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ABSTRACT 

The problem of the finite-amplitude folding of an 

isolated, linearly viscous layer under compression and 

imbedded in a medium of lower viscosity is treated theoretical-

ly by using a variational method to derive finite difference 

equations which are solved on a digital computer. The 

problem depends on a single physical parameter, the ratio 

of the fold wavelength, L, to the "dominant wavelength" of 

the infinitesimal-amplitude treatment, Ld. Therefore, the 

natural range of physical parameters is covered by the 

computation of three folds, with L/Ld = 0, l, and 4 . 6, up 

to a maximum dip of 90°. 

Significant differences in fold shape are found 

among the three folds; folds with higher L/Ld have sharper 

crests. Folds with L/Ld = 0 and L/Ld = 1 become fan folds 

at high amplitude. - A description of the shape in terms of 

a harmonic analysis of inclination as a function of arc 

length show~ this systematic variation with L/Ld and is 

relatively insensitive to the initial shape of the layer. 

This method of shape description is proposed as a convenient 

way of measuring the shape of natural folds. 

The infinitesimal-amplitude treatment does not 

predict fold-shape development satisfactorily beyond a 

limb-dip of 5°. A proposed extension of the treatment 

continues the wavelength-selection mechanism of the 

... .... ,. 
I ~~ 1 I~ ~' I • t 
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infinitesimal treatment up to a limb-dip of 15°; after 

this stage the wavelength-selection mechanism no longer 

operates and fold shape is mainly determined by L/LQ and 

l imb-dip. 

Strain-rates and finite strains in the medium are 

calculated f or all stages of the L/Ld = l and L/Lct = 4.6 

fo l ds . At l imb-dips greater t han 45° the planes of 

maximum flattening and maximum flattening ra t e show the 

characteristic orientation and fanning of axial-plane 

cleavage. 
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CHAPTER I 

INTRODUCTION 

1. Folding ~ ~ example of large geologic strain 

Folding of layered rocks is an attractive subject for 

the study of large geologic deformation because of its im­

portance in structural geology and because it is amenable to 

a systematic theoretical treatment. 

There are three main ways in which detailed infor­

mation about the mechanism of formation of folds might be 

used. (1) A knowledge of the way in which the boundary con­

ditions imposed on a folding region determine the nature of 

the folds produced can aid in the deduction of the external 

forces that have produced the folds. This use of folds to 

give information about a larger structural element is em­

ployed not only for minor folds on the outcrop scale, but 

also for major folds where it may help in the understanding 

of the structural history of a whole mountain range. (2) In­

formation about the folding process may be turned in the 

other direction: knowledge of the strain history of a 

small element of the fold provides a framework in which to 

study the mechanisms of deformation and to interpret petro­

fabric and finite-strain information. (3) Because of their 

prevalence, folds are ideally suited to test the applica­

bility of theories of deformation. 
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Folded rocks in nature show a number of regular 

features. It is common to find a bed or a group of beds 

deformed into a train of folds with a relatively constant 

wavelength and fold shape (1). A fairly elaborate geologic 

terminology has been developed to describe the shapes . of 

folds (2). The usefulness of this terminology rests on the 

fact that fold shapes do show certain regularit i es. Folds 

in a whole region will sometimes have relatively constant 

shape characteristics. In other regions there may be two 

generations of folding with systematic differences between 

the shapes of the folds of the two ages . Finally, many folds 

are relatively constant in shape along the di rection of the 

fold axis (3); this property suggests that many of the fea-

tures of the folding mechanism are appropriate to a two-

dimensional analysis. 

The present study considers folds in which the rela-

tive competencies of the beds have played an important role. 

Folds do exist where the ."beds" are mere colored markers 

which, though they exhibit the deformation, have had little 

or no influence on it. This type of folding does not often 

show the regularities disc~ssed above. 

(1) H. Ramberg, Strain distribution and geometry of 
folds: Bull. Geol. Inst. Uppsala, v. XLII, 1963, p. 1-20 

(2) E. S. Hills, Outlines of structural geology: 
London, Methuen and Co., Ltd., 3d ed. rev., 1953, p. 77-89 

(3) Ibid., p. 97 
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2. Theoretical studies 

Previous studies which attempt to analyze the geo-

metr~o properties or geolog~o structures in terms or the 

forces that produce them have used either a static or a 

steady-state approach. In the static approach the stress 

fields before the onset of deformation are used to predict 

the geometrical nature of the resulting de f ormation. In 

general, when the predicted deformation begins, it modifies 

the stress fields, so that the course of the deformation 

cannot be followed beyond the initial stage. In a steady-

state situation, the stress field remains constant through-

out the deformation, so that, when it is applicable, the 

steady-state approach is more satisfactory than the static 

approach. 

The static approach has been used to study both 

faulting and folding. Fault patterns due to either a uni­

fo rm stress field {4, 5), or the stress field set up in a 

rectangular region by specified boundary conditions (6, 1), 

have been analyzed on the basis of linear elastici ty and the 

{4) M. K. Hubbert, Mechanical basi s for certain fa­
miliar geologic structures: Geol. Soc. America Bull., v. 62, 
1951, p. 355-372 

(5) E. M. Anderson, The dynamics of faulting and dyke 
formation with applications to Britain: Edinburgh , Oliver 
and Boyd, Ltd., 2d ed. rev., 1951 

{6 ) W. Hafner, Stress distributions and faulting : 
Geol. Soc. America Bull., v. 62, 1951, p. 373-398 

(7) A. R. Sanford, Analytical and experimental study 
of simple geologic structures: Geol. Soc. America Bull., 
v. 10, 1959, p. 19-52 
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Mohr fracture criterion. Formation of a fault will alter 

the stress distribution in the region, so that these studies 

are limited to the consideration of incipient faulting. 

Anderson (8) attempts to extend the analysis by considering 

the stresses in a medium containing a crack, but. hi_s approach 

is essentially a static one, since the predicted s~bsidiary 

faults will alter the stress field in an unknown manner. 

Plasticity theory is not limited to the static approach, but 

published studies (9, 10) have not consideTed the changes 

in the geometry of the region which the predicted deformation 

would produce. Predicted patterns of dike intrusion (11, 12) 

are a more valid subject for the static approach, since the 

intrusion of a dike may not alter the orientation of the 

prevailing stress system as drastically as the formation of 

a fault. 

Studies of faulting may assume a single homogeneous 

medium, but consideration of two media of different material 

properties is essential to a study of the folding process. 

(8) Anderson, 2E· cit., p. 160-173 

(9) D. J. Varnes, Analysis of plastic deformation ac­
cording to von Mises• theory, with application to the South 
Silverton area, San Juan County, Colorado: U. S. Geol. 
Survey Professional Paper 378-B, 1962 

(10) H. Ode, Faulti ng as a velocity discontinuity in 
plastic deformati on : chap. 11 in Rock deformation {A sym- . 
posium), Qeol. Soc. Ameri ca Mem:-79, 1960, p. 293-321 

(ll) H. Ode, Mechanical analysis of the dike pattern 
of the Spanish Peaks area, Colorado: Geol. Soc. America 
Bull., v. 68, 1957, p. 567-576 

(12) Anderson , ~· cit . 
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The static approach has been applied to both infinitesimal 

and finite- amplitude folding. If the maximum dip of the 

folding layer is very small, certain mathematical simplifi­

cations can be made in the theoretical treatment . The anal-

ysis of folds of infinitesimal amplitude is not strictly a 

static analysis, since the treatment remains approximately 

valid for a limited range of fold amplitude. However, the 

limits of this range of validity are not determined precisely 

by the infinitesimal analysis itself. Previous studies of 

infinitesimal amplitude folding and their relation to the 

present study are discussed in Chapter II. 

The static approach has also been applied to folds of 

finite amplitude (13, 14). The validity of these studies 

is severely restricted by the need to assume the shape of 

the finite amplitude fold in advance. 

Finally, in certain important geologic situations, the 

stress field does not change with time. Flow of a glacier 

in a fixed channel has been studied with the steady-state 

approach (15). Certain aspects of salt dome formation are 

(13) J. Goguel, Introduction a l'etude mecanique des 
deformations de l'ecorce terreatre: Service Carte Geol. 
France Mem., 1948, 530 p. 

(14) S. Kienow, Grundzuge einer Theorie der Faltungs­
und Schieferungsvorgange: Berlin, Borntrager, · Fortschritte 
der Geologie und Paleontologie, bd. XIV, h. 46, 1942, 129 p. 

(15) J. F. Nye, The flow of glaciers and ice-sheets as 
a problem in plasticity: Proc. Roy. Soc., series A, v. 207, 
1951, p. 554-572; The mechanics of glacier flow: Jour. 
Glaciology, v. 2, no. 12, 1952, p. 82-93; The distribution 
of stress and velocity in glaciers and i9e-sheets: Proc. 
Roy. Soc., series A, v. 239, 1957, p. 113-133 
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also amenable to a steady-state treatment (16). 

Neither the static nor the steady-state approach is 

truly suitable for a study of the mechanical origin of finite 

amplitude folds: as folding progresses the stress field 

and the geo~etrical relations of the layers show significant 

changes. The method of the present study deals explicitly 

with this time dependence. Therefore the method is a more 

powerful tool for the study of geologic deformation than 

either the static or the steady-state approach. 

3. Objectives 

The present study has four main objectives: 

1) To define the limit of validity of the infinites­

imal treatment. It is clear that the geometrical assump­

t i ons of the infinitesimal treatment are only valid over a 

limited range of fold amplitude. The results of the present 

study define' a limiting maximum dip beyond which the infini­

tesimal treatment is no longer valid and indicate the factors 

that determine the further growth of the fold. 

2) To investigate the information content of fold 

shapes. A particular characteristic of the shape of a 

folded layer may be determined by the physical parameters of 

the fold system, may be caused by the particular combination 

of forces exerted on the boundaries of the system, or may 

be due to essentially chance variations in the original shape. 

The present study shows the range in variation of fold shape 

(16) Goguel, ££· cit., p. 359-372 
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which results from certain changes in the physical parameters 

of the system. A method of describing fold shapes is pre­

sented that exhibits these systematic changes and is rela­

tively insensitive to the initial shape. 

3) To test the physical assumptions of the infinites-

imal treatment. All natural folds that can be studied are 

of finite amplitude. By retaining the main physical assump­

tions of the infinitesimal treatment, while relaxing its 

inherent geometrical restrictions, it is possible to make 

detailed predictions about the properties of finite amplitude 

folds. These predictions can then be tested against the pro­

perties of naturally occurring folds. 

4) To provide a detailed picture of the course of 

growth of a fold. Even though derived under somewhat ideal-

ized assumptions, a complete picture of the course of growth 

of a fold will add to the understanding of the folding proc-
' 

ess. The instantaneous strain- rate field and the cumulative 

finite - strain field at successive stages of folding are de-

rived in this study. These should be valuable for compari-

son with various geologic indicators of stress orientation 

and finite strain, such as deformed oolites, rolled garnets, 

schistosity, grain elongations, and petrofabric orientation 

data. There are still a number of difficulties involved in 

the interpretation of some of these indicators, and know-

ledge of the strain and stress history of a particular 

region of a fold would be of great value in attacking some 

of these difficulties. 
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4. Description of the problem studied 

In order to achieve the objectives listed in Section 

3, a mathemat~oal analya~a of fin~te ampl~tude rold1ng muet 

satisfy several requirements: (1) The _treatment must be 

able to treat an arbitrary succession of fold shapes, and 

the a priori assumptions about the shape should be kept to 

a minimum. (2) Although the folds considered may be of an 

idealized type, it must be possible to find natural folds 

which approach this idealized type. (3) It is desirable to 

relate the finite-amplitude treatment to the infinitesimal­

amplitude theory. (4) Since satisfaction of these three 

requirements will certainly require a numerical treatment, 

it must be possible to reduce the variation of the physical 

parameters of the fold system_sufficiently so that this 

variation can be delineated with a reasonable number of com-

putational examples. 

The problem of an isolated, thin, linearly viscous 

layer imbedded in a medium of lower viscosity and thrown into 

a symmetric train of folds most nearly satisfies the a bove 

requirements and is chosen for investigation here. 

The single-layer problem is a natural extension of 

the most complete of the infinitesimal amplitude treatments 

(17). Although combinations of multiple layers have been 

(17) M. A. Biot, Theory of folding of stratified visco­
elastic media and its implications in tectonics and orogene­
sis: Geol. Soc. America Bull., v. 72, 1961, p. 1595-1620 
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studied by means of the infinitesimal treatment (18), the 

meaning of the results is not as clear as fon the single­

layer treatment (Chapter II, Section 3). Even though the 

single-layer case is less common in nature than the multiple-

layer case, it does occur sufficiently often to provide 

opportunities for _verification of the results of the theory. 

Newtonian viscosity is probably the simpl est reason-

able rheological law to use. Since a viscous material has 

no "memory" of its past strain history, it is relatively 

simple to follow the deformation up to large strains by 

computing a series of velocity distributions for the succes­

sive shapes. The significance of the assumption of linear 

viscosity is discussed in more detail in Chapter IV, Section 

5. The assumption of a symmetric train of folds is not 

crucial to the mathematical development, but it does permit 

a considerable reduction in the number of examples to be 

treated. 

It will be shown that if the problem is properly 

formulated the fold shape depends only on the ratio of the 

folding wavelength to the dominant wavelength. The domi­

nant wavelength (19) is the wavelength of t he fold which the 

infinitesimal treatment predi cts will grow the fastest (Chap­

ter II, Section 2 ) . Be cause of t his dependence on a single 

ratio, a set of three ca lcula ted examples can cover the 

(18) H. Ramberg , Fluia dyna~cs of viscous buckling 
applicable to fold~ng of laye~ed r ocks: Bull. Amer. Assoc. 
Petr. Geol., v. 47 , no 3, l9o3, p. 484-505 

(19) Biot, £E · ~ 
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range of physical parameters fairly completely. This simple 

categorization is one of the reasons that the particular 

mathematical formulation used in this study was used. Re­

laxation of some of the simplifying assumptions would des­

troy the dependence on a single physical parameter. 

The mathematical formulation of the problem and the 

probable effects of the simplifying assumptions made are 

discussed in Chapters III and IV. The following three chap­

ters (V, VI, and VII) deal primarily with the details of the 

numerical method. A reader who is more interested in the 

geologic aspects of the study can omit these three chapters, 

except for Section 2 of Chapter VII, where the Fourier­

analysis method of describing the shape of a folded layer 

is discussed. The infinitesimal theory and its relation to 

the present study are discussed in Chapter II. The results 

of the numerical computations are presented and interpreted 

in Chapter VIII, while their geologic significance is dis­

cussed in Chapter IX. 
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CHAPTER II 

INFINITESIMAL-AMPLITUDE TREATMENT 

The theory of infinitesimal-amplitude folding of 

layered media (1) provides the starting point for the pre-

sent study. Wavelengths of folds are determined in the 

early stages of t~e folding process, and the infinitesimal 

treatment deals mainly with the wavelength-selection mecha-

nism . 

The energy dissipated in the folding of a competent 

layer in a less competent medium by compression parallel to 

th~ layer can be separated into two portions: (1) the bend­

ing dissipation in the layer, and (2) the dissipation in the 

medium. For ~ fixed rate of shortening, the bending dissi-

pation in the layer increases as the wavelength of the folds 

becomes shorter, whereas the dissipation in the medium de-

creases, since the shorter wavelength folds disturb the 

medium over a smaller distance from the layer . There is 

thus a certain wavelength for which the total rate of dissi-

pation for a fixed rate of shortening is minimal. As shown 

by Biot (2), this wavelength is the one that tends to be 

realized when a nearly plane competent layer is thrown into 

(1) M. A. Biot, Theory of fol ding of stratified visco­
elastic media and its implications in tectonics and orogene­
sis: Geol. Soc. America Bull., v. 12, 1961, p. 1595-1620 

(2) Ibid. 
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folds by compression, and it is therefore called the dominant 

wavelength. 

1. Geometrical aooumpt1ons 

Certain geometrical assumptions are made in the infin-

itesimal treatment in order to simplify the mathematical 

analysis. These assumptions restrict the theory to folds 

with very low dips, making it essentially a static approach. 

They are: (1) The boundary betwP.en the layer and the medium 

can be considered as a plane when calculating the stress 

distribution in the medium. (2) The inclination of the layer, 

e, is small so that it can be assumed that: 

(3) The distinction between arc length along the layer and 

distance parallel to the axis of coordinates may be neg-

lected. In the finite-amplitude treatment none of these 

assumptions is made. 

2. Concept of the dominant wavelength 

Expressions for the dominant wavelength have been de-

rived by Biot (3) and Ramberg (4) fo~ viscous media, and by 

(3) Ibid. 

(4) H. Ramoerg, Relationships between length of arc 
and thic~ess of ptygmatically folded veins: Am. Jour. Sci., 
v. 258, 1960, p. 36-46 
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Kienow (5) and Currie et al. (6) for elastic media. The 

various analyses differ in the method of calculating the 

resistance of the surrounding medium. Blot uses the proper 

treatment and arrives at an expression discussed below. 

Ramberg makes an incorrect assumption about the way the 

velocity in the medium dies out as distance from the lay eY 

increases, and gets an expression which differs by a multi-

pl1cat1ve constant from Blot's. Using elasticity theory, 

Currie et al. arrive at an expression which is equivalent 

to Blot's when the appropriate elastic constants are re-

placed by the coefficients of viscosity. This equivalence 

between the elastic and the viscous theory is a general 

mathematical property, discussed in more detail below. 

Kienow uses elastic analysis, but assumes that the resist-

ance of the medium is independent of wavelength, so that he 

does not arrive at the same result as Currie et al. Goguel 

(7) analyzes the problem of folding in some detail and con-

s1ders plastic as well as viscous media, but he does not 

derive an explicit expression for the dominant wavelength. 

Biot's treat~ent (8) shows that small perturbations 

(5) S. Kienow, · Grundzuge einer Theor1e der Faltungs­
und Schieferungsvorgange: Berlin, Borntrager, Fortschritte 
der Geologie und Pal eontolog1e, bd. XIV, h. 46, 1942, 129 p. 

(6) J. B. Curr ie, H. W. Patnode, and R. P. Trump, 
Development of folds i n sedimentary strata: Geol. Soc. Amer­
ica Bull., v. 73, 1962, p. 655-674 

(7) J. Gogue l , I ntr oduction a l'etude mecanique des 
deformations de l' e corce t • rrestre: Service Carte Geol. 
France Mem., 1948, 53~ p . 

( 8) Biot, 2.i .. _ll . 
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in the initial shape of the competent layer are amplified at 

a rate which is a function of their wavelength and their 

initial amplitude. If the initial vertical displacement, 1_1 

is given by 

.2.1L X Y = Y• c.c-.s.. L ' 

the displacement at time t will be 

where P::!!... { L))(fJ ~~. F ) is a function of the wave-

length, the viscosities of plate and medium, and the longi­

tudinal force in the plate, ~· For a given viscosity 

ratio, there will be one wavelength for which the exponen-

tial growth factor P is the largest. It is the dominant 

wavelength 1 given by, 

J 

where ~ is the thickness of the competent layer. 

An expression analogous to .this can be developed for 

the elastic case, but the significance of the dominant wave-

length for the elastic case is different from that for the 

viscous case. The e l ast i c system has no memory of the shapes 

that it haa assume d . It will buckle at a wavelength deter­

mined by the phya t cal parameter• of the system and the con­

straints impoaed on l t, and its shape will contain no . 
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displacement components of other wavelengths. The viscous 

system, on the other hand, has a complete memory of its past 

shape history. The physical parameters and constraints on 

the system will determine the rate at which the various com­

ponents of the shape grow, but all wavelengths initially 

present will be amplified to a certain degree. Therefore, 

the mechanism of fold growth in the viscous system must be 

analyzed in some detail before it can be said that the dom­

inant wavelength will in fact predominate at finite ampli­

tudes. 

Biot (9) presents such an analysis. His principal 

conclusion ls that if the total amplification of the dominant 

wavelength is large (e.g., amplification by a factor of 

1000 or more), the resultant fold train will show a sharply 

defined wavelength with its value given by the dominant 

wavelength expression. This will occur whatever the distri­

bution of wavelengths in the initial shape perturbations 

may have been. This lack of dependence on the initial shape 

of the layer is an important consequence of the Biot theory; 

it can be used to explain the observation that trains of 

folds with a relatively constant wavelength are quite common 

in nature. 

(9) Ibid. 
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3. Multiple l~yers 

Ramberg (10) develops expressions for the dominant 

wavelength for various combinations of multiple layers , but 

there is some doubt as to the meaning of the dominant wave-

length concept as applied to multiple layers. In particular, 

Ramberg tacit·ly assumes that the initial shape perturbations 

are identical in each of the multiple layers. If this as-

sumption were relaxed it would be necessary to treat the 

problem of the nature of the interactions between the differ-

ent layers. Some progress with this problem has been made 

experimentally by Currie et al. (11), but the problem is 

far from being solved. An analogous difficulty arises in 

the finite-amplitude problem, where it would be ~ecessary 

to make assumptions about the way the fold shape changes 

with distance up and down from the central layer of the 

multiple-layer packet. 

4. Limitations of the infinitesimal theory 

One consequence of the linear viscous analysis is 

that large amplification factors will occur for any viscos­

ity ratio and any initial shape if the "time 11 of folding is 

large enough. The time of folding is determined only for a 

specified force on the layer, and time is used in this section 

(10) H. Rambe r g, Fl uid dynami cs of viscous buckling 
applicable to folding of layered rocks: Bull. Amer. Assoc. 
Pet~. Geol., v. 47, no . 3, 1963 , p . 484-505 

( 11 ) Currie .!.! !! . , ~ c! t . 
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with this qualification. Blot (12) places a limit on the 

time of folding by assuming that if the unif~ comprcaa1on 

of the layer--whicn w1t l of course continue during the 
~ 

folding process--produces a s~ortening of 25~, the folding 

phenomenon will be masked by the shortening. However, this 

criterion is both physically and geologically unrealistic. 

When the fold deviates little from a plane, the thickening 

associate~ with the shortening will be uniform along the 

length of the layer. Physically, such a uniform shortening 

has no effect on the problem except to make all wavelengths 

shorter. Geologically, such shortening can be recognized 

only by using indicators of geologic strain such as deformed 

oolites or fossils ~n the layer. Geologic use of such in-

dicators has not been frequent enough to rule out large 

uniform shortening in folded beds. 

