Chapter 3

A Computational Model for Active
Self-Assembly in DNA Systems’

3.1 Abstract

In this chapter, we define the first molecularly implementable active self-assembly model. We
introduce a theoretical framework for provably knowing what actions, behaviors, and life-like
qualities can emerge from a given set of simple modular units. We will use some of the theoretical
approaches that computer science has for determining the complexity and difficulty of solving
computational problems.

There has been a need for developing formal modular theoretical models for programming
active self-assembly processes in both the reconfigurable robotics community and the nanotech-
nology community. With respect to materials science and nanotechnology, the formal models
proposed to date are either not yet implementable with our current understanding of synthetic
chemistry or those that are implementable are limited to a set of features that do not capture the
power of active components. Prior implementable formal models of molecular assembly only

considered the passive behaviors of attaching and detaching from a molecular complex [Winfree,

OThis work was coauthored by Nadine Dabby & Ho-Lin Chen*, and presented at the Symposium on Discrete
Algorithms 2013 [Dabby and Chen, 2013b] with the following contributions: model formulation by N. D., proofs by
H-L.C. ; Manuscript was written by both authors.
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1996].

3.2 Introduction

In this chapter, we first discuss some of the motivation (Section 3.2.1) and contextual background
(Section 3.2.2) for the work, we next review prior self-assembly models and constructions pro-
posed across disciplines (Section 3.2.3), we then present a new “active” self-assembly model that
can be directly implemented in molecules (Section 3.3) and we provide a series of theorems and
proofs about what these molecules can computationally achieve (Section 3.4). The approach arises
out of the fact that molecules do certain things well and other things badly, and digital computers
do other types of things well and badly.

As a starting point we note that the Winfree Tile Assembly Model is a “passive” self-assembly
system that formally couples computation with shape construction. It is a computational model
that can be directly implemented in DNA molecules. Winfree showed that the tiles are capable of
universal computation [Winfree, 1996]. Such a system is said to be “Turing-complete”.

One might think that because the Tile Assembly Model is Turing-complete, capable of com-
puting “anything,” that they can do any arbitrary task. But while they can simulate any digital
computational problem, there are many behaviors that are not “‘computations” in a classical sense,
and cannot be directly implemented. Examples include exponential growth, and molecular motion
relative to a surface as was discussed in Chapter 2. The tiles cannot implement these behaviors
because (a) molecular motion relative to a surface requires a source of fuel that is external to the
system, (b) the tiles are too slow to assemble exponentially fast growing structures and (c) the
tiles are a passive self-assembling system. We call these behaviors “energetically incomplete”
programmable behaviors. This class of behaviors includes any behavior where a passive physical
system simply does not have enough physical energy to perform the specified tasks in the requisite
amount of time. The tile computation is finished when the system passively reaches equilibrium,
which is a slow process. In order to achieve these “active” behaviors, the system will need a fuel
source and a logic for how it will grow or move. We will show that it does not need Turing-

completeness.
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As we will demonstrate and prove in this chapter, a sufficiently expressive implementation
of an “active” molecular self-assembly approach can achieve these behaviors. Using an external
source of fuel solves part of the the problem, so the system is not “energetically incomplete.”
But the programmable system needs to have sufficient expressive power to achieve the specified
behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness
to be sufficiently expressive.

In this chapter, motivated by some of the ideas from Chapter 1, we present a molecularly
implementable idea for “active” self-assembly that exhibits behaviors such as exponential growth.
To do this, we select an implementable subset of the behaviors from the Nubot model from Chapter
1 and add a programmable fuel driven approach. In this way we derive a new type of “active” self-
assembly system that can be formally defined and easily implemented in molecules.

As we explained in Chapter 1, the full version of the early model cannot be implemented
in molecules because it requires small groups of molecules to have more computational power
than they can provide. But the right subset of behaviors (in this case exponential growth) can be
programmably implemented and abstracted into a formal model, which allows one to explore the
space of what can be provably constructed without entering a lab.

Although the Nubot model itself is Turing-complete, capable of performing any digital compu-
tation, the subset we have selected is not Turing-complete. Turing machines can accept or generate
recursively enumerable languages. In contrast, we prove that the subset we have selected is capa-
ble of generating, at most, context-free languages (Figure 3.1). A Turing machine can rewrite its
production rules, our system cannot.

