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Abstract

Since the invention of turbo codes, there has been an explosion of interest in iterative
decoding and graphical representation of codes. This thesis examines the iterative de-
coding of codes defined on graphs with cycles, which appears to be an efficient means
of achieving the Shannon limit. Much of this analysis is on the iterative min-sum
decoding of tail-biting codes and cycle codes. We have identified the pseudocodeword
as the cause of the suboptimal performance of the iterative decoder, and we have
obtained a union bound for the performance of the iterative decoder on both AWGN
and BSC channels. Using the union bound argument, for cycle codes, we have shown
that the performance of the iterative decoder is asymptotically as good as that of
the ML decoder. As for tail-biting codes, the same thing is true if the lowest weight
pseudocodeword is at least the minimum weight of the code. Unfortunately, the
analysis of tail-biting codes and cycle codes does not extend to turbo codes and low
density parity check codes in general. Our next approach is to determine the average
behavior of message passing algorithms by studying the evolution of their “message”
densities. For the class of “repeat and accumulate” serially concatenated turbo-like
codes, we have devised an algorithm for determining their “threshold” values. When
the signal-to-noise ratio is larger than the threshold value, the error probabilities of
message passing algorithms approach zero, whereas if the signal-to-noise ratio is less
than the threshold value, the error probability stays bounded away from zero. Some
message passing algorithms and graphical representation of codes are efficient means
of devising ML or MAP decoding algorithms. We have proposed a junction tree rep-
resentation for linear block codes, and we have shown that the minimum junction

tree can be less complex than the minimal trellis.
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Chapter 1 Introduction

A fundamental problem in communication is how to achieve reliable communication
efficiently over unreliable channels. The basic structure of a communication system
[65, 63] is illustrated in Figure 1.1. The message to be sent is encoded before it is
transmitted on the channel. At the receiving end, the decoder finds an estimate of

the message from the channel output.

message codeword g:ﬁ(li)gltator
——————3] Encoder jegp.{ Modulator
Channel

-————] Decoder |agwmmummmsed Demodulator g

estimated demodulator channel
message output output

Figure 1.1: A communication system.

Shannon’s channel coding theorem states that reliable communication can be
achievable as long as the rate of a code does not exceed the “capacity” of the channel.
Though random codes with large block length perform close to the Shannon limit
[40, 60, 67], maximum a posteriori (MAP) or maximum likelihood (ML) decoding of
such codes is computationally infeasible. Traditionally!, code design has been ad-
dressed by developing codes with a lot of structure, which lend themselves to feasible
decoding [39, 34], but these codes are far from the Shannon limit.

The discovery of turbo codes revolutionized the field of coding by introducing an
iterative decoding algorithm which efficiently decodes long pseudo-random codes and

thus bridges the gap between the Shannon limit and the practically achievable values.

1A notable exception is Gallager’s low density parity check codes.
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In part of this thesis, we will examine the iterative decoding of codes defined on
graphs with cycles, which appears to be an efficient means of achieving the Shannon
limit. Much of the analysis will be on the iterative min-sum decoding of tail-biting
codes and cycle codes, and we will provide a theoretical explanation for the good

performance of iterative decoding on these codes.

1.1 Iterative Decoding

Since the invention of turbo codes by Berrou, Glavieux, and Thitimajshima in 1993
[8], there has been an explosion of interest in iterative decoding and graphical rep-
resentation of codes. At the same time, there has also been a re-awakened interest
in the long forgotten low density parity check (LDPC) codes introduced by Gallager
[25] in 1963.

Turbo codes and LDPC codes can be represented by cycle free graphs. In this
case iterative decoding boils down to the forward-backward algorithm or Viterbi’s
algorithm, and results in a MAP or ML decision. However, the computation involved
is infeasible.

For computationally feasible decoding, the best graphical representations of turbo
and LDPC codes contain cycles. It is well known that iterative decoding on graphs
with cycles is suboptimal?. Still, there is a large body of empirical evidence illustrating
the excellent performance of iterative decoding on graphs with cycles. In fact, in the
coding community, there has been a race on designing turbo codes and LDPC codes
which perform closer and closer to the Shannon limit, and the best known LDPC
code is only 0.06 dB from the Shannon limit [58].

What is still lacking, however, is a satisfactory theoretical explanation of why
iterative decoding algorithms perform as well as they do. The major goal behind this

thesis has been to search for such a theoretical explanation.

2The decoding does not result in a ML or MAP decision.
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1.2 Message Passing Algorithms on Graphs

Graphical representations of codes are not only useful as code descriptions, but most
importantly, they lead to natural decoding algorithms when the graphs are considered
as communication networks in which “messages” between vertices are communicated
through the edges connecting them. While Viterbi’s algorithm is the best known
decoding algorithm on a trellis, other trellis decoding algorithms are the BCJR al-
gorithm (also known as the forward-backward algorithm), and sequential decoding
[24, 20].

Gallager’s decoding algorithm for LDPC codes is the first message passing al-
gorithm. Tanner generalized Gallager’s LDPC codes to codes on general bipartite
graphs, called Tanner graphs [64]. More recently, Wiberg et al. extended Tanner
graphs to Tanner-Wiberg-Loeliger graphs which include state nodes [69, 70]. Re-
cent developments on graphical representations includes Bayesian networks [53, 42],
junction graphs [1, 3], and factor graphs [23].

Message passing algorithms used on the above mentioned graphs include the
Gallager-Tanner-Wiberg decoding algorithm (sum-product and min-sum algorithms),
Pearl’s belief propagation algorithm, and the generalized distributive law (GDL).
Viterbi’s algorithm and the forward-backward algorithm are special cases of all these
algorithms when the underlying graphs are cycle free. The GDL includes as special
cases Pearl’s belief propagation algorithm and the Gallager-Tanner-Wiberg decoding
algorithm.

In this thesis, we will study message passing algorithms on graphs which represent
tail-biting codes, cycle codes, and a class of serially concatenated turbo-like codes
called “repeat and accumulate” codes.

In the course of studying message passing algorithms and graphical representation
of codes, we came to discover that some message passing algorithms and graphical
representation of codes are efficient means of devising exact (ML or MAP) decoding

algorithms. This study is also be reported in the thesis.



1.3 Thesis Outline

In Chapter 2, we briefly introduce the Generalized Distributive Law [1, 3], which
forms the basis of the results in Chapters 3 and 4. We also present junction graphs
for tail-biting codes, and we treat a Tanner graph as a special junction graph. Our
view of message passing algorithms, specifically in Chapters 5,6, and 7, will be as an
instance of the GDL, and junction graphs are the graphical representations in this
thesis.

Chapters 3 and 4 are applications of the GDL. The GDL gets its efficiency by
reordering certain computations using the distributive law, so we will apply the GDL
to reduce decoding complexity in these two Chapters. In Chapter 3, we will intro-
duce a junction tree representation for linear block codes, and we will show that the
minimum complexity junction tree can be less complex than the minimal trellis. In
Chapter 4, we will view the problem of decoding a tail-biting trellis as a matrix chain
multiplication problem in the GDL framework, which can be represented as a single
cycle junction graph. By viewing Viterbi’s algorithm as an algorithm for multiplying
a chain of matrices, we will prove the optimality of the algorithm. The material in
these two chapters has been presented earlier in [43, 44, 45].

Chapter 5 and 6 are devoted to the study of iterative min-sum decoding of tail-
biting codes and cycle codes. We investigate the degradation due to iterative decod-
ing, and we obtain a union bound to quantify the performance loss. We examine the
“pseudodistance” of these codes to further quantify the degradation. The work in
Chapter 5 has been presented earlier in [2, 4].

In Chapter 7, we analyze message passing algorithms for a special class of serially
concatenated turbo-like codes called “repeat and accumulate codes.” We will present
an algorithm to determine the “threshold” value. If the signal-to-noise ratio is above
the threshold, the belief propagation decoding error probability approaches zero ex-
ponentially fast in the length of the codes; whereas for signal-to-noise ratio below the
threshold, the error probability stays bounded away from zero.

Chapter 8 contains our concluding remarks.



Chapter 2 The Generalized Distributive

Law

There has been a great interest in message passing algorithms on graphs in the coding
community. Message passing algorithms include Viterbi’s algorithm, the forward-
backward algorithm, the Gallager-Tanner-Wiberg decoding algorithm (sum-product
or min-sum algorithm), Pearl’s belief propagation algorithm, and the generalized
distributive law (GDL). The GDL is a generalization of all these algorithms.

In this thesis, our view of message passing algorithm is the GDL applied to a
junction graph. In this chapter, we will use Aji and McEliece’s [1, 3] notation to
introduce the GDL and junction graphs, and we will also treat a Tanner graph as a

special type of junction graph.

2.1 The Marginalizing a Product Function Prob-
lems

In this section, we will describe the “marginalizing a product function” (MPF) prob-
lem, which is a general computational problem solved by the GDL. The GDL can
greatly reduce the number of “additions” and “multiplications” in MPF problems. In
a MPF problem, the notions of “additions” and “multiplications” are generalized to

a “commutative semiring.”

Definition. A commutative semiring (K, +,-) is a set K, together with two binary
operations called “+” and “”, which satisfy the following:

Al. The operation “+” is associative and commutative, and there is an additive
identity element called “0” such that k+0 =k for allk € K.

“o»

A2. The operation is associative and commutative, and there is a multiplicative
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identity element called “1” such thatk-1=Fk for all k € K.
A3. The distributive law holds, i.e., (a-b)+ (a-c) = a- (b+ ¢), for all triples (a,b, c)
from K.

The difference between a semiring and a ring is that in a ring, additive inverses are
required, i.e., (K, +) are required to be a group in a ring. Thus every commutative
ring is automatically a commutative semiring. The two commutative semirings which

we use in this thesis are given in Example 2.1.1 and Example 2.1.2.

Example 2.1.1. Commutative semiring (R*,+,:), where R™ is the set of nonneg-
ative real numbers. Here the operation “4-” is the ordinary addition with the real

[T

number 0 as its identity, and the operation is the ordinary multiplication with the

real number 1 as its identity. We will call this the sum-product semiring.

Example 2.1.2. Commutative semiring (RU{oo}, min, +). Here the operation “min”
is defined as the operation of taking the minimum . We define min(k, 00) = k, for
all k € RU {0}, i.e., 0o is the identity for the operation “min.” The operation “+”
is the ordinary addition with the real number 0 as its identity. The distributive law

holds because for any a,b,c € RU {00},

min(a + b,a + ¢) = a + min(b, ¢)

We will call this the min-sum semiring.

We now introduce the “marginalizing a product function” (MPF) problem.

Let z4,--- ,z, be variables taking values in the finite alphabets A,,--- , A,. Let
Si = {t1, - ,ix} be a subset of {1,--- ,n}. Let Ag, represent the Cartesian product
Ay X -+ x A;,. Let zg, represent the variable list z;,,--- ,z;,. The variable list
1, -, Ty is denoted by x, and the product Ay,.. »} by A.

Now let S = {S1,:--,Sm} be M subsets of {1,--- ,n}. For each ¢, there is a
function o; : As, — R, where R is a commutative semiring. We call the variable lists

zs; the local domains and the functions ; the local kernels. Define the global kernel



B:A — Ras:
M
Bz, ,2n) = Hai(mgi). (2.1)

i=1

The MPF problem is to compute the S;-marginalization of the product of the
global function for one or more of the indices ¢ € {1,---,M}, i.e., the function

B; : As, — R, where

Bilzs) = > Blz), (2-2)

Tge EAs'g

where Sf is the complement of the set S; relative to the “universal set” {1,--- ,n}.

2.2 The Decoding Problem as an Instance of the
Marginalizing a Product Function Problem

Consider a communication system as shown in Figure 2.1. An information block U =
(uy,--- ,ug) of length k is encoded into X = (z1,--- ,2,) which is then transmitted
over the channel. From the channel output Y = (y1,--- ,yn), the decoder computes

an estimate U/ of U.

———1 Encoder Decoder p————

U= (v, yup) X = (21, - ,2n) Y =(y1,-* yyn) ﬁ:('ala"'aﬁk)

Figure 2.1: A communication system.

We assume that each symbol in U is generated independently, so p(U) = Hle plug).
Each U is encoded to X according to a deterministic encoding rule, so p(X|U) is 1
if X is the encoded version of U and 0 otherwise. We also assume the channel is

memoryless, i.e., p(Y|X) = [[_, p(y:|z:). Then the joint probability p(U, X,Y) can



be written as:

= ][ ppX|0) ] ] plvsles). (2.4)

Let ¢(X) be a function proportional to the probability that X is transmitted, so
that ¢(X) = 0 if X is not a codeword. If we assume each codeword is equally likely,
then ¢(X) can be considered as the indicator function of the set of codewords. Since
X is a codeword if and only if it satisfies a set of ! conditions (see Example 2.2.2),

then

l
X)= H@(X)- (2.5)

A MAP decoder finds i; or Z; such that:

i; = arg maxp(u,|Y) = arg max Z (U, X,Y), (2.6)
“ {uJ}J;éz
#; = arg max Z (Y[X)¢ (2.7)
" {z;}i#i

A ML decoder finds 4; or Z; such that:

4; = arg max p(U|Y) = arg max {m;u;é p(U,X,Y), (2.8)
ui uj}iFAi
#; = arg max max p(Y|X)o(X). (2.9)
w;  {w;}iAi

If we take the negative of the logarithm of equations (2.8) and (2.9), both the MAP
and ML decoding problems can be unified as one MPF problem in the sum-product
and min-sum semiring.

In this thesis, depending on which commutative semiring is used, we will call the
GDL the sum-product or the min-sum algorithm respectively.

