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Formalizing Negotiation in Engineering Design
by
Michael J. Scott
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Doctor of Philosophy

Abstract

Negotiations are common in engineering design, especially on large projects, and are typi-
cally conducted informally. Often, negotiation is used to handle the imprecision or uncer-
tainty that is inherent in the design process. Performance targets, initially specified as hard
numerical constraints, are adjusted throughout the design process in negotiations between
engineers and managers. Crucial unmeasured or unmeasurable aspects of performances,
such as aesthetic concerns, are commonly negotiated. Negotiations settle conflicts between
engineering groups over values of shared design variables and distribution of limited design
resources.

In this thesis, a formal description of negotiation in engineering design is presented.
This formal model builds on earlier work at Caltech in the modelling of imprecision in
engineering design. Negotiation is modelled mathematically as the aggregation of pref-
erences. A complete characterization of the aggregation problem and of the aggregation
operators suitable for engineering design is given. This class of operators spans a range
of rational decisions and allows for different possible levels of compensation among goals.
Furthermore, the entire range of aggregation operators is necessary to capture all possible
engineering design decisions. Techniques are presented for determining which aggregation
operators are appropriate for particular problems.

As the aggregation of preference is also a component of other fields, notably decision
theory applied to economics and social choice, various concerns raised in those fields about

the legitimacy of preference aggregation are treated. A more comprehensive justification is



presented here of the approach to modelling imprecision known as the Method of Impreci-
sion, or M|, than has previously been offered.

Although the decision model presented here is statically one of choice among given
alternatives, refinement and redesign are crucial in the engineering design process. The
consideration of information about entire sets of designs not only accrues computational
benefits, but is a more natural model for how designers reason, and can be of significantly
more use to designers in refinement and redesign, than information about individual point
designs. Conditions under which the negotiation model can support set-based information
and still yield consistent answers are here explored and presented.

Finally, an example of the application of these ideas to a preliminary vehicle structure
design is presented. This example was undertaken as a demonstration of the method for
research engineers at Volkswagen Wolfsburg, and serves to help introduce many of the

ideas in a more concrete manner.



vi

Contents

1 Introduction

1.1 Contributions of the thesis and dependence of chapters

2 Research Context
2.1 Design theory and methodology . . . ... .................
2.2 Economics and decisiontheory . . . . ... ... ... ...........
23 Fuzzysets . . . . . . . e e e e e e e e
23.1 Theory . .. ... . . .. e e
232 Application . . . ... ... e
2.4 Artificialintelligence . . . . . .. ... ... ... ..
25 Summary .. o.o. .. e e e e
3 The Method of Imprecision
4 Individual and Overall Preference

4.1 Arrow’s Impossibility Theorem and implications for the aggregation of
preference . . . . . . .. e
4.1.1 The motivating paradox . . ... . ... ..............
4.1.2  Axioms for the social choice problem . . . ... ... .......
4.1.3 Theresulting contradiction . . . . . . ... ... ... .......
4.1.4 Ways around the contradiction . . . ... ... ... ........
4.1.5 Weights in the social choice problem . . . .............

4.2 Decision with multiple criteria . . . . . . ... .. ... ... .......

4.3 Individual preferences . . . . . .. ... .. ... ...

10
11
11
12

13

19



vii

431 Utlity . . . ..o e e 34
432 Mylpreference . . ... ... ... ... ..., 36
44 Summary . ... ... e e e e e e 37
Aggregation of Preference 39
5.1 Aggregationinthe Mgl . . . . ... ... ... ... . ... ....... 39
52 Theaxiomsofthe Mgl. . . . . ... ... ... .. .. ... ...... 41
5.3 Fuzzy multi-attribute decision making . . . ... ... ... ... ... .. 46
54 Weightedmeans . . . . . ... ... ... ... ... ... 47
5.5 Supercompensating functions . . . . .. .. ... L., 56
56 Example . . . . . . ... e 59
5.7 Modelling negotiation: which decisions can be captured? . . . . ... ... 66
5.7.1 Theoretical possibilities . . . .. ... .. ... .......... 67
572 Managed negotiation . . . . . .. ... .. ... ... 70
5.7.3 Negotiation with predetermined weights . . . . . .. ... ... .. 72
5.74 Misrepresentation of preference as a negotiation strategy . . . . . . 75
5.8 Hierarchical negotiation . . . . . . ... ... ... ... .. ........ 75
5.8.1 Direct aggregation of more than two preferences . . . .. ... .. 75
5.8.2 Hierarchical aggregation of more than two preferences . . . . . . . 76
5.9 Examples of negotiation in engineering design . . . . . . .. ... ... .. 77
5.9.1 Unreachable target performance values . . . .. ... ....... 77
5.9.2 Trade-offs between facets of performance . . ... ......... 78
5.9.3 Conflicts between design and manufacturing . . ... .... ... 79
5.9.4 Conflicts between engineering groups . . . . . . . . . . ... ... 79
5.9.5 The incorporation of unquantifiable performances . . . . . . .. .. 79
5.10 Summary and implications for MADM . . . . . ... ... ......... 80
Convexity and Set-based Design 82
6.1 Convexity of preferenceinthe Mgl . . . . . .. .. ... ... ... ..., 84

6.2 Proofs . . . . . . e 92



viii

7 Computation Methods Comparison 96
7.1 Optimization Strategies . . . . . . . . v v vt vt e e e e e e 97
7.1.1 Exhaustivesearch . . . . . . ... ... ... ... . . 0. 98

7.1.2 Classical optimization . . . . . . .. ..ot 98

7.1.3 Geneticalgorithms . . . . . ... ... ... . o .., 99

7.2 Optimizing for setsof designs . . . . . . .. ... ... .. ..., 99

7.3 Approximation techniques . . . . . ... ... ... 100

74 Example . . . . . . . .. e 100

75 Results. . . . .. . o e 103
7.5.1 Classical optimization . . . ... ... .. .. ....... ... 104

7.52 Geneticalgorithm . . . . . . ... ... ... oL o oo 105

7.5.3 Set-based search with minimum assumption . . . . . . .. ... .. 107

7.5.4 ApproXimations . . . . . ... .. i . e e e 110

7.6 SumMmary . . . . ... e e e e e e e 110

8 Example: Passenger Vehicle Structure Design 113
8.1 Preliminary vehicle structuredesign . . . . . ... ... ... ... ... 113

8.2 Applying the Ml to include imprecise information . . . ... .. ... .. 119
8.2.1 Performance preferences . . . . . ... .. ... ... ... .. 120

8.2.2 Designpreferences . . . . . ... ... oo 120

8.2.3 Weights and strategies . . . . .. .. ... ... ... 123

83 Results. . .. ... . .. . e 127
8.3.1 Approximations . .. ... ... ... oo 128

84 Discussion . . . . . . .. ... i e e e 131

85 Summary . . ... ... e e 132

9 Conclusions 133
A Aeroshell Design and Analysis 136
Al Aeroshelldesign . ... ... ... ... ... .. o 137

A2 Problemscope. . . . . . ... e e e e e e 139



ix

A.3 Formal treatment of the problem . . ... . ... ... ........... 142
A4 Applicationtotheexample . . . . . ... . ... ... ... ... 144
A.4.1 Aggregation of data from disparate sources . . . ... .. ... .. 150



List of Figures
3.1 Example imprecise specification . . ... .................. 14
4.1 Single-peaked functions . . . . . .. ... ... ... . 26
5.1 Functionsbetweenminand Prp . . . . . . o o o v v 51
5.2 Functionsthatexceed Py . . . . . . v v v vt e e e e 57
5.3 Decision space withoptimalregion . . . . . ... .. ... ......... 61
5.4 Decision surface with minimum operator . . . . . . ... .......... 63
5.5 Decision surface with product of powers operator . . . .. ... ...... 64
5.6 Optimal points varying with parameters . . . . .. ... .......... 65
5.7 Hierarchy of preferences for VW example . . . .. ... .......... 77
6.1 Functions convex with respect to u, one dimension . . . . ... ...... 86
6.2 Proximity ofdesigns . . ... ... ... ... ... .. ... .. .. ... 87
6.3 pu-convex i, s that combine to non-p-convex i . . . . . ... ... ... 90
7.1 Finite element model in wireframe . . . . .. .. e e e e e 101
7.2 Representative design preference . . . . . .. ... ... .. ........ 102
7.3 Performancepreference . . . . . .. ... .. ... ... ... 103
7.4 Comparison of three optimization schemes . . . . . .. ... ........ 109
7.5 Ranges of design variables, three optimization schemes . . . . . . ... .. 111
8.1 1980 VW Rabbit in stiffnesstesting . . . . ... ... ........... 114
8.2 Loadtest, bending stiffness . . . . . ... ... .. ............. 115
8.3 Load test, torsional stiffness . . . . ... ... .. ... .......... 116
8.4 Geometric model of body-in-white in SDRCI-DEAS . . . ... ... ... 117



8.5
8.6
8.7
8.8
3.9
8.10

Al

A2
A3
A4
A5
A6
A7
A8
A9

Finite element model of body-in-white . . . . . ... ... ... ...... 118
Imprecise performance requirements . . . . . . . . ... ... 121
Designer preferences . . . . . . . .. ... oo oo e 122
Hierarchy of preferences for VWexample . . . . . ... ... ....... 124
Graphical user interface for preference display . . . . . . . .. .. ... .. 129
3-D graphical user interface for preference display . . . ... .... ... 130
Launch frequency and payload size of NASA space missions, 1955-2015

(Used by permission, John Peterson, JPL, May 15,1997) . . ... ... .. 137
Schematic of aeroshell . . . . . ... ... ... ... ... .. ... . 140
Example quality curve . . . . . .. ... o 146
Empirical data: C, for threecone angles 6 . . . . . . ... ... ...... 149
Newtonian flow model: C, forvarious @ . . . . ... ... ... ...... 151
Free-molecular flow model: C, fortwo & . .. .. ... . ... ...... 152
Fuzzy set expressing applicability ofregime . . . . . .. ... ... .. .. 154
Interpolated experimental results with B =0, F =0,0 =15° ... .. .. 155

Results from free molecular code with B=0, F =0, =15° . ... ... 155



xii

List of Tables

4.1

5.1
5.2
53
54

8.1
8.2

Weak orders of three voters . . . . . .. .. ... .. ............ 27
Axioms of the Ml for aggregation operators . . . . ... .......... 42
Axioms of the M for aggregation functions . . . . ... .......... 44
Properties of the weightedmean . . . . . ... ... ............ 48
Undominated points in the decision space . . . ... ............ 60
Designer preferences . . . . . .. ... ... ... ... .. ... .. ... 123
Peak performance points, various strategies . . . . ... .......... 128



Chapter 1

Introduction

There is no new thing under the sun.

Solomon (Ecclesiastes 1:9, King James Version)

Everything that can be invented has been invented.

Charles Duell, Director of U.S. Patent Office, 1899

Design is a fundamental human activity. Whatever the field of endeavor, design in-
volves the conception of something new to satisfy a need. All design involves creativity
(the generation of alternative solutions) and decision (choice among those alternatives). It
is a common view that design must be intuitive, and as no course of study can substitute for
human genius, both creativity and decision are ineffable and mysterious. Yet past experi-
ence and methods are considered the proper study of the designer in all fields. Engineering
design distinguishes itself from other fields of design by its use of calculation and analysis.
Indeed, analysis of alternatives should be inserted into the taxonomy of design proposed
above: for engineering design, there is generation of alternatives, analysis of alternatives,
refinement of alternatives, and decision among alternatives. Generation of alternative solu-
tions may remain an informal, even mysterious process in engineering design, but the use
of calculation formalizes the evaluation of alternatives, from which it follows that decision

can potentially be made formal as well.



This view of design is, however, deceptive. Solomon’s wisdom and Duell’s comical
short-sightedness notwithstanding, design is the creation of the new. Furthermore, the pro-
cess is iterative. The neat division of design into stages of concept generation and concept
selection is artificial. The engineered solution to a problem is most often an alternative that
was not considered at first. The designer must go “back to the drawing board,” and not sim-
ply to create a larger sample from which to choose. The designer learns from the analysis
and the decision, and thus generates better alternatives. Creativity is informed by evaluation
and experience; there is feedback in the system. If engineering design were nothing more
than trial and error, then a simple model of decision among alternatives would suffice; as
design is considerably more complex, such an approach is simplistic at best.

Formalizing design creativity may be, for now, unattainable, but a formal approach to
design decisions should as much as possible recognize the connection between decisions
and creaﬁvity. The formalism discussed in this thesis attempts to do so by supporting the
consideration of whole sets of designs at once. An algorithm to find a single optimum
among a collection of alternative designs is of little, if any, use to a designer in the genera-
tion of further alternatives. Information about the behavior of entire sets of designs may be
of greater value.

A formal theory of engineering design seeks to model the activity of design well enough
that it can be computed. Some engineering design tasks, like the sizing of fasteners, bear-
ings, or motors, rely mainly on formal calculation. Others, like the selection of fastener
type (rivet, press fit, snap fit, bolt, weld, Velcro®) rely more on informal intuition. The
informal makes for a large part of design, as can be clearly seen by how few design tasks
can be automated. Research in engineering design seeks formal structure to explain what
humans accomplish informally, and thus tends to increase the number of design tasks that
can be computed.

Why compute design tasks? Routine tasks can be accomplished more quickly and effi-
ciently through computation, and the results can be as good as those that the most experi-
enced and talented individuals can deliver; the designer’s time is better spent on questions
that merit creative thinking. Although there is interaction between creativity and analysis,

and enumerating more alternatives is not the only way to solve design problems, it is gener-



ally advantageous to consider a larger set of alternatives, to “increase the size of the design
space.” When design can be understood well enough to be computed, that understanding
is useful to the novice and expert, to the inspired and the mundane designer alike, in the
productive inclusion of more alternatives in the decision process. Thus the goal of a theory
of engineering design is to automate the tedious, analyze the intuitive, and communicate
the experiential.

When design is conducted by more than one person, communication becomes as fun-
damental as creativity and decision. In such collaborative design, decisions must be made
jointly. The research presented here was inspired by conversations with vehicle structure
engineers from industry, who commented that many of their design decisions took the form
of negotiations. Negotiation, defined broadly (paraphrasing Webster’s) as conference with
others to arrive at a settlement of some matter, need not be adversarial. Yet a divided design
task creates a situation in which individuals or groups can readily identify the sub-goals
associated with their assigned task, perhaps more readily than the common goal to fulfill a
given need. When a corporate culture separates personal self-interest from the fulfillment
of the common goal, the negotiations that arise between different groups may be adversar-
ial negotiations, when they ought to be planning sessions among partners striving together
towards a monolithic end. Even when the participants identify their own self-interest with
a single unified goal, the communication among groups is a negotiation. Thus negotia-
tion plays an important role in many design decisions, and is almost always conducted
informally. This thesis presents a formal description of negotiation in engineering design,
and thus the groundwork for the development of a methodology to conduct negotiations.
The development of a formal model for negotiation shows that the negotiation problem
can be equated with the problem of aggregation of several preferences. The aggregation
model serves in many situations that would not obviously be thought of as “negotiations.”
A formal understanding of the negotiation process can shed light on the question of how
to structure that process so that participants in the negotiation behave to further a unified,
rather than a selfish, self-interest.

Engineering design research seeks both mathematical rigor and real-world applicability.

The two are often connected: a sound mathematical foundation helps guarantee the success



of an application, while the desire to solve particular problems uncovers needs of the theory.
The two components of engineering design research, rigor and application, are sometimes
traded-off, in a metaphorical negotiation, one against the other. In engineering design deci-
sion making, one possible formal approach is to design by enumeration of alternatives, and
this approach, indeed, underpins most if not all formal decision methods. Certainly, there is
some theoretical justification for viewing design as a choice among alternatives. However,
this assumes that all possible alternatives are actually considered, an assumption that seems
completely unjustified in light of the iterative nature of real design.

There are actually two difficulties here, one perhaps deeper than the other. If it is ac-
cepted that the design decision problem is to choose among some given alternatives, there
is the simple problem of the inherent computational difficulty of exhaustive search. An
understanding of the structure of the design problem can make much of that search unnec-
essary. Elegant methods use structural knowledge to avoid unnecessary computation. The
deeper problem lies in the assumption that the decision is restricted to the given alterna-
tives. An overarching formalism for the consideration of unspecified alternatives is well
outside the scope of this thesis. The methods presented here are restricted to considering a
given collection of alternatives, but, by considering them as sets rather than points, provide
information that may be useful to a designer in later iterations.

Preliminary design is inherently imprecise, and has enormous economic importance.
Much of the cost of a design is determined by preliminary decisions [99], which are ofteri
informal and rely on imprecise information. This thesis extends earlier work in the mod-
elling of imprecision in engineering design. It contributes to the understanding of decision
making, and to the mathematics of fuzzy sets. It examines economic theory’s possible ex-
tension to engineering design decisions. Related research is done in engineering, in design
theory, in multi-objective optimization, and in multi-criteria decision making. Researchers
in artificial intelligence have also addressed the problem of negotiations. There is a consid-
erable body of work, which will be considered below, on related questions in the application
of fuzzy sets to various decision problems.

While negotiation is a focal point of the thesis, to arrive at the simple formal model

requires detailed consideration of preference, aggregation, and convexity. These ideas are



central to the development of the thesis; they are also intertwined. The sequence in which
the three are presented is to some extent arbitrary: all are needed to paint a complete picture.

An undercurrent throughout the thesis is an interest in set-based design, the notion
that designers reason not with individual, unique design instances, but with whole sets of
possible designs. Formal descriptions of engineering design decisions must be rational:
irrational decisions are inadmissible. It is not so clear that a formal description must be
set-based, but there are several advantages to making it so. Perhaps the most important
advantage is that it provides a natural representation for reasoning in design, though it turns
out that there are computational advantages as well.

In addition to formally modelling actual negotiations, the mathematical description can
be applied to other situations that are not so obviously negotiations. The aeroshell example
presented in Appendix A is an extension of the mathematics to the realm of analysis, for
example. Even when communication between groups is not significant, some aggregations

are “negotiations” between a designer and him or herself.

1.1 Contributions of the thesis and dependence of chapters

The broad contribution of this thesis is the development of a mathematical model for ne-
gotiated decisions in engineering design. While negotiation in engineering design has been
studied previously (previous work is reviewed in Chapter 2), the explicit mathematical rep-
resentation presented here is new.

The formal negotiation problem is a problem of the aggregation of preferences. A set
of axioms for preference aggregation in engineering design has been previously proposed
by researchers at Caltech [56], and was used in the investigations described in this thesis.
These axioms differ from the axioms that describe economic and social choice decision
problems, and the preference aggregation results from those fields are not applicable to the
engineering design problem. One contribution of this thesis is the explicit distinction that
it draws between the engineering design decision problem and these other decision prob-
lems. This is especially important because it allows an accurate assessment of the potential

application of economic decision theory to engineering design problems. In particular, the



implications of one well-known result from social choice theory, Kenneth J. Arrow’s Im-
possibility Theorem, are shown not to present any difficulties for the engineering design
decision problem.

A chief contribution of this thesis is a complete characterization of the operators that are
appropriate for decision making in engineering design. The range of acceptable operators
includes both of the aggregation operators that were in prior use; it is also demonstrated
here that the entire range is necessary to formalize all design decisions. In addition to their
relevance to the decision problem, the results about preference aggregation operators are
relevant to the problem of the combination of fuzzy sets in general contexts.

The characterization of design-appropriate aggregation operators includes not only proof
that the entire collection of operators is necessary to capture all decisions, but also meth-
ods for the determination of the correct operator for a particular decision. Thus this thesis
demonstrates that the decision methods presently in use in engineering design in industry
are liable to favor incorrect choices, and offers alternatives that are demonstrably accurate.

A further contribution of this thesis explores the potential use of the negotiation models
and methods presented here to support set-based design, in which designers reason with
entire sets of candidate designs, rather than with individual designs. The thesis presents the
concept of convexity of preference, and uses that concept to derive sufficient conditions for
the use of the negotiation methods for set-based design.

The dependence of chapters is as follows: Chapter 2 provides general research context.
Chapter 3 is a review of earlier work at Caltech, and should be read before all following
chapters. Chapters 4 and 5 discuss preference and aggregation, and should be read next.
The discussion of convexity in Chapter 6 relies on Chapters 4 and 5, but may also clarify
some of the ideas of those earlier chapters, and it may be useful to revisit them after reading
Chapter 6. The discussion of computation methods in Chapter 7 depends only on Chapter 3,
as does the presentation of aeroshell analysis in Appendix A. The vehicle structure example
in Chapter 8 refers to all earlier chapters, but can profitably be read immediately after

Chapter 3; an early visit to the example may be helpful in reading, especially, Chapters 4-6.



Chapter 2

Research Context

The formalization of negotiation in engineering design draws upon several fields of re-
search. It is a part of a larger and more general effort in design theory and methodology.
It is related to decision theory, and to a lesser extent, to some economic decision models.
As some of the models discussed here rely on the mathematics of fuzzy sets, this work
fits also into a tradition, both theoretical and practical, of decision making with fuzzy sets.
Finally, there are some commonalities between this work and work that has been done in
artificial intelligence, though the two approaches to negotiation are distinct. In this chapter,

the varied research background and context for the work of the thesis is presented.

2.1 Design theory and methodology

Perhaps the most comprehensive survey of research in mechanical engineering design to
date is Finger and Dixon’s two-part study of 1989 [30, 31]. They consider six distinct areas

of engineering design research:
e descriptive models,

e prescriptive models,

computer-based models,

e languages, representations, and environments for design,

analysis in support of design,



e design for manufacture and the life-cycle.

The work presented in this thesis is placed by Finger and Dixon in the arena of representa-
tions and environments for design. However, they describe engineering design research as
an emerging field in a pre-theory state, without a wide consensus as to either what are the
interesting, outstanding questions, or what research methodologies should be employed.
Since the field continues to define itself, no taxonomy of design research will be strict, and
other areas of design research are directly relevant to the work discussed here.

Engineering design research can also be classified with respect to its formality, though
Finger and Dixon did not choose to do so. Formal models and methods are those which
allow codification if not computation, and thus can potentially be automated. The work
presented in this thesis is on the formal side of design research.

Even among the community of design researchers whose work can be described as
formal, there is little consensus as to problems and methodologies. Prescriptive models
of the design process were developed earlier in Europe than in the United States. The
work of Pahl and Beitz [61], which essentially became the German VDI (Verein Deutscher
Ingenieure) standard for design [91], and Hubka and Eder [40], might be described as pre-
formal codification of the engineering design process. Yoshikawa’s General Design Theory,
or GDT [105, 88] (see also Reich’s review [73] of GDT) was an axiomatic, ambitious
approach to the formalization of design; Yoshikawa was also early in asking the question of
what is well enough understood in design that it can be automated [106]. Stiny’s ground-
breaking work on shape grammars in architecture [83] has proven to be the departure point
for some interesting formal work in engineering design [3, 78]. Ward e al. have developed
interval analysis methods for set-based

design [96, 97, 98], as well as conducting studies of their application in the automobile
industry [95]; their work is directly related to this thesis.

A number of semi-formal decision methods have seen application in industry: Quality
Function Deployment (QFD) [38], Pugh charts [67], and Saaty’s Analytic Hierarchy Pro-
cess, or AHP [75] are examples. These methods are semi-formal in that they provide rules
or formulae for the organization of information, but offer no rigorous justification for the

heuristic calculations. Somewhat more formal are Taguchi methods [16], and experimental



design for quality control and process planning [52, 64]. A line of research into formal
modelling of imprecision in preliminary design has been undertaken here at Caltech. This
work; collectively referred to as the Method of Imprecision, or My, is of direct relevance to

this thesis and is covered in greater detail in Chapter 3.

2.2 Economics and decision theory

There is a rich literature on probabilistic decision making going back at least to Bayes’s
work in 1763 [11]. This decision making theory has been relatively well-developed, espe-
cially as applied to economics. The original formulations of utility theory and game theory
by von Neumann and Morgenstern [93] were taken up by Keeney and Raiffa [42] and Luce
and Raiffa [49], among others. (See French [32] for a good overview.) The foundational
works are of relevance to the formalization of decision decision making presented here.
However, the development of economic decision theory has been directed from the out-
set to the problem of decision making under probabilistic uncertainty, which is a different
portion of the engineering design decision problem than is considered here.

The design decision problem is one of decision with multiple criteria, though it is some-
times confused with two other problems in decision theory, decision under probabilistic
uncertainty and group decision making. At the worst this can lead to the inappropriate ap-
plication of results without a verification of conditions. More constructively, the success
of formal models in economics have led to attempts to extend those models to engineer-
ing contexts. A few examples of utility models in engineering are Siddall [82], Bradley
and Agogino [14], and Thurston [87]. The distinction between probabilistic decision and

decision in engineering design will be discussed further in Chapter 4.

2.3 Fuzzy sets

The starting point for the Method of Imprecision, the modelling of imprecision in prelimi-
nary design, was the recognition of the intrinsic imprecision in uncompleted designs. Initial
exploration led to the consideration of fuzzy sets [101]. Fuzzy sets research is relevant to

this thesis in two ways. On the theoretical side, the negotiation problem treated here can be
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considered as a problem in the aggregation of fuzzy sets, and the results on aggregation will
be of general interest to the fuzzy sets community. On the side of implementation, many
researchers are applying fuzzy set theory to decision problems in engineering design and

related fields.

2.3.1 Theory

Fuzzy sets were first proposed in 1965 by Zadeh [107] as a generalization of classical set
theory. In classical set theory, for any set, every entity is either in the set (has a membership
of 1) or not in the set (has a membership of 0). In a fuzzy set, elements can take on
varying degrees of membership between 0 (not at all in the set) and 1 (completely in the
set); a membership function specifies the membership level of all elements in the set. This
assignment of degrees of membership to the set could be used, for example, to capture
linguistic notions such as the set of “tall men.” Any function that assigns numbers in [0, 1]
to all the elements of a set induces a fuzzy set. The preferences that will be discussed in
Chapter 4 can be viewed and manipulated as fuzzy sets.

