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ABSTRACT 

This thesis details the investigations of the unconventional low-energy quasiparticle 

excitations in electron-type cuprate superconductors and electron-type ferrous 

superconductors as well as the electronic properties of Dirac fermions in graphene and 

three-dimensional strong topological insulators through experimental studies using 

spatially resolved scanning tunneling spectroscopy (STS) experiments.  

 

Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle 

spectra in the electron-type cuprate La0.1Sr0.9CuO2 (La-112)  TC = 43 K, are investigated 

experimentally. For temperature (T) less than the superconducting transition temperature 

(TC), and in zero field, the quasiparticle spectra of La-112 exhibits gapped behavior with 

two coherence peaks and no satellite features. For magnetic field measurements at T < TC, 

first ever observation of vortices in La-112 are reported. Moreover, pseudogap-like spectra 

are revealed inside the core of vortices, where superconductivity is suppressed. The intra-

vortex pseudogap-like spectra are characterized by an energy gap of VPG = 8.5 ± 0.6 meV, 

while the inter-vortex quasiparticle spectra shows larger peak-to-peak gap values 

characterized by Δpk-pk(H) >VPG, and  Δpk-pk (0)=12.2 ± 0.8 meV > Δpk-pk (H > 0). The 

quasiparticle spectra are found to be gapped at all locations up to the highest magnetic field 

examined (H = 6T) and reveal an apparent low-energy cutoff at the VPG energy scale. 

 

Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle 

spectra in the electron-type “122” iron-based  Ba(Fe1-xCox)2As2  are investigated for 
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multiple doping levels (x = 0.06, 0.08, 0.12 with TC= 14 K, 24 K, and 20 K). For all 

doping levels and the T < TC, two-gap superconductivity is observed. Both superconducting 

gaps decrease monotonically in size with increasing temperature and disappear for 

temperatures above the superconducting transition temperature, TC. Magnetic resonant 

modes that follow the temperature dependence of the superconducting gaps have been 

identified in the tunneling quasiparticle spectra. Together with quasiparticle interference 

(QPI) analysis and magnetic field studies, this provides strong evidence for two-gap sign-

changing s-wave superconductivity. 

 

Additionally spatial scanning tunneling spectroscopic studies are performed on 

mechanically exfoliated graphene and chemical vapor deposition grown graphene.  In all 

cases lattice strain exerts a strong influence on the electronic properties of the sample. In 

particular topological defects give rise to pseudomagnetic fields (B ~ 50 Tesla) and 

charging effects resulting in quantized conductance peaks associated with the integer and 

fractional Quantum Hall States. 

 

Finally, spectroscopic studies on the 3D-STI, Bi2Se3 found evidence of impurity resonance 

in the surface state.  The impurities are in the unitary limit and the spectral resonances are 

localized spatially to within ~ 0.2 nm of the impurity.  The spectral weight of the impurity 

resonance diverges as the Fermi energy approaches the Dirac point and the rapid recovery 

of the surface state suggests robust topological protection against perturbations that 

preserve time reversal symmetry. 
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Chapter 1 

Introduction 

 

     One of the frontiers in modern condensed matter physics is the physics of strong 

correlated electronic systems. Among the most celebrated examples of strongly correlated 

electrons include spin liquids, fractional Quantum Hall (FQH) liquids in two-dimensional 

electron gases, and high-temperature superconductivity.  In these systems, we cannot treat 

the electrons as independent but we must take into account their correlated behavior.  

Understanding the electron-electron interactions in these systems is vital to our attempts to 

explain the complex phenomena associated with these novel states of matter. Another 

frontier of modern condensed matter physics is the topological materials, where the 

physical states are no longer categorized by conventional notions of symmetry breaking. 

The best known examples of such systems are graphene and the surface state of topological 

insulators. 

      Given the importance of microscopic interactions to the physical properties of 

correlated electrons, we employed scanning tunneling microscopy (STM) to study the 

spatially resolved electronic properties of high-temperature superconducting cuprates and 

iron-based compounds, with special emphasis on the electron-type LaxSr1-xCuO2, the 

ferrous superconductor Ba1(Fe1-xCox)2As2.  Additionally, novel physical properties of 

known topological materials are primarily associated with their surface states. Therefore, 

this thesis also included applications of STM techniques to the studies of single graphene 

on multiple substrates, and the three-dimensional strong topological insulator Bi2Se3.   
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As elaborated before, scanning tunneling microscopy provides a unique approach to 

investigating the electronic and structural properties of strongly correlated electrons and 

topological materials because of its atomic-scale spatial resolution and its sensitivity to the 

surface states of matter.  STM uses an atomically sharp tip brought within angstroms of a 

sample, with an applied bias voltage between the two, inducing either electrons or holes to 

tunnel across the vacuum barrier. It is capable of topographic and spectroscopic 

measurements with 0.1 angstrom lateral resolution, making it ideally suited to studying 

nanoscale variations in the conduction (and therefore the density of states), like those 

observed in superconductors, graphene, and topological insulators.  

 

1.1 Unconventional Properties of High-Temperature Superconductors 

The high-temperature cuprate superconductors display the highest known values of 

superconducting transition temperature, TC (maximum TC = 165 K), to date. However, the 

mechanism of superconductivity remains a mystery, despite much research progress since 

their discovery by Bednorz and Mueller 26 years ago [1]. Cuprate superconductors, which 

are extreme type II superconductors, are doped antiferromagnetic (AFM) Mott insulators 

with strong electronic correlation [2–6]. Mott insulators are influenced by the strong on-site 

Coulomb repulsion such that double occupancy of electrons per unit cell is energetically 

unfavorable.  The overall consequence of the strong on-site Coulomb repulsion in this 

scenario is that the materials behave as insulators, [8], whereas electronic band-structure 

calculations would have predicted them to be metallic. Doped Mott insulators are known to 

exhibit strong electronic correlations among carriers due to poor screening and have ground 
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states that are sensitive to doping level.  That is, upon doping of carriers, long-range AFM 

vanishes, spin fluctuations become important, and various competing orders (COs) emerge 

in the ground state, followed by the occurrence of superconductivity (SC). This is 

schematically illustrated in Figure 1.1(c) in the doping vs. temperature phase diagrams of 

both electron- and hole-type cuprates. 

A common feature of the cuprates is the presence of CuO2 planes as shown in 

Figure 1.1(a–b), with holes or electrons doped into these planes.  The pairing symmetry of 

the superconducting order parameter in the cuprates is found to be unconventional, with 

many samples exhibiting dx
2-y

2-wave (d-wave) superconductivity [9]. However, all 

cuprates do not exhibit pure d-wave superconductivity. For example, the Ca-doped exhibit 

doping-dependent pairing symmetry leading to (d+s)-wave symmetry with increasing s-

component upon increasing hole doping [10].  
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Figure 1.1 (a) Crystalline structure of the infinite layer electron type cuprate LaxSr1-xCuO2.  
(b) The crystalline structure of hole-type cuprate YBa2Cu3O7-δ.  (c) The temperature vs. 
doping phase diagram for the cuprate superconductors. CO: competing order, SC: 
superconductivity, δ: doping level, TN: Néel temperature, TC superconducting transition 
temperature, T*: low-energy pseudogap (PG) temperature, TPG: high-energy pseudogap 
temperature. Images modified from [7]. 
 
 

The phase diagram of the cuprates is not symmetric among hole- and electron-type 

cuprates. The presence of the low-energy pseudogap phenomena on the hole-type side of 
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the phase diagram is not reproduced on the electron-type side of the phase diagram. The 

pseudogap is the observation of a soft gap in the quasiparticle density of states spectra that 

                 

Figure 1.2 : Example of the pseudogap phenomena in hole-type Bi2Sr2CaCu2Ox (Bi-2212) 
from scanning tunneling microscopy experiments [11].(Figure reproduced from [11]). 
 

persists above TC in underdoped to slightly overdoped hole-type cuprates [6,7,13–21]. It 

exhibits no coherence peaks and is referred to as a soft gap because the quasiparticle 

density of states are suppressed, but nonzero, below the pseudogap energy. Further the 

pseudogap of the hole–type cuprates persists in a temperature range  TC¸< T < T*.  In 

contrast, the AFM region of the phase diagram extends out to meet the superconducting 

“dome" in electron-type cuprates, while clear separation is observed between the 

superconducting region and AFM on the hole-type side of the phase diagram, with a 

pseudogap phase intervening in between. 
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Figure 1.3 : Fermi arc in Bi-2212 with doping dependence: The measured gap-Δ(k) values 
in Bi-2212 along the Fermi surface for different doping levels are shown. (a) Underdoped, 
TC = 75 K, (b) Slightly underdoped, TC = 92 K, (c) Overdoped, TC= 86 K. Gapped behavior 
persists near the (π, 0) and (0,π) regions of the Brillouin zone. Image modified from [24]. 
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Although the pseudogap is not observed in the electron doped cuprates, a “hidden 

pseudogap"-like quasiparticle excitation spectra have been observed under the 

superconducting dome in doping-dependent grain-boundary tunneling experiments on Pr2-

xCexCuO4-y and La2-xCexCuO4-y when a magnetic field H>HC2 is applied to suppress 

superconductivity [22]. It is possible that the pseudogap is present in both hole- and 

electron-type cuprates and has a nonuniversal energy scale among hole- and electron-type 

cuprates, such that the pseudogap is effectively hidden under the superconducting dome for 

electron-type cuprates. 

Also absent in the electron type cuprates above TC is the Fermi arc phenomenon 

which refers to an incomplete recovery of the full Fermi surface for temperatures in the 

range TC < T < T*[23, 24, 25].  This feature manifests as the persistence of gapped 

quasiparticle spectral density functions near the (π, 0) and (0,π) portions of the Brillouin 

zone above TC in hole-type cuprates.  

             Many of the asymmetric properties between the hole- and electron-type cuprates 

can be explained by the differences in the ratio of the SC energy gap (ΔSC) relative to a 

competing order (CO) energy gap (VCO) and by attributing the origin of the low-energy PG 

phenomena to the presence of a CO energy gap so that VCO ~ ΔPG. Thus, the presence of 

the zero-field low-energy PG phenomena in the hole-type cuprate superconductors may be 

considered as the result of VCO > ΔSC.  Conversely the absence of the PG and Fermi arc 

phenomena in the electron doped cuprates may be attributed to VCO < ΔSC.    

This scenario assumes that superconductivity and competing orders are together 

responsible for the observed unconventional cuprate phenomena. We refer to this scenario 
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as the “two-gap" model. This scenario supposes that the unconventional phenomena in 

cuprates may be accounted for by including both Bogoliubov quasiparticles from 

superconductivity and collective excitations from competing orders to describe the low-

energy excitations. Therefore, the unconventional phenomena observed in cuprates are 

assumed to arise from a ground state of superconductivity and a competing order, and T* is 

assumed to be the competing order transition temperature, while TC is the superconducting 

transition temperature. This CO model will be explored more in Chapter 3. 

            The existence of various CO besides superconductivity in the ground state of the 

cuprates may be attributed to the complexity of the cuprates and the strong electronic 

correlation, which is in stark contrasts to conventional superconductors where SC is the 

sole ground state. The presence of COs in both hole- and electron-type cuprates has been 

verified by various experiments including inelastic neutron scattering, muon spin 

resonances, and angle-resolved photo emission spectroscopy (ARPES) [26–30].  Moreover, 

theoretical evidences for COs have been provided by analytical modeling and numerical 

simulations [2–5,31–42] in particular various CO spin density waves (SDW), pair density 

waves (PDW), d-density waves (DDW) or charge density waves (CDW).  Recent STS 

studies of the hole-type YBa2Cu3O7-δ in a magnetic field and of the vortex state spectra 

have also provided clear evidence for  VCO (CDW) > ΔSC [6].   The CO phenomena will be 

explored more in Chapter 3. 

In 2008 a new type of high-temperature superconductors based on iron was 

discovered [43].  These iron based superconductors also demonstrate many interesting 

phenomena, although the electron correlation energy is much reduced in comparison to the 

cuprates. Similar to the cuprates, the ferrous superconductors are type II unconventional 
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superconductors and are layered materials with magnetic instabilities [44].  Structurally, 

the iron superconductors form FeX (X = As, P, S, Se, Te ) tri-layers that consists of a 

square array of Fe residing between two checkerboard layers of X [44]. As with the 

cuprates, where the CuO2 layers are responsible for superconductivity, the FeX tri-layers 

provide the same role in the iron-based superconductors. There are four basic types of iron-

based superconductors: the “1111”, “122”, and “111’ pnictides and the “11” type iron 

chalcogenides. Each type of iron superconductor has distinct temperature vs. doping 

 

Figure 1.4 :Schematics of three representative phase diagrams for different types of ferrous 
superconductors. Here TS(x) denotes the phase boundary for a structural phase transition 
from a tetragonal phase at T > TS to an orthorhombic (OTR) crystalline structure at T < TS; 
TN(x) is the Néel temperature for the onset of an antiferromagnetic (AFM) phase at T < TN; 
and TC (x) represents the doping dependent superconducting transition temperature. Images 
taken from [44]. 
 

 

phase diagram.  Examples of the doping vs. temperature phase diagrams are shown for 

various compounds in Figure 1.4. 

In contrast to the cuprate superconductors whose parent compound is a Mott 

insulator, the parent compounds of the ferrous superconductors are semimetals [44].  

Moreover, as shown by the phase diagrams in Figure 1.3 superconductivity 
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antiferromagnetic phases may or may not coexist for a range of doping levels. Similar to 

the competing order phenomena found in the cuprates, AFM phases coexist with SC for the 

“122” systems. However, much experimental work still needs to be performed to determine 

the exact overlap of AFM and SC. 

            The ferrous superconductors are believed to be approximately described by a five 

band model near the Fermi level and that their Fermi surfaces involve multiple 

disconnected pockets.  The presence of multiple bands and multiple disconnected Fermi 

pockets suggests that inter-Fermi surface interactions are important to the occurrence of 

ferrous superconductivity [44]. Calculations have predicted that these superconductors 

should exhibit two-gap superconductivity.   

This possible scenario of CO and SC in two very different superconducting systems 

motivates our STS studies on La-112 and Ba1(Fe1-xCox)2As2.  Performing comparative 

studies on both the cuprate superconductors and the iron pnictide superconductors may also 

shed some light on the elusive pairing mechanism of high-temperature superconductivity. 

Studies of the cuprate superconductors and the iron-based superconductors will be 

discussed in Chapter 3 and Chapter 4, respectively. 

 

1.2 Dirac Fermions : Graphene and Topological Insulators 

In contrast to the cuprate- and iron-based superconductors covered in Section 1.1, 

Dirac materials, such as graphene, may often be treated theoretically and experimentally as 

if the electrons are in the noninteracting regime.    Dirac materials exploit the mapping of 

electronic band structures and an embedded spin or pseudospin degree of freedom onto the 



 

 

11 
relativistic Dirac equation. An interesting property of the Dirac materials is the protection 

of Dirac fermions against backscattering.  Consequently, this feature of Dirac materials 

provides an excellent counterpoint to the strongly correlated electron systems of the cuprate 

superconductors and the lesser correlated system of the iron-based superconductors. These 

materials include graphene and the surface state (SS) of three-dimensional (3D), strong, 

topological insulators (STI).  

 

Figure 1.5:  Graphene lattice:  (a) The real space lattice showing both sublattices with 
lattice vectors 𝒂𝟏����⃗ = �𝑎√3

2
, 𝑎
2
�  ,     𝒂𝟐����⃗ = �𝑎√3

2
, −𝑎
2
� , (b) Linear density of states near the K or 

K’ points.                                                                               
 

Graphene is a single layer of hexagonally bonded carbon atoms with a Dirac-like 

energy dispersion relation for small momentum.   The structure of graphene is shown in 

Figure 1.5 Since its isolation in 2004 by A.K. Geim and K. S. Novoselov, graphene has 

exhibited many remarkable properties, such as Dirac-like band structure, exceptionable 

physical properties, an ambipolar electric field effect where the concentration of charge 
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carriers can be tuned continuously from electrons to holes by adjusting the gate voltage 

[45], exceptionally high mobilities [46–47], the integer and fractional quantum hall effect 

(IQHE and FQHE) [48–51], and a minimum conductance  in the limit of zero charge 

carriers [52]. The high mobilities make graphene an excellent candidate to be used in 

components of integrated circuits and may be possible that graphene will become an 

important supplement to future silicon-based technologies. 

However in order to make practical use of graphene in technology, graphene 

manufacture must be capable of producing large, high-quality graphene sheets in a timely 

fashion.  The original method of graphene production of mechanically exfoliation is 

simply not feasible.  Consequently much experimental effort has been put into finding 

more efficient means of graphene fabrication of high-quality, large-area graphene sheets 

and still maintaining the superior electronic characteristics of graphene while in contact 

with various gate dielectrics and substrates. There have been significant efforts towards 

synthesis of large area graphene, including ultra-high-vacuum annealing to cause 

desorption of Si from SiC single crystal surfaces, the deposition of graphene oxide films 

from a liquid suspension followed by chemical reduction, and chemical vapor deposition 

(CVD) on transition metals [52–63] such as Ru, Ni, Co, Pt, and Cu. 

However, the electronic properties of graphene exhibit significant dependence on the 

surrounding environment and high susceptibility to disorder because of the single layer of 

carbon atoms that behave like a thin membrane and because of the fundamental nature of 

Dirac fermions [45]. Consequently, graphene’s interaction with its surrounding 

environment provides a unique opportunity to study the effects how strain and substrate can 

perturb a gas of noninteracting Dirac-fermions. For example, nonuniform strain has been 
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predicted to generate pseudomagnetic fields in graphene lattices and therefore give rise 

to integer and fractional quantum hall states.  In the case of the fractional quantum hall 

states, however, we must abandon our notion of noninteracting Dirac fermions. The basic 

physical properties of graphene will be reviewed in Chapter 5.  The interaction of graphene 

with its substrate and disorder will be covered in more detail in Chapter 6. 

In addition to graphene, the recent discovery of three-dimensional strong topological 

insulators also provides a unique opportunity to study Dirac fermions and their 

interactions with quantum impurities.  Topological insulators in two or three dimensions 

have a bulk electronic excitation gap generated by a large spin-orbit interaction, and 

gapless edge or surface states on the sample boundary[64]. A novel feature of these TIs is 

the suppression of backscattering of Dirac fermions due to topological protection that 

preserves the Dirac dispersion relation for any time-reversal-invariant perturbation. 

However, while direct backscattering is prohibited in the SS of 3D-STI, sharp resonances 

are not excluded because Dirac fermions with a finite parallel momentum may be 

confined by potential barriers [65]. In fact, theoretical calculations for Dirac fermions in 

the presence of noninteracting impurities have predicted the occurrence of strong 

impurity resonances [66, 67]. 

Overview 

 This thesis is structured into three parts, as follows.   In Chapter 2 we will first 

present the theory of STM technique and instrumentation.  In the second portion we will 

cover STM studies of two different superconductors. In Chapter 3 we will review the 

physics of electron-type cuprate superconductors  in the context of the coexistence of SC 
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and CO in the ground state, and present magnetic-field-dependent studies of  electron-

type polycrystalline  LaxSr1-xCuO2. In particular we will present quasiparticle tunneling 

spectral evidence for the existence of commensurate SDW as the CO to superconductivity, 

as well as present evidence for the first observation of vortices in an electron type cuprate 

superconductor. In Chapter 4 we cover the basic electronic and structural properties of 

ferrous superconductors, and present field-dependent STS studies on Ba1(Fe1-xCox)2As2 

single crystals.  We find supporting evidence for sign-changing, s-wave, two-gap 

superconductivity and observe a pseudogap-like feature inside the vortex core. 

 In the final section we will cover STS studies of two Dirac materials.  In Chapter 5 

we present the basic electronic properties of graphene and the effects that strain and 

substrate may have on the density of states of graphene.  In Chapter 6 we report on our STS 

measurements on graphene, particularly the first observation of quantized conductance 

peaks due to pseudomagnetic fields in strained graphene.  In Chapter 7 we present evidence 

for unitary scattering from quantum impurities in the topological insulator Bi2Se3. Finally, 

in Chapter 8, we conclude with the overall review and discuss possible future work.  In 

Appendix A we include designs for the molybdenum body STM head which replaced a 

macor body STM head on the probe.  Additionally, in Appendix B, Matlab programs for 

the analysis of tunneling spectra are included. 

 

 

 

 



 

 

15 
 

 

Chapter 2 
 
Instrumentation 
 
 

Scanning tunneling microscopy (STM) is a useful and powerful technique to 

perform noncontact, localized, structural and spectroscopic measurements.   Capable of 

resolving microscopic features ranging in size from 10 microns to 0.1 angstroms, STM has 

excellent resolution in both topographic and spectroscopic studies.  In this thesis we use 

scanning tunneling spectroscopy (STS) to study the effects of nontrivial strain on the local 

density of states (LDOS) in graphene, the effects of localized nonmagnetic impurities on 

the surface state of topological insulators, and to probe the nature of the superconducting 

gap and low-energy quasiparticle excitations in the iron-based superconductors.  Included 

in its advantages are ultra-high vacuum (< 10-10 torr), large magnetic fields ( up to 7 Tesla), 

liquid helium temperatures, and high-energy resolution exceeding 0.05 meV, which enable 

thorough investigations of the many systems of scientific curiosity. 

In order to achieve the atomic resolution necessary for this thesis, the STM probe 

requires sophisticated equipment and extremely small operational noises.  We will describe 

the STM setup and operational equipment later on in the chapter.  However typical 

tunneling currents measured are on the order of 1 nA to 10 pA with the required signal-to-

noise ratio of 1000-to-1.  This requires, for most measurements, a base noise level below 1 

pA and a precise motor control of the tip-sample separation distance.  To meet these 
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requirements, piezo-electrics are employed to supply the fine motor control of the tip-

sample separation distance. Additionally, acoustic, vibrational, and electronic noises must 

be minimized. The typical piezo-electric crystals used in this thesis provide a 1 nm/V 

resolution for the motor control.  The average tunnel junction resistance defined as the bias 

voltage divided by the tunneling current, 𝑅𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑉𝐵𝑖𝑎𝑠/𝐼, was on the order of 1 ~ 5 

GΩ for the majority of samples. 

 

2.1 Theory and Principles 

             The technique of STM first demonstrated by Gerd Binning and Heinrich Roehr, in 

1982 [68] is largely based on a quantum mechanical process.  A conducting probe tip 

(usually metallic and made from Pt-Ir or W) is attached to a piezo-electric drive that is 

capable of three-dimensional movement and is by use of the piezo-drive brought to within 

several angstroms of the sample surface.  At this distance the wave-functions of the probe 

tip will overlap with the wave-functions of the sample surface so that as a bias voltage is 

applied across the sample, a tunneling current will develop.  Electron tunneling is 

dependent on the bias voltage, tip-sample separation distance, and of the availability of the 

density of states in both the probe and the tip.  The tunneling current, usually between 

micro-amps and femto-amps, is then amplified by means of a current amplifier and 

compared to the target tunneling current.  The difference is then used to in a negative 

feedback system to drive the vertical motion of the z-piezo, and by this means a stable 

tunnel junction is formed with both lateral and vertical subangstrom resolution.  This 

principle of operation is demonstrated in Figure 2.1. 
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             Following Wiesendanger’s approach [69], the tunneling current can be 

determined with a 1st-order perturbation method from its dependence on bias voltage, and 

the DOS of both the sample and tip which yields 

 𝐼 = 4𝜋𝑒
ℏ ∫ [𝑓(𝐸𝐹 − 𝑒𝑉 + 𝜖) − 𝑓(𝐸𝐹 + 𝜖)] × 𝜌𝑆(𝐸𝐹 − 𝑒𝑉 + 𝜖)𝜌𝑇(𝐸𝐹 + 𝜖)|𝑇|2𝑑𝜖∞

−∞                

2.1 

 
Figure 2.1:  Basic demonstration of the principle of STM operation. A bias voltage is 
applied and the STM tip is brought within several angstroms of the sample surface until the 
desired tunneling current is detected.  The topography is determined by plotting either the 
voltage feedback to the piezo tube scanner or by measuring the changes in the tunneling 
current, depending on the operational mode of the STM. 
 
where 𝑓(𝐸) is the Fermi distribution function, 𝑓(𝐸) = {1 + exp [(𝐸 − 𝐸𝐹)/𝐾𝐵𝑇}−1, 

𝜌𝑆(𝐸) and 𝜌𝑇(𝐸) are the DOS for the sample and the tip, respectively, and   𝑇 is defined as 
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the tunneling matrix and is a surface integral on a separation distance between the tip and 

the sample [70] 

                                           𝑇(𝑒𝑉, 𝜖) = ℏ
2𝑚 ∫ 𝑑𝑺 ∙ (𝜒∗∇𝜓 − 𝜓∇𝜒∗) 

                                      2.2 

where 𝜒 and 𝜓 are the wave-functions for the tip and the sample, respectively.  The rate of 

electron transfer is determined by the Fermi golden rule [71].  Eqn. 2.2 can be simplified 

according to [72] 

                                             𝑇(𝑒𝑉, 𝜖) ∝ 𝑒−2(𝑑−𝑟)�2𝑚
ℏ2
�𝜙2−

𝑒𝑉
2 ��

1
2

                                              2.3 

where 𝑑 is the tip-sample separation distance, 𝑟 the radius of the probe tip, and  𝜙  the 

convoluted work function of the probe tip and sample.   The tunneling matrix depends 

exponentially on the tip-sample separation distance; as a result, small changes in the 

vertical height of the tip can result in large changes in the tunneling current, making the 

current a sensitive measure of tip-sample distance. If 𝐾𝐵𝑇 is smaller than the energy 

resolution of the experiment, the Fermi distribution can be approximated to a step function 

resulting in  

                                        𝐼 = 4𝜋𝑒
ℏ ∫ 𝜌𝑆(𝐸𝐹 − 𝑒𝑉 + 𝜖)𝜌𝑇(𝐸𝐹 + 𝜖)|𝑇|2𝑑𝜖𝑒𝑉

0                             2.4 

If the current, 𝐼, is differentiated with respect to the bias voltage, 𝑒𝑉, and we assume that 

the probe tip (Pt, W) is metallic and has a constant density of states (DOS) over the 

measurement voltage range, that is,  𝜕𝜌𝑇 𝜕𝑉� ∝ 0,  then  

             𝑑𝐼
𝑑𝑉
∝ 𝑇(𝑒𝑉, 𝜖 = 𝑒𝑉,𝑑)𝜌𝑇(0)𝜌𝑆(𝑒𝑉) + ∫ 𝜌𝑆(𝑒𝑉 + 𝜖)𝜌𝑇(𝜖) 𝑑𝑇(𝑒𝑉,𝜖,𝑑)

𝑑𝑉
𝑑𝜖𝑒𝑉

0 .        2.5 
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Further if the tunneling matrix, 𝑇, behaves monotonically and smoothly  with respect to 

the bias voltage then the final integral can be neglected.  The differential conductance can 

be approximated to 

                         𝑑𝐼
𝑑𝑉
∝ 𝑇(𝑒𝑉,𝑑)𝜌𝑇(0)𝜌𝑆(𝑒𝑉)       or      𝑑𝐼

𝑑𝑉
∝ 𝜌𝑆(𝐸𝐹 − 𝑒𝑉).                        2.6 

Therefore physical information concerning the DOS of the sample can be extracted from 

the differential conductance making STS an effective probe of the sample’s electronic 

structure. This concept is demonstrated graphically in Figure 2.2. For this thesis, all 

samples were investigated with Pt-Ir tips, satisfying the above approximations. 

