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Abstract

This thesis explores the problem of mobile robot navigation in dense human crowds. We begin by

considering a fundamental impediment to classical motion planning algorithms called the freezing

robot problem: once the environment surpasses a certain level of complexity, the planner decides

that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneu-

vers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing

approaches have focused on reducing predictive uncertainty by employing higher fidelity individual

dynamics models or heuristically limiting the individual predictive covariance to prevent overcau-

tious navigation. We demonstrate that both the individual prediction and the individual predictive

uncertainty have little to do with this undesirable navigation behavior. Additionally, we provide

evidence that dynamic agents are able to navigate in dense crowds by engaging in joint collision

avoidance, cooperatively making room to create feasible trajectories. We accordingly develop inter-

acting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a

“multiple goal” extension that models the goal driven nature of human decision making. Navigation

naturally emerges as a statistic of this distribution.

Most importantly, we empirically validate our models in the Chandler dining hall at Caltech

during peak hours, and in the process, carry out the first extensive quantitative study of robot

navigation in dense human crowds (collecting data on 488 runs). The multiple goal interacting

Gaussian processes algorithm performs comparably with human teleoperators in crowd densities

nearing 1 person/m2, while a state of the art noncooperative planner exhibits unsafe behavior more

than 3 times as often as the multiple goal extension, and twice as often as the basic interacting

Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic

window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that

our noncooperative planner or our reactive planner capture the salient characteristics of nearly any

dynamic navigation algorithm. For inclusive validation purposes, we show that either our non-

interacting planner or our reactive planner captures the salient characteristics of nearly any existing

dynamic navigation algorithm. Based on these experimental results and theoretical observations, we

conclude that a cooperation model is critical for safe and efficient robot navigation in dense human

crowds.
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Finally, we produce a large database of ground truth pedestrian crowd data. We make this

ground truth database publicly available for further scientific study of crowd prediction models,

learning from demonstration algorithms, and human robot interaction models in general.
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Chapter 1

Introduction

In this chapter, we review the existing literature on robot navigation in human crowds, introduce

the freezing robot problem, and provide a conceptual explanation of why modeling a cooperative

interaction between humans and robots is critical for successful crowd navigation. We finish the

chapter by detailing the contributions and the organization of the thesis.

1.1 Motivation

One of the first major deployments of an autonomous robot in an unscripted human environment

occurred in the late 1990s at the Deutsches Museum in Bonn, Germany (Burgard et al. [19]). This

RHINO experiment was quickly followed by another robotic tour guide experiment; the robot in the

follow-on study, named MINERVA (Thrun et al. [109]), was exhibited at the Smithsonian and at the

National Museum of American History in Washington D.C. Both the RHINO and MINERVA robots

made extensive use of probabilistic methods for localization and mapping (Roy et al. [90], Dellaert

et al. [24], Roy and Thrun [89]). Additionally, these experiments pioneered the nascent field of human

robot interaction in natural spaces—see Schulte et al. [94] and Thrun et al. [110]. Perhaps most

importantly, the RHINO and MINERVA studies inspired a wide variety of research in the broad

area of robotic navigation in the presence of humans, ranging from additional work with robotic

tour guides (Shiomi et al. [98], Siegwart et al. [101], Shiomi et al. [99], Eppstein et al. [31], Foka and

Trahanias [34], Bauer et al. [8] and Hayashi et al. [45]), to work on nursing home robots (Pineau

et al. [81], Montemerlo et al. [76] and Roy et al. [91]), to robots that perform household chores

(Srinivasa et al. [103] and Kruse et al. [62]), to field trials for interacting robots as social partners

(Kanda et al. [54], Saiki et al. [93], Kruse and et al. [61] and Seifer and Matarić [96]), to decorum

for robot hosts (Sidner and Lee [100] and Kanda et al. [55]), and even to protocols for social robot

design (Glas et al. [41]).

Despite the many successes of the pioneering RHINO and MINERVA experiments, and the suc-

cess of the work that followed it, fundamental questions about robotic navigation in dense human
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crowds remain unresolved. In particular, prevailing algorithms for navigation in dynamic environ-

ments emphasize deterministic and decoupled prediction algorithms (such as in LaValle [68], Latombe

[66] and Choset et al. [22]), and are thus inappropriate for applications in highly uncertain environ-

ments or for situations in which the agent and the robot are dependent on one another. Critically,

a large-scale experimental study of robotic navigation in dense human crowds is unavailable.

In this thesis, we focus on these two deficiencies: a dearth of human-robot cooperative navigation

models and the absence of a systematic study of robot navigation in dense human crowds. We thus

develop a cooperative navigation methodology and conduct the first extensive (nruns ≈ 500) field

trial of robot navigation in natural human crowds.

1.2 Related Work

Independent agent constant velocity Kalman filters are a starting point for modeling the uncertainty

in dynamic environments. Unfortunately, this prediction engine can lead to an uncertainty explosion

that makes safe and efficient navigation impossible (Figure 1.1). Some research has thus focused

on controlling this predictive uncertainty. For instance, in Thompson et al. [108], Bennewitz et al.

[11], Helble and Cameron [49] and Large et al. [65], high fidelity independent human motion models

were developed, in the hope that controlling the predictive uncertainty would lead to improved

navigation performance. The work in Du Toit and Burdick [30] and Du Toit [28] improves navigation

performance by directly limiting individual agent predictive uncertainty. Specifically, they formalize

robot motion planning in dynamic, uncertain environments as a stochastic dynamic program (see

Bertsekas [12, 13]); intractability is avoided with receding horizon control techniques (Mayne et al.

[71], Morari and Lee [77] and Carson [20]). Furthermore, the collision checking algorithms developed

in earlier work (see Du Toit and Burdick [29], which has its roots in Blackmore [15], Blackmore et al.

[17] and Blackmore and Williams [16]) keeps the navigation protocol safe. The insight is that since

replanning is used, the predictive covariance can be held constant at measurement noise. Although

robot-agent interaction models are developed for a few cases, the primary contribution from this

line of research comes in the form of independent agent dynamics models. Section 2.4 argues that

only limiting the uncertainty explosion is insufficient for robot navigation in dense crowds.

The work of Aoude et al. [5, 4] and Joseph et al. [52] shares insight with the approach of Du Toit

[28], although more sophisticated individual models are developed: motion patterns are modeled

as a Gaussian process mixture (Rasmussen and Williams [84]) with a Dirichlet Process prior over

mixture weights (Teh [107]). The Dirichlet process prior allows for representation of an unknown

number of motion patterns, while the Gaussian process allows for variability within a particular

motion pattern. Rapidly exploring random trees (RRT, see LaValle and Kuffner [67]) are used to

find feasible paths. Similar emphasis is placed on probabilistic collision checking by incorporating
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the earlier work in Aoude et al. [3]. No work is done on modeling agent interaction.

The field of proxemics (Hall [42, 43]) has much to say about the interaction between a navigating

robot and a human crowd. Specifically, proxemics tries to understand human proximity relationships,

and in so doing, can provide insight about the design of social robots. In Mead et al. [73, 74] and

Takayama and Pantofaru [105] various robots are developed in accordance with proxemic rules, while

in Mead and Matarić [72] a probabilistic framework for identifying specific proxemic indicators

is developed. Similarly, Castro-Gonzalez et al. [21] studies pedestrian crossing behaviors using

proxemics. However, this work only studies sparse crowd interactions in scripted settings.

In Svenstrup et al. [104] rapidly-exploring random trees are combined with a potential field

(Khatib [56], Koren and Borenstein [60]); the values in this potential field are based on proxemics.

The authors of Pradhan et al. [83] take a similar proxemic potential function based approach.

Although these navigation algorithms model human-robot interaction, they do not model human-

robot cooperation. Instead, the emphasis is placed on respecting a proper distance between the robot

and the humans (similar to the work of Ziebart et al. [120]). Further, the algorithm is implemented

in simulation only, and the density of humans in the simulated robotic workspace is kept quite low

(approximately 0.1 person/m2).

Rios-Martinez et al. [87] take a “human-centric” approach as well, but instead of using the

proxemic rules of Hall [42], they use the criteria of Lam et al. [64] instead. They incorporate these

rules of personal space into the robot’s behavior by extending the Risk-RRT algorithm developed

in Fulgenzi et al. [40]. The Risk-RRT algorithm extends the traditional RRT algorithm to include

risk, or the probability of collision along any candidate trajectory.

The mobile robot navigation research in Althoff et al. [1] is more agnostic about the specific

cultural considerations of the dynamic agents. A “probabilistic collision cost” is introduced (to

assess the fitness of candidate robot trajectories in human crowds) that is based on the idea of

inevitable collision states, described in Fraichard and Asama [37] and expanded in Bautin et al. [10]

(inevitable collision states are robot configurations that are guaranteed to result in a collision with

another agent). In particular, Fraichard [36] advocates three quantities as essential to the proper

evaluation of motion safety: the dynamics of the robot, the dynamics of the environment, and a

long enough time horizon. Furthermore, in Fraichard [36] it is argued that full knowledge of these

quantities would enable perfect prediction, which in turn would guarantee perfect collision avoidance.

The cost function of Althoff et al. [1] encodes an approximation of these rules. Importantly, collision

avoidance capabilities of neighboring dynamic agents are modeled. However, experiments are carried

out entirely in simulation.

Importantly, work has been done on learning navigation strategies by observing many example

trajectories. In Ziebart et al. [120], a combination of inverse reinforcement learning and the principle

of maximum entropy is used to learn taxi cab driver decision making protocols from large volumes of
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data. These methods are extended to the case of a robot navigating through an office environment

in Ziebart et al. [119]: pedestrian decision making is first learned from a large trajectory example

database, and then the robot navigates in a way that causes the least disruption to the human’s

anticipated paths. In Henry et al. [50], the authors extend inverse reinforcement learning to work

in dynamic environments. Their planner is trained using simulated trajectories, and the method

recovers a planner which duplicates the behavior of the simulator. In the work of Waugh et al. [118],

agents learn how to act in multi-agent settings using game theory and the principle of maximum

entropy. The work of Kuderer et al. [63] leverages IRL to learn an interaction model from human

trajectory data. Critically, the IRL feature vector is an extension of the cooperation model that was

developed in Trautman and Krause [114]; thus, not only does this work model cooperation, it pioneers

IRL navigation strategies from real human interaction data as well. However the experiments are

limited in scope—one scripted human crosses paths with a single robot in a laboratory environment.

We mention briefly that (although not developed in the field of robotic navigation) models

capturing crowd interaction are explored in Pellegrini et al. [79, 80] and Luber et al. [70] for the

purposes of crowd prediction. These papers rely on the social forces model, developed in Helbing and

Molnar [46] and Helbing et al. [48, 47]. The ideas introduced in Helbing and Molnar [46] underpin

the interaction model of Chapter 3.

We thus suggest that there is a dearth of human-robot cooperative navigation models, and no

extensive study of robot navigation in dense human crowds has taken place. In this thesis, we

address these two deficiencies.

Figure 1.1: Freezing robot problem as a result of unconstrained prediction. The robot is represented
as the black star, and the ellipses represent the predictive covariance. The question marks indicate
that the robot can find no clear path forward.
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1.3 The Freezing Robot Problem

In Figure 1.1, we illustrate the freezing robot problem. The black star (representing a mobile robot)

predicts the individual trajectories (light red ellipses) of a crowd of people. In this case, the lack of

any predictive covariance constraints results in a robot that cannot make an informed navigation

decision: the deficiencies of the predictive models force the robot to come to a complete stop (or the

robot chooses to follow an essentially arbitrary path through the crowd). As we discuss in Section

5.5.1.1 , arbitrary and highly evasive paths can often be much worse than suboptimal—they can be

dangerous.

Figure 1.1 suggests that the culprit behind the freezing robot problem could be the individ-

ual uncertainty explosion. Indeed, if the amount of uncertainty was the primary reason for this

suboptimal navigation, then using more precise individual dynamics models would prevent the

freezing robot problem. As is illustrated in Figure 1.2, this approach works well for certain crowd

configurations.

Figure 1.2: If the predictive covariance of individual agents is held to a small value, navigation can
proceed in an optimal manner—if the crowd is sparse enough.

However, in Section 2.4.1, we show that even under perfect individual prediction (i.e., each agent’s

trajectory is known to the planning algorithm) the freezing robot problem still occurs if the crowd

adopts specific configurations. In Figures 1.3(a) and 1.3(b) we illustrate a very common crowd

configuration that can cause any independent planner to fail; when people walk shoulder to shoulder,

the robot is forced to walk around the crowd, even when the humans are willing to allow passage.

In more demanding scenarios, like the cafeteria illustration in Figure 1.3(c), this behavior can lead

to a failure mode—for instance, the robot in this run collided with the wall in an attempt to make
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way for the humans.

As was highlighted in Section 1.2, existing robot navigation approaches commonly ignore math-

ematical models of cooperation between humans and robots. Unfortunately, under this modeling

assumption, the freezing robot problem will always occur, given dense enough crowds.

Given this observation, how is it possible that people can safely navigate through crowds? The

key insight is that people typically engage in joint collision avoidance (this is similar to the social

forces model of Helbing and Molnar [46] and Helbing et al. [48, 47]): they adapt their trajectories

to each other to make room for navigation (see Figure 1.4).

Evidence of the usefulness of joint collision avoidance models occurs in other fields as well: work

on multi-robot coordination in van den Berg et al. [115, 116, 117] and Snape et al. [102] shows that

robots programmed to jointly avoid each other are guaranteed to be collision free and display vastly

improved efficiency at navigation tasks. Additionally, this joint collision avoidance criteria has been

used to improve the data association and target tracking of individuals in human crowds (Pellegrini

et al. [79, 80], Luber et al. [70]).

To our knowledge, however, this principle has not been used to improve robot navigation in

human crowds. Thus, the central idea of this thesis is to explicitly model human-robot interaction

and cooperation in crowds (illustrated in Figure 1.4). To this end, we develop interacting Gaus-

sian processes, a principled statistical model, based on dependent output Gaussian Processes. IGP

describes a probabilistic interaction between multiple navigating entities.
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(a) (b)

(c)

Figure 1.3: (a) Even if we hold pedestrian predictive covariance to be extremely small (grey circles),
common crowd configurations (shoulder to shoulder walking, sparse crowd) can lead to evasive
maneuvering by the robot (b) An illustration of what is occurring in panel (a). Red dots represent
crowd prediction, blue dots represent robot decision making (c) Example of freezing robot problem
in cafeteria. Robot was not anticipating interaction, and so chose a highly evasive maneuver (green
line). Inspection of human tracks (red lines), in contrast, show people passing between each other.
Imagine a crowd of agents unaware of joint interaction—that is, imagine a room full of agents all
trying to move along the wall.



8

Figure 1.4: Including interaction in the predictive models causes the prediction tubes to bend around
one another, in a jointly cooperative way. As this thesis will show, anticipating cooperation is a
prerequisite for successful navigation in dense human crowds.
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1.4 Thesis Contributions and Organization

The remainder of this thesis is organized as follows. Chapter 2 provides further technical background

for the thesis. We define and identify the “freezing robot problem” as a critical impediment to robot

navigation in dense human crowds, and introduce various approaches for solving the freezing robot

problem. Additionally, Chapter 2 introduces Gaussian processes as a novel modeling extension to

existing Markov prediction techniques (such as the Kalman filter).

In Chapter 3, a novel method for modeling cooperation is described, called interacting Gaus-

sian Processes. In particular, this prediction density captures cooperative collision avoidance, the

non-Markov nature of agent trajectories, and the goal driven nature of human decision making.

Additionally, by formulating navigation in dense crowds as a density estimation problem, rather

than a cost optimization problem, we discover an equivalence between inference and planning. This

equivalence provides a novel solution methodology since we can exploit existing approximate in-

ference methods to determine navigation strategies. In particular, we use importance sampling to

approximate the interacting Gaussian processes density. The chapter finishes with a simulation of

how modeling cooperation can improve navigation performance. The results of this simulation serves

as motivation for the quantitative study detailed in Chapter 5.

Chapter 4 provides details about the construction of the robot navigation experiment. We provide

a description of the robotic workspace in Chandler dining hall at Caltech, the pedestrian tracking

system, and the robot itself.

In Chapter 5, we provide the first extensive quantitative study of robot navigation in dense

human crowds (488 runs completed), specifically testing how cooperation models effect navigation

performance. Importantly, we validate the navigation models developed in this thesis, finding, in

particular, that the multiple goal interacting Gaussian processes algorithm performs comparably

with human teleoperators in crowd densities near 1 person/m2, while a state of the art noncoopera-

tive planner exhibits unsafe behavior more than 3 times as often as this multiple goal extension, and

more than twice as often as the basic interacting Gaussian processes. Furthermore, we find that a re-

active planner based on the widely used “dynamic window” approach fails for crowd densities above

0.55 people/m2. We also show that our noncooperative planner or our reactive planner capture the

salient characteristics of nearly any dynamic navigation algorithm. Based on these experimental

results and theoretical observations, we conclude that a cooperation model is critical for safe and

efficient robot navigation in dense human crowds.

Finally, Chapter 6 summarizes the contributions of this thesis, provides details on future work

opportunities, and potential applications areas for this technology.
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Chapter 2

Background and Problem Setup

This chapter provides context for the contributions of this thesis. First, since this research is

primarily concerned with robot navigation, we describe some common decision making frameworks.

We introduce robot path planning, decision making under uncertainty and in dynamic environments,

and the principle of receding horizon control. We also describe some approaches to prediction of

dynamic entities. The freezing robot problem, which we discuss in the final section of this chapter,

serves as the motivation for the methods developed in this thesis.

2.1 Discrete Stochastic Optimal Control

We begin by defining some quantities from the field of discrete optimal planning. Let ft ∈ F ⊆ Rnf

be an element of the state space F . The control (or action) is denoted by uk ∈ U ⊆ Rnu , where U
is the action space. Additionally, let ωk (the uncertainty in the system) be distributed according to

some distribution p(ωk). We define the transition function β : F × U ×W → F between temporal

states as

ft = β(ft−1, ut−1, wt−1).

Equivalently, we can specify the transition probability density

p(ft | ft−1, ut−1),

where the uncertainty introduced by ωt−1 produces a probability density function over the next

state. We remark that by applying marginalization, the chain rule of probability (Appendix A.1),

and with knowledge of the initial distribution of the state p(f1), we can recover

p(f2) =

∫
p(f2 | f1)p(f1)df1.
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By iteration, then, we can recover the distribution over any state

p(fT ) =

∫
p(fT | fT−1)p(fT−1)dfT−1,

where T is the end of our prediction horizon. We point out that an implicit dependency assumption

is being made here: each temporal state ft is only dependent on the most recent temporal state

ft−1; this is because the transition function is assumed to be first order Markov. In Chapter 3 we

generalize the temporal dependency to arbitrary lengths using Gaussian processes for our trajectory

models. Correspondingly, we introduce the boldface notation

f = (f1, f2, . . . fT )

as a shorthand for the entire trajectory. We will use boldface to indicate any quantity over the

duration of an entire trajectory.

Consider further control policies π : F → U that map states to controls

ut = πt(ft).

Additionally, we define the sequence of control policies over T steps to be π = {π1, π1, . . . , πT }, and

we define a cost function in terms of the control policy:

c(π) = lT+1(fT+1) +

T∑
t=1

lt(ft, πt),

where lt(ft, πt) is the stage additive cost function. Thus, the expected (Appendix A.3) cost of policy

π is

J(π) = Ef [c(π)] .

The optimal policy, π∗ = {π∗0 , π∗1 , . . . , π∗T−1}, minimizes the expected cost over the set of all admis-

sible policies π̃:

π∗ = arg min
π∈π̃

J(π)

with the optimal cost given by

J(π∗) = E

[
lT+1(fT+1) +

T∑
t=1

lt(ft, π
∗
t )

]

Finding the optimal control policy is typically non-trivial; a common approach is to use Dynamic
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Programming. For details on dynamic programming, please consult Bertsekas [12].

For simplicity, we presented here the case of policy search with perfect state information—that

is, we assumed that we could measure the state ft directly through the present time t. This is a

strong assumption, since typical applications involve sensors that produce noisy measurements of

the state, rather than the state itself. Fortunately, if we generalize state space to belief space, the

formulation above (including the use of dynamic programming to find solutions) can still be used.

For details on this transformation consult LaValle [68].

2.2 Receding Horizon Control

The framework of receding horizon control computes policies through online solution of a finite time

optimal planning problem (as in Section 2.1) that can enforce explicit state and control constraints.

In receding horizon control, the computed plan is applied to the system in an open loop manner over

some time interval shorter than the planning horizon. As new information arrives, a new optimal

policy is found and executed. Recursively planning in this manner provides a type of closed-loop

feedback by incorporating current state information into the plan currently being executed.

Mathematically, receding horizon control finds the policy at time t′

π∗t′ = {πt′ , πt′+1, . . . , πT }

that optimizes

J(πt′) = E [c(πt′)]

When implemented in this manner, receding horizon control has proven to be a powerful approximate

planning method (see Carson [20] and Du Toit [28] for example applications).

2.3 Dynamic Agent Prediction

In this section, we present methods for dynamic agent prediction. Kalman filter based prediction

chooses a linear dynamics model for the prediction step (see Appendix A.5), while ignoring the cor-

rection (or update) step, all in a first order Markov framework. Gaussian processes for independent

trajectory models can be viewed as an extension of the Kalman filtering framework.

