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INTRODUCTION

Mery of the thermal properties of solids cen be exyplained seni-
quentitetively by interpreting them in terms of thermal vibrations of the
atoms about their m2sn rest positions, For example, the specilic heat is
a property whicl is intimately connected with these thermal vibrations; if
318 8uoms are considered o possess a certain stabisticul averegs snergy of
vibration, the derivative of this aversage energy with respect to the tem-
perature is proporiional to tﬁe specifiec heat, As another exemple, the
electrical resistence of many metals at low temperatures is due to the
interaction of the conduction electrons with the vidbrating lattice, A
quantum-mechanical trestment of the problem of an electron in a perfectly
ragular letbice gives the result thet the eleetrical resistance is zero, while
a more extended treatment inecluding the lattice distortion due to theymal
agitation shows that the electrons may be scattered (with en exchsnge of
energy with the vibrating lattice) and correctly sccounts for the mein
festures of the empirical data(Ezl Cther properties of solids that depend
wholly or pertially upon the thermal vibrstions of the etoms are the thermel
expansion, the thermel sculbering of X-rays (obssrved in d-rey d4ifiructlon),
and meny of the more complicated phenomena, such as phase changes, melting,
order-disorder transitions, and free rotation in erystals, to nmme but a few,

For-many purposes the above propertises may be treated adesquately by
using. only the qualitative features of the thermsl vibrations, but in certsain
cases, the experimental data indicate that a more refined treatment is
desirsble, In particular this is true of the specific hest,

It is the purpose of this paper to study the thermal vibrations of s
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fage-centered cubic lattice, for which good daba on elasticity and specific

heat are available, and to attempt to improve the agreement between theoretical
and experimental values of specific heats, In order to provide a background
againet which the results of the present investigation can be sevaluated, a few
ranaris regarding the work of previous iavestigators may be hélpful,

The rough rale of Tulong sand Pebit, which ssserts thet the molar hent
sapacity of a monatomis crystalline solid is equal to 3R, where R is the gas
conebant per mwols, 1le sdven theosrsticsl sugpord by ths clussicad stavlstics,
For, olassically, cach stom of & solid body would possess, on the sverage,
k1 erzs of vibrational snergy ot the temperature ¥, and thus the iy atoms in
a mole of the solid would poussess il ergs of enerzy, Uifterentistion of

this expression with respect to T wyields,
Cy = Billgk = 3R,

48 indicatsd above,

Antuaelly, it is kmowm thet the heat csapacity drops from the Duleng
Fetit value at high temperatures to zero at the absolute zero, [his was first
inferred from dernst's Heal Fostulete, and exwverimentally varified by Lernst's
pupils, Rinstein(6) first recognized the importance of tresating the atoms of
a crystal ss quantumemechenical simple harinonic oscillators, He regarded the
aboms vl 2 crystal us belny indspendent three-dimensional oscilisetors, sll
having the same frequency v, Quentum-machanically, the average energy possessed

by a ons-dimensional simple harmonic oscillator at the tempsrature T is

(c.1) E., = +hv/2 + hy/ (ePW/ED [1)

av,

The specific heat follows from this expression by differsntiation with

resvect to the teaperature and multiplication by the number of oscillators



present in the orysbeal, which is 3Ny, sincc the ebove oxpression is for a

ariz=dls winzionsl oseilletar:

- PR ", / AT
o . . , 1o, hv BhiLrh® R g4/
LU ) Cy = Sslﬁd)/d'l‘ + = MG '

A ohv /e Ly IR (sl /T 1)

5 wlll he sewn Lhisl Ghe specific hest oi sucl a sysbtem does indeed
vanish at low temperatures, and by expanding the denominator in a Taylor
series it can be shown thet the snecific hest ot higlh teuperstures epproaches
3. The axpression (0.2) has an exponsntial dependence on the reciprocal of
the tempazreture for low temper:tures, while sctual nonconduecting solids show a
i dependence upon the temperalure in the low temperature range, The difficulty
comes in the assumpbtion of a single freaquency for all of the oécillatbrs,
venerslly of the order of an infra-r:d frequency, while actually it is clear
thst some of the normsl frecuencies of the solid bndy will be vervy low,
sorresponding to tie mechenicel vibrations of the crvstel as o vhole,

Hy the theory of normsl courdinetss, esch norral node of vibretlion mey
ne Lrsated as s wasersts heraonic oscillotor, whose possible energy levels
are (o «+ i)hd, Phe apectrws of nossible velues of the freauencies of the
narmal modes of ¢ solid hedy of 4 finite size will wetuslly consist of a
lerge nunbsr of discrete values, but for the purpose of celeulsting the specific

hest these frequencies are so close together that they may be considered to be

continuously distributed according to a distribution lww,
(0,3) N(v»)Av = An

‘where An is the number of normal frequencies lying in the range v to

V + AV, and W(v) is the distribution function, 7Thus, the spproximation of
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the actual, discrete frequenev spectrum by the corsinuous distribution
function N(v) is quite enalogous to an approximation of the actual, discrete
nsture aof the atomic luttice by a continuous mass distribution,§>,