It seems more realistic to place the limit of the 

time of folding at the fold amplitude where the wavelength-

selection mechanism breaks down. This occurs when the 

maximum dip of the limb is between 10° and 20° (Chapter VIII, 

Section 5). Even at a 10° limb-dip the selection mech-

anism is not that of the infinitesimal analysis. 

If the wavelength-selection process operates only at 

low amplitudes, then the principle factor which determines 

whether a fold train of the dominant wavelength will develop 

is the amplitude of the initial shape perturbations. When 

these perturbations are small enough, the dominant wavelength 

(12) Blot, ~· cit. 
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will have time enough to assert itself before the finite­

amplitude stage is reached; if they are not sufficiently 

amall, the resultina fold train will not exhibit the domi­

nant wavelength--and will not have a regular wavelength at 

all, unless the initial shape perturbation does. 

Uniform compression parallel to the layer may disturb 

the wavelength-selection process by shortening all wave-

lengths. It seems possible that uniform compression could 

operate in such a _way as to produce a train of folds with 

a regular wavelength significantly shorter than the. dominant 

wavelength. 

Even if a train of folds develops at the dominant 

wavelength, it is possible that the viscosity ratio will 

change during the folding process. As lithification of the 

rocks proceeds, it is likely that different mechanisms of 

deformation come into play. Investigations of the effect of 

temperature on the rheological properties of rocks {13, 14, 

15) have shown that, by the time the temperature has reached 

values consistent with the greenschist facies of metamor-

phism, significant changes have taken place in the 

(13) H. C. Heard, Effect of large changes in strain 
rate in the experimental deformation of Yule marble: Jour. 
Geology, v. 71, no. 2, 1963, p. 162-195 

(14) D. T. Griggs, Experimental flow of rocks under 
conditions favoring recrystall i zation: Geol. Soc. America 
Bull., v. 51 , 1940 , p. 1001-1022 

(15 ) D . T . Griggs, F0 J Turser, and H. c. Heard, 
Deformation of r ocka at 500 t o 800 C. , chap. 4 in Rock 
deformation (A aymp .alum ), Oe ol. Soc . America Mem:-79, 1960, 
p. 39-104 
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deformational behavior of rocks. It is likely that a given 

temperature change will effect rocks of different composition 

in Qifferent waya so that the viscosity ratio mat show sig­

nificant changes with time. 

The results of the present study show (Chapter VIII, 

Section 3) that the shape of finite-amplitude folds varies 

significantly with variation in the ratio of the fold wave­

length to the dominant wavelength . This variation provides 

an independent measure of the viscosity ratio. 
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CHAPTER III 

MATHEMATICAL FORMULATION OF THE PROBLEM 

1. Choice of region; boundary conditions 

The first step in the mathematical formulation of the 

finite-amplitude development of ~ fold in a viscous medium 

is to isolate the region under consideration. Although the 

method used in this study could be applied to any limited 

region with an arbitrary distribution of stresses or veloc­

ities imposed on its boundary, in most geologic situations 

these external constraints are unknown. Therefore, rather 

than starting with as&umptions about the boundary conditions, 

we shall make assumptions about the geometrical properties 

of the folding system during its development. Natural exam­

ples can be found in which these geometrical conditions 

are fulfilled to a fair degree of approx~mation; the extent 

to which they are fulfilled by the final shape as we observe 

it in the field can be clearly determined in any given 

example. 

Consider an isolated competent layer imbedded in a 

homogeneous medium of lower competency. This layer is assumed 

to be folded into a rather l ong tra in of waves; individual 

folds should have the same wave l ength and amplitude, and 

the axial plane of eac ~ a~c ~e s i e anticline and syncline 

should be a pla .e of · t r 1 f or \.ne folded shape. By 
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"isolated" is meant, in practice, that the homogeneous 

medium extends a few wavelengths above and below the layer. 

Consider a fold near the center of the train; it is reason­

able to assume that the etresses exerted on this portion of 

the body will be substantially those which would be exerted 

if the wave train were very long. We shall make the further 

assumption that velocities do not vary with distance along 

the axis of the folds; this is the assumption of plane 

strain (1). 

If we assume that the above geometrical properties 

hold throughout the deformation, we can isolate a portion of 

the layer+medium system and state the boundary conditions 

which must be imposed on it . Since each axial plane is a 

plane of symmetry, the shear stress across it must be zero. 

In addition, since it is assumed that the folds grow with 

time, two adjacent axial planes must approach each other 

with a given horizontal velocity Ua. ( ~ 8 may vary with 

time, but not with~). At large distances above and below 
. 

the layer we again as~ume that there are horizontal planes 

of zero shear stress which are moving away from each other 

at a velocity y8 such that the total volume of our rec-

tangular region remains constant. These boundary conditions, 

coupled with the assumption of Newtonian viscosity, provide 

a completely defined mathematical problem. 

An additional consequence of our geometrical 

(1) I. S. Sokolnikoff, Mathematical theory of elas­
ticity: New York, McGraw-Hill Book Co., Inc., 1956, p. 250 
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assumptions is that there will be a center of symmetry at 

the inflection point on the limb of the fold. 

The problem as thus defined is pictured in figure 1. 

2. Equations of Motion . 

The equations which govern the two-dimensional 

motion of a slow-moving, linearly viscous fluid are the 

equations of stress equilibrium: 

(la) 

the stress-strain- rate relations: 

(lb) 

the condition of incompressibility: 

0 j (lc) 

and the compatibility condition: 

(ld) 

is the pressure and p =-~(.-l.,+-'1;.1.1-~3) 

is the Kronecker delta. Relation ld insures that the strain 

rates are derivable from a velocity field; if the problem is 

rephrased in terms of the ve l ocities alone, relation ld is 

automatically satisfiea. 
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3. Variational Method 

These equations are mathematical'ly identical to those 

governing the static elastic deformation of an incompress-

ible elastic body, if we replace strain-rates by strains and 

velocities by displacements (2). Therefore, there is a com­

plete analogy between elastic and slow-viscous theory; any 

results of elasticity theory carry over into viscous defor­

mation theory. In particular, the equivalence between 

elastic variational methods using the strain energy density 

and elastic methods using the static equilibrium equations 

implies a similar equivalence between variat.ional methods 

using the viscous dissipation rate and methods using the 

viscous equations of motion. The variational method is 

particularly convenient in setting up the discrete ana-

logue of the continuous problem defined in this chapter 

and will therefore be used in this study. 

It is convenient to formulate the problem in terms 

of velocities rather than stresses, since it is the 

changes in the shape of the plate that are of most direct 

interest. The variational principle that applies in this 

case is known in elasticity theory as the Theorem of Mini­

mum Potential Energy. The theorem can be stated thus: 11 0f 

all displacements satisfying the given boundary conditions 

those which satisfy the equilibrium equations make the poten­

tial energy an absolute minimum." This theorem and its 

(2) J. W. S. Rayleigh, The theory of sound: New York, 
Dover Publications, Inc., v. II, 1945, p. 313 
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converse are proved oy Sokclni~off (3) . The poten~~al er. c ~ -

gy of the theorerr. ~s d~fi~ed as the str~~r. ene~~Y cf the 

booy minus the war~ done or. the joey by the s~rc3sc s c~ 

~hose portior.s of the bour.da~y where stresses ~r~ c~ven, 

and minus the war~ dor.e by t~e body forces . In au.~ pro :::: ::.c;;: 

th~ given stresses are zero shear stress on the cuter oo~nd-

aries of ~~e re~ion, so ~ha~ the work done by the ~~ver. 

st~es3e~ is au~oma~ically zero . S~nce nornal veloc~~~es 

are specified on ti:e boundary, we shall consider only ·1eloc -

ity distr~butions which have these boundary velocities in 

seekinJ tne m1n1~um dissipat~on. 

In the particular proolem ~~der consideration, the 

pr~mary advantage of the var1£~ional method ~s the relative 

freedon of c . . ..;ice t:.a t 1 t permi ~s in the cho~ce of a r:-.:1 t ne -

~atical representation of the velocity distrib~t~on . :n 

particular, ·the preble~ re6ion ~ay be divi~ed into s~aller 

sub- regions and a d~fferent representation of ti:e velocity 

distribution used in c:o.cn suo - re.;::..on . 'tie ':i .C. y ~lso ~se 

different rr.ethods o~ ca::.cu::.atin~ t~e ciss~patior. in accord -

r e.;ion . 

( -\ 5 k ~ . . ..-~ j, o o_r.L,coJ..l , £2· c~t., p. 3o2- 3c6 
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considered in seeking the minimum dissi~ation. 

4. Shape and di s sipation of the layer 

Let ~e now consider the specific representation of the 

velocity distribution and the calculation of the dissipa­

tion from this representation. Consider first the plate 

itself. If the plate is sufficiently thin, it can be 

assumed that : (1) the central plane of the plate undergoes 

neither extension nor compression; (2) originally plane 

cross sections normal to the central plane of the plate re­

main plane during deformation; (3) the variation of the 

bending strain across the plate is linear, with extension 

on the convex side and compression on the concave side of 

the plate; and (4) the velocity of points on the inner and 

outer sides of the plate situated on the same normal to the 

plate is identical. The validity of these assumptions is 

discussed in the next chapter. Since the length of the 

~late is fixed, its shape can be described by specifying 

its inclination e as a function of arc length ~J measured 

from the center of symmetry, and its velocity can be des-. 
cribed by specifying 8 as a function of S . In order to 

calculate the dissipation involved in the bending of the 

plate, we must first calculate the strain rate in the plate; 

to do this we refer to figure 2, page 23, where the original 

shape of a small element of the plate and its shape after a 

small increment of time Al is shown. The change in length 

per unit length of a longitudinal fiber in the plate at a 

di s tance '7 from the central fiber of the plate is then given 
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by : 

. e .at = 

If we neglect ~ in relation to the radius of curvature Y 

of the central fiber of the plate, as the assumption (3) of 

linear strain variation demands, the resulting strain rate 

is: 

e -

Because of the assumption of plane strain, the corresponding 

longitudinal stress is given by the stress-strain rate rela-

tions as: 

= ?.)-'-pe-P = 2. )Ape .,.£ z 

Integrating over the thic~ness of the plate and over the 

length of the plate, the bending dissipation oecomes : 

-R. .f 

_ \( 'lf'p ( ~ :rr"l 'd'f) Js = fP,~J r:{Jd, . 
-.1 -~ -J 

2. 

The horizontal and vertical velocity of a point ~ 

on the plate are found by using the relationships between arc 

length, inclination, and~ and~ of the plate: 
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dX 
ds = ~f) .) 

i:t. = ~ {;; d.J 

Differentiating these relations with respect to time, 

~ = d (d,;) = -e~e dS d"E d7 

dv d { dy ) - dt d5 d s 
== e ~e) 

and finally integrating with respect to 5 _, remembering that 

u. and v are zero at the inflection .point on the limb (s.::: o), 

we have: -r e ~e d.s ' 
0 

(2) 

v- f 8 c..c--4- e d.s 
0 

According to assumption 4 above, these velocity components 

must match the velocity components in the medium adjacent 

to the plate. 

5. Dissipation in the medium 

The velocity distribution in the surrounding medium 

is most conveniently described in terms of a stream function. 

This stream function is defined so that its derivatives are 

the horizontal and 
0 ¢ 

u- d y 

vertical velocities: 
~¢ 

.) V= -TX 
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A velocity distribution defined by such a stream function 

automatically satisfies the incompressibility relation, 

equation lc. It can be shown (4) that the equilibrium equa-

tions imply that the stream function is biharmonic: 

v" ¢ = o . 

Although this fact is not utilized directly in the present 

treatment of the problem, it does provide a verification of 

the difference equations derived in Chapter V. For handling 

the boundary conditions on the medium, it is convenient to 

separate the velocity distribution into two parts, that due 

to a uniform compression, and the remainder, which can be 

thought of as due to the folding. This separation is repre-

sented by: 

(3) 

where ¢'- = K x y gives the contribution due to uniform 

compresJion . 

The dissipation in the medium may be written in terms 

of this stream function as follows: 

(4) J. C. Jaeger, Elasticity, fracture and flow: 
London, Methuen and Co., Ltd . , 1956, p. 140 
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(4) 

Under the assumption of isolation, the medium ex­

t ends to ! 00 in the z-direction' but it is more convenient 

to deal with a finite rectangular region. Therefore, ~ 
I 

outside this region is represented as a sum of products of 

trigonometric functions and exponentials : 

'2. TT • 
.., - ('2 1.-1) - L-y 

cj> = K x y + L_ ( A -1. -r Bi y') e ~ 
').TT 

~ ( 2 i - 1) -e-X 
)I 

i=• 

. l.lT , 

' ) -Z"lTY . . 1n- X 
(c & t- D; y e x. ~ 2.' - LX 

, 

(5) 

~ 1s measured from the top of the rectangul ar region , and 
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the A, , 8,· , c .. , and D& are chosen to match rl> and - - -
drP at y 

, 
::. 0 Each term of the sum satisfies the dY 

boundary conditions on ¢1 at the right and left hand 

walls, and the exponential dependence on Y' gives ¢ = ~ :: 0 

at infinity. The dissipation for this region is calculated 

with the same expression used for the rectangu~ar region, 

equation 4. 

6. Statement of the mathematical problem 

When the dissipation expressions and the cons traints 

for the various sub-regions are collected, the mathematical 

problem of calculating the velocities of deformation of the 

folding region can be stated as follows. We denote the 

~-coordinate of the line on which the mesh point representa­

tion of ¢ passes into the trigonometric sum representation 

o: by 'it , the stream function in the rectangular region 
I 

by 4> , and the trigonometric stream function by <P ·The 

total dissipation rate, ~~ is: 

.r 

I = A • '.A! ~ ( ~ ~ r d' 
-.J' 

Y• bx 

+ )<.., ~ r [ i ( ~~•'- -P,,..l'-+1( ~ .. (K) >] dx dy 

~y, -~x 

+ P.trt 

J.J< 

f r [ u ~ ... -<P,..J' t- H P .... K) ·] dxdy 

Y~ - tx 
~ y, -l" l J [ !,( ,P,,.- <P,.J .,. 2.{ ~" t- k)'] dx Jy 

-CP - !:= 'JC 
'I 

(6) 
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We seek the velocity distribution which (1) satisfies the 

internal matching conditions: 

.J 

~~ - -re~ed.s 
0 

at all points s on the plate and: 

on the horizontal lines y = ! Yt 
- - ; (2) satisfies the veloc-

i ty constraints on the external boundari·es: 
\ 

and ( 3) makes I a minimum. (The center of symmetry has been 

ignored in this formulation of the problem; when the discrete 

analogue of the problem is formulated, the center of sym-

metry will be taken into account in order to reduce the num­

ber of algebraic equations to be solved.) 

At the start of the folding, the shape of the layer 

is taken to be that of a sine wave of low amplitude. The 

consequences of this assumption are best considered in the 

light of the computational results of this study; therefore, 
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they will be discussed in Chapter VIII, Section 5. 

7. Parametrization of the problem 

Ae thue rormulated, the proble~ 6epcn6a on a a1ngle 

physical parameter. To show this we first write the dissi-

pation rate as a sum of two terms, dissipation in the medium 

and bending dissipation in the plate: 

.5' 

}.J.p Jt' r (d8)ds 
' J ds _ 

-s 
I 

The spatial variation of the velocity distribution depends 

on the relative magnitude of these two terms. Any change in 

the system which multiplies both terms by a constant, such 

as a change in the boundary velocities, will change the dissi-

pation of all the possible velocity distributions considered 

in seeking the minimum by the same factor. Therefore, we 

need consider only those changes in the phrsical parameters 

of the system which change the ratio: 

It is seen from this expression that if we keep the shape of 
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the plate constant and change either the time scale or the 

distance scale, the spatial variation of the velocity dis-

tribut1on remains unchanged. Since the absolute values of 

the stresses are not specified in the problem, a change in 

the magnitudes of the viscosities which leaves ~~~ 

unchanged will not alter the problem. Also, any change in 

the viscos1ty ratio and the thickness of the plate which 

leaves .!... C ..Pv3 

b p. .... constant does not change the problem. 

Apart from a factor of 2 1T this quantity is just the cube 

of the dominant wavelength (5): 

Therefore, under the assumptions of the problem as formulated, 

the velocity distributions and fold shapes that result from 

a given initial shape depend on a single physical parameter, 

the ratio of the fold wavelength to the dominant wavelength, 

L/L4 

It should be noted that this "one-parameter" nature 

of the problem is a result of the assumption that the plate 

is . thin and inextensible. If a more accurate bending-

dissipation expression were used, so that changes in the 

length of the plate were taken into consideration, the total 

dissipation would include terms multiplied by other powers 

of the thickness, and the plate thickness and the viscosity 

(5) M. A. Blot, Theory of folding of stratified visco­
elastic media and its implications in tectonics and orogene­
s~s: Geol. Soc. America Bull., v. 72, 1961, p. 1595-1620 
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ratio would be independent parameters. 

The growth of a finite-amplitude fold was computed for 

three values of L/L 4 ( 1) L << L" , (2) L = L., , and 

(3) L· 4.6 LJ In case 1, the free plate, the dissi-

pation in the medium is negligible compared to the bending 

dissipation of the plate. Case 2, the dominant-wavelength 

fold, corresponds to an approximate balance between the 

dissipation in the medium and the plate. In case 3, the 

weak-plate fold, the dissipation in the medium is large 

compared to that of the plate. 

8. The free plate 

One end member of this single-parameter sequence de-

serves special consideration, since its shape as a function 

of time is obtained in a simple fashion. When the viscosity 

ratio is very large, or alternatively, when the wavelength 

is much shorter than the dominant wavelength, the dissipation 

in the medium is negligible in comparison to the bending 

dissipation of the plate. This is the case of the free 

plate. Its dissipation is: 

I -= j.,( ~ ....IL' 

' 
with the constraints: 

a.t 

{) = 0 s!: s 



36 

Rather than constrain the horizontal velocity at s ~ S J 

it is simpler for the free plate to specify the force acting 

on this end of the plate. This introduces a new term in the 

dissipation expression which takes into account the rate of 

work done by this external force; the dissipation expression 

then becomes: 

I ~ p (e~ads. 
0 0 

Using the standard methods of the calculus of variations, 

the first variation of this expression is: 
.f 

6 I =- - p J 6 t) ~ e ds 

0 0 

Integrating the first integral by parts, we have: 

&I 
0 

Now, the integrated parts from the integration by parts 

vanish due to the boundary conditions and, since o8 is 

arbitrary except at the ends, the vanishing of the first 

variation implies that: 
1 d.,_ G 

.,Mp4 

3 d 5.,_ + p~ () 0 

Except for the presence of the time derivative of 8 , this 
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equation is identical to the Euler elastica equation (6); 

the equation could, of course, have been derived merely by 

use of the analogy between elastic and viscous problems. 

It was not found possible to solve this equation in 

closed form, but the numerical solution is a very simple one. 

At any given stag~ of the deformation e is known as a 

function of ....::_, and therefore ~ {) can be calculated at 

a series of equally spaced~ values. Two numerical inte-

grations of this set of ~ B).· 
. 

give the values of e i 

corresponding to thia shape. The new shape after a short 

interva.l of time, • ~ , is given by: 

The process is then repeated until the fold is of sufficient-

ly large amplitude. 

(6) J. Prescott, Applied elastic.ity: New York, Dover 
Publication, Inc., 1961, p. 100 



CHAPTER IV 

ASSUMPTIONS AND LIMITATIONS OF THE MATHEMATICAL 

FORMULATION OF THE PROBLEM 

In the previous chapter a number of idealizing assump­

tions were made in order to formulate a well-defined and 

mathematically tractable problem; in this chapter we shall 

examine the more important ones and the restrictions which 

they place on the interpretation of the results of the study. 

These assumptions can be placed in three general categories: 

· (1) the geometrical assumptions made in defining the specif­

ic problems to be solved, (2) the mathematical simplifica­

tions needed to reduce the analytical difficulty of the 

problem, and (3) the assumption of linear viscosity as a 

rheological law. 

1. Geometrical assumptions 

The geometrical assumptions about the periodicity and 

the symmetry of the folds are not strictly necessary from a 

mathematical standpoint. If they were relaxed, only minor 

changes would be necessary in the discrete formulation of 

the problem. For example, treatment of a series of ~sym­

metric, but still periodic folds would require no major 

revision of the mathematical treatment or the computational 

method. However, at the present stage of knowledge of the 

foldi ng process it is logical to start with the simplest 
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geometry that adequately represents a class of natural folds 

and to study the evolution and the variations in shape in 

this idealized case. 

2. Plane strain 

The assumption of two-dimensional deformation is es­

sential to the present formulation of the problem, but this 

assumption is a common one in most geologic thinking about 

the folding process. It is clearly justified in a large 

number of geologic situations. Extension or compression 

parallel to fold axes which did not alter the cylindrical 

shape of the fold would not change any of the conclusions of 

this study. However, fold culminations and folds with 

curved axes fall outside the scope of the treatment. 

3. Thin-plate assumption 

The assumption that the competent layer can be treat­

ed as a thin plate requires more detailed justification. 

To be sure, a problem in which the ratio of initial wave­

length to dominant wavelength is fixed will correspond to 

as thin a plate as we care to choose if the viscosity ratio 

is made high enough. However, in a natural example the 

viscosity ratio is unknown, and the thickness of the plate 

is easily observed; therefore, we would like to have some 

objective measure of the errors involved in the assumption 

of a thin plate. There are three independent errors which 

are introduced by this assumption: (1) if the plate has 

finite thickness, the velocity of the boundary between medium 
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and plate is not exactly what we have assumed; (2) the 

assumption of linear strain distribution in the plate is 

only true for a very thin plate; and (3) the plate will be 

inextensible only if it is very thin and the viscosity ratio 

is very high. 

The effect of the assumption that we can treat the 

plate as a surface when matching the velocities of medium 

and plate is difficult to evaluate precisely. For plate 

thickness corresponding to a viscosity ratio of 500 to 1000 

at the dominant wavelength, the contribution to the velocity 

of a point on the surface of the plate due to the rotation 

of the plate will be as large as several per cent of the 

velocity of the center line of the plate. One way to visu­

alize this error is to consider a certain 11 overlap" area 

that would be part of the plate if it had finite thickness. 

In the thin-plate approximation this overlap area is treated 

as part of the medium. As a result, shear strain parallel 

to the layer is permitted, even though this shear strain 

would not be present in the thick plate. Therefore, the 

strain distribution in the medium will be incorrect ·in the 

overlap area and probably for a short distance further into 

the medium. It is probable that this error is important 

only near the plate and that the overall strain distribution 

in the medium and the shape of the layer are not appreciably 

affected. 

