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ABSTRACT

The problem of the finite-amplitude folding of an
isolated, linearly viscous layer under compression and
imbedded in a medium of lower viscosity is treated theoretical-
ly by using a variational method to derive finite difference
equations which are solved on a digital computer. The
problem depends on a single physical parameter, the ratio
of the fold wavelength, L, to the "dominant wavelength" of
the infinitesimal-amplitude treatment, Lg. Therefore, the
natural range of physical parameters is covered by the
computation of three folds, with L/Lg= O, 1, and 4.6, up
to a maximum dip of 90°.

Significant differences in fold shape are found
among the three folds; folds with higher L/L4 have sharper
crests. Folds with L/Lq = 0 and L/L3g=1 become fan folds
at high amplitude.- A description of the shape in terms of
a harmonic analysis of inclination as a function of arc
length shows this systematic variation with L/Lg and 1is
relatively insensitive to the initial shape of the layer.
This method of shape description i1s proposed as a convenient
way of measuring the shape of natural folds.

The infinitesimal-amplitude treatment does not
predict fold-shape development satisfactorily beyond a

limb-dip of 5°. A proposed extension of the treatment

continues the wavelength-selection mechanism of the

e SN T AE e TaN g i e
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infinitesimal treatment up to & limb-dip of 159; after
this stage the wavelength-selection mechanism no longer
operates and fold shape is mainly determined by L/Lq and
1limb-dip. :

Strain-rates and finite strains in the medium are
calculated for all stages of the L/Lg = 1 and L/Lq = 4.6
folds. At limb-dips greater than 45° the planes of
maximum flattening and maximum flattening rate show the
characteristic orientation and fanning of axial-plane

cleavage.
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CHAPTER I

INTRODUCTION

1. Folding as an example of large geologic strain

Folding of layered rocks is an attractive subject for
the study of large geologic deformation because of its im-
portance in structural geology and because 1t‘1s amenable to
a systematic theoretical treatment.

There are three main ways in which detailed infor-
mation about the mechanism of formation of folds might be
used. (1) A knowledge of the way in which the boundary con-
ditions imposed on a folding region determine the nature of
the folds produced can aid in the deduction of the external
forces that have produced the folds. This use of folds to
give iInformation about a larger structural element is em-
ployed not only for minor folds on the outcrop scale, but
also for major folds where it may help in the understanding
of the structural history of a whole mountain range. (2) In-
formation about the folding process may be turned in the
other direction: knowledge of the strain history of a
small element of the fold provides a framework in which to
study the mechanisms of deformation and to interpret petro-
fabric and finite-strain information. (3) Becausé of their
prevalence, folds are ideally sulted to test the applica-

billity of theorlies of deformation.
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Folded rocks in nature show a number of regular
features, It is common to find a bed or a group of beds
deformed into a train of folds with a relatively constant
wavelength and fold shape (1). A fairly elaborate geologic
terminology has been developed to describe the shapes.of
folds (2). The usefulness of this terminology rests on the
fact that fold shapes do show certain regularities. Folds
in a whole region will sometimes have relatively constant
shape characteristics. In other regions there may be two
generations of folding with systematic differences between
the shapes of the folds of the two ages. Finally, mahy folds
are relatively constant in shape along the direction of the
fold axis (3); this property suggests that many of the fea-
tures of the folding mechanism are appropriate to a two-
dimensional analysis. '

The present study considers folds in which the rela-
tive competencies of the beds have played an important role.
Folds do exist where the "beds" are mere colored markers
which, though they exhibit the deformation, have had 1little
or no influence on 1t. This type of folding does not often

show the regularities discussed above.

(1) H. Ramberg, Strain distribution and geometry of
folds: Bull. Geol. Inst. Uppsala, v. XLII, 1963, p. 1-20

(2) E. S. Hills, Outlines of structural geology:
London, Methuen and Co., Ltd., 3d ed. rev., 1953, p. 77-89

(3) Ibid., p. 97 ‘



2. Theoretical studies

Previous studies which attempt to analyze the geo-
metric properties of geologic structures in terms of the
forces that produce them have used either a static or a
steady-state approach. In the static approach the stress
fields before the onset of deformation are used to predict
the geometrical nature of the resulting deformation. In
general, when the predicted deformation begins, 1t modifies
the stress fields, so that the course of the deformation
cannot be followed beyond the initial stage. In a steady-
state situation, the stress field remains constant through-
out the deformation, so that, when it i1s applicable, the
steady-state approach 1s more satisfactory than the static
approach.

The static approach has been used to study both
faulting and folding. Fault patterns due to either a uni-
form stress field (4, 5), or the stress field set up in a
rectangular region by specified boundary conditions (6, T7),

have been analyzed on the baslis of linear elasticity and the

(4) M. K. Hubbert, Mechanical basis for certain fa-
miliar geologic structures: Geol. Soc. America Bull., v. 62,
1951, p. 355-372

(5) E. M. Anderson, The dynamics of faulting and dyke
formation with applications to Britain: Edinburgh, Oliver
and Boyd, Ltd., 2d ed. rev., 1951

(6) W. Hafner, Stress distributions and faulting:
Geol. Soc. America Bull., v. 62, 1951, p. 373-398

(7) A. R. Sanford, Analytical and experimental study
of simple geologic structures: Geol. Soc. America Bull.,

v. 70, 1959, p. 19-52
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Mohr fracture criterion. Formation of a fault will alter
the stress distribution in the region, so that these studies
are limited to the cons;deration of incipient faulting.
Anderson (8) attempts to extend the analysis by considering
the stresses in a mediuﬁ containing a crack, but his approach
1s essentially a gtatic one, since the predicted subsidiary
faults will alter the stress field in an unknown manner.
Plasticity theory 1s not limited to the static approach, but
published studies (9, 10) have not considered the changes
in the geometry of the region which the predicéed deformation
would produce. Predicted patterns of dike intrusion (11, 12)
are a more valid subject for the static approach, since the
intrusion of a dike may not alter the orientation of the
prevaliling stress system as drastically as the formation of
a fault.

Studies of faulting may assume a single homogeneous
medium, but consideration of two media of different material

properties 1s essential to a study of the folding process.

(8) Anderson, op. cit., p. 160-173

(9) D. J. Varnes, Analysis of plastic deformation ac-
cording to von Mises' theory, with application to the South
Silverton area, San Juan County, Colorado: U. S. Geol.
Survey Professional Paper 378-B, 1962

(10) H. 0dé, Faulting as a velocity discontinuity in
plastic deformation: chap. 11 in Rock deformation (A sym-.
posium), Geol. Soc. America Mem. 79, 1960, p. 293-321

(11) H. 0dé, Mechanical analysis,of the dike pattern
of the Spanish Peaks area, Colorado: Geol. Soc. America
Bull., v. 68, 1957, p. 567-576

(12) Anderson, op. cit.
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The static approach has been applied to both infinitesimal

and finite-amplitude folding. If the maximum dip of the
folding layer is very small, certain mathematical simplifi-
cations can be made in the theoretical treatment. The anal-
ysis of folds of infinitesimal amplitude 1s not strictly a
static analysis, since the treatment remains approximately
valid for a limited range of fold amplitude. However, the
limits of this range of validity are not determined precisely
by the infinitesimal analysis itself. Previous studles of
infinitesimal amplitude folding and their relation to the
present study are discussed in Chapter II.

The static approach has also been applied to folds of
finite amplitude (13, 14). The validity of these studies
is severely restricted by the need to assume the shape of
the finite amplitude fold in advance.

Finally, in certain important geologic situations, the
stress field does not change with time. Flow of a glaciler
in a fixed channel hgs been studied with the steady-state

approach (15). Certain aspects of salt dome formation are

(13) J. Goguel, Introduction a 1l'etude mécanique des
déformations de 1l'écorce terrestre: Service Carte Géol.
France Mém., 1948, 530 p.

(14) S. Kienow, Grundzuge einer Theorie der Faltungs-
und Schieferungsvorgénge: Berlin, Borntridger, Fortschritte
der GQeologie und Paleontologie, bd. XIV, h. 46, 1942 129 p.

(15) J. F. Nye, The flow of glacliers and ice-sheets as
a problem in plasticity: Proc. Roy. Soc., series A, v. 207,
1951, p. 554-572; The mechanics of glacier flow: Jour.
Glaciology, v. 2, no. 12, 1952, p. 82-93; The distribution
of stress and veloclty in glaciers and ice-sheets: Proc.
Roy. Soc., series A, v. 239, 1957, p. 113-133
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also amenable to a steady-state treatment (16).

Neither the static nor the steady-state approach is
truly suitable for a study of the mechanical origin of finite
amplitude folds: as folding progresses the stress field
and the geometrical relations of the layers show significant
changes. The method of the present study deals explicitly
wlth this time dependence. Therefore the ﬁethod 1s a more
powerful tool for the study of geologic deformation than

either the static or the steady-state approach.

3. Objectives

The present study has four maln objectives:

1) To define the limit of validity of the infinites-
imal treatment. It is clear that the geometrical assump-
tions of the infinitesimal treatment are only valid over a
limited range of fold amplitude. The results of the present
study define a limiting maximum dip beyond which the infini-
tesimal treatment is no longer valid and indicate the factors
that determine the further growth of the fold.

2) To investigate the information content of fold
shapes. A particular characteristic of the shape of a
folded layer may be determined by the physical parameters of
the fold system, may be caused by the particular combination
of forces exerted on the boundaries of the systém, or may
be due to essentially chance variations in the original shape.

The present study shows the range in variation of fold shape

(16) Goguel, op. cit., p. 359-372
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which results from certain changes in the physical parameters
of the system. A method of describing fold shapes 1s pre-
sented that exhiblts these systematic changes and 1s rela-
tively insensitive to the initial shape.

3) To test the physical assumptions of the infinites-
imal treatment. All natural folds that can be studied are
of finite amplitude. By retalning the maln physical assump-
tions of the infinitesimal treatment, while relaxing 1its
inherent geometrical restrictions, it 1s possible to make
detailed predictions about the properties of finite amplitude
folds. These predictions can then be tested against the pro-
perties of naturally occurring folds.

4) To provide a detailed picture of the course of
growth of a fold. Even though derived under somewhat ideal-
ized assumptions, a complete picture of the course of growth
of a fold will add to the understanding of'the folding proc-
ess. The instantaneous strain-rate fleld and the cumulative
finite-strain field at successlive stages of folding are de-
rived in this study. These should be valuable for compari-
son with various geologic indicators of stress orientation
and finite strain, such as deformed oolites, rolled garnets,
schistosity, grain elongations, and petrofabric orientation
data. There are still a number of difficulties involved in
the interpretation of some of these indicators, and know-
ledge of the strain and stress history of a particular
region of a fold would be of great value in attacking some

of these difficulties.



4. Description of the problem studied

In order to achlieve the obJjectives listed in Section
3, a mathematical analysis of finite amplitude folding must
satisfy several requirements: (1) The treatment must be
able to treat‘an arbitrary succession of fold shapes, and
the a priori assumptions about the shape should be kept to
a minimum. (2) Although the folds considered may be of an
l1dealized type, it must be possible to find natural folds
which approach this idealized type. (3) It is desirable to
relate the finlte-amplitude treatment to the infinitesimal-
amplitude theory. (4) Since satlisfaction of these three
requirements will certainly require a numerical treatment,
it must be possible to reduce the variation qf the physical
parameters of the fold system sufficiently so that this
variation can be delineated with a reasonable number of com-
putational examples.

The problem of an 1isolated, thin, linearly viscous
layer imbedded in a medium of lower viscosity and thrown into
a symmetric train of folds most nearly satisflies the above
requirements and 1s chosen for investigation here.

The single-layer problem is a natural extension of
the most complete of the infinitesimal amplitude treatments

(17). Although combinations of multiple layers have been

(17) M. A. Biot, Theory of folding of stratified visco-
elastic media and its iImplications 1n tectonics and orogene-
sis: Geol. Soc. America Bull., v. 72, 1961, p. 1595-1620
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studied by means of the infinitesimal treatment (18), the

meaning of the results 1s not as clear as fop the single-
layer treatment (Chapter II, Section 3). Even though the
single~-layer case 1s less common in nature than the multiple-
layer case, 1t does occur sufficlently often to provide
opportunities for verification of the results of the theory.

Newtonian viscosity is probably the simplest reason-
able rheological law to use. Since a viscous material has
no "memory" of 1its past strain history, it is relatively
simple to follow the deformation up to large strains by
computing a series of velocity distributions for the succes-
sive shapes. The significance of the assumption of linear
viscosity 1s discussed in more detail in Chapter IV, Section
5. The assumption of a symmetric train of folds 1is not
cruclal to the mathematical development, but 1t does permit
a considerable reduction in the number of examples to be
treated.

It will be shown that i1f the problem is properly
formulated the fold shape depends only on the ratio of the
folding wavelength to the dominant wavelength. The domi-
nant wavelength (19) is the wavelength of the fold which the
infinitesimal treatment predicts will grow the fastest (Chap-
ter II, Section 2). Because of this dependence on a single

ratio, a set of three calculated examples can cover the

(18) H. Ramberg, Fluid dynamics of viscous buckling
applicable to folding of layered rocks: DBull. Amer. Assoc.
Petr. Geol., v. 47, no. 3, 1663, p. 484-505

(19) Biot, op. cit
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range of physical parameters fairly completely. This simple
categorization 1s one of the reasons that the particular
mathematical formulation used in this study was used. Re-
laxation of some of the simplifying assumptions would des-
troy the dependence on a single physical parameter.

The mathematical formulation of the provlem and the
prcoable effects of the simplifying assumptions made are
discussed in Chapters III and IV. The following three chap-
ters (V, VI, and VII) deal primarily with the details of the
numerical method. A reader who 18 more interested in the
geologlic aspects of the study can omit these three chapters,
except for Section 2 of Chapter VII, where the Fourier-
analysis method of describing the shape of a folded layer
is discussed. The infinitesimal theory and its relation to
the present study are discussed in Chapter II. The results
of the numerical computations are presented and interpreted
in Chapter VIII, while theilr geologic significance 1is dis-

cussed in Chapter IX.
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CHAPTER II

]

INFINITESIMAL-AMPLITUDE TREATMENT

The theory of infinitesimal-amplitude folding of
layered media (1) provides the starting point for the pre-
sent study. Wavelengths of folds are determined in the
early stages of the folding process, and the infinitesimal
treatment deals mainly with the wavelength-selection mecha-
nism.

The energy dissipated in the folding of a competent
layer in a less competent medium by compression parallel to
the layer can be separated into two portions: (1) the bend-
ing dissipation in the layer, and (2) the dissipation in the
medium. For a fixed rate of shortening, the bending dissi-
pation in the layer increases as the wavelength of the folds
becomes shorter, whereas the dissipation in the medium de-
creases, since the shorter wavelength folds disturb the
medium over a smaller distance from the layer. There 1is
thus a certain wavelength for which the total rate of dissi-
pation for a fixed rate of shortening 1s minimal. As shown
by Biot (2), this wavelength is the one that tends to be

realized when a nearly plane competent layer is thrown into

(1) M. A. Biot, Theory of folding of stratified visco-
elastic media and its implications in tectonics and orogene-
sis: Geol. Soc. America Bull., v. 72, 1961, p. 1595-1620

(2) Ibid.
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folds by compression, and it 1s therefore called the dominant

wavelength.

l. Geometrical assumptions

Certaln geometrical assumptions are made in the infin-
itesimal treatment in order to simplify the mathematical
analysis. These assumptions restrict the theory to folds
with very low dips, making it essentially a static approach.
They are: (1) The boundary between the layer and the medium
can be considered as a plane when calculating the stress
distribution in the medium. (2) The inclination of the layer,

©, 1s small so that it can be assumed that:

Ldam, B = Ko B = 6

(3) The distinction between arc length along the layer and
distance parallel to the axis of coordinates may be neg-
lected. In the finite-amplitude treatment none of these

assumptions is made.

2. Concept of the dominant wavelength

Expressions for the dominant wavelength have been de-

rived by Biot (3) and Ramberg (4) for viscous media, and by

(3) Ibid.

(4) H. Ramperg, Relationships between length of arc
and thickness of ptygmatically folded veins: Am. Jour. Seci.,
v. 258, 1960, p. 36-46
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Kienow (5) and Currie et al. (6) for elastic media. The
various analyses differ in the method of calculating the
resistance of the surrounding medium. Bilot uses the proper
treatment and arrives at an expression discussed below.
Ramberg makes an incorrect assumption about the way the
velocity in the medium dies out as distance from the layer
increases, and gets an expression which differs by a multi-
plicative constant from Biot's. Using elasticity theory,
Currie et al. arrive at an expression which 1is equivalent
to Biot's when the appropriate elastic constants are re-
placed by the coefficients of viscosity. This equivalence
between the elastic and the viscous theory i1s a general
mathematical property, discussed in more detail below,.
Kienow uses elastic analysis, but assumes that the resist-
ance of the medium is independent of wavelength, so that he
does not arrive at the same result as Currie et al. Goguel
(7) analyzes the problem of folding in some detall and con-
siders plastic as well as viscous media, but he does not
derive an explicit expression for the dominant wavelength.

Biot's treatment (8) shows that small perturbations

(5) S. Kienow, Grundziige einer Theorie der Faltungs-
und Schieferungsvorgdnge: Berlin, Borntrédger, Fortschritte
der Geologle und Paleontologie, bd. XIV, h. 46, 1942, 129 p.

(6) J. B. Currie, H. W. Patnode, and R. P. Trump,
Development of folds in sedimentary strata: Geol. Soc. Amer-
ica Bull., v. 73, 1962, p. 655-6T4

(7) J. Goguel, Introduction a 1'étude mécanique des
déformations de 1'écorce terrestre: Service Carte Géol.
France Mém., 1948, 530 p.

(8) Biot, op. cit.
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in the initial shape of the competent layer are amplified at
a rate which 1s a function of their wavelength and their
initial amplitude. If the initial vertical displacement, Y ,

is given by

the displacement at time * will be

Yy = % e we 2L x,

where P = 5_(5,,#,,/4,,15 ) is a function of the wave-
length, the viscosities of plate and medium, and the longi-
tudinal force in éhe plate, F . For & glven viscosity
ratio, there will be one wavelength for which the exponen-
tial growth factor _P is the largest. It is the dominant

wavelength, given by,

= amr R VK
l—d ‘ﬂm J

where ﬁg_is the thickness of the competent layer.

An expression analogous to this can be developed for
the elastic case, but the significance of the dominant wave-
length for the elastic éase is different from that for the
viscous case. The elastic system has no memory of the shapes
that 1t has assumed. Ii will buckle at a wavelength deter-
mined by the physical parameters of the system and the con-

straints imposed on it, and its shape will c¢ontalin no
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displacement components of other wavelengths. The viscous
system, on the other hand, has a complete memory of its past
shape history. The physical parameters and constraints on
the system will determine the rate at which the various com-
ponents of the shape grow, but all wavelengths initially
present will be amplified to a certain degree. Therefore,
the mechanism of fold growth in the viscous system must be
analyzed in some detail before it can be said that the dom-
inant wavelength will in fact predominate at finite ampli-
tudes.

Biot (9) presents such an analysis. His principal
conclusion is that if the total amplification of the dominant
wavelength is large (e.g., amplification by a factor of
1000 or more), the resultant fold train will show a sharply
defined wavelength with 1ts value given by the dominant
wavelength expression. This wlll occur whatever tﬂe distri-
bution of wavelengths in the initial shape perturbations
may have been. This lack of dependence on the initial shape
of the layer is an important consequence of the Biot theory;
it can be used to explain the observation that trains of
folds with a relatively constant wavelength are quite common

in nature.

(9) Ibta.
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3. Multiple layers

Ramberg (10) develops expressions for the dominant
wavelength for various combinations of multiple layers, but
there 1s some doubt as to the meaning of therdominant wave-
length concept as applied to multiple layers. In particular,
Ramberg tacitly assumes that the initial shape perturbations
are ldentical in each of the multiple layers. If this as-
sumption were relaxed it would be necessary to treat the
problem of the nature of the interactions between the differ-
ent layers. Some progress with this problem has been médé
experimentally by Currie et al. (11), but the problem is |
far from being solved. An analogous difflculty arises in
the finite-amplitude problem, where 1t would be npecessary
to make assumptions about the way the fold shape changes
with distance up and down from the central layer of the

multiple-layer packet.

4. Limitations of the infinitesimal theory

One consequence of the linear viscous analysis is
that large amplification factors will occur for any viscos-
ity ratio and any initial shape if the "time" of folding is
large enough. The time of folding 1s determined only for a

specified force on the layer, and time 1is used in this section

(10) H. Ramberg, Fluld dynamics of viscous buckling
applicable to folding of layered rocks: Bull. Amer. Assoc.
Petr. Geol., v. 47, no. 3, 1963, p. 484-505

(11) Currie et al., op. cit.
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with this qualification. Biot (12) places a limit on the
time of folding by assuming that if the uniraﬁp compression
of the layer--which wi}l of course continue during the
folding process--produges a shortening of 25%, the folding
phenomenon will be masked by the shortening. However, this
criterion i1s both physically and geologically unrealistic.
When the fold deviates little from a plane, the thickening’
associated with the shortening will be uniform along the
length of the layer. Physically, such a uniform shortening
has no effect on the problem except to make all wavelengths
shorter. G@Geologically, such shortening can be recognized
only by using indicators of geologic strain such as deformed
oolites or fossils in the layer. Geoclogic use of such in-
dicators has not been frequent enough tc rule out large
uniform shortening in folded beds.

It seems more realistic to place the limit of the
time of folding at the fold amplitude where the wavelength-
selection mechanism breaks down. This occurs when the
maximum dip of the 1imb 1s between 10° and 20° (Chapter VIII,
Section 5). Even at a 10° limb-dip the selection mech-
.anism 18 not that of the infinitesimal analysis.