From equations (C,2) and (0,5), the specific heat of An oscillators

neving the frequency Vv 1s,

[  h /it
A G'\‘r = yigpeh - A.i{i
N L
hEyR eho il
= neAv,

wpe ( e h )/Kil‘ -1 ) =

«hence the total specific heat of a hndy heving the frequency distribution
(V) is

n ye ohv /KT
kT® (ehu/k'f -1)%

O

(0.4) Cy = W(s)av

The forepgoing considerations were embodied in theories of specific
heat by Deb;rer(*) , #ho assumed that the spectrum of normal frequencies of g
erystal was essentialiy like that of a continuous medium, and by Born end
Ton Egmﬂmma(a), who set up the dynweicul squations of motion of the atams of
o oryatal, end with a transformation of ococordinutes arrived at a secular
detsrminant, whose solution would yield the frequency spectyum of the orystalline
hody,

In the Deobye theory it is shown that the distribution function L(v) for

a continuwa is proportionel to the square of the fraguency:
(0,5) H(v) = 4R

where A i1s a constant depending upon the velocitles of propagation of longitudinal

and trensverse waves in the solid medium, and upon the volume of the body, The



xii

20t thet the totel nurber of normal nodes of a crystal containing W, atoms
is 8, 1is provided for by cutting the distribution off sbruptly et = meximuz
frequenoy Yy, such that

(0,8) ar*dv = avy /3 = S,

fhen the distribation (0,5) is used, and the substitution x = hwﬁdf

is made, the specific hewb intepgral (0,4) becames, for an isotropic continuunm,

4 X
X &
— %,

(BX _1)&

Defining a naw quantity © = hym/%c, called the Debye Charscteristic

Temperature, and using the relstion (0,6), the specific heat may finally be

written,

T)a. Q/T x*e®

e

The Debye theory is thus a one-parameter theory, so that a knowledge
of the true spscific heat at one temperature should suffice to determine %the
characteristic tempersture, and from this the specific hest at eny other
temperature, In practice it is found that the value of 6 as calculated from
the elastio. properties and the density does not esgree with thet value calculated
from specifie heat data at the same temperature, This difficulty is usuaelly
resol&ed by choosing 2 value of 8 thet gives good agreement with meamsured
speeific heats over the tempersture range of interest,

It will he apprecisted that, becsuse af the varistinon of elastic constants

with temperature, and because the Debye distribution does not give en adequate
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approximation to fhe sceitual frequency Adlsbribubtion for a crystal, the quantiyy
g connot be constant +writh tempereturs, It has bscoss cusbomary, in discussing
the properties of u fregueney distribution Hunction, to study, not she specific
haes curve defined by the function, but rether thé curve of ¥ vs, I which would
he necessary to smeke the Dewre theory pilve the sise speciiic healt curve as doss
the distrivuvtion function uader considerstion, This procedure i folicowad be-
caiage v 13w nmove gssasitive Dumevion of thoe shepe of the feemusacy zsectrum
tasn 1s wie speciric aest, Thus, a ssbisfuctory criterion for apgrzsensnt Lesbween
the predicted specific heals and the sctuel spscific hezats would be thet the €
ws, T eurves required by each he %the swne, This nethod also mukes it easisr to
datect deviations from the Debve theory, especially in the reeiom of very low
temperatures,

Becauss of the grest success of the Debye theory in giving w semi-quentitative
degcription of ths specifiec hoats of simple sclids, th: more rigorous theory of
Bo;n and von Ksrman (Page xi) was neglected for many years, “{ith the improved
accuracy of leter measurements, however, snd with the incressing number of
substencas being studied, certsin discrepancies of the Debyve theory sppsared,
vhich suggested that a closer study of the Born-von Karman theory be made,