2.3.1 Kalman Filter Based Prediction

Kalman filters (Kalman [53]) are a special case solution of the sequential Bayesian estimation equa-

tions presented in Appendix A.5. We use xt ∈ Rnx to denote the state variable and zt ∈ Rnz
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to denote the measurement variable at time t. Furthermore, for the Kalman filter recursion to be

applicable, the dynamics model p(xt+1 | xt), the measurement likelihood p(zt | xt), and the distri-

bution encoding initial knowledge p(x0) all must be Gaussian. These requirements ensure that the

posterior p(xt | z1:t) is also Gaussian. Rather than specifying these distributions directly, however,

the system and measurement equations can be described:

xt = At−1xt−1 +Bt−1ut−1 + Ft−1ωt−1

zt = Ctxt +Htνt.

Here, ωt ∼ N (0,W ) and νt ∼ N (0, V ) are independent Gaussian noise terms with covariances W

and V (where N (µ,Σ) is a Gaussian distribution with mean µ and covariance Σ). The variable

ut−1 is the control input, while the matrix At−1 is the dynamics model, Bt−1 is the control input

model, Ft−1 is the dynamics noise model, Ct is the measurement model, and Ht is the dynamics

noise model.

This set of linear equations is equivalent to specifying the distributions themselves. For an

interesting take on the system versus distribution point of view, see Ko and Fox [57], where the

authors learn p(xt+1 | xt) and p(zt | xt) (for a remote controlled micro-blimp) using machine

learning techniques, and compare the results to physics based descriptions of the matrices At, Bt

and Ct.

2.3.1.1 Prior Kalman Filter

Before the measurement arrives, the Kalman Filter is integrated forward according to the prediction

step of Appendix A.5

p(xt+1|z1:t) =

∫
p(xt+1 | xt)p(xt | z1:t)dxt.

Since the dynamics models are linear and Gaussian, we have that

p(xt+1|z1:t) = N (xt+1 | x̂t+1:t,Σt+1:t) ,

where Σt+1:t ∈ Rnx×nx . Thus, we need only predict forward the mean and the covariance:

x̂t+1:t = Atx̂t:t +Btut

Σt+1:t = AtΣt:tA
>
t + FtWF>t .

An example model choice is to encode the zeroeth and first order derivatives in xt, letAt be a constant

velocity model, ignore inputs ut (since the inputs of a dynamic agent are typically unknown), and

capture random accelerations with the noise term ωt ∼ N (0,W ).



14

2.3.1.2 Posterior Kalman Filter

Once measurements are collected, the mean and covariance are corrected according to the update

step of Appendix A.5

p(xt+1|z1:t+1) =
p(zt+1|xt+1)p(xt+1|z1:t)

p(zt+1|z1:t)
.

Since the measurement and prediction models are linear and Gaussian, we have that

p(xt+1|z1:t+1) = N (xt+1 | x̂t+1:t+1,Σt+1:t+1)

and so we need only correct the mean and the covariance

x̂t+1:t+1 = x̂t+1:t +Kt+1 (zt+1 − ẑt+1:t)

Σt+1:t+1 = (I−Kt+1Ct+1) Σt+1:t,

where

ẑt+1:t = Ct+1x̂t+1:t

Kt+1 = Σt+1:tC
>
t+1Γ−1

t+1:t

Γt+1:t = Ct+1Σt+1:tC
>
t+1 +Ht+1V H

>
t+1.

We remark that in the absence of corrective measurements (as is the case for prediction), the co-

variance grows at each incrementing step as

Σt+1:t+1 = (I−Kt+1Ct+1) Σt+1:t

= AtΣt:tA
>
t + FtWF>t

= Σt+1:t.

Thus, without high fidelity models (i.e., small values for W ), prediction can become uninformative

very quickly. We discuss the consequences of this uncertainty explosion in Section 1.3 and in Chapter

2.4.

2.3.2 Gaussian Process Based Prediction

A Gaussian process (see Rasmussen and Williams [84], Ko and Fox [57, 58] and Li et al. [69]) is a

distribution over (typically smooth) functions, and thus well-suited to model wheeled mobile robot

trajectories. Formally, a Gaussian process is a collection of Gaussian random variables indexed by

a set—in our case, the continuum of time steps [1, T ]—that is parameterized uniquely by a mean
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function

m : [1, T ]→ R

(typically taken as zero without loss of generality) and a covariance (or kernel) function

k : [1, T ]× [1, T ]→ R.

We will write

f (i) ∼ GP (m(i), k(i))

to mean that the random function f (i) : [1, T ] → R is distributed as a Gaussian process with mean

m(i) and covariance k(i); since we will be generalizing to the case of multiple dynamic agents i =

1, . . . n, we introduce the superscript notation i to indicate a particular agent i. For clarification,

we draw a comparison: with a Gaussian vector x ∼ N (µ,Σ), the matrix element Σl,j encodes the

covariance between the elements of the state vector xl and xj . Likewise, with Gaussian processes,

the kernel function parameterizes the smoothness of the function: recalling that points t ∈ [1, T ] act

as our index set, we see that f (i)(t) and f (i)(t′) are related according to the value of k(i)(t, t′).

Notionally, we believe the true trajectory f
(i)
∗ exists (or will exist, since we have only gathered

prior data about this trajectory; see Section 2.3.2.2). The Gaussian process GP (m(i), k(i)) encodes

all our prior knowledge about the function f
(i)
∗ . In contrast, for sequential Bayesian estimation, the

prior model is typically derived from first principles (such as the physics of the moving object), and

encoded as the distribution p(xt+1 | xt). With Gaussian processes, the prior model GP (m(i), k(i))

is learned from training data. The dearth of high fidelity first principles models of human behavior,

combined with the abundance of example human trajectory data, make Gaussian processes especially

appealing for our application.

2.3.2.1 Posterior Gaussian Process

For simplicity of notation, we formalize our Gaussian process trajectory model for one-dimensional

locations only. Multiple dimensions are easily incorporated by modeling each dimension as a separate

Gaussian process.

Suppose that we collect the set of noisy measurements z
(i)
1:t = (z

(i)
1 , . . . , z

(i)
t ) of the trajectory,

where

z
(i)
t′ = f (i)(t′) + ε, ε ∼ N (0, σ2

noise).
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(a) (b)

Figure 2.1: (a) Possible trajectory samples {f (i)
k }3k=1 ∼ p(f (i) | z(i)

1:t) from a particular agent i (b)
Using goal information zT to constrain trajectory prediction.

Then we can calculate the posterior Gaussian process p(f (i) | z(i)
1:t) = GP (m

(i)
t , k

(i)
t ), where

m
(i)
t (t′) = ΣT

1:t,t′(Σ1:t,1:t + σ2
noiseI)−1z

(i)
1:t

k
(i)
t (t1, t2) = k(i)(t1, t2)− ΣT

1:t,t1(Σ1:t,1:t + σ2
noiseI)−1Σ1:t,t2 .

Hereby, Σ1:t,t′ = [k(i)(1, t′), k(i)(2, t′), . . . , k(i)(t, t′)], and Σ1:t,1:t is the matrix such that the (l, j)

entry is Σl,j = k(i)(l, j) and the indices (l, j) take values from 1 : t. The quantity σ2
noise is the

measurement noise (which is assumed to be Gaussian, and as shown in Section 2.3.2.3, can be learned

from training data). Since the entire trajectory f (i) : [1, T ]→ R is being modeled, information about

the goal of the agent (such as an eating station in a cafeteria) can be treated as a measurement z
(i)
T .

As illustrated in Figure 2.1(b), the information z
(i)
T constrains the predictive uncertainty along the

entirety of the trajectory f (i) (not only at time T ).

2.3.2.2 Training the Gaussian Process

The kernel function k(i) is the crucial ingredient in a Gaussian process model, since it encodes “how”

the underlying function behaves: in our case, how a dynamic agent moves (e.g., how smoothly, how

linearly, length scales of behavior modes, etc). For a kernel function to be valid it must first be

positive semidefinite. That is, for all sets A that take values in the indexing set (for our case, the

indexing set is the closed continuum [1, T ]), ΣA,A must be positive definite. A class of useful kernel

functions are known and are discussed in detail in Rasmussen and Williams [84]. These individual
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kernels can be combined to make new kernels via summation and multiplication.

However, even with this set of predefined kernel functions and rules for combining them, choices

still have to be made. What combination of discrete kernel functions should be used for a particular

application? And once we decide on the kernel functions, how should the kernel hyperparameters

be chosen?

To answer these questions, we begin by assuming that we are presented with a training set of

input-output pairs. For our pedestrian dynamics models, the inputs are the times t′ = 1, 2, . . . , t

and the outputs are the trajectory measurements z
(i)
1:t. Using this training data we can optimize over

both specific kernel functions as well as the hyperparameters of those particular kernel functions.

Additionally, we describe how a priori information can be leveraged to inform our choice of kernel

function.

Gaussian Process Marginal Likelihood In order to optimize our kernel according to the train-

ing data set, we first calculate the probability of the data given the hyperparameters θ and input

times {1, . . . , t}:

p(z
(i)
1:t | {1, . . . , t},θ) =

∫
p(z

(i)
1:t | f (i), {1, . . . , t},θ)p(f (i) | {1, . . . , t},θ)df (i)

(this quantity is called the marginal likelihood). Since we have that f (i) | {1, . . . , t} ∼ N (0,Σ1:t,1:t)

and z
(i)
1:t | f (i) ∼ N

(
f (i), σ2

noiseI
)
, we can use Appendix A.4.2 to compute the log marginal likelihood:

log p(z
(i)
1:t | {1, . . . , t},θ) = −1

2
(z

(i)
1:t)
>(Σ1:t,1:t + σ2

noiseI)−1z
(i)
1:t −

1

2
log |Σ1:t,1:t + σ2

noiseI| −
t

2
log 2π.

Each term has an interpretation: the data fit term is − 1
2 (z

(i)
1:t)
>(Σ1:t,1:t + σ2

noiseI)−1z
(i)
1:t, while

1
2 log |Σ1:t,1:t| is a complexity penalty, and t

2 log 2π is the normalization constant.

We set the hyperparameters by maximizing the log marginal likelihood using the partial deriva-

tives with respect to the hyperparameters θj :

∂

∂θj
log p(z

(i)
1:t | {1, . . . , t},θ) = −1

2
(z

(i)
1:t)
>Σ̃−1

1:t,1:t

∂(Σ̃1:t,1:t)

∂θj
Σ̃−1

1:t,1:tz
(i)
1:t −

1

2
tr

(
Σ̃−1

1:t,1:t

∂(Σ̃1:t,1:t)

∂θj

)

where Σ̃1:t,1:t = Σ1:t,1:t + σ2
noiseI. Using these derivatives, we can perform standard optimization

routines in order to maximize the hyperparameters. Importantly, we can compare log marginal

likelihood values for different kernel functions and for kernel functions with different hyperparameter

values.
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2.3.2.3 Gaussian Process Kernels as Pedestrian Dynamics Models

We describe our particular choice of kernel function in this section (up to the hyperparameters,

which are trained using the methods outlined above). Because of the nature of our application

(humans walking through a cafeteria), and the way that we modeled portions of agent trajectories

(see Section 3.1.2), we had a priori insight about which kernel functions were appropriate. For

instance, we were able to rule out the squared exponential covariance function

kSE(t, t′) = exp

(
− (t− t′)2

2`2SE

)

because the functions it encodes are strongly nonlinear. Instead, we chose to model pedestrian

dynamics as the summation of a linear kernel (the nominal movement mode of humans between

waypoints is linear)

klinear(t, t
′) = t · t′ + 1

γ2
linear

,

a Matern kernel (it captures mild curving in the trajectory, common to pedestrian dynamics)

kMatern(t, t′) = sMatern ·
(

1 +

√
5(t− t′)
`Matern

+
5(t− t′)2

3`2Matern

)
exp

(
−
√

5(t− t′)
`Matern

)
,

and a noise kernel (to account for sensor measurement noise)

knoise(t, t
′) = σ2

noiseδ(t, t
′),

where δ(t, t′) = 1 if t = t′ and is zero otherwise. Thus, our final kernel was

k(i)(t, t′) = sMatern ·
(

1 +

√
5(t− t′)
`Matern

+
5(t− t′)2

3`2Matern

)
exp

(
−
√

5(t− t′)
`Matern

)
+t·t′+ 1

γ2
linear

+σ2
noiseδ(t, t

′).

(Figure 3.1 presents an actual human trajectory exhibiting each of these behavior modes: we observe

linear and curvy motion, and noise in the measurements). Thus, four hyperparameters had to be

learned: sMatern, `Matern, γlinear and σnoise. We used the methods detailed in Section 2.3.2.2 to

train these parameters from sample trajectories.

We point out that, in the absence of a priori information about what kernel function should be

used, the methods of Section 2.3.2.2 can be used to compare different candidate kernel functions

(e.g., squared exponential versus linear), since the values of the log marginal likelihoods can be

compared across different kernel functions. Additionally, comparing marginal likelihood values can

be used to guard against local minima when optimizing a fixed kernel function: for instance, one

might randomly restart the hyperparameter optimization multiple times, and compare the marginal

likelihood for the specific hyperparameter values found for each run, and then choose the most likely
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hyperparameter set.

2.4 The Freezing Robot Problem

In Section 1.3, the freezing robot problem was presented as motivation for the methods developed in

this thesis. In this section we provide mathematical details of the freezing robot problem. We also

provide navigation methodologies for solution of the freezing robot problem that would be useful for

environments like those shown in Figure 2.2.

Figure 2.2: Crowded cafeteria at the California Institute of Technology. Because of the many “goal
locations” (the pizza bar, the soda fountain, the buffet, etc), distinct traffic currents only rarely
materialize. Instead, movement patterns are highly turbulent, as people cross from left to right and
top to bottom in a frenzied attempt to grab lunch before their next class. The density and complexity
of the crowd ebbs as time moves away from 12pm, allowing for a vast diversity of experiments.

2.4.1 Mathematical Details of the Freezing Robot Problem

Consider agent i, where the index i can take values in the set {R, 1, 2, . . . , n}, such that {1, 2, . . . , n}
are human agents and i = R is a robot. Suppose we have a distribution p

(
f (i)
)

over each agent’s

trajectory

f (i) =
(
f (i)(1), . . . , f (i)(T )

)
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over T timesteps, where each f (i)(t) = (xt, yt) ∈ R2 is the planar location of agent i at time t. We

also have a likelihood function p(z
(i)
t | f (i)(t)) for our observations. Importantly, since we are dealing

with the case of multiple agents, we let

z1:t = (z
(1)
1:t , z

(2)
1:t . . . , z

(n)
1:t ),

acknowledging that for some times t′, we may not observe agent i, in which case z
(i)
t′ = ∅. We also

remark that this notation is consistent with Section 2.3.1, since for linear-Gaussian random variables

estimated by a Kalman filter, one can merely augment the state vector with the additional agents.

Figure 2.3 illustrates these quantities.

Figure 2.3: Illustration of the problem and the quantities we are interested in.

In the following, we will assume that data association is solved. Note that an observation of

agent i is not necessarily independent of the robot’s actions. For instance, if the robot’s movement

influences another agent’s movement, then that observation explicitly depends on the robot’s actions.

Our goal in dynamic navigation is to pick a policy π (see Section 2.1) that adaptively chooses

a path f (R) for the robot based on the observations z1:t and any ancillary information (such as

agent goal location, boundary locations, etc). The policy π is typically specified by stating the next

location f (R)(t+ 1) the robot should choose given all observational and ancillary information.

Thus, for any complete sequence of observations z1:T , the robot can potentially end up choosing

a different path f (R) = π(z1:T ). The cost J(π) of a policy π is the expected cost

J(π) =

∫
p(f , z1:T )c(π(z1:T ), f (1), . . . , f (n))dfdz1:T ,

where, for a fixed robot trajectory f (R), the cost function c(f (R), f (1), . . . , f (n)) models the length

of the path plus penalties for colliding with any of the agents. We use the shorthand notation

f = (f (1), . . . , f (n)).

Unfortunately, solving for the optimal policy π requires solving a continuous-state Markov deci-
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sion process (MDP), where the dimensionality grows linearly with the number of agents, which is

intractable. Intuitively, the intractability is a consequence of attempting exhaustive enumeration;

in the above expected cost J(π), we are attempting to search over the policy space for all possible

measurement sequences.

This insolubility is fairly common. In the path planning community, a state of the art, tractable

approximation to this MDP is a method called receding horizon control (RHC), introduced and

explained in Section 2.2. RHC proceeds in a manner similar to MDPs, albeit online: as observations

become available, RHC calculates, based on some cost function, the optimal non-adaptive action

(i.e., fixed path) to take at that time. Indeed, if we let J(f (R) | z1:t) be the objective function that

calculates the “cost” of each path f (R) based on the observations z1:t, that is

J(f (R) | z1:t) =

∫
c(f (R), f (1), . . . , f (n))p(f | z1:t)df ,

where f (R) is the trajectory of the robot, then RHC finds f
(R∗)
t , where

f
(R∗)
t = arg min

f (R)

J(f (R)|z1:t).

As each new observation zτ arrives, for τ > t, a new path f
(R∗)
τ is calculated and executed until

another observation arrives.

Unfortunately, certain assumptions about the distribution p(f | z1:t) can cause the minimum

value of the objective function J(f (R∗)|z1:t) to increase without bound as the number of agents n

increases. This behavior of the objective function is what we call the freezing robot problem (see

Figure 2.4(d) for an illustration).

To prove this, consider the special case of the objective function where we have perfect knowledge

of how each pedestrian navigates through the space—that is, we have access to the true state

trajectory z̄1:T :

p(z̄1:T | f1:T ) = δ(z̄1:T − f1:T ), (2.1)

where f
(i)
1:T = [f (i)(1), f (i)(2), . . . , f (i)(T )], and δ(a− b) is the Dirac delta function centered at a. For



22

this special case, we can compute the objective function:

J(f
(R)
1:T , n | z̄1:T ) =

∫
c(f

(R)
1:T , f

(1)
1:T , . . . , f

(n)
1:T )p(f1:T | z̄1:T )df

∝
∫
c(f

(R)
1:T , f

(1)
1:T , . . . , f

(n)
1:T )p(z̄1:T | f1:T )p(f1:T )df

=

∫
c(f

(R)
1:T , f

(1)
1:T , . . . , f

(n)
1:T )δ(z̄1:T − f1:T )p(f1:T )df

= c(f
(R)
1:T , z̄

(1)
1:T , . . . , z̄

(n)
1:T ).

We thus see that as n increases, the minimum value of J(f
(R)
1:T , n | z̄1:T ) must also increase—the area

remains fixed, while more of the free space becomes occupied (essentially, the planner must find a

free path through existing open space, with the agent trajectories already traced out).

As the number of agent trajectories increases and thus fills out the fixed navigation area, the

minimum value of J(f
(R)
1:T , n | z̄1:T ) increases without bound. If we reintroduce missing measurements

and measurement uncertainty, the minimum value of J(f
(R)
1:T , n | z1:T ) can only be larger than

J(f
(R)
1:T , n | z̄1:T ) for increasing values of n, since adding uncertainty places nonzero probability of

agent occupation over a larger portion of the space. Thus, J(f
(R)
1:T , n | z1:T ) also increases without

bound as n increases.

Additionally, if we consider the RHC case with perfect observations through time t < T , then

the predictive objective function J(f
(R)
1:T , n | z̄1:t) places nonzero probability of agent occupation over

a larger portion of the space for t′ > t (similar to the case above). Furthermore, if we relax the

objective function to the standard RHC case with measurement uncertainty J(f
(R)
1:T , n | z1:t), we

further spread uncertainty over times t′ ≤ t that have already been observed. Therefore, we have

that both J(f
(R)
1:T , n | z̄1:t) and J(f

(R)
1:T , n | z1:t) can only be larger than J(f

(R)
1:T , n | z̄1:T ), and so RHC

also exhibits freezing robot behavior.

2.4.2 Approaches for Solving the Freezing Robot Problem

In order to fix the freezing robot problem, nearly all state of the art approaches (see Section 1.2)

focus on individual agent prediction. In particular, Du Toit [28] anticipates the observations (effec-

tively assuming that a certain measurement sequence of the entire trajectory sequence has already

taken place at time t < T ); the approach is motivated by the assumption that the culprit of the

freezing robot problem is an uncertainty explosion, illustrated in Figure 2.4(c) and discussed in Sec-

tion 1.3. The claim is that if you can control the covariance, then you can keep the minimum value

of J(f (R)|z1:t) low for moderately dense crowds, and thus solve the freezing robot problem (other

approaches, which incorporate more accurate agent modeling, are similar in motivation, since better

dynamic models would reduce predictive covariance as well). However, as shown above, approaches

that work at improving the independent agent prediction or reducing the covariance only solve the
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freezing robot problem for crowd densities below a certain threshold; importantly, they cannot be

expected to solve the freezing robot problem in general, no matter how favorable the circumstances

(even for the case of perfect knowledge of the future).

