 1)−
1
2

]2i−1−j
(D2

M + 1)−n+i− j+1
2 ∈ Ls(H),

for

r =
αn+ ε

n− j
2

, s =
αn+ ε

n− i+ j+1
2

,

which satisfy r−1 + s−1 = α−1. Hence, by Hölder’s inequality for Schatten ideals,

(D2 + 1)−n+ j
2

[
D(D2 + 1)−

1
2

]j
M
[
DM (D2

M + 1)−
1
2

]2i−1−j
(D2

M + 1)−n+i− j+1
2 ∈ Lα(H);

since this is true for all i and j, it therefore follows that (D2
M + 1)−n − (D2 + 1)−n ∈ Lα(H). If p is

even, then α = 1 and (D2
M + 1)−n − (D2 + 1)−n is already trace-class; if p is odd, then since

(D2
M + 1)−p/2α − (D2 + 1)−p/2α = (D2

M + 1)−n − (D2 + 1)−n ∈ Lα(H)

for 0 < α < 1, we can apply the BKS inequality (Theorem 3.4.4) to

∣∣∣(D2
M + 1)−p/2α − (D2 + 1)−p/2α

∣∣∣α ∈ L1(H)

to conclude that (D2
M + 1)−p/2 − (D2 + 1)−p/2 is indeed trace-class.

Let us now conclude the proof of Theorem 5.0.11. By Theorem 5.3.3 and Lemma 5.3.4, we

have that M ∈ ∩kB(Hk), and we have likewise already seen that pre-regularity and finiteness are

preserved. We can therefore apply Lemma 5.4.1 to conclude that (A,H,D) and (A,H,DM ) have

the same noncommutative integration, and, hence, absolute continuity is preserved.
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Chapter 6

Almost-commutative spectral triples

Nigdar ni tak bilo da ni nekak bilo,

pak ni vezda ne bu da nam nekak ne bu.

— M. Krleža, Khevenhiller

In the following, we shall motivate and propose both concrete (viz, global-analytic) and abstract

(viz, noncommutative-geometric) definitions of almost-commutative spectral triples, and then state

and prove a reconstruction theorem for almost-commutative spectral triples, thereby establishing

the equivalence of the concrete and abstract definitions.

6.1 Concrete definitions

In order to motivate our new definitions, let us recall the conventional definition of almost-commu-

tative spectral triple, or, for convenience, Cartesian almost-commutative spectral triples. In order to

do so, however, we must recall the following definition:

Definition 6.1.1. Let X1 = (A1, H1, D1) and X2 = (A2, H2, D2) be spectral triples. Then the

product X1 ×X2 of X1 and X2 is the spectral triple defined as follows:

1. If X1 and X2 are both even with Z2-gradings γ1 and γ2 respectively, then

X1 ×X2 := (A1 ⊗A2, H1 ⊗H2, D1 ⊗ 1 + γ1 ⊗D2, γ1 ⊗ γ2).

2. If X1 is even with Z2-grading γ1 and X2 is odd, then

X1 ×X2 := (A1 ⊗A2, H1 ⊗H2, D1 ⊗ 1 + γ1 ⊗D2).
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3. If X1 is odd and X2 is even with Z2-grading γ2, then

X1 ×X2 := (A1 ⊗A2, H1 ⊗H2, D1 ⊗ γ2 + 1⊗D2).

4. If X1 and X2 are odd, then

X1 ×X2 := (A1 ⊗A2, H1 ⊗H2 ⊗ C2, D1 ⊗ 1⊗ σ1 + 1⊗D2 ⊗ σ2, 1⊗ 1⊗ σ3),

where the σk are the Pauli sigma matrices:

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 .

Remark 6.1.2. In the case where both X1 and X2 are even, one could alternatively construct the

Dirac operator of X1 × X2 as D1 ⊗ γ2 + 1 ⊗ D2; the resulting spectral triple is, then, unitarily

equivalent to X1 ×X2 as constructed above.

That the product of spectral triples is indeed a spectral triple does require verification—see

[32, 53] for details. In particular, Otgonbayar proves that the product of regular spectral triples is

again regular [53, Prop. 3.1.32].

The conventional definition of almost-commutative spectral triple then reads as follows:

Definition 6.1.3. A Cartesian almost-commutative spectral triple is a spectral triple of the form

X × F , where X is a compact spin manifold with fixed spin structure, identified, by abuse of

notation, with its canonical commutative spectral triple (C∞(X), L2(X,S), /D), and F is a finite

spectral triple.

Remark 6.1.4. Note that this definition is not stable under inner fluctuations of the metric, for if

M =
∑n
i=1 ai[D, bi] for non-constant ai, bi ∈ C∞(X) ⊗ AF , then M is generally not of the form

1⊗̂T for some constant T ∈ B(HF ).

Now, for simplicity, let X be an even-dimensional compact spin manifold with fixed spinor bundle

S → X and corresponding Dirac operator /D, and let F = (AF , HF , DF ) be an even finite spectral

triple. Then, by the above definition,

X × F := (C∞(X)⊗̂AF , L2(X,S)⊗̂HF , /D⊗̂1 + 1⊗̂DF ).

Let us now make some observations:

1. L2(X,S)⊗̂HF = L2(X, E), where E := S ⊗ (X ×HF ) is a twisted spinor bundle, and hence,

in particular, a Clifford module.
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2. A is a locally trivial bundle of finite-dimensional C∗-algebras, and that the inclusion A ↪→

End(E) is a morphism of local trivial bundles of finite-dimensional C∗-algebras, and sections

of A act on E as even bundle endomorphisms that commute with the Clifford action on E .

3. /D⊗̂1 is the twisted Dirac operator on the twisted spinor bundle E = S ⊗ (X × HF ) arising

from the trivial connection on X ×HF and 1⊗̂DF is a symmetric bundle endomorphism, so

that D := /D⊗̂1 + 1⊗̂DF is a symmetric Dirac-type operator on the Clifford module E .

It is on the basis of these observations, then, that we shall propose our manifestly global-analytic

definition of almost-commutative spectral triple.

First, let us characterise the datum A := X ×AF :

Definition 6.1.5. Let X be a compact manifold. We define an algebra bundle to be a locally trivial

bundle of finite-dimensional C∗-algebras. We also define a representation of an algebra bundle

A → X on a Hermitian vector bundle E → X to be an injective morphism A → End(E) of locally-

trivial bundles of algebra bundles, in which case we call E → X an A-module.

Next, let us characterise the datum E := S ⊗ (X ×HF ) and its relation to A:

Definition 6.1.6. Let X be a compact oriented Riemannian manifold, and let A → X be a bundle

of algebras. We define a Clifford A-module to be a Clifford module E → X together with a faithful

∗-representation of A, commuting with the Clifford action; if E is Z2-graded, we require sections of

A to act as even operators on E .

With these definitions in place, let us finally give our proposed definition:

Definition 6.1.7. A concrete almost-commutative spectral triple is a spectral triple of the form

(C∞(X,A), L2(X, E), D), where X is a compact oriented Riemannian manifold, A → X is a bundle

of algebras, E → X is a Clifford A-module, and D is a Dirac-type operator on E .

Remark 6.1.8. This definition is stable under inner fluctuation of the metric, for a perturbation of

a symmetric Dirac-type operator by a symmetric bundle endomorphism is a symmetric Dirac-type

operator, inducing the same Clifford action.

Of course, one should check that our definition does indeed give rise to a spectral triple. Suppose

that X is a compact oriented Riemannian manifold, A is an algebra bundle, E is a Clifford A-

bundle, and D is a symmetric Dirac-type operator on H. Then by standard analytic results about

Dirac-type operators [37, Theorem 3.23], together with the fact that sections of A act as even bundle

endomorphisms supercommuting with the Clifford actionH, so that [D, a] is a bundle endomorphism

for all a ∈ C∞(X,A), (C∞(M,A), L2(M,H), D) is indeed a spectral triple of metric dimension

dimX.
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Now, since the square of a Dirac-type operator is a generalised Laplacian, this definition mani-

festly lends itself to perturbative computation of the spectral action [15] via heat kernel methods [35]

(see [33] for a comprehensive account for product almost-commutative spectral triples). Another

feature of this definition is that it encompasses non-trivial “fibrations” in the following sense:

Lemma 6.1.9. Let X be a compact spin manifold with spinor bundle S → X and Dirac operator

/D, and let F = (AF , HF , DF ) be a finite spectral triple. Let G be a compact Lie group, and let ρ

be an action of G on F , namely, a unitary representation of G on HF , such that for each g ∈ G,

ρ(g)AF ρ(g)∗ ⊂ AF , and ρ(g)DF ρ(g)∗ = DF ; if F is even, we moreover require the action of G to

commute with the Z2-grading. Let P be a principal G-bundle over X, and let ∇P be a connection

on P. Define E and A by

E := S⊗̂(P ×ρ HF ), A := P ×ρ AF ,

and let D = /DP×ρHF + 1⊗̂DF , where /DP×ρHF is the twisted Dirac operator on the twisted spinor

bundle E corresponding to the connection on P ×ρ HF induced by ∇P . Then

X ×(P,∇P) F := (C∞(X,A), L2(X, E), D)

is an almost-commutative spectral triple.

Proof. It follows immediately that (C∞(X), L2(X, E), D) is at least an almost-commutative spectral

triple. However, since C∞(X,A) = C∞(X,P ×ρ AF ) acts on E by

a (σ ⊗ ξ) := σ ⊗ aξ, a ∈ C∞(X,A), σ ∈ C∞(X,S), ξ ∈ C∞(X,P ×ρ HF ),

sections of A act as even bundle endomorphisms supercommuting with the Clifford action on H, so

that (C∞(X,A), L2(X,H), D) is also an almost-commutative spectral triple.

We can view X ×(P,∇P) F as the product of X and F twisted by (P,∇P); a concrete example

of this construction has already been studied in detail by Boeijink–Van Suijlekom [5] in connection

with the Yang-Mills theory. It is also worth noting that the data (P ×ρ HF ,∇P×ρHF , DF ) can be

viewed as defining a non-trivial morphism X ×(P,∇P) F → X in the category of spectral triples

proposed by Mesland [52].

6.2 A reconstruction theorem

Now, we shall give an abstract definition of almost-commutative spectral triple, which shall depend

upon an abstract definition of commutative spectral triple, identical to that proposed by Connes [24,

27], except for a weakening of the orientability condition.
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Now, let (C∞(X,A), L2(X, E), D) be a concrete almost-commutative spectral triple. We may

just as well consider it as being composed of two pieces:

1. a concrete commutative spectral triple (C∞(X), L2(X, E), D).

2. an algebra bundle A, together with a monomorphism A → End(E) of algebra bundles over X,

such that sections of A acts as even operators that commute with the Clifford action on E .

In order to obtain an abstract definition of almost-commutative spectral triple, it therefore suffices

to translate these two components into the language of noncommutative geometry. We already know

how to translate the first component via Corollary 4.2.7, our refinement of Connes’s reconstruction

theorem: (C∞(X), L2(X, E), D) is simply a commutative spectral triple of metric dimension dimX.

So, it remains only to characterise the second component.

Now, what we would like to use is some suitable refinement of Serre–Swan for algebra bundles.

