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ABSTRACT 

We have applied the Schwinger Multichannel Method(SMC) to the study of 

electronically inelastic, low energy electron-molecule collisions. The focus of these 

studies has been the assessment of the importance of multichannel coupling to the 

dynamics of these excitation processes. It has transpired that the promising quality 

of results realized in early SMC work on such inelastic scattering processes has been 

far more difficult to obtain in these more sophisticated studies. 

We have attempted to understand the sources of instability of the SMC method 

which are evident in these multichannel studies. Particular instances of such insta

bility have been considered in detail, which indicate that linear dependence, fail

ure of the separable potential approximation, and difficulties in converging matrix 

elements involving recorrelation or Q-space terms all conspire to complicate ap

plication of the SMC method to these studies. A method involving singular value 

decomposition(SVD) has been developed to, if not resolve these problems, at least 

mitigate their deleterious effects on the computation of electronically inelastic cross 

sections. 

In conjunction with this SVD procedure, the SMC method has been applied to 

the study of the H2 , H2 0, and N2 molecules. Rydberg excitations of the first two 

molecules were found to be most sensitive to multichannel coupling near threshold. 

The (3u9 --. l1r9 ) and (17ru --. l1r9 ) valence excitations of the N2 molecule were 

found to be strongly influenced by the choice of channel coupling scheme at all 

collision energies considered in these studies. 
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1. Application of the SMC Method to the Multichannel Problem 

1.1 The Variational Expression 

The SMC functional of Takatsuka and McKoy, derived from a projected form of 

the Lippmann-Schwinger equation, has been successfully used to study a wide range 

of electron-molecule scattering processes [1-4]. In this work, we have attempted to 

exploit the multichannel capability of the method in studies of electronic excitation 

of molecules by low energy electron impact. In particular, we wished to ascertain the 

importance of inclusion of multiple channels in computing reliable cross sections for 

these electronically inelastic scattering events. Such cross section data are of great 

practical use in modeling a wide variety of natural phenomena and technological 

processes. Reliable theoretical methods are desirable as a supplement to direct 

experimental measurements of these cross sections. The difficulties attendant with 

carrying out such measurements at these low impact energies frequently lead to 

large uncertainties in the values obtained. 

The purpose of this chapter is not to provide a full theoretical discussion of 

the SMC functional and its properties as such discussions can be found elsewhere. 

Rather, aspects of the method will be considered which have direct relevance to 

problems and difficulties encountered when realistic, large-scale multichannel cal

culations are attempted. 

The Schrodinger equation for the N 0 channel scattering problem for anN+ 1 

electron system may be written as 

(E- H)'l!~) = 0, m = 1,·· · ,No (1.1) 
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where 

and where \ll~) is theN+ 1 electron wave function for the mth open channel, V is 

the scattering electron-target molecule interaction potential, Ht is the Hamiltonian 

of theN electron target, and TN+I is the kinetic energy operator for the scattering 

electron. 

From this, one can then write the Lippmann-Schwinger equation for the prob-

lem (1), 

w<+) = s + o<+)vw<+) m m m (1.2) 

in which Sm is the zero order eigenfunction and a<+) the free particle Green's 

function with outgoing wave boundary conditions. A projection operator as defined 

by Takatsuka and McKoy (2], viz. 

No 

P = L I<I>m(1, 2, · · · 1 N)}(<I>m(1, 2, · · · 1 N)j (1.3) 
m=l 

is applied on both sides to yield a projected form of the Eq. 1.2 

Pw<+) = s + o<+)vw<+) m m P m (1.4) 

A v'~+I factor resulting from the normalization of N + 1 and N electron wave 

functions is not explicitly indicated for clarity. The N electron projector operator 

(Eq. 1.3), defines the open- channel space in terms of No eigenfunctions of the target 

Hamiltonian. This operator is introduced in order to avoid having to include closed 

channels of the discrete spectrum of the target as well as its continuum states in 

the expansion of G( +). The need to include the target continuum states of G( +) in 

Eq. 1.2 arises due to the antisymmetry requirement for \ll~) (5]. 
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The projected Lippmann-Schwinger equation (Eq. 1.4) cannot be used di

rectly to construct a variationally stable functional as the component not involving 

VG~+)y is not Hermitian. It has been shown in several places [1,2] that by manipu

lation of the expressions for the closed and open channel portion of the Hamiltonian 

one can construct a functional satisfying these requirements, viz. 

[~(PV + V P)- VG~+)y + 
2
1
a [..ff- a(P H + H P)J] w~) = V Sm (1.5) 

where Sm is again the solution for the unperturbed Hamiltonian as in Eq. 1.4 and 

H = E - H. It is well-known that for an inhomogenous set of equations 

Ay=b, 

a variationally stable expression for the function (yjAjy) is given by [3] 

y = (ylb)(bly). 
(yiAiy) 

(1.6) 

In the case of the scattering problem, we desire a variationally stable expression for 

the scattering amplitude, i.e., -27rfmn = (w~)IA(+)jw~+)). Comparison with Eq. 

1.6 leads to a modified fractional form of the Schwinger variational functional 

fmn = _ _!_ (SmiVI'll~+))(w~)IVISn) 
27r {'11~> lA<+> lw~+>) 

(1.7) 

fmn is the scattering amplitude for the m -+ n scattering channel. The working 

formula for A(+) is a rearrangement of the function in Eq. 1.5 

(1.8) 

where Ho = E- Ho, and Ho = Ht + TN+b i.e., the zeroeth order Hamiltonian. 

In this work, a= N£1. To obtain Eq. 1.8, one uses the fact that [Ho, P] = 0 and 

p2 =P. 
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To evaluate this expression, the scattering wavefunction '11~) is expanded in 

terms of N + 1 electron antisymmetrized Slater determinants generated by the outer 

product of the N 0 , N electron Slater determinants ·describing the target states( the 

ground state and designated hole( 4> j )-particle( 4>j) pairs) and an additional scatter

ing function(xi) not necessarily orthogonal to the target orbitals, viz. 

+ LAN+I(4>I¢>I···if>j···tPN/2¢>N;24>j)>..i 
i,j 

(1.9a) 

(1.9d) 

For clarity of later discussions, each of the possible components of '11~) is explicitly 

indicated. (1.9a) are those terms constructed from the ground state configura

tion of the target, while (1.9b), (1.9c), and (1.9d) correspond to those combina

tions of Slater determinants constructed from singlet, triplet (m 8 = 0), and triplet 

(m8 = ±1) target spin configurations, respectively. Using this expansion of the 

wavefunction, the matrix elements of A(+) are evaluated, reducing Eq. 1.7 to one 

of solving a matrix inversion and multiplication problem, 

-27rfmn = Tnm = hl· A -l · hm (1.10) 

Presently, no continuum functions are included in the expansion of '11~). The 

Green's function assures that L 2 functions can suffice for the expansion (Eq. 1.9). 
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By expanding the orbitals of the target and scattering electron constituting the 

determinants in Eq. 1.9 in Cartesian Gaussian functions, all terms in Eq. 1. 7 can 

be evaluated analytically except for those involving the VG~+)v op~rator. 

It should be noted that an expansion for '11~) of the type used in .Eq. 1.9 

implies that one can, in fact, accurately describe the electron-target potential by a 

separable potential approximation, i.e., 

N 

V ~ VN = LVIi}(i!V-1 Ij}(jjV 
i,j 

(1.11) 

The close connection between the use of separable potentials and the Schwinger 

variational expression for the scattering amplitude has been considered at length 

by many researchers [6-10]. Indeed, it can be shown that for a separable potential 

of rank N and a scattering wave function expanded in the same basis of N functions, 

expression Eq. 1.10 yields an exact solution for the potential [6]. Some researchers 

have attempted to demonstrate that the Schwinger variational method suffers from 

spurious resonances similar to those encountered when using the Kohn method 

with standing wave boundary conditions [11]. It was subsequently shown that what 

they had in fact proved is that a separable, energy dependent potential can be 

constructed with particular choices of basis functions such that v-1 in Eq. 1.11 is 

essentially singular [12]. Based on initial studies employing the SMC this seemed 

to be an unlikely event. Unfortunately, it has transpired in the course of numerous 

multichannel studies that essentially singular potentials readily occur, or at least 

behavior of Eq. 1. 7 suggesting such an event is frequently observed. 

The role of the projector operator in Eq. 1. 7 needs also to be considered in 

order to interpret structures observed in cross sections obtained in multichannel 
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studies. Firstly, the distinction between this projector and the more commonly 

used Feshbach operator has been discussed elsewhere [13]. The relevance of" these 

differences to the multichannel problem will be considered later. For the present 

discussion, however, these differences are not particularly pertinent. Of greater 

interest here is what this operator enables one to avoid, and more importantly, 

problems it does not address. The former can best be illustrated by applications of 

the Schwinger variational method in which such a projector is not employed. 

The investigation of e- · H atom scattering of Bransden, Hewitt, and Plummer 

[14] affords such a case. In their study, the a<+> term is expanded in terms of 

eigenstates of the H atom, 

No 

a<+)= L <l>m(fi)g~(r})rD<Pm(T;) (1.12) 
m=l 

with 

+ ( 1 ) __ ! 1= dk sin( kr1) sin( kr~) 
g m rb r 1 - k2 k2 + . 

7r 0 m- tf 

where form= 1, 2, and 3, <Pm(fi) are selected hydrogenic orbitals which diagonalize 

the hydrogen atom Hamiltonian and g+(rb rD is the free particle Green's function. 

In order to approximate the continuum portion of a<+), pseudostates of the type 

used in close coupling calculations [15] at energies exceeding the ionization thresh

old for the target ( m > 3) were employed in their study. The resulting branch 

points introduced along the positive E( or k) axis lead to spurious resonances of 

the type observed in close coupling calculations just below the thresholds for the 

pseudostates representing the continuum. It was noted that the pseudoresonances 

arising in cross sections reported by Bransden et al. are inherently different from 

the spurious resonances intrinsic to the traditional, standing wave boundary con

ditions Kohn method. The projector in the A(+) operator in the SMC scattering 
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amplitude (Eq. 1.7), by removing the need to approximate the Green's function 

using such pseudostate expansions, eliminates problems with resonances arising due 

to such an approximation of the Green's function. Rather, information concerning 

continuum states is contained in the terms involving the projected and unprojected 

Hamiltonian terms in A ( +). As will be seen, it is unfortunately possible to unknow

ingly introduce pseudoresonances into A(+) via unphysical states present in this 

continuum. 

- 8 .0 
N s 

1:) 

40 

I 6 .0 
0 --s:: 
0 .... 4 .0 ..., 
1:) 
(I) 

rn 
Ul 
Ul 2.0 0 
$.o 
u 

0 10 20 30 40 
Energy (eV) 

Figure 1.1 2 :E9 component of the integral elastic cross section for H2 in 
which a virtual excitation of the type [10'9 --+- 20'9 ] is included. The sharp 
feature at "'12.5 e V is analogous to that discussed in [27]. The features 
above 20 e V were not reported therein. Dashed line indicates the pure 
static-exchange cross section. 

Some early work involving the SMC indicated that the action of the projection 

operator (Eq. 1.3) was not correctly understood [16] . It is important to realize that 



8 

the function of the projector is to shift the problem of treating the target continuum 

states from the Green's function where they would. be difficult to treat, to the full 

N + 1 electron Hamiltonian present in A(+) where they can be tractably handled [2]. 

The other potential and Hamiltonian terms arise from the need, as mentioned above 

to insure that A(+)+ VG~+>v is Hermitian, specifically to cancel the surface terms 

associated with the kinetic energy operator in fi . The projector does not remove 

effects of closed channels. Indeed, a straightforward, elastic scattering calculation 

including polarization shows that the SMC projector does not remove the effects 

of virtual excitations included in the expansion of 'l!!;) which are not included as 

open channels in the P operator expansion (Eq. 1.3) on the open channels. See 

Figs. 1.1 and 1.2 below. These excitations lead to cusps and peaks in the cross 

sections of the open channels similar to structures observed in the closed coupled 

equations incorporating closed channel pseudostates in the expansion of the target 

wavefunction [15,17]. Of course, these are not observed well below the thresholds 

for the excitations (Eq. 1.9b,c,d) included in the expansion of 'l!!;). Such structure 

is analogous to the type of resonances observed in the calculations of Branchett 

et al. [18] for electronic excitation of the hydrogen molecule, where only a few 

channels were treated as open; although in their restricted VCI description of '11~) 

within the R-matrix sphere, terms were present corresponding to energetically open 

channels which were considered closed. As will be shown presently, the projector 

also does not remove resonances that may appear as a consequence of unphysical 

states present in the continuum owing both to a particular combination of single 

particle basis functions used to construct the Slater determinants in the expansion 

(Eq. 1.9), and to the correlation of the incident electron with the target electrons. 

Finally, it should be noted that in contrast to the Kohn variational principle 

with standing wave boundary conditions, the Schwinger functional based on Eq. 
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1.2 has been shown to be free of spurious resonances [19]. As has been noted by 

Takatsuka and McKoy, the functional Eq. 1.7 is also free of such deficiencies [1] , 

although it was noted that the spectrum of A(+) was important in determining this 

property. In the following, it will be seen that in contrast to elastic scattering and 

most two state problems, multichannel calculations appear to frequently severely 

test some of the theoretical arguments pertaining to the behavior of A(+) and the 

accurate evaluation of Eq. 1.10. 

10.0 ..,..------,.----------.--------.--------, 

- 8.0 
N 

E 
C) 

.., 
I 6.0 
0 --c:: 
0 ·- 4.0 ~ 
C) 
Q) 

r:n 
00 
00 2.0 0 
~ 
u 

0 10 20 
Energy (eV) 

Figure 1.2. Same as in Fig. 1.1 except with 
[1u g - 1u tl ] included in the expansion of w!:). 

1.2 Numerical Properties of the A(+) Matrix 

1.2.1 The Green's FUnction 

30 40 

an additional excitation 

Ofthe elements in the variational expression (Eq. 1.7), the VG~)V component 
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of A ( +) is the most computationally intensive quantity to evaluate. Throughout this 

work, the numerical procedure developed by Winstead et al. [20] to calculate matrix 

elements involving this operator was employed. For linear molecules, a minimum of 

26 angular points in the (} (spherical coordinates) angular quadrature was typically 

used, whilst for nonlinear molecules, grids no sparser than 14x 14 angular points 

on each hemisphere of an off shell T-matrix component were used. Variations 

in the orientation and center of mass of the target molecule exhibit interesting 

convergence behavior in regards to these matrix elements. For nonlinear molecules, 

it has proven to be more effective to place the molecule away from the origin. For 

linear molecules oriented along the z-axis, convergence to results obtained using 

other molecular orientations could only be achieved by using a large number of (} 

quadrature points per quadrature shell. 

One property of this method of evaluating the VG~+)y is worthy of some 

comment as it has been argued that, at least for linear molecules, using a discrete 

grid of points in k-space to evaluate the Green's function may lead to spurious 

resonances in multichannel studies owing to the fact that the quadrature can span 

many irreducible representations for a point symmetry group while the single parti

cle functions of which the determinants used in the expansion of 'IJI~) are comprised 

usually transform as a limited subgroup of these representations. That this is pos

sible can be seen by considering the k- space representation of the principal value 

and residue components, viz. 

{'IJI~) IVG~+)VI'IJI~+)) = i7r. L ki J dQk; ('IJI~) IVI~Ji)(ki~dVI'IJI~+)) 
a=l,No 

(1.13) 
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In the former so-called a-insertion technique, where a set of L 2 functions was 

used to evaluate both terms, the terms to be evaluated from Eq. 1.13 become 

. 2::: ki j dnk, (w~) IVIcpJi) (ficpiiVIw~+)) . 
a=l,No 

. 2::: L ki(w~)IVIcpia)(,BcpiiVIw~+)) j dnr, (alki)(kii,B). 
a=l,N0 o{J 

(1.14a) 

Since the L 2 functions used in the expansion in Eq. 1.14 are typically the same 

as those used in the expansion of the single particle wavefunctions which comprise 

the Slater determinants in Eq. 1.9, it is obvious that the resulting VG~+)y term 

can only have symmetry components already spanned by the Slater determinants, 

owing to the right-hand most integrals in the residue (1.14a) and principal value 

(1.14b) parts. However, with the evaluation being directly carried out ink- space, 

the residue and principal value terms in Eq. 1.13 can include many symmetry com

ponents, depending, in the case of linear molecules, on the ¢> quadrature. As will 

be described in conjunction with techniques to solve Eq. 1.10, a procedure has 

been implemented to eliminate possible effects of such terms prior to computation 

of the scattering amplitude. Hence, a numerical quadrature of these matrix ele

ments should not in itself lead to the appearance of spurious resonances in SMC 

calculations. It should be noted that this difficulty should not arise in the case of 

non-linear molecules, or linear molecules not oriented along the z-axis. 
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1.2.2 Matrix Elements of A(+) and Their Notation 

To better interpret the numerical characteristics of A ( +) and its inverse, it is 

worth examining the various types of matrix elements encountered in multichannel 

calculations. The notation to be used throughout this work to indicate both partic

ular types of matrix elements and the determinants in Eq. 1.9, is given in Table 1.1 

below. The term in brackets indicates the target state on which theN+ 1 electron 

Slater determinant is to be constructed. [0] indicates the ground state, closed shell 

wavefunction of the target. The [N A-+ N B] (hole-+ particle) notation can denote 

either the singlet target configuration (1.9b) or triplet(1.9c,d) for an excited state 

of the target. The letter in parenthesis indicates the type of orbital occupied by the 

N + 1 th or scattering electron. The use of parenthesis for this latter orbital indicates 

that it is antisymmetrized with the target electrons. The action of the projector 

(Eq. 1.3) on one of these configurations is to break this antisymmetrization. In this 

event, the symbol denoting the scattering function is then set of by brackets, e.g., 

[N A -+ N B][j] to show that the scattering electron is no longer antisymmetrized 

with the target electrons. 

Now consider typical values of the matrix elements of A(+) in atomic units. As 

would be expected, the on-diagonal terms include the largest elements in absolute 

magnitude, although quite small values are also present. As indicated in Table 

1.2, they range from the order of unity to 10-6 for elastic channel elements and 

from unity to 10-7 for inelastic channel elements. Of course, these values will 

vary somewhat depending on the molecule, especially for elements having nuclear 

attraction terms. Experience indicates that this range of values is typical for a 

modest ""'75 function basis sets. 
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Off-diagonal terms, which for matrix elements not involving elastic ~ elastic 

or ([A --. B](i)IVI[A --. B](j)) type configurations contain no nuclear terms, are 

considerably smaller. In general, elastic ~ inelastic terms are about an order of 

magnitude larger than the inelastic~ inelastic elements. Matrix elements involving 

different electronic configurations average to be another order of magnitude smaller. 

Average values encountered in typical multichannel studies are given in Table 1.2. 

Table 1.1. Notation for Matrix Elements of A<+) 

Type of term 

elastic~elastic 

elastic~inelastic 

inelastic~inelastic 

Notation 

([0]( i)IA < +> l[O](j)} 

([O](i)jA<+>j[NA--. NB](j)) 

([N AA--. N BB](i)!A<+>I[N A--. N B](j)} 

One important feature to note is the consequence of the very small on-diagonal 

terms that are encountered, particularly as the basis is enlarged. For those columns 

having very small on-diagonal elements, one finds that the Euclidean norms for the 

entire associated rows and columns are very small, f"V 10-4 • Also, in contrast to 

elastic or typical two state calculations, a large-scale multichannel calculation will 

involve large numbers of very small on and off diagonal terms which are especially 

important in describing the coupling of the ground state to excited state channels. 

As will be seen, this fact is reflected in the extremely poorly conditioned matrices 

frequently encountered in multichannel studies. 

As the Schwinger variational functional (Eq. 1.7) has the useful property that 
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it is independent of the normalization scheme employed for the scattering wavefunc

tion, one can freely scale these values. This would of course change many of the 

parameters used to determine the condition of the A(+) matrix. However the rel

ative ranges would remain unchanged as would the ultimate scattering amplitudes 

obtained from evaluation of Eq. 1.10. 

Table 1.2 Typical Absolute Values of the Matrix Elements of A ( +). 

Matrix 

Element 

{[0]( i)IA < + >j[O]( i)) 

{[0]( i)IA (+) I[O](j )) 

{[O](i)IA<+>I[NA-+ NB](j)) 

{[NA-+ NB](i)jA<+>j[NA-+ NB](i)) 

{[N A-+ N B](i)jA<+> I[N A-+ N B](j)) 

([N A-+ N B](i)jA<+>I[N AA-+ N BB](j)) 

1.2.3 The Spectrum of HN+I 

Average 

Value( a. u.) 

-0.10 

-0.01 

-0.001 

-0.1 

-0.005 

-0.0005 

Max./Min. 

Value 

The numerous resonant-like structures observed in multichannel cross sections 

motivated attempts to assign these features to the eigenvalues in the energy spec

trum of the continuum of the short-lived anion formed by the target and scattering 

electron. Basically, it was hoped that an analysis of the continuum spectrum gen

erated in the space of determinants used in the expansion (Eq. 1.9) of 'Ill~) would 
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yield possible energy positions of resonant states. This would be analogous to stabi

lization methods used to determine the positions and widths of resonant complexes, 

albeit at a rather unsophisticated level [21] . The positions thus found could then 

be used to interpret the often anomalous features observed in cross sections ob

tained by evaluation of Eq. 1. 7 for multichannel problems. Of course, the shift in 

a resonance position due to coupling with the continuum is not known, although 

for the energy resolution ( ""'1 eV) typical of SMC studies, this displacement would 

be small compared to the interval between the energies at which cross sections are 

computed. However, correlation between the features observed in the cross sec

tions and eigenvalues computed by diagonalization of HN+l in the space spanned 

by the determinants of W ~) usually proved to be weak except at near threshold 

energies(< 5 eV above threshold). Also, the eigenvalues obtained by this method 

do not, in general, possess the stability described in studies in which stabilization 

methods are used [22]. This is most likely due to the size of the basis sets employed 

in such studies as compared with SMC calculations, the fact that unimproved vir

tual orbitals are used for the single particle orbitals in Eq. 1.9, and the fact that 

the energies at which spurious structures appear in SMC cross sections are gener

ally well above the near threshold energies where broad, core-excited resonances 

are most frequently observed experimentally. Occasionally, however, analysis of the 

spectrum has proven useful in distinguishing spurious resonances associated with 

unphysical states in the continuum from what might otherwise be attributed to 

realistic resonance features. An example of such a state will be considered. 

1.2.4 Selection of Determinants 

It has been pointed out that the expansion of w~) in terms of determinants 
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constructed purely from the triplet states (1.9c,d) of the target and its closed shell, 

ground state configuration (1.9a) fails to include all. components of \II~) in the case 

of multichannel studies. This becomes quite evident when considering the action 

of the projector operator as presently formulated. The studies carried out in this 

work employed the minimum number of closed channel determinants necessary in 

order to span the entire space of the scattering wavefunction. Failure to limit in

clusion of such closed channel singlets to the minimum number required leads to 

numerous spurious resonances as discussed in connection with the projector oper

ator and seen in Figs. 1.1 and 1.2. ·As a consequence of this requirement, closed 

channel singlet configurations ( 1.9b) generally are included in the expansion of W~). 

Unfortunately, these configurations appear to lead to a significant deterioration in 

the convergence characteristics of the SMC for scattering symmetries of W~) in 

which such "recorrelation" terms are included. Examples of this behavior will be 

considered later. 

In some instances, treating these additional terms as open channels improves 

the quality of the resulting cross sections, but as the IVO approximation employed 

in these studies to describe the excited state prevents accurate treatment of both 

singlet and triplet excitations with the same hole-particle pair, better agreement 

with experiment is not generally observed. This is especially true for instances in 

which the singlet and triplet states for a given hole-particle pair are Rydberg and 

valence-like in character, respectively. 
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1.3 Stability of the SMC Method for Multichannel Studies 

1.3.1 Convergence Characteristics 

As indicated at the beginning of this chapter, the SMC has yielded satisfactory 

results for a wide range of static-exchange, polarization, and two-channel inelastic 

scattering problems. This has been the case even for early studies in which the 

Green' s function term in A(+) was treated by a less accurate insertion technique. 

