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Abstract

The primary focus of this thesis is on the interplay of descriptive set theory and the

ergodic theory of group actions. This incorporates the study of turbulence and Borel re-

ducibility on the one hand, and the theory of orbit equivalence and weak equivalence on

the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study

measurable graph combinatorial invariants of group actions and employ the ultraproduct

construction as a way of constructing various measure preserving actions with desirable

properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of resid-

ually finite groups, and we prove a conjecture of Kechris by showing that under general

hypotheses property MD is inherited by a group from one of its co-amenable subgroups.

Chapter 4 is a study of weak equivalence. One of the main results answers a question of

Abért and Elek by showing that within any free weak equivalence class the isomorphism

relation does not admit classification by countable structures. The proof relies on affirm-

ing a conjecture of Ioana by showing that the product of a free action with a Bernoulli

shift is weakly equivalent to the original action. Chapter 5 studies the relationship between

mixing and freeness properties of measure preserving actions. Chapter 6 studies how ap-

proximation properties of ergodic actions and unitary representations are reflected group

theoretically and also operator algebraically via a group’s reduced C∗-algebra. Chapter 7 is

an appendix which includes various results on mixing via filters and on Gaussian actions.
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Chapter 1

Introduction

The questions addressed in this thesis lie at the interface of several fields including de-

scriptive set theory, ergodic theory, representation theory, probability theory, and measur-

able group theory. A unified approach to studying these questions is facilitated by a global

perspective which was initiated and greatly developed in [Kec10]. From this perspective,

problems in ergodic theory may be seen as topological-dynamical and descriptive problems

concerning continuous actions of the Polish group A = A(X,µ) of automorphisms of a

standard (usually non-atomic) probability space (X,µ). Likewise, representation theory

may be studied via continuous actions of the Polish group U = U(H) of unitary operators

on a separable (usually infinite-dimensional) Hilbert space H.

More concretely, if Γ is a countable group then the set A(Γ, X, µ) of all measure pre-

serving actions of Γ on (X,µ) naturally forms a Polish space on which A acts continuously

by conjugation. What is significant here is that the natural ergodic theoretic notion of iso-

morphism (”conjugacy”) of measure preserving actions of Γ is exactly the orbit equivalence

relation generated by this action of the Polish group A; analogous remarks hold for unitary

representations of Γ and the Polish group U. Descriptive set theorists have developed a

general theory of Borel reducibility, which studies the set theoretic complexity of equiva-

lence relations such as those arising from Polish group actions. Applications of this theory

to actions of A and U have led to deep and surprising insights into the nature of conjugacy
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in ergodic theory and of unitary equivalence in representation theory. We begin with a brief

introduction to the basic notions of this framework.

1. Borel reducibility and classification

If E and F are equivalence relations on standard Borel spaces X and Y , respectively,

then E is called Borel reducible to F , denoted E ≤B F , if there is a Borel map ψ :

X → Y satisfying xEy ⇔ ψ(x)Fψ(y) for all x, y ∈ X . Such a map ψ is called a Borel

reduction fromE to F . The substance of this notion lies in the requirement that this map be

definable in some sense, and there are theoretical reasons for choosing Borel definability.

The resulting richness of the ordering≤B and its continuing success in comparing naturally

occurring equivalence relations in mathematics may be taken as further justifications for

this choice. A Borel reduction fromE to F may be seen as providing an explicitly definable

classification of elements of X up to E-equivalence using the F -classes as invariants.

An equivalence relation is said to be classifiable by countable structures if it is Borel re-

ducible to the isomorphism relation on some standard Borel space of countable structures,

for example, countable graphs, groups, or partial orders. More precisely, E admits classifi-

cation by countable structures if there exists a countable language L and a Borel reduction

from E to isomorphism on the standard Borel space XL of all L-structures with universe

N. A classical example of such a classification is the Halmos-von Neumann Theorem

which completely classifies all ergodic measure preserving transformations with discrete

spectrum, up to isomorphism, by their group of eigenvalues [HvN42]. Another example

is Elliott’s complete classification of unital AF-algebras by their pointed pre-ordered K0-

groups [Ell76], [FTT11]. On the other hand, Hjorth has isolated a dynamical property

called turbulence that may hold of a Polish group action, and which is an obstruction to

there being a classification by countable structures for the orbit equivalence relation of that

action. In fact, turbulence is in a sense the only obstruction to the existence of such a

classification [Hjo02].
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2. Approximation and classification in the ergodic theory of countable groups

A (probability-)measure preserving action of a (discrete) countably infinite group Γ on

(X,µ) is a homomorphism a : Γ → A(X,µ). The set of all measure preserving actions

of Γ on (X,µ) naturally forms a Polish space A(Γ, X, µ) on which A acts continuously by

coordinate-wise conjugation. The orbit A ·a of a ∈ A(Γ, X, µ) is called its conjugacy class

and two actions a and b fromA(Γ, X, µ) with the same conjugacy class are said to be conju-

gate. We say that b is weakly contained in a if it is in the closure of the conjugacy class of a,

and we call a and b weakly equivalent if each weakly contains the other. If a ∈ A(Γ, X, µ)

and b ∈ A(Γ, Y, ν) are actions with different underlying probabilities spaces then we say

that b is weakly contained in a if it is a factor (i.e., quotient) of some c ∈ A(Γ, X, µ) that

is weakly equivalent to a. The weak containment relation is reflexive and transitive, and

weak equivalence is therefore an equivalence relation. Weak containment of measure pre-

serving actions was introduced by Kechris in [Kec10] as an ergodic theoretic analogue of

weak containment of unitary representations, and it has proven to be a remarkably robust

notion that accurately captures an intuition that one measure preserving action asymptoti-

cally approximates or simulates another. Abért and Elek have recently defined a compact

Polish topology on the set of weak equivalence classes in which many important invariants

of weak equivalence become continuous functions [AE11], [TD12c]. A fundamental the-

orem regarding weak containment is due to Abért and Weiss and concerns the Bernoulli

shift action of Γ which we now define.

Let Γ act on the set [0, 1]Γ of functions f : Γ→ [0, 1] by shifting indices: (γ · f)(δ) =

f(γ−1δ). This action preserves the product measure νΓ where ν is Lebesgue measure, and

we call this measure preserving action the Bernoulli shift of Γ and denoted it by sΓ. The

Bernoulli shift provides an ergodic theoretic counterpart to the left regular representation

of Γ.

THEOREM 2.1 (Abért-Weiss [AW11]). sΓ is weakly contained in every free measure

preserving action of Γ.
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Conversely, any measure preserving action weakly containing sΓ must itself be free.

Adrian Ioana conjectured that there is in fact an absorption principle at work which strength-

ens this.

CONJECTURE 2.2 (A. Ioana). Let a be any free measure preserving action of a count-

ably infinite group Γ. Then sΓ × a is equivalent to a.

Conjecture 2.2 strengthens Theorem 2.1 since the product action sΓ × a is easily seen

to weakly contain each of its factors. By combining ideas from [AGV12] with a close

analysis of weak containment it is shown in Chapter 4 ([TD12c]) that an even more general

absorption principle holds, of which Ioana’s conjecture is a special case.

THEOREM 2.3 (T-D [TD12c]). Conjecture 2.2 is true.

Theorem 2.3 has interesting global consequences for the space A(Γ, X, µ), which are

used in Chapter 4 to provide a strong negative answer to a question of Abért and Elek con-

cerning the relationship between conjugacy and weak equivalence. Abért and Elek exhib-

ited weak containment rigidity among E0-ergodic profinite actions [AE10] and, prompted

by the orbit equivalence superrigidity results of Popa, asked whether it is was possible to

obtain full weak equivalence rigidity:

QUESTION 2.4 (Abért-Elek [AE11]). Does there exist a countably infinite group Γ

with a free measure preserving action whose conjugacy class and weak equivalence class

coincide?

Combining Theorem 2.3 with the work of Kerr, Li, and Pichot [KLP10] on turbulence

in spaces of C∗-algebra representations, the following is shown:

THEOREM 2.5 (T-D [TD12c]). Let a be any free measure preserving action of a count-

ably infinite group Γ. Then the conjugacy relation on the weak equivalence class of a is not

classifiable by countable structures.
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This implies that the weak equivalence class of a contains a continuum of conjugacy

classes, and thus provides a negative answer to Question 2.4. But the conclusion is actu-

ally much stronger than this: there is no Borel way of assigning countable trees, groups,

orderings, etc., as invariants to actions in the weak equivalence class of a that completely

classifies these actions up to conjugacy.

3. Invariants of weak equivalence and measurable combinatorics

Theorem 2.5 shows that the degree to which countable invariants can provide mean-

ingful distinctions, even within each weak equivalence class, is limited. Fortunately, the

notion of weak equivalence turns out to be valuable in itself: many important properties of

measure preserving actions have been shown to be invariants of weak equivalence. Further-

more, these invariants of weak equivalence usually turn out to exhibit interesting behavior

under weak containment.

Many examples of this phenomenon arise in the study of measurable combinatorial

invariants of measure preserving actions (another example is cost, discussed in §6 in this

introduction). If Γ is a finitely generated group, then for any finite generating set S of

Γ \ {e} and action a ∈ A(Γ, X, µ) we consider the graph G(S, a), with underlying vertex

setX , and where x and y are connected by an edge if sa ·x = y or sa ·y = x for some s ∈ S.

We let E(S, a) ⊆ X × X denote the set of edges of G(S, a). Measurable combinatorial

parameters are then associated to G(S, a). For example:

(1) A subset A ⊆ X of vertices is said to be independent in G(S, a) if no two ver-

tices in A are adjacent. The independence number of the graph G(S, a), denoted

iµ(S, a), is then defined to be the supremum of the measures µ(A) as A ranges

over measurable subsets of X which are independent in G(S, a).

(2) The measurable chromatic number of G(S, a), denoted χµ(S, a) is the smallest

natural number k ∈ N such that there exists a measurable function c : X →
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{0, 1, . . . , k−1} (called a k-coloring) assigning no two adjacent vertices the same

value.1

(3) The approximate chromatic number of G(S, a), denoted χapµ (S, a) is the smallest

natural number k ∈ N such that for every ε > 0 there exists a Borel set A ⊆ X

with µ(A) > 1− ε along with a measurable coloring c : A→ {0, 1, . . . , k− 1} of

the induced subgraph G(S, a) � A.

(4) A matching of a graph G is a M ⊆ E(G) of edges such that no two edges in

M share a vertex. If M is a matching of G(S, a) then we let XM denote the set

of matched vertices. The matching number of G(S, a) is defined as mµ(S, a) =

1
2

supM µ(XM), whereM ranges over all matchings ofG(S, a) which are measur-

able.

The parameters iµ, χapµ andmµ each respect weak containment: if a is weakly contained

in b, then iµ(S, a) ≤ iµ(S, b), χapµ (S, a) ≥ χapµ (S, b) andmµ(S, a) ≤ mµ(S, b). In particular

these parameters are invariants of weak equivalence.

Chapter 2 ([CKTD11]) is joint work with Clinton Conley and Alexander Kechris. We

connect combinatorial properties of measure preserving actions to random graph-theoretic

objects studied in probability theory. An invariant random k-coloring of an infinite count-

able graph G is a Borel probability measure on the compact space of k-colorings of G

which is invariant under automorphisms of G. Using ultraproduct techniques we address

a question raised by Aldous and Lyons [AL07] about the existence of invariant random

colorings of Cayley graphs of groups.

THEOREM 3.1 (Conley-Kechris-T-D [CKTD11]). Let Γ be a countably infinite group

with finite generating set S. Let Cay(Γ, S) denote the Cayley graph of Γ with respect to S

and let d denote the degree of Cay(Γ, S) (i.e., d = |S ∪ S−1|). Then Cay(Γ, S) admits and

invariant random d-coloring.

Aldous and Lyons had previously shown this to hold under the additional assumption

that Γ is sofic.
1It is a non-trivial fact that this number is always finite.
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4. Co-induction and weak containment

Chapter 3 is joint work with Lewis Bowen [BTD11]. A residually finite group Γ has

property MD [Kec12] if the finite actions (i.e., actions coming from finite quotients of Γ)

are dense in A(Γ, X, µ), and Γ has FD [LS04] if the finite representations are dense in the

space Rep(Γ,H) of representations of Γ on H. It is not difficult to show that MD implies

FD, but the converse is unknown. It is known that free groups and residually finite amenable

groups have MD [Kec12] and that MD is closed under taking subgroups [Kec12] and free

products [TD12c]. The groups SLn(Z) for n ≥ 3 are known to not have FD [LS04] and

hence do not have MD.

In Chapter 3, Lewis Bowen and I answer affirmatively a question raised Kechris con-

cerning the relationship between co-induced actions and weak containment. This leads to

another closure property of MD which implies that surface groups have MD and - in light of

the recent proof of the Virtual Fibration Conjecture by Agol [AGM12] - that fundamental

groups of closed hyperbolic 3-manifolds have property MD.

5. Automatic freeness

The subject of non-free measure preserving actions has received significant attention

recently, see, for example, [AGV12, Bow12b, BGK12, CP12, Ele12, TD12c, TD12a,

TD12b, Ver12, ABB+11, AE11, Gri11, Ver11, BG04, SZ94]. In [SZ94], Stuck and Zim-

mer proved a strong generalization of the Margulis Normal Subgroup Theorem for certain

higher-rank semisimple Lie groups in terms of an automatic freeness property for many

measure preserving actions of these groups. One consequence is that if Γ is an irreducible

lattice in such a group then any non-atomic ergodic a ∈ A(Γ, X, µ) is almost free, i.e., there

exists a finite normal subgroup N of Γ such that the stabilizer Γx of almost every x ∈ X is

equal to N . This is an example of automatic freeness at one extreme: by restricting consid-

erably the group Γ, a minimal hypothesis on the action is needed to ensure that it is almost

free. The main result of Chapter 5 ([TD12a]) is an automatic freeness result at the other

extreme in which Γ is only assumed infinite, but a more serious ergodicity assumption is
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imposed on the action. A measure preserving action of Γ is called totally ergodic if each

infinite subgroup of Γ acts ergodically and it is called trivial if the underlying measure is a

point mass. The following is shown in Chapter 5:

THEOREM 5.1 (T-D [TD12a]). All non-trivial totally ergodic actions of countably infi-

nite groups are almost free. In particular, all non-trivial mixing actions and all non-trivial

mildly mixing actions of countably infinite groups are almost free.

This is new even for the case of mixing actions; Weiss had previously observed that ac-

tions of amenable groups with a much stronger mixing property called completely positive

entropy are almost free. The total ergodicity assumption is close to optimal since there are

examples due to Vershik [Ver12] of actions with mixing properties only slightly weaker

than mild mixing, but which are totally non-free, which means that these examples are in

some sense as far from free as possible. The most surprising aspect of Theorem 5.1 is

that its proof ultimately relies on the Feit-Thompson odd order theorem from finite group

theory! Indeed, the proof of Theorem 5.1 directly uses the group theoretic fact that every

infinite locally finite group contains an infinite abelian subgroup, and all known proofs of

this fact in turn rely on the Feit-Thompson theorem [Kar63, HK64, Rob96].

6. Expressions of non-amenability in ergodic theory and representation theory

Chapter 6 may be seen as an investigation into natural analogues of Theorem 5.1. These

analogues turn out to have connections to well-known open questions about group C∗-

algebras as well as to the theory of cost.

Amenable Invariant Random Subgroups The freeness properties of an action a ∈

A(Γ, X, µ) may be studied directly via that action’s stabilizer distribution, obtained as the

image of the measure µ under the stabilizer map x 7→ Γx. This defines a Borel probability

measure on the space of subgroups of Γ that is invariant under conjugation by elements of

Γ. Any such probability measure is called an invariant random subgroup of Γ, so-named by

Abért, Glasner, and Virag, who showed that every invariant random subgroup of Γ arises as
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the stabilizer distribution of some measure preserving action of Γ [AGV12]. Each normal

subgroup of Γ is an invariant random subgroup when viewed as a Dirac distribution and

many theorems originally concerning normal subgroups have been shown to generalize to

invariant random subgroups, the Stuck-Zimmer Theorem being one prominent example. In

what follows, an invariant random subgroup of Γ will be said to have a particular property

if it has that property with probability 1.

OPEN QUESTION 6.1. Is every amenable invariant random subgroup of a countable

group Γ contained in some amenable normal subgroup of Γ?

While this is open in general, Y. Glasner [Gla12] has obtained a positive answer for

linear groups (see also the remark after (Diagram 0)). There is a useful way of restating

Question 6.1 in terms of the amenable radical of a group. Day showed that every discrete

group Γ contains a characteristic subgroup, called the amenable radical of Γ, denoted by

ARΓ, which is amenable and which contains all other amenable normal subgroups of Γ.

Question 6.1 is then equivalent to the question of whether a countable group with trivial

amenable radical has no non-trivial amenable invariant random subgroups.

Shift-minimality andC∗-simplicity If C is a class of groups then a measure preserving

action of a group Γ is called C-ergodic if each subgroup of Γ in C acts ergodically. An idea

from the proof of Theorem 5.1 shows that if a non-trivial action of Γ is NA-ergodic, where

NA is the class of non-amenable groups, then the invariant random subgroup associated to

this action is amenable. One may show that every measure preserving action weakly con-

tained in the Bernoulli shift sΓ is NA-ergodic, and therefore any non-trivial action weakly

contained in sΓ gives rise to an amenable invariant random subgroup of Γ which will be

non-trivial provided the original action was not free. Call a countable group Γ shift-minimal

if every non-trivial action weakly contained in sΓ is free.

OPEN QUESTION 6.2 (T-D). If the amenable radical of Γ is trivial then is Γ shift-

minimal?
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The Abért-Weiss characterization of free actions as those weakly containing sΓ yields

that Γ is shift-minimal if and only if every non-trivial action weakly contained in sΓ is in

fact weakly equivalent to sΓ. It is well known that Γ is C∗-simple, i.e., the reduced C∗-

algebra, C∗r (Γ), of Γ is simple, if and only if every non-zero unitary representation of Γ

weakly contained in the left regular representation λΓ is actually weakly equivalent to λΓ

[dlH07]. This is a tantalizing parallel, although there is no obvious implication between

the two properties.

OPEN QUESTION 6.3 (T-D). Are all C∗-simple groups shift-minimal?

C∗-simplicity may be restated as a dynamical property of an action of the unitary group

U(H), where H = `2(Γ). The set Irrλ(Γ,H) of all irreducible representations of Γ on H

weakly contained in λΓ naturally forms a Polish space on which U(H) acts continuously

by coordinate-wise conjugation. Then Γ is C∗-simple if and only if Γ is ICC and every

unitary conjugacy class in Irrλ(Γ,H) is dense.

Evidence suggests that C∗-simple groups should be shift-minimal. In Chapter 6 I show

that shift-minimality of Γ follows from another property called the unique trace property,

which means that C∗r (Γ) has a unique tracial state. In all known examples, the unique trace

property and C∗-simplicity coincide, although it is open whether this is the case in general.

THEOREM 6.4 (T-D [TD12b]). Groups with the unique trace property are shift-minimal.

In fact, groups with the unique trace property have no non-trivial amenable invariant ran-

dom subgroups.

Powers [Pow75] demonstrated C∗-simplicity and the unique trace property for non-

abelian free groups, and since then many large classes of groups have been shown to have

both of these properties [dLH85, BN88, B9̀1, BCdLH94, AM07, dlH07, dlHP11]. It is

notable that in many cases, including the original argument of Powers, the proof given for a

group’s C∗-simplicity makes use of stronger hypotheses than the corresponding proof that

the group has the unique trace property. The following diagram depicts the known impli-

cations among the five notions discussed. Any implication not addressed by the diagram is
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an open problem in general.

(Diagram 0) C∗-simple

[PS79] &.

No non-trivial
amenable IRS

T-D
��

Unique trace
T-D

ks

T-Dnv

[PS79]px

Shift-minimal

T-D
��

Trivial amenable
radical

Theorem 6.4 and results of Poznansky [Poz09] imply these properties are all equivalent for

linear groups.

Cost and the first `2-Betti number The second half of Chapter 6 connects shift-

minimality and cost. The cost of a measure preserving countable Borel equivalence re-

lation is a [0,∞]-valued orbit equivalence invariant introduced by Levitt [Lev95] and then

developed considerably by Gaboriau [Gab00]. The cost of a measure preserving action of

Γ is defined to be the cost of the equivalence relation generated by this action. The cost of

a group Γ, denoted C(Γ), is then defined as the infimum of the costs of its free measure

preserving actions. When Γ is infinite, then C(Γ) ≥ 1. Γ is said to have fixed price r,

where r ≥ 0, if every free action of Γ has cost r. For example, infinite amenable groups

have fixed price 1, and Gaboriau has shown the free group of rank n has fixed price n. A

major open question in the area is whether every countable group has fixed price. This is

known to be the case for many groups, but is open in general. The following is shown in

Chapter 6.

THEOREM 6.5 (T-D [TD12b]). If a countable group Γ does not have fixed price 1

then Γ/ARΓ is shift-minimal. In addition, if C(Γ) > 1 then every non-trivial invariant

random subgroup of Γ/ARΓ of infinite index has cost∞, and in particular Γ/ARΓ has no

non-trivial amenable invariant random subgroups.

Results of Gaboriau imply ARΓ is finite in the above situation. Part of the proof of

the first statement in Theorem 6.5 involves extending a result of Kechris [Kec10], that cost
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respects weak containment in finitely generated groups, to the setting of general countable

groups; one consequence is a characterization of countable groups with fixed price 1, pre-

viously shown to hold in the finitely generated case by Abért and Weiss: a countable group

has fixed price 1 if and only if its Bernoulli shift has cost 1. The second statement is an

analogue of a theorem of Bergeron and Gaboriau [BG04] about the first `2-Betti number.

Theorems 6.4 and 6.5 along with Bergeron and Gaboriau’s result provide evidence for

the following conjecture:

Conjecture 1: If Γ is a countably infinite group with positive `2-Betti number, then

Γ/ARΓ has the unique trace property.

It is known that C(Γ) ≥ β
(2)
1 (Γ) + 1 for any countably infinite group Γ, where β(2)

1 (Γ)

is the first `2-Betti number of Γ. It is an open problem whether this is actually an equality.

Regardless, the hypothesis β(2)
1 (Γ) > 0 is at least as strong as the hypothesis C(Γ) > 1

from Theorem 6.5. Peterson and Thom [PT11] have shown that if Γ is torsion-free and

satisfies an additional technical hypothesis, then Conjecture 1 holds. What they actually

show is that groups satisfying their hypotheses have many free subgroups, and then C∗-

simplicity and the unique trace property are easily deduced using a Powers-like argument

from [BCdLH94]. If the additional technical hypothesis is dropped then their methods still

show that Γ has rather strong paradoxicality properties.

In light of the connections between cost and invariant random subgroups, a proof of

Conjecture 1 would add an interesting dimension to the relationship between cost and the

first `2-Betti number.
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Chapter 2

Ultraproducts of measure preserving

actions and graph combinatorics

Clinton T. Conley, Alexander S. Kechris, and Robin D. Tucker-Drob

1. Introduction

In this paper we apply the method of ultraproducts to the study of graph combinatorics

associated with measure preserving actions of infinite, countable groups, continuing the

work in Conley-Kechris [CK13].

We employ the ultraproduct construction as a flexible method to produce measure pre-

serving actions a of a countable group Γ on a standard measure space (X,µ) (i.e., a standard

Borel space with its σ-algebra of Borel sets and a Borel probability measure) starting from

a sequence of such actions an on (Xn, µn), n ∈ N. One uses a non-principal ultrafilter U

on N to generate the ultraproduct action
∏

n an/U of (an) on a measure space (XU , µU),

obtained as the ultraproduct of ((Xn, µn)) via the Loeb measure construction. The measure

algebra of the space (XU , µU) is non-separable but by taking appropriate countably gener-

ated subalgebras of this measure algebra one generates factors a of the action
∏

n an/U

which are now actions of Γ on a standard measure space (X,µ) and which have various

desirable properties.
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In §2, we discuss the construction of the ultrapower (XU , µU) of a sequence of standard

measure spaces (Xn, µn), n ∈ N, with respect to a non-principal ultrafilter U on N, via

the Loeb measure construction. We follow largely the exposition in Elek-Szegedy [ES07],

which dealt with the case of finite spaces Xn with µn the counting measure.

In §3, we define the ultraproduct action
∏

n an/U on (XU , µU) associated with a se-

quence an, n ∈ N, of measure preserving actions of a countable group Γ on (Xn, µn) and

discuss its freeness properties. When an = a for all n, we put aU =
∏

n an/U .

In §4, we characterize the factors of the action
∏

n an/U associated with countably

generated σ-subalgebras of the measure algebra of (XU , µU).

For a measure space (X,µ) and a countable group Γ, we denote byA(Γ, X, µ) the space

of measure preserving actions of Γ on (X,µ) (where, as usual, actions are identified if they

agree a.e.). This space carries the weak topology generated by the maps a ∈ A(Γ, X, µ) 7→

γa ·A (γ ∈ Γ, A ∈ MALGµ), from A(Γ, X, µ) into the measure algebra MALGµ (with the

usual metric dµ(A,B) = µ(A∆B)), and where we put γa · x = a(γ, x). When (X,µ) is

standard, A(Γ, X, µ) is a Polish space.

If a ∈ A(Γ, X, µ), an ∈ A(Γ, Xn, µn), n ∈ N, and U is a non-principal ultrafilter on N,

we say that a is weakly U-contained in (an),in symbols

a ≺U (an)

if for every finite F ⊆ Γ, A1, . . . , AN ∈ MALGµ, ε > 0, for U-almost all n:

∃B1,n . . . ∃BN,n ∈ MALGµn∀γ ∈ F∀i, j ≤ N

|µ(γa · Ai ∩ Aj)− µn(γan ·Bi,n ∩Bj,n)| < ε,

(where a property P (n) is said to hold for U-almost all n if {n : P (n)} ∈ U). In case

an = b for all n, then a ≺U (an) ⇔ a ≺ b (in the sense of weak containment of actions,

see Kechris [Kec10]).
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If a, bn ∈ A(Γ, X, µ), n ∈ N, we write

lim
n→U

bn = a

if for each open nbhd V of a in A(Γ, X, µ), bn ∈ V , for U-almost all n. Finally a ∼= b

denotes isomorphism (conjugacy) of actions.

We show the following (in 4.3):

THEOREM 1. Let U be a non-principal ultrafilter on N. Let (X,µ), (Xn, µn), n ∈ N

be non-atomic, standard measure spaces and let a ∈ A(Γ, X, µ), an ∈ A(Γ, Xn, µn). Then

the following are equivalent:

(1) a ≺U (an),

(2) a is a factor of
∏

n an/U ,

(3) a = limn→U bn, for some sequence (bn), with

bn ∈ A(Γ, X, µ), bn ∼= an,∀n ∈ N,

In particular, for a ∈ A(Γ, X, µ), b ∈ A(Γ, Y, ν), a ≺ b is equivalent to “a is a factor

of bU”. Moreover one has the following curious compactness property of A(Γ, X, µ) as a

consequence of Theorem 1: If an ∈ A(Γ, X, µ), n ∈ N, then there is n0 < n1 < n2 < . . .

and bni ∈ A(Γ, X, µ), bni
∼= ani , such that (bni) converges in A(Γ, X, µ).

In §5, we apply the ultraproduct construction to the study of combinatorial parameters

associated to group actions. Given an infinite group Γ with a finite set of generators S,

not containing 1, and given a free action a of Γ on a standard space (X,µ), the (simple,

undirected) graph G(S, a) has vertex set X and edge set E(S, a), where

(x, y) ∈ E(S, a)⇔ x 6= y & ∃s ∈ S(sa · x = y or sa · y = x).

As in Conley-Kechris [CK13], we define the associated parameters χµ(S, a) (the measur-

able chromatic number), χapµ (S, a) (the approximate chromatic number) and iµ(S, a) (the

independence number), as follows:
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• χµ(S, a) is the smallest cardinality of a standard Borel space Y for which there is a

(µ−)measurable coloring c : X → Y (i.e., xE(S, a)y ⇒ c(x) 6= c(y)).

• χapµ (S, a) is the smallest cardinality of a standard Borel space Y such that for each

ε > 0, there is a Borel set A ⊆ X with µ(X \A) < ε and a measurable coloring c : A→ Y

of the induced subgraph G(S, a)|A = (A,E(S,A) ∩ A2).

• iµ(S, a) is the supremum of the measures of Borel independent sets, where A ⊆ X is

independent if no two elements of A are adjacent.

Given a (simple, undirected) graph G = (X,E), where X is the set of vertices and E

the set of edges, a matching in G is a subset M ⊆ E such that no two edges in M have

a common vertex. We denote by XM the set of matched vertices, i.e., the set of vertices

belonging to an edge in M . If XM = X we say that M is a perfect matching.

For a free action a of Γ as before, we also define the parameter

m(S, a) = the matching number,

where m(S, a) is 1/2 of the supremum of µ(XM), with M a Borel (as a subset of X2)

matching in G(S, a). If m(S, a) = 1/2 and the supremum is attained, we say that G(S, a)

admits an a.e. perfect matching.

The parameters iµ(S, a),m(S, a) are monotone increasing with respect to weak con-

tainment, while χapµ (S, a) is decreasing. Below we let a ∼w b denote weak equivalence of

actions, where a ∼w b ⇔ a ≺ b & b ≺ a, and we let a v b denote that a is a factor of b.

We now have (see 5.2)

THEOREM 2. Let Γ be an infinite, countable group and S a finite set of generators.

Then for any free action a of Γ on a non-atomic, standard measure space (X,µ), there is a

free action b of Γ on (X,µ) such that

(i) a ∼w b and a v b,

(ii) χapµ (S, a) = χapµ (S, b) = χµ(S, b),

(iii) iµ(S, a) = iµ(S, b) and iµ(S, b) is attained,

(iv) m(S, a) = m(S, b) and m(S, b) is attained.
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In §6, we study analogues of the classical Brooks’ Theorem for finite graphs, which

asserts that the chromatic number of a finite graph G with degree bounded by d is ≤ d

unless d = 2 and G contains an odd cycle or d ≥ 3 and G contains the complete subgraph

with d+ 1 vertices.

Let Γ, S be as in the preceding discussion, so that the graph G(S, a) associated with a

free action a of Γ on a standard space (X,µ) has degree d = |S±1|, where S±1 = S ∪ S−1.

It was shown in Conley-Kechris [CK13] that χapµ (S, a) ≤ d, so one has an “approximate”

version of Brooks’ Theorem. Using this and the results of §5, we now have (see 6.11):

THEOREM 3. Let Γ be an infinite group and S a finite set of generators. Then for any

free action a of Γ on a non-atomic, standard space (X,µ), there is a free action b on (X,µ)

such that a ∼w b and χµ(S, b) ≤ d (= |S±1|).

It is not the case that for every free action a of Γ we have χµ(S, a) ≤ d, but the only

counterexamples known are Γ = Z or (Z/2Z) ∗ (Z/2Z) (with the usual sets of generators)

and Conley-Kechris [CK13] show that these are the only counterexamples if Γ has finitely

many ends.

The previous result can be used to answer a question in probability theory (see Aldons-

Lyons [AL07]), namely whether for any Γ, S, there is an invariant, random d-coloring of

the Cayley graph Cay(Γ, S) (an earlier result of Schramm (unpublished, 1997) shows that

this is indeed the case with d replaced by d + 1). A random d-coloring is a probability

measure on the Borel sets of the space of d-colorings of the Cayley graph Cay(Γ, S) and

invariance refers to the canonical shift action of Γ on this space.

We now have (see 6.4):

THEOREM 4. Let Γ be an infinite group and S a finite set of generators with d = |S±1|.

Then there is an invariant, random d-coloring. Moreover for any free action a of Γ on a

non-atomic, standard space (X,µ), there is such a coloring weakly contained in a.

Let GΓ,S be the automorphism group of the Cayley graph G(Γ, S) with the pointwise

convergence topology. This is a Polish locally compact group containing Γ as a closed
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subgroup. One can consider invariant, random colorings under the canonical action ofGΓ,S

on the space of colorings, which we call GΓ,S-invariant, random colorings. This appears

as a stronger notion but we show in 6.6 that the existence of a GΓ,S-invariant, random d-

coloring is equivalent to the existence of an invariant, random d-coloring, so Theorem 4

works as well for GΓ,S-invariant, random colorings.

One can also ask whether the last statement in Theorem 4 can be improved to “is a factor

of” instead of “weakly contained in”. This again fails for Γ = Z or (Z/2Z) ∗ (Z/2Z) and a

the shift action of Γ on [0, 1]Γ, a case of primary interest, but holds for all other Γ that have

finitely many ends. Moreover in the case of the shift action one has also GΓ,S-invariance

(see 6.7).

THEOREM 5. Let Γ be an infinite group and S a finite set of generators with d = |S±1|.

If Γ has finitely many ends but is not isomorphic to Z or (Z/2Z) ∗ (Z/2Z), then there is a

GΓ,S-invariant, random d-coloring which is a factor the shift action of GΓ,S on [0, 1]Γ.

In §7, we discuss various results about a.e. perfect matchings and invariant, random

matchings. Lyons-Nazarov [LN11] showed that if Γ is a non-amenable group with a finite

set of generators S and Cay(Γ, S) is bipartite (i.e., has no odd cycles), then there is a GΓ,S-

invariant, random perfect mateching of its Cayley graph, which is a factor of the shift action

of GΓ,S on [0, 1]Γ. This also implies that m(S, sΓ) = 1
2
, where sΓ is the shift action of Γ on

[0, 1]Γ, and in fact the graph associated with this action has an a.e. perfect matching. We do

not know if m(S, a) = 1
2

actually holds for every Γ, S and every free action a. We note in

7.4 that the only possible counterexamples are those Γ, S for which Γ is not amenable and

S consists of elements of odd order. However we show in 7.7 the following:

THEOREM 6. Let Γ = (Z/3Z) ∗ (Z/3Z) with the usual set of generators S = {s, t},

where s3 = t3 = 1. Then for any free action a of Γ on a non-atomic, standard measure

space (X,µ), the associated graph G(S, a) has an a.e. perfect matching.

In §8, we study independence numbers. In Conley-Kechris [CK13], the following was

shown: Let Γ, S be as before. Then the set of independence numbers iµ(S, a), as a varies
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over all free actions of Γ, is a closed interval. The question was raised about the structure

of the set of all iµ(S, a), where a varies over all free, ergodic actions of Γ. We show the

following (in 8.1).

THEOREM 7. Let Γ be an infinite group with S a finite set of generators. If Γ has

property (T), the set of iµ(S, a) as a varies over all the free, ergodic actions of Γ is closed.

We do not know what happens if Γ does not have property (T).

In §9, we discuss the notion of sofic equivalence relations and sofic actions, recently

introduced in Elek-Lippner [EL10]. We use ultraproducts and a result of Abért-Weiss

[AW11] to give (in 9.6) an alternative proof of the theorem of Elek-Lippner [EL10] that

the shift action of an infinite countable sofic group in sofic and discuss some classes of

groups Γ for which every free action is sofic.

Elek-Lippner [EL10] raised the question of whether every free action of a sofic group

is sofic.

Acknowledgements. Research of ASK and RDT-D was partially supported by NSF Grant

DMS-0968710. We would like to thank Russell Lyons for many useful conversations.

2. Preliminaries

We review here some standard terminology and notation that will be used throughout

the paper.

(A) A standard measure space is a measure space (X,µ), where X is standard Borel

space (i.e., a Polish space with its σ-algebra of Borel sets) and µ a probability measure

on the σ-algebra B(X) of Borel sets. We do not assume in this paper that (X,µ) is non-

atomic, since we do want to include in this definition also finite measure spaces. If (X,µ)

is supposed to be non-atomic in a given context, this will be stated explicitly.

The measure algebra MALGµ of a measure space (X,µ) is the Boolean σ-algebra of

measurable sets modulo null sets equipped with the measure µ.
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As a general convention in dealing with measure spaces, we will often neglect null sets,

if there is no danger of confusion.

(B) If (X,µ) is a standard measure space and E ⊆ X2 a countable Borel equivalence

relation on X (i.e., one whose equivalence classes are countable), we say that E is measure

preserving if for all Borel bijections ϕ : A → B, where A,B are Borel subsets of X , such

that ϕ(x)Ex, µ-a.e.(x ∈ A), we have that ϕ preserves the measure µ.

Such an equivalence relation is called treeable if there is a Borel acyclic graph on X

whose connected components are the equivalence classes.

(C) If Γ is an infinite, countable group and S a finite set of generators, not containing

1, the Cayley graph Cay(Γ, S), is the (simple, undirected) graph with set of vertices Γ and

in which γ, δ ∈ Γ are connected by an edge iff ∃s ∈ S(γs = δ or δs = γ).

Finally for such Γ, S the number of ends of Cay(Γ, S) is the supremum of the number of

infinite components, when any finite set of vertices is removed. This number is independent

of S and it is equal to 1, 2 or∞.

3. Ultraproducts of standard measure spaces

(A) Let (Xn, µn), n ∈ N, be a sequence of standard measure spaces and denote by

B(Xn) the σ-algebra of Borel sets of Xn. Let U be a non-principal ultrafilter on N. For

P ⊆ N×X (X some set) we write

UnP (n, x)⇔ {n : P (n, x)} ∈ U .

If UnP (n, x) we also say that for U-almost all n, P (n, x) holds. On
∏

nXn define the

equivalence relation

(xn) ∼U (yn)⇔ Un(xn = yn),

let [(xn)]U be the (∼U)-equivalence class of (xn) and put

XU = (
∏
n

Xn)/U = {[(xn)]U : (xn) ∈
∏
n

Xn}.



22

Given now (An) ∈
∏

nB(Xn), we define [(An)]U ⊆ XU by

[(xn)]U ∈ [(An)]U ⇔ Un(xn ∈ An).

Note that

[(∼ An)]U =∼ [(An)]U

[(An ∪Bn)]U = [(An)]U ∪ [(Bn)]U

[(An ∩Bn)]U = [(An)]U ∩ [(Bn)]U ,

where ∼ denotes complementation. Put

B0
U = {[(An)]U : (An) ∈

∏
n

B(Xn)},

so thatB0
U is a Boolean algebra of subsets of XU .

For [(An)]U ∈ B0
U , put

µU([(An)]U) = lim
n→U

µn(An),

where limn→U rn denotes the ultrafilter limit of the sequence (rn). It is easy to see that µU

is a finitely additive probability Borel measure on B0
U . We will extend it to a (countably

additive) probability measure on a σ-algebra containingB0
U .

DEFINITION 3.1. A set N ⊆ XU is null if ∀ε > 0∃A ∈ B0
U (N ⊆ A and µU(A) < ε).

Denote byN the collection of null sets.

PROPOSITION 3.2. The collectionN is a σ-ideal of subsets of XU .

Proof. It is clear that N is closed under subsets. We will now show that it is closed

under countable unions.

LEMMA 3.3. Let Ai ∈ B0
U , i ∈ N, and assume that limm→∞ µU(

⋃m
i=0A

i) = t. Then

there is A ∈ B0
U with µU(A) = t and

⋃
iA

i ⊆ A.
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Granting this let N i ∈ N , i ∈ N, ε > 0 be given. Let N i ⊆ Ai ∈ B0
U with µU(Ai) ≤

ε/2i. Then µU(
⋃m
i=0A

i) ≤ ε and µU(
⋃m
i=0A

i) increases with m. So

lim
m→U

µU(
m⋃
i=0

Ai) = t ≤ ε

and by the lemma there is A ∈ B0
U with µU(A) ≤ ε and

⋃
iN

i ⊆
⋃
iA

i ⊆ A. So
⋃
iN

i is

null.

Proof of 2.3. Put Bm =
⋃m
i=0 A

i, so that µU(Bm) = tm → t. Let Ai = [(Ain)]U , so that

Bm = [(Bm
n )]U , with Bm

n =
⋃m
i=0A

i
n. Let

Tm =

{
n ≥ m : |µn(Bm

n )− tm| ≤
1

2m

}
,

so that
⋂
m Tm = ∅ and Tm ∈ U , as tm = µU(Bm) = limn→U µn(Bm

n ).

Let m(n) = largest m such that n ∈
⋂
`≤m Tm. Then m(n) → ∞ as n → U , since for

each M , {n : m(n) ≥M} ⊇
⋂M
m=0 Tm ∈ U . Also n ∈ Tm(n). So

|µm(n)(B
m(n)
n )− tm(n)| ≤

1

2m(n)
,

thus

lim
n→U

µn(Bm(n)
n ) = t.

Let A = [(B
m(n)
n )]U . Then µU(A) = t. Also for each i,

{n : Ain ⊆ Bm(n)
n } ⊇ {n : m(n) ≥ i} ∈ U ,

so Ai = [(Ain)]U ⊆ [(B
m(n)
n )]U = A, thus

⋃
iA

i ⊆ A. a

Put

BU = {A ⊆ XU : ∃A′ ∈ B0
U(A∆A′ ∈N )},

and for A ∈ BU put

µU(A) = µU(A′)

where A′ ∈ B0
U , A∆A′ ∈N . This is clearly well-defined and agrees with µU onB0

U .



24

PROPOSITION 3.4. The class BU is a σ-algrebra of subsets of XU containing B0
U and

µU is a probability measure onBU .

Proof. It is easy to see thatBU is a Boolean algebra containingB0
U and µU is a finitely

additive probability measure on BU . It only remains to show that if An ∈ BU , n ∈ N, are

pairwise disjoint, then
⋃
nAn ∈ BU and µU(

⋃
nAn) =

∑
n µU(An).

For A,A′ ∈ BU , let

A ≡ A′ ⇔ A∆A′ ∈N .

Let now A′n ∈ B0
U be such that An ≡ A′n. By disjointifying, we can assume that the A′n

are disjoint. Note also that
⋃
nAn ≡

⋃
nA
′
n. It is thus enough to find A′ ∈ B0

U with

A′ ≡
⋃
nA
′
n and µU(A′) =

∑
n µU(A′n) (=

∑
n µU(An)).

By Lemma 2.3, there is A′ ∈ B0
U with

⋃
nA
′
n ⊆ A′ and µU(A′) =

∑
n µU(A′n). Then

for each N ,

A′ \
⋃
n

A′n ⊆ A′ \
N⋃
n=0

A′n ∈ B0
U

and

µU(A′ \
N⋃
n=0

A′n) = µU(A′)−
N∑
n=0

µU(A′n)→ 0

as N →∞. So

A′∆
⋃
n

A′n = A′ \
⋃
n

A′n ∈N

i.e., A′ ≡
⋃
nA
′
n. a

Finally, note that for A ∈ BU , µU(A) = 0⇔ A ∈N .

(B) The following is straightforward.

PROPOSITION 3.5. The measure µU is non-atomic if and only if ∀ε > 0 ∀(An) ∈∏
nB(Xn)

(
(Un(µn(An) ≥ ε) ⇒ ∃δ > 0 ∃(Bn) ∈

∏
nB(Xn) [Un(Bn ⊆ An & δ ≤

µn(Bn), µn(An \Bn))]
)
.

For example, this condition is satisfied if each (Xn, µn) is non-atomic or if each Xn is

finite, µn is normalized counting measure and limn→U card(Xn) =∞.
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Let MALGµU be the measure algebra of (X,BU , µU). If µU is non-atomic, fix also a

function SU : MALGµU → MALGµU such that SU(A) ⊆ A and

µU(SU(A)) =
1

2
µU(A).

Let now B0 ⊆ MALGµU be a countable subalgebra closed under SU . Let B =

σ(B0) ⊆ MALGµU be the σ-subalgebra of MALGµU generated by B0. Since every el-

ement of B can be approximated (in the sense of the metric d(A,B) = µU(A∆B)) by

elements of B0, it follows that B is countably generated and non-atomic. It follows (see,

e.g., Kechris [Kec95, 17.44]) that the measure algebra (B, µU |B) is isomorphic to the mea-

sure algebra of (any) non-atomic, standard measure space, in particular MALGρ, where ρ

is the usual product measure on the Borel sets of 2N. Then we can find a Cantor scheme

(Bs)s∈2<N , with Bs ∈ BU , B∅ = X , Bŝ 0 ∩ Bŝ 1 = ∅, Bs = Bŝ 0 ∩ Bŝ 1, µU(Bs) = 2−n,

and (Bs) viewed now as members of MALGµU , belong toB and generateB. Then define

ϕ : XU → 2N

by

ϕ(x) = α⇔ x ∈
⋂
n

Bα|n.

Then ϕ−1(Ns) = Bs, where Ns = {α ∈ 2N : s ⊆ α} for s ∈ 2<N. Thus ϕ is BU -

measurable (i.e., the inverse image of a Borel set in 2N is in BU ) and ϕ∗µU = ρ, so that

(2N, ρ) is a factor of (XU , µU) and A 7→ ϕ−1(A) is an isomorphism of the measure algebra

MALGρ with (B, µU |B).

4. Ultraproducts of measure preserving actions

(A) Let (Xn, µn),U be as in §2. Let Γ be a countable group and let {αn} be a sequence

of Borel actions αn : Γ × Xn → Xn, such that αn preserves µn,∀n ∈ N. We can define

then the action αU : Γ×XU → XU by

γαU · [(xn)]U = [(γαn · xn)]U ,
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where we let γαU · x = αU(γ, x) and similarly for each αn.

PROPOSITION 4.1. The action αU preservesB0
U ,BU and the measure µU .

Proof. First let A = [(An)]U ∈ B0
U . We verify that γαU ·A = [(γαn ·An)]U , from which

it follows that the action preservesB0
U . Indeed

[(xn)]U ∈ γαU · [(An)]U ⇔ (γ−1)αU · [(xn)]U ∈ [(An)]

⇔ Un((γ−1)αn · xn ∈ An)

⇔ Un(xn ∈ γαn · An)

⇔ [(xn)]U ∈ [(γαn · An)]U .

Also

µU(γαU · A) = lim
n→U

µn(γαn · An)

= lim
n→U

µn(An) = µU(A),

so the action preserves µU |B0
U .

Next let A ∈ N and for each ε > 0 let A ⊆ Aε ∈ B0
U with µU(Aε) < ε. Then

γαU · A ⊆ γαU · Aε and µU(γαU · Aε) < ε, so γαU · A ∈ N , i.e., N is invariant under the

action.

Finally, letA ∈ BU and letA′ ∈ B0
U be such thatA∆A′ ∈N , so that γαU (A)∆γαU (A′) ∈

N , thus γαU (A) ∈ BU and µU(γαU · A) = µU(γαU · A′) = µU(A′) = µU(A). a

If (X,µ) is a probability space and α, β : Γ ×X → X are measure preserving actions

of Γ, we say the α, β are equivalent if ∀γ ∈ Γ(γα = γβ, µ-a.e.). We let A(Γ, X, µ)

be the space of equivalence classes and we call the elements of A(Γ, X, µ) also measure

preserving actions. Note that if for each n, αn, α′n as above are equivalent, then it is easy

to check that αU , α′U are also equivalent, thus if an ∈ A(Γ, Xn, µn), n ∈ N, is a sequence

of measure preserving actions and we pick αn a representative of an, then we can define
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unambiguously the ultraproduct action

∏
n

an/U

with representative αU . This is a measure preserving action of Γ on (XU , µU), i.e.,
∏

n an/U ∈

A(Γ, XU , µU). When an = a for all n, we put

aU =
∏
n

a/U .

(B) Recall that if a ∈ A(Γ, X, µ), b ∈ A(Γ, Y, ν), we say that b is a factor of a, in

symbols

b v a,

if there is a measurable map ϕ : X → Y such that ϕ∗µ = ν and ϕ(γa · x) = γb · ϕ(x), µ-

a.e.(x). We denote by MALGµ the measure algebra of (X,µ). Clearly Γ acts on MALGµ

by automorphisms of the measure algebra. If (Y, ν) is a non-atomic, standard measure

space, the map A ∈ MALGν 7→ ϕ−1(A) ∈ MALGµ is an isomorphism of MALGν with

a countably generated, non-atomic, σ-subalgebra B of MALGµ, which is Γ-invariant, and

this isomorphism preserves the Γ-actions. Conversely, we can see as in §1,(B) that every

countably generated, non-atomic, σ-subalgebra B of MALGµ, which is Γ-invariant, gives

rise to a factor of a as follows: First fix an isomorphism π between the measure algebra

(B, µ|B) and the measure algebra of (Y, ν), where Y = 2N and ν = ρ is the usual product

measure. Use this to define the Cantor scheme (Bs)s∈2<N for B as in §1, (B) and define

ϕ : X → Y as before. Now the isomorphism π gives an action of Γ on the measure

algebra of (Y, ν), which by definition preserves the Γ-actions on (B, µ|B) and MALGν .

The Γ-action on MALGν is induced by a (unique) action b ∈ A(Γ, Y, ν) (see, e.g., Kechris

[Kec95, 17.46]) and then it is easy to check that ϕ witnesses that b v a (notice that for

each s ∈ 2<N, γ ∈ Γ, ϕ(γa · x) ∈ Ns ⇔ γb · ϕ(x) ∈ Ns, µ-a.e.(x)).
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In particular, the factors b ∈ A(Γ, Y, ν) of a =
∏

n an/U where (Y, ν) is a non-atomic,

standard measure space, correspond exactly to the countably generated, non-atomic, Γ-

invariant (for a) σ-subalgebras of MALGµU . For non-atomic µU , we can construct such

subalgebras as follows: Start with a countable Boolean subalgebraB0 ∈ MALGµU , which

is closed under the Γ-action and the function SU of §2, (B). Then let B = σ(B0) be the

σ-subalgebra of MALGµU generated byB0. This has all the required properties.

(C) We will next see how to insure, in the notation of the preceding paragraph, that

the corresponding to B factor is a free action. Recall that a ∈ A(Γ, X, µ) is free if ∀γ ∈

Γ \ {1}(γa · x 6= x, µ-a.e. (x)).

PROPOSITION 4.2. The action a =
∏

n an/U is free iff for each γ ∈ Γ \ {1},

lim
n→U

µn({x : γan · x 6= x}) = 1.

Proof. Note that, modulo null sets,

{x ∈ XU : γa · x 6= x} = [(An)]U ,

where An = {x ∈ Xn : γan · x 6= x}. a

In particular, if all an are free, so is
∏

n an/U .

PROPOSITION 4.3. Suppose the action a =
∏

n an is free. Then for eachA ∈ MALGµU , A 6=

∅ and γ ∈ Γ \ {1}, there is B ∈ MALGµU with B ⊆ A, µU(B) ≥ 1
16
µU(A) and

γa ·B ∩B = ∅.

Proof. It is clearly enough to show that if γ 6= 1, A ∈ B0
U , µU(A) > 0, then there is

B ∈ B0
U , B ⊆ A, with µU(B) ≥ 1

16
µU(A) and γa ·B ∩B = ∅.

Let A = [(An)]U and µU(A) = ε > 0. Then there is U ⊆ N, U ∈ U with n ∈ U ⇒

(µn(An) > ε
2

and µ({x ∈ Xn : γan · x 6= x}) > 1 − ε
4
). We can assume that each Xn is

Polish and γan is represented (a.e.) by a homeomorphism γαn of Xn. Let

Cn = {x ∈ An : γαn · x 6= x},
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so that µn(Cn) > ε
4
. Fix also a countable basis (V n

i )i∈N for Xn.

If x ∈ Cn, let V x
n be a basic open set such that γαn · V x

n ∩ V x
n = ∅ (this exists by

the continuity of γαn and the fact that γαn · x 6= x). It follows that there is x0 ∈ Cn with

µn(Cn ∩ V x0
n ) > 0 and γαn · (Cn ∩ V x0

n ) ∩ (Cn ∩ V x0
n ) = ∅. Thus there is C ⊆ Cn with

µn(C) > 0 and γan · C ∩ C = ∅. By Zorn’s Lemma or transfinite induction there is an

element Bn of MALGµU which is maximal, under inclusion, among all D ∈ MALGµU

satifying: D ⊆ Cn (viewing Cn as an element of the measure algebra), µn(D) > 0,

γan ·D ∩D = ∅. We claim that µn(Bn) ≥ ε
16

. Indeed let

En = Cn \ (Bn ∪ γan ·Bn ∪ (γ−1)an ·Bn).

If µn(Bn) < ε
16

, then En 6= ∅, so as before we can find Fn ⊆ En with µn(Fn) > 0 and

γan · Fn ∩ Fn = ∅. Then γan · (Bn ∪ Fn) ∩ (Bn ∪ Fn) = ∅, contradicting to maximality

of Bn. So µn(Bn) ≥ ε
16

. Let now B = [(Bn)]U . a

So if the action a =
∏

n an/U is free, let

TU : Γ×MALGµU → MALGµU

be a function such that for each γ 6= 1, A ∈ MALGµU \{∅}, TU(γ,A) ⊆ A, µ(TU(γ,A)) ≥
1
16
µ(A) and γa · TU(γ,A)∩ TU(γ,A) = ∅. Now, if in the earlier construction of countably

generated, non-atomic, Γ-invariant σ-subalgebras of MALGµU , we start with a countable

Boolean subalgebra B0 closed under the Γ-action, the function SU of §2, (B) and TU (i.e.,

∀γ(A ∈ B0 ⇒ TU(γ,A) ∈ B0)), then the factor b corresponding to B = σ(B0) is a free

action.

5. Characterizing factors of ultraproducts

In sections §4–8 all measure spaces will be non-atomic and standard. Also Γ is an

arbitrary countable infinite group.

(A) For such a measure space (X,µ), Aut(X,µ) is the Polish group of measure pre-

serving automorphisms of (X,µ) equipped with the weak topology generated by the maps
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T 7→ T (A), A ∈ MALGµ, from Aut(X,µ) into MALGµ (equipped with the usual metric

dµ(A,B) = µ(A∆B)). We can identify A(Γ, X, µ) with the space of homomorphisms

of Γ into Aut(X,µ), so that it becomes a closed subspace of Aut(X,µ)Γ with the product

topology, thus also a Polish space.

DEFINITION 5.1. Let a ∈ A(Γ, X, µ), an ∈ A(Γ, Xn, µn), n ∈ N. Let U be a non-

principal ultrafilter on N. We say that a is weakly U-contained in (an), in symbols

a ≺U (an)

if for every finite F ⊆ Γ, A1, . . . , AN ∈ MALGµ, ε > 0, for U-almost all n:

∃B1,n . . . BN,n ∈ MALGµn∀γ ∈ Γ∀i, j ≤ N

|µ(γa · Ai ∩ Aj)− µn(γan ·Bi,n ∩Bj,n)| < ε.

Note that if an = b for all n, then a ≺U (an)⇔ a ≺ b in the sense of weak containment

of actions, see Kechris [Kec10].

One can also trivially see that a ≺U (an) is equivalent to the statement:

For every finite F ⊆ Γ, A1, . . . An ∈ MALGµ, ε > 0, there are [(B1,n]U , . . . ,

[(BN,n)]U ∈ B0
U(XU) such that for U-almost all n:

∀γ ∈ F∀i, j ≤ N |µ(γa · Ai ∩ Aj)− µn(γan ·Bi,n) ∩Bj,n| < ε).

DEFINITION 5.2. For a, bn ∈ A(Γ, X, µ), we write

lim
n→U

bn = a

if for each open nbhd V of a in A(Γ, X, µ), Un(bn ∈ V ).

Since the sets of the form

V = {b : ∀γ ∈ F∀i, j ≤ N |µ(γa · Ai ∩ Aj)− µ(γb · Ai ∩ Aj)| < ε},
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for A1, . . . , An a Borel partition of X, ε > 0, F ⊆ Γ finite containing 1, form a nbhd basis

of a, limn→U bn = a iff Un(bn ∈ V ), for any V of the above form.

Below ∼= denotes isomorphism of actions.

THEOREM 5.3. Let U be a non-principal ultrafilter on N. Let a ∈ A(Γ, X, µ), and let

an ∈ A(Γ, Xn, µn), n ∈ N. Then the following are equivalent

(1) a ≺U (an),

(2) a v
∏

n an/U ,

(3) a = limn→U bn, for some sequence (bn), bn ∈ A(Γ, X, µ) with bn ∼= an, n ∈ N.

Proof. (1) ⇒ (2): Let 1 ∈ F0 ⊆ F1 ⊆ . . . be a sequence of finite subsets of Γ with

Γ =
⋃
m Fm. We can assume that X = 2N, µ = ρ (the usual product measure on 2N). Let

Ns = {α ∈ 2N : s ⊆ α}, for s ∈ 2<N.

By (1), we can find for each m, s ∈ 2≤m, [(Bs,m
n )] ∈ B0

U such that Um ∈ U , where

Um = {n ≥ m : ∀γ ∈ Fm∀s, t ∈ 2≤m

|µ(γa ·Ns ∩Nt| − µn(γan ·Bs,m
n ∩Bt,m

n )| < εm},

where εm → 0. Since
⋂
m Um = ∅, let m(n) = largest m such that n ∈

⋂
i≤m Ui. Then

n ∈ Un(m) and limn→U m(n) =∞. Put

Bs = [(Bs,m(n)
n )]U ∈ B0

U .

Since for all n, n ∈ Um(n), it follows (taking γ = 1, s = t in the definition of Um) that for

all n with m(n) > length(s),

|µ(Ns)− µn(Bs,m(n)
n )| < εm(n).(*)

So for any ε > 0, if M > length(s) and εM < ε, then Un(m(n) > M), so (∗) holds with ε

replacing εm(n) for U-almost all n, thus

µU(Bs) = lim
n→U

µn(Bs,m(n)
n ) = µ(Ns).
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In general, we have that

∀γ ∈ Fm(n)∀s, t ∈ 2≤m(n)

|µ(γa ·Ns ∩Nt)− µn(γan ·Bs,m(n)
n ∩Bt,m(n)

n )| < εm(n).

So if γ ∈ F, s, t ∈ 2<N, ε > 0, and ifM is large enough so thatM > max{length(s), length(t)}, γ ∈

FM , εM < ε, then on {n : m(n) ≥M} ∈ U we have

|µ(γa ·Ns ∩Nt)− µn(γan ·Bs,m(n)
n ∩Bt,m(n)

n )| < ε,

so

µU(γ
∏
n an/U ·Bs ∩Bt) = µ(γa ·Ns ∩Nt).(**)

Viewing each Bs as an element of MALGµU , we have B∅ = XU , Bŝ 0 ∩ Bŝ 1 = ∅,

Bs = Bŝ 0 ∪ Bŝ 1 (for the last take γ = 1, t = ŝ i in (∗∗)) and µU(Bs) = 2−n, if s ∈

2n. Then the map π(Ns) = Bs gives a measure preserving isomorphism of the Boolean

subalgebra A0 of MALGµ generated by (Ns) and the Boolean algebra B0 in MALGµU

generated by (Bs). Let B be the σ-subalgebra of MALGµU generated by (Bs). Since π is

an isometry of A0 with B0 (with the metrics they inherit from the measure algebra), and

A0 is dense in MALGµ,B0 is dense inB, it follows that π extends uniquely to an isometry,

also denoted by π, from MALGµ onto B. Since π(∅) = ∅, π is actually an isomorphism

of the measure algebra MALGµ with the measure algebra B (see Kechris [Kec10, pp. 1-

2]), it is thus enough to show that B is Γ-invariant (for
∏

n an/U) and that π preserves the

Γ-action.

Let b =
∏

n an/U . It is enough to show that π(γa ·Ns) = γb ·Bs (since (Bs) generates

B).
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Fix γ ∈ Γ, ε > 0, s ∈ 2<N. There is A ∈ A0 with µ(γa · Ns∆A) < ε/2. Now

A =
⊔m1

i=1Nti ,∼ A =
⊔m2

j=1 Nt′j
and ∼ Ns =

⊔m3

k=1Nsk (disjoint unions), so

γa ·Ns∆A = (γa ·Ns ∩ (∼ A)) t (γa · (∼ Ns) ∩ A)

= (

m2⊔
j=1

γa ·Ns ∩Nt′j
) t (

m3⊔
k=1

m1⊔
i=1

(γa ·Nsk ∩Nti)).

If B = π(A) ∈ B0, then we also have

γb ·Bs∆B =(

m2⊔
j=1

γb ·Bs ∩Bt′j
)t

(

m3⊔
k=1

m1⊔
i=1

(γb ·Bsk ∩Bti)),

so by (∗∗)

µU(γb ·Bs∆B) = µ(γa ·Ns∆A) < ε/2.

Since π preserves measure, we also have µU(π(γa ·Ns)∆B) < ε/2, thus

µU(γb ·Bs∆π(γa ·Ns)) < ε.

Therefore γb ·Bs = π(γa ·Ns).

(2) ⇒ (1): Suppose that a v b =
∏

n an/U . Let π : MALGµ → MALGµU be a

measure preserving embedding preserving the Γ-actions (so that the image π(MALGµ) is

a Γ-invariant σ-subalgebra of MALGµU ). Fix F ⊆ Γ finite, A1, . . . , An ∈ MALGµ and

ε > 0. Let B1, . . . , BN ∈ B0
U represent π(A1), . . . , π(AN). Let Bi = [(Bi

n)]U . Then for

γ ∈ F, j, k ≤ N ,

µ(γa · Aj ∩ Ak) = µU(γb ·Bj ∩Bk)

= lim
n→U

µn(γan ·Bj
n ∩Bk

n),
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so for U-almost all n,

|µ(γa · Aj ∩ Ak)− µn(γan ·Bj
n ∩Bk

n)| < ε,

and thus for U-almost all n, this holds for all γ ∈ F, j, k ≤ N . Thus a ≺U (an).

(3)⇒ (1): Fix such bn, and let A1, . . . , AN ∈ MALGµ, F ⊆ Γ finite, ε > 0. Then there

is U ∈ U such that for n ∈ U we have

∀γ ∈ F∀i, j ≤ N(|µ(γa · Ai ∩ Aj)− µ(γbn · Ai ∩ Aj)| < ε).

Let ϕn : (X,µ) → (Xn, µn) be an isomorphism that sends bn to an and put ϕn(Ai) = Bi
n.

Then ϕn(γbn · Ai ∩ Aj) = γan ·Bi
n ∩Bj

n, so for n ∈ U :

∀γ ∈ F∀i, j ≤ N(|µ(γa · Ai ∩ Aj)− µn(γan ·Bi
n ∩Bj

n)| < ε),

thus a ≺U (an).

(1)⇒ (3): Suppose a ≺U (an). Let

V = {c ∈ A(Γ, X, µ) : ∀γ ∈ F∀i, j ≤ N(|µ(γa · Ai ∩ Aj)− µ(γc · Ai ∩ Aj)| < ε),

where A1, . . . , An ∈ MALGµ is a Borel partition of X , ε > 0 and F ⊆ Γ is finite with

1 ∈ F , be a basic nbhd of a.

Claim. It suffices to show that for any such V we can find U ∈ U such that for n ∈ U

there is bn ∈ V with bn ∼= an.

Assume this for the moment and complete the proof of (1) ⇒ (3) by verifying that

indeed for any such V we can find a corresponding U as in the claim.

Since a ≺U (an), for any δ > 0, we can find [(B1,n)]U , . . . , [(BN,n)]U ∈ B0
U and Uδ ∈ U

such that for n ∈ Uδ we have

∀γ ∈ F∀i, j ≤ N(|µ(γa · Ai ∩ Aj)− µn(γan ·Bi,n ∩Bj,n)| < δ).
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Taking δ < ε/20N3 and U = Uδ, the proof of Proposition 10.1 in Kechris [Kec10] shows

that for n ∈ U there is bn ∼= an with bn ∈ V .

Proof of the claim. Let V0 ⊇ V1 ⊇ V2 ⊆ . . . be a nbhd basis for a consisting of sets

of the above form, and assume that for each m there is Um ∈ U such that for n ∈ Um,

there is bn,m ∈ Vm with bn,m ∼= an. We can also assume that
⋂
m Um = ∅. Let m(n) =

largest m such that n ∈
⋂
i≤m Ui. We have an ∼= bn,m(n) ∈ Vm(n), and for any nbhd V

of a as above, if M is so large that VM ⊆ V , then bn,m(n) ∈ Vm(n) ⊆ VM ⊆ V , for

n ∈ {n : m(n) ≥M} ∈ U . So a = limn→U bn,m(n). a

COROLLARY 5.4. Let U be a non-principal ultrafilter on N and consider the actions

a ∈ A(Γ, X, µ), b ∈ A(Γ, Y, ν). Then the following are equivalent:

(1) a ≺ b,

(2) a v bU .

Theorem 4.3 also has the following curious consequence, a compactness property of

the space A(Γ, X, µ).

COROLLARY 5.5. Let an ∈ A(Γ, X, µ), n ∈ N, be a sequence of actions. Then there

is a subsequence n0 < n1 < n2 < . . . and bni ∈ A(Γ, X, µ), bni
∼= ani , such that (bni)

converges in A(Γ, X, µ).

Proof. Let a ∈ A(Γ, X, µ) be such that a v
∏

n an/U (such exists by §3, (B)). Then

by 4.3, we can find bn ∼= an, with limn→U bn = a. This of course implies that there is

n0 < n1 < . . . with limi→∞ bni = a. a

Benjy Weiss pointed out that for free actions a stronger version of 4.5 follows from his

work with Abért, see Abért-Weiss [AW11]. In this paper it is shown that if sΓ is the shift

action of an infinite group Γ on [0, 1]Γ, then sΓ ≺ a for any free action a of Γ. From this it

follows that given free an ∈ A(Γ, X, µ), n ∈ N, there is bn ∼= an with limn→∞ bn = sΓ.

Another form of compactness for A(Γ, X, µ) that is an immediate consequence of 4.5

is the following:
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Any cover of A(Γ, X, µ) by open, invariant under ∼= sets, has a finite subcover.

(B) Consider now a ∈ A(Γ, X, µ) and the action aU on (XU , µU). Clearly µU is non-

atomic as µ is non-atomic. Fix also a countable Boolean subalgebra A0 of MALGµ which

generates MALGµ and is closed under the action a. The map

π(A) = [(A)]U

(where (A) is the constant sequence (An), An = A, ∀n ∈ N) embeds A0 into a Boolean

subalgebra C0 of MALGµU , invariant under aU , preserving the measure and the Γ-actions

(a onA0 and aU on C0).

LetB0 ⊇ C0 be any countable Boolean subalgebra of MALGµU closed under the action

aU and the function SU of §2, (B) and let B = σ(B0) be the σ-algebra generated by B0.

Let b be the factor of aU corresponding to B, so that b v aU and thus b ≺ a by 4.4. We

also claim that a v b and thus a ∼w b, where

a ∼w b⇔ a ≺ b & b ≺ a.

Indeed, let D0 = σ(C0) be the σ-subalgebra of B generated by C0. Then D0 is also

closed under the action aU . The map π is an isometry of A0 with C0, which are dense in

MALGµ,D0, resp., so extends uniquely to an isometry, also denoted by π, of MALGµ with

D0. Since π(∅) = ∅, it follows that π is an isomorphism of the measure algebra MALGµ

with the measure algebra D0 (see Kechris [Kec10, pp. 1-2]). Fix row γ ∈ Γ. Then γa

on MALGµ is mapped by π to an automorphism π(γa) of the measure algebra D0. Since

π(γa · A) = γaU · π(A), for A ∈ A0, it follows that π(γa)|C0 = γaU |C0, so since C0

generatesD0, we have π(γa) = γaU |D0, i.e., π preserves the Γ-actions (a on MALGµ and

aU onD0), thus a v b.

Recall now that a ∈ A(Γ, X, µ) admits non-trivial almost invariant sets if there is

a sequence (An) of Borel sets such that µ(An)(1 − µ(An)) 6→ 0 but ∀γ(limn→∞ µ(γa ·
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An∆An) = 0). We call an action a strongly ergodic (or E0-ergodic) if it does not admit

non-trivial almost invariant sets. We now have:

PROPOSITION 5.6. Let a ∈ A(Γ, X, µ). Then a is strongly ergodic iff ∀b ∼w a (b is

ergodic) iff ∀b ≺ a (b is ergodic).

Proof. Assume first that a is not strongly ergodic and let (An) be a sequence of Borel

sets such that for some δ > 0, δ ≤ µ(An) ≤ 1 − δ and ∀γ(limn→∞ µ(γa · An∆An) = 0).

Let U be a non-principal ultrafilter on N and let A = [(An)]U ∈ B0
U . Then viewing A

as an element of MALGµU we have γaU · A = A,∀γ ∈ Γ, and 0 < µU(A) < 1. Let

B0 be a countable Boolean subalgebra of MALGµU closed under aU , the function SU and

containing C0 as before. Let b be the factor of aU associated with B = σ(B0), so that

a ∼w b. Since A ∈ B, clearly b is not ergodic.

Conversely assume b ≺ a and b is not ergodic. It follows easily then from the definition

of weak containment that a is not strongly ergodic. a

Finally we note the following fact that connects weak containment to factors.

PROPOSITION 5.7. Let a, b ∈ A(Γ, X, µ). Then the following are equivalent:

(i) a ≺ b,

(ii) ∃c ∈ A(Γ, X, µ)(c ∼w b & a v c).

Proof. (ii) clearly implies (i), since a v c⇒ a ≺ c and ≺ is transitive.

(i) ⇒ (ii) Let U be a non-principal ultrafilter on N. By 4.4, if a ≺ b then a v bU .

Then as in the first two paragraphs of §4, (B), we can find an appropriate σ-subalgebra of

MALGµU invariant under bU , so that if c is the corresponding factor, then c ∼w b (and in

fact moreover b v c) and a v c. a

6. Graph combinatorics of group actions

Let Γ be an infinite group with a finite set of generators S ⊆ Γ for which we assume

throughout that 1 6∈ S. We denote by FR(Γ, X, µ) the set of free actions in A(Γ, X, µ). If
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a ∈ FR(Γ, X, µ) we associate with a the (simple, undirected) graphG(S, a) = (X,E(S, a)),

where X is the set of vertices and E(S, a), the set of edges, is given by

(x, y)E(S, a)⇔ x 6= y & ∃s ∈ S±1(sa · x = y),

where S±1 = {s, s−1 : s ∈ S}. We also write xE(s, a)y if (x, y) ∈ E(S, a). As in Conley-

Kechris [CK13], we associate with this graph the following parameters:

χµ(S, a) = the measurable chromatic number,

χapµ (S, a) = the approximate chromatic number,

iµ(S, a) = the independence number,

defined as follows:

• χµ(S, a) is the smallest cardinality of a standard Borel space Y for which there is a

(µ−)measurable coloring c : X → Y (i.e., xE(S, a)y ⇒ c(x) 6= c(y)).

• χapµ (S, a) is the smallest cardinality of a standard Borel space Y such that for each

ε > 0, there is a Borel set A ⊆ X with µ(X \A) < ε and a measurable coloring c : A→ Y

of the induced subgraph G(S, a)|A = (A,E(S,A) ∩ A2).

• iµ(S, a) is the supremum of the measures of Borel independent sets, where A ⊆ X is

independent if no two elements of A are adjacent.

Given a (simple, undirected) graph G = (X,E), where X is the set of vertices and

E the set of edges, a matching in G is a subset M ⊆ E such that no two edges in M

have a common point. We denote by XM the set of matched vertices, i.e., the set of points

belonging to an edge in M . If XM = X we say that M is a perfect matching.

For a ∈ FR(Γ, X, µ) as before, we also define the parameter

m(S, a) = the matching number,
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where m(S, a) is 1/2 of the supremum of µ(XM), with M a Borel (as a subset of X2)

matching in G(S, a). If m(S, a) = 1/2 and the supremum is attained, we say that G(S, a)

admits an a.e. perfect matching.

Note that we can view a matching M in G(S, a) as a Borel bijection ϕ : A → B, with

A,B ⊆ X disjoint Borel sets and xE(S, a)ϕ(x), ∀x ∈ A. Then XM = A∪B and so µ(A)

is 1/2µ(XM). Thus m(S, a) is equal to the supremum of µ(A) over all such ϕ.

It was shown in Conley-Kechris [CK13, 4.2, 4.3] that

a ≺ b⇒ iµ(S, a) ≤ iµ(S, b), χapµ (S, a) ≥ χapµ (S, b).

We note a similar fact about m(S, a).

PROPOSITION 6.1. Let Γ be an infinite countable group and S ⊆ Γ a finite set of

generators. Then

a ≺ b⇒ m(S, a) ≤ m(S, b).

Proof. Let ϕ : A→ B be a matching for G(S, a). Then there are Borel decompositions

A =
⊔n
i=1An, B =

⊔n
i=1Bn, and s1, . . . , sn ∈ S±1 with ϕ|Ai = sai |Ai, ϕ(Ai) = Bi. Fix

δ > 0. Since a ≺ b, for any ε > 0, we can find a sequence C1, . . . , Cn of pairwise disjoint

Borel sets such that for any γ ∈ {1} ∪ (S±1)2, |µ(γa · Ai ∩ Aj) − µ(γb · Ci ∩ Cj)| < ε,

for i ≤ i, j ≤ n. Since sai · Ai ∩ Aj = ∅, for all 1 ≤ i, j ≤ n, and sai · Ai ∩ saj · Aj = ∅,

for all 1 ≤ i 6= j ≤ n, it follows that |µ(Ai) − µ(Ci)| < ε, 1 ≤ i ≤ n, µ(sbi · Ci ∩ Cj) <

ε, 1 ≤ i, j ≤ n, and µ(sbi ·Ci ∩ sbj ·Cj) < ε, 1 ≤ i 6= j ≤ n. By disjointifying and choosing

ε very small compared to δ, it is clear that we can find such pairwise disjoint C1, . . . , Cn

with sbi · Ci ∩ Cj = ∅, 1 ≤ i, j ≤ n, sbi · Ci ∩ sbj · Cj = ∅, 1 ≤ i 6= j ≤ n, and if

C =
⊔n
i=1Ci, D =

⊔n
i=1 s

b
i · Ci, then |µ(C) − µ(A)| < δ. Clearly ψ : C → D given by

ψ|Ci = sbi |Ci is a matching for G(S, b) and µ(C) > µ(A) − δ. Since δ was arbitrary this

shows that m(S, a) ≤ m(S, b). a

(B) The next result shows that, modulo weak equivalence, we can turn approximate

parameters to exact ones.



40

THEOREM 6.2. Let Γ be an infinite countable group and S ⊆ Γ a finite set of genera-

tors. Then for any a ∈ FR(Γ, X, µ), there is b ∈ FR(Γ, X, µ) such that

(i) a ∼w b and a v b,

(ii) χapµ (S, a) = χapµ (S, b) = χµ(S, b),

(iii) iµ(S, a) = iµ(S, b) and iµ(S, b) is attained,

(iv) m(S, a) = m(S, b) and m(S, b) is attained.