(a) (b)−10 −8 −6 −4 −2 0 2 4 6 8 10

−5

0
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15

20
Uncertainty Explosion

(c)

Goal

Desired
Path

Executed
Path

(d)

at time 0,
agents too close

together for 
robot to pass

because robot
knows about 
cooperation,
FRP avoided

Robot proceeds
through crowd

(e)

Figure 2.4: (a,b) Empirical evidence of joint collision avoidance: blue circles (representing current
position) over gray lines are pedestrians moving down, black circles are the area of interest, and
green dots are a pedestrian moving upwards. In (a), the blue pedestrians have not yet seen the
green person; their projected trajectories (in gray) continue shoulder to shoulder. In (b), green
dots surrounded by red circles are the current position of the pedestrian moving up, and all of the
pedestrians have adjusted their trajectories to create space—notice how wide the gray prediction has
become. It is this joint collision avoidance behavior that we advocate in this thesis. (c-e) Illustration
of freezing robot problem. Dynamic crowd agents in red traveling downward, robot we are trying
to control in blue. The multiple dots indicate multiple points along one trajectory. (c) Uncertainty
explosion due to uncorrected prediction. (d) Even with perfect prediction, room for robot navigation
may not exist. (e) Modeling cooperative collision avoidance remedies the freezing robot problem.

This analysis suggests that the planning problem, as described above, is ill-posed. We thus revisit

our probability density,

p(f (1), . . . , f (n) | z1:t),

and remark that a crucial element is missing—the agent motion model is agnostic of the navigating

robot. One solution is thus immediately apparent: include an interaction between the robots and

the agents (in particular, a joint collision avoidance) in order to lower the cost. We additionally

remark that in the illustration in Figure 2.4(b), the crowd experiments catalogued in the research of

Helbing and Molnar [46], Helbing et al. [48, 47], the multi-robot coordination theorems of van den

Berg et al. [115, 116], and the tracking experiments of Pellegrini et al. [79, 80] and Luber et al. [70], all

corroborate the argument that autonomous dynamic agents utilize joint collision avoidance behaviors

for successful crowd navigation. We thus consider methods to incorporate such an interaction.

We motivate this discussion by first extending the likelihood of Equation 2.1 to include the robot
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trajectory f
(R)
1:T :

p(z̄1:T , z̄
(R)
1:T | f1:T , f

(R)
1:T ) = δ([z̄1:T , z̄

(R)
1:T ]− [f1:T , f

(R)
1:T ]).

Notice that because we have coupled the robot’s trajectory f (R) with the agent trajectories f we can

now (literally) vary the future joint configurations [z̄1:T , z̄
(R)
1:T ], and, in turn, vary the minimum value

of the objective function (whereas for Equation 2.1 we were locked into a minimum value that was

based on a fixed value of z̄1:T ). As explained above, approaches that do not consider cooperation

between the robot and the agents fail as soon as the navigation area fills with trajectories (if the

robot is not influencing z̄1:T , it is unlikely that a free path will emerge randomly); by incorporating

cooperation, however, we are able to manipulate the responses of the agents (i.e., their trajectories)

and thus to create space.

We discuss two ways that human-robot interaction (or human-robot cooperation) may be mod-

eled. One approach to modeling this interaction would be to use a conditional density p(f | z1:t, f
(R)),

that encodes assumptions on how the agents react to the robot’s actions, i.e., the idea that all agents

will “give way” to the robot’s trajectory. The problem with this approach is that it assumes that

the robot has the ability to fully control the crowd. Thus, this approach would not only create

an obnoxious robot, but an overaggressive and potentially dangerous one as well. This method is

unsuitable for crowded situations.

The other alternative, which we advocate in this thesis, is to model the robot as one of the

agents, and subsequently model a joint distribution describing their interaction:

p(f (R), f (1), . . . , f (n) | z1:t).

This distribution encodes the idea of cooperative planning (e.g., cooperative collision avoidance) by

treating robot and agent behaviors as equivalent (unlike the conditional density, where the robot

was given priority, or the noncooperative density p(f | z1:t), where the agents were given priority).

We point out an important characteristic of this formulation. Although the robot anticipates agent

cooperation, the data ultimately takes precedence. Consider the situation where an agent does

not cooperate with the robot (perhaps the agent does not see the robot, or perhaps the agent just

does not want to cooperate). As the robot approaches this agent, it will predict that the agent

will eventually act to cooperatively create space. However, as the robot moves closer to the agent,

the evidence (and thus the prediction) that the agent is not going to cooperate will outweigh the

prior belief that agent will cooperate. Thus, the robot will compensate, maneuvering around the

unyielding agent (we observe this behavior in Chapter 5).

With the joint model p(f (R), f | z1:t), planning corresponds to computing arg max(f (R),f) p(f
(R), f |

z1:t), i.e., inferring what the robot should do given observations of the other agents (this approach

is an example of “reducing planning to inference”, that we discuss in Section 3.3).
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Finally, we remark that the formulation p(f (R), f | z1:t) is independent of the completeness of the

data—that is, z1:t can range from being globally complete (i.e., we are given deterministic access

to each agent’s state at each time t′), to local observations (e.g., an “onboard” sensor that only

observes agents within the line of sight of the robot), to complete data outage. As data reliability

decreases, navigation performance will accordingly degrade, but the method does not require perfect

information.
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Chapter 3

Interacting Gaussian Processes

We begin this chapter by deriving interacting Gaussian processes for crowd prediction. We then

describe how approximate inference is performed on the interacting Gaussian processes density,

followed by a discussion of “the navigation density”, or how robotic navigation in dense human

crowds can be interpreted as a statistic of the interacting Gaussian processes density. We conclude

with the results of a simulation experiment.

3.1 Crowd Prediction Modeling with Interacting Gaussian

Processes

In this section we introduce interacting Gaussian processes (IGP). Although we ultimately interpret

this density for robot navigation, IGP is also a crowd prediction model. We begin by deriving

individual models of goal driven human motion using mixtures of Gaussian processes. We then

couple these individual models with the interaction potential.

3.1.1 Gaussian Processes for Modeling Single Goal Trajectories

An advantage to the Gaussian Process formalism (introduced in Section 2.3.2) is that it estimates

entire trajectories. This allows us to incorporate a single goal g (known up to Gaussian uncertainty,

g ∼ N (µg, σ
2
gI)) such that the resulting distribution over trajectories reflects the full impact of

the additional data (Figure 2.1(b) illustrates this idea). Implementation wise, we merely treat the

goal information as a measurement on the final step of the trajectory. That is, having observed

agent i for t steps, we can augment z
(i)
1:t with z

(i)
T = g. We now update our Gaussian Process using

z
(i)
1:t,T = [z

(i)
1:t z

(i)
T ], arriving at p(f (i) | z(i)

1:t,T ) = GP (m
(i)
t,T , k

(i)
t,T ), where

m
(i)
t,T (t′) = ΣT

1:t,t′(Σ1:t,1:t + Ĩ)−1z
(i)
1:t,T

k
(i)
t,T (t1, t2) = k(t1, t2)− ΣT

1:t,t1(Σ1:t,1:t + Ĩ)−1Σ1:t,t2 ,
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and

Ĩ = diag[σ2
noise, σ

2
noise, . . . , σ

2
noise, σ

2
g].

By varying the amount of noise associated with this goal measurement, we can encode how certain

we are about the goal. Waypoints along trajectories can be easily encoded in the same manner; we

exploit this flexibility in Section 3.1.2.2 to design appropriate models for multi-destination behavior.

For the special case of the robot’s goal, z
(R)
T , we set the noise differently. The value of σ2

z
(R)
T

reflects how precise the robot must be in executing its task. For example, if a robotic arm is to

insert a rivet in an aircraft wing, then σ2

z
(R)
T

will be quite small, to reflect aircraft tolerances. If a

robot needs to travel across a busy cafeteria to deliver plates to a human being, then σ2

z
(R)
T

can be

quite large, perhaps on the order of 1/2 meter or so.

Alternatively, we can derive how goal information should be included using marginalization

followed by the chain rule of probability (see Appendix A.1); this more cumbersome approach will

prove important when we generalize to the case of multiple goals in Section 3.1.2. In particular, we

sum over all possible discrete goal indices m ∈ N+ for the goal variable ḡm; for each m, we integrate

over all possible goal arrival times T̄m ∈ R+:

p(f (i) | z(i)
1:t) =

∑
ḡm

∫
T̄m

p(f (i), (ḡm, T̄m) | z(i)
1:t)

=
∑
ḡm

∫
T̄m

p(f (i) | z(i)
1:t, (ḡm, T̄m))p((ḡm, T̄m) | z(i)

1:t)

=
∑
ḡm

∫
T̄m

p(f (i) | z(i)
1:t, (ḡm, T̄m))δ

(
(ḡm, T̄m)− (g, T )

)
= p(f (i) | z(i)

1:t, (g, T )).

where δ
(
(ḡm, T̄m)− (g, T )

)
is 1 when ḡm = g and T̄m = T but zero otherwise. Furthermore,

p((g, T ) | z1:t) = δ
(
(ḡm, T̄m)− (g, T )

)
since we assume knowledge of which goal the agent is going

to (g) and how long it will take to arrive (T ). In the final step, we integrate over the variables in

the delta function and recover a distribution conditioned on (g, T ). Bear in mind that we integrated

over the possible goals (see Section 3.1.2.1), not the uncertainty surrounding the location of a

certain goal. Indeed, we still assume that goal location is only known up to Gaussian uncertainty,

g ∼ N (µg, σ
2
gI), and so, if we still wish to model the trajectory prior using Gaussian processes—that

is, f (i) ∼ GP (0, k(i))—then we recover

p(f (i) | z(i)
1:t) = GP (m

(i)
t,T , k

(i)
t,T ).

We will use this marginalization-chain rule approach to model situations where we only have incom-

plete information about the goal and the time that it will take an agent to reach the goal.
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3.1.2 Gaussian Process Mixtures for Modeling Multiple Goal Trajectories

In practice there may be uncertainty between multiple, discrete goals that an agent could pursue

(Figure 3.1); similarly, it is exceedingly rare to know in advance the time it takes to travel between

these waypoints. For these reasons, we introduce a novel probabilistic model over waypoints and the

transition time between these waypoints. The motion model is then a mixture of Gaussian processes

interpolating between these waypoints.

Figure 3.1: An example trajectory of a cafeteria patron. The trajectory was hand labeled and
segmented; blue dots are part of the nominal trajectory (modeled with the kernel function k =
klinear + kmatern + knoise, as in Section 2.3.2.3), green dots are goals (see Section 3.1.2.2), and red
represents interaction between agents (see Section 3.1.3)

.

3.1.2.1 Definitions

We begin with the assumption that the environment in which we will be doing trajectory prediction

has a fixed number of goals G (corresponding roughly to the number of eating stations in the

cafeteria):

g = (g1,g2, . . . ,gG)

For the purposes of this analysis, we restrict the distributions governing each goal random variable

to be Gaussian. We also restrict our goals gk to lie in the plane R2.
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Using data from the cafeteria—the cafeteria floor was first divided into a grid, and then the

amount of time a bin was occupied by a person was collected—we used Gaussian mixture model

clustering (Bishop [14]) to segment the pedestrian track data into “hot spots”. In particular, we

learned

p(g) =

G∑
k=1

βkN
(
gk;µgk

,Σgk

)
.

where βk is the weight of each component learned, µgk
is the mean of the goal location, and Σgk is

the uncertainty around the goal. Figure 3.2 plots p(g) on top of an image of the cafeteria. Notice

that the hotspots occur around the perimeter of the cafeteria, where the food is served.

Figure 3.2: The Gaussian goals identified in the cafeteria. The green dots represent the mean, and
the blue and yellow circles represent the length of the covariance axes.

Once we have clustered the data into the distribution p(g), we then need to understand how

agents move between these goals. For instance, a patron might first go to the pizza station, followed

by the soda fountain, followed by checking out at the cashier bench. We therefore define the transition

probability p(ga → gb) for all a, b ∈ {1, 2, . . . , G}. These transition probabilities are empirically

determined from experimental data. For every transition between two goals ga → gb we define the

duration random variable Ta→b, which is governed by a density p(Ta→b) that we also determine

empirically.

Finally, we introduce a waypoint sequence

ḡm = (gm1
→ gm2

→ · · · → gmF )
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(where gmk is a waypoint, and mk ∈ {1, 2 . . . , G}) for locations indexed by m1,m2, . . . ,mF where

F ∈ N+, with associated way point durations

T̄m = {Tm0→m1 , Tm1→m2 , · · · , TmF−1→mF }

where Tm0→m1
is the time to the first goal.

3.1.2.2 Generative Process for a Sequence of Waypoints

We now describe a generative process for a sequence of waypoints ḡm. Beginning with the set

of learned goals g, we draw indices from the set {1, 2, . . . G}. The first index is drawn uniformly

at random1, with the following indices drawn according to the transition probability p(ga → gb).

Simultaneously, we draw the transition times Ta→b according to the distribution p(Ta→b). We stop

sampling goal points of the sequence ḡm = (gm1 → gm2 → · · · → gmF ) when
∑F−1
j=0 Tmj→mj+1

exceeds the prediction horizon T . Notice that the value of F for a particular sequence will not

necessarily match that of another sequence, since the time between goals Tmj→mj+1
varies for all j.

Thus, we can formulate our prediction model for agent i such that we sum over all possible

waypoint sequences ḡm, and for each particular waypoint sequence ḡm we integrate out all possible

associated durations T̄m:

p(f (i) | z(i)
1:t) =

∑
ḡm

(∫
T̄m

p(f (i), ḡm, T̄m | z(i)
1:t)

)
.

Using the chain rule, we end up with

p(f (i) | z(i)
1:t) =

∑
ḡm

(∫
Tm0→m1

∫
Tm1→m2

· · ·
∫
TmF−1→mF

p(f (i), ḡm, Tm0→m1
, Tm1→m2

, · · · , TmF−1→mF | z(i)
1:t)

)

=
∑
ḡm

∫
T̄m

p(f (i) | z(i)
1:t, ḡm, T̄m)p(ḡm, T̄m | z(i)

1:t). (3.1)

Notice that for each goal sequence ḡm, we potentially have a different number of waypoints gmk .

3.1.3 Interacting Gaussian Processes

Our key modeling idea is to capture the dynamic interactions by introducing dependencies between

the Gaussian processes. We begin with the independent Gaussian process models

p(f (R) | z(R)
1:t ), p(f (1) | z(1)

1:t ), . . . , p(f
(n) | z(n)

1:t ),

1We acknowledge that the parameters βk from the mixture p(g) could inform this initial sample. We chose instead
to allow this initial waypoint to be weighted by measurements, as discussed in Section 3.2.2.
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2), for various α, h.

and couple them by multiplying in an interaction potential

ψ(f (R), f) = ψ(f (R), f (1), . . . , f (n)),

where f = (f (1), . . . , f (n)). Thus,

p(f (R), f | z1:t) =
1

Z
ψ(f (R), f)

n∏
i=R

p(f (i) | z(i)
1:t). (3.2)

The product
∏n
i=R is meant to indicate that the robot is included in the calculation. In our experi-

ments, we chose the interaction potential as:

ψ(f (R), f) =

n∏
i=R

n∏
j=i+1

T∏
τ=t

(
1− α exp

(
− 1

2h2
|f (i)(τ)− f (j)(τ)|

))

where |f (i)(τ) − f (j)(τ)| is the Euclidean distance at time τ between agent i and agent j. The

rationale behind our choice is that any specific instantiation of paths

f
(R)
l , f

(1)
l , f

(2)
l , . . . , f

(n)
l
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becomes very unlikely if, at any time τ , any two agents i and j are too close. Furthermore, the

parameter h controls the “safety margin” of the repulsion, and α ∈ [0, 1] the strength of the repulsion.

The parameter h was chosen to be the closest approach of two navigating pedestrians (in both

simulation (Section 3.4) and in the dining hall experiments (Chapter 5)), while α was chosen to be

in the range [0.9 0.99]. See Figure 3.3 for an illustration.

3.1.4 Multi-Goal Interacting Gaussian Processes

Importantly, we point out that if we expand the IGP density to take goal and waypoint duration

uncertainty into account by using the motion mixture model approximation, then we have multi-goal

interacting Gaussian processes (mgIGP):

p(f (R), f (1), . . . , f (n) | z1:t) =
1

Z
ψ(f)

n∏
i=1

p(f (i) | z(i)
1:t)

=
1

Z
ψ(f)

n∏
i=1

(∑
ḡm

∫
T̄m

p(f (i), ḡm, T̄m | z(i)
1:t)

)

≈ 1

Z
ψ(f)

n∏
i=1

 Np∑
k=1

w
(i)
k p(f (i) | z(i)

1:t, ḡk, T̄k)

 .

3.2 Approximate Inference for Interacting Gaussian Processes

For Gaussian processes, exact and efficient inference is possible. However, the introduction of the in-

teraction potential makes the posterior p(f (R), f | z1:t) non-Gaussian and thus approximate inference

is required. Standard approaches to approximate inference in models derived from Gaussian pro-

cesses include the Laplace approximation (Bishop [14]) and expectation propagation (Minka [75]).

These methods approximate the non-Gaussian posterior by a Gaussian which has the same mode, or

which minimizes the Kullback-Leibler divergence, respectively. These methods are most effective if

the posterior is unimodal (and can be well-approximated by a Gaussian). With interacting Gaussian

processes, however, the posterior is expected to be multimodal. In particular, for two agents moving

towards each other in a straight line, evasion in either direction is equally likely. This is akin to

people walking towards each other, flipping from one “mode” to the other while attempting to not

collide.

To cope with the multimodality, we use an approximate inference technique based on importance

sampling, a well understood approximate inference method for Bayesian statistics (for an introduc-

tion see Arulampalam et al. [7], Doucet et al. [26], Ristic et al. [88], Thrun et al. [111] or Herman

[51]; for a more detailed, up to date analysis of the method see Doucet and Johansen [25], Andrieu

et al. [2] or Koller and Friedman [59]).

In this section, we first describe importance sampling for the special case of interacting Gaussian
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processes that have a single known goal for each agent (we call this “single mode Gaussian processes”

in Section 3.2.1). We then generalize the importance sampling procedure for individual agent models

that follow Equation 3.1, with multiple goals and unknown times to goal. That is, we employ two

different sampling steps: first we compute (online) a sample based approximation of each agent’s

mixture process (Section 3.2.2)

p(f (i) | z(i)
1:t) =

∑
ḡm

(∫
T̄m

p(f (i), ḡm, T̄m | z(i)
1:t)
)
,

and then we compute a sample based approximation of the full multi-goal interacting Gaussian

processes posterior p(f (R), f | z1:t) in Section 3.2.3 .

3.2.1 Sample Based Approximation of Interacting Gaussian Processes

We implement importance sampling (see chapter 4 of Herman [51] for a discussion of importance

sampling) for approximate inference of the single known goal interacting Gaussian process density

as follows:

• For all agents i, sample independent trajectories of agent i from the prior (see Appendix A.4.4):

(f (i))l ∼ p(f (i)|z(i)
1:t),

where p(f (i) | z
(i)
1:t) is the Gaussian process sampling density for agent trajectory i. A joint

sample is the collection of n + 1 such agent samples: (f (R), f)l (see the left side of Figure 3.4

for an illustration of this idea). Since we are approximating the density p(f (R), f | z1:t), the

joint sample is our quantity of interest.

• Evaluate the weight of each sample (f (R), f)l using the rules of importance sampling:

ηl =
p((f (R), f)l | z1:t)∏n
i=R p((f

(i))l | z(i)
1:t)

=
ψ((f (R), f)l)

∏n
j=R p((f

(j))l | z(j)
1:t )∏n

i=R p((f
(i))l | z(i)

1:t)

= ψ((f (R), f)l).

• The posterior is then approximated by the empirical sampling distribution,

p(f (R), f | z1:t) ≈
1∑N
s=1 ηs

N∑
l=1

ηlδ([f
(R), f ]l − [f (R), f ]),

where δ([f (R), f ]l − [f (R), f ]) is the delta function centered at sample [f (R), f ]l.
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As we let the number N of samples grow, we approximate p(f (R), f | z1:t) to arbitrary accuracy.

Note that all samples are independent of one another. Thus, the technique can be parallelized. See

Figure 3.4 for an illustration of this process.

Figure 3.4: First samples f
(i)
l are drawn for each agent i. In this illustration, 3 agents are under

consideration; we represent one joint sample of the 3 agents with 3 green lines, and another joint
sample with 3 blue lines. The samples are then weighted and combined to produce an estimate of
the interacting Gaussian processes density.

3.2.2 Sample Based Approximation of Gaussian Process Mixtures

Unfortunately, the expansion in Equation 3.1 is intractable, so we employ a sample based approxi-

mation for the distribution over goal waypoints and durations for agent i

p(ḡm, T̄m | z(i)
1:t) ≈

Np∑
k=1

w
(i)
k δ([ḡm, T̄m]k − [ḡm, T̄m]),

where we utilize the empirically derived density

(
ḡm, T̄m

)
k
∼ p(ḡm, T̄m).

Substituting
∑Np
k=1 w

(i)
k δ
[
(ḡm, T̄m)k − (ḡm, T̄m)

]
into Equation 3.1, we generate the approximation

p(f (i) | z(i)
1:t) =

∑
ḡm

∫
T̄m

p(f (i) | z(i)
1:t, ḡm, T̄m)p(ḡm, T̄m | z(i)

1:t)

=
∑
ḡm

∫
T̄m

p(f (i) | z(i)
1:t, ḡm, T̄m)

Np∑
k=1

w
(i)
k δ([ḡm, T̄m]k − [ḡm, T̄m])

≈
Np∑
k=1

w
(i)
k p(f (i) | z(i)

1:t, ḡk, T̄k).

The samples collapse the infinite sum of integrals to one finite sum. This finite component mixture

process is illustrated in Figure 3.5.