Nonetheless, it is a molecularly implementable model that exhibits some of the targeted physi-
cal behaviors like exponential growth, and we prove that it exhibits these behaviors, but our system
is not Turing-complete. Instead we prove that our model can generate context-free grammars and
that the computational capability of this system is at most equivalent to pushdown automata.

Specifically we will show that given any insertion system (our model) we can generate both
regular and context-free languages. We explore the trade-off between the complexity of the system
(in terms of the number of unit types), and the behavior of the system and speed of its assembly.

We find that we can grow a line of any given length n in expected time O(log®n) using O(log*n)
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Recursively Enumerable Languages
(Turing Machine)

Recursive Languages
(Turing Machine)

Context-Free Languages
(Pushdown Automata)

Regular Languages
(Finite State Machine)

Figure 3.1: Our language is stronger than regular languages. It is within the subset of context-
free languages (the shaded area in this figure) as shown in Section 3.4, but it is not as strong as
recursively enumerable languages.

monomers. Finally, we show that given any insertion system with with k£ molecular species, either
the expected final length is infinite or the expected length at time ¢ is upper bounded by (2¢ + 2)k2.

Molecular biology is missing a theoretical framework for understanding the complexity of sub-
sets of molecules that interact with each other to generate behaviors. Computer Science has such
a framework but it deals on computational complexity — thus we can say how “hard” a particular
mathematical problem is by analyzing how much time and space a computer requires to solve it.
On the other hand, in other parts of Biology, we can’t say how computationally “hard” it is to
generate behaviors like metamorphosis (the changing of one shape into another) or treadmilling
(the growth of a linear polymer in one direction while it shrinks in the other direction). !

In the absence of biological measures of complexity we map our system onto a computational
framework, by proving theorems regarding the “expressive power” of the model we define. This
shows what the system is capable of doing from a computational perspective. A good primer on

computer science theory can be found in [Sipser, 2006]; here we present a very simple summary.

'"We might use the following measures to distinguish between the hardness of generating different behaviors:
number of types of molecules and amount of time necessary to generate the behavior.
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3.2.1 Motivation

Molecular programming, nanotechnology and synthetic biology raise the prospect of bottom-up
fabrication, the manufacture of complex devices from simple components that assemble them-
selves. Biology sets the bar high: fabricating systems of enormous scale, defined at atomic-scale
resolution, that grow quickly with small programs relative to object size and algorithmic complex-
ity [Karsenti, 2008]. A human’s genome consists of approximately three billion base pairs [Venter
et al., 2001]; this implies that our cells are running a program that utilizes less than 1 gigabyte
of information. Contrast this program-size efficiency with the computer on which we write this
report: it has 320 gigabytes of storage disk memory, and yet it is not capable of doing many things
that biology can do (e.g. it cannot grow exponentially fast like the embryos shown in Fig. 3.2, it
cannot grow in mass and develop simultaneously, and it is not robust to damage). Other examples
from biology prove to be even more phenomenologically interesting: a newt is able to regenerate
its tail, a flatworm is capable of regenerating its head, and a starfish can regenerate its entire body
from a severed leg [ Alvarado and Tsonis, 2006]. Biology offers many examples of phenomena that
we are as of yet unable to reproduce in computational software or hardware, but that perhaps show
us what is possible. Inspired by these feats of biological efficiency, robustness and phenomena, we

define a formal implementable model for active self-assembly.

Many attempts have been made to emulate biology’s success across materials and disciplines.
While biologists have had success reconstructing self-organized cellular systems in vitro [Liu and
Fletcher, 2009], chemists have utilized self-assembly to construct films and monolayers as well
as more complicated architectures constructed from nanotubes and nanoparticles [Whitesides and
Grzybowski, 2002,Grzybowski et al., 2009]. These new self-assembled materials have in turn been

used to construct nano-scale electronics [Lu and Lieber, 2007] and biomaterials [Stupp, 2010].