Proof. Let U be a non-principal ultrafilter on N. The action b will be an appropriate

factor of the ultrapower aU .

Let k = χapµ (S, a). This is finite by Kechris-Solecki-Todorcevic [KST99, 4.6]. Let

iµ(S, a) = ι ≤ 1
2

and let m(S, a) = m ≤ 1
2
. Then for each n ≥ 1, find the following:

(a) A sequence C1
n, . . . , C

k
n of pairwise disjoint Borel sets such that sa ·Ci

n∩Ci
n = ∅,

for 1 ≤ i ≤ k, s ∈ S±1, and µ(
⊔k
i=1C

i
n) ≥ 1− 1

n
.

(b) A Borel set In such that sa · In ∩ In = ∅, s ∈ S±1, and µ(In) ≥ ι− 1
n

.

(c) A pairwise disjoint family of Borel sets (Asn)s∈S±1 , such that sa · Asn ∩ Atn =

∅, s, t ∈ S±1, sa · Asn ∩ ta · Atn = ∅, s, t ∈ S±1, s 6= t, and

µ(
⊔

s∈S±1

Asn) ≥ m− 1
n
.

Consider now the ultrapower action aU on (XU , µU) and the sets Ci = [(Ci
n)]n ∈

B0
U , 1 ≤ i ≤ k, I = [(In)]U ∈ B0

U and As = [(Asn)]U ∈ B0
U , s ∈ S±1. Viewed as elements

of MALGµU they satisfy:

(a′) Ci∩Cj = ∅, 1 ≤ i 6= j ≤ k, saU ·Ci∩Ci = ∅, 1 ≤ i ≤ k, s ∈ S±1;µU(
⊔k
i=1C

i) =

1,

(b′) saU · I ∩ I = ∅, s ∈ S±1;µU(I) ≥ ι,

(c′) As∩At = ∅, s 6= t, s, t ∈ S±1; saU ·As∩At = ∅, s, t ∈ S±1; saU ·As∩ taU ·At =

∅, s 6= t, s, t ∈ S±1;µ(
⊔
s∈S±1 As) ≥ m.

Let now B0 be a countable Boolean subalgebra of MALGµU closed under the action

aU , the functions SU , TU of §2, (B), §3, (B), resp., and containing the algebra C0 of §4,
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(B) and also Ci (1 ≤ i ≤ k), I, As (s ∈ S±1). Let B = σ(B0) and let b be the factor

of aU corresponding to B. (We can of course assume that b ∈ FR(Γ, X, µ).) Then by

§4, (B) again, a ∼w b and a v b. So, in particular, χapµ (S, a) = χapµ (S, b) = k, iµ(S, a) =

iµ(S, b) = ι andm(S, a) = m(S, b) = m, since a ∼w b. The sets (Ci)i≤k give a measurable

coloring of G(S, b)|A, for some A with µ(A) = 1 and we can clearly color in a measurable

way G(S, b)| ∼ A by ` colors, where ` is the chromatic number of the Cayley graph

Cay(Γ, S) of Γ, S. Since ` ≤ k, it follows that χµ(S, b) ≤ k, so χµ(S, b) = χapµ (S, b).

Finally, (b′), (c′) show that iµ(S, b) = ι and m(S, b) = m are attained. a

7. Brooks’ Theorem for group actions

(A) Brooks’ Theorem for finite graphs asserts that for any finite graph G with degree

bounded by d, the chromatic number χ(G) is ≤ d, unless d = 2 and G contains an odd

cycle or d ≥ 3 and G contains a complete subgraph (clique) with d + 1 vertices (and

the chromatic number is always ≤ d + 1). In Conley-Kechris [CK13] the question of

finding analogues of the Brooks bound for graphs of the form G(S, a) is studied. Let

d = |S±1| be the degree of Cay(Γ, S). First note that by Kechris-Solecki-Todorcevic

[KST99, 4.8], χµ(S, a) ≤ d + 1 (in fact this holds even for Borel instead of measurable

colorings). A compactness argument using Brooks’ Theorem also shows that χ(S, a) ≤ d,

where χ(S, a) is the chromatic number ofG(S, a). It was shown in Conley-Kechris [CK13,

2.19, 2.20] that for any infinite Γ, χapµ (S, a) ≤ d, for any a ∈ FR(Γ, X, µ), so one has a

full “approximate” version of Brooks’ Theorem. How about the full measurable Brooks

bound χµ(S, a) ≤ d? This is easily false for some action a (e.g., the shift action), when

Γ = Z or Γ = (Z/2Z) ∗ (Z/2Z) (with the usual sets of generators) and it was shown in

Conley-Kechris [CK13, 5.12] that when Γ has finitely many ends and is not isomorphic

to Z or (Z/2Z) ∗ (Z/2Z), then one indeed has the Brooks’ bound χµ(S, a) ≤ d, for any

a ∈ FR(Γ, X, µ) (in fact even for Borel as opposed to measurable colorings). It is unknown

if this still holds for Γ with infinitely many ends but 5.2 shows that one has the full analogue

of the Brooks bound up to weak equivalence for any group Γ.
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THEOREM 7.1. For any infinite group Γ and finite set of generators S with d = |S±1|,

for any a ∈ FR(Γ, X, µ), there is b ∈ FR(Γ, X, µ), with b ∼w a and χµ(S, b) ≤ d.

This also leads to the solution of an open problem arising in probability concerning

random colorings of Cayley graphs.

Let Γ be an infinite group with a finite set of generators S. Let k ≥ 1. Consider the

compact space kΓ on which Γ acts by shift: γ · p(δ) = p(γ−1δ). The set Col(k,Γ, S) of

colorings of Cay(Γ, S) with k colors is a closed (thus compact) invariant subspace of kΓ.

An invariant, random k-coloring of the Cayley graph Cay(Γ, S) is an invariant probability

Borel measure on the space Col(k,Γ, S). Let d by the degree of Cay(Γ, S). In Aldous-

Lyons [AL07, 10.5] the question of existence of invariant, random k-colorings is discussed

and mentioned that Schramm (unpublished, 1997) had shown that for any Γ, S there is

an invariant, random (d + 1)-coloring (this also follows from the more general Kechris-

Solecki-Todorcevic [KST99, 4.8]). They also point out that Brooks’ Theorem implies

that there is an invariant, random d-coloring when Γ is a sofic group (for the definition of

sofic group, see, e.g., Pestov [Pes08]). The question of whether this holds for arbitrary Γ

remained open. We show that 6.1 above provides a positive answer. First it will be useful

to note the following fact:

PROPOSITION 7.2. Let Γ be an infinite group, S a finite set of generators for Γ and let

k ≥ 1. Then the following are equivalent:

(i) There is an invariant, random k-coloring,

(ii) There is a ∈ FR(Γ, X, µ) with χµ(S, a) ≤ k.

Proof. (ii)⇒ (i). Let c : X → {1, . . . , k} be a measurable coloring of G(S, a). Define

C : X → kΓ by C(x)(γ) = c((γ−1)a · x). Then C is a Borel map from X to Col(k,Γ, S)

that preserves the actions, so C∗µ is an invariant, random k-coloring.

(i) ⇒ (ii). Let ρ be an invariant, random k-coloring. Consider the action of Γ on

Y = Col(k,Γ, S) (by shift). Fix also a free action b ∈ FR(Γ, Z, ν) (for some (Z, ν)). Let

X = Y ×Z, µ = ρ× ν. Then Γ acts freely, preserving µ on X by γ · (y, z) = (γ · y, γ · z).
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Call this action a. We claim that χµ(S, a) ≤ k. For this let c : X → {1, . . . , k} be defined

by c((y, z)) = y(1) (recall that y ∈ Col(k,Γ, S), so y : Γ → {1, . . . , k} is a coloring of

Cay(Γ, S)). It is easy to check that this a measurable k-coloring of G(S, a). a

REMARK 7.1. From the proof of (ii)⇒ (i) in 6.2, it is clear that if a ∈ FR(Γ, X, µ) has

χµ(S, a) ≤ k, then there is an invariant, random k-coloring which is a factor of a.

We now have

COROLLARY 7.3. Let Γ be an infinite group and S a finite set of generators. Let d =

|S±1|. Then there is an invariant, random d-coloring. Moreover, for each a ∈ FR(Γ, X, µ)

there is such a coloring which is weakly contained in a.

Proof. This is immediate from 6.1 and 6.3. a

Lyons and Schramm (unpublished, 1997) raised the question (see Lyons-Nazarov [LN11,

§5]) of whether there is, for any Γ, S, an invariant, random χ-coloring, where χ = χ(Cay(Γ, S))

is the chromatic number of the Cayley graph. It is pointed out in this paper that the answer

is affirmative for amenable groups (as there is an invariant measure for the action of Γ on

Col(χ,Γ, S) by amenability) but the general question is open.

REMARK 7.2. One cannot in general strengthen the last statement in 6.4 to: For each

a ∈ FR(Γ, X, µ), there is an invariant, random d-coloring which is a factor of a. Indeed,

this fails for Γ = Z or Γ = (Z/2Z) ∗ (Z/2Z) (with the usual set of generators S for which

d = 2) and a the shift action of Γ on 2Γ, since then the shift action of Γ on Col(2,Γ, S) with

this random coloring would be mixing and then as in (i)⇒ (ii) of 6.2, by taking b to be also

mixing, one could have a mixing action a ∈ FR(Γ, X, µ) for which there is a measurable

2-coloring, which easily gives a contradiction. On the other hand, it follows from the result

in [CK13, 5.12] that was mentioned earlier, that for any Γ with finitely many ends, except

for Γ = Z or Γ = (Z/2Z) ∗ (Z/2Z), one indeed has for any a ∈ FR(Γ, X, µ) an invariant,

random d-coloring which is a factor of the action a. We do not know if this holds for groups

with infinitely many ends.
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(B) Let Γ, S be as before and letGΓ,S = Aut(Cay(Γ, S)) be the automorphism group of

the Cayley graph with the pointwise convergence topology. ThusGΓ,S is Polish and locally

compact. The group GΓ,S acts continuously on Col(k,Γ, S) by: ϕ · c(γ) = c(ϕ−1(γ)).

Clearly Γ can be viewed as a closed subgroup ofGΓ,S identifying γ ∈ Γ with the translation

automorphism δ 7→ γδ. It will be notationally convenient below to denote this translation

automorphism by 〈γ〉. One can now consider a stronger notion of invariant, random k-

coloring by asking that the measure is now invariant under GΓ,S instead of Γ (i.e., 〈Γ〉).

To distinguish the two notions let us call the stronger one a GΓ,S-invariant, random k-

coloring. We now note that the existence of an invariant, random k-coloring is equivalent

to the existence of GΓ,S-invariant, random k-coloring. In fact it follows from the following

more general fact (applied to the special case of the action of GΓ,S on Col(k,Γ, S)).

PROPOSITION 7.4. Let GΓ,S be as before and assume GΓ,S acts continuously on a

compact, metrizable space X . Then there exists a Γ-invariant Borel probability measure on

X iff there is a GΓ,S-invariant Borel probability measure on X .

Proof. Denote by R = RΓ,S = Aut1(Cay(Γ, S)) the subgroup of G = GΓ,S consisting

of all ϕ ∈ G with ϕ(1) = 1 (we view this as the rotation group of Cay(Γ, S) around 1).

It is known that G is unimodular, i.e., there is a left and right invariant Haar measure

(see Lyons-Peres [LP05, Ex. 7.3]), so fix such a Haar measure η. SinceR is compact, open

in G, ∞ > η(R) > 0 and we normalize η so that η(R) = 1. Then ρ = η|R is the Haar

measure of R.

Next we note that Γ ∩R = {1} and thus every ϕ ∈ G can be written as

ϕ = 〈γ〉r = r′〈γ′〉

for unique γ, γ′ ∈ Γ, r, r′ ∈ R. Indeed γ = ϕ(1), r = 〈γ〉−1ϕ and γ′ = (ϕ−1(1))−1, r′ =

ϕ〈γ′〉−1 = ϕ〈ϕ−1(1)〉. This gives a map α : Γ × R → R defined by α(γ, r) = r′, where

〈γ〉r = r′〈γ′〉. Thus

α(γ, r) = 〈γ〉r〈r−1(γ−1)〉.
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One can now easily verify that this is a continuous action of Γ on R and we will write

γ · r = α(γ, r) = 〈γ〉r〈r−1(γ−1)〉.

Moreover this action preserves the Haar measure ρ.

Indeed, fix γ ∈ Γ and put pγ(r) = γ · r. We will show that pγ : R → R preserves ρ.

For δ ∈ Γ, let Rδ = {r ∈ R : r−1(γ−1) = δ}. Then R =
⊔
δ∈ΓRδ and pγ(r) = 〈γ〉r〈δ〉 for

r ∈ Rδ, thus pγ|Rδ preserves η and so pγ preserves ρ.

Assume now that µΓ is a Borel probability measure on X which is Γ-invariant. We will

show that there is a Borel probability measure µG on X which is G-invariant. Define

µG =

∫
R

(r · µΓ)dr,

where the integral is over the Haar measure ρ on R, i.e., for each continuous f ∈ C(X),

µG(f) =

∫
R

(r · µΓ)(f)dr,

with r · µΓ(f) = µΓ(r−1 · f), r−1 · f(x) = f(r · x). (As usual we put σ(f) =
∫
fdσ.) We

will verify that µG is G-invariant.

Let F : X → X be a homeomorphism. For σ a Borel probability measure on X , let

F · σ = F∗σ be the measure defined by

F · σ(f) = σ(f ◦ F−1),

for f ∈ C(X). Then we have

F · µG =

∫
R

F · (r · µΓ)dr,
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because for f ∈ C(X),

F · µG(f) = µG(f ◦ F−1)

=

∫
(r · µΓ)(f ◦ F−1)dr

=

∫
F · (r · µΓ)dr.

We first check that µG is R-invariant. Indeed if s ∈ R,

s · µG =

∫
s · (r · µΓ)dr

=

∫
(sr) · µΓdr

=

∫
(r · µΓ)dr

= µG

by the invariance of Haar measure.

Finally we verify that µG is Γ-invariant (which completes the proof that µG is G-

invariant as G = ΓR). Indeed, in the preceding notation

〈γ〉 · µG =

∫
〈γ〉 · (r · µΓ)dr

=

∫
(〈γ〉r) · µΓdr

=

∫
(γ · r) · (〈γ′〉 · µΓ)dr

=

∫
(γ · r) · µΓdr

(as 〈γ′〉 · µΓ = µΓ for any γ′ ∈ Γ).
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But we have seen before that r 7→ γ · r preserves the Haar measure of R, so

〈γ〉 · µG =

∫
(γ · r) · µΓdr

=

∫
(r · µΓ)dr

= µG

a

It is well known (see, e.g., Woess [Woe00, 12.12]) that if Γ is amenable, so is GΓ,S .

This also follows from 6.6.

(C) As was discussed in 6.5, for any Γ, S with finitely many ends, except Γ = Z or Γ =

(Z/2Z) ∗ (Z/2Z), and any a ∈ FR(Γ, X, µ), there is an invariant, random d-coloring,

where d = |S±1|, which is a factor of a. This is of particular interest in the case where a

is the shift action sΓ of Γ on [0, 1]Γ (with the usual product measure). In that case GΓ,S =

Aut(Cay(Γ, S)) also acts via shift on [0, 1]Γ via ϕ · p(γ) = p(ϕ−1(γ)) and one can ask

whether there is actually a GΓ,S-invariant, random d-coloring, which is a factor of the shift

action of GΓ,S on [0, 1]Γ. We indeed have:

THEOREM 7.5. Let Γ be an infinite countable group, S a finite set of generators, and let

d = |S±1|. If Γ has finitely many ends but is not isomorphic to Z or (Z/2Z) ∗ (Z/2Z), and

GΓ,S = Aut(Cay(Γ, S)), there is a GΓ,S-invariant, random d-coloring which is a factor of

the shift action of GΓ,S on [0, 1]Γ.

Proof. Put again G = GΓ,S . Let X be the free part of the action of G on [0, 1]Γ, i.e.,

X = {x ∈ [0, 1]Γ : ∀ϕ ∈ G \ {1}(ϕ · x 6= x)},

(where ϕ · x is the action of G on [0, 1]Γ).

If µ is the product measure on [0, 1]Γ, then µ(X) = 1, since X ⊇ {x ∈ [0, 1]Γ : x is 1−

1} = X0 and µ(X0) = 1. Moreover X is a G-invariant Borel subset of [0, 1]Γ.
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Since R = Aut1(Cay(Γ, S)) is compact, EX
R , the equivalence relation induced by R

on X , admits a Borel selector and

XR = X/R = {R · x : x ∈ X}

is a standard Borel space. Define the following Borel graph E on XR

(R · x)E(R · y)⇔ ∃s ∈ S±1(sR · x ∩R · y 6= ∅).

LEMMA 7.6. If (R · x)E(R · y), then

(x1, x2) ∈MR·x,R·y ⇔ x1 ∈ R · x & x2 ∈ R · y & ∃s ∈ S±1(〈s〉 · x1 = x2),

(is the graph of) a bijection between R · x,R · y consisting of edges of the graph G(S, sΓ),

i.e., it is a matching in this graph.

Proof. Fix x0
1 ∈ R · x1, x

0
2 ∈ R · x2 and s0 ∈ S±1 with 〈s0〉 · x0

1 = x0
2.

First we check that MR·x,R·y is a matching. Let (x1, x2), (x1, x
′
2) ∈ MR·x,R·y and let

〈s〉 · x1 = x2, 〈s′〉 · x1 = x′2, for some s, s′ ∈ S±1, and r · x2 = x′2, for some r ∈ R.

Then r〈s〉 · x1 = 〈s′〉 · x1, so r〈s〉 = 〈s′〉, thus r ∈ Γ, so r = 1 and x2 = x′2. Similarly

(x1, x2), (x′1, x2) ∈MR·x,R·y implies that x1 = x′1.

Next we verify that for every x1 ∈ R ·x, there is an x2 ∈ R ·y with (x1, x2) ∈MR·x,R·y.

Let r1 ∈ R be such that r1 · x1 = x0
1, so 〈s0〉r1 · x1 = x0

2. Now

〈s0〉r1 =
(
〈s0〉r1〈r−1

1 (s−1)〉
)
〈r−1

1 (s−1)〉−1

= r−1
2 〈s′〉,

where r2 ∈ R and s′ ∈ S±1. Thus r−1
2 〈s′〉 · x1 = x0

2, so 〈s′〉 · x1 = r2 · x0
2 = x2 ∈ R · y

and (x1, x2) ∈ MR·x,R·y. Similarly for every x2 ∈ R · y there is x1 ∈ R · x with (x1, x2) ∈

MR·x,R·y, and the proof is complete. a
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LEMMA 7.7. Let x ∈ X . Then the map

γ 7→ R · (〈γ〉−1 · x)

is an isomorphism of Cay(Γ, S) with the connected component of R · x in E.

Proof. Let γ ∈ Γ and let s1, . . . , sk ∈ S±1 be such that γ−1 = sn . . . s1. Then

(R · x)E(R · (〈s1〉 · x))E . . . E(R · (〈γ〉−1 · x)), so R · (〈γ〉−1 · x) is in the connected

component of R · x. Conversely assume that R · y is in the connected component of R · x

and say (R · x)E(R · x1)E(R · x2)E . . . E(R · xn−1)E(R · y). By Lemma 6.8, there are

s1, . . . sn ∈ S±1 and x′1, . . . , x
′
n such that 〈s1〉 · x = x′1 ∈ R · x1, 〈s2〉 · x′1 = x′2 ∈

R · x2, . . . , 〈sn〉 · x′n−1 = x′n ∈ R · y. Let γ−1 = sn . . . s1. Then x′n = 〈γ〉−1 · x ∈ R · y, so

R · (〈γ〉−1 · x) = R · y. Thus γ 7→ R · (〈γ〉−1 · x) maps Γ onto the connected component

of R · x.

We next check that γ 7→ R · (〈γ〉−1 ·x) is 1-1. Indeed if R · (〈γ〉−1 ·x) = R · (〈δ−1〉 ·x),

then r〈γ〉−1 · x = 〈δ〉−1 · x, for some r ∈ R, so as before r = 1 and γ = δ.

Finally let (γ, γs) be an edge in the Cayley graph of Γ, S. Then clearlyR·(〈γ〉−1·x)ER·

〈γs〉−1 · x) = R · (〈s〉−1〈γ〉−1 · x). Conversely assume that R(〈γ〉−1 · x)ER · (〈δ〉−1 · x),

so that, by 6.8 again, there are s ∈ S±1, r ∈ R with 〈s〉〈γ〉−1 · x = r〈δ〉−1 · x, i.e.,

〈s〉〈γ〉−1 = r〈δ〉−1. Then r = 1 and γs−1 = δ, so (γ, δ) is an edge in the Cayley graph. a

The following will be needed in the next section, so we record it here.

Let π : X → XR be the projection function: π(x) = R · x. Let ν = π∗µ be the image

of µ.

LEMMA 7.8. E preserves the measure ν.

Proof. Let ϕ : A → B be a Borel bijection with A,B Borel subsets of XR and

graph(ϕ) ⊆ E. We will show that ν(A) = ν(B).

We have ν(A) = µ(
⋃
R·x∈AR · x) and similarly for B. If ϕ(R · x) = R · y, then

MR·x,R·y gives a Borel bijection of R · x,R · y whose graph consists of edges of G(S, sΓ)
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and
⋃
R·x∈AMR·x,R·y gives the graph of a Borel bijection of

⋃
R·x∈AR ·x with

⋃
R·x∈B R ·x,

therefore ν(A) = ν(B). a

We now complete the proof of the proposition. Consider the graph (XR, E). By 7.7, it

is a vertex transitive Borel graph with degree d = |S±1| and its connected components have

finitely many ends. So by Conley-Kechris [CK13, 5.1, 5.7, 5.11] and Lemma 6.9, (XR, E)

has a Borel d-coloring. CR : XR → {1, . . . , d}. Define now C : X → {1, . . . , d} by

C(x) = CR(R · x)

Then clearly C is a Borel d-coloring of G(S, a). We use this as usual to define a random

d-coloring of the Cayley graph. Define

ψ : X → Col(d,Γ, S)

by

ψ(x)(γ) = C(〈γ〉−1 · x).

and consider the measure ψ∗µ on Col(d,Γ, S). This will be G-invariant provided that ψ

preserves the G-action, which we now verify.

First it is clear that ψ preserves the Γ-action. It is therefore enough to check that it

preserves theR-action, i.e., ψ(r ·x) = r ·ψ(x) for each x ∈ X, r ∈ R. Let γ ∈ Γ in order to

check that ψ(r·x)(γ) = (r·ψ(x))(γ) orC(〈γ〉−1r·x) = ψ(x)(r−1(γ)) = C(〈r−1(γ)〉−1·x).

But recall that

〈γ〉−1r = (〈γ〉−1r〈r−1(γ)〉)〈r−1(γ)〉−1,

so 〈γ〉−1r = r′〈r−1(γ)〉−1, for some r′ ∈ R, thereforeR ·(〈γ〉−1r ·x) = R ·(〈r−1(γ)〉−1 ·x)

and since C(y) depends only on R · y, this completes the proof. a

(D) Fix an infinite group Γ and a finite set of generators S, letG = GΓ,S = Aut(Cay(Γ, S))

and let R = RΓ,S = Aut1(Cay(Γ, S)) as in the proof of 6.6. Then the action γ · r of Γ

on R defined there is an action by measure preserving homeomorphisms on the compact,
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metrizable group R. Provided that Γ, S have the property that R is uncountable, this may

provide an interesting example of an action of Γ.

For instance, let Γ = F2, the free group with two generators, and let S = {a, b} be a set

of free generators. Then it is not hard to see that the action of Γ on R is free (with respect

to the Haar measure ρ on R). Indeed, let Γn = {w ∈ Γ: |w| = n} (where |w| denotes

word length in the generators a, b) and for w, v ∈ Γn, let Nw,v = {r ∈ R : r(w) = v}. If

v 6= v′ ∈ Γn, then Nw,v ∩ Nw,v′ = ∅ and since R acts transitively on Γn, there is r ∈ R

with rv′ = v′, so rNw,v = Nw,v′ and thus ρ(Nw,v) = Nw,v′ . So

ρ(Nw,v) =
1

|Γn|

for w, v ∈ Γn.

Let now γ ∈ Γ \ {1} and assume that r ∈ R is such that γ−1 · r = 〈γ〉−1r〈r−1(γ)〉 = r

or 〈γ〉r = r〈r−1(γ)〉, so for all δ ∈ Γ, γr(δ) = r(r−1(γ)δ) or r−1(γ)δ = r−1(γr(δ))

and letting r(δ) = ε, we have r−1(γ)r−1(ε) = r−1(γε). Since ε was arbitrary in Γ, this

shows that r−1(γn) = (r−1(γ))n, ∀n ≥ 1. It is thus enough to show that for each γ ∈

Γ \ {1}, {r ∈ R : ∀n ≥ 1(r(γn) = (r(γ))n)} is null. Let |γn| = an → ∞. Then if

γ ∈ Γ, {r ∈ R : r(γn) = (r(γ))n} ⊆
⋃
ε∈Γk
{r ∈ R : r(γn) = εn}, so ρ({r ∈ R : r(γn) =

(r(γ))n}) ≤
∑

ε∈Γk
ρ(Nγn,εn) → 0 as n → ∞. Thus {r ∈ R : ∀n ≥ 1(r(γn) = (r(γ))n)}

is null.

8. Matchings

(A) Let Γ be an infinite group and S a finite set of generators for Γ. For a ∈ FR(Γ, X, µ),

recall that m(S, a) is the matching number of a, defined in §5. If m(S, a) = 1
2

and the

supremum in the definition of m(S, a) is attained, we say that G(S, a) admits an a.e. per-

fect matching.

Abért and collaborators (private communication) have shown that the Cayley graph

Cay(Γ, S) admits a perfect matching.
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Let EΓ,S be the set of edges of the Cayley graph Cay(Γ, S) and consider the space

2EΓ,S , which we can view as the space of all A ⊆ EΓ,S . Denote by

M(Γ, S)

the closed subspace consisting of all M ⊆ EΓ,S that are perfect matchings of the Cay-

ley graph. The group GΓ,S = Aut(Cay(Γ, S)) acts on 2EΓ,S by shift: ϕ · x(γ, δ) =

x(ϕ−1(γ), ϕ−1(δ)) and so does the subgroup Γ ≤ GΓ,S . Clearly M(Γ, S) is invariant

under this action.

A GΓ,S-invariant, random perfect matching of the Cayley graph is a shift invariant

probability Borel measure on M(Γ, S). If such a measure is only invariant under the shift

action by Γ, we call it an invariant, random perfect matching.

Lyons and Nazarov [LN11] considered the question of the existence of invariant, ran-

dom perfect matchings which are factors of the shift of Γ on [0, 1]Γ and showed the follow-

ing result.

THEOREM 8.1. (Lyons-Nazarov [LN11]) Let Γ be a non-amenable group, S a finite set

of generators for Γ and assume that Cay(Γ, S) is bipartite (i.e., has no odd cycles). Then

there is a GΓ,S-invariant, random perfect matching, which is a factor of the shift action of

GΓ,S on [0, 1]Γ.

Let us next note some facts that follow from earlier considerations in this paper.

PROPOSITION 8.2. Let Γ be an infinite group and S a finite set of generators for Γ.

Then the following are equivalent:

(i) There is an invariant, random perfect matching.

(ii) There is a ∈ FR(Γ, X, µ) such that G(S, a) admits an a.e. perfect matching.

(iii) There is a sequence an ∈ FR(Γ, X, µ) with m(S, an)→ 1
2
.

Proof. As in 6.2 and 5.2. a
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PROPOSITION 8.3. For Γ, S as in 7.2., if a ∈ FR(Γ, X, µ) is such that the matching

number m(S, a) = 1
2
, then there is b ∈ FR(Γ, X, µ) with b ∼w a and G(S, b) admitting an

a.e. perfect matching, and there is an invariant, random perfect matching weakly contained

in a.

Proof. As in 6.2 and the proof of 7.2. a

PROPOSITION 8.4. Let Γ, S,GΓ,S be as before. Then there is an invariant, random

perfect matching iff there is a GΓ,S-invariant, random perfect matching.

Proof. By 6.6. a

We now have

PROPOSITION 8.5. Let Γ be an infinite group and S a finite set of generators.

(i) If Γ is amenable or if S has an element of infinite order, then for any a ∈ FR(Γ, X, µ),m(S, a) =

1
2
.

(ii) If S has an element of even order, then for any a ∈ FR(Γ, X, µ), G(S, a) admits

an a.e. perfect matching.

Proof. i) When Γ is amenable, this follows from the result of Abért and collabora-

tors that Cay(Γ, S) admits a perfect matching, using also the quasi-tiling machinery of

Ornstein-Weiss [OW80], as in Conley-Kechris [CK13, 4.10, 4.11]. The second case fol-

lows immediately from Rokhlin’s Lemma.

ii) This is obvious. a

We do not know if m(S, a) = 1
2

holds for every Γ, S, a ∈ FR(Γ, X, µ). By 7.5 the only

problematic case is when S consists of elements of odd order and Γ is not amenable. We

will see below that the answer is affirmative for the group Γ = (Z/3Z) ∗ (Z/3Z) and the

usual set of generators S = {s, t} with s3 = t3 = 1.

We also do not know if for every Γ, S, there is an invariant, random perfect matching

(a question brought to our attention by Abért and also Lyons).
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(B) We now consider some implications of the following result of Lyons-Nazarov [LN11];

THEOREM 8.6. (Lyons-Nazarov [LN11, 2.6]) Let (X,µ) be a non-atomic, standard

measure space and G = (X,E) a Borel locally countable graph which is bipartite and

measure preserving (i.e., the equivalence relation it generates is measure preserving). If G

is expansive, i.e., there is c > 1 such that for each Borel independent set A ⊆ X,µ(A′) ≥

cµ(A), where A′ = {x : ∃yEx(y ∈ A)}, then G admits an a.e. perfect matching.

We use this to show

THEOREM 8.7. Let Γ = (Z/3Z) ∗ (Z/3Z) with the usual set of generators S = {s, t},

with s3 = t3 = 1. Then for any a ∈ FR(Γ, X, µ), G(S, a) admits an a.e. perfect matching.

Proof. Let A = 〈s〉 = {1, s, s2} and B = 〈t〉. Let XA = X/A,XB = X/B and let

µA, µB be the corresponding quotient measures on XA, XB, normalized so that µA(XA) =

µB(XB) = 1
2
. Let Y = XA tXB, ν = µA + µB and define the following graph F on Y :

y1Fy2 ⇔ y1 6= y2 and ∃x1, x2 ∈ X[y1 = A · x1 & y2 = B · x2 & y1 ∩ y2 6= ∅].

It is not hard to see that this graph satisfies the hypotheses of 7.6, so it admits an a.e. perfect

matching, from which it follows that there is a Borel set T ⊆ X that simultaneously meets

every A-orbit in exactly one point and every B-orbit in exactly one point, modulo null sets.

Let P = X \ T and consider the induced subgraph G(S, a)|P . Its connected compo-

nents look like Z-lines. Then we can find a Borel subset Q of P of very small measure

such that it meets every such connected component and two points of Q in the same com-

ponent (Z-line) are at least 20 apart in this line. Call the elements of Q markers. Given two

successive markers x, y in one such component, we can neglect points in the interval (x, y)

in this line that are within distance at most 5 from x or y (since these have very small mea-

sure), so that the rest of this interval looks like a set of points x1, x2, . . . , xk where (x1, x2)

is an s-edge (i.e., x2 = s±1 · x1), (x2, x3) is a t-edge, (x3, x4) an s-edge, etc. Then con-

sider the following edges: An s-edge (x1, y1), where y1 ∈ T , (x2, x3), an s-edge (x4, y4),
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where y4 ∈ T , an s-edge (x5, y5) where y5 ∈ T , etc. This set of edges provides a Borel

matching in G(S, a) which covers all of X , except from an arbitrary small measure set, so

m(S, a) = 1
2
. a

Finally let us note that, using the argument in 6.7, one can show that Theorem 7.6

implies Theorem 7.1.

Proof that 7.6 ⇒ 7.1. Using the notation of the proof of 6.7, we first show that the

graph E defined there satisfies the hypotheses of 7.6.

LEMMA 8.8. (XR, E) is bipartite.

Proof. By 6.9. a

LEMMA 8.9. (XR, E) is strictly expanding.

Proof. Let A ⊆ XR be an independent Borel set and A′ = {x ∈ XR : ∃y ∈ A(xEy)}.

Since the group Γ is not amenable, the graph G(S, sΓ), where sΓ is the shift action of Γ

on [0, 1]Γ is strictly expanding, so let c > 1 be the constant witnessing that. We will show

that ν(A′) ≥ cν(A). This is immediate since
⋃
R·x∈AR · x is independent in G(S, sΓ) and

(
⋃
R·x∈AR · x)′ =

⋃
R·x∈A′ R · x. a

Thus by 7.6, there is an a.e. perfect matching for (XR, E) which we denote by MR.

Using 6.8 this gives an a.e. perfect matching M for G(S, sΓ) defined by

(x, y) ∈M ⇔ (R · x,R · y) ∈MR & (x, y) ∈MR·x,R·y.

Define now

ϕ : [0, 1]Γ →M(Γ, S)

by

(γ, γs) ∈ ϕ(x)⇔ (〈γ〉−1 · x, 〈s〉−1〈γ〉−1 · x) ∈M,

for s ∈ S±1. It is enough to show that ϕ preserves the GΓ,S-action.
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First we check that ϕ(〈δ〉 · x) = δ · ϕ(x) for δ ∈ Γ. Indeed (γ, γs) ∈ ϕ(〈δ〉 · x) ⇔

(〈γ〉−1〈δ〉 · x, 〈s〉−1〈γ〉−1〈δ〉 · x) ∈M ⇔ (δ−1γ, δ−1γs) ∈ ϕ(x)⇔ (γ, γs) ∈ δ · ϕ(x).

Finally we verify that ϕ(r ·x) = r ·ϕ(x), for r ∈ R, i.e., (γ, γs) ∈ ϕ(r ·x)⇔ (γ, γs) ∈

r · ϕ(x). Now

(γ, γs) ∈ ϕ(r · x)⇔ (〈γ〉−1r · x, 〈s〉−1〈γ〉−1r · x) ∈M

and

(γ, γs) ∈ r · ϕ(x)⇔ (r−1(γ), r−1(γs)) ∈ ϕ(x)

⇔
(
〈r−1(γ)〉−1 · x, 〈s′〉−1〈r−1(γ)〉−1 · x

)
∈M,

where r−1(γs) = r−1(γ)s′, for some s′ ∈ S±1. Now 〈γ〉−1r = p〈γ′〉, for some p ∈ R and

γ′ = (r−1(γ))−1. We have therefore to show that

(p〈γ′〉 · x, 〈s〉−1p〈γ′〉 · x) ∈M ⇔ (〈γ′〉 · x, 〈s′〉−1〈γ′〉 · x) ∈M.

Clearly p〈γ′〉 · x, 〈γ′〉 · x belong to the same R-orbit, so it is enough to show that p′ =

〈s〉−1p〈s′〉 ∈ R. Because then 〈s〉−1p〈γ′〉 · x = p′〈s′〉−1〈γ′〉 · x and thus R · (p〈γ′〉 · x) =

R·(〈γ′〉·x) = A,R·(〈s〉−1p〈γ′〉·x) = R·(〈s′〉−1〈γ′〉·x) = B and (p〈γ′〉·x, 〈s〉−1p〈γ′〉·x) ∈

M ⇔ (p〈γ′〉 · x, 〈s〉−1p〈γ′〉 · x) ∈MA,B ⇔ (〈γ′〉 · x, 〈s′〉−1〈γ′〉 · x) ∈MA,B (by 6.8). Now

p′ ∈ GΓ,S and p′(1) = s−1p(s′) = s−1
(
(〈γ〉−1r〈γ′〉−1)〈s′〉

)
= s−1

(
〈γ〉−1r((γ′)−1s′)

)
=

s−1γ−1r(r−1(γ)s′) = s−1γ−1r(r−1(γs)) = s−1γ−1γs = 1, so p′ ∈ R. a

9. Independence numbers

Let Γ be an infinite group and S a finite set of generators. Consider the set

I(Γ, S) = {iµ(S, a) : a ∈ FR(Γ, X, µ)}

of independence numbers of actions of Γ. It was shown in Conley-Kechris [CK13, §4, (C)]

that I(Γ, S) is a closed interval [iµ(S, sΓ), iµ(S, aerg
Γ,∞)], where sΓ is the shift action of Γ on
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[0, 1]Γ and aerg
Γ,∞ is the maximum, in the sense of weak containment, free ergodic action.

Let

Ierg(Γ, S) = {iµ(S, a) : a ∈ FR(Γ, X, µ), a ergodic}.

The question of understanding the nature of Ierg(Γ, S) was raised in Conley-Kechris [CK13,

§4, (C)]. We prove here the following result:

THEOREM 9.1. Let Γ be an infinite group and S a finite set of generators. If Γ has

property (T), then Ierg(Γ, S) is a closed set.

Proof. Since Γ has property (T), fix finiteQ ⊆ Γ and ε > 0 with the following property:

If a ∈ A(Γ, X, µ) and there is a Borel set A ⊆ X with

∀γ ∈ Q(µ(γa · A∆A) < µ(A)(1− µ(A))),

then a is not ergodic (see, e.g., Kechris [Kec10, 12.6]).

Let now ιn ∈ Ierg(Γ, S), ιµ → ι, in order to show that ι ∈ Ierg(Γ, S). Let an ∈

FR(Γ, X, µ) be ergodic with ιµ(S, an) = ιn. Let U be a non-principal ultrafilter on N

and consider the action a =
∏

n an/U on (XU , µU). Then it is clear that there is no non-

trivial Γ-invariant element in the measure algebra MALGµU . Because if A = [(An)]U

was Γ-invariant, with µU(A) = δ, 0 < δ < 1, then µU(γa · A∆A) = 0,∀γ ∈ A, so

limn→U µ(γan · An∆An) = 0 and µ(An) → δ, so for some n, and all γ ∈ Q, µ(γan ·

An∆A) < εµ(An)µ(1− µ(An)), thus an is not ergodic, a contradiction.

Fix also independent sets An ⊆ X for an with |µ(An) − ιn| < 1
n

. Let A = [(An)]U .

Then A is independent for a modulo null sets (i.e., sa · A ∩ A is µU -null, ∀s ∈ S±1) and

µU(A) = ι. Consider now the factor b of a corresponding to the σ-algebra B = σ(B0),

where B0 is a countable Boolean subalgebra of MALGµU closed under a, the functions

SU , TU of §2, (B), §3, (B), resp., and containing A. We can view b as an element of

FR(Γ, X, µ). First note that b is ergodic, since MALGµU and thus B has no Γ-invariant

non-trivial sets. We now claim that ιµ(S, b) = ι, which completes the proof. Since

A ∈ B, it is clear that ιµ(S, b) ≥ µU(A) = ι. So assume that ιµ(S, b) > ι towards
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a contradiction, and let B ∈ MALGµU be such that sa · B ∩ B = ∅, ∀s ∈ S±1, and

µU(B) = κ > ι. We can assume of course that B = [(Bn)]U ∈ B0
U , so limn→U µ(Bn) = κ

and limn→U µ(san ·Bn∩Bn) = 0,∀s ∈ S±1. LetCn = Bn\san ·Bn, so that san ·Cn∩Cn = ∅

and µ(Cn) = µ(Bn) − µ(san · Bn ∩ Bn), thus limn→U µ(Cn) = limn→U µ(Bn) = κ > ι.

Since ιn → ι, for all large enough n, ιn < ι+κ
2

and thus for some U ∈ U , and any

n ∈ U, µ(Cn) > ι+κ
2

but ιµ(S, an) = ιn <
ι+κ

2
. Since Cn is an independent set for an, this

gives a contradiction. a

Similar arguments show that the set of matching numbers m(S, a), a ∈ FR(Γ, X, µ),

is the interval [m(S, sΓ),m(S, aerg
Γ,∞)], and the set of matching numbers of the ergodic, free

actions is a closed set, if Γ has property (T).

10. Sofic actions

(A) Recall that a group G is sofic if for every finite F ⊆ G and ε > 0, there is n ≥ 1

and π : F → Sn (= the symmetric group on n = {0, . . . , n − 1}) such that (denoting by

idX the identity map on a set X):

(i) 1 ∈ F ⇒ π(1) = idn,

(ii) γ, δ, γδ ∈ F ⇒ µn({m : π(γ)π(δ)(m) 6= π(γδ)(m)}) < ε,

(iii) γ ∈ F \ {1} ⇒ µn({m : π(γ)(m) = m}) < ε,

where µn is the normalized counting measure on n.

Elek-Lippner [EL10] have introduced a notion of soficity for equivalence relations. We

give an equivalent definition due to Ozawa [Oza].

Let (X,µ) be a standard measure space and E a measure preserving, countable Borel

equivalence relation on X . We let

[[E]] = {ϕ : ϕ is a Borel bijection ϕ : A→ B,

where A,B are Borel subsets of X and

xEϕ(x), µ-a.e. (x ∈ A)}.
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We identify ϕ, ψ as above if their domains are equal modulo null sets and they agree a.e.

on their domains. We define the uniform metric on [[E]] by

δX(ϕ, ψ) = µ({x : ϕ(x) 6= ψ(x)}),

where

ϕ(x) 6= ψ(x)

means that

x ∈ dom(ϕ)∆dom(ψ)

or

x ∈ dom(ϕ) ∩ dom(ψ) & ϕ(x) 6= ψ(x).

If ϕ : A → B we put dom(ϕ) = A, rng(ϕ) = B. If ϕ : A → B,ψ : C → D are in

[[E]], we denote by ϕψ their composition with dom(ϕψ) = C ∩ψ−1(A∩D) and ϕψ(x) =

ϕ(ψ(x)) for x ∈ dom(ϕψ). If (ϕi)i∈I , I countable, is a pairwise disjoint family of elements

of [[E]], i.e., dom(ϕi), i ∈ I , are pairwise disjoint and rng(ϕi), i ∈ I , are pairwise disjoint,

then
⊔
i∈I ϕi ∈ [[E]], is the union of the ϕi, i ∈ I . If ϕ : A → B is in [[E]], we denote by

ϕ−1 : B → A the inverse function, which is also in [[E]]. Finally if X = n and µ = µn

is the normalized counting measure, we denote by [[n]] the set of all injections between

subsets of n (thus [[n]] = [[E]], where E = n × n). We denote by δn the corresponding

uniform (or Hamming) metric on [[n]], so δn(ϕ, ψ) = 1
n
|{m : ϕ(m) 6= ψ(m)}|.

DEFINITION 10.1. A measure preserving countable Borel equivalence relation E on a

non-atomic standard measure space (X,µ) is sofic if for each finite F ⊆ [[E]] and each

ε > 0, there is n ≥ 1 and π : F → [[n]] such that

i) idX ∈ F ⇒ π(idX) = idn,

ii) ϕ, ψ, ϕψ ∈ F ⇒ δn(π(ϕψ), π(ϕ)π(ψ)) < ε,

iii) ϕ ∈ F ⇒
∣∣µ({x : ϕ(x) = x})− µn({m : π(ϕ)(m) = m})

∣∣ < ε .
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We do not know if this definition is equivalent to the one in which [[E]] is replaced by

the full group [E] = {ϕ ∈ [[E]] : µ(dom(ϕ)) = 1} and [[n]] by Sn, i.e., the soficity of the

full group.

The following two facts, brought to our attention in a seminar talk by Adrian Ioana, can

be proved by routine but somewhat cumbersome calculations.

PROPOSITION 10.2. For F, ε, n, π as in 9.1, if ϕ, ψ ∈ F and δX(ϕ, ψ) < ε, then

δn(π(ϕ), π(ψ)) < 10ε.

PROPOSITION 10.3. Let E be a measure preserving countable Borel equivalence re-

lation on a non-atomic standard measure space (X,µ). Let Fm, m ∈ N be finite subsets

of [[E]] with F0 ⊆ F1 ⊆ . . . F−1
m = Fm, ∅ 6∈ Fm (where ∅ is the empty function) and

iddom(ϕ) ∈ Fm for any ϕ ∈ Fm. Let
⊕

Fm = {
⊔k
i=1 ϕi : ϕi ∈ Fm} ⊆ [[E]]. If

⋃
m(
⊕

Fm)

is dense in [[E]] and for everym and every ε > 0, 9.1 holds for F = FmFm = {ϕψ : ϕ, ψ ∈

Fm} and ε > 0, then E is sofic.

We next define sofic actions. For (X,µ) a non-atomic, standard measure space and Γ a

countable group, for each a ∈ A(Γ, X, µ), denote by Ea the induced equivalence relation

(defined modulo null sets)

xEay ⇔ ∃γ ∈ Γ(γa · x = y).

DEFINITION 10.4. An action a ∈ A(Γ, X, µ) is sofic if Ea is sofic.

Let now A0 be any countable Boolean subalgebra of MALGµ closed under an action

a ∈ A(Γ, X, µ) and generating MALGµ. Let Γ = {γn : n ∈ N}, and let (Am)m∈N enumer-

ate the elements of A0 of positive measure. Let (ϕai )i∈N enumerate the family of elements

of [[Ea]] of the form γan|Am, n,m ∈ N. Then by 9.3 we have the following criterion. (No-

tice that if Fm = {ϕa0, . . . , ϕam} ∪ {(ϕa0)−1, . . . , (ϕam)−1}, then FmFm ⊆ {ϕa0, ϕa1, . . . } and⋃
m(
⊕

Fm) is dense in [[Ea]].)
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PROPOSITION 10.5. The action a ∈ A(Γ, X, µ) is sofic provided that for each m and

ε > 0, 9.1 holds for F = {ϕa0, . . . , ϕam} and ε.

We now have the following fact.

PROPOSITION 10.6. Let (X,µ) be a non-atomic standard measure space. Then the set

of sofic actions in FR(Γ, X, µ) is closed in FR(Γ, X, µ). In particular, if a, b ∈ FR(Γ, X, µ),

b is sofic and a ≺ b, then a is sofic.

Proof. Suppose an, a ∈ FR(Γ, X, µ), an → a and each an is sofic. We will show that a

is sofic. Fix a countable Boolean algebraA0 which generates MALGµ and is closed under

all the an, n ∈ N and a. Let (γn), (Am), (ϕai ) be as before for the action a, so that (ϕai )

enumerates all γan|Am. For m, ε > 0 we want to verify 9.1 for F = {ϕa0, . . . , ϕam}, ε > 0.

Say, for i ≤ m,ϕai = δai |Bi, where δi ∈ Γ, Bi ∈ A0. Note that δi is uniquely determined

by the freeness of the action a.

Choose N large enough so that µ(Bi ∩ (δ−1
j )aN · Bi)∆(Bi ∩ (δ−1

j )a · Bi)) <
ε

20
, for

i, j ≤ m and let ψi = δaNi |Bi, i ≤ m. Let then πN : {ψ0, . . . , ψm} → [[n]] satisfy 9.1 with

ε
20

. Put π(ϕai ) = πN(ψi). We will show that this satisfies i)-iii) of 9.1. It is clear that i)

holds.

For iii): Given ϕi, 1 ≤ i ≤ m, note that µ({x : ϕai (x) = x}) = µ(Bi), if δi = 1, and

µ({x : ϕai (x) = x}) = 0, if δi 6= 1. Thus µ({x : ϕai (x) = x}) = µ({x : ψi(x) = x}) and so

iii) is clearly true.

For ii): Assume i, j ≤ m and for some k ≤ m,ϕiϕj = ϕk. Then

ϕiϕj = δai δ
a
j |
(
Bj ∩ (δ−1

j )a ·Bi

)
= (δiδj)

a|
(
Bj ∩ (δ−1

j )a ·Bi

)
= δak |Bk,

so δk = δiδj and Bk = Bj ∩ (δ−1
j )a · Bi. Then ψi = δaNi |Bi, ψj = δaNj |Bj, ψiψj =

δaNi δaNj |Bj ∩ (δ−1
j )aN · Bi, ψk = (δiδj)

aN |Bj ∩ (δ−1
j )a · Bi. Therefore δX(ψiψj, ψk) <

ε
20

.
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Then, by 9.2, δn(πN(ψiψj), π(ψk)) <
ε
2
. Therefore

δn(π(ϕiϕj), π(ϕi)π(ϕj))

= δn(π(ϕk), π(ϕi)π(ϕj))

= δn(πN(ψk), πN(ψi)πN(ψj))

≤ δn(πN(ψk), πN(ψiψj)) + δn(πN(ψiψj), πN(ψi)πn(ψj))

< ε
2

+ ε
2

= ε

and the proof is complete. a

(B) Consider now a sofic group Γ and fix an increasing sequence 1 ∈ F0 ⊆ F1 ⊆ . . .

of finite subsets of Γ with
⋃
n Fn = Γ. For each n, let Xn be a finite set of cardinality ≥ n

with the normalized counting measure µn such that there is a map πn : Fn → SXn (= the

permutation group of Xn) such that

i) πn(1) = idXn ,

ii) γ, δ, γδ ∈ Fn ⇒ µn({x : π(γ)π(δ)(x) 6= π(γδ)(x)}) < 1
n

,

iii) γ ∈ Fn \ {1} ⇒ µn({x : π(γ)(x) = x}) < 1
n

.

Define then an : Γ×X → X by

an(γ, x) = πn(γ)(x)

Then abbreviating an(γ, x) by γ ·n x we have

i) 1 ·n x = x

ii) γ, δ, γδ ∈ Fn ⇒ µn({x : γδ ·n x 6= γ ·n (δ ·n x)}) < 1
n

,

iii) γ ∈ Fn \ {1} ⇒ µn({x : γ ·n x = x}) < 1
n

.

So we can view an as an “approximate” free action of Γ on Xn.

Fix now a non-principal ultrafilter U on N and let XU = (
∏

nXn)/U and µU the corre-

sponding measure on the σ-algebraBU of XU . By 2.5 this is non-atomic. As in §3, we can
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also define an action aU on Γ on XU by

γaU · [(xn)]U = [(γ ·n xn)]U

(note that γ ·nxn is well-defined for U-almost all n). This action is measure preserving and,

by iii) above, it is free, i.e., for γ ∈ Γ \ {1}, µU({x ∈ XU : γaU · x 6= x}) = 0 (see 3.2). So

let B0 be a countable subalgebra of MALGµU closed under the action aU , the function SU

of §2, (B) and TU of §3, (B). Let B = σ(B0) and let b be the factor corresponding to B.

Then b ∈ FR(Γ, X, µ), for a non-atomic standard measure space (X,µ).

We use this construction to give another proof of the following result:

THEOREM 10.7. (Elek-Lippner [EL10]). Let Γ be an infinite sofic group and let sΓ be

the shift action of Γ on [0, 1]Γ. Then sΓ is sofic.

Proof. Consider the factor b as in the preceding discussion. By Abért-Weiss [AW11],

sΓ ≺ b, thus using 9.6, it is enough to show that b is sofic. Using 9.5, it is clearly enough

to show the following: For any γ1, . . . , γk ∈ Γ, [(A1
n)]U , . . . , [(A

k
n)]U ∈ B0 of positive

measure and ε > 0, letting ϕi = γaU |[Ain)]U , there is n and a map π : {ϕi : i ≤ k} → [[Xn]]

(the set of injections between subsets of Xn) such that

i) ϕi = idX ⇒ π(ϕi) = idXn ,

ii) If i, j, ` ≤ k and ϕiϕj = ϕ`, then µn({x : π(ϕi)π(ϕj)(x) 6= π(ϕ`)(x)}) < ε,

iii) |µ({x : ϕi(x) = x})− µn({x : π(ϕi)(x) = x})| < ε.

Since aU is free, note that ϕi = γaUi |[(Ain)]U uniquely determines γi. Choose now n ∈ U

so that:

a) µn({x : γ` ·n x 6= γi ·n (γj ·n x)}) < ε
2
, if γ` = γiγj (i, j, ` ≤ k),

b) µn({x : γi ·n x = x}) < ε, if γi 6= 1,

c) µn(A`n∆(Ajn ∩ γ−1
j ·n Ain)) < ε

2
, if ϕiϕj = ϕ` (i, j, ` ≤ k).

Note that c) is possible since [(A`n)]U is the domain of ϕ`, while [(Ajn)]U ∩ (γ−1
j )aU ·

[(Ain)]U is the domain of ϕiϕj , thus 0 = µU
(
[(A`n)]U∆([(Ajn)]U ∩ (γ−1

j )aU · [(Ain)]U)
)

=

limn→U µn(A`n∆(Ajn ∩ γ−1
j ·n Ain)). Now define
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1) π(ϕi) = idXn , if ϕi = idX ,

2) π(ϕi) = γani |Ain, otherwise,

where as usual γani (x) = an(γi, x). We claim that this works. Clearly i) is satisfied. Also

iii) is satisfied. This is trivial if ϕi = idX . Otherwise γi 6= 1, µ({x : ϕi(x) = x}) = 0 and

µn({x : π(ϕi)(x) = x}) ≤ µn({x : γi ·n x = x}) < ε. Finally for ii), assume ϕiϕj = ϕ`

(i, j, ` ≤ k). Then γiγj = γ` and so

µn({x : γ` ·n x 6= γi ·n (γj ·n x)}) < ε

2
,

thus

µn({x : π(ϕ`)(x) 6= π(ϕi)π(ϕj)(x)}) ≤

µn((A`n∆(Ajn ∩ γ−1
j ·n Ain))) + µn({x : γ` ·n x 6= γi ·n (γj ·n x)}) < ε.

a

(C) It is a well known problem whether every countable group is sofic. Elek-Lippner

[EL10] also raised the question of whether every measure preserving, countable Borel

equivalence relation on a standard measure space is sofic. They also ask the question of

whether every free action a ∈ FR(Γ, X, µ) of a sofic group Γ is sofic. They show that

all treeable equivalence relations are sofic and thus every strongly treeable group (i.e., for

which all free actions are treeable) has the property that all its free actions are sofic. These

groups include the amenable and the free groups. Another class of groups that has this

property is the class MD discussed in Kechris [Kec12]. A group Γ is in MD if it is residually

finite and its finite actions (i.e., actions that factor through an action of a finite group) are

dense in A(Γ, X, µ). These include residually finite amenable groups, free groups, and

(Bowen) surface groups, and lattices in SO(3, 1). Moreover MD is closed under subgroups

and finite index extensions.

To see that every free action of a group in MD is sofic, note that by Kechris [Kec12,

4.8] if a ∈ FR(Γ, X, µ), then a ≺ ιΓ × pΓ, where ιΓ is the trivial action of Γ on (X,µ)
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and pΓ the translation action of Γ on its profinite completion on Γ̂. It is easy to check that

ιΓ × pΓ is sofic and thus a is sofic by 9.6.

We note that the fact that every free group Γ has MD and thus every free action of Γ

is sofic can be used to give an alternative proof of the result of Elek-Lippner [EL10] that

every measure preserving, treeable equivalence relation is sofic. Indeed it is a known fact

that if E is such an equivalence relation on (X,µ), then there is a ∈ FR(F∞, X, µ) such

that E ⊆ Ea. This follows, for example, by the method of proof of Conley-Miller [CM10,

Prop. 8] or by using [CM10, Prop 9], that shows that E ⊆ F where F is treeable of infinite

cost, and then using Hjorth’s result (see [KM04, 28.5]) that F is induced by a free action

of F∞. Since Ea is sofic and [[E]] ⊆ [[Ea]], it immediately follows that E is sofic.

We do not know if every measure preserving treeable equivalence relation E is con-

tained in some Ea, where a ∈ FR(F2, X, µ).

Remark. For arbitrary amenable groups Γ, one can use an appropriate Følner sequence to

construct a free action aU on an ultrapower of finite sets as in §9, (A). Then using an argu-

ment as in Kamae [Kam82], one can see that every action of Γ is a factor of this ultrapower

(and thus as in 9.6 again every such action is sofic).

11. Concluding remarks

There are sometimes alternative approaches to proving some of the results in this paper

using weak limits in appropriate spaces of measures instead of ultrapowers.

One approach is to replace the space of actions A(Γ, X, µ) by a space of invariant

measures for the shift action of Γ on [0, 1]Γ as in Glasner-King [GK96].

Let R(X,µ) be a non-atomic, standard measure space. Without loss of generality, we

can assume that X = [0, 1], µ = λ = Lebesgue measure on [0,1]. Denote by SIMµ(Γ)

the compact (in the weak∗-topology) convex set of probability Borel measures ν on [0, 1]Γ

which are invariant under the shift action sΓ, such that the marginal (π1)∗ν = µ (where

π1 : [0, 1]Γ → [0, 1] is defined by π1(x) = x(1)). For a ∈ A(Γ, X, µ) let ϕa : [0, 1]→ [0, 1]Γ
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be the map ϕa(x)(γ) = (γ−1)a · x, and let (ϕa)∗µ = µa ∈ SIMµ(Γ). Then Φ(a) = µa is a

homeomorphism of A(Γ, X, µ) with a dense, Gδ subset of SIMµ(Γ) (see [GK96]).

One can use this representation of actions to give another proof of Corollary 4.5.

If an ∈ A(Γ, X, µ), n ∈ N, is given, consider µn = µan ∈ SIMµ(Γ) as above. Then

there is a subsequence n0 < n1 < n2 < . . . such that µni → µ∞ ∈ SIMµ(Γ) (convergence

is in the weak∗-topology of measures). Then µ∞ is non-atomic, so we can find a∞ ∈

A(Γ, X, µ) such that a∞ on (X,µ) is isomorphic to sΓ on ([0, 1]Γ, µ∞). One can then

show (as in the proof of (1) ⇒ (3) in 4.3) that there are bni ∼= ani , bni ∈ A(Γ, X, µ)

such that bni → a∞. (Similarly if we let U be a non-principal ultrafilter on N and µU =

limn→U µn and aU in A(Γ, X, µ) is isomorphic to sΓ on ([0, 1]Γ, µU), then there are bn ∈

A(Γ, X, µ), bn ∼= an with limn→U bn = aU .)

For other results, related to graph combinatorics, one needs to work with shift-invariant

measures on other spaces. Let Γ be an infinite group with a finite set of generators S. We

have already introduced in §6 the compact space Col(k,Γ, S) of k-colorings of Cay(Γ, S)

and in §7 the compact space M(Γ, S) of perfect matchings of Cay(Γ, S). On each one of

these we have a canonical shift action of Γ and we denote by INVCol(Γ, S), INVM(Γ, S)

the corresponding compact spaces of invariant, Borel probability measures (i.e., the spaces

of invariant, random k-colorings and invariant, random perfect matchings, resp.). Simi-

larly, identifying elements of 2Γ with subsets of Γ, we can form the space Ind(Γ, S) of all

independent in Cay(Γ, S) subsets of Γ. This is again a closed subspace of 2Γ which is shift

invariant and we denote by INVInd(Γ, S) the compact space of invariant, Borel measures

on Ind(Γ, S), which we can call invariant, random independent sets.

If a ∈ FR(Γ, X, µ) and A ⊆ X is a Borel independent set for G(S, a), then we define

the map

IA : X → Ind(Γ, S),

given by

γ ∈ IA(x)⇔ (γ−1)a · x ∈ A.
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This preserves the Γ-actions, so (IA)∗µ = ν ∈ INVInd(Γ, S). Moreover ν({B ∈ IND(Γ, S) : 1 ∈

B}) = µ(A). If iµ(S, a) = ι and An ⊆ X are Borel independent sets with µ(An) → ι, let

νn = (IAn)∗µ. Then the shift action an on (IND(Γ, S), µn) may not be free but one can still

define independent sets for this action as being those C such that san ·C ∩C = ∅ (modulo

null sets) and also the independence number ινn(s, an) as before. We can also assume, by

going to a subsequence, that νn → ν∞. Denote by a∞ the shift action for (Ind(Γ, S), ν∞).

Then {B ∈ IND(Γ, S) : 1 ∈ B} is independent for an and a∞, so ιν∞(S, an) ≥ ι. But also

ινn(S, an) ≤ ιµ(S, a) and from this, it follows by a simple approximation argument that

ιν∞(S, a∞) ≤ ι, so ιν∞(S, a∞) = ι and the sup is attained. This gives a weaker version of

5.2 (iii). Although one can check that a∞ ≺ a, it is not clear that a∞ is free and moreover

we do not necessarily have that a v a∞. This would be remedied if we could replace a∞

by a∞ × a, but it is not clear what the independence number of this product is. This leads

to the following question: Let a, b ∈ FR(Γ, X, µ) and consider a × b ∈ FR(Γ, X2, µ2). It

is clear that ιµ2(a× b) ≥ max{ιµ(a), ιµ(b)}. Do we have equality here?

Similar arguments can be given to prove weaker versions of 5.2 (iii), (iv).

However a weak limit argument as above (but for the space of colorings) can give an

alternative proof of 6.4 using the “approximate” version of Brooks’ Theorem in Conley-

Kechris [CK13] (this was pointed out to us by Lyons). Indeed let a ∈ FR(Γ, S, µ), d =

|S±1|. By Conley-Kechris [CK13, 2.9] and Kechris-Solecki-Todorcevic [KST99, 4.8],

there is k > d and for each n, a Borel coloring cn : X → {1, . . . , k} such that µ(c−1
n ({d +

1, . . . , k})) < 1
n

. Let as usualCn : X → Col(k,Γ, S) be defined byCn(x)(γ) = cn((γ−1)a·

x). Let (Cn)∗µ = νn. Then νn({c ∈ Col(k,Γ, S) : c(1) > d}) = µ(C−1
n ({d+1, . . . , k})) <

1
n

. By going to a subsequence we can assume that νn → ν, an invariant, random k-coloring.

Now ν({c ∈ Col(k,Γ, S) : c(1) > d}) = 0, thus ν concentrates on Col(d,Γ, S) and thus is

an invariant, random d-coloring. Moreover it is not hard to check that it is weakly contained

in a.
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A similar argument can be used to show that for every Γ, S except possibly non-

amenable Γ with S consisting of elements of odd order, there is an invariant, random perfect

matching (see 7.5).

Finally one can obtain by using weak limits in INVInd(Γ, S) and the result in Glasner-

Weiss [GW97], that if Γ has property (T) and cn ∈ Ierg(Γ, S), ιµn(Γ, S) → ι, then there

is a measure ν ∈ INVInd(Γ, S) such that the shift action is ergodic relative to ν and has

independence number equal to ι, but it is not clear that this action is free.
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Chapter 3

On a co-induction question of Kechris

Lewis Bowen and Robin D. Tucker-Drob

This note answers a question of Kechris: if H < G is a normal subgroup of a countable group

G, H has property MD and G/H is amenable and residually finite then G also has property MD.

Under the same hypothesis we prove that for any action a of G, if b is a free action of G/H , and

bG is the induced action of G then CIndGH(a|H) × bG weakly contains a. Moreover, if H < G is

any subgroup of a countable group G, and the action of G on G/H is amenable, then CIndGH(a|H)

weakly contains a whenever a is a Gaussian action.

1. Introduction

The Rohlin Lemma plays a prominent role in classical ergodic theory. Roughly speak-

ing, it states that any aperiodic automorphism T of a standard non-atomic probability space

(X,µ) can be approximated by periodic automorphisms. In [OW80], Ornstein and Weiss

generalized the Rohlin Lemma to actions of amenable groups and used it to extend many

classical ergodic theory results (such as Ornstein theory) to the amenable setting.

There is no analogue of the Rohlin Lemma for non-amenable groups. However, one

can hope to understand more precisely how and why this is so. The concept of “weak

containment” of actions, introduced by A. Kechris [Kec10], is a natural starting point. To

be precise, let (X,µ), (Y, ν) be standard non-atomic probability spaces. Let Gya (X,µ),
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G yb (Y, ν) be probability measure preserving (p.m.p.) actions. An observable φ for a is

a measurable map φ : X → N. For F ⊂ G, let φFa : X → NF = {y : F → N} be defined

by

φFa (x)(f) = φ(a(f)x).

Then a is said to be weakly contained in b (denoted a ≺ b) if for every ε > 0, every finite

F ⊂ G, every observable φ for a, there is an observable ψ for b such that

‖φF∗ µ− ψF∗ ν‖1 ≤ ε.

The two actions are weakly equivalent if a ≺ b and b ≺ a.

If G is infinite and amenable, then as remarked in [Kec12], if a is a free action then

a weakly contains every action of G. This is essentially equivalent to the Rohlin Lemma

for amenable groups. However, when G is non-amenable then it may possess uncountably

many free non-weakly equivalent actions [AE11]. It is unknown whether the same holds

true for every non-amenable group.

It is natural to ask how weak equivalence behaves with respect to operations such as

co-induction. To be precise, let H < G be a subgroup. Let H ya (X,µ) be a p.m.p.

action. Let Z = {z ∈ XG : a(h−1)z(g) = z(gh) ∀h ∈ H, g ∈ G}. Let G yb Z be the

action (b(g)z)(f) = z(g−1f) for g, f ∈ G, z ∈ Z.

A section of H in G is a map σ : G/H → G such that σ(gH) ⊂ gH for every g ∈ G.

Let us assume σ(H) = e. Define Φ : Z → XG/H by φ(z)(gH) = z(σ(gH)). This

is a bijection. Define a measure ζ on Z by pulling back the product measure µG/H on

XG/H . Then G yb (Z, ζ) is probability measure preserving. This action is called said to

be co-induced from a and is denoted b = CIndGH(a).

Problem A.4. of [Kec12] asks the following.

PROBLEM 1.1. Let G be a countable group with a subgroup H < G. Suppose the

action of G on G/H is amenable. Is it true that for any p.m.p. action a of G on a standard

non-atomic probability space, the co-induced action CIndGH(a|H) weakly contains a?
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A positive answer can be interpreted as providing a relative version of the Rohlin

lemma. Note that the action ofG onG/H being amenable is a necessary condition, since if

we take a to be the trivial action τG ofG on a standard non-atomic probability space (X,µ),

then CIndGH(τG|H) is isomorphic to the generalized Bernoulli shift action sG,G/H,X of G

on XG/H (see section 5), and sG,G/H,X weakly containing τG is equivalent to the action of

G on G/H being amenable by [KT08]. Also note that if replace the actions with unitary

representations, then the analogous problem is known to have a positive answer (this is

E.2.6 of [BHV08]).

Our main results solve Problem 1 in a number of cases and provide applications to

property MD. To begin, we prove:

THEOREM 1.1. Let G be a countable group with normal subgroup H . Suppose that

G/H is amenable and that |G/H| =∞. Let b be any free p.m.p. action of G/H . Let bG be

the associated action of G (i.e., bG is obtained by pre-composing b with the quotient map

G→ G/H). Then for any p.m.p. action a of G on standard non-atomic probability space,

the product action CIndGH(a|H)× bG weakly contains a.

Taking b to be the Bernoulli shift action ofG/H over a standard non-atomic probability

base space, we show that Theorem 1.1 implies (see 5.1 below)

a ≺ CIndGH((a× τG)|H)

where τG is the trivial action of G as above. In particular, if a|H weakly contains (a ×

τG)|H , then CIndGH(a|H) weakly contains a. For instance, by [AW11] this is the case

whenever a is an ergodic p.m.p. action of G that is not strongly ergodic. This also holds

when a is a universal action of G, i.e., b ≺ a for every p.m.p. action b of G. That such

actions exist for every countable group G is due to Glasner-Thouvenot-Weiss [GTW06]

and, independently, to Hjorth (unpublished, see 10.7 of [Kec10]). This has the following

consequence:
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THEOREM 1.2. Let G and H be as in Theorem 1.1. If b is a universal action of H then

CIndGH(b) is a universal action of G.

In section 6 we describe the Gaussian action construction. For every real positive def-

inite function ϕ defined on a countable set T , a probability measure µϕ on RT is defined,

and we call (RT , µϕ) a Gaussian probability space. When G acts on T and ϕ is invariant

for this action, then µϕ will be an invariant measure for the shift action of G on (RT , µϕ).

A p.m.p. action a of G is called a Gaussian action if it is isomorphic to the shift action of

G on some Gaussian probability space (RT , µϕ) associated to an invariant positive definite

function ϕ. We show that Problem 1 always has a positive answer for Gaussian actions.

THEOREM 1.3. Let G be a countable group with a subgroup H < G. Suppose the

action ofG onG/H is amenable. Then the co-induced action CIndGH(a|H) weakly contains

a for every Gaussian action a of G.

Part of the motivation for posing Problem 1 above concerns a property of groups intro-

duced by Kechris called property MD. To be precise, let G be a residually finite group, and

let ρG be the canonical action of G on its profinite completion. Recall that τG is the trivial

action of G on (X,µ), a standard non-atomic probability space. Then G has MD if and

only if every p.m.p. action of G is weakly contained in the product action τG × ρG.

The property MD is an ergodic theoretic analogue of the property FD discussed in

Lubotzky-Shalom [LS04] (see also Lubotzky-Zuk [LZ03]). This asserts that the finite

unitary representations ofG on an infinite-dimensional separable Hilbert spaceH are dense

in the space of unitary representations ofG inH. It is not difficult to show thatMD ⇒ FD

but the converse is unknown.

It is known (see [Kec12] for more details), that the following groups have MD: residu-

ally finite amenable groups, free products of finite groups, subgroups of MD groups, finite

extensions of MD groups. On the other hand, various groups such as SLn(Z) for n > 2

are known not to have FD [LS04] [LZ03] and hence also do not have MD. It is an open

question whether the direct product of two free groups has MD.
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In [Kec12], Conjecture 4.14, Kechris conjectured the following:

THEOREM 1.4. Let N be an infinite, residually finite group satisfying MD. Let N C G

with G residually finite. Assume that:

(1) For every H C N with [N : H] < ∞, there is G′ C G such that G′ ⊂ H and

[N : G′] <∞.

(2) G/N is a residually finite, amenable group.

Then G satisfies MD.

As noted in [Kec12], this result implies that surface groups and the fundamental groups

of virtually fibered closed hyperbolic 3-manifolds, (e.g., SL2(Z[i])) have property MD.

This follows from the fact that free groups have property MD (proven in [Kec12] and in

different terminology in [Bow03]). Kechris proved that an affirmative answer to Problem

1 above implies Theorem 1.4. Our proof follows his line of argument.

Note: If N is finitely generated then the first condition of Theorem 1.4 is automatically

satisfied since if N is normal in G and H < N has finite index, then for every g ∈ G,

gHg−1 is a subgroup of N with the same index as H . Because N is finitely generated, this

implies there are only finitely many different conjugates of H . The intersection of all these

conjugates is a normal subgroup in G with finite index in N .

Acknowledgements: We would like to thank Alekos Kechris for encouraging us to

take on this problem and for many valuable comments on an earlier draft of this paper.

2. The space of actions and proof of Theorem 1.4

Let (X,µ) denote a standard non-atomic probability space and A(G,X, µ) the set of

all p.m.p. actions of G on (X,µ). This set is naturally identified with a subset of the

product space Aut(X,µ)G where Aut(X,µ) denotes the space of all automorphisms of

(X,µ). We equip the Aut(X,µ) with the weak topology, Aut(X,µ)G with the product

topology, and A(G,X, µ) with the subspace topology (also called the weak topology). The

group Aut(X,µ) acts on A(G,X, µ) by (Ta)(g) = Ta(g)T−1 for all T ∈ Aut(X,µ),

a ∈ A(G,X, µ) and g ∈ G. The orbit of a under this action is called its conjugacy class.
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LEMMA 2.1. Let a, b ∈ A(G,X, µ). Then a ≺ b if and only if a is contained in the

(weak) closure of the conjugacy class of b.

PROOF. This is Proposition 10.1 of [Kec10]. �

An action a ∈ A(G,X, µ) is finite if it factors through the action of a finite group. From

lemma 2.1 it follows that for any a ∈ A(G,X, µ), a ≺ τG×ρG if and only if a is contained

in the (weak) closure of the set of finite actions (this is implied by the proof of Proposition

4.8 [Kec12]).

We need the following lemmas.

LEMMA 2.2. Let a, b be actions of a countable groupG. If a and b are weakly contained

in τG × ρG then a× b is weakly contained in τG × ρG.

PROOF. If a is a weak limit of finite actions ai and b is a weak limit of finite actions bi

then a× b is the weak limit of ai × bi. �

LEMMA 2.3. If H < G is a normal subgroup, G/H is amenable and residually finite,

and b is a p.m.p. action of G/H then the induced action bG of G is weakly contained in

τG × ρG.

PROOF. As noted in [Kec12], because G/H is residually finite and amenable, it has

MD. Therefore, b is a weak limit of finite actions bi of G/H . If bG,i are the induced actions

of G, then the bG,i are also finite and bG,i converges weakly to bG. �

PROOF OF THEOREM 1.4 FROM THEOREM 1.1. Let a be a p.m.p. action of G. In

[Kec12] section 4, it is shown that CIndGN(a|N) is weakly contained in τG × ρG. Let b

be a free p.m.p. action of G/N . Because G/N is amenable the previous lemmas imply

CIndGN(a|N)× bG ≺ τG× ρG. So Theorem 1.1 implies a ≺ CIndGN(a|N)× bG ≺ τG× ρG.

Since a is arbitrary, G has MD. �

3. The Rohlin Lemma

The purpose of this section is to prove:
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THEOREM 3.1. If G is a countably infinite amenable group then for every free p.m.p.

action G ya (X,µ), every finite F ⊂ G and ε > 0 there is a measurable map J : X → G

such that

µ({x ∈ X : J(a(f)x) = fJ(x) ∀f ∈ F}) ≥ 1− ε.

This will follow easily from the following version of the Rohlin Lemma due to Ol-

lagnier [Oll85] Corollary 8.3.12 (see 2.2.8. for the definition of M(D, δ)).

THEOREM 3.2. Let G y (X,µ) be as above. Then for every finite F ⊂ G, for every

δ, η > 0 there exists a finite collection {(Λi, Ai)}i∈I satisfying:

(1) for every i ∈ I , Λi ⊂ G is finite and

|{g ∈ Λi : ∃f ∈ F, fg /∈ Λi}|
|Λi|

< δ,

(2) each Ai is a measurable subset of X with positive measure,

(3) a(λi)Ai ∩ a(λj)Aj = ∅ if i 6= j, λi ∈ Λi and λj ∈ Λj ,

(4) a(λ)Ai ∩ a(λ′)Ai = ∅ if λ, λ′ ∈ Λi and λ 6= λ′,

(5) µ (∪i∈I ∪λ∈Λi a(λ)Ai) ≥ 1− η.