Hence, even with less robust procedures for evaluating Eq. 1.7, converged results 

could be obtained. 

Nonetheless, it has transpired that some two channel and all multichannel prob-

50.0 .-----------------------------------------------. 

~40.0 

s 
C) 

CD 

~30.0 .... -s:: 
.8 20.0 
~ 

--- ' ' ..... --- ' C) 
~ - -----

Cll 

~ 10.0 
0 
1-< I 

u I 

0 . 0 ~~~~~~~~~~~~~~~~~~~~~,-~~ 
10 15 2 0 25 30 

Electron Energy_ ( eV) 
Figure 1.3. Excitation cross section for H 2 X 1 :E9 __. a3 r;t for two basis 
sets which are identical except for a 20% change in exponents of the d-type 
functions used. 
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lems have proven to be far more difficult to carry cmt to even a qualitative level of 

convergence. By convergence, it is meant that modest changes in the choice of basis 

functions employed to construct the target wavefunction and scattering functions 

(the 4> and X of Eq. 1.9, respectively) lead to relatively small (~ 10%) changes in 

the resulting cross sections. With a few exceptions, this degree of convergence has 

not been attainable in this work by direct evaluation of Eq. 1.10 for multichannel 

calculations. By way of example, Fig. 1.3 shows the results of two calculations of the 

X 1 :E 9 ---+ a 3 :Et excitation cross section for H2 • The only difference between the basis 

functions ~sed in computing the orbitals used in the expansion (Eq. 1.9) is a factor 

of 20% in the exponents of the d-type functions. Clearly, quite different results 

are obtained from Eq. 1.10. Convergence with respect to the number of coupled 

channels was never expected to occur. However, for a given basis, convergence with 

respect to the number of quadrature points for evaluation of VG~+)y was readily 

achievable. 

A considerable amount of time has been invested in examining the routines 

used to construct the numerous additional elements in A(+) which appear in a mul

tichannel calculation to verify that the software in fact is evaluating these terms 

consistent with Eq. 1. 7. No problems were found which significantly alter the com

puted scattering amplitudes. Thresholds for the cutoff of the planewave-Gaussian 

matrix elements(b,bt in Eq. 1.10) as well as those involving purely L 2 terms were 

also varied in efforts to improve the SMC results. Algorithms were crafted to re

duce the amount of compu"tational work required for linear molecules in an effort 

to increase the accuracy of the VG~+)y quadrature. None of these changes proved 

efficacious in improving the behavior of the SMC with respect to the convergence 

of multichannel studies. 
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In light of these facts, one must assume that there are either numerical problems 

unique to multichannel studies or single channel studies employing exceptionally 

large basis sets; that the approximate description of the target including its discrete 

and continuum energy spectrum prohibit convergence of multichannel calculations; 

some portion of the A<+) operator is especially difficult to treat at the multichannel 

level; or some aspect of the variational expression (Eq. 1. 7) is either incorrect or 

its present computational implementation is defective with respect to multichannel 

coupling. 

The last of these possibilities will not be considered as the development of some 

alternate variational expression and code employing it would have been completely 

out of the scope of this work. Rather, here consideration will be limited to the 

possibility that purely numerical problems unique to the multichannel case are the 

source of the problem, that the approximate target description, i.e., the expansion 

of W~), Eq. 1.9) may give rise to the problem, or that the problem lies with some 

aspect of the multichannel form of A ( +). Results of numerous calculations made 

possible by recently available parallel computers indicate that all three problems 

may potentially arise in multichannel studies as well as some large-scale elastic and 

two-channel scattering problems. 

Evidence for multiple sources for the lack of convergence encountered in these 

studies includes the fact that test calculations in which the classical problem of 

linear dependence is intentionally sought lead to results similar to those obtained 

from calculations in which the problem is scrupulously avoided. In practice this 

means, for instance, that a simple test for linear dependence like examination of 

the eigenvalues of the overlap matrix for the single particle basis functions guar

antees little about the quality of the SMC results excepting for grossly distorted 
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basis sets in which one is intentionally introducing linear dependence. The fact that 

narrow, spurious resonances are observed for many large basis sets - including those 

in which linear dependence problems are avoided - over the full range of collision 

energies of interest in this work points to the frequent breakdown of the separable 

potential approximation (Eq. 1.11). Broad, high energy shape resonances appear 

in multichannel studies in addition to these narrower structures. Further, the oc

currence of these higher energy resonances, and the deterioration of the stability of 

multichannel calculations above the ionization energy of the target indicate that not 

all of the instability encountered is due solely to linear dependency of the basis sets 

or failure of the separable potential approximation. Another observation indicating 

the nontrivial nature of this problem concerns the behavior of multichannel calcu

lations with respect to convergence as additional scattering functions are added. In 

particular, it has been found for H2 that narrow pseudoresonances can be produced 

at arbitrary impact energies due to the presence of the new states introduced into 

the continuum of the target by the addition of these functions. This type of reso

nant structure is also observed, however, in studies employing basis sets where the 

eigenvalues of the overlap matrix and orbital coefficients indicate that linear depen

dence must be negligible. An example of this type of structure will be considered 

in the next section. Hence, it is reasonable to assume that there are several aspects 

of the multichannel SMC, and in particular, the behavior of the A(+) matrix that 

warrant particular consideration. 

In what follows, the poor conditioning of the A(+) matrix and its effects on 

cross sections obtained by evaluation of Eq. 1.10 are discussed. An estimate of 

the maximum error that arises purely from numerical round-off is made, as well 

as the sensitivity of the system of equations 1.10 to such errors. Finally, possible 

problems with the intrinsic properties of the multichannel A ( +) matrix will also be 
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considered. 

1.3.2 Numerical Accuracy and Round- Off Error 

The purely numerical characteristics of A ( +) would prima fa cia lead one to sus

pect that the problem could be purely a problem of numerical instability. Namely, 

for moderate and large-scale multichannel calculations, A ( +) shows every evidence 

of being ill-conditioned as defined by the condition numbers given by Froberg [23). 

Of course, as is discussed in numerous texts on linear algebra, the presence of an 

ill-conditioned matrix does not automatically imply that this condition will be ev

ident in the solutions [24] of the linear equations (1.10) . In the case of the SMC, this 

is borne out by the numerous calculations for elastic and two-state problems where 

owing to the basis sets employed, the A<+) matrix undoubtedly was ill-conditioned, 

yet good convergence and reasonable cross sections were realized. 

One effect of ill-conditioning would appear when, as a result of round-off error, 

the inverse of A(+) is seriously corrupted. A simple check of the product of A-1 A(+) 

for multichannel calculations indicates that the inverse is accurate to 10-8 to 10-9 

for most problems considered in this work. Comparison of this number with the 

range of matrix elements values in Table 1.2 indicates that this error is at most an 

order of magnitude smaller than most elements. Only for the H2 molecule, with a 

single occupied orbital and correspondingly weak potential, is it possible that this 

may not be true for all significant matrix elements. 

An additional study was carried out to investigate the possibility that roundoff 

error or other source of "noise" is effecting the stability of Eq. 1.10. As noted in 

[24], a test of the sensitivity of the matrix to minor perturbations is useful in esti-
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Figure 1.4. Relative error of computed cross sections from A(+) into which 
error has been intentionally added. Shown are the cross sections for the 
X 1 :E --+ X 1 :E X 1 :E -+a3 :E+ and X 1 :E -+b3 :E+ channels in a seven 

9 9• 9 9' 9 u 
state calculation for the H2 molecule at three incident electron energies. 
Here, 5% of the matrix elements of A(+) were randomly adjust by a maxi
mum of± the error coefficient plotted on the x-axes. The incident electron 
energies are a) 15 eV, b) 20 eV, and c) 30 eV. 

mating to what degree the ill-conditioned nature of A ( +) is actually effecting the 

calculation of its inverse. The test involved a multichannel study of H2 including 

the X 1 :Et, (E, F)1 :Et, a 3 :Et, B 1 :E;!", b3 :E;!", C 1 Ilu,and c3 Ilu states. A basis selected 

for its favorable overlap matrix eigenvalues was employed. The A(+) matrices at 15, 
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20, and 30 eV were chosen to illustrate the infiuence that the addition of random 

error would have on near threshold, intermediate and high energy cross sections, 

respectively. 5% of the matrix elements were randomly selected and corrupted by 

factors ranging between± 10%, ± 20%, ± 30%, ± 40%, and± 50%. The relative 

errors in the cross sections computed using these corrupted matrices are depicted 

in the bar graphs in Fig. 1.4. Only results of the X 1E9 -X
1 E 9 , X 1E 9 -a3Et , 

and X 1 E9 -b
3Et are given. The general tendency is for the Rydberg transitions 

to be more sensitive to injected noise, while the ground state elastic and valence 

X 1 E 9 -b
3Et inelastic channels are less affected by corruption of the A(+) matrix. 
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Figure 1.5. Relative error of computed cross sections from A<+) into which 
error has been intentionally added. Shown are the cross sections for the 
X 1 E - X 1 E X 1E -a3 E+ and X 1 E -b3 E+ channels in a seven g g, g g' g u 

state calculation for the H2 molecule at 20 e V incident electron energy. 
Here, a maximum error of ±20% was added to 1%, 2%, 3%, 4%, and 5% 
of the matrix elements of A<+). 

The stability of the A<+) matrix was also tested by adding a constant distor

tion ranging between ± 20% to 1%, 2%, 3%, 4%, and 5% of the matrix elements 
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of the 15 eV matrix for the same seven-channel calculation of the H2 molecule. 

Again, only relative errors in the X1~9 -+ X1~9 , X1~9 -+ a3~t , and X1~9 -+ 

b3 ~;!"" channels are shown in Fig. 1.5. As with the other tests, the Rydberg X 1 ~g -+ 

a3~t transition is considerably more sensitive to corruption of the A(+) matrix. 

The fact that the relative error in the cross sections is not a monotonic function 

of noise added, either in terms of the magnitude of the distortion or the number of 

matrix elements corrupted, would appear to indicate that the particular randomly 

selected elements which are altered is more important than the degree to which they 

are distorted. The trend for the Rydberg X1~9 -+ a3~t excitation is most relevant 

to the question of instability. Namely, the near-threshold cross sections are less 

sensitive to random errors in the A(+) matrix than at intermediate energies. It can 

be concluded that although the calculated cross sections are somewhat sensitive to 

small changes in the A(+) matrix elements, the totally unstable behavior usually 

observed in ill-conditioned systems of equations is not present [24). It would appear 

rather, that the system of equations (1.10) is neither very stable with respect to 

such perturbations of A<+) nor wildly erratic. 

Wilkinson [25) has carried out detailed error analyses of a variety of methods 

for solving systems of linear equations by Gaussian elimination, Given's reduction, 

Householder's reduction, etc. The method most frequently used in this work to 

solve Eq. 1.10 makes use of the Householder's reduction to generate a bidiagonal 

matrix. The subsequent complete diagonalization by a QR procedure contributes 

much less to the final error and will not be taken into account. Given a partic

ular normalization of the matrix, Wilkinson derived a maximum relative error in 

computing the matrix inverse by use of this technique, viz. 

(1.15) 
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where t = 63 for a CRA Y operating in single precision mode and n is the order of 

the A(+) matrix. IIA-1 11 is the Hilbert norm of the inverse of the A(+) matrix. For 

Householder's reduction method, a and bare on the order of unity. An analysis of 

the eigenvalues of A-1 indicates for most moderate and large bases, IIA-1 11 is on 

the order of 104 to 105 • For multichannel studies, n varies greatly due to the fact 

that it is the sum of the number of scattering functions in each channel. For the 

example in Figs. 3 and 4, n = 614. Hence, given that A ( +) approximately satisfies 

the normalization assumed for (15), one finds 

10-10 < f < 10-s 

depending on IIA-1 11· Although this is a maximum error, and the author notes 

that typically much better accuracy is achieved than would be indicated by the 

analysis, the nature by which the error scales, namely as n 512 would indicate a 

potential problem for cases where small off-diagonal coupling terms are important 

for a particular channel. In addition, as the basis set size increases IIA - 1 II tends 

to increase, albeit more slowly than the n 512 factor in Eq. 1.15. The results of 

Wilkinson's error analysis are consistent with the identity matrix check mentioned 

earlier where the accuracy of A- 1 A(+)- I was on the order of 10-s to 10-9 • Again, 

an examination of the range of magnitudes of the matrix elements in A<+) for the 

H2 molecule shows there tend to be more elements within the range of magnitude · 

of this error limit for large basis sets. However, for larger molecules, there tends 

to be a more pronounced separation between nonzero matrix elements and those 

which are zero by symmetry. 

It would thus seem that except for cases where the order of A(+) >> 500, and 

matrix elements "'lo-s are significant as may be the case in H2, purely numerical 

errors in computing the inverse or solving the equations (10) following computation 
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of the matrix elements is not significant as a source of error in multichannel prob

lems. Even for H2 , this should only be important for very large basis sets for which 

multichannel coupling leads ton~ 500 in Eq. 1.15. 
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Figure 1. 7. 2 Ilu component of the excitation cross section for N2 (X1 ~t --t 
A3~~ transition for a four-state calculation in which closed channel singlet 

determinants are included in the expansion of w!:). Results for three 
different basis sets are shown. Good convergence was observed in other 
symmetry components. 

1.3.3 Evidence of Other Sources of Instability 

Multichannel calculations evince an additional, qualitatively different type of 

instability the origin of which is not obviously numerical. This is plainly evi

dent upon consideration of results of calculations of excitation cross sections for 

the A3 ~~ valence state of N2 • Figure 1.6 shows the 2Ilu symmetry compo-
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nent of the X 1 L:9 -+ A3 L:;!" cross section for a calculation involving the mm

imum number of determinants required in the expansion of w~> (Eq.1.9) to 
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Figure 1.6. 2 1Iu component of the exCitation cross section for N2 (X1 r:t -+ 

A3 L:;!" transition at the equivalent of a two-state calculation. Results for 
four different basis sets are shown. Similar satisfactory convergence was 
observed in other symmetry components. 

compute these cross sections. As with the other symmetry components of this 

inelastic cross section, the convergence behavior is excellent. Even small valence 

basis sets yield reasonable cross sections. In this particular case, only one basis set 

generates somewhat different results over a limited energy range. 

Now consider Fig. 1. 7 depicting results in which additional channels are coupled 

with the X 1 L:9 -+ A3 L:;!" channel. Doing so requires the introduction of previously 
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mentioned recorrelation terms in the expansion of 'II~). N 2 is useful in this regards; 

for this particul~ multichannel coupling scheme, only the 2 IIu symmetry has such 

excitation terms in Eq. 1.9. As is clearly seen, the convergence observed in Fig. 1.6 

is completely lost. However, except for narrow resonances of a type to be discussed, 

the convergence behavior in the other symmetries is quite satisfactory. Figure 1.8 

shows results in which the recorrelation terms are not treated as closed channels. 

The importance of treating such channels as open has been considered in [27] . 

However, rather than improving results, convergence behavior further deteriorates 

and a very different energy dependence of the cross sections is observed. Although 

not specifically considered here, similar deterioration in the quality of cross sections 

in H2 and CO at high (15-30 eV) impact energies has been observed in multichannel 

studies. In the case of H2 , this anomalous behavior is observed in all but the 2 .6. .. 

symmetry component for a five channel calculation including the X 1 ~t, a3~t, 

b3~t, and c3 IIu states. In these instances, there is effectively no convergence with 

respect to basis set size. 

In these three calculations for the X1 ~9 -+ A3~t transition in N2 , there are 

two basic differences. In the first study, no singlet configurations (1.9b) are present 

in the expansion of 'II~) and the projector Pacts in a particularly simple manner 

in the 2 IIu symmetry block. In the second and third sets of calculations, singlet 

configurations are included as closed and open channels, respectively. Furthermore, 

the projection operator P now acts on 'II~) in a more complicated way. Note, 

however, that the projector only has this more complex structure in the 2 II9 and 

2 IIu symmetries. In the third case, the spectrum of HN+I is also considerably more 

complex as 'II~) consists of more determinants. 

One possible source of the poor convergence behavior in these studies is the 
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presence of coulomb integrals in the potential PV + V P and VG~+>y terms, owing 

to singlet+-+singlet coupling. At least for the second case, this is not a factor as the 

singlet transitions are not of a dipole allowed type and are hence relatively short 

ranged, the convergence of the vc~+)y term with respect to quadrature ink-space 

remains satisfactory, and in many cases there is no evidence that the contributions 

of the higher partial wave components change drastically in going from the first 

calculation to the others. Such behavior would be expected if long range forces 

were at least partly responsible for the instability of the cross sections at high 

energies. 
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Figure 1.8. 2 Ilu component of the excitation cross section for N2 (X1 ~t -+ 

A3~t) transition for a six-state calculation in which the singlet coupled 
determinants in Fig. 1. 7 are now included as open channels in the expan
sion ·of w~). 

The fact that the convergence of the SMC results becomes poorer as the calli-
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sion energy and number of highly coupled channels increases seems to point to the 

fi- a(P fi + fi P) term, which is manifestly energy dependent, as the more likely 

source of trouble. Here, it would be helpful to reconsider Eq. 1.9, and instead think 

of '11~) as consisting of two parts as in the close coupling formulation, viz. 

(1.16) 

where <Pi is the ith open channel wavefunction of the target and the¢> are all orbitals, 

i.e., scattering functions, orthogonal to all double and singly occupied orbitals of the 

various target states <Pi. The 8 11 represent the equivalent to the minimum Hilbert 

space components of '11~) required in the close coupled equations in order to relax 

the orthogonality conditions imposed on the ¢'s. These are the equivalent of the 1/J 

term in Eq. 2.17 of [2] and are frequently referred to as Q-space terms. It is useful 

to consider W~) in this form as the action of the projector operator is different 

on the two components. For the first term on the right-hand side of Eq. 1.16, the 

projector acts on each component of the double sum in a very simple manner, 

(1.17) 

The projector simply acts to break the antisymmetry of the N + 1 electron wave 

function by selecting only those Slater determinants from Eq. 1.9 in which the 

N + 1 th electron is in the scattering orbital. For an elastic, static exchange or 

polarization calculation, these are the only types of terms appearing in P'll~) as 

all terms in the rightmost term of Eq. 1.16 are projected out. In this sense, the 

projector for static exchange or polarization calculations is much like the Feshbach 

operator as long as one works at collision energies below the first inelastic threshold. 

This fact was noted by Feshbach in his description of the "naive" projector[Ref. 31 , 

p. 209). In a two-state calculation, only one recorrelation term is present, namely 
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I[O](N B)) where the inelastic channel involves the [N A ~ N B] excitation. Even 

then, the net effect of P is rather simple as 

Pi-ii[O]( i)) = - .J 
1 

lfi - i][j]) 
N+1 

(1.18) 

This simple structure persists for calculations involving only the singlet/triplet cou

pling of a single hole/particle excitation. 

With multichannel calculations, however, the continuum spectrum of the HN+l 

operator becomes increasingly complex, as does the effect of the projector on the 

recorrelation or Q space terms. The first of these effects is reflected in Fig. 1.2 in 

which at the level of a four excitation polarization calculation, the elastic channel 

exhibits a rich resonance structure above the ionization threshold. The second arises 

as a consequence of the increasing number of determinants in Eq. 1.9 with multiple 

parentage with respect to the open channels cpi· 

It should be noted that the action of the projector on such terms has never 

been explicitly discussed as proofs of the values for a in Eq. 1.5 have used the or

thogonality of the scattering orbitals in the open channel space to the target orbitals 

(see, for example, Appendix of [1]). However, a close reading of the description of a 

test case in [2] concerning the static-exchange+polarization elastic H · e- scatter

ing is quite interesting in these regards. In this problem, continuum functions were 

included so that meaningful comparison of convergence properties of the SMC with 

respect to the Kohn method, for instance, could be made. Otherwise, the problem 

is not significantly different from present studies except that only two electrons are 

involved and hence the projector is a one electron operator. Briefly, the basis used 

in the expansion of '1'~+) included the following configurations 

(1.19a) 
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( i = 1 2 · · · M) ' ' ' ' 

(j = 1,2, · · · ,Nt), 

(1.19b) 

(1.19c) 

(1.19d) 

where ¢>16 is the 1s state of the H atom; s and c are appropriately regularized 

continuum functions orthogonalized to ¢>hi 9i and gj are Slater functions also 

orthogonalized to ¢>1 s; and ¢>t are pseudostates used to incorporate polarization 

effects. The most important point here is that, according to the description of 

the matrix elements in which the kinetic energy operator of fi is not canceled in 

[fi- a(PH + HP)], the terms (1.19b) and (1.19d) are treated equivalently, i.e., 

PA¢>h¢>h81 = 0. Although it might appear to be trivial, this is quite different from 

the action of the projector in the A(+) operator of Eq. 1.5. In the present SMC 

method, the projector for this problem would be defined as 

(1.20) 

where a(fi) represents the usual m = +1/2 spin eigenfunction. In this event, there 

would be an overlap of the projector with the configuration (1.19b). Namely, with 

(1.21a) 

then 

A N+l A A ) 

(A2¢>h¢>h81IH-
2 

(PH+ HP IA2¢>h¢>1s81) = 

(¢>h(l)¢>h(2)liii¢>h(1)¢>h(2))- (¢>h(l)¢>h(2)liii¢>h(1)¢>h(2)) = o (L2lb) 

and hence (1.19b) would appear to enter into Eq. 1.5 in a manner similar to (1.19a) 

and (1.19c) rather than the virtual excitation terms (1.19d). In other words, Eqs. 
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4.1 and 4.2 of [2] imply that in the expansion of w~>- Eq. 1.19 here or Eqs. 3.1a

d in [2] -both determinants involving virtual excitations and those involving only 

target orbitals are treated equally, i.e., annihilated by the projector: the projector 

only returns a nonzero result for those determinants which, in principle, are ener

getically part of the "open" channel space and are not constituted solely of bound 

orbitals. This is despite the fact that (1.19b) has a nonzero overlap with the target 

wavefunction. The present implementation of the SMC projector does not operate 

on w~) as described in [2] . 

The possibility of redefining the projector to act in a manner like that described 

in [2] was attempted. In one case, overlap terms like Eq. 1.18 were eliminated. A 

second case was studied in which coupling of inelastic determinants of Eq. 1.9 via 

the projector were eliminated. Neither yielded physically reasonable results for test 

H2 multichannel calculations. 

A second series of investigations was carried out to determine the relation be

tween the poor convergence characteristics observed in channels containing Q-space 

terms and the various components of the A(+) matrix elements Eq. 1.5. The basic 

premise is that since the Q-space or recorrelation terms involve exclusively orbitals 

optimized either via an SCF calculation of the ground state wavefunction or IVO cal

culation of the excited state orbitals, it would be reasonable to assume that the ma

trix elements involving these configurations would change little from basis to basis. 

For the purpose of these tests, the five-channel (X1 'ET, a3 'E;-, b 3 'E;!", c3 Ilux, c3 Iluy) 

hydrogen molecule calculation was carried out using five different basis sets. 