The negotiation model discussed in this thesis involves the aggregation of preferences,
and thus the problem of aggregation of fuzzy sets is directly relevant to the negotiation
model presented here. Many different aggregation functions for fuzzy sets have been pro-
posed and studied. Much fuzzy set research has focused on t-norms and t-conorms [26],
implicitly or explicitly equating fuzzy set aggregation with the extension of classical binary
logic to fuzzy sets. (This can be seen as a natural consequence of the initial interest in fuzzy
sets to capture linguistic expressions.) T-norms are bounded above by the min function, and
are the appropriate model for extensions of the logical AND to fuzzy sets, while t-conorms
are bounded below by the max function and are an extension of the logical OR. Both classes
of functions have been studied in detail, and research is ongoing. Multi Attribute Decision
Making (MADM) schemes have applied a wide range of t-norms and other operators to
decision problems. While averaging operators, which fall between min and max, have been
acknowledged for some time [26, 27, 103, 104], comparatively little attention has been de-
voted to these connectives. Averaging operators are not appropriate for binary logic, but

they are well suited to engineering design decisions: indeed, the axioms for engineering
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design preference aggregation presented in Section 5.2 require the aggregation functions
to fall between min and max. The treatment of averaging operators offered here is more
thorough than has been presented previously, and so the results are of relevance to more

general research in fuzzy set theory.

2.3.2 Application

There is significant recent interest in fuzzy methods for decision making. Recent contri-
butions include: Dhingra on multiobjective fuzzy optimization techniques for engineer-
ing design [20]; Diaz on fuzzy optimization methods [21, 22]; Djouad on chemical pro-
cess synthesis [23]; Dubois on fuzzy constraint propagation applied to manufacturing [25];
Fargier’s fuzzy scheduling [29]; an application of fuzzy methods to windturbine design by
Gerhart [33]; Grabot’s multiobjective scheduling [35]; Hamburg and Hamburg on manage-
ment of uncertain knowledge in engineering design [36]; Hsu ef al. on engineering design
optimization [39]; Otto on imprecise calculations in engineering design [17]; Knosala and
Pedrycz on evaluation of design alternatives [44]; Miiller and Thérigen’s fuzzy MADM
methods in system design:[54]; Posthoff on fuzzy evaluations [66]; multiobjective fuzzy
optimization techniques for engineering design, by Rao and colleagues [68, 69, 70, 71, 72];
Sakawa and Kato on multiobjective fuzzy optimization [76, 81]; Schleiffer’s fuzzy de-
sign with evolutionary algorithms [77], with reference to the Mgl; Thurston and Carna-
han on fuzzy ratings and utility analysis in preliminary design evaluation of multiple at-
tributes [85, 86]; scheduling system design by Turksen [90]; and work by Zimmermann

and Sebastian on fuzzy-multi-criteria decision making [110, 111, 112, 113].

2.4 Artificial intelligence

Researchers in artificial intelligence have noted that conflict is an integral part of the design
process. A few are mentioned here: Oh and Sharpe [55] present a bibliography of current
research and a thoughtful list of potential sources of conflict in addition to their own work
on a design support environment called Schemebuilder. Bahler et al. [9] have approached

conflict from a utility theory point of view; their work is perhaps the most comparable to
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the research direction developed here, but they have focused on a computer implementation
of the decision and have limited themselves to a linear weighted sum model and fairly
restrictive representations for goals. The work accomplished previously with the ML, and
the results presented in this thesis, offer more possibilities for the modelling of the design
but less automation of the decisions. Some interesting work has been done on a design
support system using Pareto optimality by Petrie ez al. [63]. The system does not calculate
optimal solutions, but rather tracks a history of design decisions and automatically notifies
agents when it seems that a better design might be overlooked.

These approaches to managing conflict in design, and others from the artificial intelli-
gence community [15, 37], have concentrated on environments that model the design pro-
cess itself, with the idea that such a model will be applicable in any design situation, thus
approaching the design problem from above. The act of negotiation is seen as an entity to
be modelled. This top-down approach stands in contrast to the approach taken in this thesis,

where the design model, rather than the negotiation model, is primary.

2.5 Summary

This chapter presents some of the prior and ongoing work that is relevant to the thesis. This
relevant work is seen to span a wide range of fields, including engineering, decision theory,
economics, fuzzy set theory, and artificial intelligence. Finger and Dixon’s description
in 1989 of design theory as a “pre-theory” field still holds for the negotiation research
presented in this thesis. While the prior work in artificial intelligence comes closest to the
work presented here, artificial intelligence has considered the negotiation problem from
above, attempting to model the act of negotiation for universal application. The research
discussed here, in contrast, approaches the design problem from below, where the crucial
problem is to model the imprecision inherent in design information, and to use that model

of design imprecision to guide negotiation.
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Chapter 3

The Method of Imprecision

The investigations of this thesis were conducted within the framework of the Method of
Imprecision, or Myl [46, 56, 100, 102], a method developed at Caltech for incorporating
imprecise information into a design process. In this chapter, the necessary background and
notation are presented. Since this thesis focuses on the use of the formalisms of the Myl to
represent negotiation in engineering design, certain concepts presented briefly here will be
defined in greater detail later, while previous developments that are not directly relevant to
the negotiétion problem will be treated lightly or not at all.

The original work on the Myl formulated the design problem as a decision problem:
given a set of candidate designs, identified by vectors d of design variables in a Design
Variable Space D (sometimes called the DVS), a set of performances, described by vec-
tors p of performance variables in a Performance Variable Space P (sometimes called the
PVS), and a mapping f : d — p, choose the candidate design d* which maps to the “best”
possible performance p* = f(d*). So stated, this model of the design problem is unac-
ceptably abstract. Several considerations must be explicitly incorporated into the decision

problem:
e requirements are imprecise;
e some preferences are not modelled by f;

e there is no obvious unique way to compare different performance variables which are

usually not even expressed in the same units.
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500 km range

Figure 3.1: Example imprecise specification

In addition, the selection of a single best design is an oversimplification of the problem:
more generally, the selection of a suitable set of (not yet completed) designs is desired.

The need to include imprecision in engineering design can be illustrated by a simple
example. Figure 3.1 shows a specification for one performance variable (p;). As specifi-
cations are commonly written, p; > 500 km would be represented by the dashed line (the
sharp-edged rectangular step), where u;, = 1 in the acceptable region. However, this crisp
specification (or requirement) indicates that two different designs, one with d; = 500 — e,
and another with d; = 500 + €, would have completely different acceptabilities, no matter
how small € becomes. Thus two designs, indistinguishably different in d; (as € — 0), have
completely different preferences: one is completely acceptable and one is unacceptable.
This is clearly an inadequate model.

Alternatively, the solid line shown in Figure 3.1 indicates a transition of acceptability
of performances from unacceptable (1, = 0) to most desired (u, = 1), and thus reflects
a more realistic specification. The range over which the transition from unacceptable per-
formance to most desired performance takes place will depend on the particular design

problem, as will the shape of the curve. The curve may be non-differentiable or even dis-
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continuous (a government regulation, for example).

Thus the Ml introduces the notion of preferences, mappings (denoted by 1) which take
values on the closed unit interval [0, 1], both to represent the imprecision inherent in the
preliminary design problem, and to provide a basis for comparison between different at-
tributes. Performance preferences up : P — [0, 1] express the customer’s requirements for
potential performance values more completely than crisp targets. In addition, engineers ex-
press design preferences on design variables (up : D — [0, 1]), allowing the incorporation
of performance aspects that are not explicitly calculated by f.

Designs are often judged by criteria that are not calculated in an engineer’s analysis.
Some of these criteria can be crucial to the success of the design: style, for example, is close
to paramount for many consumer goods, and manufacturability is a prerequisite. When the
engineer does not have a calculable model for these criteria, the incorporation of these
unmodelled aspects of performance (unmodelled by f, that is) is conducted informally,
often in negotiations with other groups such as stylists or manufacturing engineers, or with
managers. The specification of design preferences allows for the explicit representation of

otherwise unmodelled concerns in the design decision problem.
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To summarize and clarify the notation presented so far:

X any set, a generic parameterized set

X1,X2,...,X, € X vector elements of X

X=(Z1,...,Zm) components of the vector x

D, the DVS the set of possible designs

deD a candidate design

P, the PVS the set of possible performances

peP a design performance

d;, p; particular designs and performances (as with x)

d;, pj components of designs and performances (as with x)
f:d—p a mapping that determines the performance of each design
p:X —[0,1] preference on a generic set

pup : D —[0,1] design preference on the set of design variables

pp : P —[0,1] performance preference on the set of performance variables
a,B€0,1] elements of the closed unit interval

The design preferences pp(d), which are specified on the DVS, can be mapped onto the
PVS by use of the extension principle [108]. This induces a map jip : P — [0, 1], defined
by

fp(p) = sup pp(d)
d|f(d)=p

The performance preferences give rise to an induced map on the DVS which is defined by
simple composition:

pp(d) = pp(f(d))

Since it is clear from the context when the induced map is invoked, the /i notation will
not be used, and both the original and induced maps will be denoted . The preference
maps take values on the closed unit interval [0, 1]; these values will usually be denoted by
lowercase Greek letters o and 3, but in some cases where the context is clear an abuse of
notation may identify p with p(x) € [0, 1].

A design is typically judged on the basis of more than one preference; the Myl employs

an explicit aggregation of all preferences to compare and combine the different aspects of
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performance, modelled and unmodelled, on which the design is judged. Several preferences
are combined with an aggregation function P. (In previous work on the My, aggregation
functions were considered to act on preference values, not preference functions; a more pre-
cise definition of aggregation will be given in Chapter 5.) At first, the Myl made use of two
different aggregation functions [57], the non-compensating Pmin (@1, @2) = min(a;, az)
for situations where the overall performance is dictated by the lowest-performing attribute,
and the compensating Pr(a1,a2) = y/aiog, when high performance on one attribute is
deemed to partly compensate for lower performance on another. Each candidate design d

thus has an associated overall preference:

A(d) = P (un(d), up (f(d)))

(where pp(d) and pp(p) are themselves aggregations of their constituent preferences).

Candidate designs can be compared on the basis of this overall preference.

Definition 3.1 The design decision problem is to identify a subset of D which yields par-
ticular values of 1. This may be a search for a single design d to maximize L, or for the set

of designs that exceed a particular [i.

An additional concern in the design decision problem is often that of computation cost: the
answer must be found with a limited number of calculations. In Chapter 5 a thorough anal-
ysis of possible aggregation operators and justification for selecting a particular operator
will be presented.

The foregoing is sufficient background to develop the ideas presented in this thesis, but
it should be noted that the Ml has also been developed along other avenues. Earlier research
developed techniques for including noise [60] and adjustments or tuning parameters [59] in
the imprecision calculations, and placed an axiomatic framework on the calculations [56].
Implementation of the Myl continued with the development of a computational tool [47].
The applicability of the method was seen to be limited by large computational requirements,
so the inclusion of Design of Experiments (DOE) approximations [48] and other computa-
tional innovations [46] followed. A number of overview articles and book chapters on the

Ml have been recently published [4, 5, 6, 80]; they contain details, and comparison to other



methods, that are not germane here.
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Chapter 4

Individual and Overall Preference

As a prerequisite to the formal representation of negotiation in engineering design, the ag-
gregation of separate or individual preferences into a single, overarching preference, must
be addressed. This aggregation, in turn, depends on the formalization of the notion of
(individual) preferences. Chapter 3 presented the Myl background to this problem, while
Chapter 2 described economic decision theories and multi-criteria decision-making sys-
tems. This chapter treats the question of an assignment of a numerical scale for preferences.
Such a numerical scale can be specified in a number of different ways, and the choice of a
scale depends upon its intended use.

Any formal method for decision making must represent the comparable acceptability
of different alternatives. A point of notation: generic alternatives will be denoted A, B, C,
etc. Parameterized design alternatives are still denoted d. The most basic concept in the
ranking of alternatives is simple compaﬁson. In such comparison there is no association of
numbers with alternatives, but only the idea that one alternative A is preferred to another

alternative B. A ranking that depends only on simple comparison is called a weak order:

Definition 4.1 A weak order on a set of alternatives X = {A,B,C,...} is a transitive
binary relation > such that for any two elements A and B, either A > B (A is at least as
preferable as B), or B = A (B is at least as preferable as A). Indifference is possible: if
A > Band B = A, then one writes A ~ B (A is indifferent to B). If A = B but B } A,

then A is (strictly) preferred to B, written A >~ B.

A weak order is an ordinal ranking: it orders the alternatives without assigning numer-
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ical values. Any computational method for decision making requires the further structure
of a numerical scale that ranks alternatives. Such a numerical scale will be called a value
function. The familiar > and > on the real numbers of the value function correspond to the

preference relations > and >~ among alternatives:

Definition 4.2 A value function is an assignment of real numbers to alternatives that pre-
serves a weak order of acceptability of those alternatives. A value function maps a set
together with a weak order {X, >} to the real numbers with its usual ordering {IR,>}.
For a value function v, v(A) > v(B) iff. A = B, with equality for indifference.

While it is always possible to construct a value function from a weak order [45], there
is nothing inherent in the definition of a value function that permits a measure of degree of
acceptability. In other words, there is no interpretation of relative value beyond the weak
ordering of alternatives. A value function can be given additional structure that allows
the interpretation of the numerical value. For computation to be meaningful, some such
extra structure is required. This chapter discusses the question of choosing a structure for
numerical preference.

Three distinct decision problems are decision with multiple criteria, group decision
making, and decision under uncertainty [32]. The aggregation of individual preferences in
engineering design, and the particular paradigm of resolution by negotiation, is principally
a problem in decision with multiple criteria, though it bears superficial resemblance to the
other two decision problems. In the theory of group decision making, a well-known objec-
tion to the validity of combining separate weak orders into a single (“social”’) order at all,
is Kenneth J. Arrow’s so-called Impossibility Theorem [7, 8]. The computable negotiation
method for engineering design presented in this thesis is also a decision method that de-
pends on the aggregation of several weak orders into a single order. Because of its apparent
similarity to group decision making, it is appropriate to address here the concerns raised by
the Impossibility Theorem.

All three sorts of decision problems ultimately rely on a weak ordering among alter-
natives. Multiple criteria analysis and decision under uncertainty usually overlay the weak

ordering of alternatives with a value function (and an interpretation of the numerical scale).
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The special character of the multiple criteria decision problem, and its particular value func-
tion, turn out to be crucial in the resolution of the difficulties raised by Arrow’s theorem.
In this chapter, the objections raised by Arrow’s theorem will first be treated. Then, the
concept of individual preference, and possible interpretations of a numerical scale on the
underlying weak ordering of alternatives, will be discussed. The value functions that are
associated with multiple criteria analysis and decision under uncertainty both overcome the

objections of Arrow’s theorem, but there are still important differences between the two.

4.1 Arrow’s Impossibility Theorem and implications for the ag-

gregation of preference

Kenneth J. Arrow’s Impossibility Theorem is an important and powerful result in the theory
of social choice. For that reason, and because a thorough understanding of that result will
facilitate a comparison between the social choice and multi-criteria decision problems, the
Impossibility Theorem will be presented here. The treatment here refers mainly to two

books by Arrow [7, 8].

4.1.1 The motivating paradox

The backdrop for Arrow’s work is politico-economic. Political scientists are interested in
determining a “fair” method of reconciling the potentially conflicting interests of individ-
uals in a society. Economists seek the most “satisfactory” distribution of a set of com-
modities throughout a society. The similarities between the two problems are evident, and
indeed both can be formalized in the same way; the notions of “fair” and “satisfactory” are
explored through this formalization.

The majority method of decision making is one possible answer to the loosely formu-
lated question of fair social choice, and one that is sufficiently obvious that a contradiction
that arises from its employment motivates the Impossibility Theorem. For an odd number
of people and two options to choose among, a simple vote is guaranteed to satisfy the most
people (degree of satisfaction, which will be discussed later, is assumed not to be an issue

here). But when there are three choices, a paradox arises: say that there are three voters,
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one of whom prefers option A to option B to option C, another who prefers B to C to A,
and a third who prefers C to A to B. All three voters have rationally ordered preferences,
and yet a pairwise vote shows that as a group, these three prefer A to B, and prefer B to
C, yet also prefer C to A. The resulting social order is not rational, and provides no basis
on which to make a decision. This paradox is called the failure to ensure the transitivity
of the majority method, or the paradox of voting [7, p. 2]. It is in the context of this para-
dox that economists and political scientists explore the limits of “fair” and “satisfactory”
social choice: is there any procedure for aggregating social preferences that can avoid this
paradox? Arrow’s Impossibility Theorem shows that, given a particular set of axioms that
define fair and satisfactory, there is no procedure that can (always) fulfill them all. The

formal proof proceeds from the description of the problem with a set of axioms.

4.1.2 Axioms for the social choice problem

By introducing axioms to define any decision problem, two ends are accomplished. Primar-
ily, the problem is modelled so that conclusions about the problem can be derived math-
ematically. Results are certain with respect to the axiomatic model; their certainty with
respect to real problems depends on the validity of the axioms. An additional end of ax-
iématization is the casting of vague descriptions such as “fair” and “satisfactory” in precise
terms.

The axioms which model the social choice problem formalize a number of assumptions
about the nature of the problem. When the multi-criteria decision problem is discussed

below, the applicability of these assumptions will also be considered:

1. The social choice problem is the aggregation of many weak orderings into a single

“social” weak ordering.

2. Every individual ordering carries equal weight. This assumption is natural when each
voter must be accorded the same fundamental worth (as a human being) in order to

maintain a notion of fairness.

3. There is no interpersonal comparison of utility.! In other words, there is no standard

!Note that Arrow uses “utility” for any value function; these are not necessarily von Neumann—Morgenstern
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for comparison of strength of feeling or value to individuals, so there is no mechanism
for choosing A over B because one voter “strongly” prefers A to B while the other

two have only a “mild” preference for B over A.

4. There are at least three alternatives, since the problem of two alternatives is trivial.
There are an odd and finite number of alternatives, a condition that avoids technical-

ities without excluding any interesting cases.

In other words, the social choice problem considers decision cases where all options are
known, mutually exclusive, and ordered by individuals, and where the task is to produce a
single social order yielding the greatest overall benefit while respecting the (equal) worth

of each individual. To formalize this decision situation, Arrow introduces five axioms:
Axiom 4.1 (unrestricted domain) Each individual is free to order the alternatives in any
way.

Restricting Axiom 4.1 is one way to address the paradox, and methods that guarantee the
transitivity of the majority method can be ranked by how severely they restrict this freedom.

It is not at all obvious that this is reasonable for design decisions, as will be discussed below.

Axiom 4.2 (positive response) If a set of orders ranks A before B, and a second set of
orders is identical except that individuals who ranked B before A are entitled to switch,

then A is before B in the second set of orders.
Axiom 4.2 is an ordinal version of monotonicity.

Axiom 4.3 (independence of irrelevant alternatives) If A is before B in a social order,

then A is still before B if a third alternative C is ignored or added.

Note that Axiom 4.3 is violated in the motivating paradox, where the relative rankings of A

and B are influenced by the addition of the alternative C.

Axiom 4.4 (not imposed) Arn order is called imposed if some A is before some B in all

possible social orders. The social choice problem must not be imposed.

Axiom 4.5 (not dictatorial) An order is called dictatorial if there is one individual whose

decisions dictate the social order. This is likewise not allowed.

utilities.
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4.1.3 The resulting contradiction

The General Possibility Theorem, now commonly known as Arrow’s Impossibility Theo-

rem, shows that a social choice function satisfying all five conditions is an impossibility:

Theorem 4.1 Any social choice function satisfying Axioms 4.1-4.3 must be either imposed

or dictatorial.

The proof is fairly straightforward. The reader is referred to one of [7, 8] for details, but the
basic line of reasoning is as follows: A decisive set of individuals for A over B is a set who
guarantee that A will be preferred to B whenever they unanimously agree so; any decisive
set must contain a smaller decisive set; there is always a decisive set; any set that is decisive
for A over B is decisive for A over anything else and for anything else over B, and thus for
all A over all B; thus there must be a dictator. The only way to avoid this dictatorship is to
impose some preferences, violating Axiom 4.4.

Thus the paradox of the intransitivity of the majority method is a manifestation of a dif-
ficulty so deeply embedded in the social choice problem that it cannot be resolved without

compromising the defining axioms.

4.14 Ways around the contradiction

Arrow’s Theorem shows only that there is no method of aggregating social choice that is
guaranteed to satisfy all five axioms, not that all instances of social choice will violate one
axiom or another. Are all socio-political systems then fundamentally irrational, or are there
systems that diverge from the given axioms?

Arrow and others have attempted to resolve the paradox by weakening the first condi-
tion, arguing that in real political, economic, and even moral® systems participants tacitly
agree to structure their choices in a “logical” way, i.e., in a way that keeps contradictions
from arising. Thus Arrow introduces the notion of single-peakedness as a way around the
dilemma—the set of alternatives is ordered on some (one-dimensional) external scale, so
that each individual is free to choose his favorite, but then must hold descending regard for

the other alternatives to the two sides of his first choice. This notion of single-peakedness

%Arrow goes so far as to quote Kant [7, pp. 81-82]
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(see Figure 4.1) is closely related to the convexity that will be discussed later when the engi-
neering design decision problem is considered, though the limitation to one dimension does
not hold there. The example of a political spectrum is given: each voter has a preferred, or
ideal party, and each step away from the ideal party, whether to the left or to the right, is
an ever less desirable alternative. This condition says nothing about comparison between
parties to the left and parties to the right of ideal. If a condition of single-peakedness is
substituted for the axiom of unrestricted domain, then the Impossibility Theorem no longer
holds. A structure of this sort may be what holds parliamentary systems together. Of
course, in a two-party system there is no contradiction, as the two-alternative situation is
not paradoxical.

In general, the difficulty of the Impossibility Theorem can be overcome by restricting
the freedom of individuals participating in the process by structuring their preferences in
some way. Ranking all alternatives on an external scale as discussed above is one form of
structure; allowing limited veto power is another. Various options for structuring prefer-

ences will be discussed below.

4.1.5 Weights in the social choice problem

Before turning to the multi-criteria decision problem, there is one non-solution to the prob-
lem that bears discussion. It may be tempting to resolve the dilemma with weights, or with
some measure of strength of feeling of the individuals involved. This amounts to the assign-
ment of a numerical ordering in the place of the weak order of alternatives by individuals.
For instance, in the motivating paradox, instead of a simple weak order, let each individual
rank each option on a scale from 0 to 1 and use a weighted sum or some other aggregation.
In many cases, the resulting order will be transitive. For another example, consider votes by
elected representatives on measures brought before them, where strength of feeling comes
into play when a member is willing to vote for a measure he weakly opposes in order to
gain support for another measure he strongly supports.

Neither of these examples resolves the basic difficulty of the Impossibility Theorem;
each rather recasts the problem to a particular instance where the paradox is hidden. Indeed,

in each case the problem can be expanded to one where the Impossibility Theorem applies
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1st | 2nd | 3rd

Voter1 | A B C

Voter 2

Voter3 | C A B

Table 4.1: Weak orders of three voters

directly. In the case of the elected official, one must consider the outcomes on all votes
at once (though they are separated in time) to get a weak order for each representative. In
the case of summed weighted rankings of the alternatives, a little arithmetic reformulates
the problem as one with more decision makers with simple weak orderings. Consider the
motivating paradox of Section 4.1.1, with the individual voters’ weak orders shown again
in Table 4.1. A majority pairwise vote to combine these three weak orders leads to an
intransitive, and thus untenable answer. Weights and a measure of strength of feeling can
be added to the problem: let us suppose that each voter is given 10 points to distribute
among the three alternatives, and that Voter 1 is assigned double the weight of the other

two voters. A representative combination with a weighted sum is shown here:

A | B | C | weight
Voter1 | 6 | 3 | 1 2
Voter2 | 2 | 5| 3 1
Voter3 | 2 | 0 | 8 1
Total | 16 | 11 | 13

In this case, there is no ambiguity: A is clearly preferred to B and C, and B is clearly
preferred to C.

This solution, however, is accidental. If Voter 3, for instance, holds the slight differ-
ent preferences shown here, preferences which are still consistent with the weak order in

Table 4.1, there is no longer a clear choice between B and C:



A | B | C | weight
Voter1 | 6 | 3 | 1 2
Voter2 | 2 | 5| 3 1
Voter3 | 2 | 1 | 7 1
Total | 16 | 12 | 12

Indeed, there are numerical preferences consistent with the weak orders in Table 4.1 that
end in indifference among all three alternatives.

Any of these sets of numerical preferences can be recast as weak orders held by more
voters. To express 10 preference points requires 20 individual weak orders: for example,
if alternative A received 1 of the 10 possible points, that is expressed by one weak order
A>B>C, and one A = C = B. (If there are more than three alternatives, then more
weak orders are required.) Voter 2’s numerical preferences, for instance, are equivalent to

the following 20 weak orders:

1st | 2nd | 3rd | instances of this order
A| B C 2
A| C B 2
B | C A 5
B| A | C 5
C| A | B 3
C| B A 3

Voter 1 carries double the weight and will require 40 orders to capture their numerical pref-
erences. The entire weighted sum aggregation is equivalent to the majority method applied
to 80 individual voters. It is not surprising that the paradoxical situation of three voters
is resolved by some of the many ways that the situation can be rewritten with 80 voters.
Nevertheless, Arrow’s Theorem still applies: the weighted sum method does not guarantee
transitivity. Nor is the difficulty overcome by aggregating by other than a weighted sum:
the arithmetic to recast the problem may be more complicated, but it is not deeper.

Arrow assumes, appropriately for the social choice problem, that interpersonal com-
parisons of criteria are meaningless, so that one alternative cannot be chosen because one

individual would derive such great satisfaction from it that their “happiness” (or utility)
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would be greater than the loss felt by the other two who (only somewhat weakly) prefer a
second alternative. Clearly, in many decision environments, including engineering design,
strength of feeling or preference is important. However, the foregoing discussion shows
that simply incorporating a value function as a numerical measure of strength of feeling is
not sufficient to resolve the dilemma highlighted by the Impossibility Theorem. The diffi-
culties raised by the Impossibility Theorem will be addressed in the following sections, and
the solution will include the specification of value functions in place of weak orders. It is
not the mere assignment of numbers for preference, however, that resolves the difficulties
raised by the Impossibility Theorem, but the careful definition of the engineering design
decision problem and the interpretation of the preference scale in that context.

Arrow’s work raises several issues for design decision theory. First, it shows that it
is hard to construct a provably consistent decision method: the assumptions are few, and
yet contradictions arise. Second, it shows that consistency can be reached with additional
structure. An axiomatic basis for design decision making must make explicit the structural

peculiarities of design decision problems.

