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Abstract

The primary focus of this thesis is on the interplay of descriptive set theory and the
ergodic theory of group actions. This incorporates the study of turbulence and Borel re-
ducibility on the one hand, and the theory of orbit equivalence and weak equivalence on
the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study
measurable graph combinatorial invariants of group actions and employ the ultraproduct
construction as a way of constructing various measure preserving actions with desirable
properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of resid-
ually finite groups, and we prove a conjecture of Kechris by showing that under general
hypotheses property MD is inherited by a group from one of its co-amenable subgroups.
Chapter 4 is a study of weak equivalence. One of the main results answers a question of
Abért and Elek by showing that within any free weak equivalence class the isomorphism
relation does not admit classification by countable structures. The proof relies on affirm-
ing a conjecture of Ioana by showing that the product of a free action with a Bernoulli
shift is weakly equivalent to the original action. Chapter 5 studies the relationship between
mixing and freeness properties of measure preserving actions. Chapter 6 studies how ap-
proximation properties of ergodic actions and unitary representations are reflected group
theoretically and also operator algebraically via a group’s reduced C*-algebra. Chapter 7 is

an appendix which includes various results on mixing via filters and on Gaussian actions.
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Chapter 1

Introduction

The questions addressed in this thesis lie at the interface of several fields including de-
scriptive set theory, ergodic theory, representation theory, probability theory, and measur-
able group theory. A unified approach to studying these questions is facilitated by a global
perspective which was initiated and greatly developed in [Kec10]. From this perspective,
problems in ergodic theory may be seen as topological-dynamical and descriptive problems
concerning continuous actions of the Polish group A = A(X, i) of automorphisms of a
standard (usually non-atomic) probability space (X, ). Likewise, representation theory
may be studied via continuous actions of the Polish group U = U(H) of unitary operators
on a separable (usually infinite-dimensional) Hilbert space J{.

More concretely, if I" is a countable group then the set A(I", X, 11) of all measure pre-
serving actions of I" on (X, ut) naturally forms a Polish space on which A acts continuously
by conjugation. What is significant here is that the natural ergodic theoretic notion of iso-
morphism (“conjugacy’’) of measure preserving actions of I is exactly the orbit equivalence
relation generated by this action of the Polish group A; analogous remarks hold for unitary
representations of I" and the Polish group U. Descriptive set theorists have developed a
general theory of Borel reducibility, which studies the set theoretic complexity of equiva-
lence relations such as those arising from Polish group actions. Applications of this theory

to actions of A and U have led to deep and surprising insights into the nature of conjugacy



in ergodic theory and of unitary equivalence in representation theory. We begin with a brief

introduction to the basic notions of this framework.

1. Borel reducibility and classification

If £ and F' are equivalence relations on standard Borel spaces X and Y, respectively,
then F is called Borel reducible to F', denoted £ <p F, if there is a Borel map ¢ :
X — Y satisfying xEy < ¢(z)Fy(y) for all ,y € X. Such a map 1 is called a Borel
reduction from E to F'. The substance of this notion lies in the requirement that this map be
definable in some sense, and there are theoretical reasons for choosing Borel definability.
The resulting richness of the ordering < and its continuing success in comparing naturally
occurring equivalence relations in mathematics may be taken as further justifications for
this choice. A Borel reduction from £ to ' may be seen as providing an explicitly definable
classification of elements of X up to E-equivalence using the F'-classes as invariants.

An equivalence relation is said to be classifiable by countable structures if it is Borel re-
ducible to the isomorphism relation on some standard Borel space of countable structures,
for example, countable graphs, groups, or partial orders. More precisely, £/ admits classifi-
cation by countable structures if there exists a countable language £ and a Borel reduction
from £ to isomorphism on the standard Borel space X of all £-structures with universe
N. A classical example of such a classification is the Halmos-von Neumann Theorem
which completely classifies all ergodic measure preserving transformations with discrete
spectrum, up to isomorphism, by their group of eigenvalues [HvIN42]. Another example
is Elliott’s complete classification of unital AF-algebras by their pointed pre-ordered K-
groups [Ell76], [FTT11]. On the other hand, Hjorth has isolated a dynamical property
called turbulence that may hold of a Polish group action, and which is an obstruction to
there being a classification by countable structures for the orbit equivalence relation of that
action. In fact, turbulence is in a sense the only obstruction to the existence of such a

classification [Hjo02].
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2. Approximation and classification in the ergodic theory of countable groups

A (probability-)measure preserving action of a (discrete) countably infinite group ' on
(X, p) is a homomorphism a : I' — A(X, ). The set of all measure preserving actions
of I' on (X, i) naturally forms a Polish space A(T", X, 1) on which A acts continuously by
coordinate-wise conjugation. The orbit A-a of a € A(T', X, u) is called its conjugacy class
and two actions a and b from A(T", X, 1) with the same conjugacy class are said to be conju-
gate. We say that b is weakly contained in a if it is in the closure of the conjugacy class of a,
and we call a and b weakly equivalent if each weakly contains the other. If a € A(T", X, u)
and b € A(T',Y,v) are actions with different underlying probabilities spaces then we say
that b is weakly contained in « if it is a factor (i.e., quotient) of some ¢ € A(I", X, i) that
is weakly equivalent to a. The weak containment relation is reflexive and transitive, and
weak equivalence is therefore an equivalence relation. Weak containment of measure pre-
serving actions was introduced by Kechris in [Kec10] as an ergodic theoretic analogue of
weak containment of unitary representations, and it has proven to be a remarkably robust
notion that accurately captures an intuition that one measure preserving action asymptoti-
cally approximates or simulates another. Abért and Elek have recently defined a compact
Polish topology on the set of weak equivalence classes in which many important invariants
of weak equivalence become continuous functions [AE11], [TD12¢]. A fundamental the-
orem regarding weak containment is due to Abért and Weiss and concerns the Bernoulli
shift action of I' which we now define.

Let I act on the set [0, 1)1 of functions f : T' — [0, 1] by shifting indices: (v - f)(d) =
f(7~18). This action preserves the product measure v where v is Lebesgue measure, and
we call this measure preserving action the Bernoulli shift of I and denoted it by sp. The
Bernoulli shift provides an ergodic theoretic counterpart to the left regular representation

of I.

THEOREM 2.1 (Abért-Weiss [AW11]). sr is weakly contained in every free measure

preserving action of I'.



Conversely, any measure preserving action weakly containing s must itself be free.
Adrian loana conjectured that there is in fact an absorption principle at work which strength-

ens this.

CONIJECTURE 2.2 (A. loana). Let a be any free measure preserving action of a count-

ably infinite group I'. Then sr X a is equivalent to a.

Conjecture 2.2 strengthens Theorem 2.1 since the product action sp X a is easily seen
to weakly contain each of its factors. By combining ideas from [AGV12] with a close
analysis of weak containment it is shown in Chapter 4 ([TD12c¢]) that an even more general

absorption principle holds, of which Ioana’s conjecture is a special case.

THEOREM 2.3 (T-D [TD12c]). Conjecture 2.2 is true.

Theorem 2.3 has interesting global consequences for the space A(T", X, 1), which are
used in Chapter 4 to provide a strong negative answer to a question of Abért and Elek con-
cerning the relationship between conjugacy and weak equivalence. Abért and Elek exhib-
ited weak containment rigidity among Fy-ergodic profinite actions [AE10] and, prompted
by the orbit equivalence superrigidity results of Popa, asked whether it is was possible to

obtain full weak equivalence rigidity:

QUESTION 2.4 (Abért-Elek [AE11]). Does there exist a countably infinite group I'
with a free measure preserving action whose conjugacy class and weak equivalence class

coincide?

Combining Theorem 2.3 with the work of Kerr, Li, and Pichot [KLP10] on turbulence

in spaces of (*-algebra representations, the following is shown:

THEOREM 2.5 (T-D [TD12c]). Let a be any free measure preserving action of a count-
ably infinite group I'. Then the conjugacy relation on the weak equivalence class of a is not

classifiable by countable structures.
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This implies that the weak equivalence class of a contains a continuum of conjugacy
classes, and thus provides a negative answer to Question 2.4. But the conclusion is actu-
ally much stronger than this: there is no Borel way of assigning countable trees, groups,
orderings, etc., as invariants to actions in the weak equivalence class of a that completely

classifies these actions up to conjugacy.

3. Invariants of weak equivalence and measurable combinatorics

Theorem 2.5 shows that the degree to which countable invariants can provide mean-
ingful distinctions, even within each weak equivalence class, is limited. Fortunately, the
notion of weak equivalence turns out to be valuable in itself: many important properties of
measure preserving actions have been shown to be invariants of weak equivalence. Further-
more, these invariants of weak equivalence usually turn out to exhibit interesting behavior
under weak containment.

Many examples of this phenomenon arise in the study of measurable combinatorial
invariants of measure preserving actions (another example is cost, discussed in §6 in this
introduction). If I' is a finitely generated group, then for any finite generating set .S of
I'\ {e} and action a € A(T", X, 1) we consider the graph G(S, a), with underlying vertex
set X, and where x and y are connected by an edge if s*-x = y or s*-y = x for some s € S.
We let E(S,a) C X x X denote the set of edges of G(S,a). Measurable combinatorial

parameters are then associated to G/(S, a). For example:

(1) A subset A C X of vertices is said to be independent in G(S, a) if no two ver-
tices in A are adjacent. The independence number of the graph G(S, a), denoted
i,(S,a), is then defined to be the supremum of the measures j(A) as A ranges
over measurable subsets of X which are independent in G(S, a).

(2) The measurable chromatic number of G(S, a), denoted x,, (S, a) is the smallest

natural number £ € N such that there exists a measurable function ¢ : X —
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{0,1,...,k—1} (called a k-coloring) assigning no two adjacent vertices the same
value.'

(3) The approximate chromatic number of G(S, a), denoted xP(S, a) is the smallest
natural number £ € N such that for every ¢ > 0 there exists a Borel set A C X
with p(A) > 1 — e along with a measurable coloring ¢ : A — {0,1,...,k—1} of
the induced subgraph G(S,a) [ A.

(4) A matching of a graph G is a M C E(G) of edges such that no two edges in
M share a vertex. If M is a matching of G/(S,a) then we let X, denote the set
of matched vertices. The matching number of G(S, a) is defined as m,, (S5, a) =
5 sup), 11(Xar), where M ranges over all matchings of G(S, a) which are measur-

able.

The parameters i, x;” and m,, each respect weak containment: if a 1s weakly contained
inb, then i, (S, a) <4,(S,0), xiP(S,a) > xiP(S,b) and m,, (S, a) < m,,(S,b). In particular
these parameters are invariants of weak equivalence.

Chapter 2 ([CKTD11]) is joint work with Clinton Conley and Alexander Kechris. We
connect combinatorial properties of measure preserving actions to random graph-theoretic
objects studied in probability theory. An invariant random k-coloring of an infinite count-
able graph G is a Borel probability measure on the compact space of k-colorings of GG
which is invariant under automorphisms of (. Using ultraproduct techniques we address
a question raised by Aldous and Lyons [AL07] about the existence of invariant random

colorings of Cayley graphs of groups.

THEOREM 3.1 (Conley-Kechris-T-D [CKTD11]). Let I' be a countably infinite group
with finite generating set S. Let Cay(I', S) denote the Cayley graph of T with respect to S
and let d denote the degree of Cay(T', S) (i.e., d = |S U S™Y|). Then Cay(T', S) admits and

invariant random d-coloring.

Aldous and Lyons had previously shown this to hold under the additional assumption

that I" is sofic.

"t is a non-trivial fact that this number is always finite.



8

4. Co-induction and weak containment

Chapter 3 is joint work with Lewis Bowen [BTD11]. A residually finite group I has
property MD [Kec12] if the finite actions (i.e., actions coming from finite quotients of I")
are dense in A(I", X, 1), and I" has FD [L.S04] if the finite representations are dense in the
space Rep(I", H) of representations of I" on . It is not difficult to show that MD implies
FD, but the converse is unknown. It is known that free groups and residually finite amenable
groups have MD [Kec12] and that MD is closed under taking subgroups [Kec12] and free
products [TD12¢]. The groups SL,(Z) for n > 3 are known to not have FD [LS04] and
hence do not have MD.

In Chapter 3, Lewis Bowen and I answer affirmatively a question raised Kechris con-
cerning the relationship between co-induced actions and weak containment. This leads to
another closure property of MD which implies that surface groups have MD and - in light of
the recent proof of the Virtual Fibration Conjecture by Agol [AGM12] - that fundamental

groups of closed hyperbolic 3-manifolds have property MD.

5. Automatic freeness

The subject of non-free measure preserving actions has received significant attention
recently, see, for example, [AGV12, Bow12b, BGK12, CP12, Elel2, TD12¢, TD12a,
TD12b, Ver12, ABB*11, AE11, Grill, Ver1l, BG04, SZ94]. In [SZ94], Stuck and Zim-
mer proved a strong generalization of the Margulis Normal Subgroup Theorem for certain
higher-rank semisimple Lie groups in terms of an automatic freeness property for many
measure preserving actions of these groups. One consequence is that if I' is an irreducible
lattice in such a group then any non-atomic ergodic a € A(I', X, p1) is almost free, i.e., there
exists a finite normal subgroup N of I' such that the stabilizer [',, of almost every z € X is
equal to N. This is an example of automatic freeness at one extreme: by restricting consid-
erably the group I', a minimal hypothesis on the action is needed to ensure that it is almost
free. The main result of Chapter 5 ([TD12a]) is an automatic freeness result at the other

extreme in which I' is only assumed infinite, but a more serious ergodicity assumption is
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imposed on the action. A measure preserving action of I' is called totally ergodic if each
infinite subgroup of I' acts ergodically and it is called trivial if the underlying measure is a

point mass. The following is shown in Chapter 5:

THEOREM 5.1 (T-D [TD12a]). All non-trivial totally ergodic actions of countably infi-
nite groups are almost free. In particular, all non-trivial mixing actions and all non-trivial

mildly mixing actions of countably infinite groups are almost free.

This is new even for the case of mixing actions; Weiss had previously observed that ac-
tions of amenable groups with a much stronger mixing property called completely positive
entropy are almost free. The total ergodicity assumption is close to optimal since there are
examples due to Vershik [Ver12] of actions with mixing properties only slightly weaker
than mild mixing, but which are totally non-free, which means that these examples are in
some sense as far from free as possible. The most surprising aspect of Theorem 5.1 is
that its proof ultimately relies on the Feit-Thompson odd order theorem from finite group
theory! Indeed, the proof of Theorem 5.1 directly uses the group theoretic fact that every
infinite locally finite group contains an infinite abelian subgroup, and all known proofs of

this fact in turn rely on the Feit-Thompson theorem [Kar63, HK64, Rob96].

6. Expressions of non-amenability in ergodic theory and representation theory

Chapter 6 may be seen as an investigation into natural analogues of Theorem 5.1. These
analogues turn out to have connections to well-known open questions about group C*-

algebras as well as to the theory of cost.

Amenable Invariant Random Subgroups The freeness properties of an action a €
A(T, X, 1) may be studied directly via that action’s stabilizer distribution, obtained as the
image of the measure 4 under the stabilizer map x — I',.. This defines a Borel probability
measure on the space of subgroups of I' that is invariant under conjugation by elements of
I'. Any such probability measure is called an invariant random subgroup of I', so-named by

Abért, Glasner, and Virag, who showed that every invariant random subgroup of I" arises as
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the stabilizer distribution of some measure preserving action of I' [AGV12]. Each normal
subgroup of I' is an invariant random subgroup when viewed as a Dirac distribution and
many theorems originally concerning normal subgroups have been shown to generalize to
invariant random subgroups, the Stuck-Zimmer Theorem being one prominent example. In
what follows, an invariant random subgroup of I" will be said to have a particular property

if it has that property with probability 1.

OPEN QUESTION 6.1. Is every amenable invariant random subgroup of a countable

group [' contained in some amenable normal subgroup of I'?

While this is open in general, Y. Glasner [Glal2] has obtained a positive answer for
linear groups (see also the remark after (Diagram 0)). There is a useful way of restating
Question 6.1 in terms of the amenable radical of a group. Day showed that every discrete
group I contains a characteristic subgroup, called the amenable radical of I', denoted by
ARp, which is amenable and which contains all other amenable normal subgroups of I'.
Question 6.1 is then equivalent to the question of whether a countable group with trivial

amenable radical has no non-trivial amenable invariant random subgroups.

Shift-minimality and C*-simplicity If C is a class of groups then a measure preserving
action of a group I' is called C-ergodic if each subgroup of I' in C acts ergodically. An idea
from the proof of Theorem 5.1 shows that if a non-trivial action of I" is N.A-ergodic, where
NA is the class of non-amenable groups, then the invariant random subgroup associated to
this action is amenable. One may show that every measure preserving action weakly con-
tained in the Bernoulli shift sp is N.A-ergodic, and therefore any non-trivial action weakly
contained in sp gives rise to an amenable invariant random subgroup of I' which will be
non-trivial provided the original action was not free. Call a countable group I shift-minimal

if every non-trivial action weakly contained in st is free.

OPEN QUESTION 6.2 (T-D). If the amenable radical of I' is trivial then is I' shift-

minimal?
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The Abért-Weiss characterization of free actions as those weakly containing sp yields
that I' is shift-minimal if and only if every non-trivial action weakly contained in sr is in
fact weakly equivalent to sp. It is well known that I" is C*-simple, i.e., the reduced C*-
algebra, C*(I"), of I is simple, if and only if every non-zero unitary representation of I'
weakly contained in the left regular representation Ar is actually weakly equivalent to Ap
[dIHO7]. This is a tantalizing parallel, although there is no obvious implication between

the two properties.
OPEN QUESTION 6.3 (T-D). Are all C*-simple groups shift-minimal?

C*-simplicity may be restated as a dynamical property of an action of the unitary group
U(H), where H = ((T"). The set Irry (T, H) of all irreducible representations of I on H
weakly contained in Ar naturally forms a Polish space on which U(H) acts continuously
by coordinate-wise conjugation. Then I' is C*-simple if and only if I" is ICC and every
unitary conjugacy class in Irry (I", ) is dense.

Evidence suggests that C*-simple groups should be shift-minimal. In Chapter 6 I show
that shift-minimality of I' follows from another property called the unique trace property,
which means that C}(I") has a unique tracial state. In all known examples, the unique trace

property and C*-simplicity coincide, although it is open whether this is the case in general.

THEOREM 6.4 (T-D [TD12b]). Groups with the unique trace property are shift-minimal.
In fact, groups with the unique trace property have no non-trivial amenable invariant ran-

dom subgroups.

Powers [Pow75] demonstrated C*-simplicity and the unique trace property for non-
abelian free groups, and since then many large classes of groups have been shown to have
both of these properties [dLH85, BN88, B§1, BCdLHY94, AMO07, dIHO7, dIHP11]. It is
notable that in many cases, including the original argument of Powers, the proof given for a
group’s C*-simplicity makes use of stronger hypotheses than the corresponding proof that
the group has the unique trace property. The following diagram depicts the known impli-

cations among the five notions discussed. Any implication not addressed by the diagram is
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an open problem in general.

(Diagram 0) C*-simple No non-trivial «————= Unique trace
amenable IRS T-D

T-D U

Shift-minimal

oo

Trivial amenable
radical

[PS79]

Theorem 6.4 and results of Poznansky [Poz09] imply these properties are all equivalent for

linear groups.

Cost and the first /2-Betti number The second half of Chapter 6 connects shift-
minimality and cost. The cost of a measure preserving countable Borel equivalence re-
lation is a [0, co]-valued orbit equivalence invariant introduced by Levitt [Lev95] and then
developed considerably by Gaboriau [Gab00]. The cost of a measure preserving action of
I" is defined to be the cost of the equivalence relation generated by this action. The cost of
a group I, denoted C(I"), is then defined as the infimum of the costs of its free measure
preserving actions. When I is infinite, then C'(I') > 1. T is said to have fixed price r,
where r > 0, if every free action of I' has cost r. For example, infinite amenable groups
have fixed price 1, and Gaboriau has shown the free group of rank n has fixed price n. A
major open question in the area is whether every countable group has fixed price. This is
known to be the case for many groups, but is open in general. The following is shown in

Chapter 6.

THEOREM 6.5 (T-D [TD12b]). If a countable group 1" does not have fixed price 1
then I' /ARy is shift-minimal. In addition, if C(I') > 1 then every non-trivial invariant
random subgroup of I /| ARy of infinite index has cost oo, and in particular I' /ARy has no

non-trivial amenable invariant random subgroups.

Results of Gaboriau imply ARy is finite in the above situation. Part of the proof of

the first statement in Theorem 6.5 involves extending a result of Kechris [Kec10], that cost
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respects weak containment in finitely generated groups, to the setting of general countable
groups; one consequence is a characterization of countable groups with fixed price 1, pre-
viously shown to hold in the finitely generated case by Abért and Weiss: a countable group
has fixed price 1 if and only if its Bernoulli shift has cost 1. The second statement is an
analogue of a theorem of Bergeron and Gaboriau [BG04] about the first /2-Betti number.
Theorems 6.4 and 6.5 along with Bergeron and Gaboriau’s result provide evidence for

the following conjecture:

Conjecture 1: If ' is a countably infinite group with positive ¢>-Betti number, then

'/ ARp has the unique trace property.

It is known that C'(I") > BP(F) + 1 for any countably infinite group I', where B?)(F)
is the first £>-Betti number of I'. It is an open problem whether this is actually an equality.
Regardless, the hypothesis 552)(I’) > 0 is at least as strong as the hypothesis C(I") > 1
from Theorem 6.5. Peterson and Thom [PT11] have shown that if I" is torsion-free and
satisfies an additional technical hypothesis, then Conjecture 1 holds. What they actually
show is that groups satisfying their hypotheses have many free subgroups, and then C*-
simplicity and the unique trace property are easily deduced using a Powers-like argument
from [BCdLH94]. If the additional technical hypothesis is dropped then their methods still
show that I" has rather strong paradoxicality properties.

In light of the connections between cost and invariant random subgroups, a proof of
Conjecture 1 would add an interesting dimension to the relationship between cost and the

first /2-Betti number.
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Chapter 2

Ultraproducts of measure preserving

actions and graph combinatorics

Clinton T. Conley, Alexander S. Kechris, and Robin D. Tucker-Drob

1. Introduction

In this paper we apply the method of ultraproducts to the study of graph combinatorics
associated with measure preserving actions of infinite, countable groups, continuing the
work in Conley-Kechris [CK13].

We employ the ultraproduct construction as a flexible method to produce measure pre-
serving actions a of a countable group I" on a standard measure space (X, i) (i.e., a standard
Borel space with its o-algebra of Borel sets and a Borel probability measure) starting from
a sequence of such actions a,, on (X, i,),n € N. One uses a non-principal ultrafilter U
on N to generate the ultraproduct action [ [, a,,/U of (a,) on a measure space (X, juy),
obtained as the ultraproduct of (( X, 1,,)) via the Loeb measure construction. The measure
algebra of the space (X, 1i¢) is non-separable but by taking appropriate countably gener-
ated subalgebras of this measure algebra one generates factors a of the action [ [ a,/U
which are now actions of I" on a standard measure space (X, 1) and which have various

desirable properties.



15

In §2, we discuss the construction of the ultrapower (X3, 1/) of a sequence of standard
measure spaces (X, i1,),n € N, with respect to a non-principal ultrafilter / on N, via
the Loeb measure construction. We follow largely the exposition in Elek-Szegedy [ES07],
which dealt with the case of finite spaces X,, with y,, the counting measure.

In §3, we define the ultraproduct action [ [ a,/U on (X, 1) associated with a se-
quence a,,n € N, of measure preserving actions of a countable group I" on (X, ) and
discuss its freeness properties. When a,, = a for all n, we put a;, = [ [, a./U.

In §4, we characterize the factors of the action [[ a,/U associated with countably
generated o-subalgebras of the measure algebra of (Xj, 1i/).

For a measure space (X, 1) and a countable group I, we denote by A(T", X, 1) the space
of measure preserving actions of I" on (X, 1) (where, as usual, actions are identified if they
agree a.e.). This space carries the weak topology generated by the maps a € A(T', X, ) —
v A(yel,Ae MALG,), from A(T, X, 1) into the measure algebra MALG,, (with the
usual metric d,(A, B) = u(AAB)), and where we put ¥* - x = a(7,x). When (X, p) is
standard, A(I", X, pu) is a Polish space.

Ifa € AT, X, p),a, € A(T', X, ), n € N, and U is a non-principal ultrafilter on N,

we say that a is weakly U-contained in (a,),in symbols
a <y (an)
if for every finite /' C I'; Ay, ..., Ay € MALG,, € > 0, for {-almost all n:
IBi,,... 3By, € MALG,, Vv € F¥i,j < N

(" - Ai OV Aj) = pn (7™ - Bin O Bjn)| <€,

(where a property P(n) is said to hold for U-almost all n if {n: P(n)} € U). In case
a, = b for all n, then a <y (a,) < a < b (in the sense of weak containment of actions,

see Kechris [Kec10]).
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If a,b, € A(I', X, u),n € N, we write

lim b, = a
n—U

if for each open nbhd V' of a in A(T', X, uu),b, € V, for U-almost all n. Finally a = b
denotes isomorphism (conjugacy) of actions.

We show the following (in 4.3):

THEOREM 1. Let U be a non-principal ultrafilter on N. Let (X, u), (X, i), n € N
be non-atomic, standard measure spaces and let « € A(T", X, u), a,, € A(T', X, pt,). Then

the following are equivalent:

(1) a <y (an),
(2) aisafactorof [], a,/U,

(3) a = lim,,_yy b,, for some sequence (b,,), with
b, € A", X, p), b, = a,,Vn € N,

In particular, for a € A(T', X, u),b € A(T',Y,v),a < bis equivalent to “a is a factor
of by,”. Moreover one has the following curious compactness property of A(I', X, 1) as a
consequence of Theorem 1: If a,, € A(I", X, ), n € N, then there is ng < ny < ng < ...
and b,, € A(T', X, ), by, = ay,, such that (b,,) converges in A(I", X, u).

In §5, we apply the ultraproduct construction to the study of combinatorial parameters
associated to group actions. Given an infinite group I' with a finite set of generators .S,
not containing 1, and given a free action a of I" on a standard space (X, i), the (simple,

undirected) graph G(S, a) has vertex set X and edge set F(S, a), where
(x,y) € E(S;a) x#y&Ise S(s" - x=yors”-y=ux).

As in Conley-Kechris [CK13], we define the associated parameters x, (S, a) (the measur-

able chromatic number), x;F (S, a) (the approximate chromatic number) and i,,(S, a) (the

independence number), as follows:
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e x,.(S, a) is the smallest cardinality of a standard Borel space Y for which there is a
(u—)measurable coloring c: X — Y (i.e., zE(S, a)y = c(z) # c(y)).

e X;P(S; a) is the smallest cardinality of a standard Borel space Y such that for each
e > 0, there is a Borel set A C X with (X \ A) < € and a measurable coloring c: A — Y
of the induced subgraph G(S, a)|A = (A, E(S, A) N A?).

° z'#(S , a) is the supremum of the measures of Borel independent sets, where A C X is
independent if no two elements of A are adjacent.

Given a (simple, undirected) graph G = (X, E), where X is the set of vertices and F
the set of edges, a matching in GG is a subset M C FE such that no two edges in M have
a common vertex. We denote by X, the set of matched vertices, i.e., the set of vertices
belonging to an edge in M. If X, = X we say that M is a perfect matching.

For a free action a of I as before, we also define the parameter
m(S,a) = the matching number,

where m(S,a) is 1/2 of the supremum of 1 (Xy,), with M a Borel (as a subset of X?)
matching in G(S,a). If m(S,a) = 1/2 and the supremum is attained, we say that G(S, a)
admits an a.e. perfect matching.

The parameters ,(S, a), m(S, a) are monotone increasing with respect to weak con-
tainment, while x;”(S, a) is decreasing. Below we let a ~,, b denote weak equivalence of

actions, where ¢ ~,, b < a < b & b < a, and we let ¢ C b denote that a is a factor of b.

We now have (see 5.2)

THEOREM 2. Let I be an infinite, countable group and S a finite set of generators.
Then for any free action a of I" on a non-atomic, standard measure space (X, u1), there is a
free action b of I" on (X, i) such that

(1) a ~,band a C b,

(i) X7 (S, a) = x5 (S,b) = x,u(S,b),
(iii) 7,(S,a) = i,(S,b) and i,(S, b) is attained,
(iv) m(S,a) = m(S,b) and m(S, b) is attained.
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In §6, we study analogues of the classical Brooks’ Theorem for finite graphs, which
asserts that the chromatic number of a finite graph G with degree bounded by d is < d
unless d = 2 and G contains an odd cycle or d > 3 and G contains the complete subgraph
with d 4 1 vertices.

Let I', S be as in the preceding discussion, so that the graph G/(S, a) associated with a
free action a of T on a standard space (X, i) has degree d = |S*!|, where S*' = SU S
It was shown in Conley-Kechris [CK13] that x{7(S,a) < d, so one has an “approximate”

version of Brooks’ Theorem. Using this and the results of §5, we now have (see 6.11):

THEOREM 3. Let I be an infinite group and S a finite set of generators. Then for any
free action a of " on a non-atomic, standard space (X, 1), there is a free action b on (X, ;1)

such that a ~,, b and x,(5,b) < d (= |S*).

It is not the case that for every free action a of I' we have x,,(S,a) < d, but the only
counterexamples known are I' = Z or (Z/2Z) % (Z/2Z) (with the usual sets of generators)
and Conley-Kechris [CK13] show that these are the only counterexamples if [" has finitely
many ends.

The previous result can be used to answer a question in probability theory (see Aldons-
Lyons [ALO7]), namely whether for any I", S, there is an invariant, random d-coloring of
the Cayley graph Cay(I", S) (an earlier result of Schramm (unpublished, 1997) shows that
this is indeed the case with d replaced by d + 1). A random d-coloring is a probability
measure on the Borel sets of the space of d-colorings of the Cayley graph Cay(I,.S) and
invariance refers to the canonical shift action of I' on this space.

We now have (see 6.4):

THEOREM 4. Let I be an infinite group and S a finite set of generators with d = [S*1|.
Then there is an invariant, random d-coloring. Moreover for any free action a of I" on a

non-atomic, standard space (X, i), there is such a coloring weakly contained in a.

Let G s be the automorphism group of the Cayley graph G(I', S) with the pointwise

convergence topology. This is a Polish locally compact group containing I' as a closed
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subgroup. One can consider invariant, random colorings under the canonical action of G g
on the space of colorings, which we call G g-invariant, random colorings. This appears
as a stronger notion but we show in 6.6 that the existence of a Gr g-invariant, random d-
coloring is equivalent to the existence of an invariant, random d-coloring, so Theorem 4
works as well for G g-invariant, random colorings.

One can also ask whether the last statement in Theorem 4 can be improved to “is a factor
of” instead of “weakly contained in”. This again fails for I' = Z or (Z/2Z) % (Z/2Z) and a
the shift action of I" on [0, 1]¥, a case of primary interest, but holds for all other I" that have
finitely many ends. Moreover in the case of the shift action one has also Gr s-invariance

(see 6.7).

THEOREM 5. Let I be an infinite group and S a finite set of generators with d = [S*1|.
If I has finitely many ends but is not isomorphic to Z or (Z/2Z) % (Z/2Z), then there is a

G s-invariant, random d-coloring which is a factor the shift action of Gr g on [0, 1}F.

In §7, we discuss various results about a.e. perfect matchings and invariant, random
matchings. Lyons-Nazarov [LN11] showed that if I' is a non-amenable group with a finite
set of generators S and Cay(I", S) is bipartite (i.e., has no odd cycles), then there is a Gr -
invariant, random perfect mateching of its Cayley graph, which is a factor of the shift action
of G5 on [0, 1]". This also implies that m(S, sr) = 3, where s is the shift action of I on
[0, 1]", and in fact the graph associated with this action has an a.e. perfect matching. We do
not know if m(S,a) = % actually holds for every I', S and every free action a. We note in
7.4 that the only possible counterexamples are those I', S' for which I" is not amenable and

S consists of elements of odd order. However we show in 7.7 the following:

THEOREM 6. Let I' = (Z/3Z) * (Z/3Z) with the usual set of generators S = {s,t},
where s> = t3 = 1. Then for any free action a of I" on a non-atomic, standard measure

space (X, i), the associated graph G(S, a) has an a.e. perfect matching.

In §8, we study independence numbers. In Conley-Kechris [CK13], the following was

shown: Let I, S be as before. Then the set of independence numbers i,,(5, a), as a varies
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over all free actions of I, is a closed interval. The question was raised about the structure
of the set of all i,,(S, a), where a varies over all free, ergodic actions of I'. We show the

following (in 8.1).

THEOREM 7. Let I be an infinite group with S a finite set of generators. If I' has

property (T), the set of i,,(.S, a) as a varies over all the free, ergodic actions of I is closed.

We do not know what happens if I' does not have property (T).

In §9, we discuss the notion of sofic equivalence relations and sofic actions, recently
introduced in Elek-Lippner [EL10]. We use ultraproducts and a result of Abért-Weiss
[AW11] to give (in 9.6) an alternative proof of the theorem of Elek-Lippner [EL10] that
the shift action of an infinite countable sofic group in sofic and discuss some classes of
groups 1" for which every free action is sofic.

Elek-Lippner [EL10] raised the question of whether every free action of a sofic group

is sofic.

Acknowledgements. Research of ASK and RDT-D was partially supported by NSF Grant
DMS-0968710. We would like to thank Russell Lyons for many useful conversations.

2. Preliminaries

We review here some standard terminology and notation that will be used throughout

the paper.

(A) A standard measure space is a measure space (X, 1), where X is standard Borel
space (i.e., a Polish space with its o-algebra of Borel sets) and p a probability measure
on the o-algebra B(X) of Borel sets. We do not assume in this paper that (X, ) is non-
atomic, since we do want to include in this definition also finite measure spaces. If (X, u)
is supposed to be non-atomic in a given context, this will be stated explicitly.

The measure algebra MALG,, of a measure space (X, 1) is the Boolean o-algebra of

measurable sets modulo null sets equipped with the measure .
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As a general convention in dealing with measure spaces, we will often neglect null sets,

if there is no danger of confusion.

(B) If (X, i) is a standard measure space and E C X? a countable Borel equivalence
relation on X (i.e., one whose equivalence classes are countable), we say that F' is measure
preserving if for all Borel bijections ¢: A — B, where A, B are Borel subsets of X, such
that p(z) E'x, u-a.e.(x € A), we have that ¢ preserves the measure /.

Such an equivalence relation is called treeable if there is a Borel acyclic graph on X

whose connected components are the equivalence classes.

(C) If T is an infinite, countable group and S a finite set of generators, not containing
1, the Cayley graph Cay(T", S), is the (simple, undirected) graph with set of vertices I" and
in which v, § € I" are connected by an edge iff 3s € S(ys = d or ds = 7).

Finally for such I, S the number of ends of Cay(I", S) is the supremum of the number of
infinite components, when any finite set of vertices is removed. This number is independent

of S and it is equal to 1, 2 or co.

3. Ultraproducts of standard measure spaces

(A) Let (X, ), n € N, be a sequence of standard measure spaces and denote by
B(X,) the o-algebra of Borel sets of X,,. Let U/ be a non-principal ultrafilter on N. For

P C N x X (X some set) we write
UnP(n,z) < {n: P(n,x)} € U.

If UnP(n,z) we also say that for U-almost all n, P(n,x) holds. On [], X, define the

equivalence relation

(Tn) ~u (Yn) & Un(x, = yn),

let [(,,)]u be the (~)-equivalence class of (z,,) and put

X = ([T Xa) U = L)l () € [T X
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Given now (4,) € [[,, B(X,), we define [(A,,)] € Xy by
[(zn)]u € [(An)lu & Un(z, € Ay).

Note that

[(~ Al =~ [(An)]u
[(An U By = [(An)]u U [(Bn)lu

[(An OV By = [(An)lu N [(Bn)us

where ~ denotes complementation. Put
By, = {[(A)lu: (4.) € [ [ B(X.)},

so that By, is a Boolean algebra of subsets of Xy,.

For [(A,)]u € By, put

MU([(AH)]M) = lim Un(An)>

n—U

where lim,,_,;, 7, denotes the ultrafilter limit of the sequence (r,,). It is easy to see that yi,
is a finitely additive probability Borel measure on By,. We will extend it to a (countably

additive) probability measure on a o-algebra containing By).

DEFINITION 3.1. A set N C Xy, is null if Ve > 03A € B, (N C A and (A) < e).

Denote by IV the collection of null sets.
PROPOSITION 3.2. The collection IV is a o-ideal of subsets of X;;.

Proof. It is clear that IN is closed under subsets. We will now show that it is closed

under countable unions.

LEMMA 3.3. Let A* € By,,i € N, and assume that lim,, . pz/(U;~q A") = ¢. Then

there is A € By, with yy(A) =t and | J, A" C A.
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Granting this let N* € N,i7 € N, e > 0 be given. Let N' C A’ € B}, with py,(A?) <
€/2". Then 14, (|J;~, A") < e and py (U, A*) increases with m. So

m—U

lim ,uu(U A=t <e
i=0

and by the lemma there is A € By, with yiz4(A) < eand |, N* C |J, A" C A. So |J; N' is

null.

Proof of 2.3. Put B™ = | J" , A", so that yiy(B™) = t,, — t. Let A" = [(A%)]u, so that
B™ = [(B™))y, with B™ = |J', Al Let

1

sothat(, T, =@ and T, € U, as t,, = (i (B™) = limy, s ptn(B)).

Let m(n) = largest m such that n € (,.,, T;n. Then m(n) — oo as n — U, since for

each M, {n: m(n) > M} D ﬂi\fzo T, €U. Alson € T, ). So

|ty (B™) =ty | <

om(n)’
thus

lim 1, (B™™) =t.

n—U

Let A = [(BF"™)]y,. Then ju(A) = t. Also for each i,
{n: A® € B™™}Y D {n:m(n) >i} €U,
s0 Al = [(A))y C [(BF"™))u = A, thus |, A* C A. =

Put
By = {AC Xy: 34 € BY(AAA € N)},
and for A € By, put
pie(A) = py(A')

where A’ € B}, AAA’" € N. This is clearly well-defined and agrees with 14, on By
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PROPOSITION 3.4. The class By, is a g-algrebra of subsets of X, containing By, and

[ 18 a probability measure on By,.

Proof. It is easy to see that By, is a Boolean algebra containing B, and i, is a finitely
additive probability measure on By,. It only remains to show that if A, € By, n € N, are
pairwise disjoint, then | J,, A,, € By and p, (U, An) = >, tu(Ay).

For A, A" € By, let

A=A AAA € N.

Let now A/, € By, be such that A,, = A/.. By disjointifying, we can assume that the A/,

are disjoint. Note also that | J, A, = (J, 4,,. It is thus enough to find A’ € By, with

A'=U, Ay and gy (A') = 32, (A7) (= 22, Hu(An))-
By Lemma 2.3, there is A’ € By, with | J,, A, € A’ and p(A') =Y, puuu(AL). Then

for each NV,
N
AN Ja, ca\J4, eBj
n n=0
and
N N
(AN AL) = p(A) = il Al,) — 0
n=0 n=0

as N — oo. So
AAlJa, =a\ 4, eN
ie, A=, A, -
Finally, note that for A € By, uyy(A) =0< A€ N.

(B) The following is straightforward.

PROPOSITION 3.5. The measure /i, is non-atomic if and only if Ve > 0 V(A,) €
[T, B(X.) (Un(ua(An) > €) = 30 > 03(B,) € [, B(X,) Un(B, C A, & <
pin(Bn), bn (A \ Bn))])-

For example, this condition is satisfied if each (X,,, 1, ) is non-atomic or if each X, is

finite, y,, is normalized counting measure and lim,, .z, card(X,,) = oo.
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Let MALG,,, be the measure algebra of (X, By, f4). If 14, is non-atomic, fix also a

function Sy : MALG,,,, - MALG,,, such that S;(A) C A and

Hu
pu(Su(A)) = %Mu(!‘”-

Let now B, C MALG,, be a countable subalgebra closed under S,. Let B =
o(By) € MALG,, be the o-subalgebra of MALG,,, generated by B,. Since every el-
ement of B can be approximated (in the sense of the metric d(A, B) = uy(AAB)) by
elements of By, it follows that B is countably generated and non-atomic. It follows (see,
e.g., Kechris [Kec95, 17.44]) that the measure algebra (B, 1| B) is isomorphic to the mea-
sure algebra of (any) non-atomic, standard measure space, in particular MALG,,, where p
is the usual product measure on the Borel sets of 2N. Then we can find a Cantor scheme
(Bs)sea<n, With By € By, By = X, Byo N By = &, By = By N By, py(Bs) =277,

and (B;) viewed now as members of MALG ,,,, belong to B and generate B. Then define

K
0 Xy — 2N
by
plz)=aszx € ﬂBa‘n.

Then ¢~ '(N,) = B,, where N, = {a € 2V: s C a} for s € 2<N. Thus ¢ is By-
measurable (i.e., the inverse image of a Borel set in 2N is in By,) and ¢,y = p, so that
(2N, p) is a factor of (Xy, p¢) and A +— @~ 1(A) is an isomorphism of the measure algebra

MALG, with (B, 1| B).

4. Ultraproducts of measure preserving actions

(A) Let (X,,, 1), U be as in §2. Let " be a countable group and let {«,, } be a sequence
of Borel actions «,,: I' x X,, — X, such that o, preserves u,, Vn € N. We can define

then the action oy, : I' X X;y — Xy by

v @n)lu = 10 - ) lus
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where we let v - = ay(y, ) and similarly for each av,.
PROPOSITION 4.1. The action oy, preserves Bf{, By, and the measure /1.

Proof. Firstlet A = [(A,)|y € By} We verify that v« - A = [(v*" - A,,)]u, from which

it follows that the action preserves By. Indeed

()] € Y- (Al & (V1) - (@) € [(An)]
s Un((yhHo -z, € Ay)
< Un(x, € v - Ay)

< [(@n)lu € (" - An)lu-

Also

py (Y - A) = lim gy (7% - An)

n—U

= lim g1, (An) = pui(A),

n—U

so the action preserves 1| By).

Next let A € N and for each ¢ > 0let A C A, € By, with yy(A.) < e. Then
you - A C oy Ao and p (7 - A) < €, 807 - A € N, i.e., N is invariant under the
action.

Finally, let A € By, andlet A’ € By, be such that AAA’ € N, so that y*u (A)Ayu(A') €
N, thus v*#(A) € By and iy (v - A) = py (v - A') = py (A') = pa(A). 8

If (X, p) is a probability space and «, 5: I' x X — X are measure preserving actions
of I', we say the «, 3 are equivalent if Vy € T'(y* = ~7 p-ae). We let AT, X, )
be the space of equivalence classes and we call the elements of A(I", X, i) also measure
preserving actions. Note that if for each n, «,, o/, as above are equivalent, then it is easy
to check that oy, ay, are also equivalent, thus if a,, € A(I', X,,, ), n € N, is a sequence

of measure preserving actions and we pick «,, a representative of a,,, then we can define
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unambiguously the ultraproduct action

Han/u

n

with representative ay,. This is a measure preserving action of I on ( Xy, i), i.e., [ [,, an/U €

A(T, Xy, pus)- When a,, = a for all n, we put

ay = Ha/u.

(B) Recall that if a € A(T', X, pu),b € A(I',Y,v), we say that b is a factor of a, in
symbols

b C a,

if there is a measurable map : X — Y such that @, = v and (7 - z) = 7 - p(x), u-
a.e.(r). We denote by MALG,, the measure algebra of (X, it). Clearly I' acts on MALG,,
by automorphisms of the measure algebra. If (Y,v) is a non-atomic, standard measure
space, the map A € MALG, — ¢ '(A) € MALG, is an isomorphism of MALG, with
a countably generated, non-atomic, o-subalgebra B of MALG,,, which is I'-invariant, and
this isomorphism preserves the I'-actions. Conversely, we can see as in §1,(B) that every
countably generated, non-atomic, o-subalgebra B of MALG,,, which is I'-invariant, gives
rise to a factor of a as follows: First fix an isomorphism 7 between the measure algebra
(B, u| B) and the measure algebra of (Y, ), where Y = 2N and v = p is the usual product
measure. Use this to define the Cantor scheme (B;) co<n for B as in §1, (B) and define
p: X — Y as before. Now the isomorphism 7 gives an action of I' on the measure
algebra of (Y, ), which by definition preserves the I"-actions on (B, 1| B) and MALG,,.
The ['-action on MALG, is induced by a (unique) action b € A(I', Y, v) (see, e.g., Kechris
[Kec95, 17.46]) and then it is easy to check that ¢ witnesses that b T a (notice that for

eachs € 2N v e p(y2-z) € N, &+ - p(x) € N, p-a.e.()).
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In particular, the factors b € A(I', Y, v) of a = [[,, a,/U where (Y, v) is a non-atomic,
standard measure space, correspond exactly to the countably generated, non-atomic, I'-
invariant (for a) o-subalgebras of MALG,,,. For non-atomic i, we can construct such
subalgebras as follows: Start with a countable Boolean subalgebra B, € MALG,,,, which
is closed under the I'-action and the function Sy, of §2, (B). Then let B = o(B) be the

o-subalgebra of MALG,,, generated by By. This has all the required properties.

(C) We will next see how to insure, in the notation of the preceding paragraph, that

the corresponding to B factor is a free action. Recall that a € A(T", X, p) is free if Vy €
C\{1}(v* - = # x, p-ae. ()).

PROPOSITION 4.2. The action a = [[,, a,/U is free iff for each v € I" \ {1},

lir%un({x: v x £ x}) =1,

Proof. Note that, modulo null sets,

{v € Xy v -2 # 2} = [(An)lu,
where A, = {z € X,,: v* -z # z}. -
In particular, if all a,, are free, sois [ [, a,/U.

PROPOSITION 4.3. Suppose the action a = [[,, a,, is free. Then for each A € MALG,,,, A #
@ and v € T\ {1}, there is B € MALG,,, with B C A, jy(B) > 15pu(A) and
¥ -BNB=g.

Proof. It is clearly enough to show that if v # 1, A € BY, uy(A) > 0, then there is
B e BY, B C A, with ji(B) > +j(A) and v* - BN B = &.

Let A = [(A,)]y and py(A) = € > 0. Then thereis U C N,U € U withn € U =
(n(An) > S and p({z € X0 ™ - o # x}) > 1 — {). We can assume that each X, is

Polish and 7%~ is represented (a.e.) by a homeomorphism v** of X,,. Let

C,={z € A,: y*" -z # x},
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so that y,(Cy,) > §. Fix also a countable basis (V;");en for X,.

If x € C,, let V.7 be a basic open set such that v - V¥ N V¥ = & (this exists by
the continuity of v* and the fact that v*» - = # z). It follows that there is 2, € C,, with
tn(Cp, NVZO) > 0 and v - (C, N V)N (C, N V) = &. Thus there is C' C (), with
tn(C) > 0and v - C N C = @. By Zorn’s Lemma or transfinite induction there is an
element 5, of MALG,,,, which is maximal, under inclusion, among all D € MALG,,,

satifying: D C (), (viewing C,, as an element of the measure algebra), u,(D) > 0,

v - DN D = @. We claim that y1,,(B,,) > 5. Indeed let
E,=Cy\ (ByUx™ - B, U (y )™ - By).

If pn(By) < 15, then E,, # @, so as before we can find F,, C E,, with y,(F},) > 0 and
v - F,NF, = @. Thenv* - (B, U F,) N (B, UF,) = &, contradicting to maximality

of B,. So p,(B,) > <. Letnow B = [(B,)]u- -

£
16°

So if the action a = [],, a,,/U is free, let
Ty: T x MALG,,, — MALG,,

be a function such that for each v # 1, A € MALG,,, \{@}, Tu(7, A) C A, u(Ty(v, A)) >
+u(A) and v - Ty (v, A) N Ty(v, A) = @. Now, if in the earlier construction of countably
generated, non-atomic, I'-invariant o-subalgebras of MALG,,,, we start with a countable
Boolean subalgebra B closed under the I'-action, the function S;; of §2, (B) and Ty, (i.e.,
V(A € By = Ty(vy,A) € By)), then the factor b corresponding to B = o(By) is a free

action.

5. Characterizing factors of ultraproducts

In sections §4-8 all measure spaces will be non-atomic and standard. Also 1" is an

arbitrary countable infinite group.

(A) For such a measure space (X, 1), Aut(X, i) is the Polish group of measure pre-

serving automorphisms of (X, 1) equipped with the weak fopology generated by the maps
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T +— T(A),A € MALG,, from Aut(X, ) into MALG,, (equipped with the usual metric
d.(A,B) = n(AAB)). We can identify A(T", X, ;1) with the space of homomorphisms
of I into Aut(X, 11), so that it becomes a closed subspace of Aut(X, ;)" with the product

topology, thus also a Polish space.

DEFINITION 5.1. Leta € A(I', X, p),a, € A(I', X,, tn),n € N. Let U be a non-

principal ultrafilter on N. We say that a is weakly U-contained in (a,,), in symbols
a <y (ap)
if for every finite /' C I'; Ay, ..., Ay € MALG,, € > 0, for {-almost all n:
ABi, ... By € MALG, Vy € I'Vi,j < N

(Y- A NV Aj) — (Y™ - Bin N By )| < e

Note that if a,, = b for all n, then a <y (a,) < a < bin the sense of weak containment
of actions, see Kechris [Kec10].

One can also trivially see that a <, (a,,) is equivalent to the statement:

For every finite /' C I',Ay,... A, € MALG,, e > 0, there are [(B1,y,...,
[(Bn.n)|u € BY(Xy) such that for U-almost all n:

Vy € FVi, j < Nlu(y* - AiN Aj) = pa(y* - Bim) N Bjn| <€)
DEFINITION 5.2. For a,b, € A(T', X, 1), we write
lim b, = a
n—U

if for each open nbhd V' of a in A(T", X, ), Un(b, € V).

Since the sets of the form

V ={b:Vy € FVi,j < Nlu(y"- Ain A;) — u(y"- Ain 4;)| < e},
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for Ay, ..., A, aBorel partition of X, e > 0, F C I finite containing 1, form a nbhd basis
of a,lim,,_,y b, = a iffUn(b, € V), for any V of the above form.

Below = denotes isomorphism of actions.

THEOREM 5.3. Let U be a non-principal ultrafilter on N. Let a € A(T", X, ), and let

a, € AT, X,,, ), n € N. Then the following are equivalent

(1) a <y (an),
() a C ], an/U,

(3) a = lim,,_y;; b,,, for some sequence (b,,), b, € A(l', X, u) with b,, = a,,,n € N.

Proof. (1) = (2): Let 1 € Fy; C F; C ... be a sequence of finite subsets of ' with
I' =,, Frm. We can assume that X = 2N, 1 = p (the usual product measure on 2M). Let
N, ={ae2V: s Ca},fors e 2<N.

By (1), we can find for each m, s € 2™ [(B$™)] € By, such that U,,, € U, where
Un=1{n>m:Vyc F,Vs,t € 2™

(Y- NN Ni| = pin (7% - BY™ 0 B™)| < €},

where €, — 0. Since (,, Uy, = &, let m(n) = largest m such that n € (,_,, U;. Then

n € Upy(my and lim,_y m(n) = oco. Put
B, = [(By™)]y € BY,

Since for all n,n € Uy, (n), it follows (taking v = 1, s = ¢ in the definition of U,,) that for

all n with m(n) > length(s),

%) [W(N) = pn(BE™™)| < €y

So for any € > 0, if M > length(s) and €5, < ¢, then Un(m(n) > M), so (x) holds with e

replacing €,,(,) for U/-almost all n, thus

p(Bs) = lim Nn(BfL’m(n)) = pu(Ns).
n—U
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In general, we have that
Yy € Fpm)Vs, t € 25m®)

(v - Ne NV Ny) = (7 - B 0 B )| < ey

Soify € F,s,t € 2<N ¢ > 0, and if M is large enough so that M > max{length(s),length(¢)},~ €

Fu,en < € thenon {n: m(n) > M} € U we have

(Y - Ne N Ny) = (7" - By™ 0 B )| < e,
Q)
(*%) py (Y™ B N By) = p(y - Ny ).

Viewing each B; as an element of MALG,,,, we have By = Xy, By N By = O,

Mo
Bs = Bgo U By (for the last take v = 1,¢ = s% in (xx)) and py(Bs) = 27", if s €
2". Then the map w(Ny) = B gives a measure preserving isomorphism of the Boolean
subalgebra A, of MALG,, generated by (/N) and the Boolean algebra B, in MALG,,,
generated by (B;). Let B be the o-subalgebra of MALG,,,, generated by (B;). Since 7 is
an isometry of Ay with By (with the metrics they inherit from the measure algebra), and
Ay is dense in MALG,, B is dense in B, it follows that  extends uniquely to an isometry,
also denoted by 7, from MALG,, onto B. Since 7(&) = &, 7 is actually an isomorphism
of the measure algebra MALG,, with the measure algebra B (see Kechris [Kec10, pp. 1-
2]), it is thus enough to show that B is I'-invariant (for Hn a, /U) and that 7 preserves the
['-action.

Let b = [],, an/U. It is enough to show that w(y* - N5) = ~* - By (since (Bs) generates
B).
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Fix v € T'e > 0,s € 2<N. There is A € A, with pu(7y* - NJAA) < €/2. Now
A= 5 Ny~ A= L2 Ny and ~ N, = |Ii=2, Ny, (disjoint unions), so

Y NAA= (7" NN (~A)U (v*- (~ Ns) N A)

m2 m3 mi

= (|_| 7(1 - Ns N Nt;) U (|_| |_|(7a ' NSk N Ntz))

j=1 k=1i=1

If B=m(A) € By, then we also have

ma2
7'+ BAB=(|_|"- B.N By )U
j=1

m3 mi

(I_l |_|(’7b - B, N Bti))?

k=1i=1
S0 by ()
(Y’ - BAAB) = pu(y" - NJAA) < €/2.

Since 7 preserves measure, we also have j(m(7* - Ny)AB) < €/2, thus
(7" - B{AT(y* - Ny)) < e.

Therefore 7° - B, = 7(v* - N,).

(2) = (1): Suppose that a T b = [] a,/U. Let m: MALG, — MALG,, be a
measure preserving embedding preserving the I'-actions (so that the image 7(MALG,,) is
a I'-invariant o-subalgebra of MALG,,,). Fix F' C T finite, Ay,..., A, € MALG, and
e > 0. Let B',..., BN € B} represent m(A;),...,m(Ay). Let B® = [(B!)]y. Then for
vyeF, 73,k<N,

p(y" - Ay Ay) = (7’ - B' N BY)

= lim g, (y*" - Bﬁ; N BS),

n—U



34

so for U/-almost all n,
(v - Ay N Ag) — (¥ - BL N BE)| < e,
and thus for /-almost all n, this holds for all v € F, j, k < N. Thus a <y (a,).

(3) = (1): Fix such b,, and let A,, ..., Ay € MALG,,, F' C T  finite, € > 0. Then there

is U € U such that for n € U we have
Vy € FVi, j < N(lu(v* - A4 N Aj) — p(y™ - AN Aj)] < e).

Let ¢,: (X, 1) = (X, itn) be an isomorphism that sends b,, to a,, and put ¢, (4;) = B:.
Then ¢, (7" - A; N A;) =4 - BL N Bi, so forn € U:

Vy € FYi,j < N(lp(y* - AN Aj) = pn (v - B, N B[ < ¢),
thus a <y (an).
(1) = (3): Suppose a <y (a,). Let
V={ce A(l', X, p): Vy € F¥i,j < N(|u(v* - AN Aj) — p(y° - AinAj)| <),

where A;,..., A, € MALG, is a Borel partition of X, ¢ > 0 and F' C I is finite with

1 € F, be a basic nbhd of a.

Claim. It suffices to show that for any such V' we can find U € U such that forn € U

there is b, € V with b,, = a,,.

Assume this for the moment and complete the proof of (1) = (3) by verifying that
indeed for any such V' we can find a corresponding U as in the claim.
Since a <y (a,,), forany 6 > 0, we can find [(B1.,)|u, - - -, [(Byn)u € By and Us € U

such that for n € Us we have

Vy € FVi, j < N([p(y" - Ai NV Aj) — (Y™ - Biw 0 Bjn)| < 0).
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Taking § < ¢/20N? and U = Uy, the proof of Proposition 10.1 in Kechris [Kec10] shows

that for n € U there is b,, = a,, with b,, € V.

Proof of the claim. Let V[, O V; O V5, C ... be a nbhd basis for a consisting of sets
of the above form, and assume that for each m there is U,, € U such that for n € U,,,
there is b, m € V,,, with b, ,, = a,. We can also assume that (), U,, = &. Let m(n) =
largest m such that n € ﬂigm U;. We have a,, = by, mn) € Vinen), and for any nbhd V'
of a as above, if M is so large that Vi, C V, then b, ;) € Vi) € Vi €V, for

n e {n:m(n) > M} eU. So a = lim,_y by m(n).- -

COROLLARY 5.4. Let U be a non-principal ultrafilter on N and consider the actions
ac AT, X, u),b € A(T', Y, v). Then the following are equivalent:
(1) a < b,
(2) a C by.

Theorem 4.3 also has the following curious consequence, a compactness property of

the space A(I', X, ).

COROLLARY 5.5. Let a,, € A(T', X, 1), n € N, be a sequence of actions. Then there
is a subsequence ng < n; < ny < ... and b,, € A(I', X, u),b,, = a,,, such that (b,,)

converges in A(I', X, p).

Proof. Let a € A(I", X, i) be such that a T [, a,/U (such exists by §3, (B)). Then
by 4.3, we can find b,, = a,, with lim,_,;; b, = a. This of course implies that there is

ng <nyg < ... withlim; ,., b,, = a. =

Benjy Weiss pointed out that for free actions a stronger version of 4.5 follows from his
work with Abért, see Abért-Weiss [AW11]. In this paper it is shown that if sy is the shift
action of an infinite group I on [0, 1], then sp < a for any free action a of I'. From this it
follows that given free a,, € A(I', X, u),n € N, there is b,, = a,, with lim,, . b,, = sr.

Another form of compactness for A(I", X, 1) that is an immediate consequence of 4.5

is the following:
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Any cover of A(T", X, i) by open, invariant under = sets, has a finite subcover.

(B) Consider now a € A(T', X, 1) and the action a;; on (Xy, pig4). Clearly gy is non-
atomic as y is non-atomic. Fix also a countable Boolean subalgebra A, of MALG,, which

generates MALG,, and is closed under the action a. The map

(where (A) is the constant sequence (A,), A, = A,¥n € N) embeds A, into a Boolean
subalgebra C of MALG,,,, invariant under a, preserving the measure and the I'-actions
(a on Ay and az; on Cy).

Let By 2 Cj be any countable Boolean subalgebra of MALG,,, closed under the action
ay and the function Sy, of §2, (B) and let B = o(By) be the o-algebra generated by By.
Let b be the factor of ay; corresponding to B, so that b C a;, and thus b < a by 4.4. We

also claim that ¢ C b and thus a ~,, b, where
ar~ybsa<b&b<a.

Indeed, let Dy, = o(Cj) be the o-subalgebra of B generated by Cy. Then D, is also
closed under the action a;;. The map 7 is an isometry of Ay with Cj, which are dense in
MALG,,, D, resp., so extends uniquely to an isometry, also denoted by 7, of MALG,, with
D,. Since 7(@) = @, it follows that 7 is an isomorphism of the measure algebra MALG,,
with the measure algebra D, (see Kechris [Kecl0, pp. 1-2]). Fix row v € I'. Then v*
on MALG,, is mapped by 7 to an automorphism 7(y*) of the measure algebra D,. Since
w(y* - A) = vy - w(A), for A € Ay, it follows that 7(y*)|Cy = 7% |C), so since Cy
generates Dy, we have m(7*) = y*| D, i.e., 7 preserves the I'-actions (¢ on MALG,, and
ay on Dy), thus a C b.

Recall now that a € A(I', X, p) admits non-trivial almost invariant sets if there is

a sequence (A,,) of Borel sets such that p(A,)(1 — u(Ay,)) # 0 but Vy(lim, e p(7* -
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A,AA,) = 0). We call an action a strongly ergodic (or Ey-ergodic) if it does not admit

non-trivial almost invariant sets. We now have:

PROPOSITION 5.6. Let a € A(', X, u). Then a is strongly ergodic iff Vb ~,, a (b is
ergodic) iff Vb < a (b is ergodic).

Proof. Assume first that a is not strongly ergodic and let (A,,) be a sequence of Borel
sets such that for some 6 > 0, § < u(A,) < 1— 0 and Vy(lim, 0 p(7* - A,AA,) = 0).
Let U be a non-principal ultrafilter on N and let A = [(A,)]y € By. Then viewing A
as an element of MALG,,,, we have 7 - A = A Vy € I', and 0 < py(A) < 1. Let
B, be a countable Boolean subalgebra of MALG,,, closed under a,, the function S, and
containing Cy as before. Let b be the factor of ay, associated with B = ¢ (By), so that
a ~, b. Since A € B, clearly b is not ergodic.

Conversely assume b < a and b is not ergodic. It follows easily then from the definition

of weak containment that a is not strongly ergodic. o

Finally we note the following fact that connects weak containment to factors.

PROPOSITION 5.7. Leta,b € A(T', X, u1). Then the following are equivalent:

(i) a < b,

(i) de € AT, X, p)(c ~p b& a Cc).

Proof. (ii) clearly implies (i), since a = ¢ = a < c and < is transitive.

(i) = (ii) Let U be a non-principal ultrafilter on N. By 4.4, if a < b then a C by.
Then as in the first two paragraphs of §4, (B), we can find an appropriate o-subalgebra of
MALG,,, invariant under by, so that if c is the corresponding factor, then ¢ ~,, b (and in

fact moreover b C ¢) and a C c. =

6. Graph combinatorics of group actions

Let I be an infinite group with a finite set of generators S C I' for which we assume

throughout that 1 ¢ S. We denote by FR(I", X, i) the set of free actions in A(I", X, pu). If
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a € FR(I', X, 1) we associate with a the (simple, undirected) graph G(S, a) = (X, E(S, a)),

where X is the set of vertices and E(S, a), the set of edges, is given by
(2, 9)E(S,a) & o £y &Is € S (s" -z = y),

where St = {s,571: s € S}. We also write 2 E(s, a)y if (z,y) € E(S,a). As in Conley-

Kechris [CK13], we associate with this graph the following parameters:

Xu(S,a) = the measurable chromatic number,
X, (S,a) = the approximate chromatic number,

i,(S,a) = the independence number,

defined as follows:

e x,. (5, a) is the smallest cardinality of a standard Borel space Y for which there is a
(u—)measurable coloring c: X — Y (i.e., xE(S,a)y = c(z) # c(y)).

o X7 (S,a) is the smallest cardinality of a standard Borel space Y such that for each
€ > 0, there is a Borel set A C X with (X \ A) < € and a measurable coloring c: A — Y
of the induced subgraph G(S, a)|A = (A, E(S, A) N A?).

¢ i,(S5, a) is the supremum of the measures of Borel independent sets, where A C X is
independent if no two elements of A are adjacent.

Given a (simple, undirected) graph G = (X, E), where X is the set of vertices and
E the set of edges, a matching in G is a subset M C E such that no two edges in M
have a common point. We denote by X, the set of matched vertices, i.e., the set of points
belonging to an edge in M. If X, = X we say that M is a perfect matching.

For a € FR(I', X, 1) as before, we also define the parameter

m(S,a) = the matching number,
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where m(S,a) is 1/2 of the supremum of ;(Xy,), with M a Borel (as a subset of X?)
matching in G(S,a). If m(S,a) = 1/2 and the supremum is attained, we say that G(5, a)
admits an a.e. perfect matching.