Such a refinement does indeed exist, if for a slightly weaker notion of algebra bundle:

Definition 6.2.1 (cf. [5, Def. 3.1]). A weak algebra bundle is a complex vector bundle A → X,

together with the following data:

• a morphism of complex vector bundles µ : A ⊗ A → A over IdX , such that µ ◦ (IdA⊗µ) =

µ ◦ (µ⊗ IdA),

• a section 1A ∈ C∞(X,A), such that µ(• ⊗ 1A) = IdA = µ(1A ⊗ •),

• a fibre-wise conjugate-linear morphism of real vector bundles J : A → A over IdX , such that

J2 = IdA and

∀a1, a2 ∈ C∞(X,A), J ◦ µ(a1 ⊗ a2) = µ(Ja2 ⊗ Ja1).

in other words, a weak algebra bundle over X is a unital ∗-algebra in the category of complex vector

bundles over X.

Moreover, the category WAlgB(X) is the category whose objects are weak algebra bundles and

whose morphisms are vector bundle morphisms φ : A → A′ over IdX such that

φ ◦ µA = µA′ ◦ (φ⊗ φ), φ(1A) = 1A′ , φ ◦ JA = JA′ ◦ φ.

It follows immediately that an algebra bundle is necessarily a weak algebra bundle. However, a

weak algebra bundle need not be an algebra bundle, for there is no a priori reason why (Ax, µx, Jx)

and (Ay, µy, Jy) should be isomorphic as ∗-algebras for x 6= y. However, since we are concerned

specifically with algebra bundles A admitting Clifford A-modules, the following lemma guarantees

that the distinction between algebra bundles and weak algebra bundles is irrelevant for our purposes:
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Lemma 6.2.2. Let A → X be a weak algebra bundle, and suppose that there exists an injective

morphism ι : A → B of weak algebra bundles for some algebra bundle B → X. Then A is an algebra

bundle.

Proof. By the hypothesis, we may treat A as a weak algebra sub-bundle of B. However, since B is an

algebra bundle, i.e., a locally trivial bundle of finite-dimensional C∗-algebras, A is precisely a vector

sub-bundle of B, such that for each x ∈ X, the unital ∗-algebra structure of Ax is precisely that of

Ax as a vector subspace of the finite-dimensional C∗-algebra Bx closed under the multiplication and

∗-operation of Bx and containing the unit of Bx. Since the transition functions of A are simply the

restrictions of the transition functions of B, which are fibrewise ∗-automorphisms, it follows that the

weak algebra structure of A is precisely the structure of a locally trivial bundle of finite-dimensional

C∗-algebras inherited from B, as required.

We have already seen, via the Serre–Swan theorem, that vector bundles over X correspond to

finitely generated projective modules over C∞(X). Let us now see what weak algebra bundles

correspond to:

Definition 6.2.3. Let B be a commutative ∗-algebra. Then a B-module ∗-algebra is a finitely

generated projective B-module A together with the following data:

• an A-module morphism m : A⊗B A→ A such that m ◦ (IdA⊗m) = m ◦ (m⊗ IdA),

• an element 1A ∈ A such that m ◦ (• ⊗ 1A) = IdA = m ◦ (1A ⊗ •),

• a map ∗ : A→ A such that ∗2 = IdA and

∀a1, a2 ∈ A, b ∈ B, (ba1 + a2)∗ = b∗a∗1 + a∗2, m(a1 ⊗ a2)∗ = m(a∗2 ⊗ a∗1);

in other words, a B-module algebra is a unital ∗-algebra in the category of finitely generated pro-

jective B-modules. Moreover, the category ModAlg(B) is the category whose objects are B-module

algebras and whose morphisms are morphisms of B-modules φ : A→ A′, such that

φ ◦mA = mA′ ◦ φ, φ(1A) = 1A′ , φ ◦ ∗A = ∗A′ ◦ φ.

If A → X is a weak algebra bundle with multiplication µ, unit 1A, and involution J , then A =

C∞(X,A) has the structure of a C∞(X)-module ∗-algebra with multiplication m, unit 1A := 1A,

and involution ∗, where

∀a, b ∈ A m(a⊗ b) := µ(a⊗ b), a∗ := J(a).
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That, conversely, any C∞(X)-module ∗-algebra is isomorphic to C∞(X,A) for some weak algebra

bundle A → X is, then, guaranteed by the following refinement of the Serre–Swan theorem for weak

algebra bundles:

Theorem 6.2.4 (Boeijink–Van Suijlekom [5, Thm. 3.8]). Let X be a compact manifold. Then the

map A 7→ C∞(X,A) defines an equivalence of categories WAlgB(X)→ ModAlg(C∞(X)).

As a result, a concrete almost-commutative spectral triple (C∞(X,A), L2(X, E), D) can be bro-

ken down into two constituents:

1. a commutative spectral triple (C∞(X), L2(X, E), D),

2. a C∞(X)-module subalgebra C∞(X,A) of EndC∞(X)(C
∞(X, E)) = C∞(X,End(E)) whose

elements are even (if the spectral triple is even) and commute with the Clifford action on E ,

i.e., [[D, b], a] = 0 for all b ∈ C∞(X) and a ∈ C∞(X,A).

Thus, the basic structure of (C∞(X,A), L2(X, E), D) is encapsulated by the following proposed

definition:

Definition 6.2.5 ([9, Def. 2.16]). Let (A,H,D) be a spectral triple, let B be a central unital ∗-

subalgebra of A, and let p ∈ N. We call (A,H,D) a p-dimensional almost-commutative spectral triple

with base B if the following conditions hold:

1. (B,H,D) is a p-dimensional commutative spectral triple;

2. A is a B-module subalgebra of EndB(H∞).

3. [[D, b], a] = 0 for all a ∈ A, b ∈ B.

Our proposed reconstruction theorem for almost-commutative spectral triples is therefore as

follows:

Theorem 6.2.6 ([9, Thm. 2.17]). Let (A,H,D) be a p-dimensional almost-commutative spectral

triple with base B. Then there exist a compact oriented Riemannian p-manifold X, a bundle of

algebras A → X, and a Clifford A-module E → X, such that B ∼= C∞(X) and (A,H,D) ∼=

(C∞(X,A), L2(X, E), D), where D is identified with an essentially self-adjoint Dirac-type operator

on E.

Proof. First, by Corollary 4.2.7 applied to (B,H,D), there exist a compact oriented Riemannian p-

manifold X and a self-adjoint Clifford module bundle E → X, such that B = C∞(X), H = L2(X, E),

and D is an essentially self-adjoint Dirac-type operator on E .

Next, condition (2), together with Theorem 6.2.4, implies that A = C∞(X,A) for A a weak

algebra bundle over X.
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Finally, condition (3) for almost-commutative spectral triples, together with the fact that D is

a Dirac-type operator on the Clifford module bundle E , implies that A can be identified as a weak

algebra sub-bundle of End(E), whose sections act as even operators (if our spectral triple is even),

commuting with the Clifford action on E induced by D. Hence, by Lemma 6.2.2, A is in fact an

algebra bundle and, hence, E is a Clifford A-module.

6.3 Real structures

At last, let us consider real structures on almost-commutative spectral triples, both concrete and

abstract. To see what a real structure looks like on a concrete almost-commutative spectral triple,

it suffices to consider the traditional Cartesian product construction. Let us therefore recall the

construction of a product of real spectral triples as formulated by Dąbrowski–Dossena, after Van-

hecke [66]:

Theorem 6.3.1 (Dąbrowski–Dossena [32, §4]). For i = 1, 2, let Xi = (Ai, Hi, Di, Ji) be a real

spectral triple of KO-dimension ni mod 8. Then X1 × X2 can made into a real spectral triple of

KO-dimension n1 + n2 mod 8 with real structure J defined as follows:

1. If n1 and n2 are both even, then J± := (J1)±ε′′(n1) ⊗ (J2)±;

2. If n1 is even and n2 is odd, then J := (J1)ε′(n1+n2) ⊗ J2;

3. If n1 is odd and n2 is even, then J := J1 ⊗ (J2)ε′(n1+n2);

4. If n1 and n2 are both odd, then J± := J1 ⊗ J2 ⊗M±K, for K the complex conjugation on C2

and (M+,M−) chosen as follows, with rows indexed by n1 and columns indexed by n2:

1 3 5 7

1 (iσ2, σ1) (σ3, σ0) (iσ2, σ1) (σ3, σ0)

3 (σ0, σ3) (σ1, iσ2) (σ0, σ3) (σ1, iσ2)

5 (iσ2, σ1) (σ3, σ0) (iσ2, σ1) (σ3, σ0)

7 (σ0, σ3) (σ1, iσ2) (σ0, σ3) (σ1, iσ2)

(6.3.1)

Now, let X := (C∞(X), L2(X,S), /D,C) be the canonical spectral triple of a compact spin

n1-manifold X with fixed spin structure, and let F = (AF , HF , DF , JF ) be a finite real spectral

triple of KO-dimension n2 mod 8. Ignoring the real structures, one has that X × F takes the form

(C∞(X,A), L2(X, E), D), where, in particular, A := X×AF is an algebra bundle, E , formed from S

and HF , is a Clifford A-module with Clifford action defined by c(df) := [D, f ] for f ∈ C∞(X), and

A-module structure induced by the representation of AF on HF , and D, formed from /D and DF ,
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is a Dirac-type operator on the Clifford module E . Now, since X and F are real spectral triples, by

the above theorem, X × F is a real spectral triple with real structure J . Taking this into account,

we see that E is a Clifford A⊗Ao-module with A⊗Ao-module structure defined by

(a⊗ bo)ξ := aJb∗J∗ξ, a, b ∈ C∞(X,A), ξ ∈ C∞(X, E),

that D therefore satisfies the addition constraint that

[[D, a], bo] = 0, a, b ∈ C∞(X,A),

and, hence, that J is an antiunitary bundle endomorphism on E , satisfying

Jc(ω∗ ⊗ a∗ ⊗ (b∗)o)J∗ = c(τε′(ω)⊗ b⊗ ao), ω ∈ C∞(X,Cl(X)), a, b ∈ C∞(X,A).

Thus, the additional structure provided by the real structure J is encoded in the following definition:

Definition 6.3.2. Let X be a compact oriented Riemannian manifold, let A → X be an algebra

bundle, and let E → X be a Clifford A⊗Ao-module, which may or may not be Z2-graded. Let J be

an antiunitary bundle automorphism on E , and let n ∈ Z8. We call (E , J) a real Clifford A-bimodule

of KO-dimension n mod 8 if E is Z2-graded with Z2-grading γ when n is even, and J satisfies the

following:

1. J2 = ε IdE ,

2. for all ω ∈ C∞(X,Cl(X)) and a, b ∈ C∞(X,A),

J(c(ω∗ ⊗ a∗ ⊗ (b∗)o)J∗ = c(τε′(ω)⊗ b⊗ ao),

3. Jγ = ε′′γJ if n is even,

where (ε, ε′, ε′′) ∈ {±1}3 is determined by n mod 8 according Table 2.2.1.

Remark 6.3.3. Once more, just as before, if n is even, then we can replace J with Jγ to go reversibly

between the “conventional” KO-dimension n+ and the “exotic” KO-dimension n−.

Remark 6.3.4. Condition (2) in the above definition can be viewed as specifying the compatibility

of J with the Clifford A-bimodule structure on E , for J , a priori, defines a C-linear anti-involution

T 7→ JT ∗J∗ on End(E).

Compatibility of the Dirac-type operator D with the real Clifford A-bimodule (E , J) is then

encoded in the following definition:



54

Definition 6.3.5. Let X be a compact oriented Riemannian manifold, let A → X be a bundle

of algebras, and let (E , J) be a real Clifford A-bimodule of KO-dimension n mod 8. Let D be a

Dirac-type operator on E . We say that D is (A, J)-compatible if it is J-compatible, and if

[[D, a], bo] = 0, a, b ∈ C∞(X,A).