We will conclude this section with two examples.
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Example 2.2.1. (Calderbank et al. [14]) Consider the generator matriz which gives

the minimal tail-biting trellis for the (8,4,4) extended Hamming code, viz.,

1 XT3 T3 T4 Xy Tg Ty Xg
Uy ( 1 1.1 1 0 0 0 O \
uwp] 0O 0 1 1 0 1 1 O

G= : (2.10)
wsl 0 0 0 0 1 1 1 1

w\o 1)

ot
ot
[an]
o
o
—

We would like to find the most probable (iy,--- ,U4), i.€.,

, o (2.11)

Ul; = arg nzltl,n {51}111;éz [(ZP(%)) (Z(~log(p(yj|.’cj)) + X'(X|U)))

J

fori=1,---,4. In this ezample, xX'(X|U) is

X' (X|U) = x(@1 + uy) + x(22 + us + ug) + x(23 + w1 + ug + ug) + x (24 + vy + ug)

+ X(.’I)5 + U3) -+ X(ws + uo + Ug) + X(337 —+ us + Us + U4) + X((L‘g -+ Uus + U4),

where x is 0 if its argument sum (mod 2) is zero and oo otherwise.
Equation 2.11 is a MPF problem in the min-sum semiring with the following local

domains and local kernels.



local domain

{us}

{ua}

{331, U1, U4}
{z2, u1,us}
{3, u1, u2,uq}
{z4, u1,uz}
{@s,us}
{ze, ua, us}
{z7, u2, us, us}

{.’138, Uug, U4}

Example 2.2.2. Consider the (9,4,3) cycle code with parity check matriz

I

We would like to find the most probable codeword (&1, - - -

—log p(y1|z1) — log p(us) + x(z1 + w1)
—log p(ya|z2) — log p(us) + x(z2 + u1 + us)

— log p(ya|z4) — log p(uz) + x (x4 + u1 + ug)
—log p(ys|zs) + x (x5 + us)

—log p(ys|zs) + x(z6 + ug + us)

— log p(ys|zs) — log p(us) + x(xs + us + ua)

T2

1

T3

0

£; = arg min min

0

# Az i

10

T4

local kernel

T5

0

0

1

1

Te

T

0

—log p(ys|z3) + x (23 + u1 + u2 + ug)

—log p(yr|z7) + x(x7 + ug + us + uy)

Tg g
1 0)
0 0
0 0
0 1
11
0 0
, &9), i€,

[—log(p(y;]z;)) + ¢'(X)],

(2.12)

(2.13)

for ¢ = 1,---,9, where ¢'(X) is 0 if X is a codeword and oo otherwise. In this
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example, ¢'(X) is

¢ (X) = x(z1 + z2 + x3) + x(@2 + 3 + T5) + X (T3 + T4 + T6)

-+ X(.’l?l + x4 + .’L'g) + X(II?7 + g + (Bg) + X($5 + g + $7),

where x is 0 if its argument sum (mod 2) is zero and co otherwise.
Equation 2.13 is a MPF problem in the min-sum semiring with the following local
domains and local kernels.

local domain local kernel

{z:} —log p(y1]z1)

{20} — log p(ys|xs)
{z1,22,28} x(z1+ z2 + 3)
{2, 23,25} x(22+ 235+ 5)
{3, zs,26} x(T3+ T4 + 6)
{z1,24,29} x(21+ 24 + )

( )
( )

{z7, 28,0}  x(x7+ 23 + 2o

{zs5, 26,27} x(x5 + 26 + 27

2.3 The Generalized Distributive Law

In many cases, the GDL provides an algorithm to compute MPF problems more
efficiently than by direct computation, and it gets its efficiency by reordering the

computation using the distributive law.

Definition. A junction tree is a tree in which the subgraph induced by the vertices

whose local domains contain any given element is connected.

When the vertex labels given by the local domains S;, for i € {1,--- , M}, form a
junction tree, the GDL gives the exact solution to the marginals G;.
Let (v1,- -+ ,vp) denote the vertex labels given by the local domains (Sy,- -+ , Sazr).

Denote the edge connects v; and v; by v; adjv;. Then the “message” from v; to v; is
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a table containing the value of a function y; ; : As,ns; — R

1ii(Zsins;) = Z a(zs,) H Hi,i(Z3,08,)- (2.14)

Taorg.CAcq. v adj v;
5:\5; €45,\5; kadivi

Initially, all u; ; are defined to be the multiplicative identity of the semiring. When
v; wishes to send a message to v;, it is computed by multiplying its local kernel and
the messages it received from all its neighbors except v; and then marginalizing out

all the variables not in S;.

Figure 2.2: The junction graph for the (8,4, 4) tail-biting Hamming code.

When v; has received messages from all its neighbors, it can compute its “state,”

which is a table containing values of a function o; : Ag, — R as :

oi(zs;) = a(zs,) [[ mril@sins,)- (2.15)

v adj vy

The state o; is the required g;.
When the local domains do not form a junction tree, we will ignore the cycles and

still apply the updating rule to the junction graph! anyway. The single cycle junction

%A junction graph is a graph in which the subgraph induced by the vertices whose local domains
contain any given element is connected.
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graph shown in Figure 2.2 is the junction graph formed from the local domains of the
(8,4,4) tail-biting code in Example 2.2.1. Figure 2.3 shows the junction graph for
the (9,4, 3) cycle code in Example 2.2.2, and this junction graph can be viewed as a

Tanner graph?.

Figure 2.3: The junction graph for the (9,4, 3) cycle code in Example 2.2.2. The nodes
in the bottom row act as check nodes, so this junction graph is a Tanner graph.

2A Tanner graph G = (V, E) is a bipartite graph consisting of a set of codeword nodes V,, and
check nodes V., where V. = V,, UV, with V,, NV, = 0 and E C V,,, x V.. (For further details on
Tanner graphs, we refer the reader to [64, 69].)
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Chapter 3 Junction Tree

Representations for Linear Block Codes

The Generalized Distributive Law gets its efficiency by reordering the computations
using the distributive law. In this chapter, we will apply the GDL to solve the
decoding problem and make use of GDL’s efficiency.

We will introduce a combinatorial representation for linear block codes, called
the junction tree representation, which generalizes the notion of a code trellis. We
will first present an algorithm for finding a minimum complexity junction tree. We
will then show by examples that the minimum complexity junction tree can be less
complex than the minimal trellis. One implication of this is that one can sometimes
devise exact decoding algorithms which have lower complexity than those associated

with the minimal trellis.

3.1 Introduction

The Generalized Distributive Law [3], which is the synthesis of the work of a long
series of authors, is a general algorithm for marginalizing a “global” kernel function
of many variables, whenever the kernel factors in a useful way. The key to the GDL
is the notion of a junction tree [3, 28], which is a way of organizing the local domains
as labels on a communications network.

In Chapter 2, we saw that decoding problems can be viewed as MPF problems
with p[U, X,Y] as the global kernel, where information bits U = (uy,--- ,u;) are
encoded as code word X = (z1,--- ,&,) which is then transmitted and received as
Y = (y1, - ,yn)- When p[U, X,Y] factors in such a way that its local domains form
a junction tree, the GDL produces exact (ML and MAP) decoding algorithms.

Trellis representations for linear block codes have a long history, and it is now a
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thoroughly studied subject after the explosion of interest during the years 1995-1997.
For details on this subject, we refer the reader to the chapter “Trellis Structure of
Codes” in [54] and [35]. For a trellis which has |E| edges and |V| vertices, Viterbi’s
algorithm requires |E| “multiplications” and |E| — [V| + 1 “additions.” It is well
known that every linear block code can be represented by a minimal trellis. McEliece
[41] showed that the minimal trellis has the least value of |E| among all trellises
that represent a given linear block code. Later, Vardy et al. [65] proved McEliece’
conjecture that the minimal trellis also minimizes |E| — |V| + 1. Thus, the minimal
trellis requires the least number of operations when Viterbi’s algorithm is applied.

It turns out that the minimal trellis associated with a code corresponds to one of
the possible junction trees. When Prim’s algorithm for constructing junction trees
[61, 3, 28] is modified to account for complexity, we have an algorithm for finding a
minimum complexity junction tree.

In this chapter, we will present some examples of codes for which the minimum
complexity junction tree is less complex than the minimal trellis.

Here is an outline of the chapter. In section 2, we will analyze the complexity of the
GDL when applied to decoding problems and then present an algorithm for finding
a minimal complexity junction tree. In section 3, we will present some examples of
codes for which the minimal complexity junction tree is less complex than the minimal

trellis.

3.2 Minimum Complexity Junction Trees

In Chapter 2 we saw that the decoding problem is an instance of the MPF problem.
Thus the GDL gives an efficient decoding algorithm when the global kernel factors in
a useful way.

In Viterbi’s algorithm, decoding begins from the initial state of the trellis and
proceeds to the next state forward until it reaches the last state of the trellis. In
other words, a “message” is passed from left to right in the trellis, which amounts to

the “single vertex ” GDL, defined in [3].
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The single vertex GDL requires all but the target vertex v; to pass one message
to its neighbor. When the target vertex receives messages from all its neighbors, it
updates its state, which is the required §;. Figure 3.1 shows a junction tree of the

(8,4,4) Hamming code with generator matrix

(3.1)

S O O e
—_ O O e
O = O
== O
- O = O
L )
O R =k O
S O = O

The arrows and the numbers above the arrows show one possible message passing
schedule in the single vertex GDL. The number 1 indicates that the message is passed
in the first step, and the number 2 indicates that the message is passed in the second

step and so on.

1 2 3 2 1
—- —_— ——— ~g—
T4 Te
1 T Tl
T2 7
Figure 3.1: A junction tree for the (8,4,4) Hamming code with generator matrix in

(3.1). The arrows and the numbers above the arrows indicate one possible message
passing schedule in the single vertex GDL.

3.2.1 The Single Vertex Generalized Distributive Law Com-
plexity

Suppose vertex v; (with label S;) passes a message to vertex v; (with label S;). Let
d(v;) be the degree of vertex v;. Then a message update requires multiplying the
(d(v;) — 1) incoming messages with the local kernel. This will take (d(v;) — 1)|Ag,|

multiplications in total. It is also required to marginalize out the table of |Ag,|
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elements to obtain a table of elements whose variables are also in S;. This requires
| As;| — |As;ns;| additions. To recapitulate, the message update for edge connecting v;

and v; requires

(d(v;) — 1)|Ag,] additions, and (3.2)

|As;| — |As;ns;]| multiplications. (3.3)

Taking into account that d(vi)|As, | multiplications are required for the state up-

date at the target vertex vy, the single vertex GDL requires
Z w(e) operations (3.4)
e

where w(e) = |Ag,| + |As;| — |As;ns;|, and e is the edge connecting vertices v; and v;.

4 8 12 8 4

8 8

Figure 3.2: A junction tree for the (8,4, 4) Hamming code with generator matrix in (3.1).
The numbers by the edges are the number of operations associated with the edges.

Figure 3.2 shows the number of operations associated with each edges. Note that
the junction trees in Figure 3.2 and in Figure 3.1 represent the same (8, 4,4) Hamming
code, but we do not include the z’s in the vertex labels in Figure 3.2. (Messages are

tables of values on u’s, and z’s are deterministic function of us.)

3.2.2 The Generalized Distributive Law and Trellis Com-
plexities

The trellis complexity is the number of additions and multiplications required in

Viterbi’s algorithm, which takes |E| multiplications and [E| — |V| + 1 additions [41],
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where |E| and |V/| are respectively the number of edges and vertices of the trellis.

In this complexity measure, for a binary linear code, the two edges connected to
the initial state of a trellis are counted as two multiplications. These do not count
in the GDL junction tree complexity measure. Similarly, the addition of the two
edges connected to the finial state counts in the trellis complexity but not in GDL
complexity. Thus, in this counting, for a binary linear code, the trellis complexity

has 3 more operations than the GDL junction tree complexity.

3.2.3 Finding Minimum Complexity Junction Tree

Prim’s algorithm as described in [13] is a greedy algorithm for constructing junc-
tion trees, which are maximum weight spanning trees [61, 28]. To find a minimum

complexity junction tree, we have the following algorithm:

Algorithm for Finding a Minimum Complexity Junction Tree

Step 1 Connect each pair of local domains with an edge.

Step 2 Each edge e (connecting vertices v; and v;) has two attributes:
Weight := cardinality of S; N Sj,
Complexity := w(e).

Step 3 Use Prim’s algorithm to find a maximum weight spanning tree.

Step 4 In case of a tie in Step 3, choose edge of minimum complexity.

If this algorithm produces a junction tree, then it can be shown that the junction
tree is of minimum complexity.

The junction tree in Figure 3.1 is a minimum complexity junction tree found by
the above algorithm. The junction tree which corresponds to the minimal trellis of
the code is shown in Figure 3.3. In this example, it turns out that both junction trees
have the same complexity.

In the next section, we will show some codes whose minimum junction tree is less

complex than the minimal trellis.
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T4
4 Uy, U3, Uy

Tg s
Uz, Ug, Ug U2, Uz, U4

Figure 3.3: The junction tree corresponding to the minimal trellis of the (8,4, 4) Hamming
code with generator matrix in (3.1).

T4
Up, u2, u3
zs zg z5
U1, u2, ug, uq U1, U2, U3, u4 U1, U2, U3, U4
zg z10 T11 z12
U2, U3, Ugq, Uy U2, U3, Uq, Up U2, U3, ug, up U2, uz, uq,usp
z13
U2, U3, U

Figure 3.4: The junction tree corresponding to the minimal trellis of the (16, 5) first-order
RM code defined in (3.5). It requires 192 operations per decoding.

3.3 Examples

Consider the (16, 5) first-order RM code defined by the generator matrix

(1111111111111111\

0101010101010101
G=1001100110011001T1]/-: (3.5)

0000111100001 T1T1°1

\0000000011111111)
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zg z13 ©14 z4
U1, ug u1, Uq, up U2, Ug, U Uz, us
z7 z15 *16 z12
uy, ug, ug U1, U3, Ug, U U2, U3, UG, U uz, U3, ug
T3 z11 -8
u1, ug uy, ug, us U2, U3, ug
z1 zg zg
6y uy, up uz, ug

Figure 3.5: Minimum complexity junction tree corresponding to the (16,5) first-order
RM code defined by G. It requires 176 operations per decoding.

(

A minimal span [41] generator matrix G’ of G is:

(1111111100000000)
01100110011001T1°0
G=l0011110000111100]- (3.6)
0000111111110000
\0000000011111111}

The junction tree corresponding to the minimal trellis of this RM code is shown
in Figure 3.4. Note the minimal trellis is also minimal with respect to reordering the
code bits [32]. This junction tree requires 192 operations per decoding.

However, the junction tree of Figure 3.4 is not an especially good one. If we call
the generator matrix obtained from G by adding row 2 and row 5 of G to row 1 of G, as
G , the minimal trellis complexity of G is still 192 operations because an elementary
row operation does not change the minimal trellis complexity [41]. However, the
minimum complexity junction tree corresponding to G shown in Figure 3.5 requires
176 operations, which is less than the minimal trellis.

In the table below, we list two other RM codes whose minimum junction tree is
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less than the minimal trellis of the corresponding code. For completeness, we also
include the RM (16, 8) code in the table. Note that all these minimal trellises are

minimal with respect to code coordinate permutations.

Code Junction Tree Minimal Trellis
Complexity Complexity

(operations/decoding) | (operations/decoding)

RM(16, 5, 8) 176 192

RM(32, 6, 16) 570 731

RM(64,7,32) 1786 2827
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Chapter 4 Decoding Tail-biting Trellises
and Matrix Multiplication

In this chapter we will view the problem of decoding a tail-biting trellis as a problem
of multiplying a chain of matrices in the min-sum semiring. The number of arith-
metic operations needed to evaluate a matrix chain multiplication depends on the
parenthesization; an optimal parenthesization is a parenthesization which requires
the minimum number of operations. In the special case where the first and last ma-
trices are a row and a column matrix respectively, we will prove a theorem on optimal
parenthesizations. Using this theorem, we conclude that Viterbi’s algorithm is opti-
mal when applied to a “typical decoding trellis” in the sense that it corresponds to
an optimal parenthesization. For decoding a tail-biting trellis, we are only interested
in the diagonal elements of the matrix product, but computing the diagonal elements
separately can require more operations than computing the full matrix product. In
the case of computing the diagonal elements, the number of operations can be reduced

compared to Viterbi’s algorithm by finding an optimal parenthesization.

4.1 Introduction

A tail-biting trellis is a finite, labeled digraph in which the vertices are partitioned into
n classes, Vp, -+, V,_1, each class being indexed by an element of Z,, = {0,1,--- ,n—
1}, the cyclic group of order n. Each edge goes from a vertex in V; to a vertex in V;
for some 4, with (n — 1) + 1 taken as 0 (For further details on tail-biting codes, we
refer the reader to [14, 59].)

