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Abstract

Escherichia coli is one of the best studied living organisms and a model system

for many biophysical investigations. Despite countless discoveries of the details of

its physiology, we still lack a holistic understanding of how these bacteria react to

changes in their environment. One of the most important examples is their response

to osmotic shock. One of the mechanistic elements protecting cell integrity upon ex-

posure to sudden changes of osmolarity is the presence of mechanosensitive channels

in the cell membrane. These channels are believed to act as tension release valves

protecting the inner membrane from rupturing. This thesis presents an experimental

study of various aspects of mechanosensation in bacteria. We examine cell survival

after osmotic shock and how the number of MscL (Mechanosensitive channel of Large

conductance) channels expressed in a cell influences its physiology. We developed an

assay that allows real-time monitoring of the rate of the osmotic challenge and direct

observation of cell morphology during and after the exposure to osmolarity change.

The work described in this thesis introduces tools that can be used to quantitatively

determine at the single-cell level the number of expressed proteins (in this case MscL

channels) as a function of, e.g., growth conditions. The improvement in our quan-

titative description of mechanosensation in bacteria allows us to address many, so

far unsolved, problems, like the minimal number of channels needed for survival,

and can begin to paint a clearer picture of why there are so many distinct types of

mechanosensitive channels.
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Chapter 1

Introduction

In order to survive, all living organisms have to respond to stimuli from the environ-

ment by activating mechanisms that will allow them to adapt to new conditions. The

molecular elements used to detect, recognize, and transmit these signals are therefore

crucial for controlling homeostasis and cell survival.

Mechanosensing structures are present across all kingdoms of life. The best known

example from the Plantae kingdom is Dionaea muscipula (Venus Flytrap) (Figure

1.1A). This carnivorous plant has multiple hair cells on the inner surface of each half

of the leaf. They serve as mechano-motion detectors that need two closely-spaced

stimuli (20 seconds) [1] to close the trap. This narrow time window minimizes the

chance of accidental activation. Another well-studied example is the reaction of the

worm Caenorhabditis elegans (Figure 1.1B) to a touch stimulus. This worm has

six touch receptor neurons, which are part of a mechanoreceptive complex [2]. The

transduction apparatus is formed by a mechanically sensitive ion channel connected

to both intracellular and extracellular matrix proteins.

The ability to react to a mechanical stimulus is present in humans as well. One

of the better known examples in medicine is Babinski’s response [3]. This test is

used to identify a disease of the spinal cord and brain in adults. The patient’s foot is

stimulated with a blunt instrument. In case of malfunction of the nervous system, the

hallux will show an upward response as the stimulus is not inhibited by the cerebral

cortex (Figure 1.1C). Interestingly, in infants the response to this test is simply a



2

A B C

Figure 1.1: Examples of mechanosensing structures in various organisms. (A) A trap of
Dionaea muscipula (Venus Flytrap). The hair cells are used as mechano-motion detectors
which transduce the signal, closing the trap (photo by Noah Elhardt [4]); (B) The worm
Caenorhabditis elegans has six touch receptor neurons, which react to touch stimulus (photo
by Bob Goldstein [5]); (C) Babinski’s response to stimulation of the patient’s foot with a
blunt instrument is used in medicine for identification of neuronal malfunctioning (photo
by Medicus of Borg [6]).

primitive reflex, as the nerve cells are not fully myelinated at an early age.

1.1 Mechanosensation and mechanotransduction

Stimuli from the environment may be quite different in nature, e.g., mechanical,

chemical or physical. In this thesis we will concentrate only on mechanical stimuli.

As discussed above, the structure and location of the sensor varies depending on

the organism. However, there are some features which all mechanosensing systems in

different organisms have in common. To achieve proper sensitivity and a fast response,

these mechanical stimuli are directed to specific channels, where they are translated

into a flow of ions. For example, the voltage-gated and mechanosensitive super-

families of channels respond to electrostatic membrane potentials and to membrane

tension caused by mechanical stimuli, respectively. The ligand-gated superfamily of

channels is activated in response to specific interactions with small molecules, such

as γ-aminobutyrate or glycine. All types of channels can open rapidly and amplify

the signal. A general model of a mechanotransduction complex (Figure 1.2) consists

of a mechanosensitive ion channel connected to extracellular and intracellular matrix
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Figure 1.2: A general model of a mechanotransduction complex [2]. A channel is linked
to intracellular (cytoskeleton) and extracellular matrix proteins. When the force is applied
to the extracellular structure, the relative displacement of these elements gates the channel
due to the increase of the tension.

proteins. The channel is activated (its open probability changes) when it detects

the change in the tension caused by the deflection of an extracellular structure with

respect to the intracellular one. In bacteria, channels that respond to tension change

in the membrane are called mechanosensitive (MS) channels.

1.2 Evolution of sensors and membrane channels

Channels are mediators between the cell interior and exterior. Such a connection is

essential for many functions, e.g.: transport of ions, nutrients, and waste products;

cellular growth and volume regulation; transmission of environmental signals to the

cell interior. This is why these structures are believed to have evolved very early [7].

Most channels have selectivity encoded in the amino acid sequence and preferentially

conduct only one type of ion, e.g., Na+, Ca2+, Cl−, or a specific neutral species like

water. This diversity is required for adaptation (to different nutritional sources or
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environmental conditions) and a more complex signal transduction in multicellular

organisms.

Mechanical force can be sensed universally and MS channels, being transducers of

mechanical stress, are believed to be among the oldest signal transduction molecules

known. They might have evolved as early as 3.5 Gyr ago [8, 9]. MS channels are

present in the membranes of organisms from the three domains of life: bacteria,

archaea, and eukaryotes [9, 10, 11, 12, 13, 14].
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Chapter 2

Mechanosensation in Escherichia
coli

2.1 Escherichia coli as a model organism

Escherichia coli (E. coli), originally named Bacterium coli commune, was isolated and

brought to scientific attention by Theodor Escherich in 1885 [15]. His motivation and

devotion to finding an agent which caused childhood diarrhea (very serious illness at

the time) resulted in isolating various bacterial strains from fecal matter samples from

children (Figure 2.1). The ease of culture made E. coli the most popular bacterium,

even though it is only a minor ingredient of the intestinal flora of an adult human

(between 0.2% and 1.5% of the total number of cells) [16]. Escherich’s work with E.

coli led to many fundamental biochemical discoveries and advanced molecular biology.

E. coli is an aerobic, Gram-negative, non-sporulating, rod-shaped bacteria that

can be commonly found in animal feces and lower intestines of mammals. It can also

be found in environments of higher temperature, such as the edge of hot springs. E.

coli can be classified into hundreds of variants on the basis of different serotypes, which

are recognized based on the O (cell wall (somatic)), H (flagella), and K (capsular)

antigens. Enteric E. coli can be classified into six categories based on its virulence

properties, such as enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC),

enteroinvasive E. coli (EIEC), enterohemorrageic E. coli (EHEC), enteroadherent

aggregative E. coli (EAggEC), and verotoxigenic E. coli (VTEC) [17].
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Figure 2.1: Photograph of the original figure from Escherich’s book from 1886 showing
various bacterial species and difference in their morphology. Fig. 4: Bacterium coli com-
mune from a 6 day old potato culture; Fig. 6: Bacterium coli commune from an 8 day long
culturing on a gelatin plate; Fig. 7: Bacillus subtilis, one bacterium at the stage of spore
formation; Fig. 10: Bacterium lactis aerogenes from an 8 day long culturing in a gelatin
tube. Photographs were taken by Charles Workman [15].

The presence of E. coli in human intestines helps with the digestion processes,

food breakdown and absorption, as well as vitamin K production. Some strains of

E. coli, however, can cause severe infections, e.g., enteroaggregative E. coli. One of

the most common cases is the urinary tract infection. The most infective E. coli

strain found so far is O157:H7 and it causes food poisoning, bloody diarrhea and

even kidney failure. It produces a Shiga-like toxin which inactivates 60S ribosomal

subunits of most eukaryotic cells. This in turn blocks mRNA translation and leads

to cell death. The non-pathogenic strains used in the lab for research purposes, such

as E. coli K-12, are so distant from their ancestors that they have lost their ability

to survive in the human intestine [15].
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2.2 Bacterial anatomy

Based on the cell surface structure, bacteria can be divided into two groups: Gram-

positives and Gram-negatives. E. coli belongs to the second group, which means

that its envelope consists of two independent membranes (cytoplasmic and outer

membrane) and the peptidoglycan mesh between them. The cell envelope is not only

a milieu of many biochemical processes, but it also protects the cell and its content

from destructive and sudden impulses from the environment, e.g., water potential

changes.

The cell is built of multiple elements, which may show different properties when

isolated from the organism compared to their functioning in the intact cell. One

such example is the cell membrane geometry: in a living cell it is limited by the

peptidoglycan; without it, the membrane forms a spherical structure (Figure 2.2).

A B

Figure 2.2: Single E. coli cell before (A) and after (B) osmotic downshock. The cells were
grown in 0.5 M NaCl medium in the presence of a low concentration of ampicillin. The
presence of antibiotic is thought to cause point defects in the peptidoglycan layer by inhibit-
ing the enzyme transpeptidase. (A) Cell before the shock does not show any morphological
defects; (B) Cell after the osmotic downshock into 0 M medium. The increase in the turgor
pressure “pushed” the inner membrane through the damaged region peptidoglycan layer.
The visible membrane “bleb” indicates that in the absence of peptidoglycan the membrane
prefers a spherical geometry. The scale bars are 2 µm.

One should remember that culture conditions in the laboratory are often radically

different from the natural habitat of the organism and, thus, one needs a sophisticated

experimental design to capture the physiology under natural conditions.

Isaac and Ware [18] showed that the Gram-negative cells exhibit considerable elas-
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ticity, whereas the Gram-positive organisms show a far greater resistance to stretch-

ing. The E. coli cell envelope can become as much as 100% longer when stretched

along the major axis. Wang et al. [19] reported the results of an experiment on

E. coli which suggests that MreB (bacterial actin homologue) contributes almost as

much to the cell stiffness as the peptidoglycan layer, indicating an important role

of the bacterial cytoskeleton homologue. These results imply that in order to resist

mechanical perturbations bacteria could (apart from activating physiological mecha-

nisms) increase the peptidoglycan density (or cross-linking) or increase the amount

of MreB.

2.3 Turgor pressure measurement in E. coli

Bacteria accumulate ions and molecules necessary for growth in the cytoplasm. As

a result, the osmolarity (solute concentration defined as the number of osmoles of

solute per liter of solution) inside bacteria is higher than the osmolarity of the growth

medium. This differential osmotic pressure is called turgor pressure. It pushes the

membrane against the peptidoglycan layer maintaining bacterial shape, and is be-

lieved to be the driving force for bacterial growth [20]. Changes in the outer osmolar-

ity (of the environment) influence the osmolarity inside the cell due to water moving

across the membrane. Such a stress on the membrane activates various mechanisms:

inducing the expression of osmoregulatory genes [21] in the case of an increase in

external osmolarity, or opening of mechanosensitive channels in the case of a decrease

in external osmolarity [22]. Turgor pressure regulates several functions in bacteria:

signal transduction systems, periplasmic transport functions, synthesis of porins in

the outer membrane, and expression of genes in the transport system responsible for

the K+ uptake [21, 23, 24]. For all of these reasons there have been many attempts

to measure the turgor pressure (Table 2.1). However, the measured values vary a lot.

The turgor pressure in Gram-positive bacteria is much higher than in Gram-

negative bacteria. This difference can be explained by the different thicknesses of the

peptidoglycan layer in these two groups of organisms. However, the measured values
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Organism Value [atm] Method Ref.

Gram-positive bacteria
Staphylococcus aureus 20 – 30 water uptake [25]

Bacillus subtilis 18.8 hypersaline treatment [26]
Enterococcus hirae 3.95 – 5.9 AFM [27]

Cyanobacteria
Anabaena flos-aquae, Nodularia sp sp. 0.79 – 1.78 gas vesicles collapse [28]

Microcystis sp. 6.4 – 10.9 gas vesicles collapse [29]
Gram-negative bacteria

E. coli 5 – 6 [25]
E. coli 5 – 10 lysozyme [30]
E. coli 0.7 – 3.1 amount of water [31]
E. coli 0.26 AFM [32]

E. coli, Salmonella typhimurium 3.5 solute distribution [33]
Ancylobacter aquaticus 1.85 gas vesicles collapse [34]
Ancylobacter aquaticus 1.06 gas vesicles collapse [35]

Pelodictyon phaeoclathratiforme 3.26 gas vesicles collapse [36]
Magnetospirillum gryphiswaldense 0.84 – 1.48 AFM [37]

Pseudomonas aeruginosa 0.1 – 3.95 AFM [27]

Table 2.1: Comparison of the turgor pressure measured using various methods in Gram-
positive, Cyanobacteria, and Gram-negative bacteria. A significant difference in measured
values is observed not only when comparing different groups of organisms (e.g., Gram-
positive and Gram-negative bacteria), but among the representatives of the same group as
well.

or the turgor pressure vary a lot even among the species from the same group. In

the case of Gram-negative bacteria the reported values differ by up to two orders of

magnitude (0.1 – 10 atm, Table 2.1). As mentioned above, turgor pressure plays an

important role in many physiological reactions and regulations. The lack of informa-

tion on the exact value of this parameter has a lot of consequences for our ability to

predict and model the reaction of the cell to a given stimulus. Due to the variation

in measured turgor pressure values we don’t know how hard the membrane is pressed

against the peptidoglycan layer or how much support it gets from the cell wall. This,

in turn, makes it impossible to accurately predict the reaction of a cell to exposure to a

medium of a given osmolarity or measure how fast the cell can adapt to this change.

Depending on the difference between the internal concentration of solutes and the

medium the cell was shocked with, the rate of the water efflux/influx will change and
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the reaction to this stimulus may occur at different time scales. As mentioned above,

stress on the membrane activates various osmoprotective mechanisms. Without an

accurate measurement of the pressure change due to water diffusion one cannot quan-

titatively study and describe the details of cell reaction to osmotic challenges. One

of the possible explanations for the source of the variation in the measured turgor

pressure values is that the cell is in a dynamic state, readily adapting to shifts in en-

vironmental conditions or mechanical stimuli introduced by the techniques used for

the measurement, which may result in turgor pressure changes occurring very fast,

at the time scales shorter than the time needed for the measurement.

2.4 Stimuli and forces E. coli might be exposed to

To gain a holistic view of bacterial physiology, i.e., how it changes under the influence

of various stresses and what the factors influencing cell survival are, one should study

the environmental specimens. However, these specimens are very challenging to work

with, the main reason being the lack of tools to define the number of bacterial species

in the environmental sample and their physiological state (alive or dead). The two

main methods used – plate count and direct microscopy count – are not completely

satisfactory (Figure 2.3). In the case of plate counting there is no single medium

which can be used to culture bacteria from the environmental sample, so the counting

results are biased depending on the species present in the specimen. The direct

microscopy count captures the number of all species, however, it does not provide any

information on the ability of the bacteria to grow, metabolize, respire, or divide. The

situation is further complicated by the discovery of a viable yet nonculturable stage,

postulated to be a mechanism of bacterial survival, in which bacteria are alive but do

not undergo cell division [38]. Not only the count but also the “normal” physiological

state of bacteria in the environment are hard to define. The most popular view is

that the microbes are in a dynamic state and they adapt to a continuously changing

environment by genotypic and phenotypic modifications [38]. In the environment,

both the chemical and physical parameters may change at the same time depending
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Figure 2.3: Difference in the number of bacteria estimated by the plate counting method
and direct microscopy. The plate counting method introduces the bias towards organisms
which can be cultured in the laboratory setting. The microscopy counts are more accurate in
term of number of cells, however, they do not provide any information on their physiological
state. The difference in counts from these two methods represents viable but not dividing
cells [38].

on the local microenvironment, time of the year, or the presence of other species. The

most important one, however, is water availability. Water is necessary for survival

of all living organisms. This is why all animals evolved osmoregulatory mechanisms,

controlling the composition and volume of internal fluids. The development of this

control system facilitated the differentiation of freshwater and terrestial animals [39].

All of these obstacles discussed above limit the studies on the response of a cell to

given stimuli to observations of only a single isolated aspect of bacterial physiology

using a laboratory strain. This work focuses on the survival of E. coli after exposure

to water potential changes. The ease of growing E. coli in a laboratory setting made

it the best studied living organism and a model organism to monitor the pollution of

water. Information on the survival of E. coli in a given environment is of special in-

terest, since it is used as an indicator of a potential danger from fecal contamination.

Despite our knowledge on E. coli ’s physiology, genetics, and biochemistry, we lack
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a general understanding of how it behaves and survives in its natural habitats. The

habitats of E. coli can be divided into two groups: host-associated and open. How-

ever, one should remember that the genomes of different forms of E. coli may vary

even by 20%, which results in different phenotypes from changing patterns of gene

expression [40]. This variation may be the effect of experiencing a biphasic lifestyle

(host-independent and host-associated phases) and, as a consequence, exposure to

various evolutionary pressures (biotic and abiotic [41]). These two environments are

very different. E. coli living in the human intestine is under pressure from the biotic

factors: competitors, cheaters, or host defense mechanisms. Bacteria entering the

human digestive system with food are exposed to low pH when entering the stomach.

In the intestine they are exposed to big variations in water content: the moisture

content of feces may oscillate between 53 and 92% [42]. Bacteria in the urinary tract

experience significant variations in the osmolarity, roughly 900 mOsm (Figure 2.4).

Also, the composition of the E. coli population in the intestine is constantly changing

with no dominant serotype [43] and may vary significantly depending on the source

of the sample [44].

The challenges in the open environment are very different: temperature, UV ra-

diation, low concentration of nutrients, and fluctuating osmolarity and water level.

Survival depends on how well E. coli can cope with rapidly changing conditions and

adapt to them. The most important factor is water availability. Without proper

water activity, cells desiccate very quickly (15 – 60 hours) [45]. If there is enough

moisture, E. coli can survive many days in the environment: in sea water [41, 46, 47],

fresh water [47], as well as the beach sand [48].

2.4.1 Osmosis

Osmosis is the net movement of a solvent (or solvents) across a partially permeable

membrane (ideally, permeable to the solvent, but not to the solute) into a region of

higher solute concentration, in order to equalize the solute concentrations on both

sides. It was discovered in 1748 by L’Abbé Nollet [49]. The first quantitative mea-
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Figure 2.4: The osmolarity changes which bacteria may be exposed to when living in the
urinary tract. The content of the urine changes significantly due to resorption of valuable
molecules (e.g., proteins and sugars). Active transport of NaCl and diffusion of urea, water,
and NaCl increase urine osmolarity from 300 to 1200 mOsm. Figure adapted from [50].

surements were carried out between 1826 and 1846 by René Joachim Henri Dutrochet

(who was the first to use terms “endosmosis” and “exosmosis” [51], Figure 2.5A) and

Karl Vierordt [52]. They concluded that the rate of osmosis depends on both the

nature of the salt and the concentration of the solution. Later, it was shown that

also the type of membrane separating the two solutions plays an important role.

This fact was subsequently used by Thomas Graham for the separation of different

substances by dialysis [53] (Figure 2.5B). In 1864, Moritz Traube obtained a precip-

itation membrane permeable to water (tannic acid and non-setting glue) forming a

coating on a drop and, thus, initiating studies of the “endosmotic force” [54]. Jacobus

Henricus van’t Hoff called the membrane which is permeable only to the solvent a

semi-permeable membrane (there is no membrane that is completely impermeable to

the solute) [55].

The osmotic pressure is defined as an equivalent of the excess pressure which must
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Figure 2.5: Examples of osmometers. (A) Osmometer used by Dutrochet [56]. This type of
an osmometer was used for the first quantitative measurements of osmosis; (B) Osmometer
used by Graham [53]. After the discovery that the type of the membrane separating two
solutions plays an important role, this type of osmometer was used by Graham to study the
separation of various substances by dialysis ; (C) Osmometer used by Pfeffer [57]. Formation
of a membrane in the wall of porous earthenware pots significantly increases the range of
values which can be measured in this type of the osmometer.

be imposed in order to prevent the solvent from passing through the perfectly semi-

permeable membrane. In 1877, Wilhelm Pfeffer introduced a device which made a

measurement of the osmotic pressure of several atmospheres possible and practicable

(he formed a membrane in the wall of porous earthenware pots) [57] (Figure 2.5C).

He showed that the osmotic pressure was proportional to the concentration and it

increased with rising temperature. The subsequent very important step in studies

on osmosis was van’t Hoff’s theory of dilute solutions from 1885. Applying thermo-

dynamics and stating that the physical properties of a dilute solution are identical
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with that of a gas, van’t Hoff deduced that the osmotic pressure of a solution is equal

to the pressure which the dissolved substance would exercise in the gaseous state if it

occupied a volume equal to the volume of the solution [58]. The first direct determi-

nation of osmotic pressure was carried out by Wilhelm Pfeffer and later perfected by

Harmon Northrop Morse [59].

2.4.2 Adaptation to increasing osmotic pressure

E. coli cells can grow in a variety of environments, from very aqueous to those with

high salt concentration. The bacterial growth in environments with such a wide range

of osmolarities is a great challenge for cell physiology. A very high membrane per-

meability for water compared to other molecular species (permeability coefficient for

water: 10−6 to 10−2 cm/s depending on the cell type; permeability coefficient for Na+:

10−12 cm/s [60, 61]) makes E. coli sensitive to osmolarity changes in the environment.

In case of an increase in osmolarity the cell has to retain water necessary for growth

and biochemical reactions by, e.g., increasing the osmolarity of the cytoplasm. At

the same time, the solutes accumulated in the cytoplasm (by transport or synthe-

sis) to reduce these osmotically induced changes can’t destabilize the homeostasis of

the cell or cause a disruption of biochemical processes (this is why they are called

compatible solutes). Such solutes include K+, amino acids (glutamate, proline) and

their derivatives (peptides), quaternary amines (glycine betaine, carnitine), sugars

(sucrose, trehalose), and tetrahydropyrimidines (ectoines) [62].

E. coli exhibits both passive and active responses to change in the external os-

molarity. Upon transition to an environment of higher osmolarity, E. coli reacts

passively by losing cytoplasmic water and decreasing turgor pressure, which may lead

to plasmolysis. This triggers an active response. In order to increase the osmolar-

ity of the cytoplasm, E. coli accumulates potassium ions through a constitutive, low

affinity Trk system and an inducible, high affinity Kdp system expressed when turgor

pressure is low [63, 64]. The amount of accumulated K+ depends on the osmolarity

of the external medium (0.11 M for each 0.2 Osm increase in external osmolarity,
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maximum uptake rate being 10pmol/cm2s) [63, 64]. Simultaneously, to balance the

electric charge of accumulated K+, cells synthesize glutamate. A 0.5 M NaCl upshock

induces an increase of glutamate concentration to 300 nmol/mg dry mass within 10

minutes [65].

