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Abstract

Humans are able of distinguishing more than 5000 visuaboaies[10] even in complex environ-
ments using a variety of different visual systems all wogkiimtandem[74]. We seem to be capable
of distinguishing thousands of different odors as well [88, 107]. In the machine learning com-
munity, many commonly used multi-class classifiers do natesevell to such large humbers of
categories. This thesis demonstrates a novel method afatitally creating application-specific
taxonomies to aid in scaling classification algorithms taerthan 100 categories using both visual
and olfactory data. The visual data consists of images aelieonline and pollen slides scanned
under a microscope. The olfactory data was acquired by manistg a small portable sniffing appa-
ratus which draws air over 10 carbon black polymer compasitesors. We investigate performance
when classifying 256 visual categories, 8 or more specigsothén and 130 olfactory categories
sampled from common household items and a standardizettlsemad-sniff test. Taxonomies
are employed in a divide-and-conquer classification fraotkwhich improves classification time
while allowing the end user to trade performance for spetifecs needed. Before classification can
even take place, the pollen counter and electronic nosefittesbut a high volume of background
“clutter” to detect the categories of interest. In the caseatien this is done with an efficient cas-
cade of classifiers that rule out most non-pollen beforekimgpslower multi-class classifiers. In the
case of the electronic nose, much of the extraneous noiseietered in outdoor environments can

be filtered using a sniffing strategy which preferentiallyjnpdes the sensor response at frequencies



viii
that are relatively immune to background contributiongrframbient water vapor. This combina-
tion of efficient background rejection with scalable clfisation algorithms is tested in detail for
three separate projects: 1) the Caltech-256 Image Dadbe Caltech Automated Pollen Identi-
fication and Counting System (CAPICS) and 3) the CaltechtEleic Nose, a portable electronic

nose specially designed for outdoor use.
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Chapter 1

Introduction

My first project in the Caltech Vision Lab was to collect thdt€eh-256 Image Dataset[55] with the
help of paid workers and other lab members. It was collecsaithe same methods used to create
the Caltech-101[69] years earlier. Starting with imagesmoaded from the Google and Picsearch
search engines with a query such as “airplane”, annotatonsved those images that did not fit the
visual category. This followup to the Caltech-101 not omigreased the number of available cate-
gories to 256 but also increased the total image count fo8®00 to 30000. Individual categories
were better representedith larger variation in pose and background environment.aéditional
clutter category based on the photographs of Stephen Shore [10Bw&64dded to represent the
appearance of images possessing no distinct visual cgtejoe Caltech-256 was successful in the
sense that it challenged the computer vision community aedmage classification algorithms to
a larger number and variety of categories than were prelyi@silablé. One the other hand, the
classification of static images is in many ways a synthesik which does not address the very real
problem of actuallffindinginstances of visual categories in the world we observe. DEafiempts

to include images with varying degrees of clutter one i$ stérely classifying photographs with
all the inherent biases that photography implies.

Face detection[112, 44] and pedestrian detection[27]ritigos tackle a different class of the

lat least 80 images per categories instead of 31
2as of April 20013 the Caltech-256 has been cited in 497 papmmsrding to Google Scholar
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Figure 1.1: A rough illustration of machine vision (red) amifhction (green) tasks lying in and

between the regimes of classification and detection. Whilly @roblems in vision tended to cluster
along either axis, more recent datasets have driven pduether towards the top right. The

three projects discussed in this paper are the Caltechi®&6Caltech Electronic Nose and the
Caltech Automated Pollen Identification and Counting SyStEAPICS). Each is an attempt to take
small steps towards the ultimate goal of a system that caustiybdetect and classify thousands of
categories in the “real world” (upper right).

computer vision problemyisual object detectian Applications typically focus on finding one

or several specific visual categories “in the wild” withouteanpting to classify the full range

of observable objects. By comparison, humans are able tmglissh more than 5000 visual

categories[10] in complex environments using a varietyifént recognition systems all working

in tandem([74].

Fig. 1.1 is a schematic representation of visual and olfgdasks lying along a continuum

between detection and classification. The x-axis represhatspecificity of the task as the number



3

of categories that can be classified. The y-axis represkatdedtection difficulty as the degree of
background clutter, that is, how much “haystack” there isdach “needle” that the automated

system is trying to detect.

Since the release of the Caltech-256 in 2007, image datastitover a thousand categories
have emerged such as SUN[17], LabelMe[109] and Imageretfleast some subset of each of
these datasets is annotated so that the visual objects tapalgdabelled but localized. These and
other datasets are helping to push machine vision algositioser to the ideal of a system that could
accurately detecnd classify thousands of object categories in a variety ofalismvironments[65,
64, 71, 92, 18, 72]. Though it is a much younger field, machilfection is also beginning to
confront some of these same challenges.

This thesis is a collection of 4 pap@mghich each represent small steps towards the top-right of
Fig. 1.1. Chapter 2 discusses the collection methodologthfo Caltech-256 and the challenges it
presents. This includes spatial pyramid matching [67]sifsition performance, as well as exper-
iments using the new clutter category to create a fast foregi/background “objectness” detector
to be used in conjunction with multi-class classifiers. Geaf presents a novel method for cre-
ating detailed taxonomies of visual categories using aiflass inter-category confusion. To take
advantage of such taxonomies we experiment with a simptaiteaframework that combines an
initial decision-tree stage with a final multi-class clfissition stage to obtain some of the advan-
tages of each. The resulting 5 to 20-fold increase in classifin speed suggests that taxonomies
may be employed in a divide-and-conquer classificationegjyato scale existing computer vision

algorithms to larger numbers of categories than might atiserbe computationally feasible.

Chapter 4 describes The Caltech Automated Pollen Ideriditand Counting System (CAPICS).

While the pollen classification task involves fewer objeattegories than the Caltech-256, the detec-

3two of these are in preparation at time of defense
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tor burden is much higher since the microscope slides aoiit®00 to 10,000 unwanted particles

for each particle of pollen. To achieve acceptable speedpbandrmance our system uses a seg-
mentation stage coupled to a cascade of detectors followadibal multi-class classification stage.

Initial results and potential applications are discussed.

Finally Chapters 5 through 8 apply some of these same plaxip machine olfaction. Our
dataset consists of 90 odorants in our Caltech Common Holss&dors Dataset (CHOD) and
40 additional scratch-and-sniff odorants from the Uniigrsf Pittsburgh Smell Identification Test
(UPSIT). The problem of rejecting clutter ie. large outdbackground systematics is handled using
a sniffing strategy that captures the full spectral respafighe sensors while rejecting relatively
slow changes in water vapor density and temperature. We auadxonomy of odorants and discuss

its applications when scaling machine olfaction to suchigelaumber of real-world odor categories.



Chapter 2

The Caltech-256

We introduce a challenging set of 256 object categoriesamming a total of 30607 images. The
original Caltech-101 [69] was collected by choosing a seilpéct categories, downloading exam-
ples from Google Images and then manually screening outnalgjés that did not fit the category.
Caltech-256 is collected in a similar manner with severglrmmement: a) the number of categories
is more than doubled, b) the minimum number of images in ategeayy is increased from 31 to 80,
c) artifacts due to image rotation are avoided and d) a neweaagdr clutter category is introduced
for testing background rejection. We suggest severalnggiaradigms to measure classification
performance, then benchmark the dataset using two simghliceas well as a state-of-the-art spa-
tial pyramid matching [67] algorithm. Finally we use thettdw category to train an interest detector

which rejects uninformative background regions.

2.1 Introduction

Recent years have seen an explosion of work in the area aftalejeognition [69, 67, 120, 77, 42,
2]. Several datasets have emerged as standards for the edtyynmcluding the Coil [86], MIT-
CSAIL [108] PASCAL VOC [14], Caltech-6 and Caltech-101 [G8]d Graz [87] datasets. These

datasets have become progressively more challenging stingxalgorithms consistently saturated



3. not applicable
2. bad , "

Figure 2.1: Examples of a 1, 2 and 3 rating for images dowmdaging the keywordice

performance. The Coil set contains objects placed on a Wackground with no clutter. The
Caltech-6. consists of 3738 images of cars, motorcycleslaaies, faces and leaves. The Caltech-
101 is similar in spirit to the Caltech-6 but has many morescbgategories, as well as hand-
clicked silhouettes of each object. The MIT-CSAIL databesatains more than 77,000 objects
labeled within 23,000 images that are shown in a variety girenments. The number of labeled
objects, object categories and region categories incseagr time thanks to a publicly available
LabelMe [98] annotation tool. The PASCAL VOC 2006 databasetains 5,304 images where
10 categories are fully annotated. Finally, the Graz setaios three object categories in difficult
viewing conditions. These and other standardized setstefjodes allow users to compare the

performance of their algorithms in a consistent manner.

Here we introduce the Caltech-256. Each category has a miniof 80 images (compared to
the Caltech-101 where some classes have as fe3t amages). In addition we do not left-right
align the object categories as was done with the Caltech+&8uilting in a more formidable set of

categories.

Because Caltech-256 images are harvested from two popliaedmage databases, they rep-

resent a diverse set of lighting conditions, poses, backgle, image sizes and camera systematics.
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The categories were hand-picked by the authors to repraseitte variety of natural and artificial
objects in various settings. The organization is simpletaedmages are ready to use, without the
need for cropping or other processing. In most cases thetalfj@terest is prominent with a small

or medium degree of background clutter.

Dataset | Released Categories| Images Images Per Category
Total | Min | Med | Mean | Max

Caltech-101| 2003 102 9144 | 31 | 59 90 | 800
Caltech-256] 2006 257 30607 | 80 | 100 | 119 | 827

Figure 2.2: Summary of Caltech image datasets. There analpci02 and 257 categories if the
clutter categories in each set are included.

In Section 2.2 we describe the collection procedures fordditaset. In Section 2.3 we give
paradigms for testing recognition algorithms, includimg tuse of the backgroundutter class.
Example experiments are provided in Section 2.4. Finall\séttion 2.5 we conclude with a

general discussion of advantages and disadvantages atthe s

2.2 Collection Procedure

The object categories were assembled in a similar mannéret&altech-101. A small group of
vision dataset users were asked to supply the names of soB@08lobject categories. Images from
each category were downloaded from both Google and PiclSeaeg scripts . We required that
the minimum size in either aspect be 100 with no upper ranggically this procedure resulted in
about400 — 600 images from each category. Duplicates were removed by tilej@mages which
contained ovet5 similar SIFT descriptors [76].

The images obtained were of varying quality. We asked 4rdiffesubjects to rate these images

using the following criteria:

1. Good A clear example of the visual category
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1500 T T T T T
640x480
) 1000 i
()
(@)]
@
§ 500 -
800x600 1 )rux768
O . J - | |
0 200 400 600 800 1000 1200
sqrt(width*height)
5000 T T T T T T T
4/3

4000 -
7]
@ 30001 -
(@)]
@
§ 2000 - /2 -

1000 2/ 3[4 -

0 L | | |
0 0.5 1 1.5 2 2.5 3 3.5 4
width/height

Figure 2.3: Distribution of image sizes as measured/®yidth - height, and aspect ratios as mea-
sured bywidth/height. Some common image sizes and aspect ratios that are oe=eeped are
labeled above the histograms. Overall in Caltech-256 thennmage size is 351 pixels while the
mean aspect ratio is 1.17.

2. Bad A confusing, occluded, cluttered or artistic example

3. Not Applicable Not an example of the object category

Sorters were instructed to label the imdgg if either: (1) the image was very cluttered, (2)
the image was a line drawing, (3) the image was an abstrasti@representation, or (4) the object
within the image occupied only a small fraction of the imatjehe image contained no examples
of the visual category it was labeledt applicable Examples of each of the 3 ratings are shown in

Fig. 2.1.

The final set of images included in Caltech-256 are the oresp#issed our size and duplicate
checks and were also ratgdod Out of 304 original categories 48 had less tharg88dimages

and were dropped, leaving 256 categories. Fig. 2.3 showdistribution of the sizes of these final
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Distribution of Category Sizes
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120 Bl Caltech256| -
I Caltech101

100 b
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Categories
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Images

Figure 2.4: Histogram showing number of images per categBajitech-101's largest categories
faces-easy(435), motorbikes(798), airplanes (800) are shared with Caltech-256. An additional
large category-shirt (358) has been added. Thkitter categories for Caltech-101 (467) and 256
(827) are identified with arrows. This figure should be viewedolor.

images.

