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ABSTRACT 

Let l be any odd prime, and ( a primitive 1-th root of unity. Let C1 be the 

/-Sylow subgroup of the ideal class group of Q( (). The Teichmiiller character 

w : Zl -t Zj is given by w(x) = x (mod l), where w(x) is a p- 1-st root of unity, 

and x E Z1. Under the action of this character, Cl decomposes as a direct sum of 

C}i), where c?) is the eigenspace corresponding to wi. Let the order of c?) be 

zhs. The main result of this thesis is the following: For every n 2: max( 1, h 3 ), the 

equation x 1
n + y1

n + z 1
n = 0 has no integral solutions (x,y,z) with l f xyz. The 

same result is also proven with n 2: max(l, h 5 ), under the assumption that c?) is 

a cyclic group of order [h 5 • Applications of the methods used to prove the above 

results to the second case of Fermat's last theorem and to a Fermat-like equation 

in four variables are given. 

The proof uses a series of ideas of H. S. Vandiver ([Vl],[V2]) along with a 

theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's 

main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [Vl] 

Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not 

divide the class number h+ of the maximal real subfield of Q(e~). The crucial 

gap in Vandiver's attempted proof that has been known to experts is explained, 

and complete proofs of all the results used from his papers are given. 
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INTRODUCTION 

This thesis grew out of an attempt to understand and fix a paper by H. S. 

Vandiver. In [Vl] Vandiver claimed that the first case of Fermat's Last Theorem 

held for 1 if 1 did not divide the class number h+ of K+, the maximal real subfield 

of the 1-th cyclotomic field K. In other words, when 1 f h+, if x, y, z are non-zero 

integers such that 

xl + yl + zl = 0, (11) 

then llxyz. It has been known for some time to experts that his paper contained 

mistakes, some of which were serious. In chapter 2 we explain the crucial gap 

in Vandiver's attempted proof. In fact we show that the first case of Fermat's 

last theorem can be proven without his hypothesis 1 f h+, provided we make an 

assumption regarding the existence of certain prime ideals which seems to be 

implicit in Vandiver's paper [Vl]. (Though it has been conjectured by Kummer 

and Vandiver that l never divides h+, and a large amount of numerical evidence 

exists, no property of the cyclotomic field has been found which suggests that this 

should be true). 

However, two theorems that Vandiver used in this paper [Vl], namely Theorems 

A and B of chapter 3, are correct. Theorem A says that the prime ideals P such 

that Pl(x +(y), where x, y, z satisfy equation (11), split completely in the Kummer 

extension over K generated by the l-th roots of certain circular units Em. Theorem 

B, which was originally used as a tool to prove explicit reciprocity laws, relates 

the splitting of prime ideals in extensions generated by l-th roots of such units 

to certain logarithmic derivatives and !-parts of Bernoulli numbers. In fact, it is 

shown in chapter 2 that the 1- parts of these Bernoulli numbers give the order 

of the certain subgroups C~ i) (defined below) of the class group C1. In chapter 3 

and the appendix we provide complete proofs of all the results we use from his 
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(Vandiver's) papers, even if some of them are well known to experts. In chapter 

4, we show that theorems A and B can be combined with some recent work on the 

structure of the ideal class group of the cyclotomic field to prove a result about 

the first case of Fermat's Last Theorem without the assumption that l f h+. 

Let l be any odd prime, and ( a primitive l-th root of unity. Let C1 be the 

l-Sylow subgroup of the ideal class group of Q((). Under the action of the Te­

ichmiiller character w, cl decomposes as a direct sum of cji)' where c}i) is the 

eigenspace corresponding to wi. Let IC?) I = zh;. 

Kurihara [Ku] (and, independently, R. Greenberg) proved that c?) is cyclic. 

One of the consequences of the proof of Iwasawa's main conjecture for cyclotomic 

fields by B. Mazur and A. Wiles [MW] is that for i = 2, 4, ... , l- 3, IC}i)l = 

I((A*)t /CU()(i)l, where cu+ is the group of real cyclotomic units, (A*)+ is the 

group of real units, and ((A*)t fCU()(i) is defined in the same way as c?). We 

use these and other facts known about the structure of C1 along with theorems A 

and B to prove the first case of Fermat's Last Theorem for certain exponents. 

More precisely, the main theorem of this thesis, proven in chapter 2, is the 

following: 

Theorem. For every n 2: max(l, h3 ), the equation 

(12) 

has no integral solutions (x, y, z) with l f xyz. 

For n = 1, the above theorem is established in [Ku] using a different result of 

Vandiver. The first result about Fermat's Last Theorem for higher powers of l was 

given by Maillet [Ri, p . 205]. He gave the lower bound u+l for n in (12), where u is 

the largest power of l dividing the class number h. Using Faltings' theorem proving 

the Mordell conjecture, one knows that the number of rational, and hence integral 
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solutions of equation (11) is finite. Since any solution of (12) provides a solution of 

(11 ), we find that equation (12) can have integral solutions only for finitely many 

exponents zn. In fact, Filaseta [Fi] has shown, using the same theorem, that for 

every integer k 2::3, there exists an integer M(k) such that ifm > M(k) then there 

are no non-trivial solutions for xmk + ymk + zmk = 0. Washington [Wa2] gives the 

lower bound max(l, u* - VZ + 3) for n in (12), where u* is the highest power of 

l dividing h- ....:... hjh+, the first factor of the class number. He used the method 

of Eichler [E], who proved that if the first case fails for 1, then z[v'l]-l divides the 

first factor of the class number. Eichler's result has been improved by McCallum 

[Me]. Granville and Powell [GP] have also given a strong lower bounds for n in 

(12). 

In chapter 5, the main theorem discussed above is proven with n 2:: max(l, h 5 ) , 

where [h 5 is the order of c?)' under the further assumption that c?) is cyclic. 

In chapters 6 and 7 we give applications of the methods of the previous chapters 

to the second case of Fermat's last theorem and to a Fermat-like equation in four 

variables, respectively. 



CHAPTER 0 

NOTATION AND PRELIMINARIES 

l is a prime number with l > 5. 

( is a primitive l-th root of unity . .\ = 1 - (. 

I< = Q( 0 is the cyclotomic field. 

A= Z[(] and A* is the group of units in A. 

G = Gal(I</Q). 

u is a generator of G and u( 0 = (r, where 

r is a primitive generator of (Z/IZ)*. 

A- (1- ()means the set of elements of A which are prime to (1- 0-

cl>(x) = 1 + x + .... + x 1
-

1
• 

Ua(O =(a. 

C is the ideal class group of I<. 

h is the order of C. 

J<+ = Q(( + (-1 ) = Maximal real subfield of I<. 

C1 is the !-Sylow subgroup of C . 

A+, c+, h +, and ct are defined similarly. 

If I is an ideal in A, then [I] is its ideal class in C. 

N(I) is the absolute norm of the ideal I. 

If n is an integer, n' is an integer such that nn' = 1 (mod l). 

1 
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Teichmiiller Character. 

Define w, the Teichmiiller character, as follows: Given X E zl,w(x) is the root 

of unity in zl such that 

w(x)- x (mod l). 

Sometimes we will use the isomorphism (Zl/ZZ1)* ~ (Z/lZ)* ~ G (where the 

second isomorphism depends on choice of the primitive generator r of (Z/ZZ)*) 

and write w( a) instead of w( r ), and so on. 

Bernoulli numbers: 

The Bernoulli numbers are defined by: 

The generalized Bernoulli numbers: 

B 1 ,w.i is the generalized Bernoulli number defined by: 

/-1 . 00 w1(a)xeax xn 
"""" - """" B . -L.....t e(l-l)x - 1 - L.....t n,wJ n! . 
a=l n=O 

The Jacobi sum and a Stickelberger type relation 

Let p =/= l be a prime, p - 1 (mod l). Let /1p-l be the group of p- 1-st roots 

of unity. Let x1 , x2 be any characters from (Z/pZ)* ---+ J-lp-1 · The Jacobi sum 

J(XI, X2) is defined by 

J(x1, x2) = (0.1) 
xE(Z/pZ)• 

~ 
Let wp denote the Teichmiiller character corresponding to p. Let Xp = Wp- 1 • 

Let n be the least nonnegative residue modulo l of n E Z, and n' an integer such 
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have the following Stickelberger type relation ( cf. [L] p. 13, Fac 3) for any prime 

ideal P of A above p and integers n1, nz such that l f (n1 + nz): 

l-1 

II ( O"kl ( P))[nt k,n2k] = ( J(x;1 'x;2)) 
k=1 

(0.2) 

Note: J(x;1, x;2
) E Z[(]. Moreover, if we choose our primitive 1-th root of unity 

(suitably, then the Jacobi sum defined by (0.1) above is the same as the classical 

Jacobi cyclotomic function ( cf. for instance, [Hi, p. 343] or [Ri, p. 117]) multiplied 

by -1. But this difference in sign between the two sums will have no effect on our 

proof since they generate the same principal ideal. 

Real Cyclotomic Units 

Kummer Units: Recall that r is a primitive root mod l and u a generator of 

Gal(K/Q). The Kummer Unit b is defined by: 

b= 

Note that b is a unit in A+ = Z[( + (-1
] because 

is of the form (a€ with € E A+, a E Z, because it is a unit in A. 

Definition: 
l-1 

En= II (u-k(b)rnk. (0.3) 
k=1 

Note: This definition of En is not standard. For instance, the En defined in [Ri, 

p.82] is actually the square root of the En defined above. But all the properties 

of En that we need will follow easily from those of ~ and vice versa. 
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The 1-th power residue symbol 

Definition: Let Q be a prime ideal of A, Q #(.A). If a E A, a f/; Q, then set 

where (a is the unique 1-th root of unity such that: a(N(Q)-l)/l = (a (mod Q), 

where N(Q) is the (absolute) norm of Q. 

It is easy to see that { ~} is multiplicative in a and Q. Also, we have: 

where J is any ideal of A with (.A) f J, ( K(at
1

;')/K) is the generalized Frobenius 

element. So in this case the power residue symbol gives the action of the A rtin 

(
K(at 111)/K) map J 1-+ J . (For details see {Ca-F}, exercise 1, pp. 348-349.) 