In order to generate particles (ḡk, T̄k), we first draw a sequence of waypoints ḡk and then the
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Figure 3.5: A patron moves through the cafeteria (solid green circle). Trailing yellow dots are history,
and tubes are Gaussian Process mixture components. Gaussian Process mixture weights are in the
upper left corner.

corresponding sequence of waypoint durations Tka→kb . To draw the waypoints, we begin by first

sampling gk1 uniformly from the G goals. We then draw Tk0→k1 according to a distribution with

mean given by the average time to travel from the current point to gk1 . Then, gk2 is drawn according

to the transition probabilities p(gk1 → gb), and Tk1→k2 is consequently sampled. We continue until

the sum of the duration waypoints reaches or exceeds Tmax, and then drop the most recently sampled

goal.

Additionally, we evaluate the individual mixture component weights according to

w
(i)
k =

p(
(
ḡm, T̄m

)
k
| z(i)

1:t)

p(ḡm, T̄m)
∝ p(z(i)

1:t |
(
ḡm, T̄m

)
k
)

that is, we evaluate the likelihood of the observed data z
(i)
1:t assuming a specific waypoint-duration

pair (ḡm, T̄m)k. We illustrate this idea in Figure 3.6.
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Figure 3.6: Certain goals (in this case, goal two) better explain the observed data z1:t. This method-

ology is used to evaluate w
(i)
k ∝ p(z

(i)
1:t |

(
ḡm, T̄m

)
k
).

3.2.3 Sample Based Approximation of Multi-Goal Interacting Gaussian

Processes

We expand the interacting Gaussian process density to take goal and waypoint duration uncertainty

into account by using the motion mixture model approximation :

p(f (R), f (1), . . . , f (n) | z1:t) =
1

Z
ψ(f)

n∏
i=1

p(f (i) | z(i)
1:t)

=
1

Z
ψ(f)

n∏
i=1

(∑
ḡm

∫
T̄m

p(f (i), ḡm, T̄m | z(i)
1:t)

)

≈ 1

Z
ψ(f)

n∏
i=1

 Np∑
k=1

w
(i)
k p(f (i) | z(i)

1:t, ḡk, T̄k)

 .

We wish to approximate p(f (R), f | z1:t) using samples. To do this, we extend the method outlined

in Section 3.2.1 by adding a step to account for the Gaussian process mixture components—that is,

to draw a joint sample (f (R), f)l from the multi-goal interacting Gaussian process (mgIGP) density

we first draw agent i’s mixture index ζ from the discrete distribution {w(i)
1 , w

(i)
2 , . . . , w

(i)
N }. Given the

mixture index ζ, we draw (f (i))l ∼ p(f (i)|z(i)
1:t, ḡζ , T̄ζ). We iterate through all N +1 agents (including

the robot), and then arrive at the joint sample weight ηl = ψ((f (R), f)l). With this collection of N

weights, we arrive at the approximation

p(f (R), f (1), . . . , f (n) | z1:t) ≈
1∑N
s=1 ηs

N∑
l=1

ηlδ([f
(R), f ]l − [f (R), f ]).
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3.3 Reducing Planning to Inference

In this section, we explain how the IGP (and mgIGP) density p(f (R), f | z1:t) can be interpreted

as a “navigation density”—that is, in our model, navigation can be understood as a statistic of

prediction. We also explain how a noncooperative planner can be implemented in this manner.

3.3.1 Interacting Gaussian Processes for Navigation

Our model p(f (R), f | z1:t) immediately suggests a natural way to perform navigation: at time t, find

the maximum a-posteriori (MAP) assignment for the posterior

(f (R), f)∗ = arg max
f (R),f

p(f (R), f | z1:t),

and then take f (R)∗(t + 1) as the next action in the path (where t + 1 means the next step of the

estimation). At time t + 1, we receive a new observation of the agents and the robot, update the

posterior to p(f (R), f | z1:t+1), find the MAP assignment again and choose f (R)∗(t + 2) as the next

step in the path. We repeat this process until the robot has arrived at its destination.

We point out that this approach is a special case of the duality between stochastic optimal control

and approximate inference discovered in Toussaint [112] and fully formalized in Rawlik et al. [85].

Our approach is illustrated in Figure 3.7.

Figure 3.7: Navigation as a statistic of the prediction density p(f (R), f | z1:t). Green and blue lines
indicate the arg maxf (R),f p(f

(R), f | z1:t); the green line is interpreted as navigation commands for
the robot. In this way, behavioral models of crowds become navigation protocols.

3.3.2 Noncooperative Planner

We can also leverage the Gaussian process prediction models to do noncooperative planning. That

is, we can plan through a crowd that we do not expect to respond to the robot—the robot merely

maximizes the distance between itself and the expected independent trajectories of each pedestrian
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while minimizing the length of the path to the goal. In Chapter 5, we test this noncooperative

planner in dense human crowds.

A slight modification of the importance sampling technique detailed in Section 3.2.1 allows us

to do this: for agent i, instead of drawing samples such that (f (i))l ∼ p(f (i) | z(i)
1:t) = GP (m

(i)
t , k

(i)
t ),

we only draw one sample—the most probable sample—according to (f (i))l = m
(i)
t . For the robot,

we continue to draw samples according to (f (R))l ∼ p(f (R) | z
(R)
1:t ) = GP (m

(R)
t , k

(R)
t ). Each joint

sample (f (R), f)l is then weighted according to the potential function ψ((f (R), f)l), and the sample

with the highest weight is chosen as the navigation command for time t. Once we receive new data

zt+1, the process is repeated, and the navigation command for time t+ 1 is found. More generally,

this procedure is just the sampling based approximation of

(f (R))∗ = arg max
f (R)

ψ(f (R),m
(1)
t , . . . ,m

(n)
t )p(f (R) | z(R)

1:t ). (3.3)

Additionally, if we wish to use the Gaussian process mixture models

p(f (i) | z(i)
1:t) ≈

Np∑
k=1

w
(i)
k p(f (i) | z(i)

1:t, ḡk, T̄k),

then we follow the same procedure: for each agent i, we choose the most probable agent trajectory

and then sample the robot path with highest potential function value. The most probable trajectory

for agent i is the mean of the most likely mixture component. Thus, we find the largest weight w
(i)
k ,

and then choose (f (i))l = m
(i,k)
t , where we add the additional superscript k in m

(i,k)
t to indicate

mixture component k. By optimizing the robot’s trajectory against the most probable agent pre-

dictions, we produce an algorithm that is highly similar to the planners described in Du Toit [28],

Aoude et al. [5, 4] and Joseph et al. [52].

We point out that other noncooperative planners were available. For instance, we could have

minimized the expected probability of collision using Kalman filter prediction or Gaussian process

mixture model prediction. However, both of these approaches are the receding horizon control

implementation of

f∗t = arg min
f (R)

J(f (R)|z1:t)

= arg min
f (R)

∫
c(f (R), f (1), . . . , f (n))p(f | z1:t)df .

As shown in Section 2.4.1, both these approaches have larger objective function costs than the

planner of Equation 3.3, meaning that average performance in dense crowds is guaranteed to be

inferior. Accordingly, we chose to experiment with the planner of Equation 3.3.
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3.4 Simulation Experiments

3.4.1 Experimental Setup: Crowded Pedestrian Data

(a) Example pedestrian interaction

current 
position

current 
position

prediction

(b) Noncooperative

prediction

current 
position

(c) IGP (d) IGP

Figure 3.8: (a) Crowded still from the ETH data sequence. Near the center of the group is a subgroup
of about 6 people moving upwards (red arrows) through a crowd of about 10 people moving down
(cyan arrows). Simulations were run on this particular scenario, with IGP performing (in terms of
safety and path length) about the same or slightly better than the actual pedestrians, and greatly
outperforming state of the art methods, such as seen in [28]. (b-d) The blue squares over the gray
lines are the agents traveling downward (lowest dot is current position), the cyan diamond over the
green line is the pedestrian walking upwards through the crowd; IGP is red circles on top of blue
prediction line, and the noncooperative planner is blue prediction line. In (b) the noncooperative
planner chooses an overcautious path because the crowd is too dense. In (c) and (d), the IGP
follows nearly the same path as the pedestrian in green, validating the model. This set of figures
illustrates the free space created by the pedestrian walking through the crowd—this is the interaction
we capture with the IGP model.

Before we instrumented Caltech’s Chandler dining hall, we first evaluated the IGP approach on a

data set of over 8 minutes of video recorded from above a doorway of a university building at ETH

Zurich (see [79] for more details of the video collection process and how to access the data). This

data set exhibits high crowd density, i.e., people frequently pass by one another fairly closely. As

an example, see Figure 3.8(a) for one frame of the data sequence in which the crowds are dense. In

this frame, a number of pedestrians are heading down towards the doorway (cyan arrows) while a

number of other people (red arrows) head into and through the crowd.

We tested the IGP algorithm on variations of just these types of scenarios (one crowd or person

intersecting another crowd); our task was to utilize the navigation density in combination with the

particle filtering inference method to do navigation through these crowds.

Given the type of data that we experimented with, we now explain our performance metric: For
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navigation, we are interested in two quantities: path length (the Euclidean path distance in x − y
space taken by the robot from start to finish), and safety margin (the nearest distance that the

robot ever came to another pedestrian during a run). We hope to minimize the path length while

maximizing the safety margin.

We measure both these quantities in pixel values, because transforming back to “real” distances

(meters, for instance) would be too inaccurate. Importantly, we have baselines for the two metrics in

pixels. For path length, we tended to see pedestrians take paths which ranged from about 350-390

pixels. For the safety margin, we often observed pedestrians within 11-12 pixels of one another,

although never any closer. Based on this empirical observation of human behavior, we chose any

separation distance above 13 pixels to be “safe”. Furthermore, we can roughly estimate 13 pixels to

be about the width of a person from shoulder to shoulder. Based on this, we chose the value of h in

our potential function ψ to be 13 pixels.

Figure 3.9: Path length versus safety over 10 runs. IGP (IGP) outperforms pedestrians in both
safety and path length, while the noncooperative planner (GP) is inappropriate for this application.

As a validation of the methods developed above, we tested against a dataset of human crowds,

rather than simulated dynamic agents. In order to test joint collision avoidance, we gave the IGP

planner and the noncooperative planner the same start and goal states as a human navigating

through a crowd, and ran the algorithms simultaneously with the human. In other words, the

person created space, and we tested the algorithms to see if they would anticipate that space.

The fact that the IGP took nearly identical paths to the humans and the noncooperative planner
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chose highly conservative paths justified, to some extent, our approach. Furthermore, examinations

of planned paths at early stages in the experiment showed the IGP expecting the opening in the

crowd, while the noncooperative planner expected no such event.

3.4.2 Navigation Performance

We begin this section with anecdotal evidence of how our algorithm performs in comparison to both

pedestrians and the noncooperative planner, in Figure 3.8. Note that for all 10 experiments we

ran, this behavior was typical: the IGP performed similarly or better than the pedestrian, and the

noncooperative planner took evasive action, usually going to the far outside to avoid the crowds.

Figure 3.9 is the main result of the simulation experiments. In Figure 3.9, we present the results

of the various algorithms over 10 experiments. Each box surrounding the colored dots represents

the standard error bars over the 10 experiments. The IGP (green dot) had a mean safety of around

22 pixels, with standard error ranging over 2 pixels, and mean path length of around 362, with

standard error around 12. Table 3.1 presents details for the 10 individual experiments. Columns

labeled s refer to safety (in pixels), and ` refers to path length (pixels).

Table 3.1: Navigation results: IGP (IGP) versus pedestrian versus noncooperative planner (GP).
The value ` is the number of pixels traversed for a run (the path length in pixels), while s is the
closest the agent came to any other agent during the run (also in pixels).

Run `ped sped `IGP sIGP `GP sGP
1 343 13 341 12 353 22
2 343 14 344 18 349 8
3 316 71 305 26 317 73
4 383 12 358 21 420 18
5 361 12 363 42 409 65
6 337 21 321 22 330 23
7 439 16 439 23 489 26
8 428 19 423 20 466 11
9 416 20 402 18 448 24
10 415 11 407 24 445 13

Figure 3.9 shows the IGP outperforming pedestrians in both safety and path length by a fairly

large margin. Furthermore, the noncooperative planner is, as theoretically demonstrated earlier,

inappropriate for very dense crowds—the noncooperative planner almost always takes evasive ma-

neuvers (long path length) in an effort to avoid the crowds (large safety margin).

True validation of the IGP algorithm demanded “live” interaction, however. That is, in order

to test the concept of joint collision avoidance, a robot must actually interact with human beings.

This is the motivation for the content of Chapters 4 and Chapter 5.
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Chapter 4

Experimental Setup

In this chapter we present the details of our experimental setup in the Chandler dining hall at

Caltech. We begin by describing the actual robotic workspace in the dining hall, including details

about size and the instrumentation of the workspace. Next, we provide details of our overhead

pedestrian tracking system, and conclude with a discussion of the transformation of our robotic

platform from a bare Evolution Robotics ER-1 R© to an embodied Pioneer 3-DX R©.

4.1 Chandler Dining Hall at Caltech

Caltech’s Chandler dining hall was chosen as the ideal location for the experiments we envisioned

(see Figure 4.1). In the cafeteria, crowd densities could swell to above 1 person/m2 during peak hours

(shoulder to shoulder congestion). During off hours (before 1130am and after 1pm), patrons were

still present, although not in such huge volume. Indeed, the two types of crowds presented unique

challenges to our autonomous robot: during peak hours, the dense crowds required anticipation of

human cooperation over short distances (as argued in Section 2.4.1 and validated in Section 5.5.1.2).

In off peak hour crowds, patrons could be walking quite fast, and so the robot needed to be able to

anticipate longer distance interactions (i.e., a person walking towards the robot from the other side

of the cafeteria required a different kind of anticipation). Finally, the dining hall was made available

during closed hours, providing an unprecedented experimental proving ground, that would allow us

to progressively improve and milestone our experiment.

Additionally, the cafeteria crowds were highly turbulent (Figure 2.2). Whereas in many public

spaces crowd movement will acquire strong flows in just a few directions, in Chandler dining hall
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Figure 4.1: The robot workspace consists of a 20m2 area surrounded by a buffet station (left), a
pizza station (right), and a soda fountain (background). The straight line distance between the start
and goal is 6m. This straight line runs roughly through the middle of the floor in the image.

the presence of eating stations (or goals; see Figure 3.2) produced many people crossing in front of

and against each other. This turbulence provided an additional dimension to our experiment.

4.2 Description of the Robotic Workspace in Chandler Din-

ing Hall

In this section, we describe how an appropriate workspace size was determined and why we chose

overhead (stereo) sensing instead of onboard sensing. In Appendix D we provide a description of

the computational infrastructure that was developed for the experimental workspace.
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4.2.1 Instrumentation of the Workspace Versus Onboard Sensing

In dense crowds, tracking from onboard a robotic platform is a state of the art computer vision

challenge. Additionally, the objective of our research was to explore navigation algorithms, not

tracking and detection algorithms. For these reasons, we decided to simplify the sensing problem

as much as possible. We began by choosing to instrument the cafeteria (by mounting overhead

cameras in the ceiling for pedestrian tracking) rather than to instrument the robot. As it turned

out, this approach had advantages all its own. Because we had a reliable tracking system that was

independent of the robot, we could collect extensive crowd trajectory data logs with minimal work.

4.2.2 Overhead Instrumentation of Workspace

With the decision to instrument the workspace rather than the robot, we needed to decide what

sensing modality to use, and where to place the sensors. Our experience in other robotics laboratories

with overhead cameras had been largely positive. Other sensors, such as lasers or radars, were bulky,

expensive, and power hungry. We thus pursued overhead camera sensing. We began with computer

vision, and quickly learned that stereo vision cameras would be necessary.

4.2.2.1 Computer Vision

(a) Fish eye lens before rectification (b) Fish eye lens after rectification

Figure 4.2: (a) Example image of field of view of fish eye lens before rectification. (b) Example
image of field of view of fish eye lens after rectification. The reduction in field of view is substantial.

We began testing with a fish eye lens (an extremely wide angle field of view lens) mounted on a
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Point Grey Scorpion R©camera. Fish eye lenses have the tremendous advantage of an extremely large

field of view. For illustration of this effect, in Figure 4.2(a) we display the unrectified fish eye view

of Chandler dining hall.

The fish eye lens induces substantial warping effects on the resulting image (i.e., the image

displays non-Euclidean geometries). Thus, the image must be rectified, or placed back into Euclidean

coordinates, in order for any type of computations to take place. Unfortunately, this rectification

results in a substantial reduction in the field of view. In Figure 4.2(b), we show the reduction in

field of view that results from standard rectification procedures. Nevertheless, this field of view was

still sufficiently large for the purposes of our experiments. The next step was to decide if computer

vision techniques were suitable for our task.

We first tried to do tracking of pedestrians with a simple background subtraction procedure.

Unfortunately, this method led to high rates of misclassification, as evidenced in Figure 4.3. It quickly

Figure 4.3: Background subtraction resulted in high rates of misclassification: the pedestrian de-
tector picked up shadows, parts of walls, pizzas, and sometimes segmented individuals into multiple
parts.

became apparent that a single camera would present extensive challenges, even with the advantage
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of an overhead field of view. We thus began considering stereo vision, which provided the advantage

of an additional range measurement (i.e., we would have access to 3-dimensional coordinates rather

than 2-dimensional coordinates). We began testing with Point Grey Bumblebee R©stereo cameras

soon thereafter. With the discovery of existing overhead stereo vision pedestrian tracking libraries

(see Section 4.3.1) we realized that this was the most appropriate sensing modality for our task.

4.3 Pedestrian Tracking System

In this section we describe the physical configuration of the stereo cameras, as well as the software

used to extract the tracks of the pedestrians.

4.3.1 Overhead Stereo Vision Tracking

Our pedestrian tracking system used three Point Grey Bumblebee2 stereo cameras (Figure 4.4(a)),

mounted in an overhead configuration (Figure 4.4(b)) with overlapping workspace at a nominal

height of 3.5m. The Point Grey Censys3D R© software was used to provide accurate tracks of observed

pedestrians at an update rate of approximately 20Hz. Censys3D R© uses background subtraction with

a plane fit to extract a cumulative set of 3D points belonging to pedestrains from all available stereo

cameras. A clustering algorithm segments point cloud data to generate pedestrian blobs which are

then tracked using a simple motion model with nearest neighbor data association. All identified

tracks (up to a maximum of 40) were tagged with an ID and broadcast wirelessly to the Pioneer

robot, which used the tracks for navigation.

Figure 4.4(c) is a screenshot of the 3D tracker used in our experiments. The bottom pane of

the screenshot shows three separate overhead images from each of the stereo camera pairs (only

left camera image is displayed). The top pane is our OpenGL GUI displaying all the Censys3DTM

tracks in red while the magenta circles indicate “important patrons” (see Section 5.2). The green

path indicates the robot’s current planned path. A projection of the scene is displayed underneath

the tracks to provide context for the user.

Tracking the robot The tracking of the robot was done exclusively through the wheel odometry

of the Pioneer 3-DX R©. Since we had an overhead tracking system, robot tracking could be gen-

eralized to the crowd coordinate system by using fiducial or IR markers. For the purposes of our
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experiment, however, wheel odometry was sufficient, and so an overhead robot tracking module was

never developed.

(a) (b)

Research Portfolio: Probabilistic Tools for Certifiable Human Robot Cooperation

Pete Trautman

trautman@cds.caltech.edu

http://www.cds.caltech.edu/~trautman

1. Current Research/Platforms

Robotic navigation in dense lunchtime crowds. Over the past 2 years, I have developed novel
machine learning algorithms for robot navigation in human crowds. In tandem, I instrumented
Caltech’s student cafeteria as a challenging testbed for this theory. Ultimately, the motivation
underlying this work is the following: if the robot correctly anticipates human reaction, then superior
trajectories become possible. In other words, by capitalizing on human cooperation, robots can shape
the future to their benefit.

Our theoretical model uses Gaussian processes to learn independent agent trajectories, while coupling
of the agent trajectories is achieved via a multiplicative interaction function. This results in a
predictive distribution over the joint function space of human and robot trajectories in a crowd—see
Figure 1. We call this distribution interacting Gaussian processes. Importantly, this formulation
provides for an integrated and intuitive notion of robotic navigation: if the robot is treated as an
agent in the crowd, then the prediction of what is most likely to happen is exactly what action the
robot should take. When implemented in a receding horizon framework, the navigation protocol is
merely the maximum a-posteriori statistic of the predictive distribution.

Figure 1. Robot (wearing sun hat, bottom middle pane) navigating through 20
people in a 10 square meter space. Green dots are robot’s present plan, red dots are
cafeteria patrons, and magenta circles are patrons currently being reasoned over.
The robot has demonstrated safety and efficiency in nearly 100 runs of this difficulty.

1

(c)

Figure 4.4: (a) Stereo camera used by our pedestrian tracker. (b) Three stereo cameras, illustrating
configuration to maximize coverage while maintaining high quality tracks. c Robot (wearing sun
hat, bottom middle pane) navigating through densities nearing 1 person/m2. Green dots are robot’s
present plan, red dots are cafeteria patrons, and magenta circles are “salient” patrons.