 

 

 
Figure 2.2:  Graphical representation of quantum tunneling between two systems. Vertical 
axis is energy and the horizontal axis is energy: (a) Quantum tunneling between two metals 
at T=0 K.  In both cases the DOS of states are constant.  The Fermi level is designated by 
EFERMI.  (b) Quantum tunneling between a metallic tip (Pt/Ir or W) and a Dirac material 
(graphene).  If there are no available states to tunnel into then the tunneling current is zero. 
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2.1.1 Operational Modes 

          In this thesis we concern ourselves with three modes of STM operation: constant 

height imaging, constant current imaging, and constant tip-junction resistance 

spectroscopy.  The primary difference between the first two modes of operation depends on 

the settings of the feedback control of the STM.  As previously mentioned, when the tip-

sample separation distance is reduced and a bias voltage is applied, a tunneling current 

begins to flow which depends exponentially on the tip-sample distance.  The tunneling 

current is then amplified by a current amplifier and sent to the STM controller where it is 

compared to a target current value.  The difference is used in a negative feedback system to 

drive the z-direction of the piezo-motor controlling the tip-sample separation.  The gain and 

time constant, 𝜏, of the feedback loop determine the ability of the system to respond 

quickly to changes in the topography of the sample.  For the feedback to respond to rough 

contours in the sample surface the gain and time constant must be optimized, otherwise the 

tip will crash into the surface, damaging either the sample or resulting in changes in the tip.  

However, manually controlled touching of the tip to a sample surface can be used to 

reshape an unfavorable tip geometry to a more favorable one.  Necessarily, scan speed is 

also important to consider when optimizing the gain and time constant.  If the scan takes 

too long, the topography, while allowing the system to average out higher-frequency 

perturbations, will be susceptible to low-frequency noise.  If the scan is too fast then the 

feedback cannot respond adequately to changes in the topography.  Incorrect settings in the 

feedback can cause false topography images, stressing the importance of feedback 

optimization. 
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          The first mode, constant height imaging, is achieved by turning off feedback or by 

increasing the time constant to very long time scales, effectively preventing the system 

from responding to changes in contours save for long length-scales.  With feedback 

disabled and a constant bias voltage maintained across the tip and sample, the tip is scanned 

across the sample and only changes in the current are recorded.  Due to the exponential 

dependence of the current on tip-sample distance, the current reflects the “relative distance” 

of the sample compared to the tip [73].  The relative topography, 𝑧(𝑥,𝑦), is determined by 

the changes in the current. Actual height must be determined from constant current mode. 

The danger of constant height mode lies that the tip cannot respond to rapid changes in the 

topography.  If the sample’s height varies more than the tip-sample separation, it is possible 

to crash the tip into the sample causing, damage to both, or, for the tip-sample distance to 

increase, causing the tunneling current to fall below a measureable level for the electronic 

detection equipment.  The benefits of this mode is the relaxation of feedback optimization 

allowing the STM to perform scans very rapidly, which is limited only by the response 

time of the current amplifier, the maximum scan speed of the STM tip head (is determined 

by its lowest mechanical resonance mode),  and the data acquisition rate of the STM 

controller.  The Nanonis controller used for this thesis is capable of recording >104 data 

points a second, allowing a 100 pixel by 100 pixel scan to occur in just over several 

seconds.  Images taken faster than this rate were found to lose contrast.  As an additional 

advantage is the ability to scan the topography rapidly, this approach allows the researcher 

to ignore low-frequency noises, ~ < 20 Hz, such as building vibrations or low-frequency 

mechanical motors, such as the elevator in the Sloan basement. 
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          The second operation mode, constant current, relies on the negative feedback 

circuit of the STM to maintain a constant tip-sample separation distance and therefore 

maintains a constant tunneling current.  As with the constant height mode, the constant 

current mode requires the bias voltage remain constant.  Topography of the surface, 

𝑧(𝑥,𝑦), is determined by the voltage applied to the z-component of the piezo tube scanner 

multiplied by the voltage-to-nm calibration of the piezo tube scanner.  This is the preferred 

method of capturing atomic resolution images or nanostructures such as the images of 

graphene and silicon nanopillars shown in Figure 2.3.  As previously mentioned, the STM 

feedback and STM scan speed must be optimized to prevent the tip from crashing into the  

 

Figure 2.3:  Scanning tunneling microscopy topography images of (a) atomically resolved 
topography on mechanically exfoliated graphene at temperature, T = 77 K, and (b) micron 
scale topography of silicon nanopillar arrays at temperature, T = 296 K, after chemical 
etching to remove oxide around the pillars 
 
sample and to allow the tip to respond as rapidly and as accurately as possible to changes in 

the sample topography.  Failure to do so can result in false images or numerous tip 

changes. 
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             The final mode of STM operation, constant tip-junction resistance spectroscopy, 

attempts to measure the current vs. voltage, 𝐼(𝑉) vs. 𝑉, and the differential conductance vs. 

voltage, 𝑑𝐼
𝑑𝑉

 vs. 𝑉, characteristics of the sample. As previously mentioned the DOS of a 

sample can be related to the differential tunneling conductance, 𝑑𝐼
𝑑𝑉

(𝑉), with respect to 

voltage for well-behaved samples and STM tips.  In this mode at the point of interest, a 

stable tunneling junction is established at the determined junction resistance, 𝑅𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =

𝑉𝐵𝑖𝑎𝑠
𝐼

, with the STM feedback circle enabled.   During an initial wait time the tip-sample 

separation distance is stabilized with constant bias-voltage and constant tunneling current.  

This initial stabilization period is on the order of a few ~ 100 μs. Once a stable tunnel 

junction is established, the STM feedback circuit is disabled and the bias voltage is ramped 

from an initial value to a final value, while the 𝐼(𝑉) and 𝑑𝐼
𝑑𝑉

(𝑉), are recorded for that 

precise location of the sample.  The STM feedback circuit is re-enabled at the previous bias 

voltage and tunneling current.  Constant tip-junction resistance spectroscopy can be 

repeated at every pixel of an 𝑚 × 𝑛 scan to create a conductance map scan. At every pixel, 

a stable tunnel junction is established at exactly the sample tunnel junction resistance, the 

feedback disabled, and bias-voltage varied.  The feedback is reestablished, the tip is 

translated to the next pixel in the scan and the process is repeated.  This combines the high 

spatial resolution of topography scans with spectroscopy information.  One can achieve 

atomic resolution in investigating spatial variations of the local density of states.  For the 

materials considered in this thesis, constant tip-junction resistance spectroscopy roughly 

eliminates the dependence of surface topography in the spectroscopy scan because at every 
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location the scan is performed at the same tip-sample separation distance for a relatively 

flat sample surface. High-voltage crosstalk from the voltage feedback to the piezo tube 

scanner is eliminated by disabling the STM feedback circuit during the spectroscopy scan.  

Also as shown in [74], in certain samples taking the normalized conductance, 𝑑𝐼
𝑑𝑉

/ 𝐼
𝑉
, can 

eliminate the effect of the tunneling matrix, T, when measuring the LDOS of the sample.  

          In this thesis, two methods were used to measure the differential tunneling 

conductance, 𝑑𝐼
𝑑𝑉

(𝑉), directly with the use of a lock-in amplifier and indirectly by 

numerically calculating the differential conductance, 𝑑𝐼
𝑑𝑉

(𝑉), from the current, 𝐼(𝑉).  In 

order to measure 𝑑𝐼
𝑑𝑉

(𝑉) directly with a lock-in amplifier, a small ac modulation is added to 

the base bias voltage 𝑉0.  The frequency of this modulation should be significantly above 

the cutoff frequency of the feedback loop to avoid damaging the tip.  If we assume that the 

𝑉0 is swept slowly with time and the ac modulation is small in comparison, we can Taylor 

expand the tunneling current around 𝑉0 

                                                                 𝐼(𝑉) = 𝐼(𝑉0 + 𝑣 cos𝜔𝑡)                                     2.7 

                                  𝐼(𝑉) = 𝐼(𝑉0) + 𝐼′(𝑉0)𝑣 cos𝜔𝑡 + 𝐼′′(𝑉0)
2!

(𝑣 cos𝜔𝑡)2 + ⋯ .             2.8 

For small amplitudes of 𝑣 the first derivative will be proportional to the first harmonic 

term, the second derivative will be proportional to the second harmonic term, and so on.  

To perform a spectroscopy scan, one must measure the first harmonic term using a lock-in 

amplifier while slowly performing an 𝐼(𝑉) vs.  𝑉 measurement. The lock-in amplifier 

substantially reduces frequency-dependent noise in the data. However, when choosing a 

modulation frequency, care must be taken to avoid low frequencies and harmonics of 60 
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Hz.  A problem of this method is the need to wait a time  𝜏 dependent on the time 

constant of the lock-in amplifier after changing the bias voltage before recording 𝐼(𝑉) and 

𝐼′(𝑉0).  Unfortunately this drastically increases the time needed to perform a spectroscopy 

measurement.   

In contrast, the differential conductance can be numerically calculated directly from 

𝐼(𝑉) vs.  𝑉.  A tunnel junction is established at the given tunnel junction resistance, the 

STM feedback circuit is disabled and the bias voltage is swept while the resulting tunneling 

current is measured directly.  Using mathematical analysis programs the differential 

conductance is then numerically calculated.  The Matlab analysis programs used in this 

thesis are detailed in Appendix B.  This approach is exemplified in Figure 2.4. 

The primary advantage of this method is the speed at which constant tip-junction 

resistance spectroscopy maps can be taken, which is an important concern when the 

measurements are being taken at low temperatures.  As detailed later in this chapter, 

magnetic field measurements using the superconducting magnet must be completed in 3 

days due to limited liquid helium capacity of the dewar.  However this method is more 

susceptible to noise contamination than the lock-in technique and care must be taken to 

avoid creating artifacts in the 𝑑𝐼
𝑑𝑉

(𝑉) curves due to taking the numerical derivative of 

discrete data.  For this thesis the 𝐼(𝑉) vs.  𝑉 method was the preferred method for finding 

the differential conductance.  In the next section we will describe the STM instrumentation 

used in performing these measurements. 
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Figure 2.4: Numerical calculation of the differential conductance from 𝐼(𝑉) vs.  𝑉curves:  
(a) 𝐼(𝑉)vs. 𝑉curve of  the  cuprate superconductor YBCO with the numerically calculated 
𝑑𝐼
𝑑𝑉

(𝑉) at T=7 K.  (b) 𝐼(𝑉) vs. 𝑉curve of  CVD grown graphene on copper foil with the 

numerically calculated 𝑑𝐼
𝑑𝑉

(𝑉) at T = 77 K. 
 

2.2 Instrumentation 

2.2.1 STM Probe 

          The requirement of bringing the STM probe tip to within angstroms of the sample 

surface requires a complicated and an optimized feedback circuit as described earlier.  

However, this step alone is not sufficient for measurement of the materials considered in 

this thesis. The STM must also include vibration isolation, acoustical and electronic noise 

reduction, and specialized electronics to amplify, shield, and filter the currents and voltages 

needed.  In addition, temperature control and measurement, large magnetic fields, ultra-

high vacuum, and cryogenic systems are required, and high-quality STM tips as well as 

clean sample surfaces were crucial for the measurements in this thesis.  In this section we 

will describe the STM in detail along with the support systems. 
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The microscope used in this thesis was previously designed and built by Ching-tzu Chen 

and Nils Asplund [75]. The basic overview of the STM probe is shown in Figure 2.5. The 

STM consists of the STM probe head, the cryogenic probe, and the vibration isolation 

table.  The STM probe head consists of the piezo-electric tube scanner which provides fine 

X,Y, and Z motion, course Z-approach stage, the tip and sample.  The probe head was later 

modified by Andrew Beyer and the author to possess a course motion X-Y sample stage 

and in fall 2011 the macor body of the STM head was replaced with a molybdenum body. 

Figure 2.5: Schematic showing the generalized layout of the STM probe, STM jacket, STM 
dewar, the vibration isolation system, and the support electronics.  (a) The STM head with 
tube scanner, both Z and XY course movement stages, the tip and the sample. (b) The STM 
probe inserted into stainless steel vacuum jacket which is mounted in the Oxford cryogenic 
dewar where the liquid helium, liquid nitrogen or nitrogen gas can contact the vacuum 
jacket.  The Oxford dewar is set on a three-inch-thick aluminum plate mounted on four air-
damped pneumatic legs to reduce mechanical vibrations. 
 

 

         The STM tips used in this thesis were Pt-Ir, consisting of 90% platinum and 10% 

iridium, and were made primarily via mechanical shearing followed by electrochemical 

etching to polish the tip [76].  The tips were mechanically cut from 10 mil Pt wire until 

they were optically sharp, as observed under an optical microscope. The cut tips were then 
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electrochemically etched for approximately 10 seconds in a solution of 35 grams of 

CaCl22(H2O), 200 ml of de-ionized water , and 10 ml of  acetone  at 10–15 VAC using a 

common variac. The mechanically cut tips were immersed into the solution to a depth of 1-

3mm. Early investigations were also made into the feasibility of using Pt and Ni tips made 

with a two-stage chemical etching process [77].  For mechanically exfoliated graphene 

samples, only Pt-Ir tips made using the two-stage chemical etching process exhibited the 

necessary optical sharpness needed to align the tip and sample.  STM tips used in this thesis 

were tested on HOPG graphite for atomic resolution and clean tunneling conductance 

spectra followed by cleaning on a gold sample surface as demonstrated in [78].  After the 

tips were made and cleaned in an ethyl alcohol bath they were loaded into the tip holder as 

shown in Fig 2.6.   

The tip holder is connected to the piezo-electric tube scanner which provides fine 

motion control required for sub-angstrom resolution. The piezo-electric tube scanners as 

show in Figure 2.6 are cylindrical and coated in gold on both the interior (the z-piezo 

voltage connection ,VZ)  and exterior of the tube which is divided into four quadrants on 

the exterior (Vx, Vx- , Vy , Vy- ). The four quadrants can be sheared simultaneously to 

control tip-sample separation distance, while the x, x- or y, y- quadrants can be sheared 

oppositely to scan the tip along the x or y directions. Shearing occurs when a voltage is 

applied between the inner surface of the tube scanner, Vz, and any of the other quadrants. 

By controlling all possible linear combinations of shearing motions using the STM 

controller, the tip may be scanned and the tip-sample separation controlled for all the 

modes of STM operation.   At room temperature the piezo-electric tube scanner has a max 

lateral scan range of 10 micron which is reduced to 3 microns at liquid helium temperatures 



 

 

29 
using the Nanonis controller, and a max vertical extension and retraction distance of 1.0 

micron at room temperature and 0.5 microns at 4.2 K. 

Figure 2.6: Schematic images of the STM head probe, tube scanner and course stages.  (a) 
Schematic top view of the macor/molybdenum STM head. Six piezo stacks capped by 
smooth alumina plates, hold a sapphire prism in the Z-stage design. Voltages may be 
applied to the shear piezo stacks to move the sapphire prism. The STM tip holder, STM tip, 
and piezo tube scanner all connect to the sapphire prism so that when it moves, the STM tip 
and piezo tube scanner move with it. (b) Image of the STM head as shown in (a). (c) 
Schematic representation of the tube scanner showing four separate quadrants (Vx Vx- Vy 
Vy-) on the exterior with the interior being VZ. (d) Schematic drawing of the course X-Y 
stage. Voltages applied to the piezo stacks can shear the sapphire plate in either the x-
direction or the y-direction by having half the piezo crystal rotated 90 degrees out of phase 
with the others.  Maximum motion of the sample is 1.0 mm in any direction.  (e) 
Illustration of the voltage waveform applied to each piezo stack to take one course step. 
Polarity direction maybe reversed to take a step in the reverse direction.  Image modified 
with permission from A. Beyer [79]. 
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The sample is mounted on the sample holder which consists of a 1.0-cm-diameter 

OFHC copper cylinder 1.0 cm in height, which is itself mounted on a sapphire plate of the 

course X-Y movement stage.  The samples are attached to the copper block by means of 

silver epoxy, silver glue or by a metallic clip depending on whether the sample bulk is 

conductive.  Temperature control of the sample above cryogenic temperatures is achieved 

by a small resistive heater located between the sapphire plate and the copper cylinder.  

Actual temperature control is maintained by a Lakeshore 340 Temperature controller. The 

temperature of the sample block is measured using a Cernox calibrated resistor.  As will be 

described later on sample preparation depends on the sample in question.  For air sensitive 

samples, the sample would be loaded onto the sample stage in an argon environment in a 

glove box. 

         The course X-Y stage is show in Figure 2.6. The course X-Y stage allows one to 

investigate large arrays of nanostructures that exceed in size the maximum scan range of 

the tube scanner or to avoid nonoptimal regions of the sample surface such as an 

amorphous carbon region of a CVD grown graphene sample.  The motion of the X-Y stage 

is accomplished through the use of six shear piezo-electric stacks based on the slip and 

stick principle.  Three beryllium copper springs provide the tension to hold the sapphire 

plate firmly against each stack. The stacks are sheared by applying a slowly increasing the 

voltage to each stack. The stacks shear together slowly enough that the sapphire plate 

moves with the stacks due to friction.  Suddenly the voltages to each stack are rapidly 

reversed, causing each stack to shear in the opposite direction, whereas the sapphire plate 

slips against each stack due to the rapid change and remains in its position.  Lastly the 

voltage to each stack is removed and the stage returns to its original state but with sapphire 
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plate having translated a small distance ~ < 1.0 micron along the shear direction.  The 

max voltage applied during each step is 200 V and maximum of 3 steps per second can be 

taken. The corresponding voltage waveform is shown in Figure 2.6(e).   

           Similar in operation is the course Z-stage except that it translates the tip holder and 

tube scanner vertically by a course distance of ~ 0.2–1.0 micron, depending on 

temperature.  The tip holder and the tube scanner are connected to a sapphire prism instead 

of a sapphire plate and is held between the six piezo stacks firmly by a single beryllium 

copper plate.  During approach the STM will take exactly one course step forward and then 

the piezo-electric tube scanner extends forward to see if the tip is within range to generate a 

measurable quantum tunneling current. If a threshold tunneling current is not detected, the 

coarse step is repeated. 

          The STM head is attached to the end of a cryogenic probe and is loaded into a 

stainless steel vacuum jacket containing a cryogenic charcoal pump at the base.  

Unfortunately only ultra-high vacuum can be achieved at liquid helium temperatures by use 

of the charcoal pump.  The probe is pumped down to <  10-6 torr at room temperature by an 

Alcatel ATP150 turbo-molecular pump and the pressure is measured using Alpert-Bayard 

ion gauge with Perkin Elmer Digital Gauge controller.  At liquid helium temperatures (T = 

7 K) the charcoal pump reduces the pressure in the STM to ~ 10-9 torr. 

The STM probe and jacket is mounted in an Oxford cryogenic dewar with a 7 T 

superconducting magnet with a three-inch-bore radius. The dewar holds 40 liters of helium, 

with a boil-off rate of ~ 10 liters per day, allowing for 3 days, magnetic field measurements 

with a full dewar of helium. Helium level is determined by use of a superconducting 

resistor inside the dewar.  Depending on the required temperature, the dewar is filled with 
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ambient nitrogen gas for 300 K, with liquid nitrogen for 77 K, or with liquid helium for 7 

K. The dewar is attached to a three-inch-thick aluminum plate situated on four pneumatic 

air dampener legs to isolate the system from building and mechanical vibrations, with 

added lead bricks and shot to balance the load on the pneumatic legs. In addition the dewar 

is housed inside an acoustical dampening box located in a room lined with acoustic 

dampening foam. More details on the vibration isolation and the cryogenic dewar can be 

found in A. Beyer’s thesis [79]. 

If the tip is within a range of the sample surface to generate a measurable quantum 

tunneling current, the current is filtered by an RF copper grain filter[80] located on the 

cryogenic probe above the STM head.  The current is then amplified by a FEMTO pre-

amplifier, model # DLPCA-200, located outside the stainless steel jacket at the top of the 

STM probe. The feedback circuitry and current detection is managed by the support 

electronics which initially consisted of an RHK SPM-100 SPM controller, a PMC-100 

piezo motor, a RHK pre-amplifier and controlling computer.  These were eventually 

replaced by a Nanonis RC4 controller, a Nanonis PMD piezo motor controller, a Nanonis 

HV4 high-voltage supply, and a controlling computer.  All support electronics are powered 

by separate clean power outlets. 
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Chapter 3 

Scanning Tunneling Spectroscopic Studies on the Electron-Type Cuprate 

Superconductor La0.1Sr0.9CuO2 (La-112) 

 

          In this chapter, we report findings from spatially resolved studies of the quasiparticle 

tunneling spectra of the infinite-layer electron-doped cuprate superconductor (SC) 

La0.1Sr0.9CuO2 (La-112). We examined La-112 using scanning tunneling spectroscopy 

(STS) as a function of magnetic field, H, and temperature, T. We observed a spatially 

homogeneous tunneling spectra in zero magnetic field that exhibits only one set of 

superconducting peaks with no satellite features in contrast to YBa2Cu3O7-δ(Y-123). With 

the application of magnetic fields we observed spatially resolved vortices.  The inside 

vortex spectra revealed a hidden pseudogap (PG) with energy VCO= 8.5 meV, which is 

smaller than the superconducting gap, in contrast to the findings of a PG larger than the 

superconducting gap in Y-123 [13].  The intra-vortex PG features in finite magnetic fields 

together with Green function analysis of the zero-field tunneling spectra are supportive of 

the scenario of coexisting competing orders (CO) and superconductivity in the electron-

type cuprate superconductors. Additionally, comparison of STS with ARPES and inelastic 

neutron scattering data further suggest that the CO is likely commensurate spin density 

waves (SDW) with an energy gap smaller than the superconducting gap, which is in 
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contrast to the incommensurate charge density waves (CDW) found in hole-type 

cuprates [26–30]. 

. 

3.1 Introduction   

Since the discovery of high-temperature superconducting cuprates in 1986 [1] 

intense theoretical and experimental research efforts have been made to unravel the elusive 

pairing mechanism for high-TC superconductivity.  Superconductivity in the cuprates arises 

from doping antiferromagnetic (AFM) Mott insulators with electrons or holes. The doped 

compounds become superconducting only over a range of doping concentrations, whether 

doped with holes or electrons. In fact, various ground-state phases besides 

superconductivity may emerge from doping the AFM Mott insulators [2]. Consequently, 

the ground state of cuprates may consist of coexisting competing orders and 

superconductivity.  A schematic illustration of the doping vs. temperature phase diagram is 

shown in Figure 3.1. A common feature of the cuprates is the presence of CuO2 planes, 

where holes or electrons are doped into these planes and are responsible for 

superconductivity.  There are many unconventional phenomena exhibited by the cuprates. 

Two of the most widely discussed phenomenon in hole type cuprates are the pseudogap 

[12, 24] and Fermi arcs [12, 22–24] above the superconducting transition of the 

underdoped and optimally doped samples. In contrast, both features are absent in the 

electron-type cuprates. Several models, including the one and two-gap models, have been 

proposed to explain many of the unconventional phenomena observed. 
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Figure 3.1: A zero-field temperature (T) versus doping level (δ) phase diagram for electron 
and hole-type cuprates [44]. AFM: antiferromagnetism, CO: competing order, SC: 
superconductivity, δ: doping level, TN: Néel temperature, TC: superconducting transition 
temperature, T*: low-energy pseudogap (PG) temperature, TPG: high-energy pseudogap 
temperature 
 
 
   

The one gap model is associated with the “preformed pair” conjecture that asserts 

strong phase fluctuations in the cuprates so that formation of Cooper pairs may occur at a 

temperature well above the superconducting transition [81].  The two-gap model considers 

coexistence of COs and SC with different energy scales in the ground state of the cuprates 

[6]. Recently there appears to be a consensus that the two-gap model can consistently 

account for most experimental phenomena [6]. However, the occurrence of COs does not 

exclude the possibility of preformed Cooper pairs [20]. 

 To examine the two-gap model, we begin with the mean-field Hamiltonian 

                                                              𝐻𝑀𝐹 = 𝐻𝑆𝐶 + 𝐻𝐶𝑂                                                  3.1 
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that consists of coexisting SC and a CO at T = 0 K [12–17, 22, 82].  We also assume that 

the SC gap ΔSC vanishes at TC and that the CO order parameter vanishes at T* and that both  

TC and T* are 2nd-order phase transitions [44]. The SC Hamiltonian is given by 

                         𝐻𝑆𝐶 = ∑ 𝜉𝒌 𝑐𝒌,𝛼
† 𝑐𝒌,𝜶𝒌,𝛼 − ∑ Δ𝑺𝑪(𝒌)�𝑐𝒌,↑

† 𝑐−𝒌,↓
† + 𝑐−𝒌,↓

 𝑐𝒌,↑
 � 𝒌                    3.2 

where Δ𝑺𝑪(𝒌) = Δ𝑺𝑪(𝑐𝑜𝑠𝑘𝑥 − 𝑐𝑜𝑠𝑘𝑦)/2  for dx
2
-y

2 –wave pairing, k denotes the 

quasiparticle momentum, 𝜉𝒌 is the normal-state eigen energy relative to the Fermi energy,  

𝑐 
† and c are the creation and annihilation operators, and α = ↑,↓ refers to the spin states.  

The CO Hamiltonian is specified by the energy VCO, a wave vector Q, and a momentum 

distribution δQ that depends on a form factor, the correlation length of the CO and also on 

the degree of disorder [44]. While there are many possible CO’s we will consider two 

possibilities relevant to Y-123 and La-112.  If charge density waves (CDW) is the relevant 

CO, the incommensurate wave vector Q1 is found to be parallel to the CuO2 bonding 

direction (π,0) or (0,π) and nested to the Fermi surface so that the CO Hamiltonian is  

                                 𝐻𝐶𝐷𝑊 = −∑ 𝑉𝐶𝐷𝑊(𝒌)𝒌,𝛼 �𝑐𝒌,𝛼
† 𝑐𝒌+𝑸𝟏 ,𝜶 + 𝑐𝒌+𝑸𝟏 ,𝛼

† 𝑐𝒌 ,𝜶�.                   3.3 

For Y-123, the relevant CO is CDW.  If the relevant CO is a commensurate SDW (as we 

will see is the case for electron-type La-112), the SDW wavevector becomes Q2= (π,π) and 

the CO Hamiltonian becomes 

                           𝐻𝑆𝐷𝑊 = −∑ 𝑉𝑆𝐷𝑊(𝒌)𝒌,𝛼 �𝑐𝒌+𝑸𝟐  ,𝛼
† 𝜎𝛼𝛽3 𝑐𝒌 ,𝛽 + 𝑐𝒌,𝛼

† 𝜎𝛼𝛽3 𝑐𝒌+𝑸𝟐 ,𝜷�             3.4 

where 𝜎𝛼𝛽3  denotes the matrix element αβ of the Pauli matrix 𝜎 
3.  If we incorporate realistic 

band structures  and Fermi energies for different families of cuprates with a given doping 

and by specifying the SC pairing symmetry and the form factor for the CO, the HMF can be 

diagonalized to obtain the bare Green function G0(k,ω) for momentum k  and energy ω 
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[44].    We can also include quantum phase fluctuations between the CO and SC by 

solving the Dyson’s equation selfconsistently for the full Green function G(k,ω).   Using 

the Green function we can find the quasiparticle spectral density function A(k,ω) 

                                                            𝐴(𝐤,ω) = −Im {G(𝐤,ω)}
π

 .                                             3.5 

From there we can calculate the density of states N(ω) 

                                                             𝑁(𝜔) = ∑ 𝐴(𝒌,𝜔)𝒌 .                                                3.6 

Based on the above Green function analysis for a specific CO, the zero-field quasiparticle 

spectra N(ω) at T = 0 K can be fully determined. For finite temperatures, the temperature 

Green function is employed to account for the thermal distributions of quasiparticles.  

Using this analysis we can accurately fit temperature-dependent quasiparticle tunneling 

spectra in La-112 using dx
2
-y

2 wave SC with commensurate SDW. Moreover, the 

commensurate SDW with an energy gap smaller than the SC gap can account for the non-

monotonic momentum dependent energy gap observed by ARPES in the pairing state [22]. 