In the next phase, to avoid very high internal ionic strength, E. coli substitutes

potassium and glutamate with zwitterionic (a molecule with a positive and a negative

electrical charge) or neutral solutes (neutral and zwitterionic solutes are more favor-

able to protein stability). A 0.5 M NaCl upshock induced synthesis of the disaccharide

trehalose to a concentration of 300 nmol/mg dry mass within 2 hours [65]. The sec-

ond phase response may be much faster if the compatible solutes are present in the

medium. The most common zwitterions are glycine betaine and proline [21, 62, 66].

These compounds can be accumulated in the periplasm at a high concentration. For

example, uptake of glycine betaine through a high affinity betaine transport proU of

more than 1 µ mol/mg of dry mass translates to cytoplasmic concentration of close

to 1 M [65, 67]. Glycine betaine can also improve a diminished growth rate due to

the presence of high salt concentration [67].

2.4.3 Reaction to decrease in osmotic pressure

Bacteria are very often exposed to sudden changes in osmolarity of the surrounding

fluids. Membranes are most permeable to water (permeability coefficient varies from

10−6 to 10−2 cm/s depending on the cell type [60, 61]) and least permeable to charged

molecules like ions (permeability coefficient for Na+ is 10−12 cm/s [60]). However,

membrane permeability (measure of the ability of a membrane to allow molecules to

pass through it) is not high enough to release tension from the membrane fast enough

and prevent it from rupturing.

Osmotic shock was used in microbiology laboratories as a method of depleting cells

of a given molecule of interest (metabolite, ion or enzyme) without damaging the cells

[68, 69]. However, the mechanism of this phenomenon was unknown. Epstein and

Schultz [63] proposed that the variety and non-specificity of the released compounds
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are due to their leakage through the hole in the cell wall and membrane produced by

the tension.

The discovery of MS channels, especially MscL (Mechanosensitive channel of Large

conductance), made them a perfect candidate to explain this phenomenon. The size

and types of the molecules which might be released through these channels was stud-

ied using various methods (Table 2.2), however, some controversy concerning the size

and the mechanism of release still remains. Schleyer et al. [70] looked at the amino

acids that E. coli releases during osmotic shock. Surprisingly, aspartate and gluta-

mate were released whereas alanine, lysine, and arginine were not. Ajouz et al. [65]

have shown that thioredoxin (11.5 kDa), and Berrier et al. [71] have shown that the

heat shock protein DnaK (41 kDa) and elongation factor Tu (52 kDa) are released

during osmotic shock through MscL channels. However, the work by van den Bo-

gaart et al. [72] contradicted these results. They have shown that MscL can release

proteins up to at least 6.5 kDa, but not bigger. In their experiments, liposomes

(artificially-prepared lipid vesicles) with MscL reconstituted were monitored for the

release of fluorescently labeled species upon channel activation. Molecules with a

mass bigger than 6.5 kDa, i.e., thioredoxin (11.5 kDa), histidine-containing protein

HPr (9 kDa), and α− lactalbumin (14 kDa), all labeled with Alexa fluor 633 (∼ 1

kDa), were not released from the liposomes upon MscL gating. Using the crystal

structure of thioredoxin, histidine-containing protein HPr, and α− lactalbumin, the

sizes of these molecules (25 x 30 x 35 Å, 32 x 32 x 33 Å, and 52 x 32 x 34 Å, respec-

tively) are comparable to or bigger than the estimated size of the MscL pore. Based

on channel conductance and the fact that poly-L-lysines with a diameter bigger than

37 Å blocked the conductance of the channel, the size of the MscL pore is estimated

to be 26-46 Å [73, 74].

One possible explanation of the discrepancy between van den Bogaart’s and pre-

vious results is that part of the molecules is being released through small holes in the

membrane. The work of Vazquez-Laslop et al. [75] has shown that the polypeptides
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Molecule Mass Amount Shock Method Ref.

potassium 39 Da 60% 1000 mOsm flame photometer [63]
potassium 39 Da 85% 0.2 M NaCl valinomycin electr. [76]
potassium 39 Da 85% 0.25 M NaCl flame photomety [70]
potassium 39 Da 50-85% 0.2 M NaCl valinomycin electr. [65]

amino acids 80% 10x dilution radioactivity [77]
PO3−

4 95 Da 100% radioactivity [77]
TMG 210 Da 80% 0.5 osm radiolabeling [78]

galactose 180 Da 40% 10x dilution radiolabeling [78]
nucleotides ∼ 300 Da 40% 500 mOsm UV absorption [78]

ATP 507 Da 76% 0.2 M NaCl luciferin/luciferase [76]
ATP 507 Da 5% [79] [70]

lactose 342 Da 82% 0.2 M NaCl radiolabeling [76]
glutamate 145 Da 83% 0.2 M NaCl enzymatic assay [76]
glutamate 145 Da 75% 0.4 M NaCl phenol method [70]
glutamate 145 Da 80% 0.5 M NaCl enzymatic assay [65]

Rb+ 85 Da 93% 0.2 M NaCl radiolabeling [76]
trehalose 342 Da 75% 0.4 M NaCl phenol method [70]
trehalose 342 Da 70% 0.5 M NaCl phenol method [65]
aspartate 1333 Da 80% 0.4 M NaCl phenol method [70]

glycine betaine 117 Da 90% 0.5 M NaCl radiolabeling [65]
thioredoxin1,2 14.8 Da 100% 0.5 M NaCl enzymatic assay [65]

DnaK1 41 kDa 60% 20% sucrose immunoblotting [71]
DnaK1 41 kDa immunoblotting [80]
RFP 862 Da 44% 20% sucrose fluorescence [80]

EF-Tu1 52 kDa 70% 20% sucrose immunoblotting [71]
p-nitrophenyl

Est551 55 kDa 89% 20% sucrose
butyrate

[81]

glutathione3 307 Da 35% fluorescence-burst [72]
R9C3 1 kDa 50% fluorescence-burst [72]

insulin3 5.7 kDa 60% fluorescence-burst [72]
BPTI3 6.5 kDa 30% fluorescence-burst [72]

protein content1 10% 20% sucrose electrophoresis [75]
DsbA*1 23 kDa 90% 0.5 M sucrose enzymatic assay [82]
DsbC*1 25 kDa 73% 0.5 M sucrose enzymatic assay [82]

Table 2.2: Molecules released from E. coli cells during osmotic shock. TMG =
methyl − β − D − thiogalactoside, RFP = trimethylpyrrocorphin and sirohydrochlorin,
BPTI = bovine pancreas trypsin inhibitor, Est55 = carboxylesterase of Geobacillus
stearothermophilus, EF-Tu = elongation factor Tu, R9C = bradykinin R9C, DsbA* and
DsbC* = leaderless (signal sequence deleted). The phenol method is described in [83]. 1 =
in the presence of EDTA, 2= contradicted by [72], 3 = labeled with Alexa 633 (1089 Da).
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released during osmotic shock are identical with those released during electroporation.

It is known that electroporation causes formation of pores in biological membranes

that can be healed [84, 85]. The similarity in protein release for these two techniques

may indicate that osmotic shock also causes transient holes in the cell membrane.

Molecular dynamics studies [86] have shown that at a loading rate of 660kN/(m × s)

the membrane ruptures before the MscL channel gets activated. However, once the

internal and external pressures are equalized, the liposome can close itself by heal-

ing the rupture. There exists no experimental proof yet that this is also true for

an E. coli exposed to osmotic shock, but the membrane sealing was experimentally

demonstrated for red blood cells [87].

2.4.4 Examples of “real” osmotic shocks

Bacteria can be found inside and on the surface of the human body, as a part of the

regular microflora or as an effect of infection. The largest population of bacteria can

be found in the intestine, in the mouth, and on the skin. These bacteria have to

be in osmotic equilibrium with the surrounding fluids (intracellular or extracellular).

An interesting problem to consider is the osmotic pressure change which these cells

are exposed to when diluted with water. As an example, the osmolarity change for

bacteria inhabiting three different regions of the human body (mouth, intestine, and

urinary tract) can be calculated using equation (2.1), where ∆π is the osmotic pressure

change, R is the gas constant, T is the temperature, and ∆C is the concentration

change.

∆π = RT∆C. (2.1)

The distribution of water in the human body varies a lot between the compart-

ments: about 80% of total water is cell water (intracellular fluids), 12% is the blood

in circulation, and about 5.6% in the plasma (the liquid which remains when blood

cells and other solid particles have been removed) [39]. The osmolarity of the fluids

secreted from the human body (e.g., tears, saliva or sweat) is similar to that of the
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blood, but the composition may vary significantly due to diffusion and resorption.

For example, the osmolarity and the content of urine changes significantly between

the beginning (where it is close to the osmolarity of other physiological fluids) and the

end of a nephron (where it is mostly water, urea, and ions). Most of the water and

solutes (e.g., proteins, sugar, or NaCl) that are filtered in the nephron are resorbed.

Active transport and diffusion change both the composition and the osmolarity of the

urine (Figure 2.4). Interestingly, the composition of saliva and sweat depends on the

rate of secretion. For example, the amount of sodium in saliva increases with increas-

ing rate of flow (from 20 mM at 3 mL/min to 90 mM at 40 mL/min) [39]. Assuming

that sodium is the only osmolyte in the saliva, one can estimate the osmolarity to

vary between 20 and 90 mOsm. Using this value and T = 310 K (body temperature)

to solve equation 2.1, one obtains an estimate of the osmotic pressure change that

bacteria inhabiting our mouth are exposed to when one drinks a glass of water that

varies between 0.5 and 2.3 atm.

Feces represent the sum of the indigestible parts of ingested food, digestive juices

and cells shed by the mucous membrane lining of the digestive canal. In human, the

total quantity of liquid passing into the gut probably amounts to 10 liters a day, of

which all but about 100 ml are resorbed [39]. The typical stool osmolarity is 290-300

mOsm per kg [88], however, the moisture content of the feces may range between

53 and 92% [42]. The osmolarity of the intestinal content depends on the diet (the

products of bacterial fermentation) and the amount of undigested or unabsorbed food

in the intestine (which increase the osmolarity of the intestinal content causing lesser

water reabsorption and smaller change in the concentration of ions [42, 89]). Taking

290-300 mOsm per kg as a typical osmolarity of the stool, the osmolarity change

which the bacteria are exposed to when going into water is about 7.7 atm.

The osmolarity of human urine ranges between 70 − 1200 mOsm/L [90]. Table 2.3

lists the osmolarity of infected urine samples from eight different individuals. These

samples were diluted into water. Using equation (2.1), the osmotic pressure the bac-

teria were exposed to was estimated to be on average above 20 atm. For comparison,
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the recommended pressure of the car tire is 2 atm.

urine osmolarity osmotic viable bacteria/mL
number [mOsm/L] pressure [atm] before lysis after lysis % survival

1 500 12.9 200 20 10
2 1126 29 11600 2600 22.4
3 1016 26.2 7000 860 12.3
4 1012 26 2300 470 20.4
5 996 25.7 15000 3200 21.3
6 1056 27.2 2148000 548000 25.5
7 980 25.2 810000 12400 1.53
8 904 23.3 2470 160 6.5

Table 2.3: Osmotic fragility of spheroplasts induced in human urine in vitro. All
samples were diluted 1 : 40000 into water. The atmospheric pressure change the
bacteria were exposed to was calculated using equation (2.1). The survival count
measured was based on plating. Adapted from [91].

As shown by these examples, the osmotic pressure difference which bacteria can be

exposed to varies a lot (5 × 10−4 − 20 atm). Despite being a single-celled organism,

E. coli can survive a wide variety of pressure changes (Table 2.3).

2.5 Family of mechanosensitive channels in E. coli

Mechanosensitive (MS) channels were discovered in 1987 [92], resulting in the pro-

posal that they may play a crucial role in sensing osmolarity through changes in

turgor pressure and protecting cells from osmotic shock. This discovery led to a very

active development of research in the mechanotransduction and osmoregulation field.

Subsequent discoveries demonstrated that the channels are gated by a mechanical

stimulus, but left the questions concerning the mechanism and physiological rele-

vance of MS channel functioning unanswered, creating at the same time even more

interest in the subject.

The results of further studies led to a conclusion that there are different types of

mechanosensitive channels. Berrier et al. [76] observed the activity of channels having
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different conductances upon application of suction pressure on the giant spheroplasts

of E. coli. Moreover, activity of only some of these channels could be inhibited by

the addition of Gd3+ ions. These results suggested not only the existence of multi-

ple types of mechanosensitive channels in E. coli, but also demonstrated that they

have different properties. Another piece of evidence for the existence of different

mechanosensitive channels in the cell membrane (and their physiological role) was

reported by Ajouz et al. [93]. The authors were investigating the efflux of various

molecules due to osmotic downshock in the wild type and mscL− strains of E. coli.

The release of some species was not disturbed in the mscL− strain, which demon-

strates the involvement of different channels in the rescue of the cell during an osmotic

shock. Another surprising result was that the efflux of glycine betaine occurred only

upon about a 200 mM change in the external NaCl concentration, which suggested

the existence of different thresholds for various channels. This was soon proven to be

the case using patch-lamp technique [94].

The discovery of the gene encoding the MscL protein by Sukharev et al. [95]

enabled the introduction of crystallography techniques to study MS channels. The

first crystallographic structure of an MscL homolog was reported in 1998 by Chang

et al. [96]. The authors identified an MscL homolog in the bacterium M. tuberculosis

(Tb-MscL) which exhibits an overall 37% sequence identity to E. coli MscL (Eco-

MscL). Tb-MscL is a homopentamer consisting of two domains, a TM domain and

a cytoplasmic domain. The TM1 helix that forms the pore of the channel is one of

the most highly conserved regions in the sequences of the MscL protein. To this day,

crystal structures of a few MscL and MscS homologs have been solved in different

conformational states [97, 98, 99].

Levina et al. [22] identified two genes (yggB (now called mscS ) and kefA) con-

tributing to MscS activity. They were also the first to demonstrate a physiologically

important phenotype due to loss of mechanosensitive channel activity. They demon-

strated that cells with mscL and mscS genes deleted do not survive exposure to 0.5

M NaCl osmotic shock at a high rate. This result revealed the role of these channels
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in providing protection against osmotic shock. More recently, more genes coding pro-

teins having mechanosensitive channel activity were characterized: ybdG [100], ynaI,

ybiO, and yjeP [101] reaching the total number of 7 different types of MS channels

in E. coli (Table 2.4).

Gene Year of characterization Reference

mscL 1994 [95]
yggB 1999 [22]
kefA 1999, 2002 [22, 102]
ybdG 2010 [100]
ynaI 2012 [101]
ybiO 2012 [101]
yjeP 2012 [101]

Table 2.4: Genes coding the activity of all seven mechanosensitive channels in E. coli. The
first gene coding MS channel activity (mscL) was identified seven years after the discovery of
MS channels. The last three mechanosensitive genes (ynaI, ybiO, and yjeP) were identified
25 years after the discovery of MS channels.

2.6 Standard ways of studying MS channels in bac-

teria

2.6.1 Theoretical modeling

One of the methods used to study mechanosensitive channels is theoretical modeling,

predicting the reaction of the channel (gating probability) to a given perturbation.

A single channel is modeled as a two-state protein. It can be in a closed state,

characterized by the energy Eclosed, or in an open state, characterized by the energy

Eopen. The equilibrium between these two states depends on the value of the external

driving force, in this case the tension τ , pictured as a loading device (Figure 2.6).

In the absence of tension (τ=0) the closed state will be favored since it has lower

energy. However, as the tension increases the value of the external driving force

increases, which can be pictured as the increasing weight of the loading devices. As
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Figure 2.6: Mechanosensitive channel modeled as a two-state protein. The closed state
has energy Eclosed and the open state is characterized by energy Eopen. The external force
is pictured as a loading device attached to the channel. The lowering of the loading device
(open state) stabilizes the open state by descreasing its energy value by τ∆A. Figure
adapted from [60].
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Figure 2.7: Energy landscape of the two-state channel as a function of its radius. The
curves correspond to different values of the externally applied force (tension). Depending
on its value, the balance between open and closed state can be shifted. For small values of
tension the closed state is energetically favorable (first curve). As the tension increases, the
open state decreases its energy and the balance shifts towards this state being more stable
(last curve). Figure adapted from [60].

a consequence, the channel opens and the potential energy of the loading device is

reduced by the value τ∆A, where ∆A is the areal change due to channel opening.

This additional term stabilizes the open state by lowering its energy (Figure 2.7).
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Using this theoretical model we can quantitatively predict the state of the channel

by calculating its gating probability. To do so, one can use the Boltzmann distribu-

tion, which states that finding the a state with a given energy E is

p(E) =
e−βE

Z
, (2.2)

where Z is called the partition function and is a sum of all possible states (it is a nor-

malization constant determined by the requirement that the sum of all probabilities

is equal to 1). We can calculate the probability of the channel being in an open state

as a function of applied tension τ as

popen =
e−β(Eopen−τ∆A)

e−β(Eopen−τ∆A) + e−βEclosed
=

1

1 + e−β(τ∆A−Egate)
, (2.3)

where Egate = Eclosed − Eopen is the gating energy.

As already mentioned, the tension in the membrane is the external stimulus that

changes the state (closed or open) of the protein. However, the protein may also

influence the energy of the membrane [103]. The conformation of the protein depends

on the tension value applied through the bilayer; however, the opening of the channel

causes deformation of the surrounding lipid membrane. One can thus model the free

energy of the protein-membrane system as the sum of energies associated with the

state (conformation) of the protein and energies associated with the deformation of

the membrane. Surprisingly, the values of these energies are very similar to the energy

difference between the channel conformational states [104, 105]. This suggests that

the mechanical properties of the lipid bilayer surrounding the protein will have a great

impact on the channel gating.

The application of tension to a membrane can result in changes in its thickness

and/or curvature. The two most important parameters are the hydrophobic mismatch

between the protein core and surrounding lipids (variation in membrane thickness),

and midplane bending [106]. Thus, by changing membrane properties, e.g., the length

of the lipid tails, one can influence the gating probability by modifying the tension
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required to open mechanosensitive channels.

2.6.2 Electrophysiology

The application of patch-clamp techniques to giant spheroplasts of E. coli led to the

discovery of mechanosensitive channels [92]. Delcour et al. [107] were the first to re-

port successful reconstitution of bacterial mechanosensitive channels into liposomes,

which showed that the small size of bacteria is no longer a factor that excludes elec-

trophysiology from the possible experimental techniques in this field (Figure 2.8 A).

The parameters for channels characterized in spheroplasts and reconstituted in lipo-

somes are very similar [95]. The same activity of a protein in its natural environment

(spheroplasts with all the other proteins present and natural E. coli ’s lipids) and

in the artificial environment (liposomes) indicates that the gating tension is trans-

mitted through the only element these two environments have in common, the lipid

bilayer, and that protein-lipid interactions play a fundamental role in channel gating.

The reconstitution of MscL into various lipid environments (synthetic phosphatidyl-

choline (PC) containing monosaturated chains of 14, 16, 18, 20, and 22 carbons)

further proved that gating of the channel is influenced by the surrounding lipids. The

pressure needed to activate MscL was lower in the PC16 (phosphatidylcholine with

chains of 16 carbons) environment when compared to the PC20 (phosphatidylcholine

with chains of 20 carbons) environment (Figure 2.8 B). Interestingly, the shape of

the pressure dependence curve remains the same, with the curve being shifted by

some value [108]. Based on the experimental data the authors concluded that the

two physical mechanisms influencing MS channel gating are hydrophobic mismatch

between the protein and the lipid environment (which can be controlled by reconsti-

tution into lipid vesicles with different acyl chain lengths) and the bilayer curvature

(which can be modified by unsymmetrical addition of, e.g., lysophosphatidylcholine

(LPC)) [108].

The observation that channels in patches formed with large diameter pipettes

were activated at lower pressures [74], as well as the application of the reconstitution
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Figure 2.8: Characterization of mechanosensitive channels in E. coli by the electropysiolog-
ical measurement. (A) The current traces of MscS and MscL reconstituted into liposomes.
The images beneath the trace show the geometry of the patch for a given value of the
applied pressure. The data obtained by simultaneous measurement of the current and a
function of applied pressure (electrophysiology) and observation of patch geometry (confo-
cal microscopy) allows one to calculate the tension (equation 2.4) and correlate this value
with the number of observed MS channel activities: (a) resting state, (b) opening of the first
MscS channel, (c) midpoint activation of MscS, (d) saturation of MscS activity, (e) opening
of the first MscL channel, (f) midpoint activation of MscL, (g) saturation of MscL activity,
and (h) rupture of the patch. Scale bar is 1 µm. Adapted from [110]. (B) Probability
of MscL activation as a function of applied pressure for three different lipid environments.
Shorter lipid tails lower the energy needed for MscL channel activation. Adapted from [108].
(C) Comparison of the probability of MscL activation as a function of applied pressure and
tension. The collapse of all curves when plotted as a function of tension shows that tension,
not pressure, is the parameter affecting MscL activation. Adapted from [109].
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technique and simultaneous imaging of the curvature of the patch, allowed us to

conclude that the parameter regulating the MscL gating is tension, not pressure

[74, 108, 109] (Figure 2.8 C). The image of the patch enables a measurement of its

radius (R) for a given value of the applied pressure (p). Knowing this relationship,

one can calculate the tension (τ) using Laplace’s law

τ =
pR

2
. (2.4)

The existence of various conductances in E. coli membranes was reported [76, 94],

suggesting the existence of various types of MS channels. However, only the identi-

fication of the genes coding proteins with MS channels activity allowed the detailed

characterization of individual channels (Table 2.5). Until 2012 it was believed that

there is a hierarchy in the opening of MS channels, meaning that the tension required

to open a given channel is correlated with its conductance. The experimental results

indicated that the first channel to open was the one showing MscM activity, and, as

the tension increases, MscS and MscK would gate before the MscL opening, which

gates near the membrane rupture threshold [111]. However, the characterization of

YjeP, YnaI, and YbiO channels proved that this rule is no longer valid (Figure 2.9).

YjeP gates at a tension close to that needed to activate MscS or MscK, but it has a

much lower conductance. YnaI and YbiO gate at the tension near the one needed to

activate MscL, but their conductances are 100 pS, 900 pS, and 3000 pS, respectively

[101]. Interestingly, the electrophysiological activity of YbdG can’t be observed unless

the mutation in β domain is introduced (V229A) [101].