PROOF OF THEOREM 3.1. Let 0 < δ, η < ε/2. Without loss of generality, we assume

e ∈ F . Let {(Λi, Ai)}i∈I be as in the theorem above. Define J by J(x) = λj if there is a

j ∈ I and λj ∈ Λj such that x ∈ a(λj)Aj . If x is not in ∪i∈I∪λ∈Λi a(λ)Ai, then define J(x)

arbitrarily. For each i, let Λ′i = ∩f∈Ff−1Λi. The theorem above implies |Λ′i| ≥ (1− δ)|Λi|.

Observe that

{x ∈ X : J(a(f)x) = fJ(x) ∀f ∈ F} ⊃ ∪i∈I ∪λ∈Λ′i
a(λ)Ai.

Thus

µ({x ∈ X : J(a(f)x) = fJ(x) ∀f ∈ F}) ≥ 1− η − δ ≥ 1− ε.

�
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4. Proof of Theorem 1.1

Assume the hypotheses of Theorem 1.1. In particular, we assume that G/H yb (Y, ν)

is a free p.m.p. action of the infinite amenable group G/H . For simplicity, if g ∈ G and

y ∈ Y , let gy denote b(gH)y.

Let F ⊂ G be finite and ε > 0. Because G/H is amenable, Theorem 3.1 implies there

exists a measurable function J : Y → G/H such that if

Y0 = {y ∈ Y : J(fy) = fJ(y) ∀f ∈ F}

then ν(Y0) ≥ 1− ε. Let σ : G/H → G be a section (i.e., σ(gH) ∈ gH for all g ∈ G). Let

J̃ : Y → G be defined by J̃ = σJ .

Recall that G ya (X,µ) is a p.m.p. action, Z = {z ∈ XG : a(h−1)z(g) = z(gh)}

and G acts on Z by (gz)(f) = z(g−1f) for z ∈ Z, g, f ∈ G. This action is CIndGH(a|H).

It preserves the measure ζ on Z obtained by pulling back the product measure µG/H on

XG/H under the map Φ : Z → XG/H , Φ(z)(gH) = z(σ(gH)).

For (z, y) ∈ Z × Y , define Sy(z) ∈ X by

Sy(z) = a(J̃(y))z(J̃(y)).

LEMMA 4.1. The map (z, y) ∈ Z × Y 7→ Sy(z) ∈ X maps ζ × ν onto µ.

PROOF. For any y ∈ Y , if δy denotes the Dirac probability measure concentrated on

y then it is easy to see that (z, y) 7→ Sy(z) maps ζ × δy onto µ. The lemma follows by

integrating over y. �

LEMMA 4.2. For every (z, y) ∈ Z × Y0 and f ∈ F , Sfy(fz) = a(f)Sy(z).

PROOF. If y ∈ Y0 then J(fy) = fJ(y) for all f ∈ F . Therefore, for each f ∈ F there

is some h ∈ H such that J̃(fy) = fJ̃(y)h. Now

Sfy(fz) = a(J̃(fy))(fz)(J̃(fy)) = a(fJ̃(y)h)(fz)(fJ̃(y)h)

= a(f)a(J̃(y))a(h)z(J̃(y)h) = a(f)a(J̃(y))z(J̃(y)) = a(f)Sy(z).
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�

Now let φ : X → N be an observable. Define ψ : Z × Y → N by ψ(z, y) = φ(Sy(z)).

The lemma above implies that for all (z, y) ∈ Z × Y0, ψ(fz, fy) = φ(a(f)Sy(z)) for all

f ∈ F . Thus ψF (z, y) = φF (Sy(z)) for (z, y) ∈ Z × Y0. Since (z, y) 7→ Sy(z) takes the

measure ζ × ν to µ and ν(Y0) ≥ 1− ε, it follows that

‖ψF∗ (ζ × ν)− φF∗ µ‖1 < ε.

Because F ⊂ G, ε > 0 and φ are arbitrary, this implies Theorem 1.1.

5. Consequences of Theorem 1.1

If K is a group acting on a countable set T , then for a measure space (X,µ) we denote

the generalized shift action of K on (XT , µT ) (given by (ky)(t) = y(k−1t) for k ∈ K, y ∈

XT , t ∈ T ) by sK,T,X .

COROLLARY 5.1. Let G be a countable group and let H be a normal subgroup of

infinite index such that G/H is amenable. Then a ≺ CIndGH((a× τG)|H) for every p.m.p.

action a of G.

PROOF. Let (X,µ) be a standard non-atomic probability space. Let sG/H,G/H,X de-

note the shift of G/H on XG/H , which is free. Let sG,G/H,X denote the generalized shift

of G on XG/H . Then sG,G/H,X is the action of G induced by sG/H,G/H,X , i.e., sG,G/H,X

factors through sG/H,G/H,X . By Proposition A.2 of [Kec12] we have that sG,G/H,X ∼=

CIndGH(sH,H/H,X). Now sH,H/H,X = τH is just the identity action of H on X , and τH =

τG|H is the restriction of the identity action of G on X to H .

LEMMA 5.2. Let L be a subgroup of the countable group K. Let a, b ∈ A(L,X, µ).

Then

CIndKL (a)× CIndKL (b) ∼= CIndKL (a× b)
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PROOF. This is easy to see once we view CIndKL (a) as an action on the space (XK/L, µK/L)

(using the bijection Φ : Z → XK/L defined in section 1), and similarly view CIndKL (b) and

CIndKL (a×b) as actions on (XK/L, µK/L) and ((X×X)K/L, (µ×µ)K/L) respectively. �

Applying Theorem 1.1 we now obtain

a ≺ CIndGH(a|H)× sG,G/H,X ∼= CIndGH(a|H)× CIndGH(τG|H) ∼= CIndGH((a× τG)|H),

so a ≺ CIndGH((a× τG)|H). �

If in addition to the hypotheses in Corollary 5.1 we also have (a× τG)|H ≺ a|H , then

since co-inducing preserves weak containment (A.1 of [Kec12]) it will follow that

a ≺ CIndGH((a× τG)|H) ≺ CIndGH(a|H).

Recall that a p.m.p. action a of G on a standard non-atomic probability space is called a

universal action of G if b ≺ a for every p.m.p. action b of G. We now have the following.

COROLLARY 5.3. Let G be a countable group and let H be a normal subgroup of

infinite index such that G/H is amenable. Then any one of the following conditions on

a ∈ A(G,X, µ) implies a ≺ CIndGH(a|H):

(1) a is ergodic but not strongly ergodic;

(2) a|H is ergodic but not strongly ergodic;

(3) a is a universal action of G;

(4) a|H is a universal action of H;

In addition, the set of actions a of G for which a ≺ CIndGH(a|H) is closed under taking

products.

REMARK 5.1. The referee points out that condition 2 is in fact strictly stronger than

condition 1. That is, if G/H is amenable then a|H being ergodic but not strongly ergodic

implies that a itself is not strongly ergodic. This is a special case of [Ioa06] lemma 2.3.
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PROOF OF 5.3. 3 and 4 are immediate from Corollary 5.1, and 1 and 2 follow from 5.1

along with Theorem 3 of [AW11] where they show that a× τG ≺ a holds for ergodic a that

are not strongly ergodic. The last statement follows from 5.2 since if a ≺ CIndGH(a|H) and

b ≺ CIndGH(b|H) then a× b ≺ CIndGH(a|H)× CIndGH(b|H) ∼= CIndGH((a× b)|H). �

We can now prove Theorem 1.2

PROOF OF 1.2. Suppose b is a universal action of H . Let a be a universal action of G.

It suffices to show that a ≺ CIndGH(b). We have a|H ≺ b by universality of b, and so by 3

of Corollary 5.3 we have that a ≺ CIndGH(a|H) ≺ CIndGH(b). �

REMARK 5.2. The assumption that G/H is amenable is in some cases necessary in

order for CIndGH to preserve universality. That is, there are examples of groups H ≤ G

with H infinite index in G such that G/H is not amenable, and such that a 7→ CIndGH(a)

does not map universal actions to universal actions. For example, if H is any subgroup

of infinite index in a group G with property (T) (e.g., if G = H × K where both H

and K are countably infinite with property (T)) then CIndGH(b) is weak mixing for every

b ∈ A(H,X, µ) (see [Ioa11] lemma 2.2 (ii)), hence is never universal. Another example

is when H is amenable and G/H is non-amenable (e.g., if G = H × K where H is any

amenable group and K is any non-amenable group). This implies that G is non-amenable.

If s = sH,H,X is the shift of H on (XH , µH) then s is universal for H since H is amenable,

but CIndGH(s) ∼= sG,G,X is not universal since G is non-amenable.

REMARK 5.3. In case H is finite index in G then we actually have the following form

of Theorem 1.1. We do not assume that H is normal in G. Let b denote the action of G

on G/H , where we view G/H as equipped with normalized counting measure ν. Then

for any p.m.p. action a of G on a standard non-atomic probability space (X,µ), a is a

factor of CIndGH(a|H) × b. One way to see this is to use the isomorphism CIndGH(a|H) ∼=

aG/H ~ sG,G/H,X given by Proposition A.3 of [Kec12]. Here aG/H ~ sG,G/H,X is the p.m.p.

action of G on (XG/H , µG/H) given by aG/H ~ sG,G/H,X(g) = aG/H(g) ◦ sG,G/H,X(g)

(note that the transformations aG/H(g) and sG,G/H,X(g) commute for all g ∈ G). Then
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(aG/H ~ sG,G/H,X) × b is an action on the space (XG/H × G/H, µG/H × ν), and the map

(f, gH) 7→ f(gH) ∈ X factors this action onto a.

6. Gaussian actions

A (real) positive definition function ϕ : I × I → R on a countable set I is a real-valued

function satisfying ϕ(i, j) = ϕ(j, i) and
∑

i,j∈F aiajϕ(i, j) ≥ 0 for all finite F ⊆ I and

reals ai, i ∈ F .

THEOREM 6.1. If ϕ : I × I → R is a real-valued positive definite function on a

countable set I , then there is a unique Borel probability measure µϕ on RI such that the

projection functions pi : RI → R, pi(x) = x(i) (i ∈ I), are centered jointly Gaussian

random variables with covariance matrix ϕ. That is, µϕ is uniquely determined by the two

properties

(1) Every finite linear combination of the projection functions {pi}i∈I is a centered

Gaussian random variable on (RI , µϕ);

(2) E(pipj) = ϕ(i, j) for all i, j ∈ I .

For a finite F ⊆ I , let pF : RI → RF be the projection pF (x) = x|F . Then µϕ can also

be characterized as the unique Borel probability measure on RI such that for each finite

F ⊆ I the measure (pF )∗µϕ on RF has characteristic function

˜(pF )∗µϕ(u) = e−
1
2

∑
i,j∈F uiujϕ(i,j).

We call µϕ the Gaussian measure associated to ϕ and (RI , µϕ) a Gaussian probability

space. A discussion of this can be found in [Kec10] Appendix C and the references therein.

Let G be a countable group acting on I and suppose that the positive definite function

ϕ : I × I → R is invariant for the action of G on I , i.e., ϕ(g · i, g · j) = ϕ(i, j) for all

g ∈ G, i, j ∈ I . Let sϕ denote the shift action of G on (RI , µϕ)

(sϕ(g)x)(i) = x(g−1 · i).
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Then invariance of ϕ implies that µϕ is an invariant measure for this action. We call sϕ the

Gaussian shift associated to ϕ.

Let π be an orthogonal representation of G on a separable real Hilbert space Hπ, and

let T ⊆ Hπ be a countable π-invariant set whose linear span is dense in Hπ. Then G acts

on T via π, and we let ϕT : T × T → R be the G-invariant positive definite function given

by ϕT (t1, t2) = 〈t1, t2〉. We let sπ = sπ,T be the corresponding Gaussian shift and call it

the Gaussian shift action associated to π. It follows from Proposition 6.2 below that up to

isomorphism this action does not depend on the choice of T ⊆ Hπ. For now, it is clear that

an isomorphism θ of two representations π1 and π2 induces an isomorphism of the actions

sπ1,T with sπ2,θ(T ).

By the GNS construction, every invariant real positive definite function ϕ on a count-

able G-set may be viewed as coming from an orthogonal representation in this way.

There is another way of obtaining an action on a Gaussian probability space from an or-

thogonal representation of G. Consider the product space (RN, µN), where µ is the N(0, 1)

normalized, centered Gaussian measure on R with density 1√
2π
e−x

2/2. Let pn : RN → R,

n ∈ N, be the projection functions pn(x) = x(n). The closed linear span 〈pn〉n∈N ⊆

L2(RN, µN,R) has countable infinite dimension. Let H = 〈pn〉n∈N ⊆ L2(RN, µN,R) and

let π be a representation of G onH. Let a(π) be the action of G on (RN, µN) given by

(a(π)(g)x)(n) = π(g−1)(pn)(x).

This preserves the measure µN by the characterization of µN given in 6.1 since µN = µϕ,

where ϕ : N × N → R is the positive definite function given by ϕ(n, n) = 1 and

ϕ(n,m) = 0 for n 6= m.

It follows from the discussion in [Kec10] Appendix E that if π1 and π2 are isomorphic,

then a(π1) ∼= a(π2). So if π is now an arbitrary orthogonal representation of G on an

infinite-dimensional separable real Hilbert space Hπ, then by choosing an isomorphism θ

of Hπ with H = 〈pn〉n∈N we obtain an isomorphic copy θ · π of π, on H, and the corre-

sponding action a(θ · π) is, up to isomorphism, independent of θ.
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The construction of the actions a(π) also works for representations on a finite-dimensional

Hilbert space, replacing N above withN = dim(Hπ). The following proposition also holds

in the finite-dimensional setting.

PROPOSITION 6.2. Let π be an orthogonal representation of G on H = 〈pn〉n∈N ⊆

L2(RN, µN,R), let T ⊆ H be a countable π-invariant set of functions in H whose linear

span is dense in H, and let sπ,T be the corresponding Gaussian shift on (RT , µϕT ). Then

the map Φ : (RN, µN)→ (RT , µϕT ) given by

Φ(x)(t) = t(x)

is an isomorphism of a(π) with sπ,T . In particular, up to isomorphism, the action sπ,T does

not depend on the choice of T .

PROOF. Note that up to a µN-null set, Φ does not depend on the choice of represen-

tatives for the elements of T (viewing each t ∈ T as an equivalence class of functions in

L2(RN, µN,R)). This follows from T being countable. So Φ is well defined.

To see that Φ∗(µ
N) = µϕT we use 6.1. First, we show that if f =

∑k
i=1 aipti then f has

a centered Gaussian distribution with respect to Φ∗(µ
N). This is clear since f∗Φ∗(µN) =

(f ◦Φ)∗(µ
N), and f ◦Φ =

∑k
i=1 aiti has centered Gaussian distribution with respect to µN

by virtue of being inH.

Second, we show that the covariance matrix of the projections {pt}t∈T with respect

Φ∗µ
N is equal to ϕT . We have∫

pt1(x)pt2(x) d(Φ∗µ
N) =

∫
Φ(x)(t1)Φ(x)(t2) d(µN)

=

∫
t1t2 d(µN) = 〈t1, t2〉 = ϕ(t1, t2).

Next, we show that Φ takes the action aπ to the action sπ,T . We have, for µN-a.e. x,

Φ(a(π)(g)x)(t) = t(a(π)(g)x) =
∑

n〈t, pn〉pn(a(π)(g)x) =
∑

n〈t, pn〉π(g−1)(pn)(x)

= π(g−1)(
∑

n〈t, pn〉pn)(x) = π(g−1)(t)(x) = Φ(x)(π(g−1)(t)) = sπ,T (g)(Φ(x))(t).
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It remains to show that Φ is 1-1 on a µN-measure 1 set. Since the closed linear span of

{t}t∈T inH contains each pi, it follows that the σ-algebra generated by {t}t∈T is the Borel

σ-algebra modulo µN-null sets, so there is a µN-conull set B such that {t|B}t∈T generates

the Borel σ-algebra ofB and thus {t|B}-separates points. It follows that Φ is 1-1 onB. �

7. Induced representations and the proof of Theorem 1.3

We begin by briefly recalling the induced representation construction. Let H be a

subgroup of the countable group G, and let σ : G/H → G be a selector for the left

cosets of H in G with σ(H) = e. Let ρ : G × G/H → H be defined by ρ(g, kH) =

σ(gkH)−1gσ(kH) ∈ H . Then ρ is a cocycle for the action ofG onG/H , i.e., ρ(g0g1, kH) =

ρ(g0, g1kH)ρ(g1, kH). (Note that this is the same as the cocycle ρ defined in the proof of

Lemma 5.2.)

Let π be an orthogonal representation of H on the real Hilbert space K. For each

gH ∈ G/H let KgH = K × {gH} = {(ξ, gH) : ξ ∈ K} be a Hilbert space which is

a copy of K. Then the induced representation IndGH(π) of π is the representation of G on⊕
g∈G/H K, which we identify with the set of formal sums K′ = {

∑
gH∈G/H(ξgH , gH) ∈∑

gH∈G/H KgH :
∑

gH∈G/H ||ξgH ||2K <∞}, that is given by

g0 · (ξgH , gH) = (ρ(g0, gH) · ξgH , g0gH) ∈ Kg0gH

for (ξgH , gH) ∈ KgH , and extending linearly.

LEMMA 7.1. Let H be a subgroup of the countable group G. Then

(1) a(π|H) ∼= a(π)|H for all orthogonal representations π of G.

(2) CIndGH(a(π)) ∼= a(IndGH(π)) for all orthogonal representations π of H .

PROOF. The first statement is clear. For the second, let T ⊆ K be a total, countable

subset of K that is invariant under π. Then T × G/H ⊆ K′ is a total, countable subset of

K′ that is invariant under IndGH(π). Let ϕ : (T × G/H) × (T × G/H) → R be the inner
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product determined by

ϕ((t1, g1H), (t2, g2H)) = 〈(t1, g1H), (t2, g2H)〉K′ =


〈t1, t2〉K if g1H = g2H

0 if g1H 6= g2H.

Then the Gaussian shift action corresponding to IndGH(π) is the action b ofG on (RT×G/H , µϕ)

given by

(b(g) · x)((t, kH)) = x(g−1 · (t, kH)) = x((ρ(g−1, kH) · t, g−1kH)).

On the other hand, the Gaussian shift action corresponding to π is the action sπ ∼= a(π) of

H on (RT , µϕT ) given by (sπ(h) ·w)(t) = w(h−1 ·t), and where ϕT : T×T → R is just the

inner product ϕT (t1, t2) = 〈t1, t2〉K. The co-induced action CIndGH(sπ) is isomorphic to the

action c ofG on ((RT )G/H , µ
G/H
ϕ ) given by (c(g)·y)(kH) = sπ(ρ(g−1, kH)−1)·y(g−1kH).

Evaluating this at t ∈ T gives

(c(g) · y)(kH)(t) = (sπ(ρ(g−1, kH)−1) · y(g−1kH))(t) = y(g−1kH)(ρ(g−1, kH) · t).

It follows that the bijection Ψ : RT×G/H → (RT )G/H given by Ψ(x)(kH)(t) = x((t, kH))

takes the action b to the action c, and also takes the measure µϕ to µG/HϕT . So b ∼= c as was

to be shown. �

If π1 and π2 are orthogonal representations of G on H1 and H2, respectively, then we

say π1 is weakly contained in π2 in the sense of Zimmer [Zim84] and write π1 ≺Z π2 if

for all v1, . . . , vn ∈ H1, ε > 0, and F ⊆ G finite, there are w1, . . . , wn ∈ H2 such that

|〈π1(g)(vi), vj〉 − 〈π2(g)(wi), wj〉| < ε for all g ∈ F , i, j ≤ n.

LEMMA 7.2. π1 ≺Z π2 ⇒ a(π1) ≺ a(π2).

PROOF. This is the remark after Theorem 11.1 of [Kec10]. �
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LEMMA 7.3. Let G be a countable group with a subgroup H < G. Suppose the action

of G on G/H is amenable. Then π ≺Z IndGH(π|H) for every orthogonal representation π

of G.

PROOF. It is well known that the action of G on G/H being amenable is equivalent to

the existence of a sequence un, n ∈ N, of unit vectors in l2(G/H,R) that are asymptotically

invariant for the quasi-regular representation λG/H ofG (given by λG/H(g0)(δg1H) = δg0g1H

where δgH ∈ l2(G/H,R) is the indicator of {gH}). This means that for every g ∈ G,

〈λG/H(g)(un), un〉 → 1 as n→∞.

Let K be the Hilbert space of π. The representation IndGH(π|H) is isomorphic to π ⊗

λG/H (this is E.2.6 of [BHV08]); an isomorphism is given by (extending linearly) the

map that sends (ξ, gH) ∈ KgH to π(σ(gH))(ξ) ⊗ δgH ∈ K ⊗ l2(G/H,R). Given now

v1, . . . , vn ∈ K, ε > 0, and F ⊆ G finite, we have that for all N sufficiently large

|〈π(g)(vi), vj〉 − 〈(π ⊗ λG/H)(g)(vi ⊗ uN), vj ⊗ uN〉|

=
∣∣〈π(g)(vi), vj〉

(
1− 〈λG/H(g)(uN), uN〉

)∣∣ < ε

for each g ∈ F , i, j ≤ n. So taking wi = vi ⊗ uN for N sufficiently large shows that

π ≺Z π ⊗ λG/H ∼= IndGH(π|H). �

PROOF OF THEOREM 1.3. Let π be an orthogonal representation of G such that a ∼=

a(π). Then π ≺Z IndGH(π|H) by Lemma 7.3. Applying Lemma 7.2 and then Lemma 7.1

we obtain

a(π) ≺ a(IndGH(π|H)) ∼= CIndGH(a(π|H)) ∼= CIndGH(a(π)|H). �

REMARK 7.1. An alternative proof of Theorem 1.3 can be given that uses probability

theory. For a Gaussian shift action sϕ on (Y, ν) = (RT , µϕ) one may identify CIndGH(sϕ|H)

with the isomorphic action b = s
G/H
ϕ ~ sG,G/H,Y (see A.3 of [Kec12]) on (Y G/H , νG/H).

Using an appropriate Følner sequence {Fn} for the action of G on G/H one defines the

maps pn : Y G/H → Y , pn(w) = |Fn|−1/2
∑

x∈Fn w(x), each factoring the action sG/Hϕ onto
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sϕ. Then using arguments as in [KT08] it can be shown that for cylinder sets A ⊆ Y , the

sequence p−1
n (A), n ∈ N, is asymptotically invariant for sG,G/H,Y , from which it follows

that sϕ ≺ b.
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Chapter 4

Weak equivalence and non-classifiability

of measure preserving actions

Robin D. Tucker-Drob

Abért-Weiss have shown that the Bernoulli shift sΓ of a countably infinite group Γ is weakly con-

tained in any free measure preserving action a of Γ. Proving a conjecture of Ioana we establish

a strong version of this result by showing that sΓ × a is weakly equivalent to a. Using random

Bernoulli shifts introduced by Abért-Glasner-Virag we generalized this to non-free actions, replac-

ing sΓ with a random Bernoulli shift associated to an invariant random subgroup, and replacing the

product action with a relatively independent joining. The result for free actions is used along with

the theory of Borel reducibility and Hjorth’s theory of turbulence to show that the equivalence re-

lations of isomorphism, weak isomorphism, and unitary equivalence on the weak equivalence class

of a free measure preserving action do not admit classification by countable structures. This in par-

ticular shows that there are no free weakly rigid actions, i.e., actions whose weak equivalence class

and isomorphism class coincide, answering negatively a question of Abért and Elek.

We also answer a question of Kechris regarding two ergodic theoretic properties of residually

finite groups. A countably infinite residually finite group Γ is said to have property EMD∗ if the

action pΓ of Γ on its profinite completion weakly contains all ergodic measure preserving actions

of Γ, and Γ is said to have property MD if ι×pΓ weakly contains all measure preserving actions of

Γ, where ι denotes the identity action on a standard non-atomic probability space. Kechris shows
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that EMD∗ implies MD and asks if the two properties are actually equivalent. We provide a positive

answer to this question by studying the relationship between convexity and weak containment in the

space of measure preserving actions.

1. Introduction

By a measure preserving action of a countable group Γ we mean a triple (Γ, a, (X,µ)),

which we write as Γ ya (X,µ), where (X,µ) is a standard probability space (i.e., a

standard Borel space equipped with a Borel probability measure) and a : Γ×X → X is a

Borel action of Γ on X that preserves the Borel probability measure µ. In what follows all

measures are probability measures unless explicitly stated otherwise and we will write a

and b to denote the measure preserving actions Γ ya (X,µ) and Γ yb (Y, ν), respectively,

when the group Γ and the underlying probability spaces (X,µ) and (Y, ν) are understood.

Given measure preserving actions a = Γ ya (X,µ) and b = Γ yb (Y, ν), we say that a

is weakly contained in b, and write a ≺ b, if for every finite partition A0, . . . , Ak−1 of X

into Borel sets, every finite subset F ⊆ Γ, and every ε > 0, there exists a Borel partition

B0, . . . , Bk−1 of Y such that

|µ(γaAi ∩ Aj)− ν(γbBi ∩Bj)| < ε

for all γ ∈ F and 0 ≤ i, j < k. We write a ∼ b if both a ≺ b and b ≺ a, in which

case a and b are said to be weakly equivalent. The notion of weak containment of measure

preserving actions was introduced by Kechris [Kec10] as an ergodic theoretic analogue of

weak containment for unitary representations.

Weak containment of unitary representations may be defined as follows (see [BHV08,

Appendix F]). Let π and ρ be unitary representations of Γ on the Hilbert spaces Hπ and Hρ,

respectively. Then π is weakly contained in ρ, written π ≺ ρ, if for every unit vector ξ in

Hπ, every finite subset F ⊆ Γ, and every ε > 0, there exists a finite collection η0, . . . , ηk−1

of unit vectors in Hρ and nonnegative real numbers α0, . . . , αk−1 with
∑k−1

i=0 αi = 1 such
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that

|〈π(γ)ξ, ξ〉 −
k−1∑
i=0

αi〈ρ(γ)ηi, ηi〉| < ε

for all γ ∈ F . Each unit vector ξ ∈ Hπ gives rise to a normalized positive definite function

on Γ defined by γ 7→ 〈π(γ)ξ, ξ〉. We call such a function a normalized positive definite

function realized in π and we may rephrase the definition of π ≺ ρ accordingly as: every

normalized positive definite function realized in π is a pointwise limit of convex sums of

normalized positive definite functions realized in ρ.

A similar rephrasing also applies to weak containment of measure preserving actions,

as pointed out by Abért-Weiss [AW11]. If we view a finite Borel partition A0, . . . , Ak−1 of

X as a Borel function φ : X → k = {0, 1, . . . , k−1} (where we view k as a discrete space)

then, given a measure preserving action a = Γ ya (X,µ), each partition φ : X → k gives

rise to a shift-invariant Borel probability measure (Φφ,a)∗µ on kΓ, where

Φφ,a(x)(γ) = φ((γ−1)a · x).

The map Φφ,a is equivariant between the action a and the shift action s on kΓ given by

(γs · f)(δ) = f(γ−1δ), and one may show that the measures (Φφ,a)∗µ, as φ ranges over

all Borel partitions of X into k-pieces, are precisely those shift-invariant Borel measures

λ such that Γ ys (kΓ, λ) is a factor of a. In this language a being weakly contained in b

means that for every natural number k, each shift-invariant measure on kΓ that is a factor

of a is a weak∗-limit of shift-invariant measures that are factors of b.

More precisely, given a compact Polish space K we equip KΓ with the product topol-

ogy, and we letMs(K
Γ) denote the convex set of shift-invariant Borel probability measures

on KΓ equipped with the weak∗-topology so that it is also a compact Polish space. We de-

fine

E(a, K) = {(Φφ,a)∗µ : φ : X → K is Borel} ⊆Ms(K
Γ).
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Then Abért-Weiss characterize weak containment of measure preserving actions as follows:

a ≺ b if and only if E(a, K) ⊆ E(b, K) for every finite K if and only if E(a, K) ⊆

E(b, K) for every compact Polish space K.

From this point of view one difference between the two notions of weak containment

is apparent. While weak containment of representations allows for normalized positive

definite functions realized in π to be approximated by convex sums of normalized positive

definite functions realized in ρ, weak containment of measure preserving actions asks that

shift-invariant factors of a be approximated by a single shift-invariant factor of b at a time.

It is natural to ask for a characterization of the situation in which shift-invariant factors of a

are approximated by convex sums of shift-invariant factors of b. When this is the case we

say that a is stably weakly contained in b and we write a ≺s b. The relationship between

weak containment and stable weak containment of measure preserving actions is analo-

gous to the relationship between weak containment in the sense of Zimmer (see [BHV08,

F.1.2.(ix)] and [Kec10, Appendix H.(B)]) and weak containment of unitary representations.

Our first theorem is a characterization of this stable version of weak containment of mea-

sure preserving actions.

In what follows (X,µ) and (Y, ν) and (Z, η) always denote standard probability spaces.

We let ιη : Γ× Z → Z denote the trivial (identity) action of Γ on (Z, η), writing ιη for the

corresponding triple Γ yιη (Z, η), and we write ι and ι for ιη and ιη, respectively, when η

is non-atomic. We show the following in §3.

THEOREM 1.1. Let b = Γ yb (Y, ν) be a measure preserving action of Γ. Then

E(ι× b, K) = coE(b, K) for every compact Polish K. In particular, for any a = Γ ya

(X,µ) we have that a ≺ ι × b if and only if E(a, K) ⊆ coE(b, K) for every compact

Polish space K.

When a is ergodic, so that E(a, K) is contained in the extreme points of Ms(K
Γ),

we show that Theorem 1.1 implies the following direct analogue of the fact (see [BHV08,

F.1.4]) that if π and ρ are representations of Γ, π is irreducible, and π is weakly contained
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in ρ, then every normalized positive definite function realized in π is actually a pointwise

limit of normalized positive definite functions realized in ρ.

THEOREM 1.2. Let a = Γ ya (X,µ) and b = Γ yb (X,µ) be measure preserving

actions of Γ and suppose that a is ergodic. If a ≺ ι× b then a ≺ b.

In Theorem 3.11 we show more generally that if a is an ergodic measure preserving

action that is weakly contained in d, then a is weakly contained in almost every ergodic

component of d. This may be seen as a weak containment analogue of the fact that if a is a

factor of d, then a is a factor of almost every ergodic component of d (see Proposition 3.8

below).

One consequence of Theorem 1.2 is that every non-amenable group has a free, non-

ergodic weak equivalence class, and this in fact characterizes non-amenability (Corollary

4.2 below).

THEOREM 1.3. If b a measure preserving action of Γ that is strongly ergodic, then ι×b

is not weakly equivalent to any ergodic action. In particular, if Γ is a non-amenable group

and sΓ = Γ ysΓ ([0, 1]Γ, λΓ) is the Bernoulli shift action of Γ, then ι× sΓ is a free action

of Γ that is not weakly equivalent to any ergodic action.

If B is a class of measure preserving actions of a countable group Γ and a ∈ B, then

a is called universal for B if b ≺ a for every b ∈ B. When a is universal for the class

of all measure preserving actions of Γ then a is simply called universal. In §4 we study

the universality properties EMD, EMD∗, and MD of residually finite groups introduced

by Kechris [Kec12] (MD was also independently studied by Bowen [Bow03], but with

different terminology), and defined as follows. Let Γ be a countably infinite group. Γ

is said to have property EMD if the measure preserving action pΓ of Γ on its profinite

completion is universal. Γ is said to have property EMD∗ if pΓ is universal for the class

of all ergodic measure preserving actions of Γ. Γ is said to have property MD if ι × pΓ is

universal.
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Each of these properties imply that Γ is residually finite and it is clear that EMD implies

both EMD∗ and MD. Kechris shows that EMD∗ implies MD and asks (Question 4.11 of

[Kec12]) whether the converse is true. We provide a positive answer to this question.

THEOREM 1.4. The properties MD and EMD∗ are equivalent.

This implies (Corollary 4.7 below) that the properties EMD and MD are equivalent

for all groups without property (T). We also show in Theorem 4.8 that the free product

of groups with property MD has EMD and we give two reformulations of the problem of

whether EMD and MD are equivalent in general (Theorem 4.10 below).

In §5 we discuss the structure of weak equivalence with respect to invariant random

subgroups. A countable group Γ acts on the compact space Sub(Γ) ⊆ 2Γ of all of its

subgroups by conjugation. Following [AGV12], a conjugation-invariant Borel probability

measure on Sub(Γ) will be called an invariant random subgroup (IRS) of Γ. We let IRS(Γ)

denote the set of all invariant random subgroups of Γ. If a = Γ ya (Y, ν) is a measure

preserving action of Γ then the stabilizer map y 7→ staba(y) ∈ Sub(Γ) is equivariant so

that the measure (staba)∗ν is an IRS of Γ which we call the type of a, and denote type(a).

It is shown in [AE11] that the type of a measure preserving action is an invariant of weak

equivalence (we give a proof of this in 5.2 below).

In §5.2 we use the framework laid out in §3 to study the compact metric topology

introduced by Abért-Elek [AE11] on the set A∼(Γ, X, µ) of weak equivalence classes of

measure preserving actions of Γ. We show that the map A∼(Γ, X, µ) → IRS(Γ) sending

each weak equivalence class to its type in IRS(Γ) is continuous when IRS(Γ) is equipped

with the weak∗ topology.

In §5.3 we detail a construction, described in [AGV12], whereby, given a probability

space (Z, η), one canonically associates to each θ ∈ IRS(Γ) a measure preserving ac-

tion sθ,η of Γ such that type(sθ,η) = θ when η is non-atomic. We call sθ,η the θ-random

Bernoulli shift of Γ over (Z, η). When a is free then type(a) is the point mass δ〈e〉 on the

trivial subgroup 〈e〉 of Γ and sδ〈e〉,η is the usual Bernoulli shift action of Γ on (ZΓ, ηΓ).
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After establishing some properties of random Bernoulli shifts we show the following in

§5.5.

THEOREM 1.5. Let a = Γ ya (Y, ν) be a non-atomic measure preserving action

of type θ, and let sθ,η be the θ-random Bernoulli shift over (Z, η). Then the relatively

independent joining of sθ,η and a over their common factor Γ y (Sub(Γ), θ) is weakly

equivalent to a. In particular, sθ,η is weakly contained in every non-atomic action of type

θ.

When a is free then the relatively independent joining of sδ〈e〉,η and a is simply the

product of the Bernoulli shift with a and Theorem 1.5 proves a conjecture of Ioana, be-

coming the following strengthening of Abért-Weiss [AW11, Theorem 1]:

COROLLARY 1.6. Let sΓ = Γ ysΓ ([0, 1]Γ, λΓ) be the Bernoulli shift action of Γ,

where λ denotes Lebesgue measure on [0, 1]. Let a = Γ ya (X,µ) be a free measure

preserving action of Γ on a non-atomic standard probability space (X,µ). Then sΓ × a is

weakly equivalent to a.

Several invariants of measure preserving actions such as groupoid cost [AW11] ([Kec10]

for the case of free actions) and independence number [CK13] are known to increase or

decrease with weak containment (see also [AE11] and [CKTD11] for other examples). A

consequence of Theorem 1.5 is that, for a finitely generated group Γ, among all non-atomic

measure preserving actions of type θ, the groupoid cost attains its maximum and the in-

dependence number attains its minimum on sθ,λ. Likewise, Corollary 1.6 implies that for

any free measure preserving action a of Γ, both a and sΓ×a have the same independence

number, and the orbit equivalence relation associated to a and sΓ × a have the same cost.

In §6 we address the question of how many isomorphism classes of actions are con-

tained in a given weak equivalence class. We answer a question of Abért-Elek [AE11,

Question 6.1], showing that the weak equivalence class of any free action always contains

non-isomorphic actions. Our arguments show that there are in fact continuum-many iso-

morphism classes of actions in any free weak equivalence class, and from the perspective
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of Borel reducibility we can strengthen this even further. Let A(Γ, X, µ) denote the Polish

space of measure preserving actions of Γ on (X,µ) and let a, b ∈ A(Γ, X, µ). Then a

and b are called weakly isomorphic, written a ∼=w b, if both a v b and b v a. We call

a and b unitarily equivalent, written a ∼=U b, if the corresponding Koopman representa-

tions κa0 and κb0 are unitarily equivalent. We let ∼= denote isomorphism of actions. Then

a ∼= b ⇒ a ∼=w b ⇒ a ∼=U b. We now have the following.

THEOREM 1.7. Let a = Γ ya (X,µ) be a free action of a countably infinite group

Γ and let [a] = {b ∈ A(Γ, X, µ) : b ∼ a} be the weak equivalence class of a. Then

isomorphism on [a] does not admit classification by countable structures. The same holds

for both weak isomorphism and unitary equivalence on [a].

Any two free actions of an infinite amenable group are weakly equivalent ([FW04],

see also Remark 4.1 and Theorem 1.8 below), so for amenable Γ Theorem 1.7 follows

from [FW04], [Hjo97] and [Kec10, 13.7, 13.8, 13.9] (see also [KLP10, 4.4]), while for

non-amenable Γ there are continuum-many weak equivalence classes of free actions (see

Remark 4.3 below), and Theorem 1.7 is therefore a refinement of the existing results.

The proof of 1.7 uses the methods of [Kec10, 13.7] and [KLP10]. We fix an infinite-

dimensional separable Hilbert space H, and denote by Repλ(Γ,H) the Polish space of

unitary representations of Γ on H that are weakly contained in the left regular representa-

tion λΓ of Γ. The conjugacy action of the unitary group U(H) on Repλ(Γ,H) is generically

turbulent by [KLP10, 3.3], so Theorem 1.7 will follow by showing that unitary conjugacy

on Repλ(Γ,H) is not generically ∼= |[a]-ergodic (and that the same holds for ∼=w and ∼=U

in place of ∼=). For this we find a continuous homomorphism ψ from unitary conjugacy

on Repλ(Γ,H) to isomorphism on [a] with the property that the inverse image of each

∼=U-class is meager. The main new ingredient that is needed in the proof of Theorem 1.7 is

Corollary 1.6, which shows that the homomorphism ψ we define takes values in [a].

In §7 we show that when Γ is amenable, type(a) completely determines the stable weak

equivalence class (Definition 9.1) of a measure preserving action a of Γ.
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THEOREM 1.8. Let a and b be two measure preserving actions of an amenable group

Γ. Then

(1) type(a) = type(b) if and only if a ∼s b.

(2) Suppose that type(a) = type(b) concentrates on the infinite index subgroups of Γ.

Then a ∼ b.

Combining this with the results of §5.2 (in particular, Remark 5.8) shows that when

Γ is amenable, the type map [a]s 7→ type(a), from the compact space A∼s(Γ, Y, ν) of all

stable weak equivalence classes of measure preserving actions of Γ, to the space IRS(Γ),

is a homeomorphism.

We end with two appendices, one on ultraproducts of measure preserving actions, and

one on stable weak containment.

REMARK 1.9. After sending Gábor Elek a preliminary version of this paper, I was

informed by him that he has independently obtained a version of Theorem 1.8. See [Ele12].
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2. Preliminaries and notation

Γ will always denote a countable group, and e will always denote the identity element

of Γ.

2.1. Measure algebras and standard probability spaces. All measures will be prob-

ability measures unless explicitly stated otherwise. A standard probability space is a prob-

ability measure space (X,µ) = (X,B(X), µ) whereX is a standard Borel space and µ is a

probability measure on the σ-algebraB(X) of Borel subsets ofX . In what follows, (X,µ),

(Y, ν), and (Z, η) will always denote standard probability spaces. Though we mainly focus
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on standard probability spaces we will make use of nonstandard probability spaces arising

as ultraproducts of standard probability spaces. We will write (W, ρ) for a probability space

that may or may not be standard.

The measure algebra MALGρ of a probability space (W, ρ) is the σ-algebra of ρ-

measurable sets modulo the σ-ideal of null sets, equipped with the measure ρ. We also

equip MALGρ with the metric dρ(A,B) = ρ(A∆B). We will sometimes abuse notation

and identify a measurable set A ⊆ W with its equivalence class in MALGρ when there is

no danger of confusion.

2.2. Measure preserving actions. Let Γ be a countable group. A measure preserving

action of Γ is a triple (Γ, a, (X,µ)), which we write as Γ ya (X,µ), where (X,µ) is a

standard probability space and a : Γ×X → X is a Borel action of Γ on X that preserves

the probability measure µ. A measure preserving action Γ ya (X,µ) will often also be

denoted by a boldface letter such as a or µ depending on whether we want to emphasize

the underlying action or the underlying probability measure. When γ ∈ Γ and x ∈ X

we write γa · x or γax for a(γ, x). In what follows, a, b, and c and d will always denote

measure preserving actions of Γ.

We will also make use of actions of Γ on nonstandard probability spaces. When (W, ρ)

is a probability space and o : Γ×W → W is a measurable action of Γ on W that preserves

ρ then we will still use the notations o = Γ yo (W, ρ), γo, etc., from above, though we re-

serve the phrase “measure preserving action” for the case when the underlying probability

space is standard.

2.3. The space of measure preserving actions. We let A(Γ, X, µ) denote the set of

all measure preserving actions of Γ on (X,µ) modulo almost everywhere equality. That

is, two measure preserving actions a and b of Γ on (X,µ) are equivalent if µ({x ∈ X :

γax 6= γbx}) = 0 for all γ ∈ Γ. Though elements of A(Γ, X, µ) are equivalence classes of

measure preserving actions we will abuse notation and confuse elements ofA(Γ, X, µ) with

their Borel representatives, making sure our statements and definitions are independent of

the choice of representative when it is not obvious. We equip A(Γ, X, µ) with the weak
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topology, which is a Polish topology generated by the maps a 7→ γaA ∈ MALGµ, with A

ranging over MALGµ and γ ranging over elements of Γ.

Notation. For a ∈ A(Γ, X, µ) and b ∈ A(Γ, Y, ν) we let a v b denote that a is a factor

of b and we let a ∼= b denote that a and b are isomorphic. We let ιη ∈ A(Γ, Z, η) denote the

trivial (identity) system Γ yιη (Z, η), and we write ι for ιη when η is non-atomic. We call

Γ ya (X,µ) non-atomic if the probability space (X,µ) is non-atomic. If T : X → X then

we let supp(T ) = {x ∈ X : T (x) 6= x}. For a A ⊆ X we denote by µ|A the restriction

of µ to A given by (µ|A)(B) = µ(B ∩A) and we denote by µA the conditional probability

measure µA(B) = µ(B∩A)
µ(A)

where we use the convention that µA ≡ 0 when A ⊆ X is null.

Convention. We will regularly neglect null sets when there is no danger of confusion.

3. Proofs of Theorems 1.1 and 1.2

3.1. Weak containment and shift-invariant factors. Let K be a compact Polish

space and equip KΓ with the product topology so that it is also a compact Polish space.

Then Γ acts continuously on KΓ by the shift action s, given by (δsf)(γ) = f(δ−1γ) for

δ, γ ∈ Γ, f ∈ KΓ. Let (W, ρ) be a probability space and let o = Γ yo (W, ρ) be a mea-

surable action of Γ on W that preserves ρ. For each measurable function φ : W → K we

define Φφ,o : W → KΓ by Φφ,o(w)(γ) = φ((γ−1)o · w), and we let

E(o, K) = {(Φφ,o)∗ρ : φ : W → K is ρ-measurable}.

Each map Φφ,o is a factor map from o to Γ ys (KΓ, (Φa,φ)∗µ) since

Φφ,o(δo · w)(γ) = φ((γ−1δ)o · w) = φ(((δ−1γ)−1)o · w) = Φφ,o(w)(δ−1γ) = (δs · Φφ,o(w))(γ).

Conversely, given any measurable factor map ψ : Γ yo (W, ρ) → Γ ys (KΓ, π∗µ) the

map φ(w) = ψ(w)(e) is also measurable, and for almost all w ∈ W and all γ ∈ Γ we

have Φφ,o(w)(γ−1) = φ(γa · w) = ψ(γo · w)(e) = (γs · ψ(w))(e) = ψ(w)(γ−1) so that

ψ∗ρ = (Φφ,o)∗ρ. It follows that E(o, K) is the set of all shift-invariant Borel probability
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measures on KΓ that are factors of o. We let Ms(K
Γ) denote the convex set of all shift-

invariant Borel probability measures on KΓ. Equipped with the weak∗ topology this is a

compact metrizable subset of C(KΓ)∗. If E ⊆Ms(K
Γ) we let coE denote the convex hull

of E and we let coE denote the closed convex hull of E. For γ ∈ Γ we let πγ : KΓ → K

denote the projection map πγ(f) = f(γ).

LEMMA 3.1. Suppose that φn : W → K, n ∈ N, is a sequence of measurable functions

that converge in measure to the measurable function φ : W → K . Then (Φφn,o)∗ρ →

(Φφ,o)∗ρ in Ms(K
Γ).

PROOF. φn converges to φ in measure if and only if for every subsequence {ni} there

is a further subsequence {mi} such that φmi → φ almost surely. If φmi → φ almost

surely then for all γ ∈ Γ, Φφmi ,o(w)(γ) → Φφ,o(w)(γ) almost surely, and so Φφmi ,o(w) →

Φφ,o(w) almost surely. It follows that Φφn,o → Φφ,o in measure. Since convergence

in measure implies convergence in distribution it follows that (Φφn,o)∗ρ → (Φφ,o)∗ρ in

Ms(K
Γ). �

REMARK 3.2. We may form the spaceL(W, ρ,K) of all measurable maps φ : W → K,

where we identify two such maps if they agree ρ-almost everywhere. If d ≤ 1 is a compati-

ble metric forK then we equipL(W, ρ,K) with the metric d̃(φ, ψ) =
∫
W
d(φ(w), ψ(w)) dρ(w),

and then φn → φ in this topology if and only if φn converges to φ in measure. Then Lemma

3.1 says that for each measure preserving action Γ yo (W, ρ), the map φ 7→ (Φφ,o)∗ρ from

L(W, ρ,K) to Ms(K
Γ) is continuous. The metric d̃ is complete, and d̃ is separable when

(W, ρ) is standard. We note for later use that the set of all φ ∈ L(W, ρ,K) with finite range

is dense in L(W, ρ,K) (this follows from d being separable). Proofs of these facts may be

found in [Kec10, Section 19] and [Moo76] (these references assume that the space (W, ρ)

is standard, but this assumption is not used to prove the facts mentioned here).

We will find the following generalization of weak containment useful.

DEFINITION 3.3. Let A and B be two sets of measure preserving actions of Γ. We say

that A is weakly contained in B, written A ≺ B, if for every Γ ya (X,µ) = a ∈ A, for
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any Borel partitionA0, . . . , Ak−1 ofX , F ⊆ Γ finite, and ε > 0, there exists Γ yb (Y, ν) =

b ∈ B and a Borel partition B0, . . . , Bk−1 of Y such that

|µ(γaAi ∩ Aj)− ν(γbBi ∩Bj)| < ε

for all i, j < k and γ ∈ F .

This is a generalization of weak containment in the sense that when A = {a} and

B = {b} are both singletons then A ≺ B if and only if a ≺ b in the original sense defined

in the introduction. We write a ≺ B for {a} ≺ B, andA ≺ b forA ≺ {b}. If bothA ≺ B

and B ≺ A then we put A ∼ B. It is clear that ≺ is a reflexive and transitive relation on

sets of actions. The arguments in 10.1 of [Kec10] show the following.

PROPOSITION 3.4. Let A and B be sets of non-atomic measure preserving actions of

Γ. Then A ≺ B if and only if for every Γ ya (X,µ) = a ∈ A, there exists a sequence

an ∈ A(Γ, X, µ), n ∈ N, converging to a such that each an is isomorphic to some bn ∈ B.

In particular, a ≺ B if and only if a ∈ {d ∈ A(Γ, X, µ) : ∃b ∈ B d ∼= b}.

We also have the corresponding generalization of [AW11, Lemma 8].

PROPOSITION 3.5. Let A and B be sets of measure preserving actions of Γ. Then the

following are equivalent

(1) A is weakly contained in B

(2)
⋃
d∈AE(d, K) ⊆

⋃
b∈B E(b, K) for every finite K.

(3)
⋃
d∈AE(d, K) ⊆

⋃
b∈B E(b, K) for every compact Polish K.

(4)
⋃
d∈AE(d, 2N) ⊆

⋃
b∈B E(b, 2N).

PROOF. It suffices to show this for the case A = {d} is a singleton. We let (X,µ) be

the space of d.

We begin with the implication (1)⇒(2). It suffices to show (2) for the case K = k =

{0, 1, . . . , k − 1} for some k ∈ N. Fix a Borel function φ : X → k, let λ = (Φφ,d)∗µ, and

let Ai = φ−1({i}) for i < k. Fix an exhaustive sequence e ∈ F0 ⊆ F1 ⊆ · · · of finite
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subsets of Γ. For each finite F ⊆ Γ and function τ : F → k let Aτ =
⋂
γ∈F γ

dAτ(γ). As

d ≺ B we may find for each n ∈ N a measure preserving action bn = Γ ybn (Yn, νn) in B

along with Borel partitions {Bn
τ }τ∈kFn of Yn such that

(3.1) |µ(γaAτ1 ∩ Aτ2)− νn(γbnBn
τ1
∩Bn

τ2
)| < εn

for all τ1, τ2 ∈ kFn , and where εn is small depending on n, k, and |Fn|. Define ψn : Yn → k

by ψn(y) = i if y ∈ Bn
τ for some τ ∈ kFn with τ(e) = i, and let λn = (Φψn,bn)∗νn. To

show that λn → λ it suffices to show that λn(A)→ λ(A) for every basic clopen setA ⊆ kΓ

of the form A =
⋂
γ∈F π

−1
γ ({iγ}), where e ∈ F ⊆ Γ is finite and iγ < k for each γ ∈ F .

We let υ ∈ kF be the function υ(γ) = iγ .

For i < k let Bn
i =

⊔
{Bτ : τ ∈ kFn and τ(e) = i}. Let n0 be so large that F 2 ⊆ Fn0

and for all n > n0 and each σ ∈ kJ , J ⊆ Fn, let Bn
σ =

⊔
{Bτ : τ ∈ kFn and σ v

τ} and let B̃n
σ =

⋂
γ∈J γ

dBn
σ(γ). Then Bn

i =
⊔
{Bn

σ : σ ∈ kF and σ(e) = i}. For

γ ∈ Γ, J ⊆ Γ and σ ∈ kJ let γ · σ ∈ kγJ be given by (γ · σ)(δ) = σ(γ−1δ) for all

δ ∈ γJ . For σ ∈ kF and γ ∈ F we have |νn(γbnBn
σ ∩ Bn

γ·σ) − µ(γdAσ ∩ Aγ·σ)| ≤∑
{τ∈kFn :σvτ}

∑
{τ ′∈kFn : γ·σvτ ′} |νn(γbnBn

τ ∩Bn
τ ′)− µ(γdAτ ∩Aτ ′)| ≤ εnk

2|Fn|. Similarly,

|νn(Bn
σ )− µ(Aσ)| < εnk

2|Fn| and |νn(Bn
γ·σ)− µ(Aγ·σ)| < εnk

2|Fn|. Since γdAσ = Aγ·σ we

obtain from this the estimate

(3.2) dνn(γdn(Bn
σ ), Bn

γ·σ) = νn(Bn
σ ) + νn(Bn

γ·σ)− 2νn(γdn(Bn
σ ) ∩Bn

γ·σ) < 3εnk
2|Fn|.

Since {Bn
τ }τ∈kFn is a partition of Yn and F 2 ⊆ Fn we have the set identities

Bn
υ =

⊔
τ∈kFn
υvτ

Bn
τ =

⋂
γ∈F

⊔
σ∈kγF

σ(γ)=υ(γ)

Bn
σ =

⋂
γ∈F

⊔
σ∈kF

σ(e)=υ(γ)

Bn
γ·σ.

By (3.2) the dνn-distance of this is no more than 3|F |εnk3|Fn| from the set

⋂
γ∈F

⊔
σ∈kF

σ(e)=υ(γ)

γdnBn
σ =

⋂
γ∈F

γdnBn
υ(γ) = B̃n

υ .
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Thus |λn(A)−λ(A)| = |νn(B̃n
υ )−µ(Aυ)| ≤ 3|F |εnk3|Fn|+|νn(Bn

υ )−µ(Aυ)| < 3|F |εnk3|Fn|+

εnk
2|Fn| → 0 by our choice of εn.

(2)⇒(3): Let K be a compact Polish space. It follows from Lemma 3.1 and Remark

3.2 that the set Ef (d, K) of all measures λ ∈ E(d, K) coming from Borel φ : X → K

with finite range is dense in E(d, K). By (2) we then have Ef (d, K) ⊆
⋃
b∈B Ef (b, K) ⊆⋃

b∈B E(b, K), and (3) now follows.

The implication (3)⇒(4) is trivial. (4)⇒(1): Given a Borel partition A0, . . . , Am−1 of

X , F ⊆ Γ finite, and ε > 0, let k0, . . . , km−1 ∈ 2N be distinct and define the function

φ : X → 2N by φ(x) = i if x ∈ Ai. Then λ = (Φφ,d)∗µ ∈ E(d, 2N) so by (4) there exists

a sequence Γ ybn (Yn, νn) = bn ∈ B, along with φn : Yn → 2N such that λn → λ, where

λn = (Φφn,bn)∗νn. Let C0, . . . , Cm−1 disjoint clopen subsets of 2N with ki ∈ Ci and for

each n ∈ N let Bn
i = φ−1

n (Ci). Then for all γ ∈ F we have

|µ(γdAi ∩ Aj)−νn(γbnBn
i ∩Bn

j )| = |λ(π−1
γ (Ci) ∩ π−1

e (Cj))− λn(π−1
γ (Ci) ∩ π−1

e (Cj))| → 0,

so for large enough n this quantity is smaller than ε. �

3.2. Convexity in the space of actions. The convex sum of measure preserving ac-

tions is defined as follows (see also [Kec10, 10.(F)]). Let N ∈ {1, 2, . . . ,∞ = N} and

let α = (α0, α1 . . . ) ∈ [0, 1]N be a finite or countably infinite sequence of non-negative

real numbers with
∑

i<N αi = 1. Given actions bi = Γ ybi (Xi, µi), i < N , we let∑
i<N Xi = {(i, x) : i < N and x ∈ Xi} and we let µ̃i be the image measure of µi under

the inclusion map Xi ↪→
∑

i<N Xi, x 7→ (i, x). We obtain a measure preserving action∑
i<N αibi = Γ y

∑
i<N bi (

∑
i<N Xi,

∑
i<N αiµ̃i) defined by γ

∑
i<N bi · (i, x) = (i, γbi ·x).

If (Xi, µi) = (X,µ) for each i < N then (
∑

i<N Xi,
∑

i<N αiµ̃i) = (N × X, ηα × µ)

where ηα is the discrete probability measure on N given by ηα({i}) = αi. If furthermore

bi = b for each i < N then
∑

i<N αibi = ιηα × b is simply the product action.

LEMMA 3.6. Let b ∈ A(Γ, X, µ) and let d = ιηα × b =
∑n−1

i=0 αib. Then E(d, K) ⊆

coE(b, K) ⊆ E(ι× b, K) for every compact Polish K.
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PROOF. Given φ : n×X → K, we want to show that (Φφ,d)∗(ηα × µ) ∈ coE(b, K).

Let φi : X → K be given by φi(x) = φ(i, x). Then (Φφ,d)−1(A) =
⊔n−1
i=0 {i}×(Φφi,b)−1(A)

for A ⊆ KΓ and it follows that (Φφ,d)∗(ηα×µ) =
∑n−1

i=0 αi(Φ
φi,b)∗µ, which shows the first

inclusion.

Let the underlying space of ι be (Z, η). Given Borel functions φ0, . . . , φn−1 : X → K

and α0, . . . , αn−1 ≥ 0 with
∑n−1

i=0 αi = 1, we want to show that
∑n−1

i=0 αi(Φ
φi,b)∗µ ∈ E(ι×

b, K). Let C0, . . . , Cn−1 be a Borel partition of Z with η(Ci) = αi for i = 0, . . . , n − 1.

Define i : Z → n by i(z) = i if z ∈ Ci and let φ : Z × X → K be the map φ(z, x) =

φi(z)(x). Then

Φφ,ι×b(z, x)(γ) = φ(γι×b · (z, x)) = φ(z, γb · x) = φi(z)(γ
b · x) = Φφi(z),b(x)(γ),

and so (Φφ,ι×b)−1(A) =
⊔n−1
i=0 Ci × (Φφi,b)−1(A) for all A ⊆ KΓ. It now follows that∑n−1

i=0 αi(Φ
φi,b)∗µ = (Φφ,ι×b)∗(η × µ). �

LEMMA 3.7. Let b ∈ A(Γ, X, µ), let α(n) = ( 1
n
, . . . , 1

n
) ∈ [0, 1]n, and let

B1 = {ιηα(n)
× b : n ≥ 1}, B2 =

{
ιηα × b : n ≥ 1, α ∈ [0, 1]n,

∑n−1
i=0 αi = 1

}
.

Then ι× b ∼ B1 ∼ B2.

PROOF. B1 ≺ B2 is trivial. B2 ≺ ι × b is clear (in fact, d v ι × b for every d ∈ B2).

It remains to show that ι × b ≺ B1. Let (Z, η) be the underlying non-atomic probability

space of ι and let λ = η × µ. Fix a partition P of Z × X , F ⊆ Γ finite and ε > 0.

We may assume without loss of generality that P is of the form P = {Ai × Bj : 0 ≤

i < n, 0 ≤ j < m} where {Ai}n−1
i=0 is a partition of Z, {Bj}m−1

j=0 is a partition of X , and

all the sets A0, . . . , An−1 have equal measure. Let Ci,j = {(i, x) ∈ n × X : x ∈ Bj}.

Then, letting d = ιηα(n)
× b, for all γ ∈ F and i, i′ ≤ n, j, j′ ≤ m, if i 6= i′ we have
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γdCi,j ∩ Ci′,j′ = ∅ = γι×b(Ai ×Bj) ∩ (Ai′ ∩Bj′), while if i = i′ we have

(ηα(n) × µ)(γdCi,j ∩ Ci,j′) = 1
n
µ(γbBj ∩Bj′)

= η(Ai)µ(γbBj ∩Bj′) = λ(γι×b(Ai ×Bj) ∩ (Ai ×Bj′)),

showing that ι× b ≺ B1. �

PROOF OF THEOREM 1.1. We apply 3.5 and 3.7, then 3.6 to obtain

E(ι× b, K) ⊆
⋃
n≥1E(ιηα(n)

× b, K) ⊆ coE(b, K) ⊆ E(ι× b, K)

and so E(ι× b, K) = coE(b, K). �

The proof of Theorem 1.2 now proceeds in analogy with the proof of the corresponding

fact for unitary representations (see [BHV08, F.1.4]).

PROOF OF THEOREM 1.2. Suppose that a is ergodic and a ≺ ι× b. We want to show

that a ≺ b, or equivalently E(a, K) ⊆ E, (b, K) for every compact Polish K. By hypoth-

esis we have that E(a, K) ⊆ E(ι× b, K), so by Theorem 1.1, E(a, K) ⊆ coE(b, K).

Since every element of E(a, K) is ergodic, E(a, K) is contained in the extreme points of

Ms(K
Γ), and so a fortiori E(a, K) is contained in the extreme points of coE(b, K). Since

in a locally convex space the extreme points of a given compact convex set are contained in

every closed set generating that convex set (see, e.g., [Phe01, Proposition 1.5]), it follows

that E(a, K) ⊆ E(b, K) as was to be shown. �

3.3. Ergodic decomposition and weak containment. We begin with the following

observation about factors.

PROPOSITION 3.8. Let d be a measure preserving action of Γ on (Y, ν) and suppose

π : (Y, ν) → (Z, η) is a factor map from d onto an identity action Γ yιη (Z, η). Let

ν =
∫
z
νz dη be the disintegration of ν with respect to π and let dz = Γ yd (Y, νz).

Suppose that a = Γ ya (X,µ) is an ergodic factor of d via the map ϕ : (Y, ν)→ (X,µ).

Then for η-almost every z ∈ Z, a is a factor of dz via the map ϕ.
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PROOF. The map π × ϕ : (Y, ν) → (Z ×X, (π × ϕ)∗ν), y 7→ (π(y), ϕ(y)), factors d

onto a joining b of the identity action ιη and the ergodic action a. Since ergodic and identity

actions are disjoint ([Gla03, 6.24]) we have that (π × ϕ)∗ν = η × µ and b = ιη × a.

The measure (π × ϕ)∗νz lives on {z} × X almost surely, and η × µ = (π × ϕ)∗ν =∫
Z

(π × ϕ)∗νz dη, so by uniqueness of disintegration (π × ϕ)∗νz = δz × µ almost surely.

Since projX ◦ (π × ϕ) = ϕ we have that ϕ∗νz = (projX)∗(δz × µ) = µ almost surely. �

COROLLARY 3.9. If a is ergodic and ϕ factors d onto a then ϕ factors almost every

ergodic component of d onto a.

Using ultraproducts of measure preserving actions (see Appendix 8) we can prove an

analogous result for weak containment which generalizes Theorem 1.2. For the remainder

of this section we fix a nonprincipal ultrafilter U on N and we also fix a compact Polish

space K homeomorphic to 2N. Let an = Γ yan (Yn, ν), n ∈ N, be a sequence of measure

preserving actions of Γ and let aU = Γ yaU (YU , µU) be the ultraproduct of the sequence

an with respect to the nonprincipal ultrafilter U on N. Let φn : Yn → K be a sequence of

Borel functions and let Φn = Φφn,an : Yn → KΓ. We let φ denote the ultralimit function

determined by the sequence φn, i.e., φ : YU → K is the function given by

φ([yn]) = lim
n→U

φn(yn)

for [yn] ∈ YU . The function φ is BU -measurable since φ−1(V ) = [φ−1
n (V )] whenever

V ⊆ K is open.

PROPOSITION 3.10. Let Φ = Φφ,aU . Then

(1) Φ([yn]) = limn→U Φn(yn) for all [yn] ∈ YU ;

(2) Φ∗νU = limn→U(Φn)∗νn;

(3) For every BU -measurable function ψ : YU → K there exists a sequence ϕn :

Yn → K of Borel functions such that ψ([yn]) = limn→U ϕn(yn) for νU -almost

every [yn] ∈ YU .
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PROOF. (1): For each [yn] ∈ YU and γ ∈ Γ we have Φ([yn])(γ−1) = φ(γaU [yn]) =

φ([γanyn]) = limn→U φ(γanyn) = limn→U Φn(yn)(γ) = (limn→U Φn(yn))(γ), the last

equality following by continuity of the evaluation map f 7→ f(γ) on KΓ.

(2): Let λ = limn→U(Φn)∗νn. Then λ is the unique element of Ms(K
Γ) such that

λ(C) = limn→U((Φn)∗νn(C)) for all clopen C ⊆ KΓ. Part (1) implies that Φ−1(C) =

[Φ−1
n (C)] wheneverC ⊆ KΓ is clopen, and so Φ∗νU(C) = limn→U νn(Φ−1

n (C)) = limn→U((Φn)∗νn(C)).

(3): We may assume K = 2N. For m ∈ N define ψm : YU → K by ψm([yn]) =

ψ([yn])(m). For i ∈ {0, 1} let Am,i = ψ−1
m ({i}) ∈ BU and fix [Am,in ] ∈ AU such that

νU(Am,i∆[Am,in ]) = 0. For each m,n ∈ N let Bm,0
n = Am,0n \ Am,1n and let Bm,1

n =

Yn \ Bm,0
n so that {Bm,0

n , Bm,1
n } is a Borel partition of Yn. Then for each m ∈ N we

have νU(Am,0∆[Bm,0
n ]) = 0 = νU(Am,1∆[Bm,1

n ]). Define ϕn : Yn → K by taking

ϕn(y)(m) = i if and only if y ∈ Bm,i
n . Let ϕ : YU → K be the ultralimit function

ϕ([yn]) = limn→U ϕn(yn). Then for i ∈ {0, 1} we have

ϕ([yn])(m) = i ⇔ lim
n→U

(ϕn(yn)(m)) = i ⇔ {n : yn ∈ Bm,i
n } ∈ U ⇔ [yn] ∈ [Bm,i

n ],

and so ϕ is equal to ψ off the null set
⋃
m∈N,i∈{0,1}A

m,i∆[Bm,i
n ]. �

THEOREM 3.11. Let d be a measure preserving action of Γ on (Y, ν) and suppose

π : (Y, ν) → (Z, η) is a factor map from d onto an identity action Γ yιη (Z, η). Let

ν =
∫
z
νz dη be the disintegration of ν with respect to π and let dz = Γ yd (Y, νz).

Suppose that a = Γ ya (X,µ) is ergodic and is weakly contained in d. Then a is weakly

contained in dz for almost all z ∈ Z.

PROOF. Taking K = 2N it suffices to show for each λ ∈ E(a, K) that η({z : λ ∈

E(dz, K)}) = 1. Let U be a nonprincipal ultrafilter on N and let dU = Γ ydU (YU , νU) and

ιU = Γ yιU (ZU , ηU) be the ultrapowers of d and ιη, respectively. The map πU : YU → ZU

defined by πU([yn]) = [π(yn)] factors dU onto ιU .
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Given any λ ∈ E(a, K), since a ≺ d there exists φn : Y → K such that (Φφn,d)∗ν →

λ. Let φ : YU → K be the ultralimit of the functions φn, let Φn = Φφn,d and let Φ = Φφ,dU :

YU → KΓ. By Proposition 3.10.(2), Φ factors dU onto Γ ys (KΓ, λ).

Let ρ = σ∗νU , where σ = πU×Φ : YU → ZU×KΓ is the map σ([yn]) = (πU([yn]),Φ([yn])).

Then ρ = ηU ×λ since each standard factor of ιU is an identity action so is disjoint from a.

Let ν[zn] =
∏

n νzn/U , so that ν[zn] is a probability measure onBU(YU) for all [zn] ∈ ZU .

CLAIM 1. limn→U(Φn)∗νzn = λ for ηU -almost every [zn] ∈ ZU .

PROOF OF CLAIM. By Proposition 8.1, νU(A) =
∫

[zn]
ν[zn](A) dηU for allA ∈ BU(YU).

As σ∗ν[zn] lives on {[zn]} ×KΓ it follows for D ∈ BU(ZU) and C ⊆ KΓ clopen that∫
[zn]∈D

λ(C) dηU = ηU(D)λ(C) = ρ(D × C) =

∫
[zn]

σ∗ν[zn](D × C) dηU

=

∫
[zn]∈D

σ∗ν[zn](ZU × C) dηU =

∫
[zn]∈D

Φ∗ν[zn](C) dηU .

Thus for each clopen C ⊆ KΓ, Φ∗ν[zn](C) = λ(C) for ηU almost every [zn] ∈ ZU .

It follows that Φ∗ν[zn] = λ for ηU almost every [zn] ∈ ZU . By Proposition 3.10.(2),

limn→U(Φn)∗νzn = λ for ηU almost every [zn] ∈ ZU . �[Claim]

If now V is any open neighborhood of λ inMs(K
Γ) then letB = {z ∈ Z : E(dz, K)∩

V = ∅}. If η(B) > 0 then let Bn = B for all n so that [Bn] ∈ AU(ZU) and ηU([Bn]) > 0.

Thus, for some [zn] ∈ [Bn] we have limn→U(Φn)∗νzn = λ and so (Φn)∗νzn ∈ E(dzn , K) ∩

V for some n ∈ N. Since zn ∈ Bn = B this is a contradiction. Thus, η(B) = 0. It follows

that λ ∈ E(dz, K) almost surely. �

THEOREM 3.12. Let ϕ : Γ yb (X,µ) → Γ yιη (Z, η) and ψ : Γ yd (Y, ν) →

Γ yιη (Z, η) be factor maps from b and d respectively onto ιη. Let µ =
∫
z
µz dη and

ν =
∫
z
νz dη be the disintegrations of µ and ν via ϕ and ψ respectively, and for each z ∈ Z

let bz = Γ yb (X,µz) and let dz = Γ yd (Y, νz). Then

(1) If bz ≺ dz for all z ∈ Z then b ≺ d.

(2) If b ≺ dz for all z ∈ Z the ιη×b ≺ d and if bz ≺ d for all z ∈ Z then b ≺ ιη×d.
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(3) If bz ∼ dz for all z ∈ Z then b ∼ d and if b ∼ dz for all z ∈ Z then ιη × b ∼ d.

We also have the following version for stable weak containment (see Appendix 9):

(4) If bz ≺s dz for all z ∈ Z then b ≺s d.

(5) If bz ≺s d for all z ∈ Z then b ≺s d and if bz ≺s d for all z ∈ Z then b ≺s d.

(6) If bz ∼s dz for all z ∈ Z then b ∼s d and if b ∼s dz for all z ∈ Z then b ∼s d.

PROOF. (1): Let {Bn}n∈N be a countable algebra of subsets of Y generating the Borel

σ-algebra of Y . Fix a partition A0, . . . , Ak−1 of Borel subsets of X along with F ⊆ Γ

finite and ε > 0. For each z there exists a k-tuple (n0, . . . , nk−1) ∈ Nk such that the sets

Bn0 , . . . , Bnk−1
⊆ Y witness that bz ≺ dz with respect to the parameters A0, . . . , Ak−1,

F , and ε. We let n(z) = (n0(z), . . . , nk−1(z)) be the lexicographically least k-tuple that

satisfies this for z. For each j < k the set

Dj = {y ∈ Y : ∃z ∈ Z(ψ(y) = z and y ∈ Bnj(z))} =
⊔
z

(Bnj(z) ∩ ψ−1(z))

is analytic and so is measurable. For all z ∈ Z, γ ∈ Γ, and j < k we then have that γdDj ∩

ψ−1(z) = γdzBnj(z)∩ψ−1(z) and it follows that νz(γdDj ∩Dj′) = νz(γ
dzBnj(z)∩Bnj′ (z)

),

since νz concentrates on ψ−1(z). For γ ∈ F and i, j < k we then have

|ν(γdDi ∩Dj)− µ(γbAi ∩ Aj)| =
∣∣ ∫

z∈Z
νz(γ

dDi ∩Dj) dη(z)−
∫
z∈Z

µz(γ
bAi ∩ Aj) dη(z)

∣∣
≤
∫
z∈Z
|νz(γdzBni(z) ∩Bnj(z))− µz(γbzAi ∩ Aj)| dη(z) ≤ η(Z)ε < ε

which finishes the proof of (1).

Statements (2) through (6) now follow from (1). �

QUESTION 3.13. Is every measure preserving action d of Γ stably weakly equivalent

to an action with countable ergodic decomposition?

A positive answer to Question 3.13 would be an ergodic theoretic analogue of the fact

that every unitary representation of Γ on a separable Hilbert space is weakly equivalent
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to a countable direct sum of irreducible representations ([Dix77], this also follows from

[BHV08, F.2.7]). We also mention the following related problem.

PROBLEM 3.14. Describe the set ex(coE(a, 2N)) of extreme points of coE(a, 2N) for

a ∈ A(Γ, X, µ).

4. Consequences of Theorem 1.2 and applications to MD and EMD

4.1. Free, non-ergodic weak equivalence classes. We can now prove Theorem 1.3.

PROOF OF THEOREM 1.3. If a is any ergodic action of Γ and a ≺ ι × b then by

Theorem 1.2 a ≺ b, and so a is strongly ergodic. It follows that we cannot also have

ι× b ≺ a, otherwise a would not be strongly ergodic. �

REMARK 4.1. Foreman and Weiss [FW04, Claim 18] show that for any free measure

preserving action a = Γ ya (X,µ) of an infinite amenable group b ≺ a for every b ∈

A(Γ, X, µ). We note that a quick alternative proof of this follows from [BTD11, Theorem

1.2], which says that if ∆ is a normal subgroup of a countably infinite group Γ and Γ/∆

is amenable, then b ≺ CIndΓ
∆((ι × b)|∆) for every b ∈ A(Γ, X, µ). Taking Γ to be an

infinite amenable group and ∆ = 〈e〉 the trivial group, the restriction (ι× b)|〈e〉 is trivial,

so CIndΓ
〈e〉((ι × b)|〈e〉) is the Bernoulli shift action sΓ of Γ. Thus, b ≺ sΓ. By [AW11,

Theorem 1] (or alternatively, Corollary 1.6 below), since a is free, we have sΓ ≺ a and so

b ≺ a.

Combining this with Theorem 1.3 gives a new characterization of (non-)amenability

for a countable group Γ.

COROLLARY 4.2. A countably infinite group Γ is non-amenable if and only if there

exists a free measure preserving action of Γ that is not weakly equivalent to any ergodic

action.

REMARK 4.3. It is noted in [CK13, 4.(C)] that if Γ is a non-amenable group, and if

S ⊆ Γ is a set of generators for Γ such that the Cayley graph Cay(Γ, S) is bipartite, then

there are continuum-many weak equivalence classes of free measure preserving actions of



109

Γ. Their method of using convex combinations of actions can be used to show that this

holds for all non-amenable Γ, and in fact the proof shows that there exists a collection

{aα : 0 < α ≤ 1
2
} with aα and aβ weakly incomparable when α 6= β. Indeed, if

a = Γ ya (X,µ) is any free strongly ergodic action of Γ (which exists when Γ is non-

amenable), then for any 0 < α < β ≤ 1
2

the actions aα = αa + (1 − α)a and aβ =

βa+(1−β)a are weakly incomparable. To see this note that any action weakly containing

aα has a sequence of asymptotically invariant sets with measures converging to α. Since

a is strongly ergodic it is clear that no such sequence exists for aβ , and so aα 6≺ aβ .

Similarly, aβ 6≺ aα.

It is open whether every non-amenable group has continuum-many weak equivalence

classes of free ergodic measure preserving actions. It is in fact unknown whether there ex-

ists a non-amenable group with just one free ergodic action up to weak equivalence (though

it is shown in the fourth remark after 13.2 of [Kec10] that any such group must, among

other things, have property (T) and cannot contain a non-abelian free group). Abért-Elek

[AE10] show that Γ has continuum-many pairwise weakly incomparable (hence inequiva-

lent) free ergodic actions when Γ is a finitely generated free group or a linear group with

property (T). Their result also holds for stable weak equivalence in view of the following

consequence of Theorem 1.2.

COROLLARY 4.4. Let a and b be ergodic measure preserving actions of Γ and let

(Z, η) be a standard probability space. Then a ∼ b if and only if ιη × a ∼ ιη × b. In

particular a ∼ b if and only if a ∼s b.