Congruences of rational numbers 

We will write, for two rational numbers ~' f, and ME Z, ~ = f (mod M) if 

n :f= 0 (mod M), g :/= 0 (mod M) and kg- fn _ 0 (mod M). 
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CHAPTER 1 

LOGARITHMIC DERIVATIVES 

In this chapter we collect some results that we will need later on, about the loga­

rithmic derivatives of polynomials. Some of these are standard, and we give proofs 

of the non-obvious assertions, most of which are due to Kummer and Vandiver. 

For any f E Z[x], f(1) ¢ 0 (mod l) and any integer k ~ 1, define the (formal) 

logarithmic derivative ~ with values in Q by: 

~(k)(f) = ~kk (log(f(ev)))lv=O. 

Lemma 1.1. For 1:::; k < l- 1, G(x), F(x) E Z[x] with G(1) ¢ 0 (mod l), 

F(() = G(() ~ ~(k)(F)- ~(k)(G) (mod l). 

Proof. 

Let !J>(x) = 1 + x + x 2 + ... + x 1
-

1 be the minimal polynomial of(. Then 

Let H = !J>W, where W = U jG. 

For any S(x) E Z[x], let 
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Claim: 

d~(H) = 0 (mod l) for k 2 0. 

Proof of claim: Since Zl q,(1), d8(H)- 0 (mod Z). 

k 

For 1 ~ k ~ l-1,d~(H) = ~ (~)(d~q,(ev))(d~-iW) 

= t. G) (~ n•) d~-'(W). (mod I) 

Note that the denominator of d~-i(W) is a power of G(1) which is prime to l 
l-1 

by assumption ; moreover, 2:: ni- 0 (mod l) fori= 1, 2 , .. , k . Thus d~(H)- 0 
n=O 

(mod l), for 1 ~ k ~ l - 1. Hence the claim. 

where S is a Q-linear combination of l:. H(ev) for 0 ~ i ~ k, and T is an 

integral power of 1 + H (ev). Thus by the claim above, when v = 0, S 0 (mod l) 

and T = 1 (mod l) . 

Lemma 1.1 follows. 

The definition of ~ acting on algebraic numbers 

Let a E A = Z[(] be such that (1- () f (a). Write a = f(() , with f E Z[x] . 

Then f(1) "¢ 0 (mod l) and ~(k)(J) is defined. 

For 1 ~ k < Z-1, set ~(k)(a) = ~(k)(J). This definition is independent modulo 

l of the choice of f by Lemma 1.1. 

Lemma 1.1 can be generalized as follows: 
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Lemma 1.2. ([V4, pp. 401-408]) Let F, G E Z[x]. Assume: 

(1) F(() = G((); 

(2) G(1) ¢ 0 (mod l); 

(3) For a positive integer i, F(1)- G(1) (mod zi+I ). 

Then for any positive integer k prime to l- 1, 

A proof is given in the Appendix. In fact , a stronger version of this result, i.e, 

without assuming condition (3), was stated by Kummer [K2, p. 54] and Hilbert 

[Hi, p. 353]. 

Lemma 1.3. [V4, p.399] Let f E Z[x] be such that f(l) ¢ 0 (mod 1). Then for 

any positive integer k prime to l - 1, and all positive integers i, 

Proof. 

Throughout this proof, the congruences are modulo zi+t. 

We have 

v=O 

Now, 

(1.1) 
v=O 



Let 

where ao, a1, ...... ,am E Z. 

Then 

dkti+l_l 

dvkti+l-1 
v=O 

B £ . kti+l - kli f ( ) ecause or any Integer n, n = n , we get rom 1.1 

Dividing both sides by (!(1))1;+
1

, we get Lemma 1.3. Q£V. 

For a E A, let a denote the complex conjugate of a. 

8 

Proposition 1.4. Let a E A- (1- (). Then for positive integers 1 :::; n < l-1, i ~ 

1, we have 

(a) 

(b) 

(c) 

Proof. (a) is straightforward. (b) follows from (c) by applying u 
1

2
1 

• 

We will now prove the following claim, from which (c) will follow if we observe 

that for a= f(() E Z[(], with f E Z[x], u(a) = J(C). 

Claim ([V5, p . 619]) For n E Z, n 2: 1, and FE Z[x], 

(1.2) 
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Let D = lv. To prove the claim, first we prove by induction on n that 

for some G E Q[x]. 

Clearly this is true for n = 2. Suppose we can write 

Then we have 

(1.4) 

Now, setting r = 1 in (1.3) and differentiating, we get 

(1.5) 

Setting v = 0 in (1.4) and (1.5) we get (1.2). 

Q£1J. 

Proposition 1.5. Let 1J E A*. For every odd integer 1 < m < l-1, we have 

(mod l). 

Proof. By a basic result, 1J = (k€, where k E Z and € is a real unit. Clearly, when 

m > 1, _6.(m)((k) _ 0 (mod l). By Prop 1.4,(b), we have 

(mod 1). 

(mod l). 

Hence, after using Lemma 1.1 we get Prop 1.5. 

Remark: Note that _6.( 1)((k) _ k (mod l). 
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CHAPTER 2 

AN UPDATED VERSION OF VANDIVER'S 'THEOREM' 

In (V2, pp. 118-122], Vandiver tried to prove that l f h+ implies the first case 

of Fermat's last theorem. In this chapter, we give the method of his attempted 

proof. We actually prove the first case without assuming l f h+, but modulo 

another assumption which seems to be implicit in Vandiver's paper. Our proof 

follows closely the method of Vandiver, but we also indicate a shortcut which 

simplifies the proof considerably. It is not clear how the other assumption can be 

satisfied or eliminated. 

Recall that r is a primitive root modulo the odd prime l. Also, ( is a primi­

tive l-th root of 1. The l-Sylow subgroup Ct of the ideal class group A of Q( () 

decomposes into a direct sum of eigenspaces cji) which are defined as follows: 

Theorem 2 .1. 

(2.1) 

is satisfied with x, y, z E Z, l f xyz, then P f (z) for any prime ideal P whose 

ideal class generates c?). 

Remark: It is not necessary that P be a prime ideal. Assuming that Pis prime 

simply makes matters easier. 
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Proof. 

Assume equation (2.1) is possible, with l f xyz. Changing z to - z, equation 

(2.1) can be written as 
1-1 

rrcx + (iy) = z'. (2.1a) 
i=O 

Recall that ..X= 1- (.We have 

Lemma 2.1a. 

(1) The ideals (x + (iy) in equation (2.la) are prime to each other and (..X). 

(2) (x + (iy) = Ij, where for 1 :::; j :::; l- 1, Ii is an ideal in A . 

(3) (x+y)=v1 wherevEZ. 

(4) If P is a prime ideal divisor of Ij for some j, then N(P) = p for some 

x' + y' 
prime number p such that p = 1 (mod l) and pJ but p f x + y. 

x+y 

Proof. 

(1). Suppose P is a prime ideal that divides both (x + (i 1 y) and (x + (i2 y), 

where i 1 =/:- i 2 • Then P divides ((i1 y- (i2 y), which means PJ(..X) or PJ(y). But 

PJ(..X) =? (..X)J(z) =? lJz, which is impossible. So assume PJ(y). Now we also have 

we should have PJ(x) and PJ(y), which is impossible because (x,y) = 1. 

(2). Follows from equation (2.1a), (1) above, and the fact that A, being a Dedekind 

domain, admits unique factorization by ideals. 

(3). We have 

z1 z1 z 1 
1 

x + y = N(x + (y) = N(If) = N(It)1 = v' 
z 

where v = N(It)" 
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(4). Fix j, 1 ~ j ~ l- 1. If P is a prime ideal such that Pl(x + (iy), then 

an(P)I(x + (iny). Now, j ~ jn is a permutation of (Z/ZZ)*. From (1), (x + (iy) 

are relatively prime fori = 1, 2, .. , l-1. Hence we get 1-1 prime ideals lying over 

(p) = P n A, which means (p) splits completely in A, because K has degree l - 1 

over Q. Thus, N(P) = p = 1 (mod 1). Also, it follows from (1) that p f (x + y). 

Q£1J. 

Henceforth, let It =I. We have from Lemma 2.1a (1), 

(2.1b) 

As is well known, Kummer proved that if I is principal, then (2.1) is impossible. 

Therefore, we may (and will) assume that I is nonprincipal. Thus [I] has order 

precisely lin the ideal class group C and lis irregular. Let Biu Bi2 , ••••• Bi., with 

{it, ... ,i8 } C {2,4, ... ,1-1}, be the Bernoulli numbers divisible by 1. 

Similarly to the definition of the c?)' let Vi be the z I zz vector space Ct/ Cf' 

and V{(i) the eigenspace consisting of elements on which G acts via wi . 

We have the following criterion due to Herbrand and Ribet. 

Theorem. ([R. p. 151],[He. p. 430]) 

( i) VI =1- 0 '¢::} ZIBI-i· 

Since V[(i) = 0 '¢::} cji) = 0, we can write 

C _ c<l-il) ffi ffi c<l-i,) 
1- I W·····W I . 
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It is a well known result of Kummer ( cf. for instance, [Ri], p. 125) that if 

equation (2.1) is true with l f xyz, then liBt-3· Hence we may let l- i1 = 3 in the 

above decomposition. (In fact, this is not essential to our proof.) 

The following result of Kurihara is a consequence of the proof of the mam 

conjecture for cyclotomic fields due to Mazur-Wiles [MW), the computation of 

K 4 (Z) by Lee and Sczcarba, and the surjectivity, due to C. Soule, for l > 2 of the 

l-adic Chern class map 

Theorem. ([Ku), p. 223): Cj3
) is cyclic. 

Remark: This fact, which was also independently observed by R. Greenberg, IS 

essential to our proof. 

Decomposing each Cji) in terms of its cyclic summands, we get 

C (3) 
Ct = 1 EB M1 EB ..... EB Mn, 

where n is a positive integer and each Mj is a cyclic subgroup of some c?) with 

i # 3. 