First, it is useful to note the constituent parts of the matrix elements of 

A ( +) comprised of Q-space terms. Consider a three-channel study of the H2 
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molecule involving the X1 :Et, a3:Et, and b3:E;t" states. Then, using the ([lo-9 -+ 

2o-9 )(1o-u)IA(+)I[lo-9 -+ 2o-9 ](lo-u)) matrix element as an example, one obtains for 

the different branches of the projector, the following: 

([lo-9 2o-9](lo-u )lA (+)I [lu 9 2o-9 ](lo-u)) = Cilh,2,3 (lo-9 2o-g lo-u IHilu 9 2o-g lo-u )8~ ,2,3 

+C1 [ 82 ([la 9 2o-9 ][1o-ul!VIlu 9 2o-g lau)8~ ,2 ,3 
+81 ,2,3 {lo-9 2a g la u lVI [lo-9 2o-9][1o-u])8~ J 

+C1 [ 83 {[la 9 2o-9 ][1o-u] IVIlo-9 2o-g lo-u)8~ ,2 ,3 
+81 ,2,3 {la 9 2o-g lo-u IVI[lu 9 2o-9 ][1o-u])8; J 

-C2C1 [ 82 ((lo-g lo-u](2o-9 ] IVIlu 9 2o-g lo-u)8~ ,2 ,3 
+81,2,3 {lo-9 2o-g lo-u IVI[lo-g lo-u][2o-9]}8~] 

+2Ci [(luuiTelluu)- (E- E11Tg21Tg)] + CiCi [(2o-9 ITel2o-9)- (E- E11Tg11T,.)] 

-81,2 ,3 {lo-9 2o-g lo-u jVG~+ )Vjlo-9 2o-g lo-u)8~,2 ,3 (1.22) 

where C1 = 1/VN + 1 and C2 = 1/2 + ljV2,. For H2, N = 2. Te signifies the 

kinetic energy operator. The notation for the determinants has been simplified so 

that those containing no brackets or parenthesis indicate antisymmetrization of all 

N + 1 electrons. 8 indicates the target spin configuration: 1- singlet coupling, 2-

low spin triplet coupling, and 3-high spin triplet coupling. These correspond to 

components (1.9b ), {1.9c), and (1.9d) of the expansion of Wm, respectively. For 

comparison, one finds that for a term such as 

one obtains the following contributions-
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+ C1 [92([1ug2ug][nuu)IVIlugluunug}9~ , 3 + 93([1ug2ug][nuu]IVIlugluunag}9~,3) 
+ cl [ 92,3 {lu g2u gnu u IVI[lu g lu u][nu g]}9; + 92,3 {lu g2u gnu u IVI[lu g lu u][nu g ]}9~] 

- 92,3 {lu g2a gnau IVG~+)VIla g launa g}9;,3 (1.23) 
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Figure 1.9. Plot of the principal value component of the VG~+>v terms of 
the {[lag- 2ug)(luu)IA(+)I[lag- 2ug](luu)} matrix element. Although 
results of all five basis sets are shown, the scale is not sufficiently fine to 
reveal the small differences between them. 

Figure 1.10. Same as Fig. 1.9, except for matrix elements of the type 
{[lug - 2ag](l7ruz)IA(+)I[lug - 2ag](l7ruz)). 

It is obvious that the recorrelation terms involve many more elements including 

kinetic energy terms, excited state energies, and collision energies, in addition to 

the VG~+>v, unprojected Hamiltonian, and potential terms. The satisfactory con-
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vergence characteristics of these latter two components are evident from Tables 1.3 

and 1.4. For this multichannel calculation, both components exhibit a variation of 

no more than 10-3 between basis sets. The energy dependent, VG~>v component 

of the two recorrelation terms are plotted in Figs. 1.9 and 1.10. Only the real, or 

principal value part is plotted; similar convergence qualities were observed for the 

residue terms. 

From the tables and figures , it would appear that the A(+) matrix elements 

Table 1.3. Value of Terms Constituting Matrix Elements of the Type 
{[lo-9 __. 2u9](1uu)IA(+)j[lu9 __. 2u9 ](1uu)} 

Basis HN+I(a.u.) PV+VP 

1 1.3172 -0.1077 
2 1.3165 -0.1080 
3 1.3162 -0.1083 
4 1.3166 -0.1080 
5 1.3166 -0.1080 

involving recorrelation or Q-space configurations should vary by no more than rv 

10-3 . However, upon examination of the complete A ( +) matrix element values, 

differences between basis sets appear. Figures 1.11 and 1.12 indicate that the A(+) 

elements converge to at least two significantly different values. These differ by 

rv 10-2 , some ten times greater than differences observed for the ii, PV + V P , 

and v a<:) v terms alone. It would hence appear' as stated above, that the extra 

terms associated with matrix elements of the type 1.22 significantly complicate their 

accurate computation. 
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It is interesting to note that, considering that the convergence of the A(+) ma

trix elements involving recorrelation terms is not predictable, as indicated in Figs. 

1.11 and 1.12, it is possible that the variation of a in Eq. 1.8 could fortuitously 

lead to improved results. Obviously, this would only occur if the Q-space has a sig

nificant number of terms, i.e., highly coupled multiple channels. An optimal value 

deviating from N{I would be highly indicative of a problem. At any rate, numer

ous calculations with large basis sets and the results of the studies discussed above 
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Figure 1.11 Plot of the total {[lug --+ 2ug](luu)lA(+)l[lug --+ 2ug](luu)) 
matrix element. Basis set 1, solid line; basis set 2, short dashed line; basis 
set 3, long dashed line; basis set 4, short dash line plus circles; basis 5, 
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Figure 1.12 Same as Fig. 1.11 but for matrix elements of the type {[lug --+ 
2ug](l7rux)IA(+)I[lug--+ 2ug](l7rux)} 
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strongly suggest that there are numerical characteristics of the fi - a( P fi + fi P) 

component of A(+) which are difficult to deal with effectively, at least at energies 

significantly above the ionization threshold for a target. 

Table 1.4. Value of Terms Constituting Matrix Elements of the Type 
([lo-9 --+ 2u9 ](17rux)IA(+)I[lu9 --+ 2u9 ](17rux)} 

Basis HN+I(a.u.) PV+VP 

1 1.3004 -0.1109 
2 1.2998 -0.1112 
3 1.2996 -0.1114 
4 1.2999 -0.1112 
5 1.2999 -0.1112 

The high energy pseudoresonances (Figs. 1. 7 and 1.8) apparently introduced by 

the incorporation of the inelastic channel recorrelation terms is suggestively similar 

to behavior observed in the application of the complex Kohn method to targets 

described by multiconfiguration wavefunctions [29]. In this case, a simple expansion 

of the Q-space of Eq. 1.16 in terms of direct products of all configurations included 

in the target wavefunction and all partially occupied orbitals leads to spurious 

high energy resonances. This is attributed to the partial representation of closed 

channels not explicitly treated in the coupled equations [29] . This consequence of 

not correctly treating the Q-space terms in the coupled equations or their equivalent 

suggests that even for a simple, single determinant description of <I>i in Eq. 1.16, if 

for some reason elements of the Q-space terms are unstable with respect to basis 

sets, then similar features may be observed in the SMC cross sections. Such features 
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axe, in fact, observed in the cross sections for N2 , H2 , and in some instances, for 

H20. 

The net effect of either numerical inaccuracy(which should only occur in ex

treme cases), poor linear dependency properties of the orbitals constituting the 

determinants in Eq. 1.9, failure of the separable potential as discussed in [12] and 

hence nearly singular A ( +), or poor convergence behavior arising from some as yet 

undetermined intrinsic properties of the A(+) operator in Eq. 1.5 connected to the 

fi- a(P fi +PH) terms is contamination of the inhomogenous solution of Eq. 1.5 

with the homogenous solution, i.e., 

(1.24) 

The question of the existence of such a solution has been considered in detail. One 

aspect of the arguments given to prove that in fact there is no non- null -y< + ) present 

in the SMC method concerns the spectrum of A(+). Although it is true that in 

theory the A(+) operator has a well-defined inverse, experience with multichannel 

calculations indicates, for the reasons given above, that numerically this is effectively 

not true in some cases. Further, the anticipated improvement in the behavior of 

the operator with increasing basis set size and number of elements in the expansion 

1.9 has not been realized [1,2]. In fact, the opposite behavior is more commonly 

observed. 

In light of all of the aspects of the application of the SMC to multichannel 

problems considered above, it must be noted that evaluating Eq. 1. 7 for large

scale, multichannel calculations has proven to be much more difficult than could 

have been foreseen from initial, promising applications of the method. Simply put, 

convergence of computed cross sections at the multichannel level of approximation 
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has not been obtainable for most electronic excitations via direct use of Eq. 1. 7 de

spite numerous improvements introduced to evaluate matrix elements of A ( +) more 

accurately. Indeed, although beneficial in that they removed questions concerning 

the convergence properties of earlier techniques, the computationally intensive na

ture of these improvements is such that it was not until high performance parallel 

computers became available that the extent of the effort needed to obtain reason

able results from Eq. 1. 7 was fully appreciated. With vector machines such as 

CRAYs, the turnaround time for a calculation was such that only a small number 

of progressively larger basis sets could be realistically considered. Anomalous re

sults were then easy to attribute to lack of flexibility in the basis, explanations for 

high energy pseudoresonances being sought for instance, in the spectrum of H N+I· 

Considering the basis set size requirements of other theoretical methods employing 

L 2 descriptions of the scattering electron wave function and continuum, this seemed 

sensible. The much greater computational power of machines such as the INTEL 

Delta computer have permitted repetition of large-scale multichannel calculations 

with many basis sets, thus revealing the instability of Eq. 1. 7 at the multichannel 

level, and the fallaciousness of earlier notions concerning basis set size. 

1.3.4 Application of SVD 

Very fortunately, a procedure has been found [30] that allows for the extraction 

of physically realistic cross sections from the elements of the variational functional 

1.7 via the matrix form, Eq. 1.10. The procedure involves applying singular value 

decomposition (SVD) to the matrix A(+), a technique usually effective for deal

ing with ill-conditioned sets of linear equations. Given this, the decomposition 
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algorithm computes matrices U, V, and a diagonal weight matrix W such that 

A<+)= uwvT (1.25) 

The steps used in applying the method are discussed in [26). Basically, the right

most columns of the orthonormal V matrix will correspond to the vectors spanning 

the theoretically nonexistent homogenous solution space/(+) (Eq. 1.24). By clas

sifying these vectors by symmetry, the spurious resonances appearing in different 

symmetry components of the cross section can be improved without affecting the 

other symmetries. Thus, although tedious in practice, one can gradually remove 

unphysical resonances by judicious selection of the weights in W to set to zero. The 

processed A -I matrix is then computed by the standard operation [26) 

A-1 =vw-1ut (1.26) 

This classification scheme also permits removal of those vectors which transform in 

a symmetry not spanned by the set of orbitals ¢J used in Eq. 1.9. This resolves 

problems discussed earlier concerning the quadrature scheme for the V G~+) V term. 

It should be noted that in some instances the SVD fails to converge. It was 

found that this can be corrected by one of two means. Either the ground state of 

the target is shifted slightly, or one can compute the column norms of A(+), i.e., 

the norms discussed in connection with typical matrix element values of A(+)) and 

remove the columns for which these are less than ,..... 0.001. Having removed the 

corresponding rows of A(+) and of the vectors b in Eq. 1.10, the SVD subroutine 

works and cross sections can be computed. Note that these two procedures are 

related in that the first corrects the problems associated with columns and rows 

with small norms, i.e., columns of zeros, by adding a small constant (but large with 
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respect to the unaltered matrix element values) to many matrix elements in each 

column of A(+). 

The importance of this SVD procedure in obtaining useful cross sections from 

the SMC at the multichannel level cannot be overemphasized. Its present appli

cation in actuality goes beyond the original intent of the method as a means of 

removing linear dependencies. Namely, for much multichannel work, many more 

elements of W need to be set to zero than the one or two usually so treated in 

application of SVD to ill-conditioned sets of equations, based on the values of W 

set to zero. 

This being the case, in the following section examples of the current use of the 

SVD procedure are presented in which its application is described in detail. Each of 

the examples represents either a different type of pseudoresonance observed in cross 

sections obtained by direct evaluation of the SMC Eq. 1.10, or a situation in which 

SVD allows physically reasonable cross sections to be recovered from otherwise 

unsatisfactory SMC cross sections. 

1.3.5 Examples of Pseudoresonances 

As is evident from results such as those given in Figs. 1.3, 1.7,and 1.8, straight

forward application of the SMC to multichannel problems has proven to yield un

stable cross sections. Although the difficulties encountered in multichannel studies 

have not been fully resolved, the SVD procedure outlined above has served to miti

gate the problem. Four distinct cases have been selected to illustrate both the types 

of anomalous results obtained by application of the SMC to multichannel problems 

and the implementation of corrective steps to retrieve physically meaningful cross 
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sections by use of SVD. 
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Figure 1.13. Pseudoresonance observed in the 2 L:9 component of the exci
tation cross section for the X 1 E't --+ A3 L:t transition of N2 for one basis 
set. The solid line indicates the results of application of SVD, dashed line 
is obtained directly from evaluation of Eq. 1.10. 

One of the easiest anomalous resonances to deal with is illustrated in Figs. 1.13-

1.15. The feature depicted was observed in the 2 L:9 component of the scattering 

amplitude of a multichannel study of N 2 using a large 83 function basis. As would 

be expected, the resonance, centered at "' 14.25 e V appears most prominently in the 

inelastic X 1 Et -+ A3 Ej channel as shown in Fig. 1.13. Nonetheless, the feature 

also is evident against the large, nonresonant component in the ground state elastic 

(Fig. 1.14), and the excited state elastic A3 L:J -+ A3 L:j (Fig. 1.15) channels. In 

this latter instance, only the contribution of the doublet space to this cross section 

is reported. It should be noted that no closed channel excitations were included in 
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the expansion of w~) (Eq. 1.9) in these calculations. 

As previously discussed, the eigenvalues and eigenvectors of the HN+l operator 

spanning the 2 :E9 component of W~) were examined to ascertain whether the feature 

could possibly be associated with a core excited shape resonance, or other physically 

6.0 ,-----~------~-----.------r------.-----,r---~ 

-N 

8 5.0 
c:.> 

~ 
I 
0 
~ 

-4.0 

= 0 ...... 
-.J 

C,.) 
Ill 

C/) 

3 .0 
rn 
rn 
0 

'"' u 

/ \ 
/ I 

\ 

2 o 0 -t-rrrrrrrTTTTTTTTTTTT-rrr"TT1"T"nrTT1rT"T""rT"T""rrrTTT"TTTTTTTTTTTT-rrr"TT1....-nrTT1..........-l 

10 11 12 13 14 15 16 17 
Electron Energy ( eV) 

Figure 1.14. Pseudoresonance observed in the 2 :E9 component of the exci
tation cross section for the X 1 :Et __. X 1 :Et transition of N 2 for the same 
basis set as in Fig. 1.13. The same notation for the plotted curves as that 
for Fig. 1.13 is used. 

plausible resonance mechanism. In this case, eigenvalues of 10.02, 15.25, and 15.86 

eV (with respect to the ground state of N2) were found. The first, upon examination 

of its corresponding eigenvector, was found to be of 2 f::j. 9 symmetry and hence could 

not contribute to a feature present in the 2 L:9 symmetry component of the scattering 
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amplitude. The 15.25 eV eigenvalue was likewise found to be a quartet 4 ~; solution 

and hence also could play no role in the observed feature. The 15.86 eV eigenvalue 

was of 2 ~; symmetry and hence could in principle be associated with this feature, 

although a "" 1.6 e V energy shift away from the location of the resonance makes 

this rather implausible. The principle components of the particular vector are the 

[17ru,x __. 17rg,x)(5o-u) and (17ru,y __. 11rg,y](5o-u) excited state determinants. 
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Figure 1.15. Pseudoresonance observed in the 2 ~9 component of the exci
tation cross section for the A3 ~;t __. A3~;t transition of N2 for the same 
basis set as in Figs. 1.13 and 1.14. The same notation for the plotted 
curves as that for Fig. 1.13 is used. 

The source of the resonance is most clearly revealed by tracking the condition 

number for the A(+) matrix in Eq. 1.10 as one passes through the resonance region. 

These are listed in Table 1.5. Clearly, this rapid increase by a factor of rv20 indicates 

a problem. However, verification of the accuracy with which the inverse is computed 
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results in a matrix not differing significantly (in terms of the accuracy required in 

these studies indicated earlier) from the unit matrix ("" 10-8 ) near the 14.25 e V 

resonance location. Having classified the vectors of V (Eq. 1.25) by symmetry, the 

Table 1.5. Condition Numbers for A(+) for the 2 Et 
Symmetry Block of N 2 

Incident Energy 

10.0 
11.0 
12.0 
13.0 
13.5 
14.0 
14.25 
14.5 

14.75 
15.0 
16.0 

Condition Number( x 107 ) 

0.12 
0.15 
0.22 
0.39 
0.68 
2.4 
2.8 
1.2 

0.69 
0.49 
0.22 

smallest element of W corresponding to 2 'E9 symmetry was set to zero. Repeated 

application of this procedure over the scattering energies used results in a cross 

section indicated by the solid curves in Figs. 1.13-1.15. Removal of a single 2Et 

column in V thus cleanly removes the pseudoresonance feature in all channels. Ex

amination of this vector shows its composition from 13.0 to 15.0 e V incident electron 

energy remains unchanged except for a change of phase near the resonance (Table 

1.6). Clearly the composition of this column vector is quite different from the 15.86 

eV eigenvector of the fiN+l operator. Hence, one could assume with reasonable 
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confidence that this resonance results from a failure of the separable potential ap

proximation (Eq. 1.11) and not as a consequence of a physically realistic, resonant 

state. 

Pseudoresonance features such as this example appear regularly at intermedi

ate (10-20 eV incident electron energy range) energies in multichannel studies of 

both linear and nonlinear molecules, generally being 1 to 2 e V in width. They are 

cleanly removed by the SVD procedure as discussed above in which the smallest 

element of theW matrix of Eq. 1.25 corresponding to the symmetry in which the 

resonance appears is removed. For doubly degenerate symmetries a pair of vectors 

is removed. The corresponding vectors of V in Eq. 1.25 thus removed do not cor

relate with eigenvectors of HN+l associated with eigenvalues near the location of 

the pseudoresonance. Hence, in these instances it would seem the SVD procedure 

is being employed in a manner for which it is intended, namely to remove those 

vectors which are numerically indistinguishable from the homogenous solution of 

Eq. 1.5 or lead to an essentially singular v-1 . 

Table 1.6. Composition of the Column of V Removed by SVD 

Incident Energy 

13.0 
14.0 
14.25 
14.5 
15.0 

Principle Components 

-0.8 [0](4u9 ) +0.5[0](5u9 ) +0.1[0](6u9 ) +0.1[0](8u9 ) 

-0.8 [0](4u9 ) +0.5[0](5u9 ) +0.1[0](6u9 ) +0.1[0](8u9 ) 

0.8 [0](4u9 ) -0.5[0](5u9 ) -0.1[0](6u9 ) -0.1[0](8u9 ) 

0.8 [0](4u9 ) -0.5[0](5u9 ) -0.1[0](6u9 ) -0.1[0](8u9 ) 

-0.8 [0](4u9 ) +0.5[0](5u9 ) +0.1[0](6u9 ) +0.1[0](8u9 ) 

A second feature frequently encountered in multichannel SMC studies is typi-
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fied by the structures seen in Figs. 1.16-1.19. In this example, results of a multi

channel study on N2 using a 74 function basis indicate a broad, physically implau

sible resonance-like feature centered near 27 eV incident electron energy in the 
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Figure 1.16. High energy pseudoresonance observed in the 2 Ilu component 
of the excitation cross section for the X 1 :E;!" -+ W 3 ~" transition of N2 for 
a 7 4 function basis. The same notation for the plotted curves as that for 
Fig. 1.13 is used. 

X 1 :E9 -+ W 3 ~" channel (Fig. 1.16). This is associated with the recorrelation 

terms discussed earlier. Less prominent structure is also seen in the X 1 :E g -+ A 3 :E;!" 

channel (Fig. 1.17), although a peak is not observed. The elastic scattering in the 

ground state (Fig. 1.18) and W3~"-+ W3~" (Fig. 1.19) channels also reveal weak, 

broad features around 27 eV. Although one could reason that this behavior is just 

like that previously discussed, but displaced to higher energies and hence involving 
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broader peaks, some aspects of these features indicate otherwise. 

Unlike the behavior of the condition number for A(+) cited in the previous ex

ample, there is no distinct increase in this parameter in passing through the 25 to 30 

eV impact energy range. In addition, in contrast to the 2 :E9 resonance, there tend 
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Figure 1.17. High energy behavior observed in the 2 ITu component of the 
excitation cross section for the X 1 :E;!" --+ A3 :E;!" transition of N2 for a 74 
function basis. The same notation for the plotted curves as that for Fig. 
1.13 is used. 

to be several vectors of V in Eq. 1.25 associated with small w diagonal elements 

in W with the symmetry in which the feature is observed -in this instance 2 ITu. 

Unfortunately, for these broad peaks the spectrum of the HN+I operator is less in

formative, especially for modest and large basis sets. The eigenvalues falling in the 

energy range of interest and their spin and symmetry assignments are presented in 
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Table 1.7. The null space vectors ofV removed in order to reduce the highly unphys

ical resonance, although involving predominately the same type [17ru -+ 11r9 ](mr9 ) 

determinants as those constituting the eigenvalues-of fiN+l in the table, are built 

on 7r 9 orbitals different from those of the Hamiltonian eigenvectors. Again, the 

correlation between the eigenvectors of fiN+I and the null space, although greater 

than in the first example, is still weak. 
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Figure 1.18. High energy behavior observed in the 2Ilu component of the 
elastic cross section for N 2 using the same 7 4 function basis set as in Figs. 
1.16 and 1.17. The same notation for the plotted curves as that for Fig. 
1.13 is used. 

Thus, this second application of the SVD procedure seems to be justified on the 

same grounds as for the narrower peaks observed at lower energies in the inelastic 

channels, namely the fact that some vectors of V are effectively indistinguishable 

from the homogenous solutions of Eq. 1.5 despite the fact that this is not clearly 
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indicated by the size of the weights in theW matrix. Unfortunately, the resulting 

cross sections still show rather unusual energy dependencies uncharacteristic of the 

1/ E behavior of inelastic, optically forbidden transitions. 

Table 1.7. Eigenvalues of HN+I for the 2Ilu Symmetry Component of N2 

Energy above X1~t(eV) 

25.23 
26.20 
26.42 
27.82 
28.48 
29.92 
32.12 

Spin/Symmetry 

4IIu 

2IIu 

4Ilu 
4
Ilu 

2cpu 

2IIu 

2Ilu 

A third example of the use of SVD to compensate for the instability inherent 

m SMC multichannel studies is given by results of a seven-state calculation for 

H2 involving coupling of the X1 ~t, (E,F)1 ~t, a3 ~t, B1 ~t, b3 ~t, C1 Ilu, and 

c3 Ilu states. In particular, the 2~u component of the X1~9 -+ a3~t is much too 

large to be physically realistic, viz. "' 30 times greater than for two- and five-state 

calculations. The cross sections for the other channels, particularly the ground 

state elastic channel, are also significantly greater. Unlike the previous examples, 

this behavior is observed for a variety of basis sets indicating convergence to a highly 

unphysical cross section. No recorrelation terms are present in this symmetry block. 

Figure 1.20 depicts the X 1 ~9 -+a3~t cross section in the 2 ~u symmetry for two 

basis sets. The corresponding cross section in the ground state elastic cross section 
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is depicted in Fig. 1.21. The long dashed line in both figures indicates results 

for a five-channel (X1 E9 , a3 Et, b3 E-;!", c3 Ilu) calculation. A partial wave analysis 

indicates that the peak near 15 eV observed in the X 1 E9 --t a3 Et is not due to 

unphysical contributions from high partial waves. 
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Figure 1.19. High energy behavior observed in the 2Ilu component of the 
excitation cross section for the W 3 Llu --t W 3 Llu transition of N2 for a 74 
function basis. The same notation for the plotted curves as that for Fig. 
1.16 is used. 