           We should note that for this analysis if VCO > ΔSC , such as in the case of under- and 

optimally doped hole-type cuprates, then we will observe sharp SC coherence peaks at 

ω=ΔSC  and satellite features at ω= Δeff  (where Δeff =( VCO 
2 + ΔSC 

2)(1/2)   is an effective 

excitation gap for T < TC).  This also explains the appearance of a PG for temperatures TC< 

T < T*.  This is consistent with reports for the hole-type cuprates Y-123 and Bi2Sr2CaCu2O 

(8+x) (Bi-2212).  In contrast, if VCO < ΔSC then we will observe single set of features at Δeff 

and no PG above TC as is the case in the electron type cuprates. 

          The above analysis provides an interesting possibility.  If in a magnetic field we 

suppress SC in the vortex state, we should observe a PG-like feature in the tunneling 
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spectra instead of bound states, as is the case for a conventional superconductor [95].  As 

is the case with the hole-type cuprates where a PG is observed inside the vortex [12–13], 

we would expect a PG inside the vortex state of La-112 [82].  Therefore the tunneling 

spectra in the vortex state can provide direct information about the appropriate CO while 

SC is suppressed. 

 

3.2 La0.1Sr0.9CuO2 Sample Preparation and Considerations 

         The infinite layer cuprates, LnxSr1-xCuO2 (Ln= La, Gd, Sm) have the simplest 

structure of the cuprate superconductors. The unit cell of La-112 is nearly cubic, with the a-

b plane and c-axis lattice constants being 0.395 nm and 0.341 nm, respectively. The 

superconducting coherence length in the CuO2 plane is ξab ~ 4.86 nm and along c-axis is ξc 

~ 0.52 nm, which is longer than the c-axis lattice constant [83]. Various bulk properties 

such as the anisotropic upper critical fields and irreversibility fields of this system have 

been characterized previously [84]. 

            The crystalline lattice is outlined in Figure 3.2. The samples used in this thesis were 

prepared by Professor Sung-Ik Lee using a high-temperature (950 °C) and high-pressure (4 

GPa) process outlined in reference [85].  The high-density granular La0.1Sr0.9CuO2 samples 

were single phase, as measured by x-ray diffraction (XRD) measurements [86]. Scanning 

electron microscopy (SEM) and x-ray  photoemission spectroscopy (XPS) both observed 

random grain orientations and typical grain sizes on the order of a few microns [85, 86]. 

Magnetization measurements showed nearly 100% superconducting volume for the 
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samples, with TC = 43 K. The system was also homogeneous in stoichiometry based on 

XPS measurements [86]. 

La0.1Sr0.9CuO2 crystals are highly 3-dimensional in nature and cannot easily or 

cleanly be cleaved in contrast to Bi-2212.  Therefore, the surface of the La0.1Sr0.9CuO2  

 

 

Figure 3.2 : (top panel )The crystalline structure of the infinite layer La-112. (bottom panel) 
The Brillouin zone of La-112 showing possible SDW and CDW Q wave vectors. 
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polycrystalline sample was prepared by chemical etching with 0.5–2% bromine in dry 

ethanol for 30 seconds to 4 minutes. The sample was then rinsed in pure ethanol to remove 

any bromides and was then dried by blowing cold-trap filtered helium gas onto the sample.  

According to [86], bromine etching reveals a nearly stoichiometric surface as seen by x-ray 

photoemission spectroscopy (XPS).  Unfortunately the etched surface of La-122 does not 

permit sufficient topographic sensitivity to allow for imaging of individual atoms or 

imaging the crystalline lattice in topography scans.  However, we can still measure 

tunneling spectra and the etched surface topography with atomic-level resolution.  As noted 

in [87] this is due to the etched sample surface and the nature of the wave functions of the 

surface of La-112.  After the sample surface was prepared, the sample was quickly 

transferred to the STM, which was brought to a pressure of < 10-9  torr and a temperature T 

= 6 K.  At which point STS studies were performed at several magnetic field strengths, H = 

0, 1, 1.5, 2, 3.5, 4.5, and 6 Tesla. 

 

3.3 Zero-Field Studies 

          In this section we present STS studies on La-112 in zero magnetic field.  Multiple 

zero-field scans were performed over 64 × 64 nm2 regions and the quasiparticle tunneling 

spectra was found to be homogenous throughout the sample (Figure 3.3 (b)). This finding 

is in stark contrast to the nanoscale spectral variations in optimal and underdoped Bi- 2212 

[88]. In all tunneling spectra we can identify two superconducting coherence peaks and 

define a peak-peak separation distance : 2Δpk-pk.  Figure 3.3(a) presents a representative 

quasiparticle spectrum with the data in black circles, and a Δpk-pk gap map over a 
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representative region, with the corresponding histogram of gap values. We can perform a 

Lorentzian fit of the histogram of Δpk-pk values, where we find a average Δpk-pk = 12.2 meV 

with a Lorentzian line width of 0.8 meV. 

        In Figure 3.3(a), the representative tunneling spectrum is normalized to a high energy 

background according to the methods described in [89].  Three different theoretical fitting 

curves are also plotted in the image with the inset showing a zoom-in comparison of the 

data and the three theoretical fittings.  The fitting curves that assume pure s-wave SC 

(green), pure dx
2
-y

2 -wave SC (red) are not as effective in fitting the data as coexisting dx
2
-y

2 

-wave SC with commensurate SDW (blue).  We therefore tentatively identify Δpk-pk  as Δeff 

following our previous arguments in Section 3.1.  We should note that in contrast to STS 

studies on Y-123 we do not observe any satellite features in the quasiparticle tunneling 

spectra of La-112. 

          Investigations of the temperature dependence of the  Δpk-pk reveal the gap shrinking 

with increasing temperature and finally closing at T = 43 K. Above TC the tunneling 

spectra shows a purely metallic-like LDOS with no evidence of a pseudogap feature as is 

found in the hole-type cuprates.  This is consistent with the absence of a pseudogap at TC < 

T < TPG for all other electron doped cuprates.  The temperature evolution of the effective 

gap is illustrated   Figure 3.4, with the inset showing the temperature dependence of Δeff 

which appears to follow a BCS-like behavior. 
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Figure 3.3: (a) A representative normalized dI/dV spectrum (open circles) fort H = 0 and T 
= 6K with attempts to fit the data using BCS superconductivity alone as solid-lines for pure 
s-wave (green) and pure d-wave (red) pairing symmetry and using a model of coexisting 
superconductivity and a competing order as another solid-line (blue) on top of the data. The 
attempts to fit the data all use ΔSC = 12.0meV. The competing order model assumes a 
gapped spin-density wave for the competing order and uses values of VCO = VPG = 8.0 meV 
and density-wave vector Q=(π,π) to generate the fit. Neither fitting that assumes pure 
superconductivity can sufficiently account for the gapped spectra and the subgap states, 
while the fitting of SC and a gapped SDW more closely models the data. Inset: A closer 
view of the subgap quasiparticle tunneling spectra that better shows the inability of d-wave 
and s-wave BCS spectra to fit the data, while the SC/CO fitt better accounts for the subgap 
states. We further note that the incorporation of SC and commensurate SDW in electron-
type cuprates is consistent with inelastic neutron scattering experiments [93] and is also 
essential to account for the nonmonotonic momentum-dependent energy gap found in 
ARPES studies [22]. (b) A map of Δpk-pk values over a 64 nm × 64 nm area. (c) A 
histogram of Δpk-pk values from (b) 
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Figure 3.4: Representative tunneling spectra as a function of temperature in zero magnetic 
field for T = 6, 17, 33 and 49 K.  No PG feature is observed above TC. Inset: Δpk-pk vs. 
temperature showing a BCS-like dependence 
 
3.4 Magnetic Field Studies 

        In this section we present spatially resolved STS as a function of magnetic field at low 

temperatures.  In order to investigate the vortex state, all measurements were performed 

below the c-axis irreversibility field of H = 10 Tesla at T = 0 K as determined in [84].  The 

size of vortex cores for superconductors is determined by the relevant coherence lengths 

and in anisotropic superconductors, such as the cuprates, depends on the crystalline plane 

examined. For tunneling currents parallel to the c-axis, or {001} surface, vortices will be 

circular in shape and have a core radius given by the a-b plane coherence length, ξab.  We 

note that the observed vortices in these studies had radii comparable to ξab; so we conclude 

that the vortex-state spectroscopic studies were performed by tunneling along the c-axis 

and also with applied magnetic fields parallel to the c-axis. 
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         Upon applying magnetic fields H with the condition 0 < 𝐻 < 𝐻𝑐2

𝑎𝑏,𝑐, the 

quasiparticle tunneling spectra exhibit strong spatial inhomogeneity, as exemplified in 

Figure 3.5 (b) for H = 1.5 Tesla over a 152 × 160 nm2 area.  We have plotted the square of 

the conductance power ratio 

                                                                 (𝑑𝐼 𝑑𝑉|𝜔=Δeff⁄ )2

(𝑑𝐼 𝑑𝑉|𝜔=0⁄ )2
                                                        3.7 

 

 in order to accentuate the presence of vortices.  This follows the supposition in Section 3.1 

that the coexistence of CO with ΔCO < ΔSC would result in intra-vortex pseudogap.  

However, since SC is suppressed inside the vortex core and spectral weight must be 

conserved, we expect a decrease in intra-vortex spectra weight in the tunneling 

conductance at ω= Δeff and an increase in spectra weight at ω= 0 meV.  Consequently 

plotting conductance power ratio will enhance the presence of vortices in the image where 

we can find that the presence of vortices is associated with the local minimum of the 

conductance power ratio.  In comparison to the H= 1.5 Tesla plots, the conductance power 

ratio plots of the same region at H = 0 Tesla are very homogenous as exemplified in Figure 

3.5(a). Contrasting the two allows us to identify presence of 18–19 highly disordered 

vortices, which is in agreement with expected number of vortices for an Abrikosov vortex 

lattice in a 152 × 160 nm2 area.   We also note that the average radius of the vortices is 

comparable to the superconducting coherence length, ξab. 

Given that we are primarily interested in achieving high spatial resolution in order 

to investigate the inter- to intravortex spectral evolution, we next focus on smaller spatial 

maps in finite fields. As shown in Figure 3.6 (a,b) we have plotted conductance power ratio  
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Figure 3.5 (a) Conductance ratio map of a 152 nm × 160 nm region at H = 0 Tesla  
showing nearly uniform conductance. (b) Conductance ratio map of same region in (a) at H 
= 1.5 Tesla  revealing the presence of 18 vortices. The vortices are revealed as minimum in 
the conductance ratio. 
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Figure 3.6:  Conductance ratio maps  for (a) H = 1 Tesla for a 64 nm × 64 nm region with 3 
visible vortices. (b) H = 2 Tesla for a 65 nm × 50 nm region with 5 visible vortices 
 
 
maps for H = 1 Tesla (64 × 64 nm2) and H = 2 Tesla (65 × 50 nm2)  For the smaller maps, 

vortices are still clearly visible at both H = 1 and 2 Tesla with averaged vortex lattice 

constants aB = 52 nm and 35 nm, respectively, which are comparable to the theoretical 

values given by  aB = 1.075(Φ0/B)1/2.   However, the shape of vortices observed in the 

experiments is generally irregular. Possible causes for the irregular vortex shape may be 

due to microscopic disorder in the sample, surface roughness after chemical etching, or 

possible interaction between the STM tip and the vortices.  

        We note that all spectra observed for Figure 3.6(a,b) are gapped and that there are no 

zero-bias conduction peaks anywhere in either map, even in the vortex cores.  The presence 

of PG-like features inside the vortex is similar to the findings in hole-type Bi2212 and Y-

123 [7, 91, 92]. 
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        To better illustrate the spatial evolution of the tunneling spectra, we present spatial 

linecuts through two vortices at H = 1 Tesla and through 3 vortices at H = 2 Tesla for the 

conductance maps in Figure 3.6 and are indicated by black dashed lines.  These linecuts are 

shown in Figure 3.7.   

We find that the value of Δpk-pk  is lower inside vortices than Δpk-pk  for  outside the 

 

Figure 3.7 : Linear linecuts of tunneling spectra along the black dashed lines in Figure 3.6  
(a) Vortex linecut in H= 1 Tesla. (b) Vortex linecut in H=2 Tesla. We find modulations in 
the zero-bias conductance (ω= 0) and slight modulations in the peak-to-peak energy gap 
(Δpk-pk). The modulations track the periodicity of aB. The zero-bias conductance is 
maximum inside vortices, while the ω= Δpk-pk conductance is a minimum inside vortices. 
 

vortices. The value of Δpk-pk  is  ~ 8.5 meV  (which we identify as VCO) inside vortex cores 

for both H = 1 and 2 Tesla, while the average, outside vortex core Δpk-pk  equals 11 meV for 

H = 1T and 10.5 meV for H = 2T.  The spatial linecuts at H = 1 T and H = 2 T also reveal 

modulations induced in the quasiparticle spectra by the vortices. Specifically, we note 

modulations in the zero-bias conductance as it increases inside the vortices and 

modulations at Δpk-pk which decreases inside the vortices. The modulations track the 

periodicity of aB, as expected.  The pseudo-gap energy inside the vortices is smaller than 
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the Δeff as measured at H = 0 Tesla.  Upon increasing magnetic field, the energy 

associated with the peak features at Δpk-pk outside vortices decreases slightly and the line 

width of the peaks broadens, whereas the PG-energy at VCO inside vortices remains 

constant, as shown in Figure 3.8(a–d) for comparison of representative inter- and intra-

vortex spectra taken at H = 1, 2, 3.5, and 6 T.  For magnetic fields H > 2 Tesla, the contrast  

 

Figure 3.8: Comparison of inter- and intra-vortex spectra for several magnetic fields. (a) H 
= 1 Tesla. (b) H = 2 Tesla. (c) H = 3.5 Tesla. (d) H = 6 Tesla. We find pseudogap-like 
spectra in the vortex cores, shown as thick lines. Spectra well outside of vortices are shown 
as thin lines. The peak features around ω = Δpk-pk broaden as H increases. The zero-bias 
conductance of the spectra outside vortices increases with H. 
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  between inter- and intra-vortex spectra begins to diminish, making identification of 

vortices difficult. 

       To better understand the tunneling spectra evolution with increasing fields, we plot 

histograms of Δpk-pk as a function of magnetic field for H = 0, 1, 2, 3, 3.5, 4.5, and 6 Tesla.  

The histograms were generated from all spectra taken over spatial maps varying in size 

from 50 × 50 nm2 to 100 × 100 nm2.  We find that each histogram can be fit by a 

Lorentzian and we associated the peak energy with Δeff which decreases slightly with 

increasing magnetic field. The vast majority of the observed Δpk-pk values appeared above 

an apparent low-energy “cutoff” at VCO = 8.5 ± 0.6 meV for all histograms, as illustrated 

by the pale blue wall in Figure 3.9(a).  This behavior is in contrast to the histograms 

expected for a conventional type-II superconductor with no CO as shown in Figure 3.9(b). 

In this situation we would expect as H increases, the quasiparticles in the vortex state of a 

conventional type-II superconductor shift to lower energy and a peak at ω= 0 appears. The 

downshifted spectral weight is approximated by the ratio of the vortex core area relative to 

the Abrikosov vortex unit cell, �𝜋𝜉𝑎𝑏
2 2⁄ �/�√3𝑎𝐵2 4⁄ �. This is shown in Figure 3.9(c). 

 

3.5 Discussion 

         To understand the absence of zero bias conductance peaks in the vortex-state 

quasiparticle spectra, the pseudogap-like behavior inside the vortex core, and the existence 

of a low-energy cutoff at VCO requires the scenario of coexisting CO and SC and cannot be 

explained by the scenario of pure SC in the ground state.  In Figure 3.3 we plotted a 

representative tunneling spectra for H = 0 Tesla with three different fittings.  The fittings 
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assumed pure s-wave SC (green), pure dx

2
-y

2 -wave SC (red), and coexisting dx
2
-y

2 -wave 

SC and commensurate SDW(blue) with the following fitting parameters: SC gap ΔSC = 

12.0 ± 0.2 meV,  CO energy VCO = 8.0 ± 0.2 meV, and CO wave vector Q = (π, π) for the 

SDW.  We note that the consideration of commensurate SDW [93] as the relevant CO is 

consistent with neutron scattering data from electron-type cuprate superconductors [94]. 

 

 
Figure 3.9 : Histograms of the Δpk-pk. (a) Histograms Δpk-pk determined from quasiparticle 
tunneling spectra reveal the spectral evolution for H > 0. The value of Δpk-pk decreases as 
we increase field, but never seems to drop below Δpk-pk = 8:5±0.6 meV, the low-energy 
cutoff.  Each histogram is fit by a Lorentzian form, shown as solid lines on top of the 
histograms. (b) Δeff , ΔSC , VCO  vs. H obtained from Lorentzian fits and Green function 
analysis of tunneling spectra. As H increases VCO  remains constant while ΔSC and Δeff 
decrease in size. (c) Predicted Δpk-pk  vs. H for a conventional BCS superconductor 
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The analysis suggests the best fit for zero-field spectra is the scenario of CO with SC.  

Moreover, ARPES studies of the energy gap in electron-type cuprates revealed non-

monotonic momentum dependence [96], which can only be explained by considering 

coexisting SC and commensurate SDW, as discussed in [22] and reproduced below in 

Figure 3.10.    

Interestingly, the CO energy derived from the zero-field analysis, VCO = 8.0 ± 0.2 meV, is 

consistent with the PG energy observed inside the vortex core, implying that the intra-

vortex PG has the same physical origin as the zero-field CO. Additionally, the CO scenario 

can account for the temperature dependence of the zero-field tunneling spectra, as shown in 

the main panel of Fig. 3.4, where the theoretical fits(not shown) to the experimental data  

are obtained by using the temperature Green’s function and temperature-dependent ΔSC and 

VCO values that yield the correct empirical Δeff(T ).  This finding suggests that the 

commensurate SDW coexists with SC for La-112. Although it is generally not conclusive 

to determine the CO wave-vector from Green function fitting to the tunneling spectra that 

only contains integrated momentum information, the successful account of the momentum- 

dependent energy gap determined by ARPES (see Figure 3.10) consistently corroborates 

with our STS studies and provides strong support for the scenario of coexisting 

superconductivity and commensurate SDW in electron-type cuprates [22]. 

We can compare these results with studies [13] on the hole-type Y-123 which also 

revealed PG-like features and field-induced modulations inside the vortices.  In those 

studies, however, the PG energy is larger than ΔSC.  The larger energy associated with the 

PG-like features inside vortices of Y-123 is consistent with the presence of a zero-field PG  
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Figure 3.10: Simulations of Δeff(k) in the first quadrant of the Brillioun zone of the 
electron-type cuprate Pr0.89 LaCe0.11CuO4 at (a) T = 0 and (b) T = 0.9 TC . (c) Momentum-
dependent ARPES leading edge data from [97] together with theoretical fitting for two 
types of CO's, CDW and SDW. The navy line corresponds to Q =(π,π) for SDW, and the 
green line corresponds to Q =(π,0) or (0,π) for CDW. Clearly the fitting curve with Q 
=(π,π) for SDW agrees much better with ARPES data. Image from [22]. 
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at a temperature higher than TC. These findings from the vortex-state quasiparticle 

spectra of Y-123 are in contrast to those of La-112 where in the latter no zero-field PG 

exists above TC and the field-induced PG energy is smaller than ΔSC. 

         We should also note that this work is the first and remains the only observation of 

vortex state in the electron-type cuprates.  The difficulty of observing vortices in the 

electron-type cuprates may be due to the smaller superconducting gap energies in the 

electron-type cuprates which are very close to competing order energies, VCO, and so 

reduces the contrast between inter- and intra-vortex spectra.  

        In this section we have presented STS magnetic field studies of the electron type 

superconductor La-112.  Spatially resolved quasiparticle tunneling spectroscopy revealed a 

hidden pseudogap inside vortices and unconventional spectral evolution with temperature 

and magnetic field dependence.  The scenario of coexisting CO and SC provided the best 

explanation for experimental data of both electron- and hole-type cuprate studies. 
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Chapter 4 

Scanning Tunneling Spectroscopic Studies of the Electron-Doped Iron 

Pnictide Superconductor Ba(Fe1-xCox)2As2 

 

Building on our experimental findings and analysis for the cuprate superconductors, 

specifically the electron type cuprate La0.1Sr0.9CuO2 (La-112), we now consider for contrast 

and comparison the ferrous superconductor  Ba(Fe1-xCox)2As2.  The recent discovery of a 

new class of iron-based superconductors in 2008 [98] has caused a renewed interest in both 

experimental and theoretical research of high-temperature superconductivity.  Similar to 

the cuprate superconductors, the exact pairing mechanism in these ferrous superconductors 

is not known and therefore these superconductors provide an excellent ground for 

comparative studies.  Scanning tunneling spectroscopic studies of temperature, doping, and 

magnetic field dependence were conducted on Ba(Fe1-xCox)2As2 single crystals with doping 

levels x = 0.06, 0.08, 0.12 and TC =14 , 24, 20 K respectively  .  In this chapter, evidence is 

presented for sign-changing two-gap superconductivity which is in agreement with ARPES 

studies and theoretical predictions.  For all doping levels, both superconducting gaps 

decrease monotonically in size with increasing temperature and disappear for temperatures 

above the superconducting transition temperature, TC. Magnetic resonant modes that follow 

the temperature dependence of the superconducting gaps are also identified in the tunneling 
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quasiparticle spectra. Together with quasiparticle interference (QPI) analysis and 

magnetic field studies—our findings provide strong evidence for two-gap, sign-changing s-

wave superconductivity.  In the presence of a magnetic field, a pseudogap ( ΔPG ~ 11–12 

meV) is observed inside the vortex core, which is in contrast to theoretical predictions for 

pure s-wave superconductivity and suggests   the coexistence of a competing order with 

superconductivity in the ground state.  Moreover, the strong presence of a QPI wave-vector 

that doubles the wave-vector associated with the antiferromagnetic spin-density waves 

(SDW)is consistent with the presence of charge density waves (CDW) induced by spin 

density waves (SDW). We begin with an overview of the basic physical properties of 

Ba(Fe1-xCox)2As2. 

4.1 Introduction 

        In this section the basic structural and electronic properties of the ferrous 

superconductors and more precisely Ba(Fe1-xCox)2As2 are reviewed. Similar to the 

cuprates, the ferrous superconductors are type II unconventional superconductors and are 

layered materials with magnetic instabilities [44].  The basic chemical structure is FeX, 

where X = As, P, S, Se, Te. Structurally, FeX forms a tri-layer that consists of a square 

array of Fe residing between two checkerboard layers of X [44]. Similar to the cuprates 

where the CuO2 layers are responsible for superconductivity, the FeX tri-layers provide the 

same role in the iron-based superconductors. The origin of superconductivity resides with 

the d-electrons of Fe in the FeX tri-layers, with the X-layer contributing to delocalizing the 

d-electrons [99–101]. The FeX tri-layers are separated by the layers of alkali, alkaline-

earth, or rare-earth atoms and oxygen/fluorine. There are four basic types of iron-based 
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superconductors: the “1111”, “122”, and “111’ pnictides and the “11” type iron 

chalcogenides. The basic structure of the “122” iron pnictides is shown in Figure 4.1(a). 

 

Figure 4.1: Lattice structure and doping vs. temperature phase diagrams. (a) Three-
dimensional image of the “122” iron pnictides [117]. For Ba(Fe1-xCox)2As2, Co is doped 
into the Fe. (b),(d) Doping vs. temperature phase diagrams for both the  “1111” and the 
electron doped “122” systems.  We observe that only in the “122” system is there an 
overlap of superconductivity and the AFM order. (c)  Two dimensional cut of the crystal 
lattice along the Fe planes.  The arrows show the Fe-Fe elongation in directions parallel to 
the direction of antiferromagnetic spin coupling and contraction in directions parallel to the 
ferromagnetic spin coupling, where the red arrows denote the spin configurations.  This 
results in the occurrence of CDW modulations[44], which are observable in our STS 
studies. 
 

The “122” systems have the chemical formulas (A1-xBx)Fe2As2 where A = Ba or Sr, 

and B = K or Cs for the hole type [102].  If Co is instead substituted in for Fe, the 
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substitution leads to the electron type “122”, such as Ba(Fe1-xCox)2As2 [103, 104].  The 

lattice constants for Ba(Fe1-xCox)2As2 are (a,b) = 0.56 nm and c0 = 1.239 nm above 

structural phase transition at TS , below which the system transforms from  a tetragonal 

phase to a orthorhombic structure. This phase transition will have important consequences 

for STS measurements.  In contrast to the cuprate superconductors whose parent compound 

is a Mott insulator, the parent compounds of the ferrous superconductors are semimetals 

[44].  On the other hand, as shown by the phase diagrams in Figure 4.1(b,d) for the “122” 

systems, superconductivity and antiferromagnetic (AFM) phases are predicted to coexist 

for a range of doping levels, similar to the competing order (CO) phenomena found in the 

cuprates. For most of the ferrous superconductors, the parent compounds exhibit AFM at 

ambient pressures. This magnetic order couples with the aforementioned tetragonal to 

orthorhombic structural distortion. For the stoichiometric “122” system such as the Ba(Fe1-

xCox)2As2 [90], first-order structural and AFM transitions occur at the same temperature. In 

the low-temperature phase, the a-b plane Fe-Fe distance elongates in the direction parallel 

to the antiferromagnetically coupled magnetic moment and contracts in the direction 

perpendicular to it (Figure 4.1(c)). Consequently for the “122” systems there is a possibility 

of coexistence of competing orders with superconductivity. However, the exact doping 

level at which this coexistence occurs remains unclear. On the other hand, the situation is 

different for the “1111” systems where the doping-dependent phase diagrams demonstrate 

that superconductivity and the AFM order do not coexist[44] as shown schematically by 

Figure 4.1(d).  The difference in the doping-dependent phase diagram  has strong 

consequences for the vortex core states of both the “122” and “1111” systems.  Following 

our analysis of the cuprate superconductors, the doping-dependent phase diagrams suggest 
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that different ferrous superconductors should exhibit different intra-vortex quasiparticle 

spectra, depending on if AFM coexists with superconductivity in the ground state.  If CO 

coexists with superconductivity, we would expect to observe a pseudogap inside the vortex 

state for the “122” systems and bound states inside the vortex state for the “1111” systems 

[44]. 

             The ferrous superconductors are believed to be approximately described by a five 

band model near the Fermi level according to theoretical calculations based on density 

functional theory [104, 106–108] and that their Fermi surfaces involve multiple 

disconnected pockets.  The presence of multiple bands and multiple disconnected Fermi 

pockets suggests that inter-Fermi surface interactions are important to the occurrence of 

ferrous superconductivity [44]. Calculations of magnetic susceptibility have shown that 

these ferrous compounds should indeed have an AFM order, and the wave vectors 

associated with the AFM coupling coincide with those connecting the centers of the 

electron and hole Fermi pockets [108, 109]. These theoretical findings have led to the 

conjecture of two-gap superconductivity mediated by AFM spin fluctuations, with sign-

changing s-wave order parameters for the hole and electron Fermi pockets [44]. Figure 

4.2(a) shows the predicted Fermi surface of the iron-based superconductors along with the 

predicted AFM wave vectors.  These properties of the iron-based compounds are in 

contrast to the cuprates with are primarily described by an effective one band model with a 

large Fermi surface and are one-gap superconductors described by predominately a 𝑑𝑥2−𝑦2 

pairing symmetry. 
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The theoretical prediction for sign changing s-wave pairing symmetry in the iron-

based superconductors has been verified by inelastic neutron scattering experiments [111–

114]. The inelastic neutron scattering experiments show a neutron resonance at the AFM 

ordering wave vector as expected theoretically below TC for sign changing s-wave pairing. 

Specifically, the magnetic susceptibility in the superconducting state of a multiband 

superconductor is governed by the sign change of the superconducting gaps at the ‘‘hot 

spots’’ of the Fermi surface and the following energy conservation formula for inelastic 

scattering of the Bogoliubov quasiparticles on the Fermi surface [110, 116]: 

                                              Ω𝑣𝑣′�𝒌��⃗ 𝑭,𝒒��⃗ � = �𝚫𝒌��⃗ 𝑭
𝒗′ � +  �𝚫𝒌��⃗ 𝑭+𝒒��⃗

𝒗 �                                4.1   

where v and v’ represent different energy bands and the wave vectors  𝒒��⃗   are between 

various pieces of the Fermi surface that have opposite sign in the superconducting pairing 

potential Δ𝒌��⃗ +𝒒��⃗
𝑣 .    