4.3.2 Determining Necessary Size of Workspace

In deciding the proper size of the robotic workspace, we had two competing alternatives: we needed

the size of the workspace to be large enough to capture long distance interactions (to properly test

the elements of the model), but small enough to maintain high fidelity pedestrian tracking (increased

field of view degrades overhead camera tracking accuracy). Thus, in order to cover an extended area,

multiple synchronized and registered cameras were necessary. Ultimately, our decision to use Point

Grey’s Bumblebee2 R© stereo camera also limited the number of cameras that we could use on a

single computer. The computers available to us only had, at most, 3 PCI/PCIe boards, and each

stereo camera required a dedicated PCI/PCIe slot (also, the inter-camera registration software only

supported 3 cameras per instance). Synchronizing across a second computer would have added

substantial complexity to the instrumentation, so this option was decided against.
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Each Bumblebee2 stereo camera had a fixed focal length. Additionally, objects further than 3

meters from the camera had poor disparity returns, and thus poor distance information (distance

information is critical for tracking). We found that, operationally, the cameras only functioned

properly at a mounting height of 13 feet. At this height, given the camera’s fixed focal length, the

field of view of a single camera was around 3.5 meters (orthogonal to the baseline) by 5 meters

(parallel with the camera baseline). Given our constraints, we chose to go with 3 stereo cameras on

a single dedicated computer; we present the output of the multiple camera overlay in Figure 4.5.

Figure 4.5: A still of the output of the 3 overhead stereo cameras. In the bottom pane, a frame from
each camera is presented. In the upper pane, a frame from each camera is presented, but oriented
according to their registration. The underlying grid is organized into square meter boxes. Thus, the
extent of the robotic workspace is approximately 8 meters long by 3 meters wide (up to the right
most camera, at which the width stretches to about 5 meters). Because of lens curvature, tracking
becomes very poor near the edges of each camera’s field of view. Ultimately, approximately 6 meters
in length and 2.5 meters in width of reliable workspace were available for experiments.
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4.4 The Robot

Before we arrived at our final robot and final form factor, we tried out several different incarnations.

We discuss these various models in this section.

4.4.1 Evolution Robotics ER-1

Because of availability, we began testing with the Evolution Robotics ER-1. We quickly found that

this robot was too small and not agile enough to support testing in dense crowds. Once we realized

(a) (b)

Figure 4.6: (a) Early version of robot: ER-1 by Evolution Robotics. (b) Early version of robot:
ER-1 by Evolution Robotics with safety hat.

the ER-1 was inappropriate for the tests we wished to conduct, we acquired a Pioneer 3-DX, a fairly

heavy duty and reliable robotic platform. In order to develop a salient but not conspicuous robot

(as described in [95, 86, 82]), we began testing with the simplest robotic form factor that indicated

to human observers that the robot was both sensing and comprehending its environment (see Figure

4.7(a))—a small camera atop a camera arm, with an illuminated laptop mounted on the robot’s

back.
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(a) (b)

Figure 4.7: (a) The original form factor of the Pioneer 3-DX. The single arm with mounted stereo
camera was essentially invisible from many vantage points. Mounted Bumblebee camera was not
prominent enough to produce saliency. (b) The current form factor of the Pioneer 3-DX. Notice the
inclusion of multiple camera arms (to produce the impression of a human like volume), an 80/20
“face” with iPad (for motion and audition purposes). The sun hat protects the robot from the bright
overhead lights.

4.4.2 Pioneer 3-DX with an 80/20 Volumetric Form and iPad Face

Unfortunately, the form factor of Figure 4.7(a) was essentially invisible to cafeteria patrons, especially

in crowds of density greater than .3 people/m2. One pedestrian noted that the lack of human sized

“volume” made the robot disappear into crowds. Some merely noted that the robot was too short.

As suggested in [97], we thus concentrated on filling out the volume, so that the robot had

roughly the shape of a human torso. This was accomplished by mounting 3 camera arms, such that

from any angle at least 2 were distinct (see Figure 4.7(b)).

Additionally, we mounted an 80/20 “head” with a computer tablet “face” at around 4 feet. We

further adorned the robot’s head with a sun hat. Patrons often commented that they liked the

robot’s appearance. At the very least, many pictures were taken of this novel cafeteria sight. The



51

results of our experiment (Chapter 5) support the conclusion that this form factor was adequate.

We note that, as suggested in [95], it is imperative that a robot maintain constant motion in

order to be seen in crowds. Ideally, this would be accomplished by the robot maintaining some type

of perpetual motion (this need not be dangerous; continuous small rotational movements are often

sufficient). However, there are times when the robot is turned off; during these times, if the robot

is present in the human crowd space, it is still important to maintain a presence. Furthermore, two

sources of simultaneous motion (e.g., the motion of the robot base and the motion on a computer

screen mounted on the robot) are typically more effective at generating human saliency than a

single source. For these reasons, our motion algorithm was designed in such a way that the robot

was always moving when turned on, and furthermore, an iPad face continuously played a visually

salient movie.
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Chapter 5

Experiments

In this chapter, we examine the navigation of a Pioneer 3-DX R©nonholonomic mobile robot through

dense crowds in the Chandler dining hall at Caltech. The purpose of these experiments is to under-

stand the extent to which our model of cooperation (described in Sections 2.4.2 and ??) contributes

to navigation safety and efficiency in these complex and dynamic environments. To that end, we

tested the following four navigation protocols: the multi-goal IGP algorithm, the single goal IGP

algorithm, the noncooperative planner detailed in Section 5.3.2, and a reactive planner similar to

the dynamic window approach of Fox et al. [35]. As an “upper bound” on navigation safety and

efficiency, we also benchmarked human line of sight teleoperation. We emphasize that our test al-

gorithms were chosen judiciously, in an attempt to capture the major characteristics of all existing

navigation algorithms while maintaining a feasible schedule.

5.1 Testing Condition Caveats

Every effort was made to ensure that all algorithms were tested under the same conditions. As an

example, the testing operator (Pete Trautman, in all cases), who was responsible for the safety of

the pedestrians in the vicinity of the robot, followed the robot closely (within a few meters) during

every run (in case an emergency stop was required). The close proximity of a human to the robot

probably influenced the reaction of the crowd to a certain extent, and thus probably biased the

performance of the robot to some extent, for any given run.

Unfortunately, in experiments where public safety has to be maintained, the best that can be

done is to reproduce the exact same testing conditions for all algorithms and for all runs. We can
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buttress against testing condition variation by conducting many runs, so that any undue influence

on the part of the human running the experiment is equalized. For instance, the robot operator

tried to maintain the same presence for every algorithm and for every run. Additionally, we collected

as many runs per algorithm as was possible (approximately 3 months of testing, with nearly 500

runs collected, and around 800 attempted), so as to hopefully “wash out” any bias that may have

inadvertently occurred.

In all instances, every effort was made to reproduce identical testing conditions for each algorithm

and for every run.

5.2 “Important” Cafeteria Patrons

In our cafeteria experiments, we computed the 5 most “important” patrons to do prediction over.

This was done so that the mgIGP planner could operate fast enough (if, in a crowd of 30 people, the

planner were to do prediction over each individual, it would replan far too slowly). Doing inference

over 5 people allowed the planner to operate at around 10Hz, the slowest possible replanning time

for safe operation. The 5 most important patrons were taken to be the 5 patrons with the highest

probability of collision with the robot; following the derivation in Du Toit and Burdick [29] we first

define the collision condition between agent i and the robot R to be κ(f (R), f (i)) 6= ∅ where κ

measures the overlap (or collision) in R2 between two agents. The probability of collision is thus

P (κ) =

∫
f (R)

∫
f (i)

Iκ(f (R), f (i))p(f (R), f (i))df (R)df (i)

where Iκ is the indicator function for whether or not a collision has occurred between f (R) and f (i).

If we make the assumption that the robot is a disk of small area Aε, then Iκ(f (R), f (i)) restricts the

integral over f (i) to f (i) ∩Aε 6= ∅ so that we can approximate the probability of collision as

P (κ) =

∫
f (R)

[∫
f (i)∈Aε

p(f (i) | f (R))df (i)

]
p(f (R))df (R)

≈ Aε ×
∫
f (R)

p(f (i) = f (R) | f (R))p(f (R))df (R).



54

Additionally, we have that

∫
f (R)

p(f (i) = f (R) | f (R))p(f (R))dfR =

∫
f (R)

N (f (i);µi,Σi)N (f (R);µR,ΣR)dfR

= Z−1

∫
f (R)

N (f (R);µ,Σ)dfR

(as per Appendix A.4.2) where µ and Σ are combinations of µi,µR,Σi and ΣR and

Z−1 = (2π)−D/2|ΣR + Σi|−1/2 exp

(
−1

2
(µR − µi)

>
(ΣR + Σi)

−1
(µR − µi)

)
.

But since the integral
∫
f (R) N (f (R);µ,Σ) evaluates to one, we have that

∫
f (R)

p(f (i) = f (R) | f (R))p(f (R))dfR =

(2π)−D/2|ΣR + Σi|−1/2 exp

(
−1

2
(µR − µi)

>
(ΣR + Σi)

−1
(µR − µi)

)
.

Thus, we have the approximation for the probability of collision between the robot and an agent:

P (κ) ≈ Aε × (2π)−D/2|ΣR + Σi|−1/2 exp

(
−1

2
(µR − µi)

>
(ΣR + Σi)

−1
(µR − µi)

)
. (5.1)

We use Equation 5.1 to determine the patrons most likely to collide with the robot.

We point out that although overhead data was available to each navigation algorithm, the 5

most important pedestrians actually used for computation were similar to those who would have

been observed by an onboard sensor (for example, it was rare for an occluded pedestrian to have

high probability of collision with the robot). For this reason, we anticipate that all of the algorithms

(including mgIGP and IGP) would generalize well to the case of onboard sensing (assuming the

onboard sensor was able to segment nearby individuals somewhat reliably).

5.3 Description of Tested Navigation Algorithms

In the first half of this section, we present details of the algorithms that we chose to test. In the

second half of this section, we present an exhaustive list (so far as we are aware) of navigation

algorithms that are potentially suitable for operation in human crowds. We present arguments for
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why our test algorithms sufficiently represent the algorithms we decided not to test.

5.3.1 Implementation Details of mgIGP and IGP

We present the implementation details of the navigation algorithms developed in this thesis: multi-

goal interacting Gaussian processes and interacting Gaussian processes.

Interacting Gaussian processes We often refer to this algorithm as the IGP planner. Imple-

mentation details of this algorithm are presented in Section 3.2.1 and in Trautman and Krause [114].

Simulation studies for this algorithm were presented in Section 3.4. As argued in Section 1.2, IGP

is the first algorithm that explicitly models human cooperative collision avoidance for navigation in

dense human crowds.

Multiple goal interacting Gaussian processes Using the goal model p(g) described in Sec-

tion 3.1.2.1, we implement the mgIGP as described in Sections 3.2.2, 3.2.3 and 3.3. This approach

augments IGP with a Gaussian process mixture model for individual trajectory prediction.

In dense crowds, new navigation plans must be generated at around 10Hz. To accomplish this,

the navigation algorithm only performed prediction over the 5 most “important” people—to the

robot, the people with whom it was most likely to collide were deemed the most important.

Additionally, the mgIGP algorithm only computed the top 3 Gaussian process mixture compo-

nents. As shown in Section 3.2.2 and illustrated in Figure 3.6, the mixture weight can be computed

without full knowledge of the mixture component, saving substantial computational resources.

5.3.2 Baseline Algorithms

We present the navigation algorithms that mgIGP and IGP were tested against.

Noncooperative Gaussian processes: This planner proceeds in the following manner. First,

given crowd data from time t′ = 1, . . . , t, the algorithm predicts individual trajectories using the

Gaussian process mixture models of Section 3.1.2. This prediction model is similar to the state of

the art crowd prediction models of Pellegrini et al. [79, 80] and Luber et al. [70]. Additionally, our

mixture model is nearly identical to the state of the art prediction models used for navigation in

Aoude et al. [5, 4] and Joseph et al. [52]. We also point out that when pedestrian track data indicates
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linear movement, the Gaussian process mixture model predicts linear movement. Linear prediction

models are common to many of the navigation algorithms that we did not test.

Second, our noncooperative planner uses importance sampling to produce a navigation command

at time t+ 1 that (approximately—importance sampling is still vulnerable to finding local minima)

minimizes the time to goal while maximizing safety. These two steps are iterated in a receding hori-

zon control manner. This sampling based approximation procedure is very similar to the rapidly

exploring random trees navigation method implemented in Aoude et al. [5, 4]. The presence of Gaus-

sian process mixture models in both approaches, and the absence of cooperation modeling in both

approaches, suggests a high degree of similarity between the two planning methods. Furthermore,

optimizing over the most probable trajectories (rather than over distributions) is similar to the state

of the art crowd navigation algorithm of Du Toit [28].

For explicit details of the implementation of the noncooperative Gaussian process planner we

refer the reader to Section 5.3.2. This section also discusses other possible noncooperative planners

that were available, and why we expected those algorithms to suffer the freezing robot problem.

Reactive navigation This planner moves forward in a straight line along the x−axis, replanning

its velocity profile each time step ∆t ≈ 0.1s (since the overhead tracking algorithm runs at about

10Hz, any planner in the cafeteria is limited by this constraint) so that it continues moving at the

maximal speed while avoiding collision. This is accomplished in four steps.

First, the agents in the crowd are predicted forward in time approximately 0.5s using the Gaus-

sian process that is not conditioned on any goals (0.5s is about how long it takes the robot to come

to a complete stop from maximum velocity). Next, six potential robot trajectory velocity profiles

are computed (using Gaussian processes that have been conditioned on the robot’s goal) along the

x−axis. The velocity profiles range from 0m/s to 0.3m/s, (0.3m/s was deemed the maximum safe

velocity of the robot in dense crowds), discretized in increments of 0.05m/s. Then, each velocity

profile is evaluated for potential collisions using Equation 5.1; those velocity profiles with a probabil-

ity of collision above 0.3 are deemed unsafe, while those velocity profiles with a collision probability

below 0.3 are considered safe (if no velocity profiles are safe, then the 0m/s profile is chosen). Finally,

of the safe profiles, the one with the highest velocity is chosen (to maximize efficiency and safety

simultaneously). This approach is motivated by the “Dynamic window approach” of Fox et al. [35].
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Human teleoperation Human teleoperation was conducted at the discretion of the teleoperator,

so much as was possible: we allowed the operator to maintain as much line of sight as the teleoperator

considered necessary (i.e., safety was the priority). Occasionally, this meant that some operators

followed the robot (e.g., some operators were more confident than others, and some operators were

more confident under certain conditions).

In all, six operators teleoperated the robot, for a total of 85 runs. The data produced was

low variance (as would be expected), and served as an equitable “upper bound” of dense crowd

navigation performance: at all densities, the performance of the human teleoperator exceeded that

of the autonomous navigation algorithm.

5.4 Description of Untested Navigation Algorithms

Unfortunately, due to time constraints, not all dynamic navigation algorithms could be tested. How-

ever, we made every effort to capture the essential characteristics of existing navigation algorithms

with the algorithms we did test. In this section, we provide an overview of existing navigation ap-

proaches that we could have tested, and we provide explanation for why our test algorithms capture

the essential characteristics of those algorithms.

Global dynamic window and dynamic window The Dynamic Window approach (Fox et al.

[35]) was the method employed for the RHINO experiments discussed in Section 1.2. Furthermore,

this method motivated our reactive planner in Section 5.3.2. We thus argue that (at least for x−axis

movement), the Dynamic Window approach was tested. Additionally, the noncooperative planner is

a generalization of this Dynamic Window approach, since it generates a (nonlinear) velocity profile

based on non-parametric predictions of the dynamic agents.

The Global Dynamic Window Approach of Brock and Khatib [18] is a generalization of the

Dynamic Window approach, insofar as global connectivity information is incorporated into the

current motion plan, so that local minima are avoided. Since all the test algorithms we use are

global planning methods, the Global Dynamic Window method is represented faithfully.

Time varying dynamic window The Time Varying Dynamic Window approach is a general-

ization of the Dynamic Window Approach, in which moving obstacles are modeled as moving cells

in an occupancy grid map. Once again, both our reactive planner and our noncooperative planner



58

(that employs a general notion of prediction of dynamic agents and cost optimization) capture this

model closely, at least insofar as this model is merely a cost optimization based on linear predictions.

Inevitable collision states An Inevitable Collision State (ICS, see Fraichard and Asama [37])

is a state that will result in a collision, no matter what actions the system takes. Ideally, a robot

would do best to avoid such states, and many standard search algorithms, such as A∗ (see Russell

and Norvig [92]) can quickly find navigation strategies that do just this. However, this concept is

limited to deterministic settings, and so is inapplicable in our experiments.

Probabilistic inevitable collision states Probabilistic ICS (Bautin et al. [9]) is the generaliza-

tion of ICS to the case where the future trajectories of the dynamic agents are uncertain. However,

this concept is merely a special case of the cost function approach introduced in Section 2.2, and

thus is a special case of our noncooperative planner.

Velocity obstacles Velocity obstacles (introduced in Fiorini and Shiller [33]) were an effective

early method to plan in dynamic enviroments. However, in this formulation, uncertainty was ig-

nored. Since our cafeteria was characterized by highly noisy measurements of pedestrians, naive

implementation of a velocity obstacle based planner would have been inappropriate.

Probabilistic velocity obstacles In Fulgenzi et al. [38], velocity obstacles are generalized to the

case of noisy sensing (and henceforth called probabilistic velocity obstacles, or PVOs), and so are

appropriate for application in human crowds. In our opinion, however, we felt that PVOs were a

special case of our noncooperative planner—that is, PVOs essentially just use linear extrapolation

for prediction. Thus, testing the noncooperative planner was deemed sufficient.

Reciprocal velocity obstacles The Reciprocal Velocity Obstacle (RVO) method introduced in

van den Berg et al. [115] has experienced tremendous success when applied to the multi-robot coor-

dination problem; indeed, this approach is guaranteed to be collision and oscillation free (oscillations

result when two robots attempt to pass one another in the same direction. In a deterministic world,

each robot corrects simultaneously, and this results in a perpetual oscillation in which neither robot

makes progress). Furthermore, the algorithm has very low computational cost.

For navigation in human crowds, however, there were many complicating factors that rendered
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this algorithm highly non-trivial to implement. First, and perhaps most importantly, the amount of

noise in the pedestrian tracks caused the algorithm to behave erratically—sometimes, RVO seemed

to not even respond to a single person walking directly at the robot. Additionally, using a Kalman

Filter to “smooth” out the tracks did not improve performance. Finally, RVO makes the assumption

that all agents are choosing velocities in a pre-specified manner. Unfortunately, humans are not so

predictable. We point out that extensive attempts were made to deploy this algorithm in the

Chandler dining hall. However, even under the most benign circumstances (single pedestrian), the

algorithm was unsafe.

Ultimately, we decided that although this algorithm might have promise for navigation in dense

crowds, the proper implementation would be highly non-trivial, due to the above issues.

RRTs with potential fields Rapidly Exploring Random Trees (RRTs) are a common and pow-

erful method for solving navigation problems (see LaValle and Kuffner [67]). Svenstrup et al. [104]

construct potential fields based on ideas from the field of proxemics (see Hall [42]); essentially, a

cost map is built around each human that reflects general social preferences (for instance, humans

generally prefer for dynamic agents to be in front of them), and motion prediction is accomplished

with a linear extrapolation based on the current velocity. RRTs are then used to find the minimal

cost robot trajectory through the potential field.

We chose not to implement this algorithm directly since it bears many resemblances to our own

noncooperative planner. Indeed, our noncooperative planner places a cost around each trajectory;

the primary difference is that our cost field is spherical around the obstacle, rather than ellipsoidal

to reflect certain cultural inclinations.

RRTs with Gaussian process prediction In Fulgenzi et al. [40, 39], moving obstacle motion

patterns are learned and represented by Gaussian processes. The planning algorithm is based on

an extension of the RRT, where the likelihood of the obstacle’s trajectory and the probability of

collision is explicitly taken into account.

Given that the independent agent trajectory models of Fulgenzi et al. [40] are special cases of

the Gaussian process mixture models developed in this thesis, and cooperation is ignored in this

implementation, we felt that our noncooperative planner captured the essential contributions of this

model.

The work of Aoude et al. [5, 4] and Joseph et al. [52] shares insight with the approach of
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Fulgenzi et al. [40], although more sophisticated individual models are developed: motion patterns

are modeled as a mixture of Gaussian processes (Rasmussen and Williams [84]) with a Dirichlet

process prior over mixture weights (Teh [107]). The Dirichlet process prior allows for representation

of an unknown number of motion patterns, while the Gaussian process allows for variability within

a particular motion pattern. RRTs are used to find feasible paths.

The independent agent models of Aoude et al. [5, 4] were nearly identical to our Gaussian process

mixture models, and they also ignored cooperation models. We thus felt that our noncooperative

planner captured the essential contributions of this model.

5.5 Experimental Results: Quantitative Studies

In [97], a lengthy catalogue of metrics for determining the efficacy of a robot interacting with a

human are presented. However, the authors point out that the most important metric to consider in

human robot interaction experiments is safety ; accordingly, we first evaluate the safety of the test

algorithms of Section 5.3. We follow this safety study with an efficiency study. Although efficiency

does not always reflect the nuanced behavior of a probabilistic algorithm interacting with humans,

we felt that this study, when considered in combination with the safety study, accurately reflected

the salient behaviors of our test algorithms.