4.2 Decision with multiple criteria

The problem of decision with multiple criteria is to rank a number of alternatives, each
of which is ranked separately by several ranking criteria. It is sometimes called the Multi
Objective Decision Making (MODM) or Multi Attribute Decision Making (MADM) prob-
lem. The ranking of alternatives on the basis of each objective is assumed to be given, and
the problem is to define an overall ranking based on some combination of the individual
criteria.

Though this problem appears superficially similar to the social choice problem, since
it seeks to combine several individual rankings into one, it is a distinct problem. Two

differences are:

e In the social choice problem, all orderings are accorded equal worth. In the multiple
criteria problem, it is desirable to be able to assign importance weightings to criteria.

While it is natural to accord all human voters equal worth, there is no obvious reason
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to require equal weighting of the different criteria that describe a design.

This difference, as mentioned above, diminishes or even disappears if the weighted

problem is defined as an unweighted problem with more individuals.

e The social choice problem permits no interpersonal comparison of utilities (prefer-
ences), and is thus limited to the discussion of weak orders. The heart of the multiple
criteria problem is the inter-attribute comparison of preferences. When considering
many design goals, it is crucial to understand their relative importance and the way in
which they interact. Again, what is natural to require when modelling the sovereignty

of individual citizens is not necessarily applicable to separate design criteria.

This difference makes decision with multiple criteria structurally different from so-
cial choice, and has deep implications for the applicability of the Impossibility The-

orem to the former problem.

Even the informal motivating paradox for the Impossibility Theorem (where a majority vote
ranked A before B before C before A) loses much of its power if cast in the framework of
multi-criteria decision making. Consider the analogous example of a design or a product
that is to be judged on the basis of three criteria: X, Y, and Z. It is certainly plausible to
assume that the designer may be faced with a choice of three candidate designs A, B, and C
such that A is better than B is better than C with respect to criterion X, B is better than C is
better than A with respect to Y, and C is better than A is better than B with respect to Z. The
analogous “paradox” here is that giving X, Y, and Z one vote each as a method to determine
the best design yields no obvious answer. In other words, if all that is known about a design
is one weak order among alternatives for each of the three criteria X, Y, and Z, then there is
not enough information to decide upon an overall best design. This “paradox” is resolved
in the Mgl by more careful consideration of preferences for X, Y, and Z, and the knowledge
of how those preferences will be aggregated; this is presented in more detail in Chapter 5.
In general, in a real design situation, there will be a (rational) weak order among A, B,
and C. The “paradox” is merely that additional information beyond the weak orders on X,
Y, and Z is required to recognize the overall order. The question asked here is whether and

when it is possible to find consistent, rational techniques to discover the ranking among A,
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B, and C. If so, it will necessarily be with a slightly different set of axioms from the ones of
the Impossibility Theorem, axioms more appropriate for engineering decision making than
for social choice.

A careful examination of the axioms is necessary before considering the Impossibility
Theorem in the context of the design decision problem. When combining engineering
criteria (the MADM problem) rather than individual orderings (the social choice problem),
the axioms of positive response, independence of irrelevant alternatives, and inadmissibility
of dictatorial solutions still seem to hold. However, it is not so obvious that domains must

be unrestricted or that orders must not be imposed. Consider two motivating examples:

1. Preferences for engineering requirements are commonly single-peaked (see Figure 4.1)
around an ideal target; weight is an example, as is stiffness. Indeed, nearly all engi-
neering requirements are of one of three forms: less is better, more is better, or closer

to a particular target is better [16]. All three of these forms are single-peaked.

2. Designs have constraints. A maximum stress indicates the point at which a design
breaks and fails; government regulations must be fulfilled or a design is not allowed
on the market. The positions of alternatives that fail on the basis of a single criterion

are thus imposed (to be last) in any aggregated order.

Not all evaluation criteria will behave in a single-peaked manner. A design preference
for availability of a particular material stock may be one criterion for a design, and it may
change over time and take on any order. The preference for the frequency of the first acous-
tic mode is often to avoid a particular unpleasant range. However, single-peaked criteria are
common, and designers often can and do restrict criteria that are not globally single-peaked
to regions of local single-peakedness. The vehicle structure designer seeking to avoid a par-
ticular range of frequencies of the first acoustic mode, for example, chooses to target either
higher or lower frequencies, thus considering only a range over which the criterion is single-
peaked. Thus while the completely generic design decision problem should obey Arrow’s
axiom of unrestricted domain, designers strive to avoid the generic problem, and rather to
cast each problem so that domains, rather than being unrestricted, are single-peaked along

the obvious external scales provided by the design parameterization. Indeed, in terms of
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the decision problem, the parameterization of a design serves to restrict domains. For the
multi-criteria decision problem, the axiom of unrestricted domain is replaced by an exhor-
tation to the designer to verify that criteria are single-peaked, or restrict the problem until
they are. It is understood that this may not always be possible, but when it is not, the de-
signer realizes that the design problem is not completely well-conditioned. These problems
are difficult for formal methods and informal methods alike.

Constraints in engineering design, if translated into social choice terms, are a sort of
veto that individual criteria may exercise over the entire design, and thus violate the axiom
of no imposed orders. However, when the design is acceptable on the basis of each indi-
vidual criterion, there is no reason to abandon the axiom of no imposed orders. For the

multi-criteria engineering decision problem, the axiom of no imposed orders is weakened:

Axiom 4.4a (limited imposed orders) Axiom 4.4 holds, with the exception that some
alternatives may be declared unacceptable, and thus last in any combined (“social”) order,
on the basis of an unacceptable ranking on a single criterion. All unacceptable alternatives

are equally unacceptable.

These two differences between the axioms for social choice and the axioms for multi-
criteria decision making are sufficient to make the results of Arrow’s Theorem inapplicable
to the engineering design decision-making problem.

Decision with multiple criteria differs empirically from social choice in an important
way. In the former, there is always a well-defined aggregated order that takes into account
all dimensions, and which is available in principle to anyone with the time and resources
to query the decision maker directly about all possible combinations; in the latter, Arrow’s
theorem calls into question the very existence of a well-defined aggregated order. A direct
specification of preference in many dimensions in the multi-criteria problem presents no
more theoretical difficulties than a direct specification of preferences in one dimension; the
practical implementation, however, can present great difficulty. The general problem of
preference in many dimensions can be approached in several ways. Utility theory assumes
the aggregated order is primary (and there is a single omniscient decision maker), and seeks

conditions under which the aggregated order can be simply expressed in terms of orders on
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the individual criteria [43]. The Ml and other systems (such as QFD [38]) address the case
when the overall order is not directly available, but must be constructed from information
about individual criteria. The negotiation problem presented in this thesis is on intermediate
ground between the case of an omniscient decision maker and the case of antagonistic
parties who share information only strategically.

The disturbing conclusion of the Impossibility Theorem for the social choice problem
is twofold: first, it is impossible to construct a method to arrive at a fair and rational social
order, and second, such an order may not exist. Clearly, an aggregated order exists in the
MADM problem. Does Arrow’s Impossibility Theorem shed any light on the search for a
method that can construct the aggregated order from orders on the individual attributes?

The axioms of the MADM problem are not identical to those of the social choice prob-
lem, and some of the differences are known to invalidate the Impossibility Theorem. There
are clear structural differences between the two cases. The social choice problem does not
admit interpersonal comparison; the Myl problem would be meaningless without it. The
social choice problem must respect individuals by imposing no structures on the orders; in
a design situation, cultural, customer, or managerial structure is almost always imposed.
For instance, if three candidate vehicle structure designs (A, B, and C) have bending stiff-
nesses of 3000, 3200, and 3400 N/mm respectively, Axiom 4.4 states that any individual
is free to prefer C over both A and B, and to prefer A over B. A vehicle structures group,
however, which proposed this order to management, would be taken to task for “irrational”
preferences over bending stiffness. This order, ranking C before A before B, is transitive,
and any transitive order must be considered rational in the social choice problem; it would
be an acceptable final order of candidate designs. With respect to the particular evaluation
criterion of maximizing bending stiffness, however, it is not rational; many such transitive
orders would be considered irrational in an engineering context. No individual is given veto
power in the social choice context;> almost any attribute of an engineered design has a level
so unacceptable as to veto the entire design.

Axioms 4.1 and 4.4 are crucial to the social choice problem. In the MADM problem,

3Some social systems, such as consensus, rely on (judiciously exercised) individual veto to prick the group

conscience.
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they disappear, or appear only in a modified form. It is this difference in axioms that allows
MADM methods to operate, at least on some large classes of problems, without violating

the conclusions of the Impossibility Theorem.

4.3 Individual preferences

There is more than one way to assign a value function when a weak order among alterna-
tives is given. The assignment of a value function, and the interpretation of the numerical
scale, are determined by the intended use. In this section, two distinct approaches to the
assignment of a value function will be discussed: the preferences of the My, and the util-
ities (or von Neumann—Morgenstern utilities) of economic theory. Both depend ultimately
on weak orderings among alternatives, but the underlying assumptions are‘different, as are

the interpretations.

4.3.1 Utility

The specification of utility depends on a weak order among alternatives, and on the mathe-
matics of expectation. In order to determine a utility function, the so-called lottery question
must have an answer: “Given that A is preferred to B, and B is preferred to C, at which
probability p is there indifference between the two choices ‘B with probability 1’ and ‘a
lottery that yields A with probability p and C with probability (1 — p)’?” (Note that the
question need not have a direct answer; see [94], for instance, for a discussion of the elicita-
tion of von Neumann-Morgenstern utilities with little or no probability information.) Von
Neumann and Morgenstern [93] show that, given the assumption that utilities combine with
the mathematics of expectation, the numerical utility scale is determined up to an affine
transformation.

The assumption of the use of mathematical expectation arises because utility theory is
intended to treat questions of decision making under probabilistic uncertainty, such as those
that are germane to gambling. This makes the specification of relative utilities (relative, that
is, to each other) with probabilities natural.

However, the development of utility specifically excluded the notion of interpersonal
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comparison of utility as too difficult to address:

We do not undertake to fix an absolute zero and an absolute unit of utility. [93,

footnote, p. 25]

Utility theory is intended for use in decision making under uncertainty or risk, rather than
as a solution of the multi-criteria decision making problem. Certainly the specification of
individual utilities does not answer, by itself, the negotiation problem. Even in the case
of a single decision maker, where utilities can be assumed to be comparable, utility theory
derives conditions under which the decision maker’s overall utility can be determined to be
a simple function of individual, independent utility functions [42].

The success of the von Neumann—Morgenstern utility paradigm, and the ease of its
application in terms of quantified risk, have led to the identification of many decision prob-
lems with problems of (economic) decision making under uncertainty. The lottery question
seems natural, and so it is assumed that the lottery question is the right way to impose a
numerical scale on preferences. The need for this particular numerical scale to make deci-
sions under uncertainty is hidden, and other scales are not considered. Nevertheless, design
may not be best classified as decision making under risk and uncertainty. Utility theory is
one paradigm for decision making, appropriate for a particular set of problems, those where
the “estimation of expectations for each option” is the most pertinent information. When
design reaches the manufacturing stage, and probability distributions over manufacturing
tolerances are the most relevant uncertainties, the design decision problem is much closer
to the problem addressed by utility theory. Earlier in the design process, where uncertainty
will be resolved by refinement of a design alternative, rather than by random selection from
a perceived distribution among alternatives, a utility model is less appropriate.

From the point of view of classical utility theory, the design decision problem described
in Definition 3.1 would be a case of decision making under certainty. The construction of
the utility function and the choice of a “best” solution with limited computation would be

uninteresting problems.
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4.3.2 Myl preference

Preferences specified in the Ml also depend on a weak order among alternatives. Pref-
erences, unlike utilities, are expressed on an absolute scale, where a preference of y = 1
indicates a completely acceptable value, and . = 0 a completely unacceptable value. The
negotiated design decision combines many individual preferences into a single, overall pref-
erence. The individual preference orders may be generated by or associated with different
people or groups involved in the design, but they are distinguished by the attributes that
form the rationale for each preference. Since “interpersonal” (actually, inter-attribute) com-
parison of preference is required, all preference values must have consistent meaning. A
preference level of oo must mean the same thing regardless of which attribute it is based on,
and regardless of which person or group provides the number.

Empirical studies into sensation (a heading that can be reasonably supposed to include
preference) have shown that human beings are, in general, capable of sorting into 7 & 2 cat-
egories [50]. Direct specification of an entire preference curve would then be unrealistic,
though it is mathematically convenient to assume its existence at every point. Since a lim-
ited number of points (around seven) can thus be fixed directly, it is often most convenient
to assume that preferences are piecewise linear between those points. A lottery method
cannot fix points on an absolute scale, but might be used to fill in between the fixed points.

As preference will play a large role in following chapters, it is helpful to give a formal

definition:

Definition 4.3 A preference (an Myl preference) is a map p : X — [0, 1], where X is a set

and will usually be identified with the design space D or the performance space P.

Preferences specified on the design space will be up, preferences specified on the per-
formance space will be up. As discussed in Chapter 3, when there isamap f : D — P
that specifies a preference for each design, there are also induced maps up : D — [0, 1]

defined by pp(d) = pp(f(d)), and up : P — [0, 1], defined by the extension principle:

pp(p) = sup pp(d)
d|f(d)=p

When there are coordinates for X and preferences are independent with respect to some
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of the coordinates, those preferences can be specified with respect to subsets of X. In
particular, when X = IR" x Z™, u may map one copy of IR or Z to [0, 1], representing the

expression of preference on a single variable.

4.4 Summary

The aim of this chapter was to introduce the formal notion of preference, and to establish
the legitimacy of comparing preferences in the engineering design problem, even though
such comparison is not permissible in the social choice problem. The next chapter delves
deeper into the question of legitimate aggregations of preference to effect such comparison.

The formalism for preference employed in this thesis is the absolute scale on the inter-
val [0, 1] used previously in the M. Because this formalism differs from the well-known
formalism of preference through utility functions, some differences between the two were
discussed. Utilities are specified so as to be useful in the selection of alternatives when
the outcomes of those alternatives are not certain, but the probability distribution of conse-
quences is known. On the other hand, utilities are not meant for inter-attribute comparison.
The preferences of the Ml are not intended for use in expectation calculations, but their use
of an absolute scale suits them for inter-attribute comparison and for the natural inclusion
of constraints.

Both the social choice problem and the engineering design decision problem have an-
other dimension that has not been dealt with here, that of manipulability. Can individuals
benefit by misrepresenting their preferences? Game theory [93] considers the problem of
strategic sharing of information to maximize personal gain. The negotiation problem con-
sidered in this thesis occupies an intriguing middle ground between cooperative and com-
petitive games: the participants should have a common goal, but may not always perceive
that. Indeed, it is a managerial challenge in any large design effort to prevent the individu-
als involved in the design from developing a set of preferences that is contrary to the group
effort. The use of the model of negotiations presented here does not, by itself, force all
participants to act in the common self-interest. It does, however, provide a more thorough

structural analysis of the decision problem, and can thus serve as a tool for those who wish



to enforce honesty.
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Chapter 5

Aggregation of Preference

At the heart of the negotiation problem lies the aggregation of preference. Individual prefer-
ence functions, each representing a particular performance measure or point of view, must
be reconciled into a single, overall preference function. This chapter considers the prob-
lem of choosing an aggregation function for multiple criteria decision making in general,
and for design decision making in particular. The results are presented within the context
of the M, but they have general applicability in MADM and MODM approaches. The
axioms of the Myl and the reasons for their use in modelling engineering design decisions
will be presented. In the context of these axioms, potential aggregation functions will be
discussed. The Ml formerly used two different aggregation functions to model two differ-
ent design trade-off strategies. Here the range of possible aggregation functions suitable for
such decision making will be explored. A parameterized family of functions that satisfies
all the axioms for design and that models a continuum of strategies between the two exist-
ing strategies of the Ml will be presented. The possibility of suitable aggregation functions
outside this range will be discussed, and an example will be given. Having found a com-
plete range of design-appropriate aggregations, the question of which function to choose

will also be addressed.

5.1 Aggregation in the Myl

An engineering decision was described earlier as a choice among alternatives, or more

generally as a search for the “best performing” (sets of) alternative(s). Definition 4.3 made
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formal the notion of preference as a map p : X — [0, 1]. The interpretation of preference
is that x; is preferred to xp if p(x1) > p(x2). However, there will typically be several
different preferences associated with a design, and in general it is impossible to maximize
all preferences simultaneously. Thus it is necessary to formalize the notion of an aggregated

preference that takes all individual preferences into account. Thus the following definition:

Definition 5.1 For a set of preferences u; : X — [0, 1], the aggregation of the p; is itself
a preference |iags : X — [0,1], defined (pointwise) by a functional aggregation operator
P: PF[X|" x R™"\ {0} - PF[X]

Page(X) = P11, -+ s fbnj W1, - - - ,wr ) (X)

where the parameters w; € R are weights, and PF[X| is the space of preference functions

on X, the set {u|p : X — [0,1]}. An aggregation operator must satisfy:

P(ﬂla ceey MniWi,. . aw’n)(xl) = ’P(,u'll7 D) 7,“‘77./;‘-‘)17 .o awn)(XZ)
whenever p;(x1) = pi’ (x2) for all .

When the aggregated preference p,g, is the combined overall preference that considers
all individual preferences describing the performance of a design, it is referred to as the
overall preference for that design, and is denoted f.

The aggregation of preference is defined for an arbitrary (finite) number of individual
preference functions. The following discussion and results shall consider the case of ag-
gregation of exactly two individual preferences. Aggregation of more than two preferences
is accomplished hierarchically. The operators that are used for aggregation extend simply
to several arguments; nevertheless, in the case where several preferences are assigned hi-
erarchically using different aggregation operators, the overall preference is in general not
a simple extension of a constituent operator. Note that the final condition of the defini-
tion, that the aggregation be identical whenever the constituent preference values are the
same, will allow the identification of an aggregation operator with a function on the space

of preference values.
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The Myl has previously used two different aggregation functions to model two different
situations in decision making in design. When the overall preference for the performance
of a design is limited by the attribute with the lowest performance, the decision-making
problem is said to be non-compensating, and the aggregation function used has been the
simple minimum:

Hags(x) = min (1 (x), p2(x))

(In this case, all non-zero weights are equivalent.) When good performance on one attribute
is perceived to partially compensate for lower performance on another, the problem is called

compensating, and the weighted geometric mean or product of powers has been used:!

1

Pragg(X) = (ul (x)“ po (x)w2> witwy

The definition of a functional aggregation operator P places no a priori restrictions on
the behavior of P beyond the specification of its domain and range. Nevertheless, not all
functional operators are appropriate for engineering design decisions. In the following sec-
tions, axioms for engineering design aggregation will be presented, and those axioms will
then be solved (in the sense that a characterization of necessary and sufficient conditions

for appropriate functions will be given).

5.2 The axioms of the Myl

In any multi-criteria decision system, it is desirable that the aggregation functions used be
justifiable models for decision-making behavior. The choice of an aggregation function
may be justified in several ways. Empirical tests, such as those conducted by other re-
searchers [84], can help determine which aggregation functions best model human decision
making in various contexts. Computational simplicity is often used as a basis for the choice
of an aggregation function, for practical rather than fundamental reasons. As the Ml is a

Jformal theory, its development has been to appeal to intuitive notions of rational human be-

'Both of these aggregations are analogous to Pareto-optimal solutions in game theory [49, 93], and the
product of powers is analogous to a Nash solution. However, neither correspondence is mathematically precise,

since preferences are not equivalent to utilities.
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At each point x the following hold:
AQ.1 | Monotonicity:
P(p1, po i, wa)(x) < P(pa, pgs wi, wa)(x) V pa(x) < pg(x)
P(p1, po;wi,wa)(x) < Plur, po;wi, wy)(x) Vws < why pr(x) < pa(x)
AO.2 | Symmetry:
P(p1, po; wi, we) (x) = P2, p1; w2, w1 )(x)
AO.3 | Continuity:
P(p1, po; w1, wa) (%) = MMy )y (x) P11, o5 w1, w2 ) (X)
P(p1, po w1, wa)(x) = limyy o, Pp1, s wi, wp)(x)
AO.4 | Idempotency:
Py s wr,w2) (%) = p(x) Vwr +wz >0
AQ.5 | Annihilation:
P(u,0;wi,w2)(x) =0 Vwy #0
AQ.6 | Self-scaling weights:
P(pa, pos wit, wat)(x) = P(p1, p2;wi,w2)(x) Vwi+ws,t >0
AQO.7 | Zero weights:
P(p1, p2;wi,0)(x) = p1(x) Yw #0

havior, and to formalize this rationality in a set of axioms that its aggregation functions must

follow. The axioms of the Ml (see Table 5.1) [56] are a formal description of restrictions

Table 5.1: Axioms of the Myl for aggregation operators

on any preference aggregation operator for (rational) engineering design.

There is no universally accepted definition of rationality. A formal decision-making
system presents its definition of rationality in its formal axioms. This thesis follows Tribus [89]
in holding rational behavior to be behavior which is consistent with the pursuit of the stated
objectives. The monotonicity axiom is a clear example of rational behavior: the designer

who wishes to maximize preferences would be irrational to prefer one alternative over an-

other if the second offered higher preferences on all attributes.
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Following Definition 5.1, a preference aggregation operator P takes as its inputs two
preference functions p1 and uo, and returns an aggregated preference function .. There
are also two parameters, w; and wy, which represent weights. The axioms in Table 5.1
are expressed pointwise. The aggregated preference at a point x is often calculated by
composition:

~

P(p1, pas wi, w2)(x) = P(p1(x), pa(x);wi, wa)

and it is convenient to consider the map P : [0,1]2 x Rt \ {0} — [0, 1] which operates
directly on preference values, rather than the aggregation operator 7. The requirement that
aggregated preferences be consistent for all x implies that 77 and P are equivalent. Call P

the aggregation function corresponding to the aggregation operator P.

Proposition 5.1 For any aggregation operator P, there is a unique P such that

P, pzieon, w2) (%) = P (i (x), prz o) i, we)

Proof of Proposition 5.1 The result follows immediately from the consistency requirement

in Definition 5.1.

All the axioms in Table 5.1 can be rewritten simply in terms of P (see Table 5.2). Since an
aggregation function can be identified with an aggregation operator, where context is clear
the aggregation function may sometimes be written P.

The axioms of monotonicity, symmetry and continuity are common to many multi-
attribute decision-making schemes. Monotonicity formalizes the notion that an increase in
preference for one aspect of a design should never result in a decrease of overall preference.
Symmetry, like the consistency condition imposed in the definition of an aggregation op-
erator, formalizes the idea that the overall preference should depend only on the individual
preferences assigned, not on the reasons that those preferences were specified. Continuity
of aggregation states that continuous inputs should yield continuous outputs: there may be
discontinuities in an aggregated preference, but they should arise from discontinuities in
individual preferences, not from the aggregation itself.

The axioms that refer to weights are conventionally accepted. An attribute with a weight
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AF.1 | Monotonicity:
Pou, az;wi,wz) < Plog, ah;wr,we) Vag < o

» . » . / /.
P(ou, ag;wi,wr) < Plag,ag;wr,wh) Vws <wh; a1 < as

AF.2 | Symmetry:

ﬁ(al,az;wl,wz) = ﬁ(a27al§w27wl)

AF.3 | Continuity:

Ploa, ag;wi,ws) = limy; _,q, P(on, s wi, wo)

Plai, a;wi,ws) = limyy _,, P(a1,as;wy,w))

/
2

AF.4 | Idempotency:

~

Py, pswi,w2) = p Vwi +wy >0

AF.5 | Annihilation:

Py, 0;wi,we) =0 Ywy #0

AF.6 | Self-scaling weights:

ﬁ(al,ag;wlt,wgt) = ﬁ(al,ag;wl,wz) Vw +ws,t>0

AF.7 | Zero weights:

~

P(a1, ag;w,0) =1 Vw; #0

Table 5.2: Axioms of the Ml for aggregation functions
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of zero should contribute nothing to the calculation of the overall performance. Self-scaling
weights are convenient for the hierarchical combination of an arbitrary number of attributes;
alternatively, one could create an axiomatic system that relied on normalized weights. How-
ever, two of the axioms, idempotency (A0.4 and AF.4) and annihilation (AO.5 and AF.5),
are fundamental to engineering design decision making, and thus to the Mgl.

The idempotency axiom appeals to a notion of rational behavior. It states that if several
identical individual preferences are combined, the overall preference must be the same as
the (identical) preferences on the individual variables. Idempotency reflects the constraint
that the overall preference for a design should never exceed the preference of the highest-
ranked attribute, nor fall below the preference of the lowest-ranked attribute. Idempotency
and monotonicity together lead to the requirement that min < P < max. Idempotency has
significant implications for the specification of preferences: it enforces the ability to com-
pare different attributes.

The annihilation axiom is also specific to engineering design, and others have argued its
validity [13, 58, 92]. It states that if the preference for any one attribute of the design sinks
to zero (unacceptable) then the overall preference for the design is zero. For example, the
tensile strength limit for a material cannot be exceeded no matter how great the reduction
in the design’s cost or weight. This is in contrast to a decision-making situation in which all
performances can be converted into monetary units; in the latter case, two goals can always
be traded, or bought, off. The annihilation axiom must also be considered carefully in the
specification of individual preferences: an attribute may have no value that descends to a
preference level of zero.

One axiom that is not necessary for design-appropriate aggregation functions is an ax-
iom of strict monotonicity, and such a requirement would be incompatible with annihilation.
Thus the Ml allows for some indifference in aggregation. The non-compensating function
min is an example of a function that fulfills all of the axioms of the Mgl and is not strictly
monotonic.

The axioms of idempotency and annihilation set the Ml apart from other multi-attribute
decision-making systems. It should be noted that these axioms simultaneously define the

preference aggregation and provide interpretation for the specification of preference. These
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axioms should not, for instance, be applied to the aggregation of utilities, which are speci-
fied with regard to their potential use in situations of decision making with quasi-monetary
outcomes and probabilistic uncertainty. Here the axioms of the Ml are posited as rational
for design. There may be decision-making problems, outside of the field of engineering de-
sign, for which these axioms do not supply a rational model. Nevertheless, the fundamental
results on aggregation discussed here are relevant to any other (even non-design) MADM

schemes that obey similar axioms.

Definition 5.2 An aggregation operator (function) is termed design-appropriate if it satis-

fies the axioms in Table 5.1 (Table 5.2).

Having defined design-appropriate functions, it is natural to seek a complete functional
characterization of such functions. This is undertaken in Section 5.4, after a digression to

discuss some other MADM systems.