Nanotechnologists have built many examples of self-assembling two and three dimensional
devices using passive subunits. The nano-components of a cell are much more “active” than pas-
sive: they sense and process environmental cues; they assemble and disassemble; upon interaction,
their configurations often change, determining their future interactions; they can both diffuse and

actively move. Recently, self-assembly systems using active molecular components have also

26



([
,
107 Y
()
o 107 o
£
g 107
c o
= 10
»
g [}
£ 107
£ ® mouse embryo eye
<3
O 10k ® cow embryo
® human embryo
107-0® e 4
[ ]
10’5 d 1 1 1 1 1 1 1 1 1 |
0 5 10 15 20 25 30 35 40 45 50

time (in days)

Figure 3.2: This plot is compiled from embryonic mouse [Foster et al., 2003], cow [Morris et al.,
2001], and human [Luecke et al., 1999] data. The gray lines fit the periods of exponential growth
in each species. Note that beginning points do not reside on these lines, because the growth rate
initially increases proportionally to mass. The period of exponential growth slows down as the
amount of mass necessary to sustain this type of growth becomes constrained by volume and
access.

been demonstrated in various synthetic systems [Kay et al., 2007, Heuvel and Dekker, 2007, Hess,
2006a,Bath and Turberfield, 2007]. Particularly notable are the rich dynamical systems constructed
out of synthetic nucleic acids, whose four-base code gives rise to a means of programming specific
molecular interactions. DNA has been used to build autonomous walkers [Yin et al., 2004, Tian
et al., 2005, Bath et al., 2005, Pei et al., 2006, Green et al., 2008, Omabegho et al., 2009, Yin et al.,
2008, Lund et al., 2010, Muscat et al., 2011], logic and catalytic circuits [Seelig et al., 2006, Zhang
et al., 2007, Yin et al., 2008, Win and Smolke, 2008], and triggered assembly of linear [Dirks and

Pierce, 2004, Venkataraman et al., 2007] and dendritic structures [Yin et al., 2008].

Now that our once passive subunits can actively sense, walk and otherwise actively interact,
how do these new “rules” change the prospects for what we can build from the bottom-up? This
notion of actively assembling molecules is already an experimental reality, but as of yet there is
no satisfying theory to guide future work. In this paper we attempt to formulate a framework for
integrating these new “active” mechanisms in nanotechnology to build “programs” that can grow

into a desired shape quickly and with relatively small program size to a final structure.
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3.2.2 Contextual Background

In computer science, one can divide up the difficulty of a computational problem by classifying
the strength of the machine necessary to solve it; these machines are associated with the types of
languages they are capable of accepting as input or generating. A language is a set of strings of
symbols that can be generated by a set of production rules [Sipser, 2006].

The simplest classes of machines are finite automata. For example one can think of the motion
sensing doors in the supermarket— the doors are capable of being in two states, open or closed, and
the doors go between these states with the various inputs to the motion sensors. The system has
an extremely limited memory. We say a machine “accepts” a language if the machine can take a
string from that language as input and end in one of its terminal states. A finite automata is capable
of accepting regular languages as input.

The next more complex class of machines are called pushdown automata; these are essentially
finite state machines that have an additional stack memory. Pushdown automata are capable of
accepting context-free grammars as input to the machine.

Both finite state machines and pushdown automata are less complex than Turing machines.
Turing machines have multiple states, memory and the ability to conduct if-then logic. With these
key capabilities, Turing machines can accept all unrestricted grammars (grammars that have no
restrictions on either the right or left side of the grammar’s production rules) and they can generate
arbitrary recursively enumerable languages and are capable of solving all computable problems.
Our system is not as strong as a Turing machine, rather it can generate languages that are at most
equivalent to context-free grammars.

Our theorems and proofs below are derived from our ability to formalize our model into a
language that is, at most, as strong as a context-free grammar. A context-free grammar is a class
of formal languages that can be generated by production rules. Here we use the formal definition
of a context-free grammar taken from [Sipser, 2006]:

A context-free grammar is a 4-tuple (V, X, R, S) such that

1. V is a finite set of variables.

2. X 1is a finite set, disjoint from V', of terminals.
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3. R is a finite set of rules, where each rule takes a variable and transforms it into a string of

variables and terminals.