Thus, if (E , J) is a real Clifford A-bimodule of KO-dimension n mod 8 over X, and D is a Dirac-

type operator on E , then (C∞(X,A), L2(X, E), D, J) defines a real spectral triple of KO-dimension

n mod 8 if and only if D is (A, J)-compatible. Indeed, one can therefore give the following definition,

generalising the example of the product of a spin manifold with a finite real spectral triple:

Definition 6.3.6. A concrete real almost-commutative spectral triple is a real spectral triple of the

form (C∞(X,A), L2(X, E), D, J), where X is a compact oriented Riemannian manifold, A → X is

an algebra bundle, (E , J) is a real Clifford A-bimodule, and D is a (A, J)-compatible Dirac-type

operator on E .

In fact, in light of this more general definition, we can take any concrete real commutative spectral

triple V := (C∞(X), L2(X,V), DV , JV) of KO-dimension n1 mod 8 and any finite real spectral triple

F of KO-dimension n2 mod 8 to form the concrete real almost-commutative spectral triple V ×F of

KO-dimension n1 +n2 mod 8. Applying this to Example 4.3.5, we immediately obtain the following

Proposition 6.3.7. Let X be a compact oriented Riemannian manifold. Then for any n ∈ Z8

there exists a concrete real almost-commutative spectral triple of KO-dimension n mod 8, namely,

(C∞(X), L2(X,∧T ∗CX), d+ d∗, (−1)|·|,K)×F for any finite real spectral triple F of KO-dimension

n mod 8, and, hence, a concrete real commutative spectral triple of KO-dimension n mod 8.

Given a real Clifford A-bimodule (E , J), one can again ask, just as in the commutative case,

if a Dirac-type operator on E compatible with its Clifford action and the bimodule structure is

necessarily (A, J)-compatible. Once more, the answer is yes, up to perturbation by a symmetric

bundle endomorphism:

Proposition 6.3.8. Let X be a compact oriented Riemannian manifold, let (E , J) be a real Clifford

module on X of KO-dimension n mod 8, and let D be a Dirac-type operator on E, satisfying

[[D, a], bo] = 0, a, b ∈ C∞(X,A).

Then there exists a unique symmetric bundle endomorphism M on E, such that D−M is an (A, J)-

compatible Dirac-type operator, and MJ = −ε′JM .

Now, let us derive the corresponding abstract definition of real almost-commutative spectral
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triple, so that we can get the appropriate refinement of the reconstruction theorem for almost-

commutative spectral triples.

Let (A,H,D, J) := (C∞(X,A), L2(X, E), D, J) be a concrete real almost-commutative spectral

triple. On the one hand, (A,H,D) is, in particular, an almost-commutative spectral triple with base

(viz, distinguished central unital ∗-subalgebra of A) B := C∞(X). On the other hand, by Lemma

4.3.2, A contains a canonical central unital ∗-subalgebra ÃJ , which, moreover, contains B precisely

because J is, in particular, an antilinear bundle endomorphism of E . It has already been observed

in specific examples (e.g., the noncommutative-geometric Standard Model [18, Lemma 3.2])that B

and ÃJ are, in fact, equal—as it turns out, this is a completely general phenomenon.

Proposition 6.3.9. Let (C∞(X,A), L2(X, E), D, J) be a concrete real almost-commutative spectral

triple. Then ˜C∞(X,A)J = C∞(X)1A.

This result is an immediate corollary of the following algebraic observation, applied pointwise:

Lemma 6.3.10. Let AF be a finite C∗-algebra over K = R or C. Then

{a ∈ AF | a⊗ 1 = 1⊗ a ∈ AF ⊗K AF } = K1AF .

Proof. By Wedderburn’s theorem for finite-dimensional C∗-algebras, write

AF = ⊕Nk=1Mk(Kk),

where Kk ∈ {R,C,H} if K = R, and Kk = C if K = C. By construction, then,

{a ∈ AF | a⊗ 1 = 1⊗ a ∈ AF ⊗K AF } ⊂ Z(AF ) ∼=
N⊕
k=1

K′k,

where K′k := C if Kk = C, and K′k := R otherwise, so that

Z(AF )⊗K Z(AF ) =

N⊕
k,l=1

K′k ⊗K K′l.

Now, let a ∈ Z(AF ), which we identify with (λk)Nk=1 ∈ ⊕Nk=1K′k. Then

a⊗ 1− 1⊗ a = (λk ⊗ 1− 1⊗ λl)Nk,l=1,

so that a⊗ 1 = 1⊗ a, if and only if λk ⊗ 1 = 1⊗ λk for all 1 ≤ k, l ≤ N . We have two cases. First,

suppose that K = C. It therefore follows that a ⊗ 1 = 1 ⊗ a, if and only if λk = λl for all k, l, if

and only if a ∈ C1AF . Now, suppose that K = R. Then, similarly, a ⊗ 1 = 1 ⊗ a, if and only if

λk = λl ∈ R for all k, l, if and only if a ∈ R1AF .
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Our observations motivate the following definition:

Definition 6.3.11. Let (A,H,D, J) be a real spectral triple. We call (A,H,D, J) a real almost-

commutative spectral triple if (A,H,D) is an almost-commutative spectral triple with base ÃJ .

We have just seen that every concrete real almost-commutative spectral triple is a real almost-

commutative spectral triple; the reconstruction theorem for almost-commutative spectral triples

readily implies the converse.

Theorem 6.3.12. Let (A,H,D, J) be a real almost-commutative spectral triple of KO-dimension

n mod 8 and metric dimension p. Then there exist a compact oriented Riemannian p-manifold X,

a bundle of algebras A → X, and a Clifford A-bimodule E → X, such that ÃJ ∼= C∞(X) and

(A,H,D, J) ∼= (C∞(X,A), L2(X, E), D, J),

where, viewing D and J as operators on E, (E , J) is a real Clifford A-bimodule of KO-dimension

n mod 8, and D is a (A, J)-compatible essentially self-adjoint Dirac-type operator on E.

Proof. First, by Theorem 6.2.6, there exist a compact oriented Riemannian p-manifold X, an algebra

bundle A → X, and a Clifford A-module E → X, such that ÃJ ∼= C∞(X) and (A,H,D) ∼=

(C∞(X,A), L2(X, E), D), where D, viewed as an operator on E , is an essentially self-adjoint Dirac-

type operator. Viewing J as an operator on L2(X, E), in light of Proposition 4.3.12, we therefore

have that (C∞(X), L2(X, E), D, J) is a real Dirac-type commutative spectral triple ofKO-dimension

n mod 8, and hence that (E , J) is a real Clifford module of KO-dimension n mod 8. Finally, the

conditions for a real spectral triple imply that (E , J) is a real Clifford A-bimodule, with A ⊗ Ao-

module structure given by

(a⊗ bo)ξ := aJb∗J∗ξ, a, b ∈ C∞(X,A), ξ ∈ C∞(X, E),

and that D is (A, J)-compatible, as required.

6.4 Twistings

We have already seen how to generalise the conventional definition of real almost-commutative

spectral triple into a form suited to a reconstruction theorem. For physical applications, however,

it is useful to consider a more conservative generalisation, where we take the product of a concrete

real commutative spectral triple not with a single finite real spectral triple, but with a family of such

spectral triples, equipped with suitable connection:

Definition 6.4.1. Let X be a compact oriented Riemannian manifold. A real family of KO-

dimension n mod 8 over X is a quintuple of the form (A,F ,∇F , DF , JF ), where:
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1. A → X is an algebra bundle;

2. F → X is an A⊗Ao-module endowed, if n is even, with a Z2-grading γF , commuting with all

sections of A⊗Ao;

3. ∇F is a self-adjoint connection on F , odd if n is even, such that the induced connection on

End(F) restricts to connections on A and on Ao;

4. DF is a symmetric bundle endomorphism on F , odd if n is even, satisfying

[[DF , a], bo] = 0, a, b ∈ C∞(X,A),

and anticommuting with γF if n is even;

5. JF is an antiunitary bundle endomorphism on F such that

(a) J2
F = ε IdF ,

(b) DFJF = ε′JFDF , ∇F ◦ JF = JF ◦ ∇F , and JFa∗J∗F = ao for all a ∈ C∞(X,A),

(c) γFJF = ε′′JFγF , if n is even,

where (ε, ε′, ε′′) ∈ {±1}3 depend on n mod 8 according to Table 2.2.1 (or, equivalently, accord-

ing to Table 2.2.2).

Remark 6.4.2. For each x ∈ X, (Ax,Fx, (DF )x, (JF )x) is a finite real spectral triple ofKO-dimension

n mod 8, and the real family can be viewed as a family (A,F , DF , JF ) of finite real spectral triples

over X together with Bismut superconnection DF +∇F .

If F = (AF , HF , DF , JF ) is a single finite real spectral triple of KO-dimension n mod 8, and X

is a compact oriented Riemannian manifold, then for A := X × AF , we can define a real family of

KO-dimension n mod 8 by

(A,F ,∇F , DF , JF ) := (X ×AF , X ×HF , d, IdX ×DF , IdX ×JF ).

More generally, let G be a compact Lie group acting on F , in the sense that there exists a unitary

representation U : G→ U(HF ) such that for all g ∈ G,

U(g)AFU(g)∗ ⊂ AF , [U(g), DF ] = 0, [U(g), JF ] = 0,

with each U(g) even if n is even, and let P → X be a principal G-bundle with connection ∇P . Then

we can define a real family of KO-dimension n mod 8 by

(A,F ,∇F , DF , JF ) := (P ×G AF ,P ×G HF ,∇P×GHF , IdP ×DF , IdP ×JF ),
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with Z2-grading, if n is even, given by γF := IdP ×γF for γF the Z2-grading of F .

In light of Definition 6.1.1 and Theorem 6.3.1, one therefore defines the twisting of a concrete

real commutative spectral triple by a real family as follows:

Definition 6.4.3. Let (C∞(X), L2(X,V), DV , JV) be a concrete real commutative spectral triple

of KO-dimension m mod 8 and metric dimension p, with Z2-grading γV if m is even, and let

(A,F ,∇F , DF , JF ) be a real family of KO-dimension n mod 8, with Z2-grading γF is n is even.

Then the twisting of (C∞(X), L2(X,V), DV , JV) by (A,F ,∇F , DF , JF ) is the concrete real almost-

commutative spectral triple

(A,F ,∇F , DF , JF )× (C∞(X), L2(X,V), DV , JV) := (C∞(X,A), L2(X, E), D, J),

of KO-dimension m+ n mod 8 and metric dimension p, where E , D and J are defined as follows:

1. If m and n are both even, then

E := V ⊗ F , D := DV ⊗∇F 1 + γV ⊗DF , J := (JV)ε′′(m) ⊗ JF ,

with Z2-grading γ := γV ⊗ γF .

2. If m is even and n is odd, then

E := V ⊗ F , D := DV ⊗∇F 1 + γV ⊗DF , J := (JV)ε′(m+n) ⊗ JF .

3. If m is odd and n is even, then

E := V ⊗ F , D := DV ⊗∇F γF + 1⊗DF , J := JV ⊗ (JF )ε′(m+n).

4. If m and n are both odd, then

E := V ⊗ F ⊗ C2, D := DV ⊗∇F 1⊗ σ1 + 1⊗DF ⊗ σ2, J := JV ⊗ JF ⊗MK,

with Z2-grading γ := 1⊗ 1⊗ σ3, where K is the complex conjugation on C2, and M := M+ is

given by Table 6.3.1.