A trellis of depth n, with vertex set VoUV; ... UV, where V)| = |V,|, is obtained
by unwrapping a tail-biting trellis. If the weights of the edges connecting the vertices

z;—1 € Vi1 and z; € V; are represented by a matrix M;[x;_1,z;], then the shortest
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path in a trellis can be computed by matrix chain multiplication in the min-sum
semiring. (The definition of min-sum semiring is given in Chapter 1.)

The Generalized Distributive Law efficiently solves a wide variety of problems,
including the matrix chain multiplication problem [3]. In solving the matrix chain
multiplication problem, the GDL yields an algorithm identical to Viterbi’s algorithm,
which corresponds to a particular parenthesization of the matrix chain.

Since the number of arithmetic operations needed to evaluate a matrix chain mul-
tiplication depends on the parenthesization, it is natural to ask if Viterbi’s algorithm
is optimal. This is the question we will address in this chapter.

In the rest of the chapter, we will look at a special case of the matrix chain
multiplication problem corresponding to finding shortest paths in tail-biting trellises.
In section 2, we will prove a theorem on optimal parenthesizations when |V =
V| = 1, and we will conclude that Viterbi’s algorithm is optimal when applied to a
“typical decoding trellis.” In section 3, we will study the |Vp| = |V,,| > 1 case, which
corresponds to tail-biting trellises. For decoding a tail-biting trellis, we are only
interested in the diagonal elements of the matrix product. There are two ways to
obtain the diagonal elements. We can either compute the whole matrix product and
read off the diagonal elements, or we can compute the diagonal elements separately.
It may seem that computing the full matrix product requires more operations than
computing the diagonal elements separately, but we will give an example in which it
costs more to compute the diagonal elements of the product separately than the full
matrix product.

In the remaining part of this section, we will establish the relationship between
Viterbi’s algorithm and matrix chain multiplication. In order to do so, we will first
introduce the matrix chain multiplication problem in subsection 4.1.1. We will then
cast the matrix chain multiplication problem as an instance of a MPF (“marginalizing
a product function”) problem [3] in subsection 4.1.2. Finally, in subsection 4.1.3, we
will view Viterbi’s algorithm as an algorithm for multiplying a chain of matrices in

the “min-sum” semiring.
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4.1.1 Matrix Chain Multiplication Problem

Let M; be a g;_; X ¢; matrix for ¢ = 1,... ,n. We denote the entries in M; by
M;[z;_,z;], where z; is a variable taking values in a set A; with ¢; elements, for

i =0,1,...,n. Suppose we wish to compute the product
M=M -M,...M,. (4.1)
For n = 2, we have

Mlzo, 2] = Y My[mo, z1] Ma[z1, 2). (4.2)

1
For each of the qyg; values of M[zo, z5] in eqn. (4.2), there are ¢; terms in the sum,
each term requiring one addition and one multiplication, so that the total number of
arithmetic operations required for the multiplication of 2 matrices of sizes gy x ¢; and

q1 X q2 18 2qoq1 G-

An easy induction argument on eqn. (4.2) gives the generalization

M[wo, .’17n] = Z M1 [CB(), ZL‘1] . Mn[a:n_l, :En], (43)

Tl sTn—1

for n matrices.

1 (211—-2

= n—-l) possible parenthesizations for the product of n matrices. Since

There are
matrix multiplication is associative, all parenthesizations yield the same product.
However, the cost of evaluating the product can differ dramatically depending on the
way the matrices are parenthesized.

Consider the computation of the product of three matrices. There are two different
ways to parenthesize M; M, Mj;. Parenthesization M;(M,Mj3) requires 2¢;¢2q3+2qoq193
arithmetic operations, whereas parenthesization (M;M;)Mj; takes 2goq1g2 + 2qog2qs3
arithmetic operations. Thus, which parenthesization is preferred depends on the

relative size of the matrices. For example, if gy = 10, ¢; = 100, g2 = 5, and g3 = 50, the

first and second parenthesization require 150,000 and 15, 000 operations, respectively.
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An optimal parenthesization is a parenthesization which minimizes the total num-
ber of operations in evaluating the product in eqn. (4.1). Finding an optimal paren-

thesization is usually solved by dynamic programming [13].

4.1.2 Matrix Chain Multiplication as an Instance of the Marginal-

izing a Product Function Problem

A marginalizing a product function (MPF) problem is a problem which a “global”
function of many variables factors into a product of “local” functions, and the objec-
tive of a MPF problem is to compute various marginal functions of its global function.

Computing the product, eqn. (4.3)

Mlzo,zal = Y Milzo,@1]... My[zn 1,24,

L1 yeee s L1

Zo I

T3 T2
1 (xo0xs)

M3 0’X27X3 Ml Q19X3

M2 0, X1, X2 M3 €1,X2,X3>
M1 <X0,X1 > M2 <X1,X2 ,

Figure 4.1: The triangulated moral graphs and the corresponding junction trees for the
n = 3 case. The left junction tree corresponds to the parenthesization (M;M,)Mj3, and
the right one corresponds to M;(M;Ms).

() _(E)
&/
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is an instance of the MPF problem [3]. The local domains and local kernels of the

MPF problem are given in the following table.

Local Domain Local Kernel

1 {zo, 1} Mi[zo, 4]

2 {z1, 22} M;[zy, 4]

n {wn—h xn} Mn[wn—ly mn]
n+1 {zn, 20} 1

If the local domains can be organized into a junction tree [28], the desired product
eqn. (4.3) is the objective function at local domain n + 1. However, the above sets of
local domains do not form a junction tree for n > 3, because the corresponding moral
graph! (Figure 4.2) is a cycle of length n + 1 [28, 61, 53, 1]. The moral graph needs
to be triangulated. For example, for n = 3 there are two different triangulations of
the moral graph, as shown in Figure 4.1. The junction trees corresponding to the

parenthesization (M;M;)M; and M;(M;M;) are in the lower part of Figure 4.1.

2n—2
n—1

For the product of n matrices, there are = (

) possible triangulations of the
moral graph, and they are in correspondence with the different ways of parenthesizing
the n matrices. For example, the triangulation shown in Figure 4.2 corresponds to

the parenthesization ((--- (M1 M2)Ms)--- M,,_1)M,,).

4.1.3 Matrix Chain Multiplication in the Min-Sum Semiring

As an alternative interpretation of eqn. (4.3), consider a trellis of depth n, with vertex
set VoUVy...UV,. Let M;[z;_1,z;] denote the weight of the edge connecting the
vertices x;_1 € V;_; and z; € V,. If the weight of a path is defined as the sum of
the weights of the component edges, then M|z, z,] in eqn. (4.3) represents the sum
of the weights of all paths from z¢ to z,. For example, Figure 4.3 shows the trellis

corresponding to the multiplication of three matrices of sizes 2 X 3, 3 x 3, and 3 x 2

In a moral graph, there is an edge connecting two vertices if the two vertices belongs to a local
domain. For more details on moral graph, we refer the reader to [28].
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]
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Figure 4.2: The triangulation of the moral graph corresponding to the parenthesization
(( ot ((M1M2)M3) tee Mn—l)Mn)-

respectively. The (a;,b;) entry of the matrix product is the sum of the weights of
all paths from a; to b;. If the computation is done in the min-sum semiring, the
interpretation of eqn. (4.3) is that M|z, z,] is the weight of a minimum-weight path

from x4 to z,,.

Vo i Va Vs

a1 b

ag b2

Figure 4.3: The trellis corresponding to the multiplication of three matrices, of sizes 2 x 3,
3 x 3, and 3 x 2 respectively. The (a;,b;) entry of the matrix product is the sum of the
weights of all paths from q; to b;.

The matrix multiplication problem in the min-sum semiring is equivalent to the
problem of finding the shortest paths in the trellis. If the moral graph is triangulated
as shown in Figure 4.3, the resulting junction tree yields an algorithm identical to

Viterbi’s algorithm. Thus, Viterbi’s algorithm can be viewed as an algorithm for
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multiplying a chain of matrices in the min-sum semiring,.

4.2 Conventional Matrix Chain Multiplication

We will call the class of matrix chain multiplication problems, where the first and
last matrices have sizes 1 x ¢; and ¢,_1 X 1, respectively, as conventional. (We use
the term conventional because it corresponds to the “conventional trellis” where the
initial and final vertices have a single state.)

In this section, we will show that Viterbi’s algorithm corresponds to an optimal
parenthesization when applied to a “typical decoding trellis,” as a corollary to The-
orem 4.2.2.

Denote the left to right and the right to left parenthesization of My M, --- M, by
((-+- (M M3)--- )M, _1)M,, and My(Ms(---(M,—1M,)---)) respectively. With this

notation, we are ready to state Lemma 4.2.1.

Lemma 4.2.1. For the matriz chain multiplication problem where go = 1 and ¢; > 1,

fori=1,---,n, an optimal parenthesization is left to right.

Proof: (by induction on the number of matrices n.)

1. n=3.

Let C(M;y- M, - - - M,,) denote the cost, i.e., the number of arithmetic operations

required to perform the matrix chain multiplication.

There are two possible ways to parenthesize three matrices, with the following

corresponding costs:

C((MiM3)M3) = 2(q192 + g293), (4.4)
C(Mi(M2M3)) = 2(q19293 + q193)- (4.5)
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Then,
Anp+;e) _ 11 (4.6)
2919293 s @
2(¢19295 + 193) = 1+ 1 (4.7)
2¢1929s 2

Ifg; > 1, then ;;;-Fal; < 1+51-2— because g3 > 1, so C((M1 M) M3) < C(My(M;M3)).

2. Assume the Lemma is true for n < k.

If M, M, is multiplied first in the chain of k£ + 1 matrix multiplications, then by

induction the proof is done.

If MM, is not multiplied first, then suppose M;M;,, is multiplied first with
i > 1. After the first multiplication of M;M;,,, the optimal parenthesization
of My---(M;M;,1)--- M, is from left to right by the induction hypothesis.

However,
CO(C-- (o (Mye o Mia)(MiMi11))Miy2) - - - My 1) M)

>C(((--- (o (My-- My)Mip1) M 5) - M,_1)M,,)

since

C(---(My--- M; 1) (M;M; 1)) > C((-+ - (My -+ ) M) My y).

We have a contradiction. Thus M; M, must be multiplied first. O

We have the following theorem for the conventional matrix chain multiplication

problem.

Theorem 4.2.2. For a conventional n matriz chain multiplication problem with g; >
1, fort=1,2,--- ,n — 1, an optimal parenthesization is from left to right at matriz
M+, right to left at matriz M1, and multiplying the two left to right and right to
left matrices last (as demonstrated in Figure 4.4), where My is gi_1 X g+, Mjs,q is

i X Qi*41, and qi» = arg minth’ (qla v aqn—-l)'
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@0=1 =3 @=4 @=2 q@u=4 ¢=3 g¢g=1
y i 3
[ ] @
o [ )
[ ] ®
[ ]
[ ) o [ ) ® [ J
[ J
[ ]
[ J [ J
[ ] o
M1 M2 M3 M4 M5 Ms

Figure 4.4: Demonstration of Theorem 4.2.2: here M;. = M3, so we multiply M;M;Mj;
from left to right, and M;M;Mg from right to left. Then we multiply the last two
matrices (M;Ms)M; and My(MsMg). By Theorem 4.2.2, ((M; M) Ms3)(My(MsMsg)) is
an optimal parenthesization.

Proof:  Divide the n matrices with optimal parenthesization into two groups
such that the matrices which multiply M; before M, fall into group A, and the rest
into group B. Since it is an optimal parenthesization, A and B must be optimal as
well. By Lemma 421, A = M;---M; and B = M;;;---M, with A = M, --- M;
ordering from left to right, and B = M, --- M, ordering from right to left. Thus,

the optimal parenthesization must be of the form:
(- (M1 M2) M) - - - )) M) (Mg (- - - (Mp—2(Mp—1Mp))) - -+ ).

Then,

C((+-- (MiM2)M) -+ - ))M;) = 2(q1q2 + @2g3 + - -+ + Gi14s),
C(Mia(- - (Mp—2(Mp1My)))-++)) = 2(¢iGiv1 + - + Gn-2Gn—1)-

Since A and B are respectively 1 X ¢; and g¢; x 1 matrices, it takes 2q; operations
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to multiply them. Thus

C((--- (ML M) M3) - - - )) M) (M1 (- - - (Mn—2(Mn—1M,))) - - - ))

=2(qge + -+ 18+ &G+ i1 + o+ Gn-2dn-1),

and 2(q1g2 + -+ + ¢i—14i + & + ¢Giy1 + -+ + Gn-2¢n-1) is minimum when ¢ =

arg ming (g, - ,qn-1)- O

@=1 Q=35 Q=2 =10 gq=1

- -

. .

°

o °

g °

4 °

° ° °

L °

o °

¢ °

M, M, M;s M,
Figure 4.5: The conventional matrix chain for Example 4.2.1. ¢ = ¢, and

((M1M2)(M3M,)) is an optimal parenthesization.

Example 4.2.1. Consider the conventional matriz chain multiplication problem for
n =4, withg =5, ¢ =2, and g3 = 10 (g0 = g4 = 1). There are five possible
ways to parenthesize the four matrices. The number of arithmetic operations needed

to evaluate the product of each of the parenthesizations is listed in the table below.

Parenthesization  Number of Operations
(((M1M2) M3) My) 80
((My(M2M3)) My) 320
((My M) (M3My)) 64
( )
( )

My (M, Ms) M, 210

)
My (My(M;3My)) 80
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We see that the parenthesization ((MyMso)(MsMy)) requires the least number of
operations, as predicted by Theorem 4.2.2. (In this case, ¢« = qo (Figure 4.5).)

As mentioned in the introduction, Viterbi’s algorithm can be viewed as an algo-
rithm for multiplying a chain of matrices from left-to-right in the min-sum semiring.
We call a conventional trellis (with |Vp| = |V,| = 1) a typical decoding trellis when
Vil] #1fori=1,--- ,n—1, and |Va| = |V,,—1| = g, for vertex alphabet ¢. (A typical
decoding trellis has |Vy| = |V,,| = 1, so |V2| and |V,,—1| = ¢ are necessary conditions to
ensure that no two paths of a typical decoding trellis correspond the same codeword
[46].) Since

|[Va-1| = arg rlr‘l/ijl(leI, o Vao1),

by Theorem 4.2.2, one optimal parenthesization is to multiply M;--- M,,_; from left

to right. Thus, we have the following corollary.

Corollary 4.2.3. Viterbi’s algorithm corresponds to an optimal parenthesization when

applied to a typical decoding trellis.

‘/0 Vl Vé [ ] L] ® Vn -1 Vn

Figure 4.6: A conventional trellis with ¢ = 2, where |V;] and |V,_;| are smallest among
{IVil,:“+ ,|Va-1}. In this case, an optimal parenthesization is from left to right, as in
Viterbi's algorithm.

4.3 Tail-biting Matrix Chain Multiplication

We will call the special case of matrix chain multiplication problem where the first

and last matrices have size k x q; and ¢,_; X k respectively, the tail-biting matriz
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chain multiplication problem. (We call it the tail-biting matrix chain multiplication
problem because it corresponds to a tail-biting trellis where the initial and final vertex
have the same number of states [14].)