Note that we can view a matching M in G(S, a) as a Borel bijection ¢: A — B, with
A, B C X disjoint Borel sets and 2 E(S, a)p(z), Vo € A. Then X, = AU B and so u(A)
is 1/2u(X ). Thus m(S, a) is equal to the supremum of 14(A) over all such .

It was shown in Conley-Kechris [CK13, 4.2, 4.3] that

a=<b=1i,(5 a) <i,(5,0),x;7(S,a) > x;F(S,b).

I

We note a similar fact about m/(.S, a).

PROPOSITION 6.1. Let I' be an infinite countable group and S C I a finite set of
generators. Then

a<b=m(S,a) <m(S,0).

Proof. Let o: A — B be a matching for G(S, a). Then there are Borel decompositions
A=]" A, B=]_, By andsi,...,s, € St with p|A; = s¢|A;, ¢(A;) = B;. Fix
0 > 0. Since a < b, for any € > 0, we can find a sequence (1, ..., C,, of pairwise disjoint

Borel sets such that for any v € {1} U (ST, |u(y* - AN A4;) — u(r - C; N C))| < e

fori <i,7 <n.Since s - A, NA; =0, foralll <45 §n,ands?-Aiﬂsg-Aj = o,
forall 1 < i # j < n, it follows that [u(A;) — p(Ci)| < 6,1 < i < n,pu(st-C;NCy) <
6,1 <i,j <n,and u(s?-C;Ns-C;) <e,1 <i+# j<n.By disjointifying and choosing
e very small compared to 9, it is clear that we can find such pairwise disjoint C', ..., C,
Withsf~CiﬂCj =g,1 <145 < n,sf-C’iﬂsg’--C’j =o,1 <i# j <n,andif
C=1J,C,D =], s Ci then |u(C) — u(A)| < 4. Clearly ¢»: C' — D given by
Y|C; = s|C; is a matching for G(S,b) and p(C) > u(A) — §. Since § was arbitrary this
shows that m(S,a) < m(S,b). =

(B) The next result shows that, modulo weak equivalence, we can turn approximate

parameters to exact ones.
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THEOREM 6.2. Let I' be an infinite countable group and S C I a finite set of genera-

tors. Then for any a € FR(I', X, p1), there is b € FR(I", X, u1) such that

(1) a ~y,banda C b,

(i) x;P(S,a) = x;P(S,b) = xu(S,b),
(iii) 7,(5,a) = i,(S,b) and i,(S, b) is attained,
(iv) m(S,a) = m(S,b) and m(S, b) is attained.

Proof. Let U/ be a non-principal ultrafilter on N. The action b will be an appropriate
factor of the ultrapower ay,.
Let k = x{P(S,a). This is finite by Kechris-Solecki-Todorcevic [KST99, 4.6]. Let
i,(S,a) = < 5 and let m(S,a) = m < 1. Then for each n > 1, find the following:
(a) A sequence C}, ... CFof pairwise disjoint Borel sets such that s* - C: N C = &,
for1 <i<k,se€S*, andp(l [l ,Cl)>1~1
(b) A Borel set [,, such that s* - [, N I,, = @, s € S*', and p(l,,) > ¢ — 2.
(c) A pairwise disjoint family of Borel sets (A2).cs+1, such that s* - A5 N Al =
g, s,t€ ST s ANttt AL = g st € ST s £ ¢, and

p( || A)=m-1L

seS*!

Consider now the ultrapower action ay on (Xy, yi¢) and the sets C* = [(C?)], €
B, 1 <i<kI=][,)]u € Bjand A* = [(A%)|y € By, s € ST'. Viewed as elements
of MALG,,, they satisfy:

@) C'NCI =@,1<i#j<ksuCnNC=a,1<i<ksecS ul,C)=
L,

®) s -INI=a,s€e S uy(l) >,

(c) ANA' =@, s #t,5,t € ST su. ASNA = & 5.t € S su. As Nt . Al =
@,s #t,s,t € ST p(,cge 4°) > m.
Let now B, be a countable Boolean subalgebra of MALG,,, closed under the action

ay, the functions Sy, 13, of §2, (B), §3, (B), resp., and containing the algebra C| of §4,
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(B) and also C* (1 < i < k), I, A® (s € S*!). Let B = o(By) and let b be the factor
of ay corresponding to B. (We can of course assume that b € FR(I', X, ;1).) Then by
84, (B) again, a ~,, band a C b. So, in particular, x{7(S,a) = xiP(S,b) = k,i,(S,a) =
i,(S,b) = cand m(S, a) = m(S,b) = m, since a ~,, b. The sets (C");<, give a measurable
coloring of G(S,b)| A, for some A with ;1(A) = 1 and we can clearly color in a measurable
way G(S,b)| ~ A by ¢ colors, where ¢ is the chromatic number of the Cayley graph
Cay(I',S) of T', S. Since ¢ < k, it follows that x,,(S,b) < k, so x,.(5,b) = xiP(S,0).
Finally, (b), (¢') show that i,,(.S,b) = ¢ and m(S,b) = m are attained. =

7. Brooks’ Theorem for group actions

(A) Brooks’ Theorem for finite graphs asserts that for any finite graph G with degree
bounded by d, the chromatic number x(G) is < d, unless d = 2 and G contains an odd
cycle or d > 3 and G contains a complete subgraph (clique) with d + 1 vertices (and
the chromatic number is always < d + 1). In Conley-Kechris [CK13] the question of
finding analogues of the Brooks bound for graphs of the form G(S,a) is studied. Let
d = |S*!| be the degree of Cay(T',S). First note that by Kechris-Solecki-Todorcevic
[KST99, 4.8], x.(S5,a) < d+ 1 (in fact this holds even for Borel instead of measurable
colorings). A compactness argument using Brooks’ Theorem also shows that x (.5, a) < d,
where x (.5, a) is the chromatic number of G(.S, a). It was shown in Conley-Kechris [CK13,
2.19, 2.20] that for any infinite I, XZP(S, a) < d, for any a € FR(T", X, 1), so one has a
full “approximate” version of Brooks’ Theorem. How about the full measurable Brooks
bound x,,(S,a) < d? This is easily false for some action a (e.g., the shift action), when
I'=Zor " = (Z/2Z) x (Z/2Z) (with the usual sets of generators) and it was shown in
Conley-Kechris [CK13, 5.12] that when I has finitely many ends and is not isomorphic
to Z or (Z/2Z) = (Z/2Z), then one indeed has the Brooks’ bound x,,(5,a) < d, for any
a € FR(T", X, ) (in fact even for Borel as opposed to measurable colorings). It is unknown
if this still holds for I' with infinitely many ends but 5.2 shows that one has the full analogue

of the Brooks bound up to weak equivalence for any group I'.
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THEOREM 7.1. For any infinite group I and finite set of generators S with d = |S*!

)

forany a € FR(T', X, p), there is b € FR(I', X, p), with b ~,, a and x,(S,b) < d.

This also leads to the solution of an open problem arising in probability concerning
random colorings of Cayley graphs.

Let I' be an infinite group with a finite set of generators S. Let £ > 1. Consider the
compact space k' on which I acts by shift: vy - p(d) = p(y~'d). The set Col(k, T, S) of
colorings of Cay(I", S) with k colors is a closed (thus compact) invariant subspace of k'
An invariant, random k-coloring of the Cayley graph Cay(I', §) is an invariant probability
Borel measure on the space Col(k,I",S). Let d by the degree of Cay(I", S). In Aldous-
Lyons [ALO07, 10.5] the question of existence of invariant, random k-colorings is discussed
and mentioned that Schramm (unpublished, 1997) had shown that for any I", S there is
an invariant, random (d + 1)-coloring (this also follows from the more general Kechris-
Solecki-Todorcevic [KST99, 4.8]). They also point out that Brooks’ Theorem implies
that there is an invariant, random d-coloring when I is a sofic group (for the definition of
sofic group, see, e.g., Pestov [Pes08]). The question of whether this holds for arbitrary I'
remained open. We show that 6.1 above provides a positive answer. First it will be useful

to note the following fact:

PROPOSITION 7.2. Let I' be an infinite group, S a finite set of generators for I" and let

k > 1. Then the following are equivalent:

(i) There is an invariant, random k-coloring,

(ii) Thereis a € FR(I', X, p) with x,, (S, a) < k.

Proof. (ii) = (i). Letc: X — {1,...,k} be a measurable coloring of G(S, a). Define
C: X — k' by C(x)(y) = e((y™1)* - ). Then C is a Borel map from X to Col(k, T, S)
that preserves the actions, so C, . is an invariant, random k-coloring.

(i) = (ii). Let p be an invariant, random k-coloring. Consider the action of I' on
Y = Col(k, T, S) (by shift). Fix also a free action b € FR(I", Z, v) (for some (Z,v)). Let

X =Y xZ,u=pxwv. Then I acts freely, preserving pron X by v- (y,2) = (7 y,7 - 2).
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Call this action a. We claim that x,(S,a) < k. For thislet c: X — {1,...,k} be defined
by ¢((y,2)) = y(1) (recall that y € Col(k,T',S),soy: I' — {1,...,k} is a coloring of
Cay(I', S)). It is easy to check that this a measurable k-coloring of G(.5, a). -

REMARK 7.1. From the proof of (ii) = (i) in 6.2, it is clear that if « € FR(I", X, ) has

X (S, a) < k, then there is an invariant, random k-coloring which is a factor of a.
We now have

COROLLARY 7.3. Let I' be an infinite group and S a finite set of generators. Let d =
|SEL|. Then there is an invariant, random d-coloring. Moreover, for each a € FR(I", X, p)

there is such a coloring which is weakly contained in a.

Proof. This is immediate from 6.1 and 6.3. —

Lyons and Schramm (unpublished, 1997) raised the question (see Lyons-Nazarov [LLN11,
§5]) of whether there is, for any I, S, an invariant, random y-coloring, where y = x(Cay(T', 5))
is the chromatic number of the Cayley graph. It is pointed out in this paper that the answer
is affirmative for amenable groups (as there is an invariant measure for the action of I' on

Col(x, I, S) by amenability) but the general question is open.

REMARK 7.2. One cannot in general strengthen the last statement in 6.4 to: For each
a € FR(T', X, u), there is an invariant, random d-coloring which is a factor of a. Indeed,
this fails for ' = Z or I' = (Z/2Z) % (Z/2Z) (with the usual set of generators S for which
d = 2) and a the shift action of I" on 2%, since then the shift action of " on Col(2, T, S) with
this random coloring would be mixing and then as in (i) = (ii) of 6.2, by taking b to be also
mixing, one could have a mixing action a € FR(I", X, i) for which there is a measurable
2-coloring, which easily gives a contradiction. On the other hand, it follows from the result
in [CK13, 5.12] that was mentioned earlier, that for any I' with finitely many ends, except
forT'=ZorT" = (Z/2Z) x (Z/22), one indeed has for any a € FR(T", X, i) an invariant,
random d-coloring which is a factor of the action a. We do not know if this holds for groups

with infinitely many ends.
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(B) Let I, S be as before and let Gr s = Aut(Cay(I", S)) be the automorphism group of
the Cayley graph with the pointwise convergence topology. Thus G s is Polish and locally
compact. The group Gr s acts continuously on Col(k, T, S) by: ¢ - ¢(y) = c(p™'(7)).
Clearly I' can be viewed as a closed subgroup of G ¢ identifying v € I" with the translation
automorphism d — d. It will be notationally convenient below to denote this translation
automorphism by (7). One can now consider a stronger notion of invariant, random k-
coloring by asking that the measure is now invariant under Gr g instead of I" (i.e., (I')).
To distinguish the two notions let us call the stronger one a Gr g-invariant, random k-
coloring. We now note that the existence of an invariant, random k-coloring is equivalent
to the existence of G g-invariant, random k-coloring. In fact it follows from the following

more general fact (applied to the special case of the action of Gr g on Col(k,T',.5)).

PROPOSITION 7.4. Let Gr g be as before and assume Gr g acts continuously on a
compact, metrizable space X . Then there exists a I'-invariant Borel probability measure on

X iff there is a G g-invariant Borel probability measure on X.

Proof. Denote by R = Rr g = Auty(Cay(I', S)) the subgroup of G = Gr g consisting
of all ¢ € G with p(1) = 1 (we view this as the rotation group of Cay(I",.S) around 1).

It is known that GG is unimodular, i.e., there is a left and right invariant Haar measure
(see Lyons-Peres [LP0S, Ex. 7.3]), so fix such a Haar measure 7. Since R is compact, open
in G, oo > n(R) > 0 and we normalize 7 so that n(R) = 1. Then p = 7n|R is the Haar
measure of R.

Next we note that I' N R = {1} and thus every ¢ € G can be written as

for unique v,y € T',r,7" € R. Indeed v = o(1),7 = (y)tpand v = (¢~ (1)L, 7" =

©{(7)"t = p(p~1(1)). This gives amap a: I' x R — R defined by a(v,r) = r/, where
(v)r =71'(+'). Thus

a(y,r) = Mr{r (7).
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One can now easily verify that this is a continuous action of I' on R and we will write
vor=aly,r) = r{r ().

Moreover this action preserves the Haar measure p.

Indeed, fix v € I" and put p,(r) = 7 - r. We will show that p,: R — R preserves p.
Ford e I',let Rs = {r € R: r"'(y') = 60}. Then R = | |;. Rs and p,(r) = (y)r(d) for
r € Ry, thus p,| R preserves 7 and so p., preserves p.

Assume now that yp is a Borel probability measure on X which is I'-invariant. We will

show that there is a Borel probability measure i on X which is G-invariant. Define
fe = /(7“ +pir)dr,
R
where the integral is over the Haar measure p on R, i.e., for each continuous [ € C(X),
pel$) = [ (o)D)
R

with 7 - pr(f) = pr(r=t - f),r7 1 f(x) = f(r - z). (As usual we put o(f) = [ fdo.) We
will verify that p is G-invariant.
Let /': X — X be a homeomorphism. For ¢ a Borel probability measure on X, let

F'- 0 = F.o be the measure defined by
Fo(f) :U(foFil)v
for f € C(X). Then we have

F-uaz/F-(T-ur)dr,
R
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because for f € C(X),
F-pe(f) = pe(fo F™)
— [ s o tar
= /F-(r-up)dr.

We first check that ji; is R-invariant. Indeed if s € R,

s-uG:/s-(r~up)dr

— [(sr) - e
~ [ myar

by the invariance of Haar measure.
Finally we verify that pg is [-invariant (which completes the proof that ug is G-

invariant as G = ['R). Indeed, in the preceding notation

() ma= [ )+ r)ar
— [ () v
— [0 () - uar
S CR

(as (v') - ur = pr forany ' € ).
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But we have seen before that r — ~y - r preserves the Haar measure of R, so

<v>-uaz/<v~r>-updr

~ [ ryir

= Ha

It is well known (see, e.g., Woess [Woe00, 12.12]) that if I' is amenable, so is G g.

This also follows from 6.6.

(C) As was discussed in 6.5, for any I', S with finitely many ends, except ' = Zor I' =
(Z2/2Z) % (Z/2Z), and any a € FR(T', X, u), there is an invariant, random d-coloring,
where d = |S*!|, which is a factor of a. This is of particular interest in the case where a
is the shift action sr of I" on [0, 1}F (with the usual product measure). In that case Gr g =
Aut(Cay(T, S)) also acts via shift on [0,1]" via ¢ - p(7) = p(¢ (7)) and one can ask
whether there is actually a G'r g-invariant, random d-coloring, which is a factor of the shift

action of Gr g on [0, 1]'. We indeed have:

THEOREM 7.5. Let I be an infinite countable group, .S a finite set of generators, and let
d = |S*|. If T has finitely many ends but is not isomorphic to Z or (Z/2Z) * (Z/2Z), and
Grs = Aut(Cay(I', S)), there is a Gr g-invariant, random d-coloring which is a factor of

the shift action of Gr s on [0, 1]'.
Proof. Put again G = Gr 5. Let X be the free part of the action of G on [0, 1], i.e.,

X={ze0,1]":Voe G\ {1y -z #2)},

(where ¢ - x is the action of G on [0, 1]").
If 1 is the product measure on [0, 1]7, then (X ) = 1, since X 2O {z € [0,1]': zis 1 —

1} = Xj and p(Xp) = 1. Moreover X is a G-invariant Borel subset of [0, 1]*.
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Since R = Aut,(Cay(T, S)) is compact, F5, the equivalence relation induced by R

on X, admits a Borel selector and
Xr=X/R={R-z:2z€ X}
is a standard Borel space. Define the following Borel graph £ on Xy
(R-2)E(R-y) = Is€ S (sR-2NR-y # @).
LEMMA 7.6. If (R - z)E(R - y), then
(x1,22) € Mpopy 1 €ER-c&€e R-y&3s e Sﬂ((s) Ty = Tg),

(is the graph of) a bijection between R - x, R - y consisting of edges of the graph G(S, sr),

i.e., it is a matching in this graph.

Proof. Fix 20 € R- 1,25 € R - x5 and sy € S*! with (sq) - 29 = 9.

First we check that Mpg., g, is a matching. Let (x1,22), (z1,25) € Mgy gy and let
(s) - @1 = 29, (8') -y = ), for some 5,8 € S*, and r - ¥y = ¥, for some r € R.
Then 7(s) - x; = (s') - x1, so r(s) = (s'), thusr € I', sor = 1 and x5 = zf. Similarly
(21, 22), (2}, 22) € MRy g, implies that z; = 2.

Next we verify that for every x; € R-x, thereis an xo € R-y with (21, 22) € MRy p.y-

Letr; € R be such that 7y - 7y = 29, so (so)71 - 11 = 29. Now

(so)r1 = ((so)ra {ri " (s™) (ri " (s )~

where 7, € Rand s’ € ST'. Thus ;' (s') - o1 = 29,50 (s') -2y =19 -2y =29 € Ry
and (z1,%2) € Mgy gy Similarly for every z, € R -y there is 1 € R - x with (21, 22) €

Mpg...r.y» and the proof is complete. -
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LEMMA 7.7. Let x € X. Then the map
vy R-(()7 - x)
is an isomorphism of Cay(I", S) with the connected component of R - x in E.

Proof. Let v € T and let s1,...,s, € S*! be such that v™!' = s,...s,. Then
(R-2)E(R- ({(s1) - x))E...E(R- ((y)""-z)), s0 R-({y)~! - x) is in the connected
component of R - x. Conversely assume that ? -  is in the connected component of R - x
and say (R-2)E(R-x)E(R-29)E...E(R - x,-1)E(R -y). By Lemma 6.8, there are
S1,...8, € S*l and 2/,...,2/, such that (s;) - @ = 2] € R-xy,(s0) -2y = ), €
R-xo,....(sp) 2! =2/ € R-y. Lety ' =s5,...5.. Thenz!, = (y)"' -2 € R-y, so
R-({(y)7'-2)=R-y. Thusy — R- ({y)~! - ) maps I onto the connected component
of R-x.

We next check thaty — R- ((y) ™' -z)is 1-1. Indeed if R- ({(y)"'-2) = R- ({6 ') - ),
then ()=t -2 = (§)~! - x, for some r € R, so as before r = 1 and v = 6.

_1.

Finally let (-, vs) be an edge in the Cayley graph of I', S. Then clearly R-({)'-z) ER-
(0)~" ),

so that, by 6.8 again, there are s € S*' r € R with (s){(7)"' -z = r(&)™" - z, ie,

)
(ys)™t-x) = R- ((s)"}{y)~! - z). Conversely assume that R((y)~! - 2)ER - (

(s){y)"t=r{5)"!. Thenr = 1 and ys~! = 4, so (7, ) is an edge in the Cayley graph. -

The following will be needed in the next section, so we record it here.
Let m: X — Xg be the projection function: 7(z) = R - z. Let v = m,u be the image

of u.
LEMMA 7.8. E preserves the measure v.

Proof. Let o: A — B be a Borel bijection with A, B Borel subsets of Xz and
graph(p) C E. We will show that v(A) = v(B).
We have v(A) = pu(Ugpea B - 7) and similarly for B. If o(R - z) = R -y, then

Mp.; .y gives a Borel bijection of R - z, R - y whose graph consists of edges of G(.5, sr)



50

and {Jp.,c 4 MR.2,r.y gives the graph of a Borel bijection of | J .4 R-2 with Uy .5 R- 2,
therefore v(A) = v(B). .

We now complete the proof of the proposition. Consider the graph (X, £). By 7.7, it
is a vertex transitive Borel graph with degree d = |S*!| and its connected components have
finitely many ends. So by Conley-Kechris [CK13, 5.1, 5.7, 5.11] and Lemma 6.9, (Xg, E)
has a Borel d-coloring. Cr: Xg — {1,...,d}. Definenow C: X — {1,...,d} by

C(z) =Cr(R-x)

Then clearly C' is a Borel d-coloring of G/(S,a). We use this as usual to define a random

d-coloring of the Cayley graph. Define
Y X — Col(d, T, 9)

by

and consider the measure ., on Col(d, I, S). This will be G-invariant provided that 1
preserves the G-action, which we now verify.

First it is clear that i) preserves the I'-action. It is therefore enough to check that it
preserves the R-action, i.e., ¢ (r-x) = r-¢(z) foreachz € X,r € R. Lety € I" in order to
check that ¢ (r-z)(v) = (r-¢(x))(y) or C((y)"'r-z) = () (r~' (7)) = C((r~ (7)) ")

But recall that
W= ()T N ) T

so (y)~tr = r'(r=1(y))~*, for some r’ € R, therefore R-({y)"'r-z) = R-({(r~1(y))~' - z)

and since C'(y) depends only on R - y, this completes the proof. o

(D) Fix an infinite group I" and a finite set of generators S, let G = Gr g = Aut(Cay(T", 5))

and let R = Rp g = Auty(Cay(I',.S)) as in the proof of 6.6. Then the action 7y - r of I'

on R defined there is an action by measure preserving homeomorphisms on the compact,
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metrizable group R. Provided that I', S have the property that R is uncountable, this may
provide an interesting example of an action of I'.

For instance, let I" = F, the free group with two generators, and let S = {a, b} be a set
of free generators. Then it is not hard to see that the action of I' on R is free (with respect
to the Haar measure p on R). Indeed, let I';, = {w € I': |w| = n} (where |w| denotes
word length in the generators a, b) and for w,v € 'y, let Ny, , = {r € R: r(w) = v}. If
v #v el,, then N,, N N,, = @ and since R acts transitively on [',,, there is r € R

with 70" = v/, s0 r Ny, , = N, v and thus p(Ny, ) = Ny . SO

for w,v € I',,.

Letnow v € I'\ {1} and assume that 7 € Ris suchthaty™!-r = () r(r71(y)) =r
or (Y)r = r{r7l(y)), soforall § € T, vr(d) = r(r~'(v)d) or r=1(7)d = r~1(yr(9))
and letting r(§) = ¢, we have r~'(7)r~1(e) = r~!(vye¢). Since ¢ was arbitrary in T, this
shows that r=1(y") = (r~!(v))",Vn > 1. It is thus enough to show that for each v €
F\A{1},{r € R:Yn > 1(r(v™) = (r(7y))™)} is null. Let |4"| = a, — oo. Then if
vyel {reR:r(y") = (r(1)"} € Ueer, {r € R: (") = €'} so p({r € R: r(7") =
(F())™}) < Seer, p(Nyen) = 0as 1 = oo Thus {r € R: ¥ > 1(r(y") = (r(7))")}

is null.

8. Matchings

(A) Let I be an infinite group and S a finite set of generators for I'. Fora € FR(T', X, p),
recall that m(S, a) is the matching number of a, defined in §5. If m(S,a) = % and the
supremum in the definition of m(S, a) is attained, we say that G(S, ) admits an a.e. per-
fect matching.

Abért and collaborators (private communication) have shown that the Cayley graph

Cay(I', S) admits a perfect matching.
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Let Er s be the set of edges of the Cayley graph Cay(I',S) and consider the space

2Fr.s which we can view as the space of all A C Er 5. Denote by
M(T,S)

the closed subspace consisting of all M C Er g that are perfect matchings of the Cay-
ley graph. The group Grs = Aut(Cay(T,S)) acts on 215 by shift: ¢ - z(v,d) =
(o 1 (7), 9 1(0)) and so does the subgroup I' < Grg. Clearly M(T,S) is invariant
under this action.

A Gr g-invariant, random perfect matching of the Cayley graph is a shift invariant
probability Borel measure on M (I, S). If such a measure is only invariant under the shift
action by I', we call it an invariant, random perfect matching.

Lyons and Nazarov [LN11] considered the question of the existence of invariant, ran-
dom perfect matchings which are factors of the shift of I" on [0, 1]* and showed the follow-

ing result.

THEOREM 8.1. (Lyons-Nazarov [LN11]) Let I" be a non-amenable group, .S a finite set
of generators for I' and assume that Cay(I", S) is bipartite (i.e., has no odd cycles). Then
there is a Gr g-invariant, random perfect matching, which is a factor of the shift action of

Gr,son [0,1]".
Let us next note some facts that follow from earlier considerations in this paper.

PROPOSITION 8.2. Let I' be an infinite group and .S a finite set of generators for I'.

Then the following are equivalent:

(i) There is an invariant, random perfect matching.
(ii) Thereis a € FR(I", X, ) such that G(S, a) admits an a.e. perfect matching.

(iii) There is a sequence a,, € FR(T', X, p) with m(S, a,) — 3.

Proof. Asin 6.2 and 5.2. —
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PROPOSITION 8.3. For I', S as in 7.2., if a € FR(I', X, p1) is such that the matching
number m(S,a) = 1, then there is b € FR(T', X, y1) with b ~,, a and G(S, b) admitting an
a.e. perfect matching, and there is an invariant, random perfect matching weakly contained

in a.
Proof. As in 6.2 and the proof of 7.2. -

PROPOSITION 8.4. Let I', S, Gr g be as before. Then there is an invariant, random

perfect matching iff there is a G g-invariant, random perfect matching.

Proof. By 6.6. ‘|

We now have

PROPOSITION 8.5. Let I" be an infinite group and .S a finite set of generators.
(i) If T is amenable or if S has an element of infinite order, then for any a € FR(I", X, u), m(S, a) =
1
5-
(ii) If S has an element of even order, then for any a € FR(I", X, 1), G(S, a) admits

an a.e. perfect matching.

Proof. i) When I" is amenable, this follows from the result of Abért and collabora-
tors that Cay(I", S) admits a perfect matching, using also the quasi-tiling machinery of
Ornstein-Weiss [OW80], as in Conley-Kechris [CK13, 4.10, 4.11]. The second case fol-
lows immediately from Rokhlin’s Lemma.

ii) This is obvious. =

We do not know if m(S, a) = 1 holds for every I', S, a € FR(I', X, s1). By 7.5 the only
problematic case is when S consists of elements of odd order and I' is not amenable. We
will see below that the answer is affirmative for the group I' = (Z/3Z) % (Z/3Z) and the
usual set of generators S = {s,t} with s> =3 = 1.

We also do not know if for every I, .S, there is an invariant, random perfect matching

(a question brought to our attention by Abért and also Lyons).
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(B) We now consider some implications of the following result of Lyons-Nazarov [LN11];

THEOREM 8.6. (Lyons-Nazarov [LN11, 2.6]) Let (X, ;) be a non-atomic, standard
measure space and G = (X, E) a Borel locally countable graph which is bipartite and
measure preserving (i.e., the equivalence relation it generates is measure preserving). If G
is expansive, i.e., there is ¢ > 1 such that for each Borel independent set A C X, u(A’) >

cu(A), where A’ = {x: JyFz(y € A)}, then G admits an a.e. perfect matching.
We use this to show

THEOREM 8.7. Let I' = (Z/3Z) % (Z/3Z) with the usual set of generators S = {s, ¢},

with s® = ¢3 = 1. Then for any a € FR(T', X, 1), G(S, a) admits an a.e. perfect matching.

Proof. Let A = (s) = {1,s,s?} and B = (t). Let X4 = X/A, Xp = X/B and let
(4, 15 be the corresponding quotient measures on X 4, X 5, normalized so that p4(X4) =

pp(Xp) =3 LetY = X, U Xp, v = pua + pp and define the following graph F on Y
yiFys oy #ypand Ir, 22 € X[y = A 21 & o = B w2 & yi Ny # 2.

It is not hard to see that this graph satisfies the hypotheses of 7.6, so it admits an a.e. perfect
matching, from which it follows that there is a Borel set 7' C X that simultaneously meets
every A-orbit in exactly one point and every B-orbit in exactly one point, modulo null sets.

Let P = X \ T and consider the induced subgraph G(S,a)|P. Its connected compo-
nents look like Z-lines. Then we can find a Borel subset () of P of very small measure
such that it meets every such connected component and two points of () in the same com-
ponent (Z-line) are at least 20 apart in this line. Call the elements of () markers. Given two
successive markers z, y in one such component, we can neglect points in the interval (z, y)
in this line that are within distance at most 5 from z or y (since these have very small mea-
sure), so that the rest of this interval looks like a set of points 1, xs, . . ., 2 where (1, x2)

+1

is an s-edge (i.e., xto = s*' - x1), (72, x3) is a t-edge, (x3,x4) an s-edge, etc. Then con-

sider the following edges: An s-edge (z1,¥;), where y; € T, (x2,x3), an s-edge (x4, Ys),
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where y, € T, an s-edge (x5, ys) where y5 € T, etc. This set of edges provides a Borel
matching in G(.S, a) which covers all of X, except from an arbitrary small measure set, so

m(S,a) = 1. 4

Finally let us note that, using the argument in 6.7, one can show that Theorem 7.6

implies Theorem 7.1.

Proof that 7.6 = 7.1. Using the notation of the proof of 6.7, we first show that the

graph I defined there satisfies the hypotheses of 7.6.
LEMMA 8.8. (Xg, E) is bipartite.
Proof. By 6.9. -
LEMMA 8.9. (Xg, E) is strictly expanding.

Proof. Let A C Xy be an independent Borel set and A’ = {x € Xy: Jy € A(zEy)}.
Since the group I is not amenable, the graph G(S, sr), where sr is the shift action of T’
on [0, 1] is strictly expanding, so let ¢ > 1 be the constant witnessing that. We will show

that v(A’) > cv(A). This is immediate since | J.,. 4 I - 7 is independent in G/(S, sr) and

(UR-zeA R-z) = UR-:EGA’ R-x. B

Thus by 7.6, there is an a.e. perfect matching for (Xg, F') which we denote by Mp.
Using 6.8 this gives an a.e. perfect matching M for G(S, sr) defined by

(xay) EM < (R ' JI,R ' y) € MR & ($7y> € MR-:B,R~y-
Define now
e: [0, l]F — M(T,9)

by

(7,78) € p(z) & (N2, (s) " ()" -x) € M,

for s € S*1. It is enough to show that ¢ preserves the G g-action.
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First we check that ¢((0) - x) = 0 - p(z) for 6 € I'. Indeed (v,7vs) € p((0) - z) <

(7 7H8) - 2, ()" (y)7H0) - ) € M = (571,07 ys) € pla) = (7,75) €0~ ().
Finally we verify that o(r-x) = r-p(z), forr € R, i.e., (7,7s) € p(r-x) & (7,7s) €
r - @(x). Now

(v,78) € plr-z) & ((n) 7 r-a,(s) ) lr-x) e M
and

(v,78) €7 plx) & (1 (1), 77 (75)) € ()

& () ()T ()T e) € M,

where 71 (ys) = r~1(y)s, for some s’ € ST Now (7)~1r = p(v'), for some p € R and

v = (r~'())~'. We have therefore to show that

(') -2, (s)"p(y) 1) € M & () -2, () TH(Y) @) € M.

Clearly p(+') -z, (v) - = belong to the same R-orbit, so it is enough to show that p/ =
(s)71p(s') € R. Because then (s)'p(y/) - & = p/(s)) {7’} - v and thus R - (p(y/) - ) =
R-(W)-x):A>R-(<8>‘1p<v’>~w) R-((s)~1()-x) = Band (p(7') -, (s)"'p(7) @) €
M < (p(y) -2, (s)"'p(y) @) € Map & ((¥)-2,(s") () - 2) € Map (by 6.8). Now
P € Grsandp'(1) = s7'p(s') = ( (M) T) = sTH )T (() ) =

sy lr(r N (y)s') = sy (rT (ys)) = s Ty lys = 1,s0p' € R, B

9. Independence numbers

Let I" be an infinite group and S a finite set of generators. Consider the set
I(T',8) = {iu(S,a): a € FR(T, X, )}

of independence numbers of actions of I'. It was shown in Conley-Kechris [CK13, 4, (C)]

that I(T", S) is a closed interval [i, (S, sr),i,(S5, ap5,)], where sp is the shift action of I" on
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0,1]" and ap®_ is the maximum, in the sense of weak containment, free ergodic action.
T',c0
Let
I°¢(T, S) = {i,(S,a): a € FR(I', X, 1), a ergodic}.

The question of understanding the nature of /°"8(I", S') was raised in Conley-Kechris [CK13,

84, (C)]. We prove here the following result:

THEOREM 9.1. Let I' be an infinite group and S a finite set of generators. If I' has

property (T), then /°8(I", S) is a closed set.

Proof. Since I has property (T), fix finite () C I" and ¢ > 0 with the following property:
If « € A(T', X, i) and there is a Borel set A C X with

¥y € Q(u(v" - AAA) < pu(A)(1 — p(A))),

then a is not ergodic (see, e.g., Kechris [Kec10, 12.6]).

Let now ¢, € I*%(I",S),¢, — ¢, in order to show that . € [®%(I",S). Let a, €
FR(T', X, 1) be ergodic with ¢,(S,a,) = t,. Let U be a non-principal ultrafilter on N
and consider the action a = [[, a, /U on (Xy, ts). Then it is clear that there is no non-
trivial I'-invariant element in the measure algebra MALG,,,. Because if A = [(4,)]y
was [-invariant, with i (A) = 0,0 < § < 1, then (7 - AAA) = 0,Vy € A, so
limy, 0 (% - A, AA,) = 0 and p(A,) — 4, so for some n, and all v € Q, u(y*" -
A, AA) < ep(An)p(l — p(Ay)), thus a, is not ergodic, a contradiction.

Fix also independent sets A, C X for a, with [u(A,) — .| < L. Let A = [(A,)]u.
Then A is independent for @ modulo null sets (i.e., s* - AN A is py-null, Vs € S*1) and
t(A) = ¢. Consider now the factor b of a corresponding to the o-algebra B = o(B)),
where By is a countable Boolean subalgebra of MALG,,, closed under a, the functions
Su, Ty of §2, (B), §3, (B), resp., and containing A. We can view b as an element of
FR(I', X, it). First note that b is ergodic, since MALG,,, and thus B has no I'-invariant
non-trivial sets. We now claim that ¢,(S5,b) = ¢, which completes the proof. Since

A € B, itis clear that ¢,(S5,b) > py(A) = «. So assume that ¢,(S,b) > ¢ towards
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a contradiction, and let B € MALG,, be such that s* - BN B = &, Vs € S+ and
py(B) = K > 1. We can assume of course that B = [(B,,)|y € By}, so lim,,_, p(B,) = K
and lim,,_,;; (5% B,NB,) = 0,Vs € S*L. Let C,, = B, \s% B, so that s%-C,,NC,, = &
and p(Cy) = p(By) — u(s*™ - B, N By), thus lim, y, u(Cy) = lim, p(Bp) = £ > ¢.
Since ¢, — ¢, for all large enough n, ¢, < L*T"‘ and thus for some U € U, and any
n € U, u(Cp) > = but 1,,(S, ar) = 1, < 5=, Since C,, is an independent set for ay,, this

gives a contradiction. o

Similar arguments show that the set of matching numbers m(S,a),a € FR(T', X, u),
is the interval [m(S, sr), m(S, ar 3, )], and the set of matching numbers of the ergodic, free

actions is a closed set, if I" has property (T).

10. Sofic actions

(A) Recall that a group G is sofic if for every finite F* C G and € > 0, thereis n > 1
and 7: F' — S, (= the symmetric group on n = {0,...,n — 1}) such that (denoting by

id x the identity map on a set X):

() 1€ F=nr(l)=id,,
(ii) 7,0,76 € F = po({m: w(y)m(6)(m) # 7(y0)(m)}) < e,
(iii) v € F\ {1} = p,({m: 7(y)(m) = m}) <e,

where /i, 1s the normalized counting measure on n.

Elek-Lippner [EL10] have introduced a notion of soficity for equivalence relations. We
give an equivalent definition due to Ozawa [Oza].

Let (X, i) be a standard measure space and £ a measure preserving, countable Borel

equivalence relation on X. We let
[[E]] = {¢: ¢ is a Borel bijection p: A — B,
where A, B are Borel subsets of X and

rEp(x), u-ae. (x € A)}.
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We identify ¢, ¢ as above if their domains are equal modulo null sets and they agree a.e.

on their domains. We define the uniform metric on [[E]] by

ox(p, 1) = p({z: p(z) # P(2)}),

where
p(x) # p(x)
means that
z € dom(y)Adom (<))
or

z € dom(p) Ndom(y) & p(x) # Y(x).

If p: A — B we put dom(yp) = A, mg(y) = B. If p: A — B,¢: C — D are in
[[E]], we denote by (1) their composition with dom(py)) = C Ny~ (AN D) and pi)(z) =
o(¢(x)) for x € dom(pv)). If (;)icr, I countable, is a pairwise disjoint family of elements
of [[E]], i.e., dom(y;),i € I, are pairwise disjoint and rng(y;), € I, are pairwise disjoint,
then | |,.; ¢; € [[£]], is the union of the o;,7 € I. If p: A — B isin [[E]], we denote by
¢~ ': B — A the inverse function, which is also in [[E]]. Finally if X = n and p = p,
is the normalized counting measure, we denote by [[n]] the set of all injections between
subsets of n (thus [[n]] = [[E]], where E = n x n). We denote by J,, the corresponding

uniform (or Hamming) metric on [[n]], s0 8, (¢, ) = L|{m: o(m) # ¥(m)}|.

DEFINITION 10.1. A measure preserving countable Borel equivalence relation £ on a
non-atomic standard measure space (X, ) is sofic if for each finite F' C [[E]] and each

€ > 0,thereisn > 1 and w: F' — [[n]] such that

1) idy € F= W(ldx) =id,,
i) 0,0, 0p € F = 0n(m(py), (@) (1)) <6,
i) p € F = |u({z: o(z) = 2}) — pu({m: 7(p)(m) = m})| <.
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We do not know if this definition is equivalent to the one in which [[E]] is replaced by
the full group [E] = {¢ € [[E]]: u(dom(p)) = 1} and [[n]] by S,, i.e., the soficity of the

full group.

The following two facts, brought to our attention in a seminar talk by Adrian Ioana, can

be proved by routine but somewhat cumbersome calculations.

PROPOSITION 10.2. For F,e,n,m as in 9.1, if p,9 € F and dx(p,¥) < ¢, then

5n(m(0), m(1)) < 10e.

PROPOSITION 10.3. Let E be a measure preserving countable Borel equivalence re-
lation on a non-atomic standard measure space (X, it). Let F,,,, m € N be finite subsets
of [[E]] with Fy C F; C ...F,' = F,,, @ € F,, (where & is the empty function) and
iddom(p) € I forany ¢ € F,,. Let @ F,, = {|_|f:1 it € F} CE)IFU,,(D Fn)
is dense in [[F]] and for every m and every € > 0, 9.1 holds for F' = F,, F,,, = {@v: ¢, ¢ €
F,.} and € > 0, then F is sofic.

We next define sofic actions. For (X, 1) a non-atomic, standard measure space and I a
countable group, for each a € A(T', X, u1), denote by E, the induced equivalence relation

(defined modulo null sets)
By < Iyel(* z=y).
DEFINITION 10.4. An action a € A(I", X, ) is sofic if E, is sofic.

Let now A, be any countable Boolean subalgebra of MALG,, closed under an action
a € AT, X, 1) and generating MALG,,. LetI" = {v,,: n € N}, and let (A,,)men enumer-
ate the elements of A, of positive measure. Let (¢);cn enumerate the family of elements
of [[E,]] of the form 7¢|A,,,n,m € N. Then by 9.3 we have the following criterion. (No-
tice that if Fy,, = {p8,..., 0%} U{(¢d)™t, ..., (p%)"1}, then F,, F,, C {8, ¢7,...} and
U, (D F.,) is dense in [[E,]].)
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PROPOSITION 10.5. The action a € A(I', X, uu) is sofic provided that for each m and

€ >0,9.1holds for ' = {¢f,..., %} and e.
We now have the following fact.

PROPOSITION 10.6. Let (X, 1) be a non-atomic standard measure space. Then the set
of sofic actions in FR(T", X, i) is closed in FR(T", X, it). In particular, ifa, b € FR(T", X, p),

b is sofic and a < b, then a is sofic.

Proof. Suppose a,,,a € FR(T', X, i), a,, — a and each a,, is sofic. We will show that a
is sofic. Fix a countable Boolean algebra A, which generates MALG,, and is closed under
all the a,,n € N and a. Let (7y,), (An), (¢#) be as before for the action a, so that (¢f)
enumerates all v%|A,,. For m,e > 0 we want to verify 9.1 for F' = {8, ..., 0%}, € > 0.
Say, for i < m, p% = §%|B;, where 0; € I', B; € A,. Note that §; is uniquely determined
by the freeness of the action a.

Choose N large enough so that (B; N (6; 1)y - B;)A(B; N (671)" - B;)) < 55, for
i,7 < mandlety; = §;V|B;,i < m. Letthen my: {to, ..., ¥n} — [[n]] satisfy 9.1 with
55- Put m(pf) = mn(1h;). We will show that this satisfies i)-iii) of 9.1. It is clear that i)
holds.

For iii): Given ¢;,1 < i < m, note that u({x: p%(x) = x}) = u(B;), if §; = 1, and
p{z: oi(x) =x}) =0,if §; # 1. Thus p({z: ¢¥(x) = x}) = u({z: ¥;(x) = x}) and so
ii1) is clearly true.

For ii): Assume ¢, j < m and for some k < m, ¢;¢0; = ¢%. Then
pip; = 0705|(B; N (6;1)* - B;)
= (6:6;)*[(B; N (6; 1) - B;)
= 51?’8167

SO 5k = 51(5] and Bk = Bj N (5]1)0‘ . Bz Then wl = 5?N‘Bi,w]’ = 5;'1N’Bijiwj =
5?N6;-1N|Bj N (5;1)(1]\7 . Bi, "ka = (51'(5]‘)(“\[’3]' N (5;1>a : Bl Therefore (Sx(l/Ji"ij, wk) < %
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Then, by 9.2, 6, (7n(¢st;), 7(¢x)) < §. Therefore

On(m(itps), m(pi)m(05))
= On(m(eon), m(pi)m (1))
= On(mn (Vr), T (i) T (15))
< G (), T (Vi) + O (e (i), v (i) (1))

and the proof is complete. =

(B) Consider now a sofic group I' and fix an increasing sequence 1 € F, C F} C ...
of finite subsets of I" with Un F,, = T'. For each n, let X,, be a finite set of cardinality > n
with the normalized counting measure i, such that there is a map 7, : F,, — S, (= the

permutation group of X,,) such that

1) 7Tn(]_) = ian,

i) ,0,90 € Fy = pn({z: (y)m(0)(x) # m(y0)(2)}) < 3,
i) v € Fo \ {1} = pn({z: 7(7)(2) = 2}) < 7.

Define then a,,: I' x X — X by

an(7, ) = mn(7)(2)

Then abbreviating a,,(, ) by v -, = we have

D1, rx=x
i) 7,6,70 € Fp = pn({z: 40 # 70 (60 2)}) < 1,

i) v € F \ {1} = po({z: vy nz =2}) < 2.
So we can view a,, as an “approximate” free action of I on X,.

Fix now a non-principal ultrafilter / on N and let X;, = (] [,, X,,)/U and jy, the corre-

sponding measure on the o-algebra By, of X;,. By 2.5 this is non-atomic. As in §3, we can
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also define an action ay, on I' on X, by

7 [(n)]e = 107 0 20)lu

(note that 7y -, z,, is well-defined for ¢/-almost all n). This action is measure preserving and,
by iii) above, it is free, i.e., for v € I'\ {1}, iy({z € Xyy: v - x # x}) = 0 (see 3.2). So
let By be a countable subalgebra of MALG,,, closed under the action a, the function Sy
of §2, (B) and Ty, of §3, (B). Let B = o(By) and let b be the factor corresponding to B.
Then b € FR(I", X, p), for a non-atomic standard measure space (X, ).

We use this construction to give another proof of the following result:

THEOREM 10.7. (Elek-Lippner [EL10]). Let I' be an infinite sofic group and let sy be

the shift action of T" on [0, 1]'. Then sr is sofic.

Proof. Consider the factor b as in the preceding discussion. By Abért-Weiss [AW11],
sp < b, thus using 9.6, it is enough to show that b is sofic. Using 9.5, it is clearly enough
to show the following: For any vi,...,7 € T, [(AD)]u, ..., [(A%)]y € By of positive
measure and € > 0, letting ; = 7¢|[A? )]y, thereisnand amap 7: {p;: i < k} — [[X,]]
(the set of injections between subsets of X,,) such that

i) p; =idx = m(p;) =idx,,,
ii) If 4, j, ¢ < k and p;pp; = @y, then p, ({x: m(p:)m(p;)(x) # 7(ee)(2)}) <€,
iii) [p({z: pi(x) = 2}) — pa({z: 7(pi)(z) = 2})| <.
Since ay is free, note that p; = ~{“|[(A? )]y, uniquely determines ;. Choose now n € U
so that:
Q) pn({z: e #vin (v 2)}) <5 ifve =7 (1,5, 0 < k),
b) pn({z: yi = 1a}) <eify #1,
¢) pn(ALA(AI Nyt o AL)) < 5.if 005 = @i (i, 5,0 < k).

Note that c) is possible since [(A?)]; is the domain of o, while [(A7)];, N (fyj_l)“u .
[(A})]us is the domain of ¢;p;, thus 0 = sy ([(AL)JuA((A))]ur N (377 - [(AL)]w)) =
limy, gy fn (ALA(A Nyt - AL)). Now define
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1) 7(p;) =idy,, if p; = idx,
2) 7(p;) = ~im| AL, otherwise,
where as usual /" (z) = a,(v;, z). We claim that this works. Clearly 1) is satisfied. Also
iii) is satisfied. This is trivial if ¢; = idx. Otherwise v; # 1, u({z: p;(z) = z}) = 0 and

pn({z: m(wi)(z) = 2}) < pn({x: v -n = }) < e. Finally for ii), assume p;p; = ¢y
(i,7,¢ < k). Then ~,;y; = 7, and so

Y

N

fn({Z: Yo n ® # % (1 mx)}) <

thus

pn ({2 w(pe) (@) # 7(pi)m(i0s)(2)}) <

P ((ALA(AL N7 AD)) + pin({a e @ # %5 0n (0 2)}) < e

(C) It is a well known problem whether every countable group is sofic. Elek-Lippner
[EL10] also raised the question of whether every measure preserving, countable Borel
equivalence relation on a standard measure space is sofic. They also ask the question of
whether every free action a € FR(I', X, 1) of a sofic group I is sofic. They show that
all treeable equivalence relations are sofic and thus every strongly treeable group (i.e., for
which all free actions are treeable) has the property that all its free actions are sofic. These
groups include the amenable and the free groups. Another class of groups that has this
property is the class MD discussed in Kechris [Kec12]. A group I'is in MD if it is residually
finite and its finite actions (i.e., actions that factor through an action of a finite group) are
dense in A(T", X, ). These include residually finite amenable groups, free groups, and
(Bowen) surface groups, and lattices in SO(3, 1). Moreover MD is closed under subgroups
and finite index extensions.

To see that every free action of a group in MD is sofic, note that by Kechris [Kec12,

4.8]if a € FR(I', X, u), then @ < «p x pp, where ¢r is the trivial action of I' on (X, ;1)
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and pr the translation action of I on its profinite completion on L. Itis easy to check that
tr X pr is sofic and thus a is sofic by 9.6.

We note that the fact that every free group I' has MD and thus every free action of I'
is sofic can be used to give an alternative proof of the result of Elek-Lippner [EL10] that
every measure preserving, treeable equivalence relation is sofic. Indeed it is a known fact
that if £ is such an equivalence relation on (X, ), then there is a € FR(F., X, ) such
that £/ C E,. This follows, for example, by the method of proof of Conley-Miller [CM10,
Prop. 8] or by using [CM10, Prop 9], that shows that &/ C F' where F' is treeable of infinite
cost, and then using Hjorth’s result (see [KMO04, 28.5]) that /' is induced by a free action
of Fw. Since E, is sofic and [[E]] C [[E,]], it immediately follows that E is sofic.

We do not know if every measure preserving treeable equivalence relation F is con-

tained in some E,, where a € FR(Fy, X, u).

Remark. For arbitrary amenable groups I, one can use an appropriate Fglner sequence to
construct a free action ay, on an ultrapower of finite sets as in §9, (A). Then using an argu-
ment as in Kamae [Kam82], one can see that every action of I is a factor of this ultrapower

(and thus as in 9.6 again every such action is sofic).

11. Concluding remarks

There are sometimes alternative approaches to proving some of the results in this paper
using weak limits in appropriate spaces of measures instead of ultrapowers.

One approach is to replace the space of actions A(I", X, ) by a space of invariant
measures for the shift action of I' on [0, 1] as in Glasner-King [GK96].

Let R(X, ;1) be a non-atomic, standard measure space. Without loss of generality, we
can assume that X = [0,1],4 = A = Lebesgue measure on [0,1]. Denote by SIM,,(I")
the compact (in the weak*-topology) convex set of probability Borel measures v on [0, 1]
which are invariant under the shift action sr, such that the marginal (m ). = p (Where

711 [0,1]F — [0, 1] is defined by 7y (z) = x(1)). Fora € A(T, X, u) leto®: [0,1] — [0, 1]*
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be the map ¢ (z)(y) = (y71)* - z, and let (¢*).pt = pa € SIM,(T'). Then ®(a) = p, is a
homeomorphism of A(I", X, i) with a dense, G subset of SIM,,(I") (see [GK96]).

One can use this representation of actions to give another proof of Corollary 4.5.

If a, € A(I', X, ),n € N, is given, consider p, = p,, € SIM,(I') as above. Then
there is a subsequence ng < ny < ny < ... such that y,, = ps € SIM,,(I") (convergence
is in the weak*-topology of measures). Then p, is non-atomic, so we can find a., €
A(T, X, i) such that a., on (X, ) is isomorphic to sp on ([0, 1], sis,). One can then
show (as in the proof of (1) = (3) in 4.3) that there are b,, = a,,,b,, € A(l, X, )
such that b,, — a.. (Similarly if we let I be a non-principal ultrafilter on N and p¥ =
lim,, z¢ 4, and a* in A(T, X, p) is isomorphic to sp on ([0, 1]¥, z¥), then there are b, €
AT, X, 1), b, = a, with lim,,_y;; b, = a¥.)

For other results, related to graph combinatorics, one needs to work with shift-invariant
measures on other spaces. Let I" be an infinite group with a finite set of generators S. We
have already introduced in §6 the compact space Col(k, ', S) of k-colorings of Cay(I', S)
and in §7 the compact space M (I', S) of perfect matchings of Cay(I", S). On each one of
these we have a canonical shift action of I' and we denote by INV ¢ (I, .S), INV, (T, S)
the corresponding compact spaces of invariant, Borel probability measures (i.e., the spaces
of invariant, random k-colorings and invariant, random perfect matchings, resp.). Simi-
larly, identifying elements of 2" with subsets of I", we can form the space Ind(T", S) of all
independent in Cay(T", S) subsets of I'. This is again a closed subspace of 2! which is shift
invariant and we denote by INVy,4(I", .S) the compact space of invariant, Borel measures
on Ind(T", S), which we can call invariant, random independent sets.

If a € FR(T', X, ) and A C X is a Borel independent set for G(S, a), then we define

the map
Iy: X — Ind(T, 9),

given by
yela(z) & (v )"z e A
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This preserves the I'-actions, s0 (I4).u = v € INV,q(I, S). Moreover v({ B € IND(I', S): 1 €
B}) = p(A). If i,(S,a) = v and A,, C X are Borel independent sets with 11(A,,) — ¢, let
Vn = (14, )«p. Then the shift action a,, on (IND(T", S), 11,,) may not be free but one can still
define independent sets for this action as being those C' such that s*» - C' N C' = & (modulo
null sets) and also the independence number ¢,, (s, a,,) as before. We can also assume, by
going to a subsequence, that v, — V4. Denote by a., the shift action for (Ind(T", 5), vu).
Then {B € IND(T', S): 1 € B} is independent for a,, and @, $0 ¢, (S, a,) > ¢. But also
Ly, (S, a,) < 1,(S,a) and from this, it follows by a simple approximation argument that
Ly, (S, a00) < 1,80 1y, (S, as) = ¢ and the sup is attained. This gives a weaker version of
5.2 (iii). Although one can check that a., < a, it is not clear that a. is free and moreover
we do not necessarily have that a = a... This would be remedied if we could replace a.,
by a., X a, but it is not clear what the independence number of this product is. This leads
to the following question: Let a,b € FR(T', X, i) and consider a x b € FR(T', X2, 1i?). Tt
is clear that ¢,2(a x b) > max{¢,(a),¢,(b)}. Do we have equality here?

Similar arguments can be given to prove weaker versions of 5.2 (iii), (iv).

However a weak limit argument as above (but for the space of colorings) can give an
alternative proof of 6.4 using the “approximate” version of Brooks’ Theorem in Conley-
Kechris [CK13] (this was pointed out to us by Lyons). Indeed let « € FR(T', S, ), d =
|S*]. By Conley-Kechris [CK13, 2.9] and Kechris-Solecki-Todorcevic [KST99, 4.8],
there is k > d and for each n, a Borel coloring ¢,,: X — {1,...,k} such that u(c,'({d +
1,...,k})) < =. Letasusual C,,: X — Col(k, T, S) be defined by C,,(2)(v) = ¢, (v )™
z). Let (Cy,)pt = vp. Then v, ({c € Col(k, T, 9): c(1) > d}) = u(C 1 ({d+1,...,k})) <
%. By going to a subsequence we can assume that v,, — v, an invariant, random k-coloring.
Now v({c € Col(k,T",S): ¢(1) > d}) = 0, thus v concentrates on Col(d, I', S) and thus is
an invariant, random d-coloring. Moreover it is not hard to check that it is weakly contained

in a.
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A similar argument can be used to show that for every I', S except possibly non-
amenable I with S consisting of elements of odd order, there is an invariant, random perfect
matching (see 7.5).

Finally one can obtain by using weak limits in INVy,4(I", S) and the result in Glasner-
Weiss [GW97], that if I" has property (T) and ¢, € I°#(T", S), ¢, (I, ) — ¢, then there
is a measure v € INV4(I", S) such that the shift action is ergodic relative to v and has

independence number equal to ¢, but it is not clear that this action is free.

(CTO) Kurt Godel Research Center for Mathematical Logic
University of Vienna
Wihringer Strasse 25
1090 Wien, Austria
(ASK, RDT-D) Department of Mathematics
Caltech
Pasadena, CA 91125
USA
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Chapter 3

On a co-induction question of Kechris

Lewis Bowen and Robin D. Tucker-Drob

This note answers a question of Kechris: if H < G is a normal subgroup of a countable group
G, H has property MD and G/H is amenable and residually finite then G also has property MD.
Under the same hypothesis we prove that for any action a of G, if b is a free action of G/H, and
b is the induced action of G then CInd¥ (a|H) x bg weakly contains a. Moreover, if H < G is
any subgroup of a countable group G, and the action of G on G/ H is amenable, then CInd%;(a|H)

weakly contains @ whenever a is a Gaussian action.

1. Introduction

The Rohlin Lemma plays a prominent role in classical ergodic theory. Roughly speak-
ing, it states that any aperiodic automorphism 7" of a standard non-atomic probability space
(X, pt) can be approximated by periodic automorphisms. In [OW80], Ornstein and Weiss
generalized the Rohlin Lemma to actions of amenable groups and used it to extend many
classical ergodic theory results (such as Ornstein theory) to the amenable setting.

There is no analogue of the Rohlin Lemma for non-amenable groups. However, one
can hope to understand more precisely how and why this is so. The concept of “weak
containment” of actions, introduced by A. Kechris [Kec10], is a natural starting point. To

be precise, let (X, i), (Y, v) be standard non-atomic probability spaces. Let G ~* (X, u),
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G A’ (Y, v) be probability measure preserving (p.m.p.) actions. An observable ¢ for a is
a measurable map ¢ : X — N. For F' C G, let ¢¥' : X — NI = {y : F — N} be defined
by

O (2)(f) = lalf)z).

Then a is said to be weakly contained in b (denoted a < 0) if for every € > 0, every finite

F' C G, every observable ¢ for a, there is an observable ¢ for b such that

losn —vivii <e

The two actions are weakly equivalent if a < b and b < a.

If GG is infinite and amenable, then as remarked in [Kecl2], if a is a free action then
a weakly contains every action of (G. This is essentially equivalent to the Rohlin Lemma
for amenable groups. However, when G is non-amenable then it may possess uncountably
many free non-weakly equivalent actions [AE11]. It is unknown whether the same holds
true for every non-amenable group.

It is natural to ask how weak equivalence behaves with respect to operations such as
co-induction. To be precise, let H < G be a subgroup. Let H ~* (X, ) be a p.m.p.
action. Let Z = {z € X9 : a(h™Y)z2(g) = 2(gh) Vh € H,g € G}. Let G ~" Z be the
action (b(¢)2)(f) = z(g” ' f)forg, f € G,z € Z.

A section of Hin Gisamap o : G/H — G such that o(gH) C gH forevery g € G.
Let us assume o(H) = e. Define ® : Z — X% by ¢(2)(gH) = z(c(gH)). This
is a bijection. Define a measure ¢ on Z by pulling back the product measure x&/# on
XCG/H Then G ~P (Z,() is probability measure preserving. This action is called said to
be co-induced from a and is denoted b = CInd% (a).

Problem A.4. of [Kec12] asks the following.

PROBLEM 1.1. Let G be a countable group with a subgroup H < G. Suppose the
action of G on G/ H is amenable. Is it true that for any p.m.p. action a of G on a standard

non-atomic probability space, the co-induced action CInd$;(a|H) weakly contains a?
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A positive answer can be interpreted as providing a relative version of the Rohlin
lemma. Note that the action of G on G/ H being amenable is a necessary condition, since if
we take a to be the trivial action 7 of G on a standard non-atomic probability space (X, i),
then CInd$;(7¢|H) is isomorphic to the generalized Bernoulli shift action sg.q i x of G
on XE/H (see section 5), and sa¢,q/m,x weakly containing 7¢ is equivalent to the action of
G on G/ H being amenable by [KT08]. Also note that if replace the actions with unitary
representations, then the analogous problem is known to have a positive answer (this is
E.2.6 of [BHVO0S]).

Our main results solve Problem 1 in a number of cases and provide applications to

property MD. To begin, we prove:

THEOREM 1.1. Let G be a countable group with normal subgroup H. Suppose that
G/ H is amenable and that |G/ H| = co. Let b be any free p.m.p. action of G/H. Let b be
the associated action of GG (i.e., bg is obtained by pre-composing b with the quotient map
G — G/H). Then for any p.m.p. action a of G on standard non-atomic probability space,

the product action CInd$, (a|H) x be weakly contains a.

Taking b to be the Bernoulli shift action of G/ H over a standard non-atomic probability

base space, we show that Theorem 1.1 implies (see 5.1 below)
a < CInd$((a x 7¢)|H)

where 7 is the trivial action of G as above. In particular, if a|H weakly contains (a X
7¢)|H, then CInd%(a|H) weakly contains a. For instance, by [AW11] this is the case
whenever a is an ergodic p.m.p. action of G that is not strongly ergodic. This also holds
when a is a universal action of G, i.e., b < a for every p.m.p. action b of G. That such
actions exist for every countable group G is due to Glasner-Thouvenot-Weiss [GTWO06]
and, independently, to Hjorth (unpublished, see 10.7 of [Kec10]). This has the following

consequence:
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THEOREM 1.2. Let G and H be as in Theorem 1.1. If b is a universal action of H then

CInd%;(b) is a universal action of G

In section 6 we describe the Gaussian action construction. For every real positive def-
inite function ¢ defined on a countable set 7', a probability measure (., on R7T is defined,
and we call (R”, u1,) a Gaussian probability space. When G acts on T" and ¢ is invariant
for this action, then p., will be an invariant measure for the shift action of G on (R” ,,).
A p.m.p. action a of G is called a Gaussian action if it is isomorphic to the shift action of
G on some Gaussian probability space (R, u.,) associated to an invariant positive definite

function ¢. We show that Problem 1 always has a positive answer for Gaussian actions.

THEOREM 1.3. Let G be a countable group with a subgroup H < G. Suppose the
action of G on G/ H is amenable. Then the co-induced action CInd% (a| H) weakly contains

a for every Gaussian action a of G.

Part of the motivation for posing Problem 1 above concerns a property of groups intro-
duced by Kechris called property MD. To be precise, let G be a residually finite group, and
let pi be the canonical action of G on its profinite completion. Recall that 7¢ is the trivial
action of G on (X, i), a standard non-atomic probability space. Then G has MD if and
only if every p.m.p. action of G is weakly contained in the product action 7 X pg.

The property MD is an ergodic theoretic analogue of the property FD discussed in
Lubotzky-Shalom [LS04] (see also Lubotzky-Zuk [LZ03]). This asserts that the finite
unitary representations of G on an infinite-dimensional separable Hilbert space H are dense
in the space of unitary representations of G in H. It is not difficult to show that M D = F' D
but the converse is unknown.

It is known (see [Kec12] for more details), that the following groups have MD: residu-
ally finite amenable groups, free products of finite groups, subgroups of MD groups, finite
extensions of MD groups. On the other hand, various groups such as SL,,(Z) for n > 2
are known not to have FD [LS04] [LLZ03] and hence also do not have MD. It is an open

question whether the direct product of two free groups has MD.
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In [Kec12], Conjecture 4.14, Kechris conjectured the following:

THEOREM 1.4. Let N be an infinite, residually finite group satisfying MD. Let N <1 G

with G residually finite. Assume that:

(1) For every H < N with [N : H| < oo, there is G’ <1 G such that G’ C H and
[N : G < .
(2) G/N is aresidually finite, amenable group.

Then ¢ satisfies MD.

As noted in [Kec12], this result implies that surface groups and the fundamental groups
of virtually fibered closed hyperbolic 3-manifolds, (e.g., SL2(Z][i])) have property MD.
This follows from the fact that free groups have property MD (proven in [Kec12] and in
different terminology in [Bow03]). Kechris proved that an affirmative answer to Problem
1 above implies Theorem 1.4. Our proof follows his line of argument.

Note: If N is finitely generated then the first condition of Theorem 1.4 is automatically
satisfied since if NV is normal in G and H < N has finite index, then for every g € G,
gH g™ ! is a subgroup of N with the same index as H. Because N is finitely generated, this
implies there are only finitely many different conjugates of H. The intersection of all these
conjugates is a normal subgroup in G with finite index in .

Acknowledgements: We would like to thank Alekos Kechris for encouraging us to

take on this problem and for many valuable comments on an earlier draft of this paper.

2. The space of actions and proof of Theorem 1.4

Let (X, i) denote a standard non-atomic probability space and A(G, X, i) the set of
all p.m.p. actions of G on (X, ). This set is naturally identified with a subset of the
product space Aut(X, )¢ where Aut(X, ;1) denotes the space of all automorphisms of
(X, ). We equip the Aut(X, ;) with the weak topology, Aut(X, )¢ with the product
topology, and A(G, X, 1) with the subspace topology (also called the weak topology). The
group Aut(X, p1) acts on A(G, X, ) by (Ta)(g) = Ta(g)T~! for all T € Aut(X, u),

a € A(G,X, ) and g € G. The orbit of a under this action is called its conjugacy class.
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LEMMA 2.1. Let a,b € A(G, X, ). Then a < b if and only if a is contained in the

(weak) closure of the conjugacy class of b.