It was known that negative pressure is necessary to observe the opening of mechanosen-

sitive channels, but soon other factors, increasing or decreasing open probability, ap-

peared in the literature. Martinac et al. [112] studied the impact of amphipathic

compounds (molecules having a hydrophobic and hydrophilic character) on chan-

nel gating. Cationic amphipaths (e.g., chlorpromazine CPZ) are believed to locate

themselves in the inner leaflet of the bilayer, whereas anionic amphipaths (e.g., trini-

trophenol TNP) – in the outer leaflet. Insertion of such molecules into the membrane
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Channel Size [aa] PL:PX Current amplitude [pA] Conductance [pS]

MscL 136 1 90 3000
MscS 286 1.6 25 1250
MscK 1120 1.85 17.5 875
YbdG 415 – 7.5 300 (*)
YnaI 343 1.05 2 100
YbiO 741 1.21 17 900
YjeP 1107 1.64 5-8 350

Table 2.5: Characterization of mechanosensitive channels in E. coli using electrophysio-
logical techniques. The size of the protein does not correlate well with its conductance or
gating tension measured with respect to the MscL activation tension (PL : PX). There
is also lack of correlation between the gating tension and the conductance of the channel,
suggesting that the increase in tension value does not guarantee opening of the channels
which allow a bigger flux of material through a single channel. (*) the mutation in the β
domain (V229A) in necessary for electrophysiological activity of YbdG. Table constructed
based on [101].

Figure 2.9: Comparison of the relative pressure needed to activate various MS channels.
The values for MscS homologs (PX) are reported with respect to the activation pressure of
MscL (PL : PX). Values larger than 1 mean that the tension needed to activate a given
channel is lower than the tension needed to activate MscL channel. Figure adapted from
[101].

impacts the curvature and, as a consequence, lowers the activation threshold to open

the channel. Also, addition of lysophosphatidylcholine (LPC) or cholesterol influ-
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ences the gating of both MscL and MscS [110] and the presence of ethyl or propyl

parabens causes their spontaneous activation (the effect is reversible) [113]. Recent

studies show that MscL can be engineered to show light-gated activity through the

modification of the protein (G22C mutant and a cysteine-reactive spiropyran photo-

switch) [114] or through reconstitution into a lipid vesicle containing a light-sensitive

lipid mimic undergoing trans-cis isomerization [115].

2.6.3 Plating assay

Protection against osmotic shock as a function of mechanosensitive channels in cell

physiology was postulated at the time these channels were discovered [92], and the

assay testing this assumption was published only 12 years later [22].

To test the role of a given channel (or the lack of such) in cell physiology downshock

assay is used (also known as survival assay or plating assay). A single colony is

inoculated into 5 ml of LB and grown overnight. Next morning, the culture is diluted

into 20 ml of fresh LB to a final OD600 of 0.05. Once the culture reaches an OD600

of 0.3, it is diluted 1:10 into LB supplemented with 0.5 M NaCl and grown again to

OD600 ∼ 0.3. The culture is then diluted 1:20 into LB (shock) and LB supplemented

with 0.5 M NaCl (control) and incubated for 10 min at 37◦C. After the incubation

serial dilutions are made into the medium of the same osmolarity (0 M NaCl for the

shock sample and 0.5 M NaCl for the control). A small aliquot of each serial dilution

(5 µl) is spotted on an agar plate of matched osmolarity (0 M NaCl for the shock

sample and 0.5 M NaCl for the control). Plates are incubated overnight and the next

day the survival rate is calculated based on the number of colonies for a shock sample

normalized to a number of colonies for the control sample (Figure 2.10).

This basic assay can be modified by changing the type of medium used or the am-

plitude of the shock. However, there are some parameters that cannot be controlled

or observed in this bulk assay, e.g., the rate of the shock or the variation in response

of individual cells. The way the assay is performed may introduce some systematical

errors. When counting the colonies one assumes that each colony started from one
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Figure 2.10: Survival of mechanosensitive channel mutants after exposure to osmotic shock.
(A) Agar plates showing growth of colonies after overnight incubation for the shock sample
(0.5 M NaCl shock) and the control sample (0 M NaCl shock). Rows represent aliquots of
the same dilution, columns represent serial dilutions. (B) Survival rate for strains expressing
MscL, MscS, and/or MscK from the chromosome, and/or from the plasmid (pmscS) after
exposure to a 0.5 M NaCl shock. The survival rate is calculated based on the number
of colonies of cells exposed to osmotic challenge which grew after the recovery period,
normalized by the number of colonies for control samples (not exposed to osmotic challenge).
Adapted from [22].

cell. This may not be the case if two or more cells formed a minicluster, resulting in

a single colony after an overnight incubation. Another source of error when calcu-

lating the survival rate is the normalization factor. The control sample is grown on

a high salt plate, which may limit growth of some percentage of the cells. Also, the

normalization by OD600 of a given sample when it was exposed to osmotic shock may

introduce a systematical error. The same OD600 does not always correspond to the

same number of cells for a given strain [116], so this parameter should be controlled

for (for the modified plating assay protocol with comments see Appendix A).

Other types of survival assays were published as an alternative (Table 2.6), how-
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ever, they did not gain as much interest as the assay described above.

Type of assay Reference

colony count [22]
amount of A260 absorbing material released [22]
Live/Dead BacLight dyes and plate reader [117]

microscopy and staining [118]
flow cytometry and staining [118]

amount of released DNA (fluorescence) [119]
light scattering with a stopped-flow device [120]

Table 2.6: Various techniques used to calculate the number of cells surviving an osmotic
shock. The colony count method is the most popular one. The readout of this method is
cellular growth. The other methods are based on the amount of released material (measured
by absorbance or fluorescence) or the integrity of cell envelope (staining methods).

2.7 Unanswered questions - motivation for further

studies

2.7.1 How many channels are there in a cell?

A broad variety of methods was used to characterize the physiological role and the be-

havior of mechanosensitive channels under given conditions. These channels are well

characterized at the molecular level: we know the gating probability and conduc-

tance (from electrophysiological measurement and theoretical modeling), the crystal

structure, molecular species that can be released through these channels, and the size

of the pore in an open configuration [65, 74, 96]. At the cellular level, the role of

these channels was characterized through the cell viability assay after exposure to

osmotic challenge [22]. However, we lack information on the total number of channels

expressed in a cell under given circumstances to fully understand the connection be-

tween the molecular picture and the cellular response, . Having this information and

the previously measured gating tension along with the conductance, one can deter-

mine the number of open channels and the amount of transport through them at given

conditions. Depending on the number of open channels, the physiological response
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of the cell to a given osmotic stimulus will vary. If this number is constant, the cells

in the population should respond differently depending on their size. As shown by

numerous biophysical models, both the number of such channels and their variability

can impact many physiological processes, including osmoprotection, channel gating

probability, and channel clustering. [121].

2.7.2 What is the role of MS channels in cell physiology?

From the very first moment MS channels in bacteria were discovered, their impor-

tance in osmoregulation was postulated [92], and only a few years later a proof of

their function as defense mechanisms against the osmotic shock was experimentally

affirmed [22]. It is known that wild-type cells express seven types of mechanosensitive

proteins [101] and the reason for this variety should be explained by studying their

response to the same perturbation. Bulk osmotic shock experiments revealed that the

presence of MscL or MscS [22], or an overexpression of one of the MscS homologs (in

the absence of other mechanosensitive channels), can rescue the cell from a hypoos-

motic shock [100, 101]. This fact indicates that all of the channels have a potential to

rescue the cell from a very severe osmotic downshock, and, theoretically, the presence

of all of them is not crucial.

The identification of genes coding all mechanosensitive channels in E. coli (Table

2.4) opens the possibility of creating a strain carrying any desired combination of MS

channels. The comparison of the physiological behavior or response to osmotic shock

for various mutants makes it possible to study the physiological relevance of variouis

MS channels, their response to the same perturbation, time scale of this response,

their sensitivity, and potential interactions.

2.7.3 What is the role of single-cell stochasticity?

The majority of physiological experiments are performed on cell cultures in the expo-

nential phase of growth. It is argued that the physiological condition of each cell in

this phase of growth is identical. This assumption, however, is far from being true,
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even if cells are genetically identical [122]. There are many possible explanations for

the phenotypic heterogeneity of an isogenic population: various “ages” of the cells,

the cell cycle stage (fluctuations in the transcriptional activity), different volume or

density of cells in a population, or, finally, intrinsic (stochastic effects in transcription,

translation, or replication) and extrinsic (fluctuations in the number of polymerases

or ribosomes) noise in gene expression. Whatever the source of such variation is, it

may result in a differential sensitivity to stress among the members of a given popu-

lation.

The role of this single-cell stochasticity is unclear. One of the explanations for the

diverse patterns of gene expression resulting in phenotypic subpopulations is fitness

advantage. The conditions in the natural environment tend to fluctuate, so if the

distribution of phenotypes is broad, the chances that one of the subpopulations will

remain viable increase. Such a scenario means that bacteria are able to anticipate and

adjust to sudden changes in the environment. Another possibility is that cells may

vary not only in the gene expression profile but also other physiological parameters,

e.g., the growth rate. This suggests that members of the same population may react

to changes in the environment at different time scales. One subpopulation may be

able to respond to a very fast change, whereas the other subpopulation may respond

only to persistent and slow change in the environment.

Observation of the response to a given stimulus, e.g., the osmotic shock, at the

single-cell level is necessary in order to study whether genetically identical cells show a

similar type and time scale of reaction when disturbed. Systematic, reproducible, and

precise measurements should be performed to observe whether the cell reaction to a

given stimulus is identical every time. These measurements, along with simultaneous

MS channel counting, would reveal whether the mscL gene expression differs from cell

to cell and how it impacts cell survival. It would also answer the question whether

this heterogeneity is “static” (doesn’t change with varying conditions) or “dynamic”

(the width of the distributions changes with the environmental conditions, suggesting

that cells sense and response to external changes).
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Chapter 3

Single-cell response to medium
exchange

3.1 The mystery of seven channels

Mechanosensation is a ubiquitous phenomenon found across all domains of life. In

bacteria, one of the manifestations of such processes is in the context of osmopro-

tection, where it has been proposed that the presence of MS channels in the cell

membrane allows these cells to survive an osmotic shock. These channels gate in

response to an increase in membrane tension and prevent membrane rupture by me-

diating a net efflux of water and small molecules. The first bacterial mechanosensitive

channels were discovered in 1987 [92] and in the intervening period a whole battery of

such channels has been discovered with seven different mechanosensitive channels now

demonstrated experimentally in E. coli [101]. These channels have been characterized

with electrophysiological measurements (Table 2.5). Interestingly, the characteriza-

tion of YjeP, YnaI, and YbiO violates the hierarchy rule for opening MS channels,

which hypothesizes that the tension required to open a given channel correlates with

its conductance. One of the puzzles left unresolved in the wake of the discovery of this

mechanosensitive protein diversity is why there are so many distinct mechanosensi-

tive channels in E. coli and what their significance for cell physiology is. The work

presented here partially addresses these questions.

The physiology of MS channels has been studied extensively over the last 20 years.
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Specifically, until now the survival of cells subjected to osmotic shock has been mainly

characterized in bulk assays, in which a large population of cells is shocked and the

resulting survival fraction is measured through colony counting. The comparison

of the survival rate for various deletion mutants has made it possible to study the

contribution of a particular channel to cell survival after exposure to a 0.5 M NaCl

shock. Based on these studies, the presence of MscL or MscS is believed to provide

osmoprotection at near wild-type level [22].

These assays, although very informative, reflect the population response to a large

amplitude (0.5 M NaCl) and not well-controlled rate of change in the medium osmolar-

ity (about 1 s). These conditions may seem extreme when compared to the osmolarity

changes which E. coli may be exposed to in its natural habitat. For example, the

osmotic challenge due to rainfall will be different for E. coli in the shallow marine

water when compared to one in an open ocean. In addition, some of the channel

properties may be too subtle to be discovered by means of this assay. For example,

the inactivation of MscS channels in the patch clamp measurement can be observed

only when the pressure is applied gradually [120].

It is well known that variations in water potential cause perturbations in cell

physiology. Specifically, the kinetics of the decrease or increase in the external water

potential were found to have great influence on cell survival [123, 124, 125]. Bacterial

viability is strongly related to the water potential gradient between the cell and the

external medium, which is related to the water flow across the membrane. However,

to our knowledge, no work has analyzed the role of various MS channels for cell sur-

vival as a function of various kinetics of osmotic treatment. As a result, we have

developed a single-cell video microscopy approach, in which individual bacteria are

subjected to highly controlled osmotic shocks, and their resulting growth dynamics

is monitored for hours afterwards.
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3.2 Single-cell observation

The physiology of MS channels has been studied extensively over last twenty years.

However, until now the survival of cells subjected to an osmotic shock has mainly

been characterized in bulk assays, in which a large population of cells is shocked

and the resulting survival fraction is measured through colony counting [22]. The

measurement of the mean response of the cell population makes this assay blind to

many parameters, e.g., variety of responses among cells from a given population, or

the time and mechanism of cell envelope rupture. In addition, the kinetics of the

addition of a shock medium is not well-controlled, which may result in observing only

one (out of many possible) types of cell responses.

In this work, we present a single-cell method for measuring cell survival after

an osmotic challenge and the influence of the kinetics of the osmotic treatment on

the survival of various MS channel deletion mutants. This method allows us to

control the medium exchange rate and perform a quantitative measurement of the

osmolarity gradient based on fluorescence signal change. The observation of single

cells as a function of the recovery time after an osmotic challenge allows for an accurate

determination of the fate of individual cells (death or division), as well as the time

interval between the osmotic challenge occurrence and cell death.

The experiments are performed in a simple flow cell mounted on the microscope

(Figure 3.1) (the details of the assembly method of the flow cell are described in

Appendix B). The chamber was primed with a charged polymer polyethylenimine

diluted 1:400 to attach cells to the bottom of the chamber (glass coverslip), and

then washed with water. Two input ports were primed with the media of different

osmolarity: one with a 0.5 M NaCl LB, the second one with a 0 M NaCl LB. Cells

were loaded into a chamber at a constant speed of 100 µl/min through the input port

primed with high salt medium. After about a five-minute long incubation the excess

of unattached cells was removed by flushing the 0.5 M NaCl medium and introducing

a small air bubble (the bubble treatment did not affect cell survival). The number

and condition of cells before the shock was documented at twenty different positions
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Figure 3.1: A schematic picture of the experimental setup used for the single-cell observa-
tion of E. coli mutants exposed to a well-controlled osmotic challenge. The inputs of the
flow cell are connected to reservoirs with high (0.5 M NaCl) and low (0 M NaCl) osmolarity
media. The osmolarity of the medium in the viewing chamber is controlled by the valve.
The constant flow of medium through the experimental system is guaranteed by the con-
nection to the syringe pump through the output of the flow cell. The details of the assembly
method are described in Appendix B.

in the chamber. Next, the real time medium exchange calibration was recorded for

one of the positions.

In order to monitor the rate of the medium exchange, both high and low salt media

were supplemented with 250 nM calcium-sensitive Rhod-2 dye. The shock medium

(0 M NaCl LB) was also supplemented with 100 µM CaCl2 to create a difference

in the fluorescence signal between these two media. The fluorescence signal of the

medium in the flow cell was recorded in real time during cell exposure to osmotic

challenge. The rate of medium exchange was measured based on the signal intensity

change as the high salt medium (low signal) was substituted by the low salt medium

(high signal). The quantitative measurement of the rate exchange was performed by

curve fitting to the recorded signal (fluo) (Figure 3.2). The minimum (0.5 M NaCl

medium) and the maximum (0 M NaCl medium) signal level was calculated as the

average value (fluomin and fluomax, respectively). The standard deviation for both

means was calculated as well (∆fluomin and ∆fluomax, respectively). The difference

between these two values was taken as the fluorescence signal change corresponding

to a 0.5 M NaCl osmolarity drop (fluomax - fluomin). Next, a linear fit was performed

to the middle part of the trace (fluo = a× time+ b), where fluo and b are measured
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Figure 3.2: Fluorescence signal of the medium as a function of time during the medium
exchange in a flow chamber. The medium is changed from 0.5 M NaCl LB with 250 nM
calcium-sensitive Rhod-2 dye (dark) to 0 M NaCl LB with 250 nM calcium-sensitive Rhod-
2 dye and 100 µM CaCl2 (bright). The rate is calculated by fitting a straight line to
three regions: minimal fluorescence level, maximal fluorescence level and the middle of the
calibration curve. The error analysis is discussed in the text.

in arbitrary units (called here counts), time is measured in seconds, and a is measured

in counts per second. The uncertainties in determining the slope (a) and the intercept

(b) of the fitted curve were obtained from the fitting as well (∆a and ∆b, respectively).

The correlation coefficient R2 was kept higher than 0.95 (if the correlation coefficient

of the linear fit was lower than 0.95, the fit was performed to only a part of the middle

of the trace). The rate (R) was calculated by dividing the slope of the fitted curve (a)

by the value of the recorded signal (fluo). The uncertainty in the rate determination

(∆R) was calculated by error propagation:

∆X

X
=

√(
∂f

∂A
× ∆A

)2

+

(
∂f

∂B
× ∆B

)2

, (3.1)

where X = f(A,B), and ∆A and ∆B are A and B errors, respectively. For our
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function this calculation resulted in the following equation:

∆R

R
=

√(
a× ∆fluomax

(fluomax − fluomin)2

)2

+

(
a× ∆fluomin

(fluomax − fluomin)2

)2

+

(
∆a

fluomax − fluomin

)2

.

(3.2)

After the calibration, the shock medium (0 M NaCl LB) was substituted with a

medium of the same osmolarity, but without the dye and CaCl2. The recovery of

cells was recorded by taking snapshots at previously chosen positions, one snapshot

per minute during a two to three hour period. In order to supply enough nutrients

and oxygen to the recovering cells, the 0 M NaCl LB medium was pumped through

the chamber during the recovery phase at a constant speed of 10 µl/min.

The survival rate and the fate of each individual cell was determined based on

the data collected during the recovery phase. A cell was counted as a survivor based

on its division (Figure 3.3, cells marked with an arrow). The rest of the cells were

classified as dead (Figure 3.3, cells marked with a star) or intact, non-dividing cells

(Figure 3.3, cells marked with a triangle). The dead cells were further divided into

subclasses (described later). The percentage of the population which survived the

shock was calculated as the ratio of the number of dividing cells to the total number

of cells from twenty fields of view. The error in the calculated survival rate was taken

as the fraction of intact, non-dividing cells with respect to the total number of cells.

3.3 Rate dependence

One of our principal findings is that the kinetics of medium exchange is an important

factor in determining the survival probability of cells subjected to an osmotic chal-

lenge. Specifically, the percentage of cells surviving the osmotic shock depends on

the rate of medium exchange. The number of surviving cells varies for different MS

channel deletion mutants (Figure 3.4). The fact that bacterial viability is strongly

related to the water potential gradient between the cell and the external medium,

which is related to the water flow across the membrane, suggests that mechanosensi-
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Figure 3.3: Image sequence showing the recovery of MJF465 cells exposed to a 0.5 M NaCl
shock at 100 µL/min. Cells can be classified into 3 groups: cells that survived the shock
and divide (marked with an arrow), cells which are intact, but do not divide (marked with
a triangle), and cells that died as a result of the osmotic challenge (marked with a star).
As discussed in the text, the dead cells can be further classified based on their morphology.
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Figure 3.4: Survival as a function of the rate of medium exchange. Strains Frag1 (wild-
type), MJF429 (∆mscS ∆mscK ), MJF465 (∆mscL ∆mscS ∆mscK ), MJF612 (∆mscL
∆mscS ∆mscK ∆ybdG), and MJF641 (all seven mechanosensitive channels knocked-out)
were exposed to a 0.5 M NaCl shock performed at various rates of medium exchange. The
survival depends on the rate of the osmotic challenge as well as on the type of MS channels
present.

tive channels play an important role in protecting the integrity of the cell envelope.

The role which a background strain used for MS channel deletion mutants may have

on cell survival is discussed in section 3.5 below.
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Strain Frag1 (wild-type) was used as a positive control and, as expected, survives

at a level close to 100% for the whole range of medium exchange rates tested (for

a comparison with the previously published values, see Figure 2.10 and Table 3.1).

Strains MJF429 (∆mscS ∆mscK ), MJF465 (∆mscL ∆mscS ∆mscK ), and MJF612

(∆mscL ∆mscS ∆mscK ∆ybdG) show various survival levels (0% - 90%) depend-

ing on the kinetics of medium exchange. Only strain MJF641, which has all seven

mechanosensitive channels deleted, did not survive a 0.5 M NaCl osmotic shock, even

at the slowest shock rate tested.

Strain Osmotic shock [M NaC] Survival [%] Reference

0.5 94 ± 1.2 [22]
Frag1

0.25 96 ± 27 [100]
MJF429 0.5 82 ± 2.6 [22]

0.5 7.6 ± 1.2 [22]
0.3 6.5 ± 1.5 [126]MJF465
0.25 6.3 ± 6.3 [100]

MJF612 0.25 3.9 ± 3.6 [100]
0.3 0.5 ± 0.1 [101]
0.3 0.5 ± 0.3 [101]MJF641
0.3 0.6 ± 0.1 [101]

Table 3.1: Previously published survival results obtained by a standard plating assay
for strains used in this study. These survival rates differ significantly from the results
obtained through the single-cell assay with a controlled rate of medium exchange.
The rate of osmotic challenge is not controlled in a standard plating assay.

The slopes of the curves showing the survival level as a function of the medium

exchange rate vary depending on the strain used. In general, the more types of

channels that are deleted, the steeper the slope of the survival curve (Figure 3.4),

meaning that the cells are increasingly sensitive to the rate of the osmotic shock. The

two channels having the largest conductances, namely MscL and MscS, were proved

to provide protection from osmotic shock previously [22]. The other types of channels

were shown experimentally to provide protection only if overexpressed from a plasmid

[100, 101]. Our work presents the first, to our knowledge, results suggesting that all

types of MS channels can provide some level of protection (depending on the medium
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exchange rate) at the native level of expression.

Comparing the medium exchange time (and rate) resulting in a 50% survival for

a given strain illustrates the idea that various channels provide protection at different

time scales (Table 3.2). The comparison between the MJF429 (∆mscS ∆mscK )

and MJF465 (∆mscL ∆mscS ∆mscK ) strains suggests that the presence of MscL

channels protects against a 0.5 M osmolarity change occurring over less than 1.7 s

(50% survival for medium exchange over 2.5 s for strain MJF465 versus less than

1.7 s for strain MJF429), whereas YbdG provides enough protection to guarantee

a 50% survival after a 0.5 M osmolarity change occurring over 2.5 s (50% survival

for medium exchange over 5.8 s for strain MJF612 (∆mscL ∆mscS ∆mscK ∆ybdG)

versus 2.5 s for strain MJF465). Channels YbiO, YjeP, and YnaI acting together may

be sufficient for protection against a 0.5 M osmolarity change over more than 5.8 s.