In Caltech-101, categories suchragarethad a large number of images that were artificially
rotated, resulting in large black borders around the imabeis rotation created artifacts which
certain recognition systems exploited resulting in daeept high performance. This made such
categories artificially easy to identify. We have not iniodd such artifacts into this set and col-

lecting an entirely nevminaretcategory which was not artificially rotated.

In addition we did not consistently right-left align the ebj categories as was done in Caltech-
101. For examplairplanesmay be facing in either the left or right direction now. Thisas a
better idea of what categorization performance would ke dikder realistic conditions, unlike that

Caltech-101airplaneswhich are all facing right.
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Figure 2.5: Precision of images returned by Google. Thiefsdd as the total number of images
ratedgood divided by the total number of images downloaded (averaged many categories).
As more images are download, it becomes progressively mffieutt to gather large numbers of
images per object category. For example, to gather 40 goageémper category it is necessary to
collect 120 images and discard 2/3 of them. To gather 160 goades, expect to collect about 640
images and discard 3/4 of them.

2.2.1 Image Relevance

We compiled statistics on the downloaded images to exanfiedypical yield ofgood images.
Fig. 2.5 summarizes the results for images returned by @oos expected, the relevance of the
images decreases as more images are returned. Some egtegtrin more pertinent results than
others. In particular, certain categories contain duales#im meanings. For example the category
pawnyields both the chess piece and also images of pawn shopsaldgoryeggis too ambiguous,
because it yields images of whole eggs, egg yolks, Fabergs, efc. which are not in the same
visual category. These ambiguities were often removed avithore specific keyword search, such

asfried-egg

When using Google images alone, 25.6% of the images dowatbadre found to bgood To
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increase the precision of image downloading we augmente&dogle search with PicSearch.
Since both search engines return largely non-overlappaitgy af images, the overall precision
for the initial set of downloaded images increased, as bedtirmed a high fraction of good images
initially. Now 44.4% of the images were usable. The true allggrecision was slightly lower as
there was some overlap between the Google and PicSearclkesmagotal of 9104oodimages
were gathered from PicSearch and 20677 from Google, outaifhdf 92652 downloaded images.

Thus the overall sorting efficiency was 32.1%.

2.2.2 Categories

The category numbering provides some insight into whichgmies are similar to an existing cate-
gory. Categorie§; ...Co50 are relatively independent of one another, whereas cagsgig ...Cosg
are closely related to other categories. Thesammane-101 car-side-10] faces-easy-1QQgrey-
hound tennis-shoeandtoad which are closely related fiighter-jet car-tire, people dog sneaker
andfrog respectively. We felt these 6 category pairs would be the fikedy to be confounded with
one another, so it would be best to remove one of each pair tihensonfusion matrix, at least for

the standard benchmarking procedure

2.2.3 Taxonomy

Fig. 2.6 shows a taxonomy of the final categories, groupednimate and inanimate and other
finer distinctions. This taxonomy was compiled by the awthamd is somewhat arbitrary; other
equally valid hierarchies can be constructed. The largesiBegories from Caltech-101 (shown in

green) were included in Caltech-256, with additional insagdded as needed to boost the number

IWhile horseshoe-cralmay seem to be a specific casecedb, the images themselves involve two entirely different
sub-phylum of Arthropoda, which have clear differences mrphology. We find these easy to tell apart wherkeag
and toad differences can be more subtle (none of our sorters wereetwogists). Likewise we feel thdnife and
swiss-army-knifare not confounding, even though they share some chassitsisuch as blades.
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Figure 2.6: A taxonomy of Caltech-256 categories createdhdnyd. At the top level these are
divided into animate and inanimate objects. Green categ@®ntain images that were borrowed
from Caltech-101. A category is colored red if it overlapshasome other category (such @sg

andgreyhounql.
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Figure 2.7: Examples aflutter generated by cropping the photographs of Stephen Shore10a3

of images in each category to at least 80. Animate objectsca®gories in all - tend to be more
cluttered than the inanimate objects, and harder to identiftotal of 12 categories are marked in

red to denote a possible relation with some other visuabocaye

2.2.4 Background

CategoryCos7 is clutter?. For several reasons (see subsection 2.3.4) it is usefuhte buch a
background category, but the exact nature of this categdliywary from set to set. Different
backgrounds may be appropriate for different applicatiansl the statistics of a given background
category can effect the performance of the classifier [55].

For instance Caltech-6 contains a background set whichigtensf random pictures taken

2For purposes here we will use the terbmckgroundand clutter interchangeably to indicate the absence or near-
absence of any objects categories



14

around Caltech. The image statistics are no doubt biaseldnydpecific choice of location. The
Caltech-101 contains a set of background images obtaineggdiyg the keyword “things” into
Google. This can turn up a wide variety of objects not in Ghlt#01. However these images may

or may not contain objects of interest that the user wouldhwisclassify.

Here we choose a different approach. Thater category in Caltech-256 is derived by cropping
947 images from the pictures of photographer Stephen Sh08g 104]. Images were cropped such
that the final image sizes in the clutter category are reptatiee of the distribution of images sizes
found in all the other categories (figure 2.3). Those crogpebes which contained Caltech-256
categories (such as people and cars) were manually remaithda total of 827clutter images

remaining. Examples are shown in Fig. 2.7.

We feel that this is an improvement over our previous clutééegories, since the images contain
clutter in a variety of indoor and outdoor scenes. However dtill far from perfect. For example

some visual categories such as grass, brick and cloudsrapgeaover-represented.

2.3 Benchmarks

Previous datasets suffered from non-standard testingraimdniy paradigms, making direct com-
parisons of certain algorithms difficult. For instance pitssreported by Grauman [52] and Berg [9]
were not directly comparable as Berg used only 15 trainingen®rauman used 30 training ex-
amples®. Some authors used the same number of test examples for &agory, while other did

not. This can be confusing if the results are not normalized tonsistent way. For consistent
comparisons between different classification algorithitnis, useful to adopt standardized training

and testing procedures

31t should be noted that Grauman achieved results surpagsisg of Berg in experiments conducted later.
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Figure 2.8: Performance of all 256 object categories usitgpial pyramid match kernel [67]

in a multi-class setting withV,.;, = 30. This performance corresponds to the diagonal entfies o
the confusion matrix, here sorted from largest to small&se ten best performing categories are
shown in blue at the top left. The ten worst performing catiegoare shown in red at the bottom
left. Vertical dashed lines indicate the mean performance.
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2.3.1 Performance

First we selectVy,.in and Ni.s; images from each class to train and test the classifier. fxqlsi
Nirain = 5, 10, 15, 20, 25, 30, 40 anlls; = 25.

Each testimage is assigned to a particular class by thef@asBerformance of each claSsan
be measured by determining the fraction of test examplesléssC which are correctly classified
as belonging to clas§. The cumulative performance is calculated by counting tha thumber
of correctly classified test image$...; within each ofV .5 classes. It is of course important to
weight each class equally in this metric. The easiest waydpantee this is to use the same number
of test images for each class. Finally, better statistiebatained by averaging the above procedure
multiple times (ideally at least 10 times) to reduce undetya

The exactly value ofV. is not important. For Caltech-101 values higher tén.;, = 30
are impossible since some categories contain only 31 im&tmsever Caltech-256 has at least 80
images in all categories. Even a training set sizéVgf;, = 75 leavesN,.; > 5 available for
testing in all categories.

The confusion matrixM;; illustrates classification performance. It is a table wreaeh ele-
menti, j stores the fraction of the test images from catedfrthat were classified as belonging to
C;. Note that perfect classification would result in a tablewvaihes along the main diagonal. Even
if such a classification method existed, this ideal perfaroeavould not be reached for several rea-
sons. Images in most categories contain instances of adbegaries, which is a built-in source of
confusion. Also our sorting procedure is never prefect;glase bound to be some small fraction of
incorrectly classified images in a dataset of this size.

Since the last 6 categories are redundant with existingyodtss, anctlutter indicates the ab-
sence of any category, one might argue that only categ6tie€ss, are appropriate for generating

performance benchmarks. Another justification for remguimese last 6 categories when measur-
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242 watermelon 171.refrigerator 093.grasshopper

162.picnic—-table 014.blimp 257 .clutter

Figure 2.9: The mean of all images in five randomly chosengecaies, as compared to the mean
clutterimage. Four categories show some degree of concentraticards the center whileefrig-
erator andclutter do not.

ing overall performance is that they are among the easiedetuify. Thus removing them makes
the detection task more challenging

However for better clarity and consistency, we suggest aludiiors remove only thelutter
categorygenerate a 256x256 confusion matwih the remaining categories, and report their per-
formance results directly from the diagonal of this matrits also useful for authors to post the

confusion matrix itself - not just the mean of the diagonal.

2.3.2 Localization and Segmentation

Both Caltech-101 and the Caltech-256 contain categori@ghioh the object may tend to be cen-
tered (Fig. 2.9). Thus, neither set is appropriate for iaaibn experiments, in which the algorithm
must not only identify what object is present in the imagedisd where the object is.

Furthermore we have not manually annotated the images tec@aR56 so there is presently no

*As shown in figure 2.13, categori€ssi, C2s2 andCass each yield performance abo96%
5The difference in performance between the 250x250 and Z®r#atrix is typically less than a percent
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ground truth for testing segmentation algorithms.

2.3.3 Generality

Why not remove the last 6 categories from the dataset altegetClosely related categories can
provide useful information that is not captured by the staiddoerformance metric. Is a certain
greyhoundclassifier also good at identifyindog or does it only detect specific breeds? Does a
sneakerdetector also detect images fraennis-shoga word which means essentially the same
thing? If it does not, one might worry that the algorithm i®ptraining on specific features of the
dataset which do not generalize to visual categories inghkeworld.

For this reason we plot rows 251..256 of the confusion maiidxig with the categories which

are most similar to these, and discuss the results in se2ii8.

2.3.4 Background

Consider the example of a Mars rover that moves around imitsa@ment while taking pictures.
Raw performance only tells us the accuracy with which objece identified. Just as important
is the ability to identify where there is an object of intdraad where there is only uninteresting
background. The rover cannot begin to understand its emviemt if background is constantly
misidentified as an object.

The rover example also illustrates how the meaning of thelwackgroundis strongly depen-
dent on the environment and the application. Our choice dtdr@und images for Caltech-256, as
described in 2.2.4, is meant to reflect a variety of commamegsérial) environments.

Here we generate an ROC curve that tests the ability of thesi€ilzation algorithm to identify
regions of interest. An ROC curve shows the ratio of falsdtpes to true positives. In single-

category detection the meaning of true positive and falsd#ipe is unambiguous. Imagine that a
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search window of varied size scans across an image emplepimg sort of bird classifier. Each
true positive marks a successful detection of a bird indidestan window while each false positive
indicates an erroneous detection.

What do positive and negative mean in the context of mudtsgiclassification? Consider a two-
step process in which each search window is evaluated bycada$112] of two classifiers. The
first classifier is aninterestdetector that decides whether a given window contains abbgegory
or background. Background regions are discarded to saeg tittmile all other images are passed to
the second classifier. This more expensive multi-classiflasnow attempts to identify which of
the remaining 256 object categories best matches the ragidescribed in 2.3.1.

Our ROC curve measures the performance of sevuatierestclassifiers. A false positive is any
clutterimage which is misclassified as containing an object of @gerLikewise true positive refers
to an object of interest that is correctly identified. Herbjéxt of interest” means any classification

beside<lutter.

2.4 Results

In this section we describe two simple classification athons as well as the more sophisticated
spatial pyramid matching algorithm of Lazebnik, Schmid &uwhce [67]. Performance, generality

and background rejection benchmarks are presented as safopdiscussion.

2.4.1 Size Classifier

Our first classifier used only the width and height of each imag features. During the training
phase, the width and height of &B6 - N..;n, images are stored in a 2-dimensional space. Each test
image is classified in a KNN fashion by voting among the 10 estameighbors to each image. The

1-norm Manhattan distance vyields slightly better perfarosathan the 2-norm Euclidean distance.
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Figure 2.10: Theb56 x 256 matrix M for the correlation classifier described in subsection22.4.
This is the mean of 10 separate confusion matrices gendi@téd,.;, = 30. A log scale is used
to make it easier to see off-diagonal elements. For claréyselate the diagonal and row §alaxy
and describe their meaning in Fig. 2.11.