In the expressions above, if T = 1 or γF , then DV ⊗∇F T is defined locally by

(DV ⊗∇F T )(η ⊗ ξ) := (DVη)⊗ ξ +
∑
i

(c(ei)η)⊗∇Fei(Tξ), η ∈ C∞(X,V), ξ ∈ C∞(X,F),

where {ei} is a local vielbein on TX.
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The essential point in checking that this definition makes sense is checking that one does, indeed,

get a concrete almost-commutative spectral triple.

Remark 6.4.4. Let (C∞(X), L2(X,V), DV , JV) be a concrete real commutative spectral triple and

let (A,F ,∇F , DF , JF ) be a real family; for simplicity, suppose that both are of even KO-dimension.

Then (C(X,F), DF ,∇F ) can be viewed as an unbounded (C(X,A), C(X))-bimodule in the sense

of Mesland, and the twisting

(A,F ,∇F , DF , JF )× (C∞(X), L2(X,V), DV , JV) =: (C∞(X,A), L2(X, E), D, J)

can be viewed as an unbounded Kasparov product, that is,

(L2(X, E), D) ∼= (C(X,F), DF ,∇F )× (L2(X,V), DV),

and, hence, (F ,∇F , DF ) defines a morphism

(C(X,F), DF ,∇F ) : (C∞(X,A), L2(X, E), D)→ (C∞(X), L2(X,V), DV)

in Mesland’s category of spectral triples.

Finally, let us record the consequences of this construction for the structure of inner fluctuations

of the metric:

Proposition 6.4.5. Let (C∞(X), L2(X,V), DV , JV) be a concrete real commutative spectral triple

of KO-dimension m mod 8 and let (AF ,∇F , DF , JF ) be a real family of KO-dimension n mod 8.

Let

(C∞(X,A), L2(X, E), D, J) := (A,F ,∇F , DF , JF )× (C∞(X), L2(X,V), DV , JV),

which is a concrete real almost-commutative spectral triple of KO-dimension m + n mod 8. Let

A ∈ C∞(X,End(E)) be an inner fluctuation of the metric on the twisting, i.e., symmetric and of

the form A =
∑
i ai[D, bi] for ai, bi ∈ C∞(X,A), and let

ωA :=
∑
i

(
ai ∧ (∇EndFbi)− (∇EndFboi ) ∧ aoi

)
∈ Ω1(X,A⊗Ao),

ΦA :=
∑
i

(ai[DF , bi]− [DF , b
o
i ]a

o
i ) ∈ C∞(X,End(F)).

Then (A,F ,∇F + ωA, DF + ΦA, JF ) is a real family of KO-dimension n mod 8, such that

(C∞(X,A), L2(X, E), D + A + ε′JAJ∗, J)

= (A,F ,∇F + ωA, DF + ΦA, JF )× (C∞(X), L2(X,V), DV , JV).
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Proof. For simplicity, let us work in the case where m and n are even; the other cases will follow

mutatis mutandis. Let A =
∑
i ai[D, bi] for ai, bi ∈ C∞(X,A), and suppose that A is self-adjoint,

so that ∑
i

ai[D, bi] = A = A∗ = −
∑
i

[D, b∗i ]a
∗
i .

Now, let us work on a coordinate patch U ⊂ X with local vielbein {ek}, so that

D = DV ⊗ 1 +
∑
k

c(ek)⊗∇Fek + χF ⊗DF .

On the one hand, then,

A =
∑
i

ai

[
DV ⊗ 1 +

∑
k

c(ek)⊗∇Fek + χF ⊗DF , bi

]

=
∑
i

(1⊗ ai)

(∑
k

c(ek)⊗∇EndF
ek

bi + χF ⊗ [DF , bi]

)

= c

(∑
i

ai ∧∇EndFbi

)
+ χF ⊗

(∑
i

ai[DF , bi]

)
,

whilst on the other hand,

ε′JAJ∗ = ε′J

(
−
∑
i

[D, b∗i ]a
∗
i

)
J∗

= −
∑
i

[D,Jb∗i J
∗]Ja∗i J

∗

= −
∑
i

[D, boi ]a
o
i

= −
∑
i

[
DV ⊗ 1 +

∑
k

c(ek)⊗∇EndF
ek

+ χF ⊗DF , boi

]
aoi

= −c

(∑
i

∇EndFboi ∧ aoi

)
+ χF ⊗

(∑
i

[DF , b
o
i ]a

o
i

)
.

Hence

A + ε′JAJ∗ =c

(∑
i

ai ∧∇EndFbi

)
+ χF ⊗

(∑
i

ai[DF , bi]

)

− c

(∑
i

∇EndFboi ∧ aoi

)
+ χF ⊗

(∑
i

[DF , b
o
i ]a

o
i

)

=c

(∑
i

(
ai ∧∇EndFbi −∇EndFboi ∧ aoi

))
+ χF ⊗

(∑
i

(ai[DF , bi]− [DF , b
o
i ]a

o
i ])

)
=c(ωA) + χF ⊗ ΦA,
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as required.

Thus, for a real almost-commutative spectral triple formed by the twisting of a concrete real

commutative spectral triple by a real family, inner fluctuations of the metric are are effected at the

level of the real family, so that the concrete real commutative spectral triple may be viewed strictly

as background data. For a general, KK-theoretic discussion of this kind of phenomenon, see [7].

6.5 Applications to the spectral action

Let us illustrate the potential of our manifestly global-analytic approach to almost-commutative

spectral triples with an application to noncommutative-geometric mathematical physics, and in par-

ticular, to certain computations by Teh of the spectral action on quotients of S3 by finite subgroups

of S3 ∼= SU(2). This work was the author’s contribution to [11].

In what follows, let L denote the Laplace transform, and let S(0,∞) = {φ ∈ S(R) | φ(x) = 0, x ≤

0}. Let us begin by recalling the definition of spectral action, together with its basic features.

Proposition 6.5.1. Let (A,H,D) be a spectral triple of metric dimension p, and let f : R→ C be

even. If |f(x)| = O(|x|−α) as x →∞, for some α > p, then for any Λ > 0, f(D/Λ) = f(|D|/Λ) is

trace-class. If, in addition, f(x) = L[φ](x2) for some measurable φ : R+ → C, then

Tr (f(D/Λ)) =

ˆ ∞
0

Tr
(
e−sD

2/Λ2
)
φ(s)ds. (6.5.1)

The quantity Tr f (D/Λ)) is then called the spectral action on (A,H,D) with cutoff function f

and energy scale Λ > 0.

Proof. Fix Λ > 0. Let µk denote the k-th eigenvalue of D2 in increasing order, counted with

multiplicity; since (A,H,D) has metric dimension p, (µk + 1)−p/2 = O(k−1) as k →∞, and, hence,

for k > dim kerD, µ−1
k = O(k−2/p) as k →∞. By our hypothesis on f , then, for k > dim kerD,

|f(µ
1/2
k /Λ)| = O(k−α/p), k →∞;

since 2α/p > 1, this implies that
∑∞
k=1 f(µ

1/2
k /Λ) is absolutely convergent, as required.

Now, suppose, in addition, that f(x) = L[φ](x2) for some measurable φ : [0,∞)→ C. Then

Tr (f(D/Λ)) =

∞∑
k=1

L[φ](µk/Λ
2)

=

∞∑
k=1

ˆ ∞
0

e−sµk/Λ
2

φ(s)ds

=

ˆ ∞
0

[ ∞∑
k=1

e−sµk/Λ
2

]
φ(s)ds
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=

ˆ ∞
0

Tr
(
e−sD

2/Λ2
)
φ(s)ds,

as was claimed.

The above result raises the question of when a function φ : R+ → C defines a function f(x) =

L[φ](x2), such that f(D/Λ) is trace-class; a sufficient condition is given by the following lemma.

Lemma 6.5.2. If φ ∈ S(0,∞), then L[φ](s) = O(s−k) as s→ +∞, for all k ∈ N.

Proof. Since φ ∈ S(0,∞), φ(k) is a bounded function with φ(k)(0) = 0 for all k ∈ N, and hence

snL[φ](s) = L[φ(n)](s) too is bounded, as required.

Now, suppose that (C∞(X,A), L2(X, E), D) is a concrete almost-commutative spectral triple.

Since we can write

Tr(e−tD
2

) =

ˆ
X

tr (K(t, x, x)) d vol(x), t > 0,

for K(t, x, y) the heat kernel of D2, it follows that for f of the form f(x) = L[φ](x2) for φ ∈ S(0,∞),

Tr (f(D/Λ)) =

ˆ ∞
0

[ˆ
M

tr
(
K(s/Λ2, x, x)

)
d vol(x)

]
φ(s)ds, Λ > 0. (6.5.2)

Now, conventionally, the spectral action on almost-commutative spectral triples has been com-

puted only asymptotically, using the Seeley–De Witt asymptotic expansion of the heat trace of a gen-

eralised Laplacian. However, Chamseddine–Connes were able to make the following non-asymptotic

computation by means of an explicit Dirac spectrum and the Poisson summation formula:

Theorem 6.5.3 (Chameseddine–Connes [17, §2.2]). Let S3 denote the round sphere with trivial

spin structure, and let /D be the corresponding Dirac operator. Let f : R → C be of the form

f(x) = L[φ](x2) for φ ∈ S(0,∞). Then

Tr f( /D/Λ) = Λ3f̂ (2)(0)− 1

4
Λf̂(0) +O(Λ−∞),

where f̂ (2) denotes the Fourier transform of u 7→ u2f(u).

Teh’s aim, then, was to apply the methods of Chameseddine–Connes to the spectral action on

quotients of S3 by finite subgroups of SU(2). He carried this out, case by case, over the course

of several papers [50, 51, 65], using explicit Dirac spectral and the Poisson summation formula,

culminating in the following result:

Theorem 6.5.4 (Teh [65]). Let S3 denote the round sphere with trivial spin structure, let Γ <

SU(2) ∼= S3 be finite, therefore acting on S3 by orientation-preserving isometries, and let /DΓ denote
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the Dirac operator of S3/Γ acting on the spinor bundle S → S3/Γ. Let f : R → C be of the form

f(x) = L[φ](x2) for φ ∈ S(0,∞). Then

Tr f( /D
Γ
/Λ) =

1

#Γ

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞),

where f̂ (2) denotes the Fourier transform of u 7→ u2f(u).

More recently, Teh generalised these computations to more general almost-commutative spectral

triples over a quotient S3/Γ, allowing for twisting (in the sense of Lemma 6.1.9) by a unitary

representation of Γ. Again, use was made of explicit Dirac spectra, which had been computed for

precisely the relevant twisted Dirac operators on finite quotients of S3 by Cisneros-Molina [19].

Theorem 6.5.5 (Teh [11, Thm. 1.1]). Let S3 denote the round sphere with trivial spin structure,

let Γ < SU(2) ∼= S3 be finite, therefore acting on S3 by orientation-preserving isometries, and let

S → S3/Γ be the resulting spinor bundle of S3/Γ. Let α : Γ → U(N) be a unitary representation,

let Vα = S3 ×α CN be the resulting flat bundle, and let /DΓ
α denote the twisted Dirac operator on the

twisted spinor bundle S ⊗ Vα → S3/Γ corresponding to the canonical flat connection on V. Then

Tr f( /D
Γ
α/Λ) =

N

#Γ

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞),

where f̂ (2) denotes the Fourier transform of u2f(u).