The conventional matrix chain multiplication problem is a special case of the
tail-biting matrix chain multiplication problem with k& = 1. In this section, we are
concerned with the tail-biting matrix chain multiplication problem with & > 1.

For decoding a tail-biting trellis, we are interested in the diagonal elements of a
matrix chain multiplication product, because they correspond to the shortest tail-
biting paths on the trellis. There are two ways to obtain the diagonal elements of a
matrix product. We can either compute the whole matrix product and read off the
diagonal elements, or we can compute the diagonal elements separately.

When the size of all matrices is the same, i.e., g = ¢; = - - - = ¢,, = k, computing
only the diagonal elements requires fewer operations than computing the full matrix
product. Consider the minimal tail-biting trellis for the (24, 12, 8) Golay code given in
[14], which has 16 states for each of the 12 sections. Computing the full matrix product
requires 2(12 — 1)16% = 90, 112 operations, whereas it takes 2(12 — 2)163 + 2(16%) =
82,432 operations to compute the diagonal elements separately.

In general, when the size of all matrices is the same, all possible parenthesizations
require the same number of operations, which is 2(n — 1)k3. On the other hand, com-
puting only the diagonal elements via k applications of Viterbi’s algorithm requires

2(n — 2)k® + 2k? operations. Since
2(n — 1)k > 2(n — 2)k® + 2k*

for k > 1, it is always better to compute the diagonal elements separately.

When the size of the matrices are not all equal, using Viterbi’s algorithm (we inter-
changeably use the terms “Viterbi’s algorithm” and “multiplying a chain of matrices
from left to right”) to find the shortest path of a diagonal element may not be optimal.
We should instead apply Theorem 4.2.2 to find an optimal parenthesization for each
diagonal element. Consider the tail-biting trellis for the (8,4,4) extended Hamming
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code as given in [14]. The state or ¢; profile of the trellis is (2,4,4,4,2,4,4,4,2) as
shown in Figure 4.7. The matrix chain product is 2 x 2. To compute one diago-
nal element of the matrix product, Viterbi’s algorithm requires 168 operations, but
an optimal parenthesization (((M;Ms)M3)M,)(Ms(Me(M7Ms))) requires 164 oper-
ations. (An optimal parenthesization requires 336 operations to calculate the full

matrix product.)

gp =291 =492 =4 g3 =4 g4 =2 q5 =49g =4 q7 =44q9g = 4

L] L ) L ] L] L] L )

. . . L] . . . . ]
. . . . . .

. . .
3 [} [ . . L

My Mz Mg My Mz Mg My Mg

Figure 4.7: The g; profile of the (8,4,4) Hamming code tail-biting trellis. Viterbi's
algorithm takes 168 operations per diagonal element, but an optimal parenthesization
(((M1My)M3)M,)(Ms(Me(M7Ms))) requires 164 operations per diagonal element.

For the (8,4,4) Hamming code tail-biting trellis, the number of operations needed
to compute the full matrix product is more than the number of operations needed to
compute the two diagonal elements of the product separately. However, it sometimes
takes more operations to compute the diagonal elements of the product than the full

matrix product, as shown in the following example.

Example 4.3.1. Consider a tail-biting trellis shown in Figure {.8. When we unwrap
the tail-biting trellis at the 5 different vertices sets V; for i = 1,---,5, we obtain
5 trellises. The state profiles of these trellises are listed in the table below. The
minimum number of operations required to compute the diagonal elements separately
for each trellis is listed in the table as well. We can see that the minimum number
of operations needed to compute the diagonal elements separately for the tail-biting

trellis is 456.
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Vol =2

Va| =2 Vi| =8

V3| =8
i vl =6

Figure 4.8: The tail-biting trellis of Example 4.3.1. While it requires 448 operations
to compute the full matrix chain product, it takes 456 operations to compute the two
diagonal elements separately.

State Profile  Operations to Compute diagonal elements

(2,2,8,6,8,2) 456
(2,8,6,8,2,2) 456
(8,6,8,2,2,8) 1120
(6,8,2,2,8,6) 456
(8,2,2,8,6,8) 1120

On the other hand, computing the full matriz product requires 448 operations with
parenthesization M;((MyM3)(MyMs)) for the first matriz chain in the table.

4.4 Conclusion

For the special case of the matrix chain multiplication problem where the first and
last matrix are a row and a column matrix respectively, Theorem 4.2.2 gives an
optimal parenthesization. Using this theorem, we concluded that Viterbi’s algorithm
is optimal in the sense that it corresponds to an optimal parenthesization when applied
to a typical decoding trellis. For decoding a tail-biting trellis, we are interested in

the diagonal elements of the matrix product, but computing the diagonal elements
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separately can cost more in terms of number of operations than computing the full
matrix product. Even in the case of computing the diagonal elements, the number
of operations can be reduced by applying Theorem 4.2.2 to find an optimal order for
the corresponding conventional trellis, instead of straightforwardly using the left to

right order, as in Viterbi’s algorithm.
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Chapter 5 Iterative Min-Sum Decoding
of Tail-biting Codes

By invoking a form of the Perron-Frobenius theorem for the min-sum semiring, we
obtain a union bound on the performance of iterative decoding of tail-biting codes for
both the AWGN channel and the BSC. This bound shows that iterative decoding will
be nearly optimum, at least for high SNRs, if and only if the minimum “pseudoweight”
of the code is at least the ordinary minimum distance. We prove that the minimum
pseudodistance of any 2-segment “pseudocodeword” must be at least the ordinary
minimum distance. Unfortunately, the minimum pseudodistance of a 3 (or more)-
segment pseudocodeword can be less than the ordinary minimum distance. We will
present a tail-biting trellis for the (24,12,8) Golay code which has a pseudoweight

less than the minimum distance of the code.

5.1 Introduction

A tail-biting! trellis is a finite, labeled, digraph in which the vertices are partitioned
into n classes 3¢, X, -+ ,X,-1, each class being indexed by an element of Z, =
{0,1,--- ,n — 1}, the cyclic group of order n. (All index arithmetic is done modulo
n.) If E is an edge, we denote the initial vertex of E by init(E) and the final vertex
of E by fin(E). An edge F must have init(E) € X, and fin(E) € X, for some
k € Z,. The label of such an edge, denoted out(E) (for “output”), belongs to a finite
alphabet Aj. If P is a path, the label of P, denoted out(P), is the concatenation of
the labels of the edges comprising P. We call out(P) the output of the path P. (For

further details on tail-biting trellises, we refer the reader to [14].)

1We have defined a tail-biting trellis in Chapter 4, and we will re-define it here again in order to
use the notations for introducing a tail-biting path and a pseudocodeword.



38

An L-segment tail-biting path P is a trellis path of length Ln for which init(P) =
fin(P). The code generated by the tail-biting trellis is the set of outputs of the one-
segment tail-biting paths. A pseudocodeword is the output of any tail-biting path of
1 or more segments.

A ML decoder would run the Viterbi’s algorithm |¥| times and pick the winner
among them, and an iterative min-sum decoder would start at any state and run the
Viterbi’s algorithm iteratively on the tail-biting trellis.

It is well known that the number of states in a tail-biting trellis may be much
lower than the number of states in any ordinary trellis [59]. Wiberg et al. [70] proved
a square root bound on the maximum state complexity of any tail-biting trellis for
a code, which is lower bounded by the square root of the minimum possible state
size of a conventional trellis at its midpoint. A tail-biting trellis is minimal if the
square root bound is met with equality. In [14], the minimal tail-biting trellis of the
(24,12, 8) Golay code and the (8,4,4) extended Hamming code is constructed.

Because of the remarkable success of the iterative turbo-decoding algorithm [§],
many coding researchers have been focusing on the study of other sub-optimal it-
erative decoding algorithms. Perhaps the simplest such algorithm is the iterative
decoding of tail-biting codes.

We will show that iterative min-sum decoding of a tail-biting code will be effec-
tive if and only if the minimum “pseudoweight” of the code is at least its ordinary
minimum weight. Closely related results (for AWGN channels) were discovered inde-

pendently by Wiberg in his thesis [69] and by Forney et al. in [22].

5.2 Perron-Frobenius Theorem for the Min-Sum
Semiring

In this section we will prove a “Perron-Frobenius” theorem for the min-sum semiring,
which explains the behavior of the iterative decoding algorithm to be presented in

section 5.3 (cf. the usual “sum-product” P.-F. theorem, e.g., [36, Theorem 4.5.12]).
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Let A be an s x s irreducible matrix with entries from R U {o0}, with rows and
columns indexed by {1,2,...,s}, and let G be the corresponding weighted digraph.
Let the (i, j)th-entry of A be the weight of the edge from vertex ¢ to vertex j. Assume
that among all simple closed paths in G, there is a unique one with minimum average
edge weight, and that this “critical cycle” is in fact a self-loop of weight p at vertex
1. (We summarize this condition by saying that A has a “simple eigenvalue.”) We

have the following Perron-Frobenius theorem for the min-sum semiring.

Theorem 5.2.1. For n sufficiently large, with min-sum arithmetic,

A" = p"E.
Here E is a fized s X s “rank one” matriz, i.e., E; ; = z;y;, wherex = (z1,... ,z,) and
Yy = (y1,... ,Ys) are right and left “eigenvectors” of A with corresponding “eigenvalue”

p-

Proof: WLOG, assume p = 0. (Otherwise, we can subtract p from each edge
of A and call the resulting matrix A’ and the weighted digraph G'.)

Let w;; be the minimum weight path from vertex i to vertex j. Note that the
(4,j)th-entry of A" is the weight of the path p;; from vertex ¢ to vertex j with n
edges. Let W(p; ;) denote the weight of the path p; ;.

Consider a path of length n from vertex i to vertex j. If the path contains vertex

1, we have
W(pi;) = wi; + wi;. (5.1)

This bound is achievable if n is sufficiently large. Note that W (p; 1) = 0.

If the path does not contain vertex 1, we can factor the path into k cycles and a
simple path, for some integer k. Let a be the lowest weight of the cycles. Note that
a > 0. Let b be the weight of the simple path. Then we have
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But for large k,

ka+b 2> w;, +wi . (5.3)
b ’J

Thus for n sufficiently large, the least weight path of length n from vertex ¢ to vertex
Jj has weight pn + wj, + wy ;, the (i, j)th-entry of E by w;; + wi;, z; = w;,, and
Y = wij. O

The numbers z; and y; have the following geometric interpretation. If we reduce
each entry in A by p, and if we denote this modified matrix by A’ and the corre-
sponding weighted digraph by G’, then z; is the least weight of any path in G' from

vertex ¢ to vertex 1, and y; is the least weight of any path from vertex 1 to vertex j.

5.3 Iterative Decoding of Tail-biting Codes

The iterative min-sum decoding algorithm for tail-biting codes is discussed explicitly
in [59, 5, 21, 71]. Our view is that it is an application of the Generalized Distributive
Law [3, 1], as applied to a junction graph with just one cycle as shown in Chapter
1. If we represent the local kernels of the single cycle junction graph with matrices,
then message updates become matrix multiplication in the min-sum semiring.

In any case, if y is the received noisy codeword, after a finite number of iterations,
the decoder will “lock on” to the pseudocodeword nearest to y, which is called the
dominant pseudocodeword in [21]. This follows from the min-sum Perron-Frobenius
theorem (alternatively see [71] or [21]). Here the appropriate matrix A has entry
a;; given by a;; = min{p(y|out(P) : init(P) = ¢,fin(P) = j}. A ML decoder will
compute min;{a;;}, since this corresponds to the most likely tail-biting codeword.
On the other hand, an iterative min-sum decoding algorithm will converge after a
finite number of iterations, to the same result, provided A has a simple eigenvalue.
In coding terms, this condition amounts to saying that there is a unique nearest
pseudocodeword to y, which is in fact a codeword. This fact allows us to bound the

probability of decoder error, using the familiar union bound argument.
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5.4 The Union Bound for Iterative Decoding

In this section we restrict attention to binary linear (tail-biting) codes, being used
on a two-input discrete memoryless channel (DMC). A two-input DMC is shown in
Figure 5.1. Note that an additive white Gaussian channel and a binary symmetric
channel can be considered as special cases of a two-input DMC. A BSC is a two-input
DMC with two outputs, and an AWGN channel is a two-input DMC with infinite
number of outputs. We will use the insights gained in the previous section (the
decoder converges to the nearest pseudocodeword) to obtain a union bound on the

decoder word error probability.

0
B
Input Output
Alphabet
1

Figure 5.1: A two-input discrete memoryless channel

Let X = (x3,X2,--- ,Xz) be an L-segment binary pseudocodeword, each segment
x; being of length n: x; = (z;1,Zj2, * , Tjn)-
11 T2 ... Tin X1
Loy 22 ... T2pn X9

X = . . . =

Tr1 Tro2 ... Tpn Xr,
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Let ¢; (the jth column sum of x) be defined to be

L
¢ = E :w”
=1

forj=1,2,---,n

Suppose the all zero codeword 0 is transmitted over a two-input DMC with tran-
sition probabilities p(y|0) and p(y|1), where y € B, the output alphabet. Let the re-
ceived word be y = (y1,¥2, - ,¥n). Giveny, we are interested in the probability that

an iterative decoder will prefer X to the all zero pseudocodeword 0% = (0,0, --- ,0).
L
Let y* = (y,y,---,y) and define
L

P, 2 Priytix} = HP()’Ixi)
HHP(yilwij)a

P 2Pr{y’j0} = []]Ip(:l0).

i=1 j=1

Then an iterative decoder will prefer x to the all zero pseudocodeword 0% if P, > P,.

If we cancel the terms for which z;; = 0, then P, > P, becomes

HP(Z/i]l)c‘ > Hp(y,-]O)c",

=1

which becomes, on taking logarithms,

yzll
Ci log > 0. 5.4
Z yz|0 ( )

If we define the random variable L; as

p(i|1)

Li = lo y
8 p(y:]0)

(5.5)
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the probability that an iterative decoder prefers X to 0F is then

Pr{> L >0} =Pr{L >0}, (5.6)
i=1
where L £ Y0 ¢;L;.
Example (AWGN channel)
Here B is a real line, and each y; has the probability density function (pdf)

N(1;0?). If 0 is transmitted as +1, and 1 is transmitted as —1, we have

1 —(y—1)2
p(y]O) = Wexp (20.2 )

1 —(y +1)?
p(ylo) = Wexp (20.2 )

Then
p(yi|1) 2
L,; og - ——=Yi, 57
pul0) ~ 7 (57)
2 n
L = _ﬁ Zciy,-. (58)
i=1
Since each y; is N(1;02), L; has pdf
2 4
N2 2 (5.9

Hence L has pdf

2 4
N(—= c,-;a—22ci2). (5.10)
=1 i=1
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Thus

Pr{L >0} = Q(#)
_ Q<L (2;1:1932), (511

-9 (J_(_x_)) , (5.12)

where W (X) £ % 1) is the AWGN pseudoweight of X, and Q(t) = (1/v2m) [~ e~*"/2ds.
The AWGN pseudoweight W (X) is called the generalized weight in [69, 22].

For example, the three-segment pseudocodeword (0000) (0101) (0011) has ¢; = 0,
c; = c3 = 1, and ¢4 = 2, so that its pseudoweight is (0+1+1+2)?/(02+12+1%242%) =
8/3. Note that the pseudoweight of an ordinary (1-segment) codeword is the same as
its usually defined weight.