Fortunately, due to the availability of experimental cross sections and reliable 

theoretical results from the complex Kohn method, we know a priori approximately 

what cross section values to expect. Clearly, the 2 .6.u component alone greatly 

exceeds experimental cross sections and theoretical values at all except the highest 

energies considered. 
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Figure 1.20. 2 bou component of the excitation cross section of the X 1 L:9 ~ 
a3 L:t transition for H2 for a seven state calculation. The short dashed 
lines indicate results obtained directly from Eq. 1. 7, solid lines those with 
SVD processing. The long dashed line indicates results of a five channel 
calculation. Results for two basis sets are plotted. 

As with previous examples, the computed A(+) matrix is treated by SVD and 

the column vectors of V labeled by symmetry. In this case, however, the 2 bou 

component of A(+) shows no sign of being ill-conditioned (e.g., condition number 

rv 1.4), hence SVD is technically not warranted. Nonetheless, by selective deletion 

of columns transforming as 2 bou from V, we can recover the original, more physically 

reasonable results of the five-channel studies. The solid lines in Fig. 1.20 indicate 

the processed X 1 E9 ~ a
3 L:t cross sections. Likewise, the solid lines in Fig. 1.21 

show the improved cross sections for the ground state elastic channel. The well 

conditioned property of the 2 bou component of A<+) is apparent in the weights of 

the W matrix being set to zero. For the particular basis set considered here, these 
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values are 0.30434 and 0.13769. However, for the purposes of this work, as the 

normalization of the A(+) matrix can be chosen arbitrarily, these weights are only 

important in that they are the smallest for the 2 .6.u component. As the goal is to 

remove the vectors of V most heavily contaminated by the homogenous solution 

/(+),the magnitudes of the weight values of Ware not directly relevant . 
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Figure 1.21. 2 .6.u component of the elastic cross section corresponding to 
the excitation cross section of Fig. 1.20. Dashed lines indicate results 
obtained directly from Eq. 1.10, solid lines those with SVD processing. 

An examination of the vectors removed from V reveals the principle components of 

the two degenerate pairs of columns removed to be 
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The dominant component of I is the [lu9 -+ luu](l89 ,xy) determinant . . There is no 

experimental evidence for a core-excited shape resonance of this structure. Column 

II is more ambiguous as all of the listed determinants contribute approximately 

equally. Nonetheless, as the resulting cross sections are so greatly improved by the 

removal of all four columns of V, the procedure is justified on physical grounds. 
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Figure 1.22. Pronounced pseudoresonance in the 2II9 component of the 
X 1 :E9 -+ B 3 IT9 excitation cross section for N2 at the two state approxi
mation. Solid line represents results of directly from Eq. 1. 7; dashed line 
with circles, results when two vectors of V are deleted; lond dashed line, 
results when six vectors of V are removed. The short dashed line indicates 
results for a basis set in which the resonance was not observed. 

As a final example, a resonance feature appearing in a variety of basis sets for 

N 2 is depicted in Figs. 1.22-1.24. The position of this peak varies over a range of 

5 eV depending on the basis selected. Unlike the other resonance-like structures 
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discussed, the nature of this type of behavior is quite different and more difficult to 

handle. 

Figure 1.22 depicts the cross section in the inelastic X 1 :E9 --!- B 3 IT9 channel. 

The peak at ..-vl3.75 eV is very sharp and almost five time greater than the non

resonant background obtained using other basis sets (short dashed line). There 

is no experimental evidence for a resonance of this symmetry so high above the 

B 3 IT9 threshold {7.4 eV). Figures 1.22 and 1.23 show the behavior in the elastic 

X 1 :E9 --!- X 1 :E9 and B 3 II9 --!- B 3 IT9 channels. The resonance is prominent in the 

former case, while in the latter, the steeply dropping nonresonant background serves 

to diminish its prominence in the B 3 IT9 --!- B 3 IT9 channel. Included in Fig. 1.24 

are both the resonant and nonresonant parts in the 2II9 component of the cross 

section. The solid line indicates the resonant 2 IIt part while the dashed+squares 

line indicates the much smaller, nonresonant contribution of the 2 II_; symmetry. 

This will be readily understandable in terms of the nature of the resonance, which 

is characterized by a dominant [3u9 --!- l7r9 ](4u9 ) electronic configuration. 

The appearance of this resonance may at first seem analogous to features ob

served in a Feshbach resonance study carried out using the SMC method [27). 

However, in that study, both open and closed channel excitations were employed to 

study their effects on the elastic channel and open inelastic channel cross sections. 

In contrast, the cited example is a simple, two-state calculation involving no closed 

channel excitations. There are also no closed channel singlet terms (recorrelation 

terms) present in the dynamically interesting 2 II9 symmetry. Only the [O](l7rg(x,y) ) 

is present as a recorrelation term. Nonetheless, the SMC consistently "finds" such 

features in certain symmetries of N 2 and in other molecules. Similar behavior is 

observed in the cross section for the X 1 :E9 --!- b3 :E~ transition in H2 when additional 
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scattering functions are included in the scattering basis. 

The behavior of the condition number for A ( +) also indicates that this feature is 

qualitatively different from that observed in the 84 function 2 E 9 example first cited. 

Note that although there is a minimum in the condition number near the location 

of the resonance( ,....,13.5 eV), the rise is not nearly as rapid nor as pronounced as 

in the first example. Comparison of the magnitudes of the condition numbers in 

this table and those in Table 1.5 indicates that the appearance of these resonance 

features is not dependent on an absolute, but relative, magnitude of the diagonal 

elements of Win Eq. 1.25. 
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Figure 1.23. Pseudoresonance in the elastic scattering cross section of N 2 

corresponding with the feature depicted in the inelastic channel in Fig. 
1.22. The same notation as in Fig. 1.22 is used. 
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Table 1.8 Condition Numbers for A(+) for 2 IT; of N2 . 

Incident Energy 

12.0 
13.0 

13.25 
13.5 

13.75 
14.0 
15.0 
16.0 

Condition Number( x 103
) 

2.8 
6.7 

13.0 
15.0 
6.1 
3.5 
1.5 
1.5 

Consideration of the 2 IT9 component of the HN+l spectrum for the modest

sized basis used in this example reveals some interesting aspects of the structure 

observed in all channels. In the energy range of concem there are three eigenvalues 

of 13.88, 14.16, and 15.33 eV taken with respect to a zero energy ground electronic 

state. The 14.16 eV level is associated with the 4 Il9 space and need not be consid

eredfurther. The 13.88 e V pair of eigenvectors are dominated by contributions. from 

the [0)(27rg(x,y)) and [3u9 -+ 11rg(x,y)](4u9 ) determinants, the elastic component be

ing dominant. The 15.33 eV doublet pair is similar in that its primary components 

are the configurations [0)(27rg(x,y)) and [3u9 -+ 17rg(x,y))(4u9 ), this time the latter 

configuration making the dominant contribution. The possibility that this effect 

is a consequence of treating the 3u g -+ 4u 9 excitation as a closed channel when 

it is energetically open was checked by carrying out a SCF calculation using the 

frozen single particle functions originally optimized for the 3u 9 -+ 17r 9 excitation. 

Here, the threshold for the triplet [3u g -+ 4u g) excitation is at 15.76 e V, the singlet 

falling at 16.57 eV. Both values are positioned well above the 13.5 eV position of the 
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resonance. This arrangement of energies would indicate that if a pseudo-Feshbach 

resonance were to be responsible for the structure, it would more likely be located 

near the 15.33 eV eigenvalue. It is this eigenvector which most closely mocks the 

energetics giving rise to true Feshbach resonances. 
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Figure 1.24. Pseudoresonance in the elastic B 3 II9 ~ B
3 IT9 cross section of 

N2 corresponding with the feature depicted in the inelastic channel in Fig. 
1.22. Note that here only the doublet space of '111~) . is included. Quartet 
contributions to the cross section are not considered. The small, nonres
onant 2II_;- contribution is indicated by the solid+squares line, otherwise 
the same notation as in Fig. 1.22 is used. 

It should be noted that the configuration [3u9 ~ l7r9)(4u9 ) lacks some im

portant characteristics of those configurations typically associated with Feshbach 

resonances, as for example the [3u 9 4u;J configuration responsible for the prominent 

11.48 eV resonance observed in the electronic excitation spectrum of N2 [28]. First, 

almost all cases of such Feshbach or core-excited resonances involve a Rydberg par-
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ent state with the additional electron then occupying a diffuse Rydberg orbital as 

well. In the case under consideration, however, the [u 9 -+ 17r 9 ] excitation is valence 

in character. Secondly, there is no experimental evidence for a valence excited state 

of N2 supporting (i.e., serving as a parent) a Feshbach resonance. Hence, it would 

seem unreasonable to attribute the resonance observed in these SMC results to a 

Feshbach resonance mechanism. 

Finally application of SVD to the calculation of A ( +) further distinguishes this 

structure from that seen in previous examples. Examination of the different curves 

plotted in Fig. 1.22 corresponding to removal of different numbers of the total of 

18 columns of V in Eq. 1.26 transforming as 2 119 reveals the problem. Namely, in 

contrast to the other cases where removal of the smallest vector or pair of columns 

for nondegenerate symmetries is sufficient, only by zeroing out many elements of W 

is reasonable behavior, i.e., resemblance to the nonresonant cross section for the in

elastic channel observed using other basis sets. This is accomplished at the expense 

of deterioration of the quality of results in other channels. An explanation for this 

behavior can be found by examining the components of the columns being removed 

by the SVD procedure. The pair associated with the smallest diagonal elements 

w have approximately equal contributions form the [0](27r9 ), [3u9 -+ 17r9 ](4u9 ), 

[3u9 -+ 17r9 ](5u9 ) , [3u9 -+ 11r9 ](6u9 ), and [3u9 -+ 17r9 ](7u9 ) confirmation. As

suming that this structure is in fact associated with the 13.88 eV state found in 

diagonalizing the HN+I operator, it is clear that the SVD procedure is not effective 

at eliminating its spurious influence on the cross sections in the inelastic channel. 

Experience has shown that the best approach to resolving questions concerning 

spurious resonances such as this is to employ many different basis sets. Over any 

particular range of energies, most basis sets exhibit nonresonant behavior. The 
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results of any set yielding such pseudoresonances can then be disregarded over 
. . 

the energy range significantly influenced by the resonance. By averaging the cross 

sections obtained from several basis sets, the resulting values appear physically 

reasonable and converged. 

1.4 Conclusions 

Application of the SMC method to multichannel problems has not been par

ticularly successful. Direct evaluation of the variational functional Eq. 1. 7 yields 

highly unstable cross sections and poor convergence characteristics for most exci

tation processes. Three possible reasons for this behavior have been explored. The 

system of linear equations manipulated in the course of computing cross sections do 

not appear to be sensitive to purely numerical inaccuracy such as round-off error 

or inaccuracy in matrix inversion procedures. Rather, the two principle sources of 

instability of the method are 1), the breakdown of the separable potential approxi

mation; and 2), the difficulty in evaluating A<+> for w~> matrix elements involving 

determinants of multiple parentage. The first problem is successfully addressed by 

application of an SVD procedure. The instability arising from the second problem 

may eventually be resolved by modification of the action of the projector operator 

in A ( +), although its shortcomings can be partially mitigated by use of SVD as well, 

as demonstrated by the cited examples. 
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2. Computation of the Scattering Amplitude 

The purpose of this chapter is to briefly describe the computational procedures 

used to calculate scattering amplitudes and hence the integral and differential cross 

sections reported in subsequent chapters. For clarity, several of the equations in-

troduced in the first chapter will be repeated here. 

The Hamiltonian for a scattering electron colliding with anN -electron molecule 

can be written in the form 

H = (HN + TN+I) + V = Ho + V, (2.1) 

where HN is the Hamiltonian of the molecule; TN+b the kinetic energy operator 

of the scattering electron; and V, the interaction potential between the scattering 

electron and the molecule. This is equivalent to HN+I of the previous chapter. 

It can be shown ([1] of chap. 1) that the full scattering wave function satisfies 

the projected Lippmann-Schwinger equation 

(2.2) 

and the following inhomogenous equation: 

(2.3) 

where 

A(+)= !(PV + VP)- va<+)v + 1 [fi-N+ 1(iiP +PH)]. (2.4) 
2 P N+1 2 
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To avoid confusion with the labeling for the spherical harmonics, r has been sub

stituted for m of chapter 1 as the channel label. Skr = <Pr exp(ikr · rN+I) are 

eigenfunctions of H 0 , fi = E- H, Pis the projection operator(Eq. 1.3), and G~+) 

is the projected Green's function with outgoing-wave boundary conditions. 

Using Eqs. (2.2) and (2.3), the body-frame scattering amplitude for a fixed 

molecular orientation in the linear momentum representation can be constructed: 

The trial scattering wave functions used in Eq. (2.5) need not satisfy scattering 

boundary conditions and can be expanded in (N +!)-electron Slater determinants: 

(2.6) 

The stationary value of Eq. (2.5) leads to the fractional form for the scattering 

amplitude 

fb(kr·,kr) = - 2~ ~(Skr,IVIxi)(d-1 )ii(XiiVISkr}, (2.7) 
t,] 

where 

These are, of course, the matrix elements of the A ( +) matrix, the numerical prop-

erties of which were considered in detail in the previous chapter. 

In most of the work reported here, Eq. (2. 7) is evaluated at a number of Gauss

Legendre quadrature points. In some instances, a simple trapezoidal quadrature is 
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employed for the azimuthal angle ( 4>) in order to maintain symmetry properties 

concerning 1r x and 1r y orbitals in linear molecules. Interestingly, little loss in accu

racy is noted for this cruder quadrature. Having computed Eq. (2. 7) at a number 

of points, integral cross sections can be obtained, 

(2.8) 

where kr'(r) are directions of the outgoing(incoming) plane waves. Transformation 

of the scattering amplitude from the linear momentum to the angular momentum 

representation leads to the partial-wave amplitude in the body-fixed frame, 

where Yim are spherical harmonics. 

The transformation to the lab frame is presently accomplished by first expand

ing (2.7) in spherical harmonics for the outgoing wave, 

(2.10) 

Then, using the fact that kr will be the z-axis in the lab frame, 

(2.11) 
m 

the lab frame scattering amplitude is found. Here a and f3 are equivalent to -kr; 

they represent the molecular orientation with respect to the incident electron beam. 

Differential cross sections are then found by evaluating 

(2.12) 
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In studies involving the water and nitrogen molecules, some singlet transitions 

are considered for which the expansion of the scattering wave in £ 2 functions alone, 

Eq. (2.6), is ineffective at treating the contributions of higher partial waves in Eq. 

(2.9) to the scattering amplitude. To account for this component of the scattering 

amplitude, the Born Closure method is invoked. The premise is that there is some 

lmax, mmax in the partial wave representation of the scattering amplitude Eq. (2.9) 

beyond which a lower order theory such as the First Born Approximation (FBA) is 

essentially correct . For the energies of interest in this work, and the partial waves 

treated by this means (typically, lmax = 4, mmax = 2), this assumption should 

be valid. In our present implementation, the composite scattering amplitude(body 

frame) in the linear momentum representation is given by 

ll' mm' 

For the dipole-allowed X 1 A1 -+ A1 B 1 transition considered in the study of 

the water molecule, the point dipole potential was used in computing the FBA 

scattering amplitude. The procedure is described in greater detail in [2]. In this 

approximation, the analytical expression for the linear momentum representation 

of the scattering amplitude is given by 

(2.14) 

The angular momentum representation of the FBA amplitude can also be expressed 

analytically as 

J,f!/f/,m(kr•, kr) =( -1)m' [(21 + 1)(21' + l)jlf2 (3/47r)112 dm'-m , 

(~ ~ ~) (~ -~' m' ~m) J,,,(kr·,kr), 
(2.15a) 
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where 

P oo (2 . 1)11 ( ")I 2 p+~""' J + ·· . p + J · 2j 
J,,,,(kp,kr) = (kr ,kr)I/2"' £:o j! [2(p+j)+3]!!"' ' (2.15b) 

with p = 1 if kr > kr', p = 1' if kr' > kr, and "' = k<fk>, where k<(k>) is 

the smaller(larger) of kr and kr'· dm'-m are the d±1 ,o elements of the transition 

dipole. These can be used directly in (2.13) to provide the body-frame composite 

scattering amplitude. The analytical expressions facilitate the evaluation of the 

differential cross section in a more direct manner than Eq. (2.12); averaging over 

Euler angles(a, .B,I) is substituted for transforming using rotation operators D~m · 

dO"COM = kr' J da sin .Bd.Bd"f IJCOM(k , k )12 
df! kr 81r2 r ' r (2.16) 

This procedure has the advantage of avoiding the expansion in Eq. (2.10) used in 

the transformation step involving rotation operators Eq. (2.11). 

For excitations in N 2 that involve higher order moments of the electronic transi-

tions, we opt to compute the full FBA scattering amplitude in the linear momentum 

representation. Chung and Lin [3] have shown that for excitation from a closed shell 

orbital </> 11 to an unoccupied orbital¢>,.,., the direct (no exchange) FBA amplitude is 

given by 

(2.17) 

By expressing the orbitals ¢>v, ¢>,.,. as linear combinations of Cartesian Gaussians, the 

formulae of Watson and McKoy [4] can be used to calculate the matrix elements 

comprising the scattering amplitude analytically. It should be noted that a more 
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frequently encountered expression for the FBA scattering amplitude employs the 

generalized oscillator strength. By means of the Bethe integral 

(2.18) 

one can convert (2.17) into this form, i.e., 

(2.19) 

with 

K = kr -kr' 

One finds that the corresponding matrix elements for Gaussian functions for (2.19) 

are equivalent to those of Watson and McKoy to within a factor of 2/ K 2 • 

To obtain the combined amplitude (2.13), Eq. 2.17 is evaluated at a large num

ber of Gauss-Legendre quadrature points, and converted to the angular momentum 

representation via (2.9). The elements of the angular momentum representation 

J/'~'~m are then used with the f1~:f,~m in (2.13) to compute the new composite 
) ) 

amplitude JCOM at the same quadrature points as used in the original evaluation 

In general, for work involving strongly forward peaked transitions, best results 

are obtained by working to the greatest extent possible in the linear momentum 

representation. As a consequence, for transitions involving multiple hole-particle 

excitations, i.e. X 1:Et - w 1~u in N 2 , best results are obtained by combining 

amplitudes in the linear momentum representation. The low angle scattering is 

especially difficult to converge when working with amplitudes in the angular mo-

mentum representation. 
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For continued work on spin allowed transitions, where regardless of the be

havior of the scattering at low angles, high partial waves are found to contribute 

significantly to the cross sections, a more accurate procedure for the body to lab 

frame transformation may be necessary. One way of avoiding rotation operators 

would be to use the rotated kr' for a given molecular orientation (a, /3) to generate 

a spline fit so as to recompute the amplitude at the Gauss-Legendre quadrature 

points in the lab frame. In this way, no partial wave expansion of j 00M would be 

necessary to transform to the lab frame. 
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of H 2 by Low-Energy Electrons 

Multichannel studies of the differential and integral cross sections for the a 3 ~t, 

b3 ~;t", and c3ITu states of the hydrogen molecule have been carried out using the 

Schwinger multichannel(SMC) method. Both integral and differential cross sections 

for the b3 Et and c3 Ilu are in satisfactory agreement with those obtained using the 

complex Kohn and R-matrix methods, while significant differences are found for 

the a 3 ~t state. The differential and integral cross sections for the b3 ~;t" state are in 

good agreement with available experimental values, but differences present between 

experiment and previous two-state calculations persist at the multichannel level for 

the a 3Et and c3 Ilu states. 

3.1 Introduction 

Electron- impact excitation of molecules is an important process in various 

physical systems; examples include the upper atmosphere, shock-heated gases, gas 

lasers, and industrial and laboratory plasmas. More robust modeling of such sys

tems clearly depends on extensive and reliable sets of electron impact excitation 

cross sections. However, both the experimental and the theoretical determination 

of such cross sections have proven extremely difficult, and the data base remains 

limited for even the simplest and most significant molecules. Yet recent progress 

in the development and application of theoretical methods for studying electron

molecule collisions suggests that the situation may be improving. For instance, 
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there have been recent ab initio studies of the cross sections for electronic excita

tion of polyatomic molecules such as H20 [1], H2CO [2,3], and C2H4 [4,5], and of 

the open-shell, diatomic molecule 02 [6]. 

To date, most such electron-impact excitation studies of molecules have been 

carried out at the two- or three-channel levels of approximation. Comparisons be

tween different theoretical methods at this level have shown reasonably satisfactory 

agreement for excitations of H2CO and C2H4 [2,3]. Good agreement was also found 

in the most extensively studied case, the prototypical X 1 r:; ---. b3 L:'J transition in 

H2. Excitation of the b3 L:'J state of H2 has been studied within the two-channel, 

fixed-nuclei approximation using the linear algebraic [7], R-matrix [8], Schwinger 

multichannel or SMC [9], and complex Kohn [10] methods, and the results of these 

calculations agree well both with each other and with the experimental data for 

the integral and the differential [11-13] excitation cross sections. This agreement 

is encouraging, and suggests that few-channel studies using these methods may be 

useful. In particular, such studies would serve to determine to what extent the 

absence of multichannel coupling in calculations for excitations of the a 3 I:"% and 

c3 Ilu states [14] is responsible for the significant disagreement with measured cross 

sections [15]. 

Two multichannel studies of the H2 molecule have recently been reported. In 

one [16], the complex Kohn technique was used to study excitation of the a 3 I:"%, 

b3 L:t, and c3 IIu states at the five-channel level. (In our usage, the degenerate II 

components are counted as separate channels, and therefore the number of channels 

can exceed the number of physical states.) In the other study [17- 19], the R

matrix method was used to carry out a nine-channel calculation that included not 
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only the a3~t, b3 ~;!"", and c3 Ilu triplet states, but also the B 1 ~;!"", (E, F)1 ~t, 

and C!f states. The R-matrix study included target correlation effects, with the 

ground and excited states of H2 obtained from a configuration interaction ( CI) 

calculation. While both of these studies showed marked channel-coupling effects, 

they disagreed with each other in numerous qualitative and quantitative features 

of the cross sections. Because different representations of the target wavefunctions 

and channel coupling schemes were used, however, it is difficult to assess the origin 

and significance of discrepancies between the two sets of results. 

In the present work, we have used the SMC method to obtain excitation cross 

sections for the a3 ~t, b3~~, and c3 Ilu states within a five-channel approximation, 

that is, at the same level of approximation as was used in the earlier complex

Kahn study [16]. We are thus able to compare our results directly to the results of 

the Kohn calculation. It is also useful to compare with R-matrix results in which 

the singlet channels have been treated as closed in the R-matrix expression for the 

scattering wavefunction, but target correlation is retained [19], and to cross sections 

of the full R-matrix calculation [17,18]. As will be seen, these comparisons allow 

certain inferences to be drawn but leave many question unanswered. Specifically, 

convergence appears easier to achieve for excitation of the valence b3 E;!"" state than 

for the Rydberg a3~t and c3 IIu states, a not-unexpected result. However, the 

differential cross section results for the b3 ~~ state of the R-matrix studies are 

qualitatively different from that of either the complex Kohn or the present SMC 

calculation. Our results for the c3 Ilu state are in fairly good agreement with the 

complex Kohn results; however, agreement for the a3~t state is only qualitative. 
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These observations and tentative explanations for them will be discussed in detail 

below. 

The outline of the remaining sections is as follows. Sec. 3.2 give details of our 

calculations. Results are presented and discussed in Sec. 3.3. A general discussion 

and concluding remarks are given in Sec. 3.4. 

3.2 Computational Details 

For this particular study of the H2 molecule, a large number of basis set were 

considered to verify convergence of the cross sections in all channels. The cross 

sections reported in this study were obtained from the basis given in Table 3.1. All 

Table 3.1. Exponents of Cartesian Gaussian basis for expansion of the 
target wavefunctions. 