4. S € V is the start variable.

3.2.3 Review of Self-Assembly Models

The Tile Assembly Model integrates the algorithmic association of units with a defined geometry:
the exposed edges of a growing crystal encode the state information of the system, and this infor-
mation is modified as a new tile attaches itself to the crystal [Winfree, 1996]. This model formally
couples computation with shape construction, and the shape can be viewed as the output of the tile
assembly “program”. Tiles are capable of universal computation [Winfree, 1996]. The system can
grow an arbitrary shape (independent of scale) using a tile program whose complexity, defined as
the number of distinct tile species in the program, is bounded from both above and below by the
shape’s descriptional (Kolmogorov) complexity [Soloveichik and Winfree, 2005]. The time re-
quired to build an n x n shape through passive self-assembly is O(n) [Adleman et al., 2001]. This
bound can be improved to O(n*/°log(n)) with massive parallelism [Chen and Doty, 2012]. In this
model, scale plays the same role in the self-assembly process as time plays in computability. While
the Tile Assembly Model is elegant in its simplicity and ability to capture experimental reality, it
is limited in its speed, its ability to be scaled up and its focus on passively assembling units.
Drawing on cellular automata and Chomsky grammars, L-systems were developed as a theo-
retical framework for studying development in multicellular organisms and were one of the first
models used to simulate growth and development in plants [Lindenmayer, 1987]. Although they
bear a resemblance to cellular automata, they differ in that arrays can grow and shrink (introduc-
ing the notions of insertion, a new cell is generated by division of a prior cell, and deletion, the
elimination of a cell). L-systems differ from grammars in that they require parallel rewriting of all
symbols and do not distinguish between terminal and non-terminal symbols [Lindenmayer, 1987].
While these models are well-developed for one-dimensional systems, they have also been stud-
ied in two [Siromoney, 1986] and three dimensions [Prusinkiewicz, 2004]. While L-systems have

aided in the modeling of plant growth and biology, the formal work does not address theoretical
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questions related to the complexity of pattern formation such as how quickly a system can generate
a specific pattern.

A number of geometric models and numerous algorithms have been described for self-assembling
and reconfigurable modular robotic systems [Chirikjian, 1993, Goldstein and Mowry, 2004, Rosa
et al., 2006, Griffith, 2004, White et al., 2004, Jones and Mataric, 2003, Murata et al., 1994, Nagpal,
2008, Werfel and Nagpal, 2007, Arbuckle and Requicha, 2004, Rus and Vona, 2001, Butler et al.,
2001, Yim et al., 1997, Yim et al., 2007, Grofl and Dorigo, 2008, Walter et al., 2004]. Existing for-
mal models have not fully captured the efficiency of active self-assembly: to assemble a prescribed
shape, most of the models require a linear (to the size of the shape) number of distinct states.

One of the central questions that this work addresses is how to program global tasks through
local interactions. Our approach is inspired by Klavins’ work on modeling robotic self-assembly
[Klavins et al., 2004] using conformational switching [Saitou, 1999] and graph grammars [Ehrig,
1979]. In Klavins’ work, the state of a physical system is represented as an abstract graph, where an
assembly unit is represented as a symbolic vertex labeled with its current state, and the attachment
of two units is represented by an edge connecting the two corresponding vertices in the graph.
Assembly proceeds following graph rewriting rules, which update the system state by updating the
vertex labels and edges of a subgraph under suitable conditions. This approach nicely captures the
local, asynchronous, cooperative and conditional state change logic, which is intrinsic to assembly
systems with active components, and it captures disassembly in addition to assembly. However,
unlike the Tile Assembly Model, the graph grammar model represents the assembly system as an
abstract graph, and leaves out geometry, which is a crucial property for the assembly of physical
systems.

In our prior work on active self-assembly, we constructed the “nubot” model by adding a geo-
metric component to the graph grammar model [Woods et al., 2013]. The nubot model builds on
the concept of graph grammars, by defining rule sets over two dimensional monomers, represented
as disks of unit diameter centered on a point in a hexagonal grid. Two monomers can react with
each other (according to a rule) to change state, make and break bonds, change relative position,
appear and disappear. With this model, a line of length n can be constructed with O(logn) states,

in O(logn) time. A computable shape of size n X n pixels can be constructed in time polyloga-
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rithmic in n. This is exponentially faster than systems composed entirely of passive components.
While the nubot model is not chemically implementable, it highlights the fundamental efficiency
advantage of active self-assembly over passive self-assembly. We seek to preserve the complex
behaviors that the abstract nubot model can generate, but in a formulation that is simple enough to

implement experimentally.