Let C denote the set of all codewords, and P denote the set of all simple pseu-
docodewords (a simple pseudocodeword is one whose underlying path does not pass

through the same vertex twice). The above argument implies a union bound on the

(iterative min-sum) decoder word error probability for an AWGN channel PZ -

P oon < D Q(V/2RW(X)E,/N,), (5.13)
x€P

Pyt v < D Q(V2RW(X)E,/Ny). (5.14)
xeC

(For comparison sake, we have also included here the ordinary union bound on

Pi .+ the maximum-likelihood word error probability.) O

Example (BSC)
Let p(p < 1/2) be the crossover probability of the BSC.
1—p ify=0

P(y|0) = , ,
D ify=1
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P ify=20
P(yl1) = _ -
1—p ify=1
Thus
log-& ify=0
L, = 8ip TV , and
loglizz ify=1

L= log

{ Z G- Y, c} (5.15)

By = iy =0

Since log 1—;—’3 > 0, we have

Pr{L >0} = Pr{ Z ci— Y ¢ >0} (5.16)

iy = i1y, =0

c,#O c; #0
= Pr{z 1%+ > 0}. (5.17)
c,:,éO

For example, the three-segment pseudocodeword (1000) (1100) (1010) has ¢; = 3,
c2 = c3 = 1, and ¢4 = 0. In the table below, we list the possible y vectors such that

SMa1 ¢(—1)¥7! > 0, and we also include its probability Pr {Z”i;lo c;(—1)¥tt > 0}.

y | Pr{¥la a(-1)*"" >0}
(1000) p(1 - p)?
(1100) p*(1-p)
(1010) p*(1 - p)
(1110) P

The error probability corresponding to this three-segment pseudocodeword is p(1 —
p)? + 2p?(1 — p) + p®. Note that the error probability corresponding to an ordinary
(1-segment) codeword is the error probability as usually defined. For example, the
error probability of the codeword (1110) is 3p?(1 — p) + p®.

Define ¢(X, j) to be the number of possible y vectors with |{i : y; = 1}| = j such
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that

n

3 a(-1Ett >o.

i=1
c; #0

For example, the above three-segment pseudocodeword has ¢(X,1) =1, ¢(X,2) = 2,
and ¢(X,3) =1.
Define the BSC pseudoweight W (X) to be

W(X)£2 (a,rg mjin(q(X,j) > 0)) . (5.18)

Thus for example, the BSC pseudoweight of the above three-segment pseudocodeword

is 2.

Define (X) to be the number of nonzero elements in ¢ = (cy,¢a,+++ ,¢n). Then
(X) . '
Pr{L >0} =Y aX,j)p’(1—p)™~. (5.19)
=

Note that for an ordinary code word X, (X) = d, the Hamming weight of the code

word, and
(X) d d\ o Cr g g
Y X, )P (1 -p)® T = Qu = Ertasn ()1 —p)*7 if dis odd
i=1 Qa1 if d is even.

The above argument implies a union bound on the (iterative min-sum) decoder

word error probability on a BSC PL

Epsc-

(X)
PE <3N X )P (- p™, (5.20)
XeP j=1
(X) ' '
PYL <3N X5 (1 - p)® (5.21)
Xel j=1

(Again for comparison sake, we have also included the ordinary union bound on

PEIY;LS o» the maximum-likelihood word error probability.) a
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In general it is not easy to compute the pseudoweight-enumerator for a given code.

However, in the next two subsections we will do so for the (8,4,4) Hamming code.

5.4.1 The (8,4,4) Hamming Code on an AWGN Channel

In [14, section 5.2], an optimal tail-biting trellis for the extended (8,4,4) binary
Hamming code is constructed, with state-complexity profile (2,4,4,4,2,4,4,4). We
have used this trellis to experiment with the iterative min-sum decoding algorithm.
In Figure 5.2, we have plotted the actual performance (bit error probability) of
an ML decoder and an iterative min-sum decoder (five iterations) for the (8,4,4)
Hamming code for E,/N, values ranging from 0 dB to 9 dB in increments of 0.5 dB. We
see no measurable difference in performance, although we know that theoretically the

iterative algorithm is not as good as ML because of the presence of pseudocodewords.

—— union bound w/o pseudocodewords
107 - -~ union bound w/ pseudocodewords : .
o} 0 ML decoding

x x  lterative decoding(5 iterations)

-2 0 2 4 6 8 10 12
Eb/No(dB)

Figure 5.2: (8,4,4) tail-biting Hamming code union bound on AWGN channel.

The pseudoweight enumerator for the (8,4,4) Hamming code, as represented by

the minimal tail-biting trellis from [14], is given in the table below. In the first row is
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the ordinary weight enumerator, i.e., a list of the weights of the codewords (the one-
segment pseudocodewords). In the second row is the pseudoweight enumerator for the
64 two-segment pseudocodewords. (There can be no simple pseudocodewords with

more than two segments, because the trellis has state complexity 2 at two indices.)

pseudoweight |0 1 2 3 4 41 5 6 6% 7 7% 8
WE 1 14 1
PWE 32 30 2

In Figure 5.2, we have plotted the bounds in equations (5.14) and (5.13), using the
data from the table, modified to give bounds on bit error probability. These bounds
are asymptotically equal. This is because the leading term in both bounds is the
same, because the minimum pseudoweight (in this case 4.5) is strictly larger than the

minimum weight (in this case 4).

5.4.2 The (8,4,4) Hamming Code on a BSC

For the same (8,4,4) Hamming code tail-biting trellis as in subsection 5.4.1, there
are 64 pseudocodewords, and the c’s are in one of the following three forms or are a
permutation of these: ¢; = (12121211), ¢, = (01011210), and ¢ = (01211212). The

corresponding ¢(X, j)’s are given in the table below.

jlaX,5) aX,5) aX,j)
w/c, w/ca w/cs
1 0 0 0
2 0 5 0
3 1 10 13
4 35 5 34
5 95 56 21
6 28 0 28
7 8 0 8
8 1 0 0
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Figure 5.3: (8,4, 4) tail-biting Hamming code union bound on BSC.

In Figure 5.3, we have plotted the bounds in equations (5.20) and (5.21), using the
data from the table, modified to give bounds on bit error probability. These bounds
are asymptotically equal. This is because the leading term in both bounds is the
same, because the minimum pseudoweight is the same as the minimum weight of the
code (in both cases 4).

In Figure 5.3, we have plotted the actual performance (bit error probability) of
the ML decoder and the iterative min-sum decoder (five iterations) for the (8,4,4)
Hamming code for values of E},/Ny ranging from 0 dB to 10 dB in increments of 0.5

dB. We see no measurable difference in performance.

5.5 Pseudoweights on an AWGN Channel

Because of the union bound in eqn. (5.13), if the minimum pseudoweight is at least the
minimum weight for a given code, then the performance of iterative min-sum decoding

will be asymptotically the same as ML decoding. The problem remains to find the
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pseudoweights. The following lemma shows that any 2-segment pseudocodeword has
a pseudoweight at least equal to the minimum weight when the 2 segments are not

identical.
Lemma 5.5.1. Let x; and X, be n-dimensional vectors in Euclidean space. Then

[x1|? + |x2|?

> X1 — Xal.
1X1+X2| _| ! 2|

X1+ Xz

Xy X2
Xy
X1 + X2 ~
X1 — Xa
X X1

Figure 5.4: 2-segment pseudocodeword in Euclidean space.

Proof:

2[x1 — xz||x1 +X2’ < |X1 - X2|2 + ]Xl +X2l2,

= 2[x1]* + 2[x3/%,

(See Figure 5.4 for the last equality.) O

Theorem 5.5.2. The pseudoweight of any 2-segment nonzero pseudocodeword must

be at least the minimum weight if the 2 segments are not identical.

Proof:  From the definition of pseudoweight, a 2-segment w(x) can be expressed

as:

|x1)? + |%2|?
|X1 +X2[
> |x; — xaf.
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(the last inequality is by the Lemma 5.5.1). But x; — X, is an ordinary (tail-biting)
codeword, and |x; — Xx3|? is the codeword weight. O

If we assume the tail-biting trellis is “n-observable,” i.e., P can be inferred from
out(P) for paths of length > n, then even if x; = x; the conclusion of Theorem 5.5.2
holds.

Because of the union bound, for tail-biting trellises where the minimum number of
states is 2, by Theorem 5.5.2, the performance of iterative min-sum decoding will be
asymptotically the same as ML decoding. For tail-biting trellises where the minimum
number of states is greater than 2, the 2-segment pseudocodewords are not all the
possible pseudocodewords. However, the pseudoweight of a 3 (or more)-segment
pseudocodeword can be less than the minimum distance. Ko&tter and Vardy have
constructed a class of tail-biting trellises whose minimum pseudoweight is strictly less
than the minimum distance of the code for a 3 (or more)-segment pseudocodeword
[31].

The question of finding the minimum pseudoweight remains. Unfortunatly, the
number of pseudocodewords grows exponentially with the product of the length of the
code and the number of segments. Finding the minimum pseudoweight by searching
over all possible pseudocodewords is infeasible. We use a branch and bound search
to find the minimum pseudoweight. The bound in the branch and bound search is
presented in the next section. In the next example, we use the branch and bound
search to find the minimum pseudoweight for two tail-biting trellises of the (24,12, 8)
Golay code, and we find a 4-segment pseudocodeword whose pseudoweight is 7.36 for

one of the tail-biting trellises.

Example 5.5.1. For the (24,12,8) Golay code, a 16-state minimal tail-biting trellis
is constructed by Calderbank et al. [14], and there also is a 64-state time invariant
tail-biting trellis of the code with generator (1+ D%+ D8 1+ D + D%+ D* + D5) [6].
The encoder for the 64-state tail-biting trellis representation of the code is shown in
Figure 5.5.

For the 64-state tail-biting trellis, using branch and bound, we find a 4-segment

pseudocodeword with pseudocodeword 7.36, which is less than 8, the minimum distance



52

v

la
\]

AN 7N ¥

Fan >
\/ \L/

Figure 5.5: The encoder for the 64-state tail-biting trellis of the (24,12, 8) Golay code.

of the code. The 4-segment pseudocodeword is

00 00 00 00 00 00
00 10 00 00 00 01
10 00 00 00 00 O1
01 01 00 00 00 01

00 00 00 00 11 10
01 00 00 00 10 10
00 00 00 00 01 10
00 01 00 00 01 10

For the 16-state tail-biting trellis, we are able to find the minimum pseudoweights

Jor up to 4-segment pseudocodewords. In the table below, we list the minimum pseu-

dowetghts of the 1-segment to 4-segment pseudocodewords.

Number of Segments

Minimum pseudoweight

1
2
3
4

> 5

8
8
8

9.09
?

The minimum pseudoweights of 5(or more)-segment pseudocodewords are still un-

known, and we conjecture that they are at least the minimum distance of the code.

We have plotted the iterative min-sum decoding performance of both trellises as

well as the ML decoding performance in Figure 5.6. While there is not much difference

between the performance of ML decoding

and iterative min-sum decoding of the 16-

state taul-biting trellis, there is about 0.5 dB difference between ML decoding and

iterative min-sum decoding of the 64-state tail-biting trellis, due to the low weight
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pseudocodeword.

100.' R T :‘vff!'..:..‘ E,'”l“:ff:.':' o T
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x x  lterative decoding(16—state tail-biting trellis) SR 1
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. |
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Figure 5.6: (24,12, 8) tail-biting Golay code performance on AWGN channel.

5.5.1 Branch and Bound Algorithm

Since the number of pseudocodewords grows exponentially with the product of the
length of the code and the number of segments, searching over all possible pseu-
docodewords to find the minimum pseudoweight is infeasible. We present a branch
and bound search here for finding the minimum pseudoweight.

From the definition of pseudoweight, an L-segment w(x) can be expressed as

(Ej ¢;)?
R

B e

w(x) =

For example the two-segment pseudocodeword (1101) (0110) has ¢; = 1, ¢ = 2,
Cg = C4 = 1, |X1‘2 = 3, |X2|2 = 2, and IX1+X2| = \/12+22+12+12 = \/7, Its
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pseudoweight is therefore

(1+2+1+1)2 [3+2)°
12422412412 \ 7 )

Further, we have

ZiL=1 ;| > Zf=1 %[

D= T D -
21;1 |xil2 + Zf:k—}-l |x,-|2
Z?=1 |x:| + Zz’L:k-i—l x| ’

DT Y D Sy
> i= it X 2 23
2 2\Wa=n? T T L-% -k | &%)

where the last inequality follows from the simple calculus fact that

9 Ef:l x| 1 Zf:l %2 _ Zf:l ||
(L — k)2 L—-k L—k

is the minimum of . .
Zi=1 lxil2 + Ei=k+1 lxi|2
A L .
Do x| + Zi=k+1 ||

In view of eqn. (5.23), the pseudoweight of an L-segment pseudocodeword can be

bounded by knowing the first k-segment of the pseudocodeword, for k = 1,2,-.- , L —
1. We then have the following branch and bound searching algorithm.

The branch and bound algorithm proceeds as the follows. For k = 1,-.- L —
1, we find all the k-segment pseudocodewords, and we use eqn. (5.23) to bound
their corresponding L-segment pseudoweights. We disregard those pseudocodeword
branches whose pseudoweights are larger than a preset weight. Otherwise, we keep
the remaining low weight pseudocodeword “branches” and repeat the process with a
k = k+1 on the remaining branches. At k = L—1, if the branch and bound algorithm
does not find a pseudocodeword whose pseudoweight is lower than the preset weight,
then the minimum pseudoweight of the tail-biting trellis is at least the preset weight.

The bound in eqn. (5.23) is weak, so this branch and bound algorithm is compu-
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tationally infeasible for larger L.

5.6 Pseudoweights on the BSC

If the BSC pseudoweight is at least as large as the minimum Hamming weight of
the code, then the iterative min-sum decoder performs asymptotically as well as a
ML decoder. For a 2-segment pseudocodeword we have the following theorem for its

pseudoweight.

Theorem 5.6.1. The BSC pseudoweight of any nonzero 2-segment pseudocodeword

must be at least the minimum weight if the 2 segments are not identical.

Proof: WLOG, rearrange the pseudocodeword fragments x; and x, so that

x; = 1...10...01...10...0,
x, = 1...11...10...00...0,

x;®x; = 0...01...11...10...0,

ni ny
c = 2...21...11...10...0,

ni n2

where c is the column sum (ordinary sum) of the pseudocodeword fragments. Let
dmin denote the ordinary minimum distance. Since x; @ X, is an ordinary codeword,
N2 > dmin. Hence, it suffices to show W(X) > np. There are two cases to be

considered.

Case 1: ny > [22].

W (X)

AV

—(2ny + ny),

No Noy
[21+2.

Y4
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Case 2: n; < [%]. Let integer k be k = @ —n;. Then,

W (X)

2n1+( 2

1
—nl) Z 5(2n1+n2),

W(X) S5 ™
2 - 2

Again, the BSC pseudoweight of a 3 (or more)-segment pseudocodeword can be
less than the minimum distance of a code. In particular, the 4-segment pseudocode-
word of the 64-state tail-biting trellis for the (24, 12, 8) Golay code in section 5.5 has a
pseudoweight of 6. For the 16-state minimal tail-biting trellis of the Golay code, there
are 3-segment and 4-segment pseudocodewords whose minimum BSC pseudoweights
are less than 8. For example, the following 3-segment pseudocodeword has BSC

pseudoweight 6.