Center Type Exponent 

hydrogen s 48.4479, 7.28346, 1.65139, 
0.462447, 0.145885 

hydrogen p 4.5, 1.5, 0.5, 0.25, 
0.125, 0.0655 

hydrogen d 6.00, 3.00, 1.50, 0. 75 
c.m.4 s 0.083, 0.027 
c.m. p 0.0226, 0.00779 
c.m. d 0.150 

4 center of mass 

Gaussian functions were included in the target wavefunction. No additional scat-

tering functions were employed. The excited electronic states included in this study 
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- a3~; ,b3 ~'J , and c3IIu - were approximated by the usual single determinant, 

IVO description at the equilibrium internuclear distance, 1.40028 a.u. The vertical 

excitation energies were taken as threshold for the respective states. In addition, 

the thresholds for the singlet analogs of each triplet state, i.e., B 1 ~'J, C 1 Ilu, and 

(E, F)1 ~t were computed using the IVO's optimized for the triplet excitations. 

lmax=7 was used in (Eq. 2.10) for all cross sections reported in this st udy. The 

thresholds for these states are given in Table 3.2, along with energies obtained from 

more sophisticated theory [20-24] and experimentally measured threshold excitation 

energies [25]. 

Table 3.2. Vertical threshold energies (eV) for open and closed channels. 

State This work Exact Experiment 

a3~+ 12.03 12.546 12.289 
9 

(E,F)l~t 13.14 13.60C 12.35a 
b3~+ u 9.98 10.62d 10.359 
Bl~+ u 14.57 12.756 11.19a 
c3Ilu 12.31 12.73e 12.609 

C1Ilu 13.54 13.231 12.30a 

a Ref. 25, b Ref. 20, c Ref. 21, d Ref. 22, e Ref. 23, f Ref 24,9 Ref. 14 

3.3 Results and Discussion 

3.3.1 Excitation of the b3 :E~ State 

Our calculated integral excitation cross sections for the b3 ~'t state are shown in 

Fig. 3.1 along with results obtained with the R-matrix [18] and complex Kohn [16] 
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methods and the measured values of Hall and Andric [11], Nishimura and Danjo [12], 

and Khakoo et al. [13]. Our calculated cross sections are in reasonable agreement 

with the available experimental data for this excitation. Agreement with the results 

of the complex Kohn calculations is satisfactory over the range of energies con-
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Figure 3.1. Integral cross section for the X 1 Et ~b3 :Et transition: , 
present results; - - - - -, complex Kohn results of [16]; - - -, R-matrix 
results of (17]; 0, measured cross sections of Nishimura and Danjo [12]; 
Q, measured values of Khakoo et al. [13]; !::::., measured values of Hall and 
Andric [11]. 

sidered, with the SMC results being somewhat smaller. Differences between the 

present results and the R-matrix cross sections, in particular from 12.5 to 17 eV, 

result from the inclusion of open singlet channels in the latter study. Comparison 

with a more restricted R-matrix calculation[19] in which only triplet channels are 

included, shows the two methods yield similar cross sections. Both sets of cross 
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sections show peaks near threshold (11.5 eV) and secondary maxima between 15 and 

17 eV. Above 17 eV, all three methods yield similar cross sections as a consequence 
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Figure 3.2. Differential cross section for the excitation of the b3 E;!"" state 
at 10.5 eV: --,present results; 6, measured values of Hall and Andric 
[11]. 

of the decreasing effects of both target correlation and of the particular channel 

coupling scheme on the X 1 Et --+ b3 E;!"" channel. The resonance structure seen in 

the R-matrix cross sections at low energies (12 eV) is not seen in the SMC results 

due to the simpler target state wave function used in this study. These five-channel 

excitation cross sections for the valence b3 E;!"" state are about 20% to 30% smaller 

than those of a two-channel calculation, with the most significant differences seen 

in the 2II9 symmetry below 20 eV. 
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Figure 3.3. Differential cross section for excitation of the b3 ~t" state at 12 
eV: ---,present results;-- - -, R-matrix results of [17]. 

Our calculated differential cross sections (DCS) for the b3 ~t" state at 10.5 and 

12 e V are shown in Figs. 3.2 and 3.3, respectively along with the experimental data 

of Hall and Andric [11] and R-matrix results [17) at 12 eV. Both the c3 IIu and 

a3~t states are closed at these energies, and hence act as polarization-type excita

tions in the expansion of the scattering wave function. The effect of their inclusion 

is to enhance the 2 ~9 and 2~u symmetry components of the X1~t ~ b3 ~t" cross 

section. At both energies, agreement with the measured values of Hall and Andric 

[11) is good, although the pronounced backward peaking of the calculated cross sec

tions leads to integral cross sections larger than those reported by Hall and Andric. 

At 12 eV, the R-matrix results are apparently dominated by the near- threshold 

resonances seen in the corresponding total cross sections. 
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Figure 3.4. Differential cross section for the X 1 ~d --+b3 ~;!"" transition at 
13 eV: ---, present results; - - - - -, complex Kohn results [16] ; - - -
-, R-matrix results [17]; (D), measured cross sections of Nishimura and 
Danjo [12] . 

Figures 3.4 and 3.5 show our calculated DCS's at 13 eV and 15 eV, respec-

tively, along with those of the Kohn and R-matrix studies and the measured values 

of Nishimura and Danjo [12). Our calculated DCS's agree qualitatively with those 

of the Kohn method; both exhibit the significant backward peaking observed exper

imentally. Agreement with the measured cross sections of Nishimura and Danjo [12] 

is satisfactory at intermediate and higher angles. The effect of multichannel cou

pling in the SMC calculations is a reduction of the extent of this backward peaking. 

The R-matrix DCS's at these energies differ significantly from the present results 

and from those of the Kohn method, irrespective of the choice of channel coupling 

schemes. 
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Figures 3.6, 3. 7 and 3.8 show the differential cross sections for excitation of 

the b3 :Et state at 17 eV, 20 eV, and 30 eV, respe(;tively. Agreement between our 

calculated DCS's and the measured values at 17 and 30 eV is quite good, but poor 

at 20 eV. In contrast to the DCS's at lower energies, the SMC and R-matrix results 

are in better agreement for low and intermediate angles at 17 and 20 eV (Figs. 3.6 

and 3.7). The DCS at 30 eV (Fig. 3 .8) shows that multichannel effects have little 

influence at these energies: two and multichannel results are almost identical and 

in good agreement with experiment. 
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Figure 3. 7. Differential cross section for excitation of the b3 L:t state at 
20 eV: --,present results;----, R-matrix results [17] ; D, measured 
cross sections of Nishimura and Danjo[12]; Q, measured cross sections of 
Khakoo et al. [13]. 
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Figure 3.8. Same as Figure 3.7 at 30 eV. 

3.3.2 Excitation of the a3 :Ei State 

Our calculated cross sections for excitation of the a 3 r:;- state are shown in 

Fig. 3.9. Also shown are the experimental values of Khakoo and Trajmar [15] 

at 20 e V and 30 e V and the calculated values of the R-matrix [17) and complex 

Kohn studies [16). The SMC X 1 :E;- -+ a3 :E;- cross sections share some qualitative 

features with those of the R-matrix studies, which, in addition to including singlet 

open channels, also used a correlated target wave function. In particular, both 

show a near threshold peak at about 13 eV. A partial-wave analysis of these SMC 

cross sections reveals that the primary contribution to this peak comes from the 

2 :E9 symmetry, as expected, with significant 2 IIu and 2 ~9 components as well. The 



84 

symmetry composition of the near-threshold peak in the R-matrix cross section 

was not discussed in [17]. It should be noted that similar qualitative agreement was 
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Figure 3.9. Integral cross section for excitation of the a3 L;t state: -----, 
present results; - - - - - -, complex Kohn results [16]; - - - - , R-matrix 
results [17] (see text); Q, measured cross sections of Khakoo and Trajmar 
[15]. 

observed between the SMC cross sections and the R-matrix values calculated with-

out inclusion of singlet open channels. Agreement between the SMC cross sections 

and those of the complex Kohn study is poor. The source of this disagreement is 

not clear. Comparison of the differential cross sections in Fig. 3.10 shows that the 

Kohn results are much more strongly peaked in both the forward and backward 

direction than those of the present and R-matrix studies at 20 eV. This behavior 
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arises from the 2 6.9 contribution to the cross sections and suggests that this com

ponent is more dominant in the Kohn results than in either the SMC orR-matrix 

10.0 

N 
6.0 ', 8 

" .. 
i 
0 

s:: 6.0 
0 

:;3 

" (I) 

rn ., / ., 
0 .. 

" I u 

] I ..., 
s:: 2 .0 (I) .. 
(I) ... -Q 

0 45 90 135 180 
Scattering Angle(deg) 

Figure 3.10. Differential cross section for excitation of the a 3Et state at 
20 eV: --, present results; - - - -, complex Kohn results [16]; -- - - , 
R-matrix results [17]; Q, measured cross sections of Khakoo and Trajmar 
[15]. 

studies at this energy. However, all three theoretical results are in good agreement 

with the data of Khakoo and Trajmar [15], which does not extend into t.he forward 

and backward dirctions. At 30 eV, the SMC differential cross sections of Fig. 3.11 

show a pronounced backward and forward peaking quite similar to the behavior seen 

in the complex Kohn cross sections at 20 eV. Agreement between these calculated 

cross sections and the measured values of Khakoo and Trajmar is fair, particularly 

for angles above approximately 40° where such measurements can be expected to 

be most reliable. 
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Figure 3.11. Differential cross section for excitation of the a3 Et state at 30 
eV: --,present results;----, complex Kohn results [16] ; Q, measured 
cross sections of Khakoo and Trajmar [15]. 

3.3.3 Excitation of the c3 Ilu State 

Our calculated integral cross sections for this state are given in Fig. 3.12 along 

with the R-matrix results of Branchett et al. [17], the complex Kohn results of 

Parker et al. [16], and the measurements of Khakoo and Trajmar [15] at 20 and 30 

eV. All three sets of calculated cross sections show qualitatively similar features . 

For example, all show a near-threshold peak, which is most pronounced in the R

matrix results. This peak falls near 13.5 eV in the SMC cross section and arises 

from the 2 IIu component. The complex Kahn results show a less prominent feature 
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Figure 3.12. Integral cross section for excitation of the c3 IIu state: -----, 
present results; - - - - -, complex Kohn results [16); - - - -, R-matrix 
results [17); Q, measured cross sections of [15). 

at this same energy. This feature is also seen in R-matrix calculations in which 

the singlet channels were treated as closed[19). All three sets of cross sections also 

show a broader secondary maximum at higher energies, and the SMC and Kohn 

methods yield fairly similar cross sections above 17 e V. It should be noted that 

agreement with experiment improves somewhat upon coupling the c3 IIu state with 

the a3~t and b3 ~t states, although the cross sections for all three theories remain 

about twice as large the experimental value at 20 e V and 30 e V. 

As with the a3 Et state, application of the SMC to a multichannel treatment 

of the c3 IIu excitation reveals significant changes in the contributions of different 
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symmetry components to the total cross section. In contrast with the a 3 r;; state, 
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Figure 3.13. Differential cross section for the c3 Ilu state at 20 eV: --, 
present results;----, complex Kohn results [16];--- -, R-matrix results 
[17]; Q, measured cross sections of [15]. 

however, the total magnitude also changes substantially. In fact, comparison with 

previous two-state applications of the SMC to this excitation shows a twofold or 

greater drop in the cross section below 20 eV. The greatest change is in the 2 II9 

symmetry, where, due to coupling with the b3 E;!" state through the [la 9 1a u 11r u] 

configuration in the expansion of '11m (Eq. 1.9), the c3 Ilu state cross section drops 

by a factor of 20 or more between threshold and 20 eV. A narrow peak at 13.5 

e V replaces a broad peak of similar height observed in the 2 Ilu symmetry at the 

two-state approximation, leading to the peak observed at threshold in this channel. 
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Figure 3.14. Differential cross section for the c3 Ilu state at 30 eV: , 
present results; - - - -, complex Kohn results of [16]; Q, measured cross 
sections of [15]. 

The differential cross sections at 20 and 30 e V incident electron energies are 

shown in Figs. 3.13 and 3.14. Although the three sets of calculated differential 

cross sections show some qualitative similarities, significant differences remain. At 

20 eV, the R-matrix results in which the singlet analogs of these triplet channels 

were included are in better agreement with the experimental values of Khakoo and 

Trajmar [15] . 

3.4 Observations and Conclusions 

The reported SMC integral cross sections are in qualitative agreement with 

those obtained using the complex Kohn and R-matrix methods for the b3 ~;!" state. 
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Above 17eV the SMC and R-matrix results are comparable for the c3 Ilu and 

a 3 ~t states; discrepancies at lower energies are not explained by the inclusion of 

singlet open channels in the latter study. The complex Kohn and SMC yield quite 

different results for the a3~t state at all energies, the source of these differences at 

higher energies being evident in the DCS. Differential cross sections for the Kohn 

and SMC methods are in good agreement for the b3 ~;t" and c3Ilu , but not for 

the a3~t state, due to differences in the energy dependence and magnitude of the 

m = 2 partial wave contribution to the scattering amplitude. Agreement with DCS 

of the R-matrix method is good for the c3 Ilu state but poor for the b3 ~;t" state 

except at 20 e V. 

Based on this study, several observations can be made concerning the ability of 

multichannel coupling to improve agreement of theory with experiment. Multichan

nel coupling for the H2 molecule in the context of the SMC method most strongly 

influences the cross sections for different channels near threshold, e.g., the peaks in 

the a3~t and c3 Ilu channels, and changes the underlying symmetry contribution 

to the cross section in a specific channel, again near threshold. In this study, the 

2 ~u symmetry component in the a3~t state and 2Ilu symmetry component in the 

c3 Ilu state are the clearest examples of the latter behavior. The energy dependence 

of this type of coupling is such that it is not likely to alter results of two-state 

calculations significantly at the highest energies considered. Inclusion of correlation 

in the target, in light of the R-matrix results [17,18] and studies using the distorted 

wave approximation (DWA) method in which both correlated and uncorrelated tar

gets were considered [26,27], does not appear to improve agreement either. These 
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observations seem to indicate that, as in close-coupling studies of electronic excita

tion of atoms by low energy electrons [28), many more channels including members 

of the Rydberg series corresponding to these excitations and ionization need to be 

opened to improve higher energy cross sections for Rydberg-type excitations. 
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4. Electronic Excitation of H 2 0 by Electron Impact 

We report results of a multichannel application of the Schwinger Multichan

nel (SMC) method to the electronic excitation of water by low energy electron 

impact. Differential and integral cross sections for electronic excitation of several 

low-lying Rydberg states of the water molecule are reported in addition to the mo

mentum transfer cross section and differential cross sections for the elastic channel. 

Cross sections for excitation of the .ttiB1,a3 B1 (1b1 -+ 3sai), d3 A1(1b1 -+ 3pb1), 

3 A2(1b1 -+ 3pb2), and b3 AI(3al -+ 3sai) states are given from threshold up to 

30e V incident electron energy. Differential cross sections for these excitations are 

reported at 11, 15, and 20 eV. Agreement with available elastic channel differential 

and momentum transfer cross section data is satisfactory. Qualitative agreement 

is also found with relevant observations from electron impact- induced dissociation 

experiments. 

4.1 Introduction 

Electron impact excitation of electronically excited states of the water molecule 

and its subsequent dissociation are known to play a significant role in the radiation 

chemistry of water and a variety of space physics phenomena [1,2]. Due to the large 

energy transfer associated with such electronically inelastic collisions, these cross 

sections are also relevant to studies of subexcitation electron degradation spectra 

and to modeling of radiation damage in biological materials [3]. Nonetheless, there 

exist relatively few measurements of the cross sections for electronic excitation of 
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water by low-energy electrons. Skerbele et al. [4] have reported results of electron

energy-loss (EEL) experiments at energies of 30 and 60 eV for small angle scattering. 

Tam and Brion [5] have reported EEL spectra of H 20 using 50 and 100 eV beams. 

Trajmar et al. [8] have also measured relative differential cross sections for singlet 

and triplet excitations of H2 0 at 15, 20, and 53 eV as well as at 20° and 90° for 

impact energies ranging from 4.2 to 12 eV [9] . Reviews of available cross section 

data for electron-water collisions, including estimated electronic excitation cross 

sections, have been prepared by Hayashi [10] and Shimamura [11] . 

Emission cross sections for various products resulting from electron impact 

dissociation of water have also been measured [12- 16). Such measurement can pro

vide useful estimates of the cross sections for excitation of dissociative electronic 

states. For example, using measurements of the (A2 I: --. X 2II) OH emission bands, 

Becker et al. [15) estimated the relative contributions of singlet and triplet excita

tion processes to the production of the excited OH by comparing the dependence 

of the PI(21) and QI(3) rotational line intensities in the (0-0) band on electron 

impact energy. Similar studies involving the QI (2) and PI (27) lines yielded results 

supporting these observations[16]. 

On the theoretical side there have been few studies of the cross sections for 

electronic excitation of water by low-energy electrons. We have previously used the 

Schwinger multichannel (SMC) formulation to study the cross sections for excitation 

of the b3 AI (3ai --. 3sa!) excited state of water [17). These calculations, in which 

only two open electronic channels were included, represented the first application of 

this method to electronic excitation of a nonlinear molecule by low-energy electrons. 

Here we present results of further applications of the SMC method to obtain the 
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cross sections for other triplet and singlet states at the two-state approximation. 

We have also carried out calculations of these cross· sections with three to five open 

channels so as to gain some insight on multichannel effects on these cross sections. 

To do so, we consider several of these multichannel coupling schemes. 

In the following sections, a brief description of our calculations and details of 

the application of the SMC method to the water molecule will be given. In sec

tion 4.3, results of the calculations will be presented and compared with available 

experimental data including fluorescence measurements of the OH (A2 E+) dissoci

ation product. We also discuss the nature and importance of multichannel coupling 

effects. 

4.2 Computational Details 

The difficulties associated with obtaining converged results by use of the SMC 

were discussed in chapter 1. In this case, in order to assess convergence of the scat

tering amplitude (Eq. 1.7), a large number of basis sets was used in the expansion of 

the trial scattering functions and target functions constituting the Slater determi

nants used to describe theN+ 1 electron wavefunction (Eq. 1.16). The final results 

were obtained using the basis set listed in Table 4.1. This set of Cartesian Gaussian 

functions was used both in the expansion of the target wavefunction and the scat

tering functions. The basis was constructed from a (9s5p/4s2p) oxygen basis and 

a ( 4s) hydrogen basis of Poirier et al. [22]. The contraction scheme was partially 

relaxed for the s and p functions on the oxygen in order to increase the flexibility 

of the basis. Three additional s and three additional p-functions supplemented the 
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Table 4.1 Cartesian Gaussians Used in the Target and Scattering Basis Sets 

Center Exponent Contraction 
Coefficient 

oxygen s-type 10662.285 0.001907 
1599.710 0.014678 
364.7253 0.074327 
103.6518 0.275762 

33.905805 0.719361 

12.287469 1.00000 
4.7568030 1.00000 
1.0042710 1.00000 
0.3006860 1.00000 
0.0800000 1.00000 
0.0200000 1.00000 
0.0040000 1.00000 

oxygen p-type 34.856463 0.040858 
7.843131 0.256398 
2.308269 0.803598 

0.7231640 1.00000 
0.2148820 1.00000 
0.0500000 1.00000 
0.0125000 1.00000 
0.0025000 1.00000 

oxygen d-type 1.21880 1.00000 
0.3610000 1.00000 
0.0363580 1.00000 

hydrogen s-type 13.3615 1.00000 
2.01330 1.00000 
0.45380 1.00000 
0.12330 1.00000 
0.02000 1.00000 

hydrogen p-type 1.1838380 1.00000 
0.5919191 1.00000 
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oxygen basis. The inclusion of p-functions in the hydrogen basis was found to be 

particularly important, especially for collision energies near the inelastic thresh

olds. Throughout these calculations, the nuclei were held fixed at the experimental 

geometry for the ground state [1 7]. 

The SCF energy of the ground state using the basis of Table 4.1 was -76.055 a. u. 

The associated dipole moment was 2.04D, compared with the experimental value of 

1.86. For computational convenience, the molecule was oriented with the two- fold 

rotation axis along they-axis; the hydrogens were located in the yz plane. The IVO 

procedure of Hunt and Goddard [23] was used to approximate the wavefunctions 

of the Rydberg states considered in this study. For the case of the (1bi -+ 3sai) 

excitation, the IVO orbital was optimized for the a 3 BI state, except in the case of a 

two-state calculation involving the XI AI and A1 B1 states exclusively. Vertical exci-

tation energies were derived using the experimental ionization energies of 12.62 e V 

for the 1bi orbital and 14.68 eV for the 3ai orbital [24] . In actual application 

Table 4.2 Vertical threshold energies used for the open channels. 

Excited Vert. Exc.a CI 
Excitation State Energy(eV) JVOb Resultsc Experimentd 

1b1 -+ 3sai a3 B1 6.85 6.68 7.26 7.0 
1bi -+ 3sai AIBI 7.58 7.30 7.61 7.49 
1bi -+ 3pb2 3 A2 8.81 8.68 9.34 8.9 
1bl-+ 3pbl d3 A1 9.58 9.70 9.74 9.81 
3ai -+ 3sal b3 A1 8.91 9.02 9.44 9.3 

a, this work; b, Ref. 23; c, Ref. 24; d, Ref. 8. 
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of these approximate excited states to the SMC method, the difference between the 

total electronic energies of a given excited state and the ground state was used for 

the threshold energy. Tables 4.2 and 4.3 give the vertical excitation energies for the 

various transitions of interest here as well as expectation values of (x2 ), (y2 ) , and 

(z2 ) for the Rydberg orbitals of these states. For the dipole allowed A1 B1 excitation, 

the oscillator strength, computed using the length form, was found to be 0.027. AI-

though smaller than the experimental value of 0.04-0.06, this value is in reasonable 

agreement with oscillator strengths obtained in similar SCF calculations[25]. 

The body-fixed scattering amplitude was computed in the linear momentum 

representation and then transformed into the angular momentum representation. 

Integral and differential cross sections were obtained by transforming the body

fixed partial wave amplitude to the lab-frame and then averaging over the Euler 

angles. In the partial wave expansion of the scattering amplitude, lmax = 7 was 

used for the triplet excitations, whilst for the dipole allowed transition, the SMC 

contribution to the scattering amplitude was limited to lmax=6. The procedure is 

straightforward and details are given elsewhere [18]. 

Table 4.3 Characterization of the Rydberg Orbitals for Excited States of Water 

Orbital 

4.20 
4.35 
25.74 

6.86 
6.36 
8.98 

6.55 
14.38 
8.59 
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For dipole-allowed excitations such as the X1 A1 --+ A1 B1 transition here, a 

purely L 2 expansion of the scattering wave function in the SMC variation expression 

is inadequate due to the significant contribution expected from higher partial waves 

to the scattering amplitude in these cases. In these studies, the higher partial wave 

contribution to the scattering amplitude is included via a Born-closure procedure 

(see Chapter 2). This approach is identical to that used in a recent application of 

the SMC method to electronic excitation of CO [20] as well as in applications of the 

complex Kohn method to electronic excitation of the V( 1r --+ 1r*) state of ethylene 

[21]. For the purposes of this study, the long-range interaction was approximated 

by the point dipole potential in the First Born approximation(FBA ). Further details 

are given in [20] and Chapter 2. Note, as these calculations were carried out in the 

fixed nuclei approximation, this procedure does not correctly treat the long range 

dipole potential in the elastic channel. This would require taking nuclear motion 

and rotational excitation of the target into account. Inclusion of such effects is of 

little relevance to the electronically inelastic processes which are the primary focus 

of interest in this paper. 

In these multichannel studies, we found that it was important to monitor the 

condition number of the matrix A(+) of Eq. (1.7). Numerical techniques previously 

described by Winstead and McKoy [19], based on singular-value decomposition, 

were used to eliminate instabilities associated with poor conditioning. Extensive 

calculations with several basis sets indicate that the cross sections presented below 

are well converged. 

