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Abstract 

Redox-active ruthenium complexes have been covalently attached to the sm.face 

of a series of natural, semisynthetic and recombinant cytochromes c. The protein 

derivatives were characterized by a variety of spectroscopic techniques. Distant Fe2+ -

Ru3+ electronic couplings were extracted from intramolecular electron-transfer rates in 

Ru(bpyh(im)HisX (where X= 33, 39, 62, and 72) derivatives of cyt c. The couplings 

increase according to 62 (0.0060) < 72 (0.057) < 33 (0.097) < 39 (0.11 cm-1); however, 

this order is incongruent with histidine to heme edge-edge distances [62 (14.8) > 39 

(12.3) > 33 (11.1) > 72 (8.4 A)]. These results suggest the chemical nature of the 

intervening medium needs to be considered for a more precise evaluation of couplings. 

The rates (and couplings) correlate with the lengths of a-tunneling pathways comprised 

of covalent bonds, hydrogen bonds and through-space jumps from the histidines to the 

heme group. Space jumps greatly decrease couplings: one from Pro71 to Met80 extends 

the a-tunneling length of the His72 pathway by roughly 10 covalent bond units. 

Experimental couplings also correlate well with those calculated using extended Hiickel 

theory to evaluate the contribution of the intervening protein medium. 

Two horse heart cyt c variants incorporating the unnatural amino acids (S)-2-

amino-3-(2,2'-bipyrid-6-yl)-propanoic acid (6Bpa) and (S)-2-amino-3-(2,2'-bipyrid-4-yl)­

propanoic acid ( 4Bpa) at position 72 have been prepared using semisynthetic protocols. 

Negligible perturbation of the protein structure results from this introduction of unnatural 

amino acids. Redox-active Ru(2,2'-bipyridineh2+ binds to 4Bpa72 cyt c but not to the 

6Bpa protein. Enhanced ET rates were observed in the Ru(bpyh2+-modified 4Bpa72 cyt 

c relative to the analogous His72 derivative. The rapid ( < 60 nanosecond) 

photogeneration of ferrous Ru-modified 4Bpa72 cyt c in the conformationally altered 

alkaline state demonstrates that laser-induced ET can be employed to study 

submicrosecond protein-folding events. 
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Chapter 1 

Introduction 
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I. Introduction and Overview 

Electron transfer (ET) is the fundamental process underlying energy storage and 

utilization in biological systems.l It is the basis for the conversion of light into chemical 

energy in photosynthetic reaction centers and the reduction of dioxygen to water with the 

concomitant production of A TP in the mitochondrial respiratory chain. Observed 

biological ET rates span at least thirteen orders of magnitude, with the fastest observed 

ET occurring in 3 ps in the photosynthetic reaction center: · Developing an understanding 

of the factors which govern biological ET rates will lead to synthetic and engineered 

systems that can mimic the energy utilization and enzymatic properties inherent in 

reduction I oxidation active (redox) proteins. Now that it has been firmly established that 

ET occurs between well-separated and specifically oriented redox centers within proteins 

and protein complexes, 2,3 attention has turned to the role of the polypeptide in controlling 

both the ET process and the properties of the participating redox centers. Semisynthesis 

in conjunction with site-directed mutagenesis and site-specific modification has been 

used to prepare novel ET proteins; theoretical and experimental work on these proteins 

has contributed to the elucidation of the factors that modulate ET through polypeptide 

structures. 

A. Electron-Transfer Theory 

The intrinsic simplicity of an ET reaction between two redox centers results in a 

theoretically tractable problem. Marcus has derived a semiclassical expression based on 

transition state theory relating observed rates of ET to thermodynamic driving force, 

reorganization energy, and electronic coupling between redox sites for nonadiabatic ETs 

at fixed distance and medium between donor and acceptor:4 
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where kb is Boltzmann's constant, Tis temperature, h is Planck's constant, HAB is the 

electronic coupling term, LlG0 is the change in free energy for the reaction, and A is the 

sum of the inner and outer sphere contributions to the reorganization energy. The one­

dimensional potential energy surfaces illustrating this model for ET are presented in 

Figure 1.1. 

The exponential term, referred to as the nuclear or Franck-Condon term, imparts 

the dependence of the observed ET rate on driving force and reorganization energy. The 

reorganization energy is free energy associated with bond-length changes (inner sphere) 

and solvent dipole adjustments (outer sphere) between the equilibrium conformations of 

the reactant and product molecules. The free energy of reaction can be obtained from the 

electrochemical potentials of the redox species involved in the reaction. If the reactant 

and product nuclear configurations are approximated as harmonic oscillators (as shown in 

Figure 1.1 ), the activation energy for the ET reaction is: 

0 'I 2 
LlG* = -(LlG + /\.) 

4A 

ET can only occur when vibrational fluctuations bring the system into the transition state 

conformation (the crossing point, C, of the product and reactant curves). The quadratic 

dependence of LlG* on LlG0 results in the so-called "inverted" region ofET. As the 

driving force ( -LlG0
) for an ET reaction (at constant A) increases from zero to A, the 

predicted rate increases reaching a maximum value at -LlG0 = A. At this point the 

exponential term is unity and the ET reaction is activationless. As -LlG0 increases in the 

region -LlG0 > A, the observed rate of ET decreases with increasing driving force. This 

counterintuitive prediction was first experimentally verified by Closs, Miller, and 
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Figure 1.1 One-dimensional potential energy surfaces as a function of an arbitrary 

nuclear coordinate for ET in the "normal" region, where -~G0< A.. -~G0 , ~G*, and A. are 

indicated. Dotted lines indicate the avoided crossing (C) present in the absence of any 

electronic interaction. Solid lines indicate the electronically coupled states. 

Figure not drawn to scale. 
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coworkers in steroid-bridged donor I acceptor systems by studying ET rates at a fixed 

distance as a function of -~G0 .5 

In the transition state conformation, the electron must have some probability of 

residing on both the donor and acceptor for ET to occur, necessitating some electronic 

interaction between the donor and acceptor. This electronic coupling (HAB) of the donor 

and acceptor species causes a splitting of the product and reactant states at the crossing 

point by 2 HAB. Even though this coupling is formally a function of all the electrons in 

the system, it can be approximated as a one-electron resonance integral. 6 In the case of 

significant electronic coupling between donor and acceptor (2! 80 cm-1 ), this splitting is 

large enough to ensure that once the system reaches the transition state, electron transfer 

will occur (adiabatic case). However, frequently in biological systems the electronic 

coupling is small, on the order of 0.1 cm-1 or less. This is the nonadiabatic regime where, 

at the transition state configuration, the small electronic coupling translates into a small 

probability that the system can cross onto the product curve to yield productive ET. 

Therefore, in the nonadiabatic case, ET rates are mainly limited by poor electronic 

coupling. 

B. Donor I Acceptor Systems 

There are inherent complexities in studying bimolecular ET between two species 

in solution due to the transient formation of an encounter complex. Thus, it is desirable 

to study ET rates in covalently linked donor I acceptor complexes (donor-bridge­

acceptor) to elucidate the parameters that govern ET reactions. Factors such as driving 

force, distance and the chemical nature of the intervening medium must be carefully 

controlled to obtain relevant data to evaluate theoretical models. Studies of ET in such 

systems have validated Marcus-theory predictions.ld,5 

These covalently linked systems are well suited for the systematic study of the 

interactions that mediate electronic coupling between donor and acceptor. At close 
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contact of the donor and acceptor species, HAB will be directly proportional to the overlap 

of the electronic wavefunctions of the donor and acceptor. However, because these 

wavefunctions decay sharply and exponentially with distance, at separation distances 

larger than the van der Waals contact distance, the electronic coupling due to this direct 

interaction decays rapidly with donor-acceptor distance. However, if the donor and 

acceptor species are separated by some intervening medium instead of a vacuum, the 

medium can couple the donor and acceptor. The question then becomes precisely how 

the intervening medium between donor and acceptor facilitates the electronic coupling 

necessary for ET. A first-order model7 treats the intervening matrix as a square potential 

barrier through which the electron tunnels, predicting that HAB will decay exponentially 

with increasing intervening distance. In this model, HAB is formulated as: 

HAB = HAB0 exp [ -l/2 [3 (R- Ro)] 

where HAB 0 is the electronic coupling at van der Waals contact, R is the donor-acceptor 

distance, Ro is the contact distance, and [3 is an attenuation factor describing the 

magnitude of the rate decay with distance. 

In model systems constructed with rigid homogeneous chemical bridges between 

the donor and acceptor species, e.g., steroid bridges or norbornyl bridges,1d HAB varies 

exponentially with donor-acceptor distance. In simple donor I acceptor systems. the 

square potential barrier model describes observed rates well if the chemical nature of the 

bridge is conserved. However, the magnitude of [3 depends on the chemical composition 

of the bridge.1d For example, in systems where the bridge is saturated, J3 is on the order 

of 0.5 to 1.0 A -1. If the bridging group contains filled 1t levels, the medium can be 

thought of as "conducting" electrons more readily (lowering the tunneling barrier) and J3 

is on the order of 0.1 to 0.5 A -1. Bridge-mediated superexchange arises from the 

localized wavefunction of the donor and acceptor both coupling to the medium. 
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Extended Htickel (superexchange type) calculations on rigid donor I acceptor model 

systems confirm that electronic couplings are a function of the chemical nature of the 

bridging species and predict ~s that are in reasonable agreement with experimentally 

derived values. 8 

C. Electronic Coupling in Protein-Mediated Electron Transfer 

Nonadiabatic electron transfer is known to occur between redox centers separated 

by 5- 20 A in proteins;1·2 these distances are far too large for direct coupling. Therefore, 

the redox centers are electronically coupled via the protein medium. It seems reasonable 

to postulate that the intrinsic heterogeneity of the protein structure can enhance or inhibit 

coupling_IO,ll However, the contribution of the precise molecular and electronic structure 

of the intervening medium to the overall coupling may be minor, such that the protein 

medium can be considered essentially homogeneous. If HAB is insensitive to the nature 

of the intervening protein medium, an exponential dependence on distance analogous to 

that observed in covalently-linked model systems is anticipated.l2 Such an experimental 

result would allow one to derive a universal value of~ for the protein medium and thus 

predict electronic couplings based on merely the distance between redox centers. 

Recent technical advances in molecular biology, chemical synthesis, and laser 

technology have made it possible to systematically engineer, structurally characterize and 

measure ET rates in biological systems. Initially, ET rates measured in protein:protein 

complexes indicated that the protein medium is not homogeneous with regard to its 

potential to couple redox sites. Heme-heme ET studies of the cyt c:cyt c peroxidase 

complex 13 using genetically engineered mutants of cyt c implied that intervening 

electron-rich aromatic side chains of tyrosine, phenylalanine, and tryptophan were 

required for strong couplings. This conclusion was intuitively attractive because the 

presence of energetically accessible HOMO and LUMO levels of the intervening 

aromatic groups could facilitate electron tunneling via a superexchange mechanism. 
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Additionally, it was consistent with the lower~ values measured in model compounds 

with unsaturated bridges. However, it was subsequently found that the mutations made to 

non-aromatic residues needed for the systematic study perturbed the nature of the 

complex, so the ET measurements were made in a series of complexes with different 

conformations, donor-acceptor distances, and intervening medium.14 Similar 

perturbation of the protein:protein complex geometry has been observed in the 

putidaredoxin:cyt P-450cam complex upon mutagenesis of the C-terminal Trp residue of 

putidaredoxin.15 Therefore, to obtain high quality data regarding the molecular 

interactions that mediate electronic coupling, it is necessary to use a well-defmed protein 

structure for which the distance and intervening medium between redox centers is 

unambiguously known. 

Gray and co-workers have pioneered the study of ET in structurally characterized 

metalloproteins containing a single redox center by appending a second redox agent to 

the protein surface. 9 This creates a well-defined donor I acceptor system which is used to 

investigate ET at known driving force, distance and intervening medium. Although the 

proteins and protein complexes responsible for ET in biological systems are far more 

complicated than the covalendy linked model systems, by varying the position and 

electrochemical and photochemical properties of the redox probe, it is possible to 

evaluate biological ET rates within the context of semiclassical Marcus theory. 

Modification of surface histidine residues of proteins with ruthenium complexes 

has led to significant insights into the mechanism of biological ET.9 Early studies used a 

Ru(bpy)3
2+ (bpy = 2,2'-bipyridine) flash system to bimolecularly initiate ET in Rua5-

modified (a= NH3) iron-heme proteins.16 However, in the low driving force regime (for 

this ET: A.= 1.2 eV, -L\0° = 0.2 eV9a.b), the observed rates are extremely sensitive to 

small changes in driving force, leading to large errors in the derived values of HAB, ~ and 

A.. Additionally, in this experiment a microsecond flash is needed to generate detectable 

ET, precluding resolution of fast ET events. Substitution of the iron in the heme with 
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zinc allows one to initiate ET directly between the long-live photogenerated excited state 

of the Zn-porphyrin and a Rua4(X)-complex (X= ammine, pyridine, isonicotinimide) 

bound to a surface His residue at driving forces near the reorganization energy (-t:\0° = 

0.6- 1.0 eV).17 These studies provided the f"rrst indication that, in heme proteins with 

biological ET activity, electronic couplings are not consistent with a strictly distance­

dependent model but rather correlate well with a cr-bond tunneling formulation.l0 

Comparison of rates obtained from ruthenium-modified His33 (horse heart), 16·17 

His39 (Candida krusei (C. k.)),18 and His6219 (genetically engineered Saccharomyces 

cerevisiae(S. c.)) cyts c provide evidence for a medium-dependent formulation of 

electronic coupling. It was observed that ET rates were enhanced 3-fold in a series of 

Rua4(X)-His39 Zn-cyts c relative to rates obtained in Rua4(X)-His33-Zn cyts c,18a even 

though His39 is located- 1.2 A further from the heme (edge-edge distances: His39-heme 

= 12.3 A, His33-heme = 11.1 A). The rate enhancement is more dramatic at lower 

driving force. The Fe2+ to Ru3+ ET rate in Rua5His39 cyt c is approximately ten-fold 

greater than that in the His33 derivative.l8b Attributing the stronger donor-acceptor 

coupling in His39 at longer distance than His33 to a protein medium effect is 

problematic, as the interpretation is sensitive to the convention employed for measuring 

donor-acceptor distances. Specifically, it depends on the whether the Zn-porphyrin triplet 

excited state is considered to be fully delocalized on the porphyrin ring. The difference 

between the porphyrin-localized states of Zn cyt c and the metal-localized state of native 

cyt c may explain the additional rate enhancement in the Fe proteins. Also, the structure 

of the Zn porphyrin cyt c may be perturbed relative to the native protein20 and 

aforementioned distances were obtained from the crystal structure of the unmodified 

native heme protein. 

Analogous ET rates measured in native and Zn p01phyrin Ru-modified S.c. His62 

cyt c (edge-edge distance= 14.8 A) indicate that intervening aromatic (Trp) and 

polarizable (Met) residues do not enhance electronic coupling. The observed 100-fold 
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decrease in HAB can be attributed to the increase in edge-edge distance relative to His39 

and His33 and is also consistent with a medium-dependent a-bond tunneling model.19 

However, studies on a series of Fe-porphyrin-substituted derivatives of cyt b5 , in which a 

critical bond between the donor and acceptor is removed by systematically altering the 

chemical structure of the porphyrin ring, strongly support a medium-dependent 

formulation of HAB and are entirely inconsistent with predicted electronic couplings 

based on simple donor-acceptor distance measurements.21 However, small structural 

perturbations triggered by the heme substitution could also explain the kinetic data. 

Finally, ET rates obtained in Zn-porphyrin substituted recombinant human myoglobin are 

consistent with models for both distance-dependent and medium-dependent electronic 

coupling. 22 

Recently,23 a methodology was introduced to study ET using protein derivatives 

singly modified with a photoactive redox species on the protein surface. ET can be 

initiated by a short-lived laser pulse, affording observation of photoinduced and thermal 

ET in iron heme proteins at thermodynamic driving forces on the order of the estimated 

value for the reorganization energy (0.8 eV).23a Ru(bpyh(C03) undergoes substitution to 

Ru(bpyh(H20h2+ in aqueous solution; the labile aquo ligand is displaced by the 

imidazole of a surface His residue. Subsequent treatment with excess imidazole affords a 

Ru(bpyh(im)HisX2+- modified protein (X= residue number). The Ru(bpyh(imh2+-

model complex exhibits a -70 ns lifetime upon excitation into the 490 nm MLCT 

transition. These derivatives, combined with the ability to manipulate the primary 

sequence of cyt c thus positioning the redox surface probe at any location with respect to 

the heme, set the stage for the systematic mapping of the surface of cyt c to determine if 

ET rates depend simply on distance or if the chemical and electronic nature of the 

medium can actively modulate electronic couplings between redox centers. 
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D. Thesis Research 

Cyt c has been selected for ET mapping studies aimed at elucidating the role of 

the protein medium in mediating electronic coupling. Cyt c is an unusually stable, small 

(12.4 kD), water-soluble, heme-containing protein intimately involved in the 

mitochondrial electron-transport chain associated with oxidative phosphorylation_li, 24 

As described previously, intramolecular ET has been probed extensively in cyt c using 

surface modification techniques developed by Gray9,16-19,25 and others.26 The protein 

structure is known at high resolution in both the oxidized and reduced forms.27 Native 

proteins are commercially available and the methodology for readily altering the primary 

sequence has been perfected in the Gray group. The gene for yeast iso-1-cyt c has been 

expressed in yeast cells and is amenable to site-directed mutagenesis.19 Additionally, it is 

possible to rebuild the horse heart protein using a semisynthetic methodology.28 The 

ability to use semisynthesis in horse heart cyt c to engineer changes in the primary 

sequence unlimited by the twenty naturally occurring amino acids provides additional 

flexibility in the creation of macromolecular structures suited for the study of long-range 

biological ET. 

Experimental data accompanied by preliminary theoretical interpretations are 

presented in this thesis supporting a model for ET in cyt c that considers the exact nature 

of the intervening medium between redox sites. Intervening aromatic residues do not 

contribute to the electronic coupling, however a a-bond-tunneling modeilO that discounts 

hydrogen-bonding (H-bonding) interactions and through-space jumps is found to 

qualitatively agree with the data.25 More sophisticated calculations that include the 

precise electronic composition of the intervening medium also correlate well with the 

data. Chapter 2 presents the semisynthesis, characterization and pentaammineruthenium 

modification of horse heart His72 cyt c, a crucial test for the electronic coupling analysis 

because the distance-dependent model predicts an ET rate that differs from the 

experimentally determined value by four orders of magnitude. Chapter 3 describes the 
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modification of semisynthetic horse heart His72 cyt c, as well as His62 and His39 of 

yeast cyt c with Ru(bpyh(C03 ) to complete the mapping studies. Included in this 

Chapter is the methodology and kinetics data for the measurement of ET rates in all 

proteins studied. Chapter 4 details the analysis of the measured ET rates within the 

context of current theoretical treatments of electronic couplings. Chapter 5 presents the 

engineering of proteins containing unnatural metal-binding amino acids and their novel 

ET properties with potential application to the protein-folding problem. Finally, two 

appendices are included that detail smaller related projects; including 2-D NMR data 

supporting the conclusion that the mutations and modifications made to the proteins 

studied do not significantly perturb their three-dimensional structure (Appendix A). 

Appendix B contains spectroscopic characterization and ET activity of a Cys80 axial­

ligand mutant of cyt c. 
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Chapter 2 

Semisynthesis, Characterization and Pentaammineruthenium Modification of 

His72 Cytochrome c 
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I. Introduction 

A. Cytochrome c 

The mitochondrial respiratory chain links a series of electron transfer reactions 

that results in the net four electron reduction of dioxygen to water with the concomitant 

pumping of protons across the membrane. The resulting pH gradient drives the 

production of ATP. Cytochrome cis a critical link in this chain, shuttling electrons from 

cytochrome reductase to cytochrome oxidase. Cytochromes c are monomeric, water­

soluble proteins of between 100- 110 residues that contain an iron protoporphyrin IX 

(heme) prosthetic group that imparts the ET activity.1 The heme is covalently linked 

through the 1-vinyl positions to Cys14 and Cys172 via a thioether bond and is 

additionally bound through two invariant axial ligands, Hisl8 (EN) and Met80 (8S) in 

both the ferric and ferrous forms (between pH 2.5- 9.3 and 4-12 respectively). The 

primary sequence for horse heart cyt c (molecular weight (MW) = 12,364 Daltons) is 

given in Figure 2.1. The three-dimensional structure of cyt c has been determined to high 

resolution for numerous species in the ferric and ferrous formsl,3 and is remarkably 

conserved. As shown in Figure 2.2 A, the characteristic cytochrome fold is a compact, 

globular structure with the polypeptide wrapped around the heme, leaving -4% of the 

heme-edge solvent exposed. The protein is -50% a-helical, with the helicity 

concentrated in a 12-residue N-terminal helix, a 17-residue C-terminal helix, and two 

helical regions encompassing residues 60- 75. The remainder of the protein is comprised 

of random coil and i)-turn structure. The nature of the axial ligands and the hydrophobic 

nature of the protein environment impart a relatively high redox potential for the 

Fe3+JFe2+ couple of +265 mV vs. NHE. 

Minor structural changes have been noted (and their significance debated) 

between the ferric and ferrous forms by both crystallographic and nuclear magnetic 

resonance studies.4 The current consensus is that, while no major positional changes in 

protein atoms occur, there is a 1.7 A displacement of an internally bound water and the 
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Figure 2.1 The amino acid sequence of horse heart cyt c. The underlined region 

corresponds to the 66-104 CNBr cleavage fragment. Italics indicate the Cys residues 

involved in thioether linkages, and the axial ligands are in plain type. 
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1 Ac- Gly- Asp -Val- Glu - Lys- Gly - Lys- Lys- lie- Phe 

11 Val- Gin- Lys- Cys- Ala- Gin- Cys- His- Thr- Val 

21 Glu - Lys- Gly - Gly- Lys- His- Lys - Thr- Gly -Pro 

31 Asn- Leu- His- Gly- Leu- Phe- Gly- Arg- Lys- Thr 

41 Gly- Gin- Ala- Pro- Gly- Phe- Thr- Tyr- Thr- Asp 

51 Ala- Asn- Lys- Asn- Lys- Gly- lie- Thr- Trp- Lys 

61 Glu- Glu- Thr- Leu- Met- Glu- Tyr- Leu- Glu- Asn 

71 Pro- Lys- Lys- Tyr- lie- Pro- Gly- Thr- Lys- Met 

81 lie- Phe- Ala - Gly- lie- Lys- Lys- Lys- Thr- Glu 

91 Are- Glu - Asp- Leu - lie- Ala - Tyr- Leu - Lys - Lys 

101 Ala- Thr- Asn- Glu -OH 
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Figure 2.2 (A) The crystal structure of ferric horse heart cyt c. 3a The 1-65 region 

backbone is shown in blue, the 66-104 region backbone is in yellow, the heme is in red 

and the Met 80 and His18 axial ligands are pictured in teal. (B) The crystal structure of 

ferric horse heart cyt c with His72, introduced by semisynthesis, indicated in purple. 
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extensive H-bonding network on the Met80 face of the heme adjusts upon heme 

oxidation to stabilize the net positive charge by making the Met80 group less electron 

withdrawing (Figure 2.3). The ferrous state is thermodynamically more stable than the 

ferric state, as determined by denaturation in the presence of chaotropics or at extreme 

temperatures (Tm = 87° C ferric, 103° C ferrous), susceptibility to proteolysis, and side 

chain reactivities.la.b This enhanced stability has been attributed to both the increased 

Met80-Fe bond strengthlf and to the change in hydrophobicity of the heme. The heme 

propionates contribute a -2 charge, thus while the ferrous heme is neutral, the ferric heme 

has a net charge of+ 1 that must be buried within the hydrophobic interior of the protein. 

The visible absorption spectrum is dominated by the presence of the porphyrin 

chromophore. Reduced and oxidized cyt c spectra are given in Figure 2.4.5 Upon 

oxidation, the loss of Q-band structure and a 6 nm blue shift in the Soret from 416 to 410 

nm is observed. Additionally, a weak band at 695 nm in the oxidized protein is assigned 

as a ligand to metal charge transfer (LMCf) transition from the sulfur of the ligation Met 

to Fe3+ and thus serves as a structural indicator for the presence of Met80 ligation and 

heme environment integrity. 

B. Semisynthesis 

In developing strategies for the construction of novel electron-transfer proteins in 

relatively large (milligram (mg)) quantities, semisynthesis of cyt c has been selected for 

the incorporation of natural and non-encoded (unnatural) metal-binding amino acids 

directly into the polypeptide backbone. Nearly thirty years ago Corradin and Harbury6 

discovered that the cyanogen bromide (CNBr) cleavage fragments of the protein (in the 

ferrous state) can associate to form a non-covalently bound complex that is structurally 

similar to the native intact protein. The C-terminus of one fragment is in close proximity 

to the N-terminus of the neighboring fragment, facilitating the aminolysis reaction at the 

cleavage point, thus reconstituting the intact protein. While this technique has been used 
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Figure 2.3 An illustration of the reorganization of the heme environment upon change 

in oxidation state in (A) reduced and (B) oxidized yeast iso-1-cyt c. Hydrogen bonds are 

shown by thin dashed lines. In the ferric protein the H-bond to Asn52 is broken and 

Wat166 shifts to within 5 A of the heme iron atom. Borrowed from Reference 3c. 
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Figure 2.4 Measured electronic absorption spectra for native cyt c in the ferric (- - - -) 

and ferrous(--) states in 25 mM NaPi, pH 7.0. Protein was oxidized with 

Na[Co(EDTA)] prior to purification and reduced with sodium dithionite, which was 

removed by gel filtration, immediately prior to data acquisition. 
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to probe structure I function relationships in cyt c,1-9 it is only with the recent technical 

advances in solid phase peptide synthesislO that it has become feasible to obtain large 

quantities of semisynthetically generated mutants.9 

The semisynthetic methodology is illustrated schematically in Figure 2.5. The 

mechanism for CNBr-mediated cyt c cleavage is given in Figure 2.6. In the cleavage 

reaction, the cyanogen group of CNBr electrophilically attacks the sulfur of Met, 

followed by nucleophilic attack on the sulfur by the carbonyl oxygen to form an 

iminolactone. The iminolactone hydrblyzes to yield the homoserine lactone and amino 

peptides.ll The lactone can further hydrolyze to a homoserine carboxylate. Horse heart 

cyt c contains Met residues at positions 65 and 80, thus CNBr cleavage at denaturing 

conditions (70% formic acid or 0.1 M HCl) affords the 1-65, 1-80, 66-104, 66-80, and 

81-104 fragments which are readily separated and purified using standard 

chromatographic techniques. The 1-65 and 1-80 fragments retain the covalently linked 

heme moiety and one His ligand. The intrinsic viscosity, ~nd absorption and CD spectra 

of the 1-65 fragment indicate that it is neither fully unfolded nor globular, exhibits 

negligible residual helicity, and is low spin at neutral pH.6a.12 His18 occupies one axial 

ligation site, and the absence of the signature 695 nm LMCT band indicates that Met 

ligation is absent. The unexpected low-spin character of the heme can be attributed to 

coordination of a nitrogenous species at the sixth coordination site, perhaps His26 or 

His33, either intramolecularly or via dimerization. The redox potential of the 1-65 

fragment is low (vide infra), indicative of alternate coordination and/or greater solvent 

exposure of the heme. 

Combination of the ferric 1-65 homoserine fragment with a 39-mer peptide 

corresponding to the native 66-104 sequence results in the formation of an ordered 

fragment:peptide complex that possesses properties that differ from those of the native 

protein (i.e., absence of the 695 band).6a However, reduction of this nonproductive 

complex under anaerobic conditions results in the formation of a protein with 
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Figure 2.5 Schematic representation of the semisynthetic methodology. The native 

66-104 fragment is discarded and a solid phase peptide synthesized 39-mer with 

modification(s) from the native sequence (indicated by the fragment with the asterisk) 

used for protein reconstitution. By this procedure, modifications can be directly 

incorporated into the polypeptide backbone. 
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Figure 2.6 Mechanism of CNBr-mediated cleavage at· Met residues. The activated 

homoserine lactone and the homoserine carboxylate hydrolysis product are indicated. 
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spectroscopic properties (absorption and circular dichroism (CD)) virtually identical with 

native protein. Moreover, isolation and oxidation of the reconstituted protein yields the 

ferric species that possesses an absorption spectrum (including the 695 nm band), CD 

spectrum and redox potential identical with native cyt c.6.8h The reduction of the 1-65:66-

104 complex is believed to trigger a conformational change that brings the homoserine 

lactone at position 65 in close proximity with N -terminus of the 66-104 peptide (Figure 

2.7), thus facilitating the aminolysis reaction that restitches the peptide bond. The 

reconstituted protein differs only in the identity of the residue present at position 65; in 

the native protein Met and in the semisynthetic protein homoserine (Hse). However, the 

identity of this surface residue has not been evolutionarily conserved and extensive 

characterization of Hse65 cyt c has failed to find any structural or functional differences 

relative to native horse heart cyt c. In addition to indistinguishable spectroscopic and 

electrochemical properties, the native and semisynthetic proteins share equal reactivity to 

anti-cyt c antibodies,9a similar biological activity in cyt c-depleted mitochondria,Sh and 

virtually superposable NMR spectra in both the oxidized and reduced states.13 The NMR 

result is especially significant; due to the presence of a paramagnetic center in the ferric 

form the NMR spectrum is excruciatingly sensitive to small perturbations of the heme 

environment. Therefore, if a native 66-104 peptide is used, the semisynthetic protocol 

introduces negligible structural changes in the protein. Site-specific changes can 

therefore be readily made in the primary sequence between residues 66 and 104 of cyt c 

using semisynthesis by altering the sequence of the 39-mer peptide. A limiting factor, 

however, is that modifications that radically alter the protein conformation will not lead 

to the productive complex formation required for protein reconstitution. 

Semisynthesis is a complementary technique to genetic engineering for the 

introduction of site-specific changes in the protein structure. The gene for yeast iso-1-cyt 

c has been expressed in Saccharomyces cerevisiae (S. c.) and represents a viable 

approach to obtain 100 mg quantities of site-directed mutants.14 Semisynthesis, which 
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Figure 2.7 (A) The geometry in the 65-66 region upon productive complex formation. 

Note the close proximity of the homoserine lactone at position 65 and theN-terminus of 

the 66-104 fragment. (B) The subsequent aminolysis reaction reforming the peptide 

bond between 65 and 66 
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requires the synthesis of 100 mg quantities of the 39-mer peptide (the 1-65 fragment can 

be obtained in virtually infinite quantity due to the availability of native horse heart cyt c 

from Sigma at < $200 I gram), has the advantage of allowing the incorporation of non­

naturally coded amino acids into the 66-104 region as long as the introduced amino acids 

do not preclude productive complex formation. Prior to and during the course of this 

work, p-fluorophenylalanine has been introduced at position 67,8f,9e modifications to 

unnatural amino acids made at positions 668i and 78,9f and changes at position 80 to 

ethionine and methyl cysteine8e and a variety of other unnatural amino acids.9d 

Semisynthesis presents a methodology for systematically changing the axial ligand at 

position 80 for the study of the influence wielded by the axial ligand on the spectral and 

electrochemical properties of the heme. 8e,9b-d,g An understanding of the effects of axial 

ligand substitution opens the way for the design and engineering of a heme enzyme 

possessing dramatically different properties than those of cyt c. Prior to a recent 

breakthrough,l5 it had been impossible to genetically produce and isolate axial-ligand 

mutants of cyt c with altered redox properties because the recombinant expression system 

requires a functional cyt c for survivai.16,17 Semisynthesis has been recently extended to 

the yeast proteins via the genetically engineered introduction of a Met residue at the 

position corresponding to 65 in the horse heart sequence.18 Because semisynthesis does 

not work in nativeS. c. cyt c (which has a Met at position 64 rather than 65),8h it is clear 

that the formation of a productive complex is very sensitive to the precise nature of the 

fragments. 

C. Position 72 

Position 72 in horse heart cyt c was initially selected for the incorporation of 

metal-binding amino acids for the study ofET. Lysine is present at this position in 91 of 

the 92 sequences of cyts c determined to date (Ser is present in this position in 

Tetrahymena pyriformis cyt c19).1.16 Lys72 is located on the surface of the protein -8.4 
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A above the coordinating sulfur of Met80 along a line coincident with the S-Fe bond 

(Figure 2.2 B, the position of the introduced His72 residue is indicated). This position in 

horse heart cyt c appears to be extremely solvent accessible in the crystal structure, and is 

among the most reactive of the 19 Lys residues in cyt c to modification with exogenous 

reagents.20 Lys72 is specifically trimethylated in plant and fungal species; although it has 

been proposed that trimethylation imparts protection from proteolytic attack and is 

required for transport of the heme-deficient peptide into the mitochondrion, 21 the 

functional importance of trimethylation has not been established. Furthermore, the 

trimethylated Lys72 of S.c. iso-1-cyt c has been replaced with Arg with essentially no 

change in either activity in vivo or structure in vitro.22 

Cyt c transfers electrons to and from its redox partners in vivo through the 

exposed heme edge within electrostatically bound protein:protein complexes.1 The 

surface of cyt cis highly charged, with a total of 21 positive charges (excluding His 

residues) and 13 negative charges (including the C-terminus), resulting in an isoelectric 

point of 10.05.ld Extensive studies have implicated the positive charge at position 72 as 

mediating the interaction of cyt c with a number of its redox partners.l.23 Specifically, 

this residue is important for the formation of an electrostatically bound complex with 

physiological redox partners cyt c peroxidase, cyt c reductase, and cyt c oxidase as well 

as a non-physiologically relevant complex with cyt b5.23,24 The recent crystal structure of 

the horse heart (and S.c.) cyt c:cyt c peroxidase complexes confirms that Lys 72 of horse 

heart cyt c forms a charge-charge H-bond with Glu290 of cyt c peroxidase.25 In the S. c. 

cyt c:cyt c peroxidase complex structure, where Lys72 is trimethylated and thus incapable 

of forming a hydrogen-bond (H-bond), this residue is adjacent to the protein:protein 

interface. 

To ensure that the essentially conserved Lys72 of horse heart cyt c was not crucial 

for maintaining the structural integrity of the protein, this position was replaced with a 

His residue via semisynthesis and the resulting His72 cyt c protein extensively 
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characterized prior to the incorporation of more precious unnatural amino acids (Chapter 

5). During the course of this work, a new theoretical formulation for electronic coupling 

in proteins was developed (Chapter 4), and fortuitously initial calculations indicated that 

position 72 would serve as a dramatic test case delineating between a distance-dependent 

and medium-dependent model for electronic coupling. As ample quantities of His72 cyt 

c could be readily produced by semisynthesis, the ET properties of 

rutheniumpentaammine-modified His72 cyt c were studied.26 

ll. Experimental 

A. Materials 

Distilled water, passed through a Barnstead Nanopure purification system (No. 

2794, specific resistance> 18 Mil-em) equipped with two ion-exchange filters, one 

organic-removal filter and one 0.22 Jlm filter, was used to prepare all aqueous solutions. 

Sodium phosphate (NaPi), sodium acetate, N-2-hydroxyethylpiperazine-N'-2-

ethanesulfonic acid (HEPES), and ammonium bicarbonate buffers were prepared with 

analytical grade reagents, except in the NMR studies where ultrapure sodium phosphate 

buffer (J. T. Baker) was used. Horse heart cyt c (Type VI) was purchased from Sigma. 

CNBr (> 97%) was obtained from Aldrich. Chloropentaammineruthenium(III)chloride 

was supplied by Strem. Na[Co(EDTA)] was synthesized by the method ofKirschner,27 

substituting sodium carbonate for barium carbonate. 4,4'-bipyridine (Aldrich) was 

recrystallized from water before use in the electrochemical studies. Other reagents were 

of analytical or higher grade. 

B. Instrumentation 

Routine absorption measurements were made on a Hewlett-Packard diode array 

spectrophotometer (Model 8452) run by a personal computer (PC) or a Shimadzu model 

UV-260 spectrophotometer. High quality spectra were obtained on a Cary-14 
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spectrophotometer rebuilt and automated by On-Line Instruments Service (OLIS). All 

measurements were made at ambient temperature in 1 em cells against a cell buffer 

baseline unless otherwise specified. 

Circular dichroism measurements were made on a PC-driven JASC0-600 CD 

spectropolarimeter in jacketed 0.1 em pathlength cells. Measurements were generally 

made with a 1 nm bandwidth, 0.5 time constant, and scanned at 50 nm/min with 0.2 nm 

step resolution. Data were the average of at least 8 acquisitions, subtracted from a cell 

baseline, and smoothed using a Fourier transform algorithm that removed high-frequency 

components. Melting curves were obtained by monitoring the loss of 222 nm CD signal 

as a function of temperature. Variable temperatures were obtained by incrementation of 

the temperature of the Brinkman Lauda K-2/R. circulator and water bath, allowing the 

sample to equilibrate at each new temperature for five minutes before data collection . 

Protein 1 H NMR spectra were obtained on a Bruker AM500 or AMX500 

(Caltech, one-dimensional (1-D) experiments) or a Bruker AMX500 (Scripps, two­

dimensional (2-D) experiments) spectrometer and were Gaussian enhanced. All 

experiments conducted at Caltech were performed on samples that were fully exchanged 

into D20 buffers. pH measurements are those reported by a pH meter and are not 

corrected for the isotope effect. pH titrations were carried out in 50 mM NaPi and titrated 

with 1 N NaOD or DCl in buffer. Optimum resolution was obtained at 315 Kin the 1-D 

experiments. Experiments at Scripps were designed for the observation of amide protons 

and were conducted in 90%/10% H20JD20, 100 mM NaPi, 150 mM NaCl, pH 5.7 at 293 

K (refer to Appendix A for details). 

Protein separations and purifications were performed using a Pharmacia FPLC 

apparatus equipped with two P-500 pumps, a MV7 valve with 0.2 to 10 ml injection 

loops, a UV-M monitor (Hg lamp) with 280 and 405 nm filters, an LCC-500 controller, a 

Pharmacia REC-482 strip chart recorder, and FRAC-100 fraction collector. Cation­

exchange separations were performed with Pharmacia MonoS 5/5, 10/10, and 16/10 
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columns. Gel filtration chromatography was performed using the 10/30.Superose 12 

column on the FPLC, various gravity columns using Sephadex G-25 (Pharmacia) resin, 

or prepared Sephadex G-25M 9-ml PD-10 columns (Pharmacia). Reversed phase liquid 

chromatography was performed with on the FPLC system with a PepRPC HR 5/5 column 

and flow restrictor. Buffers and protein samples were filtered through a 0.22 !J.m filter 

immediately prior to use. All chromatography columns were cleaned and equilibrated 

according to the manufacturers suggestions. 

pH measurements were made with a Beckman model <1>32 pH meter, using either 

a Beckman combination electrode or an Ingold microelectrode. VWR buffer standards 

were used for calibration. pH measurements are reported for room temperature. 