Suppose P is a prime ideal such that the ideal class[P] generates c?), and P 

divides (z) . SoP has to divide x + (ky for a unique k E {1, 2, ... , l}. By choosing 

( suitably, we may assume that k = 1. By the Tchebotarev density theorem, we 

choose prime ideals Qj for j = 1, 2, .. , n, representing an ideal class which generates 
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As already mentioned, [I] has order exactly l in Ct and thus [I] E Ct. Hence 

we have 

This gives 

I _ pmQkl Qkn ("'f) h 1: E A 
- 1 .... n ( S) , w ere "'(, v . 

Claim: "Y, S can be chosen so that (.X) f ("Y), (.X H ( S). 

(2.3) 

Indeed, since (.X) f I, P, Ql, .. , Qm, we have V.A("Y) = v.A(S). Then we can replace 

"'(,S by ,Xv;("Y), ,Xv~(li) respectively, to get the claim. But note that we cannot make 

( "Y) and ( S) relatively prime. Thus, the ideal P need not a priori divide the ideal I. 

In fact, it is not clear that there would be any ideal in the class c?) which divides 

I. The crucial mistake made by Vandiver in [V1] is that in a similar situation he 

seems to assume P divides I . 

Consequently, 

(2.4) 

This gives the following relation in Ct, written additively: 

Since C1 is a direct sum c?) EB M 1 ffi ... . EB Mn, this implies that [P]m1
, [Q1]k11 , . .. .. , 

[Qn]knl must all be trivial in C,. So we can write 

pml = (ro), and Q;i 1 = (aj), for some ro,al, ···· ·, an E A= Z[(]. 

By Prop. 1.4a, we know that ~(n) vanishes on 1-th powers of elements m 

A - (1 - (). Note that in equation (2.4), the numbers occurring on the right-

hand side are not divisible by (1- (), because (1 - () f (x + (y). Thus ~(n) is 
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defined for all of them. By the remark above, ,6.(n)(,yl) _ 0 (mod l). By Prop. 

1.5, ,6.(n)(ry) _ 0 (mod l), Vn E {3,5, ... ,1- 3}. Taking n = 3 and using Lemma 

1.1, we get the following by the additivity of the logarithmic derivative: 

L'>('l(x + (y) = L'>3 (w) + (t,L'>(')(<>j)) (mod l). (2.5) 

We claim that ,6.(3 )(x + (y) = .6.3
( w) (mod l) . 

The claim follows from the following 

Proposition 2.2. 

(mod l), for j = 1, 2, .. , n. 

Proof. Fix such a j. We have [Qj] E Cji) for some i =/=- 3. Now, from the definition 

of cji)' Qj = Q'/(r) (vj) with Vj E ]{*. Note that (vj) is prime to (.X), because Qj 

and hence Qj are prime to (.X). Since wi(r) ri (mod l), let wi(r) = ri + a1Z. 

We get 

On the other hand we have 

Hence we get 

(2.6) 
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From Prop 1.4,( c) we have, for n;::: 1: 

(mod l). (2.7) 

Using (2.6) in conjunction with Lemma 1.1, Prop 1.4(a) and Prop 1.5, we get: 

(mod l). 

Combining (2.7) with (2.8) gives (r3 - ri).6.(3)(aj) = 0 (mod l). 

Since i E {i2, ... is} and i =/= 3, we get 

(mod l), for j = 1, 2, ... , n. 

Hence Prop 2.2. Q£'D. 

Proposition 2.3. ,6.(3)(tv)- 0 (mod l). 

(2.8) 

We first need some results (Theorems A and B) essentially due to Vandiver and 

a theorem of Mazur-Wiles. Complete proofs of Theorems A and B will be given 

in Section 3. 

Theorem A. [V1, pp.l18-122] Let Et-3 be the real unit defined by (0.3). If x , y, z 

satisfy (2.1) with l f xyz, then we have: 

{ E~a} = 1 where P is as defined before. 

Remark: The above theorem holds for any prime ideal Q such that Ql(x + (y). 

Next we appeal to a theorem of Mazur and Wiles: 
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Theorem. ([MW]) Let j be an odd positive integer, j ¢. 1 (mod l). 

Then v,(I(C}j))l) = v,(BI,w-i ). 

Remark: See also the discussion in [Wa, p. 198, Remark]. Also, V. A. Kolyvagin 

[Ko] has given a purely cyclotomic proof of this result. 

We need the following proposition: 

Proposition 2.4. Let Ck = (l - 4)lk + 1, for any positive integer k, and n 

Proof. 

It is known ([Ha], p. 89-90) that 

(mod zm) for all positive integers m. (2.9) 

Setting m = n in (2.9), and using the fact that v,(BI,w-i) = n, we get zn I Ben. 

From the generalized Kummer congruence relations for Bernoulli numbers ( cf. 

[Wa] p. 61), we get Bcn+l = ~:n (mod zn+I ). 

So if zn+1 1Bcn, then zn+1 IBcn+l" Then from (2.9), with m = n + 1, we get 

(mod zn+l ), a contradiction. 

Q£'D. 
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Let h3 = vl(IC?)I), and c = (1- 4)[hs + 1. From the theorem of Mazur-Wiles, 

we have v1(B1,w-s) = h3. Setting n = h3 in Prop. 2.4, we get vl(Bc) = h3 . Thus 

Theorem B. [V4, pp. 393-408] Assume cfi) is cyclic fori = 3, 3, ... , l- 2. (For 

i = 3, we already know c?) is cyclic by the theorem of Kurihara.) Let P is a 

prime ideal whose ideal class generates cfi). Let h; = vl(ICJi) 1), and set plhi = ( v ). 

Let { E'ps} = (e, with e E (Z/ZZ). Recall that c = (1- 4)lh• + 1. 

Then we have 

= ± rl-i - 1 Be A (i)( ) 
e - 2 1h• L..1 v (mod l). (2.10) 

Proof of Prop. 2.3: 

From Theorem A, e = 0 (mod 1). Since r is a primitive root modulo 1, we get 

from Theorem B (with i = 3) and Prop. 2.4, 

ll (J)( v) = 0 (mod 1) . (2.11) 

Let -{r!f = q, so that pml = (v)q = (w). Then, by using Prop 1.5 and Lemma 1.1, 

we have 

(mod l) (2.12) 

Combining (2.11) and (2.12), we get Prop. 2.3. Qt:T>. 

Proof of Main Theorem ( contd.) 

Applying Propositions 2.2 and 2.3 to equation (2.5), we get ll(3)(x + (y) = 0 

(mod l). 

Now, 
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Since 1 f xyz, we get x- y = 0 (mod 1). 

Now change -z back to z, so that we have x 1 + y1 + z 1 = 0. Note that the 

roles of x, y, z are interchangeable in this equation as well as the arguments above. 

Hence we also get y- z x- z _ 0 (mod 1). Thus x = y = z (mod 1). Reducing 

x 1 + y1 + z 1 modulo 1, we get x + y + z _ 0 (mod 1). This gives 3x _ 3y = 3z = 0 

(mod 1). Since 1 is irregular, we certainly have l > 3. So llx, lly, liz, a contradiction. 

Alternate proof, without using Theorem B. 

The proof of Prop. 2.3 can be simplified considerably if we use the following 

lemma (the proof is in Chapter 4). In particular, we can avoid the use of Theorem 

B. 

Lemma 4.5. If the ideal class of the ideal I generates c?>, then { E';3
} =/= 1. 

From Theorem A we get { E~3 } = 1. Since by definition the ideal class of P 

generates c?>' lemma 4.5 gives a contradiction. 
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CHAPTER 3 

PROOFS OF THEOREMS A AND B 

The proof of Theorem A was sketched by Vandiver in [V1, p. 122). His argument 

is correct, and the proof with necessary details is included here for completeness. 

1. PROOF OF THEOREM A 

Equation (2.1) can be written as 

l-1 

II ex+ (iy) = ( -z( (3.1) 
i=O 

Let P be any prime ideal such that PII, Pl(x + (y). Let N(P) be the norm of P. 

When 1 f z, we get from Lemma 2.1a that: 

(1) The ideals (x + (iy) in (3.1) are prime to each other and(.>.). 

(2) (x + y) = v1 where vis a rational integer. 

(3) N(P) divides x~t;
1 

but N(P) does not divide (x + y). 

Let N(P) = pm, where m is a positive integer. In fact, m is the least positive 

integer n such that pn - 1 (mod 1). It is easy to show ([Ri) p. 52) that, for such 

p, N(P) = p _ 1 (mod 1) . We now need the following result: 

Proposition 3.1 ([V2),p.217) Recall that when n E Z, n' is an integer such that 

nn' _ 1 (mod 1) . If equation (2.1) is satisfied in integers x, y, and z prime to each 



other with z prime to l then :Ja E A such that 

1-1 
-2-

11 (x + (n' y) = (Yal 
n=l 

Proof. Recall, from Prop. 2.1a, we have 

x + y = v 1
, with v E Z. 

X+ (y = I 1
, I an integral ideal, 

when x, y, z are as in the statement of this proposition. 
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(3.1) 

(3.2) 

(3.3) 

Applying the Stickelberger type relation (0.2) from Chapter 0 with n 1 = n 2 = 1, 

and using the fact that all prime ideals dividing ( x + ( y) with x, y, z as in Theorem 

2.1 are of degree 1 (as proved in Lemma 2.1a (4)), we find that the product 
1-1 
-2-rr un'(I) is principal. Applying this to equation (3.3), we get 
n=l 

1-1 
- 2-

11 (x + (n' y) = TJ/3', 
n=l 

Applying u _1 to (3.4), we get 

1-1 
-2-

where TJ E A is a unit, and f3 E A. 

11 (X + (-n' Y) = ry(fj)'. 
n=l 

(3.4) 

(3.5) 

Multiplying (3.4) and (3.5), and using (2.1) and (3.2), we find that the ideal 

- z -(f3f3) = (- ), where Hence {3{3 = E(z/v ), where E E A is a unit. Taking the 
v 

product of (3.4) and (3.5) again, we find that 

TJTfE1 = 1. (3.6) 

But we know, by a basic result, that 

(3.7) 
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where t: E A+ = Z[( + (-1 ] is a real unit and g E Z. 