Let us now treat these considerations in a fully general, manifestly global-analytic light. Let

X̃ → X be a finite normal Riemannian covering with X̃ and X compact, connected and oriented,

and let Γ be the deck group of the covering. Let Ẽ → X̃ be a Γ-equivariant Clifford module, and let

D̃ be a Γ-invariant symmetric Dirac-type operator on Ẽ . We can therefore form the quotient Clifford

module bundle E := Ẽ/Γ → X̃/Γ =: X, with D̃ descending to a symmetric Dirac-type operator D

on E ; under the identification L2(X, E) ∼= L2(X̃, Ẽ)Γ, we can identify D with the restriction of D̃ to

C∞(X̃, Ẽ)Γ, where the unitary action U : Γ→ U(L2(X̃, Ẽ)) is given by U(γ)ξ(x̃) := ξ(x̃γ−1)γ.

Our first goal is to prove the following result, relating the spectral action of D to the spectral

action of D̃ in the high energy limit; in particular, it immediately implies Theorem 6.5.4 as a corollary

of Theorem 6.5.3.

Theorem 6.5.6. Let f : R→ C be of the form f(x) = L[φ](x2) for φ ∈ S(0,∞). Then for Λ > 0,

Tr (f(D/Λ)) =
1

#Γ
Tr
(
f(D̃/Λ)

)
+O(Λ−∞), as Λ→ +∞. (6.5.3)

Remark 6.5.7. Theorem 6.5.6 continues to hold even when inner fluctuations of the metric are

introduced, since for A ∈ C∞(X,End(V)) symmetric, D + A on E lifts to D̃ + Ã on Ẽ , where Ã is

the lift of A to Ẽ .
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To prove this result, we shall need a couple of lemmas. First, we have the following well-known

general fact:

Lemma 6.5.8. Let Γ be a finite group acting unitarily on a Hilbert space H, and let A be a Γ-

invariant self-adjoint trace-class operator on H. Let HΓ denote the subspace of H consisting of

Γ-invariant vectors. Then the restriction A | HΓ of A to HΓ is also trace-class, and

Tr
(
A | HΓ

)
=

1

#G

∑
g∈G

Tr (gA) .

Proof. This immediately follows from the observation that 1
#G

∑
g∈G g is the orthogonal projection

onto HG.

Now, we can compute the heat kernel trace of D using the heat kernel for D̃:

Lemma 6.5.9. For t > 0,

Tr
(
e−tD

2
)

=
1

#Γ
Tr
(
e−tD̃

2
)

+
1

#Γ

∑
γ∈Γ\{e}

ˆ
X̃

tr
(
ρ(γ)(x̃γ−1)K̃(t, x̃γ−1, x̃)

)
d vol(x̃), (6.5.4)

where K̃(t, x̃, ỹ) denotes the heat kernel of D̃2, and ρ denotes the right action of Γ on the total space

of Ẽ.

Proof. Let γ ∈ Γ. Then for any ξ ∈ C∞(X̃, Ẽ),

(
U(γ)e−tD̃

2
)
ξ(x̃) = U(γ)

(ˆ
X̃

K̃(t, x̃, ỹ)ξ(ỹ)d vol(ỹ)

)
= ρ(γ)(x̃γ−1)

(ˆ
X̃

(x̃γ−1)K̃(t, x̃γ−1, ỹ)ξ(ỹ)d vol(ỹ)

)
=

ˆ
X̃

ρ(γ)(x̃γ−1)K̃(t, x̃γ−1, ỹ)ξ(ỹ)d vol(ỹ)

so that the operator U(γ)e−tD̃
2

has the integral kernel

(t, x̃, ỹ) 7→ ρ(γ)(x̃γ−1)K̃(t, x̃γ−1, ỹ).

Since L2(X, E) ∼= L2(X̃, Ẽ)Γ, we can therefore apply Lemma 6.5.8 to obtain the desired result.

Finally, we can proceed with our proof:

Proof of Theorem 6.5.6. By our earlier observation and Lemma 6.5.9, it suffices to show that for

γ ∈ G \ {e},

ˆ ∞
0

[ˆ
X̃

tr
(
ρ(γ)(x̃γ−1)K̃(s/Λ2, x̃γ−1, x̃)

)
d vol(x̃)

]
φ(s)ds = O(Λ−∞),
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as Λ→∞.

Now, since X̃ is compact, and since the finite group Γ acts freely and properly,

inf
(x̃,γ)∈X̃×Γ

d(x̃γ−1, x̃) = min
(x̃,γ)∈X̃×Γ

d(x̃γ−1, x̃) > 0.

Hence, by [45, Prop. 3.24], there exist constants C > 0, c > 0 such that

sup
x̃∈X̃
‖K̃(t, x̃γ−1, x̃)‖2 ≤ Ce−c/t, t > 0,

for ‖ ·‖2 the fibre-wise Hilbert-Schmidt norm; this implies, in turn, that for every n ∈ N, there exists

a constant Cn > 0, such that

sup
x̃∈X̃
‖K̃(t, x̃γ−1, x̃)‖2 ≤ Cntn, t > 0.

Hence, for each n ∈ N,∣∣∣∣ˆ ∞
0

[ˆ
X̃

tr
(
ρ(γ)(x̃γ−1)K̃(s/Λ2, x̃γ−1, x̃)

)
d vol(x̃)

]
φ(s)ds

∣∣∣∣
≤

ˆ ∞
0

vol(X)

(
sup
x̃∈X̃
‖ρ(γ)(x̃)‖2

)(
sup
x̃∈X̃
‖K̃(s/Λ2, x̃γ−1, x̃)‖2

)
|φ(s)|ds

≤ vol(X) ·

(
sup
x̃∈X̃
‖ρ(γ)(x̃)‖2

)
· Cn

ˆ ∞
0

(s/Λ2)n|φ(s)|ds

=

(
vol(X) ·

(
sup
x̃∈X̃
‖ρ(γ)(x̃)‖2

)
· Cn ·

ˆ ∞
0

sn|φ(s)|ds

)
Λ−2n,

yielding the desired result.

Now, let α : Γ → GLN (C) be a representation of Γ; by endowing CN with a Γ-invariant inner

product, we take α : Γ → U(N). Since X̃ → X is a principal Γ-bundle, we form the associated

Hermitian vector bundle F := X̃ ×α CX → M ; since Γ is finite, we endow F with the trivial flat

connection d. We can therefore form the Clifford module E ⊗ F → X, which admits the symmetric

Dirac-type operator Dα obtained from D by twisting by d, that is,

Dα = D ⊗ 1 + c(1⊗ d),

where c denotes the Clifford action on V ⊗ F .

We now obtain the following generalisation of Theorem 6.5.6, which explains the factor of N/#Γ

appearing in Theorem 6.5.5 above:
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Theorem 6.5.10. Let f : R→ C be of the form f(x) = L[φ](x2) for φ ∈ S(0,∞). Then for Λ > 0,

Tr (f(Dα/Λ)) =
N

#Γ
Tr
(
f(D̃/Λ)

)
+O(Λ−∞), as Λ→ +∞. (6.5.5)

Remark 6.5.11. This result is again compatible with inner fluctuations of the metric, insofar as if

A ∈ C∞(M,End(E)) is symmetric, then Dα + A⊗ 1 on E ⊗ F is induced from D̃ + Ã on Ẽ , where

Ã is A viewed as a Γ-invariant element of C∞(X̃,End(Ẽ)).

Proof of Theorem 6.5.10. On the one hand, consider the trivial bundle F̃ := X̃ × CN over X̃,

together with the trivial flat connection d. Then for the action (x̃, v)γ := (x̃γ, α(γ−1)v), F̃ is a

Γ-equivariant Hermitian vector bundle, and d is a Γ-equivariant Hermitian connection on F̃ . Then,

by taking the tensor product of Γ-actions, we can endow Ẽ ⊗ F̃ with the structure of a Γ-equivariant

Clifford module, admitting the Γ-invariant symmetric Dirac-type operator D̃α = D̃ ⊗ 1 + c(1 ⊗ d).

As a vector bundle, however, we may simply identify Ẽ ⊗F̃ with F̃⊕N , in which case we may identify

D̃α with D̃ ⊗ 1N .

On the other hand, by construction, the bundle F defined above is the quotient of F̃ by the

action of Γ. Hence, under the action of Γ, the quotient of Ṽ ⊗ F̃ is the Clifford module E ⊗F , with

D̃α descending to the operator D ⊗ 1 + c(1⊗ d) = Dα.

Finally, by Theorem 6.5.6 and our observations above,

Tr (f(Dα/Λ)) =
1

#Γ
Tr
(
f(D̃α/Λ)

)
+O(Λ−∞)

=
1

#Γ
Tr
(
f(D̃/Λ)⊗ 1N

)
+O(Λ−∞)

=
N

#Γ
Tr
(
f(D̃/Λ)

)
+O(Λ−∞), as Λ→ +∞,

as was claimed.

One can apply these results to give a quick second proof of Theorem 6.5.5.

Second proof of Theorem 6.5.5. Recall that Γ ⊂ SU(2) is a finite group acting by isometries on S3,

identified with SU(2) endowed with the round metric, and that α : Γ → U(N) is a representation.

Since S3 is parallelizable and Γ acts by isometries, the spinor bundle C2 → SS3 → S3 and the Dirac

operator /DS3 are trivially Γ-equivariant. Then, by construction, the Dirac-type operator DΓ
α on

SS3⊗Vα is precisely the induced operator Dα corresponding to D̃ = /DS3 , so that by Theorem 6.5.10,

Tr (f(Dα/Λ)) =
N

#Γ
Tr
(
f( /DS3/Λ)

)
+O(Λ−∞), as Λ→ +∞.
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However, by Theorem 6.5.3, one has that

Tr
(
f( /DS3/Λ)

)
= Λ3f̂ (2)(0)− 1

4
Λf̂(0) +O(Λ−∞),

where f̂ (2) denotes the Fourier transform of u2f(u). Hence,

Tr (f(Dα/Λ)) =
N

#Γ

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞),

as required.
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Chapter 7

Toric noncommutative manifolds

I don’t care how God-damn smart

these guys are: I’m bored.

It’s been raining like hell all day long

and there’s nothing to do.

— R. Brautigan, At the California Institute of

Technology

Finally, we describe progress towards a reconstruction theorem for the other noncommutative

class of spectral triples closest to the commutative case, toric noncommutative manifolds. These

are spectral triples formed from torus-equivariant commutative spectral triples via a deformation

quantisation (in the sense of Rieffel [60]) of the algebra along the torus action, that is, by a Connes–

Landi deformation or isospectral deformation.

Our account is based on Yamashita’s noncommutative generalisation [69] of Connes–Landi’s

original construction [29], though we generalise further to allow TN -actions for N ≥ 2; another,

equivalent approach to toric noncommutative manifolds is outlined in the preprint by Brain–Landi–

Van Suijlekom [6].

7.1 Strict deformation quantisation

Let us begin with the basic construction of the deformed product on suitable bounded operators on

a Hilbert space with a strongly continuous unitary action of TN .

In what follows, let H be a Hilbert space together with a strongly continuous unitary action

U· : TN → B(H) of TN on H. Then for each r ∈ ZN ,

Hr :=
{
ξ ∈ H | ∀t ∈ TN , Utξ = e2πir·tξ

}
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is a closed subspace of H, and

H =
⊕
r∈ZN

Hr;

for each r ∈ ZN , let Pr then be the orthogonal projection onto Hr. Moreover, for each r ∈ ZN ,

B(H)r :=
{
T ∈ B(H) | ∀t ∈ TN , UtTU∗t = e2πir·t}

is a closed subspace of H, and for all r, s ∈ ZN ,

(B(H)r)
∗ ⊂ B(H)−r, B(H)rB(H)s ⊂ B(H)r+s;

one can also readily check that for r, s ∈ ZN , if T ∈ B(H)r then THs ⊂ Hr+s, so that TPs =

Pr+sTPs. Finally, note that

B∞(H) := {T ∈ B(H) | t 7→ UtTU
∗
t is smooth in the weak topology on B(H) }

is a unital ∗-subalgebra of B(H); for each 1 ≤ k ≤ N , let ∂k denote the derivation ∂k : B∞(H) →

B∞(H) defined for T ∈ B∞(H) by

∀ξ, η ∈ H, 〈∂kTξ, η〉 := lim
s→0

〈
UsekTU

∗
sek
ξ, η
〉
− 〈ξ, η〉

s
.