Two-channel calculations were carried out for all five excitations. Although 

a large number of different channel coupling schemes were investigated, only three 
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multichannel coupling schemes will be considered in this paper. In the first of 

these schemes the ground state and the triplet states, i.e., the X1 All a3 B1, d3 A1, 

3A2(1b1 ~ 3pb2), and b3 A1 states, were included. The second calculation couples 

the A1 B 1 ,a3 B1 , d3 A1 , and 3 A2(1b1 ~ 3pb2? states with the ground state. These 

excitations are all related in that they involve promotion of a lone pair 1 b 1 electron 

to one of several Rydberg orbitals. In the third calculation, only the A1 B1 and 

a3 B 1 are coupled with the elastic channel. 
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Figure 4.1. Elastic differential cross sections(DCS) at 6 eV: The solid 
line are present SMC results; (0) are measured values of [30]. (D) are 
measured values of (27]. 
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4.3 Results and Discussion 

4.3.1 The Elastic Channel 

Although the cross sections for electronic excitation of water are the main ob-

jective of these studies, it is useful to report the elastic cross sections resulting from 

these calculations. Since the same expansion of the total scattering wave function 

was used below and above the inelastic thresholds, these elastic cross sections do 

include some effects of target polarization due to "closed" channel determinants in 

Eq. 1.16. 
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Figure 4.2. Same as Figure 4.1 at 8 e V. 

Figures 4.1 to 4.6 show the elastic differential cross sections (DCS) along with 

the experimental data of [27) and [30), and the calculated values of Sa to et al. [29] at 

impact energies ranging from 6 to 30 eV. Since these fixed nuclei DCS are well known 
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to be divergent as the scattering angle approaches zero, we show our calculated cross 

sections only down to 20°. Agreement with the measured values is satisfactory at 

all energies, although the cross section at the highest angle reported by Shyn et 

al. [30) is consistently higher than the SMC results. 

Figure 4.7 shows the momentum transfer cross sections derived from the cal-

culated differential cross sections of Figs. 4.1 to 4.6 along with values calculated 

from measured DCS's and results of other calculations. Below 8 eV the SMC results 

are in relatively good agreement with both the experimental results of Danjo and 

Nishimura [27] and the calculated cross sections of Jain and Thompson [28] using 
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Figure 4.3. Elastic channel DCS at 10 eV: The solid line are present SMC 
results; (0) are measured values of [30]; (D) are measured values of [27] ; 
the long-dash line is the calculated result of [29) . 
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Figure 4.4. Same as Figure 4.1 at 15 eV. 
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Figure 4.5. Same as Figure 4.3 at 20 e V. 



105 

a static-plus-model-exchange potential, and static, model exchange plus polariza

tion potential [38]. The values derived from the measured DCS of Shyn and Cho 

[30] are considerably larger than our calculated values due to the larger high-angle 

scattering seen in their measured DCS. 

The cross section for excitation of this optically allowed transition, which ap-

pears prominently in EEL spectra [4-8] as a well separated peak at ,....., 7.4 eV, are 

shown in Figs. 4.8 and 4.9. Figure 4.8 shows total cross sections obtained from cal

culations with two channels , three channels (X1 A1, A1 B1, a3 BI) and five channels 

(X1 A1 , A1 B1 , a3 B1 , d3 A1 , and 3 A2 (1b1 -+ 3pb2 )) open. Only near threshold do 
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Figure 4.6. Same as Figure 4.3 at 30 e V. 
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Figure 4.7. Momentum transfer cross sections for the elastic channel: the 
solid line shows the present SMC results; long dash line is the continuum 
multiple-scattering cross section [29); ( Q) values are derived from mea
sured DCS of Shyn and Cho [30); (~) are calculated cross sections of Jain 
and Thompson [28) and Jain[38) ; (D) are derived from DCS measurements 
of Danjo and Nishimura [27) . 

these cross sections exhibit significant sensitivity to the channel coupling scheme. 

For the two- and three-channel cases, the 2B1 and 2 A2 symmetries are the dominant 

components of the peak near threshold. In the five-channel calculation, however, 

the 2 A2 component of the cross section is reduced considerably between 11 and 

15 eV. This leads to the substantial reduction of the cross sections in this energy 

range . This reduction in the 2 A2 component to the cross section in this channel is 

accompanied by an enhancement of the contribution of this symmetry component 

to the cross section for the 3 A2(1b1 --+ 3pb2) state. 
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~igure 4.8. Integral excitation cross sections for excitation of the 
A 1 B1 state: (- - - -) two channel results; (- - - - ), three 
channel(X1 All A1 B1. a3 B1 ) results; ( ), five open channels( see text) . 

Figure 4.9 shows differential cross sections for excitation of this state. The 

Born term does not contribute significantly to the integral cross section below 20 

e V, although it does increase the differential cross section at small scattering angles 

considerably, even at 15 eV. The relative measurements of these DCS by Trajmar, 

et al. [8] at 15 and 20 eV are also shown. These cross sections are normalized to the 

SMC results at 30°. Agreement between the calculated and measured cross sections 

is good at 20 eV but larger differences are seen at 15 eV. 
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Figure 4.9. Differential cross sections for excitation of the A1 B1 state 
obtained with five open channels(see text): ( ), 11 eV results; (- -
- - -), DCS at 15 eV; (- - - - ), DCS at 20 eV; (.6) are relative DCS 
measurements of Trajmar et al. [8] at 15 eV normalized to the calculated 
results at 30°; ( 0 ), same at 20 eV. 

Excitation of this state is evident in high-angle EEL measurements of water as 

a broadening of the X1 A1 --+ A1 B1 peak [8]. Figure 4.10 shows the excitation cross 

section for this state obtained from two-state, three-state (X1 A1 , A1 B1 , a3 Bt), 

- - 3 - 3 3 -3 - 1 -3 and two five-channel (X1A1, a B1,d A1, A2(1b1 --+ 3pb2), b A1); (X At, a B1, 

A1B 11 d3 A1, 3 A2(1b1 --+ 3pb2)) calculations. The opening of the A1 B1 channel in 
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Figure 4.10. Integral cross sections for excitation of the a3 B1 state: (- - -
-),two channel results; (----), three-channel (X1 A1 , A1 B1 , a3 B1 ) calcu
lation; ( -o-o-o-), results of a five channel (X1 A1 , a3 B1 , d3 A1 , 3 A2(1 b 1 ~ 
3pb2), b3 A1) calculation; ( ), results of a five channel calculation 
involving the (X1 A1 , a3 B1 , A1 Bt, d3 A1 ,

3 A2 (1b1 ~ 3pb2 )) states. 

the three-state calculation clearly leads to a significant deviation from the two

state results. However, at the five-channel level, the opening of this channel does 

not influence the cross section substantially. Our calculated differential cross sec-

tions are shown in Fig. 4.11. They exhibit the lack of forward peaking typical of 

intercombination singlet +-+ triplet excitations. The differential cross sections of our 

other five-channel calculations are similar to those of Fig. 4.11 and are not shown 

here. Unlike the singlet transition, the cross section for excitation of the a3 B1 state 

is dominated (,...., 60%) by the 2 A1 symmetry component for all energies. 
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Figure 4.11. Differential cross sections for excitation of the a3 B1 state from 
the (X1 A1 , a3B~, A1 B1 , (J3AI, 3 A2 (1b1 ---+ 3pb2 ) five channel calculation: 
( ), lleV; {----- -), 15 eV; (--- -), 20 eV. 

This state was considered previously in our earlier two-channel stud-

1es [17]. Figure 4.12 shows our integral excitation cross sections for 

this state obtained from the present two- and five-channel (X1 A1 , a3 B1 , 

The two-state cross sec-

tions in Fig. 4.12 differ somewhat from those of Ref. 17 due to the 

finer numerical quadratures of the VG~+)y matrix elements, which are now 

practical on the Intel parallel computers being used in these calculations. 
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Figure 4.12. Integral cross sections for excitation of the b3 AI state: 
( ), five channel results; (- - - - -) two-channel coupling. 

Comparison of the two and five-state cross sections indicates that multichannel 

coupling does not change the underlying symmetry composition of these cross sec

tions, but uniformly reduces their magnitudes. The 2 AI symmetry component is 

the dominant contributor to these cross sections. 

The DCS's for excitation of this state obtained from our five-channel calcula-

tion are shown in Fig. 4.13. 
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Figure 4.13. Differential cross sections for excitation of the b3 A1 state: 
( ), 11 eV results;(-----), 15 eV; (--- -), 20 eV. 

4.3.5 The ~fJA1 (1bl --+ 3pbl) State 

Our calculated two- and five-channel excitation cross sections for this state, 

the highest lying of those considered in this study, are shown in Fig. 4.14. These 

results show that channel coupling leads to a substantial reduction in the two-state 

cross sections near threshold. Above 15 eV, the dominant 2 A1 and 2 B1 contributions 

to the total cross section are comparable in both the two-channel and multichannel 

calculations. 

Figure 4.15 shows our calculated five-channel(X1 AI, a3 BI, A1 BI, d3 AI' 

3 A2 (1b1 --+ 3pb2 )) excitation cross sections of Fig. 4.14 for the X 1 AI --+ d3 AI 

transition along with data of Becker et al. [15] and Mohlmann et al. [16]. These 
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Figure 4.14. Integral cross sections for excitation of the d3 A1 

state: (- - - - - -), two channel results; ( -o-o-o-), five channel 
(X1 A1 ,a3 B 1 ,d3Ab3 A2(1b1 -+ 3pb2),b3 AI) coupling; ( ) five
channel calculation coupling the (X1 All a3 Bll A1 Bb d3 A1 , 3 A2(1b1 -t 

3pb2)) states. 

data are derived from measurements of OH(A2:E+ -t X 2II) UV fluorescence radi-

ation generated by electron impact dissociation of H20. In both experiments, the 

contribution of triplet excitations to the final fluorescence yield was estimated by 

monitoring rotationally cool Q1 (2), Q1 (3) and rotationally hot P1 (21 ), P 1 (27) lines. 

Electronic structure studies [25] and the energy dependence of the two different 

lines indicate that only singlet excitations contribute to the rotationally hot lines 

(T=13800 K), while the rotationally cool lines are produced by both triplet (T=4000 

K) and singlet excitations (T=2900 K). By assuming that the energy dependence 

of the singlet excitation rate is similar for both the hot and cool lines, the singlet 
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contribution to the cool line can be approximately removed [15,16]. With these 

assumptions, the data of Mohlmann et al. lead to a maximum near 12.6 eV while 

Becker et al. found a maximum at 14.2 eV. 
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Figure 4.15. Cross sections for excitation of the d3 AI state of H2 0 : (-
-), calculated values; ( o) are derived from OH(A2 :E+) fluorescence mea
surements by Becker et al. [15]; (D), analogous measurements of Mohlmann 
et al. [16] . Note that both sets of results are normalized to the maximum 
in the calculated cross sections and that the calculated cross sections have 
been shifted by 1.5 e V to match the experimentally observed threshold for 
OH fluorescence (9.3 eV). 

Symmetry considerations restrict the state leading to dissociation into 

OH(A2 :E+) + H(n=1) to either I,J AI or 1 •3 B2 symmetries. Energy considerations 

(a threshold of ........ 9.3 eV) and electronic structure calculations of excited states of 

water suggest that the XI AI ---. d3 AI (1bi ---. 3pbi) transition is most likely the 

main triplet contributor to the measured fluorescence. In earlier work Beenakker 
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et al. [33] suggested that the b3 A1 (3a1 -+ 3sa1 ) state may also contribute to the 

triplet component of the fluorescence excitation cross section. 
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Figure 4.16. Differential cross sections for excitation of the d3 A1 state: (-
-), 11 eV results;(-----), 15 eV; (--- - ), 20 eV; 6., measured relative 
values of [8] . The (6.) indicate relative DCS measurements of Trajmar et 
al. [8] normalized to the present results at 30°. 

In Fig. 4.15 the calculated cross sections have been shifted by 1.5 e V to 

bring the threshold for the X 1 A1 -+ d3 A1 excitation used in these calcula

tions into agreement with the experimentally observed threshold for generation of 

OH(A2 I;+ -+ X 2 IT) fluorescence. The measured relative data were also scaled to 

have their maximum values equal to the calculated values. The calculated cross sec-

tions show a rapid rise near threshold and agree quite well with the measurements 

of Becker et al. in this region. The calculated cross sections, however, decrease 

more rapidly with increasing energy than the cross sections attributed to triplet 
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state excitations in analysis of the fluorescence data [15,16). This behavior and the 

fact that the measured cross sections of Mohlmann et al. peak at energies higher 

than that for the SMC could be due to assumptions concerning the contribution of 

singlet states to the rotationally "normal" OH molecules. In fact, Becker et al. sug

gest that a dissociation channel available to the .fjl A1 state above 10.2 eV which 

leads to rotationally "normal" OH, may contribute significantly to the population 

of rotationally cool OH. This is supported by the observation that in photodissoci

ation experiments, in which the triplet contribution is negligible, such a "normal" 

rotational population is not seen when a Lya or Kr resonance line light source is 

used[39,40). Furthermore, predissociation of higher Rydberg states by the b3 A1 

state at these higher impact energies also leads to "normal" OH populations [32). 

In either case, the analysis used to extract the triplet contribution in the studies 

of refs. 15 and 16 can lead to underestimation of the singlet contribution to the 

rotationally cool OH(A2 "E+) population. 

The corresponding DCS's for excitation of the d3 A1 state obtained in these five

state calculations are shown in Fig. 4.16. Also shown are the relative differential 

cross sections of Trajmar et al. [8] for excitation of an electronic state of water at 9.81 

eV by 20 eV electrons. These values have been normalized to the calculated cross 

sections at 30°. On the basis of energy level calculations, Hunt and Goddard [23] 

assigned this energy loss feature at 9.81 e V to the d3 A1 state of water. Agreement 

between the measured ·values and the calculated cross sections is fair for angles 

above 30° but poor at lower angles where the measured values fall off rapidly. 
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Figure 4.17. Integral cross sections for excitation of the (1b1 ---t 

3pb2 )3 A2 state: (- - - - ), two-channel results, ( -o-o-o-), five-channel 
(X1 A1, a3 B~, d3 A1 ,

3 A2(1b1 ---t 3pb2), b3 A1) results; (--), five-channel 
coupling (X1Ab i.i3 Bb A1B1, d3 Ab 3 A2(1b1 ---t 3pb2)). 

Integral cross sections for excitation of this state obtained from calculations 

with two and five open channels are shown in Fig. 4.17. As with the d3 A 1 and 

A1 B 1 transitions, channel coupling is seen to be important only near threshold. 

differential cross sections for excitation of this state are shown in Fig. 4.18. The 11 

and 15 e V results are qualitatively similar to differential cross sections calculated 

for the 3 A2 ( n ---t 1r"') transition in formaldehyde using the complex Kohn [36] and 
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SMC [37) methods. A generalization of a symmetry property of I;+ +-+ :E- type 

transitions [35) to nonlinear molecules in order explain the relatively weak forward 

and backward scattering of the 3 A 2 type transitions has been discussed [36] . This 

effect is less pronounced at 20 e V for the water molecule. 
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Figure 4.18. Differential excitation cross sections for excitation of the 
(1bl--+ 3pb2)3 A2 state: ( ), (-----),and(-- - - ), calculated 
five-channel (X1 A~, a3 B1 , A1 B~, d3 A~,3 A2(1b1 --+ 3pb2)) values at 11 eV, 
15 eV, and 20 eV, respectively. 

4.3. 7 Threshold Excitation Cross Sections 

The relevance of the electronic transitions considered in this study, particularly 

to the A1 B 1 and a3 B 1 , to the modeling of radiation damage in biological materi

als has been discussed previously. The best available data for such electronically 
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inelastic transition, estimated from measured Townsend ionization coefficients and 

ionization cross sections, have been compiled by Hayashi[10]. The present studies 

can clearly provide useful estimates of the cross sections for excitation of the A1 B 1 

and a3 B 1 dissociative states near threshold. The sum of these two cross sections 

as obtained from the five-channel (X1 Al, a3 Bl, A1 Bt, d3 AI, 3 A2(1bl -t 3pb2)) 

calculation are plotted in Fig. 4.19 along with the recommended values of Hayashi 

[10]. Our calculated cross sections have been shifted to match the experimental 

thresholds for the singlet (7.49 eV) and triplet (7.0 eV) excitations. The calculated 

values of these cross sections are significantly larger than the estimates of Hayashi 

near threshold. These more reliable, near-threshold cross sections could be of par-

ticular relevance to the calculation of electron degradation spectra [3] and similar 

quantities used in modeling radiation energy absorption in biological materials. 
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Figure 19. Sum of integral cross sections for excitation of the a3 B1 and 
.A1 B1 states of water: ( ), calculated values; (- - - - - ), recom
mended values of [10]. See text. 
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4.4 Conclusions 

A multichannel study of the electron impact excitation of the water molecule to 

the .JI B 1 , a3 BI, b3 AI, d3 AI, and 3 A2(lpbi --+ 3pb2) Rydberg states was carried out 

using several two and multichannel coupling schemes. Although multichannel effects 

were significant for all of the states excepting the d3 AI, the effect is especially promi

nent in the 2 A2 component of the .XI A1 --+ .•. •ii B1 and .XI A1 --+3 A2(lb1 --+ 3pb2) 

cross sections. The a3 B 1 cross section near the thresholds of the higher lying states 

is also observed to be more sensitive to the channel coupling scheme than its singlet 

analog. Although coupling via the potential led to modest changes in cross sec

tions in some channels, the strongest effects are observed between channels coupled 

via the projection operator in Eq. 1.5, i.e., connected by a shared recorrelation 

term. This suggests that the most important multichannel effects are accounted 

for by coupling channels sharing a common hole, at least for the case of Rydberg 

excitations considered in this study. 

In addition to multichannel features observed, the DCS for the X1 A 1 --+ (lbi --+ 

3pb2 )
3 A2 transition are found to be similar to those previously noted for symmetry 

equivalent transitions in other molecules. The integral cross section for the X1 AI --+ 

d3 A 1 qualitatively match the experimentally observed energy dependence of the 

yield of OH(A2:E+) attributed to dissociation of this state when possible cascade 

contributions from higher lying states are taken into account. 

The SMC derived cross sections for the A1 B1 and a3 B1 states point to the 

need for better estimates of these quantities either by experiment or other theoret

ical methods owing to the lack of reliable excitation cross section data, especially 
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considering their importance to the modeling of ionizing energy deposition in bio

logical materials. 
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5. Electronic Excitation of N 2 by Electron Impact 

We report results of an application of the Schwinger Multichannel (SMC) 

method to the excitation of triplet and singlet valence states of nitrogen by low 

energy electron impact. Differential and integral cross sections for electronic ex

citation of the a 1 ITg, B3ITg, A3 Et, W 3~u, w 1 ~u, B'3 E;, and a'1E; states are 

presented for impact energies above 10 eV. The behavior of cross sections for the 

A 3 Et state near threshold is also examined. Comparison is made with available 

experimental data and results of R-matrix calculations. Good agreement is found 

between the SMC cross sections and experimental values for most states. However, 

agreement with results of R-matrix calculations is fair for the A 3 Et and W 3 ~u 

states, but poor for the B3 ITg state. 

5.1 Introduction 

Cross sections for electronic excitation of the nitrogen molecule are of consid

erable importance to our understanding of a wide range of natural phenomena and 

industrial processes. These include, for instance, the excitation conditions present 

in aurora, the dayglow of the Earth's atmosphere [1], Titan's dayside emissions [2], 

modeling of the spectral and radiative properties in bow shocks of reentry vehicles 

[3], the modeling of UV and IR band systems in N2 lasers [4], and the control of 

species present in silane - N2 discharges used in nitriding semiconductor surfaces 

[5]. In most of these cases, the most relevant parameter derived from these cross 

sections is the excitation rate coefficient. The importance of using accurate cross 
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sections to compute this coefficient and errors resulting from the use of unreliable 

values of these cross sections has been discussed (6): 

In view of such need for accurate excitation rate coefficients, there have been 

several experimental studies of the cross sections for excitation of low-lying valence 

and Rydberg states of N2. Earlier work, emphasizing resonant scattering processes, 

has been reviewed by Schulz [7]. A comprehensive review of experimental data on 

electronic excitation cross sections has been compiled by Trajmar et al. [8]. In fact, 

of all molecular systems except H2, the N2 molecule has the largest data base of such 

cross sections. This system hence serves as a particularly good test of theoretical 

methods. 

In contrast, relatively little theoretical work on the cross sections for non

resonant, electronic excitation of N2 by electron impact has been published. Early 

work includes that of Chung and Lin in which the First Born Approximation (FBA) 

was used in conjunction with the Ochkur and Rudge approximations to calculate 

cross sections for excitation of the a 1 II9 , c' 1 :Et, a" 1 :Et, w 1 D.u, b' 1 :Et, b 1 Ilu , 

A 3 'E;!-, B 3 II9 , C 3 Ilu, D 3 'E;!-, W 3 D.u, and E 3 'E; states of N2[9] . References 

to earlier theoretical work are included in ref. [9]. Holley et al. have carried out 

a two-state, close-coupling calculation for excitation of the a 1 II9 state [10]. The 

Distorted Wave (DW) method has also been applied to the calculation of cross 

sections for some of these transitions [11,12]. More recently, the R-matrix method 

has been used to calculate integral cross sections for excitation of the A 3 'E;!-, W 3 D.,. , 

and B3 II
9 

states (13]. In this study, a multiconfiguration description of the target 

was employed. 
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The SMC method has been applied to the study of a number of molecular 

targets including H2 (14,15], H2CO (16], C2H4 (17], CO (18], CH4 (19], H20 [20], 

and 0 2 (21]. However, except for recent studies (15,18,20], these have included rela

tively few open electronic channels. Here, we report results of multichannel studies 

of the cross sections for excitation of the a 1 IT9 , B3 IT9 , A3 :Et, W 3~u , w 1 ~u, 

a11 :E~, and B'3 :E~ states using the SMC method. One of the goals of this study is 

to assess the importance of channel coupling on these cross sections. To this end, 

several channel coupling schemes are examined. In particular, we chose to consider 

a three-channel calculation in which only the 3o-9 -t 17r9 type excitations are in

cluded (X1 :Et, a1 IT9 , B3 IT9 ), a six-channel calculation in which only the 17ru -t 17r 9 

type excitations are coupled to the ground state elastic channel (A 3 :Et, W 3 ~u , 

w 1 ~u, a11 :E~, and B'3 :E~), and a eight-channel calculation in which both types 

of excitations are coupled. The mixed valence-Rydberg b'1 Et state at 12.9 eV 

was not included in these studies. The resulting cross sections are compared with 

the available, measured integral and differential cross sections and with results of 

close-coupling and R-matrix studies (10,13]. 

5.2 Computational Details 

A large number of basis sets was used in the expansion of the target wavefunc

tion and trial scattering functions (Eq. 1.9) so as to assess the convergence of our 

calculated cross sections. Final results are reported for the basis set given in Tables 
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Table 5.1a. Exponents of sp-type Cartesian Gaussians used in the target 
and scattering wavefunctions [22]. 