PROOF. If a ∼ b then ιη × a ∼ ιη × b by continuity of the product operation. Con-

versely, if ιη × a ∼ ιη × b then a ≺ ιη × a ≺ ιη × b so that a ≺ b by Theorem 1.2.

Likewise, b ≺ a, so a ∼ b. �

I also do not know whether every non-amenable group has continuum-many stable

weak equivalence classes of free measure preserving actions, or whether there exists a non-

amenable group all of whose free measure preserving actions are stably weakly equivalent.
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4.2. The properties MD and EMD.

DEFINITION 4.5. Let B be a class of measure preserving actions of a countable group

Γ. If a ∈ B then a is called universal for B if b ≺ a for every b ∈ B. When a is universal

for the class of all measure preserving actions of Γ then a is simply called universal.

DEFINITION 4.6 ([Kec12]). Let Γ be a countably infinite group. Then Γ is said to

have property EMD if the measure preserving action pΓ of Γ on its profinite completion is

universal. Γ is said to have property EMD∗ if pΓ is universal for the class of all ergodic

measure preserving actions of Γ. Γ is said to have property MD if ι× pΓ is universal.

If Γ has property EMD, EMD∗, or MD, then pΓ must be free (this follows, e.g., from

the 5.3 below) and so Γ must be residually finite. It is also clear that EMD implies both

EMD∗ and MD. We now show that EMD∗ and MD are equivalent.

PROOF OF THEOREM 1.4. The implication EMD∗ ⇒ MD is shown in [Kec12], but

also follows from Theorem 3.12 above. For the converse, suppose Γ has MD so that ι×pΓ

is universal and let a be an ergodic action of Γ. Then a ≺ ι × pΓ, so since a is ergodic,

Theorem 1.2 implies a ≺ pΓ. Thus pΓ is universal for ergodic actions of Γ, and so Γ has

EMD∗. �

COROLLARY 4.7. EMD and MD are equivalent for groups without property (T).

PROOF. Suppose Γ has MD and does not have (T). Then ι × pΓ is universal and by

Theorem 1.4, pΓ is universal for ergodic measure preserving actions. Since Γ does not have

property (T) there exists an ergodic a = Γ ya (X,µ) with ι ≺ a, and so ι ≺ a ≺ pΓ.

Since pΓ is ergodic with ι ≺ pΓ it follows that ι× pΓ ≺ pΓ (see [AW11, Theorem 3]) and

so pΓ is universal. �

In what follows, if ϕ : Γ → ∆ is group homomorphism then for each a ∈ A(∆, X, µ)

we let aϕ ∈ A(Γ, X, µ) denote the action that is the composition of a with ϕ, i.e., γaϕ =

ϕ(γ)a. Also, we note that for any two countable groups Γ1,Γ2, there is a natural equivariant

homeomorphism from the diagonal action Aut(X,µ) y A(Γ1, X, µ) × A(Γ2, X, µ) to
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Aut(X,µ) y A(Γ1 ∗ Γ2, X, µ). We denote this map by (a1,a2) 7→ a1 ∗ a2. See [Kec10,

10.(G)]. We also refer to [Kec10, Appendix G] and [Zim84] for information about induced

actions.

THEOREM 4.8. Suppose Γ1 and Γ2 are nontrivial countable groups and that for each

i ∈ {1, 2}, Γi is either finite or has property MD. Then Γ1 ∗ Γ2 has property EMD.

PROOF. Let (a1,a2) ∈ A(Γ1, X, µ) × A(Γ2, X, µ) be given and let U = U1 × U2

be an open neighborhood of (a1,a2) where Ui is an open neighborhood of ai for i =

1, 2. By hypothesis, for each i = 1, 2 there exists a finite group Fi 6= {e} along with a

homomorphism ϕi : Γi → Fi and bi ∈ A(Fi, X, µ) such that the corresponding measure

preserving action bϕii of Γi is in Ui. Let ϕ = ϕ1 ∗ϕ2 : Γ1 ∗Γ2 → F1 ∗F2 and let b = b1 ∗b2.

Then bϕ = bϕ1

1 ∗ b
ϕ2

2 ∈ U1 × U2. Let V1, V2 be open subsets about b1 ∈ A(F1, X, µ) and

b2 ∈ A(F2, X, µ), respectively, such that {aϕi : a ∈ Vi} ⊆ Ui for i = 1, 2 (this is possible

since the map a 7→ aϕi is continuous). Then b ∈ V1 × V2 and for all d ∈ V1 × V2 we have

dϕ ∈ U1 × U2.

There is a (possibly abelian) free subgroup F ≤ F = F1 ∗F2 of finite index (explicitly:

F = ker(ψ) = [F1, F2] where ψ : F1 ∗ F2 → F1 × F2 is the natural projection map), and

since F has EMD [Kec12, Theorem 1] we have b|F ≺ pF. Letting aF/F denote the action

of F on F/F with normalized counting measure we now have

b v b× aF/F ∼= IndFF (b|Γ) ≺ IndFF (pF).

The action d = IndFF (pF) is a profinite action, and d is ergodic since pF is ergodic. As

b ≺ d there exists an isomorphic copy d0 of d in V1 × V2. Then dϕ0 ∈ U1 × U2 and dϕ0 is

ergodic since d0 is ergodic. Thus U1 × U2 contains an ergodic profinite action. �

NOTE 4.9. The group Γ1 ∗ Γ2 never has property (T) when Γ1 and Γ2 are nontrivial, so

by Corollary 4.7 it would have been enough to show in the above proof that Γ1 ∗ Γ2 has

MD, and then EMD would follow.

THEOREM 4.10. The following are equivalent
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(1) MD and EMD are equivalent properties for any countably infinite group Γ.

(2) EMD passes to subgroups.

(3) MD is incompatible with property (T).

PROOF. (1)⇒(2): Property MD passes to subgroups, so if MD and EMD are equiva-

lent, then EMD passes subgroups. (2)⇒(1): If Γ is a countable group with MD then Γ ∗ Γ

has EMD, so if EMD passes to subgroups then Γ actually has EMD. (1)⇒(3): EMD is

incompatible with property (T) since if Γ is an infinite residually finite group with property

(T) then pΓ is strongly ergodic so that ι 6≺ pΓ. Thus, if MD and EMD are equivalent

then MD is also incompatible with property (T). (3)⇒(1): This follows immediately from

Corollary 4.7. �

Note also that Theorem 1.2 gives the following

PROPOSITION 4.11. MD is incompatible with ((τ) and ¬(T)). That is, if a group Γ has

both MD and property (τ), then Γ actually has property (T).

PROOF. If Γ has MD then by 4.7, pΓ is universal for ergodic actions, so if Γ does not

have (T) then there exists an ergodic a with ι ≺ a. This implies ι ≺ pΓ so that Γ does not

have property (τ). �

5. Weak equivalence and invariant random subgroups

5.1. Invariant random subgroups. We let Sub(Γ) denote the set of all subgroups

of Γ. This is a compact subset of 2Γ with the product topology, and is invariant under

the left conjugation action of Γ, which is continuous, and which we denote by c, i.e.,

γc · H = γHγ−1. We will always view Γ as acting on Sub(Γ) by conjugation, though the

underlying measure on Sub(Γ) will vary. By an invariant random subgroup (IRS) of Γ

we mean a conjugation-invariant Borel probability measure θ on Sub(Γ). Invariant random

subgroups are studied in [AGV12] as a stochastic generalization of normal subgroups. See

also [AE11], [Bow10b] and [Ver12]. We let IRS(Γ) denote the space of all invariant

random subgroups of Γ. When θ ∈ IRS(Γ) we will let θ denote the measure preserving



113

action Γ yc (Sub(Γ), θ). For a measure preserving action a = Γ ya (X,µ) we let

type(a) denote the type of a, which is defined to be the measure (staba)∗µ on Sub(Γ),

where staba : X → Sub(Γ) is the stabilizer map x 7→ staba(x) = Γx = {γ ∈ Γ : γax =

x} ∈ Sub(Γ). It is clear that type(a) is always an IRS of Γ. Types are studied in [AE11] in

order to examine freeness properties of measure preserving actions.

5.2. The compact space of weak equivalence classes. Abért and Elek ([AE11]) de-

fine a compact Polish topology on the set of weak equivalence classes of measure pre-

serving actions of Γ. We define this topology below and provide a variation of their proof

showing that it is a compact Polish topology.

For this subsection we fix a standard probability space (X,µ) and a compact zero-

dimensional Polish space K homeomorphic to Cantor space 2N. We let K = K(Ms(K
Γ))

denote the space of all nonempty compact subsets of Ms(K
Γ), equipped with the Vietoris

topology τV which makes K into a compact Polish space. Since Ms(K
Γ) is a compact

metric space, convergence in this topology may be described as follows. A sequence Ln ∈

K, n ∈ N converges if and only if the sets

TlimnLn = {λ ∈Ms(K
Γ) : ∃(λn) [∀nλn ∈ Ln, and λn → λ]}

TlimnLn = {λ ∈Ms(K
Γ) : ∃(λn) [∀nλn ∈ Ln, and for some subsequence (λnk), λnk → λ]}

are equal, in which case their common value is the limit of the sequence Ln (see, e.g.,

[Kec95, 4.F]).

Let Φ : A(Γ, X, µ)→ K be the map

Φ(a) = E(a, K).

By Proposition 3.5, Φ(a) = Φ(b) if and only if a ∼ b. We now have

THEOREM 5.1. The image of Φ in K is a closed, hence compact subset of (K, τV ).

PROOF. Let a0,a1,a2, . . . be a sequence in A(Γ, X, µ) and suppose that Φ(an) con-

verges in (K, τV ) to the compact set L ∈ K. We will show that there exists a∞ ∈
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A(Γ, X, µ) such that Φ(a∞) = L. Since E(an, K) is dense in Φ(an) we may write L

as

L = {λ ∈Ms(K
Γ) : ∃(λn) [∀nλn ∈ E(an, K), and λn → λ]}

= {λ ∈Ms(K
Γ) : ∃(λn) [∀nλn ∈ E(an, K), and for some subsequence (λnk), λnk → λ]}.

Fix a nonprincipal ultrafilter U on N, let (XU , µU) be the ultrapower of the measure space

(X,µ), and let aU = Γ yaU (XU , µU) denote the ultraproduct
∏

n an/U of the sequence

{an}n∈N.

CLAIM 2. L = E(aU , K).

PROOF OF CLAIM. Let λ ∈ L and let λn ∈ E(an, K), n ∈ N, with λn → λ. For

each n there exists φn : X → K such that λn = (Φφn,an)∗µ. Let φ : XU → K be the

ultralimit of the functions φn. By Proposition 3.10.(2) (Φφ,aU )∗µU = limn→U(Φφn,an)∗µ =

limn→U λn = λ. This shows λ ∈ E(aU , K), and thus L ⊆ E(aU , K).

Conversely, let λ ∈ E(aU , K), say λ = (Φψ,aU )∗µU for some BU -measurable ψ :

XU → K. By Proposition 3.10.(3) we may find a sequence φn : X → K, n ∈ N, of

Borel functions such that, letting φ denote the ultralimit of the φn, µU -almost everywhere

ψ([xn]) = φ([xn]). Let Φn = Φφn,an , let Φ = Φφ,aU , and let λn = (Φn)∗µ ∈ E(an, K).

Then Φψ,aU ([xn]) = Φ([xn]) almost everywhere, so by Proposition 3.10.(2) we have λ =

(Φψ,aU )∗µU = Φ∗µU = limn→U λn so there exists a subsequence n0 < n1 < · · · such that

λnk → λ. Hence λ ∈ L and so E(aU , K) ⊆ L. �[Claim]

Let D ⊆ L be a countable dense subset of L = E(aU , K). For each λ ∈ D we choose

someBU -measurable φλ : XU → K with (Φφλ,aU )∗µU = λ, and we also choose a sequence

φλ,m : XU → K, m ∈ N, of functions converging in measure to φλ, such that each φλ,m

is constant on some BU -measurable finite partition P(λ,m) of XU . By Theorem 8.3 there

exists a countably generated standard factorM of MALGµU containing
⋃
λ∈D

⋃
m∈NP(λ,m)

that is isomorphic to MALGµ. Let a∞ be an action on (X,µ) corresponding to a point

realization of the action of Γ on M by measure algebra automorphisms. It is clear that
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E(a∞, K) ⊆ E(aU , K) = L. We show that D ⊆ E(a∞, K). Given λ ∈ D, each of

the functions φλ,m is M -measurable, so (Φφλ,m,aU )∗µU ∈ E(a∞, K) for all m. Since

φλ,m → φλ in measure it follows that (Φφλ,m,aU )∗µU → λ, and thus λ ∈ E(a∞, K). Thus

L = E(a∞, K). �

For a ∈ A(Γ, X, µ) let [a] ⊆ A(Γ, X, µ) denote the weak equivalence class of a in

A(Γ, X, µ). Let A∼(Γ, X, µ) = {[a] : a ∈ A(Γ, X, µ)} be the set of all weak equivalence

classes of elements of A(Γ, X, µ), and let τ denote the topology on A∼(Γ, X, µ) obtained

by identifying A∼(Γ, X, µ) with a closed subset of (K, τV ) via Φ. This makes A∼(Γ, X, µ)

into a compact metrizable space.

THEOREM 5.2.

(1) [AE11] The type, type(a), of a measure preserving action is an invariant of weak

equivalence.

(2) The map [a] 7→ type(a) is a continuous map from the space (A∼(Γ, X, µ), τ) of

weak equivalence classes of measure preserving actions of Γ to the space IRS(Γ)

of invariant random subgroups of Γ equipped with the weak∗-topology.

PROOF. Let bn ∈ A(Γ, X, µ), n ∈ N, and suppose that [bn]→ [b] in τ , i.e.,E(bn, K)→

E(b, K) in τV . In light of Proposition 8.4, both (1) and (2) will follow once we show

that type(an) → type(a) for all an ∈ [bn] and a ∈ [b]. Let θn = type(an) and let

θ = type(a). Let F,G ⊆ Γ be finite. We define NF = {H ∈ Sub(Γ) : F ∩ H = ∅},

NF,G = {H ∈ Sub(Γ) : F ∩H = ∅ and G ⊆ H} and

AnF =
⋂
γ∈F

supp(γan) AnF,G =
⋂
γ∈F

supp(γan) ∩
⋂
γ∈G

X \ supp(γan)

AF =
⋂
γ∈F

supp(γa) AF,G =
⋂
γ∈F

supp(γa) ∩
⋂
γ∈G

X \ supp(γa).

Then θn(NF ) = µ(AnF ), θn(NF,G) = µ(AnF,G), θ(NF ) = µ(AF ), and θ(NF,G) = µ(AF,G).

We will be done once we show that µ(AnF,G)→ µ(AF,G) for all finite F,G ⊆ Γ.

We first show that µ(AnF )→ µ(AF ) for all finite F ⊆ Γ.
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LEMMA 5.3. µ(AF ) ≤ lim infn µ(AnF ) for all finite F ⊆ Γ.

PROOF. We may writeAF as a countable disjoint unionAF =
⊔
m≥0Am where µ(γaAm∩

Am) = 0 for all γ ∈ F and m ∈ N. Then for any ε > 0 we can find M so large that∑
m≥M µ(Am) < ε

2|F | . Since [an] → [a] in τ we have that E(a, K) ⊆ TLimnE(a, K) so

by Proposition 3.5 a ≺ {an : n ∈ I} for any infinite I ⊆ N. Thus there exists N such

that for each n > N we can find An0 , . . . , A
n
M−1 such that for all γ ∈ F ∪ {e} and i, j < M

we have

|µ(γaAi ∩ Aj)− µ(γanAni ∩ Anj )| < ε

2M2|F |
.

Then, fixing n with n > N , in particular we have µ(γanAni ∩ Ani ) < ε
2M2|F | and |µ(Ai) −

µ(Ani )| < ε
2M2|F | for all γ ∈ F and i < M , and µ(Ani ∩ Anj ) < ε

2M2|F | for all i, j < M ,

i 6= j. Define for i < M the sets

Bn
i = Ani \

( ⋃
γ∈F

γanAni ∪
⋃
j 6=i

Anj
)
.

Then for γ ∈ F , γanBn
i ∩ Bn

i = ∅ and for i 6= j, Bn
i ∩ Bn

j = ∅. Thus
⊔
Bn
i ⊆ AnF .

Since µ(Bn
i ) ≥ µ(Ani ) − ((M − 1) + |F |) ε

2M2|F | > µ(Ai) − ε
2M

it follows that µ(AnF ) ≥∑
i<M µ(Bn

i ) > (
∑

i<M µ(Ai))− ε
2
> µ(AF )− ε. Since this holds for all n > N and since

ε > 0 was arbitrary we are done. �[Lemma]

LEMMA 5.4. lim supn µ(AnF ) ≤ µ(AF ) for all finite F ⊆ Γ.

PROOF. We may write each AnF as a countable disjoint union AnF =
⊔∞
m=0A

n
m where

for all n,m ∈ N, γan·Anm∩Anm = ∅. We also defineAn−1 = X\AnF . LetB−1, B0, B1, B2, . . .

be a sequence of disjoint nonempty clopen subsets ofK, let km ∈ Bm, and define φn : X →

K by φn(x) = km for x ∈ Anm. The set

BF = {f ∈ KΓ : (∀m ≥ −1) [f(e) ∈ Bm ⇒ (∀γ ∈ F )(f(γ) 6∈ Bm)]}

= KΓ \
⋃

m≥−1

(π−1
e (Bm) ∩

⋃
γ∈F

π−1
γ (Bm))
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is closed and contained in the open set UF = {f : ∀γ ∈ F f(γ) 6= f(e)}. Fixing n, for

each m ≥ 0 we have that

(Φφn,an)−1(π−1
e (Bm) ∩

⋃
γ∈F

π−1
γ (Bm)) = Anm ∩

⋃
γ∈F

γanAnF = ∅,

while for m = −1 we have that (Φφn,an)−1(π−1
e (B−1) ∩

⋃
γ∈F π

−1
γ (B−1)) = An−1 since

An−1 ⊆
⋃
γ∈F γ

anAn−1. It follows that (Φφn,an)−1(BF ) = AnF . Let λn = (Φφn,an)∗µ ∈

E(an, K). Take any convergent subsequence {λnk}, and let λ = limk λnk . SinceE(an, K)→

E(a, K) we have that λ ∈ E(a, K), so let ρn = (Φψn,a)∗µ ∈ E(a, K) be such that

ρn → λ. We now have

lim supkµ(AnkF ) = lim supkλnk(BF ) ≤ λ(BF ) ≤ λ(UF )

≤ lim infnρn(UF ) = lim infnµ({x : ∀γ ∈ F ψn((γ−1)ax) 6= ψn(x)}) ≤ µ(AF ).

Since the convergent subsequence (λnk) was arbitrary we conclude that lim supn µ(AnF ) ≤

µ(AF ). �

It follows from the above two lemmas that µ(AF ) = limn µ(AnF ) for all finite F ⊆ Γ.

Now let F,G ⊆ Γ be finite and note that AnF = AnF,G t
⋃
γ∈GA

n
F∪{γ} and AF = AF,G t⋃

γ∈GAF∪{γ}. We have just shown that µ(AF ) = limn µ(AnF ). By the inclusion-exclusion

principle we have µ(
⋃
γ∈GA

n
F∪{γ}) =

∑|G|
k=1(−1)k−1

∑
{J⊆G:|J |=k} µ(AnF∪J), and since

µ(AnF∪J) → µ(AF∪J) for each J ⊆ G it follows after another application of inclusion-

exclusion that µ(
⋃
γ∈GA

n
F∪{γ})→ µ(

⋃
γ∈GAF∪{γ}). Thus µ(AnF,G)→ µ(AF,G). �

COROLLARY 5.5 ([AE11]). For each θ ∈ IRS(Γ), {[a] : type(a) = θ} ⊆ A∼(Γ, X, µ)

is compact in τ . In particular {[a] : [a] is free} is compact in τ .

REMARK 5.6. The technique used in the proof of Theorem 5.2 can be used to show

that combinatorial invariants of measure preserving actions such as independence number

(see [CK13] and [CKTD11]) are continuous functions on (A∼(Γ, X, µ), τ).

THEOREM 5.7. Let Γ be a countable group.
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(1) The map (A(Γ, X, µ), w) → (A∼(Γ, X, µ), τ), a 7→ [a], is Baire class 1. In

particular, for each θ ∈ IRS(Γ) the space {a ∈ A(Γ, X, µ) : type(a) = θ} is a

Gδ hence Polish subspace of (A(Γ, X, µ), w).

(2) The topology τ is a refinement of the quotient topology on A∼(Γ, X, µ) induced

by w. If (X,µ) is not a discrete space and Γ 6= {e} then the τ topology is strictly

finer than the quotient topology.

PROOF. We begin with (1). For this we show that a 7→ E(a, K) ∈ K is Baire class 1.

We observe that {a : E(a, K) ⊆ C} is closed in (A(Γ, X, µ), w) whenever C ⊆Ms(K
Γ)

is closed. This is because if an ∈ A(Γ, X, µ), n ∈ N, is such that E(a, K) ⊆ C and

an → a ∈ A(Γ, X, µ) in the weak topology then E(a, K) ⊆
⋃
nE(an, K) ⊆ C.

The topology τV on K is generated by the sets {L : L ⊆ U} and {L : L ∩ U 6= ∅},

where U ranges over all open subsets of Ms(K
Γ). For any open U ⊆ Ms(K

Γ) the above

observation shows that {a : E(a, K)∩U 6= ∅} is open, and if we write U =
⋃
nCn where

each Cn is closed and Cn ⊆ int(Cn+1) then {a : E(a, K) ⊆ U} =
⋃
n{a : E(a, K) ⊆

Cn}, which is Fσ.

For the first part of (2) we note that the following are equivalent for a subset B of

A(Γ, X, µ):

(i) B is weakly closed and for all a, b ∈ A(Γ, X, µ), a ∈ B and b ∼ a implies b ∈ B.

(ii) B is weakly closed and for all a, b ∈ A(Γ, X, µ), a ∈ B and b ∼= a implies b ∈ B.

(iii) For all a ∈ A(Γ, X, µ), a ≺ B implies a ∈ B.

The implication (i)⇒(ii) is trivial, (ii)⇒(iii) follows from Proposition 3.5, and (iii)⇒(i)

follows from the fact that if an → a in A(Γ, X, µ) then a ≺ {an}n∈N. To show the

first part of (2) it suffices to show that if B satisfies the above equivalent properties, then

B∼ = {[a] : a ∈ B} is closed in τ . Let L =
⋃
a∈B E(a, K). Then L ⊆ Ms(K

Γ) is

closed and property (iii) tells us that B∼ = {[a] ∈ A∼(Γ, X, µ) : E(a, K) ⊆ L}, which is

exactly the definition of a basic closed set in τV .

Suppose that (X,µ) is not discrete and let C ⊆ X be the continuous part of X so

that µ(C) > 0. Then (C, µC) is a standard non-atomic probability space so there exists
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a universal measure preserving action a = Γ ya (C, µC) weakly containing all other

measure preserving actions of Γ. Let b be the action of Γ on (X,µ) whose restriction to C

is equal to a and whose restriction toX\C is identity and let b = Γ yb (X,µ). As ιµC ≺ a

by Lemma 3.4 there exist isomorphic copies of a converging to ιµC in A(Γ, C, µC). This

yields isomorphic copies of b converging to ιµ in A(Γ, X, µ). Thus [ιµ] is in the closure

of {[b]} in the quotient topology, but [ιµ] is not in the τ topology closure of {[b]} since

Γ 6= {e} so that [ιµ] 6= [b]. �

REMARK 5.8. The map K → K sending L 7→ coL is continuous in the Vietoris

topology τV . Indeed, if Ln → L∞ we show that TlimncoLn ⊆ coL∞ ⊆ TlimncoLn.

Let λ ∈ TLimncoLn so that there exists λnk ∈ coLnk with λnk → λ. Then there exist

probability measures µnk on Ms(K
Γ) supported on Lnk with λnk =

∫
ρ∈Ms(KΓ)

ρ dµnk and

(after moving to a subsequence if necessary) we may assume that µnk converges to some

measure µ on Ms(K
Γ). Then λ =

∫
ρ∈Ms(KΓ)

ρ dµ. Let C0 ⊇ C1 ⊇ · · · be a sequence of

closed subsets of Ms(K
Γ) with L∞ ⊆ int(Cm) for all m and L∞ =

⋂
mCm. For each m

the set {L ∈ K : L ⊆ Cm} is a neighborhood of L∞ in K and so contains Lnk for all large

enough k. It follows that µ(Cm) ≥ lim infk µnk(Cm) = 1, and so µ(L∞) = limm µ(Cm) =

1. Since µ is supported on L∞ and has barycenter λ, it follows that λ ∈ coL∞. For the

second inclusion it is easy to see that coL∞ ⊆ TlimncoLn and since the latter set is closed

it follows that coL∞ ⊆ TlimncoLn.

If now a is a measure preserving action of Γ and (Y, ν) is non-atomic then a is stably

weakly equivalent to an action on (Y, ν) and we let [a]s = {b ∈ A(Γ, Y, ν) : b ∼s a}

denote the stable weak equivalence class of a in (Y, ν) (see Definition 9.1). It follows that

the space A∼s(Γ, Y, ν) = {[a]s : a is a measure preserving action of Γ} of all stable weak

equivalence classes of measure preserving actions of Γ may be viewed as a compact subset

of K via the map [a]s 7→ coE(a, K). Since type(a) = type(ι× a) it follows that type(a)

is an invariant of stable weak equivalence. The map [a] 7→ type(a) then factors through

[a] 7→ [a]s, and so Theorem 5.2 also holds for stable weak equivalence.
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5.3. Random Bernoulli shifts. Given θ ∈ IRS(Γ), one constructs a measure preserv-

ing action of Γ of type θ as follows (see [AGV12, Proposition 45]).

Fix a standard probability space (Z, η) and let Z≤\Γ =
⊔
H∈Sub(Γ) Z

H\Γ. Here, H\Γ

denotes the collection of right cosets of H in Γ. We define the projection map Z≤\Γ →

Sub(Γ), f 7→ Hf ∈ Sub(Γ), where Hf = H when f ∈ ZH\Γ. We endow Z≤\Γ with

the standard Borel structure it inherits as a Borel subset of ZΓ × Sub(Γ) via the injection

f 7→ ((γ 7→ f(Hfγ)), Hf ). The image of Z≤\Γ under this map is invariant under the

product action s̃ × c of Γ on ZΓ × Sub(Γ) (where s̃ denotes the shift action of Γ on ZΓ),

and we let s denote the corresponding action of Γ on Z≤\Γ. We have that Hγsf = γHfγ
−1

for each γ ∈ Γ and f ∈ Z≤\Γ and (γsf)(γHfγ
−1δ) = f(Hfγ

−1δ). Let ηH\Γ denote the

product measure on ZH\Γ ⊆ Z≤\Γ, and observe that under this action we have (γs)∗η
H\Γ =

η(γHγ−1)\Γ. It follows that the measure ηθ\Γ on Z≤\Γ defined by

ηθ\Γ =

∫
H

ηH\Γ dθ(H)

is invariant under the action of Γ. We let sθ,η denote the measure preserving action Γ ys

(Z≤\Γ, ηθ\Γ), and we call sθ,η the θ-random Bernoulli shift of Γ over (Z, η). This action

always contains θ as a factor via the “projection” map f 7→ Hf . When η is non-atomic

then the stabilizer map f 7→ Γf of sθ,η coincides almost everywhere with this projection.

Indeed, if η is non-atomic then for ηθ\Γ-almost every f the function f : H\Γ → Z is

injective. Since every γ ∈ Γf satisfies f(Hγ−1) = f(H), the inclusion Γf ⊆ Hf is

immediate for injective f , and as Hf ⊆ Γf always holds we conclude that Γf = Hf almost

surely. In particular type(sθ,η) = θ. We have thus shown the following.

PROPOSITION 5.9 ([AGV12, Proposition 45]). Let Γ be a countable group. For every

θ ∈ IRS(Γ) there exists a measure preserving action of type θ. Namely, the θ-random

Bernoulli shift sθ,η over a non-atomic base space (Z, η) has type θ.
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It is clear that an isomorphism (Z1, η1) ∼= (Z2, η2) of measure spaces induces an iso-

morphism sθ,η1
∼= sθ,η2 . The next proposition characterizes precisely when type(sθ,η) = θ

for various η. Below, we write N(H) for the normalizer of a subgroup H of Γ.

PROPOSITION 5.10. Let Γ be a countable group, let θ ∈ IRS(Γ), and let (Z, η) be a

standard probability space.

(1) If η is non-atomic then Γf = Hf almost surely;

(2) If η is a point mass then Γf = N(Hf ) almost everywhere and the map f 7→ Hf is

an isomorphism sθ,η ∼= θ so that type(sθ,η) = type(θ).

(3) Suppose η is not a point mass. Then for each infinite index subgroup of H ≤ Γ,

Γf = Hf for ηH\Γ-almost every f ∈ ZH\Γ. Thus, if

θ({H : [Γ : H] <∞ and N(H) 6= H}) = 0

then Γf = Hf almost surely. In particular if θ concentrates on the infinite index

subgroups of Γ then Γf = Hf almost surely.

(4) Suppose that η contains atoms. If

θ({H : [Γ : H] <∞ and N(H) 6= H}) > 0

then type(sθ,η) 6= θ.

In particular, type(sθ,η) = θ if and only if Hf = Γf almost surely.

PROOF. We have already shown (1) in Proposition 5.9 and (2) is clear. For (3) fix

an infinite index H ≤ Γ along with some γ 6∈ H and inductively define an infinite se-

quence {δn}n∈N by taking δn+1 ∈ Γ to be any element of the complement of
⋃
i≤n(Hδi ∪

Hγ−1δi ∪ (γHγ−1)δi ∪ (γHγ−1)(γδi)) (we are using here the fact that the collection

{Hδ : H ∈ Sub(Γ), δ ∈ Γ, and [Γ : H] = ∞} of all right cosets of infinite index sub-

groups of Γ generates a proper ideal of Γ (see, e.g., the proof of Lemma 4.4 in [Kec07])).

By construction all of the cosets Hδ0, Hγ−1δ0, Hδ1, Hγ−1δ1, . . . are distinct so, letting
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A ⊆ Z be any set with 0 < η(A) < 1, it follows that

ηH\Γ({f : γ ∈ Γf}) ≤ ηH\Γ({f : ∀δ ∈ Γ (f(Hδ) = f(Hγ−1δ))})

≤ ηH\Γ(
⋂
n∈N

{f : f(Hδn), f(Hγ−1δn) ∈ A or f(Hδn), f(Hγ−1δn) 6∈ A})

= lim
N→∞

(η(A)2 + (1− η(A))2)N = 0.

Thus γ 6∈ Γf for ηH\Γ-almost every f , and since this is true for each γ 6∈ H we obtain

Γf ⊆ H for ηH\Γ-almost every f .

We now prove (4). Let θs = type(sθ,η). Let z0 ∈ Z be an atom for the measure η. The

set A = {f ∈ Z≤\Γ : [Γ : Hf ] < ∞, N(Hf ) 6= Hf and ∀γ ∈ Γ (f(Hfγ) = z0)} is ηθ\Γ-

non-null and Γf = N(Hf ) 6= Hf for each f ∈ A. Thus [Γ : Γf ] = [Γ : N(Hf )] < [Γ : Hf ]

for each f ∈ A. When f 6∈ A we still have [Γ : Γf ] ≤ [Γ : Hf ]. It follows that∫
H

1

[Γ : H]
dθs =

∫
f∈A

1

[Γ : Γf ]
dηθ\Γ +

∫
f 6∈A

1

[Γ : Γf ]
dηθ\Γ

>

∫
f∈A

1

[Γ : Hf ]
dηθ\Γ +

∫
f 6∈A

1

[Γ : Hf ]
dηθ\Γ =

∫
f

1

[Γ : Hf ]
dηθ\Γ =

∫
H

1

[Γ : H]
dθ

and so θs 6= θ, which finishes (4).

It is clear that Γf = Hf almost everywhere implies type(sθ,η) = θ. Suppose now that

Γf 6= Hf for a non-null set of f ∈ Z≤\Γ. Then (1) implies that η contains atoms and (3)

implies that the set J = {f ∈ Z≤\Γ : [Γ : Hf ] < ∞ and Γf 6= Hf} is non-null. The

inclusions Hf ⊆ Γf ⊆ N(Hf ) holds for all f ∈ Z≤\Γ and so

θ({H : [Γ : H] <∞ and N(H) 6= H}) ≥ ηθ\Γ(J) > 0.

Part (4) now implies that type(sθ,η) 6= θ. �

THEOREM 5.11. Let Γ be a countable group, let θ ∈ IRS(Γ), and let sθ,η be the θ-

random Bernoulli shift over the standard measure space (Z, η). Let p : Z≤\Γ → Sub(Γ)

denote the projection p(f) = Hf factoring sθ,η onto θ. Assume that η is not a point mass.

Then the following are equivalent
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(1) θ concentrates on the infinite index subgroups of Γ.

(2) The extension p : sθ,η → θ is ergodic.

(3) The extension p : sθ,η → θ is weak mixing.

In particular, if θ is infinite index then sθ,η is ergodic if and only if θ is ergodic.

PROOF. (3)⇒(2) is trivial. (2)⇒(1): Suppose that θ(C) > 0 where C = {H : [Γ :

H] < ∞} and let A ⊆ Z be any measurable set with 0 < η(A) < 1. Then the set

B = {f ∈ Z≤\Γ : Hf ∈ C and ran(f) ⊆ A} is a nontrivial invariant set that is not

p-measurable.

(1)⇒(3): We must show that the extension p̃ : sθ,η ⊗θ sθ,η → θ is ergodic, where

sθ,η ⊗θ sθ,η = Γ ys×s (Z≤\Γ × Z≤\Γ,∫
H

ηH\Γ × ηH\Γ dθ
)

and p̃(f, g) = p(f). Let (Y, ν) = (Z × Z, η × η). Then we have the natural isomorphism

ϕ : sθ,η ⊗θ sθ,η ∼= sθ,ν such that p̃(f, g) = p ◦ ϕ(f, g) almost surely, so it suffices to

show that the extension p : sθ,ν → θ is ergodic. If θ =
∫
w∈W θ(w) dρ(w) is the ergodic

decomposition of θ then sθ,ν decomposes as sθ,ν =
∫
w∈W sθw,ν dρ(w) and p : Y ≤\Γ →

Sub(Γ) factors sθw,ν onto θw almost surely. We may therefore assume that θ is ergodic

toward the goal of showing that sθ,ν is ergodic as well.

Since θ is ergodic, the index i of N(H) in Γ is constant on a θ-conull set. If i < ∞

then the orbit of almost every H is finite and ergodicity implies that there exists an H0 ∈

Sub(Γ) such that θ concentrates on the conjugates of H0. Then H0 is an infinite index

normal subgroup of K0 = N(H0) which implies that the generalized Bernoulli shift action

s = K0 ys (Y H0\Γ, ηH0\Γ) is ergodic (see, e.g., [KT08]). Example 5.13 below then shows

that sθ,ν ∼= IndΓ
K0

(s), and so sθ,ν is ergodic.

If i = ∞ then we proceed as follows. Let (X,µ) = (Y ≤\Γ, ν≤\Γ) and suppose toward

contradiction that B ⊆ X is invariant and 0 < µ(B) = r < 1. The map H 7→ νH\Γ(B)

is conjugation invariant so ergodicity of θ implies that νH\Γ(B) = µ(B) = r almost

surely. Let ε > 0 be small depending on r. Fix some countable Boolean algebra A0

generating B(Y ) and let A be the countable Boolean algebra of subsets of X generated
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by {π−1
γ (D) : D ∈ A0 and γ ∈ Γ} where πγ(f) = f(Hfγ) for f ∈ X . Then for

every ε > 0 there exists A1, . . . , An ∈ A and a partition C0, . . . , Cn−1 of Sub(Γ) into

non-null measurable sets such that µ(A∆B) < ε2 where A =
⊔
i<n(Ai ∩ p−1(Ci)). There

exists a finite F ⊆ Γ and a collection {Di,j
δ : δ ∈ F, j < ni, i < n} ⊆ A0 such that

Ai =
⋃

0≤j<ni

⋂
δ∈F π

−1
δ (Di,j

δ ) for each i < n.

LEMMA 5.12. Let C ⊆ Sub(Γ) be any non-null measurable set. Then for θ-almost

every H ∈ Sub(Γ) there exists γ ∈ Γ such that {Hα}α∈F ∩ {Hγ−1δ}δ∈F = ∅ and

γHγ−1 ∈ C.

PROOF. Since θ is ergodic and [Γ : N(H)] =∞ almost surely, the intersection CH , of

C with the orbit of H , is almost surely infinite. Fix such an H with both [Γ : N(H)] =∞

and CH infinite. Since the set FF−1 ·H = {δα−1Hαδ−1 : α, δ ∈ F} is finite there exists

γ ∈ Γ with γHγ−1 ∈ CH \(FF−1 ·H). This γ works: γHγ−1 6∈ FF−1 ·H is equivalent to

γ 6∈
⋃
α,δ∈F δα

−1N(H), so if α, δ ∈ F then γ 6∈ δα−1N(H) and thus Hα 6= Hγ−1δ. �

Using this lemma and measure-theoretic exhaustion we may find a Borel function

Sub(Γ) → Γ, H 7→ γH , with {Hα}α∈F ∩ {Hγ−1
H δ}δ∈F = ∅ and γHHγ

−1
H ∈ Ci for

almost every H ∈ Ci, and such that the function ψ : Sub(Γ)→ Sub(Γ), H 7→ γHHγ
−1
H , is

injective on a conull set. In particular, ψ is measure preserving. Let ϕ : X → X be given

by ϕ(f) = (γHf )
s · f so that ϕ is also injective on a conull set and measure preserving.

For H ≤ Γ and D ⊆ X let DH = D ∩ Y H\Γ. Then for each i < n and almost every

H ∈ Ci we have γHHγ−1
H ∈ Ci and

ϕ(A)γHHγ−1
H

= (γH)s · ((Ai)H) =
⋃
j<ni

⋂
α∈F

{f ∈ Y γHHγ
−1
H \Γ : f(γHHγ

−1
H γHα) ∈ Di,j

α }

AγHHγ−1
H

= (Ai)γHHγ−1
H

=
⋃
j<ni

⋂
δ∈F

{f ∈ Y γHHγ
−1
H \Γ : f(γHHγ

−1
H δ) ∈ Di,j

δ }

By our choice of γH the sets {γHHγ−1
H γHα}α∈F and {γHHγ−1

H δ}δ∈F are almost surely

disjoint and it follows that the sets A and ϕ(A) are νγHHγ
−1
H \Γ-independent almost surely.
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Since H 7→ γHHγ
−1
H is a measure preserving injection it follows that A and ϕ(A) are

νH\Γ-independent almost surely.

We have ε2 > µ(A∆B) =
∫
H
νH\Γ(A∆B) dθ ≥

∫
H
|νH\Γ(A) − r| dθ so that θ({H :

|νH\Γ(A) − r| ≤ ε}) ≥ 1 − ε and since µ(A∆B) = µ(ϕ(A)∆B) we also have θ({H :

|νH\Γ(ϕ(A))− r| ≤ ε}) ≥ 1− ε. Then

r = µ(B) ≤ µ(A∆B) + µ(ϕ(A)∆B) + µ(A ∩ ϕ(A))

< 2ε2 +

∫
H

νH\Γ(A)νH\Γ(ϕ(A)) dθ ≤ 2ε2 + 2ε+ (r + ε)2 →ε→0 r
2.

This is a contradiction for small enough ε since 0 < r < 1. �

EXAMPLE 5.13. The simplest example of an ergodic θ ∈ IRS(Γ) is a point mass θ =

δN on some normal subgroup N / Γ. The corresponding random Bernoulli shift sδN ,η is

isomorphic to the usual generalized shift action of Γ on (ZΓ/N , ηΓ/N).

Almost as simple is when θ ∈ IRS(Γ) has the form θ = 1
n

∑n−1
i=0 δγiHγ−1

i
where H ≤ Γ

is a subgroup with finitely many conjugates γ0Hγ
−1
0 , γ1Hγ

−1
1 , γ2Hγ

−1
2 , . . . γn−1Hγ

−1
n−1.

Clearly θ is ergodic. In this case the random Bernoulli shift sθ,η may be described as

follows. The set T = {γi}i<n is a transversal for the left cosets of the normalizer K =

N(H) of H in Γ, and the natural action of Γ on T given by γ · t ∈ γtK ∩ T for γ ∈ Γ

and t ∈ T preserves normalized counting measure νT on T . Since H is normal in K,

the restriction to K of the action s leaves ZH\Γ invariant and preserves the measure ηH\Γ

so that s = K ys (ZH\Γ, ηH\Γ) becomes the usual generalized Bernoulli shift. We let

b denote the induced action b = IndΓ
K(s), which is the measure preserving action Γ yb

(ZH\Γ × T, ηH\Γ × νT ) given by

γb(f, t) = (ρ(γ, t)sf, γ · t)

where ρ : Γ × T → K is the cocycle given by ρ(γ, t) = (γ · t)−1γt. The map π :

ZH\Γ × T → Z≤\Γ given by π(f, t) = tsf ∈ ZtHt−1\Γ is an isomorphism of b with sθ,η.
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Indeed, π is equivariant since

π(γb(f, t)) = π(ρ(γ, t)sf, γ · t) = (γ · t)sρ(γ, t)sf = (γt)sf = γstsf = γsπ(f, t)

and π is measure preserving since

π∗(η
H\Γ × νT ) =

1

n

∑
t∈T

π∗(η
H\Γ × δt) =

1

n

∑
t∈T

ηtHt
−1\Γ = ηθ\Γ.

It is also clear that π is injective since t 7→ tHt−1 is a bijection of T with the conjugates of

H .

5.4. A sufficient condition for weak containment.

NOTATION. For sets A and B we let A⊆B =
⋃
C⊆B A

C . We identify k ∈ N with

k = {0, 1, . . . , k − 1}. A partition of (X,µ) will always mean a finite partition of X

into Borel sets. When P is a partition of (X,µ) we will often identify elements of P

with their equivalence class in MALGµ. We use the script letters N ,O,P , Q, R, S and

T to denote partitions, and the printed letters N , O, P , Q, R, S and T , respectively, to

denote their corresponding elements. If P and Q are two partitions of (X,µ) then we let

P ∨ Q = {P ∩ Q : P ∈ P , Q ∈ Q} denote their join. We write P ≤ Q if Q is a

refinement of P , i.e., if every Q ∈ Q is contained, modulo null sets, in some P ∈ P .

Suppose Γ ya (X,µ) and P = {P0, . . . , Pk−1} is a partition of X . If J is a finite

subset of Γ and τ ∈ kJ then we define

P a
τ =

⋂
γ∈J

γa · Pτ(γ).

We will write Pτ when the action a is understood. Note that P∅ = X . We let Γ act on the set⋃
{kJ : J ⊆ Γ is finite} by shift, i.e., (γ · τ)(δ) = τ(γ−1δ). Then dom(γ · τ) = γdom(τ).

The following lemma establishes a sufficient condition for a measure preserving action

a to be weakly contained in B which will be used in the proof of Theorem 1.5. This lemma

is inspired by [AW11, Lemma 5].



127

LEMMA 5.14. Suppose a = Γ ya (X,µ) and B is a collection of measure preserving

actions of Γ. Suppose P(0) ≤ P(1) ≤ · · · is a sequence of partitions of X such that the

smallest a-invariant measure algebra containing
⋃
nP(n) is all of MALGµ. Then a ≺ B if

for any n, writing P(n) = P = {P0, . . . , Pk−1}, for all finite subsets F ⊆ Γ and all δ > 0,

there exists some Γ yb (Y, ν) = b ∈ B and a partition Q = {Q0, . . . , Qk−1} of Y such

that for all τ ∈ k⊆F , |µ(Pτ )− ν(Qτ )| < δ.

PROOF. Suppose the condition is satisfied and let A1, . . . , Am ∈ MALGµ, F0 ⊆ Γ

finite with e ∈ F0, and ε > 0 be given. Let e ∈ G0 ⊆ G1 ⊆ · · · be an increasing

exhaustive sequence of finite subsets of Γ, and let Gn · P(n) =
∨
γ∈Gn γ

a · P(n). Then

Gn · P(n), n = 0, 1, 2, . . . , is a sequence of finer and finer partitions of X and the algebra

generated by
⋃
nGn · P(n) is dense in MALGµ. There exists an N and D1, . . . , Dm in the

algebra generated by GN · P (N) such that µ(Ai∆Di) <
ε
4

for all i ≤ m. Let G = GN and

P = P(N) = {P0, . . . , Pk−1}.

We can express each Di as a finite disjoint union of sets of the form Pσ, σ ∈ kT ,

i.e., Di =
⊔
{Pσ : σ ∈ Ii} for some Ii ⊆ kG. Applying the condition given by the

lemma to F = F0G and 0 < δ < ε
2k|G|

we obtain Γ yb (Y, ν) = b ∈ B and a partition

Q = {Q0, . . . , Qk−1} ⊆ MALGν such that for all τ ∈ k⊆F0G, |µ(Pτ ) − ν(Qτ )| < δ. For

i ≤ m we let Bi =
⊔
{Qσ : σ ∈ Ii}. Note that for γ ∈ F0 and σ, σ′ ∈ kG we have

dom(γ · σ) = γG ⊆ F0G and

γaPσ ∩ Pσ′ = Pγ·σ ∩ Pσ′ =


Pγ·σ∪σ′ if γ · σ and σ′ are compatible

∅ otherwise.

Similarly γb · Qσ ∩ Qσ′ equals either Qγ·σ∪σ′ or ∅ depending on whether or not γ · σ and

σ′ are compatible partial functions. It then follows from our choice of F that |µ(γaPσ ∩
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Pσ′)− ν(γbQσ ∩Qσ′)| < δ for all σ, σ′ ∈ kG. We now have for i, j ≤ m and γ ∈ F0 that

|µ(γaAi ∩ Aj)− µ(γbBi ∩Bj)| ≤
ε

2
+ |µ(

⊔
σ∈Ii,
σ′∈Ij

γaPσ ∩ Pσ′)− ν(
⊔
σ∈Ii,
σ′∈Ij

γbQσ ∩Qσ′)|

≤ ε

2
+ |Ii||Ij|δ < ε. �

5.5. Independent joinings over an IRS and the proof of Theorem 1.5. Let a =

Γ ya (Y, ν) be a non-atomic measure preserving action of Γ, and let θ = type(a). The

stabilizer map y 7→ Γy factors a onto θ and we let ν =
∫
H
νH dθ be the corresponding

disintegration of ν over θ. Fix a standard probability space (Z, η) and let sθ,η = Γ ys

(Z≤\Γ, ηθ\Γ) be the θ-random Bernoulli shift over (Z, η). The map f 7→ Hf factors sθ,η

onto θ and the corresponding disintegration is given by ηθ\Γ =
∫
H
ηH\Γ dθ. The relatively

independent joining of sθ,η and a over θ is then the action Γ ys×a (Z≤\Γ × Y, ηθ\Γ ⊗θ ν)

where

ηθ\Γ ⊗θ ν =
∫
H

(ηH\Γ × νH) dθ =
∫
H

(ηH\Γ ×
∫
{y:Γy=H} δy dνH(y)) dθ =

∫
y
(ηΓy\Γ × δy) dν.

It is clear that ηθ\Γ⊗θν concentrates on the set Z≤\Γ⊗aY = {(f, y) : Hf = Γy}. We write

b = Γ yb (X,µ) for Γ ys×a (Z≤\Γ⊗a Y, ηθ\Γ⊗θ ν), so that b = s× a, X = Z≤\Γ⊗a Y ,

and

µ =

∫
y∈Y

ηΓy\Γ × δy dν(y).

Theorem 1.5 then says that b is weakly equivalent to a.

PROOF OF THEOREM 1.5. It suffices to show that b ≺ a. Let N (0) ≤ N (1) ≤ · · · and

R(0) ≤ R(1) ≤ · · · be sequences of finite partitions of Z and Y , respectively, such that⋃
nN (n) generates MALGη and

⋃
nR(n) generates MALGν (for example, if Z = Y = 2N

then we can let N (n) = R(n) consist of the rank n basic clopen sets). For each γ ∈ Γ

let πγ : X → Z be the projection πγ(f, y) = f(Γyγ) and define the finite partitions

S(0) ≤ S(1) ≤ · · · of X by

S(n) = {π−1
e (N) : N ∈ N (n)}.



129

For A ⊆ Y let Ã ⊆ X denote the inverse image of A under the projection map (f, y) 7→

y ∈ Y and define

R̃(n) = {R̃ : R ∈ R(n)}.

Then the smallest b-invariant measure algebra containing the partitions P(n) = S(n)∨R̃(n),

n ∈ N of X is all of MALGµ. Fix n, define N = N (n) = {N0, . . . , Nd−1} and for i < d

define

Si = π−1
e (Ni)

αi = µ(Si) = η(Ni)

along with

S = S(n) = {S0, . . . , Sd−1}

R = R(n) = {R0, . . . , Rk−1}

P = P(n) = {Pi,j = Si ∩ R̃j : i < d, j < k}.

For F ⊆ Γ finite we naturally identify (d× k)⊆F with
⋃
J⊆F d

J × kJ . Under this identifi-

cation, for J ⊆ F and (τ, σ) ∈ dJ × kJ we have

P b
(τ,σ) =

⋂
γ∈J

γs×aPτ(γ),σ(γ) =
⋂
γ∈J

(
γs×aSτ(γ) ∩ γs×aR̃σ(γ)

)
=
( ⋂
γ∈J

γs×aSτ(γ)

)
∩
( ⋂
γ∈J

γs×aR̃σ(γ)

)
= Sbτ ∩ R̃b

σ.

By Lemma 5.14, to show that b ≺ a it suffices to show that for every F ⊆ Γ finite, and

ε > 0, there exists a partition Q = {Qi,j : i < d, j ≤ k} of Y such that for all J ⊆ F ,

(τ, σ) ∈ dJ × kJ

|µ(Sτ ∩ R̃σ)− ν(Q(τ,σ))| < ε.

Fix such an F ⊆ Γ finite and ε > 0. We will proceed by finding a partition T =

{T0, . . . , Td−1} of Y , and then take Qi,j = Ti ∩ Rj , in which case we will have Q(τ,σ) =
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(
⋂
γ∈J γ

aTτ(γ)) ∩ (
⋂
γ∈J γ

aRσ(γ)) = Tτ ∩ Rσ. We are therefore looking for a partition T

so that

(5.1) ∀(τ, σ) ∈ (d× k)⊆F |µ(Sτ ∩ R̃σ)− ν(Tτ ∩Rσ)| < ε.

We first calculate the value of µ(Sτ ∩ Ã) for τ ∈ dJ (J ⊆ F ) and A ⊆ Y . Let EJ denote

the finite collection of all equivalence relations on the set J . For E ∈ EJ let us say that

τ ∈ dJ respects E, written τ � E, if τ is constant on each E-equivalence class. For a

subgroup H ≤ Γ let EJ(H) ∈ EJ denote the equivalence relation determined by tEJ(H)s

if and only if Ht = Hs (if and only if t−1H = s−1H). We write EJ(y) for EJ(Γy). For

each E ∈ EJ we fix a transversal TE ⊆ J for E. We then have

µ(Sτ ∩ Ã) =

∫
y∈A

ηΓy\Γ
(
{f ∈ ZΓy\Γ : ∀t ∈ J (f(Γyt) ∈ Nτ(t))}

)
dν(y)

=
∑

{E∈EJ : τ�E}

∫
{y∈A :EJ (y)=E}

ηΓy\Γ
(
{f ∈ ZΓy\Γ : ∀t ∈ TE (f(Γyt) ∈ Nτ(t))}

)
dν(y)

=
∑

{E∈EJ : τ�E}

ν(A ∩ {y : EJ(y) = E})
∏
t∈TE

ατ(t)

(5.2)

We now proceed as in the proof of [AW11, Theorem 1]. Without loss of generality

Y is a compact metric space with compatible metric dY ≤ 1. Fix some ε0 > 0 such that

ε
1/2
0 < ε

2(dk)|F |/22|F |+1 . For δ ≥ 0 define the sets

Dδ = {y ∈ Y : ∀s, t ∈ F (t−1y 6= s−1y ⇒ dY (t−1y, s−1y) > δ)}

Eδ = {(y, y′) ∈ Dδ ×Dδ : ∀s, t ∈ F (dY (s−1y, t−1y′) > δ)}.

Then ν(D0) = 1 by definition, and ν2(E0) = 1 since ν is non-atomic. Thus there exists

δ > 0 such that ν(Dδ) > 1− ε0
4|EF |

and ν2(Eδ) > 1− ε0
4|EF |2

.

Fix a finite Borel partition {Om : 1 ≤ m ≤ M} of Y with diam(Om) < δ for each

m. For y ∈ Y let α(y) = m if and only if y ∈ Om. Let (Ω,P) = (dM , ρM) and let

Ym(ω) = ω(m), so that {Ym : 1 ≤ m ≤ M} are i.i.d. random variables. For ω ∈ Ω and
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i = 0, . . . , d− 1 define

Ti(ω) = {y ∈ Y : ω(α(y)) = i}.

Then each ω ∈ Ω defines the partition T (ω) = {T0(ω), . . . , Td−1(ω)} of Y . Let Ti =

{(ω, y) : y ∈ Ti(ω)} and let Tτ = {(ω, y) ∈ Ω× Y : y ∈ Tτ (ω) =
⋂
t∈J t

a · (Tτ(t)(ω))},

τ ∈ d⊆F . We view T as a “random partition” of Y . We let Γ act on Ω trivially so that, e.g.,

γ · (Tτ (ω)) = (γ · Tτ )(ω), and for B ⊆ Ω × Y and y ∈ Y we let By denote the section

By = {ω : (ω, y) ∈ B}. We show that T satisfies (5.1) with high probability.

Fix now some A ⊆ Y and τ ∈ dJ , J ⊆ F . Note that if y ∈ Y and τ does not respect

EJ(y) then there exist t, s ∈ J with t−1y = s−1y and τ(t) 6= τ(s), so that (Tτ(t))
t−1y ∩

(Tτ(s))
s−1y = ∅ and thus (Tτ )

y =
⋂
t∈J(t · Tτ(t))

y =
⋂
t∈J(Tτ(t))

t−1y = ∅. It follows that

the expected measure of Tτ (ω) ∩ A is

E[ν(Tτ (ω) ∩ A)] =
∫
A

( ∫
Ω

1Tτ (ω, y) d P (ω)
)
dν(y)

=
∫
A
P((Tτ )

y) dν(y) =
∑
{E∈EJ : τ�E}

∫
{y∈A :EJ (y)=E} P((Tτ )

y) dν(y)

=
∑
{E∈EJ : τ�E}

( ∫
{y∈A∩Dδ :EJ (y)=E} P((Tτ )

y) dν
)

+
∫
A\Dδ

P((Tτ )
y) dν.(5.3)

Fix some E ∈ EJ with τ � E and some y ∈ Dδ with EJ(y) = E. For t, s ∈ J , if

t and s are not E-related then t−1y 6= s−1y and so dY (t−1y, s−1y) > δ. It follows that

Oα(t−1y) 6= Oα(s−1y) since each Oα has diameter smaller than δ. So as t ranges over TE , the

numbers α(t−1y) are all distinct and the variables Yα(t−1y) : ω 7→ ω(α(t−1y)), t ∈ TE , are

therefore independent. We have t−1y ∈ Tτ(t)(ω) if and only if ω(α(t−1y)) = τ(t), so the

sets (t · Tτ(t))
y = (Tτ(t))

t−1y, t ∈ TE , are all independent. If tEs then as τ � E we have

that (Tτ(t))
t−1y = (Tτ(s))

s−1y. It follows that

P((Tτ )
y) = P

(⋂
t∈J(t · Tτ(t))

y
)

=
∏

t∈TE P((Tτ(t))
t−1y) =

∏
t∈TE ατ(t).(5.4)

Continuing the computation, the second integral in (5.3) is no greater than ν(A \Dδ) <
ε0
4

and ν(A ∩Dδ ∩ {y : EJ(y) = E}) is within ε0
4|EF |

of ν(A ∩ {y : EJ(y) = E}), so after
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summing over all E ∈ EJ we see that (5.3) is within ε0
2

of (5.2), i.e.,

(5.5)
∣∣ E [ν(Tτ (ω) ∩ A)]− µ(Sτ ∩ Ã)

∣∣ < ε0
2
.

Now we compute the second moment of ν(Tτ (ω) ∩ A).

E[ν(Tτ (ω) ∩ A)2] =
∫

Ω

( ∫
y∈A 1Tτ (ω, y) dν(y)

)( ∫
y′∈A 1Bτ (ω, y

′) dν(y′)
)
dP

=
∫

(y,y′)∈A×A

( ∫
Ω

1Tτ (ω, y)1Tτ (ω, y
′) d P

)
dν2

=
∫

(y,y′)∈A×A P((Tτ )
y ∩ (Tτ )

y′) dν2(5.6)

For (y, y′) ∈ Eδ, if t, s ∈ J then dY (t−1y, s−1y′) > δ, so that Oα(t−1y) and Oα(s−1x′)

are disjoint. It follows that the two events {ω : ∀t ∈ J (Yα(t−1y)(ω) = τ(t))} =⋂
t∈J(Tτ(t))

t−1y = (Tτ )
y and {ω : ∀s ∈ J (Yα(s−1y′)(ω) = τ(s))} =

⋂
s∈J(Tτ(s))

s−1y =

(Tτ )
y′ are independent. We obtain that the part of (5.6) integrated over (A × A) ∩ Eδ is

equal to

∫
(y,y′)∈(A×A)∩Eδ

P((Tτ )
y ∩ (Tτ )

y′) dν2 =
∫

(y,y′)∈(A×A)∩Eδ
P((Tτ )

y) P ((Tτ )
y′) dν2

=
∑

τ�E,E′∈EJν
2((A× A) ∩ Eδ ∩ {(y, y′) : EJ(y) = E, EJ(y′) = E ′})

∏
t∈TE ατ(t)

∏
s∈TE′

ατ(s)

where we used the fact that Eδ ⊆ Dδ × Dδ along with the known values from (5.3) and

(5.4). The part of (5.6) integrated over (A × A) \ Eδ is no greater than ε0
4

, and for each

pair E,E ′ ∈ EJ with τ � E,E ′, the value of ν2((A × A) ∩ Eδ ∩ {(y, y′) : EJ(y) =

E, EJ(y′) = E ′}) is within ε0
4|EF |2

of ν(A∩{y : EJ(y) = E})ν(A∩{y′ : EJ(y′) = E ′}).

Summing over all such E,E ′ ∈ EJ we obtain that (5.6) is within ε0
2

of the square of (5.2),

i.e.,

(5.7)
∣∣ E [ν(Tτ (ω) ∩ A)2]− µ(Sτ ∩ Ã)2

∣∣ < ε0
2
.
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From (5.5) and (5.7) it follows that the variance of ν(Tτ (ω) ∩ A) is no greater than ε0. By

Chebyshev’s inequality we then have

P
(
|ν(Tτ (ω) ∩ A)− µ(Sτ ∩ Ã)| ≥ ε

)
≤ P

(
|ν(Tτ (ω) ∩ A)− E[ν(Tτ (ω) ∩ A)]| ≥ ε

2

)
≤ P

(
|ν(Tτ (ω) ∩ A)− E[ν(Tτ (ω) ∩ A)]| ≥ (kd)|F |/22|F |+1ε

1/2
0

)
≤ 1

(kd)|F |22|F |+2

and since this is true for each τ ∈ d⊆F and |d⊆F | ≤ 2|F |d|F |, we find that

P
(
∃τ ∈ d⊆F (|ν(Tτ (ω) ∩ A)− µ(Sτ ∩ Ã)| ≥ ε)

)
≤ 1

2|F |+2k|F |
.

Since A ⊆ Y was arbitrary, this is in particular true for each A = Rσ, σ ∈ k⊆F , so that

P
(
∃τ ∈ d⊆F , σ ∈ k⊆F (|ν(Tτ (ω) ∩Rσ)− µ(Sτ ∩ R̃σ)| > ε)

)
≤ 1

4
.

So taking any ω0 in the complement of the above set, we obtain a partition T = T (ω0)

satisfying (5.1). �

Theorem 1.5 shows that among all non-atomic weak equivalence classes of type θ there

is a least, in the sense of weak containment. Namely sθ,λ where λ is Lebesgue measure on

[0, 1]. We note that there is also a greatest.

THEOREM 5.15. Let θ ∈ IRS(Γ). Then there exists a measure preserving action aθ of

Γ with type(aθ) = θ such that for all measure preserving actions b of Γ, if type(b) = θ

then b ≺ aθ.

PROOF. Let (Y, ν) be a non-atomic standard probability space. If b is any measure

preserving action of Γ of type θ then ι × b is also of type θ, weakly contains b, and is

isomorphic to an element ofA(Γ, Y, ν). It thus suffices to show there is an action aθ of type

θ that weakly contains every element in the set Aθ = {a ∈ A(Γ, Y, ν) : type(a) = θ}.

Let {an}n∈N be a countable dense subset of Aθ. For each n the stabilizer map y 7→

staban(y) = {γ ∈ Γ : γany = y} factors an onto θ. Let aθ denote the relatively

independent joining of the actions a0,a1,a2, . . . over the common factor θ, i.e., aθ =

Γ y
∏
n an (Y N, νθ) where the measure νθ has each marginal equal to ν and concentrates on
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the set {(y0, y1, y2, . . . ) ∈ Y N : ∀n (staban(yn) = staba0(y0))}. Then for νθ-almost every

(y0, y1, . . . ) ∈ Y N we have stab∏
n an

((y0, y1, . . . )) = staba0(y0), from which it follows that

type(aθ) = θ. Since an v aθ for all n the set {a ∈ Aθ : a ≺ aθ} is dense in Aθ so by

Lemma 3.4 aθ weakly contains every element of Aθ. �

6. Non-classifiability

6.1. Non-classifiability by countable structures of ∼=, ∼=w, and ∼=U on free weak

equivalence classes.

DEFINITION 6.1. Let E and F be equivalence relations on the standard Borel spaces

X and Y , respectively.

(1) A homomorphism fromE toF is a mapψ : X → Y such that xEy ⇒ ψ(x)Fψ(y).

(2) A reduction from E to F is a map ψ : X → Y such that xEy ⇔ ψ(x)Fψ(y).

(3) E is said to admit classification by countable structures if there exists a countable

language L and a Borel reduction from E to isomorphism ∼=L on XL, where XL

is the space of all L-structures with universe N.

(4) Suppose that the space X is Polish. We say that E is generically F -ergodic if for

every Baire measurable homomorphism ψ from E to F , there exists some y ∈ Y

such that ψ−1([y]F ) is comeager.

The proof of the following lemma is clear.

LEMMA 6.2. Let F1 and F2 be equivalence relations on the standard Borel spaces Y1

and Y2 respectively, and let E be an equivalence relation on the Polish space P . Suppose

that E is generically F2-ergodic and that there exists a Borel reduction from F1 to F2. Then

E is generically F1-ergodic.

Since the orbit equivalence relation associated to a generically turbulent Polish group

action is generically ∼=L-ergodic for all countable languages L ([Hjo00]), Lemma 6.2 im-

mediately implies the following.
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LEMMA 6.3. Let G be a Polish group and let P be a generically turbulent Polish G-

space with corresponding orbit equivalence relation EP
G . Let F be an equivalence relation

on a standard Borel space Y and suppose that EP
G is not generically F -ergodic. Then F

does not admit classification by countable structures.

Let H be an infinite-dimensional separable Hilbert space and let U(H) denote the uni-

tary group of H which is a Polish group under the strong operator topology. The group

U(H) acts on U(H)Γ by conjugation on each coordinate and we may view the space

Rep(Γ,H) of all unitary representations of Γ on H as an invariant closed subspace of

U(H)Γ, so that it is a Polish U(H)-space. We call the corresponding orbit equivalence

relation on Rep(Γ,H) unitary conjugacy and if π1 and π2 are in the same unitary con-

jugacy class then we say that π1 and π2 are unitarily conjugate and write π1
∼= π2. Let

λΓ : Γ → U(`2(Γ)) denote the left regular representation of Γ and let Repλ(Γ,H) be

the set of unitary representations of Γ on U(H) that are weakly contained in λΓ. Then

Repλ(Γ,H) is also a Polish U(H) space, being an invariant closed subspace of Rep(Γ,H).

The following lemma is proved in the same way as [KLP10, Lemma 2.4], using that

the reduced dual Γ̂λ, which may be identified with the spectrum of the reduced C∗-algebra

C∗λ(Γ), contains no isolated points ([KLP10, 3.2]).

LEMMA 6.4. Let κ be a unitary representation of Γ on H. Then the set {π ∈ Repλ(Γ,H) :

π ⊥ κ} is dense Gδ in Repλ(Γ,H).

We are now ready to prove Theorem 1.7.

PROOF OF THEOREM 1.7. Given a free action a0 ∈ A(Γ, X, µ), we let [a0] = {b ∈

A(Γ, X, µ) : b ∼ a0} denote its weak equivalence class inA(Γ, X, µ). Let H = `2(Γ) and

let g : Rep(Γ,H)→ A(Γ, X, µ) be the continuous map assigning to each π ∈ Repλ(Γ,H)

the corresponding Gaussian action g(π) ∈ A(Γ, X, µ) (see [Kec10, Appendix E]). We

have that g(π) ≺ g(∞ · λΓ) ∼= sΓ and so by Corollary 1.6, a0 × g(π) ∼ a0. Fix some

isomorphism ϕ : X2 → X of the measure spaces (X2, µ2) and (X,µ) and denote by

b 7→ ϕ · b the corresponding homeomorphism of A(Γ, X2, µ2) with A(Γ, X, µ). Let ψ :
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Repλ(Γ,H)→ [a0] be the map π 7→ ϕ · (a0× g(π)). This is a continuous homomorphism

from unitary conjugacy on Repλ(Γ,H) to isomorphism on [a0], and is therefore also a

homomorphism to ∼=w and to ∼=U on [a0].

CLAIM 3. The inverse image under ψ of each unitary equivalence class in [a0] is mea-

ger. In particular the same is true for each isomorphism class and each weak isomorphism

class.

PROOF OF CLAIM. Let c ∈ [a0]. By Lemma 6.4 the set {π ∈ Repλ(Γ,H) : π ⊥ κc0}

is comeager in Repλ(Γ,H). If ψ(π) ∼=U c then π ≤ κ
g(π)
0 ≤ κ

a0×g(π)
0

∼= κc0, so that

π 6⊥ κc0. �[Claim]

By [KLP10, 3.3], the conjugacy action of U(H) on Repλ(Γ,H) is generically turbulent.

The homomorphism ψ witnesses that unitary conjugacy on Repλ(Γ,H) is not generically

F |[a0]-ergodic when F is any of ∼=, ∼=w, or ∼=U. The theorem now follows from Lemma

6.3. �

REMARK 6.5. If the weak equivalence class [a0] contains an ergodic (resp. weak mix-

ing) action b0, then the action b0 × g(π) is ergodic (resp. weak mixing) provided that the

representation π ∈ Repλ(Γ,H) is weak mixing. Since the weak mixing π are dense Gδ in

Repλ(Γ,H) ([KLP10, 3.6]) we conclude that isomorphism (and ∼=w and ∼=U) restricted to

the ergodic (resp. weak mixing) elements of [a0] does not admit classification by countable

structures.

It also follows from the above arguments and [HK95, 2.2] that the equivalence relation

E0 of eventual agreement on 2N is Borel reducible to F |[a0] when F is any of ∼=, ∼=w, or

∼=U (and the same holds for F |{b ∈ [a0] : b is ergodic (resp. weak mixing)} when [a0]

contains ergodic (resp. weak mixing) elements).

6.2. Extending Theorem 1.7. It would be interesting to see an extension of Theo-

rem 1.7 to weak equivalence classes of measure preserving actions that are not necessarily

free. We outline here one possible generalization of the argument given in the proof of
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Theorem 1.7 to measure preserving actions that almost surely have infinite orbits. Let

a = Γ ya (X,µ) be such an action, and let θ = type(a), so that θ concentrates on

the infinite index subgroups of Γ. In place of unitary conjugacy on Repλ(Γ,H) we work

with the cohomology equivalence relation on a certain orbit closure in the Polish space

Z1(θ,U(H)) of unitary cocycles of θ, where H = `2(N). The cohomology equivalence

relation on Z1(θ,U(H)) is the orbit equivalence relation generated by the action of the

Polish group Ũ(H) = L(Sub(Γ), θ,U(H)) given by

(f · α)(γ,H) = f(γHγ−1)α(γ,H)f(H)−1 ∈ U(H)

where f ∈ Ũ(H), α ∈ Z1(θ,U(H)), γ ∈ Γ, and H ≤ Γ (see [Kec10, Chapter III]). In

place of the left regular representation λ of Γ we use a cocycle λθ associated to θ defined as

follows. Identify right cosets of the infinite index subgroups H ≤ Γ with natural numbers

by fixing a Borel map n : Sub(Γ) × Γ → N such that for each infinite index H ≤ Γ the

map γ 7→ n(H, γ) is a surjection onto N and satisfies n(H, γ) = n(H, δ) if and only if

Hγ = Hδ. Let {en}n∈N be the standard orthonormal basis for `2(N) = H and define

λθ ∈ Z1(θ,U(H)) by

λθ(γ,H)(en(H,δ)) = en(γHγ−1,γδ)

for all γ ∈ Γ and H ≤ Γ of infinite index (recall that θ-almost every H is infinite index

in Γ). Fix an isomorphism T : ∞ · H → H and let σ ∈ Z1(θ,U(H)) be the image

of ∞ · λθ under T , i.e., σ(γ,H) = T ◦ (∞ · λθ)(γ,H) ◦ T−1. Let Z1
λ(θ,U(H)) denote

the orbit closure of σ in Z1(θ,U(H)). Using the Gaussian map U(H) → Aut(X,µ) (see

[Kec10, Appendix E] or [BTD11]), each α ∈ Z1
λ(θ,U(H)) gives rise to a cocycle g(α) :

Γ×Sub(Γ)→ Aut(X,µ) of θ with values in the automorphism group Aut(X,µ) of a non-

atomic probability space (X,µ). We obtain a skew product action g(α) = (X,µ) ng(α) θ

on the measure space (Y, ν) = (X×Sub(Γ), µ×θ), which is an extension of θ. The action

g(λθ) is isomorphic to sθ,η (where η is non-atomic) and so the action g(σ) is isomorphic

to sθ,ηN ∼= sθ,η as well. Since α ∈ Z1
λ(θ,U(H)) we have g(α) ≺ sθ,η and thus the

relatively independent joining g(α) ⊗θ a is weakly equivalent to a by Theorem 1.5. The
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map ψθ(α) := ϕ · (g(α)⊗θ a) is then a homomorphism from the cohomology equivalence

relation on Z1
λ(θ,U(H)) to isomorphism on [a], where ϕ : Y ×X → X is once again an

isomorphism of measure spaces. The remaining ingredient that is needed is an analogue of

the results from [KLP10].

QUESTION 6.6. Let θ be an ergodic IRS of Γ with infinite index. Is the action of Ũ(H)

on the spaceZ1
λ(θ,U(H)) generically turbulent? Is the preimage under ψθ of each∼=U-class

meager?

Two ergodic theoretic analogues of the space Repλ(Γ,H) are the spaces A0(Γ, X, µ) =

{a ∈ A(Γ, X, µ) : a ≺ sΓ} and A1(Γ, X, µ) = {a ∈ A(Γ, X, µ) : a ≺s sΓ}, where

(X,µ) is non-atomic. When Γ is amenable it follows from [FW04] that these spaces both

coincide with A(Γ, X, µ) and the conjugacy action of Aut(X,µ) on A(Γ, X, µ) is generi-

cally turbulent. For non-amenable Γ, the spaces A0(Γ, X, µ), A1(Γ, X, µ) and A(Γ, X, µ)

do not all coincide.

QUESTION 6.7. Let Γ be a non-amenable group. Is conjugacy on either of A0(Γ, X, µ)

or A1(Γ, X, µ) generically turbulent?

For all non-amenable Γ the set A0(Γ, X, µ) is nowhere dense in A1(Γ, X, µ) (by The-

orem 1.3), so these two spaces may behave quite differently, generically (indeed, every

action in A0(Γ, X, µ) is ergodic, while the generic action in A1(Γ, X, µ) has continuous er-

godic decomposition). The question of generic turbulence of conjugacy on ERG(Γ, X, µ) =

{a ∈ A(Γ, X, µ) : a is ergodic} is discussed in [Kec10, §5 and §12].

7. Types and amenability

As noted in Remark 4.1, any two free measure preserving actions of an infinite amenable

group Γ are weakly equivalent. In this section we prove Theorem 1.8, which extends this

to actions that are not necessarily free.
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7.1. The space COS(Γ). Let COS(Γ) be the space of all left cosets of all subgroups

of Γ. Since F ∈ COS(Γ)⇔ ∀δ ∈ Γ (δ ∈ F ⇒ δ−1F ∈ Sub(Γ)) it follows that COS(Γ) is

a closed subset of 2Γ. As every left coset of a subgroup H ≤ Γ is equal to a right coset of

a conjugate of H and vice versa, COS(Γ) is also the space of all right cosets of subgroups

of Γ and we have the equality COS(Γ) = {γHδ−1 : H ≤ Γ, γ, δ ∈ Γ} ⊆ 2Γ. We let `

denote the continuous action of Γ on COS(Γ) by left translation, γ` · (Hδ) = γHδ.

LEMMA 7.1. Let Γ be a countable amenable group and let a = Γ ya (X,µ) be a

measure preserving action of Γ. Then for any finite F ⊆ Γ and δ > 0 there exists a

measurable map J : X → COS(Γ) such that

µ({x ∈ X : ∀γ ∈ F J(γax) = γ` · J(x)}) ≥ 1− δ

and J(x) ∈ Γx\Γ for all x.

PROOF. We note that this is a generalized version of [BTD11, Theorem 3.1] which

applies to the case in which a is free and which is an immediate consequence of the Rokhlin

lemma for free actions of amenable groups. For the general case we use the Ornstein-

Weiss Theorem [OW80, Theorem 6] which implies that the orbit equivalence relation Ea

generated by a is hyperfinite when restricted to an invariant co-null Borel set X ′ ⊆ X .