3.3 Model

3.3.1 Formal Model Description

In our model, each construction begins with an initiator, and grows via the insertion of simple units
that we call monomers. We assume that each type of monomer in the system is present in infinite
amounts. Monomers can be inserted into the middle of the structure and increase the length of the
structure (an abstraction of the model is shown in Fig. 3.3). Figure 3.4 shows an example system
that grows exponentially fast. The detailed description of initiators, monomers, and the insertion

rules follows:

1. We have two finite sets of symbols I' = {ay, a9, a3,a4,... yand '™ = {a},al, al, aj,...}.

Each pair a; and a] are called complementary to each other.

2. There are k£ monomers, each is described by a quadruple of symbols (a, b, ¢, d) and either
a plus sign or a minus sign. The plus and minus sign indicate the directionality of the
molecules and are used in mapping the model onto a direct DNA implementation, which
requires both 5’ and 3’ sequences. (For example, (a4, a7, a§, a1)+ or (a5, ar, a, a3)—.) Each

monomer has a concentration c. We assume that the total concentration is at most 1.

3. The initial state can be described by two pairs of symbols (a,b), (¢, d). Either a and d are
complementary to each other or b and ¢ are complementary to each other. Each of these pairs

is considered a monomer.

4. An insertion site can only exist between two consecutive monomers: €.g., in the initial state

(a,b) and (c, d) belong to two different monomers.
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(1) Representation of symbols:
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(4) Insertion sites:

AV

(5) Sample insertion rules:

Insertion of (b*, e*, f*, c*)— r‘ 3 L iL‘
Insertion of (e, b, ¢, a%)* L iL‘ L rll.r 1

Figure 3.3: This figure depicts an abstraction of our model. (1) Each unique symbol is en-
coded by a color, and complementary symbols are represented by different shades of the same
color. The symbols are represented as thin solid lines (Unbound, Insertion Accessible), thin
dashed lines (Unbound, Inaccessible), and thick solid lines (Bound to Complement). (2) Two
sample monomers are (b*,e*, f* ¢*)—, and (e, b,c,a*)+. (3) The initial state is described by
the pair of doubles (c,a*), (a,b). (4) Insertion sites can only exist between two consecutive
monomers connected in the structure; we use colored arrows to denote these sites. (5) Sam-
ple insertion rules show the insertion of monomer (b*,e*, f* ¢*)— into (c,a*), (a,b) to gen-
erate the polymer (c,a®), (f*,c*, b*, €*), (a,b), and the insertion of monomer (e, b, c,a*)+ into
(c,a®), (f*,c*,b* e*), (a,b) to generate the polymer (¢, a*), (f*, c*,b*,e*), (e, b, c,a*), (a,b).

AT
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5. Only the following insertion rules are possible:

(a) If there are two consecutive monomers connected in the structure such that the first one
ends with the pair (e, a*) and the second one starts with the pair (d*, f), where e and
f are complementary with each other, then any monomer of the form (a, b, ¢, d)+ can
insert between those two groups, and add a group of symbols (a, b, ¢, d) in the middle.

(e,a*), (d*, f) is called an insertion site.

(b) If there are two consecutive monomers connected in the structure such that such that
the first one ends with (d*,e) and the second one starts with (f,a*), where e and f
are complementary with each other, then any monomer of the form (a, b, ¢, d)— can
insert between these two groups and add a group of symbols (¢, d, a,b) in the middle.

(d*,e), (f,a*) is called an insertion site.

6. If a particular insertion is applicable, it occurs at time x, where x is an exponential random

variable with rate ¢, where c is the concentration of the monomer inserted.

7. A polymer is a sequence of tuples of symbols reachable from the initial state, where the first
and last tuples are pairs of symbols and the middle tuples are monomers (as defined in rule
2). A terminal polymer is a polymer such that no monomers exist in the system that can be
inserted at any of the insertion sites available on that polymer. The length of the polymer is

defined as the number of monomers that it contains.

3.3.2 A Molecular Implementation

Given any system described above, there is a direct implementation of monomers into a set of
DNA molecules. By encoding the order of the nucleotides in a DNA sequence, we can control
the interaction of DNA strands. Subsequences of these strands are called domains and it is their
binding (hybridization) and unbinding (disassociation) from complementary domains that deter-
mines what a system can do. In DNA nanotechnology, dynamic systems of DNA molecules can

be controlled by toeholds, the short sequences of DNA that are complementary to single stranded
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Figure 3.4: This figure depicts a system that implements insertional polymer growth in logarithmic
time. The abstract representation of growth (A), is directly correlated to a molecular implementa-
tion (B). In this insertion system, the initiator is described as (¢, a*), (a,b) and the three hairpins
are (b*, e*, f*,c*)—, (e,b,c,a*)+, and (a, b, ¢, f)+ After inserting hairpin 1, the polymer’s descrip-
tion is (¢, a*), (f*, c*, b*, e*), (a,b). After hairpins 2 and 3 are inserted, the polymer’s description
is (c,a*), (a,b,c, ), (f*, ¢, b* e), (e, b, c,a*), (a,b). The system will continue to grow to infinite
length exponentially fast.