If the wavelength-selection process coperates only at
low amplitudes, then the principle factor which determines
whether a fold train of the dominant wavelength will develop
is the amplitude of the initial shape perturbations. When

these perturbations are small enough, the dominant wavelength

(12) Biot, op. cit.
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will have time enough to assert itself before the finite-
amplitude stage 1s reached; 1if they are not sufficlently
small, the resulting fold train will not exhibit the domi-
nant wavelength--and will not have a regular wavelength at
all, unless the initial shape perturbation does.

Uniform compression parallel to the layer may disturb
the wavelength-selection process by shortening all wave-
lengths. It seems possible that uniform compression could
operate in such a way as to produce a train of folds with
a regular wavelength significantly shorter than the dominant
wavelength. )

Even if a train of folds develops at the dominant
wavelength, it 1s possible that the viscosity ratio will
change during the folding process. As lithification of the
rocks proceeds, it is likely that different mechaﬁisms of
deformation come into play. Investigations of the effect of
temperature on the rheological properties of rocks (13, 14,
15) have shown that, by the time the temperature has reached
values consistent with the greenschist facies of metamor-

phism, significant changes have taken place in the

(13) H. C. Heard, Effect of large changes in strain
rate in the experimental deformation of Yule marble: Jour.
Geology, v. 71, no. 2, 1963, p. 162-195

(14) D. T. Griggs, Experimental flow of rocks under
conditions favoring recrystallization: Geol. Soc. America
Bull., v. 51, 1940, p. 1001-1022

(15) D. T. Griggs, F, J Turger, and H. C. Heard,
Deformation of rocks at 500" to 800" C., chap. 4 in Rock
deformation (A symposium), Geeol. Soc. America Mem. 79, 1960,
pP. 39-104
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deformational behavior of rocks. It 1s likely that a given
temperature change will effect rocks of differenf composition
in different ways so that the viscosity ratio may show sig-
nificant changes with time. .

The results of the present study show (Chapter VIII,
Section 3) that the shape of finite-amplitude folds varies
significantly with variation in the ratio of the fold wave-
length to the dominant wavelength. This variation provides

an independent measure of the viscosity ratio.
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CHAPTER III
MATHEMATICAL FORMULATION OF THE PROBLEM

1. Cholce of region; boundary conditions

The first step in the mathematical formulation of the
finite-amplitude development of a fold in a viscous medium
is to 1isolate the region under consideration. Although the
method used in this sﬁudy could be applied to any limited
region with an arbitrary distribution of stresses or veloc-
ities imposed on its boundary, in most geologic situations
these external constraints are unknown. Therefore, rather
than starting with assumptions about the boundary conditions,
we shall make assumptions about the geometrical pfoperties
of the folding system during its development. Na&ural exam-
ples can be found in which these geometrical conditions
are fulfilled to a fair degree of approximation; the extent
to which they are fulfilled by the final shape as we observe
it in the field can be clearly determined in any given
example.

Consider an isolated competent layer imbedded in a
homogeneous medium of lower competency. This layer 1s assumed
to be folded into a rather long train of waves; individual
folds should have the same wave length and amplitude, and
the axial plane of each successive anticline and syncline

should be a plane of symmetry for the folded shape. By
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"{solated" 1s meant, in practice, that the homogeneous
medium extends a few wavelengths above and below the layer.
Consider a fold near the center of the train; 1t is reason-
able to assume that the stresses exefted on this portion of
the body will be substantially those which would be exerted
if the wave train were very long. We shall make the ;urther
assumption that velocities do not vary with distance'along
the axlis of the folds; this is the assumption of plane
strain (1).

If we assume that the above geometrical properties
hold throughout the deformation, we can isoclate a portion of
the layer+medium system and state the boundary conditions
which must be imposed on it. Since each axial plane is a
plane of symmetry, the shear stress across 1t must be zero.
In addition, since it 1s assumed that the folds grow with
time, two adjacent Axial pPlanes must approach each other
with a given horizontal velocity Ug. Wg may vary with
time, but not with ¥ ). At large distances above and below
the layer we agaih assume that there are horizontal planes
of zero shear stress which are moving away from each other
at a velocity Vg such that the total volume of our rec-
tangular region remains constant. These boundary conditions,
coupled with the assumption of Newtonlian viscosity, provide
a completely defined mathematical problem,.

An additional consequence of our geometrical

(1) I. S. Sokolnikoff, Mathematical theory of elas-
ticity: New York, McGraw-Hill Book Co., Inc., 1956, p. 250
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assumptions is that there willl be a center of symmetry at

the inflection point on the limb of the fold.
The problem as thus defined is pictured in figure 1.

2. Equations of Motion.

The equations which govern the two-dimensional

motion of a slow-moving, linearly viscous fluld are the

equations of stress equilibrium:

Z—g—;—g’ﬁ—F,' = 0 ;
5%, (1a)

the stress-strain-rate relations:

1b
Ty = 2 peyy -6 P (1b)
the condition of incompressibility:
oy =
Z_ o X: ) (1e)
and the compatibility condition:
€22 + Lay,n = 2 L3, (14)
I, f-‘—f
P =-L (1 + T2+ Tyy ) is the pressure and &;',': o0 , 1%+

is the Kronecker delta. Relation 1d insures that the strain

rates are derivable from a velocity field; if the problem is

rephrased in terms of the velocitles alone, relation 1ld is

automatically satisfied.
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3. Variational Method

These equations are mathematically identical to those
governing the static elastic deformation of an incompress-
ible elastic body, if we replace strain-rates by strains and
velocities by displacements (2). Therefore, there is a com-
plete analogy between elastic and slow-viscous theory; any
results of elasticity theory carry over into viscous defor-
mation theory. 1In particular, the equivalence between
elastic variational methods using the strain energy density
and elastic methods using the static equilibrium equations
implies a similar equivalence between variational methods
using the viscous dissipation rate and methods using the
viscous equations of motion. The variational method is
particularly convenient in setting up the discrete ana-
logue of the contlinuous problem defined in this chapter
and will therefore be used in this study.

It 18 convenient to formulate the problem in terms
of velocities rather than stresses, since it 1is the
changes 1n the shape of the plate that are of most airect
interest. The variational principle that applies in this
case 1s known 1in elasticity theory as the Theorem of Mini-
mum Potential Energy. The theorem can be stated thus: "Of
all displacements satisfying the given boundary conditions
those which satisfy the equilibrium equations make the poten-

tial energy an absolute minimum." This theorem and its

(2) J. W. S. Rayleigh, The theory of sound: New York,
Dover Publications, Inc., v. II, 1945, p. 313
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converse are proved by Sokolnikoff (3). The potential ener-
gy of the theorem l1s delfined as the straln energy of the
body minus the work done on the body by the stresses cn
those portions of the boundary where stresses are glven
and minus the work done by the body forces. In our problem
the glven stresses are zerc shear stress on the cuter bound-
arles of the region,‘so that the work done by the given
stresses 1s autcomatically zero. Since normal velccitlies
are specified on the bcundary, we shall consider only velocc-
ity distributions which have these boundary velocities in
seeking the minimum dissipation.

In the particular problem under consideration, the
primary advantage of the variational method is the relative
freedom of c..olce that it permits in the 'choice of a mathe-
matical representation of the veloclty distribution. In
particular, ‘the problem reglon may be divided into smaller
sub-regions and a different representation of the velocity
distribution used in each sub-region, We nmay &also use

different methods of calculating the dissipation in accord-

ance with the physical assumpticns about the nature of the
region. Although we are ICree 1o pick the description ¢’ the

velocity dist..butlion which is most convenlent Ior the

ct
ct
o g
o

£ T oAy - -— ~ - - - 2 s ey sy -
particular portion of the regicn, we must lrisure tha

velocity distributions match at the internal boundaries.

This matching introduces additlional constraining

& relations

=
3
b
Q
o)

‘must be satisfled by any veloclty distrioution

(3) Sokolnikoff, op. cit., p. 382-386

——
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considered in seeking the minimum dissipation.

4. Shape and disslpation of the layer

Let us now consider the specific representation of the
velocity distribution and the calculation of the dissipa-
tion from this representation. Consider first the plate
itself. 1If the plate is sufficlently thin, it can be
assumed that: (1) the central plane of the plate undergoes
neither extension nor compression} (2) originally plane
cross sectlions normal to the central plane of the plate re-
main plane during deformation; (3) the variation of the
bending strain across the plate 1s linear, with extension
on the convex side and compression on the concave side of
the plate; and (4) the velocity of points on the inner and
outer sides of the plate situated on the same normal to the
plate 1s identical. The validity of these assumptions 1is
discussed in the next chapter. Since the length of the
plate 1s fixed, i1ts shape can be described by specifying
its inclination 0 .as a function of are length 5, measured
from the center of symmetry, and its velocltiy can be des-
crived by specifying é as a function of S. In order to
calculate the dissipation involved in the bending of the
plate, we must first calculate the strain rate in the plate;
to do this we refer to figure 2, page 23, where the original
shape of a small qlement of_the plate and its shape after a
small increment of time 2Lt 1s shéwn. The change in length

per unit length of a longitudinal fiber in the plate at a

distance 7 from the central fiber of the plate is then given
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by:
. : ,,ZJGAI
ed .’f-"])dQ
If we neglect M 1in relation to the radius of curvature r
of the central fiber of the plate, as the assumption (3) of

linear strain variation demands, the resulting strain rate

is:

w d6 /6

—

rdé T ds

Because of the assumption of plane strain, the corresponding
longitudinal stress i1s given by the stress-strain rate rela-

tions as:

- = 2ME-P = 2 Ml +F

T = 4 u, e

Integrating over the thickness of the plate and over the
length of the plate, the bending dissipation becomes:
S

{ (1 nmseno= [omig fromnmtecehs

2

x
P
o

The horizontal and vertlcal velocity of a point 5
on the plate are found by using the relationships between arc

length, inclination, and X and ¥ of the plate:



dX - cea O
a5 2
.é..z = A @
as

du d dx S kv

d.5 - dﬁ'(df — il 9’
d d :

2{;_/- = J% (v—yf—} = B cou O,

and finally integrating with respect to Ji, remembering that
U4 and V_ are zero at the inflection.point on the limb (s=0),

we have:

o

(2)
V:;éw"e“l'f.

o

According to assumption 4 above, these velocity compenents
must match the velocity components in the mediﬁm adjacent

to the plate.

5. Dissipation in the medium

The velocity distribution in the surrounding medium
is most convenlently described in terms of a stream function.
This stream functlion is defined so that its derivatives are

the horizontal and vertical velocities:
o ¢ 3o

_— e —

“=Sy 0 VTR
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A velocity distribution defined by such a stream function
automatically satisfies the incompressiblility relation,
equation le. It can be shown (4) that the equilibrium equa-

tions 1mply that the stream function is biharmonic:
4
F B =0

Although this fact 18 not utilized directly in the present
treatment of the problem, 1t does provide a verification of
the difference equations‘derived in Chapter V. For nandling
the boundary conditlons on the medium, 1t is convenlent to
separate the velocity distribution into two parts, that due
to a uniform cpmpression, and the remainder, which can be
thougnt of as due to the folding. This separation 1s repre-

sented by:
= ¢& r ¢ (3)

where ¢ = Kxy glves the contribution due to uniform
compression.
The dissipation in the medium may be written in terms

of this stream function as follows:

(4) J. C. Jaeger, Elasticity, fracture and flow:
London, Methuen and Co., Ltd., 1956, p. 140
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Uy
= Sg[é: + el +2€), )dxdy

(%)

—

- s ([ (200 + 4 (00m0) [ dndy

= Mm & S [ 2(‘1’;,:1'*' K)z +.-z"(¢,.. 'Ck,n)x} dx dy -

Under the assumption of isolation, the medium ex-
tends to I °° in the y-direction, but it is more convenient
to deal with a finite rectangular reg}on. Therefore, ¢
ogtside this region is represented as a sum of products of

trigonometric functions and exponentials:

- ] —(11-')TY ' e
¢=ny+jz-;(A‘i*Biy)e C,O'Q—[zz—l)—-cx
B (5)

= ’ - . » 270
Z(C,‘fD,’Y)e & MZZ—-L:X

;L:is measured from the top of the rectangular region, and
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the Ai, 8 , C , and Dv are chosen to match ¢ and
d® .

o7 at‘Z = O . Each term of the sum satisfies the

boundary conditions on ®; at the right and left hand
walls, and the exponentlial dependence on.li gives ¢ = %%: 0
at infinity. The dissipation for this region is calculated
with the same expression used for the rectadgular region,

equation 4.

6. Statement of the mathematical problem

When the dissipation expressions and the constraints
for the various sub-regions are collected, the mathematical
problem of calculating the velocitles of deformation of the
folding region can be stated as follows. We denote the '
y-coordinate of the line on which the mesh point representa-
tion of ¢ passes into the trigonometric sum repreﬁentation
¢i @ Dby Y: , the stream functlion in the rectangu}ar reéion
by ¢ , and the trigonometric stream function by @ . -‘The

total dissipation rate, I, is:

- ys Lx
d6\* 2 ﬂ -
fpetD g (3c) o +mn H [-Lm,u-m sG] [
-J ~Ys '-'5"
o &
A P Y ral 1 K)t dxdy
+ Mom X[‘(é' ) #2(En J
e (6)
~Ye %r
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We seek the velocity distribution which (1) satisfies the

internal matching conditions:

£
ﬁ :-gé“é:‘s 3
Ay Y
5
_éﬁ_._—_—-gémed-f
2 X s

at all points S5 on the plate and:

0 _ 2¢
2y Y
on the horizontal lines y=*Y: ; (2) satisfies the veloc-

ity constraints on the expernal boundaries:

) q?p:o al x::%

and (3) makes'l_ a minimum. (The center of symmetry has been
lgnored in this formulation of the problem; when the discrete
analogue of the problem is formulated, the center of sym-
metry will be taken into account in order to reduce the num-
ber of algebraic equations to be solved.)

At the start of the folding, the shape of the layer
is taken to be that of a sine wave of low amplitude. The
consequences of this assumption are best considered in the

light of the computational results of this study; therefore,
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they will be discussed in Chapter VIII, Section 5.

7. Parametrization of the problem

As thus formulated, the problem depends on a single
physical parameter. To show this we first write the dissi-
pation rate as a sum of two terms, dissipation in the medium

and bending dissipation in the plate:
g

1\ 2 . a + X o 2
I = &é-&ig[s?)d" +}4ij(6:-"€‘:11’7~6'1)3'¢/)’-
i

The spatial variation of the velocity distribution depends

on the relative magnitude of these two terms. Any change in
the system which multiplies both terms by a constant, such

as a change in the boundary velocities, will change the dissi-
patibn of all the possible velocity distributions considered
in seeking the minimum by the same factor. Thefefore, we

need consider only those changes in the physical parameters

of the system which change the ratio:

(E}?Jz ds

L—’—;b}

y

by
A

r\&:::.
= |x
I '

(é': "'é:x L 29—?;)5’“")’

l'--1

3
"D
g,-/')tq

It 1s seen from this expression that 1f we keep the shape of
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the plate constant and change either the time scale or the
distance scale, the spatial variation of the velocity dis-
tribution remains unchanged. Since the absolute values of
the stresses are not specified in the problem, a change in
the magnitudes of the viscosities which leaves /ﬁZZM
unchanged will not alter the problem. Also, any change in
the viscosity ratio and the thickness of the plate which
leaves %‘fﬁi-ﬂf. constant does not change the problem.
Apart from a factor of 27T this quantity 1s just the cube
of the dominant wavelength (5):

Therefore, under the assumptions of the problem as formulated,
the velocity distributions and fold shapes that result from
a given initial aﬁﬁpe depend on a single physical parameter,
the ratio of the fold wavelength to the domlnant wavelength,
L /14

It should be noted that this "one-parameter" nature
of the problem is a result of the assumption that the plate
is thin and inextensible. If a more accurate bending-
dissipation expression were used, so that changes in the
length of the plate were taken into consideration, the total
dissipaﬁioh would include terms multiplied by other powers

of the thickness, and the plate thickness and the viscosity

(5) M. A. Biot, Theory of folding of stratified visco-
elastic media and its implications in tectonics and orogene-

si's: Geol. Soc. America Bull., v. 72, 1961, p. 1595-1620
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ratio would be independent parameters.

The growth of a finite-amplitude fold was computed for
three values of /., : (1) L<<cLs, , (2) L=Ls , and
(3) L= 46Ls . In case 1, the free plate, the dissi-
pation in the medium is negligible compared to the bending
dissipation of the plate. Case 2, the dominant-wavelength
fold, corresponds to an approximate balance between the
dissipation in the medium and the plate. In case 3, the
weak-plate fold, the dissipation in the medium 1s large
compared to that of the plate.

8. The free plate

One end member of this single-parameter sequence de-
serves special consideration, since its shape as a function
of time is obtained 1n a simple fashion. When the viscosity
ratio is very large, or alternatively, when the.wavelength
is much shorter than the dominant wavelength, the dissipation
in the medium is negligible in comparison to the bending
dissipation of the plate. This is the case of the free

plate. Its dissipation is:

R
§ | dé"
[ = &X ( (52)45
o
with the constralints:
._d._G-:o at S=20
ds )
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Rather than constrain the horizontal velocity at s =S ,
it is simpler for the free plate to specify the force acting
on this end of the plate. This introduces a new term in the
dissipation expression which takes into account the rate of
work done by this external force; the dissipation expression

then becomes:

5
12 (@) g~ p(Ganos.

o

Using the standard methods of the calculus of variations,

the first variation of this expression is:

s S5
LI = #r‘&sjd??-J%_?—ds - PSd’éMedr
3
o (]

Integrating the first integral by parts, we have:

r s S5 ' S5
A d8 el _ 1 46 Sg4 8 4n O ds.
5T 5514 55°° [ds‘ 66 ds -Pj‘SM
0o o (23

Now, the integrated parts from the integration by parts
vanish due to the boundary conditions and, since 5\é 15
arbitrary except at the ends, the vanishing of the first
variation implies that:

k 7 A
My H J Q
3 ds?t

Pasn @ = 0O

Except for the presence of the time derivative of & , this
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equation 18 identical to the Euler elastica equation (6);
the equation could, of course, have been derived merely by
use of the analogy between elastic and viscous problems.

It was not found possible to solve this equation in
closed form, but the numerical solution 1s a very simple one.
At any given stage of the deformation € 18 known as a
function of S, and therefore 4«n ©  can be calculated at
a series of equally spaced 5 values. Two numerical inte-
grations of this set of —ae«+ &  give the values of 6.
corresponding to this shape. The new shape after a short

interval of time, -t , is given by:

(rew) (eld)

- B v Dt

The p:oceaa'ia then repeated until the fold 1s of sufficient-

ly large amplitude.

(6) J. Prescott, Applied elasticity: New York, Dover
Publication, Inc., 1961, p. 100
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CHAPTER IV

ASSUMPTIONS AND LIMITATIONS OF THE MATHEMATICAL
FORMULATION OF THE PROBLEM

In the previous chapter a number of 1dealizing assump-
tions were made in order to formulate a well-defined and
mathematically tractable problem; in this chapter we shall
examine the more important ones and the restrictions which
they place on the lnterpretation of the results of the study.
These assumptions can be placed in three general categories:
- (1) the geometrical assumptions made in defining the specif-
" ic problems to be solved, (2) the mathematical simplifica-
tions needed to reduce the analytical difficulty of the
problem, and (3) the assumption of linear viscosity as a

rheological law.

1. Geometrical assumptions

The geometrical assumptions about the periodicity and
the symmetry of the folds are not strictly necessary from a
mathe@atical standpoint. If they were relaxed, only minor
changes would be necessary in the discrete formulation of
the problem. For example, treatment of a serles of asym-
metric, but still periodic folds would require no major
revision of the mathematical treatment or the computational
method. However, at the present stage of knowledge of the

folding process it is logical to start with the simplest
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geometry that adequately represents a class of natural folds
and to study the evolution and the variations 1in shape in

this i1dealized case.

2. Plane strain

The assumption of two-dimensional deformation is es-
sentlial to the present formulation of the problem, but this
assumption is a common one in most geologic thinking about
the folding process. It 1s clearly Jjustified 1n a large
number of geologic situations. Extension or compression
parallel to fold axes which did not alter the cylindrical
shape of the fold would not change any of the conclusions of
this study. However, fold culminations and folds with

curved axes fall outside the scope of the treatment.

3. Thin-plate assumption

The assumpﬁion that the competent layer can be treat-
ed as a thin plate requires more detalled Justification.
To be sure, a problem in which the ratio of initial wave-
length to dominant wavelength is fixed will correspond to
as thin a plate as we care to choose 1f the viscosity ratio
18 made high enough. However, in a natural example the
viscosity ratio is unknown, and the thickness of the plate
i1s easily observed; therefore, we would like to have some
objective measure of the errors involved in the assumption
of a thin plate. There are three independent errors which
are introduced by this assumption: (1) if the plate has

finite thickness, the velocity of the boundary between medium
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and plate is not exactly what we have assumed; (2) the
assumption of linear strain diatribution in the plate 1is
only true for a very thin plate; and (3) the plate will be
inextensible only if 1t 1s very thin and the viscosity ratio
is very high.