We may assume without loss of generality that X ′ = X and Ea is hyperfinite. Then there

exists an increasing sequence E0 ⊆ E1 ⊆ · · · of finite Borel sub-equivalence relations of

Ea such that Ea =
⋃∞
n=0 En. Let F and δ > 0 be given and find N ∈ N large enough

so that µ(XN) > 1 − δ where XN = {x : γax ∈ [x]EN for all γ ∈ F}. Fix a Borel

selector s : X → X for EN , i.e., for all x, xENs(x) and xENy ⇒ s(x) = s(y), and

let x 7→ γx ∈ Γ be any Borel map such that γax · s(x) = x for all x ∈ X . Define

J : X → COS(Γ) by J(x) = γxΓs(x). Then J(x) ∈ Γx\Γ since Γx = Γγax ·s(x) = γxΓs(x)γx.

For each x ∈ XN and γ ∈ F we have γax ∈ [x]EN so that s(γax) = s(x) and thus

(γγax)
a · s(x) = γax = (γγx)

a · s(x). It follows that

J(γax) = γγaxΓs(x) = γγxΓs(x) = γ` · J(x). �
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7.2. Proof of Theorem 1.8.

PROOF OF THEOREM 1.8.(1). Since type(a) is an invariant of stable weak equiva-

lence (see Remark 5.8), it remains to show the following:

(∗) If θ ∈ IRS(Γ) and a and d are measure preserving actions of Γ both of type θ, then

a ∼s d.

We first show that (∗) holds under the assumption that a and d are both ergodic. For

this, by Theorem 1.5 it suffices to show that for any ergodic measure preserving action

a = Γ ya (X,µ) of Γ, if type(a) = θ then a ≺ sθ,η for some standard probability space

(Z, η).

We will define a measure preserving action b containing θ as a factor, and show that the

relatively independent joining b⊗θ sθ,η weakly contains a when η is a standard non-atomic

probability measure. Then we will be done once we show b⊗θ sθ,η ∼= sθ,η.

Let µ =
∫
H
µH dθ be the disintegration of µ via x 7→ staba(x), and define the measure

ν on the space Y =
⊔
H∈Sub(Γ){f ∈ XH\Γ : staba(f(Hδ)) = H for all δ ∈ Γ} ⊆ X≤\Γ

by the equation ν =
∫
H
µ
H\Γ
H dθ. Let a≤\Γ be the action on X≤\Γ that is equal to aH\Γ on

XH\Γ. Then a≤\Γ commutes with the shift action s onX≤\Γ and since (γs)∗(γ
aH\Γ)∗(µH)H\Γ =

µ
(γHγ−1)\Γ
γHγ−1 it follows from invariance of θ that the action γb = γsγa

≤\Γ preserves the mea-

sure ν. We let b = Γ yb (Y, ν). Then θ is a factor of b via the map f 7→ Hf . Let (Z, η) be

a standard non-atomic probability space, and let b⊗θ sθ,η denote the relatively independent

joining of b and sθ,η over θ.

We now apply Lemma 7.1 to sθ,η. Given F ⊆ Γ finite and ε > 0 there exists a

measurable J : Z≤\Γ → COS(Γ) such that ηθ\Γ(Z0) ≥ 1 − ε where Z0 = {g ∈ Z≤\Γ :

J(γs · g) = γ` · J(g) for all γ ∈ F}, and with J(g) ∈ Γg\Γ = Hg\Γ for all g ∈ Z≤\Γ. We

let ϕ : Y × Z≤\Γ → X be the map defined (ν ⊗θ η≤\Γ)-almost everywhere by ϕ(f, g) =

f(J(g)). Then for all g ∈ Z0 and γ ∈ F we have ϕ(γb×s(f, g)) = γa((γsf)(J(γsg))) =
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γa(f(J(g))) = γaϕ((f, g)) and

ϕ∗(ν ⊗θ η≤\Γ) =

∫
H

∫
g

∫
f

δf(J(g)) dµ
H\Γ
H dηH\Γ dθ

=

∫
H

∑
t∈H\Γ

∫
{g : J(g)=t}

µH dη
H\Γ dθ =

∫
H

µH dθ = µ.

It then follows that a ≺ b⊗θsθ since for any measurable partitionA0, . . . , Ak−1 ⊆ X ofX ,

the sets B0 = ϕ−1(A0), . . . , Bk−1 = ϕ−1(Ak−1) form a measurable partition of Y ×X≤\Γ

satisfying |µ(γaAi ∩ Aj)− (ν ⊗θ η≤\Γ)(γb×sBi ∩Bj)| < ε for all γ ∈ F .

By the Rokhlin skew-product theorem there exists a standard probability space (Z1, η1)

and an isomorphism Ψ of a with a skew product action d = (Z1, η1) n θ on the space

(Z1 × Sub(H), η1 × θ). The isomorphism Ψ is of the form Ψ(x) = (Ψ0(x),Γx) and

so the restriction ΨH of Ψ0 to XH = {x : Γx = H} is an isomorphism of (XH , µH)

with (Z1, η1) almost surely. We now define an isomorphism Φ : Y → Z
≤\Γ
1 of b with

sθ,η1 by taking HΦ(f) = Hf and Φ(f)(Hγ) = Ψγ−1Hγ((γ
−1)a(f(Hγ))), where H = Hf .

This is almost everywhere well-defined since f(Hγ) ∈ XH almost surely, which ensures

that (γ−1)a(f(Hγ)) is independent of our choice of representative for the coset Hγ, and

(γ−1)a(f(Hγ)) ∈ Xγ−1Hγ so that we may apply Ψγ−1Hγ . The map Φ is equivariant since if

Hf = H thenHδbf = δHδ−1 and Φ(δbf)(δHδ−1γ) = Ψγ−1δHδ−1γ((γ
−1)a(δbf(δHδ−1γ)) =

Ψγ−1δH(γ−1δ)−1((γ−1δ)a(f(Hδ−1γ))) = Φ(f)(Hδ−1γ) = (δsΦ(f))(δHδ−1γ). Finally,

Φ∗ν = η
θ\Γ
1 since

Φ∗ν =

∫
H

Φ∗µ
H\Γ
H dθ =

∫
H

∏
Hγ∈H\Γ

(Ψγ−1Hγ)∗(γ
−1)a∗µH dθ

=

∫
H

∏
Hγ∈H\Γ

(Ψγ−1Hγ)∗µγ−1Hγ dθ =

∫
H

η
H\Γ
1 dθ = η

θ\Γ
1

and so b ∼= sθ,η1 . Since Hf = HΦ(f), this extends to an isomorphism of b ⊗θ sθ,µ with

sθ,η1 ⊗θ sθ,η ∼= sθ,η1×η
∼= sθ,η, as was to be shown.

We next show that (∗) holds under the assumption that θ is ergodic. Let i ∈ N ∪ {∞}

be the index of θ. If i is finite then the orbit of almost every H ∈ Sub(Γ) is finite so by
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ergodicity of θ there exists H0 ≤ Γ of index i such that θ concentrates on the conjugates

of H0. Then for some spaces (Z1, η1) and (Z2, η2) we have a ∼= ιη1 × aΓ/H0 and d ∼=

ιη2 × aΓ/H0 where aΓ/H0 denotes the action of Γ on the left cosets of H0 with normalized

counting measure. Thus a ∼s d. If i = ∞ then we let a =
∫
Z
az dη and d =

∫
W
dw dρ

be the ergodic decompositions of a and d, respectively. By Proposition 3.8, type(az) = θ

and type(dw) = θ almost surely, and az and dw are non-atomic almost surely since θ is

infinite index. Letting b be any non-atomic ergodic action of type θ the above case implies

that a ∼s b ∼s d.

Finally, we show that (∗) holds in general. Let θ =
∫
w∈W θw dρ be the ergodic de-

composition of θ. We then obtain corresponding decompositions a =
∫
w
aw dρ and d =∫

w
dw dρ of a and dwith type(aw) = θw = type(dw) almost surely. The above cases imply

that aw ∼s dw almost surely. Theorem 3.12 then implies a ∼s d. �

PROOF OF THEOREM 1.8.(2). Let θ = type(a) = type(b). If θ is ergodic then by

Proposition 3.8 almost every ergodic component of a and b have type θ and so Theorem

1.8 and Corollary 4.4 imply that a ∼ ιη1 × d and b ∼ ιη2 × d for some ergodic d of type

θ and some spaces (Z1, η1), (Z2, η2). Since Γ is amenable, d is not strongly ergodic, and

since θ is infinite index, d is non-atomic, so by [AW11, Theorem 3] d ∼ ι × d and thus

a ∼ b. The general case now follows by considering the ergodic decomposition of θ. �

8. Ultraproducts of measure preserving actions

In this appendix we establish some properties of ultraproducts of measure spaces and

actions.

Notation. We refer to [CKTD11] for background on ultraproducts of measure pre-

serving actions and also [ES07] for background on ultraproducts of measure spaces. Our

notation has some changes from that of [CKTD11] and is as follows. Given a sequence

an = Γ yan (Xn, µn), n ∈ N, of measure preserving actions of Γ and a non-principal

ultrafilter U on N we denote by (
∏

n an)/U = Γ y(
∏
n an)U ((

∏
nXn)/U , (

∏
n µn)/U),
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or simply aU = Γ yaU (XU , µU) when there is no danger of confusion, the corre-

sponding ultraproduct of the sequence (an). We let [xn] denote the equivalence class

of the sequence (xn) ∈
∏

nXn in XU and we let [Bn] denote the subset of XU de-

termined by the sequence (Bn) ∈
∏

nB(Xn) of Borel sets. When xn = x for all n

then we write [x] for [xn] and when Bn = B for all n we write [B] for [Bn]. Then

AU = AU(XU) = {[Bn] : (Bn) ∈
∏

nB(Xn)} is an algebra of subsets of XU and

µU is the unique measure on the σ-algebra BU(XU) = σ(AU) whose value on [An] ∈ AU

is µU([An]) = limn→U µn(An). We note that every element of BU is within a µU -null set

of an element ofAU .

The following proposition deals with lifting measure disintegrations to ultraproducts.

PROPOSITION 8.1. Suppose that for each n ∈ N the Borel map πn : (Yn, νn) →

(Zn, ηn) factors bn = Γ yb (Yn, νn) onto dn yd (Zn, ηn) and let νn =
∫
z∈Zn ν

n
z dηn(z)

be the disintegration of νn over ηn with respect to πn. Let bU = Γ ybU (YU , νU) and

dU = Γ ydU (ZU , ηU) be the ultraproducts of the sequences (bn) and (dn), respectively.

Then the map πU : YU → ZU given by πU([yn]) = [πn(yn)] factors bU onto dU . If for

[zn] ∈ ZU we let ν[zn] = (
∏

n ν
n
zn)/U then

(I) Each of the measures ν[zn] is a probability measure on (YU ,BU(YU)) and almost

surely ν[zn] concentrates on π−1
U ([zn]).

(II) For each D ∈ BU(YU) the map (ZU ,BU(ZU)) → ([0, 1],B([0, 1])) sending

[zn] 7→ ν[zn](D) is measurable and νU(D) =
∫

[zn]∈ZU
ν[zn](D) dηU([zn]).

(III) If [zn] 7→ µ[zn] is another assignment satisfying (I) and (II) then for all D ∈

BU(YU) almost surely µ[zn](D) = ν[zn](D).

Additionally, for almost all [zn] ∈ ZU and every γ ∈ Γ we have (γbU )∗ν[zn] = νγdU [zn].

PROOF. It is clear that πU factors bU onto dU . Property (I) follows from the fact that

for each n and z ∈ Zn, each νnz is a Borel probability measure on Yn and almost surely νnz

concentrates on π−1
n ({z}). Now let D be the collection of all subsets of YU satisfying (II).

Given [An] ∈ AU and V ⊆ [0, 1] open we have ν[zn](An) ∈ V if and only if [zn] ∈ [{z :
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νnz (An) ∈ V }], so that [zn] 7→ ν[zn]([An]) is measurable. As in [ES07, Lemma 2.2] we have∫
[zn]

ν[zn](An) dηU =

∫
[zn]

lim
n→U

νnzn(An) dηU

= lim
n→U

∫
z∈Zn

νnz (An) dηn = lim
n→U

νn(An) = νU([An])

which shows that [An] ∈ D. Thus AU ⊆ D, and it is clear that D is a monotone class so

BU ⊆ D, which shows (II). Suppose now that [zn] 7→ µ[zn] satisfies (I) and (II). Then for

each [Bn] ∈ AU(ZU) andD ∈ BU(YU) we have
∫

[Bn]
µ[zn](D) dηU = νU(D∩π−1

U ([Bn])) =∫
[Bn]

ν[zn](D) dηU so that µ[zn](D) = ν[zn](D) almost surely, so that (III) holds.

For the last statement let Bn ⊆ Zn be an invariant ηn-conull set on which (γbn)∗ν
n
z =

νn
γdnz

for all γ ∈ Γ. Then for all [zn] in the ηU -conull set [Bn] ⊆ ZU we have for all γ ∈ Γ

and [An] ∈ AU(YU) that (γdU )∗ν[zn](An) = limn→U(γdn)∗ν
n
zn(An) = limn→U ν

n
γdnz

(An) =

νγdU [zn]([An]) so that (γdU )∗ν[zn] = νγdU [zn]. �

The next proposition describes the ultrapower of a standard probability space with

atoms.

PROPOSITION 8.2. Let (Z, η) be a standard probability space and let A ⊆ Z be the set

of atoms of (Z, η).

(1) If (Z, η) is discrete then (MALGη, dη) is a compact metric space homeomorphic

to 2A with the product topology, and the map IU : MALGηU → MALGη given by

IU([Bn]) = limn→U Bn = {z ∈ A : {n : z ∈ Bn} ∈ U} is a measure algebra

isomorphism.

(2) In general [A] = {[z] : z ∈ A} ⊆ ZU is the set of all atoms of ηU and the

restriction η|A of η toA is isomorphic as a measure space to the restriction ηU |[A]

of ηU to [A] via the map z 7→ [z]. Under this isomorphism, letting C = Z \ A, we

may identify (ZU , ηU) with ([C] t A, (η|C)U + η|A).

PROOF. First suppose that (Z, η) is discrete. Without loss of generality we may assume

Z = A. As sets we may identify MALGη with 2A. Let B0, B1, . . . be a sequence in 2A
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converging in the product topology to some set B ∈ 2A. Given ε > 0 let F ⊆ A be a

finite set such that η(A \ F ) < ε. For all large enough n, Bn and B agree on F , so that

η(Bn∆B) < η(A \ F ) < ε and thus dη(Bn, B) → 0. This shows that the map 2A →

MALGη is a continuous bijection from the compact Hausdorff space 2A (with the product

topology) to (MALGη, dη), so it is a homeomorphism. It is clear that the map ϕ taking

B ⊆ A to [B] ⊆ [A] is an isometric embedding of MALGη to MALGηU that preserves

all Boolean operations. If now [Bn] ⊆ [A] and limn→U Bn = B then dηU ([Bn], [B]) =

limn→U dη(Bn, B) = 0 so that [Bn] = [B] and thus ϕ−1 = IU which completes the proof of

(1). Part (2) follows since (ZU , ηU) decomposes as ([C] t [A], (η|C)U + (η|A)U) and part

(1) shows that ([A], (η|A)U) ∼= (A, η). �

THEOREM 8.3. Let a0,a1, . . . be a sequence of measure preserving actions of Γ on the

standard probability space (X,µ) and let aU = Γ yaU (XU , µU) be their ultraproduct.

LetM0 ⊆ MALGµU be any subset such that (M0, dµU |M0) is separable. Then there exists

an invariant measure sub-algebra M of MALGµU containing M0 that is isomorphic as a

measure algebra to MALGµ.

PROOF. LetA ⊆ X be the collection of atoms ofX and let C = X \A. By Proposition

8.2.(2), [A] ⊆ X is the discrete part of µU and x 7→ [x] is an isomorphism µ|A ∼= µU |[A].

Define a function SU : MALGµU → MALGµU first on subsets D ⊆ [C] by taking SU(D)

to be any subset of D satisfying µU(SU(D)) = 1
2
µU(D), and then extending this to all of

MALGµU by taking SU(D) = SU(D ∩ [C]) t (D ∩ [A]). Fix a countable dense subsetM1

of M0 and let B0 ⊆ MALGµU be a countable Boolean algebra containing M1 ∪ {{[x]} :

x ∈ A} and closed under the functions SU and γaU for all γ ∈ Γ. Then the σ-algebra

M = σ(B0) equipped with µU is an invariant countably generated measure sub-algebra of

MALGµU containing M0. Since B0 is closed under SU , the atoms of B0, and hence also

those ofM , must be contained in [A], and asM contains {[B] : B ⊆ A}, the discrete part

ofM is isomorphic to the discrete part of MALGµ. It follows thatM ∼= MALGµ. �



146

PROPOSITION 8.4. Let a = Γ ya (X,µ) and b = Γ yb (Y, ν) be measure preserving

actions of Γ. If a is weakly contained in b then then the measure space (X,µ) is a quotient

of the measure space (Y, ν). If a and b are weakly equivalent then (X,µ) is isomorphic

to (Y, ν). In particular, the identity actions ιη1 and ιη2 are weakly equivalent if and only if

(Z1, η1) and (Z2, η2) are isomorphic measure spaces.

PROOF. Suppose first that a ≺ b. Let φ : X → K = 2N be any Borel isomorphism and

let λ = (Φφ,a)∗µ. Then a ∼= Γ ys (KΓ, λ) and as a ≺ b there exists λn = (Φφn,b)∗ν ∈

E(b, K) with λn → λ. By Proposition 3.10 Γ ys (KΓ, λ) is a factor of the ultrapower

bU of b via Φφ,bU where φ is the ultralimit of the φn. Thus a is also a factor of bU so by

Theorem 8.3 this implies (X,µ) is a factor of (Y, ν).

Now suppose that a and b are weakly equivalent. Then the measure spaces (X,µ) and

(Y, ν) are factors of each other, say π : (Y, ν)→ (X,µ) and ϕ : (X,µ)→ (Y, ν). Let A ⊆

X be the set of atoms ofX and letB ⊆ Y be the set of atoms of Y . If µ(A) = 0 then we are

done since this implies both (X,µ) and (Y, ν) are non-atomic. So suppose that µ(A) > 0. It

is clear thatA ⊆ ϕ−1(B) andB ⊆ π−1(A), hence µ(A) = ν(B). Additionally, µ(ϕ−1(B)\

A) = 0, otherwise ν(B) = µ(ϕ−1(B)) > µ(A). Similarly ν(π−1(A) \ B) = 0. Thus

ϕ−1 : (MALGνB , dνB)→ (MALGµA , dµA) and π−1 : (MALGµA , dµA)→ (MALGνB , dνB)

are isometric embeddings of compact metric spaces (Proposition 8.2), so it follows that both

π−1 and ϕ−1 are in fact isometric isomorphisms. Since these maps are also Boolean algebra

homomorphisms it follows that both are measure algebra isomorphisms. This shows that

the discrete parts of (X,µ) and (Y, ν) are isomorphic, from which it follows that (X,µ)

and (Y, ν) are isomorphic. �

9. Stable weak containment

In this appendix we establish some basic properties of stable weak containment of mea-

sure preserving actions. Our development mirrors our development of weak containment

of measure preserving actions.
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DEFINITION 9.1. Let A and B be two sets of measure preserving actions of Γ. We say

thatA is stably weakly contained in B, writtenA ≺s B if for every Γ ya (X,µ) = a ∈ A,

for any Borel partition A0, . . . , Ak−1 of X , F ⊆ Γ finite, and ε > 0, there exist nonnegative

reals α0, . . . , αm−1 with
∑

i<m αi = 1 along with actions Γ ybi (Yi, νi) = bi ∈ B, i < m,

and a Borel partition B0, . . . , Bk−1 of
∑

i<m Yi such that

|µ(γaAi ∩ Aj)− (
∑

i<mαiν̃i)(γ
∑
i<m biBi ∩Bj)| < ε

for all i, j < k and γ ∈ F . (See §3.2 for notation.)

The relation ≺s is a reflexive and transitive relation on sets of measure preserving ac-

tions. We call A and B stably weakly equivalent, written A ∼s B, if both A ≺s B and

B ≺s A. We write a ≺s B, A ≺s b, and a ≺s b for {a} ≺s B, A ≺s {b} and

{a} ≺s {b}, respectively, and similarly with ∼s in place of ≺s.

It is clear that a ≺s b if and only if a ≺ {ιηα × b : α = (α0, . . . , αm−1) ∈

[0, 1]m,
∑

i<m αi = 1, m ∈ N}, so by Lemma 3.7 we have a ≺s b if and only if a ≺ ι×b

if and only if ι × a ≺ ι × b. From this point of view Theorem 1.2 says that if a is er-

godic then a ≺s b if and only if a ≺ b. Theorem 1.1 implies that a ≺s b if and only

if E(a, K) ⊆ coE(b, K) for every compact Polish space K, and a ∼s b if and only if

coE(a, K) = coE(b, K) for every compact Polish space K. More generally, we have

the following analogue of Proposition 3.5 which can be proved directly by using the same

methods.

PROPOSITION 9.2. Let A and B be sets of measure preserving actions of Γ. Then the

following are equivalent

(1) A ≺s B;

(2)
⋃
d∈AE(d, K) ⊆ co(

⋃
b∈B E(b, K)) for every finite K;

(3)
⋃
d∈AE(d, K) ⊆ co(

⋃
b∈B E(b, K)) for every compact Polish K;

(4)
⋃
d∈AE(d, 2N) ⊆ co(

⋃
b∈B E(b, 2N)).
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Chapter 5

Mixing actions of countable groups are

almost free

Robin D. Tucker-Drob

A measure preserving action of a countably infinite group Γ is called totally ergodic if every infinite

subgroup of Γ acts ergodically. For example, all mixing and mildly mixing actions are totally

ergodic. This note shows that if an action of Γ is totally ergodic then there exists a finite normal

subgroup N of Γ such that the stabilizer of almost every point is equal to N . Surprisingly the proof

relies on the group theoretic fact (proved by Hall and Kulatilaka as well as by Kargapolov) that

every infinite locally finite group contains an infinite abelian subgroup, of which all known proofs

rely on the Feit-Thompson theorem.

As a consequence we deduce a group theoretic characterization of countable groups whose

non-trivial Bernoulli factors are all free: these are precisely the groups that possess no finite normal

subgroup other than the trivial subgroup.

1. Introduction

Let Γ be a countably infinite discrete group and let a be a measure preserving action

of Γ, i.e., a = Γ ya (X,µ) where X is a standard Borel space, µ is a Borel probability

measure onX , and a : Γ×X → X is a Borel action of Γ onX that preserves µ. In this note

we examine how ergodicity and mixing properties of a can influence, and be influenced by,
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the freeness behavior of a and its factors. When a is not ergodic, for example, the ergodic

decomposition of a directly exhibits a non-trivial action (i.e., with underlying measure not

a point mass) that is a factor of a which is non-free.

More generally, if Γ contains some non-trivial normal subgroup N for which the re-

striction a � N of a to N is non-ergodic, then the action of Γ on the set Z of ergodic

components of a � N corresponds to a non-trivial factor of a which is manifestly non-free.

Indeed, this factor is not even faithful as N fixes all points in Z.

Working from the other direction, if π : (X,µ)→ (Y, ν) factors a onto some non-trivial

action b = Γ yb (Y, ν) which is not faithful, then for any B ⊆ Y with 0 < ν(B) < 1

the set π−1(B) will be a non-trivial subset of X witnessing that the kernel of b (i.e., the set

of group elements fixing almost every point) does not act ergodically under the action a.

These observations are rephrased in the following proposition.

PROPOSITION 1.1. The following are equivalent for a measure preserving action a of

Γ:

(1) All non-trivial factors of a are faithful.

(2) All non-trivial normal subgroups of Γ act ergodically.

Note that when Γ contains a finite normal subgroup N then no non-trivial action a =

Γ ya (X,µ) of Γ can have the property (2) (and therefore (1)) of Proposition 1.1: if a � N

is ergodic then X is finite, so the kernel of a is non-trivial and does not act ergodically.

However, the observations preceding Proposition 1.1 also show the following:

PROPOSITION 1.2. The following are equivalent for a measure preserving action a of

Γ:

(1) All non-trivial factors of a have finite kernel.

(2) All infinite normal subgroups of Γ act ergodically.

Propositions 1.1 and 1.2 express the equivalence of a freeness property on the one hand,

and an ergodicity property on the other. By strengthening the ergodicity assumption on a

it is shown below that an appropriately strong freeness results.
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DEFINITION 1.3. A measure preserving action a of Γ is called totally ergodic if the

restriction of a to every infinite subgroup of Γ is ergodic.

There are many examples of totally ergodic actions. All mildly mixing actions are

totally ergodic, since the restriction of a mildly mixing action to an infinite subgroup is

again mildly mixing and hence ergodic. In particular, all mixing actions are totally ergodic.

The following theorem says that totally ergodic actions are, up to a finite kernel, always

free.

THEOREM 1.4. Let a = Γ ya (X,µ) be a non-trivial measure preserving action of

the countably infinite group Γ. Suppose that a is totally ergodic. Then there exists a finite

normal subgroup N of Γ such that the stabilizer of µ-almost every x ∈ X is equal to N .

COROLLARY 1.5. All faithful totally ergodic actions of countably infinite groups are

free. In particular, all faithful mildly mixing and all faithful mixing actions of countably

infinite groups are free.

A totally ergodic action of particular importance is the Bernoulli shift of Γ. This is the

measure preserving action sΓ of Γ on ([0, 1]Γ, λΓ) (where λ is Lebesgue measure) given by

(γsΓf)(δ) = f(γ−1δ)

for γ, δ ∈ Γ and f ∈ [0, 1]Γ. By a Bernoulli factor of Γ we mean a factor of sΓ. One con-

sequence of Theorem 1.4 is a particularly nice group theoretic characterization of groups

all of whose non-trivial Bernoulli factors are free.

COROLLARY 1.6. Let Γ be an infinite countable group. Then the following are equiv-

alent

(1) Every non-trivial totally ergodic action of Γ is free.

(2) Every non-trivial mixing action of Γ is free.

(3) Every non-trivial Bernoulli factor of Γ is free.
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(4) There exists a non-trivial measure preserving action a of Γ such that every non-

trivial factor of a is free.

(5) There exists a non-trivial measure preserving action a of Γ such that every non-

trivial factor of a is faithful.

(6) Γ contains no non-trivial finite normal subgroup.

PROOF OF COROLLARY 1.6 FROM THEOREM 1.4. (6)⇒(1) follows immediately from

Theorem 1.4. The implication (1)⇒(2) is clear. (2)⇒(3) holds since sΓ is mixing and every

factor of a mixing action is mixing. (3)⇒(4) and (4)⇒(5) are also clear. (5)⇒(6) follows

from the discussion following Proposition 1.1 above. �

COROLLARY 1.7. Let Γ be any infinite countable group that is either torsion free or

ICC. Then every non-trivial totally ergodic action of Γ is free and in particular every non-

trivial Bernoulli factor of Γ is free.
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2. Definitions and notation

Γ will always denote a countably infinite discrete group and e will denote the identity

element of Γ.

Let a = Γ ya (X,µ) be a measure preserving action of Γ. The stabilizer of a point

x ∈ X is the subgroup Γx of Γ given by Γx = {γ ∈ Γ : γax = x}. For a subset C ⊆ Γ we

let

Fixa(C) = {x ∈ X : ∀γ ∈ C γax = x}.

We write Fixa(γ) for Fixa({γ}). The kernel of a is the set ker(a) = {γ ∈ Γ : µ(Fixa(γ)) =

1}. It is clear that ker(a) is a normal subgroup of Γ. The action a is called (essentially) free



152

if the stabilizer of µ-almost every point is trivial, or equivalently, µ(Fixa(γ)) = 0 for each

γ ∈ Γ \ {e}. It is called faithful if ker(a) = {e}, i.e., µ(Fixa(γ)) < 1 for each γ ∈ Γ \ {e}.

Let b = Γ yb (Y, ν) be another measure preserving action of Γ. We say that b is a

factor of a (or that a factors onto b) if there exists a measurable map π : X → Y with

π∗µ = ν and such that for each γ ∈ Γ the equality π(γax) = γbπ(x) holds for µ-almost

every x ∈ X . A measure preserving action b = Γ yb (Y, ν) is called trivial if ν is a point

mass. Otherwise, b is called non-trivial.

3. Proof of Theorem 1.4

PROOF OF THEOREM 1.4. We begin with a lemma also observed by Darren Creutz

and Jesse Peterson [CP12].

LEMMA 3.1. Let b = Γ yb (Y, ν) be a non-trivial totally ergodic action of Γ.

(i) Suppose that C ⊆ Γ is a subset of Γ such that ν({y ∈ Y : C ⊆ Γy}) > 0. Then

the subgroup 〈C〉 generated by C is finite.

(ii) Γy is almost surely locally finite.

PROOF OF LEMMA 3.1. Beginning with (i), the hypothesis tells us that the set Fixb(C)

is non-null. Since ν is not a point mass there is some B ⊆ Fixb(C) with 0 < ν(B) < 1.

The set B witnesses that b � 〈C〉 is not ergodic. As b is totally ergodic we conclude that

〈C〉 is finite.

For (ii), let F denote the collection of finite subsets F of Γ such that 〈F 〉 is infinite and

let NLF ⊆ Y denote the set of points y ∈ Y such that Γy is not locally finite. Then

NLF =
⋃
F∈F

{y ∈ Y : F ⊆ Γy}

By part (i), ν({y ∈ Y : F ⊆ Γy}) = 0 for each F ∈ F . Since F is countable it follows

that ν(NLF) = 0. �[Lemma]

Now let a = Γ ya (X,µ) be a totally ergodic action as in the statement of Theorem

1.4. Let N = {γ ∈ Γ : µ(Fixa(γ)) = 1} denote the kernel of a. Then N is a normal
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subgroup of Γ that is finite by Lemma 3.1.(i). Ignoring a null set, the action a descends to

an action b = ∆ yb (X,µ) of the quotient group ∆ = Γ/N that is still totally ergodic,

and which is moreover faithful. Thus, after replacing Γ by Γ/N and a by b if necessary,

we may assume that a is faithful toward the goal of showing that a is free.

For each γ ∈ Γ let CΓ(γ) denote the centralizer of γ in Γ. Observe that Fixa(γ) is an

invariant set for a � CΓ(γ), for if δ ∈ CΓ(γ) then δa · Fixa(γ) = Fixa(δγδ−1) = Fixa(γ).

Thus for γ 6= e, if CΓ(γ) is infinite then a � CΓ(γ) is ergodic and the a � CΓ(γ)-invariant

set Fixa(γ) must therefore be null since a is faithful. Letting C∞ denote the collection of

elements of Γ\{e} whose centralizers are infinite, this simply means that µ({x ∈ X : γ ∈

Γx}) = 0 for all γ ∈ C∞, and so

(3.1) µ({x ∈ X : Γx ∩ C∞ 6= ∅}) = 0.

By Lemma 3.1.(ii), Γx is almost surely locally finite. By a theorem of Hall and Kulatilaka

[HK64] and Kargapolov [Kar63], every infinite locally finite group contains an infinite

abelian subgroup. In particular, each infinite locally finite subgroup of Γ intersects C∞. It

follows from this and (3.1) that Γx is almost surely finite.

Since there are only countably many finite subgroups of Γ there must be some finite

subgroup H0 ≤ Γ such that µ(A0) > 0 where

A0 = {x ∈ X : Γx = H0}.

Let N0 denote the normalizer of H0 in Γ. If T is a transversal for the left cosets of N0

in Γ then {taA0}t∈T are pairwise disjoint non-null subsets of X all of the same measure.

It follows that T is finite and therefore N0 is infinite and a � N0 ergodic. The set A0 is

non-null and invariant for a � N0, so µ(A0) = 1, i.e., Γx = H0 almost surely. As a is

faithful we conclude that H0 = {e} and that a is therefore free. �
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4. An example

In general, total ergodicity does not imply weak mixing, and weak mixing does not

imply total ergodicity. For example, the action of Z corresponding to an irrational rotation

of T = R/Z equipped with Haar measure is totally ergodic, but not weakly mixing. There

are also many examples of weakly mixing measure preserving actions that lack total er-

godicity. One such action is exhibited in 4.1 below. Example 4.1 also illustrates that total

ergodicity of a measure preserving action is not necessary to ensure that each non-trivial

factor of that action is free.

EXAMPLE 4.1. Here is an example of a free weakly mixing action s that is not totally

ergodic, but that still has the property that every non-trivial factor of s is free: Let F denote

the free group of rank 2 with free generating set {u, v} and let H = 〈u〉 be the cyclic

subgroup of F generated by u. The generalized Bernoulli shift action s = sF,F/H = F ys

([0, 1]F/H , λF/H) is weakly mixing (see [KT08]) but not totally ergodic since H fixes each

set in the σ-algebra generated by the projection function f 7→ f(H). Given a subgroup

K ≤ F , if s � K ∼= sK,F/H is not ergodic then K y F/H has a finite orbit (see [KT08]),

say KγH is finite where γ ∈ F . Then for any z ∈ K there is some n > 0 such that

zn ∈ γHγ−1, and therefore z ∈ γHγ−1. This shows that K ⊆ γHγ−1 so that K is

cyclic. The restriction of s to each non-cyclic subgroup of F is therefore ergodic, so if

a = F ya (X,µ) is any factor of s then a also has this property and, assuming a is non-

trivial, an argument as in the proof of Lemma 3.1 shows that the stabilizer Fx of µ-almost

every x ∈ X is locally cyclic, hence cyclic. Arguing as in the last paragraph of the proof of

Theorem 1.4 we see that there is some normal cyclic subgroup H0 of F such that Fx = H0

almost surely. The only possibility is that H0 = {e}, and thus a is free.

5. A question

The proof of Theorem 1.4 relies on Hall, Kulatilaka, and Kargapolov’s result, whose

only known proofs make use of the Feit-Thompson theorem from finite group theory.

QUESTION 5.1. Is there a direct ergodic theoretic proof of Theorem 1.4?
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Chapter 6

Shift-minimal groups, fixed Price 1, and

the unique trace property

Robin Tucker-Drob

A countable group Γ is called shift-minimal if every non-trivial measure preserving action of Γ

weakly contained in the Bernoulli shift Γ y ([0, 1]Γ, λΓ) is free. We show that any group Γ whose

reduced C∗-algebra C∗r (Γ) admits a unique tracial state is shift-minimal, and that any group Γ

admitting a free measure preserving action of cost> 1 contains a finite normal subgroupN such that

Γ/N is shift-minimal. Any shift-minimal group in turn is shown to have trivial amenable radical.

Recurrence arguments are used in studying invariant random subgroups of a wide variety of shift-

minimal groups. We also examine continuity properties of cost in the context of infinitely generated

groups and equivalence relations. A number of open questions are discussed which concern cost,

shift-minimality, C∗-simplicity, and uniqueness of tracial state on C∗r (Γ).

1. Introduction

The Bernoulli shift of a countable discrete group Γ, denoted by sΓ, is the measure preserving

action Γ ys ([0, 1]Γ, λΓ) (where λ denotes Lebesgue measure on [0, 1]) of Γ given by

(γs · f)(δ) = f(γ−1δ)
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for γ, δ ∈ Γ and f ∈ [0, 1]Γ. If Γ is infinite, then the Bernoulli shift may be seen as the archetypal

free measure preserving action of Γ. This point of view is supported by Abért and Weiss’s result

[AW11] that sΓ is weakly contained in every free measure preserving action of Γ. Conversely, it

is well known that any measure preserving action weakly containing a free action must itself be

free. A measure preserving action is therefore free if and only if it exhibits approximate Bernoulli

behavior.

Inverting our point of view, the approximation properties exhibited by sΓ itself have been shown

to reflect the group theoretic nature of Γ. One example of this is Schmidt’s characterization [Sch81]

of amenable groups as exactly those groups Γ for which sΓ admits a non-trivial sequence of almost

invariant sets. An equivalent formulation in the language of weak containment is that Γ is amenable

if and only if sΓ weakly contains an action that is not ergodic. In addition, a direct consequence of

Foreman and Weiss’s work [FW04] is that amenability of Γ is equivalent to every measure preserv-

ing action of Γ being weakly contained in sΓ. That each of these properties of sΓ is necessary for

amenability of Γ is essentially a consequence of the Ornstein-Weiss Theorem [OW80], while suffi-

ciency of these properties may be reduced to the corresponding representation theoretic characteri-

zations of amenability due to Hulanicki and Reiter (see [Hul64, Hul66], [Zim84, 7.1.8], [BHV08,

Appendix G.3]): a group Γ is amenable if and only if its left regular representation λΓ weakly

contains the trivial representation if and only if λΓ weakly contains every unitary representation of

Γ.

This paper investigates further the extent to which properties of a group may be detected by its

Bernoulli action. Roughly speaking, it is observed that even when a group is non-amenable, the

manifestation (or lack thereof) of certain behaviors in the Bernoulli shift has implications for the

extent of that group’s non-amenability. Central to this investigation is the following definition.

DEFINITION 1.1. A countable group Γ is called shift-minimal if every non-trivial measure pre-

serving action weakly contained in sΓ is free.

The reader is referred to [Kec10] for background on weak containment of measure preserving ac-

tions. Note that by definition the trivial group {e} is shift-minimal.

Shift-minimality, as with the above-mentioned ergodic theoretic characterizations of amenabil-

ity, takes its precedent in the theory of unitary representations of Γ. It is well known that Γ is
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C∗-simple (i.e., its reduced C∗-algebra C∗r (Γ) is simple) if and only if every non-zero unitary repre-

sentation of Γ weakly contained in the left regular representation λΓ is actually weakly equivalent to

λΓ [dlH07]. Using the Abért-Weiss characterization of freeness it is apparent that Γ is shift-minimal

if and only if every non-trivial m.p. action of Γ weakly contained in sΓ is in fact weakly equivalent

to sΓ. Apart from analogy, the relationship between shift-minimality and C∗-simplicity in general

is unclear. However, we show in Theorem 5.15 that shift-minimality follows from a property closely

related to C∗-simplicity. A group Γ is said to have the unique trace property if there is a unique

tracial state on C∗r (Γ).

THEOREM 1.2. Let Γ be a countable group. If Γ has the unique trace property then Γ is shift-

minimal.

In addition, a co-induction argument (Proposition 3.15) shows that shift-minimal groups have no

non-trivial normal amenable subgroups, i.e., they have trivial amenable radical. This places shift-

minimality squarely between two other properties whose general equivalence with C∗-simplicity

remains an open problem. Indeed, it is open whether there are any general implications between

C∗-simplicity and the unique trace property; in all concrete examples these two properties coincide.

Furthermore, while the amenable radical of any C∗-simple group is known to be trivial [PS79], it

is an open question - asked explicitly by Bekka and de la Harpe [BdlH00] - whether conversely, a

group which is not C∗-simple always contains a non-trivial normal amenable subgroup. For shift-

minimality in place ofC∗-simplicity, a stochastic version of this question is shown to have a positive

answer (Theorem 3.16).

THEOREM 1.3. A countable group Γ is shift-minimal if and only if there is no non-trivial

amenable invariant random subgroup of Γ weakly contained in sΓ.

Here an invariant random subgroup (IRS) of Γ is a Borel probability measure on the compact

space SubΓ of subgroups of Γ that is invariant under the conjugation action Γ y SubΓ of Γ. It is

called amenable if it concentrates on the amenable subgroups of Γ. Invariant random subgroups

generalize the notion of normal subgroups: if N is a normal subgroup of Γ then the Dirac measure

δN on SubΓ is conjugation invariant. It is shown in [AGV12] that the invariant random subgroups

of Γ are precisely those measures on SubΓ that arise as the stabilizer distribution of some measure

preserving action of Γ (see §2.3).
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Theorem 1.3 is not entirely satisfactory since it still seems possible that shift-minimality of

Γ is equivalent to Γ having no non-trivial amenable invariant random subgroups whatsoever (see

Question 7.4). In fact, the proof of Theorem 1.2 in §5.4 shows that this possibly stronger property

is a consequence of the unique trace property.

THEOREM 1.4. Let Γ be a countable group. If Γ has the unique trace property then Γ has no

non-trivial amenable invariant random subgroups.

The known general implications among all of the notions introduced thus far are expressed in

Figure 1.
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FIGURE 1. The solid lines indicate known implications and the dotted lines indi-
cate open questions discussed in §7. Any implication which is not addressed by the
diagram is open in general. However, these properties all coincide for large classes
of groups, e.g., linear groups (see §5.3).

Our starting point in studying shift-minimality is the observation that if Γ ya (X,µ) is a m.p.

action that is weakly contained in sΓ then every non-amenable subgroup of Γ acts ergodically. We

call this property of a m.p. action NA-ergodicity. We show in Theorem 3.13 that when a m.p. action

of Γ is NA-ergodic then the stabilizer of almost every point must be amenable.

§4 deals with permanence properties of shift-minimality by examining situations in which free-

ness of a m.p. action Γ ya (X,µ) may be deduced from freeness of some acting subgroup. Many

of the proofs in this section appeal to some form of the Poincaré Recurrence Theorem.

A wide variety of groups are known to have the unique trace property and Theorem 1.2 shows

that all such groups are shift-minimal. Among these are all non-abelian free groups ([Pow75]), all

Powers groups and weak Powers groups ([dLH85], [BN88]), groups with property Pnai [BCdLH94],

all ICC relatively hyperbolic groups ([AM07]), and all ICC groups with a minimal non-elementary
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convergence group action [MOY11]. In §5 we observe that all of these groups share a common

paradoxicality property we call (BP), abstracted from M. Brin and G. Picioroaga’s proof that all

weak Powers groups contain a free group (see [dlH07, following Question 15]). It is shown in

Theorem 5.6 that any non-trivial ergodic invariant random subgroup of a group with property (BP)

must contain a non-abelian free group almost surely. Recurrence once again plays a key role in the

proof.

§6 studies the relationship between cost, weak containment, and invariant random subgroups.

Kechris shows in [Kec10, Corollary 10.14] that if a and b are free measure preserving actions of a

finitely generated group Γ then a ≺ b implies C(b) ≤ C(a) where C(a) denotes the cost of a (i.e.,

the cost of the orbit equivalence relation generated by a). This is deduced from the stronger fact

[Kec10, Theorem 10.13] that the cost function C : FR(Γ, X, µ) → R, a 7→ C(a), is upper semi-

continuous for finitely generated Γ. In §6.2 we obtain a generalization which holds for arbitrary

countable groups (Theorem 6.4 below). The consequences of this generalization are most naturally

stated in terms of an invariant we call pseudocost.

IfE is a m.p. countable Borel equivalence relation on (X,µ) then the pseudocost ofE is defined

as PCµ(E) := inf(En) lim infnCµ(En), where (En)n∈N ranges over all increasing sequencesE0 ⊆

E1 ⊆ · · · , of Borel subequivalence relations of E such that
⋃
nEn = E. The pseudocost of an

action and of a group is then defined in analogy with cost (see Definition 6.6). It is immediate that

PCµ(E) ≤ Cµ(E), and while the pseudocost and cost coincide in most cases, including whenever

E is treeable or whenever Cµ(E) < ∞ (Corollary 6.8), it is unclear whether equality holds in

general.

One of the main motivations for introducing pseudocost is the following useful continuity prop-

erty (Corollary 6.20):

THEOREM 1.5. Let a = Γ ya (X,µ) and b = Γ yb (Y, ν) be measure preserving actions of

a countable group Γ. Assume that a is free. If a ≺ b then PC(b) ≤ PC(a).

Combining Theorem 1.5 and [AW11, Theorem 1] it follows that, among all free m.p. actions of

Γ, the Bernoulli shift sΓ has the maximum pseudocost. Since pseudocost and cost coincide for m.p.

actions of finitely generated groups, this generalizes the result of [AW11] that sΓ has the greatest

cost among free actions of a finitely generated group Γ. In Corollary 6.22 we use Theorem 1.5 to

deduce general consequences for cost:
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THEOREM 1.6. Let a and b be m.p. actions of a countably infinite group Γ. Assume that a is

free and a ≺ b.

(1) If C(b) <∞ then C(b) ≤ C(a).

(2) If Eb is treeable then C(b) ≤ C(a).

(3) If C(a) = 1 then C(b) = 1.

This leads to a characterization of countable groups with fixed price 1 as exactly those groups

whose Bernoulli shift has cost 1. This characterization was previously shown for finitely generated

groups in [AW11].

THEOREM 1.7. Let Γ be a countable group. The following are equivalent:

(1) Γ has fixed price 1

(2) C(sΓ) = 1

(3) C(a) = 1 for some m.p. action a weakly equivalent to sΓ.

(4) PC(a) = 1 for some m.p. action a weakly equivalent to sΓ.

(5) Γ is infinite and C(a) ≤ 1 for some non-trivial m.p. action a weakly contained in sΓ.

We use this characterization to obtain a new class of shift-minimal groups in §6.5. In what

follows, ARΓ denotes the amenable radical of Γ (see Appendix 9). Gaboriau [Gab00, Theorem 3]

showed that if Γ does not have fixed price 1 then ARΓ is finite. We now have:

THEOREM 1.8. Let Γ be a countable group that does not have fixed price 1. Then ARΓ is finite

and Γ/ARΓ is shift-minimal.

In Theorem 6.31 of §6.4 it is shown that if the hypothesis of Theorem 1.8 is strengthened to

C(Γ) > 1, i.e., if all free m.p. actions of Γ have cost > 1, then the conclusion may be strengthened

considerably. The following is an analogue of Bergeron and Gaboriau’s result [BG04, §5] (see also

[ST10, Corollary 1.6]) in which the statement is shown to hold for the first `2-Betti number in place

of cost.

THEOREM 1.9. Suppose that C(Γ) > 1. Let Γ ya (X,µ) be an ergodic measure preserving

action of Γ on a non-atomic probability space. Then exactly one of the following holds:

(1) Almost all stabilizers are finite;
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(2) Almost every stabilizer has infinite cost, i.e., C(Γx) =∞ almost surely.

In particular, ARΓ is finite and Γ/ARΓ has no non-trivial amenable invariant random subgroups.

The analysis of pseudocost in §6.2 is used in §6.3 to study the cost of generic actions in the

Polish space A(Γ, X, µ) of measure preserving actions of Γ. For any group Γ there is a comeager

subset of A(Γ, X, µ), consisting of free actions, on which the cost function C : A(Γ, X, µ)→ R ∪

{∞} takes a constant value Cgen(Γ) ∈ R [Kec10]. Likewise, the pseudocost function a 7→ PC(a)

must be constant on a comeager set of free actions, and we denote this constant value by PCgen(Γ).

Kechris shows in [Kec10] that Cgen(Γ) = C(Γ) for finitely generated Γ and Problem 10.11 of

[Kec10] asks whether Cgen(Γ) = C(Γ) in general. The following is proved in Corollaries 6.28 and

6.27.

THEOREM 1.10. Let Γ be a countably infinite group. Then

(1) The set {a ∈ A(Γ, X, µ) : a is free and PC(a) = PC(Γ)} is dense Gδ in A(Γ, X, µ).

(2) PCgen(Γ) = PC(Γ).

(3) Either Cgen(Γ) = C(Γ) or Cgen(Γ) =∞.

(4) If PC(Γ) = 1 then Cgen(Γ) = C(Γ) = 1.

(5) The set

{
b ∈ A(Γ, X, µ) : b is free and ∃aperiodic Borel subequivalence relations

E0 ⊆ E1 ⊆ E2 ⊆ · · · of Eb, with Eb =
⋃
n

En and lim
n
Cµ(En) = C(Γ)

}
is dense Gδ in A(Γ, X, µ).

(6) If all free actions of Γ have finite cost then {b ∈ A(Γ, X, µ) : b is free and C(b) =

C(Γ)} is dense Gδ in A(Γ, X, µ).

The only possible exception to the equality Cgen(Γ) = C(Γ) would be a group Γ with C(Γ) <

∞ such that the set {a ∈ A(Γ, X, µ) : a is free, C(a) = ∞ and Ea is not treeable} comeager in

A(Γ, X, µ).

A number of questions are discussed in §7. The paper ends with two appendices, the first

clarifying the relationship between invariant random subgroups and subequivalence relations. The

second contains relevant results about the amenable radical of a countable group.
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2. Preliminaries

Throughout, Γ denotes a countable discrete group. The identity element of Γ is denoted by eΓ,

or simply e when Γ is clear from the context. All countable groups are assumed to be equipped with

the discrete topology; a countable group always refers to a countable discrete group.

2.1. Group theory. Subgroups. Let ∆ and Γ be countable groups. We write ∆ ≤ Γ to denote

that ∆ is a subgroup of Γ and we write ∆/Γ to denote that ∆ is a normal subgroup of Γ. The index

of a subgroup ∆ ≤ Γ is denoted by [Γ : ∆]. The trivial subgroup of Γ is the subgroup {eΓ} that

contains only the identity element. For a subset S ⊆ Γ we let 〈S〉 denote the subgroup generated

by S. A group that is not finitely generated will be called infinitely generated.

Centralizers and normalizers. Let S be any subset of Γ and let H be a subgroup of Γ. The

centralizer of S in H is the set

CH(S) = {h ∈ H : ∀s ∈ S (hsh−1 = s)}

and the normalizer of S in H is the set

NH(S) = {h ∈ H : hSh−1 = S}.

Then CH(S) and NH(S) are subgroups of H with CH(S) /NH(S). Clearly CH(S) = CΓ(S)∩H

and NH(S) = NΓ(S) ∩H . The group CΓ(Γ) is called the center of Γ and is denoted by Z(Γ). We

say that a subset T of Γ normalizes S if T ⊆ NΓ(S). We call a subgroup H self-normalizing in Γ

if H = NΓ(H).

Infinite conjugacy class (ICC) groups. A group Γ is called ICC if every γ ∈ Γ \ {e} has an

infinite conjugacy class. This is equivalent to CΓ(γ) having infinite index in Γ for all γ 6= e. Thus,

according to our definition, the trivial group {e} is ICC.

The Amenable Radical. We let ARΓ denote the amenable radical of Γ. See Appendix 9 below.
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2.2. Ergodic theory. Measure preserving actions. A measure preserving (m.p.) action of Γ

is a triple (Γ, a, (X,µ)), which we write as Γ ya (X,µ), where (X,µ) is a standard probability

space (possibly with atoms) and a : Γ × X → X is a Borel action of Γ on X that preserves the

probability measure µ. For (γ, x) ∈ Γ ×X we let γax denote the image a(γ, x) of the pair (γ, x)

under a. We write a for Γ ya (X,µ) when Γ and (X,µ) are clear from the context. A measure

preserving action of Γ will also be called a Γ-system or simply a system when Γ is understood.

For the rest of this subsection let a = Γ ya (X,µ) and let b = Γ yb (Y, ν).

Isomorphism and factors. If ϕ : (X,µ) → Y is a measurable map then we let ϕ∗µ denote the

pushforward measure on Y given by ϕ∗µ(B) = µ(ϕ−1(B)) for B ⊆ Y Borel. We say that b is a

factor of a (or that a factors onto b), written b v a, if there exists a measurable map π : X → Y

with π∗µ = ν and such that for each γ ∈ Γ the equality π(γax) = γbπ(x) holds for µ-almost every

x ∈ X . Such a map π is called a factor map from a to b. The factor map π is called an isomorphism

from a to b if there exists a co-null subset of X on which π is injective. We say that a and b are

isomorphic, written a ∼= b, if there exists some isomorphism from a to b.

Weak containment of m.p. actions. We write a ≺ b to denote that a is weakly contained in b and

we write a ∼ b to denote that a and b are weakly equivalent. The reader is referred to [Kec10] for

background on weak containment of measure preserving actions.

Product of actions. The product of a and b is the m.p. action a × b = Γ ya×b (X × Y, µ × ν)

where γa×b(x, y) = (γax, γby) for each γ ∈ Γ and (x, y) ∈ X × Y .

Bernoulli shifts. Let Γ × T → T , (γ, t) 7→ γ · t be an action of Γ on a countable set T . The

generalized Bernoulli shift corresponding to this action is the system sΓ,T = Γ ys ([0, 1]T , λT ),

where λ is Lebesgue measure and where the action s is given by (γsf)(t) = f(γ−1 · t) for γ ∈ Γ,

f ∈ [0, 1]T , t ∈ T . We write sΓ for sΓ,Γ when the action of Γ on itself is by left translation. The

system sΓ is called the Bernoulli shift of Γ.

The trivial system. We call a = Γ ya (X,µ) trivial if µ is a point mass. Otherwise, a is called

non-trivial. Up to isomorphism, each group Γ has a unique trivial measure preserving action, which

we denote by iΓ or simply i when Γ is clear.
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Identity systems. Let ιΓ,µ = Γ yι (X,µ) denote the identity system of Γ on (X,µ) given by

γι = idX for all γ ∈ Γ. We write ιµ when Γ is clear. Thus if µ is a point mass then ιµ ∼= i.

Strong ergodicity. A system a is called strongly ergodic if it is ergodic and does not weakly contain

the identity system ιΓ,λ on ([0, 1], λ).

Fixed point sets and free actions. For a subset C ⊆ Γ we let

Fixb(C) = {y ∈ Y : ∀γ ∈ C γby = y}.

We write Fixb(γ) for Fixb({γ}). The kernel of the system b is the set ker(b) = {γ ∈ Γ :

ν(Fixb(γ)) = 1}. It is clear that ker(b) is a normal subgroup of Γ. The system b is called faithful if

ker(b) = {e}, i.e., ν(Fixb(γ)) < 1 for each γ ∈ Γ \ {e}. The system b is called (essentially) free if

the stabilizer of ν-almost every point is trivial, i.e., ν(Fixb(γ)) = 0 for each γ ∈ Γ \ {e}.

2.3. Invariant random subgroups. The space of subgroups. We let SubΓ ⊆ 2Γ denote the

compact space of all subgroup of Γ and we let c : Γ× SubΓ → SubΓ be the continuous action of Γ

on SubΓ by conjugation.

Invariant random subgroups. An invariant random subgroup (IRS) of Γ is a conjugation-invariant

Borel probability measures on SubΓ. The point mass δN at a normal subgroupN of Γ is an example

of an invariant random subgroup. Let IRSΓ denote the space of invariant random subgroups of Γ.

We associate to each θ ∈ IRSΓ the measure preserving action Γ yc (SubΓ, θ). We also denote this

system by θ.

Stabilizer distributions. Each measure preserving action b = Γ yb (Y, ν) of Γ gives rise to and

invariant random subgroup θb of Γ as follows. The stabilizer of a point y ∈ Y under the action b is

the subgroup Γy of Γ defined by

Γy = {γ ∈ Γ : γby = y}.

The group Γy of course depends on the action b. The stabilizer map associated to b is the map

stabb : Y → SubΓ given by stabb(y) = Γy. The stabilizer distribution of b, which we denote by θb

or type(b), is the measure (stabb)∗ν on SubΓ. It is clear that θb is an invariant random subgroup of

Γ. In [AGV12] it is shown that for any invariant random subgroup θ of Γ, there exists a m.p. action
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b of Γ such that θb = θ. Moreover, if θ is ergodic then b can be taken to be ergodic as well. See

[CP12].

Group theoretic properties of invariant random subgroups. Let θ be an invariant random sub-

group of Γ. We say that a given property P of subgroups of Γ holds for θ if P holds almost ev-

erywhere. For example, θ is called amenable (or infinite index) if θ concentrates on the amenable

(respectively, infinite index) subgroups of Γ.

The trivial IRS. By the trivial invariant random subgroup we mean the point mass at the trivial

subgroup {e} of Γ. We write δe instead of δ{e} for the trivial invariant random subgroup. An

invariant random subgroup not equal to δe is called non-trivial.

REMARK 2.1. We will often abuse terminology and confuse an invariant random subgroup θ

with the measure preserving action θ = Γ yc (SubΓ, θ) it defines, stating, for example, that θ is

ergodic or is weakly contained in sΓ to mean that θ is ergodic or is weakly contained in sΓ. When

there is a potential for ambiguity we will make sure to distinguish between an invariant random

subgroup and the measure preserving system to which it gives rise. We emphasize that ”θ is non-

trivial” will always mean that θ is not equal to the trivial IRS δe, whereas ”θ is non-trivial” will

always mean that θ is not a point mass (at any subgroup).

3. Shift-minimality

3.1. Seven characterizations of shift-minimality. It will be useful to record here the main

theorem of [AW11] which was already mentioned several times in the introduction.

THEOREM 3.1 ([AW11]). Let Γ be a countably infinite group. Then the Bernoulli shift sΓ is

weakly contained in every free measure preserving action of Γ.

We let Aut(X,µ) denote the Polish group of measure preserving transformations of (X,µ),

and we let A(Γ, X, µ) denote the Polish space of measure preserving actions of Γ on the measure

space (X,µ). See [Kec10] for information on these two spaces. In the following proposition, let

[a] denote the weak equivalence class of a measure preserving action a of Γ. Denote by sΓ,2 the

full 2-shift of Γ, i.e., the shift action of Γ on (2Γ, ρΓ) where we identify 2 with {0, 1} and where

ρ({0}) = ρ({1}) = 1/2.
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PROPOSITION 3.2. Let Γ be a countable group and let (X,µ) be a standard non-atomic prob-

ability space. Then the following are equivalent.

(1) Γ is shift-minimal, i.e., every non-trivial m.p. action weakly contained in sΓ is free.

(2) Every non-trivial m.p. action weakly contained in sΓ,2 is free.

(3) Among non-trivial m.p. actions of Γ, [sΓ,2] is minimal with respect to weak containment.

(4) Either Γ = {e} or, among non-trivial m.p. actions of Γ, [sΓ] is minimal with respect to

weak containment.

(5) Among non-atomic m.p. actions of Γ, [sΓ] is minimal with respect to weak containment.

(6) The conjugation action of the Polish group Aut(X,µ) on the Polish space As(Γ, X, µ) =

{a ∈ A(Γ, X, µ) : a ≺ sΓ} is minimal, i.e., every orbit is dense.

(7) For some (equivalently: every) non-principal ultrafilter U on the the natural numbers N,

every non-trivial factor of the ultrapower (sΓ)U is free.

PROOF. The equivalence (7)⇔(1) follows from [CKTD11, Theorem 1]. For the remaining

equivalences, first note that if Γ is a finite group then sΓ factors onto ιµ, so if Γ 6= {e} then Γ

does not satisfy (1), (4), (5) or (6). In addition, for Γ 6= {e} finite, sΓ,2 factors onto a non-trivial

identity system, which shows that Γ does not satisfy (2) or (3) either. This shows that the trivial

group Γ = {e} is the only finite group that satisfies any of the properties (1)-(6), and it is clear the

trivial group satisfies all of these properties. We may therefore assume for the rest of the proof that

Γ is infinite.

(1)⇒(2): This implication is clear since sΓ,2 is a factor of sΓ.

(2)⇒(3): Suppose that (2) holds. By hypothesis any a weakly contained in sΓ,2 is free and thus

weakly contains sΓ by Theorem 3.1. (3) follows since sΓ2 is a factor of sΓ.

(3)⇒(4): Since we are assuming Γ is infinite, Theorem 3.1 implies [sΓ] = [sΓ,2], and this

implication follows. (4)⇒(5) is clear.

(5)⇒(6): Suppose (5) holds. By [Kec10, Proposition 10.1] the Aut(X,µ)-orbit closure of any

a ∈ A(Γ, X, µ) is equal to {b ∈ A(Γ, X, µ) : b ≺ a}. Thus, if a is weakly equivalent to sΓ, then

the orbit of a is dense in As(Γ, X, µ). Since [sΓ] is minimal with respect to weak containment,

every element of As(Γ, X, µ) is weakly equivalent to sΓ, so has dense orbit in As(Γ, X, µ). Thus,

the action Aut(X,µ) y As(Γ, X, µ) is minimal.
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(6)⇒(1): Suppose that every a ∈ As(Γ, X, µ) has dense orbit. If ιµ ∈ As(Γ, X, µ) then, since

ιµ is a fixed point for the Aut(X,µ) action, ιµ = sΓ and thus Γ = {e}. Otherwise, if ιµ 6≺ sΓ then

the system sΓ is strongly ergodic and the group Γ is therefore non-amenable. Let b = Γ yb (Y, ν)

be any non-trivial m.p. action of Γ weakly contained in sΓ. Then b × b is weakly contained in

sΓ × sΓ
∼= sΓ and therefore b × b is strongly ergodic since strong ergodicity is downward closed

under weak containment (see, e.g., [CKTD11, Proposition 5.6]). In particular b× b is ergodic and

it follows that the probability space (Y, ν) is non-atomic. The action b is then isomorphic to some

action a on the non-atomic space (X,µ), and a ∈ As(Γ, X, µ) since b ≺ sΓ. By hypothesis a has

dense orbit in As(Γ, X, µ) so that sΓ ∼ a by [Kec10, Proposition 10.1] and hence a is free, and

thus b is free as well. �

Two more characterizations of shift-minimality are given in terms of amenable invariant random

subgroups in Theorem 3.16 below.

3.2. NA-ergodicity.

DEFINITION 3.3. Let a be a measure preserving action of a countable group Γ. We say that a

is NA-ergodic if the restriction of a to every non-amenable subgroup of Γ is ergodic. We say that

a is strongly NA-ergodic if the restriction of a to every non-amenable subgroup of Γ is strongly

ergodic.

EXAMPLE 3.4. The central example of an NA-ergodic (and in fact, strongly NA-ergodic) action

is the Bernoulli shift action sΓ; if H ≤ Γ is non-amenable then sΓ|H ∼= sH is strongly ergodic.

More generally, if Γ acts on a countable set T and the stabilizer of every t ∈ T is amenable then the

generalized Bernoulli shift sT = Γ ysT ([0, 1]T , λT ) is strongly NA-ergodic (see, e.g., [KT08]).

EXAMPLE 3.5. The action SL2(Z) y (T2, λ2) by matrix multiplication, where λ2 is Haar

measure on T2, is another example of a strongly NA-ergodic action. A proof of this is given in

[Kec07, 5.(B)].

EXAMPLE 3.6. I would like to thank L. Bowen for bringing my attention to this example. Let

Γ be a countable group and let f be an element of the integral group ring ZΓ. The left translation

action of Γ on the discrete abelian group ZΓ/ZΓf is by automorphisms, and this induces an action

of Γ by automorphisms on the dual group ̂ZΓ/ZΓf , which is a compact metrizable abelian group
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so that this action preserves normalized Haar measure µf . Bowen has shown that if the function

f has an inverse in `1(Γ) then the system Γ y ( ̂ZΓ/ZΓf, µf ) is weakly contained in sΓ and is

therefore strongly NA-ergodic by Proposition 3.10 ([Bow10a, §5]; note that the hypothesis that Γ is

residually finite is not used in that section so that this holds for arbitrary countable groups Γ).

REMARK 3.7. The actions from Examples 3.4, 3.5, and 3.6 share a common property: they

are tempered in the sense of [Kec07]. A measure preserving action a = Γ ya (X,µ) is called

tempered if the Koopman representation κa0 on L2
0(X,µ) = L2(X,µ) 	 C1X is weakly contained

in the regular representation λΓ of Γ. Any tempered action a of a non-amenable group Γ has

stable spectral gap in the sense of [Pop08] (this means κa0 ⊗ κa0 does not weakly contain the trivial

representation), and this implies in turn that the product action a× b is strongly ergodic relative to

b for every measure preserving action b of Γ (see [Ioa06]). In particular (taking b = iΓ) a tempered

action a of a non-amenable group is itself strongly ergodic. Since the restriction of a tempered

action to a subgroup is still tempered it follows that every tempered action is strongly NA-ergodic.

In [Kec07] it is shown that the converse holds for any action on a compact Polish group G by

automorphisms (such an action necessarily preserves Haar measure µG):

THEOREM 3.8 (Theorem 4.6 of [Kec07]). Let Γ be a countably infinite group acting by au-

tomorphisms on a compact Polish group G. Let Ĝ denote the (countable) set of all isomorphism

classes of irreducible unitary representations of G and let Ĝ0 = Ĝ \ {1̂G}. Then the following are

equivalent:

(1) The action Γ y (G,µG) is tempered;

(2) Every stabilizer of the associated action of Γ on Ĝ0 is amenable.

(3) The action Γ y (G,µG) is NA-ergodic.

(4) The action Γ y (G,µG) is strongly NA-ergodic.

Condition (2) of Theorem 3.8 should be compared with part (ii) of Lemma 3.11 below, although

Lemma 3.11 deals with general NA-ergodic actions. It follows from [Kec10, Proposition 10.5] that

any measure preserving action weakly contained in sΓ is tempered. I do not know however whether

the converse holds, although Example 3.6 and Theorem 3.8 suggest that this may be the case for

actions by automorphisms on compact Polish groups.
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QUESTION 3.9. Let Γ be a countable group acting by automorphisms on a compact Polish

group G and assume the action is tempered. Does it follow that the action is weakly contained in

sΓ? As a special case, is it true that the action SL2(Z) y (T2, λ2) is weakly contained in sSL2(Z)?

We now establish some properties of general NA-ergodic actions.

PROPOSITION 3.10. Any factor of an NA-ergodic action is NA-ergodic. Any action weakly

contained in a strongly NA-ergodic action is strongly NA-ergodic.

PROOF. The first statement is clear and the second is a consequence of strong ergodicity being

downward closed under weak containment (see [CKTD11, Proposition 5.6]). �

Part (ii) of the following lemma is one of the key facts about NA-ergodicity.

LEMMA 3.11. Let b = Γ yb (Y, ν) be any non-trivial NA-ergodic action of a countable group

Γ.

(i) Suppose that C ⊆ Γ is a subset of Γ such that ν({y ∈ Y : C ⊆ Γy}) > 0. Then the

subgroup 〈C〉 generated by C is amenable.

(ii) The stabilizer Γy of ν-almost every y ∈ Y is amenable.

PROOF. We begin with part (i). The hypothesis tells us that ν(Fixb(C)) > 0. Since ν is not a

point mass there is some B ⊆ Fixb(C) with 0 < ν(B) < 1. Then B witnesses that b � 〈C〉 is not

ergodic, so 〈C〉 is amenable by NA-ergodicity of b.

For (ii), let F denote the collection of finite subsets F of Γ such that 〈F 〉 is non-amenable and

let NA = {y ∈ Y : Γy is non-amenable}. Then

NA =
⋃
F∈F
{y ∈ Y : F ⊆ Γy}.

By part (i), ν({y ∈ Y : F ⊆ Γy}) = 0 for each F ∈ F. Since F is countable it follows that

ν(NA) = 0. �[Lemma]

The function N : SubΓ → SubΓ sending a subgroup H ≤ Γ to its normalizer N(H) in Γ is

equivariant for the conjugation action Γ yc SubΓ. In [Ver12, §2.4] Vershik examines the following

transfinite iterations of this function.
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DEFINITION 3.12. DefineNα : SubΓ → SubΓ by transfinite induction on ordinals α as follows.

N0(H) = H,

Nα+1(H) = N(Nα(H)) is the normalizer of Nα(H)

Nλ(H) =
⋃
α<λ

Nα(H) when λ is a limit ordinal.

EachNα is equivariant with respect to conjugation. For eachH the setsH,N(H), . . . , Nα(H), . . .

form an increasing ordinal-indexed sequence of subsets of Γ. The least ordinal αH such that

NαH+1(H) = NαH (H) is therefore countable. If θ ∈ IRSΓ then we let θα = (Nα)∗θ for each

countable ordinal α < ω1. The net {θα}α<ω1 is increasing in the sense of [CP12, §3.5] (see also

the paragraphs preceding Theorem 8.15 below), so by [CP12, Theorem 3.12] there is a weak∗-limit

θ∞ such that θα ≤ θ∞ for all α. Since IRSΓ is a second-countable topological space there is a

countable ordinal α such that θβ = θ∞ for all β ≥ α. Thus N∗θ∞ = θ∞, and it follows from

[Ver12, Proposition 4] that θ∞ concentrates on the self-normalizing subgroups of Γ.

THEOREM 3.13. Let a = Γ ya (X, ν) be a non-trivial measure preserving action of the

countable group Γ. Suppose that a is NA-ergodic. Then the stabilizer Γx of µ-almost every x ∈ X

is amenable. In addition, at least one of the following is true:

(1) There exists a normal amenable subgroup N /Γ such that the stabilizer of µ-almost every

x ∈ X is contained in N .

(2) θ∞a is a non-atomic, self-normalizing, infinitely generated amenable invariant random

subgroup, where θa denotes the stabilizer distribution of a.

PROOF. Let θ = θa. It is enough to show that either (1) or (2) is true. We may assume that Γ is

non-amenable. There are two cases to consider.

Case 1: There is some ordinal α such that the measure θα has an atom. Let α0 be the least

such ordinal. Then θα0 is NA-ergodic, being a factor of a, and thus the restriction of θα0 to every

finite index subgroup of Γ is ergodic since Γ is non-amenable. Thus, θα0 having an atom implies

that it is a point mass, so let N ≤ Γ be such that θα0 = δN . Then N is a normal subgroup of

Γ and we show that N is amenable so that alternative (1) holds in this case. By definition of α0,

a and each θα for α < α0 are non-trivial NA-ergodic actions. Lemma 3.11 then implies that the

invariant random subgroups type(a) = θ0 and type(θα) = θα+1, for α < α0, all concentrate on the
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amenable subgroups of Γ. If α0 = 0 or if α0 is a successor ordinal then we see immediately that

N is amenable. If α0 is a limit ordinal then N is an increasing union of amenable groups and so is

amenable in this case as well.

Case 2: The other possibility is that θ∞ has no atoms. Thus θ∞ is a non-trivial NA-ergodic

action with type(θ∞) = N∗θ
∞ = θ∞. This implies that θ∞ is amenable by Lemma 3.11. Since

θ∞ is non-atomic and there are only countably many finitely generated subgroups of Γ, θ∞ must

concentrate on the infinitely generated subgroups. This shows that (2) holds. �

3.3. Amenable invariant random subgroups. We record a corollary of Theorem 3.13 which

will be used in the proof of our final characterization of shift-minimality.

COROLLARY 3.14. Any group Γ that is not shift-minimal either has a non-trivial normal

amenable subgroup N , or has a non-atomic, self-normalizing, infinitely generated, amenable in-

variant random subgroup θ such that the action θ = Γ yc (SubΓ, θ) is weakly contained in sΓ.

PROOF. Let Γ be a group that is not shift-minimal so that there exists some non-trivial aweakly

contained in sΓ which is not free. The action a is strongly NA-ergodic by 3.4 and 3.10, so a satisfies

the hypotheses of Theorem 3.13. If (1) of Theorem 3.13 holds, say with witnessing normal amenable

subgroup N ≤ Γ, then N is non-trivial since a is non-free. If alternative (2) of Theorem 3.13 holds

then taking θ = θ∞a works. �

We also need

PROPOSITION 3.15. If Γ is shift-minimal then Γ has no non-trivial normal amenable subgroups.

PROOF. Suppose that Γ has a non-trivial normal amenable subgroup N . Amenability implies

that ιN ≺ sN . Then since co-inducing preserves weak containment we have

sΓ,Γ/N ≺ CIndΓ
N (ιN ) ≺ CIndΓ

N (sN ) ∼= sΓ

which shows that sΓ,Γ/N ≺ sΓ. The action sΓ,Γ/N is not free since N ⊆ ker(sΓ,Γ/N ). This shows

that Γ is not shift-minimal. �

The following immediately yields Theorem 1.3 from the introduction.

THEOREM 3.16. The following are equivalent for a countable group Γ:
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(1) Γ is not shift-minimal.

(2) There exists a non-trivial amenable invariant random subgroup θ of Γ that is weakly

contained in sΓ.

(3) Either ARΓ is finite and non-trivial, or there exists an infinite amenable invariant random

subgroup θ of Γ that is weakly contained in sΓ.

PROOF. (1)⇒(3): Suppose that Γ is not shift-minimal. If the second alternative of Corollary

3.14 holds then we are done. Otherwise, the first alternative holds and so ARΓ is non-trivial. If

ARΓ is finite then (3) is immediate, and if ARΓ is infinite then the point mass at ARΓ shows that (3)

holds.

(3)⇒(2) is clear. Now let θ be as in (2) and we will show that Γ is not shift-minimal. If θ is a

point mass, say at H ∈ Sub(Γ), then H is normal and by hypothesis H is non-trivial and amenable

so (1) then follows from Proposition 3.15. If θ is not a point mass then Γ yc (SubΓ, θ) is a non-

trivial and non-free measure preserving action of Γ that is weakly contained in sΓ. This action then

witnesses that Γ is not shift-minimal. �

Any group with no non-trivial normal amenable subgroups is ICC (see [dlH07, Appendix J] for

a proof), so Proposition 3.15 also shows

PROPOSITION 3.17. Shift-minimal groups are ICC.

4. Permanence properties

This section examines various circumstances in which shift-minimality is preserved. §4.1 es-

tablishes a lemma which will be used to show that, in many cases, shift-minimality passes to finite

index subgroups.

4.1. Invariant random subgroups with trivial intersection. For each invariant random sub-

group θ of ∆ define the set

Pθ = {δ ∈ ∆ : θ({H : δ ∈ H}) > 0}.

We say that two invariant random subgroups θ and ρ intersect trivially if Pθ ∩ Pρ = {e}. This

notion comes from looking at freeness of a product action.
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LEMMA 4.1. If a = ∆ ya (X,µ) and b = ∆ yb (Y, ν) are measure preserving actions of ∆

then a× b is free if and only if θa and θb intersect trivially.

PROOF. For each δ ∈ ∆ we have Fixa×b(δ) = Fixa(δ)× Fixb(δ), and this set is (µ× ν)-null if

and only if either Fixa(δ) is µ-null or Fixb(δ) is ν-null. The lemma easily follows. �

It is a straightforward group theoretic fact that if L and K are normal subgroups of ∆ which

intersect trivially then they commute. This generalizes to invariant random subgroups as follows.

LEMMA 4.2. Let ∆ be a countable group. Let θ, ρ ∈ IRS∆ and suppose that θ and ρ intersect

trivially. Suppose L and K are subgroups of ∆ satisfying

θ({H ∈ Sub∆ : L ≤ H}) > 1
m

ρ({H ∈ Sub∆ : K ≤ H}) > 1
n

for some n,m ∈ N. Then there exist commuting subgroups L0 ≤ L and K0 ≤ K with [L : L0] < n

and [K : K0] < m.

PROOF. Define the sets

QL = {l ∈ L : 〈lKl−1 ∪K〉 ⊆ Pρ}

QK = {k ∈ K : 〈kLk−1 ∪ L〉 ⊆ Pθ}.