Strain Time of medium exchange [s] Rate of medium exchange [1/s]

Frag1 � 1 � 1
MJF429 < 1.7 > 0.6
MJF465 ∼ 2.5 ∼ 0.4
MJF612 ∼ 5.8 ∼ 0.2
MJF641 � 30 � 0.03

Table 3.2: Time and rate of medium exchange at which all tested strains show 50%
survival. The survival of various MS channels deletion mutants depends on the rate of
osmotic challenge. This suggests that all mechanosensitive channels may contribute to
cell survival. However their contribution to cell protection against osmolarity change
varies depending on the rate.

3.4 Death mechanisms

As noted above, the bulk assay used in previous work [22] to study the role of MS

channels in cell physiology was focused on the mean response of the population of

cells exposed to a rapid change in the medium osmolarity. Moreover, the lack of

direct observations of the morphology of the cells during and after the shock led to

many assumptions about the fate of these cells, the most popular being that cells lyse
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as an effect of rupture of all three layers of cell envelope and release their content

[22, 119] (for cartoons illustrating this assumed fate of the cell after an osmotic shock

see [126] and [127]). It has only recently been proposed that the cell lysis may result

in the existence of various morphological forms and the rupture of all three layers of

the cell envelope does not have to occur (for the cartoon illustrating various possible

scenarios see [128]).

The results presented in this work are based on the observation of individual cells

during and after a controlled osmolarity change. Direct observation allowed us to

notice various changes in cell morphology leading to cell death (Figure 3.5).

As mentioned earlier, the cells classified in our assay as dead were further divided

into four subgroups based on their morphology. The most common observed change

was the formation of a membrane bleb (Figure 3.5A), similar to those formed in cells

treated with antibiotics introducing defects in the peptidoglycan structure (Figure

2.2). Formation of a visible bleb was interpreted as the existence of a rupture in the

peptidoglycan layer. The second most common phenotype was a slow loss of phase

contrast (“fading away”) without clear signs of cell envelope disruption (Figure 3.5C).

This was interpreted as a loss of the cytoplasmic content. Such a loss may be the

effect of the excess depolarization of the cell. The functioning of many transporters

important for the homeostasis of the cell is known to depend on the gradient across the

cell membrane and, in the case of depolarization, they may not function properly [129].

The other two types are: cells showing morphological changes which we interpret as

membrane rupture without formation of the bleb, and bursting cells (Figure 3.5B and

3.5D, respectively) were a much smaller fraction of the cell population, typically up to

20%. This type of cell death was interpreted as a loss of membrane integrity. However,

the release of cell content happening at different time scales, very slowly or very

rapidly, suggests that the size of the hole in the membrane in these two cases might

have been very different. The interpretation of the reason for the existence of these

various death mechanisms needs further investigation and the arguments presented

here should be treated as hypotheses that require experimental investigation.



45

A

B

C

D

8 min

8 min

8 min

8 min

9 min 14 min 44 min 66 min

18 min 35 min 45 min 60 min

11 min 15 min 17 min 29 min

10 min 11 min 16 min 27 min

Figure 3.5: Image sequences showing typical cell morphology changes after exposure to
osmotic challenge leading to cell death as a function of time. (A) Bleb formation, arrows
indicate the region of the cell where the blebs were formed; (B) Morphological change
interpreted as a membrane rupture without formation of a bleb. The arrow indicates the
location of a potential rupture; (C) Cell releasing its content (“fading”) without a clear sign
of envelope damage. Arrow indicates the cell of interest; (D) Bursting cell. The content of
the cell gets suddenly released. Arrow indicates the cell of interest.)

Interestingly, the abundance of a given type of change in cell morphology due

to the osmotic challenge does not seem to be correlated with the rate of osmotic

exchange (Figure 3.6). For all three strains tested (MJF465, MJF612, and MJG641)

the percentage of a given type of morphological change was rather constant in most

of the cases. In all cases cells forming blebs were the most abundant and the cells

showing signs of potential membrane rupture were least abundant. This lack of

correlation with the rate of the medium osmotic shock suggests that there might be

a few mechanisms involved in the formation of these phenotypes.

The observation of cell recovery as a function of time allows us to establish the
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Figure 3.6: The percentage of cells showing a given morphology change as a function of
the rate of medium exchange for three strains: strain MJF465 (∆mscL ∆mscS ∆mscK ),
MJF612 (∆mscL ∆mscS ∆mscK ∆ybdG), and MJF641 (all seven mechanosensitive chan-
nels deleted). In all cases the death mechanism is not correlated with the rate of the
osmotic challenge and the most common morphological change leading to cell death is bleb
formation.

time after the shock at which every cell died with a one minute precision. Such an

analysis was performed for strain MJF465 (Figure 3.7). The histograms of the “time

of death” of blebbing cells were constructed for four samples shocked at different rates,

resulting in various survival levels of the cells. Interestingly, we find that in many

cases the death is not due to nearly instantaneous cell envelope rupture at the moment

of exposure to an osmotic challenge. Specifically, only a few cells “explode” during

the medium exchange. The majority of cells die long after the osmotic challenge took

place, about 10-20 minutes after. Such a delay between the osmotic challenge and the

death of cells may suggest the existence of damage of the cell envelope (membrane

or peptidoglycan layer). This means that in most of the cases the sudden change

in medium osmolarity causes irreversible injury to the membrane or peptidoglycan

layer, which the cell is trying to recompense for over some time.
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Figure 3.7: Histograms showing the “time of death” of blebbing MJF465 cells exposed to
0.5 M NaCl osmotic challenge performed at various rates: 1 s−1 (A), 0.62 s−1 (B), 0.35 s−1

(C), and 0.0125 s−1 (D). The exponential decay function (Y = Aexp(−Bt)) was fitted to
the histograms (the first bin was neglected for fitting). Only the last histogram does not
have a fit due to the small number of bins. The fitting parameters are listed in Table 3.3
and discussed in the text.

As discussed earlier, the rate of medium exchange does not seem to influence the

mechanism by which the cells die. However, the analysis of the distribution of death

times for cells shocked at different rates allows us to comment on whether or not the

rate influences the time interval between the osmotic challenge and cell death. To

address this question, we performed an exponential fit to the histograms. The first

bin was not taken into account for the fitting due to the uncertainty in determining

the time of death of some cells. We define t = 0 as the beginning of the movie showing

cell recovery process. However, some of the cells are already dead at this point. They

might have died during the medium exchange or during the time needed to rearrange

the experimental system from the calibration mode to recovery data collection. In the
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analysis, these cells are treated as if they died at t = 0, even though they were dead

earlier. That is why, to avoid the error due to an inaccurate death time assignment

for these cells, we decided to neglect the first bin.

The fitting of an exponential decay function (abundance = Aexp(−B × time)) to

our histograms gave us the fitting parameters A and B, which then allowed us to

calculate the time needed for a 1/e drop:

e(−Bt2) =
1

e
× e(−Bt1) = e(−Bt1−1)

e(−Bt2+Bt1+1) = 1, (3.3)

where ∆t = t2 - t1 is the time after which the abundance drops by a factor of 1/e.

Equation 3.3 is correct only if

−Bt2 +Bt1 + 1 = 0, (3.4)

which gives us

t2 − t1 = ∆t =
1

B
. (3.5)

The values of the fitting parameters and the times after which one observes a 1/e

drop are listed in Table 3.3. Interestingly, the rate of the shock seems to influence the

time between the osmotic challenge and cell death. The lower the rate the longer the

time needed to observe a 1/e drop. This suggests that cells exposed to an osmotic

challenge at high rates tend to die sooner compared to cells exposed to a slower rate of

medium exchange. This in turn implies that injuries due to a rapid medium exchange

are more serious and the cells lose their homeostasis earlier.
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Rate of medium Fitting coefficient Correlation Time needed for
Survival [%]

exchange [1/s] A B coefficient R2 a 1/e drop [min]

0.2 1 37.5 0.115 0.96 8.7
9 0.62 122 0.093 0.99 10.7
56 0.35 65.6 0.063 0.99 15.8

Table 3.3: The fitting parameters of the exponential decay function to the histograms
from Figure 3.7 (strain MJF465, blebbing cells). The fitting was not performed on the last
histogram due to an unsatisfactory number of bins. The first bin of the histogram was
ignored for the fitting. The time needed to observe a 1/e drop for various rates suggests
that cells exposed to higher rates tend to show morphological signs leading to cell death
earlier compared to cells exposed to an osmotic challenge at lower rates.

3.5 Discussion on the rate dependence phenomenon

Long before the discovery of mechanosensitive channels it was known that the ex-

posure of cells to osmotic shock results in the release of various molecular species

without a significant loss in cell viability. Moreover, the amount of the material re-

leased depends on the rate of shock. Britten and McClure [77] studied the influence

of osmotic shock on the proline pool removal. Their results showed that the shock

in one step resulted in 90% of the pool release, the shock in four equal steps – 70%,

and slow medium concentration change resulted in only 50% of the proline pool loss.

Similar results were obtained by Tsapis and Kepes [78] (slow shock resulting in less

methyl − β − D − thiogalactoside released compared to a fast shock) and Meury et al.

[130] (the higher the dilution gradient the more K+ ion are released). These results

may suggest that not all of the channels were activated during the slower concentra-

tion change, or that different types of channels were activated depending on the rate

of the shock.

The discovery of mechanosensitive channels [92] solved the mystery of the mech-

anism of solute release. However, to this date, the survival of cells was studied only

after exposure to a step-like change in the medium osmolarity. The results presented

in this chapter show the impact of the rate of the osmotic challenge on the survival

of MS channel deletion mutants. The classical mutant characterization (by plating

assay) is not sufficient to motivate the presence of seven MS channels in an E. coli
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cell. The method presented in this chapter provides one possible explanation of the

existence of a variety of different types of MS channels in E. coli, which is protection

at different time scales.

The MscS channel was shown experimentally to inactivate even in the presence

of the pressure which caused the activation [131]. This suggests that some of the

MS channels are sensitive to changes (tension gradients) rather than just to a given

arbitrary value of tension. Moreover, Boer et al. [120] studied the inactivation of

MscS by using patch clamp to simulate channel behavior during an exposure to var-

ious osmotic challenges. They showed that in the case of a gradual pressure increase

(analogous to a gradual shock) only a fraction of MscS population was activated,

whereas in the case of a one-step pressure increase (analogous to a “fast” shock) the

fraction of activated channels was much higher (measured by the current amplitude).

The inactivation of MscS was observed only in the case of a gradual pressure increase.

This may suggest that opening of only a fraction of available MS channels or opening

the ones characterized by a smaller conductance in the case of gradual osmolarity

change leads to a release of the tension built up and, at the same time, minimizes

the losses in the released solutes due to the opening MS channels. In such case one

would expect the cell to recover earlier from the osmotic challenge (smaller loss in the

electrochemical gradient) compared to cells exposed to a faster osmolarity change.

The observation of various previously unnoticed morphology changes leading to

cell death suggests that the exposure to an osmotic shock may damage various parts

of the cell envelope. To address this problem, one needs to have a good understanding

of the mechanical properties of all layers of the cell envelope. However, as shown in

Table 3.4, the measured values of the basic parameters vary a lot. This motivates

further studies on the role of cell envelope in protection from osmotic challenge.

The background strain used for the construction of MS channels deletion mutants

may also play a role in cell survival [132]. The comparison of the genes disrupted in

various wild-type strains leads to the conclusion that the choice of the background

strain for the construction of a desired mutant may have an impact on its physiology
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Strain E [MPa] Sample Reference

AB264 25 isolated sacculi [133]
JM109 12.8 whole cells [134]
JM109 0.12 whole cells [135]
JM109 0.05 whole cells + EDTA [135]
DH5α 2-3 whole cells [136]
DH5α 6 whole cells [136]

NCTC 9001 221 whole cells [137]
NCTC 9001 182 whole cells + COS [137]

BE100 32 whole cells [32]
ATCC 9637 2.6 whole cells [138]

Table 3.4: Young’s modulus measurements for E. coli. Table adapted from [139].

[140]. The genetic comparison of strains MG1655 and NCM3722 suggests that they

may react differently to the same osmotic perturbation. For example, strain MG1655

has genes nmpC and wbbL disrupted. The disruption of these genes may change

the mechanical, biophysical, or physiological properties of the cell envelope. The

disruption of nmpC gene, coding an outer membrane porin, may have an impact on

the transport across the cell envelope, whereas the disruption of the wbbL gene, which

codes lipopolysaccharide biosynthesis protein, may have an impact on the overall

outer membrane stability. Strain NCM3722 has multiple genes deleted (rfbA, rfbD,

rfbB, galF, wcaM, wcaL, wcaK, wzxC, wcaJ, cpsG, cpsB, wcaI, and wcaF ). Those genes

are related to the lipopolysaccharide and capsule formation. Their deletion may

influence the properties of the cell envelope leading to an increased (more elastic)

or decreased (less resistant to the mechanical stretching) resistance to mechanical

injuries. This aspect, however, needs further investigation and strong experimental

evidence for the impact of the background strain on cell survival after an osmotic

shock is required.
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Chapter 4

Counting the number of MscL
channels per cell

When the cell is exposed to an osmotic challenge and the tension in the membrane

increases, MS channels gate, protecting the membrane from rupturing. At the same

time, the opening of the channels (especially MscL, which has the largest pore) leads

to a release of multiple molecular species needed for cell functioning and disturbs

the electrochemical gradient across the membrane (Figure 4.1). Electrophysiology

measurements provide information about the conductance of a given channel (mea-

sured in siemens), measured as the ratio of current (I, measured in amperes) flowing

through the channel to the voltage (V , measured in volts) across the membrane. The

typical measured current amplitude for an MscL channel is 90 pA. Knowing that 1

ampere is equal to 1 coulomb per second and that 1 e− is equal to 1.6 × 10−19 C, one

can calculate that 1 A corresponds to a flow of 6.2 × 1018 monovalent ions per second.

This number allows us to estimate the number of ions released due to opening of a

single channel.

90 pA = 90 × 10−12 A = 90 × 10−12 × 6.2 × 1018 ions/s

= 5.6 × 108 ions/s = 5.6 × 105 ions/ms. (4.1)

This result indicated that the opening of a single channel for only 1 ms depletes the

cell of roughly half a million ions. To get a better understanding of what such a loss

means for the cell, let’s take potassium ions as an example. The reported concentra-
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Figure 4.1: Schematic illustration of an electrochemical gradient across the cell membrane.
(A) The comparison of negative (below the line) and positive (above the line) ion concen-
trations outside (left) and inside (right) a cell. The type of ions accumulated inside the
cell are significantly different when compared to the outside of the cell. (B) The diffusion
of ions across the membrane. The Coulomb force inhibits continuous diffusion down the
chemical gradient. Figure adapted from [141].
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tion of K+ ions inside the cell is 140 moles/m3 or 0.14 moles per liter. Knowing that

the volume of an E. coli cell is 1 fL, we can calculate the concentration of K+ ions to

be 0.14 × 10−15 moles or 0.8 × 108 K+ ions. This means that the opening of a single

MscL channel for only 1 ms depletes the cell of 0.6% of its total number of potassium

ions. This number may not seem big; however, the total number of ions lost will

depend on the time and number of open channels. This is why, as one might have

expected, the number of MS channels may influence the balance between the neces-

sity of releasing the tension from the membrane, and the loss of valuable molecules

accumulated in the cell. This balance is crucial for proper and efficient protection.

On one hand, not having enough MS channels will provide insufficient protection in

the case of an osmotic challenge. On the other hand, opening too many channels will

cause a loss of homeostatic balance which may be impossible to recover from. As

an example, the work of Simonin et al. on the yeast Saccharomyces cerevisiae [142]

demonstrated that the ratio of transiently depolarized cells (due to the membrane

potential loss) to dead cells decreases with increasing degree of osmotic challenge.

This result suggests that in the case of a gentle change in osmolarity cells can rebuild

the electrochemical gradient across the membrane. However, as the degree of osmotic

shock increases, the depletion of ions is too large and the cell dies.

Another important question concerning the number of MS channels is whether

it is constant throughout the cell life or is changing dynamically depending on the

environmental conditions. The constant number of proteins would suggest that there

is a specific level of protein expression that provides protection from the majority of

osmotic challenges which a cell could possibly be exposed to. In the case of a dynamic

regulation of gene expression, the physiological response of the cell would depend on

the number of currently expressed channels for given environmental conditions and

could vary significantly from cell to cell. The machinery regulating the number of

channels and its induction would allow the cell to modify its physiological response

depending on the encountered circumstances.

In order to understand at a deeper level the role of these channels and the conse-
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quences of changes in the expression level, many biophysical models were used. The

most urgent questions involve estimating how many channels a cell needs for osmotic

protection and how much transport occurs through them for a given osmotic chal-

lenge [86, 143, 144]. The crucial element needed to build these models is the mean

number of channels present in the cell and its variation. Interestingly, the areal den-

sity of these proteins was shown to influence channel clustering, gating probability,

and cooperative gating [121, 145, 146]. The simplest argument, showing how much

the mean number of channels in a cell can influence its chance to survive an osmotic

shock, is the dependence of the tension needed to open one channel on the total num-

ber of channels present in the cell (Figure 4.2). All these models are very promising

for deepening our understanding of cell response to osmotic shock and explaining how

this response changes as a function of the mean number of channels. However, these

models cannot be verified by experiments without measuring the number of channels,

both at the population and single-cell level.

4.1 Published results

The question of the mean number of MscL channels per cell was addressed in a few

publications (Table 4.1). However, the methods used to perform the measurement

were not truly in vivo. The counting results were derived on the basis of the number of

radio-labeled molecules detected in a purified membrane fraction [147] or through the

electrophysiological signal [148, 149, 150]. The number of channels detected within

the area of the sample used was then extrapolated to the area of the E. coli cell.

The reported numbers vary from 4 to 100 conducting channels per cell. This

variation may have its source in the measurement method, especially in the case

of the electrophysiological measurements. The sample used for the experiment may

also vary a lot from measurement to measurement. In the case of a reconstituted

protein one has to assume that its density is comparable to that in the cell. The giant

spheroplasts used for the measurement might have been formed by a different number

of cells (one of the steps involves using cephalexin, which prevents cells from dividing).
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Figure 4.2: The dependence of the critical tension needed to open a single channel on the
total number of channels expressed in the cell. As the number of channels present in the
cell increases, the gating tension needed to open the first channel decreases. This suggests
that the probability of finding an open channel for a given tension value increases with
increasing mean number of channels per cell [116].

Number Method Reference

50/cell radiolabeling [147]
10 - 100/cell electrophysiology [148]

4 - 5/cell electrophysiology [149]
10 - 15/cell electrophysiology [150]

Table 4.1: Summary of previously published results on the counting of MscL pro-
teins in an E. coli cell. These numbers were measured using electrophysiological or
radiolabelling techniques. The values differ by an order of magnitude.

Since in both cases the preparation of the samples rely on adding some chemicals to

the cell culture or mechanically disrupting the cell in the case of protein purification,

one does not know how many channels might have been inactivated or denatured.

The work of van den Bogaart et al. [72] provides an estimate of the reconstitution
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efficiency. The number of liposomes with inactive channels was estimated based on

the coincidence of the signal from fluorescently labeled lipid and molecules. The

fact that after the activation of MscL these two signals coincided in 40 to 70 % of

liposomes was interpreted as the lack of release of the molecules from the liposome due

to absence of a functional MscL channel. Based on the MscL to lipid reconstitution

ratio and the number of liposomes with inactive channels, the authors estimated that

90% of the protein was lost or not functionally incorporated during reconstitution.

Similar reconstitution efficiencies were reported earlier [109, 114, 151]. Also, the lipid

environment is known to influence the activation of MS channels [108]. The glass

pipette used for the recording may vary in size from measurement to measurement,

which would influence the area of the patch from which the signal is collected and/or

the geometry of the patch. This in turn, would change the tension sensed by the

channels. Last but not least, MscL is known to activate at a tension similar to that

at which the membrane ruptures [111]. The number of activated channels increases

with increasing tension (pressure). To count the number of all channels in a patch

one should keep increasing the tension to the moment where there are no more new

activities observed. However, the application of high pressure will most probably

rupture the membrane before one can reach a state in which the increase in tension

does not increase the number of active channels. This makes the activation of all MscL

channels in the patch very hard, if possible at all. For all of the above mentioned

reasons, the previously published results are not quantitative enough. Especially those

using electrophysiology as a counting technique can give, at best, only an estimate of

the number of active channels rather than the total number of channels per cell. To

obtain more quantitative results, we performed an absolute MscL census in vivo, i.e.,

the measurement of the total number of channels, both active and inactive.

4.2 Regulation of MscL expression

The gene coding the MscL protein (mscL) was identified in 1994 [95]. However, our

knowledge about the regulation of the mscL expression and the identification of the
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main factors influencing the abundance of MscL channels in a cell membrane remains

limited. The previously published work [149] demonstrated that MscL expression is

enhanced by the production of the sigma factor RpoS.

RpoS, known also as σs or σ38, is a sigma subunit of the RNA polymerase holoen-

zyme. It is known to be a master regulator of general stress response [152]. It is not

necessary for exponential growth, however, it is indispensable upon entry into station-

ary phase. The rpoS gene was discovered independently by a few research laboratories

as an important gene in many independent cellular processes [153], which illustrates

best its non-specificity to a single target. Accumulation of σs may be triggered by a

variety of factors (entry into stationary phase, starvation, high osmolarity, high or low

temperature, acidic pH) and it causes changes in cell physiology and morphology that

increase cellular resistance to stress by preventing the potential damage rather than

repairing the damage that has already occurred. The induction of rpoS expression

varies with the applied stress, as it might be modified by activation of other genes

or factors as well, and it is reversible at any point if the stress factor disappears.

The situation is further complicated by the fact that rpoS expression is regulated

at multiple levels: transcription, translation, and protein stability [154, 155] (Figure

4.3).

So far, over fifty genes under the control of RpoS have been discovered and they

are mainly involved in the regulation of the stress tolerance, structural and morpho-

logical rearrangements, redirection of the metabolism, and virulence [156, 157]. RpoS

is a close relative of the sigma factor σ70 (RpoD) known as the vegetative (“house-

keeping”) sigma factor necessary for cell growth. Both of these factors recognize

similar promoter sequences in vitro. However, the concentration of RpoS is always

lower than RpoD (σs can reach up to 30% of the σ70 level) [158], the affinity of the

core polymerase is significantly lower for σs when compared with that for σ70, the

holoenzyme form of RNA polymerase with σs (Eσs) is more tolerant to deviations

from the consensus and less strict in recognition of the -35 part of the promoter,

and they control different genes (σ70 can’t compensate for the absence of σs) [152].
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Figure 4.3: Regulation of RpoS expression. Various stress factors affect the amount of
RpoS present in the cell: cell density, temperature, osmolarity of the medium, and avail-
ability of the carbon source (starvation). The regulation of RpoS level occurs at all stages
of expression: transcription, translation, and/or stability of the protein (inhibition of pro-
teolysis). Figure adapted from [152].