5.3 Fuzzy multi-attribute decision making

Ml preferences and membership functions for fuzzy sets are both maps X — [0,1]. A de-
signer’s preference for particular values of a design variable defines a fuzzy set that might
be called “Values of design variable d preferred by the designer.” Fuzzy sets have been used
in the Ml since its inception, to represent imprecise quantities. The problem of aggrega-
tion of preference in the M is thus a multi-attribute decision-making problem with fuzzy
sets, sometimes called the fuzzy MADM problem. Other researchers have investigated this
problem, and some of the literature on fuzzy aggregation methods is presented here.

In their recent book on the subject, Chen and Hwang [18] identify 18 fuzzy MADM
methods, which they systematically classify into eight categories: simple additive weight-
ing methods, the Analytic Hierarchy Process (AHP), the Conjunction/Disjunction method,
MAUF, the General MADM method, the outranking method, maximin, and their own pro-
posed MADM method. In their survey, Chen and Hwang do not draw the distinction
observed by Zimmermann [109] between continuous Multi Objective Decision Making

(MODM) problems and discrete Multi Attribute Decision Making (MADM) problems.
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This thesis shall follow Chen and Hwang and use MADM to refer to the general problem,
whether continuous or discrete.

Several of the methods surveyed by Chen and Hwang are similar to the Ml. In addition,
the application of utility theory [43] to decision problems bears some similarity to the Ml
and to the methods listed above. The possible application of utility theory to engineering
design has been considered previously, and shown to be problematic [58]. Matrix methods
such as QFD [38] and Pugh charts [67] also support decision making by simple additive
aggregation over several requirements.

Aggregation operators are important in all MADM methods, from the most formal to
the most casual. The arithmetic mean or weighted sum is popular in matrix methods and
elsewhere, as it is simple to calculate. The min enjoys considerable popularity as well. Chen
and Hwang provide an overview of commonly used aggregation operators; the original min
and the product operators of the Mgl appear in their list, as do weighted sums. However,

the general weighted means that shall be shown to solve the functional axioms do not.

5.4 Weighted means

Fuzzy set researchers have productively applied the study of functional equations [1] to
explore t-norms and t-conorms [26]. This section applies the same general approach to
design-appropriate aggregation functions: the intuitively reasonable set of axioms is trans-
lated into a set of functional equations, and these equations are then solved.

A promising class of functions is the class of weighted means. The properties that
define weighted means are listed in Table 5.3. While weighted means are defined here as
functions of two arguments, they can be extended to several arguments.

The properties of the weighted mean include all of the properties of design-appropriate
aggregation functions with the exception of annihilation; a comparison of these proper-
ties with the axioms of the Myl shows that any weighted mean that satisfies annihila-
tion is design-appropriate. The properties of the weighted mean also include conditions
that are not explicitly design axioms; nevertheless, these conditions are consistent with the

axioms of the Mgl. The bisymmetry condition is a surrogate for commutativity and as-
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WM.1

Idempotency:

'P(:u’nu';whw2) =p V,u'vwlaWZ

‘WM.2

Internality:
3 e < pp suchthat Vwq,wg >0

Ba = P(pa, tp; 1,0) < P(pa, po; wi,w2) < P(la, 4p;0,1) = up

WM.3

Homogeneity of weights:

P(Ha; po; wit, wat) = P(q, py; w1, wa)
le,WQ > 0; w1 +wo,t>0

WM4

Bisymmetry:
P (P(Hl,,uz;wl,w2)a7’(#3,#430137604);601 + wo, w3 + w4)
=P (P(M17N3;w17w3),P(u2, M Wa, wy); w1 + w3, wa + w4)

WML.S

Increasing in weights:

P(as po; wi, w2) < P(ta, po; w1, ws)
for wo <ws (pe < pp)

WM.6

Increasing in variables:
’P(,u’h H2; w1, w2) < P(Ml, M35 W1, w2)
for M2 < p3, wo # 0

Table 5.3: Properties of the weighted mean
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sociativity, and assures that P can be consistently defined for more than two arguments.
Weighted means are strictly monotonic, which is a stronger condition than the monotonic-
ity of the design axioms, but it can be verified that the other properties of the weighted
mean are satisfied by arbitrary design-appropriate functions. Thus any strictly monotonic
design-appropriate aggregation function must be a weighted mean. There are design-
appropriate functions that are not weighted means, since they are monotonic but fail to
satisfy strict monotonicity. Such operators are often conditional rather than algebraic; the
min is but one example. The class of weighted means does not encompass any of these ag-
gregation functions that are only weakly monotonic. However, we shall see that the weak
monotonic operators presently used for design can be approximated arbitrarily closely by
strictly monotonic operators.

The structure of the class of weighted means is described completely in the following
theorem, proven in [1]. Note that the notational conventions of functional equations have
not been preserved. Thus the generating function is here g, rather than the customary f,
which is the performance measure of the M. Note as well that here p represents a real

number rather than a function:

Theorem 5.1 The properties of the weighted mean are necessary and sufficient for the

function P(u1, po; wi,ws) to be of the form

wi1g ™ (1) + wag ™! (p2)
w1 + w2

7)(/1'17,“2;“)17“‘)2) =g (

where g, < pi,pe < Wp 3 wi,we > 0 ;w1 +we > 0 and g is a strictly monotonic,

continuous function with inverse g~ '.

It follows that the space of design-appropriate aggregation functions can be identified
with the space of strictly increasing homeomorphisms on IR, and that any strictly monotonic
design-appropriate function must have such a generating function g. For example, g(t) = €
(with pg = 1 and up = €) generates the familiar weighted product of powers, denoted Pry

and also known as the geometric mean:

1
Pr(p1, po;wi, wa) = (p1“* po®?)wrtws
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This function only satisfies the properties of the weighted mean for ui,us > 0, but it
satisfies all of the design axioms, including annihilation, on the closed interval [0, 1].

The “parameterization” of the set of all design-appropriate functions by strictly increas-
ing homeomorphisms g is broader than is desirable. A parameterized family of equations
of particular interest for design is generated by the functions g(t) = ti, where s is a real

number. The aggregation function so generated is

1
wipr® + wwzs) s

7’3(#1,M2;w1,w2)=( w1t s

Note that a weighted mean satisfies annihilation if and only if g~1(0) is unbounded for
that function. For s < 0, g~1(¢) = ¢° is unbounded at ¢t = 0 and P, satisfies annihilation.
Similarly, Pry satisfies annihilation, as g~! () = In(t) is unbounded at ¢t = 0. Figure 5.1
shows the behavior of P, for several negative values of the parameter s, and for equal
weights (w; = ws). In this graph, ps = 0.5 is fixed and p, varies from 0 to 1 along the
x-axis. It is graphically evident, and easily shown analytically, that Py is identical to the
weighted product of powers Pry. Furthermore, as s tends to —oo, Pg(u1, t2; w1, ws) tends

to min(p1, u2), regardless of the weights.

Proposition 5.2 Py is identical to the weighted product of powers Pry:

gi_r)r(l)Ps(m, po;wi,ws) = Prr(p, p2; w1, ws)

Proof of Proposition 5.2

li_f)r(l)'Ps(llflvli%lewﬂ

wipn® + wopg®\ ¢
~ lim (—>

s—0 w1 + wo

1
. s s\ s
fimg o n (214 o2e" )

S £l

i 1 wipy“twopg”
tim o & In( #1227 e20a" )
= exp

.1)
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Note that, by the definition of the derivative,

S E]
lim L n (Mﬂw_)
w1+ wo

s—0 8
_ 4 [ln (wluls + w2#2s)}
ds w1 + wa s=0
wiln gy + woln ps
wi + wo

Thus, proceeding from (5.1), it follows that

lim Py (p1, p2; wi,ws)
s—0
wilnpytwolnpg
= exp wytwa

= (¥ pg)

= Pu(p, po;w1,wa)

which proves the proposition. |

In light of the preceding proposition, the geometric mean Pp will also be referred to as

Po.

Proposition 5.3 As s — —oo, P; tends to min:

Jm Py, pos wi, w2) = min(uy, pa)

Proof of Proposition 5.3

wip1® + wopn® .
lim <_b)

so—00 | wi +ws
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t

Y
() +%
= lim H2

t—+o0 ¢ T
(t2)'+2)
251 w1

Note that if s < p., then the denominator tends to one and the limit is po; if p1 < o,

then the denominator tends to % and the limit is ;. This proves the claim. ]

Thus the two functions originally proposed as aggregation functions for the M, the
min and the product of powers, turn out to be two limiting cases of a parameterized family
of weighted means. Each P;, s < 0, models a point on a continuum of trade-off strategies
between the original non-compensating and compensating functions.

The notion of a level of compensation can be made more precise. First, the family of
functions P; increases in level of compensation as s increases, in that the overall preference

increases with s:

Proposition 5.4 P;(a1, az;wi,ws) is non-decreasing as a function of s:

d
%Ps(al,az;wl,wg) Z 0 :

Proof of Proposition 5.4 Assume, for computational simplicity, that wy + wy = 1. This

assumption can be made without loss of generality by invoking Axiom AF.6 or AO.6. Then

1
Ps(on, ag;wi,wz) = (wra1® + weas®)s

and

d

Eps(aha%wl,w) =

1
gps(ala Q;wy,ws) ((wlals + woap®) " Hwrar® log g + waas® log ag) —

1
—log(wr01® + wgags))
s
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In the case that s < 0, we wish to establish that
(wror® + wgaf)'l(wlals log a1 4+ waan® log ap) — élog(wlals +waa®) <0 (5.2)
Multiplying both sides by s(wi0q® + waa2®) (which is non-positive), we now require
s(wia;®log dl + waaz®log ag) > (w11’ + wean®) log(wlals + woa®) (5.3)
Bringing s inside on the left side of the inequality, we now need to show
wiar®log(o1®) + waar® log(ag®) > (w101’ + weas®) log(wya;® + woan®) 5.4)

Since z log x is a concave function for x > 0, as %x logx = % > 0, this is the case.
Let g(x) = xlogw, 1 = a1®, 3 = a9’ Then g(w1z1 + wars) < wig(z1) + wag(x2),
proving (5.4).

If s > 0, the inequality must be reversed in (5.2), but since s(wia;®+ woaa®) is now
non-negative, the sign of the inequality is recovered in (5.3).

This proves the proposition. It should be noted that if o,y and oy are non-zero, and not

equal, then strict inequalities hold throughout the proof. B

The absolute overall preference is not as important as the relative preferences among al-
ternatives. If the overall preferences for all alternatives increase uniformly, then the level of
compensation has not changed. Another measure of compensation is thus more compelling.

The idea is that if there are two points (a1, ag) and (B, B2), with a; > 81, B2 > as, then

Ps(a)
Ps(B)

larger s always favor (o, ag) over (81, 32). More precisely, the ratio is an increasing

function of s.

Proposition 5.5 If (a1, a3), (01, 82) are two preference points, with a; > (1,82 > ao,

then
d Ps(on, a;wi, wa) >0
ds Ps(B1, P2;wi,wa) —

as long as wy,wy > 0.

The proof requires a lemma:
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Lemma 5.1 Let

vz log(z) + wy log(y) — (vr + wy) log(vz + wy)

h(z,y;v,w) =
(m,y Y w) VX + WY
Ifx,y,v,w > 0, then
d <0 ifzx<
—h(x’y;vaw) f Y
dz >0 ifz>y
Proof of Lemma 5.1
d vwy log (%)
2@y v w) = (o + wy)?

Since all other terms are positive, the sign depends on the sign of log (%), which is indeed

positive for x > y and negative for x < y. ]
It is a consequence of Lemma 5.1 that if the interval (z1, x2) is wholly contained inside
the interval (y1,y2), then h(z1, z2;v,w) < h(y1,y2; v, w).

Proof of Proposition 5.5 With a little algebra, - %(%% is seen to be:

Ps(oq, ag;wi,ws) (wlals log(a;®) + waan® log(az®) — (w101® + waa®) log(wia1® + was®)
52Ps(ﬂ1:ﬁ2§wlaw2) wi01% + waan’®

_w181°1og(B1°) + waBe’ log(B2°) — (w1B1° + wafa’) log(w1B1® + wzﬂf))
w1B1°® + wa B2’

Since the first factor is positive, the derivative is nonnegative whenever

wiar®log(ar®) + woan® log(as®) — (w101® + waae®) log(wyay® + ware®)
wr01® + woan®

S w1B1°log(B1°) + wafBa’log(B2°) — (w151 + waBa®) log(w1 1 ® + w2 f2°)
- w151° + waBa?

Setting x; = a;°,y; = 3;°, and wi = v,wy = w, and applying Lemma 5.1, this is always

the case. . =

Consider two alternatives A and B, each ranked on the basis of two separate criteria,

the preferences for A being (o, a2), and those for B being (81, 82). If oy > B, B2 > oo,
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then the least compensating function, the min (s = —o0), dictates a choice of B over
A (regardless of weights, provided they are non-zero). The most compensating function,
the max (s = —o00), indicates that A is preferred to B. Proposition 5.5 states that as the
parameter s increases, the relative preference for A rather than B increases as well. Thus

the parameter s is indeed a measure of level of compensation among goals.

5.5 Supercompensating functions

This section justifies the use of functions that exceed the geometric mean Py.

In multi-attribute decision making, aggregation functions should provide a useful, jus-
tifiable model of the design decision process. The parameterized family P, provides a
continuum of weighted means between the two existing functions of the Mgl. While this
family of functions is useful for design decision making, it is not exhaustive. Other gener-
ating functions give rise to other aggregation functions that satisfy all the axioms of the Ml
but behave differently from any of the P;.

The min is the least compensating possible design-appropriate function. No design
aggregation function can take on values less than the min at any point in a design space.
The min function defines a boundary not only of a certain family of weighted means, but
also of design-appropriate functions in general. The product of powers Py is a pivotal
example among weighted means, but it is not so clear that it is maximal among design-
appropriate functions. Indeed, a maximal design-appropriate function is problematic: such

a function Ppax would satisfy
Prmax(0, pswi,w2) =0 Vp
but also satisfy
Pmax(€, w1, w2) =p Yu>e>0

for all non-zero weights w1, ws. Pmax so defined takes on the largest possible value while
satisfying both idempotency and annihilation, but it fails another design axiom: it is dis-

continuous at zero. It is clear that there is no design function that provides an upper bound
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Figure 5.2: Functions that exceed Pry

in the same way that the min is the lower bound.

The family of weighted means that formed a continuum between the min and P was
found by varying the parameter s in P, between —oo and 0. It is interesting to examine what
happens if the parameter is varied between 0 and +oc. In this case a family of aggregation
functions between Py = Pr1 and Po, = max is generated. These functions do not satisfy
annihilation, so they do not appear to be appropriate for design. As long as no preference
approaches zero, however, these functions satisfy all the axioms of the Mgl. Figure 5.2
shows P plotted for several positive values of s. As s — oo, Ps — max.

It was noted above that the arithmetic mean is an aggregation function commonly used
in multi-attribute decision making. Yet the arithmetic mean does not satisfy all of the ax-
ioms of the My, as it fails annihilation. The arithmetic mean is the aggregation function

Py, and allows goals to compensate more strongly than the geometric mean. Indeed, Ps,
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for s > 0, always fails annihilation, and the level of compensation between goals increases
with s all the way to P, = max. If the arithmetic mean is chosen only for computational
simplicity, then its use must be further justified.

In practice, the Myl is implemented using discrete functions. This is partly an artifact of
computer implementation, but more fundamentally arises from the fact that some changes
in preference are too small to be distinguished. (Consider Miller’s research [50] indicating
that humans can distinguish 7 4 2 categories.) A designer does not actually specify a
continuous preference function on the interval [0, 1], but rather gives the values for each
variable on several different a-cuts [4]. For example, for a particular design variable, the
designer may specify which values correspond to & = 0, u = 0.25, u = 0.5, . = 0.75, and
w=1

The discontinuous manner in which preferences are specified provides some justifica-
tion for allowing the use of Py with s > 0, or even the max operator, as an aggregation
function when all of the preferences achieve some level. At each p > 0, P can be cal-
culated, but where p = 0, annihilation governs. This seems to model the design process,
as well: when all attributes are performing to some acceptable standard, a designer may
choose to allow the highest preferences great importance. Unacceptable performance on a
single objective, however, can scuttle the design, so annihilation is still satisfied.

Theorem 5.1 provides a technical justification for the use of the family of operators
between Py and P, . If it can be assumed that preferences less than some small ¢, say
0.1, are not relevant to the designer, then the theorem indicates that there is a continuous

aggregation function that satisfies P(0, ag; wi,ws) = 0 and

P(p1, po;wi,wz) = Ps(p1, po;wi,ws) for py,us > e

The theorem guarantees that there is a formal operator that models this level of compensa-
tion without violating continuity or any other axiom of the Mgl

Thus trade-offs for all cases of compensation, from none (s = —o0) to fully compen-
sating (s = 0) to supercompensating (s > 0) are accommodated by the weighted means

in Theorem 5.1. Note that the parameterized family of supercompensating functions obeys



the same results that were shown for the compensating functions in Section 5.4.

5.6 Example

To illustrate the family of aggregation operators outlined here and their importance, con-
sider example 12-10 from Prof. Zimmermann’s textbook [109]. This example is originally
presented in the text as a fuzzy linear programming problem with continuous variables. In
the expression of the problem, however, the variables are quantities of two products to be

produced, and it would be natural to assume that they can only take on integer values. Thus
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the problem can be thought of as a discrete MADM problem.

The example involves a company that produces two products, which yield different
returns in profit and balance of trade. (Product 1 yields $2 profit but requires $1 in imports;
product 2 can be exported for $2 revenue but makes only $1 profit.) The problem is to
decide on a “best” production schedule to achieve high profits and a favorable balance of

trade. The production schedule is subject to capacity constraints and is modelled as follows:

“maximize”

where
I
T2
21
22
subject to:

number of Product 2 manufactured

z(x) = (

number of Product 1 manufactured

balance of trade

profit
Cl: —xq1+ 3x9
C2: 1 + 3x9
C3:  4xq + 3x9
C4: 3x1 + x2
Cs: T
Cé6: T

-1 2
2

AV VANNEN VAR VAN

v

1

)

21
27
45
30



60

(z1,22) | 21 22
©7 |14 7
38 |13 14
@7 |10 15
a7 |9 17
67 | 8 19
84 | 0 20
9,3) 3021

Table 5.4: Undominated points in the decision space

Prof. Zimmermann shows a plot of the decision space with a region of optimal values,
similar to the one shown in Figure 5.3.
When decisions are based on the aggregation of performance of more than one attribute,

there is the notion of an undominated solution to the decision problem.

Definition 5.3 The alternative A dominates the alternative B if A performs no worse than
B on all attributes, and better than B on at least one attribute. In this case, regardless of
the weights or the strategy, it is always better to choose A over B. A feasible solution is

undominated if there is no other feasible solution which dominates it.

For a given problem, there is usually a (possibly infinite) set of undominated solutions
(called the undominated set). The choice among the undominated solutions is accémplished
by negotiation. There are seven undominated points, shown in Table 5.4, in the decision
space for this problem. The constraint inequalities are also shown on the plot.

It is clear that this problem is not simply an exercise in mathematical programming.
Three questions must be answered to determine an objective function which is a scalar
function of the original variables. First, the decision maker must specify what it means
to achieve the two individual goals (high profit, favorable balance of trade). Second, the
relative importance of the goals must be addressed. Third, to what extent should high
performance with respect to one goal be allowed to compensate for low performance else-

where?
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The example is solved in the textbook by an application of fuzzy sets that is substan-
tively similar to that used by the Myl. The first step is to determine a level of satisfaction
for each of the two goals, in essence to create the two fuzzy sets “Decisions that satisfy the
profit goal” and “Decisions that satisfy the balance of trade goal.” What the Myl would call
preference the textbook refers to as level of satisfaction. The preference or satisfaction for
the performance on balance of trade increases linearly from p1(x) = 0 at 21(x) = —3 to
p1(x) = 1 at z3(x) = 14. The preference for profit increases linearly from ps(x) = 0 at
23(x) = 7 to pup(x) = 1 at zp(x) = 21. These preferences are generated in the textbook
with reference to the values listed in Table 5.4: z(0,7) = (14, 7), while z(9, 3) = (-3, 21).
Note that by annihilation, x = (0,7) and x = (9, 3) are now dominated points. In the gen-
eral application of the Ml, the memberships ;; may be specified using a different process.
In any event, the given fuzzy sets “Decisions that satisfy the objectives,” with memberships
ranging from O to 1 throughout the decision space, are valid preference functions for the
ML

Since the textbook does not address the issue of importance weights for the two goals,
it shall be assumed that they are equally weighted. However, the choice of an aggregation
function, which encapsulates the decision of how much high performance on one attribute
is to compensate for low performance on the other, remains. If (unequal) weights were
specified, the choice of an aggregation function would still remain, and the conclusions
reached below would be qualitatively the same.

If the decision problem is treated as a fuzzy linear programming problem, as in the text,
the aggregation function used is the min. The min is “natural” for ease of computation, but
not necessarily natural for the decision. When the problem is solved using the min operator,
as shown in Figure 5.4, the maximum degree of “overall satisfaction” is given by the point
x4 = (5.03,7.32), with 1 = 0.74. Among the integer choices available, x5 = (5, 7) is the
best, with i = 0.71. This corresponds to the original M solution for a non-compensating
problem, i.e., when the overall performance is limited by the lowest performance of all
attributes.

It was noted earlier that in many situations, the overall performance of a design, or the

general attractiveness of a decision, is not limited by the lowest performance among the at-
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tributes. The Ml originally used a weighted product of powers for all “compensating” prob-

(5.70,7.10)

lems. Using this function, the point with highest combined preference is x¢

with 1 = 0.75, as shown in Figure 5.5. The point of highest preference is not far from

the point of highest preference achieved with the min operator. However, if one considers

only the discrete points with integer values (if the company cannot manufacture 5.70 of a

= (6,7) (with & = 0.74). A different level of

product), the highest performing point is xp

compensation among goals leads to a different decision.

The application of the entire family of aggregation functions P; to this example problem

shows that there are at least three optimal points, each suitable over a range of values of the

parameter s, and thus over a range of levels of compensation of goals. In addition, the point

(1,7), though dominated by the point (3,8), approaches it asymptotically in preference
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as the level of compensation approaches the maximum. The a priori assumption of equal
weights prevents the other undominated points from Table 5.4 from being optimal choices
for any strategy: this point will be discussed further in the following section.

Figure 5.6 shows the overall preferencés for all of these “optimal points” calculated
using P, with the parameter s ranging from —10 to 10. When Py = min (s — —o00), the
point with the highest preference is x = (5, 7), the textbook answer. As s grows and P,
becomes more compensating, the preference for other points grows stronger. As s crosses
—5.25, x = (6,7) overtakes x = (5,7) and remains the most preferred point through
approximately s = 2.25. This region includes two common aggregation functions: the
weighted product of powers or geometric mean (s = 0), and the classical weighted sum
or arithmetic mean (s = 1). Values of s greater than 2.25, corresponding to even stronger
levels of compensation, lead to an overall preference for the point (3, 8), and as s — o0,
the preference for the dominated point x = (1, 7) approaches the preference for x = (3, 8)
asymptotically. The limits s = 10 and s = —10 were chosen to show nearly the full range
of behavior of this problem; values of s outside this range are certainly permissible.

So, even for this simple textbook problem, a careful examination shows that the answer
depends on the aggregation functions employed. Different aggregation functions lead to dif-
ferent decisions; it is important to be able to model any tenable decision, and not to have the
decision restricted a priori by a limited selection of aggregations. The functions discussed
here provide models for a continuum of trade-offs ranging from the non-compensating min
to the compensating Ppy all the way to the max operator. Instead of two aggregation func-
tions, there is a parameterized family of functions ranging from the min to P, and another

from Ppg to the max.

5.7 Modelling negotiation: which decisions can be captured?

There are three distinct inputs to a multi-attribute design decision described here: the in-
dividual preferences, the relative weightings of those preferences, and the selection of a
strategy. It seems that the true level of individual preference should not be affected by ne-

gotiation; the preference for one aspect of a design should not depend on other aspects.
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Another matter altogether is the willful misrepresentation of preference as a negotiation
tactic, which will be discussed below. A natural definition of “negotiation” implies that two
or more parties come to the table with their preferences set. The weightings of the prefer-
ences, however, and the choice of a particular strategy, are decisions that separate parties
must consider, or negotiate, together. The relative weighting of the attributes and the choice
of a particular strategy both affect the level of preference that is achieved for each and every

attribute. Thus, in the broadest sense a negotiation considers both weights and strategies.

Definition 5.4 A negotiation is the selection of weights and a strategy. In particular, it is

the choice of the weights w; and of the compensation parameter s.

The common usage of the word “negotiate” connotes a situation where two or more in-
terested parties discuss a matter until a conclusion is reached. The definition of negotiation
used here is somewhat broad, in that it encompasses the selection of strategy and weights
whether or not those decisions are arrived at by adversarial parties in consultation. Here,
negotiation encompasses the situation where a single external decision maker, a manager
perhaps, imposes strategies and weights without consulting the parties who provided the
individual preferences. It encompasses the situation in which weights are fixed by some
external means, and strategies are all that can be considered. While various techniques
for arriving at particular strategies and weights will be presented, the emphasis is on the

mathematical model of the result, rather than on the actions taken by competing parties.

5.7.1 Theoretical possibilities

In this section it is shown that Definition 5.4 does not a priori exclude any undominated
points from selection in a full negotiation. Here, a “full” negotiation is one in which both
weights and strategies are to be chosen.

It is desirable that the result of a negotiation not be predetermined. In principle, it
should be possible for the result of a negotiation to be any one of the undominated solutions.
In other words, a negotiation model must permit the selection of any one of the feasible
undominated points. The negotiation model presented in this thesis fulfills this condition,

in that for any individual in a set of undominated solutions, there exist a strategy s and a
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ratio of weights w = % that select that individual as the “best” overall solution. The result

is shown directly on preferences:

Proposition 5.6 For any pair (a1, o) in an undominated finite set M of preference pairs,
there exist s* and w1™*,wy™ such that

* * * *
Psx (01, ag;wi™, wo )=( ma)?éMPs*(Oéz’,aj;wl ,wa™)
C\ti,Olj

The proof uses a lemma:

Lemma 5.2 [f M is an undominated finite set of preference pairs and (a1, a2) € M, then

there exists € > 0 such that every other element of M is dominated by either (c; — ¢,1) or
by (1,aq — €).