To consider the effects of the assumption of a linear 

strain distribution in the plate, we examine the next more 
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complicated approximation: that in which a linear strain 

distribution is not assumed but in which it is still assumed 

that transverse cross sections perpendicular to the center 

line remain plane and perpendicular during bending (1). In 

this case, the strain rate in the plate is given by the ex-

pression: 

. 
e =-

R(Y+-"'l) dB --, 
dJ 

where R is the local radius of curvature of the center line, 

~ is the distance from the center line of the plate, taken 

as positive on the convex side, and -~ is the z-coordinate 

of the neutral plane of the plate. ~ is determined by 

the condition of inextenaibility of the plate: 

and is given by 

~ - R-

. 
dB d 
cJ .I y 

_L 
/l 

- 0 

Values chosen from a tight fold in this study give: ~ : l, 

R = 10, and ~ = 0.0083. 

The bending dissipation in the plate is given by: 

(1) S. Timoshenko, Strength of materials, Pt. I, Ele­
mentary theory and problems: Toronto, D. Van Nostrand Co., 
Inc., 3d ed., 1955, p. 362 
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dy . 

. 
Substituting the expression for e derived above and per-

forming the integration: 

Thus, in the example cited above, the first correction to 

the dissipation would be zero on the 11mb and 0.4~ at the 

crest of the fold. 

4. Inextensibility 

The condition of inextensibility is probably the most 

serious aspect of the thin plate assumption. Most fairly 

tight natural folds show some thickening in the crestal 

region (2). 

A relative thickening of the crest of the competent 

layer has two main effects on the resulting shape: (1) The 

(2) J. G. Ramsay, The geometry and mechanics of forma­
tion of "similar" type folds: Jour. Geology, v. 10, no. 3, 
1962, p. 309-327 
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thickening will change the local bending resistance of the 

plate. This effect will tend to slow the growth of curva­

ture in the crest~l region and result in a more open fold. 

(2) The extra shortening in the crestal region will increase 

the curvature there, tending to produce a tighter fold. It 

seems likely that the first effect will be most important 

and that the folds resulting from the computations of this 

study will be tighter than those which would result from a 

more accurate analysis which did not assume inextensibility. 

These effects will be least important for the free plate and 

most important for a fold whose wavelength is much longer 

than the dominant wavelength. The reason for this is that 

the longitudinal stresses in the plate are increased by the 

presence of the medium. 

5. Linear viscosity 

The assumption of linear viscosity as a rheological 

law is of a different character from the assumptions dis­

cussed above. It is better regarded as a working hypothesis 

than as an assumption. The extent to which the geometrical 

idealizations and the mathematical simplifications are 

justified in relation to any particular fold can be deter­

mined by observing the shape of the fold, the variations in 

thickness of the layer, and the radius of curvature at the 

crest. Consequences of the rheological law are tested by 

comparing fold characteristics predicted by computations based 

on the law with those observed in natural folds. 

In general, . there are three ways of approaching the 
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problem of determining the rheological law under which rocks 

deform in nature: (1) measurement of stress-strain and 

stress-strain-rate relationships on rock samples subjected 

to stress in the laboratory; (2) study of the detailed 

mechanisms of deformation of rocks in the field and labora-

tory and prediction of the rheological laws by theoretical 

considerations based on these mechanisms; and (3) calculation 

of predicted patterns of deformation under assumed laws and 

comparison of these predictions with natural examples. 

In terms of experimental results the simplest way to 

distinguish a viscous material from a plastic one is to ob-

serve whether the material shows a threshold stress below 

·which no deformation takes place. In all the experimental 

work on rocks known to the writer such a threshold is found 

to exist, but it seems to be lower at lower strain-rates. 

The experimental work done at the lowest strain-rates (3) 

was done under conditions of constant strain-rate, so that 

the simple test of a threshold stress cannot be applied. 

Heard states (4) that his data neither contradict nor affirm 

the presence of a threshold stress. The strong non-linear 

dependence of stress on strain-rate shown in Heard's results 

does not agree well with either linear viscosity or perfect 

plasticity. 

Consideration of the mechanisms of deformation provides 

(3) H. C. Heard, Effect of large changes in strain 
rate in the experimental deformation of Yule marble: Jour. 
Geology, v. 71, no. 2, 1963, p. 162-195 

(4) Ibid., p. 181 
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clues to the expected rheological behavior of rocks. Single 

crystal experiments on deformation by twinning and gliding 

suggest that a minimum resolved shear stress is necessary to 

produce either twinning or gliding. On the other hand, con­

siderati~n of the thermodynamic equilibrium of a non-hydro­

statically stressed solid in contact with a fluid into which 

the solid may dissolve (5) indicates that recrystallization 

may take place under vanishingly small stresses. Micro­

scopic observation of naturally deformed rocks commonly in-

dicates that several mechanism& have operated in producing 

the observed deformation. 

The third method of determining the rheological law, 

comparison of predicted and naturally observed deformations, 

is one of the obJectives of the present study. If the pre-

dictions include the shape of the deformed body, then the 

mathematical method used must not assume this shape a priori. 

This restriction. greatly complicates the mathematical prob­

lem and makes it difficult to consider any but the most 

simple rheological laws, such as linear viscosity and 

perfect plasticity. 

Although the choice of a rheological law is an impor­

tant hypothesis, it seems probable that many of the general 

features of the deformation are fixed by the overall geometry 

of the problem. In particular, the course of the deforma­

tion in the medium would probably be grossly similar whatever 

(5) J. W. Gibbs, The scientific papers of J. Willard 
Gibbs: New York, Dover Publications, Inc., v. I, 1961, 
p. 184rr. 
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law· were chosen, provided that the general succession of fold 

shapes were similar to that found in this study. 

' 
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CHAPTER V 

DISCRETE FORMULATION OF THE PROBLEM 

An analytical solution of the problem formulated in 

Chapter III would be extremely difficult to find, and proba-

bly does not exist except in examples with simple geometries. 

Since the geometry of the folded layer is determined by the 

solution of the problem, a method applicable to a layer of 

relatively general shape must be used. We have chosen to 

set up the discrete analogue of the continuous problem of 

Chapter III; this discrete analogue leads to a set of linear 

algebraic equations which oan be solved on a high-speed 

digital computer. 

1. Outline of the discretization process 

A general outline of the method of setting up the dif-

ference equations corresponding to a variational problem is 

found in Forsythe and Wasow (1), and a specific application 

to the equation of the thin elastic plate is discussed by 

Engeli et al. (2). An outline of the scheme employed in the 

present treatment follows. 

(1) G. E. Forsythe and W. R. Wasow, Finite-difference 
methods for partial differential equations: New York, John 
Wiley and Sons, Inc., 1960, p. 182-184 

(2) M. Engel1, T. Ginsburg, H. Rutishauser, and E. 
Stiefel, Refined iterative methods for computation of the 
solution and the eigenvalues of self-adjoint boundary-value 
problems: Basle, Birkhauser, 1959 
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1) The velocity distribution is represented in terms 

of discrete values. The method of representation will be 

different for different portions of the region under con­

sideration. In the medium itself the solution is represent­

ed in terms of the values of the stream function ¢ at the 

nodes of a square _grid. On the plate it is represented by 

the values of the rate of change of inclination, G , at a 

set of points separated from each other by equal arc lengths. 

Finally, the trigonometric series which represents the con­

tinuation of the stream function ~ out to infinity is re­

presented by its value and normal derivative at grid points 

along the horizontal line where it is connected to the 

medium solution. 

2) The derivatives in the dissipation formula, equa­

tion 6, are approximated by appropriate differences of the 

discrete values. The integrals are calculated by summing 

the squares of these differences, weighting each term ac­

cording to the area associated with it in the grid. 

3 ) The constraining relations which impose the proper 

ve l ocity at the outer boundary of the region, as well as 

those which guarantee the matching of velocities at the 

plate and at the boundary between the grid region and its 

continuation to infinity can also be written as finite 

difference equations. These constraining equations are used 

to eliminate certain of the discrete valu~s from the dissi­

pation expression; this elimination process insures that any 

velocity distribution arising from the minimization process 
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will satisfy the constraining relations. The symmetry of 

the overall problem is introduced at this stage, so that the 

dissipation expression contains only those discrete values 

needed to describe the problem with its symmetry taken into 

account. 

4) The dissipation expression, which is a sum of pro­

ducts of the discrete values, is differentiated in turn with 

respect to each unknown discrete value, and the resulting 

derivatives are set equal to zero. This process yields a 

set of linear algebraic equations for the discrete values. 

By the nature of the process by which these equations were 

obtained, their matrix is symmetric and either positive def­

inite or positive semi-definite {3). The symmetric nature 

of the matrix is convenient, though not essential, for the 

method used to solve the equations; the definite character 

of the matrix is not used dire.ctly, but it can provide a 

useful check on the correctness of the matrix for any par-

ticular problem. 

2. ¢ on the square grid 

We now proceed to illustrate this procedure by show­

ing how it is used to derive equations for the various 

classes of unknowns. Points of the grid region may be di­

vided into three groups: (1) regular points whose twelve 

nearest neighbors are inside the grid region, (2) points that 

lie within two mesh lengths or a plane boundary, and (3) 

(3) Forsythe and Wasow, ~· cit., p. 184 
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points that are adjacent to the layer. In what follows, ~ 

at a given point refers to the t/.>1 of equation 3: t he 

contribution of ¢.:: K X y -- - is handled by adding a term 

K to the expression for ¢J,J. 

As the first illustration, consider a point in the 

interior of the medium. The compass- point notation of 

figure 3 will be used. The value of cf>. ,.,.., at the center 

of mesh square 0-E-NE-N may be represented as: 

~ t. ( ¢N E - <tJAI ~ q>o - ¢~ t- k ) 

where .1. is the mesh spacing. The square of this expression, 

multiplied by .1: is taken as ff <P;,,.dxdy over this square. 

It is more convenient to evaluate <$~, - ~n •. at the 

center of a square of side J, which is centered on a mesh 

intersection; thus for the square centered on the point E: 

To derive the equation for the point 0 we take the 

derivative of the sum of the eight energy expressions which 

involve 0; the contributions to this derivative from mesh­

centered square E and from mesh square 0-E-NE-N are: 
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Addi ng the contributions from the other squares and setting 

the result equal to zero, the resulting equation for point 0 

iss 

The left-hand side of this equation is the standard bihar-

monic difference operator; it is usually derived directly 

from the differential equation (4). Since the expression 

for ¢~ satisfies the biharmonic equation identically, the 

K term cancels out. 

Next, consider the case where the velocities perpen-

dicular and parallel to a given mesh line are constrained 

to have certain values; this is equivalent to constraining 

¢ and ct>.J ,..(=-"fJ. This mesh line is taken to be NW-N-NE in 

figure 3, and the given value and slope are denoted q? and 

~JL • The points NW, N, NE, and NN are considered to be 

"fictitious points 11 (5) and are eliminated from the 

(4) F. S. Shaw, An introduction to relaxation methods: 
New York, Dover Publications, Inc., 1953, p. 39 

(5) Ibid., p. 197 
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dissipation expressions using the relations: 

cPIVtCI - <P (NW) -

cP'Y - p (N) -

<J>,.E cj (NE) 

<t>IVIV - ¢, - P,~ (N). -
')..1 

~ {NW), etc., are the given values at the point NW, etc. 

If mesh line NW-N-NE represents either the boundary between 

two regions where the velocity distribution has different 

representations or an external boundary on which velocities 

are given, there is one further change to be made in the 

dissipation expressions. In this case, the dissipation over 

half the mesh-centered square centered on point N is to be 

considered, so that the resulti~g expression is multiplied 
f1l. .1 2. by ~ /'l.. instead of by _. Therefore, the dissipation 

expressions for mesh square 0-E-NE-N and for mesh-centered 

square N become: 

'l. r l ~ ~~~ dxdy 
1.. 

= ~ L ( <P (lYE ) - 4 (N) ~ 4. - ~ +- K ) 

1 

~ ~ ~ ( ~., - ~n) ~dKdy = ; .t ~ [ p (lve) t- cP (ft'w) - :2 4>,. -1 i ~l.(N~ 

Proceeding as outlined above for a regular point, we obtain 

the equation for point 0: 
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'A I cP 0 - tf' ( ~e t- f'* + fl>s) t- '1. ( <f>s..- +- ~s•) +- ( 4>~E +- ¢...,..., .,.. 4>ss) 

+ 1.[ ~(NE) t~CI'Iw)}- ~rp(N) t 1..1 ~1 .. (N) = 0, 

As before, this equa tion is identical to what would be de ­

rived from the differential equation treatment. The vari ­

ational method gives equations which differ from those de~iver 

from the differential equations only at points near a 

bounda r y that does not coincide with a mesh line. 

In the present problem ~~ is constrained to be zer0 

and ~f remains arbitrary at tre ri~ht- and left-hand wa:~s 

(fi~. 1, p. 23). If the right-hand wall coincides with 

~E- E-NE, then <P at points SE, E, and NE must be set eo•;a:: 

to zero in the dissipation expressions . Ta~ing the deri ve -

t ive or the dissipation expression with respect to cf>,E J :: f: 

get an equat ion for (j>E £ ; 

<PE"E +- 4>. = 0. 

Beca<.1se this equation is so simple, it is convenient to <~ s e 

it to eliminate points such as EE from the system of equations 

before solving the system. 

3. Trigonometric ¢ 

Equation 7 illust rates the way in which the values 

and slopes of the trigonometric series enter into the 

equations of mesh points near the top boundary of the ~esr. 

re~ion. To derive equations for the values a nd slopes the~­

selve8 we must consider the dissipation due to the 



55 

trigonometric series. Since the trigonometric series is to 

be represented in terms of a finite number of values and 

slopes, the sums must be truncated. Substituting the appro­

priate _derivatives of the truncated series into equation 4, 

this dissipation may be written as: 

. '1.,.,. , I N 1 -~~-v 
- '17r , ,.rr , L~ '- . ).Jr ~, ·.!..!.(o ·-2 i-C·-lz-L. D;y) e to4J.~4x+l\ + L "") L-. ., Lx l x 

dxJy: 
i=-t 

This expression can be simplified as follows. We 

note that the cross product terms between trigonometric 

terms of different wave lengths will give integrals of the 

form: 
!!: .,._ 

\~nZ~h"l~d~ -=[ 
-!! 

1 

:r:.. 
\ ~ n-;! ~rn< d~ 
-Ir 

). 

~ (,..,..t-n) 2 I )l'i_ 
';!.( ...... +-,) ) 

-rr ..... 
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Jr 
1 
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The first two types of integral will give zero as a result, 

since rn and 11 are either both even or both odd. The third 

type is zero, since here -A and ../. are respectively even 

and odd or odd and even. In addition, the product of either 

the sine or the cosine term with K will give zero on inte-

gra tion from - ~11 

Therefore, the different wavelengths do not interact 

with. each other or with the uniform compression term (in­

volving K ). When the individual wavelengths are consid­

ered separately, a further simplification results, for the 

dissipation is then independent of ~· 
. ::ur 

Writing (:z.~-')--c; 

as Ai , the dissipation becomes: 

, 
When the integration over ~ is carried out, the dissi-

pation may be written asa 
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L)t{ f-(li- 1 ) 1Lrr)l[8:l.-t(li-t)"L7T"A~Bi + :z.{(,.i-•)~A.f J L . L~ l . 

/..f i~l 

t- f :J..; >l~ [ 0.;.- l/ i • ,_: c; 0; + 1 ( 2i 'Z C; ) '1] 
2 ,., 

{8) 

The last rearrangement of terms shows that the integrated 

dissipation can be written in terms of the combinations of 

constants which represent the v~lue and slope of each trig-
, 

onometric term at the line l = o . 

This last expression defines the dissipation in terms 

of the coefficients of the trigonometric expansion. For 

reason of convenience in the solution of ~ equations, the 

velocity distribution in this region is represented in terms 

of values, <f , and slopes ~,,.. , at the mesh points on 

the lower boundary of the region. To derive the equations 

for these values and slopes considered as unknowns, we must 

first express the dissipation in terms of the values and 

slopes. In practice it is simpler to derive expressions for 

A~, 8,. , Ci , and 01· in terms of sums of tP and J,'l. 

and then use the chain rule to compute the derivatives of the 
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dissipation expression with respect to individual slopes and 

values. 

The process used to find these sums is similar to 

that used to derive the coefficients for a finite Fourier 

aeries (6); it makes use of the fact that sine and cosine 

functions are orthogonal over a discrete set of points. We 

shall illustrate the process for a particular ~~ , for 

example ~-4 • ¢ for a particular point on the boundary 
I 

( y = 0 ) can be written as: 

where x · _,.. is the x-coordinate of the point corresponding to 

and L = 4- N 
~ - is the wavelength of the fold. The cor-

responding equation for each ci>1- is multiplied by 

, and the resulting equations are summed 

The second inner sum is zero for all ~ and ~' since 

(6) R. W. Hamming, Numerical methods for scientists 
and engineers: New York, McGraw-Hill Book Co., Inc., 1962, 
p. 67-77 
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is zero for f : ':! and i: = 'l ~ , and 

the terms for all the other + cancel each other (if · 

.Jr.<,.; , x,._ = (- N +J..) & -(N-.J. ) -= xt.N-4 

sum may be written as: 

Now, it can be shown (7) that: 
"N . L ~ ~rr (-}-N) ;:: 0 

t-=• 

Therefore, the final result is: 

'l..N 

). The first inner 

O(m(1..N 

rn = 0 

L '/>_,:. ~ (?..Jt-t) J.L~ X,:. = N AJ. 
i= I 

Analogous manipulations with the expressions for the 

slope at a given Xi lead to the following expressions for 

the A~z_ , BA , CA , and 0-4 in terms of slopes and values 

at pointe on the boundary: 

I I'J..N A.. ;2...,.,.. • 
A-h = N [ 't'-i-~ (1-h-t) -r;- x1-

t: ' 

B.,._ 

(7) H. B. Dwight, Tables of integrals and other mathe­
matical data: New York, The Macmillan Co., 2nd ed. rev., 
1947, formula 420.4, p. 86 
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Using these expressions, terms such as can be cal-

culated. If we denote the dissipation expression tor this 

region by Ico , the contributions from this region to the 

equations for the slopes and values on the boundary can be 

writtenr 

The complete equations for these unknowns are obtained by 

adding the contributions from the mesh squares just below 

the boundary to those from I o0 

4. rP ~ the plate 

The procedure used to match the velocity in the 

medium near the plate with that or the plate is similar to 

that used at the junction of the grid portion of the medium 

with the continuation out to infinity, but it is complicated 

by the fact that the plate may intersect the grid lines at 

points other. than mesh points. The description is broken 

'into two parts: in the first we shall show how the constraint 
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is applied if we assume that values of ~ and ita first 

derivatives are known at every point on the plateJ in the 

second we shall show how ~ and its derivatives on the . 
plate can be expressed in terms of the 9 values at a 

given number of equally spaced positions along the plate. 

Consider a representative portion of the plate and 

medium as shown in figure 4 (p. 51); we shall deal with the 

medium below the plate. The portions of the dissipation 

given by i ( <P,, - <P. ~-:a.),._ evaluated for curvi-

linear trapezoidal areas like A, B, and C can be expressed 

in terms ·Of values of ~ at nearby points. It is assumed 

that ¢ near the plate varies quadratically with x or L; 

a cubic or even higher order variation could be assumed, but 

the dissipation expressions would be more complicated. With 

this assumption the values of ~ at the points marked 

with open circles can be expressed in terms of ~ and 

ita first derivatives on the plate and ¢ at the points 

marked with solid circles. The values of ¢ at the open­

circled points are now eliminated from the dissipation ex­

pressions. This elimination insures that only velocity 

distributions which match at the plate will be considered 

in the minimumization process. 

Since these open-circled points occur only in diasi-

pation expressions for areas adjacent to the plate, they can 

be eliminated when these expressions are derived. Referring 

to figure 5 (;>. 51), c1> and <f.>.,,. at any point on the 

line S-0-N are, on the assumption of quadratio variation 
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\•Ji th y 
~ - t/>s 4>, - 2 ¢. + ¢>"" y 1. tP = 4>. +- "',._ y +- 2. 

¢>. ... = d>N- $., ,. + ( ~s - :2. 4>. +- <I>N ) y 

:. i th these e xpressions ~11 at any point on tre vert~ cal 

bisector of squa re 2-3-5-4 (fig . 4) becomes: 

If we denote by .o t:J (! > the d 1 f ferencc be tween ¢ on 

the line 1-3-5 a nd ¢ on the line 0- 2-4 ·at any height 

(10) 

a bove the base 2-3 ( LlcPCY) ~ ~ ), a nd i s deterl":ined 

from the velocity of the plate), then : 

Eliminating 4>., and 4>.r from t he expression for q>J,~ wi ~h 

y_ - -!1;2 by means of relation 11: 

cf> (~)::: _!_[~¢lA)-(~-¢..)] 
)11. ). ~ J ... 

( J.: ) 

( ::.:? ) 

Following the same procedu re with area C a nd its as~ocia:ed 

points 0, 2 , 4, 6, 7, and 8, we .arrive at the analogou3 

expression: 

The diss i pa tion expression for a &re.:; 

like area A i s derived as follows. cPJ o. for the point C 
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in figure 5 is given by1 

{j))7.l. = ¢N - 2 Qo +- ¢s 

The quadratic expression for the slope at r =~ is used to 

eliminate ~N in this expression for ~~~~ , giving the 

curvature: 

(13) 

If </>,I I cannot be written in terms of points inside the 

plate, it is calculated by an analogous expression. 

When the slope of the plate is greater than 45°, 

curvilinear trapezoids with vertical rather than horizontal 

bases are taken; otherwise the dissipation would be averaged 

over areas that are too large. In the region where the 

slope passes through 45°, minor adjustments are necessary 

in the method of assigning the area weights to the dissipa­

tion expressions. 