Interestingly, in vitro preference for Eσs over Eσ70 can be enhanced for some of the

promoters depending on the presence of salts, DNA supercoiling, or the presence of

trehalose [159, 160, 161]. The three most important factors for this work influencing

rpoS expression are: entry into stationary phase, salt induction, and starvation.

The osmotic induction of rpoS expression not only increases the level of the Rpos

protein, but its concentration can increase as a function of time. The presence of salt

stimulates rpoS translation and it increases the half-life of the protein from 3 to 50

minutes [155]. As mentioned earlier, the presence of salt in the medium can alter

the promoter recognition by EσS [159]. K+ glutamate, which is accumulated when

the cell is exposed to a hyperosmotic shock, also seems to stimulate the activity of

EσS towards σS-dependent promoters [162]. The detailed mechanism of osmotic in-

duction is not well-understood; however, the experimental data suggest that osmotic

regulation of rpoS happens at the posttranscriptional level [155]. Another response,

particularly interesting for this work, is related to the carbon source of the media.
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Media associated with slower growth rates have been observed to induce elevated

RpoS levels [163]. The same publication suggested that some of the genes (but not

all) upregulated during starvation are associated with metabolism and transport.

All of these facts allow us to predict that the mean number of MscL channels

should change with the growth conditions: density of the culture (OD600), carbon

source, and osmolarity of the culture medium.

It is very probable, although not experimentally proven, that RpoS is not the only

protein that regulates the mscL expression. The work by Bianchi and Baneyx [164]

suggests that exposure to high osmolarity induces not only σS, but also heat shock

promoters and σE dependent genes. The presence of NaCl may also increase super-

coiling in E. coli [165], which can influence cell survival in a NaCl rich medium. It is

well known that the DNA topology changes gene expression [166]. The starvation for

glucose or phosphate and the entry into stationary phase in a rich medium induces

the expression of the universal stress proteins UspA, UspC, UspD, UspE, and UspG

[167]. All of these proteins have overlapping, but biologically distinct functions.

4.3 Strain construction and counting methods

In order to avoid major uncertainties due to sample preparation and the method

used for counting, we used a complementary approach to electrophysiology. In our

approach, a mutant expressing MscL-GFP fusion protein under the control of a native

promoter is used to estimate the number of MscL proteins in a single cell and the mean

number of channels at the population level. To construct such a strain, we replaced

the native MscL coding region of a wild-type E. coli strain (MG1655) with a sequence

coding MscL fused to a super-folder green fluorescent protein (sfGFP) [168], creating

the strain MLG910 (the details of chromosomal integration strategy can be found in

Appendix C). To establish that our fusion is functional, we integrated MscL fused

to sfGFP into the MJF612 strain, which had four mechanosensitive channel genes

knocked out (∆mscL, ∆mscS, ∆mscK, and ∆ybdG) [100] and performed an osmotic
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Figure 4.4: Osmotic shock assay results for various strains: wild-type MG1655, MJF612
(∆mscL ∆mscS ∆mscK ∆ybdG) and MJF612 expressing chromosomally integrated MscL-
sfGFP fusion. Mean survival rate after exposure to 0.5 M NaCl osmotic challenge is nor-
malized to colony forming units from the MG1655 strain. The error bars are the standard
deviation of five trials [116].

shock survivability assay (Figure 4.4). We observed a considerably higher survival

rate for cells expressing our fusion for a 0.5 M NaCl osmotic shock as compared to

the rate from the MJF612 strain (75% and 15%, respectively), but a lower survival

rate as compared to that of the WT strain MG1655 (defined as 100%). We concluded

that our fusion is functional. To check for the proper insertion of the MscL-sfGFP

fusion in the cell membrane we used confocal microscopy and fluorescence recovery

after photobleaching (FRAP) [169]. We concluded that the majority of the fusion

proteins are mobile in the membrane (Figure 4.5). Based on the results from the

survival assay and FRAP measurement we interpret that the MLG910 fusion strain

is a fair representation of the wild-type MG1655 strain.

The measurement of the number of MscL channels per cell was performed under

various culturing conditions using quantitative Western blots and single-molecule cal-

ibrated fluorescence microscopy. These methods allow us to measure the variation in
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A B C

Figure 4.5: Confocal images demonstrating FRAP (Fluorescence Recovery After Photo-
bleaching) performed on a single cell expressing chromosomally integrated MscL-sfGFP
construct (strain MLG910). (A) Before photo-bleaching (0 s). (B) Photo-bleaching (0.7 s),
an arrow indicates the photo-bleached region of the cell. (C) Recovery of the fluorescent
signal (8.4 s). The slow recovery of fluorescence is consistent with diffusion rates typical
for fluorescent proteins mobile in the cell membrane, as opposed to the sub-second recovery
times which are characteristic for free proteins expressed in the cytoplasm [116].

the mean number of channels for different growth conditions, as well as the cell-to-cell

variability for a given condition.

4.3.1 Western blots

We prepared the lysates derived from various strains, grown in three different me-

dia (LB-Miller, M9 supplemented with glucose, and M9 supplemented with glycerol,

where the nutritionally poorer glycerol reduced the growth rate by a factor of two or

more) to an early exponential (OD600 of 0.3) and stationary phase (OD600 of 1.2 -

1.7). Known volumes of the lysates were run alongside the purified protein references

(either MscL or MscL-sfGFP) of known concentration. The references were diluted

in MJF612 (∆mscL ∆mscS ∆mscK ∆ybdG) lysate to keep the total non-specific

protein loaded similar to the whole cell lysates. Reference proteins and lysates were

separated by the SDS PAGE, transferred to nitrocellulose membranes, and immuno-

stained with primary antibodies for either MscL (polyclonal, generous gift from S.

Sukharev) or GFP. Detection of the bands was achieved by imaging the chemilumines-

cence resulting from the horseradish peroxidase (HRP) labeled secondary antibodies.

By measuring the relative intensity of the bands and comparing them to the purified

protein reference bands, we determined the mean number of channels per cell for a
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given condition.

The quantitative measurement of the number of MscL channels per cell requires

that the MscL fusion protein is expressed at a native level. To ensure that the sfGFP

tag does not alter the native expression level (despite being under the control of a

native promoter), the mean expression levels of MscL-sfGFP to wild-type MscL was

compared using quantitative Western blots. For this comparison, we used antibodies

that recognize MscL protein (Figure 4.6). The expression levels for the two strains

were comparable and, in many conditions, within the accuracy of our technique.
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Figure 4.6: Detection of MscL (15 kDa) and MscL-sfGFP (43 kDa) proteins with MscL
antibody. Arrows indicate the protein of interest. Other bands are the result of non-specific
binding. Lysate from the MJF612 strain (612, lane 6) was used as a negative control (the
mscL gene is deleted in this strain). The cells used for lysate preparations were cultured
to exponential (exp) and stationary phase (stat) in LB-Miller (LB), M9 + glucose (U), and
M9 + glycerol (Y). Lanes 1 - 5 are reference loads of purified MscL protein (in picomoles).
Lanes 7 - 9 and 13 - 15 are MscL-sfGFP levels in MLG910 strain (MLG). Lanes 10 - 12 and
16 - 18 are MscL levels in MG1655 (WT) stain. The amount of protein in the lysate lanes
(7-18) was determined based on a comparison with the calibration curve obtained based on
the reference band intensities [116].

To establish the mean number of MscL channels per cell and to measure how it

is impacted by stress factors, we used quantitative Western blots with a monoclonal

GFP antibody (Figure 4.7). Our measurements show much higher MscL expression

levels compared to previously published results (Table 4.1). In LB-Miller medium, we

did not observe a significant increase in the MscL levels with increasing density of the
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A B

Figure 4.7: Representative Western blots showing the expression of MscL-sfGFP. Arrows
indicate the protein of interest. Other bands are the result of non-specific binding. The
strains of interest (MLG910 and MLG910 ∆rpoS) were cultured to exponential (exp) and
stationary (stat) phase in LB-Miller (LB), M9 + glucose (U), and M9 + glycerol (Y). In
(A) and (B), lanes 1 through 5 are the concentration series of a known number of purified
channels diluted into the lysate from the MJF612 strain (References). The numbers under
lanes 7 through 12 (A) and 6 through 11 (B) represent the average number of channels
from three independent Western blots for the respective conditions. The total error of
each measurement includes contributions from the standard deviation of three repetitions
and the systematic uncertainties in the absolute calibration related to chemiluminescence
linearity, initial cell culture density, and lysis efficiency. Lysate from the MJF612 strain
(612) was used as a negative control (lane 6 in (A) and lane 12 in (B)). (A) Lanes 7 through
12 show the MscL-sfGFP levels in the MLG910 strain (MLG). (B) Lanes 6 to 11 show the
MscL-sfGFP levels in the MLG910 ∆rpoS strain (∆R) [116].

culture (OD600) (lanes 9 and 12 in A). However, in the slower growth-rate M9-based

media, the number of MscL channels per cell increased by nearly two to three fold

during the transition period from exponential to stationary growth phase (lanes 7

and 8 vs. 10 and 11 in A). These results demonstrate that the carbon source and

the associated growth rate influence the amount of upregulation of MscL during the

transition from exponential to stationary growth phase.

Earlier work has examined how the expression of mechanosensitive channels is

affected by RpoS expression [149] and we have explored this as well. We measured

the level of MscLsfGFP protein in the MLG910 strain where the rpoS gene had been

knocked out (MLG910 ∆rpoS). As expected, the expression of MscL-sfGFP protein

in the MLG910 ∆rpoS strain was significantly lower (Figure 4.7B). In contrast to

the previous results for the MG1655 and MLG910 strains, we observed neither an

increase in the channel expression upon entry into stationary phase nor a change in
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the expression level due to different carbon sources. We interpret these results such

that the MscL expression in the ∆rpoS strain represents the baseline level of MscL

expression in the absence of any stress.

4.3.2 Fluorescence microscopy

To conduct a single-cell based census of MscL channels, we used epi-fluorescence ex-

citation microscopy to image the MLG910 strain under various growth conditions

and stages. The cells were imaged in laser-excited (473 nm) epi-fluorescence mode

at 100x magnification using an electron multiplying CCD camera. For each sample,

we imaged multiple fields of view, typically analyzing more than 1000 immobilized

bacterial cells per condition. Fluorescent microscopy images were analyzed using a

customized MATLAB program based on the SCHNITZCELL segmentation program

(a generous gift from M. Elowitz’s lab). Images were median filtered to reduce spuri-

ous pixel noise. Next, a threshold mask was created for every frame by hand setting

a threshold value for each sample. These masks were used to segment out individual

cells from the original images and the total fluorescence of each segmented cell could

be recorded. The last stage of manual selection was made on the segmented cells,

where the selection criteria were based on morphology. The total integrated num-

ber of fluorescence counts of each cell was determined and converted into the total

number of fully assembled channels by using a calibration factor of the fluorescence-

counts-per-sfGFP, explicitly assuming that the fluorescence of each sfGFP represents

a single channel subunit and that five subunits form a fully assembled channel [96].

We calibrated the number of fluorescent counts associated with a single sfGFP pro-

tein by measuring the average size of the single-step photobleaching events of purified

MscL-sfGFP protein [170] (Figure 4.8). In order to maximize signal-to-noise ratio, the

fluorescent samples were excited with laser-based TIRF illumination. Movies of the

photobleaching molecules were recorded at 4 frames per second. Individual molecules

were segmented with a modified version of the MATLAB based PolyParticle-Tracker

program [171]. The traces were manually selected and fit to step functions (Figure
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Figure 4.8: Typical single molecule traces and histogram of counts used for calibration of
the number of fluorescent counts associated with a single sfGFP protein by measuring the
average size of single-step photobleaching events. (A) A trace with one photo-bleaching
step. (B) A region of the trace with two photo-bleaching steps. The data points not used
for fitting are marked in blue. (C) An example of a single molecule trace that was rejected.
(D) Histogram of counts used to calculate the mean value of a photobleaching step [116].
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4.8). A histogram of counts was constructed and the mean signal was calculated.

The mean value was multiplied by a TIRF/epi-fluorescence calibration factor. In

order to calculate a calibration factor between the signal in TIRF and the signal

in epi-fluorescence, we collected the images of 50 fields of view of a solution of 40

nm yellow-green fluorescent microspheres in both TIRF and epi-fluorescence. The

PolyParticle-Tracker program was used to find the TIRF/epifluorescence ratio for

single beads. The number of MscL subunits per cell was obtained by dividing the to-

tal fluorescence signal from a given cell by the mean fluorescence counts from a single

sfGFP molecule. To determine the number of channels, we assumed there were five

subunits per channel. In agreement with the quantitative Western blots, these mea-

surements indicate that the media and the age of the culture affected the expression

level of MscL-sfGFP (Figure 4.9).

4.4 Results

4.4.1 Mean number

The fluorescence microscopy measurements indicate that the mean number of chan-

nels per cell determined by the total integrated fluorescence is on the order of 300 to

1400, depending on the culturing conditions. The number of channels increased in

M9 minimal media compared to cells grown in LB-Miller media (Figure 4.10, panel

A and B compared to C). Depending on the carbon source, there was a 2.5-fold (M9

supplemented with glycerol) or a 1.5-fold (M9 supplemented with glucose) increase

in the number of MscL-sfGFP channels per cell in the early exponential phase of

growth. Interestingly, as the M9-media-grown cells entered stationary phase, they

reached similar expression levels for both carbon sources (Figure 4.10, panel D). We

also observed that the number of channels per cell increased steadily with the salt

concentration (Figure 4.10, panel E), presumably demonstrating an osmotic induc-

tion related to the increased osmolarity of the media. During the exponential phase,

cells grown in the M9 medium supplemented with various amounts of salt – 100
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Figure 4.9: Typical fluorescence microscopy images of MLG910 strain (MG1655 express-
ing chromosomally integrated MscL-sfGFP construct) for various growth conditions. The
fluorescence signal intensity (interpreted as the increase in the expression level) increases
with increasing density of the culture (OD600) and is influenced by the quality of the cul-
ture medium (salt content and the carbon source). The white scale bar is 2 µm long. The
relative contrast of the individual images has been unaltered. The contrast of the overall
composite image has been adjusted for clarity [116].

mM NaCl (342 m Osm/kg), 250 mM NaCl (529 mOsm/kg) and 500 mM NaCl (886

mOsm/kg) – showed a two to three-fold increase in protein expression, as compared

to cells grown in M9 media without supplemented salt (234 mOsm/kg). Cells grown

to stationary phase in the various salt-supplemented media appear to be approaching

a common expression level of ∼ 1300 channels per cell, nearly twice the maximum

level seen in M9 media without salt (∼ 700 channels per cell). The age of the culture

(OD600) also influenced the mean number of MscL proteins per cell. In the presence

of 100 mM or 250 mM NaCl salt, the cells showed a characteristic increase in the
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Figure 4.10: Mean channel counts per cell determined by fluorescence microscopy (FM)
for various media versus OD600. In panels A, B, and C the corresponding mean number of
channels determined by Western blots (WB) (open symbols) are shown for reference. The
error bar of each fluorescence microscopy results measurement is dominated by systematic
uncertainties in the absolute calibration related to single-molecule fluorescence calibration.
The standard error of the mean of the uncalibrated fluorescence counts per cell is typically
less than 5% of the total error bar. (A) MLG910 strain with (light blue squares) and without
RpoS (yellow squares) in M9 medium supplemented with glycerol. (B) MLG910 strain with
(green squares) and without RpoS (red squares) in M9 medium supplemented with glucose.
(C) MLG910 strain with RpoS in LB-Miller medium. (D) Comparison of fluorescence
microscopy results from MLG910 strain grown in three different media. (E) Comparison of
fluorescence microscopy results from MLG910 strain grown in M9 medium supplemented
with glucose and four different NaCl concentrations: 0 mM (green squares), 100 mM (dark
blue squares), 250 mM (gray-blue squares), and 500 mM (dark gray squares)[116].

expression level around OD600 equal to 1, which can be interpreted as arising from

the stress associated with the transition to stationary phase. However, cells grown

in the presence of 500 mM NaCl did not show this tendency. Instead, we observed a
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fairly-constant, relatively-high level of expression, which may represent a maximum

level of MscL expression in response to salt and growth.

To summarize, the results from both experimental methods discussed above show

a general trend of increasing MscL levels as the quality of the media carbon source

was decreased (in going from LB-Miller to M9+glycerol), and as the cultures entered

stationary phase. The agreement between the mean values found from fluorescence

microscopy and quantitative Western blots is shown in Table 4.2.

Condition Western blot Fluorescence microscopy
Strain Media OD600 Mean number OD600 Mean number

MG1655 LB-Miller 0.3 480 ± 103 - -
MG1655 M9 glucose 0.3 364 ± 102 - -
MG1655 M9 glycerol 0.3 286 ± 56 - -
MLG910 LB-Miller 0.3 531 ± 313 0.33 340 ± 68
MLG910 M9 glucose 0.3 475 ± 183 0.3 466 ± 64
MLG910 M9 glycerol 0.31 421 ± 166 0.31 709 ± 57
MG1655 LB-Miller 1.78 544 ± 92 - -
MG1655 M9 glucose 1.36 951 ± 157 - -
MG1655 M9 glycerol 1.24 596 ± 174 - -
MLG910 LB-Miller 1.72 316 ± 124 1.74 472 ± 95
MLG910 M9 glucose 1.34 732 ± 231 1.23 746 ± 150
MLG910 M9 glycerol 1.17 482 ± 131 1.27 729 ± 147

Table 4.2: Comparison of channel counts per cell from quantitative Western blots and
fluorescence microscopy. Strains MG1655 (wild-type) and MLG910 (strain expressing
chromosomally integrated MscL-sfGFP fusion) were grown in various media (LB, M9
+ glucose, and M9 + glycerol) and to exponential and stationary phase (measured
as OD600) [116].

4.4.2 Distribution in the population

In addition to measuring the mean number of fully-assembled channels, Nmean, we

used the fluorescence dataset to determine the population distribution of the MscL

monomer subunits expressed under various growth and stress conditions (Figure 4.11).

This kind of a systematic analysis, as a function of both the growth media and OD600,

addresses the important question of the cell-to-cell variability of these channels in
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Figure 4.11: Distribution of MscL subunits under different growth conditions at various
stages of growth. The red curves show the fitting of the gamma distribution (equation 4.3)
to the histograms. The OD600 and the Fano factor (bFano, equation 4.2) for a given sample
are listed. (A) MLG910-∆rpoS strain grown in M9 medium supplemented with glucose
to OD600 0.46, 0.81, and 1.18, respectively. (B) MLG910 strain grown in M9 medium
supplemented with glucose to OD600 0.3, 0.67, and 1.23, respectively. (C) MLG910 strain
grown in M9 medium supplemented with glucose and 0.25 M NaCl to OD600 0.25, 0.71, and
1.21, respectively [116].

living bacteria, provides insight into the nature of their regulation under different

physiological conditions, and may provide clues about additional physiological roles

which these channels might play.

We observed changes in the width and shape of the respective protein distributions

under various conditions. To characterize the distribution widths, we determined the

standard deviation, σ, and the Fano factor (bFano) for each distribution, where bFano

is given by

bFano =
σ2

Nmean

. (4.2)

The Fano factor is a measure of the non-Poissonian character of the distribution,

where a Poisson distributed protein abundance would correspond to bFano = 1.
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The MLG910-∆rpoS strain did not show a wide variation in the Fano factor

value with increasing OD600 (Figure 4.11). We interpret these Fano factor values as

the baseline level of the population variability in the absence of a carbon source or

salt-associated stress. There was a dramatic increase in the Fano factor of the RpoS-

expressing MLG910 strain distributions compared to the MLG910-∆rpoS strain. The

presence of RpoS alone caused a 10-fold increase in the Fano factor value. In the pres-

ence of a 250 mM NaCl, an even larger 10- to 30-fold increase was observed. This

increase depended on the OD600 of the culture, indicating that the presence of salt

introduced further changes in the expression profile.

Numerous theoretical models have linked the steady-state gene expression dis-

tribution of a population to stochastic factors describing the transcriptional and

translational processes of a single cell. One of the simplest descriptions results in

a steady-state distribution described by a gamma distribution of the form

p(x) =
1

baΓ(a)
xa−1e−x/b, (4.3)

where p(x) is the probability of an occurrence of x protein subunits, a is a measure

of the rate of the transcriptional bursts, and b is the measure of the size of the

corresponding translational burst [172]. For this class of models b = bFano. We fit this

distribution to our data as a crude gauge of the complexity of the MscL regulation.

For the cells expressing RpoS, we observed an increasing trend of both the a and

b parameters with growth phase, and/or salt levels (Table D.1). In general, the

distributions were reasonably described by such a fit in an early exponential phase,

but outside this phase or in the presence of salt, the gamma distribution did not

account well for our data (last two panels of Figure 4.11 C).

4.4.3 Summary

We presented the results of an absolute MscL channels counting and the impact of

various stress factors on the mean number of channels using two methods: quanti-

tative Western blots for bulk measurement and fluorescence microscopy for the mea-
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surement at the single-cell level. We obtained similar counting results and general

expression trends for both methods. MscL levels can be raised by increasing the salt

of a given culture medium or by growing in a medium with a poor carbon source.

Our results suggest that carbon source induction mechanisms are, at least, on a com-

parable scale to salt induction related ones. The relative expression level changes we

observe are comparable to the previously published work [149]. We conclude that

our results are a good representation of the in vivo census within the accuracy of

the techniques used. They are at least an order of magnitude higher than the previ-

ously published results (Table 4.1). This discrepancy may be caused by the method

used for the measurement of the number of MscL channels: our results report the

total number of MscL channels, whereas previously published results report number

of active channels, measured by, in most of the cases, electrophysiology. It is possible

that most of the channels expressed in the cell are inactive due to improper assembly,

improper insertion, or misfolding. Another possibility is that the majority of the

protein gets inactivated during the sample preparation prior to the electrophysiology

measurement. As discussed earlier (section 4.1) the reconstitution efficiency is very

low. An additional source of discrepancy might be the fact that the tension needed

to activate an MscL channel is close to that when the membrane ruptures, leading

to a break of the patch before activating all of the channels. In order to test all of

these possibilities one should apply the counting technique presented in this work to

the electrophysiological measurement and compare the total number of fluorescently

tagged proteins within a patch with the number of active channels.