From (3.6) and (3.7) we get t:2 = E-1• Since 1 is odd, we can find integers a, b 

such that 2a = 1 + b1, so that t:2 a = abl = E-al. Hence t: = ( t-b E-a )1, and 

7J = (9 ( cb E-a ) 1• Letting a = t-b E-a f3, we get Proposition 3.1. 

Q£V. 

Let P be a prime ideal as defined such that Pl(x + (y) , where x, y , z are as in 

equation (2.1). Then we also have 

Prop. 3.la. N(P) = p = 1 (mod 12
). 

Proof. We use the following result of Fiirtwangler. 

Theorem 3.2.([F], p. 589-592) If x, y, z are integers prime to each other such 

that x 1 + y 1 + z 1 = 0, 1 is an odd prime such that 1 f z , and b is a positive integer 

such that biz, then b1- 1 
- 1 (mod 12 ). 

From Lemma 2.1a (4), we have p = 1 (mod 1). Let b =pin Theorem 3.2. We 

know plz. So we get p1
-

1 = 1 (mod 12
). 

But when p1- 1 - 1 (mod 12 ) and p - 1 (mod 1), we have p = 1 (mod 12 ). 

Q£V. 

Proof of Theorem A ( contd. ). 

Claim: Let u = 1; 3 • L et k E {1, 2, .. . ,u}. Then :3 s(k) E {±1} such that s(k)kn' ¢ 

1 (mod 1) for all n, 1 ::; n::; 1; 1 . 

Proof. Suppose km~ = 1 and -km~ = 1 (mod 1) for some m1, m2 E {1 , 2, ... , 1;
1 

}. 

Then m 1 + m 2 = 0 (mod 1), which is impossible. 
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Choose s(k) as above. Since PJ(x + (y), we get P f (x + (s(k)kn'y), Vn E 

{1, 2, .. , 1-;1 } by the claim just proved. 

In (3.1) apply <7(s(k)k) to both sides where 1 ~ k ~ 1-;1 to get 

1-1 n { X + ,~·>··· y } = { ,,;·· } , 

where the 1-th power residue symbol { ~} is as defined by equation (0.4). 

From Prop. 3.1a, we have N(P) = p = 1 (mod 12
). 

This implies 

by the definition of the power residue symbol. 

Now, (x + (iy) = (x + (y) + (y()((i-l- 1) 

=*(x + (iy) _ (y()((i-1 - 1) (mod P). 

because { j.} = 1, as we just proved using Prop. 3.1a. 

Now, y((i-1 - 1) = ( (i;~ ~ 1) (y((- 1)). 

(3.8) 

t ( )t ( d P) { (y )( ( - 1) } 1 But, y((-1) = (x+(y)-(x+y) = -v = -v mo =* p = . 

Hence 
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Hence (3.8) becomes: 

IT { (<'''';;;'-I) } = 1. 

n=1 

(3.9) 

Let b E Z, b :/= 0 (mod 1). We need the following fact relating the 1-th power 

residue characters of ~~11 and E 2 m with respect to a prime ideal P: 

Fact ((K3), p. 277): 

For a E A, a (j. P define ind( a) by: 

(ind(a) = {;} . 

Then, 

ind ((b- 1) - ~ (b2m- 1)ind(E2m) - ~(b- 1)ind(() 
( -1 ~ r 2 m -1 2 

(mod 1). (3.10) 
m=1 

where u = (l- 3)/2 as before. 

Since { ~} = 1, we get ind(() = 0. Applying (3.10) to (3.9) we get 

1-1 

~ ~ ((s(k)kn' -1)
2

m -1)ind(E2m) = O (mod l). 
~ ~ r2m -1 
m=1 n=1 

Expanding the left-hand side in powers of k, we get 

1-1 
-2-

where the Ajs are expressions involving rand Em, and Rj = L(n')i. 

When j is even, 2Rj = L ni = 0 (mod l) => Rj = 0 
nE(Z/1)• 

n=1 

(mod !). 

(3.11). 

(3.12) 
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So we get 

Letting k run over 1, 2, ... , u, we see that the AjRj 1 s have to be zero in Z/ZZ 

because the determinant of the matrix (ki), k = 1, 2, .. , u;j = 1, 3, ... , 1- 4 (a 

Vandermonde determinant) is not 0 in Z/1Z. In particular, for j = 1-4 we have 

Az-4Rl-4 = 0 (mod l). 

By ([V3], p. 114), we have the following relation between Rj 1 sand the Bernoulli 

1-1 

-2- . 1- 2i 
~ a-1 _ B 
LJ n = 2i-li i 
n=l 

(mod l), i 2: 2,(1-1) fi . (3.13) 

Remark: The above congruence is also a consequence of Voronoi 's congruences( cf, 

for instance, [Ri. p. 108, 5B]). 

Let i = 4 . From (3.13) we have: 

(1- 24
) -

3 
B4 = Rz-4 (mod l). 

2 .4 

Since Az_4Rz_4 0 (mod 1), multiplying both sides of this congruence by Az-4 

gives Az_4 B 4 
12t = 0 (mod 1). 

Since 1 is irregular, certainly l > 5, and we get Az-4 = 0 (mod 1). 

But we defined: 

1 1-3 . 
Az-4 = - 1_ 3 (znd(Ez-3)) . 

2 r -1 
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Hence 

At-4 0 (mod 1) ==> ind(Et-3 ) = 0 (mod 1) ==> { E~3 } = 1. 

This concludes the proof of Theorem A. 
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2. PROOF OF THEOREM B 

This result is due to Vandiver. However, his proof contains some ambiguities. 

So we present a complete proof by exploiting his ideas in conjunction with the 

theorem of Mazur-Wiles, and with some additional simplications. In addition, 

we establish this result for any 1 by exploiting his ideas in conjunction with the 

theorem of Mazur-Wiles stated in chapter 2. Note that, for any 1, one knows that 

c?) is cyclic by the theorem of Kurihara, stated in chapter 2. 

For the convenience of the reader, we gather some notations that will be needed 

during the proof. 

Fix i E {3, 5, ... , l- 2}. Let a E Z, 0 <a< (l- 1), such that (1 + ai- (a+ 1)i) 

is prime to l. Let N(P) = p. Since Pis of degree 1, p 1 (mod 1). Let Ja be the 

Let Ec-i be as defined by equation (0.3). 

Recall that in chapter 2 we proved that 1 f ~'where c = (l- 1- i)zh; + 1, and 

( i) 
hi = vc(ICc 1). 

Let v E A be a generator of P 1
h;, where the class of the prime ideal P generates 

C (i) 
1 • 

Let x be the least positive residue of x (mod l). As before, if n is an integer, 

let n 1 be the integer such that nn1 
_ 1 (mod 1). 

Define Ia = {1 ~ n ~ (l- 1) I an'+ n' > l} and S = L:nEia nb, where 

Let v 1 = v 1- 1 • Then v1 - 1 (mod (1 - ()). 
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If a = ao + a1( + ... + at-2(1- 2, and a = 1 (mod (1- ()), then we can find 

a polynomial, G E Z[x), such that G(() = a, and G(1) = 1. In fact, G(x) = 

a +a + +a + 1-(ao+ ... +a,_2) n..(x) where n..(x) 1 + + + l-1 u r "11 o I •• . l-2 1 "*' , "*' = X • • • X • vve Wl 

denote the polynomial obtained in this way from a by a( X). 

Thus v1 ( () = VI , and VI ( 1) = 1. 

Let la(x) = f be a polynomial in Z [x) such that J(() = Ja . 

We will write a"' b if a = bm (mod l), with m prime to l. 

The proof will be through the series of congruences (*) shown below: 

ind(Et-i) ~ ~(i)(Ja) <!} ~(b)(Ja) 

Cl> _§__A (b)(- ) ~ B e A (i)( ) 
[h ; ~ V I [h i ~ V . 

In the proof of relation ( 4) we would obtain the constant ± r'-~ -I and thus com-

plete the proof of Theorem B as it was stated in chapter 2. 

Proof of (1) 

We n eed the following proposition: 

Proposition 3.3. 

. - ( r(2n) - 1 ) (l-2n) 
md(E2n) = 2(1 + al-2n- (a+ 1)l-2n) ~ (Ja) (mod l) (3.14) 

where 1 < l - 2n < 1 - 1. 

Proof. See [K, pp. 95-103]. 

Remark: The above result is also proved by Hilbert [Hi, pp. 343-351). 
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Putting 2n = 1 - i in the above proposition, we get the relation (1 ), which is 

given below: 

. - ( r(l-i) - 1 ) (i) 
md(Et-i) = ( . ( )") ~ ( la) (mod 1) 

2 1 +a'- a+ 1 1 
(3.15) 

S• r(l-i) -I • 
mce 2(I+a'-(a+l)') ts prime to 1, we get relation (1). 

QED. 

Proof of (2). 

But ~(i)(Ja)- ~(i)(Ja) (mod 1), by Lemma 1.1. 

Hence we get relation (2). 

QED. 

Proof of (3). 

(3) is given by the following proposition: 

Recall: VI = v1
-

1
• a is an integer such that 0 <a< l- 1 and (1 + ai- (a+ 1)i) 

is prime to 1. la is the Jacobi sum J(xp, x~). 

xis the least positive residue of x (mod 1). If n is an integer, n' is integer such 

that nn'- 1 (mod l). Also, Ia = {1::; n::; (l- 1) J an'+ n' > 1}. 

Proposition 3.4. Let fa and VI be defined as before. Let S = L:nEia nith;+l. 

Then, 
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Proof. 

Recall that N(P) = p = 1 (mod 1). 

From chapter 0 we have the following Stickelberger type relation (0.2) for the 

ideal P: 

II l7n(P) = ( Ja)• (3.16) 
nEla 

From (3.16) we get 

nEla nEla 

=> f3 II <7n(v) = (Ja)1
h;, with {3 E A*. (3.17) 

nEla 

Let f3 = (kt:, where k E {1, 2, .. , 1} and E is a real unit. 

Raising both sides of ( 3.1 7) to the power of ( 1 - 1), we get 

((1-l)k€1-1 II (un(v))l-1 = J~l-l)lh;. (3.18) 
nEla 

Let t:1- 1 = t:1 , and v 1- 1 = v1. Recall that ,\ = 1- (. 