Intuition for crowd density values The scale of the crowd density can be somewhat mislead-

ing since we have normalized to values between 0 and 1—bear in mind that the highest density (1

person/m2) is a shoulder to shoulder crowd—see Figure 2.2. Also remember that patrons rarely

stand still; this constant motion increases the complexity, confusion, and chaos of the situation.

Anecdotally, the human drivers found crowd densities above 0.8 people/m2 to be extremely diffi-

cult to teleoperate the robot through. Densities between 0.4 people/m2 and 0.8 people/m2 were

challenging, while navigation at densities below 0.4 people/m2 was reasonable.

5.5.1 Robot Navigational Safety in Dense Human Crowds

We define safety to be a binary variable: either the robot was able to navigate through the crowd

without collision or it was not. For obvious reasons, however, we could not allow the robot to

actually collide with objects (either walls or people), and so a protocol for the human monitor (Pete
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% mgGP unsafe: 0.63492, total runs: 126
% mgIGP unsafe: 0.19444, total runs: 108

Figure 5.1: Unsafe runs for the noncooperative planner (called mgGP, in magenta) and mgIGP (in
blue). Overall, the noncooperative planner fails more than 3 times as often. We also point out that
at extremely high densities (above 0.8 people/m2, when patrons are standing nearly shoulder to
shoulder) all the planners consistently fail. Anecdotally, it is extremely hard to teleoperate a robot
at these densities.

Trautman) was put in place: if the robot came within 1 meter of an object, and the robot did not

appear to be making progress towards avoiding the collision (or, likewise, the human did not appear

to be making progress towards avoiding the collision), then the robot was “emergency stopped”1. In

other words, if the human monitor believed that a collision was imminent, then an emergency stop

was required.

5.5.1.1 Noncooperative Planner versus mgIGP Planner

We first compare the safety performance of our state of the art noncooperative planner (recall

Section 5.3.2) to that of the mgIGP planner in Figure 5.1. The data presented in this Figure

suggests the following: modeling cooperative collision avoidance between the crowd and the robot

1By emergency stop, we mean that the navigation algorithm was terminated. By default, the action command
immediately following termination of the navigation algorithm is the zero velocity command. Since the robot’s
maximum velocity is 0.3m/s, the robot is thus halted almost instantaneously.
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can improve overall safety by up to a factor of 0.63/0.19 ≈ 3.31. Further inspection of Figure 5.1

reveals additional interesting structure: the safety performance of both planners degrades reliably

as crowd density increases (while at densities above 0.8 people/m2, both planners essentially cease

to be safe).

We point out that the noncooperative planner is unsafe more than 50% of the time at densities

as low as 0.3 people/m2 and above. At densities of 0.55 people/m2 and above, it is unsafe more

than 80% of the time. In contrast, the interacting planner is unsafe less than 30% of the time for

densities up to 0.65 people/m2. The interacting planner is still safe more than 50% of the time at

densities nearing 0.8 people/m2, while the noncooperative planner is unsafe over 90% of the time at

this high density.

We present the following explanation for the unsafe behavior of the noncooperative planner.

Because the noncooperative robot essentially believes itself invisible, it has trouble finding safe paths

through the crowd, and thus oftentimes tries to creep along the perimeter of the testing area (the

testing area is bounded by walls). In our specific testing environment, this resulted in many unsafe

runs: the robot’s movement is simply not precise enough to avoid collisions when “wall hugging”.

More generally, this is a manifestation of the freezing robot problem, explained in Sections 2.4.1, 3.4,

and illustrated in Figure 1.3. In contrast, the number of unsafe runs for the interacting planner were

comparatively small because the robot was more likely to engage the crowd. By engaging the crowd,

the robot elicited patron cooperation, which made navigation through the crowd safer. Additionally,

by navigating in the center of the workspace, the robot was able to stay clear of hard to navigate

zones, such as next to walls.

5.5.1.2 Noncooperative Planner versus IGP planner

In Figure 5.2, we compare the noncooperative planner to a “compromised” interacting planner—

that is, we remove the Gaussian process mixture model individual trajectory prediction from the

interacting planner (leaving it with single goal Gaussian process prediction). The noncooperative

planner retains the Gaussian process mixture model prediction.

Although the results are not as stark as in Section 5.5.1.1, the IGP is still around 0.63/0.28 ≈ 2.25

times as safe as the noncooperative planner. This result suggests that for robot navigation in dense

crowds, modeling cooperation is more important than high fidelity individual trajectory predictive

models.



63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mgGP  # unsafe/# runs:

IGP # unsafe/# runs:

No unsafe runs

5/19

2/12

12/22

1/11

12/16

4/10

17/21

3/5

19/21

4/5

7/8

6/7

8/8

5/7

Average Crowd Density Over Duration of Run (people/m2)

Fr
ac

tio
n 

of
 U

ns
af

e 
Ru

ns

 

 
% mgGP unsafe: 0.63492, total runs: 126
% IGP unsafe: 0.2809, total runs: 89

Figure 5.2: Unsafe runs for the noncooperative planner (called mgGP, in magenta) and IGP (in
black). Even without goal based prediction, the interacting planner is more than twice as safe as
the noncooperative planner.

5.5.1.3 Noncooperative Planner versus IGP Planner versus mgIGP Planner

We finish this Section by comparing the noncooperative planner, the mgIGP planner, and the IGP

planner, in Figure 5.3. This Figure shows how each component contributes to the safety performance

of the tested algorithms.

5.5.2 Robot Navigational Efficiency in Dense Human Crowds

The robot’s task for every algorithm and for every run was to travel through natural, lunchtime

crowds from point A = (0, 0) to point B = (6, 0) (in meters). This brought the robot through

the center of the “filming area” in Figure D.3. Cafeteria patrons were almost entirely unscripted:

they were not trained in any way, although they were warned (with signs at every entrance to the

Chandler dining hall) that a robot would be present during their lunchtime routine.
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Figure 5.3: Unsafe runs for the noncooperative planner (called GP, in magenta), IGP (in blue), and
mgIGP (in black).

5.5.2.1 mgIGP Planner, Noncooperative Planner, and Human Teleoperation

In Figure 5.4, we present the results of an extensive set of navigation runs (nearly 200 runs) in

Chandler dining hall during lunch hours. We point out a few things. First, the number of example

runs for the noncooperative planner is relatively low (n = 40). This is due to the typically unsafe

behavior of this planner, as discussed in Section 5.5.1.1. Indeed, more runs were attempted for the

noncooperative planner than for any of the other planners, precisely because the completion rate

was so low. To wit, 126 runs were attempted for the noncooperative planner, 89 for the IGP planner,

and 108 for the mgIGP planner.

Additionally, we point out that when the noncooperative planner did complete runs, it did so with

respectable efficiency. This is easy to understand in light of the discussion of “crowd configurations”

of Section 1.3. That is, the noncooperative planner was able to complete runs primarily when the

crowd adopted configurations amenable to efficiency. For instance, if the patrons were standing

along the perimeter of the testing space, leaving an opening through the middle, then the correct
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Figure 5.4: Efficiency of noncooperative planner, mgIGP, and human teleoperation.

navigation strategy did not require interaction, and so the noncooperative planner would produce

an efficient run.

5.5.2.2 mgIGP Planner, Reactive Planner, and Human Teleoperation

In Figure 5.5, we present the efficiency for the reactive planner, the mgIGP planner, and human

teleoperation. This figure demonstrates that, for most crowd densities, mgIGP was nearly as efficient

as human teleoperation. We point out that, by definition, the human teleoperators never had to

be emergency stopped—obviously, the safety of the human teleoperators was superior to any of the

autonomous algorithms.

The results for the reactive planner are particularly intriguing: whereas for all the other planners

(including human teleoperation) efficiency roughly increased linearly with crowd density, the reactive

planner appears to grow nonlinearly with crowd density. Additionally, it is important to note that no

runs for the reactive planner were collected for densities above 0.55 people/m2. This was a result of

the following: when the reactive planner started a run at a high density, it moved extremely slowly.
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Figure 5.5: Efficiency of reactive planner, mgIGP, and human teleoperation.

Indeed, while the crowd density was above a certain amount, it almost never moved forward—the

algorithm was just too cautious. So, essentially, the reactive algorithm waited until the density was

low enough, and then it proceeded forward. By this time, however, the average crowd density over

the duration of the run had dropped substantially from the maximum crowd density. Effectively,

the reactive algorithm was unable to make progress through a crowd with an average density above

0.55 people/m2.

5.5.2.3 IGP Planner, Noncooperative Planner, and Human Teleoperation

In Figure 5.6 we present the efficiency results for the IGP planner, the noncooperative planner, and

human teleoperation. This figure provides insight into how “bare” interaction compares with a more

sophisticated prediction model. Human teleoperation serves as an upper bound on efficiency.
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Figure 5.6: Efficiency of noncooperative planner, IGP, and human teleoperation.

5.5.2.4 mgIGP Planner, IGP Planner, and Human Teleoperation

In Figure 5.7 we present the efficiency results for the mgIGP planner, the IGP planner, and human

teleoperation. This figure provides insight into how efficiency is effected when the Gaussian process

mixture model of independent trajectories is removed from the interacting formulation. Human

teleoperation serves as an upper bound on efficiency.
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Figure 5.7: Efficiency of mgIGP, IGP, and human teleoperation. Efficiency improvement due to
goal inclusion is modest.

5.6 Experimental Results: Qualitative Studies

In this section, we present qualitative details of the robot’s performance. We begin the section with

an image frame from a successful run of the mgIGP planner in dense crowds (Figure 5.8), and follow

with a discussion of three movies, each of which illustrate various aspects of the robot’s behavior in

human crowds.

A highly useful behavior of the robot was that it was always in motion (see Figure 4.4(c)).

This was achieved safely by doing the following: if a collision was imminent, the forward velocity

was set to zero. However, the rotational velocity was not set to zero. The navigation algorithm

continued generating new plans (even though the forward velocity was held at zero until collision

was not imminent), and each new plan potentially pointed the robot in a new direction. Indeed,

the robot was searching for a way through a challenging crowd state (see movie snippet at http:

//resolver.caltech.edu/CaltechAUTHORS:20120911-130046401 ).

Sometimes, this resulted in quite humorous situations: at the beginning of one run, while the

http://resolver.caltech.edu/CaltechAUTHORS:20120911-130046401
http://resolver.caltech.edu/CaltechAUTHORS:20120911-130046401
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Research Portfolio: Probabilistic Tools for Certifiable Human Robot Cooperation

Pete Trautman

trautman@cds.caltech.edu

http://www.cds.caltech.edu/~trautman

1. Current Research/Platforms

Robotic navigation in dense lunchtime crowds. Over the past 2 years, I have developed novel
machine learning algorithms for robot navigation in human crowds. In tandem, I instrumented
Caltech’s student cafeteria as a challenging testbed for this theory. Ultimately, the motivation
underlying this work is the following: if the robot correctly anticipates human reaction, then superior
trajectories become possible. In other words, by capitalizing on human cooperation, robots can shape
the future to their benefit.

Our theoretical model uses Gaussian processes to learn independent agent trajectories, while coupling
of the agent trajectories is achieved via a multiplicative interaction function. This results in a
predictive distribution over the joint function space of human and robot trajectories in a crowd—see
Figure 1. We call this distribution interacting Gaussian processes. Importantly, this formulation
provides for an integrated and intuitive notion of robotic navigation: if the robot is treated as an
agent in the crowd, then the prediction of what is most likely to happen is exactly what action the
robot should take. When implemented in a receding horizon framework, the navigation protocol is
merely the maximum a-posteriori statistic of the predictive distribution.

Figure 1. Robot (wearing sun hat, bottom middle pane) navigating through 20
people in a 10 square meter space. Green dots are robot’s present plan, red dots are
cafeteria patrons, and magenta circles are patrons currently being reasoned over.
The robot has demonstrated safety and efficiency in nearly 100 runs of this difficulty.

1

Figure 5.8: Robot (wearing sun hat, bottom middle pane) navigating through 20 people in a 10
square meter space. Robot’s plan in green and people tracks in red.

navigation algorithm was still starting up, a patron approached and began inspecting the robot. The

robot, sensing an imminent collision, set its velocity to zero, and began searching for a clear path

(i.e., rotating in place). The patron realized what was happening, and moved along with the robot,

constantly staying in front of the robot’s forward velocity vector. This resulted in what we have since

called the “robot dance” (see movie snippet at http://resolver.caltech.edu/CaltechAUTHORS:

20120911-125945867).

This behavior can be quite useful in dense crowds. For instance, the reactive robot did not

display this behavior—when a collision was imminent, it stopped completely. Unfortunately, a

completely stopped robot is very hard for a human to understand. Is this robot turned off? Is

this robot waiting for me? Meanwhile, the mgIGP robot displayed intentionality (see movie snippet

at http://resolver.caltech.edu/CaltechAUTHORS:20120911-125828298). Animators call this

behavior “readability”, and it can be employed to create a more human like intelligence (see [106]).

http://resolver.caltech.edu/CaltechAUTHORS:20120911-125945867
http://resolver.caltech.edu/CaltechAUTHORS:20120911-125945867
http://resolver.caltech.edu/CaltechAUTHORS:20120911-125828298
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5.7 Summary

In this chapter, we experimentally validated the mgIGP and IGP models with an empirical study of

robot navigation in dense human crowds (488 runs), specifically testing how cooperation models effect

navigation performance. The mgIGP algorithm performed comparably with human teleoperators

in crowd densities nearing 1 person/m2, while a state of the art noncooperative planner exhibited

unsafe behavior more than 3 times as often as the multiple goal extension, and twice as often as

the basic IGP approach. Furthermore, a reactive planner based on the widely used dynamic window

approach proved insufficient for crowd densities above 0.55 people/m2. We also showed that our

noncooperative planner or our reactive planner capture the salient characteristics of nearly any

dynamic navigation algorithm. Based on these experimental results and the observations of Section

2.4, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense

human crowds.
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Chapter 6

Conclusion

6.1 Summary of Thesis Contributions

In this thesis, we considered mobile robot navigation in dense human crowds. In particular, we

explored two questions. Can we design a navigation algorithm that encourages humans to cooperate

with a robot? And would such cooperation improve navigation performance? We addressed the first

question by developing a probabilistic predictive model of cooperative collision avoidance that we

called interacting Gaussian processes; we then extended IGP to include multiple goals and stochas-

tic movement duration, which we called multi-goal interacting Gaussian processes. We answered

the second question by conducting an extensive quantitative study of robot navigation in dense

human crowds (488 runs completed), specifically testing how cooperation models effect navigation

performance. We found that the multi-goal interacting Gaussian processes algorithm performed

comparably with human teleoperators in crowd densities near 1 person/m2, while a state of the art

noncooperative planner exhibited unsafe behavior more than 3 times as often as this multiple goal

extension, and more than twice as often as the basic interacting Gaussian processes. Furthermore,

a reactive planner based on the widely used “dynamic window” approach failed for crowd densities

above 0.55 people/m2.

In summary, the contribution of this thesis: based on the theoretical observations of Section 2.4,

the simulation results of Section 3.4, and the experimental results of Chapter 5, we conclude that a

cooperation model is critical for safe and efficient robot navigation in dense human crowds.
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6.2 Future Work

In this section, we discuss an approach for improved approximate inference of the mgIGP distribu-

tion. We then explain how mgIGP naturally extends to a model of shared autonomy. We conclude

by describing how this shared autonomy extension of mgIGP can solve the “assistive teleoperation”

problem exactly and efficiently.

6.2.1 Gibbs Sampling with Metropolis-Hastings Acceptance Step for Ap-

proximate Inference of Nonlinearly Coupled Gaussian Processes

A practical challenge to robotic navigation in dense crowds is real time operation. Indeed, the robot

needs to replan at around 10Hz; otherwise, trajectory following errors begin to accumulate. We thus

consider novel inference methods for our nonlinearly coupled Gaussian process model, IGP: Gibbs

sampling with a modified Metropolis-Hastings step. This approximate inference method biases the

samples towards high probability regions of the distribution, potentially achieving a more efficient

sampling procedure.

We first generate joint samples [f (R), f ]κ according to a Gibbs sampling routine, and then accept

or reject each sample according to the Metropolis-Hastings acceptance ratio γκ. We start by drawing

the initial sample [f (R), f ]0 according to

f
(R)
0 ∼ p(f (R) | z(R)

1:t )

f
(1)
0 ∼ p(f (1) | z(1)

1:t )

...

f
(n)
0 ∼ p(f (n) | z(n)

1:t )

(note that each distribution p(f (i) | z(i)
1:t) can be a Gaussian process mixture of a single or of multiple
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components). Once this initial sample is drawn, we draw the first sample:

f
(R)
1 ∼ p(f (R) | f (1)

0 , f
(2)
0 , . . . , f

(n)
0 , z

(R)
1:t )

f
(1)
1 ∼ p(f (1) | f (R)

1 , f
(2)
0 , . . . , f

(n)
0 , z

(R)
1:t )

...

f
(r)
1 ∼ p(f (r) | f (R)

1 , f
(1)
1 , . . . , f

(r−1)
1 , f

(r+1)
0 , . . . , f

(n)
0 , z

(R)
1:t )

...

f
(n)
1 ∼ p(f (n) | f (R)

1 , f
(1)
1 , . . . , f

(n−1)
1 , z

(R)
1:t ).

The sample [f (R), f ]1 is then accepted with probability

γ1 = min

{
1,
p(f

(R)
1 , f

(1)
1 , f

(2)
1 , . . . , f

(n)
1 | z1:t)

p(f
(R)
0 , f

(1)
0 , f

(2)
0 , . . . , f

(n)
0 | z1:t)

}

= min

{
1,
p(f

(R)
1 , f1 | z1:t)

p(f
(R)
0 , f0 | z1:t)

}
.

In general, we draw sample [f (R), f ]κ according to

f (R)
κ ∼ p(f (R) | f (1)

κ−1, f
(2)
κ−1, . . . , f

(n)
κ−1, z

(R)
1:t )

f (1)
κ ∼ p(f (1) | f (R)

κ , f
(2)
κ−1, . . . , f

(n)
κ−1, z

(R)
1:t )

...

f (r)
κ ∼ p(f (r) | f (R)

κ , f (1)
κ , . . . , f (r−1)

κ , f
(r+1)
κ−1 , . . . , f

(n)
κ−1, z

(R)
1:t )

...

f (n)
κ ∼ p(f (n) | f (R)

κ , f (1)
κ , . . . , f (n−1)

κ , z
(R)
1:t ),

(we show below in Equation 6.1 that these conditional distributions are Gaussian mixtures and how
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to efficiently sample from them) and sample [f (R), f ]κ is then accepted with probability

γκ = min

{
1,

p(f
(R)
κ , f

(1)
κ , f

(2)
κ , . . . , f

(n)
κ | z1:t)

p(f
(R)
κ−1, f

(1)
κ−1, f

(2)
κ−1, . . . , f

(n)
κ−1 | z1:t)

}

= min

{
1,

p(f
(R)
κ , fκ | z1:t)

p(f
(R)
κ−1, fκ−1 | z1:t)

}
.

Furthermore, we note that

p(f (R), f (1), . . . , f (n) | z1:t) ∝ p(f (λ) | f (R), f (1), . . . , f (λ−1), f (λ+1), . . . , f (n), z1:t)×

p(f (R), f (1), . . . , f (λ−1), f (λ+1), . . . , f (n) | z1:t)

and so

p(f (λ) | f (R), f (1), . . . , f (λ−1), f (λ+1), . . . , f (n), z1:t) ∝
p(f (R), f (1), . . . , f (n) | z1:t)

p(f (R), f (1), . . . , f (λ−1), f (λ+1), . . . , f (n) | z1:t)

=
ψ(f (R), f)

∏n
m=R p(f

(m) | z1:t)

ψ(f (R), f (−λ))
∏n
m 6=λ p(f

(m) | z1:t)

where ψ(f (R), f (−λ)) is the interaction potential function ψ over all agents except agent λ. Since we

have that

ψ(f (R), f) =

n∏
j=i+1

n∏
i=R

T∏
τ=1

(
1− α exp

(
− 1

2h2
|f (i)(τ)− f (j)(τ)|

))

and that

ψ(f (R), f (−λ)) =

n∏
j=i+1
j 6=λ

n∏
i=R
i 6=λ

T∏
τ=1

(
1− α exp

(
− 1

2h2
|f (i)(τ)− f (j)(τ)|

))

our sampling distribution is

p(f (λ) | f (R), f (1), . . . , f (λ−1), f (λ+1), . . . , f (n), z1:t) =

p(fλ | zλ1:t)

n∏
i 6=λ

T∏
τ=1

(
1− α exp

(
− 1

2h2
|f (i)(τ)− f (λ)(τ)|

))
.
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We point out that we are interested in

f (λ)
κ ∼ p(f (λ) | f (R)

κ , f (1)
κ , . . . , f (λ−1)

κ , f
(λ+1)
κ−1 , . . . , f

(n)
κ−1, z1:t)

= p(fλ | zλ1:t)

n∏
i 6=λ

T∏
τ=1

(
1− α exp

(
− 1

2h2
|f (i)
λ(κ)(τ)− f (λ)(τ)|

))

where λ(κ) = κ if i < λ and λ(κ) = κ− 1 if i > λ. We thus have that

f (λ)
κ ∼

Np∑
k=1

w
(λ)
k N

(
f (λ) | µλk ,Σλ

k

) n∏
i 6=λ

T∏
τ=1

(
1− α exp

(
− 1

2h2
|f (i)
λ(κ)(τ)− f (λ)(τ)|

))
.

where µλk ,Σ
λ
k are the mean and covariance of Np Gaussian process mixture components. We note

that f
(i)
λ(κ)(τ) is a sample, not a random variable, and thus each term inside of the double product

can be absorbed into each Gaussian mixture component N
(
f (λ) | µλk ,Σλ

k

)
. Accordingly, we can

rewrite the sampling distribution as

f (λ)
κ ∼

Nλ∑
ν=1

w̃(λ)
ν N

(
f (λ) | µν ,Σν

)
. (6.1)

where w̃
(λ)
ν is w

(λ)
k multiplied by the appropriate constant such that each component in this mixture

remains normalized. Unfortunately, Nλ = O(2T 2n−1)—that is, we generate a new Gaussian mixture

component for each multiplicative term inside the double product. For typical values of T and n,

Nλ is very large, and hence computing each component in the mixture is unrealistic.