()

34



=)
=
o
o

Initiator: Hairpin 1: Hairpin 2: Hairpin 3:

"=“=! 11
IESHES:

(0) Iniial Polymer | ."llrﬁllul.’llrn\,l .

(1) + Divider . ‘I |
L
bl 1Y

Figure 3.5: This figure depicts a system that implements division in a polymer. The reaction
available for (a, b)(c, d)+ is exactly the same as that for (a, b, ¢, d)+, except that after (a, b)(c, d)+
inserts, the polymer will be cut between (a, b) and (¢, d) and divided into two parts.

umn

domains in a target molecule [Yurke et al., 2000, Zhang and Winfree, 2009]. Toeholds serve as the
inputs to dynamic DNA systems and initiate branch migration processes, the random walk process
of bond breaking and formation that results in the exchange of one strand in the duplex for another
single strand with the same sequence. Our DNA implementation (Figure 3.4) is inspired by the
Hybridization Chain Reaction system developed by Dirks and Pierce [Dirks and Pierce, 2004] and
will be discussed in depth in Chapter 4.

Any system described in our model can be implemented by designing DNA hairpins and an

initiator complex as follows:

For every monomer (a, b, ¢,d)—, we add a hairpin with domains (a,x,b,c, x*,d), where z
(composed of 18 bases) is the long stem of the hairpin. For every monomer (a,b,c,d)+, we
add a hairpin with domains (a,z*, b, ¢, z,d). The initiator is (a,z*,b) binding with (¢, z, d). The
insertion rules defined in the model correspond to all possible reactions that can happen in the
corresponding molecular system. In addition to the monomer (a, b, ¢, d)+ (or minus), we can also
have a new type of monomer (a, b)(c, d)+ that we call a divider monomer. The reaction available
for (a, b)(c, d)+ is exactly the same as that for (a, b, ¢, d)+, except that after (a,b)(c, d)+ inserts,
the polymer will be cut between (a, b) and (¢, d) and divided into two parts , as will be described

in Chapter 4.
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3.4 Proofs of the Model’s Expressive Power

In this section, we first ignore the rates of insertion and show that the expressive power of this
insertion system is, at most, equivalent to context-free languages. This result implies that we can
simulate arbitrary tile systems that assemble a single line. From [Becker et al., 2006], we know

that the insertion system can construct lines of arbitrary expected length with O(1) monomers.

Theorem 1 Given any insertion system, the set of terminal polymers that can be generated forms

a context-free language.

Proof: Given any insertion system with n symbols, the corresponding context-free language
has n* symbols, each of which corresponds to one insertion site. The starting symbol S corre-
sponds to (a,b), (c,d), which is the initiator of the polymer. Each monomer (e, f, g, h)+ cor-
responds to 2n different production rules in the context-free language that starts with a symbol
(insertion site) (i,€e*), (h*,j) and produces two symbols (i,e*), (e, f) and (g, h), (h*,7) for all

possible choices of pairs of complementary symbols ¢, j in the insertion system. O

Theorem 2 Given any regular language, there is an insertion system that generates terminal poly-

mers corresponding to this language.

Proof: Given any left regular grammar with nonterminal symbols A;, A,, ..., A,, including the
starting symbol Ay, and non-terminal symbols a4, as, . . ., a,,, the following insertion system cre-

ates polymers that correspond to the given regular language:

1. T = {ahag,...,an,bl,bg,...,bn,Cl,Cg,...,Cm,d}.
2. The initiator is (d*, aq), (d, d).

3. For each productionrule A; — «; Ay, there are two corresponding monomers (a;, ¢;, by, d*)+,

(d*, ag, d, bt)—.

In this system, there is always exactly one insertion site available at the end of the polymer.