Isoelectric focusing gels were run on prefabricated Ampholine PAGplate pH 3.5 -

9.5 gels (Pharmacia) using an LKB 2117 Multiphor and 2197 DC power supply limited 

by a 15 rnA current. The support plate was water cooled by a Masterline 2095 circulator 

and temperature bath maintained below 10° C. 

Electron paramagnetic resonance (EPR) spectra were obtained in a 50 mM 

HEPES, 50% glycerol, pH 7.0 glass at 6.8 K. Spectra were measured on an ESP-300 

Bruker spectrometer equipped with a liquid helium cryostat in the laboratories of Prof. 

David Goodin, the Scripps Research Institute, La Jolla, California. 

Thermospray protein mass spectra were recorded on a Vestee Thermospray LC­

Mass Spectrometer and analyzed using deconvolution algorithms developed at the 

laboratories of Prof. Curtis Monig, University of California, Riverside, California. 

Samples were prepared in 20 mM ammonium bicarbonate buffer (pH= 7.6) and diluted 

with IN acetic acid. 

Amino acid analysis and capillary zone electrophoretic (CZE) profiles were 

obtained at the Caltech Biopolymer Synthesis and Analysis Resource Center under the 

direction of Suzanna Horvath. Samples were provided in ammonium bicarbonate or 

another volatile buffer for analysis. 
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Protein samples were deoxygenated by at least 30 vacuum I purge cycles over the 

course of 0.5 to 1 hour on a dual-manifold vacuum I argon (manganese oxide scrubbed) 

line. Air-sensitive manipulations were performed under scrubbed argon or dinitrogen in a 

Vacuum Atmospheres Co. HE-493 Dri-Train glove box. 

Proteins were stored at 4 ° C for routine use and were flash frozen in liquid 

nitrogen and stored at -50 to -80° C for long term storage. All proteins were repurified by 

cation-exchange chromatography within two weeks of use. 

Protein solutions were concentrated in ultrafiltration cells (Amicon) with YM-3 

(3000 MW cutoff), YM-5 (5000 MW cutoff), and YM-10 (10000 MW cutoff) filters or in 

Centricon-3 (3000 MW cutoff) and Centricon-10 (10000 MW cutoff) microconcentrators 

(Amicon). 

Differential pulse polarography measurements were performed using a Princeton 

Applied Research Model174A polargraphic analyzer with a 5.0 to 0.5 s-1 scan rate, 0.5 s 

drop time and 25 m V modulation amplitude. Applied potentials were monitored with a 

Keithley 177 microvoltmeter. A gold button (2 mm diameter) electrode (Bioanalytical 

Systems) was polished with 0.3 to 0.05 J.lm alumina (Buehler) or diamond paste 

(Bioanalytical Systems) and modified in situ with 4,4'-bipyridine.28 A Pt wire was used 

as a counter electrode with a saturated KCl calomel reference (SCE = 242 mV vs. NHE). 

Measurements were made with 0.5 to 2 mM protein samples in 50 mM NaPi, 10 mM 

4,4'-bipyridine, pH 7.0 unless otherwise specified. Solutions were degassed 

simultaneously with electrode modification in situ by occasional stirring under a blanket 

of Ar for a minimum of 30 minutes. Potential scans were initiated 300 m V cathodic of 

the anticipated wave and terminated -300 mV anodic of the signal. Reported E0
' values 

are the average of the forward and reverse peak potentials; peak separation was found to 
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be a function of scan rate with negligible peak separation at the slowest scan rates. The 

average of the forward and reverse waves, however, is independent of scan rate. Due to 

uncontrollable variations in the condition of the electrode from day to day, potentials 

obtained by this technique are adjusted using a small correction factor (not more than 20 

m V) obtained by referencing the measured native horse heart cyt c potential to 265 m V 

vs. NHE. Measurements were made at ambient temperature. 

Spectroelectrochemistry experiments were performed in home-built optically 

transparent thin layer ( -0.03 em pathlength) cells on a Cary-219 spectrophotometer. The 

cell specifications and construction are described in detail elsewhere. 28 The gold 

minigrid that served as the working electrode is 100 lines per inch, or 60% transmittance 

(Interconics). Potentials were applied with a Princeton Applied Research Model 174A 

polargraphic analyzer and monitored with a Keithley 177 microvoltmeter. The 

counterelectrode was Pt wire fitted in a glass tube to seal the cell and a miniature 

saturated calomel electrode (Sargent-Welch) was used as the reference electrode. Sample 

temperature was monitored within the cell directly via a microthermocouple (Omega 

Engineering) and a Fluke 2175A digital thermometer. 3 to 5-fold molar excess of 

[Rua5py]Cl3 (E
0 ' = 298 mV vs. NHE30) (a gift of C. St. Clair) was present as a mediator 

for cyt c measurements. A cell baseline with buffer was obtained prior to each 

experiment. Typically, protein solutions were 0.5 mM in 50 mM NaPi; approximately 

one milliliter (ml) of degassed solution was needed to fill the cell without bubbles. 

ET rates were measured in the pentaammineruthenium-modified proteins with a 

Caltech-built microsecond flash-photolysis system described in Milder31 equipped with a 

Hamamatsu R928 photomultiplier tube (PMT), with some minor alterations.32 Data were 

obtained using the Ru(bpy)J2+ flash system.33 Data collection was conducted with a PC 

running UnkelScope (Unkel Software) and data were fit with SI-FIT (On-Line Instrument 

Systems). The samples were prepared in the glove box with thoroughly deoxygenated 

buffer (50 mM NaPi, 60 J.lM [Ru(bpyh]Cl2 , 7.25 mM Na2EDTA, pH 7.0, subjected to at 
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least 5 freeze I pump I thaw cycles on a high vacuum line) in a 15 em pathlength cell (11 

ml total volume). Protein concentrations were 1- 3 ~M. 

Modeling was performed using oxidized horse heart and oxidized and reduced S. 

c. cyt c structures3 kindly provided by G. D. Brayer prior to Protein Data Bank release. 

Biograf (V 2.1) running on either a DEC micro Vax 3500 equipped with a PS340 Evans 

and Sutherland graphics system or a Silicon Graphics Personal Iris workstation was used 

to visualize the structures. The Dreiding force field was utilized for energy 

minimizations. 

2. Cytochrome c Purification 

The highest grade of horse heart cyt c available from Sigma is supplied partially 

reduced and contaminated with 1 - 10% deamidated forms. Therefore, cyt c was always 

purified as described below prior to use. 100 - 400 mgs of lyophilized protein was 

dissolved at a concentration of -35 mg/ml in 25 mM NaPi, pH 7.0 with a 5- 10-fold 

excess of Na[Co(EDTA)] added to fully oxidize the sample. Oxidation was effected 

overnight at 4 ° C with gentle stirring. 20 - 40 mgs could be purified per loading on the 

MonoS 16110 FPLC column. The impurities could be readily separated using a slow 0 to 

210 mM NaCl gradient in 25 mM NaPi, pH 7.0 (Figure 2.8), Co(EDTA)- elutes in the void 

volume. Protein concentrations were determined using molar extinction coefficients 

reported by Margoliash,5 E (410 nm) = 106100 M-1 cm-1 (ferric); E (528) =11200 M-1 cm-1 

(ferric) and E (416) = 129100 M-1 cm-1 (ferrous); E (520.5 nm) = 15900 M-1 cm-1 

(ferrous); E (550.25 nm) = 27700 M-1 cm-1. Ferric I ferrous isosbestic points are at 339, 

410, 434, 504, 526.5, 541.75, and 556.6 nm. 

3. Preparation of the 1-65 Fragment 

Horse heart cyt c was cleaved at Met65 and 80 by a procedure described 

previously with slight modifications. 9c Purified horse heart cyt c was transferred into 
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Figure 2.8 Typical cation-exchange (FPLC MonoS 16/10, flow rate of 6 ml/min) 

chromatogram for the purification of native horse heart cyt c in 25 mM NaPi. Gradient 

represents the concentration of NaCl in mM. The main fraction is oxidized cyt c and 

impurities correspond to deamidated forms. Detection is on the 2.0 absorbance scale at 

405 nm. 
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water via several ultrafiltration dilution I concentration cycles and diluted with 88% 

formic acid for a final solution of -15 mg protein/ml of 70% formic acid. The protein is 

entirely denatured at these conditions; the color change from deep red to dark brown 

(Soret shifts from 410 to 394 nm) is due to the low- to high-spin state transition 

associated with the loss of heme axial ligation upon denaturation. Fifty-fold excess of 

CNBr is added as a solid to stirred, sealed roundbottom flask containing the protein. 

CAUTION: CNBr is extremely toxic (-150 mg is a lethal dose) and only some people 

can detect its almond scent.34 This material was handled with extreme caution in the 

fume hood at all times except weighing, which was performed using Eppendorf tubes 

sealed in the hood. The cleavage reaction was allowed to proceed in the dark for 24 to 40 

hours. 

Cleavage was terminated by ultrafiltration. The reaction solution was first diluted 

with 25 mM NaPi, pH 7.0, to a final concentration of 21% formic acid to prevent Amicon 

filter decomposition evident at higher formic acid concentration. Ultrafiltration was 

carried out in the fume hood with the supernatant collected in a AgN03 solution to 

precipitate unreacted cyanide. The reaction solution was continuously diluted with 

neutral pH buffer until the solution was at neutral pH (-5 cycles). At -pH 5.5 the 

fragment(s) undergo a high- to low-spin transition evidenced by the dramatic color 

change from brown to red. The small, non-heme protein fragments were not recovered. 

Purification of the 1-65 lactone fragment was initially performed following 

literature methods:9c,35 two gel-filtration steps (a 1.5 meter Sephadex G-50 gravity 

column followed by a Superose 12 FPLC purification in 7% formic acid) to remove 

uncleaved protein and small non-heme peptides followed by cation-exchange 

chromatography (FPLC MonoS 16/10 or 10/10) to separate the homoserine-lactone 1-65 

fragment (1-65 lactone) from the hydrolyzed carboxylate-homoserine 1-65 fragment (1-

65 COO-). However, it soon became apparent that the resolution obtained by gel 

filtration chromatography was significantly inferior to that of cation-exchange 
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chromatography. Furthermore, under the conditions of cleavage employed, no evidence 

of a 1-80 heme-containing product was found. Therefore, midway through this work a 

streamlined purification strategy was introduced. Following ultrafiltration of the formic 

acid, CNBr, and non-heme fragments, two cation exchange purification steps were used 

(Figure 2.9) on the MonoS 16/10 or 10/10 column in 25 mM NaPi, pH 7.0 with a 0 to 

400 mM NaCl gradient. Native cyt c is readily separable from the 1-65 fragment. The 

shoulder on the main 1-65 lactone band has been identified36 as the 1-65 coo- and can 

be 90% eliminated by judiciously selecting retained fractions. The 1-65 lactone 

hydrolyzes to this inactive form over time, however the only deleterious effect of its 

presence in reconstitution reactions is reduced product yield. The anamalously high 

retention time on cation exchange columns of the 1-65 fragment attests to its structural 

heterogeneity. The purified 1-65 fragment is unstable and precipitates from solution 

easily, thus samples were only used within a week of preparation without repurification. 

The 1-65lactone fragment was routinely obtained in 50% yield in high purity. 

4. Peptide Construction 

Peptides containing natural amino acids were synthesized at the Caltech 

Biopolymer Synthesis and Analysis Resource Center under the direction of Suzanna 

Horvath. Peptides 66-104 with Lys and His at position 72 were synthesized using the 

stepwise solid phase method performed on an ABI 43A synthesizer with Caltech­

developed t-BOC protocols.lO The amide peptides were desalted on Dowex AG.1-X2 

resin, purified by reversed-phase HPLC, and stored lyophilized. A representative HPLC 

trace indicating the quality of the 39-mers obtained from this facility is presented in 

Figure 2.10. The integrity of the peptides was confirmed by amino acid analysis and 

peptide microsequencing. 
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Figure 2.9 Typical cation-exchange (FPLC MonoS 16/10, flow rate of 6 ml/min) 

chromatograms for the first (A) and second (B) purifications of 1-65 fragment in 25 mM 

NaPi. Gradient represents the concentration of NaCl in mM. The main band at low ionic 

strength is uncleaved cyt c and the main band at high ionic strength is the 1-65 lactone 

product. The low ionic strength shoulder on the 1-65 lactone band corresponds to the 1-

65 COO- (see text for discussion). Detection is on the 2.0 absorbance scale at 280 nm. 
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Figure 2.10 Reversed-phase HPLC trace of the final purification of 39-mer peptide for 

His72 cyt c. Detection at 214 nm. The peak with the retention time of 36.91 min. is the 

product. The shoulder is probably due to 38-mer impurities. The peaks eluting early 

from the column correspond to dithiothreitol and other small molecules. 
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5. Protein Reconstitution 

Generally, a solution of0.1 to 0.4 mM 1-65lactone with 0.8 equivalent of 66-104 

peptide in 25 mM NaPi, pH 7.0 was thoroughly deoxygenated using Schlenk techniques. 

A solution of the peptide was prepared prior to addition to the 1-65 lactone and 

occasionally required sonication or a slightly lower ionic strength to fully dissolve. 

Reduction was effected by anaerobic addition of a minimal amount of freshly prepared, 

deoxygenated sodium dithionite solution. Full reduction was gauged by a distinctive 

color change in solution. Best results were obtained if only 1 - 2 equivalents sodium 

dithionite were used for reduction. The reaction was allowed to proceed under rigorously 

anaerobic conditions for 24 to 40 hours. The presence of even a trace amount of 

dioxygen can lead to either premature oxidation of the 1-65 complex before bond 

reformation has occurred or reaction with the dithionite present to form radical species 

capable of heme degradation. Two techniques were employed to exclude oxygen during 

the course of the reaction. If the reaction flask was left on the Schlenk line under constant 

positive argon pressure, net oxidation was observed within 6- 18 hours, necessitating 

additional sodium dithionite treatment. Significant protein degradation was observed. 

Cleaner reactions and higher product yields were obtained if, after deoxygenation and 

prior to reduction, the reduction and reconstitution reactions were carried out in the glove 

box under an inert atmosphere. 

Reconstituted protein was isolated by cation-exchange chromatography (Figure 

2.11) (MonoS 10/10 column) in 25 mM NaPi, pH 7.0 with a 100 to 300 mM NaCl 

gradient. The semisynthetic proteins eluted at similar volumes as native cyt c. The 

products are well separated from both the 1-65 lactone starting material and the inactive 

1-65 coo- impurity. Proteins were purified by cation-exchange chromatography at least 

two more times before use. Typical yields (based on peptide quantities used) were 50 -



55 

Figure 2.11 Typical cation-exchange (FPLC MonoS 10/10, flow rate of 3.5 ml/min) 

chromatograms for a reconstitution reaction. Oxidized and reduced His72 cyt c products 

and 1-65 lactone and COO- reactants are indicated. Gradient represents the concentration 

of NaCl in mM. Detection is on the 0.5 absorbance scale at 280 nm. 
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75% and were similar for both the reconstitution of native and His72 cyt c. Peptide 

impurities (i.e., small quantities of 38-mers) are not active in the reconstitution reaction. 

6. Pentaammineruthenium Modification 

Pentaammineruthenium derivatives of His33 of native and His72 of semisynthetic 

cyt c were obtained with slight modifications of previously reported protocols.37 

[Ruas(H20)]2+ was generated in situ or as the PF6 salt by reduction of [Ru(NH3) 5Cl]Cl2 

over a Zn I Hg amalgam using Schlenk: and cannulae-transfer techniques. This 

compound was used only immediately following preparation due to its facile oxidation. 

Reactions were performed anaerobically with 49-fold excess of [Rua5(H20)]2+ (fifty 

equivalents added, one equivalent consumed in protein reduction) in a solution of 0.2 to 

0.4 mM protein in 100 mM HEPES buffer pH 7 .0. Aliquots were removed at fixed time 

intervals over the course of 30 hours to monitor the growth of products and optimize the 

reaction time. The modification reaction was quenched by gel filtration and oxidized 

overnight with excess Co(EDTA)- at room temperature to obtain the substitution inert 

Ru3+ complex. The products of the modification reaction were evaluated using analytical 

(5/5) and preparative (16/10) MonoS cation-exchange chromatography with 25 mM 

NaPi, pH 7.0 and a NaCl gradient. The yield of Rua5His72 cyt c was 30%. 

ill. Results and Discussion 

A. 1-65 Fragment Characterization 

The biophysical characteristics of the 1-65 lactone fragment have been 

reported6a.35 and are not the focus of this work. However, certain properties were 

investigated to verify the integrity of the reconstitution reaction. As alluded to earlier, 

this fragment probably exists as an ensemble of conformations, perhaps including 

dimerization along the exposed hydrophobic face, with some strong field ligand 

occupying the sixth coordination site of iron. 
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Absorption spectra of the 1-65 lactone fragment obtained at neutral and low pH 

agree well with reported values6a (observed at pH 7.0: Emax = 407, 525 nm (ferric); 416, 

520, and 550 nm (ferrous)). A value of E (407 nm) = 101000 M -1 cm1 was used. The 

absorption spectra for oxidized and reduced 1-65 lactone are similar to native cyt c in the 

Soret, a. and 13 band region (a slight loss of intensity in the a. and 13 band region is noted 

as well as a 3 nm blue-shift in the ferric Soret), however bands due to peptide backbone 

and aromatic absorption are proportionally less (220 and 280 nm). The 695 nm band is 

absent, as anticipated, and no additional charge transfer bands are observed. 

Amino acid analysis was consistent with anticipated results and both isoelectric 

focusing (IEF) gel electrophoresis and capillary zone electrophoresis indicate the purified 

species is homogeneous with respect to molecular weight and total charge. IEF gel 

electrophoresis proved to be a particularly useful analytical technique as the 1-65 coo-, 

1-65 lactone and native protein focus as easily separable and identifiable bands. 

Differential pulse polarography measurements taken on a freshly prepared sample 

indicate a reduction potential of 50± 20 mV vs. NHE (Figure 2.12). The measured 

potential varies over time, however, from -1ogse to +300 mV,38 indicating that changes 

are occurring in the heme environment. The 1 H NMR spectrum of ferric 1-65 lactone in 

pure D20 exhibits broad and ill-defined resonances in the paramagnetically-shifted 

regime in comparison with the well-resolved peaks characteristic of native cyt c in this 

region. 

Control reconstitution reactions were conducted with 1-65 lactone where the 

experimental manipulations necessary for protein reconstitution were mimicked (i.e., 

degassing, reduction with sodium dithionite) in the absence of the 66 104 peptide. 

Significant degradation (5 to 20% depending on conditions) was noted by cation­

exchange chromatography, with one degradation peak eluting near the anticipated 

retention time for native cyt c. Therefore, care was taken to purify reconstituted proteins 

at reducing and oxidizing conditions to ensure complete homogeneity of product proteins. 



59 

Figure 2.12 Differential pulse polarogram of freshly-made 1-65lactone. E0
' = 50(5) 

mV vs. NHE in 50 mM NaPi, 10 mM 4,4'-bipyridine, pH 7.0. Scan rate= 5 mV/sec. 
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Since degradation is thought to be linked to sodium dithionite side reactions, alternative 

methods for reduction were explored. Ascorbate is not potent enough to affect reduction 

and dithiothreitol triggered a collapse of heme absorption. Mediated bulk electrolysis at a 

Pt basket electrode effectively reduced cyt c with one electron per heme, however the 1-

65lactone absorbed> 10 electrons per heme with no visible evidence of reduction. 

Significant degradation was also observed. 

B. His72 Cytochrome c Characterization 

Due to high yield from the reconstitution reaction, the His72 cyt c mutant has 

been extensively characterized. All measured biophysical characteristics indicate that the 

replacement of the invariant Lys at position 72 has no effect on the spectroscopic and 

structural features of the protein. 

1. Chromatography and Electrophoresis 

Both the ferric and ferrous form of His72 cyt c elute as sharp, distinct bands on 

cation-exchange columns well separated from the 1-65 lactone starting material (Figure 

2.10). Ferric and ferrous His72 cyt c elute from a cation-exchange column at ionic 

strengths slightly lower than the corresponding redox state of native cyt c. The difference 

in elution ionic strength between native and His72 cyt c exactly corresponds to the 

separation between the ferric and ferrous forms, implying that His72 cyt c has effectively 

one less positive charge than native, as expected from the change in sequence if the pKa 

ofHis72 is less than 7.0 (pKa = 5.5, measured by NMR, vide infra). For example, on a 

Mono S 10/10 column, at identical conditions with identical elution programs, elution 

concentrations ofNaCl in 25 mM NaPi, pH 7.0 are: Fe3+ native cyt c, 195 mM; Fe2+ 

native cyt c, 180 mM; Fe3+ His72 cyt c, 175 mM; Fe2+ His72 cyt c, 165 mM. 

The homogeneity of the purified protein was confirmed by isoelectric focusing. 

The pi of His72 cyt c is slightly lower than native cyt c and much higher than 1-65 
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lactone and 1-65 COO-. CZE also indicated a homogeneous product that eluted similarly 

with native cyt c. 

2. Analytical Analysis 

Amino acid analysis was consistent with anticipated results. Thermospray mass 

spectrometry was used to determine molecular weights. Data are presented below: 

Table 2.1. Summary of protein mass spectrometry. 

Sample Calculated Mass Measured Mass 
(amu) (amu) 

Native horse 
12,364 12,380(12) heart cyt c 

His72 cyt c 12,343 12,360(12) 

Parentheses indicate uncertainties in the preceding digit. 

The data indicate that a fully reconstituted protein was formed with a mass 

consistent with a Lys to His and Met to Hse alteration. 

3. Absorption Spectroscopy 

The absorption spectrum ofHis72 cyt c in 25 mM NaPi, pH 7.0 is superposable 

with native cyt c in both the oxidized and reduced states (Figure 2.13). Extinction 

coefficients for native cyt c were therefore used to calculate concentrations. The 695 nm 

band was also present, indicating proper Met80 ligation (Figure 2.14). 

4 . Circular Dichroism Spectroscopy 

Ambient temperature CD studies in the far UV region indicate that His72 cyt c 

possesses identical secondary structural features with native horse heart cyt c in 25 mM 
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Figure 2.13 (A) Measured electronic absorption spectra of His72 cyt c ( -- ) and 

native cyt c (- - - -) in the ferric state in 25 mM NaPi, pH 7 .0. Proteins were oxidized 

with Na[Co(EDTA)] prior to purification. (B) Measured electronic absorption spectra 

for His72 cyt c ( --) and native cyt c (- - - -) in the ferrous state in 25 mM N aPi, pH 

7 .0. Proteins were reduced with sodium dithionite, which was removed by gel filtration, 

immediately prior to data acquisition. The His72 and native cyt c spectra are nearly 

identical in both the oxidized and reduced states. 
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Figure 2.14 Expansion of the measured electronic absorption spectra of His72 cyt c 

(--)and native cyt c (----)in the f~mc state in 25 mM NaPi, pH 7.0 in the region of 

the Met to Fe3+ charge transfer transition. Proteins were oxidized with Na[Co(EDTA)] 

prior to purification. 
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NaPi, pH 7.0 (Figure 2.15). The CD spectrum is typical of that for an a~helical protein 

with minima at 222 and 205 nm. Melting curves monitoring the loss of a-helix at 222 

nm indicate that the midpoint for the melting transition is at 87° C for both native cyt c 

and His72 cyt c (Figure 2.16), indicating indistinguishable thermal stabilities for both 

proteins. 

5 . EPR Spectroscopy 

The EPR spectrum of ferric His72 cyt c is nearly identical with that of native cyt c 

at 6.8 K (Figure 2.17). Measured g values for native cyt care 3.03, 2.21, and 1.21 which 

are similar to published values at slightly different conditions, 3.06, 2.24, and 1.24.39 g 

values obtained for His72 cyt c are 3.05, 2.23 and 1.21. These g values represent the 

tetragonal and orthorhombic distortions due to the ligand environment and are extremely 

sensitive to the electronic character of the ligands. Therefore, it can be concluded that the 

introduction of His at position 72 does not have any significant effect on heme ligation. 

6. Electrochemistry 

The redox potentials of native cyt c, reconstituted cyt c (Hse65 cyt c), and His72 

cyt c were determined (exhaustively) by both spectroelectrochemistry with a Rua5py3+12+ 

mediator and by differential pulse polarography at a 4,4'-bipyridine-modified gold 

electrode. The potentials obtained are summarized below. All potentials were measured 

in 50 mM NaPi, pH 7.0 at ambient temperature. Redox potentials were calculated from 

the differential pulse polarography data as described in Section II.C.l. Data for Hse65 

cyt c and His72 cyt c are shown in Figure 2.18 A and B. 
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Figure 2.15 Far-UV circular dichroism spectra of His72 cyt c ( --) and native cyt c 

(----)in 25 mM NaPi, pH 7.0. Sample concentrations were -14 j.LM and spectra were 

obtained in a 0.1 em pathlength cell on the 20 mdeg sensitivity scale at ambient 

temperature. 
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Figure 2.16 Melting curves for (A) native cyt c and (B)'His72 cyt c in 25 mM NaPi, 

pH 7 .0. Data plotted are the 222 nm signal of the CD spectrum. The signal at 222 nm 

was constant between 25 ° C and 60° C. 
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Figure 2.17 EPR spectra of ferric (A) native and (B) His72 cyt c in 50 mM HEPES, 

50% glycerol. pH 7.0 glass at 6.8 K. 
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Table 2.2. Summary of redox potentials obtained on unmodified proteins. 

Sample 

Native cyt c 

Hse65 cyt c 

His72 cyt c 

Differential Pulse 
Polarography 
(mVvs.NHE) 

265(5) 

268(5) 

256(5) 

Spectroelectrochemistry 

(mVvs. NHE) 

265(2) 

263(2) 

255(2) 

Spectroelectrochemistry data were obtained by monitoring the absorbance 

changes in the Q-band region of the spectrum as a function of applied potentiaL 

Representative raw data are presented in Figure 2.19. The mediator used possesses no 

spectral features in this region. At typical concentrations of protein (0.5 mM) and 

mediator (1.5 to 2.5 mM), the system requires 15 minutes to arrive at equilibrium and is 

independent of whether it is reached anodically or cathodically. The concentration of 

oxidized and reduced protein at each potential is calculated from the absorption using the 

difference in extinction coefficient of 18500 M-1 cm-1 at 550 nm between redox states. 

These values can be related to E0
' using the Nemst equation: 

E Eo. RT ln[red] 
app = -

nF [ox] 

Eapp• R, T, n, and F are the applied potential, universal gas constant, temperature, 

numbers of electrons in the redox couple (1), and the Faraday constant, respectively. 

Thus a plot of log [red] I [ox] vs. applied potential will be linear with a slope of- 59 mV 

and a y-intercept of E0
'. Nemst plots of data obtained for Hse65 cyt c and His72 cyt care 

presented in Figure 2.20. 
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Figure 2.18 Differential pulse polarograms of (A) reconstituted Hse65 cyt c (ED' = 

268(5) mV vs. NHE) and (B) His72 cyt c (ED' =256(5) mV vs. NHE) in 50 mM NaPi, 10 

mM 4,4'-bipyrid.ine, pH 7.0. Scan rate= 1 mV/s. 
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Figure 2.19 Typical raw data obtained in a spectroelectrochemical experiment. Traces 

correspond to absorption spectra in the Q-band region of a His72 cyt c sample at (with 

increasing absorption at 550 nm); 306,75, 55, 35, 21, 6, -10, -20, and -350 mV vs. SCE. 

Isosbestic points are experimentally observed at 502, 526, 541, and 556 nm. 
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Figure 2.20 Nemst plots for data obtained from (A) reconstituted Hse65 cyt c (E0
' = 

263(2) mV vs. NHE) and (B) His72 cyt c (E0
' = 255(2) mV vs. NHE) in 50 mM NaPi, 

-1 mM [Rua5py ]3+, pH 7 .0. Linear fits to the data are shown; potentials shown are 

versus the SCE reference. See text for details. 
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Spectroelectrochemical data obtained at pH 5.0 in 50 mM acetate buffer (below 

the pKa for His72) indicate that the redox potential ofHis72 cyt c also is -10 mV lower 

(native cyt c = 272 m V, His72 cyt c = 263 m V vs. NHE) than that of native cyt c if His72 

is protonated. The conclusion is that the slight decrease of the His72 cyt c redox potential 

relative to that of native is not due the electrostatic effect of replacing a charged with an 

uncharged residue at pH 7 .0. This is consistent with lack of change in midpoint potential 

reported for a Lys79 to Ala mutation inS. c. iso-1-cyt c40a-and inconsistent with small 

changes (-1 0 m V) observed in a series of cyt b5 mutants due to alterations in surface 

charges.40b 

7. 1 H NMR Spectroscopy 

To fully investigate minor structural changes that may be present in the His72 

semisynthetic protein, 1-D lH NMR studies were conducted on the ferric state of protein. 

The paramagnetic center dramatically shifts resonances in close proximity by dipole I 

dipole and scalar coupling mechanisms, resulting in a characteristic pattern of chemical 

shifts outside the normal region that are extremely sensitive to the precise geometry of 

the heme environment. The 1 H NMR spectra of these well-resolved hyperfine shifted 

resonances for native cyt c and His72 cyt c are presented with assignments indicated in 

Figure 2.21. The spectra are virtually identical with published data,41 and indicate the 

heme environment is not perturbed by the incorporation of His72. 

A close comparison of the lH spectra in the 0 to 10 ppm regime showed many 

shared resonances, thus assignments for the native protein42 were transferred to His72 cyt 

c. Spectra and relevant assignments are presented in Figure 2.22. In the His72 protein, 

two new singlets were noted in the aromatic regime at 8.32 and 9.01 ppm (pH 5.5) that 

were assigned to the C-2 and C-4 protons of the His72 imidazole ring. pH titrations, 

monitoring the chemical shift of these protons as a function of pH, confirmed this 
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Figure 2.21 1 H NMR spectra of the hyperfine-shifted region of (A) native cyt c in 

D 20, pH 6.8, 303 K (Reference 41) and (B) His72 cyt c in 50 mM NaPi (D20), pH 7.39, 

287 K. Pertinent proton assignments are: A. heme methyl 8; B. heme methyl 3; C. heme 

methylS; D. thioether 2 methyl; E. Leu68 oCH3; F. Met80 E-CH3; a. His18 C4; b. 

propionate? aC; c. His18j3C; d. Met80 j3C; e. propionate? aC; f. Pro30 oC; g. Gly29 

aC; h. Pro30 oC; i. His18 C2; k. Met80 yC. 
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Figure 2.22 1 H NMR spectrum of the normal region ofHis72 cyt c in 50 mM N aPi 

(D20), pH 5.65, 315 K. Pertinent native protein assignments were obtained from 

Reference 42 and spectra obtained on the native protein at the experimental conditions. 

His72 assignments from this work are indicated. 
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assignment, since only a titratable residue would be expected to shift. To determine the 

pKa of the imidazole ring, the following expression was used:43 

pH= pKa + log[<o+- ~)] 
(o-o ) 

with 0° and o+ as the chemical shift of the deprotonated and protonated species and o is 

the chemical shift of the resonance when the concentration of the protonated and 

deprotonated species is equal (assumed to be (o0 + o+) I 2). A graphical representation of 

the results of the pH titration of the C-2 and C-4 resonances is given in Figure 2.23. 

From these data a pKa of 5.5 for His72 was assigned. This value is reasonable for a 

surface imidazole on a positively charged protein. The pKa of His33 of cyt cis 6.4 and 

the pKa of His26 of cyt c is < 3.5 (due to a H-bonding interaction).44 

Structural characterization of His72 cyt c was completed with 2-D double­

quantum COSY NMR experiments aimed at comparing the "fingerprint" region (Co:H to 

NH proton-proton J-coupled crosspeak:s) of His72 cyt c with native cyt c, as the spectrum 

of native horse heart cyt c is fully assigned.42b An in-depth discussion of this work is 

given in Appendix A. The conclusion of these studies is that most Co:H and NH 

resonances are not significantly shifted and 93% of the assignments can be transferred 

directly to the semisynthetic protein, indicating a high degree of structural homology. 

However, some resonances were either shifted by > 0.1 ppm or were not observed and 

were not reassigned. Although the disappearance of a resonance may be due to a lack of 

sensitivity, a pattern of unassigned and shifted resonances appeared when both the Co:H 

and NH chemical shift differences between native and His72 cyt c were calculated for 

each residue (Appendix A). Only minor alterations were observed from residues 1 

through 60. The regions that appeared most affected were within the 65 - 90 section of 

the protein, indicating that substitution with His72 has either induced ring current 
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Figure 2.23 Chemical shift of the (A) C-2 and (B) C-4 protons of the His72 imidazole 

ring as a function ofpH. Spectra taken in 50 mM NaPi (D20), data at 286 and 315 K are 

included. 
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dependent shifts in neighboring residues or made some minor changes in the structure of 

the protein. Interestingly, in both the CaH and NH chemical shift comparisons, the 

change in shifts is positive in the 60 - 70 and 80 - 90 regions, with a few of the 

resonances from 70- 80 not observed (although position 72 could be assigned and was 

only slightly shifted). A more detailed analysis of the data is required to determine the 

origin of the observed chemical shifts. 

C. Ru(NH3 )5His72 Cytochrome c Characterization 

1. Modification and Purification 

The methodology previously developed for pentaammineruthenium modification 

of cyt c was used with few alterations.37 HEPES buffer was used rather than NaPi to 

prevent precipitation of the ruthenium complex. It had been previously determined that 

the optimum reaction time for modification of His33 of native cyt c was 24 hours at room 

temperature with -0.2 mM protein and 10 mM [Rua5 (H20)]2+. However, since the rate 

of modification is related to the accessibility of the His residue and a new 

chromatographic protocol (FPLC Mono S cation-exchange chromatography) was to be 

used, a detailed study of the time evolution of the pentaammineruthenium modification 

reactions of native and His72 cyt c was undertaken. From these studies not only could 

the optimum reaction time for His72 be determined, but also a comparison of the 

chromatographic traces from the native and His72 cyt c reactions would afford 

unambiguous identification of the His72-modified derivative. 

Cation-exchange chromatographic separations of the native cyt c reaction were 

similar to those reported, thus allowing identification of the His33 modified product. 

Modification of His72 cyt c afforded the same products observed in the native reaction, 

as anticipated since His33 and His26 are still present in the protein. However, a new 

peak was observed to grow in significantly faster than the His33 and His26 products that 

eluted at higher ionic strength than any product observed in the native cyt c modification 
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reaction. Figure 2.24 depicts product evolution as a function of reaction time as detected 

by analytical cation exchange chromatography. Products also present in the reaction with 

native protein are indicated. Since this new product is the first to appear, it can not 

correspond to a doubly labeled derivative and was tentatively assigned as Rua5His72 cyt 

c. An optimum reaction time of 8 hours was determined at standard conditions. 

Preparative-scale reactions of Rua5His72 cyt c were purified with similar separations. 

2. Absorption Spectroscopy 

The purified product possessed an absorption spectrum nearly identical with 

native, including the presence of the 695 nm band. Difference spectroscopy, however, 

indicated the presence of a weak absorption at 303 nm that corresponds to the absorption 

anticipated for Rua5His3+ (Figure 2.25). Furthermore, using the extinction coefficient, £ 

(303 nm) = 2100 M-1 cm-1 for Rua5His3+,37 a 1:1 ratio ofFe:Ru (± 10%) is calculated, 

indicating isolation of a singly modified derivative. 

3 . 1 H NMR Spectroscopy 

The His site of Ru modification can be determined using 1 H NMR spectroscopy if 

the C-2 and C-4 resonances of all His residues have been assigned and are detectable. 

Rua5His3+ is paramagnetic (99Ru: 12.7% abundant, I = 3/2; 101 Ru: 17.1% abundant, I= 

5/2) and will shift and broaden the C-2 and C-4 resonances of only the His residue to 

which it is bound. The 1 H NMR spectrum for Rua5His72 cyt c is shown in Figure 2.26 

A. While the His33 and His26 singlets are still present, the resonances due to His72 have 

disappeared (indicated by asterisks). The hyperftne shifted resonances due to the ferric 

heme are not perturbed in the Ru-modified protein (Figure 2.26 B). It has been reported 

that the contact-shifted His resonances reappear at -33 ppm in 

pentaammineruthenium(lll)-modified myoglobin:45 this may be the assignment of the 

new weak resonance seen at --27 ppm. 
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Figure 2.24 Cation-exchange (FPLC Mono S 5/5) time evolution of 

pentaammineruthenium modification of His72 cyt c. The first peak to elute is 

unmodified, and last peak is doubly modified. Short arrows indicate products also 

observed in the native cyt c modification reaction. The asterisk indicates the new product 

not observed in the native cyt c modification reaction. 
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Figure 2.25 Absorption difference spectrum between ferric His72 cyt c and ferric 

Rua5His723+ cyt c in 25 mM NaPi, pH 7.0. Heme concentration= 13.4 J.LM, calculated 

Ru concentration= 14.8 JJ.M. Additional peaks correlated with the ferrous heme 

spectrum and are attributed to incomplete heme oxidation. 
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Figure 2.26 lH NMR spectra of ferric Rua5His723+ cyt ·c in the (A) normal (50 mM 

NaPi, pH 5.7, 325 K) and (B) hyperfine-shifted (50 mM NaPi, pH 5.7, 298 K) regions of 

the spectrum. Note that there is little perturbation of the resonances in either region 

relative to the unmodified protein, with the exception of the disappearance of the His72 

C-2 and C-4 protons, denoted by asterisks. 
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4. Electrochemistry 

Differential pulse polarograms in 50 mM NaPi. 10 mM M 4.4'-bipyridine 

obtained for Rua5His72 cyt c are presented in Figure 2.27. Two waves are seen that 

correspond to the heme and ruthenium site. Values obtained for E0
' are consistent with 

anticipated results: 

Table 2.3. Summary of redox potentials obtained on modified proteins. 