Proof of Lemma 5.2 Consider (B1,B2) € M. Since (81, 82) does not dominate (a1, ),
either a; > B1, or ag > Po. If ag > By, let § = O“—;@l Then (o — 6,1) dominates
(B1,B2)- If ag > o, let § = 9‘%& Then (1, g — &) dominates (031, 32). Since M is finite,
this can be repeated for all remaining elements of M let € be the smallest such 5, and every

element of M except (a1, g) is dominated either by (a; — €,1), or by (1, ag — e). m

Proof of Proposition 5.6 Let w = :j—; By Lemma 5.2, it suffices to show that for any e, the

Jfollowing pair of equations can be solved for s and w:

Ps(ar,02;1,w) = Py(l,as — 1,w) (5.5)

Ps(alaa2;17w) = Ps(al—G,QQ;l,W)

If s = 0 is a solution, then the proposition is proved. If s # 0, then the following equations

must be solved:

ar’ +wae® = (a1 —€) 4w (5.6)
a1’ +wa® = l14+w(ag—e)° 5.7
Solving (5.7) for w yields:
1-— als
w =

e’ — (a2 —€)®
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and plugging this into (5.6), and rearranging terms as below, gives the following that must

be solved for s:

(1-01°)(1 = @2®) — (1® — (1 — €)®) (a2® — (g —€)®) = 0

1-— als — ags — (011 — 6)8(012 — 6)5 + Oéls(ag — 6)8 + QQS(al — E)s = 0
which can be rewritten as:

1—¢° logay __ e’ logas eslog((al—e)(az—e)) (5.8)

_I_eslog(al(az—e))+eslog(a2(a1—e)) = 0

Now, the first derivative of (5.8) with respect to s, evaluated at s = 0, is 0; the second
derivative is positive at s = 0. It thus suffices to show that the left-hand side of (5.8) is
negative for some s < 0. Since a;,0q4 — € € (0,1) and € > 0, we can set A; = log a;.
Since log(ay — €) < logay < 0, there is some §; > 0 such that A; — 6, = log(a; — €).
Similarly, we can define Az, 62 with Ay = log ap and Ay — 8y = log(aia —¢). Then consider

the limit:

lim 1— e’ — 842 _ es(Ai1—b14+42—82) |  s(A1+A2—02) + 5(A2t+A1—d1)

§——00

which is the same as:

lim 1 — etl41l — gtlAzl _ ot(lAsl+A2l+01+02) | ot(1A1|+|A2]+62) | t(1A1|+|A2|+61)
t—o00
Since this expression is dominated as t — oo by the term et A1l+1A2+614+62) it ot take
on negative values for some t > 0, i.e., for some s < 0. Therefore, the set of equations (5.5)

has a solution. |

Proposition 5.6 says that it is mathematically possible to choose a weight and a strategy
to select any particular undominated point, at least from a finite set of possible solutions.
In practice, the (s,w) pair to select one particular point from an undominated set is often a

heavily weighted almost-min. Indeed, the proof shows that there is always a solution with
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s < 0. It is neither surprising nor detrimental that a decision problem that compensates
strongly, or that has any predetermined strategy, will exclude some undominated points
from the feasible set of solutions. Furthermore, the method discussed below for determining
a proper compensation parameter will always find s < 1. Likewise, when weights are
predetermined, not all apparently undominated points are actually eligible to be the highest

overall.

5.7.2 Managed negotiation

Perhaps the simplest case of negotiation is the case where both strategies and weights are
determined by an outside decision maker, ostensibly separate from any of the interested
parties. This case can be thought of as the situation where a manager is allowed to impose
the “negotiation,” and might be called the case of imposed cooperation. The underlying
mathematics of aggregation are of course the same. In this section this simplest case of
selection of (s,w) is presented.

When a single individual has complete authority over the negotiation, strategies and
weights can be considered simultaneously, and their values can be calculated from indiffer-
ence points. Two points are considered indifferent if they have the same preference; it is

not necessary that the numerical preferences be known. The procedure is as follows:

1. Determine o and ag such that Py(a1,1) = Ps(1,a3) = 0.5. In other words, at
which value «; is there indifference between a design that achieves preferences of
a; on the first attribute and 1 on the second attribute, and a design that achieves
preferences of 0.5 on both attributes (and thus, by idempotency, has a combined
preference of 0.5)? A similar question is asked for as. Sometimes it is easier to ask
for values of x and calculate «;; sometimes it is easier to seek «; directly. Either

approach to determining the indifference points is acceptable.
Wa
2. Let b - ﬁ.
3. If a1 = ag, then b = 1:

(a) If ;7 = 0.5, then s = —o0.
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(b) If oy = 0.25, then s = 0.
(©) If o > 0.25, then s € (—00,0). Solve a;® + 1 = 2(0.5)* numerically.

(d) If n < 0.25, then s € (0, 00). Solve a1 ® + 1 = 2(0.5)° numerically.

4. If a; # ag, then b # 1. Note thatif s = 0,
alm =05= a21—m = O@l—logo‘1 05 _ 0.5

Thus:

1-log,, 0.5

(a) If a21_1°ga1 05 — 0.5, then s = 0,and b = Togs, 05

(b) If crp' 71821 05 > 0.5, then s < 0.
If ap71%81 95 < 0.5, then s > 0.

Solve numerically for s from

"1

(1+ba23)§_<a13+b)'_05
1+b S\ 140 o

® =

which reduces to
(01 — 0.5%) (a2® — 0.5°) = (1 — 0.5°)?

Once this is solved numerically for s, then b can also be determined.

Some remarks on this procedure: first, the procedure will never return an answer s > 1.
Since the supercompensating functions can conflict with the annihilation axiom, this of-
fers no difficulty and is in fact an advantage. It should also be noted that if either oy or
az is close to 0, the (s, b) pair is quite sensitive to small differences in a7 and as. In
these cases, it might be preferable to elicit other indifference points to determine s and b.
In the procedure described above, points that are equivalent to (0.5,0.5) are chosen; the
procedure could easily be modified to consider indifference to some other reference point.
Indeed, if the procedure is applied more than once with different reference points, the re-

dundant information serves as a check on the accuracy of the specification. Alternatively,
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Saaty’s Analytic Hierarchy Process (AHP) [75], a method for normalizing directly speci-
fied weights, could be used in pairwise comparison at the start, as a check. However, the
procedure given above is somewhat richer than the AHP, so such a comparison may not be

useful. There is presently no comparable normalization scheme for strategies s.

5.7.3 Negotiation with predetermined weights

The definition of negotiation used here includes the choice of both strategies and weights,
without prejudice as to the order of selection. It is common in formal decision making to
separate the specification of weights from the aggregation of preferences. (Of course, it is
common to choose a particular strategy at random, which is not to say that it is correct.)
Methods such as Saaty’s Analytic Hierarchy Process (AHP) [75] have been developed for
the determination of weights.

When weights are determined prior to the negotiation stage, then it is no longer al-
ways possible to select any undominated point. For instance, in the example presented in
Section 5.6, the weights of the two goals were determined to be equal before a strategy
was chosen. Of seven undominated points in the decision space, only four were possible
“best” points for particular choices of the compensation parameter s. The equally weighted
problem excluded three undominated points from consideration.

Because preferences in two or more dimensions are ordered, some points which appear
to be undominated can become dominated for some assigned weights. Consider an exam-
ple: if weights are unrestricted, then the two points x; = (0.5,0.9) and x2 = (0.6,0.1)
do not dominate each other, and there exist strategy-weight pairs to select either one over
the other. If the weights are declared equal, then the order of elements is irrelevant, and
x; dominates Xy. Indeed, whenever the second element has a higher weight than the first,
then x; dominates xo. This situation only arises, however, when reversing the order of one
preference makes one preference dominate the other. Whenever two points do not domi-
nate each other, even if the elements of one point are reversed, then for any weight there is
a strategy that will achieve equality. When reversing the order of elements allows one point
to dominate the other, then there are always some weights which preclude equality for all

strategies.
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Proposition 5.7 If (a1, az) and (51, B2) are two preference points, neither of which dom-
inates the other (assume without loss of generality that c; > (1 and By > ), then the

following are true:

1. For every strategy s € (—o0,+00), there is a weight w such that
Ps(ala Qa2; l,LU) = Ps(ﬂlaﬂ% 17(4)).

2. If ax > B1,B2 > ao, then for all w > 0 there exists a strategy s such that
Ps(ala Q23 1aw) = Ps(ﬂhﬂ% 17‘*’)-

3. Ifoq > P2 > g > B, then there exists a weight w > 0 such that there is no strategy
s such that Ps(a, az; 1,w) = Ps(B1, B2; 1, w).

Proof of Proposition 5.7 In each case, equality of overall preference is established by find-

ing s and w such that:

(aﬁ +wa23)% _ (ﬂf +wﬂ25>%
14+w N 14w
Although this is not defined at s = 0, it is continuous through that point, and it suffices to
consider |
o1’ +was’® = B1* + wr’
Solving for w gives:

o’ —wp®

————523 m——— (5.9)

1. For s # 0, (5.9) has a solution. This solution is positive since o, > (31 and By > ao. In

addition, in the limit as s — 0,

log a1 — log 31
w=-——2r"
log B2 — log vz

which is likewise a positive quantity.

2. If a1 > B1, B2 > au, then consider the following two limits:

oa® —wh’
lim W N
s——00 (3% — wa®
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.o’ —wh’®
lim ———— = o0
5—00 /32 — was®

Thus the range of the right-hand side of (5.9) is all positive w, and for every w there is a
strategy s.

3. Ify >,32 > ag > 1, then

Ps(on,a2;1,1) > Ps(B1, B2;1,1)

Furthermore, for any w € (0,1),

Ps(ala Q2] 1,(4.4') > Ps(ala Q23] 17 1) > Ps(/Blv /32; ]-7 l) > PS(IB17182; 1,(.0)

Thus it is impossible to find a strategy s to achieve equality for all possible weights w.

Furthermore,
.o’ —wh?
lim ———— = o0
s——00 33° — wa?
.o’ —wh®
lim —— = o

§—00 1623 — was
and there is a minimal w which is reached when

dov—wh® 1
ds ,623 — wan® - (ﬂ2s _ 025)2

((523 —a2®) (a1’ logag — B1° log B1) — (a1® — B1°) (B2° log B2 — a® log a2))

is equal to (. ]

Thus, if the strategy is chosen in advance, and is not the min or the max, then it is
always possible to choose one point of two undominated points, by appropriate choice of
weights. However, it is no longer always possible to choose any one of an undominated set.
Methods which rely exclusively on the arithmetic mean, for example, do not truly consider
all undominated points as potential solutions. There is, of course, nothing intrinsically
wrong with restricting the set of possible points by selecting weights first, or strategies

first, rather than simultaneously. In general, however, it will narrow the set of possible best
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alternatives.

5.7.4 Misrepresentation of preference as a negotiation strategy

The formal representation of a negotiation depends on an accurate portrayal of individual
preferences. If the situation is indeed an adversarial negotiation in the ordinary sense of the
word, then the results of the negotiation calculations can be manipulated through willful
misrepresentation of preference.

The treatment in this thesis does not address the problem of manipulability, though it
is undoubtedly important. Implementation of the model as a decision-making procedure
presently relies on enforced honesty, and how to enforce it is left as a challenge to man-

agers.

5.8 Hierarchical negotiation

The results of the preceding sections have been presented with respect to the aggregation
of two preferences. In general, a design decision problem will require the aggregation of
more, possibly many more, than two preferences. When more than two preferences must
be combined, the aggregation is effected hierarchically: individual preferences are com-
pared in pairs, and then groups are compared to each other. The choice of an aggregation

hierarchy will depend on the problem, and on corporate structure.

5.8.1 Direct aggregation of more than two preferences

There is one special situation in which more than two preferences may be directly com-
pared. If three or more preferences combine pairwise with the same strategy s, then all can
be aggregated at once, regardless of their weights. To see this, consider three preferences
a1, ag, and a3, with respective weights w1, we, and ws. Aggregating a; and ag using the

strategy s gives the combined preference:

S S L
w101° + wae® \ s
Q= \—""—""
w1 + wa
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Assigning this new preference a2 the combined weight w; + wo and aggregating it with

a3 using the same strategy s gives:

1
((w1 + w2)a123 -+ W3a3s) s
(w1 + wa) + w3

which reduces almost immediately to:

W100® + way® + waas® »
( w1 +wy + w3 )

This is the same result as would be achieved by directly aggregating all three preferences.

The consistency of the result depends upon the use of the same strategy s at each stage

of the aggregation, and on the addition of the constituent weights for any intermediate

preferences. The calculations can be continued to as many preferences as are needed, and

a similar calculation holds for the special case when s = 0.

Direct aggregation of more than two preferences may be implemented whenever those
preferences are determined to trade-off pairwise using the same strategy s. Although this
situation may arise fortuitously by successive application of the method of Section 5.7.2, it
applies more commonly when a decision maker determines that several attributes can sen-
sibly be held to interact in an equivalent manner. For example, manufacturing preferences

specified on several different sheet metal thicknesses may all combine in the same way.

5.8.2 Hierarchical aggregation of more than two preferences

When preferences do not all aggregate using the same strategy s, many preferences are
still combined hierarchically. In the more general case, pairs of attributes are compared and
then grouped together; the groups are then paired and then grouped together, and so on. The
division into groups reflects the problem and the structure of the engineering team. It may
be natural, for instance, to aggregate all preferences within each working group and then to
combine those groups, or to aggregate design and performance preferences separately. It is
helpful, but not necessary, for the person responsible for determining strategies and weights

to be able to specify the indifference points of Section 5.7.2 using preference values. In the
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Figure 5.7: Hierarchy of preferences for VW example

example presented in Chapter 8, eight preferences are aggregated in a hierarchy, reproduced
here in Figure 5.7; a complete discussion of this hierarchy is deferred to Chapter 8.
Although the separate aggregations in a hierarchy may all use different strategies, weights

are propagated through the hierarchy in the same manner as when all strategies are iden-
tical. The individual weights assigned to the individual preferences are added to find the
weight of the combined preference at each aggregation step. It is not necessary to specify
weights at the outset, however. In a typical hierarchy, each aggregation will be assigned a
strategy and a ratio of weights, and from these the weights of individual preferences can be

calculated. The example in Chapter 8 uses this method to determine weights.

5.9 Examples of negotiation in engineering design

The following examples are not exhaustive, but they indicate a wide range of design negoti-
ation situations. In addition, there are situations that are formally modelled as negotiations,

though it is not so intuitively obvious that they are so.

5.9.1 Unreachable target performance values

One example of design negotiation occurs when an engineer or engineering group is given
the task of designing a product to a target performance specification. When the product

is a newer model of an existing product, the target is often an incremental improvement
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over last year’s model. As an example, consider an automobile chassis, where an existing
model has a torsional stiffness of 5000 N-m/degree and this year’s requirement is to exceed
that by 10%. If the engineers are unable to reach the fixed target easily, they will return to
the manager who set the task and begin a negotiation process. Indeed, this meeting may
be scheduled long before any potential problems are known. The engineers may ask for
more resources, for a relaxation of other targets, or for a compromise on the original target.
Targets are almost never immovable, and managers are commonly willing to negotiate.
Here, negotiation serves to address an inadequacy in the original description of the prob-
lem: the ostensibly exact (or crisp) requirement is in fact fuzzy, and through negotiation the
two groups (in this case, chassis designers and their managers) explore the nature of the
“constraints.” To formalize this negotiation and reduce pre-distorted bargaining positions,

it is necessary to represent the inherent fuzziness in the constraint.

5.9.2 Trade-offs between facets of performance

An additional layer of complication is added when several target performances are consid-
ered at once; here, negotiation can occur even when all specifications are met. In fact, there
are usually at least two specifications, since cost of engineering and production resources
is almost always a factor. In the example of the chassis design, the designers’ position may
be to offer the manager a choice between a 6% improvement at a production cost slightly
lower than the present model’s, or an 11% improvement at a substantially higher cost. To
this, the managers may well counter that the new target is 8% improvement, as cheaply as
possible.

The trade-off between cost and performance is one of many conflicts that are resolved
through negotiation. A typical project will have an array of performance targets. The chas-
sis example mentioned above will also have bending stiffness, weight, noise, and vibrational
targets in addition to the torsional stiffness. The overall performance of the design depends
on the individual performances, but the exact nature of the dependence varies greatly with
the particular problem. The negotiation process is a means by which the true measure (and
compromise) of overall performance is uncovered. A method to formalize negotiation may

provide quicker and more complete information about the overall performance relationship.
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5.9.3 Conflicts between design and manufacturing

The problem of design for manufacturability has been addressed by others (see [31]), but
it has not previously been noted that conflicts between design and manufacturing are often
resolved through a negotiation process. Sometimes the issue is the rejection of an unmanu-
facturable design by the production engineer. In many cases, a production engineer suggests
changes that will make manufacture simpler, and negotiates with the design engineer for a
compromise that will give the most satisfactory overall performance when production cost
and reliability are taken into account. In the most optimistic case, a manufacturing group
may suggest changes that improve the overall design performance. Much more often, there
is either a degradation of performance or a need for the designer to expend more resources
changing the design. A formalism for negotiation can help to facilitate the resolution of
these conflicts, and can at the same time provide an unambiguous record of decisions that

are made at each step of the design process.

5.9.4 Conflicts between engineering groups

When different working groups have responsibility for different subsystems, or for different
aspects, of a design, the requirements of one group may conflict with the requirements of
another. Stiffeners added to improve the structural rigidity of a frame might eliminate
space that the fuel system group was counting on for the fuel tank. While in mature designs
a structural part may well be described by a volume envelope and a few immutable points
of contact, there are many situations in which the interaction between parts is not so rigidly
described. Even when constraints are imposed in an attempt to avoid conflict between

working groups, points of intersection between subsystems are often negotiated.

5.9.5 The incorporation of unquantifiable performances

Many design problems include performance criteria that are difficult, if not impossible, to
measure, yet these criteria can be so important as to drive a design. Aesthetic and emotional
concerns are certainly of great importance in the auto industry [19], and they also play a

surprisingly significant role in other fields, from heavy machinery to military aircraft.
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Style, beauty, appearance of solidity, color, and image are all examples of immeasurable
attributes that can play a substantial role in the desirability of an engineered object. The fact
that they are not easily quantified can lead to either underestimation or overestimation of
their role in a design. An engineer designing for more concrete performance specifications
may ignore them altogether, yet that same engineer may need to work within the strict
geometrical constraints dictated by a stylist’s aesthetic vision.

Immeasurable performances present the greatest challenge in the formalization of de-
sign negotiation as presented in this thesis. Still, steps can be taken to formalize this part
of the design process, by allowing the engineer to interview other parties, such as stylists,
and attempt to map their preferences onto the engineering performance model. The ex-
ample presented in Chapter 8 includes preferences specified through such methods. The

formalization can lead to a clearer picture of true overall design requirements.

5.10 Summary and implications for MADM

This chapter of the thesis treated the problem of selection of an aggregation function for
Multi Attribute Decision Making. The problem was investigated within the context of the
Mol. The Ml casts the preliminary design decision problem as a MADM problem, and uses
different aggregation functions to formally model different trade-off strategies. The class of
functions appropriate for the aggregation of these Myl preferences has been explored. The
results of this chapter are directly applicable to decision making in engineering design, and
are also relevant to other MADM schemes.

In this chapter, a complete characterization of aggregation functions that satisfy the
axioms of the Myl was presented. The class of functions known as quasi-linear weighted
means was shown to be crucial. It was demonstrated that any strictly monotonic design-
appropriate aggregation function is generated by a generating function as detailed in The-
orem 5.1. The conditional operators in use, while not weighted means, were shown to be
limits of sequences of such functions. A parameterized family of functions was detailed,
spanning two continua of possible design strategies, one between the non-compensating

min and the compensating Pry, the two original aggregation functions of the M, and one
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between Ppy and the (supercompensating) max.

Once aggregation is understood and characterized, negotiation can be formally defined.
Since preferences arise prior to any negotiation, the specification of preference is not a fea-
ture of negotiation. It is the strategies and weights that are decided in concert that form the
object of negotiations. The interconnection between weights and strategies, and a technique
for the determination of the two, were presented and discussed.

Many MADM systems use aggregation functions, such as the arithmetic mean, that
compensate between goals more aggressively than the existing functions of the MJl. These
highly compensating functions may seem to be in conflict with the axioms of the M. This
chapter has assessed the possibility of using these common aggregation functions in design
decision-making problems.

There are an infinite number of aggregation operators that are suitable for engineering
design. In particular, the parameterized family P, is a range of functions that models a
broad spectrum of design decision-making situations, with the parameter s indicating the
degree of compensation permitted among performance criteria. The appropriate choice of
the parameter s is problem-specific, and it was seen that a full negotiation should consider
not only the compensation parameter s, but also the weights assigned to the individual
preferences.

The use of an aggregation function in any MADM system may be justified on empirical
as well as theoretical grounds. The development here has focused on determining a ratio-
nal basis for the choice of an aggregation function. More empirical studies are needed to

confirm in practice the results presented here.
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Chapter 6

Convexity and Set-based Design

In the application of the Ml to the MADM problem, three distinct questions can be asked.
The first question is raised by the consideration of Arrow’s Impossibility Theorem: Does the
method give well-defined answers? The second also arises from the Impossibility Theorem:
Are these answers guaranteed to be rational, and what does that mean in the context of
engineering design? The third question goes beyond the Impossibility Theorem: What
uncertainty is there in the decision problem, and how can the method handle it? This
chapter attempts to address these questions.

In the consideration of decision making in Chapter 4, one requirement was that deci-
sions be “rational.” No formal definition of rationality was offered there, and the informal
requirements to guarantee rationality were purposefully weak, so as to make the set of ratio-
nal decisions as inclusive as possible. Indeed, the only example given of irrational decision
was intransitivity of preference. Chapter 5 refined and formalized somewhat the notion of
rational design. Violation of the aggregation axioms can be thought of as irrationalities in
aggregation. There are other desirable features of engineering design decisions. It is not
immediately obvious that violating these other requirements implies irrational design, but
unquestionable advantages accrue when they are satisfied. In Section 5.7, for example, it
was shown that the negotiation model presented here satisfies one such desirable condition:
the result of a negotiation can choose any undominated point in the design space. This
stands in marked contrast to other decision-making methods, which are less flexible in their

choice of strategy.
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Engineering design is naturally set-based [95]. The question at all stages of design is
not, “What is the single best alternative?” but rather “What sets of designs are the best
to consider at this stage?” Even a final design description contains set-based information,
in the manufacturing tolerances. The reason for set-based description is twofold. First,
it is assumed that design is always conducted with a model of the actual artifact. Even a
physical prototype is a model, since it cannot be exactly identical to all instances of the
final artifact. The use of a model assumes that a number of distinct instances of the artifact
can be considered togéther as a set. Put another way, there is some resolution at which a
set of designs can be identified with a single instance. Second, and perhaps more profound
for the engineering design process, the design engineer thinks in terms of sets of designs
at all stages of the process. Recognizing that different members of a set of designs have
measurable, perhaps even gross, differences in parameters and performance, the engineer
still considers the set as a single entity. Such set-based thinking has two obvious advantages:
one, there is simply not enough time to consider all individual designs separately, especially
in preliminary design; two, knowledge about sets of designs is much more useful than
knowledge about individual “point” designs if the engineer must return to the drawing board
to expand or alter the set of possible designs.

While there is nothing fundamentally irrational about a design decision/negotiation
model that does not allow set-based descriptions, its value and applicability are certainly
enhanced by a set-based approach. In this chapter, the notion of convexity of preference and
its importance for set-based design are discussed. It will become clear that this convexity is
different from convexity in linear programming (even multi-attribute linear programming),
and also from Arrow’s “convexity” that was discussed in Section 4.1. set-based design is
also a natural solution to a sort of uncertainty that typically arises in preliminary design,
the uncertainty of measured performance either because the description of the design is

imprecise, or because “exact” answers, though available, are expensive.
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6.1 Convexity of preference in the Myl

The first question raised at the beginning of this chapter asks whether the method gives
well-defined answers. Is the overall preference function of the Myl a well-defined entity?
There is no need to appeal to set-based reasoning to establish this point: it is assumed at
the outset that there is an ordering among all possible alternatives that could be determined
directly, if tediously, by exhaustive pairwise comparison. Also, the aggregation of indepen-
dent preferences into a single preference function by the Ml is a well-defined operation, so
each alternative is assigned a single overall preference value. In Chapter 4 it was seen that
Arrow’s Impossibility Theorem casts doubt on the (well-defined) existence of a combined
preference function in the social choice problem. That presents no difficulties to the My,
however, as the individual preferences specified in the engineering design problem do not
obey Axioms 4.1 (unrestricted domain) and 4.4 (no imposed orders).

The second question asks what rationality means in the context of engineering design.
This question requires the consideration of set-based reasoning. In the motivating paradox
that began the discussion of the Impossibility Theorem, an intuitive notion of rationality was
offended by an intransitive ordering. In the engineering design decision problem, especially
at its preliminary stages, transitivity is only a first requirement for a rational order. An
ability to represent sets of designs is another important feature; the designer is usually
interested in determining which sets of designs are worth pursuing.

The sets in set-based reasoning are not arbitrary lists of individual designs. Designers
have an intuitive notion of sets of designs as consisting of designs that are “close” to one
another, so that it is sensible to consider them together. In addition, there is an intuitive
notion that sets of designs ought to be “connected,” so that a set can be reasonably supposed
not to ignore any such “nearby” designs. These two ideas, of proximity and connectedness
of sets of design alternatives, allow for the meaningful consideration of sets of design. Here
we use a third concept, that of convexity, to give more precise definitions of proximity and
connectedness of sets. set-based design will be seen to depend on convexity of design
preference.

One approach to set-based design is interval analysis [53, 96], which imposes a strong

connectedness condition on the sets by assuming that they are hypercubes in IR™ described
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by their endpoints. This condition may be imposed on grounds of convenience, but it is
clearly not necessary for rationality. The Myl uses a less restrictive connectedness condition.

Interval analysis makes use of a crucial feature of engineering design, that the design
variables are ordered on external scales, so that the design variable space D can be treated
as a subset of R™. In other words, design variables have dimensions. Sometimes the
design variables are discrete, and D is contained in R™ x Z™; since the external scale
still has meaning as a continuous variable, for purposes of interval analysis D C IR™*™,
Arrow made use of an external scale to avoid the problems of the Impossibility Theorem,
and included the further assumption that all preference orders were single-peaked along
the single scale; the relevance of that assumption in the engineering design context will be
discussed later. Sets in the Ml are ordered on the same external scale as in interval analysis,
but the sets need not be hypercubes.