A oloser anelvsis of the gqualltubive Features of the frequescy distribublion
of a simple cubic lattice was made by Blaclnan{1) in a series of papars gtarting
in 1935, His results wpply to erystals of the sodium chloride type; end his
conclusion regardinz certain low-temparature an@mali@s(lsiin the moasursd
specific heat was that, to ths degree of aprroximation atteinable with the
assumption of centrsl, Hooke's-law-forces between nearest and next-nesrest
neighbors, the snomalies could not be explained by a difference in frequency

spsctrum between the Debye theory end the lattice theory, This question will

be considered in detell in Section VI,
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A sbort $ime after Blackman's work was publisried, Fine(la)obtained
a frequency spectrum for the hody-centered element tungsten, by numerical
integration, ¥Fine's work represents & great step forward, for this was the
first ‘time enyons had considsred = monatomic cryvstal of a type actually
oceurring in neburs, ¢ll other investigstors having coasidsred only the
sadium chloride 1sttics, #Fine did not obtain his frequancy spectrim in the
Tora of three zevarsle Lraaches such thet eseh occuld be studisd individuallyﬁ
vut rather worked with the satire distribution, Thus any sharp corners in
the distribution that might have been introduced through the three branches
axtending over different ranges of frequeney cannot be found in his result,
fhis point may prove important in trying to fit a specific heat curve by
using three Debye fumetions, The manner in which the seculsr determinant
vialds a nunber of sevsrate branches will be studied in detzil in connection
with the solution of the secular determinant in Section I1I,

The sodium chloride lattice was considered also in a recent paper by

Eollermann i)

s who approached the problem of lattice dymemics from a purely
zlectramagnetic stendpoint, He evaluated the forces scting upon en ion in
terms of the retarded potentials due to all of the other ions, snd not only
srrived at e frequency spectrum (which differed markedly from thet of Bleckmen),
but also calculated the elastic constants of sodium chloride, the agreement
with experimental slastic constents being within a few per cent,

The most recent development in the problem of lettice dynsmics eppeared
in a series of papers by Montroll(ls) and his coworkers, Nonbroll made use
of the fact thet the trace of the matrix associated with the secular determinant

is equal to the sum of the squares of all the frequencies appesaring in the

spectrum; and in general, the trace of the nth power of this matrix is equal



to tha swa ol the zn th powers of all of the frequencies, By uCtually )
cerrying out this summation for six or seven 2zowers of the matrix, the
Jirst six or seven mumnents of the frequency distribution taken about the
original were obteined, If the distribution function (v, were expanded
in any sget of polynaninle ~hich are orthogonal in an interval coinciding
with that occupied by the function J(v), the coefficient of the n th
solynosisd in the expension wonld Le = linesr coabinstion of the first n
aoiients of whe distridbution, lontroll applizd this method, using Legendre
polvaomials, to body-centered lattices having various rastios of next-nesrest
to nearest neighbor force constents, including the case of tungsten, His
digtribution was somewhat similer to Fine's for this cuse, |

This ends the historiecal sketeh of work in this field; the specifie
problems involved in finding the frequency spectrum of =z monstomic erystsl
lattice will now be treated, The main purpose of the foregoing discussion
has been to acquaint the reader with some of the developments in the theory of
specific heats that bear upon the questions to be discussed in the present

papesr, Many of the topics will recelve browder Lrestment in the text,



SECTIOH I

T71E EQUATIONS OF MOTIOH OF A FACE-CENTERED CUBIC CRYSTAL LATTICE

1, Introductim

3

In tha preseat szcetion the equatioms of motion of » fuce-centared
subic ecrvstal lattics will be dsrived, and the secular determinant governing
its irequency sprctrwn will be obtalned, Yhe most direct eprroach to the
sguations of motion weald be to write down the eoxponents of force seting on
any atom in a lattice, and to equaits these forcas to the respective sompo-
nents of mass times scceleration for the particle, For lster work, howewer,
in which the quadratic form of the potential energy will simplify the eval-
uzbion of the etomic force constants, the use of Lagrenge's equations is
indiceated, HExpressions i'or the kinetic and potential easrgy of the vibrating
lattice will thus be wwitten, snd afbter a coordinate transformation which
anounts almost to a change to normal coordinates, the equstions of motion will
be abtained with the help of Lagrange’s equeblons, The condition that the
solutions of the Lagrangien equetions he periodic in time with the same
frequency and arbitrary amplitude will then yield a seculsr determinant for

the lattice,

2, Motation

An orthogonal Certesian coordinste system (X,Y,2) oriented along the
principsl crystsllographic axes of the crystal »rill be used, The crystsl
lattice will be defined in ths customary manner by means of thrce primitive
treznsletion vectors (& ,Tp,hx) (not orthogonsl to one another for the case
trested here), such that way lattice site can be reached fraom the lattice
site at the orizin of the (X,Y,Z) system by means of u vestor of the form

Aghe = BAy ~ bhg + CAg where {8,b,c) are integers, The primitive triple
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(B, K’,g -ﬁ:) may of courss e writien In terms ol the set of wls veoturs
(3,7,%) parellel to the three axss (X,7,%) respsctively,