Sample 

Native cyt c 

RuasHis33 cyt c 

His72 cyt c 

Rua5His72 cyt c 

E0 ' (Ru3+12+) 
(mVvs. NHE) 

80(5) 

106(5) 

Eo' (Fe3+!2+) 
(mVvs.NHE) 

265 

260(5) 

255 

284(5) 

E 0
' for Rua5His3+/2+ is 110 mV vs. NHE. The [Rua5His]3+ complex in solution with 

native cyt c has an E0
' of 108 mV vs. NHE.37 

Based on the electrochemistry data, the measured driving force for ET from 

RuasHis722+ to the ferric heme is -178(5) mV. 

D. Electron-Transfer Studies 

Intramolecular ET rates in Rua5His72 cyt c were measured using the flash 

photolysis protocol developed by Gray. Winkler and Nocera.33 The reaction scheme is 

given in Figure 2.28. A microsecond white light flash generates a population of 

*Ru(bpy)32+ excited state which can. via a bimolecular reaction, reduce (E0
' for 

Ru(bpyh3+/*2+ = -860 mV) both the heme and Rua5His3+ centers on the protein. EDTA2-
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Figure 2.27 Differential pulse polarogram of Rua5His723+ cyt c in 50 mM NaPi, 10 

mM 4,4'-bipyridine, pH 7.0. The Fe3+/2+ wave is at 284(5) mV and the Ru3+/2+ wave is at 

106(5) mV vs. NHE. See text for details. 
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Figure 2.28 Reaction scheme for Ru(bpy))2+-mediated reductive flash ET experiment. 
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is present in solution to scavenge the Ru(bpy)J3+ product and prevent back ET from the 

protein. Since the Ru(bpy)32+ excited state can reduce both metal centers in the protein, a 

non-equilibrium distribution of singly reduced Ru-modified proteins is generated. The 

transiently formed Rua5His722+- Fe3+ cyt c species relaxes to the thermodynamically 

more stable Rua5His723+- Fe2+ cyt c species via an electron transfer. This ET reaction is 

monitored by the increase in absorption at 550 nm due to the formation of reduced heme 

(~eFe2+fFe3+ = 18500 M-1 cm-1). Only rates< 200 s-1 can be measured due the recovery 

time needed for the photomultiplier tube (PMT) following the flash. A problem with this 

methodology is that it is not reversible, therefore only data from the first flash are usable. 

Caution was exercised to prevent sample exposure to room light prior to the flash. 

Flash data are shown in Figure 2.29 A that represent a control reaction performed 

with unmodified ferric His72 cyt c. Irreversible reduction of the heme is complete within 

the flash duration. Kinetic data obtained on a 1.8 flM sample of ferric Rua5His723+ cyt c 

are presented in Figure 2.29 B. Following direct reduction of the heme by during the 

flash, a slow phase of reduction is observed and attributed to intramolecular Ru2+ to Fe3+ 

ET. The measured rate was fit to single exponential kinetics and determined to be 0.4(2) 

s-1. This rate is independent of protein concentration over a range of 1- 3flM. A rate of 

30(3) s-1 33 has been measured for the analogous Rua5His33 cyt c derivative at similar 

driving force ( -180 mV) and presumably comparable reorganization energy since the 

redox centers are identical. Modeling indicates that the His72 residue is -2.7 A closer to 

the heme (edge-edge distances: His72-heme, 8.4 A; His33-heme, 11.1 A). Since no 

significant structural perturbation appears to have occurred in the His72 proteins, the 

slower ET rate observed between His72 and the heme relative to His33 is attributed to a 

decrease in electronic coupling that exhibits the exact opposite trend predicted by a 

distance-dependent model. These results imply that the intrinsic homogeneity of the 

protein medium can control protein couplings and triggered subsequent ET studies at 

higher driving force. 
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Figure 2.29 Flash-photolysis voltage I time traces at 550 nm for (A) ferric unmodified 

His72 cyt c (4.2 ~M) and (B) ferric Rua5His723+ cyt c (1.8 ~M) in 50 mM NaPi, 60 ~M 

[Ru(bpyh]Cl2, 7.25 mM Na2EDTA, pH 7.0. 
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IV. Conclusion 

Semisynthesis has been utilized to replace a lysine with a histidine residue at 

position 72 in horse heart cyt c. Measurements made from the oxidized horse heart 

crystal structure show that the edge-edge distance from His72 to the heme is 8.4 A, 2. 7 A 

closer than the corresponding distance for His33. The mutant protein has virtually the 

same CD and absorption spectra as native as well as the same thermal stability (Tm = 87° 

C). The redox potential ofHis72 cyt cis 255(2) mV vs. NHE; native horse heart and 

semisynthetic Hse65 cyt c are 265 m V. The 1 H NMR of His72 cyt c is virtually identical 

with native in the aromatic and paramagnetic region, with the exception of two new 

singlets at 8.32 and 9.01 ppm that titrate with a pKa of 5.5 and are assigned to the C-2 

and C-4 protons of the His72 imidazole ring. These data indicate that there is little 

structural perturbation of the overall protein structure. 

His72 cyt c has been modified with a pentaammineruthenium(III) moiety and has 

been characterized by NMR, absorption spectroscopy and electrochemistry. The rate of 

intramolecular ET from Rua5His722+ to the Fe3+ heme was determined by flash 

photolysis to be 0.4(2) s-1 (~G0 = -178(5) mV); almost 100-fold slower than the rate of 

the corresponding His33-labelled protein (30 s-1). The result implies that the inherently 

inhomogenous nature of the protein medium can mediate electronic coupling in a non­

distance-dependent manner. 
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Chapter 3 

Synthesis, Characterization and Electron-Transfer Studies of Ru(bpyh(im)HisX 

Cytochromes c (X = 33, 39, 62, 72) 
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I. Introduction 

A. Studies ofZn-substituted Cytochromes c 

Early ET studies on ruthenium-ammine-modified heme cyts c led to significant 

insights into the factors controlling biological electron transfers. I However, as detailed in 

Chapter 1, this system is troubled by its low driving force that imposes difficulties in 

extracting accurate values for HAB and A from observed rates. In addition, the non-

reversible bimolecular flash photolysis technique2 necessary for rate measurements in this 

system to measure suffers from chemical irreversibility and poor resolution of fast rate 

components ( > 200 s-1 ). The replacement of heme with a non-native Zn-porphyrin in the 

Rua4(X) (X= ammine (a), pyridine (py), or isonicotinamide (isn))-modified proteins 

represented a breakthrough in ET studies.3 In these systems, ET rates could be obtained 

at driving forces comparable to the estimated reorganization energy (1.2 eV).1 This 

feature is crucial since, when -.6.0° is near the value of A, the dependence of the electron­

transfer rate on driving force is minimal, thus accommodating a better estimation of HAB 

and A. 

In the Zn cyt c studies, ET occurs from the highly reducing, long-lived Zn­

porphyrin triplet excited state (Zn3*, 't = 15 ms, Zn3*/+• = -0.62 eV4) upon laser excitation 

at 532 nm. Both the zn3* to Ru3+ photoinduced ET rate and the subsequent Ru2+ to Zn+· 

recombination ET rate could be readily determined using transient absorption 

spectroscopy due to monitor the different absorption properties of the species involved. 

Driving forces for the photoinduced and recombination ET reactions in Rua4(X)His Zn 

cyts c are on the order of 0. 7 to 1.1 e V, and observed rates were on the order of 104 to 107 

s-1. Fits of these rates obtained with a series ofRu~(X)His33 Zn cyts c (X= a, py, isn), 

spanning a 0.39 e V range in driving force, yielded values of A = 1.10 e V and HAB = 0.12 

cm-1 for the photoinduced reaction and A= 1.19 eV and HAB = 0.09 cm-1 for the 

recombination reaction.1,3 
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ET has been extensively studied between the heme and a Ru probe placed at two 

other surface His sites in heme and Zn porphyrin cyts c. Comparison of the rates 

obtained from these Rua4(X)-modified surface sites with rates obtained from His33-

modified derivatives allows for the evaluation of factors that contribute to electronic 

coupling. The first surface site, His39, is present in yeast species of cyt c and has been 

Rua4(X) labeled in the native and Zn-porphyrin Candida krusei (C.k.) protein.5 The 

second site, His62, has been genetically engineered and expressed in Saccharomyces 

cerevisae (S.c.) iso-1-cyt c.6 Maximum ET rates (i.e., the ET rate at -~0° =A.) derived 

from the driving force studies in the heme and Zn porphyrin derivatives, calculated 

values for HAB and edge-edge distances determined from horse heart or yeast iso-1-cyt c 

crystal structures7 are set out in Table 3.1. 

Table 3.1. Electron-transfer parameters for Rua4(X)His Zn cyts c.l 

Site kroax edge-edge distance HAB 
(s-1) (A) (cm-1) 

His395 1.4 X 107 12.3 0.24 

His332,3 2.9 X 1()6 11.1 0.11 

His626 2.0 X 1()4 14.8 0.01 

HAB is somewhat larger between His39 and the heme than between His33 and the 

heme, even though His39 is situated slightly further away (1.2 A) using the edge-edge 

distance correlation. The His62 derivative was designed to incorporate both an 

intervening aromatic (Trp) and polarizable sulfur (Met) to determine if either of these 

residues is capable of enhancing electronic couplings. The weak coupling observed 

correlates well with the long edge-edge distance and implies no special role for either the 

intervening Trp or Met residues in mediating electronic couplings. There are some 
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problems, however, associated with using these data to address protein-mediated 

electronic coupling. The first involves the determination of donor-acceptor distance. The 

transferred electron originates from the 1t-system of the porphyrin ring, since the Zn2+ ion 

is not able to participate in any redox reaction directly. Therefore, the relevant edge-edge 

distances are measured from the Ru complex to the closest point on the conjugated 

porphyrin ring. However, if the His33 to porphyrin (and not the His18 axial ligand used 

in the edge-edge convention) distance (14.8 A) is used for the analysis, the HABs for this 

series correlate well with distance. It is not clear whether the His 18 imidazole ring 

should be considered coupled to the Zn-porphyrin electron donor and acceptor. 

Secondly, it is not known if the substitution of zinc for iron alters the protein structure 

since the Zn porphyrin normally adopts a 5-coordinate geometry. 

B. Protein-Surface Modification with a Photochemically Active Chromophore 

In an effort to study intramolecular ET at higher driving force in proteins with a 

minimum probability of structural perturbation, several methodologies for the 

modification of surface amino acids with Ru(bpyh2+ 8 derivatives have been developed 

by Durham, Millett and co-workers.9-12 The basis for these studies was to use the long­

lived (600 ns) MLCT excited state ofRu(bpyh2+ to photoinduce ET from a specific 

residue on the surface of the protein to the ferric native heme. The first approach 

involved covalently attaching a dicarboxybipyridine (dcbpy) moiety to the E-NH2 group 

ofLys. Reaction with Ru(bpyh(C03) creates a Ru(bpyh(dcbpy)2+-Lys label.9 Singly 

labeled Lys derivatives of horse heart cyt c at positions 7, 13, 25, 27 and 72 were isolated 

by ion-exchange chromatography and identified by tryptic digestion. Quenching of the 

*Ru(bpyh(dcbpy)2+-Lys excited state in the ferric protein was observed and attributed to 

photoinduced ET from the *Ru2+ to the Fe3+ heme. The rates for photoinduced ET and 

the subsequent back ET rates from the transiently generated ferrous heme to Ru3+ (see 

analogous reaction scheme, Figure 3.2) were determined by transient absorption 
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spectroscopy to be on the order of 1 to 20 x 1Q6 s-1. However, the attachment of the ET 

label to the end of the long methylene chain of a Lys residue precludes the determination 

of an accurate edge-edge distance measurement. Therefore, a range of edge-edge 

distances spanning 6 - 12 A is reported for each modified derivative. Thus, while this 

system has demonstrated the applicability of direct covalent attachment of a 

photochemical probe to the surface of a protein for the study of biological ET, different 

chemistry needed to be developed to apply this methodology to the evaluation of protein­

mediated electronic couplings. 

It was demonstrated by the same group that, in aqueous solution, Ru(bpy)2(C03) 

would react with the surface His26 and His33 residues of horse heart cyt c to afford a 

Ru(bpyh(H20)HisX2+ cyt c adduct (X= 26, 33) that exhibited no appreciable excited 

state lifetime in solution. Reaction of this modified protein with excess imidazole (im) 

resulted in Ru(bpyh(im)HisX2+ derivatized cyts c that exhibited a 70 - 100 ns excited 

state lifetime with an emission maximum centered at 670 nm, comparable to that of the 

Ru(bpyh(imh2+ model complex (-70 ns)_lOa,b The absorption spectrum of the 

derivatized protein precisely matches that of the sum of one equivalent of unmodified 

protein (ferric, 0-max = 410 nm (£ = 106100 M-1 cm-1) and 528 nm (£ = 11200 M-1 cm-1)) 

(Figure 2.4)) and one equivalent of the [Ru(bpyh(imh]Cl2 model complex <"-max= 292 

nm (£ =56700 M-1 cm-1) (7t- 1t*) and 490 nm (£ =87300 M-1 cm-1) (MLCT)) (refer to 

Figure 3.7)). However, in these reports no quenching of the excited state due to 

photoinduced ET to the heme was observed, and it was concluded that the excited state 

lifetime was insufficient to accommodate a competing slow ET reaction. Additionally, a 

new photochemically active surface modifying reagent has been recently developed. 

Ru(bpyh(4-bromomethyl-4'-methylbipyridine) has been specifically bound to the surface 

Cys residues of S. c. iso-1-cyt ell and genetically engineered cytochrome b5,12 and used 

for the study of photoinitiated thermal ET within protein:protein complexes. 
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C. Intramolecular Electron Transfer in Ru(bpy h(im)His Derivatives of 

Cytochrome c 

Chang, Gray and Winkler recognized that, if the lifetime of the ET active 

Ru(bpyh(im)HisX2+ label could be effectively lengthened, this system would be ideal for 

the study of intramolecular ET between a well-defined position on the surface of the 

protein and the native heme group at high driving force and known intervening medium 

and distance.13 A flash I quench scheme (Figure 3.1) was devised to extend the window 

available for the observation of ET rates. In this scheme, ferrous Ru(bpyh(im)His33 cyt 

c is excited with a 480 nm laser pulse to generate the *Ru2+ - Fe2+ protein. The Ru 

excited state is bimolecularly quenched oxidatively (kq = 4.9 x 108 M-1 s-1) by a redox 

quencher, Q, (in this case Q = Ru(NH3)63+) to transiently generate the Ru3+- Fe2+ 

species. This species then relaxes via a Fe2+ to Ru3+ ET (k~) to the 

thermodynamically more favored (-t\0° = 0. 740 eV) (Table 3.2) Ru2+- Fe3+ protein. 

On a much longer time scale ( --o.l s for 20 J..LM protein, 5 mM Ru~3+ (a= NH3), the 

reduced quencher reduces the protein, regenerating the initial Ru2+ - Fe2+ state. 

Experiments can be performed with low concentration of protein and quencher due to the 

cyclic nature of this scheme that allows the signal averaging of many laser pulses. 

Table 3.2. Summary of relevant reduction potentials. Ru(bpyh(imh2+ data are from 
Reference lOc. 

Redox Couple 

cyt c (Fe3+12+) 

Ru(bpyh(imh3+/*2+ 

E 0
' (aqueous solution, pH 7 .0) 

(V) 

+0.265 

+1.0 

-0.95 
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Figure 3.1 Reaction scheme for the flash I quench ET methodology. A 

Ru(bpyh(im)2+-modified heme protein is depicted by the two overlapping spheres. The 

oxidative bimolecular quencher, Q, is Rua63+ in the described experiments. kE,.mm is the 

rate of Fe2+ to Ru3+ ET. 
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The Fe2+ to Ru3+ ET rate (krrrun) measured by the flash I quench technique 

described above is 2.6 x 106 s·l for the His33-modified horse heart cyt cat 298 Kin 50 

mM NaPi, pH 7 .0.13 The Ru(bpyh(im)His332+ excited state lifetime is 80 ns in both the 

oxidized and reduced protein, in good agreement with the model complex at similar 

conditions. Approximately 5% of the excited state species in solution is oxidatively 

quenched to the ET-active Ru3+- Fe2+ state at 20 j..LM protein with 5 mM Rua63+. 

Identical kinetics are observed by transient absorption at wavelengths characteristic of 

both the heme and Ru oxidation states (306, 400, 500, and 550 nm). 

The reorganization energy for the Ru(bpyh(im)HisX - heme ET reaction should 

be lower compared to that observed in the Ru-ammine-modified proteins due to the 

difference in the self-exchange reorganization energies 0 .. 11) of Ru model complexes: A.11 

= 1.20 eV for Rua5py3+/2+; A.11 = 0.57 eV for Ru(bpyh3+!2+_14 The reorganization energy 

(A.12 ) for this ET can be estimated using the simplified Marcus cross relation: IS 

A.12 for the ferrous heme to Ru(bpyh(im)HisX3+ ET reaction can be estimated if A.11 and 

A.22 can be obtained for the two redox species. A self-exchange reorganization energy 

(A.2~ of 1.2 e V for cyt c is derived from the Zn cyt c driving force studies using the cross 

relation and A.11 for Rua5py2+/3+ = 1.2 e V. NMR studies give a ~2 value of 0. 7 e V, 16 and 

calculations based on a microscopic model yield a value of 1.04 eV_l5 Because these 

measures of ~2 have large inherent errors, they are not necessarily mutually exclusive. 

Therefore, a compromise value of 1.0 e V for A.22 is used in these studies. Using the cross 

relation, this leads to an estimate of 0.80 eV for the reorganization energy of the ferrous 

heme to Ru(bpyh(im)His3+ ET reaction using A.11 = 0.57 eV. This reorganization energy 

is near the measured driving force for the reaction, -AG0 = 0.74 eV, therefore ET is 

occurring near the anticipated activationless point ( -AG0 = A.). Preliminary results 
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indicate that the Fe2+ to Ru3+ET is indeed temperature independent, I? indicating that the 

estimate of A12 is not far from the actual value. A driving force study using substituted 

bipyridlligands is in progress to experimentally determine the reaction reorganization 

energy. A similar study has been recently reported IS on recombinant cytochrome b5 

labeled with ruthenium (II) polypyridine complexes for which a A value of 0.94 e V was 

estimated (A11 cyt b5 = 1.2 e V).l6 

Identical kinetics were observed for the Fe2+ to Ru3+ ET reaction when 

Ru(bpyh(im)His333+- Fe2+ cyt cis produced in low yield from *Ru(bpyh(im)His332+-

Fe3+ cyt c by direct ET, providing an independent measure of the Fe2+ to Ru3+ rate.l3 

Thus direct photoinduced ET from the *Ru(bpyh(im)His332+ excited state to the ferric 

heme does occur, albeit in sufficiently low yield that the observed excited state lifetime is 

not significantly affected. The reaction scheme for photoinduced ET followed by Fe2+ to 

Ru3+ ET is presented in Figure 3.2. Direct photoinduced ET (-~G0 = 1.2 eV (Table 3.2)) 

must compete with the intrinsic excited-state decay to transiently generate a 

Ru(bpyh(im)His333+- Fe2+ protein. This species subsequently decays by Fe2+ to Ru3+ 

ET (-~G0 = 0.74 eV) back to the initial state, completing a cycle. The Fe2+ to Ru3+ ET 

rate measured directly from the rate of baseline recovery in the photoinduced scheme 

should be exactly the same as measured in the flash I quench experiment. Determination 

of the photoinduced *Ru2+ to Fe3+ rate (kET*) is more complicated, since it is not 

observed directly. Rather, the rate of formation of the detectable Fe2+-Ru3+ species 

corresponds to the excited state decay rate. The photoinduced ET rate is usually small 

( -105 s-1) relative to the observed decay rate (kd -107 s-1 ), thus it cannot be reliably 

calculated by the small difference in the excited state lifetimes of the ferric and ferrous 

modified proteins. However, it can be estimated from the quantum of yield of ET 

product formed relative to the amount of excited state generated: 
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Figure 3.2 Reaction scheme for the photoinduced ET methodology. kET* is the rate 

of *Ru2+ to Fe3+ (photoinduced) ET and kEynm is the rate of Fe2+ to Ru3+ (metal to 

metal) ET. 
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k • _ { [ET products] } k 
~ - d 

[excited state generated] 

kET • is the rate constant of photoinduced ET from *Ru2+ to Fe3+ and ~ is the observed 

excited-state decay rate constant. From this type of analysis, a photoinduced ET rate 

from *Ru(bpyh(im)His332+ to Fe3+ of 2.0 x 105 s-1 was determined in horse heart cyt c, 

corresponding to only a 2% yield of ET product. It should be noted that the character of 

the photoinduced ET reaction is significantly different from that of the Fe2+ to Ru3+ ET. 

In the latter reaction, the electron is transferred from a metal localized electronic orbital 

to another metal localized electronic orbital. However, the ET from the Ru excited state 

originates from a MLCI' state, and the transferred electron therefore originates from a 

delocalized 1t* orbital on the bipyridylligand. Thus these two fundamentally distinct ET 

reactions must be treated differently in the electronic coupling analysis. 

With these ET tools in hand, the stage is set to investigate ET to and from various 

positions on the protein surface. In this chapter, mapping studies are described that 

extend the Ru(bpyh(im)2+ labeling technique to other surface His residues on cyt c. 

Ru(bpyh(im)2+ modification and both flash I quench and direct photoinduced ET data 

were obtained for C. k. His39, S.c. His62 and semisynthetic His72 cyts c. Discussion of 

these rates in the context of electronic couplings is relegated to Chapter 4. 

ll. Experimental 

Most relevant instrumentation, methods, and materials were described in the 

experimental section of Chapter 2. Materials, methods and instrumentation introduced in 

this Chapter are presented below. 
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A. Materials 

Native C. k. cyt c was obtained from Sigma (Type Vll). The genetically 

engineered triple mutant Asn62 to His, His39 to Gln, and Cys102 to Ser mutant of S.c. 

cyt c was kindly provided by Dr. Bruce E. Bowler.6 [cis-Ru(bpyh]Cl2 was obtained from 

Strem. Ru(bpyh(C03) was synthesized from [cis-Ru(bpy)2]Cl2 by the procedure of 

Johnson et az.19 [Ru(bpyh(imh]Cl2 was prepared by the method of Long et a1.20 

Hexaammineruthenium(ill)chloride was obtained from Strem and recrystallized from 1 

M HCL Diethylpyrocarbonate (DEPC) was obtained from Sigma and stored under argon. 

Trypsin (Type XIII), containing tosylamide-2-phenylethyl chloromethyl ketone, and 

ultrapure (99+) imidazole were obtained from Sigma. 

B. Instrumentation 

Luminescence spectra were recorded on an instrument constructed at Caltech that 

has been described previously, with some modifications.21 The instrument is currently 

equipped with a Spex 1624 monochrometer for excitation spectra. 

Time-resolved transient absorption and emission lifetime data were obtained on a 

Caltech-constructed nanosecond laser spectroscopy assembly in the Beckman Institute 

Laser Resource Center. A schematic of the system is presented in Figure 3.3. 25 ns full­

width-half-maximum laser pulses were generated using a Lambda Physik LPX210i XeCl 

excimer-pumped Lambda Physik FL3002 dye laser. The excimer pump beam (308 nm, 

-300 mJ) was attenuated with a partially reflecting beamsplitter (75% transmittance) 

before the dye laser. 480 nm pulses were obtained using Exciton Coumarin 480 dye 

dissolved in ultrapure Burdick & Jackson MeOH. 

The output of the dye laser passed through a 4:1 beam expander then through two 

Glan-laser polarizers. Laser pulse energy was measured with a Scientech 372 Power and 

Energy Meter and the polarizer axes were adjusted relative to one another to discard a 
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Figure 3.3 Schematic diagram of the nanosecond resolution transient absorption 

apparatus at the Beckman Institute Laser Resource Center. The gas purifier for the XeCl 

excimer laser is not shown. The laser beam ( - - - ) and probe light ( - ·- ·- · ) are actually 

collinear at the sample, illustrated skewed for clarity. Figure courtesy of Andy Stevens. 
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fraction of the pulse to obtain a 2 - 4 mJ final pulse energy. A small fraction of the pulse 

was selected with a glass plate and directed onto an Electro-Optics Technology ET2000 

pin photodiode. The photodiode output was fed into a Phillips Scientific Model 6930 

windowing discriminator. Only pulses that fell in a narrow energy range (E ± 12%) 

would pass though the discriminator and thereby trigger the digitizer for data collection. 

The beam was focused onto the sample cuvette with a 1-m focal length fused-silica lens. 

The probe light source was a PTI 75-W Xenon arc lamp in a PTI A1010 (f/15 

ellipsoidal reflector) end-on housing and powered by a PTI LPS-220 arc lamp supply. 

For most measurements, increased lamp intensity was desired for optimal signal-to-noise 

ratio. The lamp was simmered at 65 -70 W then pulsed for 1 ms to 100 A using an 

Analog Modules 778P current pulser connected in parallel with the lamp power supply. 

Pulsed lamp intensity was flat for -0.5 ms. The probe light was focused onto a 1-mm 

aperture. Light passing through the ap(frture was collected with a 50-cm radius-of­

curvature (ROC) spherical-concave mirror (5 em diameter, protected aluminum) then 

focused onto the sample. Light transmitted through the sample was collected by a second 

50-cm ROC spherical mirror and then focused onto the entrance slit of a JY DH-10 

double monochrometer. The excitation beam was directed through 1-cm holes in the 

center of the 50-cm ROC mirrors (Figure 3.3). Thus, with proper alignment, the pulse 

and probe light were collinear. Care was take to ensure that the probed region of the 

sample was fully within the laser beam proflle. Single-wavelength transient absorption 

signals were detected using a R928 Hamamatsu photomultiplier tube housed in a 

Products for Research TEI77RF thermoelectrically cooled chamber. Voltage across the 

PMT was applied with a PC-driven LeCroy 2415 high voltage supply. Applied voltage 

was adjusted for maximum signal intensity within the 650 to 1200 V range. 

Electronics were synchronized using an EG&G Princeton Applied Research 

Model9650 Digital Delay Generator. The transient signal was amplified using either a 

Brookhaven National Labs-constructed quasi-differential amplifier (200 MHz, 7 J..LNmV) 
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for kinetics on the 1.25 to 750 J.lS timescales, or a LeCroy DSP 1402E programmable 

amplifier for kinetics on the 1 to 500 ms timescales. The signal was digitized using a 

Sony Tektronix RTD710A digitizer and data were transferred to a PC via a GPffi 

interface. 

C. Methods 

1. Protein Purification 

Cytochrome c proteins were oxidized and purified as described in Chapter 2 by 

cation-exchange chromatography (FPLC MonoS 10/10 and 16/10) in 25 mM NaPi, pH 

7.0 with an NaCl gradient. C. k. cyt c elutes at 210 mM NaCl and S.c. cyt c elutes at 330 

mM NaCl with the typical slow gradients used. 

2. Modification of Surface Histidine Residues with Ru(bpyh(C03 ) 

The method of Durham was used with some modifications. lOa Typically, a 

degassed solution of 0.1 to 0.3 mM freshly purified ferric cyt c in 25 mM NaPi, pH 7.0 

was prepared in a pear-shaped flask. Either solid or a concentrated solution in buffer of 

Ru(bpy)z(C03)was added anaerobically to the reaction flask to make a final 

concentration of -2 mM Ru(bpy)z(C03). Reactions were performed in the absence of 

oxygen to prevent the formation of intensely blue-colored oxidized ruthenium side 

products. Ru(bpy)z(C03) aquates to form the reactive Ru(bpy)z(H20)z2+ species. The 

reaction was conducted at room temperature under positive argon pressure with gentle 

stirring. All manipulations from this point on were performed with minimal exposure to 

room light to avoid light-mediated degradation. Periodically aliquots of the reaction 

mixture were removed and quenched by gel filtration (PD-10) to separate excess Ru 

reagent from the protein. The remaining reaction mixture was quenched when the 

absorption spectrum of the aliquot indicated at 1:1 ratio of Ru(bpy)z to heme (A292 run: 

A410 run = 1:1. 7). This method of monitoring the progress of each reaction independently 
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yielded consistent modification results as the optimal reaction time appeared to be 

sensitive to the concentrations of reactants, temperature, and even stirring rate. After 

quenching by gel !Iltration in 25 mM NaPi, pH 7.0, the Ru(bpyh(H20)HisX cyt c species 

were converted to Ru(bpyh(im)HisX cyt c by incubation in 2M imidazole (not pH 

adjusted, fmal solution pH -9.3) for 24 to 48 hours (the oxidation state of the Ru complex 

is 2+ unless otherwise indicated). The imidazole was removed by either gel filtration or 

extensive ultrafiltration washes. The reaction products were separated by cation­

exchange chromatography (MonoS 5/5, 10/10, 16/10) in 25 mM NaPi, pH 7.0 with a 

NaCl gradient. Typical yields of the desired product were 10 - 30%. All singly modified 

proteins were repurified by cation-exchange chromatography before use in laser 

experiments. Overmodification was strictly avoided because multiply-modified proteins 

can not be recovered and also contaminate the chromatography columns. Recovered 

unmodified protein was routinely reused immediately in a second modification reaction 

to obtain higher net product yields. 

3. Diethylpyrocarbonate Reactions 

Under mild conditions (pH 6.5 to 7 .0), diethylpyrocarbonate (DEPC) reacts 

exclusively with uncoordinated surface His residues to afford an adduct that absorbs at 

240 nm (£ = 2750 M-1 cm-1).22 Thus this reaction provides an independent test for the 

number of available surface His sites, and reports the status of Ru modification of surface 

His residues. A stock solution 0.2 M DEPC in ethanol was prepared fresh each day. A 

100-fold excess of DEPC (10 J.Ll of the stock solution) was introduced into a 1 em 

pathlength cuvette with 1 ml of -10 J.LM protein in 25 mM NaPi, pH 7.0. The absorbance 

at 220, 238, 240, 242, and 410 (control) nm was monitored as a function of time using the 

kinetics mode of the Hewlett-Packard Model 8542 photodiode array spectrophotometer. 

Scans were accumulated every 5 seconds for 30 minutes. Data obtained on the 

Ru(bpyh(im)2+-modified proteins were complicated by the presence of an additional 
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band at 220 nm, perhaps corresponding to modification of the bipyridyl ring, and the 

ability of the DEPC to react with the pendant imidazole of the Ru(bpyh(im)His2+ 

complex. 

4. Luminescence-Decay and Transient-Absorption Measurements 

Samples were prepared in 1 em square precision quartz cuvettes (NSG Glassware) 

equipped with a glass blown bulb and Kontes 24/40 joints for degassing on a vacuum I 

argon Schlenk line. All samples were deoxygenated as described in Chapter 2. Samples 

were stirred continuously with a teflon microstirbar during data collection except on long 

time bases where the sample was stirred between laser shots. A laser repetition rate 

between 1 and 2 Hertz was used. 

Luminescence decay and transient absorption data were obtained on the Beckman 

Institute Laser Resource Center nanosecond laser system operated by a 386 PC with 

software written by Dr. Jay R. Winkler. For luminescence decay measurements, an 

appropriate optical low pass f'llter was placed in front of the beam just before the 

monochrometer to reduce scattered laser light. Neutral density f'llters were also used, if 

necessary, to keep the signal below 0.1 intensity units. For transient absorption 

measurements, appropriate low pass or interference optical filters were placed before and 

after the sample. The PMT voltage, monochrometer slits, lamp power, and neutral 

density filters were adjusted to maximize the signal-to-noise ratio and wavelength 

resolution and to most effectively utilize the PMT dynamic range. Luminescence decay 

data for Ru(bpyh(im)His2+ derivatives were obtained at 650 nm <"-max= 670 nm, vide 

infra). Transients monitoring the oxidation state of the heme were routinely collected at 

550, 425 and in the 395 to 400 nm region. As can be seen from the difference spectrum 

for reduced minus oxidized cyt c presented in Figure 3.4, these wavelengths represent 

large.& for Fe2+fFe3+ (~e550 = 18500 M- 1 cm-1; ~e425 = -31100 M-1 cm-1; ~E:39s = 

-21300 M-1 cm-1). The difference absorption spectrum for the *Ru(bpyh(imh2+ excited 
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Figure 3.4 Difference electronic absorption spectrum -of reduced minus oxidized 

horse heart cyt c in 25 mM NaPi, pH 7.0. Extinction coefficients are from Margoliash, 

E.; Frohwirt, N. Biochem. J. 1959, 71, 570. 
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state minus the Ru(bpy)z(im)z2+ ground state is shown in Figure 3.5.23 Data to be used 

for calculating the concentration of excited state generated by the laser pulse were 

collected at 370 nm (~e370 = 11000 M-1 cm-1, vide infra). To ensure that ET is occurring, 

it is advantageous to detect redox state changes directly at the Ru-label center. The 

Ru(bpy)z(im)z3+ minus Ru(bpy)z(im)z2+ difference spectrum is given in Figure 3.6.23 

Because the difference in E values for the Ru3+JRu2+ species are fairly small relative to 

the changes observed in the heme chromophore in most regions of the spectrum, the 

Ru3+JRu2+redox changes are most readily probed at Fe2+/Fe3+ isosbestic points (e.g., 

434, 504, and 541 nm) and at 306 nm. For all Fe2+ to Ru3+ ET rates discussed, the rate 

constants measured at the Fe2+/Fe3+ wavelengths exactly correspond to those observed at 

the Ru2+JRu3+ wavelengths, thus ensuring that ET between the Ru and Fe redox centers is 

being observed. 

Photoinduced ET was observed in deoxygenated Ru-modified ferric protein 

samples ranging from 5 to 20 JJ.M. Flash I quench ET was observed in deoxygenated Ru­

modified ferrous protein samples 5 to 20 J.lm, which were also 4 to 7 mM in [Rua6]Cl3. 

The ferrous modified protein was generated immediately prior to the experiment by 

reduction with sodium dithionite followed by gel filtration (PD-10). All experiments 

were performed in 50 mM NaPi, pH 7.0 at ambient temperature. The integrity of all 

samples was routinely checked by absorption spectroscopy during the course of the laser 

experiments and by cation-exchange chromatography following the experiment. 

Typically, very little modified protein degradation was observed; the major laser­

mediated degradation product being unmodified protein ( -10% ). Even so, samples were 

used for only one day of data collection. Suspect data were discarded. 

The instrument response was obtained by collecting "luminescence decay" data on 

a sample of buffer at 480 nm. Collection of the scattered laser light represents the laser 

beam profile. NOTE: Neutral density filters up to 8.0 must be used to protect the PMT 

from the intense scattered laser light at this wavelength. 
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Figure 3.5 Difference electronic absorption spectrum of *Ru(bpyh(imh2+ minus 

Ru(bpyh(imh2+ from transient absorption studies in 50 mM NaPi, pH 7.0. Data scaled 

based on 8£ = 11000 M-1 cm·l at 370 run. Data courtesy of Dr. Morten J. Bjerrum. 
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Figure 3.6 Difference electronic absorption spectrum of Ru(bpy)z(im)z3+ minus 

Ru(bpy)z(im)z2+ from transient absorption studies in the presence of oxidative quencher 

in 50 mM NaPi, pH 7.0. Data courtesy of Dr. Morten J. Bjerrum. 
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5. Data Analysis 

Data were fit with two different least squares fitting programs written by Dr. Jay 

R. Winkler. KINFIT allows one to select the region of the data set to be fit as well as 

define time zero (to obtain accurate values for the coefficients on the rate constants 

extrapolated to time zero (en)). The data can be fit using up to three exponential 

components according to (for a three-exponential fit): 

where tis time, en is the coefficient of the nth component at t = 0, and~ is the first-order 

rate constant for the nth component. In this program, each parameter can be either set at a 

desired value, constrained to a given sign, or allowed to be optimized. Residuals were 

calculated and displayed to judge the goodness of fit. This fitting procedure was 

adequate on all timescales longer than 2.5 JlS. On fast timescales, the laser pulse can no 

longer be treated as infinitely narrow and the data must be deconvoluted from the 

instrument response to obtain valid rate values. DECON deconvoluted the measured 

instrument response from a given data file while fitting up to three exponentials using a 

similar least squares procedure. On all but the 1.25 JlS timescale, rates obtained using 

either KINFIT or DECON were identical within experimental error. 

Photoinduced ET rate constants for *Ru2+ to Fe3+ ET (kET*) were obtained using 

three independent data sets collected on the same sample at identical experimental 

conditions. First, the luminescence decay rate is obtained from the emission lifetime of 

the ferric Ru(bpyh(im)2+-modified protein. This value was fixed in subsequent fits 

unless there is an additional signal due to scattered light in the transient absorbance data 

set. In this situation, the rate of reduced heme formation appears larger than it actually is 

and this variable was optimized in the fits. The en value for this component is 

meaningless in this case. The concentration of *Ru2+ excited state generated by the laser 
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pulse is calculated by fitting the transient absorption signal at 370 with the luminescence 

decay rate (convolved with the instrument response) and extracting the en value for that 

component. Using a value of L1e (*Ru2+- Ru(ground state)) =11000 M-1 cm-1, en can be 

converted to concentration. Although there is some contribution to the signal at this 

wavelength due to Fe3+JFe2+ transient absorption (L1e = -13500 M-1 cm-1) the quantum 

yield of ET products is usually much less than the quantum yield for excited state 

generation, and this second, slower, rate component is not significant. Typically, 70 to 

90% of the available Ru(bpyh(im)HisX2+ species are converted to the excited state, 

while < 10% of these excited-state species generate ET products. Fits of data sets 

probing the Fe2+JFe3+ kinetics (using kernm values obtained independently from flash I 

quench experiments and the photoinduced experiments for the Fe2+ to Ru3+ rate) extract a 

en value for electron transfer products that is converted to concentration using the 

appropriate L1e (Fe2+JFe3+). The photoinduced ET rate is then the quantum yield ofET 

products formed ([Fe2+] I [*Ru2+]) multiplied by the luminescence decay rate. Quantum 

yields were not determined for the Ru2+ JRu3+ couple. 

As mentioned previously, all Fe2+JFe3+ rates were measured at a minimum of 2 

independent wavelengths and Ru2+fRu3+ rates obtained by collecting data at at least one 

heme isosbestic wavelength to ensure that ET from/to the heme corresponded to ET 

from/to the heme. Full data sets (i.e., transients obtained at multiple wavelengths) were 

obtained with at least two separate preparations of the modified proteins and usually on a 

total of more than eight samples at different concentrations for both the flash I quench 

and photoinduced experiments. 