PROOF. This is Proposition 10.1 of [Kec10]. ]

Anaction a € A(G, X, u) is finite if it factors through the action of a finite group. From
lemma 2.1 it follows that for any a € A(G, X, i), a < 7¢ X pe if and only if a is contained
in the (weak) closure of the set of finite actions (this is implied by the proof of Proposition
4.8 [Kecl2]).

We need the following lemmas.

LEMMA 2.2. Let a, b be actions of a countable group G. If a and b are weakly contained

in 7¢ X pg then a x b is weakly contained in 7¢ X pg.

PROOE. If ¢ is a weak limit of finite actions a@; and b is a weak limit of finite actions b;

then a x b is the weak limit of a; X b;. O

LEMMA 2.3. If H < (G is a normal subgroup, G/ H is amenable and residually finite,

and b is a p.m.p. action of G/H then the induced action bg of G is weakly contained in

Ta X PG-

PROOF. As noted in [Kecl2], because G/ H is residually finite and amenable, it has
MD. Therefore, b is a weak limit of finite actions b; of G/H. If b ; are the induced actions

of GG, then the b ; are also finite and b ; converges weakly to bg. ]

PROOF OF THEOREM 1.4 FROM THEOREM 1.1. Let a be a p.m.p. action of G. In
[Kec12] section 4, it is shown that CInd$(a|N) is weakly contained in 7¢ X pg. Let b
be a free p.m.p. action of G/N. Because G/N is amenable the previous lemmas imply
CInd$ (a|N) x bg < T¢ X pe. So Theorem 1.1 implies a < CInd$ (a|N) x bg < 7¢ X pe-

Since a is arbitrary, G has MD. 0J

3. The Rohlin Lemma

The purpose of this section is to prove:
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THEOREM 3.1. If GG is a countably infinite amenable group then for every free p.m.p.
action G " (X, u), every finite ' C G and € > 0 there is a measurable map J : X — G
such that

p{z e X Ja(f)x) = fJ(x)Vfe F})>1—e

This will follow easily from the following version of the Rohlin Lemma due to Ol-

lagnier [O1I85] Corollary 8.3.12 (see 2.2.8. for the definition of M (D, J)).

THEOREM 3.2. Let G ~ (X, ;1) be as above. Then for every finite /' C G, for every

d,n > 0 there exists a finite collection {(A;, A;) };cs satisfying:
(1) foreveryi € I, A; C G is finite and

HgeNi: Af €F, fg ¢ A}
A

< 0,

(2) each A; is a measurable subset of X with positive measure,
(3) CL(/\Z)Az N CL()\j)Aj =gifs 7£ j, )\z S Az and /\j S Aj,
(4) Q(A)AZ N a(X)AZ =gif )\, N S /\Z and \ 7é )\/,

(5) 1t (Uier Unea; a(N)A;) > 1 —n.

PROOF OF THEOREM 3.1. Let 0 < 0,7 < €/2. Without loss of generality, we assume
e € F. Let {(A;, A;) }ics be as in the theorem above. Define J by J(z) = \; if there is a
j€land \; € A;suchthatz € a();)A;. If zisnotin U;erUpen, a(A)A;, then define J(z)
arbitrarily. For each i, let A} = Nycpf~'A;. The theorem above implies |A}| > (1 —§)|A,|.

Observe that
{re X J(a(f)x) = fJ(x) Vf € F} D Uier Uren, a(N)A;.

Thus
p{rxe X Ja(f)x)=fJ(x)VfeF})>1—-n—02>1—c¢.
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4. Proof of Theorem 1.1

Assume the hypotheses of Theorem 1.1. In particular, we assume that G/H ~° (Y, v)
is a free p.m.p. action of the infinite amenable group GG/H. For simplicity, if g € G and
y €Y, let gy denote b(gH )y.

Let F' C G be finite and ¢ > 0. Because G/ H is amenable, Theorem 3.1 implies there

exists a measurable function J : Y — G/H such that if

Yo={yeY: J(fy)=fJy)VfeF}

then v(Yy) > 1 —e€. Leto : G/H — G be asection (i.e., 0(gH) € gH forall g € G). Let
J:Y — G be defined by J = o J.

Recall that G ~ (X, p) is a p.m.p. action, Z = {z € X% : a(h™Y)z(g) = z(gh)}
and G acts on Z by (gz)(f) = z(g~'f) for z € Z, g, f € G. This action is CInd%(a|H).
It preserves the measure ¢ on Z obtained by pulling back the product measure 1/ on
XG/H under the map ® : Z — X/ &(2)(gH) = z(o(gH)).

For (z,y) € Z x Y, define S,(z) € X by

Sy(2) = a(J(y)z(J(y)).
LEMMA 4.1. The map (z,y) € Z x Y — S,(z) € X maps ¢ x v onto 4.

PROOF. For any y € Y/, if §, denotes the Dirac probability measure concentrated on
y then it is easy to see that (z,y) — S,(z) maps ( x J, onto p. The lemma follows by

integrating over y. U
LEMMA 4.2. Forevery (z,y) € Z x Ypand f € F, Sp,(fz) = a(f)S,(2).
PROOF. If y € Yj then J(fy) = fJ(y) for all f € F. Therefore, for each f € F there

is some h € H such that J(fy) = fJ(y)h. Now

Sp(f2) = alJ(fy)(f2)(I(fy)) = alFI(y)h)(f2)(f T (y)h)

= a(fa(J(y))a(h)=(T(y)h) = a(fa(J(y)=(T(y)) = a(f)S,(2).
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O

Now let ¢ : X — N be an observable. Define ¢ : Z x Y — Nby ¢(z,y) = ¢(S,(2)).
The lemma above implies that for all (z,y) € Z x Yy, ¥(fz, fy) = ¢(a(f)Sy(z)) for all
[ € F. Thus ¥ (z,y) = ¢ (S,(2)) for (z,y) € Z x Y. Since (z,y) +— S,(z) takes the

measure ( X v to g and v(Yy) > 1 — €, it follows that

10E (¢ x v) — ¢y < e

Because I’ C G, € > 0 and ¢ are arbitrary, this implies Theorem 1.1.

5. Consequences of Theorem 1.1

If K is a group acting on a countable set 7', then for a measure space (X, ;1) we denote
the generalized shift action of K on (X7, u7) (given by (ky)(t) = y(k~'t) fork € K,y €
XT, tel) by SK.T,X-

COROLLARY 5.1. Let G be a countable group and let H be a normal subgroup of
infinite index such that G/ H is amenable. Then a < CInd$;((a x 7¢)|H) for every p.m.p.

action a of GG.

PROOF. Let (X, ;1) be a standard non-atomic probability space. Let s¢/uc/m,x de-
note the shift of G/H on X G/H which is free. Let sa,q/m,x denote the generalized shift
of G on X%H_ Then sa,q/m,x is the action of G induced by sq/n,/u, x, 1-€., Sq,a/H,x
factors through sq/p c/m,x. By Proposition A.2 of [Kecl2] we have that sqq/px =
CIndg(sHﬁH/H,X). Now sy /m,x = Ty is just the identity action of H on X, and 74 =

7| H is the restriction of the identity action of G on X to H.

LEMMA 5.2. Let L be a subgroup of the countable group K. Let a,b € A(L, X, u).
Then
CInd¥ (a) x CInd% (b) = CInd¥ (a x b)
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PROOF. This is easy to see once we view CInd% (a) as an action on the space (X "/
(using the bijection ® : Z — X /% defined in section 1), and similarly view CInd’ (b) and

CInd¥ (a x b) as actions on (X 5/ /L) and (X x X)5/E (1 x 1) %/%) respectively. [
Applying Theorem 1.1 we now obtain
a < CInd$;(alH) x sg.o/ux = CInd$;(a|H) x CInd$(7¢|H) = CInd%;((a x 1¢)|H),
s0 a < CInd% ((a x 7¢)|H). O

If in addition to the hypotheses in Corollary 5.1 we also have (a x 7¢)|H < a|H, then

since co-inducing preserves weak containment (A.1 of [Kec12]) it will follow that
a < CInd$((a x 7¢)|H) < CInd% (a|H).

Recall that a p.m.p. action a of G on a standard non-atomic probability space is called a

universal action of GG if b < a for every p.m.p. action b of G. We now have the following.

COROLLARY 5.3. Let GG be a countable group and let /7 be a normal subgroup of

infinite index such that G/H is amenable. Then any one of the following conditions on

a € A(G, X, j1) implies a < CInd% (a|H):

(1) a is ergodic but not strongly ergodic;
(2) a|H is ergodic but not strongly ergodic;
(3) ais a universal action of G5;

(4) a|H is a universal action of H;

In addition, the set of actions a of G for which a < CInd% (a|H) is closed under taking

products.

REMARK 5.1. The referee points out that condition 2 is in fact strictly stronger than
condition /. That is, if G/H is amenable then a|H being ergodic but not strongly ergodic

implies that a itself is not strongly ergodic. This is a special case of [Ioa06] lemma 2.3.

K/L)
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PROOF OF 5.3. 3 and 4 are immediate from Corollary 5.1, and / and 2 follow from 5.1
along with Theorem 3 of [AW11] where they show that a X 7 < a holds for ergodic a that
are not strongly ergodic. The last statement follows from 5.2 since if @ < CInd% (a|H) and

b < CInd% (b|H) then a x b < CInd% (a|H) x CInd%(b|H) =2 CInd$; ((a x b)|H). O
We can now prove Theorem 1.2

PROOF OF 1.2. Suppose b is a universal action of H. Let a be a universal action of G.
It suffices to show that a < CInd% (b). We have a|H < b by universality of b, and so by 3

of Corollary 5.3 we have that a < CInd% (a|H) < CInd%(b). O

REMARK 5.2. The assumption that G/H is amenable is in some cases necessary in
order for CIndg to preserve universality. That is, there are examples of groups H < G
with H infinite index in G such that G/ H is not amenable, and such that a — CInd$(a)
does not map universal actions to universal actions. For example, if H is any subgroup
of infinite index in a group G with property (T) (e.g., if G = H x K where both H
and K are countably infinite with property (T)) then CInd% (b) is weak mixing for every
b e A(H, X, n) (see [Toall] lemma 2.2 (ii)), hence is never universal. Another example
is when H is amenable and G/H is non-amenable (e.g., if G = H x K where H is any
amenable group and K is any non-amenable group). This implies that GG is non-amenable.
If s = sy u x is the shift of H on (X o1 ) then s is universal for H since H is amenable,

but CInd$ (s) = 5@,¢,x 1s not universal since GG is non-amenable.

REMARK 5.3. In case H is finite index in G then we actually have the following form
of Theorem 1.1. We do not assume that H is normal in GG. Let b denote the action of G
on G/H, where we view G/H as equipped with normalized counting measure . Then
for any p.m.p. action a of G on a standard non-atomic probability space (X, i), a is a
factor of CInd% (a|H) x b. One way to see this is to use the isomorphism CInd% (a|H) =2
a®t & sa,q/H,x given by Proposition A.3 of [Kecl12]. Here aG/M @ Sq,q/m,x 18 the p.m.p.
G/H(

action of G on (X G/ given by a%/H ® saa/mx(g) = a 9) © sec/mx(9)

(note that the transformations a“/# (g) and s¢ ¢ /i,x(g) commute for all g € G). Then
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(a®M ® sg c/mx) % bis an action on the space (X x G/H, u¢/# x v), and the map

(f,gH) — f(gH) € X factors this action onto a.

6. Gaussian actions

A (real) positive definition function ¢ : I X I — R on a countable set [ is a real-valued
function satisfying ¢(i, j) = ¢(j,4) and }_, ;. a;a;(i, j) > 0 for all finite I C I and

reals a;, © € F.

THEOREM 6.1. If ¢ : [ x I — R is a real-valued positive definite function on a
countable set I, then there is a unique Borel probability measure y,, on R’ such that the
projection functions p; : RY — R, p;(z) = (i) (i € I), are centered jointly Gaussian
random variables with covariance matrix ¢. That is, y, is uniquely determined by the two

properties

(1) Every finite linear combination of the projection functions {p;};c; is a centered

Gaussian random variable on (R, y,);

(2) E(pipj) = p(i,7) forall i, j € I.

For a finite F' C I, let pr : R — R be the projection pr(z) = z|F. Then p,, can also
be characterized as the unique Borel probability measure on R’ such that for each finite

F C I the measure (pr).p, on RF has characteristic function

1 ..
(pr)spip(u) =€ 2 2 jer uitg (i)

We call p, the Gaussian measure associated to ¢ and (R’ uu,,) a Gaussian probability
space. A discussion of this can be found in [Kec10] Appendix C and the references therein.

Let G be a countable group acting on / and suppose that the positive definite function
¢ : I x I — R is invariant for the action of G on I, i.e., p(g-i,9 - j) = v(i, ) for all

g € G,i,j € I. Let s, denote the shift action of G on (R’, 11,,)

(50(9)2)(i) = x(g™" - 4).
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Then invariance of ¢ implies that 1., is an invariant measure for this action. We call s, the
Gaussian shift associated to .

Let 7 be an orthogonal representation of GG on a separable real Hilbert space ., and
let " C H, be a countable 7-invariant set whose linear span is dense in H,.. Then G acts
on T via 7, and we let o : T' x T' — R be the G-invariant positive definite function given
by pr(t1,ta) = (t1,t2). We let s, = s, be the corresponding Gaussian shift and call it
the Gaussian shift action associated to . It follows from Proposition 6.2 below that up to
isomorphism this action does not depend on the choice of 7' C ‘H... For now, it is clear that
an isomorphism 6 of two representations 7; and 7, induces an isomorphism of the actions
Sry 7 With sz, o(7).

By the GNS construction, every invariant real positive definite function ¢ on a count-
able G-set may be viewed as coming from an orthogonal representation in this way.

There is another way of obtaining an action on a Gaussian probability space from an or-
thogonal representation of (i. Consider the product space (RY, ), where 1 is the N(0, 1)
normalized, centered Gaussian measure on R with density \/%e—ﬁ/ 2 Letp, : RY — R,
n € N, be the projection functions p,(x) = x(n). The closed linear span (p,)nen C
L*(RY, N R) has countable infinite dimension. Let H = (p,)nen C© LA(RY, uN, R) and

let 7 be a representation of G on H. Let a(r) be the action of G on (RY, 1) given by

(a(m)(g)x)(n) = 7(g~") (pn) ().

This preserves the measure p by the characterization of x™ given in 6.1 since " =y,
where ¢ : N x N — R is the positive definite function given by ¢(n,n) = 1 and
o(n,m) = 0 for n # m.

It follows from the discussion in [Kec10] Appendix E that if 7; and 79 are isomorphic,
then a(m) = a(my). So if 7 is now an arbitrary orthogonal representation of G on an
infinite-dimensional separable real Hilbert space ., then by choosing an isomorphism 6
of H, with H = (p,)nen We obtain an isomorphic copy 6 - 7 of 7, on H, and the corre-

sponding action a(f - ) is, up to isomorphism, independent of 6.
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The construction of the actions a() also works for representations on a finite-dimensional
Hilbert space, replacing N above with N' = dim(#,). The following proposition also holds

in the finite-dimensional setting.

PROPOSITION 6.2. Let 7 be an orthogonal representation of G on H = (p,)nen C
L*(RN, N R), let T C H be a countable m-invariant set of functions in % whose linear
span is dense in H, and let s, 7 be the corresponding Gaussian shift on (R”' 11,,,.). Then

the map @ : (RY, ) — (R”, p1,,.) given by

is an isomorphism of a(7) with s, 7. In particular, up to isomorphism, the action s, r does

not depend on the choice of 7'.

PROOF. Note that up to a uN-null set, ® does not depend on the choice of represen-
tatives for the elements of 7' (viewing each ¢ € T" as an equivalence class of functions in
L*(RY, uN R)). This follows from 7" being countable. So ® is well defined.

To see that @, (i) = p,,,, we use 6.1. First, we show that if f = 3%  a;p,, then f has
a centered Gaussian distribution with respect to @, (u"). This is clear since f,®.(u") =
(fo®).(uN),and fo® =S¥  a;t; has centered Gaussian distribution with respect to z
by virtue of being in H.

Second, we show that the covariance matrix of the projections {p;};cr with respect

®, N is equal to 7. We have

/Pn(ﬂf)%(x) (P, ") = /‘P(%)(tl)@(fﬂ)(b) d(p")
= /t1t2 d(p™) = (t1,t2) = @(t1, ta).

Next, we show that ¢ takes the action a, to the action s, 7. We have, for uN -a.e. x,

=g ) (Xt pa)pa) (@) = 7(g~ ) (E) () = 2()(m(g7")(1) = s27(9)(R(2))(1).
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It remains to show that ® is 1-1 on a pN-measure 1 set. Since the closed linear span of
{t}+er in H contains each p;, it follows that the o-algebra generated by {t};c7 is the Borel
o-algebra modulo pN-null sets, so there is a p™-conull set B such that {t| B};cr generates

the Borel o-algebra of B and thus {¢| B }-separates points. It follows that ® is I-1on B. [

7. Induced representations and the proof of Theorem 1.3

We begin by briefly recalling the induced representation construction. Let H be a
subgroup of the countable group G, and let ¢ : G/H — G be a selector for the left
cosets of H in G with o(H) = e. Let p : G x G/H — H be defined by p(g,kH) =
o(gkH)'go(kH) € H. Then pis a cocycle for the action of G on G/ H, i.e., p(gog1, kH) =
p(go, 1kH)p(g1, kH). (Note that this is the same as the cocycle p defined in the proof of
Lemma 5.2.)

Let m be an orthogonal representation of H on the real Hilbert space K. For each
gH € G/Hlet Kgy = K x {gH} = {({,9H) : £ € K} be a Hilbert space which is
a copy of K. Then the induced representation Ind$, () of 7 is the representation of G’ on

@D ,cq/x K. which we identify with the set of formal sums K = {>° /5 (&n. 9H) €

Y ogreau Kot + 2 gmean |[€,m||# < oo}, that is given by
g0 - (&1, 9H) = (p(90, 9H) - Sgrr, gogH) € Kgogr
for (§y1, 9H) € Ky, and extending linearly.

LEMMA 7.1. Let H be a subgroup of the countable group GG. Then

(1) a(n|H) = a(m)|H for all orthogonal representations 7 of G.

(2) CInd% (a(7)) = a(Ind (7)) for all orthogonal representations 7 of H.

PROOE. The first statement is clear. For the second, let 7" C K be a total, countable
subset of K that is invariant under 7. Then 7' x G/H C K’ is a total, countable subset of

K' that is invariant under Ind% (7). Let ¢ : (T x G/H) x (T x G/H) — R be the inner
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product determined by

(ti,to)e it H =g H
o((t1, 91H), (ta, g2 H)) = ((t1, 91 H), (t2, 9o H) )0 =

Then the Gaussian shift action corresponding to Ind% () is the action b of G on (R7*G/H ;)

given by

(b(g) - 2)((t, kH)) = x(g™" - (t,kH)) = x((p(g~", kH) - t, g~ kH)).

On the other hand, the Gaussian shift action corresponding to 7 is the action s, = a(7) of
H on (R”, u,,.) given by (s (h)-w)(t) = w(h™'-t), and where @r : T'x T — R s just the
inner product @y (ty,t5) = (t1,t2)x. The co-induced action CInd (s,) is isomorphic to the
action c of G on (RT)S/H | 1S/ given by (c(g)-y)(kH) = sx(p(g~", kH)™ ) -y(g ' kH).

Evaluating this at ¢ € T gives

(c(g) - y)(KH) () = (sx(p(g™' kH)™") - ylg ' kH))(t) = y(g~'kH)(p(g~" kH) - t).

It follows that the bijection ¥ : R"*G/H# — (RT)G/H given by U (z)(kH)(t) = x((t, kH))
takes the action b to the action ¢, and also takes the measure i, to M%H. So b = ¢ as was

to be shown. O

If m; and 7, are orthogonal representations of G on H; and H,, respectively, then we
say my is weakly contained in my in the sense of Zimmer [£im84] and write m; <y oy if
for all vy,...,v, € Hq, € > 0, and F' C G finite, there are wy,...,w, € H, such that

(m1(9)(vs), vj) — (m2(g)(w;),w;)| < eforall g € F,4,j < n.
LEMMA 7.2. m <z m = a(m) < a(ms).

PROOF. This is the remark after Theorem 11.1 of [Kec10]. O
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LEMMA 7.3. Let G be a countable group with a subgroup H < G. Suppose the action
of G on G/H is amenable. Then 7 < Ind (7| H) for every orthogonal representation 7

of (3.

PROOF. It is well known that the action of G on G/ H being amenable is equivalent to
the existence of a sequence u,, n € N, of unit vectors in [?(G/ H, R) that are asymptotically
invariant for the quasi-regular representation A,z of G (given by Aq/x(90)(9g,5) = dgog 1
where d§,; € [*(G/H,R) is the indicator of {gH}). This means that for every g € G,
(Aa/u(g)(un), un) — Lasn — oo.

Let C be the Hilbert space of 7. The representation Ind; (7| ) is isomorphic to 7 &
Agyp (this is E.2.6 of [BHVO08]); an isomorphism is given by (extending linearly) the
map that sends (£, gH) € Ky to n(o(gH))(&) ® o,y € K ® 1*(G/H,R). Given now

vy, ..., € K, e >0, and F' C G finite, we have that for all N sufficiently large

(7 () (vi), v5) — (T @ Agyu)(9) (Vi ® un), vj @ up)|

= |(m(9)(v:), 1) (1 — (ym(9)(un),un))| < e

foreach g € F, 7,7 < n. So taking w; = v; ® uy for N sufficiently large shows that

T <z T® Ag/m = IndS (| H). O

PROOF OF THEOREM 1.3. Let 7 be an orthogonal representation of G such that a =
a(m). Then 7 <z Ind% (7|H) by Lemma 7.3. Applying Lemma 7.2 and then Lemma 7.1

we obtain
a(m) < a(Ind$ (7| H)) = CInd% (a(n|H)) = CInd% (a(r)|H). O

REMARK 7.1. An alternative proof of Theorem 1.3 can be given that uses probability
theory. For a Gaussian shift action s, on (Y, v/) = (R”, y1,,) one may identify CInd%(s,|H)
with the isomorphic action b = sg/H ® sc.q/my (see A3 of [Keel2]) on (YE/H G/,
Using an appropriate Fglner sequence {F,,} for the action of G on GG/H one defines the

G/

maps p, : YY" =Y, p,(w) = |F,| 72>, . w(x), each factoring the action s ™ onto
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s,. Then using arguments as in [KTO8] it can be shown that for cylinder sets A C Y, the
sequence p, ' (A), n € N, is asymptotically invariant for s¢ ¢/m,y, from which it follows

that s, < b.
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Chapter 4

Weak equivalence and non-classifiability

of measure preserving actions

Robin D. Tucker-Drob

Abért-Weiss have shown that the Bernoulli shift sp of a countably infinite group I' is weakly con-
tained in any free measure preserving action a of I'. Proving a conjecture of loana we establish
a strong version of this result by showing that sr x a is weakly equivalent to a. Using random
Bernoulli shifts introduced by Abért-Glasner-Virag we generalized this to non-free actions, replac-
ing sp with a random Bernoulli shift associated to an invariant random subgroup, and replacing the
product action with a relatively independent joining. The result for free actions is used along with
the theory of Borel reducibility and Hjorth’s theory of turbulence to show that the equivalence re-
lations of isomorphism, weak isomorphism, and unitary equivalence on the weak equivalence class
of a free measure preserving action do not admit classification by countable structures. This in par-
ticular shows that there are no free weakly rigid actions, i.e., actions whose weak equivalence class
and isomorphism class coincide, answering negatively a question of Abért and Elek.

We also answer a question of Kechris regarding two ergodic theoretic properties of residually
finite groups. A countably infinite residually finite group I' is said to have property EMD* if the
action pr of I' on its profinite completion weakly contains all ergodic measure preserving actions
of I', and T" is said to have property MD if ¢ X pr weakly contains all measure preserving actions of

T", where ¢ denotes the identity action on a standard non-atomic probability space. Kechris shows
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that EMD* implies MD and asks if the two properties are actually equivalent. We provide a positive
answer to this question by studying the relationship between convexity and weak containment in the

space of measure preserving actions.

1. Introduction

By a measure preserving action of a countable group I" we mean a triple (I', a, (X, p)),
which we write as I' ~* (X, ), where (X, i) is a standard probability space (i.e., a
standard Borel space equipped with a Borel probability measure) and a : I' Xx X — X isa
Borel action of I' on X that preserves the Borel probability measure j. In what follows all
measures are probability measures unless explicitly stated otherwise and we will write a
and b to denote the measure preserving actions I' ~¢ (X, ) and I' A2 (Y, v), respectively,
when the group I and the underlying probability spaces (X, 1) and (Y, v) are understood.
Given measure preserving actions a = I' ~® (X, ) and b = T' AP (Y, v), we say that a
is weakly contained in b, and write a < b, if for every finite partition Ay, ..., A1 of X
into Borel sets, every finite subset /' C I, and every € > 0, there exists a Borel partition

By, ..., Bi_1 of Y such that
(AN A;) —v(y"BiN B;)| < e

forally € Fand 0 < 1,7 < k. We write a ~ b if both a < b and b < a, in which
case a and b are said to be weakly equivalent. The notion of weak containment of measure
preserving actions was introduced by Kechris [Kec10] as an ergodic theoretic analogue of
weak containment for unitary representations.

Weak containment of unitary representations may be defined as follows (see [BHV0S,
Appendix F]). Let 7 and p be unitary representations of I" on the Hilbert spaces H and JH,,
respectively. Then 7 is weakly contained in p, written ™ < p, if for every unit vector £ in
I, every finite subset /' C I', and every € > 0, there exists a finite collection 7, . .., 7x_1

) . ) . k—1
of unit vectors in J{, and nonnegative real numbers o, ..., o1 With ) - «; = 1 such
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that

k-1
(7 (7)€, &) — Z%(P(V)%m” <€

for all v € F'. Each unit vector £ € H, gives rise to a normalized positive definite function
on I' defined by v — (m(7)&,&). We call such a function a normalized positive definite
function realized in m and we may rephrase the definition of 7 < p accordingly as: every
normalized positive definite function realized in 7 is a pointwise limit of convex sums of
normalized positive definite functions realized in p.

A similar rephrasing also applies to weak containment of measure preserving actions,
as pointed out by Abért-Weiss [AW11]. If we view a finite Borel partition Ay, ..., A;_; of
X as aBorel function ¢ : X — k= {0,1,...,k—1} (where we view k as a discrete space)
then, given a measure preserving action a = I' ~* (X, u1), each partition ¢ : X — k gives

rise to a shift-invariant Borel probability measure (%), 1 on k', where

% (z)(7) = ¢((v )" - @).

The map $% is equivariant between the action a and the shift action s on k' given by
(v* - £)(6) = f(y~15), and one may show that the measures (®*¢),u, as ¢ ranges over
all Borel partitions of X into k-pieces, are precisely those shift-invariant Borel measures
A such that I' ~% (KT, \) is a factor of a. In this language a being weakly contained in b
means that for every natural number k, each shift-invariant measure on k' that is a factor
of a is a weak™*-limit of shift-invariant measures that are factors of b.

More precisely, given a compact Polish space K we equip K with the product topol-
ogy, and we let M,(KT) denote the convex set of shift-invariant Borel probability measures
on K' equipped with the weak*-topology so that it is also a compact Polish space. We de-
fine

E(a,K) = {(®**),u : ¢: X — K isBorel} C M (K").
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Then Abért-Weiss characterize weak containment of measure preserving actions as follows:
a < bif and only if E(a, K) C E(b, K) for every finite K if and only if E(a, K) C
m for every compact Polish space K.

From this point of view one difference between the two notions of weak containment
is apparent. While weak containment of representations allows for normalized positive
definite functions realized in 7 to be approximated by convex sums of normalized positive
definite functions realized in p, weak containment of measure preserving actions asks that
shift-invariant factors of a be approximated by a single shift-invariant factor of b at a time.
It is natural to ask for a characterization of the situation in which shift-invariant factors of a
are approximated by convex sums of shift-invariant factors of b. When this is the case we
say that a is stably weakly contained in b and we write a <, b. The relationship between
weak containment and stable weak containment of measure preserving actions is analo-
gous to the relationship between weak containment in the sense of Zimmer (see [BHV08,
F.1.2.(ix)] and [Kec10, Appendix H.(B)]) and weak containment of unitary representations.
Our first theorem is a characterization of this stable version of weak containment of mea-
sure preserving actions.

In what follows (X, 1) and (Y, v) and (Z, n) always denote standard probability spaces.
We let ¢, : I' X Z — Z denote the trivial (identity) action of I" on (Z, 1), writing ¢,, for the
corresponding triple I' ~*7 (Z, n), and we write ¢ and ¢ for ¢,, and ¢, respectively, when 7

is non-atomic. We show the following in §3.

THEOREM 1.1. Let b = I' ~° (Y,v) be a measure preserving action of I'. Then
E(t x b,K) = coE(b, K) for every compact Polish K. In particular, for any a = I' ~\“*
(X, 1) we have that a < ¢ x b if and only if E(a,K) C coE(b, K) for every compact

Polish space K.

When a is ergodic, so that F(a, K) is contained in the extreme points of M,(K"),
we show that Theorem 1.1 implies the following direct analogue of the fact (see [BHVO0S,

F.1.4]) that if 7 and p are representations of I', 7 is irreducible, and 7 is weakly contained
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in p, then every normalized positive definite function realized in 7 is actually a pointwise

limit of normalized positive definite functions realized in p.

THEOREM 1.2. Leta = I' ~% (X, ) and b = T' ~b (X, 1) be measure preserving

actions of I" and suppose that a is ergodic. Ifa < ¢ X bthena < b.

In Theorem 3.11 we show more generally that if a is an ergodic measure preserving
action that is weakly contained in d, then a is weakly contained in almost every ergodic
component of d. This may be seen as a weak containment analogue of the fact that if a is a
factor of d, then a is a factor of almost every ergodic component of d (see Proposition 3.8
below).

One consequence of Theorem 1.2 is that every non-amenable group has a free, non-
ergodic weak equivalence class, and this in fact characterizes non-amenability (Corollary

4.2 below).

THEOREM 1.3. If' b a measure preserving action of I that is strongly ergodic, then ¢ X b
is not weakly equivalent to any ergodic action. In particular, if I' is a non-amenable group
and sp = T ~°r ([0, 17, A1) is the Bernoulli shift action of T, then v x sr is a free action

of I that is not weakly equivalent to any ergodic action.

If B is a class of measure preserving actions of a countable group I' and a € B, then
a is called universal for B if b < a for every b € 3. When a is universal for the class
of all measure preserving actions of ' then a is simply called universal. In §4 we study
the universality properties EMD, EMD*, and MD of residually finite groups introduced
by Kechris [Kec12] (MD was also independently studied by Bowen [Bow03], but with
different terminology), and defined as follows. Let [' be a countably infinite group. I
is said to have property EMD if the measure preserving action pr of I' on its profinite
completion is universal. I' is said to have property EMD* if pr is universal for the class
of all ergodic measure preserving actions of I'. I is said to have property MD if ¢ X pr is

universal.
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Each of these properties imply that I" is residually finite and it is clear that EMD implies
both EMD* and MD. Kechris shows that EMD* implies MD and asks (Question 4.11 of

[Kec12]) whether the converse is true. We provide a positive answer to this question.
THEOREM 1.4. The properties MD and EMD™ are equivalent.

This implies (Corollary 4.7 below) that the properties EMD and MD are equivalent
for all groups without property (T). We also show in Theorem 4.8 that the free product
of groups with property MD has EMD and we give two reformulations of the problem of
whether EMD and MD are equivalent in general (Theorem 4.10 below).

In §5 we discuss the structure of weak equivalence with respect to invariant random
subgroups. A countable group I" acts on the compact space Sub(I') C 2T of all of its
subgroups by conjugation. Following [AGV12], a conjugation-invariant Borel probability
measure on Sub(I") will be called an invariant random subgroup (IRS) of I'. We let IRS(I")
denote the set of all invariant random subgroups of I'. If @ = I' ~* (Y, v) is a measure
preserving action of I" then the stabilizer map y +— stab,(y) € Sub(I") is equivariant so
that the measure (stab, ). is an IRS of I" which we call the type of a, and denote type(a).
It is shown in [AE11] that the type of a measure preserving action is an invariant of weak
equivalence (we give a proof of this in 5.2 below).

In §5.2 we use the framework laid out in §3 to study the compact metric topology
introduced by Abért-Elek [AE11] on the set A (I, X, u) of weak equivalence classes of
measure preserving actions of I'. We show that the map A (T, X, u) — IRS(I") sending
each weak equivalence class to its type in IRS(T") is continuous when IRS(T") is equipped
with the weak™ topology.

In §5.3 we detail a construction, described in [AGV12], whereby, given a probability
space (Z,n), one canonically associates to each # € IRS(I") a measure preserving ac-
tion sy, of I' such that type(sy,) = 6 when 7 is non-atomic. We call sy, the 6-random
Bernoulli shift of I over (Z,n). When a is free then type(a) is the point mass ) on the

trivial subgroup (e) of I' and s; (eyn 18 the usual Bernoulli shift action of I" on (Z%,nh).
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After establishing some properties of random Bernoulli shifts we show the following in

§5.5.

THEOREM 1.5. Let a = T' ~* (Y,v) be a non-atomic measure preserving action
of type 8, and let sy, be the 0-random Bernoulli shift over (Z,n). Then the relatively
independent joining of sy, and a over their common factor I' ~ (Sub(I'),0) is weakly

equivalent to a. In particular, sg,, is weakly contained in every non-atomic action of type

0.

When a is free then the relatively independent joining of s;s ,, , and a is simply the
product of the Bernoulli shift with @ and Theorem 1.5 proves a conjecture of Ioana, be-

coming the following strengthening of Abért-Weiss [AW11, Theorem 1]:

COROLLARY 1.6. Let st = ' ~*t ([0,1]", A1) be the Bernoulli shift action of T,
where \ denotes Lebesgue measure on [0,1]. Let a = T' ~* (X, ) be a free measure
preserving action of I' on a non-atomic standard probability space (X, j1). Then sr X a is

weakly equivalent to a.

Several invariants of measure preserving actions such as groupoid cost [AW11] ([Kec10]
for the case of free actions) and independence number [CK13] are known to increase or
decrease with weak containment (see also [AE11] and [CKTD11] for other examples). A
consequence of Theorem 1.5 is that, for a finitely generated group I', among all non-atomic
measure preserving actions of type 6, the groupoid cost attains its maximum and the in-
dependence number attains its minimum on sy . Likewise, Corollary 1.6 implies that for
any free measure preserving action a of I', both a and st x a have the same independence
number, and the orbit equivalence relation associated to a and sp X a have the same cost.

In §6 we address the question of how many isomorphism classes of actions are con-
tained in a given weak equivalence class. We answer a question of Abért-Elek [AE11,
Question 6.1], showing that the weak equivalence class of any free action always contains
non-isomorphic actions. Our arguments show that there are in fact continuum-many iso-

morphism classes of actions in any free weak equivalence class, and from the perspective
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of Borel reducibility we can strengthen this even further. Let A(T", X, i) denote the Polish
space of measure preserving actions of I on (X, ) and let a,b € A(T', X, ). Then a
and b are called weakly isomorphic, written a =" b, if both @ C b and b = a. We call
a and b unitarily equivalent, written a = b, if the corresponding Koopman representa-
tions k2 and kY are unitarily equivalent. We let = denote isomorphism of actions. Then

a>b = a>"b = a=>="b. Wenow have the following.

THEOREM 1.7. Let a = T' n* (X, u) be a free action of a countably infinite group
['andlet [a] = {b € AT, X,u) : b ~ a} be the weak equivalence class of a. Then
isomorphism on [a] does not admit classification by countable structures. The same holds

for both weak isomorphism and unitary equivalence on [a).

Any two free actions of an infinite amenable group are weakly equivalent ([FW04],
see also Remark 4.1 and Theorem 1.8 below), so for amenable 1" Theorem 1.7 follows
from [FW04], [Hjo97] and [Kecl10, 13.7, 13.8, 13.9] (see also [KLP10, 4.4]), while for
non-amenable [' there are continuum-many weak equivalence classes of free actions (see
Remark 4.3 below), and Theorem 1.7 is therefore a refinement of the existing results.
The proof of 1.7 uses the methods of [Kecl0, 13.7] and [KLP10]. We fix an infinite-
dimensional separable Hilbert space 3, and denote by Rep,(I', H() the Polish space of
unitary representations of I' on J{ that are weakly contained in the left regular representa-
tion Ar of I'. The conjugacy action of the unitary group U(J{) on Rep, (I", () is generically
turbulent by [KLP10, 3.3], so Theorem 1.7 will follow by showing that unitary conjugacy
on Rep, (T, () is not generically = |[a]-ergodic (and that the same holds for 22* and ="
in place of =). For this we find a continuous homomorphism @ from unitary conjugacy
on Rep, (I', H) to isomorphism on [a] with the property that the inverse image of each
~U_class is meager. The main new ingredient that is needed in the proof of Theorem 1.7 is
Corollary 1.6, which shows that the homomorphism ) we define takes values in [a].

In §7 we show that when I is amenable, type(a) completely determines the stable weak

equivalence class (Definition 9.1) of a measure preserving action a of I'.
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THEOREM 1.8. Let a and b be two measure preserving actions of an amenable group
I'. Then
(1) type(a) = type(b) if and only if a ~, b.
(2) Suppose that type(a) = type(b) concentrates on the infinite index subgroups of T

Then a ~ b.

Combining this with the results of §5.2 (in particular, Remark 5.8) shows that when
I" is amenable, the type map [al]; — type(a), from the compact space A (', Y, v) of all
stable weak equivalence classes of measure preserving actions of I', to the space IRS(I"),
is a homeomorphism.

We end with two appendices, one on ultraproducts of measure preserving actions, and

one on stable weak containment.

REMARK 1.9. After sending Gabor Elek a preliminary version of this paper, I was

informed by him that he has independently obtained a version of Theorem 1.8. See [Ele12].
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2. Preliminaries and notation

[' will always denote a countable group, and e will always denote the identity element

of I'.

2.1. Measure algebras and standard probability spaces. All measures will be prob-
ability measures unless explicitly stated otherwise. A standard probability space is a prob-
ability measure space (X, 1) = (X, B(X), u) where X is a standard Borel space and 1 is a
probability measure on the o-algebra B(X) of Borel subsets of X. In what follows, (X, x),

(Y,v), and (Z, ) will always denote standard probability spaces. Though we mainly focus
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on standard probability spaces we will make use of nonstandard probability spaces arising
as ultraproducts of standard probability spaces. We will write (I¥, p) for a probability space
that may or may not be standard.

The measure algebra MALG, of a probability space (W, p) is the o-algebra of p-
measurable sets modulo the o-ideal of null sets, equipped with the measure p. We also
equip MALG,, with the metric d,(A, B) = p(AAB). We will sometimes abuse notation
and identify a measurable set A C W with its equivalence class in MALG, when there is

no danger of confusion.

2.2. Measure preserving actions. Let ' be a countable group. A measure preserving
action of T is a triple (I', a, (X, ut)), which we write as ' ~® (X, ), where (X, p1) is a
standard probability space and a : I' X X — X is a Borel action of [ on X that preserves
the probability measure ;. A measure preserving action I' ~* (X, u) will often also be
denoted by a boldface letter such as a or p depending on whether we want to emphasize
the underlying action or the underlying probability measure. When v € I"and z € X
we write 7* - x or vz for a(vy, x). In what follows, a, b, and ¢ and d will always denote
measure preserving actions of I'.

We will also make use of actions of I" on nonstandard probability spaces. When (W, p)
is a probability space and o : I' x W — W is a measurable action of I" on IV that preserves
p then we will still use the notations 0 = I" ~° (W, p), 72, etc., from above, though we re-
serve the phrase “measure preserving action” for the case when the underlying probability

space is standard.

2.3. The space of measure preserving actions. We let A(I", X, ;) denote the set of
all measure preserving actions of I" on (X, ;) modulo almost everywhere equality. That
is, two measure preserving actions a and b of I' on (X, x1) are equivalent if u({z € X :
vz # ~4’x}) = 0 for all v € I'. Though elements of A(T', X, i) are equivalence classes of
measure preserving actions we will abuse notation and confuse elements of A(T", X, 1) with
their Borel representatives, making sure our statements and definitions are independent of

the choice of representative when it is not obvious. We equip A(', X, 1) with the weak
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topology, which is a Polish topology generated by the maps a — v*A € MALG,,, with A

ranging over MALG,, and ~y ranging over elements of I".

Notation. Fora € A(I', X, u)and b € A(I',Y,v) weleta C b denote that a is a factor
of b and we let a = b denote that a and b are isomorphic. We let¢,, € A(I", Z, n) denote the
trivial (identity) system I' ~*7 (Z,n), and we write ¢ for ¢,, when 7 is non-atomic. We call
' ~* (X, i) non-atomic if the probability space (X, 1) is non-atomic. If 7' : X — X then
we let supp(7) = {x € X : T'(z) # «}. Fora A C X we denote by p|A the restriction
of uto A given by (u|A)(B) = p(B N A) and we denote by 114 the conditional probability

measure j4(B) = “(fég)m

where we use the convention that 14 = 0 when A C X is null.

Convention. We will regularly neglect null sets when there is no danger of confusion.

3. Proofs of Theorems 1.1 and 1.2

3.1. Weak containment and shift-invariant factors. Let K be a compact Polish
space and equip K" with the product topology so that it is also a compact Polish space.
Then T acts continuously on K by the shift action s, given by (6°f)(v) = f(61v) for
5,v €T, f e K. Let (W, p) be a probability space and let 0 = I" ~? (W, p) be a mea-
surable action of [' on W that preserves p. For each measurable function ¢ : W — K we

define ®%° : W — K" by ®%°(w)(7y) = ¢((y71)? - w), and we let
E(0,K) = {(®%°).p : ¢ : W — K is p-measurable}.
Each map ®% is a factor map from o to I' ~% (KT, (&%), 1) since
7007 - w)(7) = ¢((1716)” - w) = (((671) )7 w) = P (w)(6~"y) = (6" - 2 (w))(7).

Conversely, given any measurable factor map ¢ : [' ~° (W, p) — T’ ~* (K" m,pu) the
map ¢(w) = (w)(e) is also measurable, and for almost all w € W and all v € T we
have ©9°(w)(77) = 6(1* - w) = B(r° - w)(e) = (7* - Y(w))(e) = Y(w)(r™") so that
o = (D9°),p. It follows that E(o, K) is the set of all shift-invariant Borel probability
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measures on K that are factors of 0. We let M (K") denote the convex set of all shift-
invariant Borel probability measures on K'. Equipped with the weak* topology this is a
compact metrizable subset of C(K')*. If E C M,(K") we let coF denote the convex hull
of E and we let COF denote the closed convex hull of E. Fory € T'we let 7, : K' — K

denote the projection map ., (f) = f(7).

LEMMA 3.1. Suppose that ¢,, : W — K, n € N, is a sequence of measurable functions

that converge in measure to the measurable function ¢ : W — K . Then (®%°),p —

(@), pin My(K").

PROOF. ¢, converges to ¢ in measure if and only if for every subsequence {n;} there
is a further subsequence {m;} such that ¢,,, — ¢ almost surely. If ¢,,, — ¢ almost
surely then for all v € ', ®%m::°(w)(y) — ®%°(w)(v) almost surely, and so ®¢mi-°(w) —
P92 (w) almost surely. It follows that ®?° — ®%° in measure. Since convergence

in measure implies convergence in distribution it follows that (®¢"°),p — (®9°),p in

M,(KT). O

REMARK 3.2. We may form the space L(W, p, K) of all measurable maps ¢ : W — K,
where we identify two such maps if they agree p-almost everywhere. If d < 1 is a compati-
ble metric for K then we equip L(W, p, K') with the metric d(¢, 1)) = S d(d(w), h(w)) dp(w),
and then ¢,, — ¢ in this topology if and only if ¢,, converges to ¢ in measure. Then Lemma
3.1 says that for each measure preserving action I' ~° (W, p), the map ¢ — (®?°), p from
L(W, p, K) to M,(K") is continuous. The metric d is complete, and d is separable when
(W, p) is standard. We note for later use that the set of all ¢ € L(W, p, K') with finite range
is dense in L(W, p, K) (this follows from d being separable). Proofs of these facts may be
found in [Kec10, Section 19] and [M0076] (these references assume that the space (W, p)

is standard, but this assumption is not used to prove the facts mentioned here).
We will find the following generalization of weak containment useful.

DEFINITION 3.3. Let .4 and B be two sets of measure preserving actions of I'. We say

that A is weakly contained in BB, written A < B, if for every I' ~* (X, pu) = a € A, for
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any Borel partition Ay, ..., Ay_; of X, ' C T finite, and € > 0, there exists ' A2 (Y, v) =

b € B and a Borel partition By, ..., B;_1 of Y such that
(AN Ay) —v(7"BiN By)| < €
foralli,j < kand~y € F.

This is a generalization of weak containment in the sense that when A = {a} and
B = {b} are both singletons then .4 < B if and only if @ < b in the original sense defined
in the introduction. We write @ < B for {a} < B, and A < bfor A < {b}. If both A < B
and B < A then we put A ~ B. It is clear that < is a reflexive and transitive relation on

sets of actions. The arguments in 10.1 of [Kec10] show the following.

PROPOSITION 3.4. Let A and B be sets of non-atomic measure preserving actions of
I. Then A < B if and only if for every I' n\* (X, 1) = a € A, there exists a sequence

a, € A(T', X, u), n € N, converging to a such that each a,, is isomorphic to some b,, € B.

In particular, a < Bifand only ifa € {d € A(T', X,p) : 3b € Bd = b}.
We also have the corresponding generalization of [AW11, Lemma §].

PROPOSITION 3.5. Let A and B be sets of measure preserving actions of I'. Then the

following are equivalent

(1) A is weakly contained in BB

() Uaea B(d. K) € Upes E(b, K) for every finite K.

3) Ugena £(d, K) © mfor every compact Polish K.
@) Ugea B(d,2") € Upep E(b,29).

PROOF. It suffices to show this for the case A = {d} is a singleton. We let (X, 1) be
the space of d.

We begin with the implication (1)=-(2). It suffices to show (2) for the case K = k =
{0,1,...,k — 1} for some k € N. Fix a Borel function ¢ : X — k, let \ = (&%), u, and

let A; = ¢~'({i}) for i < k. Fix an exhaustive sequence ¢ € F, C Fy C --- of finite
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subsets of I'. For each finite /* C I" and function 7 : FF — klet A, = ﬂwe F ydAT(v). As
d < B we may find for each n € N a measure preserving action b, = I' ~% (Y,,,v,,) in B

along with Borel partitions { B! } ,¢;r. of Y;, such that
3.1) (" A N Ar) = va (V"B N BY)| < €

for all 7y, 75 € kf", and where ¢, is small depending on n, k, and | F,,|. Define ¢, : Y,, — k
by ¥, (y) = i if y € B" for some 7 € k'™ with 7(e) = 4, and let \,, = (®¥mbn), 1. To
show that \,, — \ it suffices to show that \,,(A) — A(A) for every basic clopen set A C k'
of the form A = (7 ({i,}), where e € F' C I is finite and i, < k for each y € F.
We let v € k¥ be the function v(7y) = ..

Fori < klet B? = | [{B, : 7 € k'™ and 7(e) = i}. Let ng be so large that > C F),
and for allm > ngandeach o € k7, J C F,,let B* = | [{B, : 7 € kf"ando C
7} and let B? = MNyes Vng(v)‘ Then B! = | [{B" : o € k' ando(e) = i}. For
yeTl,JCTlando € k' lety- o € k7 be given by (v - 0)(§) = o(y16) for all
6 € vJ. Foro € k" and v € F we have |v,,(v""B} N B? ) — u(v*A, N Ayo)| <
Z{Tean toCT} Z{T’Ean iy-oCT'} |Vn(7an? N Bf’) - :U’(lydAT N AT’)| < anle"‘. Slmllarly’
v (BE) — 11(As)] < e,k and |1, (B2,,) — ju(Ay.0)| < €,k Since y1A, = A, we

obtain from this the estimate
(32 dy,,(v"(B}), B,) = va(BY) + va(Bl,) = 2v(y"(By) N BY,,) < 3e, k1.

Since {B"} ;. is a partition of Y,, and F? C F), we have the set identities

m-Um-0 U =m-N U =

rekfn YEF ek F YEF  gekf
i a(7)=v(7) a(e)=v(v)

By (3.2) the d,, -distance of this is no more than 3|F e, k*/%| from the set

N U ™= r"B =5

vEF  oekF yEF
a(e)=v(7)
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Thus [An(A)~A(A)] = I (B2~ (AD] < BIFleak™ 1 (B2 —pu(A)] < 3] Fleal+
e k2l — 0 by our choice of ¢,,.

(2)=(3): Let K be a compact Polish space. It follows from Lemma 3.1 and Remark

3.2 that the set E¢(d, K) of all measures A\ € E(d, K) coming from Borel ¢ : X — K

with finite range is dense in E(d, K'). By (2) we then have E¢(d, K) C (Jpez £5(b, K) C
m, and (3) now follows.

The implication (3)=-(4) is trivial. (4)=-(1): Given a Borel partition Ay, ..., A,,_1 of
X, F C T finite, and € > 0, let ko, ..., kn_1 € 2" be distinct and define the function
¢: X — 2Vby ¢(x) =iif v € A;. Then A = (®%%),u € E(d,2Y) so by (4) there exists
a sequence ' ~\0n (Y., vn) = b, € B, along with ¢,, : Y,, — 2N such that A\, — \, where
Ay = (B0, 1,. Let Cp, ..., C,,_, disjoint clopen subsets of 2N with k; € C; and for

eachn € Nlet B! = ¢, *(C;). Then for all v € F we have

(v Ai 0 Aj) = (7" B 0 BY)| = [N (C) N H(Cy)) = A (Co) N (C)| = 0,

5

so for large enough n this quantity is smaller than . 0

3.2. Convexity in the space of actions. The convex sum of measure preserving ac-
tions is defined as follows (see also [Kecl0, 10.(F)]). Let N € {1,2,...,00 = N} and
let @ = (ap,ay...) € [0,1]" be a finite or countably infinite sequence of non-negative
real numbers with ), _ya; = 1. Given actions b; = T' ~b (X, p1;), i < N, we let
Yien Xi ={(i,x) : i < Nand x € X;} and we let /i; be the image measure of ;i; under
the inclusion map X; — >, X;, « — (i,x). We obtain a measure preserving action
S ibi = T AT b (5, Xo, S,y ) defined by 1 55n b - (3,) = (3,7 - ).
If (X;, ;) = (X, ) foreach i < N then (3, X, >, yaifti) = (N X X, 1a X 1)
where 7), is the discrete probability measure on N given by 1, ({i}) = «;. If furthermore

b; = bforeachi < N then ), _, a;b; = t,, x bis simply the product action.

LEMMA 3.6. Letb € A(T, X, ;1) and let d = t,,, x b = > a;b. Then E(d, K) C
coE(b, K) C E(¢t x b, K) for every compact Polish K.
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PROOF. Given ¢ : n x X — K, we want to show that (®%%), (0, X 1) € coE(b, K).
Let ¢; : X — K be givenby ¢;(x) = ¢(4, x). Then (09)~1(A) = | ['7 {i} x (®%*)~1(A)
for A C K" and it follows that (&*?), (e x 1) = S a;(®%*), i1, which shows the first
inclusion.

Let the underlying space of ¢ be (Z, 7). Given Borel functions ¢y, ..., ¢,_1 : X — K
and g, ..., a1 > 0 with 327" " a; = 1, we want to show that 7 ;(®%"),.u € E(¢ x
b, K). Let Cy, ..., C,_1 be a Borel partition of Z with n(C;) = «; fori = 0,...,n — 1.
Definei : Z — nbyi(z) =iif z € C;andlet ¢ : Z x X — K be the map ¢(z,x) =

®i(=)(x). Then
2950z, 2)(7) = B - (2,2)) = Do, - 7) = (o ) = BH(@)(),

and so (®P0)"1(A) = | [} Ci x (®%*)"1(A) for all A C K'. It now follows that

Sy ai(D0) = (D4Y), (1) X p). 0

LEMMA 3.7. Let b € A(T, X, p), let ae(n) = (£,...,1) € [0,1]", and let
By = {ty,, xb:n>1}, By={tya xb:n>1 acl01]", Y ja;=1}.

Thent x b ~ By ~ Bs.

PROOF. By < By is trivial. By < ¢ X bis clear (in fact, d C ¢ x b for every d € By).
It remains to show that ¢ X b < Bj. Let (Z,n) be the underlying non-atomic probability
space of ¢ and let A = n x u. Fix a partition P of Z x X, F' C T finite and ¢ > 0.
We may assume without loss of generality that P is of the form P = {A; x B; : 0 <
i <n, 0<j < m}where {4;}!') is a partition of Z, {B; }m o 1s a partition of X, and
all the sets Ay, ..., A,_1 have equal measure. Let C;; = {(i,z) € n x X : z € B;}.

Then, letting d = Uity X b, forall v € Fandi, i/ < n, j,7/ < m,if i # i’ we have
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VIC; ;N Cyjo = @ = y>*P(A; x Bj) N (Ay N Bjr), while if i = i’ we have

(Nam) X 1)(7?Ci; N Cij) = tu(y*B; N Byr)

= n(A;)u(v"B; N By) = A(v""(A; x B;) N (A; x By)),

showing that ¢ X b < B;. U

PROOF OF THEOREM 1.1. We apply 3.5 and 3.7, then 3.6 to obtain

E(txb,K) CUps Bty X b,K) CWE(b,K) C E(L X b, K)

and so E(¢ x b, K) =coE(b, K). O

The proof of Theorem 1.2 now proceeds in analogy with the proof of the corresponding

fact for unitary representations (see [BHVO08, F.1.4]).

PROOF OF THEOREM 1.2. Suppose that a is ergodic and @ < ¢ x b. We want to show
that a < b, or equivalently E(a, K) C m for every compact Polish K. By hypoth-
esis we have that F(a, K) C E(v x b, K), so by Theorem 1.1, F(a, K) C coFE(b, K).
Since every element of F(a, K) is ergodic, F(a, K) is contained in the extreme points of
M, (K"), and so a fortiori E(a, K) is contained in the extreme points of c0E (b, K). Since
in a locally convex space the extreme points of a given compact convex set are contained in

every closed set generating that convex set (see, e.g., [Phe01, Proposition 1.5]), it follows

that F(a, K) C E(b, K) as was to be shown. O

3.3. Ergodic decomposition and weak containment. We begin with the following

observation about factors.

PROPOSITION 3.8. Let d be a measure preserving action of I on (Y, v) and suppose
7w : (Y,v) — (Z,n) is a factor map from d onto an identity action I' ~* (Z,n). Let
v = fz v, dn be the disintegration of v with respect to 7 and let d, = T' ~4 (Y, v.).
Suppose that a = T' ~* (X, u) is an ergodic factor of d via the map ¢ : (Y,v) — (X, p).

Then for n-almost every z € Z, a is a factor of d., via the map .
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PROOF. Themap 7 X ¢ : (Y,v) = (Z x X, (7 X ¢).v), y — (7(y), ¢(y)), factors d
onto a joining b of the identity action ¢,, and the ergodic action a. Since ergodic and identity
actions are disjoint ([Gla03, 6.24]) we have that (7 X ¢),v = n x pand b = ¢, X a.
The measure (7 X @), lives on {z} x X almost surely, and n X p = (7 X @) =
[, (m X ¢),v. dn, so by uniqueness of disintegration (m X ¢),r, = 5. X y almost surely.

Since proj o (7 X ) = ¢ we have that p,v, = (projy)«(d, X ©) = p almost surely. [J

COROLLARY 3.9. If a is ergodic and ¢ factors d onto a then ¢ factors almost every

ergodic component of d onto a.

Using ultraproducts of measure preserving actions (see Appendix 8) we can prove an
analogous result for weak containment which generalizes Theorem 1.2. For the remainder
of this section we fix a nonprincipal ultrafilter ¢/ on N and we also fix a compact Polish
space K homeomorphic to 2V, Let a,, = ' 1% (Y,,,v), n € N, be a sequence of measure
preserving actions of I' and let a;; = T" ~" (Y}, 1i4) be the ultraproduct of the sequence
a,, with respect to the nonprincipal ultrafilter &/ on N. Let ¢,, : Y,, — K be a sequence of
Borel functions and let ®,, = %~ : Y, — K. We let ¢ denote the ultralimit function

determined by the sequence ¢, i.e., ¢ : Y;; — K is the function given by

for [y,] € Yy. The function ¢ is By-measurable since ¢~ (V) = [¢, (V)] whenever

n

V C K is open.

PROPOSITION 3.10. Let ® = ®>%, Then

(1) @([y,)) = lim,_yy ©,,(y,) for all [y,] € Yys
(2) (I)*VZ/{ = hmn—ﬂ/l(q)n)*yn;
(3) For every By-measurable function v : Y, — K there exists a sequence p,, :

Y,, — K of Borel functions such that {(ly,|) = lim, .y ©n(yn) for vy-almost

every [y,] € Yu.
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PROOF. (1): For each [y,] € Yy and v € ' we have ®([y,])(v!) = o(v“[y,]) =
([ yal) = limpsy @(v*"yn) = limpyyy P(yn)(y) = (limyy @p(yn)) (7). the last
equality following by continuity of the evaluation map f +— f(vy) on K.

(2): Let A = lim,_(®,).v,. Then X is the unique element of M (K") such that
AC) = lim,_y((®,)«1n(C)) for all clopen C C KT. Part (1) implies that ~(C) =
(@, 1(C)] whenever C' C K7 is clopen, and s0 @,y (C) = lim,, y; v,(®,,1(C)) = lim, 4 ((Pn)«vn (C)).

(3): We may assume K = 2N, For m € N define ¢,,, : Yy — K by ¥ ([yn]) =
Y([yn])(m). Fori € {0,1} let A™* = ¢ 1({i}) € By and fix [A™'] € Ay such that
v (A™A[A™]) = 0. For each m,n € N let B™? = A™Y\ A™! and let B™! =
Y, \ B™? so that {B™° B™'} is a Borel partition of Y,,. Then for each m € N we
have vy (A™°A[B™°)) = 0 = vy (A™'A[B™!]). Define ¢, : Y, — K by taking
on(y)(m) = 4 if and only if y € B™'. Let ¢ : Y;; — K be the ultralimit function

©([yn]) = limy, 1 (95 ). Then for i € {0,1} we have

Pllyn))(m) =i & lim (on(ya)(m)) =i & {n :ya € BV} €U & [ya] € [B]],

and so ¢ is equal to ¢ off the null set U, ,cx je 0.0y A™ A[B]. O

THEOREM 3.11. Let d be a measure preserving action of I' on (Y,v) and suppose
7w : (Y,v) — (Z,n) is a factor map from d onto an identity action T' ~* (Z,n). Let
v = fz v, dn be the disintegration of v with respect to ™ and let d, = T' ~4 (Y, v.).
Suppose that a = T' ~* (X, p) is ergodic and is weakly contained in d. Then a is weakly

contained in d, for almost all z € Z.

PROOF. Taking K = 2V it suffices to show for each A € E(a, K) that n({z : )\ €
E(d,, K)}) = 1. LetU be a nonprincipal ultrafilter on N and let dyy = I' ~% (Y, 1) and
Ly =TI " (Zy,ny) be the ultrapowers of d and ¢, respectively. The map 7, : Yy, — Zy

defined by m([yn]) = [7(yn)] factors dy; onto ¢yy.
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Given any \ € E(a, K), since a < d there exists ¢,, : Y — K such that (&4, —
A. Let ¢ : Y;; — K be the ultralimit of the functions ¢,,, let ®,, = ®*¢ and let & = d*u :
Yy, — K'. By Proposition 3.10.(2), ® factors dy; onto I' ~% (K1) \).

Letp = 0.vy, where 0 = myx® : Yy — Zyyx KV is the map o ([yn]) = (m/([yn]); @([4n]))-
Then p = 1, X A since each standard factor of ¢, is an identity action so is disjoint from a.

Let v, = [, v../U, so that v, ; is a probability measure on By, (Y;,) for all [2,] € Z.
CLAM 1. lim,, .y (P,) v, = A for ny-almost every [z, € Zy.

PROOF OF CLAIM. By Proposition 8.1, vy/(A) = [, | V., (A) dny forall A € By (Yyy).
As 0,1, lives on {[z,]} x K" it follows for D € By(Zy) and C' C K" clopen that

/[ O = nADA(C) = p(D % ) = [ oD% C)

[zn]

:/[ ] DJ*V[Zn}(ZU X C) d?]u :/ (b*lj[zn}(c{) d??u.
Zn|€

[zn]€D

Thus for each clopen C C K", ®,u, 1(C) = A(C) for my almost every [z,] € Zy.
It follows that ®,v.; = A for n, almost every [z,] € Z;. By Proposition 3.10.(2),

limy, (P, )41, = A for my, almost every [z,] € Zy. O[Claim]

If now V is any open neighborhood of X in M,(KT) thenlet B = {z € Z : E(d., K)N
V = @}. If n(B) > 0 then let B,, = B for all n so that [B,,] € Ay(Zy) and ny([B,]) > 0.
Thus, for some [z, € [B,] we have lim,,_;;(®,).v,, = Aand so (®,).v,, € E(d,,, K)N
V for some n € N. Since z, € B,, = B this is a contradiction. Thus, (B) = 0. It follows

that A € F(d,, K) almost surely. O

THEOREM 3.12. Let ¢ : I AP (X, pu) = T~ (Zn)and : T A (Y,v) —
I' ~' (Z,n) be factor maps from b and d respectively onto v,. Let p = fz i, dn and
V= fz v, dn be the disintegrations of | and v via @ and 1) respectively, and for each z € Z
letb, =T ~Y (X, p.) and letd, =T ~? (Y,v,). Then
(1) Ifb, < d, forall z € Z then b < d.
(2) Ifb < d. forall z € Z the 1, xb < dandifb, < dforall = € Z then b < ¢, x d.
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Q) Ifb, ~d. forall z € Z thenb ~ dand ifb ~ d, forall z € Z then v, x b ~ d.
We also have the following version for stable weak containment (see Appendix 9):

4) Ifb, <, d, forall z € Z then b <, d.
(5) Ifb, <sdforall z € Z then b <, d and if b, <, d forall z € Z then b <, d.
(6) If b, ~,d, forall z € Z thenb ~, dand ifb ~, d, forall z € Z then b ~ d.

PROOEF. (1): Let {B,, }.cn be a countable algebra of subsets of Y generating the Borel
o-algebra of Y. Fix a partition Ay, ..., Ax_1 of Borel subsets of X along with /' C T’
finite and € > 0. For each z there exists a k-tuple (nq,...,n;_1) € N¥ such that the sets
By, ..., Bn,_, €Y witness that b, < d, with respect to the parameters Ay, ..., Ay_1,

F,and e. We let n(z) = (no(2),...,nk_1(2)) be the lexicographically least k-tuple that

satisfies this for z. For each j < k the set
Dj={yeY :3z€Z((y) =zandy € By»))} =| |(Bn,i» N (2))

is analytic and so is measurable. Forall z € Z, v € ', and j < k we then have that vD; N
71 (2) = 7% Bz N9~ (2) and it follows that v, (v*D; N Djr) = v2(Y% By, (z) N By (2))s
since v, concentrates on ¢~ '(z). For v € F and 4, j < k we then have

DN D)~ AN A = | [ n'DinD)dne) - [ A ) dn)
z€Z z€

Z

< / V(Y% Buy(z) N Buy(2) — 1=(2 A 0 Aj)| dn(z) < n(Z)e < e
z€Z

which finishes the proof of (1).