The identification of D with IR™ allows the use of the metric space structure of the

latter:

Definition 6.1 A set of designs is called connected in the Myl if it is connected in the un-

derlying space R™.

While connectedness of sets of designs can be naturally identified with connectedness of
sets in IR, the measurement of proximity of designs is not so clear. Separate dimensions
are often not comparable, and a difference of k£ units may have different meanings at two
different places along any one dimension.

A natural convexity condition arises from the identification of the DVS with IR". Since
u(x) € [0,1], by adding a preference axis to the DVS, the overall preference function
becomes an n-dimensional surface in IR®™!. An important concept here, borrowed from

fuzzy sets, is that of the a-cut:

Definition 6.2 Given a preference function u on a set X, the set of all elements x € X

such that p(x) > a; is called the a-cut of X at a.

Note that an a-cut need not be connected. Connected a-cuts lend themselves naturally
to set-based reasoning with respect to the preference y; it is rational to use such an a-cut

for set-based reasoning. Such a set has a simple geometric interpretation: the slice of the
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Figure 6.1: Functions convex with respect to u, one dimension

preference surface, taken perpendicular to the p-axis at o, must be connected. When all

possible a-cuts are connected, the function is termed u-convex:

Definition 6.3 A preference function y; is called convex with respect to u, or u-convex, if

every a-cut it induces is connected.

The idea is easily represented (see Figure 6.1) when n = 1 (the case of a single design
variable). For any of the u-convex functions in Figure 6.1, any line parallel to the x-axis
has only one connected section which is less than or equal to the function plotted. Note that

the notion of p-convexity is weaker than that of convexity in the usual sense. For example,
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Figure 6.2: Proximity of designs

for two of the graphs in Figure 6.1 it is possible to draw a straight line, not parallel to the
x-axis, that has more than one connected region under the function plotted.

At this point it is possible to discuss proximity of designs. Consider the preference
function shown in Figure 6.2. Designs a and b, and designs ¢ and d, appear “near” along
the z-axis, yet a is much closer to ¢ than to b in terms of preference u, and indeed both are
members of the (disjoint) a-cut at « that does not include b. Since the function graphed
is not p-convex, it is not clear which designs should be considered together as a set. For
p-convex functions, on the other hand, proximity in preference provides an unambiguous
measure of proximity which can be used to unify the different scales of the other axes.
While p-convexity is not a necessary condition for the rationality of engineering design
preferences, it is both common and desirable. Certainly it is possible to have two or more
disjoint sets of “good” designs, as in Figure 6.2, but these sets are then often considered sep-

arately, effectively reasoning with the p-convex portions of a divided set. Preferences may
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be rational without being u-convex, but all u-convex preferences are rational. Furthermore,
p-convexity is common. By determining the conditions under which p-convexity holds,
we can formalize a large subset of engineering design problems. For those (less common)
problems which violate y-convexity, rationality may still be assured if the problem can be
divided into regions, perhaps disjoint, in which u-convexity holds.

Thus by identifying a parameterized design space with IR"™, and by considering the
additional axis of preference, it is seen that nearby designs are those that belong to the
same u-convex set, and are close in preference. If preference changes little over a wide
range of a design variable d;, two designs can be “near” to each other with large differences
in d;. If preference is sensitive to changes in another variable d;, then small changes in d;
can make for designs that are “far apart.”” One must be careful, however. If there are two
disjoint sets that achieve equal preference, those two sets cannot be considered to be near
each other.

The p-convexity of preferences indicates that the results of the Mgl will be useful in
set-based reasoning. When can p-convexity be guaranteed? A few results that begin to
answer that question will now be presented. The design decision problem involves the
combination of preferences over the n-dimensional DVS. Nevertheless, much can be learned
from the case of a single design variable (n = 1). The proofs here (all of which are deferred
to a later section) about the combination of two preferences on a one-dimensional DVS
generalize to multiple preferences in higher dimensions. For instance, of all the family P
of design-appropriate aggregation functions used in the M, only the min guarantees that

the combination of several u-convex sets will also be p-convex:

Proposition 6.1 Assume that preferences are continuous. When the DVS is a connected

subset of R, if
@) = Pu,.., pmswi, -, wn) (@) = min (pa(2), ., pn(2)) ,

then pi-convexity of p; for all i is sufficient to guarantee p-convexity of fi. If p; is not -
convex for some 1, then there exist u-convex iy, . .., luy, (not including ;) that combine to

a [ that is not p-convex.
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Note that the same result does not hold for continuous functions that exceed the min.
In fact, it does not hold for arbitrary t-norms either. (A t-norm is bounded above by min.)
Consider the following counterexample: Let P(u1, u2;wi,ws) obey the axioms, and let
P(a, B;wi,wa) > min(e, 3) for the corresponding . We may assume o > (3 without

loss of generality. Then construct the two preferences 1, uo (shown in Figure 6.3):

wm(z) = a,z<x:

B,x > xo

with linear interpolation from z7 — x5
pa(z) = B,z <z

o, > T3

with linear interpolation from x5 — z3

Then by idempotency:
P(,“‘l? H2; w17w2)(w2) = /B

but by definition of P:

P(ui, poswi,w2)(z1) > B

Pp1, po;wi,wa)(zz) > B

so i defined by P is not p-convex.

Proposition 6.1 shows that a requirement that all individual preferences be p-convex
is insufficient to guarantee that the overall preference is u-convex. Necessary and suffi-
cient conditions for u-convexity of the overall preference function are not known, but a
sufficient condition is presented here. While u-convexity of the overall preference is intu-
itively desirable, a slightly stronger condition, that of ordinary convexity, can be imposed,
and will assure rational combinations. Recall that a function is convex whenever the chord

connecting two points on the graph of the function lies under or on the graph:
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Definition 6.4 A function f on R is convex if

To — X1

Fl@s) > 222 p () + 2722 f(ay)

I3 — Ty I3 — X1
whenever £1 < o < 3. A function that is not convex is called concave.

The combination of convex (in the ordinary sense) preference functions is again convex
for the entire family of Ml aggregation functions up to and including the arithmetic mean.
As was demonstrated above, when individual preferences are u-convex but concave, then

only the min can guarantee u-convexity.

Proposition 6.2 Assume that preferences are continuous. When the DVS is a connected
subset of R, if s < 1, and the preference functions p1 and o are convex, then the overall

preference function

(z) = Ps (1, pa; w1, wa) ()

is also convex.

Thus the arithmetic mean is in some sense a bounding function of this family of design-
appropriate functions. If any concavity (in the ordinary sense) is allowed in the individual
preference functions, then p-convexity of ji, and hence the connectedness of an arbitrary
a-cut, can only be guaranteed by using the min as an aggregation function.

Proposition 6.2 also shows that for functions more compensating than the arithmetic
mean (i.e., for s > 1), not even convexity of all individual preferences suffices to guarantee
u-convexity of the overall preference. Functions that compensate to a higher degree than
the arithmetic mean fail this particular test of rationality. This complements a limitation on
s that was discovered earlier: in the procedure presented in Section 5.7, it was seen that
functions with s > 1 lie outside the bounds of elicitation with indifference curves.

Propositions 6.1 and 6.2 are also applicable in arbitrary dimensions; the same proofs
hold for any two-dimensional vertical slice in any direction, i.e., for any one-dimensional
subspace of R™ and its Cartesian product with the preference space [0, 1].

Convexity is a sufficient but not a necessary condition for rationality (in its broad new

meaning). It has been applied not just for mathematical simplicity, but because it is a
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common feature of engineering design problems. It is beyond the scope of this thesis to
determine if the prevalence of u-convexity is a structural feature imposed on problems by

designers, or if it is unavoidable in engineering design.

6.2 Proofs

Proof of Proposition 6.1 Since P = min is associative, it suffices to prove the claim for
n = 2. Say that p1,pe : DVS — |[0,1] are both u-convex. Consider any three points

x1 < 29 < x3 € DV'S. Then p-convexity of 1, o implies:

pn(ez) > min (o), es)

po(ze) > min(m(wl),m(m))

Otherwise, if p1(z2) < pi(z1) < pi(zs) for instance, then the o-cut at i (x1) would not

be connected. Therefore
min <M1 (wz),.uz(wz)) > min (M1($1),u2(w1),/i1 (w3)7u2(w3)) (6.1)

Now, by definition of P:

A@) = min (p(21), pa(e1))
fi(we) = min (i (22), pa(w2)) (6.2)
f(zs) = min (p(wa), pa(as))
and it follows that
min (i(z1), fi(ws) ) = min (1 (21), pa (1), 1 (35), pa(23)) 6.3)

Taking (6.1), (6.2), and (6.3) together shows that:

f(z2) > min (ﬁ(wl)vﬂ(wl’w))
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proving that [i is y-convex.
If any p; is not p-convex, then setting all other . identically equal to 1 makes [i = u;,

and therefore not p-convex. |

Proof of Proposition 6.2 Ifa preference i is convex, then for any three points 1 < xs < T3:

x I3 — X2
>
p(z2) > 2 xlu(wl) L xlu(ws)

If two preference functions uy and py are convex, but Ps(u1, po;wi,ws) is not, then there

exist x1 < xo < x3 such that:

Ps (Hl(ﬂCZ), pa(x2); W17w2) < (6.4)

T3

Tro — T — X
— (Ml(ml)aﬂ2($1)5wlaw2) i

r3 — T

2P, (u1($3),M2($3);w1,w2)
1

Since p is convex,

T3 — T2

p1 (2) > > ul(ml) — m111»1(9«"3)
and thus, by monotonicity of Ps and (6.4):
T2 — T1 T3 — X
' 5
Ps (ﬂcs—ml’u(wl)-i_x3_x1“(x3)’u2(w2)’w1’w2> < (6.5)
T2 — I T3 — Tg

Ps (ul(wa),uz(wg);wl,wz)

Ps (Hl(xl)’#z(xl);wlaw2) + o

xr3 — 1
Likewise, using convexity of po and monotonicity of P together with (6.5):

T3 — T3
uz(m) + M2($3);w1,w2> <
r3 — I

/1'1( 3)’

P, (:L'z /141(.’171)-}-

T3 —

T2 — ml $3

P, (m(wl),m(xl);wl,wz) + =2

X3 — 1 1P3 (“1(z3)’”2($3)§w1,w2)

Therefore, if two convex preferences combine to a non-convex preference, then two linear
preferences (which interpolate the original preference functions at x1 and x3) also combine
to a non-concave preference. It thus suffices to show that Pg(u1, po;wi,ws) is convex

whenever s < 1 and u; and us are linear.
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Consider two linear preference functions p1 and pa:

uwi(z) = ax+b

ua(z) = cx+d

Assume without loss of generality that weights are normalized so that wy + wo = 1. Then

the aggregated preference is:

@ =

Pulia i on,2)(2) = (w1 (0 +b)° + wn(ea + )

Differentiating twice with respect to x yields:

d2
72 Pk, pwi, w2) = (6.6)
1 2 :-2
(; - 1) (wla(ax +b)* ! 4 woc(ex + d)s—l) (wl(aa: +b)° + wo(cx + d)s) +

f=

-1

s

(s—1) (wlaz(ax +0)*"2 4+ wac?(cx + d)s_2> (wl(ax +b)° + wa(cr + d)s>

Consider three cases:

1. s<1,s5#0.

In this case, both terms on the right-hand side of (6.6) are non-positive. Note that:

ar +b,cx+d € [0,1]

1

s

(wl (az + b)° + wa(cz + d)s> e [0,1]

as they are preferences. Therefore, d—‘fg’Ps (1, po;wi,wse) < 0, which is equivalent

to convexity.

2. s=0.

If s = 0, then (6.6) cannot be used. In this case,

Po(p1, p2; w1, ws) = (az + b)** (cz + d)**
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and

d2
g:;:—z',PS(MI7 H25 W1, w2) =

awi (w1 — 1)(az + b)*1 72 + Pwy(ws — 1)(cz + d)~2—2
which is also clearly non-positive, so the combined preference is again convex.

3. s>1

When s > 1, it is no longer true that convex preferences combine to convex prefer-

ences. Consider the two simple linear preference functions, defined for x € [0,1]:

m(z) = =

l
—
I
8

p2(z)

Then
P, (41(0.5), 12(0.5);0.5,0.5) = 0.5

but as long as s > 1,

Py (11.(0), #2(0);05,05) > 05
P, (/,Ll(O), ,ug(O);O.E),O.S) > 0.5

showing that Ps(u1, p2; 0.5,0.5) is not convex.

This completes the proof. ]
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Chapter 7

Computation Methods Comparison

Every design problem is a “maximization” problem, in the sense that the problem includes
a search for a “best” design. When a computable measure of design performance is avail-
able, engineers can apply a number of mathematical optimization methods to maximize
that performance, and indeed the design engineer usually has numerical targets that a de-
sign should achieve. These measurable performance targets are only a part of the complete
performance of a design, and designs that achieve the highest levels of measured perfor-
mance will not necessarily be chosen, as the computed performance is compared with other,
less easily computed measures, such as aesthetics, market preferences, or manufacturabil-
ity. The importance of uncalculated performances such as styling and manufacturing has
been an obstacle to the direct application of optimization methods to the complete design
problem.

The M, as discussed above, takes an engineering analysis problem and expands it to
include (imprecise) information that is relevant to the decision but presently only incorpo-
rated informally. The result is the formal calculation of an overall preference i € [0, 1]
for each candidate design. Since /i is a scalar function of the design variables, the design
problem becomes a computable maximization problem: maximize overall preference for
the design.

One possible approach to this maximization problem is to apply an optimization algo-
rithm directly to the scalar function . The Ml has incorporated optimization internally,

but has not treated the overall preference function ji as an objective function to be maxi-
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mized. One reason is that optimization routines usually offer point-by-point information,
but more information is available to the designer when considering sets of designs or ranges
of design variable values to pursue than in a single overall optimum. In addition, the pref-
erence function [ is not a black box, but has some known structure that comes from the
specification of the imprecise information.

Several different optimization methods were applied to a vehicle structure design prob-
lem with 16 design variables. In this chapter, data from the implementation of these meth-
ods are presented and compared. The methods were not fine-tuned to the problem, as the
goal was not to conduct a competition between methods, but to look for insight into which

sorts of optimization might be useful to use with or incorporate into the design problem.

7.1 Optimization strategies

A typical design problem can have from a handful to many tens of design variables. When
f is not an analytic function, as is usually the case, exhaustive enumeration and evaluation
of all possible candidate designs is at least enormously expensive and often impossible.
Various optimization techniques are available to search for good solutions without resorting
to exhaustive enumeration, including classical, random, and hybrid methods.

The Ml has previously incorporated classical optimization into its internal computa-
tions (e.g., for finding internal extremal values of non-monotonic f’s [48]), but not to iden-
tify the point in the DVS with the best value of overall preference. Since the focus of the
Ml is to perform trade-offs to determine the performance and preference for sets of designs,
and the computation of a single point i may be computationally expensive if f is expen-
sive (e.g., a finite element model), we have chosen not to incur the computational costs
of searching for the “best” design point. Additionally, i is often relatively well-behaved,
because the functions f are often more or less unimodal with respect to at least some of the
d; (e.g., stiffness tends to increase with thickness), and because the preference structure is
rational.

The optimization strategies outlined below have been implemented without sophisti-

cated efforts to tailor the method to any particular problem. The study was not meant to
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be exhaustive; simulated annealing, tunneling algorithms, and hybrid methods were not
considered. The results of this study could be used to guide the further application and

refinement of optimization techniques to the preliminary design problem as modelled by

the Myl

7.1.1 Exhaustive search

The simplest, most naive search technique to find a global maximum of a scalar function
is an exhaustive search of a suitably fine grid of the entire search space. The well-known
“curse of dimensionality” [12] is a reminder that such a technique will require hopelessly
many function evaluations whenever there are more than a few variables or a need for a
relatively fine grid. In a case such as the example considered in Section 7.4, where there
are 16 design variables, and where it is reasonable to require a discretization of 10 steps in
each dimension, even at a million evaluations a second the search would require more than
300 years; the situation is even more dire when each evaluation takes 5 seconds (which is
the case in the example). The considerably trimmed example in Chapter 8, with only five
design variables but a more complicated analysis model, would take 70 days to explore ten

points in each dimension.

7.1.2 Classical optimization

Classical multi-variable optimization schemes [2] fall into two categories: calculus-based
gradient methods, and search methods. Since the former require derivative information,
which is rarely available from the functions f encountered in engineering design analysis,
a multi-variable method known as a pattern search was employed here. A pattern search
starts with a relatively coarse step size, proceeds in ever larger steps in the apparently best
direction, until progress ceases, when it stops at the last best guess and starts off again with
the original step size. When it converges to a point at the given step size, a new, smaller step
size is chosen, and exploration continues. A slightly more sophisticated method known as
Powell’s method was previously implemented in the internal computations of the Myl [46].

A pattern search is not expected to handle multiple optima gracefully, but can be quite

efficient when a function is reasonably well-behaved.
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7.1.3 Genetic algorithms

Genetic algorithms [34] are structured random explorations of a space, which proceed by
analogy to the mechanism of natural selection in biology. A simple genetic algorithm de-
scribes the candidate designs, not by the values of the design variables d;, but by a binary
encoding of those values. Thus each design, or individual, is a string of 1’s and 0’s. Here,
each d; was simply discretized into 2™ possibilities, and the binary representations were
concatenated into a single string of length nm, where m represents the dimension of the
DVS. A random population of individuals is generated as a starting point. For each gen-
eration, the fitness (here, measured by overall preference) of each individual is calculated,
and a random group, weighted towards the fitter individuals, is selected to populate the next
generation. These individuals are crossed (a pair of individual strings is broken at a ran-
dom point, and the parts are recombined to make two new individuals), and at rare intervals
mutated by swapping a single bit. The random element of the genetic search is meant to
prevent the algorithm from stopping at local optima.

Genetic algorithms require more computations than search methods, but should be more
robust to multiple optima. In addition, a genetic algorithm tracks many individuals at once,
so it can in theory simultaneously converge to multiple optima. This makes it an attractive
candidate to provide set-based information.

Many refinements to the simple genetic algorithm are possible; here the only departure
from a simple evaluate—cross—mutate scheme was the enforced survival of the single fittest
individual in each generation to the subsequent generation. The scheme was also tried

without this addition.

7.2 Optimizing for sets of designs

Casting the design problem as a scalar optimization problem obscures a key feature of the
original problem: in general, the designer is not as interested in a single most-preferred or
best-performing design, as in sets of designs that are most promising [95]. Particularly at
the preliminary design stage, the designer wants a design direction to pursue, and that is

much better described by ranges on the design variables d; rather than a single best point.
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If, for example, the peak preference of i* = 0.7 occurs at d; = 53, the designer may want
to know over which range a preference of ji = 0.6 can be expected. The design decisions
may be quite different depending on the size of this set.

The implementation of the Myl makes use of the natural set-based information that is
available from the specification of preferences to search for sets of candidate designs. Any

traditional optimization scheme runs the risk of omitting that information.

7.3 Approximation techniques

Computation cost is a limiting factor for much of design analysis. Preliminary design de-
cisions often rely on intuition and judgement because computation is expensive, and the
information describing each design alternative is imprecise. The computation of overall
preference i1 becomes more costly as the number of design variables increases. For any
number of variables, the calculations and aggregations of preferences are often of negligible
computational cost compared to the cost of evaluating f. A typical finite element model,
for instance, can be expected to take several minutes on the fastest available computer,
while the preference calculations take microseconds. While the curse of dimensionality
must ultimately be addressed for any function, the analysis function f is a clear candidate
for possible approximation. Previous work exploring parsimonious selection of points at

which to compute f, and approximation between these points, can be found in [46].

74 Example

A finite element model for stiffness evaluation of a passenger vehicle, where sheet-metal
thickness of the various panels can be varied, was used as a test case. This problem was
chosen for several reasons: it was a black box, so the answer was not known in advance;
it had 16 design variables and could be computed in about 5 seconds, so exhaustive search
was all but impossible, but searches of several thousands or even tens of thousands of runs
were feasible. However, the model is not an accurate test for any particular automobile;
the design variables are for evaluating and comparing methods, not designing a car, and the

preferences on those variables are likewise for testing the methods. This example, which
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Figure 7.1: Finite element model in wireframe

focuses on computational issues, complements the example in Chapter 8, which focuses on
decision issues.

A simple finite element model (see Figured 7.1) for calculating the bending stiffness
of a passenger car body was used to test the optimization methods. The model was kept
extremely simple so that the stiffness calculation could be performed in approximately 5
seconds using available computation (MSC Nastran on a Sun UltraSparc 170MHz pro-
cessor workstation). The methodology would be the same for more complicated analysis
models. The thickness of each body panel shown in Figure 7.1, and the cross section of two
of the three pillars, were used as design variables. (This set of design variables was chosen
for convenience in testing the model and the tools.) The panel thicknesses were allowed to
vary between 5 and 20 millimeters, and the pillars were taken to have square cross sections
with sides between 50 and 150 millimeters. Designer preferences, representing additional
information that would ordinarily be considered informally, were specified on each of the

design variables. The design preference on the first design variable, up(dy) (Figure 7.2),
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Figure 7.2: Representative design preference

is representative. The preference of up = 0 at the endpoints d; = 5 and d; = 20 repre-
sents unacceptable values of d;, while the preference up = 1 for d; € [10, 11] indicates
that these values are the most preferred, with intermediate levels of preference between.
These preferences may come from manufacturing engineers, for example, and mean that
they have found that sheet metal in that thickness range is most easily formed into that
body panel. Preferences can also capture styling concerns, information about availability,
and simple design intuition (a thick pillar in this simple model, for instance, may mean a
more complicated and expensive part; the engineer uses this simple model with preferences
attached rather than detailing the potential complication of a “thicker” pillar). Other design
preferences were similarly specified.

For this simplified evaluation of methods, the finite element model has a single cal-
culated engineering performance: bending stiffness. The preference for bending stiffness
(Figure 7.3) is an imprecise performance target. The preference for the bending stiffness
achieved by a design is combined with and traded-off against the design preferences on the

individual variables. In this example, the individual design preferences were all weighted
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Figure 7.3: Performance preference

equally, and were allowed to trade-off in a non-compensating manner [57]. The aggre-
gated design preference traded-off in a compensating manner with the performance prefer-
ence [57]. In a traditional design process, the vehicle structure engineer would seek to max-
imize the bending stiffness, and then make trade-offs from the stiffest design in response
to the needs of other groups working on the same part. Here, these negotiated changes are

incorporated from the beginning.

7.5 Results

At 5 seconds for each finite element analysis, an enumerative search at a resolution of

016 evaluations, or on the order of 101!

10 steps in each design dimension would take 1
years. Since five years is a more typical figure for the entire automobile design process,
and preliminary or conceptual design is usually limited to a few months, the enumerative
option was not pursued. Since an enumerative option was unrealistic, and the function f
was not known precisely, the maximum achievable z is not certain. This is of course the

most common case in a real design situation: it is not often that a designer can guarantee
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optimality or precision.

All of the methods achieved similar maximum overall preferences, at slightly less than

i = 0.30. Results from the various approaches are detailed below:

7.5.1 Classical optimization

The pattern search was started with an initial step size of 20% of the design variable range,

and converged to a minimum step size of 0.15% of the range. The pattern search made fast

progress early in the search, and then slowed down:

Evaluations | max f
34 0.1686
67 0.2447
133 0.2678
297 0.2717
395 0.2792
525 0.2792
623 0.2803
721 0.2803

The best-performing individual design had design variable values:
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di | 17.7500
dy | 12.5000
ds | 16.2500
dy | 20.0000
ds | 17.9375
ds | 20.0000
dr | 13.7187
ds | 15.6875
dy | 18.6875
dio | 18.6875
diy | 18.6875
dip | 18.6875
di3 | 16.2500
dis | 20.0000
dis | 162.5000
dig | 137.5000
L | 02803

7.5.2 Genetic algorithm

The performance of the genetic algorithm was less predictable than that of the pattern
search. Indeed, since mutation (at a low but nonzero probability) is employed to avoid

local minima, the algorithm does not necessarily make progress at each step:
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Evaluations | max i | average [

63 0.0828 | 0.0039
105 0.1240 | 0.0844
252 0.1313 | 0.1045
525 0.1546 | 0.1013
630 0.2105 | 0.1515
1659 0.2226 | 0.1662
3507 0.2206 | 0.1717
3528 0.2502 | 0.1989
5124 0.2618 | 0.2239
6237 0.2622 | 0.2177
7896 0.2663 | 0.2476
11382 0.2686 | 0.2065
12936 0.2644 | 0.2077

The general trend is to improved performance, but in 6000 function evaluations the ge-
netic algorithm had not yet achieved the value that the pattern search reached in 133 eval-
uations. Above 5000 function evaluations, the routine makes little progress. The highest
average fitness was achieved after 7896 evaluations (376 generations), the highest maxi-
mum after 11382 evaluations, and the program was stopped after 12936 evaluations.

The population size was set at 21 for this search, and it is interesting to see the range

of each variable. In the generation that included the highest maximum performance, seven

individuals survived with z > 0.26:
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Individuals
A B C D E F G

d, | 1810 18.10 1786 17.86 17.86 17.86 17.86
dy | 12,62 1262 12.62 12.86 12.62 12.62 12.62
ds | 1643 17.38 1643 17.38 8.81 1643 16.43
dy | 2000 2000 19.52 20.00 19.52 20.00 20.00
ds | 1405 1571 1429 16.19 1429 1333 1548
de | 12.86 1286 1286 12.86 12.86 12.86 13.33
dr | 1238 1238 1238 1238 1143 1238 12.14
dg | 11.19 11.19 11.19 11.19 1119 11.19 11.19
dg | 15.00 15.00 1452 15.00 1595 1452 14.52
dio| 18.81 1833 1690 18.81 1881 1881 16.90
di; | 18.81 18.81 18.81 18.81 18.81 18.81 18.81
dip | 1333 1333 1286 1333 1333 1333 13.33
diz | 1643 1643 1643 1643 1643 1643 1643
dis | 2000 1952 20.00 1952 20.00 19.52 15.95
dis | 9444 9444 69.05 9444 9444 97.62 9444
dig | 8333 8333 8333 8333 81.75 8333 78.57
& | 0.2681 0.2680 0.2668 0.2680 0.2649 0.2628 0.2686

While these figures do not indicate that all designs with variables in those ranges above
will achieve i = 0.26, they give the designer more information than a single point showing

the maximum performance found.