Values from data set fittings were analyzed using basic error analysis to obtain 

rate constants and their associated uncertainties. 24 Reported Fe2+ to Ru3+ rates were 

obtained by error-weighted averaging of all data obtained in both photoinduced and flash 

I quench experiments (fori individual measurements) according to: 
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1 
CO·=-

' 0"·2 
I 

with X best as the reported rate constant, x as individual rate measurements, and a as the 

estimated error associated with each measurement for i data sets. Thus, measurements 

with larger intrinsic errors contribute less to the final reported result. Uncertainties in the 

rate value from each individual measurement were estimated by inspection of the quality 

of fits (using the residuals) to a range of rate values. If not deconvoluted, only data 

collected after the complete decay of the pulse and excited state were used in the fits to 

avoid bias. The uncertainty of the reported rate constant was obtained using: 

1 
0" X best = -~-.==N== 

I,coi 
i=l 

For the analysis of the photoinduced rates, uncertainties in each individual rate 

determination (crkET*) are due to uncertainties in~. kEyrun, cn, and LlE values. These 

uncertainties were propagated according to: 
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kET* is function of N parameters, each with a value X and an uncertainty O'x· 

Uncertainties in rates (kEt= and~) were estimated from several fits as described, 

uncertainties in cn were estimated from the magnitude of the noise (gauged in the 

residuals), and uncertainty in ..1E for *Ru2+- Ru at 370 nm was estimated as 20%. Note 

that the values of cn extracted from single and double exponential fits are extremely 

sensitive to the value of kEt=· Therefore, the difference in the values of cn calculated by 

fits using reasonable kBt= rates was used as the uncertainty in cn if this value was larger 

than the value estimated from the magnitude of noise. The uncertainty in the values of cn 

dominated the error analysis, especially for faster kEt= rates. 

lll. Results and Discussion 

A. Model System: Ru(bpyh(im)i+ 

The absorption spectrum of Ru(bpyh(imh2+ in 25 mM NaPi, pH 7 .0, is given in 

Figure 3.7 (Amax = 292 nm (E =56700 M-1 cm-1) (1t -1t*) and 490 nm (E =87300 M-1 cm-1) 

(MLCI')). The strong absorption properties of this complex allow for unmodified, singly, 

and doubly Ru(bpyh(im)2+-modified heme proteins to be readily distinguished from one 

another. The luminescence decay (A.ex = 480 nm, Aobs = 650 nm) is shown in Figure 3.8. 

The rate constant measured for excited-state deactivation (kd) is 1.51(5) x 107 s-1 ('t = 66 

ns) in 50 mM NaPi, pH 7 .0. 

A laser power saturation study of the transient absorption signal at 370 nm of the 

excited state lead to an estimate of ..1£ (*Ru2+- Ru(ground state)) of 11000 M-1 cm-1. The 

signal of the 9.9 J.1M sample was fully saturated at 2 mJ energy. The intensity of the 

transient absorption signal was observed to decay (-20% with 1000 laser shots) with laser 

exposure, therefore a fresh sample was used at each power measured. This 

photodegradation may be due to loss of an imidazole ligand. However, the 

Ru(bpyh(im)2+-modified proteins did not exhibit this photodegradation to a similar 

extent, although a small quantity of the label was lost over time. 
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Figure 3.7 Electronic absorption spectrum of Ru(bpyh(imh2+ in 50 mM NaPi, pH 

7.0. 
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Figure 3.8 Luminescence decay of a 9.9 J.LM sample of Ru(bpyh(imh2+ in 50 mM 

NaPi, pH 7.0 observed at 650 nm following excitation at 480 nm (4 mJ pulse). The 

smooth line is the fit to a single exponential decay function convolved with the 

instrument response (shown); ~= 1.51(5) x 107 s-1. 
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The excited state lifetime of the Ru(bpyh(im)(H20)2+ complex was investigated 

by Dr. Angel Di Bilio. It was determined that this species has a luminescence lifetime 

that is too short to be resolved by the 25 ns laser pulse. Therefore, an impurity of the 

aquo complex on the Ru(bpyh-modified proteins due to incomplete reaction with 

imidazole (which cannot be separated by cation-exchange chromatography, vide infra) 

will not contribute to observed ET kinetics because this complex is photophysically 

inactive for ET via the methods used here. 

B. Ru(bpyh(im)His33 cyt c (horse heart) 

The modification and ET properties of horse heart Ru(bpyh(im)His33 cyt c have 

been studied in the Gray group by Dr. I-Jy Chang.l3 Ru(bpyh(im)2+ modification of 

native protein was performed as part of this doctoral work to study the modification 

reaction and determine the biophysical properties of Ru(bpyh(im)2+-modified heme 

proteins because ample quantities of protein could be readily generated. 

1. Ru(bpy h(im)2+-Modification Reaction 

The modification reaction was conducted as described in General Methods. A 

trial reaction was initially performed to monitor the time course of the reaction. Aliquots 

removed during the course of the reaction and subsequently treated with imidazole were 

analyzed by analytical cation-exchange chromatography (FPLC Mono S 5/5). Four 

prominent singly-modified bands that elute at ionic strengths slightly higher than the 

native protein grow in with time, followed by numerous multiply-modified bands. A 

representative cation-exchange chromatogram of a modification reaction is shown in 

Figure 3.9 (MonoS 16/10). Band I is the native protein while bands IT and Til have been 

assigned to His33-modified species and bands IV and V to His26-modified species (vide 

infra). Band III was used for ET studies13 and is used for the characterization described 

unless otherwise specified. Tryptic mapping confirms that band III contains 
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Figure 3.9 Typical cation-exchange (FPLC MonoS 16/10, flow rate of 6.0 ml/min) 

chromatogram for the native horse heart cyt c reaction products from the modification 

reaction with Ru(bpyh(C03) in 25 mM NaPi, pH 7.0. Gradient represents the 

concentration of NaCl in mM. Band I corresponds to unmodified protein, bands labeled 

II- V represent the four prominent singly Ru(bpyh(im)2+-modified cyt c products. The 

band that elutes with the void volume is Co(EDTA)-, added to fully oxidize the sample 

prior to purification. Detection is on the 0.2 absorbance scale at 280 nm. 
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Ru(bpyh(im)His33-modified cyt c.17 Identical chromatograms were obtained for 

purification of the Ru(bpyh(H20)HisX cyt c adducts (i.e., purification prior to incubation 

with imidazole), implying that the aquo and imidazole species cannot be resolved by 

cation-exchange chromatography. The product ratio of the 4 singly modified proteins 

isolated is extremely sensitive to experimental conditions; different ratios were obtained 

at different concentrations of product and reactant, ionic strength, and in reactions run on 

the ferrous protein. Typical reaction conditions were 0.4 mM purified horse heart cyt c, 

3.0 mM Ru(bpyh(C03) in 25 mM NaPi, pH 7.0 and reactions were quenched after 42 

hours. Incubation in 2M imidazole was conducted at room temperature for 48 hours. 

The modified proteins were purified to homogeneity prior to use. 

2. Absorption Spectroscopy 

The absorption spectrum of Ru(bpyh(im)His33 Fe3+cyt c (band Ill) in 25 mM 

NaPi, pH 7.0, is presented in Figure 3.10. It corresponds exactly to the sum of one 

equivalent ferric cyt c (Figure 2.4) and Ru(bpyh(imh2+ (Figure 3.7), including the 

presence of the 695 nm band indicative of intact Met ligation (not shown). All singly 

modified Ru(bpyh(im)2+ cyt c derivatives discussed in this chapter possess identical 

spectral features unless otherwise indicated. 

3. Electrochemistry 

Differential pulse polarography was performed on Ru(bpyh(im)His33 cyt c in 50 

mM NaPi, 10 mM 4,4'-bipyridine, pH 7.0 at a gold button electrode as described in 

Chapter 2. The heme potential increases moderately (-15 mV) (E 0 ' = 280(5) mV vs. 

NHE) upon Ru(bpyh(im)2+ modification at position 33. However, scans in the region of 

the Ru(bpyh(im)His333+!2+ potential indicated no reversible wave present. Furthermore, 

after scanning at high potential, the heme wave at lower potential disappeared. 
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Figure 3.10 Electronic absorption spectrum of ferric Ru(bpyh(im)His332+ cyt c in 25 

mM NaPi, pH 7.0. Absorption bands are assignments are given. 
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Differential pulse polarography at the 4,4'-bipyridine-modified gold electrode is therefore 

not a viable technique for the determination of the Ru(bpyh(im)His333+/2+ potential. 

4 . Diethylpyrocarbonate Modification 

It has been reported that native horse heart cyt c possesses one DEPC-modifiable 

His residue at position 33; His26 is buried within the protein and therefore not accessible 

to modification. 21 As expected, DEPC modification of native horse heart cyt c indicated 

the presence of exactly 1 accessible His residue (see Figure 3.11 for representative data). 

In contrast, both bands IV and V of the native cyt c modification reaction possess 1.5 

modifiable His residues. The indication of the presence of a fractional His present may 

be due to the contribution of absorption of a concurrently formed 220 run band at 240 

nm., making it difficult to determine the precise absorption at 240 nm. Band III yielded 

0.3 modifiable His residues and band IT appeared to have 0.2 to 0.4 surface His resides. 

However, in band II the 220 nm band was quite intense, and it was again difficult to 

accurately determine the change in absorption at 240 nm. Overall, the DEPC 

modification results are in agreement with bands II and ill being Ru-modified at position 

33 and bands IV and V modified at His26, although the presence of an additional adduct 

at 220 nm in the Ru(bpy)z(im)2+-modified proteins makes it impossible to definitively 

assign the position of the Ru(bpy)z(im)2+ label from DEPC modification data alone. 

5. Circular Dichroism Measurements : Melting Transition and Evidence for 

L1 and A Isomers 

Comparison of the CD spectra in the far UV region of native cyt c and 

modification products bands II and ill indicate that the Ru(bpyh(im)2+ modification of 

cyt cat position 33 results in negligible perturbation of secondary structure (Figure 3.12). 

CD data obtained at the Kansas State University by Prof. L. Anderson on bands IV and V 

(His26-modified products) are also nearly identical with native, indicating negligible 
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Figure 3.11 Time course of the DEPC modification reaction with native cyt c at the 

conditions described in the text. Protein concentration is 21j.!M. The traces that grow 

with time monitor absorption at 236, 238, 240, and 242 nm. The time independent trace 

is a control monitoring absorption at 410 nm (Soret). The change in absorption 

corresponds to one modifiable His residue per protein. 
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Figure 3.12 Far-UV circular dichroism spectra of native horse heart ferric cyt c ( · · · · ), 

Ru(bpyh(im)His33 ferric cyt c (band II) ( -- ), and Ru(bpyh(im)His33 ferric cyt c 

(band III) (used for ET experiments) (- · · ·- · · · ) in 25 mM NaPi, pH 7.0. Sample 

concentrations were 11 - 12 J.1M and spectra were obtained in a 0.1 em pathlength cell on 

the 20 mdeg sensitivity scale at ambient temperature. 
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secondary structural alterations in these modified proteins. The melting transition of 

ferric Ru(bpyh(im)His33 cyt c (band ID) was determined to be 80° C by temperature-

dependent CD at 222 nm, slightly lower than the native transition at 87° C. The melting 

transition is reversible, i.e., the helical secondary structure is recovered upon returning to 

room temperature. 

An interesting effect was noted25 in the CD spectrum in the region of the 

bipyridyl1t - 1t* absorption. A positive Cotton effect was observed at -296 nm for bands 

III and V and a negative Cotton effect in bands II and IV at this wavelength (Figure 3.13 

A and B). This observation implies that the four singly modified products correspond to 

the delta and lambda isomers formed at position 33 and 26. The two possible 

stereoisomers of the cis-Ru(bpyh(imh2+ complex are illustrated in Figure 3.14. While 

unexpected, it is conceivable that the overall surface charge distribution on the ll.­

Ru(bpyh(im)His33 cyt c isomer differs enough from that of A-Ru(bpyh(im)His33 cyt c 

to accommodate separation by cation-exchange chromatography. Based on previous CD 

work on L\ and A isomerism in tris-phenathroline and bipyridyl complexes,26 band II is 

tentatively assigned as L\-Ru(bpyh(im)His33 cyt c, band ill (used for electron transfer) 

A-Ru(bpyh(im)His33 cyt c, band IV as L\-Ru(bpyh(im)His26 cyt c, and band V as A­

Ru(bpyh(im)His26 cyt c. 

6. 2-D COSY NMR Studies 

In an effort to ascertain ifRu(bpyh(im)2+ modification of cyt c perturbs the 

protein structure, intensive NMR investigations were conducted on the ll. and A isomers 

of ferric Ru(bpyh(im)His332+ cyt c in collaboration with Prof. Peter E. Wright and Dr. 

Dimitrios Morikis of the Scripps Research Institute. A comparison of amide N-H and 

Ca-H proton shifts obtained from double quantum COSY experiments with native cyt c, 

L\-Ru(bpyh(im)His33 cyt c and A-Ru(bpyh(im)His33 cyt c (2 - 4 mM protein in 

90%/10% H20/D20, 100 mM NaPi, 150 mM NaCl, pH 5.7, 293 K) indicate there is no 
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Figure 3.13 (A) Circular dichroism spectra in the near-UV region of 

Ru(bpyh(im)His33 ferric cyt c (band II)(--), and Ru(bpyh(im)His33 ferric cyt c 

(band III) (used for ET experiments) ( - . · ·- · · · ) in 25 mM NaPi, pH 7 .0. Sample 

concentrations were 11 - 12 f.1M and spectra were obtained in a 0.1 em pathlength cell on 

the 20 mdeg sensitivity scale at ambient temperature. (B) Circular dichroism spectra in 

the near-UV region of native horse heart cyt c ( ), Ru(bpyh(im)His26 ferric cyt c 

(band IV) (- - - - - ), and Ru(bpyh(im)His26 ferric cyt c (band V) ( · · · · · ) in 20 mM 

NaPi, pH 6.9. Sample concentrations were 46- 60 ~M. Data collected by Prof. Laura 

Anderson at Kansas State University.25 
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Figure 3.14 illustration of the~ and A isomers of Ru(bpyh(imh2+. 
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significant perturbation of the protein structure. The "fingerprint" region (Ca-H to N-H 

proton-proton ]-coupled crosspeaks), assigned by Englander and coworkers,27 was 

scrutinized, and the experimental results are detailed in Appendix A. Spectra obtained 

for ~-Ru(bpyh(im)His33 cyt c and A-Ru(bpyh(im)His33 cyt c were similar, implying 

that the Ru(bpyh(im)2+ label does not interact appreciably with the protein surface. 

Interestingly, differences between the two isomers were observed in the region of the C­

terminal helix. 85% of the assignments made for the native protein could be transferred 

to the Ru(bpyh(im)His33 modified proteins (i.e., resonances were within 0.1 ppm of the 

native assignment). Changes in chemical shift were noted between residues 90- 100, 

indicating either small structural changes in the vicinity of the label or shifts due to 

contact interactions or ring-current effects with the aromatic rings of the Ru ligands. In 

other regions of the protein, resonances either were not observed (due to significant 

shifting or lack of sensitivity) or shifted, however no pattern of structural changes was 

discerned. 

7. EPR Spectroscopy 

The EPR spectrum of ferric A-Ru(bpyh(im)His33 cyt cat 6.8 Kin 50 mM 

HEPES, 50% glycerol, pH 7.0 was virtually identical with the spectrum of the native 

horse heart protein. 

C. Ru(bpyh(im)His72 cytc (semisynthetic horse heart) 

The semisynthesis, characterization and pentaammine modification of His72 cyt c 

is described in Chapter 2. Extension of this work using the Ru(bpyh(im)2+-modification 

technique is presented here. 
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1. Ru(bpyh(imf2+-Modification Reaction 

The modification reaction was conducted as described in General Methods. To 

characterize the modification reaction, a trial reaction was conducted to monitor the time­

dependent growth of modified protein products. Aliquots removed during the course of 

the reaction were analyzed, following imidazole treatment, by analytical cation-exchange 

chromatography (FPLC Mono S 5/5). Four singly modified bands grow in that elute at 

an ionic strength slightly higher than the native protein, exactly analogous to products 

observed in the Ru(bpy)z(im)2+-modification reaction of native horse heart cyt c. 

Therefore, these products were identified as His33 and His26 modified proteins Three 

additional singly modified products grow in at higher ionic strength and in higher yield 

than any other Ru(bpy)z(im)2+-modified cyt c product (analogous to the 

pentaammineruthenium-modification reaction, refer to Chapter 2). These products were 

tentatively assigned as His72 singly modified species. A representative chromatogram of 

the modification reaction after imidazole treatment is given in Figure 3.15. The product 

elution profile by cation-exchange chromatography is nearly identical if the reaction 

products are separated prior to imidazole treatment, implying that the 

Ru(bpy)z(H20)HisX cyts c have identical elution times with the Ru(bpy)z(im)HisX cyts c 

and cannot be distinguished by cation-exchange chromatography. 

Of the three His72-labeled products (labeled A, B, and C), only band B was used 

for ET studies. While bands A and B appear to possess absorption spectra identical with 

that given in Figure 3.10, close analysis reveals that band C does not possess a 695 nm 

band. Therefore, Met80 ligation must be altered in this species. It is possible that the 

Met residue is displaced by an imidazole during imidazole treatment since the pH at 

which that reaction is usually performed is near the pKa for the alkaline transition in 

horse heart cyt c (pKa -9.3).28 In this transition, the Met axial ligand is displaced by a 

strong-field ligand. Band A was typically recovered in too low yield for extensive study, 

although it has been characterized by CD (vide infra) and possesses a typical 
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Figure 3.15 Typical cation-exchange (FPLC MonoS 10/10, flow rate of 3.5 ml/min) 

chromatogram for the semisynthetic His72 cyt c modification reaction with 

Ru(bpyh(C03 ) reaction products in 25 mM NaPi, pH 7.0. Gradient represents the 

concentration of NaCl in mM. The first main band corresponds to unmodified protein, 

bands labeled A, B, and C represent the three singly Ru(bpyh(im)2+-modified cyt c 

products not observed in the modification reaction with native horse heart cyt c. 

Detection is on the 1.0 absorbance scale at 405 nm. 
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luminescence decay lifetime. Bands that elute at higher ionic strength correspond to 

multiply modified products. 

Typical modification reactions were 0.2 mM purified His72 cyt c, 2.0 mM 

Ru(bpyh(C03) in 25 mM NaPi, pH 7.0 and were quenched after 15 hours of reaction. 

Incubation in 2M imidazole was conducted at room temperature for 48 hours. Imidazole 

was removed by gel filtration prior to FPLC purification. The modified protein was 

repurified before use. 

2. Tryptic Mapping 

To confirm that band B used for subsequent ET studies was indeed modified at 

position 72, a tryptic digest analysis was conducted. Trypsin is a protease that catalyzes 

the hydrolysis of peptide bonds, and specifically cleaves on the carboxy side of Lys and 

Arg residues. Cleavage sites in the protein and the anticipated peptide-fragment products 

are given in Figure 3.16.29 In this analysis, the tryptic fragments are isolated by reversed­

phase chromatography and the peptide containing the Ru label is identified by UV /vis 

absorption spectroscopy. Microsequencing affords identification of the Ru-containing 

peptide and thus the site of modification can be unambiguously determined. 

A 0.52 mg sample of native horse cyt c in 260 IJ.l and a 0.1 mg sample of 

Ru(bpyh(im)His72 cyt c in 120 IJ.l of0.1 M NH4C03, pH 8.5 were incubated with trypsin 

(2 mg/ml in 0.001 M HCl, added in two separate aliquots at T = 0 and T = 4 hours for a 

total of 4% trypsin by weight) at 37° C for 24 hours. The reaction was quenched by 

addition of dilute HCl to adjust the digestion solutions to pH 2.0. The digested samples 

were lyophilized and analyzed by reversed-phase chromatography detected at 280 nm 

(FPLC PepRPC HR 5/5 with a linear gradient of 0% to 40% CH3 CN with 0.1% 

trifluoroacetic acid in 0.1% aqueous trifluoroacetic acid) (Figure 3.17 A and B). UV/vis 

analysis of the fractions indicated the presence of two new bands in the 

Ru(bpyh(im)His72 cyt c digest not present in the native digest (indicated by* and**, 
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Figure 3.16 Amino acid sequence of His72 cyt c (new His residue marked by 

capitalization) with the sites of cleavage by trypsin29 and the anticipated peptide products 

indicated. 
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1 Ac- Gly- Asp- Val- Glu- Lys- Gly- Lys- Lys- De- Phe 
<················· T1----------------··><--·· T2---·> <···-······ 

11 Val- Gin- Lys- Cys- Ala- Gin- Cys- His- Thr- Val 
--T3---····------><----------------·······-·----T4---···-----···· 

21 G~-L~-~-~-~-~-~-T~-G~-Pro 
-------··--><·-------T 5 ----···> <·-·· T6--·· >< ----······-·····-· 

31 Asn- Leu- His- Gly- Leu- Phe- Gly- Arg- Lys- Thr 
--------------------T7-------------------···········--·-·····-><···· 

41 Gly- Gin- Ala- Pro- Gly- Phe- Thr- Tyr- Thr- Asp 
----------------······--····----·····--·-T~---···------·-·····-·····-

51 Ala- Asn- Lys- Asn- Lys- Gly- De- Thr- Trp- Lys 
------··----------·><·---T9----><·-----···---T10----··········> 

61 Glu - Glu - Thr- Leu - Met • Glu - Tyr- Leu - Glu - Asn 
<·--------------------------------····-----·· T 11----------------······ 

71 Pro- HIS- Lys- Tyr -lie- Pro- Gly- Thr- Lys- Met 
················----·-><---···--·---·--· T12---····----·····-><···--

81 De - Phe - Ala - Gly - lie - Lys - Lys - Lys - Thr - Glu 
----········-T 13-------------------><-··-T14---><······· T15-

91 Arg- Glu- Asp- Leu -lie- Ala- Tyr- Leu- Lys- Lys 
·-·-·><--------·······--· T16----············><···-T 17 ···><···· 

101 Ala- Thr- Asn- Glu -OH 
----······· T1~---············--> 
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Figure 3.17 Tryptic digest maps of (A) native and (B) Ru(bpyh(im)His72 cyt c 

obtained by reversed-phase chromatography (FPLC PepRPC HR 5/5, flow rate of 0.7 

ml/min). Gradient represents the concentration of solution B (CH3 CN with 0.1% 

trifluoroacetic acid) in A (0.1% aqueous trifluoroacetic acid). Bands denoted by an * or 

** correspond to peptides not observed in the digest of native horse heart cyt c. 

Detection is on the (A) 0.1 and (B) 0.05 absorbance scales at 280 nm. 
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Figure 3.17 B) that contained the Ru(bpyh(im)HisX chromophore. Microsequencing (at 

the Caltech Biopolymer Synthesis and Analysis Resource Center) of the band marked by 

**indicated the sequence Glu-Glu-Thr-Leu-Met-Glu-Tyr-Leu-Glu-Asn-Pro-His-Lys, 

corresponding to fragment T11 and confrrming the site of modification at position 72. 

The band marked by * was recovered in far lower yield than the T11 peptide and only the 

first four N-terminal residues could be sequenced. The sequence, Leu-Glu-Asn-Pro, 

corresponds to an uncharacteristic secondary cleavage within the T11 peptide, perhaps 

due to overdigestion. This sequence is unique to the Tl1 peptide. 

3. Diethylpyrocarbonate Modification 

DEPC-modification studies of His72 cyt c, carried out as previously described, 

indicated the presence of approximately 2.5 solvent-accessible His residues. 

Modification of Ru(bpyh (im)His72 cyt c with DEPC indicated the presence of only one 

surface His residue. The analysis of the absorption data was again complicated due to 

concurrent growth of a 220 nm band that is only observed in the Ru(bpy)z(im)2+_ 

modified proteins. Therefore, while the results of the DEPC-modifcation studies are 

consistent with the introduction of a new surface His residue in the His72 cyt c protein 

and the modification of a surface His residue with a Ru species as anticipated, they 

should only be considered as supporting evidence and not definitive proof. The 

absorption spectrum provides a more accurate assessment of the degree of 

Ru(bpy)z(im)2+ modification of a given derivative; spectra of bands A and B indicate 

unambiguously that these proteins are singly modified. 

4 . Circular Dichroism Measurements : Melting Transition and Evidence for L1 

and A I somers 

Comparison of the CD spectra in the far UV region of native cyt c and His72 cyt c 

modification product bands A and B indicate that Ru(bpy)z(im)2+ modification of cyt c at 
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Figure 3.18 Far-UV circular dichroism spectra of native horse heart ferric cyt c 

(--), ferric Ru(bpyh(im)His72 cyt c (band A )(- . · ·- · · · ), and ferric 

Ru(bpyh(im)His72 cyt c (band B) (used for ET experiments) ( · ·· · · )in 25 mM NaPi, pH 

7 .0. Sample concentrations were 11 - 12 J.1M and spectra were obtained in a 0.1 em 

pathlength cell on the 20 mdeg sensitivity scale at ambient temperature. 
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Figure 3.19 Circular dichroism spectra in the near-UV region of ferric 

Ru(bpyh(im)His72 cyt c (band A)(- ... - . .. ) , and ferric Ru(bpyh(im)His72 cyt c 

(band B) (used for ET experiments) ( --)in 25 mM NaPi, pH 7.0. Sample 

concentrations were 11 - 12 ~ and spectra were obtained in a 0.1 em pathlength cell on 

the 20 mdeg sensitivity scale at ambient temperature. 
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position 72 causes negligible disruption of the protein secondary structure (Figure 3.18). 

The melting transition of ferric Ru(bpyh(im)His72 cyt c (band B) was determined by 

temperature-dependent CD at 222 nm and is -80° C in 25 mM NaPi, pH 7.0, similar to 

the transition of ferric Ru(bpyh(im)His 33 cyt c and slightly lower than the unmodified 

His72 cyt c melting transition at 87° C. The measured melting transition was broader 

than normally observed, however this may be due to an experimental artifact present in 

the instrument at this time because the instrument baseline was sensitive to temperature. 

a-helical secondary structure was recovered upon cooling the denatured sample to 25° C, 

indicating that the melting transition is also reversible, as observed with the His33 

modified protein. 

The CD spectrum observed in the 280 nm region for the two His72-modified 

proteins suggests that they are related stereoisomers, as concluded for the His33-modified 

proteins. A positive Cotton effect was observed at -296 nm for band A and a negative 

Cotton effect for band B at this wavelength (Figure 3.19). Therefore, based on the 

previous discussion, band A is assigned as the A-Ru(bpyh(im)His72 cyt c isomer and 

band B (used for ET studies) as the ~-Ru(bpyh_(im)His72 cyt c isomer. Future references 

to Ru(bpyh(im)His72 cyt c refer to the ~ isomer unless otherwise indicated. 

5. Electron-Transfer Studies 

The steady-state emission spectrum of ferric Ru(bpyh(im)His72 cyt c was 

measured at room temperature in 50 mM NaPi, pH 7.0 (Figure 3.20). The luminescence 

was weak and not detectable by eye. The uncorrected emission maximum at 670 nm 

corresponds well with that observed in the Ru(bpyh(imh2+ model compound. lOb 

Luminescence decay and transient absorption measurements on the 

Ru(bpyh (im)His72labeled derivative were made as discussed in General Methods. The 

excited state lifetimes, as fit from the luminescence decay data at 650 nm, were 

essentially identical in each redox state, kd = 1.40(5) x107 s-1 (t = 71 ns) for both ferric 
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Figure 3.20 Steady-state emission spectrum of ferric Ru(bpy)z(im)His72 cyt c (band 

B), 351J.M in 50 mM NaPi, pH 7.0, 27° C ((uncorrected(--); corrected(----)). 

The excitation wavelength was 436 nm with the Hg/Xe lamp. The sensitivity was 0.050 

m V, the time constant was 1.0 s, taken with 1 nm resolution. 
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and ferous Ru(bpyh(im)His72 cyt c. The convolved fit of the luminescence decay data 

for the ferric protein is shown in Figure 3.21. 

Flash I quench and photoinduced techniques were used to acquire data for the 

determination of the Fe2+ to Ru3+ (kEyrun) ET rate. A control experiment was performed 

to insure that the Ru(bpyh(im)His723+ species formed by Rua63+ redox quenching of the 

*Ru(bpyh(im)His72 excited state was stable in the absence of an ET pathway with the 

heme. In Figure 3.22, transient absorption data obtained at 504 nm is presented for a 

sample ofjerric Ru(bpyh(im)His722+ cyt c (11.3 JlM in 50 mM NaPi, pH 7.0) with 20 

mM Rua63+. As demonstrated by the flat trace, the Ru(bpyh(im)His723+ species 

generated by the excited state redox quenching does not react with any other site on the 

protein, and is entirely stable on the timescale of observed ET kinetics. Recovery of the 

ferrous Ru(bpyh(im)2+-modified protein on a long timescale is achieved by the 

bimolecular Rua62+ to ferric protein ET, which is retarded due to the low concentration of 

these species. 

A full analysis of 16 data sets from both the direct photoinduced and flash I 

quench experiments at 550 and 395 (or 400) nm fit to both single and double exponentials 

(to fit the fast minor component due to excited state decay) led to the calculation of a Fe2+ 

to Ru3+ ET rate of 9.0(3) x 1Q5 s-1. Identical kinetics were observed in the flash I quench 

experiment at wavelengths corresponding to Ru3+/2+ (504 and 306 nm) and heme ET. 

Data obtained at 550, 504, and 395 nm for the flash I quench experiments are shown in 

Figure 3.23. Data from the photoinduced experiments and at 550, 395 and 306 nm are 

presented in Figure 3.24. 

The rate for photoinduced ET (kET*) was calculated as described from three full 

data sets (transient absorption at 370, 395, and 550 nm). The data obtained at 370 nm 

used to calculate the concentration of excited state obtained was fit convolved with the 

laser pulse (Figure 3.25). Kinetic measurements at 306 nm confirmed that identical ET 
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Figure 3.21 Luminescence decay of a 15 J.lM sample of ferrous Ru(bpyh(im)His72 cyt 

c in 50 mM NaPi, pH 7.0 observed at 650 nm following excitation at 480 nm (2 mJ 

pulse). The smooth line is the fit to a single exponential decay function convolved with 

the instrument response (shown); kd = 1.40(5) x 107 s-1. 
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Figure 3.22 Transient absorption kinetics at 504 nm following laser flash excitation 

(480 nm, 25 ns, 2 mJ) of Ru(bpy)z(im)His722+- Fe3+ cyt c (111J.M) and Rua63+ (20 mM) 

in 50 mM NaPi, pH 7.0, at room temperature. The transiently generated 

Ru(bpy)zHis723+- Fe3+ cyt c species is present in solution for up to 0.1 s before 

bimolecular back reaction to the initial redox states can begin to be detected. 
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Figure 3.23 Transient absorption kinetics at various wavelengths following laser flash 

excitation (480 run, 25 ns, 2 mJ) ofRu(bpy)z(im)His722+-Fe2+ cyt c with Rua63+ in 50 

mM NaPi, pH 7 .0, at room temperature. The decay corresponds to the production of 

Ru(bpy)z(im)His722+- Fe3+ cyt c due to intramolecular ET from Fe2+ to Ru3+ at a rate of 

9.0 x 105 s-1. Smooth lines correspond to fits to either a single (kE-rrun (k1) = 9.0 x 105 

s-1) or biexponential decay function (kErrun (k1) = 9.0 x 105 s-1 and~= k2 (~ = -1.7 x 

107 s-1 due to the presence of excited-state quencher). The sample concentration and 

coefficients for the rate terms are given. (A) 550 nm, 13.9 J.LM protein, 5 mM Ru~3+, c1 

= 0.0095, c2 = -0.019. (B) 395 nm, 13.9 J.LM protein, 5 mM Rua63+, c1 = -0.019, c2 = 

0.033. (C) 504 run, 13.9 J.LM protein, 5 mM Rua63+, c1 = -0.0041, c2 = -0.046. 
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Figure 3.24 Transient absorption kinetics at various wavelengths following laser flash 

excitation ( 480 nm, 25 ns, 2 mJ) of Ru(bpyh(im)His722+- Fe3+ cyt c in 50 mM NaPi, pH 

7 .0, at room temperature. The rise corresponds to production of ferrous cyt c due to 

photoinduced ET (at 306 nm, also due to excited-state formation) . The decay 

corresponds to the production of Ru(bpyh(im)His722+- Fe3+ cyt c due to intramolecular 

ET from Fe2+ to Ru3+ at a rate of 9.0 x 1Q5 s-1. Smooth lines correspond to fits to a 

biexponential decay function (kEy= (k1) = 9.0 x 1Q5 s-1 and~ (k2 )= 1.40 x 107 s-1). 

The sample concentration and coefficients for the rate terms are given. (A) 550 nm, 12.2 

J..LM protein, c1 = 0.0028, c2 = -0.0039. (B) 395 nm, 12.2 J..LM protein, c1 = -0.0025, c2 = 
0.020. (C) 306 nm, 12.2 J..1M protein, c1 = 0.0029, c2 = 0.035. 
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Figure 3.25 Transient absorption kinetics at 370 nm following laser flash excitation 

(480 nm, 25 ns, 2 mJ) ofRu(bpyh(im)His722+- Fe3+ cyt c, 12.2 j..LM in 50 mM NaPi, pH 

7 .0, at room temperature. The smooth line is the fit to a single exponential decay 

function convolved with the instrument response. The decay corresponds to the decay of 

the *Ru(bpyh(im)His722+ excited state (kd = 1.40 x 107 s-1, c 1 = 0.067). 
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kinetics are observed for Ru3+ reduction. Based on these data, a rate constant for *Ru2+ 

to Fe3+ET of 3.4(7) x 10s s-1 is calculated. 

The metal-to-metal Fe2+ to Ru3+ ET rate was studied using the flash I quench 

methodology as a function of applied hydrostatic pressure in collaboration with Prof. 

Rudi van Eldik of the University of Witten I Herdecke. The experimental set up for 

transient absorption is identical with that described for the experiments at atmospheric 

pressure except the sample cell is replaced with a cylindrical2 em quartz pathlength 

pillbox cell contained in a thermostated high pressure vessel constructed with titanium 

sapphire windows .30 Pressures of up to 1500 atm can be applied to the sample using a 

hydraulic pressure apparatus. ET measurements were made at four pressures (1, 500, 

1000, and 1500 atm), allowing the sample to equilibrate at each new pressure for 45 

minutes. The pressure cell scattered significantly more laser light than the standard 

precision cuvettes, necessitating the use of a 550 nm interference filter for detection 

thereby limiting data collection to this wavelength. The scattered light also complicated 

data analysis. 

Parallel flash I quench studies conducted by Dr. I-Jy Chang measuring k~ in 

Ru(bpyh(im)His33 cyt c showed negligible pressure dependence of observed rate 

constant in the 1 - 1500 atm regime. The redox potential of horse heart cyt c increases 

monotonically as a function of applied pressure, and at 1500 atm is 40 mV higher than at 

atmospheric pressure. 3l However, this slight change in driving force has an insubstantial 

effect on the observed rate constant. The results obtained with Ru(bpyh(im)His33 cyt c 

are in contrast to results obtained in Rua5His33 cyt c using pulse radiolysis to initiate 

ET. 32 In the Rua5His33 cyt c system, the volume of activation (~ vt) associated with the 

ET is -16 to -18 cm31mole. However, this activation volume could be almost entirely 

attributed to the ~ V:l: of the Rua5His label due to an increase in solvent electrostriction 

around the ruthenium center. The Fe2+ to Ru(bpyh(im)His72 ET rate showed a weak 
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pressure dependence; Figure 3.26 shows fits of kinetic traces at increasing pressures. 

Data are summarized in Table 3.3 and plotted in Figure 3.27 A. 

Table 3.3. Summary of Fe2+ to Ru(bpyh(im)His723+ ET rates as a function of applied 
pressure (20 IJ.M protein in 50 mM NaPi, 7 mM Ruau3+, 25° C). 

Pressure Rate 
(atm) (s-1) 

1 1.03 X 1Q6 

500 1.12 X 1Q6 

1000 1.35 X 106 

1500 1.43 X 1Q6 

Although a linear relationship between applied pressure and rate is observed, the effect is 

small (a factor of 1.5 in rate constant) and the inherent error in the fits precludes serious 

interpretation of the data beyond the conclusion of a weak pressure dependence in the 

ferrous heme to Ru(bpyh(im)His723+ ET rate that is not observed in the ferrous heme to 

Ru(bpyh(im)His333+ ET rate. An the activation volume can be calculated from: 33 

(
aln kETJ = -t:t..V* 

ap T RT 

P is pressure in atm, T is temperature in K, and R is the gas constant. A plot of ln kET as 

a function of pressure is presented in Figure 3.27 B. A linear least squares fit (correlation 

coefficient= 0.98) gives an apparent value of f:t. vt = -6(2) cm3fmole. Since a negative 

f:t. vt is exactly opposite to that expected on the basis of a decrease in electrostriction 

during reduction of the ruthenium moiety, the increase in rate constant is attributed to a 

pressure-mediated increase in electronic coupling due to compression of the protein 

structure with pressure. The rate increase corresponds to a 0.1 A increase in the space 

jumps of the His72-heme tunneling pathway (vide infra). 
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Figure 3.26 Transient absorption kinetics at 550 nm following laser flash excitation 

( 480 nm, 25 ns, 2 mJ) of 20 J..LM Ru(bpyh(im)His722+- Fe2+ cyt c with 7 mM Rull(j3+ in 

50 mM NaPi, pH 7.0, 25° C, as a function of applied pressure. The decay corresponds to 

the production of Ru(bpy h (im)His722+ - Fe3+ cyt c due to intramolecular ET from Fe2+ 

to Ru3+ (kEynm). Smooth lines correspond to fits to a biexponential decay function 

(kEynm = k 1 and k2 = 3.0 x 107 s-1, due to excited state decay and scattered light). The 

applied pressure, Fe2+ to Ru3+rate constant, and coefficients for the rate terms are given. 

(A) 1 atm, 1.03 x 106 s-1, c1 = 0.012, c2 = -0.022. (B) 500 atm, 1.12 x 106 s-1, c1 = 

0.012, c2 = -0.029. (C) 1000 atm, 1.35 x 106 s-1, c1 = 0.013, c2 = -0.038. (D) 1500 atm, 

1.43 x 106 s-1, c1 = 0.012, c2 = -0.072. 
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Figure 3.27 (A) Plot of Fe2+ to Ru3+ ET rates in Ru(bpyh(im)His72 cyt c as a 

function of applied pressure. (B) Plot and linear least squares fit of ln kEynm as a 

function of pressure. 
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D. Ru(bpyh(im)His39 cyt c (Candida krusei) 

Native C. k. cyt c was modified with Ru(bpyh(im)2+ at position 39 and electron 

transfer studies carried out in collaboration with Dr. Morten J. Bjerrum, a Carlsberg 

Foundation Scholar visiting the Beckman Institute for 1990 -1991 . 