If l ∈ QL then for any k ∈ K we have lkl−1k−1 ∈ 〈lKl−1 ∪ K〉 ⊆ Pρ. Similarly, if k ∈ QK

then for any l ∈ L we have lkl−1k−1 ∈ 〈kLk−1 ∪ L〉 ⊆ Pθ. Thus, if l ∈ QL and k ∈ QK then

lkl−1k−1 ∈ Pρ ∩ Pθ = {e} and so l and k commute. It follows that the groups L0 = 〈QL〉 ≤ L

and K0 = 〈QK〉 ≤ K commute.

Suppose for contradiction that [L : L0] ≥ n and let l0, . . . , ln−1 be elements of distinct left

cosets of L0 in L, with l0 = e. For each i < n let Ai = {H ∈ Sub∆ : liKl
−1
i ≤ H} so that

ρ(Ai) = ρ(lci · A0) = ρ(A0) > 1
n by hypothesis. There must be some 0 ≤ i < j < n with

ρ(Ai ∩ Aj) > 0. Let l = l−1
j li. Then ρ(lc · A0 ∩ A0) = ρ(Ai ∩ Aj) > 0 and lc · A0 ∩ A0 consists

of those H ∈ Sub∆ such that lKl−1 ∪ K ≤ H . This shows that 〈lKl−1 ∪ K〉 ⊆ Pρ and thus

l ∈ QL ⊆ L0. But this contradicts that l = l−1
j li and liL0 6= ljL0. Therefore [L : L0] < n.

Similarly, [K : K0] < m. �[Lemma 4.2]
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THEOREM 4.3. Let θ, ρ ∈ IRS∆, L,K ≤ ∆, and n,m ∈ N be as in Lemma 4.2, and assume in

addition that L and K are finitely generated. Then there exist commuting subgroups NL and NK ,

both normal in ∆, with [L : L ∩NL] <∞ and [K : K ∩NK ] <∞.

PROOF. For a subgroup H ≤ ∆ and i ∈ N let H(i) be the intersection of all subgroups

of H of index strictly less than i. Then L(n) is finite index in L, and K(m) is finite index in

K, since L and K are finitely generated. By Lemma 4.2 L(n) and K(m) commute. For any

γ, δ ∈ ∆ the groups γLγ−1 and δKδ−1 satisfy the hypotheses of Lemma 4.2 hence the groups

(γLγ−1)(n) = γL(n)γ−1 and (δKδ−1)(m) = δK(m)δ−1 commute. It follows that the normal

subgroups NL = 〈
⋃
δ∈∆ δL(n)δ−1〉 and NK = 〈

⋃
δ∈∆ δK(m)δ−1〉 satisfy the conclusion of the

theorem. �

4.2. Finite index subgroups. The following is an analogue of a theorem of [B9̀1], and its

proof is essentially the same as [BdlH00, Proposition 6].

PROPOSITION 4.4. Let a be a measure preserving action of a countable group Γ and let N be

a normal subgroup of Γ. If the restriction a � N of a to N is free then µ(Fixa(γ)) = 0 for any

γ ∈ Γ satisfying

(4.1) |{hγh−1 : h ∈ N}| =∞.

Thus, if (4.1) holds for all γ 6∈ N then a m.p. action of Γ is free if and only if its restriction to N is

free.

For example, it is shown in [B9̀1] that (4.1) holds for all γ 6∈ N whenever CΓ(N) = {e} and

N is ICC.

PROOF OF PROPOSITION 4.4. Suppose γ ∈ Γ\{e} is such that µ(Fixa(γ)) > 0 and {hγh−1 :

h ∈ N} is infinite. It suffices to show that a � N is not free. The Poincaré recurrence theorem

implies that there exist h0, h1 ∈ N with h0γh
−1
0 6= h1γh

−1
1 and µ(ha0 ·Fixa(γ)∩ha1 ·Fixa(γ)) > 0.

Let h = h−1
1 h0 so that h ∈ N and hγh−1 6= γ. Since Fixa(γ) = Fixa(γ−1) we have

ha · Fixa(γ) ∩ Fixa(γ) = Fixa(hγh−1) ∩ Fixa(γ−1) ⊆ Fixa(γ−1hγh−1),
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which implies µ(Fixa(γ−1hγh−1)) > 0. This shows a � N is not free since e 6= γ−1(hγh−1) =

(γ−1hγ)h−1 ∈ N by our choice of h. �

PROPOSITION 4.5. Let K be a finite index subgroup of a countable ICC group Γ, and let a be

a measure preserving action of Γ. If a � K is free, then a is free.

PROOF. Let N =
⋂
γ∈Γ γKγ

−1 be the normal core of K in Γ. Then N is a normal finite

index subgroup of Γ. Since Γ is ICC, the group CΓ(γ) is infinite index in Γ for any γ ∈ Γ, hence

CΓ(γ)∩N is infinite index in N . In particular {hγh−1 : h ∈ N} is infinite. If a is any m.p. action

of Γ whose restriction to K is free, then the restriction of a to N is free, so by Proposition 4.4, a is

free. �

Proposition 4.5 can be used to characterize exactly when shift-minimality of Γ may be deduced

from shift-minimality of one of its finite index subgroups.

PROPOSITION 4.6. Let K be a finite index subgroup of the countable group Γ. Suppose that K

is shift-minimal. Then the following are equivalent.

(1) Γ is shift-minimal.

(2) Γ is ICC.

(3) Γ has no non-trivial finite normal subgroups.

(4) CΓ(N) = {e} where N =
⋂
γ∈Γ γKγ

−1.

PROOF. Since K is shift-minimal, it is also ICC by Proposition 3.15. The equivalence of (2),

(3), and (4) then follows from [Pré12, Proposition 6.3]. It remains to show that (2)⇒(1). Suppose

that Γ is ICC and that a ≺ sΓ is non-trivial. Then a � K ≺ sK , so a � K is free by shift-minimality

of K, and therefore a itself is free by Proposition 4.5. �

Proposition 4.6 shows that, except for the obvious counterexamples, shift-minimality is inher-

ited from a finite index subgroup. It seems likely that, conversely, shift-minimality passes from a

group to each of its finite index subgroups. By Proposition 4.6 to show this it would be enough

to show that shift-minimality passes to finite index normal subgroups (see the discussion following

Question 7.11 in §7). Theorem 4.3 can be used to give a partial confirmation of this. Recall that a

group is locally finite if each of its finitely generated subgroups is finite.
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THEOREM 4.7. Let N be a normal finite index subgroup of a shift-minimal group Γ. Suppose

that N has no infinite locally finite invariant random subgroups that are weakly contained in sN .

Then N is shift-minimal.

COROLLARY 4.8. Let Γ be a shift-minimal group. Then every finite index subgroup of Γ which

is torsion-free is shift-minimal.

PROOF OF COROLLARY 4.8. Let K be a torsion-free finite index subgroup of Γ. Note that K

is ICC since the ICC property passes to finite index subgroups. The group N :=
⋂
γ∈Γ γKγ

−1

is finite index in Γ and torsion-free, and it is moreover normal in Γ. By Theorem 4.7, N is shift-

minimal, whence K is shift-minimal by Proposition 4.6. �

Theorem 4.7 will follow from:

THEOREM 4.9. Let ∆ be a countable group with AR∆ = {e}. Let θ and ρ be invariant random

subgroups of ∆ which are not locally finite. Suppose that ρ is NA-ergodic. Then θ and ρ have

non-trivial intersection.

We first show how to deduce 4.7 from 4.9.

PROOF OF THEOREM 4.7 FROM THEOREM 4.9. Let a = N ya (X,µ) be a non-trivial m.p.

action of N weakly contained in sN . We will show that a is free.

The co-induced action c = CIndΓ
N (a) is weakly contained in sΓ, so c is free by shift-minimality

of Γ. Let T = {t0, . . . , tn−1} be a transversal for the left cosets of N in Γ. Then c � N ∼=∏
0≤i<n a

ti where for b ∈ A(N,X, µ), bt ∈ A(N,X, µ) is given by kb
t

= (t−1kt)b for each

k ∈ N , t ∈ T [Kec10, 10.(G)]. Observe that θat = (ϕt)∗θa where ϕt : SubN → SubN is the

conjugation map H 7→ tHt−1. In particular, for each t ∈ T , at is free if and only if a is free. It

is easy to see that (sN )t ∼= sN for each t ∈ T , so it follows that c � N ∼=
∏

0≤i<n a
ti ≺ sN . For

each j < n let cj =
∏
j≤i<n a

ti . We will show that cj is free for all 0 ≤ j < n, which will finish

the proof since this will show that cn−1 = atn−1 is free, whence a is free.

We know that c0 = c � N is free. Assume for induction that cj−1 is free (where j ≥ 1 is less

than n) and we will show that cj is free. Note the following:

(i) θatj−1 and θcj intersect trivially. This follows from Lemma 4.1 because cj−1 = atj−1×cj

is free.
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(ii) Both θatj−1 and θcj are NA-ergodic, since they are both weakly contained in sN .

(iii) ARN = {e}. This is because Γ is shift-minimal, so that ARΓ = {e} by Proposition 3.15,

and N is normal in Γ so apply Proposition 9.1.

Theorem 4.9 along with (i), (ii), and (iii) imply that either θatj−1 or θcj is locally finite. But N

has no infinite locally finite invariant random subgroups weakly contained in sN by hypothesis, and

since ARN = {e}, N actually has no non-trivial locally finite invariant random subgroups weakly

contained in sN . It follows that either θatj−1 or θcj is trivial. If θcj is trivial then cj is free, which

is what we wanted to show. If θatj−1 is trivial then atj−1 is free, so ati is free for all i < n, and

therefore cj is free all the same. �

PROOF OF THEOREM 4.9. Suppose toward a contradiction that θ and ρ intersect trivially. By

hypothesis θ is not locally finite, so the set of H ∈ Sub∆ that contain an infinite finitely generated

subgroup is θ-non-null. As there are only countably many infinite finitely generated subgroups of

∆, there must be at least one - call it L - for which θ({H : L ⊆ H}) > 0. Similarly, there is

an infinite finitely generated K ≤ ∆ with ρ({H : K ≤ H}) > 0. Then θ, ρ, L and K satisfy

the hypotheses of Theorem 4.3 (for some n and m), so there exist normal subgroups NL, NK ≤ ∆

which commute, with [L : L ∩ NL] < ∞ and [K : K ∩ NK ] < ∞. Since L and K are infinite,

neither NL nor NK is trivial, and since AR∆ = {e}, both NL and NK are non-amenable.

Pick some k 6= ewith k ∈ K∩NK . Since k ∈ K, the set {H : k ∈ H} has positive ρ-measure,

and it is NL-invariant since NL commutes with k. NA-ergodicity of ρ and non-amenability of NL

then imply that ρ({H : k ∈ H}) = 1. On the other hand, the set

Mρ = {δ ∈ ∆ : ρ({H : δ ∈ H}) = 1}

is a normal subgroup of ∆ which acts trivially under ρ, so NA-ergodicity of ρ implies Mρ is

amenable, and as AR∆ = {e}, we actually have Mρ = {e}, which contradicts that k ∈Mρ. �

Question 7.11 below asks whether a finite index subgroup of a shift-minimal group is always

shift-minimal.

4.3. Direct sums.
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PROPOSITION 4.10. Let (Γi)i∈I be a sequence of countable ICC groups and let a be a measure

preserving action of Γ =
⊕

i∈I Γi. If a � Γi is free for each i ∈ I then a is free. In particular, the

direct sum of shift-minimal groups is shift-minimal.

PROOF. We will show that if a is not free then a � Γi is not free for some i ∈ I . We give

the proof for the case of the direct sum of two ICC groups - say Γ1 and Γ2 - since the proof for

infinitely many groups is nearly identical. Let Γ = Γ1 × Γ2 and let (γ, δ) ∈ Γ be such that

µ
(
Fixa((γ, δ))

)
> 0 where (γ, δ) 6= eΓ. Suppose that δ 6= e (the case where γ 6= e is similar).

Since Γ2 is ICC we have that CΓ2(δ) is infinite index in Γ2 so by Poincaré recurrence there exists

α ∈ Γ2, α 6∈ CΓ2(δ) such that

µ
(
(e, α)a · Fixa((γ, δ)) ∩ Fixa((γ, δ))

)
> 0.

Thus µ
(
Fixa(〈(γ, αδα−1), (γ, δ)〉)

)
> 0 and in particular µ

(
Fixa((e, αδα−1δ−1))

)
> 0. Our

choice of α implies that αδα−1δ−1 6= e and so a � Γ2 is non-free as was to be shown. �

4.4. Other permanence properties.

PROPOSITION 4.11. Let a be a measure preserving action of Γ. Let N be a normal subgroup

of Γ. Suppose that both N and CΓ(N) are ICC. Suppose that a � N and a � CΓ(N) are both free.

Then a is free.

PROOF. Let K = CΓ(N)N . Then K is normal in Γ since both N and CΓ(N) are normal. By

hypothesisCΓ(N)∩N = {e} soK ∼= CΓ(N)×N . It follows thatK is ICC, being a product of ICC

groups. Proposition 4.10 then implies that a � K is free. Since CΓ(K) ≤ CΓ(CΓ(N)) ∩CΓ(N) =

Z(CΓ(N)) = {e}, Proposition 4.4 implies that a is free. �

DEFINITION 4.12. A subgroup H of Γ is called almost ascendant in Γ if there exists a well-

ordered increasing sequence {Hα}α≤λ of subgroups of Γ, indexed by some countable ordinal λ,

such that

(i) H = H0 and Hλ = Γ.

(ii) For each α < λ, either Hα is a normal subgroup ofHα+1 orHα is a finite index subgroup

of Hα+1.

(iii) Hβ =
⋃
α<β Hα whenever β is a limit ordinal.
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We call {Hα}α≤λ an almost ascendant series for H in Γ. If H is almost ascendant in Γ and if

there exists an almost ascendant series {Hα}α≤λ for H in Γ such that Hα is normal in Hα+1 for all

α < λ then we say that H is ascendant in Γ and we call {Hα}α≤λ an ascendant series for H in Γ.

PROPOSITION 4.13. Let a = Γ ya (X,µ) be a measure preserving action of Γ.

(1) Suppose that L is an almost ascendant subgroup of Γ that is ICC and satisfies CΓ(L) =

{e}. Then a is free if and only if a � L is free. Thus, if L is shift-minimal then so is Γ.

(2) Suppose that L is an ascendant subgroup of Γ such that ARL = ARCΓ(L) = {e}. Then a

is free if and only if both a � L and a � CΓ(L) are free.

PROOF. (1): Assume that a � L is free. Let {Lα}α≤λ be an almost ascendant series for L in

Γ. Then CΓ(Lα) = {e} for all α ≤ λ. By transfinite induction each Lα is ICC. Another induction

shows that each a � Lα is free: this is clear for limit α, and at successors, Lα is either normal or

finite index in Lα+1, so assuming a � Lα is free it follows that a � Lα+1 is free by applying either

Proposition 4.11 (Proposition 4.4 also works) or Proposition 4.5.

If now L is shift-minimal and a is a non-trivial m.p. action of Γ with a ≺ sΓ then a � L ≺ sL

so that a � L is free and thus a is free.

(2): Assume that both a � L and a � CΓ(L) are free. Let {Lα}α≤λ be an ascendant series for L

in Γ. Theorem 9.9 implies that ARLα = ARCΓ(Lα) = {e} for all α ≤ λ. For each α ≤ λ we have

{e} = ARCΓ(Lα) ∩ Lα+1 = ARCΓ(Lα) ∩ CLα+1(Lα) = ARCLα+1
(Lα)

where the last equality follows from Corollary 9.4 since the series {CLβ (Lα)}β≤λ is ascendant in

CΓ(Lα). It is clear that CLα+1(Lα) ≤ CΓ(L), so by hypothesis a � CLα+1(Lα) is free for all

α ≤ λ. We now show by transfinite induction on α ≤ λ that a � Lα is free. The induction is

clear at limit stages. At successor stages, if we assume for induction that a � Lα is free then all the

hypotheses of Proposition 4.11 hold and it follows that a � Lα+1 is free. �

PROPOSITION 4.14. Let a = Γ ya (X,µ) be a measure preserving action of Γ. Let K =

ker(a).

(1) Suppose that there exists a normal subgroup N of Γ such that a � N is free and such that

every finite index subgroups of N acts ergodically. Then Γx = K almost surely.
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(2) Suppose that a is NA-ergodic and there exists a non-amenable normal subgroup N of Γ

such that a � N is free. Then K is amenable and Γx = K almost surely.

PROOF. We begin with (1). Note that, by Proposition 4.4, if γ ∈ Γ is such that the set {hγh−1 :

h ∈ N} is infinite, then µ(Fixa(γ)) = 0. It therefore suffices to show that if µ(Fixa(γ)) > 0 and

{hγh−1 : h ∈ N} is finite, then γ ∈ K. This set being finite means that the groupH = CΓ(γ)∩N

is finite index inN , so a � H is ergodic by hypothesis. SinceH ≤ CΓ(γ), the set Fixa(γ) is a � H-

invariant, so if it is non-null then it must be conull, i.e., γ ∈ K, by ergodicity.

For (2), amenability of K is immediate since a is non-trivial and NA-ergodic. NA-ergodicity

also implies that every finite index subgroup of N acts ergodically, so (1) applies and we are done.

�

The following Corollary replaces the hypothesis in Proposition 4.13.(1) that CΓ(L) = {e} with

the hypotheses that ARΓ = {e} and a is NA-ergodic.

COROLLARY 4.15. Suppose ARΓ = {e}. Let a be any NA-ergodic action of Γ and suppose

that there exists a non-trivial almost ascendant subgroup L of Γ such that the restriction a � L of a

to L is free, then a itself is free.

PROOF. Let {Lα}α≤λ be an almost ascendant series for L in Γ. Since ARΓ = {e}, Corollary

9.4 implies that ARLα = {e} for each α ≤ λ. Suppose for induction that we have shown that

a � Lα is free for all α < β. If β is a limit then Lβ =
⋃
α<β Lα so a � Lβ is free as well. If

β = α+ 1 is a successor then a � Lα is free and Lα is either finite index or normal in Lβ . If Lα is

finite index in Lβ then a � Lβ is free by Proposition 4.5. If Lα is normal in Lβ then a � Lβ is free

by Proposition 4.14.(2). It follows by induction that a � Γ is free. �

COROLLARY 4.16.

(1) Let Γ be a countable group with ARΓ = {e}. If Γ contains a shift-minimal almost ascen-

dant subgroup L then Γ is itself shift-minimal.

(2) Suppose that Γ is a countable group containing an ascendant subgroup L such that L is

shift-minimal and ARCΓ(L) = {e}. Then Γ is shift-minimal. In particular, if both L and

CΓ(L) are shift-minimal then so is Γ.



181

PROOF. Starting with (1), let L be a shift-minimal almost ascendant subgroup of Γ. Let a be

a non-trivial measure preserving action of Γ weakly contained in sΓ. Then a is NA-ergodic and

a � L is free, so a is free by Corollary 4.15. Statement (2) is a special case of (1) since Theorem

9.9 shows that ARΓ = {e}. �

5. Examples of shift-minimal groups

Theorem 5.15 below shows that if the reduced C∗-algebra of a countable group Γ admits a

unique tracial state then Γ is shift-minimal. We can also often gain more specific information by

giving direct ergodic theoretic proofs of shift-minimality. These proofs often rely on an appeal to

some form of the Poincaré recurrence theorem (several proofs of which may be found in [Ber00]).

5.1. Free groups. Since the argument is quite short it seems helpful to present a direct argu-

ment that free groups are shift-minimal.

THEOREM 5.1. Let Γ be a non-abelian free group.

(i) If a = Γ ya (X,µ) is any non-trivial measure preserving action of Γ which is NA-

ergodic then a is free.

(ii) Γ is shift-minimal.

PROOF. For (i) we show that non-free actions of Γ are never NA-ergodic. Suppose that a is

non-free so that µ(Fixa(γ)) > 0 for some γ ∈ Γ − {e}. Fix any δ ∈ Γ − 〈γ〉. By the Poincaré

recurrence theorem there exists an n > 0 with µ(δn · Fixa(γ) ∩ Fixa(γ)) > 0. The group H

generated by δnγδ−n and γ is free on these elements and αa · x = x for every α ∈ H and x ∈

δn · Fixa(γ) ∩ Fixa(γ). In particular a � H is not ergodic, whence a cannot be NA-ergodic.

Statement (ii) now follows since any non-trivial action weakly contained in sΓ is strongly NA-

ergodic, hence free by (i). �

Another proof of part (i) of Theorem 5.1 follows from Theorem 3.13 (see also [AGV12, Lemma

24]). Indeed, alternative (2) of Theorem 3.13 can never hold since a non-abelian free group has only

countably many amenable subgroups. So if a is any non-trivial NA-ergodic action of a non-abelian

free group Γ then (1) of Theorem 3.13 holds, and so a is free since the only normal amenable

subgroup of Γ is the trivial group N = {e}.
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5.2. Property (BP).

DEFINITION 5.2. Let Γ be a countable group.

(1) Γ is said to be a Powers group ([dLH85]) if Γ 6= {e} and for every finite subset F ⊆

Γ \ {e} and every integer N > 0 there exists a partition Γ = C t D and elements

α1, . . . , αN ∈ Γ such that

γC ∩ C = ∅ for all γ ∈ F

αjD ∩ αkD = ∅ for all j, k ∈ {1, . . . , N}, j 6= k.

Γ is said to be a weak Powers group ([BN88]) if Γ satisfies all instances of the Powers

property with F ranging over finite subsets of mutually conjugate elements of Γ \ {e}.

We define Γ to be a weak∗ Powers group if Γ satisfies all instances of the Powers property

with F ranging over singletons in Γ \ {e}.

(2) Γ has property Pnai ([BCdLH94]) if for any finite subset F of Γ there exists an element

α ∈ Γ of infinite order such that for each γ ∈ F , the canonical homomorphism from

the free product 〈γ〉 ∗ 〈α〉 onto the subgroup 〈γ, α〉 of Γ generated by γ and α is an

isomorphism.

If Γ satisfies the defining property of Pnai but with F only ranging over singletons,

then we say that Γ has property P∗nai.

(3) Γ is said to have property (PH) ([Pro93]) if for all nonempty finite F ⊆ Γ \ {e} there

exists some ordering F = {γ1, . . . , γm} of F along with an increasing sequence e ∈

Q1 ⊆ · · · ⊆ Qm of subsets of Γ such that for all i ≤ m, all nonempty finite M ⊆ Qi and

all n > 0 we may find α1, . . . , αn ∈ Qi and T1, . . . , Tn pairwise disjoint such that

(αjδ)γi(αjδ)
−1(Γ \ Tj) ⊆ Tj

for all δ ∈M and 1 ≤ j ≤ n.

Examples of groups with these properties may be found in [AM07, dlHP11, MOY11, PT11]

along with the references given in the above definitions. For our purposes, what is important is a

common consequence of these properties.
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DEFINITION 5.3. A countable group Γ is said to have property (BP) if for all γ ∈ Γ \ {e} and

n ≥ 2 there exists α1, . . . , αn ∈ Γ, a subgroup H ≤ Γ, and pairwise disjoint subsets T1, . . . , Tn ⊆

H such that

αjγα
−1
j (H \ Tj) ⊆ Tj

for all j = 1, . . . , n.

Note that when γ, H , α1, . . . , αn, and T1, . . . , Tn are as above, then αjγα−1
j ∈ H and Tj 6= ∅

for all j ≤ n.

We show in Theorem 5.6 that groups with property (BP) satisfy a strong form of shift-minimality.

The definition of property (BP) (as well as its name) is motivated by an argument of M. Brin and

G. Picioroaga showing that all weak Powers groups contain a free group. Their proof appears in

[dlH07] (see the remark following Question 15 in that paper), though we also present a version of

their proof in Theorem 5.4 since we will need it for Theorem 5.6.

THEOREM 5.4 (Brin, Picioroaga [dlH07]).

(1) All weak∗ Powers groups have property (BP).

(2) Property P∗nai implies property (BP).

(3) Property (PH) implies property (BP).

(4) Groups with property (BP) contain a free group.

PROOF. (1): given γ ∈ Γ\{e} and n ≥ 1 by the weak∗ Powers property there exists α1, . . . , αn

and a partition Γ = C tD of Γ with γC ∩C = ∅ and αiD ∩αjD = ∅ for all 1 ≤ i, j ≤ n, i 6= j.

Take H = Γ and for each 1 ≤ j ≤ n let Tj = αjD so that the sets T1, . . . , Tn are pairwise disjoint

and

αjγα
−1
j (Γ \ Tj) = αjγ(Γ \D) = αjγC ⊆ αj(Γ \ C) = αjD = Tj

thus verifying (BP).

(2): Let γ ∈ Γ \ {e}. By property P∗nai there exists an element α ∈ Γ of infinite order such

that the subgroup H = 〈γ, α〉 of Γ is canonically isomorphic to the free product 〈γ〉 ∗ 〈α〉. Let Tn

denote the set of elements of H whose reduced expression starts with αnγk for some k ∈ Z with

γk 6= e. Then the sets Tn, n ∈ N, are pairwise disjoint and αnγα−n(H \ Tn) ⊆ Tn.

(3): Assume that Γ has property (PH) and fix any γ ∈ Γ \ {e} and n ≥ 1 toward the aim of

verifying property (BP). Taking F = {γ} we obtain a set Q = Q1 ⊆ Γ from the above definition
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of (PH) with e ∈ Q. Taking M = {e}, the defining property of Q produces α1, . . . , αn ∈ Q and

pairwise disjoint T1, . . . , Tn ⊆ Γ with

αjγα
−1
j (Γ \ Tj) ⊆ Tj ,

so taking H = Γ confirms this instance of property (BP).

Statement (4) is a consequence of the following Lemma, which will be used in Theorem 5.6

below.

LEMMA 5.5 (Brin, Picioroaga). Suppose that x1, . . . x4 are elements of a group H and that

T1, . . . , T4 are pairwise disjoint subsets of H such that

xj(H \ Tj) ⊆ Tj

for each j ∈ {1, . . . , 4}. Then the group elements u = x1x2 and v = x3x4 freely generate a

non-abelian free subgroup of H .

PROOF OF LEMMA 5.5. The hypothesis xj(H \Tj) ⊆ Tj implies that also x−1
j (H \Tj) ⊆ Tj .

For distinct i, j ∈ {1, . . . , 4} it then follows that

xixj(H \ Tj) ⊆ xiTj ⊆ xi(H \ Ti) ⊆ Ti

and (xixj)
−1(H \ Ti) ⊆ x−1

j Ti ⊆ x−1
j (H \ Tj) ⊆ Tj

so for u = x1x2 and v = x3x4 we have

u(H \ T2) ⊆ T1 u−1(H \ T1) ⊆ T2

v(H \ T4) ⊆ T3 v−1(H \ T3) ⊆ T4.

A ping pong argument now shows that u and v freely generate a non-abelian free subgroup of

H . �[Lemma 5.5]

If now Γ has property (BP) then taking any γ ∈ Γ \ {e} and n = 4 we obtain α1, . . . , α4 ∈ Γ,

H ≤ Γ and T1, . . . , T4 ⊆ H as in the definition of property (BP). Lemma 5.5 now applies with

xj = αjγα
−1
j for j ∈ {1, . . . , 4}. �[Theorem 5.4]

Lemma 5.5 can be used to show that any non-trivial ergodic invariant random subgroup of a

group with property (BP) contains a free group.
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THEOREM 5.6. Let Γ have property (BP) and let a = Γ ya (Y, ν) be an ergodic measure

preserving action of Γ. Suppose that a is non-free. Then the stabilizer of ν-almost every y ∈ Y

contains a non-abelian free group. In particular, all groups with property (BP) are shift-minimal.

PROOF. Since a is non-free there exists an element γ ∈ Γ \ {e} such that ν(A) = r > 0

where A = Fixa(γ). By the Poincaré recurrence theorem, for all large enough n (depending on

r), if A1, . . . , An ⊆ Y is any sequences of measurable subsets of Y each of measure r, then there

exist distinct i1, . . . , i4 ≤ n with ν(Ai1 ∩ Ai2 ∩ Ai3 ∩ Ai4) > 0. Pick such an n with n ≥ 4. By

property (BP) there exists α1, . . . , αn ∈ Γ, H ≤ Γ, and pairwise disjoint T1, . . . , Tn ⊆ H such

that αiγα−1
i (H \ Ti) ⊆ Ti for all i ∈ {1, . . . , n}. By our choice of n there must exist distinct

i1, . . . , i4 ≤ n such that

(5.1) ν(αai1A ∩ α
a
i2A ∩ α

a
i3A ∩ α

a
i4A) > 0.

For j = 1, . . . , 4 let xj = αijγα
−1
ij

. Lemma 5.5 (applied to x1, . . . x4 and T1, . . . T4) shows that

〈x1, . . . , x4〉 contains a free group. Additionally, (5.1) shows that ν(Fixa(〈x1, . . . , x4〉)) > 0 since

Fixa(〈x1, . . . , x4〉) ⊇
4⋂
j=1

Fixa(xi) =
4⋂
j=1

αaijA.

The event that Γy contains a free group is therefore non-null. This event is also a-invariant, so

ergodicity now implies that almost every stabilizer contains a free group.

If now b is any non-trivial measure preserving action of Γ weakly contained in sΓ then b is

ergodic and by Lemma 3.11 almost every stabilizer is amenable hence does not contain a free group.

Then b is essentially free by what we have already shown. Therefore Γ is shift-minimal. �

In [B9̀1] Bèdos defines a group Γ to be an ultraweak Powers group if it has a normal subgroup

N that is a weak Powers group such that CΓ(N) = {e}. Let us say that Γ is an ultraweak∗ Powers

group if it has a normal subgroup N that is an weak∗ Powers group such that CΓ(N) = {e}.

THEOREM 5.7. Let Γ be a countable group.

(1) Suppose that Γ contains an almost ascendant subgroup L with property (BP) such that

CΓ(L) = {e}. Then for every ergodic m.p. action a = Γ ya (X,µ) of Γ, either a is free

or Γx ∩ L contains a non-abelian free group almost surely.
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(2) Suppose that Γ contains an ascendant subgroup L such that both L and CΓ(L) have

property (BP). Then for every ergodic m.p. action a = Γ ya (X,µ) of Γ, either a is

free, Γx ∩ L contains a non-abelian free group almost surely, or Γx ∩ CΓ(L) contains a

non-abelian free group almost surely.

(3) Every non-trivial ergodic invariant random subgroup of an ultraweak∗-Powers group con-

tains a non-abelian free group almost surely.

PROOF. (1) Since L has property (BP) it is ICC, so if a � L is free then a itself is free by part

(1) of Proposition 4.13. Suppose then that a � L is non-free. Let π : (X,µ)→ (Z, η) be the ergodic

decomposition map for a � L and let µ =
∫
z µz dη(z) be the disintegration of µ with respect to η.

Since a � L is non-free then the set A ⊆ Z, consisting of of all z ∈ Z such that L ya (X,µz)

is non-free, is η-non-null. If z ∈ A then µz({x : Lx contains a non-abelian free group}) = 1 by

Theorem 5.6. The event that Lx contains a non-abelian free group is therefore µ-non-null. This

event is Γ-invariant (a subgroup contains a free group if and only if any of its conjugates contains

one), so ergodicity implies that Lx contains a free group almost surely. Since Lx = Γx ∩ L we are

done.

The proof of (2) is similar, using part (2) of Proposition 4.13. (3) is immediate from (1) and the

definitions. �

We note also that (BP) is preserved by extensions.

PROPOSITION 5.8. Let N be a normal subgroup of Γ. If N and Γ/N both have property (BP)

then Γ also has property (BP).

PROOF. Let γ ∈ Γ \ {e} and n ≥ 1 be given.

If γ ∈ N then property (BP) for N implies that there exists α1, . . . , αn ∈ N , H ≤ N and

pairwise disjoint T1, . . . , Tn ⊆ H as in the definition of (BP) for N . These also satisfy this instance

of property (BP) for Γ.

If γ 6∈ N then the image of γ in Γ/N is not the identity element so property (BP) for Γ/N

implies that there exist cosets α1N, · · ·αnN ∈ Γ/N , a subgroupK ≤ Γ containingN , and pairwise

disjoint T1, . . . , Tn ⊆ K/N as in the definition of (BP) for Γ/N . Then α1, . . . , αn, K, and the sets

T ′i =
⋃
Ti, i = 1, . . . ,M , verify this instance of property (BP) for Γ. �
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REMARK 5.9. If a group Γ has property (BP) then it has the unique trace property. A quick

proof of this follows [BCdLH94]. The proof of this is almost exactly as in [BCdLH94, Lemma

2.2] with just a minor adjustment to the first part of their proof which we now describe. One first

shows for any γ ∈ Γ \ {e} and any n ≥ 2, if α1, . . . , αn, H , and T1, . . . , Tn are as in the definition

of (BP) then for all z = (z1, . . . , zn) ∈ Cn we have

(5.2)
∣∣∣∣ n∑
j=1

zjλΓ(αjγα
−1
j )
∣∣∣∣ ≤ 2||z||2.

Let xj = αjγα
−1
j so that xj ∈ H and xj(H \ Tj) ⊆ Tj for all j = 1, . . . , n. Let 1A denote the

indicator function of a subset A ⊆ H . For f, g ∈ `2(H) we then have

|〈λH(xj)f, g〉| ≤ |〈λH(xj)(1Tjf), g〉|+ |〈λH(xj)(1H\Tjf), g〉|

= |〈λH(xj)(1Tjf), g〉|+ |〈1xj(H\Tj)λH(xj)(f), 1Tjg〉| ≤ ||1Tjf || ||g||+ ||f || ||1Tjg||.

The remainder of the proof of (5.2) now proceeds as in [BCdLH94, Lemma 2.2] using that the Tj

are pairwise disjoint. It now follows as in the paragraph following [BCdLH94, Definition 1] that

C∗r (Γ) has a unique tracial state.

5.3. Linear groups. In the case that Γ is a countable linear group, a theorem of Y. Glasner

[Gla12] shows that the existence of a non-trivial normal amenable subgroup is the only obstruction

to shift-minimality: Glasner shows that every amenable invariant random subgroup of a linear group

Γ must concentrate on the subgroups of the amenable radical of Γ. Along with Proposition 3.15 this

implies that a countable linear group Γ is shift-minimal if and only if Γ contains no non-trivial

normal amenable subgroups. Another way to deduce these results is to use Theorem 5.14 below

along with the following Theorem of Poznansky.

THEOREM 5.10 (Theorem 1.1 of [Poz09]). Let Γ be a countable linear group. Then the follow-

ing are equivalent

(1) Γ is C∗-simple.

(2) Γ has the unique trace property.

(3) Γ contains no non-trivial normal amenable subgroups, i.e., ARΓ = {e}.
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COROLLARY 5.11. Let Γ be a countable linear group. The properties (1), (2), and (3) of

Theorem 5.10 are equivalent to each of the following properties:

(4) Γ is shift-minimal.

(5) Γ has no non-trivial amenable invariant random subgroups.

PROOF. The implication (2)⇒(5) follows from Theorem 5.14, the implication (5)⇒(4) is Corol-

lary 3.14, and (4)⇒(3) follows from Proposition 3.15. The remaining implications follow from

Poznansky’s Theorem 5.10. �

5.4. Unique tracial state on C∗r (Γ). We write C∗r (Γ) for the reduced C∗-algebra of Γ. This

is the C∗-algebra generated by {λΓ(γ) : γ ∈ Γ} in B(`2(Γ)), where λΓ denotes the left regular

representation of Γ. Let 1e ∈ `2(Γ) denote the indicator function of {e}. We obtain a tracial state

τΓ, called the canonical trace on C∗r (Γ), given by τΓ(a) = 〈a(1e), 1e〉.

Let ρ be a probability measure on SubΓ and define the function ϕρ ∈ `∞(Γ) by

ϕρ(γ) = ρ({H : γ ∈ H}).

It is shown in [IKT09] (see also Theorem 8.16) and [Ver11] that ϕρ is a positive definite function

on Γ. It will be useful here to identify ϕρ as the diagonal matrix coefficient of a specific unitary

representation of Γ described below.

Consider the field of Hilbert spaces {`2(Γ/H) : H ∈ SubΓ}. For γ ∈ Γ denote by xγ ∈∏
H `

2(Γ/H) the vector field xγH = 1γH where 1γH ∈ `2(Γ/H) is the indicator function of

the singleton set {γH} ⊆ Γ/H . Then {xγ}γ∈Γ determines a fundamental family of measur-

able vector fields and we let Hρ =
∫ ⊕
H `2(Γ/H) dρ denote the corresponding Hilbert space con-

sisting of all square integrable measurable vector fields. The inner product on Hρ is given by

〈x, y〉 =
∫
H〈xH , yH〉`2(Γ/H) dρ. Define the unitary representation λρ of Γ on Hρ by

λρ =

∫ ⊕
H
λΓ/H dρ,
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i.e., λρ(γ)(x)H = λΓ/H(γ)(xH), where λΓ/H denotes the quasi-regular representation of Γ on

`2(Γ/H). We then have

〈λρ(γ)(xe), xe〉 =

∫
H
〈λρ(γ)(xe)H , x

e
H〉`2(Γ/H) dρ

=

∫
H
〈λΓ/H(γ)(1H), 1H〉`2(Γ/H) dρ = ρ({H : γ ∈ H}) = ϕρ(γ).

We have shown the following.

PROPOSITION 5.12. (Hρ, λρ, x
e) is the GNS triple associated with the positive definite function

ϕρ on Γ.

It is clear that if ρ is conjugation invariant (i.e., if ρ is an invariant random subgroup) then ϕρ

will be constant on each conjugacy class of Γ.

LEMMA 5.13. If H is an amenable subgroup of Γ then λΓ/H is weakly contained in λΓ. Thus,

for all f ∈ `1(Γ) we have ||λΓ/H(f)|| ≤ ||λΓ(f)||.

PROOF. H being amenable implies that the one-dimensional unit representation 1H of H is

weakly contained in the left regular representation λH of H ([BHV08, Theorem G.3.2]). Thus by

[BHV08, Theorem F.3.5] we have λΓ/H
∼= IndΓ

H(1H) ≺ IndΓ
H(λH) ∼= λΓ. The second statement

follows immediately from [BHV08, F.4.4]. �

THEOREM 5.14. If ρ is any measure on SubΓ concentrating on the amenable subgroups then

λρ is weakly contained in the left regular representation λΓ of Γ.

Therefore, if θ is an amenable invariant random subgroup of Γ then ϕθ extends to a tracial state

on C∗r (Γ) which is distinct from the canonical trace τΓ whenever θ is non-trivial.

PROOF. By [BHV08, F.4.4] to show that λρ ≺ λΓ it suffices to show that ||λρ(f)|| ≤ ||λΓ(f)||

for all f ∈ `1(Γ). Using that ρ concentrates on the amenable subgroups and Lemma 5.13 we have
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for f ∈ `1(Γ) and x, y ∈ Hρ

|〈λρ(f)x, y〉| =
∣∣ ∫

H
〈λΓ/H(f)(xH), yH〉`2(Γ/H) dρ

∣∣
≤
∫
H
||λΓ/H(f)|| ||xH || ||yH || dρ

≤ ||λΓ(f)||
∫
H
||xH || ||yH || dρ

≤ ||λΓ(f)|| ||x|| ||y||

from which we conclude that ||λρ(f)|| ≤ ||λΓ(f)||.

Suppose now θ is an amenable invariant random subgroup of Γ. Since λθ is weakly con-

tained in λΓ, λθ extends to a representation of C∗r (Γ) and ϕθ extends to a state on C∗r (Γ) via

a 7→ 〈λθ(a)(xe), xe〉. Since ϕθ is conjugation invariant this is a tracial state. If θ is non-trivial then

there is some γ ∈ Γ \ {e} with ϕθ(γ) = θ({H : γ ∈ H}) > 0 showing that this is distinct from

the canonical trace. �

COROLLARY 5.15. Let Γ be a countable group with the unique trace property. Then Γ has

no non-trivial amenable invariant random subgroups. It follows that every non-trivial NA-ergodic

action of Γ is free and Γ is shift-minimal.

PROOF. That Γ has no non-trivial amenable invariant random subgroups follow from Theorem

5.14. If a is a non-trivial NA-ergodic action of Γ then the invariant random subgroup θa is amenable

by Theorem 3.13, and thus θa = δe, i.e., a is free. Since every m.p. action weakly contained in sΓ

is NA-ergodic, Γ is also shift-minimal. �

REMARK 5.16. The positive definite function ϕθ associated to an invariant random subgroup

θ is also realized in the Koopman representation κsθ0 corresponding to the θ-random Bernoulli shift

sθ,η of Γ with a non-atomic base space (Z, η) (see [TD12c] for the definition of the θ-random

Bernoulli shift). Indeed, take Z = R and take η to be the standard Gaussian measure (with unit

variance). Let pγ : R≤\Γ → R be the function pγ(f) = f(Hfγ). Then pγ ∈ L2
0(ηθ\Γ) and each pγ

is a unit vector. In addition we have κsθ,η0 (γ)(pe) = pγ and

(5.3) 〈pγ , pe〉 =

∫
H

∫
f∈RH\Γ

f(Hγ)f(H) dηH\Γ dθ(H) =

∫
H

1{H :Hγ=H} dθ = ϕθ(γ)

and so (L2
0(ηθ\Γ), κ

sθ,η
0 , pe) is a triple realizing ϕθ.
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6. Cost

6.1. Notation and background. See [Gab00] and [KM04] for background on the theory of

cost of equivalence relations and groups. We recall the basic definitions to establish notation and

terminology.

DEFINITION 6.1. Let (X,µ) be a standard non-atomic probability space.

(i) By an L-graphing on (X,µ) we mean a countable collection Φ = {ϕi : Ai → Bi}i∈I of

partial Borel automorphism of X that preserve the measure µ. The cost of the L-graphing

Φ is given by

Cµ(Φ) =
∑
i∈I

µ(Ai).

In (ii)-(vi) below Φ denotes an L-graphing on (X,µ).

(ii) We denote by GΦ the graph on X associated to Φ, i.e., for x, y ∈ X , (x, y) ∈ GΦ if and

only if x 6= y and ϕ±1(x) = y for some ϕ ∈ Φ. We let dΦ : X ×X → N ∪ {∞} denote

the graph distance corresponding to GΦ, i.e., for x, y ∈ X ,

dΦ(x, y) = inf{m ∈ N : ∃ϕ0, . . . , ϕm−1 ∈ Φ∗ (ϕ±1
m−1 ◦ · · · ◦ ϕ

±1
1 ◦ ϕ

±1
0 (x) = y)}

where Φ∗ = Φ ∪ {idX} and idX : X → X is the identity map.

(iii) We letEΦ denote the equivalence relation onX generated by Φ, i.e., xEΦy ⇔ dΦ(x, y) <

∞. Then EΦ is a countable Borel equivalence relation that preserves the measure µ.

(iv) Let E be a measure preserving countable Borel equivalence relation on (X,µ). We say

that Φ is an L-graphing ofE if there is a conull setX0 ⊆ X such thatEΦ � X0 = E � X0.

This is equivalent to the condition that [x]EΦ
= [x]E for µ-almost every x ∈ X . The cost

of E is defined as

Cµ(E) = inf{Cµ(Ψ) : Ψ is an L-graphing of E}.

(v) Let a = Γ ya (X,µ) be a measure preserving action of Γ. Let Q be a subset of Γ and let

A : Q → MALGµ be a function assigning to each δ ∈ Q a measurable subset Aδ of X .

Then a and A define an L-graphing Φa,A = {ϕa,Aδ : δ ∈ Q}, where ϕa,Aδ = δa � Aδ, i.e.,
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dom(ϕa,Aδ ) = Aδ and ϕa,Aδ (x) = δax for each x ∈ Aδ. It is clear that EΦa,A ⊆ Ea and

Cµ(Φa,A) =
∑
δ∈Q

µ(Aδ)

so that Cµ(Φa,A) only depends on the assignment A and not on the action a.

(vi) As a converse to (v), whenever EΦ ⊆ Ea we may find a function A = Aa,Φ : Γ →

MALGµ such that GΦa,A = GΦ and Cµ(Φa,A) ≤ Cµ(Φ). Indeed, for each ϕ ∈ Φ there

exists a measurable partition X =
⊔
δ∈ΓA

a,ϕ
δ such that ϕ � Aa,ϕδ = δa � Aa,ϕδ . Then

taking Aδ =
⋃
ϕ∈ΦA

a,ϕ
δ works.

For a measure preserving action a = Γ ya (X,µ) of Γ denote by Ea the orbit equivalence

relation generated by a. The cost of a is defined by C(a) = Cµ(Ea). Denote by C(Γ) the cost of

the group Γ, i.e., C(Γ) is the infinimum of costs of free m.p. actions of Γ.

By ”subequivalence relation” we will always mean ”Borel subequivalence relation.”

6.2. Cost and weak containment in infinitely generated groups. Lemma 6.2 together with

Theorem 6.4 provide a generalization of [Kec10, Theorem 10.13]. The purpose of Lemma 6.2 is to

isolate versions of a few key observations from Kechris’s proof.

LEMMA 6.2. Let F ⊆ Γ be finite and let r ∈ R ∪ {∞}. Then the following are equivalent for

a measure preserving action a = Γ ya (X,µ) of Γ:

(1) There exists a sub-equivalence relation E of Ea such that Ea�〈F 〉 ⊆ E ⊆ Ea and

Cµ(E) < r.

(2) There exists a finite Q ⊆ Γ containing F and a sub-equivalence relation E of Ea such

that Ea�〈F 〉 ⊆ E ⊆ Ea�〈Q〉 and Cµ(E) < r.

(3) There exists a finiteQ ⊆ Γ containing F , an assignmentA : Q→ MALGµ, and a natural

number M ∈ N such that

Cµ(Φa,A) +
∑
γ∈F

µ({x : dΦa,A(x, γax) > M}) < r.

PROOF OF LEMMA 6.2. We begin with the implication (3)⇒(2). If such an A : Q→ MALGµ

and M ∈ N exist then define B : Q→ Γ by taking B � Q \ F = A � Q \ F and for γ ∈ F taking

Bγ = Aγ ∪ {x : dΦa,A(x, γax) > M}.
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Let E = EΦa,B . Then Cµ(E) ≤ Cµ(Φa,B) < r and EΦa,B ⊆ Ea�〈Q〉. In addition we have

Ea�〈F 〉 ⊆ EΦa,B since for each γ ∈ F and x ∈ X , either dΦa,A�Q(x, γax) ≤ M so that (x, γax) ∈

EΦa,A ⊆ EΦa,B , or dΦa,A�Q(x, γax) > M , in which case x ∈ dom(ϕa,Bγ ) and so (x, γax) ∈ EΦa,B .

(2)⇒(1) is obvious, and it remains to show (1)⇒(3). Let E be as in (1) and let Φ be an L-

graphing of E with Cµ(Φ) = s < r. Since E ⊆ Ea we may by 6.1.(vi) assume without loss of

generality that Φ = Φa,B for some B : Γ→ MALGµ, γ 7→ Bγ . Let ε > 0 be such that s+ ε < r.

We have Ea�〈F 〉 ⊆ E = EΦa,B so, as F is finite, if we take a large enough finite set Q ⊆ Γ

containing F , we can ensure that

∑
γ∈F

µ({x : dΦa,B�Q(x, γax) =∞}) < ε.

So if we take M ∈ N large enough then

∑
γ∈F

µ({x : dΦa,B�Q(x, γax) > M}) < ε.

It follows that A = B � Q and M satisfy the desired properties. �[Lemma 6.2]

DEFINITION 6.3. For each finite F ⊆ Γ and r ∈ R ∪ {∞} let AF,r = AF,r(Γ, X, µ) denote

the set of a ∈ A(Γ, X, µ) that satisfy any - and therefore all - of the equivalent properties (1)-(3) of

Lemma 6.2.

It is clear that the set AF,r(Γ, X, µ) is an isomorphism-invariant (and in fact, orbit-equivalence-

invariant) subset ofA(Γ, X, µ). In what follows, we let FR(Γ, X, µ) denote the subset ofA(Γ, X, µ)

consisting of all free actions.

THEOREM 6.4. Let Γ be an infinite countable group. For each finite F ⊆ Γ and r ∈ R ∪ {∞}

the set AF,r(Γ, X, µ) ∩ FR(Γ, X, µ) is contained in the interior of AF,r(Γ, X, µ). In particular,

AF,r(Γ, X, µ) ∩ FR(Γ, X, µ) is open in FR(Γ, X, µ).

PROOF. Let a ∈ AF,r be free and let Q ⊆ Γ, A : Q → MALGµ and M ∈ N be given by

Lemma 6.2.(3). For each γ ∈ F let saγ = µ({x : dΦa,A(x, γax) > M}). Let s = Cµ(Φa,A) +∑
γ∈F s

a
γ . By hypothesis we have s < r. Let ε > 0 be small enough so that s+ |F |ε < r. Since the

number Cµ(Φa,A) =
∑

δ∈Q µ(Aδ) is independent of a, if we can show for each γ ∈ F that the set

(6.1) {b ∈ A(Γ, X, µ) : µ({x : dΦb,A(x, γbx) > M}) < saγ + ε}
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contains an open neighborhood of a, then the intersection of these sets as γ ranges over F will by

Lemma 6.2 be a subset of AF,r containing an open neighborhood of a and we will be done.

Fix then γ ∈ F , let Q∗ = Q ∪ {e} and let Σ be the collection

Σ = {((δM−1, . . . , δ0), (εM−1, . . . , ε0)) : δj ∈ Q∗ and εj ∈ {−1, 1} for j = 0, . . . ,M − 1}.

For each b ∈ A(Γ, X, µ) and σ ∈ Σ, writing σ as

(6.2) σ = ((δM−1, . . . , δ0), (εM−1, . . . , ε0))

(where δj ∈ Q∗ and εj ∈ {−1, 1} for j = 0, . . . ,M − 1), we define

ϕbσ := (ϕb,AδM−1
)εM−1 ◦ · · · ◦ (ϕb,Aδ0 )ε0 .

Let Σ(γ) denote the set of all σ ∈ Σ with the property that δεM−1

M−1 · · · δ
ε0
0 = γ. Observe that for

σ ∈ Σ(γ) and b ∈ A(Γ, X, µ), if x ∈ dom(ϕbσ) then ϕbσ(x) = γbx and so d(x, γbx) ≤ M . It

follows that

(6.3) {x : dΦb,A(x, γbx) > M} ⊆
⋂

σ∈Σ(γ)

X \ dom(ϕbσ).

If we assume further that b is (essentially) free then, ignoring a null set, the set containment (6.3)

becomes an equality. Indeed, restricting to a co-null set X0 on which b is free we have, for x ∈ X0,

if dΦb,A(x, γbx) ≤ M then there exists some σ ∈ Σ such that x ∈ dom(ϕbσ) and ϕbσ(x) = γbx.

Writing σ as in (6.2), this means that (δ
εM−1

M−1 · · · δ
ε0
0 )bx = γbx. Since b is free on X0 this implies

δ
εM−1

M−1 · · · δ
ε0
0 = γ and therefore σ ∈ Σ(γ).

Now, for each σ ∈ Σ and b ∈ A(Γ, X, µ) we see from the definition of ϕbσ that the set dom(ϕbσ)

is an element of the Boolean algebra Ab generated by

{αbAδ : δ ∈ Q and α ∈ (Q∗ ∪Q−1)M}

where (Q∗ ∪Q−1)M = {δM−1 · · · δ1δ0 : δj ∈ Q∗ ∪Q−1 for j = 0, . . . ,M − 1}. The algebra Ab

is finite since Q is finite. The Boolean operations are continuous on MALGµ, so if η > 0 is small

enough (depending on ε, Q, and A) then every b in the open neighborhood Uη of a given by

Uη = {b ∈ A(Γ, X, µ) : ∀α ∈ (Q∗ ∪Q−1)M ∀δ ∈ Q (µ(αbAδ∆α
aAδ) < η)}
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satisfies

µ
( ⋂
σ∈Σ(γ)

X \ dom(ϕbσ)
)
< µ

( ⋂
σ∈Σ(γ)

X \ dom(ϕaσ)
)

+ ε = saγ + ε

where the equality follows from the paragraph following (6.3) since a is free. By (6.3) we then have

for such η and b ∈ Uη that

µ({x : dΦb,A(x, γbx) > M}) < saγ + ε

which shows that the open neighborhood Uη of a is contained in the set (6.1). �

Note that if a ∈ A(Γ, X, µ) and Cµ(Ea) < r, then E = Ea witnesses that a satisfies property

(1) of Lemma 6.2 and therefore a ∈ AF,r(Γ, X, µ) for all finite F ⊆ Γ. It is immediate that if Γ is

generated by a finite set F0 then AF0,r(Γ, X, µ) = {a ∈ A(Γ, X, µ) : C(a) < r}, so we recover

(a slightly stronger formulation of) [Kec10, Theorem 10.13] in the following Corollary.

COROLLARY 6.5 (Kechris, [Kec10]). Let Γ be an infinite, finitely generated group. Then the

cost function C : A(Γ, X, µ)→ R is upper semicontinuous at each a ∈ FR(Γ, X, µ), i.e.,

lim sup
b→a

C(b) ≤ C(a).

For general groups, Theorem 6.4 has several consequences for cost and weak containment. It

will be helpful to introduce the following notation and definitions.

DEFINITION 6.6. Let E0, E1, E2, . . . , and E be m.p. countable Borel equivalence relations on

(X,µ). The sequence (En)n∈N is called an exhaustion of E, denoted (En)n∈N ↑ E, if E0 ⊆ E1 ⊆

· · · , and E =
⋃
nEn. The pseudocost of E, denoted PCµ(E), is defined by

PCµ(E) = inf{lim inf
n

Cµ(En) : (En)n∈N ↑ E}.

If a = Γ ya (X,µ) is a m.p. action of a countable group Γ then define the pseudocost of

a by PC(a) := PCµ(Ea). Finally, define the pseudocost of Γ by PC(Γ) := inf{PC(a) :

a is a free m.p. action of Γ}.

It is shown in Corollary 6.17 below that the infimum in the definition of PCµ(E) is always

attained. If E is aperiodic then PCµ(E) ≥ 1 by [KM04, 20.1 and 21.3]. We have PCµ(E) ≤
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Cµ(E) as witnessed by the constant sequence (En)n∈N given by En = E for all n. In many cases

we actually have the equality PCµ(E) = Cµ(E) as we now show. Recall that a countable Borel

equivalence relationE on a standard Borel spaceX is called treeable if there exists an acyclic Borel

graph T ⊆ X × X whose connected components are the equivalence classes of E. Such a T is

called a treeing of E, and we say that E is treed by T to mean that T is a treeing of E. A theorem

of Gaboriau (Theorem 1 of [Gab00]) states that if µ is an E-invariant measure on X and if T is a

treeing of E then Cµ(E) = Cµ(T ) = 1
2

∫
x degT (x) dµ. This will be used implicitly below.

PROPOSITION 6.7. Let E be a m.p. countable Borel equivalence relation on (X,µ) and let

(En)n∈N be an exhaustion of E.

(1) Suppose that Cµ(E) <∞. Then Cµ(E) ≤ lim infnCµ(En).

(2) Suppose that E is treeable. Then Cµ(E) ≤ lim infnCµ(En).

(3) (Gaboriau [Gab00]) Suppose that limnCµ(En) = 1. Then Cµ(E) = 1.

In terms of pseudocost vs. cost this implies

COROLLARY 6.8. Let E be a m.p. countable Borel equivalence relation on (X,µ).

(1) If Cµ(E) <∞ then PCµ(E) = Cµ(E).

(2) If E is treeable then PCµ(E) = Cµ(E).

(3) PCµ(E) = 1 if and only if Cµ(E) = 1.

PROOF OF PROPOSITION 6.7. (1): Let r = lim infnCµ(En) and fix ε > 0. We may assume

that r <∞. Let Φ = {ϕi}∞i=0 be an L-graphing of E with Cµ(Φ) =
∑

i≥0 µ(dom(ϕi)) <∞. Let

N be so large that
∑

i>N µ(dom(ϕi)) < ε. If M0 ∈ N is large enough then for any n > M0 we

have
∑

i≤N µ({x ∈ dom(ϕi) : (x, ϕi(x)) 6∈ En}) < ε. Since r = lim infnCµ(En) we can find

some n > M0 with Cµ(En) < r + ε. Let Ψ be an L-graphing of En with Cµ(Ψ) < r + ε. Then

Ψ t {ϕi}i>N t {ϕi � {x ∈ dom(ϕi) : (x, ϕi(x)) 6∈ En}}i≤N

is an L-graphing of E with cost strictly less than r + 3ε.

(2): Let T be a treeing of E and let Tn = T ∩ En. Then Tn ⊆ Tn+1 and T =
⋃
n Tn so

limnCµ(Tn) = Cµ(T ). Let Rn be the equivalence relation generated by Tn. Then Rn ⊆ En and

Rn ∩ T = Tn. We need the following lemma which is due to Clinton Conley.
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LEMMA 6.9 (C. Conley). Let F be a countable Borel equivalence relation treed by TF and

let R ⊆ F be a subequivalence relation treed by TR ⊆ TF (so that TR = R ∩ TF ). Then any

equivalence relation R′ with R ⊆ R′ ⊆ F has a treeing TR′ with TR ⊆ TR′ .

PROOF. Proposition 3.3.(iii) of [JKL02] shows how to obtain a treeing TR′ ofR′ from the given

treeing TF of F . It is clear from their construction that if an edge of TF connects two R′-equivalent

points, then that edge remains in TR′ . Hence, every edge in TR remains in TR′ . �[Lemma 6.9]

Apply Lemma 6.9 to F = E, R = Rn, and R′ = En, along with TF = T and TR =

Tn, to obtain a treeing T ′n of En with Tn ⊆ T ′n. Then lim infnCµ(En) = lim infnCµ(T ′n) ≥

lim infnCµ(Tn) = Cµ(T ).

(3): Since the En are increasing and limnCµ(En) = 1 we have |[x]En | → ∞ almost surely

(see [KM04, 22.1]), and so E is aperiodic. It follows that PCµ(E) = 1, so by Corollary 6.17 there

is an exhaustion (E′n)n∈N of E with Cµ(E′n) → 1 such that E′n is aperiodic for all n. It follows

from [KM04, Proposition 23.5] that Cµ(E) = 1. �

REMARK 6.10. One may also deduce (2) of Proposition 6.7 by using the equality Cµ(E)−1 =

β1(E)− β0(E) for treeable E [Gab02, Corollary 3.23] along with [Gab02, Corollary 5.13].

COROLLARY 6.11. If E is a m.p. treeable equivalence relation on (X,µ) of infinite cost then

any increasing sequence E0 ⊆ E1 ⊆ · · · , with E =
⋃
nEn satisfies Cµ(En)→∞.

PROOF. Immediate from (2) of Proposition 6.7. �

REMARK 6.12. Corollary 6.11 may be seen as a generalization of a theorem of Takahasi.

COROLLARY 6.13 (Takahasi [Tak50]). Suppose H0 ⊆ H1 ⊆ · · · is an ascending chain of

subgroups of a free group F , and assume that theHn have rank uniformly bounded by some natural

number r <∞. Then all Hn coincide for n sufficiently large.

PROOF. Suppose that infinitely many Hn are distinct. Then H =
⋃
nHn has infinite rank,

so Corollary 6.11 implies that for any free m.p. action H ya (X,µ) we have Cµ(Ea�Hn) → ∞,

contradicting that supnCµ(Ea�Hn) ≤ supn rank(Hn) ≤ r. �

We will use another characterization of pseudocost in order to show that it respects weak con-

tainment. In what follows, a sequence (Qn)n∈N of subsets of a countable group Γ is called an
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exhaustion of Γ if Q0 ⊆ Q1 ⊆ · · · and
⋃
nQn = Γ. A sequence (Qn)n∈N is called a finite

exhaustion of Γ if (Qn)n∈N is an exhaustion of Γ and Qn is finite for all n ∈ N.

LEMMA 6.14. Let E be a m.p. countable Borel equivalence relation on (X,µ) and let r ∈

R ∪ {∞}. Then the following are equivalent:

(1) There exists an exhaustion (En)n∈N of E with lim supnCµ(En) ≤ r.

(2) For any countable group Γ and any m.p. action b = Γ yb (X,µ) with E = Eb, and

any sequence (Fn)n∈N of finite subsets of Γ, there exists a finite exhaustion (Qn)n∈N of

Γ along with an exhaustion (En)n∈N of E such that Fn ⊆ Qn and Eb�〈Qn〉 ⊆ En ⊆

Eb�〈Qn+1〉 for all n ∈ N, and lim supnCµ(En) ≤ r.

(3) For any countable group Γ, any m.p. action Γ yb (X,µ) with E = Eb, and any se-

quence (Fn)n∈N of finite subsets of Γ, there exists an exhaustion (En)n∈N of E satisfying

Eb�〈Fn〉 ⊆ En for all n and lim supnCµ(En) ≤ r.

(4) For any countable group Γ and any m.p. action b = Γ yb (X,µ) with E = Eb, we have

b ∈ AF,r+ε for all finite F ⊆ Γ and all ε > 0.

(5) There exists a countable group Γ and a m.p. action b = Γ yb (X,µ) with E = Eb such

that b ∈ AF,r+ε for all finite F ⊆ Γ and all ε > 0.

(6) There exists a countable group Γ and a m.p. action b = Γ yb (X,µ) with E = Eb, along

with an exhaustion (Qn)n∈N of Γ and a (not necessarily increasing) sequence (En)n∈N

of subequivalence relations of E such that Eb�〈Qn〉 ⊆ En and lim supnCµ(En) ≤ r.

REMARK 6.15. It is clear that each of the conditions (1), (2), (3), and (6) of Lemma 6.14 are

equivalent to their counterparts in which ”lim sup” is replaced with ”lim inf” or with ”lim.”

PROOF OF 6.14. (1)⇒(4): Assume that (En)n∈N is a sequence as in (1). Let Γ and b = Γ yb

(X,µ) with E = Eb be given. Fix a finite F ⊆ Γ and ε > 0. Let n ∈ N be large enough

so that Cµ(En) < r + ε/2 and
∑

γ∈F µ({x : γbx 6∈ [x]En}) < ε/2. Let Φ =
{
γb � {x :

γbx 6∈ [x]En}
}
γ∈F . Then R := En ∨ EΦ is a subequivalence relation of E containing Eb�〈F 〉 with

Cµ(R) ≤ Cµ(En) +Cµ(Φ) < r+ ε/2 + ε/2 = r+ ε. Then R witnesses that b ∈ AF,r+ε(Γ, X, µ).

This shows that (4) holds.

(4)⇒(2): Assume (4) holds. Let Γ and b = Γ yb (X,µ) with E = Eb be given along with a

sequence (Fn)n∈N of finite subsets of Γ. We may assume without loss of generality that (Fn)n∈N
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is a finite exhaustion of Γ. Fix some sequence of real numbers εn > 0 with εn → 0. We proceed

by induction to construct sequences (Qn)n∈N and (En)n∈N as in (2). Define Q0 = F0. Suppose for

induction that we have constructed finite subsets Q0 ⊆ Q1 ⊆ · · ·Qk of Γ and equivalence relations

E0, . . . , Ek−1 with Fi ⊆ Qi for all i ≤ k and Eb�〈Qi〉 ⊆ Ei ⊆ Eb�〈Qi+1〉 for all i < k. By (4) we

have b ∈ AQk∪Fk+1,r+εk , so by Lemma 6.2 there exists a finite Qk+1 ⊆ Γ containing Qk ∪ Fk+1

and a subequivalence relation Ek of Eb with Eb�〈Qk〉 ⊆ Ek ⊆ Eb�〈Qk+1〉 and Cµ(Ek) < r + εk.

Then Qk+1 and Ek extend the induction to the next stage. We obtain from this inductive procedure

sequences (Qn) and (En) which satisfy (2) by construction.

(2)⇒(3) is clear. (3)⇒(6) holds since there always exists some countable group Γ and some

m.p. action b = Γ yb (X,µ) with E = Eb (see [FM77]). (6)⇒(5) is routine. Finally, the proof of

(4)⇒ (2) shows that (5)⇒ (1). �

REMARK 6.16. If the equivalence relation E in Lemma 6.14 is aperiodic then condition (1)

implies the stronger statement (1∗) in which the equivalence relations En are additionally required

to be aperiodic. Indeed, assume that E is aperiodic and that (1) holds. Then (3) holds as well. By

[Kec10, 3.5] there is an aperiodic T ∈ [E]. Take any countable subgroup Γ ≤ [E] that generates E

and with T ∈ Γ. Then Γ naturally acts on (X,µ) as a subgroup of [E]. Take some finite exhaustion

{Fn}n∈N of Γ with T ∈ F0. Now apply (3) of Lemma 6.14 to this sequence {Fn}n∈N to obtain the

desired aperiodic sequence satisfying (1∗).

Similarly, if E is aperiodic then (3), and (6) of Lemma 6.14 are each equivalent to their coun-

terparts (3∗), and (6∗), in which the equivalence relations En are each required to be aperiodic.

COROLLARY 6.17. Let E be a m.p. countable Borel equivalence relation on (X,µ). There

exists an exhaustion (En)n∈N ↑ E with limnCµ(En) = PCµ(E). In other words, the infimum in

the definition of pseudocost is always attained. In addition, ifE is aperiodic then such an exhaustion

(En)n∈N exists with En aperiodic for all n.

PROOF. Let s = PCµ(E). By definition of PCµ(E), for any δ > 0 there exists a sequence

(Eδn)n∈N ↑ E with lim supnCµ(Eδn) < s + δ/2. By [FM77] there is a countable group Γ and

some action b = Γ yb (X,µ) of Γ such that E = Eb. Now, E satisfies (1) of Lemma 6.14 with

respect to the parameter r = s + δ/2, so by (1)⇒(4) of Lemma 6.14 we have b ∈ AF,s+δ/2+ε for

all finite F ⊆ Γ and ε > 0. Taking ε = δ/2 shows that b ∈ AF,r+δ for all finite F ⊆ Γ. Since
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δ > 0 was arbitrary this shows that b satisfies (5) of Lemma 6.14 with respect to the parameter s, so

by (5)⇒(1) Lemma 6.14 there exists a sequence (En)n∈N ↑ E with lim supnCµ(En) ≤ s. Since

s = PCµ(E) ≤ lim infnCµ(En) this shows that in fact limnCµ(En) = PCµ(E). By remark 6.16

if E is aperiodic then we can choose such a sequence (En)n∈N with En aperiodic for all n. �

COROLLARY 6.18. LetE be an aperiodic m.p. countable Borel equivalence relation on (X,µ).

Assume that E is ergodic. Then for any exhaustion (Rn)n∈N of E satisfying Cµ(Rn) < ∞ for all

n ∈ N, there exists an exhaustion (En)n∈N of E with Rn ⊆ En for all n ∈ N and limnCµ(En) =

PCµ(E).

PROOF. Let (Rn)n∈N be an exhaustion of E with Cµ(Rn) < ∞ for all n. Since E is ergodic

we many apply [KM04, Lemma 27.7] to obtain, for each n ∈ N, a finitely generated group Γn and

a m.p. action bn = Γn ybn (X,µ) with Rn = Rbn . There is a unique action b = Γ ya (X,µ)

of the free product Γ of {Γn}n∈N satisfying b � Γn = bn for all n ∈ N. For each n ∈ N let Fn

be a finite generating set for Γn. By Corollary 6.17 there exists an exhaustion (E′n)n∈N of E with

limnCµ(E′n) = r where r = PCµ(E). This shows that E satisfies (1) of Lemma 6.14, so, by

applying (3) of Lemma 6.14 to the action b and the sequence (Fn)n∈N, we obtain an exhaustion

(En)n∈N of E with Rn = Eb�Γn ⊆ En and lim supnCµ(En) ≤ r. Since r = PCµ(E) it follows

that limnCµ(En) = PCµ(E). �

COROLLARY 6.19. Let a = Γ ya (X,µ) be a m.p. action of Γ. Then PC(a) ≤ r if and only

if a ∈ AF,r+ε for every finite F ⊆ Γ and ε > 0.

PROOF. This follows from the equivalence (1)⇔(4) from Lemma 6.14. �

COROLLARY 6.20. Let a = Γ ya (X,µ) and b = Γ yb (Y, ν) be measure preserving actions

of a countable group Γ. Assume that a is free. If a ≺ b then PC(b) ≤ PC(a).

PROOF. Let r = PC(a). Fix F ⊆ Γ finite and ε > 0. Since PC(a) = r we have a ∈

AF,r+ε(Γ, X, µ) by Corollary 6.19. Since a is free, Theorem 6.4 implies that a is contained in the

interior of AF,r+ε(Γ, X, µ), so by [Kec10, Proposition 10.1] there exists some c ∈ AF,r+ε(Γ, X, µ)

which is isomorphic to b. Hence b ∈ AF,r+ε(Γ, Y, ν) and therefore PC(b) ≤ r by Corollary

6.19. �
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COROLLARY 6.21. Let a = Γ ya (X,µ) and b = Γ yb (Y, ν) be measure preserving actions

of a countably infinite group Γ. Assume that a is free and is weakly contained in b. Then there exists

an exhaustion (En)n∈N of E with limnCµ(En) ≤ C(a) and En aperiodic for all n ∈ N.

PROOF. Corollary 6.20 tells us that PC(b) ≤ PC(a), so by 6.17 we can find an exhaustion

(En)n∈N ofE, with limnCµ(En) ≤ PC(a) andEn aperiodic for all n ∈ N. Since PC(a) ≤ C(a)

we are done. �

COROLLARY 6.22. Let a and b be m.p. actions of a countably infinite group Γ. Assume that a

is free and a ≺ b.

(1) If C(b) <∞ then C(b) ≤ C(a).

(2) If Eb is treeable then C(b) ≤ C(a).

(3) If C(a) = 1 then C(b) = 1.

PROOF. (1) and (2): SupposeC(b) <∞ orEb is treeable. Then by Corollary 6.8 and Corollary

6.20 we have C(b) = PC(b) ≤ PC(a) ≤ C(a).

Similarly, if C(a) = 1 then by Corollary 6.20 we have PC(b) ≤ PC(a) ≤ C(a) = 1, so

PC(b) = 1 and thus C(b) = 1 by Corollary 6.8. �

DEFINITION 6.23. A group Γ is said to have fixed price 1 if C(a) = 1 for every free measure

preserving action a of Γ.

In [AW11], Abért and Weiss combine their theorem on free actions (stated above in Theorem

3.1) with [Kec10, Theorem 10.13] to characterize finitely generated groups Γ with fixed price 1 in

terms of the Bernoulli shift sΓ. We can now remove the hypothesis that Γ is finitely generated.

COROLLARY 6.24. Let Γ be a countable group. Then the following are equivalent:

(1) Γ has fixed price 1

(2) C(sΓ) = 1

(3) C(a) = 1 for some m.p. action a weakly equivalent to sΓ.

(4) PC(a) = 1 for some m.p. action a weakly equivalent to sΓ.

(5) Γ is infinite and C(a) ≤ 1 for some non-trivial m.p. action a weakly contained in sΓ.

PROOF. (1)⇒(2) holds since sΓ is free. (2)⇒(3) is clear. (3) ⇔ (4) follows from Corollary

6.8. Suppose that (3) holds and we will prove (1). Let a be weakly equivalent to sΓ with C(a) = 1.
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This implies a is free. If b is another free measure preserving action of Γ then a ≺ b by Theorem

3.1, so Corollary 6.22 shows that C(b) = 1. Thus Γ has fixed price 1. This shows that properties

(1), (2), and (3) are equivalent. The implication (3)⇒(5) is clear.

The proof of the remaining implication (5)⇒(3) uses Lemma 6.34, proved in §6.5 below. As-

sume that (5) holds. Let a = Γ ya (X,µ) be a non-trivial action weakly contained in sΓ with

C(a) ≤ 1. Let θ = θa. If Γ is amenable then (1) holds, so we may assume that Γ is non-amenable.

Then sΓ is strongly ergodic, hence both a and θ are weakly mixing. It follows that θ is either a

point mass at some finite normal subgroup N of Γ, or θ concentrates on the infinite subgroups of Γ.

Case 1: θ is a point mass at some finite normal subgroup N ≤ Γ. Then C(a) = 1 since Ea

is aperiodic. By [CKTD11, Proposition 4.7] there is some b = Γ yb (Y, ν) weakly equivalent to

sΓ such that a is a factor of b, say via the factor map π : Y → X . Let Y0 be a Borel transversal

for the orbits of N yb (Y, ν) and let σ : Y → Y0 be the corresponding selector. Let ν0 denote the

normalized restriction of ν to Y0 and let b0 be the action of Γ on (Y0, ν0) given by γb0y = σ(γby).

Then π factors b0 onto a. Since θa = θb0 = δN , the actions a and b0 descend to free actions ã

and b̃0, respectively, of Γ/N , and π factors b̃0 onto ã. Then C(ã) = C(a) = 1, so C(b̃0) = 1

by Corollary 6.22. Since Eb0 = Eb � Y0 we have Cν0(Eb � Y0) = 1, so C(b) = Cν(Eb) = 1 by

[KM04, Theorem 25.1] ([KM04, Theorem 21.1] also works). This shows that (3) holds.

Case 2: θ is infinite. We have a ≺ sΓ, so a is NA-ergodic and therefore θ is amenable by

Theorem 3.13. Then C(θa × sΓ) = 1 by Lemma 6.34, and θa × sΓ is weakly equivalent to sΓ, so

(3) holds. �

NOTE 6.25. Similar to [Kec10, Corollary 10.14], one may strengthen Corollaries 6.20, 6.21,

and 6.22 by replacing the hypothesis a ≺ b their statements with the weaker hypothesis that

(6.4) a ∈ {c ∈ A(Γ, X, µ) : Ec is orbit equivalent to Eb}

where (X,µ) is the underlying space of a. The proofs remain the same. Note that (6.4) is actually

slightly weaker than the hypothesis a � b from [Kec10, Corollary 10.14], since the action c from

(6.4) ranges over all of A(Γ, X, µ) and not just FR(Γ, X, µ). Specializing to the case where Γ is

finitely generated, we recover a somewhat strengthened version of the first statement of [Kec10,

Corollary 10.14].
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6.3. The cost of a generic action. The results of the previous section have consequences for

generic properties (with respect to the weak topology) in FR(Γ, X, µ) related to cost. We begin by

proving analogues of Corollaries 6.17 and 6.8 for groups. Recall that a countable group Γ is called

treeable if it admits a free measure preserving action a such that Ea is treeable.