Using formulas of the types just developed we may 

write down dissipation expressions for all areas adjacent 

to the plate. These expressions will involve only points 

on the same side of the plate as the area itself . To elim­

inate the elimination points inside the plate, we solve 

equations 10 for ~ in terms of </> and ¢.) 1. at y_ = !!-
and use the resulting equation to eliminate the elimination 

point in every dissipation expression in which it occurs 

(this includes both regular and irregular expressions). 
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(Expressions like 12 and 13 can be derived without 

introducing fictitious points. Since the resulting dissi­

pation expressions involve both 4>1 , and 4>~ 1 of the 

plate, it might be thought that the use of these expressions 

would in itself provide sufficient constraint to insure the 

matching of velocities without eliminating points inside the 

plate. When the problem is set up and solved in this fash­

ion it is found that the resulting velocities in the medium 

match those of the plate to a first approximation, but that 

velocity gradients near the plate are abnormally high. In 

terms of fictitious points this partial matching corresponds 

to matching a linear combination of u and v at the plate 

rather than matching ~and v separately. In certain sim­

ple situations like tne compression of a homogeneous medium 

between plane, parallel, frictionless walls, the partial 

matching leads to the correct result. With a more complicat­

ed curved boundary like that of the present problem, the 

constraints on the matching of velocities are only approxi­

mately satisfied.) 

5. C@nter of symmetry 

The method used to impose the center of symmetry on 

the prob l em is similar to that used to impose the velocity 

constraints. The origin of the coordinate system in the 

medium is taken to coincide with the inflection point of the 

folded plate. Dissipation ia calculated only for the region 

~ greater than zero. Certain mesh points with negative 
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z-coordinates Will still OCCUr in the dissipation expres-

sions, but due to the center of symmetry, c/> at points 

with negative ~ is iaentically equal to ~ at the 

symmetry-related point with positive JL• Whenever a point 

with negative ~ occurs in a dissipation expression, the 

appropriate point with positive ~ is substituted for it. 
I 

This procedure insures the satisfaction of the symmetry 

condition. 

6. () terms 

Up to now we have considered the value of ¢ and 

its first derivatives to be given quantities on the plate. 

This means that the above treatment is immediately appli-

cable to a curved boundary on which the velocity 'is given. 

In our particular problem, the velocity of the plate is not 

known beforehand, but rather is one of the pieces of infor-

mation which must be provi ded by the solution itself. ~~ 

. 
..!::_, and <? of the plate can be calculated from the e 

values for the plate by means of the following relations: 

s 

l). = _ ~ g~ B cJ s 
0 

<P= 

(14) 

.s * )d s = ~ ( l{~e - Vee<. e) Js 

s 

At the. inflection point s • o , and at the crest s::: S . 
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If we use numerical integration formulas to replace these . 
relations by discrete sums of e values, then the dissi-

pation expressions for areas that contained points to be 

eliminated will now include a series of coefficients of the 

e unknowns. 

The e values are not all independent; they must 

be chosen such that their integral gives the proper value 

of u at the crest of the fold. This value of u can be 

written in terms of the discrete values as: 

.f 

l~ "ds ~ - <>S{ ~·~ 9. e, } , (15) 
0 

. 
Where A~ is the arc-length spacing of the 9 values. 

The next- higher-order terms in this quadrature formula (8) 

are zero at both ends of the range of integration, since 8 

and 9 are zero at the crest of the fold and ~: and 

are zero at the symmetry point on the limb. To in-

sure the satisfaction of constraint, we use the constraining 

relation to eliminate e. from any dissipation expression 

in which it occurs. 

The final dissipation expression which must be con-

sidered is the bending dissipation of the plate itself. This 

can be written in terms of the discrete e values as: 
$ 

J(Jj)Lds = 
(16) 

0 

(8) Hamming, ££· cit., p. 57 
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where Jt is the thickness of the plate. As in the expression 

for Ue , the first difference corrections to this sum are 

zero at both ends of the range of integration. Before the 

derivatives of this expression with respect to the e val-
. 

ues are taken, eD must be eliminated from it in order to 

satisfy the constraint on ~ s at the crest of the fold. 

1. Summary 

Since the method of deriving the difference equations 

is complicated by the number of special details that must 

be considered, the main steps in the method are outlined in 

this section. 

1) The dissipation over the whole problem region is 

expressed as a sum of squares of differences of the discrete 

values. Contributions from the grid region to this sum of 

squares are of four types: 

for a normal mesh-centered square (fig. 3), 

for a normal mesh square (fig. 3), 

for a mesh-centered trapezoid adjacent to the plate (fig. 4), 

and 
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for a mesh trapezoid adjacent to the plate (fig. 4). Each 

of these terms must be weighted by its appropriate area. 

The dissipation for the region extending out to infinity is 

given by equation 8 and that for the plate by equation 16. 

2) The ¢ values for all grid poi nts closer than 

one mesh length to the plate, ~hose for gri d points with 
• 

negative z-coordinates, and eo are now eliminated from 

the dissipation expressions. This elimination is performed 

using equations 10, the discrete analogues of equations 14, 

the symmetry condition, and equation 15. 

3) The equation for each unknown value is derived by 

differentiating the sum of squares with respe-ct to that 

value and setting the result equal to zero. 

In the actual numerical computation of the equations, 

explicit expressions for the various types of equations are 

never derived. The various terms in the sum of squares are 

computed and stored in appropriately tagged memory locations 

in the computer storage. All the terms are then scanned by 

the program and the elimination (step 2) is performed. The 

terms are scanned once more to perform the differentiation 

(step 3). Since the variety of equation types is larger than 

the variety of dissipation- expressions, this automation of 

intermediate algebraic steps eases the task of programming 

the equation-derivation routine conside~ably. 
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The input data for computation of the velocity dis­

tribution at any stage consist of: (1) the shape of the 

folded layer at this stage, given as a series of eleven Bi 

and (2) constants which define the grid spacing and boundary 

velocity at this stage. The output data are a set of ~ . 
values at the grid points and the ei values at intervals 

on the plate; the ¢ values that have been ·eliminated and . 
the value of eo can be retrieved using the same relations 

by which these quantities were eliminated in the derivation 

of the equations. 

8. Discretization of the time variable 

The method discussed above yields a set of equations 

for the velocity distribution of a folding layer at the in-

stant of time when the layer has a given shape. In order to 

study the development of a fold as a function of time, it 

is necessary to take into account the changing shape of the 

layer. 

To start the study of a particular fold we assume 

the shape of the folded layer at a low amplitude stage. 

Using the equations derived above, the 8~· on the plate 

can be found. On the basis of these 8~· we can predict 

the average velocity of the plate over a certain interval of 

time. These average Bi are multiplied by a constant, ~E , 
and the resulting 4 e . .- are added to ' the original 8..: to 

give the new shape of the layer. Since the magnitudes of . 
the e.. (aa distinct from their relative values) are deter-

mined only by the given rate of shortening, Ll t can be 
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picked in any convenient manner. Its size determines the 

extent to which the shape will change for the -next computa­

tion. ~t was chosen so that the increase in the dip of the 

symmetry point on the limb, .6 9. , would be a specified 

number of degrees. The velocity distribution for the re-

sulting new shape is then calculated, and the process is re­

peated until the fold has the desired final amplitude (9). 

When the relative magnitudes of the B values do 

not change too rapidly from stage to stage, the e val ues 

at the beginning of the time interval are sufficiently close 

to their average over the time interval involved to be used 

to calculate the next shape. Comparison of the B dis-

tribution of the new shape with that of the previous shape 
. 

places limits on the error involved in using the 8 values 

of the previous shape. With suitable decrease of the time 

step as the fold amplitude increased, · this procedure was 

used for all but the last time step of the dominant­

wavelength fold. 

During the computation of the weak-plate fold, it 

became eveident that a very short time step would be needed 

unless a more accurate way of estimating the average veloc-

ity of the plate over each time interval were devised. It . 
was found that, with a suitable representation of the e 

(9) The equation-derivation routine was designed to 
compute the equations for a layer with a maximum dip less 
than 90°. Extension to overturned dips would not require 
modification of the method of deriving the equations, but it 
would require changes in the computer program. 
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distribution, it was possible to predict fairly accurately 

what the plate velocity distribution of the new shape would 

be before it was actually computed. Using this predicted 

velocity distribution, it was then possible to choose a 

suitable time average of the in order to compute the 

new shape. The representation of the velocity distribution, 

the method of predicting the new velocity distribution, and 

the accuracy of the method are discussed in Chapter VII, 

Section 5. 

' ' 
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CHAPTER VI 

SOLUTION OF THE EQUATIONS BY DIGITAL COMPUTER 

1. Choice of method 

The choice of an equation-solution method cannot be 

divorced from the consideration of such computational de­

tails as the form of the matrix, the type of computer avail­

able, and the precise storage requirements of the solution 

routine. The equations were solved on an IBM 7090 computer 

with 32,000 words of random-access memory and magnetic-tape 

aUXiliary storage. Typical computation times were two min­

utes for a system of 175 equations and five minutes for a 

system of 285 equations. ·. 

A large system of linear algebraic equations such as 

that arising from the discretization of the problema of this 

study may be solved by either direct or iterative methods. 

A direct method is one which gives the solution as a result 

of a finite number of arithmetic operations; if there were 

no round-off error this solution would be exact. An itera­

tive method consists of the repeated application of a simple 

algorithm; the exact solution is obtained only as the limit 

of a sequence of successive approximations. 

Iterative methods are most commonly used for the solu­

tion of equations arising from the discretization of an 

elliptic partial differential equation; their moat important 
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advantage is that they do not require storage of the whole 

matrix of equations, but only the non-zero coefficients. 

The Gauss-Seidel method with successive over-relaxation (1) 

was applied to a biharmonic difference problem during the 

course of this study. It was found that the rate of con-

vergence of the iterative process was so slow that computa­

tion times would be unreasonablyhigh. There were two alter­

native methods: (1) a more complicated iterative method 

which might provide more rapid convergence, or (2) a direct 

method of solution which could be adapted to machine storage 

requirements. 

The particular direct elimination scheme used for the 

sol~tion of the equations is discussed in detail below. The 

critical features of the method are: (1) with a suitable 

arrangement of the order in which the equations are solved, 

most of the zero elements of the original matrix remain 

zero throughout the elimination process and therefore need 

not be stored; (2) those elements of the matrix which must 

be stored are not all needed at any given stage of the elim-

ination process and, therefore, magnetic tapes can econom-

ically be used for intermediate storage of results. The 

accumulated effects of round-off error may also present an 

obstacle to the use of a direct method for a large system 

of equations; this aspect will be discussed below, but it 

did not cause serious difficulty in the problems treated. 

(1) Q. E. Forsythe and W. R. Wasow, Finite-difference 
methods for partial differential equations: New York, John 
Wiley and Sons, Inc., 1960, p. 242-266 ' 
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2. Method adopted 

The method adopted was the "Doolittle method", a var-

1ant or Gaussian elimination which does not rearrange the 

equations in order to select the largest pivot for elimina­

tion (2). We shall sketch its application to the particular 

form of matrix arising in this study. The equations are 

numbered in the following order: first, the equations for 

¢values at the grid points, with the center-of- symmetry 

point first, and then proceeding from left to r ight and from 

bottom to top through the grid; second, the values of the 

trigonometric-continuation ¢ -function and then the slope 

values, each taken in order from left to right; and finally, . 
the 8 values, taken consecutively from the inflection 

point to the crest of the fold. Any points which are elimi-

nated in the constraining process during the derivation of 

the equations are simply omitted in this numbering scheme. 

If this scheme is followed, then all the non-zero elements 

of the matrix occur either in a band on both sides of the 

diagonal or in a vertical strip at the right side of the ma­

trix--and a symmetric horizontal strip along the bottom of 

the matrix (fig. 6). Since the matrix is symmetric andre-

mains symmetric during the elimination process, only the 

elements above and on the diagonal need be stored. If there 

are N grid spacings between the right- and left-hand walls 

in the problem, the band will contain J~ ~~ elements 

(2) Modern computing methods1 New York, Philosoph­
ical Library, Inc., 2d ed., 1961, p. 7 



- ' : 
. . -

.. thf> mat!"'~X. 

rr· ~. · c ,. :.. •. e mr. fiE' 
~ ~ r 11 

: a .::l(J • 



above and on the diagonal; the width of the strip is equal . 
to the number of 8 unknowns. The original matrix will 

contain many zero elements inside the band and the stripi 

unfortunately, these elements do not remain zero during 

the elimination process, and storage must be allotted for 

them. 

As an illustration of how the elimination process 

works, consider the situation pictured diagrammatically in 

figure 7. At this stage h -t columns have been eliminated 

from the lower triangle of the matrix, and the .J.. ~ column 

is about to be eliminated. We eliminate the ~~ coeffi­

cient from the -A + 1 a equation by subtracting AA..A+' 
A A,-h 

fl s r times the ...h 0 equation from the --"l. +- I equation; this 

changes the coefficients of the~+ 1st equation both in 

the diagonal band and in the vertical strip, but does not 

affect any of the other zero coefficients of the A r I sc 

equation. The elimination process is repeated with the 

equation, the ~ + 1 d equation, and on through 

equation number ~ r ~ N • From here on down to the first - -. 
G equation, the -A 0 column is a lready zero. Now, we 

eliminate the ~A coefficient from each of the 9 equa-

tiona in turn. Finally, we must perform the same manipula-

tiona on the right-hand sides of these same equations. It 

is clear from the nature of the elimination routine that 
. 

only ~ ~ +I equations and the coefficients linking the e 

unknowns need be in random-access memory at any given stage. 

Once the matrix is reduced to upper-triangular form, the 
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back substitution process is the standard one (3). During 

the back substitution the current row of the triangular ma­

trix and those unknowns that have been found up to that 

stage are needed in random-access memory. 

In terms of the number of arithmetic operations 

involved, the formation of the upper triangular matrix is 

the major part of the process. If it were desired, the same 

system of equations could be solved with several different 

right-hand sides with only slightly greater effort. This 

feature, common to all the triangular resolution direct 

methods, can be used to advantage in improving the accuracy 

of the solution. To do this we use the following tech-

(4) X 
(l) 

nique . If is the computed solution to the system 
(l ) 

of equations ~ ~ =- b , and the residual t is defined 

(J) b A u, A ( x - x<' ') - ..... c, > by .!' : _ - _ ~ , then we have : _ _ _ - ~ . 

To solve this new set of equations, we need only perform the 

forward course on the residuals and back-substitute. 

If the result of this second back-substitution is denoted 

by 
('1) (1) (.t) 

X , then X +- X is a much closer approxima-

tion to the true solution. Residuals are now computed for 

this second approximation to the solution, and the process 

is repeated until the corrections are less than the desired 

degree of accuracy. Since the residuals are much smaller 

than the original right-hand sides, .the process converges 
"----

•. 

(3) Ibid., p. 8 

{ 4) Ibid. , p. 19 
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rapidly. In most of the cases computed in the present 

study, the second corrections were already negligible. The 

proce~a not only provides a simple means of improving the 

accuracy of a solution, but it gives a much more reliable 

measure of the accuracy of the final solution than would 

the residuals alone. For the process to be effective, the 

residuals must be known rather accurately; since they are 

small quantities computed by summing large positive and nega­

tive numbers, it is necessary to use double-precision arith­

metic in calculating them. 

3. Details of the computations 

When the first trial problem of this study was com­

puted, using the erroneous approximate method of constrain­

ing the matching of the velocities of the plate and the 

medium (Chapter V, Section 4), solution of approximately 

150 equations in single precision (eight digits in floating 

point) failed. The failure of the process was shown by the 

fact that the residual-iteration process did not reduce the 

residuals at each step and by the fact that the last diag­

onal coefficient of the upper-triangular matrix was negative. 

(That this coefficient cannot be negative follows from the 

facts that the original matrix is positive definite, that 

the determinant of a positive definite matrix is positive, 

and that the determinant of a triangular matrix is equal to 

the product of its diagonal elements.) Use of double­

precision arithmetic (16 digits in floating point) in the 

elimination process produced a correct solution. When the 
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proper method of constraining the matching of the velocities 

was used and several other more minor changes in the equa­

tion derivation method were introduced, it was noticed that 

the corrections from the residual iteration process were 

definitely smaller than before. It was thought that these 

changes in the equation-derivation method had improved the 

ill-conditioning of the matrix and that it might be possible 

to perform the elimination in single precision. Experi­

menting with single precision showed that this was indeed 

the case, and that single precision was adequate for a sys­

tem of about 275 equations. The limiting size of a system 

of equations of this form which may be computed with single 

precision was not determined, but the above cited results 

show that it depends rather critically on the details of the 

way in which the equations are derived. 

When the computations are done in single precision 

on the IBM 7090, the limiting factor which determines the 

computation time is not the arithmetic operation time, but 

the magnetic-tape manipulation time. In particular, if the 

triangular matrix is stored on tape one row at a time, the 

back-substitution process requires that the tape be back­

spaced two records and then read in the forward direction 

one record for each row which is to be retrieved from tape, 

a time-consuming process. If the problem size is limited to 

300 equations with a row length ~ of 28, then the whole 

triangular matrix may be stored in random-access memory. It 

is still necessary to save the original matrix on tape and 
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read it in order to compute the residuals, but this is a more 

efficient tape-reading process since the tape is read in the 

forward direction .only. Since this size of problem gave a 

discretization error which was small enough for the pur­

poses of this study, the method which made less use of mag­

netic tape for storage was used. (These details of the 

computational set-up are strongly dependent on the partic­

ular computer used. With a computer which has a smaller 

random-access memory than the 7090 or which has different 

relative rates of arithmetic operations and tape manipu­

lation, another set-up might well be more economical.) 
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CHAPTER VII 

ACCURACY OF THE DISCRETE SOLUTION 

1. Analysis of the e~~ors 

In this chapter the degree to which the solution 

of the discrete problem corresponds to the solution of the 

continuous problem is discussed. Since the problem was 

made discrete both in space and in time, there are two 

types of discretization error to consider, the ~rror in 

the velocity distribution obtained for a particular shape 

and the error in the new shape obtained by extrapolating 

this velocity distribution over a finite time interval. 

Analysis of the error for a particular velocity 

distribution is made more difficult by the fact that there 

exists no analytical solution for a problem of the type con-

sidered. The type of discretization formulas used in the 

medium near the plate should have a discretization error 

proportional to the mesh length, but the formulas are so com-

plicated that it is not possible to carry out an explicit 

analysis of this discretization error. At very low ampli-

tude, the solution should reduce to the sinusoidal dependence . 
of e and v on X found in the treatment of Biot (1). Due 

(1) M. A., Biot, Tneory of folding of stratified vis~ 
elastic media and its implications in tectonics and oro6ene ­
sis: Geol. Soc. America Bull., v. 72, 1961, p. 1595-1620 
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to complications in the equation-derivation program, it was 

not possible to use an initial shape with a maximum dip of 

less than 10°. Also, the formulation of the problem in 

terms of a given shortening-rate breaks down at very low 

amplitude where an infinitesimal rate of shortening pro­

duces a finite rate of folding. Therefore, it was not pos-

sible to use the infinitesimal-amplitude solution as a 

direct check, although it could be expected that the 10° dip 

solution would be close to the infinitesimal solution. 

Aside from this general agreement, it was necessary to 

rely on the internal consistency and smoothness of the com-
4 

puted results as a check on their accuracy. 

Errors in the velocity of the plate are most irnpor-

tant, since they are propagated on to the next time step. 

A much less precise knowledge of the velocity distribution 

in the medium would suffice for geologic purposes, since 

the geologic techniques for measuring the strains in the 

medium are necessarily rather inaccurate. At the dominant 

wavelength, wh~n the bending resistance of the plate is . 
relatively large, the e 's will be a smooth function of 

~, since any short-range variation would imply large dissi­

pations in the plate. However, there is a mathematical 

limiting case where this damping effect is not present, and 

examination of the smoothness of the for this case pro-

vides a strong test of the accuracy of the solution as far 

as effects due to the medium are concerned. This is the 

case of a plate which has zero bending resistance but which 



is still inextensible. Physically this condition is ap­

proached when the thickness of the plate,~, becomes very 

small while the viscosity of the plate ~~ becomes large, 

since the dissipation due to compression is proportional 

to ,)-',~ and that due to bending is proportional to J-1~...;/ 

This case will be referred to as the zero-viscosity plate, 

since it corresponds to setting the viscosity of the plate 

equal to zero in the thin-plate problem as formulated mathe-

matically. Though the problem of the zero-viscosity plate 

is well-defined mathematically, it is extremely sensitive 

to any variation in the resistance of the medium. Now, the 

0eneral effect of the discretization error in the medium 

near the plate will be to introduce irregularities in the 

degree of resistance that the medium exerts on the plate as 

· it advances. Since the zero-viscosity plate has no bending 

resistance to dampout short range variations in the rate 

of change of inclination, these irregularities will show up . 
as local irregularities in the ei . 

This sensitivity of the zero-viscosity plate to errors 

in the discrete solution for the medium implies that the de-

gree of smoothness of the () . 
' for this case is a good 

measure of the accuracy of the solution; the next question 

is how to evaluate this smoothness. One simple test is to 

tabulate the differences of the Bi ; this test is valuable 

for locating irregularities, but it does not provide any con-

venient method of judging how important these irregularities 

are in determining . the new shape of the plate. 
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2. Ha~onic analysis 

A more useful test is to perform a harmonic analysis . 
of the Bi ; an extensive discussion of the use of harmonic 

analysis in smoothing equally spaced data is found in Lanczos 

(2). Because of the syrr~etry properties of the e.- , they 

may be expanded in a series of odd cosine harmonic te rms : 

. 
f) ( s) = 

If all ten terms of the sum are retained, the harmonic anal-. 
ysia of the e 's is exactly equivalent to the original e 's 

themselves, but if the 8 distribution is a smooth one, 

the higher harmonics will be small in relation to the lower 

ones. TrWl_cating the sum after a number of terms which is 

less than the tota~ number of data points gives a least 

squares fit of the retained harmonic series to the data. 

This is proved for the continuous case by Hamming (3)i the 

proof for the discrete case is similar . 
• 

Not only does the harmonic analysis provide a test 

for the smoothness of the e distribution, but it also 

provides a means of smoothing the data and a convenient way 

to describe the successive shape changes. If we smooth the 

e 's from any given stage by trWlcating the harmonic 

(2) C. Lanczos , Applied analysis: Englewood Cliffs, 
N.J., Prentice-Hall, Inc., 1956, p. 207- 245 

(3) R. W. Hamming, Nurre r i cal methods for scientists 
and engineers: New York, McGraw- Hill Book Co., Inc., 1962, 
p. 237 



expansion at a limited number of terms, there are two types 

of error which we may make: First, we may truncate too many 

terms and so miss a significant shape change; this is not 

serious if the noise level of the data is not excessive, 

since the amplitudes of the lower harmonics are definitely 

larger than those of the higher harmonics. If such a mis­

take is made, it will probably affect only one or two terms, 

and these will be small enough so that their effect on the 

ne~ shape is negligible. Second, we may not truncate enough 

terms and thereby include some noise in the new shape. In-

elusion of some noise is unavoidable unless the 8 dis-

tribution is free from noise, since this noise will also 

affect the lowest harmonics. The smoothing process is prac-
. 

tical because not all of the ten ei are needed to describe 

the plate velocity. It would probably be more efficient to 

use the harmonic analysis to describe the plate velocity in 

setting up the original equations. However, this possibility 

was not realized until late in the present study . 