However, an efficient way to rank each weight w̃
(λ)
ν is available. Consider the term inside the

double product that consists of nτ terms from the “time” product and nλ(κ) terms from the “agent”

product. This exponential term carries with it the value αnλ(κ)+nτ that gets multiplied by the cor-

responding mixture weight w
(λ)
k . Furthermore, in order to renormalize the exponential distribution,

the mixture weight w
(λ)
k is also multiplied by (

√
2πh)(nλ(κ)+nτ ). That is,

w̃(λ)
ν =

(
α
√

2πh
)(nλ(κ)+nτ )

w
(λ)
k .

Although the value of h and α can change based on application, Figure 3.3 can provide insight about

typical values (the values in this figure are based on a unit less simulation). Most importantly, we
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can conclude that

α
√

2πh > 1.

Thus for a given weight value w
(λ)
k from the goal mixture (corresponding to a particular goal)

we recover the largest weight w̃
(λ)
ν by including as many other agents and as many other time

steps from the double product. This makes intuitive sense: the dominant terms in the mixture∑Nλ
ν=1 w̃

(λ)
ν N

(
f (λ) | µν ,Σν

)
are those terms that have high probability goal locations for agent λ

and include information from as many agents at as many time steps as possible. Since we can

compute the weights w
(λ)
k efficiently, we can quickly rank all of the weights w̃

(λ)
ν . Based on how

much computation time we have available, we can draw a mixture index νsample ∼
{
w̃

(λ)
ν

}Nsamples
i=1

.

We then can use this mixture index to compute µν ,Σν and thus to draw sample fλκ .

6.2.2 Shared Autonomy as an Extension of mgIGP

Current theories of shared autonomy are dominated by anecdotal evidence and heuristic guidelines.

In Hardin and Goodrich [44] the three recognized levels of autonomy are listed: adaptive (the

agent adjudicates), adjustable (the supervisor adjudicates), and mixed-initiative (the agent and

supervisor “collaborate to maintain the best perceived level of autonomy”). In Fiore et al. [32],

human robot collaboration schemas are organized around social, organizational and cultural factors,

and in Arkin et al. [6] the role of ethological and emotional models in human-robot interaction are

examined. Furthermore, actual implementations are typically designed around need, rather than

principle (Murphy [78]): either the remote human operator retains complete control of the robot, or

the human operator makes online decisions about the amount of autonomy the robot is given.

Importantly, the work of Dragan and Srinivasa [27] introduces principled user goal inference and

prediction methods, combined with an arbitration step to balance user input and robot intelligence.

However, our approach to shared autonomy as an extension of mgIGP (see Equations 6.2 and 6.3)

unifies the three steps of Dragan and Srinivasa [27], thus providing a more straightforward framework

in which to understand the fusion of human and machine intelligence. Most importantly, in Section

6.2.3, we show that for the special case of assistive teleoperation (the topic of Dragan and Srinivasa

[27]), the mgIGP approach is exact and efficient.

Extending the human-robot model described in Trautman and Krause [114] provides a mathe-

matical formulation of shared autonomy. First, recall the mgIGP model of Section 3.1.4 and the
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planning and inference algorithms of Section 3.3. Next, suppose a human operator is controlling the

robot from a remote location, so the robot is no longer fully autonomous (we continue the narrative

of a robot navigating through a crowd f). Rather than treating the human commands as system

interrupts, we wish to understand the continuum of shared autonomy in a mathematical way. Us-

ing the navigation protocol derived using p(f (R), f | z1:t) as motivation, we model the joint human

operator-robot system as

p(h, f (R), f | z1:t) =
ψ(h, f (R), f)

Z
p(h | z1:t)p(f

(R) | z1:t)

n∏
i=1

p(f (i) | z(i)
1:t). (6.2)

where h is the is the human operator’s predicted intentionality, modeled with a Gaussian process

mixture p(h | z1:t). The measurement data is now z1:t = (zh1:t, z
(R)
1:t , z

1
1:t, . . . , z

n
1:t) where zh1:t are

the human operator commands sent from time 1 : t. Additionally, ψ(h, f (R), f) is the interaction

function between the human operator, robot, and human crowd. One concrete instantiation of this

interaction function is

ψ(h, f (R), f) = ψh(h, f (R))ψf (f
(R), f)

where ψf (f
(R), f) is the cooperation function from the model p(f (R), f | z1:t) and ψh(h, f (R)) is an

“attraction” model between the operator commands and the robot path. One possibility is

ψh(h, f (R)) = exp
(

(h− f (R))>Σ−1(h− f (R))
)

so that the operator’s intentionality h and the robot’s planned path f (R) are merged—this formu-

lation of ψh(h, f (R)) gives high weight to paths h and f (R) that are similar, while the probability

of dissimilar paths decreases exponentially. Bear in mind, however, that ψf (f
(R), f) also gives high

weight to paths f and f (R) which cooperate. All of this is balanced against the (predicted) individual

intentionality encoded in the Gaussian process mixtures p(f (i) | z(i)
1:t).

As with IGP and mgIGP, the model p(h, f (R), f | z1:t) suggests a natural way to interpret shared

autonomy (or shared decision making): at time t, find the MAP assignment for the posterior

(h, f (R), f)∗ = arg max
h,f (R),f

p(h, f (R), f | z1:t), (6.3)

and then take (f
(R)∗
t+1 ) as the next robot action. As new measurements arrive, compute a new plan by
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recalculating the MAP of the shared autonomy density. By choosing to interpret navigation under

the model

p(h, f (R), f | z1:t)

we capture the essence of shared autonomy in complex environments: human commands are weighted

against machine intelligence in a statistically valid way.

The key insight is that by modeling the joint human-robot system, we can blend human and robot

capabilities in a single step to produce a superior system level decision. When the human system

and the robot system are modeled independently, it becomes unclear how to fuse the complementary

proficiencies of the human and robot agents.

6.2.3 Shared Autonomy with No Obstacles: an Exact Solution for Assis-

tive Teleoperation

We discuss the special case of a single human operator tasked with teleoperating a mobile robot

when no obstacles are present: f = ∅. That is, we wish to do decision making with the distribution

p(h, f (R) | z1:t) = ψ(h, f (R))p(h | z1:t)p(f
(R) | z1:t)

= exp
(

(h− f (R))>Σ−1
h,f (R)(h− f (R))

)
p(h | z1:t)p(f

(R) | z1:t)

= exp
(

(h− f (R))>Σ−1
h,f (R)(h− f (R))

) Nh∑
hg=1

whgN (h | µhg
,Σhg)

NR∑
Rg=1

wRgN (f (R) | µRg
,ΣRg)

where µhg
and Σhg are the Gaussian process mean and covariance conditioned on the (unknown)

human operator goal hg, and µRg
and ΣRg are the Gaussian process mean and covariance condi-

tioned on the robot goal Rg. We assume that the human can choose from Nh discrete goals while

the robot can choose from NR discrete goals. Furthermore, we assume that the robot does not

know beforehand which goal the human operator is trying to reach; in order to be successful then,

the robot must not only discover which of the Nh goals the human wishes to reach, but also how

(trajectory generation) the human would most desire to reach this goal. To analyze p(h, f (R) | z1:t),
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we introduce some quantities:

f̄ = [h f (R)]>

is the concatenation of the human operator trajectory and the robot trajectory, while

µ̄hg,Rg
= [µhg

µRg
]>,

and

Σhg,Rg =

 Σhg 0

0 ΣRg


is the block diagonal concatenation of the individual Gaussian process covariance matrices. Using

this notation, we rewrite the Gaussian mixture components in a more suggestive form:

N
(
h | µhg

,Σhg

)
N
(
f (R) | µRg

,ΣRg

)
= N

(
f̄ | µ̄hg,Rg

,Σhg,Rg

)
. (6.4)

Furtheremore, we define the matrix

Λ =
[
I −I

]
(where I is the identity matrix). We use this matrix when we marginalize the Gaussian process

mixture components to T steps—in which case, I ∈ RT×T and so Λ ∈ R2T×T if we are only

considering one dimension (either x or y) of the trajectory. We use this matrix to rewrite our

interaction function ψ(h, f (R)); we begin by observing that Λf̄ = h− f (R) and so

ψ(h, f (R)) = exp
(

(h− f (R))>Σ−1
h,f (R)(h− f (R))

)
= exp

(
(Λf̄)>Σ−1

h,f (R)Λf̄
)

= exp
(
f̄>(Λ>Σ−1

h,f (R)Λ)f̄
)

= exp
(
f̄>Σ̄

−1
h,f (R) f̄

)
= exp

(
f̄ | 0, Σ̄−1

h,f (R)

)
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where Σ̄
−1
h,f (R) = Λ>Σ−1

h,f (R)Λ.

We thus observe that

p(h, f (R) | z1:t) = exp
(
f̄>Σ̄

−1
h,f (R) f̄

) Nh∑
hg=1

whgN (h | µhg
,Σhg)

NR∑
Rg=1

wRgN (f (R) | µRg
,ΣRg)

= exp
(
f̄>Σ̄

−1
h,f (R) f̄

) Nh∑
hg=1

whgN (h | µhg
,Σhg)

NR∑
Rg=1

wRgN (f (R) | µRg
,ΣRg)


By Equation 6.4, we notice that all the terms inside the large brackets are of the formN

(
f̄ | µ̄hg,Rg

,Σhg,Rg

)
;

multiplication by the outer exponential exp(f̄ | 0, Σ̄−1
h,f (R)) returns another (unnormalized) Gaussian.

Thus, our distribution is a sum of Gaussians:

p(h, f (R) | z1:t) =
∑

σ(hg,Rg)

w̃σ(hg,Rg)N
(
f̄ | µ̄σ(hg,Rg),Σσ(hg,Rg)

)

where σ(hg, Rg) represents all the potential combinations of (hg, Rg) resulting from the multipli-

cation of the two mixtures and exp(f̄ | 0, Σ̄
−1
h,f (R)), and w̃σ(hg,Rg) is wσ(hg,Rg) after absorbing the

appropriate constant normalization factors.

Critically, this means that for shared autonomy without obstacles, we can find the robot naviga-

tion protocol

(h, f (R))∗ = arg max
h,f (R)

[
p(h, f (R) | z1:t)

]
exactly and efficiently—we can compute the largest weight w̃∗σ(hg,Rg) quickly, and

(h, f (R))∗ = µ̄∗σ(hg,Rg)

(thus we only have to compute the weights and a single mean). If we contrast this with recent

approaches such as seen in Dragan and Srinivasa [27], we see an immediate advantage: not only do

Dragan and Srinivasa [27] perform approximate inference (which is highly vulnerable to local minima

since many goals are possible), but they treat goal prediction, robot trajectory generation, and

arbitration between user input and robot intelligence as separate processes to be solved sequentially.

Our modified mgIGP approach (along with the exact inference) allows us to solve goal prediction,

trajectory generation and arbitration simultaneously. This simultaneity and solution optimality is
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critical when the robot is trying to behave as a cooperative tool—a tool whose intent the human

can understand and anticipate.

6.3 Potential Application Areas

The models developed in this thesis have application for mobile robots operating in the presence

of human beings (or any intelligent agent that is not under direct control). In this section, we

present applications that would immediately benefit from such a technology. Additionally, mgIGP

can be understood as a model of human-robot cooperation or teaming (see Trautman [113] and the

discussion in Section 6.2.2). When viewed in this way, mgIGP has important applicability beyond

navigation in dense crowds.

6.3.1 Department of Defense: AFRL/Human Performance Wing

Figure 6.1: In this image, many military personnel work together to coordinate the missions of many
UAVs—a classic crowd navigation problem.
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In last year’s United States Air Force Report on Technology Horizons (Dahm [23]), an executive

level articulation of Air Force (AF) S&T advancements necessary to achieve mission readiness, the

Chief Scientist of the AF stated that “two key areas for AF S&T investment are (i) increased use

of autonomy and (ii) augmentation of human performance . . . and the need to certify these high

levels of adaptability and autonomy”. Furthermore, conversations with AF Research Lab (AFRL)

program management clarifies the motivation underlying the Chief Scientist’s mandate: estimates

suggest that far too many AF personnel are needed to control a single remotely piloted aircraft;

simultaneously, the AF wishes to deploy as many as 10,000 drones at a time. Obviously, the current

paradigm does not scale quickly enough to meet these AF goals (see Figure 6.1 for an illustration

of the “crowds” in typical DoD facilities). Insofar as operating multiple drones simultaneously is a

special case of the model outlined in Section 6.2.2, we suggest that the method of IGP for shared

autonomy might be applicable in this scenario.

6.3.2 Industry: Boeing 737 Assembly Line

Robots have vastly improved automotive assembly line efficiency. This success is due primarily to the

constrained environment of the robots. As illustrated in Figures 6.2(a) and 6.2(b), aircraft assembly

lines do not have constrained environments, and so it remains unclear how one should automate

these assembly lines.

Nevertheless, automation of these factories is a critical need. As with automotive assembly,

aircraft assembly is composed of many discrete steps, some of which are more immediately amenable

to automation than others. For instance, Boeing has identified 737 wing assembly as a point that

could benefit greatly from automation. In Figure 6.2(c), a number of workers rivet a 737 wing

together; Boeing’s vision is to have a team of robots support the wing while humans manage the

workflow and insert the rivets. The successful completion of this problem will require, at the very

least, a solid methodology for robots working in crowds of humans and other robots to cooperatively

accomplish a task.

6.3.3 Commercial: Telepresence Systems

A common shortcoming of modern telepresence robots is that they are entirely remote controlled.

This leaves the robot unable to complete a basic telepresence tasks without substantial human

intervention—carrying on a conversation while walking through a crowd, for instance.
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(a) (b)

(c)

Figure 6.2: (a) Detroit assembly line robots and a highly constrained robot operation space. (b)
Boeing 787 assembly line. Note the lack of robots and presence of humans. (c) A team of workers
constructing a Boeing 737 wing. Mobile robots operating in concert with the human workers could
vastly improve the efficiency of this process.
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In fact, the current capabilities of telepresence robots hardly enable any type of “remote pres-

ence”, since the lack of onboard autonomy leaves the machines stuck in all but the most highly

constrained and static environments. Building a shared autonomy layer into these robots could

enable much larger operational territory. This in turn would free up the remote user to be “present”

under more diverse circumstances.
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Appendix A

Concepts from Probability Theory

A.1 Bayes’ Theorem

Suppose that we have n (discrete or continous) random variables x1, . . . xn. Then we call p(x1, . . . xn) =

p(x) the joint probability over these variables. If we have another random variable y that has a

dependency on x then the chain rule of probability tells us

p(x,y) = p(x | y)p(y) = p(y | x)p(x).

Additionally, if we wish to recover the joint over x and such a dependency on y exists, then we must

use marginalization (see [14], [111]):

p (x) =

∫
p (x,y) dy =

∫
p (x | y) p (y) dy

This equation is perhaps easier to understand in the discrete case:

p (x) =
∑
i∈I

p (x,yi) =
∑
i∈I

p (x | yi) p (yi)

We have incorporated the chain rule in the second step (both marginalizations can be useful).

These equations tell us that the probability of x is equal to the probability of x conditioned on

all values of y times the probability of y itself; naturally, this invites thorny notions of recursion,

but implicitly assumes that x is not dependent on any variables other than y. If x were dependent

on some other variable, we could merely subsume the new variable into y (think of y as a vector or
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arbitrary length, for instance).

Bayes’ Theorem is just a manipulation of the chain rule of probability:

p (x | y) p (y) = p (y | x) p (x)

so that [7]

p (x | y) =
p (y | x) p (x)

p (y)
.

Bayes’ theorem is deceptively simple; nevertheless, it underlies most machine intelligence machin-

ery. Bayes’ theorem can be interpreted in the following way: the probability of x conditioned on the

variable (often an observation, or data) y is proportional to the likelihood value of y times the prob-

ability of x itself. The value of p(x) leaves much to interpretation; indeed, in the Bayesian context,

this is the sum total of all our prior information. It goes far beyond the standard interpretation of

merely being the kinematic model of dynamic random variables.

A.2 Explanation of Bayesian Quantities

The quantity p(x) is often called the prior probability of x; this nomenclature reflects the fact that

we can observe statistics governing x (by prior, we mean before collecting online measurements

about x). Indeed, if we make some observation y about x, then we are no longer interested in just

p(x). Instead, we are interested now in p(x | y), the posterior probability density function (the

density obtained after (posterior to) incorporating the most recent measurement). Bayes’ theorem

provides the method to transform prior distributions into posterior distributions, given likelihood

functions of the data ([14]).

Notice also that given p(x,y), we can deduce any of the above conditional or marginalized

probabilities. For instance, p(x) =
∫
p(x,y) dy. Conditional probabilities are given by the equation

p(x | y) ∝ p(x,y).
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A.3 Expectations

We are interested here in finding the weighted average of the function f(x). For instance, the discrete

expectation of f(x) with respect to the distribution p(x) is

E [f ] =
∑
x

f(x)p(x).

This number tells us what we expect f(x) to be, assuming that x behaves according to the distri-

bution p(x). Sometimes this is made explicit by using the terminology Ep(x)[f ]. For continuous x,

we have

Ep(x)[f ] =

∫
f(x)p(x) dx

We can express marginalization as an expectation. Consider that

p(y) =

∫
p(y,x) dx =

∫
p(y | x)p(x) dx

so we have

p(y) = Ep(x)[p(y | x)].

A.4 The Gaussian Distribution

(Based on Rasmussen and Williams [84].) The multivariate Gaussian (or Normal) distribution over

the D dimensional continuous random vector x = [x1, x2, . . . , xD] has a joint probability distribution

given by

N (x | µ,Σ) = (2π)−D/2 | Σ |−1/2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
where µ is the mean vector of length D, and Σ is the (symmetric and positive definite) covariance

matrix, of size D ×D. We sometimes write x ∼ N (µ,Σ) as a shorthand for the above.

We also point out the matrix inversion lemma

(Z + UWV >)−1 = Z−1 − Z−1U(W−1 + V >Z−1U)−1V >Z−1
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which will be useful below in rewriting the joint distribution as a factored distribution.

Let x and y be two jointly Gaussian random vectors

 x

y

 ∼ p(x,y) = N (µ,Σ) = N

 µx

µy

 ,
 A C

C> B

 = N


 µx

µy

 ,
 Ã C̃

C̃> B̃

−1
 .

A.4.1 Marginals of Gaussians

The marginal distribution of x is N (µx, A), i.e.,

x ∼ N (µx, A),

i.e., ∫
p(x,y)dy =

∫
N

 µx

µy

 ,
 A C

C> B

 dy = N (µx, A).

A.4.2 Products of Gaussians

The product of two Gaussians gives another (un-normalized) Gaussian:

N (µx | µ1,Σ1)N (µx | µ2,Σ2) = Z−1N (µx | µ3,Σ3)

with

Σ3 = (Σ−1
1 + Σ−1

2 )−1 and µ3 = Σ3(Σ−1
1 µ1 + Σ−1

2 µ2)

and

Z−1 = (2π)−D/2|Σ1 + Σ2|−1/2 exp

(
−1

2
(µ1 − µ2)

>
(Σ1 + Σ2)

−1
(µ1 − µ2)

)
.

A.4.3 Conditionals of Gaussian Variables

The conditional distribution of x given y is

x | y ∼ N (µx + CB−1(y − µy), A− CB−1C>).
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A.4.4 Generating Samples from a Gaussian Distribution

Suppose we wish to generate samples x ∼ N (x | µ,Σ), where µ is the mean vector of length D,

and Σ is the (symmetric and positive definite) covariance matrix, of size D ×D using only a scalar

Gaussian generator (such as randn in Matlab) we can use the following efficient routine:

1. Compute the Cholesky decomposition L of the covariance matrix: Σ = LL>. Cholesky

decomposition routines are also widely available (chol in Matlab).

2. Generate the D × 1 vector of independent scalar Gaussian samples u ∼ N (0, I).

3. Then

x = µ + Lu

has the desired statistics, i.e., x ∼ N (x | µ,Σ).