00 00 00 00 00O 00 00 00 00O 00 00 11
01 00 01 00 00 01 00 01 00 01 00 11
00 00 01 10 10 00 00 01 00 00 01 11

5.7 Conclusions

Because of the union bound, if the minimum pseudoweight is at least the minimum
weight, then the performance of iterative min-sum decoding will be asymptotically
the same as ML decoding. For a tail-biting trellis with a minimum state complexity of
two, its pseudoweight will not be less than the minimum weight of the code. However,
this is not true for a tail-biting trellis whose state complexity is three or more, and
its minimum pseudoweight may depend on the structure of the tail-biting trellis.
For the (24,12, 8) Golay code, while the 64-state tail-biting trellis has a low weight
pseudocodeword, we conjecture that the minimum AWGN pseudoweight of the 16-
state minimal tail-biting trellis is at least the minimum distance. The bound in
our branch and bound algorithm is weak, so the branch and bound algorithm is
computationally infeasible for finding minimum pseudoweight of a tail-biting trellis

whose minimum state complexity is large. It remains a challenging problem to come
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up with a practical algorithm for computing the minimum pseudoweight.
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Chapter 6 Iterative Min-Sum Decoding
of Cycle Codes on BSCs

Cycle codes are LDPC codes in which each codeword bit is checked by exactly two
parity checks. In this chapter we will study the behavior of iterative decoding on
Tanner graphs for cycle codes. We will present a union bound for an iterative min-
sum decoder word error probability over a binary symmetric channel, and we will
show that an iterative min-sum decoder performs asymptotically as well as a ML

decoder at high SNRs using the union bound argument.

6.1 Introduction

Cycle codes were introduced by Gallager [25] as a special type of low density parity
check (LDPC) codes in which each codeword bit is checked by exactly two parity
checks. He proposed a simple hard decision iterative decoding scheme on a BSC.
In his decoding scheme, the decoder first makes a decision on each codeword bit,
then computes the parity checks and changes any codeword bit that is contained
in more than a fixed number of unsatisfied parity checks. The process is repeated
using the changed codeword bits. For a k-regular cycle code!, Gallager showed
that the error probability at the ¢ + 1 iteration p;.; obeys the recursion p;y; =
P—p [L—z”')—k:] +(1-p) [1;;(1;_3&)_";1} , where p is the crossover probability of the
BSC. It is easy to see that p; — % as ¢ — 00. (This result can be easily extended to

an irregular cycle code?.) Note that for cycle codes, this decoding scheme is worse

than no coding.

LA k-regular cycle code is a cycle code where each check checks k codeword bits.

?Gallager’s analysis applied to the family of regular LDPC codes whose graphs have infinite girth.
Luby et al. [38] extended Gallager’s work to irregular LDPC codes whose underlying graphs have
short cycles. Richardson and Urbanke [57] extended the analysis further to include belief propagation
decoding.



59
Gallager also proposed a belief propagation decoding (iterative sum-product type
decoding) scheme. He stated that this decoding scheme “decodes with a lower error
probability,” but studies have not been done on what the lower error probability is
for cycle codes. Recently, Wiberg analyzed the iterative min-sum decoding of cycle
codes and proved a necessary condition for a decoding error [69, 70].
We will extend Wiberg’s analysis and show that the iterative min-sum decoder is

nearly as good as a ML decoder by using a union bound argument.

6.2 Message Passing on Tanner Graphs

A cycle code is a LDPC code where there are exactly two ones in each column (the
number of ones in each row is not fixed) of its parity check matrix. For example, a

(7,3, 3) cycle code has the following parity check matrix H:

U1 V2 U3 Vs Us Vg Ur
¢ (1 0 0 1 0 0 o)
el0 1 0 1 1 0 o0
H=¢lo0o 1 0 0 0 1 1| (6.1)
a0 0 1 0 0 0 1

c5\1010110)

Note that the last row in H is the sum of all the other rows. The parity matrix has
redundancy in it.

We have labeled row i of H by c; and column j of H by v;. If we consider H as
a incidence matrix where a 1 in the (¢, j)th entry of H indicates a connection from
vertex c; to vertex v;, we obtain the so called Tanner graph as shown in Figure 6.1.
(The Tanner graph can also be obtained as a special type of junction graph as shown
in Chapter 1.)

Each vertex v; corresponds to a code bit, so we call it a codeword node. Also we

call a vertex c; a check node in a Tanner graph.
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Figure 6.1: Tanner graph of the (7,3,3) cycle code whose parity matrix is given in
eqn. (6.1). Codeword nodes and check nodes are labeled by v;, ¢ € [n], and c; respectively.

We will analyze the iterative min-sum message passing on the Tanner graph of
a cycle code. It is well known that for cycle free graphs, message passing results in
a ML or a MAP decision [42, 3, 23, 53|. However, message passing is known to be
suboptimal for graphs containing cycles, such as the Tanner graph of a cycle code.
Nevertheless, there is a large body of empirical evidence illustrating the excellent
performance of message passing algorithms on graphs with cycles [58, 50]. In fact,
we will show that an iterative min-sum decoder performs asymptotically as well as a

ML decoder at high SNRs.

6.2.1 Message Passing Algorithms

The channel model we consider is the memoryless binary symmetric channel. The
binary codeword vector x = (zy,-,&,) is transmitted across the channel and re-
ceived as a vector y = (y1,--- ,¥yn). Each z; corresponds to a codeword node v; in
the Tanner graph.

The class of message passing algorithms which we consider is described as follows.
Each codeword node v;,i € [n], has an associated channel output y;. One iteration
of message passing consists of the following two steps. First, each codeword node
sends a message to each neighboring check node c;. Then, every check node ¢; sends

a message to each neighboring codeword node v;.
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The message from codeword node v; to check node c; along the edge e := (v;, ¢;)
depends on the received y; and all the incoming messages from the edges connected
to v; except the one along edge e. The message from a check node ¢; to a codeword
node v; along the edge e := (c¢;,v;) depends on all the incoming messages from the
edges connected to c; except the one along edge e. The requirement of excluding the
incoming message along the edge e is an important property of good message passing
algorithms; in turbo coding terminology, it says that only the extrinsic information
is passed. The detailed message updating rule is described in Chapter 1, in which we
view it as an instance of the Generalized Distributive Law.

After some iterations, the decision (0 or 1) of each node in the Tanner graph is
based on the state of the node, which depends on all the messages incident on the

node and the channel received value associated with the node if it is a codeword node.

6.2.2 Computation Trees and Deviations

By examining the message updates that have occurred after a fixed number of itera-
tions, we can trace back recursively the computation of the messages to a codeword
node v; and all the messages which in term depend on these messages. This trace
back has the form of a tree which consists of the codeword nodes and check nodes
interconnected in the same way as the original Tanner graph. Such a tree is called a
computation tree for codeword node v;, and the codeword node v; is the root of the
tree.

Figure 6.2 shows a computation tree for codeword node v; for the (7,3,3) cycle
code of Figure 6.1 after 2 iterations of message passing. When walking down the

tree towards the leaves?®

, we will encounter check nodes and codeword nodes in the
previous iteration until we are at the leaves where the message passing begins. In
general, codeword nodes and check nodes appear many times in the computation tree.
For example, codeword node v; occurs three times in Figure 6.2, and this implies that

the information from v, would be counted three times if a decision for v; were made

3The leaves are always codeword nodes.



62

Figure 6.2: The computation tree for the (7, 3, 3) cycle code of Figure 6.1 after 2 iteration
of message passing.

after 2 iterations.

Assume the all zero codeword is transmitted, Wiberg [69] defined a deviation as
a locally consistent set of codeword nodes and check nodes in the computation tree
with the root node being one. Since each codeword node is checked by two check
nodes, the deviation of a cycle code is a walk starting from a leaf codeword node,
going through the root node, and ending in another leaf codeword node, with all the
codeword nodes having the value one.

Deviations play the role of error events in the iterative min-sum decoding. Wiberg
[69] analyzed the deviations and showed that a necessary condition for an iterative
min-sum decoding error to occur after sufficiently many decoding iterations is that
there should be a non-cycle irreducible closed walk. A non-cycle irreducible closed

walk is defined in the following section.

6.3 Iterative Min-Sum Decoding of Cycle Codes

In this section, we will prove that the pseudoweight of a non-cycle irreducible closed
walk (NCICW) is at least as large as the minimum distance of the code. Using a
union bound argument, we will show that an iterative min-sum decoder performs as
well as a ML decoder at high SRNs.

First, we will use the definitions from Wiberg [69] to define a NCICW.
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Definition. A walk is a sequence of codeword nodes vi,vs,- -+ corresponding to a
connected sequence of alternating codeword nodes and check nodes on the Tanner

graph such that same edge is never utilized twice in a rou?.

Definition. A closed walk is a finite walk vy - - - v, such that the concatenating of the

walk with itself, i.e., vy, -+ ,Vp, 01, ,Un, 15 also a walk.
Definition. An reducible walk vq,vs,- -+ is a walk such that, for some i and some j >
i, the segment vy, - - - ,v; is a closed walk and the remaining part vy, - - ,v;_1,V;41,* ,

is still a walk; An irreducible walk is a walk that is not reducible.

Definition. A cycle is an irreducible closed walk in which every codeword node is

distinct; a NCICW is an irreducible closed walk which is not a cycle.

Note that cycles and disjoint union of cycles are the codewords of a cycle code.
If all the possible errors were the errors made by cycles, then an iterative min-sum
decoder would perform as well as a ML decoder. However, decoder error can also
made by NCICWs, and NCICWs play the same role as pseudocodewords in the
iterative min-sum decoding of tail-biting codes. We will examine the pseudoweight

of a NCICW in the following subsection.

6.3.1 Pseudoweight of a NCICW

Before we will examine the pseudoweight of a NCICW, we will need the following

lemmas.

Lemma 6.3.1. Wiberg [69, Lemma 6.3] No codeword node occurs more than twice

i an irreducible closed walk.

Lemma 6.3.2. Wiberg [69, Lemma 6.4] Any NCICW contains at least two cycles

which may be partially overlapping, or disjoint.

4This requirement follows from the updating rule of message passing where the incoming message
from the same edge is excluded from the computation of the outgoing message of the edge.
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Let p = (p1,--- ,pr) be a NCICW of length L, and let ¢; be the number of times
a codeword node v; appears in p for i € [n|. Let the definition of pseudoweight be
the same as that of a pseudocodeword for tail-biting codes. Define ¢(p,5) to be the

number of ways of choosing j of y; = 1 such that

Z i — Z ¢ = 0. (6.2)

iryy=1 iry; =0
c; #0 c; #0

Define
i := arg min(g(p,1) # 0). (6.3)
Define the pseudoweight of a NCICW w(p) to be
w(p) = 2. (6.4)

Let d be the minimum distance of a cycle code. Let a be the number of codeword
nodes which occur once and let b be the number of codeword nodes which occur twice

in the NCICW p.
Lemma 6.3.3. a > d.

Proof: By Lemma 6.3.1, if the two cycles in a NCICW are disjoint, then
a > 2d because d is the length of the shortest cycles. Now suppose the two cycles
in a NCICW are partially overlapping. It is impossible for the two cycles to share
> ‘2—’l vertices because otherwise a cycle of length < d can be constructed using the

unshared vertices. Thus, the two cycles can share only < g vertices, and a > d.

O
Lemma 6.3.4. Every NCICW p has w(p) > a.

Proof: There are two cases to be considered.
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Case 1: b > [£].

1
w(p) > 5(a+2)
a .a
> - =1.
2 5t [ 2]
Case 2: b< [§].
1
2b+ (9—;—)—) -b) > §(a+ 2b),
wip) o a .
2 T2
Theorem 6.3.5. Every NCICW p has w(p) > d.
Proof: By Lemma 6.3.4 and Lemma 6.3.3. a

Definition. A bad NCICW is a NCICW which contains two disjoint closed walks

connected by a path on which each node is visited twice.

In [27], Horn showed that a necessary condition for an iterative min-sum word error
to occur is that there has to be bad NCICWs, and he showed that the pseudoweight
of a bad NCICW is at least 2d on an AWGN channel. We have the following theorem
for the pseudoweight of a bad NCICW on a BSC.

Theorem 6.3.6. Every bad NCICW p has w(p) > 2d on a BSC.

Proof: By Lemma 6.3.4, w(p) > a, so it suffices to show a > 2d. If the two
closed walks in p are cycles, then a > 2d. If one of the closed walk is a NCICW, let
the number of codeword nodes which occur once in this closed walk be a;. Then by
Lemma 6.3.3, @’ > d. Thus, a > (a; + d) > 2d. Similarly, if both the closed walks
are NCICW, let a;, a; be the number of codeword nodes which occur once in the two

NCICWs, respectively. Then a > a; + a2 > 2d. a
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6.3.2 The Union Bound for Iterative Min-Sum Decoding

In this section we will state without proof ® a union bound on the performance of
iterative min-sum decoding of cycle codes for the BSC.

Let P denote the set of NCICWs, and let C denote the set of cycles and disjoint
union of cycles.

Recall if p = (p1,- - ,pr) is a NCICW of length L, then ¢; is the number of times
a codeword node v; appears in p for ¢ € [n]. For a BSC, the union bound for an

iterative min-sum decoder word error probability PEL_ is

EBsc = Z Zq P, ) )<p> ) (6.5)

pEPUC i=1

where (p) be the number of nonzero elements in ¢ = (cy,cp,-++ ,¢,). For a ML

decoder, the standard union bound for the word error probability PEB o 18
P <> Zq p,i)p'(1 - p)® . (6.6)
peC i=1

Note, for a codeword p, with (p) = ¢, the ordinary weight of the codeword, and

%q(P ' (1-p)P 7 =Q, = Yy ()P (L=p)*" if dis odd,

Qi1 if d is even.

Since the minimum pseudoweight of a bad NCICW is at least 2 times the minimum

distance of the cycle code, these two union bounds are asymptotically equal.

6.4 Conclusions

For a cycle code, because the minimum pseudoweight of a bad NCICW is as least

2 times the minimum distance of the code, the performance of iterative min-sum

STt is the same proof as the union bound on the performance of iterative decoding of tail-biting
codes in Chapter 5.
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decoding will be asymptotically the same as ML decoding.
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Chapter 7 Analysis of RA Codes under

Message-Passing

In [16], a class of rate 1/q serially concatenated turbo codes, where the outer code
is a g-fold repetition code and the inner code is a rate 1 convolutional code with
transfer function 1/(1 + D), is constructed. As the block length approaches infinity,
the ensemble (over all possible interleavers) maximum likelihood error probability of
this class of RA codes approaches zero if E, /Ny exceeds some threshold over AWGN
channels. For ¢ = 3, the threshold is no less than 0.792 dB.

The paper by Richardson and Urbanke [57] provides a general approach for deter-
mining the capacity of belief propagation decoding for low density parity check codes.
By representing RA codes with appropriate Tanner graphs, we extend the analysis
of [67] to RA codes, and we obtain the “threshold” values for belief propagation de-
coding of RA codes. If E;,/N, exceeds the threshold, the belief propagation decoding
error probability approaches zero; whereas for E,/Ny below the threshold, the error
probability stays bounded away from zero. For ¢ = 3, the threshold is 0.776 dB on
AWGN channels.