1. Ru(bpyh(im)2+-Modification Reaction 

Typically, 0.5 mM purified protein in 25 mM NaPi, pH 7.0 was reacted with 2 

mM Ru(bpyh(C03) following the protocol detailed in the General Methods section. For 

the first reaction, aliquots were removed and analyzed, following imidazole treatment, by 

analytical cation-exchange chromatography (FPLC Mono S 5/5). Only one singly 

modified band was observed to develop at early reaction times, followed at long reaction 

times by two multiply modified protein products. A representative chromatogram is 

presented in Figure 3.28 The first band, eluting at the column void volume, is 

Co(EDTA)-, added to fully oxidize the protein. The subsequent bands correspond to 

unmodified protein, singly modified protein (major product), followed by the two 

multiply modified products. Based on prior results obtained from ruthenium amrnine 

modifications of the C. k. native and Zn porphyrin proteins indicating that His39 is far 

more reactive to modification than His33,5 the singly modified product was identified as 

Ru(bpyh(im)His39 cyt c. Optimal reaction time for obtaining singly modified product is 

15 hours, followed by 48 hours of treatment with 2M imidazole prior to purification. The 

product was purified to homogeneity prior to laser experiments. The !!:.. and A isomers of 

yeast Ru(bpyh(im)HisX cyts c do not appear to be separable by cation-exchange 

chromatography (an observation consistent with the work ofDanilo R. Casimiro34). 

2. Electron-Transfer Studies 

Luminescence decay and transient absorption measurements were made as 
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Figure 3.28 Typical cation-exchange (FPLC MonoS 16/10, flow rate of 6.0 ml/min) 

chromatogram for the C. k. His39 cyt c modification reaction with Ru(bpyh(C03) 

reaction products in 25 mM NaPi, pH 7.0. Gradient represents the concentration of NaCl 

in mM. The first band, eluting at the column void volume, is Co(EDTA)-. The 

subsequent bands correspond to unmodified protein, singly modified protein (major 

product), and two multiply modified products. Detection is on the 2.0 absorbance scale at 

405 nm. 
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discussed in General Methods. The excited state lifetimes, as determined from the 

luminescence decay data at 650 nm, were 1.35(5) x107 s-1 ('t = 74 ns) for ferric 

Ru(bpyh(im)His39 cyt c and 1.20(5) x107 s-1 ('t = 83 ns) for ferrous Ru(bpyh(im)His39 

cyt c. These values were used in subsequent fits. Luminescence decay data obtained 

with the modified ferric protein fit convolved with the laser pulse are shown in Figure 

3.29. 

Flash I quench and photoinduced techniques were used to acquire data for the 

determination of k~. A full analysis of 12 data sets at both 550 and 400 nm fit to both 

single and double exponentials (to fit the fast minor component due to excited state 

decay) resulted in a measured ET rate of 3.2(4) x 106 s-1. Identical kinetics were 

observed at wavelengths corresponding to Ru3+/2+ (526 and 504 nm) and heme ET. Data 

obtained at 550 and 400 nm are shown in Figure 3.30 (flash I quench) and at 550 and 425 

nm in .Figure 3.31 (photoinduced). 

The rate for photoinduced ET (kET*) was calculated as described from four full 

data sets (transient absorption at 370, 400, and 550 nm). Data obtained at 370 nm was 

used to calculate the excited state yield (Figure 3.32). Based on these data, the calculated 

rate constant for *Ru2+ to Fe3+ ET is 1.4(5) x 106 s-1. This rate of photoinduced ET is 

unusually high for Ru(bpyh(im)His-modified proteins, however it is consistent with the 

small yet reproducible difference in excited state lifetimes of the oxidized and reduced 

proteins. 

E. Ru(bpyh(im)His62 cyt c (Saccharomyces cerevisae) 

1. Ru(bpyh(im)2+-Modification Reaction 

A 0.20 mM purified protein solution in 25 mM NaPi, pH 7.0 was reacted with 2 

mM Ru(bpyh(C03) following the protocol detailed in the General Methods section. In a 

trial reaction, aliquots were removed and analyzed following imidazole treatment by 

analytical cation-exchange chromatography (FPLC MonoS 515). Two singly modified 
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Figure 3.29 Luminescence decay of a 20 ~M sample of ferric Ru(bpyh(im)His39 cyt c 

in 50 mM NaPi, pH 7.0 observed at 650 nm following excitation at 480 nm (4 mJ pulse). 

The smooth line is the fit to a single exponential decay function convolved with the 

instrument response (shown); kd = 1.35(5) x 107 s-1. 
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Figure 3.30 Transient absorption kinetics at various wavelengths following laser flash 

excitation (480 nm, 25 ns, 4 mJ) of Ru(bpyh(im)His392+- Fe2+ cyt c with Rua63+ in 50 

mM NaPi, pH 7.0, at room temperature. The decay corresponds to the production of 

Ru(bpyh(im)His392+- Fe3+ cyt c due to intramolecular ET from Fe2+ to Ru3+ at a rate of 

3.2 x 106 s-1. Smooth lines correspond to fits to either a single (kEy= (k1) = 3.2 x 106 

s-1) or biexponential decay function (kEynm (k1) = 3.2 x 106 s-1 and kci = k2 (kd = -2 x 107 

s-1 due to the presence of excited-state quencher). The sample concentration and 

coefficients for the rate terms are given. (A) 550 nm, 20 J.LM protein, 8 mM Ru~3+, c1 = 

0.026, c2 = -0.017. (B) 400 nm, 20 J.1.M protein, 8 mM Rua63+, c1 = -0.019, c2 = 0.060. 
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Figure 3.31 Transient absorption kinetics at various wavelengths following laser flash 

excitation (480 nm, 25 ns, 4 mJ) ofRu(bpyh(im)His392+_ Fe3+ cyt c in 50 mM NaPi, pH 

7 .0, at room temperature. The rise corresponds to production of ferrous cyt c due to 

photoinduced ET. At 425 nm (B), there is additionally a contribution due to formation of 

the excited state in the signal rise. The decay corresponds to the production of 

Ru(bpyh(im)His392+- Fe3+ cyt c due to intramolecular ET from Fe2+ to Ru3+ at a rate of 

3.2 x 106 s-1. Smooth lines correspond to fits to either a biexponential (kE.ynm (k1) = 3.2 

x 106 s-1 and kd (k2 )= 1.35 x 107 s-l)(A) or a single exponential decay function (kEynm 

(k1) = 3.2 x 106 s-l)(B). The sample concentration and coefficients for the rate terms are 

given. (A) 550 nm, 20 IJ.M protein, c1 = 0.011, c2 = -0.023. (B) 425 nm, 20 IJ.M protein, 

c1 = -0.0046. 
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Figure 3.32 Transient absorption kinetics at 370 nm following laser flash excitation 

(480 nm, 25 ns, 4 mJ) of Ru(bpyh(im)His392+- Fe3+ cyt c, 5 J..lM in 50 mM NaPi, pH 

7 .0, at room temperature. The smooth line is the fit to a single exponential decay 

function convolved with the instrument response. The decay corresponds to the decay of 

the *Ru(bpyh(im)His722+ excited state (kd = 1.35 x 107 s-1, c1 = 0.026). 
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protein bands were observed to form at early reaction times, followed atlater reaction 

times by multiply modified products. Figure 3.33 illustrates a typical cation-exchange 

chromatogram of the reaction. The first main band corresponds to unmodified protein, 

the second and third are singly modified protein products, with the multiply modified 

species in the final high salt wash. Previous studies of the ruthenium ammine 

modification of the native and Zn porphyrin proteins indicate that the His62 residue of 

this mutant is far more reactive to modification than His33, 6 therefore the trrst (lower 

yield) singly modified product was tentatively assigned as Ru(bpyh(im)His33 cyt c and 

the second (higher yield) singly modified product assigned as Ru(bpyh(im)His62 cyt c. 

ET rate determinations in both derivatives strongly support this assignment. Optimal 

reaction time for isolation of singly modified product is 13.5 hours, followed by 24 - 48 

hours of treatment with 2M imidazole prior to purification. Only pure product (by cation 

exchange) was used in laser experiments. As previously noted, the~ and A isomers of 

yeast Ru(bpyh(im)HisX cyts c do not appear to be separable by cation-exchange 

chromatography. 

2. Electron-Transfer Studies 

Luminescence decay and transient absorption measurements on the 

Ru(bpyh(im)His62 derivative were made as discussed in General Methods. The excited 

state lifetimes, as determined from the luminescence decay data at 650 nm, were nearly 

identical in both redox states, kd = 1.05(5) x107 s-1 (t =95 ns) for ferric and ferrous 

Ru(bpyh(im)His62 cyt c. Figure 3.34 shows the convolved fit of the luminescence decay 

data. 

Flash I quench and photoinduced techniques were used to acquire data for the 

determination of the Fe2+ to Ru3+ (kE~) ET rate. The position of His62 in the protein 

results in weak electronic coupling with the heme (Chapter 4), thus the Fe2+ to Ru3+ rate 

is significantly slower than in other derivatives and the yield of photoinduced ET 
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Figure 3.33 Typical cation-exchange (FPLC Mono S 10/10, flow rate of 3.5 ml/min) 

chromatogram for the S. c. His62 cyt c modification reaction with Ru(bpyh(C03) 

reaction products in 25 mM NaPi, pH 7.0. Gradient represents the concentration of NaCl 

in mM. The first main band corresponds to unmodified protein, the second and third are 

singly modified protein products, with the multiply modified species in the high NaCl salt 

wash. Detection is on the 1.0 absorbance scale at 405 nm. 
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Figure 3.34 Luminescence decay of a 19.3 J.LM sample of ferrous Ru(bpyh(im)His62 

cyt c in 50 mM NaPi, pH 7.0 observed at 650 nm following excitation at 480 nm (2 mJ 

pulse). The smooth line is the fit to a single exponential decay function convolved with 

the instrument response (shown); kd = 1.05(5) x 107 s-1. 
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extremely low (it was anticipated that none would be observed). A full analysis of 12 

data sets at 550 and 390 (or 393) nm fit to a single exponential (the fast minor component 

due to excited state decay is not resolved on this timescale) resulted in a rate of 1.0(2) x 

104 s-1. Identical kinetics were observed in the flash I quench experiment at wavelengths 

corresponding to Ru3+/2+ (504 nm) and the heme ET. Data obtained at 550, 504, 425, and 

390 nm for the flash I quench experiments are shown in Figure 3.35. Data from the 

photoinduced experiments at 550 and 393 nm are presented in Figure 3.36. A small long­

lived kinetic component is observed and attributed to a ferric impurity. Attempts to 

remove this component by addition of a trace amount of in situ-generated Ru"l;2+ were 

not successful. 

The rate for photoinduced ET (kET*) was calculated as described from four full 

data sets (transient absorption at 370, 393, and 550 nm). Data obtained at 370 nm used to 

calculate the excited state yield was fit convolved with the laser pulse (Figure 3.37). The 

low yield of photoinduced ET product precluded data collection at wavelengths used to 

investigate Ru3+ reduction. Based on heme data, the calculated rate constant *Ru2+ to 

Fe3+ is 1.1(2) x lOS s-1, an order of magnitude larger than~· 

ET was investigated in the secondary singly modified product obtained in the 

modification reaction. In a flash I quench experiment, a fast (-3 x 106 s-1) (Figure 3.38) 

rate was observed, with no absorbance changes noted on longer timescales. This rate is 

consistent with that measured in horse heart Ru(bpy)z(im)His33 cyt c supporting the 

proposed assignment of this product. Similar results were noted in the ruthenium 

pentaammine modification work, with the minor modification product also identified as 

the His33-labeled protein from ET measurements.35 
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Figure 3.35 Transient absorption kinetics at various wavelengths following laser flash 

excitation (480 nm, 25 ns, 2 mJ) of Ru(bpyh(im)His622+- Fe2+ cyt c with Rua63+ in 50 

mM NaPi, pH 7 .0, at room temperature. The decay corresponds to the production of 

Ru(bpyh(im)His622+- Fe3+ cyt c due to intramolecular ET from Fe2+ to Ru3+ at a rate of 

1.0 x 104 s-1. Smooth lines correspond to fits to a single exponential decay function 

(kE~ (k1) = 1.0 x 104 s-1); the excited-state lifetime is insignificant on this timescale. 

The sample concentration and coefficients for the rate terms are given. (A) 550 nm, 18.4 

J!M protein, 7 mM Rua63+, c1 = 0.017. (B) 390 nm, 18.4 J!M protein, 7 mM Rua6
3+, c1 = 

-0.015. (C) 425 nm, 18.4 J.1M protein, 7 mM Ru~3+, c1 = 0.016. (D) 504 nm, 18.8 J!M 

protein, 7 mM Rua63+, c1 = -0.0049. 
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Figure 3.36 Transient absorption kinetics at various wavelengths following laser flash 

excitation (480 nm, 25 ns, 2 mJ) ofRu(bpyh(im)His622+_ Fe3+ cyt c in 50 mM NaPi, pH 

7 .0, at room temperature. The rise corresponds to production of ferrous cyt c due to 

photoinduced ET. The decay corresponds to the production of Ru(bpyh(im)His622+­

Fe3+ cyt c due to intramolecular ET from Fe2+ to Ru3+ at a rate of 1.0 x 104 s-1. Smooth 

lines correspond to fits to a biexponential decay function (kE~ (k1) = 1.0 x 104 s-1 and 

~ (k2 )= 1.05 x 107 s-1). The sample concentration and coefficients for the rate terms are 

given. (A) 550 nm, 16.1 JJ.M protein, c1 = 0.0012, c2 = -0.011. (B) 393 nm, 7.5 ).lM 

protein, c1 = -0.0035, c2 = 2.4. 
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Figure 3.37 Transient absorption kinetics at 370 nm following laser flash excitation 

(480 nm, 25 ns, 2 mJ) ofRu(bpy)z(im)His622+_ Fe3+ cyt c, 16.6J.LM in 50 mM NaPi, pH 

7 .0, at room temperature. The smooth line is the fit to an exponential decay function 

convolved with the instrument response. The decay corresponds to the decay of the 

*Ru(bpy)z(im)His722+ excited state (kd = 1.05 x 107 s-1, c1 = 0.067). 
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Figure 3.38 Transient absorption kinetics at 550 nm following laser flash excitation 

(480 nm, 25 ns, 2 mJ) of 21 J.l.M S.c. Ru(bpyh(im)His332+_ Fe2+ cyt c with 5 mM 

Rua63+ in 50 mM NaPi, pH 7 .0, at room temperature. The decay corresponds to the 

production of Ru(bpyh(im)His332+- Fe3+ cyt c due to intramolecular ET from Fe2+ to 

Ru3+ at a rate of 2.6 x 1Q6 s·1. Smooth lines correspond to a fit to a single exponential 

(krrun (k1) = 3.5 x 106 s-1 (c1 = 0.003). The rate is over two orders of magnitude faster 

than the His62 derivative. 
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IV. Conclusion 

Intramolecular ET rates have been measured in a series of structurally engineered 

Ru(bpyh (im)HisX2+ cyts c [X =33 (horse heart)13, 39 (C. k.), 62 (recombinantS. c. 

Asn62 to His), and 72 (semisynthetic horse heart)] by direct photoinduced and flash I 

quench methodologies. Luminescence decay (kd) and electron transfer rates obtained 

(kcrnm and kET*) are summarized in Table 3.4. 

Table 3.4. ET parameters for Ru(bpyh(im)HisX cyts c. Numbers in parentheses indicate 
uncertainties in the preceding digits. 

~ 
X s-1 

39 
Fe2+: 1.20(5) x 107 
Fe3+: 1.35(5) x 107 

3313 Fe3+: 1.25 x 107 

72 
Fe2+: 1.40(5) x 107 
Fe3+: 1.40(5) x 107 

62 
Fe2+: 1.05(5) x 107 
Fe3+: 1.05(5) x 107 

kEf* 
(*Ru2+ to Fe3+) 

s-1 

1.4(5) X 106 

2.0(5) X lOS 

3.4(7) X 105 

1.1(2) X 105 

3.2(4) X 106 

2.6(3) X 106 

9.0(3) X 1()5 

1.0(2) X 1()4 

The difference in excited state lifetimes between derivatives may be due to distance-

dependent (e.g., Forster type) energy transfer quenching by the heme. The interpretation 

of the ET rate data collected from these mapping studies is discussed in the following 

chapter. 
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Chapter 4 

Experimental and Theoretical Electronic Couplings in 

Ru(bpyh(im)HisX Cytochromes c (X= 33, 39, 62, 72) 
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I. Introduction 

Both theoreticaJl-13 and experimentaP4-28 studies have indicated that variations in 

distant electronic couplings play a major role in controlling the rates of ET through 

proteins. A main goal of the work on Ru(bpyh(im)HisX cyts c (X= 33, 39, 62, 72) is to 

develop an experimentally validated coupling map for this protein. Intramolecular ET 

rates from Fe2+ to Ru(bpyh(im)HisX3+ were measured by time-resolved absorption 

spectroscopy (Chapter 3). The positions relative to the heme of the four His sites are 

illustrated in the composite cyt c structure in Figure 4.1. The experimentally derived 

electronic couplings are evaluated in the context of different theoretical formulations to 

provide insight into the nature of redox center coupling in biological electron transfer. 

ll. Experimental Electronic Couplings 

Electronic couplings (HABs) can be extracted from the ET rate data and compared 

if the nuclear factor in the Marcus expression for ET is assumed to be constant in the 

systems studied. This is not an unreasonable assumption, for in the cyts c studied, the 

redox potential of the heme is invariant (native horse heart cyt c = 265 mV, His72 cyt c = 

255 mV, native C. k. cyt c = 264 mV,29 and S.c. His62 cyt c 268 mV30 vs. NHE) and 

does not change significantly upon modification with Ru(bpyh(im)2+ (Chapter 3). The 

chemical nature of the appended redox probe is conserved, and the solvation 

environments of both the heme group (evidenced by similar redox potentials) and the 

protein surface Ru(bpyh(im)2+ label are similar within the series addressed. Therefore, 

the driving forces and reorganization energies are expected to be nearly identical in the 

Ru(bpyh(im)HisX cyts c studied. 

To compare electronic couplings with other systems, it is useful to estimate the 

activationless rate ~ax• the anticipated rate constant at -.1G0 = A.. Because the 

experimental Fe2+ to Ru3+ ET reactions are nearly activationless, the maximum ET rates 

are estimated to be nearly the same as the experimental rates. Using a value of -.1G0 = 
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Figure 4.1 Composite figure of His surface residues in cyt c illustrating the four 

regions of the protein reported on, with relative positions of the HisX groups and the 

heme unit. The heme is red, the polypeptide backbone is blue, and the His sites of 

Ru(bpyh(im)2+ attachment are yellow. Counterclockwise from the top, the residues are: 

His33 (native, horse heart), His39 (native, C.k.), His62 (genetically engineered S. c.), 

His72 (semisynthetic horse heart). 
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0.74 eV for the ET reaction and estimating A. at 0.80 eV (refer to discussion in Chapter 

3), kroax and HAB values can be calculated using the semiclassical Marcus expression (for 

nonadiabatic ETs at fixed distance and medium between donor and acceptor): I 

where kb is Boltzmann's constant, T is temperature, h is Planck's constant, HAB is the 

matrix element that couples reactants and products at the transition state, .10° is the 

change in free energy for the reaction, and A. is the sum of the inner and outer sphere 

contributions to the reorganization energy. Activationless (maximum) rates are therefore 

limited by the electronic factor: 

The results of calculations of kroax and HAB for the Fe2+ to Ru3+ (metal to metal) 

ET rates (kEynm) are set out in the Table 4.1. 

Table 4.1. Experimental ET parameters for Ru(bpyh(im)HisX cyts c. Numbers in 
parentheses indicate uncertainties in the preceding digit. 

kET* k~ ~ax HAB 
X (*Ru2+ to Fe3+) (Fe2+ to Ru3+) (Fe2+ to Ru3+) (Fe2+ to Ru3+) 

s-I s-1 s-I cm-1 

39 1.4(5) X 106 3.2(4) X 1Q6 3.3 X 106 0.11 

33 2.0(5) X lOS 2.6(3) X 106 2.7 X 106 0.097 

72 3.4(7) X lOS 9.0(3) X 1Q5 9.4 X lOS 0.057 

62 1.1(2) X lOS 1.0(2) X 104 1.0 X 104 0.0060 
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Rates for the excited-state ET reactions are also given in Table 4.1. In the 

photoinduced ET reaction, the electron donor in the *Ru(bpyh(im)His2+ charge-transfer 

excited state is a bipyridyl radical anion Therefore, these reactions involve ET from the 

coordinated bipyridyl radical anion at the protein surface. They are highly exoergic ( -.10 

>>A.). The estimated order ofHAB values (62- 33 -72 < 39) for the bpy anion to Fe3+ 

ET reactions differs from that derived from the Fe2+ to Ru3+ rates. No interpretation of 

these couplings is offered; among the many uncertainties are the nature and magnitude of 

donor (bpy anion) couplings to groups on the protein surface and the exact position of the 

bipyridylligands with respect to the protein surface and heme-group. The relatively high 

rates of these reactions are of interest, because the ability to rapidly inject electrons into 

internal protein redox centers with laser pulses could provide a novel method for studying 

highly reactive species that often are encountered (or proposed as intermediates) in the 

catalytic reaction of metalloenzymes. Rapid photoinjection of electrons can also serve as 

a trigger for the study of protein-folding events on the submicrosecond timescale. 

lll. Distance-Dependent Model 

Most biologically relevant ETs are nonadiabatic and occur at donor-acceptor 

distances that preclude direct overlap of the donor and acceptors wavefunctions (refer to 

Chapter 1 for further discussion). Therefore a formulation for electronic couplings via 

the protein medium is necessary. Semiclassical theory predicts that electronic couplings, 

and thus lsnax values, will fall off exponentially with distance. I This simple formulation 

ofHAB in biological systems assumes the intervening polypeptide is entirely 

homogeneous and can be treated as a square barrier through which the electron tunnels. 

The medium serves to lower the barrier height with respect to a vacuum. This modeP 

leads to the following formulation of H AB: 
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HAB = HAB0 exp [ -112f3 (R- R0 )] 

with HAB 0 as the electronic coupling at donor I acceptor contact, R is the donor-acceptor 

distance, and R0 is the donor-acceptor distance at close contact (3 A), and f3 is the scaling 

factor for the rate dropoff with distance. 

Dutton and coworkers have evaluated maximum ET rates from a variety of 

protein and covalently linked donor-acceptor systems as a·function of intervening 

distance.12 They have found that observed rates in covalently linked systems of the 

porphyrin I quinone, biphenyl I acceptor, and iridium dimer I pyridinium type with both 

saturated and unsaturated bridge can be adequately described using a universal f3 of 0.7 

A-1. Similar treatment of rates obtained in photosynthetic reaction centers and in 

Ru(ammine)-modified heme proteins leads to a monotonic rate dependence on 

intervening distance, characterized by a f3 of 1.4 A-1. However, the apparent agreement 

in the case of the modified heme proteins is somewhat misleading. Firstly. some of the 

donor-acceptor distances used for the Ru-modified protein are not the ones reported in the 

original literature. Secondly, the nature of log kET vs. distance plots makes deviations 

from the fit line by as much as two orders of magnitude less conspicuous. 

To evaluate the experimental electronic couplings in terms of a strictly distance­

dependent model, donor-acceptor distances in Ru(bpyh(im)HisX cyts c were obtained 

from Ru(bpyh(im)HisX cyt c structures constructed by combining crystallographic 

information with molecular modeling. The appropriate crystal structure (ferric horse 

heart cyt c (1.94 A resolution)31 for His33 and His72 cyts c and ferrous S.c. cyt c (1.23 

A resolution)32 for native C. k. His39 and S. c. His62 cyt c) was modified with a 

Ru(bpyh(im)2+ fragment modeled from the Ru(bpyhC12 crystal structure.33 In the case 

of genetically (His62) or semisynthetically (His72) produced mutants, the native side 

chain was replaced with a His residue and these structures locally minimized.22a In 

modeling Ru(bpyh(im)2+-modified proteins, only the side chain was allowed to move 
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(i.e., no backbone perturbations). Based on NMR and CD data that indicate the bipyridyl 

ligands do not interact significantly with the protein and negligible perturbation of 

secondary structure accompanies Ru(bpyh(im)2+ modification. The position of the Ru 

label was minimized with respect to van der Waals contacts with the protein ( < 3 A) by 

rotation about the Ca-Cfl and Cfl-C.y bonds. It was found that energy minimization of 

each structure did not significantly change any of the measured edge-edge distances 

compared with the original orientation of the imidazole side chain. The distances 

measured within a series of low-energy conformers differed by less than 0.2 A. 

Using these structures, the series of donor-acceptor distances set out in Table 4.2 

was obtained. 

Table 4.2. Summary of distance measurements based on modeling of the Ru(bpyh(im)2+ 
label on crystallographically defined protein structures. Minimum edge-edge distances 
are underlined. 

Site 
heme to im im to axial ligand Ru to Fe im to Fe bpyto heme 

(A) (A) (A) (A) (A) 

39 .l.U 16.1 20.3 15.6 14.6 

33 12.8 1.L1 17.9 14.8 12.2 

72 10.1 M 13.8 10.5 11.3 

62 H..a 17.8 21.0 18.5 14.4 

"Heme," "im," and "bpy" refer to the closest carbon or nitrogen atoms of the conjugated 

porphyrin, imidazole, and bipyridyl ring(s) (i.e., excluding the heme ring substituents). 

Axial ligand refers to either the sulfur atom of Met80 or any position on the conjugated 

ring ofHis18. 

Although different conventions for calculating the distance between the 

Ru(bpyh(im)HisX and heme redox centers give different distances (Table 4.2), the trends 
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in these distances are similar regardless of the standard used. We define edge-edge 

distance as the nearest point on the imidazole ring (usually Cy) of the Ru label to the 

nearest point on the coupled heme chromophore (including the conjugated porphyrin ring 

or axial ligand substituents). Shortest distances using this definition are underlined in 

Table 4.2. A summary figure of the His side-chain position and heme-His distances is 

presented in Figure 4.2 . Analyses are also presented throughout using metal-metal 

distances to demonstrate that the interpretation of the electronic coupling data is 

independent of the donor-acceptor distance measurement convention chosen. However, 

in the absence of crystal structures of the Ru(bpyh(im)2+ -modified proteins, the metal-

metal distance measurements are known to less accuracy than the edge-edge distances 

because the flexibility of the His side chain prevents determination of the exact position 

of the Ru metal center. 

Plots of log ~ax as a function of edge-edge distance shows that the ET rates 

measured in cyt c do not correlate with edge-edge or metal-metal distance (Figure 4.3 A 

and B). (Distances are plotted as R- R.a. where the contact distance Ra = 3 A.) 

Furthermore, if a maximum ET rate of 3 x 1012 s-1 at close contact (3 A) is assumed, the 

edge-edge distance dependences for covalently coupled donor-acceptor complexes are 

represented adequately by lines with slopes of 0.8 to 1.2 A-1 (Figure 4.4).34 Because the 

maximum ET rates for all the Ru(bpyh(im)HisX-modified cyts c lie well below these 

lines, it is apparent that the Fe2+ to Ru3+ electronic couplings are weaker than the 

corresponding donor-acceptor interactions in purely covalently coupled systems. If we 

draw a best fit line through the Fe2+ to Ru3+ points (dotted line, Figure 4.4), its 3 A 

intercept (1.6 x 10s s-1) is much smaller than that expected for a system in which the 

terminal atoms of the bridging group are covalently bonded to the donor [(Fe2+ (heme c)] 

and the acceptor [Ru3+ (HisX)]. Thus couplings through the protein medium are 

significantly weaker and decrease more rapidly with distance than covalently bound 

donor-acceptor systems. 
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Figure 4.2 Summary of minimum edge-edge distances for the Ru(bpyh(im)HisX cyts 

c studied as defined in the text. 
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Figure 4.3 Maximum ET rates for the Fe2+ to Ru3+ ET reaction versus (A) edge-edge 

and (B) metal-metal distance. Distances are those measured from Ru(bpyh(im)HisX cyt 

c structures minus a contact distance, R,
0

, of 3 A. 
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Figure 4.4 Maximum ET rates (X= 33, 39, 62, and 72) versus edge-edge distance 

minus 3 A (van der Waals contact). Exponential-decay lines: slope 1.0 A-1 (solid line); 

0.8 to 1.2 A-1 (dashed lines); intercept 3 x 1012 s-1. Best fit (dotted) line: slope= 0.66 

A -1; intercept 1.6 x 108 s-1. 
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Activationless intraprotein ET spanning twelve orders of magnitude in rate and 

nearly 19 A in redox-site separation has been interpreted in terms of edge-edge 

exponential decay with a 1.4 A-1 slope and a 1 x 1013 s-1 intercept.l2 Implicit in this 

interpretation is the assumption that the intervening polypeptide can be treated as a 

homogeneous medium. This correlation, then, serves as a reference line; deviations from 

this line indicate situations in which inhomogeneities must be considered. The cyt c 

activationless rate data as a function of both edge-edge and metal-metal distances are 

plotted coincident with the J3 = 1.4 A-1, 1 x 1013 s-1 intercept line in Figure 4.5 A and B. 

Because one of the measured lsnax values (X = 72) lies four orders of magnitude below 

this edge-edge exponential-decay line, and two others (X= 33, 62) deviate from the line 

by more than a factor of 50, analysis in terms of the intervening medium is called for. 

Thus, it is readily apparent that there is no correlation with donor-acceptor distance and 

none of the exponential-decay models satisfactorily explains the experimental data. 

IV. Medium-Dependent Models 

With the failure of a simple distant-dependent model to account for observed rates 

in Ru(bpyh(im)HisX-modified cyts c, mechanisms4,5,10 that allow the specific character 

of the intervening wavefunctions to mediate the electronic coupling between donor and 

acceptor were investigated. In these formulations, there are no "intermediates" in which 

the .electron resides at some point within the intervening medium, however the specific 

HOMO and/or LUMO orbitals of the medium are used to couple the donor and acceptor 

in the ET reaction, thus effectively lowering the tunneling barrier. These treatments 

differ from the distance-dependent formulations, which also invoke distant electronic 

coupling via the medium, in that medium-dependent formulations propose that specific 

interactions within the medium enhance or attenuate coupling at a given donor-acceptor 

distance. 35 
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Figure 4.5 Maximum ET rates (X= 33, 39, 62, and 72) versus (A) edge-edge and (B) 

metal-metal distance minus 3 A (van der Waals contact). Exponential decay line with 1 x 

1013 s-1 intercept and 1.4 A-1 slope. 
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Initial work investigating medium dependence in biological long-range ET 

focused on the role of intervening aromatic residues, due to energetic accessibility of the 

low energy LUMO and high energy HOMO orbitals. However, following some initial 

indications to the contrary,19 it has been demonstrated that the mere presence of an 

aromatic group in the intervening medium is not sufficient for enhanced couplings. 20,26 

(Coupling via aromatic moieties may be important in appropriately oriented systems, e.g., 

the role of the intervening chlorophyll between the special pair and the pheophytin in the 

photosynthetic reaction centers may be to couple the initial ET step through a 

superexchange mechanism. Alternatively, the chlorophyll may serve as the site of a 

transiently populated ET intermediate.36) 

A . a-Bond-Tunneling Pathway Model 

1. Theory and Algorithm 

In a first-order approach for including the composition of the protein medium in 

electronic coupling predictions, David Beratan and Jose Onuchic formulated the coupling 

properties of the intervening in terms of three simple elements.4 Each element is assigned 

an intrinsic coupling value, and the total coupling between donor and acceptor is equal to 

the product of the intervening coupling elements. While empirical, this approach allows 

direct evaluation of electronic couplings in terms of the chemical nature of the 

intervening medium. 

In analogy to covalently bonded donor-acceptor systems, one might attempt to 

evaluate electronic couplings by following the direct covalent connectivities between the 

donor and acceptor species. In proteins, however, the complex fold of the polypeptide 

generally makes these direct routes far too long and circuitous mediate the measured 

couplings. Therefore, while sigma-bond hole-tunneling through covalent bonds is the 

basis of the pathway model, two other types of molecular interactions are considered to 

facilitate electronic couplings within the polypeptide structure, albeit less strongly than 
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the coupling assigned to a full covalent bond. The dominant coupling pathway can then 

"shortcut" a circuitous covalent pathway through either a hydrogen bonding (H-bond) 

interaction or, if favorable, a through-space interaction. These weaker coupling 

interactions will only be important if their net coupling is larger than the coupling 

afforded by the all covalently bonded route connecting the donor and acceptor species. 

The coupling due to a cr-bond tunneling pathway is partitioned into the product of 

the individual coupling elements along a pathway linking the donor and acceptor. The 

coupling is expressed as: 

HAB oc Il ec(i) Il EH{j) Il Es(k) 
i j k 

e are the decay factors for i covalently bonded interactions, j H-bonded interactions, and k 

through-space jumps in the pathway. The numerical values assigned to each type of 

interaction are discussed below. 4a 

Inspection of the literature on experimentally derived couplings in donor-acceptor 

systems indicates a coupling per bond of 0. 7 to 0.4. 7b A consensus value of 0.6 was 

therefore selected for Ec, the coupling decay per covalent bond.4f Note that this treatment 

does not distinguish between types of covalent bonds or address orientation effects. 

Relative to the differences between the three types of coupling interactions, the effects 

due to the orientation and variation in the types of covalent bond assume a secondary role 

in determining coupling. 

Through-space interactions are treated as bonds attenuated by tunneling through a 

barrier. A rapid exponential decay through space of 1.7 A-1 was proposed based on the 

penetration of a one-dimensional square barrier by a 5- 10 eV electron.4a The tunneling 

distance is taken as the atom-to-atom distance minus one covalent bond (average value = 

1.4 A). The exponential decay term is divided by a factor of 2 in order to account for 

unfavorable orientation effects. 
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Since H-bonding interactions bring lone pair and bonding orbitals in close 

proximity in a weakly bonding interaction, they are treated as two "stretched" covalent 

bonds. H-bond interactions are treated as a covalent bond attenuated through space by 

the same decay factor used for through-space interactions. However, the attenuation 

distance is now the atom-to-atom distance minus two covalent bonds (2.8 A). Potential 

H-bonding interactions in the protein structure are evaluated computationally because H­

atom positions are not crystallographically defined. 

To summarize, each individual coupling interaction will be numerically evaluated 

as: 

E.c = 0.6 

E.H = E.c2 exp [-1.7 (R- 2.8)] 

£5 = (0.5) E.c exp [-1.7 (R- 1.4)] 

with R as the atom-to-atom distance (not including hydrogen atoms). It is important to 

note that the results of the pathway analysis of couplings are qualitative and only relative 

HAB values are calculated. Thus the calculated couplings cannot be directly compared to 

the experimental HAB values. 

An algorithm based on graph theory37 has been written that searches all potential 

pathways between defmed donor and acceptor atoms in crystal structures using the 

principles described. 4b The details of the program design and operation are discussed in 

Reference 4a. Pathways more weakly coupled than a predefmed cutoff value are 

discarded and the remaining pathways presented in order of decreasing couplings. A text 

file describing each pathway step by step as well as a vector flle to be used in conjunction 

with the input structure flle for visualizing the pathway on a graphics terminal are output 

from the program. 
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All pathway calculations were performed with the FORTRAN program Pathways, 

V 2.2 written by J. N. Betts, D. N. Beratan, and J. N. Onuchic on Biograf-formatted 

Ru(bpyh(im)HisX-modified structure files with heteroatom hydrogen atoms added. The 

program was run on Silicon Graphics Personal IRIS and INDIGO workstations. The 

following parameters were used: 

radius_limit1: 
radius_limit2: 
guess_limit: 
search_limit: 
range_limit: 
cv_dist: 
cv_hab: 
ts_scale: 
beta: 
slop: 
srch_slop: 
hbond_limit: 
hbond_hab: 
hbond_dist: 
hbond_exp: 
hbond_angle: 

0.00 
5.00 
0.00 
l.OOE-06 
l.OOE-19 
1.40 
0.60 
0.50 
1.70 
0.90 
0.50 
3.50 
0 .36 
2.90 
1.70 
90.00 

The pathway program has been used to calculate a coupling map for cyt c that 

color codes each atom in the protein's structure according to the intensity of the predicted 

pathway coupling relative to the distance-dependent coupling for that atom. 4d This map 

allows identification of regions where pathway-dependent and distance-dependent 

predictions of coupling differ. "Hot" regions are positions in the structure where the 

pathway coupling is stronger than expected given the donor-acceptor separation, while 

"cold" regions represent sites where the pathway coupling redox centers is unusually poor 

relative to the donor-acceptor distance. His33 and His62 correspond to sites where the 

pathway and distance analysis predict similar results. His39 is a "hot" spot, with 

enhanced coupling predicted due to the medium, while His72 is "cold", since the medium 

is predicted to inhibit coupling. As will be seen, these predictions are consistent with the 

experimentally derived couplings. 
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2. Dominant (]-Tunneling Pathways in Cytochrome c 

a-Tunneling pathways were calculated as described using the modeled 

Ru(bpy)z(im)HisX cyt c structures constructed for the donor-acceptor distance analysis. 

The results for the HisX-modified proteins are summarized below. As a check on the 

search algorithm, pathways were searched both using the iron atom as donor and C.y of 

the labeled His residue as acceptor and visa versa. The same results were obtained 

regardless of the direction of the search. The c1 atom of the labeled His residue was 

selected as the point of attachment since the position of the Ru(bpy)z(im)2+ ligands with 

respect to the protein surface is not known. Therefore pathways involving space-jumps 

from the Ru ligands to other residues on the protein surface were considered irrelevant. 

However, pathways calculated using the Ru atom as the terminal atom contained none of 

these potential artifactual pathways. Families of pathways were commonly found. They 

are composed of a series of nearly equivalent pathways that take slightly different atomic 

steps through essentially the same amino acids, e.g., coupling through one side of a His 

ring or the other, or backtracking through a neighboring residue. Only the best pathway 

for each family is described. 

His33: The best pathway for His33 has 11 covalent bonds and one hydrogen 

bond (3.16 A) and is illustrated in Figure 4.6. Coupling is from His33 through the 

backbone through Leu32 to Asn31 to Pro30 followed by a H-bond jump from the Pro30 

backbone carbonyl oxygen to the BN of His18; calculated coupling: ET = 8.45 x 104. 