           The elastic scattering of quasiparticles by impurities will be dependent on whether 

the superconducting order parameter has opposite signs on electron and hole pockets of the 

Fermi surface.  That is, in zero magnetic field: 

                                                                         �𝚫𝒌��⃗ 𝑭
𝒗 � = �𝚫𝒌��⃗ 𝑭+𝒒��⃗

𝒗′ �.                                          4.2 

Nonmagnetic impurities will cause strong scattering of quasiparticles between pieces of the 

Fermi surface that have opposite sign in the pairing potential while suppressing the 

scattering between pieces of the Fermi surface with the same sign in the pairing potential 

[44].  Conversely, magnetic impurities (or nonmagnetic impurities in the presence of a 

magnetic field) will cause strong scattering of quasiparticles between pieces of the Fermi 
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Figure 4.2:  Fermi surface and expected quasiparticle wave vectors.  (a) Two-dimensional 
cut of the Fermi surface of the ferrous superconductors in the one iron unit cell showing 
both electron (γ,δ) and hole (α,β) pockets.  Also plotted are quasiparticle interference wave 
vectors connecting different parts of the Fermi surface: 𝒒1,𝒒2, and 𝒒3. (b) Theorectical 
prediction for quasiparticle interference intensities for scattering from nonmagnetic 
impurities in zero field at the superconducting gap energies. We note that 𝒒2 should be 
strongly apparent and 𝒒3 suppressed.  If  CDW waves are present then 𝒒1 = 𝟐𝒒2 may 
appear. (c) Theoretical prediction for quasiparticle interference intensities for scattering 
from magnetic impurities in zero field or nonmagnetic impurities in a magnetic field at the 
superconducting gap energies. We note that 𝒒3 should be apparent and 𝒒2 reduced in 
strength.   
 
 
 
surface with the same sign  in the pairing potential and suppress scattering of quasiparticles 

between pieces with opposite sign.  Consequently, quasiparticle interference analysis of 

elastic scattering in experimental tunneling data would be able to verify a sign changing s-

wave pairing symmetry in the ferrous superconductors.  Figure 4.2(a–c) shows the distinct 

wave vectors expected for quasiparticle scattering from nonmagnetic impurities in zero 

magnetic field and from magnetic impurities (or from nonmagnetic impurities in a nonzero 

magnetic field). 

Tunneling spectra can also provide important information about inelastic scattering 

at higher tunneling energies. T. Das et al. argued that a multiband superconductor with sign 
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changing gaps would have multiple spin resonances [110]. These magnetic resonance 

modes are due to inelastic scattering of quasiparticle interferences by collective modes.  

The predicted magnetic susceptibility in the random phase approximation is given by 

𝜒�0(𝑞,Ω) =
𝑀𝑣𝑣′

𝑁
��

1
2 �

1 +
Ɛ𝑘+𝑞𝑣 Ɛ𝑘𝑣

′ + Δ𝑘+𝑞𝑣 Δ𝑘𝑣
′

𝐸𝑘+𝑞𝑣 𝐸𝑘𝑣
′ �

f�𝐸𝑘+𝑞𝑣 � − f�𝐸𝑘𝑣
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1
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                                                                                                                                   4.3  

where we define the quasiparticle energy  𝐸𝑘𝑣 in the “n”-th band with momentum k by the 

relation,   𝐸𝑘𝑣 = [(Ɛ𝑘
𝑣)2 + (Δ𝑘

𝑣)2]1 2⁄ .  Consequently, , where Ɛ𝑘
𝑣  is the normal-state eigen-

energy relative to the Fermi level, and f(𝐸𝑘𝑣) denotes the Fermi function for quasiparticles 

resonances will occur at energies                                            

                                               Ω𝑟1 = �Δ𝛽� + �Δ𝛾 𝛿⁄ �~1.5 �Δ𝛾 𝛿⁄ � 

                                                 Ω𝑟2 = |Δ𝛼| + �Δ𝛾 𝛿⁄ �~2 �Δ𝛾 𝛿⁄ �             4.4 

where    Δ𝛼, Δ𝛽 , and Δ𝛾 𝛿⁄   are the different superconducting gaps on different pieces of the 

Fermi surface [110].  Generally,  Δ𝛼 ≈ Δ𝛾 𝛿⁄ ≈ 2Δ𝛽  where 𝛼 ,𝛽 represents the inner and 

outer hole pockets at Γ and 𝛾 𝛿⁄  represents the electron pockets at the two M high-

symmetry points of the Brillouin zone, as shown in Figure 4.2(a) [110]. These magnetic 

resonances scale with the superconducting gaps and should disappear above TC.  At 

sufficiently high energies, these resonances should be observable in the tunneling spectra. 
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In the remaining parts of this chapter we present experimental STS studies that provide 

evidence for two-gap superconductivity with sign changing s-wave pairing potential. 

 

4.2 Experimental Methods and Sample Preparation 

       Similarly to the cuprate superconducting samples described in Chapter 5, surface 

preparation of the samples is extremely important.   The Ba(Fe1-xCox)2As2 single crystals 

are air sensitive and will degrade quickly in any ambient atmosphere due to the reaction of 

Ba with CO2, which would create an effective dead layer on the surface.  This is potentially 

devastating as STM is a highly surface-sensitive measurement.  To prevent contamination 

of the sample surface, the sample must be prepared in an inert gas atmosphere or at ultra-

high vacuum.  Previous iron pnictide STM studies of the hole type and electron type “122” 

systems [117–119] cleaved the samples in situ in ultra-high vacuum conditions at 

cryogenic temperatures.  The resulting sample surfaces all exhibited strong (2x1) 

reconstruction of the Fe(Co)-layer and STS measurements of the tunneling spectra revealed 

a single highly inhomogeneous superconducting  gap [117, 118].  In the 

nonsuperconducting limit, nematic surface reconstructions were observed [119]. In 

contrast, for this thesis, the Ba(Fe1-xCox)2As2 single crystals were first cleaned in a ethanol 

wash. The crystals were cleaved at room temperature in a pure argon environment inside a 

glove box with all Teflon tools. Here we note that the sample preparation temperature was 

above the tetragonal-to-orthorhombic structural phase transition.  The samples were then 

loaded into the STM probe inside the glove box according to the method outlined in 

Chapter 2.  The STM was then loaded into a cryogenic dewar and rapidly pumped downed 
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to pressures < 10-7 torr and quickly cooled to a temperature of T = 6 K , where the 

charcoal pump inside the STM probe became activated so that the overall vacuum was 

down to ~ 10-10 Torr.  It should be noted that even in cryogenic temperatures and ultra-high 

vacuum conditions with a residual argon atmosphere, the surface layer of the crystal still 

continues to degrade, forming an eventual dead layer.  The timeframe for this degradation 

is ~ 7–8 days, after which the surface is no longer superconducting.  The sample must then 

be removed from the STM and the above surface preparation process repeated.  The single 

crystals were grown from the flux method [120], with details of the synthesis and 

characterization described elsewhere [120–122]. 

       Once at T= 6 K, topographic and spectroscopic studies were performed over numerous 

regions of the samples.  The average scan consisted of a 6 nm × 6 nm area with a resolution 

of 128 pixels × 128 pixels.  The tunnel junction resistance was maintained at ~ 1.0 GΩ 

along the c-axis.  At each pixel the tunneling conductance (dI/dV) vs. energy (eV), 

topography, and tunneling current were measured simultaneously. 

  

4.3 Experimental Results 
 

4.3.1 Zero-Field Measurements 

       In Figure 4.3 we present representative normalized tunneling spectra for both 

underdoped (x = 0.06, TC = 14 K) and overdoped (x = 0.12, TC = 20 K) Ba(Fe1-xCox)2As2 

single crystals for two different temperatures below TC at T = 6 K and T = 10, 14 K for 

underdoped and overdoped, respectively, and also for one temperature above TC for both 

samples. The tunneling data are shown in open symbols. Two predominant tunneling gap 
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features are observable for both doping levels. As shown in Figure 4.3(a–b) both gaps 

shrink with increasing temperature and eventually disappear above T = TC.  The sizes of 

each gap for  T = 6 K are Δ𝛽  ~ 4 meV and   Δ𝛼,𝛾 𝛿⁄  ~ 8 meV for the underdoped sample 

and Δ𝛽 ~ 5 meV and   Δ𝛼,𝛾 𝛿 ⁄ ~ 10 meV for overdoped sample.  We have assigned Δ𝛽 for 

the smaller gap and Δ𝛼,𝛾 𝛿⁄  for the larger gap.  The measured gap values are in relatively 

good agreement with ARPES data [123–125].  To analyze the spectra, fittings of the T= 6 

K tunneling spectra were made using a phenomenological fitting generalized from Dynes 

formula [126] and we restricted the analysis to two-gap superconductivity.  Specifically, 

the normalized tunneling conductance  𝐺̅ for a metal-insulator-superconductor junction in 

the case of a two-gap superconductor may be given by: 

                                   𝐺̅ = 𝐴 + ∑ 𝐵𝑖 ∫𝑅𝑒 �
(𝐸−𝑖Γ𝑖)�

𝑑𝑓
𝑑𝐸� �

𝐸−𝑒𝑉

�(𝐸−𝑖Γ𝑖)2−Δ𝑖
2

�𝑖= 𝛽 ,(𝛼 ,𝛾 𝛿⁄ ) 𝑑𝐸                    4.5 

where A and Bi are positive constants, Γ𝑖 denotes the quasiparticle scattering rate 

associated with the superconducting gap Δ𝑖 and f(E) is the Fermi function.  From this 

fitting we can derive temperature-dependent values of both gaps. Both fittings are shown in 

Figure 4.3(a–b) as solid black lines and are in fair agreement with experimental data but are 

not ideal as Dyne’s formula does not explicitly consider sign changing s-wave 

superconductivity nor the possibility of coexisting competing orders with 

superconductivity.  Using this crude approximation we find that the quasiparticle scattering 

rates for under- and overdoped sample are fairly large �Γ𝛼 ,𝛾/𝛿 Δα,γ/δ⁄ � = 0.4 and 0.5 for x 

= 0.06 and x = 0.12 and with �Γ𝛽 Δβ⁄ � = 0.1 for both x = 0.06 and x = 0.12.   

                                



 

 

65 

 

Figure 4.3 : Quasiparticle tunneling spectra and temperature vs. gap. (a)(left panel) 
Tunneling spectra (open symbols) for underdoped (x = 0.06) Ba(Fe1-xCox)2As2 at T = 6 ,10,  
and 15 K.  Below TC both tunneling spectra exhibit two gap features that close above TC. A 
Dynes fitting (solid black curve) for the T = 6 K  curve. (right panel) Superconducting gap 
vs. temperature for both gap features that shows both gaps disappearing above TC.  (b)(left 
panel) Tunneling spectra (open symbols) for underdoped (x = 0.12) Ba(Fe1-xCox)2As2 at T 
= 6 ,14,  and 21 K.  Below TC both tunneling spectra exhibit two-gap features that close 
above TC. A Dynes fitting (solid black curve) for the T = 6 K  curve. (right panel) 
Superconducting gap vs. temperature for both gap features that shows both gaps 
disappearing above TC 
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Figure 4.4: Gap maps and gap histograms.  (a)(from left to right)  Gap maps for the 
underdoped sample for both Δ𝛽 and Δ𝛼,𝛾 𝛿⁄  with the corresponding histograms for both 
gaps respectfully.  The solid bars represent quasiparticle gaps and the shaded bars represent 
quasihole gaps. The histograms show particle symmetry in the superconducting gaps. 
(b)(from left to right)  Gap maps for the overdoped sample for both Δ𝛽 and Δ𝛼,𝛾 𝛿⁄  with the 
corresponding histograms.  The solid bars represent quasiparticle gaps and the shaded bars 
represent quasihole gaps. 
 
 
 
In Figure 4.4(a-b), we have plotted the 2D gap maps for both Δ𝛽 and Δ𝛼,𝛾 𝛿⁄   of both the 

under- and overdoped samples where the value at every pixel is the calculated 

superconducting gap from tunneling spectra. The average superconducting gap values,  

(Δ𝛽 = 4 meV) and   (Δ𝛼,𝛾 𝛿⁄ = 8 meV)  for underdoped (a) and (Δ𝛽 = 5 meV) and  

(Δ𝛼,𝛾 𝛿⁄ = 10 meV) for overdoped (b), are determined empirically.  The plots are over 

regions of 6 × 6 nm2 and 5.4 × 5.4 nm2 area.  Also plotted in Figure 4.4(a–b, right panels) 

are the resulting histograms for the superconducting gap maps.  We can observe that the 

superconducting gaps are particle-hole symmetric for both doping levels. 
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Figure 4.5: Topographic studies. (a) Atomically resolved topographic map that shows a 
fragmented surface but no apparent (2 x 1) surface reconstruction. (b) A histogram of the 
height variations of the topography in (a) showing a max variation less than one c-axis 
lattice constant.  (c) A (dI/dV) vs. V linecut showing spatial evolution of the two gaps as a 
function position.  The two gaps are consistent for ~ 90% of the spectra across the sample 
surface. 
 
 
        Topographic studies of both crystals reveal fragmented surfaces with no evident 

surface reconstruction as seen in other studies [117–119]. An example of an atomically 

resolved surface topography of the overdoped sample is shown in Figure 4.5(a) along with 

a height variation histogram (b).  The overall height variations are limited to within one c-

axis lattice constant of c0 = 1.239 nm.  We believe that apparent difference in results in 

comparison to other studies is due to our procedure of cleaving the samples at room 

temperature in an argon atmosphere above the structural phase transition temperature.  

Despite the fragmented surfaces, we observe consistent two-gap feature throughout the 
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scanned areas.  This is demonstrated in Figure 4.5(c) where we have plotted a linecut of 

tunneling spectra vs. position.  These results are in contrast to other studies [117–120] 

where the samples are cleaved at ultra-high vacuum at cryogenic temperatures and 

consequently only one superconducting gap is observed. 

       In Figure 4.6(a–b) we examine the spatial variations in the tunneling conductance at 

the gap energies, Δ𝛽 and Δ𝛼,𝛾 𝛿⁄  by plotting conductance maps as well as their 

corresponding fast Fourier transforms.  By taking the fast Fourier transform of the 

tunneling conductance, we can analyze the quasiparticle interference wave vectors.  We 

find three dominate quasiparticle interferences occurring at three wave vectors.  First we 

observe 𝒒1 across the two electron pockets in the Brillouin zone, 

𝒒1~(±2𝜋, 0) or (0, ±2π).  The strong intensity of 𝒒1 = 𝟐𝒒2 is in strong agreement with 

the presence of CDWs as describe previously.  Secondly, we observe 𝒒2 resulting from 

scattering across the hole and electron pockets at Γ and M  𝒒2~(±𝜋, 0) or (0, ±π),  as 

seen in Figure 4.6(c).  Third, we observe 𝒒3 between two electron pockets 𝒒3~(±𝜋, ±𝜋) 

primarily for the overdoped sample.  For the underdoped sample in Figure 4.6, we observe 

clear    𝒒1 and 𝒒2 while 𝒒3 occurs only faintly, which is consistent with the theoretical 

calculations for scattering from non-magnetic impurities in sign changing s-wave 

superconductivity as mentioned in Section 4.1.  For the overdoped sample (Figure 4.6 (d)), 

𝒒1 ,𝒒2 , and 𝒒3 are all strongly observed in the Fourier transform. While 𝒒1 and 𝒒2 are 

understood as above, the strong  
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Figure 4.6 : Tunneling conductance maps of Ba(Fe1-xCox)2As2 sample at the 
superconducting gap energies :𝐸 =  Δβ/e , Δα,γ/δ/e for (a) underdoped (x=0.06) and (b) 
overdoped (x=0.12).  (c) Fast Fourier transforms of the conductance maps in (a).  The thin 
white lines represent the first and second Brillouin zones in momentum space. (d) Fast 
Fourier transforms of (b)  
 
 

 

Figure 4.7 : 𝐹(𝒒,𝜔) 𝑣𝑠.  𝜔 for underdoped Ba(Fe1-xCox)2As2, showing only strong peaks at 
the ω=Δβ, Δα,γ/δ, and Ω𝑟1 for wave vectors q2 (black) and q3 (red). The sharp QPI 
intensities occurring only at the superconducting gaps and magnetic resonance exclude the 
possibility of attributing these wave-vectors to Bragg diffractions of the reciprocal lattice 
vectors. 
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Figure 4.8:  Temperature dependence of the superconducting gaps, Δ𝛽 ,Δα,γ/δ and the 
magnetic resonance mode Ω𝑟1 for both the (a) underdoped (x = 0.06) and (b) overdoped (x 
= 0.12) samples. (c) Correlation of the magnetic resonance mode Ω𝑟1 and the 
superconducting gap Δ𝛽 for three doping levels (x = 0.06, x = 0.08, and x = 0.12).  The 
slope of the data points agree with the relation  Ω𝑟1 = �Δ𝛽� + �Δ𝛾 𝛿⁄ �~1.5 �Δ𝛾 𝛿⁄ �. 
 
 
presence of 𝒒3 in the overdoped sample can be explained due to the larger density of Co-

atoms on the surface Fe/Co layers.  Unlike those in the bulk, the charge transfer from the 

surface Co-atoms is incomplete and so they may behave like magnetic impurities [106].  In 

both dopings,  𝒒2 has a preferred direction, which may be attributed to the orthorhombic 

nature of these samples. We note that the observed wave vectors exhibit energy and doping 

dependence. The sharp QPI intensities which occur only at the SC gap and magnetic 

resonance energies (as shown in Figure 4.7) exclude the possibility of attributing these 

wave-vectors to Bragg diffractions of the reciprocal lattice vectors, because Bragg 

diffraction points would not possess energy and doping dependence. 

        In all tunneling spectra, we observe the presence of magnetic resonance modes. The 

mode manifests as a spectra peak in the tunneling conductance.  As shown in Section 4.1, 

the magnetic resonances should satisfy Ω𝑟1 = �Δ𝛽� + �Δ𝛾 𝛿⁄ �~1.5 �Δ𝛾 𝛿⁄ � and 
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  Ω𝑟2 = |Δ𝛼| + �Δ𝛾 𝛿⁄ � ~2  �Δ𝛾 𝛿⁄ �. We observe only one magnetic resonance Ω𝑟1 in the 

 overdoped sample due to a vanished α pocket where for the underdoped sample we 

observe the  Ω𝑟2 ~ 16 meV.  As predicted, the magnetic resonance modes scale with the 

superconducting gaps and vanish for T > TC.  In Figure 4.8(a–c) the correlation between 

temperature dependent superconducting gaps and magnetic resonances is shown. 

       In contrast to the underdoped and overdoped samples, STS studies on the optimally 

doped sample (x = 0.08 with TC = 24 K) revealed that the majority of the sample showed 

only one large superconducting gap Δ𝛼,𝛾 𝛿⁄  ~14 ± 2 meV with a highly suppressed 

secondary gap Δ𝛽 ~6 ± 2 meV. A magnetic resonance mode was also observed at 

Ω𝑟2 = −26 ± 3 meV.   It is unknown why the optimally doped sample exhibits a much 

weaker two gap-superconductivity, although a possible explanation is that strong 

fluctuation effects may have reduced the superconducting stiffness of the hole pockets, 

rendering weaker coherence peaks for the smaller gap in the optimally doped sample.  A 

representative tunneling spectrum for the optimally doped sample is shown in Figure 

4.9(a). 

 

4.3.2 Magnetic Field Measurements 

       STS studies were performed on the optimally doped (x = 0.08) Ba(Fe1-xCox)2As2 single 

crystal in magnetic fields of H = 1, 4 Tesla.  All magnetic fields were applied parallel to c-

axis of the crystal.  All tunneling spectra revealed the presence of a single large 

superconducting gap Δ𝛼,𝛾 𝛿⁄  ~12 ± 2 meV at H = 1 Tesla while measurements at H = 4 

Tesla revealed a large superconducting gap Δ𝛼,𝛾 𝛿⁄  ~12 ± 2 meV with a smaller gap Δ𝛽 ~ 5 
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± 2 meV.  For the effect of magnetic fields on the superconducting gaps,  the Δ𝛼,𝛾 𝛿⁄  gap 

values at H = 0 and 1 Tesla are plotted  in Figure 4.9(b).  The histograms show a clear 

reduction of the superconducting gap in the presence of a magnetic field as is expected. 

         Figure 4.10 shows plots of the Fourier transform of the tunneling conductance at the 

superconducting gap, Δ𝛼,𝛾 𝛿⁄  ~ 12, 14 meV for both H = 0 and  1 Tesla for the optimally 

doped sample.  Following the analysis in Section 4.1, for scattering off nonmagnetic 

impurities in the presence of a finite magnetic field, there should be an enhancement of the 

quasiparticle interference wave vector 𝒒3 and a suppression of the 𝒒2 wave vector.  As 

shown in Figure 4.10(a-b), this scenario is observed, providing confirmation for sign 

changing s wave pairing symmetry in the ferrous superconductors.  Additionally, we also 

note the presence of  𝒒1 = 𝟐𝒒2 in the Fourier transforms of the tunneling conductance of 

both H= 0 and 1 Tesla fields.  As stated earlier the existence of 𝒒1 can only occur if a CDW 

 
Figure 4.9: Optimally doped tunneling spectra. (a) H= 0 Tesla tunneling spectra for 
optimally doped Ba(Fe1-xCox)2As2 showing two superconducting gaps at Δ𝛼,𝛾 𝛿⁄  ~ 14 meV 
and Δ𝛽 ~ 6 meV and the Ω𝑟1 magnetic resonance. (b) Histogram of the 
 Δ𝛼,𝛾 𝛿⁄  superconducting gap for both H = 0 and 1 Tesla 
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exists in the superconducting state.  Similar to the cuprates, the presence of a CO would 

suggest the occurrence of a pseudogap like feature inside the vortex core. 

       Plotting the ratio of the tunneling conductances at energies  ω = Δ𝛼,𝛾 𝛿⁄  to ω = 0 in a 

magnetic field (H=1 Tesla)  reveals the presence of anisotropic vortices.  The measured 

vortex separation distance is approximately 49 nm which is in good agreement with the 

expected vortex  lattice constant, 𝑎0 ~�Φ 𝐵�  , which for H = 1 Tesla is ~ 49 nm.  The 

anisotropic vortices have approximate dimensions of 5.0 nm x 2.5 nm.  In Figure 4.11(a–c) 

we plot the vortex maps for H = 1 Tesla as well as a linecut of representative tunneling 

spectra through one of the observed vortex cores showing the evolution of tunneling 

spectra.   Spectra from outside the vortex core reveal a single superconducting gap, Δ𝛼,𝛾 𝛿⁄  

~12 meV. This spectra closely resembles data taken at H= 0 Tesla.  Spectra from inside the 

vortex core reveals single pseudogap-like feature with no superconducting characteristics.  

This finding is in contrast to previously published STS studies on the vortex-state of the 

iron-based superconductors that varied greatly [127, 128]. In one study [127], asymmetric 

vortex bound states appearing as sub gap peaks inside the vortex cores were observed in a 

hole-type 122 system (Ba0.6K0.4)Fe2As2 , which implied pure superconductivity in the 

ground state. In contrast, STS studies of an electron-type 122 system Ba(Fe0.9Co0.1)2As2 

found complete suppression of SC coherence peaks but no apparent sub gap peaks inside 

the vortex cores [128]. 
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Figure 4.10: (a)-(b) Fourier transform of the conductance maps at ω= Δ𝛼,𝛾 𝛿 ⁄ for the 
optimally doped sample at H = 0 Tesla (a), H = 1 Tesla (b), and the difference of the two 
Fourier transforms (c). As shown in (c), the 𝒒3 wave vector is greatly enhanced in H = 1 
Tesla as compared to H = 0 Tesla. The 𝒒1 = 𝟐𝒒2 wave vector is present in both (a) and (b). 
 
 

       The presence of a pseudogap inside the vortex core seems to confirm the coexistence 

of a competing order and superconductivity.  Without a competing order the inside vortex 

tunneling spectra should reveal the presence of Andreev-bound states due to the 

suppression of superconductivity. The presence of a pseudogap therefore suggests that the 

optimally doped sample resides in the region of the phase diagram where AFM spin density 

waves and superconductivity coexist. Representative single point, inter- and intra-vortex 

tunneling spectra in H = 4 Tesla are plotted in Figure 4.12(a–d).  As we can observe, unlike 

H = 0 and 1 Tesla, the Δ𝛽 superconducting gap is less suppressed, while the magnetic 

resonance mode at Ω𝑟1 is greatly enhanced.  The enhanced magnetic mode may be 

understood as enhanced inelastic scattering of quasiparticles between the 
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Figure 4.11:  (a) Conductance ratio plot revealing two anisotropic vortices.  The vortex 
separation agrees with the predicted vortex lattice constant of ~ 49 nm. (b) Representative 
spectra from inside the vortex core showing pseudogap.  (c) A linecut of tunneling spectra 
for the top vortex in (a) showing evolution of a superconducting gap to a pseudogap to a 
superconducting gap 
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Figure 4.12: Optimally doped tunneling spectra in a field. (a) Representative spectra of the 
optimally doped sample with H = 0 T. (b) A representative outside vortex core spectra at H 
= 4 T. Δα,γ/δ ~ 12 ± 2 meV and Δβ  ~ 5 ± 2 meV. (c) Another outside vortex core spectra 
Δα,γ/δ  ~ 13 ± 2 meV, Δβ  ~ 6 ± 2 meV, and Ωr2 ~ -30 ± 2 meV. The magnetic resonance 
mode is enhanced when compared to H = 0 T. (d) Inside vortex core spectra at H = 4 T, 
showing pseudogap like characteristics. Images (c–d) courtesy of R. Wu. 
 
 

electron pockets of the Fermi surface in a magnetic field. The 4 Tesla intravortex spectra 

(Figure 4.12(d)) appears to have pseudogap characteristics, much like the intravortex 

spectra at 1 Tesla. The measured vortex lattice constant is approximately 25 nm, which is 
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comparable to the theoretically predicted value of 24.5 nm. The presence of a pseudogap 

inside the vortex core  in both H = 1 and 4 Tesla magnetic fields  lends further support 

towards the coexistence of competing orders with superconductivity in the electron doped 

“122” systems. 

 

4.4 Discussion 

        In summary, we have observed two-gap superconductivity for multiple doping levels 

in the Ba(Fe1-xCox)2As2 single crystals. Both superconducting gaps decrease monotonically 

in size with increasing temperature and disappear for temperatures above the 

superconducting transition temperature, TC. Magnetic resonant modes that follow the 

temperature dependence of the superconducting gaps have been identified in the tunneling 

quasiparticle spectra. Together with quasiparticle interference (QPI) analysis and magnetic 

field studies, this provides strong evidence for two gap sign-changing s-wave 

superconductivity. 
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Chapter 5 
 
Electronic Properties of Graphene 
 
 

Dirac materials are a new class of matter that offer promising new physics and a 

new fertile ground for possible applications.  The charge carriers of such materials obey the 

Dirac equation for relativistic particles and can be thought of as Dirac fermions. Foremost 

among these materials are graphene and three-dimensional topological insulators. In this 

chapter the basic electronic and structural properties of graphene are discussed.  Graphene 

with its unique physical properties and its potential uses in nanoscale applications make it a 

particularly compelling area of study.   