Now, in what follows, let θ ∈ so(N,R) be a fixed skew-symmetic real N × N matrix; let χθ :

ZN × ZN → U(1) be the bicharacter defined as follows:

∀r, s ∈ ZN , χ(r, s) := eπir·θs.

Let us first define a key technical tool for the construction of the deformed product.

Lemma 7.1.1. Let r ∈ ZN . Then V θr :=
∑
s∈ZN χθ(r, s)Ps is strongly convergent in B(H) with∥∥V θr ∥∥ = 1 and UtV θr U∗t = V θr for all t ∈ TN , and is unitary with (V θr )∗ = V −θr = V θ−r. Moreover,

for r, s ∈ ZN , V θr V θs = V θr+s, whilst for T ∈ B(H)s, V θr T (V θr )∗ = χθ(r, s)T .

Proof. Let ξ ∈ H. Since H = ⊕s∈ZNHs, we have that

∑
s∈ZN

‖χθ(r, s)Psξ‖2 =
∑
s∈ZN

‖Psξ‖2 = ‖ξ‖2 ,

so that, since {χθ(r, s)Psξ}s∈ZN is orthogonal, V θr ξ :=
∑
s∈ZN χθ(r, s)Psξ converges in H, and,

hence, V θr =
∑
s∈ZN χθ(r, s)Ps strongly converges in B(H) with

∥∥V θr ∥∥ = 1.
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Next, for ξ, η ∈ H,

〈
V θr ξ, η

〉
=
∑
s∈ZN

〈χθ(r, s)Psξ, η〉 =
∑
s∈Zn

〈ξ, χθ(s, r)Psη〉 ,

so that (V θr )∗ = V −θr V θ−r, since χθ(s, r) = χθ(−r, s) = χ−θ(r, s). But now, for any ξ ∈ H,

V −θr V θr ξ =
∑
s∈ZN

V −θr (χθ(r, s)Psξ) =
∑
s∈ZN

χ−θ(r, s)χθ(r, s)Psξ =
∑
s∈ZN

Psξ = ξ,

so that V −θr V θr = 1; replacing θ by −θ, the same calculation yields V θr V −θr , so that, indeed, (V θr )∗ =

V −θr = (V θr )−1, as was claimed.

Next, let t ∈ TN . Then for any ξ ∈ H,

UtV
θ
r U
∗
t ξ = UtVr

∑
s∈ZN

e−2πit·sPsξ

= Ut
∑
s∈ZN

χθ(r, s)e
−2πit·sPsξ

=
∑
s∈ZN

e2πit·sχθ(r, s)e
−2πit·sPsξ

= V θr ξ,

as required.

Now, let r, s ∈ ZN . Then for any ξ ∈ H,

V θr V
θ
s ξ =

∑
t∈ZN

V θr χθ(s, t)Ptξ =
∑
t∈ZN

χθ(r, t)χθ(s, t)Ptξ =
∑
t∈ZN

χθ(r + s, t)Ptξ = V θr+sξ,

as was claimed.

Finally, let r, s ∈ ZN , and let T ∈ B(H)s. Then for all ξ ∈ H,

V θr TV
−θ
r ξ =

∑
t∈ZN

V θr χ−θ(r, t)TPtξ

=
∑
t∈ZN

V θr χθ(−r, t)Pt+sTPtξ

=
∑
s∈ZN

χθ(r, t+ s)χθ(r,−s)χθ(r, r − s)Pr−sTPsξ

= χθ(r, s)
∑
s∈ZN

Pt+sTPt

= χθ(r, s)Tξ,

so that V θr T (V θr )∗ = χθ(r, s)T , as was claimed.
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Now, let us define the deformed product (and accompanying deformed action) on homogeneous

elements of B(H).

Lemma 7.1.2. For T ∈ B(H)r, let

λθ(T ) := TV θr , ρθ(T ) := TV −θr = λθ(T ).

Then the assignments T 7→ λθ(T ) and T 7→ ρθ(T ) define linear contractions λθ, ρθ : B(H)r →

B(H)r, such that for any T ∈ B(H)r, λθ(T )∗ = λθ(T
∗) ∈ B(H)−r and ρθ(T )∗ = ρθ(T

∗) ∈ B(H)−r.

Moreover, if T ∈ B(H)r and T ′ ∈ B(H)s, then

λθ(T )λθ(T
′) = λθ(χθ(r, s)TT

′).

Proof. That λθ and ρθ are linear contractions on B(H)r follows immediately from the fact that∥∥V θr ∥∥ =
∥∥V −θr

∥∥ = 1, and that λ−1
θ = λ−θ and ρ−1

θ = ρ−θ follows immediately from the fact that

(V θr )−1 = V −θr .

Now, let T ∈ B(H)r, and recall that T ∗ ∈ B(H)−r. Then by Lemma 7.1.1, V θr T (V θr )∗ =

χθ(r, r)T = T , and hence

λθ(T )∗ = (TV θr )∗ = (V θr T )∗ = T ∗(V θr )∗ = T ∗V θ−r = λθ(T
∗);

replacing θ with −θ then yields ρθ(T )∗ = ρθ(T
∗).

Finally, let T ∈ B(H)r and T ′ ∈ B(H)s. Then by Lemma 7.1.1,

λθ(T )λθ(T
′) = TV θr T

′V θs = TV θr T
′(V θr )∗V θr V

θ
s = χθ(r, s)TT

′V θr+s = λθ(χθ(r, s)TT
′),

as was claimed.

In order to extend our deformed product to more general bounded operators on B(H), we must

first show how to canonically decompose a bounded operator into homogeneous components.

Lemma 7.1.3. Let r ∈ ZN . If T ∈ B(H), then

Tr :=
∑
s∈ZN

Pr+sTPs

strongly converges in B(H) to an element of B(H)r, and the assignment T 7→ Tr defines a linear

contraction B(H)→ B(H)r, such that (Tr)
∗ = (T ∗)−r for all T ∈ B(H). Moreover, if T ∈ B(H)r′ ,

then Tr = δrr′T .
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Proof. First, let T ∈ B(H). Let ξ ∈ H. Then

∑
s∈ZN

‖Pr+sTPsξ‖2 ≤
∑
s∈ZN

‖TPsξ‖2 ≤ ‖T‖2
∑
s∈ZN

‖Psξ‖2 = ‖T‖2 ‖ξ‖2 ,

so that since {Pr+sTPsξ}s∈ZN is orthogonal, Trξ :=
∑
s∈ZN Pr+sTPsξ converges in H, and, hence,

Tr :=
∑
s∈ZN Pr+sTPs converges strongly in B(H) with ‖Tr‖ ≤ ‖T‖. Moreover, if t ∈ TN , then for

any ξ ∈ H,

UtTrU
∗
t ξ = Ut

∑
s∈ZN

Pr+sTPsU
∗
t ξ

=
∑
s∈ZN

(UtPr+s)T (U−tPs)ξ

=
∑
s∈ZN

e2πit·(r+s)e2πi(−t)·sPr+sTPsξ

= e2πir·t
∑
s∈ZN

Pr+sTPsξ

= e2πir·tTrξ,

so that Tr ∈ B(H)r. Once can readily check that T 7→ Tr is linear in T , so that T 7→ Tr does indeed

define an linear contraction B(H)→ B(H)r.

Now, for any ξ, η ∈ H,

〈T ∗r ξ, η〉 = 〈ξ, Trη〉

=
∑
s∈ZN

〈ξ, Pr+sTPsη〉

=
∑
s∈ZN

〈PsT ∗Pr+sξ, η〉

=
∑
s′∈ZN

〈P−r+s′T ∗Ps′ξ, η〉

= 〈(T ∗)−rξ, η〉 ,

so that (Tr)
∗ = (T ∗)−r.

Finally, suppose that T ∈ B(H)r′ . Then

Tr =
∑
s∈ZN

Pr+tTPt =
∑
s∈ZN

Pr+sPr′+sTPs =
∑
s∈ZN

δrr′Pr′+tTPt = δrr′T,

as was claimed.

Let us now characterise those bounded operators on B(H) that admit a well-behaved decompo-
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sition into homogeneous components. We first shall need the following definition:

Definition 7.1.4. We define a rapidly decreasing sequence in B∞(H) to be a sequence {Tσ}σ∈ZN
in B∞(H) with Tσ ∈ B(H)σ for each σ ∈ ZN , such that for all k ∈ N,

sup
σ∈ZN

(1 + σ · σ)k/2 ‖Tσ‖ <∞.

Now we can characterise the domain of our deformed product:

Lemma 7.1.5. If T ∈ B∞(H), then {Tr}r∈ZN is rapidly decreasing. Conversely, if {Tr}r∈ZN ⊂

B∞(H) is rapidly decreasing, then
∑
σ∈ZN Tσ converges in norm to an element T ∈ B∞(H). In

particular, then, if T ∈ B∞(H), then T =
∑
σ∈ZN Tσ and ∂mT =

∑
σ∈ZN 2πiσkTσ for each 1 ≤ m ≤

N , with convergence in norm.

To prove this, we shall need the following ancillary lemma:

Lemma 7.1.6 ([69, Proof of Lemma 1]). Let T ∈ B(H), and suppose that

∂kT := w-lims→0
1

s

(
UsekTU

∗
sek
− T

)
exists. Then for any r ∈ ZN ,

(∂kT )r = 2πirkTr, 1 ≤ k ≤ N.

Proof. First, if ξ ∈ Hs, η ∈ Ht, then

〈ξ, ∂kTη〉 = lim
h→0

1

h

(〈
ξ, UhekTU

∗
hek

η
〉
− 〈ξ, Tη〉

)
= lim
h→0

1

h
(e2πihek·(s−t) − 1) 〈ξ, Tη〉

= 2πi(s− t)k 〈ξ, Tη〉 ,

and, hence,

〈ξ, (∂kT )rη〉 =
∑
σ∈ZN

〈ξ, Pr+σ∂kTPση〉

=
∑
σ∈ZN

2πi(s− t)k 〈Pr+σξ, TPση〉

=
∑
σ∈ZN

δr+σ,sδσ,t2πi(s− t)k 〈ξ, Tη〉

= δs,r+t2πirk 〈ξ, Tη〉

= 2πirk 〈ξ, Trη〉 .
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Since the algebraic direct sum of the Hσ is dense in H = ⊕σ∈ZNHσ, it therefore follows that

(∂kT )r = 2πirkTr, as was claimed.

Proof of Lemma 7.1.5. First, let T ∈ B∞(H). Then by Lemma 7.1.6, for any r ∈ ZN , (∆T )r =

−4π2r · rTr, and, hence,

(1 + r · r)kTr =
((

1− 1
4π2 ∆

)k
T
)
r
.

Thus, for any k ∈ N ∪ {0},

(1 + r · r)k/2 ‖Tr‖ ≤ (1 + r · r)k ‖Tr‖ =
∥∥∥((1− 1

4π2 ∆
)k
T
)
r

∥∥∥ ≤ ∥∥∥(1− 1
4π2 ∆

)k
T
∥∥∥ ,

so that {Tr} is indeed rapidly decreasing.