The effect of the assumption that we can treat the
plate as a surface when matching the velocities of medium
and plate is difficult to evaluate precisely. For plate
thickness corresponding to a viscosity ratio of 500 to 1000
at the dominanﬁ wavelength, the contribution to the velocity
of a point on the surface of the plate due to the rotation
of the plate will be as large as several per cent of the
velocity of the center line of the plate. One way to visu-
alize this error 1s to consider a certain "overlap" area
that would be part of the plate if it had finite thickness.
In the thin-plate approximation this overlap area is tréated
as part of thg médium. As a result, shear strain parallel
to the layer 1s permitted, even though this shear strain
would not be present in the thick plate. Therefore, the
strain distribution in the medium will be incorrect in the
overiap area and probably for a short distance further into
the medium. It 18 probable that this error is important
only near the plate and that the overall strain distribution
in the medium and the shape of the layer are not appreciably
affected.

To consider the effects of the assumption of a linear

strain distribution in the plate, we examine the next more
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complicated approximation: that in which & linear strain
distribution 1s not assumed but in which it is still assumed
that C{ransverse cross sections perpendicular to the center
line remain plane and perpendicular during bending (1). In
this case, the strain rate in the plate is given by the ex-

pression:

_R(Y*"l) de
Rry 9

e =

where j& is the lécal radius of curvature of the center line,
Y 1is the distance from the center line of the plate, taken
as positive on the convex side, and -7 1s the y-coordinate
of the neutrai plane of the plate. 7 is determined by

the condition of inextensibility of the plate:

4

A H ;

= . R(y*"l) dé dy &'t &

S ely)dy = R+y a5 = N
&

A

»;?

and is given by

2 —A— —~ _(___ _._Af)
e R- b R+4/2 R %] T
R-4/2

Values chosen from a tight fold in this study give: _A - 1,
R =10, and 7 = 0.0083.

The bending dissipation in the plate is given by:

(1) S. Timoshenko, Strength of materials, Pt. I, Ele-
mentary theory and problems: Toronto, D. Van Nostrand Co.,
Inc., 3d ed., 1955, p. 362
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“/:. A’/ 2
32 46 \* R‘(Y*"l)1 dy
I,=M,\ €9y = ﬁ’(FTJ (R+Y)?
-5 - 2

Substituting the expression for ji derived above and per-

forming the integration:

Thus, in the example cited above, the first correctiocon to
the dissipation would be zero on the limb and 0.4% at the
crest of the fold.

4, Inextensibility

The condition of inextensibility i1s probably the most
serious aspect of the thin plate assumption., Most fairly
tight natural folds show some thickening in the crestal
region (2).

A relative thickening of the crest of the competent

layer has two main effects on the resulting shape: (1) The

(2) J. G. Ramsay, The geometry and mechanics of forma-
tion of "similar" type folds: Jour. Geology, v. 70, no. 3,
1962, p. 309-327
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thickening will change the local bending resistance of the
plate. This effect will tend to slow the growth of curva-
ture in the crestal region and result in a more open fold.
(2) The extra shortening in the crestal region will increase
the curvature there, tending to produce a tighter fold. It
seems llkely that the first effect will be most important
and that the folds resulting from the computations of this
study will be tighter than those which would result from a
more accurate analysis which did not assume inextensibility.
These effects will be least important for the free plate and
most important for a fold whose wavelength 18 much longer
than the dominant wavelength. The reasbn for this 1s that
the longitudinal stresses in the plate are increased by the

presence of the medium.

5. Linear viscosity

The assumption of linear viscosity as a rheological
law is of a different character from the assumptions dis-
cussed above. It is better regarded as a working hypothesis
than as an assumption. The extent to which the geometrical
idealizations and the mathematical simplifications are
Justified in relation to any particular fold can be deter-
mined by observing the shape of the fold, the variations in
thickness of the layer, and the radius of curvature at the
crest. Consequences of the rheological law are tested by
comparing fold characteristics predicted by computations based
on the law with those observed in natural folds.

In general,, there are three ways of approaching the
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problem of determining the rheological law under which rocks
deform in nature: (1) measurement of stress-strain and
stress-strain-rate relationships on rock samples subjected
to stress in the laboratory; (2) study of the detailed
mechanisms of deformation of rocks in the field and labora-
tory and prediction of the rheological laws by theoretical
considerations based on these mechanisms; and (3) calculation
of predicted patterns of deformation under assumed laws and
comparison of these predictions with natural examples.

In terms of experimental results the simplest way to
distinguish a viscous material from a plastic one 18 to ob-
serve whether the material shows a threshold stress below
‘'which no deformation takes place. In all the experimental
work on rocks known to the writer such a threshold is found
to exist, but it seems to be lower at lower strain-rates.
The experimental work done af the lowest strain-rates (3)
was done under conditions of constant strain-rate, so that
the simple test of a threshold stress cannot be applied.
Heard states (4) that his data nelther contradict nor affirm
the presence of a threshold stress. The strong non-linear
dependence of stress on strain-rate shown in Heard's results
does not agree well with elther linear viscosity or perfect
plasticity.

Consideration of the mechanisms of deformation provides

(3) H. C. Heard, Effect of large changes in strain
rate in the experimental deformation of Yule marble: Jour.
GeOlOSy, Y. 71, no. 2, 1963’ po 162-195

(4) Ibid., p. 181
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clues to the expected rheological behavior of rocks. Single
crystal experiments on deformation by twinning and gliding
suggest that a minimum resolved shear stress 1s necessary to
produce elther twinning or gliding. On the other hand, con-
sideration of the thermodynamic equilibrium of a non-hydro-
statically stressed solid in contact with a fluid into which
the solid may dissolve (5) indicates that recrystallization
may take place under vanishingly small stresses. Micro-
scopic dbservation of naturally deformed rocks commonly in-
dicates that several mechanisms have operated in producing
the observed deformation.

The third method of determining the rheological law,
comparison of predicted and naturally observed deformations,
is one of the objectives of the present study. If the pre-
dictions include the shape of the deformed body, then the
mathematical method used must not assume this shape a priori.
This restriction greatly complicates the mathematlcal prob-
lem and makes it difficult to consider any but the most
simple rheological laws, such as linear viscosity and
perfect plasticity.

Although the choice of a rheological law is an impor-
tant hypothesis, it seems probable that many of the general
features of the deformation are fixed by the overall geometry
of the problem. In particular, the course of the deforma-

tion in the medium would probably be grossly similar whatever

(5) J. W. Gibbs, The scientific papers of J. Willard
Gibbs: New York, Dover Publications, Inc., v. I, 1961,
p. 184frf, :
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law were chosen, provided that the general succession of fold

shapes were similar to that found in this study.
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CHAPTER V
DISCRETE FORMULATION OF THE PROBLEM

An analytical solution of the problem formulated in
Chapter III would be extremely difficult to find, and proba-
bly does not exist except in examples with simple geometries.
Since the geometry of the folded layer is determined by the
solution of the problem, a method applicable to a layer of
relatively general shape must be used. We have chosen to
set up the discrete analogue of the continuous problem of
Chapter III; this discrete analogue leads to a set of linear
algebraic equations which can be solved on a high-speed

digital computer.

1. Qutline of the discretization process

A general outline of the method of setting up the dif-
ference equations corresponding to a variational problem is
found in Forsythe and Wasow (1), and a specific application
to the equation of the thin elastic plate 1s discussed by
Engeli et al. (2). An outline of the scheme employed in the

present treatment follows.

(1) G. E. Forsythe and W. R. Wasow, Finite-difference
methods for partial differential equations: New York, John
Wiley and Sons, Inc., 1960, p. 182-184 ’

(2) M. Engeli, T. Ginsburg, H. Rutishauser, and E.
Stiefel, Refined iterative methods for computation of the
solution and the eigenvalues of self-adjoint boundary-value
problems: Basle, Birkhauser, 1959
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1) The velocity distribution is represented in terms
of discrete values. The method of representation will be
different for different portions of the reglon under con-
sideration. In the medium itself the solution 1s represent-
ed in terms of the values of the stream function ® at the
nodes of a square grid. On the plate it 1s represented by
the values of the rate of change of inclination, 2 , at a
set of points separated from each other by equal arc lengths.
Finally, the trigonometric series which represents the con-
tinuation of the stream function ¢ ouft to infinity is re-
presented by its value and normal derivative at grid points
along the horizontal line where it 1s connected to the
medium solution.

2) The derivatives in the dissipation formula, equa-
tion 6, are approximated by appropriate differences of the
discrete values. The integrals are calculated by summing
the squares of these differences, weighting each term ac-
cording to the area assoclated with it in the grid.

3) The constraining relations which impose the proper
veloclity at the outer boundary of the region, as well as
those which guarantee the matching of velocities at the
plate and at the boundary between the grid region and its
continuation to infinity can also be written as finite
difference equations. These constraining equations are used
to eliminate certain of the discrete values from the dissi-
pation expression; this elimination process ;nsures that any

velocity distribution arising from the minimization process
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will satisfy the constraining relations. The symmetry of
the overall problem is introduced at this stage, so that the
dissipation expression contains only those discrete values
needed to describe the problem with its symmetry taken into
account.

4) The dissipation expression, which is a sum of pro-
ducts of the discrete values, 1s differentiated in turn with
respect to each unknown diaérete value, and the resulting
derivatives are set equal to zero. This process ylelds a
set of linear algebralic equations for the discrete values.
By the nature of the process by which these equations were
obtained, their matrix is symmetric and either positive def-
inite or positive semi-definite (3). The symmetric nature
of the matrix is convenient, though not essential, for the
method used to solve the equations; the definite character
of the matrix is not used directly, but it can provide a
useful check.on the correctness of the matrix for any par-

ticular problem.

2. ® on the square grid

We now proceed to illustrate this procedure by show-
ing how it is used to derive equations for the various
classes of unknowns. Polints of the grid region may be di-
vided into three groups: (1) regular points whose twelve
nearest neighbors are inside the grid region, (2) points that

lie within two mesh lengths of a plane bound&ry, and (3)

(3) Forsythe and Wasow, op. cit., p. 184
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points that are adjacent to the layer. In what follows, ¢
at a given point refers to the ¢, of equation 3: the
contribution of ¢.= KXy is handled by adding a term
K to the expression for @,.

As the first illustration, consider a point in the
interior of the medium. The compass-point notation of
figure 3 will be used. The value of ®.,,» at the center
of mesh square O-E-NE-N may be represented as:

}L- ((Re TR Tl vk )
where £ 1s the mesh spacing. The square of this expression,
multiplied by _1;: is taken as u¢:n Jxdy over this square.
It is more convenient to evaluate ¢, - &,, at the
center of a square of side ;i_which is centered on a mesh

intersection; thus for the square centered on the point E:

Yg("m—diu)ld"d)' = j‘[t—,.(¢35'145+¢.)-j1(¢~E-29’; +¢$E)]
- -'zl—:. (¢EE’+¢’—¢NE-¢SE)1 i

To derive the equation for the point O we take the
derivative of the sum of the eight energy expressions which
involve 0O; the contributions to this derivative from mesh-

centered square E and from mesh square 0-E-NE-N are:

% Y.S‘gﬂ’:drcly) = )tf: (9’3"”5 —-da/ +¢.‘d>5 +K) )
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0 ' - » .
T&:(“a((?”‘ Q")d’(d,y) 'Jt(¢éf+¢-_¢:'f'd’:s)

Adding the contributions from the other squares and setting

‘the result equal to zero, the resulting equation for point 0

is;

20 qh - 9 (q;‘*¢u-*<ku*'¢s) gt (%u;*¢h,‘*aw’d55)

+ ( 425 +‘?~~'anu'* I TR Y.

The left-hand side of this equation is the standard bihar-
monic difference operator; it is usually derived directly
from the differential equation (4). 8ince the expression
for ¢, satisfies the biharmoniec equation identically, the
_K term cancels out.

Next, consider the case where the velocities perpen-
dicular and parallel to a given mesh line are constrained
to have certain values; this 18 equivalent to constraining

¢ and ¢,.L2 This mesh line is taken to be NW-N-NE in
figure 3, and the given value and slope are denoted Q@ and

®,» . The points NW, N, NE, and NN are considered to be
"fictitious points" (5) and are eliminated from the

(4) P. S. Shaw, An introduction to relaxation methods:
New York, Dover Publications, Inc., 1953, p. 39

(5) Ibid., p. 197
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dissipation expressions using the relations:

P = d;(NW)
@, = P (N)
Pue = @ (NE)
Sy -P
21 - @)1(N)’

¢ (NW), etc., are the given values at the point NW, etc.

If mesh line NW-N-NE represents elther the boundary between
two regions where the velocity distribution has different
repreaéntationa or an external boundary on which velocities
are given, there 1s one further change to be made in the
dissipation expressions. In this case, the dissipation over
half tﬁe mesh-centered square centered on point N 1s to be
considered, so that the resulting expression is multiplied
by L instead of by'flt Therefore, the dissipation
expressions for mesh square 0-E-NE-N and for mesh-centered

square N become:

YSQQ,:o’Xc/y =i -3—: (qs(/vf)-C§(N) 1-¢.—¢e +K)1

Sgl(f? 3,.) dedy = ‘*1 [@(fvs)*rfffﬂw)—?t? qugm)]

Proceeding as outlined above for a regular point, we obtain

the equation for point O:
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216, (b ¥Pu+ &) + 2 (Do +8L) + (g +O, +¢)

+ 1.[ $ (ne) +§t~w)] -9dwn) +2L P (N) = O

As before, this equation 1s identical to what would be de-
rived from the differential equation treatment. The vari-
ational method gives equations which differ from those derived
from the differential equations only at points near a
boundary that does not coincide with a mesh line.

In the present problem U¢ is constrained to be zero
and V¢ remains arbitrary at the right- and left-hand walls
(fiz. 1, p. 23). If the right-hand wall coincides with
JE-E-NE, then ¢ at points SE, E, and NE must be set eguzl
to zero in the dissipation expressions. Taking the deriva-
tive of the dissipation expression with respect to ¢}E , We
get an equation for ¢¥s’

d}E "¢- =

Because thls equation 1s so simple, 1t 1s convenient to use
it to eliminate points such as EE from the system of equations

before solving the system.

3. Trigonometric ¢

Equation 7 1llustrates the way 1in which the values
and slopes of the trigonometric series enter into the
equations of mesh poiﬁts near the top boundary of the mesh
region. To derive equations for the values and slopes them-

selves we must consider the dissipation due to the
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trigonometric series. Since the trigonometric series is to
be represented in terms of a finite number of values and
slopesg, the sums must be truncated. Substituting the appro-
priate derivatives of the truncated series into equation 4,

this dissipation may be written as:
Lx

S [% (¢w”¢;u)‘+2¢;1]dxo’y' -

00
- Ly
[

&

b . AT .

rr X w W L (v "

X S %[2 (_I.i-l)z‘f':((li-l)%;ﬂ,--B;#{lt-l)LxB,')')e cot (230 L J

ol Y =1
¥

AT, - 1
n=1 A, s =33 ‘-jy - 27T
23 WE(OEG-DTNy)en T 2 Ji

= ¢

N 2 3 '(z'.’h‘—‘-!;- '- iR
o+ 7.[- ; (23-) '{—(3" ~{x f")‘l'_'r;r'Ai‘(zi")B;Y) e M(“")l':,"x

L
+ 2W 2

N-1 AT ’ _I'TX <A ’
+Zzi£}(a,--2;%C;-ZIED-'Y)e 'cw**:,“'(] dxdy:.
=1 g

This expression can be simplified as follows. We
note that the cross product terms between trigonometric

terms of different wave lengths will give integrals of the

form:
= T
2 ; 3
. - A (Mm=P )32 ' )2
A A d = - A (Mmth
S i T [ 2(m=-h) 2 men) 4
-L; ‘-z‘
X _ | x
Cos PECeme d2 = (“:"....‘.f‘;’ii_,_ i (men) 2
2 (m=r) 2 (m+h) b}
- T
2 L ™
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and

£

: o [testh-dz | coatlerd)z
S;”j‘? a1 = [nue-u + < d)

LU
2

»3 .

-

The firat two types of integral will give zero as a result,
since m and h are elther both even or both odd. The third
type 18 zero, since here jL and 1L are respectively even

and odd or odd and even. In addition, the product of either
.the sine or the cosine term with fL will give zero on inte-
gration from -E%q to %%% .

Therefore, the different wavelengths do not interact
with each other or with the uniform compression term (in-
volving ﬁL). When the individual wavelengths are consid-
ered separately, a further simplification results, for the

.2
dissipation is then independent of X . Writing (22—

. m .
or 13*1— as A, , the dissipation becomes:
Lx ;

-—

vor? 2 e 1 A 7
‘;';[7. \;(A.-A,-—B;+A;B,y')e""¢,¢>~;x] +ZI?\,’{B.’-)~;H;—M3;)’]E ZAML).‘X] _

v

-1
2 € 3 y[A,-z,--B.-f)\;B,-y‘]i[w’x,-x +M')\,‘X]

x '1)‘.); a7
23 € [AXi-B;i+ i Biy]
When the integration over li is carried out, the dissi-

pation may be written as:

’

[é‘(‘ﬁ.‘tﬁm)\ . Z(Q,x)t]dxdy' =
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=

N . .
Z(zi-ﬁ%’[e;‘-1(21‘-:)%’»%;3,- » 2 (2i-03EA) ] |

1=

1
5 Zzi %[Di\_q,' %C, D; 'FZ('M‘%C,‘) ]

(8)
L2 W LA N
= l:-*-“ ;'(zz-l)%[ (8- - A;) + (a0 A;) ]
f' "TI(D a4 zvrc)‘+(1,-3_'£ )1}
+ 21, AR N L.t .
'Y ’ ‘

The last rearrangement of terms shows that the integrated
dissipation can be written in terms of the combinations of
constants which represent the value and slope of each trig-\
onometric term at the lineqX’: o
7 This last expression defines the dissipation in terms

of the coefficients of the trigonometric expansion. For
reason of convenience in the solution of the equations, the
veloclity distribution in this region is represented in terms
of values, § , and slopes 5,1 , at the mesh points on
the lower boundary of the region. To derive the equations
for these values and slopes considered as unknowns, we must
first express the dissipation in terms of the values and .
slopes. In practice it is simpler to derive expressions for

A;, B:; , Ci , and D; 1in terms of sums of & and 9,2

and then use the chain rule to compute the derivatives of the
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dissipation expression with respect to individual slopes and
‘values.

The process used to find these sums 1s similar to
that used to derive the coefficients for a finite Fourier
series (6); i1t makes use of the fact that sine and cosine
functions are orthogonal over a discrete set of points. We
shall illustrate the process for a particular _ﬂi , for

example A4 . ¢ for a particular point on the boundary

/
(y= o) can be written as:

N =l
; . « BRI,
¢1:: E A,-CM(ZI-J)}-EEX,-_ - ) Cim')n—z_—x.} 3
1+

x
251

where 5; is the x-coordinate of the point corresponding to
¢, and L«= 4N 1is the wavelength of the fold. The cor-
responding equation for each ¢+ is multiplied by
c,¢(¢¢-0%fk+. , and the resulting equations are summed
over 4 :
5_—” G4 ot GA)TTX;

=y

Z‘v AiI:Z: M(Q,‘_:)% X"_ M(““')%X; ]

n-! N ) . AIT . _‘2__-1_]' |
¥ Z C‘.[ZMM—T_TX,M('M—-) = X }

The second inner sum 1s zero for all -%£ and _iJ since

(6) R. W. Hamming, Numerical methods for scientists
andsengineera: New York, McGraw-Hill Book Co., Inc., 1962,
P. O7T=T7
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Mi:‘%X4 is zero for =N and £=2N , and

the terms for all the other ;ﬁ cancel each other (if

RUN N p= (Nak)e- (V=K ) = Xy ). The first inner

sum may be written as:

| £ '1}’“":{ +m(n'z.h)zwx
57 B 4l ’
7 ZM(““Z’ L, ¢ ;4%
-

Now, it can be shown (7) that:

aN -

ZWL"NT(,;-N) = O , 0<MLAN

#:I

= 2N ) m=20 .

Therefore, the final result 1is:

LN
)2 qgr-mtm-n)i,_{ixf = NA, .
£31

Analogous manipulations with the expressions for the
slope at a given Xy 1lead to the following expressions for
the A, , 84, Ca , and D4 1in terms of slopes and values
at points on the boundary:

e 2y
A = T b, coe (2h-) - Xy
;.

AN s
T m
B = - Z_ c§+,1m(1).-,)%x,; +(1A-J)%,£_Z %“‘fzﬁb')-‘ix*
/2 N by L

(7) H. B. Dwight, Tables of integrals and other mathe-
matical data: New York, The Macmillam Co., 2nd ed. rev.,
1947, formula 420.4, p. 86
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Using these expressions, terms such as -g%% can be cal-

1-
culated. If we denote the dissipation expression for this
region by Lw , the contributions from this region to the

equations for the slopes and values on the boundary can be

written:
?;[ 2A; 28, T 0B 24y +'IZ::‘ 20 08 aq-—ﬂi .

The complete equations for these unknowns are obtained by
adding the contributions from the mesh squares Jjust below

the boundary to those from .Iu: .

4. @ near the plate.

The procedure used to match the veloclity in the
medium near the plate with that of the plate is similar to
that used at the Junction of the grid portion of the medium
with the‘continuation out to infinity, but it 1s complicated
by the fact that the plate may intersect the grid lines at

points other than mesh points. The description 1s broken

‘into two parts: in the first we shall show how the constraint
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is applied if we assume that values of ¢ and its first
derivatives are known at every point on the plate; in the
second we shall show how ¢ and its derivatives on the
plate can be expressed in terms of the e values at a
given number of equally spaced positions along the plate.

Consider a representative portion of the plate and
medium as shown in figure 4 (p. 51); we shall deal with the
medium below the plate. The portions of the dissipation
given by L (Do = Poan) and 2 $a evaluated for curvi-
linear trapezoidal areas like A, B, and C can be expressed
in terms of values of ¢ at nearby points. It is assumed
that @ near the plate varies quadratically with X or Y ;
a cubic or even higher order variation could be assumed, but
the dissipation expressions would be more complicated. W1thb
this assumption the values of % at the points marked
with open circles can be expressed in terms of ® and
its first derivatives on the plate and ¢ at the points
marked with solid circles, The values of ¢ at the open-
circled points are now eliminated from the dissipation ex-
pressions. This elimination insures that only velocity |
distributions which match at the plate will be considered
in the minimumization process.