 

5.1 Graphene Band Structure 

       Graphene, a mono-atomic layer two-dimensional (2D) crystal, consists of six carbon 

atoms bonded together in a hexagonal lattice with the charge carriers forming a two-

dimensional electron gas with a relativistic dispersion near two Dirac points in the Brillouin 

zone. Graphene was mechanically isolated in 2004 by A.K. Geim and K.S Novoselov from 

the University of Manchester [45].  In the short time since it was successfully isolated, 

many remarkable electronic and structural properties have been found in graphene, such as 

the Dirac-like band structure; an ambipolar electric field effect where the concentration of 

charge carriers can be tuned continuously from electrons to holes by adjusting the gate 

voltage [45]; exceptionally high mobilities [46, 47], the integer and fractional quantum Hall 
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effect (IQHE and FQHE) [48–51]; and a minimum conductance of  4𝑒2 ℏ𝜋⁄  in the limit 

of zero charge-carriers[52]. The high mobilities make graphene an excellent candidate to be 

used in components of integrated circuits and it  may be possible that graphene will become 

an important supplement to future silicon-based technologies. In this section we review the 

2D band structure of graphene. 

        Each carbon atom in graphene has four valence electrons; three of these electrons are 

covalently bonded to neighboring carbon atoms through sp2 hybridization while the 

remaining electron is in the 2pz orbital which is perpendicular to the graphene plane [130] 

and participates in conduction throughout the graphene sheet.  To describe the electronic 

band structure of graphene, it is appropriate to use the tight binding model where the 

atomic description of isolated atoms is used but where the overlap of atomic functions is 

large enough to require corrections. 

       Thus, we follow the derivation in Dresselhaus [130].  The wave function 𝜓 for a single 

isolated atom and the full wave-function of the lattice are substantially different as are the 

Hamiltonians for each.  Accordingly, the Schrödinger wave equation for a single isolated 

atom is given by 

 𝐻𝑎𝑡𝑜𝑚𝜓𝑎𝑡𝑜𝑚 = 𝐸𝜓𝑎𝑡𝑜𝑚                                        5.1 

where 𝐻𝑎𝑡𝑜𝑚 is the Hamiltonian for an individual isolated atom,  𝜓𝑎𝑡𝑜𝑚 is the wave 

function for an individual isolated atom, and 𝐸 is the energy eigenvalue.  In the case of a 

lattice, because of the translational symmetry of the unit cells in the direction of the lattice 

vectors, 𝒂𝒊 ,�����⃗  any wave function of the lattice,Ψ, should satisfy the Bloch’ theorem 

                                                                 𝑇𝑎𝑖Ψ = 𝑒𝑖𝒌��⃗ ∙𝒂𝒊����⃗ Ψ                                                     5.2 
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where 𝑇𝑎𝑖 is a translational operation along the lattice vector, 𝒂𝒊���⃗ , and 𝒌��⃗  is the wave 

vector.  A possible Bloch wave function that satisfies this requirement is given by 

                                          Φ𝑖�𝒌��⃗ , 𝒓�⃗ � = 1
√𝑁
∑ 𝑒𝑖𝒌��⃗ ∙𝒂𝒊����⃗ 𝜙𝑖(𝑁
𝑹��⃗ 𝒓�⃗ − 𝑹��⃗ )  (i = A, B)                         5.3 

and 𝑹��⃗  is the position of the atom and 𝜙𝑖 denotes the atomic wave-function.  N represents 

the total number of unit cells in the lattice.  The unit cell of graphene contains two atoms 

typically denoted as A and B atoms or two equivalent carbon sublattices.  The real space 

unit vectors 𝒂𝟏����⃗   and 𝒂𝟐����⃗  of the hexagonal lattice are expressed as  

                                                 𝒂𝟏����⃗ = �𝑎√3
2

, 𝑎
2
�  ,     𝒂𝟐����⃗ = �𝑎√3

2
, −𝑎
2
�                                      5.4 

where  𝑎  is the lattice constant of 0.246 nanometers as illustrated in Figure 5.1(a).  

Correspondingly the reciprocal lattice wave vectors are defined as 

                                                      𝒃𝟏�����⃗ = � 2𝜋
𝑎√3

, 2𝜋
𝑎
�  ,     𝒃𝟐����⃗ = � 2𝜋

𝑎√3
, −2𝜋
𝑎
�.                             5.5 

An image of the carbon lattice, the unit cell lattice vectors, and the reciprocal lattice is 

shown in Figure 1. The wavefunction of the lattice can be expressed by a linear 

combination of the Bloch functions, Φ𝑗′ as follows 

                                                     Ψj�𝒌��⃗ , 𝒓�⃗ � = ∑ Cj j′(
n
j′=1 𝒌��⃗ )Φ𝑗′(𝒌��⃗ , 𝒓�⃗ )                                 5.6 

where the coefficients, Cj j′,  must be determined.  Generically we would consider a wave 

function of the form Ψ = 𝐶𝐴Φ𝐴(𝒓�⃗ ) + 𝐶𝐵Φ𝐵�𝒓�⃗ − 𝒅��⃗ � where A and B represent the two 

inequivalent carbon atoms at A and B as shown in Figure 5.1. The jth eigenvalue 𝐸𝑗�𝒌��⃗ � of 

the lattice’s wave function, Ψj�𝒌��⃗ , 𝒓�⃗ �, as a function of 𝒌��⃗   is given by 
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Figure 5.1:  Graphene lattice:  (a) The real space lattice showing both sublattices with 
lattice vectors 𝒂𝟏����⃗ = �𝑎√3

2
, 𝑎
2
�  ,     𝒂𝟐����⃗ = �𝑎√3

2
, −𝑎
2
� , (b) Reciprocal space lattice showing 

reciprocal lattice vectors   𝒃𝟏�����⃗ = � 2𝜋
𝑎√3

, 2𝜋
𝑎
�  ,     𝒃𝟐����⃗ = � 2𝜋

𝑎√3
, −2𝜋
𝑎
� , (c) Linear density of states 

near the K or K’ points                                                                               
 

                                                                   𝐸𝑗�𝒌��⃗ � = �Ψ𝑗�Hlat�Ψ𝑗�
�Ψ𝑗�Ψ𝑗�

                                         5.7 

if we define the following, Hjj′ and  Sjj′, as the transfer integral matrices and overlap 

integral matrices, they are explicitly given by  

                                                       Hjj′ = �Φ𝑗�Hlat�Φ𝑗′� , Sjj′ = �Φ𝑗�Φ𝑗′�.                        5.8 

 



 

 

82 
We can substitute Equation 5.6 into Equation 5.7 and with a change of subscripts the 

following is obtained 

                                          𝐸𝑖�𝒌��⃗ � =
∑ Cij

∗ Cij′�Φ𝑗�Hlat�Φ𝑗′�n
j,j′=1

∑ Cij
∗ Cij′�Φ𝑗�Φ𝑗′�n

j,j′=1
=  

∑ Hjj′�𝒌��⃗ �Cij
∗ Cij′n

j,j′=1

∑ Sjj′(𝒌��⃗ )Cij
∗ Cij′n

j,j′=1
.                5.9 

The coefficients Cij are found by minimizing  𝐸𝑖�𝒌��⃗ �.  If we set the derivative of 𝐸𝑖�𝒌��⃗ � with 

respect to Cij equal to zero and multiply both sides by ∑ Sj,j′(𝒌��⃗ )Cij∗Cij′n
j,j′=1  we can obtain 

the following condition for finding eigenvalues, 𝐸𝑖�𝒌��⃗ �, 

                                                                   𝐻𝑙𝑎𝑡𝐶𝑖 = 𝐸𝑖�𝒌��⃗ �𝑆𝑪𝒊                                          5.10 

𝑪𝒊 = �
𝑐𝑖1
…
𝐶𝑖𝑁

� 

Solving for the coefficients is equivalent to solving the secular equation for E which is 

given by 

                                                                 𝑑𝑒𝑡[𝐻𝑙𝑎𝑡 − ES] = 0 .                                         5.11 

So in order to obtain the band structure of graphene we solve Equation 5.11. For the tight 

binding model we consider only nearest-neighbor interactions (the A atom and its three 

neighboring B atoms) when calculating the matrix elements of H and S.  Solving for the off 

diagonal terms of the Hamiltonian and noting HAB = HBA
*,we find  

                                              𝐻𝐴𝐵 = 𝑡 �𝑒𝑖𝒌��⃗ ∙𝑹𝟏�����⃗ + 𝑒𝑖𝒌��⃗ ∙𝑹𝟐�����⃗ + 𝑒𝑖𝒌��⃗ ∙𝑹𝟑�����⃗ � = 𝑡𝑓(𝑘)                       5.12 

where 𝑹𝒊����⃗  denotes the locations of the three nearest neighbors and t is the nearest neighbor 

hopping constant. Using x, y coordinates we find that 𝑓(𝑘) is 

                                               𝑓(𝑘) = 𝑒𝑖𝑘𝑥𝑎/√3 + 2𝑒−𝑖𝑘𝑥𝑎/2√3 cos �𝑘𝑦𝑎
2
�.                        5.13 
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Taking HAA = HBB = 𝜖2𝑝= 0, this results in finding the following matrices for the 

Hamiltonian and the overlap function matrix as 

                                          𝐻𝑙𝑎𝑡 = �
0 𝑡𝑓(𝑘)

𝑡𝑓(𝑘)∗ 0 �   𝑆 = �
1 𝑠𝑓(𝑘)

𝑠𝑓(𝑘)∗ 1 �                 5.14 

resulting in the energy dispersion relation  

                                                                      𝐸(𝒌��⃗ ) = ±𝑡𝜔(𝒌��⃗ )
1±𝑠𝜔(𝒌��⃗ )

                                             5.15 

where 𝜔�𝒌��⃗ � = �|𝑓(𝒌)|𝟐.  The tight-binding Hamiltonian in terms of creation and 

annihilation operators can also be written as [65] 

                    𝐻 = −𝑡∑ �𝑎𝜎,𝑖
† 𝑏𝜎,𝑗 + ℎ. 𝑐. �〈𝑖,𝑗〉,𝜎 − 𝑡′ ∑ �𝑎𝜎,𝑖

† 𝑎𝜎,𝑗 + 𝑏𝜎,𝑖
† 𝑏𝜎,𝑗 + ℎ. 𝑐. �〈𝑖,𝑗〉,𝜎   5.16 

where 𝑎𝜎,𝑖
† (𝑎𝜎,𝑗)  creates (annihilates) an electron with spin 𝜎 (𝜎 =↑, ↓) on sublattice A, 

𝑏𝜎,𝑖
† (𝑏𝜎,𝑗)  creates (annihilates) an electron with spin 𝜎 on sublattice B.  The 𝑡 and 𝑡′ 

represent the nearest neighbor hopping energy (from one sublattice to another) and next 

nearest neighbor hopping energy (hopping in the same sublattice), respectively. In the limit 

of nearest neighbor interaction, we take 𝑡′ to be zero.  Using the parameters s = 0.129<<1 

and t = -3.0033 eV ~ 3 eV [110] and inserting them into Equation 5.15, we find in two-

dimensional Cartesian coordinates that 

                             𝐸2𝐷�𝑘𝑥,𝑘𝑦� = ∓3�1 + 4 cos �√3𝑘𝑥𝑎
2

� cos �𝑘𝑦𝑎
2
� + 4cos2 �𝑘𝑦𝑎

2
� .     5.17 

Hence, in this nearest-neighbor tight-binding approximation, there are two bands, bonding 

and antibonding and are degenerate at the K points. There are six K points where two bands 

meet within the Brillouin zone as shown in Figure 5.2. The 2D graphene energy band is ot 

discontinuous. Rather, the valence band (bonding) and the conduction band 
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Figure 5.2:  (a) Three-dimensional E vs. momentum (kx,ky) plot of Equation 5.17 showing 
linear dispersion relation at the K and K’ points. (b) Contour plot of the lower band 
showing the K and K’ points. Image taken from [149]. 
 
(antibonding) touch at these points. At the apex of the cones which is known as the Dirac 

point, the electrons and holes are degenerate.  For this reason graphene is known as a semi-

metal or a zero-gap semiconductor.  Taylor expanding the Equation 5.17 at or near the two 

inequivalent K and K’ points in the 1st Brillouin zone gives[130] 

                                                            𝐸2𝐷�𝑘𝑥, 𝑘𝑦� ≈ ±𝑣𝑓ℏ�𝒌��⃗ �                                        5.18 

where 𝑣𝑓 is the Fermi velocity with a value of  𝑐/300[45]. The linear relation between 

energy and momentum is demonstrated in Figure 5.2. As a result of this conical band 

structure, the charge carriers of graphene at energies near the Dirac energy (Ed) have a 

vanishing effective mass and obey the Dirac equation for relativistic particles, with a 

reduced speed of light equal to the Fermi velocity 𝑣𝑓 [132]. Therefore, these charge carriers 

can be thought of as massless Dirac fermions [132] and the Hamiltonian for these low-

energy excitations is that of a (2+1) relativistic quantum system described by the Dirac 

equation for particles with zero mass and spin ½ [134, 135]. 
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                                                𝐻 = 𝑣𝑓ℏ �
0 𝑘𝑥 − 𝑖𝑘𝑦

𝑘𝑥 + 𝑖𝑘𝑦 0 � = 𝑣𝑓ℏ 𝝈��⃗ ∙ 𝒌��⃗               5.19 

where 𝝈��⃗   denotes the Pauli spin matrices. 

 

5.2 Electronic Properties of Graphene 

Experimental studies [46, 47] have shown a remarkably high charge carrier 

mobility μ in graphene. Specifically, mobilities above 105 𝑉
𝑐𝑚2𝑠

 [46] at ambient conditions 

have been recorded in transport measurements in suspended graphene, which are larger 

than the highest mobilities of many semiconducting materials[46]. This measured value is 

in agreement with the predicted value assuming charge impurities in the substrate as the 

main source of scattering. The high-charge carrier mobilities of graphene enable for the 

observation of the integer quantum Hall effect (IQHE) at room temperatures under real 

magnetic fields [48, 133]. Graphene also exhibits an anomalous IQHE, where the Hall 

conductance plateaus occur at  

                                                  𝜎𝑥𝑦 = (±4𝑒2/ℏ)(𝑛 + 1/2)                                 5.20 

 and are shifted by ½ with respect to the standard Integer Quantum Hall effect sequence[51, 

136, 137]. Here ℏ is the Planck’s constant divided by 2π,  𝑛 is the index of the Landau level 

(LL) and is equal to integer 𝑛 = …-2,-1,0,1,2,…., and the factor of 4  arises due to double-

valley (two inequivalent K points or pseudo-spin)  and double-spin degeneracy. 

Additionally, due to the relativistic nature of the charge carriers of graphene, the energies 
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Figure 5.3: Demonstration of the integer quantum Hall effect in graphene on SiO2. The 
IQHE is observed as plateaus in 𝜎𝑥𝑦 and peaks in the longitudinal conductivity, 𝜌𝑥𝑥 [132]. 
 

of the Landau levels in a magnetic field (B) are given by [51, 136, 137] 

                                                               𝐸𝑛 = 𝑠𝑔𝑛(𝑛)�2𝑒ℏ𝐵|𝑛|                                     5.21 

instead of the standard 𝐸𝑛 = ± ℏ𝜔𝑐(𝑛 + 1/2), where 𝜔𝑐 = 𝑒𝐵
𝑚

  is the cyclotron frequency. 

Figure 5.3 demonstrates the IQHE realized experimentally in graphene. The fractional 

Quantum Hall effect (FQHE) was first observed in 2009 [138] in ultra-clean suspended 

graphene, supporting the existence of strongly correlated electron states in the presence of a 

magnetic field. 

      Graphene also exhibits an ambipolar electric field effect [45], where the concentration 

of charge carriers can be tuned continuously from electrons to holes by adjusting the gate 

voltage Vg 

                                                                          𝑛𝑒 = (𝜀0𝜀/𝑡𝑒) 𝑉𝑔,                                  5.22 
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where 𝜀0 is the permittivity of free space, 𝜀 the permittivity of the substrate, t the 

thickness, and e the electron charge.   For mechanically exfoliated graphene this results in 

the equation 𝑛𝑒 = 7.2×10−10 cm−2 V−1𝑉𝑔 if the substrate to graphene is a 300-nm-thick 

SiO2 layer on a silicon wafer [46].  The linear dispersion relation in Equation 5.18 results in 

a linear local density of states. 

                                                                     𝑁(𝐸) = �3√3𝑎
2

𝜋
� � 𝐸

𝑣𝐹
2�                                  5.23 

This linear local density of states is expected to give rise to linear tunneling conductance 

versus bias voltage spectra in STM studies. 

 

5.2.1 Deviation of Electronic Properties 

Strain-Induced Vector and Scalar Potentials 

      The electronic properties described above assume that graphene is a perfect two-

dimensional crystal with no disorder.  However, the electronic properties of graphene are 

extremely susceptible to the surrounding environment (particularly the underlying 

substrate) and to disorder in the crystalline lattice.  Examples of disorder that can have an 

effect on the structure of graphene and on the Dirac fermions are surface ripples, 

topological defects, vacancies, extended defects including edges, ridgelines, cracks, and 

charge impurities on the substrate or on top of the graphene itself.  The effects of disorder 

can be generally classified into two types. The first type of  disorder can result in a local 

change in the single-site energy 

                                                           𝐻𝑑𝑑 = 𝑉𝑖 ∑ �𝑎𝑖
†𝑎𝑖 + 𝑏𝑖

†𝑏𝑖�𝑖                                   5.24 

 



 

 

88 
where 𝑉𝑖 is the strength of the disorder potential [65]. The disorder potential acts as a 

chemical potential shift, which shifts the Dirac point locally[65].  An example of this type 

of disorder is from charge impurities.  A second type of disorder effect arises from changes 

in the distance or angles between the pz orbitals. In this case, the hopping energies between 

different lattice sites are modified, leading to the addition of a new term in the appearance 

of effective vector, 𝑨��⃗ , and scalar, Φ, potentials to the Dirac Hamiltonian [65]. 

                                 𝐻𝑂𝐷 = ∑ � 𝛿𝑡𝑖𝑗
(𝑎𝑏)�𝑎𝑖

†𝑏𝑗 + ℎ. 𝑐. � + 𝛿𝑡𝑖𝑗
(𝑎𝑎)�𝑎𝑖

†𝑎𝑗 + 𝑏𝑖
†𝑏𝑗��𝑖,𝑗             5.25              

Where 𝛿𝑡𝑖𝑗
(𝑎𝑏) (𝛿𝑡𝑖𝑗

(𝑎𝑎)) is the change in hopping energy between orbitals on same (different) 

sublattices [65].   As a consequence, the new spatially varying scalar potential term will 

result in local charging effects known as selfdoping.  The presence of a disorder-induced 

vector potential 𝑨��⃗  in the Hamiltonian indicates an effective magnetic field  

                                                                    𝑩��⃗ 𝑆 = � 𝑐
𝑒𝑣𝐹
� 𝛁 × 𝑨��⃗                                           5.26 

should also be present [65].   (The subscript S denotes the magnetic field induced due to 

disorder from strain.) This might imply time reversal symmetry is broken although the 

original problem was time reversal invariant, but in fact this is not the case.  Equation 5.25 

is for only the Dirac cone at K; the second Dirac cone at  K′ is related to the first by time 

reversal, indicating that the  effective magnetic field associated with K’ is reversed [65]: 

                                                                 −𝑩��⃗ 𝑆 = � 𝑐
𝑒𝑣𝐹
� 𝛁 × 𝑨∗����⃗ .                                        5.27 

Therefore the global time reversal symmetry is preserved despite the addition of a vector 

potential, and the new effective magnetic fields are known as pseudomagnetic fields. 

Distortions of the atomic lattice can give rise to the above disorder effects.  As a 
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consequence a distortion of the graphene lattice should create large, nearly uniform 

pseudomagnetic fields and give rise to a pseudo-quantum-Hall effect [139]. An elastic 

strain can be expected to induce a shift in the Dirac point energy from local changes in 

electron density, and is also predicted to induce an effective vector potential that arises 

from these changes in the electron-hopping amplitude between carbon atoms [140].  The 

strong effects of strain open the possibility of tuning the electronic properties of graphene 

by modifying the mechanical structure of graphene via shear or compression/dilation strain 

[140] since graphene can be stretched more than 15% and remain intact [141]. 

         The effective vector and scalar potential fields induced by a two-dimensional lattice 

strain can be derived. If we use the coordinates that are fixed with respect to the 

honeycomb lattice of graphene in such a way that the x axis corresponds to a zigzag 

direction, we find that the gauge field 𝑨��⃗  acting on the charge carriers can be written as 

[142, 143] 

                                                            𝐴𝑥 = ± 𝑐𝛽
𝑎
�𝑢𝑥𝑥 − 𝑢𝑦𝑦�                                          

5.28 

𝐴𝑦 = ∓  
2𝑐𝛽
𝑎

�𝑢𝑥𝑦� 

with 

𝛽 =
𝜕ln (𝑡)
𝜕ln (𝑎)

 ≈ 2. 

Here 𝑨��⃗ = (𝐴𝑥,𝐴𝑦),  𝑎 is the carbon-carbon atom separation distance of  0.142 nm, 𝑡 ~ 

3.033 eV is the electron hopping energy between pz orbitals located at nearest neighbor 

atoms, 𝑐 is a numerical constant that depends on the details of atomic displacements within 
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the lattice unit cell, and 𝑢𝑖𝑗 is the strain tensor and is related to the two-dimensional 

displacement field 𝒖��⃗ = (𝑢𝑥,𝑢𝑦) by the following [144] 

                                                 𝑢𝑥𝑥 = 𝜕u𝑥
𝜕x

 ,𝑢𝑦𝑦 = 𝜕u𝑦
𝜕y

 ,𝑢𝑥𝑦 = 𝜕u𝑥
𝜕y

 .                                5.29 

 

 

 
For nontrivial strain that leads to an pseudomagnetic field, ± 𝑩��⃗ 𝑆 = � 𝑐

𝑒𝑣𝐹
� 𝛁 × 𝑨��⃗ (∗), the 

LDOS of Dirac fermions is modified so that LDOS peaks at quantized energies [144] 

 

 

Figure 5.4.  Example of a nontrivial strain that gives rise to a vector potential and therefore 
a pseudomagnetic field. Shown in (c) is the expected density of state resulting from such a 
strain. Images taken from [139]. 
 

                                                            𝐸𝑛 = 𝑠𝑔𝑛(𝑛)�2𝑒𝑣𝐹2ℏ𝐵𝑆|𝑛|                               5.30 

in addition to the linear local density of states at low energies from Equation 5.23. A 

magnetic length may also be defined [139, 152] 

                                                                              𝑙𝐵 = � Φ0
2𝜋𝐵𝑆

                                        5.31 

where Φ0 is the flux quantum. 
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These Landau level peaks have been recently observed [140] and are 

theoretically exemplified  in Figure 5.4. In the studies by the Zettl and Crommie group 

pseudomagnetic fields up to 300 Tesla [140]. Here we note that the strain necessary for 

inducing a pseudomagnetic field must be nontrivial shear strain and that the induced vector 

potential results in an out of plane (perpendicular to the graphene sheet) pseudomagnetic 

field.  Any uniaxial strain would result in a spatially nonvarying vector potential and 

therefore no pseudomagnetic field. We further emphasize the aforementioned description 

for strain induced effects assumes noninteracting Dirac fermions in graphene. 

       If the strain is not purely shear but also contains dilation/compression components, it is 

theoretically predicted to gives rise to an effective scalar potential 

                                                                   𝑉(𝑥, 𝑦) = 𝑉0 �
𝜕u𝑥
𝜕x

+ 𝜕u𝑦
𝜕y
�                                5.31 

where 𝑉0 = 3 𝑒𝑉 is estimated from the linear rise in the work function of graphene under 

compression [136, 137, 145]. This spatially varying scalar potential will give rise to an 

effective static charging effect but the charging effect can be largely screened if the height 

variation of the graphene is much smaller than the magnetic length.   

 

Phonon-Mediated Tunneling 

      Induced static charging and pseudomagnetic fields are not the only possible effect strain 

can have on the electronic properties of graphene.  Previous scanning tunneling microscopy 

studies on graphene have produced observed spectra which does not exhibit pure behavior 

of Dirac-like [146]. It has been predicted that out of plane phonon-mediated inelastic 

tunneling will also have an effect on the tunneling spectra.  This is due to coupling between 
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the nearly free electron bands at the center of the Brillouin zone and the Dirac fermions 

in the π bands at K and K′ [147].   

According to this scenario, the tunneling DOS from STM spectra is dominated by 

the DOS of the nearly free electron bands, 𝑁Γ(𝜔) in graphene. As shown in Chapter 2, the 

STM tunneling current is determined by the tunneling DOS which is the LDOS at the 

location of the sample and the tip which is typically within a few angstroms of the sample. 

For each band, the DOS must be weighted with squared amplitude of the corresponding 

wave function at the tip-sample separation distance [148].  For graphene the differential 

conductance can be shown to be [148] 

                                                            𝑑𝐼
𝑑𝑉
≈ ΨΓ2𝑁Γ(𝜔) + Ψ𝐾2𝑁K(𝜔)                                  5.32 

where 𝑁Γ(𝜔) is the density of states and ΨΓ is the wave function of the nearly free electron 

bands while 𝑁K(𝜔) is the density of states and Ψ𝐾  is the wave function of the π bands. As 

shown in [148] at a tip-sample separation distance of 0.5 nm:  ΨΓ
Ψ𝐾

~104 which implies that 

the nearly free electron band will dominate the tunneling DOS. 

Wheling et al. [147] developed a model to explain how phonon-mediated tunneling 

affects scanning tunneling spectroscopy in particular for graphene.  The two π bands in 

graphene give rise to graphene’s linear DOS close to the Dirac point and the Dirac 

fermions at K and K′can be described by the Hamiltonian [147] 

                                                            𝐻𝜋 = ∑ 𝑣𝜀(𝑞)�𝑐𝑣
†𝑐𝑣�𝑣=±,𝑞                                       5.33 

 
where 𝑣 denotes the valence or conduction band and 𝑐𝑣 ,

† (𝑐𝑣) represent the 

creation(annihilation) operator of an electron in this band with momentum q [147]. The 
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nearly (quasi) free electron bands at Γ have a minimum energy at 𝐸 = 3.3 𝑒𝑉 and can be 

approximated by a flat band Hamiltonian 

                                                                      𝐻𝜎 = ∑ 𝑑𝑞
†𝐸𝜎𝑞 𝑑𝑞                                        5.34 

where 𝑑𝑞
†(𝑑𝑞) is the creation (annihilation) operator of an electron in this band with crystal 

momentum q.  Out-of-plane phonons scatter electrons between the π and quasi-free 

electron bands with the electron-phonon interaction reading as 

                                                𝑉 = 𝜆∑ �𝑑𝑘+𝑞
† 𝑐𝑣,𝑞 + 𝑐𝑣,𝑘+𝑞

† 𝑑𝑞��𝑎𝑘 + 𝑎−𝑘
† �𝑣,𝑞,𝑘                 5.35 

where ak annihilates an out-of-plane phonon carrying crystal momentum k. As stated 

above, the phonon modes at K and K’ will be the most important contributors to inelastic 

tunneling signals. Around these points, their Hamiltonian can be approximated by 

 𝐻𝑝ℎ𝑜𝑛𝑜𝑛 = hωa ∑ 𝑎𝑘
†

𝑘 𝑎𝑘 where hωa being the energy of the out of plane phonons at at K 

and K′.   