Statements (2) through (6) now follow from (1). ]

QUESTION 3.13. Is every measure preserving action d of I' stably weakly equivalent

to an action with countable ergodic decomposition?

A positive answer to Question 3.13 would be an ergodic theoretic analogue of the fact

that every unitary representation of I' on a separable Hilbert space is weakly equivalent



108

to a countable direct sum of irreducible representations ([Dix77], this also follows from

[BHVO08, F.2.7]). We also mention the following related problem.

PROBLEM 3.14. Describe the set ex(coE(a,2")) of extreme points of coE(a,2Y) for

ac AT, X, pn).
4. Consequences of Theorem 1.2 and applications to MD and EMD

4.1. Free, non-ergodic weak equivalence classes. We can now prove Theorem 1.3.

PROOF OF THEOREM 1.3. If a is any ergodic action of I' and @ < ¢ X b then by
Theorem 1.2 a < b, and so a is strongly ergodic. It follows that we cannot also have

Lt X b < a, otherwise a would not be strongly ergodic. U

REMARK 4.1. Foreman and Weiss [FW04, Claim 18] show that for any free measure
preserving action @ = I' ~® (X, i) of an infinite amenable group b < a for every b €
A(T, X, ). We note that a quick alternative proof of this follows from [BTD11, Theorem
1.2], which says that if A is a normal subgroup of a countably infinite group I" and I'/A
is amenable, then b < CIndy ((¢ x b)|A) for every b € A(T, X, u1). Taking T to be an
infinite amenable group and A = (e) the trivial group, the restriction (¢ X b)|{e) is trivial,
SO CInd<Fe>((L x b)|(e)) is the Bernoulli shift action s of I'. Thus, b < sr. By [AW11,
Theorem 1] (or alternatively, Corollary 1.6 below), since a is free, we have sy < a and so
b<a.

Combining this with Theorem 1.3 gives a new characterization of (non-)amenability

for a countable group I'.

COROLLARY 4.2. A countably infinite group I' is non-amenable if and only if there
exists a free measure preserving action of I' that is not weakly equivalent to any ergodic

action.

REMARK 4.3. It is noted in [CK13, 4.(C)] that if I" is a non-amenable group, and if
S C I'is a set of generators for I' such that the Cayley graph Cay(I',.S) is bipartite, then

there are continuum-many weak equivalence classes of free measure preserving actions of
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I'. Their method of using convex combinations of actions can be used to show that this
holds for all non-amenable I', and in fact the proof shows that there exists a collection
{a, : 0 < a < 1} with a, and ag weakly incomparable when o # /. Indeed, if
a =1 n* (X, p)is any free strongly ergodic action of I" (which exists when I is non-
amenable), then for any 0 < o < 8 < % the actions a, = aa + (1 — ®)a and ag =
fa+ (1—f)a are weakly incomparable. To see this note that any action weakly containing
a,, has a sequence of asymptotically invariant sets with measures converging to «.. Since
a is strongly ergodic it is clear that no such sequence exists for ag, and so a, A ag.
Similarly, as £ a,.

It is open whether every non-amenable group has continuum-many weak equivalence
classes of free ergodic measure preserving actions. It is in fact unknown whether there ex-
ists a non-amenable group with just one free ergodic action up to weak equivalence (though
it is shown in the fourth remark after 13.2 of [Kec10] that any such group must, among
other things, have property (T) and cannot contain a non-abelian free group). Abért-Elek
[AE10] show that I" has continuum-many pairwise weakly incomparable (hence inequiva-
lent) free ergodic actions when I' is a finitely generated free group or a linear group with
property (T). Their result also holds for stable weak equivalence in view of the following

consequence of Theorem 1.2.

COROLLARY 4.4. Let a and b be ergodic measure preserving actions of I' and let
(Z,n) be a standard probability space. Then a ~ b if and only if 1, X a ~ ¢, X b. In

particular a ~ b if and only if a ~ b.

PROOF. If a ~ b then ¢,, X a ~ ¢, X b by continuity of the product operation. Con-
versely, if ¢, x @ ~ ¢, x bthena < ¢, X a < t, X bso that a < b by Theorem 1.2.

Likewise, b < a, so a ~ b. O

I also do not know whether every non-amenable group has continuum-many stable
weak equivalence classes of free measure preserving actions, or whether there exists a non-

amenable group all of whose free measure preserving actions are stably weakly equivalent.
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4.2. The properties MD and EMD.

DEFINITION 4.5. Let B be a class of measure preserving actions of a countable group
I'. If a € B then a is called universal for B if b < a for every b € B. When a is universal

for the class of all measure preserving actions of I' then a is simply called universal.

DEFINITION 4.6 ([Kec12]). Let I' be a countably infinite group. Then I is said to
have property EMD if the measure preserving action pr of I' on its profinite completion is
universal. [ is said to have property EMD™ if pr is universal for the class of all ergodic

measure preserving actions of . I is said to have property MD if ¢ X pr is universal.

If ' has property EMD, EMD*, or MD, then pr must be free (this follows, e.g., from
the 5.3 below) and so I' must be residually finite. It is also clear that EMD implies both

EMD* and MD. We now show that EMD™* and MD are equivalent.

PROOF OF THEOREM 1.4. The implication EMD* =- MD is shown in [Kec12], but
also follows from Theorem 3.12 above. For the converse, suppose [' has MD so that ¢ X pr
is universal and let a be an ergodic action of I'. Then @ < ¢ X pr, so since a is ergodic,
Theorem 1.2 implies a < pr. Thus pr is universal for ergodic actions of I', and so I" has

EMD*. U
COROLLARY 4.7. EMD and MD are equivalent for groups without property (T).

PROOF. Suppose I' has MD and does not have (T). Then ¢ X pr is universal and by
Theorem 1.4, pr is universal for ergodic measure preserving actions. Since [' does not have
property (T) there exists an ergodic a = I' ~* (X, ) with ¢ < a, andso ¢ < a < pr.
Since pr is ergodic with ¢ < pr it follows that ¢ X pr < pr (see [AW11, Theorem 3]) and

so pr is universal. O

In what follows, if ¢ : I' — A is group homomorphism then for each a € A(A, X, u)
we let a¥ € A(T', X, i) denote the action that is the composition of a with ¢, i.e., v** =
(7). Also, we note that for any two countable groups 'y, I's, there is a natural equivariant

homeomorphism from the diagonal action Aut(X,pu) ~ A(Ty, X, pu) x AT, X, p) to
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Aut(X, p) ~ A(Ty x T'9, X, ). We denote this map by (a1, az) — a; * as. See [Kecl,
10.(G)]. We also refer to [Kec10, Appendix G] and [Zim84] for information about induced

actions.

THEOREM 4.8. Suppose I'y and 'y are nontrivial countable groups and that for each

i € {1,2}, I is either finite or has property MD. Then I’y x I's has property EMD.

PROOF. Let (a1,a3) € A(T'1, X, pu) x A(Ty, X, 1) be given and let U = U; x Us
be an open neighborhood of (a;, as) where U; is an open neighborhood of a; for i =
1,2. By hypothesis, for each i = 1,2 there exists a finite group F; # {e} along with a
homomorphism ¢; : I'; — F; and b; € A(F;, X, i) such that the corresponding measure
preserving action b’ of I'; is in U;. Let ¢ = 1%y : 1 %'y — Fy % Fy and let b = by * bs.
Then b¥ = b{"' x b3* € Uy x Us,. Let Vi, V5 be open subsets about by € A(Fy, X, i) and
by, € A(Fy, X, 1), respectively, such that {a¥ : a € V;} C U, fori = 1,2 (this is possible
since the map a — a¥’ is continuous). Then b € V; x V5 and for alld € V; x V, we have
d? € Uy x U,.

There is a (possibly abelian) free subgroup FF < F' = F} x F5 of finite index (explicitly:
F = ker(y)) = [F}, Fy] where ¢ : Fy * F, — F; X F; is the natural projection map), and
since F has EMD [Kec12, Theorem 1] we have b|F < pg. Letting a r/r denote the action

of F' on F'/FF with normalized counting measure we now have
bLC bx app = Indf (b)) < Indf (pr).

The action d = IndL (pr) is a profinite action, and d is ergodic since pr is ergodic. As
b < d there exists an isomorphic copy dy of d in V; x V. Then df € Uy x U, and df is

ergodic since dy is ergodic. Thus U; x U, contains an ergodic profinite action. ]

NOTE 4.9. The group I'; * I's never has property (T) when I'y and I's are nontrivial, so
by Corollary 4.7 it would have been enough to show in the above proof that ['; x I'y has

MD, and then EMD would follow.

THEOREM 4.10. The following are equivalent
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(1) MD and EMD are equivalent properties for any countably infinite group T'.
(2) EMD passes to subgroups.
(3) MD is incompatible with property (T).

PROOF. (1)=-(2): Property MD passes to subgroups, so if MD and EMD are equiva-
lent, then EMD passes subgroups. (2)=-(1): If I is a countable group with MD then I" % I’
has EMD, so if EMD passes to subgroups then I' actually has EMD. (1)=-(3): EMD is
incompatible with property (T) since if I' is an infinite residually finite group with property
(T) then pr is strongly ergodic so that ¢ £ pr. Thus, if MD and EMD are equivalent
then MD is also incompatible with property (T). (3)=-(1): This follows immediately from
Corollary 4.7. U

Note also that Theorem 1.2 gives the following

PROPOSITION 4.11. MD is incompatible with ((7) and —(T)). That is, if a group T has

both MD and property (1), then I actually has property (T).

PROOF. If I' has MD then by 4.7, pr is universal for ergodic actions, so if I' does not
have (T) then there exists an ergodic a with ¢ < a. This implies ¢ < pr so that [ does not

have property (7). O

5. Weak equivalence and invariant random subgroups

5.1. Invariant random subgroups. We let Sub(I") denote the set of all subgroups
of I'. This is a compact subset of 2" with the product topology, and is invariant under
the left conjugation action of I', which is continuous, and which we denote by c, i.e.,
¢« H = yH~y™t. We will always view T as acting on Sub(T') by conjugation, though the
underlying measure on Sub(I") will vary. By an invariant random subgroup (IRS) of I'
we mean a conjugation-invariant Borel probability measure 6 on Sub(I"). Invariant random
subgroups are studied in [AGV12] as a stochastic generalization of normal subgroups. See
also [AE11], [Bow10b] and [Ver12]. We let IRS(I") denote the space of all invariant

random subgroups of I'. When 6 € IRS(I") we will let 8 denote the measure preserving
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action I' ~¢ (Sub(T"),#). For a measure preserving action a = I' ~* (X, u) we let
type(a) denote the type of a, which is defined to be the measure (stab,).u on Sub(T"),
where stab, : X — Sub(I) is the stabilizer map x + stab,(z) =, ={y €' : vz =
x} € Sub(I). It is clear that type(a) is always an IRS of I'. Types are studied in [AE11] in

order to examine freeness properties of measure preserving actions.

5.2. The compact space of weak equivalence classes. Abért and Elek (JAE11]) de-
fine a compact Polish topology on the set of weak equivalence classes of measure pre-
serving actions of I'. We define this topology below and provide a variation of their proof
showing that it is a compact Polish topology.

For this subsection we fix a standard probability space (X, ) and a compact zero-
dimensional Polish space K homeomorphic to Cantor space 2". We let X = K (M (K"))
denote the space of all nonempty compact subsets of M,(K"), equipped with the Vietoris
topology 7, which makes X into a compact Polish space. Since M,(K") is a compact
metric space, convergence in this topology may be described as follows. A sequence L,, €

X, n € N converges if and only if the sets

Tlim, L, = {\ € M,(K") : 3(\,) [Vn A\, € Ly, and \, — \]}
Tlim, L, = {\ € M,(K") : 3(\,) [Vn )\, € L,, and for some subsequence (\,, ), An, — A}
are equal, in which case their common value is the limit of the sequence L, (see, e.g.,

[Kec95, 4.F]).
Let  : A(T', X, ) — X be the map

®(a) = E(a, K).
By Proposition 3.5, ®(a) = ®(b) if and only if @ ~ b. We now have
THEOREM 5.1. The image of ® in X is a closed, hence compact subset of (X, 1v).

PROOF. Let ag, aq,a,,... be a sequence in A(I", X, i) and suppose that ®(a,,) con-

verges in (K, 7y) to the compact set L € K. We will show that there exists a,, €
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A(T, X, ) such that ®(a.,) = L. Since E(a,, K) is dense in ®(a,) we may write L

as

L={\e& M,(K") : 3(\,) [Vn \, € E(a,, K), and \, — \|}

={\ e M,(K") : 3(\,) Vn )\, € E(a,, K), and for some subsequence (\,, ), A, — A}

Fix a nonprincipal ultrafilter /{ on N, let (X3, /) be the ultrapower of the measure space

(X,p), and let ayy = I' "% (Xy, p) denote the ultraproduct [ [ a, /U of the sequence

{an}n€N~
CLAIM 2. L = E(ay, K).

PROOF OF CLAIM. Let A € L and let \, € E(a,,K), n € N, with \,, — A. For
each n there exists ¢, : X — K such that \,, = (®%),u. Let ¢ : Xy — K be the
ultralimit of the functions ¢,,. By Proposition 3.10.(2) (®%%), yy; = lim,, (), =
lim,, ;s A\, = A. This shows A € E(ay, K), and thus L C E(ay, K).

Conversely, let A € E(ay, K), say A\ = (®¥%), 1y, for some By-measurable ¢ :
Xy — K. By Proposition 3.10.(3) we may find a sequence ¢, : X — K, n € N, of
Borel functions such that, letting ¢ denote the ultralimit of the ¢,,, 1;;,-almost everywhere
Y([zn]) = ¢([z,]). Let @, = &P let & = d» and let \, = (D,,).pu € E(ay, K).
Then ®¥%([x,]) = ®([z,]) almost everywhere, so by Proposition 3.10.(2) we have A\ =
(V) iy = Dy = lim,,_yy Ay, SO there exists a subsequence ng < n; < --- such that

An, — A. Hence A € L and so E(ay, K) C L. O[Claim]

Let D C L be a countable dense subset of L = F(ay, K). For each A € D we choose
some By,-measurable ¢y : Xy — K with (d? %), 1, = X, and we also choose a sequence
Oam - Xy — K, m € N, of functions converging in measure to ¢y, such that each ¢ ,,
is constant on some By;-measurable finite partition P*™) of X;,. By Theorem 8.3 there
exists a countably generated standard factor M of MALG,,,, containing |, U,,ex pAm)

that is isomorphic to MALG,,. Let a,, be an action on (X, x1) corresponding to a point

realization of the action of I' on M by measure algebra automorphisms. It is clear that
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E(aw, K) C E(ay, K) = L. We show that D C E(a, K). Given A € D, each of
the functions ¢, ,, is M-measurable, so (PP ) 1, € E(an, K) for all m. Since
Gam — ¢y in measure it follows that (P> %), 1y, — A, and thus A € E(aw, K). Thus

L = E(a, K). 0

Fora € A(T', X, u) let [a] C A(T", X, 1) denote the weak equivalence class of a in
AT, X, ). Let Ao(T, X, 1) = {la] : a € A(T', X, u)} be the set of all weak equivalence
classes of elements of A(T", X, 11), and let 7 denote the topology on A (I, X, i) obtained
by identifying A (T, X, ) with a closed subset of (X, 7/) via ®. This makes A (T, X, u1)

into a compact metrizable space.

THEOREM 5.2.

(1) [AE11] The type, type(a), of a measure preserving action is an invariant of weak
equivalence.

(2) The map [a] — type(a) is a continuous map from the space (A.(I', X, pn), 7) of
weak equivalence classes of measure preserving actions of I to the space IRS(I')

of invariant random subgroups of I' equipped with the weak*-topology.

PROOF. Letd, € A(T', X, 1), n € N, and suppose that [b,,] — [b]inT,i.e., E(b,, K) —

E(b,K) in 7y. In light of Proposition 8.4, both (1) and (2) will follow once we show
that type(a,) — type(a) for all a,, € [b,] and @ € [b]. Let 0, = type(a,) and let
6 = type(a). Let F,G C T be finite. We define Np = {H € Sub(I') : F'nN H = &},
Npg={H e€Sub(I') : FNH =@ and G C H} and

Ay = (Y supp(r*") A = () supp(r°") N (] X \ supp(y*")

NeF VEF V€G
Ap =) supp(r") Apc =[] supp(r*) N () X \ supp(7*).
~EF yEF v€G

Then 0,(Nr) = u(Af), 0n(Nra) = m(Afg), 0(Nr) = p(Ar), and (Nra) = u(Arg).
We will be done once we show that j1(A% ;) — p(Arg) for all finite F, G C T,
We first show that p(A%) — p(Ap) for all finite 7 C T
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LEMMA 5.3. u(Ap) < liminf, u(A%) for all finite F C T

PROOF. We may write A as a countable disjoint union Ar = | | ., A,, where u(7*A,;,N

m>0

Ap) = 0forall y € Fand m € N. Then for any ¢ > 0 we can find M so large that

D omsar H(Am) < 5777~ Since lan] — [a] in 7 we have that F(a, K') C TLim, E(a, K) so
by Proposition 3.5 @ < {a, : n € I} for any infinite / C N. Thus there exists N such
that for each n > N we can find Aj, ..., A%, ; suchthatforally € FU{e} andi,j < M

we have
€

A NA) — p(y™ AP N A" < ———
(v A N Ay) — p(y™ A N ])\<2M2‘F|

Then, fixing n with n > N, in particular we have u(~y*A? N A) < and |p(A;) —

__€
2MZ|F]

(AP < ggzer forally € Fand i < M, and p(A7 N A7) < forall i,j < M,

SATF]
1 # j. Define for i < M the sets
B =Ar\ (U arulJ4y).
YEF JF#
Then for v € F, v B! N B} = @ and fori # j, B N B} = @. Thus | | B! C Aj.
Since p(B!") > (A — (M —1) + |F\)m > p(A;) — 557 it follows that p(A%) >
Yoiear H(BY) > (D2, (As)) — 5 > (Ap) — e. Since this holds for all n > NV and since

€ > (0 was arbitrary we are done. O[Lemma]
LEMMA 5.4. limsup,, u(A%) < u(Ar) for all finite F C T.

PROOF. We may write each A’ as a countable disjoint union A% = | |~_, A" where
forallm,m € N,y A" NA? = &. We also define A", = X\ AL. Let B_y, By, By, B, . ..
be a sequence of disjoint nonempty clopen subsets of K, let k,,, € B,,, and define ¢,, : X —

K by ¢n(x) =k, for z € A. The set

Bp ={f € K" : (Ym > -1)[f(e) € Bn = (V1 € F)(f(7) € Bu)]}

= K"\ U (0 (Ba) 0 | 7 (Ba)

m>—1 yeF
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is closed and contained in the open set Up = {f : Vy € F f(v) # f(e)}. Fixing n, for

each m > 0 we have that

(@) (Ba) 0 | 7 (B) = A0 (0 A = 2

YEF YEF

while for m = —1 we have that (&%)~} (7 *(B_;) N Y vep Ty (Bo1)) = A", since
A" C U ep™A™y. Tt follows that (09%)~H(Bp) = Af. Let A, = (®%),u €
E(a,, K). Take any convergent subsequence { \,,, }, and let \ = limy \,,, . Since E(a,,, K) —
E(a,K) we have that A € E(a, K), so let p, = ("), € E(a,K) be such that

prn — A. We now have

lim sup,pu(A%) = limsup, A\, (Br) < AM(Br) < A(Ur)

< liminf,p,(Ur) = liminf,u({z : ¥y € F n((y7)2) # n(2)}) < p(Ar).

Since the convergent subsequence (), ) was arbitrary we conclude that lim sup,, 1(A%) <

1(Ar). O

It follows from the above two lemmas that p(Ar) = lim,, u(A%) for all finite F* C T

Now let F,G C T be finite and note that A% = A%, U UJ yand Ap = Apg U

veG FU{'y

U, eq Arugyy- We have just shown that yi(Ar) = lim, yi(A}). By the inclusion-exclusion

n G _ n :
AFU{fy}) = |k:‘1<_1)k 12{JgG:\J|=k}M(AFUJ)’ and since

w(A% ;) — (Apuy) for each J C G it follows after another application of inclusion-

principle we have 1, ¢

exclusion that u(U, e Arupyy) = (U, eq Arugy)- Thus p(A%q) = w(Are)- O

COROLLARY 5.5 ([AE11]). Foreach € IRS(T"), {[a] : type(a) =0} C A(T', X, p)

is compact in 7. In particular {[a] : [a] is free} is compact in T.

REMARK 5.6. The technique used in the proof of Theorem 5.2 can be used to show

that combinatorial invariants of measure preserving actions such as independence number

(see [CK13] and [CKTD11]) are continuous functions on (A (", X, i), 7).

THEOREM 5.7. Let I be a countable group.
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(1) The map (AT, X, pn),w) — (A(T,X,u),7), @ — [al], is Baire class 1. In
particular, for each 0 € IRS(T") the space {a € A(T', X, ) : type(a) = 0} is a
Gy hence Polish subspace of (A(T', X, u), w).

(2) The topology T is a refinement of the quotient topology on A (', X, i) induced
by w. If (X, p) is not a discrete space and I # {e} then the T topology is strictly

finer than the quotient topology.

PROOF. We begin with (1). For this we show that a — F(a, K) € X is Baire class 1.

We observe that {a : F(a,K) C C}isclosed in (A(T', X, u), w) whenever C € M,(K")
is closed. This is because if a, € A(I', X, u), n € N, is such that W C (' and
a, — a € A(T, X, ;1) in the weak topology then E(a, K) C U, E(a,, K) C C.

The topology 7 on X is generated by the sets {L : L C U} and {L : LNU # &},
where U ranges over all open subsets of M,(K"). For any open U C M (K") the above

observation shows that {a : E(a, K)NU # @} is open, and if we write U = |J,, C,, where
each C,, is closed and C,, C int(C,,4,) then {a : E(a,K) CU} = {a : E(a,K) C
C,}, which is F,.
For the first part of (2) we note that the following are equivalent for a subset 5 of
AT, X, p):
(i) Bis weakly closed and foralla,b € A(I', X, ), a € Band b ~ a implies b € B5.
(ii) Bis weakly closed and forall a,b € A(I", X, i), a € Band b = a implies b € B.
(iii) Foralla € A(T', X, 1), a < B implies a € B.
The implication (i)=-(ii) is trivial, (i1))=-(ii1) follows from Proposition 3.5, and (iii)=(i)
follows from the fact that if a, — a in A(I', X, ) then @ < {a,},en. To show the
first part of (2) it suffices to show that if 3 satisfies the above equivalent properties, then

B. ={la] : a € B}isclosedin 7. Let L = |J,.5E(a,K). Then L C M,(K") is

closed and property (iii) tells us that B, = {[a] € A_(I', X, ) : E(a, K) C L}, which is
exactly the definition of a basic closed set in 7y, .

Suppose that (X, i) is not discrete and let C' C X be the continuous part of X so

that 4(C) > 0. Then (C, u¢) is a standard non-atomic probability space so there exists
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a universal measure preserving action a = I' ~* (C, uc) weakly containing all other
measure preserving actions of I'. Let b be the action of I" on (X, 1) whose restriction to C'
is equal to a and whose restriction to X\ C'is identity and letb = T' A% (X, p). As e, < a
by Lemma 3.4 there exist isomorphic copies of a converging to ¢, in A(I', C, j1c). This
yields isomorphic copies of b converging to ¢, in A(I", X, it). Thus [¢,,] is in the closure

of {[b]} in the quotient topology, but [¢,] is not in the 7 topology closure of {[b]} since
I' # {e} so that [¢,,] # [b]. O

REMARK 5.8. The map KX — X sending L — colL is continuous in the Vietoris
topology 7. Indeed, if L, — L. we show that Tlim coL, C COL. C Tlim,,coL,,.
Let A € TLim, coL, so that there exists \,, € coL,, with A\,,, — A. Then there exist
probability measures /i, on M,(K") supported on L,, with \,, = fp e, (k) P Afin, and
(after moving to a subsequence if necessary) we may assume that ji,,, converges to some
measure ;1 on M (K"). Then A\ = fpeMs(KF) pdu. Let Cy D C; D --- be a sequence of
closed subsets of M(K") with L., C int(C,,) for all m and Lo, = (), Cyn. For each m
theset {L € X : L C C,,} is aneighborhood of L, in X and so contains L, for all large
enough k. It follows that ;(C,,,) > liminfy, p,,, (Cy,) = 1, and so pu(Leo) = limy, u(C,y,) =
1. Since p is supported on L, and has barycenter ), it follows that A\ € coL,. For the
second inclusion it is easy to see that coL., C Tlim,,coL,, and since the latter set is closed
it follows that co L., C Tlim,,coL,,.

If now a is a measure preserving action of I' and (Y, ) is non-atomic then a is stably
weakly equivalent to an action on (Y, ) and we let [a], = {b € A(T,Y,v) : b ~, a}
denote the stable weak equivalence class of a in (Y, v) (see Definition 9.1). It follows that
the space A, (I',Y,v) = {[a]s : a is a measure preserving action of I'} of all stable weak
equivalence classes of measure preserving actions of [' may be viewed as a compact subset
of K via the map [a]; — CoE(a, K). Since type(a) = type(t x a) it follows that type(a)
is an invariant of stable weak equivalence. The map [a] — type(a) then factors through

la] — [a]s, and so Theorem 5.2 also holds for stable weak equivalence.
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5.3. Random Bernoulli shifts. Given § € IRS(I"), one constructs a measure preserv-
ing action of I' of type 6 as follows (see [AGV12, Proposition 45]).

Fix a standard probability space (Z,7) and let Z=\' = | | gy 27\ Here, H\T
denotes the collection of right cosets of H in I'. We define the projection map Z=\' —
Sub(T'), f — H; € Sub(I'), where H; = H when f € ZH\I'. We endow Z=\I' with
the standard Borel structure it inherits as a Borel subset of Z'' x Sub(T") via the injection
f = (v = f(Hsv)), Hy). The image of Z=\' under this map is invariant under the
product action § x ¢ of I" on Z¥ x Sub(T") (where 3 denotes the shift action of I" on Z1),
and we let s denote the corresponding action of ' on Z=\'. We have that H.«; = yHy~*
foreachy € I'and f € Z<\U and (v*f)(vH;y~'0) = f(H;v"'0). Let n'\I' denote the
product measure on Z7\[' C Z=\' and observe that under this action we have (*),n"\l' =

nOHYO\L 1t follows that the measure 7°\ on Z=<\' defined by

'\ = / n™\" d(H)
H

is invariant under the action of I'. We let sy, denote the measure preserving action I' ~*
(Z=\F nP\1), and we call sy, the 0-random Bernoulli shift of T over (Z,n). This action
always contains 6 as a factor via the “projection” map f — H;. When 7 is non-atomic
then the stabilizer map f — I'; of sy, coincides almost everywhere with this projection.

Indeed, if 7 is non-atomic then for 7\

-almost every f the function f : H\I' — Z is
injective. Since every v € I'; satisfies f(Hy ') = f(H), the inclusion I'y C H; is
immediate for injective f, and as H; C I'; always holds we conclude that I'y = Hy almost

surely. In particular type(sg,,) = 6. We have thus shown the following.

PROPOSITION 5.9 ([AGV12, Proposition 45]). Let I' be a countable group. For every
0 € IRS(I") there exists a measure preserving action of type 0. Namely, the 0-random

Bernoulli shift sy, over a non-atomic base space (Z,n) has type 6.
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Y

It is clear that an isomorphism (Z7, 1) = (Z3,19) of measure spaces induces an iso-
morphism sy, = sy.,,. The next proposition characterizes precisely when type(sy,,) = 6

for various 7. Below, we write N (H ) for the normalizer of a subgroup H of T'.

PROPOSITION 5.10. Let I be a countable group, let 6 € IRS(T"), and let (Z,n) be a

standard probability space.

(1) If n is non-atomic then I'y = H; almost surely;

(2) Ifn is a point mass then I y = N(H ) almost everywhere and the map f — Hy is
an isomorphism sg, = 0 so that type(sy,,) = type(6).

(3) Suppose n is not a point mass. Then for each infinite index subgroup of H < T,
Ty = H; for n\'-almost every f € ZH\'. Thus, if

0{H : ' :H <occand N(H) # H}) =0

then I'y = Hy almost surely. In particular if 0 concentrates on the infinite index
subgroups of I then I'y = H ¢ almost surely.

(4) Suppose that n contains atoms. If
0{H : [I':H<ooand N(H) # H}) >0

then type(sy,,) # 0.

In particular, type(sy,,) = 0 if and only if Hy = I'; almost surely.

PROOF. We have already shown (1) in Proposition 5.9 and (2) is clear. For (3) fix
an infinite index H < T" along with some v ¢ H and inductively define an infinite se-
quence {4, }en by taking d,1 € I to be any element of the complement of {J;,(Hd; U
Hy=5; U (YHy™1)d; U (YH~y 1) (74;)) (we are using here the fact that the collection
{Hé : He Sub(I'),d €T, and [[" : H|] = oo} of all right cosets of infinite index sub-
groups of I generates a proper ideal of I' (see, e.g., the proof of Lemma 4.4 in [Kec07])).

By construction all of the cosets Hdy, Hy 8y, Héy, Hy~1d,,... are distinct so, letting
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A C Z be any set with 0 < n(A) < 1, it follows that

N {f oy eTyy) <o™({f 2 Yo e D(f(HS) = f(HA'0))})

<" = F(HS,), f(HY'6,) € Aor f(HS,), f(Hy™'5,) & A})

neN

— Tim (n(A)? + (1 - g(A)2)Y = 0.

NS00
Thus v ¢ T for n¥\'-almost every f, and since this is true for each v ¢ H we obtain
I'; C H for nf\'-almost every f.

We now prove (4). Let 05 = type(sq,,;). Let 2o € Z be an atom for the measure 7). The
set A={feZ=\': [I': Hy] < oo, N(Hf) # HyandVvy € T (f(Hs7y) = 20)} is n°\'-
non-null and I'y = N(Hy) # Hy foreach f € A. Thus [I' : T'y] = [I': N(Hy)] < [I": Hy]
foreach f € A. When f ¢ A westill have [I' : I'y| < [I" : Hy]. It follows that

1 1 1
dh, = / ——dn\' + / ————dn®\*
/H[F : H] feA [T Ty] feA [T Tyl

1 1 1 1
> dn”\" + / ———dn\" = / = dn’\" = / do

and so 65 # 6, which finishes (4).

It is clear that 'y = H almost everywhere implies type(sy,) = 6. Suppose now that
I'y # Hy for anon-null setof f € Z <\I'_ Then (1) implies that 7 contains atoms and (3)
implies that the set J = {f € Z=\I' : [[': Hy] < ooandT'; # H;} is non-null. The
inclusions Hy C T'y C N(H;) holds for all f € Z=\" and so

O({H : I : Hl <ocoand N(H) # H}) > n"\'(J) > 0.
Part (4) now implies that type(sg,,) # 6. O
THEOREM 5.11. Let I" be a countable group, let € IRS(I"), and let sy, be the 6-
random Bernoulli shift over the standard measure space (Z,n). Let p : Z<\' — Sub(I)

denote the projection p(f) = H; factoring sy, onto 0. Assume that 1) is not a point mass.

Then the following are equivalent
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(1) @ concentrates on the infinite index subgroups of T'.
(2) The extensionp : sg, — 0 is ergodic.

(3) The extension p : 89, — 0 is weak mixing.

In particular, if 0 is infinite index then sy ,, is ergodic if and only if 0 is ergodic.

PROOF. (3)=(2) is trivial. (2)=-(1): Suppose that §(C') > 0 where C' = {H : [I":
H] < oo} and let A C Z be any measurable set with 0 < 7(A) < 1. Then the set
B = {f € zs\U' . H; € Candran(f) C A} is a nontrivial invariant set that is not
p-measurable.

(1)=-(3): We must show that the extension p : sy, ®g 89, — 0 is ergodic, where

SGJ] ®0 89’77 = F f\,SXs (ZS\F % Z<\F7/ nH\F % 7]I'I\F d@)
H

and p(f,g) = p(f). Let (Y,v) = (Z x Z,n x n). Then we have the natural isomorphism
© 1 Sy, Qo Sgy = Sp, such that p(f,g) = po (f,g) almost surely, so it suffices to
show that the extension p : sg, — 6 is ergodic. If 6 = [ .. 0(w)dp(w) is the ergodic
decomposition of 6 then sy, decomposes as sy, = fweW S,.» dp(w) and p : y=s\I'
Sub(I") factors sy, , onto 6, almost surely. We may therefore assume that € is ergodic
toward the goal of showing that sy ,, is ergodic as well.

Since 6 is ergodic, the index i of N(H) in I is constant on a f-conull set. If i < oo
then the orbit of almost every H is finite and ergodicity implies that there exists an H, €
Sub(T") such that 6 concentrates on the conjugates of Hy. Then Hj is an infinite index
normal subgroup of Ky = N(H,) which implies that the generalized Bernoulli shift action
s = Ky v (YHO\I pHo\l') is ergodic (see, e.g., [KT08]). Example 5.13 below then shows
that sy, = Indﬂo(s), and so sy, is ergodic.

If i = oo then we proceed as follows. Let (X, p) = (Y =\', »=\I') and suppose toward
contradiction that B C X is invariant and 0 < u(B) = r < 1. The map H — v\'(B)
is conjugation invariant so ergodicity of @ implies that v\ (B) = pu(B) = r almost
surely. Let ¢ > 0 be small depending on . Fix some countable Boolean algebra A,

generating B(Y') and let A be the countable Boolean algebra of subsets of X generated



124

by {m;'(D) : D € Agandy € T'} where m,(f) = f(Hyy) for f € X. Then for
every € > 0 there exists Ay,..., A, € A and a partition Cy, ...,C,_1 of Sub(I') into

non-null measurable sets such that y(AAB) < €2 where A = | |._ (A; N p~!(C})). There

<n

exists a finite /© C I" and a collection {Dg’j 0 €L, j<mn, i<n} C Agpsuch that

A; = Uo<jen, Nsep m (D) for each i < n.

LEMMA 5.12. Let C' C Sub(I") be any non-null measurable set. Then for 8-almost
every H € Sub(T') there exists v € T such that {Ha}oep N {Hy 10}ser = @ and
yH~y 1 e C.

PROOF. Since 0 is ergodic and [I" : N(H)] = oo almost surely, the intersection C*, of
C' with the orbit of H, is almost surely infinite. Fix such an H with both [[' : N(H)] = o0
and C'* infinite. Since the set FF~!- H = {da *Had ™! : «,§ € F'} is finite there exists
v € TwithyHy™t € CH\(FF~1.H). This v works: yHy~! ¢ FF~. H is equivalent to
Y & Uaser 00 'N(H),soif a, 0 € F theny & da~'N(H) and thus Ha # Hy™'6. O

Using this lemma and measure-theoretic exhaustion we may find a Borel function
Sub(l') — T, H — vy, with {Ha}aer N {HYy'0}ser = @ and ygHyy' € C; for
almost every H € Cj, and such that the function v : Sub(I") — Sub(T"), H ~ vz H~g', is
injective on a conull set. In particular, 1) is measure preserving. Let ¢ : X — X be given
by ¢(f) = (vm,)® - f so that o is also injective on a conull set and measure preserving.

For H <Tand D C X let Dy = DN YH\' Then for each i < n and almost every

H € C; we have VHHﬂy;Il € C; and

(At = () (A)m) = [ (AF € Y052 (i HAy! ya) € DY)

j<n; acF

Ayt = (A = U (WS €Y fyy Ho's) € D)

j<n; 6€F

By our choice of vy the sets {yy HV5' Vira}aer and {vi Hyy'0}scr are almost surely

disjoint and it follows that the sets A and ¢(A) are v7H HV;II\F—independent almost surely.
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Since H + vy H~y' is a measure preserving injection it follows that A and (p(A) are
v"\I'-independent almost surely.

We have €2 > u(AAB) = [, v™\'(AAB)df > [, [v"\"(A) — r|df so that 9({H :
VAN (A) — 7] < €}) > 1 — e and since u(AAB) = u(p(A)AB) we also have 0({H :

WA\ (p(A)) — 7| < €}) > 1 — e Then

r=pu(B) < n(AAB) + pu(p(A)AB) + (AN (A))

<22 4 / VI (A (p(A)) dB < 26 + 2 + (r + €)F 5o 72
H

This is a contradiction for small enough € since 0 < r < 1. U

EXAMPLE 5.13. The simplest example of an ergodic § € IRS(I") is a point mass 0 =
dn on some normal subgroup N < I'. The corresponding random Bernoulli shift s;, , is
isomorphic to the usual generalized shift action of T on (ZT/N nI/V),

Almost as simple is when 6 € IRS(I") has the form § = © S8 -1 where H < T

viH;
is a subgroup with finitely many conjugates 70H70_1, Y HATY o HA Y, o H
Clearly 0 is ergodic. In this case the random Bernoulli shift sy, may be described as
follows. The set T = {7;}i<n is a transversal for the left cosets of the normalizer K =
N(H) of H in T, and the natural action of ' on 7" given by v -t € vtK NT fory € T
and t € T preserves normalized counting measure vy on 7. Since H is normal in K,
the restriction to K of the action s leaves Z/\I" invariant and preserves the measure 7\
so that s = K ~° (ZH\' nf\I') becomes the usual generalized Bernoulli shift. We let

b denote the induced action b = Ind}(s), which is the measure preserving action I' ~?

(ZP\T 5 T, I\ % vr) given by

V(1) = (p(v. ) f, v - 1)

where p : T' x T — K is the cocycle given by p(~,t) = (v -t)"*yt. The map 7 :

ZH\N T — Z=\" given by 7(f,t) = t°f € Z** "\ is an isomorphism of b with s,.
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Indeed, 7 is equivariant since

(Y (f, 1) = m(p(v, 1) f,7 - t) = (v - £)°p(7, 0)° f = (V)° f = *t°f = v°m(f, ¢)

and 7 is measure preserving since

1 1 L
m (M X vr) = =3 m (T x 8 = Y T =\

teT te’l

It is also clear that 7 is injective since ¢ — tHt~! is a bijection of T" with the conjugates of

H.
5.4. A sufficient condition for weak containment.

NOTATION. For sets A and B we let ASP = Uccs AC. We identify & € N with
k ={0,1,....k — 1}. A partition of (X, ) will always mean a finite partition of X
into Borel sets. When P is a partition of (X, ) we will often identify elements of P
with their equivalence class in MALG,,. We use the script letters V', O, P, Q, R, S and
T to denote partitions, and the printed letters N, O, P, @, R, S and T, respectively, to
denote their corresponding elements. If P and Q are two partitions of (X, u) then we let
PV ={PNQ : PeP, Q € Q} denote their join. We write P < Q if Qis a
refinement of P, i.e., if every () € Q is contained, modulo null sets, in some P € P.

Suppose I' ~* (X, u) and P = {F,..., P,_1} is a partition of X. If J is a finite

subset of I" and 7 € k” then we define
Pt = (17" Pry-
yedJ

We will write P when the action « is understood. Note that P, = X. We let I" act on the set

U{k’ : J C Tis finite} by shift, i.e., (v - 7)(6) = 7(y~15). Then dom(v - 7) = vdom(7).

The following lemma establishes a sufficient condition for a measure preserving action
a to be weakly contained in B which will be used in the proof of Theorem 1.5. This lemma

is inspired by [AW11, Lemma 5].
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LEMMA 5.14. Suppose a = T' ~* (X, ) and B is a collection of measure preserving
actions of T. Suppose PO < PW) < ... is a sequence of partitions of X such that the
smallest a-invariant measure algebra containing | J, P™ is all of MALG,.. Then a < B if
for any n, writing P =P = {Po, ..., Px_1}, for all finite subsets FF C I" and all 6 > 0,
there exists some I' A’ (Y,v) = b € B and a partition Q = {Qy,...,Qr_1} of Y such
that for all T € kST, |u(P;) — v(Q,)| < 6.

PROOF. Suppose the condition is satisfied and let A;,..., A,, € MALG,, F;, C T
finite with e € [y, and ¢ > 0 be given. Lete € Gy C G; C --- be an increasing
exhaustive sequence of finite subsets of I', and let GG, - P = vveGn e - P® . Then
G, -P™,n=0,1,2,...,is a sequence of finer and finer partitions of X and the algebra
generated by | J, G,, - P™ is dense in MALG,,. There exists an N and Dy, ..., D,, in the
algebra generated by G - P™Y) such that pu(A4;AD;) < ¢ foralli < m. Let G = Gy and
P=PWN ={Py,...,P.1}.

We can express each D; as a finite disjoint union of sets of the form P,, o € kT,
ie, D; = | {P, : o € L} for some I; C k®. Applying the condition given by the
lemma to F = FyG and 0 < § < 35z we obtain I' A% (Y,v) = b € B and a partition
Q = {Qo,...,Qr_1} € MALG, such that for all 7 € k= |u(P,) — v(Q,)| < 4. For
i < mwelet B; = | [{Q, : o € I;}. Note that for v € F;, and 0,0’ € k“ we have
dom(y - o) =G C FyG and

P, suo ify -0 and o' are compatible
¥*P,N\ Py = P,y N Py =

%] otherwise.

Similarly 7* - Q, N Q, equals either Q..,,» or & depending on whether or not v - o and

o’ are compatible partial functions. It then follows from our choice of F' that |u(~v*P, N
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Py) —v(7*Q, N Q,)| < & forall o, 0’ € k. We now have for i, j < m and y € Fj that

€
(A0 A)) = p(" B0 Byl < 5+ [u [ 2P 0 Por) = (|| 7'Qr N Q)

O’EIZ', O’GIZ',
a'el; a'el;
g§+ui|uj|5<€. O

5.5. Independent joinings over an IRS and the proof of Theorem 1.5. Let a =
' ~® (Y, v) be a non-atomic measure preserving action of I', and let § = type(a). The
stabilizer map y — I, factors @ onto 6 and we let v = [, v df be the corresponding
disintegration of v over . Fix a standard probability space (Z,n) and let sy, = I' n*
(Z=\I' n%\I') be the §-random Bernoulli shift over (Z, 7). The map f +— H; factors s,
onto @ and the corresponding disintegration is given by n’\" = [, n\' d6. The relatively
independent joining of sy, and a over 0 is then the action I' ~**¢ (Z5\F x ¥, n\l' @4 1)

where

"\ @gv = [ < vg)df = [ (n"\" x f{y:Fy:H} Sy dvp(y)) db = fy(nry\F X by) dv.

Itis clear that 7°\" @g v concentrates on the set Z<\'®,Y = {(f,y) : H; =T,}. We write
b=T " (X,p) forT A3 (ZSVW R, Y, '\ @ v),sothath = s x a, X = Z5\'®, Y,
and

= / X 8, du(y).
yey

Theorem 1.5 then says that b is weakly equivalent to a.

PROOF OF THEOREM 1.5. It suffices to show that b < a. Let V@ < /(M) < ... and
RO < RMW < ... be sequences of finite partitions of Z and Y, respectively, such that
U, N generates MALG, and | J, R™ generates MALG,, (for example, if Z =Y = 2N
then we can let N™ = R consist of the rank n basic clopen sets). For each y € T
let 7, : X — Z be the projection 7, (f,y) = f(I'yy) and define the finite partitions
SO < s < ... of X by

S = {77Y(N) : N e N™},

€
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For A C Y let A C X denote the inverse image of A under the projection map (f,y) —
y € Y and define
R™ ={R : Re RM}.

Then the smallest b-invariant measure algebra containing the partitions P = S v/ R™,
n € N of X is all of MALG,,. Fix n, define N' = N'™ = {Ny,..., Ny} and fori < d
define

along with

S - S(n) = {So, ey Sdfl}
R=R"™ ={Ry,...,Re_1}

'P:'P(n):{Pi,j:SiﬂRj : Z<d,]<k}

For F' C T finite we naturally identify (d x k)<" with {J,c» d” x k7. Under this identifi-

cation, for J C F and (7,0) € d’ x k’ we have

Pl = (7" Pryyo = [ ) (77" Sri) N7 R

yedJ yedJ
= ([V77Sen) N ([ 77 Baty) = 870 ;.
yeJ yeJ

By Lemma 5.14, to show that b < a it suffices to show that for every F' C I finite, and
e > 0, there exists a partition @ = {Q;; : i < d, j < k} of Y such that for all J C F,
(r,0) € d’ x k7

|M(ST N Rg) — V(Q(Tvg)” < €.

Fix such an F' C T finite and ¢ > 0. We will proceed by finding a partition 7 =
{To,...,Ta—1} of Y, and then take Q); ; = T; N R;, in which case we will have Q(;») =
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(Myes Y Tr) N (Myes 7 Roty)) = 17 N R,. We are therefore looking for a partition 7~

so that
(5.1) Y(r,0) € (dx k)SF |u(S; N R,) —v(T, N R,)| <.

We first calculate the value of (.S, N fl) fort €d’ (JC F)and A C Y. Let £ denote
the finite collection of all equivalence relations on the set J. For E € &; let us say that
7 € d’ respects E, written 7 < F, if T is constant on each E-equivalence class. For a
subgroup H < I'let F;(H) € &; denote the equivalence relation determined by tE;(H)s
if and only if Ht = Hs (if and only if t 'H = s~'H). We write E,(y) for E;(T,). For

each F € £; we fix a transversal Ty C J for E/. We then have

WS, A) = [t € 2 Ve T (D) € Nog)}) dvly)

yeA
= Z / Ury\r ({f S ZF'”\F Ve Ty (f(Fyt) € Nr(t))}) dl/(y)
{Ec&;:T<KE} {yeA:E,;(y)=E}
5.2)
= Y vAn{y: Ey) =E) [] e
{Eeé&;:7<E} teTr

We now proceed as in the proof of [AW11, Theorem 1]. Without loss of generality
Y is a compact metric space with compatible metric dy < 1. Fix some ¢y > 0 such that

1/2

e < For 6 > 0 define the sets

€
2(dk)IFI/221F1+1 -

Ds={yeY :Vs,te F(t 'y#sty=dy(t 'y, s'y) >9)}

Es ={(y,y) € Ds x D5 : Vs,t € F (dy(s 'y, t™'y) > §)}.

Then v(Dy) = 1 by definition, and v*(E,) = 1 since v is non-atomic. Thus there exists

0 > 0 such that v(Ds) > 1 — 2 and v2(Es) > 1 — .
Fix a finite Borel partition {O,, : 1 < m < M} of Y with diam(O,,) < ¢ for each
m. Fory € Y let a(y) = m if and only if y € O,,. Let (Q,P) = (d™, pM) and let

Y (w) = w(m), so that {Y,, : 1 <m < M} arei.i.d. random variables. For w € 2 and
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1=20,...,d— 1define
Tiw) ={y €Y : w(a(y)) = i}.

Then each w € Q defines the partition 7 (w) = {Tp(w),...,Tu—1(w)} of Y. Let T; =
{(w,y) ryeTi(w)}andlet T, = {(w,y) € A XY : y € T (w) = ey t* - (Trpy(w))},
7 € d<¥. We view T as a “random partition” of Y. We let " act on (2 trivially so that, e.g.,
v (Tr(w)) = (v T;)(w), and for B C 2 x Y and y € Y we let BY denote the section
BY ={w : (w,y) € B}. We show that 7 satisfies (5.1) with high probability.

Fix now some A C Y and 7 € d’/, J C F. Note that if y € Y and 7 does not respect
E;(y) then there exist t,s € J with t "'y = s~y and 7(t) # 7(s), so that (Ty)" ¥ N
(Trs))* ¥ = @ and thus (T,)Y = N, (t - Trp)? = Nyes (Try)t ¥ = 2. 1t follows that

the expected measure of 7’ (w) N A is

E(T (@) N A)] = [, ((Jo1r. (@, 9) dP @) du(y)
= LAPUT)") dv(y) = Xoipee, .rery Jiyen: mywymm PUT)Y) dv(y)

(53) = Sireesirery (Seany. s PUT) @) + [ o BUT)Y) do

Fix some F € &; with 7 < FE and some y € Ds with F;(y) = E. Fort,s € J, if
t and s are not E-related then ¢~y # s~'y and so dy (t7 'y, s 'y) > 4. It follows that

Ou(t-1y) # Oqa(s-1y) since each O, has diameter smaller than . So as ¢ ranges over T, the
numbers ot~ y) are all distinct and the variables Y, -1, : w — w(a(t™'y)), t € T, are
therefore independent. We have t~'y € T, (w) if and only if w(a(t™'y)) = 7(t), so the
sets (- Trp))? = (TT(t))t_ly, t € Tg, are all independent. If ¢F's then as 7 < E we have
that ()" 'Y = (Ty(s))® Y. It follows that

(5.4) P((TT) ) (mteJ(t T ) ) HteTE << )t_ly) = HteTE Qr(t)-

Continuing the computation, the second integral in (5.3) is no greater than v(A \ Ds) < ¢

and v(ANDs N{y : E;(y) = E}) is within ; (An{y : E;(y) = E}), so after
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summing over all & € £; we see that (5.3) is within ¢ of (5.2), i.e.,

(5.5) | [v(T(w) N A)] = u(S, N A)| < %0
Now we compute the second moment of v(7’-(w) N A).
E[v (T (w) fQ (fyeA 17 (w,y)dv(y ))(fy,eA 1. (w,y) dl/(y’)) dP

- f(y,y/)eAxA (Jo 1z (w, y)1r, (w,y) dP) dv?

(5.6) P((T;)Y N (T;)") dv*

= f(y,y’)eAxA

For (y,y') € Es, if t,s € J then dy(t™'y,s 'y/) > 4, so that Oyy-1,) and Oy(s-141)
are disjoint. It follows that the two events {w : Vt € J (Y u-1,(w) = 7(1))} =
mteJ(TT(t))t_ly = (T7)Y and {w : Vs € J(Ya(S*ly’)(w) T(s))} = mseJ< T(S))s_ly =
(TT)y/ are independent. We obtain that the part of (5.6) integrated over (A x A) N Es is

equal to

f(y,y’)e(AxA)mE(; P<(T7)y A (TT)y ) dv® = L/‘(y7y’)e(A><A)ﬁE5 P((TT)y> P ((Tf)y ) dv?

=Y ren e, (AX A)NEsN{(y.y) : Es(y) = B, E;(¢y') = E'}) [,er, @ e, @res)

where we used the fact that s C Ds x Dy along with the known values from (5.3) and
(5.4). The part of (5.6) integrated over (A x A) \ Ejs is no greater than ¢, and for each
pair £, E' € £; with 7 < E, F', the value of *((A x A) N Es N {(y,y) : E;(y) =
E, E;(y') = E'}) is within ez of v(An{y : E;(y) = E})v(An{y : E;(y) = E'}).
Summing over all such E, E' € £; we obtain that (5.6) is within o of the square of (5.2),

1.e.,

(5.7) | E [Ty (w) N A — (S, 1 A)?| < %0
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From (5.5) and (5.7) it follows that the variance of v(7;(w) N A) is no greater than ;. By

Chebyshev’s inequality we then have

P(W(Ty(w) N A) = (S, 1 A)] = €) < P(w(Te(w) N A) — Ep(T3(w) N A) > 5)

< P(|(T(w) N A) — E[W(Ty (w) 1 A)]| > (kd) P22 1e/2) <

(kd)IF122]F|+2

and since this is true for each 7 € d<" and |d<"'| < 2IF1dl¥'l, we find that

1

P(3r € d<" ([v(T-(w) N A) — (S, N A)| > €)) < SRR

Since A C Y was arbitrary, this is in particular true for each A = R,,, 0 € k<, so that

P(3r € d<F, o € k=¥ (|(To(w) N R,) — u(S- N R,)| > €)) <

| =

So taking any wy in the complement of the above set, we obtain a partition 7 = 7 (wp)

satisfying (5.1). ([l

Theorem 1.5 shows that among all non-atomic weak equivalence classes of type ¢ there
is a least, in the sense of weak containment. Namely sy » where ) is Lebesgue measure on

[0, 1]. We note that there is also a greatest.

THEOREM 5.15. Let 6 € IRS(T"). Then there exists a measure preserving action ay of
[ with type(ay) = 0 such that for all measure preserving actions b of T, if type(b) = 6

then b < ay.

PROOF. Let (Y, v) be a non-atomic standard probability space. If b is any measure
preserving action of I' of type 6 then ¢ x b is also of type 6, weakly contains b, and is
isomorphic to an element of A(I", Y, v). It thus suffices to show there is an action a, of type
0 that weakly contains every element in the set Ay = {a € A(T',Y,v) : type(a) = 0}.

Let {a, },en be a countable dense subset of Ay. For each n the stabilizer map y +—
stab,, (y) = {y € T' : 4%y = y} factors a, onto B. Let ay denote the relatively
independent joining of the actions ag, @1, as,... over the common factor 8, i.e., ay =

I' ~lluan (YN 1) where the measure vy has each marginal equal to v and concentrates on
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the set {(yo, ¥1,y2,...) € YN : Vn (stab,, (y,) = staby, (yo))}. Then for vy-almost every
(Yo, 41, - ) € YN we have stabry 4, (Y0, 91, - -.)) = stabg, (o), from which it follows that
type(ay) = 6. Since a,, T ay for all n the set {a € Ay : a < ay} is dense in Ay so by

Lemma 3.4 ay weakly contains every element of Ay. O

6. Non-classifiability

6.1. Non-classifiability by countable structures of =, =, and =" on free weak

equivalence classes.

DEFINITION 6.1. Let £/ and F' be equivalence relations on the standard Borel spaces

X and Y, respectively.

(1) A homomorphism from E'to F'lisamap ) : X — Y suchthatzEy = () F(y).

(2) A reduction from E to F'isamap ¢ : X — Y such that zEy < ¢ (z)F(y).

(3) E'is said to admit classification by countable structures if there exists a countable
language £ and a Borel reduction from £ to isomorphism =, on X, where X,
is the space of all L-structures with universe N.

(4) Suppose that the space X is Polish. We say that £ is generically F-ergodic if for
every Baire measurable homomorphism v from F to F', there exists some y € Y

such that 1~ ([y] ) is comeager.
The proof of the following lemma is clear.

LEMMA 6.2. Let F| and F5 be equivalence relations on the standard Borel spaces Y;
and Y5 respectively, and let E/ be an equivalence relation on the Polish space P. Suppose
that E is generically Fy-ergodic and that there exists a Borel reduction from F to F;. Then

E is generically F-ergodic.

Since the orbit equivalence relation associated to a generically turbulent Polish group
action is generically = -ergodic for all countable languages £ ([Hjo00]), Lemma 6.2 im-

mediately implies the following.
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LEMMA 6.3. Let G be a Polish group and let P be a generically turbulent Polish G-
space with corresponding orbit equivalence relation Eéf . Let F' be an equivalence relation
on a standard Borel space Y and suppose that ESP is not generically F-ergodic. Then F'

does not admit classification by countable structures.

Let 3 be an infinite-dimensional separable Hilbert space and let U(J{) denote the uni-
tary group of JH{ which is a Polish group under the strong operator topology. The group
U(H) acts on U(H)" by conjugation on each coordinate and we may view the space
Rep(I', H) of all unitary representations of I' on H as an invariant closed subspace of
U(H)', so that it is a Polish U(J)-space. We call the corresponding orbit equivalence
relation on Rep(I', H) unitary conjugacy and if m; and 7 are in the same unitary con-
jugacy class then we say that 7y and w9 are unitarily conjugate and write m; = 7. Let
Ar @ I' — U(ly(I")) denote the left regular representation of I' and let Rep, (I', () be
the set of unitary representations of I" on U(H) that are weakly contained in A\r. Then
Rep, (I, ) is also a Polish U(H) space, being an invariant closed subspace of Rep(I", H).

The following lemma is proved in the same way as [KLP10, Lemma 2.4], using that

the reduced dual I, which may be identified with the spectrum of the reduced C'"*-algebra
C% (), contains no isolated points ([KLP10, 3.2]).

LEMMA 6.4. Let k be a unitary representation of I on H. Then the set {m € Rep, (I',H) :

7w L k} is dense G5 in Rep, (I', H).

We are now ready to prove Theorem 1.7.

PROOF OF THEOREM 1.7. Given a free action ag € A(I', X, ), we let [ao] = {b €
AT, X, 1) : b~ ag} denote its weak equivalence class in A(T", X, ). Let H = ¢5(I") and
let g : Rep(I', H) — A(T", X, 11) be the continuous map assigning to each = € Rep, (I", H)
the corresponding Gaussian action g(mw) € A(I', X, i) (see [Kecl0, Appendix EJ). We
have that g(7) < g(oo - Ar) = sr and so by Corollary 1.6, ag x g(7) ~ ag. Fix some
isomorphism ¢ : X2 — X of the measure spaces (X2, u?) and (X, 1) and denote by
b — ¢ - b the corresponding homeomorphism of A(T", X2, ?) with A(T', X, u). Let ¢ :
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Rep, (I', H) — [ao] be the map m — ¢ - (ag x g()). This is a continuous homomorphism
from unitary conjugacy on Rep, (I', H) to isomorphism on [ay], and is therefore also a

homomorphism to 22* and to =% on [a,].

CLAIM 3. The inverse image under 1 of each unitary equivalence class in [ay| is mea-
ger. In particular the same is true for each isomorphism class and each weak isomorphism

class.

PROOF OF CLAIM. Let ¢ € [ag]. By Lemma 6.4 the set {7 € Rep, (', H) : ©m L k§}
is comeager in Rep, (I, ). If ¢o(7) 2% cthen 7 < k™ < x§09™ =~ ge o that

T L K§. L[Claim]

By [KLP10, 3.3], the conjugacy action of U(J) on Rep, (I', H) is generically turbulent.
The homomorphism ¢ witnesses that unitary conjugacy on Rep, (I', ) is not generically

F|[ag]-ergodic when F is any of =2, =2, or =", The theorem now follows from Lemma

6.3. U

REMARK 6.5. If the weak equivalence class [a] contains an ergodic (resp. weak mix-
ing) action by, then the action by x g(7) is ergodic (resp. weak mixing) provided that the
representation m € Rep, (I', H) is weak mixing. Since the weak mixing 7 are dense G5 in
Rep, (', H) ([KLP10, 3.6]) we conclude that isomorphism (and =% and =) restricted to
the ergodic (resp. weak mixing) elements of [ag] does not admit classification by countable
structures.

It also follows from the above arguments and [HK9S, 2.2] that the equivalence relation
Ey of eventual agreement on 2% is Borel reducible to F'|[ay] when F is any of &, =~ or
=~U (and the same holds for F|{b € [ag] : bis ergodic (resp. weak mixing)} when [a,]

contains ergodic (resp. weak mixing) elements).

6.2. Extending Theorem 1.7. It would be interesting to see an extension of Theo-
rem 1.7 to weak equivalence classes of measure preserving actions that are not necessarily

free. We outline here one possible generalization of the argument given in the proof of
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Theorem 1.7 to measure preserving actions that almost surely have infinite orbits. Let
a =T ~* (X, u) be such an action, and let § = type(a), so that 6 concentrates on
the infinite index subgroups of I'. In place of unitary conjugacy on Rep, (I', H() we work
with the cohomology equivalence relation on a certain orbit closure in the Polish space
ZY(0,U(H)) of unitary cocycles of 8, where H = (?*(N). The cohomology equivalence
relation on Z'(0,U(H)) is the orbit equivalence relation generated by the action of the

—~——

Polish group U(H) = L(Sub(T"), §, U(H)) given by

(f - a)(y, H) = f(yHy)a(y, H) f(H)™" € U(FH)

e~

where f € W(H), a € ZY(O,U(H)), v € T, and H < T (see [Kecl0, Chapter III]). In
place of the left regular representation A of I' we use a cocycle Ay associated to 6 defined as
follows. Identify right cosets of the infinite index subgroups H < I' with natural numbers
by fixing a Borel map n : Sub(I') x I' — N such that for each infinite index H < T the
map vy — n(H,~) is a surjection onto N and satisfies n(H,~y) = n(H,d) if and only if
H~ = H§. Let {e,}nen be the standard orthonormal basis for ¢2(N) = JH and define
o € Z1(0,U(H)) by
Xo(7, H)(en(1,6)) = €n(yiry=1,45)

forall v € I"and H < I' of infinite index (recall that #-almost every H is infinite index
in T'). Fix an isomorphism 7' : oo - H — H and let 0 € Z'(0,U(H)) be the image
of oo - \g under T', i.e., (7, H) = T o (00 - Ng)(v, H) o T71. Let Z3(0,U(H)) denote
the orbit closure of o in Z1(0,U(H)). Using the Gaussian map U(H) — Aut(X, i) (see
[Kec10, Appendix E] or [BTD11]), each o € Z}(0,U(H)) gives rise to a cocycle g(a) :
[ x Sub(I") — Aut(X, i) of @ with values in the automorphism group Aut(.X, 1) of a non-
atomic probability space (X, 11). We obtain a skew product action g(a) = (X, f1) X g(a) €
on the measure space (Y, ) = (X x Sub(I"), i x ), which is an extension of 6. The action
g(Xg) is isomorphic to sy, (where 7 is non-atomic) and so the action g(c) is isomorphic
to sg,n = Sg, as well. Since a € Z3(0,U(H)) we have g(a) < sg, and thus the

relatively independent joining g(«) ® a is weakly equivalent to a by Theorem 1.5. The
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map Yp(a) := ¢ - (g(a) ®g a) is then a homomorphism from the cohomology equivalence
relation on Z3 (6, U(H)) to isomorphism on [a], where ¢ : Y x X — X is once again an
isomorphism of measure spaces. The remaining ingredient that is needed is an analogue of

the results from [KLP10].

e~

QUESTION 6.6. Let 6 be an ergodic IRS of I with infinite index. Is the action of U(H)
on the space Z} (6, U (7)) generically turbulent? Is the preimage under vy of each =!~class

meager?

Two ergodic theoretic analogues of the space Rep, (I', () are the spaces Ay(I", X, 1) =
{a € AT, X, pn) : a < sr}and A (T, X, ) = {a € AT, X,u) : a <, sr}, where
(X, p) is non-atomic. When I" is amenable it follows from [FW04] that these spaces both
coincide with A(T", X, 1) and the conjugacy action of Aut(X, 1) on A(T", X, i) is generi-
cally turbulent. For non-amenable I, the spaces Ay(T', X, ), A1 (T', X, ) and A(T, X, p)

do not all coincide.

QUESTION 6.7. Let I be a non-amenable group. Is conjugacy on either of Ag(I", X, 1)

or A;(T", X, p) generically turbulent?

For all non-amenable T the set Ay(T", X, 11) is nowhere dense in A; (", X, i) (by The-
orem 1.3), so these two spaces may behave quite differently, generically (indeed, every
action in Ay(I', X, p1) is ergodic, while the generic action in A; (', X, i) has continuous er-
godic decomposition). The question of generic turbulence of conjugacy on ERG(I", X, i) =

{a € A(T', X, ) : aisergodic} is discussed in [Kec10, §5 and §12].

7. Types and amenability

As noted in Remark 4.1, any two free measure preserving actions of an infinite amenable
group I' are weakly equivalent. In this section we prove Theorem 1.8, which extends this

to actions that are not necessarily free.
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7.1. The space COS(I"). Let COS(I") be the space of all left cosets of all subgroups
of I'. Since F € COS(T') & Vd € T'(§ € F = § 'F € Sub(I)) it follows that COS(T") is
a closed subset of 2''. As every left coset of a subgroup H < I is equal to a right coset of
a conjugate of H and vice versa, COS(I") is also the space of all right cosets of subgroups
of I' and we have the equality COS(T") = {yH6™! : H < T, v,6 € T} C 2. We let ¢
denote the continuous action of I on COS(T") by left translation, v¢ - (H§) = vyH§.