For ¢ = 3 RA codes, with an information block length of 16, 384, simulated per-
formance using belief propagation decoding is very close (< 0.8 dB) to the threshold

value [16, Figure 5].

7.1 Introduction

Many innovative variations of turbo codes (parallel concatenated codes) have been
discovered [9, 11, 12, 15, 26, 56] since the discovery of turbo codes in 1993.
The turbo decoding algorithm is now known to be an instance of Pearl’s belief

propagation algorithm [53] in [42, 33], and so is the decoding algorithm of another class
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of capacity achieving codes, the low-density parity-check (LDPC)codes [25, 48, 49, 50].

It is well known that for cycle free graphs, belief propagation decoding results
in a ML or a MAP decision [42, 33]. However, the best graphical representations
of turbo and LDPC codes contain cycles. It is well known that belief propagation
decoding on graphs with cycles is suboptimal. Nevertheless, there is a large body of
empirical evidence illustrating the excellent performance of belief propagation decod-
ing on turbo and LDPC codes. While a satisfactory theoretical explanation of why
the belief propagation decoding algorithm performs as well as it does is still lacking,
determining the channel threshold value 6* [57] of belief propagation decoding sheds
some light. A threshold value §* has the following properties: for a channel with
parameter § < 6%, as the length of the code approaches infinity, almost all codes have
error probability approaching zero (in the limit of the number of iterations tending
to 0o0). Conversely, if § > ¢*, the error probability is bounded away from zero.

In [25], Gallager suggests a natural decoding algorithm and proves a good lower
bound on the fraction of errors that can be corrected if the underlying graphs of
regular LDPC codes® have no short cycles. While in practice LDPC codes are chosen
in random, this analysis does not apply to such codes directly because a randomly
chosen code may have short cycles.

Luby et al. develop an analysis that applies to randomly chosen LDPC codes?
in [38]. Their analysis can be summarized in the following three steps. Step one:
assume the underlying graphs have no short cycles and apply Gallager’s analysis to
estimate the expected fraction of errors at each iteration. Step two: construct a
martingale and apply Asuma’s inequality [47] to show that at most a fraction «/n of
all edges participate in cycles of small length for a randomly chosen code with length
n. Consequently, for a randomly chosen graph and a randomly chosen input, with
probability close to 1, the fraction of incorrect messages passed at the I-th decoding
step is within € > 0 of the estimated value. Step three: another algorithm, such as

the one proposed by Spielman and Sipser [62], is used to correct the remaining errors

In its original form, a LDPC codes has j ones and k ones respectively in each row and each
column of the parity check matrix, and it is called a (j, k) regular LDPC code.



70
once the fraction of incorrect messages has been reduced to €.

Richardson and Urbanke [57] extend the first step in Luby et al.’s analysis to a
broad set of message passing decoding algorithms, which include the belief propaga-
tion algorithm. They provide an algorithm to determine the threshold value of belief
propagation decoding on LDPC codes.

We represent a special family of serially concatenated turbo-like codes, namely,
the repeat and accumulate (RA) codes, by appropriate Tanner graphs. We extend the
analysis of [57] to RA codes and obtain the threshold values under belief propagation
decoding.

The rest of the chapter is organized as follows. Section 2 briefly introduces RA
codes. Tanner graph representations of RA codes are given in section 3. In section 4,
we will apply Gallager’s hard decision decoding algorithm to RA codes over a BSC,
and we will show that this decoding algorithm is worse than no coding. In section 5,
we will extend the analysis of [57] to RA codes, and we will present an algorithm to

determine the threshold value of RA codes under belief propagation decoding.

7.2 RA Codes

In [16], a class of serially concatenated turbo codes [12], called repeat and accumulate
(RA) codes is constructed. The encoder for a (¢, N) RA code is shown in Figure
7.1. An information block U = (uy,--- ,uyn) of length N is repeated ¢ times and
output as a length gV sequence X = (z1,--- ,z4v). The X block is permuted by a
qN x gN interleaver, and the output of the interleaver X' = (z},--- ,z,y) is them
encoded by a rate 1 accumulator with transform function 1/(1 + D).

It is shown in [16] that as the block length approaches infinity, the ensemble (over
all possible interleavers) RA code maximum likelihood error probability approaches
zero if Ey /N, exceeds some threshold 7. The proof technique is to derive an explicit

expression for the ensemble input-output weight enumerator, using the uniform in-

2This analysis is extended to irregular LDPC codes as well, which are proposed by Luby et al.
and MacKay et al. Empirically, irregular LDPC codes have better performance than the regular
LDPC codes [58, 51, 50, 37, 38].
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N rate 1/q gN gN rate 1 gN
P> repetition > P e /(1+ D) "

U= (u1, - ,un) X = (21, ,2gN) X' = (2}, 2 y) Y = (y1, »vgn)

Figure 7.1: Encoder for a (¢N, N) RA code.

terleaver technique [10]. This expression for the input-output weight enumerator, in
combination with either the classical union bound, the union bound of Viterbi and
Viterbi [68], or the recent improved geometry bound of “simplified Gallagar’s bound”
[18], [16] is used to show that the maximum likelihood word or bit error probability
approaches zero as N — oo.

[16] lists the threshold -y for RA codes with ¢ in the range 3 < g < 8 using both
the classical union bound and the Viterbi-Viterbi union bound. In particular, for
q = 3, the classical union bound gives v = 2.200 dB, whereas 7 improves to 1.112
dB using the Viterbi-Viterbi union bound. [16] points out that these values of v, are
by no means the best possible, and it is conjectured that they can be reduced further,
for example by using the bound of [17]. In fact, o improves to 0.792 dB using the

recent improved geometry bound of “simplified Gallagar’s bound” [18].

7.3 Tanner Graph Representations of RA Codes

A Tanner graph [64, 69] G = (V, E) is a bipartite graph consisting of a set of message
nodes V,, and check nodes V,, where V = V,, UV, with V,, NV, =0 and E C V,, x V..

The inner code of a RA code, the accumulator, can be viewed as a truncated
rate-1 recursive convolutional encoder with transfer function 1/(1 + D). But we
prefer to think of it as a block code whose input block (z;,--- ,z,) and output block

(y1,-*- ,yn) are related by the formula
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z! ifi=1,
Y = (71)
T, ®y;—; otherwise.

Figure 7.2 shows a Tanner graph for a ¢ = 3 RA code (with identity interleaver).
The outer repetition code is represented by the connection from information nodes
to check nodes, whereas the inner code is represented by the connection from check
nodes to code nodes given by eqn. (7.1). In these Tanner graphs, the message nodes

consists of information node V,,» and code nodes V,,,, i.e., V;, =V, U V,,.

U X Y
O
m} Information node
® Check node
o
7
N o] Code node
o
]
)
.

Figure 7.2: Tanner graph of a ¢ = 3 RA code (with identity interleaver). The outer
repetition code is represented by the connection from information nodes to check nodes,
whereas the inner code is represented by the connection from check nodes to code nodes
given by eqn. (7.1).

In the rest of this chapter, we will denote an information node by m/,¢ € [n/q], a

code node by m;, and a check node by ¢;, j € [n].
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7.4 Gallager’s Algorithm Applied to RA Codes

In this section we will apply Gallager’s hard decision decoding algorithm to RA codes
over a BSC, and we will analyze the error probability of RA codes using this decoding

algorithm.

7.4.1 Gallager’s Decoding Algorithm

Gallager’s hard decision decoding algorithm for decoding a (j, k) regular LDPC code
is as follows. First the decoder computes all the parity checks and then changes any
message node that is contained in more than some fixed number of unsatisfied check
nodes. Using the new value on the message nodes, the parity checks are recomputed,
and the decoding process is repeated until all the parity checks are satisfied.

Gallager’s decoding is reasonable because most of the parity check nodes will
contain either one transmission error or no transmission errors. Thus, there is a
strong indication that a message node is in error when most of the parity checks by
which the message node is checked are unsatisfied.

Gallager show that an arbitrarily small error probability for a rate 1/3, (4,6)
regular LDPC code is achievable if the crossover probability of the BSC is < 0.075.

7.4.2 Analysis of Gallager’s Decoding Algorithm Applied to
RA Codes

Consider the following modification of Gallager’s algorithm for decoding a rate 1/q
RA code. The decoder first computes all the parity checks, and it changes any code
node that is contained in one of unsatisfied parity check nodes and any information
node that is contained in (¢ — 1) of the unsatisfied parity check nodes. Using the new
value on the information nodes and code nodes, the parity checks are recomputed,
and the decoding process is repeated.

We now determine the probability that a code bit is in error when applying this

decoding procedure assuming that the underlying graph (Figure 7.2) is cycle free.
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Let the probability of a code node received in error be 0 < P, < 1/2. Since
information nodes are not transmitted, we will assume that the probability of an
information node received in error is Py = 1/2. Let the error probability of a code
(an information) node in the ith round of decoding be denoted by P; (P;).

A check node which constrains a code node received in errors will be unsatisfied
if and only if an even number (including zero) of errors occur among the other code
node and the information node which is incident on the check node. The probability

of such an event is
1+ (1 -2PR)(1 - 2F)
5 .

By the same reasoning, the probability that a code node is received correctly but is

changed because of an unsatisfied check node is

(1-PR) [1 —(1—-2P)(1 - 2P6)] .

2

Thus, the error probability, P;, of a code node in the first round of decoding is

P=h - P0[1+(1‘2P0)(1—2P5)]

2
1-—(1-2PF)(1-2F)
]

+ (1—P0)l

By induction, after the ¢th round decoding, it is easy to show that P, ; is

Py = FB-F 5

1-(1-2P)(1— 21’,-')]

[1 +(1-2P)(1 - 21’,-’)]

+ (1-B) [ i
|~ (1—2P)(1 - 2P))

2
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By the similar reasoning, P/, is

1+(1- 2131-)2]‘*"1
2

Pz"+1=P6 - Pc;{

(7.3)

+ (=R [1—(1;21»,.)2}4—1'

By substituting eqn. (7.3) into eqn. (7.2), P;;; becomes
1 1+(1-2P)*]"" [1-(1-2P)?]""
Py = 5{1—(1*23){[i*§—)] _[ (2 )] .

Thus

1 .
Py — 3 as 1 — 00.

The code node error probability approaches 1/2 if we use Gallager’s decoding
algorithm, regardless of the channel crossover probability. This intuitively makes
sense because we assume information nodes with probability 1/2 being received in
error. Thus a lot of check nodes will contain more than one transmission error, and
there is no strong indication that a message node is in error when most of the check
nodes checking on that message node are unsatisfied. Hence, the decoding algorithm
breaks down.

Gallager’s decoding algorithm is a bad idea for decoding RA codes on a BSC

because it is worse than having no decoding at all.

7.5 Belief Propagation Decoding of RA Codes

In [57], Richardson and Urbanke present a general method for determining the ca-
pacity of message passing decoding applied to LDPC codes over any binary input

memoryless channel in the following two steps.

1. Assuming that the code is cycle free, determine the average over all decoder
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inputs behavior of the decoding algorithm. Assuming that the channel is char-
acterized by one real parameter, determine the threshold value below which the
expected fraction of decoding error converges to zero as the number of iterations

grows.

2. A general concentration theorem showed that for almost all codes and almost
all inputs the decoder behaves within ¢ of the expected behavior. From this
concentration theorem it follows that (when the code length n is sufficiently
large) almost all codes can transmit reliably up to the threshold value, but that
the error probability stays bounded away from zero when code transmit above

the threshold value.

We will extend the analysis in step 1 to RA codes.

7.5.1 Message-Passing Algorithms

Denote CZ to be the ensemble of n! RA codes of length n and repetition ¢ (see Figure
7.1). We asumme that a permutation is chosen at random with uniform probability.
We can also visualize the ensemble CI to be generated in the following manners.
Label the n edges incident to the information nodes and the n check nodes in Figure
7.2 separately with the set [n] := {1,2,--- ,n}. Pick a permutation 7, at random.
An edge i is then connected to check node m,(%), ¢ € [n]. Note that the connection
between a check node and a code node does not change in the Tanner graph Figure
7.2 regardless of the permutation chosen.

Code nodes are transmitted to a channel with output alphabet O. Information
nodes are not transmitted, so we assume them to be transmitted to a separate “very”
noise channel with output alphabet O'. We will assume that the channel output
alphabets are equal to the decoder input alphabets for the two channels.

The class of message-passing algorithms which we consider is the following. Every
code node m;, i € [n] has an associated received value R;, which is a random variable
taking values in the channel output alphabet O; every information node m}, i €

[n/q] has an associated received value R} which takes values in O'. An iteration of
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message-passing consists of the following steps. First, each code node m; sends to
each neighboring check node ¢; a message taking values in some message alphabet M,
and every check node c; sends to each neighboring information node m; a message
taking values in the message alphabet M'. Then, each information node m] sends
to each neighboring check node ¢; a message in M’, and each check node ¢; sends to
each neighboring code node m; a message in M.

The message from code node m; (or information node m}) to check node c; along
the edge e := (m;, ¢;) (or e := (mj,c;)) depends on the received value R; (or R;) and
all the incoming messages from the edge connected to m; (or m/) except the one along
the edge e. The message from a check node ¢; to a code node m; (or an information
node m;) along the edge e := (c;j,m;) (or e := (¢;,m}) ) depends on all the incoming
messages from the edge connected to c; except the one along the edge e. The detailed
message updating rule is described in Chapter 1 where we view it as an instance of
the Generalized Distributive Law (GDL).

The message sent from a node along an edge e is required to exclude the message
received along the edge e. This requirement of excluding the incoming message along
the edge e is an an important property of good message-passing decoding. Most
importantly, this requirement and the assumption that the code is cycle free ensure
that messages are independent and make the analysis in subsection 7.5.2 possible.
Belief propagation is one such message-passing algorithm.

To picture the decoding process, consider an edge e := (m/, ¢) between an infor-
mation node m’ and a check node ¢, and an associated computation tree describing
a neighborhood of m' as shown in Figure 7.3. This tree is rooted at m’. The tree
branches out from all the check nodes of m’ excluding ¢. We will assume that the

neighborhood of m' is a tree for some fixed number of iterations.

7.5.2 Notations

Let d,, = 2 denote the degree of a code node,
let d. = 3 denote the degree of a check node, and



Check node

-0

Message node

Check nodes

Message nodes

Check nodes

Message nodes

Figure 7.3: Computation tree of a ¢ = 3 RA code after one iteration.

let d,,y = q denote the degree of an information node.

For the I-th iteration, let Mcoge seheck[l] : O x M~ — M, | > 1, denote a code
node to a check node message map,

let Meheck—sinfoll] : M%™1 — M’ 1 > 0, denote a check node to an information node
message map,

let Mintoschect|l] : O' x M’ dm =1 5 M , 1 > 1, denote an information node to a check
node message map, and

let Mheck—codell] : M/ x M — M, [ > 0, denote a check node to a code node message
map.

Furthermore, let Mcoge—scheck[0] = M2 4o chee : O — M denote the initial code node
to a check node map, and

let Minfoscheck[0] = M : 0" — M’ denote the initial code node to a check

info—scheck

node map.