       The noninteracting electron Green’s function is described by [148] 
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Figure 5.5: Deviation from pure Dirac spectra due to phonon-mediated tunneling.  (a) Top 
panel: Density of states for different coupling states. Bottom panel: Total density of states 
for the nearly free electron band.  (b) Density of states for different chemical potentials. 
Lower panel: STS spectra demonstrating the band gap due to phonon mediated tunneling. 
Images from [147] and [146] 
 

                                                 𝐺0(𝑞, 𝑖ω𝑛) =

⎝

⎜
⎛

1
𝑖ω𝑛−𝐸𝜎

0 0

0 1
𝑖ω𝑛−𝐸(𝑘)

0

0 0 1
𝑖ω𝑛+𝐸(𝑘)⎠

⎟
⎞

               5.36 

where ω𝑛are the fermionic Matsubara frequencies. The noninteracting phonon Green’s 

function is described by 𝐷0(𝑖Ωm) = 2ωa
Ωm2 +ωa

2 (ωa is the phonon mode energy) where the 

electron-phonon interaction from Equation 5.35 transformed to the matrix form of Equation 

5.36 
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                                                 𝑀− = �
0 𝜆 0
𝜆 0 0
0 0 0

� ,𝑀+ = �
0 0 𝜆
0 0 0
𝜆 0 0

�                        5.37 

so that the electronic selfenergy can be written as 

                            Σ(𝑖ω𝑛) = −1
𝛽
∑ 𝐷0(𝑖Ω𝑚)𝑀𝑣𝐺0(𝑟 = 0, 𝑖𝑣,Ω𝑚 ω𝑛 − 𝑖Ω𝑚)𝑀𝑣.               5.38 

The selfenergy is diagonal and for ω small compared to the Dirac energy bandwidth the 

components are 

                                         Σ1,1(ω + iδ) = Σ1,1
′ (c) + iΣ1,1

′′ (ω + iδ)                                   5.39 

Σ1,1
′(ω + iδ) ∝ (ω + ωa)ln �

ω + ωa

W
� + (ω−ωa)ln �

ω − ωa

W
� 

Σ1,1
′′(ω + iδ) ∝ −Θ(ω + ωa)|ω− sgn(ω)ωa| 

Integrating the interacting Green’s function  𝐺−1 = 𝐺(0)−1 − Σ(ω) over the momentum 

space gives the total DOS 

                                           𝑁(𝜔) = −1
𝜋
𝑇𝑟�𝐼𝑚�𝐺(𝑟 = 0,ω + iδ )��                                 5.40 

At these low energies, the density of states in nearly free electron bands are described by 

                                                    𝑁(𝜔) = −1
𝜋

Σ1,1
′′(ω+iδ)

�𝜔−𝐸𝜎−Σ1,1(ω+iδ)�2
                                         5.41 

This density of states will vanish for energies less than 𝐸𝜎 if there is no electron-phonon 

interaction. With the phonon-electron interaction present, for electron energy ω > ωa, 

where ωa is the phonon frequency, the nearly free electron bands will mix with the π 

bands, resulting in a band gap of width ωa. Outside of this band gap, the density of states of 

the nearly free electron band will resume to the Dirac behavior of the density of states of 

the π bands. This theoretical scenario is demonstrated in Figure 5.4.  Lattice strain affecting 
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the out of plane phonons will therefore induce changes in the resulting band gap and 

consequently the tunneling spectrum of graphene. 

 

5.3 Discusion 

In this chapter, we have reviewed the tight binding model and used it to 

demonstrate that graphene possesses a linear dispersion relationship for energy vs. 

momentum  at the K points and that the charge carriers in graphene are massless Dirac 

fermions.  The effects of strain and disorder have been shown to be able to induce vector 

and scalar potentials therefore pseudomagnetic fields and charging effects.  Evidence of 

strain-induced vector and scalar potentials will be manifested by charging effects and 

tunneling conductance peaks at quantized energies, 𝐸𝑛 = 𝑠𝑔𝑛(𝑛)�2𝑒𝑣𝐹2ℏ𝐵𝑆|𝑛|.  We have 

also observed that the scenario of phonon-mediated tunneling will directly affect tunneling 

conductance studies of graphene by opening up a gap ωa in the tunneling spectra.  These 

out of plane phonon modes will be susceptible to the effects of lattice strain.  In the next 

chapter, we present STS studies of the effects of strain on the lattice and on the electronic 

properties of graphene.  
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Chapter 6 
 
Scanning Tunneling Spectroscopic Studies of Graphene 
 
 

The electronic properties of graphene are known to be susceptible to disorder and 

the underlying substrates [139]. In this chapter, we report our findings from spatially 

resolved scanning tunneling spectroscopic studies of tunneling spectra on graphene that 

was prepared by different means and on different substrates.   Several important results are 

inferred from these studies. First, we found the presence of low-energy conductance 

modulations in the density of states that were directly correlated with the strain induced on 

graphene by the surface roughness of the underlying SiO2 substrate. Secondly, enormous 

strain found in chemical vapor deposition (CVD) grown graphene on copper gave rise to an 

additional vector and scalar potentials in the effective Hamiltonian of graphene, especially 

near topological defects. Under the strain-induced pseudomagnetic fields the local density 

of states (LDOS) demonstrated clear evidence of charging effects and tunneling 

conductance peaks at quantized energies that are consistent with both integer and fractional 

quantum Hall states. Strain-induced pseudomagnetic fields up to 50 Tesla were observed in 

these samples. The results presented in this chapter suggest the possibility of using strain 

engineering for nano-electronic applications.  

 

6.1 Experimental Preparation and Material Consideration in Graphene 
Studies 
 
        Graphene has one of the simplest crystalline structures in nature but was extremely 

difficult to isolate.  Originally predicted to not exist independently [132], it was realized by 
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the simple method of peeling graphite [45].  Since 2004, other methods of graphene 

manufacture have arisen such as chemical vapor deposition and thermal decomposition of 

silicon carbide [153] . The graphene samples studied in this thesis were made by either 

mechanical exfoliation by collaborators in the C. N. Lau group at the University of 

California at Riverside or made by CVD growth on Cu foils by Brian Standley or David 

Boyd at Caltech [154].  

The samples that are made by mechanically exfoliation used a SiO2 substrate. The 

silicon substrate is prepared by first thermally growing a 300-nm-thick SiO2 layer on a 

silicon wafer, followed by gentle sonication of the substrate in acetone and then pure 

alcohol for about two minutes. The substrate is then baked at 115°C on a hotplate, nitrogen 

blown dry while cooling down [154].  Finally, a mechanically exfoliated graphene sheet 

from highly oriented pyrolytic graphite (HOPG) is applied to the prepared substrate. A 

graphene flake is isolated by repeatedly pealing graphite till several single-layer or multi-

layer graphene flakes are finally left over.  After mechanical exfoliation, an optical 

microscope is used to identify the location of single-layer graphene (due to an optical phase 

shift, single-layer graphene will appear as slightly different color when on 300-nm-thick 

SiO2), and photolithographic processes are employed to attach gold electrical contacts to 

the graphene [154]. Prior to STM measurements, the sample is annealed in a pure oxygen 

environment at temperatures of 400°C for 15 minutes to remove the photoresist that 

remained from earlier photolithography processes by using a Hevi-Duty high-temperature 

oven with an Omega CN2011 temperature controller.   

Graphene samples made by mechanical exfoliation are typically smaller than 100 x 

100 microns in size.  Most are less than 10 x 10 microns in size, which is barely resolvable 
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to the naked eye. Due to their small size, aligning the STM tip with the graphene flakes 

is exceeding difficult. In order to provide the needed magnification, an optical microscope 

is configured and used to align tip and sample with the aid of the X-Y course movement 

sample stage described in Chapter 2.  It was discovered that it was often easier to align the 

STM tip with the gold leads connecting to the graphene flake than to the graphene flake 

itself.  Extreme care must be taken with this process, otherwise the STM tip will not land 

on a conductive surface and no tunnel junction can be formed.  In the absence of a 

tunneling junction, the STM tip will crash and possibly damaging the sample itself. 

         Some of the samples studied in this thesis were made by means of CVD growth, as 

described in detail in [155].  Specifically, graphene films were primarily grown on 25-μm-

thick Cu foils in a furnace consisting of a fused silica tube heated in a split tube furnace. 

The fused silica tube loaded with Cu foils was first evacuated and then back filled with 

hydrogen, heated to ~ 1000°C, and maintained under partial hydrogen pressure [155]. A 

methane gas mixture was then introduced into the tube furnace with a total pressure of 500 

mTorr for a set amount of time. Finally, the furnace was cooled to room temperature, and 

the Cu foils coated with graphene appeared shiner when compared to Cu foils prior to 

deposition, consistent with previous reports [155]. The graphene sheets prepared by this 

method if examined with Raman spectroscopic studies are found to be largely single- or 

double-layered samples [154].  However, STM studies did demonstrate that certain regions 

are not graphene but amorphous carbon.  Samples grown by this method are very large in 

comparison, up to sizes of 1 × 1 cm2, to the samples made by mechanical exfoliation. At 

this point the sample is cleaned by gentle sonication in ethanol for approximately two 

minutes and then loaded into the sample holder of the STM.  Unfortunately, the Cu foil 
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under the graphene layer will begin to oxidize immediately, which limits the lifetime of 

the sample for experimental investigation. 

          For later experiments, it was desired to transfer the CVD grown graphene from the 

copper substrate to different substrates. The method for transferring the graphene sample is 

detailed in [154]. To briefly describe the transfer process, first SiO2 substrates  

 

Figure 6.1: Optical images of different graphene samples. (a) Optical microscope image 
with magnification × 64 of a 10 × 30 micron2 mechanically exfoliated graphene flake. The 
graphene flake resides on a 300-nm-thick SiO2 substrate on a Si wafer.  The bright squares 
are gold pads used to make electrical contact to the graphene flake. In order to perform STS 
studies of the flake the tip must be perfected aligned over the sample or over the gold 
electrical contacts and the X-Y course stage used to slowly realign the tip over the sample 
with repeated scans till the sample is located. (b) CVD grown graphene on Cu foil.  The 
graphene sample is approximately 1 cm × 0.5 cm. The STM tip may be aligned anywhere 
above the sample. 
 

were prepared by first thermally growing a 290 nm thick SiO2 layer on a silicon wafer (p-

type [100]), followed by gentle sonication of the substrate in acetone and then pure alcohol 

for about two minutes [154]. The substrate was then baked at 115°C on a hotplate and 

nitrogen blown dry while it was cooled down. Next, a layer of PMMA was deposited on 

top of the CVD grown graphene on the copper foil as scaffolding, and then the copper 
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substrate was removed with nitric acid [154]. The PMMA/graphene sample was 

subsequently placed on a SiO2 substrate with the graphene side down. Finally, the PMMA 

was removed with acetone [154]. The transferred graphene was cleaned and annealed in an 

argon atmosphere at 400°C for 30 minutes. Electrodes were created by thermally 

evaporating 2.5 nm chromium and 37.5nm gold through an aluminum foil shadow mask 

[155]. The sample then was rinsed again gently with acetone followed by ethanol. The 

sample is then loaded into the STM.  Figure 6.1 shows two graphene samples prepared by 

two different methods. The sample shown in Figure 6.1(a) was made by mechanical 

exfoliation and then placed on SiO2. Electrical contacts were made to the graphene flake 

for electrical transport measurements and STM studies. The sample shown in Figure 6.1(b) 

was a mono-layer graphene grown on a copper foil by means of CVD.  

.         After loading the sample to the STM probe, the STM assembly was pumped down to 

pressures <10-6 Torr and the graphene samples were investigated both topologically and 

spectroscopically. Initially each sample was studied at 300 K and then at 77 K while at zero 

magnetic fields.  As described in Chapter 2, measurements were conducted in a 128 ×128 

pixel grid where both topography and I(V) vs. V spectroscopy were recorded with a tunnel 

junction of 1.5 GΩ.  From the I(V) vs. V curves the differential conductance and the 

corresponding LDOS was measured. 
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6.2 Studies of Mechanically Exfoliated Graphene on SiO2 Substrate 

         In this section we present data obtained from STS studies of mechanically exfoliated 

graphene on SiO2 substrates. Numerous topographic measurements were performed across 

multiple regions of a sample and measurements found numerous surface corrugations 

across the sample.  The graphene sample was not perfectly flat but possessed a distinctly 

three-dimensional component.  These corrugations were up to 0.5 nm in height over lateral 

distances of 10 nm over scan areas of 2.2 nm × 5.0 nm. Scans over larger regions resulted 

in similar height variations.  These corrugations were verified with measurements taken 

with atomic force microscopy over the same area, showing height corrugations of ±1.0 nm 

over the same lateral distance. These findings were in good agreement with results reported 

previously in [58, 156, 157].  Demonstrations of these corrugations are shown in Figure 

6.2.  The graphene sample was found to be free of crystalline defects.  The origin of these 

topographic corrugations was investigated and found to be the result of the graphene 

sample overlaying the uneven surface of a SiO2 substrate.  Atomic force microscopy 

studies of the silicon substrate demonstrated an average surface roughness of ± 2.0 nm over 

a region of 8.6 nm × 8.6 nm region. The possibility of the surface corrugations resulting 

from the proximity of the gold electrical leads (see Figure 6.1(a)) was also investigated.  

The average height variations of the surface corrugations were found to be independent of  

the distance from the gold electrical leads. 

     Spatial spectroscopic studies were also carried out across the graphene sample.  

Numerous modulations were found in the tunneling conductance.  The tunneling spectra 
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Figure 6.2: Surface corrugations of graphene crystal.  (a) Topographic STM image of a 2.2 
nm × 5.0 nm showing distinct ripples (height variations) in the graphene. (b) Histogram of 
the height variations of the image in (a) showing ±0.5 average surface roughness. (c) 
Larger topographic STM image over a 8.6 nm × 8.6 nm  region. (d) Histogram of the 
height variations of the scan in (c) and compared with AFM surface roughness 
measurements of the bare SiO2 substrate.  The two histograms indicate a strong correlation 
between corrugations in graphene sample and the underlying surface roughness of the 
substrate. 
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 (determined at each pixel) varies spatially from V-shaped spectra to parabolic U-

shaped spectra across the conductance maps.  These variations in the tunneling spectra 

were found to weaken at higher energies with the tunneling conductance becoming more 

uniform.  Conductance modulations typically were limited in effect to lower energies and 

appeared to be correlated with topography corrugations.  Figure 6.3 shows several 

conductance maps taken at various constant energies, demonstrating strong spatial 

variations in conductance.  In contrast, the Dirac voltage, VD, determined at each pixel, 

appears relatively homogenous spatially and not correlated to topography.  This is in 

contrast to the conductance modulations where the spatial map of tunneling conductance at 

VBias = (V -VD) = 0, reveals strong correlation with the topography.  As VBias  increases, the 

spatial variations in conductance across the sample decrease steadily, as exemplified by 

Figure 6.3 for VBias = 80 meV and for VBias = 240 meV.  The changes in the Dirac voltage 

are most likely due to charge impurities on the underlying SiO2 substrate, which suggests 

that the spatial conductance modulations at constant bias voltages are not due to charge 

impurities.  

To compare the correlation between spatial corrugations and conductance 

modulations, the lattice distortions must be quantified. A fast Fourier transformation (FFT) 

algorithm was performed over the topography previously discussed and shown in Figure 

6.2 and exhibited in Figure 6.4.  The FFT scan revealed a distorted hexagon, signifying a 

major distortion in the lattice structure.    With a distorted lattice one can calculate the 

resulting local  
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Figure 6.3: Conductance modulations in graphene.  (a) A Dirac energy map compiled by 
determining the Dirac point, which was obtained by locating the minimum conductance of 
each spectra at each pixel of the same region as Figure 6.2a.  The Dirac energy is fairly 
uniform across the scan. (b) Histogram of all values of the Dirac energy in (a).  (c)–(e) 
Tunneling conductance maps at bias voltages 0, 80, and 240 meV. Tunneling conductance 
The tunneling conductance ratio becomes more uniform as bias energy increases. (f)–(h) 
Histograms of the tunneling conductance in (c)–(e). As bias voltage increases each 
histogram narrows in width. 
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Figure 6.4: Strain tensor images: (a) Topographic image of a mechanically exfoliated 
graphene sample. (b) FFT image of the topography in (a) showing a distorted hexagonal 
reciprocal lattice. (c) Scalar strain field S0 showing strong correlation with topography and 
tunneling conductance. (d) Map of the strain tensor component Sxx (e) Map of the strain 
tensor component Sxy (f)  Map of the strain tensor component Syy   
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displacement field, 𝐮��⃗ , and therefore the resulting strain tensor.  We define 𝐮��⃗ =<

𝑢𝑥,𝑢𝑦 > as the difference of the local lattice vectors from the equilibrium lattice vectors.  

Following the equation 5.29 we can define the strain tensor components as 𝑆𝑥𝑥 =

𝜕u𝑥
𝜕x

 , 𝑆𝑦𝑦 = 𝜕u𝑦
𝜕y

 , 𝑆𝑥𝑦 = 𝑆𝑦𝑥 = (1
2
)(𝜕u𝑥

𝜕y
+𝜕u𝑦
𝜕x

)2 as well as a scalar strain field 𝑆0 = �𝒖��⃗ (𝑥,𝑦)
𝑎0

�.  

The resulting strain tensor maps are plotted in Figure 6.4.  It is easily noticed that there is a 

strong correlation between the strain tensors and the spatial conductance modulations at a 

constant voltages. The upper regions of the graphene sample are relaxed while the lower 

regions of the sample are highly strained.  It should be noted that regions of low strain 

result in V-shaped spectra while highly strained regions exhibit U-shaped spectra. 

We quantify possible correlations between the spatial modulations of tunneling 

conductance and the local strain by considering the correlation function 𝐶(𝐫)���⃗ : 

 

                                                𝐶(𝐑��⃗ ) = ∫𝑑2𝑟 [𝑓(𝑟)−<𝑓>][𝑔(𝑟−𝑅)−<𝑔>]

�𝐴𝑓𝑓(0)𝐴𝑔𝑔(0)
                                    6.1 

 
where f(r) and g(r) represent the conductance and strain at position 𝐫⃗, 〈𝑓〉 and 〈𝑔〉,  are the 

mean values over the sample area, and Aff  and Agg  denotes the auto correlation function of 

the conductance and strain, respectively.   Aff  and Agg  are given by  

                                      𝐴𝑓𝑓(𝐑��⃗ ) = ∫𝑑2𝑟 [𝑓(𝒓�⃗ )−< 𝑓 >][𝑔�𝒓�⃗ + 𝑹��⃗ �−< 𝑔 >].                6.2 

If we calculate 𝐶(𝐑��⃗ ) for the conductance map at VBias = 0 meV and the scalar strain map 

we find a correlation function value of ~0.44, and at higher energies VBias = 240 meV we 

find a correlation function value of ~ 0.12.  This demonstrates that the strain effects are 

stronger at  
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Figure 6.5:  Correlation of tunneling spectral characteristics with strain tensor. (a)–(b) 
Conductance image and scalar strain S0 showing good agreement. (c) Lower horizontal 
linecut of tunneling spectra showing mostly U-shaped features in strained graphene. (d) 
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Theoretical fit of phonon-mediated tunneling to a representative spectra in (c) with an 
out of plane phonon frequency  ωa = 44 meV.  (e)–(f) Upper horizontal linecut of 
tunneling spectra showing mostly V-shaped features and it resulting theoretical fit ωa =
26 meV in relaxed graphene. (g)–(h) Vertical linecut of tunneling spectra showing 
evolution of the tunneling spectra from relaxed to strained regions and the two resulting 
theoretical fits using phonon frequencies  ωa = 24, 41 meV. 
 
 
lower energies and are much reduced at higher energies where the conductance spatial 

modulations are reduced. 

When we further compared tunneling spectra to strain tensor components along 

three different linecuts as demonstrated in Figure 6.5.  The horizontal linecuts along the 

upper and lower sections and the vertical linecut which are indicated by dashed lines in 

Figure 6.5. The spatial evolution of the spectra from the upper line are mostly parabolic  

 

Figure 6.6: Strain vs. phonon frequency: Left panel: Spatially varying tunneling 
conductance (dI/dV) vs. energy spectra along a line across the graphene sample. The “U”-
like spectra correspond to regions of more strained graphene, whereas the “V”-like spectra 
more generic to the ideal graphene behavior are seen in regions of more relaxed graphene.  
Right Panel:  Energy gap vs. strain magnitude. Energy gap increases as the strain 
magnitude increases.  The tunneling energy gap calculated by fitting each spectra using the 
model of phonon assisted tunneling. The energy gap corresponds to the effective out-of-
plane phonon energy involved in the electron tunneling process.  
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(U-shaped) around VB = 0, while the lower line cut exhibits mostly Dirac-like (V-shaped) 

around VB=0.  The spatial distribution of the upper line U-shaped spectra correlates well 

with the region of the graphene sample that is highly strained. 

         If we follow the argument suggested in Chapter 5 for the scenario of phonon-

mediated inelastic tunneling we can fit the different tunneling spectra for each region. In 

this analysis, which was detailed in Chapter 5, we assume the out of plane phonon 

frequency ωa as a fitting parameter, and also allow a small constant zero-bias offset in 

equation 5.42, which may be attributed to enhanced LDOS due to impurities according to 

[78, 149]. For T = 77 K, we replace ω  by iωnand sum over the fermion Matsubara 

frequencies ωnwith a prefactor (1/β) where β-1 = 77 K. Given that the thermal energy at 77 

K is much smaller than ℏωa, however, the thermal smearing effect is insignificant.  These 

fittings are detailed in Figure 6.5 and we observe that the fittings agree reasonably  well.  

Regions of the sample that are highly strained are fit best with a phonon frequency of 

ωa = 44 meV while lower, relaxed regions of the graphene sample are best fit with 

phonon frequencies of ωa = 26 meV. The correlation of spectral characteristics with the 

strain maps suggests that strain and phonon-mediated inelastic tunneling are a primary 

cause for the spatial spectral deviations from Dirac behavior in graphene.  If we plot the 

fitted phonon frequency ωa  vs. strain as in Figure 6.6 we find that as strain increases 

across the sample the resulting phonon frequency increases monotonically. We also note 

that the ωa values derived from phonon-mediated tunneling scenario vary significantly 

across the sample as well as across substrates.  In the case of graphene grown on SiC [158], 
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gap values in the tunneling spectra are much larger (~ 100 meV) than the values derived 

here.  

 

6.3 Studies on CVD Grown Graphene on Cu and SiO2 Substrates 

        In this section we present data obtained from STS studies on CVD grown graphene on 

Cu foils and from CVD grown graphene that has been transferred to SiO2 substrates. We 

find that the lattice distortions and strain effects are much larger on CVD grown graphene 

than on mechanically exfoliated graphene.  The structures of these samples are highly 

distorted.  Consequently the strain from such lattice distortions is large enough to induce 

pseudomagnetic fields. Samples in both cases were prepared as described in Section 6.1. 

 

6.3.1 Topographic Studies  

            Initial topographic STM studies on CVD grown graphene on Cu foils revealed two 

distinct types surfaces: an atomically resolved but highly distorted surface and completely 

disordered regions without atomic resolution that are mainly amorphous carbon. Large- 

scale topographic scan reveal a highly rippled sample surface.  The height variations of the 

sample relative to the previous mechanically exfoliated graphene sample are much larger.  

Height corrugations on an area of  3 nm × 3 nm are ± 5.0 nm   and in comparison to the 

mechanically exfoliated sample where height variations are ±0.5 nm on an equivalently 

sized sample.  Figure 6.7 shows histograms of the height variations on one CVD sample 

over varying areas. Close inspections of the height variations reveal two types of 

distortions. The long-wavelength, ripple-like height variations over most of the sample are 
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correlated with the surface corrugations of the underlying Cu foils, with details to be 

elaborated later. In contrast, the short wavelength (~ nanoscale) height variations are 

resultant from the large difference in the thermal expansion coefficients of graphene and 

Cu. That is, upon cooling the sample from ~ 1000°C to room temperature after the CVD 

growth of graphene, the graphene expands due to its negative coefficient of thermal 

expansion and the copper substrate contracts.  Consequently the graphene can no longer 

remain flat and must ripple and buckle, thereby introducing massive lattice distortion and 

disorder. In Figure 6.7 we observe these ripples over different size topography scans of the 

sample and plot the according height roughness histograms.  These histograms reinforce 

that the CVD grown graphene is far more corrugated than mechanically exfoliated 

graphene. 

         In Figure 6.8 we plot a 3 nm × 3 nm region of the graphene sample and we notice a 

strong ridgeline along the top of the topography scan.  Above this ridgeline in a region we 

dub the “α” region of the sample, we have a relaxed and very graphene-like lattice structure 

with a clearly defined  honey-comb, hexagonal lattice.  Below the ridgeline we have the 

“β” region of the sample showing an almost “square lattice” or nearly disordered atomic 

structure.  An FFT scan of the topography (as shown in Figure 6.8) clearly shows a highly 

distorted reciprocal hexagon lattice as well as a distorted square lattice.  If we plot the a line 
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Figure 6.7: Topographic images of CVD grown graphene on Cu: (a) 2.3 × 2.3 μm 2 
topography image. (b) 50 × 50 nm2 topography image. (c) 50 × 50 nm2 topography image. 
(d) 2.2 × 5.0 nm2 topography image but of graphene on SiO2. (e)–(f) The corresponding 
histograms of the height variations for each topography scan. The CVD grown graphene on 
Cu contains numerous ripples and buckling when compared to the “relatively flat” 
graphene on SiO2.  The surface roughness is factor of ten greater for comparably sized 
scans. 
 

 -cut of the topography across the sample from top to bottom as shown in Figure 6.9, we 

observe strong height variations (short wavelength changes) along the ridgeline and smaller 

height variations on a longer distance scale (longer wavelengths).  We can estimate the 

averaged variation in height (Δz) over a length scale L for both wavelengths.  For the 

significant short wavelengths, the height variations Δz ~ 1.0 nm, this results in a Δz/L ~ 0.3 

which suggests significant strain.  The longer-length height variations were investigated 

and believed to be due to the original 
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Figure 6.8 Distorted lattice of CVD grown graphene: (a) Topographic map of CVD grown 
graphene with different “α” and “β” regions identified.  (b) Topographic map of a typical 
amorphous region of CVD grown graphene.  There is no discernible atomic structure and 
may be due to deposition on top of defects on the Cu foil.  (c) FFT image of (a) showing 
both a distorted hexagonal reciprocal lattice and a square reciprocal lattice 
 
surface roughness of the copper foils, as shown in Figure 6.9.  Atomic force microscopy 

performed by David Boyd on an Cu foil with no graphene (taken through all the same 

procedures but with no graphene actually grown on the Cu foil) suggest long wavelength 

height variations of Δz/L ~ 0.01.  This confirms that the long wavelength variations (Δz) 

are due to the underlying morphology of the Cu foil.  

          The amorphous regions (as exemplified by a 3 nm × 3 nm scan in Figure 6.8) of the 

CVD grown graphene, plotted in Figure 6.8, show no distinct atomic structure and are 

defined as “γ” region.  This disordered region, we believe to be amorphous carbon that did 

not grown into a hexagon lattice and may be the deposition of carbon on the defect features 

on the Cu foils (the bright features shown in the AFM images in Figure 6.9). 
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Figure 6.9 Surface roughness of the Cu substrate in CVD grown graphene: (a) vertical 
linecut of the topography in Figure 6.8(a), showing strong height variations along the 
horizontal ridgeline as well as a longer wavelength height variations that is due to the 
surface roughness of the underlying Cu foil. (b)–(c) AFM images of the Cu foil on 5.0 x 
5.0 μm2  area and a 0.5 x 0.5 μm2 area. (d) The linecut in (a) with the long wavelength 
height variation subtracted out to give accurate height variations of the ridgeline alone of 
0.3–0.6 nm.  (e)-(f) Histograms of the surface roughness of the Cu foil for regions in (b), 
(c).  Images (b), (c), (e), (f) courtesy of David Boyd. 
 