7.5.3 Set-based search with minimum assumption

The M has historically employed a preference propagation mechanism based on the ex-
tension principle from fuzzy set theory [24, 108]. This mechanism offers computational
efficiency at the expense of two assumptions about design problem: the analysis function f
must be well-behaved (indeed, monotonic), and the preference combination must be non-

compensating. Since many problems (including the example) come close to meeting these
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conditions, this parsimonious analysis can shed light on the design problem, without yield-
ing “exact” answers, while requiring little computation.
The M took only 18 function evaluations to conclude that the maximum achievable [

is approximately 0.30, and that a minimum value of zi = 0.24 is achieved with the following

ranges:
Ranges
d1 [16.75,17.87]
do [11.64,12.58]
ds [14.71,16.44]
dy [20.00, 20.00]
ds [17.10,18.10]
de [19.84,20.00]
dy [12.84,13.81]
dg [15.08,15.81]
dg [17.84,18.81]
dio | [17.84,18.81]
di1 | [17.84,18.81]
dio | [17.84,18.81]
diz | [14.71,16.44]
dig | [14.71,16.44]
di5 | [147.09,164.43]
die | [128.36,138.14]

These ranges are in almost exact agreement with the results of the pattern search; only
thickness dq4 was different. There were more differences between the Myl’s ranges and the
set generated by the genetic algorithm, with differences in ds, dg, ds, dg, d12, d14, d15, and
d16. These differences are not as great as they might appear, for when a sensitivity analysis
was conducted as part of the approximations described below, these variables were among
the least significant.

It must be emphasized how small a number of function evaluations 18 is. Even the

linearization scheme described in the next section required 129 evaluations to achieve its
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Figure 7.4: Comparison of three optimization schemes

approximate results, and the pattern search and genetic algorithm were significantly more
expensive. The Myl is thus the only method discussed here that would be realistic to apply
in problems on the order of 100 variables with non-trivial analysis functions. As with any of
the methods discussed here, results will not be exact, but they can provide useful guidance

to designers.

A comparison of the number of function evaluations required by each method to find de-
signs with different levels of overall preference is shown in Figure 7.4. The set-based ap-
proach is the fastest, but does not achieve results of the higher preferences. Pattern search
takes fewer function evaluations than the genetic algorithm to arrive at the same levels, and
reaches higher levels of overall preference as well. Figure 7.5 shows the ranges of design

variables provided by each scheme. The Myl with minimum assumption, represented by
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solid lines, returns a set of designs that exceed i = 0.24. The genetic algorithm is shown
with dashed lines, and those sets of designs exceed i = 0.26. Finally, the single black
square on each plot is the maximum at g = 0.28 found by the pattern search, which is
not necessarily the global maximum. The disparities between the genetic algorithm and the
other methods may indicate that the genetic algorithm is missing some optimal regions in

the design space, or that the other two methods have converged prematurely.

7.5.4 Approximations

All of the optimization techniques discussed above executed the finite element model di-
rectly. The implementation of the Ml includes the possibility of using a method based on
Design of Experiments (DOE) [10] to find, where possible, a linear approximation to the
function f. The function f, rather than the overall preference i, is chosen for approxi-
mation because it is orders-of-magnitude more expensive to compute, but more important,
because it is unlikely to change, while the preference structure may be modified. Changes
in the preference structure are inexpensive, so long as f does not need to be recalculated.
This is a good reason not to optimize directly on overall preference, but to use optimization
routines on pieces of the problem.

A resolution IV DOE approximation required 129 evaluations to construct a linear ap-
proximation in 9 of the 16 variables; the other seven variables were deemed non-linear.
This can reduce the problem to one with a seven-dimensional DVS, and thus significantly

reduce the computation cost for any of the methods discussed above.

7.6 Summary

This chapter summarizes an investigation into the possible application of various optimiza-
tion schemes to the scalar optimization problem formalized by the Myl. An example prob-
lem was constructed using a finite element model with 16 design variables as the analysis
function, and classical, evolutionary, and Mgl-specific optimization schemes were consid-
ered. The results of this chapter are preliminary: the methods tested were not optimized for

performance. The results can only be preliminary in another way as well: the negotiation
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model that forms the bulk of the thesis is a tool for decision makers, not a computational
method that turns the power of decision over to an algorithm.

Design trade-offs with large numbers of variables are a compute-intensive problem,
but they are often well-behaved. The test problem used in this chapter fits that descrip-
tion, but was not meant to be archetypal of all design problems. Thus the conclusions that
can be drawn from this particular set of tests are preliminary at best. Nevertheless, it was
found that blind application of pattern search made quick early progress, but then converged
slowly if at all. Similarly, blind application of a genetic algorithm was slow, but did make
progress. Exhaustive search can be shown a priori to take a prohibitively long time. Ap-
proximations were found to be useful, particularly if one pays attention to the structure of
the problem. The approximation methods discussed in this chapter are covered in greater
detail in William Law’s doctoral thesis [46]. Linearization can work well for some design
problems, either because they are quite well-behaved, or because the answers available in
preliminary design are only useful to a linear approximation. Methods that return sets or

ranges in general provide more information to designers.
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Chapter 8

Example: Passenger Vehicle Structure Design

In the summer of 1997, an application of the Ml to preliminary vehicle structure design was
demonstrated for Volkswagen Wolfsburg. The application serves as a tutorial introduction

to the Myl and its underlying concepts.

8.1 Preliminary vehicle structure design

The general vehicle structure design problem is the engineering of a body-in-white, which
consists of the (usually metal) frame to which components and exterior panels are fastened.
While there are interesting alternative solutions such as space frames and monocoques, this
chapter is concerned with the welded sheet-metal structure typical of passenger automo-
biles of the present day (see Figure 8.4). The vehicle structure engineers must design a
body-in-white that meets certain measurable engineering targets such as stiffnesses, stress
levels under load, and weight. In addition, they must satisfy many performance targets as-
sociated with less easily measured concepts such as style, manufacturability, and space and
mounting requirements of other engineering groups involved in the design process. These
unmeasured performances are handled informally, often by negotiation between groups
working on the same vehicle. The Ml was developed to allow for a formal approach to the
incorporation of this imprecise information.

In order to avoid any difficulties involving confidential information, it was decided that
an older model vehicle would provide an effective demonstration of the method. To this

end a 1980 VW Rabbit (see Figure 8.1) was acquired. The vehicle was stripped to the
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Figure 8.1: 1980 VW Rabbit in stiffness testing

structural body-in-white, and torsional and bending stiffnesses were measured. The intact
body-in-white was found to have a torsional stiffness of approximately 4900 N -m/degree
and a bending stiffness of approximately 2500 N/mm. Tables of data from some of the load
tests are shown in Figures 8.2 and 8.3. In addition, geometric data were gathered and used
to create a solid model (Figure 8.4). The solid model and the structural stiffness information

together were used to create a finite element model (Figure 8.5).
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Load (N) | Deflection (mm)
0.00 0.00000
284.67 0.101060
551.55 0.17780
836.22 0.33020
2001.60 0.78740
2286.27 0.91440
2837.82 1.16840
Fitting to y = mx + c:
m = 2426.16 N/mm
c = B1L7TIN
Fitting to y = mxz + 0:
m = 2484.80 N/mm

load (N) vs. deflection (mm)

3500.00
3000.00
2500.00

2000.00

load (N)

1500.00

data points
1000.00 fitted line

500.00

0.00
0.00000 0.20000 0.40000 0.60000 0.80000 1.00000 1.20000 1.40000

deflection (mm)

Figure 8.2: Load test, bending stiffness
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Load (N) | Moment (N-m) | Deflection (mm) | Twist (deg)
0.00 0.00 0.00 0.00000
126.99 212.84 1.09 0.04407
275.78 455.03 2.41 0.09736
404.77 667.87 3.48 0.14041
551.55 910.06 4.47 0.18038
680.54 1122.90 5.72 0.23060
845.12 1394.45 6.99 0.28184
974.11 1607.28 8.08 0.32591

Fitting to y = mz + c:

m = 4960.74 N-m/deg
¢ = —10.16 N-m
Fitting to y = mx + 0:
m = 4917.04 N-m/deg

moment (N-m) vs. twist (deg)

1800.00
1600.00 -|
140000 -
1200.00 +
1000.00

800.00

moment (N-m)

600.00

data points
fitted line

400.00

200.00

0.00
0.00000  0.05000 0.10000 0.15000 0.20000 0.25000  0.30000  0.35000

twist (deg)

Figure 8.3: Load test, torsional stiffness
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Figure 8.4: Geometric model of body-in-white in SDRC I-DEAS
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Figure 8.5: Finite element model of body-in-white
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The finite element model was parameterized with five! design variables:
dy: A-pillar thickness (mm)
da: B-pillar thickness (mm)
ds: floor sill thickness (mm)
dy: floor pan thickness (mm)
ds: B-pillar location (mm aft of a nominal point chosen by stylists)
and the performance was assessed with three measures:
p1: Bending stiffness (N/mm)
po: Torsional stiffness (N-m/deg)
p3: Weight (kg)

The stated design problem was to achieve 10% improvements over the reference model in
the three measured performances. In addition, it was understood that the design must not
be difficult to manufacture, and that this year’s model should have a “somewhat longer and

sleeker look.”

8.2 Applying the Myl to include imprecise information

While standard optimization methods could be used to attempt to determine the highest
achievable bending stiffness, the highest achievable torsional stiffness, or the lowest achiev-
able weight for this analysis model, such an optimization would not tell the designer which
designs are the most promising when other relevant considerations are taken into account.
On the one hand, there is a necessary trade-off between the stiffnesses and the weight; it is
impossible to optimize both simultaneously. Additionally, there is other (imprecise) infor-

mation to consider when making the decision, such as manufacturing and styling concerns.

The demonstration here was conducted using a subset of the design variables; the method can be applied

directly to a larger set of variables.
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The application of the Ml to this problem involves constructing a different “optimization”
problem that includes the imprecise information that would be left to the negotiation stage

in traditional design.

8.2.1 Performance preferences

The calculated performance requirements on bending stiffness, torsional stiffness, and weight
were originally expressed as targets of 10% improvements over the reference model. As
was discussed above, this is unrealistically, and indeed unproductively, precise. In place
of these hard targets, imprecise performance requirements were specified with a linear in-
terpolation between two points. In the implementation of the My, it is common to name
the customer as the source of the performance preferences; in fact, it is more likely to be a
manager, perhaps informed by market research, serving as the customer’s proxy. To specify
these imprecise requirements, the manager must answer two simple questions: “What is the
lowest performance you can live with (where is 4 = 0)? What performance would satisfy
you completely (where is 1 = 1)?” These bounds are clearly dependent on a number of fac-
tors, including the target market and the performance of competitors’ products; discussions
with employees of Ford Motor Company and VW indicated that engineering managers can
answer these two questions with little more effort than is needed to settle on the initial crisp

target. Figure 8.6 shows the imprecise requirements on stiffnesses and weight.

8.2.2 Design preferences

To include requirements on manufacturing, availability, style, and other things which are not
calculated in the finite element analysis, designer preferences are specified on the design
variables. As with the imprecise performance requirements, they range from p = 0 at
the unacceptable limit to 4 = 1 at the most preferred. A preference is defined on each
of the five design variables, as shown in Figure 8.7 and listed in Table 8.1 (as shown in
Figure 8.7, preferences are interpolated between specified values in considering ds and ds).

Each preference is representative of imprecise information that can be incorporated using
the Ml:

1. The sheet steel for stamping the A-pillar is only available in certain increments, so
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Figure 8.6: Imprecise performance requirements

this plot is discrete rather than continuous. The manufacturing engineer has a higher
preference for thinner sheets, since they are easier to form,; this is a design preference

for manufacturability.

. The B-pillar thickness is continuous and more complicated than the linear perfor-
mance preferences. This preference does not indicate that the physical B-pillar might
be 1.113 or 1.114 mm thick; rather it means that the designer knows that the finite
element model is simplified, and that a high number for B-pillar thickness means that
more reinforcing features will need to be added to the B-pillar. The designer would

like to keep the B-pillar as simple as possible.

. The floor sill thickness preference is an example of a sourcing, or availability prefer-

ence; it states that some thicknesses are more easily obtained than others.

. The floor pan thickness is preferred thicker by the designer for ease of attachments

and for durability.



122

10 —@p—@P—————— 1.0
08 + @ 0.8
06 | @ 0.6 |
1 1
0.4 04
02 | 0.2 -
0.0 ! ! 0.0 . : -
06 07 08 09 1.0 1.1 0.8 1.0 1.2 1.4 1.6
A-pillar thickness (mm) B-pillar thickness (mm)
1.0 10 ——r P—0
®
0.8 - 08 ®
0.6 0.6
uw M ®
0.4 | 04
02 r T T 02 -
0.0 0.0
07 08 09 10 11 12 13 09 10 11 12 13 14
Floor sill thickness (mm) Floor pan thickness (mm)
1.0 —O—O
08 -
0.6 |
[ o——o0
04
02
000 9}
-50 0 50 100 150 200

5. The design preference for B-pillar location comes from the stylists, and captures
the directive for a longer, sleeker look for this year’s model. It has been specified
differently from the other design preferences, using a-cuts [4], so that the stylists
have given a range of perfectly acceptable values, a range of barely acceptable values,

and a range of values that fall in the middle. This method of specifying preferences

B-pillar location (mm aft of nominal)

Figure 8.7: Designer preferences

can have computational advantages.



123

d |07 08 09 10 1.1
pp | 1.0 1.0 08 06 04
dy [ 1.1 12 13 14 15
up | 1.0 05 05 025 0O
ds |08 09 10 11 12
up |02 1.0 02 1.0 05
dg |10 1.1 12 13 14
up |05 08 09 1.0 1.0
ds |50 0 2575 150 200
pp| 0 05 10 05 0

Table 8.1: Designer preferences

8.2.3 Weights and strategies

In addition to these preferences, the relative importance, or weight, of each attribute must be
determined, and the way in which attributes trade-off against each other must be specified.
It was supposed that the interactions among preferences would be under the ultimate control

of a manager. The hierarchy of preferences employed is shown in Figure 8.8. The procedure

for managed negotiation described in Section 5.7.2 was applied:

1. In comparing bending stiffness p; and torsional stiffness po, it is determined that

increasing either one to the best possible value would be of little benefit if the other

stayed at u = 0.5:

P4(0.5,1) ~ P;(0.5,1) & P4(0.5,0.5)

The conclusion is that for (p1,p2), weights are equal and the strategy is s = —o0

(min).

2. Next, the overall stiffness is compared to the structure weight. Here, indifference
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\Bending| Torsion| |Mass| |B-pillar | [Floor pan |A-pillar||Floor silll

NS N/

B-pillar location |

[Stiffnesses‘ |Mass‘ ‘Designer prefﬂ |Manufacturer prefsi
|Measured performance| [Engineering prefs|
\ /

Design preferences
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Figure 8.8: Hierarchy of preferences for VW example
points for Ps ((pl, D2), pg) are:
Ps(0.3,1) = P4(1,0.2) = P,(0.5,0.5)

and the calculations give s = —0.02, w = 0.7, which, rounding to one decimal place,

is equivalent to the geometric mean (s = 0). Note that w = % is the ratio of weights.

3. The five design variables are likewise aggregated hierarchically. First, the two that

the designer specified directly, B-pillar thickness (dz) and floor pan thickness (dy):
Ps(0.4,1) = P4(1,0.3) = P,(0.5,0.5)

This indicates that the designer would be willing to see preference for floor pan thick-
ness decrease to 0.3 in order to achieve a perfectly acceptable value for B-pillar thick-
ness, while a perfectly acceptable value of floor pan thickness merits a decrease in
B-pillar thickness only to 0.4. This translates to a strategy of s = —1.4, between the

min and the geometric mean, and a weight ratio of w = 0.6.

4. Next, the two manufacturing preferences, A-pillar thickness (d;) and floor sill thick-
ness (d3), are compared, and the sourcing preference on d3 is seen to be relatively
insignificant:

P,(0.4,1) = Py(1,0.1) = P4(0.5,0.5)
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Here, s = —0.2, and w = 0.3.

. As the design preferences are combined hierarchically, the next step is to arrive at the
appropriate aggregation of the two pairs of design preferences just considered: How
does the combination of B-pillar thickness and floor pan thickness compare to the
combination of the two manufacturing preferences A-pillar thickness and floor sill
thickness? If the manager is comfortable discussing preference levels, this calcula-

tion is relatively simple:
Ps(0.25,1) = P4(1,0.25) = P4(0.5,0.5)

This is the case of equal weights, and compensation with the geometric mean (s = 0).
The same result could be achieved by specifying indifference points as combinations

of all four design variables.

. The styling preference for B-pillar location (ds) is next traded-off against the aggre-
gate of the four other design variables. Convenience of design and manufacture are
seen to be relatively less important than styling, and the two do compensate to some
degree:

Ps(0.4,1) = Py(1,0.3) = P5(0.5,0.5)

Once again, this yields s = —1.4, w = 0.6.

. The last aggregation to be considered is one between the entire set of uncalculated
design preferences on the one hand, and the set of calculated performances on the
other. This aggregation is also strongly compensating (close to s = 0), and the

performances are weighted slightly more than the design considerations:
Ps(0.2,1) = Ps(1,0.3) = P5(0.5,0.5)

This gives a compensation parameter of s = —0.02, and a weight ratio of w = 1.3.
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Through the application of the Mg, the design problem has been reformulated to be the

maximization of the overall preference:

.ﬂ'(d) =Po (/'I’DMU‘P; 1, ]-'3)

where

up = P-14 (Po (77—1.4 (d2,d4;1,0.6),P_g.2 (dl,ds;1,0-3);171)’615;0-6, 1)

pp = Po(P-co (p1,p2;1,1),p5;1,0.7)

To compare the weights of the eight individual attributes, the lowest weight (floor sill

thickness) is normalized to one. The normalized weights are:

wq, 3.3
wd, 2
wgy, 1
wyq, 3.3
wgs 16.1
wp, 9.9
wp, 9.9
wp, 13.8

The computation of fi(d) for a single design point d is limited by the finite element
stiffness calculation, which takes about a minute on a Sun Ultral-170MHz workstation;
the calculations of weight and preference aggregation are of negligible cost. Even in this
relatively modest problem, where there are only five design dimensions, an exhaustive cal-
culation of preferences over the design space is prohibitively expensive: to capture even
10 points on each dimension would require approximately 70 days. The Ml exploits the

structure of the problem to speed the search for preferred solutions.



127

8.3 Results

The design problem, including all imprecise information, was solved in two different ways.
First, in order to demonstrate the method, the finite element analysis was run 3125 times to
provide a coarse but complete check of the entire design space. The point of peak overall
preference of i = 0.440 was found by this approach to be at d = (1.0,0.9,0.9, 1.0, 50),
where the design preferences pp are (0.6,1.0,1.0,0.5,1.0); the stiffnesses and weight at
this point were p = (2832, 5836, 147), with preferences (0.23,0.14,0.62). The maximum
achievable stiffnesses are 3365 N/mm (up = 0.77) in bending and 6029 N-m/degree (up =
0.25) in torsion, but the corresponding weight of 170 kg is unacceptable. Similarly, a weight
of 144 kg (up = 0.78) is achievable, but stiffnesses drop to 2803 N/mm (up = 0.20) and
5730 N-m/degree (up = 0.08). The combined overall preference f also takes into account
the design preferences on style, manufacturability, and the like.

The preference numbers, as well as the ordering of alternatives, vary if the strategies
and weights are varied. If it is assumed that all preferences are combined with the min op-
erator, as with the comparison in Section 5.6, then the maximum achieved preference is 0.2
and occurs atd = (1.1,0.9,0.8,1.2,150). If all design preferences are first combined with
a min, and the performance preferences are also combined with a min, and the aggregated
results are combined with an equally weighted geometric mean, the two highest overall
preferences are 0.361 at d = (0.9,1,0.9,1.2,50), and 0.361 atd = (0.7,0.9, 0.9, 1.3, 50).
Finally, if the above calculated weights are applied with the original compensating func-
tion, the geometric mean, the maximum preference is achieved by d = (0.9,1, 1.1, 1, 50).
These three different aggregation models are summarized in Table 8.2. The overall pref-
erence values are of course higher for more compensating strategies, and it is pointless to
compare them. That the order of alternatives is different, however, is significant. Different
negotiations lead to different results.

The power of the method lies not in an ability to find a single overall “best” point,
but in the information it contains about how the total combined preference i varies with
each of the design variables. Although it is impossible to display all five dimensions vary-
ing at once, a tool was written that uses a commercial package (Matlab) to display results

interactively. Using the tool, the designer can see the change in preference that would
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Aggregation strategy | di do ds d4 ds
calculated 1.0 09 09 1.0 50

all min 1.1 09 08 12 150

min and Py 09 1.0 09 12 50
(two maxima) 07 09 09 13 50

all Py 09 10 11 1.0 50

Table 8.2: Peak performance points, various strategies

occur by varying each design variable independently from a chosen beginning point. Re-
sults can be seen on five simultaneous plots in two dimensions (see Figure 8.9), or on a
three-dimensional surface plot (see Figure 8.10) with the remaining design variables set to

nominal values.

8.3.1 Approximations

Naturally, the exhaustive evaluation of points in the design space would not be performed
on a real design problem. It was performed here only for comparison purposes. An ap-
proach that utilizes Design of Experiments (DOE) [10] to approximate the finite element
calculations for bending and torsional stiffnesses reached substantially similar results in
only 21 runs (or approximately 20 minutes). The average difference (from the exhaustive
evaluation) in bending stiffness was approximately 1%, with a maximum difference of less
than 4%, while the average and maximum differences for torsional stiffness were both less
than 1%.

In some cases, the nonlinearities of the analysis function f will defeat a linear or even
polynomial approximation, but in many cases, such as the example presented here, these
simple approximations can drastically reduce the required computation. Since precise an-
swers are not required for preliminary design, it is sensible to exploit approximation tools
when possible. If more computation can be justified, a more thorough calculation can al-

ways be made.
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8.4 Discussion

Engineering analysis usually requires some judgement on the part of the designer. Unless
a full-scale exact prototype is to be built and tested, the accuracy of any calculated perfor-
mance measure depends on the quality level of the model employed. Even when exact data
are available for some attributes, final decisions about a design incorporate other, unmod-
elled concerns, suéh as manufacturing and styling.

The Ml constructs a model of the entire decision process, expressing the calculated
overall performance fi(d) as a function of the design variables. It depends on many factors:
the function f for calculating measurable performances, the specification of design pref-
erences up and performance preferences pup, the weighting of these preferences, and the
specification of trade-off aggregations between attributes. A change in any of these will af-
fect the shape of the function f in design space, and thus affect the decision. The analysis f
is here relatively expensive to compute, and changes in the finite element model are costly
to propagate to overall preference. Changes in the other factors, on the other hand, are
easily incorporated, as finite element results f(d) are stored so that the same design point
need never be analyzed more than once. This allows the Mgl to support an iterative decision
process, when the information from the first round of calculations inspires a change in the
preference structure.

In the example shown in this chapter, the shape of the function i(d) is sensitive to
changes in the styling preference up(ds), which is not surprising, since this preference is
accorded a large weight. This and other features of the design problem can be seen in the
advanced interface shown in Figure 8.9. The vertical dashed (red) lines indicate the selected
values of the design variables. In this figure, d = (0.8,1,0.9,1.2,50). The solid (blue)
lines indicate how the overall preference i would change by varying that design variable
while holding the other four fixed at their current values. The dashed (black) lines show the
maximum achievable p for each value of each design variable. Finally, the solid (red) lines
joining the circles are the specified preferences on design variables. Thus Figure 8.9 shows
that the overall preference i varies qualitatively, though not quantitatively, as four of the
five design variables; the exception is dg4, floor pan thickness, where the overall preference

[ tends to decrease as the designer preference up(dy) increases. The designer can interact
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with the preference display to examine trends in the structure of the overall preference.

8.5 Summary

This chapter presented an example application that was undertaken on behalf of VW Wolfs-
burg; it serves as a tutorial and an application of the Ml and the ideas presented in this the-
sis. In preliminary vehicle structure design, as in all preliminary engineering design, many
important decisions are made informally on the basis of imprecise information. Concerns
of styﬁng and manufacturability, for instance, can carry great weight in the design process
although they are not modelled by any formal analysis. The Ml is a tool to formally incor-
porate such imprecise information into the design process, and thus to make decisions on
a sound basis. In this demonstration of the Myl prepared for VW Wolfsburg, concerns of
manufacturing, styling, parts availability, and design were incorporated with the engineer-
ing analysis of the structural stiffness of a VW Rabbit. The negotiation model presented
earlier was applied directly to eight design and performance preferences. The results show
the usefulness of the method in trading-off these conflicting attributes.

In addition to an application to the negotiation model presented in this thesis, this exam-
ple shows the usefulness of incorporating approximations into the calculations of the M.
Also, an interactive graphical tool for preference display was developed and applied here

to address the problem of displaying results graphically in several dimensions.
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Chapter 9

Conclusions

The seeds of the formal study of negotiation in engineering design discussed in this thesis
were planted during joint work with vehicle structure engineers from industry on the in-
clusion of imprecise information in preliminary vehicle structure design. These engineers
noted that their most significant sources of uncertainty were the immeasurable require-
ments that came down to them from their managers. They had tools, techniques, skills, and
intuition enough to approach the given engineering targets of stiffness, weight, acoustic re-
sponse, and the like. Difficulties arose, however, when they delivered designs that seemed
to meet the targets, but would be asked to modify them to accommodate other, often pre-
viously unspecified (and in general unquantified), requirements, such as styling concerns.
Also, they commented that it was common for targets to be set unrealistically high at first,
and that after a first design iteration, managers would adjust the targets based on the prelimi-
nary results. Both of these situations were resolved in meetings that the engineers described
as “negotiations,” where different engineering groups, managers, stylists, and others would
attempt to divide limited resources and design freedom. They reported that it was at least as
important in these negotiations to seek as many resources and as much design freedom as
possible, as it was to attempt to optimize any notion of overall performance. While the ne-
gotiations could be either sufficiently open or sufficiently controlled that the results seemed
productive, at times politics seemed to play a larger role than engineering productivity.
The task to formalize negotiations was then undertaken in the context of the ongoing re-

search effort to incorporate imprecision in engineering design, which had already acquired
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a name, the Method of Imprecision, or Mgl. The Ml used the specification of preference
to formalize engineering decisions. Throughout the course of the research, more and more
engineering design decision problems came to look like negotiations, at least in their math-
ematical models.