LEMMA 7.1. Let I" be a countable amenable group and let a = T' ~* (X, u) be a
measure preserving action of I'. Then for any finite F C I and 6 > 0 there exists a

measurable map J : X — COS(I") such that
p{z e X :Vye FJWa)=~"Jx)}) >1-90

and J(z) € T, \I for all x.

PROOF. We note that this is a generalized version of [BTD11, Theorem 3.1] which
applies to the case in which a is free and which is an immediate consequence of the Rokhlin
lemma for free actions of amenable groups. For the general case we use the Ornstein-
Weiss Theorem [OW80, Theorem 6] which implies that the orbit equivalence relation F,
generated by a is hyperfinite when restricted to an invariant co-null Borel set X’ C X.
We may assume without loss of generality that X’ = X and E, is hyperfinite. Then there
exists an increasing sequence fy C £; C --- of finite Borel sub-equivalence relations of
E, such that E, = |J.2, E,. Let F and § > 0 be given and find N € N large enough
so that 1(Xy) > 1 — 0 where Xy = {z : %z € [z]p, forally € F}. Fix a Borel
selector s : X — X for Ey, i.e., for all z, xEys(x) and zEyy = s(z) = s(y), and
let z — 7, € T be any Borel map such that 4% - s(z) = x for all z € X. Define
J: X = COS(I") by J(z) = voI'sz). Then J(x) € I';\I'since I'; = I'ya.s(2) = Vol 's(2) Ve

For each + € Xy and v € F we have 7"z € |[z]g, so that s(7*z) = s(x) and thus

N

(Yyaz)® - 8(z) = v = (y72)" - s(x). It follows that

J(’yax) = ’Y’y“xrs(x) = ’Y’Yxrs(x) = ’YE ’ J(QT) 0



140

7.2. Proof of Theorem 1.8.

PROOF OF THEOREM 1.8.(1). Since type(a) is an invariant of stable weak equiva-

lence (see Remark 5.8), it remains to show the following:

(x) If @ € IRS(I") and @ and d are measure preserving actions of I' both of type 6, then

a~gd.

We first show that () holds under the assumption that a and d are both ergodic. For
this, by Theorem 1.5 it suffices to show that for any ergodic measure preserving action
a=TIn"(X,pu)of I, if type(a) = 0 then a < sy, for some standard probability space
(Z,m).

We will define a measure preserving action b containing @ as a factor, and show that the
relatively independent joining b ®g sp,, weakly contains a when 7 is a standard non-atomic
probability measure. Then we will be done once we show b ®g sg,, = s¢.,.

Letpu= [ 7 e dO be the disintegration of 1 via x > stab,(x), and define the measure
v on the space Y = | |y cqupm{f € X7\ : stab,(f(HS)) = H forall§ € T} C X=\1
by the equation v = [}, T 46, Let a=\T be the action on X<\ that is equal to a”\' on

XH\T_Then a=<\I commutes with the shift action s on X<\ and since (7*), (7*" " )u (g ) #\' =

H -1
i

sure v. We let b =T ~\" (Y, v). Then 6 is a factor of b via the map f — H;. Let (Z,n) be

" it follows from invariance of @ that the action = 757“§\F preserves the mea-

a standard non-atomic probability space, and let b ®y sy, denote the relatively independent
joining of b and sy ,, over 0.

We now apply Lemma 7.1 to sg,. Given [ C I finite and ¢ > 0 there exists a
measurable J : ZS\[' — COS(T") such that °\'(Zy) > 1 — e where Zy = {g € Z=\' .
J(v*-g) =~ J(g) forall v € F}, and with J(g) € T,\I' = H,\T forall g € Z=\'. We
let o : Y x Z=\I' = X be the map defined (v ®g n=\")-almost everywhere by o(f, g) =

f(J(g)). Then forall g € Z; and vy € F we have p(v"**(f,9)) = v((*/)(J(2*9))) =



141

Y (f(J(9))) =*¢((f,g)) and

0. (v @g n=\) = / / / 85(se gy dn™F df
:/ / MHdnH\Fde—/que_
{9:J(g

te H\

It then follows that a < b®g sy since for any measurable partition Ay, ..., A1 C X of X,
the sets By = ¢~ *(Ay), ..., Br_1 = ¢ *(Ax_1) form a measurable partition of Y x X<\l
satisfying |u(y2A; N A;j) — (v ®e n=\1)(v***B; N B;)| < e forall v € F.

By the Rokhlin skew-product theorem there exists a standard probability space (7, 7;)
and an isomorphism V¥ of a with a skew product action d = (Z1,7;) X 6 on the space
(Z1 x Sub(H),m x #). The isomorphism W is of the form V(z) = (Vy(z),I',) and
so the restriction ¥y of Uy to Xy = {z : ', = H} is an isomorphism of (X, ptr)
with (Z7, ;) almost surely. We now define an isomorphism ¢ : YV — Zlg\F of b with
Sg,n, by taking He(py = Hyp and O(f)(Hvy) = Vorg,((v)*(f(H7))), where H = Hy.
This is almost everywhere well-defined since f(H~y) € Xy almost surely, which ensures
that (y~1)*(f(H~)) is independent of our choice of representative for the coset H~, and
(v h*(f(H~)) € X,-1p, so that we may apply ¥.-1.,. The map @ is equivariant since if
Hy = Hthen Hyppy = 6HS P and ®(6° ) (0HO ) = W —1gp5-1, (746 F(OHS 1)) =
U, ssm 1 (1) (FUHO9))) = O(f)(HI ) = (5°®(f))(8H6~15). Finally,

d.v= 7]1\ since

R R A B | (PR NCR B
H

H eH\F
-/, I

and so b = sy, . Since Hy = Hg(y), this extends to an isomorphism of b ®g s, with

Ut ) sl g1 O = / I gg = pi"

HwGH\F

S Q6 So.n = 8o, xn = Sa,, as was to be shown.
We next show that () holds under the assumption that 6 is ergodic. Let i € N U {oo}

be the index of §. If i is finite then the orbit of almost every H € Sub(I) is finite so by
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ergodicity of @ there exists Hy < I' of index 7 such that 6 concentrates on the conjugates
of Hy. Then for some spaces (Zy,7,) and (Z,,7,) we have @ = ¢, X ar/p, and d =

Ly, X ar/g, where ar g, denotes the action of I' on the left cosets of Hy with normalized

12
counting measure. Thus @ ~, d. If i = co then weleta = [, a.dypand d = [, d, dp
be the ergodic decompositions of a and d, respectively. By Proposition 3.8, type(a,) = ¢
and type(d,) = 6 almost surely, and a, and d,, are non-atomic almost surely since 6 is
infinite index. Letting b be any non-atomic ergodic action of type # the above case implies
thata ~, b ~, d.

Finally, we show that () holds in general. Let & = [ _. 0, dp be the ergodic de-
composition of 6. We then obtain corresponding decompositions a = fw a, dpand d =

[, dw dp of a and d with type(a,,) = 6., = type(d,,) almost surely. The above cases imply

that a,, ~, d,, almost surely. Theorem 3.12 then implies a ~; d. O

PROOF OF THEOREM 1.8.(2). Let # = type(a) = type(b). If @ is ergodic then by
Proposition 3.8 almost every ergodic component of a and b have type 6 and so Theorem
1.8 and Corollary 4.4 imply that @ ~ ¢,, x d and b ~ ¢,, x d for some ergodic d of type
0 and some spaces (Z1,11), (Z2,12). Since I' is amenable, d is not strongly ergodic, and
since 6 is infinite index, d is non-atomic, so by [AW11, Theorem 3] d ~ ¢ x d and thus

a ~ b. The general case now follows by considering the ergodic decomposition of §. [

8. Ultraproducts of measure preserving actions

In this appendix we establish some properties of ultraproducts of measure spaces and

actions.

Notation. We refer to [CKTD11] for background on ultraproducts of measure pre-
serving actions and also [ES07] for background on ultraproducts of measure spaces. Our
notation has some changes from that of [CKTD11] and is as follows. Given a sequence
a, =T ~% (X,, 1), n € N, of measure preserving actions of I and a non-principal

ultrafilter &/ on N we denote by ([], a,)/U = T AUl (T X,.) /U, ([T, 1n)/U),
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or simply ay, = I' ~® (X, 1) when there is no danger of confusion, the corre-
sponding ultraproduct of the sequence (a,). We let [x,] denote the equivalence class
of the sequence (z,,) € [[, X, in Xy and we let [B,] denote the subset of X;, de-
termined by the sequence (B,) € [], B(X,) of Borel sets. When z,, = « for all n
then we write [x] for [z,] and when B,, = B for all n we write [B] for [B,]. Then
Ay = Ay(Xy) = {[B.] : (B,) € [I,B(X,)} is an algebra of subsets of X;, and
{y is the unique measure on the o-algebra By, (X)) = o(Ay) whose value on [A4,] € Ay
is py([A,]) = limy, 0 pn(A,). We note that every element of By, is within a y,-null set

of an element of A,.

The following proposition deals with lifting measure disintegrations to ultraproducts.

PROPOSITION 8.1. Suppose that for each n € N the Borel map m, : (Y,,v,) —
(Zn,nn) factors b, =T ~AY (Y, v,) onto d,, ~* (Z,,,m,) and let v,, = fzeZn v dn,(2)
be the disintegration of v, over m, with respect to ,. Let byy = ' A% (Y, vy) and
dy =T ~% (Zy,my) be the ultraproducts of the sequences (b,) and (d,,), respectively.
Then the map my : Yy — Zy given by my([yn]) = [mn(yn)] factors by onto dy. If for
(2] € Zyy we let vy, = ([, v2.)/U then

(I) Each of the measures v, is a probability measure on (Yy, By/(Yy)) and almost
surely v, concentrates on 7y, ([2,]).

(Il) For each D € By/(Yy) the map (Zy, By(Zy)) — ([0,1], B([0,1])) sending

(2] = V12, (D) is measurable and vy (D) = f[zn]eZu Vi) (D) dny([20))-
() If (2] = pe,) is another assignment satisfying (I) and (II) then for all D €
By(Yy) almost surely ., (D) = vp.,.1(D).

Additionally, for almost all [2,] € Zy and every vy € T we have (V™)) = Vo, |-

PROOF. It is clear that 7, factors by, onto dy,. Property (I) follows from the fact that
for each n and z € Z,,, each v is a Borel probability measure on Y,, and almost surely v/
concentrates on 7, ' ({z}). Now let D be the collection of all subsets of Y, satisfying (II).

Given [A,] € Ay and V' C [0,1] open we have v, (A,) € V if and only if [2,] € [{% :
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v (A,) € V}], sothat [2,] — v.,1([Ay]) is measurable. As in [ES07, Lemma 2.2] we have

z

/[ ]u[zn](An) dny :/ lim v (Ay) dny

[Zn} n—U

= lim v (Ay) dn, = hHLl{ vn(An) = vy ([AL))

z
TL‘)U ZGZ’n

which shows that [A,,] € D. Thus Ay C D, and it is clear that D is a monotone class so
By, C D, which shows (II). Suppose now that [z,,| — Hz, satisfies (I) and (IT). Then for
each [B,] € Ay(Zy)and D € By(Yy) wehave [ ., (D) dipy = v (DN, ([By)) =
f[ Bl Vi, (D) dny so that i, (D) = v, (D) almost surely, so that (III) holds.

For the last statement let B,, C Z,, be an invariant 7),,-conull set on which ("), " =
V%, forall v € I. Then for all [,] in the r-conull set [B,] € Zy we have forall y € T
and [A,] € Ay(Yy) that (v%),v,,1(Ay) = limy, (7)o 02 (Ay) = lim,_y Vi (An) =

Vg ([An]) 50 that (7)1 = v =

The next proposition describes the ultrapower of a standard probability space with

atoms.

PROPOSITION 8.2. Let (Z,n) be a standard probability space and let A C Z be the set

of atoms of (Z,n).

(1) If (Z,n) is discrete then (MALG,), d,)) is a compact metric space homeomorphic
to 24 with the product topology, and the map I; MALG,,, — MALG,, given by
Iy([B,]) =lim, .y B, ={2€ A : {n: z € B,} €U} is a measure algebra
isomorphism.

(2) In general [A] = {[z] : z € A} C Zy is the set of all atoms of ny and the
restriction 1| A of ) to A is isomorphic as a measure space to the restriction my|[A]
of ny to [A] via the map z — [z]. Under this isomorphism, letting C = Z \ A, we
may identify (Zy,ny) with ([C]U A, (n|C)y + n|A).

PROOF. First suppose that (Z, n) is discrete. Without loss of generality we may assume

Z = A. As sets we may identify MALG,, with 24, Let By, By, ... be a sequence in 24
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converging in the product topology to some set B € 24. Givene > Olet F C Abea
finite set such that n(A \ F') < e. For all large enough n, B,, and B agree on F, so that
n(B,AB) < n(A\ F) < ¢ and thus d,(B,, B) — 0. This shows that the map 24 —
MALG;, is a continuous bijection from the compact Hausdorff space 24 (with the product
topology) to (MALG,,, d,), so it is a homeomorphism. It is clear that the map ¢ taking
B C Ato [B] C [A] is an isometric embedding of MALG,, to MALG,,, that preserves
all Boolean operations. If now [B,] C [A] and lim,_,, B, = B then d,,,([B,], [B]) =
lim,, ¢ d,)(Bp, B) = 0so that [B,,] = [B] and thus ¢~ = I; which completes the proof of
(1). Part (2) follows since (Z, my) decomposes as ([C] U [A], (n|C)y + (n]A)y) and part
(1) shows that ([A], (n|A)y) = (A, n). O

THEOREM 8.3. Let ag, ay, ... be a sequence of measure preserving actions of I' on the
standard probability space (X, 1) and let ayy = T' A" (Xy, 1) be their ultraproduct.
Let My C MALG,,, be any subset such that (M, d,,,,| M) is separable. Then there exists
an invariant measure sub-algebra M of MALG,,, containing M), that is isomorphic as a

measure algebra to MALG,,.

PROOF. Let A C X be the collection of atoms of X and let C' = X \ A. By Proposition
8.2.(2), [A] C X is the discrete part of 147, and = — [x] is an isomorphism p|A = 1y|[A].
Define a function Sy, : MALG,,, — MALG,,, first on subsets D C [C] by taking Sy(D)
to be any subset of D satisfying 1u(Sy(D)) = p44(D), and then extending this to all of
MALG,,, by taking Sy(D) = Sy(D N [C]) U (D N [A]). Fix a countable dense subset M
of M, and let B, C MALG,,, be a countable Boolean algebra containing M; U {{[z]} :
x € A} and closed under the functions Sy, and y* for all v € I". Then the o-algebra
M = 0(By) equipped with 14, is an invariant countably generated measure sub-algebra of
MALG,,, containing M. Since B, is closed under S, the atoms of B, and hence also
those of M, must be contained in [A], and as M contains {[B] : B C A}, the discrete part

of M is isomorphic to the discrete part of MALG,,. It follows that M = MALG,,. U
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PROPOSITION 8.4. Leta = T' ~% (X, i) and b =T A’ (Y, v) be measure preserving
actions of . If a is weakly contained in b then then the measure space (X, ) is a quotient
of the measure space (Y,v). If a and b are weakly equivalent then (X, 1) is isomorphic
to (Y, v). In particular, the identity actions t,, and t,, are weakly equivalent if and only if

(Z1,m) and (Z3,m9) are isomorphic measure spaces.

PROOF. Suppose first thata < b. Let ¢ : X — K = 2" be any Borel isomorphism and
let A = (&%), u. Thena = T ~° (K", )\) and as @ < b there exists \, = (®90),v €
E(b, K) with A, — \. By Proposition 3.10 I' ~* (K", )\) is a factor of the ultrapower
by, of b via ®»* where ¢ is the ultralimit of the ¢,,. Thus a is also a factor of by so by
Theorem 8.3 this implies (X, ) is a factor of (Y, v).

Now suppose that a and b are weakly equivalent. Then the measure spaces (X, 1) and
(Y, v) are factors of each other, say 7 : (Y,v) — (X, pu)and ¢ : (X, u) — (Y,v). Let A C
X be the set of atoms of X and let B C Y be the set of atoms of Y. If y(A) = 0 then we are
done since this implies both (X, 1) and (Y, v) are non-atomic. So suppose that ;(A) > 0. It
is clear that A C ¢~ '(B) and B C 7 !(A), hence u(A) = v(B). Additionally, (o1 (B)\
A) = 0, otherwise v(B) = u(p~*(B)) > u(A). Similarly v(7~'(A) \ B) = 0. Thus

¢ : (MALG,,,d,,) — (MALG,,,d,,) and 7' : (MALG,,,d,,) — (MALG,,, d,,)

VB
are isometric embeddings of compact metric spaces (Proposition 8.2), so it follows that both
7! and ¢! are in fact isometric isomorphisms. Since these maps are also Boolean algebra
homomorphisms it follows that both are measure algebra isomorphisms. This shows that

the discrete parts of (X, u) and (Y, v) are isomorphic, from which it follows that (X, x1)

and (Y, v) are isomorphic. O

9. Stable weak containment

In this appendix we establish some basic properties of stable weak containment of mea-
sure preserving actions. Our development mirrors our development of weak containment

of measure preserving actions.
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DEFINITION 9.1. Let A and B be two sets of measure preserving actions of ['. We say
that A is stably weakly contained in 3, written A <, B if forevery I' ~n* (X, u) = a € A,
for any Borel partition Ay, ..., Ax_; of X, F' C T finite, and € > 0, there exist nonnegative
reals ap, . .., o1 With >, o = 1 along with actions I' N (Y;, ;) = b; € B, i < m,

and a Borel partition By, ..., By_; of ) ._ Y such that
(" A N Ay) = (3., u) (y=i<m "B N By)| < e
forall 7,7 < kand v € F. (See §3.2 for notation.)

The relation < is a reflexive and transitive relation on sets of measure preserving ac-
tions. We call A and B stably weakly equivalent, written A ~, B, if both A <, B and
B <s A We write a <, B, A <, b, and a <, b for {a} <, B, A <, {b} and
{a} <, {b}, respectively, and similarly with ~ in place of <.

It is clear that @ <, bif and only if @ < {¢,, X b : o = (ap,..., 1) €
[0, 1]™, > ;e =1, m € N}, soby Lemma 3.7 we have a < bifandonlyifa < ¢ x b
if and only if ¢ X @ < ¢ x b. From this point of view Theorem 1.2 says that if a is er-
godic then @ < b if and only if @ < b. Theorem 1.1 implies that @ < b if and only
if E(a,K) C coE(b, K) for every compact Polish space K, and @ ~ b if and only if
CoF(a,K) = toE(b, K) for every compact Polish space K. More generally, we have
the following analogue of Proposition 3.5 which can be proved directly by using the same

methods.

PROPOSITION 9.2. Let A and B be sets of measure preserving actions of I'. Then the

following are equivalent
(1) A=<, B;

2) Ugen E(d, K)

3) Ugea E(d, K)

@) Ugea £(d,27)

N
g

(Upes E(b, K)) for every finite K,
(Upes E(b, K)) for every compact Polish K ;

(UbeB E<b7 QN))'

N
g

N
g



148

Chapter 5

Mixing actions of countable groups are

almost free

Robin D. Tucker-Drob

A measure preserving action of a countably infinite group I' is called totally ergodic if every infinite
subgroup of I' acts ergodically. For example, all mixing and mildly mixing actions are totally
ergodic. This note shows that if an action of I is totally ergodic then there exists a finite normal
subgroup IV of I" such that the stabilizer of almost every point is equal to N. Surprisingly the proof
relies on the group theoretic fact (proved by Hall and Kulatilaka as well as by Kargapolov) that
every infinite locally finite group contains an infinite abelian subgroup, of which all known proofs
rely on the Feit-Thompson theorem.

As a consequence we deduce a group theoretic characterization of countable groups whose
non-trivial Bernoulli factors are all free: these are precisely the groups that possess no finite normal

subgroup other than the trivial subgroup.

1. Introduction

Let ' be a countably infinite discrete group and let a be a measure preserving action
of I'ie.,a =T "~ (X, u) where X is a standard Borel space, 1 is a Borel probability
measure on X, and a : I'x X — X is a Borel action of I on X that preserves . In this note

we examine how ergodicity and mixing properties of a can influence, and be influenced by,
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the freeness behavior of a and its factors. When a is not ergodic, for example, the ergodic
decomposition of a directly exhibits a non-trivial action (i.e., with underlying measure not
a point mass) that is a factor of @ which is non-free.

More generally, if I' contains some non-trivial normal subgroup N for which the re-
striction a [ N of a to N is non-ergodic, then the action of I' on the set Z of ergodic
components of a | IV corresponds to a non-trivial factor of a which is manifestly non-free.
Indeed, this factor is not even faithful as NV fixes all points in Z.

Working from the other direction, if 7 : (X, 1) — (Y, v) factors a onto some non-trivial
action b = I' ~° (Y, v) which is not faithful, then for any B C Y with 0 < v(B) < 1
the set 7~*(B) will be a non-trivial subset of X witnessing that the kernel of b (i.e., the set
of group elements fixing almost every point) does not act ergodically under the action a.

These observations are rephrased in the following proposition.

PROPOSITION 1.1. The following are equivalent for a measure preserving action a of

(1) All non-trivial factors of a are faithful.

(2) All non-trivial normal subgroups of I act ergodically.

Note that when I" contains a finite normal subgroup /N then no non-trivial action a =
' (X, u) of T' can have the property (2) (and therefore (1)) of Proposition 1.1: ifa [ N
is ergodic then X is finite, so the kernel of a is non-trivial and does not act ergodically.

However, the observations preceding Proposition 1.1 also show the following:

PROPOSITION 1.2. The following are equivalent for a measure preserving action a of

(1) All non-trivial factors of a have finite kernel.

(2) All infinite normal subgroups of I' act ergodically.

Propositions 1.1 and 1.2 express the equivalence of a freeness property on the one hand,
and an ergodicity property on the other. By strengthening the ergodicity assumption on a

it is shown below that an appropriately strong freeness results.
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DEFINITION 1.3. A measure preserving action a of I' is called fotally ergodic if the

restriction of a to every infinite subgroup of I' is ergodic.

There are many examples of totally ergodic actions. All mildly mixing actions are
totally ergodic, since the restriction of a mildly mixing action to an infinite subgroup is
again mildly mixing and hence ergodic. In particular, all mixing actions are totally ergodic.
The following theorem says that totally ergodic actions are, up to a finite kernel, always

free.

THEOREM 1.4. Let a = I' " (X, ) be a non-trivial measure preserving action of
the countably infinite group I'. Suppose that a is totally ergodic. Then there exists a finite

normal subgroup N of I' such that the stabilizer of p-almost every x € X is equal to N.

COROLLARY 1.5. All faithful totally ergodic actions of countably infinite groups are
free. In particular, all faithful mildly mixing and all faithful mixing actions of countably

infinite groups are free.

A totally ergodic action of particular importance is the Bernoulli shift of I'. This is the

measure preserving action sy of I on ([0, 1], AT') (where ) is Lebesgue measure) given by

(Y )©0) = f(v9)

fory,8 € T'and f € [0, 1], By a Bernoulli factor of T' we mean a factor of sp. One con-
sequence of Theorem 1.4 is a particularly nice group theoretic characterization of groups

all of whose non-trivial Bernoulli factors are free.

COROLLARY 1.6. Let I' be an infinite countable group. Then the following are equiv-

alent
(1) Every non-trivial totally ergodic action of T’ is free.
(2) Every non-trivial mixing action of I is free.

(3) Every non-trivial Bernoulli factor of T is free.
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(4) There exists a non-trivial measure preserving action a of I' such that every non-
trivial factor of a is free.

(5) There exists a non-trivial measure preserving action a of I' such that every non-
trivial factor of a is faithful.

(6) I' contains no non-trivial finite normal subgroup.

PROOF OF COROLLARY 1.6 FROM THEOREM 1.4. (6)=-(1) follows immediately from
Theorem 1.4. The implication (1)=-(2) is clear. (2)=>(3) holds since sr is mixing and every
factor of a mixing action is mixing. (3)=-(4) and (4)=-(5) are also clear. (5)=>(6) follows

from the discussion following Proposition 1.1 above. U

COROLLARY 1.7. Let I be any infinite countable group that is either torsion free or
ICC. Then every non-trivial totally ergodic action of 1 is free and in particular every non-

trivial Bernoulli factor of I is free.

Acknowledgements. I would like to thank Alekos Kechris for many useful comments
and suggestions. I would also like to thank Benjy Weiss for his comments, and particu-
larly for suggesting the term “total ergodicity.” The research of the author was partially

supported by NSF Grant DMS-0968710.

2. Definitions and notation

[' will always denote a countably infinite discrete group and e will denote the identity
element of I'.

Leta = I' ~n* (X, u) be a measure preserving action of I". The stabilizer of a point
x € X is the subgroup I', of " given by I', = {y € I" : v*x = z}. Forasubset C' C I" we
let

Fix®(C)={r e X : Vy € C % = z}.

We write Fix“® () for Fix*({~}). The kernel of a is the setker(a) = {y € T : p(Fix*(v)) =

1}. Ttis clear that ker(a) is a normal subgroup of I'. The action a is called (essentially) free
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if the stabilizer of p-almost every point is trivial, or equivalently, x(Fix?(«y)) = 0 for each
v € '\ {e}. Itis called faithful if ker(a) = {e}, i.e., u(Fix®(y)) < 1 foreachy € I'\ {e}.

Let b = I' ~% (Y,v) be another measure preserving action of I'. We say that b is a
factor of a (or that a factors onto b) if there exists a measurable map 7 : X — Y with
7. = v and such that for each v € T the equality m(y*x) = v’ () holds for p-almost
every z € X. A measure preserving action b = I' ~° (Y, v) is called trivial if v is a point

mass. Otherwise, b is called non-trivial.

3. Proof of Theorem 1.4

PROOF OF THEOREM 1.4. We begin with a lemma also observed by Darren Creutz

and Jesse Peterson [CP12].

LEMMA 3.1. Let b =T A’ (Y, v) be a non-trivial totally ergodic action of T

(i) Suppose that C C T is a subset of I" such thatv({y € Y : C CTI'y}) > 0. Then
the subgroup (C') generated by C' is finite.

(1) I'y is almost surely locally finite.

PROOF OF LEMMA 3.1. Beginning with (i), the hypothesis tells us that the set Fix’(C')
is non-null. Since v is not a point mass there is some B C Fix’(C) with 0 < v(B) < 1.
The set B witnesses that b | (C') is not ergodic. As b is totally ergodic we conclude that
(C) is finite.

For (ii), let 7 denote the collection of finite subsets F' of I" such that (F') is infinite and

let NLF C Y denote the set of points y € Y such that I, is not locally finite. Then
NLF = | J{yeY : FCT,}
FeF

By part (i), v({y € Y : F CI'y}) = 0 foreach F' € F. Since F is countable it follows
that (NLF) = 0. O[Lemma]

Now let a = I' ~* (X, i) be a totally ergodic action as in the statement of Theorem

1.4. Let N = {y € I" : p(Fix"(y)) = 1} denote the kernel of a. Then N is a normal
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subgroup of I' that is finite by Lemma 3.1.(1). Ignoring a null set, the action a descends to
an action b = A n° (X, i) of the quotient group A = I'/N that is still totally ergodic,
and which is moreover faithful. Thus, after replacing I' by I'/N and a by b if necessary,
we may assume that a is faithful toward the goal of showing that a is free.

For each v € I' let C(7y) denote the centralizer of v in I'. Observe that Fix®(y) is an
invariant set for @ | Cr(y), for if § € Cp(v) then 6* - Fix*(y) = Fix*(0y0~') = Fix*(y).
Thus for v # e, if Cr(y) is infinite then a | Cr(7) is ergodic and the a | Cr(v)-invariant
set Fix“(7) must therefore be null since a is faithful. Letting C',, denote the collection of
elements of I\ {e} whose centralizers are infinite, this simply means that u({zx € X : v €

[,})=0forall y € Cy, and so
(3.1 p{re X : T, NCx # 2}) =0.

By Lemma 3.1.(i1), I, is almost surely locally finite. By a theorem of Hall and Kulatilaka
[HK64] and Kargapolov [Kar63], every infinite locally finite group contains an infinite
abelian subgroup. In particular, each infinite locally finite subgroup of I' intersects C.. It
follows from this and (3.1) that ', is almost surely finite.

Since there are only countably many finite subgroups of I' there must be some finite

subgroup Hy < I' such that ;1(Ag) > 0 where
AOZ{ZL‘EX : Px:Ho}

Let Ny denote the normalizer of Hy in I'. If T is a transversal for the left cosets of /V,
in I then {t*Ag };cr are pairwise disjoint non-null subsets of X all of the same measure.
It follows that 7T is finite and therefore N is infinite and @ | N, ergodic. The set Ay is
non-null and invariant for @ | Ny, so u(Ag) = 1, i.e., ['; = Hy almost surely. As a is

faithful we conclude that Hy = {e} and that a is therefore free. O



154

4. An example

In general, total ergodicity does not imply weak mixing, and weak mixing does not
imply total ergodicity. For example, the action of Z corresponding to an irrational rotation
of T = R/Z equipped with Haar measure is totally ergodic, but not weakly mixing. There
are also many examples of weakly mixing measure preserving actions that lack total er-
godicity. One such action is exhibited in 4.1 below. Example 4.1 also illustrates that total
ergodicity of a measure preserving action is not necessary to ensure that each non-trivial

factor of that action is free.

EXAMPLE 4.1. Here is an example of a free weakly mixing action s that is not totally
ergodic, but that still has the property that every non-trivial factor of s is free: Let F' denote
the free group of rank 2 with free generating set {u,v} and let H = (u) be the cyclic
subgroup of F’ generated by u. The generalized Bernoulli shift action s = sp /g = F' °
([0, 1)F7H  \F/HY is weakly mixing (see [KTO08]) but not totally ergodic since H fixes each
set in the o-algebra generated by the projection function f +— f(H). Given a subgroup
K < F,if s | K = sk p/p is not ergodic then K’ ~ F'/H has a finite orbit (see [KT08]),
say K~ H is finite where v € F. Then for any z € K there is some n > 0 such that
2" € yH~™!, and therefore 2 € vH~~!. This shows that K C vH~™! so that K is
cyclic. The restriction of s to each non-cyclic subgroup of F' is therefore ergodic, so if
a = F n* (X, u) is any factor of s then a also has this property and, assuming a is non-
trivial, an argument as in the proof of Lemma 3.1 shows that the stabilizer F), of p-almost
every x € X is locally cyclic, hence cyclic. Arguing as in the last paragraph of the proof of
Theorem 1.4 we see that there is some normal cyclic subgroup Hj of F' such that I, = H,

almost surely. The only possibility is that Hy = {e}, and thus a is free.
5. A question

The proof of Theorem 1.4 relies on Hall, Kulatilaka, and Kargapolov’s result, whose

only known proofs make use of the Feit-Thompson theorem from finite group theory.

QUESTION 5.1. Is there a direct ergodic theoretic proof of Theorem 1.4?
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Chapter 6

Shift-minimal groups, fixed Price 1, and

the unique trace property

Robin Tucker-Drob

A countable group I' is called shift-minimal if every non-trivial measure preserving action of I'
weakly contained in the Bernoulli shift I' ~ ([0, 1]', A1) is free. We show that any group I' whose
reduced C*-algebra C(I") admits a unique tracial state is shift-minimal, and that any group I’
admitting a free measure preserving action of cost> 1 contains a finite normal subgroup N such that
I'/N is shift-minimal. Any shift-minimal group in turn is shown to have trivial amenable radical.
Recurrence arguments are used in studying invariant random subgroups of a wide variety of shift-
minimal groups. We also examine continuity properties of cost in the context of infinitely generated
groups and equivalence relations. A number of open questions are discussed which concern cost,

shift-minimality, C*-simplicity, and uniqueness of tracial state on C*(T").

1. Introduction

The Bernoulli shift of a countable discrete group I', denoted by sr, is the measure preserving

action ' ~% ([0, 1], AI') (where A denotes Lebesgue measure on [0, 1]) of T given by

(v £)(6) = f(y~10)
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forv,6 € I'and f € [0,1]'. If T is infinite, then the Bernoulli shift may be seen as the archetypal
free measure preserving action of I'. This point of view is supported by Abért and Weiss’s result
[AW11] that sr is weakly contained in every free measure preserving action of I'. Conversely, it
is well known that any measure preserving action weakly containing a free action must itself be
free. A measure preserving action is therefore free if and only if it exhibits approximate Bernoulli
behavior.

Inverting our point of view, the approximation properties exhibited by st itself have been shown
to reflect the group theoretic nature of I". One example of this is Schmidt’s characterization [Sch81]
of amenable groups as exactly those groups I' for which st admits a non-trivial sequence of almost
invariant sets. An equivalent formulation in the language of weak containment is that I" is amenable
if and only if sr weakly contains an action that is not ergodic. In addition, a direct consequence of
Foreman and Weiss’s work [FW04] is that amenability of I is equivalent to every measure preserv-
ing action of I" being weakly contained in sp. That each of these properties of st is necessary for
amenability of I" is essentially a consequence of the Ornstein-Weiss Theorem [OW80], while suffi-
ciency of these properties may be reduced to the corresponding representation theoretic characteri-
zations of amenability due to Hulanicki and Reiter (see [Hul64, Hul66], [Zim84, 7.1.8], [BHV0S,
Appendix G.3]): a group I' is amenable if and only if its left regular representation A\r weakly
contains the trivial representation if and only if A\ weakly contains every unitary representation of
r.

This paper investigates further the extent to which properties of a group may be detected by its
Bernoulli action. Roughly speaking, it is observed that even when a group is non-amenable, the
manifestation (or lack thereof) of certain behaviors in the Bernoulli shift has implications for the

extent of that group’s non-amenability. Central to this investigation is the following definition.

DEFINITION 1.1. A countable group I is called shift-minimal if every non-trivial measure pre-

serving action weakly contained in sr is free.

The reader is referred to [Kec10] for background on weak containment of measure preserving ac-
tions. Note that by definition the trivial group {e} is shift-minimal.
Shift-minimality, as with the above-mentioned ergodic theoretic characterizations of amenabil-

ity, takes its precedent in the theory of unitary representations of I'. It is well known that T" is



157

C*-simple (i.e., its reduced C*-algebra C*(I") is simple) if and only if every non-zero unitary repre-
sentation of I" weakly contained in the left regular representation Ar is actually weakly equivalent to
Ar [dIHO7]. Using the Abért-Weiss characterization of freeness it is apparent that I is shift-minimal
if and only if every non-trivial m.p. action of I' weakly contained in sr is in fact weakly equivalent
to sr. Apart from analogy, the relationship between shift-minimality and C*-simplicity in general
is unclear. However, we show in Theorem 5.15 that shift-minimality follows from a property closely
related to C*-simplicity. A group I is said to have the unique trace property if there is a unique

tracial state on C;(I").

THEOREM 1.2. Let I' be a countable group. If I' has the unique trace property then I is shift-

minimal.

In addition, a co-induction argument (Proposition 3.15) shows that shift-minimal groups have no
non-trivial normal amenable subgroups, i.e., they have trivial amenable radical. This places shift-
minimality squarely between two other properties whose general equivalence with C*-simplicity
remains an open problem. Indeed, it is open whether there are any general implications between
C*-simplicity and the unique trace property; in all concrete examples these two properties coincide.
Furthermore, while the amenable radical of any C*-simple group is known to be trivial [PS79], it
is an open question - asked explicitly by Bekka and de la Harpe [BAIHO00] - whether conversely, a
group which is not C*-simple always contains a non-trivial normal amenable subgroup. For shift-
minimality in place of C*-simplicity, a stochastic version of this question is shown to have a positive

answer (Theorem 3.16).

THEOREM 1.3. A countable group U is shift-minimal if and only if there is no non-trivial

amenable invariant random subgroup of I weakly contained in sr.

Here an invariant random subgroup (IRS) of I" is a Borel probability measure on the compact
space Subr of subgroups of I' that is invariant under the conjugation action I' ~ Subrp of I'. It is
called amenable if it concentrates on the amenable subgroups of I'. Invariant random subgroups
generalize the notion of normal subgroups: if IV is a normal subgroup of I" then the Dirac measure
O on Subr is conjugation invariant. It is shown in [AGV12] that the invariant random subgroups
of I' are precisely those measures on Subr that arise as the stabilizer distribution of some measure

preserving action of I' (see §2.3).
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Theorem 1.3 is not entirely satisfactory since it still seems possible that shift-minimality of
I" is equivalent to I' having no non-trivial amenable invariant random subgroups whatsoever (see
Question 7.4). In fact, the proof of Theorem 1.2 in §5.4 shows that this possibly stronger property

is a consequence of the unique trace property.

THEOREM 1.4. Let T" be a countable group. If I" has the unique trace property then I' has no

non-trivial amenable invariant random subgroups.

The known general implications among all of the notions introduced thus far are expressed in

Figure 1.

No non-trivial 073 7 Unique trace
amenable IRS <———

"> Shift-minimal B
§3.3(( Q75

Trivial aménable
radical

[PS79]

FIGURE 1. The solid lines indicate known implications and the dotted lines indi-
cate open questions discussed in §7. Any implication which is not addressed by the
diagram is open in general. However, these properties all coincide for large classes
of groups, e.g., linear groups (see §5.3).

Our starting point in studying shift-minimality is the observation that if ' ~® (X, ) is a m.p.
action that is weakly contained in sr then every non-amenable subgroup of I acts ergodically. We
call this property of a m.p. action NA-ergodicity. We show in Theorem 3.13 that when a m.p. action
of I' is NA-ergodic then the stabilizer of almost every point must be amenable.

84 deals with permanence properties of shift-minimality by examining situations in which free-
ness of a m.p. action I' ~* (X, 1) may be deduced from freeness of some acting subgroup. Many
of the proofs in this section appeal to some form of the Poincaré Recurrence Theorem.

A wide variety of groups are known to have the unique trace property and Theorem 1.2 shows
that all such groups are shift-minimal. Among these are all non-abelian free groups ([Pow75]), all
Powers groups and weak Powers groups ([dLH85], [BN88]), groups with property Py,; [BCALH94],

all ICC relatively hyperbolic groups ([AMO7]), and all ICC groups with a minimal non-elementary
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convergence group action [MOY11]. In §5 we observe that all of these groups share a common
paradoxicality property we call (BP), abstracted from M. Brin and G. Picioroaga’s proof that all
weak Powers groups contain a free group (see [dIHO7, following Question 15]). It is shown in
Theorem 5.6 that any non-trivial ergodic invariant random subgroup of a group with property (BP)
must contain a non-abelian free group almost surely. Recurrence once again plays a key role in the
proof.

66 studies the relationship between cost, weak containment, and invariant random subgroups.
Kechris shows in [Kec10, Corollary 10.14] that if @ and b are free measure preserving actions of a
finitely generated group I' then a < b implies C'(b) < C'(a) where C'(a) denotes the cost of a (i.e.,
the cost of the orbit equivalence relation generated by a). This is deduced from the stronger fact
[Kec10, Theorem 10.13] that the cost function C' : FR(I', X, u) — R, a — C(a), is upper semi-
continuous for finitely generated I'. In §6.2 we obtain a generalization which holds for arbitrary
countable groups (Theorem 6.4 below). The consequences of this generalization are most naturally
stated in terms of an invariant we call pseudocost.

If E is am.p. countable Borel equivalence relation on (X, 1) then the pseudocost of E is defined
as PC,,(F) = inf (g, ) liminf,, C\,(E,), where (E,),en ranges over all increasing sequences E C
FEy, C ---, of Borel subequivalence relations of F such that Un FE, = E. The pseudocost of an
action and of a group is then defined in analogy with cost (see Definition 6.6). It is immediate that
PC,(E) < Cyu(E), and while the pseudocost and cost coincide in most cases, including whenever
E is treeable or whenever C,(E) < oo (Corollary 6.8), it is unclear whether equality holds in
general.

One of the main motivations for introducing pseudocost is the following useful continuity prop-

erty (Corollary 6.20):

THEOREM 1.5. Leta =T n°% (X, ) and b = T AP (Y, v) be measure preserving actions of

a countable group T'. Assume that a is free. If a < b then PC(b) < PC(a).

Combining Theorem 1.5 and [AW11, Theorem 1] it follows that, among all free m.p. actions of
T, the Bernoulli shift st has the maximum pseudocost. Since pseudocost and cost coincide for m.p.
actions of finitely generated groups, this generalizes the result of [AW11] that st has the greatest
cost among free actions of a finitely generated group I'. In Corollary 6.22 we use Theorem 1.5 to

deduce general consequences for cost:
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THEOREM 1.6. Let a and b be m.p. actions of a countably infinite group I'. Assume that a is
free and a < b.
(1) IfC(b) < oo then C(b) < C(a).
(2) If Ey is treeable then C'(b) < C(a).
(3) IfC(a) = 1 then C(b) = 1.

This leads to a characterization of countable groups with fixed price 1 as exactly those groups
whose Bernoulli shift has cost 1. This characterization was previously shown for finitely generated

groups in [AW11].

THEOREM 1.7. Let I" be a countable group. The following are equivalent:
(1) T has fixed price 1
(2) C(sr) =1
(3) C(a) = 1 for some m.p. action a weakly equivalent to sp.
(4) PC(a) = 1 for some m.p. action a weakly equivalent to sr.

(5) T is infinite and C(a) < 1 for some non-trivial m.p. action a weakly contained in sr.

We use this characterization to obtain a new class of shift-minimal groups in §6.5. In what
follows, AR denotes the amenable radical of I' (see Appendix 9). Gaboriau [Gab00, Theorem 3]

showed that if I" does not have fixed price 1 then ARy is finite. We now have:

THEOREM 1.8. Let I be a countable group that does not have fixed price 1. Then ARy is finite

and T'/ ARy is shift-minimal.

In Theorem 6.31 of §6.4 it is shown that if the hypothesis of Theorem 1.8 is strengthened to
C(T') > 1, i.e., if all free m.p. actions of I" have cost > 1, then the conclusion may be strengthened
considerably. The following is an analogue of Bergeron and Gaboriau’s result [BG04, §5] (see also
[ST10, Corollary 1.6]) in which the statement is shown to hold for the first £2-Betti number in place

of cost.

THEOREM 1.9. Suppose that C(T') > 1. LetT' ~* (X, u) be an ergodic measure preserving

action of I' on a non-atomic probability space. Then exactly one of the following holds:

(1) Almost all stabilizers are finite;
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(2) Almost every stabilizer has infinite cost, i.e., C(I'y) = oo almost surely.

In particular, ARy is finite and '/ ARy has no non-trivial amenable invariant random subgroups.

The analysis of pseudocost in §6.2 is used in §6.3 to study the cost of generic actions in the
Polish space A(T', X, i) of measure preserving actions of I'. For any group I there is a comeager
subset of A(I", X, ut), consisting of free actions, on which the cost function C' : A(I', X, u) — R U
{00} takes a constant value Cyen(I') € R [Kec10]. Likewise, the pseudocost function a — PC(a)
must be constant on a comeager set of free actions, and we denote this constant value by PCgen(T").
Kechris shows in [Kecl0] that Cgen(I') = C(I') for finitely generated I" and Problem 10.11 of
[Kec10] asks whether Coen(I') = C(I) in general. The following is proved in Corollaries 6.28 and
6.27.

THEOREM 1.10. Let I' be a countably infinite group. Then

(1) The set {a € A(T, X, ;1) : a is free and PC(a) = PC(T')} is dense G5 in A(T', X, p).
(2) PCyen(T) = PC(T).

(3) Either Cyen(T) = C(I) 0r Cyen(T') = oc.

(4) If PC(T') = 1 then Cge, (') = C(T) = L.

(5) The set

{b € AT, X, n) : bis free and Japeriodic Borel subequivalence relations

EyC Ey C Ey C -+ of By, with By =|_J Ey, and 1im C,\(E,) = C(T')}

is dense G5 in A(T', X, p).
(6) If all free actions of T' have finite cost then {b € A(I', X,u) : bisfree and C(b) =
C(T")} is dense Gs in A(T', X, ).

The only possible exception to the equality Cyen(I') = C(I') would be a group I' with C'(I") <
oo such that the set {a € A(I', X, ) : ais free, C(a) = oo and E,, is not treeable} comeager in
AT, X, p).

A number of questions are discussed in §7. The paper ends with two appendices, the first
clarifying the relationship between invariant random subgroups and subequivalence relations. The

second contains relevant results about the amenable radical of a countable group.
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2. Preliminaries

Throughout, I denotes a countable discrete group. The identity element of I" is denoted by er,
or simply e when I is clear from the context. All countable groups are assumed to be equipped with

the discrete topology; a countable group always refers to a countable discrete group.

2.1. Group theory. Subgroups. Let A and I" be countable groups. We write A < I to denote
that A is a subgroup of I' and we write A < I to denote that A is a normal subgroup of I'. The index
of a subgroup A < T is denoted by [I" : A]. The frivial subgroup of T" is the subgroup {er} that
contains only the identity element. For a subset S C I" we let (S) denote the subgroup generated

by S. A group that is not finitely generated will be called infinitely generated.

Centralizers and normalizers. Let .S be any subset of I' and let H be a subgroup of I". The

centralizer of S in H is the set
Cy(S)={hec H :VsecS (hsh™' =5)}
and the normalizer of S in H is the set
Ng(S)={he€ H : hSh™' = S}.

Then Cy(S) and N (S) are subgroups of H with C(S) <Ny (S). Clearly Cy(S) = Cr(S)NH
and Ny (S) = Np(S) N H. The group Cr(I") is called the center of I' and is denoted by Z(I"). We
say that a subset T" of I" normalizes S if T C Np(S). We call a subgroup H self-normalizing in T’
if H = Np(H).

Infinite conjugacy class (ICC) groups. A group I is called ICC if every v € I' \ {e} has an
infinite conjugacy class. This is equivalent to C(+y) having infinite index in I" for all iy # e. Thus,

according to our definition, the trivial group {e} is ICC.

The Amenable Radical. We let AR denote the amenable radical of T'. See Appendix 9 below.
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2.2. Ergodic theory. Measure preserving actions. A measure preserving (m.p.) action of I’
is a triple (T", a, (X, 1)), which we write as I' ~* (X, u), where (X, p1) is a standard probability
space (possibly with atoms) and a : I' x X — X is a Borel action of I on X that preserves the
probability measure p. For (v,z) € T' x X we let y*z denote the image a(~y, x) of the pair (v, x)
under a. We write a for I' ~* (X, 1) when I' and (X, ) are clear from the context. A measure
preserving action of I" will also be called a I"-system or simply a system when I is understood.

For the rest of this subsection leta = I' ~® (X, u) andlet b =T' ~° (Y, v).

Isomorphism and factors. If ¢ : (X, ) — Y is a measurable map then we let ¢, i denote the
pushforward measure on Y given by @,.u(B) = u(¢~1(B)) for B C Y Borel. We say that b is a
Jactor of a (or that a factors onto b), written b C a, if there exists a measurable map 7 : X — Y
with 7,10 = v and such that for each y € T the equality 7(y%z) = b7 (x) holds for ;-almost every
x € X. Such a map 7 is called a factor map from a to b. The factor map 7 is called an isomorphism
from a to b if there exists a co-null subset of X on which 7 is injective. We say that a and b are

isomorphic, written a =2 b, if there exists some isomorphism from a to b.

Weak containment of m.p. actions. We write @ < b to denote that a is weakly contained in b and
we write a ~ b to denote that a and b are weakly equivalent. The reader is referred to [Kec10] for

background on weak containment of measure preserving actions.

Product of actions. The product of a and b is the m.p. actiona x b = I' A% (X x Y, u x v)

where v**(z, y) = (y%x,~yPy) foreach v € T"and (,y) € X x Y.

Bernoulli shifts. Let I’ x " — T, (vy,t) — = -t be an action of I" on a countable set 7. The
generalized Bernoulli shift corresponding to this action is the system sy = I' A% ([0, 1T, \T),
where ) is Lebesgue measure and where the action s is given by (v f)(t) = f(y~ ! -t) fory € T,
felo, 1]T, t € T. We write sr for spr when the action of I' on itself is by left translation. The

system sr is called the Bernoulli shift of T.

The trivial system. We call a = T' ~? (X, u) trivial if p is a point mass. Otherwise, a is called
non-trivial. Up to isomorphism, each group I" has a unique trivial measure preserving action, which

we denote by i1 or simply ¢ when I is clear.
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Identity systems. Let ¢, = I' " (X, u) denote the identity system of I" on (X, ;1) given by

7" = idx for all v € I". We write ¢, when I' is clear. Thus if ; is a point mass then ¢, = 1.

Strong ergodicity. A system a is called strongly ergodic if it is ergodic and does not weakly contain

the identity system ¢r ) on ([0, 1], A).
Fixed point sets and free actions. For a subset C' C I" we let
Fix’(C)={y €Y : ¥y e C APy =y}

We write Fix’(y) for Fix?({y}). The kernel of the system b is the set ker(b) = {y € T
v(Fix®(y)) = 1}. Itis clear that ker(b) is a normal subgroup of I". The system b is called faithful if
ker(b) = {e}, i.e., v(Fix’(y)) < 1 foreachy € I\ {e}. The system b is called (essentially) free if

the stabilizer of v-almost every point is trivial, i.e., v(Fix’(y)) = 0 foreach y € T'\ {e}.

2.3. Invariant random subgroups. The space of subgroups. We let Subr C 2'" denote the
compact space of all subgroup of I' and we let ¢ : I" x Subr — Subr be the continuous action of I'

on Subr by conjugation.

Invariant random subgroups. An invariant random subgroup (IRS) of I is a conjugation-invariant
Borel probability measures on Subr. The point mass 8 v at a normal subgroup N of I is an example
of an invariant random subgroup. Let IRSt denote the space of invariant random subgroups of I'.
We associate to each § € IRSt the measure preserving action I' ~¢ (Subr, §). We also denote this

system by 6.

Stabilizer distributions. Each measure preserving action b = I' ~? (Y, v) of T gives rise to and
invariant random subgroup 0 of I" as follows. The stabilizer of a point y € Y under the action b is

the subgroup I'; of I' defined by
Ly={yel : %=y}

The group I'y of course depends on the action b. The stabilizer map associated to b is the map
staby, : Y — Subr given by stab,(y) = I'y. The stabilizer distribution of b, which we denote by 6,
or type(b), is the measure (staby).r on Subp. It is clear that 0, is an invariant random subgroup of

I". In [AGV12] it is shown that for any invariant random subgroup 6 of I, there exists a m.p. action
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b of I such that 8, = 6. Moreover, if 8 is ergodic then b can be taken to be ergodic as well. See

[CP12].

Group theoretic properties of invariant random subgroups. Let 6 be an invariant random sub-
group of I'. We say that a given property P of subgroups of I' holds for 8 if P holds almost ev-
erywhere. For example, 6 is called amenable (or infinite index) if 6 concentrates on the amenable

(respectively, infinite index) subgroups of I'.

The trivial IRS. By the frivial invariant random subgroup we mean the point mass at the trivial
subgroup {e} of I'. We write 0. instead of d(cy for the trivial invariant random subgroup. An

invariant random subgroup not equal to . is called non-trivial.

REMARK 2.1. We will often abuse terminology and confuse an invariant random subgroup 6
with the measure preserving action @ = I' ~¢ (Subr, #) it defines, stating, for example, that € is
ergodic or is weakly contained in sr to mean that 6 is ergodic or is weakly contained in sy. When
there is a potential for ambiguity we will make sure to distinguish between an invariant random
subgroup and the measure preserving system to which it gives rise. We emphasize that 6 is non-
trivial” will always mean that 6 is not equal to the trivial IRS §., whereas 70 is non-trivial” will

always mean that # is not a point mass (at any subgroup).

3. Shift-minimality

3.1. Seven characterizations of shift-minimality. It will be useful to record here the main

theorem of [AW11] which was already mentioned several times in the introduction.

THEOREM 3.1 ([AW11]). Let I" be a countably infinite group. Then the Bernoulli shift st is

weakly contained in every free measure preserving action of I.

We let Aut(X, i) denote the Polish group of measure preserving transformations of (X, i),
and we let A(T", X, ) denote the Polish space of measure preserving actions of I on the measure
space (X, u). See [Kecl0] for information on these two spaces. In the following proposition, let
[a] denote the weak equivalence class of a measure preserving action a of I". Denote by sr o the

full 2-shift of T, i.e., the shift action of T on (2!, p!') where we identify 2 with {0, 1} and where
p({0}) = p({1}) = 1/2.
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PROPOSITION 3.2. Let I' be a countable group and let (X, i) be a standard non-atomic prob-

ability space. Then the following are equivalent.

(1) T is shift-minimal, i.e., every non-trivial m.p. action weakly contained in st is free.

(2) Every non-trivial m.p. action weakly contained in sr > is free.

(3) Among non-trivial m.p. actions of I, [sr 2] is minimal with respect to weak containment.

(4) Either T' = {e} or, among non-trivial m.p. actions of T, [sy| is minimal with respect to
weak containment.

(5) Among non-atomic m.p. actions of I, [sr] is minimal with respect to weak containment.

(6) The conjugation action of the Polish group Aut(X, 1) on the Polish space As(I', X, p) =
{a € AT, X, ) : @ < sr} is minimal, i.e., every orbit is dense.

(7) For some (equivalently: every) non-principal ultrafilter U on the the natural numbers N,

every non-trivial factor of the ultrapower (st )y is free.

PROOF. The equivalence (7)<>(1) follows from [CKTD11, Theorem 1]. For the remaining
equivalences, first note that if I" is a finite group then s factors onto ¢, so if I' # {e} then T’
does not satisfy (1), (4), (5) or (6). In addition, for I' # {e} finite, sp » factors onto a non-trivial
identity system, which shows that I' does not satisfy (2) or (3) either. This shows that the trivial
group I' = {e} is the only finite group that satisfies any of the properties (1)-(6), and it is clear the
trivial group satisfies all of these properties. We may therefore assume for the rest of the proof that
T is infinite.

(1)=>(2): This implication is clear since sr  is a factor of sr.

(2)=(3): Suppose that (2) holds. By hypothesis any a weakly contained in s 2 is free and thus
weakly contains st by Theorem 3.1. (3) follows since sr2 is a factor of sr.

(3)=(4): Since we are assuming I" is infinite, Theorem 3.1 implies [sy] = [sr 2], and this
implication follows. (4)=(5) is clear.

(5)=-(6): Suppose (5) holds. By [Kecl0, Proposition 10.1] the Aut(X, u)-orbit closure of any
ac AT, X, u)isequalto {b € A(I', X, ) : b < a}. Thus, if a is weakly equivalent to s, then
the orbit of a is dense in A4(T", X, ). Since [sr| is minimal with respect to weak containment,
every element of Ag(I", X, i) is weakly equivalent to sr, so has dense orbit in Ag(I", X, it). Thus,

the action Aut(X, u) ~ Ag(T", X, p) is minimal.
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(6)=-(1): Suppose that every a € A4(I", X, i) has dense orbit. If ¢, € A4(I", X, p1) then, since
¢, is a fixed point for the Aut(X, 41) action, ¢, = sp and thus I' = {e}. Otherwise, if ¢,, A4 sr then
the system sr is strongly ergodic and the group I' is therefore non-amenable. Let b = T' A2 (Y, v)
be any non-trivial m.p. action of I' weakly contained in sp. Then b x b is weakly contained in
st X sp = sr and therefore b x b is strongly ergodic since strong ergodicity is downward closed
under weak containment (see, e.g., [CKTD11, Proposition 5.6]). In particular b x b is ergodic and
it follows that the probability space (Y, v) is non-atomic. The action b is then isomorphic to some
action a on the non-atomic space (X, 1), and @ € A4(T', X, ) since b < sp. By hypothesis a has
dense orbit in A4(T", X, i) so that sy ~ a by [Kecl0, Proposition 10.1] and hence a is free, and

thus b is free as well. O

Two more characterizations of shift-minimality are given in terms of amenable invariant random

subgroups in Theorem 3.16 below.

3.2. NA-ergodicity.

DEFINITION 3.3. Let a be a measure preserving action of a countable group I'. We say that a
is NA-ergodic if the restriction of a to every non-amenable subgroup of I' is ergodic. We say that
a is strongly NA-ergodic if the restriction of a to every non-amenable subgroup of I' is strongly

ergodic.

EXAMPLE 3.4. The central example of an NA-ergodic (and in fact, strongly NA-ergodic) action
is the Bernoulli shift action sr; if H < I' is non-amenable then sp|H = sy is strongly ergodic.
More generally, if I acts on a countable set 7" and the stabilizer of every ¢ € T" is amenable then the

generalized Bernoulli shift s = I' ~57 ([0, 1]7, AT) is strongly NA-ergodic (see, e.g., [KT08]).

EXAMPLE 3.5. The action SLa(Z) ~ (T2, A\?) by matrix multiplication, where A\? is Haar

measure on T2, is another example of a strongly NA-ergodic action. A proof of this is given in

[Kec07, 5.(B)].

EXAMPLE 3.6. I would like to thank L. Bowen for bringing my attention to this example. Let
I" be a countable group and let f be an element of the integral group ring ZI'. The left translation
action of I" on the discrete abelian group ZI'/ZI f is by automorphisms, and this induces an action

of I' by automorphisms on the dual group Zf//ﬁ f, which is a compact metrizable abelian group
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so that this action preserves normalized Haar measure ;7. Bowen has shown that if the function
f has an inverse in ¢}(I") then the system I'" ~ (ZWZ\F f,py) is weakly contained in sr and is
therefore strongly NA-ergodic by Proposition 3.10 ([Bow10a, §5]; note that the hypothesis that I is

residually finite is not used in that section so that this holds for arbitrary countable groups I').

REMARK 3.7. The actions from Examples 3.4, 3.5, and 3.6 share a common property: they
are tempered in the sense of [Kec07]. A measure preserving action a = I' ~% (X, u) is called
tempered if the Koopman representation x¢ on L3(X, ) = L?(X, u) © Cly is weakly contained
in the regular representation Ar of I'. Any tempered action a of a non-amenable group I' has
stable spectral gap in the sense of [Pop08] (this means x§ ® x§ does not weakly contain the trivial
representation), and this implies in turn that the product action a X b is strongly ergodic relative to
b for every measure preserving action b of I' (see [Ioa06]). In particular (taking b = 1) a tempered
action a of a non-amenable group is itself strongly ergodic. Since the restriction of a tempered
action to a subgroup is still tempered it follows that every tempered action is strongly NA-ergodic.
In [Kec07] it is shown that the converse holds for any action on a compact Polish group G by

automorphisms (such an action necessarily preserves Haar measure pg):

THEOREM 3.8 (Theorem 4.6 of [Kec07]). Let I' be a countably infinite group acting by au-
tomorphisms on a compact Polish group G. Let G denote the (countable) set of all isomorphism
classes of irreducible unitary representations of G and let Go=0G \ {i(;}. Then the following are

equivalent:

(1) The actionT ~ (G, ug) is tempered;
(2) Every stabilizer of the associated action of " on Gy is amenable.
(3) The actionT ~ (G, ug) is NA-ergodic.

(4) The actionT ~ (G, ug) is strongly NA-ergodic.

Condition (2) of Theorem 3.8 should be compared with part (ii) of Lemma 3.11 below, although
Lemma 3.11 deals with general NA-ergodic actions. It follows from [Kec10, Proposition 10.5] that
any measure preserving action weakly contained in sr is tempered. I do not know however whether
the converse holds, although Example 3.6 and Theorem 3.8 suggest that this may be the case for

actions by automorphisms on compact Polish groups.
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QUESTION 3.9. Let I' be a countable group acting by automorphisms on a compact Polish
group GG and assume the action is tempered. Does it follow that the action is weakly contained in

sr? As a special case, is it true that the action SLy(Z) ~ (T?, X?) is weakly contained in sgy ,(7)?
We now establish some properties of general NA-ergodic actions.

PROPOSITION 3.10. Any factor of an NA-ergodic action is NA-ergodic. Any action weakly

contained in a strongly NA-ergodic action is strongly NA-ergodic.

PROOF. The first statement is clear and the second is a consequence of strong ergodicity being

downward closed under weak containment (see [CKTD11, Proposition 5.6]). ]

Part (ii) of the following lemma is one of the key facts about NA-ergodicity.

LEMMA 3.11. Let b =T ~? (Y, v) be any non-trivial NA-ergodic action of a countable group

(i) Suppose that C C T is a subset of " such that v({y € Y : C C I'y}) > 0. Then the
subgroup (C) generated by C' is amenable.

(i1) The stabilizer I'y of v-almost every y € Y is amenable.

PROOF. We begin with part (i). The hypothesis tells us that (Fix®(C')) > 0. Since v is not a
point mass there is some B C Fix’(C) with 0 < v(B) < 1. Then B witnesses that b | (C) is not
ergodic, so (C') is amenable by NA-ergodicity of b.

For (ii), let F denote the collection of finite subsets F' of I such that (F) is non-amenable and

let NA = {y € Y : T, is non-amenable}. Then

NA=|J{yeY : FCT,}.
Feg

By part (i), v({y € Y : FF C T'y}) = 0 for each F' € F. Since J is countable it follows that
v(NA) = 0. O[Lemma]

The function N : Subr — Subr sending a subgroup H < T to its normalizer N (H) in I is
equivariant for the conjugation action I' ~“ Subr. In [Ver12, §2.4] Vershik examines the following

transfinite iterations of this function.
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DEFINITION 3.12. Define N : Subr — Subr by transfinite induction on ordinals « as follows.

NetY(H) = N(N*(H)) is the normalizer of N(H)

N*H) = | J N*(H) when \ is a limit ordinal.
a<A

Each N is equivariant with respect to conjugation. For each H the sets H, N(H), ..., N*(H), ...

form an increasing ordinal-indexed sequence of subsets of I". The least ordinal azy such that
Nentl(H) = N (H) is therefore countable. If € IRSr then we let 6% = (N®).0 for each
countable ordinal @ < wj. The net {6} ,<., is increasing in the sense of [CP12, §3.5] (see also
the paragraphs preceding Theorem 8.15 below), so by [CP12, Theorem 3.12] there is a weak™-limit
0> such that 8% < 0°° for all a. Since IRSr is a second-countable topological space there is a
countable ordinal « such that 8% = 6 for all B > a. Thus N,0°° = 6°°, and it follows from

[Ver12, Proposition 4] that §°° concentrates on the self-normalizing subgroups of I'.

THEOREM 3.13. Let a = T' n® (X,v) be a non-trivial measure preserving action of the
countable group I'. Suppose that a is NA-ergodic. Then the stabilizer Iy, of p-almost every r € X

is amenable. In addition, at least one of the following is true:

(1) There exists a normal amenable subgroup N <1 such that the stabilizer of u-almost every
x € X is contained in N.
(2) 0° is a non-atomic, self-normalizing, infinitely generated amenable invariant random

subgroup, where 0, denotes the stabilizer distribution of a.

PROOF. Let § = 6. It is enough to show that either (1) or (2) is true. We may assume that I is
non-amenable. There are two cases to consider.

Case 1: There is some ordinal « such that the measure 0% has an atom. Let o be the least
such ordinal. Then 80 is NA-ergodic, being a factor of a, and thus the restriction of 8° to every
finite index subgroup of I' is ergodic since I' is non-amenable. Thus, #“° having an atom implies
that it is a point mass, so let N < I be such that ¢ = 6. Then N is a normal subgroup of
I" and we show that NV is amenable so that alternative (1) holds in this case. By definition of «y,
a and each 8° for o < «y are non-trivial NA-ergodic actions. Lemma 3.11 then implies that the

invariant random subgroups type(a) = ° and type(8°) = #**!, for a < ay, all concentrate on the
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amenable subgroups of I'. If cvg = 0 or if oy is a successor ordinal then we see immediately that
N is amenable. If o is a limit ordinal then NN is an increasing union of amenable groups and so is
amenable in this case as well.