 
  

6.3.2 Spectroscopic Studies and Pseudomagnetic Fields 

          To investigate how electronic properties and local density of states were affected by 

such large lattice distortions, multiple spectroscopy scans were completed over several 

samples. In particular we compared the normalized tunneling conductance spectra as 
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detailed in Chapter 2, �𝑑𝐼 𝑑𝑉� � �𝐼 𝑉� ��  vs.  𝑉, from different region with differing 

lattice arrangements.  The spectra for the more honeycombed (relaxed) “α” region of the 

graphene sample resembled the spectra found in mechanically exfoliated graphene and are 

Dirac-like (V-shaped) except a substantially larger zero bias conductance and an addition 

of several weak conductance peaks. In contrast, the typical spectra associated with the 

square lattice (strongly strained) “β” region appeared to be asymmetric relative to those in 

the “α” region, with sharp conductance peaks more closely spaced.  For “α” and “β” 

regions and  the representative spectra found in each region, the energy interval between 

consecutive conductance peaks appears to decrease with increasing energy.  For disordered, 

amorphous “γ” regions without atomic resolution, almost completely parabolic spectra that 

deviates fundamentally from the linear energy dependence of the Dirac fermions was 

found.  While the “γ” region spectra does also demonstrate conductance peaks, the 

conductance peaks seem randomly spaced. Figure 6.10 shows topography images of each 

region type and the representative spectra for each region.  Figure 6.11 shows similar 

results achieved  and verified on a second graphene sample prepared exactly as the first.  

The spatial variations in the spectra (tunneling conductance) depends very sensitively on 

the local strain of the lattice. 

          If we follow the argument suggested in Chapter 5 for graphene with nontrivial strain, 

we expect to observe the effects of strain-induced vector and scalar potentials in the 

tunneling spectra for these highly distorted graphene samples. From Equations 5.26 and 

5.28, we expect to see pseudomagnetic fields and a significant charging effect.  Particularly 

we should observe the appearance of LDOS peaks at quantized energies according to 
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Equation 5.30, 𝐸𝑛 = 𝑠𝑔𝑛(𝑛)�2𝑒𝑣𝐹2ℏ𝐵𝑆|𝑛|, in addition to the linear local density of 

states at low energies from Equation 5.23. Previous studies [141] on graphene nanobubbles 

on Pt, observed strong Landau levels from giant strain-induced pseudomagnetic fields of up 

to B = 300 Tesla.  Following a similar method, we subtract off a parabolic conductance 

background associated with the copper contribution to the tunneling conductance (indicated 

by the dashed lines in Figure 6.10) and plot the resulting conductance against (E − EDirac). 

The resulting plots are shown in Figure 6.10.  Similar results are shown for a second 

graphene sample in Figure 6.11. 

 

Figure 6.10: Tunneling spectra for CVD grown graphene: (a) Topographic image of CVD 
grown graphene with “α” and “β” spectra locations identified.  (b) Representative tunneling 
spectra for various regions in (a).  “α” spectra exhibit more Dirac-like spectra are in relaxed 
regions of the sample and “β” spectra exhibit more U-shaped features and are in more 
strain areas of the sample. Also plotted are the parabolic backgrounds subtracted from the 
spectra to reveal the quantized Landau levels. (c) Tunneling conductance for various 
regions of the sample.  Each spectra was fit with a parabolic background which was then 
subtracted. The resulting tunneling conductance displays very distinct quantized 
conductance peaks associated with Landau levels n = 0, ± 1/3, ± 2/3, ± 5/3, ± 1, ± 2 and ± 
3.  Notice not all spectra contain the n = 0 peak and is explained by local spontaneous time-
reversal symmetry breaking. 
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Figure 6.11: Tunneling spectra for a different CVD grown graphene from Figure 6.10: (a) 
Topographic image of CVD grown graphene with “β” spectra locations identified.  (b) 
Representative tunneling spectra for various regions in (a).  Also plotted are the parabolic 
backgrounds subtracted from the spectra to reveal the quantized conductance peaks. (c) 
Tunneling conductance for various regions of the sample.  Each spectra displays very 
distinct quantized conductance peaks associated with Landau levels n = 0, ± 1/3, ± 1, ± 2, 4 
and 6.   
 

After background subtraction, we find distinct peaks in the LDOS as expected 

occurring at energies proportional to �|𝑛| for n = 0, ± 1, ± 2, and ± 3 as can be seen in 

Figure 6.10.   If we plot E − EDirac (eV) vs. �|𝑛| as shown in Figure 6.12, we can determine 

the strength of the resulting pseudo-magnetic fields for Equation 5.30 and taking 𝑣𝐹 =

106 m/s and find that BS= 29 ± 8 Tesla for “α” regions and BS = 50 ± 5 Tesla for “β” 

regions. The second graphene sample in highly rippled regions exhibited pseudomagnetic 

fields of B=35 ± 5 Tesla.  Furthermore, according to Equation 5.31, 𝑙𝐵 = � Φ0
2𝜋𝐵𝑆

, we can 

specify a magnetic length associated with the pseudomagnetic fields and find it to range 

from 3.5 nm to 5.5 nm.  In stark contrast the amorphous “γ” regions exhibit spectra that is 

largely smooth and parabolic differing fundamentally from the expected Dirac-like spectra.  

After subtraction of a parabolic background, the resulting conductance shows no significant 
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peaks corresponding to Landau levels.  This is to be expected for regions with no 

discernible lattice and is demonstrated in Figure 6.14. 

        One notable feature observed in the tunneling conductance with the parabolic 

background subtracted (Figure 6.10 and Figure 6.11) is the appearance of peaks that seem 

to correspond with fractional Landau levels of n = ± 1/3, ± 2/3, and ± 5/3.  These peaks 

seem to occur in the stronger strained “β” regions.  The occurrence of fractionally filled 

Landau levels is not expected if we follow the arguments presented in Chapter 5 for strain-

induced pseudofields, a noninteracting 2-D gas of Dirac fermions.  The presence of 

fractional quantum Hall states due to a pseudomagnetic field may be understood by the 

following consideration [159].  For CVD grown graphene on Cu, the 2-D electron gas 

associated with the surface state of Cu substrates provides an additional channel for short-

range charge interaction through the electrostatic coupling between the Dirac fermions in 

graphene and the 2-D electron gas in Cu [159]. Although long-range Coulomb interactions 

of Dirac fermions are screened by the underlying 2-D electron gas, whether short-range 

Coulomb interactions may be neglected depends on the strength of the on-site Coulomb 

potential U relative to the nearest neighbor hopping constant “t” [159]. That is, if we 

consider a modified Hamiltonian from Equation 5.16: 

                               𝐻 = −𝑡∑ �𝑎𝜎,𝑖
† 𝑏𝜎,𝑗 + 𝑎𝜎,𝑖

 𝑏𝜎,𝑗
† �〈𝑖,𝑗〉,𝜎 +  𝑈∑ 𝑛𝑖,↑,𝑛𝑖,↓𝑖               6.3 

where 𝑎𝜎,𝑖
† (𝑎𝜎,𝑖

 ) and 𝑏𝜎,𝑗
† (𝑏𝜎,𝑗

 ) are the creation (annihilation) operators for an electron with 

spin 𝜎 on sites “i” and “j” of sublattices A and B respectfully. Here “t” denotes the nearest 

neighbor hopping energy for hopping between different sublattices and 𝑛𝑖,↑,𝑛𝑖,↓ represent  
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Figure 6.12: (a) Determination of the pseudomagnetic field strength (from data in Figure 
6.10): (E − EDirac)(eV) vs. �|𝑛| for a number of spectra taken in the “α” and “β” regions. 
Most data points lie on a straight line whose slope is proportional to the pseudomagnetic 
field BS. The values range from BS ~ 30 Tesla for most point spectra in the “α” region to BS 
~ 50 Tesla for the strongest strained areas in the “β” region. (b) Determination of the the 
pseudomagnetic field strength for a second sample (shown in Figure 6.11) with BS ~ 35 
Tesla 
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Figure 6.13: Amorphous region of CVD grown graphene. (a) Highly disordered region of 
graphene sample showing no atomic structure. (b) Representative spectra from regions 
across the sample.  The spectra is completely parabolic.  (c) Tunneling spectra with 
parabolic fit to the spectra subtracted. The spectra are offset in dI/dV for clarity.  
Conductance peaks do not follow a  �|𝑛| dependence and so are not due to pseudo-
magnetic fields. 
 
 
the density of electrons with spin up and spin down at site “i”.  Assuming the onsite 

Coulomb repulsion UCu ~ 3 eV for the surface state of Cu [160], the on-site Coulomb 

potential U for graphene can be approximated by the relation 𝑈 =  𝑈𝐶𝑢 (𝑑𝐶𝑢/𝑑)2, where 

dCu ~ 0.255 nm and d = 0.246 nm are the lattice constants of copper and graphene [159]. 

Hence, we find U ~ 3.2 eV, which is larger than the magnitude of the hopping constant ~ 3 

eV. This simple analysis implies that the Coulomb interaction among Dirac fermions 

cannot be neglected. Thus, fractional quantum Hall states are feasible, with the Laughlin 

state of a filling factor 𝑣 = ± 1/3 and the related states of 𝑣 = ± 2
3

, ± 4
3

, and ± 5
3
  being 

the primary contributors [159]. We further note that our finding is the first observation of 

pseudomagnetic field-induced fractionally filled Landau levels in graphene. Moreover, the 

significantly more complicated strain found in our CVD-grown graphene on Cu differs 
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from the controlled strain observed in the case of graphene nanobubbles where the 

effective gauge potential leads to a relatively uniform magnetic field over each nanobubble. 

 

6.3.3 Strain Induced Charging Effects 

        As discussed in Chapter 5, we should not only expect an induced vector potential and 

therefore a pseudomagnetic field, but also a scalar potential, Φ, from typical nontrivial 

strain.  The presence of a scalar potential is the result of dilation and compression strain and 

is given by 

                                                             𝑉(𝑥, 𝑦) = 𝑉0 �
𝜕u𝑥
𝜕x

+ 𝜕u𝑦
𝜕y
�                                       6.4 

where V0 ~ 3 eV and  𝜕u𝑥
𝜕x

 �𝜕u𝑦
𝜕y
�  represent derivatives of the displacement field 𝐮��⃗ .  This 

scalar potential should give rise to a static charging effect if it is a spatially varying 

function, although  this charging effect may be largely screened if the height variation l is 

much less than the magnetic length 𝑙𝐵 described earlier. Considering the height variation l 

observed in our samples are on the order of 1.0 nm and are comparable to the magnetic 

length of 3.5 to 5.5 nm for magnetic fields of 50 Tesla, we expect significant charging 

effect to appear in CVD grown graphene on Cu. 

The charging effect may be manifested by plotting the Dirac energy calculated from 

the tunneling spectra at every pixel as well as plotting the tunneling conductance at 

different constant bias voltages over our original graphene scan in Figure 6.11.  These plots 

are show in Figure 6.14.  The bias voltages are chosen to represent the pseudo-Landau 

levels of the “β” region spectra for n = 0, 1/3, 1, 2, 3.  We notice immediately in the Dirac 

energy plot, that there is a nearly one-dimensional  region close to the most strained area 
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immediately below the ridge that shows clear differences in the Dirac point. We notice 

this linear region is the same as the area where there is enhanced conduction in the constant 

bias conductance maps associated with smaller n values, confirming the notion of strain-

induced charging effects. For higher energies (larger n values), the high-conductance 

region becomes less confined, which is reasonable because of the higher confinement 

energies  𝐸 ∝ �|𝑛|) required for the Dirac electrons.  We can attempt to quantify the 

compression/dilation strain by plotting changes in spatial variations 𝑧(𝑥, 𝑦)of the height 

with respect to changes in the lateral directions for the topography scans given in Figure 

6.11. In Figure 6.15 we plot  

�𝜕𝑧(𝑥, 𝑦)
𝜕𝑥� �

2

 , �𝜕𝑧(𝑥,𝑦)
𝜕𝑦� �

 2

 and ��𝜕𝑧(𝑥,𝑦)
𝜕𝑥� �

2

+ �𝜕𝑧(𝑥,𝑦)
𝜕𝑦� �

2

�  

demonstrating the dilation and compression.  We again observe a nearly one-dimensional 

region corresponding to an area immediately under the  ridgeline in the topography that 

exhibits strongest dilation/compression. These maps are directly correlated with the 

conductance maps showing enhanced conduction along the ridgeline and provides direct 

evidence for strain-induced charging effects. 

. 
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Figure 6.14: (a) Dirac energy map of the region specified in Figure 6.10. (b)-(f) : Constant-
voltage tunneling conductance maps at quantized energies of the pseudo-Landau levels (b) 
n = 0, (c) n = 1/3, (d) n = 1, (e) n = 2, (f) n = 3, For smaller n values, an approximately one-
dimensional high-conductance “line” appears near the topographical ridge where the most 
abrupt changes in height occur, suggesting significant charging effects. The confinement of 
the high-conductance region is reduced with increasing n. 
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Figure 6.15 : Estimate of the spatial variations of the typical strain over the same region 
shown in Figure 6.10: (a) �𝜕𝑧(𝑥,𝑦)

𝜕𝑦� �
2
map, (b) �𝜕𝑧(𝑥,𝑦)

𝜕𝑥� �
2
map, and (c) ��𝜕𝑧(𝑥,𝑦)

𝜕𝑥� �
2

+

𝜕𝑧(𝑥,𝑦)𝜕𝑦2 map, showing maximum strain immediately below the ridgeline in the upper half 
of the image. This directly correlates with constant bias voltage conductance maps. 

 
 
 
6.4 Studies on CVD Grown Graphene on SiO2 Substrates 

To test the assumption that the difference in the thermal expansion coefficients is 

responsible for the buckling of CVD grown graphene on Cu and therefore inducing strong 

strain and lattice distortions, a comparative study of CVD grown graphene transferred from 

Cu to SiO2 was conducted.  The assumption was that transferring graphene from the Cu foil 

according to methods described earlier in the chapter would allow the graphene to relax 

and when transferred to SiO2 would be free of large-scale corrugations.  It would no longer 

be forced to buckle or ripple by a large lattice mismatch to underlying Cu. Therefore, we 

expect that the transferred CVD-grown graphene to more closely resemble mechanically 

exfoliated graphene in its structural and electronic properties.     
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Figure 6.16: Comparative study of unstrained regions of CVD grown graphene transferred 
to a SiO2 substrate: (a) Large-scale 100 nm × 100 nm topography image detailing small 
height variations in comparison with the strong height variations prior to being transferred 
to a new substrate. (b) Atomic resolution image (10 nm × 10 nm) showing a nearly flat 
surface. (c) Representative tunneling spectra  from various regions of the sample. (d) 
Histogram of the height variations in (a), showing a surface roughness of ± 2.5 nm. (e) 
Histogram of the height variations in (b) showing a surface roughness of ± 0.25 nm. (f) 
Tunneling spectra with a parabolic background fit subtracted.  Curves are offset for ease of 
viewing.  No noticeable pseudo-Landau levels are resolved, indicating that the transferred 
graphene has for most regions recovered to a semipristine state. 
 
 
 
Figures 6.16 and 6.17 shows the results of the comparative study. In general it was found 

that the height variations and the corresponding strain in the transferred graphene samples 

were much reduced, as shown in Figure 6.16. Hence, the conductance spectra for most 

areas of the sample are quite smooth without quantized conductance peaks and therefore 

resemble mechanically exfoliated graphene.  There did exist rare regions were the graphene 

did not relax as was predicted.  These regions retain strong rippling or buckling near grain 

boundaries of the large CVD-grown graphene sheet, which cannot be relaxed even after 
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removal of the underlying Cu substrate.  Occasional quantized LDOS spectra are still 

present in these topographic regions that appear to contain remnant ridges or buckling of 

the CVD-grown graphene [159]. These quantized peaks still obey the general relation 

𝐸 − 𝐸𝐷 ∝ �|𝑛| except that the slopes are much smaller, implying much reduced pseudo- 

 

 

Figure 6.17: Comparative study of CVD grown graphene transferred to a SiO2 substrate for 
strained regions. While majority of the transferred graphene becomes unstrained, certain  
rare regions retain their buckling and ridges.  Spectra measured in these regions 
demonstrate clear influence of pseudomagnetic fields. (a) Representative spectra from a 
strained region. (b) Tunneling conductance of (a) with a parabolic background subtracted. 
Clear Landau levels can be resolved for n = ± 1/3, ± 1, ± 2, -3. (c) (E − EDirac)(eV) vs. �|𝑛| 
plot showing a pseudomagnetic field of  ~ 8 Tesla.  The pseudofields when present are 
substantiall reduced for the sample transferred to SiO2. 
 
magnetic fields. The calculated pseudo-fields are 8 ±1 Tesla.  This is consistent with the 

significant reduction in strain upon transferring the graphene sample from Cu to SiO2. 

 

6.5 Local Spontaneous Time Reversal Symmetry Breaking 

         Following the arguments presented Chapter 5; the strain-induced pseudomagnetic 

fields, 𝑩��⃗ 𝑆 = � 𝑐
𝑒𝑣𝐹
� 𝛁 × 𝑨��⃗ , do not break global time-reversal symmetry. However, the 

opposite gauge fields associated with the two pseudospin (opposing sublattices), K and 𝐾′, 
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in reciprocal space can give rise to a zero mode [159].  This zero mode is a condensate 

where Dirac electrons become completely delocalized over the sample and yet remain 

alternately localized and antilocalized in the pseudospin projection in the real space [160]. 

More specifically, the presence of a pseudomagnetic field due to a repulsive second-

nearest-neighbor interaction, such as that provided by a triaxial strain in a graphene 

nanobubble [161], can provide a net flux of a non-Abelian gauge field that preserves the 

time reversal symmetry and breaks the chiral symmetry of the free Dirac Hamiltonian 

[159]. This non-Abelian gauge field is shown theoretically [161] to serve as a catalyst for 

local spontaneous breaking of the time-reversal symmetry in graphene while preserving the 

chiral symmetry [159].  

         The experimental signature for this local spontaneous time reversal symmetry 

breaking is the presence (absence) of the n = 0 tunneling conductance peak for the two 

different sublattice atom sites in graphene.  As shown in Figure 6.9 and 6.10, we do 

observe tunneling spectra with this alternating presence and absence of the n = 0 mode. 

This finding is the first direct evidence of spontaneous time-reversal symmetry breaking 

due to strain-induced gauge fields in graphene. 

 

 

6.6 Discussion 

In summary, topographic and spectroscopic studies of mechanically exfoliated 

graphene, CVD grown graphene on copper, and CVD-grown graphene transferred to SiO2 

reveal the important effect that strain and substrate can have on the electronic properties of 
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graphene.  In particular, topographical defects such as ridges along grain boundaries can 

give rise to induced pseudomagnetic fields and charging effects. The large and non-uniform 

strain induces pseudomagnetic fields up to B~ 50 Tesla, and results in quantized 

conductance peaks associated with the integer and fractional quantum Hall states.  These 

findings suggest the possibility of strain engineering of graphene into novel nanodevices. 
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Chapter 7 

Scanning Tunneling Spectroscopic Studies of a Topological Insulator 

Bi2Se3 

 

       The Dirac materials are a new class of matter that exploits the mapping of electronic 

band structures and an embedded spin or pseudospin degree of freedom onto the relativistic 

Dirac equation. One of these new materials are the surface states (SS) of three dimensional 

(3D), strong topological insulators (STI) [162–165]. A crucial feature of these TIs is the 

suppression of backscattering of Dirac fermions due to topological protection that preserves 

the Dirac dispersion relation for any time-reversal invariant perturbation.  However, while 

direct backscattering is prohibited in the SS of 3D-STI, sharp resonances are not excluded 

because Dirac fermions with a finite parallel momentum may be confined by potential 

barriers [139]. In fact, theoretical calculations for Dirac fermions in the presence of 

noninteracting impurities have predicted the occurrence of strong impurity resonances 

[166, 167].  In this chapter, we report on STS studies of massless Dirac fermions in the 

surface state of a three-dimensional strong topological insulator, Bi2Se3. Specifically we 

report direct observation of unitary impurity resonances in epitaxial thin film Bi2Se3 

samples in the 3D limit. Additionally, for samples in the 2D limit, we find opening of 

energy gaps in the SS and the appearance of spin-preserving quasiparticle scattering 

interferences. 

. 
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7.1 Basic Properties of Three-Dimensional Topological Insulators 

Topological insulators in two or three dimensions have a bulk electronic excitation 

gap generated by a large spin-orbit interaction, and gapless edge or surface states on the 

sample boundary [168].    The surface states of a 3D-STI consist of an odd number of 

massless Dirac cones, with a single Dirac cone being the simplest case. The existence of an 

odd number of massless Dirac cones on the surface is ensured by the Z2 topological 

invariant [165] of the bulk. 

These gapless surface states resemble chiral edge modes in quantum Hall systems, 

but with unconventional spin textures [172].   The spins of the surface states lie in the 

surface plane and are perpendicular to the momentum as shown in Figure 7.2(d).  The 

dispersion relation of the SS of 3D-STI is a gapless Dirac cone.  A key feature of such spin-

textured boundary states is their insensitivity to spin-independent scattering, which is 

thought to protect them from backscattering and localization. Recent experiments with both 

ARPES and STS have probed the insensitivity of these chiral states to backscattering in 

BixSb1−x [172].  Despite strong atomic-scale disorder, backscattering between states of 

opposite momentum and opposite spin is absent, demonstrating that the chiral nature of 

these states protects the spin of the carriers [172]. 

As the topological nature is determined by the physics near the Γ point, it is 

possible to write down a simple effective Hamiltonian to characterize the low-energy 

properties of the system.  Following the method outlined in [165] we can define a bulk 

Hamiltonian that describes Bi2Se3 as 
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                 𝑯 = 𝜖0(𝒌)𝑰4×4 + �

ℳ(𝒌) 𝐴1𝑘𝑧
𝐴1𝑘𝑧 −ℳ(𝒌)

0 𝐴2𝑘−
𝐴2𝑘− 0

0 𝐴2𝑘+
𝐴2𝑘+ 0

ℳ(𝒌) −𝐴1𝑘𝑧
−𝐴1𝑘𝑧 −ℳ(𝒌)

� + 𝓸(𝑘𝟐)      7.1 

using the basis of the Bi and Se  bonding and antibonding pz orbitals with both spins. We 

can define  k± = kx ± iky , 𝜖0(𝒌) = 𝐶 + 𝐷1𝑘𝑧2 + 𝐷2𝑘⊥2 ,  ℳ(𝒌) = 𝑀 − 𝐵1𝑘𝑧2 + 𝐵2𝑘⊥2   with 

A1, A2, B1, B2, C, D1, D2 and M being the model parameters as outlined in [165].  We note 

that if M/B1  >  0 then the conduction and valence bands are inverted and the Hamiltonian 

describes a topological insulator instead of a trivial insulator.  We can use the bulk 

Hamiltonian to solve for the Hamiltonian of the surface states by taking kz = 0 [165]: 

                                                       𝐻𝑆𝑈𝑅𝐹(𝑘𝑥, 𝑘𝑦) = � 0 𝐴2𝑘−
𝐴2𝑘+ 0 �                                 7.2 

using the basis of |𝜓0↑ >, |𝜓0↓ >.  Here the surface states,  |𝜓0↑ >, |𝜓0↓ >,   are a 

superposition of the pz orbital state and the spin states.  We notice that Wquation 7.2 is the 

Hamiltonian that describes the Dirac equation for fermions with zero mass and spin ½ , 

similar to what we have seen in the case of graphene.  The corresponding bandstructure of 

Bi2Se3 is shown in Figure 7.1, where the bulk energy gap ~ 300 meV is the largest among 

all known 3D TIs to date.  As can be seen in Figure 7.1, the surface states can be clearly 

seen at the Γ point as red lines dispersing into the bulk. 

 

7.2 MBE-Grown Bi2Se3 Epitaxial Films and Experimental Methods 

             The samples investigated in this thesis were provided by Liang He at UCLA and 

were epitaxial films grown on Si(111) by molecular beam epitaxy (MBE) [168].  Initial 

characterization of the Bi2Se3 samples by transmission electron microscopy revealed that 
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the films exhibited perfect triangular lattice structures, and ARPES studies revealed a 

single Dirac cone [168].   

       Atomic force microscopy (AFM) measurements of the topography revealed large-scale 

triangular terraced structures where the average height of each terrace is 0.95 nm, which 

corresponds to a single quintuple layer (QL), where the quintuple layer is defined in Figure 

7.2(a). The typical lateral dimension of the top terrace structure ranges from 150 to 350 nm, 

and the width of each subsequent terrace is 70 ~ 90 nm.  Initial characterizations were 

performed by Liang He at UCLA [168]. Figure 7.2 shows the basic crystalline structure of 

Bi2Se3.  The average thicknesses of the samples studied in this thesis were 3-, 5-, 7-, and 60 

QLs. 

       Once characterized, the Bi2Se3 samples were transported to Caltech in sealed argon 

environment.  The samples were then gently cleaned in an ethanol bath and transferred to 

the STM system.   The sealed STM was pumped down by a turbomolecular vacuum pump 

to a pressure of 10-7 torr at room temperature and then cooled to either 6 K or 77 K.  

Detailed surface topography and spatially resolved spectroscopy studies were carried out 

over typically 8 nm × 8 nm regions over a 128 pixel × 128 pixel grid. Normalized tunneling 

conductance (dI/dV)/(I/V) vs. energy (E = eV) spectroscopy was acquired at every pixel 

with a typical junction resistance of  ~1 GΩ. 
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Figure 7.1: Energy and momentum dependence of the LDOS. Here, the warmer colors 
represent higher LDOS. The red regions indicate bulk energy bands and the blue regions 
indicate bulk energy gaps. The surface states can be clearly seen around the Γ point as red 
lines dispersing in the bulk gap. Image taken from [165]. 
 
 
 

7.3 Experimental Results for 3D Films 

        Tunneling conductance spectra revealed a Dirac-like LDOS which were generally 

consistent throughout flat regions of the sample surfaces for the 7-QL and 60-QL samples. 

Figure 7.3 (a) shows typical tunneling spectra for 3-QL, 7-QL, and 60-QL samples. The 

Dirac point was calculated by performing linear fits to each spectra and are approximately 

ED = -73 ± 38 meV for 60-QL and  ED  = -100 ± 25 meV for 7-QL samples. Histograms of 

the Dirac energy across each scan are shown in Figure 7.3(b–c).  The thinnest sample, 3-

QL, reveals a ~ 400 meV energy gap opening up around EF , which is expected for the 3D-

TIs in the 2D limit [170] and will be elaborated further in Section 7.4. We notice generally 

that the Dirac point shifts away from the Fermi energy (E = 0) with decreasing sample 
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thickness, which we attribute to the excess doing effects from the interface between the 

Bi2Se3 film and the substrate [168]. 

        In Figure 7.4(a–b), spatial maps of the tunneling conductance for, respectively, 60- 

and 7-QL are atomically resolved and show relatively consistent tunneling spectra with the 

exception of a few atomic impurities.  These atomic impurities are manifested by the 

localized high conductance in Figure 7.4(a–b).  The sharp conductance peaks associated 

with the presence of impurities generally occur in the tunneling spectra at energies near the 

Dirac point ED. To investigate the spatial evolution of tunneling spectra associated with the 

presence of these quantum impurities, we plotted different spectral linecuts across different 

regions of the constant bias conductance maps shown in Figure 7.3 for the 60-QL sample.  

For a linecut of tunneling spectra (dI/dV vs. E) along areas without impurities the tunneling 

spectra are generally consistent showing a Dirac energy slightly below the Fermi level. 

This is shown in Figure 7.5(a)  In comparison, the tunneling spectra plotted directly across 

quantum impurities reveal strong resonant conductance peaks at energies near E~ED as 

shown in Figures 7.5(b–d). These resonant peaks are spatially confined to a radius (r) ~0.2 

nm of the impurity center.  The surface states of the TI rapidly recover from the impurities 

with distance traveled from the impurity.  If we plot linecuts of the tunneling spectra 

between two impurities separated by only one lattice constant, the spectra for the inter-

impurity region exhibit strong interference for energies deep into the bulk valence band 

while the surface state spectra has been restored to that of the host.  This is demonstrated in 

Figures 7.5(e–f).  This evidence suggests strong topological protection of the surface state 

against impurities even in the limit of significant effects on the bulk state. 
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For comparison, we can plot tunneling spectra linecuts through impurities observed on 

the surface of the 7-QL sample (Figure 7.6(a–c)).  Similar to the 60-QL sample, a linecut 

passing through no impurity reveals Dirac-like spectra with a Dirac energy below the Fermi 

energy (Figure 7.6 (c)).   A linecut passing through two impurities (Figure 7.6(b)) reveals 

two resonances which are much reduced in comparison to the 60-QL sample.  The surface 

states of the host still rapidly recover from the impurities.  As will be discussed later, the 

weakened impurity resonance may be attributed to the larger energy separation of ED from 

EF. 