Figure le snows a fuce-csntered cuble crystul letctice with the prim-
itive tronslstion veetars identified, 4o illustrate howr esch lattics site
can be reacned by s swm of the form given sbove, the Cartesiun coordinates

oi sons of the abocs are glven in the short saole Lalow, topether wiith the

goectar expreselon In temns of the prieitive translation wecuurs

¥

Atam ——

Ao &.b.c
coordinates 40¢ (#,b,c)
Gy i, 0 gt Agm t Ain (-31,1,1)
dﬁl d,? ) 2};3 (U;,U,ia}
d, d, 4 Ay + Ay -+ Ap (1,1,1)

d,d/%,d4/2 Ap + hg (0,1,1)
a/2.4,4/2 Ay + An (1,0,1)

To show that the polnt et the center of the cube cannot be reached by

a veetor of this form, it suffices to write dorm the veetor from the origin
to the center of the cubzs, It is just one-half of the wector Tran the origin
to the farthest cormer of a cube, namely, ;'5' (Kl + “1; + :{e), wnich corresponds
o half-integral values of (u,b,c),

The shane ot the crystal will be assumed to be a parallelepiped heving
three orincipal edges Nihy, NghAp, Ngdr, Thus 211 lettice sites inside the
crvstal cen be reached by combinations (a,b,c) such that 0<a< H,, 0<b< 1,
snd 0<{e<{ g, The boundasry of ths crystal ig shovm in Figure 1b,

Corresponding to this crystel lattice, there is a reciprocsl lattice(5>
whose primitive triple (B,, Bp, Bg) may be expressed in tsrms of the vectors

(B1, Aps By) by the relations

— - a——

Ag X A . sy X Ap

An x Ag
(1,1) By w——, P - e
sy (Apxdq) Ay (Apx ity ) Ao (B2 4s)
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Figura la,

A Peoewcantered cudic lsttice,

Ngdg /’// Figure 1B,

The boundary liness of the orvstal
Leing trested,



The displecement (from its equilibrium position) of the mess-particle
sssociated with the lattice site (abc) will have the camponents (Ughas Vabos Wahe)
along the (X,Y,Z) axes, respectively,

Ths potentinl energy expression will contain relative displacements of
the form (ug4rhe = Ushe)s o6, The subseripts in such an expression ars quite
cumbersome, s0 an ebbreviation will be used which replaces (sbe) by o, end
{a+ihe) by (Loo), ete,, with the (abc) subscript appearing cutside the entire
expression, Thus, the example given ebove would become (uygo=Uo)abe.

Regarding the nature of the forces acting betwsen the atums, a central
Hdooke's~-law force, with force constent a, will be assumed %0 act bebtween nsar-
9st neighbors, and a central Hooke'!s-law force, with force conStant %, between
next-nearest neighbors, Further remarks concerning these foree constants will
be reserved for a later time (Section V),

Other symbols will bs required from time to time, but it would be more
confusing to introduce them now than later, The lsgrangian function for the
face-centered cubic lattice will now be written with the aid of the sbhove

defiaitions,

3, Kinebtic Energy of the Fasce-Uentered Cubic Lattice

In terms of the quantities defined in the previous paragraph, the

kinetic energy of the face-centered cubic lattice mzy be written
Ny  Hp g

T = % n‘; / E (85 + 95 «+ ﬁﬁ ) obe

a=0 b=0 ¢=o0

vhich may be sbbreviated

(1.2) T = % m E (ﬁ% + 6% + 1;"ia))a'br:
: abe

where m is the mass of each particle, and the dot denotss differentistion

with respset to the time,



4, Fotentisl snepgy of the Fuce-Cunlered Cuble Latiice

Usine the notetion defined in Parsgrerh 3, the notenticl energy of

the face-coantored lettice moy he written in the form,

= g Z 50‘/2 [ (V‘LOO -Tg *+ Won = ‘.’10)2 + (WO]_O - %o + Ugpyp = uo)ﬁ‘
ahic
+ Mooy = Mg + Yoor - To)® 4+ (Teuro= To = Bio1g + Uy)"
(1,3

# (g aa = Vg = Tom g+ 0)¥ + (Uayon = Mg = Weq 0 +‘Wo)Ej

o [ (teg11 - uﬂ)z + (Vi = 7o) + (g - Wb)zf} abe

where each of the terms represents the sauare of the change in distance between
the swo atoms defined by the subscripts, up to the second order in the relative
disnlecements of the atoms, end multinliad by the eppropriste force constant,

t tho me on tho

T g A ades
4 3 00¢C 4NOmG t Feso B ¢}

i different form from those in the interior 1s for the mmment ignored,

=3
=
(6]

expression given sbove would be strictly correct if the summetion were restricted
to exclude the boundery layers on three sides of the parallelepiped, In eny
case, the frectional error would be no larger than the ratio of the number of