Since these open-circled points occur only in dissi-
pation expressions for areas adjacent to the plate, they can
be eliminated when these expressions are derived. Referring
to figure 5 (p. 51), @ and ¢.2. at any point on the

line S-0-N are, on the assumption of quadratic variation
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e ¢ + —————"";db'y B ¢'-2:,'*¢~ y*
(10)

bo= 2 L (4,28 ¢80y

#ith these expressions ‘ﬁ.l at any point on tre vertical

bisector of square 2-3-5-4 (fig. 4) becomes:

Pa(v) =% (- (-3, ) -y (-0 ) +5(v+) (4-4,)

2

If we denote by «4@(Y) the difference between ¢ on
the 1ine 1-3-5 and @ on the line 0-2-4 at any helght
above the base 2-3 (2d) == %f), and is determined
from the velocity of the plate), then:

AP = Loy-0(e-4) + U-Y)(e-0 )+ Live) (3-4) . (13
Eliminating ¢, and @, from the expression for @,, wlth
y - i'?/z by means of relation 11:

b (3) = Lot -(9-2)] 3

M=

Following the same procedure with area C and its associated
points O, 2, 4, 6, 7, and 8, we arrive at the analogous

expression:
0o (2) = 5 [o¢m - (6-9,) ] .

The dissipation expression for a (.- Q,L) area

like area A 1s derived as follows. ¢211 for the point C
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in figure 5 is given by:
¢’11: ¢)~ _Zdo + ¢_f

The quadratic expression for the slope at y =% 18 used to
eliminate ¢, in this expression for ¢,. , giving the

curvature:

o= o7 | BRI -8+, ] (13)

P
If Qhu cannot be written in terms of points inside the
plate, it is calculated by an analogous expression.

When the slope of the plate is greater than 45°,
curvilinear trapezoids with vertical rather than horizontal
bases are taken; otherwlise the dissipation would be averaged
over areas that are too large. In the region where the
slope passes through 45°, minor adjustments are necessary
in the method of assigning the area weights to the dissipa-
tion expressions.

- Using formulas of the types Just developed we may
write down dissipation expressions for all areas adjacent
to the plate. These expressions will involve only points
on the'same side of the plate as the area itself. To elim-
inate the elimination points 1lnside the plate, we solve
equations 10 for #  1in terms of ¢ and o, at y =+
and use the resulting equation to eliminate the elimination
peint in every dissipation expression in which it occurs

(this includes both regular and irregular expressions).



64

(Expressions like 12 and 13 can be derived without
introducing fictitious points. Since the resulting dissi-
pation expressions involve both dz,- and @, of the
plate, it might be thought that the use of these expressions
would in itself provide sufficient constraint to insure the
matching of velocities without eliminating points inside the
plate. When the prqblem is set up and solved in this fash-
ion it is found that the resulting velocities in the medium
match those of the plate to a first approximation, but that
velocity gradients near the plate are abnormally high. In
terms of fictitious points this partial matching corresponds
to matching a linear combination of Y and VvV at the plate
rather than matching 4 and V separately. In certain sim-
ple situations like the compression of a homogeneous medium
between plane, parallel, frictionless walls, the partial
matching leads to the correct result. With a more complicat-
ed curved boundary like that of the present problem, the
constraints on the matching of velocities are only approxi-

mately satisfied.)

5. Center of symmetry

The method used to impose the center of symmetry on
the problem 1s similar to that used to impose the velocity
constraints. The origin of the coordinate system in the
medium 1s taken to coinclde with the inflection point of the
folded plate. Dissipation 1s calculated only for the region

_Y greater than zero. Certain mesh points with negative
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y-coordinates will still occur in the dissipation expres-
sions, but due to the center of symmetry, < at points
with negative Yy is identically equal to ¢ at the
symmetry-related point with positive y . Whenever a point
with negative )Y occurs in a dissipation expression, the
appropriate point with positive Y 1is substituted for it.
This procedure insures the satisfaction of the symmetry
condition.

6. 6 terms

Up to now we have considered the value of ¢ and
its first derivatives to be given quantities on the plate.
This means that the above treatment is immediately appli-
cable to & curved boundary on which the velocity'ia given.
In our particular problem, the velocity of the plate is not
known beforehand, but rather 18 one of the pleces of infor-
mation which must be provided by the solution 1tself. u,
v, and ¢ of the plate can be calculated from the =

values for the plate by means of the followling relations:
s
géMGd:

o

[t

U

<
]

e

]

o

At the inflection point S=© , and at the crest s=.,0 .

.

('67 % E %:'} %%)ds = S(uMe—vwa) ds
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If we use numerical integration formulas to replace these
relations by discrete sums of é values, then the dissi-
pation expressions for areas that contained points to be
eliminated will now include a series of coefficlents of the
6 unknowns.

The - values are not all indepéendent; they must

be chosen such that their integral gives the proper value

of U at the crest of the fold. This value of U can be

written in terms of the discrete values as:
S

: . 9‘0 ) ) y p 2
Ug = - guméds = -05{?/44""9.. ""_Z"_;Q;'M 9,} > (15)
o

where 43 18 the are-length spacing of the © values.
The next-higher-order terms in this quadrature formula (8)

are zero at both ends of the range of integration, since @

: ' o
and © are zero at the crest of the fold and %3- and
dé

—5  8are zero at the qymmetry point on the 1limb. To in-
sure the satisfaction of constraint, we use the constraining
relation to eliminate 8. from any dissipation expression
in which it occurs.

The final dissipation expression which must be con-
sidered 1s the bending dissipation of the plate itself. This

can be written in terms of the discrete 6 values as:
S

#P“H‘JJ(%)ldj = —-———ﬂp& [Z’ (9',.—9‘1._’)1}

& ‘ds 12

(16)

o

(8) Hamming, op. eit., p. 57
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where :ﬁ;is the thickness of the plate. As in the expression
for Wg , the first difference corrections to this sum are
zero at both ends of the range of integration. Before the
derivatives of this expression with respect to the 'é val=-
ues are taken, éo must be eliminated from it in order to

satisfy the constraint on g at the crest of the fold.

7. Summary
Since the method of deriving the difference equations

is complicated by the number of speclal details that must
be considered, the main steps in the method are outlined in
this section.

1) The dissipation over the whole problem region is
expressed as a sum of squares of differences of the discrete
values. Contributions from the grid region to this sum of

squares are of four types:
2
(¢ +&, -4, -¢:)

for a normal mesh-centered square (fig. 3),

(¢~5°¢)~w +’¢.—¢w)1

for a normal mesh square (fig. 3),
& ‘ 2
o [29cR)-(4-00)]

for a mesh-centered trapezoid adjacent to the plate (fig. 4),

and



68

et g ]

for a mesh trapezoid adjacent to the plate (fig. 4). Each
of these terms must be weighted by its appropriate area.
The dissipation for the reglon extending out to infinity is
given by equation 8 and that for the plate by equation 16.

2) The ® values for all grid points closer than
one mesh length to the plate, those for grid points with
negative y-coordinates, and 6% are now eliminated from
the dissipation expressions. This elimination is performed
using equations 10, the discrete analogues of equations 14,
the symmetry condition, and equation 15.

3) The equation for each unknown value is derived by
differentiating the sum of squares with respect to that
value and setting the result equal to zero.

In the actual numerical computation of the equations,
explicit expressions for the various types of equations are
never derived. The various terms in the sum of squares are
computed and stored in appropriately tagged memory locations
in the computer storage. All the terms are then scanned by
the program and the elimination (step 2) is performed. The
terms are scanned once more to perform the differentiation
(step 3). Since the variety of equation types is larger than
the variety of dissipation expressions, this automation of
intérmediate algebralc steps eases the task of programming

the equation-derivation routine considerably.
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The input data for computation of the velocity dis-

tribution at any stage consist of: (1) the shape of the
folded layer at this stage, given as a series of eleven &: ,
and (2) constants which define the grid spacing and boundary
velocity at this stage. The output data are a set of ¢
values at the grid points and the é% values at intervals
on the plate; the ¢ values that have been eliminated and
the value of éa can be retrieved using the same relations
by which these quqntities were eliminated in the derivation

of the equations.

8. Discretization of the time variable

The method discussed above ylelds a set of equations
for the velocity distribution of a folding layer at the in-
stant of time when the layer has a given shape. In order to
study the development of a fold as a function of time, it
is necessary to take into account the changing shape of the
layer.

To start the study of a particular fold we assume
the shape of the folded layer at a low amplitude stage.
Using the equations derived above, the 5%’ on the plate
can be found. On the basis of these é¥ we can predict
the average velocity of the plate over a certain interval of
time. These average 6; are multiplied by a constant, «f ,
and the resulting < &, are added to the original 6: to
glive the new shape of the layer. Since the magnitudes of

the 6y (as distinct from their relative values) are deter-

mined only by the given rate of shortening, 21 can be
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picked in any convenlient manner. Its size determines the
extent to which the shape will change for the next computa-
tion. Al was chosen so that the increase in the dip of the
symmetry point on the limb, 4 8. , would be a apeéified
number of degrees. The velocity distribution for the re-
sulting new shape i1s then calculated, and the process 1is re-
peated until the fold has the desired final amplitude (9).

When the relative magnitudes of the & values do
not change too rapidly from stage to stage, the e values
at the beginning of the time interval are sufficiently close
to their average over the time interval involved to be used
to calculate the next shape. Comparison of the é dis-
tribution of the new shape with that of the previous shape
places limits on the error involved in using the = values
of the previous shape. With suitable decrease of the time
step as the fold amplitude increased, this procedure was
used for all but the last time step of the dominant-
wavelength fold.

During the computation of the weak-plate fold, it
became eveident that a very short time step would be needed
unless a more accurate way of estimating the average veloc-
ity of the plate over each time interval were devised. It

was found that, with a sultable representation of the Z

(9) The equation-derivation routine was designed to
compute the equations for a layer with a maximum dip less
than 90°. Extension to overturned dips would not require
modification of the method of deriving the equations, but it
would require changes in the computer program.
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distribution, it was possible to predict fairly accurately
what the plate velocity distribution of the new shape would
be before it was actually computed. Using this predicted
velocity distribution, it was then possible to choose a
sulitable time average of the éi in order to compute the
new shape. The representation of the veloclity distribution,
the method of predicting the new velocity distribution, and
the accuracy of the method are diséuased in Chapter VII,
Section 5.
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CHAPTER VI
SOLUTION OF THE EQUATIONS BY DIGITAL COMPUTER

1. Choice of method

The choice of an equation-scolution method cannot be
divorced from the consideration of such computational de-
tails as the form of the matrix, the type of computer avail-
able, and the precise storage requirements of the solution
routine. The equations were solved on an IBM 7090 computer
with 32,000 words of random-access memory and magnetic-tape
auxiliary storage. Typical computation times were two min-
utes for a system of 175 equations and five minutes for a
system of 285 equations.,

A large system of linear algebraic equations such as
that arising from the discretization of the problems of this
study may be solved by either direct or iterative methods.

A direct method is one which gives the solution as a result
of a finite number of arithmetic operations; if there were
no round-off error this solution would be exact. An itera-
tive method consists of the repeated application of a simple
algorithm; the exact solution is obtained only as the limit
of a sequence of successive approximations.

Iterative methods are most commonly used for the solu-
tion of equations arising from the discretization of an

elliptic partial differential equation; their most important
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advantage is that they do not require storage of the whole
matrix of equations, but only the non-zero coefficients.
The Gauss-Seidel method with successive over-relaxation (1)
was applied to a bilharmonic difference problem during the
course of thlis study. It was found that the rate of con-
vergence of the iterative process was so slow that computa-
tion times would be unreasonably high. There were two alter-
native methods: (1) a more complicated iterative method
which might provide more rapid convergence, or (2) a direct
method of solution which could be adapted to machine storage
requirements.

The particular direct elimination scheme used for the
solution of the equations 1s discussed in detail below. The
critical features of the method are: (1) with a suitable
arrangement of the order in which the equations are solved,
most of the zero elements of the original matrix remain
zero throughout the elimination process and therefore need
not be stored; (2) those elements of the matrix which must
be stored are not all needed at any given stage of the elim-
ination process and, therefore, magnetic tapes can econom-
ically be used for intermediate storage of results. The
accumulated effects of round-off error may also present an
obstacle to the use of a direct method for a large system
of equations; this aspect will be discussed below, but it

did not cause serious difficulty in the problems treated.

(1) @. E. Forsythe and W. R. Wasow, Pinite-difference
methods for partial differential equations: New York, John
Wiley and Sons, Inc., 1960, p. 242-266
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2. Method adopted

The method adopted was the "Doolittle method", a var-
iant of Gaussian elimination which dcoes not rearrange the
equations in order to select the largest pivot for elimina-
tion (2). We shall sketch its application to the particular
form of matrix arising in this study. The equations are
" numbered in the following order: first, the equations for

® values at the grid points, with the center-of-symmetry
point first, and then proceeding from left to right and from
bottom to top through the grid; second, the values of the
trigonometric-continuation ¢ -function and then the slope
values, each taken in order from left to right; and finally,
the é values, taken consecutively from the inflection
point to the crest of the fold. Any points which are elimi-
nated in the constraining process during the derivation of
the equations are simply omitted in this numbering scheme.
If this scheme 18 followed, then all the non-zero elements
of the matrix occur either in a band on both sides of the
diagonal or in a vertical strip at the right side of the ma-
trix--#nd a symmetric horizontal strip along the bottom of
the matrix (fig. 6). Since the matrix is symmetric and re-
mailns symmetric during the elimination process, only the
elements above and on the dlagonal need be stored. If there
are N grid spacings between the right- and left-hand walls

in the problem, the band will contain 2N +! elements

(2) Modern computing methods: New York, Philosoph-
ical Library, Inc., 2d ed., 1961, p. 7
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above and on the diagonal; the width of the strip is equal
to the number of é unknowns. The original matrix will
contain many zero elements inside the band and the strip;
unfortunately, these elements do not remain zero during
the elimination process, and storage must be allotted for
them.

As an illustration of how the elimination process
works, consider the situation pictured diagrammatically in
figure 7. At this stage % -/ columns have been eliminated
from the lower triangle of the matrix, and the %' column

is about to be eliminated. We eliminate the X, coeffi-
AA,J;H
An,t
times the % ' equation from the % + /¥ equation; this

cient from the & + /¥ equation by subtracting

changes the coefficients of the -2 +/* equation both in
the diagonal band and in the vertical strip, but does not
affect any of the other zero coefficients of the :é-rlff
equation. The elimination process is repeated with the
:é-rnf? equation, the :% y 3% equation, and on through
equation number ;é_+-2.£ . From here on down to the first
é equation, the 3&‘5 column is already zero. Now, we
eliminate the X, coefficient from each of the & equa-
tions in turn. Finally, we must perform the same manipula-
tions on the right-hand sides of these same equations. It
is clear from the nature of the elimination routine that
only 2N +/ equations and the coefficients linking the 6
unknowns need be in random-access memory at any given stage.

Once the matrix i1s reduced to upper-triangular form, the
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back substitution process is the standard one (3). During
the back substitution the current row of the triangular ma-
trix and those unknowns that have been found up to that
stage are needed in random-access memory.

In terms of the number of arithmetic cperations
involved, the formation of the upper triangular matrix 1is
the major part of the process. If 1t were desired, the same
system of equations could be solved with several different
right-hand sides with only slightly greater effort. This
feature, common to.all the triangular resolution direct
methods, can be used to advantage in improving the accuracy
of the solution. To do this we use the following tech-
nique (4). If 5(” is the computed solution to the system
= b , and the residual f“) is defined

" G)
, then we have: A(X-X ) =r "

by r'=b-Ax
To solve this new set of equations, we need only perform the
forward course on the residuals :’a) and back-substitute.
If the result of this second back-substitution is denoted

2) f) )
, then X + 5(‘ is a much closer approxima-

by {f
tion to the true solution. Residuals are now computed for
this second approximation to the solution, and the process
is repeated_until the corrections are less than the desired
degree of accuracy. Since the residuals are much smaller

than the original right-hand sides, the process converges

(3) Ibid., p. 8
(4) Ivid., p. 19



78
rapidly. In most of the cases computed in the present
study, the second corrections were already negligible. The
process not only provides a simple means of improving the
accuracy of a solution, but it gives a much more reliable
measure of the accuracy of the final solution than would
the residuals alone. For the process to be effective; the
residuals must be known rather accurately; since they are
small quantities computed by summing large positive and nega-
tive numbers, it 1s necessary to use double-precision arith-

metic in calculating them.

3. Detalls of the computations

When the first trial problem of this study was com-
puted, using the erroneous approximate method of constrain-
ing the matching of the velocities of the plate and the
medium (Chapter V, Section 4), solution of approximately
150 equations in single precision (eight digits in floating
point) failed. The failure of the process was shown by the
fact that the residual-iteration process did not reduce the
residuals at each step and by the fact that the last diag-
onal coefficient of the upper-triangular matrix was negatilive.
(That this coefficlent cannot be negative follows from the
facts that the original ﬁatrix is positive definite, that
the determinant of a positive definite matrix is positive,
and that the determinant of a triangular matrix is equal to
the product of its diagonal elements.) Use of double-
precision arithmetic (16 digits in floating point) in the

elimination process produced a correct solution. When the
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proper method of constraining the matching of the velocities
was used and several other more minor changes in the equa-
tion derivation method were introduced, it was noticed that
the corrections from the residual iteration process were
definitely smaller than before. It was thought that these
changes in the equation-derivation method had improved the
ill-conditioning of the matrix and that it might be possible
to perform the elimination in single precision. Experi-
menting with single precision showed that this was indeed
the case, and that single precision was adequate for a'ﬁys-
tem of about 275 equations. The limiting size of a system
of equations of this form which may be computed with single
precision was not determined, but the above cited results
show that 1t depends rather critically on the details of the
way in which the equations are derived.

When the computations are done in single precision
on the IBM 7090, the limiting factor which determines the
computation time 1s not the arithmetic operation time, but
the magnetic-tape manipulation time. In particular, if the
triangular matrix 1is stored on tape one row at a time, the
back-substitution process requires that the tape be back-
spaced two records and then read in the forward direction
one record for each row which i1s to be retrieved from tape,
a time-consuming process. If the problem size is limited to
300 equations with a row length N of 28, then the whole
triangular matrix may be stored in random-access memory. It

is still necessary to save the original matrix on tape and
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read it in order to compute the residuals, but this is a more
efficient tape-reading process since the tape is read in the
forward direction .ocnly. Since this size of problem gave a

discretization error which was small enough for the pur-
poses of this study, the method which made less use of mag-
netic tape for storage was used. (These details of the
computational set-up are strongly dependent on the partic-
ular computer used. With a computer which has a smaller
random-access memory than the 7090 or which has different
relative rates of arithmetic operations and tape manipu-

lation, another set-up might well be more economical.)
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CHAPTER VII
ACCURACY OF THE DISCRETE SOLUTION

1. Analysis of the errors

In this chapter the degree to which the solution
of the discrete problem corresponds to the solution of the
continuous problem is discuséed. Since the provlem was
made discrete both in space and in time, there are two
types of discretization error to consider, the error in
the velocity distribution obtalned for a particular shape
and the error in the new shape cobtained by extrapclating
this velocity distribution over a finite time interval.
Analysis of the error for a particular velocity
distribution 1s made more difficult by the fact that there
exists no analytical solution for a problem of the type con-
sidered. The type of discretization formulas used in the
medium near the plate should have a discretization error
-proportional to the mesh length, but the formulas are so com-
plicatéd that 1t 1s not possible to carry out an explilcilt
analysis of this discretization error. At very low ampli-
tude, the solution should reduce to the sinusoldal dependence

of © and ¥V on X found in the treatment of Bilot (1). Due

(1) M. A,, Biot, Theory of folding of stratified visco-
elastic media and its implications in tectonics and orogene-
sis: Geol. Soc. America Bull., v. 72, 1961, p. 1595-1620
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to complications in the equation-derivation program, it was
not possible to use an initial shape with a maximum dip of
less than 10°. Also, the formulation of the problem in
terms of a given shortening-rate breaks down at very low
amplitude where an infinitesimal rate of shortening pro-
duces a finite rate of folding. Therefore, it was not pos-
sible to use the infinitesimal-amplitude solution as a
direct check, although it could be expected that the 109 dip
solution would be close to the infinitesimal solution.
Aside from this general agreement, it was necessary to
rely on the internal consistency and ;moothness of the com-
puted results as a check on thelr accuracy.