Then €} = 1 (mod(-\)), and VI= 1 (mod(-\)). Let i'l(x) and vl(x) be integral 

polynomials obtained from t:1 and v 1 as described in the beginning of the proof of 

Theorem B. Recall that la(x) = f where f E Z[x ], such that /(() = Ja. 

Claim. 

zh;cz-1).6..(ilh;+t)cJa) = 2:: ,6.(ilh;+l)(un(vi)) (mod zh;+l) (3.19) 
nEla 
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First we show ~(ilh;+l)(€'1) = 0 (mod zh;+I). If €}(x) = ao+aix+ ... +at-2X1- 2+ 

I-(ao+atj-· ·+a,_ 2 )<I>(x), then €}(x1- 1 ) = E(x) is a polynomial such that E(1) = 1 

and E( () = 0'1-I ( ii) = €}. Hence we can apply Lemma 1.2 and get 

Using equation (1.2) from the proof of Prop 1.4(c), we get 

S. (l 1)ilh;+1 - 1 Ince - = - (mod [h;+I ), we get 

If - ( ) b + b + + b l-2 + l-(bo+bt+ .. . +bl-2).iF..( ) th 1 t ( - ) VI X = 0 IX ... l-2X I 'J:" X , en e O'n V1 = 

vi(xn) = V(x). Then V E Z[x] is a polynomial such that V(1) = 1 and V(() = 

Also (ia(1))(1-I)lhi+l = 1 (mod zh;+l). 

Now let F(x) = x(l-I)k€1(x) IT (vi(xn)) and G(x) = fa(x)(l-I)lh;. 
nEla 

Then F(() = G(() and F(1) = 1 = G(1) (mod zh;+1). 

Then we can apply Lemma 1.2 and (1.2) from the proof of Prop. 1.4(c) to 

(3.18) and get the claim. 

Q£D. 

Proof of Prop 9.4 ( contd.) 

Using (1.2) from the proof of Prop 1.4(c), we have 



32 

Now divide both sides of (3.19) by 1h; , after using the above relation. We get 

(3.20) 

Hence relation (3). Q£V. 

Proof of (4) 

h •th ·+1 
Let c = ( 1 - 1 - i)1 ; + 1 and S = L:nEia n 1 

' as before. Relation ( 4) is the 

following congruence: 

This congruence will be proved through Lemma 3.5. 

Lemma 3.5. Let c = (1- 1- i)1h; + 1 as before. Then 

s = 2::.: ni'h;+l ±((a+ 1)i'h ;+1 - ai'h;+l - 1) ~c (mod 1h;+1) 

nEia 

Proof of Lemma 3. 5 

For the sake of convenience we will denote L by L: and hi+ 1 by m. 

We have 

Let L = L(n')(l- 1-i)lm. Clearly we have 

l-1- -
L = L ak + k -1 (a+ 1)k k(l-1-i)lm. 

k=1 

From (ak){l-1-i)lm = QJ2.l-l-i)lm (mod 1m+1) we get k <t-1-i)lm = ai lm ak(l-1-i)lm (mod 1m 

Similarly, k<1- 1-i)lm = k(t-1-i)tm and k{l-t-i)tm = ( a+l )ilm (a + 1 )k (t-1- i) tm (mod tm+1 ). 
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Let b = ilm and d = (1- 1- i)lm + 1. Then we can write 

Following the notation of Ribenboim ([Ri], p. 124), we let 

l-1 

Lkd = Sd(l-1). 
k=1 

Lemma 3.5 follows from the following claim: 

Claim: 

where c = ( l - 1 - i)zh; + 1 as before. 

It is well known (See [Ri, p. 100]) that 

Bd_1 = 0 since d - 1 is odd. By the theorem of von Staudt-Clausen ( cf, for 

instance, [Ri, p . 102, 2D]), the denominator of IBN is prime to l for any even 

integer N. So clearly ~(g)Bd-2 - 0 (mod zm+2
). 

Now, consider the general term k~1 (t)Bd-k+1· We know that the denominator 

of 1Bd-k+1 is prime to l. We have 

zk - 1 (d) _ zk-1d(d- 1) .. (d- k + 1) 
k + 1 k - (k + 1)! . 

zk-1 

Since l > 3 and zk-
1 > k + 1, v1( (k + 1)k(k _ 1)) ~ 1. Also because d -1 ~ k -1, 

v1((d- 1)- (k- j)) ~ v1(k- j) for j = 2, .. , k- 2. Thus 

( 
( d- 2)( d- 3) ... ( d- k + 1)) > 0 

Vl (k- 2)! - . 
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Since v1(d- 1) = m, we get 

zk-1d(d- 1) .. (d- k + 1) zk-l 

v1( (k+ 1)! )=vl((k+l)!d(d-1)(d-2) ... (d-k+1))~m+l. 

Thus 

By generalized Kummer congruences for Bernoulli numbers (See [Wa], p. 61), 

we have 

Hence the claim, and Lemma 3.5. 

Now we prove relation (4). 

Applying Lemma 3.5, (3.20) becomes 

As mentioned at the beginning of the proof of the present theorem, l f ~. 

Applying Lemma 1.3, we have 

Moreover, 

by Lemma 1.1 and Prop 1.4(a). 

Thus (3.21) becomes 

(3.21a) 
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Combining (3.21a) with (3.20) we get relation( 4). Q£V. 

Proof of Theorem B. 

Now we combine the relations ( 1) through ( 4) to get Theorem B. 

From ( 2) we have 

Thus (3.21a) becomes 

(3.22) 

Using Kummer's Proposition (3.14) in (3.22) we get 

( 

r(l-i) - 1 ) ·zh·+t ·zh ·+t B 0 ind(Ez-i) = ( . ( )) ±((a+1)' ' -a' ' -1)[h~ ~' (v) (mod l) 
2 1 + a' - a + 1 ' . 

(3.23) 

h £ ~ Theorem B follows if we note t at or any integer n, n n (mod l) for 

j = 1,2, ... Q£V. 
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Chapter 4 

THE MAIN THEOREM 

Recall that r is a primitive root modulo 1, and A the ideal class group of Q[(]. 

The 1-Sylow subgroup C1 of A decomposes into a direct sum of eigenspaces C~i) 

which are defined as follows: 

Theorem 4.1. For n 2: max(l, h3 ), 

( 4.1) 

is impossible with x, y, z E Z, 1 f xyz. 

Proof. 

Assume equation (4.1) is possible, with 1 f xyz. We may also assume that 

x, y, z are relatively prime. Let X= x 1n-
1

, Y = y 1n-
1

• Then equation (4.1) can be 

written as 
l-1 

II (X+ (iY) = ( - z) ln. ( 4.1a) 
i=O 

R ecall that .A= 1- (. We have 

Lemma 4.1a. 

(1) The ideals (X+ (iY) in equation (4. 1a) are prime to each other and (.A). 
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(2) (X+ (iY) = Ir, wbere for 1 :::; j :::; l- 1, Ii is an ideal in A. 

(3) (X+ Y) = v1 wbere v E Z. 

(4) If Pis a prime ideal divisor of Ij for some j, tben N(P) = p for some 

X 1 +Y1 
prime number p sucb tbat p = 1 (mod l) and PI but p f X+ Y. 

X+Y 

Proof. Same as proof of lemma 2.1a, since X, Y and Z = z 1
n-l satisfy equation 

(2.1), with If XYZ. 

Henceforth, let I 1 =I. We have from Lemma 4.1a (1), 

(X + (Y) = I 1
n • ( 4.1b) 

As in chapter 2, we can assume I is non-principal, and l is irregular. From 

equation (4.1b) we get that [I] has order a power of lin C, and thus [I] E C1• 

Decomposing each cJi) in terms of its cyclic summands, we get as in chapter 2, 

(3) C, = C, E17 M1 E17 .... . E17 Mn, 

where n is a positive integer and each Mj is a cyclic subgroup of some Cji) with 

i =/:- 3. Let [P] be an ideal class which generates c?). Using the Tchebotarev density 

theorem, we choose a prime ideal P to represent it. Similarly, for j = 1, 2, .. , n, let 

Qi be a prime ideal representing an ideal class which generates Mj. We get: 

(4.2) 

where t, k1 , .... , km are non-negative integers. Then we can write 

I P tQkl Qk"" ( 'Y) = 1 ·· ·· m 7{ (4.3) 
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where/, bare nonzero algebraic integers, and (as in chapter 2) (A) f (r), (..\) f (b). 

Using Theorem A of chapter 2 we get, after writing the ideal I as a product of 

prime ideals, and using the multiplicativity of the l-th power residue symbol, 

{ E~-3} = 1 ( 4.4) 

We also need the following: 

Lemma 4.2. K(EJ~~) is a nontrivial, unramified, abelian extension of K. 

Let H1 be the maximal abelian unramified !-extension of K . Then the Artin 

map gives the isomorphism C1 ~ Gal( HI/ K) which sends the ideal class [P] of 

any prime ideal P in K to the Frobenius element ( H ~ K) . 
Definition: A unit ry E A* is called singular primary if: 

ry u 1 (mod ..\1) for some u EA. 

Proof of Lemma 4.2. By the theorem of Kurihara, C~1-3) = 0. A consequence of 

the proof of the main conjecture of Iwasawa is that fori= 2,4, ... , l- 3, IC~i)l = 

i((A*)t jCUt)( i)l , where cu+ is the group of real cyclotomic units, (A*)+ is the 

group of real units, and ((A*)t jCU1+)(i) is defined in the same way as c?>. From 

this it follows that C~1-3) = 0 =? E1- 3 cannot be an l-th power ( cf., [Wa, Chapter 

8, pp. 146 and 157]) . Thus K(EJ~~) is a nontrivial extension of K . 

We also know K( ry111) is unramified iff ry is singular primary (See [Wa, exercise 

9.3, p . 182]). As already mentioned, we have ZIBI-3· By ([Mo], p.115), En is 

singular primary if liBn . Hence the lemma. 
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Corollary. For any principal ideal (a) of K , 

{ ~~3} = 1. 

Proof. By the lemma, K(EJ~~) is a subfield of Ht, the Hilbert 1-class field of K . 