particles in the surfece of the crystal to the number of particles inside it,

5, The Born - von Karman Boundary Gondition

In order to obtain a gomplete solution for the motion of the crystal
lattice, it is necessury to specify the constraints, or boundary condition,
that it must satisfy, For example, it is necessary to know whether the boundary
surfades are fixed, perfectly free, or subject to outside forces, ete, The form
of the solution will dapend to a large extent upon the houndary condition, hut
the total number of normal modes of vibration will always be equsl to the number
of degrees of freadom thet remain after the boundary condition is imposed, The

constraints in this case will be applied only to the atoms lying on the surface
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of the crystal, so that the number of degrees of freedom will s%ill be of
the order of 10°* for ¢ mole of the substance, Thus, it may be expected
thet ths exaet form of the boundary condition will have only a minor effect
npon the frequency distribution of ths nocnal modes,

Onz bouardars condition is that used by Born snd wvan Karman(z) in
thair original paser, Thls condition requires thet the displucemzats of
ctoms in corresnonding positiens in opnosite boundsry fuces of the erystsl

b2 the same, Currently it is known as the periodicity condition,

Exnressed =snalitically, the oyclic charzeter of the dorn-von Kerman

houndsry condition 1s satisfied by a Fourier expension of the farm

= E 2ni(A. v+ By, o)
( 1 W &) U, = 8] e shet Plia
anc i

Jthere the Uy are functions of the time, Here, Zgbc = apy + bﬁz + cig is the
position vector to the lattice site (abe) and Byy, = 1By/Ny + mBp/My + nBs/is
sthere (lmn) are integers, and (34, B, bz) Bre the primitive vectors of the
reciprocal latbice, <he renge of wveariation of (Lm) will be discussed in
Section II, It suffices here to say that the total nunber of cambinations of
(Lan) »ill be equal to one-third the number of degrees of frecdam of the

orystal, The exponential factor may be written

e2ni(Aape  Blun) = o2mi(la/Ny + mb/ii, + ne/ly)

since Ai'Bj = Sij' This expression ¢lesrly has the required periosdicity
property, 1,e,,

o2ni(lafiy + uwb/llg + neflls) - o2ni(lafiiy + mb/la + n(c+lis) fig)

and similerly for a and b,



8imilearly, the disylscements emong the remsining sxes sre writlen

{1,!%)

(1,%¢)

~ dscause

(i, i) sun be

Utym =

Vabe™ Zlmn Vimn e 211 (Agpe* Bypy)

“Pfabc = E "":"L‘qn o 2:‘[ i (f&a'bc » B lnm )
Imn

nf the complex nature of the (17,¥,V), the d splacements

resl cnly it

#* R - o* T - ¥
U” L iemens Vi = v ~l-m-n» =04 M = 7 -l-m~nv

i, Legrangiasn Function in Terms of the Normal Coordinstes

"hen the transformations given ebove are substituted into the

axprassions for the kinstic and potentisl energy, the Lessrangian function

taltes the form

; 5 . L] L) . 3 » * .
Lo=TV =~ 'léz v ; im(uhm Uitmmrar + Vimn V1w + Wipn Wingme)

" abe lmn ltm'n!?

-a/2 [ (Vimn

v (W

+ (Uymn
(1gy * (Tt
v Ty

+ {Ygm

- 'Y'[ Utm

* Y imn

+ Min

+ Wim) (Timimt + Tigint) (eznil/N1 -1) (821111‘/:1-,_ -1)
+ Uimn) (Wimipt * Ugigipge) (e2mim/llp -1) (e2nim!/Ny -1)
* 'Vlmn) (Uliminl * Vliminr) (GEﬂin/Na -1) (egnin'ﬁig -1)

= Uy ) (Tyvgipy - Ulmmi)(ezm‘(1/‘]'11_111/]“9)-1)(ez"i(l'ﬁq‘»'m'/ﬂ‘?) -1)

1

Vi) (M vt - w;l,m,nt)(QZni(m/Jég-—n/Na)_1)(62ni(m'/;-12-n*/3‘:?g) -1)

.“qlmn)(ul'm’n' - Mgy 1) (QZHi(Zﬂ/Hg—l/}*-Iw )-l) (92ni(n ’/‘;Ja‘li/j]" ) —l)]

| 11 'nl(QZni(-l/}h mNg+n /iy ) ~1) (e2ni(=17/My4m* filp4n! /Mg ) -1)

Vy 0y g e (220118 -mMlpan/la) 1) (o2ni (1! /lv-mt figent fils) -1)

M1 11 (2L mpen AT ) 1) (e2ri (10 /g 4mt fig-n fig ) _1)]}
X QZ?Tixabo'(.B-]mn + Bliam)



To illustrets the steps by which this expression was derived, the

7irst bterm in the potential energy (1,3) is trested in detail:
Y1 :. g a/z (Vrioo - Vo + Yoo = W )gbo