Errors in the velocity of the plate are most impor-
tant, siﬁce they are propagated on to the next time step.
A much less precise knowledge of the velocity distribution
in the medium_wouid suffice for geologic purposes, since
the geologic techniques for measuring the strains in the
medium are necessarily rather inaccurate. At the dominant
wavelength, when the bending resistance of the plate is
relatively large, the é 's will be a smooth function of
S , 8ince any short-range variation would imply large dissi-
pations in the plate. However, there 18 a mathematical
11m1ting case where this damping éffect 1s not present, and
examination of the smoothness of the 6; for this case pro-
vides a strong test of the accuracy of the solution as far
as effects due to the medium are concerned. This is the

case of a plate which has zero bending resistance but which
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is still inextensible. Physically this condition is ap-
proached when the thickness of the plate, {E, becomes very
small while the viscosity of the plate u«, becomes large,
since the dissipation due to compression 1s proportional
to u,A and that due to bending is proportional to w, 4’
This case will be referred to as the zero-viscosity plate,
since 1t corresponds to setting the viscosity of the plate
equal to zero in the thin-plate problem as formulated mathe-
matically. Though the problem of the zero-viscosity plate
is well-defined mathematically, it is extremely sensitive
to any variation in the resistance of the medium. Now, the
general effect of the discretization error in the medium
near the plate will be to introduce irregularities in the
degree of resistance that the medium exerts on the plate as
-1t advances. Since the zero-viscosity plate has no bending
resistance to damp cut short range variations in the rate
of change of inclination, these irregularities will show up
as local irregularities in the ei

This sensitivity of the zero-viscosity plate to errors
in the discrete solution for the medium 1mpliesrthat the de-
gree of smoothness of the éi for this case 18 a good
measure of the accuracy of the solution; the next qﬁestion
is how to evaluate this smoothness. One simple test 1s to
tabulate the differences of the éi ; this test 1s valuable
for locating irregularities, but it does not provide any con-
venient method of Judging how important these irregularities

are in determining the new shape of the plate.
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2. Harmonic analysis

A more useful test 1s to perform a harmonic analysis

of the 6« ; an extensive discussion of the use of harmonic
analysis in smoothing equally spaced data is found in Lanczos
(2). Because of the symmetry properties of the ©&: , they

may be expanded 1n a serles of odd cosine harmonic terms:

B = é; A; Cci»(lfﬂ)Jgé
If all ten terms of the sum are retained, the harmonic anal-
ysis of the 9 's 1is exactiy equivalent to the original 9 's
themselves, but if the 6 distribution is a smooth one,
the higher harmonics will be small in relation to the lower
cnes. Truncating the sum after a number of terms which 1s
less than the total number of data polints gives a least
squares fit of the retained harmonlic series to the data.
This is proved for the continuous case by Hamming (3); the
proof for the discrete case is similar.

Noé only does the harmonic analysis provide a test
for the smoothness of the 55 distribution, but 1t also
provides a means of smoothing the data and a convenient way
to describe the successive shape changes. If we smooth the

6 's from any given stage by truncating the harmonic

(2) ¢. Lanczos, Applied analysis: Englewood Cliffs,
N. J., Prentice-Hall, Inc., 1956, p. 207-245

(3) R. W. Hamming, Numerical methods for scientists
and engineers: New York, McGraw-Hill Book Co., Inc., 1902,
p. 237
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expansion at a limited number of terms, there are two types
of error which we may make: First, we may truncate too many
terms and so miss a significant shape change; this i1s not
serious if the nolse level of the data 1s not excessive,
since the amplitudes of the lower harmonics are definitely
larger than those of the higher harmonics. If such a mis-
take is made, 1t will probably affect only one or two terms,
and these wlll be small enough so that their effect on the
new shape 1s negligible. Second, we may not truncate enough
terms and thereby include some nolse in the new shape. In-
clusion of some noise is unavoidable unless the 9 dis-
ribution is free from noise, since this noise will also
affect the lowest harmonics. The smoothing process 1is prac-
tical because not all of the ten éi are needed to describe
the plate velocity. It would probably be more efficient to
use the harmonic analysis to describe the plate velocity in
setting up the original equations. However, this possibility

was not realized until late in the present study.

3. Smoothness of the 8.

To see how the smoothness test and the smoothing pro-
cess work out in practice, consider the initial stage (10°
dip of the limb) for: (1) the dominant wavelength, ( L=Ls4 ),
(2) a plate viscosity which is 1/100 of that for the dominant
wavelength ( L=V¥760 Ly ~46L), and (3) the zero plate-viscosity
case ( L>» L4 ). The éi for tnese three cases are
tabulated in table 1, and the narmonic coefficients are

tabulated in table 2.



86

TABLE 1.-- ©at equally spaced values of s for 10° limb-dip
/“dom.

A Haom  AS 55 M= 0

: s 2 6 &
0 11.3470 11.2329 11.5269
1 11.2087 11.1051 10.8728
2 10.7978 10.7346 10.7522
3 10.1231 10.1067 10.1176
4 9.1995 9.2275 9.2576
5 8.0482 8.1115 8.1545
6 6.6962 6.8113 6.8720
7 5.1760 5.3003 5.2020
8 3.5255 3.6249 3.6299
9 1.7856 1.8396 1.8920

10 0 0 0

A difference table of éi for the dominant-
wavelength case shows that the fifth differences show irreg-
ulatities in sign and magnitude. Examination of the harmonic
ratios shows that the first two harmonics are certainly sig-
nificant and contain most of the information about the shape
-of the velocity distribution and that the later harmonics
from four to ten are probably not significant. Considera-
tion of the third harmonic ratios of successive time stages
for thls case shaw3 that tne tnird harmonic is not yet signif-

icant, since it dcoes nct ceglin to show a regular trend from
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stage to stage until the fifth stage, in which the maximum

dip is 569°.

Examination of the first stage only does not

permit this sort of Judgment, however, and we might have

left this harmonic in if we were smoothing these results.

(In fact, no smoothing was done in the lower amplitude

stages of tihe dominant-wavelength case, so that the problem

did not arise.)

TABLE 2.--Harmonic coefficlents of 6 values for 10° limb-dip

O O N OOV W N e e

=
O

ﬂp=ﬂdtn‘

As

11.3643
-0.0173
-0.0003
-0.0000
0.0001
0.0000
0.0001
0.0001
0.0000
0.0000

}‘dcm.

,M’: 100

Ay
11.3636
-0.1332

0.0066
~0.0029
-0.0064

0.0020

0.0031
-0.0010

-0.0012
0.0023

Mg O
A

11.3635

-0.1485
-0.0160
0.0038
0.0434
0.0004
0.0689
0.0703
0.0486
0.0925

M

as smooth as those for the dominant wavelength:

Though cursory examination of the 8

= Myr/100

does not snow 11,

-~

these ¢ 's

from the case
are not nearly

the third
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differences show irregularities. Consideration of the later
time stages shows that the third harmonic is actually signif-
icant, though the fourth is not. 1In proceeding to the next
time stage, a veloclty distribution using the first three
harmonics was used; this distribution has regular fifth
differences.

The zero plate-viscosity case 1s considerably noisier;
the second differences show irregularities in sign and mag-
nitude, and even examination of the é 's themselves shows
that é% is suspiciously high. This higher noise level is
confirmed by consideration of the harmonic ratiocs, but com-
parison of the first two harmonic ratios with those of the
M= My /100 case shows that the veloclity distributions
are similar except for this difference in nolise level. This
is what we should expect, since the bending dissipation is
about half the medium dissipation for the dominant-wavelength
case, about 0.5% of the medium dissipation for the U= _Ui/jo0
case, and strictly zero for the zero plate-viscosity case,
whlile the medium dissipations remain essentially the same 1n
all three cases. Therefore, the M= Md /100 case 1is
physically much closer to the zero plate-viscosity case than
to the dominant-wavelength case, and the velocity distribu-
tions reflect this similarity.

The difference tables for the M= A4 /100 case
and the zero plate-viscosicy case show that the irregulari-
ties in the E; distrivut.ons occur where the plate crosses

a horizontal mesh line. 1. tals situation, the curvilinear
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trapezoids over which the medium dissipations are averaged
change from very short trapezoids to very tall ones below
the plate and change in the opposite sense above the plate.
It‘ie reasonable to surmise that the size and probably the
sign of the discretization error changes at this point. Al-
though we can thus localize a probable trouble spot in the
discretization process, the only way to eliminate the diffi-
culty within the framework of the discretizatlon scheme used
would be to reduce the mesh spacing, ;ﬁ, Since the number
of equations increases as ./~  and the solution time
increases approximately as the cube of the number of equa-
tions, a significant decrease in the mesh spacing would en-
tall a very large increase in computation time.

The infinitesimal analysis (4) predicts the presence
of only the first harmonic in the é‘ distribution for folds
of very small amplitude. More accurate analyses for the
free-plate case and for the case of a plate with zero bend-
ing resistance constrained by a distribution of discrete
dashpots shows that the second harmonic should indeed by pre-
sent for small but not infinitesimal amplitude. A more con-
vincing demonstration of the significance of the second
harmonic for finife amplitudes is given by figure 16, where
it is evident that the second harmonic grows as the ampli-
tude of the fold increases. The magnitude of the second
harmonic is also related to the shape of the layer (Chapter
VIIi, Section 4).

The noise present in tne results of the dominant-
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wavelength case will not disturb the smoothness of the shape
used for the computation of the next stage, but the case of
a wavelength much longer than the dominant wavelength can
only be treated if some sort of smoothing technique is used
at each stage. In order to exhibit the wlidest possible var-
iation in shape as a function of the ratio of initial wave-
length to the dominant wavelength, it was decided to compute
the M = M4 /100 case and smooth the results at each
stage. Going to the limiting case of the zero-viscosity
plate gives a more nolsy - distribution and does not
significantly modify the harmoniecs (1 and 2) which are
above the noise level. The smoothing was done by examination
of the harmonic analysis of the 5 distribution at each
stage according to the criteria outlined above; in general
the rule was followed that it was better to leave in a
harmonic coefficient if there was some doubt as to its

significance.

4, Strain-rates in the medium

So far we have focused attention on the plate viscos=-
i1ty distribution, since 1t 18 more likely to cause errors
that accumulate from one time step to the next. In examin-
ing the medium velocity distribution, we are concerned only
that it be accurate enough to justify conclusions which we
may deduce from it. The most convenient representation of
the medium velocity distribution for geologlic purposes is

the orientation of the principal strain-rate axes; since
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this orientation angle depends on the ratio of second dif-
ferences of ® at a given point, it 1s rather sensitive to
errors and‘irregularities in the ¢ distribution. If we
take the differences of the orientation angles at successive
points along a horizontal or a vertical mesh line, the
differences are very regular except where there i1s a transi-
tion from orientations which are computed with some elimina-
tion and some regular points to orientations which are com-
puted entirely with regular polnts. These irregularities
are small--in almost all cases they cannot be detected by
visual examination of a plot of the principal strain-rate
axes--and they certainly will not affect the conclusions

based on a consideration of the strain-rate distribution.

5. Choice of the time step; cumulative errors in the shape

Up to the 81° stage of the dominant-wavelength fold
and the 33° stage of the weak-plate fold, simple extra-
polation of the velocity of the plate was used to find the
new shape. That is, the velocity given by the calculation
of one stage was taken to be the average velocity in the
time interval up to the next stage. When the é; values
calculated for the new shape were normalized to have the
same é. as that of the previous stage, the maximum dif-
ference between any of the éi of the two sets was always
less than about 10%.

It was found that the ratlos of the harmonic coeffi-
cients of the & distributions, 'AL/E. , had an épprox-

imately exponential dependence on the dip of the limb, and
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that they were relatively insensitive to the finer details
of the shape. These features made possible a method of
combined prediction and extrapolation which was used to
calculate the shapes of the final stage of the dominant-
wavelength fold and the further stages of the weak-plate
fold.

The method used was the following one: (1) The ratios
A:i /A, were plotted against the dip of the limb on semi-
logarithmic coordinate paper, and the expected ratio for
the next stage was estimated. (2) On the basis of these
predicted A:/A4, and those from the previous stage, the
average A; over the next time interval were calculated.
(3) The new velocity distribution for ﬁhe shape determined
using this set of average A: was then computed, and the
ratios A‘//A. obtained from this velocity distribution
were compared ﬁith those predicted in step 1. A revised
shape for the stage just computed was determined using the
plate velocities from this stage and the previous stage. If
the predicted ﬁnd calculated harmonic ratios were suffi-
ciently close, this revised shape was used to determine the
next stage as in steps 1 and 2. If they were not suffi-
clently close, the velocity distribution for this stage was
recalculated using the revised shape before proceeding to
the next stage.

The lower harmonics were required to match to within
10%; a larger tolerance was accepted for the higher harmon-

ics, since thelr magnitude was wmuch smaller than that of the
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lower harmonics.

This process worked well up to the 69° stage of the
weak~-plate fold, but after that point it was no longer pos-
sible to predict the velocity distribution with sufficient
accuracy. The reasons for this difficulty are assoclated
with the shape of the fold at these high-dip stages and are
discussad in Chapter VIII, Section 6.
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CHAPTER VIII

RESULTS

1. Introduction

The principal results of the numerical computations
are the shape and veloclity of the layer at each stage and
the velocity distribution in the medium at each stage.

The O and 6, and the corresponding harmonic

coefficients A. and A, are tabulated in Appendix B for
the three folds computed: the free plate ( L<<Ls ), the
dominant-wavelength fold ( L = L4 ), and the weak-plate
fold ( L= #.¢ Ls )., The initial shape for the free plate
was a sine wave, y = !.M‘-"-'_—", with a maximum dip of 1°;
that for the other two folds ( L=L, ; L=4.ebd ) was
a sine wave with a maximum dip of 10°. Successive shapes
of these three folds are plotted in figures 8, 9, and 10.
In figures 11, 12, and 13 selected stages of the three folds
aée plotted together for visual comparison; in these figures
the symmetry of the problem is used to extend the fold over
a longer range of arc length.

For discussion of the growth of the various folds, it
is convenient to plot the ratios of the Fourler coefficients
of © and ) logarithmically as a function of the dip of
the 1imb. Ax/A and A,/ A, are plotted in figures

14 and 15, while é:,/ﬁ. and é, ﬁ, appear in figures
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16 and 17. The significance of these curves is discussed in
Section 3.

Principal strain-rates and finite strains for select-
ed fold stages are plotted in figures 21 to 27. The cal-
culation of these quantities i1s described in Appendix A; the
interpretation of the diagrams 1s discussed in Section 7.

Table 4 summarizes the principal results for the cases

Lt by , L™ Ly , and L = 4¢Ls respectively.

2. Stages of development of a finite-amplitude fold

Although the folding process 1s a continuous one, for
ease of discussion it may be separated into three portions,
each with its characteristic style. These styles may be
called the low-dip style, the high-dlip style, and the 1so-
clinal style.

In the following discussion, the fold is thought of
as an anticline, and the portion of the medium above the
anticlinal hinge 1is referred to as being outside the crest,
that below the hinge as inside the crest. In speaking of
planar features such as the planes of maximum flattening
rate (perpendicuiar to the maximum compressive stress), we
shall designate planes which dip toward the antliclinal axilal
plane as fanning, those which dip away from the axial plane
as anti-fanning. |

The low-dip stages represent a direct continuation of
infinitesimal-amplitude folding. The competent layer 1is

8till pushing the medium aside, and velocities due to folding



96
are greater than those due to the compression of the mecium.
This style 1is shown by figures 21 and 22 for the dominant
wavelength and 25 for the weak plate. Throughout these stages
the planes of maximum flattening rate form an anti-fan below
the crest.

In the high-dip stages the medium begins to play =
mofe active role: (1) At the crest of the fold the vertical
velocity 1s less than 1t would be if there were no layer and
the medium were undergoing the same uniform compression rate.
(2) The vertical velocities along the x-axis inside the crest

of the fold begin to be negative, and the material inside th

4

crest starts to be extruded from the fold. (3) When this
occurs, the planes of maximum flattening rate change from
anti-fanning to fanning. Thls style is pictured in figures
23 and 24 for the dominant wavelength and in figure 26 for the
weak plate.

As the limbs continue to steepen and approach each
other, the portion of the medium inside the crest becomes
more and more confined, and the extrusion of this materizl
is the dominant aspect of the folding process. The onset of
this isoclinal style is less well defined than the transition
hetween the low- and high-dip styles, but it clearly represents
another style of deformation. Figure 27 illustrates this
style. A more precise definition and a discussion of the
special features of this style are found in Section 6.

Although transition from one style to the next 1is
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gradual, we can determine the approximate dip of the limb

at which the transitions occur. For the dominant wavelength,
the limit between the low- and high-dip stages 1s probably
close to 66°. At a dip of 66°, the planes of maximum flat-
tening rate form an anti-fan, and the crest of the fold has
a vertical velocity lesslthan it would have had if the fold
had not been present. However, the vertical velocity along
the x-axls 1nslde the crest of the fola does not become nega-
tive until the 70° stage is reached. The 89° stage of the
dominant-wavelength fold does not show the characteristics
of the isoclinal style (Section 6).

For the weak plate, the transition from the low-dip
to the high-dip style occurs between limb-dips of 539 and
63°; all three criteria indicate that the 63° case belongs
in the high-dip stages. Signs of the transition to the
isoclinal style begin to occur when the dip of the 1limb 1s
69°; the 79° and 89° examples are clearly isoclinal stages

(Section 6).

3. Shape analysis

Differences in shape between the three folds can be
detected by visual examination (figs. 8-13) only after the
dip of the limbs 18 greater than about 45°; as the amplitudes
become larger, the differences are sufficlently pronounced
so that it would probably be possible to detect them even
in natural folds--uhere the shapes would naturally not be
as ideal as in the computed examples. It will be shown that

& Fourier analysis exhibits differences in the trends of the
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shape development at lower amplitudes also.

Examination of the folded shapes and consideration
of the balance between bending dissipation in the layer and
dissipation in the medium suggest that the important charac-
teristic of the shape which distinguishes the three cases
is the "sharpness" of the crest. There are a number of
ways to express this "sharpness" property, for example:

(1) the relative length over which the limb of the fold
remains essentially straight, (2) the amplitude of the fold
at a given horizontal shortening, and (3) the ratio of the
maximum curvature to the average curvature. Although these
parametefa are useful for an intuitlive understanding of what
1s meant by sharpness, none of them would be very satisfac-
tory in describing natural folds, since they are all rather
sensitive to local irregularities in the shape of the fold.
What 18 needed 18 a method of describing the shape that is
relatively insensitive to local variations but sensitive to
the differences in overall sharpness shown by the different
computed fold shapes.

Harmonic analysis of the inclination € as a func-
tion of arc length s 1s probably the most useful way of
describing fold shape, at least in the low- and high-dip
stages. This method is discussed in Chapter 5, Section 2.
Its usefulness 18 dependent on the possibility of describing
the shape in terms of a small number of harmonic coefficients.
If this is possible, then a natural fold can be described in

terms of the first few harmonic coefficients, and the omission
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of the higher harmonic terms provides an automatic method
of smoothing the observed inclination data. The more
intulitive measures of sharpness mentioned above can be ex-
pressed in terms of the harmonic coefficients 1f desired.

In order to discuss the growth of a fold with time,
we must choose a parameter fb measure the stage which the
folding has reached. Two such parameters are (1) the maxi-
mum dip of the limb, and (2) the percentage of shortening
that has occurred. It will be shown later (Section 5) that
the way in which the plate deforms at a given stage 1s rela-
tively independent of the details of the shape at that stage.
To the extent that this independence holds, it makes little
difference which stage parameter is used. The dip of the
limb proves to be satisfactory, and since it 1s easlily deter-
mined, it is used here as the "stage" variable to which the
development of fold shape 1s referred. For a naturally ob-
served fold, the dip of the limb may be taken as the value
calculated from the terms of the harmonic analysis that are
Judged to be significant; this will smooth out any irregu-
larities in inclination in the neighborhood of the center
of the limb.

In figures 14 and 15 the ratios of the harmonic
coefficients ﬁ-/}.- and As/ A, are plotted logarith-
mically as a function of the dip of the limb. If we except
the first three stages of the L= L, curve (discussed in

Section 5 below) and the last three stages of the L=dgly

curve (discussed in Section © below), the following
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cdnclusions can be drawn.

1) The importance of the higher harmonics in the
shape representation increases approximately exponentially
with increasing dip of the limb for all three folds.

2) The ratios of the harmonic coefficients should
describe a smooth curve. Therefore, the deviation of the
ratios from a smooth curve gives a measure of the errors
committed in the discretization process.

3) The separation of the curves for the three L /i,
values at any given stage 1s large. From this standpoint,
the shape of finite-amplitude folds 1is sensitive to the
variations in physical parameters among the three cases, and
the harmonic representation of the shape 1s therefore an
appropriate method to describe these shape varlations.

4) The shape of folds that have not reached the iso-
clinal stage of deformation can be described in terms of a
small number of harmonic coefficients. The description of
the shape of the free plate is contalned in the first two
harmonic coefficients: the ratio A:/4, is always less
than 4 x 10"5 over the shortening range studied; the maxi-
mum value is reached for a limb-dip of 90°. The third har-
monic becomes significant in the dominant-wavelength fold
only after the dip of the limb reaches 66°; the fourth is
still negligible when the limb dips 89°. The description of
the shape of the weak plate is complicated by two features:
(1) since the weak plate has & much "sharper" shape, higher

harmonics are necessary for its description; and (2) the
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magnitude of the higher harmonic coefficients in the veloc-
ity distribution 1s less well known because of the higher
discretization error in the weak-plate solutions. The ratios
of the second and third harmonics to the first show a
regular growth in figures 14 and 15, but the sign of the
fourth harmonic changes between the 53° dip stage and the
63° dip stage. The most ;easonable interpretation of the
data is that the first three harmonics give an adequate des-
cription of the weak-plate fold until the dip of the limb
reaches about 65°, and that beyond this stage the harmonic

representation no longer provides a simple and convenient

way of describing the shape.

4. Dependence of the A, on fold shape at low amplitude

Before the shape variations discussed in Section 3
can be compared with those in natural folds, it must be
shown that they are not sensitive to small variations in the
initial shape of the folded layer. The nature of the de-
pendence of the Ai on fold shape is different at moderate
and high amplitude (Section 5) from the depehdénce at low
amplitude.