As shown in Fig. 2.12, this algorithm identifies the correstiegory for an imag8.7 + 0.6% of the

time whenN,,in = 30.

Although identifying the correct object category 3.7% daf thme seems like paltry performance,
we note that baseline (random guessing) would result in fopeance of less than .25%. This
illustrates a danger inherent in many recognition datasits algorithm can learn on ancillary
features of the dataset instead of features intrinsic t@kbject categories. Such an algorithm will

fail to identify categories if the images come from anothatadet with different statistics.
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Figure 2.11: A more detailed look at the confusion matkix from figure 2.10. Top: row 82
shows which categories were most likely to be confused gatlaxy These aregalaxy saturn
fireworks cometand mars (in order of greatest to least confusion). Bottom: the Ilstghagonal
elements represent the categories that are easiest tdyclagh the correlation algorithm. These
are: self-propelled-lawn-mowemotorbikes-101trilobite-101, guitar-pick andsaturn All of these
categories tend to have objects that are located condysbeitveen images.
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2.4.2 Correlation Classifier

The next classifier we employed was a correlation basedifidassAll images were resized to
Naim X Naim, desaturated and normalized to have unit variance. Thestaagighbor was computed
in the N, 2-dimensional space of pixel intensities. This is equivaterfinding the training image

that correlates best with the test image, since

<(X-Y)P>=<X’>4+<Y?> 2<XY >=-2<XY >

for imagesX,Y with unit variance. Again we use the 1-norm instead of the@&mbecause it is

faster to compute and yields better classification perfogaa

Performance of.6 & 0.7% at Ni..in = 30 is computed by taking the mean of the diagonal of

the confusion matrix in Fig. 2.10.

2.4.3 Spatial Pyramid Matching

As a final test we re-implement the spatial pyramid matchiggriéhm of Lazebnik, Schmid and
Ponce [67] as faithfully as possible. In this procedure atMérnel is generating from matching
scores between a set of training images. Their publisherll01 performance &f;,.i, = 30

was64.6 + 0.8%. Our own performance is practically the same.

As shown in Fig. 2.12, performance on Caltech-256 is rouglaly the performance achieved
on Caltech-101. For example Af..;, = 30 our Caltech-256 and Caltech-101 performance are

67.6 + 1.4% and34.1 & 0.2% respectively.
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Figure 2.12: Performance as a function’@f.;, for Caltech-101 and Caltech-256 using the 3 algo-
rithms discussed in the text. The spatial pyramid matchiggrihm is that of Lazebnik, Schmid
and Ponce [67]. We compare our own implementation with theblished results, as well as the
SVM-KNN approach of Zhang, Berg, Maire and Malik [120].

2.4.4 Generality

Fig. 2.13 shows the confusion between six categories and dixeconfounding categories. We
define thegeneralityas the mean of the off-quadrant diagonals divided by the noédime main
diagonal. In this case, faV;,.in = 30, the generality ig = 0.145.

What doesg signify? Consider two extreme cases. glf= 0.0 then their is absolutely no
confusion between any of the similar categories, includannis-shoeand sneaker This would
be suspicious since it means the categorization algorighaplitting hairs, ie. finding significant
differences where none should exist. Perhaps the classfigaining on some inconsequential

artifact of the dataset. At the other extreme= 1.0 suggests that the two confounding sets of
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Figure 2.13: Selected rows and columns of2h6é x 256 confusion matrixM for spatial pyramid
matching [67] andV;,.;n = 30. Matrix elements containing 0.0 have been left blank. Thet &r
categories are chosen because they are likely to be cordduwith the last 6 categories. The main
diagonal shows the performance for just these 12 categdriesdiagonals of the other 2 quadrants
show whether the algorithm can detect categories whichimmiéas but not exact.

six categories were completely indistinguishable. Suclassdier is not discriminating enough to
differentiate betweemirplanesand the more specific categofighter-jet or betweerpeopleand

theirfaces In other words, the classifier generalizes so well abouil@irabject classes that it may

be considered too sloppy for some applications.

In practice the desired value gfdepends on the needs of the customer. Lower valugs of
denote fine discrimination between similar categories brcategories. This would be particularly
desirable in situations that require the exact identificatf a particular species of mammal. A
more inclusive classifier tends toward higher valugyofSuch a classifier would presumably be
better at identifying a mammal it has never seen before has@eneral features shared by a large

class of mammals.
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As shown in Figure 2.13, a spatial pyramid matching clasgiibes indeed confugennis-shoes
andsneakerghe most. This is a reassuring sanity check. To a lesser tekterobject categories
frog/toad, doggreyhound fighter-jefairplanesandpeopléfaces-easwre also confused.

Confusion betweerar-tire and car-sideis entirely absent. This seems surprising since tires
are such a conspicuous feature of cars when viewed from diege siowever the tires pictured in
car-tire tend to be much larger in scale than those foundainside One reasonable hypothesis is
that the classifier has limited scale-invariance: objectsa@ces of objects are no longer recognized
if their size changes by an order of magnitude. This charigtiteof the classifier may or may not
be important, depending on the application. Another hygsithis that the classifier relies not just
on the presence of individual parts, but on their relatigmét one another.

In short, generality defines a trade-off between classifiecipion and robustness. Our metric
for generating is admittedly crude because it uses only six pairs of sincdéegories. Nonetheless
generating a confusion matrix like the one shown in Figut& 2an provide a useful sanity check,
while exposing features of a particular classifier that aseapparent from the raw performance

benchmark.

2.4.5 Background

Returning to the example of a Mars rover, suppose that ther'sogamera is used to scan across
the surface of the planet. Because there may be only onedtitey object inl03-10° images, the
interest detector must have a low rate of false detectiorwder to be effective. As illustrated
in figure 2.14 this is a challenging problem, particularlyemhthe detector must accommodate
hundreds of different object categories that are all casidinteresting

In the spirit of the attentional cascade [112] we train iesticlassifiers to discover which regions

are worthy of detailed classification and which are not. E€histectors are summarized below. As
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before the classifier is an SVM with a spatial pyramid matgtkarnel [67]. The margin threshold

is adjusted in order to trace out a full ROC cutve

Interest Nirain Speed Description

Detector | C;...Co56 | Cos7 (images/sec

A 30 512 24 Modified 257-category classifier
B 2 512 4600 Fast two-category classifier
C 30 30 25 Ordinary 257-category classifigr

First let us considemterest Detector CThis is the same detector that was employed for rec-
ognizing object categories in section 2.4.3. The only diffees is that 257 categories are used
instead of 256. Performance is poor because onlgl@er images are used during training. In
other wordsclutter is treated exactly like any other category.

Interest Detector Aorrects the above problem by using 512 training images ftmwlutter
category. Performance improves because their is now admlagtween the number of positive
and negative examples. However the detector is still slovabse it is a attempts to recognize 257
different object categories in every single image or cameggon. This is wasteful if we expect
the vast majority of regions to contain irrelevant cluttdrieth is not worth classifying. In fact this
detector only classifies about 25 images per second on a 3 @htmkh-based PC.

Interest Detector Brains on 512 lutterimages and 512 images taken from the other 256 object
categories. These two groups of images are assigned totdgndasuninterestingandinteresting
respectively. ThiB classifier is extremely fast because it combines allitierestingimages into
a single category instead of treating them as 256 separtggaces. On a typical 3GHz Pentium
processor this classifier can evaluate 4600 images (or sgéms) per second.

It may seem counter-intuitive to group two images from eaategoryC;...Ca56 iNto a huge

®When measuring speed, training time is ignored becausa ibige-time expense
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Figure 2.14: ROC curve for three different interest classsfidescribed in section 2.4.5. These
classifiers are designed to focus the attention of the mattgory detectors benchmarked in Fig-
ure 2.12. BecausBetector Bis roughly 200 times faster thakor C, it represents the best tradeoff
between performance and speed. This detector can acguilatekt 38.2% of the interesting (non-
clutter) images with a 0.1% rate of false detections. Inmwothards, 1 in 1000 of the images classi-
fied asinterestingwill instead contain clutter (solid red line). If a 1 in 10Geaf false detections is
acceptable, the accuracy increases to 58.6% (dashed egd lin

meta-category, as is done with Interest Detector B. Whattxis the classifier training on? What
makes an imageteresting What if we have merely created a classifier that detects hib&op

graphic style of Stephen Shore? For these reasons anyfielaggiich implements attention should
be verified on a variety of background images, not just thogg:d;. For example the Caltech-6

provides 550 background images with very different statst
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Performance as a Function of the Number of Categories
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Figure 2.15: In general the Caltech-256 images are moreuliffio classify than the Caltech-101
images. Here we plot performance of the two datasets overdmna mix of Neategories from each
dataset. Even when the number of categories remains the saen€altech-256 performance is
lower. For example alV;ategories = 100 the performance is- 60% lower.

2.5 Conclusion

Thanks to rapid advances in the vision community over thfdasyears, performance ovéd% on
the Caltech-101 has become commonplace. Here we present@alech-256 image dataset, the
largest set of object categories available to our knowle@gg intent is to provide a freely available
set of visual categories that does a better job of challgntpday’s state-of-the-art classification
algorithms.

For example, spatial pyramid matching [67] with,.;, = 30 achieves performance 6¥.6%
on the Caltech-101 as comparedtb1% on Caltech-256. The standard practice among authors in

the vision community is to benchmark raw classification @anfance as a function of training exam-
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ples. As classification performance continues to improeejdver, new benchmarks will be needed
to reflect the performance of algorithms under realisticditions. Beyond raw performance, we

argue that a successful algorithm should also be able to

e Generalize beyond a specific set of images or categories

¢ Identify which images or image regions are worth classgyin

In order to evaluate these characteristics we test two neshimearks in the context of Caltech-
256. No doubt there are other equally relevant benchmasksath have not considered. We invite
researchers to devise suitable benchmarks and share theri&community at large.

If you would like to share performance results as well as yanfusion matrix, please send
them to caltech256@vision.caltech.edu. We will try to keep comparison of performance as

up-to-date as possible. For more details Iseep: / / ww. vi si on. cal t ech. edu/ | nage_

Dat aset s/ Cal t ech256.
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Chapter 3

Visual Hierarchies

The computational complexity of current visual categditra algorithms scales linearly at best
with the number of categories. The goal of classifying stam#gouslyN..; = 10* — 10° visual
categories requires sub-linear classification costs. \Wwexalgorithms for automatically building
classification trees which can have, in princidley V.., complexity. We find that a greedy algo-
rithm that recursively splits the set of categories intotthe minimally confused subsets achieves
5-20 fold speedups at a small cost in classification perfaomaOur approach is independent of the
specific classification algorithm used. A welcome by-prad@ur algorithm is a very reasonable

taxonomy of the Caltech-256 dataset.

3.1 Introduction

Much progress has been made during the past 10 years in ahprgdhe problem of visual recog-
nition. The literature shows a quick growth in the scope dbmatic classification experiments:
from learning and recognizing one category at a time unéiry@900 [15, 112] to a handful around
year 2003 [114, 43, 68] te- 100 in 2006 [53, 52, 37, 77, 101, 120, 53]. While some algorithines a
remarkably fast [44, 112, 52] the cost of classification il &t best linear in the number of cate-

gories; in most cases it is in fact quadratic since one-wsdiscriminative classification is used in
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most approaches. There is one exception: cost is logadtimttie number of models for Lowe [76].
However Lowe's algorithm was developed to recognize speolfjects rather than categories. Its
speed hinges on the observation that local features ardéyhiggtinctive, so that one may index
image features directly into a database of models whichgarozed like a tree [8]. In the more
general case of visual category recognition, local featare not very distinctive, hence one cannot

take advantage of this insight.