The measurement at the single-cell level using fluorescence microscopy allowed

us to measure the cell-to-cell variability of the MscL expression for various culturing

conditions. We described these changes quantitatively by determining the Fano factor

from the distributions and by fitting a gamma distribution to the histograms of the

MscL monomers at the single-cell level (Figure 4.11, Table D.1). The gamma distri-

bution is derived from a model which assumes the follwing: the mRNA expression

level is determined by a single-state, unregulated promoter; the proteins are expressed
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in translational bursts from a single copy of mRNA; the number of proteins per burst

event is described by an exponential distribution; and the translation events are un-

correlated in time. This model represents our results well for low stress conditions

(exponential phase, media without supplemented salt), however, it does not provide

a good fit for the measured values in the stationary phase (regulation by RpoS) and

in the presence of salt (osmotic induction). We conclude that the induction of the

MscL expression is not described well by this simple biophysical model.

The work presented here illustrates the changes in the number of MscL channels

per cell depending on the culturing conditions. It does not, however, fully explain

the consequences of these changes for cell physiology. As noted before, the number of

MscL channels can impact the gating barrier (Figure 4.2). Previously published work

has predicted that at sufficiently high protein areal-densities, channels can demon-

strate cooperative gating [121]. According to this model, for our measured values,

102 to 103 channels per mm2, the probability of two channels opening at the same

time can be equal to or even greater than the probability of one channel opening as

the applied tension is increased to values approaching τ1/2 (tension at which channels

are open half of the time). The high number of channels may impact not only the

gating tension, but also protect the membrane from rupture by adding an extra area

to the membrane through the expansion of non-conductive MscL proteins [173] or by

increased transport of water and/or osmolytes through open channels [174, 175].

If it is true that a large number of channels leads to higher survival rates, it would

be interesting to speculate on how the variability of the cell-to-cell MscL distributions

increase substantially with stress (Figure 4.11). It is possible that the increased vari-

ability is a survival strategy of the population. The majority of cells would not be

required to change their expression profile as a preparation for a potential change in

osmotic conditions. In a population of cells there would always be a small percentage

of cells in the highest expressing region of the distribution, guaranteeing survival of

at least a few cells.
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Chapter 5

Minimal number of channels
needed for survival

5.1 Number and variety paradox

As described in chapter 4, we used fluorescence microscopy and quantitative Western

blots to perform a counting of MscL channels (in bulk and at the single-cell level).

Our measurement results are much larger than those previously published (Table

4.1). This discrepancy raises a question about the source of this more than an or-

der of magnitude difference. Part of the explanation might be the technique used

in the previous measurement – electrophysiology (details described in section 4.1).

However, the difference in our and previously reported results is so large that it is

doubtful it could be explained only on the basis of the imperfection of the technique.

This may suggest that only a small fraction of the total number of MscL channels

can be activated at the same time. If this is indeed the case, one may wonder why

E. coli produces so many more copies of the MscL channel. One should also remem-

ber that MscL is not the only mechanosensitive channel in E. coli. The presence of

seven different mechanosensitive channels is experimentally proven [101]. Are all of

those channels necessary for proper growth of the cell and protection against osmotic

shock?

The techniques demonstrated in chapter 4 may provide means of investigating

the connection between survivability and channel expression level. One could image
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strains showing different expression levels (measured by fluorescence calibration) be-

fore an osmotic shock and correlate it with their fate after the recovery time. Such a

measurement would determine, at single-cell resolution, whether the enhanced mean

number of channels affects survivability. If survival rates turn out to be weakly de-

pendent on the number of channels, it begs the question of why there is an apparent

excess of channels and what their role in cell physiology is.

5.2 Bulk results using ∆rpoS strain

Mechanosensitive channels in E. coli are experimentally proven to provide protection

against an osmotic shock [22]. However, their mean number is not constant through-

out the population growth from exponential to stationary phase, and strongly depends

on the culturing conditions [116, 149]. The increase in the mean number of channels

upon entry into stationary phase or due to the growth in a high osmolarity medium

was interpreted as a preparation for the potential osmotic shock and an additional

control against increased stress on the cell envelope in the stationary phase [149].

The basal expression level (exponential phase) of MscS channels was reported as in-

sufficient to provide the required protection against moderate changes in the medium

osmolarity [149]. These results lead to a conclusion that the larger the number of MS

channels in the cell, the higher the chances for survival.

The claim, according to which changes in the expression level are necessary to

modulate the cell’s chance for survival, should be reflected in the result of the os-

motic challenge experiment. Specifically, cells surviving the shock are expected to

have a higher mean number of channels compared to cells which died as a result of

a change in medium osmolarity. This assumption can be tested experimentally using

strain MJF612 (∆mscL ∆mscS ∆mscK ∆ybdG) with MscL-sfGFP fusion integrated

into the chromosome. The absence of MscS, MscK, and YbdG channels guarantees

that surviving the osmotic shock will depend mainly on the MscL channels, which

can be counted thanks to the presence of a fluorescent reporter (for the counting

method see chapter 4). The cells exposed to 0.5 M NaCl shock were divided into
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two categories: cells that survived this osmotic challenge and cells that died due to

osmolarity change. The fluorescence signal, which can be translated into the number

of MscL channels, of each cell was measured and the histogram was constructed for

both groups of cells (Figure 5.1).
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Figure 5.1: Comparison of the MscL expression level between cells that survived and
died due to osmotic challenge. Strain MJF612 expressing chromosomally integrated MscL-
sfGFP fusion was exposed to a 0.5 M NaCl osmotic shock. The level of MscL channels
expression in “survivors” and “dead” cells was measured in arbitrary units as an intensity
of the fluorescence. The comparison of the mean fluorescence value (based on histograms)
for these two groups of cells does not reveal any significant differences.

Surprisingly, the mean fluorescence level (arbitrary units) for cells in both groups,

survivors and dead cells, is very similar. This measurement indicates that, on average,

there is no significant difference in the number of expressed channels between survivors

and cells that did not survive the shock, at least at the native expression level. The

lack of a clear difference in the number of expressed channels between survivors and

dead cells puts in doubt the hypothesis of channel up-regulation in order to ensure

protection against a potential shock.

Since the difference in the mean number of channels is distinguishable at the native

expression level between cells that survive the osmotic challenge and the ones that

did not, one can ask the question about the minimal number of channels needed for
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survival. It was shown experimentally that the expression of MscL depends strongly

on the level of RpoS [116, 149], thus, we used ∆rpoS and ∆mscL ∆rpoS strains to

test whether the survival level will be affected by varying the mean number of MscL

channels in the strains under examination. Surprisingly, there was no significant

difference in the 0.5 M NaCl shock survival between wild-type and ∆rpoS strain

(Figure 5.2). However, when both the mscL and rpoS genes are deleted the survival

level drops significantly. These results show that lowering the number of channels by

an order of magnitude (the mean expression level in wild-type strain is 300 channels,

while the mean expression level in ∆rpoS strain is 30 [116]) does not seem to influence

the cells’ ability to survive an osmotic shock. However, the deletion of the mscL gene

(in addition to rpoS deletion) does affect cell survival. This means that the cell needs

less than 30 channels for the protection against an osmotic shock and that this critical

number of channels is much lower than the native expression level.
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Figure 5.2: Comparison of survival rate as a function of mean number of MscL channels.
Strains MG1655 (wild-type, WT), ∆rpoS, and ∆mscL ∆rpoS were exposed to 0.5 M NaCl
osmotic shock. Their survival rate was calculated based on the number of cells that were
dividing after the recovery phase, normalized by the total number of cells exposed to osmotic
challenge.

These results are very interesting and disturbing at the same time if one compares
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the native expression level and the critical number of channels needed for protection.

However, one should remember that ∆rpoS strain is not the optimal strain for this

type of measurement (for the reasons mentioned below) and further, more detailed

analysis is necessary.

As described earlier, RpoS expression may be triggered by various stresses and it

regulates the expression of multiple genes in order to prevent potential damage rather

than to fix the existing one. In E. coli, rpoS -dependent genes can be found all over the

chromosome [176]. Their function ranges from the DNA repair, protein synthesis, and

transport, to the regulation of cell metabolism. The measurements, based on DNA

microarray and RT-PCR at the exponential and early stationary phase of growth,

show that in the ∆rpoS mutant 425 genes are down-regulated significantly in the

early stationary phase (72 of those are down-regulated in the exponential phase as

well) and 208 genes are up-regulated (25 of those are up-regulated in the exponential

phase as well) (Figure 5.3). The highest number of up-regulated genes belongs to the

transport proteins. The deletion of rpoS gene may affect the properties of the cell

envelope. The level of RpoS influences the enzymes of fatty acid biosynthesis and

phospholipid biosynthesis, enzymes involved in fatty acid degradation, and enzymes

modulating the structure of the peptidoglycan layer [176, 177, 178]. The experimental

results indicate that ∆rpoS mutant is less resistant to ampicilin, which may indicate

that the cell wall is weaker in the presence of this deletion [179].

5.3 RBS modification

The experimental result suggesting that the critical number of MscL channels needed

for survival is lower than 30 was obtained with ∆rpoS strain. In order to avoid po-

tential artifacts introduced by rpoS deletion and to control the MscL expression level

more quantitatively, a more sophisticated method is necessary. To lower the transla-

tion one can change the promoter structure or modify the ribosomal binding site.

A promoter is a region of DNA that initiates transcription of a particular gene.
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Figure 5.3: Classification and number of genes affected by rpoS deletion. Black bars
indicate number of genes affected at the early stationary phase, white bars indicate number
of genes affected at both late exponential and early stationary phase. Results obtained
based on DNA microarray data. (A) Number of genes that were down-regulated by a factor
of < 0.5; (B) Number of genes that were up-regulated by a factor of > 2. Figure adapted
from [176].
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It is located upstream of the gene it controls. The promoter is a specific DNA se-

quence that can be easily recognized by the RNA polymerase. At the same time, the

promoter sequence can be recognized by proteins called transcription factors (acti-

vators and repressors), which influence the expression of a given gene. In bacteria,

the promoter contains two short sequence elements: -10 nucleotides upstream from

the transcription start site (consensus (most frequent residues) sequence TATAAT)

and -35 nucleotides upstream from the transcription start site (consensus sequence

TTGACA). However, these sequences are not found in most of the promoters and,

on average, only three to four of the six base pairs are found. However, in case of the

mscL gene not much is known about its promoter sequence or transcription factors

[180]. The position of the promoter is predicted to be 23 base pairs upstream of the

mscL gene [181].

A ribosomal binding site (RBS) is a sequence on mRNA recognized by the ribo-

some when it binds to mRNA in order to initiate protein translation. It is usually

located about six to seven nucleotides upstream of the start codon and is called the

Shine–Dalgarno (SD) sequence (consensus sequence AGGAGG) [182]. To reduce ex-

pression by modifying the translation efficiency, one can change the Shine–Dalgarno

sequence and/or add a spacer between the RBS and the coding region. In general, ri-

bosome binding sites similar to the Shine–Dalgarno sequence will result in high rates

of translation and sequences very different from the Shine–Dalgarno sequence will

result in low translation rates [183]. The insertion of the spacer between the RBS

and the start codon changes the RBS strength (the binding affinity) by limiting the

accessibility of the RBS to the ribosome. This can be achieved by using a spacer

which, after transcription, will form RNA secondary structure [184]. The translation

rates can be predicted based on the mRNA sequence using RBS calculators [185]

(Figure 5.4).

Through the replacement of the native spacer with poly-A, poly-AC, or poly-

AT spacers of various lengths, one can modulate the translation rate. Based on the

prediction, insertion of AT repeats allows an exploration of the widest range of modu-
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Figure 5.4: Predicted translation rates for MscL after RBS modification. (A) Spacer
modification by embedding mono- ((A)n) or dinucleotide ((AC)n, (AT)n) simple sequence
repeats (SSR), where n is the number of repeats of a single or a pair of nucleotides; (B)
Shine-Dalgarno (SD) sequence modification. The predictions were generated using the RBS
calculator [186].

lated expression levels (Figure 5.4 A). We generated a library of plasmids with various

spacer lengths. We embedded the dinucleotide simple sequence repeats (AT)n, where

n is the number of repeats of a pair of nucleotides, between the native Shine-Dalgarno

sequence and the constitutive promoter of the mscL gene with fluorescent protein fu-

sion (sfGFP). The protein expression is predicted to decrease with increasing spacer

length. However, the degree of the decrease has to be experimentally verified. The

work of Rob Egbert and Eric Klavins [187] found that the influence of the spacer

length on the expression level can agree well with the prediction. However, the rate

at which the translation decreases depends on the composition of nucleotides used to

create the spacer and may be sensitive to the background strain (host). Moreover,

the authors noticed that the stability of the inserted SSRs may vary depending on

the length and type of the spacer. The reported mutation rate is 10−5 – 10−4 inser-

tions/deletions per base pair per generation. The instability of the spacer may be a
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very disadvantageous feature of this method and should be controlled experimentally

for a given set of constructs. However, this potential flaw can be used as a powerful

tool to study the evolution of the system. Since the insertion of the spacer influ-

ences significantly the level of gene expression, the host organism is expected to focus

mutations on this element in order to optimize the performance and enhance the

functionality of the gene of interest. Tandem repeats are known to play an important

role in the occurrence of some diseases (e.g., Huntington disease) and contribute to

the phenotypic variability facilitating organism evolvability [188]. Some bacteria use

these repeats within the reading frame or in the promoter of a given gene(s) to mod-

ulate their interaction with the host by enhancing fitness [189]. Using this strategy

in the case of mechanosensitive channels would allow us to study the evolution of a

given strain depending on the environmental conditions and selection for an optimal

mean number of MS channels expressed. It could also help us answer the question

regarding the amount of selection existing in a given environment, e.g., in a high

osmolarity medium. To correlate the level of expression with the fitness of a given

strain, two previously described methods will be used: counting of the number of

protein copies (chapter 4) and single-cell survivability tests (chapter 3).
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Chapter 6

Hypothesis of an alternative
function of MS channels

6.1 Overexpression of one type of MS channel guar-

antees survival

From the moment of their discovery, mechanosensitive channels were proposed to

provide protection from osmotic shock [92]. The experimental assay demonstrating

their function in cell physiology showed that the presence of MscL or MscS channels,

can provide enough protection against a 0.5 M NaCl shock for the cell to survive at

the level comparable to that of a wild-type [22]. This result suggests that the other

channels contribute very little (if at all) to cell survival and raised a question about the

redundancy of the MS channels, especially after the experimental demonstration that

E. coli possesses seven different channels [101]. The situation got even more intriguing

after the discovery that overexpression of any of the channels in E. coli (even in the

absence of other channels) leads to a very high survival [100, 101] (Figure 6.1).

Not only the variety, but also the number of channels of one type raises some

doubts that osmoprotection is the only function of these channels. The quantitative

counting of the number of MscL channels expressed per cell [116] revealed that there

is at least an order of magnitude more channels than previously estimated (Table

4.1) and it can change depending on the growth conditions. From previous work it

is known that MscL is not the most abundant channel in E. coli [149]. Such a high
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Figure 6.1: Protection of various MscS homologs against osmotic shock. The proteins were
expressed in MJF641 strain (all seven channels deleted) from a plasmid induced by IPTG:
basal expression level (white bars), 0.3 mM IPTG for 30 min (gray bars) and 0.3 mM IPTG
for 2.5h (black bars). Adapted from [101].

abundance of channels is very surprising, especially in comparison to the results of

MD simulations, suggesting that a single MscL channel provides enough protection

[86]. In addition, the survival rate turns out to be weakly dependent on the number

of channels (Figure 5.2), which suggests that there is over-abundance in the type and

number of channels not contributing to a better osmoprotection. All of these facts

suggest that E. coli may not need all of these channels solely for protection against

osmotic shock, and the apparent excess of channels (and their upregulation under

stress conditions) serves other purposes. If this is indeed the case, what other role

could these channels have?
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6.2 Experimental hints at an alternative function

of MS channels

Homologs of MS channels have been identified across all kingdoms of life [12]. The

activities of channels responding to tension were discovered in the membranes of

various cell types in many plant species. It was proposed that they play a role in

sensing gravity, touch, and temperature, as well as controlling the turgor (which is

important for cell growth, movement (e.g., guard cells), structure and shape of cells)

and the localized gradient of Ca2+ ions required for pollen tubes and root hairs growth

[190]. However, the best characterized is the family of 10 MSL channels in Arabidopsis

thaliana (Figure 6.2).

The double deletion mutants, msl2-1; msl3-1, and msl9-1; msl10-1, show clear

phenotypic changes. However, the physiological role of MSL9 and MSL10, localized

in the plasma membrane of root cells, remains unknown [14, 191]. MSL2 and MSL3,

localized in the plastid envelope, control organelle morphology. The double deletion

mutant msl2-1; msl3-1 has enlarged and abnormally shaped leaf epidermal plastids

[13]. These small plastids, in contrast to plastids in leaf mesophyll responsible for

photosynthesis, import energy from the cytoplasm needed for several metabolic re-

actions, e.g., synthesis of amino acids and fatty acids, storage of lipids and pigment

molecules [192]. The presence of this phenotype under normal growth conditions leads

to the conclusion that plastids are under hypoosmotic stress, and MSL2 and MSL3

channels are necessary to release this stress. This phenotype can be suppressed by

growth in high osmolarity conditions or when subjected to hyperosmotic shock [193].

In addition, MSL2 and MSL3 may be components of the chloroplast division machin-

ery [194, 195]. They colocalize with MinE, the protein responsible for restricting the

division site to the middle of the cell, at the poles of plastids. When both MSL2 and

MSL3 are deleted, chloroplasts have multiple Filamentous temperature sensitive Z

(FtsZ) rings. A similar phenotype can be observed in the MJF465 (∆mscL ∆mscS

∆mscK ) E. coli strain treated with cephalexin [194]. Surprisingly, the MSL8 mutant
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Figure 6.2: Phylogenetic tree of the MscS-like (MSL) channels in Arabidopsis thaliana with
predicted topologies. Members of this family can be found in a variety of structures in the
plant: mitochondria (MSL1), chloroplasts (MSL2 and MSL3), plasma membrane (MSL4
- MSL8), and plasma membrane of root cells (MSL9 and MSl10). MTP, mitochondrial
transit sequence; CTP, chloroplast transit sequence. Figure adapted from [190].

showed a significantly higher level or germination when compared to wild-type, and

also many “burst” pollen, suggesting that it may play a role in proper germination

[196]. When tested in Bacillus subtilis, mechanosensitive channels did not show any

significant role in the sporulation or germination of spores [197, 198, 199].

MscL and MscS homologs in freshwater cyanobacterium Synechocystis sp. PCC

6803 also have alternative functions. PamA, a homolog of MscS [200], was proven

experimentally to interact with the PII protein [201]. This protein is known to play
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a role in the coordination of carbon and nitrogen metabolism. In addition, the pamA

deletion mutant is unable to grow in a medium containing glucose. This suggest that

the MscS homolog PamA plays a role in controlling cell metabolism. Comparison of

Ca2+ release between wild-type and mscL deletion mutant revealed that the rate of

calcium efflux is much slower in the mutant and, in contrast to wild-type, temperature

independent [202]. These results suggest that MscL may play a role in Ca2+ home-

ostasis regulation under temperature stress conditions and that it can be activated

by different stress factors (depolarization of the plasma membrane and temperature).

Some of the MscS homologs, in contrast to E. coli non-specific MscS, are believed

to transport specific molecular species. BspA, a MscS homolog in Erwinia chrysan-

themi, is believed to be necessary for the accumulation of glycine betaine. It may

sense the intracellular glycine betaine concentration and the osmolarity of the growth

medium. Mutants with bspA gene deleted grow poorly in high salt media, especially

in the presence of glycine betaine or its analogues. However, there is no experimental

evidence that BspA shows a mechanosensitive channel activity [203]. Another exam-

ple is MscCG protein of Corynebacterium glutamicum. It has been experimentally

tested that this channel mediates glutamate efflux in response to an hypoosmotic

shock or a penicillin treatment. It is hypothesized to play a role in osmoregulation

by controlling the concentration of compatible solutes [204, 205].

There is no experimental proof of MS channels in E. coli having any additional

functions. However, there are indirect data suggesting that they may play a role in

various processes other than osmoprotection. Nichols et al. [206] reported results of a

high-throughput fitness measurement. More than 4000 single gene deletion mutants

were profiled in more than 300 physiologically relevant stresses and drug challenges.

Quantitative growth scores were assigned to each strain under a given condition based

on the growth profile. Mutant strains were grown on agar plates in the presence of

chemical/stress and the size of a colony was measured for every strain under all stress

conditions. This strategy allows the linkage of the deleted gene with a phenotype

and the study of the gene function in a given stress environment. Around 80% of
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the phenotypes had negative score (cells are more sensitive to a given stress or drug

after the deletion of a gene), around 20% were positive (deletion of a gene led to

a higher resistance to a given stimulus). This strategy has more advantages than

assigning gene function only on the basis of homology to known genes. Some of

the genes, despite being homologous to previously studied ones, may have some spe-

cialized functions that can be revealed only under specific circumstances, e.g., only

when the cell is exposed to a particular stress. Moreover, based on the response to a

given set of conditions, one can find a correlation between phenotypes resulting from

deletion of different genes. Such a correlation may indicate a functional connection

between genes.

The search in this database for single MS channels deletion mutants revealed a

few interesting hints concerning potential additional functions these channels may

have in cell physiology. The first surprise comes from the comparison of the reaction

of three different strains (∆mscL, ∆mscS, and ∆ybdG) to a few chosen conditions

(Figure 6.3). If the only function of MS channels in E. coli is protection from os-

motic shock, one would expect them to react in a similar way to all other stresses.

However, this is not the case. Not only do these three mutants react differently to

a given stimulus (e.g., EGTA), but also a given strain reacts in a very different way

to various stresses (e.g., the deletion of the ybdG gene is advantageous in the case of

growth in the presence of EGTA, but is disadvantageous in the case of growth in the

presence of cholate).

The comparison of the reaction of a single MS gene deletion mutant across all

applied stresses also reveals some interesting trends. The deletion of the mscL gene

causes moderate changes in growth. However, one can notice a gentle increase in

the growth rate in the presence of chemicals causing DNA (phenazine methosulfate

(PMS), mitomycin C, and cisplatin) and membrane damage (SDS, EDTA, and bile

salts). As for the decrease in the growth rate in the case of mscL gene deletion, there

is no apparent trend, but, interestingly, the deletion of this gene causes disadvantage

when the cells are grown in the presence of maltose as a carbon source. This result may
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Figure 6.3: Growth profile of strains with mscL, mscS, or ybdG single gene deletion exposed
to various stresses. The positive value indicates the growth advantage for a given condition
gained after the deletion of the gene, the negative value means the growth impairment in a
given condition due to gene deletion. Conditions: EGTA at 0.1 mM, cholate at 2%, maltose
at 0.1%, copper at 2 mM, NaCl at 600 mM, phenazine methosulfate (PMS) at 0.02 mM,
mecillinam at 0.03 µg/ml, and A22 at 0.5 µg/ml. Figure made based on [206].

suggest that MscL channels play a role in carbon metabolism or maltose transport.