In order to test the dependence of harmonic coeffi-
clents A; (describing the bending in terms of & ) on the
harmonic coefficients A, (describing the &. and hence
the shape), the velocity fields were calculated for the
dominant-wavelength folds of two different shapes, both

having 10° limb-dips. The first shape, which was taken as

the starting shape for the full dominant-wavelength fold,
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wags a pure sine curve, Y = y. <en 31X ; described in terms

of 6 and 5, this shape 1s closely approximated by the
first two harmonic coefficients, with Zhs/4 = -0,00446.
The second shape ias also composed of these two harmonics,
but in the ratio %/, = -1/9. This ratio 1s the largest
possible which does not cause a change in sign of the
curvature between the limb and the crest of the fold.

The solutions of the two problems gave év@lt -0.00152
for the first fold and 5'/?, = -0.03481 for the second.
If we form the ratio ’j‘/ﬂ../ﬁ‘/é, . , 1ts value 1is 0.34
for the first fold and 0.31 for the second. The near equal-
ity of these two values suggests that the rate of growth of
a particular Aé 18 proportional to its relative amplitude
in the initial shape. This proportionality 1is not that of
the conventional 1nf1n1tesimai-amplitude treatment of Y as
a function of 3L_(l). The conventional treatment predicts
that a sine wave, Y (X)with a 10° dip of the limb will
fold into another sine wave with the same arc length and
higher amplitude. It can be shown that if this were to
happen é‘/j, would be -0.037, as opposed to the value
-0.00152 calculated in this study. Thus the infinitesimal
treatment in its conventional form gives a very erroneous
prediction for the shape development of even this low-

amplitude fold. -

(1) M. A. Biot, Theory of folding of stratified visco-
elastic media and its implications in tectonics and orogene-
s1s: Geol. Soc. America Bull., v. 72, 1961, p. 1595-1620
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It is proposed that the range of validity of the in-
finitesimal treatment might be extended to folds of small but
finite amplitude, provided that the harmonics of y as a
function of x , hitherto considered in the infinitesimal
theory, are replaced by harmonics of 8 as a function of
_S. On the basis of the infinitesimal treatment (2) the
ratio of the growth rates of any two harmonics 1srpropor-
tional to the ratio of the amplitudes of the two harmonics
in the initial shape. If it 1s assumed that the constant of
proportionality would be the same if the infinitesimal treat-
ment were formulated in terms of ©( S) rather than Y ( x),
the proportionality constant f‘/ﬂ'- / As /A, is 0.310.
This value is close to the values 0.34 and 0.31 derived from
the numerical calculations of the two 10° dominant-wavelength
folds. Applying the same assumption to the first two har-
monics of the 10° weak-plate fold, éVA,//A1/h, = 2.65,
while the value calculated for the 109 atagé of the weak-
plate fold is 2.63.

These results are suggestive, but not conclusive.
There 18 no basis within the framework of the conventional
infinitesimal treatment for preferring a shape representa-
tion of € as a function of S to a representation of Y
as & function of X, since the two are identlical in the 1limit
as the amplitude goes to zero. However, the numerical re-
sults do suggest that an analytical theory of the shapes of

low but finite amplitude folds might be based on the bending

(2) Biot, op. cit.
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of a slightly curved plate where the shape perturbations are

harmonically analyzed in terms of © as a function of 5 .

5. Dependence of the lij on fold shape at higher amplitudes

The proportionality discussed in Section 4 does not
persist as the fold grows: for the dominant-wavelength fold
with a 1imb-dip of 23° the ratio is Ax/4, /A /A, = 0.69,
while for 36° it 1is 2.15.

The nature of the dependence of the é; on fold
shape beyond the amplitude where proportionality holds can
be studied by comparing two plate velocity distributions
computed from fold shapes which have the same limb-dip, but
slightly different 'ﬁt . Such pairs of examples were com-
puted for the 81° stage of the dominant-wavelength fold and
the 63° stage of the weak-plate fold. The second shape in
each case was calculated by‘using the velocity distribution
obtained from the first shape to refine the estimate of
average velocity of the plate used to compute successive
shapes (Chapter VIII, Section 5). The harmonic ratios of
the two shapes and theilr corresponding 9; values are tabu-
lated in table 3 (3).

Examination of the table shows that: (1) the changes

in the ‘fi are certainly not proportional to the changes in

(3) After the two dominant-wavelength cases were com-
puted, the method of eliminating points near a steeply dip-
ping portion of the plate was made more accurate. The second,
a posteriori, shape of the 81° stage was then recomputed, and
it is the results of this computation that are plotted in
figures 8, 11 to 17, 20, and 24, and tabulated in Appendix B.
The more accurate method was used for all stages of the weak-
plate fold.
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TABLE 3.--Variation in A /A, when 4A+/A, are
changed and limb-dip is held constant.

I II
: Ai/a, Ai/i, Ai/a, A/,
L 2 -0.01941 -0.1317 -0.02314 -0.1342
= L‘ -
81° 3 0.00055 0.0004 0.00033 0.0009
Limb-dip
4 -0.00011 -0.0024 -0.00015 -0.0023
L . 2 -0.15946 -0.4356 -0.14400 -0.4568
= 4.6 Ly
63° 3 0.04727 0.1637 0.02769 0.1854
Limb-dip
L 0.00065 -0.0646 -0.00662 -0.03396
the Ai , and 1n some cases they even have the opposite
sign; and (2) except for As/4. in the dominant-wavelength

example, the changes in the velocities are relatively much
smaller than the changes in the shape. ( é:/é. and A:/A
are so smali that their variation is probably not signifi-
cant within the framework of the numerical computation.)
Comparison of the changes in the A) shown 1n this table
with the changes due to the normal growth of the shapes 11-
lustrated in figures_l6 and 17 demonstrates that the rate of
growth of the various harmonics 1is détérmined mainly by the
ratio L/, and the stage of folding as measured by the
dip of the limb, rather than by the amplitudes of the indi-

vidual Fourier components.
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The transition from the very-low-dip staces (ji/ﬁ,
ls proportional to ARi/A ) to the later stages ( é;ﬁ@
c¢epends only on limb-dip and L/ts ) occurs at a limb-dip
of about 159, since the 23° stége of the dominant-wavelenzth
‘fold no longer shows the proportionality discussed in
Section 4, A dip of the 1limb of 15° 1s taken as the upper
limit of the wavelength-selection process of the infinitesi-
mal-amplitude theory (4), even though the conventional
infinitesimal-amplitude theory breaks down before the clp of
the limb reaches 10° (Section 4). The fagt that the rate
bf change of the shape of a fold is relatively independent
of the detalls of its shape when the dlp of the 1limb is
greater than 15° is an important conclusion. Its geolosic
significance 1s discussed in Chapter IX, Section 1.

The results of this section and Section 4 can be used
to discuss the low-dip stages of the dominant-wavelength
fold. A./A, for the 10° stage of this fold is too high to
fall on a smooth curve determined by the éu@, of the other
stages (fig. 16). At a 10° limb-dip the value of Ai/4,
1s proportional to As/a , so that the pure sine curve
y(X) chosen for the initial shape 1s too sharp for ém/@
to rise smoothly with the approximately exponential cdependence
on limb-dip determined by L/ . The effect of this
abnormal sharpness persists until the 36° stage, when the

normal growth of A./A, begins to mask its presence (fig. 14).

(4) Biot, op. cit.
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The compensation mechanism by which the sharpness of
the initial shape 1s masked at higher dips by the normal
development of the fold shape will be effective only if the
absolute magnitudes of the higher harmonics in the initial
shape are small in comparison to the values they would have
at high limb-dips in the normal growth of a fold with the
given L /L, . Apart from this restriction the shape at
relatively high limb-dips (greater than 45°) is relatively
independent of the starting shape. This independence allows
the arbitrary assumption of a particular initial shape at
the 10° stage, provided that the initial shape is a smooth

one -

6. Isoclinal style

The 1isoclinal style of deformation shows certain
special features. When the limbs of the fold become steep
and straight, their shape remains constant, and they merely
move closer as the folding proceeds. The strain-rate field
in the medium becomes one of simple extrusion between walls
of fixed length. In contrast to this simple behavior in
the 1imb region, near the crest the é of the plate must
change rapidly. 5§ will be small in the limb region; as
the crest is approached it must rise to a maximum and then
decrease to zero at the crest itself. The rate of change
of the curvature must be close to zero on the limb, positive
and large where the layer is "unrolling", and negative and

large near the crest itself. This region of rapid change

L
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must be concentrated closer and closer to the crest as the
folding proceeds. The portion of the medium just inside the
crestal region must exert large stresses on the plate, and
i1t is probable that the orientation and magnitude of the
strain-rates change rapidly with distance.

Although these features affect the validity of the
computations of the present study in the isoclinal stages,
a definition of the isoclinal style can be proposed. This
definition is based on the & distribution, although it
might be possible to define the stage on the basis of the
strain distribution in the medium or the shape of the fold.
In figures 18a through 18d © 1s plotted as a function of
_$ for selected stages of the weak-plate fold. It can be
seen that as the dip of the limb increases from 43° to 63°
the maximum value of 6 moves nearer to the crest. For
the 69° stage, 6 1n the limb region is still relatively
high, but it is essentially constant. When 6 is essen-
tially constant over two thirds of the distance from limb
to crest and rises to a sharp maximum before falling to
zero, the style of folding may be called isoclinal. Three
hypothetical B distributions in the isoclinal stages are
pictured in figure 18h.

A consequence of the special features of the 1isoclinal
style is that mathematical simplifications that were valid
in the earlier stages of folding may break down during the
isoclinal stage. When the curvature at the crest of the

fold becomes large, the layer can no longer be considered
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as a thin plate. It is probable that the stress distri-
bution across the plate is no longer linear. Strong tension
in the 1limb and probable strong compression in the horizon-
tal part of the crest make the validity of the assumption of
inextensibility of the plate somewhat dubious, especially
for the weak-plate fold where u,/u, 18 relatively low.

The rapid change of the pattern of deformation in
and near the crestal region also affects the validity of
the discrete treatment of the problem. It may no longer
be sufficient to describe the shape and the velocity of the
plate by only ten © values and-ten © values. The des-
cription of the shape and the velocity in terms of two or
three harmonic coefficients is no longer possible. The
lower harmonics in the 6 distribution decrease in amplitude,
and the higher harmonics increase, because the changes in
inclination are all concentrated in a narrow range of arc
length near the fold crest (figs. 16 and 17). This adverse-
ly affects the smoothing process (Chapter VII, Section 3),
since the discretization errors affect the higher harmonics
more strongly. The most serious consequence is the break-
down of the extrapolation process by which the new shape is
. determined (Chapter VII, Section 5). For this extrapolation
to be effective, it 18 necessary that the various harmonics
in the é distribution change regularly as the dip of the
limb increases. In the isoclinal stage this is no longer
true, at least with the time step used, and extrapolation of

the harmonic coefficients becomes very difficult.
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This difficulty in extrapolation is illustrated
in figures 16 and 17 where ‘éx/é- and A /A, are
seen to drop sharply for the 79° stage. AA-/ZL and 3,/5
for the 89° stage cannot be plotted in figures 16 and 17,
since they change sign ( 51/5. =  0.0474, és/éf.: -0.3300).
Figures 18e and 18f show the © distribution for the 799
and 89° stages of the weak plate. It is concluded that the,
shapes of these two stages do not have quantitative signif-
icance, even fhough a visual examination of the fold shapes
does not indicate that they are in error (fig. 10).

Difficulties also arise in the treatment of the medium.
The radius of curvature 1s no longer large relative to the
mesh length, and 1t 1s probable that the strain-rate changes
rapidly from one mesh point to the next. For example, in
the 89° stage of the weak-plate fold, the radius of curvature
at the crest 1s 2.7 mesh lengths. (Note that the plate
thickness corresponding to a viscosity ratio My [/ Mm of 16
is about one mesh length.)

The strain-rate field in the medium for the 79° and
89° stages does not reflect the,irregﬁlarities shown by the
© distributions (figs. 18e and 18f). This may be due to
-the fact that the velocities of points on the plate are found
by integrating é ;3 the plate velocities for these stages
are therefore more regular than the éi . If a much shorter
time step had been used in the isoclinal stages, the result-
ing shape of the 89° stage would show more compression and

considerably higher amplitude. Except for this effect, the
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strain-rate and strain fields for the 89° stage (fig. 27)
are probably still valid. Increased amplitude would proba-
bly not change the strain-rate field appreciably, but it
would increase the cumulative strains.

With a smaller mesh spacing and a considerably
smaller time step, the present method could be used to cal-
culate the development of the folding in the isoclinal
stage. However, since the physical assumptions break down
at the same time as the numerical treatment, it would be
more logical to conduct a quantitative study using a dif-
ferent formulation of the problem. Such a formulation would
have to account for the finite thickness and possible elon-
gation of the plate.

The isoclinal style defined above does not coincide
with the conventional geologlic definition of isoclinal
folding. The 89° stage of the dominant-wavelength fold has
an isoclinal shape, since the limbs are parallel, but the

© distribution of this stage (fig. 18g) does not show the
characteristics of the isoclinal style.

When the © distributions of the weak-plate fold
and the dominant-wavelength fold are compared, it seems
probable that the limb-dip of the L =L4 fold will be-
come considerably greatef than 90° before the limb begins
to return to the vertical. An overturning of at least 10°
is to be expected from the growth of the Ai (f1igs. 16 and
17), although further extrapolation i1s of doubtful value,

.

since the & distribution may start to change more rapidly
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after the limb becomes overturned. Such a fold with both
1imbs overturned is called a fan fold (5).

If the horizontal shortening éontinuea, any fold
must eventually deform in the isoclinal style, provided that
the layer remains coherent.' As the vertical portions of a
fan fold approach each other, the material inside the fold
will be compressed strongly at the same time that i1t becomes
more difficult for it to be extruded from the core of the
fold. As the pressure 1in the core continues to rise, the
stresses due to the extrusion process will become large in
comparison to the bending resistance of the plate, and the
limb will approach the vertical again.

Figure 18h shows three hypothetical curves indicating
the isoclinal stage. Curve I shows the isoclinal style
when the limbs are parallel. Curve 1I, which i1s modeled
after figure 18d, shows an earlier isoclinal stage when the
limbs are not yet vertical. Curve III shows the way in
which the dominant-wavelength fold will probably approach
the final isoclinal stages. 9 in the limb region must
be negative for the limb to return to the vertical position.

This discussion of the isoclinal style 1s necessarily
somewhat hypothetical. Nevertheless, two conclusions are
clearly indicated by the results of the computations: (1) In
the 69° stage of the weak-plate fold the limbs approach each

other while remaining essentially straight; all of the

(5) M. P. Billings, Structural geology: New York,
Prentice-Hall, Inq., 2d ed., 1954, p. 42
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bending is concentrated in the crestal region (fig. 18d).
(2) The dominant-wavelength fold will become a fan fold.

!

7. Deformation of the medium

As examples of the ¢ field in the medium, figures
19 and 20 show ¢, at the grid points for two stages of the
dominant-wavelength fold. To get the total @ at each
point, ¢ =-Xy must be added to the plotted values.
Figure 19 shows:the 23° stage, where the medium velocities
associated with the folding are much larger than those
as#ociated with the uniform compression (low-dip style);
figure 20 shows the 81° stage, where the reverse is true
(high-dip style).

A contour map of the ¢ values could be used to
represent the velocity field. The veloclty at any point
is parallel to the contour of equal ¢ at that point, and
the magnitude of the velocity is proportional to the value
of the gradient of the fleld. However, for geologic inter-
pretation of the velocity field in the medium, it is more
convenlent to plot the straln-rates and the accumulated
finite strain at points in the medium.

In figures 21 to 27 the orientations and magnitudes
of the principal extension rates and the major and minor
axes of straln ellipses are plotted for various time stages
of the dominant-wavelength and weak-plate folds, Strain-
rates are plotted below the layer and finite strains above

the layer, The original orientation of the major axes of
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the strain ellipses are shown by Jdashed lines., The finite
strain can be considered to be the sum of a pure strain
and a rigid rotation.

The methods used to calculate the strain-rates and
the finite strains are described in Appendix A. It should
be mentioned that .the method used to calculate finite strain
i1s somewhat inaccurate; therefore, the finite strains plot-
ted in figures 21 to 27 should be regarded as approximate
only. In particular, the principal axis orientation for the
smaller strains is not well determined.

Certaln aspects of the stralin-rate flelds have been
discussed in connection with the stages of folding (Section
2). In the present section prominent features of the strain-
rate and total strain flelds are pointed ocut, and certain
peculiarities are explained. Interpretation of the strains
and the strain-rates in terms of geologic strain indicators
is made in the next chapter.

The most prominent feature of the strain and strain-
rate flelds is the relatively uniform orientation of the
planes of maximum flattening and maximum flattening rate.

By the time the dip of the limb reaches 45° the planes of
flattening and flattening rate are oriented approximately
parallel to the axlal plane of the fold, and they preserve
this orientation into the isoclinal stage. The behavior of
the cumulative strain closely parallels that of the strain-
rate. The symmetry of the problem requires that the planes

of maximum flattening be parallel to the axial plane at the
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right- and left-hand walls, and the assumption of inextensi-
bility of the plate requiresrthat they make an angle of 45°
with the plate as they approach it. Tha fact that they are
sub-parallel to the axial plane over most of the interior of
the fold 1s an important result of this study; 1ts geologilc
interpretation will be discussed in the next chapter.

There are several significant deviations from this
axial-plane orientation. In the early portion of the low-
dip stage, the material in the medium above the crest of the
fold is extending in a horizontal direction; by the time the
dip of the limb reaches 45° the extension in this region is
vertical, though it remains small due to the shielding
effect of the inextensible plate. In the low-dip stage

%; is positive inside the crest of the fold (6), and the
resulting shear strain-rate causes the planes of maximum
extension rate to form an anti-fan with respect to the axial
plane.

When the high-dip stage is reached, the extrusion
of the medium out of the inside of the crest past the limbs
causes %; to become negative and the planes of maximum

extension rate to form a fan rather than an anti-fan. Even

in the high-dip stage, the folding of the layer produces a

by
2 X

planes of maximum flattening rate continue to dip away from

positive Just inside 'the crest of the fold, and the

the axial plane here. This effect is probably exaggerated

(6) The anticlinal portion of the fold is taken to
be in the upper right-hand quadrant of the coordinate system

in this section.
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by the high curvature of the plate in the 89° stage of the
weak-plate fold (fig. 27). The strain-rates in this region
are very small, however. The same effect is present above
the crest of the fold.

This transition from fanning to anti-fanning is
reflected in the cumulative strains., It 1s somewhat sur-
prising that the transition takes place at the same dip of
the 1limb for both the strain rates and the cumulative strains.
For the cumulative strains, the transition is caused by
the rotation. Comparison of the initial and final orienta-
tions of the major axes of the strain ellipses in figures
22 and 23 shows that the rate of rotation is large at the
transition from low-dip style to high-dip style. Rotation
rates can be calculated from the ¢ fleld at any stage:
between the 46° and 56° stages of the dominant-wavelength
fold the rotation rate would produce a positive rotation of
several degrees.

The cumulative strains are computed on the basis of
the new positions of fhe points of an originally square
grid, so that the strains of a particular small region can
be traced from stage to stage by picking plotted strain axes
in corresponding positions with respect to the layer. If we
follow a particular strain axis from stage to stage, we see
that the rotations increase rapidly in the early stages of
the folding and continue to increase, but at a slower rate,
in the later stages. Comparison of the strain axes with

reference axes showing the finite strains that would result
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from a uniform compression with the same shortening shows
that: (1) the crestal region near the plate is shielded
from deformation and shows less flattening in the high-dip
stages than would be due to uniform compression; (2) in the
limb region the flattening is larger than would be produced

by uniform compression.

8. Energy dissipation

Additional information about the physical nature of
the folding process can be obtained from a consideration of
the relative values of the dissipations in the different
sub-regions of the region considered.

The bending dissipation in the plate is calculated
diréotly from the sum of the gquareé of the differences of
the 91‘ . The dissipation in the grid portion of the
medium is calculated from the strain rates at each grid
point. Although it 1s not strictly correct to use the strain-
rate calculated from a 9-point array which includes points
on both sides of the plate, the dissipations calculated from
these arrays were included in the total medium dissipation.
The error introduced in this way will not be large enough to
affect any of the conclusions drawn from a consideration of
the total dissipation. Since the problem region extends to
infinity in the direction of the y-axis, the total dissipa-
tion in the medium woﬁld be infinite if the dissipation due
to uniform compression were included. To avoid this problem,

and to focus attention on the dissipation due to the folding

process itself, the dissipation due to the uniform compressim
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of a strip of the same width as the problem region is sub-
tracted from the dissipation calculated for the medium,
This removal of the uniform compression makes the dissipa-
tions calculated directly comparable to those of the infin-
itesimal treatment, since in the infinitesimal range the
uniform compression 1s negligible in comparison to the
folding.

In figures 28a and 28b the ratio of the dissipation
in the medium to the bending dissipation in the plate is
plotted as a function of the dip of the limb for the dominant-
wavelength and the weak-plate folds. The ratios given by
the infinitesimal treatment (7) are 2 for L=1LJ4 and 200
for L = 4.6L4

In the low-dlip stage of folding this ratio decreases
steadily as the velocity of points on the plate approaches
more and more closely the velocity which would be associated
with the uniform compression of the medium if the layer
were not present. At a dip of the limb approximately cor-
responding to the start of the high-dip stage, the ratio
passes through a minimum and starts to rise rather steeply.
This steep rise i1s caused by the extrusion of material in
the medium from the inside of the crest of the fold. Pre-
sumably, the ratio would continue to rise during the iso-
clinal stage and would become very large as the limbs
approach each other more and more closely. The scatter of

the last two points in figure 28b i1s caused by breakdown of

(7) Biot, op. eit.