Other pathways found with couplings within an order of magnitude of the dominant 

pathway are (atomic connections are covalent unless otherwise indicated): 

1. His33- Leu32- Asn31- (H-bond, 3.42 A)- Arg38- (H-bond, 2.76 A)- heme 

propionate. 12 covalent bonds, 2 H-bonds: ET = 1.47 x 104. 

2. His33 - Leu32- (H-bond, 2.70 A) - Thr19 - His18. 14 covalent bonds, 1 H-bond: ET 

= 3.97 X lQ-4. 
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Figure 4.6 Dominant a-tunneling pathway from His33 to the heme. The path extends 

from His33 through the backbone through Leu32 to Asn31 to Pro30 followed by a H­

bond (3.16 A) jump from the Pro30 backbone carbonyl oxygen to the ON ofHis18. 

Covalent bonds are represented by lines and the hydrogen bond by a dashed line. 
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3. His33- Leu32- (space jump, 3.79 A)- heme. 8 covalent bonds, 1 space jump: £T 

= 8.61 X lQ-5. 

His39: The best His39 pathway also has 11 covalent bonds and 1 hydrogen 

bond and is illustrated in Figure 4. 7. The pathway follows covalent linkages from His39 

to Ser40 to Gly41, followed by a H-bond (3.21 A) from theN of the amide backbone to 

the heme propionate; £T = 7.65 x 1Q-4. Pathways found that utilized a 

crystallographically defined water molecule were discarded, because the dynamics of 

these water molecules in the solution structures are not understood. No other well-

coupled pathways were found. 

His62: The dominant His62 pathway includes 16 covalent bonds and 2 H-

bonds. The pathway is covalently linked from His62 to the backbone followed by a 2.91 

A H-bond from His62 NH to the Asp60 carbonyl oxygen. The path is again all 

covalently linked through to the eN of Trp59 followed by a H-bond to the heme 

propionate; £.r = 2.60 x 1Q-5. A nearly equivalent pathway exists for His62 that consists 

of 12 covalent bonds and space jump of 3.6 A.22 This pathway traces the backbone from 

His62 to Asn63 to Met64 through the Met64 side chain and ends with a 3.64 A through­

space jump from the sulfur to the heme edge; £T = 1.46 x lQ-5. The two dominant 

pathways are shown in Figure 4.8. Many pathways related to the dominant ones were 

found for this weakly coupled system. Others are: 

1. His62 - (H-bond, 2.91 A) - Asp60 - (H-bond, 3.08 A) - Met64 - (space jump, 3.64 A) 

-heme. 8 covalent bonds, 2 H-bonds, 1 space jump: £T = 1.06 x 1Q-5. 

2. His62 - (H-bond, 2.96 A) - Ser 65 - Met64- (H-bond, 2.95 A) - Leu68 - (space jump, 

4.02 A)- heme. 10 covalent bonds, 2 H-bonds, 1 space jump: q. = 2.30 x 1Q-6. 

3. One set of calculated pathways, His62 to Asn63 - (H-bond, 2.72 A) - Tyr67 - (H-

bond, 3.25 A)- S (Met80), 14 covalent bonds, 2 H-bonds, were discarded because 
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Figure 4. 7 Dominant a-tunneling pathway from His39 to the heme. The path extends 

from His39 to Ser40 to Gly41, followed by a H-bond (3.21 A) from theN of the amide 

backbone to the heme propionate. Covalent bonds are represented by lines and the 

hydrogen bond by a dashed line. 
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Figure 4.8 The two dominant a-tunneling pathways from His62 to the heme. The 

first pathway starts with covalent linkages from His62 to the backbone followed by a 2.91 

A H-bond from His62 NH to the Asp60 carbonyl oxygen. The path is covalently linked 

through to the EN of Trp59 followed by a H-bond to the heme propionate. The second 

path traces the backbone from His62 to Asn63 to Met64 through the Met64 side chain 

and ends with a 3.64 A through-space jump from the sulfur to the heme edge. Covalent 

bonds are represented by lines, hydrogen bonds by dashed lines, and the space jump by a 

dotted line. 
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the proposed long-range H-bonding interaction is not present in the protein; the Tyr 

OR-group is involved in a H-bond interaction with a crystallographically defined 

water molecule. Treatment of this interaction as a through-space jump gives this 

pathway an fir= 5.00 x lo-6. 

His72: Of special interest is the finding that there are no good routes to couple 

His72 to the heme, even though this site has the shortest edge-edge distance in the series 

studied. The Met80 side of the heme has predominantly through-space contacts with the 

helix containing His72, and the best pathway extends from His72 through Pro71 with a 

3.88 A through-space jump from Pro c~ to Met80 c£ (Figure 4.9). Although there are 

only 8 covalent bonds in this path, the through-space jump adds the equivalent of 10.6 

bond units to the a-tunneling length; (fir= 1.23 x 10-4). The Pro71 to Met80 space jump 

pathway was represented in several slighdy different pathways. Other families of 

pathways that were within an order of magnitude are: 

1. His72- Pro71- (H-bond, 3.03 A)- lle75- (H-bond, 2.97 A)- Thr78- (H-bond, 2.56 

A)- heme propionate. 15 covalent bonds, 3 H-bonds: fir= 2.80 x 1o-s. 

2. His72- Pro71- Asn70- (H-bond, 2.53 A)- Tyr67- (H-bond, 3.32 A)- Met80. 17 

covalent bonds, 2 H-bonds: fir= 2.00 x 1o-s. 

The dominant a-tunneling pathways obtained based on the above calculations are 

shown in the composite cyt c structure in Figure 4.10. 

The couplings obtained from the calculated pathways are converted to effective 

bond lengths (neff) using a one-bond decay of 0.6. For example, a H-bond of 3.25 A has 

an eH of 0.20, which equals (0.6)'1, therefore that H bond is equal ton= 3.2 bond units. 

Generally, an average H-bonding interaction is equivalent to 2- 3 covalent bonds in the 

pathway model. Through-space interactions are less favorable, with a 3.88 A space jump 

the equivalent of 10.6 bond units. Multiplying the effective number of bonds by 1.4 A 
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Figure 4.9 Dominant a-tunneling pathway from His72 to the heme. The path extends 

from His72 to Pro71 via covalent linkages, followed by a critical3.88 A through-space 

jump from Pro C~ to Met80 C£. Covalent bonds are represented by lines and the space 

jump by a dotted line. 
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Figure 4.10 Dominant a -tunneling pathways from the imidazole to the heme based on 

the a-tunneling pathway model of Beratan, Betts and Onuchic.4 Covalent bonds are 

represented by lines, hydrogen bonds by dashed lines and the space jump by a dotted line. 
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per bond gives a -tunneling lengths (al) for the four pathways. Edge-edge distances, neffs 

and als for the four pathways considered are summarized in Table 4.3. 

Table 4.3. Experimental couplings, edge-edge distances, and edge-edge sigma-tunneling 
pathlengths for Ru(bpyh(im)HisX cyts c. 

HAB dedge-edge neff a ledge-edge 
X (Fe2+ to Ru3+) (A) (A) (cm·1) 

39 0.11 12.3 14.0 (11 C) 19.6 (1 H) 

33 0.097 11.1 13.9 (11 C) 19.5 
(1 H) 

72 0.057 8.4 17.6 (7 C) 24.6 
(1 S) 

62 0.0060 14.8 20.6 (16 C) 28.8 
(2H) 

C = covalent bond, H = hydrogen bond, and S = space jump. 

We fmd that the maximum ET rates correlate with a bond-length scale that takes 

into account the weaker couplings associated with hydrogen bonds and through-space 

jumps in dominant pathways. The maximum ET rates correlate well with a-tunneling 

lengths (one-bond limit set at 3 x 1012 s·1; slope of0.71 A-1) (Figure 4.11). This 

correlation is particularly striking when directly compared to the edge-edge distance plot 

with a line representing J3 = 1.4 A-1, intercept of 1013 s-1 from Dutton's distance analysis 

(Figure 4.12). 

It is interesting to address the effect on the correlation of lcmax with the a-

tunneling lengths if the metal-to-metal pathways and multiple edge-edge pathways are 

used. Metal-metal pathways are essentially the edge-edge pathways with the appropriate 

number of covalent bonds added. Only the His72 point is affected because the bond 

count for this site increases by only four bonds whereas the bond counts for the other 
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Figure 4.11 Maximum ET rates (X= 33, 39, 62, and 72) versus 0'-tunneling length 

(ol): slope 0.71 A-1; intercept 3 x 1012 s-1. The fit 13-value of0.71 A-t correlates well 

with the theoretically predicted value of 0.73 A-1, assuming£= 0.6 for a 1.4 A covalent 

bond ( l3 = 2ln(O. 6) ). 
1.4A 



268 

0 .... 
xew'}f ~OI 

0 
M 

0 .... 

0 



269 

Figure 4.12 (A) Maximum ET rates (X= 33, 39, 62, and 72) versus edge-edge distance 

minus 3 A (van der Waals contact). Exponential decay line with 1 x 1Q13 s-1 intercept and 

1.4 A-1 slope. (B) Maximum ET rates (X= 33, 39, 62, and 72) versus a-tunneling length 

(ol): slope 0.71 A-1; intercept 3 x 1012 s-1. 
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sites increase by six bonds. Metal-metal a-tunneling pathway parameters are 

summarized in Table 4.4. 

Table 4.4. Experimental couplings, metal-metal distances, and metal-metal a-tunneling 
pathlengths for Ru(bpyh(im)HisX cyts c. 

HAB ~etal-metal neff · almetal-metal 
X (Fe2+ to Ru3+) <A) (A) (cm-1) 

39 0.11 20.3 20.0 (17 C) 28.0 (1 H) 

33 0.097 17.9 19.9 (17 C) 27.9 
(1 H) 

72 0.057 13.8 21.6 (10 C) 30.2 
(1 S) 

62 0.0060 21.0 26.6 (22 C) 37.2 
(2H) 

C = covalent bond, H = hydrogen bond, and S = space jump. 

Multiple edge-edge a-tunneling pathways were calculated using the sum of all pathways 

(n) within an order of magnitude of the dominant pathway, including all representatives 

of a given pathway family (n = 1 (His39), 5 (His33), 11 (His72) and 10 (His62).23 Table 

4.5 is a summary of the a-tunneling pathlengths for the edge-edge, metal-metal, and 

multiple edge-edge formulations. 

Plots of kroax as a function of al and fits of these points to a line (with no fixed 

intercept) are shown in Figures 4.13 (edge-edge pathways) and 4.14 (metal-metal and 

multiple edge-edge pathways). All treatments are satisfactory in that they result in 

roughly linear correlations that are qualitatively better than the distance analysis. The 

metal-metal correlation is slightly better and the multiple paths analysis significantly 

worse than the edge-edge correlation. Although strong conclusions can not be drawn 
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Figure 4.13 Maximum ET rates (X= 33, 39, 62, and 72) versus edge-edge a-tunneling 

length. Exponential decay line with 2.7 x 1011 s-1 intercept and 0.57 A-1 slope 

(correlation coefficient= 0.935). 
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Figure 4.14 (A) Maximum ET rates (X = 33, 39, 62, and 72) versus metal-metal a­

tunneling length. Exponential decay line with 1.0 x 1014 s-1 intercept and 0.62 A-1 slope 

(correlation coefficient= 1.0). (B) Maximum ET rates (X = 33, 39, 62, and 72) versus 

multiple edge-edge a-tunneling length. Exponential decay line with 3.5 x 1012 s-1 

intercept and 0.80 A-1 slope (correlation coefficient= 0.79). 
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from the limited data set, a better approach is clearly necessary to account for the 

presence of multiple potential pathways. 

Table 4.5. Summary of all possible al formulations for Ru(bpyh(im)HisX cyts c. 

HAB olmetal-metal a ledge-edge olmultiple 
X (Fe2+ to Ru3+) 

(A) (A) (A) (cm-1) 

39 0.11 28.0 19.6 19.6 

33 0.097 27.9 19.5 16.1 

72 0.057 30.2 24.6 20.2 

62 0.0060 37.2 28.8 22.6 

C = covalent bond, H = hydrogen bond, and S = space jump. 

3. Conclusions from the u-Tunneling Pathway Analysis 

Maximum ET rates measured in Ru(bpyh(im)HisX cyts c correlate more closely 

with the empirical a-tunneling pathway analysis than they do with a simple distance­

dependent model. This conclusion is most dramatically illustrated by His72, whose 

measured rate deviates by four orders of magnitude from that predicted from a distance­

dependent treatment. 38 The pathway analysis is attractive because it attributes this effect 

to a readily apparent structural feature of the protein, the lack of direct covalent or H­

bonded connectivity between the redox centers, and thus dramatically emphasizes the 

point that chemical nature of the intervening protein medium has some significant effect 

on the electronic coupling of redox centers. It can be misleading, however, to interpret 

electronic couplings in terms of single pathways. For example, Ru-heme couplings in 

myoglobin cannot be adequately explained using the single pathway approach.23 The 

following section describes predictions of electronic couplings in Ru(bpyh(im)HisX cyts 

c that treat the relevant portion of the intervening polypeptide structure explicitly. 
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The linear correlation of rates with couplings predicted by the pathway analysis 

illustrates a few key points. The weak coupling of His62 to the heme demonstrates that 

intervening aromatic or polarizable groups do not necessarily enhance electronic 

couplings. It should be noted that, in the absence of the His72 data points, a roughly 

linear correlation of rate with distance is observed. This effect is neither surprising, nor is 

it evidence refuting the pathway model. Since the pathway model scales couplings with 

bonding interactions between redox centers, it is anticipated that, in general, as donor­

acceptor distances increase the a-bond tunneling length will also increase. The point, 

illustrated emphatically with His72, is that chemical composition of the intervening 

medium is able to exen an influence of at least two orders of magnitude in coupling 

strength over the general distant dependent trend. Figure 4.15,4i illustrates a-tunneling 

pathway couplings as a function of distance for all the nonhydrogen atoms in cyt c. 

Though the general trend of a decrease in couplings with distance is found, at a given 

donor-acceptor distance, scatter over two orders in magnitude of coupling (thus four in 

rate) is anticipated due to differences in the composition of the intervening protein 

structure. 

B. Extended Huckel Calculations 

Marcus and coworkers have developed5 an approach for the calculation of 

electronic couplings in Ru-:tnodified proteins that combines an extended Hiickel 

calculation with an artificial intelligence search to select intervening amino acids that 

most likely panicipate in coupling redox centers. This diminished data set representing 

the intervening medium is used to calculate relative HABs.5a.c 

The extended Hiickel approach has been applied successfully to covalently linked 

donor-acceptor model systems, where good agreement with experimentally measured 

couplings (in the range 250 to 10 cm-1) and ~values (in the range 1.1 to 0.6 A-1) was 

found in four separate series of bridged systems (bridge = saturated hydrocarbons, 
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Figure 4.1S4i Calculated a-tunneling pathway couplings as a function of donor-acceptor 

distance for all non-hydrogen atoms in cyt c. Note the two orders of magnitude scatter in 

coupling at a given distance. 
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norbornyl groups, dithiaspiro rings, and polyproline).5a These calculations supported the 

experimental observation that the chemical nature of the bridge between donor and 

acceptor is critical in determining electronic couplings. 

Applying this methodology to a large protein system is a formidable task due to 

the sheer size of the data set (even a small protein such as cyt c contains nearly 1000 non­

hydrogen atoms). However, it is unlikely that atoms and bonds distant from the region 

between the donor and acceptor can contribute significantly to couplings. Therefore, an 

artificial intelligence (AI) search was introduced to identify the 10 - 20 amino acids likely 

to participate in coupling, thus generating a computationally tractable problem. 5d This 

informed search, using a simplified electronic coupling potential for each atom, combines 

the advantages of depth-first and breadth-first approaches. Searches were conducted 

from both donor to acceptor and acceptor to donor to ensure no directional bias. Amino 

acids containing atoms identified in the search were selected for the extended Hiickel 

calculations. These amino acids were identified for Ru(bpyh(im)HisX cyts c by an AI 

search (Table 4.6) on the same structure files used for the a-tunneling pathway 

calculations. 
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Table 4.6. Critical amino acids for electronic coupling between heme and 
Ru(bpyh(im)HisX identified by an artificial intelligence search.Sd Residues in bold were 
used in the "single-path" calculations. 

His33 His39 His72 His62 

Tyr67 Met80 Met80 Met64 

Met80 Asn52 Phe82 Asp60 

Leu32 Val57 Cys17 Pro30 

Pro30 Leu58 Lys79 Asn31 
Asn31 Tyr67 lle81 Leu32 
His26 Trp59 Pro71 lle35 

His33 Phe82 Asn70 Phe36 

Trp59 Gly41 His72 Trp59 

His18 Asn56 Thr78 Asn63 

Thr19 Pro71 His62 

Cys14 Ser40 Tyr74 
Ala15 His39 Val57 
Lys22 lle35 
Gly34 Thr78 
Leu35 Lys55 

Arg38 

Gly24 

Gly23 

Glu21 

Lys25 

The positions of the single path intervening residues with respect to the heme and the 

Ru(bpyh(im)HisX label are depicted in Figure 4.16 for X= 33, 39, 62, and 72. As 

anticipated, the amino acids identified in the search are spatially situated in the region 

between the Ru-label and the heme group. 
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Figure 4.16 illustration of the amino acids selected by the artificial intelligence search 

that may contribute to heme-Ru(bpyh(im)HisX (donor-acceptor, in bold) coupling (Table 

4.6). Only side chains are shown for clarity. (A) X= 33; (B) X= 39; (C) X= 62; (D) X 

=72. 
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The abbreviated intervening medium is treated as the bridge for extended Hiickel 

calculations as described in Reference 5d. Second-order perturbation theory is applied to 

the diagonalized bridge orbitals to evaluate relative HABs according to: 

H =T T ~(CoiCAI) 
AB D A.L.J E -E 

J X J 

where T 0 and T A are the matrix elements for the donor and acceptor with the bridge, 

Co(A)t is the coefficient of the tth bridge orbital obtained from extended Hiickel theory, Et 

is the energy of the tth molecular orbital, also obtained from extended Hiickel theory, and 

Ex is the energy of the molecular orbital of the donor at the transition state. 5d Energies 

for the donor and acceptor in the transition state were obtained from optical charge 

transfer energies. 

Calculations were performed for each protein using two data sets, one containing 

the complete set of amino acids identified in the artificial intelligence search (designated 

full) and a second with only the amino acids selected for the "best" path (most highly 

coupled) in the AI search. The HABs calculated for each set of the series of 

Ru(bpyh(im)HisX cyts care given in Table 4.7. 

Table 4. 7. Experimental and calculated Fe2+ to Ru3+ electronic couplings using extended 
Hiickel theory for full data set and single paths in Ru(bpyh(im)HisX cyt c derivatives. 

X HAB (exp) HAB(full) HAB(single) HABIHAB(His33) HABIHAB(His33) 
(cm-1) (cm-1) (cm-1) (full) (single) 

33 0.097 0.01 0.007 1 1 

39 0.11 0.01 0.007 1 1 

72 0.057 0.007 0.003 0.7 0.4 

62 0.0060 0.002 0.001 0.2 0.14 
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Plots of ~ax as a function of calculated HABs from both the full and single path 

data sets are presented in Figure 4.17 A and B. As with the a-tunneling pathway 

calculations, good agreement is observed with the calculated relative HABs and the 

experimental rates (and derived couplings). His33 and His39 are predicted to possess 

identical couplings, consistent with experimental values and the a-tunneling pathway 

analysis. His62 is predicted to be weakly coupled, consistent with all other analyses. 

Significantly, the anomalously small coupling measured in the His72 derivative, whose 

rate is poorly described by the donor-acceptor distance model, is predicted using the AI I 

extended Hiickel approach. The weak coupling is attributed to a specific structural 

feature, the presence of a 2.7 A cavity between Ru(bpyh(im)His72 and the heme, similar 

to the coupling-crippling through-space jump identified in the a-tunneling pathway 

analysis. 

Somewhat better correlations of measured activationless rates with calculated 

HABs are found using the full data set of intervening amino acids obtained from the AI 

search rather than just the "best" path amino acids, although the results are similar 

(notably, weak His72 coupling is predicted even if only the "best" path is used). This 

result, essentially the opposite of what was found for the a-tunneling pathway analysis, 

implies that more sophisticated calculations employing very large intervening medium 

data sets may be required for accurate HAB predictions, perhaps at the sacrifice of readily 

visualized (if oversimplified) descriptions of the electronic coupling.39 It is interesting to 

note that the residues selected by the AI search for the best path do not necessarily 

correspond to the dominant pathways found in the a-tunneling pathway analysis. For 

example, in the His72 pathway, Thr78 is chosen for the best pathway in the AI search yet 

appears only in a secondary a-tunneling pathway. It is remarkable that despite the 

significant differences between the two medium-dependent models, for both approaches 

excellent correlation between activationless rates and calculated couplings is found. 
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Figure 4.17 (A) Maximum ET rates (X= 33, 39, 62, and 72) versus relative HAB 

calculated with a full intervening medium data set using extended Hiickel theory for 

evaluating energies and orbital coefficients. Fit line with 3.2 x 103 s-1 intercept and 310 

per cm-1 slope, correlation coefficient= 0.98. (B) Maximum ET rates (X= 33, 39, 62, 

and 72) versus HAB calculated with a single path intervening medium data set using 

extended Hiickel theory for evaluating energies and orbital coefficients. Line fitted with 

1.4 x 1Q4 s-1 intercept and 350 per cm-1 slope, correlation coefficient= 0.89. 
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C. Inhomogeneous Aperiodic Lattice Model 

A new quantum-molecular formulation of medium-dependent electronic 

couplings devised by Kuki and coworkers accommodates the calculation of absolute HAB 

values using inhomogeneous aperiodic lattice (IAL) theory.10 Ionization potentials and 

triple resonance integrals are used to devise an accurate IAL Hamiltonian matrix, then a 

nonperturbative Green's function calculation is made to numerically evaluate charge 

resonance energies. Advantages of the IAL method are that the full protein structure is 

used in the calculation accompanied by no simplifying assumptions and that interference 

effects are accounted for. 

This approach has been recently applied to the Ru(ammine) modified HisX Zn 

cyts c (X= 33, 39, 62) and good agreement was found with experimentally derived 

values.10c Residues distant from the direct line joining donor and acceptor were 

unexpectedly found to contribute significantly to the net coupling. Preliminary 

calculations have been made on the series of Ru(bpyh(im)HisX cyts c studied here, using 

a donor-acceptor energy of -6.5 eV.40 An attempt was made to specifically include the 

redox-active d-orbital on the iron atom. The results of these calculations are summarized 

in Table 4.8. 

Table 4.8. Preliminary calculations ofHAB values in Ru(bpyh(im)HisX cyts c using IAL 
theory.40 

X 

33 

39 

72 

62 

HAB 
(Fe2+ to Ru3+) 

(cm-1) 

0.11 

0.097 

0.057 

0.0060 

HAB (IAL) HAB (IAL, with d-orbital) 

(cm-1) (cm-1) 

0.095 0.072 

0.062 0.26 

0.14 0.18 

0.0030 0.032 
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The calculated HABs generally agree within a factor of 3 of measured values (the d-orbital 

calculation with His62 is the one exception). However, the trends observed, particularly 

with respect to the weakly coupled His72, do not correlate well with the experimental 

data. It is likely that more accurate orbital energies and dynamics considerations are 

needed to obtain quantitatively accurate results. It will be interesting to see if the IAL 

method will successfully predict absolute values for HAB; the small electronic couplings 

observed in long-range biological ET make this a formidable task. 

V. Conclusion 

Distant Fe2+ - Ru3+ electronic couplings have been extracted from intramolecular 

electron-transfer rates in Ru(bpyh(im)HisX (where X = 33, 39, 62, and 72) derivatives of 

cyt c. The couplings increase according to 62 (0.0060) < 72 (0.057) < 33 (0.097) < 39 

(0.11 cm-1 ); however, this order is incongruent with histidine to heme edge-edge 

distances [62 (14.8) > 39 (12.3) > 33 (11.1) > 72 (8.4 A)]. Intervening aromatic or 

polarizable atoms do not enhance electronic couplings. The rates (and couplings) 

correlate with the lengths of a-tunneling pathways comprised of covalent bonds, 

hydrogen bonds and through-space jumps from the histidines to the heme group. Space 

jumps greatly decrease couplings: one from Pro71 to Met80 extends the a-tunneling 

length of the His72 pathway by roughly 10 covalent bond units. Experimental couplings 

also correlate well with those calculated using extended Hiickel theory to evaluate the 

contribution of the intervening protein medium. Thus, while a distance-dependent 

formulation of electronic coupling in nonadiabatic electron transfer describes 

qualitatively trends observed in rates measured in Ru(bpyh(im)-modified cyts c, the 

chemical nature of the intervening medium needs to be considered for a more precise 

evaluation of couplings. 
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Chapter 5 

Semisynthesis of Bipyridyl-Alanine Cytochrome c Mutants: 

Novel Proteins with Enhanced Electron-Transfer Propertiesl 
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L Introduction 

Naturally occurring proteins possess desirable properties in that their diverse 

functions, accompanied by well defmed supramolecular structures, provide almost limitless 

opportunities for the construction of new devices. Although site-directed mutagenesis has 

allowed specific alteration of protein architecture, it is a technique that relies upon the cell's 

biosynthetic machinery, and is therefore limited to the encoded amino acids. It would be 

advantageous to include unnatural amino acids into protein ensembles to augment existing 

structures, or to introduce new functionalities altogether.2 Both in vitro expression of 

chemically acylated suppressor tRNA3.4 and total chemical synthesis5 methodologies have 

been employed to incorporate unnatural amino acids into protein sequences. However, the 

former technique suffers from low throughput of protein, while the latter is limited to 

sequence lengths that can be built by employing solid phase peptide synthesis technology. 

In contrast, the semisynthetic methodology (refer to Chapter 2),6 in which fragments of 

native protein are fused with synthetically prepared peptides to form complete protein 

sequences, can provide a means for facile generation of proteins containing unnatural amino 

acids in large quantities. To date, the semisynthetic technique has been limited to those 

proteins that are naturally amenable to facile cleavage and religation; however, the use of 

genetic engineering should provide a means for more general application of semisynthesis 

in the future. In addition, the recent developments in synthetic methods for production of 

novel, optically pure amino acids7 and advances in solid phase peptide synthesis8 now allow 

the assembly ofpeptides in essentially infinite variety. With these tools in hand, the stage is 

now set for the general manipulation of proteins well beyond the constraints set by nature. 

In developing strategies for the construction of novel electron-transfer proteins9-12 

in relatively large (milligram) quantities, semisynthesis has been selected for the 

incmporation of unnatural amino acids directly into polypeptide backbones. An example of 

the power of this approach is the semisynthetic construction of two horse heart cytochrome 

c (cyt c) mutants containing chelating 7t-acceptor side chains, (S)-2-amino-3-(2,2'-bipyrid-6-
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yl)-propanoic acid (6Bpa)13 (1) and (S)-2-amino-3-(2,2'-bipyrid-4-yl)-propanoic acid 

(4Bpa)14 (2) (Figure 5.1), at position 72 in the native protein sequence. Because the 

bipyridylligands have a high affinity for metal cations and can be placed site-specifically on 

the polypeptide backbone, 15 they are ideal for building versatile biological electron-transfer 

(ET) systems. Importantly, the bipyridyl amino acid mutations allow the assembly of a 

Ru(bpy)J2+ center16 at a defined site on the protein surface, which is expected to increase 

markedly the efficiency of photoinduced ET from an electronically excited (*Ru2+) surface 

site to the protein metal center relative to that of a Ru(bpyh(im)His-modifled protein 

(Chapters 3 and 4).11,17 Enhanced photoinduced ET is used to study ET in the 

conformationally perturbed alkaline form of cyt c and can also be used to study ET in other 

unfolded or partially folded states. In addition, the two mutant proteins differ only in the 

regioisomer of the bipyridyl amino acid employed, thereby allowing a sensitive probe of the 

effects of ligand orientation on metal coordination. 

ll. Experimental 

The semisynthetic methodology and experimental protocols for protein 

reconstitution, purification and general handling are given in Chapter 2. Details of the 

absorption, CD, EPR, isoelectric focusing, and differential pulse polarography 

measurements are described in the experimental section of Chapter 2. Steady-state 

luminescence and excitation spectra, and time-resolved luminescence decay and transient 

absorption measurements were obtained as described in the experimental section of Chapter 

3, unless otherwise indicated Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed by T. J. Mizoguchi using standard protocols. 

A. Amino Acid Synthesis 

6Bpa (1) and 4Bpa (2) were synthesized as described in References 13 (6Bpa) and 

14 (4Bpa).18 Reaction schemes are given in Figure 5.2 A, Band C. The 6Bpa amino acid 
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Figure 5.1 (S)-2-amino-3-(2,2'-bipyrid-6-yl)-propanoic acid (6Bpa) (1) and (S)-2-

amino-3-(2,2'-bipyrid-4-yl)-propanoic acid (4Bpa) (2). 
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Figure 5.2 Reaction schemes for (A) the stereoselective synthesis of 6Bpa, (B) racemic 

synthesis of 4Bpa, and (C) enantiomeric resolution of 4Bpa using enzymatic hydrolysis. 
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was prepared by the asymmetric alkylation of N-(diphenylmethlyene) glycine tert-butyl 

ester with 6-(bromomethyl)-2,2'-bipyridine in the presence of a phase transfer catalyst, N­

benzyl cinchonidinium.19 This reaction afforded the L-enantiomer in 53% enantiomeric 

excess (ee), which was subsequently enriched to >98% by selective crystallization of the 

racemic material. The product was deprotected by hydrolysis with 6N HCl and 

subsequently protected with 9-fluorenylmethyl carbamate (FMOC) succinate to yield the 

FMOC derivative compatible with solid phase peptide synthetic protocols. The synthetic 

strategies outlined by Erlenmeyer were employed for the synthesis of the racemic methyl 

ester of 4Bpa, as illustrated in Figure 5.2 B; 4-(methyl)-2,2'-bipyridine was oxidized to the 

corresponding aldehyde with selenium dioxide and condensed with hippuric acid to afford 

the 4-bipyridineazlactone. Reduction with red phosphorus and hydroiodic acid followed by 

esterification in methanol yielded the desired methyl ester of 4Bpa Resolution of the 

enantiomers was achieved by extraction of the D-enantiomer methyl ester following selective 

hydrolysis of the L-enantiomer. Protease type VIII (subtilisin) hydrolyzes the L-enantiomer 

more readily than the D-enantiomer. This method is under kinetic control and affords the D­

and L-enantiomers in high ee: L = 93% ee; D = 98% ee. 

B. Peptide Synthesis 

All peptides were synthesized on a 0.1 mmol scale using solid phase FMOC-amino 

protection and BOP/HOBT activated-ester chemistry on a Milligen 9050 peptide 

synthesizer.18 PAL resin (Milligen) was used to afford amides at the carboxy terminus. 

For the naturally occurring amino acids, 4.0-8.0 equivalents were used per coupling; 2.50 

amino acid equivalents were employed for the bipyridyl amino acids. Activated esters were 

prepared in situ with BOP and HOBT in 0.451 M N-methyl-morpholine/DMF. Double 

and triple couplings were employed when needed. Acylation times varied from 0.75 to 2 

hours depending upon coupling efficiency of the particular amino acid. Deprotection of 

FMOC-protected amine groups was performed using a seven minute 20% piperidine/DMF 
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wash. The peptides were cleaved from the resin using Reagent R as described by Milligen 

and lyophilized from water. The crude peptide mixtures were purified using P2 gel 

filtration chromatography with 50 mM acetic acid eluent and semi-preparative reversed­

phase HPLC. Peptide-containing fractions were identified by TLC and HPLC methods 

(H20:CH3CN mixtures; UV 256, 228 nm detection), and concentrated by lyophilization. 

Pure pep tides were stored at -200 C. Final purity was assessed by mass spectrometry and 

amino acid sequencing, although the presence of the bipyridyl amino acid obstructed 

sequencing past that point. Final yield of the full peptide was -40%; half of that material 

was recovered as the Met80-sulfoxide (vide infra). 

C. Protein Reconstitution 

4(6)Bpa72 cyt c was reconstituted using 0.15 to 0.35 mM 1-65lactone with 0.8 

equivalents 66-104 (4(6)Bpa72) peptide in 25 mM NaPi, pH 6.8 to 7.0. The reaction 

solution was thoroughly degassed and the reaction carried out under anaerobic conditions 

(in an inert atmosphere box). Reduction was achieved using 1 to 1.5 equivalents of freshly 

prepared sodium dithionite and the reaction allowed to proceed for -40 hours. The 

products were purified by cation-exchange chromatography (FPLC Mono S 10/10 column) 

in 25 mM NaPi, pH 7.0, with a 0.1 to 0.4 M NaCl gradient The semisynthetic proteins 

eluted at similar volumes as native cyt c. Using this methodology -20 milligrams of 

4(6)Bpa72 cyt c was isolated. Protein yields could not be directly assessed due to 

aggregation and impurities in the peptide. 

D. Ru(bpy)i+ Modification of4(6)Bpa72 Cytochrome c 

Ru(bpyh(4Bpa72)cyt c was prepared by reaction of 0.2 mM protein and 2 mM 

Ru(bpyhC03 in 25 mM NaPi, pH 6.5 -7.0, under anaerobic conditions. The modification 

reaction was monitored by absorption spectroscopy and terminated by gel filtration at a 

Ru(bpy)32+ to heme ratio of 1:1. Treatment with imidazole facilitated separation of the 
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His33 modified derivative. The products were purified by cation-exchange chromatography 

(FPLC 10110 MonoS column) in 25 mM NaPi, pH 7.0, with a 0.1 to 0.4 M NaCl gradient. 

Final yield was -20%. 

E. Ru(bpy h2+ Modification of Model Pep tides Containing 4(6 )Bpa 

Two peptides of the general sequence Ac-Bpa-Thr-Pro-D-Ala-Val-Phe-NH2, where 

Bpa is either 1 or 2, were synthesized and characterized.18 The Ru(bpy)z2+-modification 

reaction was performed with 1.0 mM peptide and 3.8 mM Ru(bpy)zC03 in 25 mM NaPi, 

pH 7 .0, under anaerobic conditions in the absence of light. The modification reaction was 

monitored by absorption spectroscopy and terminated by addition of excess imidazole after 

5.5 hours of reaction. Initial purification was by gel filtration chromatography (BioGel P2 

200-400 mesh column) in 50 mM acetic acid, a yellow band was recovered as product. 

Final purification was by reversed-phase liquid chromatography. Similar yields of the 

Ru(bpy)z2+-modified 4Bpa and 6Bpa peptides were obtained. Modified peptides were 

characterized by NMR, absorption and emission spectroscopy, mass spectrometry, and 

luminescence decay measurements. 

F. Time-Resolved Measurements 

ET rates were determined on 5 - 20 JlM protein samples. No concentration 

dependence was observed. *Ru2+ to Fe3+ and Fe2+ to Ru3+ ET rates were measured by 

direct excitation of Ru(bpy)z(4Bpa72)2+- Fe2+cyt c. Using the flash I quench technique 

(refer to Chapter 3) metastable Ru(bpy)z(4Bpa72)3+ - Fe2+cyt c was generated in less than 

100 ns by quenching a small fraction of *Ru(bpy)z(4Bpa72)2+- cyt c with Ru(NH3)63+. 

In both flash I quench and direct photoinduced experiments intramolecular ET was readily 

observable at 550 and 395 nm (Fe3+!2+), 434 nm (Ru3+!2+), and 370 nm (*Ru2+) after 480 

nm excitation (-25 ns pulse width). Fe2+ to Ru3+ ET rates (kErrun) were determined from 

both flash I quench and photoinduced data sets. Rates of intramolecular *Ru2+ to Fe3+ ET 
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(kET*) were determined from *Ru2+ kinetics and extracted from the yield of 

Ru(bpyh(4Bpa72)3+- Fe2+cyt c (Chapter 3 contains an in-depth discussion of these 

calculations). The photoinduced ET rate (kET*) in Ru(bpyh(4Bpa72)cyt c based on a 

calculation of the quantum yield of photoinduced ET products corresponds closely to the 

difference in excited-state lifetime between the Fe2+ (1.6 x 107 s-1) and the Fe3+ (1.9 x 107 

s-1) proteins (Table 5.1 ); however, this difference is only an estimate of the ET rate as it 

does not distinguish between other quenching mechanisms in the ferrous and ferric 

proteins. 

G. Molecular Modeling 

A qualitative appraisal of the low energy conformers was perfonned18 for the 

unnatural amino acid side chain at position 72 in horse heart cyt c (based on the native 

crystal structure).20 Low energy conformers were selected from a Ramachandran map 

generated for x1 and x2 using Insight IT v.2.1.0 Modeling Package (Biosym Technologies) 

on a Silicon Graphics Personal Iris 4D/25TG with the Discover force field. In all cases the 

chelating nitrogens of 6Bpa72 cyt c were directed towards the protein structure. 

ll. Results and Discussion 

A. Amino Acid and Peptide Synthesis and CharacterizationiB 

The 39-mer peptides were prepared by standard FMOC solid phase peptide 

synthesis with no difficulties encountered due to the inclusion of the unnatural amino acids. 

The stereoselective syntheses of 1 and 2 allow for exclusive incorporation of the L­

enantiomer into peptides. 

Difficulties were encountered in the purification of the peptides due to the oxidation 

of the Met residue to the corresponding sulfoxide (conf11111ed by mass spectrometry and 

reversed-phase chromatographic analysis of the reduced peptides). In addition, the peptides 

were highly insoluble in aqueous solvents and buffers following reversed-phase 
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chromatographic purification. This property hindered purification and eventually crude 

peptide was used directly in reconstitution reactions, resulting in higher net recovery of Bpa­

containing proteins. 

B. Protein Reconstitution 

The unnatural amino-acid containing proteins were assembled through the coupling 

of two protein segments representing residues 1-65 and 66-104 of the complete horse heart 

cyt c primary sequence. Native fragment 1-65, containing the covalently bound heme and a 

homoserine (Hse) lactone at the carboxy terminus, was obtained through cyanogen bromide 

cleavage of native horse heart cyt c at Met65 under denaturing conditions, followed by 

purification of the heme-containing fragment using cation-exchange chromatography (refer 

to Chapter 2 for details). Peptides 66-104 with the bipyridyl amino acids incorporated at 

position 72 were prepared by solid phase peptide synthesis utilizing N-9-fluorenyl­

methoxycarbonyl (FMOC) amino protection strategy .IS The synthetic peptides were 

purified by reversed-phase HPLC and characterized by electrospray mass spectrometry. 