The effect of mscS gene deletion is much more noticeable. This strain grows fastest in

the presence of copper chloride, suggesting that in the wild-type cells this metal may

poison the cell by being transported through the MscS channel. Also, the presence of

chemicals disrupting the integrity of the peptidoglycan layer (mecillinam, ampicillin,

tunicamycin, and amoxicillin) seems to be beneficial for the growth of this strain.

The decrease in the growth rate is noticeable in the presence of chemicals interfering

with the protein synthesis (chloramphenicol, clarythromycin, and tetracycline). The

deletion of the ybdG gene does not seem to have a clear advantageous trend, but the

presence of chemicals causing the disruption of the membrane (cholate, cecropin B,

and SDS + EDTA) has a negative impact on the growth of this strain. The presence of
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salt has also a very interesting impact on this strain. Depending on its concentration,

the change in growth can be very different: the presence of 600 mM NaCl is beneficial,

whereas the presence of 450 mM NaCl results in much slower growth.
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Chapter 7

Future directions

7.1 Monitoring channels’ activity in vivo

The activity of MS channels is traditionally characterized in vitro by electrophysio-

logical measurement of the reconstituted protein or giant spheroplasts. These results

provide information on the conductance of the channel, the pressure (which can be

used to calculate the tension) needed to activate a given channel, the amount of time

it spends in an open configuration as a function of applied stimulus, and the poten-

tial inactivation. This method, although very accurate, may not represent accurately

the behavior of mechanosensitive channels in vivo. In case of the reconstituted pro-

tein, the lipid environment is known to influence the gating of the channels [108],

potentially leading to a big measurement uncertainty depending on the composition

difference between E. coli ’s lipid membrane and that used for the reconstitution. In

both cases, the reconstituted protein and giant spheroplasts, the geometry of the

membrane is different than that in a living cell. In addition, the membrane in the

living cell is being pushed against the peptidoglycan layer, which may also modulate

the tension the channels sense. For all of these reasons we designed an experiment

which may allow us to study the channel activity in vivo, in intact cells, with a high

level of accuracy thanks to the merging of a few techniques, with calcium-sensitive

proteins used as an indicator of cell physiological state.
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7.1.1 What are calcium-sensitive proteins?

Fluorescent proteins revolutionized biological and biophysical measurements. They

made it possible to tag the protein of interest and observe its localization as well as

interactions with other structures. They can also be used for studying gene expres-

sion regulation by counting the number of protein/RNA copies in a cell under given

conditions. A whole variety of fluorescent proteins is available for experimental use

nowadays. They differ in the emission spectrum, brightness, maturation time, and

size [207]. One class of special interest is composed of fluorescent proteins used in

visualizing the signaling activity in a cell. One example of such proteins are calcium-

sensitive proteins. These proteins change the intensity of their fluorescence in response

to variations in the calcium ion (Ca2+) concentration. Zhao et al. [208] engineered

a whole family of these proteins (blue, green, red, and ratiometric version, which is

excited and emits at different wavelengths depending on whether it has Ca2+ ions

bound). These proteins are engineered using a few major building blocks: circularly

permuted (cp) GFP fused to the calmodulin-binding region of myosin light chain ki-

nase (M13) at the N terminus, and a calmodulin (CaM) at the C terminus (Figure

7.1). Binding of the Ca2+ ion by CaM causes conformational change and interaction

between M13 and CaM, leading to an increase in fluorescence signal.

7.1.2 Preliminary results

The number of channels expressed in the cell is much higher than the the critical num-

ber needed for survival (chapter 5). As reported earlier [120], not all of the channels

have to be activated during the pressure (tension) change and this number depends

on the kinetics and amplitude of the stimulus. These facts raise one of the most

intriguing questions about the role of MS channels in cell physiology: how many and

which types of channels open in response to physiologically relevant osmotic shock?

We believe that the experiment proposed here can be of great help in addressing this

question.

Cells expressing fluorescently tagged mechanosensitive channels will be imaged in



94

A B

Figure 7.1: A schematic representation of the crystal structure of calcium-sensitive fluo-
rescent protein in “dark” (A) and “bright” (B) state. (A) In the absence of calcium the
protein is in the “dark” state; (B) binding Ca2+ ions causes CaM (acting as a claw) to bind
to M13 (acting as a handle), leading to closure of the structure and increase in fluorescence.
CaM: calmodulin, M13: CaM binding region of myosin light chain kinase. Figure adapted
from [209].

the flow cell described previously (chapter 3). The fluorescent tag allows us to quanti-

tatively count the number of copies of a given type of channel on a single-cell basis, as

discussed in [116] and chapter 4. Performing the experiment in the flow cell allows us

to quantitatively calibrate the rate of medium exchange (chapter 3) and measure cell

response to varying conditions. Longer imaging (2 – 3 hours) provides information

on the number of cells which survived the shock. This can be later correlated with

the number of channels which opened during the medium exchange. The presence

of a calcium-sensitive fluorescent protein and the use of media with varying calcium

concentration allows us to measure the amount of transport that occurs under a given

stimulus.

As mentioned earlier, the intensity of the fluorescent signal of calcium-sensitive

proteins depends on the calcium ion concentration. In order to measure the amount of

mass transfer through the channels during osmotic challenge, one has to correlate the

fluorescent protein brightness with the concentration of calcium inside the cell. Such
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a calibration can be performed quantitatively with calcium titration buffers [210].

These buffers are prepared by mixing solutions containing EGTA and Ca2+ ions in

various proportions. As a result, EGTA chelates Ca2+ ions and the concentration of

free Ca2+ is calculated based on the dissociation of the complex. The dissociation

constant for the EGTA-Ca2+ complex is in the nM to µM range, which is exactly

the physiological range of concentration. The concentration of calcium in the com-

plex medium was measured to be 15 – 30 µM [211]. The total and the free calcium

concentration in E. coli was measured to be 0.013 – 1.390 mM and 0.094 – 0.12 µM,

respectively [212]. The calibration curve correlating the fluorescence intensity with

the cytosolic calcium concentration can be obtained by measuring the fluorescence

signal intensity of the protein in the cell cytoplasm as a function of free Ca2+ con-

centration of the external buffer (Figure 7.2). The fluorescence intensity loss is an

effect of the activity of the efflux pump system and can be inhibited by, e.g., carbonyl

cyanide m-chlorophenylhydrazone [213].

In summary, knowing the number of each type of MS channels expressed by the

strain used in the experiment and its conductance C from electrophysiological mea-

surement [101], as well as the amount of mass transport during osmotic shock (mea-

sured as the change in the cytosolic Ca2+ concentration ∆[Ca2+]), one can estimate

the number of open channels Nopen as:

Nopen =
∆[Ca2+]∑
Nx × Cx

, (7.1)

where x denotes the type of MS channels present in the strain used for the measure-

ment. Performing the measurement for strains expressing various combinations of

mechanosensitive channels one can count the number of channels, measure when they

opened for a given osmotic challenge, and correlate this number with the survival

rate.
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Figure 7.2: Calibration of the response of calcium-sensitive proteins to variations in cal-
cium concentration. Calcium-sensitive proteins inside the permeabilized cells respond to
calcium concentration changes (between 0 and 390 nM) by increasing and decreasing the
fluorescence signal intensity. The images show the relative fluorescence signal intensities for
a cell exposed to cycling changes in Ca2+ ion concentration (raw data). Scale bar: 2 µm.

7.2 Volume change measurement

As mentioned earlier, mechanosensitive channels react to changes of the tension in the

membrane. Bacteria experience such changes when the osmotic pressure difference

between the outside and inside of the cell is fluctuating. The most popular experi-

mental method to study the physiological function of MS channels is the bulk osmotic

shock assay. In this assay one studies the osmotic shock survival rate on the basis of

the number of cells growing after exposure to osmotic challenge (Figure 2.10).

This method is not very quantitative. It is better suited to study the conse-

quences of the lack of channels rather than their impact on the cell response to a

given osmotic shock and the time scale of the reaction. The necessity to plate the

cell solution after the shock may introduce a significant error in the measurement
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and it certainly masks any stochastic effects which would only be revealed at the

single-cell level. The osmolarity difference between the shock medium and the one

the plate was prepared from may introduce an additional shock for the cell. On the

other hand, if the plate and the shock medium are of the same osmolarity, the results

are hard to compare between the shocked sample (grown in a 0.5 M NaCl medium,

diluted into 0 M NaCl medium) and the control sample (grown and diluted in a 0.5 M

NaCl medium), because the plates of different osmolarities induce a difference in the

growth rate of the cells (thus, the recovery time has to be properly adjusted). The

number of cells which survived the shock may seem higher due to a possible cryptic

growth phenomenon. When a portion of the cells lyses and their content is released,

the osmolarity is changed locally, which may influence the chance of survival for the

other cells. One can minimize the impact of this phenomenon by a longer incubation

period in the shock medium before plating. All of these flaws in the current technique

motivate the development of an assay in which the reaction of the cells is directly

observed and the osmolarity of the medium is well-controlled.

7.2.1 Experimental design

In order to measure the volume change during osmotic challenge, a new single-cell

assay was developed as an alternative to the bulk osmotic shock assay. The cells,

grown in a high osmolarity medium, are loaded into a flow chamber (described earlier

in chapter 3) and immobilized on the cover slip using charged polymer (polyethylene

imine, PEI). A well-controlled flow of medium of desired osmolarity (lower salt content

in the case of a hypoosmotic shock) exposes the cells in the chamber to different

osmotic challenges. The simultaneous recording of cell morphology makes it possible

to observe cell swelling as a function of time. This video microscopy data allows for

the calculation of volume change during the osmotic shock. The cell volume at a

given time point is calculated based on the major and minor axis lengths, area, and

perimeter measurements of 2D images (Figure 7.3).

The higher throughput and more complicated (than a single step) sequence of
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Figure 7.3: The comparison of volume and area change as a function of time for two single
cells. The inserts illustrate phase images at discrete time points with an overlayed perimeter
measured at t = 0. The figure illustrates the importance of a precise image analysis for the
interpretation of experimental data. The comparison between the plotted volume change
and the area change (inserts) for two single cells illustrates how different the outcome of
the experiment may be depending on the data analysis strategy. A 15% volume change
indicates an approximately 5% change in one dimension. The major axis of the cell is of
the order of 20 pixels, which means that a 5% change is equivalent to 1 pixel. The plotted
volume is calculated on the basis of the area, perimeter, major axis length, and minor axis
length measurements.

osmolarity changes can be experimentally explored when using an alternative design

(Figure 7.4). The chip’s architecture allows for a very quick medium exchange in the

recording chamber, and, with a computer program controlling the opening and closing

of the valves, the exposing of the cell to a wide variety of osmolarities for very short

periods of time. Multiple channels and program-controlled flow create a possibility

of exposing cells to many different osmotic conditions. The main advantage of this

method is the possibility of studying single-cell behavior during an osmotic shock in

real time. This design is perfect for addressing questions like “what is the role of MS

channels in cell physiology?” and “what is the cell-to-cell response variability upon

osmotic shock?”.
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Figure 7.4: Microfluidic chip design showing the main channels (red) and valves (green).
The cross structures serve for alignment purposes. A single chip contains four viewing
chambers (red squares), each of which is connected with the main channel (the longest red
channel) and has a separate line for loading the cells (red channels are connected with the
viewing chamber horizontally). Multiple loading lines and valves (left side of the design)
allow to perform an osmotic shock with up to five different shock media.

The quantitative measurements of cell volume change as a function of time provide

information on the dynamics of cell reaction and the recovery time after the shock.

These experiments examine the significance of MS channels in cell physiology when

exposed to various and changing stimuli. The comparison of the responses of different

strains to an identical osmotic shock makes it possible to investigate the role of various

types of MS proteins and measure cell active (opening of MS channels) and passive

(flow of water through the membrane) response. The observation of the single-cell

reaction to the environmental insult creates the opportunity to compare cell-to-cell

variability in a genetically identical population, as well as the differences between

various strains. Exposure to changing osmotic conditions provides information on

the role and importance of heterogeneity for cell survival. The possibility of growing

cells in this experimental setup enables the performance of an observation of the

cell recovery time after an osmotic shock. Additionally, the possibility of having a

constant flow of the shock medium guarantees that osmolarity is not changed locally.
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7.2.2 Preliminary results

Figure 7.5: Comparison of the volume change between two strains exposed to the same
osmotic downshock. Cells were grown in a 0.3 M NaCl medium and downshocked into a 0
M medium in “steps” (every 0.1 M NaCl). Comparison between the MJF612 (mscL- mscS-
mscK- ybdG-) and wild-type E. coli.

As shown in Figure 7.5, wild-type (WT) E. coli and the MJF612 mutant ∆mscL

∆mscS ∆mscK ∆ybdG do not respond to an identical osmotic stimulus in the same

way. The increase in volume for the MJF612 strain is larger than the increase for

the WT E. coli. The character of these changes is also different. WT cells maintain

almost constant volume between the increments caused by the osmolarity change. In

the case of MJF612 cells the volume does not remain constant; each time it gradually

decreases. This comparison may provide information on the cell’s “active” response

(opening of mechanosensitive channels in WT E. coli) and “passive” response (water

permeation through the membrane in the ∆mscL ∆mscS ∆mscK ∆ybdG mutant).

As shown in Table 7.1, the final volume may differ depending on the MS channels

present in the cell and the cell history (how the shock was performed).

Figure 7.6 shows the volume change as a function of time for four single wild-type



101

Strain Single shock Shock “in steps”

WT 3% 17%
MJF429 (mscS- mscK-) - 3% 12%

MJF465 (mscL- mscS- mscK-) — 13%
MJF612 (mscL- mscS- mscK- ybdG-) 16% 19%

Table 7.1: Final volume for four different E. coli strains (wild-type, MJF429, MJF465,
and MJF612) after exposure to different osmotic shocks (single and multiple steps).

Figure 7.6: Volume change of four wild-type single cells during the osmotic shock at the
single-cell level. Cells were grown in a 0.3 M NaCl medium and downshocked into a 0 M
medium. Arrows indicate the final volume reached by every cell.

cells under a severe osmotic shock (0.3 M to 0 M medium). The results for single cells

differ from each other indicating that genetically identical cells show various reactions

to the same stimulus.

It has been shown [214] that when the survivors of a long period of stress are recul-

tured, they exhibit an identical distribution of physiological variants as the members

of the culture they were derived from. This phenomenon indicates that the source

of heterogeneity is non-genetic, it tells us how important it is for cell survival when

encountering an inhospitable niche, and it illustrates how individual cells within iso-

genic populations exhibit differential sensitivity to stress. This phenomenon could be
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predicted on the basis of a viability assay, but only experiments at the single-cell level

show heterogeneity of the physiological state of cells. The non-genetic heterogeneity

could be fundamental for the survival of organisms. Assuming that the MS chan-

nels act as safety valves modulating the tension in the membrane (and that this is

their only function), a direct correlation between the variation in the relative volume

change and the level of expression of MscL protein should be observed. In such a case,

the distributions of these two parameters should have the same character (assuming

that the same percentage of the total number of channels gets activated in each cell).

The source of heterogeneity may arise from a variation in the number of MS chan-

nels or other proteins per cell. If one assumes that the expression of genes coding

mechanosensitive channels is purely stochastic, the distribution of proteins among the

cells in a given population is not homogeneous. The studies of other stress protection

systems revealed that the expression regulation has multiple and overlapping control

systems [214]. Designing a tighter control over these mechanisms would eliminate the

problem of overlapping paths, but, on the other hand, the cell would have to sacrifice

its ability to adapt to different conditions.

The principal cell variable in exponential phase cultures is the cell cycle stage,

which is characterized by fluctuations in the transcriptional activity and cell volume.

The cell’s “age” may also play a role. E. coli divides symmetrically, which means that

every daughter cell inherits one pole from the mother cell (old pole) and one formed

during the division process (new pole). As was shown in [215], younger cells (the ones

with relatively new poles) grow faster and show higher stress resistance compared to

the old ones (the ones with an old pole, which was formed many divisions before).

7.2.3 Possible variations

It is known that E. coli changes the fatty-acid composition of membrane lipids as a

function of the temperature of growth [216], which impacts the lipid bilayer’s fluidity.

This phenomenon is known as “homeoviscous adaptation”. Los and Murata [217] re-
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ported that hyperosmotic stress might have an impact on membrane fluidity similar

in its consequences to low-temperature stress. The dependence of membrane fluidity

on the degree of unsaturation of fatty acids is a well-known phenomenon, so one may

expect that the rigidity of the membrane in hyperosmotically shocked cells is a result

of desaturation of fatty acids, as was shown for Bacillus subtilis [217]. When the

lipid membranes of the cultures grown in LB medium with and without a 1.5 M NaCl

were compared, the difference in viscosity and cardiolipin (CL) content was apparent

[218]. Interestingly, membrane fluidizers cause very similar effects to hyperosmotic

stimulation [219]. Morein et al. [220] reported that the addition of a 0.1 M NaCl to

a lipid extract from an inner and outer membrane of E. coli grown at 37◦C caused a

15 – 20◦C decrease in the temperature at which the phase transition occurred.

The facts listed above indicate that the salt content in the growth medium may

have an impact on membrane fluidity and, as a consequence, on mechanosensitive

channels. The degree of impact of salt on functioning of MS channels may be tested

by a series of volume change measurements performed on cells grown in media of

different salt concentrations and exposed to an identical osmotic shock (e.g., osmotic

shock from 0.5 M to 0.2 M and from 0.3 M to 0 M). The hypothesis of salt indirect

impact on MS channels could also be proven by showing that the “temperature effect”

may be reversed by the “salt effect”.

The most common solute used to change the osmolarity of the medium is NaCl.

However, it was reported [221] that salt may have an impact on peptidoglycan con-

traction. This appeared to be the effect of the electrostatic interaction with the

peptidoglycan rather than cell volume change due to the osmotic effect. Isolated pep-

tidoglycan showed a similar behavior: upon addition of water it released protons and,

as a result, the structure shrank (however, intact cells and extracted peptidoglycan

do not show sensitivity to salt in well-buffered media). Interestingly, this effect was

not observed when sucrose was used instead of salt. The salt content may also have

an impact on the peptidoglycan geometry: in high-salt media cells are smaller and

shorter compared to the ones grown in a low-salt medium.
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The presence of PEG (polyethylene glycol) in the growth medium (used to change

the osmolarity of the medium) caused very severe damage in the cells during the

osmotic shock. One could notice the presence of a few inclusion bodies in the cyto-

plasm, which might have been aggregates of denaturated protein (Figure 7.7). The

experiments on cells grown in media of the same osmolarity but in the presence of

various solutes would show the role and importance of the peptidoglycan mesh in cell

protection from the osmotic shock and any other potential changes in cell physiology

due to high concentration of a given solute.

Figure 7.7: Inclusion bodies localization in E. coli cells. As reported in [222], such aggre-
gates may appear in the cell growing in the non-stressing environment as natural transcrip-
tion and translation errors, or in protein overproducing mutants, and as a result of stress
conditions. The induced inclusion bodies were found to be located at the cellular poles, in
mid- or quarter-cell positions. The results suggest that the presence of the aggregate caused
a reduced growth rate. Hence, inclusion bodies appear to act as an intracellular sink for
abnormal proteins.

The majority of experiments are done on cells in the exponential phase of growth.

Such a solution is believed to be optimal since all cells should be in the same physi-

ological state and their reaction is expected to be identical. However, Makinoshima

et al. [122] reported that E. coli culture in an exponential phase of growth may be

separated into at least five discrete subpopulations after the Percoll gradient centrifu-

gation (in stationary phase even ten separate subpopulations may be distinguished).

Bacterial populations, even those in an exponential phase of growth, show some het-

erogeneity.
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The physiology of a bacterial cell changes upon transition into a stationary phase.

The two most meaningful parameters (from the osmotic shock survival point of view)

are structural modification of the peptidoglycan and changes in gene expression. It

was reported that murein from cells in a stationary phase of growth is more cross-

linked compared to that from an exponential phase. However, the length of the

glycan chains was longer in the peptidoglycan from the cells in the exponential phase

of growth, compared to that from cells in a stationary phase [223].

All the changes described above may modify the cell response to a given stress.

The results of experiments performed on cells in an exponential phase of growth

separated in the Percoll gradient centrifugation may indicate the importance of the

overall cell density on survival of osmotic shock. If the variation in cell density (or

size) is the main source of heterogeneity, separation of cell population in the Percoll

gradient and then exposure of each subpopulation to an identical osmotic shock is

expected to result in a much lower cell-to-cell variation among the cells from a given

subpopulation.

7.3 High resolution imaging: cryo-EM

High resolution imaging is a very powerful tool. One such technique, cryo-electron

microscopy (cryo-EM), became very popular for studying the detailed structure of

biological specimens. The biggest advantage of this method is that the specimen does

not have to be stained, fluorescently labeled or fixed in any way, which avoids potential

conformational changes. The sample is prepared by flash-freezing, which guarantees

it is imaged in its physiological environment and its integrity is not perturbed.

All layers of the Gram-negative cell envelope (inner membrane, peptidoglycan

layer, and the outer membrane) have been studied extensively. However, the imaging

of these structures separately is a great challenge due to the bacterial size. Cryo-EM

is a method that overcomes this limitation.

The turgor pressure presses the cytoplasmic membrane against the peptidoglycan
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layer. What happens when a bacterium experiences a sudden drop or increase in

osmotic pressure and water is being transferred across the cell envelope? What is

the reaction of these three layers? To answer these questions we imaged wild-type

MG1655 cells exposed to a 0.5 M NaCl change in the external osmolarity (Figure 7.8).

These cells were grown to exponential phase in M9 minimal medium (cells exposed

to hyperosmotic shock and unshocked cells) or in M9 minimal medium supplemented

with 0.5 M NaCl (cells exposed to hypoosmotic shock). Next, they were pelleted

at 37◦C and resuspended to a final OD600 of 0.6 in prewarmed M9 minimal medium

(cells exposed to a hypoosmotic shock and unshocked cells) or in M9 minimal medium

supplemented with 0.5 M NaCl (cells exposed to hyperosmotic shock). All samples

were frozen immediately after resuspension.