Under the Artin map, the principal ideals map to the trivial automorphism. Hence 

the 1-th power residue symbol { ~~)3 } should be trivial, since it gives the action 

of the trivial automorphism on K(EJ~~). 

Now, recall that from equation ( 4.3) we have I= ptQ~1 
•••• Q~"' (-I). Using the 

multiplicativity of the 1-th power residue symbol, the Corollary of Lemma 4.2, and 

Theorem A, we have 

1 = { E~_, } = { E~-;' } { ~:,' } ..... { ~~; } (4.5) 

Proposition 4.3. Lett be as in equation (4.5) above. Tben t = 0 (mod 1). 

Remark: If c?) = 0, then we have t = 0. So we may assume c?) f. 0. 

Proof of Prop. 4.9. 

First we need the following 

Lemma 4.4. ([He], p. 434) Let k E {5, ... , l- 2}, and Pk be any ideal prime to 

(.>..) whose class belongs to Clk). Then 

{ E~:3} = 1. 

Proof. We have 

(4.6) 
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But P{ = P(' J 1(a) for some ideal J of A and a E K. So we get, 

From equations ( 4.6) and ( 4. 7), we get 

Since k E {5, ... , 1- 2}, we get the lemma. 

Proof of Proposition 4. 9 ( contd.) 

Now, assume t :f= 0 (mod 1). We will get a contradiction. From the equa­

tion ( 4.4), we know { E,1_
3

} = 1. Applying Lemma 4.4 to equation ( 4.5), we get 

{ E~-; 3 } = { E'p3
} t = 1. Then the assumption t :/= 0 (mod 1) =} { E'pa} = 1. Now 

Prop. 4.3 will be proved if we show the following: 

Lemma 4.5. If tbe ideal class of tbe ideal P generates c?) , then { E!p3 
} #1. 

Proof. Assume { E'p 3
} = 1. Let [X) be any ideal class in C1. Represent it by a 

prime ideal J different from (>.). In C1 we can write (additively), 

N 

[J] = [pao] + L[Pji] , where ao,al,··aN E Z,and[Pj) E c?),i #3. 
j=l 

Hence we can write J = pao Pt1 
••• • P';t ((3), where (3 E K* , and (3 can be written 

as the ratio of two algebraic integers which are prime to (>.). Consider { E 1:J 3
} = 

{ pao P;~'-~-~t; (/3) } . By Lemma 4.4, { E~: 3 } = 1 if k =I 3. By assumption, 

{ E'p 3 
} = 1. Since ((3) is principal, { ~{;)3 } = 1. Thus, by the multiplicativity 

of the power residue symbol, we get { E 1:J 3
} = 1. This implies that the Frobenius 
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( H,JK) induces the trivial automorphism of I<(EJ~~) over K, for all J as above. 

This is impossible, since K(EJ~~) is a nontrivial extension of K contained in H 1, 

by Lemma 4.4. Hence the lemma and Prop. 4.3. Q£V. 

From equation ( 4.3) we have 

This gives the following relation in c, written additively: 

S. C . d" t C(3) M M h" . 1· h [Pttn] [Qk11n] mce 1 IS a Irec sum 1 EB 1 EB .... EB m, t IS Imp Ies t at , 1 , ..... , 

[Q~"' 1n] must all be trivial in Ct. So we can write 

Since 1n ;:::: ICi3 )1 by assumption, and t = 0 (mod 1) by ptln = (tv) = (ro') 1 for 

some ro' E A. Thus we get 

(4.8) 

By Prop. 1.2a, we know that .6 (k) vanishes on the 1-th powers of elements 

in A - (1 - (). Note that in equation ( 4.8), the numbers occurring on the right-

hand side are not divisible by (1- (), because (1- () f (X+ (Y). Thus _6(k) is 

defined for all of them. By the remark above, _6(k)( j31) = 0 (mod 1). By Prop. 1.5, 

_6(k)(7J) = 0 (mod 1), Vk E {3, 5, ... , 1- 3}. Taking k = 3 and using Lemma 1.1, we 

get the following by the additivity of the logarithmic derivative: 
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(mod l). (4.9) 

Proposition 4.6. 

(mod l), for j = 1, 2, .. , m. 

Proof. Same as the proof of Prop. 2.2. 

Thus from equation (4.9) we get ,6_(3)(X + (Y) = 0 (mod 1). 

Now, 
XY(X- Y) 
(X+ Y) 3 • 

Since l f XYz, we get X- Y _ 0 (mod l) => x = y (mod l). We had x 1" + y 1" + 

z 1" = 0. Note that the roles of x, y, z are interchangeable in this equation as well 

as the arguments above. Hence we also get y- z x- z 0 (mod l). Thus 

x _ y z (mod 1) . Reducing x 1 + y1 + z 1 modulo l, we get x + y + z = 0 (mod l). 

This gives 3x 3y = 3z = 0 (mod 1). Since lis irregular, we certainly have l > 3. 

So llx, lly, liz, a contradiction. 

Q£V. 



CHAPTER 5 

AUXILIARY RESULTS 

In this chapter we prove some results assuming the cyclicity of Cf5
). 

Let ICf5
) I = [hts. 

Theorem 5.1. Assume that c?) is cyclic. 

(1) For n 2: max(1, h5 ), 

is impossible with x, y, z E Z, l f xyz. 
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(5.1) 

(2) If cfl-
5

) is non-trivial, then x 1 + y1 + z 1 = 0 is impossible with l t xyz. 

R emark: Note that if c?) is cyclic, c}'-5
) is also cyclic by Leopoldt's reflection 

theorem. 

Proof of (2). 

Assume ::Jx, y, z E Z, such that x 1 + y 1 + z 1 = 0. We may also assume, as before, 

that x, y, z are relatively prime. 

As in chapter 2, we have x + (y = 11, and we may assume that I is non principal, 

and that lis irregular. Then, choosing a prime ideal P5 whose ideal class generates 

c?) (since c?) is cyclic, by assumption), we get (as in chapter 4) 

(5.2) 
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where a E K*, and fori = 1, 2, .. , m, [Qi] E cfi) with j f= 5. From this, we get 

we get b.<5>(x + (y) = b.<5>(w5 ) (mod l). 

Lemma 5.2. IfCfi-5
> is non-trivial, tben b.<5>(w5 ) = 0 (mod l). 

Proof. 

As already mentioned in chapter 4, a consequence of the proof of the main 

conjecture of lwasawa is that for i = 2, 4, ... , l- 3, ICfi)l = i((A*)j /CU()(i)l, 

where cu+ is the group of real cyclotomic units, (A*)+ is the group of real units, 

and ((A*)j fCU1+)(i) is defined in the same way as cfi). From this it follows that 

C}1
-

5
) f= 0 =:;. E1-5 is an Z-th power ( cf., (Wa, chapter 8, pp. 146 and 157]). Thus 

{ Et; 5 
} = 1 for any ideal J. In particular, letting J = P5, (e = { EJ>~ 5 

} and using 

Theorem B of chapter 3, we get 

l-5 1 B 
0 = e- ± r 

2
- [h:5 b.(5)(v5) (mod l) , (5.3) 

where c5 = (l- 6)[hs + 1, and Pf 5 = (v5 ). By Prop. 2.4 and the subsequent 

remarks, we have l f ~he:. Hence b.(5)(v5) _ 0 (mod l). We have plao = (w5) and 

Proof of Theorem 5.1 {2) (contd.) 

By the lemma, b.(5)(x + (y) = b.(5)w5 = 0 (mod l) . Since in all of the above 

x, y, z are interchangeable, we get b.(5)(x + (y) _ b.(5)(y + (z) _ b.<5 >(z + (x) = 0 

(mod l). 

Theorem 5.1 (2) will be proven once we prove the following: 
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Lemma 5.3. If x, y, z are as in Theorem 5.1 (1), then 

is impossible. 

Proof. let T denote any element of { ~, ~, ~}. Then an easy computation shows 

that 

In the remainder of this proof, the congruences will be modulo l. 

Clearly, T ¢- 0 for any T E { ~' ~' ~ }. If 1- T _ 0 (mod l) for any two T E 

{~, ~'~},then we get x = y = z (mod 1). Then x 1 + y1 + z 1 = 0 gives 3x = 3y = 
3z (mod 1), which is impossible since 1 is irregular (and so l > 3), and also by 

assumption l f xyz. Suppose 6 has a square root in Z/1Z, and 1- lOT+ T 2 = 0 

for exactly two T E { ~' ;, ~}, and T = 1 for the remaining element. Let u 1 , u 2 E 

(Z/ZZ)* be the two roots of l-10T+T2
• By symmetry, we may assume x = y and 

y- UkZ where k E {1, 2}. Then we get, using x + y + z _ 0, z(l + 2uk) = 0. This 

implies 2uk = -1. Using the fact that Uk satisfies 1- lOT+ T 2 = 0, we get 115, 

which is impossible. Hence we should have l-10T+T2 _ 0 for all T E {~, ~' ~}. 

Then there are at least two elements in { ~';,~}which are both equal to the same 

Uk. We may assume x = u1y,y = u1z. Then we have x + y + z- 0 ==? ui + 2 = 
0 ==?lOut = -1 ==? 11102 = 3.17.2, which is impossible. Q£V. 

Proof of (1) 
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If c:-5 =f 0, then (1) follows trivially from (2). So we can assume c?-5
) = 0. 

We assumed in the beginning that c?) is cyclic. Now we have satisfied for c?) 

all the conditions that were required for c?) while proving Theorem 4.1. Note 

that Theorem A of chapter 3 can be easily extended to Et-5· Following exactly 

the same arguments as in the proof of Theorem 4.1, we arrive at ~(5)(X + (Y) = 

~(5)(Y + (Z) = ~(5)(X + (Y) = 0 (mod 1), where X = x 1
n-l, Y = y 1

n-l, Z = 

z 1
n-l. Applying Lemma 5.3 to X, Y, Z, we arrive at a contradiction. 
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CHAPTER 6 

APPLICATION TO THE SECOND CASE 

In this chapter we prove a result in the second case of Fermat's last theorem 

using the methods discussed in the previous chapters. This result may be known 

using other methods, but our proof explains the interesting role played by the 

structure of the ideal class group of the cyclotomic field extension. 