Humans can recognize betweert Hhd 10 object categories [10] and this is a worthwhile and
practical goal for machines as well. Itis therefore impatrta understand how to scale classification
costs sub-linearly with respect to the number of categaoid® recognized. It is quite intuitive that
this is possible: when we see a dog we are not for a momentdarirgj the possibility that it
might be classified as either a jet-liner or an ice cream ctiris.reasonable to assume that, once
an appropriate hierarchical taxonomy is developed for #tegories in our visual world, we may
be able to recognize objects by descending the branchessab#tonomy and avoid considering
irrelevant possibilities. Thus, tree-like algorithms appto be a possibility worth considering,
although formulations need to be found that are more ‘holigian Beis and Lowe’s feature-based

indexing [8].

Here we explore one such formulation. We start by considetie confusion matrix that arises
in one-vs-all discriminative classification of object qaiges. We postulate that the structure of this
matrix may reveal which categories are more strongly rdldieSec. 3.3 we flesh out this heuristic
and to produce taxonomies. In Sec. 3.4 we propose a mechémissatomatically splitting large
sets of categories into cleanly separated subsets, antiopenghich may be repeated obtaining a
tree-like hierarchy of classifiers. We explore experimiinthe implications of this strategy, both
in terms of classification quality and in terms of computadiocost. We conclude with a discussion

in Sec. 3.5.
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Class 6 vs others
Class 7 vs others
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1,6 vs 3,8
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Class 6

2,7vs 4,5

Figure 3.1: A typical one-vs-all multi-class classifiergfexhaustively tests each image against
every possible visual category requiring,; decisions per image. This method does not scale well
to hundreds or thousands of categories. Our hierarchigabaph uses the training data to construct
a taxonomy of categories which corresponds to a tree ofifiersgbottom). In principle each image
can now be classified with as few kg, /N.,; decisions. The above example illustrates this for an
unlabeled test image amdl.,; = 8. The tree we actually employ has slightly more flexibility as
shown in Fig. 3.4

3.2 Experimental Setup

The goal of our experiment is to compare classification perémce and computational costs when
a given classification algorithm is used in the conventiara-vs-many configuration vs our pro-

posed hierarchical cascade (see Fig. 3.1).

3.2.1 Training and Testing Data

The choice of the image classifier is somewhat arbitraryHemurposes of this study. We decided

to use the popular spatial pyramid matching technique othaik et al. [67] because of its high
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performance and ease of implementation. We summarize quieimentation in Sec.3.2.2. Our
implementation performs as reported by the original agtloor Caltech-101. As expected, typical
performance on Caltech-256 [55] is lower than on Caltech{89] (see Fig. 3.2). This is due to
two factors: the larger number of categories and the morkectging nature of the pictures them-
selves. For example some of the Caltech-101 pictures aradet aligned whereas the Caltech-256
pictures are not. On average a random subs@f.gf categories from the Caltech-256 is harder to
classify than a random subset of the same number of categoim the Caltech-101 (see Fig. 3.3).

Other authors have achieved higher performance on thedbaks6 than we report here, for
example, by using a linear combination of multiple kerndl$1]]. Our goal here is not to achieve
the best possible performance but to illustrate how a tygilggorithm can be accelerated using a
hierarchical set of classifiers.

The Caltech-256 image set is used for testing and trainirggraMove thelutter category from

Caltech-256 leaving a total d¥.,; = 256 categories.

3.2.2 Spatial Pyramid Matching

First each image is desaturated, removing all color inféiona For each of these black-and-white
images, SIFT features [76] are extracted along a uniforn7Z2yid using software that is publicly
available [84]. An M-word feature vocabulary is formed byifig a Gaussian mixture model to
10,000 features chosen at random from the training set. mbidel maps each 128-dimensional
SIFT feature vector to a scalar integer= 1..M whereM = 200 is the total number of Gaussians.
The choice of clustering algorithm does not seem to affectdigults significantly, but the choice of
M does. The original authors [67] find that 200 visual words @dequate.

At this stage every image has been reduced to a 72x72 matvisudl words. This representa-

tion is reduced still further by histogramming over a coatsé spatial grid. The resulting 4x4xM
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Figure 3.2: Performance comparison between Caltech-1@Taitech-256 datasets using the spa-
tial pyramid matching algorithm of Lazebnik et al. [67]. Therformance of our implementation
is almost identical to that reported by the original autharsy performance difference may be at-
tributed to a denser grid used to sample SIFT features. Thsdrates a standard non-hierarchical
approach where authors mainly present the number of tgaeMamples and the classification per-
formance, without also plotting classification speed.

histogram counts the number of times each word 1..M appea&ach of the 16 spatial bins. Unlike
a bag-of-words approach [53], coarse-grained positioarmétion is retained as the features are
counted.

The matching kernel proposed by Lazebnik et al. finds thedatdion between each pair of
4x4xM histograms by counting the number of common elemerasy two bins. Matches in nearby
bins are weighed more strongly than matches in far-away béssilting in a single match score for
each word. The scores for each word are then summed to gentiefierall score. We follow

this same procedure resulting in a kernel K that satisfiex®t&r condition [53] and is suitable for
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Figure 3.3: In general the Caltech-256 [55] images are mifieudt to classify than the Caltech-
101 images. Here we fi¥;,.;n = 30 and plot performance of the two datasets over a random mix of
N, categories chosen from each dataset. The solid regiorseamieea range of performance values
for 10 randomized subsets. Even when the number of categemeains the same, the Caltech-256
performance is lower. For example &t,; = 100 the performance is- 60% lower (dashed red
line).

training an SVM.

3.2.3 Measuring Performance

Classification performance is measured as a function ofdihgber of training examples. First we
select a random but disjoint set &f..;, and Vi training and testing images from each class. All
categories are sampled equally, M,..;, and V;.s; do not vary from class to class.

Like Lazebnik et al. [67] we use a standard multi-class mebtbonsisting of a Support Vec-

tor Machine (SVM) trained on the spatial pyramid matchingnkd in a one-vs-all classification
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scheme. The training kernel has dimensiong: - N:ain @long each side. Once the classifier has
been trained, each test image is assigned to exactly onal wategory by selecting the one-vs-all

classifier which maximizes the margin.

The confusion matrix;; counts the fraction of test examples from clasghich were classified
as belonging to clasg. Correct classifications lie along the diagodal so that the cumulative
performance is the mean of the diagonal elements. To reducertainty we average the matrix
obtained over 10 experiments using different randomizaithitrg and testing sets. By inspecting
the off-diagonal elements of the confusion matrix it is clieat some categories are more difficult
to discriminate than other categories. Upon this obsematie build a heuristic that creates an

efficient hierarchy of classifiers.

3.2.4 Hierarchical Approach

Our hierarchical classification architecture is shown ig.B.4. The principle behind the archi-
tecture is simple: rather than a single one-vs-all clagsifie achieve classification by recursively
splitting the set of possible labels into two roughly equadsets. This divide-and-conquer strategy

is familiar to anyone who has played the game of 20 questions.

This method is faster because the binlrgnchclassifiers are less complex than the one-vs-all
nodeclassifiers. For example the 1-vs-N node classifier at theofdfig. 3.1 actually consists of
N=8 separate binary classifiers, each with its ownSeif support vectors. During classification

each test image must now be compared with the union of tiginiages
N
Snodc = U Si
=1

Unless the sets; happen to be the same (which is highly unlikely) the siz&\Qf;. will increase
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Figure 3.4: A simple hierarchical cascade of classifiersi{#id to two levels and four categories
for simplicity of illustration). We call A, B, C and D four sebf categories as illustrated in Fig 3.5.
Each white square represents a binbrgnch classifier Test images are fed into the top node of
the tree where a classifier assigns them to either the seBAor the set GJ D (white square at the
center-top). Depending on the classification, the imagerhér classified into either A or B, or
C or D. Test images ultimately terminate in one of the 7 redgahal nodes where a conventional
multi-classnode classifiemakes the final decision. For a two-levek= 2 tree, images terminate
in one of the 4 lower octagonal nodes. /lf= 0 then all images terminate in the top octagonal
node, which is equivalent to conventional non-hierardhstessification. The tree is not necessarily
perfectly balanced: A, B, C and D may have different cardipaEach branch or node classifier
is trained exclusively on images extracted from the setsttieclassifier is discriminating. See
Sec. 3.4 for details.

with N.

Our procedure works as follows. In the first stage of clasgifin, each test image reaches its
terminal node via a series éfinexpensive branch comparisons. By the time the test images
at its terminal node there are only N,/ 2¢ categories left to consider instead/¥f,;. The greater
the number of levelg in the hierarchy, the fewer categories there are to consitifre expensive

final stage - with correspondingly fewer support vectorgaNe

The main decision to be taken in building such a hierarchilzasification tree is how to choose
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Figure 3.5: Top-down grouping as described in Sec. 3.3. @dertlying assumption is that cate-
gories that are easily confused should be grouped togetlweder to build the branch classifiers in
Fig 3.4. First we estimate a confusion matrix using the ingjirset and a leave-one-out procedure.
Shown here is the confusion matrix fdk..;, = 10, with diagonal elements removed to make the
off-diagonal terms easier to see.

the sets into which each branch divides the remaining cegsyoThe key intuition which guides
our architecture is that decisions between categoriesatieainore easily confused should be taken
later in the decision tree, i.e. at the lower nodes where f@ategories are involved. With this in
mind we start the training phase by constructing a confusiatrix ng from the training set alone
using a leave-one-out validation procedure. This matee (Sig. 3.5) is used to estimate the affinity

between categories. This should be distinguished from tdredard confusion matrig;; which

measures the confusion between categories duringpiiegphase.
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3.3 Building Taxonomies

Next, we compare two different methods for generating tarues automatically based on the
confusion matrixC;;.

The first method splits the confusion matrix into two groupsig Self-Tuning Spectral Clus-
tering [119]. This is a variant of the Spectral Clusteringasithm which automatically chooses
an appropriate scale for analysis. Because our cascadensarg lree we always choose two for
the number of clusters. Fig. 3.4 shows only the first two wlsplits while Fig. 3.6 repeats the
process until the leaves of the tree contain individualgates.

The second method builds the tree from the bottom-up. At etegh the two groups of cate-
gories with the largest mutual confusion are joined whikgrticonfusion matrix rows/columns are
averaged. This greedy process continues until there isabgiggle super-group containing all 256

categories. Finally, we generate a random hierarchy asteoton

3.4 Top-Down Classification Algorithm

Once a taxonomy of classes is discovered, we now seek toie#pstaxonomy for efficient top-
down classification. The problem of multi-stage classiftcahas been studied in many different
contexts [5, 40, 73, 70]. For example, Viola and Jones [1¥8]an attentional cascade to quickly
exclude areas of their image that are unlikely to containca.fdnstead of using a tree, however,
they use a linear cascade of classifiers that are progrgseiege complex and computationally in-
tensive. Fleuret and German [44] demonstrate a hierarcimcofasingly discriminative classifiers
which detect faces while also estimating pose.

Our strategy is illustrated in Fig. 3.4 and described indgtion. We represent the taxonomy of

categories as a binary tree, taking the two largest braratié® root of the tree and calling these
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Figure 3.6: Taxonomy discovered automatically by the caepwsing only a limited subset of

Caltech-256 training images and their labels. Aside froes¢hlabels there is no other human
supervision; branch membership is not hand-tuned in any Wag taxonomy is created by first

generating a confusion matrix fa¥,,,;, = 10 and recursively dividing it by spectral clustering.
Branches and their categories are determined solely ondis bf the confusion between cate-
gories, which in turn is based on the feature-matching phoee of spatial pyramid matching. To

compare this with some recognizably human categories wa code all the insects (red), birds

(yellow), land mammals (green) and aquatic mammals (bMNejice that the computer’s hierarchy

usually begins with a split that puts all the plant and aniozdégories together in one branch. This
split is found automatically with such consistency that ihiad of all randomized training setwot

a single category of living thingnds up on the opposite branch.
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classesA U B andC U D. Now take a random subsample Bf..;,, of the training images in each
of the two branches and label them as being in either class2l ém SVM is trained using the
spatial pyramid matching kernel as before except that tasrenow two classes instead bf..
Empirically we find thatFi,.;, = 10% significantly reduces the number of support vectors in each

branch classifier with little or no performance degradation

If the branch classifier passes a test image down to the leftchr we assume that it cannot
belong to any of the classes in the right branch. This coasruntil the test image arrives at a
terminal node. Based on the above assumption, for each rtodepth ¢, the final multi-class
classifier can ignore roughly— 2~ of the training classes. The exact fraction varies depgnoin

how balanced the tree is.