The essence of the model of a negotiated decision is the aggregation of preferences.
Indeed, negotiation can be equated with aggregation: each group or individual is responsi-
ble for their preferences, but when those individuals or groups meet to negotiate how those
preferences shall be combined at the level of the entire design, that is an aggregation prob-
lem. Even when there is no recognizable negotiation in the ordinary sense of the word, that
cannot be seen in the mathematics of aggregation. An important contribution of this thesis
is the recognition of the aggregation problem of negotiation.

The Myl had previously used two different aggregation methods to combine preferences.
However, a complete justification of the legitimacy of preference aggregation had not been
previously given. Chapter 4 discussed some objections to any aggregation of preference
raised by social choice theory; it was shown there that the particular formalism of preference
used here is not subject to those general objections.

Chapter 5 answered the question of which operators are suitable for the aggregation of
preference in the engineering design problem. It was seen that there are an infinite number
of such operators, and that a parameterized family of operators that spans all rationally
allowable levels of aggregation compensation can be constructed. Furthermore, for every
aggregation problem there is only one correct aggregation operator. While small deviations
from the correct operator will typically lead to the same decision, in many cases different
operators lead to different decisions. This implies that results from any decision-making
method that relies on a more limited set of aggregation operators are suspect. Perhaps
the most significant contribution of the thesis is a mathematically complete description of
such preference aggregation, and the development of techniques to apply the method and
determine the correct aggregations.

A further contribution of the thesis was the exploration of conditions under which the
formal aggregation model is not only a rational expression of the decision, but can be used

to support set-based design. Set-based reasoning can have computational advantages, and
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set-based information may be of much greater use to the designer in the iterative search for
better solutions. A set of sufficient conditions based on the notion of convexity of prefer-
ences was derived.

The thesis includes the presentation of some work that is tangentially related to the core
subject of negotiation. A preliminary investigation of various optimization methods for
the scalar optimization problem posed by the formal calculation of overall preference was
presented in Chapter 7. Appendix A describes a slight diversion in the research to explore
the extension of some aggregation methods to the realm of aeroshell analysis; it is included
here to give a complete picture of the research avenues that were explored in the course of
this project.

I was fortunate to be asked near the end of this research to demonstrate some of the
imprecision techniques of the Myl on an example problem for research engineers at Volk-
swagen Wolfsburg. Chapter 8 described the example problem, methods, and results. It
shows the basic application of the Myl and the negotiation model, and has some nice pic-
tures as well.

The work presented in this thesis is foundational. The results will be used to develop
and implement tools that can help engineers working on large projects to negotiate design
solutions in a rational manner. Using the modelling techniques described here, decisions
and their rationales can be scrutinized and recorded. If a dispassionate representation of
a decision can uncover political motivations, it may lead to more sensible decisions. A
faithful record of the negotiated design decisions made at an early stage of the design pro-
cess may help reduce time spent repeating those negotiations at later stages, and may help
guarantee consistency of decisions across the entire process. By providing engineers with a
formalism to include uncalculated requirements into their engineering models and thus an-
ticipate problems that commonly arise late in the design process, the need for large changes
to incorporate those requirements may be reduced. The applications presented here strongly

suggest that the exploitation of these ideas will lead to better designs.
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Appendix A

Aeroshell Design and Analysis

The late 1980’s and early 1990’s have seen a change in the direction of space exploration
conducted by NASA, with an emphasis on smaller, lighter spacecraft and missions with
budgets and time frames an order of magnitude (or two) less than the missions of the 1960’s
and 1970’s, allowing for less expensive, more frequent launches (see Figure A.1). This
shift in emphasis highlights the need for design tools to support preliminary design, since
mission designers no longer have the luxury of long times or large budgets for prototyping,
testing, and redesign.

The need for simulation-based analysis tools is particularly clear in the design of space-
craft, as operating environments (e.g., microgravity) are often difficult or impossible to
reproduce to test prototypes. This appendix examines some of the issues of the manage-
ment of information in preliminary design using simulation-based analysis and including
uncertainty and data of varying reliability.

One of the unifying themes of research on the Ml has been the aggregation of prefer-
ences. The research presented here continues this earlier work by considering preliminary
design when the design space is not well modelled by a single (even a single expensive)
design tool, but when significant irregularities or discontinuities in the mapping between
points in the design space and their corresponding performances call for the application of
different analysis tools in different regimes. The formal mathematics developed for pref-
erence and for aggregation are extended to the problem of combining output from several

analyses for different (often overlapping) regimes, and the resolution of conflicts where
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data from multiple sources disagree.

A.1 Aeroshell design

The example presented here is the design of a reentry aeroshell that is to be released from
a spacecraft as it enters the Martian atmosphere. Two devices of this type are expected to
be launched with the DS-2 Mars probe in January of 1999. After descent to the Martian
surface, the aeroshell’s payload, a penetrator with some instrumentation, will puncture the
Martian surface so that soil experiments can be conducted and the results transmitted by
radio. We shall not treat the soil penetration problem other than considering the orientation
of the aeroshell at impact; the general problem here is the design of an aeroshell that will

reach the surface near a desired velocity and angle of attack.
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There are several sources of significant uncertainty in the operating conditions of the

aeroshell during its descent:

e The shell is released from a tumbling spacecraft, so the angle of attack upon entering

the atmosphere is unknown.

o The shell flies through the Martian atmosphere, the properties of which are not well

characterized.
e The shell encounters unknown winds.

e The shell hits the ground, which is at an uncertain orientation and has uncertain soil

properties.

These uncertainties are interesting, difficult and worthy of study, yet there are other issues
of uncertainty in the analysis of the problem that take precedence. An automated or semi-
automated analysis would allow for a computer search of the design space to (at least) guide
preliminary design. Several levels of simulation are available, and their reliability increases
with the computation time involved. If, for example, the assumption that the aeroshell
reaches its terminal velocity could be made, computation time would be milliseconds, but
the assumption is not correct in general. A single run of a full CFD model takes on the order
of a day to set up and run on a supercomputer, which is far too computationally intensive for
the project time-frames and costs envisioned, except for confirmation of a selected design.
A compromise analysis program is a numerical integration of forces over the flight path,
with aerodynamic coefficients determined at each time step as functions of atmospheric
conditions and the attitude, velocity, and geometry of the aeroshell. The computation time
required makes classical optimization, genetic algorithms, and simulated annealing proce-
dures realistic. However, the integration routine is not simply an accurate black box: to
successfully integrate over the flight path through the Martian atmosphere requires con-
siderable engineering judgement in the calculation of the aerodynamic coefficients used at
each time step of the integration. Furthermore, the output from the integration program
gives no indication of how accurately the coefficients were determined.

The problem encountered here by the aeroshell designer is a common one in design

analysis, that of how to guarantee good results when the problem may cover one or more of
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several “analysis regimes.” These regimes may be inherent in the physics of the problem,
as in the transition between transsonic and supersonic flow, or they may be determined by
the availability of information, as in the case when experimental results are available for

some (but not all) points in a design space.

A.2 Problem scope

The problem of aeroshell design involves a number of fields (e.g., aerodynamics, ther-
modyﬁamjcs, material science, structural mechanics). The aerodynamic analysis, even if
considered apart from all other fields, is greatly complicated by the need to treat multiple
flow regimes (hypersonic, supersonic, transsonic, subsonic, Newtonian, detached shock,
free-molecular), and even if the analysis can be made tractable, the aerodynamic design
problem has such a huge set of potential solutions so as to make a search for a globally
“optimal” solution to the problem impractical. The present approach to aeroshell analysis
is to construct an aerodynamic database for a single candidate design; the analysis is thus
useful to validate a design that has already been selected, but is not seen as a tool to explore
the design space (see, for example, [51]).

A long-term goal in the field of aeroshell design would be an analysis program that
addressed all possible candidate configurations in all flow regimes. In order to make the
problem more tractable and to address the issues of analysis in the presence of uncertainty,
we shall restrict ourselves to the aerodynamic analysis of one configuration of the aeroshell.
This configuration is a spherical-nosed cone with a spherical aft section, as shown schemat-
ically in Figure A.2. The distance between the centers of the two spheres is expected to be
quite small. Three nondimensional parameters completely describe the idealized aeroshell:
the Bluntness Ratio B (the ratio of the nose radius to the aft section radius), the Fineness
Ratio F' (the ratio of overall length L to maximum diameter D), and 6, the cone semiangle.
The extra information gained by allowing B, F, and 6 to vary is useful not only for explo-
ration of alternative designs, but also for analysis of a single fixed design, as the geometry
of the aeroshell may change: the heat shield ablates during reentry, for example.

The general design problem is to determine values of B, F, and 6 that will (robustly)
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deliver the aeroshell to the surface at a given velocity and angle of attack, in the presence of
the operating uncertainty. The more immediate problem is to deliver a reliable integration
routine for computer implementation in the presence of uncertainty in the determination
of aerodynamic coefficients. The designer, also referred to here as the analyst or engineer,
who is interested in using an integration routine to test the performance of a design can
draw upon several sources to determine the aerodynamic constants required at each time

step of the integration:

e Experimental results from the literature. These might be of varying reliability. Also,
the experimental results do not cover the entire design space, so interpolation be-
tween experimental points and extrapolation to unexplored areas of the design space
is necessary. The reliability of an interpolated or extrapolated answer will decrease

with distance from experimental points.

e Simulation data from computational fluid dynamics (CFD) computations (executed
point by point — one computation for a particular configuration, angle of attack, and

Mach number). These are also of imperfect reliability.

e Analytical computational models, of which there are at least three in this particular
problem:
— Newtonian flow
~ free-molecular flow
— detached shock flow
The aeroshell travels through several flow regimes (and is often in an indeterminate
state between regimes) during the integration. In addition, most analytic models have

been developed for a particular aeroshell geometry, and must be modified to provide

useful information for other geometries.
e Rules of thumb: experience- and intuition-based knowledge.

The distillation of information from these sources (each of which is imperfect) is a matter

of engineering judgement. As designers determine the aerodynamic constants, at the same
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time they refine their understanding of each of the sources (a technical reference giving
experimental data that deviates significantly from a number of other experiments may be
depreciated or discarded, the analytical models may be updated to better fit experimental
data, etc.).

Fuzzy aggregation has been applied here to interpolate, extrapolate, and combine data
from different analysis programs that hold in different regimes. Simultaneously, the level
of quality [65] of the analysis has been explicitly represented and propagated using a math-

ematics of fuzzy sets [107] similar to that used to combine preferences in the M.

A.3 Formal treatment of the problem

The statement of the general problem is as follows: Find f such that

f(d,x) = (p, )

where d is a vector of design variables describing a point in design space, x is a vector of
operating conditions, p is a vector of performances, and y is some measure of the reliability
or quality of the answer p (i is a vector since the reliability of the components p; of p
need not be the same for all ¢, though in the example presented here the p; will always
agree). We shall also use the more compact notation y to represent (d, x). In the example
under consideration, d = (B, F, #) describes the geometry of the aeroshell. The operating
conditions can be described by the attitude of the aeroshell and the atmospheric conditions,
which for the example here can be described by the angle of attack «, the Mach number M,
and the atmospheric density p. The performances desired are aerodynamic constants: the
normal coefficient C,,, the axial coefficient C,, the moment coefficient C;,,, and the center

of pressure C,,. Thus the example problem is to find f such that:

f(B,F,0,0,M, p) = (Cn,Ca; Crm, Cyp, )
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The function f is a combination of various subfunctions f;, so that

f(dx) =P (fi(d, ), fa(d, %))

where P represents the combination. The subfunctions f1, ..., f, are the sources of infor-
mation available, and the set of f; is subject to change. Adding a new source f,1 to the
list may make other sources unnecessary. Since a level of quality is one of the outputs of
the function f, evaluation is possible with any set of f;; indeed, it is because the analysis
is uncertain and imprecise that the combination is necessary. The human designer making
such a judgement in analysis will arrive at an answer and will also have an idea of how valid
that answer is. This appendix presents a formal representation for both.

For the aeroshell reentry problem, data for f are available from experimental sources,

CFD computations, and analysis models. At the highest level,

f(d,X) =P (fexp(dyx), fCFD (d, X)7 fanalytic(da x))

and subfunctions can be further refined, as for example,

f analytic (dv X) =

P (fNewtonian (d7 x) ’ ffree—molecular (d, X) ) fdetached_shock (d7 X))

The calculations for Newtonian, free-molecular, and detached shock flow regimes are rapidly
computable, and the interpolation of experimental data is a well-understood problem. Each
subfunction lends itself to simple automation.

A formal solution to the problem of combining the subfunctions f; must fulfill several

purposes. Some important features of a formal solution are as follows:

e Calculation of each subfunction comes from expertise from the particular discipline.
The formal solution must allow for calculation modules to be added, removed, up-

dated, and exchanged.

e Propagation of quality is separate from combination of results, but quality informa-

tion is necessary for combination of results. The formal solution should propagate
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and combine quality levels in a justifiable manner.

e Combination of results is easy to do, but easy to get wrong. An arithmetic mean,
while computationally tractable, is often not the right choice, as was discussed in
Chapter 5. The formal solution should use combination methods that are based in do-
main expertise; the methods of combination, like the calculation modules, should per-
mit easy modification. Combination functions such as other weighted means (those
between min and max) have been used in the My for preference aggregation, and the
fuzzy sets literature [109] has an extensive treatment of t-norms (less than min) and

t-conorms (greater than max).

e One feature of this sort of analysis, when it is handled informally by a human de-
signer, is that the subfunctions (or calculation modules) are updated when analysis
by other means indicates shortcomings. The formal solution should allow for such
back-propagation of information; while the ultimate goal is to provide a proposed
change in a particular submodule, an acceptable intermediate step is to provide feed-

back to the designer, who can modify subfunctions as necessary.

The need to incorporate and modify rules points to fuzzy set theory as a candidate
for the combination model. In addition, the combination of designer preference has been
represented as the aggregation of fuzzy sets [4], and this problem exhibits many similarities
to the designer preference problem. The aggregation will be best illustrated through thé

presentation of the example.

A.4 Application to the example

The aeroshell analysis problem presented here has been restricted so that the analysis space
is spanned by six variables: three design variables and three variables to describe the op-
erating conditions. While experimental data are available for some regions of the analysis
space, there are no experimental data points for many regions of interest. In addition, ana-
lytic (and thus easily computed) analyses have been previously constructed to cover some

of the regions in which the aeroshell will operate, usually with reference to a particular fixed
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geometry; in this example, the authors had access to a Newtonian analysis code and a free-
molecular analysis code. These analytic codes can be applied to other aeroshell geometries
if they are suitably modified. The analyst who combines these sources of information has
tasks of two varieties: to interpolate and extrapolate experimental and analytic results to
“new” areas of the design space, and to determine the level of quality of the interpolated
results. The interpolation and extrapolation of data is well understood, and the analysis tool
presented here uses polynomial and spline fitting in its implementation. The extension of
analytic results to new aeroshell geometries is treated as an interpolation problem in the
erTor. A

If we consider the experimental data alone, then the analysis space can be separated into
two regimes: one where the experimental data holds, and one where it is not adequate. This
distinction is fuzzy; only at the actue'll experimental points, and only then if the experiment
was reliable, can one be certain that the experimental data holds. Anywhere else in the
analysis space, the quality that the designer believes the data to have will depend (at least)
on how close it is to actual data points.

The designer’s belief in the quality of the data is uncertain but not probabilistic; it is not
the case that the analysis has a 70% chance of being right and a 30% chance of being wrong.
The designer’s uncertainty about the reliability of the data is naturally modelled as the
degree of membership in a fuzzy set [109]. The quality (or preference, in Ml terminology)
Lexp(y) of the applicability of interpolated experimental results to a particular point y is
a function of the point’s distance from existing experimental points, taking a value of 1
(perfect quality) at experimental points, and tailing off to 0 at some distance. The quality of
interpolated results will also depend in general on the particular point; the transsonic flow
regime, for example, is notoriously ill-suited to interpolation.

The calculation of pieyp, (or any other u) is a matter of engineering judgement. Some-
times it may be possible to express fiexp simply and analytically. For example, one might
define the quality pexp(y) of the interpolated answer as a function of the (Euclidean) dis-

tance of the point y from the nearest experimental point ypearest, and let the quality tail off
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as some unacceptable distance dp,,x is approached, for example with:

1
.U'exp(Y) = d4—(ly - Ynearestl - dmax)z(ly - Ynearest[ + dmax)27

max

a plot of which is shown in Figure A.3. This quartic quality curve has zero slope at u-
values of 0 and 1, and falls off fastest at the midway point. However, there is no proof that
the nuances of the curve are an accurate model of the engineer’s thinking. The only truly
“fixed” points on the curve are those that reflect the engineer’s highest belief in the quality
of the data (u=1, if the experiment is completely trusted) at those points where experiments
were performed, and those that show that quality degrades to zero at some distance dpax
which is specified by the engineer. Other researchers have argued that the human capacity
to distinguish many points on a preference curve is limited [50], and so the detailed shape
of the curve is unimportant. A linear interpolation is then a priori no worse, and has the

advantage of simpler calculation:

Amax — Iy - Ynearestl

Hexp (y) =

dmax

Other subtleties in the determination of a level of quality of the interpolated data, some of

which have been alluded to before, contribute to the difficulty of representing quality with
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a single curve:

1. Only a few points on a quality curve such as the one shown in Figure A.3 will be

meaningful to the engineer.

2. The specification of dp,x as a single number assumes that Euclidean distance in dif-
ferent dimensions of the design space are equivalent, or at least comparable. This
is plainly not true in general, for even if all dimensions can be scaled so that units
are comparable, it cannot be assumed that the analyst is equally concerned with “dis-

tance” in all directions.

3. The quality of interpolated data will depend on the operating point; in other words,
dmax, €ven if well-defined, is a function of y. For example, the designer is likely to
believe interpolated data for Mach numbers M between 3 and 8 has a higher quality

than data in the transsonic range where M ~ 1.

4. The quality of interpolated data will depend on several nearest points, not just on the

single nearest experimental point Ypearest-

5. The quality of extrapolated data may be quite different from the quality of interpo-

lated data.

6. When sufficient experimental data is available, the quality of interpolation can be
checked against other experimental points; the analyst fitting a curve by hand typ-
ically uses such a check in the informal calculus of quality. The dpyax approach

obscures this.

7. Finally, the engineer may recognize the potential importance of all of these subtleties,
and yet arrive at a level of quality without taking all possibilities into account. Es-
pecially in preliminary design, the engineer may proceed, considering only the most

important quality criteria, and refine the calculation for more detailed analysis.

A more flexible approach to quality specification is required to capture these nuances.
The natural model of membership in a fuzzy set for the quality level of a point y in design

space indicates the use of a rule set to capture the designer’s beliefs about the quality of
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data. The transformation of a set of IF-THEN rules into a fuzzy inference matrix is a
well-known problem in fuzzy set theory, and commercial packages such as Matlab’s Fuzzy
Logic Toolbox [41] are available to perform this. A rule set is flexible with respect to
the difficulties enumerated above, and is easily updated. In some cases the engineer may
feel more comfortable circumventing the rule set and specifying quality functions directly.
For instance, for Mach numbers M between 3 and 8, and p close to that of air (the value
of p at which experiments were made), the engineer may wish to define a simple rule
for each dimension of the design space describing the loss in quality as a function of the
distance from the nearest experimental points in that dimension. The quality contribution

with respect to Mach number M is piexp:nr, Say:

dmax:M - ‘M - Mnearest|
dmax:M

Hexp: M (M ) =
Similar functions for B, F, 0, and « are combined, in this case with a multiplication:

/J'exp(B7F70,M’a7p) =

,U'exp:B(B),Ufexp:F(F)Hexp:() (e)ﬂexp:M (M),U/exp:a(a)

Note that since p has been assumed to be close to that of air, it has no contribution. However,
when p is different another rule comes into play and the free-molecular analysis must also
be considered.

Some data, taken from wind tunnel tests for cone angles of 10, 15, and 20 degrees [62],
are shown in Figure A.4. The data are shown here as isolated experimental points. A stan-
dard interpolation scheme will generate a surface over the same range, but not all points
on the surface will have the same level of quality. The rule set implemented here main-
tains high quality of interpolated data along the dimensions o and M (except across the
transsonic region M = 1, where deviations in M are penalized strictly), but enforces rela-
tively high penalties on deviations from experimental points in 6, B, and F'. In particular,
with the present data there is sufficient granularity in M and « to check curve fits; as more
data becomes available in the other dimensions, the quality calculations can be updated.

Of the many physical models for fluid flow to handle different regimes, two have been
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Figure A.4: Empirical data: C, for three cone angles 0
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implemented to date: a model for Newtonian flow, and a model for free-molecular flow.
Each of these models covers an analysis regime likely to be encountered by the aeroshell
in its descent to the surface, and as was mentioned above, each model was developed for
a particular aeroshell geometry. The analyst has some confidence in the output of these

models as long as two conditions are satisfied:

1. The operating point x is in the appropriate flow regime. For free-molecular flow,
a high Knudsen number is required, which translates roughly to a low p, and an
assumption of Newtonian flow is used for some supersonic flows when the entrained

boundary layer can be assumed to stay within the shock cone.

2. The aeroshell geometry d must be close to one for which there are experimental
data. The analysis is achieved by calculating the analytic model at a set of exper-
imental points, and then curve fitting the error between the analytic model (which
was originally developed for a different geometry) and experiment, and interpolat-
ing or extrapolating to the operational point of interest. Thus the machinery of the

interpolation scheme and its attendant quality calculation are both relevant here.

Surface plots of each of the two models are shown in Figures A.5 and A.6, with continuous
variation in 6, since Mach number is irrelevant for these two particular flow models. For
comparison with Figure A.4, a slice of each surface at § = 15° is also shown. These
analyses are also not accurate over the entire domain; as with the experimental data, there

will be varying degrees of quality.

A4.1 Aggregation of data from disparate sources

To determine the output parameters and their quality levels for a point in analysis space, data
from three calculation modules (experimental, Newtonian, and free-molecular) are consid-
ered. The varying quality of each calculation module over the space is represented by
membership in a fuzzy set. This membership is determined by the application of a number
of fuzzy rules. Quality of interpolated experimental data is higher near explicitly calcu-
lated data points, with greater penalties for deviations in geometry and lesser penalties for

deviations in the operating parameters M and «. If the density is low then free-molecular
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analysis is useful: Figure A.7 embodies this fuzzy rule in a fuzzy set on density p express-
ing the applicability of the free-molecular flow analysis. The applicability of Newtonian
analysis depends on the entrained boundary layer staying within the calculated shock cone.
The rules determining the applicability of each regime are specified by the designer and
encoded with fuzzy sets, either directly or through the construction of a fuzzy inference
matrix; these sets can be updated as the designer refines the rules. Such modification is
inexpensive, as it entails only a change in the aggregation problem, and does not require
any expensive analysis calculations to be repeated.

The results from all analysis modules are combined, with their participation determined
by the quality level of the answer. This analysis will divide the space into regions in which
the different analysis modules predominate. Some regions will have high levels of quality
for more than one module, as is the case when experimental data are taken in a regime for
which there is an analytical model. In this case, the overall analysis includes feedback as
to the legitimacy of the modules. Disagreement between modules may lead to changes in
quality levels or updated models.

Where a single analysis module has a much higher quality than the others, the result
from that module is used, and the quality level is returned with the result. (The analyst using
the tool in an integration scheme can log the quality levels, or flag points where quality falls
below a given level.) If the quality for the other modules is low but not zero, the answers
from those modules can be compared with the result, and the comparison can be logged for
the analyst’s later use.

When two or more analysis modules return high quality levels, the results must be
combined. The most straightforward way to do this is with a weighted sum (the quality
levels can provide the weights). A more useful scheme is to compare the results before
combining; when they agree closely, a weighted sum is acceptable, and the overall quality
will be greater than either of the single quality levels (so that the computation of quality can
be effected with a t-conorm [109]). If the results are not in close agreement, it is perhaps
better to use the result with the higher quality, but return a lower quality level.

Especially since only three flow regimes have been implemented, there are regions of

the analysis space in which all results have low quality. This shortcoming may be cor-
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rected by incorporating other analysis models (such as the detached shock analysis or a
CFD module). Nevertheless, just as the designer working informally must work with the
tools available, the formal combination of results here recognizes the shortcomings in the
available analysis tools and signals that with low quality levels. The analysis program pre-
sented here is designed for inclusion in an integration routine; the routine can track quality
levels to determine the overall reliability of the integration and to determine which regions
of the analysis space need further refinement. It would be a poor use of engineering re-
sources to develop a detailed model of the analysis space in a region that the aeroshell
never encounters.

Some aggregated results from the analysis program are shown in Figures A.8 and A.9.
Each plot shows a response surface for the axial drag coefficient C, over a region of the
analysis space; Figure A.8 contains results where pifree—molecular = O (density is high, and
the free molecular model does not hold) and Figure A.9 results where fifree—molecular = 0-7
(density is low enough that the free-molecular model has a relatively high quality level).
In both cases, the empirical data dominate where experiments were performed at points
that closely approximate operating conditions, and the physical flow approximation models
are more important where there is less experimental data. The experimental data are less
significant when pifree—molecular = 0.7, since these experiments were made with a density

equal to that of air. The discontinuities in the plots indicate incomplete knowledge, and
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Figure A.8: Interpolated experimental results with B = 0, F =0, § = 15°

Figure A.9: Results from free molecular code with B =0, F' =0, 8 = 15°

may indicate that a model needs to be refined.

A.5 Summary

This appendix described an exploration into the possible extension of some of the aggre-
gation formalisms presented in the body of the thesis to the realm of analysis. A method
to resolve disagreeing data from multiple sources was applied to the design analysis of an
aeroshell reentry design problem furnished by the Jet Propulsion Laboratory. Resolution,
interpolation, and extrapolation are accomplished by the use of fuzzy set aggregation func-

tions. This approach does not add significantly to the computation cost, and thus can be
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refined without repeating analyses, and is therefore particularly useful when computations
are expensive and must be minimized.

At the outset of the project, it was conjectured that the aggregation of data from multiple
sources would bear closer resemblance to the negotiation formalisms described in the thesis
than was ultimately determined to be the case. The results of this project are included here

in the interests of completeness.
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