7

P Ao = Yghe + Waihe = Wehe )'©

abe
S

Ea v

R

<

fl/["
) ); als v p2ni(1{as) /il + mb/fig 4 ne i)
b L (i i

4
abo  lon 1tin?

p2ni(le/I + mb/ily + mefllp) | V1 o211(1(a41)/Hy + mb/ip + no/llg)

- V]mn

Mymn o2ni{lafiy + mbflip + ne/liy )} { VYt 02ni(11(a+1 ) filp+m bfigem e Sy )

- T g2ni(1lta/Mqysm'bMigmc /i) , MY 11 1 o2ni(1t(ar1) /My m o Migem tofiiy)
EH - .

1 o2ni(11a/iy + mtb/H, + nte/ig )g

-y i

but

o2mi(1(a+1 ) /fdy + mb/fig + neMg) | 2nil/y,  2ni(le/ily + md/i, + no/ig)

go that

'V‘ 335: 7 Y 7 o./2 (Vlmn + Nlﬂm) (Vl'm‘n' + Wlamrnt)

gbc lmn 1'min?

X (92115.1/’211 -1) (927!11’/3\!1 -1) e2ni [ (1411)a/N; +(mam?)b/Ny + (n+n')c/.-"~13]

D 2 2 of20pm + Wimm) (Tl + W)

=§ abe lmn 1'm'n!

X (e2milANa _qy(e27ilt /Ny 1) e2Midgpe * (Bimn * Blimint)

a8 was aéserted ebove,

Now it will be seen from sn inspection of (1,8) that the only dependence
" of the expression upon the position indices (abe) is in the vector Iabcs
this appears only in the exponential which is a factor of the remainder of

the expression, Thus, if the summation over (abc) is carried ocut, there



rasulbs a remarkable simplificzhion of the Lagrangien function, Ir the

suwmanticn over a, one is always confronted with en expression of the form

q.

SE. = K § : eZTIl(l%l')a/R-‘

where K is aot dependsnt oa £,

Gaometrieslly, the summetiion represents the resuluant veslor obbtained
bty adding together the sides of a polygon (or star-shaped figure, depending
apot the welue of 1 and 1') over an integral number of complete cycles, The
sum 1s thus equal o zero for all values of 1 and 1! except when 1 + 1' = 0,
In the latter case, the value of the exponential is unity, so that Sg = MK,

Applying this principle %o the expression (1,6) end making use of
(1,5), one obtains,

1 » . e . . “"v‘
b R le {m(Ulmn Ujrhm *+ Vg if;«lmn + i v lmn)
mn

+ a/2 [ Vim * Tim) T im + 1) (8- 2 cos 2r(1M,) )

U' ) (2-2 cos 2n{m/ly) )

4+

+ (Tma * Timn) (w*lzm

+ (1 (u* v*

+

1an ¥ Vflgrm) Tnm T

) (2-2 cos an(nfliz) )

+ Vi = P1m) T om U*Imn) (2 -2 cos 2n(1/M -n/lip) )

(1,7)

+ M = i) 4 = 7 pan) (2 =2 cos 2n(m/lg-n/ilz) )
; (Ui = W) (UM gmn = T ) (2 -2 cos 2n(n/dp -1/H,) )]
+ v [(Ulmn U (2 = 2 cos 21 (=1/4, + m/iy + n/llg)
Ty Vi (2 = 2 008 21 (LA, - mfy + nfily) )

L ¥;~r"hm(2 - 2 cos2n(1/tly + m/M, - nAl) ) ]

3

M



7. Lagrengian Zqustions of Motion
"[ith the Lagrengian function (1,7) expressed in terms of the new
coordinates (U,7,7), the Lagrangisn equations of mobtion may be written

in the form
(i,8) a/at( DL/ U ) = 0L/ 3V = O,

with similar equations for the V’y . and W ypn.

The U}, equetion is as follouws:

*

mUpy + G [ (W]Jm + Ulmn) (1

cos 21 m/ilp)

cos 2n n/lz)