Reconstitution of the protein was effected through incubation of the two purified fragments 

under neutral reducing conditions, thereby allowing reaction of the Hse65 lactone and the 

amino terminus of 66-104, to form a peptide bond. The renatured, fully-formed protein was 

then purified using cation-exchange chromatography (Figure 5.3). The reconstitution 

reaction is extremely selective; reaction of crude peptide 66-104 with purified fragment 1-65 

resulted in similar yields of protein in slightly lower purity. This remarkable selectivity 

most likely due to favorable secondary structure interactions between the two peptide 

fragments prior to amide bond formation. 
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Figure 5.3 Typical cation-exchange chromatogram (FPLC Mono S 10/10, flow rate 3.5 

ml/min) for the 4(6)Bpa reconstitution reaction in 25 mM NaPi, pH 7 .0. Gradient shows 

the concentration of NaCl in mM. Products eluting at low ionic strength correspond to the 

reduced and oxidized forms of the reconstituted protein. The 1-65 fragment starting 

material is indicated Detection is on the 2.0 absorbance scale at 280 nm. 
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C. Protein Characterization 

1. Absorption Spectroscopy 

310 

The 4Bpa72 cyt c (also 6Bpa72 cyt c, not shown) absmption spectrum in 50 mM 

NaPi, pH 7 .0, at room temperature overlays nearly identically with that of native cyt c in 

both the ferric and ferrous states, with the anticipated addition of a 290 nm band due to the 

bipyridine absorption14 (ebpy = 13300 M-1 cm-1; ecytc = 19500 M-1 cm-1). Spectra for the 

ferric state are presented in Figure 5.4 A. In addition, the 695 nm band, indicative of proper 

Met80 ligation to the heme, is unperturbed in the ferric Bpa72 proteins relative to the native 

protein (Figure 5.4 B). 

2 . Circular Dichroism Spectroscopy 

Circular dichroism spectra of the semisynthetic and native ferric proteins in the far 

UV region in 50 mM NaPi, pH 7.0, at 25° Care superposable (Figure 5.5). Variable 

temperature CD studies in this spectral region on the ferric 6Bpa variant demonstrated that 

the protein denatured at approximately 85-90° C, nearly identical with the native ferric horse 

heart protein melting temperature of 87° C (Figure 5.6). Thus, the overall secondary 

structure and thermodynamic stability of the protein is unaffected by the replacement of 

Lys72 with either of the bipyridyl amino acids. 

3. Electrochemistry 

The reduction potential of the mutant protein, a useful probe of the heme center 

environment and ligand geometry, was found to be nearly identical (within experimental 

error) with the native protein as measured by differential pulse polarography at a 4,4'­

bipyridyl-modified gold electrode. The reduction potentials of the semisynthetic and native 

proteins are: native cyt c = 0.265(5) V, 6Bpa72 cyt c = 0.265(5) V, 4Bpa72 cyt c = 

0.258(5) V vs. NHE. Data are shown for 4Bpa72 cyt c in Figure 5.7. 
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Figure 5.4 Electronic absorption spectra of 4Bpa72 ( · ·· · ·) and native horse heart cyt c 

(-). Spectra were recorded using a 1 em cell in 50 mM NaPi, pH 7.0, at room 

temperature. The 4Bpa72 cyt c (as well as the 6Bpa72 cyt c, not shown) spectrum overlays 

identically with native cyt c with the addition of a 290 nm band due to the bipyridine 

absorption (Ebpy = 13300 M-1 cm-1; Ecytc = 19500 M-1 cm-1), including the 695 nm band 

indicative of Met ligation. (A) 250- 700 nm region. (B) 600 - 800 nm region. Proteins 

were oxidized with Na[Co(EDTA)] prior to purification. 
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Figure 5.5 Circular dichroism spectra in the far UV region of ferric cyts c : native 

horse heart cyt c ( - ), 6Bpa72 cyt c ( - - -), 4Bpa72 cyt c ( . - · - . - · ). Sample 

concentrations were -13 JJ.M. Spectra were recorded using a 0.10 em cell on the 20 mdeg 

sensitivity scale in 50 mM NaPi, pH 7 .0, at 25o C. 
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Figure 5.6 Melting curves for (A) native cyt c and (B) 6Bpa72 cyt c in 50 mM NaPi, 

pH 7.0. The intensity of the 222 nm signal of the CD spectrum is plotted as a function of 

temperature. The native and mutant melting curves superimpose exactly. 
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Figure 5.7 Differential pulse polarogram of 4Bpa72 cyt c in 50 mM NaPi, 10 mM 4,4'­

bipyridine at a gold electrode, scan rate= 0.5 mV/s, drop rate 0.5 s-1, modulation amplitude 

= 25 mV. E0
' = 258 mV vs. NHE. 
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4. EPR Spectroscopy 

The EPR spectrum of fenic 6Bpa72 cyt c at 6.8 K was virtually identical with that of 

the native protein (Figure 5.8). This observation indicates analogous ligand environments 

of the heme groups in the native and semisynthetic proteins since the g-values are extremely 

sensitive to the electronic character of the heme ligands. Measured values are: g = 3 .03, 

2.21 and 1.21 for both horse cyt c and 6Bpa72 cyt c, literature values for cyt c are g = 3.06, 

2.24 and 1.24 at slightly difference conditions.21 The reason for the small discrepancy 

between reported and measured values is not known. Spectra were obtained in 50 mM 

HEPES, 50% glycerol, pH 7.0 on an ESP-300 Broker spectrometer equipped with a helium 

cryostat in the laboratories of Prof. David Goodin. 

5. Mass Spectrometry 

High resolution thermospray mass spectrometry of the mutant proteins 

produced peaks at 12426(12) amu (6Bpa72 cyt c) and 12439(12) amu (4Bpa72 cyt c), 

as compared to the native protein which produced a peak at 12385(12) amu. This 

change is consistent with an anticipated nominal difference of 66 amu for the Lys to 

bipyridyl and Met to homoserine mutations (native calculated= 12364; 4(6)Bpa72 cyt 

c calculated= 12430 amu). Raw and deconvoluted data for 4Bpa72 cyt c and 6Bpa72 

cyt c are presented in Figure 5.9. Lower mass forms probably correspond to 

deamidated species. Samples were prepared in 20 mM ammonium bicarbonate buffer 

(pH=7 .6), diluted with 1N acetic acid. Spectra were recorded on a Vestee Thermospray 

LC-Mass Spectrometer and analyzed using deconvolution algorithms developed at the 

laboratories of Prof. Curtis Monig. 

6. Electrophoresis 

IEF gel analysis shows the mutant proteins to have a slightly lower isoelectric point 

relative to the native protein, consistent with the substitution of bipyridinelysine for lysine at 
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Figure 5.8 EPR spectrum of (A) native ferric horse heart cyt c and (B) ferric 6Bpa72 

cyt cat 6.8 Kin 50 mM HEPES, 50% glycerol, pH 7 .0, g = 3.03, 2.21 and 1.21. Spectrum 

obtained on an ESP-300 Broker spectrometer equipped with a helium cryostat in the 

laboratories of Prof. David Goodin. 
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Figure 5.9 Thermospray mass spectra ((A) raw data, (B) deconvoluted data) of 6Bpa72 

cyt c (first page) and 4Bpa72 cyt c (second page). Samples were prepared in 20 mM 

ammonium bicarbonate buffer (pH=7.6), diluted with lN acetic acid. Spectra were recorded 

on a Vestee Thermospray LC-Mass Spectrometer and analyzed using deconvolution 

algorithms developed at the laboratories of Prof. Curtis Monig. 
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position 72. Gel shifts from SDS-PAGE (denaturing polyacrylamide gel electrophoresis) 

and elution profiles from cation-exchange chromatography are consistent with the proposed 

structure. 

These characterization data indicate that the unnatural amino acids have been 

successfully integrated into the polypeptide structure and that incorporation of the bipyridyl 

amino acids does not affect the structural integrity of the proteins. A model of the protein 

structure with the unnatural amino acid incorporated at position 72 is shown in Figure 5.1 0. 

D. Ru(bpy)i+ Modification and Characterization of4(6)Bpa72 cyt c 

Modification of the 4Bpa and 6Bpa proteins with a redox-active unit was achieved 

via incubation with excess Ru(bpyhC~ (refer to Chapter 3 and Reference 17). Singly 

modified derivatives were purified to homogeneity by cation-exchange chromatography 

(Figure 5.11). Bpa72-modifi.ed protein was unambiguously distinguished from the His33-

modifi.ed form by absorption and emission spectroscopy (see Table 5.1 for comparisons). 

The modification reaction proceeded somewhat more slowly than anticipated, and 

unwanted modification at His33 represented a major side reaction. Lowering the pH to 6.5 

to protonate this His residue did not significantly impede the side reaction. 

Interestingly, only 4Bpa72 cyt c could be modified at the surface bipyridyl residue. 

Molecular modeling of the two regioisomers indicates that the chelating nitrogens of the 

bipyridine are more accessible to solvent in the 4Bpa protein. Model peptide studies 

(following section) indicate that this regiospecificity cannot be attributed to an intrinsic 

property of the bipyridylligand and is most likely due to constraints at the 6Bpa72 site due 

to the protein structure. 

The UV-Vis absorption spectra ofRu(bpyh(4Bpa72) cyt c corresponds exactly to 

the sum of the component protein and Ru(bpyh2+ species (Figure 5.12 A). Note the 

distinctive shift in the Ru2+ to bipyridyl MLCT band from 490 nm in the 
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Figure 5.10 Model of 4Bpa72 cyt c based on the crystal structure of ferric horse heart 

cyt c.20 The blue tube is the 1-65 native fragment backbone; the yellow tube is the 66-104 

backbone constructed by solid phase peptide synthesis; red indicates the heme group; and 

purple is the 4(6)Bpa72 residue. In the 6Bpa protein the chelating bipyridyl nitrogen atoms 

are facing into the protein; in the 4Bpa protein the chelating bipyridyl nitrogens are likely to 

be solvent accessible. 
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Figure 5.11 Typical cation-exchange chromatogram (FPLC MonoS 10/10, flow rate 3.5 

rnVmin) for the products of the 4Bpa cyt c modification reaction with Ru(bpyh(C03) in 25 

mM NaPi, pH 7.0. Gradient represents the concentration of NaCl in mM. The product 

eluting at low ionic strength is unmodified protein, immediately followed by 

Ru(bpyh(im)HisX-derivatized proteins. The product with the spectroscopic characteristics 

indicative of a Ru(bpyh2+ -modified protein is denoted by the *. Detection is on the 1.0 

absorbance scale at 405 nm. 



329 

Q) 

E 
::J -g 



330 

Figure 5.12 Electronic absorption spectra of cyts c: ( · · · · ) native horse heart cyt c; 

(-) 4Bpa72 cyt c; (.- ·-·-·) Ru(bpyh(4Bpa72)cyt c. Spectra were recorded using a 

1 em cell in 50 mM NaPi, pH 7 .0, at room temperature. The Ru(bpyh(4Bpa72)cyt c 

spectrum corresponds to that of native cyt c plus Ru(bpy)32+ with no additional spectral 

perturbations observed (A) 250 - 700 run region. (B) 600 - 800 run region (native 

spectrum deleted for clarity). 
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Ru(bpyh(im)His2+ cyt c derivatives (Figure 3.10) to 452 run due to the presence of a 

Ru(bpyh2+ chromophore. The 695 band is present in the Ru(bpyh2+-modified protein 

(Figure 5.12 B). The maxima of the emission spectra of both oxidized and reduced 

Ru(bpyh(4Bpa72)cyt c (ferrous form, Figure 5.13) are clearly indicative of a Ru(bpyh2+ 

(Aroax = 617 nm) rather than a Ru(bpyh(imh2+ species <"-max = 670 run). The excitation 

spectrum confirms that the origin of the luminescence is the Ru(bpyh2+ MLCT state 

(Figure 5.14) because it mirrors the absorption spectrum ofRu(bpyh2+. The excited state 

lifetimes were determined for Ru(bpyh(6Bpa72)cyt c in both the ferrous (.kii = 1.61(5) x 

107 s-1; 1: = 62 ns) and ferric (~ = 1.91(5) x 107 s-1; 1: =52 ns) states in 50 mM NaPi, pH 

7.0, (Figure 5.15) (A-ex= 480 nm, "-obs = 620 nm). The dramatic quenching of the excited 

state lifetime of the Ru(bpyh2+ species (612 ns at these conditions) upon attachment to 

either the ferrous or ferric protein can not be attributed to covalent attachment to a 

polypeptide (refer to the model peptide studies) and is probably due to energy transfer 

quenching. Similar excited state quenching in both protein redox states has been reported 

when a Ru(bpy)32+ moiety is covalently attached to surface Lys residues of cyt c.22 The 

spectroscopic properties of Ru(bpy h2+ -modified proteins and related model compounds 

are set out in Table 5.1. 

Table 5.1. Spectroscopic properties ofRu(bpyhL2+ model compounds (L = bpy, im2) and 
Ru(bpyh-modified Bpa72 proteins. For Ru(bpy)32+data, refer to Reference 16; 
Ru(bpyh(imh2+; refer to Chapter 3. "-em values are from the uncorrected spectra. 

"-abs (MLCT) "-em 't 

(nm) (nm) (ns) 

Ru(bpyh(4Bpa72) 
452 617 Fe2+: 62 

cyt c (pH 7.0) Fe3+: 52 

Ru(bpyh2+ 454 615 612 

Ru(bpyh(im)His72 
-490 670 Fe2+: 71 cyt c (pH 7 .0) Fe3+: 71 

Ru(bpyh(imh2+ 492 670 66 



333 

Figure 5.13 Uncorrected ( --) and corrected ( - - - - ) room temperature emission 

spectra of ferrous Ru(bpyh(4Bpa72)cyt c, 5.3 J.!M in 50 mM NaPi, pH 7 .0. Excitation was 

436 run from a Hg/Xe lamp, with a 446 nm cutoff filter. Detection sensitivity was 0.200 

m V with 5 mm slits. 
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Figure 5.14 Room temperature excitation spectrum of ferrous Ru(bpyh(4Bpa72)cyt c, 

4.2 JJM in 50 mM NaPi, pH 7 .0. Excitation was with aXe lamp. Detection was at 620 nm 

(586 nm cutoff filter) with 0.100 m V sensitivity and 5 mm monochrometer slits. 
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Figure 5.15 (A) Luminescence decay of a 10.5 ~ sample of ferric 

Ru(bpyh(4Bpa72)cyt c in 50 mM NaPi, pH 7.0, observed at 620 nm following excitation at 

480 nm (2 mJ pulse). The smooth line is the fit to a single exponential decay function 

convolved with the instrument response (shown);~= 1.91(5) x 107 s-1, c = 0.147. (B) 

Luminescence decay of a 7.0 ~sample of ferrous Ru(bpyh(4Bpa72)cyt c in 50 mM 

NaPi, pH 7.0, observed at 620 nm following excitation at 480 nm (2 mJ pulse). The smooth 

line is the fit to a single exponential decay function convolved with the instrument response 

(shown);~= 1.61(5) x 107 s-1, c = 0.161. 
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Comparison of the circular dichroism spectra of Ru(bpyh( 4Bpa72)cyt c and 4Bpa 

cyt c indicate minimal perturbation of secondary structure upon Ru(bpyh2+modification 

(Figure 5.16). The CD in the near UV region indicates that the species isolated is 

predominantly the A-isomer. Formation of the 8-isomer was not observed. Based on the 

spectroscopic data presented, a model in which the Ru(bpyh2+ label does not interact with 

the protein structure was constructed and is shown in Figure 5.17. 

E. Model Peptide Studies 

Two peptides of the general sequence Ac-Bpa-Thr-Pro-D-Ala-Val-Phe-NH2, where 

Bpa is either 1 or 2, were synthesized, characterized18 and modified by Ru(bpyhC0:3 in 

high yield to afford derivatives with electronic-absorption and steady-state-emission 

properties characteristic of Ru(bpyh2+. The emission spectra for the 4Bpa and 6Bpa 

modified peptides and Ru(bpy)32+ model complexes are presented in Figure 5.18. These 

data indicate that the regiospecificity observed in the protein modification reaction is not due 

to any intrinsic difference in the reactivity of the bipyridyl amino acid within a peptide 

structure. 

However, while the *Ru2+ lifetime of the Ru(bpyh( 4Bpa) peptide is nearly identical 

with that of Ru(bpyh2+ (t=612 ns for Ru(bpyh(4Bpa) peptide, t=644 ns for Ru(bpy)3
2+ 

in aqueous solution), the *Ru2+ lifetime of the Ru(bpyh(6Bpa) peptide is significantly 

shorter (t< 6 ns). The luminescence decay data and fit are shown in Figure 5.19. The 

quantum yield for emission is also correspondingly lower (Figure 5.18). Similar 

observations have been reported in other Ru(bpyh2+ complexes substituted at the 6-

position of the bipyridylligand. For example, Ru(bpyh(6-methyl-bpy)2+ has an MLCT 

excited-state lifetime of 8 ns in ethanol (Ru(bpyh2+ = 670 ns) at 298 K, and a 

Ru(bpyh(bpy-Ni2+-cyclam)4+ complex, in which the cyclam ring is linked to the bipyridyl 

ligand via a methylene chain attached at the 6-position, exhibits an excited-state lifetime < 2 

ns at room temperature.23 The excited-state deactivation in 6-substituted derivatives has 
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Figure 5.16 Circular dichroism spectra in the far UV region of ferric cyts c: native horse 

heart cyt c ( --), 4Bpa72 cyt c (·- .-.- . ), Ru(bpyh( 4Bpa72)cyt c ( - - - - ). Sample 

concentrations were -13 J.LM, except for Ru(bpyh(4Bpa72)cyt c, 3.8 J.LM. Spectra were 

recorded using a 0.10 em cell on the 20 mdeg sensitivity scale in 50 mM NaPi, pH 7 .0, at 

25° C. 
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Figure 5.17 Model of Ru(bpyh(4Bpa72)cyt c based on the crystal structure of ferric 

horse heart cyt c.20 The blue tube is the 1-65 native fragment backbone; the yellow tube is 

the 66-104 backbone constructed by solid phase peptide synthesis; red indicates the heme 

group; and purple indicates the Ru(bpy)32+ unit. 
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Figure 5.18 Uncorrected (--)and corrected (----)room temperature emission 

spectra of (A) Ru(bpyh( 4Bpa)-peptide, 27.0 J.1M in 25 mM NaPi, pH 7 .0, sensitivity= 5.0 

mV, (B) Ru(bpyh(6Bpa}-peptide, 15.4J.1M in 25 mM NaPi, pH 7.0, sensitivity= 0.010 

mV, and (C) Ru(bpyhC12 16.6 JlM in 25 mM NaPi, pH 7.0, sensitivity= 2.0 mV. 

Excitation was 436 nm from the Hg/Xe lamp, with a 446 nm cutoff filter. 5 mm slits were 

used. 
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Figure 5.19 (A) Luminescence decay of a 27.0 J.1M sample of Ru(bpyh( 4Bpa)-peptide 

in 25 mM NaPi, pH 7.0, observed at 620 nm following excitation at 480 nm (2 mJ pulse). 

The smooth line is the fit to a single exponential decay function convolved with the 

instrument response (shown); kct = 1.55(5) x 106 s-1, c = 0.24. (B) Luminescence decay of 

a 15.4 J.1M sample ofRu(bpyh(6Bpa)-peptide, in 25 mM NaPi, pH 7.0, observed at 620 nm 

following excitation at 480 nm (2 mJ pulse). The smooth line is the fit to a single 

exponential decay function convolved with the instrument response (shown); kct > lQS s-1, c 

= 0.23. (C) Luminescence decay of a 16.6 J.1M sample ofRu(bpy)JC12, in 25 mM NaPi, 

pH 7.0, observed at 620 nm following excitation at 480 nm (2 mJ pulse). The smooth line 

is the fit to a single exponential decay function convolved with the instrument response 

(shown); kct = 1.63(5) x 1Q6 s-1, c = 0.18. 
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been attributed to the sterically induced increase in the Ru-N(6Bpa) bond length upon 

substitution at the 6-position (Ru-N= 2.056 A in Ru(bpy)J2+;24 one Ru-N bond (to the 

substituted bipyridylligand) = 2.143 A (average= 2.072 A) in Ru(bpyh(bpy-Ni2+_ 

cyclam)4+).25 This structural change is proposed to reduce the ligand field strength, thus 

stabilizing low-lying deactivating ligand field states in the vicinity of the lowest 3MLCf 

state. 

Table 5.2. Spectroscopic properties of Ru(bpyhL2+ model compounds (L = bpy, im~ and 
Ru(bpyh2+-modified peptides. (Ru(bpyh2+, Reference 16; Ru(bpyh(imh2+, refer to 
Chapter 3). 

A.abs (MLCT) A em 't Ru-N 

(nm) (run) (ns) (A) 

Ru(bpyh2+ 454 615 612 2.056 

Ru(bpyh(imh2+ 492 670 66 

Ru(bpyh 454 617 644 (4Bpa-peptide) 
Ru(bpyh 

448 610 (6.8)* 2.143** (6Bpa-peptide) 

* Lifetime is at the detection limit. 
** Reported distance in a related Ru(bpyh(bpy-Ni2+-cyclam)4+ complex.25 

F. Electron-Transfer Studies at pH 7.0: Enhanced Electronic Couplings 

Direct-photoinduced and flash-quench techniques (refer to Chapter 3) were 

employed to obtain the rate constants for electron transfer in Ru(bpyh( 4Bpa72)cyt c. The 

spectral features of the Ru(bpyh2+ label are similar and slightly blue-shifted relative to 

Ru(bpyh(imh2+. The pertinent difference spectra (i.e., *Ru2+ - Ru2+ and Ru3+- Ru2+) 

have been previously reported.16 The Ru(bpy)33+ spectrum has a maximum at -420 nm. 

The Ru3+ - Ru2+ difference spectrum exhibits a significant bleach at 434 nm (~£ --4500 

M-1 cm-1 ), a Fe2+JFe3+ isosbestic wavelength, although a bleach due to the excited state (& 

--12000 M-1 cm-1) dominates at this wavelength. The *Ru2+- Ru2+ difference spectrum 
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exhibits a maximum absorption at -370 run (& = 18500 M-1 cm-1) and a large bleach 

centered at 450 run (& = -12000 M-1 cm-1 ). The relevant electrochemical potentials used 

for calculating driving forces are set out in Table 5.2. Potentials for Ru(bpyh2+ are used as 

models for Ru(bpyh(4Bpa72)cyt c since the ambient temperature emission and MLCI' 

absorption properties of these two species are virtually identical.26 

Table 5.3. Summary of relevant reduction potentials for the calculation of driving forces in 
aqueous solution. Ru(bpyh2+ data are from Reference 16; cyt c (pH 11.0) from Reference 
27. 

Redox Couple 

cyt c (Fe3+12+) 

(pH 7.0) 

cyt c (Fe3+12+) 

(pH 11.0) 

Ru(bpyh3+/2+ 

Ru(bpyh3+/*2+ 

Reduction Potential 
(Vvs. NHE) 

0.265 

-0.200 

1.26 

-0.86 

The Fe2+ to Ru3+ ET rate constant (k~) was determined from nine flash I 

quench (Q = [Ru(NH3)6]Cl3) and photoinduced data sets at 550 and 395 nm fit to both 

single and double exponential decay functions as described in Chapter 3. A rate constant of 

6.5(5) x 1Q6 s-1 was calculated. Identical kinetics were observed at 504 and 434 nm 

corresponding to Ru3+fRu2+ ET. Data obtained at 550 and 395 nm for the flash I quench 

experiments fit convolved with the laser pulse are shown in Figure 5.20. Data from the 

photoinduced experiments at 550, 434 and 395 run are presented in Figure 5.21. The rate 

constant for photoinduced ET (kET*) was calculated as 6(2) x106 s-1 from two full data sets 

(550, 395 and 370 run). Representative data obtained at 370 run used to calculate the 

excited state concentration are fit convolved with the pulse in Figure 5.22 (note the addition 
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Figure 5.20 Transient absorption kinetics at various wavelengths following laser flash 

excitation (480 run, 25 ns, 2 mJ) of ferrous Ru(bpyh(4Bpa72)cyt c in 50 mM NaPi, pH 

7.0, with -5 mM [Rua6]Cl3, at room temperature. The decay corresponds to the production 

of ferric Ru(bpyh( 4Bpa72)cyt c due to intramolecular ET from Fe2+ to Ru3+ at a rate of 

6.5 x 106 s-1. Smooth lines correspond to fits to a biexponential decay function, k1 = 

kEynm (6.5 x 106 s-1), k2 = ~ = 2 x 107 s-1 (due to the presence of excited-state quencher). 

The wavelength, sample concentration and coefficients for the rate terms are given. (A) 550 

nm, 14.0 ~protein, c1 = 0.041, ~ = -0.051. (B) 395 nm, 14.0 J..LM protein, c1 = -0.020, 

c2 = -0.017. 



0.0 0.5 

0.0 0.5 

353 

1.0 

Time (J.!S) 

1.0 
Time (J.!S) 

1.5 

1.5 



354 

Figure 5.21 Transient absorption kinetics at various wavelengths following laser flash 

excitation ( 480 run, 25 ns, 2 mJ) of ferric Ru(bpyh( 4Bpa72)cyt c in 50 mM NaPi, pH 7 .0, 

at room temperature. The rise corresponds to production of ferrous cyt c due to 

photoinducedET. The decay corresponds to the production of ferric Ru(bpyh(4Bpa72)cyt 

c due to intramolecular ET from Fe2+ to Ru3+ at a rate of 6.5 x 106 s-1. Smooth lines 

correspond to fits to a biexponential decay function, k1 = kEynm (6.5 x 106 s-1), k2 = ~ = 

-3 x 107 s-1 (5.8 x lOS s-1 at 434 nm, due to the generation of excited state with the pulse, 

decay fit only to Ru3+ decay). The wavelength, sample concentration and coefficients for 

the rate terms are given. (A) 550 run, 11.2 J,J.M protein, c1 = 0.058, c2 = -0.066. (B) 395 

nm, 11.2 J,J.M protein, c1 = -0.067, c2 = -0.075. (C) 434 nm, 11.2 J,J.M protein, c1 = -0.059, 

c2 = -0.061. 
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Figure 5.22 Transient absotption kinetics at 370 nm following laser flash excitation (480 

nm, 25 ns, 2 mJ) of an 11.2 ~sample of ferric Ru(bpyh(4Bpa72)cyt c in 50 mM NaPi, 

pH 7 .0, at room temperature. The smooth line is the fit to a biexponential decay function 

convolved with the instrument response. The signal is the excited state decay at 1.9 x 107 

s-1 (c1 = 0.183) followed by transient generation of ferrous protein, k2 = 6.5 x 106 s-1, c2 = 

-0.059. 
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slow transient due to Fe2+JFe3+ ET). The value of kET* calculated from the yield of ET 

products corresponds qualitatively to the difference in excited state lifetime of the ferrous 

and ferric states. High photoinduced ET rates also have been observed in cyt c derivatives 

with a Ru(bpyh(dicarboxybipyridine) species tethered directly to a surface lysine. A rate 

constant of 1.4 x 107 s-1 has been reported for *Ru(bpyh(dcbpy)Lys72 to ferric heme ET. 

However, the flexible nature of the Ru linkage to the protein precludes the comparison of 

these data with the His72 and Bpa72 derivatives in the context of electronic coupling 

models. Laser-induced electron photoinjection with Lys-modified derivatives has been used 

to initiate thermal ET within protein:protein complexes [e.g., Ru(bpy)3LysX cyt c:cyt c 

peroxidase, X = 13, 25, 27, 72].28 

The rate constants for both Fe2+ to Ru3+ and *Ru2+ to Fe3+ ET are much higher 

than in the corresponding Ru(bpyh(im)His72 cyt c protein (Table 5.4). Since the intrinsic 

decay rates of the His72 and 4Bpa72 modified proteins are comparable (Table 5.1), the 

photoinduced ET rates (kET*) are proportional to ET product yield. The increased yield of 

photoinduced ET products (-30%) in the 4Bpa72 protein relative to the His72 (2.3%)11 

protein may be understood in terms of the nature of the photoinduced ET reaction. The 

electron transfer originates from MLCT excitation, and the effective electron donor, a 

bipyridyl-based anion radical, is built directly into the polypeptide backbone in 

Ru(bpyh(4Bpa72)cyt c, in contrast to being at some undefined location with respect to the 

protein surface in Ru(bpyh-modified His72 cyt c. We conclude that the bipyridyl side 

chain enhances the distant donor-acceptor electronic coupling by effectively shortening the 

tunneling pathway between the Ru and heme redox units in position-72 modified proteins. 

The a-tunneling pathway approach29 employed in the analysis of Ru(bpyh(im)His­

modified cyts c (refer to Chapter 4) predicts enhanced electronic coupling of approximately 

the magnitude observed in the photoinduced ET reaction of the Ru-modified 4Bpa72 cyt c 

relative to His72 cyt c if one assumes the pathway is effectively four bonds longer in 

Ru(bpyh(im)His72 cyt c than Ru(bpyh(4Bpa)cyt c.3o The four additional bonds are due 
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to the electron tunneling pathway from the bpy anion radical to the Ru metal through the 

His72 imidazole ring to within one bond of C~. In Ru(bpy)z( 4Bpa)cyt c. the MLCf 

excitation effectively transfers the electron directly to within one bond of C~. This simple 

pathway explanation does not take into account alternate pathways that may be available for 

the *Ru(bpy)z(im)His72 to heme ET,_and valid pathways for the photoinduced ET step can 

not be evaluated in the absence of precise structural information. The Fe2+ to Ru3+ ET 

reaction is most likely in the inverted region (-~G0 = 1.0 eV, A.= 0.8 eV); ~ax= 1.06 x 107 

s-1 if A.= 0.8 eV. This -10-fold enhancement in rate constant relative to the His72-

modificed protein can also be attributed to an increase in Ru-heme electronic coupling. 

Table 5.4. Summary of electron-transfer parameters for Ru(bpy)z(4Bpa72)cyt c and 
Ru(bpy)z(im)His72 cyt c. 

*Ru2+ to Fe3+ -~Go Fe2+ to Ru3+ -~Go 

kET* (s-1) (eV) kETmm (s-1) (eV) 

Ru(bpy)z( 4Bpa72) 6(2) X 106 1.1 6.5(5) X 106 1.00 
cyt c (pH 7 .0) 

Ru(bpy)z(His72) 3.4(7) X 1Q5 1.2 9.0(3) X 1Q5 0.74 
cyt c (pH 7 .0) 

G. Electron-Transfer Studies of the Alkaline Form 

The enhanced ET properties of Ru(bpy)z(4Bpa72)cyt c can be employed to probe 

conformationally perturbed states of the protein. For example, at high pH (pKa -9.3),27,31 

ferric cyt c exists in a low-potential state (the midpoint potential is roughly -200 mV)27 with 

altered ligation, while at identical conditions the ferrous state has a native-like (pH 7.0) 

ligation and polypeptide conformation. The alkaline form has been proposed to consist of 

two strong-field alternate axially ligated species;32.33 recent site-directed mutagenesis 

studies identify Lys79 and Lys73 as the sixth ligands replacing Met80.34 Due to the large 

quantum yield and fast electron-transfer rates of Ru(bpy)2( 4Bpa72)cyt c at pH 7 .0, 

photoinduced ET experiments at pH 11 will allow the rapid ( < 60 ns, 480 nm-excitation) 
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generation of ferrous protein in the ferric alkaline conformation. The flash I quench 

methodology is not applicable at high pH because of the low redox potential of the alkaline 

form. 

Photoinduced ET experiments conducted on the alkaline form show an 

unexpectedly high yield ofET from *Ru(bpy)z(4Bpa72) to the heme (Figure 5.23). The 

subsequent Fe2+ to Ru3+ ET kinetics are comprised of at least two components (1.2(5) x 

107, 1.0(5) x 106 s-1). The excited state lifetimes are nearly identical at pH 11.0 and pH 7.0, 

~ = 1.95(10) x 107 s-1 (51 ns) (Figure 5.24). Data were analyzed from two separate 

preparations, and reported rate constants determined from two full data sets (550, 504, 434, 

395, 370 nm). Figure 5.25 shows data from 550 and 395 nm, Figure 5.26 is data obtained 

at 370 nm. Values of ~e for Fe2+fFe3+ 35 at pH 11.0 and Ru2+f*Ru2+ are similar to those 

at pH 7 .0, therefore their values at pH 7.0 were used. Some difficulties were encountered in 

the determination of the photoinduced ET rate constant. The rapid Fe2+ to Ru3+ ET rate 

constants warranted biexponential data fits convolved with the pulse. Small changes in the 

107 s-1 decay term, due to small fitting adjustments to factors such as the pretrigger noise in 

the data set, affected the extracted cn terms by as much as a factor of two. Thus, it is 

difficult to determine the kET* rate constant to higher accuracy (and precision) than 9(3) x 

106 s-1. The high pH environment is not expected to change the Ru3+!2+* potential; the 

Ru3+!2+ potential is identical at pH 7 .0, 9.5 and 11.0 in 50 mM NaPi.36 Values for these 

potentials of -0.86 V and 1.26 were therefore used, respectively, for the calculation of 

driving forces at high pH. 

The two Fe2+ to Ru3+ ET components (-1 x 107, -1 x 106 s-1) (Figure 5.26) are 

both much faster than estimates of the Met80 religation rate ( 40 to 1 s-1 ). 27,33,37 Our 

finding of two distinct decay pathways for the intramolecular oxidation of the 

photogenerated high-pH ferrous protein accords with other evidence indicating that alkaline 

ferricytochrome c is a mixture of at least two different conformers_33,34 These experiments 

are only possible using the enhanced electron coupling afforded by the incorporation of the 
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Figure 5.23 (A) Transient absorption kinetics at 550 nm following laser flash excitation 

(480 nm, 25 ns, 2 mJ) ofRu(bpyh(4Bpa72)cyt c, 11.2 JlM in 50 mM NaPi, pH 7.0, at 

room temperature. The smooth line is the fit to a biexponential decay function convolved 

with the instrument response (shown). The rise corresponds to production of ferrous cyt c 

due to photoinduced ET. The decay corresponds to Fe2+ to Ru3+ ET at 6.5 x 106 s-1. (B) 

Transient absorption kinetics at 550 nm following laser flash excitation (480 nm, 25 ns, 2 

mJ) ofRu(bpyh(4Bpa72)cyt c, 15.8 JlM in 50 mM NaPi, pH 10.8, at room temperature. 

The smooth line is a fit to a 3-exponential decay function convolved with the instrument 

response (shown). The rise corresponds to production of ferrous cyt c due to direct 

photoinduced ET. The decay corresponds to Fe2+ to Ru3+ ET at 1.2 x 107 and 1.0 x 106 

s-1. Virtually identical kinetics were observed at pH 9.85. 
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Figure 5.24 Luminescence decay of a 7.1 J.LM sample of ferric Ru(bpy h( 4Bpa72)cyt c 

in 50 mM NaPi, pH 9.9, observed at 620 run following excitation at 480 nm (2 mJ pulse). 

The smooth line is the fit to a single exponential decay function convolved with the 

instrument response (shown);~= 1.95(10) x 107 s-1, c = 0.2152. 
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Figure 5.25 Transient absorption kinetics at various wavelengths following laser flash 

excitation (480 nm, 25 ns, 2 mJ) of ferric Ru(bpyh(4Bpa72)cyt c in 50 mM NaPi, pH 10.8, 

at room temperature. The rise corresponds to production of ferrous cyt c due to 

photoinduced ET. The decay corresponds to the production of ferric Ru(bpy)z(4Bpa72)cyt 

c due to biphasic intramolecular ET from Fe2+ to Ru3+ at rates of 1.0 x 1 Q6 s-1 and 1.2 x 

107 s-1. Smooth lines correspond to fits to a three-exponential decay function, k1 = kEyrun 

(1.0 x 106 s-1), k2 = k~ (1.2 x 107 s-1), k3 = ~ = -1 x lOS s-1. The wavelength, sample 

concentration and coefficients for the rate terms are given. (A) 550 run, 15.8 J.1M protein, c1 

= 0.0051, c2 = 0.018, c3 = -0.039. (B) 395 nm, 15.8 J.1M protein, c1 = -0.0068, c2 = -0.031, 

c3 = 0.073. 
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Figure 5.26 Transient absorption kinetics at 370 nm following laser flash excitation ( 480 

run, 25 ns, 2 mJ) of a 15.8 J.1M sample of ferric Ru(bpyh(4Bpa72)cyt c in 50 mM NaPi, 

pH 10.8, at room temperature. The smooth line is the fit to a biexponential decay function 

convolved with the instrument response. The signal is the excited state decay at 1.9 x 107 

s-1 (c1 = 0.052) followed by transient generation of ferrous protein, k2 (fit)= 1.7 x 106 s-1, 

c2 = -0.024. 
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bipyridyl amino acid; at high pH, Ru(bpyh(im)His72 cyt c possesses a slightly shorter 

luminescence decay lifetime (58 ns), however, upon excitation of the Ru-chromophore no 

transiently generated ET products could be detected. 

Table 5.5. Electron-transfer parameters for Ru(bpyh(4Bpa72)cyt c and 
Ru(bpyh(im)His72 cyt c. 