PROPOSITION 6.26. Let Γ be a countably infinite group.

(1) Suppose that C(Γ) < ∞. Then for any free m.p. action b = Γ yb (X,µ) of Γ, and

any exhaustion (En)n∈N of Eb, we have lim infn→∞Cµ(En) ≥ C(Γ). Hence PC(Γ) =

C(Γ).

(2) Suppose that Γ is treeable. Then PC(Γ) = C(Γ).

(3) PC(Γ) = 1 if and only if C(Γ) = 1.

(4) PC(Γ) is attained by some free m.p. action of Γ. In fact, if a ∈ FR(Γ, X, µ) has dense

conjugacy class in (FR(Γ, X, µ), w) then PC(a) = PC(Γ).

PROOF. (1): Let b be a free m.p. action of Γ. It suffices to show that PC(b) ≥ C(Γ). Let a

be a free m.p. action of Γ with C(a) = C(Γ) < ∞ and let c = a × b. Then by the remark at

the bottom of p. 78 in [Kec10] we have C(c) ≤ C(a) = C(Γ), hence C(c) = C(Γ) < ∞. Since

C(c) < ∞ we have PC(c) = C(c) by (1) of Corollary 6.8. In addition, b ≺ c and b is free, so

Corollary 6.20 implies PC(b) ≥ PC(c) = C(c) = C(Γ).

(2): Let b be a free m.p. action of Γ. Once again it suffices to show PC(b) ≥ C(Γ). Let a be

a free m.p. action of Γ with Ea treeable and let c = a × b. By [KM04, Proposition 30.5] Ec is

treeable and C(c) = C(a) = C(Γ). Then (2) of Corollary 6.8 implies that PC(c) = C(c), so, as

b ≺ c, Corollary 6.20 implies that PC(b) ≥ PC(c) = C(c) = C(Γ).

(3): This is immediate from (3) of Corollary 6.8.

(4): If a ∈ FR(Γ, X, µ) has dense conjugacy class this means that b ≺ a for every m.p.

action b of Γ [Kec10, Proposition 10.1] (also note that such an a exists by [Kec10, Theorem 10.7]).

Corollary 6.20 then shows that PC(a) ≤ inf{PC(b) : b ∈ FR(Γ, X, µ)} = PC(Γ), hence

PC(a) = PC(Γ). �

By [Kec10, Proposition 10.10] the cost function a 7→ C(a) is constant on a dense Gδ subset of

FR(Γ, X, µ). Let Cgen(Γ) ∈ [0,∞] denote this constant value. Similarly, the pseudocost function

a 7→ PC(a) is constant on a dense Gδ subset of FR(Γ, X, µ). Denote this constant value by
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PCgen(Γ). Problem 10.11 of [Kec10] asks whether Cgen(Γ) = C(Γ) holds for every countably

infinite group Γ, and [Kec10, Corollary 10.14] shows that the equality holds whenever Γ is finitely

generated.

COROLLARY 6.27. Let Γ be a countably infinite group. Then

(1) The set MINPCOST(Γ, X, µ) = {a ∈ FR(Γ, X, µ) : PC(a) = PC(Γ)} is dense Gδ in

A(Γ, X, µ). In particular, PCgen(Γ) = PC(Γ).

(2) Either Cgen(Γ) = C(Γ) or Cgen(Γ) =∞.

(3) If PC(Γ) = 1 then Cgen(Γ) = C(Γ) = 1.

PROOF. (1): Let r = PC(Γ). Corollary 6.19 shows that

MINPCOST(Γ, X, µ) =
⋂
{AF,r+1/n(Γ, X, µ) ∩ FR(Γ, X, µ) : F ⊆ Γ is finite and n ∈ N}.

To show this set is dense Gδ in A(Γ, X, µ) it therefore suffices to show that AF,r+ε(Γ, X, µ) ∩

FR(Γ, X, µ) is dense Gδ for each F ⊆ Γ finite and ε > 0. By [Kec10, Theorem 10.8], the

set FR(Γ, X, µ) is dense Gδ in A(Γ, X, µ). Theorem 6.4 shows that AF,r+ε is relatively open

in FR(Γ, X, µ), so it only remains to show that it is dense. By Proposition 6.26 we have PC(a) =

PC(Γ) whenever a ∈ FR(Γ, X, µ) has a dense conjugacy class. Since the set of actions with dense

conjugacy class is dense Gδ in FR(Γ, X, µ) the result follows.

(2): Suppose that Cgen(Γ) = r < ∞. This means the generic a ∈ FR(Γ, X, µ) has C(a) = r.

Since r < ∞ it follows from Corollary 6.8 that C(a) = r ⇒ C(a) = PC(a). Thus the generic

free action a satisfies PC(a) = r = C(a) and by part (1) we therefore have C(Γ) ≥ PC(Γ) =

PCgen = Cgen(Γ) ≥ C(Γ), which shows that Cgen(Γ) = C(Γ).

(3) follows from (1) along with Corollary 6.8. �

Let MINCOST(Γ, X, µ) = {a ∈ FR(Γ, X, µ) : C(a) = C(Γ)}.

COROLLARY 6.28. Let Γ be a countably infinite group. Then the set

D =
{
b ∈ FR(Γ, X, µ) : ∃aperiodic subequivalence relations

E0 ⊆ E1 ⊆ E2 ⊆ · · · of Eb, with Eb =
⋃
n

En and lim
n
Cµ(En) = C(Γ)

}
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is dense Gδ in A(Γ, X, µ). Additionally, if C(Γ) <∞ then we have the equality of sets

(6.5) MINCOST(Γ, X, µ) = D ∩ {b ∈ FR(Γ, X, µ) : C(b) <∞}.

In particular, if all free actions of Γ have finite cost then MINCOST(Γ, X, µ) = D is dense Gδ.

PROOF. We begin by showingD is denseGδ. By [Kec10, Theorem 10.8], FR(Γ, X, µ) is dense

Gδ in A(Γ, X, µ). If C(Γ) = ∞ then D = FR(Γ, X, µ) and we are done, so we may assume that

C(Γ) < ∞. Then C(Γ) = PC(Γ) by Proposition 6.26, so it follows from Corollary 6.17 that

D = {a ∈ FR(Γ, X, µ) : PC(a) = PC(Γ)} = MINPCOST(Γ, X, µ), and therefore D is dense

Gδ by Corollary 6.27.

For the second statement of the theorem, suppose that C(Γ) < ∞. Then C(Γ) = PC(Γ) by

Proposition 6.26. The inclusion from left to right in (6.5) is clear. If b has finite cost and b ∈ D then,

PC(b) ≤ C(Γ) = PC(Γ), hence PC(b) = PC(Γ) = C(Γ), i.e., b ∈ MINCOST(Γ, X, µ). �

6.4. Cost and invariant random subgroups. Equip each of the spaces ΓΓ and 2Γ with the

pointwise convergence topology.

LEMMA 6.29. There exists a continuous assignment SubΓ → ΓΓ, H 7→ σH , with the following

properties:

(i) For each H ∈ SubΓ, σH : Γ → Γ is a selector for the right cosets of H in Γ, i.e.,

σH(δ) ∈ Hδ for all δ ∈ Γ, and σH is constant on each right coset of H .

(ii) σH(h) = e whenever h ∈ H .

(iii) The corresponding assignment of transversals SubΓ → 2Γ, H 7→ TH := σH(Γ), is

continuous.

PROOF. Fix a bijective enumeration Γ = {γm}m∈N of Γ with γ0 = e, and define σH(γm) = γi

where i is least such that γmγ−1
i ∈ H . This is continuous and (i) and (ii) are clearly satisfied, and

(iii) follows from continuity of H 7→ σH , since the map ΓΓ → 2Γ sending f : Γ → Γ to its set of

fixed points is continuous. �

Define the set

A(SubΓ, X, µ) := {(H,a) : H ∈ SubΓ, and a ∈ A(H,X, µ)}.
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This set has a natural Polish topology in which (Hn,an) → (H,a) if and only if Hn → H and

an → a pointwise. We make this precise by taking ∗ to be some point isolated from Aut(X,µ) and

then defining γb = ∗ whenever H ≤ Γ, b ∈ A(H,X, µ), and γ 6∈ H . Then (Hn,an) → (H,a)

means that γan → γa for every γ ∈ Γ.

LEMMA 6.30. For any r ∈ R the sets

Sr = {H ∈ SubΓ : C(H) < r}

Ar = {(H,a) ∈ A(SubΓ, X, µ) : a is free and C(a) < r}

are analytic. In particular, the map H 7→ C(H) is universally measurable.

PROOF. It suffices to show that Ar is analytic since Sr is the image of Ar under projection onto

SubΓ which is continuous. We may assume that X = 2N and that µ is the uniform product measure.

Let Γ ys XΓ denote the left shift action given by (γs ·f)(δ) = f(γ−1δ) for f ∈ XΓ. LetH 7→

σH and H 7→ TH ⊆ Γ be a continuous assignment of selectors and transversals given by Lemma

6.29. For (H,a) ∈ A(SubΓ, X, µ) define the map ΦH,a : X → XΓ by ΦH,a(x)(ht) = (h−1)ax

for h ∈ H , t ∈ TH , x ∈ X . Then ΦH,a is injective and equivariant from H ya X to the shift

action H ys XΓ and so the measure µH,a := (ΦH,a)∗µ is H ys XΓ invariant, and the systems

H ya (X,µ) and H ys (XΓ, µH,a) are isomorphic. Let P denote the space of Borel probability

measures on XΓ equipped with the weak∗-topology.

CLAIM 4. The map A(SubΓ, X, µ)→ P , (H,a) 7→ µH,a is continuous.

PROOF OF CLAIM. Suppose that (Hn,an) → (H∞,a∞) in A(SubΓ, X, µ). Letting µn =

µHn,an , it suffices to check that µn(A) → µ∞(A) whenever A ⊆ XΓ is of the form A = {f ∈

XΓ : ∀γ ∈ F (f(γ) ∈ Aγ)} where F ⊆ Γ is finite and Aγ ⊆ X is Borel. For γ ∈ F write

γ = hγtγ where tγ ∈ TH∞ and hγ ∈ H∞. By continuity of H 7→ σH and H 7→ TH , for all

large enough n, hγ ∈ Hn and tγ ∈ THn for all γ ∈ F . Then µn(A) = µ(
⋂
γ∈F h

an
γ (Aγ)) →

µ(
⋂
γ∈F h

a
γ(Aγ)) = µ∞(A) since an → a. �[Claim]

Now let EH denote the orbit equivalence relation on XΓ generated by H ys XΓ. The set

B = {(H, ν) ∈ SubΓ × P : ν is EH -invariant and H ys (XΓ, ν) is essentially free}
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is Borel so by the proof of [KM04, Proposition 18.1] the set D = {(H, ν) ∈ B : Cν(EH) < r} is

analytic. We have (H,a) ∈ Ar if and only if (H,µH,a) ∈ D, which shows that Ar is analytic. �

It follows that for any ergodic invariant random subgroup θ of Γ there is an r ∈ R ∪ {∞} such

that C(H) = r for almost all H ≤ Γ. The following is an analogue of [BG04, §5] for cost. I would

like to thank Lewis Bowen for a helpful discussion related to this.

THEOREM 6.31. Let θ be an invariant random subgroup of Γ and suppose that θ concentrates

on the infinite subgroups of Γ which have infinite index in Γ. If θ({H : C(H) < ∞}) 6= 0 then

C(Γ) = 1.

Thus, if C(Γ) > 1 then for any ergodic non-atomic m.p. action Γ ya (X,µ), either Γx is finite

almost surely, or C(Γx) =∞ almost surely.

PROOF. To see that the second statement follows from the first observe that an ergodic non-

atomic m.p. action cannot have stabilizers which are finite index. We now prove the first statement.

By decomposing θ into its ergodic components we may assume without loss of generality that θ is

ergodic and there is an r ∈ R such that C(H) < r almost surely.

By Lemma 6.30 the set Ar = {(H,a) ∈ A(SubΓ, X, µ) : a is free and C(a) < r} is an

analytic subset of A(SubΓ, X, µ). Since C(H) < r almost surely, we may measurably select for

each H ∈ SubΓ a free action aH ∈ FR(H,X, µ) ⊆ A(H,X, µ) of H such that almost surely

C(aH) < r (we are applying [Kec95, 18.1] to the flip of the graph of the projection function

Ar → SubΓ, (H,a) 7→ H). A co-inducing process can now be used to obtain an action b of Γ from

the selection H 7→ aH ∈ A(H,X, µ) as follows.

Let H 7→ σH be as in Lemma 6.29. Let COSΓ ⊆ 2Γ denote the closed subspace of all right

cosets of subgroups of Γ, on which Γ acts continuously by left translation γ` · Hδ = γHδ. The

function ρ : Γ× COSΓ → Γ defined by

ρ(γ,Hδ) = (σγHγ−1(γδ))−1γσH(δ)

is a continuous cocycle of this action with values in Γ. It is clear that ρ(γ,Hδ) ∈ δ−1Hδ, so the

map (γ,Hδ) 7→ ρ(γ,Hδ)aδ−1Hδ is a well-defined measurable cocycle with values in Aut(X,µ).

We therefore obtain an action b of Γ on the space W = {(H, f) : H ≤ Γ and f : H\Γ → X}
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given by γb(H, f) = (γHγ−1, γbHf) where γbHf : γHγ−1\Γ→ X is given by

(γbHf)(γHδ) = ρ(γ,Hδ)aδ−1Hδ(f(Hδ)).

This action preserves the measure κ =
∫
H(δH × µH\Γ) dθ(H) since

γb∗κ =

∫
H

(δγHγ−1 × γbH∗ µH\Γ) dθ =

∫
H

(
δγHγ−1 ×

∏
γHδ∈γHγ−1\Γ

(ρ(γ,Hδ)aδ−1Hδ)∗µ
)
dθ

=

∫
H

(
δγHγ−1 ×

∏
γHδ∈γHγ−1\Γ

µ
)
dθ =

∫
H

(
δγHγ−1 × µγHγ−1\Γ) dθ =

∫
H
δH × µH\Γdθ = κ.

LEMMA 6.32.

(1) For each (H, f) ∈ W , and h ∈ H we have (hbHf)(H) = haH (f(H)) and thus the map

XH\Γ → X , f 7→ f(H) factors

bH = H ybH (XH\Γ, µH\Γ)

onto aH .

(2) (Analogue of [Ioa11, Lemma 2.1]) For almost all H ≤ Γ and every γ ∈ Γ \ {e} the sets

WH
γ = {f ∈ XH\Γ : γHγ−1 = H and (γbHf)(H) = f(H)}

are µH\Γ-null. In particular, b is essentially free.

PROOF. (1) is clear from the definition of bH . For (2), If f ∈WH
γ then ρ(γ,H)aH (f(Hγ−1)) =

f(H) by definition of bH . So for each H with aH essentially free, if γ ∈ H \ {e} then f ∈ WH
γ

if and only if γaH (f(H)) = f(H), so that WH
γ is null, while if γ ∈ Γ \ H then WH

γ ⊆ {f ∈

XH\Γ : ρ(γ,H)aH (f(Hγ−1)) = f(H)}, which is null since Hγ−1 6= H and µ is non-atomic.

Since almost all aH are essentially free we are done. �[Lemma 6.32]

We now apply a randomized version of an argument due to Gaboriau (see [KM04, Theorem

35.5]). There is another measure preserving action s = Γ ys (W,κ) of Γ on (W,κ) given by

γs(H, f) = (γHγ−1, γsHf) where (γsHf)(γHδ) = f(Hδ) (this is the random Bernoulli shift

determined by θ [TD12c, §5.3]). The projection map W → SubΓ, (H, f) 7→ H factors both b and

s onto θ. We let a denote the corresponding relatively independent joining of b and s over θ, i.e.,
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a is the measure preserving action of Γ on

(Z, η) =
({

(H, f, g) : f, g ∈ XH\Γ}, ∫
H

(δH × µΓ/H × µΓ/H) dθ
)

given by γa(H, f, g) = (γHγ−1, γbHf, γsHg) where (γsHg)(γHδ) = g(Hδ). This action is free

since it factors onto b.

Let p : Z → W denote the projection map p((H, f, g)) = (H, g). For each (H, g) ∈ W

the set p−1((H, g)) is a � H-invariant, and we let E(H,g) denote the orbit equivalence relation on

p−1((H, g)) generated by a � H , i.e., (H, f1, g)E(H,g)(H, f2, g) if and only if there is some h ∈ H

such that hbHf1 = f2. Define the equivalence relation E on Z by E =
⊔

(H,g)∈W E(H,g), i.e.,

(H1, f1, g1)E(H2, f2, g2)⇔ (H1, g1) = (H2, g2) and ∃h ∈ H1 (hbHf1 = f2).

Recall that if F ⊆ R are countable Borel equivalence relations on a standard Borel space Y , then

F is said to be normal in R if there exists some countable group ∆ of Borel automorphisms of Y

which generates R and satisfies xFy ⇒ δ(x)Fδ(y) for all δ ∈ ∆.

LEMMA 6.33. E is a normal subequivalence relation ofEa that is almost everywhere aperiodic

and with Cη(E) < r.

PROOF OF LEMMA 6.33. It is clear that E is an equivalence relation and that E is contained

in Ea. Also, E is almost everywhere aperiodic since θ concentrates on the infinite subgroups of Γ

by hypothesis. Let γ ∈ Γ and let (H, f, g), (H, f ′, g) ∈ SubΓ ×X be E-related so that hbHf = f ′

for some h ∈ H . To show E is normal in Ea we must show that γa(H, f, g) and γa(H,hbHf, g)

are E-related as well, i.e., we must find some k ∈ γHγ−1 such that (kγ)bHf1 = γbH (hbHf1). The

element k = γhγ−1 works.

If we disintegrate η via the E-invariant map p : Z → W , then for each (H, g) ≤ Γ, the

equivalence relation E(H,g) on (p−1((H, g)), η(H,g)) is isomorphic to the orbit equivalence relation

generated by bH � H on (XH\Γ, µH\Γ). By Lemma 6.32.(1), bH factors onto aH , so for θ-almost

every H we have r ≤ Cη(H,g)
(E(H,g)) = C(bH) ≤ C(aH) < r by [Kec10, bottom of p. 78]. Then

by [KM04, Proposition 18.4] we have

Cη(E) =

∫
H,g

Cη(H,g)
(E(H,g)) dθ(H) < r. �[Lemma 6.33]
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Since H is almost surely infinite index, the equivalence relation Es on W generated by s is

aperiodic. By [Kec10] the full group [Es] contains an aperiodic transformation T : W → W .

Let B : Γ → MALGκ, γ 7→ Bγ , be a partition of W such that T � Bγ = γs � Bγ . Then

A : Γ → MALGκ given by Aγ = p−1(Bγ) is a partition of Z, and determines the L-graphing

Φa,A = {ϕa,Aγ }γ∈Γ where ϕa,Aγ � Aγ = γa � Aγ .

Fix ε > 0 and find by Lemma 6.33 a graphing {ϕi}i∈N ofE ⊆ Z of finite cost
∑

iCη(ϕi) <∞.

Let M be so large that
∑

i>M Cη(ϕi) < ε/2. Let Y0 ⊆W be a Borel complete section for ET with

κ(Y0) < ε/(2M), and let Y = p−1(Y0). Then η(Y ) = κ(Y0) < ε/M , and Y is E-invariant so that

{ϕi � Y }i∈N is an L-graphing of E � Y . It follows that

Cη�Y (E � Y ) ≤
∑
i∈N

Cη({ϕi � Y }) ≤M · η(Y ) +
∑
i≥M

Cη({ϕi}) < ε.

CLAIM 5. E ⊆ E � Y ∨ EΦa,A .

PROOF. Suppose (H, f, g)E(H, f ′, g). Since Y0 is a complete section for ET there exists

γ1, . . . , γk and ε1, . . . , εk ∈ {−1, 1} such that (ϕs,Bγk )εk ◦ · · · (◦ϕs,Bγ1 )ε1((H, g)) ∈ Y0. Let γ =

γεkk · · · γ
ε1
1 and let (H0, g0) = γs((H, g)) ∈ Y0. It follows that

γa(H, f, g) = (γεkk )a · · · (γε11 )a(H, f, g) = (ϕa,Aγk )εk ◦ · · · ◦ (ϕa,Aγ1
)ε1(H, f, g)

γa(H, f ′, g) = (γεkk )a · · · (γε11 )a(H, f ′, g) = (ϕa,Aγk )εk ◦ · · · ◦ (ϕa,Aγ1
)ε1(H, f ′, g).

This shows that (H, f, g)EΦa,Aγ
a(H, f, g) and γa(H, f ′, g)EΦa,A(H, f ′, g). As γa(H, f, g) =

(H0, γ
bHf, g0) ∈ Y and γa(H, f ′, g) = (H0, γ

bHf ′, g0) ∈ Y we will be done if we can show

these two points are E-related. Let h ∈ H be such that hbHf = f ′ and let k = γhγ−1. Then

k ∈ γHγ−1 = H0 and

ka(H0, γ
bHf, g0) = (kγ)a(H, f, g) = (γh)a(H, f, g) = γa(H, f ′, g) = (H0, γ

bHf ′, g0)

which shows that (H0, γ
bHf, g0)E(H0,g0)(H0, γ

bHf ′, g0). �[Claim 5]

We have Cη(E � Y ∨ EΦa,A) ≤ 1 + ε. Since we have shown that E ⊆ E � Y ∨ EΦa,A and

that E is an aperiodic normal subequivalence relation of Ea, it follows from [KM04, 24.10] that

Cη(Ea) ≤ Cη(E � Y ∨ EΦa,A) ≤ 1 + ε. As ε > 0 was arbitrary it follows that Cη(Ea) = 1 and

therefore C(Γ) = 1. �
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6.5. Fixed price 1 and shift-minimality. The following lemma will be needed for Theorem

6.36.

LEMMA 6.34. Let θ be an invariant random subgroup of a countable group Γ that concentrates

on the infinite amenable subgroups of Γ. Let a = Γ ya (X,µ) be a free measure preserving action

of Γ and let

θ× a = Γ yc×a (SubΓ ×X, θ × µ)

be the product Γ-system. Then Cθ×µ(Ec×a) = 1.

REMARK 6.35. The proof shows that the hypothesis that θ is amenable can be weakened to the

hypothesis that θ concentrates on groups of fixed price 1.

PROOF. The proof is similar to that of Lemma 6.33. Since Ec×a is aperiodic it suffices to

show that Cθ×µ(Ec×a) ≤ 1. For each H ∈ SubΓ let Ea�H denote the orbit equivalence relation

on X generated by a � H = H ya (X,µ). Define the subrelation E ⊆ Ec×a on SubΓ × X by

E = {((H,x), (H, y)) : xEa�Hy}, i.e.,

(H,x)E(L, y) ⇔ H = L and (∃h ∈ H) (ha · x = y).

ThenE is a normal sub-equivalence relation ofEc×a. Since θ concentrates on the infinite subgroups

of Γ, E is aperiodic on a (θ×µ)-conull set. By [KM04, 24.10] and then [KM04, Proposition 18.4]

we therefore have

Cθ×µ(Ec×a) ≤ Cθ×µ(E) =

∫
H
Cµ(Ea�H) dθ(H) = 1

where the last equality follows from [KM04, Corollary 31.2] since θ-almost every H is infinite

amenable. �

THEOREM 6.36. Let Γ be a countably infinite group that contains no non-trivial finite normal

subgroup. If Γ is not shift-minimal then Γ has fixed price 1.

PROOF. Suppose that Γ is not shift-minimal. By Corollary 3.14 either Γ has a non-trivial nor-

mal amenable subgroupN that is necessarily infinite by our hypothesis on Γ, or there is an infinitely

generated amenable invariant random subgroup θ of Γ that is weakly contained in sΓ. In the first
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case define θ = δN , so that in either case θ concentrates on the infinite amenable subgroups of Γ,

and θ ≺ sΓ.

Let (X,µ) denote the underlying measure space of sΓ and consider the product Γ-system

θ × sΓ = Γ yc×s (SubΓ ×X, θ × µ).

By Lemma 6.34 we have C(θ × sΓ) = 1 . The action θ is weakly contained in sΓ, so θ × sΓ is

weakly equivalent to sΓ. This implies that Γ has fixed price 1 by (3)⇒(1) of Corollary 6.24. �

COROLLARY 6.37. Suppose that Γ does not have fixed price 1. Then the following are equiva-

lence

(1) Γ is shift-minimal.

(2) Γ contains no non-trivial finite normal subgroups.

(3) ARΓ is trivial.

PROOF. (3)⇒(2) is obvious. (2)⇒(1) is immediate from Theorem 6.36 by our assumption that

Γ does not have fixed price 1. (1)⇒(3) holds in general with no assumptions on Γ. �

COROLLARY 6.38. Let Γ be any group that does not have fixed price 1. Then ARΓ is finite and

Γ/ARΓ is shift-minimal.

PROOF. Any group containing an infinite normal amenable subgroup has fixed price 1 [KM04,

Proposition 35.2]. Therefore N = ARΓ is finite. Let a = Γ ya (X,µ) be a free measure

preserving action of Γ of cost Cµ(Ea) > 1. The measure preserving action b of Γ/N on the

ergodic components of a � N is free, and since N is finite we have C(b) ≥ C(a) > 1. Thus, Γ/N

does not have fixed price 1, and ARΓ/N = {e} by Proposition 9.1. Corollary 6.37 now shows that

Γ/N is shift-minimal. �

7. Questions

7.1. General implications. A countable group Γ is calledC∗-simple if the reducedC∗-algebra

of Γ is simple, i.e., C∗r (Γ) has no non-trivial closed two-sided ideals. As observed in the introduc-

tion, there is a strong parallel between shift-minimality and C∗-simplicity. The following charac-

terization of C∗-simplicity of a countable group Γ may be found in [dlH07]. Let λΓ denote the left

regular representation of Γ on `2(Γ).
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PROPOSITION 7.1. Let Γ be a countable group. Then Γ is C∗-simple if and only if π ≺ λΓ

implies π ∼ λΓ for all nonzero unitary representations π of Γ.

In this characterization of C∗-simplicity we may actually restrict our attention to irreducible

representations of Γ. That is, Γ is C∗-simple if and only if every irreducible unitary representation

π of Γ that is weakly contained in λΓ is actually weakly equivalent to λΓ. See [BdlH00]. See also

[BHV08, Appendix F] and [Dix77] for more on weak containment of unitary representations.

Characterization (6) of shift-minimality from Proposition 3.2 also has an analogue for C∗-

simplicity. Let H be an infinite-dimensional separable Hilbert space and let Irrλ(Γ,H) denote the

Polish space of irreducible representation of Γ on H that are weakly contained in λΓ (see [Dix77]).

Let U(H) be the Polish group of all unitary operators on H. Then Γ is C∗-simple if and only if Γ

is ICC and the conjugation action of U(H) on Irrλ(Γ,H) is minimal (i.e., every orbit is dense). See

[Kec10, Appendix H.(C)].

Consider now the following properties of a countable group Γ:

(UT) Γ has the unique trace property.

(CS) Γ is C∗-simple.

(SM) Γ is shift-minimal.

(UIRS0) Γ has no non-trivial amenable invariant random subgroup that is weakly contained in sΓ.

(UIRS) Γ has no non-trivial amenable invariant random subgroups.

(ARe) Γ has no non-trivial amenable normal subgroups, i.e., the amenable radical ARΓ of Γ is

trivial.

All of the known implications (besides (SM)⇔(UIRS0)) are depicted in Figure 1 in the intro-

duction. It is known that (UT) and (CS) imply (ARe) ([PS79], see also [BdlH00, Proposition 3]),

though it is an open question whether there are any other implications among the properties (UT),

(CS), and (ARe) in general [BdlH00]. The following questions concern some of the remaining

implications.

The implication (UT)⇒(SM) was shown in Theorem 5.15. One of the most pressing questions

is:

QUESTION 7.2. Does (CS) imply (SM)? That is, are C∗-simple groups shift-minimal?
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For a positive answer to Question 7.2 it would suffices by Corollary 3.14 to show that if θ is a

non-atomic self-normalizing amenable IRS of a countable group Γ that is weakly contained in sΓ

then the tracial state on C∗r (Γ) extending ϕθ from the proof of Theorem 5.14 is not faithful.

The implication from (UT) to (UIRS) is quite direct. The converse would mean that a tracial

state on C∗r (Γ) different from τΓ somehow gives rise to a non-trivial amenable invariant random

subgroup of Γ. This is addressed by the following question:

QUESTION 7.3. Does (UIRS) imply (UT)? That is, if Γ does not have any non-trivial amenable

invariant random subgroups then does C∗r (Γ) have a unique tracial state?

We know from Theorem 3.16 that (SM) and (UIRS0) are equivalent. The equivalence of (SM)

and (UIRS) is open however (clearly though (UIRS)⇒(UIRS0))

QUESTION 7.4. Does (UIRS0) imply (UIRS)?

To obtain a positive answer to Question 7.4 it would be enough to show the following: (?) Every

ergodic amenable invariant random subgroup of a countable group Γ that is not almost ascendant is

weakly contained in sΓ.

Indeed, assume that (?) holds and suppose that Γ does not have (UIRS), i.e., there is an amenable

invariant random subgroup θ of Γ other than δ〈e〉. By moving to an ergodic component of θ we may

assume without loss of generality that θ is ergodic. If θ is not almost ascendant then (?) implies that

θ is weakly contained in sΓ, which shows that Γ does not have (UIRS0). On the other hand, if θ is

almost ascendant then, by Corollary 9.4, θ concentrates on the subgroups of ARΓ, and in particular

ARΓ is non-trivial, so δARΓ
witnesses that Γ does not have (UIRS0).

The implication (SM)⇒(ARe) is shown in Proposition 3.15 above. The converse is a tantalizing

question:

QUESTION 7.5. Does (ARe) imply (SM)? That is, if Γ has no non-trivial amenable normal

subgroup then is every non-trivial m.p. action that is weakly contained in sΓ free?

To obtain a positive answer to Question 7.5 by Corollary 3.14 it would be enough to show that

if θ is a non-atomic self-normalizing invariant random subgroup weakly contained in sΓ then θ

concentrates on subgroups of the amenable radical of Γ. (Note that θ does indeed concentrate on

the amenable subgroups of Γ by NA-ergodicity.)
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7.2. Cost and pseudocost. In the infinitely generated setting it appears that pseudocost, rather

than cost, may be a more useful way to define an invariant. In addition to the properties exhibited

in §6.2, pseudocost enjoys many of the nice properties already known to hold for cost. For instance,

pseudocost respects ergodic decomposition, and PC(Γ) ≤ PC(N) whenever N is an infinite nor-

mal subgroup of Γ. (The proofs are routine: for the first statement one uses the corresponding fact

about cost along with basic properties of pseudocost, and the proof of the second is nearly identical

to the corresponding proof for cost.)

QUESTION 7.6. Is there an example of a m.p. countable Borel equivalence relation E such that

PCµ(E) < Cµ(E)?

By Corollary 6.8.(1) the equality PCµ(E) = Cµ(E) holds whenever Cµ(E) < ∞, so the

question is whether it is possible to have PCµ(E) < ∞ and Cµ(E) = ∞. Equivalently: does

there exist an increasing sequence E0 ⊆ E1 ⊆ · · · , of m.p. countable Borel equivalence relations

on (X,µ) with supnCµ(En) < ∞ and Cµ(
⋃
nEn) = ∞? If such a sequence (En)n∈N exists

then, letting E =
⋃
nEn, Corollary 6.8.(2) implies that E could not be treeable. In addition, E

would provide an example of strict inequality β1(E) + 1 < Cµ(E). This follows from [Gab02,

5.13, 3.23]. Gaboriau has shown that any aperiodic m.p. countable Borel equivalence R satisfies

β1(R) + 1 ≤ Cµ(R) [Gab02], although it is open whether this inequality can ever be strict. Note

that a positive answer to 7.6 would not necessarily provide a counterexample to the fixed price

conjecture, even if the equivalence relation E comes from a free action of some group Γ; at this

time there is no way to rule out the possibility that such a Γ has fixed cost∞ while at the same time

admitting various free actions with finite pseudocost.

QUESTION 7.7. Suppose that a countable group Γ has some free action a with Cµ(a) = ∞.

Does it follow that Cµ(sΓ) =∞?

By Corollary 6.20, sΓ attains the maximum pseudocost among free actions of Γ. Corollary 6.22

implies that

C(sΓ) ≥ sup{C(b) : b ∈ FR(Γ, X, µ) and either C(b) <∞ or Eb is treeable}.

This is not enough to conclude that sΓ always attains the maximum cost among free actions of Γ.

A positive answer to Question 7.7 would imply that sΓ always attains this maximum cost.
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It would be just as interesting if sΓ could detect whether C(Γ) <∞.

QUESTION 7.8. Suppose that a countable group Γ has some free action a with Cµ(a) < ∞.

Does it follow that Cµ(sΓ) <∞?

At this time it appears that one cannot rule out any combination of answers to Questions 7.7

and 7.8. A positive answer to both questions would amount to showing that no group has both free

actions of infinite cost and free actions of finite cost - this would essentially affirm a special case of

the fixed price conjecture!

7.3. Other questions. It is shown in [TD12a] that the natural analogue of Question 7.5, where

”amenable” is replaced by ”finite” and ”weakly contained in” is replaced by ”is a factor of,” has a

positive answer:

THEOREM 7.9 (Corollary 1.6 of [TD12a]). Let Γ be a countable group. If Γ has no non-trivial

finite normal subgroups then every non-trivial totally ergodic action of Γ is free.

In particular, if Γ has no non-trivial finite normal subgroups then every non-trivial factor of sΓ

is free.

Here, a measure preserving action of Γ is called totally ergodic if all infinite subgroups of Γ act

ergodically. Theorem 7.9 motivates the following question concerning strong NA-ergodicity.

QUESTION 7.10. Let Γ ya (X,µ) be a non-trivial measure preserving action of a countable

group Γ. Suppose that for each non-amenable subgroup ∆ ≤ Γ the action ∆ ya (X,µ) is strongly

ergodic. Does it follow that the stabilizer of almost every point is contained in the amenable radical

of Γ?

A positive answer to 7.10 would imply a positive answer to 7.5 by Proposition 3.10.

The following question concerns the converse of Proposition 4.6:

QUESTION 7.11. Suppose Γ is shift-minimal. Is it true that every finite index subgroup of Γ is

shift-minimal?

Question 7.11 is equivalent to the question of whether every finite index normal subgroup N

of a shift-minimal group Γ is shift-minimal. Indeed, suppose the answer is positive for normal
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subgroups and let K be a finite index subgroup of a shift-minimal group Γ. Then K is ICC, since

the ICC property passes to finite index subgroups. Since the group N =
⋂
γ∈Γ γKγ

−1 is finite

index and normal in Γ, it is shift-minimal by our assumption. Proposition 4.6 then implies that K

is shift-minimal.

Corollary 4.8 provides a positive answer to Question 7.11 for finite index subgroups which are

torsion-free. Theorem 4.7 gives a positive answer for finite index normal subgroups N of Γ for

which there is no infinite locally finite invariant random subgroup that is weakly contained in sN .

Note that a positive answer to the analogue of Question 7.11 for C∗-simplicity was demonstrated in

[BdlH00] (and likewise for the unique trace property).

The results from §6.2 and §6.5 suggest that the following may have a positive answer:

QUESTION 7.12. If an infinite group Γ has positive first `2-Betti number then is it true that

C∗r (Γ/ARΓ) is simple and has a unique tracial state?

There are already partial results in this direction: Peterson and Thom [PT11] have shown a

positive answer under the additional assumptions that Γ is torsion free and that every non-trivial

element of ZΓ acts without kernel on `2Γ.

Finally, we record here a question raised earlier in this paper.

(Question 3.9). Let Γ be a countable group acting by automorphisms on a compact Polish

group G and assume the action is tempered. Does it follow that the action is weakly contained in

sΓ? As a special case, is it true that the action SL2(Z) y (T2, λ2) is weakly contained in sSL2(Z)?

8. Appendix: Invariant random subgroups as subequivalence relations

This first appendix studies invariant random partitions of Γ which are a natural generalization

of invariant random subgroups. In §8.1 it is shown that every invariant random partition of Γ comes

from a pair (a, F ) where a is a free m.p. action of Γ and F is a (Borel) subequivalence relation of

Ea. It is shown in §8.2 that for an invariant random subgroup any such pair (a, F ) will have the

property that F is normalized by a, i.e., γa is in the normalizer of the full group of F for every

γ ∈ Γ.

Many of the ideas here are inspired by (and closely related to) the notion of a measurable

subgroup developed by Bowen-Nevo [BN09] and Bowen [Bow12a]. See also Remark 8.14.
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8.1. Invariant random partitions. By a partition of Γ we mean an equivalence relation on Γ.

The set PΓ of all partitions of Γ is a closed subset of 2Γ×Γ and Γ acts continuously on PΓ by left

translation Γ y` PΓ, i.e.,

(α, β) ∈ γP ⇔ (γ−1α, γ−1β) ∈ P

for each γ, α, β ∈ Γ and P ∈ PΓ. For P ∈ PΓ and α ∈ Γ let [α]P = {β : (α, β) ∈ P} denote the

P -class of α. Then it is easy to check that γ[α]P = [γα]γP for all γ ∈ Γ.

DEFINITION 8.1. An invariant random partition of Γ is a translation-invariant Borel probability

measure on PΓ.

REMARK 8.2. Let IRPΓ denote the space of all invariant random partitions of Γ. This is a

convex set that is compact and metrizable in the weak∗-topology. Similarly, let IRSΓ denote the

compact convex set of all invariant random subgroups of Γ. There is a natural embedding Φ :

SubΓ ↪→ PΓ that assigns to each H ∈ SubΓ the partition of Γ determined by the right cosets

of H , i.e., [δ]Φ(H) = Hδ for δ ∈ Γ. Observe that this embedding is Γ-equivariant between the

conjugation action Γ yc SubΓ and the translation action Γ y` PΓ. We thus obtain an embedding

Φ∗ : IRSΓ ↪→ IRPΓ, θ 7→ Φ∗θ.

Suppose now that F ⊆ X ×X is a measure preserving countable Borel equivalence relation on

(X,µ) and a = Γ ya (X,µ) is a m.p. action of Γ. Each point x ∈ X determines a partition P aF (x)

of Γ given by

P aF (x) = {(α, β) ∈ Γ : β−1xFα−1x}.

Note that P aF (x) = P aF∩Ea(x) for all x ∈ X , so if we are only concerned with properties of P aF

then we might as well assume that F ⊆ Ea.

PROPOSITION 8.3. The map x 7→ P aF (x) is equivariant and therefore (P aF )∗µ is an invariant

random partition of Γ.

PROOF. For any γ ∈ Γ and x ∈ X we have

(α, β) ∈ P aF (γx)⇔ α−1γxFβ−1γx⇔ (γ−1α, γ−1β) ∈ P aF (x)⇔ (α, β) ∈ γ` · P aF (x). �

Proposition 8.3 has a converse in a strong sense: given an invariant random partition ρ of Γ there

is a free m.p. action b = Γ yb (Y, ν) of Γ and a subequivalence relation F of Eb with (P bF)∗ν = ρ.
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In fact, F and b can be chosen independently of ρ, with only ν depending on ρ, as we now show.

Let ρ denote the m.p. action Γ y` (PΓ, ρ) and let b = ρ × sΓ (any free action of Γ will work in

place of sΓ) so that (Y, ν) = (PΓ × [0, 1]Γ, ρ× λΓ). Define F ⊆ Y × Y by

(8.1) (P, x)F(Q, y) ⇔ ∃γ ∈ Γ (γ−1 ∈ [e]P and (γP, γx) = (Q, y)).

THEOREM 8.4. Let ρ be an invariant random partition of Γ and write b = Γ yb (Y, ν) for

the action ρ × sΓ. Let F be given by (8.1). Then F is an equivalence relation contained in the

equivalence relation Eb generated by the b, and P bF((P, x)) = P for ν-almost every (P, x) ∈ Y . In

particular, (P aF )∗ν = ρ.

PROOF OF THEOREM 8.4. It is clear that F ⊆ Eb. We show that F is an equivalence rela-

tion: It is clear that F is reflexive. To see F is symmetric, suppose (P, x)F(Q, y), as witnessed by

γ−1 ∈ [e]P with γP = Q and γx = y. Then γ ∈ [e]γP = [e]Q and (γ−1Q, γ−1y) = (P, x),

so (Q, y)F(P, x). For transitivity, if (P, x)F(Q, y)F(R, z) as witnessed by γ−1 ∈ [e]P with

(γP, γx) = (Q, y) and δ−1 ∈ [e]Q with (δQ, δy) = (R, z) then γ−1 ∈ [e]P and γP = Q im-

plies [e]Q = [e]γP = γ[e]P . Therefore δ−1 ∈ γ[e]P , i.e., (δγ)−1 ∈ [e]P and (δγP, δγx)(δQ, δy) =

(R, z).

Fix now (P, x) ∈ Y . We show that P bF((P, x)) = P . For each α, β ∈ Γ we have by definition

(α, β) ∈ P aF ((P, x)) ⇔ (α−1P, α−1x)F (β−1P, β−1x)

⇔ ∃γ ∈ Γ
(
γ−1 ∈ [e]α−1P and (γα−1P, γα−1x) = (β−1Q, β−1x)

)
.(8.2)

Therefore, if (α, β) ∈ P bF((P, x)) as witnessed by some γ as in (8.2) then γα−1x = β−1x so

freeness of a implies γ = β−1α. Then α−1β = γ−1 ∈ [e]α−1P , i.e., (α−1β, e) ∈ α−1P , which is

equivalent to (β, α) ∈ P . This shows that P bF((P, x)) ⊆ P . For the reverse inclusion, if (α, β) ∈ P

then γ = β−1α satisfies (8.2) and thus (α, β) ∈ P bF((P, x)). �

DEFINITION 8.5. Let a = Γ ya (X,µ) be a m.p. action of Γ and let F be a subequivalence

relation of Ea. If ρ is an invariant random partition of Γ then the pair (a, F ) is called a realization

of ρ if (P aF )∗µ = ρ. If θ is an invariant random subgroup of Γ then (a, F ) is called a realization of

θ if it is a realization of Φ∗θ, where Φ∗ : IRSΓ → IRPΓ is the embedding defined in Remark 8.2. A

realization (a, F ) is called free if a is free.
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The following is a straightforward consequence of Theorem 8.4 and the definitions.

COROLLARY 8.6. Every invariant random partition admits a free realization.

The remainder of this subsection works toward a characterization of the set Φ∗(IRSΓ). Let K

be a metrizable compact space and consider the set PΓ ⊗K of all pairs (P, f) where f : P ∗ → K

is a function with dom(f) = P ∗ = {[α]P : α ∈ Γ} and taking values in K. The set PΓ ⊗K has a

natural compact metrizable topology coming from its identification with the closed set

P̃Γ ⊗K = {(P, g) ∈ PΓ ×KΓ : g is constant on each P -class} ⊆ PΓ ×KΓ

via the injection (P, f) 7→ (P, f̃) where f̃(α) = f([α]P ) for α ∈ Γ. Observe that P̃Γ ⊗K is

invariant in PΓ ×KΓ with respect to the product action `× s of Γ (where s denotes the shift action

Γ ys KΓ), so we obtain a continuous action Γ y`⊗s PΓ ⊗K. Explicitly, this action is given by

γ · (P, f) = (γP, γsP f) where γsP f : (γP )∗ → K is the function

(γsP f)([α]γP ) = f(γ−1[α]γP ) = f([γ−1α]P ).

There is a natural equivalence relation R = RK on PΓ ⊗K given by

(P, f)R(Q, g) ⇔ ∃γ ∈ [e]P (γ−1(P, f) = (Q, g)).

It is clear that R is an equivalence relation that is contained in E`⊗s.

LEMMA 8.7. P ⊆ P `⊗sR ((P, f)) for every (P, f) ∈ PΓ ⊗K.

PROOF. Suppose that (α, β) ∈ P . Then β−1α ∈ [e]β−1P so for any f ∈ KP ∗ , from the

definition of R we have

(β−1P, β−1f)R (β−1α)−1(β−1P, β−1f) = (α−1P, α−1f),

i.e., β−1(P, f)Rα−1(P, f). This means that (α, β) ∈ P `⊗sR ((P, f)) by definition. �

If ρ is an invariant random partition and µ is a Borel probability measure onK then the measure

ρ⊗ µ on PΓ ⊗K given by

ρ⊗ µ =

∫
P

(δP × µP
∗
) dρ

is `⊗ s-invariant.
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THEOREM 8.8. Let ρ be an invariant random partition of Γ, let µ be any atomless measure on

K, and let R = RK . Then the following are equivalent:

(1) ρ ∈ Φ∗(IRSΓ)

(2) (ρ⊗ µ)-almost every R-class is trivial.

PROOF. (1)⇒(2): Suppose that (1) holds. It follows that (ρ⊗µ) concentrates on pairs (Φ(H), f) ∈

PΓ ⊗ K with H ∈ SubΓ. It therefore suffices to show that the R-class of such a pair (Φ(H), f)

is trivial. If (Φ(H), f)R(Q, g) then there is some γ ∈ [e]Φ(H) = H with γ−1Φ(H) = Q and

γ−1f = Q, g. But γ−1Φ(H) = Φ(γ−1Hγ) = Φ(H) (since γ ∈ H) so that Q = Φ(H). In

addition, for each δ ∈ Γ we have γ[δ]Φ(H) = γHδ = Hδ = [δ]Φ(H) since γ ∈ H . Therefore

g([δ]Φ(H)) = (γ−1f)([δ]Φ(H)) = f(γ[δ]Φ(H)) = f([δ]Φ(H)), showing that g = f .

(2)⇒(1): Suppose that (2) holds. Since µ is non-atomic, for each P ∈ PΓ the set {f ∈ KP ∗ :

f is injective} is µP
∗
-conull. This along with (2) implies that there is a Γ-invariant (ρ ⊗ µ)-conull

set Y ⊆ PΓ⊗K on which R is trivial and such that f : P ∗ → K is injective whenever (P, f) ∈ Y .

The projection Y0 = {P ∈ PΓ : ∃f (P, f) ∈ Y } is then ρ-conull so it suffices to show that

Y0 ⊆ Φ(SubΓ). Fix P ∈ Y0 and an f : P ∗ → K with (P, f) ∈ Y .

CLAIM 6. Let α, β ∈ Γ. Then (α, β) ∈ P if and only if βα−1 ∈ [e]P .

PROOF OF CLAIM. Suppose (α, β) ∈ P . Lemma 8.7 implies (α, β) ∈ P aR(P, f) so as the

relevant R-classes are trivial this implies α−1(P, f) = β−1(P, f) and thus αβ−1P = P and

αβ−1f = f . Then f([e]P ) = (αβ−1f)([e]P ) = f([βα−1]P ) so injectivity of f shows that

[βα−1]P = [e]P , i.e., βα−1 ∈ [e]P .

Conversely, suppose βα−1 ∈ [e]P . Then (βα)−1(P, f)R(P, f) by definition of R, and since

the R-classes are trivial this implies (βα)−1(P, f) = (P, f) and thus β−1(P, f) = α−1(P, f).

Therefore f([β]P ) = (β−1f)([e]β−1P ) = (α−1f)([e]α−1P ) = f([α]P ). Since f is injective we

conclude that [β]P = [α]P , i.e., (α, β) ∈ P . �[Claim]

It is immediate from the claim that [e]P is a subgroup of Γ and that P is the partition determined by

the right cosets of [e]P , i.e., P = Φ([e]P ). �

8.2. Normalized subequivalence relations. As in the previous section let F ⊆ X × X be a

m.p. countable Borel equivalence relation on (X,µ) and let a = Γ ya (X,µ) be a m.p. action of

Γ.
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DEFINITION 8.9. F is said to be normalized by a = Γ ya (X,µ) if there is a conull set

X0 ⊆ X such that

xFy ⇒ γxFγy

for all γ ∈ Γ and x, y ∈ X0. Equivalently, F is normalized by a if the image of Γ in Aut(X,µ)

is contained in the normalizer of the full group of F . A realization (a, F ) of an invariant random

partition ρ of Γ is called normal if F is normalized by a.

Note that if F is normalized by a then F ∩ Ea is normalized by a and P aF∩Ea(x) = P aF (x) so

it makes sense once again to restrict our attention to the case where F ⊆ Ea. Define now

ΓaF (x) = {γ ∈ Γ : γ−1xFx}

It follows from the definitions that ΓaF (x) = [e]PaF (x).

PROPOSITION 8.10. Let F be a subequivalence relation of Ea. Then the following are equiva-

lent

(1) F is normalized by a.

(2) For almost all x, ΓaF (x) is a subgroup of Γ and P aF (x) is the partition of Γ determined by

the right cosets of ΓaF (x), i.e.,

(α, β) ∈ P aF (x) ⇔ ΓaF (x)α = ΓaF (x)β.

for all α, β ∈ Γ.

(3) ΓaF (γx) = γΓaF (x)γ−1 for almost all x ∈ X and all γ ∈ Γ.

(4) The set [e]P is a subgroup of Γ for (P aF )∗µ-almost every P ∈ PΓ and the map P 7→ [e]P

is an isomorphism from Γ y` (PΓ, (P
a
F )∗µ) to Γ yc (SubΓ, (Γ

a
F )∗µ).

PROOF. (1)⇒(2): Suppose (1) holds. By ignoring a null set we may assume without loss of

generality that xFy ⇒ γxFγy for all x, y ∈ X and γ ∈ Γ. We have that e ∈ ΓaF (x) for all

x. If γ ∈ ΓaF (x) then γ−1xFx so by normality we have xFγx and thus γ−1 ∈ ΓaF (x). If in

addition δ ∈ ΓaF (x) then δ−1xFxFγx so that δ−1xFγx which by normality implies γ−1δ−1xFx,

i.e., δγ ∈ ΓaF (x). This shows that ΓaF (x) is a subgroup. It remains to show that [δ]PaF (x) = ΓaF (x)δ.

We have γ ∈ [δ]PaF (x) if and only if δ−1xFγ−1x which by normality is equivalent to (δγ−1)xFx,

i.e., γ ∈ ΓaF (x)δ.
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(2)⇒(3): Suppose (2) holds. Then for almost all x and all γ, δ ∈ Γ we have

δ ∈ ΓaF (γx) ⇔ δ−1γxFγax ⇔ γ−1δ−1γxFx ⇔ δ ∈ γΓaF (x)γ−1.

(3)⇒(1): Suppose that (3) holds. LetX0 ⊆ X be anEa-invariant conull set such that ΓaF (γx) =

γΓaF (x)γ−1 for all x ∈ X0 and γ ∈ Γ. Then for any x, y ∈ F , if xFy then xEay so that y = δx

for some δ ∈ Γ. This means that δ−1 ∈ ΓaF (x) and, so for all γ ∈ Γ we have γδ−1γ−1 ∈ ΓaF (γx)

and thus

γy = (γδ−1γ−1)−1(γx)Fγx.

This shows that F is normalized by a.

(2)+(3)⇒(4): Assume (2) and (3) hold. Then the measure (P aF )∗µ concentrates on Φ(SubΓ).

It follows that P 7→ [e]P is injective on a (P aF )∗µ-conull set. By (3) this map is equivariant on a

conull set. Since the composition x 7→ P aF (x) 7→ [e]PaF (x) is the same as x 7→ ΓaF (x) this map is

measure preserving.

Finally, the implication (4)⇒(3) is clear. �

The following corollary is immediate.

COROLLARY 8.11. If F is normalized by a then (ΓaF )∗µ is an invariant random subgroup of Γ.

Theorem 8.4 also implies a converse to Corollary 8.11. Let θ be an invariant random subgroup

of Γ and let ρ = Φ∗θ. Let b and F be defined as in Theorem 8.4. Let a = θ × sΓ so that

(X,µ) = (SubΓ × [0, 1]Γ, θ × λ). Then the map Ψ : (H,x) 7→ (Φ(H), x) is an isomorphism of a

with b. Letting F0 = (Ψ×Ψ)−1(F), we have that

(8.3) (H,x)F0(L, y) ⇔ H = L and (∃h ∈ H)(hax = y).

COROLLARY 8.12. F0 is a subequivalence relation of Ea on X which is normalized by a and

satisfies ΓaF0
(H,x) = H for θ × µ-almost-every (H,x) ∈ X . Thus (P aF0

)∗µ = Φ∗θ. It follows that

every invariant random subgroup of Γ admits a normal, free realization.

PROOF. All that needs to be checked is that F0 is normalized by θ× a. If (H,x)F0(L, y) then

H = L and hax = y for some h ∈ H . Then for any γ ∈ Γ we must show that γ · (H,x)F0 γ ·

(H,hax). Now, γ · (H,x) = (γHγ−1, γax), so as γhγ−1 ∈ γHγ−1 the definition (8.3) of F0
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shows that

(γHγ−1, γax)F0 γhγ
−1 · (γHγ−1, γax) = γ · (H,hax) �

REMARK 8.13. In Corollary 8.12, if θ concentrates on the amenable subgroups of Γ then F0

will always be an amenable equivalence relation. For other properties of θ, a judicious choice of

free action d in place of sΓ in the definition of a may ensure that properties of θ are reflected by

the equivalence relation F . For example, if θ concentrates on subgroups of cost r then the proof

of Theorem 6.31 above shows that d can be chosen so that the corresponding equivalence relation

F0 has cost r. Similarly, if θ concentrates on treeable subgroups then F0 can be made a treeable

equivalence relation.

REMARK 8.14. Following [BN09, §2.2] let 2Γ
e = {L ∈ 2Γ : e ∈ L} and define the equivalence

relation Re ⊆ 2Γ
e × 2Γ

e by

(L,K) ∈ Re ⇔ ∃γ ∈ L γ−1L = K.

Then any Re-invariant Borel probability measure on 2Γ
e is called a a measurable subgroup of Γ

(see [BN09] and [Bow12a]). If ρ is any invariant random partition of Γ then the image of ρ under

P 7→ [e]P is a measurable subgroup of Γ. I do not know whether every measurable subgroup of Γ

comes from an invariant random partition in this way.

Creutz and Peterson [CP12] define the subgroup partial order on (IRSΓ,≤) as follows: Let

θ1, θ2 ∈ IRSΓ. Then θ1 is called a subgroup of θ2 (written θ1 ≤ θ2) if there exists a joining of θ1

and θ2 that concentrates on the set {(H,L) ∈ SubΓ : H ≤ L}. It is shown in [CP12] that this is

a partial order on IRSΓ. The same idea can be used to define a notion of refinement for invariant

random partitions.

For partitions P,Q ∈ PΓ, P is said to refine Q, written P ≤ Q, if P is a subset of Q. Equiva-

lently P ≤ Q means that [α]P ⊆ [α]Q for every α ∈ Γ. If ρ1 and ρ2 are invariant random partitions

of Γ then ρ1 refines ρ2, written ρ1 ≤ ρ2, if there exists a joining of ρ1 and ρ2 that concentrates on

the set {(P,Q) ∈ PΓ × PΓ : P ≤ Q}. It is clear that the restriction of the refinement relation on

PΓ (respectively, IRPΓ) to SubΓ (respectively, IRSΓ) is the subgroup relation.

The point of view developed in this section can be used to give a characterization of the partial

orders (IRSΓ,≤) and (IRPΓ,≤) in terms of subequivalence relations of free actions of Γ.

THEOREM 8.15. Let ρ1, ρ2 ∈ IRPΓ. Then the following are equivalent
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(1) ρ1 ≤ ρ2

(2) There exists a free m.p. action Γ ya (X,µ) of Γ and equivalence relationsF1 ⊆ F2 ⊆ Ea

with (P aF1
)∗µ = ρ1 and (P aF2

)∗µ = ρ2.

If θ1, θ2 ∈ IRSΓ then then following are equivalent

(1’) θ1 ≤ θ2.

(2’) There exists a free m.p. action Γ ya (X,µ) of Γ and normalized equivalence relations

F1 ⊆ F2 ⊆ Ea with (ΓaF1
)∗µ = θ1 and (ΓaF2

)∗µ = θ2.

PROOF. Suppose (2) holds and letP aF1
×P aF2

: X → PΓ×PΓ be the map x 7→ (P aF1
(x), P aF2

(x)).

Then (P aF1
× P aF2

)∗µ is a joining of ρ1 and ρ2 with the desired property.

Assume that (1) holds and let ν be a joining of ρ1 and ρ2 witnessing that ρ1 ≤ ρ2. Let X =

PΓ × PΓ × [0, 1]Γ, let µ = ν × λΓ, and let a = `× `× s. Then we define the equivalence relations

F1 and F2 on X by

(P1, P2, x)F1(Q1, Q2, y) ⇔ ∃γ ∈ Γ(γ−1 ∈ [e]P1 and γa · (P1, P2, x) = (Q1, Q2, y))

(P1, P2, x)F2(Q1, Q2, y) ⇔ ∃γ ∈ Γ(γ−1 ∈ [e]P2 and γa · (P1, P2, x) = (Q1, Q2, y)).

Then as in the proof of Theorem 8.4, F1 and F2 are equivalence relations that are contained in Ea

and (a, Fi) is a realization of Fi for each i ∈ {1, 2}. The defining property of ν also ensures that

F1 ⊆ F2.

The equivalence of (1’) and (2’) then follows from the equivalence of (1) and (2) along with

Proposition 8.10. �

Finally, we note the following (observed by Vershik [Ver11] in the case of invariant random

subgroups), which is a consequence of [IKT09, §1].

THEOREM 8.16. Let ρ be an invariant random partition of Γ. Then the function

ϕρ(γ) = ρ({P : γ ∈ [e]P })

is a positive definite function on Γ.
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PROOF. By Corollary 8.6 there is a free m.p. action b = Γ yb (Y, ν) of Γ and a subequivalence

relation F of Eb such that (P bF )∗ν = ρ. Thus

ϕρ(γ) = ν({y : γ−1yFy}).

This is a positive definite function by [IKT09]. �

9. Appendix: The amenable radical of a countable group

Every countable discrete group Γ contains a largest normal amenable subgroup called the

amenable radical of Γ (see, e.g., [Zim84, 4.1.12]). We write ARΓ for the amenable radical of

Γ. We present in this appendix some facts concerning ARΓ for countable Γ.

9.1. Basic properties of ARΓ.

PROPOSITION 9.1. Let Γ be a countable group.

(1) ARΓ is an amenable characteristic subgroup of Γ which contains every normal amenable

subgroup of Γ.

(2) Suppose ϕ : Γ → ∆ is a group homomorphism and that ker(ϕ) is amenable. Then

ϕ(ARΓ) = ARϕ(Γ). In particular, the amenable radical of the quotient group Γ/ARΓ is

trivial.

(3) If H is normal in Γ then ARH is a normal subgroup of ARΓ with ARH = ARΓ ∩H .

(4) IfH is finite index in Γ then ARH is a finite index subgroup of ARΓ with ARH = ARΓ∩H .

PROOF. For (1) see [Zim84]. For (2), let N = ker(ϕ). It is clear that ϕ(ARΓ) is a normal

amenable subgroup of ϕ(Γ), so that ϕ(ARΓ) ≤ ARϕ(Γ) by (1). The group K = ϕ−1(ARϕ(Γ)) is

normal in Γ and K is amenable since both N and K/N ∼= ARϕ(Γ) are amenable. Hence K ≤ ARΓ

and so ARϕ(Γ) ≤ ϕ(K) ≤ ϕ(ARΓ).

We now prove (3). Suppose that H is normal in Γ. It is clear that ARΓ ∩H is normal in ARΓ,

so it suffices to show that ARΓ ∩H = ARH . Conjugation by any element of Γ is an automorphism

of H , so fixes (setwise) the characteristic subgroup ARH . This shows that ARH is normal in Γ, and

since it is amenable it must be contained in ARΓ. Thus ARH ≤ ARΓ ∩H . In addition, ARΓ ∩H is

a normal amenable subgroup of H , so ARΓ ∩H ≤ ARH . This proves (3).

We need the following Lemma for (4):
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LEMMA 9.2. Suppose that K is an amenable subgroup of Γ whose normalizer NΓ(K) is finite

index in Γ. Then K ≤ ARΓ.

PROOF OF LEMMA 9.2. Suppose first that K is finite. NΓ(K) being finite index means K has

only finitely many conjugates in Γ, so as K itself is finite this implies that every element of K has

a finite conjugacy class in Γ. Thus, K ⊆ FCΓ ⊆ ARΓ, where FCΓ is the amenable characteristic

subgroup of Γ consisting of all elements of Γ with finite conjugacy classes (see, e.g., [dlH07,

Appendix J]).

Suppose now that K is infinite. The normal core N =
⋂
γ∈Γ γNΓ(K)γ−1 of NΓ(K) in Γ is a

normal finite index subgroup of Γ. Thus, letting H = K ∩ N , we have [K : H] = [KN : N ] ≤

[Γ : N ] <∞, and so H is finite index in K. It is clear that H is normal in N , and H is an amenable

group since it is a subgroup of K. Thus H ≤ ARN . In addition, ARN is normal in Γ since ARN is

characteristic in N and N is normal in Γ. Therefore

H ≤ ARN ≤ ARΓ.

Now, H is finite index in K, and H ≤ ARΓ, so the image p(K) of K in Γ/ARΓ under the quotient

map p is a finite subgroup of Γ. So if p(K) were non-trivial then Γ/ARΓ would have non-trivial

amenable radical, contrary to part (2). �[Lemma 9.2]

We can now show (4). If H is finite index in Γ, then ARH is an amenable subgroup of Γ whose

normalizer NΓ(ARH) contains H . Therefore NΓ(ARH) is finite index in Γ, so ARH ≤ ARΓ by

Lemma 9.2, and thus ARH ≤ ARΓ ∩H . The group ARΓ is normal in Γ, so ARΓ ∩H is normal in

H and since it is an amenable group we have the other inclusion ARΓ ∩H ≤ ARH . �

LEMMA 9.3. Let Γ be a countable group and let {Hα}α≤λ be an almost ascendant series in Γ

(Definition 4.12). Then {ARHα}α≤λ is an almost ascendant series in ARΓ. The same holds if we

replace ”almost ascendant” by ”ascendant.”

PROOF. We show by transfinite induction on ordinals α (with α ≤ λ) that {ARHβ}β≤α is an

almost ascendant series in ARHα . If α = β + 1 is a successor ordinal then by hypothesis Hβ is

either normal or finite index in Hβ+1. Proposition 9.1 then implies that ARHβ is either normal or

finite index in ARHβ+1
.
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Suppose now that α is a limit ordinal and let K =
⋃
β<α ARHβ . We must show that ARHα =

K. By the induction hypothesis the groups ARHβ , β < α, are increasing with β, so K is amenable,

being an increasing union of amenable groups. Additionally, K is normal in Hα as we now show.

For each h ∈ Hα there is some β0 < α such that h ∈ Hβ0 . Therefore h ∈ Hβ for all β0 ≤ β < α.

Thus h normalizes ARHβ for all β0 ≤ β < α, and since the ARHβ are increasing we have

hKh−1 =
⋃

β0≤β<α
hARHβh

−1 =
⋃

β0≤β<α
ARHβ = K.

It follows thatK ≤ ARHα . We have the equalityK = ARHα since ARHα =
⋃
β<α(ARHα∩Hβ) ≤⋃

β<α ARHβ = K. �

COROLLARY 9.4. Let Γ be a countable group and let H be an almost ascendant subgroup of

Γ. Then

ARH = ARΓ ∩H,

In particular, ARH is contained in ARΓ, and ARΓ contains every almost ascendant amenable sub-

group of Γ.

PROOF. The containment ARH ≤ ARΓ ∩H is immediate from Lemma 9.3. We have equality

since ARΓ ∩H is an amenable normal subgroup of H . �

COROLLARY 9.5. Let Γ be a countable group and let γ ∈ Γ. If the centralizer CΓ(γ) of γ is

almost ascendant in Γ then γ ∈ ARΓ. Thus, if ARΓ is trivial then the centralizer of any non-trivial

element of Γ is not almost ascendant.

PROOF. The group 〈γ〉 is a normal amenable subgroup of CΓ(γ), so if CΓ(γ) is almost ascen-

dant then 〈γ〉 ≤ ARCΓ(γ) ≤ ARΓ by 9.4. �

9.2. Groups with trivial amenable radical.

LEMMA 9.6. Let N be a normal subgroup of Γ. Then ARΓ is trivial if and only if both ARN

and ARCΓ(N) are trivial.

PROOF. SinceN is normal in Γ, CΓ(N) is normal in Γ as well. Thus, if ARΓ is trivial it follows

from Proposition 9.1 that both ARN and ARCΓ(N) are trivial.
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Suppose now that ARN and ARCΓ(N) are trivial. We have

ARΓ ∩N = ARN = {e}

and thus ARΓ and N must commute, being normal subgroups of Γ with trivial intersection. This

means that ARΓ ≤ CΓ(N) and so

ARΓ = ARΓ ∩ CΓ(N) = ARCΓ(N) = {e}. �

LEMMA 9.7. Suppose {Hα}α≤λ is an ascendant series of length λ and suppose Γ = Hλ has

trivial amenable radical. Then ARCΓ(Hα) = {e} for all α ≤ λ.

PROOF. We proceed by transfinite induction on λ. By Corollary 9.4 we know that ARHα = {e}

for all α ≤ λ.

Limit stages: Suppose first that λ is a limit ordinal. Fix α ≤ λ and letH = Hα. By intersecting

each term of the ascendant series {Hβ}β≤λ with CΓ(H) we obtain the series {CHβ (H)}β≤λ which

is ascendant inCΓ(H). Lemma 9.3 implies that {ARCHβ (H)}β≤λ is an ascendant series in ARCΓ(H)

and so

(9.1) ARCΓ(H) =
⋃

α≤β<λ
ARCHβ (H)

where the union is increasing. For each β with α ≤ β < λ the series {Hξ}ξ≤β has length strictly

less than λ, so by the induction hypothesis we have

ARCHβ (H) = {e}.

Since this holds for each β with α ≤ β < λ, equation (9.1) shows that ARCΓ(H) = {e} as was to

be shown.

Successor stages: Suppose now that λ = µ + 1 is a successor ordinal. Fix for the moment

some α < λ and let H = Hα. Applying the induction hypothesis to the ascendant series {Hβ}β≤µ

in Hµ we obtain that ARCHµ (H) = {e}. Since Hµ is normal in Γ, CHµ(H) is normal in CΓ(H), so

it follows from Proposition 9.1.(3) that

(9.2) ARCΓ(H) ∩Hµ = ARCΓ(H) ∩ CHµ(H) = ARCHµ (H) = {e}.
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Since α was an arbitrary ordinal satisfying α < λ, (9.2) holds for all α < λ. We use this to show

the following.

CLAIM 7. Let ξ and β be ordinals with ξ ≤ β < λ. Then

ARCΓ(Hξ) ≤ ARCΓ(Hβ)

PROOF OF CLAIM 7. We show by transfinite induction on β < λ that {ARCΓ(Hξ)}ξ≤β is in-

creasing in ξ. If β = 0 this is trivial. If β = α+1 is a successor ordinal then the induction hypothesis

tells us that {ARCΓ(Hξ)}ξ≤α is increasing with ξ and we must show that ARCΓ(Hα) ≤ ARCΓ(Hα+1).

SinceHα is normal inHα+1, Proposition 9.1.(2) shows thatHα+1 normalizes ARCΓ(Hα). Thus,

for δ ∈ Hα+1 and γ ∈ ARCΓ(Hα) we have

(δγδ−1)γ−1 ∈ ARCΓ(Hα)

δ(γδ−1γ−1) ∈ Hµ(γHµγ
−1) = Hµ

so that δγδ−1γ−1 ∈ ARCΓ(Hα) ∩Hµ = {e}

by (9.2) (we use in the second line that Hα+1 ≤ Hµ and Hµ / Γ). This shows that the groups

ARCΓ(Hα) and Hα+1 commute, and so ARCΓ(Hα) is a subgroup of CΓ(Hα+1). As CΓ(Hα+1) is

contained inCΓ(Hα) we conclude that ARCΓ(Hα) is normal inCΓ(Hα+1) and therefore ARCΓ(Hα) ≤

ARCΓ(Hα+1).

Now suppose β is a limit ordinal. The induction hypothesis tells us that {ARCΓ(Hξ)}ξ<β is

increasing with ξ < β and we must show that ARCΓ(Hξ) ≤ ARCΓ(Hβ) for all ξ < β. Fix ξ < β. For

each α with ξ ≤ α < β we have that ARCΓ(Hξ) ≤ ARCΓ(Hα) ≤ CΓ(Hα). Intersecting this over all

such α shows

ARCΓ(Hξ) ≤
⋂

ξ≤α<β
CΓ(Hα) = CΓ

( ⋃
ξ≤α<β

Hα

)
= CΓ(Hβ).

Since CΓ(Hβ) ≤ CΓ(Hξ) we actually have ARCΓ(Hξ) / CΓ(Hβ) and so ARCΓ(Hξ) ≤ ARCΓ(Hβ),

which finishes the proof of the claim. �[Claim 7]

Given now any α < λ we have shown that ARCΓ(Hα) ≤ ARCΓ(Hµ). But Hµ is normal in Γ and

ARΓ = {e}, so Lemma 9.6 shows that ARCΓ(Hµ) = {e} and therefore ARCΓ(Hα) = {e} as was to

be shown. �[Lemma 9.7]
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LEMMA 9.8. Let {Hα}α≤λ be an ascendant series of length λ with H0 = H and Hλ = Γ.

Suppose that ARCΓ(H) = ARH = {e}. Then ARΓ = {e}.

PROOF. We proceed by transfinite induction on the length λ of the series.

Limit stages: Suppose first that λ is a limit ordinal. By intersecting each group in the series

{Hα}α≤λ with CΓ(H) we obtain the series {CHα(H)}α≤λ, which is ascendant in CΓ(H). Apply-

ing Lemma 9.3 to the series {CHα(H)}α≤λ we obtain

⋃
α<λ

ARCHα (H) = ARCΓ(H).

Since ARCΓ(H) = {e} we conclude that ARCHα (H) = {e} for all α < λ. In addition we

have ARH = {e} so it follows from the induction hypothesis (applied to each series {Hξ}ξ<α

for α < λ) that ARHα = {e} for all α. Another application of Lemma 9.3 now shows that

ARΓ =
⋃
α<λ ARHα = {e}.

Successor stages: Now assume that λ = µ + 1 is a successor ordinal. Since Hµ is normal in

Hµ+1 = Γ we have CHµ(H) / CΓ(H). It follows that ARCHµ (H) ≤ ARCΓ(H) = {e} and so

ARCHµ (H) = {e}.

By assumption ARH = {e} so the induction hypothesis applied to {Hα}α≤µ implies that

(9.3) ARHµ = {e}.

Since Hµ is normal in Γ, CΓ(Hµ) is normal in Γ as well. In addition, CΓ(Hµ) is contained in

CΓ(H), so in fact CΓ(Hµ) / CΓ(H). It follows that

(9.4) ARCΓ(Hµ) ≤ ARCΓ(H) = {e}.

We see from (9.3) and (9.4) that the normal subgroup Hµ of Γ satisfies the hypotheses of Lemma

9.6 and so ARΓ = {e}. This completes the induction. �

THEOREM 9.9. Let H be an ascendant subgroup of a countable group Γ. Then ARΓ = {e} if

and only if ARH = {e} and ARCΓ(H) = {e}.
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Chapter 7

Appendix: Mixing via filters and

Gaussian actions

1. Milding mixing = IP∗-mixing for groups

Let G be an infinite, countable group. Let βG denote the space of ultrafilters on G (topologized

as a subspace of 2(2N) with the product topology).

DEFINITION 1.1. For any sequence (gi) = (gi)i∈N of (not necessarily distinct elements) define

FP((gi)) := {gi1gi2 · · · gik : i1 < i2 < · · · < ik (k ∈ N)}.

The following Proposition is similar to [HS98, 5.11].

PROPOSITION 1.2. Let A ⊆ G. The following are equivalent:

(1) FP((gi)) ⊆ A for some sequence (gi) in G with the property that for each g ∈ FP((gi))

there is a unique finite sequence i1 < · · · < ik in N such that g = gi1 · · · gik ;

(2) FP((gi)) ⊆ A for some injective sequence (gi) in G with e 6∈ FP((gi));

(3) FP((gi)) ⊆ A for some sequence (gi) in G with gi →∞.

(4) FP((gi)) ⊆ A for some sequence (gi) in G taking infinitely many values.

(5) There exists a nonprincipal idempotent ultrafilter p ∈ βG \G with A ∈ p.

PROOF. Note that if (gi)i∈N witnesses that (1) holds then e 6∈ FP((gi)), otherwise, say e =

gi1 · · · gik , then gik+1 = gi1 · · · gikgik+1 contradicting uniqueness. This shows (1)⇒(2). It is clear
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that (2)⇒(3)⇒(4). We show (4)⇒(1). Suppose that {gi}i∈N takes infinitely many values and

FP((gi)) ⊆ A. Define a subsequence (hi) ⊆ (gi) as follows. Choose h1 ∈ {gi}i∈N \ {e}. Suppose

for induction that h1, . . . , hn have been chosen with e 6∈ FP((h1, . . . , hn)) and suppose that for

each h ∈ FP((h1, . . . , hn)) there exists a unique i1 < · · · < ik ≤ n with h = hi1 · · ·hik . Note

that for any h ∈ G we have FP((h1, . . . , hn, h)) = FP((h1, . . . , hn)) ∪ FP((h1, . . . , hn))h ∪ {h}.

Now define hn+1 to be any element of (gi)i∈N with hn+1 6∈ FP((h1, . . . , hn))−1 ∪ {e} and hn+1 6∈

FP((h1, . . . , hn))−1FP((h1, . . . , hn)). This can be done since each of these sets is finite whereas

{gi}i∈N is infinite by hypothesis. The second condition implies that

(∗) FP((h1, . . . , hn))hn+1 ∩ FP((h1, . . . , hn)) = ∅.