The insertion can only happen between two monomers (d, b}, d*,a;) and (d,d). The insertion

P A
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site between these two monomers corresponds to the nonterminal symbol A;. At this point, two
monomers (a}, ¢;, b, d*)+, (d*, ag, d, bj)— may insert, generate some inactive sequence with j
encoded in the middle, and the end of the polymer becomes (d, b}, d*, ax,) and (d, d), corresponding

to the nonterminal symbol Ay. O

Corollary 1 There is a family of insertion systems that can construct polymers of expected length

n with O(1) monomers.

Proof: Since insertion systems are able to simulate all regular languages, they are able to simulate
all tile systems that form a linear polymer of width 1. Therefore, the proof directly follows from

[Becker et al., 2006], where the result was proven on 1-dimensional tile assembly systems. a

3.4.1 Analyzing the Theoretical Growth Speed of Polymers

We also investigate the speed at which these polymers can be constructed. First, we show that
arbitrarily long polymers can be constructed deterministically in expected polylogarithmic time

using a polylogarithmic number of monomers.

Lemma 3 The following insertion system deterministically constructs a line of length n = 22 +1
in expected time O(log®n) and only uses O(log®> n) monomers. Furthermore, the required time

has an exponentially decaying tail probability.
1. The initiator is (c, as), (b3, €*).

2. For every i,j € {2,4,...,2k},i < j, there are two monomers (a},b;_,,a;,_1,b;)+ and
(af,b; 1, ai1,b;)+. Foreveryi € {1,3,...,2k—1}, there are two monomers (b;, a;_1,b; ;,c*)—

and (¢, a;—1,b;_,,a})—

3. All monomers have equal concentration #

Proof: First, we show that the system deterministically constructs a line of length n. An in-
sertion site of the form (c, a;), (b}, c*) is defined to have type min{7, j}. Whenever a gap of

type 7 is available, exactly one monomer of the form (a;, b}, a;1,b;)+ and (a}, b}, a; 1, b;)+
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will be able to attach. After the first monomer inserts, two monomers (b;_1, a; 2, b} ,,c*)— and
(¢,a;—9,b%_,,a’_,)— will be able to insert on the first monomer’s left and right. These three inser-
tions create four insertion sites of type ¢« — 2. Therefore, starting with one insertion site of type k
on the initiator, there will be 2¥ — 1 total insertions, resulting in a polymer that has n insertion sites
of type 0. At that time, no further insertion is available and the system halts.

Second, the system halts as soon as all § insertions of (b1, ag, bj, c*)— and (c, ag, by, aj)—
happen. Each of these insertions only relies on £ insertions to occur before them. Therefore, for
any one of these insertions, the expected time 7" until the insertion occurs can be described as a sum
of k independent exponential random variables of expected values 2k?. Using Chernoff bounds for

exponential random variables, it follows that

Lo,
ed 7

Prob[T > 2k* - k(1 +6)] < (

Although the times required for these 4 insertions are not independent of each other, we can still

use a union bound to get the following bound for the total running time 7';, of the system:

146

Prob[Ty > 202 - k(1 + )] < 2 0y
e

< D% < (5% forall 6 > 4.

- 2 2

Therefore, the expected time is O(k*) = O(log® n) with a tail probability that exponentially de-

cays. d

Theorem 4 There exists an insertion system that deterministically constructs a line of length n in
expected time O(log® n) and only uses O(log® n) monomers for every integer n. Furthermore, the

required time has an exponentially decaying tail probability.

Proof: Lemma 3 already showed that the theorem is true for all n = 22* 4 1. Given an arbitrary
n, we can write n — 1 as the sum of O(logn) terms 2" 4 2™ + ... + 2" where all 7;s are even
numbers. We can first construct m distinct monomers that must insert one by one at the beginning,

creating m insertion sites identical to the initiator for a polymer of length 2 + 1. Afterwards,
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the system described in Lemma 3 can make a line of length n. Since m is only O(logn), this
construction works in the required O(log® n) time and O(log” n) monomers. O

In the rest of this section, the major goal is to show that for an insertion system with & dif-
ferent molecular species, either the expected final length is infinite, or the expected length grows

polynomially with time.