Now, let {Tr}r∈ZN ⊂ B∞(H) be rapidly decreasing. In particular, then,

∑
r∈ZN

‖Tr‖ ≤
∑
r∈ZN

(1 + r · r)−(N+1)/2 sup
σ∈ZN

(1 + σ · σ)−(N+1)/2 ‖Tσ‖ <∞,

so that
∑
r∈ZN Tr converges in norm to some T ∈ B(H). Moreover, for each m ∈ N and each

{k1, . . . , km} ∈ {1, . . . , N}m,

∑
r∈ZN

‖(2πir)k1 · · · (2πir)kmTr‖ ≤
∑
r∈ZN

(2π)m(1 + σ · σ)m/2 ‖Tr‖

≤
∑
r∈ZN

(2π)m(1 + r · r)−(N+1)/2 sup
σ∈ZN

(1 + σ · σ)(N+m+1)/2 ‖Tσ‖

<∞,

so that

T k1,...,km :=
∑
r∈ZN

(2πir)k1 · · · (2πir)kmTr

converges in norm to an element of B(H); we shall prove by induction on m that T k1,...,km =

∂k1 · · · ∂kmT . Let {k0, . . . , km} ∈ {1, · · · , N}m+1, and suppose by induction that T k1,...,km =

∂k1 · · · ∂kmT . Then for any ξ ∈ Hs, η ∈ Ht, by the proof of Lemma 7.1.6, on the one hand,

lim
ε→0

1

ε

(〈
Uεek0∂k1 · · · ∂lmTU

∗
εek0

ξ, η
〉
− 〈∂k1 · · · ∂kmTξ, η〉

)
= −2πi(s− t)k0 〈∂k1 · · · ∂kmξ, η〉 ,

whilst on the other,

〈
T k0,...,kmξ, η

〉
=
∑
r∈ZN

(−2πir)k0 · · · (−2πir)km 〈Trξ, η〉

=
∑
r∈ZN

(−2πir)k0 · · · (−2πir)km 〈Pr+sTrPsξ, η〉
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= −2πi(s− t)k0 〈(∂k1 · · · ∂kmT )s−tξ, η〉 ;

since

〈
T k0,...,kmξ, η

〉
=
∑
r∈ZN

〈
(T k0,...,km)rξ, η

〉
=
∑
r∈ZN

〈
Pr+sT

k0,...,kmξ, η
〉

=
〈
(T k0,...,km)s−tξ, η

〉
,

it therefore follows that

lim
ε→0

1

ε

(〈
Uεek0∂k1 · · · ∂lmTU

∗
εek0

ξ, η
〉
− 〈∂k1 · · · ∂kmTξ, η〉

)
=
〈
T k0,...,kmξ, η

〉
.

Since the algebraic direct sum of the Hσ is dense in H, this implies that

w-limε→0
1

ε

(
Uεek0∂k1 · · · ∂kmTU

∗
εek0
− ∂k1 · · · ∂kmT

)
= T k0,...,km ,

as required.

Finally, let T ∈ B∞(H); all that remains to be shown is that T =
∑
r∈ZN Tr in B(H). Since {Tr}

is rapidly decreasing, we certainly know that
∑
r∈ZN Tr converges in norm to some T ′ ∈ B∞(H).

But then, if ξ ∈ Hs, η ∈ Ht for s, t ∈ ZN , then

〈T ′ξ, η〉 =
∑
r∈ZN

〈Trξ, η〉

=
∑
r∈ZN

∑
σ∈ZN

〈Pr+σTPσξ, η〉

=
∑
r∈ZN

∑
σ∈ZN

δσ,sδr+σ,t 〈Tξ, η〉

= 〈Tξ, η〉 ;

since the algebraic direct sum of the Hσ is dense in H, it follows that T = T ′, as was claimed.

We now construct the deformed action of B∞(H) on H that will induce the deformed product

on B∞(H).

Lemma 7.1.7 ([69, Lemma 1]). If T ∈ B∞(H), then

λθ(T ) :=
∑
r∈ZN

λθ(Tr), ρθ(T ) :=
∑
r∈ZN

ρθ(Tr)

converge in the operator norm in B(H), and the assignments T 7→ λθ(T ), T 7→ ρθ(T ) define invert-

ible TN -equivariant linear contractions λθ, ρθ : B∞(H) → B∞(H), such that for any T ∈ B∞(H),

λθ(T )∗ = λθ(T
∗) and ρθ(T )∗ = ρθ(T

∗), with inverses λ−1
θ = λ−θ and ρ−1

θ = ρ−θ. Moreover, for any
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S, T ∈ B∞(H) with [S, T ] = 0, [λθ(S), ρθ(T )] = 0.

Proof. By Lemma 7.1.5, T =
∑
r∈ZN Tr is absolutely convergent in B(H), so that

∑
r∈ZN

‖λθ(Tr)‖ ≤
∑
r∈ZN

‖Tr‖ <∞,

and, hence, λθ(T ) :=
∑
r∈ZN λθ(Tr) converges absolutely in B(H); by replacing θ with −θ, we get

the same claim for ρθ(T ). It then follows that the properties of λθ : B∞(H) → B(H) (and, hence,

also of ρθ : B∞(H)→ B(H)) follow from Lemma 7.1.3.

Next, since all the Pr and V θs commute with the action of TN on H, it follows that if T ∈

B∞(H), then for all t ∈ TN , Utλθ(T )U∗t = λθ(UtTU
∗
t ), so that λθ(B∞(H)) ⊂ λθ(B

∞(H)), and

λθ : B∞(H)→ B∞(H) is TN equivariant; by replacing θ with −θ, we prove the same for ρθ. It then

follows from Lemma 7.1.3 and a direct computation that λ−1
θ = λ−θ and ρ−1

θ = ρ−θ in this more

general context.

Finally, suppose that S, T ∈ B∞(H) commute. First, since the various Pσ commute amongst

themselves, it follows that Sr and Ts commute for all r, s ∈ ZN . But then, for each r, s ∈ ZN ,

λθ(Sr)ρθ(Ts)− ρθ(Ts)λθ(Sr) = SrV
θ
r TsV

−θ
s − TsV −θs SrV

θ
r

= χθ(r, s)SrTsV
θ
r−s − χ−θ(s, r)TsSrV θr−s

= χθ(r, s)[Sr, Ts] = 0.

It then follows from the construction of λθ(S) and ρθ(T ) that they commute, as was claimed.

Remark 7.1.8. If T ∈ B(H)0, i.e., if UtTU∗t T = T for all t ∈ TN , then λθ(T ) = ρθ(T ) = T .

Putting everything together, we see that we have constructed our deformed product on B∞(H)

as follows:

Theorem 7.1.9 (Rieffel, cf. [60]). For S, T ∈ B∞(H), let S ?θ T := λ−1
θ (λθ(S)λθ(T )). Then

(B∞(H), ?θ) is a unital ∗-algebra for the involution ∗ inherited from B(H), and

∀S, T ∈ B∞(H), λθ(S ?θ T ) = λθ(S)λθ(T ).

Moreover, if S ∈ B(H)0 or T ∈ B(H)0, then S ?θ T = ST .

Remark 7.1.10. In light of Lemmas 7.1.5 and 7.1.7, the algebraic properties of (B∞(H), ?θ) can be

checked on homogeneous elements of B∞(H).
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7.2 Connes–Landi deformations

Let us now proceed to the construction of Connes–Landi deformations of torus-equivariant spectral

triples. Just what we mean by a torus-equivariant spectral triple is given by the following definition:

Definition 7.2.1. We say that a regular spectral triple (A,H,D) is TN -equivariant if there exist a

smooth isometric action σ : TN → A of TN on A and a strongly continuous action U• : TN → U(H)

of TN on H satisfying the following:

1. For all a ∈ A, for all t ∈ TN , UtaU∗t = σt(a).

2. For all t ∈ TN , UtDU∗t = D.

3. If (A,H,D) is even with Z2-grading γ, then for all t ∈ TN , UtγU∗t = γ.

4. If (A,H,D) is two-sided, then for all a ∈ A, for all t ∈ TN , UtaoU∗t = σt(a)o.

If (A,H,D) is regular and TN -equivarant, then we take A to be a Fréchet pre-C∗-algebra with

seminorms, for k ∈ N ∪ {0} and α ∈ NN ,

νk,α(a) :=
∥∥(ad |D|)k(∂αa)

∥∥+
∥∥(ad |D|)k([D, ∂αa])

∥∥ , a ∈ A.

Remark 7.2.2. If (A,H,D) is a TN -equivariant regular spectral triple, then for all t ∈ TN , UtH∞ ⊂

H∞, since by TN -invariance ofD, [|D| , Ut] = 0, and, hence, Ut ∈ ∩k Dom(ad |D|)k, which guarantees

that UtH∞ ⊂ H∞, as was claimed.

Given this, we define the Connes–Landi deformation of a torus-equivariant spectral triple as

follows:

Definition 7.2.3 (Yamashita [69], after Connes–Landi [29]). Let (A,H,D) be a TN -equivariant

regular spectral triple, so that A ⊂ B∞(H), let θ ∈ so(N), and let Aθ := (A, ?θ). Then (Aθ, H,D)

is the Connes–Landi deformation of (A,H,D) with deformation parameter θ.

Remark 7.2.4. Since λθ′ ◦λθ = λθ+θ′ , it will follow that ((Aθ)θ′ , H,D) = (Aθ+θ′ , H,D); in particular,

((Aθ)−θ, H,D) = (A0, H,D) = (A,H,D).

That Connes–Landi deformations are indeed well-defined are guaranteed by the following result:

Theorem 7.2.5 (Yamashita [69, Prop. 5]). Let (A,H,D) be a TN -equivariant regular spectral triple,

and let θ ∈ so(N). Then (Aθ, H,D) is a TN -equivariant regular spectral triple, even whenever

(A,H,D) is, and of metric dimension p whenever (A,H,D) is.

To prove this, we shall need two ancillary lemmas. The first is a refinement of Lemma 7.1.5:
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Lemma 7.2.6. Let (A,H,D) be a TN -equivariant regular spectral triple. If a ∈ A, then ar ∈ Ar ⊂ A

and a =
∑
r∈ZN ar converges absolutely in A. Conversely, if {ar}r∈ZN ⊂ A is rapidly decreasing in

B∞(H), then a :=
∑
r∈ZN ar converges in A.

Proof. First, observe that for any a ∈ A, r ∈ ZN , we can write

ar =

ˆ
TN

e2πir·tσt(a)dN t ∈ A,

where the integral converges in A qua Fréchet space, since the TN -action on A is smooth and

isometric.

Now, suppose that {ar}r∈ZN ⊂ A is rapidly decreasing inB∞(H). Then a :=
∑
r∈ZN ar converges

absolutely in B∞(H) ⊂ B(H), and, hence, by TN -invariance of D, for any c ∈ A, (ad |D|)k(∂αa),

(ad |D|)k([D, ∂αa]) ∈ B∞(H) with

∀r ∈ ZN , (ad |D|)k(∂αar) = (ad |D|)k(∂αa)r, (ad |D|)k([D, ∂αar]) = (ad |D|)k([D, ∂αa])r;

this implies, then, that

∑
r∈ZN

νk,α(a) =
∑
r∈ZN

(∥∥(ad |D|)k(∂αar)
∥∥+

∥∥(ad |D|)k([D, ∂αar])
∥∥)

=
∑
r∈ZN

∥∥(ad |D|)k(∂αa)r
∥∥+

∑
r∈ZN

∥∥(ad |D|)k([D, ∂αa])r
∥∥

<∞,

as required.