Center Exponent Contraction 
Coefficient 

nitrogen s-type 7476.7150 0.0000500 
1112.3654 0.0003940 
2512.6857 0.0020880 
703.77729 0.0089060 
225.47879 0.0320810 
79.615810 0.0974240 

30.237283 0.2317280 
12.263622 0.3775400 

5.2850860 1.0000000 
2.3334710 1.0000000 
0.9018560 1.0000000 
0.3583360 1.0000000 
0.1410930 1.0000000 

nitrogen p-type 126.66657 0.0011520 
29.837389 0.0090160 
9.3940380 0.0408140 
3.4051040 0.1301010 

1.3500000 0.2776790 
0.5576960 0.3807360 

0.2324490 1.0000000 
0.0942640 1.0000000 

5.1a,b. The [13s8p/7s4p] set of sp functions (Table 5.1a) centered on the nitrogen 

atoms were taken from [22] . The set of d functions centered on the nitrogen atoms 

was chosen such that the smallest eigenvalues of the overlap matrix was greater 
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Table 5.1b. Additional uncontracted Cartesian Gaussians used in the tar
get and scattering wavefunctions 

Center 

nitrogen 

c.m. 

c.m. 

c.m. 

d-type 

s-type 

p-type 

d-type 

Exponents 

1.520, 0.600 

0.05548, 0.021869, 0.00861 

0.038319, 0.001558 

0.150, 0.032 

than 10-5
• An additional [3s2p2d] set of functions was centered at the center of 

mass in order to increase the flexibility of the scattering basis (Table 5.1 b). These 

exponents were selected largely by experimentation. 

Table 5.2. Vertical threshold energies used for open channels. The IVO 
energies used for the present SMC calculations are given along with exper
imental values taken from Lofthus and Krupenie [40], SCF energies from 
Rose and McKoy [24], and CI energies of Ermler et al. [25]. 

Target State Exp(eV) IVO SCF MRD CI 

a1II g 9.39 10.47 9.44 9.72 
B3II g 8.12 8.45 7.66 8.50 
A3:E+ u 7.86 6.76 6.16 8.00 
W3~u 9.13-9.30 8.36 7.26 9.34 
wl~u 10.45-10.60 9.16 9.01 10.72 
B'J:E_ u 9.79 8.81 8.34 10.13 

tl:E-a u 10.15-10.45 8.81 8.34 10.60 
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For the target state wavefunctions we used the improved virtual orbital (IVO) 

approximation [23). The nuclei were held fixed at" the experimental ground state 

internuclear distance of 2.068 a.u. In most cases, the 171"9 IVO orbital was optimized 

for the B3 II9 state. The electronic energies for the states of interest in this paper 

are listed in Table 5.2 along with ab initio calculations [24,25) and experiment [43). 

Although the issue of threshold energies has been the object of considerable atten

tion [13], our experience has shown that the cross sections for the N2 molecule for 

impact energies above 10 eV are negligibly affected by changes in threshold energies 

$ 0.5 e V for a given state. This behavior would not be expected to remain true 

for detailed studies very near the threshold ("' 1e V) for a particular channel. In 

cases where the threshold region for a state is of interest, we use the experimentally 

observed excitation energies for given vibrational levels of the particular excited 

state. In calculations involving extensive channel coupling, the thresholds for the 

W 3 ~u and w 1 ~u states were used for the [17r u -+ 171" 9 ) triplet and singlet excita

tions respectively, while the thresholds for the B3 II9 and a1 II9 states were used for 

the [3o-9 -+ 171" 9) triplet and singlet excitations. 

The following channel coupling schemes were investigated using basis sets rang

ing from a minimal sp basis to the one listed in Tables 5.1a,b. Here the electronically 

elastic channel is always assumed to be open. Two-state calculations were carried 

out on the a1 II9 , B3 II9 , and A3~t states. A three-state calculation involving 

coupling of the a1 II9 , and B3 II9 states was also done. For the [17ru-+ 11r9 ] excita

tions, a study including only triplet excitations (X1 ~t, A 3 ~t, W 3 ~u, B'
3 :E;;) was 

carried out, in addition to one coupling both singlets and triplets (X1 :Et, A 3 ~t, 

W 3 ~u, w 1 ~u' B'3 ~;;, and a11 ~;; ). A final set of calculations was carried out 
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in which all eight channels, counting the ground state were coupled. In the discus

sions of the individual excitations below, particular attention will be paid to the 

X1 :Et,a1II9 ,B3II9 ) three state; (X1:Et,A3 :E;!",W 3 Llu,w 1 Llu,B'3 :E;,a'1 :E;) six 

state; and (X1:Et, A3 :E;!", W 3 Llu, w 1 Llu, B'3 E;, a'1 :E;, B3 II9 , a 1II9 ) eight-state 

coupling calculations. 

For convenience, tabulated values of the differential and integral cross sections 

reported in this paper for the eight-channel calculation, except where noted, are 

given in Tables 5.3-9 at the end of the text. 

5.3 Results and Discussion 

5.3.1 The a1Ilg State. 

The importance of the Lyman-Birge-Hopfield (LBH) a1 II9 -+ X1 Et emission 

system as a probe of the aurora and the dayglow [26,27] has served to motivate 

the accurate measurement of these excitation cross sections at low incident elec-

tron energies. Consequently there is a relatively large set of data obtained using a 

variety of experimental procedures with which to compare theoretical values. For 

example, the differential cross sections (DCS) for this excitation have been mea

sured by Finn and Doering [31], Cartwright et al. [8,32], and Brunger and Teubner 

[33] . Furthermore, since cascade contributions via the various components of the 

Gaydon-Herman system and from other, higher- lying states are expected to con

tribute less than 5% to the measured emission cross sections [32,34], the fluorescence 
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excitation measurements of the cross sections by Ajello and Shemansky [30] are ex

pected to be more reliable than for most states for which cascade contributions are 

typically difficult to estimate. Furthermore, the effect of predissociation of the 
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Figure 5.1. Integral cross sections for excitation of the a 1II9 state. The 
present SMC+FBA results are indicated by the solid line. The close
coupling, two-state results of Holley et al. [10] are indicated by the short 
dashed line. Measured values of Borst [29] are indicated by ( * ), those of 
Finn and Doering [ 31] by ( <>), those of Shemansky and Ajello [ 30] ( 6.), and 
those of Cartwright et al. [8,32] by ( 0 ). Measurements of Trajmar [42] 
are marked by (D). 

a 1 II9 ( v > 6) levels on the resulting fluorescence excitation cross section is known 

and can be accounted for. Exploiting the state's relatively long lifetime, Borst [29] 

has measured the excitation cross section using a metastable detection technique. 

The available data for this excitation generally suggests that the cross section rises 

rapidly from threshold (9.4 eV) to a maximum of ,...._ 35 x 10-18 cm2 near 17 eV 
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followed by a decrease whose 1/ E energy dependence at high energies is consistent 

with that anticipated for a dipole forbidden transition. 

In contrast to numerous experimental studies, the most recent theoretical t reat-

ment of the excitation of this state is a close-coupling, two channel calculation of 

Holley et al. [10] in which integral cross sections were reported. Earlier work includes 

studies of Chung and Lin [9] which made use of the Born-Ochkur approximation. 
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Figure 5.2. The 2 II9 component of the integral excitation cross section 
(SMC only) for excitation of the a 1 II9 state for..\= -1 subcomponent (a), 
and ..\ = + 1 subcomponent (b). The short dashed line indicates results 
of a two-state (X1 :E_t, a 1 II9 ) calculation; long dashed line, results of a 
three-state (X1 :Et, a 1 IT9 , B3 II9 ) calculation; and solid line, results of the 
eight-channel calculation. 

Fig. 5.1 shows our calculated results for the eight-channel coupling scheme 

along with computed cross sections of Holley et al. [10] and the measured values of 

the studies described above. The figure clearly indicates the very good agreement of 
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the SMC cross sections both with experiment, and with the close-coupling calcula

tion at higher energies. The broad peak around 12 e V in our calculated cross sections 

is due to a resonance-like feature in the 2 119 symmetry component. At higher ener

gies, the quadrupole component of the X 1 ~t --+ a 1 119 transition grows increasingly 

important. This contribution was treated using the Born Closure method discussed 

in Chapter 2. It was found that retaining the SMC partial wave amplitude up to 

lmax = 4, mmax = 2, with the remaining partial waves ( l ::::; 10) being computed in 

the FBA, yielded stable results. The contribution of these higher partial waves was 

found to be substantial, e.g., at 20 eV constituting about 30% of the total excitation 

cross section. 

Channel coupling was found to be important for this transition. Although 

the three-state (X1 ~t,a1 119 ,B3 119 ) calculations yield cross sections similar to our 

eight channel results, the two-state coupling scheme leads to much larger (a factor 

of almost two) values than the multichannel cross sections. An additional two

state calculation carried out using an IVO optimized for the a1 119 state showed 

that this effect is not due to use of the B3119 optimized IVO to approximate the 

singlet state. The dynamically important effects of multichannel coupling for this 

transition occur in the 2 119 symmetry component, as shown in Figs. 5.2a,b, where 

excitation to the a 1119 (3u 9 --+ l1r"t) state is considered. Here, the two components 

of the 2 119 symmetry block (.A= ±1 of [10]) are considered separately for the three 

coupling schemes. >. represents the projection of the electronic angular momentum 

on the molecular axis. In particular, the most significant change is noted in the 

.A = - 1 component in going from the two state to three- and eight- channel results. 

The broad resonance-like feature centered at 17 e V in the two-state approximation 
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is greatly reduced when coupling to the B3 119 state is allowed. Further coupling of 

the 1r u --+ 1r 9 type excitations present in the eight-channel approximation leads to 

only minor changes, except for the enhancement of the resonance feature at 12 eV. 

The changes in the >. = + 1 component (Fig. 5.2b) are less dramatic, except for the 

near-threshold resonance. It would appear based on these observations that the 
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Figure 5.3. DCS for the a 1 119 state at 12.5 e V. The solid line are present 
SMC+FBA results for the eight channel coupling scheme. (0) are mea
sured values of Cartwright et al. [32]. (D) are measured values of Trajmar 
[42]. 

choice of channel coupling for the symmetry component of '11m (Eq. 1.9) containing 

the correlation term involving the 17r 9 orbital has a substantial effect on at least 

the a1 119 channel, although we observe that the elastic channel cross section itself 

significantly changes when all eight channels are coupled. It should be noted that 

our two-state results are expected to differ substantially from those of Holley et 
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al. as they constrained the scattering wavefunction to be orthogonal to all occupied 

orbitals. Effects introduced by such constraints have been discussed in the context 

of excitation of the b3:E~ state of H2 [14]. 

Figures 5.3-5. 7 show our calculated differential cross sections for excitation 

of the a 1 IT9 state at 12.5, 15, 17, 20, and 30 e V along with measured values of 

Cartwright et al. [32], Brunger and Teubner [33], and Finn and Doering [31]. The 

electric quadrupole contribution to these differential cross sections is substantial 

below about 60° and inclusion of the higher partial-wave components of the scat-

tering amplitude via Born-Closure is essential in accounting for this behavior. The 

strong forward peaking combined with the isotropic DCS at intermediate and high 
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Figure 5.4 Same as Fig. 5.3 at 15.0 eV. The solid line indicates present 
SMC+FBA eight channel results. (~) indicate measured DCS values of 
Brunger and Teubner [33]. Relative values of Finn and Doering normalized 
to SMC results at 90° are indicated by ( <> ) . 
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scattering angles has been described by Finn and Doering (31] as an intermediate 

situation between a dipole-allowed, singlet transition and a triplet, dipole forbidden 

one. At intermediate and higher scattering angles the SMC cross sections without 

inclusion of the Born term are in good agreement with experiment, especially at 

higher energies. It should be noted that the high angle behavior of the SMC de-

rived DCS indicates the assumption of Finn and Doering concerning the DCS at 

high angles used in their calculation of integral cross sections is valid. Thus, for 

this transition at least, approximation of the DCS from goo to 180° as a constant 

is sufficiently accurate for computing integral cross sections when using DCS mea-

surements restricted to scattering angles below goo. 
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5.3.2 The B3 IIg State. 

Interest in the excitation cross sections for the X1 ~t -+ B3II9 transition stems 

partly from use of emission lines of the First Positive System (B3 II9 -+ A3 :E;!") in 

plasma diagnostics and studies of the aurora [36-40] . The relatively short lifetime 

of this state precludes the use of a metastable detection scheme, while for energies 

above 15 eV, large cascade contributions via the C3 Ilu -+ B3 II9 Second Positive 

(2PG) system complicate the interpretation of optical fluorescence measurements 
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Figure 5.8. Integral cross sections for excitation of the B3 II9 state. The 
SMC results of the eight-channel coupling calculation are indicated by the 
solid line and long dashed line, those from a two-channel (X1 ~t, B3 II9 ) 

calculation. Two-state (short dashed line) and multichannel( short dashed 
line+ circles) R-matrix results of Gillan et al. [13] . Experimental values 
of Cartwright et al. [32] are denoted by ( 0 ). (o) are results of Trajmar 
[42]. 
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[e.g., 28,41]. However, there have been direct measurements of the cross sections 

for electron impact excitation of the state by Cartwright et al. [32] and Brunger 

and Teubner [33) with which our calculated values can be compared. 
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Figure 5.9. The 2II9 component of the integral excitation cross section 
for excitation of the B3 II9 state for the >. = -1 subcomponent (a), and 
the >. = + 1 subcomponent (b). The short dashed line indicates results 
of a two-state (X1 Et, B3 II9 ) calculation; long dashed line, results of a 
three-state (X1 Et, a 1 II9 , B3 IT9 ) calculation; and solid line, results of the 
eight-channel coupling calculation. 

In contrast to the a1 II9 state, for which little theoretical work b eyond FBA 

and two-state close-coupling calculations has been reported, excitation of the B3 II9 

state has been recently studied by Gillan et al. using the R-matrix method and a 

four-channel(X1 :Et,A3 :E-;t,W 3 .6.u, B3 II9 ) coupling scheme [13). The most signif

icant difference between their study and the present calculation is their use of a 
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more sophisticated, restricted valence configuration interaction(VCI) description of 

the target wavefunction. 

Figure 5.8 shows our calculated cross sections for excitation of the B3 IT9 state 

at the two-state, three-state (X1Et, B 3 IT9 , a 1 IT9 ) , and eight-state (X1Et, B 3 IT9 , 

a1 IT9 , W 3 .6.u, w 1 .6.u, a' 1 E~, B'3 E~) levels along with the two- and multichannel 

R-matrix results of Gillan et al. [13]. The total cross sections derived from DCS 

measurements of Cartwright et al. [32] and more recent measurements of Trajmar 

[42] at 12.5 and 15 eV are also shown. Agreement between our calculated eight

state cross sections and the measured values of [32] and [42] is reasonable. Unlike 

the a1 IT9 state, our calculated cross section for the B3 IT9 state is virtually unaffected 

by coupling with the a1 II9 state alone. However, coupling with the [7ru--+ 1r9 ] type 

excitations included in the eight-channel calculation results in substantial changes 

in both the magnitude and energy dependence of the cross sections. This is a con

sequence primarily of a significant reduction in the 2 IT9 component of the scattering 

amplitude. It should be noted that Gillan et al. [13] observed qualitatively similar 

behavior in their R-matrix studies, although as indicated in the Fig. 5.8, the effect 

of multichannel coupling was much more dramatic in their case. The R-matrix 

two-channel results for this transition are also much smaller than analogous SMC 

two-channel cross sections. The authors note that the 2 IT9 contribution is dom

inant in the two-state calculation, which is also the case for the SMC two-state 

results. As is true for the a1 IT9 state at the three-channel level of approximation, 

the correlation term involving the 17r 9 virtual orbital and the ground state electronic 

configuration apparently plays an important role in the multichannel dynamics ex

hibited in this symmetry component of the scattering amplitude. Evidence for this 
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is the substantial change in the 2II9 component of the elastic charm.el. Figures 5.9a 

and 5.9b, which are the equivalent of Figs. 5.2a and 5.2b for the B3 II9 state, indi

cate that the dominant ,\ = +1 subcomponent of the 2 II9 symmetry is virtually 
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Figure 5.10. DCS for the B3 II9 state at 10 eV. Present SMC results are 
indicated by the solid line. Measured values of Cartwright, et al. are given 
by the (Q). 

unchanged upon coupling with the a 1 II9 state. However, coupling with the 

[7ru -t 11"9 ] type excitations significantly reduces the cross sections and complicates 

their energy dependence. The ,\ = - 1 component is very small for the two- and 

three-channel coupling schemes, but is somewhat enhanced for the eight-channel 

coupling scheme. The net effect of the reduction in the 2 II9 cross section is a modest 

improvement in agreement with experiment. The resonance-like feature peaking at 

14 e V is primarily a consequence of a peak in the 2 !:l.9 symmetry component at this 
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energy. The 2 II9 symmetry component also exhibits a modest peak at this energy 

(Fig. 5.9b ). More closely spaced experimental points could aid in resolving whether 

this feature is physically real or whether it is an artifact of our approximation of 

the target states. Note that in the R-matrix study, the 2 1:::.9 symmetry was not 

considered [13]. 
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Figure 5.11. Same as Fig. 5.10 at 12.5 eV. Present SMC results are 
indicated by the solid line. Values of Trajmar[42] are indicated by (D). 

Our calculated differential cross sections for impact energies of 10, 12.5, 15, 

17, 20, and 30 e V are compared with the measurements of Cartwright et al. [32] , 

Brunger and Teubner [33], and of Trajmar [42] in Figs. 5 .10- 5.15. The calculated 

cross sections shown in Fig. 5.10 are those of a two-state calculation, while results 

ofthe eight- channel (X1 E;, B3II9 , a 1 II9 , W 3 f:::.u, w 1 f:::.u , a'
1 E;, B'

3 E;) studies are 

shown at other energies. Agreement between our calculated cross sections and the 
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measured values of Cartwright et al. and Trajmar is generally encouraging. At 15 

and 17 eV, the measurements of Brunger and Teubner, however, differ substantially 

from both our calculated values and the experimental results of Cartwright et al. and 

Trajmar. The rapidly increasing 2 llu component at higher energies results in SMC 

DCS values somewhat larger than experiment at 30 e V, although the observed 

angular dependence of the cross sections is qualitatively similar. 
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Figure 5.12. Same as Fig. 5.11 at 15.0 eV. Measured DCS of Brunger and 
Teubner [33] are given by (6). 
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Figure 5.13. Same as Fig. 5.12 at 17.0 eV. 
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Figure 5.15. Same as Fig. 5.12 at 30.0 eV. 

C. The A3L:~ State. 

180 

With its very long lifetime ("' 1 sec), this metastable state [ 43] can play an im

portant role in the modeling of shock-heated airflows [3], where the near-threshold 

cross sections are particularly relevant. Fig. 5.16 shows our calculated cross sections 

for excitation out of the ground vibrational state of X1 L:t to the A 3 L:~ state over 

this important range of energies (threshold to 10 eV). These were obtained from 

a four-state (X1 L:t, A3.E~, W 3 6u, w 1 6u, B'3 .E;;, a' 1 L:;;) calculation. The different 

thresholds for the first 19 vibrational levels of the A3 .E~ were taken from Lofthus 

and Krupnie [43], along with Franck-Condon factors provided by Cartwright [44]. 

The plotted results were obtained by assuming that the energy dependence of the 
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cross section was the same for each open vibrational channel with respect to its 

threshold, i. e., 
Nopen(E) 

ax--A(E) = L fovav(E). 
v=O 

The figure shows that the resulting cross sections obtained by the SMC fall below the 

metastable results of Borst [29] and above the measurement at 10 eV of Cartwright 

et al. [32] . Considering the experimental difficulties associated wit h measurements 

over this range of energies, such agreement is quite encouraging. A study of the 

dependence of these cross sections on internuclear distance would be of particular 

interest. 
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Figure 5.16. Integral cross sections for excitation of the A 3 :E~ state near 
threshold. The SMC four channel results are given by the solid line, m ea
sured values of Borst [29] are indicated by (*), and the measurement of 
Cartwright et al. [32] at 10 e V by ( 0 ). See text for a description of the 
computational procedure used to obtain the SMC values. 
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Fig. 5.17 shows our calculated integral cross sections for the six

and eight-channel calculations over a wider range of impact energies along 

with the experimental values of Cartwright et al. [32], Trajmar [42], and 

Borst [29] and the multichannel R-matrix cross sections of Gillan et 

al. [13]. No two-state R-matrix results for this transition were reported. 
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Figure 5.17. Integral cross sections for excitation of the A 3 :Et state. The 
SMC results are given by the solid line (eight channel coupling) and short 
dashed line (six channel coupling). Calculated R-matrix cross sections of 
Gillan, et al. [13] are indicated by the long dashed curve. Measured values 
of Borst [29] are denoted by(*); those of Cartwright et al. [32] , by (Q); 
those of Trajmar [42], by (D). 

It is evident from the figure that at energies above 10 eV, coupling the [7ru ~ 1r9 ] 

excitations constituting the A3 :Et state to the [3a9 ~ 11r9 ] excitations of the a 1 II9 

and B3 II9 states substantially alters the SMC results. The cross sections computed 
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at the eight-channel level of approximation, although differing substantially from 

the results of Cartwright et al. at 10 and 12.5 eV, appear to be in better qualitative 

agreement with the R-matrix cross sections and the measurements of Borst. The 

features at higher energies present in the eight-channel results arise from features 

in the 2 1Iu symmetry component. The resonance observed by Gillan et al. in this 

symmetry at 13.7 eV is qualitatively similar to a broad peak observed in the SMC 

cross section for this symmetry component at 14 eV. It is unlikely that this is 

related to the resonance in this symmetry investigated by Mazeau et al. [45) due to 

the large difference between the energies at which these features are observed. The 

21Iu resonance they observed was at a much lower energy, 9.8 eV. The multichannel 

effects observed in the [1r u -+ 1r 9 ] type excitations will be discussed in greater detail 

below. 
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Figure 5.18. DCS for the A3~t state at 10.0 eV. SMC four channel cou
pling results are indicated by the solid curve. Measured DCS of Cartwright 
et al. [32] are given by (Q). 
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Our calculated differential cross sections for excitation of the A 3 ~t state 

at 12.5, 15, 17, 20, and 30 eV are compared with available measured values of 

Cartwright et al. [32], Trajmar [42], and Brunger and Teubner [42] in Figs. 5.18 to 

5.23. The four-state results used in calculating the integral cross sections of Fig. 16 

are shown for 10 eV. While the calculated differential cross sections show significant 

forward peaking at 10 and 12.5 eV, the cross sections are strongly backward peaked 

at the higher energies. This behavior at small angles in the calculated cross sections 

at 10 and 12.5 eV is not seen in the measured values. In contrast, the behavior of the 

differential cross sections at the higher angles, where measured values are available, 

seems consistent with the backward peaking seen in the calculated cross sections 

at impact energies above 15 eV. Although similar in shape, the magnitudes of the 

calculated and measured cross set ions at 30 e V differ significantly. 
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Figure 5.19. Same as Fig. 18 at 12.5 eV. Measurements of Trajmar [42] 
are denoted by (D). 
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Figure 5.20. Same as Figure 5.19 at 15.0 eV. Values of Brunger and Teub
ner [33] are given by (6). 
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Figure 5.21. Same as Figure 5.18 at 17.0 eV. 
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Figure 5.22. Same as Fig. 5.18 at 20.0 eV. 
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Figure 5.23. Same as Fig. 5.18 at 30.0 eV. 
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5.3.4 The W 3 ~u State. 

Integral cross sections for excitation of the X1 L;t --+ W 3 ~u transition are 

shown in Fig. 5.24. As with the A 3 L;;!" state, the six- and eight-state cross 

sections show some significant differences. These differences, which reflect the 

importance of channel coupling to the 30'9 --+ 11r9 states, are qualitatively sim

ilar to those seen for the A 3 L:;!" state in Fig. 5.17. The eight- state cross 
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Figure 5.24. Integral excitation cross sections for the excitation of the 
W 3 ~u state. The SMC results are given by the solid line (eight- channel 
coupling) and short dashed line (six-channel coupling). Calculated R
matrix cross sections of Gillan et al. [13] are indicated by the long dashed 
curve. Measured values of Cartwright et al. [32] are given by ( 0 ); those 
of Trajmar [42] , by (o). 
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sections agree quite well with the measured values of Cartwright et al. [32] and 

of 'lrajmar [42], except at 30 eV, and with the multichannel R-matrix results of 

Gillan et al. [13]. The broad feature in these calculated cross sections between 20 

and 30 eV arises from the 2 Ilu symmetry component. The enhancement in the 

cross sections at 15 eV also arises form the 2Ilu component; a similar feature was 

reported by Gillan et al. [13] at 18.1 eV in the 2 Ilu symmetry. 
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Figure 5.25. DCS for the W 3 ~u state at 10.0 eV. Results of an SMC six
channel coupling calculation are indicated by the solid curve. Measured 
DCS of Cartwright et al. [32] are given by (Q). 