600 -
400+ -
I,'.,;J 11w G
k=
T, - -
200~ o -
©
" O |
o o
I 1 ] 1 O 16 1
ag° 6 0° 90°

T T T T 1 1 1 I C‘}
4+ "
Tqvid + T 3 |
Ip W o )
; ° o 3 =

1 1 ! | 1 4 L Oi 1

30° 60° 90°
a) L=1Lqg.
e in thne

Figure 23.--Ratlo of dissipaticn rat
medium, exclusive of uniform compression, t
of limp-dip for the dominant-wavelengtih and
plate folds.

21 :
dissipation rate in the plate plictted as a function
K

be



140
the calculation in the isoclinal range (Section 6). The
position of the minima of the curves of figures 28a and 28b
is an indication of the validity of the separation of the
folding into high-dip and low-dip styles, since these minima
occur at limb-dips corresponding to the transition between

the two styles.

9. Summary of results

In table 4 selected results of the numerical computa-
tions are tabulated for the free4plate, dominant-wavelength,

and weak-plate folds.
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TABLE 4, --Summary of the results of the computations

free plate dominant weak plate

wavelength
L/ L <1 1 Vloo =4.6
My /u,, for thickness : oo 1650 16.5
A = L/40 -
Limb-dip of transitions
between styles:
low-dip to high-dip -- 66° 609
high-dip to isoclinal -- >90° 69°
Probable maximum limb-dip 1209 100° 90°
Ratio of maximum curvature
to average curvature
at limb-dips of:
o b 1.571 1.587 1.625
450 1.575 1.589 1.798
559 1.579 1.598 2.198
70° 1.586 1.634 3.285
Ratio of medium-dissipation
to plate-dissipation:
infinitesimal treatment o 2 200
minimum @) 0.40 10
g 66° e

Limb'd-'p at mihimuba  ratio



142

CHAPTER IX
DISCUSSION

1. Significance of the shape variations

The varliation in the shapes of finite-amplitude
folds corresponding to variation in the ratio of the fold
wavelength to the dominant wavelength is clearly recog-
nizable by visual examination of the computed fold shapes
(figs. 8-13). We now investigate whether or not this
variation can be recognized in natural folds. In order
to discuss this we must examine three questions: (1) The
initial starting shape for each fold has been chosen to
be very regular. Since natural folds will not necessarily
start from such regular shapes, are initial irregularities
likely to mask the regular shape variation found in this
study? (2) To what extent is the shape variation found
in this study sensitive to the detalls qf the mathematical
assumptions made in formulating the problem? (3) Can this
systematic shape variation be separated from shape irregu-
larities which are found to some extent in all natural folds?

1) Initial shape.--On the basis of the infinitesimal

treatment and of the finite-amplitude analysis of the present
study, the following picture of the growth of a train of
natural folds may be presented. The growth process starts

from an essentially plane layer, with a random distribution
N
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of small deviations from a perfectly plane shape. The wave-
length of each individual fold in the train 1s-determ1ned
by the wavelength-selection process described by Biot (1).
If the initial irregularities are small enough, the folds
will have a relatively uniform wavelength, the dominant
wavelength. If the initial irregularities are large enough
so that a regular wavelength has not developed by the time
the maximum dips of the folded layer are about fifteen de-
grees, there will be a range of wavelengths in the fold
train, since the wavelength-selection process 1is not opera-
tive beyond this stage (Chapter VIII, Section 5). In the
later portion of this stage, the "primary" shape of the
individual folds 1s also determined. This primary shape
will be determined to a certain extent by the initial irreg-
ularities present in the infinitesimal stage. Sufficiently
small irregularities ét the start of the infinitesimal stage
wlll tend to produce a regular shape in the primary stage as
well as a regular wavelength. From this fifteen-degree-dip
stage on, the rate of change of the shape 1s determined by
the amplitude of the fold and by the ratio of the fold
wavelength to the dominant wavelength. No evidence was
found in this study that the magnitude of any harmonic
coefficient in the shape could decrease at any stage short
of the isoclinal stage. Initial 1rregu%ar1t1es will there-

fore persist beyond the fifteen-degree-dip stage, but they

(1) M. A, Biot, Theory of folding of stratified visco-
elastic media and its implicatione in tectonics and orogene-

sis: Geol. Soc. America Bull., v. 72, 1961, p. 1595-1620
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will not be magnified. The final shape will not be com-
pletely independent of the primary stage but will be deter-
mined mainly by growth beyond the primary stage.

Two qualitative predictions can be made on the basis
of this picture of the course of growth of a fold. First,
in a fold train which includes folds with a range of wave-
lengths, the longer wavelength folds should have sharper
shapes than the shorter wavelength folds. Second, 1if a
train of folds with a regular wavelength and relatively con-
stant shape 1s found, the shape of these folds should be
sharp if the viscosity ratio, 4,/ , has decreased signif-
icantly during the folding process and less sharp if the
viscosity ratio has remained constant or increased.

2) Detailed assumptions of the calculation.--With re-

gard to the shapes produced, the two most critical assump-
tions are probably the assumptions of linear viscoaity énd
inextensibility of the plate. As the stresses in the bend-
ing layer become high, it is possible that new mechanisms
of deformation come into play. The effect of these new
mechanisms would be to decrease the apparent viscosity of
the plate. Also, high stress could lower the apparent vis-
cosity even if no new mechanisms cperate, if the stress-
strain-rate relatioh is non-linear. Therefore, natural
folds which develop at the dominant wavelength may have
shapes which are sharper than those calculated for the
dominant-wavelength fold.

It seems likely that this effect is present in nature,
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since the shapes of the dominant-wavelength fold appear to
be too broad, especially at high amplitudes. The results
of the present study predict that the dip of the limb of
the dominant-wavelength fold will increése beyond 90°; fan
folds of this sort are found in nature, but they are the
exception rather than the rule. Since the infinitesimal
treatment predicts that the dominant wavelength should be
the most common one in natural folds, the finite-amplitude
shape assoclated with the dominant wavelength should be
the most common shape., Clear evidence that mosﬁ natural
folds deviate from the shapes calculated in this study
for L = L4 would strongly suggest that the natural
layers had followed a non-linear rheclogical law.

This possibility of recognizing the presence of non-
linear rheological properties is an important result. In
order to exploit this possibility, further work is indicated:
(1) A theoretical study of the finite amplitude shape of a
layer with non-linear rheological properties should be made.
Investigation of a non-linear free plate would be mathe-
matically feasible, and the effects of the medium could
be estimated on the basis of the results of the present
study. (2) A critical study of the shapes of single-layer
natural folds should be made to determine more precisely
what is the most common natural shape.

Although the consequences of the assumption of an
inextensible plate are more difficult to assess, we can get

an idea of their seriousness by examining the limiting
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case of equal plate and medium viscosities. In this limiting
case an initial sinusoidal fold will retain its sinusoidal
shape under uniform compression., If the layer were not
assumed to be inextensible, i1ts shape would tend toward
this sinusoidal limit as the viscoslity ratio is decreased.
In table 5 are tabulated the ratios of the first few har-
monic coefficients for the 56° stage of the dominant-
wavelength fold, the 53° stage of the weak-plate fold, and
a sine wave which coincides with the weak-plate fold at
the 1limb and the crest.

TABLE 5.--Comparison of A: /4 for L =LJ and L= %6 Lg

folds with A, /4, for a sine curve
L= Ld L=¢ L
56° 1imb-dip 53° 1imb-dip sine curve
L Ai/ A, Ai/A, Ai/A,
2 . -0.0047 -0.0827 -0.1256
3 0.0000 0.0078 0.0296
4 0.0000 0.0008 -0.0084

This table shows that the change in shape between
the dominant wavelength and the weak plate i1s consistent
with a trend toward the sine shape of the equal-viscosity
case. It thus appears that the assumption of inextensibil-
ity does not seriously affect the shape analysis, although

it may affect the strain filelds in the medium, as discussed
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in Section 2.

3) Irregularities in the shapes of natural folds.--A

systematic analysis of the shapes of natural folds has not
yet been carried out. However, on the basis of the writer's
experience with natural folds, he believes that it would

be possible to detect natural shape variations of the mag-
nitude found in the present study. Fourler analysis of dip
as a function of arc length can be used to define the average
shape of a train of regular, natural'folds, and consideration
of the size of the neglécted harmonic coefficients can pro-
vide a measure of the meaningfulness of this average shape.
If sufficiently regular natural folds are selected, com-
parison of the average shapes with the shapes computed in
this study will give valuable information about the defor-
mational history of the natural folds and the rheological

laws under which they have deformed.

2. Straln field and strain-rate field in the medium

The strain and strain-rate fields plotted in figures
21 to 27 can be compared with observable geologic features.
The directions and amounts of cumulative flattening can be
measured by means of deformed fossils and oolites, and it may
be posslible to interpret the finite rotations in terms of
rolled garnets. Strain rates are not directly observable,

but the dynamic analysis of calcite twin lamellae (2) provides

(2) F. J. Turner, Nature and dynamic interpretation
of deformation lamellae in calcite of three marbles: Am.
Jour. Sci., v. 251, 1953, p. 276-298
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a measure of the last increment of strain; the orlentation
of this straln increment will be given by the orientation
of the strain-rate during the last stage of the deformation.

With the possible exception of rolled garnets, the
strain indicators discussed in the previous paragraph can
be interpreted in a relatively straightforward manner, but
since they require microscopic observation they are not
commonly measured. Cleavage, on the other hand, is a macro-
scopic property, and its orientation is commonly recorded
in field studies of deformed rocks. For this reason, we
shall discuss the way 1n which cleavage in folded rocks can
be related to the calculated strain-rate and cumulative
strain fields, even though its interpretation is not as
well understood as that of the strain indicators mentioned
in the previous paragraph. Cleavage 1s defined as the pro-
perty possessed by certaln rocks of splitting more easily
along planes with a certain orientation (3). The following
discussion will refer to cleavage that 1s determined by
the alignment of micaceous minerals or by a preferred plane
of flattening of other mineral grains.

There are two classic geologic explanations of
cleavage: (1) cleavage 1s parallel to planes of maximum
shear stress or planes across which maximum shearing move-
ments have taken place, and (2) cleavage 1s parallel to the

planes of maximum flattening or perpendicular to the maximum

(3) E. S. Hills, Outlines of Structural Geology:
London, Methuen and Co., Ltd., 34 ed. rev., 1953, p. 104
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compressive stress.A Goguel (4) gives an extensive, though
somewhat polemical, discussion of the problem. In the fol-
lowing discussion the second mode of formation is assumed.
This explanation seems preferable on the basis of geologic
observations, and it is compatible with the results of the
present computations. ‘

Even 1f we restrict consideration to the second mode
of origin, there are two possibilities for the physical con-
ditions that determine cleavage orientation: (1) 1t is per-
pendicular to the maximum compressive stress at any given
instant; (2) it is parallel to the plane of flattening of
the strain ellipsold at any time. Preferred flattening of
grains 1is best explained by the second possibility, but the
alignment of micaceous minerals might be determined by either
mechanism. Unfortunately, the results of the present study
do not provide a clear method of distinction between these
possibilities, since the orientations of the finite strains
do not differ markedly from those of the strain-rates.

When found in assoclation with folded rocks, cleavage
is usually sub-parallel to the axial planes of the folds,
and i1t often shows a characteristic fan pattern, with the
cleavage dipping slightly toward the axial planes in the
crests of anticlines and away from the axlial planes 1in thé
troughs of synclines. The axial-plane orientation is shown

by both the planes of maximum extension rate and the planes

(4) J. Goguel, Traité de tectonique: Paris, Masson
et cle, Editeurs, 1952, p. 40-44
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of maximum cumulative flattening in all stages of both the
weak-plate fold and the dominant-wavelength fold after the
230 stage. The fan-like orientation is shown after the
folds reach the high-dip stages. An anti-fanning of the
cleavage planes outside the crests of anticlines i1s commonly
observed‘(s); this feature 1s also shown by the calculated
strain fields.

Cleavage planes which show an anti-fanning relation-
ship inside the crests of folds are not common in nature,
although they have been observed (6). This may be due to
the fact that well-developed cleavage 1s assoclated with
strong deformation, so that most folds showlng cleavage are
in the high-dip stages. However, the presence of this fea-
ture in the results of the present study may represent a
fallure of one or more of the underlying assumptions of the
mathematical treatment. Most published discussions of
cleavage do not distinguish between single- and multiple-
layer folds, so that a study of single-layer folds that
show cleavage would be necessary to determine whether this
anti-fanning 1s present in nature.

The anti-fanning of the planes of maximum extension
rate in the high-dip style of folding occurs only immedliately
below the crest of the fold where the strain-rates are small.

Although 1t may have been overlooked in nature, 1t 1s equally

(5) L. U. de Sitter, Structural Geology: Lbndon,
McGraw-H1l11 Book Co., Inc., 1956, p. 96

(6) Hills, op. eit., p. 111
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probable that 1t may be a result of the assumption of inex~
tensibility of the plate.

Since the planes of maximum flattening and flat-
tening rate remalin approximately parallel to the axial plane
throughout the course of the folding, it may be possible to
observe the rotations of principal axes of strain ellipsoids
in natural folds. Minerals such as garnet which grow during
the course of deformation often 1hcorporate trains of in-
clusions which are parallel to the schistosity. If the por-
tion of rock surrounding the garnet rotates with respect
to the external stress system while the garnet 1is growing,
the inclusions will be parallel to the direction of the
schistoslity at the time they are incorporated. The resulting
curved trains of inclusions will then measure the finite
rotation with respect to the relatively constant stress
field.

The close correspondence between the principal fea-
turés of axial-plane cleavage and the computed strain-rate
and straln flelds 1s considered to be a verification of the
principal assumptions made in the mathematical treatment. A
more detailed examination of cleavage and other strain in-
dicators in natural folds 1s needed before it can be ascer-
tained whether the finer detalls of the strain fields are
really present in nature or whether they result from some
of the idealizations of the present study. Isotropy of the
medium was assumed in all the computations, but it is clear

that rocks with a well developed cleavage cannot be strictly
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isotropic. A consideration of anisotropy might‘modify some
of the conclusions, but such a consideration is beyond the

scope of the present treatment.

3. Conclusion

The study of the finite-amplitude folding of a single
layer leads to the following conclusions.

1) The shape of the folded layer varies systematically
with the ratio of the fold wavelength to the dominant wave-
length.

2) A fold whose wavelength is.equal to or shorter
than the dominant wavelength will develop into a fan fold
if the folding progresses far enough.

3) The final shape of the folded layer 1s relatively
insensitive to the detalls of the initial shape of the layer;
in this respect the shape variation is analogous to the
wavelength-selection mechanism of the infinitesimal-amplitude
treatment.

4) The results in the very-low-dip stages show that
the infinitesimal-amplitude treatment breaks down as far as
fold shape 18 concerned before the maximum dip of the fold
18 109, A possible extension of the treatmen£ up to limb-
dips of about 15° has been found, but beyond the 15° stage
the wavelength-selectlion process is no longer operative.
Analysis of the limit of the infinitesimal stage makes it
clear that the main prerequisite for the development of a

regular wavelength is that the initial shape irregularities
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be sufficiently small or sufficlently regular. If this con-
dition is satisflied, the resulting fold train will have a
regular shape as well as a regular wavelength.

5) Single layer folds progress through three styles
of deformation as the folding proceeds. Each style 1s
characterized by its own pattern of deformation in the
medium.

Retention of the fundamental physical assumptions of
the infinitesimal treatment, coupled with relaxation of its
geometrical restrictions, has made possible & number of pre-
dictions which can be tested against naturally occurring
folds. Comparison of two of these predictions with natural
folds shows that the theory provides a reasonable approxi-
mation to the natural folding process: (1) The shapes of
the calculated folds are relatively close to those found in
nature. (2) The calculated strain-rate and finite strain
fields in the medium show the characteristic oriéntation
and fanning of axial-plane cleavage.

More detailed study of natural folds is heeded to
test the other predictions: (1) The predicted shape varia-
tion can be tested only by a detailed study of the shapes
of naturally occurring single-layer folds. Such a study
might yleld important results regarding the rheological
properties of the layer. (2) The details of the strain-
rate and finite strain fields can be tested by detailed

examination of natural folds.
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APPENDIX A
CALCULATION OF THE STRAIN-RATES AND

CUMULATIVE PINITE STRAINS

1. Strain-rates

With the notation of figure 3 (p. 51) "the strain-

rates are given by the followling expressions:

; du , oV . ‘ b+ b, -, -
ex = £ (5% *oy) = T(@-du) = £ sz Pazde
e,=-¢e -« A%, o . Pre _qbnlw*(pu-"d)sw
" a2 = ax —_ T = 4

The principal strain-rates and the orientation of the prin-

cipal ares are calculated by the standard formulas. (1)

2. Finite strains

The first step in the computation of the finite
strains 1s to compute the neﬁ coordinates of an originally
square grid after it has been deformed. If X(t) and Y(E)
represent the coordinates of a particular point imbedded
in the medium during an interval of time o< t <<t when the
spatial distribution of the velocity remains essentially

constant, then the final positions of the point are given by:

(1) J. cC. Jaeger, Elasticity, fracture and flow:

London, Menthuen and Co., Ltd., 1956, p. 40-=41
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at

Xet) = Xy + S, ul Xte),Y)) dt

ot
Ye) = Yo + f. V([Xa),Yet)) dt.

The numerical computation of these integrals, when « and

v are known only at a set of grid points, would be very
complicated; the new grid positions calculated would still
not be accurate, since X and V vary with time as well as
with X and y - Since a high degree of accuracy 1is not
really necessary for the purposes of interpretation to which
the finite strains will be put, and since errors in the
finite strain calculations do not affect the rest of the
numerical results of the study, the following much simpler

formulas were used to calculate the new coordinates of a

peint:
X(at)= Xtor + (X, Y(o)) aT
Y (4t) =- Yoy + Vv (Xto), Y(o)) 4T

at repﬁesents the time interval between one time step

and the next; a T 1s chosen so that the new x-coordinates
of the points on the right-hand wall of the problem region
agree with the new x-coordinate of the crest of the fold.
\at and T are not equal since the actual trajectories

of points are curved. After the first time step, 2( and Y
are not integers; the appropriate 4 and v are found by
interpolation, using the nine ¢ values nearest thg point
under consideration,

Using this method, the positions of an originally
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square grid of points can be found at each time stage. The
final and original positions of a group of points can then
be used to calculate the finite strain in the neighborhood
of the points. The strain 13 treated as homogeneous over
the quadrilateral enclosed by four points. The new coordi-
nates of the points are given in terms of their original_

coordinates by the expressions:

X°= ax + by + e ,

¥ '= €X% + dy "'[-

A group of four points willl provide eight equations to
determine the six coefficients a, b, ¢, d,e ,and f ;
the values of the coefficlients were determined by a least
squares fit. Knowling the transformation coefficients it is
a simple matter to compute the orientations of the principal-
strain axes in the original and final coordinate systems and
the relative extensions of the principal axes. Formulas
for these computations are derived by Jaeger. (2)

Since the medium was assumed to be incompressible,
a measure of the error involved in the computation of the
distorted grid and in the assumption of local homogeneous
strain can be obtained by consideration of the volume change

assoclated with the computed strain values. The ratio of

(2) 1Ibid., p. 23-28
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the area of the deformed ellipse to the original circle in
the undeformed state ranged from 0.8 to 1.2. The maximum
deviations from no volume-change were assoclated with large
strains (whose ratio of major to minor axis is 9 to 1).

It 1s thought that the main source of error lies in the

computation of the deformed grid.
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APPENDIX B

TABULATION OF THE NUMERICAL RESULTS

L << Lg
8,

0.19961
0.19715
0.18984
0.17786
0.16150
0.14116
0.11735
0.09064
0.06170
0.03123

O

L << L
8,

0.39u406
0.38922
0.37u81
0.35118
0.31891
0.27878
0.23177
0.17904
0.12188
0.06170

O

A,
0.19962
-0.00001
-0.00000
-0.00000
0.00000
0.00000
-0.00000
-0.00000
0.00000

0.00000

A;
0.39416
-0.00010
-0.00000
0.00000
0.00000
0.00000
0.00000
-0.00000
-0.00000

-Oc 00000

11.4° Limb-dip

6,
0. 18924
0.18691
0.1799S
0.16863
0.15313
0.13386
0.11128
0.08596
0.05851
0.02962

O.

22.6° Limo-dip

(=B
0.38440
0.37969
0.36569
0.3u271
0.31130
0.27221
0.22638
0.17493
0.11911
0.06031

0.

A,
0.18927
~0.00003
-6.000600
0.00000
-0.00000
-0.00000
0.00000
-0.00000
-0.00000

0.00000

Ay
0.38L68
-0.00029
0.00000
0.00G00
0.00000
0.00000
-0.00000
-0.000GC0
-0.00000

0.00000
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L <<1Lq

6 Ay
0.76962 0.TTO37
0.76022 =-0.0007k
0.73222 0.00000
0.68628 0.00000
0.62347  0.00000
0.54525 =-0.00000
0.45352 0.00000
'0.35047 =-0.00000
0.23866 =-0.00000
0.12085 -0.00000
0.

L <<Lg

ey A,
0.58036 0.58067
0.57324 =-0.00031
0.55207 0.00000
0.51733  0.00000
0.46987 0.00000
0.41082 0.00000
0.34161  0.00000
0.26393 =-0.00000
0.17969 =-0.00000
0.09098 =-0.00000
0.

33.3° Limb-dip

&,

0.70968

0.70114

0.67569
0.63385
0.57646
0.50u475
0.42034
0.32519
0.22163

0.11229

_ 0.

Ay
0.71175
-0.00208
0.00001
-0.00000
0.00000
-0.00000
-0.00000
0.00000
0.00000

44,10 Limb-dip

 0.25242

6
0.55313
0.54641
0.52639
0.4935]

0.LuB850

0.39240

0.32652

0.17194

0.08708

0.