A.5 Sequential Bayesian Estimation

Bayesian recursion is an application of marginalization and Bayes’ Rule (and various first-order

Markov assumptions):

Prediction: p(xt+1 | z1:t) =
∫
p(xt+1 | xt)p(xt | z1:t)dxt

Update: p(xt+1 | z1:t+1) = p(zt+1|xt+1)p(xt+1|z1:t)
p(zt+1|z1:t)

where sometimes, the update equation is more concisely expressed as

p(xt+1 | z1:t+1) ∝ p(zt+1 | xt+1)p(xt+1 | z1:t),

This proportionality ignores the normalization constant

p(zt+1 | z1:t) =

∫
p(zt+1 | xt+1)p(xt+1 | z1:t) dxt+1

However, this normalization constant (often difficult to evaluate in practice) is very important since

it makes the posterior into a true distribution, integrating to 1.
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The prediction step above is really just marginalization:

p(xt+1 | z1:t) =

∫
p(xt+1,xt | z1:t) dxt

=

∫
p(xt+1 | xt)p(xt | z1:t)dxt

Alternatively, the prediction step can be viewed as the expectation of the dynamics model p(xt+1 |
xt), weighted by the posterior density from the previous time step, p(xt | z1:t):

p(xt+1 | z1:t) = Ep(xt|z1:t)[p(xt+1 | xt)].

Similarly, the update step is an application of Bayes’ rule:

p(xt+1 | z1:t+1) = p(xt+1 | zt+1, z1:t)

=
p(zt+1 | xt+1, z1:t)p(xt+1 | z1:t)

p(zt+1 | z1:t)

=
p(zt+1 | xt+1)p(xt+1 | z1:t)

p(zt+1 | z1:t)
.
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Appendix B

Crowd dataset

We discuss here the form of the crowd datasets collected during the experiments carried out in

the student cafeteria at Caltech (Chandler cafeteria). We provide some code for extracting useful

variables from the data logs.

The first shell script, process all.sh references the python script txt2mat by id.py. By run-

ning process all.sh on the command line, the pedestrian and robot tracks are extracted from the

raw data logs and formatted as Matlab .mat files.

Once process all.sh completes, open up Matlab and run remove dup all.m. This will generate

the following variables which can be easily analyzed:

• arena tracks ids.mat: all the track IDs in an n×1 int32 format.

• arena tracks all.mat, which has the following fields:

tracks: 1×n cell, all the track data, in the same order as “IDs” in arena tracks ids.mat.

• Furthermore, each tracks{k} is a struct that contains:

track id: int32, the track ID,

pos: m×3 single, the 3D positions,

px: m×2 int32, the pixel coordinates,

time sec: m×1 int32, seconds portion of time,

time msec: m×1 int32, millisec portion of time

The Matlab script remove dup all.m calls the scripts load tracks by id.m and

load tracks by id nodup.m.



#FILE PROCESS_ALL.SH
#!/bin/zsh

for i in *(/)
do 
if [[ ! (-e $i/arena_tracks_ids.mat) ]]; then
    echo Processing $i...
    python txt2mat_by_id.py $i/arena_tracks.txt
fi
done
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#FILE: TXT2MAT_BY_ID.PY

import os, sys
import re
import numpy as np
import scipy.io
import string
import commands
import time

def gen_mat_struct(track_id, path_info_list):
    time_list = [p['time_sec'][0] + p['time_msec'][0]/1000.0
                 for p in path_info_list ]

    idx_sorted = np.argsort(time_list)

    path_info_sorted = [path_info_list[i] for i in idx_sorted]

    path_pos = np.vstack(tuple([p['pos'] for p in path_info_sorted]))
    path_px = np.vstack(tuple([p['px'] for p in path_info_sorted]))
    path_time_sec = np.concatenate(tuple([p['time_sec'] for p in 
path_info_sorted]))
    path_time_msec = np.concatenate(tuple([p['time_msec'] for p in 
path_info_sorted]))

    return {'track_id': np.array([track_id], dtype='int'),
            'pos': path_pos,
            'px': path_px,
            'time_sec': path_time_sec,
            'time_msec': path_time_msec}
                                               

log_file = sys.argv[1]
dir_name = os.path.dirname(log_file)
mat_file_base = os.path.splitext(os.path.basename(log_file))[0]

h_log_file = open(log_file, 'r')

# count the number of lines
sts = commands.getoutput('wc -l ' + log_file)
num_tracks = int(sts.split()[0])

# track_id_array = np.zeros(num_tracks, dtype='int')
# start_time_array = np.zeros(num_tracks, dtype='float32')
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# path_pos_array = np.zeros(num_tracks, dtype='object')
# path_time_array = np.zeros(num_tracks, dtype='object')

track_id_list = []
end_time_list = []
path_info_list = []

splitter = re.compile('[a-z_]+:')

i = 0
time0 = time.time()
for line in h_log_file:
    line_splitted = splitter.split(line)

    end_time = float(line_splitted[1])
    track_id = int(line_splitted[2])

    path_info = line_splitted[3].split(',')
    num_pts = len(path_info)
    path_pos = np.zeros((num_pts,3), dtype='float32')
    path_px = np.zeros((num_pts,2), dtype='int')
    path_time_sec = np.zeros(num_pts, dtype='int')
    path_time_msec = np.zeros(num_pts, dtype='int')

    for (k,path_pt) in enumerate(path_info):
        path_pt_list = path_pt.split()
        path_pos[k,:] = np.array(path_pt_list[:3], dtype='float32')
        path_px[k,:] = np.array(path_pt_list[3:5], dtype='int')
        path_time_sec[k] = int(path_pt_list[5])
        path_time_msec[k] = int(path_pt_list[6])
        
    track_id_list.append(track_id)
    end_time_list.append(end_time)
    path_info_list.append({'pos': path_pos,
                           'px': path_px,
                           'time_sec': path_time_sec,
                           'time_msec': path_time_msec})
    i += 1
    
    if i % 10000 == 1:
        print 'Processed %d out of %d (time elapsed: %g)' % (i, num_tracks, 
time.time() - time0)
    
h_log_file.close()

scipy.io.savemat(os.path.join(dir_name,

94



                              mat_file_base + '_ids'),
                 {'ids': np.array(sorted(list(set(track_id_list))))})

idx_sorted = np.argsort(track_id_list)

i = 0
while i < idx_sorted.shape[0]:
   track_id_cur = track_id_list[idx_sorted[i]]
   num_occur = track_id_list.count(track_id_cur)

   mat_struct = gen_mat_struct(track_id_cur, [path_info_list[k] for k in 
idx_sorted[i:i+num_occur]])
   scipy.io.savemat(os.path.join(dir_name,
                                 mat_file_base + '_%04d' % (track_id_cur)),
                    mat_struct)
   i += num_occur
   # print 'track_id: %d' % (track_id_cur)
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%%%%FUNCTION LOAD_TRACKS_BY_ID
function [tracks, ids] = load_tracks_by_id(dirname)

% load the ids
id_filename = [dirname, '/', 'arena_tracks_ids.mat'];
data = load(id_filename);    % this will load variable 'ids'
ids = data.ids;

tracks = cell([1,numel(ids)]);

% load the tracks
k = 1;
for i = 1:numel(ids)
    cur_id = ids(i);
    track_filename = [dirname, '/', sprintf('arena_tracks_%04d.mat', 
cur_id)];
    data = load(track_filename);
    assert(data.track_id == cur_id);
    tracks{k}.track_id = data.track_id;
    tracks{k}.pos = data.pos;
    tracks{k}.px = data.px;
    tracks{k}.time_sec = data.time_sec;
    tracks{k}.time_msec = data.time_msec;
    k = k+1;
end

%%%%FUNCTION LOAD_TRACKS_BY_ID_NODUP

function [tracks, ids] = load_tracks_by_id_nodup(dirname)

[tracks, ids] = load_tracks_by_id(dirname);

for k = 1:numel(tracks)
    track_k = tracks{k};
    time_offset = min(track_k.time_sec);
    path_time = double(track_k.time_sec - time_offset) ...
                + double(track_k.time_msec)/1000.0;
    [~, idx, ~] = unique(path_time);
    
    tracks{k}.pos = track_k.pos(idx,:);
    tracks{k}.px = track_k.px(idx,:);
    tracks{k}.time_sec = track_k.time_sec(idx);
    tracks{k}.time_msec = track_k.time_msec(idx);
end

96



97

Appendix C

Institutional Review Board
Application Form: Human Crowd
Navigation

C.1 Institutional Review Board Approval

Once we decided on the setup described in Section 4.1, Institutional Review Board (IRB) approval

had to be attained. The primary concerns of the IRB were anonymity and safety. Since we would

be using overhead cameras for sensing, the burden was on us to safeguard the data against privacy

violation. We accomplished this using two layers of precaution: first, the data collected was low

resolution and overhead (so faces were only extremely rarely present, and if they were, they were at

low resolution). Second, the data collected was stored on a Caltech server with standard password

protection. Also, signs were placed on each entrance to the cafeteria declaring that filming was

occurring.

To guarantee safety, we did numerous things. First, the robot had a maximum velocity of

0.3m/s—i.e., very slow. Next, any extending surfaces on the robot were covered with a soft guard

of some sort. Most importantly, Pete Trautman constantly attended the robot, and a kill switch

was always operational. Zero injuries resulted from this experiment.

We provide the original IRB documentation in this appendix.



CALIFORNIA INSTITUTE OF TECHNOLOGY
Committee for the Protection of Human Subjects

APPLICATION FOR REVIEW OF RESEARCH PROJECTS 
USING HUMAN SUBJECTS

Title of Project:   Human Crowd Navigation                                                                                    

                                                                                                                                                           

Funding   Agency:    Boeing   and   Air   Force   Office   of   Scientific   Research   Multidisciplinary 
Research Initiative (AFOSR MURI)                                                                                                 

Funding Identification No.: Boeing: CT­BA­GTA­1, AFOSR MURI: FA9550­06­1­0303            

Original Grant Date: Boeing: May 2006­April 2011, AFOSR MURI: Jan 2009­Dec 2010             

Assurance Training Certificate, attached (all personnel) Date of completion: 04/21/2010              

Certification Number: 435277                                                                                                           

                                                                                                                                                           

1. I  have read,  and will  comply  with,   the  General   Institutional  Assurance of   the 
California Institute of Technology.

2. Attached are application materials prepared in accordance with the instructions 
for Application or Review.

3. On the basis of the research proposed, I believe that the use of human subjects is:

• Exempt.    Cite the paragraph in Section .101 (p. 28012) of the Code of 
Federal Regulations on the Protection of Human Subjects that is the basis 
for the claim exemption: Section 46.101.b.2                                                 

• Respond to items 1­3 of the Instructions and include a brief justification 
for claiming exemptions. In application package.

• Non­exempt.  Consent form attached or reasons for not attaching consent 
form:                                                                                                              

4. Any untoward experience,  emergent  problem or significant  deviation from my 
proposal will be reported to the Committee for reconsideration

                                                                                   
Signature

Richard Murray                                                          
Name – Please print

Thomas E. and Doris Everhart Professor of Control and Dynamical Systems and Bioengineering
Title
21 April 2010
Date
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Human Crowd Navigation

∗PI: Richard Murray
Thomas E. and Doris Everhart

Professor of Control and Dynamical Systems

and Bioengineering

†Co-PI: Peter Trautman
Graduate Student

Control and Dynamical Systems

October 26, 2010

1 The Application Form

Included with package.

2 Human subjects involvment

2.1 How humans participate in the experiment: filming

In this experiment, anonymous human subjects are filmed from above in Chandler
Cafeteria on the campus of the California Institute of Technology, during and after
normal lunch time hours, in between the Pizza Byte and the buffet station (see
Figure 1). The camera is very wide angle (up to 90◦ field of view), low resolution
(300x225, see figure 2), and is mounted 12 feet above people’s heads. Because of the
wide angle field of view, low resolution of the camera, the distance of the camera
from the people (see figure 3), and the fact that only the tops of people’s heads are
visible (see figure 4), the people will not be individually identifiable.

Furthermore, the majority of the original video data will be discarded, and only
the locations of the people will be saved–that is, most of the saved data will only be
points indicating the people’s moment to moment location. Additionally, any data
that is stored will be on a personal computer only accessible by Pete Trautman.

∗Email: murray@cds.caltech.edu, Phone: (626) 395-6460
†Email: trautman@cds.caltech.edu, Phone: (937) 572-0468

1
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2.2 How humans participate in the experiment: robot interaction

Once the video capture process has been finalized, we plan to eventually introduce
a small robot (dimensions: 2 feet tall by 1 foot deep by 1 foot wide, see Figure 6),
which is capable of a maximum speed of approximately 2 miles per hour, into the
filming area. The “mission” of this robot will be to navigate through unpredictable
crowds, as a service robotics demonstration.

Before any experiments are conducted in Chandler, however, we will test this
robot in room 12 of Steele (which will serve as a development laboratory), with 1
person (Pete Trautman), and then increase the number of people and complexity of
movement gradually. In this setting we will also test out the remote kill switch on
the robot, which enables Pete Trautman, at the touch of a button, to stop the robot.

Once the robot has demonstrated sufficiently safe behavior in room 12 of Steele
(collision free trajectories 100% of the time, over 20 hours of testing, with up to 3
people moving in the same environment), we will graduate the robot to Chandler
cafeteria.

We will run initial Chandler experiments in the late afternoon when only a few
patrons are present, in order to verify the safety of the robot in the new environment
when few people are present.

We will begin testing in Chandler during off-peak hours, around 3 p.m. (Chandler
cafeteria closes at 3:30 p.m.), when there are only a few people milling around. After
we have demonstrated that the robot is sufficiently safe during this time period
(again, 100% success rate, for 20 hours of testing), we will graduate again, up to a
time period when the average crowd is approximately twice as large. We will continue
this “test if robot is sufficiently safe, then graduate” cycle until we reach near peak
hours.

Because these videos are observations of public behavior, and the human subjects
cannot by identified in any way, and the risk of collision with the robot is extremely
small we suggest that this experiment is exempt under 46.101.b.2 (see 2.3 for further
analysis).

The people will not experience anything during the filming. There will be signs
posted saying that filming is in progress (see figure 5), and when we begin to exper-
iment with the robot, we will also place an additional sign warning of the robot’s
presence (see figure 8).

Pete Trautman has received the consent of the manager of campus dining opera-
tions, Jaime Reyes (reyes@caltech.edu), and the Assistant Vice President of Student
Affairs, Housing and Dining, Peter Daily (pdaily@caltech.edu), to mount the cam-
eras.

2
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2.3 Risk/benefit analysis

There is no risk to the individuals in this experiment from the filming.
There is an extremely small risk of tripping/collision with the robot, although

these risks will be mitigated through the use of a “robot safety hat” (an orange cone
atop the robot, see figure 7), extensive safety testing, continuous monitoring within
10 feet of the robot (issuing alerts to people who come too close), and the ability to
“kill” the robot’s forward motion remotely.

The benefits of such an experiment are substantial; there is little to no existing
data on crowd-robot interaction. Furthermore, there are only primitive implemen-
tations of robotic navigation in crowds. If successful, this experiment would have a
large impact on the service robotics community.

In conclusion, the risks of this experiment are minimal, while the potential ben-
efits are substantial.

2.4 Consent forms

Unneeded if project is deemed exempt.

2.5 Other institutions/organizations involved in research

No other institutions or organizations are involved in this research.

3 The Research Proposal

3.1 Filming

In this experiment, anonymous human subjects are filmed from above in Chandler
Cafeteria on the campus of the California Institute of Technology, during and after
normal lunch time hours. The camera is very wide angle (up to 90◦ field of view),
low resolution, and is mounted 12 feet above people’s heads. Because of the wide
angle field of view, low resolution of the camera, the distance of the camera from the
people, and the fact that only the tops of people’s heads are visible, the people will
not be individually identifiable.

Furthermore, the majority of the original video data will be discarded, and only
the locations of the people will be saved–that is, most of the saved data will only be
points indicating the people’s moment to moment location. Additionally, any data
that is stored will be on a personal computer only accessible by Pete Trautman.

3
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The people will not experience anything during the filming. There will be signs
posted saying that filming is in progress, but the filming will in no way affect the
people.

3.2 Robot interaction

Once the video capture process has been finalized, we plan to eventually introduce
a small robot (dimensions: 2 feet tall by 1 foot deep by 1 foot wide, see Figure 6),
which is capable of a maximum speed of approximately 2 miles per hour, into the
filming area. The “mission” of this robot will be to navigate through unpredictable
crowds, as a service robotics demonstration.

Before any experiments are conducted in Chandler, however, we will test this
robot in room 12 of Steele (which will serve as a development laboratory), with 1
person (Pete Trautman), and then increase the number of people and complexity of
movement gradually. In this setting we will also test out the remote kill switch on
the robot, which enables Pete Trautman, at the touch of a button, to stop the robot.

Once the robot has demonstrated sufficiently safe behavior in room 12 of Steele
(collision free trajectories 100% of the time, over 20 hours of testing, with up to 3
people moving in the same environment), we will graduate the robot to Chandler
cafeteria.

We will run initial Chandler experiments in the late afternoon when only a few
patrons are present, in order to verify the safety of the robot in the new environment
when few people are present.

We will begin testing in Chandler during off-peak hours, around 3 p.m. (Chandler
cafeteria closes at 3:30 p.m.), when there are only a few people milling around. After
we have demonstrated that the robot is sufficiently safe during this time period
(again, 100% success rate, for 20 hours of testing), we will graduate again, up to a
time period when the average crowd is approximately twice as large. We will continue
this “test if robot is sufficiently safe, then graduate” cycle until we reach near peak
hours.

Pete Trautman has received the consent of the manager of campus dining opera-
tions, Jaime Reyes (reyes@caltech.edu), and the Assistant Vice President of Student
Affairs, Housing and Dining, Peter Daily (pdaily@caltech.edu), to mount the cam-
eras.

4
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Figure 1: View of Chandler area (taken in front of Italian station) where experiments
and filming will occur. The camera will be mounted above this area, and look down
on Chandler patrons. See 4 and 3 for diagrammatic information.
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Figure 2: Sample still of human subject from approximately 12 feet. Notice the
granularity makes identifying the individual impossible.
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Side view of chandler, to show placement of 
Video camera

Ceiling

Pizza
Byte station

Floor

Buffet 
station

Wok
Zone

12ft, floor to overhang

camera:

Filming area

N
Pizza Byte overhang

Figure 3: Diagram of filming area in Chandler cafeteria, as viewed from the west
side cash register
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Chandler Cafeteria and Camera Layout
View from camera perspective

Buffet
Station

Pizza
Byte

Station

Italian Station

N

Wok Zone/Bunsen
BurnerFilming

Area

Figure 4: Diagram of filming area in Chandler cafeteria, as viewed from the camera’s
perspective
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Video taping in progress:
between buffet station and
Pizza Byte, an overhead camera
is processing crowd data.

People filmed will not be recognizable
on replay due to low resolution of the 
video.  The video will not be made
public.

Figure 5: Sign which will be used to inform Chandler patrons of filming; these signs
will be placed near the main cash registers, so that anyone entering the filming area
will be aware of the filming.
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Figure 6: Picture of robot next to a standard office chair.
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Figure 7: Picture of robot with orange “safety hat” on.
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Robot experiment in progress:
between buffet station and
Pizza Byte, a small robot is being 
operated (it has an orange cone 
on its head).

The robot is under continual 
supervision; please treat the robot
as if it were “just another Chandler”
patron.

Figure 8: Sign indicating presence of robot in cafeteria; these signs will be placed
near the main cash registers, so that anyone entering the experiment area will be
aware of the experiment.
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Appendix D

Chandler Dining Hall
Computational Infrastructure

D.1 Mounting the Cameras

In Figure D.1(a) we present a diagram of how a single camera was mounted in the ceiling of Chandler

dining hall, with corresponding reference photograph in Figure D.1(b). In Figures D.2(a), D.2(b),

and D.2(c), we see how the cameras were arranged in the ceiling of the cafeteria. The cameras were

registered to one another by detecting a special feature (a checkerboard, for instance) in the overlap

between pairwise cameras. In particular, the westernmost camera was chosen to be at location

(x, y, z) = (0, 0, 0). A large checkerboard was then presented in the overlap of the westermost

camera and the middle camera, and triangulation on features was used to determine the coordinate

tranformation (both in (x, y, z) and in the three orientation angles). The middle and easternmost

cameras were then presented with the large checkerboard pattern in the overlap region, and the

triangulation process was repeated. In this way, all three cameras were registered to one another

(see Figure D.3 for a pictorial representation of the overhead registration). These transformations

were then utilized as described in Section 4.3.1.
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(a) (b)

Figure D.1: (a) Side diagram of the observation space (b) Same perspective as diagram for actual
cafeteria
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(a) (b) (c)

Figure D.2: (a) Image of a single stereo vision camera (c) Image of three cameras looking from west
to east (d ) Image of three cameras looking from east to west

Figure D.3: Overhead diagram of the observation space



114

D.2 Networking and Powering the Cameras

In Figure D.4 we see an example of how a single camera was networked and powered; in particular,

the grey cord coming out of the back of the camera in the image is an IEEE1394b cable, which

provides both power and data. The IEEE1394b cable is then run through a firewire to ethernet

repeater. From the repeater, 100 meters of ethernet cable is run along the backside of the cafeteria

along the overhang (see Figure D.2(b)) to a small cafeteria service closet. The exit point for the

ethernet cable is inside of a cafeteria service closet. Inside of the service closet, the ethernet signal

was converted back into 1398b data. This data was then fed into a single computer (however, because

of the high data rates of each individual Bumblebee2 camera, a dedicated PCI card was required for

each camera).

A single Windows machine was responsible for computing the stereo images of all three cameras

and extracting the tracks (see Section 4.3.1 for details), as well as writing the data logs to disk. Im-

portantly, running any additional cameras would have required an additional computer, which would

have increased the complexity of the system dramatically, since syncing cameras across computers

is very difficult.

Figure D.4: Camera networking and power. Gray cord is firewire line carrying both.
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