Osmotically unchallenged cells (Figure 7.8A) have a smooth cell envelope with a

regular-in-size periplasmic space. All three layers of the cell envelope are close to each

other and no sign of disruption or irregularity is visible. The cytoplasm is dense, but

homogeneously spread across the whole cell. The morphology of the cell envelope of

cells exposed to hyperosmotic shock is very different (Figure 7.8B). The cytoplasmic

membrane is detached from the peptidoglycan layer and the inner membrane. The

cytoplasmic material is inhomogeneously distributed in the cell with characteristic

plasmolysis spaces along the cell circumference, especially enlarged at the polar re-

gion. The inner membrane is irregular in shape. Small membrane vesicles can be

observed near the cytoplasmic membrane (especially at the plasmolysis spaces); some

of them are detached, the others are attached to the inner membrane. These vesicles

in osmotically shocked cells have been observed previously [224, 225]. Their presence

was justified by a small compressibility of the membrane. When cells are exposed to

an increase in osmolarity, water rushes into the external medium and the cytoplasmic

membrane is no longer under turgor pressure. Due to small compressibility its sur-

face is deformed with many invaginations. This extra membrane area is believed to

dissipate in the form of membrane vesicles. A similar phenomenon was observed in

cholesterol-free giant lipid vesicles [226]. The reversible shape transition and budding

was observed in lipid vesicles as the hydrostatic pressure was released. The formation
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A

B

C

Figure 7.8: MG1655 (wild-type) cells imaged with cryo-electron microscopy. Cells were
grown to exponential phase in M9 minimal medium and imaged immediately after medium
exchange. (A) Cells not exposed to osmotic challenge; (B) Cells exposed to 0.5 M NaCl
hyperosmotic shock; (C) cells exposed to 0.5 M NaCl hypoosmotic shock. Imaging by
Morgan Beeby.
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of these membrane vesicles was proposed to contribute to the cell lysis during rehy-

dration [227]. Since the area of the cytoplasmic membrane decreases due to vesicle

formation, it cannot recover to its initial volume during the fast rehydration and the

cell membrane ruptures. Surprisingly, the cells exposed to hypoosmotic shock (Fig-

ure 7.8C) also show some inner membrane irregularities, smaller than the vesicles in

hyperosmotically challenged cells, but also concentrated mainly at the poles. To our

knowledge, such a morphological feature in cells exposed to hypoosmotic shock has

not been previously reported.

We also employed cryo-EM microscopy to evaluate the periplasmic space width

after exposure to osmotic challenge (Figure 7.9). MG1655 (wild-type) and MJF612

(∆mscL ∆mscS ∆mscK ∆ybdG) strains were grown in a 0.3 M NaCl NC medium

to exponential phase. They were pelleted by centrifugation and resuspended in a 0

M NaCl NC medium to a final OD600 of 0.6. Samples were frozen immediately after

resuspension.

The width of the periplasmic space of the imaged strains was measured at the

pole and in the middle of the cell using the program ImageJ. The measurement was

performed for 53 MG1655 (wild-type) cells and 37 MJF612 cells. Two histograms

were made for each strain, one for the distribution of the widths measured at the

pole, the second one for the distribution of “normalized” widths (the width measured

at the pole divided by the width measured in the middle of the cell). The comparison

of the polar periplasmic width between the wild-type (Figure 7.9A) and the MS

channel deletion mutant (Figure 7.9C) shows that it is roughly 25% smaller for the

MJF612 strain. This discrepancy may be explained by the fact that the MJF612

strain lacks four mechanosensitive channels and, thus, cannot release the osmotic

pressure build-up due to osmotic shock. As a result, the turgor pressure in the

mutant is expected to be higher compared to the wild-type strain, and as a result

the inner membrane is being pushed more against peptidoglycan layer. To avoid a

potential bias due to the measurement in the polar region, we normalized the values

obtained by the periplasmic width in the middle of the cell. The mean value for the
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Figure 7.9: Width of the periplasmic space after exposure to a 0.3 M NaCl osmotic shock.
(A) Width of the periplasmic space at the polar region, MG1655 strain (wild type); (B)
Width of the periplasmic space at the polar region normalized by the width of the periplas-
mic space in the middle of the cell, MG1655 strain; (C) Width of the periplasmic space
at the polar region, MJF612 strain (∆mscL ∆mscS ∆mscK ∆ybdG); (D) Width of the
periplasmic space at the polar region normalized by the width of the periplasmic space in
the middle of the cell, MJF612 strain. Images used in this analysis collected by Alasdair
McDowall.

mutant (Figure 7.9D) was roughly 20% smaller compared to the value for the wild-

type strain (Figure 7.9B). The similar difference between these two strains for both

measurements (normalized and not normalized) suggests that the inner membrane of

the MJF612 strain is under higher turgor pressure and, as a result, the width of the

periplasmic space is homogeneously smaller along the cell perimeter.
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Chapter 8

Conclusions

The isolation of Escherichia coli by Theodor Escherich in 1885 revolutionized many

fields of study. The ease of culturing and a relatively short doubling-time very quickly

brought this organism to scientific attention, a position it has maintained until this

day. Over the years, we have gained a deep understanding of this bacterium, and it

has served as one of the origins of many discoveries in modern biology. Thanks to the

availability of molecular biology tools, it became an ideal model for studies on various

aspects of cell physiology, one of them being the reaction to changes in the osmolarity

of the surrounding environment. It is now apparent that mechanosensitive channels

are crucial for the survival of osmotic challenge. However, the precise understanding

of their function in vivo and their role in single-cell physiology still requires much

investigation. In this thesis we present an alternative to previously used methods for

studying the molecular basis of mechanosensation in bacteria.

One of the major discoveries presented in this work is that the survival of various

mechanosensitive channel deletion mutants depends strongly on the rate of medium

exchange. Our systematic study of the fate of individual cells after an osmotic chal-

lenge with different rates revealed a potential explanation for the existence of seven

different types of mechanosensitive channels in E. coli. We have also found that some

of them may play a larger role than previously assumed. We argue that using just a

standard plating assay may be misleading for the holistic description of the function of

these channels, and that both quantitative regulation of the rate of medium exchange

as well as direct single-cell observation of the morphology are necessary for the fully
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quantitative description of the functioning of these channels in vivo. We have also

described morphologically distinct types of injuries as well as the time distribution of

cell death due to osmotic change in the medium. These results should be particularly

important for further studies on the contribution of the mechanical properties of the

cell envelope on cell resistance to rupture.

We have additionally performed single-cell census of MscL (Mechanosensitive

channel of Large conductance) channels as a function of growth conditions. The

comparison between our results and those previously reported revealed a large discrep-

ancy, which can be explained as the result of the choice of the measurement method:

electrophysiology measures only active channels, whereas quantitative Western blots

in combination with fluorescence microscopy measure all MscL proteins expressed in

the cell. The comparison of the distribution of the MscL expression levels revealed

that they are subject to large cell-to-cell variability exhibiting strong correlation with

the presence of stress factors (phase of growth, medium, and osmolarity). This abun-

dance mystery led us to think about the minimal number of channels needed for

survival. Using a strain with reduced level of MscL channels expressed, we have

shown that the number of channels needed for survival is lower than the basally ex-

pressed. A key component that must be used in order to fully understand the relation

between the number of expressed channels and the protection of the cell against os-

motic shock is the quantitative regulation of the MscL protein expression through the

RBS modification.

Finally, we have also discussed a possible new approach to studing the activity

of mechanosensitive channels in vivo, which involves the use of a calcium-sensitive

protein and a volume change measurement. The combination of our single-cell assay

with a well-controlled rate of medium exchange and quantitative measurement of the

number of expressed proteins is ideally suited to determine the amount of transport

occurring through these channels. Our preliminary results illustrate the accessibility

of both these methods. An equally interesting issue is the variation in the volume of

the periplasmic space and the observation of the morphology of the cell envelope lay-
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ers. We present preliminary data obtained with a high resolution cryo-EM imaging.

We hope that the results presented in this thesis, as well as our discussion on the

possible alternative functions of mechanosensitive channels, will inspire a new way of

thinking about mechanosensation in bacteria. We believe that a deeper understand-

ing of the relation between these channels and the other structures in the cell will

result in many more surprising discoveries.
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Appendix A

Modified protocol for the plating
assay

The original protocol was written by Susan Black. The version presented here contains

minor modifications and comments.

• Inoculate 2 mL of LB (5g/L NaCl) in a round-bottom 14 mL culture tube with

a single colony of the desired strain. Using the Miller variant of LB (10g/L

NaCl) throughout the assay will result in slightly lower (∼ 10%) cell survival.

• The next morning prewarm plates and media, and prepare all the aliquots

needed for the subsequent steps in the protocol.

• Measure OD600 of the overnight culture and dilute to OD600 0.05 into 10 mL of

prewarmed LB in a 50 mL conical tube. Leave the cap loose and secure it with

a piece of lab tape. Incubate with shaking at 37◦C. If the assay is performed for

more than one strain, prepare dilutions every 30 minutes. Diluting all strains

at the same time will result in some of them growing above the desired OD600,

as the various MS deletion mutants have slightly different doubling times.

• When the culture reaches OD600 0.3 (after about 2 hours) dilute it 1:10 into a 10

mL prewarmed LB supplemented with 0.5 M NaCl and incubate with shaking

at 37◦C.

• Monitor OD600 of the culture. Using OD650 for the optical density measurement
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will result in a slightly higher number of cells compared with the measurement

using OD600.

• When the culture reaches OD600 0.2 – 0.3 (preferably OD600 0.25) perform the

osmotic shock (the cells are at the desired OD600 after about an hour after the

dilution). Using cells at OD600 lower than 0.3 is critical for the consistency of

the assay [228].

• To osmotically challenge the cells, dilute 0.5 mL of high salt culture into 9.5

mL of prewarmed LB without additional salt (shock sample) and 9.5 mL of

prewarmed LB supplemented with 0.5 M NaCl (control). Cells should be added

into the center of the medium volume. Layering them on top of the medium

will result in a higher survival. The pipette used when making these dilutions

will also affect final survival. The highest survival rate can obtained by using

serological pipette and adding cells slowly to the medium. A lower survival

rate will be obtained when using 1 mL regular pipette and adding cells quickly

into the medium. These dilutions are made in 50 mL conical tubes. After the

addition of cells make sure to mix the content of the tube.

• Incubate for 10 minutes at 37◦C. No difference was noticed for static incubation

versus incubation with shaking.

• After the incubation, serially dilute cells 1:10 to a final dilution 1 : 104 in media

of the same osmolarity (LB supplemented with 0.5 M NaCl for the control and

LB without addition of NaCl for the shock sample). These dilutions are made

by adding 50 µL or cell dilution into 450 µL of previously aliquoted medium

in the 1.7 mL Eppendorf tube and mixed by gentle vortexing. Preparing these

dilutions in a 37◦C room will result in higher survival compared to the dilutions

prepared at room temperature.

• Plate 5 µL of the original cell dilution and all the subsequent dilutions in five

repetitions on agar plate. For the shock sample use plates made of regular LB
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(no additional salt), for the control sample use plates made of LB supplemented

with 0.5 M NaCl. Let the plates dry.

• Incubate the plates for a few hours. The counting of the colonies should be

done when they are barely visible with a naked eye. Use a microscope with

4x magnification to find a row which gives 20 – 30 colonies and count them.

Counting colonies early will result in a better consistency of the assay, as they

tend to merge when getting bigger.
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Appendix B

Flow cell assembly

Materials:

• Cole-Parmer tygon microbore tubing, ID 0.02 in, OD 0.06 in

• Corning glass microslides, 3” × 1”, plain

• coverslips, VWR 22 x 50 mm, No. 1 1/2

• double sided sticky tape, Grace Bio-Labs Secure-Seal Adhesive, 0.1 mm thick,

precut, with a T-shape channel cut out

• 5-minute epoxy

• plated diamond flat-tip drill bit, CRLaurence, 1.50 mm

• razor blade

• blunt needles, Warner Instruments

• valves, Cole-Parmer, stopcock 1 way male lock

• syringes, BD

• syringe pump, New Era Pump System, NE-1000

Assembly:

• Using a diamond-tipped drill bit, drill three holes in a stack of glass slides

immersed in water (Figure B.1A).
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Figure B.1: Schematic picture showing how to assemble a flow cell. (A) Top view of a glass
slide with drilled holes; (B) side view of a slide with the tubing pushed through the holes
and secured with epoxy; (C) side view of a slide with the spare tubing cut on the inner side
of the slide; (D) Top view of a slide (inner side of the chamber) with a double sided sticky
tape attached; (E) Side view of an assembled flow cell.

• Clean drilled slides and coverslips by 30 minutes sonication in 1 M KOH,

ethanol, and MilliQ water. Dry them by heating on a hot plate.

• Cut (at an angle) two 15.5 cm long pieces of tubing for the input and one 40.5

cm long piece of tubing for the output.
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• Push about 0.5 cm of the tubing through the drilled holes and secure with 5-

minute epoxy on external side of the flow cell (side where the longer piece of

tubing is) (Figure B.1B).

• Let epoxy dry.

• When the epoxy has dried, cut off the 0.5 cm piece of tubing using a razor blade

(Figure B.1C).

• Remove one side of the backing from the double-sided tape and carefully attach

it on the inner side of the slide. Make sure it does not cover input or output

ports (Figure B.1D). Using a pipette tip or the bottom of the eppendorf tube,

make sure the tape sticks well to the glass.

• Remove the other backing from the tape and seal the chamber with cleaned and

dried coverslip. Once again, make sure that the tape sticks well to the coverslip

(Figure B.1E).

• As an additional step you can melt the tape by heating it on a hot plate for less

than a minute.

• Prime the flow cell with water.

• Connect the output of the tubing through the blunt needle to the syringe

mounted on the syringe pump.

• Flow PEI solution through the chamber, wash the excess with water.

• Connect the inputs of the chamber to syringes containing desired media through

blunt needles attached to the valves.

• Prime the input ports with desired medium by flushing it through the chamber.



120

Appendix C

MLG910 strain: chromosomal
integration strategy

Figure C.1: The details of chromosomal integration strategy. (A) MscL-sfGFP fusion pro-

tein design and sequence. The single letter amino acid sequence for E. coli MscL, the linker,

and sfGFP are colored in brown, pink, and (fluorescent) green, respectively; (B) Sequences

of 23.01 Forward Primer and 23.01R Reverse Primer used for integration; (C) Auxiliary

plasmid pZS4*-em7-galK. 4* denotes spectinomycin resistance gene, em7 is a synthetic

prokaryotic promoter, and galK is the galactokinase coding gene; (D) Native MscL coding

region in E. coli ; (E) 4*-em7-galK cassette from pZS4*-em7-galK plasmid inserted into

MscL coding region by recombineering with lambda Red-mediated homologous recombina-

tion [229]; (F) MscL-sfGFP fusion inserted into MscL coding region by recombineering with

lambda Red-mediated homologous recombination [229]. The gene is under control of the

native MscL promoter. The resulting colonies were screened by a negative selection scheme

(growth on agar plates containing 2-Deoxy-D-galactose) to avoid introducing an antibiotic

resistance marker in the fusion construct. To verify successful integration, multiple colonies

were picked for single colony PCR amplification of the MscL region. The mass of the desired

fragment was confirmed by agarose gel electrophoresis. The PCR fragments were purified

and sent for DNA sequencing (Laragen) for final verification [116].
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4*-em7-galK insert

galK

native E. coli sequence

native E. coli sequence23.01 Forward Primer

23.01R Reverse Primer

em7specR

mscL coding region (410bp)

native E. coli sequence

native E. coli sequence

23.01 homology region

23.01R homology region

mscL-sfGFP fusion 1155bp

mscL coding regionnative E. coli sequence native E. coli sequencesfGFP

pZS4*-em7-galK
4992 bp

specR galK

23.01R homology region

23.01 homology region

em7

SC101 Origin

AAGAAAGTAAATCACTTTTTTACCACTGGTCTTCTGCTTTCAGGCGCTTGACTAGCAACACCAGAACAGCC

GGCTTAACATTTGTTAGACTTATGGTTGTCGGCTTCATAGGGAGAATAACGGCTAATGCACCCAGTAAGG

23.01R Reverse Primer

23.01 Forward Primer

Region homologous to insertRegion homologous to E. coli

MSIIKEFREFAMRGNVVDLAVGVIIGAAFGKIVSSLVADIIMPPLGLLIGGIDFKQFAVTLRDAQGDIPAVVMHYGVFIQNVFDFLIVAF
AIFMAIKLINKLNRKKEEPAAAPAPTKEEVLLTEIRDLLKEQNNRSSASGENAARGHLSKGEELFTGVVPILVELDGDVNGHKFSVR
GEGEGDATNGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKF
EGDTLVNRIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHY
LSTQSVLSKDPNEKRDHMVLLEFVTAAGITHGMDELYK 

A

F

E

D

C

B
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Appendix D

Gamma fitting parameters

MLG910

media OD600 # of cells Mean count Fano factor a b

LB-Miller 0.33 2503 340 17.6408611 6.7152 50.6649

LB-Miller 0.49 2556 293 68.98253 6.1215 47.8332

LB-Miller 1.08 788 330 43.49771 9.3501 35.3103

LB-Miller 1.27 1555 320 42.77948 8.8456 36.1941

LB-Miller 1.74 6165 472 92.64373 6.2285 75.8225

M9+glucose 0.3 3084 466 78.78777 7.1114 65.5902

M9+glucose 0.51 1221 466 118.3628 5.0172 92.9789

M9+glucose 0.67 1756 552 139.3568 4.9949 110.4617

M9+glucose 0.95 2559 560 137.6172 4.9512 113.0242

M9+glucose 1.23 1520 746 126.0476 6.4454 115.7735

M9+glucose

+0.1M NaCl
0.29 4280 780 191.23870 4.8270 161.5811

M9+glucose

+0.1M NaCl
0.52 3663 802 158.5049 6.4774 123.8357

M9+glucose

+0.1M NaCl
0.7 2019 776 130.4718 7.2173 107.5843

M9+glucose

+0.1M NaCl
1 3799 786 141.1716 7.1582 109.7980

M9+glucose
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+0.1M NaCl
1.43 4397 1234 237.9579 6.5788 187.5706

M9+glucose

+0.25M NaCl
0.25 3429 358 69.73346 6.7773 52.8596

M9+glucose

+0.25M NaCl
0.46 3976 951 192.7966 6.5631 144.9569

M9+glucose

+0.25M NaCl
0.71 5971 956 196.7224 6.4514 148.2273

M9+glucose

+0.25M NaCl
1.01 3569 985 212.4989 6.3969 153.9933

M9+glucose

+0.25M NaCl
1.21 2684 1314 240.0539 6.9047 190.3492

M9+glucose

+0.5M NaCl
0.26 1681 1419 227.7141 7.9413 178.6636

M9+glucose

+0.5M NaCl
0.35 2261 1585 331.3018 6.1975 255.8249

M9+glucose

+0.5M NaCl
0.45 2540 1324 215.3837 8.0087 165.2828

M9+glucose

+0.5M NaCl
0.71 3921 1422 241.854 7.4901 189.8175

M9+glucose

+0.5M NaCl
0.91 1546 1394 276.4679 6.7176 207.5572

M9+glucose

+0.5M NaCl
1.2 1503 1353 235.0474 7.2670 186.2539

M9+glycerol 0.31 2098 709 112.7239 8.2344 86.1558

M9+glycerol 0.41 4635 686 123.8411 6.6806 102.7219

M9+glycerol 0.62 3248 681 128.9213 6.3772 106.8403

M9+glycerol 0.85 4385 747 150.5265 5.9535 125.5369

M9+glycerol 1 3227 680 141.0444 6.2205 109.3368

M9+glycerol 1.15 4960 721 145.3868 6.1545 117.0988

M9+glycerol 1.27 3914 729 159.2388 6.2790 116.1648

M9+glycerol
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+0.1M NaCl
0.4 3923 870 184.3223 6.2537 139.1729

M9+glycerol

+0.1M NaCl
0.76 2631 827 144.6099 7.4902 110.3775

M9+glycerol

+0.1M NaCl
1.07 1949 847 129.1219 8.5798 98.7149

M9+glycerol

+0.25M NaCl
0.19 3712 1013 181.4919 6.9965 144.7469

M9+glycerol

+0.25M NaCl
0.28 2426 1173 228.9686 6.6479 176.4324

M9+glycerol

+0.25M NaCl
0.33 4073 1043 237.7741 5.8768 177.4560

M9+glycerol

+0.25M NaCl
0.46 2258 951 192.7966 8.1167 105.7527

M9+glycerol

+0.25M NaCl
0.56 2348 1125 251.1459 5.9777 188.1924

M9+glycerol

+0.25M NaCl
0.68 1371 875 149.4666 7.7279 113.2247

M9+glycerol

+0.25M NaCl
0.71 2248 866 170.2669 7.8821 109.8916

M9+glycerol

+0.25M NaCl
0.92 1497 865 194.9382 6.9831 123.8102

M9+glycerol

+0.25M NaCl
1.26 2267 938 168.3297 7.5704 123.9285

M9+glycerol

+0.5M NaCl
0.19 3351 1746 350.3273 6.1965 281.7584

M9+glycerol

+0.5M NaCl
0.21 3531 1511 337.0336 5.8162 259.7950

M9+glycerol

+0.5M NaCl
0.23 3230 1634 287.2615 7.3157 223.3389

M9+glycerol

+0.5M NaCl
0.46 1226 1423 261.1942 6.7470 210.8849
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M9+glycerol

+0.5M NaCl
0.5 2520 1508 331.159 6.4267 236.8047

M9+glycerol

+0.5M NaCl
0.71 2727 1709 425.3123 5.0346 339.4075

M9+glycerol

+0.5M NaCl
0.83 1366 1348 228.5577 7.2754 185.2823

M9+glycerol

+0.5M NaCl
0.99 1689 1501 216.2896 8.5913 174.6689

M9+glycerol

+0.5M NaCl
1.23 253 1443 211.2783 8.7255 165.4151

MLG910-∆rpoS

media OD600 # of cells Mean count Fano factor a b

LB-Miller 0.24 1429 108 45.0497 6.0750 17.8172

LB-Miller 0.42 1496 109 19.63285 6.1966 17.6530

LB-Miller 0.65 2256 80 16.39978 6.1865 12.8821

LB-Miller 0.86 2677 89 19.31024 6.4813 13.7722

LB-Miller 1.01 2555 95 16.09938 7.2978 12.9749

LB-Miller 1.2 2783 115 24.8767 6.5511 17.5012

M9+glucose 0.46 1444 64 8.742002 8.7053 7.3483

M9+glucose 0.6 3043 65 8.490565 8.8846 7.3159

M9+glucose 0.81 2179 66 8.306852 9.2411 7.1535

M9+glucose 0.96 2560 56 9.410702 7.2931 7.6971

M9+glucose 1.18 3785 58 12.48343 5.9048 9.8834

M9+glycerol 0.32 2932 68 10.20687 8.3619 8.1879

M9+glycerol 0.46 1367 63 8.814788 9.2509 6.8037

M9+glycerol 0.67 1100 64 9.418268 9.0937 7.0203

M9+glycerol 0.94 1000 60 7.645006 9.7265 6.1819

M9+glycerol 1.18 1182 62 7.23113 10.4019 6.0069
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Table D.1: A summary of results for channel counts and

gamma distribution fitting.
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