The overall speed per test image is found by taking a unionl ¢tfie@ support vectors required
at each level of classification. This includes all the brasweti node classifiers which the test image
encounters prior to final classification. Each support veaboresponds to a training image whose
matching score must be computed, at a cost of 0.4 ms per supgior on a Pentium 3 GHz
machine. As already noted, the multi-class node classiiégpgire many more support vectors than
the branch classifiers. Thus increasing the number of breladisifier levels decreases the overall

number of support vectors and increases the classificgieads but at a performance cost.

3.5 Results

As shown in Fig. 3.8, our top-down and bottom-up methods giveparable performance &t,.in =
10. Classification speed increases 5-fold with a correspon@®®o decrease in performance. In
Fig. 3.9 we try a range of values fo¥,.in. At Niain = 50 there is a 20-fold speed increase for the

same drop in performance.
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Figure 3.7: The taxonomy from Fig.3.6 is reproduced herdlustiate how classification perfor-
mance can be traded for classification speed. Nodepresents an ordinary non-hierarchical one-
vs-all classifier implemented using an SVM. This is accubateslow because of the large combined
set of support vectors ifV.,;s = 256 individual binary classifiers. A the other extreme, each tes
image passes through a series of inexpensive binary braassifters until it reaches 1 of the 256
leaves, collectively labele@ above. A compromise solution B invokes a finite set of branaksi-
fiers prior to final multi-class classification in one of 7 témal nodes.
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Figure 3.8: Comparison of three different methods for gatireg taxonomies. For each taxonomy
we vary the number of branch comparisons prior to final digssion, as illustrated in Fig. 3.4.
This results in a tradeoff between performance and speedasioves between two extremas
andC. Randomly generated hierarchies result in poor cascaderpemce. Of the three methods,
taxonomies based on Spectral Clustering yield marginadigeb performance. All three curves
measure performance vs. speedfQr; = 256 and Ny i, = 10.

3.6 Conclusions

Learning hierarchical relationships between categoffiebjects is an essential part of how humans
understand and analyze the world around them. Someonaglthg game of “20 Questions” must
make use of some preconceived hierarchy in order to guessnttrown object using the fewest
number of queries. Computers face the same dilemma: witwut knowledge of the taxonomy

of visual categories, classifying thousands of categasiesduced to blind guessing. This becomes
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Figure 3.9: Cascade performance / speed trade-off as adomgtV;, ;.. Values ofV,,;,, = 10 and
Nirain = 50 result in a 5-fold and 20-fold speed increase (respechivelya fixed 10% performance
drop.

prohibitively inefficient as computation time scales lifgavith the number of categories.

To break this linear bottleneck, we attack two separatelenaf. How can computers automat-
ically generate useful taxonomies, and how can these bédppl the task of classification? The
first problem is critical. Taxonomies built by hand have baeplied to the task of visual classi-
fication [122] for a small number of categories, but this metlkloes not scale well. It would be
tedious - if not impossible - for a human operator to genedatailed visual taxonomies for the

computer, updating them for each new environment that thepoter might encounter. Another
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problem for this approach is consistency: any two operatdikely to construct entirely different
trees. A more consistent approach is to use an existing temgisuch as WordNet [41] and apply it
to the task of visual classification [80]. One caveat is thaical relationships may not be optimal
for certain visual classification tasks. The wdednonrefers to an unreliablear, but the visual
categories lemon and car are not at all similar.

Our experiments suggest that plausible taxonomies of bb@egories can be created automat-
ically using a classifier (in this case, spatial pyramid rhiig) coupled to a learning phase which
estimates inter-category confusion. The only input usedhis process is a set of training images
and their labels. The taxonomies such the one shown in Figs&m to consistently discover
broader categories which are naturally recognizable toamsmsuch as the distinction between
animate and inanimate objects.

How should we compare one hierarchy to another? It is difficutjuantify such a comparison
without a specific goal in mind. To this end we benchmark aades®f classifiers based on our
hierarchy and demonstrate significant speed improveménfzarticular, top-down and bottom-up
recursive clustering processes both result in better paeoce than a a randomly generated control

tree.
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Chapter 4

Pollen Counting

4.1 Introduction

Airborne pollen has been linked to a number of respiratomnydé@mns ranging from common al-
lergies to potentially life-threatening asthma attackson€idering that one in five people in the
United States are affected by at least one of these conslitiea know surprisingly little about the
concentration and identity of the pollen in the air we breagach day. This is largely due to the
fact that a nation-wide or even regional daily manual pottennting effort would be extremely
labor-intensive, requiring an army of trained professisnifforts to understand the complex links
between climate change, air quality and human health woellgrbatly facilitated by an efficient,

unbiased system for identifying airborne pollen concditng on a mass scale [51, 62, 102].

Over the last decade there have been several efforts aima@@aiing such a system. Most
modern-day instruments that are used to sample airborfengohce their origins to the pollen col-
lection techniques pioneered by J. M. Hirst in the 1950'sEsg. While basic sampling techniques
have changed relatively little, the optical hardware anamater algorithms employed to count the
pollen vary from project to project. Ronneberger et al. [@5, 97] use a confocal microscope to
construct 3-D pollen surfaces which are reduced to a setoligmts statistics designed to be invari-

ant to translation, rotation and local deformations. A meaneighbor algorithm is then used for
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Figure 4.1: Dr. James House stands next to a modern-day Blupkdlen sampler located on the
roof of Keck Laboratory at Caltech (left). The basic techmig used to collect pollen date back to
the work of J. M. Hirst in the early 1950’s (right).

classification. While the system is accurate it requiresueof a confocal microscope. Unfortu-
nately such microscopes are more costly and less commonrtditional compound microscopes.
Systems developed in New Zealand [4, 3] and Germany [57] wse gonventional hardware that
may ultimately prove more suitable for wide-scale deplogindn particular the Pollen Monitor

BAAS5QO0 created by the German team seems poised for broadysepht thanks in part to strong
national funding and a large 25-member team of scientigiseagineers working on the project.
It is not yet clear what the exact price of the device wouldWkether it can be purchased and
deployed outside of Germany, and whether it can be easityggrammed to recognize pollen in

other countries.

Rather than building and deploying a single monolithic devilesigned and maintained by a

dedicated team of engineers, our 3-member team has focnsezhd on a more bottom-up ap-
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proach. Our goal has been to design and deploy a system thastafisthe-shelf, inexpensive
hardware in conjunction with flexible state-of-the-artsdication software to 1) count pollen, 2)
maintain a reliable stream of daily counts over the coursmafy years and 3pply the result-
ing datasets to actual research projects in climate sciesmog epidemiology The process needs
to be scalable. Relatively inexpensive pollen samplersbeapurchased from companies such as
Burkard Agronomic Instruments The optical requirements are likewise modest - a compound m
croscope with a computer-controlled stage - and the miomssoftware is open-source. Arguably
the primary limiting factor for most research groups thauldoundertake their own local pollen
counting effort is the difficulty of creating a software pagk to robustly segment and classify a
variety of pollen species, especially in the presence di kiumes of soot and other background
clutter. If this were freely available, more researcherdifiérent locations would be enabled to
collect and count their own pollen and, potentially, poaittdata with others for the use of the

entire community.

4.2 Data Collection Method

The basic principles used to prepare and acquire pollen énanBurkard pollen sampler are very
similar to those used by Hirst in 1952. A pump draws air thtoagarrow inlet at a fixed flow rate

while a servo-controlled drum turns exactly once per week.pAllen accumulates along a piece
of sticky tape mounted on the outside circumference of thengthe exact location of each pollen
grain along the direction of travel encodes the date wherptiien was deposited. The drum is
removed at the end of 1 week and the tape strip is transfesreddroscope slides for observation
and, in our case, digitization.

The slide preparation techniques currently used by Dr. dadrmise have been refined over

hwww.burkardscientific.com/agronomics/sporewatch.htm
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many years. This methodology turns out to be important kexpoorly-prepared slides suffer from

a variety of problems, such as:

| Condition | Result |
Pollen clumping and overlapping Complicates segmentation of individual pollgn
grains

Soot, insect parts and other clutter | Puts an excessive burden on the automated clytter
rejection algorithms
Formation of air bubbles during slideCan occlude or mimic pollen
preparation
Variable tape thickness Complicates microscope focusing
Non-uniform distribution of coverslip Optical reflections and chromatic aberration
mounting fluid
Redistribution of pollen as coverslip isCounting biases in selectively sampled slides, jin-
applied certainty and bias in the position and thus the tifne
at which pollen is deposited

Through a process of trial and error, the best results hage fsind using Mowiol coverslip so-
lution containing 2.5% 1,4-diazobicyclo-[2.2.2]-octameated to room temperature. Further details
of the mounting process will be presented in a forthcomingep$b9].

For each week of data collected, the resulting 7 slides - onedich day - are placed on a
computer-controlled stage and scanned with a PC runaMgnager, a complete open-source mi-
croscopy software packafjeA Qlmaging Retiga-4000R 2048x2048 CCD cameis mounted to
a conventional compound microscope with an 100x objecBaipts written in Beanshell (a sim-
plified Java-like environment) control the exact patteradu® scan the slides. At each point in the
scan, the program calculates a single synthetic image astagkof 18 individual images acquired
over a range of focus settirfgsThis image contains all planes of maximum sharpness frerntki-
vidual images. In addition to providing more flexibility ihg data analysis, this process of scanning
and analyzing stacks was found to be faster than the migoe&cbuilt-in focusing procedure.

Our standard observation script views each slide in muclséinee way as a human operator

2developed by Ron Vale’s laboratory at UCSF. For more infaimnesee http://valelab.ucsf.edu/ MM/MMwiki
3http://www.gimaging.com/products/cameras/scientiiiga 4000r.php
4using a MATLAB program written by Xavier Burgos-Artizzu irig®ro Perona’s Vision Lab at Caltech
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Figure 4.2: The shape, brightness distribution and texatgeach discriminative for different types
of pollen. The first feature encodes shape as the Fouriesftram of the outer radius, with values
representing the mean radius, eccentricity and higher mtsnéd he second feature computes the
ratio of several different quartiles of the brightnessriisition in a way that is invariant to absolute
brightness. Finally, SIFT features extracted on a 32x3@ gré matched against training examples
using the spatial pyramid matching algorithm of Lazebniklet[67]. The first two features can be
computed far more efficiently than the third.

would, scanning a single horizontal row across the entite sIBecause the 762 x 7g#? field
of view of the camera is roughly half that of the field seen tigto the viewfinder, two rows are

actually scanned for a total of 126 images per slide coverBign?.

4.3 Classification Algorithm

On a typical slide, background particulates i.e. “cluttedtnumbers pollen by O(103 — 10%).
In the spirit of the Viola and Jones face detection algorifaid?] we apply a cascade of classifiers

designed to quickly weed out the more obvious instanceauttee! More complex classifiers down-



1000

200|

Stage 3

52

Stage 1 | “meee

EXPERT ﬁ
\
Convolve @
Q|

Cropped

Manual
Labels

Stage 2

Shape Brightness

300

Stage 5

Features (6)

Features (6)

Shape+Brightness
Features (12)

4.0ak

s
Qw: ash
0aKk o4olv

Stage 3

Coarse
Rejectior

Candidates
39 %

Fine
Rejection

Finalists
4.2%

I E Clutter
4

| NN-based
Sh;
Stage 4 | gorber ——>

Model

SIFT
Features
(128)

4.1%

Final
Classification

Stage 5 SVM+SPM

Model

L
200

L
400 600

L
800 1000

] 1% Automatic
1200 Labels

Stage

Speed

Candidates
Considered

Description

very slow,
laborious

Manual labeling of pollen by an expert to establish ground
truth (required only during initial system testing)

fast

Individual pollen candidates identified by convolving,
thresholding, contouring and cropping. Cropped regions|re

duced to shape + brightness feature with moments of the gon-
tour radius and brightness quartile ratios

w

fast

100%

Thresholding of unreasonably small, large or dim candsldte

slower

39%

Nearest-neighbor model applied to candidates to rejesetho
with an extremely low chance of being pollen

slowest

4%

SIFT features extracted from remaining candidates. dpatia
pyramid matching used in conjunction with shape + bright-
ness feature as SVM inputs to determine final classificat|pn

Figure 4.3: Pollen is classified using a cascade of progedgsnore expensive classification stages.
The size of each yellow diamond represents the complexithetlassifier stage, with successive
stages passing fewer and fewer candidates to the slowee, i@iimed classifiers downstream.
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stream can thus ignore the bulk of the test data and contewtnahe difficult and ambiguous cases.