Now, the induction hypothesis, along with the condition hn+1 6∈ FP((h1, . . . , hn))−1 ∪ {e} ensures

that FP((h1, . . . , hn, hn+1)) does not contain e. We show that this choice of hn+1 carries the in-

duction hypothesis to the next stage. Suppose that for some i1 < · · · < ik and j1 < · · · < jl (and

k, l ≥ 1) we have

(∗∗) h = hi1 · · ·hik = hj1 · · ·hjl ∈ FP((h1, . . . , hn+1))

and we will show the expressions are the same. We cannot have both ik = n + 1 and jl < n + 1

because this would contradict (*). Similarly, we cannot have jl = n + 1 and ik < n + 1. If

ik, jl < n + 1 then by uniqueness at stage n the expressions are the same, and if ik = jl = n + 1

then after multiplying (∗∗) on the right by h−1
n+1 the induction hypothesis implies that the remaining

expressions are the same and so both expressions of h in (**) are the same as well. This finishes the

induction and the proof of (4)⇒(1).

We now show (2)⇒(5). It suffices to show that if (gi)i∈N is an injective sequence with e 6∈

FP((gi)), then FP((gi)) ∈ p for some idempotent p ∈ βG \ G. Let C =
⋂∞
n=1 FP((gi)∞i=n). Here

the closure is taken in βG. By compactness, C is nonempty and is itself compact.

Claim: C is a (compact) subsemigroup of βG. Proof: Suppose p, q ∈ C. We want to show that

p · q ∈ C, where A ∈ p · q iff {g ∈ G : g−1A ∈ q} ∈ p. Note that r ∈ C ⇔ ∀n,FP((gi)
∞
i=n) ∈ r.

So fix n, and we show that FP((gi)
∞
i=n) ∈ p · q, i.e., that A := {g ∈ G : g−1FP((gi)

∞
i=n) ∈ q} ∈ p.

Note that if g ∈ FP((gi)
∞
i=n), say g = gi1 · · · gik (n ≤ i1 < · · · < ik), then g−1FP((gi)

∞
i=n) ⊇

FP((gi)
∞
i=ik+1) ∈ q, whence g ∈ A. Thus A ⊇ FP((gi)

∞
i=n) ∈ p, and so A ∈ p, as was to be shown.
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Since C is a compact left-topological semigroup, C has an idempotent. Let p ∈ C be an

idempotent. Note that e 6∈ C since e 6∈ FP((gi)), so p 6= e and therefore p ∈ βG \G. It follows that

p ∈ FP((gi)) , i.e., FP((gi)) ∈ p.

Now assume that (5) holds and we prove (2). Let p ∈ βG \ G be any idempotent ultrafilter,

and let A ∈ p. By idempotence the set A ∩ {g ∈ G : g−1A ∈ p} is in p, and in particular

it is infinite. So there exists g1 ∈ A \ {e} with B1 := g−1
1 A ∈ p. By idempotence again A ∩

g−1
1 A ∩ {g : g−1(A ∩ g−1

1 A) ∈ p} ∈ p. So since A ∩ g−1
1 A ∈ p (and hence is infinite) there

exists g2 ∈ (A ∩ g−1
1 A) \ {e, g1, g

−1
1 } such that g−1

2 A ∩ g−1
2 g−1

1 A ∈ p. Therefore B2 ∈ p where

B2 := g−1
1 A ∩ g−1

2 A ∩ g−1
2 g−1

1 A, and also g1, g2, g1g2 ∈ A (since g2 ∈ g−1
1 A) with g1 6= g2

and e 6∈ FP((g1, g2)) ⊆ A. Assume for induction that distinct g1, . . . , gn have been chosen with

e 6∈ FP((gi)
n
i=1) ⊆ A and withBn :=

⋂
g∈FP((gi)ni=1) g

−1A ∈ p. Then by idempotenceA∩Bn∩{g :

g−1(A ∩ Bn) ∈ p} ∈ p so there exists gn+1 ∈ (A ∩ Bn) \
(
{e} ∪ {g1, . . . , gn} ∪ FP((gi)

n
i=1)−1

)
such that g−1

n+1(A ∩ Bn) ∈ p. It follows that the set Bn+1 := Bn ∩ g−1
n+1(A ∩ Bn) is in p, and that

FP((gi)
n+1
i=1 ) ⊆ A since gn+1 ∈ Bn and FP((gi)

n+1
i=1 ) = FP((gi)

n
i=1) ∪ FP((gi)

n
i=1)gn+1 ∪ {gn+1}.

This shows that the induction hypothesis is satisfied for the next step, and completes the proof. �

DEFINITION 1.3. A subset A of G is called an IPG set if it satisfies any of the equivalent

conditions (1)-(5) of Proposition 1.2

Then next Corollary is an immediate consequence of condition (5) of Proposition 1.2 and the

definition of an ultrafilter.

COROLLARY 1.4. If an IPG set is partitioned into finitely many sets, then one of the pieces of

the partition is an IPG set.

We may write IPG =
⋃
{p ∈ βG \G : p is idempotent}. Define

IP∗G = {B ⊆ G : ∀A ∈ IPG B ∩A 6= ∅}

Then IP∗G =
⋂
{p ∈ βG \ G : p is idempotent} since B 6∈ p for some idempotent p ∈ βG \ G if

and only if G \B ∈ p for some idempotent p ∈ βG \G iff some A disjoint from satisfies A ∈ IPG

and B ∩A = ∅. This shows that the IP∗G sets form a filter on G.

DEFINITION 1.5. Let Z be a compact metric space and let G be a discrete group acting on Z

by homeomorphisms. A point z0 ∈ Z is called recurrent (with respect to the action of G) if there
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exists a sequence (gi) ⊆ G with gi →∞ and gi(z)→ z as i→∞. Equivalently, for every δ > 0,

the set {g : d(g(z0), z0) < δ} is infinite.

DEFINITION 1.6 ([BdJ07]). Let F be the collection of finite subsets of N = {1, 2, . . . }. For

α, β ∈ F write α < β if maxα < minβ. F is a semigroup with respect to the union operation.

If X is any set, an F-sequence in X is a map ϕ : F → X . We will sometimes write this as

{xα}α∈F ⊆ X . The sequence ϕ′ : F → X is a subsequence of the sequence ϕ if there exists

α1 < α2 < · · · in F such that ϕ′({i1, . . . , ik}) = ϕ(αi1 ∪ · · · ∪ αik).

If G is a semigroup, then an F-sequence ϕ : F → G is a homomorphism if ϕ({i1 < · · · <

ik}) = ϕ({i1}) · · ·ϕ({ik}). Equivalently, ϕ(α ∪ β) = ϕ(α)ϕ(β) whenever α < β.

A subsequence ϕ′, as above, of a homomorphism ϕ is itself a homomorphism since

ϕ′({i1 < · · · < ik}) = ϕ(αi1 ∪ · · · ∪ αik) = ϕ(αi1) · · ·ϕ(αik) = ϕ′({i1}) · · ·ϕ′({ik})

(the second equality is justified since αp < αq for p < q by definition of a subsequence). A

homomorphism ϕ : F → G is completely determined by the values of ϕ({i}) := gϕi for i ∈ N. We

have that ϕ(F) = FP((gϕi )i∈N).

DEFINITION 1.7. Let G be a group. A homomorphism ϕ : F → G is called non-trivial when

there exists a subhomomorphism ϕ′ of ϕ such that the set {gϕ
′

i }i∈N is infinite. In this case ϕ(F) is

an IPG set.

The proof of (4)⇒(1) of Proposition 1.2 shows that if (gi) takes infinitely many values then

there is a subsequence i1 < i2 < · · · such that every g ∈ FP((gij )j∈N) can be uniquely expressed

as a product gij1 · · · gijm for some j1 < · · · < jm. Therefore, if ϕ is non-trivial as witnessed by

the subhomomorphism ϕ′, then by moving to a further subhomomorphism ϕ′′ we can ensure that

g ∈ FP((gϕ
′′

i )) has a unique expression of the form g = gϕ
′′

i1
· · · gϕ

′′

ik
with i1 < · · · < ik. This

is equivalent to injectivity of ϕ′′. This shows that a homomorphism ϕ is non-trivial if it has an

injective subhomomorphism. Note that every subhomomorphism of an injective homomorphism is

itself injective, hence non-trivial.

The set F is directed under <. If {xα}α∈F is an F-sequence, we say that F limα xα = x if

xα → x as a net on the directed set (F , <). This means that for every open set U containing x,

there exists α such that β > α implies xβ ∈ U .
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The following is an analogue of [Fur81, Theorem 2.17] for general countablly infinite groups

G. The proof is identical.

THEOREM 1.8. If z0 ∈ Z is a recurrent point with respect to the action of an infinite countable

group G by homeomorphisms on the compact metric space Z, then for every δ > 0 the set Rδ =

{g : d(g(z0), z0) < δ} contains an IPG set.

THEOREM 1.9 (8.12 of [Fur81]). If F is partitioned into finitely many sets, F = C1]· · ·]Cr,

then there exists α1 < α2 < · · · ∈ F such that one of the Cj’s contains {αi1 ∪ · · · ∪ αik : i1 <

· · · < ik}.

THEOREM 1.10 (8.14 of [Fur81]). If {xα} is an F-sequence with values in a compact metric

space, then there exists an F-subsequence {xα} which converges as an F-sequence.

LEMMA 1.11 (8.15 of [Fur81]). Let G be a semigroup. If ϕ : F → G is a homomorphism

and if G acts on the compact metric space X by homeomorphisms, and x ∈ X , then there exists

a subhomomorphism φ : F → G of ϕ such that φ(α)(x) converges as an F-sequence to a point

y ∈ X , and at the same time F limα φ(α)(y) = y.

Note that for general semigroups we have not defined a notion of a non-trivial homomorphism.

For groups, where this notion has been defined, the above lemma is true for non-trivial homomor-

phisms in place of homomorphisms. That is:

LEMMA 1.12. Let G be an infinite countable group. If ϕ : F → G is a non-trivial homomor-

phism and if G acts on the compact metric space X by homeomorphisms, and x ∈ X , then there

exists a non-trivial subhomomorphism φ of ϕ such that φ(α)(x) F-converges to a point y ∈ X , and

at the same time F limα φ(α)(y) = y.

PROOF. Let ϕ′ be an injective subhomomorphism of ϕ and apply the previous lemma to obtain

a subhomomorphism φ of ϕ′. Then φ is a non-trivial subhomomorphism of ϕ. �

The following as an analogue of [Fur81, Theorem 9.20]

LEMMA 1.13. Let G be an infinite countable group. X be a G-dynamical system with X a

compact metric space and assume that there exists a unique point x0 ∈ X that is recurrent for G.
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Then

(∗) lim
g→IP∗G

g(x) = x0

for every x ∈ X . Conversely, if (*) holds for every x ∈ X , then x0 is the unique recurrent point of

X .

PROOF. Assume (*) holds. By 1.8, if x1 is a recurrent point, then for every neighborhood U of

x1 {g : g(x1) ∈ U} is an IPG set. Thus, if x1 6= x0 and if U and V are disjoint neighborhoods of

x1 and x0 then {g : g(x1) ∈ U} is IPG, but is disjoint from {g : g(x0) ∈ V }, which is IP∗G by (*),

a contradiction.

Suppose that x0 is the unique recurrent point. If (*) did not hold, then for some neighborhood

V of x0 and for some x ∈ X and some sequence gi → ∞ we have gx 6∈ V for g ∈ FP((gi)). Let

ϕ : F → G be the (non-trivial) homomorphism corresponding to (gi), i.e, with ϕ({i}) = gi, and

by 1.12 there is a non-trivial subhomomorphism φ such that φ(α)x → y and φ(α)y → y. Thus, y

is recurrent and so y = x0, but this contradicts that φ(α)x→ y = x0 since φ(α) ∈ FP((gi)) for all

α and so φ(α)x 6∈ V . �

Now let H be a separable Hilbert space and let π be a unitary representation of the group G,

and letX = Xr =the ball of radius r inH , with the weak topology. ThenX is compact metrizable.

0 is a recurrent point of (X,π), and in general, x is recurrent iff ∃gi → ∞ with π(gi)(x) → x

weakly. Since ||π(gi)(x)|| = ||x|| this implies π(gi)(x)→ x in norm. The following is an analogue

of [Fur81, 9.21].

LEMMA 1.14. LetH be a separable Hilbert space and π a unitary representation of the infinite

countable group G. If 0 is the only recurrent vector of H for π, then for every u, v ∈ H ,

lim
g→IP∗G

〈π(g)u, v〉 = 0.

Conversely, if the above holds for all u, v ∈ H , then 0 is a the unique recurrent vector.

PROOF. (⇒): If 0 is the unique recurrent vector, then for any u ∈ H , we have that u ∈ X||u||

and 0 is the unique recurrent point of this compact system. Hence limg→IP∗G π(g)(u) = 0 for all

u ∈ H . The limit is taken in the weak topology, so this means precisely that limg→IP∗G〈π(g)u, v〉 =

0 for all v ∈ X||u||, hence for any v ∈ H by scaling (i.e., write v = c · v′ with v′ ∈ X||u||). (⇐):
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Conversely, the condition implies that 0 is the unique recurrent point in each Xr, hence 0 is the

unique recurrent point in H . �

DEFINITION 1.15. The representation π is called mildly mixing if it has no nonzero recurrent

points. Equivalently, lim infγ→∞ ||π(γ)x− x|| > 0 for all x 6= 0.

A measure preserving action a is called mildly mixing if the Koopman representation κa0 on L2
0

is mildly mixing. That is, zero is the only rigid function f ∈ L2
0(X,µ), where a function f ∈ L2(X)

is rigid if for some sequence gn →∞, κa(gn)(f)→ f in L2(X).

Note that there exists a sequence gn →∞with κa(gn)(f)→ f in the norm topology if and only

if such a sequence exists for the weak topology, if and only if such a sequence exists such that the

convergence is µ-almost everywhere if and only if such a sequence exists such that the convergence

takes place in measure. Proof: If it is true in the weak topology then since ||κa(gn)(f)||2 = ||f ||2,

the convergence also takes place in the norm topology. This implies convergence in measure which

implies convergence of a subsequence almost everywhere, which in turn implies convergence in L2

(i.e., the norm topology) of this subsequence since the measure space is finite and ||κa(gnk)(f)||2 =

||f ||2.

PROPOSITION 1.16. a ∈ A(G,X, µ) is mild mixing if and only if for all f, h ∈ L2(X,µ)

(1) lim
g→IP∗G

∫
f(g−1x)h(x) dµ =

(∫
f dµ

)(∫
h dµ

)
,

or, equivalently, for all measurable A,B ⊆ X

(2) lim
g→IP∗G

µ(g(A) ∩B) = µ(A)µ(B).

PROOF. Mild mixing implies (1) by applying the previous lemma to f0 = f −
∫
f dµ, h0 =

h −
∫
h dµ ∈ L2

0(X,µ). The previous lemma also shows that (1) implies mild mixing. It is clear

that (1) implies (2). For the converse, suppose that (2) holds. We only need to show that (1) holds

for simple functions f, h (Proof: note that

|〈f, hg−1〉 −
∫
f dµ

∫
h dµ| ≤

|〈f − f ′, hg−1〉|+ |〈f ′, hg−1 − h′g−1〉|+ |〈f ′, h′g−1〉 −
∫
f ′
∫
h′|+ |

∫
f ′
∫
h′ −

∫
f

∫
h|.
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So given ε > 0 if f ′ and h′ are simple functions chosen close enough to f and h so that the first

two summands and the last summand above is ≤ ε/4, then |〈f ′, h′g−1〉 −
∫
f ′ dµ

∫
h′ dµ| < ε/4

implies |〈f, hg−1〉 −
∫
f dµ

∫
h dµ| < ε, hence {g : |〈f ′, h′g−1〉 −

∫
f ′
∫
h′| < ε/4} ⊆ {g :

|〈f, hg−1〉 −
∫
f
∫
h| < ε} and, assuming the former is IP∗G, the latter is IP∗G as well.)

Thus we show, assuming (2), that (1) holds for simple functions. We compute∫ n∑
i=1

ai1gAi(x)

m∑
j=1

bj1Bj (x)dµ(x) =
∑
i,j

aibj

∫
1gAi∩Bj (x) dµ

→g→IP∗G

∑
i,j

aibjµ(Ai)µ(Bj)

=

∫ ∑
i

ai1Ai dµ

∫ ∑
j

bj1Bj dµ. �

COROLLARY 1.17. The countable product of mild mixing actions is mild mixing.

2. F-mixing

DEFINITION 2.1. Let Γ be a countable group. Let F be a proper filter on Γ (i.e., containing

the Fréchet filter). Let H be a separable complex Hilbert space and π ∈ Rep(Γ, H) a unitary

representation. π is call F-mixing if for every u, v ∈ H ,

lim
γ→F
〈π(γ)u, v〉 = 0.

For a given representation π, for each u, v ∈ H we let fπu,v : Γ → C be the matrix coefficient

of π given by fπu,v(γ) := 〈π(γ)u, v〉. When π is understood we simply write fu,v. Also, we put fu

for fu,u. In these terms, π being F-mixing simply means that every matrix coefficient fπu,v(γ) =

〈π(γ)u, v〉 vanishes as γ → F . We define F-mixing analogously for orthogonal representations of

Γ on a real Hilbert space.

DEFINITION 2.2. A measure preserving action a ∈ A(Γ, X, µ) is calledF-mixing if the Koopo-

man representation κa0 on L2
0(X,µ) is F-mixing.

Let FMIX(Γ, X, µ) ⊆ A(Γ, X, µ) denote the subspace of F-mixing actions. We show it suf-

fices to check that the diagonal coefficients vanish.

PROPOSITION 2.3. The representation π is F mixing if and only if for every w ∈ H the diago-

nal matrix coefficient fw(γ) = 〈π(γ)w,w〉 vanishes as γ → F .
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PROOF. (⇒) is trivial. (⇐) Assume each fw(γ) → 0 as γ → F . Note that the map (u, v) 7→

fu,v is bilinear in the sense that

• fαu,v = αfu,v and fu,αv = αfu,v.

• fu1+u2,v = fu1,v + fu2,v, and fu,v1+v2 = fu,v1 + fu,v2 ;

The map is only conjugate symmetric up to an inverse, i.e., fu,v(γ) = fv,u(γ−1). Thus we have the

polarization identity:

(fu+v − fu−v+ifu+iv − ifu−iv) =

= (fu + fv + fu,v + fv,u)− (fu + fv − fu,v − fv,u)

+ i(fu + fv − ifu,v + ifv,u)− i(fu + fv + ifu,v − ifv,u)

= 2fu,v + 2fv,u + (fu,v − fv,u) + (fu,v − fv,u)

= 4fu,v.

It follows that fu,v(γ) → 0 as γ → F , since fu,v is a linear combination of diagonal matrix

coefficients. �

NOTE 2.4. As in [BD08], if F is a filter on Γ, then let F• denote the “hull” of F – that is F•

consists of those elements of F all of whose left shifts are in F :

F• = {A ⊆ Γ : ∀γ ∈ Γ (γ ·A ∈ F)} =
⋂
γ∈Γ

γ−1 · F .

Then F• ⊆ F is clearly a filter contained in F , and so F•-mixing implies F-mixing. On the other

hand, suppose π is F-mixing. This means that for any u, v ∈ Hπ, γ ∈ Γ, the set Qεu,v := {γ :

|〈π(γ)u, v〉| < ε} ∈ F . We show Qεu,v ∈ F•. For δ ∈ Γ we have that

δ ·Qεu,v = {γ : |〈π(δ−1γ)u, v〉| < ε}

= {γ : |〈π(γ)u, π(δ)v〉| < ε} = Qεu,π(δ)v ∈ F
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since π is F-mixing. Hence π is F•-mixing. Thus, we lose no generality by restricting our attention

to (left) shift-invariant filters. In fact, we have

δ1 ·Qεu,v · δ−1
2 = {γ : |〈π(γ)(π(δ2)u), π(δ1)v〉| < ε} = Qεπ(δ2)u,π(δ1)v

(Qεu,v)
−1 = {γ : |〈π(γ−1)u, v〉| < ε}

= {γ : |〈π(γ)v, u〉| < ε} = Qεv,u.

It follows that if π is F-mixing, then it is is also F̂-mixing, where

F̂ = {A ∈ F : ∀γ, δ ∈ Γ (γAδ ∈ F and γA−1δ ∈ F)} =
⋂
γ,δ∈Γ

γ−1 · (F ∩ F−1) · δ−1.

F̂ is a filter since the intersection of filters is a filter. It is clear that ˆ̂F = F̂ . The filter F̂ is two-sided

invariant and symmetric (i.e., A ∈ F̂ ⇔ A−1 ∈ F̂). In studying mixing properties no generality is

lost if we restrict our attention to filters which are two-sided invariant and symmetric.

If F is the Fréchet filter, then F-mixing is just the standard definition of mixing. When F is the

IP∗-filter this corresponds to mild mixing, and when F is the C∗-filter (where C∗ is the intersection

of all minimal idempotent nonprincipal ultrafilters on Γ) then this corresponds to weak mixing

[BG05].

For any filter F , an F-mixing representation is ergodic since if v is an invariant vector then

||v||2 = 〈v, v〉 = 〈π(γ)v, v〉 → 0 as γ → F , so since ∅ 6∈ F , it follows that ||v||2 < ε for all ε,

hence ||v||2 = 0, v = 0. In fact, for any F , an F-mixing representation is weakly mixing [BR88].

LEMMA 2.5. If the representations πn are F-mixing on Hn for all n, then their direct sum

π =
⊕

n πn is F-mixing on Hπ =
⊕

nHn.

PROOF. We must check, for a dense set of v ∈ Hπ, that 〈π(γ)v, v〉 → 0 as γ →∞. Vectors of

the form v = ⊕Nn=1vn, where vn ∈ Hn, are dense. We compute

〈⊕
n

πn(γ)(⊕Nn=1vn),⊕Nm=1vm
〉

= 〈⊕Nn=1(πn(γ)(vn)),⊕Nm=1vm〉

=
∑

n,m≤N
〈πn(γ)(vn), vm〉 =

N∑
n=1

〈πn(γ)(vn), vn〉

which vanishes as γ → F since each 〈πn(γ)(vn), vn〉 vanishes as γ → F . �
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PROPOSITION 2.6. Let Γ be an infinite countable group. Then a ∈ A(Γ, X, µ) is F-mixing if

and only if for all f, h ∈ L2(X,µ)

(1) lim
γ→F

∫
f(γ−1x)h(x) dµ =

(∫
f dµ

)(∫
h dµ

)
,

or, equivalently, for all measurable A,B ⊆ X

(2) lim
γ→F

µ(γ(A) ∩B) = µ(A)µ(B).

PROOF. (1) clearly implies that a is F-mixing. Assume a is F-mixing. We show (1) holds. Let

f, h ∈ L2(X,µ). Then f0 = f −
∫
f and h0 = h−

∫
h are in L2

0(X,µ). We have

〈κa0(γ)f0, h0〉 = 〈f ◦ γ−1, h〉 − 〈f ◦ γ−1,

∫
h〉 − 〈

∫
f ◦ γ−1, h〉+ 〈

∫
f ◦ γ−1,

∫
h〉

= 〈f ◦ γ−1, h〉 −
∫
f

∫
h =

∫
f(γ−1x)h(x) dµ−

∫
f(x) dµ

∫
h(x) dµ

which gives us (1). It is clear that (1) implies (2). For the converse, suppose that (2) holds. It suffices

to show that (1) holds for simple functions, since for any f, h ∈ L2(X,µ) we have

|〈fγ−1, h〉 −
∫
f dµ

∫
h dµ| ≤

|〈fγ−1, h− h′〉|+ |〈fγ−1 − f ′γ−1, h′〉|+ |〈f ′γ−1, h′〉 −
∫
f ′
∫
h′|+ |

∫
f ′
∫
h′ −

∫
f

∫
h|.

So given ε > 0 if f ′ and h′ are simple functions chosen close enough to f and h so that the first

two summands and the last summand above is ≤ ε/4, then |〈f ′γ−1, h′〉 −
∫
f ′ dµ

∫
h′ dµ| < ε/4

implies |〈fγ−1, h〉 −
∫
f dµ

∫
h dµ| < ε, hence {γ : |〈f ′γ−1, h′〉 −

∫
f ′
∫
h′| < ε/4} ⊆ {γ :

|〈fγ−1, h〉 −
∫
f
∫
h| < ε} and, assuming the former is in F , the latter is in F as well.

Thus we show, assuming (2), that (1) holds for simple functions. We compute∫ n∑
i=1

ai1γAi(x)

m∑
j=1

bj1Bj (x)dµ(x) =
∑
i,j

aibj

∫
1γAi∩Bj (x) dµ

→γ→F
∑
i,j

aibjµ(Ai)µ(Bj)

=

∫ ∑
i

ai1Ai dµ

∫ ∑
j

bj1Bj dµ.

�
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COROLLARY 2.7. If Γ is an infinite countable group and an ∈ A(Γ, X, µ) are F-mixing for all

n, then
∏
n an is F-mixing.

PROOF. It suffices to show that (2) of Proposition 2.6 holds for
∏
n an ∈ A(Γ, XN, µN) when

A and B are taken from a dense set in the measure algebra of µN. Since cylinder sets of the form

A1×· · ·×AN×X×X×· · · are dense, this comes down to showing that (2) of Proposition 2.6 holds

on finite products. For this, it suffices to show that (2) holds for a × b ∈ A(Γ, X2, µ2) whenever

a, b ∈ A(Γ, X, µ) are F-mixing, since then a trivial induction takes care of the general finite case.

This is clear since γa×b((A1 × A2) ∩ (B1 × B2)) = (γa(A1) ∩ B1) × (γb(A2) ∩ B2). Hence

the measure of this set converges, as γ → F to µ(A1)µ(B1)µ(A2)µ(B2) = µ(A1 × B1)µ(A2 ×

B2). �

NOTE 2.8. The descriptive complexity of F gives a bound on the descriptive complexity of the

set FMIX(Γ, X, µ) ⊆ A(Γ, X, µ) as follows.

Let {An}n∈N be dense in the measure algebra of µ. Let ϕn,m,ε : A(Γ, X, µ) → 2Γ = P(Γ)

send the Γ-action a to the set ϕn,m,ε(a) = {γ : |µ(γaAn ∩ Am) − µ(An)µ(Am)| < ε}. Note

that if γ ∈ ϕn,m,ε(a), say |µ(γaAn ∩ Am) − µ(An)µ(Am)| < δ < ε, and if b is so close a that

|µ(γaAn ∩ Am) − µ(γbAn ∩ Am)| < ε − δ, then γ ∈ ϕn,m,ε(b). Thus ϕ−1
n,m,ε(Uγ) is open, where

Uγ = {C ⊆ Γ : γ ∈ C}. On the other hand, if γ 6∈ ϕn,m,ε(ak) then ε ≤ |µ(γakAn ∩ Am) −

µ(An)µ(Am)|, so if ak → a, then since µ(γakAn ∩ Am) →k→∞ µ(γaAn ∩ Am) we get hat

γ 6∈ ϕn,m,ε(a). Thus ϕ−1
n,m,ε(Ûγ) is closed, where Ûγ = {C : γ 6∈ C}.

We have that a is F-mixing if and only if ∀n∀m∀k
(
a ∈ ϕ−1

n,m, 1
k

(F)
)
. So if F is Σ0

α then

ϕ−1
n,m,ε is Σ0

α+1 (since ϕn,m,ε is Baire class 1) and so FMIX is Π0
α+2. If F is Π0

α then ϕ−1
n,m,1/k(F)

is Π0
α+1, hence so is FMIX.

In particular, if F is Borel, then so is FMIX.

DEFINITION 2.9. Γ has HAP(F) iff there is a unitary representation π of Γ that is F-mixing,

and with 1Γ ≺ π. That is, there is a seqeuence of non-zero almost invariant vectors, i.e., a sequence

{vn} of unit vectors such that ||π(γ)(vn)− vn|| → 0 for all γ ∈ Γ.

For example, Γ has HAP(IP∗) if and only if there is a mildly mixing unitary representation π

of Γ with 1Γ ≺ π. Also, since Γ does not have property (T) if and only if there is a weakly mixing

representation π of Γ with 1Γ ≺ π, so that the negation of property (T) is equivalent to HAP(C∗).
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LEMMA 2.10 (Analogue of p. 79 [Kec10]). Γ has HAP(F) if and only if there is an orthogonal

representation π : Γ → O(H) on a real Hilbert space, which has non-0 almost invariant vectors

and is F-mixing.

PROOF. (⇐): Suppose π : Γ → O(H) is F-mixing with non-0 almost invariant vectors {vn}.

Since O(H) is a closed subgroup of U(HC) via the identification T 7→ TC = T + i · T , we get

a unitary representation πC : Γ → U(HC). We must check that it is F-mixing and has almost

invariant vectors. For the same sequence {vn}, but now considered as a subset of HC we have

||πC(γ)(vn)− vn||HC = ||π(γ)(vn)− vn||H → 0 as n→∞. Also,

〈π(γ)v + iπ(γ)w, r + is〉HC = 〈π(γ)v, r〉H + 〈π(γ)w, s〉H + i〈π(γ)w, r〉H − i〈π(γ)v, s〉H

which goes to zero as γ → F , since π is F-mixing.

(⇒): Suppose {vn} are non-0 almost invariant vectors for the F-mixing unitary representation

π : Γ → U(H). Let ϕn(γ) = 〈π(γ)(vn), vn〉. Then ϕn is positive-definite, ϕn(1) = 1 (since

||vn|| = 1), and limγ→F ϕn(γ) = 0. As

0 = lim
n
||π(γ)(vn)− vn||2 = lim

n

(
2||vn||2 − 2Re〈π(γ)(vn), vn〉

)
= 2− lim

n
2Re〈π(γ)(vn), vn〉

we also have that Re〈π(γ)vn, vn〉 → 1 as n → ∞. Letting ψn = Reϕn, then ψn is real positive-

definite: it is real-valued and symmetric since

ψn(γ−1
j γi) = Re〈π(γ−1

j γi)vn, vn〉 = Re〈π(γi)vn, π(γj)(vn)〉

= Re〈π(γj)(vn), π(γi)(vn)〉 = Re〈π(γ−1
i γj)(vn), vn〉

= ψn(γ−1
i γj),

and given c1, . . . , cn ∈ R, γ1, . . . , γn ∈ Γ we have

n∑
j,k=1

cjckRe〈π(γk)(vn), π(γj)(vn)〉 = ||
∑
k

ckπ(γk)vn||2 ≥ 0.

Also, ψn(1Γ) = Re||vn||2 = 1, limγ→F ψn(γ) = 0, and ψn(γ) → 1 as n → ∞. Let (ρn, Hn, wn)

be the orthogonal representation given by the GNS construction for ψn, so that wn is a cyclic vector

and 〈ρn(γ)(wn), wn〉 = ψn(γ) (so in particular, since ψn(1Γ) = 1, wn is a unit vector). Let

ρ =
⊕

n ρn, Hρ =
⊕

nHn. Then 〈ρ(γ)(wn), wn〉 = ψn(γ)→ 1 as n→∞, and so ||ρ(γ)(wn)−
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wn|| = 2−2Re〈ρ(γ)(wn), wn〉 → 0 as n→∞. Also, we need to show that limγ→F 〈ρ(γ)(v), v〉 =

0 for all v ∈ Hρ. As usual it suffices to show this for a dense subset since then for arbitrary v ∈ Hρ

we have

|〈ρ(γ)v, v〉| ≤ |〈ρ(γ)v, v − u〉|+ |〈ρ(γ)(v − u), u〉|+ |〈ρ(γ)u, u〉|

≤ ||v|| · ||v − u||+ ||v − u|| · ||u||+ |〈ρ(γ)u, u〉|,

so if ||v − u|| < min{ ε
3(||v||+1) , 1} then {γ : 〈ρ(γ)v, v〉 < ε} ⊇ {γ : 〈ρ(γ)u, u〉 < ε/3} ∈ F .

Since H =
⊕∞

n=1Hn, any u ∈ Hn can be approximated to an arbitrary degree by some

finite linear combination u′ =
∑N

n=1 un where un ∈ Hn. But if u1 and u2 are in different cyclic

components, then

〈ρ(γ)(u1 + u2), u1 + u2〉 = 〈ρ(γ)u1, u1〉+ 〈ρ(γ)u2, u2〉+ 〈ρ(γ)u1, u2〉+ 〈ρ(γ)u2, u1〉

and the last two terms are zero (since u1 and u2 are in invariant subspaces which are orthogonal)

hence fρu1+u2
= fρu1 + fρu2 . So if fρu1 and fρu2 vanish as γ → F then so does fρu1+u2

= fρu1 + fρu2 .

Thus, it suffices to check that limγ→F fu(γ) = 0 for u of the form u =
∑k

i=1 ciρ(γi)wn, since the

linear span of {ρ(γ)wn}γ∈Γ is dense in Hn. We have

〈
ρ(γ)

( k∑
i=1

ciρ(γi)wn

)
,
k∑
j=1

cjρ(γj)wn

〉
=
∑
i,j≤k

cicj〈ρ((γj)
−1γγi)wn, wn〉

=
∑
i,j≤k

cicjψn(γ−1
j γγi)

which vanishes as γ → F since γ−1
j γγi → F as γ → F (since we may assume that F is a

two-sided shift invariant filter) and ψn(δ)→ 0 has δ → F . �

THEOREM 2.11 (Analogue of Theorem 11.1 [Kec10]). Let Γ be an infinite countable group.

TFAE:

(1) Γ has HAP(F).

(2) Γ has a measure preserving, F-mixing action which is not E0-ergodic.

(3) Γ has a free, measure preserving, F-mixing action which is not E0-ergodic.

In particular, Γ does not have HAP(F) iff FMIX(Γ, X, µ) ⊆ E0RG(Γ, X, µ).
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PROOF. (2)⇒(3): If a ∈ A(Γ, X, µ) satisfies (2), then let b ∈ A(Γ, X, µ) be any free,F-mixing

action (e.g., the shift of Γ on 2Γ). Then a×b is free andF-mixing. Also, ifAn are non-trivial almost

invariant sets for a, then µ(γaAn × γbX∆An ×X) = µ(γaAn∆An)→ 0 as n→∞, so An ×X

are non-trivial (since µ(An ×X) = µ(An)) almost invariant sets for a× b.

(3)⇒(1): Let a ∈ A(Γ, X, µ) satisfy (3). Then κa0 is F-mixing, and a is not E0-ergodic, so

1Γ ≺ κa0.

(1)⇒(2): First we show that if π is F-mixing on H then π�n is F-mixing on H�n. Linear

combinations of vectors of the form �ni=1vi, with vi ∈ H , are dense in H�n. We have that

〈
π�n(γ)

( m∑
k=1

ck �ni=1 v
(k)
i

)
,
m∑
l=1

cl �nj=1 v
(l)
j

〉
=
〈 m∑
k=1

ck �ni=1 π(γ)(v
(k)
i ),

m∑
l=1

cl �nj=1 v
(l)
j

〉
∑
k,l≤m

ckcl

〈
�ni=1 π(γ)(v

(k)
i ),�nj=1v

(l)
j

〉
=

1

n!

∑
k,l≤m

ckcl
∑
σ∈Sn

n∏
j=1

〈π(γ)(v
(k)
i ), v

(l)
σ(i)〉

and since each product and sum is finite, and each term 〈π(γ)v, w〉 → 0 as γ → F , this does as

well.

Now, by the previous theorem, Γ having HAP(F) means that there is an orthogonal F-mixing

representation π of Γ which has non-0 almost invariant vectors {vn}. By replacing π by infinitely

many copies of it, we can assume that {vn} is orthonormal and that H is infinite-dimensional. Let

(X, ν) = (RN, µN) be the product space with µ normalized Gaussian measure on R. Without loss

of generality H = H :1: = 〈pn〉n∈N ⊆ L2
0(X, ν,R) (where pn : RN → R the n-th projection). Let

a = aπ be the Gaussian action associated to π. Then κa0 ∼=
⊕∞

n=1 π
�n and each π�n is F-mixing,

hence so is κa0, and therefore so is a. As usual we have 1Γ ≺ π ⇒ iΓ ≺ a, so we are done. �

THEOREM 2.12 (Analogue of Theorem 12.7 of [Kec10]). Let Γ be an infinite countable group.

Then Γ does not have HAP(F) iff FMIX(Γ, X, µ) ⊆ ERG(Γ, X, µ).

PROOF. (⇒): If Γ does not have HAP(F), then

FMIX ⊆ {a ∈ A(Γ, X, µ) : 1Γ 6≺ κa0}.

Assume towards contradiction that an ∈ FMIX(Γ, X, µ) and an → a 6∈ ERG(Γ, X, µ). Let

b =
∏
n an. Then an ≺ b for all n, so a ≺ b and thus κa0 ≺ κb0. Since a is not ergodic, 1Γ ≤ κa0, so

1Γ ≺ κb0, contradicting that b, being the product of F-mixing actions, is F-mixing, and that Γ does
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not have HAP(F).

(⇐): Assume now that Γ has HAP(F). Then there is an action a0 ∈ FMIX \ E0RG(Γ, X, µ).

Let {An} be a sequence of almost invariant Borel sets in X with µ(An) = 1
2 . Then b := 1

2a0 +

1
2a0 ≺ a0 × a0 (Proof is same as p. 85 of [Kec10], just uses the fact that a0 6∈ E0RG). Since b is

not ergodic (having two ergodic components, each of measure 1
2 ) and a0 × a0 is F-mixing we have

b ∈ FMIX \ ERG. �

One may show that the main result of [Hjo09] goes through for F-mixing in place of mixing.

The proof is nearly identical.

THEOREM 2.13 (Analogue of [Hjo09]). Let Γ be a countable group with HAP(F). Let (X,µ)

be an atomless standard Borel probability space. Then theF-mixing actions are dense inA(Γ, X, µ).

COROLLARY 2.14. The countable group Γ has HAP(F) if and only if the set of F-mixing

actions are dense in A(Γ, X, µ).

3. Permanence properties of F-mixing

DEFINITION 3.1. LetCF (Γ) ⊆ l∞(Γ) denote the set of functionsϕ ∈ l∞(Γ) with limγ→F ϕ(γ) =

0.

PROPOSITION 3.2 (Analogue of Ch. 2 of [CCJ+01]). Γ has HAP(F) iff there there exists a

sequence (ϕn)n∈N of positive definite functions in CF (Γ) with ϕn(e) = 1 for all n and ϕn → 1

pointwise as n→∞.

PROOF. (⇒): Let {vn} be a sequence of almost invariant unit vectors for the F-mixing repre-

sentation π of Γ. Let ϕn = 〈π(·)vn, vn〉. Then each ϕn is positive definite with ϕn(e) = ||vn|| = 1,

and

|ϕn(γ)− 1| = |〈π(γ)vn, vn〉 − 〈vn, vn〉| ≤ ||π(γ)vn − vn|| →n→∞ 0

since the {vn} are almost invariant. The representation π isF-mixing, soϕn(γ) = 〈π(γ)vn, vn〉 →γ→F

0.

(⇐): Conversely, if the ϕ1, ϕ2, . . . are functions in CF (Γ) with ϕn(e) = 1 for all n, and

ϕn → 1 as n → ∞, then let (Hn, πn, wn) be the GNS triple associated to ϕn, so that wn is a

cyclic unit vector for πn and ϕn(γ)〈π(γ)wn, wn〉. Let π = ⊕nπn be the representation of Γ on
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H =
⊕

nHn. Then 〈π(γ)(wn), wn〉 = ϕn(γ) → 1 as n → ∞ and so ||π(γ)(wn) − wn|| =

2 − 2Re〈π(γ)(wn), wn〉 → 0 as n → ∞, so the {wn} are almost invariant vectors. Also, we need

to show that limγ→F 〈π(γ)(v), v〉 = 0 for all v ∈ H . It suffices to show this for a dense set of

v, and since the {wn} are pairwise orthogonal it actually suffices to show this for v of the form

v =
∑k

i=1 ciπ(γi)wn. Note that we may assume without loss of generality that F is two-sided

invariant. We then have

〈
π(γ)

( k∑
i=1

ciπ(γi)wn

)
,
k∑
j=1

cjπ(γj)wn

〉
=
∑
i,j≤k

cicj〈π(γ−1
j γγi)wn, wn〉

=
∑
i,j≤k

cicjϕn(γ−1
j γγi)→ 0

as γ → F since F is two-sided invariant. �

PROPOSITION 3.3 (Analogue of 2.1.1 of [CCJ+01]). The countable group Γ has HAP(F) iff

there is a ψ : Γ → R+ such that ϕ−1(K) ∈ I (where I is the dual ideal to F) for every compact

K ⊆ R+, and which is conditionally negative definite, i.e., ψ(e) = 0, ψ(γ) = ψ(γ−1) for all γ ∈ Γ,

and for all γ1, . . . , γn ∈ Γ, a1, . . . , an ∈ C with
∑
ai = 0,

∑
i,j

aiajψ(γ−1
i γj) ≤ 0.

PROOF. (⇒) Write Γ as an increasing union of finite subsets Γ =
⋃
n≥1 Fn, Fn ⊆ Fn+1.

Let (αn)n≥1 be an increasing sequence in R+ tending to∞ and let (εn)n≥1 decrease to 0 be such

that
∑

n αnεn converges. Let (ϕn)n≥1 be a sequence of positive definite functions in CF (Γ) with

ϕn(e) = 1 for all n and ϕn → 1 pointwise as n → ∞. Let n1 be so large that n ≥ n1 implies

|ϕn(γ)−1| ≤ ε1 for all γ ∈ F1. Let nm ≥ nm−1 be so large that n ≥ nm implies |ϕn(γ)−1| ≤ εm

for all γ ∈ Fm. So WoLOG (after moving to the subsequence (ϕnm) if necessary) we may assume

that for all n ≥ 1

sup
γ∈Fn

|ϕn(γ)− 1| ≤ εn.

Now, since 1 = ϕn(e) = supγ∈Γ |ϕn(γ)|, by replacing ϕn by |ϕn|2 if necessary we may assume

that 0 ≤ ϕn ≤ 1 for all n. For γ ∈ Γ let

ψ(γ) =
∑
n≥1

αn(1− ϕn(γ)).
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This is conditionally negative definite on Γ since if
∑

i≤m ai = 0 then

∑
i,j≤m aiajαn(1− ϕn(γ−1

i γj)) = −αn
∑

i,j≤m aiajϕn(γ−1
i γj) ≤ 0.

Given a K ∈ R+ let n be so large that αn ≥ 2K. Let A ∈ F be such that |ϕn(γ)| < 1/2 for

γ ∈ A. Then ψ(γ) ≤ K implies (1 − ϕn(γ)) ≤ 1/2 and so ϕn(γ) ≥ 1/2, whence γ 6∈ A, i.e.,

{γ : ψ(γ) ≤ K} ⊆ Γ \A ∈ I.

(⇐) Conversely, suppose ψ is conditionally negative definite with ψ−1(K) ∈ I for compact

K ⊆ R+, as in the statement of the proposition. Then by Schoenberg’s theorem [BdHV C.4.1.9]

e−tψ is positive definite for all t ≥ 0. So if ϕn(γ) = e−nψ(γ) then ϕn → 1 pointwise and ϕn(e) =

e0 = 1. For fixed n and 0 < ε < 1 we have that ϕn(γ) < ε iff e−nψ(γ) < ε iff nψ(γ) > − log(ε)

iff γ 6∈ {γ : ψ(γ) ≤ − 1
n log(ε)} ∈ I. This implies that limγ→F ϕn(γ) = 0. �

DEFINITION 3.4. Call a positive definite function ϕ ∈ C(G) normalized if ϕ(eΓ) = 1.

PROPOSITION 3.5. Suppose G is a countable group and that G is the increasing union of a

sequence (Gn)n≥1 of infinite subgroups. Suppose that F is a filter on G and suppose for each n

that Fn is a filter on Gn with the property that Gn \ A ∈ Fn ⇒ G \ A ∈ F whenever A ⊆ Gn. If

Gn hasHAP(Fn) for all n Then G hasHAP(F).

NOTE 3.6. If we let In = {Gn \ A : A ∈ Fn} and I = {G \ A : A ∈ F} be the ideals

corresponding to theFn’s andF , respectively, then the above hypotheses on Fn and F is equivalent

to I ⊇
⋃
n In.

PROOF. For each n let {ϕnk}k∈N ⊆ CFn(Gn) be a sequence of normalized positive definite

functions such that ϕnk → 1 pointwise as k →∞, as in Proposition 3.5. Let ϕ̃nk be the extension of

ϕnk to G such that ϕ̃nk |G \Gn ≡ 0. Then ϕ̃ are normalized positive definition functions, and for any

n, k and ε > 0 we have that

{g ∈ G : |ϕ̃nk(g)| < ε} = G \Gn ∪ {g ∈ Gn : |ϕnk(g)| < ε} ∈ F

since ϕnk ∈ CFn(Gn) and by the hypotheses on F . Hence ϕ̃nk ∈ CF (G). Now, enumerate G =

{γ1, γ2, . . . }, and let n(m) and k(m) be increasing sequences such that for eachm, n(m) is so large

that γ1, . . . , γm ∈ Gn(m), and k(m) is so large that ϕn(m)
k(m)(γi) < 2−m for i = 1, 2, . . . ,m. Then
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{ϕ̃n(m)
k(m)}m∈N ⊆ CF (G) is a sequence of normalized positive definite functions on G converging

pointwise to 1. So G has HAP(F). �

Let ∆ a subgroup of Γ. The co-induced action is defined as follows (see [Kec10]). Fix a

transversal T for the left cosets of ∆, with 1 ∈ T . Let Γ act on T by defining γ · t to be the unique

element of T ∩ γt∆, and let ρ : Γ× T → ∆ be the cocycle defined by ρ(γ, t) = (γ · t)−1γt. Given

an action a ∈ A(∆X,µ) we define b = CIndΓ
∆(a) ∈ A(Γ, XT , µT ) by

γb((xs)s∈T )(t) = (ρ(γ−1, t)−1)a(xγ−1·t).

Let CIndΓ
∆ : A(∆, X, µ)→ A(Γ, XT , µT ) be the co-inducing map. This map is continuous (in the

weak topologies of these spaces), and a ∼= b ⇒ CIndΓ
∆(a) ∼= CIndΓ

∆(b). It follows that a ≺ b ⇒

CIndΓ
∆(a) ≺ CIndΓ

∆(b). We show that this map preserves F-mixing in some cases.

LEMMA 3.7 (Analogue of Ioana [Ioa11]). Suppose that a is F-mixing. Let I = {∆ \A : A ∈

F}. Let I ′ be the Γ-invariant ideal generated by I in Γ, and let F ′ be the corresponding filter on

Γ. Then b = CIndΓ
∆(a) is F ′ mixing.

PROOF. It suffices to show that for a dense set of f, h ∈ L2
0(XT , µT ) we have 〈κb0(γ)(f), h〉 →

0 as γ → F ′. We show this for f, h of the form f = ⊗t∈Aft, h = ⊗s∈Bhs, where ft, hs ∈

L∞0 (X,µ) and A,B ⊆ T are finite. This means that for (xt)t∈T ∈ XT we have f((xt)t∈T ) =∏
t∈A ft(xt), and similarly for h. Then

κb0(γ)(f)((xt)t∈T ) = f((γ−1)b((xt)t∈T )) =
∏
t∈A

ft((ρ(γ, t)−1)a(xγ·t))

so that 〈κb0(γ)(f), h〉 =

=
( ∏
γ·t∈γ·A\B

∫
ft dµ

)( ∏
s∈B\γ·A

∫
hs dµ

)( ∏
γ·t=s∈γ·A∩B

∫
ft((t

−1γ−1s)a(x))hs(x) dµ(x)
)

and so 〈κb0(γ)(f), h〉 = 0 unless |A| = |B| and γ ·A = B. In this case, we have that

〈κb0(γ)(f), h〉 =
∏
t∈A
〈((γ · t)−1γt)a(ft), hγ·t〉.

Now, there are only finitely many bijections π : A → B with π(t)−1γt ∈ ∆ for all t ∈ A. For

each such π, let Γπ = {γ ∈ Γ : ∀t ∈ A π(t)−1γt ∈ ∆}. It suffices to show for each such
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π and every t ∈ A and ε > 0 that {γ ∈ Γπ : |〈(π(t)−1γt)a(ft), hs〉| ≥ ε} ∈ I ′ since the

(finite) union of these sets as t varies over A and π varies over all bijections A → B contains

{γ ∈ Γ : |〈κb0(γ)(f), h〉| ≥ ε}.

So let π and ε > 0 be given. Fix some t ∈ A and some λ ∈ Γπ (if Γπ = ∅ we are done). Then

t−1λ−1π(t) ∈ ∆, and we let

S = {δ ∈ ∆ : |〈δa(ft), (t−1λ−1π(t))a(hπ(t))〉| ≥ ε} ∈ I.

Now, if γ ∈ Γπ then t−1λ−1γt = (π(t)−1λt)−1(π(t)−1γt) ∈ ∆, and

〈(π(t)−1γt)a(ft), hπ(t)〉 = 〈(π(t)−1λt)a(t−1λ−1γt)a(ft), hπ(t)〉

= 〈(t−1λ−1γt)a(ft), (t
−1λ−1π(t))ahπ(t))〉

so that

{γ : |〈(π(t)−1γt)a(ft), hπ(t)〉| ≥ ε}

= {γ : |〈(t−1λ−1γt)a(ft), (t
−1λ−1π(t))ahπ(t))〉| ≥ ε}

= {γ : t−1λ−1γt ∈ S} = λtSt−1 ∈ I ′

as was to be shown. �

It follows that if ∆ is an infinite index subgroup of Γ, then b = CIndΓ
∆(a) is mixing with respect

to the invariant Γ-ideal generated by ∆. Since this is a proper ideal when ∆ has infinite index, b is

weak mixing. Another consequence of the above lemma is that co-induction preserves mild mixing.

THEOREM 3.8. Let ∆ ⊆ Γ be countably infinite groups and a ∈ A(∆, X, µ). Then a is mildly

mixing if and only if b = CIndΓ
∆(a) ∈ A(Γ, X, µ) is mildly mixing.

PROOF. (⇐) If b is mildly mixing then for everyA ∈ MALGµ we have lim infγ→∞ µ(γbA∆A) >

0, i.e., there is some finite F ⊆ Γ and ε > 0 such that µ(γbA∆A) > ε for γ 6∈ F . Then

lim infδ→∞, δ∈∆ µ(δbA∆A) > 0 since the for δ ∈ ∆ \ F the value is greater than ε. So b|∆ is

mildly mixing. Since a is a factor of b|∆ it follows that a is mildly mixing.

(⇒) Let IP∗•(∆) be the two-sided invariant filter generated by IP∗(∆) (so D ∈ IP∗•(∆) if and
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only if every two-sided translate of D is in IP∗(∆)). Let I∆ be the ideal associated to IP∗•(∆), i.e.,

A ∈ I∆ if and only if ∆ \A ∈ IP∗•(∆).

The action a being mildly mixing implies that a is I∆-mixing.

Let I be the ideal on Γ corresponding to IP∗Γ:

B ∈ I ⇔ Γ \B ∈ IP∗Γ (B ⊆ Γ).

Then the action b = CIndΓ
∆(a) is mildly mixing if and only if b is I-mixing. Let I ′ be the ideal

on Γ generated by all the two-sided Γ-shifts of elements of I∆. By Lemma 3.7, b is I ′-mixing. To

show that b is mild mixing it therefore suffices to show that I ′ ⊆ I, since this will imply that b is

I-mixing. So let B ∈ I ′. Then

B = γ1
1A1γ

2
1 ∪ γ1

2A2γ
2
2 ∪ γ1

3A3γ
2
3 ∪ · · · ∪ γ1

nAnγ
2
n,

for some Ai ∈ I∆ and γ1
i , γ

2
i ∈ Γ, i = 1, . . . , n. To show B ∈ I it suffices to show that each

γ1
i Aiγ

2
i ∈ I. So fix i and let A = Ai ∈ I∆, let A′ = Γ \ A, and let s1 = γ1

i , s2 = γ2
i ∈ Γ. Then

every ∆-shift of ∆ \A intersects every IP∆ set. If we can show that the set

Γ \ (s1As2) = s1A
′s2 = s1(Γ \∆ ∪ ∆ \A)s2

intersects every IPΓ set, then we will be done since this means that s1As2 ∈ I. Let F ∈ IPΓ, say

F ⊇ FP((γi)
∞
i=1). If A′ ∩ s−1

1 Fs−1
2 = ∅ then as A′ ⊇ Γ \ ∆ it must be that s−1

1 Fs−1
2 ⊆ ∆,

FP((γi)
∞
i=1) ⊆ F ⊆ s1∆s2. As γ1, γ2, γ1γ2 ∈ F ⊆ s1∆s2 let δ1, δ2, δ1,2 ∈ ∆ be such that

γ1 = s1δ1s2

γ2 = s1δ2s2

γ1γ2 = s1δ1,2s2.

Then

s1δ1s2s1δ2s2 = s1δ1,2s2

δ1s2s1δ2 = δ1,2

s2s1 = δ−1
1 δ1,2δ

−1
2 ∈ ∆.
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Let δ = s2s1 ∈ ∆. Then

∅ = δA′ ∩ δs−1
1 Fs−1

2 = δA′ ∩ s2Fs
−1
2 .

Since A′ ⊇ ∆ \A it follows that δA′ intersects every IP∆ set. Now

s2Fs
−1
2 ⊇ s2FP((γi)i)s

−1
2 = FP((s2γis

−1
2 )i).

Since δA′ ⊇ Γ \∆ it must be that no s2γis
−1
2 is in Γ \∆. But then FP((s2γis

−1
2 )i) is an IP∆ set,

so intersects δA′, a contradiction. �

COROLLARY 3.9. Let ∆ be a subgroup of Γ such that the action of Γ on the homogeneous space

Γ/∆ is amenable. If ∆ has HAP(F) then Γ has HAP(F ′) where the F ′-small sets are generated by

the (left and right) shifts of the F-small sets in Γ.

PROOF. Let a ∈ A(∆, X, µ) be an F-mixing action which is not E0-ergodic, i.e., i∆ ≺ a. Let

b = CIndΓ
∆(a). Then b is F ′-mixing, and CIndΓ

∆(i∆) ≺ b. The action sΓ/∆ = CIndΓ
∆(i∆) is the

action of Γ by shift on XΓ/∆ and by [KT08] iΓ ≺ sΓ/∆ is implied by the action of Γ on Γ/∆ being

amenable. Thus iΓ ≺ sΓ/∆ ≺ b, and so Γ has HAP(F ′). �

4. Gaussian actions

For an orthogonal representation π of Γ we let a(π) denote the corresponding Gaussian measure

preserving action of Γ. See [Kec10] for the definition.

PROPOSITION 4.1. The map ORep(Γ, H) → A(Γ, X, µ) sending π 7→ a(π) = aπ is continu-

ous.

PROOF. Suppose πn → π. We have to check that aπn → aπ. This is equivalent to showing that

the Koopman representations converge: κaπn → κaπ .

So it suffices to show that πn → π then π�∞ = κaπn → κaπ = π�∞. Here π�∞ =
⊕∞

n=0 π
�n

is a representation on H�∞ =
⊕

n≥0H
�n. If πn → π then we show π�mn →n→∞ π�m: linear

combination of vectors of the form f1 � · · · � fm, fi ∈ H are dense in H�m, so by the triangle

inequality we only need to show convergence on vectors of the form f1 � · · · � fm. We have

π�m(γ)(f1 � · · · � fm) = π(γ)(f1)� · · · � π(γ)(fm) = 1√
m!

∑
σ∈Sm ⊗

m
i=1π(γ)(fσ(i))
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So it suffices to show that || ⊗mi=1 πn(γ)(gi)−⊗mi=1π(γ)(gi)|| → 0 as n→∞ for g1, . . . , gm ∈ H .

We want to show that if g(n)
i → gi for each i ≤ m then ⊗mi=1g

(n)
i → ⊗mi=1gi. This is true by

multilinearity and definition of the norm and inner product in H⊗m. Since
⋃
mH

�m is dense in

H�∞ we are done. �

If Un · πn → π then Tn · aπn → aπ where Tn = aUn . This will follow from continuity once we

show:

PROPOSITION 4.2. Let T be the Gaussian Z-action (i.e., mpt) coming from the unitary operator

U . Then for any representation π we have T · aπ = aU ·π. So π 7→ aπ is equivariant.

PROOF. If f ∈ H :1: we show that κT ·aπ(γ)|H :1: = (U ·π)(γ). Let V be the Koopman operator

associated to T , so V |H :1: = U .

κT ·aπ(γ)(f) = f ◦ (T (γ−1)aπT−1) = V (κaπ(γ)((V −1f)))

= Uπ(γ)U−1(f) = (U · π)(γ)(f) �

PROPOSITION 4.3. Let π be an orthogonal representation of Γ on the real Hilbert space H . If

aπ is ergodic then π is weak mixing.

PROOF. Suppose π is not weak mixing so that there is a finite-dimensional invariant subspace

of H , say H0, and let s1, . . . , sk be an orthonormal basis for H0. We show that aπ is not ergodic.

Note that by invariance of H0 = 〈s1, . . . , sk〉, for any γ ∈ Γ and i ≤ k we can write

π(γ)si =

k∑
j=1

αi,jsj ,

where αj = 〈π(γ)si, sj〉 ∈ R. Let T ⊆ H be countable π-invariant set containing s1, . . . , sk, such

that the linear span of T is dense in H . We have that aπ is isomorphic to the shift on (RT , µϕ). Let

S = {s1, . . . , sk} and let A ⊆ RS be a spherically symmetric subset of measure 0 < µS(A) < 1

(e.g., a ball) where µ is the normalized N(0, 1) Gaussian measure on R. Then

B = {c ∈ RT : c|S ∈ A}

has measure µϕ|S(A) = µS(A) since the si are orthonormal, so that ϕ|S is the identity covariance

matrix (and hence the corresponding measure is product measure). For t ∈ T let pt : RT → R
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denote the projection p(c) = c(t). Then the map from H :1:(L2(µϕ)) → H sending pt 7→ t ∈ H

extends to an isomorphism and takes κaπ0 |H :1: to π, since κaπ0 (γ) · pt = pπ(γ)(t). Thus, for any

i ≤ k, the equality π(γ)si =
∑k

j=1 αi,jsj implies

pπ(γ)si =
k∑
j=1

αi,jpsj

where the equality is in L2, so these functions are equal almost everywhere. Thus, for µϕ-almost

every c ∈ RT we have that

c(π(γ)si) =
k∑
j=1

αi,jc(sj).

Since π is an orthogonal transformation, the matrix M = (αi,j)i,j≤k is an orthogonal k × k

matrix. In particular, the set A ⊆ RS ∼= Rk is invariant under M . Suppose c ∈ B. Then

c|S = (c(s1), . . . , c(sk)) ∈ A. We have

(γ−1 · c)|S = c|(π(γ)S) = (c(π(γ)s1), . . . , c(π(γ)sk))

= (
∑k

j=1 α1,jc(sj), . . . ,
∑k

j=1 αk,jc(sj))

= M · (c(s1), . . . , c(sk)) ∈ A

since A is invariant under M . �

Compare the above proof with (i)⇒(ii) of [KT08, Proposition 2.1]. We can also give an alter-

native proof (in the spirit of (iii)⇒(ii) of [KT08, Proposition 2.1] that if π is weak mixing then aπ

is weak mixing (the usual proof just uses that aπ is weak mixing iff κaπ0
∼= ⊕nπ�n is weak mixing).

We use a condition equivalent to weak mixing that one should compare with [KT08, Proposition

2.2]. (which says that all orbits are infinite iff for all F1, F2 ⊆ X , there exists γ ∈ Γ such that

γ · F1 ∩ F2 = ∅).

π is weak mixing iff for all ε > 0 and finite F1, F2 ⊆ Hπ there exists a γ ∈ Γ such that

〈π(γ)u, v〉 < ε for all u ∈ F1 and v ∈ F2.

We can think of this is saying that π(γ)(F1) and F2 are within ε of being orthogonal. For Gaussian

actions given by Γ-invariant positive definite functions ϕ : T × T → R, the condition becomes

(∗) ∀ε > 0 and F1, F2 ⊆ T finite, there exists γ ∈ Γ such that ∀x ∈ F1, y ∈ F2, ϕ(γ · x, y) < ε.
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PROPOSITION 4.4. The condition (*) implies that the Gaussian action aϕ corresponding to ϕ

is weak mixing.

PROOF. We view aϕ as an action by shift on (RT , µϕ). For x ∈ T we let px : RT → R be the

projection px(c) = c(x). It suffices to show that aϕ × aϕ on (RTtT , µϕ′ = µϕ × µϕ) is ergodic,

where ϕ′ restricted to each diagonal copy of T × T is equal to ϕ and is zero everywhere else. We

let µ := µϕ′ . So suppose not, i.e., suppose there is some A ⊆ RTtT invariant with 0 < µ(A) < 1.

Then we can find a finite F ⊆ T t T , F = {x1, . . . , xk} and a set B ⊆ RTtT only depending

on the coordinates in F , such that for some ε > 0, µ(B∆A) < ε/4 and µ(B) − µ(B)2 > ε. By

condition (∗) we have that for all n ∈ N we can find γn ∈ Γ such that ϕ(γn · x, y) < 1
n for all

x, y ∈ F . Let pF : RT×T → RF ∼= Rk take x 7→ x|F ∈ RF and let B̃ = pF (B) ∈ Rk. Consider

the random vector

Zn = (pγn·F , pF )

in Rk×Rk with distribution measure µn = µϕ′|(F∪γn·F ). This is a centered Gaussian random vector

with characteristic function

ψn(u) = exp(−1

2
〈u,Mnu〉)

where Mn is a block matrix of the form Mn =

 ϕ′|F An

ATn ϕ′|F

, and every entry of An is smaller

than 1/n. It is clear that the characteristic functions of the Zn converge pointwise to the function

ψ(u) = exp(−1
2〈u,Mu〉), where M =

 ϕ′|F 0

0 ϕ′|F

, which is the characteristic function of

a normal random vector on Rk×Rk distributed like µϕ′|F ×µϕ′|F . Since pointwise convergence of

characteristic functions implies convergence in distribution it follows that the sequence of measures

µn converge weakly to µϕ′|F × µϕ′|F weakly. Thus,

µϕ′(γnB ∩B) = µn(B̃ × B̃)→ µϕ′|F (B̃)2 = µϕ′(B)2
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(note that the marginals of µn on both the left and right Rk-factors are each µϕ′|F ) so if n is large

enough then |µϕ′(γn ·B ∩B)− µϕ′(B)2| < ε
4 . But this implies

|µ(B)− µ(B)2| ≤ |µ(B)− µ(A)|+ |µ(A)− µ(γnA ∩A)|

+ |µ(γnA ∩A)− µ(γnB ∩B)|+ |µ(γnB ∩B)− µ(B)2|

<
ε

4
+ 0 + 2

ε

4
+
ε

4
= ε

a contradiction. �

Let H be a separable complex Hilbert space. Let B(H) be the space of bounded operators on

H.

The Hilbert-Schmidt norm of an operator A is given by

||A||2HS =
∞∑
n=0

||Aen||2

where {en}n≥0 is any orthonormal Basis forH. A is called a Hilbert-Schmidt operator if this norm

is finite. Let HS(H) denote the set of Hilbert-Schmidt operators.

The trace norm of A ∈ B(H) is given by

||A||Tr =
∞∑
n=0

〈|A|en, en〉.

PROPOSITION 4.5 (Powers-Størmer inequality). LetA andB be positive self-adjoint operators

on a Hilbert spaceH. Then

||A
1
2 −B

1
2 ||2HS ≤ ||A−B||Tr.

Note that, taking A = T ∗T = |T |2 and B = S∗S = |S|2 we get

|| |T | − |S| ||2HS ≤ ||(T ∗T )− (S∗S)||Tr

and since

(T + S)∗(T − S) + (T − S)∗(T + S) = T ∗T − T ∗S + S∗T − S∗S + T ∗T + T ∗S − S∗T − S∗S

= 2T ∗T − 2S∗S
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the inequality becomes

|| |T | − |S| ||2HS ≤ ||12
[
(T + S)∗(T − S) + (T − S)∗(T + S)

]
||Tr

≤ 1
2 ||(T + S)∗(T − S)||Tr + 1

2 ||(T − S)∗(T + S)||Tr

≤ 1
2 ||(T + S)∗||HS ||T − S||HS + 1

2 ||(T − S)∗||HS ||T + S||HS

= ||T + S||HS ||T − S||HS .

IfH is a complex Hilbert space then the conjugate Hilbert space is the spaceH with underlying

set the same as H (we denote the copy of ξ ∈ H that is in H by ξ∗), and with scalar multiplication

defined by

λ · ξ∗ = (λ · ξ)∗

and with inner product defined by

[ξ, η]H = 〈η, ξ〉H.

If ρ is a unitary representation of Γ on H then conjugate representation ρ is defined to be the

representation on H such that ρ(γ) is the same underlying set map as ρ(γ) for each γ ∈ Γ.

In general we identify the spaceH⊗K with HS(K,H) the space of Hilbert-Schmidt operators

from K toH, via ξ ⊗ η ∈ H ⊗K 7→ Sξ⊗η where

Sξ⊗η(ζ
∗) = 〈η, ζ〉Kξ.

If we now take K = H then H ⊗ H is isomorphic to the space of Hilbert-Schmidt operators on

H. The adjoint of the operator Sξ⊗η∗ is the operator Sη⊗ξ∗ . If we let H �H denote the subspace

of H ⊗ H that coincides with H � H as a set, i.e., generated by elements of the form ξ � η∗ =

1√
2
(ξ ⊗ η∗ + η ⊗ ξ∗), then this subspace coincides with the subspace generated by the self-adjoint

Hilbert-Schmidt operators.

If π is a representation of Γ onH, and ρ a representation of Γ on K, π ⊗ ρ is isomorphic to the

representation on HS(K,H) given by

(π ⊗ ρ)(γ)(S) = π(γ)Sρ(γ−1).
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Similarly, we view π � π as a representation on the space generated by the self-adjoint Hilbert-

Schmidt operators (i.e., just the restriction of π ⊗ π to this subspace).

The conjugate πC of the complexification of π is canonically isomorphic to πC itself, the iso-

morphism given by the conjugation map Φ : HC → HC defined by

Φ(x+ i · y) = x− i · y.

Denote this Φ(ξ) = ξ. This is linear since α · ξ + η = α · ξ + η (recall how scalar multiplication

was defined for conjugate spaces). It preserves the inner product since

[Φ(x1 + i · y1),Φ(x2 + i · y2)]HC
= 〈x2 − i · y2, x1 − i · y1〉HC

= 〈x2, x1〉H + 〈y2, y1〉H + i〈x2, y1〉H − i〈y2, x1〉H

= 〈x1, x2〉H + 〈y1, y2〉H + i〈y1, x2〉H − i〈x1, y2〉H

= 〈x1 + i · y1, x2 + i · y2〉HC

and it takes πC to πC since

πC(γ)Φ(x+ i · y) = π(γ)(x)− i · π(γ)(y) = Φ(π(γ)(x) + i · π(y)) = Φ(πC(γ)(x+ i · y)).

For ξ = x+ i · y ∈ HC we will use the notation ξ to refer to x− i · y.

Using this isomorphism, we obtain an isomorphism HC ⊗HC → HC ⊗HC given by the map

ξ ⊗ η 7→ ξ ⊗ η, and also an isomorphismHC �HC → HC �HC via ξ � η 7→ ξ � η.

THEOREM 4.6 (Popa?). Let π be an orthogonal representation. Then the following are equiva-

lent:

(1) 1 ≺ πC ⊗ πC (∼= πC ⊗ πC)

(2) 1 ≺ πC � πC (∼= πC � πC)

(3) 1 ≺ κaπ0

(4) 1 ≺ κaπ0 ⊗ κ
aπ
0 (∼= κaπ0 ⊗ κ

aπ
0 )

where κaπ0
∼=
⊕

n≥1 π
�n
C is the unitary Koopman representation of the Gaussian action aπ.

PROOF. We proceed to show (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1).

(1)⇒(2): Given F ⊆ Γ finite and ε > 0 let T ∈ HS(HC) be such that ||T ||HS = 1 and for all
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γ ∈ F

ε > ||πC ⊗ πC(γ)(T )− T ||HS = ||πC(γ)T − TπC(γ)||HS .

We have that |T | = (T ∗T )1/2 ∈ HC �HC is a positive self-adjoint Hilbert-Schmidt operator. Let

S = πC ⊗ πC(γ)(T ). Then

S∗S = (πC ⊗ πC(γ)(T ))∗(πC ⊗ πC(γ)(T )) = πC(γ)T ∗TπC(γ−1)

= πC ⊗ πC(γ)(|T |)2 = πC � πC(γ)(|T |)2

so |S| = πC � πC(γ)(|T |). By the Powers-Størmer inequality we obtain for γ ∈ F

|| |T | − πC � πC(γ)(|T |) ||2HS = || |T | − |S| ||2HS

≤ ||T + S||HS ||T − S||HS

≤ (||T ||HS + ||S||HS)||T − πC ⊗ πC(γ)(T )||HS

= 2||T − πC ⊗ πC(γ)(T )||HS < 2ε

so that |T | is almost invariant for πC � πC.

(2)⇒(3): This is obvious since πC � πC is a subrepresentation of κaπ0 .

(3)⇒(4): This is also obvious.

(4)⇒(1): By Lemma 3.2 of [Pop08] we have that 1 ≺ πC ⊗ πC if and only if there exists some

representation ρ with 1 ≺ πC ⊗ ρ. So assume 1 ≺ κaπ0 ⊗ κ
aπ
0 . We have

1 ≺ κaπ0 ⊗ κ
aπ
0
∼= (
⊕
n≥1

π�nC )⊗ (
⊕
m≥1

π�mC )

≤ (
⊕
n≥1

π⊗nC )⊗ (
⊕
m≥1

π⊗mC )

∼=
⊕
n,m≥1

π⊗n+m
C

∼= πC ⊗ (
⊕
n,m≥1

π⊗n+m−1
C )

so the 1 ≺ πC ⊗ (
⊕

n,m≥1 π
⊗n+m−1
C ). Applying Popa’s Lemma, we get 1 ≺ πC ⊗ πC. �

This has the following implication. It is known that if π ∼= λI is a real quasi-regular representa-

tion of G on l2(I,R), then πC has almost invariant vectors iff πC is amenable iff aπ has non-trivial
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almost invariant sets iff κaπ0 has almost invariant vectors iff the action of G on I is amenable. Theo-

rem 4.6 shows that in general this does not hold, since there are examples of π which are amenable

but that do not have almost invariant vectors.

In [ET10] an action a of a group ∆ is constructed which is not anti-modular, and such that the

Koopman representation κa0 of a does not weakly contain any finite-dimensional representations of

∆. In particular κa0 does not have non-trivial almost invariant vectors. If κa0 were non-amenable

then, by the main result of [ET10], a would be anti-modular, which is not the case. Hence κa0 is

amenable.

It is unclear whether aπ having non-trivial almost invariant sets is equivalent to κaπ0 having

non-trivial almost invariant vectors. Clearly the former implies the latter, but the does the reverse

implication hold? Note that Theorem 4.6 shows that 1 ≺ κaπ0 implies 1 ≺ π�2, so the question is

whether π�2 having almost invariant vectors implies aπ having non-trivial almost invariant sets.

One implication that we can rule out is aπ having almost invariant sets implies 1 ≺ π. Assume

toward a contradiction that this implication holds and let π be an amenable representation which

does not weakly contain 1C. Then by Theorem 4.6 we have 1C ≺ κaπ0 ≤ κ
aNπ
0 . Since the commutator

of aNπ in Aut(XN, µN) acts ergodically, Lemma 10 of [CI10] implies that 1 ≺ aNπ , i.e., aNπ has almost

invariant sets. But aN ∼= a⊕nπ, so by assumption this implies 1C ≺
⊕

n π, which is equivalent to

1C ≺ π, contradicting our choice of π.
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[KLP10] David Kerr, Hanfeng Li, and Mikaël Pichot, Turbulence, representations, and trace-preserving

actions, Proceedings of the London Mathematical Society 100 (2010), no. 2, 459–484.

[KM04] A.S. Kechris and B.D. Miller, Topics in orbit equivalence, Springer, 2004.

[KST99] Alexander S Kechris, Slawomir Solecki, and Stevo Todorcevic, Borel chromatic numbers, Ad-

vances in Mathematics 141 (1999), no. 1, 1–44.

[KT08] A. Kechris and T. Tsnakov, Amenable actions and almost invariant sets, Proc. Amer. Math. Soc.

136 (2008), no. 2, 687–697.

[Lev95] Gilbert Levitt, On the cost of generating an equivalence relation, Ergodic Theory and Dynami-

cal Systems 15 (1995), no. 6, 1173–1182.

[LN11] Russell Lyons and Fedor Nazarov, Perfect matchings as IID factors on non-amenable groups,

European Journal of Combinatorics 32 (2011), no. 7, 1115–1125.

[LP05] Russell Lyons and Yuval Peres, Probability on trees and networks, 2005.

[LS04] Alexander Lubotzky and Yehuda Shalom, Finite representations in the unitary dual and Ra-

manujan groups, Contemporary Mathematics 347 (2004), 173–190.

[LZ03] Alex Lubotzky and Andrzej Zuk, On property (τ ), To appear (2003).



267

[Moo76] Calvin C Moore, Group extensions and cohomology for locally compact groups. iii, Trans.

Amer. Math. Soc 221 (1976), no. 1, 1–33.

[MOY11] Yoshifumi Matsuda, Shin-ichi Oguni, and Saeko Yamagata, C∗-simplicity for groups with non-

elementary convergence group actions, arXiv preprint arXiv:1106.2618 (2011).

[Oll85] Jean Moulin Ollagnier, Ergodic theory and statistical mechanics, Springer-Verlag, 1985.

[OW80] Donald Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. i. The Rohlin

lemma, Bull. Amer. Math. Soc.(NS) 2 (1980), no. 1, 161–164.

[Oza] N. Ozawa, Hyperlinearity, sofic groups and applications to group theory, (available at

www.ms.u-tokyo.ac.jp/∼narutaka/publications.html).

[Pes08] Vladimir G Pestov, Hyperlinear and sofic groups: a brief guide., Bull. Symbolic Logic 14

(2008), no. 4, 449–480.

[Phe01] Robert R Phelps, Lectures on choquet’s theorem, vol. 1757, Springer, 2001.

[Pop08] Sorin Popa, On the superrigidity of malleable actions with spectral gap, Journal of the American

Mathematical Society 21 (2008), no. 4, 981–1000.

[Pow75] Robert T Powers, Simplicity of theC∗-algebra associated with the free group on two generators,

Duke Math. J 42 (1975), no. 1, 151–156.

[Poz09] Tal Poznansky, Characterization of linear groups whose reduced C∗-algebras are simple, arXiv

preprint arXiv:0812.2486v7 (2009).
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