Recall that h+ is of the class number of the maximal real subfield of Q((). 

Theorem 6.1. If l does not divide h +, and the equation x 1 + y1 = z1 has non-zero 

integral solutions (x,y,z) with ljxyz , then (x + (y) = I 1, where I is a principal 

ideal. 

Proof. 

Assume equation x 1+y1 = z 1 has non-zero integral solutions (x, y, z), with ljxyz. 

We may assume that x, y, z are pairwise relatively prime. Sol divides exactly one 

of these. Renaming the variables, we may assume that ljx . Changing z to -z, 

equation (2.1) can be written as 

l-1 

ITCx + (y) = zl. 

i=O 

We have from Lemma 2.1a (2), 

(x + (y) = I 1
• 

(6.1) 

(6.1a) 

If I is principal, we are done. Therefore, assume that I is nonprincipal. Thus 

[I] has order precisely l in the ideal class group C. Let B ill Bi2 , ••••• Bi,, with 
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{ i 1 , ... ,is} C {2, 4, ... , Z-1}, be the Bernoulli numbers divisible by l. By Her brand's 

theorem (see chapter 2), and the assumption that l { h+, we have C, = c?> EB 

c?> EB ..... C}1
-

2
), the c}i) being the eigenspaces under the action of the Teichmiiller 

Character (as defined in chapter 2). When l f h+, we have [Wa], p. 197, Cor. 10.15] 

( i) C1 ~ Z,jB1 ,w-i z,, fori= 3, 5, .. , l- 2. (6.2a) 

Thus C}i) is cyclic fori= 3, 5, ... , l- 2 .. 

Note: Even when llh+ , a theorem of Mazur and Wiles ([MW]; See also [Wa] , p. 

198, Remark) says that the order of cji> is the l-part of B 1 ,w-i. But we will not 

need this result here. 

For i = 3, 5, .. , l - 2, let Xi be an ideal class which generates cfi>. By the 

Tchebotarev density theorem, we may (and we will) choose a prime ideal Qi of 

degree 1, which is different from (.X), such that xi is the class [Q;]. 

As already mentioned, (I] has order exactly l in C, and thus [I] E C,. Let 

:T ~ {3, 5, ... , l- 2} be the set of indices j such that (I] has non-trivial component 

in c}i). Let m = I.JI. Note that m 2:: 1 because I is not principal. We get: 

[I]= II (Q?l (6.2) 
jE.7 

where the kj,j E .J, are non-negative integers. Then we can write 

I= II Q;j (~) 
jE.7 

(6.3) 

where/, 8 are nonzero elements of A. As before, /, 8, can be chosen so that (.X) { 

(!),(.X) {(8). 
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k · l 
Lemma 6.2. There exist a 1 , ... ,an E A- (.A) such that Q/ = (aj) , V j E :1, 

and 

(x + (y)S1 = 7J<l'l· ··<l'm'"/ , with 7J E A* and 1,6 E A- (.A). (6.4) 

Proof. 

Since 11 = (x + (y), we get (x + (y)(S)1 = IJ Q~i 1(1) 1 • 
jE.7 

This gives the following relation in cl, written additively: I)Q~i 1] = 0. Since cl 
jE.7 

is a direct sum of the cfi), and since [ Q~i 1] E cfi), this implies that each [ Q~i 1] 

must be trivial in C1. So we can write, V j E :1, Q~i 1 
= (aj), for some <l'j E A-(.A). 

Hence the lemma. QED. 

k· 
Remark: For every j E :1, [Q/] has order exactly 1 in C1. 

Since in equation (6.4) , ' ' 8, a 1 , ... ,am were chosen such that they were not 

divisible by .A, the logarithmic derivative operator ~ (k) is defined for all of them, 

for any k = 1, ... , 1- 2. Apply ~(k) to both sides of equation(6.4). By Prop. 

1.4a, we know that ~(k) vanishes on the 1-th powers of elements in A- (1- (). 

Thus ~(k)(r1 ) = ~(k)(81)- 0 (mod 1). By Prop. 1.5, ~(k)(7J) = 0 (mod 1), Vk E 

{3, 5, ... , 1- 2}. Using Lemma 1.1, we get the following for any odd k, 1 < k < 1, 

by the additivity of the logarithmic derivative: 

(6.5) 

Henceforth, for the sake of clarity, let i 0 be a fixed element of :f. All the results 

below that involve io will hold for any element of .J. Applying Prop. 2.2 to 
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equation (6.5), we get 

Proposition 6.3. Let i 0 be as above. Then ~(io)(o:;0 ) ~ 0 (mod l). 

Note that for theorem B, we only need to assume that C}i) is cyclic, where 

i E {3, 5, .. , 1- 2}. Let P be a prime ideal of degree 1 whose ideal class generates 

cji) . Let h; = v,(ICfi)l), and set P 1
h; = (v). Let c = (1-1- i)zh; + 1, and 

set { E'p;} = C, withe E (Z/lZ). Then we have 

= ±rl-i -1 Be A(i)( ) 
e- 2 [h; L...l. v (mod l) . (6.6) 

From equation (6.2a) above we have, V i E {3, 5, ... , l - 2}, 

v,(Bl,w-i ). For such i, let hi = v,(I(C}i))l). Then v,(Bl ,w-i) = hi. Setting n = hi 

in Prop. 2.4, we get v,(Bch . ) = hi . Dropping the subscript hi from ch; as we did . 
in Theorem B (chapter 3), we get l f ~-

Note: Even when llh+, we can get the result above by using a theorem of Mazur-

Wiles (MW], which says that v,(B1 ,w-i) = hi, for every i E {3, 5, ... , l- 2}. 

Proof of Prop. 6.3: As already shown by equation(6.2), when l f h+, cfi) is 

cyclic. So Theorem Vis valid, with i = i 0 , P = Qi0 , and (e = { E~~:o}. Since r 

is a primitive root modulo l , we get from Theorem V using the fact that l f ~~-c 
•o 

(proved above), 

~(io)(v) = 0 ¢:} e _ 0 (mod l). (6.7) 

By the remark following Lemma 6.2, [Q7~o] has order exactly l in C,. So we 

must have kio l = tzh;o, with t prime to l, and ( O:i0 ) = Q~~o 1 = ( v )t. Then, by using 
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Prop 1.5 and Lemma 1.1, we have 

(mod 1) (6.8) 

Thus 

Prop 6.3 is hence a consequence of the following: 

Proposition 6.4. Let e be defined, as above, by C = { E~~:o}. Then 1 f e. 

Proof of Prop. 6.4. Let Ht be the maximal abelian unramified [-extension of K. 

Then the Artin map gives the isomorphism C, .:::. Gal( Hz/ K) which sends the 

ideal class [P] of any prime ideal P inK to the Frobenius element ( H,p/K). 

Definition: A unit TJ E A* is called singular primary if: 

TJ = u 1 (mod ..\1) for some u E A . 

If, fori E {3, 5, ... , 1- 2}, cfi) is nontrivial, then by Herbrand's theorem, liBt-i· 

Thus by Lemma 4.2, K(EJ~~) is a nontrivial extension of K contained in H,. 

Moreover, by the corollary to lemma 4.2, { E~;} = 1 when M is a principal ideal 

which is prime to (.X). 

Now, assume lie, where e = { EQ~;o } . We will get a contradiction. Let [X] be 

any ideal class in C1• Represent it by a prime ideal J different from (.X). 

Claim: 
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Indeed, in C, we can write ( additively ), 

s 

(J] = L am(Qi"'], where a1, .. as E Z. 
m=l 

Hence we can write J = Qi
1

1 
•••• Qi,• (/3), where f3 E K*, and f3 can be written as 

the ratio of two algebraic integers which are prime to ( ..\ ). 

Consider { E'j'o } = { Q~: ~:.-;;;~: ([3)} . 
By Lemma 4.4, { ~~~o} = 1 if im =f:. io. By the assumption that lie , { EQ~;o} = 

1. Since (/3) is principal, { E(/3? } = 1. Thus by the multiplicativity of the power 

residue symbol, we get { E'j'o} = 1. Hence the claim. 

This claim implies that the Frobenius ( H,JI<) induces the trivial automorphism 

of K(EJ~~0 ) over K, for all J as above. This is impossible, since K(EJ~~0 ) is a 

nontrivial extension of K contained in H,, as noted in the beginning of this proof. 

Hence we get a contradiction. This proves Prop. 6.4 and Prop. 6.3. Q£1J. 

Note: Proposition 6.4 could also have been proven using the following: 

Fact: ([Wa], p. 166, exercise 8.9) Let g = Ga1(K(Ej(1
, •• • , E:j1

)/ K), where 

i1, ... ,is are the indices for which 1IBm, 2 ~ m ~ 1- 3. When 1 f h+ , we have 

g ~ c,;1c,. 

Proof of Main Theorem ( contd.) 

Claim. 

~ < i) ( x + ( y) = 0 (mod l) for i = 3, 5, ... , l - 2. 
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Indeed, form= 1, 3, .. , l- 4, 

Since llx, we get 6_(i)(x + (y) = 0 (mod l) fori= 3, 5, ... , l- 2. Done. 

By Proposition 6.2, we get 6_(io)(x + (y) _ 6_(io)(ai
0

) (mod l), which is = 0 

(mod l) by the claim. Now we get a contradiction in view of Proposition 6.3. 

QED. 
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Chapter 7 

APPLICATION TO AN EQUATION IN FOUR VARIABLES 

In this chapter we describe an application of Vandiver's methods described 

in the previous chapters to prove a result about a diophantine equa tion in four 

variables. This equation is a generalization of the equation (2.1). This result is 

only preliminary, and it is included here in the hope that further improvements of 

the techniques used above would strengthen it. 

In the three variable case, we have the "Fermat equation" (equation (2.1 )) which 

can be factorized as a product of linear terms. 