The process begins by convolving and thresholding the inafiad contours representing the
outer perimeter of each distinct particle. Since two or npaicles may clump together to produce
a single contour, a separate heuristic allows contoursatteapinched in the middle to iteratively
separate into two loops. Cropping a region around each ofeidting contours typically gives

hundreds of possible cropped pollen candidates for eadb. sli

The features we extract from these cropped images are showig.i 4.2. The figure illus-
trates how shape, brightness and texture can each be usefusdial classification of pollen type

depending on the species that are present.

The shape feature is constructed by converting each cotdq@aiar coordinateér, #) and tak-
ing the Fourier transform of r. The resulting feature vectturns the radius, eccentricity, and
progressively higher-order moments of r. Moments highanth are added together into a sin-
gle measure ofoughnesswhich is particularly useful for differentiating pollendim background
particulates such as dust and soot. The brightness featgmsles only the brightness distribu-
tion, not the absolute brightness. This is hecessary bedhesbrightness of the microscope light
source and the software camera calibration can vary overalese of many months. We construct
center-weighted and unweighted brightness histogramsalndlate ratios of 3 different brightness
quartiles for each. The overall result is a combined shapeightness feature vector of length
n=12. As shown in Fig. 4.3, using this inexpensive featurexcude very unlikely candidates
means that the relatively expensive SIFT feature grid nedgdhme computed for a fraction(4%)
of the candidate regions. This increases the final classficapeeds by more than an order of

magnitude.

At the moment, the time required to classify 126 images igaygs worth of data is 35 minutes

using a MATLAB program running on a 6-core Intel Zeon 3.33Gbtacessor. Preprocessing a
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Figure 4.4: In a Mechanical Turk experiment, test subjertsagked to classify the pollen on the
right side using a randomized set of training examples pexvion the left.

day’s worth of image stacks into synthetic images takeshemdtO minutes. Thus a month’s worth

of data (almost 4000 images) can be analyzed in just undey.1 da

4.4 Comparison To Humans

In 2009 we ran an experiment to compare machine performaitbhdnaman performance using the
Amazon Mechanical Turk The advantage of using this resource is that experimentseample-

mented quickly and efficiently at minimal expense. One mdisadvantage is that no information
is available concerning the test subjects themselves. éfthis hard to draw broad conclusions
without knowing something about the test demographic, weatdeast try to selectively average
the results of our 28 test subjects to get a rough idea whatatige of performance might be for

untrained non-specialists.

Shttps:/iwww.mturk.com/mturk/
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Figure 4.5: Test subjects do not see the expert classificéten) or the computer classification
(green). While the computer “misclassified” this particutérch sample as oak, the true ground-
truth classification could actually be either, as demotedréy visually similar instances circled in
each class.

To keep the interface as straightforward as possible weeimehted a simplified version of our
pollen classification task Fig. 4.4 shows what the test subject sees. On the left ad®naized
examples of 9 different species of pollen drawn from the staining set used by the computer.
On the right a crop box is drawn around a single pollen gainsehground truth label is knovin
The test subject is asked to identify the pollen type usiegatiailable training data. Fig. 4.5 shows
what the test subject does not see: the ground truth (redy@nguter (green) labels. This illustrate
an inherent ambiguity in the pollen identification task:ssifying the pollen as either birch or oak
would be understandable given the training set that is fesibleither the computer nor the test
subjects are given other information that an expert wouttlrie further refine their guess, such as

the date when the pollen was acquired.

Swith the help of Merrielle Spain in Pietro Perona’s Visiorblat Caltech
"to the extent that a pollen expert was able to visually idgtiem. A gold standard test such as DNA extraction is
not available for our labelled training data, since it wobdprohivitively expensive to implement.
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Figure 4.6: Mechanical Turk test subjects and the automsyetem make similar classification
mistakes. Overall performance is 60.3% averaged over slistgbjects, 70.9% averaged over the
8 most reliable test subjects, and 80.2% for the automatadtcdConfusion matrices may vary
significantly among individual test subjects, as shown bgdidual confusion matrices for the 9
test subjects with the largest number of classifications.

Results are shown in Fig. 4.6. Overall performance is 60.8&6aged over all test subjects
and 70.9% averaged over the 8 individual test subjects fooe@ most accurate. For comparison
the computer classified 80.2% of the examples correctly. ddmdusion matrices show that the
computer can outperform non-experts when classifyingspggmented pollen grains, and that the
patterns of mistakes made by the computer closely resefinde tof the test subjects. Both found
Alder, Ash and Birch to be the most difficult to classify and€and clutter ie. non-pollen to be the

easiest.
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Figure 4.7: Pollen counts aggregated over 15 days are glaainst one another to show the
degree of agreement between experts and the automatecthsy&tethe counts increase in each

plot (bottom-left to top-right) the sampling error decreasThus an ideal, unbiased pair of counts
should converge towards a line of slope m=1. In each colummpd#ir with the best agreement (i.e.

slope closest to 1) are labelled in green. For 3 out of 8 spahie experts actually showed better
agreement with the automated system than they did with coknan

4.5 Comparison To Experts

The test described in the previous section examines onlgghifermance of classification stages 3,
4 and 5 of the algorithm in Fig. 4.3. This does not include teggrmance of stage 2 where the

candidates themselves are located and segmented. We nogegdrto a second experiment which

is a better end-to-end test of the entire algorithm. Thedestpares computer performance with

that of two certified pollen identification experts. For edely’s data, the experts are presented with
the same set of 126 microscope images that the computerlikeshe computer, the experts place

bounding boxes around each pollen grain and classify thémdividual slides typically have very

small pollen counts for most species with correspondinglge sampling errors. To compensate for

8using a MATLAB GUI interface originally written by Marc’aatio Ranzato in Pietro Perona’s Vision Lab at Caltech
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this we aggregate the automated counts for each species®days spread throughout the first half
of 2012. These days were chosen to coincide with relativaalyel counts for a variety of species.
The automated counts were then plotted against the countisefdwo pollen counters “Expert #1”

and “Expert #2”. Preliminary results are shown in Fig. 4.Fefe is currently only a limited subset
of data for which 3 separate counts are available. We hopep@anel this subset in order to reduce

the sampling error, especially for Alder, Birch and Grasscivlare under-represented.

4.6 Conclusions

The final product of our automated counting system is an estiraf the daily pollen count for the
entire year, shown in Fig. 4.8. Results are still prelimyaending final publication [59]. While we
are still in the process of improving the learning model avalueating final classification accuracy,
our initial results are promising. The automated systenetes several well-established yearly
patterns such as the Cypress bloom in early February fotldsyea Pine bloom later in the month.
Likewise sporadic blooms of Oak throughout March, April aMdy have been recorded at our site
every year since manual counting began in 2003.

Beyond just reproducing manual pollen counts, automateadtsdiold the promise of recording
new types of pollen data that would otherwise be prohibigidifficult to obtain. For example, the
ability to accurately locate each individual pollen samphea slide brings with it the possibility
of recording minute daily changes in the pollen count causediurnal cycles or local whether
conditions. Pollen experts typically scan only a smallticacof the total pollen available on each
slide, whereas the automated system is fast enough to seantihe slide. This promises to revolu-
tionize antiquated manual counting techniques plaguedbyplng biases and unnecessarily high
counting variance.

Manual counts also limit our ability to understand how poltounts vary from one location
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Figure 4.8: Daily automated pollen counts for 2012. Thd want is broken down into color bands

showing the contribution from individual species. Intagtacounts for the year are displayed in the
legend. The system can count a month’s worth of pollen in 1wlagn scanning the slide as an
expert would, utilizing less than .1% of the total collegtiarea. It is thus nearly fast enough to
scan the entire slide which would drastically reduce themimg error and bias. We continue to

optimize the code towards this eventual goal.

to another. The speed of automatic counting would enabésarekers to collect and compare data
from tens, hundreds or even thousands of different siteshdmt, the speed, temporal resolution
and minimal counting biases offered by an automated polbemting system promise to provide

new tools heretofore unavailable to climate scientistsepidemiologists in their research.
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Chapter 5

Machine Olfaction: Introduction

Electronic noses have been used successfully in a widdyafiapplications[94, 115] ranging from
safety[25, 47, 117, 50] and detection of explosives[1, &] td medical diagnosis[24, 46, 110, 19,
82], food quality assessment[121, 49, 13, 6] and discritiinaof beverages like coffee[88, 89],
tea[116, 35, 78] and wine[23, 78, 91, 100]. These applioatigpically involve a limited variety of
odor categories with tens or even hundreds of training elesravailable for each odorant.

Human text subjects, on the other hand, are capable of glissihing thousands of different
odors[66, 93, 107] and can recognize new odors with only atfaiming examples[20, 16]. How
we organize individual odor categories into broader classend how many classes are required
- is still a matter of active debate in the psychophysics comig. One recent study of 881 per-
fume materials found that human test subjects group themvagirity of these odors into 17 dis-
tinct classes[118]. Another comprehensive study of 146edisional odorant responses obtained
by Dravnieks[34] showed that most of the variability in tesponses can be explained using only
6-10 parameters[63].

Results such as these suggest that the bulk of the vanyalniliuman odor perception can be
represented in a relatively low-dimensional space. Whégss clear is whether this low dimen-
sionality is an intrinsic quality of the odorants themsselee a feature of our olfactory perception.

Measuring a large variety of odorants electronically pdegi an opportunity to compare how ma-
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chines and humans organize their olfactory environmené Way to represent this is to construct a
taxonomy of odor categories and super-categories witlelglaslated categories residing in nearby

branches of the tree.

Over the last 10 years hierarchical organization tools Ipageen increasingly useful in the field
of computer vision as image classification techniques haee Bcaled to larger image datasets. Ex-
amples include PASCAL[38], Caltech-101[69], Caltech{®%% and, more recently, the SUN[17]
LabelMe[109] and Imagenet[21] datasets with over a thadisategories each. These datasets are
challenging not just because they include a larger numberatdgories but because the objects
themselves are photographed in a variety of poses andrgghtinditions with varying degrees of

background clutter.

While it is possible to borrow taxonomies such as WordNe]1dhd apply them to machine
classification tasks, lexical relationships are at bestnapeifect approximation of visual or ol-
factory relationships. It is therefore useful to autonetcdiscover taxonomies that are directly
relevant to the specific task at hand. One straightforwaegdy approach involves clustering the
confusion-matrix created with a conventional one-vs-alltirclass classifier. This results in a top-
down arrangement of classifiers where simple, inexpengeisihns are made first in order to re-
duce the available solution space. Such an approach yatey frerrain recognition for autonomous
navigation[7] as well as more computationally efficienssiéication of images containing hundreds
of visual categories[56]. One way to improve overall clisgtion accuracy is to identify categories
which cannot be excluded early and include them on multifdealnchy branches[81]. Binder et al.

show that taxonomy-based classification can improve batbdpnd accuracy at the same time[11].

In addition to larger more challenging datasets and hibieat classification approaches that
scale well, machine vision has benefitted from discrimiusateatures like SIFT and GLOH that

are relatively invariant to changes in illumination, viesit and pose[83]. Such features are not
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dissimilar from those extracted from astronomical data Wwitching between fixed locations on
the sky[33, 26]. The resulting measurements can rejecthglearying atmospheric contamination
while retaining extremely faint cosmological signals taegO(10°) times smaller.

Motivated by this approach, we construct a portable appareapable of sniffing at a range
of frequencies to explore how well a small array of 10 sensars classify hundreds of odors
in indoor and outdoor environments. We evaluate this svreptiency approach by sampling 90
common household odors as well as 40 odors in the Univer§iBittsburgh Smell Identification
Test. Reference data with no odorants is also gathered @r tyanodel and remove any systematic
errors that remain after feature extraction.