Case 2: The other possibility is that 6°° has no atoms. Thus 8°° is a non-trivial NA-ergodic
action with type(0°°) = N,0°° = 6°°. This implies that 6°° is amenable by Lemma 3.11. Since
0> is non-atomic and there are only countably many finitely generated subgroups of I', §°° must

concentrate on the infinitely generated subgroups. This shows that (2) holds. O

3.3. Amenable invariant random subgroups. We record a corollary of Theorem 3.13 which

will be used in the proof of our final characterization of shift-minimality.

COROLLARY 3.14. Any group T that is not shift-minimal either has a non-trivial normal
amenable subgroup N, or has a non-atomic, self-normalizing, infinitely generated, amenable in-

variant random subgroup 0 such that the action @ = T' ~\° (Subp, 0) is weakly contained in sr.

PROOF. Let I be a group that is not shift-minimal so that there exists some non-trivial a weakly
contained in st which is not free. The action a is strongly NA-ergodic by 3.4 and 3.10, so a satisfies
the hypotheses of Theorem 3.13. If (1) of Theorem 3.13 holds, say with witnessing normal amenable
subgroup NV < T, then NV is non-trivial since a is non-free. If alternative (2) of Theorem 3.13 holds

then taking 6 = 63° works. O

We also need
PROPOSITION 3.15. IfT is shift-minimal then I" has no non-trivial normal amenable subgroups.

PROOF. Suppose that I' has a non-trivial normal amenable subgroup N. Amenability implies

that ¢y < sy. Then since co-inducing preserves weak containment we have
SPr/N < CIndY (¢n) < CIndy (sy) = sp

which shows that sp /n < sp. The action sy 1/ 18 not free since N C ker(.snp/N). This shows

that I" is not shift-minimal. O

The following immediately yields Theorem 1.3 from the introduction.

THEOREM 3.16. The following are equivalent for a countable group T':
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(1) T is not shift-minimal.

(2) There exists a non-trivial amenable invariant random subgroup 0 of U that is weakly
contained in Sr.

(3) Either ARr is finite and non-trivial, or there exists an infinite amenable invariant random

subgroup 0 of T that is weakly contained in sr.

PROOF. (1)=(3): Suppose that I' is not shift-minimal. If the second alternative of Corollary
3.14 holds then we are done. Otherwise, the first alternative holds and so ARr is non-trivial. If
ARpy is finite then (3) is immediate, and if ARr is infinite then the point mass at AR shows that (3)
holds.

(3)=(2) is clear. Now let # be as in (2) and we will show that I" is not shift-minimal. If 6 is a
point mass, say at H € Sub(I"), then H is normal and by hypothesis H is non-trivial and amenable
so (1) then follows from Proposition 3.15. If € is not a point mass then I' ~¢ (Subr, #) is a non-
trivial and non-free measure preserving action of I that is weakly contained in sr. This action then

witnesses that I' is not shift-minimal. O

Any group with no non-trivial normal amenable subgroups is ICC (see [dIH07, Appendix J] for

a proof), so Proposition 3.15 also shows
PROPOSITION 3.17. Shift-minimal groups are 1CC.

4. Permanence properties

This section examines various circumstances in which shift-minimality is preserved. §4.1 es-
tablishes a lemma which will be used to show that, in many cases, shift-minimality passes to finite

index subgroups.

4.1. Invariant random subgroups with trivial intersection. For each invariant random sub-

group 6 of A define the set
Pp={6eA:0({H :6ec H}) >0}

We say that two invariant random subgroups 6 and p intersect trivially if Py N P, = {e}. This

notion comes from looking at freeness of a product action.
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LEMMA 4.1. Ifa = A ~°% (X, p) and b = A AP (Y, v) are measure preserving actions of A

then a X b is free if and only if 0, and 0y, intersect trivially.

PROOF. For each § € A we have Fix®?*®(§) = Fix%(§) x Fix’(4), and this set is (z x v/)-null if

and only if either Fix®(§) is p-null or Fix®(8) is v-null. The lemma easily follows. O

It is a straightforward group theoretic fact that if L and K are normal subgroups of A which

intersect trivially then they commute. This generalizes to invariant random subgroups as follows.

LEMMA 4.2. Let A be a countable group. Let 6, p € IRSA and suppose that 0 and p intersect

trivially. Suppose L and K are subgroups of A satisfying

O({H € Subp : L< H}) >

1
m

p({H € Subp : K < H}) >

1
n

for some n,m € N. Then there exist commuting subgroups Ly < L and Ky < K with [L : Lo] <n

and [K : Ko] < m.
PROOF. Define the sets

Qr={leLl: (IKI""UK)C P,}

Qr ={ke K : (kLk ' UL) C Py}.

If | € Qp then for any k € K we have [kl™'k~! € (IKI™' U K) C P,. Similarly, if k¥ € Qx
then for any [ € L we have lkl='k=! € (kLk~' U L) C Py. Thus, if| € Qp and k € Q then
IkI"'k~! € P,N Py = {e} and so [ and k commute. It follows that the groups Lo = (Q1) < L
and Ky = (Qr) < K commute.

Suppose for contradiction that [L : Lg] > n and let [, ...,l,—1 be elements of distinct left
cosets of Lo in L, with I = e. Foreach i < nlet A; = {H € Suba : liKli_1 < H} so that
p(A;) = p(I¢ - Ag) = p(Ag) > L by hypothesis. There must be some 0 < i < j < n with
p(A;NAj)>0.Letl = l;lli. Then p(1¢- Ag N Ag) = p(A;i N A;) > 0and [ - Ay N Ag consists
of those H € Suba such that [KI~! U K < H. This shows that ({K{~!' U K) C P, and thus
[ € Qr C L. But this contradicts that [ = lj_lli and ;Lo # ljLg. Therefore [L : Lo| < n.

Similarly, [K : Kp] < m. O[Lemma 4.2]
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THEOREM 4.3. Let 0, p € IRSA, L, K < A, and n, m € N be as in Lemma 4.2, and assume in
addition that L and K are finitely generated. Then there exist commuting subgroups Ny, and N,

both normal in A, with [L : LN N1] < oo and [K : K N Nk] < oc.

PROOF. For a subgroup H < A and ¢ € N let H(i) be the intersection of all subgroups
of H of index strictly less than ¢. Then L(n) is finite index in L, and K (m) is finite index in
K, since L and K are finitely generated. By Lemma 4.2 L(n) and K(m) commute. For any

1 and K6~ satisfy the hypotheses of Lemma 4.2 hence the groups

~v,0 € A the groups yLy~
(vLy Y (n) = vL(n)y~ ! and (§K5~1)(m) = 6K (m)6~' commute. It follows that the normal
subgroups Ni, = ({Usea 0L(n)d7 1) and Ng = (Usen 6K (m)d~1) satisfy the conclusion of the

theorem. OJ

4.2. Finite index subgroups. The following is an analogue of a theorem of [B91], and its

proof is essentially the same as [BAIH00, Proposition 6].

PROPOSITION 4.4. Let a be a measure preserving action of a countable group 1 and let N be
a normal subgroup of T'. If the restriction a | N of a to N is free then p(Fix®(y)) = 0 for any
v € I satisfying

4.1) [{hyh™' : h € N}| = oo.

Thus, if (4.1) holds for all v € N then a m.p. action of I is free if and only if its restriction to N is

free.

For example, it is shown in [B91] that (4.1) holds for all v ¢ N whenever Cr(N) = {e} and
N is ICC.

PROOF OF PROPOSITION 4.4. Suppose vy € I'\ {e} is such that z(Fix®(y)) > 0 and {hyh ™! :
h € N} is infinite. It suffices to show that @ [ N is not free. The Poincaré recurrence theorem
implies that there exist kg, h1 € N with hoyhy ' # hiyhy* and pu(h - Fix®(y) N h§ - Fix%(y)) > 0.
Let h = hy "hg so that h € N and hyh~! # . Since Fix?(y) = Fix?(y~!) we have

h® - Fix®(y) N Fix®(y) = Fix®(hyh ™) NFix?(y™1) C Fix®(y hyh™1),
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which implies (Fix*(y~*hyh~1)) > 0. This shows @ | N is not free since e # v~ 1(hyh™1) =
(y~thy)h=t € N by our choice of h. O

PROPOSITION 4.5. Let K be a finite index subgroup of a countable 1CC group I, and let a be

a measure preserving action of L. If a | K is free, then a is free.

PROOF. Let N = ﬂwer vK~~1 be the normal core of K in I'. Then N is a normal finite
index subgroup of I". Since I is ICC, the group Cr(7y) is infinite index in I" for any v € T", hence
Cr(y)N N is infinite index in N. In particular {hyh~! : h € N} is infinite. If a is any m.p. action
of I whose restriction to K is free, then the restriction of a to N is free, so by Proposition 4.4, a is

free. O

Proposition 4.5 can be used to characterize exactly when shift-minimality of I"' may be deduced

from shift-minimality of one of its finite index subgroups.

PROPOSITION 4.6. Let K be a finite index subgroup of the countable group T'. Suppose that K

is shift-minimal. Then the following are equivalent.

(1) T is shift-minimal.
(2) T'isICC.
(3) T has no non-trivial finite normal subgroups.

4) Cr(N) = {e} where N = p YKyl

PROOF. Since K is shift-minimal, it is also ICC by Proposition 3.15. The equivalence of (2),
(3), and (4) then follows from [Prél12, Proposition 6.3]. It remains to show that (2)=-(1). Suppose
that I" is ICC and that @ < sr is non-trivial. Thena | K < sk, so a | K is free by shift-minimality

of K, and therefore a itself is free by Proposition 4.5. g

Proposition 4.6 shows that, except for the obvious counterexamples, shift-minimality is inher-
ited from a finite index subgroup. It seems likely that, conversely, shift-minimality passes from a
group to each of its finite index subgroups. By Proposition 4.6 to show this it would be enough
to show that shift-minimality passes to finite index normal subgroups (see the discussion following
Question 7.11 in §7). Theorem 4.3 can be used to give a partial confirmation of this. Recall that a

group is locally finite if each of its finitely generated subgroups is finite.
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THEOREM 4.7. Let N be a normal finite index subgroup of a shift-minimal group I". Suppose
that N has no infinite locally finite invariant random subgroups that are weakly contained in sy.

Then N is shift-minimal.

COROLLARY 4.8. Let I' be a shift-minimal group. Then every finite index subgroup of T which

is torsion-free is shift-minimal.

PROOF OF COROLLARY 4.8. Let K be a torsion-free finite index subgroup of I'. Note that K
is ICC since the ICC property passes to finite index subgroups. The group N := ﬂvel“ yK~y~1
is finite index in I" and torsion-free, and it is moreover normal in I'. By Theorem 4.7, NN is shift-

minimal, whence K is shift-minimal by Proposition 4.6. g

Theorem 4.7 will follow from:

THEOREM 4.9. Let A be a countable group with AR = {e}. Let 0 and p be invariant random
subgroups of A which are not locally finite. Suppose that p is NA-ergodic. Then 6 and p have

non-trivial intersection.

We first show how to deduce 4.7 from 4.9.

PROOF OF THEOREM 4.7 FROM THEOREM 4.9. Leta = N ~? (X, 1) be a non-trivial m.p.
action of IV weakly contained in s . We will show that a is free.

The co-induced action ¢ = CInd{V (a) is weakly contained in sr, so c is free by shift-minimality
of I'. Let T" = {to,...,tn—1} be a transversal for the left cosets of N inI". Then ¢ | N =
[To<icn @' where for b € A(N, X, ), b* € A(N, X, p) is given by kY = (t71kt)® for each
k € N,t € T [Kecl0, 10.(G)]. Observe that 0,: = (¢1)«0s Where ¢; : Suby — Suby is the
conjugation map H ~ tHt~!. In particular, for each t € T, a' is free if and only if a is free. It
is easy to see that (sy)! = sy for each t € T, so it follows that ¢ | N = [lo<icn a'" < sy. For
eachj < nletc; =[] j<i<n a'i. We will show that ¢; is free for all 0 < j < n, which will finish
the proof since this will show that ¢,,_1 = a'»—1 is free, whence a is free.

We know that ¢y = ¢ [ N is free. Assume for induction that ¢;_1 is free (where j > 1 is less

than n) and we will show that c; is free. Note the following:

@) Gatj_l and ch intersect trivially. This follows from Lemma 4.1 because ¢;_1 = ali-1 x cj

is free.
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(i1) Both 0at ;-1 and OCj are NA-ergodic, since they are both weakly contained in sy .
(iii) ARy = {e}. This is because I' is shift-minimal, so that ARp = {e} by Proposition 3.15,

and N is normal in I" so apply Proposition 9.1.

Theorem 4.9 along with (i), (ii), and (iii) imply that either 6 :; , or ch is locally finite. But NV
has no infinite locally finite invariant random subgroups weakly contained in s by hypothesis, and
since ARy = {e}, N actually has no non-trivial locally finite invariant random subgroups weakly
contained in sy. It follows that either 6 ¢, ; or QCj is trivial. If HCj is trivial then ¢; is free, which
is what we wanted to show. If 6+, , is trivial then a’~! is free, so a’ is free for all i < n, and

therefore c; is free all the same. O

PROOF OF THEOREM 4.9. Suppose toward a contradiction that 6 and p intersect trivially. By
hypothesis 6 is not locally finite, so the set of H € Suba that contain an infinite finitely generated
subgroup is #-non-null. As there are only countably many infinite finitely generated subgroups of
A, there must be at least one - call it L - for which §({H : L C H}) > 0. Similarly, there is
an infinite finitely generated K < A with p({H : K < H}) > 0. Then 0, p, L and K satisfy
the hypotheses of Theorem 4.3 (for some n and m), so there exist normal subgroups Ny, N < A
which commute, with [L : LN N] < coand [K : K N Ng] < oo. Since L and K are infinite,
neither Ny, nor N is trivial, and since ARA = {e}, both N1, and N are non-amenable.

Pick some k # e with k € KNNk. Since k € K, theset { H : k € H} has positive p-measure,
and it is N -invariant since Ny, commutes with k. NA-ergodicity of p and non-amenability of Ny,

then imply that p({H : k € H}) = 1. On the other hand, the set
M,={6eA:p{H : 6 H}) =1}

is a normal subgroup of A which acts trivially under p, so NA-ergodicity of p implies M, is

amenable, and as ARA = {e}, we actually have M, = {e}, which contradicts that k € M, O

Question 7.11 below asks whether a finite index subgroup of a shift-minimal group is always

shift-minimal.

4.3. Direct sums.
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PROPOSITION 4.10. Let (I';);er be a sequence of countable ICC groups and let a be a measure
preserving action of I' = @, I'i. If a | T'; is free for each i € I then a is free. In particular, the

direct sum of shift-minimal groups is shift-minimal.

PROOF. We will show that if a is not free then a | I'; is not free for some ¢ € I. We give
the proof for the case of the direct sum of two ICC groups - say I'; and I's - since the proof for
infinitely many groups is nearly identical. Let ' = T'; x I'y and let (v,0) € T be such that
1 (Fix?((y,0))) > 0 where (v,8) # er. Suppose that § # e (the case where v # e is similar).
Since I'y is ICC we have that CT, (9) is infinite index in I'y so by Poincaré recurrence there exists

a €y, a & Cr,(0) such that

1((e, @)® - Fix*((v, 6)) N Fix*((v,4))) > 0.

Thus p(Fix*({(y,ada™1),(v,6)))) > 0 and in particular p(Fix*((e,ada™671))) > 0. Our

choice of o implies that «da 16! # e and so a | I'; is non-free as was to be shown. O

4.4. Other permanence properties.

PROPOSITION 4.11. Let a be a measure preserving action of I'. Let N be a normal subgroup
of T. Suppose that both N and Cr(N) are ICC. Suppose that a | N and a | Cp(N) are both free.

Then a is free.

PROOF. Let K = Cp(N)N. Then K is normal in I" since both N and C (V) are normal. By
hypothesis Cr(N)NN = {e} so K = Cp(NN) x N. It follows that K is ICC, being a product of ICC
groups. Proposition 4.10 then implies that a [ K is free. Since Cr(K) < Cr(Cr(N))NCr(N) =
Z(Cr(N)) = {e}, Proposition 4.4 implies that a is free. O

DEFINITION 4.12. A subgroup H of I is called almost ascendant in I if there exists a well-
ordered increasing sequence { H, },<) of subgroups of I', indexed by some countable ordinal A,
such that

() H=Hyand Hy =T.
(i) For each o < ), either H,, is a normal subgroup of H,1 or H,, is a finite index subgroup
of Hyy1.

(i) Hg =, <B H,, whenever (3 is a limit ordinal.
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We call {Ha}a<x an almost ascendant series for H in I'. If H is almost ascendant in I" and if
there exists an almost ascendant series { H, }o<x for H in I' such that H,, is normal in H, for all

a < )\ then we say that H is ascendant in I' and we call { H, }o<) an ascendant series for H in T

PROPOSITION 4.13. Let a =T ~* (X, i) be a measure preserving action of T.

(1) Suppose that L is an almost ascendant subgroup of T that is ICC and satisfies Cr(L) =
{e}. Then a is free if and only if a | L is free. Thus, if L is shift-minimal then so is T".

(2) Suppose that L is an ascendant subgroup of I such that AR, = AR¢cyp () = {e}. Then a
is free if and only if both a | L and a | Cr(L) are free.

PROOF. (1): Assume that @ [ L is free. Let {L,}o<) be an almost ascendant series for L in
I'. Then Cr(Ly) = {e} for all @ < A. By transfinite induction each L, is ICC. Another induction
shows that each a | L, is free: this is clear for limit <, and at successors, L., is either normal or
finite index in L,1, so assuming a | L, is free it follows that a | L+ is free by applying either
Proposition 4.11 (Proposition 4.4 also works) or Proposition 4.5.

If now L is shift-minimal and a is a non-trivial m.p. action of I' with @ < sy thena [ L < sy,
so that a | L is free and thus a is free.

(2): Assume thatbotha | L and a | Cr(L) are free. Let { L, }o<) be an ascendant series for L

in I. Theorem 9.9 implies that ARy, = ARy (1) = {e} forall @ < \. For each o < A we have

{e} = ARcp(Lo) N Lat1 = ARep(,) N CLayi (La) = ARgy (L)

where the last equality follows from Corollary 9.4 since the series {C1,(La)}p<x is ascendant in
Cr(Lq). Itis clear that ', (Ly) < Cr(L), so by hypothesis a [ Cr,,.,(La) is free for all
a < A. We now show by transfinite induction on o« < A that a | L, is free. The induction is
clear at limit stages. At successor stages, if we assume for induction that a [ L,, is free then all the

hypotheses of Proposition 4.11 hold and it follows that a | L is free. U

PROPOSITION 4.14. Let a = T' % (X, u) be a measure preserving action of I'. Let K =

ker(a).

(1) Suppose that there exists a normal subgroup N of I such that a | N is free and such that

every finite index subgroups of N acts ergodically. Then ', = K almost surely.
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(2) Suppose that a is NA-ergodic and there exists a non-amenable normal subgroup N of I’

such that a | N is free. Then K is amenable and I', = K almost surely.

PROOF. We begin with (1). Note that, by Proposition 4.4, if v € T is such that the set {hyh " :
h € N} is infinite, then p(Fix®(y)) = 0. It therefore suffices to show that if x(Fix®(y)) > 0 and
{hyh=1 : h € N} is finite, then v € K. This set being finite means that the group H = Cr(y) NN
is finite index in N, so @ | H is ergodic by hypothesis. Since H < Cr(v), the set Fix* () isa | H-
invariant, so if it is non-null then it must be conull, i.e., v € K, by ergodicity.

For (2), amenability of K is immediate since a is non-trivial and NA-ergodic. NA-ergodicity
also implies that every finite index subgroup of N acts ergodically, so (1) applies and we are done.

O

The following Corollary replaces the hypothesis in Proposition 4.13.(1) that Cp(L) = {e} with
the hypotheses that ARp = {e} and a is NA-ergodic.

COROLLARY 4.15. Suppose ARy = {e}. Let a be any NA-ergodic action of T and suppose
that there exists a non-trivial almost ascendant subgroup L of T such that the restriction a | L of a

to L is free, then a itself is free.

PROOF. Let { Ly }a<x be an almost ascendant series for L in I'. Since ARp = {e}, Corollary
9.4 implies that ARy, = {e} for each & < A. Suppose for induction that we have shown that
a | L, is free for all o« < §. If 3 is a limit then Lg = Ua<5 L, soa | Lgis free as well. If
B = a + 1lis asuccessor then a [ L, is free and L,, is either finite index or normal in Lg. If L, is
finite index in Lg then a [ Lg is free by Proposition 4.5. If L, is normal in Lg then a | Lg is free

by Proposition 4.14.(2). It follows by induction that a | T is free. g

COROLLARY 4.16.

(1) Let T be a countable group with ARp = {e}. If T contains a shift-minimal almost ascen-
dant subgroup L then U is itself shift-minimal.

(2) Suppose that T is a countable group containing an ascendant subgroup L such that L is
shift-minimal and ARy (1) = {e}. Then T is shift-minimal. In particular, if both L and

Cr(L) are shift-minimal then so is T.
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PROOF. Starting with (1), let L be a shift-minimal almost ascendant subgroup of I'. Let a be
a non-trivial measure preserving action of I' weakly contained in sy. Then a is NA-ergodic and
a | L is free, so a is free by Corollary 4.15. Statement (2) is a special case of (1) since Theorem

9.9 shows that ARp = {e}. O

5. Examples of shift-minimal groups

Theorem 5.15 below shows that if the reduced C'*-algebra of a countable group I' admits a
unique tracial state then I' is shift-minimal. We can also often gain more specific information by
giving direct ergodic theoretic proofs of shift-minimality. These proofs often rely on an appeal to

some form of the Poincaré recurrence theorem (several proofs of which may be found in [Ber00]).

5.1. Free groups. Since the argument is quite short it seems helpful to present a direct argu-

ment that free groups are shift-minimal.

THEOREM 5.1. Let I" be a non-abelian free group.

() Ifa = I' ~* (X, ) is any non-trivial measure preserving action of I' which is NA-
ergodic then a is free.

(i) T is shift-minimal.

PROOF. For (i) we show that non-free actions of I' are never NA-ergodic. Suppose that a is
non-free so that z(Fix?(y)) > 0 for some v € I' — {e}. Fix any 6 € I' — (). By the Poincaré
recurrence theorem there exists an n > 0 with p(6" - Fix®(y) N Fix*(v)) > 0. The group H
generated by 6"y~ " and v is free on these elements and a* - x = x forevery « € H and x €
O™ - Fix?(y) N Fix?(«y). In particular @ | H is not ergodic, whence a cannot be NA-ergodic.

Statement (ii) now follows since any non-trivial action weakly contained in sr is strongly NA-

ergodic, hence free by (i). U

Another proof of part (i) of Theorem 5.1 follows from Theorem 3.13 (see also [AGV12, Lemma
24]). Indeed, alternative (2) of Theorem 3.13 can never hold since a non-abelian free group has only
countably many amenable subgroups. So if a is any non-trivial NA-ergodic action of a non-abelian
free group I' then (1) of Theorem 3.13 holds, and so a is free since the only normal amenable

subgroup of T is the trivial group N = {e}.
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5.2. Property (BP).

DEFINITION 5.2. Let I' be a countable group.

(1) T is said to be a Powers group ([ALH85]) if I' # {e} and for every finite subset F' C
I' \ {e} and every integer N > 0 there exists a partition I' = C' U D and elements

Qai,...,an € I such that

yCNC = forally € F

a;DNogD =@ forall j,ke{l,...,N}, j#E.

I' is said to be a weak Powers group ([BN88]) if I satisfies all instances of the Powers
property with F' ranging over finite subsets of mutually conjugate elements of I" \ {e}.
We define I to be a weak™ Powers group if T satisfies all instances of the Powers property
with F ranging over singletons in T" \ {e}.

(2) T has property P,,; (IBCALH94)]) if for any finite subset F' of I there exists an element
a € T of infinite order such that for each v € F, the canonical homomorphism from
the free product () * («) onto the subgroup (7, ) of ' generated by v and « is an
isomorphism.

If T satisfies the defining property of Py, but with F' only ranging over singletons,

sk
nai*

then we say that I' has property P
(3) T is said to have property (PH) ([Pro93]) if for all nonempty finite ' C I"\ {e} there
exists some ordering F' = {~1,...,7,} of F along with an increasing sequence e €
Q1 C - C Q@ of subsets of I' such that for all i < m, all nonempty finite M C @Q; and

all n > 0 we may find .y, ..., € Q; and 11, ..., T, pairwise disjoint such that
(@j0)7i(a;0) T\ Ty) C Ty

foralld € M and1 < j < n.

Examples of groups with these properties may be found in [AMO07, dIHP11, MOY11, PT11]
along with the references given in the above definitions. For our purposes, what is important is a

common consequence of these properties.
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DEFINITION 5.3. A countable group I is said to have property (BP) if for all v € I" \ {e} and
n > 2 there exists a1, ...,a, € I', a subgroup H < T, and pairwise disjoint subsets 11, ...,T, C
H such that
ajye; (H\T;) € T

forallj =1,...,n.

Note that when ~, H, aq,...,an,, and T, ..., T, are as above, then ajvoz;l €cHandT; # @
for all j < n.

We show in Theorem 5.6 that groups with property (BP) satisfy a strong form of shift-minimality.
The definition of property (BP) (as well as its name) is motivated by an argument of M. Brin and
G. Picioroaga showing that all weak Powers groups contain a free group. Their proof appears in
[dIHO7] (see the remark following Question 15 in that paper), though we also present a version of

their proof in Theorem 5.4 since we will need it for Theorem 5.6.

THEOREM 5.4 (Brin, Picioroaga [dIH07]).

(1) All weak* Powers groups have property (BP).
(2) Property P;,; implies property (BP).

(3) Property (PH) implies property (BP).

(4) Groups with property (BP) contain a free group.

PROOF. (1): given~y € I'\{e} andn > 1 by the weak™ Powers property there exists a1, . .., a,
and a partition I' = C U D of I' withyCNC = @and ;D No; D = @ forall 1 <i,j <n,i # j.
Take H = I" and for each 1 < j < nletT; = ;D so that the sets 17, ..., T;, are pairwise disjoint
and

ajva;l(F\Tj) =a;7y(I'\ D) = a;7C C oj(I'\C) = ;D =T;

thus verifying (BP).
(2): Lety € T'\ {e}. By property P

nai there exists an element o € I' of infinite order such

that the subgroup H = (7, ) of I is canonically isomorphic to the free product (7) * (a). Let T},
denote the set of elements of H whose reduced expression starts with a™~* for some k € Z with
7¥ # e. Then the sets T, n € N, are pairwise disjoint and oya " (H \ T},) C T;,.

(3): Assume that I' has property (PH) and fix any v € T"\ {e} and n > 1 toward the aim of

verifying property (BP). Taking F' = {~} we obtain a set Q = Q1 C I' from the above definition
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of (PH) with e € Q). Taking M = {e}, the defining property of () produces a1, ..., a, € @ and
pairwise disjoint 77, ...,T,, C I' with

ajya; T\ T) € Ty,

so taking H = T confirms this instance of property (BP).
Statement (4) is a consequence of the following Lemma, which will be used in Theorem 5.6

below.

LEMMA 5.5 (Brin, Picioroaga). Suppose that x1,...x4 are elements of a group H and that

T1,...,Ty are pairwise disjoint subsets of H such that
zi(H\Tj) € T;

foreach j € {1,...,4}. Then the group elements u = x1x9 and v = x3x4 freely generate a

non-abelian free subgroup of H.
PROOF OF LEMMA 5.5. The hypothesis 2;(H \ T}) C Tj implies that also z ' (H \ T}) C T}.
For distinct 4, j € {1,...,4} it then follows that
ziw(H\Tj) € 2Ty C oi(H\T;) €T,

and (z;a;) "(H\T;) Ca;'T; Cay ' (H\Ty) CT;
so for u = x1x9 and v = x3x4 We have

'LL(H \ Tg) CcT u*I(H \ Tl) C1T5
v(H\Ty) CTs v Y(H\T3) C Ty
A ping pong argument now shows that « and v freely generate a non-abelian free subgroup of

H. O[Lemma 5.5]

If now I" has property (BP) then taking any v € I" \ {e} and n = 4 we obtain a1, ..., a4 € T,
H <TandTi,...,7y C H as in the definition of property (BP). Lemma 5.5 now applies with
xj = aj’yaj_l forj e {1,...,4}. O[Theorem 5.4]

Lemma 5.5 can be used to show that any non-trivial ergodic invariant random subgroup of a

group with property (BP) contains a free group.
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THEOREM 5.6. Let I' have property (BP) and let a = I' ~* (Y,v) be an ergodic measure
preserving action of I'. Suppose that a is non-free. Then the stabilizer of v-almost every y € Y

contains a non-abelian free group. In particular, all groups with property (BP) are shift-minimal.

PROOF. Since a is non-free there exists an element v € I' \ {e} such that v(A) = r > 0
where A = Fix?(y). By the Poincaré recurrence theorem, for all large enough n (depending on
r),if A1,..., A, C Y is any sequences of measurable subsets of Y each of measure r, then there
exist distinct 41, ...,74 < n with v(A4;, N A;, N A, N A;,) > 0. Pick such an n with n > 4. By
property (BP) there exists ay,...,a, € I', H < T, and pairwise disjoint 771, ...,7T, € H such

that cye; "(H \ T;) C T; for all i € {1,...,n}. By our choice of n there must exist distinct

i1,...,14 < m such that
(5.1 viaf Anai, Anai,Anaj A) > 0.

Forj=1,...,4letx; = aijva;jl. Lemma 5.5 (applied to z1,...2z4 and 11, ...7T}) shows that
(x1,...,x4) contains a free group. Additionally, (5.1) shows that v(Fix®({x1,...,x4))) > 0 since
4
Fix®((x1,...,24)) 2 m Fix®(z;) = m o A.

j=1 j=1

The event that I', contains a free group is therefore non-null. This event is also a-invariant, so
ergodicity now implies that almost every stabilizer contains a free group.

If now b is any non-trivial measure preserving action of I' weakly contained in st then b is
ergodic and by Lemma 3.11 almost every stabilizer is amenable hence does not contain a free group.

Then b is essentially free by what we have already shown. Therefore I" is shift-minimal. U

In [B91] Bedos defines a group I to be an ultraweak Powers group if it has a normal subgroup
N that is a weak Powers group such that Cr (V) = {e}. Let us say that I is an ultraweak™ Powers

group if it has a normal subgroup NV that is an weak® Powers group such that Cr(N) = {e}.

THEOREM 5.7. Let T" be a countable group.

(1) Suppose that T contains an almost ascendant subgroup L with property (BP) such that
Cr(L) = {e}. Then for every ergodic m.p. action a =T' ~* (X, ) of I, either a is free

or I'y N L contains a non-abelian free group almost surely.
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(2) Suppose that I' contains an ascendant subgroup L such that both L and Cr(L) have
property (BP). Then for every ergodic m.p. action a = I' ~* (X, ) of T, either a is
free, T'y N L contains a non-abelian free group almost surely, or T';, N Cp(L) contains a
non-abelian free group almost surely.

(3) Every non-trivial ergodic invariant random subgroup of an ultraweak*-Powers group con-

tains a non-abelian free group almost surely.

PROOF. (1) Since L has property (BP) it is ICC, so if a | L is free then a itself is free by part
(1) of Proposition 4.13. Suppose then that a [ L is non-free. Let 7 : (X, 1) — (Z,n) be the ergodic
decomposition map for a [ L and let y = fz (> dn(z) be the disintegration of p with respect to 7.
Since a | L is non-free then the set A C Z, consisting of of all z € Z such that L ~* (X, p)
is non-free, is n-non-null. If z € A then p,({z : L, contains a non-abelian free group}) = 1 by
Theorem 5.6. The event that L, contains a non-abelian free group is therefore p-non-null. This
event is ['-invariant (a subgroup contains a free group if and only if any of its conjugates contains
one), so ergodicity implies that L, contains a free group almost surely. Since L, = I';, N L we are
done.

The proof of (2) is similar, using part (2) of Proposition 4.13. (3) is immediate from (1) and the

definitions. O

We note also that (BP) is preserved by extensions.

PROPOSITION 5.8. Let N be a normal subgroup of I'. If N and T"/N both have property (BP)

then I" also has property (BP).

PROOF. Lety € I'\ {e} and n > 1 be given.

If v € N then property (BP) for N implies that there exists ay,...,a, € N, H < N and
pairwise disjoint 71, ..., T, C H as in the definition of (BP) for N. These also satisfy this instance
of property (BP) for I'.

If v ¢ N then the image of v in I'/N is not the identity element so property (BP) for I'/N
implies that there exist cosets a1 N, - - - a, N € I'/N, a subgroup K < I containing N, and pairwise
disjoint 771, ..., T,, € K/N as in the definition of (BP) for I'/N. Then o, . . ., ay,, K, and the sets
T! =UT;,i=1,..., M, verify this instance of property (BP) for I'. ([l
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REMARK 5.9. If a group I' has property (BP) then it has the unique trace property. A quick
proof of this follows [BCALH94]. The proof of this is almost exactly as in [BCALH94, Lemma
2.2] with just a minor adjustment to the first part of their proof which we now describe. One first
shows for any v € T\ {e} and any n > 2, if vy, ..., ,, H, and 11, ..., T}, are as in the definition

of (BP) then for all z = (z1,..., 2,) € C" we have
n
(5.2) 11> zidr(egra; || < 2llzll2.
j=1

Let z; = aj’yozj_l sothat z; € H and z;(H \ T;) C Tj forall j = 1,...,n. Let 14 denote the

indicator function of a subset A C H. For f, g € ¢*>(H) we then have

[(Aa () f59)) < [ (25) Ay 1), o) 4 [(Am (25) Qe £) 9)

= [ () (A, 1), 9+ [y ey Ar (25) (F)s Ly @) | < (11 £l gl + 11112911

The remainder of the proof of (5.2) now proceeds as in [BCALH94, Lemma 2.2] using that the 7
are pairwise disjoint. It now follows as in the paragraph following [BCdLH94, Definition 1] that

C7(T) has a unique tracial state.

5.3. Linear groups. In the case that I" is a countable linear group, a theorem of Y. Glasner
[Gla12] shows that the existence of a non-trivial normal amenable subgroup is the only obstruction
to shift-minimality: Glasner shows that every amenable invariant random subgroup of a linear group
I" must concentrate on the subgroups of the amenable radical of I'. Along with Proposition 3.15 this
implies that a countable linear group I' is shift-minimal if and only if I' contains no non-trivial
normal amenable subgroups. Another way to deduce these results is to use Theorem 5.14 below

along with the following Theorem of Poznansky.

THEOREM 5.10 (Theorem 1.1 of [Poz09]). Let I' be a countable linear group. Then the follow-
ing are equivalent
(1) ' is C*-simple.
(2) T has the unique trace property.

(3) T contains no non-trivial normal amenable subgroups, i.e., ARr = {e}.
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COROLLARY 5.11. Let I' be a countable linear group. The properties (1), (2), and (3) of

Theorem 5.10 are equivalent to each of the following properties:

(4) T is shift-minimal.

(5) T has no non-trivial amenable invariant random subgroups.

PROOF. The implication (2)=-(5) follows from Theorem 5.14, the implication (5)=-(4) is Corol-
lary 3.14, and (4)=-(3) follows from Proposition 3.15. The remaining implications follow from

Poznansky’s Theorem 5.10. U

5.4. Unique tracial state on C;(I'). We write C}(I") for the reduced C*-algebra of I". This
is the C*-algebra generated by {\r(v) : v € T'} in B(¢%(T)), where A\r denotes the left regular
representation of T'. Let 1, € #2(T") denote the indicator function of {e¢}. We obtain a tracial state
r, called the canonical trace on C}(I'), given by m(a) = (a(1.), 1¢).

Let p be a probability measure on Subr and define the function ¢, € £*°(I") by

ep(v) =p({H : v € H}).

It is shown in [IKTO09] (see also Theorem 8.16) and [Ver11] that ¢, is a positive definite function
on I'. It will be useful here to identify ¢, as the diagonal matrix coefficient of a specific unitary
representation of I' described below.

Consider the field of Hilbert spaces {¢?>(I'/H) : H € Subr}. For v € T denote by 27 €
[14 ¢*(T/H) the vector field 2}, = 1,4 where 1,y € ¢*(I'/H) is the indicator function of
the singleton set {yH} C I'/H. Then {z”},cr determines a fundamental family of measur-
able vector fields and we let 3, = [ 139 ¢*(I'/H) dp denote the corresponding Hilbert space con-
sisting of all square integrable measurable vector fields. The inner product on J}, is given by
(z,y) = [y(xH,yu)er o dp. Define the unitary representation A, of ' on J(,, by

5]
M= [ g
H
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ie, \py(7)(@)g = Ar/u(7)(xm), where Ap/y denotes the quasi-regular representation of I' on

¢*(T'/H). We then have

(Ap(1)(x€),2°) = /H<>\p(7)(ﬂfe)H»$%>e2(r/H) dp
= /HO\F/H(’Y)UH): La)ew/mydp = p({H : v € H}) = p,(7).

We have shown the following.

PROPOSITION 5.12. (H,, A, x€) is the GNS triple associated with the positive definite function

pponl.

It is clear that if p is conjugation invariant (i.e., if p is an invariant random subgroup) then ¢,

will be constant on each conjugacy class of I'.

LEMMA 5.13. If H is an amenable subgroup of I then Arp is weakly contained in Ap. Thus,

forall f € ¢1(T') we have || v/ ()l < [[Ar(f)]l

PROOF. H being amenable implies that the one-dimensional unit representation 15 of H is
weakly contained in the left regular representation Ay of H ([BHV08, Theorem G.3.2]). Thus by
[BHVO08, Theorem F.3.5] we have A\r/y = Indl;{(l ") < IndEI(A 1) = Ar. The second statement
follows immediately from [BHVO08, F.4.4]. O

THEOREM 5.14. If p is any measure on Subr concentrating on the amenable subgroups then
Ap is weakly contained in the left regular representation Ar of T'.
Therefore, if 0 is an amenable invariant random subgroup of T then g extends to a tracial state

on C}(I') which is distinct from the canonical trace - whenever 6 is non-trivial.

PROOF. By [BHV08, F.4.4] to show that A\, < Ar it suffices to show that [|A,(f)|| < [|[Ar(f)]|

for all f € ¢1(I"). Using that p concentrates on the amenable subgroups and Lemma 5.13 we have
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for f € 1(T") and z,y € K,

(), w)] = | /H Oy () @)y dp)
</Hr|AF/H<f>||||xH|r|\yH|dp
g||Ap<f>r|/H|xH|H|yHndp

< [IAc(HIH [ ]yl]

from which we conclude that ||\, (f)|| < [|Ar(f)]]-

Suppose now 6 is an amenable invariant random subgroup of I'. Since )y is weakly con-
tained in Ap, Ay extends to a representation of C(I") and ¢y extends to a state on C(I") via
a — (Ng(a)(x®), x). Since g is conjugation invariant this is a tracial state. If 6 is non-trivial then
there is some v € I' \ {e} with pp(y) = 0({H : v € H}) > 0 showing that this is distinct from

the canonical trace. g

COROLLARY 5.15. Let I be a countable group with the unique trace property. Then ' has
no non-trivial amenable invariant random subgroups. It follows that every non-trivial NA-ergodic

action of T is free and T is shift-minimal.

PROOF. That I' has no non-trivial amenable invariant random subgroups follow from Theorem
5.14. If a is a non-trivial NA-ergodic action of I" then the invariant random subgroup 6, is amenable
by Theorem 3.13, and thus 6, = &, i.e., a is free. Since every m.p. action weakly contained in sr

is NA-ergodic, I" is also shift-minimal. O

REMARK 5.16. The positive definite function g associated to an invariant random subgroup
g is also realized in the Koopman representation «;’ corresponding to the §-random Bernoulli shift
89, of I' with a non-atomic base space (Z,n) (see [TD12c] for the definition of the #-random
Bernoulli shift). Indeed, take Z = R and take 7 to be the standard Gaussian measure (with unit
variance). Let p, : R=\' - R be the function py(f) = f(Hs7). Then p, € LE (n?\I') and each Dy

is a unit vector. In addition we have #,”" (7)(pe) = p- and

63 per= [ [ SEDSE A0 = [ 1y a0 = o)

and so (L3(n"\), kg, pe) is a triple realizing (.
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6. Cost

6.1. Notation and background. See [Gab00] and [KM04] for background on the theory of
cost of equivalence relations and groups. We recall the basic definitions to establish notation and

terminology.

DEFINITION 6.1. Let (X, 1) be a standard non-atomic probability space.

(i) By an L-graphing on (X, 1) we mean a countable collection ® = {p; : A; — B;}ier of
partial Borel automorphism of X that preserve the measure . The cost of the L-graphing
® is given by

CM((I)) = ZM(Ai)-

i€l
In (ii)-(vi) below ® denotes an L-graphing on (X, p).
(ii) We denote by Gg the graph on X associated to @, i.e., for z,y € X, (x,y) € G if and
only if z # y and ¢*!(x) = y for some p € ®. Weletdg : X x X — N U {oo} denote

the graph distance corresponding to Gg, i.e., for z,y € X,
do(z,y) =inf{m € N : Jpg,..., om-1 € ®* (gpil_l 0---0 gpitl o gpf)tl(a:) =y}

where ®* = ® U {idy } and idy : X — X is the identity map.

(iii) We let Eg denote the equivalence relation on X generated by ®, i.e., zFoy < do(z,y) <
oo. Then Fg is a countable Borel equivalence relation that preserves the measure .

(iv) Let E be a measure preserving countable Borel equivalence relation on (X, ). We say
that @ is an L-graphing of E if there is a conull set Xy C X suchthat Fg | Xo = F | Xo.
This is equivalent to the condition that [z]g, = [z]g for u-almost every z € X. The cost

of E is defined as
C,(F) =inf{C,(¥) : ¥is an L-graphing of E'}.

(v) Leta =T ~* (X, i) be a measure preserving action of I'. Let ) be a subset of I" and let
A : Q) — MALG, be a function assigning to each § € () a measurable subset As of X.

Then @ and A define an L-graphing ®®4 = {cpg’A 1§ € Q}, where gpg’A =4§% | A, ie.,
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dom(gog’A) = As and gog’A(:v) = §% for each x € Ay. Itis clear that Ege,4 C E, and

(I)aA Z,LLA(S

0eqQ

so that CM(QQ’A) only depends on the assignment A and not on the action a.

(vi) As a converse to (v), whenever Fg C FE, we may find a function A = Av® . T -
MALG,, such that Gga.a = Gg and C,(®>4) < C,,(®). Indeed, for each ¢ €  there
exists a measurable partition X = | | A such that ¢ [ AyY = 6% | AP, Then

taking As = {J g Ay works.

For a measure preserving action a = I' ~* (X, u) of ' denote by E, the orbit equivalence
relation generated by a. The cost of a is defined by C(a) = C,(FE,). Denote by C(I") the cost of
the group I, i.e., C'(T") is the infinimum of costs of free m.p. actions of I".

By “’subequivalence relation” we will always mean “Borel subequivalence relation.”

6.2. Cost and weak containment in infinitely generated groups. Lemma 6.2 together with
Theorem 6.4 provide a generalization of [Kec10, Theorem 10.13]. The purpose of Lemma 6.2 is to

isolate versions of a few key observations from Kechris’s proof.

LEMMA 6.2. Let F' C T be finite and let r € R U {oc}. Then the following are equivalent for
a measure preserving action a = T' % (X, u) of T':
(1) There exists a sub-equivalence relation E of E, such that E,;py € E C E, and
Cu(E) <.
(2) There exists a finite (Q C T containing F' and a sub-equivalence relation E of E, such
that Eqppy € E C Eqp(q) and C,(E) <.
(3) There exists a finite Q C I containing F, an assignment A : Q — MALG,,, and a natural

number M € N such that

C. (D) —i—Zu D dgaa(z,yx) > M}) <
YeF

PROOF OF LEMMA 6.2. We begin with the implication (3)=-(2). If suchan A : Q —+ MALG,
and M € N exist then define B: Q — I'by taking B[ Q \ F'= A | @\ F and for v € F taking

By =A,U{z : dgaa(z,y"2) > M}.
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Let E = Egas. Then Cu(E) < C,(®*P) < r and Egas C Eq4q)- In addition we have
Eq1(ry € Ega.5 since for each y € Fand z € X, either dga.a10 (x,v*x) < M so that (z,v%z) €
Egaa C EgaB, or dga,aiq(x,vy%x) > M, in which case x € dom(cpf,’B) and so (z,7%x) € Ega,5.
(2)=-(1) is obvious, and it remains to show (1)=-(3). Let E be as in (1) and let ® be an L-
graphing of E with C,(®) = s < r. Since £ C E, we may by 6.1.(vi) assume without loss of
generality that & = % for some B : I' — MALG,, v +— B,. Lete > 0 be such that s + € < r.
We have E,;(ry € E = Ega5 s0, as F is finite, if we take a large enough finite set ) C I'

containing F', we can ensure that
Z p({x @ dgasio(z,7%r) = 00}) < €.
YEF

So if we take M € N large enough then
Z p{z @ dgasre(z,yz) > M}) < e
yeF

It follows that A = B | Q and M satisfy the desired properties. U[Lemma 6.2]

DEFINITION 6.3. For each finite /' C I"and r € RU {oo} let Ap, = Ap,(I', X, 1) denote
the set of @ € A(T", X, p) that satisfy any - and therefore all - of the equivalent properties (1)-(3) of

Lemma 6.2.

It is clear that the set Ag,-(I', X, 1) is an isomorphism-invariant (and in fact, orbit-equivalence-
invariant) subset of A(T", X, u1). In what follows, we let FR(I", X, 1) denote the subset of A(T", X, )

consisting of all free actions.

THEOREM 6.4. Let I" be an infinite countable group. For each finite F C T"and r € R U {o0}
the set Ap,(I', X, n) NFR(L, X, ) is contained in the interior of Ap,(I', X, ). In particular,
Ap, (T, X, u) NFR(T, X, p) is open in FR(I', X, p1).

PROOF. Leta € Ap, be freeandlet Q C I', A : Q — MALG, and M € N be given by
Lemma 6.2.(3). For each y € F let s = pu({z : dge.a(x,y"x) > M}). Let s = Cy(®**) +
Z«/GF s5. By hypothesis we have s < r. Let € > 0 be small enough so that s + |F|le < r. Since the

number C),(®44) =Y seq M(As) is independent of a, if we can show for each y € F that the set

(6.1) {be AT, X,p) : p({z : dgval(x,Abz) > M}) < sy + e}
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contains an open neighborhood of a, then the intersection of these sets as y ranges over F' will by
Lemma 6.2 be a subset of A, containing an open neighborhood of a and we will be done.

Fix then y € F, let Q* = Q U {e} and let ¥ be the collection
¥ = {((5]\4_1,...,(50),(6]\/[_1,...,60)) : 6]‘ S Q* andej S {—1,1} forj :0,...,M— 1}
Foreach b € A(T', X, 1) and 0 € X, writing o as

(62) O':(((5M_1,...,50),(6]\/[_1,...,60))

(where 0; € Q* and¢; € {—1,1} forj =0,..., M — 1), we define

b,A - b,A
SOZ = (805M71)6M to---o (‘P(;O )<

EM—1

Let () denote the set of all o € ¥ with the property that §,;' ") --- ;" = . Observe that for
o€ X(y)and b € A(T, X, p), if z € dom(%) then @b (z) = 4°x and so d(z,7%z) < M. It

follows that

(6.3) {z : dgv.a(z,~’x) > M} C m X \ dom(p?).
o€X(y)

If we assume further that b is (essentially) free then, ignoring a null set, the set containment (6.3)
becomes an equality. Indeed, restricting to a co-null set Xy on which b is free we have, for x € X,
if dgv.a(z,7°z) < M then there exists some o € ¥ such that € dom(p%) and % (z) = ~x.
Writing o as in (6.2), this means that (5;24_’11 e 56°)ba: = ~z. Since b is free on Xy this implies
Sy -+ 0> = v and therefore o € X(7).

Now, for each o € X and b € A(T', X, 1) we see from the definition of % that the set dom(¢?)

is an element of the Boolean algebra A" generated by
{abAs : 6 € Qanda € (Q*UQHM}

where (Q* U Q™M = {§py_1---6160 : 6; €Q*UQ L forj =0,..., M — 1}. The algebra Ab
is finite since () is finite. The Boolean operations are continuous on MALG,, so if 7 > 0 is small

enough (depending on €, 2, and A) then every b in the open neighborhood U, of a given by

U,={bc AL, X,p) : Va € (Q*UQ MHMVS € Q (u(a’AsAaA;s) < )}
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satisfies
( ﬂ X\ dom(gof’,)) < p( ﬂ X \ dom(pf)) + €= sy +e
ceX(y) a€X(7)

where the equality follows from the paragraph following (6.3) since a is free. By (6.3) we then have

for such i and b € U, that
p({z : dgva(z,y’x) > M}) < s +e€

which shows that the open neighborhood U, of a is contained in the set (6.1). ([l

Note that if @ € A(I", X, ) and C,,(E,) < r, then E = E, witnesses that a satisfies property
(1) of Lemma 6.2 and therefore a € Ap,(I', X, p) for all finite £* C I'. It is immediate that if I" is
generated by a finite set £ then Ap, (I', X, ) = {a € AT, X, ) : C(a) < r}, so we recover

(a slightly stronger formulation of) [Kec10, Theorem 10.13] in the following Corollary.

COROLLARY 6.5 (Kechris, [Kecl0]). Let I' be an infinite, finitely generated group. Then the

cost function C' : A(T', X, ) — R is upper semicontinuous at each a € FR(I', X, p), i.e.,

limsup C'(b) < C(a).

b—a

For general groups, Theorem 6.4 has several consequences for cost and weak containment. It

will be helpful to introduce the following notation and definitions.

DEFINITION 6.6. Let Ey, E1, E5, ..., and E be m.p. countable Borel equivalence relations on
(X, ). The sequence (Ey, )nen is called an exhaustion of E, denoted (Ey,)neny T E, if Eg C Ey C
---,and E = |J,, E. The pseudocost of E, denoted PC),(E), is defined by

PC,(E) = inf{lin}linf Cu(Epn) : (En)nen T E}.

If a =T ~* (X,u) is a m.p. action of a countable group I' then define the pseudocost of
a by PC(a) := PC,(FE,). Finally, define the pseudocost of I' by PC(I") := inf{PC(a)

a is a free m.p. action of I'}.

It is shown in Corollary 6.17 below that the infimum in the definition of PC,(E) is always

attained. If E is aperiodic then PC,(F) > 1 by [KM04, 20.1 and 21.3]. We have PC,(E) <
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C,,(F) as witnessed by the constant sequence (E,)nen given by F,, = E for all n. In many cases
we actually have the equality PC,(E) = C,(E) as we now show. Recall that a countable Borel
equivalence relation E' on a standard Borel space X is called treeable if there exists an acyclic Borel
graph 7 C X x X whose connected components are the equivalence classes of £. Such a T is
called a treeing of E, and we say that F is treed by 7 to mean that 7 is a treeing of E. A theorem
of Gaboriau (Theorem 1 of [Gab00]) states that if i is an F-invariant measure on X and if 7 is a

treeing of E then C\,(E) = C,(T) = 5 [, deg(z) dp. This will be used implicitly below.

PROPOSITION 6.7. Let E be a m.p. countable Borel equivalence relation on (X, i) and let
(En)nen be an exhaustion of E.
(1) Suppose that C,,(E) < oco. Then Cy,(E) < liminf, C,(E,).
(2) Suppose that E is treeable. Then C,,(E) < liminf,, C\,(Ey).
(3) (Gaboriau [Gab00]) Suppose that lim,, C,,(Ey) = 1. Then C,,(E) = 1.

In terms of pseudocost vs. cost this implies

COROLLARY 6.8. Let E be a m.p. countable Borel equivalence relation on (X, ).
(1) If Cu(E) < oo then PC,(E) = C,(E).
(2) If E is treeable then PC\,(E) = C,(E).
(3) PCu(E) = 1ifand only if C,,(E) = 1.

PROOF OF PROPOSITION 6.7. (1): Let r = liminf,, C,(£,) and fix ¢ > 0. We may assume
that 7 < oo. Let @ = {¢;}2 be an L-graphing of £ with C),(®) = >, p(dom(p;)) < oo. Let
N be so large that ),y pu(dom(y;)) < e. If My € N is large enough then for any n > My we
have >,y u({z € dom(p;) : (z,0i(z)) € En}) < e. Since r = liminf,, C\,(E;,) we can find

some n > My with C,(E,) < r + e. Let ¥ be an L-graphing of F,, with C,(V) < r + €. Then

VU {pitisn U{p: [ {x € dom(p;) @ (z,0i(7)) € En}licn

is an L-graphing of E with cost strictly less than 7 + 3e.
(2): Let 7 be a treeing of E and let 7, = T N E,. Then 7,, C Tpq1 and T = |, Tp s0
lim, C,,(7,) = Cu(T). Let R,, be the equivalence relation generated by 7,. Then R,, C E,, and

R, NT = T,. We need the following lemma which is due to Clinton Conley.
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LEMMA 6.9 (C. Conley). Let F' be a countable Borel equivalence relation treed by Tr and
let R C F be a subequivalence relation treed by Tp C Tg (so that T = RN Tg). Then any

equivalence relation R' with R C R’ C F has a treeing T with Tg C Tgr.

PROOF. Proposition 3.3.(iii) of [JKL02] shows how to obtain a treeing T of R’ from the given
treeing T of F. It is clear from their construction that if an edge of Tz connects two R'-equivalent

points, then that edge remains in 7x/. Hence, every edge in T remains in 7xr. U[Lemma 6.9]

Apply Lemma 69 to FF = E, R = R,, and R' = E,, along with T = T and T =
Ty, to obtain a treeing 7, of E, with 7, C 7,. Then liminf, C,(E,) = liminf, C,(7,;) >
liminf, C\\(T,) = Cu(T).

(3): Since the E,, are increasing and lim,, C,,(E,) = 1 we have |[z]g,| — oo almost surely
(see [KMO04, 22.1]), and so E is aperiodic. It follows that PC},(E) = 1, so by Corollary 6.17 there
is an exhaustion (E),)nen of E with C,,(E),) — 1 such that E, is aperiodic for all n. It follows

from [KMO04, Proposition 23.5] that C,(F) = 1. O

REMARK 6.10. One may also deduce (2) of Proposition 6.7 by using the equality C\,(E) — 1 =
B1(E) — Bo(F) for treeable E [Gab02, Corollary 3.23] along with [Gab02, Corollary 5.13].

COROLLARY 6.11. If E is a m.p. treeable equivalence relation on (X, ) of infinite cost then

any increasing sequence Eqg C Ey C ---, with E = |,, Ey, satisfies C\,(Ey,) — oc.
PROOF. Immediate from (2) of Proposition 6.7. ]
REMARK 6.12. Corollary 6.11 may be seen as a generalization of a theorem of Takahasi.

COROLLARY 6.13 (Takahasi [Tak50]). Suppose Hy C H; C --- is an ascending chain of
subgroups of a free group F, and assume that the H,, have rank uniformly bounded by some natural

number v < oo. Then all H,, coincide for n sufficiently large.

PROOF. Suppose that infinitely many H,, are distinct. Then H = |J,, H,, has infinite rank,
so Corollary 6.11 implies that for any free m.p. action H ~* (X, u) we have C,,(Eqn,) — 00,

contradicting that sup,, C,(Eqm,,) < sup,, rank(H,) < r. O

We will use another characterization of pseudocost in order to show that it respects weak con-

tainment. In what follows, a sequence (@, )nen of subsets of a countable group I is called an
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exhaustion of T' if Q9 C Q1 C --- and |J,, @n = I'. A sequence (Qn)nen is called a finite

exhaustion of T if (Qp, )nen is an exhaustion of I" and @), is finite for all n € N.

LEMMA 6.14. Let E be a m.p. countable Borel equivalence relation on (X, ) and let r €

R U {o0}. Then the following are equivalent:

(1) There exists an exhaustion (Ey, )nen of E with limsup,, C,(E,) < 7.

(2) For any countable group T' and any m.p. action b = T AP (X, p) with E = Ey, and
any sequence (F,)nen of finite subsets of ', there exists a finite exhaustion (Qn)nen of
' along with an exhaustion (Ep)nen of E such that F, C Qy and Eyy g,y € En C
By, foralln € N, and limsup,, C,(Ep) < 7.

(3) For any countable group T, any m.p. action T ~* (X, ) with E = Ej, and any se-
quence (F,)nen of finite subsets of I, there exists an exhaustion (Ey,)nen of E satisfying
Ey(r,y € En for all n and limsup,, C,(Ey,) < 7.

(4) For any countable group T and any m.p. action b =T A\ (X, p) with E = Ey, we have
b c Ap,ic forall finite F C T' and all € > 0.

(5) There exists a countable group I' and a m.p. action b =T b (X, p) with E = Ej such
that b € Ap . for all finite ' C T" and all € > 0.

(6) There exists a countable group T and a m.p. actionb =T ~Y (X, p) with E = Ey, along
with an exhaustion (Qn)nen of I' and a (not necessarily increasing) sequence (Ey,)nen

of subequivalence relations of E such that Eyy .,y € Ey and limsup,, C,,(E,) <.

REMARK 6.15. It is clear that each of the conditions (1), (2), (3), and (6) of Lemma 6.14 are

equivalent to their counterparts in which “lim sup” is replaced with ”lim inf” or with ”lim.”

PROOF OF 6.14. (1)=-(4): Assume that (E,,),cn is a sequence as in (1). Let 'and b = T' ~\?
(X,p) with E = Ej be given. Fix a finitte ¥ C T"and ¢ > 0. Let n € N be large enough
so that C,(Ey,) < r+e€/2and 3 pu({z VYx & [2]g,}) < /2. Let @ = {4* | {z :
o & [x] En}}7 cp- Then R := E, V Eg is a subequivalence relation of £ containing Ey(py with
Cu(R) < Cu(Ep)+ Cu(®) <r+€/24€¢/2 =r+e Then R witnesses that b € Ap, (T, X, p1).
This shows that (4) holds.

(4)=(2): Assume (4) holds. Let T and b = T" ~\? (X, pn) with E = Ej, be given along with a

sequence (F),)nen of finite subsets of I'. We may assume without loss of generality that (F},),en
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is a finite exhaustion of I'. Fix some sequence of real numbers ¢, > 0 with ¢,, — 0. We proceed
by induction to construct sequences (@, )nen and (Ey, )pen as in (2). Define Qo = Fy. Suppose for
induction that we have constructed finite subsets Qg C @)1 C - - - Q of I' and equivalence relations
Ey, ..., E._1 with F; C @Q; forall 7 < k and Eyqny € Ei C By, for all 7 < k. By (4) we
have b € AQkUthHek, so by Lemma 6.2 there exists a finite (J;+1 C I containing Q U Fi11
and a subequivalence relation Ej, of B, with Eyq,y € Ex C Eyyq,,,) and Cu(Ey) < r+ e
Then @x11 and Ej, extend the induction to the next stage. We obtain from this inductive procedure
sequences (@) and (F,,) which satisfy (2) by construction.

(2)=(3) is clear. (3)=-(6) holds since there always exists some countable group I' and some
m.p. action b = I' ~? (X, u) with E = Ej, (see [FM77]). (6)=(5) is routine. Finally, the proof of
(4) = (2) shows that (5) = (1). O

REMARK 6.16. If the equivalence relation £/ in Lemma 6.14 is aperiodic then condition (1)
implies the stronger statement (1*) in which the equivalence relations FE,, are additionally required
to be aperiodic. Indeed, assume that E is aperiodic and that (1) holds. Then (3) holds as well. By
[Kec10, 3.5] there is an aperiodic T' € [E]. Take any countable subgroup I' < [E] that generates E
and with T" € T'. Then I naturally acts on (X, i) as a subgroup of [E]. Take some finite exhaustion
{Fp}nen of I with T' € Fy. Now apply (3) of Lemma 6.14 to this sequence {F}, }, ¢ to obtain the
desired aperiodic sequence satisfying (1%).

Similarly, if E is aperiodic then (3), and (6) of Lemma 6.14 are each equivalent to their coun-

terparts (3*), and (6%), in which the equivalence relations F,, are each required to be aperiodic.

COROLLARY 6.17. Let E be a m.p. countable Borel equivalence relation on (X, u). There
exists an exhaustion (Ey)nen T E with lim,, C,,(Ey,) = PC,(E). In other words, the infimum in
the definition of pseudocost is always attained. In addition, if I is aperiodic then such an exhaustion

(En)nen exists with E,, aperiodic for all n.

PROOF. Let s = PC,(FE). By definition of PC,(E), for any § > 0 there exists a sequence
(Ed)nen 1 E with limsup,, C,(E3) < s + 6/2. By [FM77] there is a countable group I' and
some action b = I' 0 (X, ) of T such that E = Ej. Now, F satisfies (1) of Lemma 6.14 with
respect to the parameter r = s + /2, so by (1)=>(4) of Lemma 6.14 we have b € Ap 5/ for

all finite ¥ C T" and € > 0. Taking € = §/2 shows that b € Ap,s for all finite F* C I". Since
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0 > 0 was arbitrary this shows that b satisfies (5) of Lemma 6.14 with respect to the parameter s, so
by (5)=-(1) Lemma 6.14 there exists a sequence (FE,)nen T E with limsup,, C,,(E,) < s. Since
s = PC,(F) < liminf,, C,(E,) this shows that in fact lim,, C,,(E,,) = PC,(E). By remark 6.16

if E is aperiodic then we can choose such a sequence (F,, ),cn with E,, aperiodic for all n. O

COROLLARY 6.18. Let E be an aperiodic m.p. countable Borel equivalence relation on (X, ).
Assume that E is ergodic. Then for any exhaustion (Ry,)nen of E satisfying C,,(Ry,) < oo for all
n € N, there exists an exhaustion (Ey,)nen of E with R, C E,, for all n € N and lim,, C,,(E,,) =

PC,(E).

PROOF. Let (R,)nen be an exhaustion of £ with C,,(R,) < oo for all n. Since E is ergodic
we many apply [KMO04, Lemma 27.7] to obtain, for each n € N, a finitely generated group I'), and
am.p. action b, = I';, b (X, ) with R,, = R,,,. There is a unique action b = I' ~% (X, p)
of the free product I" of {I'), },,en satisfying b | I';, = b, for all n € N. For each n € N let F,
be a finite generating set for I';,. By Corollary 6.17 there exists an exhaustion (E/,),cn of E with
lim, C,(E]) = r where r = PC,,(E). This shows that E satisfies (1) of Lemma 6.14, so, by
applying (3) of Lemma 6.14 to the action b and the sequence (F},),cn, We obtain an exhaustion
(Ep)nen of E with R,, = Eyp,, C Ej, and limsup,, C,(E,) < r. Since r = PC,,(F) it follows
that lim,, C,(E,) = PC,(F). 0

COROLLARY 6.19. Leta =T ~* (X, ) be a m.p. action of I'. Then PC(a) < r if and only

ifa € Ap,c for every finite FF C I" and e > 0.
PROOF. This follows from the equivalence (1)<(4) from Lemma 6.14. [l

COROLLARY 6.20. Leta = T' n® (X, 1) and b = T' b (Y, v) be measure preserving actions

of a countable group T'. Assume that a is free. If a < b then PC(b) < PC(a).