3. Smoothness of the ~ 

To see how the smoothness test and the smoothing pro­

cess work out in practice, consider the initial stage (10° 

dip of the limb) for: ( 1) the dominant wavelength, ( L = LJ ) , 

(2) a plate viscosity which is 1/100 of that for the dominant 

wavelength ( L::.~too LJ ~ '1 .6u), and (3) the zero plate - viscosity . 
case ( L )) Li ) . The e~ f or tnese three cases are 

tabulated in table 1, ana t ne ~a~onic coefficients are 

tabulated in table 2. 
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. 
TABLE 1.-- eat equally spaced values of s for 10° limb - dip 

p,..: j<d ...... .f'-d·-
p;= 100 )A,.= D 

. 
s f) e e 

0 11. 3470 11.2329 11.5269 

1 11.2087 11.1051 10.8728 

2 10.7978 10 .7346 10.7522 

3 10.1231 10.1067 10.1176 

4 9 .1995 9 .2275 9 .2576 

5 8.0482 8.1115 8 .1545 

6 6.6962 6.8113 6.8720 

7 5.1760 5.3003 5.2020 

8 3.5255 3.6249 3.6299 

9 1.7856 1.8396 1.8920 

10 0 0 0 

A difference table of ei for the dominant-

wavelength case shows that the fifth differences show irreg-

ulatities in sign and magnitude. Examination of the harmonic 

ratios shoh~ that the first two harmonics are certainly sig­

nificant and contain most of the information about the shape 

of the velocity distribution and that the later harmonics 

from four to ten are probably not significant. Considera -

tior. of the t hi rd harmo~i~ ratios of successive time stages 

for this case sha"3 t ha t t e "t.. ird harmonic is not yet signif -

icant, since 1t doe n~t oe i n ~o show a r egular t rend from 
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stage to stage until the fifth stage, in which the maximum 

dip is 56°. Examination of the first stage only does not 

permit this sort of judgment, however, and we might have 

left this harmonic in if we were smoothing these results . 

(In fact, no smoothing was done in the lower amplitude 

stages of the dominant-wavelength case, so that the problem 

did not arise.) 

TABLE 2.--Harmonic coefficients of 9 values for 10° limb-dip 

,.u.,= .)...( ....... ).A.::~ 
' 100 

,.M,.=- 0 . 
..l Ale. Ap,_ A,. 

1 11.3643 11.3636 11.3635 

2 -0.0173 -0.1332 -0.1485 

3 -0.0003 0.0066 -0.0160 

4 -0.0000 -0.0029 0.0038 

5 0.0001 -0.0064 0.0434 

6 0.0000 0.0020 0.0004 

7 0.0001 0.0031 0.0689 

8 0.0001 -0. 0010 0.0703 

9 0.0000 -0. 0012 0.0486 

10 0.0000 0.0023 0.0925 

Though curaory examina t i on of t ne {) i from the case 

doe s no t s .. o~ 1 , ;.r es ~ ~ •s are not nearly 

as smooth as thos e f or t r e o 1r nt a v le .gtn: t he third 



88 

differences show irregularities. Consideration of the later 

time stages shows that the third harmonic is actually s ignif -

icant, though the fourth is not. In proceeding to the next 

time stage, a velocity distribution using the first three 

harmonics was used; this distribution has regular fifth 

differences. 

The zero plate-viscosi ty case is cons i derably noisier; 

the second differences show irregularities in s ign and mag -. 
nitude, and even exami nation of the e 's t hems elves shows 

is suspiciously high. This higher noi s e leve l i s 

confirmed by consideration of the harmonic ratios, but corn -

parison of the first two harmonic ratios with those of the 

case shows that the velocity distributions 

are similar except for this difference in noise level. Thi s 

is what we should expect, since the bending dissipat ion i s 

about half the medi um dissipation for the dominant-wavelength 

case, about 0.5% of the medium dissipation for the ~ = ~4j100 

case, and strictly zero for the zero plate-viscosity case, 

while the medium dissipations remain essentially the same in 

all three cases. Therefore, the /-1. == ~J I t oo case is 

physically much closer to the zero plate-viscosity case than 

to the dominant-waveleng th case , and the velocity di stribu­

tions reflect this s imi lar i ty . 

The diff erenc e table s f or t he ,.U = ,UJ ( t OO case 

and the zero plate-v~ s c~sity c s e s now t hat t he irregulari -. 
ties in the e dist~i ~ lt or · occur vhere the plate crosses 

a horizontal me sh ~ine . I t ls s it ~ati on, the curvilir.ea r 



trapezoids over which the medium dissipations are averaged 

change from very short trapezoids to very tall ones below 

the plate and change in the opposite sense above the plate. 

It is reasonable to surmise that the size and probably the 

sign of the discretization error changes at this point. Al­

though we can thus localize a probable trouble spot in the 

discretization process, the only way to eliminate the diffi-

culty within the framework of the discretization scheme used 

would be to reduce the mesh spacing, -1. Since the number 

1/1&. of equations increases as / and the solution time 

increases approximately as the cube of the number of equa-

tions, a significant decrease in the mesh spacing would en-

tail a very large increase in computation time. 

The infinitesimal analysis (4) predicts the presence 

of only the first harmonic in the G distribution for folds 

of very small amplitude. More accurate analyses for the 

free-plate case and for the case of a plate with zero bend-

1n6 resistance constrained by ~ distribution of discrete 

dashpots shows that the second harmonic should indeed by pre-

sent for small but not infinitesimal amplitude. A more con-

vincing demonstration of the significance of the second 

harmonic for finite amplitudes is given by figure 16, where 

it is evident that the second harmonic grows as the ampli-

tude of the fold increases. The magnitude of the secon~ 
I 

harmonic is also related to the shape of the layer (Chapter 

VIII, Section 4). 

The noiae ?res ' t i n t e r s~ts of the dominant-
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wavelength case will not disturb the smoothness of the shape 

used for the computation of the next stage, but the case of 

a wavelength much longer than the dominant wavelength can 

only be treated if some sort of smoothing technique is used 

at each stage. In order to exhibit the widest possible var-

iation in shape as a function of the ratio of initial wave-

length to the dominant wavelength, it was decided to compute 

the fl =Mel /1oo case and smooth the results at each 

stage. Going to ~he limiting case of the zero-viscosity 

plate gives a more noisy e distribution and does n6t 

significantly modify the harmonics (1 and 2) which are 

above the noise level. The smoothing was done by examination 

of the harmonic analysis of the B distribution at each 

stage according to the criteria outlined above; in general 

the rule was followed that it was better to leave in a 

harmonic coefficient if there was some doubt as to its 

significance. 

4. Strain-rates in the medium 

So far we have focused attention on the plate viscos-

. ity distribution, since it is more likely to cause errors 

that accumulate from one time step to the next. In exam1n-

ing the medium velocity distribution, we are concerned only 

that it be accurate enough to justify conclusions which we 

may deduce from i t. The moat convenient representation of 

the medium velocity diatrib"'t 1on r or geologic purposes is 

the orientation or t he p · incip atrain-rate axes; since 
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this orientation angle depends on the ratio of second dif­

ferences of ¢ at a given point, it is rather sensitive to 

errors and irregularities in the ¢ distribution. If we 

take the differences of the orientation angles at successive 

points along a horizontal or a vertical mesh line, the 

differences are very regular except where there is a transi-

t1on from orientations which are computed with some el1m1na-

t1on and some regular points to orientations which are com-

puted entirely with regular points. These irregularities 

are small--in almost all cases they cannot be detected by 

visual examination of a plot of the principal strain-rate 

axes--and they certainly will not affect the conclusions 

based on a consideration of the strain-rate distribution. 

5. Choice of the time step; cumulative errors in the shape 

Up to the 81° stage of the dominant-wavelength fold 

and the 33° stage of the weak-plate fold, simple extra­

polation of the velocity of the plate was used to find the 

new shape. That is, the velocity given by the calculation 

of one stage was taken to be the average velocity in the 

time interval up to the next stage. When the e.- values 

calculated for the new shape were normalized to have the 

same 8, as that of the previous stage, the maximum dif-

ference between any of the Bz· of the two sets was always 

less than about 10~. 

It was found tha t the ratios of the harmonic coeff1-
. 

c1ents of the 9 d1str1but1ona, A a'/ A, , had an approx-

imately expon t ! l depenaen'e on tne dip of the 11mb, and 
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that they were relatively insensitive to the finer details 

of the shape. These features made possible a method of 

combined prediction and extrapolation which was used to 

calculate the shapes of the final stage of the dominant­

wavelength fold and the further stages of the weak-plate 

fold. 

The method used was the following one: (1) The ratios 

were plotted against the dip of the limb on semi-

logarithmi~ coordinate paper, and the expected ratio for 

the next stage was estimated. (2) On the basis of these 

predicted A·&/ ..4, and those from the previous stage, the 

average A, over the next time interval were calculated. 

(3) The new velocity distribution for the shape determined 

using this set of average Ai was then computed, and the 

Ai/A·, ratios obtained from this velocity distribution 

were compared with those predicted in step 1. A revised 

shape for the stage just computed wasdetermined using the 

plate velocities from this stage and the previous stage. If 

the predicted and calculated harmonic ratios were suffi-

ciently close, this revised shape was used to determine the 

next stage as in steps 1 and 2. If they were not suffi­

ciently close, the velocity distribution for this stage was 

recalculated using the revised shape before proceeding to 

the next stage. 

The lower harmonic s w~re required to match to within 

lo,%; a larger tolerance wa a ce pted f or the higher harmon­

ics, since their magnitude w s uch smaller than that of the 
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lower harmonics. 

This process worked well up to the 690 stage of the 

weak-plate fold, but after that point it was no longer pos­

sible to predict the velocity distribution with sufficient 

accuracy. The reasons for this difficulty are associated 

with the shape of the fold at these high-dip stages and are 

discuss~d in Chapter VIII, Section 6. 
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CHAPTER VIII 

RESULTS 

1. Introduction 

The principal results of the numerical computations 

are the shape and velocity of the layer at each stage and 

the velocity distribution in the medium at each stage. 

The 9i and e.,: and the corresponding harmonic . 
coefficients A_. and A,· are tabulated in Appendix B for 

the three folds computed: the free plate ( L << L.1 ) , the - -
dominant-wavelength fold ( L = LJ ), and the weak-plate 

fold ( L= 4.~ LJ ). The initial shape for the free plate 

was a sine wave, Y == y.. ~ ~ with a maximum dip of 1° · 
- - L , 

that for the other two folds ( L~LJ I L = lf.' LJ ) was 

a sine wave with a maximum dip of 10°. Successive shapes 

of these three folds are plotted in figures 8, 9, and 10. 

In figures 11, 12, and 13 selected stages of the three folds 

are plotted together for visual comparison; in these figures 

the symmetry of the problem is used to extend the fold over 

a longer range of arc length. 

For discussion of the growth of the various folds) it 

is convenient to plot the ratios of the Fourier coefficients 
. 

of e and e logari thm1cal ly as a function of the dip of 

the limb. A,. I A . and A, / , are p l otted in figures 

14 and 15, while ~ ,.I ~. ana A, 4 , appear in figures 
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16 and 17. The significance of these curves is discussed in 

Section 3. 

Principal strain-rates and finite strains for select­

ed fold stages are plotted in figures 21 to 27. The cal­

culation of these quantities is described in Appendix A; the 

interpretation of the diagrams is discussed in Section 7. 

Table 4 summarizes the principal results for the cases 

L ( < L.~ , L -=- LJ , and L = 4.' L.J respectively. 

2. Stages of development of a finite-amplitude fold 

Although the folding process is a continuous one, for 

ease of discussion it may be separated into three portions, 

each with its characteristic style. These styles may be 

called the low-dip style, the high-dip style, and the iso­

clinal style. 

In the following discussion, the fold is thought of 

as an anticline, and the port;ion of the medium above the 

anticlinal hinge is referred to as being outside the crest, 

that below the hinge as inside the crest. In speaking of 

planar features such as the planes of maximum flattening 

rate (perpendicular to the maximum compressive stress), we 

shall designate planes which dip toward the anticlinal axial 

plane as fanning, those which dip away from the axial P.lane 

as anti..!fanning. 

The low-dip stages represent a direct continuation of 

infinitesimal-ampl itude fol ding. The competent layer is 

still pushing t he m iu: aside and velocities due to folding 
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a re g reater t han those due to the compression of t he 'T,eci·.:r: . 

This s tyle is srown by fi gures 21 and 22 for the domi nant 

w~ velen~th and 25 for the weak plate. Throughou t t hese ;,ta~es 

the pla nes of maximum flattening rate form an a n t i - f a n be::..o;,. 

he c rest. 

In the high-nip stag es the medium be~ in s to play a 

more a c tive role: (1) At the crest of the fold the vert ical 

veloc i t y i s less than it would be if t here were no l ayer and 

the medium were undergoing the same uniform compress i on r ate . 

(2) The vertical velocities along the x- axi s ins ide the c r est 

of t he fo l d begin to be negative, a nd the materia l insice the 

cres t starts to be extruded from the fo ld . (3) ~·Jh en thi s 

occurs, the planes of maximum flattening r a te c han~e from 

anti-fanning to fanning. This style is pictured in fig· r es 

23 and 24 for t he dominant waveleng th a nd in figure 26 f o r t~e 

weai< plate. 

As the limbs con tinue to steepen and a pproach each 

o t her, the portion of the medium inside the cres t become3 

more and more confined, and the extrusion of thi s material 

i s the doninant aspect of the folding proce s s. The ons e t o~ 

t h i s i s oclina l style is less well defined than the t r a nsitior. 

he t ween the low- and high- dip styles, but it c lea rly repre3e~ts 

ano trer s t yle of deformation. Figure 27 illus tra tes tr.is 

s tyle. A more prec ise definition and a discuss ion of t he 

special features of this s tyle are found in Secti on 6 . 

Although transition from one style to t he next i s 
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gradual, we can determine the approximate dip of the limb 

at which the transitions occur. For the dominant wavelengt~ 

the limit between the low- and high-dip stages is probably 

close to 66°. At a dip of 66°, the planes of maximum flat­

tening rate form an anti-fan, and the crest of the fold has 

a vertical velocity less than it would have had if the fold 

had not been present. However, the vertical velocity along 

the x-axis inside the crest of the fold does not become nega­

tive until the 70° stage is reached. The 89° stage of the 

dominant-wavelength fold does not show the characteristics 

of the isoclinal style (Section 6).' 

For the weak plate, the transition from the low-dip 

to the high-dip style occurs between limb-dips of 53° and 

630; all three criteria indicate that the 63° case belongs 

in the high-dip stages. Signs of the transition to the 

isoclinal style begin to occur when the dip of the limb is 

69°; the 79° and 890 examples are clearly isoclinal stages 

(Section 6). 

3. Shape analysis 

Differences in shape between the three folds can be 

detected by visual examination (figs. 8-13) only after the 

dip of the limbs is greater than about 45°; as the amplitudes 

become larger, the differences are surficiently pronounced 

so that it would probably be possible to detect them even 

in natural folds--where the shapes would naturally not be 

as ideal as in the computed examples. It will be shown that 

a Fourier analysis exhibits differences in the trends of the 
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shape development at lower amplitudes also. 

Examination of the folded shapes and consideration 

of the balance between bending dissipation in the layer and 

dissipation in the medium suggest that ~he important charac­

teristic of the shape which distinguishes the three cases 

is the "sharpness" of the crest. There are a number of 

ways to express this "sharpness" property, for example: 

(1) the relative length over which the limb of the fold 

remains essentially straight, (2) the amplitude of the fold 

at a given horizontal shortening, and (3) the ratio of the 

maximum curvature to the average curvature. Although these 

parameters are useful for an intuitive understanding of what 

is meant by sharpness, none of them would be very satisfac­

tory in describing natural folds, since they are all rather 

sensitive to local irregularities in the shape of the fold. 

What is needed is a method of describing the shape that is 

relatively insensitive to local variations but sensitive to 

the differences in overall sharpness shown by the different 

computed fold shapes. 

Harmonic analysis of the inclination B as a func­

tion of arc length ~ is probably the most useful way of 

describing fold shape, at least in the low- and high-dip 

stages. This method is diseussed in Chapter 5, Section 2. 

Its usefulness is dependent on the possibility of describing 

the shape in terms of a small number of harmonic coefficients. 

If this is possible, then a natural fold can be described in 

terms of the first few harmonic coefficients, and the omission 
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of the hi~her harmonic terms provides an automatic method 

of smoothing the observed inclination data. The more 

intuitive measures of sharpness mentioned above can be ex-

pressed in terms of the harmonic coefficients if desired. 

In order to discuss the growth of a fold with time, 
I 

we must choose a parameter to me~sure the stage which the 

folding has reached. Two such parameters are (1) the maxi­

mum dip of the limb, and (2) the percentage of shortening 

that has occurred. It will be shown later (Section 5) that 

the way in which the plate deforms at a given stage is rela-

tively independent of the details of the shape at that stage. 

To the extent that this independence holds, it makes little 

difference which stage parameter is used. The dip of the 

limb proves to be satisfactory, and since it is easily deter-

mined, it is used here as the "stage" variable to which the 

development of fold shape is referred. For a naturally ob-

served fold, the dip of the limb may be taken as the value 

calculated from the terms of the harmonic analysis that are 

judged to be significant; this will smooth out any irregu­

larities in inclination in the neighborhood of the center 

of the 11mb. 

In figures 14 and 15 the ratios of the harmonic 

coefficients ~t /~ , and A .. I A, - - are plotted logarith-

mically as a function of the dip of the limb. If we except 

the first three stages of the i- = ~cl curve (discussed in 

Section 5 below) and the l aa t three stages of the L = 4- .' L.; 

curve (discussed in Section 6 be l ow), t he following 
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conclusions can be drawn. 

1) The importance of the higher harmonics in the 

shape representation increases approximately exponentially 

with increasing dip of the limb for all three folds. 

2) The ratios of the harmonic coefficients should 

describe a smooth curve. Therefore, the deviation of the 

ratios from a smooth curve gives a measure of the errors 

committed in the discretization process. 

3) The separation of the curves for the three 1/~4 

values at any given stage is large. From this standpoint, 

the shape of finite-amplitude folds is sensitive to the 

variations in physical parameters among the three cases, and 

the harmonic representation of the shape is therefore an 

appropriate method to describe these shape variations. 

4) The shape of folds that have not reached the iso­

clinal stage of deformation can be described in terms of a 

small number of harmonic coefficients. The description of 

the shape of the free plate is contained in the first two 

harmonic coefficients: the ratio ~~~ . is always less 

than 4 x lo-5 over the shortening range studied; the maxi­

mum value is reached for a limb-dip of 90°. The third har­

monic becomes significant in the dominant-wavelength fold 

only after the dip of the limb reaches 66°; ~he fourth is 

still negligible when the limb dips 89°. The description of 

the shape of the weak plate is complicated by two features: 

(1) since the weak plate has a much "sharper" shape, higher 

harmonics are neceaaary for 1 ts deacription; and (2) the 



... )· 
l I I I I I 

0 a 
0 c 

.1 ---
1- 0 -
r- -
1- -
r- -
1- -
1- 0 0 -v 

<0 
r- ~ c ,, 
1- v 0 -

0 
0 

0 
.01 '-' 

r- -
r- 'v~ 0 -
r-

~ 
-

r- 'v -
r- 0 -
r- 0 

-
0 

r- 0 
0 -

0 0 
0 

f- -
A2 --- 0 
At 
.001 - -- -

- -
- -
- 0 0 -v 
- \.. -

\.. 

- v -

0 
r- -

0001 
r- -
f- 0 -
r-
f- -
r- -
r- -

f- -

r- -

00001 
30° 60° 91 

I I I I I I I 

r.'j 'llr"' ]11 , -- A.,./ AI ~lnt.t.e d . ) rtr' t .• r.l v:l •• y a.-a· L::>:. 
• :m:...-Gi~• . 



- I I I I I I I -
- -
- -
- 0 -

- 0 
-

- c 
:-- 0 -

- -

't> 
.01 " - <o -

:-- ~;)'." 0 -- ,, -
1-

" 
-

1- -

f- -

1- -

f- -
0 

r 

f- ':::::: 

1- 0 -
.001 

1- -
1- -

1-
0 

-

f- -
0 

'- -
0 

't> 
" 1- ,, -

" 
0 

.0001 
1- -
f- 0 

-
1- -

f- -

f- -

1- -
0 

1- -

1- -

0 

.00001 l 1 I I 1 I I I 

!='' gu:--e l5 . -- AJ/ A. p .... ott~i .::.o;.;"l~"i:r.m~ca~ .... y a .. ~a~:st 
llmt -d~p. Values i."'O!' L H L. ~ a:1d L=Ld .,..··t Clip: lt'8:'> t.·.c. · l i.n° 
are belo-w the ~:br::f~c- nc levo:·- 0· U . ..: compt.ttat ~uJ. . 



109 

magnitude of the higher harmonic coefficients in the veloc­

ity distribution is less well known because of the higher 

d1soretization error in the weak-plate solutions. The ratios 

of the second and third harmonics to the first show a 

regular growth in figures 14 and 15, but the sign of the 

fourth harmonic ch~nges between the 53° dip stage and the 

63° dip stage. The most reasonable interpretation of the 

data is that the first three harmonics give an adequate des­

cription of the weak-plate fold until the dip of the limb 

reaches about 65°, and that beyond this stage the harmonic 

representation no longer provides a simple and convenient 

way of describing the shape . 

. 
4. Dependence of the A.- ~ fold shape at low amplitude 

Before the shape variations discussed in Section 3 

can be compared with those in natural folds, it must be 

shown that they are not sensitive to small variations in the 

initial shape of the folded layer. The nature of the de-. 
pendence of the Ai on fold shape is different at moderate 

and high amplitude (Section 5) from the dependence at low 

amplitude. 