The sensors themselves are carbon black-polymer compbaitélm chemiresistors. Using
controlled concentrations of analytes under laboratonditmns, these sensors have been shown
to exhibit steady-state and time-dependent resistandégsrthat are highly sensitive to inorganic
gasses as well as organic vapors[12] and can be used foifyglagdoth[105, 79]. A challenge
when operating outdoors is that variability in water vapmmeentrations masks the response of other
analytes. Our approach focuses on extracting featuresathdhsensitive to background analytes
whose concentrations changes more slowly than the sniffeguéncy. This strategy exploits the
linearity of the sensor response and the slowly-varyingineabf ambient changes in temperature
and humidity.

From an instrument design perspective, we would like toalischow the choice of sniffing fre-
guencies, number of sensors and feature reduction methoohalibute to the final indoor/outdoor
classification performance. Next we construct a top-dovassification framework which aggre-
gates odor categories that cannot be easily distinguistied 6ne another. Such a framework
guantitatively addresses questions like: what sorts of gdmupings can be readily classified by the

instrument, and with what specificity?
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Chapter 6

Machine Olfaction: Methods

6.1 Instrument

The odorants to be tested were contained in four sample aramihile one empty chamber served
as a reference (Fig.6.1). The instrument drew air throughallsensor chamber while controlling
the source of the air via a manifold mixing solenoid valve[88B, 75] A small fan drew the air
through a computer-controlled valve with five inlets. No floveters, gas cylinders, air dryers or
other filters were used, with the instrument being as simpieportable as possible to facilitate the
acquisition of data in both indoor and outdoor environmehtse sensor chamber, sample chambers,
solenoid valve, computer and electronics were light endagtarry, and all electronic components

ran on battery power.

6.2 Sampling and Measurements

Ideally the sniffing frequencies would be high enough toatejmwanted environmental noise but
low enough that the time-constant of the sensors did noh@te the signal. A range of usable
frequencies betwee¥ss and 1 Hz was satisfactory for this purpose.

To implement the sniffing scheme, the computer first choseg@lesiodor, and 7 frequencies

were sampled in 7.5 min. During this span of time, 400 s weanspwitching between a single
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Odorant Odorant

Figure 6.1: A fan draws air from 1 of 4 ordorant chambers orrapty reference chamber, depend-
ing on the state of the computer-controlled solenoid valvke valve control signal can then be
compared to the resistances changes recorded from an afra@sndividual sensors as shown in
Fig. 2.

odorant and the reference chamber, while the remaining ¥¥s gpent purging the chamber with
reference air. This complete sampling pattern is designlagzein as a “sniff”, and each of the 7

individual frequency modulations as “subsniffs”.

Each sniff was repeated 4 times for each of 4 odorants, fotah &b 2 h per “run”. Within
each run, the odorants were randomly selected and werenpeds® the sensors in random order.
To avoid residual odors, each run started with a 1-hour gediering which the sensor chamber
was purged with reference air, the odorant chambers wetacezh and the tubing that led to the

chambers was washed and then dried.
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The resistance of each sensor was sampled at 50 Hz while lree ma@dulated the incoming
odor streams. The relative differential resistance chd%,@e/vas then calculated by dividing each
resistance valud?(t) by the mean resistance in a 4 min window centered d@rom this time-
series data, each individual sniff was reduced to a feateickov of measurements that represented
the band power of the sensor resistance integrated oveniffabs = 1..7 and frequency bands
4 = 1..4. Fig. 6.2c illustrates this filtering far= 4. In this subsniff, the valve switched 4 times, at
a frequency of/s Hz, between odorant and the reference. Integration of eatfop of the Fourier

transform of the signal

Si(f) = / si(t)e=2mt gy
weighted by four different window functions resulted7rx 4 = 28 measurements

f;nax

mij = ; Hig(£)df , Hij(f) = Si(f) Wi;(f)

where f . = 25 Hz is the Nyquist frequency. The modulation of the odbrarthe ith subsniff
can be thought of as the product of a single 64 s pulse andqusigely faster square waves of
frequencyf; = 27 Hz. Thus the first window functioi = 1 in each subsniff was centered
aroundf; = 1/64, while window functions forj = 2..4 were centered at the odd harmonjgs3 f;
and5 f;, for which the square-wave modulation had maximal powepeRton of this procedure

for each sensar = 1..10 gave a final featuren;;;, of size7 x 4 x 10 = 280, which was normalized

to unit length.

For comparison, a second featug of size7 x 10 = 70 was generated by simply differencing
the top and bottom 5% quartiles @gﬁ within each subsniff. This type of amplitude estimate is
comparable to the so-called sensorial odor perception Y$€ure commonly used in machine

olfaction experiments [22], and is similar t@;1; in that it ignores harmonics with frequencies
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higher tharil/ea Hz within each subsniff.

6.3 Datasets and Environment

Three separate datasets were used for training and tesfihg.University of Pittsburgh Smell
Identification Test (UPSITgonsists of 40 micro-encapsulated odorants chosen to dvedy rec-
ognizable and to span known odor classes [31, 32]. The tesinsnistered as a booklet of 4-item
multiple choice questions with an accompanying scratehsmiff patch for each question. It is an
especially useful standard because of the wealth of psysisigal data that has been gathered on a
variety of test subjects since the UPSIT was introduced 84190, 29, 28, 36].

To sample realistic real-world odors, we develop&banmon Household Odors Dataset (CHOD)
that contained 90 common foods products and household.itéenss were chosen to be as diverse
as possible while remaining readily available. Odor categdor both the CHOD and UPSIT are
listed in the appendix. Of these, 78 were sampled indoorsyet@ sampled outdoors, and 32 were
sampled in both locations

A Control Datasetwas acquired in the same manner as the other two sets, buemitty
odorant chambers. The purpose of this data set was to madietarove environmental components
that were not associated with an odor class. In this sensecathteol data set is analogous to the
clutter category present in some image datasets. To capture as muichnenental variation as
possible, control data were taken on a semi-weekly basistbgentire 80-day period during which
the other 2 datasets were acquired. Half of the control data wsed for modeling while the other
half were used for verification purposes.

These 3 data sets collectively contained 250 h of data treatrgul 130 odor categories and 2
environments. The first 130 h of data were acquired over az§Opériod in a typical laboratory

environment, with temperatures of 22.0-25800and 36-52% humidity. Over the subsequent 40 days,
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the remaining 120 h of data were collected on a rooftop ancobgl with temperatures ranging
from 10.1-24.7C and 29-81% humidity. On a 2 h time scale, the average changariperature
and humidity wa€).11°C and0.4% in the laboratory an®.61°C and1.9% outdoors. Thus the

environmental variation outdoors was roughlys times greater than indoors.
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Figure 6.2: (a) A sniff consisted of 7 individual subsniffs..s; of sensor data taken as the valve
switched between a single odorant and reference air. Frand#ta a7 x 4 = 28 size featuren
was generated representing the measured power in each @fghlesniffs: over 4 fundamental
harmonicsj. For comparison purposes a simple amplitude feature diffegd the top and bottom
5% quartiles of% in each subsniff. (b) As the switching frequengyincreased by powers of 2
so did the number of pulses, so that the time pefibdas constant for all but the first subsniff.
(c) To illustrate hown was measured we show the harmonic decomposition ogjustighlighted

in (a). The corresponding measurements; were the integrated spectral power for each of 4
harmonics. Higher-order harmonics suffered from attdonadue to the limited time-constant of
the sensors but had the advantage of being less susceptitat signal drift. Fitting al/f™ noise
spectrum to the average indoor and outdoor frequency respafrour sensors in the absence of any
odorants illustrates why higher-frequency switching aighé@r-order harmonics may be especially
advantageous in outdoors environments.



71

Outdoor

Indoor

112/24

112/26

112/14

112/26

tea : English Breakfast

T
"
ol -
tea : Irish Breakfast

10111 112/19

112/08

Figure 6.3: Visual representation of the harmonic decortipasfeaturem for 2 wines, 2 lemon
parts and 2 teas from the Common Household Odors Datasédt.dflacant was sampled 4 times on
2 different days in 2 separate environments. Each box repte®ne complete 400 s sniff reduced
to a 280-dimensional feature vector. Within each box, theolds (y axis) show the response of
different sensor over 28 frequencies (x axis) correspanttin7 subsniffs and 4 harmonics. For
visual clarity, the columns are sorted by frequency and raressorted so that adjacent sensors are
maximally correlated.
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Chapter 7

Machine Olfaction: Results

Four experiments were performed to evaluate the effectitfiranfrequency, sensor array size, fea-
ture type and sensor stability on the classification peréme over a broad range of odor categories.
In each experiment 4 presentations per odor category wpegated into randomly selected sets, to
produce training and testing sets of 2 sniffs each. Eachwa# reduced to a feature vectarand

a SVM! was used for final classification. Feature vectarg were also generated for comparison
purposes. Both features were pre-processed by normalizérg to unit length and projecting out
the first two principle components of the control data, whiepether accounted for 83% of the
feature variability when no odorants were present. Theopernce was averaged over randomized
data subsets oWV, = 2,4, ... odor categories up to the maximum number of categories is¢he
The classification error naturally increased wiNh,; as the task became more challenging and the
probability of randomly guessing the correct odorant desee.

Fig. 6.3 shows features that were extracted for 6 specificant® in 3 broader odor categories:
wine, lemon and tea. Different teas were easily distingab$ from wine and lemon, but were
less distinguishable from one another. A fifth experimerdl@ated quantitatively the intuition
that certain odor categories can be more readily diffeagedi than others, and incorporated this

hypothesis into a learning framework. In addition to randmategory groupings, this test clustered

specifically the LIBLINEAR package of[60, 39]
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odorants to examine the classification performance fodmpn category groupings.

7.1 Classification Performance vs. Subsniff Frequency

Two fundamental limiting factors in the experiments were time required to prepare the odorant
chambers as well as the time required to sample the contétite ohambers. In many real-world
applications, an unnecessarily long sampling proceduorislithe usefulness of machine olfaction.
A reduction in the duration of a sniff is thus highly worthuéhif such a time reduction does not
significantly impact the classification accuracy.

A complete sniff was divided into 4 overlapping 200 s timeraegts. Each segment covered
a different range of modulation frequencies, from¥t Hz for the fastest segment thes- 164 Hz
for the slowest segment. Fig.7.1 compares classificatisalteeusing features constructed from
each time segment as well as the entire 400 s sniff, in bothoindnd outdoor environments. Av-
eraging the CHOD and UPSIT results in both environmentsptieeall performance folN.,, = 4
decreased by 5.6%, 5.1%, 8.3% and 24.4%, respectively, thiee200 s data were collected using a
progressively slower range of modulations frequencies.Ne@ = 16, a more significant decrease
in performance, of 9.5%, 10.6%, 17.2% and 41.2% respegtiwals observed. The low-frequency
subsniffs therefore contributed relatively little to ddication performance.

This behavior is consistent with the observation that thammsectrum of background noise in
the control data was skewed towards lower frequencies §F2g). Although this noise spectrum
depended partially on the type of sensor used, this behasstalso symptomatic of the slow linear
drifts in both temperature and humidity that were obsenhedughout the tests. Other sensors
that are sensitive to such drifts may also benefit from rapitiching, provided that the switching
frequency does not far exceed the cutoff imposed by the séins® constants. In our experiments,

these time constants ranged from .1 s for the fastest seméa fior the slowest responding sensor.
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Figure 7.1: Classification performance for the UniversityPd@tsburgh Smell Identification Test
(UPSIT) and the Common Household Odors Dataset (CHOD) fiferdint sniff subsets using 4
and 16 categories for training and testing. For control pses data were also acquired with empty
odorant chambers. Compared with using the entire sniff)(ittye high-frequency subsniffs (2nd
row) outperformed the low-frequency subsniffs (bottonpezsally for V.., = 16. The dotted lines
show the expected performance for random guessing.
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7.2 Effects of Different Numbers of Sensors on ClassificattoPerfor-

mance

Another important design consideration is the number amigtyaof sensors required for a given
classification task. The second test measured the clasisifiearor as the number of sensors grad-
ually increased from 2 up to the full array of 10.