PROOF. Let r = PC(a). Fix FF C T finite and ¢ > 0. Since PC(a) = r we have a €
Apr4e(I', X, ) by Corollary 6.19. Since a is free, Theorem 6.4 implies that a is contained in the
interior of Ap,4(I', X, 1), so by [Kec10, Proposition 10.1] there exists some ¢ € Ap (I, X, 1)
which is isomorphic to b. Hence b € Ap,,(I',Y,r) and therefore PC(b) < r by Corollary
6.19. O
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COROLLARY 6.21. Leta =T n® (X, ) and b =T ALY (Y, v) be measure preserving actions
of a countably infinite group I'. Assume that a is free and is weakly contained in b. Then there exists

an exhaustion (Ey,)pen of E with lim,, C,,(E,) < C(a) and E,, aperiodic for all n € N.

PROOF. Corollary 6.20 tells us that PC'(b) < PC(a), so by 6.17 we can find an exhaustion
(Ep)nen of E, with lim,, C\,(E,) < PC(a) and E,, aperiodic for all n € N. Since PC(a) < C(a)

we are done. O

COROLLARY 6.22. Let a and b be m.p. actions of a countably infinite group I'. Assume that a
is free and a < b.
(1) IfC(b) < oo then C(b) < C(a).
(2) If Ey is treeable then C(b) < C(a).
(3) IfC(a) = 1then C(b) = 1.

PROOE. (1)and (2): Suppose C(b) < oo or E} is treeable. Then by Corollary 6.8 and Corollary
6.20 we have C(b) = PC(b) < PC(a) < C(a).

Similarly, if C'(a) = 1 then by Corollary 6.20 we have PC(b) < PC(a) < C(a) = 1, so
PC(b) = 1 and thus C(b) = 1 by Corollary 6.8. O

DEFINITION 6.23. A group I is said to have fixed price 1 if C(a) = 1 for every free measure

preserving action a of I

In [AW11], Abért and Weiss combine their theorem on free actions (stated above in Theorem
3.1) with [Kec10, Theorem 10.13] to characterize finitely generated groups I'" with fixed price 1 in

terms of the Bernoulli shift s;y. We can now remove the hypothesis that I' is finitely generated.

COROLLARY 6.24. Let I" be a countable group. Then the following are equivalent:
(1) T has fixed price 1
(2) C(sr) =1
(3) C(a) = 1 for some m.p. action a weakly equivalent to st.
(4) PC(a) = 1 for some m.p. action a weakly equivalent to Sr.

(5) T is infinite and C(a) < 1 for some non-trivial m.p. action a weakly contained in sr.

PROOF. (1)=-(2) holds since sr is free. (2)=-(3) is clear. (3) < (4) follows from Corollary

6.8. Suppose that (3) holds and we will prove (1). Let a be weakly equivalent to sp with C(a) = 1.
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This implies a is free. If b is another free measure preserving action of I' then @ < b by Theorem
3.1, so Corollary 6.22 shows that C'(b) = 1. Thus I has fixed price 1. This shows that properties
(1), (2), and (3) are equivalent. The implication (3)=>(5) is clear.

The proof of the remaining implication (5)=(3) uses Lemma 6.34, proved in §6.5 below. As-
sume that (5) holds. Let a = I' ~* (X, ) be a non-trivial action weakly contained in sy with
C(a) < 1.Let# = 0,. If T is amenable then (1) holds, so we may assume that I is non-amenable.
Then sr is strongly ergodic, hence both a and @ are weakly mixing. It follows that 6 is either a
point mass at some finite normal subgroup N of I', or § concentrates on the infinite subgroups of I'.

Case 1: 0 is a point mass at some finite normal subgroup N < I'. Then C(a) = 1 since E,
is aperiodic. By [CKTD11, Proposition 4.7] there is some b = I' ~b (Y, v) weakly equivalent to
st such that a is a factor of b, say via the factor map 7 : ¥ — X. Let Y be a Borel transversal
for the orbits of N \? (Y,v)and let 0 : Y — Y| be the corresponding selector. Let 1y denote the
normalized restriction of v to Yy and let by be the action of " on (Yj, g) given by vy = o(%y).
Then 7 factors by onto a. Since 6, = 0, = dn, the actions a and by descend to free actions a
and by, respectively, of I'/N, and 7 factors by onto @. Then C(a) = C(a) = 1, so C(bg) = 1
by Corollary 6.22. Since Ey, = Ej | Yp we have C (Ep | Yo) = 1,50 C(b) = C,(Ep) = 1 by
[KMO04, Theorem 25.1] ((KMO04, Theorem 21.1] also works). This shows that (3) holds.

Case 2: 0 is infinite. We have @ < sr, so a is NA-ergodic and therefore § is amenable by
Theorem 3.13. Then C'(6, x sp) = 1 by Lemma 6.34, and 0, x sr is weakly equivalent to s, so

(3) holds. O

NOTE 6.25. Similar to [Kec10, Corollary 10.14], one may strengthen Corollaries 6.20, 6.21,

and 6.22 by replacing the hypothesis a < b their statements with the weaker hypothesis that

(6.4) ac{ce AT, X,u) : E.is orbit equivalent to Fj}

where (X, p1) is the underlying space of a. The proofs remain the same. Note that (6.4) is actually
slightly weaker than the hypothesis @ =< b from [Kec10, Corollary 10.14], since the action ¢ from
(6.4) ranges over all of A(T", X, 1) and not just FR(I', X, ). Specializing to the case where I is
finitely generated, we recover a somewhat strengthened version of the first statement of [Kec10,

Corollary 10.14].
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6.3. The cost of a generic action. The results of the previous section have consequences for
generic properties (with respect to the weak topology) in FR(I", X, 1) related to cost. We begin by
proving analogues of Corollaries 6.17 and 6.8 for groups. Recall that a countable group I is called

treeable if it admits a free measure preserving action a such that F, is treeable.

PROPOSITION 6.26. Let I' be a countably infinite group.

(1) Suppose that C(T') < oo. Then for any free m.p. action b = T' AP (X, u) of T, and
any exhaustion (Ey)nen of Ey, we have liminf,, . C,,(E,) > C(T'). Hence PC(I") =
(D).

(2) Suppose that T is treeable. Then PC(T') = C(T).

(3) PC(T") =1ifand only if C(T") = 1.

(4) PC(T) is attained by some free m.p. action of I'. In fact, if a € FR(I', X, u) has dense
conjugacy class in (FR(T', X, u), w) then PC(a) = PC(T").

PROOEF. (1): Let b be a free m.p. action of I'. It suffices to show that PC'(b) > C(T'). Let a
be a free m.p. action of I' with C(a) = C(I') < oo and let ¢ = a x b. Then by the remark at
the bottom of p. 78 in [Kec10] we have C'(¢) < C(a) = C(T'), hence C(c) = C(I") < oo. Since
C(e) < oo we have PC(c) = C(c) by (1) of Corollary 6.8. In addition, b < ¢ and b is free, so
Corollary 6.20 implies PC(b) > PC(c) = C(c) = C(I).

(2): Let b be a free m.p. action of I". Once again it suffices to show PC(b) > C(I"). Let a be
a free m.p. action of I' with E, treeable and let ¢ = a x b. By [KMO04, Proposition 30.5] E. is
treeable and C'(¢) = C(a) = C(I'). Then (2) of Corollary 6.8 implies that PC'(¢) = C(c¢), so, as
b < ¢, Corollary 6.20 implies that PC'(b) > PC(c) = C(c) = C(I').

(3): This is immediate from (3) of Corollary 6.8.

4): If @ € FR(I', X, ) has dense conjugacy class this means that b < a for every m.p.
action b of I' [Kec10, Proposition 10.1] (also note that such an a exists by [Kec10, Theorem 10.7]).
Corollary 6.20 then shows that PC'(a) < inf{PC(b) : b € FR(I', X, )} = PC(I"), hence
PC(a) = PC(T). O

By [Kec10, Proposition 10.10] the cost function a — C(a) is constant on a dense G5 subset of
FR(I", X, ut). Let Coen(I") € [0, 00] denote this constant value. Similarly, the pseudocost function

a — PC(a) is constant on a dense G subset of FR(I', X, 1). Denote this constant value by
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PCgen(I'). Problem 10.11 of [Kec10] asks whether Cye,(I') = C(I') holds for every countably
infinite group I, and [Kec10, Corollary 10.14] shows that the equality holds whenever I' is finitely

generated.

COROLLARY 6.27. Let I' be a countably infinite group. Then

(1) The set MINPCOST(T, X, ;1) = {a € FR(L, X, 1) : PC(a) = PC(T)} is dense G in
A(T, X, ). In particular, PCy,,(I') = PC(').

(2) Either Coen(T') = C(I") 0r Cen(T) = 00.

(3) If PC(T) = 1 then Cgen(T") = C(I) = 1.

PROOF. (1): Letr = PC(T"). Corollary 6.19 shows that
MINPCOST(T, X, u) = ﬂ{AF’TH/n(F, X, ) NFR(T', X, ) : F CT'is finite and n € N}.

To show this set is dense G5 in A(I", X, p1) it therefore suffices to show that Ap, (I, X, 1) N
FR(T', X, uu) is dense Gs for each F' C T finite and ¢ > 0. By [Kecl0, Theorem 10.8], the
set FR(I", X, p1) is dense G5 in A(I', X, ;). Theorem 6.4 shows that Ap, . is relatively open
in FR(T', X, i), so it only remains to show that it is dense. By Proposition 6.26 we have PC(a) =
PC(T") whenever a € FR(I', X, ;1) has a dense conjugacy class. Since the set of actions with dense
conjugacy class is dense G5 in FR(I", X, 11) the result follows.

(2): Suppose that Cgen(I") = 7 < co. This means the generic @ € FR(I', X, 1) has C(a) = r.
Since r < oo it follows from Corollary 6.8 that C'(a) = r = C(a) = PC(a). Thus the generic
free action a satisfies PC'(a) = r = C(a) and by part (1) we therefore have C(I') > PC(T") =
PCgen = Coen(I") > C(I"), which shows that Cgen (I') = C(T).

(3) follows from (1) along with Corollary 6.8. [l

Let MINCOST(T', X, u) = {a € FR(I', X, u) : C(a) = C(T)}.
COROLLARY 6.28. Let I' be a countably infinite group. Then the set

D= {b € FR(T', X, ) : Japeriodic subequivalence relations

EyC E\ C Ey C -+ of By, with By = | | E, and lim C,,(E,) = C(T') }
n
n
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is dense G5 in A(I', X, ). Additionally, if C(I') < oo then we have the equality of sets
(6.5) MINCOST(T', X, ) = DN{b e FR(I', X, ) : C(b) < oo}.
In particular, if all free actions of I have finite cost then MINCOST(T', X, 1) = D is dense G.

PROOF. We begin by showing D is dense G5. By [Kec10, Theorem 10.8], FR(I", X, p) is dense
Gsin A(T', X, ). If C(T') = oo then D = FR(I", X, ;1) and we are done, so we may assume that
C(I') < oo. Then C(I') = PC(T") by Proposition 6.26, so it follows from Corollary 6.17 that
D ={a € FR(I', X, ) : PC(a) = PC(I")} = MINPCOST(I", X, 11), and therefore D is dense
G5 by Corollary 6.27.

For the second statement of the theorem, suppose that C(I') < co. Then C(I') = PC(T") by
Proposition 6.26. The inclusion from left to right in (6.5) is clear. If b has finite costand b € D then,

PC(b) < C(T") = PC(T"), hence PC(b) = PC(T') = C(T'), i.e., b € MINCOST(T', X, p). O

6.4. Cost and invariant random subgroups. Equip each of the spaces I'"' and 2! with the

pointwise convergence topology.

LEMMA 6.29. There exists a continuous assignment Subr — I'V, H +— oy, with the following

properties:

(i) For each H € Subr, o : I' — T is a selector for the right cosets of H in T, i.e.,
op(0) € Hé forall 6 € T, and oy is constant on each right coset of H.
(ii) og(h) = e whenever h € H.
(iii) The corresponding assignment of transversals Subr — 2, H +— Ty := og(T), is

continuous.

PROOF. Fix a bijective enumeration I' = {~,,, } men of I' with 9 = e, and define o7 (7,,) = i
where ¢ is least such that 7,7, L' H. This is continuous and (i) and (ii) are clearly satisfied, and
(iii) follows from continuity of H — o, since the map I'" — 2 sending f : T' — T to its set of

fixed points is continuous. U

Define the set

A(Subr, X, u) :={(H,a) : H € Subr, anda € A(H, X, )}
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This set has a natural Polish topology in which (H,,a,) — (H,a) if and only if H,, — H and
a,, — a pointwise. We make this precise by taking * to be some point isolated from Aut(X, i) and
then defining v = * whenever H < T',b € A(H,X,u), andy ¢ H. Then (H,,a,) — (H,a)

means that v*» — v forevery v € I'.
LEMMA 6.30. For any r € R the sets

Sy ={H €Subr : C(H) <r}

A, ={(H,a) € A(Subp, X, 1) : aisfree and C(a) < r}
are analytic. In particular, the map H — C(H) is universally measurable.

PROOF. It suffices to show that A, is analytic since .S, is the image of A, under projection onto
Subr which is continuous. We may assume that X = 2N and that 1 is the uniform product measure.

Let ' ~* X1 denote the left shift action given by (7*- f)(0) = f(y~16) for f € XT. Let H
o and H — Ty C I' be a continuous assignment of selectors and transversals given by Lemma
6.29. For (H,a) € A(Subr, X, ;1) define the map ®p7 4 : X — X' by @y q(z)(ht) = (h~1)%
forh € H,t € Ty, v € X. Then ®p 4 is injective and equivariant from H ~* X to the shift
action H ~* X1 and so the measure LHa = (PHa)spis H N X I' invariant, and the systems
H ~* (X,u) and H ~* (XY, i o) are isomorphic. Let P denote the space of Borel probability

measures on X! equipped with the weak*-topology.
CLAIM 4. The map A(Subr, X, ) = P, (H,a) — pH q is continuous.

PROOF OF CLAIM. Suppose that (H,,a,) — (Hx, @) in A(Subp, X, u). Letting p,, =
[H, an- it suffices to check that 11, (A) — pioo(A) whenever A C X7 is of the form A = {f €
XU . vy e F(f(y) € Ay)} where F C T is finite and A, C X is Borel. For v € F write
v = hyty where t, € Ty, and h, € Hy. By continuity of H + oy and H ~ Ty, for all
o (4,) -

large enough n, hy € H, and t, € Ty, forally € F. Then p,(A4) = p(,cp

(N er h5(Ay)) = poo(A) since a, — a. O[Claim]

Now let Ej; denote the orbit equivalence relation on X' generated by H ~* X' The set

B = {(H,v) € Subr x P : vis Eg-invariant and H ~* (X', 1) is essentially free}
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is Borel so by the proof of [KMO04, Proposition 18.1] the set D = {(H,v) € B : C,(Eg) <r}is

analytic. We have (H,a) € A, if and only if (H, p1y7,q) € D, which shows that A, is analytic. O

It follows that for any ergodic invariant random subgroup 6 of I" there is an r € R U {cc} such
that C(H) = r for almost all H < T'. The following is an analogue of [BG04, §5] for cost. I would

like to thank Lewis Bowen for a helpful discussion related to this.

THEOREM 6.31. Let 0 be an invariant random subgroup of 1" and suppose that 0 concentrates
on the infinite subgroups of I' which have infinite index in T'. If 0({H : C(H) < oo}) # 0 then
cr)=1.

Thus, if C(T") > 1 then for any ergodic non-atomic m.p. action T' ~* (X, u), either T';, is finite

almost surely, or C(I'y) = oo almost surely.

PROOF. To see that the second statement follows from the first observe that an ergodic non-
atomic m.p. action cannot have stabilizers which are finite index. We now prove the first statement.
By decomposing 6 into its ergodic components we may assume without loss of generality that 6 is
ergodic and there is an r € R such that C(H) < r almost surely.

By Lemma 6.30 the set A, = {(H,a) € A(Subr, X,u) : aisfreeand C(a) < 7} is an
analytic subset of A(Subp, X, ). Since C(H) < r almost surely, we may measurably select for
each H € Subr a free action ay € FR(H,X,u) C A(H, X, u) of H such that almost surely
C(ag) < r (we are applying [Kec95, 18.1] to the flip of the graph of the projection function
A, — Subr, (H,a) — H). A co-inducing process can now be used to obtain an action b of " from
the selection H — ay € A(H, X, i) as follows.

Let H + o be as in Lemma 6.29. Let COSp C 2! denote the closed subspace of all right
cosets of subgroups of I', on which I acts continuously by left translation v¢ - H§ = vHJ. The

function p : I' x COSpr — I defined by

p(v, H8) = (01,1 (70)) ' vou ()

is a continuous cocycle of this action with values in T'. It is clear that p(vy, H§) € d~1HJ, so the
map (v, H0) — p(, Hd)%'rs is a well-defined measurable cocycle with values in Aut(X, ).
We therefore obtain an action b of I' on the space W = {(H,f) : H <Tand f : H\I' —» X}
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given by v (H, f) = (YH~y~1, 74 f) where 44 f : yHy~'\TI' — X is given by

(2" ) HS) = ploy, HO)s~ 5 (£ (HF)).

This action preserves the measure x = [;, (5 x pf? \I'Y df(H) since

v&::/<%HrlxﬁHM“Ud9=/‘GWHAX 11 uwwﬂﬁ%*me)w
H H ~HSEyHy~1\T

:/ (57,,7_1 < 11 u) d9 :/ (85101 x M \) ap :/ Su x g = k.
H H H

yH§eyH~—I\T

LEMMA 6.32.

(1) For each (H, f) € W, and h € H we have (h% f)(H) = h® (f(H)) and thus the map
XM\ X f s f(H) factors

by = H A (XHV T

onto ayy.

(2) (Analogue of [Ioall, Lemma 2.1]) For almost all H < T" and every ~y € "\ {e} the sets
WH ={fe X" . yHy™' = H and (\*" f)(H) = f(H)}

are \C_null. In particular, b is essentially free.

PROOF. (1) is clear from the definition of by;. For (2),If f € Wf then p(vy, H)% (f(Hy™ 1)) =
f(H) by definition of bgy. So for each H with aj essentially free, if v € H \ {e} then f € Wf
if and only if v*4(f(H)) = f(H), so that W,{{ is null, while if v € I" \ H then W,{{ C{fe
XH\U - p(y, H)*H (f(Hy~1)) = f(H)}, which is null since Hy~! # H and p is non-atomic.

Since almost all a; are essentially free we are done. [Lemma 6.32]

We now apply a randomized version of an argument due to Gaboriau (see [KMO04, Theorem
35.5]). There is another measure preserving action s = I' ~* (W, k) of I on (W, k) given by
vé(H, f) = (yHy Y, v%% f) where (v*# f)(yHS) = f(HJ) (this is the random Bernoulli shift
determined by 6 [TD12¢, §5.3]). The projection map W — Subr, (H, f) — H factors both b and

s onto 6. We let a denote the corresponding relatively independent joining of b and s over 8, i.e.,



209

a is the measure preserving action of I' on

(Zn) = ({(H, [,9) : f,g€ X"}, /H<6H x M s B dg)

given by ¥*(H, f,g) = (vHy~ 1,74 f,v%H g) where (v*# g)(vHJ) = g(H6). This action is free
since it factors onto b.

Let p : Z — W denote the projection map p((H, f,g)) = (H,g). Foreach (H,g) € W
the set p~*((H, g)) is a | H-invariant, and we let E(; ;) denote the orbit equivalence relation on
p 1((H,gq)) generated by a | H, i.e., (H, f1,9)E#,9)(H, f2, g) if and only if there is some h € H

such that h*H f; = f,. Define the equivalence relation £ on Z by E = | | (H,g)eW E(m,9)- 1€,

(Hy, f1,91)E(Hz, fa, g2) < (Hy, 1) = (Ha, g2) and 3h € Hy (b f1 = fa).

Recall that if ' C R are countable Borel equivalence relations on a standard Borel space Y, then
F is said to be normal in R if there exists some countable group A of Borel automorphisms of ¥’

which generates R and satisfies zF'y = §(x)Fd(y) forall § € A.

LEMMA 6.33. E is a normal subequivalence relation of E, that is almost everywhere aperiodic

and with Cp(E) < r.

PROOF OF LEMMA 6.33. It is clear that F' is an equivalence relation and that F is contained
in E,. Also, FE is almost everywhere aperiodic since 6 concentrates on the infinite subgroups of I"
by hypothesis. Let v € " and let (H, f, g), (H, f',g) € Subr x X be E-related so that h?# f = f’
for some h € H. To show E is normal in £, we must show that v*(H, f, g) and v*(H, h% f, g)
are E-related as well, i.e., we must find some k € yH~~! such that (k)" f; = %5 (hH f;). The

1 works.

element k = vh~y™

If we disintegrate 1 via the E-invariant map p : Z — W, then for each (H,g) < T, the
equivalence relation E(g 4y on (p~Y((H,g)), 1(H,g)) is isomorphic to the orbit equivalence relation
generated by by [ H on (XH\F, MH\F). By Lemma 6.32.(1), by factors onto ay, so for §-almost

every H we have r < Cy, ,, (E(g4)) = C(by) < C(ay) < r by [Kecl0, bottom of p. 78]. Then

(H,g)

by [KMO04, Proposition 18.4] we have

C,\(E) = /H Corrnr (Err.g)) dOCH) < . O[Lemma 6.33]
7g
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Since H is almost surely infinite index, the equivalence relation Es; on W generated by s is
aperiodic. By [Kec10] the full group [E;] contains an aperiodic transformation 7' : W — W.
Let B : I' = MALG,, v ~ B,, be a partition of W such that ' [ B, = +* | B,. Then
A : T — MALG, given by A, = p‘l(Bw) is a partition of Z, and determines the L-graphing
®uA = {p5) e where 5 | Ay =47 | A,

Fix € > 0 and find by Lemma 6.33 a graphing {; }icny of E' C Z of finite cost ) _, Cy (¢;) < 00.
Let M be so large that ., Cy (i) < €/2. Let Yo € W be a Borel complete section for E7 with
k(Yo) < €/(2M), and let Y = p~1(Yp). Then n(Y) = x(Yp) < /M, and Y is E-invariant so that
{vi | Y}ien is an L-graphing of E [ Y. It follows that

Cov(ETY) <) Co{pi YN S M-n(Y)+ > Cy({gi}) <e.
ieN i>M

CLAIMS. ECE YV Ega,a.

PROOF. Suppose (H, f,g)E(H, f’,g). Since Y is a complete section for Ep there exists
Y1,k and €1, ., e € {—1,1} such that (¢55)% o - (0@ P)1((H, g)) € Yp. Lety =

’Y,Z:k e f}/il and let (H(); go) = ’YS((H7g)) c }/() It follows that

YU(H, f,9) = ()" () (H, f.9) = (5% 00 (¢5") 1 (H, f.9)

YUH, 1 9) = () () (H, [ 9) = (95 % 00 (95" (H, f, 9)-

This shows that (H, f, g)Ega.av*(H, f,g) and yv*(H, f', g)Ega.a(H, f',g). As v*(H, f,g) =
(Ho,Y*% f,g0) € Y and v*(H, f',g) = (Ho,Y*# f',g0) € Y we will be done if we can show
these two points are E-related. Let h € H be such that h®# f = f’ and let k = ~vhy~'. Then
k€ yHy~! = Hp and

ka(HOa’Ybev gO) - (kPY)a<H7 f7g> = (Vh)a(Hv f?g) = 7a(H7 f/7g> = (H077be/790)

which shows that (Ho, v°# f, 90) E(o,40) (Ho, APH £ go). O[Claim 5]

We have Cy)(E [ Y V Egaa) < 1+ €. Since we have shown that £ C E [ Y V Ega,4 and
that F is an aperiodic normal subequivalence relation of F,, it follows from [KMO04, 24.10] that
Cy(E,) < Cy(E YV Egaa) < 1+ € Ase > 0 was arbitrary it follows that C,,(E,) = 1 and
therefore C'(I') = 1. O
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6.5. Fixed price 1 and shift-minimality. The following lemma will be needed for Theorem

6.36.

LEMMA 6.34. Let 0 be an invariant random subgroup of a countable group I that concentrates
on the infinite amenable subgroups of T'. Let a = T' ~* (X, u) be a free measure preserving action
of T and let

0 xa=Tn(Subpr x X, 60 x p)

be the product T-system. Then Cyy,(Ecxa) = 1.

REMARK 6.35. The proof shows that the hypothesis that € is amenable can be weakened to the

hypothesis that 6 concentrates on groups of fixed price 1.

PROOF. The proof is similar to that of Lemma 6.33. Since FE.«, is aperiodic it suffices to
show that Cyy,(Ecxq) < 1. For each H € Subr let £,y denote the orbit equivalence relation

on X generated by a | H = H n* (X, ). Define the subrelation E C FE.., on Subp x X by

E={((H,z),(H,y)) : xEq.uy},ie.,
(H,z)E(L,y) & H=Land (3he H)(h" -z =1y).

Then FE is a normal sub-equivalence relation of F.,. Since # concentrates on the infinite subgroups
of I, E is aperiodic on a (6 x p)-conull set. By [KM04, 24.10] and then [KM04, Proposition 18.4]

we therefore have

Cop(Eexa) < Corn(E) = /H Co(Burpr) dO(H) = 1

where the last equality follows from [KM04, Corollary 31.2] since #-almost every H is infinite

amenable. O

THEOREM 6.36. Let I be a countably infinite group that contains no non-trivial finite normal

subgroup. If I is not shift-minimal then 1" has fixed price 1.

PROOF. Suppose that I is not shift-minimal. By Corollary 3.14 either I" has a non-trivial nor-
mal amenable subgroup [V that is necessarily infinite by our hypothesis on I, or there is an infinitely

generated amenable invariant random subgroup 6 of I' that is weakly contained in sp. In the first
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case define & = §, so that in either case 6 concentrates on the infinite amenable subgroups of T,
and 0 < sr.

Let (X, i) denote the underlying measure space of sy and consider the product I'-system
0 x sp =T % (Subr x X,0 X p).

By Lemma 6.34 we have C'(0 x sp) = 1. The action € is weakly contained in sr, so 8 x sr is

weakly equivalent to sr. This implies that I" has fixed price 1 by (3)=-(1) of Corollary 6.24. t

COROLLARY 6.37. Suppose that " does not have fixed price 1. Then the following are equiva-
lence
(1) T is shift-minimal.
(2) T contains no non-trivial finite normal subgroups.

(3) ARy is trivial.

PROOF. (3)=(2) is obvious. (2)=-(1) is immediate from Theorem 6.36 by our assumption that

I" does not have fixed price 1. (1)=-(3) holds in general with no assumptions on I'. ]

COROLLARY 6.38. Let I' be any group that does not have fixed price 1. Then ARr is finite and

I' /ARy is shift-minimal.

PROOF. Any group containing an infinite normal amenable subgroup has fixed price 1 [KMO04,
Proposition 35.2]. Therefore N = ARy is finite. Let a = T' ~* (X, pu) be a free measure
preserving action of I' of cost C},(FE,) > 1. The measure preserving action b of I'/N on the
ergodic components of a [ N is free, and since N is finite we have C'(b) > C(a) > 1. Thus, I'/N
does not have fixed price 1, and ARp/y = {e} by Proposition 9.1. Corollary 6.37 now shows that
['/N is shift-minimal. O

7. Questions

7.1. General implications. A countable group I' is called C*-simple if the reduced C'*-algebra
of I is simple, i.e., C;(I") has no non-trivial closed two-sided ideals. As observed in the introduc-
tion, there is a strong parallel between shift-minimality and C*-simplicity. The following charac-
terization of C*-simplicity of a countable group I' may be found in [dIH07]. Let Ar denote the left

regular representation of T on £2(T").
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PROPOSITION 7.1. Let ' be a countable group. Then I is C*-simple if and only if 1 < Ar

implies w ~ Ar for all nonzero unitary representations 7 of I

In this characterization of C*-simplicity we may actually restrict our attention to irreducible
representations of I'. That is, I" is C*-simple if and only if every irreducible unitary representation
m of T" that is weakly contained in Ar is actually weakly equivalent to A\r. See [BAIHO00]. See also
[BHVO08, Appendix F] and [Dix77] for more on weak containment of unitary representations.

Characterization (6) of shift-minimality from Proposition 3.2 also has an analogue for C*-
simplicity. Let H be an infinite-dimensional separable Hilbert space and let Irr) (T", 3{) denote the
Polish space of irreducible representation of I' on J that are weakly contained in Ar (see [Dix77]).
Let U(JH) be the Polish group of all unitary operators on H. Then I' is C*-simple if and only if I’
is ICC and the conjugation action of U(H) on Irr) (T, ) is minimal (i.e., every orbit is dense). See
[Kec10, Appendix H.(C)].

Consider now the following properties of a countable group I':

(UT) T has the unique trace property.
(CS) I''is C*-simple.
(SM) T is shift-minimal.
(UIRSp) T has no non-trivial amenable invariant random subgroup that is weakly contained in sr.
(UIRS) T has no non-trivial amenable invariant random subgroups.
(AR.) I' has no non-trivial amenable normal subgroups, i.e., the amenable radical ARr of I is

trivial.

All of the known implications (besides (SM)<(UIRSy)) are depicted in Figure 1 in the intro-
duction. It is known that (UT) and (CS) imply (AR.) ([PS79], see also [BAIHO00, Proposition 3]),
though it is an open question whether there are any other implications among the properties (UT),
(CS), and (AR;) in general [BdAIH00]. The following questions concern some of the remaining
implications.

The implication (UT)=-(SM) was shown in Theorem 5.15. One of the most pressing questions

is:

QUESTION 7.2. Does (CS) imply (SM)? That is, are C*-simple groups shift-minimal?
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For a positive answer to Question 7.2 it would suffices by Corollary 3.14 to show that if 6 is a
non-atomic self-normalizing amenable IRS of a countable group I that is weakly contained in sr
then the tracial state on C*(I") extending ¢y from the proof of Theorem 5.14 is not faithful.

The implication from (UT) to (UIRS) is quite direct. The converse would mean that a tracial
state on C(I") different from 7 somehow gives rise to a non-trivial amenable invariant random

subgroup of I'. This is addressed by the following question:

QUESTION 7.3. Does (UIRS) imply (UT)? That is, if I' does not have any non-trivial amenable

invariant random subgroups then does C*(I") have a unique tracial state?

We know from Theorem 3.16 that (SM) and (UIRSy) are equivalent. The equivalence of (SM)

and (UIRS) is open however (clearly though (UIRS)=-(UIRSy))
QUESTION 7.4. Does (UIRSy) imply (UIRS)?

To obtain a positive answer to Question 7.4 it would be enough to show the following: (x) Every
ergodic amenable invariant random subgroup of a countable group I that is not almost ascendant is
weakly contained in sr.

Indeed, assume that (%) holds and suppose that I' does not have (UIRS), i.e., there is an amenable
invariant random subgroup ¢ of I' other than & y. By moving to an ergodic component of 6 we may
assume without loss of generality that 6 is ergodic. If 8 is not almost ascendant then (%) implies that
0 is weakly contained in sr, which shows that I" does not have (UIRS). On the other hand, if 6 is
almost ascendant then, by Corollary 9.4, 6 concentrates on the subgroups of ARr, and in particular
ARTr is non-trivial, so d AR, witnesses that I" does not have (UIRS).

The implication (SM)=-(AR.) is shown in Proposition 3.15 above. The converse is a tantalizing

question:

QUESTION 7.5. Does (AR.) imply (SM)? That is, if I" has no non-trivial amenable normal

subgroup then is every non-trivial m.p. action that is weakly contained in st free?

To obtain a positive answer to Question 7.5 by Corollary 3.14 it would be enough to show that
if 0 is a non-atomic self-normalizing invariant random subgroup weakly contained in sr then 6
concentrates on subgroups of the amenable radical of I". (Note that # does indeed concentrate on

the amenable subgroups of I' by NA-ergodicity.)



215

7.2. Cost and pseudocost. In the infinitely generated setting it appears that pseudocost, rather
than cost, may be a more useful way to define an invariant. In addition to the properties exhibited
in §6.2, pseudocost enjoys many of the nice properties already known to hold for cost. For instance,
pseudocost respects ergodic decomposition, and PC(I") < PC(N) whenever N is an infinite nor-
mal subgroup of I'. (The proofs are routine: for the first statement one uses the corresponding fact
about cost along with basic properties of pseudocost, and the proof of the second is nearly identical

to the corresponding proof for cost.)

QUESTION 7.6. Is there an example of a m.p. countable Borel equivalence relation E such that

PC,(E) < C,(E)?

By Corollary 6.8.(1) the equality PC,(E) = C,(FE) holds whenever C,,(E) < oo, so the
question is whether it is possible to have PC),(E) < oo and C,(E) = oo. Equivalently: does
there exist an increasing sequence £y C E; C .- -, of m.p. countable Borel equivalence relations
on (X, ) with sup,, C,(E,) < oo and C(lJ,, En) = 00? If such a sequence (E,),en exists
then, letting E = |J,, By, Corollary 6.8.(2) implies that £ could not be treeable. In addition,
would provide an example of strict inequality 31(E) + 1 < C,(F). This follows from [Gab02,
5.13, 3.23]. Gaboriau has shown that any aperiodic m.p. countable Borel equivalence R satisfies
B1(R) +1 < Cu(R) [Gab02], although it is open whether this inequality can ever be strict. Note
that a positive answer to 7.6 would not necessarily provide a counterexample to the fixed price
conjecture, even if the equivalence relation £ comes from a free action of some group I'; at this
time there is no way to rule out the possibility that such a I" has fixed cost oo while at the same time

admitting various free actions with finite pseudocost.

QUESTION 7.7. Suppose that a countable group I' has some free action a with C,,(a) = oo.

Does it follow that C),(s1) = 00?

By Corollary 6.20, sr attains the maximum pseudocost among free actions of I'. Corollary 6.22

implies that
C(sr) > sup{C(b) : b € FR(I', X, i) and either C'(b) < oo or Ej, is treeable}.

This is not enough to conclude that sr always attains the maximum cost among free actions of I'.

A positive answer to Question 7.7 would imply that st always attains this maximum cost.
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It would be just as interesting if st could detect whether C(I") < oc.

QUESTION 7.8. Suppose that a countable group I' has some free action a with C),(a) < oc.

Does it follow that C),(sr) < 00?

At this time it appears that one cannot rule out any combination of answers to Questions 7.7
and 7.8. A positive answer to both questions would amount to showing that no group has both free
actions of infinite cost and free actions of finite cost - this would essentially affirm a special case of

the fixed price conjecture!

7.3. Other questions. It is shown in [TD12a] that the natural analogue of Question 7.5, where
“amenable” is replaced by “finite” and “weakly contained in” is replaced by “is a factor of,” has a

positive answer:

THEOREM 7.9 (Corollary 1.6 of [TD12a]). Let ' be a countable group. If I' has no non-trivial
finite normal subgroups then every non-trivial totally ergodic action of T is free.
In particular, if I' has no non-trivial finite normal subgroups then every non-trivial factor of sr

is free.

Here, a measure preserving action of I' is called fotally ergodic if all infinite subgroups of I" act

ergodically. Theorem 7.9 motivates the following question concerning strong NA-ergodicity.

QUESTION 7.10. Let I' ~® (X, i) be a non-trivial measure preserving action of a countable
group I'. Suppose that for each non-amenable subgroup A < T the action A ~* (X, i) is strongly
ergodic. Does it follow that the stabilizer of almost every point is contained in the amenable radical

of I'?

A positive answer to 7.10 would imply a positive answer to 7.5 by Proposition 3.10.

The following question concerns the converse of Proposition 4.6:

QUESTION 7.11. Suppose I is shift-minimal. Is it true that every finite index subgroup of I" is

shift-minimal?

Question 7.11 is equivalent to the question of whether every finite index normal subgroup N

of a shift-minimal group I'" is shift-minimal. Indeed, suppose the answer is positive for normal
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subgroups and let K be a finite index subgroup of a shift-minimal group I'. Then K is ICC, since
the ICC property passes to finite index subgroups. Since the group N = ﬂvEF yK~~1is finite
index and normal in T, it is shift-minimal by our assumption. Proposition 4.6 then implies that /X
is shift-minimal.

Corollary 4.8 provides a positive answer to Question 7.11 for finite index subgroups which are
torsion-free. Theorem 4.7 gives a positive answer for finite index normal subgroups N of I' for
which there is no infinite locally finite invariant random subgroup that is weakly contained in s .
Note that a positive answer to the analogue of Question 7.11 for C*-simplicity was demonstrated in

[BAIHOO] (and likewise for the unique trace property).

The results from §6.2 and §6.5 suggest that the following may have a positive answer:

QUESTION 7.12. If an infinite group I' has positive first /2-Betti number then is it true that

C;(I'/ARy) is simple and has a unique tracial state?

There are already partial results in this direction: Peterson and Thom [PT11] have shown a
positive answer under the additional assumptions that I' is torsion free and that every non-trivial
element of ZI" acts without kernel on ¢°T".

Finally, we record here a question raised earlier in this paper.

(Question 3.9). Let I' be a countable group acting by automorphisms on a compact Polish
group G and assume the action is tempered. Does it follow that the action is weakly contained in

sr? As a special case, is it true that the action SL2(Z) ~ (T?, A?) is weakly contained in sg , @)?

8. Appendix: Invariant random subgroups as subequivalence relations

This first appendix studies invariant random partitions of I' which are a natural generalization
of invariant random subgroups. In §8.1 it is shown that every invariant random partition of I" comes
from a pair (a, ') where a is a free m.p. action of I" and F' is a (Borel) subequivalence relation of
E,. Tt is shown in §8.2 that for an invariant random subgroup any such pair (a, F') will have the
property that F' is normalized by a, i.e., v is in the normalizer of the full group of F' for every
vel.

Many of the ideas here are inspired by (and closely related to) the notion of a measurable

subgroup developed by Bowen-Nevo [BN09] and Bowen [Bow12a]. See also Remark 8.14.
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8.1. Invariant random partitions. By a partition of I' we mean an equivalence relation on I'.

The set Pr of all partitions of I is a closed subset of 21T

and I acts continuously on Pr by left
translation T ~¢ P, ie.,
(.p) P & (Y lay 1B eP

foreachy,a,f € I"'and P € Pr. For P € Prand a € I' let [a]p = {B : (o, B) € P} denote the

P-class of . Then it is easy to check that y[a]|p = [ya],p forall vy € I,

DEFINITION 8.1. An invariant random partition of T is a translation-invariant Borel probability

measure on Pr.

REMARK 8.2. Let IRPr denote the space of all invariant random partitions of I'. This is a
convex set that is compact and metrizable in the weak*-topology. Similarly, let IRSt denote the
compact convex set of all invariant random subgroups of I'. There is a natural embedding ¢ :
Subpr < Pr that assigns to each H € Subr the partition of I' determined by the right cosets
of H,i.e., 6]y = HO for § € I'. Observe that this embedding is I'-equivariant between the
conjugation action I' ~¢ Subr and the translation action I' ~¢ Pr. We thus obtain an embedding

¢, : IRSt — IRPr, 6 — 9.6.

Suppose now that F' C X x X is a measure preserving countable Borel equivalence relation on
(X,p)anda =T ~* (X, ) is am.p. action of I". Each point x € X determines a partition Pf(x)
of I" given by

Pi(z) ={(a,B) €T : B xFa 'z}

Note that P (x) = Pgqp, (v) for all x € X, so if we are only concerned with properties of P

then we might as well assume that F' C F,.

PROPOSITION 8.3. The map x — P (z) is equivariant and therefore (P).pu is an invariant

random partition of T.

PROOF. Forany v € I'and z € X we have
(o, B) € Pi(yz) & a tyzFp vz o (v la,y71B) € Pi(z) & (a,B) € 4° - Pi(z). O

Proposition 8.3 has a converse in a strong sense: given an invariant random partition p of I" there

is a free m.p. action b = T' ~? (Y, v) of T and a subequivalence relation J of E}, with (Pf;)*y =p.
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In fact, F and b can be chosen independently of p, with only v depending on p, as we now show.
Let p denote the m.p. action I' ~¢ (Pr, p) and let b = p x sr (any free action of I will work in

place of sr) so that (Y,v) = (Pr x [0,1]', p x AI). Define F C Y x Y by

(8.1) (P,2)F(Q,y) & FIyel (7' €le]pand (vP,yz) = (Q,y)).

THEOREM 8.4. Let p be an invariant random partition of T' and write b = T AP (Y, v) for
the action p X sp. Let F be given by (8.1). Then F is an equivalence relation contained in the
equivalence relation Ej, generated by the b, and P3((P,z)) = P for v-almost every (P,z) € Y. In

particular, (P$).v = p.

PROOF OF THEOREM 8.4. It is clear that F C Ej. We show that J is an equivalence rela-
tion: It is clear that F is reflexive. To see JF is symmetric, suppose (P, 2)F(Q, y), as witnessed by
771 € [e]p with yP = Q and yx = y. Then v € [e],p = [e]g and (v'Q, v 1y) = (P, x),
s0 (Q,y)F(P,z). For transitivity, if (P,2)F(Q,y)F(R,z) as witnessed by v~1 € [e]p with
(YP,vz) = (Q,y) and 61 € [e]g with (6Q,dy) = (R,z) then v~ ! € [e]p and vP = Q im-
plies [e]g = [e]yp = 7[e] p. Therefore =1 € [e]p, i.e., (07) " € [e]p and (5P, 6vz)(6Q, dy) =
(R, 2).

Fix now (P, x) € Y. We show that PJLZ((P, x)) = P. For each o, 8 € T we have by definition

(a, B) € P§((P,x)) < (a™lP, a_lsc)F(B_lP,ﬁ_lJ:)

(8.2) & dyel (7_1 € [e]o-1p and (ya LP,yalz) = (B_IQ,B_IQC)).

Therefore, if (a,3) € P2((P,x)) as witnessed by some ~ as in (8.2) then ya~lz = 71z so
freeness of a implies v = S~ 'a. Then a1 =y~ € [e],-1p, i€, (a718,¢e) € ™1 P, which is
equivalent to (3, ) € P. This shows that P2((P,z)) C P. For the reverse inclusion, if (a, 3) € P

then v = 3~ o satisfies (8.2) and thus (o, B) € P2((P, z)). O

DEFINITION 8.5. Leta = I' »% (X, ) be a m.p. action of I" and let F' be a subequivalence
relation of E,. If p is an invariant random partition of T" then the pair (a, F) is called a realization
of p if (Pg)«p = p. If 6 is an invariant random subgroup of I then (a, F') is called a realization of
@ if it is a realization of ®,0, where ®, : IRSp — IRPr is the embedding defined in Remark 8.2. A

realization (a, F') is called free if a is free.
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The following is a straightforward consequence of Theorem 8.4 and the definitions.
COROLLARY 8.6. Every invariant random partition admits a free realization.

The remainder of this subsection works toward a characterization of the set ®,(IRSp). Let K
be a metrizable compact space and consider the set Pr @ K of all pairs (P, f) where f : P* — K
is a function with dom(f) = P* = {[a]p : a € I'} and taking values in K. The set Pr ® K has a

natural compact metrizable topology coming from its identification with the closed set

‘P??GTK = {(P,g) € Pr x K" : gis constant on each P-class} C Pr x K"

—_~—

via the injection (P, f) — (P, f) where f(a) = f([a]p) for & € T'. Observe that Pr @ K is
invariant in Pr x KT with respect to the product action £ x s of I" (where s denotes the shift action
I' ~* K1), so we obtain a continuous action I' ~/®* Pr @ K. Explicitly, this action is given by

v (P, f) = (vP,y°F f) where v*F f : (yP)* — K is the function

(v’ f)(ladyp) = fF(r 7 alyp) = f(Iy alp).

There is a natural equivalence relation R = Rx on Pr ® K given by

(P, N)R(Q,9) < Fyelep (1P f) = (Q,9))
It is clear that R is an equivalence relation that is contained in Ejg).
LEMMA 8.7. P C P£®s((P, f)) for every (P, f) € Pr ® K.

PROOF. Suppose that (a, ) € P. Then 8~ a € [e]g-1p so for any f € K", from the

definition of R we have

BPBHRB ) H(BTIPBT) = (a7 P aT f),

i.e., B7Y(P, f)Ra~Y(P, f). This means that (a, ) € Py?*((P, f)) by definition. O

If p is an invariant random partition and p is a Borel probability measure on K then the measure
p® ponPr® K given by
p®,u:/P(6p x uF" ) dp

is ¢ ® s-invariant.
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THEOREM 8.8. Let p be an invariant random partition of T, let . be any atomless measure on
K, and let R = Ry. Then the following are equivalent:
(1) p € ®,.(IRSy)

(2) (p ® p)-almost every R-class is trivial.

PROOF. (1)=(2): Suppose that (1) holds. It follows that (p®) concentrates on pairs (®(H), f)
Pr ® K with H € Subr. It therefore suffices to show that the R-class of such a pair (®(H), f)
is trivial. If (®(H), f)R(Q, g) then there is some v € [e]p(g)y = H with v 1®(H) = Q and
v f = Q,g9. But v '®(H) = ®(y 'H~y) = ®(H) (since v € H) so that Q = ®(H). In
addition, for each 6 € I' we have [0]o(y = YHO = HS = [6]o(s) since v € H. Therefore
9(0)am) = (L) (Blacn) = F(18lagen) = F(Slag). showing that g = f.

(2)=-(1): Suppose that (2) holds. Since y is non-atomic, for each P € Pp the set {f € K L
[ is injective} is " -conull. This along with (2) implies that there is a I'-invariant (p ® p)-conull
set Y C Pr ® K on which R is trivial and such that f : P* — K is injective whenever (P, f) € Y.
The projection Yy = {P € Pr : 3f (P, f) € Y} is then p-conull so it suffices to show that
Yy C ®(Subr). Fix P € Ypandan f : P* — K with (P, f) € Y.

CLAIM 6. Let o, B € T. Then (v, 3) € P if and only if Ba™! € [e]p.

PROOF OF CLAIM. Suppose (a, 5) € P. Lemma 8.7 implies (o, 5) € Pg(P, f) so as the
relevant R-classes are trivial this implies a~!(P, f) = B~(P, f) and thus af~'P = P and
af'f = f. Then f(lelp) = (@B f)([e]p) = f([Ba~]p) so injectivity of f shows that
[Ba™Yp = [e]p, ie., Bat € [e]p.

Conversely, suppose Sa~! € [e]p. Then (Ba)~Y(P, f)R(P, f) by definition of R, and since
the R-classes are trivial this implies (Ba)™ (P, f) = (P, f) and thus 3=Y(P, f) = a~ (P, f).
Therefore £([]p) = (8~ f)([e]s-1p) = (' f)([elamrp) = f(lalp). Since f is injective we
conclude that [5]p = [a]p, i.e., (o, B) € P. O[Claim]

It is immediate from the claim that [e] p is a subgroup of I" and that P is the partition determined by

the right cosets of [e]p, i.e., P = ®([e]p). O

8.2. Normalized subequivalence relations. As in the previous section let ' C X x X be a

m.p. countable Borel equivalence relation on (X, 1) and let a = I" ~* (X, i) be a m.p. action of

T
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DEFINITION 8.9. F is said to be normalized by a = I' ~* (X, pu) if there is a conull set

Xop C X such that

zFy = ~yxFvyy

forall v € T"and z,y € Xy. Equivalently, F' is normalized by a if the image of I" in Aut(X, u)
is contained in the normalizer of the full group of F'. A realization (a, F') of an invariant random

partition p of I is called normal if F' is normalized by a.

Note that if F is normalized by a then F' N E, is normalized by a and P, () = Pg(z) so

it makes sense once again to restrict our attention to the case where F' C E;. Define now
-1
() ={yel : v 'zFx}

It follows from the definitions that I':() = [e] pa ().

PROPOSITION 8.10. Let F' be a subequivalence relation of E,. Then the following are equiva-

lent

(1) F is normalized by a.
(2) For almost all z, I'%(x) is a subgroup of I and Pj(z) is the partition of I determined by

the right cosets of I'%.(z), i.e.,

(@, ) € Pp(z) < Ti(r)a =Tk(z)5.

forall a, p €T
(3) I'%(yx) = I'%(z)y ! for almost all x € X and all v € T.
(4) The set [e]p is a subgroup of T for (P{).p-almost every P € Pr and the map P — [e]p

is an isomorphism from T' ~Y (Pr, (P&).u) to T ~° (Subp, (I'%) ).

PROOF. (1)=(2): Suppose (1) holds. By ignoring a null set we may assume without loss of
generality that F'y = ~aF~yy for all z,y € X and v € T'. We have that e € T'%.(z) for all
z. If v € T'%(x) then vy 'z Fx so by normality we have xFyz and thus y~! € T'%(z). If in
addition § € I'%(z) then § 'z FxFryz so that § 'z Fyx which by normality implies v~ 1§~ 'z F,
i.e., 6y € I'p(z). This shows that I'}:(x) is a subgroup. It remains to show that [6] pa () = I'i:()d.

1

We have v € [5]p;(x) if and only if 6!z Fy~'2 which by normality is equivalent to (67~ 1)z Fu,

ie,yeI'y(x)d.
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(2)=-(3): Suppose (2) holds. Then for almost all  and all v, € I" we have

§ €T4(yz) & 6 aeFyz & v 15 yaFr 6 e % (x)y L.

(3)=(1): Suppose that (3) holds. Let Xy C X be an E,-invariant conull set such that I'}.(yx) =
AT% (x)y~! forall x € X and y € T. Then for any z,y € F, if vFy then vE,y so that y = dz
for some § € I'. This means that 6! € I'%(z) and, so for all v € " we have 761y~ € I'%(yx)
and thus

vy = (v6 'y ) N ya) Py

This shows that F' is normalized by a.

(2)+(3)=(4): Assume (2) and (3) hold. Then the measure (Pf).. concentrates on ®(Subr).
It follows that P — [e]p is injective on a (Pf),u-conull set. By (3) this map is equivariant on a
conull set. Since the composition z — Pj(x) > [€]pa () is the same as z — I'j;(2) this map is
measure preserving.

Finally, the implication (4)=-(3) is clear. ]

The following corollary is immediate.
COROLLARY 8.11. If F'is normalized by a then (I'}) . is an invariant random subgroup of T.

Theorem 8.4 also implies a converse to Corollary 8.11. Let 6 be an invariant random subgroup
of I" and let p = ®,0. Let b and F be defined as in Theorem 8.4. Let a = 6 x sr so that
(X, 1) = (Subp x [0,1]F,0 x X). Then the map ¥ : (H,z) +— (®(H), ) is an isomorphism of a
with b. Letting Fy = (¥ x ¥)~1(F), we have that

(8.3) (H,z)Fo(L,y) & H = Land (3h € H)(hx =vy).

COROLLARY 8.12. JFy is a subequivalence relation of E, on X which is normalized by a and
satisfies ', (H,x) = H for 0 x p-almost-every (H,x) € X. Thus (Pg ).« = ®.0. It follows that

every invariant random subgroup of I' admits a normal, free realization.

PROOEF. All that needs to be checked is that F is normalized by 6 x a. If (H, z)Fy(L, y) then
H = L and h®z = y for some h € H. Then for any v € I we must show that v - (H,z) Fyy -
(H,h%z). Now, v - (H,z) = (yHy™!,7%), so as yhy~! € vH~! the definition (8.3) of J
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shows that

(vH~y ' y%) Foyhy ™ - (vHy ! v%2) = v - (H, h'z) O

REMARK 8.13. In Corollary 8.12, if 6 concentrates on the amenable subgroups of I' then Fy
will always be an amenable equivalence relation. For other properties of 6, a judicious choice of
free action d in place of st in the definition of @ may ensure that properties of 8 are reflected by
the equivalence relation F. For example, if 6 concentrates on subgroups of cost 7 then the proof
of Theorem 6.31 above shows that d can be chosen so that the corresponding equivalence relation
Fo has cost r. Similarly, if € concentrates on treeable subgroups then Fy can be made a treeable

equivalence relation.

REMARK 8.14. Following [BN09, §2.2] let 2L = {L € 2'' : ¢ € L} and define the equivalence
relation R, C 20" x 2L by

(L,K)eR. e 3Iye Ly 'L=K.

Then any R.-invariant Borel probability measure on 2L is called a a measurable subgroup of T'
(see [BN09] and [Bow12a]). If p is any invariant random partition of I" then the image of p under
P — [e] p is a measurable subgroup of I'. T do not know whether every measurable subgroup of I"

comes from an invariant random partition in this way.

Creutz and Peterson [CP12] define the subgroup partial order on (IRSr, <) as follows: Let
01,02 € IRSr. Then 6, is called a subgroup of 05 (written 6; < 65) if there exists a joining of 6,
and 0 that concentrates on the set {(H, L) € Subr : H < L}. It is shown in [CP12] that this is
a partial order on IRSr. The same idea can be used to define a notion of refinement for invariant
random partitions.

For partitions P, Q) € Pr, P is said to refine (), written P < @, if P is a subset of ). Equiva-
lently P < @ means that [a]p C [a]q for every a € I'. If p; and po are invariant random partitions
of I then p; refines po, written p; < po, if there exists a joining of p; and po that concentrates on
the set {(P, Q) € Pr x Pr : P < @Q}. Itis clear that the restriction of the refinement relation on
Pr (respectively, IRPr) to Subr (respectively, IRSt) is the subgroup relation.

The point of view developed in this section can be used to give a characterization of the partial

orders (IRSr, <) and (IRPr, <) in terms of subequivalence relations of free actions of I".

THEOREM 8.15. Let p1, p2 € IRPr. Then the following are equivalent
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(D p1 < p2

(2) There exists afree m.p. actionT' ~\* (X, ) of T and equivalence relations Fy C Fy C E,

If 01,05 € IRSt then then following are equivalent

(1) 61 < 6o
(2°) There exists a free m.p. action I' ~* (X, ) of I' and normalized equivalence relations

F C Iy, C E, with (F%l)*u =01 and (F%2)*u = 0.

PROOF. Suppose (2) holds and let Pf x Pfi, : X — PrxPrbe the mapz — (P, (v), Pp,(z)).
Then (Pf, x P, )«p is a joining of p1 and p with the desired property.

Assume that (1) holds and let v be a joining of p; and ps witnessing that p; < po. Let X =
Pr x Pr x [0,1]F, let p = v x AL, and let a = £ x £ x s. Then we define the equivalence relations

F1 and F5 on X by
(P, P2, 2)F1(Q1,Q2,y) & Iy eT(v ! €lelp andy* - (P, Py, 7) = (Q1,Q2,y))

(P17P27$)F2(Q17Q27y) < EI’Y S F(fyil S [6]]32 and ’Ya : (Pl,PQ,IL’) = (Qla QQuy))

Then as in the proof of Theorem 8.4, I and F3 are equivalence relations that are contained in E,
and (a, F;) is a realization of F; for each i € {1,2}. The defining property of v also ensures that
Fy C Fs.

The equivalence of (1) and (2’) then follows from the equivalence of (1) and (2) along with

Proposition 8.10. U

Finally, we note the following (observed by Vershik [Ver11] in the case of invariant random

subgroups), which is a consequence of [IKT09, §1].

THEOREM 8.16. Let p be an invariant random partition of I'. Then the function

©p(7) = p({P : v € [e]lp})

is a positive definite function on I'.



226

PROOF. By Corollary 8.6 there is a free m.p. action b = I' A% (Y, v) of I" and a subequivalence

relation F' of Ej, such that (P%).v = p. Thus

po(7) =v({y : v yFY}).
This is a positive definite function by [IKT09]. U

9. Appendix: The amenable radical of a countable group

Every countable discrete group I' contains a largest normal amenable subgroup called the
amenable radical of T' (see, e.g., [Zim84, 4.1.12]). We write AR for the amenable radical of

I". We present in this appendix some facts concerning AR for countable I'.

9.1. Basic properties of ARr.

PROPOSITION 9.1. Let I' be a countable group.

(1) ARr is an amenable characteristic subgroup of I which contains every normal amenable
subgroup of I.

(2) Suppose ¢ : I' — A is a group homomorphism and that ker(y) is amenable. Then
©(ARr) = ARy r). In particular;, the amenable radical of the quotient group T’ /ARy is
trivial.

(3) If H is normal in I" then ARy is a normal subgroup of ARr with ARy = ARr N H.

(4) If H is finite index in ' then ARy is a finite index subgroup of ARr with ARy = ARrNH.

PROOEF. For (1) see [Zim84]. For (2), let N = ker(¢). It is clear that ¢(ARr) is a normal
amenable subgroup of ¢(I'), so that p(ARr) < AR, 1y by (1). The group K = @_I(ARW(F)) is
normal in I" and K is amenable since both N and K/N = AR, are amenable. Hence K < ARr
and so AR, 1) < p(K) < ¢(ARr).

We now prove (3). Suppose that H is normal in I'. It is clear that ARp N H is normal in AR,
so it suffices to show that ARr N H = ARp. Conjugation by any element of I' is an automorphism
of H, so fixes (setwise) the characteristic subgroup ARy . This shows that ARy is normal in I', and
since it is amenable it must be contained in ARp. Thus ARy < ARpr N H. In addition, AR N H is
a normal amenable subgroup of H, so ARr N H < ARpg. This proves (3).

We need the following Lemma for (4):
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LEMMA 9.2. Suppose that K is an amenable subgroup of I' whose normalizer Ny (K) is finite

indexinI'. Then K < ARr.

PROOF OF LEMMA 9.2. Suppose first that K is finite. Np(K) being finite index means K has
only finitely many conjugates in I', so as K itself is finite this implies that every element of K has
a finite conjugacy class in I". Thus, K C FCr C ARr, where FCr is the amenable characteristic
subgroup of I' consisting of all elements of I with finite conjugacy classes (see, e.g., [dIH07,
Appendix J]).

Suppose now that K is infinite. The normal core N = [, . YNr(K)y ™! of Np(K) inTis a

veD
normal finite index subgroup of I'. Thus, letting H = K N N, we have [K : H] = [KN : N] <
[[': N] < 00, and so H is finite index in K. Itis clear that H is normal in IV, and H is an amenable

group since it is a subgroup of K. Thus H < ARy. In addition, ARy is normal in I" since ARy is

characteristic in NV and N is normal in I". Therefore
H < ARy < ARr.

Now, H is finite index in K, and H < AR, so the image p(K) of K in I'/ARr under the quotient
map p is a finite subgroup of I'. So if p(K) were non-trivial then I'/ARp would have non-trivial

amenable radical, contrary to part (2). U[Lemma 9.2]

We can now show (4). If H is finite index in I', then ARy is an amenable subgroup of I' whose
normalizer Np(ARyy) contains H. Therefore Nr(ARp) is finite index in I', so ARy < ARr by
Lemma 9.2, and thus ARy < ARr N H. The group ARr is normal in I', so ARr N H is normal in

H and since it is an amenable group we have the other inclusion ARr N H < ARpy. ]

LEMMA 9.3. Let I' be a countable group and let { H, } < be an almost ascendant series in I’
(Definition 4.12). Then {ARp, } o< is an almost ascendant series in ARp. The same holds if we

replace ”almost ascendant” by ”ascendant.”

PROOF. We show by transfinite induction on ordinals « (with o < \) that {ARHB }B<a is an
almost ascendant series in ARy,. If a = 8+ 1 is a successor ordinal then by hypothesis Hy is
either normal or finite index in Hg ;. Proposition 9.1 then implies that ARy, is either normal or

finite index in AR Hpyr-
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Suppose now that « is a limit ordinal and let K = | J s<a ARH,. We must show that ARy, =
K. By the induction hypothesis the groups ARy, 8 < «, are increasing with 3, so K is amenable,
being an increasing union of amenable groups. Additionally, K is normal in H, as we now show.
For each h € H,, there is some By < a such that h € Hg,. Therefore h € Hg forall By < 8 < a.

Thus A normalizes AR Hg for all By < 8 < «, and since the AR Hy are increasing we have
-1 -1
hKh'= | hARg,h'= |) ARy, =K.
Bo<B<a Bo<p<a

It follows that K < ARp,,. We have the equality K’ = ARy, since ARy, = Uz, (ARg,NHp) <

COROLLARY 9.4. Let I" be a countable group and let H be an almost ascendant subgroup of
I". Then
ARy = ARr N H,
In particular, AR is contained in ARy, and ARr contains every almost ascendant amenable sub-

group of T..

PROOF. The containment ARy < ARr N H is immediate from Lemma 9.3. We have equality

since ARr N H is an amenable normal subgroup of H. g

COROLLARY 9.5. Let I" be a countable group and let v € T'. If the centralizer Cr(vy) of v is
almost ascendant in I’ then v € ARr. Thus, if ARy is trivial then the centralizer of any non-trivial

element of T is not almost ascendant.

PROOF. The group (7y) is a normal amenable subgroup of Cr (), so if C(7) is almost ascen-

dant then () < AR¢ () < ARp by 9.4. O
9.2. Groups with trivial amenable radical.

LEMMA 9.6. Let N be a normal subgroup of I'. Then ARr is trivial if and only if both ARy

and ARcy(ny are trivial.

PROOF. Since N isnormal inI', Cr (V) is normal in I' as well. Thus, if AR is trivial it follows

from Proposition 9.1 that both ARy and ARy N) are trivial.
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Suppose now that ARy and ARy () are trivial. We have
ARr NN = ARy = {6}

and thus ARr and N must commute, being normal subgroups of I' with trivial intersection. This

means that AR < Cr(NN) and so
ARr = ARrnN CF(N) = ARCF(N) = {6} ]

LEMMA 9.7. Suppose {H, }q<n is an ascendant series of length \ and suppose I' = H has

trivial amenable radical. Then AR¢ (g, = {e} forall a < \.

PROOE. We proceed by transfinite induction on A. By Corollary 9.4 we know that ARy, = {e}
for all o < A.

Limit stages: Suppose first that A is a limit ordinal. Fix & < A andlet H = H,. By intersecting
each term of the ascendant series { Hg} s<x with Cr (/) we obtain the series {Cr, (H)}s<x which
is ascendant in Cr(H ). Lemma 9.3 implies that {ARCHB (H)}s<x is an ascendant series in AR ()

and so
(9.1) ARc iy = ARy (1)
a<f<A

where the union is increasing. For each  with o < 3 < A the series { H¢ }¢< has length strictly

less than A, so by the induction hypothesis we have

ARC'H,B (H) = {e}

Since this holds for each 3 with o < 8 < A, equation (9.1) shows that AR,y = {e} as was to
be shown.

Successor stages: Suppose now that A = p + 1 is a successor ordinal. Fix for the moment
some o < A and let H = H,,. Applying the induction hypothesis to the ascendant series { Hg}g<,,
in H,, we obtain that ARc,, (rr) = {e}. Since H,, is normal in T, C', (H ) is normal in Cr(H ), so

it follows from Proposition 9.1.(3) that

9.2) ARCF(H) NH, = ARCF(H) N CHH (H) = ARCHH(H) = {e}.
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Since av was an arbitrary ordinal satisfying a < A, (9.2) holds for all & < A. We use this to show

the following.