In order to test the dependence of harmonic coeffi­

cients Ai (describing the bending in terms of a.· ) on the 

harmonic coefficients Ai (describing the 8.· and hence 

the shape), the velocity fields were calculated for the 

dominant-wavelength folds of two di fferent shapes, both 

having 10° limb-dips. The first shape, which was taken as 

the starting shape ror the f ull dominant-wavelength fold, 
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was a pure sine curve, . 1. rr Y = y. ~ -y- ~ ; described in terms 

of B and .!_, this shape is closely approximated by the 

first two harmonic coefficients, with -0.00446. 

The second shape ·was also composed of these two harmonics, 

but in . the ratio ~1/A, :: -1/9. This ratio is the largest 

possible which does not cause a change in sign of the 

curvature between the limb and the crest of the fold. 

The solutions of the two problems gave ~~0, = -0.00152 

for the first fold and ~~/~, = -0.03481 for the second. 

If we form the ratio ~·1~·/j .. /~. , its value is 0.34 

for the first fold and 0.31 for the second. The near equal­

ity of these two values suggests that the rate of growth of 

a particular 1~ is proportional to its relative amplitude 

in the initial shape. This proportionality is not that of 

the conventional infinitesimal-amplitude treatment of Y as 

a function of X (1). The conventional treatment predicts 

that a sine wave, 1_ (L_) with a 10° dip of the limb will 

fold into another sine wave with the same arc length and 

higher amplitude. It can be shown that if this were to 

happen ~1~~ I would be -0.037, as opposed to the value 

-0.00152 calculated in this study. Thus the infinitesimal 

treatment in its conventional form gives a very erroneous 

prediction for the shape development of even this low-

amplitude fold. .. 

(1) M. A. Biot, Theory of folding of stratified visco­
elastic med~a and its implications in tectonics and orogene­
sis: Geol. Soc . America Bull. , v. 72, 1961, p. 1595-1620 
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It is proposed that the range of validity of the in­

finitesimal treatment might be extended to folds of small but 

f1n1 te amplitude, provided that the harmonics or 1: as a 

function of ~ , hitherto considered in the infinitesimal 

theory, are replaced by harmonics of 8 as a function of 

s. On the basis of the infinitesimal treatment (2) the 

ratio of the growth rates of any two harmonica is propor­

tional to the ratio of the amplitudes of the two harmonics 

in the initial shape. If it is assumed that the constant of 

proportionality would be the same if the infinitesimal treat­

ment were formulated in terms of 9{_s_) rather than ~(JU, 

the proportionality constant ~,./~, / ia. / i . is 0.310. 

This value is close to the values 0.34 and 0. 31 derived from 

the numerical calculations of the two 10° dominant-wavelength 

folds. Applying the same assumption to the first two har-

monies of the 100 weak-plate fold, A.fA , I A .. /A , = 2.65, 

while the value calculated for the 10° stage of the weak­

plate fold is 2.63. 

These results are suggestive, but not conclusive. 

There is no basis within the framework of the conventional 

infinitesimal treatment for preferring a shape representa­

tion of e as a function of s to a representation of ~ 

as a function of ~~ since the two are identical in the limit 

as the amplitude goes to zero. However, the numerical re-

sults do suggest that an analytical theory of the shapes of 

low but finite amplitude folds might be based on the bending 

(2) Biot, ~· cit . 
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of a slightly curved plate where the shape perturbations are 

harmonically analyzed in terms of e as a function of s . 

. 
5. Dependence or the ~~· £.!:! fold shape at higher amplitudes 

The proportionality discussed in Section 4 does not 

persist as the fold grows: for the dominant-wavelength fold 

with a limb-dip of 23° the ratio is 

while for 36° it is 2.15. 

The nature of the dependence of the A · _z on fold 

shape beyond the amplitude where proportionality holds can 

be studied by comparing two plate velocity distributions 

computed from fold shapes which have the same limb-dip, but 

slightly different ~i • Such pairs of examples were com­

puted for the 81° stage of the dominant-wavelength fold and 

the 63° stage of the weak-plate fold. The second shape in 

each case was calculated by using the velocity distribution 

obtained from the first shape to refine the estimate of 

average velocity of the plate used to compute successive 

shapes (Chapter VIII, Section 5). The harmonic ratios of 

the two shapes and their corresponding 9i values are tabu-

lated in table 3 {3). 

Examination of the table shows that: (1) the changes . 
in the ~i are certainly not proportional to the changes in 

(3) After the two dominant-wavelength cases were com­
puted, the method of eliminating points near a steeply dip­
ping portion of tfie plate was made more accurate. The secon~ 
a posteriori, shape of the 81° stage was then recomputed, and 
it is the results of this computation that are plotted in 
figures 8, 11 to 17, 20, and 24 , and tabulated in Appendix B. 
The more accurate method was used for all stages of the weak­
plate fold. 
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. 
TABLE 3. --Variation in ~_. /~. when ~.·; 13 , are 

changed and 11mb-dip is held constant. 

I 

1 A• I A, A;J_4, Ai/A.. 

2 -0.01941 -0.1317 -0.02314 
1.." L4 
81° 3 0.00055 0.0004 0.00033 

Limb-dip 
4 -0.00011 -0.0024 -0.00015 

II 

Aij,4, 

-0.1342 

0.0009 

-0.0023 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 -0.15946 -0.4356 -0 . 14400 -0.4568 

l = Jl., , L11 

63° 3 0.04727 0.1637 0.02769 0.1854 
Limb-dip 

4 0.00065 -0.0646 -0.00662 -0.0396 

the ~i , and in some cases they even have the opposite . 

sign; and (2) except for ~~ / 1·· in the dominant-wavelength 

example, the changes i .n the velocities are relatively much 

smaller than the changes in the shape. ( ~~~~ . and ~,;~, 

are so small that their variation is probably not signifi­

cant within the framework of the numerical computation.) 

Comparison of the changes in the ~~ shown in this table 

wi th the changes due to the normal growth of the shapes il­

lustrated in figures 16 and 17 demonstrates that the rate of 

growth of the various harmonics is determined mainly by the 

ratio ~/£d and the stage of folding as measured by the 

dip of the limb, rather than by the amplitudes of the indi-

vidual Fourier components. 
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l'he t ransit ion from the very- low - dip sta~e.:; ( ~&/_d, 

is propo r tiona l to A.: /A, - - ) to t he later s ta~es ( ~ .. I 3·. 

repenrl!" only on limb-dip and 1- lf:J ) occu r s at a limb- dip 

of about 15°, since the 23° stage of the dominant- i..:avelerqth 

fold no l onge r shows the proportionality discussed in 

Sect ion 4 . A dip of the limb of 15° is taken as the uppe r 

limit of the wavelength- s election process of the infinite3i ­

mal - ampli tud e theory (4), even though the conventional 

infinitesimal - amplitude theory breaks down before the c ip of 

the limb reaches 10° ( Sec tion 4). The fact trat the rate 

of change of the s hape of a fo ld is r elatively independent 

of the detail s o f its shape when the dip of the limb is 

g reater than 15° is a n important conclusion . Its geolocic 

signifi~arice is d i scussed in Chapter IX, Section l . 

The resu lts of this s ec tion a nd Section 4 can be ~sec 

to discuss the low-dip stages o f the dominant - wavelem;th 

fold . ~~ /_4, for the 10° stage of this fol d is too ~tgh to 
. . 

f2ll on a smooth curve determined by the ~A /~ . of the other 

st.::Jges (fig . 16). At a 10° limb-dip the val 1 Je of ~·~ ~~·· 

13 propor tional to ~a/~, s o that the pure sine curve 

y(~) chosen for the initial shape i s too sha r p for A~/A, 

to rise smooth ly witr the approximately exponen t i al dependence 

on limb- dip determined by !-/~; The effect of this 

a bno·rmal sha rpness pers ists until the 36° stage, when the 

norma 1 g rowth of ~~ /!}. beg ins to mask 1 ts pr esence ( f l g . lL:) . 

(4) Blot, ££· cit. 



117 

The compensation mechanism by which the sharpness of 

the initial shape is masked at higher dips by the normal 

development of the fold shape will be effective only if the 

absolute magnitudes or the higher harmonics in the initial 

shape are small in comparison to the values they would have 

at high limb-dips in the normal growth of a fold with the 

given L /LJ . Apart from this restriction the shape at - -
relatively high limb-dips {greater than 45°) is relatively 

independent of the starting shape. This independence allows 

the arbitrary assumption of a particular initial shape at 

the 100 stage, provided that the initial shape is a smooth 

one. 

6. Isoclinal style 

The isoclinal style of deformation shows certain 

special features. When the limbs of the fold become steep 
' 

and straight, their shape remains ·constant, and they merely 

move closer as the folding proceeds. The strain-rate field 

in the medium becomes one of simple extrusion between walls 

of fixed length. In contrast to this simple behavior in . 
the limb region, near the crest the 8 of the plate must . 
change rapidly. e will be small in the limb region; as 

the crest is approached it must rise to a maximum and then 

decrease to zero at the crest itself. The rate of change 

of the curvature must be close to zero on the limb, positive 

and large where the layer is "unrolling", and negative and 

large near the crest itaelf. Th1a region of rapid change 
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must be concentrated closer and closer to the crest as the 

folding proceeds. The portion of the medium just inside the 

crestal region must exert large stresses on the plate, and 

it is probable that the orientation and magnitude of the 

~train-rates change rapidly with distance. 

Although these features affect the validity of the 

computations of the present study in the isoclinal stages, 

a definition of ·the isoclinal style can be proposed. This 
. 

definition is based on the e distribution, although it 

might be possible to define the stage on the basis of the 

strain distribution in the medium or the shape of the fold. 

In figures 18a through 18d e is plotted as a function of 

s for selected stages of the weak-plate fold. It can be 

seen that as the dip of the limb increases from 43° to 69° 

the maximum value of e moves nearer to the crest. For 

the 690 stage, e in the limb region is still relatively 

high, but it is essentially constant. When 8 is essen­

tially constant over two thirds of the distance from limb 

to crest and rises to a sharp maximum before falling to 

zero, the style of folding may be called isoclinal. Three 

hypothetical e distributions in the isoclinal stages are 

pictured in figure 18h. 

A consequence of the special features of the isoclinal 

style is that mathematical simplifications that were valid 

in the earlier stages of fold i ng may break down during the 

isoclinal stage. When the curvature at the crest of the 

fold becomes large, the l ayer can no longer be considered 
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as a thin plate. It is probable that the stress distri-

bution across the plate is no longer linear. Strong tension 

in the limb and probable strong compression in the horizon­

tal part of the crest make the validity of the assumption of 

inextensibility of the plate somewhat dubious, especially 

for the weak-plate fold where ~,/~~ is relatively low. 

The rapid change of the pattern of deformation in 

and near the crestal region also affects the validity of 

the discrete treatment of the proQlem. It may no longer 

be sufficient to describe the shape and the velocity of the 
. 

plate by only ten 9 values and ten 9 values. The des-

cription of the shape and the velocity in terms of two or 

three harmonic coefficients is no longer possible. The 
. 

lower harmonics in the e distribution decrease in amplitu~, 

and the higher harmonics increase, because the changes in 

inclination are all concentrated in a narrow range of arc 

length near the fold crest (figs. 16 and 17). This adverse­

ly affects the smoothing process (Chapter VII, Section 3), 

since the discretization errors affect the higher harmonics 

more strongly. The most serious consequence is the break-

down of the extrapolation process by which the new shape is 

determined (Chapter VII, Section 5). For this extrapolation 

to be effective, it is necessary that the various harmonics . 
in the 9 distribution change regularly as the dip of the 

limb increases. In the isoclinal stage this is no longer 

true, at least with the time s tep used, and extrapolation of 

the harmonic coefficients become s very difficult. 
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This difficulty in extrapolation is illustrated 

in figures 16 and 17 where 81 I~, and ~~;~, are 

seen to drop sharply for the 79° stage. and ~./d. 

for the 89° stage cannot be plotted in figures 16 and 17, 

since they change sign ( ~1/~, = 0.0474, ~3/~, = -0.3300). 

Figures 18e and 18f show the 9 distribution for the 790 

and 890 stages of the weak plate. It is concluded that the 

shapes of these two stages do not have quantitative signif­

icance, even though a visual examination of the fold shapes 

does not indicate that they are in error (fig. 10). 

..,. 

Difficulties also arise in the treatment of the medium. 

The radius of curvature is no longer large relative to the 

mesh length, and it is probable that the strain-rate changes 

rapidly from one mesh point to the next. For example, in 

the 890 stage of the weak-plate fold, the radius of curvature 

at the crest is 2.7 mesh lengths. (Note that the plate 

thickness corresponding to a viscosity ratio ,)-lop 1 ).I.., 

is about one mesh length.) 

of 16 

The strain-rate field in the medium for the 790 and 

89° stages does not reflect the .irregularities shown by the 

e distributions (figs. 18e and 18f). This may be due to 

the fact that the velocities of points on the plate are found . 
by integrating e ; the plate velocities for these stages 

are therefore more regular than the ei If a much shorter 

time step had been used in t he isoclinal stages, the result­

ing shape of the 89° stage woul d show more compression and 

considerably higher ampl itude. Except for this effect, the 
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strain-rate and strain fields for the 89° stage (fig. 27) 

are probably still valid. Increased amplitude would proba­

bly not ohan&• the atrain-rate field appreoiably, but it 

would increase the cumulative strains. 

With a smaller mesh spacing and a considerably 

smaller time step, the present method could be used to cal-

culate the development of the folding in the isoclinal 

stage. However, since the physical assumptions break down 

at the same time as the numerical treatment, it would be 

more logical to conduct a quantitative study using a dif­

ferent formulation of the problem. Such a formulation would 

have to account for the finite thickness and possible elon-

gation of the plate . 

The isoclinal style defined above does not coincide 

with the conventional geologic definition of isoclinal 

folding. The 89° stage of the dominant-wavelength fold has 

an isoclinal shape, since the limbs are parallel, but the 

e distribution of this stage (fig. 18g) does not show the 

characteristics of the isoclinal style. 

When the 8 distributions of the weak-plate fold 

and the dominant-wavelength fold are compared, it seems 

probable that the 11mb-dip of the L : L., fold will be-

come considerably greater than 90° before the 11mb begins 

to return to the vertical. An overturni~ of at least 10° . 
is to be expected from the growth of the Ai (figs. 16 and 

17), although further extrapolation is of doubtful value, . 
since the B distribution may start to change mare rapidly 
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after the· limb becomes overturned. Such a fold with both 

limbs overturned is called a fan fold (5). 

It: the horizontal shortening continues, any fold 

must eventually deform in the isoclinal style, provided that 

the layer remains coherent. As the vertical portions of a 
' 

fan fold approach each other, the material insi de the fold 

will be compressed strongly at the same time that it becomes 

more difficult for it to be extruded from the core of the 

fold. As the pressure in the core continues to rise, the 

stresses due to the extrusion process will become large in 

comparison to the bending resistance of the plate, and the 

limb will approach the vertical again. 

Figure l8h shows three hypothetical curves indicating 

the isoclinal stage. Curve I shows the isoclinal style 

when the limbs are parallel. Curve II, which is modeled 

after figure l8d, shows an earlier isoclinal stage when the 

limbs are not yet vertical. Curve III shows the way in 

which the dominant-wavelength fold will probably approach . 
the final isoclinal stages. e in the limb region must 

be negative for the limb to return to the verti cal position. 

This discussion of the isoclinal style is necessarily 

somewhat hypothetical. Nevertheless, two conclusions are 

clearly indicated by the results of the computati ons: (1) In 

the 69° stage of the weak-plate f old the limbs approach each 

other while remaini ng essential l y straight; all of the 

( 5) M. P . B1111n a, Structural geology: New York, 
Prentice-Hall, Inc., 2d d. , 1 ~54 , p . 42 
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bending is concentrated in the crestal region (fig. 18d). 

(2) The dominant-wavelength fold will become a fan fold. 

7. Deformation of the medium 

As examples of the ~ field in the medium, fi gures 

19 and 20 show ~~ at the grid points for two stages of the 

dominant-wavelength fold. To get the total ¢ at each 

point, th_ = -X Y must be added to the plotted values. 

Figure 19 shows . the 23° stage, where the medium velocities 

associated with the folding are much larger than those 

associated with the uniform compression (low-dip style); 

figure 20 shows the 810 stage, where the reverse is true 

(high-dip style}. 

A contour map of the ¢ values could be used to 

represent the velocity field. The velocity at any point 

is parallel to the contour of equal ¢ at that point, and 

the magnitude of the velocity is proportional to the value 

of the gradient of the field. However, for geologic inter­

pretation of the velocity field in the medium, it is more 

convenient to plot the strain~rates and the accumulated 

finite -strain at points 1n the medium. 

In figures 21 to 27 the orientations and magnitudes 

of the principal extension rates and the major and minor 

axes of strain ellipses are plotted for various time stages 

of the dominant-wavelength and weak-plate folds. Strain-

rates are plotted below the layer and finite strains above 

the layer. The original orientation of the major axes of 
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the strain ellipses are shown by dQsheJ lines. The finite 

strain can be considered to be the sum of a pure strain 

and a r1a1d rotation. 

The methods used to calculate the strain-rates and 

the finite strains are described in Appendix A. It should 

be mentioned that .the method used to calculate finite strain 

is somewhat inaccurate; therefore, the finite strains plot­

ted in figures 21 to 27 should be regarded as approximate 

only. In particular, the principal axis orientation for the 

smaller strains is not well determined. 

Certain aspects of the strain-rate fields have been 

discussed in connection with the stages of folding (Section 

2). In the present section prominent features of the strain­

rate and total strain fields are pointed out, and certain 

peculiarities are explained. Interpretation of the strains 

and the strain-rates in terms of geologic strain indicators 

is made in the next chapter. 

The moat prominent teature of the strain and strain­

rate fields is the relatively uniform orientation of the 

planes of maximum flattening and maximum flattening rate. 

By the time the dip of the limb reaches 45° the planes of 

flattening and flattening rate are oriented approximately 

parallel to the axial plane of the fold, and they preserve 

this orientation into the isoclinal stage. The behavior of 

the cumulative strain closely parallels that of the strai n­

rate. The symmetry of the prob l em requires that the planes 

of maximum flatteni ng be parallel to the axial plane at the 

I 



135 

right- and left-hand walla, and the assumption of inextensi­

bility of the plate requires that they make an angle of 45° 

with the plate as they approac~ it. The fact that they are 

sub-parallel to the axial plane over most of the interior of 

the fold is an important result of this study; ita geologic 

interpretation will be discussed in the next chapter. 

There are several significant devi ations from this 

axi al-plane orientation. In the early portion of the low­

dip stage, the material in the medium above t he crest of the 

fold is extending in a horizontal directi on ; by the t i me the 

dip of the limb reaches 45° the extension in thi s region is 

vertical, though it remains small due to the shi elding 

effect of the inextensible plate. In the low-dip stage 

!~ is positive inside the crest of the fold (6 ), and the 

resulting shear strain-rate causes the planes of maximum 

extension rate to form an anti-fan with respect to the axial 

plane. 

When the high-dip stage is reached , t he extr usion 

of the medium out of the inside of the crest past the l imbs 

causes to become negative and _the planes of maximum 

extension rate to form a fan rather than an anti -fan. Even 

in the high-dip stage, the folding of the layer produces a 

positive just inside ~he crest of the fold, a nd t he 

planes of maximum flattening r ate continue to dip away from 

the axial plane here . This ef fec t is probably exaggerated 

(6) The anticl i nal por t ion of the fold is taken to 
be in the upper r i ght - hand quadrant of the coordinate system 
in this section . 
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by the high curvature of the plate in the 89° stage of the 

weak-plate fold (fig. 27). The strain-rates in this region 

are very amall, however. The eame effect ~e present above 

the crest of the fold. 

This transition from fanning to anti-fanning is 

reflected in the cumulative strains. It is somewhat sur­

prising that the transition takes place at the same dip of 

the limb for both the strain rates and the cumulative strains. 

For the cumulative strains, the transition is caused by 

the rotation. Comparison of the initial and final orienta­

tions of the major axes of the strain ellipses in figures 

22 and 23 shows that the rate of rotation is large at the 

transition from low-dip style to high-dip style. Rotation 

rates can be calculated from the ~ field at any stage: 

between the 46° and 56° stages of the dominant-wavelength 

fold the rotation rate would produce a positive rotation of 

several degrees. 

The cumulative strains are computed on the basis of 

the new positions of the points of an originally square 

grid, so that the strains of a particular small region can 

be traced from stage to stage by picking plotted strain axes 

in corresponding positions with respect to the layer. If we 

follow a particular strain axis from stage to stage, we see 

that the rotations increase rapidly in the early stages of 

the folding and continue to increase, but at a slower rate, 

in the later stages. Compari son of the strain axes with 

reference axea showing the fini t e atra1ns that would result 
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from a uniform compression with the same shortening shows 

thatz (1) the crestal region near the plate is shielded 

from deformation and shows less flattening in the high-dip 

stages than would be due to uniform compression; (2) in the 

11mb region the flattening is larger than would be produced 

by uniform compression. 

8. Energy dissipation 

Additional information about the physical nature of 

the folding process can be obtained from a consideration of 

the relative values of the dissipations in the different 

sub-regions of the region considered. 

The bending dissipation in the plate is calculated 

directly from the sum of the squares of the differences of . 
the ei The dissipation in the grid portion of the 

medium is calculated from the strain rates at each grid 

point. Although it is not strictly correct to use the str~ 

rate calculated from a 9-point array which includes points 

on both sides of the plate, the dissipations calculated from 

these arrays were included in the total medium dissipation. 

The error introduced in this way will not be large enough to 

affect any of the conclusions drawn from a consideration of 

the total dissipation. Since the problem region extends to 

infinity in the direction of the z-axis, the total dissipa­

tion in the medium would be infinite if the dissipation due 

to uniform compression were included. ~o avoid this problem, 

and to foous attention on the dissipation due to the folding 

process itaelt, the dissipation due to the uniform compression 
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of a strip of the same width as the problem region is sub­

tracted from the dissipation calculated for the medium. 

Thia removal of the uniform compression makes the dissipa­

tions calculated directly comparable to those of the infin­

itesimal treatment, since in the infinitesimal range the 

uniform compression is negligible in comparison to the 

folding. 