As shown in Fig. 7.2, the marginal utility of including addital sensors depended on the dif-
ficulty of the task. Consistently, the performance in outdoonditions, or with a large number
of odor categories, showed the most improvement as additemnsors were added to the array.
However, the control data classification error consisyeinttreased as sensors were added to the
array, with the errors becoming increasingly close to thellexpected for random chance. When
averaged over all values of Ncat, when 10 sensors were usedutdoor Control error was 17%
less than what would be expected from random chance, as cethpa58% less than expected
from random chance when only 2 of the available sensors wsed.uThe positive detection of
distinct odor categories where no such categories weralfcresent suggests either overfitting
or a sensitivity to extraneous environmental factors sschvater vapor. The use of additional sen-
sors therefore was important for background rejection il@or environments even when only a

marginal reduction in classification error was obtainedfierother datasets.

7.3 Feature Performance

For each individual sensor, the feature extraction proceasserted 400 s, i.e. 20,000 samples, of
time-stream data per sniff into a compact array of 28 values that represented the total spectral
response over multiple harmonics of the sniffing frequergy.even smaller featurg,; measured

only the amplitude of the sensor response within each of tibZniffs. The third test compared the
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Figure 7.2: Classification error for all three datasetsrakeoors and outdoors while varying the
number of sensors and the number of categories used fomgaand testing. Each dotted colored
line represents the mean performance over randomizedtsulifs2, 4, 6 and 8 sensors out of the
available 10. To illustrate this behavior for a single vatbielV..;, gray vertical lines were used
to mark the error averaged over randomized sets of 16 odega@aés for the indoor and outdoor
datasets. When the number of sensors increased from 4 theliydoor error (left line) decreased
by < 2% for the CHOD and UPSIT while the outdoor error (right limkcreased by 4-7%. The
Control error is also important because deviations frondoam chance when no odor categories
are present may suggest sensitivity to environmental fecach as water vapor. The indoor error
for both 4 and 10 sensors remained consistent with 93.75#%@mrchance while the outdoor error
increased from 85.9% to 91.7%

classification accuracy for both features, to determinetimdraneasurement of the spectral response
of the sensor over a broad range of harmonics yielded any ellimppenhancement in classification

performance.

For N..; = 4, using the spectral response featurgthe CHOD and UPSIT classification errors
were 8.7% and 26.2%, respectively, indoors and were 27.6863ar2%, respectively, outdoors.
When the amplitude-based featurewas used, these errors increased to 27.3% and 31.9%, respec-
tively, indoors and 36.8% and 51.3%, respectively, outslods shown in Fig. 7.3, the amplitude-
based feature continued to underperform the spectral mespfeature across all values ;.

Spurious classifications were more apparent in the absdrampoants, with detection rates on the
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Figure 7.3: Classification error using features based onmenesponse amplitude and harmonic
decomposition. For comparison, the UPSIT testing errdfi@2human test subjects 10-59 years of
age (who performed better than our instrument) and 70-7&ydage (who performed roughly the

same) are also shown. The combined Indoor/Outdoor datasdtdata taken indoors and outdoors

as separate training and testing sets.

Control Dataset being 30-75% higher than random chance.

Relative to human performance on the UPSIT, the electroose performance of 26-32% in-

doors was comparable to test subjects 70-79 yrs of age. @sll§j8-59 yrs of age outperformed

the electronic nose, with only 4-18% error, whereas subjecer 80 yrs show mean error rates in

excess of 36% [32].

7.4 Feature Consistency

To evaluate whether the spectral response features wedieientfy reproducible to be used for

classification across different environments and overgoakes of several months, the rightmost

plot of Fig. 7.3 displays a classifier trained on data takeloans between October 3 and November

18 and test data taken outdoors between November 19 and Dec@ For comparison, the data

taken in the center plot used the outdoor datasets for baihing and testing. The classification
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errors for the Indoor/Outdoor CHOD were 8-14 % higher thartlie Outdoor CHOD, while those

for the UPSIT were 3-25 % higher than the Outdoor CHOD.

These data alone do not allow evaluation of the relativeridmriton of the change in envi-
ronment vs sensor degradation to the observed increaseadsifatation error. However similar
polymer-carbon sensor arrays have been shown to exhipibmes changes of less than 10% over
15-18 months [99]. The data therefore can be taken to priyafiect the magnitude of the classi-
fication error produced when training data acquired an intidmoratory environment are used for
testing in an uncontrolled outdoor environment. This typexperiment is analogous to the visual
classification task of using images taken under controligttihg conditions in a relatively clutter-
free environment to classify object categories in more demputdoor scenes that have variable
lighting, occlusion etc.

Compared with the amplitude response feature (dotted)|ities full spectral response of the
sensor provided a feature that was significantly more atewmad more robust for classification
across indoor and outdoor environments. In the majority wf tests, for example, the CHOD
classification error dropped by more than 30% when usingfbetsal response feature in place of

the amplitude response feature.

7.5 Top-Down Category Recognition

The data discussed above were averaged over randomizestsobd’..; categories, as is appro-
priate when the categories experienced during testingarkenown in advance. Such a procedure
does not, however, reveal how the classification perform@hanges from category to category, or
specifically how a given category classification may be reffine

The odor categories in the CHOD can be broadly divided into foain groups: food items,

beverages, vegetation and miscellaneous household iteimer distinctions are possible within
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each category, such as food items that are cheeses or fauttsuch distinctions are inherently
arbitrary and vary significantly according to personal bi&ven a taxonomy such as WordNet
[106], which groups words by meaning, may or may not be relet@the olfactory classification

task. The fact that coffee and tea are both in the “beveraggsgory, for example, does not provide

any real insight into whether coffee and tea will emit simadors.

A more experimentally meaningful taxonomy can be creat@thube inter-category confusion
produced during classification. This quantity was represeas a matrixC;; that described how
often a member of categonrywas classified as belonging to categgryHence, the diagonal ele-
ments recorded the rate of correct classifications for eatdgory while the off-diagonal elements
indicated misclassifications. Hierarchically clusterthis matrix resulted in a taxonomy in which
successive branches represented increasingly diffi@dsification tasks. As this process continues,

the categories that are most often confused would ideatlyupras adjacent leaves on the tree.

Following our work with the Caltech-256 Image Dataset[58¢ created a taxonomy of odor
categories by recursively clustering the olfactory corsnatrix via self-tuning spectral clustering[90].
Fig. 7.4 displays the results for the Indoor CHOD. Two tnainexamples per category were ran-
domly selected and assigned positive or negative labeksndipg on whether the category belonged
to the branch, to thereby generate a binary classifier taiat@the membership in each branch of

the tree. The remaining examples were then used to evahmfetformance of each classifier.

With branch nodes color-coded by performance, the taxonawgaled which individual cat-
egories and super-categories were detectable by thermsttufor a given performance threshold.
The clustering process is prone to errors in part becausea#rtainty in the individual elements
of the confusion matrix. Some odorants, such as individusdts and cheeses, were practically
undetectable with our instrument, making it impossible tablish taxonomic relationships with

any certainty. Other odorants, especially those with lodividual detection rates, showed rela-
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Figure 7.4: The confusion matrix for the Indoor Common Hdwde Odor Dataset was used to au-
tomatically generate a top-down hierarchy of odor categorBranches in the tree represent splits
in the confusion matrix that minimized the intercluster fumion. As the depth of the tree increased
with successive splits, the categories in each branch becaone and more difficult for the elec-
tronic nose to distinguish. The color of each branch nodecsgmts the classification performance
when determining whether an odorant belongs to that braftis procedure helps characterize
the instrument by showing which odor categories and sugigories were readily detectable and
which were not. The highlighted categories show the retatiips discovered between the wine,
lemon and tea categories, whose features are shown in BiglTbe occurrence of wine and citrus
categories in the same top-level branch indicated thaetbder categories were harder to distin-
guish from one another than from tea.

tively high inter-category confusion; for example, all bétspices except mustard were located on
a single sub-branch that could be detected with 42% accuesen though the individual spice
categories in that branch all had detection rates below 3%as,Twhile it is possible to make refined
guesses for some categories, other “undetectable” cétsgeere detectable only when pooled into
meaningful super-categories. The construction of a taprddassification taxonomy for a given
instrument provided the flexibility to exchange the classifierformance for specificity depending

on the odor categories and application requirements.
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Chapter 8

Machine Olfaction: Discussion

Several design parameters for an electronic nose wererexplwith the goal of optimizing the
performance while minimizing the environmental sengiivirhe spectral response profiles of a set
of 10 carbon black-polymer composite thin film resistors evdirectly measured using a portable
apparatus that switched between reference air and odoraatsa range of frequencies. Com-
pared to a feature based only on the fractional change irsessistance, the spectral feature gave
significantly better classification performance while rerray relatively invariant to water vapor
fluctuations and other environmental systematics.

After acquiring two 400 s sniffs of every odorant in a set ofc@@nmon household odor cate-
gories, the instrument was presented with unlabeled othbrath of which it also sniffed twice.
The features extracted from these sniffs were used to sbkeatost likely category label out of. .
options. Given Ncat = 4 possible choices and an indoor trgisét, the correct label was found 91%
of the time indoors and 72% of the time outdoors (compared for random guessing). Fig. 7.3
shows how the classification error increased with Ncat asa$ie became more difficult. The in-
strument’s score on the UPSIT was roughly comparable teesaastained from elderly humans.

Sampling 130 different odor categories in both indoor andleor environments required 250
hours of data acquisition and roughly an equal amount of fnging, cleaning and preparing

the sample chambers. Fortunately, high-frequency subsnithe 1 /s Hz range provided 50%
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better olfactory classification performance than an eqoa-segment of relatively low-frequency
subsniffs, in thé/ie- Y64 Hz range. By focusing on higher frequencies, the sniff timald be cut in
half with only a marginal (5-10%) decrease in overall perfance.

Judging from progress in the fields of machine vision andctifiy psychophysics, it is reason-
able to expect that the number and variety of odorants usel@dtronic nose experiments will only
increase with time. Hierarchical classification framevaoskale well to large numbers of categories
and provide error rates for specific categories as well asuper-categories. Such an approach has
many potential advantages, including the ability to predategory performance at different levels
of specificity. The identification of easily-confused catggs, groupings, and sub-groupings may
furthermore reveal instrumental “blind spots” that camtbe addressed by the use of complemen-

tary sensor technologies as well as by different sniffingnieues or feature extraction algorithms.
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Appendix A

Olfactory Datasets

UPSIT Categories: pizza, bubble gum, menthol, cherry, moilp mint, banana, clove, leather,
coconut, onion, fruit punch, licorice, cheddar cheeseanimon, gasoline, strawberry, cedar, choco-
late, ginger, lilac, turpentine, peach, root beer, dillkig¢ pineapple, lime, orange, wintergreen,
watermelon, paint thinner, grass, smoke, pine, grape,desaap, natural gas, rose, peanut

CHOD Categories: allspice, alcohol, apple, apple juicgjresavocado, banana, basil, bay
leaves, beer (Guinness Extra Stout), bleach (regularirdvfnee and lavender), cardboard, cayenne
pepper, cheese (cheddar, provolone, swiss), chili povatdorinated water, chocolate (milk and
dark), cilantro, cinnamon, cloves, coffee (Lavazzi, Tralte’s house blend dark), expresso (Lavazzi,
Trader Joe’s house blend dark), cottage cheese, Equal ridResa Rosideae, Agerastum Hous-
tonianum, Achillae Millefolium), gasoline, Gatorade (oge), grapes, grass, honeydew mellon,
hydrogen peroxide, kiwi fruit, lavender, lemon (slice, peely, pulp only), lime (slice, peel only,
pulp only), mango, mellon, milk (2%), mint, mouth rinse, rraud (powder and French’s yellow),
orange juice, paint thinner, parsley, peanut butter, pireeapple, raspberries, red pepper, rice,
rosemary, salt, soy milk (regular and vanilla), soy sautewdberry, sugar, tea (Cha Genmail, En-
glish Breakfast, Irish Breakfast, Russian Caravan), émhsesame oil, tomato, tuna, vanilla cookie
fragrance oil, vanilla extract, vinegar (apple, distilleed wine, rice), windex (regular and vinegar),

wine (Cabernet Sauvignon, Chardonnay, Moscato, WhiteaZihd!)
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