1-1 

XI+ yl =II ex + ( iy) = z l 
i=O 

We now consider the following equation in four variables: 

1-1 

rrcx + (iy + (2iz) =WI. 
i-0 

(7.1) 

Though this equation is in Z[x, y , z, w], there is no short and simple expression 

for this equation as in the three variable case. Furthermore, if equation (2.1) is 

satisfied, i .e, x 1 + y 1 = z 1, and l f x y z, then we know that the principal ideals 

(x + (i y) in (7.1) are rela tively prime to each other fori = 0, 1, .. , (l- 1) and to 

,\ = (1- (). But for the four variable case, there are no such simple conditions for 

the trinomials in (7.1) to be relatively prime to each other. For example, if l = 3, 

we needed l f w and (y3 - z3 , w) = 1 in order that the corresponding t rinomials 



55 

are relatively prime. 

So for the rest of this chapter, we will simply assume that the terms (x + (iy + 

( 2 i z) in equation (7.1) are relatively prime, for i = 0, 1, ... , (l - 1 ). 

Main result. 

Theorem 7.1. Assume h3 = v1(1C?)I) = 1. If the equation (7.1) has nontrivial 

integral solutions, then 

(1) Zlxyw, or 

(2) 1 f z, or 

(3) :3 an odd prime q such that qlw, but q f z, or 

( 4) x - y (mod l). 

Proof. 

For the proof we need the following easy extension of Prop. 3.1. The proof 

follows that of Vandiver ([V2], p . 217). 

Theorem 7.2. 

If x, y, z, w satisfy equation (7.1), then 

where w E A and g E Z . 

1-1 
-2-rr (x + (n' y + (2n' z) = (Ywl , 
n=l 

(7.2) 

Proof. Since we assumed that the factors (x + (iy + (2 iz) fori= 0, 1, 2, .. , (1- 1) 

are relatively prime, equation (7.1) gives 

_I x+y+z-c, with c E Z . 

I an integral ideal. 

(7.3) 

(7.4) 



For any ideal J of A, we have the following Stickelberger type relation: 

1-1 
-2-

II O'n'(J) = (a)1
, where a EA. 

n=O 

Applying this to equation (7.4), we get 

1-1 
-2-

II (x + (n' y + (2n' z) = 'Ia', 
n=O 

where T/ E A is a unit, and a E A. 

LetT/= T/((), and a= a((), where T/(x),a(x) E Z[x]. 

Applying u_1 to (7.5), we get 

1-1 
- 2-

II (x + (-n' y + (-2n' z) = 'l((-1)(a((-1))'. 
n=O 
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(7.5) 

(7.6) 

Multiplying (7.5) and (7.6), and using (7.1) and (7.2), we find that the ideal 

w 
(a(a((-1))) =(-).Hence a(a(( - 1) = E(wjc), where E E A is a unit. Taking 

c 

the product of (7.5) and (7.6) again, we find that 

(7.7) 

But we know, by a basic result, that 

(7.8) 

where c E A+ = Z[( + (-1 ] is a real unit and g E Z. From (7.5) and (7.8) we get 

c2 = E- 1• Since l is odd, we can find integers a, b such that 2a = 1 + bl, so that 

in (7.5), we get Theorem 7.2. 

Assume that none of the conditions of Theorem 7.1 are satisfied and that equa-

tion (7.1) h as solutions. We will get a contradiction. By the contrapositive of 
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condition (3), any prime number that divides w also divides z. Thus any prime 

ideal of A that divides ( x + ( y + (2 z) also divides ( z). Let P be such a prime ideal. 

We will prove that { E'pa} = 1, which will yield { E,1_
3

} = 1 by multiplicativity, 

where I is as in equation (7.4). The proof is almost identical to that of Theorem 

A in chapter 3: 

Recall the following claim that was proven in Chapter 3, Section 1: 

Either kn' ¢. 1 (mod 1), for all n, 1 :::; n :::; 121 (Or) -kn' ¢. 1 (mod 1), for all 

n, 1 ::=; n ::=; 121. 

By this claim, we have, if Pj(x + (y + (2 z), then P f (x + (±kn' + ((±k)2n'z) 

Vn E {1, 2, .. , 121 
}. 

So from (7.2), using the fact that Pj(z), we get 
1-1 g {X + ~kn' y} = { (~9 } . (7.9) 

But this is just equation (3.9). The rest of the proof for showing { Et;;a } = 1 is 

exactly the same as in chapter 3. Now from equation (7.4), we have that I 1 is 

principal, which means that [I] E Ct. If I were principal, we get from equation 

(7.4) that x + (y + (2 z = rJCi, where fJ is a unit in A and a is a nonzero element 

in A. Taking logarithmic derivatives, we get ~(3)(x + (y + (2z)- 0 (mod!). 

Claim. ~(3) ( x + (y + (2 z) = 0 (mod l) is impossible, if all the conditions (1) to 

( 4) of equation (7.1) are not satisfied. 

Proof. 

Since, by the contrapositive of condition (2), we have z - 0 (mod l), we get 

~(3)(x + (y + (2 z) = ~(3)(x + (y) _ 0 (mod l):::? xy(x- y) = 0 (mod l). By the 
x+y 
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contrapositive of condition (1) we get l f x,y, and w. Now reducing equation (7.1) 

modulo l we get x+y+z = x+y = w (mod l). Thus xy£~~y) = 0 (mod l) => x _ y 

(mod l) which would imply that condition ( 4) is satisfied, a contradiction. 

Thus we may assume I is not principal. We have { E,1_
8

} = 1. But now we 

are in the same situation as in equation ( 4.4), chapter 4. Proceeding as in that 

chapter, with n = 1, we get ~(3)(x+(y+(2z) _ 0 (mod l), which contradicts the 

claim that was just proved. 



59 

APPENDIX 

Proof of Lemma 1.2. 

The following proof is essentially the same as in [V4, pp.401-408]. It is included 

here for completeness. 

Let k be an integer such that 1 < k < l- 1, and F, G E Z[x] such that 

(1) F(() = G((). 

(2) F(1) = G(1) (mod zi+1 ). 

(3) G(1) "¢. 0 (mod l). 

Then we have to show: 

Proof 

Recall <P(x) = 1 + x + x2 + ... + x1
-

1
. 

for some V E Z[x] , m E Z. By condition (2), we get m - c1 Zi, with c1 E Z . 

Therefore, to prove the lemma, it is enough to show that 

V c1li ( 1v )W n.( v)z Let W = --, Z = --, x = e - 1 , y = x + "±" e . 
G(ev ) G(ev) 

We have to show: 



Lemma Al. 

Proof. First we show ~(kti)(1 + y)- ~(kti)(l + x) (mod zi+1 ). 

DefineD= ~ and nr(f(v)) = ~: (f(v))lv=O. Then 

n<kli)(log(1 + y)) = D(kti-1)( Dy ). 
(1 + y) 

Expanding by Leibnitz's rule and taking the value at v = 0, we get 

D(kti-1)( Dy ) = _1_D(kli) + (kli _ l)D (-1-)D(kli-1) + 
0 (1 ) 1 0 y 0 1 0 y ... +y +y +y 

(kli-1) 1 ....... + D 0 (--)Doy 
1+y 

From the above expansion, we see that 

because: 

(1) Doy = 0 (mod l). 
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(2) Let m =f 0. Note that if l-1 f k, then for any m 2:: 0, we have l-1 f kli- m 

or l - 1 f m, and hence: 

Hence 
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Now we only have to show that ~(kt')(1 + x) _ 0 (mod zi+1). 

Claim 

We have Do(x) = 0 (mod l), and D~m)((1 +X )1') - 0 (mod zi+l) if m ~ 1. 

Moreover, (1 + x )iv=O = 1. 

So we get 

Hence the Claim. 

Thus we need to show M = Dbkl'-l)(D(x)(l + x)1'-1 ) _ 0 (mod zi+1 ). 

Claim 

We have 

(kl') i (zi - 1) 2 1' -1 M = D0 (D(x) + (l - 1)xD(x) + 
2 

x D(x) + .......... + x D(x)) 

,. . 

= ~((~D~kt')(xn))(~ = ~)). 
Since n<m)(x) = 0 (mod l) Vm ~ 0 and (zi - 1

) = (-1)n-I (mod zi), we get 
n-1 

Hence the Claim. 



So we have to show that 
,. 

(-1)n-I L .!_(D~kl')(xn)) 0 (mod zi+I). 
n n=I 
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Let xn = ((e1v- 1)W)n = WI(e1v- 1) for some rational function WI. Lemma 

1.2 will be proved if we show: 

Lemma A2. 

Proof. We consider two cases. 

Case A n ¢. 0 (mod 1) . 

In this case we only need to show 

We have 

= (elv- 1)D(kl')(WI) + (kli)D(elv- 1)D(kl'-I)(WI) + ... 

..... + (Wt)D(kl')(e1v- 1) 

= (e1v -1)D(kl')(WI) + (kli)le1v D(kl'-I)(WI) + .. . 

(
kzi) zm lvD(kl'-m)(W) (W )D(kl')( lv 1) ..... + m e I + ...... + I e - . 

(
kzi) +I . We are done if we show that m zm - 0 (mod l' ) for 0 < m ~ kZZ. 

i.e., (kli)(kli- 1) ... (kli- m + 1) zm = 0 (mod zi+I ). 
m(m- 1) .. 3.2.1 

Since m 2:: 1, enough to show 
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(
(kli-1) ... (kli-m+1)) 

0 Prop A3. v1 2:: . 
(m- 1) .. 3.2.1 

. kli- m + j 
Indeed, for each 1 :=:; J :=:; m- 1, v1( . ) = 0. 

m-J 

Hence Prop A3 and Case A of the lemma. 

Case B n = zum, for some m prime to 1, and zum :S; 1ik. Let xn = W2 (e(lv) -1)1u, 

where w2 is some rational function . 

We can write 

In the general term of the above sum, neglect the parts which are prime to 1 

term in its Leibnitz expansion can be written as 

Claim 

We need to show 

(mod 1m 1 ). 

Hence the Claim. 



Using the above claim on eqn (Al), we get 

vl ([z: c;)n(k1 li 1 )((elv)lu-i)] (k~~: 1 )D(kli-k1 lit)(W2 )) 

;::: Vl ( (k~::t )n(kli-ktlil)(W2)) + kt[it 

Now, vl((k~~:J) = i- it+ vl((k~~:;-~t));::: i- it, using Prop A3. 

Thus 

From this Lemma A2 follows. Hence Lemma Aland Lemma 1.2 QED. 
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