In figures 28a and 28b the ratio of the dissipation 

in the medium to the bending dissipation in the plate is 

plotted as a function of the dip of the limb for the dominan~ 

wavelength and the weak-plate folds. The ratios given by 

the infinitesimal treatment (7) are 2 for L = ~ J 

for L = 4. 6 Ld - -

and 200 

In the low-dip stage of folding this ratio decreases 

steadily as the velocity of points on the plate approaches 

more and more closely the velocity which would be associated 

with the uniform compression of the medium if the layer 

were not present. At a dip of the limb approximately cor­

responding to the start of the high-dip stage, the ratio 

passes through a minimum and starts to rise rather steeply. 

This steep rise is caused by the extrusion of material i n 

the medium from the inside of the crest of the fold. Pre-

sumably, the ratio would continue to rise during the iso­

clinal stage and would become very large as the limbs 

approach each other more and more closely. The scatter of 

the last two points in figure 28b is caused by breakdown of 

(7 ) Biot, ~· !!i· 
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the calculation in the isoclinal range (Section 6). The 

position of the minima of the curves of figures 28a and 28b 

ia an indioation or the val1d1~y or the separation of the 

folding into high-dip and low-dip styles, since these minima 

occur at limb-dips corresponding to the transition between 

the two styles. 

9. Summary of results 

In table 4 selected results of the numerical computa­

tions are tabulated for the free-plate, dominant-wavelength, 

and weak-plate folda. 
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TABLE 4.--Summary of the results of the computations 

L/ L.:~ 

}A,j p,., for thickness 
..:&.':' 1:/40 

Limb-dip of transitions 
between styles: 

low-dip to high-dip 
high-dip to isoclinal 

Probable maximum limb-dip 

Ratio of maximum curvature 
to average curvature 
at limb-dips ofs 

Ratio of medium-dissipation 
to plate-dissipation: 

infinitesimal treatment 
minimum 

rree plate dominant weak plate 
wavelength 

<< 1 

oO 

120° 

1.571 
1.575 
1.579 
1.586 

0 
0 

1 

1650 

1.587 
1.589 
1.598 
1.634 

2 
0 .40 

66° 

{/100 ~4.6 

16.5 

1.625 
1.798 
2.198 
3.285 

200 
10 

59° 
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CHAPTER IX 

DISCUSSION 

1. Significance of the shape variations 

The variation in the shapes of finite-amplitude 

folds corresponding to variation in the ratio of the fold 

wavelength to the dominant wavelength is clearly recog-

nizable by visual examination of the computed fold shapes 

(figs. 8-13). We now investigate whether or not this 

variation can be recognized in natural folds. In order 

to discuss this we must examine three questions: (1) The 

initial starting shape for each fold has been chosen to 

be very regular. Since natural folds will not necessarily 

start from such regular shapes, are initial irregularities 

likely to mask the regular shape variation found in this 

study? (2) To what extent is the shape variation found 

in this study sensitive to the details of the mathematical 
' 

assumptions made in formulating the problem? (3) Can this 

systematic shape variation be separated from shape irregu-

larities which are found to some extent in all natural folds? 

1) Initial shape.--On the basis of the infinitesimal 

treatment and of the finite-amplitude analysis of the present 

study, the following picture of the growth of a train of 

natural folds may be presented. The growth process starts 

from an essentially plane layer, with a random distribution .. 
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of small deviations from a perfectly plane shape. The wave-

length of each individual fold in the train is determined 

by the wavelength-selection process described by Biot (1). 

If the initial irregularities are small enough, the folds 

will have a relatively uniform wavelength, the dominant 

wavelength. If the initial irregularities are large enough 

so that a regular wavelength has not developed by the time 

the maximum dips of the folded layer are about fifteen de-

grees, there will ~e a range of wavelengths in the fold 

train, since the wavelength-selection process is not opera-

tive beyond this stage (Chapter VIII, Section 5). In the 

later portion of this stage, the "primary" shape of the 

individual folds is also determined. This primary shape 

will be determined to a certain ~xtent by the initial irreg­

ularities present in the infinitesimal stage. Sufficiently 

small irregularities at the start of the infinitesimal stage 

will tend to produce a regular shape in the primary stage as 

well as a regular wavelength. From this fifteen-degree-dip 

stage on, the rate of change of the shape is determined by 

the amplitude of the fold and by the ratio of the fold 

wavelength to the dominant wavelength. No eviden~e was 

found in this study that the magnitude of any harmonic 

coefficient in the shape could decrease at any stage short 

of the isoclinal stage. Initial irregularities will there-
' 

fore persist beyond the f .ifteen-degree-dip stage, but they 

(1) M. A. Biot, Theory of f ol ding of stratified visco­
elastic media and i t a implications i n tectonics and orogene­
sis: Geol. Soc. Ameri ca Bull ., v . 72, 1961, p. 1595-1620 
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will not be magnified. The final shape will not be com­

pletely independent of the primary stage but will be deter­

~ined mainly by g~owth beyond the primary •tage. 

Two qualitative predictions can be made on the basis 

of this picture of the course of growth or a fold. First, 

in a fold train which includes folds with a range of wave­

lengths, ~h~ longer wavelength folds should have sharper 

shapes than the shorter wavelength folds. Second, if a 

train of folds with a regular wavelength and relatively con­

stant shape is found, the shape of these folds should be 

sharp if the viscosity ratio, Ap/~- , has decreased signif­

icantly during the folding process and less sharp if the 

viscosity ratio has remained constant or increased. 

2) Detailed assumptions of the calculation.--With re­

gard to the shapes produced, the two most critical assump­

tions are probably the assumptions of linear viscosity and 

inextensibility of the plate. As the stresses in the bend­

ing layer become high, it is possible that new mechanisms 

of deformation come into play. The effect of these new 

mechanisms would be to decrease the apparent viscosity of 

the plate. Also, high stress could lower the apparent vis­

cosity even if no new mechanisms operate, if the stress­

strain-rate relation is non-linear. Therefore, natural 

folds which develop at the dominant wavelength may have 

shapes which are sharper than those calculated for the 

dominant-wavelength fold . 

It seems l i kel y that thia ef fe ct is present in nature, 
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since the shapes of the dominant-wavelength fold appear to 

be too broad, especially at high amplitudes. The results 

of the present atudy predict that the dip of the limb of 

the dominant-wavelength fold will increase beyond 900; r.an 

folds of thia sort are found in nature, but they are the 

exception rather than the rule. Since the infinitesimal 

treatment predicts that the dominant wavelength should be 

the most common one in natural folds, the finite-amplitude 

shape associated with the dominant wavelength should be 

the most common shape. Clear evidence that most natural 

folds deviate from the shapes calculated in this study 

for ~ - ~J would strongly suggest that the natural 

layers had followed a non-linear rheological law. 

This possibility of recognizing the presence of non­

linear rheological properties is an important result. In 

order to exploit this possibility, further work is indicated: 

(1) A theoretical study of the finite amplitude shape of a 

layer with non-linear rheological properties should be made. 

Investigation of a non-linear free plate would be mathe­

matically feasible, and the effects of the medium could 

be estimated on the basis of the results of the present 

study. (2) A critical study of the shapes of single-layer 

natural folds should be made to determine more precisely 

what is the moat common natural shape. 

Although the consequences of the assumption of an 

inextensible plate are more difficult to assess, we can get 

an idea of their seri ousness by examining the li~ting 



146 

case of equal plate and medium viscosities. In this limiting 

case an initial sinusoidal fold will retain its sinusoidal 

shape under uniform compresa1on. If the layer were not 

assumed to be inextensible, its shape would tend toward 

this sinusoidal limit as the viscosity ratio is decreased. 

In table 5 are tabulated the ratios of the first few har­

monic coefficients for the 56° stage of the dominant­

wavelength fold, the 53° stage of the weak-plate fold, and 

a sine wave which coincides with the weak-plate fold at 

the limb and the crest. 

TABLE 5. --Comparison of tt· lt1, for !. • ~J and !:. ::: If,' !::.<~ 
folds with A;IA, for a sine curve - -

" .,. !;.I l .,. ~.' LJ - -
56° limb-dip 53° limb-dip sine curve 

l ~1./~. ~-~~. ~i/~. 

2 -0.0047 -0.0827 -0.1256 

3 0.0000 0.0078 0.0296 

4 0.0000 0.0008 -0.0084 

· This table shows that the change in shape between 

the dominant wavelength and the weak plate is consistent 

with a trend toward the sine shape of the equal-viscosity 

case. It thus appears that the assumption of 1nextens1bil­

ity does not seriously affect the shape analysi$, although 

it may affect the strain f i elds 1n the medium, as discussed 
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in Section 2. 

3) Irregularities in the shapes of natural folds.--A 

systematic analysis or the shapes or natural rolds has not 

yet been ca~ried out. However, on the basis of the writer's 

experience with natural folds, he believes that it would 

be possible to detect natural shape variations of the mag­

nitude found in the present study. Fourier analysis of dip 

as a function of arc length can be used to define the average 

shape of a train of regular, natural folds, and consideration 

of the size of the neglected harmonic coefficients can pro­

vide a measure of the meaningfulness of this average shape. 

If sufficiently regular natural folds are selected, com-

parison of the average shapes with the shapes computed in 

this study will give valuable information about the defor­

mational history of the natural folds and the rheoiogical 

laws under which they have deformed. 

2. Strain field and strain-rate field in the medium 

The strain and strain-rate fields plotted in figures 

21 to 27 can be compared with observable geologic features. 

The directions and amounts of cumulative flattening can be 

measured by means of deformed fossils and oolites, and it may 

be possible to interpret the finite rotations in terms of 

rolled garnets. Strain rates are not directly observable, 

but the dynamic analysis of calcite twin lamellae (2) provides 

(2) F. J . Turner, Nature and dynamic interpretation 
of deformation lamellae i n calcite of three marbles: Am. 
Jour. Sci., v. 251, 1953 , p. 276-298 
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a measure of the last increment of strain; the orientation 

of this strain increment will be given by the orientation 

of the strain-rate during the last stage of the deformation. 

With tbe possible exception of rolled garnets, the 

strain indicators discussed in the previous paragraph can 

be interpreted in a relatively straightforward manner, but 

since they require microscopic observation they are not 

commonly measured. Cleavage, on the other hand, is a macro-

scopic property, and its orientation is commonly recorded 

in field studies of deformed rocks. For this reason, we 

shall discusa the way in which cleavage in folded rocks can 

be related to the calculated strain-rate and cumulative 

strain fields, even though its interpretation is not as 

well understood as that of the strain indicators mentioned 

in the previous paragraph. Cleavage is defined as the pro­

perty possessed by certain rocks of splitting more easily 

along planes with a certain orientation (3). The following 

discussion will refer to cleavage that is determined by 

the alignment of micaceous minerals or by a preferred plane 

of flattening of other mineral grains. 

There are two classic geologic explanations of 

cleavage: (1) cleavage is parallel to planes of maximum 

shear stress or planes across wni~h maximum shearing move­

ments have taken place, and (2) cleavage is parallel to the 

planes of maximum flattening or perpendicular to the maximum 

(3) E. S. Hil l e , Outlines of Structural Geology: 
London, Methuen a nd Co . , Ltd . , 3d ed . rev., 1953, p. 104 
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compressive stress. Goguel (4) gives an extensive, though 

somewhat polemical, discussion of the problem. In the fol-

lowing discussion the second mode of formation is assumed. 

This explanation seems preferable on the basis of geologic 

observations, and it is compatible with the results of the 

present computations. 

Even if we restrict consideration to the second mode 

of origin, there are two possibilities for the physical con­

ditions that determine cleavage orientation: (1) it is per-

pendicular to the maximum compressive stress at any given 

instant; (2) it is parallel to the plane of flattening of 

the strain ellipsoid at any time. Preferred flattening of 

grains is best explained by the second possibility, but the 

alignment of micaceous minerals might be determined by either 

mechanism. Unfortunately, the results of the present study 

do not provide a clear method of distinction between these 

possibilities, since the orientations of the finite strains 

do not differ markedly from those of the strain-rates. 

When found in association with folded rocks, cleavage 

is usually sub-parallel to the axial planes of the folds, 

and it often shows a characteristic fan pattern, with the 

cleavage dipping slightly toward the axial planes in the 

crests of anticlines and away from the axial planes in the 

troughs of synclines. The axial-plane orientation is shown 

by both the planes of maxi mum extension rate and the planes 

(4) J. Gogue l , Traite de tectoni que: Paris, Masson 
et cia, Editeurs, 1952 , p. 40-44 
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of maximum cumulative flattening in all stages of both the 

weak-plate fold and the dominant-wavelength fold after the 

23° stage. The fan-like orientation is shown after the 

folds reach the high-dip stages. An anti-fanning of the 

cleavage planes outside the crests of anticlines is commonly 

observed (5); this feature is also shown by the calculated 

strain fields. 

Cleavage planes which show an anti-fanning relation-

ship inside the crests of folds are not common in nature, 

although they have been observed (6). This may be due to 

the fact that well-developed cleavage is associated with 

strong deformation, so that most folds showing cleavage are 

in the high-dip stages. However, the presence of this fea-

ture in the results of the present study may represent a 

failure of one or more of the underlying assumptions of the 

mathematical treatment. Most published discussions of 

cleavage do not distinguish between single- and multiple­

layer folds, so that a study of single-layer folds that 

show cleavage would be necessary to determine whether this 

anti-fanning is present in nature. 

The anti-fanning of the planes of maximum extension 

rate in the high-dip style of folding occurs only immediately 

below the crest of the fold where the strain-rates -are small. 

Although it may have been overlooked i? nature, it is equally 

(5) L. U. de Sitter, Structural Geology: London, 
McGraw-Hill Book Co . , Inc., 1956, p. 96 

(6) Hills, ~· cit . , p. 111 
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probable that it may be a result of the assumption of inex-

tensibility of the plate. 

Since the planes of maximum flattening and flat­

tening rate remain approximately parallel to the axial plane 

throughout the course of the folding, it may be possible to 

observe the rotations of principal axes of strain ellipsoids 

in natural folds. Minerals such as garnet which grow during 

the course of deformation often incorporate trains of in-

elusions which are parallel to the schistosity. If the por-

tion of rock surrounding the garnet rotates with respect 

to the external stress system while the garnet is growing, 

the inclusions will be parallel to the direction of the 

schistosity at the time they are incorporated. The resulting 
' 

curved trains of inclusions will then measure the finite 

rotation with respect to the relatively constant stress 

field. 

The close correspondence between the principal fea-

tures of axial-plane cleavage and the computed strain-rate 

and strain fields is considered to be a verification of the 

principal assumptions made in the mathematical treatment. A 

more detailed examination of cleavage and other strai~ in­

dicators in natural folds is needed before it can be ascer-

tained whether the finer details of the strain fields are 

really present in nature or whether they result from some 

of the idealizations of the present study. Isotropy of the 

medium was assumed in all the computations, but it is clear 

that rocks with a well developed cleavage cannot be strictly 
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isotropic. A consideration of anisotropy might modify some 

of the conclusions, but such a consideration is beyond the 

scope of the present treatment. 

3. Conclusion 

The study of the finite-amplitude folding of a single 

layer leads to the following conclusions. 

1) The shape of the folded layer varies systematically 

with the ratio of the fold wavelength to the dominant wave­

length. 

2) A fold whose wavelength is equal to or shorter 

than the dominant wavelength will develop into a fan fold 

if the folding progresses far enough. 

3) The final shape of the folded layer is relatively 

insensitive to the details of the initial shape of the layer; 

in this respect the shape variation is analogous to the 

wavelength-selection mechanism of the infinitesim~l-amplitude 

treatment. 

4) The results in the very-low-dip stages show that 

the infinitesimal-amplitude treatment breaks down as far as 

fold shape is concerned before the maximum dip of the fold 

is 10° . A possible extension of the treatment up to limb­

dips of about 15° has been found, but beyond the 15° stage 

the wavelength-selection process is no longer operative. 

Analysis of the limit of the infinitesimal stage makes it 

clear that the main prerequisite for the development of a 

regular wavelength ia that the initial shape irregularities 
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be sufficiently small or sufficiently regular. If this con­

dition is satisfied, the resulting fold train will have a 

regular shape as well as a regular wavelength. 

5) Single layer folds progress through three styles 

of deformation as the folding proceeds. Each style is 

characterized by its own pattern of deformation in the 

medium. 

Retention of the fundamental physical assumptions of 

the infinitesimal treatment, coupled with relaxati on of its 

geometrical restrictions, ~as made possible a number of pre­

dictions which can be tested against naturally occurri ng . 

folds. Comparison of two of these predictions with natural 

folds shows that the theory provides a reasonable approxi­

mation to the natural folding pro~ess: (1) The shapes of 

the calculated folds are relatively close to those found in 

nature . (2) The calculated strain-rate and finite strain 

fields in the medium show the characteristic orientation 

and fanning of axial-plane cleavage. 

More detailed study of natural folds is needed to 

teet the other predictions: (1) The predicted shape varia­

tion can be tested only by a detailed study of the shapes 

of naturally occurring single-layer folds. Such a study 

might yield important results regarding the rheological 

properties of the layer. (2) The details of the strain­

rate and finite strain fields can be tested by detailed 

examination of natural folds. 
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APPENDIX A 

CALCULATION OP THE STRAIN-RATES AND 

CUMULATIVE FINITE STRAINS 

1. Strain-rates 

With the notation of figure 3 (p. 51) ·the strain-

rates are given by the following expressions : 

• ~t.< +-~v) e,"l. = ~ ( -rx ~ Y = 

. . 
e" = - e:11. 

= 

cpNE - ¢,.;w + cJ>sE- c:J> sw 

'-1-

The principal strain-rates and the orientation of the prin­

cipal a Yes are calculated by the standard formulas. (1) 

2. Finite strains 

The first s tep in the computation of the finite 

strains is to compute the new coordinates of an originally 

square grid after 1 t has been deformed. If ~ ( t:.) and Y ( ~) 

represent the coordinates of a particular point imbedded 

in the medium during an interval of time o < t < 4 t when the 

spatial distribution of the velocity remains essentially 

constant, then the final positions of the point are given by: 

(1) J . C. Jaeger, Elasticity, fracture and flow: 

London, Menthuen and Co., Ltd., 1956, p . 40- 41 
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.t 

X (.at ) == X ( 0) + ~. u ( X ( t } J y ( t ) ) d t ' 

4t 

y ~t) = y ( 0) + L v ( X ( t ) l y (I; ) ) d t . 

The numerical computation of these integrals, when 0 and 

v are known only at a set of grid points, would be very· 

complicated; the new grid positions calculated would still 

not be accurate, since U and yr vary with time as well as 

with X and y Since a high degree of accuracy is not 

really necessary for the purposes of interpretation to which 

the finite strains will be put, and since errors in the 

finite strain calculations do not affect the rest of the 

numerical results of the study, the following much simpler 

formulas were used to calculate the new coordinates of a 

point: 

xr~t)= X(o) + t.<(Xcol 1 Y(ol)~T 

y (.t:1t) = Y{o) + V (X(o)) YCo)) ~T 

~! represents the time interval between one time step 

and the next; ..o. T is chosen so that the new X -coordinates 

of the points on the right-hand wall of the problem region 

agree with the new x-coordinate of the crest of the fold . 

.d t and AT are not equal since the actual trajectories 

of points are curved. After the first time step, X and Y - -
are not integers; the appropriate ~ and yare found by 

interpolation, using the nine ~ values nearest the point 
' 

under consideration. 

Using this method, the positions of an originally 
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square grid of points can be found at each time stage. The 

final and original positions of a group of points can then 

be used to calculate the finite strain in the neighborhood 

of the points. The strain is treated as homogeneous over 

the quadrilateral enclosed by four points. The new coordi­

nates of the points are gi ven in terms of their original 

coordinates by the expressions: 

X'= a.x +-by +-e, 

y' = C X +- dy +- .{ 

A group of four points will provide eight equations to 

determine the six coefficients a., bJ c_) d J e J and t ; 

the values of the coefficients were determined by a least 

squares fit. Knowing the transformation coefficients it is 

a simple matter to compute the orientations of the principal-

strain axes in the original and final coordinate systems and 

the relative extensions of the principal axes. Formulas 

for these computations are derived by Jaeger. (2) 

Since the medium was assumed to be incompressible, 

a measure of the error involved in the computation of the 

distorted grid and in the assumption of local homogeneous 

strain can be obtained by consideration of the volume change 

as sociated with the computed strain values. The ra tio of 

(2) Ibid., p. 23-28 --.--
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the area of the deformed ellipse to the original circle in 

the undeformed state ranged from 0.8 to 1.2. The maximum 

deviations from no volume- change were associated with large 

strains (whose ratio of major to minor axis is 9 to 1). 

It is thought that the main source of error lies in the 

computation of the deformed grid. 
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APPENDIX B 

TABULATION OF THE NUMERICAL RESULTS 

L << Ld 11. 4° Limo - di p 
i 8, A, 9, A, 

0.19961 0.19962 0.18924 0 .1 H927 

2 0.19715 -0.00001 0.18691 - 0 . 0000 3 

3 0.18984 -0.0000 0 0.17999 -0. 00000 

4 o. 17786 -o.ooooo 0.16863 0 . 0 0 000 

5 0.16150 0.00000 0.15313 - 0 . 00000 

6 0.14116 0.00000 0.13386 - 0 . 0000 0 

7 0.11735 -0.00000 0.11128 0 . 00000 

8 0.09064 -0.00000 0.08596 - 0 . 00000 

9 0.06170 0.00000 0.058 51 - 0 . 00000 

10 0.03123 o.ooooo 0.02962 0.00000 

1 1 o. o. 
L << Ld 22 . 6° Limb - di p 

i 8; A.- 8 i A.: 

0.39406 0.39416 0.38440 0 .38 1.6 8 

2 0.38922 -0.00010 0.37969 - 0 . 00029 

3 0.37481 -0.00000 0.3656 9 0 . 00000 

4 0.35118 o.ooooo 0.34271 0 . 0 0 000 

5 0.31891 0.00000 0 .3113 0 0 . 00 0 00 

6 0 . 27878 0.00000 0.27221 0 . 00000 

1 0.23177 o.ooooo 0.2 2 63 8 - 0 . 00 0 00 

8 0.17904 -0.00000 0.17493 - 0 . 00000 

9 0.12188 -0.00000 0.11911 - 0 .00000 

10 0.06170 -0.00000 0.06031 0 .00000 

1 1 o. o. 