Theorem 5 Consider a context-free language L with m symbols (including terminal and nonter-
minal symbols) in reduced Chomsky normal form. When a production rule is applicable, the time
until it is applied is a random variable of rate k. If, for any given symbol A, the rate of all pro-
duction rules having A on the left side sum up to at most 1, then either the expected final length is

infinite, or the expected number of symbols at time t is upper bounded by (2t + 2)™.

Proof:

Assuming the expected final length is finite, we will prove inductively on m that the expected
number of symbols at time ¢ is upper bounded by (2t + 2)™

The general idea is that starting with S, we can’t produce S too fast, otherwise the expected
length will become infinite. Furthermore, since L is a context-free language, if all we want to
know is the length of the string, we only need to keep track of how many copies of each symbol is
currently in the string. If each time we generate S we isolate that symbol into a new sub-system,
then each sub-system is essentially a system with m — 1 different symbols and the growth speed
will be bounded by the induction hypothesis.

The theorem is true when m = 2. Since there are only two symbols S and «, starting from
S, if the rate of the production rule S — SS is higher than the rate at which S — «, then the
expected length is infinite. Otherwise the expected length is linear in ¢, since the expected number
of symbols S in a string is at most 1 at any given time.

Assume that the theorem is true for m = k — 1. For m = k, we subdivide the sets of symbols
into many subsets in the following way: initially, there is only one subset that contains S'; whenever
one copy of S gets produced in any subset, we move that symbol S into a new subset; when other

types of symbols are produced, they stay in the same subset.
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First, we show that the expected number of symbols in each subset is quite small at time ¢.
We start by considering the subset 77 that the initial symbol S belongs to. After applying the first
production rule, the subset 77 has at most 2 symbols and will never contain another copy of S
again. Therefore, after that first production rule, only k£ — 1 different symbols can appear in that
subset. By the induction hypothesis, either the expected number of symbols in 77 goes to infinity,
or the expected number of symbols is upper bounded by 2 - (2¢ + 2)*~1. The exact same argument

can be applied to all other subsets.

Second, we will show that the expected number of subsets at time ¢ is at most £. Notice that the
number of subsets is equal to the number of symbols S that have been generated in the process.
For the expected final length to be finite, the expected number of symbols S in the system is at
most 1 at any given time. (Otherwise the number of symbols S is expected to grow exponentially, a
contradiction.) Furthermore, since the total rate of all rules with .S on the left side is 1, the expected
rate at which S is removed by applying production rules is also at most 1 at any time. Therefore,
at any time ¢, the expected number of symbols S that have been removed by a production rule
is at most ¢t. Combining the above arguments, the expected number of symbols S that have ever

appeared in the system before time ¢ is at most ¢ + 1.

According to our definition, at time ¢, the expected number of subsets is equal to the expected
total number of symbols S that have ever appeared in the system, which is at most ¢ + 1. Also, the
expected number of symbols in each subset is at most 2- (2t +2)*~1. Using linearity of expectation,

we know that the expected number of total symbols at time ¢ is at most (2t + 2)*.

Corollary 2 Given any insertion system with k molecular species and total concentration 1, either

the expected final length is infinite, or the expected length at time t is upper bounded by (2t + 2)'“2.

Proof: There are at most & different insertion sites in a system with k species. From Theorem 1,
we know that the insertion system can be described by a context-free grammar in reduced Chomsky

normal form with at most k? symbols. Therefore, the proof follows from Theorem 5. O
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3.5 Conclusions

We have defined a formal implementable model for active self-assembly utilizing an insertion
primitive. We build on the concept of applying biological algorithms to the development of novel
techniques in computer science to provide a method by which we can program arbitrary insertion
systems whether they be reconfigurable robots, molecules or scripts of symbols. The work here
is particularly relevant for the application of computer science to synthetic biology, chemistry
and material science. We show a construction for building a line in polylogarithmic time using
a polylogarithmic number of monomers and map it to a molecular system. To our knowledge
this is a novel assembly system that has never been synthetically constructed before. We also
show that with a number of monomer types the system will either grow to infinity or the expected
length of the polymer grows polynomially with time. There are many interesting open questions
remaining: What other behaviors can be generated by such a simple model? Are there other
directly implementable simple primitives that we can add to this model to generate such behaviors?
In this chapter we explored the expressive power of this language, and proved that the language is
stronger than regular languages, but, at most, as strong as context-free grammars. It remains to be
shown whether this system is equivalent to context-free grammars, in which case the language will

prove to be even more powerful than we suggest here.
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