      To better understand the spatial confinement and energy dependence of the impurity 

resonances, we can plot the spatial dependence of the tunneling conductance near one of 

the isolated impurities for various energies. In Figure 7.7 (a) we plot the tunneling 

conductance as a function of r, distance from impurity center for energies E=  -40, -150, 

and -275 meV for the 60-QL sample.  We observe at energies near the Dirac point (E = -40 

meV) a strong resonance in the tunneling conductance over a very narrow spatial range (r ~ 

± 0.2 nm).  For E < ED but still within the SS (E= -150 meV), the spectral resonance 

diminishes rapidly with no impurity resonance visible for energies inside the bulk valence 

band (E= -275 meV).  In the case of two closely located impurities, we find that the 

impurity resonances at energies near the Dirac point (E = -40 meV) remains strongly 

localized spatially (r ~ ± 0.2 nm). Moreover, the SS spectrum of the small intermediate 

region between two impurities appears to fully recover to that of the host (E = -150 meV), 

whereas the bulk spectrum (E = -400 meV) for the same intermediate region exhibits 
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Figure 7.2: (a) A 3D representation of the alternating triangular lattice structure of Bi2Se3. 
A quintuple layer with Se1–Bi1–Se2–Bi1–Se1 is indicated by the red square. (b) The top 
view of Bi2Se3. (c) A side view of the typical quintuple layer. (d) Energy vs. momentum 
dispersion for the surface state of Bi2Se3, showing spins of the surfaces are perpendicular to 
the momentum. Image taken from [165]. 
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Figure 7.3:  Dirac energy of Bi2Se3.[169] (a) Representative tunneling spectra of both 60-
QL and 7-QL samples with arrows pointing to the Dirac energy. (Inset) Representative 
spectra of 3-QL sample showing opening of an energy gap. (b–c)  Histograms of the Dirac 
energy for the 60- and 7-QL samples 
 
 
 

  

Figure 7.4: (a) Tunneling conductance map of the 60-QL sample over a 8 nm × 5 nm 
region [169].  Atomic impurities are realized as localized areas of high conductance. (b)  
Tunneling conductance map of the 7-QL sample of a 8.8 nm × 5.1 nm region [169] 
 



 

 

139 
  

strong interferences. This is demonstrated in Figure 7.7 (b).  Similarly, for the 7-QL sample 

with a larger Dirac energy, the impurity resonance at E~ED for either an isolated impurity 

or two closely spaced impurities is also highly localized, as exemplified in Figure 7.7 (c–d). 

The surface state spectrum recovers rapidly and the effect of adjacent impurities on the 

bulk valence band diminishes significantly relative to that of the 60-QL sample. The quick 

recovery of the surface state spectrum from impurities may be understood as the result of 

topological protection of the SS in Bi2Se3. 

        As mention earlier the weakened spectral intensity of the impurity resonances with 

increasing E = EF − ED.  That is, the  spectral weight of impurity resonances diverges as the 

Fermi energy approaches the Dirac point.  This is consistent with the theory for non-

interacting point impurities embedded in a system of massless Dirac fermions [167]. 

Following the theoretical analysis in [167] based on the Keldysh Green function formalism, 

Hao Chu showed the theoretical dependence of the intensity of the impurity resonances on 

𝐸�  = EF − ED is in reasonable agreement with our empirical findings [169]. This finding is 

illustrated in Figure 7.8.  This finding suggests that the impurity resonances for both 

samples are in the unitary limit, where the impurity strength Uimp for Ωimp → ED diverges 

via the relation (Ωimp − ED) ~ 5 sgn(Uimp)/(|Uimp| ln|Uimp|) with Ωimp being the impurity 

energy. Specifically, we find that for 𝐸�  → 0, the impurity resonance diverges 

logarithmically at T → 0. However, the intensity of impurity resonances diminishes rapidly 

with increasing 𝐸� , as shown in Figure 7.8(a) [169]. 
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Figure 7.5: Evolution of tunneling spectra along various linecuts of the 60-QL sample at T 
= 77 K [169], where the white dotted line in each upper panel represents a linecut across 
the constant-energy conductance map, with the corresponding tunneling spectra along the 
linecut given in the lower panel: (a) Across an impurity-free region; (b) Across a single 
impurity; (c) Across two impurities; (d) Across an isolated impurity; (e) Between two 
closely spaced impurities along the horizontal direction; (f) Between two closely spaced 
impurities along the vertical direction 
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Figure 7.6: Evolution of tunneling spectra along various linecuts of the 7-QL sample at T = 
77 K [169]. (a) Atomically resolved constant-energy conductance map where the black 
dotted lines represent linecuts across the conductance map, with the corresponding 
tunneling spectra along the linecut given in (b) Across two impurities; (c) Across no 
impurity  
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Figure 7.7: Spatial distribution and energy dependence of the impurity resonances for 60-
QL and 7-QL samples [169]: (a) Tunneling conductance vs. spatial distance for the 60-QL 
sample from the center of an isolated impurity for E= -40, -150, and -400 meV. (b) 
Tunneling conductance vs. spatial distance for the 60-QL sample from the center of two 
adjacent impurities for E = -40, -150, and -275 meV. (c) Tunneling conductance vs. spatial 
distance for the 7-QL sample from the center of an isolated impurity for E = -70, -175, and 
-275 meV. (d) Tunneling conductance vs. spatial distance for the 7-QL sample from the of 
two adjacent impurities for E = -70, -175, and -275 meV 
 
 



 

 

143 

 

Figure 7.8: (a) Theoretical predictions for the dependence of the strength of the impurity 
resonance on 𝐸�/Λ where Λ denotes a cutoff energy and 𝐸� = |𝐸𝐷 − 𝐸𝐹| [169]. (b) 
Representative point spectra above the quantum impurities in the 7- and 60-QL samples 
showing strong resonances at energies very close to the Dirac energy.  The experimental 
curves show qualitative agreement with the theoretical predictions for the  dependence of 
the intensity of the impurity resonances on E = EF − ED. 
 

7.4 Experimental Results for Bi2Se3 Films in the 2D Limit 

While the dispersion relation of the SS of 3D-STI has been confirmed to be a 

gapless Dirac cone, for 3D-STI in the thin-film limit the coupling between opposite surface 

states in space is theoretically expected to open up a hyperbola shaped energy gap [170]. 

The thin film may further break the top–bottom symmetry due to the asymmetric chemical 

potentials between the surface (in vacuum) and the interface of the thin film with a 

substrate. (Also referred to as Structural Inversion Asymmetry (SIA)). This will lead to a 

Rashba-like coupling and further energy splitting in the momentum space [170]. 

Mathematically, we understand the occurrence of the energy splitting if we take this 

asymmetry into account, by adding a V(z) potential term to the Hamiltonian. Combining 
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the consideration of wavefunction overlaps between the surface and interface and the 

asymmetric chemical potentials, we find that the resulting gapped surface states lead to the 

following dispersion relations [170] 

𝐸1± = 𝐸0 − 𝐷𝑘2 ± ��
∆
2
− 𝐵𝑘2�

2

+ ��𝑉�� + ℏ𝑣𝐹𝑘�
2
 

                              𝐸2± = 𝐸0 − 𝐷𝑘2 ± ��∆
2
− 𝐵𝑘2�

2
+ ��𝑉�� − ℏ𝑣𝐹𝑘�

2
                           7.3 

where ℏ is the Planck’s constant, 𝑣𝐹 the Fermi velocity, and ∆ the energy gap in the thin 

film limit. This is in contrast to the dispersion relation in the film limit without substrate 

asymmetry effect 

  

                                   𝐸±  = 𝐸0 − 𝐷𝑘2 ± ��∆
2
− 𝐵𝑘2�

2
+ (ℏ𝑣𝐹𝑘)2  .                              7.4 

We can see as a consequence of the Rashba-like coupling and the gapped Dirac hyperbola 

in the thin-film limit of a 3D-STI is that the energy dispersion relation would involve four 

split Fermi surfaces with chiral spin textures for surface-state spin-up, interface-state spin-

up, surface-state spin-down, and interface-state spin-down [170]. Consequently, 

quasiparticle interferences due to elastic impurity scattering are expected only between 

Fermi surfaces with the same spin texture [173], similar to the findings from STS studies of 

the QPI in BixSb1−x [171]. However, 3D BixSb1−x is a 3D-STI with much more complicated 

Fermi surfaces and therefore multiple spin-preserved QPI wave-vectors are allowed [172], 

which is in contrast to the single Dirac cone in 3D Bi2Se3 where no QPI occurs near the 

Dirac energy ED.  
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 Comparatively, for the four split Fermi surfaces in 2D Bi2Se3 thin films, only 

one value for the QPI wave-vector q is expected for a given quasiparticle energy due to the 

preservation of spin textures from spin-up interface to spin-up surface states and from 

 

 
Figure 7.9 (a–e), ARPES spectra of 1, 2, 3, 5 and 6 QL along the Γ- K direction measured 
at room temperature. The energy gap opening is clearly seen when the thickness is below 
six quintuple layers. The gapped surface states also exhibit sizeable Rashba-type spin–orbit 
splitting because of the substrate-induced potential difference between the two surfaces. (f) 
Schematic effect SIA and inter-surface coupling. The blue solid and green dashed lines 
correspond to the states residing near the top and bottom surfaces, respectively. Images 
modified from [170, 171]. 
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spin-down interface to spin-down surface states. Further, the |q|-values should be 

smaller than the reciprocal lattice constants, and will decrease as the energy E approaches 

the Dirac energy [173]. The theoretical predictions for Rashba-like splitting in the SS of 

3D-TIs in the thin-film limit have been verified by ARPES studies of Bi2Se3 films on SiC 

[171]. As shown in Figure 7.9, an energy gap Δ opens up for thickness < 6-QL, and the gap 

increases with decreasing sample thickness. Four pieces of split SS Fermi surfaces can also 

be resolved from the ARPES studies.   

        Initial STS studies of a 5-QL Bi2Se3 thin film on Si (111) revealed that the Fourier-

transformed (FT) conductance maps at various constant energies indeed exhibited a single 

QPI |q|-value for a given energy, as exemplified in Figures 7.10 (a–c). As expected the 

magnitude of QPI wave vectors decreases when energy E approaching the Dirac point ED. 

These results are qualitatively consistent with preservation of spin textures in QPI for 3D-

STI in the thin-film limit. However, detailed analysis of our STS data is not in quantitative 

agreement with the fitting parameters derived from ARPES studies of Bi2Se3 films on SiC 

[171]. Given that different interfaces are known to vary significantly in their contributions 

to doping [174], it is not surprising that the quantitative parameters derived from our 

sample on Si(111) differ from the fitting parameters in [171]. Further STS studies of Bi2Se3 

films with different thicknesses and substrates together with ARPES studies of Bi2Se3 films 

on the same substrate   will be necessary to resolve the quantitative differences. 
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Figure 7.10 : (a–c) Fourier transformed (FT) tunneling conductance maps that reveal 
energy-dependent QPI wave vectors that preserve spin texture. (d) The energy dependence 
of the QPI wave vectors determined from all FT conductance maps shows decreasing |q| 
values as energy approaches ED [173]. 
 

7.5 Discussion 

In summary, we have presented STS studies of the 3D-STI, Bi2Se3 and found 

spectroscopic evidence of impurity resonances in the surface state of Bi2Se3. The impurities 

are in the unitary limit and the spectral resonances are localized spatially within a radius, r~ 

0.2 nm.  The spectral weight of impurity resonances diverges as the Fermi energy 

approaches the Dirac point, and the rapid recovery of the surface state from nonmagnetic 

impurities suggests robust topological protection against perturbations that preserve time 
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reversal symmetry. Additionally, we found evidences for Rashba-like splitting of the SS 

in the 2D limit, with QPI wave-vectors preserving the spin textures, which is another 

manifestation of the topological protection of the surface states 
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Chapter 8 

Conclusion 

 

         We have used scanning tunneling microscopy(STM) to study electronic  properties 

of both high-temperature unconventional superconductors, particularly the electron-type 

cuprate LaxSr1-xCuO2 and the iron-based Ba1(Fe1-xCox)2As2, and Dirac materials, 

specifically single-layer graphene and the three-dimensional strong topological insulator 

Bi2Se3. 

          We have presented magnetic-field-dependent STS studies of the electron-type 

superconductor La-112. Spatially resolved quasiparticle tunneling spectroscopy revealed a 

hidden pseudogap inside vortices and unconventional spectral evolution with temperature 

and magnetic field dependence. In comparison with the STS data of hole-type cuprates 

and other experimental data such as angle-resolved photoemission spectroscopy 

(ARPES) and inelastic neutron scattering, we find that the scenario of coexisting 

competing orders (CO) with superconductivity (SC) provides the best and most consistent 

explanation for all experimental findings in both hole- and electron type superconductors.  

In contrast, we have observed two-gap superconductivity for multiple doping levels in the 

Ba(Fe1-xCox)2As2 single crystals. Both superconducting gaps decrease monotonically in 

size with increasing temperature and disappear for temperatures above the superconducting 

transition temperature, TC. Magnetic resonant modes that follow the temperature 

dependence of the superconducting gaps have been identified in the tunneling quasiparticle 

spectra. Together with the quasiparticle interference (QPI) analysis and magnetic field 
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studies, our STS studies provide strong evidence for two-gap sign-changing s-wave 

superconductivity.  The common features found in both cuprate and ferrous high-

temperature superconductors suggest that the paring potential for superconductivity is 

repulsive and predominantly electronic in nature. 

     In comparison, our studies of Dirac fermions in graphene revealed the important effect 

of strain and substrate on the electronic properties of mechanically exfoliated graphene, 

CVD grown graphene on copper, and CVD-grown graphene transferred to SiO2. 

Topographical ridges and defects occurred during the CVD growth process and gave rise to 

giant pseudomagnetic fields and charging effects. The resultant large and nonuniform strain 

induced pseudomagnetic fields up to B~ 50 Tesla, which manifested as quantized 

conductance peaks related to the quantum Hall states. While in the bulk limit of the 3D-STI 

Bi2Se3, we found spectroscopic evidence of impurity resonances in the surface state. The 

impurities were in the unitary limit and the spectral resonances were localized spatially 

within a radius, r~ 0.2 nm. The spectral weight of impurity resonances diverged 

logarithmically as the Fermi energy approaches the Dirac point. The rapid recovery of the 

surface state from nonmagnetic impurities suggests robust topological protection against 

perturbations that preserve time reversal symmetry. In the thin-film limit of the 3D-STI, 

we observed Rashba-like splitting of the surface states and evidences for spin-preserved 

quasiparticle scattering interferences, which was again a manifestation of the topological 

protection of the surface states by time-reversal symmetry. 

Future considerations include the attempt to fully investigate the vortex state of 

ferrous superconductors for multiple doping levels.  We wish to fully investigate the 
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overlap of competing orders with superconductivity in the phase diagram of 

temperature vs. doping for the electron type “122” systems. 

The possibility of using strain engineering for nanodevices  in graphene combined 

with the near completion of a cryogenic STM/SEM opens the door  to large-scale studies 

of arrays of strain-engineered nano devices.  Also, recent developments and major 

improvements in the growth methods of CVD grown graphene open the possibility of 

studying large-scale, single-layer CVD graphene without strong strain effects.  
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Appendix A 

STM Design Drawings 

 

A.1  STM Body Design 

In order to improve mechanical and temperature stability in the current STM, the previous 

macor STM body was remachined out of the metal molybdenum.  Molybdenum was 

chosen for its excellent thermal properties and that its thermal expansion, is very close to 

macor’s and coppers thermal expansion coefficients.   Improvements in the design allowing 

quick disconnect macor pieces for wiring to the piezo-electric stacks of the course z-stage 

and tube scanner was also added. 

 

Figure A1 
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Figure A2 
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Figure A3 
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Appendix B 

Mathematical Data Processing for STS Data: Matlab Programs 

 

To investigate correlated electron systems, large STS data files must be analyzed quickly 

and efficiently.  STS data files consist of I vs. V information of sizes exceeding several 

Gigabytes.  From the current vs. voltage files we must calculate the differential 

conductance vs. voltage.  These programs must vary according to the needs of the data if it 

is graphene or a superconductor or a topological insulator.  If the STS data is unfortunately 

noisy then the noise reduction methods must be performed on the data. To accomplish this 

the mathematical analysis program Matlab was utilized.  Contained in this appendix are the 

following programs that calculate the differential conductance, dI/dV, the noise reduction 

programs, and data analysis programs. 

 

Matlab programs 

The first program, loadv, loads the data from the data files 

Loadv: 

% This program loads the STS .dat files which are in the format of I vs V. 

% First column is the Voltage, subsequent columns are each individual 

% current,I, sweep. The number of rows is the number of data points in each 

% sweep. Each data file, Data10000i.dat, represents the data taken at the 

% ith point in an x by y conductance map. The data is loaded into a matrix,  



 

 

156 
% Islice, which is then used in the program, dIdVfind 

% iline: the number of total data files to load, represents the ith data  

% point 

% in an x vs y data set 

% xline: the number of x data points in an x vs y data set 

% yline: the number of y data points in an x vs y data set 

% Islice: the final data matrix that is x vs y vs V 

% k : the number of data points in an individual I vs V scan 

  

  

clear all 

xline=64 

yline=64 

iline=4096 

for i=1:iline   

    i 

    clear i2 test slicename ab ac A %this variables are temporary counters in  

    %the program 

    ab=mod(i,xline); 

    if ab==0 

        ab=xline; 

    end 

    ac=(i-ab)/yline+1; 
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    i2=100000+i; 

    test=int2str(i2); 

    slicename = sprintf('Data%s.txt', test); 

    A=dlmread(slicename); 

    Islice(ab,ac,1:1401-55)=A(1:1401-55)'; 

end 

 

The second program, dIdVfind, takes the I vs. V data and calculates the differential 

conductance, dI/dV: 

dIdVfind: 

%{ This program calculates dI/dV vs. V or the differential conductance. 

% dI/dV is calculated from the matrix Islice(x vs. y vs. voltage sweep) via a 

% running average.  The order of the derivative is the number of points 

% used in the fit for the derivate.  This program fits a 1st or 3rd 

% order polynomial to each I vs. V sweep at each x and y point.  This 

% fit is "order" in length, is a running average along the sweep, and the  

%derivative is found from the polynomial 

% fit 

% order: number of points used in the fit 

% voltagedivide : the voltage unit of the I vs. V sweep ( in millivolts) 

% startvoltage: the start voltage of the I vs. V sweep 

% P, PP are the 1st and 3rd order fits according of the I vs. V ft 

% meanIdidv1, meanIdidv3 are the differential conductance sweeps of 1st and 
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% 3rd order fit accordingly 

% voltnum is the number of points in the I vs. V sweep 

% I v i j sizb dIdV are temporary variables and counters 

  

clear I v PP P V dIdV* meanIdidv* i j sizb voltagedivide startvoltage voltnum 

voltagedivide=1; 

startvoltage=-672; 

sizb=size(Islice) 

order=75; 

voltnum=sizb(3) 

for i=1:sizb(1) 

        i 

        for j=1:sizb(2) 

            j 

            for voltnum=(order+1)/2:sizb(3)-(order+1)/2  

                for m=1:order 

                    I(m)=Islice(i,j,voltnum-(order+1)/2+m); 

                    v(m)=voltagedivide*(-(order+1)/2+m); 

                end 

                P=polyfit(v,I,1); 

                PP=polyfit(v,I,3); 

                V(voltnum-(order-1)/2)=startvoltage+(voltnum)*voltagedivide; 

                dIdV1(voltnum-(order-1)/2)=2*P(1); 
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                dIdV1(voltnum-(order-1)/2)=2*P(3); 

            end 

            meanIdidv1(i,j,:)=dIdV1(:); 

            meanIdidv3(i,j,:)=dIdV3(:); 

        end 

end 

 

The third program, bgfind, takes the dIdV vs. V data and calculates the normalized 

differential conductance.  It insures that the area under the curve is normalized to a value of 

1, while dividing out the high energy background.  This is important for superconducting 

samples where the dI/dV must be normalized to one at high energies: 

bgfind:   

% This program calculates the background of each dI/dV vs V sweep and then 

% calculates the high energy background by fitting a 5th order polynomial 

% to the higher energies.  The background is then divided out and the curve 

% then normalized so that the area under ther curve is one. 

% background1,3 are the high energy backgrounds 

% PP : the 5th order polynomial fit of the background 

% meanIdidvbgnorm1,3 are the dIdV once it has been normalized 

% temp k i j si su are temporary counters and variabes 

% The data is then saved in individual files.  Each file contains exactly 

% one curve, meanIdidvbgnorm3slice1000xxxx. 
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clear background1, clear background3, clear meanIdIdV1, clear meanIdIdV3 

clear temp* k  i j  PP meanIdIdVbg* si su meanIdidvbgnorm* meanIbg* 

siz=size(meanIdidv1); 

for i=1:siz(1) 

     

        for j=1:siz(2) 

           i,j 

            meanIdIdV1(1:siz(3))=meanIdidv1(i,j,1:siz(3));          

            for k=1:100 

                tempx(k)=V(k); 

                tempx(k+100)=V(siz(3)-100+k); 

                tempy(k)=meanIdIdV1(k); 

                tempy(k+100)=meanIdIdV1(siz(3)-100+k); 

                tempy(201)=0; 

                tempx(201)=V(434); 

            end 

            PP=polyfit(tempx,tempy,5); 

            

background1=PP(1)*V.^5+PP(2)*V.^4+PP(3)*V.^3+PP(4)*V.^2+PP(5)*V.^1+PP(6); 

            meanIdIdVbg1=meanIdIdV1./background1; 

            si=size(meanIdIdVbg1); 

            su=sum(meanIdIdVbg1,2); 

            meanIdIdVbgnorm1=si(2)/su*meanIdIdVbg1; % this command insures  
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            %that the area under the curve is normalized to one 

            meanIdidvbgnorm1(i,j,:)=meanIdIdVbgnorm1(:); 

            meanIbg1(i,j,1)=PP(1); 

            meanIbg1(i,j,2)=PP(2); 

            meanIbg1(i,j,3)=PP(3); 

            meanIbg1(i,j,4)=PP(4); 

            meanIbg1(i,j,5)=PP(5); 

            meanIbg1(i,j,6)=PP(6); 

        end 

         

end 

clear P* k temp* si su 

for i=1:siz(1) 

        for j=1:siz(2) 

           i,j 

            meanIdIdV3(1:siz(3))=meanIdidv3(i,j,1:siz(3));      

            for k=1:100 

                tempx(k)=V(k); 

                tempx(k+100)=V(siz(3)-100+k); 

                tempy(k)=meanIdIdV3(k); 

                tempy(k+100)=meanIdIdV3(siz(3)-100+k); 

                tempy(201)=meanIdIdV3(1); 

                tempx(201)=V(400); 
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            end 

            PP=polyfit(tempx,tempy,3); 

            

background3=PP(1)*V.^5+PP(2)*V.^4+PP(3)*V.^3+PP(4)*V.^2+PP(5)*V.^1+PP(6); 

            meanIdIdVbg3=meanIdIdV3./background3; 

            si=size(meanIdIdVbg3); 

            su=sum(meanIdIdVbg3,2); 

            meanIdIdVbgnorm3=si(2)/su*meanIdIdVbg3; 

            meanIdidvbgnorm3(i,j,:)=meanIdIdVbgnorm3(:); 

            meanIbg3(i,j,1)=PP(1); 

            meanIbg3(i,j,2)=PP(2); 

            meanIbg3(i,j,3)=PP(3); 

            meanIbg3(i,j,4)=PP(4); 

            meanIbg3(i,j,5)=PP(5); 

            meanIbg3(i,j,6)=PP(6); 

        end 

         

end 

  

clear ta tb tc i j slicename* k ksize test* 

% This code saves the each individual slice 

ksize=size(meanIdidvbgnorm3); 

for k=1:ksize(3) 
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    ta=meanIdidvbgnorm1(1:sizb(1),1:sizb(2),k); 

    tb=meanIdidvbgnorm3(1:sizb(1),1:sizb(2),k); 

    i=10000+k; 

    test=num2str(i); 

    i2=30000+k; 

    test2=num2str(i2); 

    slicename= sprintf('meanIdidvbgnormslice%s.txt', test); 

    slicename2= sprintf('meanIdidvbgnormslice%s.txt', test2); 

    dlmwrite(slicename,ta,'\t'); 

    dlmwrite(slicename2,tb,'\t'); 

end 

 

 

The fourth program normalizes dIdV  data for graphene or topological insulators.  At every 

point it finds I(V)/V and then divides dI/dV by I(V)/V. 

didvnormfind: 

% This program normalizes the differential conductance by dividing each 

% point by I(V)/V 

% I  i k j are temporary variables 

% meanIdidv1,3 V are defined in previous programs 

  

clear I i j k temp* siz 

siz=size(meanIdidv1); 
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sizb=size(Islice); 

for i=1:siz(1) 

    for j=1:siz(2) 

            i,j 

            meanIdIdV1(1:siz(3))=meanIdidv1(i,j,1:siz(3));  

            I(1:siz(3))=Islice(i,j,(1+order/2):(sizb(3)-order/2)); 

            meanIdidvbgnorm1(i,j,1:siz(3))=meanIdidv1(i,j,1:siz(3))./(I(1:siz(3))./V(1:siz(3))); 

            meanIdidvbgnorm3(i,j,1:siz(3))=meanIdidv3(i,j,1:siz(3))./(I(1:siz(3))./V(1:siz(3))); 

    end 

         

end 

clear ta tb tc i j slicename* k ksize test* 

% This code saves the each individual slice 

ksize=size(meanIdidvbgnorm3); 

for k=1:ksize(3) 

    ta=meanIdidvbgnorm1(1:sizb(1),1:sizb(2),k); 

    tb=meanIdidvbgnorm3(1:sizb(1),1:sizb(2),k); 

    i=10000+k; 

    test=num2str(i); 

    i2=30000+k; 

    test2=num2str(i2); 

    slicename= sprintf('meanIdidvbgnormslice%s.txt', test); 

    slicename2= sprintf('meanIdidvbgnormslice%s.txt', test2); 
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    dlmwrite(slicename,ta,'\t'); 

    dlmwrite(slicename2,tb,'\t'); 

end 

 

 

The fifth program is a median filter.  It filters an m x n matrix by taking the median of 

nearest neighbors 

%This program does a nearest neighbor median filter.  The final product is 

%med and its input is an m x n matrix, r: 

clear local, clear r_med, clear x_med, ,clear med1; 

  

  

r_med=r; 

for i=2:63 

    for j=2:63 

        local=[r(i-1,j-1),r(i-1,j),r(i-1,j+1),r(i,j-1),r(i,j),r(i,j+1),r(i+1,j-1),r(i+1,j),r(i+1,j+1)]; 

        r_med(i,j)=median(local); 

    end 

end 

med=r; 

med(2:63,2:63)=r_med(2:63,2:63); 

figure, imagesc(med,[0,3]) 
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The sixth program, rmed2, is a mean filter program.  It filters an m x n matrix by taking 

the mean of nearest neighbors 

 

%This program does a nearest neighbor mean filter.  The final product is 

%med and its input is an m x n matrix, r: 

clear local, clear r_med, clear x_med, ,clear med1; 

  

  

r_med=r; 

for i=2:63 

    for j=2:63 

        local=[r(i-1,j-1),r(i-1,j),r(i-1,j+1),r(i,j-1),r(i,j),r(i,j+1),r(i+1,j-1),r(i+1,j),r(i+1,j+1)]; 

        r_med(i,j)=mean(local); 

    end 

end 

med=r; 

med(2:63,2:63)=r_med(2:63,2:63); 

figure, imagesc(med,[0,3]) 
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