A o
0.55404
-0.00091
0.00000
0.00000
-0.00000
-0.00000
-0.00000
-0.00000
0.00000

0.00000
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L<< Ly
ey Ai
0.96501 0.966u9
. 0.95327 =-0.00149
0.91831 0.00001
0.86091 =-0.00000
0.78236 0.00000
0.68446 0.00000
0.56950 0.00000
O.44025 -0.00000
0.29987 -0.00000
0.15187 -0.00000
0.
L << Lg
&; A;
1.14661 1.14914
1.13274 -0.00253
1.09140 0.00001
1.02348 -0.00000
0.93044 =-0.00000
0.81434 -0.00000
0.67786 =0.00000
0.52421 -0.00000
0.35717  0.00000
0.18092 0.00000

0.

o,
0.85110
0.84100
0.81088
0.76125
0.69300
0.60Tu7
0.50643
0.39219
0.26751
0.13561

O

O:
0.96063

0.94942

0.91595

0.86067

0.78u42
0.68850

0.5TuTu

. 0.L4562

0.30L24

0.15432

55, 3° Limb-dip

A,

0.85509
-0.00402
0.00002
-0.00000
 0.00000
0.00000
0.00000
-0.00000
0.00000

-0.00000

65.7° Limb-dip

A
0.96715
-0.00658
0.00005
-0.00000
-0.00000

0.00000

0.00000

-0.00000

-0.00000

-0.00000
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® ~N o wu

® =~ o w

0.
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L <¢ Ly
6: Ay
1.24532 1.2u858
- 1.23030 -0.00328
- 1.18555 0.00002
1.11197 0.00000
_1.01112  -0.00000
0.88519 =0.00000
0.73702 0.00000
 0.57010  0.00000
0.38851 -0.00000
0.19682 -0.00000
0.
L << Lg
B, Aj;
1.40197 1.40671
1.38516 =-0.00477
1.33506 0.00004
1.25261 =-0.00000
1.13949  -0.00000
0.99804 -0.00000
0.83137 0.00000
0.64336 0.00000
0.43859 0.00000
0.22225 0.00000

6.
1.01028
0.99863
0.96378
0.90615
0.826u8
0.72601
0.60657
0.47066
0.32154
0.16316

0.

71.4° Limb-dip

A,

1.01851
-0.00831

0.00008
-0.00000
-0.00000
-0.00000
-0.00000
-0.00000
-0.00000

-0.00000

80.3° Limb-dip

8.
1.07371
1.06157

1.02522

0.96L9N4

- 0.88130

0.77536
0.6u48T79
0.50414
0.34480
0.17509

O.

A;

1.08512
-0.01154
0.00014
-0.00000
~-0.00000
-0.00000

-0.00000

-0.00000 =

-0.00000

-0.00000



L << Lg
&. A
1.56680 1.57354
1.54815 -0.00680
1.49253 0.00006
1.40092 -0.00000
1.27506 0.00000
1.11743 -0.00000
0.93137 -0.00000
0.72114 =-0.00000
0.49182 0.00000
0.24929 0.00000

0.

o ;
1.11901
1.10668
1.06969
1.00813
0.92232
0.81300

0.68163

- 0.53060

0.36343
0.18u472

0.

89.8° Limb-dip

A 1

1.13439
-0.01562
0.00025
-0.006000
0.00000
0.00000
0.00000
0.00000

-0.00000

-0.00000
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10
11

10

11

0.

Q.

L = Ly 10° Limb-dip
B A R A.‘
0.17453  0.17531 11.34703 11.36426
G.17246 -0.00078 11.20865 =0.01727
0.16627 0.02C01 12.79784 -0.00025
6.15607 =0.750G0 16.1231C =0.003C0
0.14206 C.0LCGO 9.19951  0.00011
0.12451 =0.2C000 8.04819 =0.00000
0.10379 =-0,00000 6.69615  0.00006
0.08037 =0.50000 5.17602  0.00005
0.N5481 =-0.00000 3.52549  0.00004
0.02778 =-0.03000 1.78556  5.00005
e 0.
L= I4 23° Limb-dip
B, A; é.' A,‘
0.40143  0.40255 4.85754  4.86667
0.39658 =-0.00113 4.79836 =0.00945
0.38218 0.0°CG0 4$.62283 C.D0CCY9
0.35849 =—0.0G0G0 4433467  0.00C06
0.32601  0.00C00 3.94006  0.00003
0.28544 =0.06000 3.44793  0.00004
0.23768 0.0C0CO 2.86958  0.00002
0.18386 .00000 2.21883  $.00003
0.12531  0.00000 1.51160  0.00002
0.06349  0.00000 0.76560 0.00601



L =Lg

6.
0.62832
0.62071
0.59811
C.56096
0.51005%
0.44649
0.37172
0.2875C
$.19591

0.09925

&
0.80285
C.79318
0.76443
6.71715
0.65229
0.57123
0.47575
0.36810
0.2509C
Cel2712

C.
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G.62687
-C.2U 157
0.0::001
0.0C000
032039
0."N0CLO
Q.2CN20
0.20000
0.G3G20

0.0CCCO

0.8C533

-0500251

0.2CC01
0.00CC0
0.00C00
0.CC0%0
0.20CG0
0.200C0

0.00C0G0

36° Limb-dip

8,
2.99841
2.96298
2.85737
2.6B322¢
2444362
2.14296
1.78727
1.38456
2.94467
0.47881

Ce

46° Limb-dip

6,
2.24816
2.22328
2.14774
2.02283
1.84879
1.62761
1.36271
1.05935
C.T2474
0.36790

0.

A'.
3.01443
=-C.01617
0.0C0C38
J.00C08
=C«020001
C.C0001
-0.00004
0400002
-L.000C1

w0002

A
2.27496
-2.02683

-£.000C1

- 0.00004

=-0.06C01
L.C0037
-0.000602
0.C0C02
-0.00003

-0.000602
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11

L =1Lg

&:
0.G97738
0.96577
0.93117
0.87419
0.79582
0.69759
0.58155
C.45034
D«30717
0.15568

0.

1.15192
1.13856
1.09864
1.03269
094164
0.82691
0.69065
0.53572
0.36591
0.18562

0.
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As
C.98194
-0.20459
0.00001
0.0¢C31
CeN{ECLO
0.CCCO1
-0.0G5C00
0.000C1
=0.00000

0.50000

Ay
1.16C66
-0.0C885
8.0CC29
0.20C02
0.C0000
0.03GO1
-0.0CC00
0.00GG0
-0.00001
0.00000

56° Limb-dip
B+ Ay
1.73600  1.77759
1.71864 =U.C4231
1.66571 C.COo0T77
1.57656 0.C0005
le45743 C.CG0C0
1.28631 -=C.0C0002
1.08518 =0.00002
J7.B4G29 =T5.,0C003
058429 =-0.00C05
0.29778  0.0C002
Ue
66° Limb-dip
6, A,

l1.34618 1.40856
1.33612 -0.06265
1.30290 0.0009C
1.24494 =-0.00023
1.15802 =-C.0G015
1.03937  (.00006
0.88731 =-0.00005
C.70216 =-0.00006
0.48702 =0.00007

. 0.24941 =-C.00011

C.
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L = L3
6,
1222173
1.20788
1.16633
1.09752
1.00213
0.88141
0.73739
057291
0.39186
0.19899

0.

1.34360
1.32936
1.28533
1.21206
1 a1CSN3
0.G7914
0.82185
0.64059
0.43935
0.22354

0.

166

A;
1.23415
-0.01262
0.0002¢4
-0,00003
0.923001
0.0C000
-0.50000
-C.00G00
-0.00001

A,

1l.36442
-0.02100

0.00C64
-0.00010

0.00C02
-0.0CC01
-C.0C0C1
-0.000C1
-O.GdCOZ

-0.00C02

e,
1.21019
1.20265
1.17623
1.12918
1.05691
0.95568
0.82163
N.65438
045616
0.23432

Oe

Oy
J.98111
C.97989
0.97024
0.94536
0.90093
0.82989
0.72705
U.58823
0.41533
0.21494

C.

70° Limb-dip

A,

l.28122
-0.07217

0.00180
-0.00007
~0.00016
-0.00003
-0.00013
-0.00006
-0.00606

-0.00013

77° Limb-dip

Ai
1.07910
-0.09789
¢.00210
-0.CC084
-0.N0065
-0.C0029
-0.00G23
-(1.00011
-0.00012
G.000C4
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L=14
6
1.41371

1.39963

1l.35679
1.284353
1.18C54
1.04633
0.88227
J.69044
Oe%T488
024196

0.

L =Lg
0,
1.55334
l.54159
1.5039C
l.43520
1.331381
1.19231
1.016923
0.80299
0.55654
0.28490

0.

167

Ay
1.44706
-0.03349
0.70C48
-0.03022
~3.00C12
-0.55000
0.30CC0
=0.073000
-0.,00(C0

A‘.

l.62144
-0.06698

0.00056
-0.00112
-0.36:056
-0.90000
-0.00000
-0.00000
-0.00000

0.00000

81° Limb-dip

890

o,
0.86271
D.86103
0.85429
0.83837
0.80616
C.75049
0.66391
C.54248
0.38628
0.20595

Ce.

Limb-dip

8,
Ceb4462
0.64817
Ce65750
0.66655
De66639
064582
059252
0.49886
036270
0.19150

0.

Ac
Ca96229
-0.10378
0.00450
-0.00033
L.0C002
G.0CG206
-0.00007
0.C00C09
-G.00003

-U.00004

TR
0.77886
-C.14172
U.00742
0.0C000
C.CC0001
-0.00004
J.00000
0.000C22
0.00008

-0.00002



10

11

168

L = 4.6Lg
= A;
J.17453 Cel7531
0.17246 =-0.00078
0.16627 0£.00001
0.15637 =0.03000
0.14206  0.03000
1.12451 =0.00000
0.10379 =0.3CC%0
0.08037 =0,02000
0.054 -0.00000
0.02778 =-0.0000C0
0.
L = 4.6Lg
6, Ay

D.40143 0.40G476
0.39678 =0.00347
0.38291 0.00014
0.3607C =0.00C40
0.2283%  0.02000
0.28856 =-0.00000
N.24121 =0.00000
0.18728 =-0.00000
0.12803 =-0.00000
C.06499 =-0.00000
0.

10° Limb-dip

6,
11.23295
11.10509

10.73461

10.10671

9.22753
B.11149
6.8113C
5.30033
3.62493
1.83964

Oe

23° Limb-dip

-5

4.71625
4.66168
4$.52088
4.78043
3.94985
3.51129
2+96996
2.3323¢0
1.60577
0.81281

Oe

Ai

11.36359

=0+13322

U.00657

-0.00286

=0.C0640C

C.00203

C.00313

-C.N0102

-0.N0114%

0.00228

Ay
4.83642
-0.1322¢C
0.CC495
Je20356
-0.00040
0.00221
-C.C0126
0.60066
0.C0067

C.00164%4



10

11

169

L=4.6Lg
O A;
0.57596 0.58387
0.56952 -=0.00837
0.5503C 0.023C32
0.51857 0.9C013
D.47459 Q.00500
0.41864 <-=0.05C00
0.35128 =0,30000
0.27358 0.00000
0.18741 0. 0OCO0
0.09525 C.02C00
De
L = 4.6Ly
5 A

0.750456 C.T7T7646
0.74307 -0.02829
0.72120 0.00127
O«6B8546 0.00106
0.63532 -0.00C00
0.56890 0.GLCC0
0.48430 =0.00000
0.38151 =-0.07000
0.26324 -0.00C00
0.12426 0.00C00
0.

33° Limb-dip

Bi‘
3.09105

3.06296
2.98944
2.87622
2.69354
2.44557
2.11440
1.68551
1.17262
0.59344

”~

é{

2.02114

«0124C
2.01625
2.01442
1.98641
1.897C3
1.73236
1.44603
1.0401C
C.52817

O.

As
3.26967
-0.19478
G.00783
0.N0639
~0.C0237
0.00283
0.00082
0.0021%
-0.00102

43° Limb-dip

Av
2.34757
-0.36168
C.02348
D.00775
-0.00438
0.C0565
-2.00065
0.00222
-0.00119

0.00237



10

11

170

L= 4.6Ld

0, A
6.92502 1.00565
0.91922 -0.58993
0.90242 0.0.733
0.87485 0.0C197
0.83344 -0.00C90
9.77090 =0.61000
0.67851 ~ 0.07 090
0.55087 =0.00000
0.36926 =-0.20000
0.20158  0.03050
0.

ey
117317
1.19319
1.237CC
1.30343
1.38602
1.45921
1.48027
1.37254
1.06228
0.55728

Oe

53° Limb-dip

Az
1.63294
~0.55105
0.10353
~0.00322
-0.01123
0.00708
~0.00494
0.00160
~0.00169

0.00014
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w N

wmw  F

o

10
11

L = 4,6Lg 63° Limb-dip
(first approximation)
6: A, 6 Ay
1.0995¢6 1.23760 0.74554 1.11786
1.08825 -2.19735 N0.76903 =-0.48692
1.G6055 0.C5850 C.81135 0.182G5
1.02967 C.06081 D.86311 —U.OTZéb
1.00347 -0.060220 0.89949% 0.00161
0.97387 0.35C00 0.95571 0.00793
0.9159"7 0.00C00 1.04294 =-0.00640C
N.79826 =-0.0C0N0 1.10609 C.00509
0.59994 -=0.00C20 0.99683 -0.00374
0.32384 0.00400 0.572532 -0.00059
0. Qe
L = 4.6Ly 63° Limb-dip
(second approximation)
8; A é; Ai
1.09956 1.25366 0.76680 1.10333
1.09816 =-0.18052 0.76T49 =-0.50404
1.09107 0.03471 0.76951 0.20452
1.07T243 -0.00829 0.80154 -0.04369
1.03787 =-0.00000 0.86uLT75 0.00Lé6L4
0.98371 0.00000 0.96594 0.00630
0.90068 -0.00000 1.07255 -0.00383
0.77070 -0.00000 1.14216 -0.00016
0.57T487 -0.00000 0.99225 0.00231
0.31001 0.00000 0.58148 =-0.00257
O 0.



- 16

1k

10
1k

L= 4,6Lg
6y Aq

1.20428 1.36959
1.19897 -0.23914
1.1R434 0.06226
1.16581 -=-0.91152
1.14189 0.004G2
1.17303 =0.00094
1.03145 0.50000
D+92486  9.00000
2.69541 -0.300600
J.38514 0.0C000
C.

L = 4.6Lg

&y A,

1.376882 1.61642
1.37843 -0.32504
l1.37601 N.10564
1.36212 -=C.05048
1.32187 0.01227
1.25696 -0.020C090
1.18499 -0.00C00
1.09099 0.06000
0.89656 =-0.00C00C
0.52315 0.00000
O.

iTe

69°

Limb-dip

8y
0.66772
C.67803
0.68816
0.68287
Ceb6T7097
0.68391
C.75871
0.84912
7.87297
C.53038

Ce

79° Limb-dip

iy
0.69287
0.66172
C.56618
0.49277
C.502C5
0.52141
L.44184
0.34934
0.28502
0.23897

Oe

A'.
0.89528
-0.34966
C.20499
-0.09721
0.01846
-0.00006
-0.00784
V.C0936
-0.00907

0.00347

A;
0.65923
-G.05645
0.05924
C.01445
C.04315
-0.02615
0.CL480
-N.0C747
C.CO0576

-0.00369



10

11

173

L = l&.6Ld
6. Aj

155335 L.76665
1.54169 =2.30696
1.5G365 D.12793
1.45873 =-0.22584
1.43351  0.02406
1.39744 -0.01244
1.29897 -=-0.750000
1.14533 C.03000
0.92667 =0.17000
N.55106 0.CCCO0
0.

89° Limb-dip

0,
0.24310
0.34773
C.62937
079428
C«59681
C.31340
0.21478
0.19149
0.03133

-0.0588%

Oe

A,
0.53787
0.02550

-0.17751

-0.11530

-0.08482
0.04053
0.01374

-0.08006
6.00547

-0.00232



174

REFERENCES

Anderson, E. M., 1951, The dynamics of faulting and dyke
formation with applications to Britain: Edinburgh,
Oliver and Boyd, Ltd., 24 ed. rev.

Billings, M. P., 1954, Structural geology: New York,
Prentice-Hall, Inc., 2d ed.

Biot, M. A., 1961, Theory of folding of stratified visco-
elastic media and its implications in tectonics
and orogenesis: Geol. Soc. America Bull., v. 72,
p. 1595-1620

Currie, J. B., Patnode, H. W., and Trump, R. P., 1962,
Development of folds in sedimentary strata: Geol.
Soc. America Bull., v. 73

de Sitter, L. U., 1956, Structural Geology: London, McGraw-
Hill Book Co., Inc.

Dwight. H. B., 1947, Tables of integrals and other
mathematical data: New York, The Macmillan Co.,
2nd ed. rev.

Engeli. M., Ginsburg, T., Rutishauser, H., and Stiefel, E.,
1959, Refined iterative methods for computation of
the solution and the eigenvalues of self-adjoint
boundary-value problems: Basle, Birkhiduser

Forsythe, G. E., and Wasow, W. R., 1960, Finite-difference
methods for partial dlfferential equations
New York, John Wiley and Sons, Inc.

Gibbs, J. W., 1961, The scientific papers of J. Willard
Gibbs, v. I: New York, Dover Publications, Inc.

Goguel, J., 1948, Introduction a 1 'étude mécanique des
déformations de 1 'écorce terrestre: Service Carte
Géol. France Mém.

1952, Traité de Tectonique: Paris, Masson et Cie,
Editeurs

Griggs, D. T., 1940, Experimental flow of rocks under condi-
tions favoring recrystallization: Geol. Soc. America
Bull., v. 51, p. 1001-1022



175

Griggs, D. T., Turner, F. J., and Heard, H. C., 1960,
Deformation of rocks at 500° to 800° C., chap. 4
in Rock deformation (A symposium): Geol. Soc.
America Mem. 79, p. 39-104

Hafner, W., 1951, Stress distributions and faulting: Geol.
Soc. America Bull., v. 62, p. 373-398

Hamming, R. W., 1962, Numerical methods for scientists and
engineers: New York, McGraw-Hill Book Co., Inc.

Heard, H. C., 1963, Effect of large changes in strain rate in
the experimental deformation of Yule marble: Jour.
Geology, v. 71, no. 2, p. 162-195

Hills, E. S., 1953, Outlines of Structural Geology: London,
Methuen and Co., Ltd., 3d ed. rev.

Hubbert, M. K., 1951, Mechanical basis for certain familiar
geologic structures: Geol. Soc. America Bull., 3
v. 62, p. 355-372

Jaeger, J. C., 1956, Elasticity, fracture and flow: London,
Methuen and Co., Ltd. "

Kienow, S., 1942, Grundziige einer Theorie der Faltungs- und
Schieferungsvorginge: Berlin, Borntrager,
Fortschritte der Geologlie und Paleontologie, bd. XIV,
h. 46, p. 1-129

Lanczos, C., 1956, Applied analysis: Englewood Cliffs, N.J.,
Prentice-Hall, Inc.

Modern Computing Methods, 1961: New York, Philosophical
Library, Inc., 24 ed.

Nye, J. F., 1951, The flow of glaciers and ice-sheets as a
problem in plasticity: Proc. Roy. Soc., series A,
v. 207, p. 554-572

1952, The mechanics of glacler flow: Jour.
Glaciology, v. 2, no. 12, p. 82-93

1957, The distribution of stress and velocity in
glaclers and ice sheets: Proc. Roy. Soc., series A,

v. 239, p. 113-133

Ode, H., 1957, Mechanical analysis of the dike pattern of the
Spanish Peaks area, Colorado: Geol. Soc. America
Bull., v. 68, p. 567-576




176

1960, Faulting as a velocity discontinuity in plastie
deformation: chap. 11 in Rock deformation (A :
symposium), Geol. Soc. America Mem. 79, p. 293-321

Prescott, J., 1961, Applied elasticity: New York, Dover
Publications, Inec.

Ramberg, H., 1960, Relationships between length of arc and
thickness of ptygmatically folded veins: Am. Jour.
Sei., v. 258, p. 36-46

1963, Fluid dynamics of viscous buckling appli-
cable to folding of layered rocks: Bull. Amer. Assoc.
Petr. Geol., v. 47, no. 3, p. 484-505

1963, Strain distribution and geometry of folds:
Bull. Geol. Inst. Uppsala, v. XLII, p. 1-20

Ramsay, J. G., 1962, The geometry and mechanics of formation
of "similar" type folds: Jour. Geology, v. 70, no. 3,
p. 309-327 _

Rayleigh, J.W.S., 1945, The theory of sound, v. II: New York,
Dover Publications, Inc. i

Sanford, A. R., 1959, Analytical and experimental study of
simple geologic structures: Geol. Soc. America Bull,,
v. 70, p. 19-52

Shaw, F. S., 1953, An introduction to relaxation methods:
New York, Dover Publications, Inc.

Sokolnikoff, I. S., 1956, Mathematical theory of elasticity:
New York, MeGraw-Hill Book Co., Inc.

Timoshenko, S., 1955, Strength of materials, Pt. I, Elementary
theory and problems: Toronto, D. Van Nostrand Co.,
Inc., 3d ed.

Turner, F. J., 1953, Nature and dynamic interpretation of
deformation lamellse in calcite of three marbles:
Am. Jour. Sei., v. 251, p. 276-298

Varnes, D. J., 1962, Analysis of plastic deformation according
~to von Mises' theory, with application to the South
Silverton area, San Juan County, Colorado: U. S.
Geol. Survey Professional Paper 378-B