Let II4 denote the space of probability densities over any given set A.

We are interested in the evolution of message distributions during the execution
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of the decoding algorithm. To this end, we define the following maps

Mcode-—)check [l] : H(’) X Hc/l\;tn_l - HM7
check—nnfo[l] . Hf/i\c/{-l - HM'

1—1
mfo——)check[l] . HO' X H Vi -7 HM’) and

Mcheckﬁcode[l] ¢ I x HM — HM

Note that M_5. .. .[1[qg] is the set of all inputs (go,q1,- " - ,qa,—1) to a code node at
step [ that get mapped by the decoder to output ¢q. Further, by the cycle free assump-
tion, the probability density of the input being (go,q1, "+ ,q4,._1) is Hfﬁ‘ Y P(q:).
Thus

Meogescheci 1) (Po, Pr, - - - yPa,—1)(q) =
dm—1

Z{ H Pi(¢): (90,91, 1 qan-1) € Mode—)checlc[l]( )}

where Py is a probability density over O and P, --- , P; _; are probability densities
over M. Similarly,

Mcheck—-)info[l](Pla e )Pdc——l)(Q) =

de—1
Z { H P qz - q17 ‘ 7Qdc—1) € Mc_}ztlack%info[l](q)} s

Minfoacheck[l] . (P(;7P1,a e Pé r— 1)(Q) =
di—1

Z H Pl Qz . q07q17 o ’q;m,—l) Mzn}o——-)check[l](q) ) and

Mcheck-»code[l] : (Pll, Pl)(‘]) = Z {H PIIPI : (q;’ QI) € Mc?zick—-)code[l](q)} ’
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where P} is a probability density over O’ and Py, - - - ,Pﬂ’lm,~1 are probability densities
over M.
We will describe an efficient way of evaluating the density evolution in the following

subsection.

7.5.3 Evaluation Density Evolution

Let the two pairs of non-negative reals (p;,po) and (p}, pp) satisfying p; +po =1 and
Py + pj = 1 be a probability density on a code node and an information node, re-
spectively. We will assume that log % (log likelihood ratio) messages are being used.
After receiving its messages, a node transmits to each neighboring node the condi-
tional distribution of the message node conditioned on all information not coming
from that particular neighboring node. We also assume that the code is cycle free in
this stage of the analysis.

If 13,1y, - - , I are likelihood ratios of conditional distributions of a given bit value
conditioned on independent random variables, then the likelihood ratio of the node

conditioned on all of the random variables is Hz 1 li- Therefore, we have

dm—1
Mcode——)check (mO, miy---, mdm—l E myq,
=0
di—1
M; (mg, my, - m;.
info—check (IERALS B) m, 1
=0
Given the distributions Py, -+ , P4, -1 and Py,--- ,P; _; on the real quantities
mo,-++ ,Mgq, 1, and mg,- -+ ,m};  _, respectively, it follows that the distributions of
m

' ' /
Mcode—}check (mO, My, -, mdm~1) and Minfo—-)check (mOa My, 7mdm,—1) are the convo-

lutions of those distributions, i.e.,

Mode—scheck(Po, Py Pap—1) = Po® PL® -+ ® Py, 1,
Minfo—)check(P(;)P{, e 1Pém—1) = P(; ® P1, - ® Pa,lm—l,
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where ® denotes convolution. Let F denote the Fourier transform. We then have

Mcode—%check(PO’ Pl) e 7Pdm—1) = -7:_1 (j:(PO)f(Pl) e f(Pdm—l)) )
Minfo-*check(Pé’P{’ e )Paltm—l) = F—l (f(P(’))}-(Pll) ot 'f(Pc’lm—l)) .

Let us consider the distribution of a message send from a check node c¢; to an
information node m;. There are d. — 1 independent incoming messages log%% along
the edge (excluding e) incident on ¢;, then the outgoing message along edge e is log i—%,
where pf, (or p}) is the probability that the product of these incoming messages has
value 0 (or 1). The value pf, (or p}) is the probability that the mod 2 sum of the

(d. — 1) independent random variables is equal to 0 (or 1).

Claim 1. The probability vector (po, p1) is given by the cyclic convolution of the (d.—
1) probability vectors (pk,p%), for k € [d. — 1].

Proof: = We will only prove the d. = 3 case here. The extension to d. > 3 is

straightforward but lengthy. Let ® denote cyclic convolution, then

(ps,p1) & (P, P%)
= (pepi + pip2, Pop: + Pip})

= (pOapl) o

Claim 2. Let P denote the probability distribution of the parity check which checks

bits with distributions p*, for k € [d. — 1]. Then Py — P, = HZ‘;I (pk — p*).

Proof:
F(P)(0) ( P ) 1 1
F(P)(1) AR W T

PB+P
P—-P
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Then,

(F(P)(0), F(P)(1) = ] (F*)©0),F6")(1)

de—1

r-pP = [[65-5).
k=1

Notef(P)(O):P0+P1:1 O

Let m denote the log-likelihood ratio log g—;, and let ¢ denote pg — p;. Then

pp_l-g_ 1-(po—m)
po l1+q 1+ (po—p1)

Thus,

de—1 1—-e™i
1- Hi:l 1+e™i )

de—1 1-—-e™i
1+ Hi:l 1-4e™i

Mcheck—)info(mly Tt amdc—l) = log (

Similarly, let m’ denote the log-likelihood ratio log i—é, we have

!
_ 1—e™1 1—-e™1
M, (m,mq) :=lo ! (1+e"‘1') (1+em1)
check—code\T't1, 711 ) - g 1+ 1—em1’ (l—e’"l)
14+em1’ 1+e™

1—e™i
1+e™i

To determine the distribution of [}, ¢;, where ¢; = ( ) and supported on
(—1,1). We will follow [57] and represent ¢ as the ordered pair (—log|q|,lgsgngq) €
[0,00) X Z/2, where

1 ifg<0,
lgsgng = .
0 ifg>0.
Let @ denote the distribution of (—log|g|,lgsgnq) and R denote the distribution of
(—log|r|,1gsgnr) = Ef_l(— log |¢;,1gsgn ¢;). Then R is the convolution of Q’s, and
the densities Mcheck_,info(ml,--- ,Md,_1) and Mcheckﬁcode(m'l,ml) can be obtained

from R by a change of variables.

Define Q°(y) := Q(y,0) and Q'(y) := Q(y,1), y € [0,00). Then the Fourier
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transform of @ is given by

FQ)(5,0) = F(Qs)) +F(Qs)),
F@)(s,1) = F(Qs)) — F(Q'(9) -

Then the Fourier transform of R is given by

de.—1

F(R)(5,0) = [ (F (Q(5)) + F (Qi(5)))
=0
de.—1

FR)s,1) = ] (F (@) - F (Qi(9))) -

i=0

The rest of this subsection is devoted to obtaining @ and S, the distribution of
log —I—%—ﬂ Let P denote the density associated with m. Write P = P°+ P!, where
PY is supported on (—o0,0] and P! is supported on [0, c0).

Claim 3. Let y = —log|X==5|, where m and y are distributed according to P and Q,

1+e'"
respectively. Then
2eY eV —1
0 — 0
@0 = (a=) P (e557) (7.4
2e¥ ey -1
1 — L -
@) = (a=) P (-e551) (75)
fory > 0.
Proof: Form <0,y = —log({%). Then
ey -1
= 1 d
m og — )
dm 2eY
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Thus we have

QW) = ~——5y /(;’ji

2eY 0 ey —1
<e2y—1>P <°gey+1)

Similarly, for m > 0, y = —log (—

1—e™
1=%=). Then

ey —1
m = -—log T and
dm  —2eY
dy — ew-—1

Thus we have

Q'y) =

Claim 4. Let

~log = ifr >0,
Yy = . ,
log 12 if r <O0.

where r and y are distributed according to R and S. Then

2ey ey -+ 1
0 —
S~y) = (ezy — 1) R° (log o 1)

2€y ey+1
1 —
S(y) = <e2y— 1) R! (log - 1)

fory > 0.
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Proof: Forr >0,y = —log ;7<= Then

eV +1
logr = log 1 and
dr _ —2e¥
dy  ev-1
Thus we have
R(r)
0f__ N7
S™(-y) dyjdr

2eY 0 eV +1
= (e2y_1)R (logey—-—l).

Similarly, for r < 0, we have

2eY e¥+1
1 _ 1
S'(y) = (e2y—1>R (IOgey-l)' O

We summarize on how to update densities for belief propagation for RA codes in

the next subsection.

7.5.4 An Algorithm for Updating Densities for RA Codes

Under Belief Propagation

Let P, (or P/) denote the common density associated with the messages from code
(or information) nodes to check nodes in the lth iteration, and let Py (or Pj) denote
the density of the received values at code (or information) nodes.

Write P, = P® + P!, P/ = PY + P, where P?, P? are supported on (—o0, 0] and

P!, P! are supported on [0,00). First we find the density Q; of (—log|q|,lgsgn q)

1—

— em
where ¢ = 757,

and the density Q) of (—log|q'|,1gsgng’) where ¢’ = i::: The

distribution of m (or m') is according to P, (or F}).

Representing Q; by (Q?, Q}), where both Q? and @} are supported on [0, ), we
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have

Q) = ( 2¢% ) ) (10g ¢ _‘__ i) = (cschy) PP (logtanh —g—) , (7.6)

et —1 ey
2eY ey —1 y
Qily) = (62y — 1) p} (- log o 1) = (cschy) P} <logtanh 5) . (7.7)
for y > 0.

Similarly, representing @} by (QY', Q}"), where both @Y’ and @} are supported on

[0, 00), we have
h0(y) = (cschy) P (log tanh g) , (7.8)
M(y) = (cschy)PM (log tanh g—) . (7.9)

Next, we want to derive the probability densities R; and R;, which are the densities
of random variables given by the sum of d. — 1 independent random variables dis-
tributed respectively according to Q; or Q). Let (R?, R}) represent R, and (R, R}')

represent R;, we then have

FBY) - F(R) = (F@)-F@)) (F@)-F@),  (710)
FE)+FR) = (F@)+F@D) (F@)+F@"), ()
FRY) - F(R) = (F@)-F@h)’, (7.12)
FRY) +FRY) = (F@)+F@))". (7.13)

Now, let S; (or Sj) denote the common density associated with the message from
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check nodes to variable nodes (or information nodes). We have

e = (20) e (ent2D).

Siy) = (ezfe_i 1) R <log Z: - 1) :
S(-y) = (ezfef 1) Ry (log - i) :
Si'(-y) = (ezfej 1) R}’ (log ZZ J_r i) :

Thus,

F(Pl) = FP)(F(S))?.

7.5.5 Thresholds for Belief Propagation

(7.14)
(7.15)
(7.16)

(7.17)

(7.18)
(7.19)

We will apply the above algorithm to the binary-input AWGN channel with belief

propagation on RA codes.

Let  be the AWGN channel output. We have

1 —(=+1)?
P = exp 2o , and
2no
1 —(z-1)2
Py, = exp 2% .
0 \V2mo P

Let y = log & = — 2z, then

-(w+3%)?
exp 8/c

g

. . . . . P!
Since information nodes do not transmit to the channel, we require log 3
0

alently,

, 1 ify=0,
P, o(y) =
0 otherwise.

= 0. Equiv-
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Applying the algorithm in previous section using the P, and Fj, we obtain the
threshold values for ¢ = 3 and ¢ = 4 RA codes under belief propagation. The
threshold values are shown in the table below, and for comparison we also include
the threshold values for maximum likelihood decoding. The maximum likelihood
threshold values are very close to the belief propagation threshold values. Figure
5 of [16] shows a simulated performance of belief propagation < 0.8 dB using an

information block of length 16, 384.

q 3 4
Maximum Likelihood (Ey/Ny (dB)) | < 0.792 | < —0.052
Belief Propagation (E;/N, (dB)) 0.776 —0.096
Binary Shannon Limit (Ey/Ny (dB)) | —0.495 | —0.794

7.6 Conclusions

As the block length approaches infinity, the ensemble (over all possible interleavers)
maximum likelihood error probability of the class of RA codes approaches zero if
Ey/Ny exceeds some threshold over AWGN channels. For ¢ = 3, the threshold is no
less than 0.792 dB.

By applying Gallager’s hard decision decoding algorithm on RA codes over a BSC,
error probability approaches 1/2 regardless of the channel crossover probability. Thus,
Gallager’s decoding algorithm is a bad idea for decoding RA codes on a BSC because
it is worse than having no decoding.

By representing RA codes with appropriate Tanner graphs, we extend the analysis
of [57] to RA codes, and we obtain the threshold values for belief propagation de-
coding of RA codes. If Ej,/N; exceeds the threshold, the belief propagation decoding
error probability approaches zero; whereas for E;/Ny below the threshold, the error
probability stays bounded away from zero. For ¢ = 3, the threshold is 0.776 dB on
AWGN channels.
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Chapter 8 Conclusion

This thesis examines the iterative decoding of codes defined on graphs with cycles,
which appears to be an efficient means of achieving the Shannon limit. Much of the
analysis has been focussed on the iterative min-sum decoding of tail-biting codes and
cycle codes. We have identified the pseudocodeword as the cause of the suboptimum
performance of the iterative decoder, and we have obtained a union bound for the
performance of the iterative min-sum decoder on both AWGN and BSC channel.

Using the union bound argument, for cycle codes we have shown that the perfor-
mance of the iterative min-sum decoder is asymptotically as good as the ML decoder.
For tail-biting codes, if the lowest weight pseudocodeword is at least as large as the
minimum weight of the code, the iterative min-sum decoder is asymptotically as good
as an ML decoder. For a tail-biting trellis with a minimum state complexity of two,
its pseudoweight will not be less than the minimum weight of the code. However,
this is not true for a tail-biting trellis whose state complexity is three or more, and
it remains a challenging problem to produce a practical algorithm for computing the
minimum pseudoweight.

Unfortunately, the analysis of tail-biting codes and cycle codes does not extend
to turbo codes and low density parity check codes in general. For these codes, the
pseudocodewords have a tree-like structure in the computation tree, and the number
of leaves grows exponentially with the depth of the tree. Thus a significant portion
of weight will lie in the leaves, and pseudocodewords, unlike the case for tail-biting
codes and cycle codes, will not be the determining factors in decoding errors [69].

Our next approach is to determine the average behavior of message passing algo-
rithms by studying the evolution of their “message” densities. Applying the theorem
in [57] which shows that for all most all codes and almost all inputs, the decoder
behave within € of its average behavior, we have devised an algorithm for obtaining

the threshold values for the class of “repeat and accumulate” serially concatenated
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turbo-like codes. When the channel’s signal to noise ratio is larger than the thresh-
old value, the error probability of the message passing algorithms approaches zero,
whereas if the signal-to-noise ratio is less than the threshold value, the error proba-
bility stays bounded away from zero. The extension of this analysis to more general
turbo codes is a topic for future research.

In the course of studying message passing algorithms and graphical representation
of codes, we came to discover that some message passing algorithms and graphical
representation of codes are efficient means of devising exact (ML or MAP) decoding
algorithms. In particular, by applying the Generalized Distributive Law, we have
proposed a junction tree representation for linear block codes, and we have shown
that minimum junction trees can be less complex than the minimal trellises. We have

also provided an algorithm for finding a minimum junction tree.
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