L << Lct 44.10 Limb-dip 
'1 B ,· A, 9 · • A; 

0.58036 0.58067 0.55313 0.55404 

2 0.57324 -0.00031 0.54641 -0.00091 -----
3 o. 552"07 o.ooooo 0.52639 o.ooooo -- --·-
4 0.51733 0.00000 0.49351 0.00000 

5 0.46987 0.00000 0.44850 -o.ooooo --- ------
6 0.41082 0.00000 0.39240 -o.ooooo ------ .... -
1 0.34161 o.ooooo 0.32652 -0.00000 - - ·- -------- --
8 0.26393 -0.00000 0.25242 -0.00000 ---------
9 0.17969 -o.ooooo 0.17194 o.ooooo 

~ -----·- - -
10 0.09098 -o.ooooo 0.08708 o.ooooo ------------- -

----- 11 o. o. --- - ~--- --- ---------------- -----
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L << Ld 55.3° Limb-dip 

i e .. Ai &· 
' 

A · • 

1 0.96501 0.96649 0.85110 0.85509 

2 0.95327 -0.00149 0.84100 -0.00402 -- ----- ----- - - - --- --
3 0.91831 0.00001 0.81088 0.00002 - - -- -- - -
4 0.86091 -0.00000 0.76125 -o.ooooo -- --- -- ... 

5 0.78236 o.ooooo 0.69300 o.ooooo ---

6 0.68446 0.00000 0.60747 o.ooooo 

1 0.56950 o.ooooo 0.50643 0.00000 

8 0.44025 -0.00000 0.39219 -0.00000 ----- -- -
9 0.29987 -0.00000 0.26751 o.ooooo 

10 0.15187 -o.ooooo 0.13561 -0.00000 

----- ___ _1 1 o. o. ----

L << Ld 65 .7° Limb-dip 

1 o : 
1 A~ (;; At. 

1 1.14661 1.14914 0.96063 0.96715 

2 1.13274 -0.00253 0.94942 -0.00658 -- - - ---- -
3 1.09140 0.00001 0.91595 o.oooos 

4 1.02348 -0.00000 0.86067 -0.00000 

5 0.93044 -0.00000 o. 78442 -0.00000 - ---- --------
6 0.81434 -0.00000 0.68850 o.ooooo - - - . - --

I 
1 0.67786 -0.00000 0.57474 0.00000 - - - -- --
8 0.52421 -0.00000 0.44562 -0.00000 ---- ---
9 0.35717 o.ooooo 0.30424 -0.00000 --- -- - -

10 0.18092 o.ooooo 0.15432 -0.00000 ----- --- - --- - -

11 o. o. - ----·-- ------ ---
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71. 4° Limb-dip 

l A; A,· 

1 1.24532 1.24858 1.01028 1.01851 

2 1.23030 -0.00328 0.99863 -0.00831 --- ----· ----

3 1.18555 0.00002 0.96378 0 .00008 

\.11197 0.00000 0.90615 -0.00000 

5 \.01112 -0.00000 0.82648 -0.00000 

6 0.88519 -0.00000 0.72601 -0.00000 

1 0.73702 o.ooooo 0.60657 -0.00000 

8 0.57010 o.ooooo 0.47066 -0.00000 ------
9 0.38851 -0.00000 0.32154 -0.00000 

10 0.19682 -0.00000 0.16316 -0.00000 

11 o. o. -----· 

80.3° Limb-dip 

1 1.40197 1.40671 1.07371 1.08512 

2 1.38516 -0.00477 1.06157 -0.01154 --------
3 1.33506 0.00004 1.02522 0.00014 

1.25261 -0.00000 0.96494 -0.00000 

5 1.13949 -0.00000 0.88130 -0.00000 --· 

6 0.99804 -0.00000 0.77536 -0.00000 

1 0.83137 o.ooooo 0.64879 -0.00000 

8 0.64336 o.ooooo 0.50414 -0.00000 -------- ---

9 0.43859 o.ooooo 0.34480 -o.ooooo 

- ' .... \0 0.22225 o.ooooo 0.17509 -0.00000 

- -- ______ 11 _o_. -------- o. 
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L << Lct 89.8° Limb-dip 
' B; A.o e, A.-z 

1 1.56680 1.5735~ 1.11901 1.13439 

2 1.54815 -0.00680 1.10668 -0.01562 - -- - -

3 1.49253 0.00006 1.06<)69 0.00025 

4 1.40092 -0.00000 1.00813 -0.00000 

5 1.27506 o.ooooo 0.92232 0.00000 - -

6 1.11743 -0.00000 0.81300 o.ooooo 

1 0.93137 -0.00000 0.68163 0.00000 

-------- 8 0.72114 -0.00000 0.53060 o.ooooo 
--~ 

9 0.49182 0.00000 0.36343 -0.00000 - -------- ----- ----- ... - -

---------------- 10 0.24929 o.ooooo 0.18472 -0.00000 --. ---
______ 11 -- o. - --- ---- - - o. ---
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L = Ld 10° Limb - dip 

1 e~ A a e ... · A,· 
---- -

1 0 . 17453 0.17531 11 . 34703 11 . 36426 

2 0 . 1724 6 - () . 000 7 8 11 . 2ra65 - 0 . 01727 

3 0 . 166 2 7 o . o:.. c.01 1J .79784 -0 . 00025 

4 1) . 1560 7 - o. ")So -:,n 10 . 1231 C - c. co-uo 

5 0 . 14206 c. occoo 9 . 19951 0 . 000 11 

6 0 . 12451 - o. :>ccoo 8 . 0 48 19 - 0 . 00000 

7 0 . 10 379 -o . oo ro0 6 . 69615 0 . 00006 

8 0.08037 - o . ~,c.,oco 5 . 17602 0 . 0000 5 

9 a . n5 48 1 - o. o~1 c0o 3 . 52549 0 . 00004 

10 \) . 0 2778 -o . oocoo 1 . 78556 ~ . 00005 

11 o. o. 
---

L - Ld 23° Limb - dip -

l 9.l Ai G.· A,-

1 J . 4C'l43 0 . 40 255 4 . 85754 4 . 86667 

2 0.39658 - 0 . 00 1!3 4 . 798 36 - G. O'J 945 

3 0 . 38218 O . O·""~ C.JO 4 . 62283 O. OOC:G 9 

4 0 . 35849 -O . OvOG O 4 . 33467 0 . ('0006 

5 0 . 3 2601 o. oocoo 3 . 94('06 0 . 00003 

6 0 . 28544 -o. ocono 3 . 44793 0 . 00004 

7 0 . 23768 ('l . occc:o 2 . 86958 0 . 00002 

8 0 . 18386 o. ooooo 2 . 218 83 0 . 00003 

9 0 . 12531 o. ooooo 1 . 51160 0 . 00 002 

10 0 . 0634 9 o. ooooo 0 . 76560 0 . 00001 

1 1 o. o. 
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L = Lct 36° Li mb - dip 

1 e.,. Ao. iJ; A,· 
-----·-

l 0 . 6 2 8 3 2 0 . 62S8 7 2 . 998 41 3 . (•144 3 

2 0 . 620 71 - C. )-. 15 7 2 . 9629d - (, . 0 1617 

3 0 . 59 81 1 o . or :~0 1 2 . R5 7 3 7 c. oc-ooa 

4 0 . 56096 0 . C:f 0l1!1 2 . 1>A32v 0 . COOOB 

5 0 . 5101)5 0 • 1" c :.n 2 . 44362 - ._: • • ' 0 00 1 

6 0 .44649 o. ,,..r(,o 2 . 14 296 C•J000 1 

7 0 . 3717 2 O . ""~r ~"JO 1 . 7 A727 - 0 . 0 000 4 

8 0 . 28 7 5C O. Q00l 'J 1.38 456 0 . 00C02 

9 () . 19 59 1 O . OJG·JO ') . 944 6 7 - C . 0 00 (.; 1 

1 ~ 0 . 099 2 '5 o . occoo 0 . 4788 1 v . 0 000 2 

11 o. o. 

L = Lct 46° Limb - dip 

1 8 ; A · 
' 

()J Ai 
. --

1 0 . 80 285 0 . 8(533 2 . 24 Al 6 2 . 274 96 

2 0 .79318 - 0 . 0025 1 2 . 2 23:)8 - ·::, . 0 2 6 R3 

3 n . 76 443 O . ~{'C0 1 2 . 14774 - . O~ OC l 

4 0 .717 15 O . ')':C~ l 2 . 0 2283 o . ncon 4 

5 0 . 65229 o . o.:cco 1 . 84 R7 9 - o . ncco 1 

6 0 . 5 71 23 O. v..JCIJO 1 . 6 276 1 <., . cov.:n 

7 0 . 47575 0 . 0(.;) ·)0 1 . 36271 - 0 . 000(. 2 

8 0 . 368 1(~ 0 . 10000 1 . 05935 0 . 0000 2 

9 0 .25090 O. OOCC'O 0 . 72474 - 0 . 00 0 0 3 

1 0 0 .1 2 71 2 0 . 0 0000 0 . 36790 - 0 . 0000 2 

1 1 o. o. 





i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
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L :. Ld 

At" 

1. 22173 

1.20 788 - O. iH262 

1.16633 O. O:'C 24 

1. 00 213 O. 'JOG01 

0 . 88 141 

0 . 73739 - 0 . \.CCGO 

() . 572Y1 - C. OC.Oin 

0 . 39186 - O. OOCOl 

0 . 1G.\1 9 

o. 

L = Ld 

e.a. A'"· 

1.32936 - 0 . 02 100 

1.28533 0 . 0CC6 4 

1.21 206 - 0 . 00010 

1.1C9 73 0 . 00C02 

0 . 97914 - 0 . 0CCG 1 

0 .82185 - O. OCG0 1 

0 .6405 9 - 0 . 00 0 01 

0 .4 3935 - O. JOC02 

0 .22354 - O. OOC02 

o. 

70° Limb-dip . 
e,· 

1.210 19 1.28122 

1.20265 -0. 07217 

1 .17623 0 . 00 180 

1 . 1291 0 

1 . 05691 - v . 00016 

0 . 9556 8 - O. OC·vC3 

0 . 82 163 - 0 . 00013 

n . 65438 - 0 . 00006 

;.; .4 56 16 - ( . 00006 

0 . 23432 - C. 00013 

o. 

77° Limb -dip 

0 . 98111 1 . 0 791 0 

0 . 97024 0 . 00 21 0 

0 . 94536 - C. CC 084 

C. 90093 - c . nn o65 

0 . 82989 - 0 . 00029 

0 .72705 - 0 . 00023 

0 . 58823 - 0 . 000 11 

0 .415 33 - G. C0012 

0 . 21494 0 . 00004 

o. 
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L = Ld 81° Limb-dip 

l ()t· Ai Ba· A · 
' 

l 1.41371 1.44706 '.) . 862 71 0 . 96229 

2 1.39963 - 0 . 03349 0 . 86 103 - 0 .10378 

3 1 .3 5679 O. "\C48 0 . 8 5429 0 . 00450 

4 1. 2R4']3 - O. C'•·10 22 0 . 8383 7 - 0 . 0003 3 

5 l.l 8CS 4 - O. O"'C' l2 0 . 80616 r: . rcooz 

6 1. 0 46 33 -0. (j\JCOO 0 .750 4 9 0 . 00006 

7 0.88227 o. :.ccr:o 0 . 6639 1 - O. OOG07 

8 0 . 690 44 - o. o; oc•o C. 54248 0 . 0000 9 

9 1) .474 88 - o. ; c c ·:o 0 . 38628 - 0 . 0000 3 

1 0 0 .24199 o. ocooo 0 . 20 :·9 5 - 0 . 00004 

11 o. c. 

L :: Lct 890 Limb-dip 

2 {) r' A · l B~· Ai 

1 1.5533 4 1. 62 144 C. 64462 0 .77 886 

2 1. 541 59 - 0 . 06698 0 . 64817 - 0 .14172 

3 1. 5039( O. OCC56 0 . 65750 0 . 00 742 

4 1.43520 - 0. M• ll 2 0 . 66655 0 . 00000 

5 1.331 8 1 -O. Jh)56 r. . 666 3 9 C. OOOO l 

6 1.1923 1 -O. :JC'OOO 0 . 64582 - 0 . 00004 

7 1. 0 1603 -o. or,cno (1 . 59 252 n. rooao 

8 0 . 80299 -o. ooooo 0 .49886 0 . 000~ 2 

9 0.55654 - 0 . 00000 0 .36270 0 . 00008 

lC 0.28490 o.ooooo 0 .19150 -0. 00002 

11 o. o. 
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L = 4 . 6Ld 10° Limb-dip . e,: Ai t7 · Al· 2 ;a: 

1 0 .17453 0 . 17 53 1 11 . 23295 11 . 36359 

2 0 .1724 6 - 0 . 00078 11.1 0509 - 0 .1 3322 

3 0 . 16627 0 . i)t.JIJ0 1 10 . 73461 0 . 00 657 

4 0 . 156 ;7 - 0 • ·1 :.} ~ -:· 0 10 . 1('16 71 - 0 . 00 2 86 

5 0 . 14206 o. , ;'lo.-.o 9 . 22753 - O. C0 640 

6 .~ . 124 51 - n. )...:.ooo 8 . 11149 o . oo 2G3 

7 0 . 1')3 79 - f! . ~(t'\00 6 . 8 1130 O. OC 313 

8 Q. fl80 37 -'.:'r. O'; CCO 5 . 3Cf)33 - 0 . 00 102 

9 o . G">4 .1 "L - 0 . O!"'Or,o 3 . 62493 - 0 . 00 114 

10 0 . 02 778 -O . C00C O 1 . 83964 0 . 00 228 

ll o. o. 
- - - ~ 

L ::: 4.6Ld 23° Limb-dip . 
2 e~· A'l· e · l. 

A,: 

1 0.4 (.' 14 3 0 . 40 476 4 .7 1625 4.83642 

2 (; . 39678 - 0 . 00347 4 . 66168 - 0 .13 220 

3 0 . 382g1 n . OG014 4.52088 0 . 00495 

4 0 . 3601C - 0 . Q(lC ·JO 4 . ?8043 0 . 00356 

5 0 . 32839 O. OJCOO 3 . 9 49 85 - 0 . 0 0040 

6 0 . 28856 -0. 000 00 3 . 5112 0 0 . 0(' 221 

1 <1 . 24121 -0 . 00000 2 . 96996 - 0 . ('0126 

8 0 . 1 8 728 - 0 . 00000 2 . 33230 0 . f)(,066 

9 0 . 12803 - 0 . 00000 1 . 605 77 O. C006 7 

10 0 . 06 499 -o. ooooo 0 . 8 12 8 1 O. OG 164 

11 o. o. 
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L:: 4.6Ld 33° Limb-dip 

l ei A; $.- A. 

l 0 . 57596 0 . 583~7 3 . 09105 3 . 26997 

2 0 . 56952 - 0 . 0083 7 3 . 06296 - 0 .1 9478 

3 0 . 5503C O. J:'C32 2.98944 0 . ('0783 

4 0 . 51857 o . J ~ Jl3 2 . 87622 0 . 00639 

5 0 .47459 o . o::,~o 2. 69354 - C. C023 7 

6 0 .41 864 -0. 0~\CO 2 . 44557 0 . 00283 

7 0 . 3512A - '' • lJ'JOO z . 1144v 0 . 0008 2 

8 0 . 27359 o . r.<,cr.o 1 . 68551 o . oJ2 14 

9 C.1 8741 ("1 . (1)(()0 1.17292 - 0 . 00 102 

10 0 . 09525 c. o::coo 0 .59344 - 0 . 00045 

11 o. o. 

L = 4.6Ld 43° Limb-dip 

. 
l e.- Ai Ba· A a· 

1 0.75049 0 .7 7646 2 . (2114 2 . 3475 7 

2 0 .743v 7 - o. 2829 2 . 0124i.. -0.36168 

3 0 .72120 0 . 00127 2 . 01625 C. C·2 348 

4 0 . 68546 o . Q( 1 6 2 . 0 1442 n . oo 775 

5 0 . 63532 -O. C'OOCO 1.986 41 - 0 . 00438 

6 0 . 56890 o. o ... cco 1. 897(3 0 . (0565 

7 0 .4843(' -O. J0 GOO 1.7323S - j . f'0065 

8 0.38151 -o. o coo 1.44603 o . co222 

9 0 . 26324 - o . oocoo 1.04010 - 0 . 00119 

10 0 .13426 o. oocoo 0 .52817 O. OC23 7 

11 o. o . 
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L = 4.6Ld 53° Limb-dip 

'Z e ,· A,: 
. e,· A& 

l 0 . 925J 2 l.OC565 1.17317 1 . 63294 

2 0 . 91922 - O . ~d '193 1.193 19 - 0 . 5510 5 

3 0 .90 242 o . r·.,.. 733 1 . 237Cl 0 .10353 

4 O. A74 R o . r,\. 197 1 . 30 3 4 3 - L . G0322 

5 0 . 833 44 - 0 . J 1.. •: JO 1 . 38602 - 0 . 0 1123 

6 ~ . 77 0JO - ') . r'O'"O 1 . 45921 0 . 00 7 0 8 

7 ,) . 67851 O. -"~.:: ! C 1.4 f1r2 7 - 0 . 00 494 

8 0 .55087 - 0 • •I f· 01' 0 1.37254 0 . 00 160 

9 0 . 3 R"1 26 -o. ') r, nJo 1. 06 228 - (1 . oo 169 

10 0. 20 158 O . OJC~O 0 . 55728 0 . 00014 

11 o. o. 
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L = 4.6Ld 630 Limb-dip 
(first approximation) . 

l e~ A..: B ,: A i 

l 1. 09956 1.2)7{,0 0 .74554 l.ll786 

2 1. 0 8825 -~.19735 0 .76903 - 0 .4861)2 

3 1.06055 0 . 05 850 0 . 81135 0 .1 8295 

4 1. 0 2967 C.-'G C3 l 0 . 86311 - 0 . 0 7226 

5 1. 00 347 - 0 • (, :' "' ~ •1 u . 8994 9 0 . 0 0161 

6 fl . 9738 7 o . ::-.~cr o 0 . 95571 0 . 00793 

7 (l . 9159f o. o• c.• n 1 . 04294 - 0 . ()0640 

8 '1 . 79826 -0 • r\(' r-: fl iJ l.l J 609 v . 005 0 9 

9 0 . 599'14 - 0 . OOC JC• 1) . 99683 - 0 . 00374 

10 0 . 32 38 4 C\ . 0(.1 \l OO 0 . 57253 -0.00059 

11 o. o. 

L : 4.6Ld 63° Limb-dip 
(second approximation) . 

2. {)i A· J 81· A · & 

1 1.09956 1.25366 0.76680 1.10333 

2 1.09816 -0.18052 0 .76749 -0.50404 --·-- -- --- -
3 1.09107 - --- ... - 0.03471 0.76951 0.20452 

4 1.072~3 -0.00829 0.80154 -0.04369 - ----

5 1.03787 -0.00000 0 . 86475 0 .00464 ------
6 0.98371 o.ooooo 0.96594 0 .00630 

7 0.90068 -0.00000 1.07255 -0.00383 

8 0.11010 -0.00000 1.14216 -0.00016 -- - - ----
9 0.57487 -0.00000 0.99225 0.00231 

10 0.31001 0.00000 0.58148 -0.00257 

--------- 1 1 o. - - --·---- o. ---- ---
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L = 4 . 6Ld_ 69° Limb - dip . 8,· A · B; Ai z I 

l 1 . 20 428 1 . 369 59 0 . 66772 0 . 89 528 

2 l. 1989 7 - 0 . 23 914 C: . 67 R03 - 0 . 34966 

3 l . l A4 n 4 0 . 06226 0 . 6 88 16 0 . 20 499 

4 1 . 16 5 8 1 - 0 . ')1 1 52 0 . 68 2 8 7 - 0 . 0 9721 

5 1 . 141 09 o . "'<"· 4 02 (· . 6 7':"9 7 0 . 01846 

6 1 . 1fl 30:_:\ -o . o ~ C94 0 . 68 3 ') 1 - 0 . 0 000 6 

7 1 . 03 14 5 o. oco . .:;:J C.758 71 - (; . 00 78 4 

8 0 . 90 4 H6 tJ . o ~~ ..;oo 0 . 8 49 1 2 0 . C0 936 

9 ~ . 695 41 - o . . Jooro ;:, • 8 72 9 7 - 0 . 00 90 7 

10 0 . 3851 4 o. ocoo:; 0 . 5 30 3 8 0 . 00 3 47 

11 o. c_. 

L = 4 . 6 Ld 7 9° Limb -dip 

l Bi Ai e .. : A.· 

1 1. 37882 1. 61642 0 . 6928 7 0 . 65923 

2 1 . 37843 - 0 . 3 :" 5 -4 0 . 66172 - 0 . ('5 645 

3 1 . 376 0 1 n . l C56 4 C. 566 1 8 0 . 0 592 4 

4 1 . 3621 2 - C. 050 4 8 0 . 4 92 7 7 () . (1 1445 

5 1 . 32 18 7 0 . 0 1 22 7 C. 50 2C5 C. 0 4315 

6 1 . 2569 6 - 0 . :JOCOO 0 . 52 14 1 - 0 . 0 2615 

7 1 . 1 8 49 9 - 0 . OLCOii · t: . 4 41 8 4 O. C04 8Q 

8 1 . 09099 O. C'OC OO 0 . 34 93 4 - 0 . 00 747 

9 0 . 896 56 - o. oocoo 0 . 2 850 2 C. C0576 

10 0 . 5231 5 o. oocoo 0 . 23 8 97 - 0 . 00369 

11 o. o. 
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L:: 4 . 6Ld 89° Limb- dip . . 
A · l e;. Ai el· ' 

l 1 . 55 33 5 L. 76665 0 . 243lv 0 . 5378 7 

2 1 . 541 69 - ::l . 3C696 0 . 3 4773 0 . 0 25 50 

3 1 . 5( 3<1 5 ~ . 1 ':. 7<J3 C. 6 29 37 - 0 . 177 5 1 

4 1 . 45 873 - 0 . 0258 4 (1 . 7942 8 - 0 . 11530 

5 1 . 4 335 1 O. C2400 G. 5 968 l - 0 . 08 4 8 2 

6 1 . 39 744 - 0 . 01244 n . 3 1 3 4 0 0 . 0 4 0 53 

7 1 . 2989 7 - o. :,cooo 0 . 2147 8 0 . 0 1374 

8 1 . 14 5;) 3 o . JJ c .~ n 0 . 1 9 14 9 - a. OC O"t6 

9 0 . 9 266 7 - 0 . "''10:)0 c . o3 133 0 . 00547 

10 0 . 55 1 ) 6 o . ~v CC'(I - 0 . 0 58 89 - 0 . 00232 

1 1 o. o. 
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