Figures 5.25 through 5.30 show the our calculated differential cross sec-

tions for the eight- channel coupling scheme and the measured values of 

Cartwright et al. [32], 'lrajmar [42], and Brunger and Teubner [33] . At 

10 eV, only results of the six-channel coupling calculation are given as the 
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Figure 5.26. DCS for the W 3 6.u state at 12.5 eV. SMC eight channel 
coupling results are indicated by the solid line. Measurements of Trajmar 
[42) are denoted by (D). 

a 1 Il9 channel is closed at this energy within our approximation of the excited states. 

Agreement between the calculated and measured values at 10, 12.5, 15, and 17 eV 

is quite reasonable. However, at the higher energies of 20 and 30 eV, there are 

significant differences between the calculated values and available measurements. 

Calculations with more extensive channel coupling schemes and more sophisticated 

target wavefunctions could be helpful in identifying reasons for these differences. 
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Figure 5.27. Same as Fig. 5.25 at 15.0 eV. Values of Brunger and Teubner 
[33] are given by (6). 
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Figure 5.28. Same as Fig. 5.26 at 17.0 eV. 
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Figure 5.29. Same as Fig. 5.26 at 20.0 eV. 
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Figure 5.30. Same as Fig. 5.26 at 30.0 eV. 
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E. The w 1 ~u State. 

Fig. 5.31 shows our calculated integral cross sections for the w 1 ~u stat e along 

with measured values of Cartwright et al. [32] . The calculated cross sections show 

a sharp peak near threshold (11 eV) due to a rapid rise and fall of the 2 II9 symmetry 

component between threshold and 12 eV. Otherwise, the 2 IIu symmetry is the dom-

inant part of the cross section at these energies. Although agreement is satisfactory 

at 12.5 and 15 eV, our cross sections at higher energies lie above experiment. As 

with the X 1 "E't -+ a 1 IT9 transition, we took into account the contribution of higher 

partial waves to the cross section by use of the Born closure method. Here lmax = 6 
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Figure 5.31. Integral cross sections for the excitation of the w 1 ~u st ate. 
The SMC+FBA eight channel results are given by the solid line. Measured 
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(Eq. 2.13) was used at all energies. As would be expected, the Born contribution to 

the excitation cross section increases as incident electron energy increases. However , 

in contrast to the a1 II9 state, the Born component is substantially smaller than the 

SMC component ("' 20% even at 30 eV). 

Our DCS values are presented in Figs. 5.32-5.36. Except at 12.5 eV, agreement 

with Cartwright et al. [32] and Brunger and Teubner's [33] measurements is n ot as 

satisfactory as for the states discussed previously. Although at 15 and 17 e V, our 

computed DCS are of the same magnitude as experiment, the angular dependence 

is markedly different. The maxima observed in our DCS between 30 and 60° result 
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from the contribution of the high partial waves of the FBA amplitude. In this re

gards, it is worth noting that the observed forward peaking of the DCS of Brunger 

and Teubner and Cartwright et al. cannot be due to the long range nature of this 

spin-allowed transition. The angular dependence of the FBA differential cross sec

tions has been considered by Klump and Lassettre (48). Based on their expansion of 

the generalized oscillator strength in terms of moments of the electronic transition, 

2.5 

.. a 2 .o 
C) .. 

i 
0 -
= 1.5 
.~ ..... 
C) 
~ 
fll 

"' ~ 1.0 .. 
u 

3 ..... 
~ 0.5 II .. 
~ ... .... 
i5 

0 .0 
0 45 90 135 160 

Scattering Angle ( deg) 

Figure 5.33. Same as Fig. 5.32 at 15.0 eV. Values of Brunger and Teubner 
(33) are given by ( ~ ). 

an octupole type transition such as X 1 ~: -t w 1 .6-u should exhibit a DCS which 

increases with increasing scattering angle for low-angle scattering. Hence, inclusion 

of the FBA amplitude does not lead to improved agreement with experiment at low 

scattering angles, particular at higher energies (> 15 eV). It should be noted that 

forward peaking was not observed in the DCS computed using the DW method [11]. 
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5.3.6 The a11 :E;;- State. 

135 180 

The integral cross sections for excitation of this state obtained from six- and 

eight-channel calculations are shown in Fig. 5.37. Differences in these cross sections 

again show that channel coupling is important in describing the dynamics of electron 

impact excitation of this state. The eight-state results are in reasonable agreement 

with the limited experimental data of Cartwright et al. [32]. The near threshold 

peak is associated with a resonance-like feature in the 2 IIu symmetry while the 

broader peak between 14 and 15 eV is associated with the 2 IIg symmetry component. 

Differential cross sections for the X 1:E; --+ a'1 :E;; excitation are presented in 

Figs. 5.38 to 5.41. The zero DCS values at 0° and 180° predicted for r:- t-t r:+ 
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transitions based on symmetry arguments and discussed by Cartwright et al. [46] 

are evident in the figures. Note that this symmetry requirement extends to the 

symmetry components of the integral cross sections: the 2 :Eg and 2 :Eu components 

are identically zero for this class of transitions. The asymmetric (with respect to 

90°) appearance of the experimental DCS values of Cartwright et al. at 15 and 17 

eV is not observed in the SMC. At 20 eV, however, the six-channel SMC results 

more accurately reflect the prominent peak at 130° observed experimentally (Fig. 
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Figure 5.37. Integral cross sections for the excitation of the a' 1 :E~ state. 
The SMC results are given by the solid line (eight-channel coupling) and 
short dashed line (six-channel coupling). Measured values of Cartwright 
et al. [32] are given by ( 0 ). 

5.40). As with the w 1 .6.u state, the increasing DCS values measured by Brunger 

and Teubner [33] and Cartwright et al. toward lower angles at 30 e V is not evident 

in the SMC cross sections. 
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5.3.7 The B'3 'E;;- State. 

Figure 5.42 shows our integral cross sections f~r excitation of the B'3 'E~ state 

obtained from both six- and eight-state studies along with measured values of 

Cartwright et al. [32] . As in the case of the a'1 'E~ state, resonant- like features 

in the 21Iu symmetry component of the eight-channel calculation at 11 eV and in 

the 2 119 component at 15 eV result in the double peak structure in the SMC cross 

sections. As observed in the other transitions considered, the eight- channel cross 

sections are in consistently better agreement with the experimental values than 

those obtained for the six-channel coupling scheme. 
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Figure 5.42. Integral cross sections for the excitation of the B' 3 'E~ state. 
The SMC results are given by the solid line (eight-channel coupling) and 
dashed line (six-channel coupling). Measured values of Cartwright et 
al. [32] are given by ( 0 ). 
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The DCS data plotted in Figs. 5.43 through 5.4 7 are similar qualitatively to 

those for the a' 1 :E;; state. Measured values for this transition have been reported 

by Brunger and Teubner [33], in addition to Cartwright et al. Like the a' 1 ~;; state, 

the results of the six-channel coupling scheme exhibits more prominently the asym

metry observed in the data of Cartwright et al., especially at 20 eV, although the 

magnitudes of the cross sections are significantly greater than the experimental cross 

sections. Again, the low angle behavior at 30 e V (Fig. 5.4 7) of the experimental 

cross sections reported by all three groups is not reflected by results of either SMC 

multichannel coupling calculation, nor expected theoretically [46]. 
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Figure 5.43. DCS for the B'3 :E;; state at 12.5 eV. SMC six-channel cou
pling results are indicated by the dashed curve, eight-channel by the solid 
curve. Measured DCS of Cartwright et al. [32] are given by (Q). 
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5.3.8 Multichannel Effects Involving the [7ru -+ 7rg] Excitations 

In contrast to other molecules investigated using the SMC method, the exci-

tations considered in this study exhibit very distinctive multichannel effects, parti

cularly in the case of states involving the singlet and triplet coupled [7ru -+ 1r9 ] 
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Figure 5.44. Same as Fig. 5.43 at 15.0 eV. Values of Brunger and Teubner 

(33] are given by (6). 

excitations. The relatively simple, single configuration target description used for 

the target wavefunction is helpful in studying such effects. In light of results ob

tained using more sophisticated target wavefunctions [13], a clear understanding of 

multichannel coupling is evidently needed before attempting to analyze results of 

studies where the inclusion of multiconfiguration target wavefunctions complicates 
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interpretation of multichannel effects. What one observes is that the recorrelation 

terms present in the total wavefunction in Eq. (1.9) play an essential role in the 

multichannel dynamics. Here, recorrelation terms are considered to be those config-

urations in Eq. (1.9) required to compensate for the orthogonality of the continuum 
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Figure 5.45. Same as Figure 5.44 at 17.0 eV. 

functions with the occupied orbitals included in the description of the ground and 

excited states of the target which is imposed in most procedures. Although there 

are no continuum functions included in the present SMC expansion of the scatter-

ing wavefunction, it is still convenient to consider it as consisting of open channel 

and closed space or recorrelation terms, i.e., Eq. (1.16). Difficulties associated 

with these latter terms (the el-' in 1.16) when employing multiconfiguration target 

wavefunctions have been discussed in the context of the complex Kohn-method [4 7]. 
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Studies of the H 2 0 molecule have indicated that for the SMC, there are two 

types of multichannel coupling effects. For excitations involving configurations with 

different holes (e.g., the [3u9 --+ 11rg(x,y)] and [17rux --+ 17r9 y] excitations in N2 , 

see 1.2.2 concerning notation), coupling occurs only via the potential V in the 

expression for A ( +), Eq. (1.8). The other type of coupling involves excitations from 

the same hole. These excitations are coupled by the projector P in addition to the 

potential, and are closely related to the recorrelation terms discussed Lengsfield and 

Rescigno [47]. Although the subject of considerable speculation [13], it was found 

that the SMC results are relatively insensitive to excitation thresholds for impact 

energies above 10 eV in the case of the N2 molecule. Even the relative order of 

threshold energies was found to be unimportant for the collision energies of interest 

in this study. 

The consequences of coupling via the projector P are quite dramatic for the 

[7ru --+ 1r9 ] transitions in N2. For the symmetry components of the total cross 

section lacking recorrelation terms, namely the 2 :E9 , 2 :Eu, 2 !::l.9 , and 2 f::l.u symmetries 

for coupling involving [1r u --+ 7r 9 ] transitions exclusively, convergence with respect to 

basis set choice is very rapid. Small, valence basis sets including a set of d-functions 

yield results almost identical with the large basis set employed in this study. The 

case of the 2 IT9 symmetry is similar in that the only recorrelation term present is 

the [0](17r g(x,y)) configuration (see 1.2.2). For this symmetry, excellent convergence 

characteristics are observed regardless of the coupling schemes chosen, as long as 

the [7ru --+ 1r9 ] transitions alone are considered. For the 2Ilu symmetry however, 

the effects of channel coupling are dramatic and lead to instability with respect 

to basis set selection. Only for restricted, two-state calculations in which there 
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are no recorrelation terms in the 2 Ilu symmetry is convergence also observed to be 

rapid. It is in this symmetry that all of the inelastic recorrelation or closed channel 

terms (e.g., [17rux --+ 17r9 x](17rgy)) are present. Large shifts(> 5 eV) in the p eak 

cross sections of this symmetry component are observed, the positions of the peaks 

being highly dependent on the choice of basis set. The singlet coupled, and hence 

optically allowed nature of some of these recorrelation terms is undoubtedly partly 

responsible for this behavior, although their influence on the scattering amplitude 

does not include a substantial increase in the contribution of higher partial waves to 

the triplet excitation cross sections. The SVD procedure discussed in chapter 1 is 

used to smooth out the high energy resonances resulting from the presence of these 

terms (see 1.3.5), while the FBA amplitude is used to treat the higher partial-wave 

components of the amplitudes for the singlet transitions. 

Coupling of the [3a9 --+ 17rg(x,y)] excitations with the [17ru(x,y) --+ 11rg(x ,y)] 

type might not initially seem to be important. However, for the Nz molecule, 

at least, it appears that the elastic channel [0](17r9(x,y)) configuration in the 2II9 

symmetry component plays an important role in the dynamics of multichannel 

coupling. Thus, it is necessary to couple both types of excitations. This leads to 

significant reductions in the 2 II9 symmetry contribution to all of the transitions 

considered in this study. 

The need to consider all energetically open channels whose respective compo

nents of the projector P have a nonzero overlap with elastic channel configurations 

of this type has important consequences. Namely, it implies that limited channel 

coupling schemes are unlikely to account for some significant multichannel effects. 

The fact that the computational effort required for evaluation of A ( +) and the 
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onshell integrals in Eq. (1.7) grows rapidly as additional channels are opened un

derscores the need for fast , parallel computers such as the Intel Touchstone Delta 

machine to make these studies feasible. 

5 .4 Conclusions 

Results of application of the SMC method to electronic excitation of N2 have 

been presented and compared with the extensive set of available experimental data. 

Integral excitation cross sections for the A3I:t, B3II9 , and W 36.u states have also 

been compared with those of recent R-matrix calculations. Coupling of all possi

ble excitations out of the 3u 9 and lTr u orbitals to the lTr 9 orbitals was found to 

be necessary for the B3 II9 , A3 :Et, W 3 6.u, w 1 6.u, B'3 :E;, and a'1 :E; states. In 

most instances, this leads to improved agreement with experiment and R-matrix 

cross sections compared to less extensive coupling schemes. Inclusion of First Born 

terms with multichannel SMC results was found to yield cross sections in very good 

agreement with experiment for the a1 II9 state. Considering the consistently better 

agreement with experiment for the most extensive channel coupling schemes, our 

results clearly indicate the need to treat electronic excitation of molecules by low 

energy electrons as a multichannel problem in order to obtain reliable cross sections. 
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Table 5.3. Differential and Integral Excitation Cross Sections for the a1 119 

State of N2, 10-18 (cm 2 /sr). 

8(deg) 12.5 eV 15.0 17.0 20.0 30.0 

0 3.81 6.21 11.8 15.1 12.1 
10 3.72 5.95 10.8 14.0 11.2 
20 3.46 5.24 8.24 11.1 9.39 
30 3.14 4.25 5.50 7.38 6.58 
40 2.79 3.21 3.35 4.01 3.14 
50 2.46 2.35 2.05 1.99 1.04 
60 2.16 1.72 1.42 1.20 0.578 
70 1.92 1.30 1.17 0.974 0.595 
80 1.71 1.06 1.02 0.924 0.801 
90 1.54 0.973 0.948 0.980 1.09 

100 1.42 1.03 1.03 1.15 1.22 
110 1.35 1.17 1.27 1.33 1.11 
120 1.34 1.30 1.55 1.41 1.01 
130 1.36 1.32 1.76 1.38 1.07 
140 1.41 1.24 1.83 1.32 1.01 
150 1.43 1.07 1.74 1.18 0.772 
160 1.42 0.876 1.54 1.02 0.544 
170 1.40 0.709 1.37 0.961 0.418 
180 1.39 0.642 1.30 0.966 0.390 

O"int 23.4 21.6 25.5 26.9 20.6 
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Table 5.4. Differential and Integral Excitation Cross Sections for the B3 II9 

State of N2 , 10-ts (cm2 /sr). 

O(deg) 10.0 eV 12.5 15.0 17.0 20.0 30.0 

0 1.84 1.42 0.922 0.414 0.401 0.242 
10 1.87 1.44 1.02 0.472 0.455 0.308 
20 1.98 1.49 1.25 0.607 0.576 0.469 
30 2.13 1.50 1.52 0.745 0.690 0.614 
40 2.32 1.49 1.76 0.874 0.800 0.743 
50 2.52 1.51 1.94 1.00 0.928 0.970 
60 2.71 1.58 2.04 1.10 1.02 1.26 
70 2.89 1.69 2.09 1.18 1.03 1.50 
80 3.05 1.87 2.18 1.25 1.00 1.56 
90 3.18 2.07 2.34 1.35 0.963 1.43 

100 3.27 2.23 2.57 1.44 0.921 1.23 
110 3.32 2.34 2.82 1.53 0.903 1.15 
120 3.34 2.43 3.01 1.63 0.951 1.30 
130 3.33 2.48 3.00 1.68 1.05 1.62 
140 3.30 2.45 2.66 1.64 1.16 1.99 
150 3.25 2.29 2.02 1.49 1.22 2.31 
160 3.20 1.96 1.30 1.27 1.17 2.39 
170 3.17 1.60 0.770 1.08 1.03 2.23 
180 3.15 1.44 0.586 1.00 0.949 2.12 

D'"int 37.3* 25.2 28.7 16.1 12.0 17.3 

*From a two-state calculation. 
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Table 5.5. Differential and Integral Excitation Cross Sections for the A 3 L:;!" 

State of N2 , (10-18 cm2 /sr). 

O(deg) 10.0 eV 12.5 15.0 17.0 20.0 30.0 

0 3.71 8.72 2.07 1.36 0.095 0.728 
10 3.59 8.18 1.89 1.26 0.126 0.769 
20 3.25 6.74 1.45 1.00 0.209 0.847 
30 2.75 4.88 0.996 0.732 0.319 0.875 
40 2.20 3.18 0.806 0.607 0.428 0.804 
50 1.69 2.12 1.00 0.731 0.525 0.681 
60 1.28 1.78 1.48 1.05 0.610 0.607 
70 1.23 1.93 1.99 1.40 0.686 0.645 
80 0.920 2.26 2.28 1.62 0.756 0.765 
90 0.941 2.51 2.21 1.61 0.805 0.892 

100 1.02 2.52 1.86 1.37 0.813 0.967 
110 1.10 2.29 1.47 1.07 0.788 0.986 
120 1.14 1.98 1.39 0.973 0.796 0.990 
130 1.12 1.81 1.93 1.30 0.936 1.04 
140 1.06 1.86 3.16 2.12 1.28 1.17 
150 0.988 2.09 4.88 3.31 1.84 1.41 
160 0.926 2.44 6.72 4.58 2.50 1.73 
170 0.884 2.81 8.14 5.58 3.03 2.02 
180 0.869 2.97 8.68 5.96 3.24 2.14 

D"int 16.9* 37.1 31.3 23.0 13.4 11.9 

*Taken from a four-(X1 L:t, A 3 L:;!" , W 3 .6.u, B' 3 L:;; ) state calculation. 
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Table 5.6. Differential and Integral Excitation Cross Sections for the 

W 3 6.u State of N2 , (10-18 cm2 /sr). 

B(deg) 10.0 eV 12.5 15.0 17.0 20.0 30.0 

0 0.450 0.983 2.12 2.12 1.23 0.463 
10 0.461 0.938 1.99 2.01 1.27 0.486 
20 0.491 0.832 1.65 1.71 1.35 0.547 
30 0.527 0.749 1.316 1.38 1.34 0.625 
40 0.562 0.796 1.22 1.24 1.22 0.707 
50 0.592 1.02 1.50 1.44 1.08 0.819 
60 0.619 1.36 2.06 1.91 1.02 1.00 
70 0.644 1.69 2.62 2.40 1.05 1.25 
80 0.668 1.91 3.01 2.78 1.15 1.49 
90 0.687 2.03 3.18 2.95 1.30 1.64 

100 0.700 2.10 3.16 2.91 1.43 1.66 
110 0.701 2.18 3.08 2.73 1.49 1.61 
120 0.690 2.31 3.09 2.55 1.44 1.55 
130 0.673 2.48 3.30 2.52 1.33 1.56 
140 0.657 2.60 3.66 2.72 1.25 1.66 
150 0.647 2.60 4.01 3.02 1.22 2.84 
160 0.645 2.46 4.17 3.20 1.17 2.05 
170 0.646 2.29 4.11 3.16 1.06 2.23 
180 0.647 2.21 4.04 3.10 0.996 2.30 

O'int 4.17* 23.5 35.7 31.2 16.3 17.5 

*From a six-channel calculation. 
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Table 5. 7. Differential and Integral Excitation Cross Sections for the w 1 .6. .. 

State of N2 , (10-18 cm2 /sr). 

8(deg) 12.5 eV 15.0 17.0 20.0 30.0 

0 2.14 1.01 0.600 0.282 0.193 
10 2.13 1.03 0.657 0.405 0.234 
20 2.08 1.11 0.820 0.683 0.406 
30 1.99 1.23 1.02 0.937 0.664 
40 1.85 1.31 1.15 1.04 0.772 
50 1.67 1.32 1.19 1.02 0.639 
60 1.50 1.27 1.18 0.962 0.465 
70 1.34 1.18 1.13 0.891 0.397 
80 1.17 1.03 1.01 0.850 0.380 
90 0.974 0.825 0.850 0.699 0.356 

100 0.797 0.629 0.696 0.646 0.331 
110 0.678 0.490 0.589 0.643 0.318 
120 0.630 0.436 0.520 0.640 0.322 
130 0.628 0.450 0.463 0.589 0.328 
140 0.622 0.475 0.403 0.492 0.315 
150 0.583 0.469 0.349 0.382 0.294 
160 0.517 0.434 0.321 0.303 0.286 
170 0.456 0.398 0.317 0.273 0.291 
180 0.431 0.383 0.320 0.269 0.294 

O"int 14.1 10.8 10.5 10.2 5.52 
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Table 5.8. Differential and Integral Excitation Cross Sections for the 

a' 1 ~;; State of N2 (10-18 cm2 /sr ). 

O(deg) 15.0 eV 17.0 20.0 30.0 

0 0.000 0.000 0.000 0.000 
10 0.023 0.038 0.030 0.010 
20 0.090 0.135 0.100 0.036 
30 0.190 0.246 0.170 0.065 
40 0.305 0.328 0.206 0.084 
50 0.416 0.367 0.211 0.087 
60 0.509 0.378 0.208 0.083 
70 0.581 0.381 0.207 0.083 
80 0.628 0.378 0.200 0.094 
90 0.647 0.363 0.190 0.131 

100 0.636 0.333 0.193 0.203 
110 0.590 0.294 0.221 0.289 
120 0.508 0.250 0.259 0.355 
130 0.397 0.204 0.271 0.373 
140 0.276 0.153 0.235 0.332 
150 0.163 0.100 0.160 0.245 
160 0.744 0.050 0.078 0.135 
170 0.019 0.013 0.020 0.039 
180 0.000 0.000 0.000 0.000 

O'"int 5.69 3.64 2.57 2.21 
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Table 5.9. Differential and Integral Excitation Cross Sections for the 

B' 3 E; State of N2 (10-18 cm2 /sr). 

O(deg) 12.5 eV 15.0 17.0 20.0 30.0 

0 0.000 0.000 0.000 0.000 0.000 
10 0.021 0.017 0.020 0.020 0.019 
20 0.082 0.066 0.081 0.081 0.071 
30 0.172 0.142 0.183 0.186 0.135 
40 0.286 0.245 0.321 0.321 0.188 
50 0.424 0.376 0.485 0.458 0.215 
60 0.585 0.542 0.658 0.568 0.215 
70 0.764 0.736 0.819 0.643 0.214 
80 0.928 0.937 0.946 0.683 0.250 
90 1.08 1.12 1.03 0.692 363 

100 1.18 1.25 1.06 0.668 0.553 
110 1.21 1.32 1.04 0.609 0.771 
120 1.17 1.29 0.971 0.519 0.932 
130 1.03 1.14 0.828 0.407 0.962 
140 0.804 0.889 0.627 0.288 0.835 
150 0.530 0.580 0.401 0.176 0.589 
160 0.264 0.285 0.194 0.084 0.306 
170 0.071 0.075 0.051 0.022 0.084 
180 0.000 0.000 0.000 0.000 0.000 

O"int 8.69 14.4 10.2 5.47 5.73 