+ (Ulmn "'Vlmn) (1

1
e
o]
n

2n [1/0, - m/Ng] )
cos 2n [ﬂ/N? - 1/”1] )]
m/N,e + n/NgJ ) = 0,

- (Vlmn = lem) (1

b (U = i) (1

+

+ 2% Uy (1 = cos 2n [-1/A,

The V*J;mn and W*lmn equations may be obtained from the above by cyclic

permutation of (U,V,W) and (lin),

8, The Propagation Vector

In the discussion of the proparties of the freguency spectrum it is
corivenient to use a rec.anguler Cartesian coordinate system in reciprocal
lattice space, FKach allowsble vector -ﬁlmn of the coordinate transformation
(1,4) may be defined in terms of its (T,3,k) components along the (x,y,z) exes,
respectively, of the system; and conversely, a vector drawn from the origin
%0 any polnt Iin the reciprocal labbice is an allowable veclor g]nm, The direction
of such a vector defines the dirsction of propagetion of a plane wave treveling

through the lattice, and its "length" is equal to the wave-number of the plane
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spave, It will be found in Seetion II thst there e:cist thrzes different
normel modes of vibretion having the same weve-mmber vector, and thet

these normal modes of vibration in general have differcent fremencies,

in o:rdar. to doline the (L,7,z) coordinetes of a point of the rsciprucsal
tatzice in bsyms of its weve-number vector indices (lmn), the primitive
v3c5urs (B ,-E;@,;,Ta) mugs be exrressed in terns ol the unlt vectors (3"3-37,?],
In zecomplish this the three primitive vectors (41, 10, Ja) of the direct
isvtice must first be expressed in terms of (1,7,k), Referring to Figure 1,
one mey express the primitive triple in terms of the cell dimension d,

a5 Follows:

K“;' = (1/2 (3 + E)
(1,10) ip = d/2 (X + 1)

by = a/2 (3 +73)

and from (1,1), (.-314 ﬁa: Tm) are Pfound to bhe

-

1/a (-1 + 3 + k)
/6 (1 ~3 + %)
/6 (1 + 3 = X)

[}

Br
(10 11) -B-Q

it

By

The veclors (-3;1, E@.s Es) define a body-centered labtice, In terms

of these vectors, the vectors By, maey be written

Elﬂﬂ 1 E‘}/LN' + m T.é..?‘/NQ + N 33,/'1\1'3-

"

1/d T(=1/Hy + m/Ngy + n/lg)
+ ?j-(l/Nl - m/Na + n/la)
+ By + m/Np - n/fily)

(1.12)
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The coordinates of the point oif the reciprocsl leattice corresponding

to %ﬂmj will be defined as follows:

o= (LN 4 omiliy n/ﬂﬂ)
(%, 1o PRI TG s PV PR YA T
n{ LA+ mfl, - /1),

Il
H

Taus,

(i, 15D) Bl = 7/nd, where v o= xi -y + 2k,

It will he noted thet (3,v,2) are dimensionless, The vestor T is called

+ha propagetion veetor of the plene wave defined byiglmn.

Z, Ihe Secular Determinant

In order to find those corbinstions of the (U,V,ﬂjlmn which dafine the

normzl coordinates of the system, values of 9 are sought, such that

elut

o]
i

Irn An

(1,11) Vim ® Bimn el2%

the Ay, 2 Bign » &nd Cqpp being complex constents, not all zero,

"men the chove substitution, together with the substitution (1,13a), is

mede in the first lLegrengica ecquation (1,9), cencellation of the cummon factor
eiut and collection of terms result im,

(1,15)

Ahma[ ai 4 - cos(z+x) - cos(x+v) = cos(x-y) - cos(zﬁx)} +2v (1=cos zx)- ™

+ Bimn a { cos(x~y) - cos(x+y) } + Clmn © { cos(z-x) - cos(z+x)} = 0,

|



Combining the trigonometric terms, and dividing through by 2a, there

resulls

p Ry : < / 2 o s I
Ay 5 2 = cos X(COS 7 + COS 2) + 2%/a sin"x - m)ﬁ/&a?

CL,ade)

it

0

+

q : gin % sin v + gin % sin ¢
+ Blm . sin 'y *1mn b “

vae Legrangian equeticn: for V”]mn d s Sirilerly treeted, vield

Aypn sin x siny
(1, 1s8b B 2 - cos y(eos g + cos x) + 2%/a sin®y - mo</%a
2 Imn v { vy

Ciym siny sin z = 0O

.~ 8in x sin 2z
Al b
(1, 18¢c) By, 8in v sin z

sl &) o e 1 P - S &, o 3 As S —
% 1mn {d -~ 6os z{cos % + cos v} + 23/& sin®g - nm‘,&a} = {,