CLAIM 7. Let & and (3 be ordinals with £ < 5 < A\. Then

ARCF(Hﬁ) < ARCF(HB)

PROOF OF CLAIM 7. We show by transfinite induction on 8 < A that {AR¢y.(sr,) fe<p is in-
creasing in §. If 8 = O this is trivial. If 3 = a+1 is a successor ordinal then the induction hypothesis
tells us that {AR ;. () }e<a is increasing with § and we must show that AR¢y.(m7,,) < ARcp(a,,,44)-

Since H,, is normal in H, 1, Proposition 9.1.(2) shows that H 1 normalizes ARcy.(H,,)- Thus,

for 6 € Hy+1 and v € AR¢y () we have

(076 ")y € AR¢yp ()
5(’)’5_17_1) € Hu(’YH/t’Y_l) =H,

sothat dyd tyle ARcy () N Hy = {e}

by (9.2) (we use in the second line that H,1 < H, and H, < T'). This shows that the groups
ARcy.(p,) and Hy 41 commute, and so AR¢y (g, is a subgroup of Cr(Ha+1). As Cr(Haq1) is
contained in Cr (H,) we conclude that AR (f7,,) is normal in Cr (H 1) and therefore AR g7,y <

ARCr (Hot1):

Now suppose ( is a limit ordinal. The induction hypothesis tells us that {ARCF( Hg)}5<5 is
increasing with § < 3 and we must show that AR, He) < ARy (my) for all ¢ < B. Fix ¢ < . For
each o with { < a < 8 we have that AR¢y.(yr,) < ARcpnm,) < Cr(H,). Intersecting this over all

such o shows
ARc (< () Cr(Ha) =Cr( | Ha) = Cr(Hp).
(<a<p ¢<a<p

Since Cr(Hpg) < Cr(He) we actually have AR¢y. (g,) < Cr(Hg) and so ARcy(mr,) < ARcy ()
which finishes the proof of the claim. O[Claim 7]

Given now any @ < A we have shown that ARy () < AR¢y (). But H, is normal in I and
ARr = {e}, so Lemma 9.6 shows that AR¢,.(y7,,) = {e} and therefore AR¢.(,) = {e} as was to

be shown. [Lemma 9.7]
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LEMMA 9.8. Let {H,}o<) be an ascendant series of length \ with Hy = H and Hy = T.
Suppose that AR, gy = ARy = {e}. Then ARp = {e}.

PROOF. We proceed by transfinite induction on the length X of the series.

Limit stages: Suppose first that A is a limit ordinal. By intersecting each group in the series
{Ha}a<x with Cr(H) we obtain the series {Cx, (H)}o<x, which is ascendant in Cr(H). Apply-
ing Lemma 9.3 to the series {Cy, (H)}o<) We obtain

U ARcy, 1) = ARcpn)-
a<A
Since ARcr.(iry = {e} we conclude that AR¢,, () = {e} for all @ < A. In addition we
have ARy = {e} so it follows from the induction hypothesis (applied to each series {H¢}ecq
for < M) that ARy, = {e} for all a. Another application of Lemma 9.3 now shows that
ARr = {J,» ARy, = {e}.
Successor stages: Now assume that A = p + 1 is a successor ordinal. Since H,, is normal in

H, 11 =T wehave Cy,(H) < Cr(H). It follows that ARcy (1) < ARcp(m) = {e} and so
ARCHH(H) = {e}.

By assumption ARz = {e} so the induction hypothesis applied to { H,, } o<, implies that

9.3) ARp, = {e}.

Since H, is normal in I', Cr(H,,) is normal in I' as well. In addition, Cr(H,) is contained in

Cr(H), so in fact Cr(H,) <« Cr(H). It follows that

9.4 ARcy(1,) < ARcyp iy = {e}-

We see from (9.3) and (9.4) that the normal subgroup H, of I satisfies the hypotheses of Lemma

9.6 and so ARp = {e}. This completes the induction. O

THEOREM 9.9. Ler H be an ascendant subgroup of a countable group T. Then ARr = {e} if
and only if ARy = {e} and AR¢,, () = {e}.
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Chapter 7

Appendix: Mixing via filters and

Gaussian actions

1. Milding mixing = IP*-mixing for groups

Let GG be an infinite, countable group. Let SG denote the space of ultrafilters on G (topologized

as a subspace of 22" with the product topology).

DEFINITION 1.1. For any sequence (g;) = (g;)ien of (not necessarily distinct elements) define
FP((9:)) == {91 9ir -~ gir, 11 <2 <--- <ip (k€ N)}

The following Proposition is similar to [HS98, 5.11].

PROPOSITION 1.2. Let A C G. The following are equivalent:
(1) FP((g;)) C A for some sequence (g;) in G with the property that for each g € FP((g;))
there is a unique finite sequence i1 < - -- < iy, in N such that g = g;, - - - gi,.;
(2) FP((gi)) C A for some injective sequence (g;) in G with e € FP((g;));
(3) FP((g:)) C A for some sequence (g;) in G with g; — 0.
(4) FP((gi)) C A for some sequence (g;) in G taking infinitely many values.

(5) There exists a nonprincipal idempotent ultrafilter p € G \ G with A € p.

PROOF. Note that if (g;);cny witnesses that (1) holds then e € FP((g;)), otherwise, say e =

Gi, -+ G- then g;, 11 = gi, - - - gi, i, +1 contradicting uniqueness. This shows (1)=-(2). It is clear
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that (2)=-(3)=(4). We show (4)=-(1). Suppose that {g;};en takes infinitely many values and
FP((g;)) C A. Define a subsequence (h;) C (g;) as follows. Choose h1 € {g;}ien \ {€}. Suppose
for induction that hq, ..., h, have been chosen with ¢ &€ FP((hq,...,hy)) and suppose that for
each h € FP((h1,...,hy)) there exists a unique iy < --- < i < n with h = h;, --- h;,. Note
that for any h € G we have FP((hy,...,hn,h)) = FP((h1,...,hy)) UFP((h1,...,hy))h U {h}.
Now define A1 to be any element of (g;);eny With by 1 € FP((h1,. .., hy)) U {e} and hy, 41 ¢
FP((h1,...,hn)) 'FP((h1,...,hy)). This can be done since each of these sets is finite whereas

{gi}ien is infinite by hypothesis. The second condition implies that
(%) FP((h1,...,hn))hnt1 NFP((h1,..., hy)) = 2.

Now, the induction hypothesis, along with the condition h,, 11 & FP((h1,...,hy,)) "t U {e} ensures
that FP((hq,. .., hyn, hnt1)) does not contain e. We show that this choice of h,1 carries the in-
duction hypothesis to the next stage. Suppose that for some i; < --- < i and j; < --- < j; (and

k,l > 1) we have

(**) h = hil v hlk = hj1 s hjl € FP((hl, . ,hn+1))

and we will show the expressions are the same. We cannot have both iy, = n+1and j; < n+1
because this would contradict (*). Similarly, we cannot have j; = n+ 1 and ¢ < n+ 1. If
ik, j1 < n + 1 then by uniqueness at stage n the expressions are the same, and if i, = j; = n + 1
then after multiplying (%) on the right by h;}rl the induction hypothesis implies that the remaining
expressions are the same and so both expressions of h in (**) are the same as well. This finishes the
induction and the proof of (4)=-(1).

We now show (2)=-(5). It suffices to show that if (g;);cn is an injective sequence with e ¢
FP((g;)), then FP((g;)) € p for some idempotent p € SG \ G. Let C' = (°°, FP((g;)$2,,). Here
the closure is taken in SG. By compactness, C' is nonempty and is itself compact.

Claim: C' is a (compact) subsemigroup of 3G. Proof: Suppose p, q € C'. We want to show that
p-q€C,where Acp-qiff {g€ G : go'A € q} € p. Note that r € C' < Vn,FP((g;)32,,) € 7.
So fix n, and we show that FP((g;)%2,) € p- ¢, i.e., that A := {g € G : g~ 'FP((9;)2,) € ¢} € p.
Note that if g € FP((g:)2,,), say g = iy -~ gi, (0 < iy < --- < ig), then g~ 'FP((g;)2,,) 2

FP((9i)72;, +1) € ¢, whence g € A. Thus A O FP((g;)72,,) € p, and so A € p, as was to be shown.
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Since C' is a compact left-topological semigroup, C' has an idempotent. Let p € C be an

idempotent. Note that e ¢ C' since e & FP((g;)), so p # e and therefore p € SG \ G. It follows that

p € FP((g:)) . i-e., FP((g:)) € p.

Now assume that (5) holds and we prove (2). Let p € G \ G be any idempotent ultrafilter,
and let A € p. By idempotence the set AN {g € G : g~ 'A € p}isin p, and in particular
it is infinite. So there exists g; € A\ {e} with By := g;'A € p. By idempotence again A N
gt AN{g : g (Ang;tA) € p} € p. Sosince AN g;'A € p (and hence is infinite) there
exists g € (AN gl_lA) \ {e, 91, gl_l} such that gz_lA N gglgl_lA € p. Therefore By € p where
By = gflA N gglA N gglgflA, and also g1, g2, 9192 € A (since gy € gflA) with g1 # g9
and e € FP((g1,92)) C A. Assume for induction that distinct g1, . .., g, have been chosen with

e € FP((gi)i=1) € Aand with By, := [ cpp( g~ 1A € p. Then by idempotence ANB,,N{g :

gi)?:1)
g Y (AN B,) € p} € pso there exists g1 € (AN B,) \ ({e} U{g1,---,9n} U FP((gi)?zl)_l)
such that g;il(A N B,) € p. It follows that the set B, 11 := B, N g;il(A N B,,) is in p, and that
FP((g;)i4]') € Assince gn41 € By and FP((:)14') = FP((g0)7~y) UFP((g:)1 1) gn+1 U {gnt1}-

This shows that the induction hypothesis is satisfied for the next step, and completes the proof. [

DEFINITION 1.3. A subset A of G is called an IPg set if it satisfies any of the equivalent

conditions (1)-(5) of Proposition 1.2

Then next Corollary is an immediate consequence of condition (5) of Proposition 1.2 and the

definition of an ultrafilter.

COROLLARY 1.4. If an IPg set is partitioned into finitely many sets, then one of the pieces of

the partition is an IP¢ set.

We may write IPg = |J{p € G \ G : pisidempotent}. Define
IPL={BCG:VAcIPg BNA+# o}

Then IP;, = ({p € BG \ G : pisidempotent} since B ¢ p for some idempotent p € SG \ G if
and only if G \ B € p for some idempotent p € SG \ G iff some A disjoint from satisfies A € IP¢g

and B N A = &. This shows that the IP, sets form a filter on G.

DEFINITION 1.5. Let Z be a compact metric space and let GG be a discrete group acting on Z

by homeomorphisms. A point zy € Z is called recurrent (with respect to the action of (7) if there
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exists a sequence (g;) C G with g; — oo and g;(z) — z as i — oco. Equivalently, for every § > 0,

the set {g : d(g(z0), z0) < 0} is infinite.

DEFINITION 1.6 ([BdJ07]). Let F be the collection of finite subsets of N = {1,2,...}. For
«, B € F write a < §if max a < min 8. F is a semigroup with respect to the union operation.

If X is any set, an F-sequence in X is amap ¢ : F — X. We will sometimes write this as
{za}acr C X. The sequence ¢’ : F — X is a subsequence of the sequence ¢ if there exists
a; < ag < --- in F such that o' ({i1,...,ik}) = p(ai;, U+ Uay,).

If G is a semigroup, then an F-sequence ¢ : F — G is a homomorphism if o({i; < --- <

ir}) = e({i1}) - p{ix}). Equivalently, p(a U ) = p(a)p(5) whenever a < 3.

A subsequence ¢', as above, of a homomorphism ¢ is itself a homomorphism since

@' ({in < <ig}) = plai, U---Uayy) = p(ag ) - (o) = ¢ ({in}) - ' ({in})

(the second equality is justified since o, < « for p < g by definition of a subsequence). A
homomorphism ¢ : F — G is completely determined by the values of ¢({i}) := g7 fori € N. We
have that ¢(F) = FP((g})ien).

DEFINITION 1.7. Let G be a group. A homomorphism ¢ : F — G is called non-trivial when
there exists a subhomomorphism ¢’ of ¢ such that the set {g; /}ieN is infinite. In this case ¢(F) is

an [P set.

The proof of (4)=-(1) of Proposition 1.2 shows that if (g;) takes infinitely many values then
there is a subsequence i; < iz < --- such that every g € FP((g;,);jen) can be uniquely expressed
as a product g;; - gi; . for some j; < --- < jm. Therefore, if ( is non-trivial as witnessed by
the subhomomorphism ', then by moving to a further subhomomorphism ¢” we can ensure that

1

g € FP((gf”)) has a unique expression of the form g = g7 ---g;‘:/ with 47 < -+ < 4. This
is equivalent to injectivity of ¢”. This shows that a homomorphism ¢ is non-trivial if it has an
injective subhomomorphism. Note that every subhomomorphism of an injective homomorphism is
itself injective, hence non-trivial.

The set F is directed under <. If {x }ocr is an F-sequence, we say that F lim, z, = x if

Zo — x as a net on the directed set (F,<). This means that for every open set U containing x,

there exists « such that 3 > « implies x5 € U.
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The following is an analogue of [Fur81, Theorem 2.17] for general countablly infinite groups

(. The proof is identical.

THEOREM 1.8. If zg € Z is a recurrent point with respect to the action of an infinite countable
group G by homeomorphisms on the compact metric space Z, then for every § > 0 the set Rs =

{g : d(9(20), 20) < 6} contains an IP set.

THEOREM 1.9 (8.12 of [Fur81)). If F is partitioned into finitely many sets, F = C1 ¢ -- -0,
then there exists ay < ag < --- € F such that one of the C;’s contains {aj, U---Uay, @01 <

THEOREM 1.10 (8.14 of [Fur81)). If {x,} is an F-sequence with values in a compact metric

space, then there exists an F-subsequence {x,} which converges as an F-sequence.

LEMMA 1.11 (8.15 of [Fur81]). Let G be a semigroup. If ¢ : F — G is a homomorphism
and if G acts on the compact metric space X by homeomorphisms, and x € X, then there exists
a subhomomorphism ¢ : F — G of ¢ such that ¢(a)(x) converges as an F-sequence to a point

y € X, and at the same time F lim, ¢(o)(y) = y.

Note that for general semigroups we have not defined a notion of a non-trivial homomorphism.
For groups, where this notion has been defined, the above lemma is true for non-trivial homomor-

phisms in place of homomorphisms. That is:

LEMMA 1.12. Let G be an infinite countable group. If ¢ : F — G is a non-trivial homomor-
phism and if G acts on the compact metric space X by homeomorphisms, and x € X, then there
exists a non-trivial subhomomorphism ¢ of p such that ¢(«)(x) F-converges to a pointy € X, and

at the same time F lim, ¢(a)(y) = .

PROOF. Let ¢’ be an injective subhomomorphism of ¢ and apply the previous lemma to obtain

a subhomomorphism ¢ of ¢’. Then ¢ is a non-trivial subhomomorphism of (. ([l

The following as an analogue of [Fur81, Theorem 9.20]

LEMMA 1.13. Let G be an infinite countable group. X be a G-dynamical system with X a

compact metric space and assume that there exists a unique point xo € X that is recurrent for G.
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Then

li —
() i g(x) = zo

for every x € X. Conversely, if (*) holds for every x € X, then x is the unique recurrent point of

X.

PROOF. Assume (*) holds. By 1.8, if z; is a recurrent point, then for every neighborhood U of
x1{g : g(z1) € U} is an IPg set. Thus, if 1 # xo and if U and V are disjoint neighborhoods of
x1 and xg then {g : g(x1) € U} is IPg, but is disjoint from {g : g(zo) € V'}, which is IPf, by (¥),
a contradiction.

Suppose that g is the unique recurrent point. If (¥) did not hold, then for some neighborhood
V of xp and for some z € X and some sequence g; — oo we have gx € V for g € FP((g;)). Let
¢ : F — G be the (non-trivial) homomorphism corresponding to (g;), i.e, with ¢({i}) = g;, and
by 1.12 there is a non-trivial subhomomorphism ¢ such that ¢(a)z — y and ¢(a)y — y. Thus, y
is recurrent and so y = x, but this contradicts that ¢(«o )z — y = x¢ since ¢(«) € FP((g;)) for all

aand so ¢p(a)z € V. O

Now let H be a separable Hilbert space and let 7w be a unitary representation of the group G,
and let X = X, =the ball of radius r in H, with the weak topology. Then X is compact metrizable.
0 is a recurrent point of (X, ), and in general, z is recurrent iff 3g; — oo with 7(g;)(z) — =
weakly. Since ||7(g;)(x)|| = ||z|| this implies 7(g;)(z) — x in norm. The following is an analogue

of [Fur81, 9.21].

LEMMA 1.14. Let H be a separable Hilbert space and w a unitary representation of the infinite
countable group G. If 0 is the only recurrent vector of H for w, then for every u,v € H,

I =0.
i, {rlg)u,v)

Conversely, if the above holds for all u,v € H, then O is a the unique recurrent vector.

PROOF. (=): If 0 is the unique recurrent vector, then for any u € H, we have that u € Xy,
and 0 is the unique recurrent point of this compact system. Hence lim,_,py, 7(g)(u) = 0 for all
u € H. The limit is taken in the weak topology, so this means precisely that limg_,ipx (7 (g)u, v) =

0 for all v € X, hence for any v € H by scaling (i.e., write v = ¢ - v' with v' € X)) (<=):
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Conversely, the condition implies that O is the unique recurrent point in each X, hence 0 is the

unique recurrent point in H. U

DEFINITION 1.15. The representation 7 is called mildly mixing if it has no nonzero recurrent
points. Equivalently, lim inf._, ||7(7)x — z|| > 0 for all  # 0.

A measure preserving action a is called mildly mixing if the Koopman representation k% on L2
is mildly mixing. That s, zero is the only rigid function f € L3(X, s1), where a function f € L%(X)

is rigid if for some sequence g,, — o0, k%(g,)(f) — fin L?(X).

Note that there exists a sequence g, — oo with K%(g,,)(f) — f in the norm topology if and only
if such a sequence exists for the weak topology, if and only if such a sequence exists such that the
convergence is p-almost everywhere if and only if such a sequence exists such that the convergence
takes place in measure. Proof: If it is true in the weak topology then since ||x%(g,)(f)||2 = || f]]2,
the convergence also takes place in the norm topology. This implies convergence in measure which
implies convergence of a subsequence almost everywhere, which in turn implies convergence in L?

(i.e., the norm topology) of this subsequence since the measure space is finite and ||x%(gn, ) (f)||2 =

[1£1l2-

PROPOSITION 1.16. a € A(G, X, it) is mild mixing if and only if for all f,h € L*(X, )

W i [ on@ = ([ ran)( [ ).

or, equivalently, for all measurable A, B C X

(2) 92%5 pu(g(A) N B) = p(A)u(B).

PROOF. Mild mixing implies (1) by applying the previous lemma to fo = f — [ fdu, hy =
h— [hdu € L3(X, p). The previous lemma also shows that (1) implies mild mixing. It is clear
that (1) implies (2). For the converse, suppose that (2) holds. We only need to show that (1) holds

for simple functions f, h (Proof: note that

[(f;hg™) —/fdu/hduy <

(= £ohg D+ g = by 41w = [ [yl [ i[5 [l
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So given € > 0 if f/ and I/ are simple functions chosen close enough to f and & so that the first

two summands and the last summand above is < €/4, then |(f',K'g™) — [ f'du [ W du| < €/4

implies [(f,hg~') — [ fdu [hdu| < ¢ hence {g : [(f',h'g~") = [ [I'| < ¢/4} C {g :
|(f,hg™') — [ f [ h| < €} and, assuming the former is IP},, the latter is IP; as well.)

Thus we show, assuming (2), that (1) holds for simple functions. We compute

/ZailgAi(x)ijlgj (x)du(x) = Zaibj/lgAimBj(:c) du

— g 1P, Z aibjp(Ai)p(B;)
1]

:/ZailAi du/ijlBj dp. O
i J

COROLLARY 1.17. The countable product of mild mixing actions is mild mixing.
2. F-mixing
DEFINITION 2.1. Let I' be a countable group. Let F be a proper filter on I' (i.e., containing
the Fréchet filter). Let H be a separable complex Hilbert space and m € Rep(I', H) a unitary
representation. 7 is call F-mixing if for every u,v € H,

lim (7 (v)u,v) = 0.
y—=F

For a given representation , for each u,v € H we let fj,, : I' — C be the matrix coefficient
of 7 given by f, () := (m(v)u,v). When 7 is understood we simply write f, ,. Also, we put f,
for fy . In these terms, 7 being F-mixing simply means that every matrix coefficient f7,(v) =
(m(y)u,v) vanishes as v — F. We define F-mixing analogously for orthogonal representations of

T" on a real Hilbert space.

DEFINITION 2.2. A measure preserving action a € A(T", X, ) is called F-mixing if the Koopo-

man representation k& on L3(X, i) is F-mixing.

Let FMIX(T', X, u) C A(T", X, 1) denote the subspace of F-mixing actions. We show it suf-

fices to check that the diagonal coefficients vanish.

PROPOSITION 2.3. The representation m is F mixing if and only if for every w € H the diago-

nal matrix coefficient f,,(v) = (w(v)w,w) vanishes as v — F.
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PROOF. (=) is trivial. (<=) Assume each f,,(y) — 0 as v — F. Note that the map (u,v) —

fu,w 1s bilinear in the sense that

hd fau,v = afu,v and fu,av = afu,v-

L4 fu1+u2,v = ful,v + fuz,va and fu,'ulJrvg = fu,vl + fu,vg;

The map is only conjugate symmetric up to an inverse, i.e., fy »(7) = fuu(7~1). Thus we have the

polarization identity:

(futv = fumvtifutiv — i fuiv) =
= (fut fo+ Juw + fou) = (fut fo = fup = fou)
+i(fut+ fo = tfup +ifou) = i(fu+ fo+ifup = ifou)
= 2fup + 2fou + (fuw = fou) + (Fup — fou)
=4fup.

It follows that f,,(y) — 0asy — F, since f,, is a linear combination of diagonal matrix

coefficients. OJ

NOTE 2.4. As in [BDO08], if F is a filter on I', then let Fo denote the “hull” of F — that is Fe
consists of those elements of F all of whose left shifts are in F:
Fo={ACT :Wyel(y - AeF)}=(\r" F
yerl’
Then F, C F is clearly a filter contained in F, and so JF,-mixing implies F-mixing. On the other

hand, suppose 7 is F-mixing. This means that for any u,v € Hr, v € T, the set ()5, ,, := {7 :

|(m(y)u,v)| < e} € F. We show Q5 ,, € Fe. For 0 € I" we have that

0 Quy={7: (T 7)u,v)| < e}

= {7 [m(u, w(0)v)| < €} = Q50 € F
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since 7 is F-mixing. Hence 7 is F,-mixing. Thus, we lose no generality by restricting our attention

to (left) shift-invariant filters. In fact, we have

01 - Q- 551 = {7 : [(m(V)(7(62)u), m(61)v)| <€} = Q;(52)u77r(51)v
(@) ={7 : le(y Huv)| < e}

={7 : [(m(y)v,u)| < e} = Q..
It follows that if 7 is F-mixing, then it is is also F -mixing, where

F={AcF:Vy6eT (qAd € FandyA ' F)} = (| v - (FnF 1. 67"
~v,0€l
F is a filter since the intersection of filters is a filter. It is clear that 7 = F. The filter F is two-sided
invariant and symmetric (i.e., A € FeAleF). In studying mixing properties no generality is

lost if we restrict our attention to filters which are two-sided invariant and symmetric.

If F is the Fréchet filter, then F-mixing is just the standard definition of mixing. When F is the
IP*-filter this corresponds to mild mixing, and when F is the C*-filter (where C* is the intersection
of all minimal idempotent nonprincipal ultrafilters on I") then this corresponds to weak mixing
[BGOS].

For any filter F, an F-mixing representation is ergodic since if v is an invariant vector then
[[v]]? = (v,v) = (7(y)v,v) — 0as~y — F,sosince @ ¢ F, it follows that ||v||> < € for all e,

hence ||v||> = 0, v = 0. In fact, for any F, an F-mixing representation is weakly mixing [BR88].

LEMMA 2.5. If the representations ., are F-mixing on Hy, for all n, then their direct sum

=D, m, is F-mixing on Hy = @, Hy.

PROOF. We must check, for a dense set of v € H, that (m(vy)v,v) — 0 as v — oco. Vectors of

the form v = @ﬁyzlvn, where v,, € H,, are dense. We compute

< @ Wn(7)<@7]y=1”n)a EB%:1”m> = <@1]¥=1(7Tn(7)(vn))v 69%:1”‘)m>

N
= Z (T (V) (vp), Um) = Z<7Tn(7)(vn)avn>
n,m<N n=1

which vanishes as v — F since each (7, (y)(vy), v,) vanishes as v — F. O
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PROPOSITION 2.6. Let I" be an infinite countable group. Then a € A(T', X, ) is F-mixing if

and only if for all f,h € L*(X, p)

W i [ 6 om) du= ([ rdu)( [ ndu).

or, equivalently, for all measurable A, B C X

(2) Wligjlru(v(A) N B) = u(A)u(B).

PROOF. (1) clearly implies that @ is F-mixing. Assume a is F-mixing. We show (1) holds. Let
f.h € L*(X,p). Then fo = f — [ fand hg = h — [ hare in L3(X, u). We have

(500 Te) = (For B = (For [ = ([ For LRy ([ ror, [

oy~ [ £ [n= [0 bt du~ [ ) du [ 1) d

which gives us (1). It is clear that (1) implies (2). For the converse, suppose that (2) holds. It suffices

to show that (1) holds for simple functions, since for any f, h € L?(X, i) we have

(vt = [ £ [l <

oy h= )y = e ) = [ e [ e g [

So given € > 0 if f’ and b’ are simple functions chosen close enough to f and h so that the first
two summands and the last summand above is < €/4, then |[(f'y~ 1, 0') — [ f/du [ B du| < €/4
implies |(fy~',h) — [ fdu [hdu| < e hence { : [(f'v, W) = [ f' [W| < e/4} C {7 :
|(fv~,h) — [ f [ h| < €} and, assuming the former is in F, the latter is in F as well.

Thus we show, assuming (2), that (1) holds for simple functions. We compute

[ 3 aita@) Y bt (a)duta) = 3 aiy [ 1aom, (o) d

—yF > aibju(As)p(B;)

i,J

:/ZailAid,u/ijlBj dy.
i J
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COROLLARY 2.7. If T is an infinite countable group and a,, € A(I', X, ) are F-mixing for all

n, then [ [,, ay, is F-mixing.

PROOF. It suffices to show that (2) of Proposition 2.6 holds for [],, a,, € A(I', X NNy when
A and B are taken from a dense set in the measure algebra of p. Since cylinder sets of the form
Apx-- - x Ay x X x X x--- are dense, this comes down to showing that (2) of Proposition 2.6 holds
on finite products. For this, it suffices to show that (2) holds for a x b € A(T, X2, u?) whenever
a,b € A(T', X, u) are F-mixing, since then a trivial induction takes care of the general finite case.
This is clear since Y**?((A; x Ay) N (By x Ba)) = (v*(A1) N By) x (v°(A3) N By). Hence
the measure of this set converges, as v — F to (A1) u(B1)u(A2)pu(B2) = p(Ap x Br)u(Ag x
Bs). O

NOTE 2.8. The descriptive complexity of F gives a bound on the descriptive complexity of the
set FMIX(T', X, u) € A(T, X, u) as follows.

Let {4, }nen be dense in the measure algebra of ju. Let ¢pm . @ AT, X, u) — 28 = P(I)
send the I'-action a to the set @y m.c(a) = {v : |p(v*An N Ap) — p(An)u(Ap)| < €}. Note
that if v € @, m.c(a), say |p(v*An N Ap) — w(Ap)p(Am)| < 6 < € and if b is so close a that
(v Ap N Ap) — (7P A N Apy)| < € = 8, then v € ©pme(b). Thus @, 1, (U, ) is open, where
U, ={C CT : v e C}. On the other hand, if v & ¢y, m (ax) then e < |u(y* A, N Ap,) —
w(Ap)p(Ap)l, so if ax — a, then since p(v* A, N Am) —kooo #(7*A, N Ay) we get hat
Y & Onm,e(a). Thus @, L, (U,) is closed, where Uy, = {C' : v ¢ C'}.

We have that a is F-mixing if and only if YnVmVk (a € (p;in’%(]—")). So if F is XY then
. 18 B | (since ©p, pn  is Baire class 1) and so FMIX is ITQ, ,». If F is IL), then ¢;71n71/k(f)
is HgH, hence so is FMIX.

In particular, if F is Borel, then so is FMIX.

DEFINITION 2.9. I" has HAP(F) iff there is a unitary representation 7 of I" that is F-mixing,
and with 1 < 7. That is, there is a seqeuence of non-zero almost invariant vectors, i.e., a sequence

{v,} of unit vectors such that ||7(y)(v,) — v,|| — 0 forall v € T.

For example, I' has HAP(IP*) if and only if there is a mildly mixing unitary representation 7
of I" with 1 < 7. Also, since I' does not have property (T) if and only if there is a weakly mixing

representation 7 of I with 1 < 7, so that the negation of property (T) is equivalent to HAP(C*).
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LEMMA 2.10 (Analogue of p. 79 [Kecl0]). I" has HAP(F) if and only if there is an orthogonal
representation ™ : I' — O(H ) on a real Hilbert space, which has non-0 almost invariant vectors

and is F-mixing.

PROOF. («<=): Suppose 7 : I' — O(H) is F-mixing with non-0 almost invariant vectors {vy, }.
Since O(H) is a closed subgroup of U(Hc) via the identification " — T¢c = T + i - T, we get
a unitary representation ¢ : I' — U(Hc). We must check that it is F-mixing and has almost
invariant vectors. For the same sequence {vy}, but now considered as a subset of Hc we have

(7)) (vn) — vnllme = [|7(¥)(vn) — va]|r — 0 as n — oco. Also,
(r(Vv +ir(Y)w,r +is)pe. = (7(y)v,r)u + (7(Y)w, s)g + i (y)w,r)g — (7 ()v, s)m

which goes to zero as v — F, since 7 is F-mixing.
(=): Suppose {v, } are non-0 almost invariant vectors for the F-mixing unitary representation
m: ' — U(H). Let op(y) = (m(y)(vn),vn). Then ¢, is positive-definite, ¢, (1) = 1 (since

anH = 1), and hm,y_>}— gpn(fy) =0. As
0 =lim||7(y)(vn) — UnH? = lim (2an|’2 — 2Re(m(y)(vn), vn>) = 2 — lim 2Re(7(7) (vp), Un)

we also have that Re(rm(y)v,,v,) — 1 as n — oo. Letting ¢, = Reypy, then 9, is real positive-

definite: it is real-valued and symmetric since

Un (v i) = Re(m (] 19i)vn, va) = Re(m(3i)on, 7(75) (vn))
= Re(m(v5) (vn), m(7i) (vn)) = Re(m(v; ') (vn), vn)

= Y (v '),

and given c,...,c, € R, 71, ...,7, € I we have

n

> cierRe(m(m) (vn), (1) (vn)) = |1 Y cum(ye)onl[* = 0.
k

jk=1

Also, ¥, (1r) = Rel|v,||? = 1, limy—, 7 ¥ () = 0, and ¢, (y) — 1 as n — oo. Let (pn, Hp, wh)
be the orthogonal representation given by the GNS construction for 1), so that w,, is a cyclic vector
and (pn(7)(wy), wn) = ¥,() (so in particular, since 1,(1r) = 1, w, is a unit vector). Let

p =B, pn. Hy = @,, Hy. Then (p(7)(wn),wn) = ¥n(y) — 1asn — oo, and so |[p(7)(wn) —
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wp|| = 2—2Re(p(v)(wy), wp) — 0asn — oco. Also, we need to show that lim.,—, 7 (p(y)(v), v) =
0 for all v € H,. As usual it suffices to show this for a dense subset since then for arbitrary v € H,

we have

[(p(V)v,0)| < [(p(V)v,v — )| + [{p(7) (v — ), u)| + [(p(7)u, u)]

< [[oll - [l = ul[ + [[v = wl[ - [Jull + [(p(v)uw, w)],

soif ||Jv — u|| < min{m, 1} then {7y : (p(y)v,v) <€} D {7 : (p(y)u,u) < ¢€/3} € F.
Since H = .-, H,, any u € H,, can be approximated to an arbitrary degree by some

finite linear combination v/ = ZN uy,, Where u, € H,. Butif u; and us are in different cyclic

n=1

components, then

(p(V)(u1 + uz), u1 +uz) = (p(y)ur, u1) + (p(v)uz, uz2) + (p(y)u1, uz) + (p(v)uz, u1)

and the last two terms are zero (since u; and usg are in invariant subspaces which are orthogonal)

hence f7 = fi, + fl,. Soif f, and ff, vanish as v — F then so does ff ,,, = fi, + fl,.

1t+u2

Thus, it suffices to check that lim.,_, 7 f, () = 0 for u of the form v = Zle cip(yi)wn, since the

linear span of {p(~)wy, }cr is dense in H,,. We have

k k
<P(’Y)<Zcz‘ﬂ(%)wn)a ij(w)wn> = Y cici{p((1) " 77)wn, w)
i=1 j=1 i,j<k
= > eieibn(v; )
i,j<k

which vanishes as v — F since v, Yvyi — Fas~y — F (since we may assume that F is a

two-sided shift invariant filter) and ¢,,(6) — 0 has § — F. O

THEOREM 2.11 (Analogue of Theorem 11.1 [Kecl10]). Let I' be an infinite countable group.

TFAE:

(1) T has HAP(F).
(2) T has a measure preserving, F-mixing action which is not Fy-ergodic.

(3) T has a free, measure preserving, F-mixing action which is not Fy-ergodic.

In particular, T" does not have HAP(F) iff FMIX(T', X, n) C EoRG(T", X, ).
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PROOF. (2)=(3): Ifa € A(T", X, p) satisfies (2), thenletb € A(T", X, 1) be any free, F-mixing
action (e.g., the shift of I" on 21'). Then a x b is free and F-mixing. Also, if A,, are non-trivial almost
invariant sets for a, then j(v*A, x Y*XAA, x X) = u(v*A,AA,) = 0asn — 00,50 A, x X
are non-trivial (since (A, x X) = u(A,)) almost invariant sets for a x b.

(3)=(1): Let a € A(I', X, p) satisfy (3). Then x§ is F-mixing, and a is not Ey-ergodic, so
Ir < Kg.

(1)=-(2): First we show that if 7 is F-mixing on H then 7®" is F-mixing on H®". Linear

combinations of vectors of the form ©®}._;v;, with v; € H, are dense in H ©n_We have that

(e (Fo i ) o ) = (oot S f)
2. C’“07< Oy 7 (1)), @ J(l)> Z crel Y H ), al()%)>

k,l<m k I<m oc€Sy j=1

and since each product and sum is finite, and each term (7(v)v,w) — 0 as v — F, this does as
well.

Now, by the previous theorem, I' having HAP(F) means that there is an orthogonal F-mixing
representation 7 of I which has non-0 almost invariant vectors {v, }. By replacing 7 by infinitely
many copies of it, we can assume that {v,, } is orthonormal and that H is infinite-dimensional. Let
(X,v) = (RN, uN) be the product space with . normalized Gaussian measure on R. Without loss
of generality H = H'Y = (p,)nen C L%(X ,v,R) (where p,, : RY — R the n-th projection). Let
a = a be the Gaussian action associated to 7. Then x§ = @@,7 ; 7" and each 7®" is F-mixing,

hence so is (j, and therefore so is a. As usual we have 1r < 7 = ir < a, so we are done. O

THEOREM 2.12 (Analogue of Theorem 12.7 of [Kec10]). Let I' be an infinite countable group.
Then I does not have HAP(F) iff FMIX(T', X, u) C ERG(I', X, p).

PROOF. (=): If " does not have HAP(F), then
FMIX C {a € A(T, X, ) : 1pr £ K§}.

Assume towards contradiction that a,, € FMIX(T', X, u) and a,, — a ¢ ERG(T, X, u). Let
b =11, an. Then a,, < b forall n, so a < b and thus x§ < K}g. Since a is not ergodic, 11 < K, so

1r < /{8, contradicting that b, being the product of F-mixing actions, is F-mixing, and that I" does
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not have HAP(F).

(«<=): Assume now that I' has HAP(F). Then there is an action ag € FMIX \ EgRG(T", X, 11).
Let {A,,} be a sequence of almost invariant Borel sets in X with u(A,) = % Then b := %ao +
%ao < ag X ag (Proof is same as p. 85 of [Kec10], just uses the fact that ag & EoRG). Since b is

not ergodic (having two ergodic components, each of measure %) and ag X ag is F-mixing we have

b € FMIX \ ERG. 0

One may show that the main result of [Hjo09] goes through for F-mixing in place of mixing.

The proof is nearly identical.

THEOREM 2.13 (Analogue of [Hjo09]). Let I' be a countable group with HAP(F). Let (X, 1)

be an atomless standard Borel probability space. Then the F-mixing actions are dense in A(T', X, ).

COROLLARY 2.14. The countable group I' has HAP(F) if and only if the set of F-mixing

actions are dense in A(T', X, ).

3. Permanence properties of 7-mixing

DEFINITION 3.1. Let C#(I") C [°°(I") denote the set of functions ¢ € [°°(T") with lim,_, 7 () =

PROPOSITION 3.2 (Analogue of Ch. 2 of [CCJT01]). T has HAP(F) iff there there exists a
sequence (pn)nen of positive definite functions in Cx(I") with @, (e) = 1 for all n and ¢, — 1

pointwise as n — 0Q.

PROOF. (=): Let {v,, } be a sequence of almost invariant unit vectors for the F-mixing repre-
sentation 7 of I'. Let ¢, = (7(+)vp, vy). Then each ¢, is positive definite with ¢, (e) = ||v,|| = 1,
and

lon(v) — 1 = (7 (V) vn, vn) — (Un, vn)| < {IT(Y)vn — vnl] 2 oo 0

since the {v,, } are almost invariant. The representation 7 is F-mixing, so ¢, (7) = (7(Y)Vn, Vn) —y—F
0.

(«<): Conversely, if the 1, p2,... are functions in C'x(T") with ¢,(e) = 1 for all n, and
on — lasn — oo, then let (H,, m,,w,) be the GNS triple associated to ¢y, so that w, is a

cyclic unit vector for 7, and ¢, (v)(7(y)wn, wy). Let 7 = @, m, be the representation of " on
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H = @, H,. Then (7(y)(wp), wn) = @n(y) = 1 asn — oo and so ||7(y)(wy) — wy|| =
2 — 2Re(7(y)(wp), wyn) — 0 as n — oo, so the {w,, } are almost invariant vectors. Also, we need
to show that lim,_, 7(m(y)(v),v) = 0 for all v € H. It suffices to show this for a dense set of
v, and since the {w,,} are pairwise orthogonal it actually suffices to show this for v of the form
v = Zle ¢im(yi)wy. Note that we may assume without loss of generality that F is two-sided
invariant. We then have
k k
(T (D emriwn ), 3 esm(r)wn) = S cies w3y ) wns wa)
i=1 j=1 ij<k

=Y ccion(y; ) = 0
1,7 <k

as 7 — F since F is two-sided invariant. (|

PROPOSITION 3.3 (Analogue of 2.1.1 of [CCJ101]). The countable group T has HAP(F) iff
there is a v : I' — RY such that o~ ' (K) € T (where T is the dual ideal to F) for every compact
K C R*, and which is conditionally negative definite, i.e., 1(e) = 0, 9(y) = (v~ 1) forally € T,

and for all ,...,vy, €T, a1,...,a, € Cwith)_ a; =0,
> @agi(y; ') < 0.
,J

PROOF. (=) Write I as an increasing union of finite subsets I' = |J,>; Fn, £ © Fpia.
Let (ay,)n>1 be an increasing sequence in R™ tending to oo and let (e,,),>1 decrease to 0 be such
that ) o€, converges. Let (¢,),>1 be a sequence of positive definite functions in Cx(I") with
on(e) = 1 for all n and ¢,, — 1 pointwise as n — oo. Let ny be so large that n > ny implies
lon(y)—1] < e forall v € Fy. Let ny,, > ny,—1 be so large that n > n,, implies o, (7) — 1] < €,
for all v € F,,,. So WoLOG (after moving to the subsequence (yy,, ) if necessary) we may assume
that foralln > 1

sup |on(7) = 1| < €.

YEF,
‘2

Now, since 1 = @n(e) = sup.er |¢n(7)], by replacing ¢, by [p,|* if necessary we may assume

that 0 < ¢, <1 for all n. For vy € I let

7/)(’7) = Zan(l - @n(’Y))'

n>1
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This is conditionally negative definite on I" since if ) a; = 0 then

i<m
S jem Giajan(l— on( '95)) = —an Y5 < @iajion(v; ;) < 0.

Given a K € R™ let n be so large that o, > 2K. Let A € F be such that |¢,(7)] < 1/2 for
v € A. Then ¢(v) < K implies (1 — ¢ (7)) < 1/2 and so ¢, (y) > 1/2, whence v € A, i.e.,
{v v <K}CT\Ael

(<) Conversely, suppose % is conditionally negative definite with ¢~*(K) € Z for compact
K C RT, as in the statement of the proposition. Then by Schoenberg’s theorem [BAHV C.4.1.9]
e~ is positive definite for all t > 0. So if ¢, (7) = e "¥(?) then ,, — 1 pointwise and ©,, (e) =
¢ = 1. For fixed n and 0 < € < 1 we have that o, (7) < €iff e ™) < ¢ iff nab(y) > —log(e)
iff v & {7 : ¥(v) < —Llog(e)} € Z. This implies that lim,_, 7 ¢, (7) = 0. O

DEFINITION 3.4. Call a positive definite function ¢ € C(G) normalized if p(er) = 1.

PROPOSITION 3.5. Suppose G is a countable group and that G is the increasing union of a
sequence (Gyp)n>1 of infinite subgroups. Suppose that F is a filter on G and suppose for each n
that F,, is a filter on G,, with the property that G, \ A € F,, = G \ A € F whenever A C Gy, If
Gy, has HAP(F,,) for all n Then G has HAP(F).

NoOTE 3.6. If weletZ, = {G,\ A : A€ F,}andZ = {G\ A : A € F} be the ideals
corresponding to the F,,’s and F, respectively, then the above hypotheses on F,, and F is equivalent

toZ 2O U, Zn.

PROOF. For each n let {¢} }ren € Cr,(Gr) be a sequence of normalized positive definite
functions such that ¢}’ — 1 pointwise as k — oo, as in Proposition 3.5. Let ¢} be the extension of
¢ to G such that ¢}'|G'\ G, = 0. Then ¢ are normalized positive definition functions, and for any

n, k and € > 0 we have that
{9€G:1Bg) <} =G\GuU{g€ G : [Phlg)| <c} € F

since ) € Cr,(Gy) and by the hypotheses on F. Hence ¢ € Cr(G). Now, enumerate G =
{71,72,...},andlet n(m) and k(m) be increasing sequences such that for each m, n(m) is so large

that v1,...,%m € Gp(m), and k(m) is so large that @Z% (7)) < 2™ fori = 1,2,...,m. Then
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{95:((:)) tmen € Cr(G) is a sequence of normalized positive definite functions on G converging

pointwise to 1. So G has HAP(F). O

Let A a subgroup of I'. The co-induced action is defined as follows (see [Kecl0]). Fix a
transversal 7" for the left cosets of A, with 1 € T'. Let I' act on T by defining -y - ¢ to be the unique
element of T N~tA, and let p : T' x T — A be the cocycle defined by p(,t) = (v -t)~!~t. Given
an action a € A(AX, i) we define b = CInd (a) € AT, XT, ™) by

P ((@s)ser)(t) = (p(v 1 )7 (@y14)-

Let CIndy : A(A, X, u) — A(I', X7, uT) be the co-inducing map. This map is continuous (in the
weak topologies of these spaces), and a 2 b = CInd}i (a) = CIndk (b). It follows that a < b =

CIndl\ (a) < CIndX (b). We show that this map preserves F-mixing in some cases.

LEMMA 3.7 (Analogue of loana [Toall]). Suppose that a is F-mixing. Let T = {A\ A : A€
F}. Let T' be the T-invariant ideal generated by T in T, and let F' be the corresponding filter on
I. Then b = CIndX (a) is F' mixing.

PROOF. It suffices to show that for a dense set of f,h € L3(XT, uT) we have (k}(7)(f), h) —
0 as v — F'. We show this for f,h of the form f = ®Ricafi, h = Qscphs, where fy, hs €
LE(X,p) and A, B C T are finite. This means that for (z;)ier € X7 we have f((z¢)ier) =
[L;c 4 ft(x¢), and similarly for h. Then

o (F)((@ier) = () (@ier) = [ Fl(plr, )7 (@50))

teA

so that (k3 (7)(f), h) =

~( I1 [ IT [reanC TT [ 59 @) du)

~y-tey-A\B s€B\v-A y-t=s€vy-ANB

and so (k}(7)(f),h) = O unless |A| = |B| and v - A = B. In this case, we have that
(ko (N ).k = Ty - ) (fo)s o)
teA

Now, there are only finitely many bijections 7 : A — B with w(t)"'4t € A forallt € A. For

eachsuch m,let 'y = {y € T : Vt € A n(t)"'yt € A}. It suffices to show for each such
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mand every t € Aand € > 0 that {y € T : [{((x(t)"29t)%(fi), hs)| > €} € T’ since the

(finite) union of these sets as ¢ varies over A and 7 varies over all bijections A — B contains

{veT : [(KG(N(f) ~)| > e}

So let 7 and € > 0 be given. Fix some ¢ € A and some A € ['; (if I'; = @ we are done). Then

t=IX"Ix(t) € A, and we let
S={5€ A [(0°(f), (TN (1) (ha(e))] > €} € L.
Now, if v € ' then t ' A1yt = (7 () "IM\t) "L (7 (t) " 1vt) € A, and

(T ) (fe)s hary) = (@@ TN EATIA) (fe), b))

= (AT (fe), (AT (8)) P )

so that
{7 KT (&) )Y (fo), b)) > €}
= {y s HETIATI) (o), (AT (1) %h))] > €}
={y:t N\ yteSy=xsttel
as was to be shown. O

It follows that if A is an infinite index subgroup of I, then b = CIndg (a) is mixing with respect
to the invariant ['-ideal generated by A. Since this is a proper ideal when A has infinite index, b is

weak mixing. Another consequence of the above lemma is that co-induction preserves mild mixing.

THEOREM 3.8. Let A C T be countably infinite groups and a € A(A, X, u). Then a is mildly
mixing if and only if b = CInd\ (a) € A(T, X, ) is mildly mixing.

PROOF. (<) If bis mildly mixing then for every A € MALG,, we have liminf,_,oo u(7?AAA) >
0, i.e., there is some finite /' C T and ¢ > 0 such that u(7*AAA) > e for v ¢ F. Then
liminfs_ oo sea ft(6°AAA) > 0 since the for § € A\ F the value is greater than €. So b|A is
mildly mixing. Since a is a factor of b|A it follows that a is mildly mixing.

(=) Let IP;(A) be the two-sided invariant filter generated by IP*(A) (so D € IP;(A) if and
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only if every two-sided translate of D is in IP*(A)). Let Za be the ideal associated to IP;(A), i.e.,
A € I if and only if A\ A € IP;(A).
The action a being mildly mixing implies that a is Za-mixing.

Let Z be the ideal on I" corresponding to IPy-:
Bel &« T\BelPp (BCT).

Then the action b = CIndg (a) is mildly mixing if and only if b is Z-mixing. Let Z’ be the ideal
on I generated by all the two-sided I'-shifts of elements of Zxn. By Lemma 3.7, b is Z'-mixing. To
show that b is mild mixing it therefore suffices to show that Z C Z, since this will imply that b is

Z-mixing. So let B € Z'. Then
B =71 A1nf U Aons Ung Az U- - Uy A,

for some A; € Za and fyil,fyf el,i=1,...,n. Toshow B € T it suffices to show that each
wilAmiQ €Z. Sofixiandlet A= A; € Zpn,let A/ =T\ A, and let s; = %-1, S9 = 72-2 € I'. Then

every A-shift of A \ A intersects every IPa set. If we can show that the set
T \ (81A32) = 81A/82 = Sl(r \ AUA \ A)82

intersects every IPr set, then we will be done since this means that s; Ass € Z. Let ' € IPr, say
F D FP((1)2,). If A/ Ns;'Fsy' = @ thenas A’ D T'\ A it must be that s7 ' Fs; ' C A,
FP((7:)2,) C F C s1As2. As 1,72, 7172 € F C 51As3 let §1, 02,012 € A be such that

Y1 = 510152

Y2 = 810282

Y172 = 5101,252.
Then
510152510252 = 5101252

01525102 = 01,2

§981 = 51_15172(52_1 € A.
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Let 6 = s9s1 € A. Then
@ =0A"Nés; Fsy' =0A" NsgFsy?.
Since A’ O A\ A it follows that § A" intersects every IPx set. Now
soF'sy D saFP((7:)i)s5 ' = FP((s27is5 ' )i)-

Since 64’ D T'\ A it must be that no so7y;s5 " is in '\ A. But then FP((s27;55 *);) is an IPA set,

so intersects 0 A’, a contradiction. O

COROLLARY 3.9. Let A be a subgroup of T such that the action of T" on the homogeneous space
T'/A is amenable. If A has HAP(F) then T has HAP(F') where the F'-small sets are generated by
the (left and right) shifts of the F-small sets in T.

PROOF. Leta € A(A, X, u) be an F-mixing action which is not Fy-ergodic, i.e., in < a. Let
b = ClIndj (a). Then b is F'-mixing, and CInd} (ia) < b. The action sp-/o = CInd} (ia) is the
action of T by shift on X/2 and by [KT08] i < sp /a is implied by the action of I' on I'/ A being
amenable. Thus ip < sp/a < b, and so I has HAP(F"). (|

4. Gaussian actions

For an orthogonal representation 7 of I" we let a(7) denote the corresponding Gaussian measure

preserving action of I'. See [Kec10] for the definition.

PROPOSITION 4.1. The map ORep(I', H) — A(T', X, u) sending m — a(m) = a, is continu-

ous.

PROOF. Suppose 7, — 7. We have to check that a,, — a,. This is equivalent to showing that
the Koopman representations converge: k% — k%,

So it suffices to show that 7, — 7 then 79°° = g% — g = 79 Here 79 = P77 7"
is a representation on H®>® = D0 H ©On If 7, — 7 then we show 75™ —,, o, 7©™: linear

combination of vectors of the form f; ® --- ® f,,, fi € H are dense in H®™, so by the triangle

inequality we only need to show convergence on vectors of the form f; ©® - - - ® f,,,. We have

TN (1O O fm) =7(Y)(f1) © - O () (fm) = \/% > oesm Qam(V) (fow)
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So it suffices to show that || @7, m,(7)(g:) — @7 7(v)(gi)|| = 0asn — oo for g1,...,9m € H.
(n)

( m ()

We want to show that if g;” — g; for each i < m then ®* 9, — ®i%,g;. This is true by
multilinearity and definition of the norm and inner product in H®™. Since | J,, H®™ is dense in

H©®> we are done. O
IfU,, -7, — wthenT}, - ar, — ar where T,, = ay,,. This will follow from continuity once we

show:

PROPOSITION 4.2. Let T be the Gaussian Z-action (i.e., mpt) coming from the unitary operator

U. Then for any representation m we have I’ - a, = ay.x. So ™ — a, is equivariant.

PROOF. If f € H'* we show that k7% (y)|H" = (U -7)(7y). Let V be the Koopman operator

associated to 7', so V|HY = U.

KU () () = fo (T T™) = V(s (n)((V7')))
=Ur(MU(f) = (U - m)(3)(f) O

PROPOSITION 4.3. Let w be an orthogonal representation of I on the real Hilbert space H. If

a5 is ergodic then T is weak mixing.

PROOF. Suppose 7 is not weak mixing so that there is a finite-dimensional invariant subspace
of H, say Hy, and let sy, ..., s; be an orthonormal basis for Hy. We show that a, is not ergodic.

Note that by invariance of Hy = (s1, ..., Sk), forany v € I"and ¢ < k we can write

k
T(V)si = Y aigs),
j=1

where a; = (m(7)si, sj) € R. Let T' C H be countable 7-invariant set containing s, . . ., S, such
that the linear span of 7" is dense in H. We have that a is isomorphic to the shift on (RT, 1.,). Let
S = {s1,...,s;} and let A C R be a spherically symmetric subset of measure 0 < ;%(A) < 1

(e.g., a ball) where y is the normalized N (0, 1) Gaussian measure on R. Then
B={ceRT : ¢Sec A}

has measure p,5(A) = 1 (A) since the s; are orthonormal, so that ¢|S is the identity covariance

matrix (and hence the corresponding measure is product measure). Fort € T let p; : RT — R
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denote the projection p(c) = c¢(t). Then the map from H*(L?*(u,)) — H sending p, — t € H
extends to an isomorphism and takes x§"|H' to , since kg™ (7) - pr = Pr(y)(t)- Thus, for any

i < k, the equality 7(~y)s; = Z?:l v js; implies

k
pﬂ(’y)si = Z Q4 jDs;
Jj=1

where the equality is in L2, so these functions are equal almost everywhere. Thus, for Hp-almost

every ¢ € R” we have that
k
c(m(v)si) = Zai,jc(sj)'
j=1

Since 7 is an orthogonal transformation, the matrix M = (a; ;)i <k is an orthogonal k x k

matrix. In particular, the set A C RS = RF is invariant under M. Suppose ¢ € B. Then

clS = (c(s1),...,c(sk)) € A. We have

(Y'-0)lS = d(x(7)S) = (e(x(7)s1), - - - e(m (7))
= (b one(sy), . 0 anje(s;))

= . (c(sl), - ,C(Sk)) €A

since A is invariant under M. O

Compare the above proof with (i)=-(ii) of [KT08, Proposition 2.1]. We can also give an alter-
native proof (in the spirit of (iii)=-(ii) of [KT08, Proposition 2.1] that if 7 is weak mixing then a,
is weak mixing (the usual proof just uses that a is weak mixing iff kj™ = @, 7" is weak mixing).
We use a condition equivalent to weak mixing that one should compare with [KTO08, Proposition
2.2]. (which says that all orbits are infinite iff for all F;, F, C X, there exists v € I' such that

v-F1NFy, = 02).

7 is weak mixing iff for all € > 0 and finite Fy, F» C H there exists a v € I' such that

(m(y)u,v) < eforallu € Fy and v € F.

We can think of this is saying that 7(y)(F}) and F5 are within € of being orthogonal. For Gaussian

actions given by I'-invariant positive definite functions ¢ : T' x T" — R, the condition becomes

() Ve > 0 and Fi, F5 C T finite, there exists 7 € I' such that Va € Fi,y € Fy, (v - z,y) < €.
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PROPOSITION 4.4. The condition (*) implies that the Gaussian action ay, corresponding to ¢

is weak mixing.

PROOF. We view ay, as an action by shift on (R”, y1,). For z € T we let p, : RT — R be the

projection p;(c) = ¢(x). It suffices to show that a,, x a, on (RTT

Myt = o X i) is ergodic,
where ¢’ restricted to each diagonal copy of T x T is equal to ¢ and is zero everywhere else. We
let y1 := p1,r. So suppose not, i.e., suppose there is some A C RTYT invariant with 0 < p(A) < 1.
Then we can find a finitt F C T U T, F = {x1,...,2;} and a set B C RTYT only depending
on the coordinates in F, such that for some € > 0, u(BAA) < ¢/4 and u(B) — pu(B)? > e. By
condition () we have that for all n € N we can find 7, € T such that ¢(y, - 2,y) < % for all
z,y € F. Let pp : RT*T — RF =~ RF take 2 — x|F € RF and let B = pp(B) € R¥. Consider

the random vector
Zny = (P%-FaPF)

in R¥ x R* with distribution measure i, = K| (Fuy,-F)- This s a centered Gaussian random vector

with characteristic function

U (u) = exp(—% (u, Mpu))

/
: : PE An .
where M, is a block matrix of the form M, = , and every entry of A,, is smaller
AL PIF
than 1/n. It is clear that the characteristic functions of the Z,, converge pointwise to the function
) ¢IE 0 o . .
Y(u) = exp(—5(u, Mu)), where M = , which is the characteristic function of
0 ¢|F
a normal random vector on R* x R” distributed like H'|F X fhyr|F- Since pointwise convergence of
characteristic functions implies convergence in distribution it follows that the sequence of measures

pn, converge weakly to pi . X i weakly. Thus,

1y (7nB N B) = pin(B x B) = pyp(B)? = py (B)?
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(note that the marginals of 1, on both the left and right R¥-factors are each P ) SO if n is large

enough then |py/ (v, - BN B) — < £. But this implies
gh then 1 (v - B 1 B) — pu(B)?| < §. But this impli

|W(B) — u(B)?| < |u(B) = p(A)| + |(A) = p(va AN A)]
+ (AN A) = (v BN B)| + |1(vn B N B) — u(B)?|

€ € €
c D
<4+0—|- 4—1-4 €

a contradiction. O

Let # be a separable complex Hilbert space. Let B(#) be the space of bounded operators on
H.

The Hilbert-Schmidt norm of an operator A is given by

oo
1Al7s = |l Aenl”
n=0

where {e;, },>0 is any orthonormal Basis for 7{. A is called a Hilbert-Schmidt operator if this norm
is finite. Let H.S(#) denote the set of Hilbert-Schmidt operators.
The trace norm of A € B(#H) is given by

o0

1Allrr = (|Alen, en).

n=0
PROPOSITION 4.5 (Powers-Stgrmer inequality). Let A and B be positive self-adjoint operators
on a Hilbert space H. Then
1 1
142 — B2 |35 < ||A — Bllzs.
Note that, taking A = T*T = |T'|? and B = S*S = |S|? we get
T =[] 1IEs < I(T*T) = (5*S)|»

and since

(T+8)(T—8)+ (T —S)*(T+8) =TT —T*S + S*T — §*S + T*T + T*S — S*T — §*S

=2T*T — 25*S
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the inequality becomes
171 =18[11Frs < I3 [(T+8)"(T = ) + (T = )(T + 9)]llzs

< 31T+ 8)(T = S)llrr + 5/I(T = ) (T + S)|r

< ST+ ) NuslIT = Sllus + 51T = S)||luslIT + Sllus

T+ S||us||T — S||us-

If H is a complex Hilbert space then the conjugate Hilbert space is the space H with underlying
set the same as # (we denote the copy of & € H that is in H by £*), and with scalar multiplication

defined by

and with inner product defined by

€ nl7 = 0, E)n-

If p is a unitary representation of I' on 7 then conjugate representation p is defined to be the
representation on H such that p(7y) is the same underlying set map as p(7y) for each y € T.
In general we identify the space H ® K with H.S(K, H) the space of Hilbert-Schmidt operators

from K to H,viaé ®n € H @K + Seg,y where

Sean(CF) = (n, Oxk.

If we now take K = H then H ® H is isomorphic to the space of Hilbert-Schmidt operators on
H. The adjoint of the operator Seg,« is the operator Syge+. If we let H © H denote the subspace
of H ® H that coincides with H ® H as a set, i.e., generated by elements of the form £ ® n* =
%(5 ® n* +n ® £*), then this subspace coincides with the subspace generated by the self-adjoint
Hilbert-Schmidt operators.

If 7 is a representation of I" on H, and p a representation of I" on I, m ® p is isomorphic to the

representation on H.S(K, H) given by

(@ p)(7)(S) = 7(v)Sp(v ).
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Similarly, we view m © 7 as a representation on the space generated by the self-adjoint Hilbert-
Schmidt operators (i.e., just the restriction of 7 @ 7 to this subspace).
The conjugate ¢ of the complexification of 7 is canonically isomorphic to 7c itself, the iso-

morphism given by the conjugation map ® : Hc — Hc defined by
Sx+i-y)=c—i-y.

Denote this ®(¢) = £. This is linear since a - € + 1 = @ - £ + 7 (recall how scalar multiplication

was defined for conjugate spaces). It preserves the inner product since

[D(z1+0-y1), P2+ y2)lge = (T2 — @ Y2, 81 — 1 Y1) e
= (@2, x1)n + (Y2, Y1)n + (@2, y1) 1 — ¥(Y2, T1)n
= (z1, )1 + (Y1, y2)n + i(y1, x2)y — ¥{x1, y2) 1

=(x1+1-y1, 22+ 0 Y2)ne

and it takes 7 to 7rc since

()@@ +i-y) =7m(y)(z) —i-7(7)(y) = (n(y)(z) +i-7(y)) = S(mc(y)(z +i-y)).

For £ = x + i -y € Hc we will use the notation £ to refer to z — i - y.
Using this isomorphism, we obtain an isomorphism H¢c @ He — He ® Hc given by the map

£ ®@n— £®7, and also an isomorphism Hc ® He — He @ He viaé O n— O .

THEOREM 4.6 (Popa?). Let w be an orthogonal representation. Then the following are equiva-
lent:
() 1 <7mcR7c (2 7c ®me)
(2) 1 < mc ©®7c (= mc O 7c)
(3) 1 < kKy™
@) 1<Ky @ k0™ (2 K™ @ KO

where k(™ = @n21 71'8" is the unitary Koopman representation of the Gaussian action a.

PROOF. We proceed to show (1) = (2) = (3) = (4) = (1).
(1)=(2): Given F C I finite and € > 0 let ' € HS(Hc) be such that ||T'||prg = 1 and for all
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vyeEF
€ > ||mc @ Tc(YV)(T) — Tllgs = [lmc(7)T — Tre(¥)||ms-

We have that |T'| = (T*T)'/? € Hc ® Hc is a positive self-adjoint Hilbert-Schmidt operator. Let
S =mc @7c(y)(T). Then

§*S = (r¢ @ Te(Y)(T))* (rc @ Te(Y)(T)) = me(NT* Trc(y™)

= mc ®7c(7)(IT])? = 7c © 7 () (IT])*
so0 |S| = mc @ T () (|T]). By the Powers-Stgrmer inequality we obtain for v € F

11T] = mc 0T (N T [7zs = 1T~ 151 s
<|IT + S|lusl|T = Sllus
< (ITlas + [1Sl[as)IIT = 7 @ T(y)(T)|| s

=2||IT = mc @7c(7)(T)|ms < 2e

so that |T'| is almost invariant for 7¢ © 7c.

(2)=(3): This is obvious since m¢ ® ¢ is a subrepresentation of ;™.

(3)=-(4): This is also obvious.

(4)=(1): By Lemma 3.2 of [Pop08] we have that 1 < m¢ ® 7r¢ if and only if there exists some
representation p with 1 < 7¢c ® p. So assume 1 < k3™ ® ;™. We have

L o= (@ o (@ e

n>1 m>1

(B @ (P ™)

n>1 m>1

~ @ ﬂ_%m+m >~ e ®( @ ﬂ_%m+mfl)

n,m>1 n,m>1

IN

sothe 1 < mc ® (D, ,>1 wgnﬂnfl). Applying Popa’s Lemma, we get 1 < m¢c ® 7C. O

This has the following implication. It is known that if = 22 \; is a real quasi-regular representa-

tion of G on [2(I,R), then ¢ has almost invariant vectors iff ¢ is amenable iff a, has non-trivial
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almost invariant sets iff x{™ has almost invariant vectors iff the action of G on I is amenable. Theo-
rem 4.6 shows that in general this does not hold, since there are examples of ™ which are amenable
but that do not have almost invariant vectors.

In [ET10] an action a of a group A is constructed which is not anti-modular, and such that the
Koopman representation rg of a does not weakly contain any finite-dimensional representations of
A. In particular x§ does not have non-trivial almost invariant vectors. If xj were non-amenable
then, by the main result of [ET10], a would be anti-modular, which is not the case. Hence x{ is
amenable.

It is unclear whether a, having non-trivial almost invariant sets is equivalent to x,™ having
non-trivial almost invariant vectors. Clearly the former implies the latter, but the does the reverse
implication hold? Note that Theorem 4.6 shows that 1 < 3™ implies 1 < 792, so the question is
whether 7©2 having almost invariant vectors implies a, having non-trivial almost invariant sets.

One implication that we can rule out is a, having almost invariant sets implies 1 < 7. Assume
toward a contradiction that this implication holds and let 7 be an amenable representation which
does not weakly contain 1¢. Then by Theorem 4.6 we have 1¢ < kg™ < mgﬁ. Since the commutator
of al in Aut(X™N, 1) acts ergodically, Lemma 10 of [CI10] implies that 1 < aY, i.e., a) has almost
invariant sets. But a = ag,, x> SO by assumption this implies 1¢ < €p,, 7, which is equivalent to

1¢ < 7, contradicting our choice of 7.
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