Finally, if a ∈ A and a′ =
∑
r∈ZN ar, then, in particular, a′ =

∑
r∈ZN ar in B(H), and, hence,

by Lemma 7.1.5, a = a′, as required.

The second lemma is a refinement of Proposition 7.1.9:

Lemma 7.2.7 (Yamashita [69, Lemma 2]). Let (A,H,D) be a TN -equivariant regular spectral triple.

Then for any a, b ∈ A, a?θ b ∈ A, and, hence, Aθ := (A, ?θ) is a unital Fréchet pre-C∗-algebra for the

same seminorms as A, with the same TN action σ : TN → Aut(Aθ) and continuous TN -equivariant

∗-representation on H given by λθ|Aθ : Aθ → B(H).

Proof. In light of Proposition 7.1.9, it suffices to show that for any a, b ∈ A,

a ?θ b =
∑

r,s∈ZN
χθ(r, s)arbs
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converges absolutely in the Fréchet algebra A. However, by Lemma 7.2.6, it follows that

ab =
∑

r,s∈ZN
arbs

with absolute convergence in A, so that for any k and α,

∑
r,s∈ZN

νk,α(χθ(r, s)arbs) =
∑

r,s∈ZN
νk,α(arbs) <∞,

as required.

Proof. First, since D is TN -invariant, for all a ∈ A, [D, a] ∈ B∞(H), and, hence, [D,λθ(a)] =

λθ([D, a]); since H and D are unchanged, this shows that (Aθ, H,D) is a spectral triple, indeed with

metric dimension p if (A,H,D) has metric dimension p.

Next, again, since D is TN -invariant, for all T ∈ B∞(H) ∩
(
∩k Dom(ad |D|)k

)
, (ad |D|)k(T ) ∈

B∞(H), and, hence, (ad |D|)k(λθ(T )) = λθ((ad |D|)k(T )). Applying this to T ∈ A + [D,A], we

therefore find that (A,H,D) is regular; since Aθ is endowed with the same TN -action as A, and

since λθ : Aθ → B(H) is TN -equivariant, it therefore follows that (A,H,D) is TN -equivariant.

Finally, if (A,H,D) is even with grading γ, since γ ∈ B(H)0, it follows that for all a ∈ Aθ,

[λθ(a), γ] = λθ([a, γ]) = 0, as required.

7.3 Toric noncommutative manifolds

At last, let we are in a position to discuss toric noncommutative manifolds and a potential recon-

struction theorem for such spectral triples.

Let X be a compact oriented Riemannian manifold with an orientation-preserving isometric TN

action c : TN → Iso+(M), let E → X be a TN -equivariant Clifford module with TN action t 7→

(ct, Ut), and letD be a TN -invariant symmetric Dirac-type operator on E . Then (C∞(X), L2(X, E), D),

in particular, is a TN -equivariant regular spectral triple with TN -action on C∞(X) given by

∀ ∈ C∞(X), t ∈ TN , σt(f) := f ◦ c−t,

and compatible TN action on L2(X, E), given by t 7→ Ut, with Ut viewed as an element ofB(L2(X, E)).

Given all this, we therefore call (C∞(X), L2(X, E), D) a concrete TN -equivariant commutative spec-

tral triple. We can therefore define a (concrete) toric noncommutative manifold, the type of Connes–

Landi deformation originally considered by Connes–Landi themselves, as follows:

Definition 7.3.1. A concrete toric noncommutative manifold is a TN -equivariant spectral triple of
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the form

(C∞(Xθ), L
2(Xθ, E), D) := (C∞(X)θ, L

2(X, E), D),

where (C∞(X), L2(X, E), D) is a concrete TN -equivariant commutative spectral triple.

Now, in order to obtain an abstract definition of toric noncommutative manifold, we shall need

the following refinement of the definition of Dirac-type spectral triple:

Definition 7.3.2. We say that a p-dimensional Dirac-type spectral triple (A,H,D) is TN -equivari-

ant if it is TN -equivariant as a regular spectral triple, and if the following also hold:

1. For all a ∈ A and t ∈ TN , UtaoU∗t = σt(a)o.

2. The orientation cycle c ∈ Zp(A,A) is TN -invariant.

3. For any ξ, η ∈ H∞ and t ∈ TN , (Utξ, Utη) = (ξ, η).

Our proposed abstract definition of toric noncommutative manifold is therefore motivated by the

following result:

Proposition 7.3.3 (Connes–Landi [29], Connes–Dubois-Violette [28]). Let X be a compact ori-

ented Riemannian p-manifold with orientation-preserving isometric TN -action, let E → X be a

TN -equivariant Clifford module, and let D be a TN -invariant symmetric Dirac-type operator on E;

let θ ∈ so(N). Then (C∞(Xθ), L
2(Xθ, E), D) is a TN -equivariant p-dimensional Dirac-type spectral

triple with right C∞(Xθ)-action defined by ρθ.

Proof. First, we have that (C∞(Xθ), L
2(Xθ, E), D) is regular and of metric dimension p by Theo-

rem 7.2.5. Indeed, it is two-sided for the right action λθ(a)o := ρθ(a); on the one hand, by TN -

invariance of D, (ad |D|)k(λθ(a))o = ρθ((ad |D|)k(a)), so that λθ(a)oH∞ ⊂ H∞ for all a ∈ C∞(Xθ),

and on the other hand, since C∞(X) is commutative, [λθ(a), ρθ(b)] = 0 by Lemma 7.1.7. Moreover,

by TN -equivariance of ρθ, it follows that

∀a ∈ C∞(Xθ), t ∈ TN , Utλθ(a)oU∗t = Utρθ(a)U∗ = ρθ(σt(a)) = λθ(σt(a))o.

Let us now check the conditions for a TN -equivariant p-dimensional Dirac-type spectral triple

one by one:

1. As we have already seen, (C∞(Xθ), L
2(Xθ, E), D) has metric dimension p.

2. Since [[D, a], b] = 0 for all a, b ∈ C∞(X), we have that

[[D,λθ(a)], λθ(b)
o] = [[D,λθ(a)], ρθ(b)] = [λθ([D, a]), ρθ(b)] = 0

by TN -invariance of D and Lemma 7.1.7.
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3. Recall that ∩k DomDk = C∞(X, E). Since E → X is TN -equivariant, it follows [6, Lemma 3.3]

that there exists a finite-dimensional TN -module V , such that E is TN -equivariantly a direct

summand of X × V , and, hence, we have a TN -equivariant identification C∞(X, E)C∞(X)
∼=

pC∞(X)N for some TN -invariant orthogonal projection p ∈MN (C∞(X)). By TN -equivariance

of this identification and TN -invariance of p, it therefore follows that we have a TN -equivariant

identification

C∞(Xθ, E)C∞(Xθ) := C∞(X, E)C∞(Xθ)
∼= pC∞(Xθ)

N ,

immediately implying finiteness for the deformed spectral triple.

4. By invertibility of λθ and Lemma 7.1.7, we can readily check that EndC∞(Xθ)o(C
∞(Xθ, E)) =

λθ
(
EndC∞(X)(C

∞(X, E))
)
, so that EndC∞(Xθ)o(C

∞(Xθ, E)) ⊂ ∩k Dom(ad |D|)k, since

EndC∞(X)(C
∞(X, E)) ⊂ ∩k Dom(ad |D|)k.

Thus, strong regularity holds.

5. The orientation cycle c ∈ Zp(C∞(X), C∞(X)) of (C∞(X), L2(X, E), D) is given by the TN -

invariant volume form on X. Hence, by the proof of [28, Theorem 13.9], it follows that the

corresponding cycle cθ ∈ Zp(C∞(Xθ), C
∞(Xθ)) yields the desired antisymmetric TN -invariant

orientation cycle for the deformed spectral triple.

6. Going back to the proof of finiteness, one can observe that E is a TN -equivariantly a direct

summand of X ×V as a Hermitian vector bundle. Thus C∞(X, E)C∞(X)
∼= pC∞(X)N as TN -

equivariant right pre-Hilbert C∞(X)-modules, and, hence, C∞(Xθ, E)C∞(Xθ)
∼= pC∞(Xθ)

N

as TN -equivariant right pre-Hilbert C∞(Xθ)-modules; in particular, TN -invariance of the Her-

mitian metric on C∞(Xθ, E), obtained from the Hermitian metric on C∞(X, E), implies that

it takes its values in C∞(Xθ)0 = C∞(X)0, so that absolute continuity is indeed preserved

Thus, (C∞(Xθ), L
2(Xθ, E), D) is indeed a TN -equivariant p-dimensional Dirac-type spectral triple.

Example 7.3.4. If (C∞(TN ), L2(TN ,S), /D) is the canonical spectral triple of TN with a given spin

structure, then (C∞(TNθ ), L2(TNθ ,S), D) is the corresponding noncommutative N -torus.

In light of Proposition 7.3.3, we define an abstract toric noncommutative manifold as follows:

Definition 7.3.5. Let (A,H,D) be a TN -equivariant p-dimensional Dirac-type spectral triple, and

let θ ∈ so(N). We call (A,H,D) a p-dimensional toric noncommutative manifold with deformation

parameter θ if

∀a ∈ A, a0 := λ−2θ(a).
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Our progress towards a reconstruction theorem, then, is summarised in the following theorem:

Theorem 7.3.6. Let (A,H,D) be a p-dimensional toric noncommutative manifold with deformation

parameter θ ∈ so(N), and suppose, moreover, that the orientation cycle c ∈ Zp(A,A) corresponds

to a TN -invariant antisymmetric cycle cθ ∈ Zp(A−θ, A−θ), such that πD(c) = πD(cθ). Then there

exists a concrete TN -equivariant commutative spectral triple, such that

(A−θ, H,D) ∼= (C∞(X), L2(X, E), D), (A,H,D) ∼= (C∞(Xθ), L
2(Xθ, E), D),

i.e., (A,H,D) is unitarily equivalent to a concrete p-dimensional toric noncommutative manifold.

Proof. In light of Proposition 7.3.3, it suffices to show that (A−θ, H,D) is a p-dimensional commu-

tative spectral triple, for then by Corollary 4.2.7, we can reconstruct X, E , and D, and from there

reconstruct the TN -action on X and on E from t 7→ σt and t 7→ Ut, respectively.

Now, let a, b ∈ A. Then, in particular, ρ−θ(bo) = λθ(b
o) = λθ(λ−2θ(b)) = λ−θ(b), so that by

Lemma 7.1.7,

[λ−θ(a), λ−θ(b)] = [λ−θ(a), ρ−θ(b
o)] = 0,

and, similarly,

[[D,λ−θ(a)], λ−θ(b)] = [λ−θ([D, a]), ρ−θ(b
o)] = 0.

The rest then follows from the proof of Proposition 7.3.3, mutatis mutandis, together with the

explicit orientability-related hypothesis; in patricular, to prove finiteness and absolute continuity,

one needs the noncommutative generalisation [4, Prop. 11.2.3] of [6, Lemma 3.3].

In fact, in light of the proof of Proposition 7.3.3, one could take Theorem 7.3.6 as a work-

ing reconstruction theorem for abstract noncommutative toric manifolds. However, the additional

orientability-related hypothesis is decidedly awkward, indeed unnatural, and its removal is an im-

mediate research priority. However, the author expects that this may well be somewhat tricky, given

the delicacy of working with the Hochschild homology of deformation quantisations, including even

the noncommutative 2-torus.
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