*Ru2+ to Fe3+ -~Go Fe2+ to Ru3+ 
kET* (s-1) (eV) .. kgr= (s-1) 

Ru(bpyh(4Bpa72) 6(2) X 106 1.1 6.5(5) X 106 
cyt c (pH 7 .0) 

Ru(bpyh(4Bpa72) 9(3) X 106 0.66 1.2(5) X 107 
cyt c (pH 11.0) 1.0(5) X 106 

Ru(bpyh(His72) 3.4(7) X lOS 1.2 9.0(3) X lOS 
cyt c (pH 7 .0) 

Ru(bpyh(His72) 0.75 
cyt c (pH 11.0) 

-~Go 

(eV) 

1.00 

1.46 

0.74 

1.20 

The ability to photogenerate reduced cyt c rapidly with high quantum efficiency in 

conformationally altered forms opens the way for studies of submicrosecond protein­

folding events. The use of laser excitation rather than traditional "rapid" mixing techniques 

will allow spectroscopic measurements to be made in the time domain that is considered 

critical for the understanding of folding dynamics.38 

IV. Conclusion 

Two horse heart cytochrome c (cyt c) variants incorporating the unnatural amino 

acids (S)-2-amino-3-(2,2'-bipyrid-6-yl)-propanoic acid (6Bpa) (1) and (S)-2-amino-3-(2,2'­

bipyrid-4-yl)-propanoic acid (4Bpa) (2) at position 72 have been prepared using 

semisynthetic protocols. Negligible perturbation of the protein structure results from this 

introduction of unnatural amino acids. Redox-active Ru(2,2'-bipyridineh2+ binds to 
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4Bpa72 cyt c but not to the 6Bpa protein. Enhanced ET rate constants were observed in the 

Ru(bpyh2+-modified 4Bpa72 cyt c relative to the analogous His72 derivative (k (*Ru2+ to 

Fe3+) = 9(3) x 106 s-1 in Ru(bpyh(4Bpa72)cyt c, 3.4(7) x lOS s-1 in Ru(bpyh(im)His72 

cyt c; k (Fe2+ to Ru3+) = 6.5(5) x 106 s-1 in Ru(bpyh(4Bpa72)cyt c, 9.0(3) x lOS s-1 in 

Ru(bpyh(im)His72 cyt c). The rapid ( < 60 nanosecond) photogeneration of ferrous Ru­

modified 4Bpa72 cyt c in conformationally altered states demonstrates that laser-induced 

electron transfer can be employed to study submicrosecond protein-folding events. 
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Appendix A 

2-D Double Quantum COSY NMR Studies of 
His72 and Ru(bpy)z(im)His33 Cytochromes c 
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In collaboration with Prof. P. E. Wright and Dr. Dimitrios Morikis, 2-D proton 

NMR studies were conducted in an effort to elucidate the specific structural effects of 

Ru(bpyh(im)2+ modification of surface His residues and the replacements ofLys72 with 

His and Met80 with Cys. Data were collected on both isolated derivatives of 

Ru(bpyh(im)His cyt c to determine if the two proposed stereochemical isomers differ 

structurally. NMR was selected to probe protein structure due to the difficulty of 

obtaining crystals of the horse species of cyt c.l 

The proton NMR spectra of ferrousl and ferric2 horse heart cyt c have been fully 

assigned by S. W. Englander and coworkers. The availability of these assignments 

facilitates interpretation of data collected on mutants; if chemical shift perturbations are 

minimal, resonances of the cyt c derivatives can be readily assigned. The observation of 

significant shifts relative to native cyt c indicate either structural perturbations at that site 

or, in the case of the Ru(bpy)2(im)2+-modified proteins, a new interaction with a 

neighboring aromatic ring causing contact or ring-current shifts. Patterns observed in 

chemical shifts would allow the mapping of structural perturbations onto the crystal 

structure. 4 Thus, the goal of these experiments is not to solve the solution structures, but 

to identify regions, if any, of the proteins studied that undergo conformational change, 

since the analyses presented in this thesis rely on the crystal structure of native horse 

heart cyt c. Since NMR specifically reports on each residue individually, it is superior to 

macroscopic techniques, such as CD, that can only report on the overall protein structure. 

For preliminary analysis, the "fmgerprint" region of the spectrum was targeted. 

This region, consisting of Ca-H to N-H proton-proton ]-coupled crosspeaks, affords the 

chemical shifts of the Ca-H to N-H protons and is sensitive to changes in either. The 

chemical shifts of these protons are extremely sensitive to protein conformation, and this 

region is commonly studied to ascertain the homogeneity of the sample. To ensure that 

the literature assignments could be transferred to the proteins studied, data were collected 

native horse heart cyt cat nearly identical conditions with those reported (90% D20/10% 
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H20,100 mM NaPi, 150 mM NaCl, pH 5.7, 293 K). The ferric form was selected for 

study to avoid experimental complications using dithionite. In the ferric derivative, the 

paramagnetic center may amplify small shifts due to conformational changes. 

Representative data from this region are presented in Figure A.1 . 

Data were collected on freshly prepared samples, oxidized fully with 

Na[Co(EDTA)] and purified to homogeneity by cation-exchange chromatography as 

described. Double quantum COSY spectra were collected rather than COSY spectra to 

move resonances away from the T 1 noise generated by the water signal. The only 

manifestation of this change in the spectra obtained is that ~ = ro2 and ro1obs = ro1 + ~· 

Spectra were collected at 293 K on a Brucker AMX 500.13 :MHz NMR spectrometer 

using standard Brucker software wii:h a 8333.33 Hz sweep width and 4 K real points in 

~ and a doubled sweep width and 1 K real points in ro1• Data were processed using 

FELIX on a SPARC workstation. Prior to Fourier transform the data were multiplied by 

a sine bell shifted 90° in F2 and a 55° sine bell in Fl and zero filled to 2K complex 

points. Samples were 2-4 mM in 90% D20/10% H20, 100 mM NaPi, 150 mM NaCl. 

Final pHs (uncorrected for the isotope effect) were: native cyt c, 5.73; His72 cyt c, 5.74; 

Ru(bpy)z(im)His33 cyt c (ET band), 5.73; Ru(bpy)z(im)His33 cyt c (not ET band), 5.75; 

Cys80His72 cyt c, 5.74. 

Assignments made from comparison with published data are set out in Table A.1. 

There was a systematic shift of -0.05 ppm from published values, attributable to 

differences in referencing procedures.5 Most of the assigned CaH-NH crosspeaks were 

identified in the native sample. Fourteen of the 100 anticipated crosspeaks were not 

found, mostly Gly residues (which have two crosspeaks and thus weaker signals) and 

paramagnetically shifted resonances. Resonances in the cyt c derivatives were tentatively 

assigned, if a resonance was not observed it could be due to either a lack of sensitivity or 

a chemical shift from its original value large enough to preclude assignment by 

comparison. The designations "ET band" and "not ET band" on the Ru(bpy)z(im)His33 



378 

cyt c derivatives refer to Band ill (tentatively assigned at the A-isomer, with which ET 

studies were performed) and Band IT (tentatively assigned at the ~-isomer), respectively, 

as described in Chapter 3. The 1-D lH spectrum ofHis72 cyt c indicated the presence of 

a small impurity with slightly shifted resonances in the 10 - 40 ppm region; it was not 

observed in earlier 1-D lH NMR studies. Good 1-D lH NMR spectra were obtained on a 

sample ofRu(bpyh(im)His72 cyt c, however, the sample was too dilute for 2-D studies. 

In all the proteins studied, except Cys80His72 cyt c, most of the resonances could 

be readily assigned by comparison with the native spectrum. This good correlation 

indicates negligible perturbation of the overall protein structure, with certain regions of 

the derivatives identical with the native structure. In the Cys80 axial mutant protein high 

quality data were obtained, however the g-tensor of the unpaired electron differs so 

drastically from that of the Met80 ligated proteins that there is no correlation between the 

chemical shifts of the native and His72Cys80 protein due to significantly different 

paramagnetic interactions (Appendix B). Bar graphs are presented following the 

assignment table that illustrate the CaH and NH proton chemical shifts as a function of 

amino acid residue of the derivatives studied. Blank spots correspond to unassigned 

resonances. Following the assignment graphs are bar graphs of the difference in 

chemical shifts between relevant cyt c derivatives. Offscale bars represent resonances 

that were assigned in one derivative and not in the other. These difference graphs 

pinpoint regions where small structural perturbations may have occurred. 
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5. Spectra referenced to the liDO signal. Published spectra referenced to Na 3-
(trimethylsilyl)[2,2,3,3-2H4] propionate. 
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Figure A.l Representative data of the fingerprint region obtained from 2-D double 

quantum COSY NMR experiments. 
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nat cyc-NH nat cyc-Ca H72cyc-NH NH:H72-nat residue number H72 cyc-Ca 

1 8.1050 3.5300 8.1250 0.020000 1.0000 3.5450 

2 9.2150 4.6300 9.2450 0.030000 2.0000 4.6550 

3 8.4630 3.4470 8.4850 0.021999 3.0000 3.4750 

4 8.0250 4.0200 8.0450 0.020000 4.0000 4.0350 

5 8.0100 3.8500 8.0050 ·0.0050001 5.0000 3.8450 

6 8.6500 3.1700 8.6800 0.030001 6.0000 3.1850 

7 7.9750 2.2000 7.9650 -0.0099998 7.0000 2.2050 

8 6.8500 3.8300 6.8550 0.0050001 8.0000 3.8400 

9 7.4350 3.4500 7.4500 0.015000 9.0000 4.4650 

10 8.3520 3.3680 8.3600 0.0079994 10.000 3.3800 

11 8.8450 3.8000 8.8500 0.0050001 11.000 3.8000 

12 7.7800 4.0950 7.7800 0.0000 12.000 4.0900 

13 8.4200 4.3000 8.4300 0.010000 13.000 4.2850 

14 8.0270 4.3730 8.0050 -o.022000 14.000 4.1050 

15 8.0900 5.9650 8.0900 0.0000 15.000 5.9550 

16 9.8930 4.6920 9.8800 -o.013000 16.000 4.6800 

17 9.6450 6.0050 9.5650 ·0.080001 17.000 5.9550 

18 10.960 9.1100 0.0000 -10.960 18.000 0.0000 

19 10.710 6.2400 10.740 0.030000 19.000 6.2700 

20 8.9450 5.0050 8.9700 0.025001 20.000 5.0350 

21 0.0000 0.0000 0.0000 0.0000 21 .000 0.0000 

22 9.1450 3.3850 9.1450 0.0000 22.000 3.4050 

23 9.4550 4.0300 9.4650 0.010000 23.000 4 .0450 

24 0.0000 0.0000 0.0000 0.0000 24.000 0.0000 

25 8.8200 4.2100 8.8300 0.010000 25.000 4.2250 

26 8.8570 5.0030 8.8650 0.0079994 26.000 5.0200 

27 8.1550 4.7000 8.1550 0.0000 27.000 4.7000 

28 8.0750 0.0000 0.0000 -8.0750 28.000 0.0000 

29 0.0000 0.0000 0.0000 0.0000 29.000 0.0000 

30 0.0000 0.0000 0.0000 0.0000 30.000 0.0000 

31 0.0000 0.0000 0.0000 0.0000 31 .000 0.0000 

32 9.6140 5.0110 9.6450 0.031000 32.000 5.0700 

33 0.0000 0.0000 0.0000 0.0000 33.000 0.0000 

34 0.0000 0.0000 0.0000 0.0000 34.000 0.0000 

35 0.0000 0.0000 0.0000 0.0000 35.000 0.0000 

36 8.6500 3.6580 8.6750 0.025001 36.000 3.8900 

37 9.2870 4.3380 9.2550 ·0.032000 37.000 4.3600 

38 8.1550 4.6050 8.1550 0.0000 38.000 4.6050 

39 0.0000 0.0000 0.0000 0.0000 39.000 0.0000 

40 7.4450 4.1950 0.0000 -7.4450 40.000 0.0000 

41 0.0000 0.0000 0.0000 0.0000 41.000 0.0000 

42 7.6870 4.3680 7.6500 -0.037000 42.000 4.3750 

43 8.0350 4 .5650 8.0250 -o.010000 43.000 4.5750 

44 0.0000 0.0000 0.0000 0.0000 44.000 0.0000 

45 8 .9500 4.2600 0.0000 -8.9500 45.000 0.0000 
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nat cyc-NH nat cyc-Ca H72 cyc-NH NH:H72-nat residue number H72cyc-Ca 

46 6.8100 3.6400 6.8200 0.010000 46.000 3.6400 

47 6.7200 3 .7250 6.7250 0.0050001 47.000 3.7300 

48 7.9650 4 .0100 7.9800 0.015000 48.000 4 .0150 

49 9 .5800 4 .1100 9.5950 0.015000 49.000 4.1100 

50 8.8500 4 .1950 8.8300 -0.020000 50.000 4.2250 
51 8.0700 4.1170 8.0700 0.0000 51.000 4.1170 
52 8.5500 4.6700 8.5150 -0.035000 52.000 4.6250 

53 8.6350 3.7150 8.6350 0.0000 53.000 3.8900 
54 8.0700 4.8550 8.0500 -0.020000 54.000 4.8800 ·-
55 6.8000 4.4550 0.0000 -6.8000 55.000 0.0000 

56 0.0000 0.0000 0.0000 0.0000 56.000 0.0000 

57 6.5300 4.4300 6.5150 -0.015000 57.000 4.4550 
58 8.2550 4.1200 8.2350 -0.020000 58.000 4.1300 

59 8.7050 4.6400 8.6900 -0.015000 59.000 4.6050 

60 7.9425 4.2625 7.9800 0.037500 60.000 4.2650 

61 0.0000 0.0000 0.0000 0.0000 61.000. 0.0000 

62 9.4600 4.0300 9.5350 0.075000 62.000 3.9850 

63 7.0000 4.3100 6.9900 -0.010000 63.000 4.2600 

64 8.4700 3.7700 8.5200 0.050000 64.000 3.8050 

65 . 0.0000 0.0000 0.0000 0.0000 65.000 0.0000 

66 6.6000 4.0400 6.6600 0.060000 66.000 3.9150 

67 0.0000 0.0000 0.0000 0.0000 67.000 0.0000 

68 8.0730 2.5220 8.2700 0.19700 68.000 2.5550 
69 6.7550 3.7250 6.9900 0.23500 69.000 3.9250 

70 6.6470 4.8680 6.7330 0.086000 70.000 4.9270 

71 0.0000 0.0000 0.0000 0.0000 71 .000 0.0000 

72 9.4850 5.2350 9.5400 0.055000 72.000 5.2770 

73 7.8050 4.4450 7.9100 0.10500 73.000 4.4900 

74 0.0000 0.0000 0.0000 0.0000 74.000 0.0000 

75 9.4680 4.7870 9.3900 -0.078000 75.000 4.7400 

76 0 .0000 . 0.0000 0.0000 0.0000 76.000 0.0000 

77 9.3700 4.5800 9.3700 0.0000 77.000 4.5650 

78 9.0500 5.2150 0.0000 -9.0500 78.000 0.0000 

79 0.0000 0.0000 0.0000 0.0000 79.000 0.0000 

80 0.0000 0.0000 0.0000 0.0000 80.000 0.0000 

81 8.5700 5.1150 0.0000 -8.5700 81.000 0.0000 

82 9.0300 4.5400 0.0000 -9.0300 82.000 0.0000 

83 8.4750 4.2500 0.0000 -8.4750 83.000 0.0000 

84 0.0000 0.0000 0.0000 0.0000 84.000 0.0000 

85 7.9500 3.8150 7.7150 -0.23500 85.000 4.2500 

86 8.4300 3.9050 8.3050 -0.12500 86.000 4.1350 

87 8.1830 4.1140 8.1750 -0.0079994 87.000 4.2200 

88 8.9050 3.4450 8.8400 -0.065000 88.000 3.4100 

89 8.1350 3.8520 8.1250 -0.010000 89.000 3.8250 

90 6.0230 3 .9220 6.0850 0.062000 90.000 3.9350 
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nat cyc-NH nat cyc-Ca H72 cyc-NH NH:H72-nat residue number H72 cyc-Ca 

91 7.0900 3.1350 7.2500 0.16000 91 .000 3.1450 

92 8.2180 3.5170 8.1900 -0.028001 92.000 3.5700 

93 8.2100 3.9800 8.1750 -0.035000 93.000 4.0350 

94 7.8180 3.8020 7.8250 0.0070000 94.000 3 .7550 

95 8.3850 3.0030 8.5400 0.15500 95.000 2.9750 

96 7.7800 3.8850 7.7100 -0.070000 96.000 3 .9000 

97 7.8800 4.0900 7.9400 0.060000 97.000 4 .0950 

98 8.7230 3.3000 8.7700 0.047001 98.000 3.3400 

99 8 .8450 2 .4100 8.8100 -0.035000 99.000 2.4450 

100 6.7200 4.0050 6.7550 0.035000 100.00 4 .0300 

101 8.6400 3 .9950 8.6900 0.049999 101 .00 4.0150 

102 7.9050 4 .5100 7.9850 0.080000 102.00 4.5100 

103 7.0800 4.9050 7.0850 0.0050001 103.00 4.9250 

104 7.3450 4 .2650 7.3400 -0.0049996 104.00 4 .2850 
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Ca:H72-native NH:Au33ET NH:ET·natcyt c Ca:Ru33ET Ca:ET-nat eye NH:Ru33NET 

1 0 .015000 8.1200 0.015000 3.5400 0 .0100000 8.1200 

2 0.025000 9.2200 0.0050001 4 .6450 0.015000 9.2150 

3 0.028000 8.4700 0.0070000 3.4500 0.0030000 8.4650 

4 0 .015000 8.0300 0.0050001 4.0200 0.0000 8 .0250 

5 -0 .0049999 8.0300 0.020000 3.8400 -O.D100000 8 .0200 

6 0 .015000 8.6500 0.0000 3 .1800 0.0100000 0.0000 

7 0.0049999 7.9800 0.0050001 2.2050 0 .0049999 0.0000 

8 O.D100000 6 .8500 0.0000 2.8300 -1.0000 6.8500 

9 1.0150 7.4250 -0.0099998 . 3.4600 0.0100000 7.4250 

10 0.012000 8.3600 0.0079994 3.3700 0.0019999 8 .3520 

11 0.0000 8.8370 -0.0080004 3.8030 0.0030000 8.8400 

12 -0 .0049996 7.7850 0.0049996 4 .0850 ·0.0099998 7.7850 
13 -0.015000 8.4250 0.0050001 4.2950 -0.0050001 8.4250 

14 -0.26800 8 .0200 -0 .0070000 4.3400 -o.033000 8.0200 

15 -0.010000 0.0000 -8.0900 0.0000 -5.9650 0.0000 

16 -0.012000 0.0000 -9.8930 0.0000 -4.6920 9.8930 

17 -0.050000 9.5500 -0.095000 5.9600 -0.045000 9 .6450 

18 -9.1100 0.0000 -10.960 0.0000 -9.1100 0.0000 

19 0.030000 10.740 0.030000 6.2550 0.015000 10.715 

20 0.030000 8.9250 ·0.020000 4.9150 -0.090000 8.9400 

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

22 0.020000 0.0000 -9.1450 0.0000 -3.3850 0.0000 

23 0.015000 0.0000 -9.4550 0.0000 ·4.0300 0 .0000 

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

25 0.015000 8.7800 -o.040000 4.2500 0.040000 8.8250 

26 0.017000 8.8650 0.0079994 5.0000 -0.0029998 8.8600 

27 0.0000 8.1050 -0.050000 4.7650 0.065000 8.1500 

28 0.0000 0.0000 -8.0750 0.0000 0.0000 0.0000 

29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 0.0000 0.0000 0.0000 0.0000 0.0000 0 .0000 

31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

32 0.059000 0.0000 -9.6140 0.0000 -5.0110 0. 0000 

33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

36 0.23200 8.7250 0.075001 3 .7700 0.11200 8 .6500 

37 0.022000 0.0000 ·9.2870 0.0000 -4.3380 0.0000 

38 0.0000 8.1450 -0.0099993 4.5700 -0.035000 8.1550 

39 0 .0000 0.0000 0.0000 0.0000 0.0000 0 .0000 

40 -4 .1950 0.0000 -7.4450 0.0000 -4.1950 7.5200 

41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

42 0.0070000 7.6850 -0.0019999 4 .3750 0.0070000 7.6900 

43 0.0099998 0.0000 -8 .0350 0.0000 -4.5650 0.0000 

44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

45 -4.2600 0.0000 -8.9500 0 .0000 -4.2600 0 .0000 
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Ca:H72-native NH:Ru33ET NH:ET-natcyt c Ca:Ru33ET Ca:ET-nat eye NH:Ru33NET 

46 0.0000 6.8550 0.045000 3 .6400 0.0000 6.8150 
47 0.0050001 6.7250 0.0050001 3.7300 0.0050001 6.7250 
48 0.0049996 7.9850 0.020000 4.0150 0.0049996 7.9750 

49 0.0000 9.5950 0.015000 4 .1150 0.0049996 9.5850 

50 0.030000 8 .8600 0.0099993 4.2050 0.0099998 8.8550 

51 0.0000 8 .0650 -0.0050001 4.1400 0.023000 8.0600 
52 -0.045000 8.5550 0.0050001 4 .6600 -0 .010000 8.5500 

53 0.17500 8.6350 0.0000 3 .6800 -0.035000 8.6450 
54 0.025000 0.0000 -8.0700 0 .0000 -4.8550 0.0000 

55 -4.4550 0.0000 -6.8000 0.0000 -4.4550 0.0000 

56 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
57 0 .025000 6.5950 0.065000 4 .4950 0.065000 6.5400 

58 0.010000 8.2500 -0.0050001 4.1650 0.045000 8.2550 

59 -0.035000 0 .0000 -8.7050 0.0000 -4.6400 0.0000 
60 0.0025001 7.9550 0.012500 4.1900 -0.072500 7.9550 

61 0.0000 0.0000 0 .0000 0 .0000 0.0000 0.0000 

62 -0.045000 9.4750 0.015000 3 .9250 -0.10500 9.4700 

63 -0.050000 7.0100 0.010000 4.3100 0.0000 7.0100 
64 0.035000 8.4950 0.025000 3.7750 0.0050001 8.4950 
65 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
66 -o.12500 6 .6050 0.0050001 4.0550 0.015000 6.6050 
67 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
68 0.033000 8 .0650 -0.0080004 2.5200 -0.0020001 8.0750 
69 0.20000 6.7600 0.0050001 3.8050 0.080000 6.7600 
70 0.059000 6.6550 0,0080004 4.8600 -0.0079999 6.6550 

71 0.0000 0 .0000 0.0000 0.0000 0.0000 0.0000 

72 0.042000 9.4700 -0.014999 5.2350 0.0000 9.4800 

73 0.045000 7.8100 0.0050001 4.4550 0.0099998 7.8100 

74 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

75 -0.047000 9.4700 0.0019999 4.7950 0.0079999 9.4700 

76 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

77 -0.015000 9.3850 0.015000 4.5500 -o.030000 9.3800 

78 -5.2150 9.0550 0.0050001 5.1950 -o.020000 9.0500 

79 0 .0000 0 .0000 0 .0000 0.0000 0 .0000 0.0000 

80 0.0000 0.0000 0.0000 0 .0000 0.0000 0.0000 

81 -5.1150 0.0000 -8.5700 0.0000 -5.1150 0.0000 

82 -4.5400 9.0350 0.0050001 4 .6100 0.070000 9.0350 

83 -4.2500 8.5350 0.059999 4.1850 -0.065000 8.4750 
84 0 .0000 0.0000 0.0000 0.0000 0.0000 0.0000 

85 0.43500 7.9650 0.015000 3.8250 0.0100000 7.9600 

86 0.23000 8.4450 0.014999 3 .9100 0.0050001 8.4400 

87 0.10600 8.1900 0.0070000 4.1300 0.016000 8.1900 

88 -o.035000 8.9200 0.015000 3.4250 -0.020000 8.9050 

89 -0.027000 8.1350 0.0000 3.8600 0.0079999 8.1100 

90 0.013000 6 .0350 0.012000 3.9350 0.013000 6.0300 
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Ca:H72-native NH:Ru33ET NH:ET-natcyt c Ca:Ru33ET Ca:ET-nat eye NH:Ru33NET 

91 0.0100000 7.1000 0.0099998 3.1450 0.0100000 7.0900 

92 0.053000 8.2250 0.0070000 3.5300 o:o13ooo 8.2150 

93 0.055000 8.2200 0.010000 3.9950 0.015000 8.2100 

94 -0.047000 7.8850 0.067000 3.7500 -0.052000 7.8180 

95 -0.028000 8.3800 -0.0050001 3.0350 0.032000 8.3700 

96 0.015000 7.8050 0.025000 3.8900 0.0050001 7.7750 

97 0.0049996 7.9050 0.025000 4.1100 0.020000 0.0000 

98 0.040000 8.7100 -0.013000 3.3300 0.030000 0.0000 

99 0.035000 8.7800 -0.065001 2.4900 0.080000 0.0000 

100 0.025000 6.7200 0.0000 4.0400 0.035000 6.7200 

101 0.020000 8.6500 0.0099993 3 .9800 -0.015000 0.0000 

102 0.0000 0.0000 -7.9050 0.0000 -4.5100 7.9100 

103 0.020000 7.1300 0.050000 4.9250 0.020000 7.0450 

104 0.020000 7.3450 0.0000 4.2750 0.010000 7.3400 
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NH:NET·nat eye NH:NET-ET Ca:Ru33NET Ca:NET-cyc Ca:NET-ET 

1 0.015000 0.0000 3.5350 0.0050001 -0.0049999 

2 0.0000 ·0.0050001 4.6450 0.015000 0.0000 
3 0.0019999 -0.0050001 3.4250 ·0.022000 -0.025000 

4 0.0000 -0.0050001 4 .0150 -0.0050001 -0.0050001 

5 0.010000 -0.0099993 3.8400 -0.0100000 0.0000 

6 ·8.6500 ·8.6500 0.0000 -3.1700 -3.1800 
7 -7.9750 -7.9800 0.0000 ·2.2000 ·2.2050 
8 0.0000 0.0000 3 .8300 0.0000 1.0000 
9 -0.0099998 0.0000 3.4450 -0.0050001 -0.015000 

10 0.0000 ·0.0079994 3.3680 0.0000 -0.0019999 

11 ·0.0050001 0.0030003 3.7950 -0.0049999 -0.0079999 

12 0.0049996 0.0000 4.0850 -0.0099998 0.0000 

13 0.0050001 0.0000 4.2950 ·0.0050001 0.0000 

14 ·0.0070000 0.0000 4.3650 ·0.0080004 0.025000 
15 ·8.0900 0.0000 0.0000 ·5.9650 0.0000 
16 0.0000 9.8930 4 .6920 0.0000 4.6920 

17 0.0000 0.095000 6.0050 0.0000 . 0.045000 

18 -10.960 0.0000 0.0000 -9.1100 0.0000 

19 0.0050001 ·0.025000 6.2350 -0.0049996 -0.020000 

20 -0.0050001 0.014999 5.0050 0.0000 0.090000 

21 0.0000 0.0000 0.0000 0.0000 0.0000 

22 -9.1450 0.0000 0.0000 -3.3850 0.0000 

23 ·9.4550 0.0000 3.9200 -0.11000 3.9200 
24 0.0000 0.0000 0.0000 0.0000 0.0000 

25 0.0050001 0.045000 4 .2100 0.0000 ·0.040000 

26 0.0029993 -0.0050001 4.9900 -0.013000 -0.010000 

27 -0.0050001 0.045000 4.7000 0.0000 -0.065000 
28 ·8.0750 0.0000 0.0000 0.0000 0.0000 

29 0.0000 0.0000 0.0000 0.0000 0.0000 

30 0.0000 0.0000 0.0000 0.0000 0.0000 
31 0.0000 0.0000 0.0000 0.0000 0.0000 
32 ·9.6140 0.0000 0.0000 ·5.011 0 0.0000 
33 0.0000 0.0000 0.0000 0.0000 0.0000 
34 0.0000 0.0000 0.0000 0.0000 0.0000 

35 0.0000 0.0000 0.0000 0.0000 0.0000 

36 0.0000 -0.075001 3.8950 0.23700 0.12500 

37 ·9.2870 0.0000 0.0000 -4.3380 0.0000 

38 0.0000 0.0099993 4.6100 0.0050001 0.040000 

39 0.0000 0.0000 0.0000 0.0000 0.0000 
40 0.075000 7.5200 4.1950 0.0000 4.1950 
41 0.0000 0.0000 0.0000 0.0000 0.0000 

42 0.0030003 0 .0050001 4;3750 0.0070000 0.0000 

43 ·8.0350 0.0000 0.0000 -4.5650 0.0000 

44 0.0000 0.0000 0.0000 0.0000 0.0000 

45 -8.9500 0.0000 0.0000 -4.2600 0.0000 
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NH:NET·nat eye NH:NET-ET Ca:Au33NET Ca:NET-cyc Ca:NET·ET 

46 0.0050001 ·0 .040000 3.6300 -O.Q100000 ·O.Q100000 
47 0.0050001 0.0000 3.7300 0.0050001 0.0000 

48 0.0099998 -0.010000 4.0050 ·0.0050001 -0.0099998 

49 0.0050001 -0.010000 4 .1100 0.0000 -0.0049996 

50 0.0049992 -0.0050001 4.2100 0.015000 0.0050001 

51 -0.0099993 -0.0049992 4.0450 -0.072000 -0.095000 

52 0.0000 -0.0050001 4.6700 0.0000 0.010000 

53 0.010000 0.010000 3.6900 -0.025000 0.0100000 

54 -8.0700 0.0000 0.0000 -4.8550 0.0000 

55 -6.8000 0.0000 0.0000 -4.4550 0.0000 

56 0.0000 0.0000 0.0000 0.0000 0.0000 

57 0.0099998 -0.055000 4.4700 0.040000 -0.025000 

58 0.0000 0 .0050001 4 .1350 0.015000 -0.030000 

59 -8.7050 0.0000 0.0000 -4.6400 0.0000 

60 0.012500 0.0000 4.2650 0.0025001 0.075000 
61 0.0000 0.0000 0.0000 0.0000 0.0000 

62 0.010000 -0.0050001 3.9250 -0.10500 0.0000 

63 0.010000 0.0000 4.3050 -0 .0050001 -0.0050001 

64 0.025000 0.0000 3.7700 0.0000 -0.0050001 

65 0.0000 0.0000 0.0000 0.0000 0.0000 

66 0.0050001 0.0000 4.0450 0.0050001 -0.0099998 

67 0.0000 0.0000 0.0000 0.0000 0.0000 

68 0.0019999 0.010000 2.5400 0.018000 0.020000 

69 0.0050001 0.0000 3.8000 0.075000 -0.0050001 

70 0.0080004 0.0000 4 .8700 0.0019999 0.0099998 

71 0.0000 0.0000 0.0000 0.0000 0.0000 

72 -0.0050001 0.0099993 5.2400 0.0049996 0.0049996 

73 0.0050001 0.0000 4.4500 0.0049996 -0.0050001 

74 0.0000 0.0000 0.0000 0.0000 0.0000 

75 0.0019999 0.0000 4.7950 0.0079999 0.0000 

76 0.0000 0.0000 0.0000 0.0000 0.0000 

n 0 .010000 -0.0050001 4.5750 -0.0050001 0.025000 

78 0.0000 -0.0050001 5.2150 0.0000 0.020000 

79 0.0000 0.0000 0.0000 0.0000 0.0000 

80 0.0000 0.0000 0.0000 0.0000 0.0000 

81 -8.5700 0.0000 0.0000 -5.1150 0.0000 

82 0.0050001 0.0000 4.5450 0.0050001 -0.065000 

83 0.0000 -0.059999 4.2500 0.0000 0.065000 

84 0.0000 0.0000 0.0000 0.0000 0.0000 

85 0.010000 -0.0050001 3.8150 0.0000 -0.0100000 

86 0.0099993 ·0.0050001 3.9050 0.0000 -0.0050001 

87 0.0070000 0.0000 4.1250 0.011000 -0.0050001 

88 0.0000 -0.015000 3.4450 0.0000 0.020000 

89 -0.025001 ·0.025001 3 .8900 0.038000 0.030000 

90 0.0070004 -0.0049996 3.9250 0.0030000 -0.0100000 
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NH:NET-nat eye NH:NET-ET Ca:Ru33NET Ca:NET-cyc Ca:NET-ET 

91 0.0000 -0.0099998 3.1450 0.0100000 0.0000 

92 -0.0030003 -0.010000 3 .5450 0.028000 0.015000 

93 0.0000 -0.010000 3.9850 0.0049999 -0.0100000 

94 0.0000 -0.067000 3.8020 0.0000 0.052000 

95 -0.015000 -0.010000 2.9950 -0.0080001 -0.040000 

96 -0.0050001 -0.030000 3.8600 -0.025000 -0.030000 

97 -7.8800 -7.9050 0.0000 -4.0900 -4.1100 

98 -8.7230 -8.7100 0.0000 -3.3000 -3.3300 

99 -8.8450 -8.7800 0.0000 -2.4100 -2.4900 

100 0.0000 0.0000 4.0100 0.0050001 -0.030000 

101 -8.6400 -8.6500 0.0000 -3.9950 -3.9800 

102 0.0049996 7.9100 4.5050 -0.0050001 4.5050 

103 -0.035000 -0.085000 4.8750 -0.030000 -0.050000 

104 -0.0049996 -0.0049996 4.2650 0.0000 -0.010000 
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Appendix 8 

Spectroscopic Characterization of an Axial Ligand Mutant: 

His72Cys80 Cytochrome c 
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It has been previously demonstrated in this group that the semisynthetic 

methodology could be employed for the generation of axial ligand mutants at position 80 

of cyt c.1 Specifically, high yields of a Met80 to Cys mutant were obtained. This axial 

ligand replacement dramatically altered the spectroscopic and electrochemical features of 

the protein. The Soret and a,J3 bands of the ferric absorption spectrum are red-shifted to 

416 and 540 nm, respectively, and two new charge transfer bands are observed at 635 and 

7 40 nm. The spectrum of the ferric state closely resembles that of ferric cytochrome 

P450, implying intact Cys ligation. The absorption spectrum of ferrous Cys80 cyt c, 

however, is nearly identical with ferrous native cyt c, implying loss of cysteine ligation 

upon reduction. The reduced state is dramatically destabilized; the protein reduction 

potential is shifted over half of an electron volt relative to native cyt c to- 390 mV vs. 

NHE.l The MCD spectrum of ferric Cys80 cyt c in the visible region (300 -750 nm) 

correlates well with the imidazole adduct of cytochrome P450, supporting the model of 

intact Cys/His ligation in ferric Cys80 cyt c. 

In an effort to exploit the ET potential of this variant, a Cys80 His72 mutant was 

constructed semisynthetically following the protocols described previously (Chapter 2). 

The reconstitution reaction afforded a high yield of the axial ligand mutant. EPR, 1 H 

NMR, CD, and mass spectrometry measurements were made on this variant. 

His72Cys80 cyt c was subsequently derivatized with Ru(bpyh(C03) using the protocols 

outlined in Chapter 3. The His72-modified protein was identified by analogy with the 

His72 cyt c cation-exchange chromatograms and used for ET studies. The results of 

these investigations are detailed below. 

EPR 

The EPR spectrum ofHis72Cys80 cyt c was measured at 33K in 50 mM HEPES, 

50% glycerol, pH 7 .0. The spectrum obtained (Figure B.l) differed dramatically from 

that of native cyt c (Figure 2.17). g-values were 2.563, 2.274 and 1.846. These values 
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correlate well with those reported for the imidazole adduct of cytochrome P4503 ; g = 

2.56, 2.27, 1.87. Inclusion of this point on the heme "truth table"4 (rhombicity (VI~) vs. 

tetragonal field(~ I A.)) places it directly in the region of Cys-ligated heroes. 

NMR 

The 1 H NMR spectrum of His72Cys80 cyt c exhibits perturbed chemical shifts of 

the paramagnetically shifted resonances in the far upfield and downfield regions of the 

spectrum (Figure B.2 A, refer to Figure 2.21 for native cyt c). The experimental 

conditions are discussed in Appendix A, T = 315 K. Note the extremely broadened peaks 

and the lack of sharp hypershifted resonances. Due to the altered paramagnetic properties 

of the unpaired electron, the lH NMR spectrum in the normal region (Figure B.2 B) could 

not be assigned by comparison with the native spectrum. 

Circular Dichroism 

The circular dichroism spectrum of His72Cys80 cyt c in the far UV region 

indicates approximately equivalent or slightly greater cx.-helicity than native cyt c (Figure 

B.3 A). Since the precise extinction coefficients for the mutant are not known, a direct 

comparison between the native and mutants proteins can not be made. Spectra were 

collected at progressively higher temperatures to determine the melting transition 

temperature, however, the protein did not exhibit significant loss of cx.-helicity even at 93° 

C. The melting temperature of the His72Cys80 variant must be higher than 100° C. 

MCD 

John Dawson's group continued work on the Cys80 mutants with His72Cys80 cyt 

c. Sufficient sample could be provided to investigate the MCD signal in the near-IR 

region of the spectrum. This region is thought to be more diagnostic for axial ligand 

assignments than the visible region of the spectrum. The His72Cys80 cyt c protein 
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exhibits a near-IR MCD spectrum virtually identical with that of 1-methylimidazole 

cytochrome P450 (1-methyl imidazole P450 possesses signals at 736 and 1148 nm; 

His72Cys80 cyt c possesses signals at 734 and 1148 nm) and differs from His/His, 

His/Met and His/H20 ligated proteins. These data provide further evidence for the 

Cys/His ligation assignment in the ferric state. A combination of the EPR, MCD and 

charge-transfer band data from a series of heme proteins can be used to unambiguously 

assign the ligation state. 5 

Mass Spectrometry 

Thermospray mass spectra were obtained on a Vestee Thermospray LC-Mass 

Spectrometer in the laboratories of Prof. C. Monig. The measured results were consistent 

with calculated masses. Masses obtained were: native horse heart cyt c, 12380(12) 

(calculated, 12364); His72Cys80 cyt c, 12333(12) (calculated, 12315). 

Electron-Transfer Studies 

The Ru(bpyh(im)His722+- Cys80 cyt c derivative was isolated in high yield. The 

luminescence decay was measured at 650 nm, kd = 1.7 x 107 s-1 (60 ns). In the absence 

of quencher, no transiently generated products due to photoinduced ET were observed in 

the transient absorption traces collected at wavelengths corresponding to large AE for the 

Fe3+ I Fe2+ states. This is not unexpected, as the driving force for photoreduction is low 

(- AG0 = - 0.56 e V). It was believed that the Fe4+!3+ couple may be accessible, however 

addition of an oxidative quencher, [Rua6]Cl3, to transiently form a Ru(bpyh(im)His723+ 

species on the protein surface perhaps capable of oxidizing the Fe3+ heme did not 

produce any transients other than those expected for the Ru(bpyh(im)His723+ species. 

This mutant is not amenable to ET studies with the techniques developed thus far. 
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Figure B.l EPR spectrum of His72Cys80 cyt c obtained in 50 mM HEPES, 50% 

glycerol. pH 7.0 glass at 33 K. 
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Figure B.2 1 H NMR spectrum of His72Cys80 cyt c obtained in 90% D20/ 10% H20, 

100 mM NaPi, 150 mM NaCl, pH 5.74 at 315 K; (A) hyperfine-shifted region and (B) 

normal region of the spectrum. 
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Figure B.3 Circular dichroism data obtained with a -10 J..l.M sample of His72Cys80 

cyt c in 50 mM NaPi, pH 7 .0; (A) far UV region of the spectrum at ambient temperature 

and (B) signal at 222 nm as a function of temperature. The signal should be --8 mdeg for 

the random-coil form. 
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