As is well lmomn from the theory of linear equetions, the only vélues
o (£,8,0) yun Thet will satiéfv the set of equations (1,16) are (0,0,0) unless
the determinant of the cosfficients is itself equal to zzro, In the letter
case ong of the quantities cun be chosen arbitrarily, and the three equstions
then sre comnatible and may be solved for the other two quantitiecs, The deber-

minant ol the coefficients of (A,B,C)lmn is called the secular determinant,

It sﬁould be noted that the coordinate transformetion of Born snd won
Karman h&s brought the Lagrangisn equations into a particulsrly simple form,
If the Lagrangien eguastions for the coordinates (u,v,w)g,pe hed been written,
sach Lagrengien equation would have contained coordinstes having indices other
than (abe). Thus, each normal coordinate would huve been a linear combinstion

of ail of the coordinates (u,v,w)gpe end the secular determinent would have been
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of order equal to the number of degrees of freevdom of the entire crystal,
In our cuse, the entire secular deherminant is still of the order, but it
is fuctorsple into a product of third-order determinants, =ll of which are

represanted by the general sscular determinent

2 o+ 2 ‘lf,/u sinx

208 %{cus vCcas z) gin ¥ sin v sin X sin 2
o R
-2 /;,l

2 + 24/a sin®y
(1,17) sin x sin y ~C 08§ v(cos z+cos x) sin v sin 2
-ma®/2q
2 + 2y/a sin®g
gin x sin =z gin y sin =z -cos z{eos % + cos v)
—z0% /20

the complete secular determinant for the face-centered cubiec luttice
is that determinant formed by a diagonal array of all determinents of the
Zorm (1,17), each obtained by substituting into (1,17) one of the possible

sets of values of (Imn), end hsving zeros everywhere else,

= (
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SECTICH II

RAL PAOPERTIES OF THE SECULAR DITERIINANT

1

1, Imtroduction

Tha proparties or she ssaunler determinent daerived in the precading
seation will acer e determined,  The symmetnry properties of its solutiuns
in (xﬂy,a) goaces wli)l first L considered, follosod by o discussion of the
serdodizsaty proseruies ol those solaidonu,  Ia ihe covarst of tals breoatmenty,
the range of varistion ol the undices (Lum) whicn deiine tne propagstion
veetor (see Perzgranh 8, Sesction IT) +ill be fixed,

It should be emphesized thet the dynamwicel nroblem of the motion of
s crystal luttice is actuslly solved when the seculur determirnent defining
the normal coordinetes is obteined, Thet is, ey nermicssible set of intepgers
{lon) aey be chosen ot ill, »nd ~dth the helw of the seculer delerminent
the normal coordisstes and frequencies assoeisted vith the corresponding
propagetion wactor can he found, The complete solution of the problem
therefore consists in solving ths secular detzeminant for each of the finite
numbef of suzh combinstions (lmn) and in weiting dowa the most general sum
of all of the normal coordinantes thus found, each multinlied by en erbitrary
constant,

For the wurvose of this discussion the narmal coordingtes themselves

need not bso knomn, however, a knowledge of the distribution of freaquencies

of the various normal vibrations is required, since the ststisticael trestment
depends upon the distribution function b(v), ‘The remsinder of this paper is
largely devoted bo the evaluation of the distribution function N(v), The
function N(v) is regarded as belag eontinuous, except nossibly for & finite

nugmber of values of v,



2, balfinition of the Continuous Distributicn wmction H(v)

[

The solution of the secular determinsnt of the precading section vields
saree values o' »* for esch sermissible set of coordinutes (i,v,z) becuuse the
szmansion of the determinsst in polynomial roprm gives g cubie eguuition iu o7,

Tha opsduss of oY defiundas the norasl vibrations sre discrste, but only hecause

toe vadues ol (07,2} thet msv e imservod inte wne dederminzie wro hheoselves
diznrste, Th iz ¢lesr bhet iV Ly aE aff valuzs of {x,v,a) were pzrmiasibvle,

tha rookts of the determinent would be continuous funections of the continuous
variebles (c,v,2), as e mabter of fact, the successive permissible veluss of
{,7s2) are separsted from one another by amounts thet sre prechicelly infinitesi-
@al in comperison with a complete period of any of the brigoscuetrie functions

ve roobs corresponding
0 sdjecent permissible points (x,v,z) would be expected to difiser by phvsically
infinitesimal amounts,

The actual frequency spectrum will consist of a large number of discrets
frequencies, To find the number of frequencies lyving in sny range v to ¥ + dJ,
one could, in principle, actually tabulate the variouas discrete roots of the
deterﬁinant in order of increasing freouency and count the roots lying between
the presoribed frequency limits, A conceivable method of tabulation might
consist in forming a three-dimensional array of points located in a one-to-one
correspondence with the permissible points (x,y,z) of propegation vector space,
and labeling eech point with the three roots of the sscular deterazinsnt corres-
ponding.to it, The operetion of counting the frequencies lving between given
limits would then consist, for sath of the thres roots of the determinent, in

counting the number of frequencies lying hetween two surfsces, so plaoed that

all frequencies within the range of interest, end no frequencies lying outside
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the range, lie between them, However, Tor ezch of the three roots thers 1

o

a one-to-one correspondence between permissible points (x,y,z) and freguenciss,

so that ane wc¢tually -rould be counting ths number of permissible points lying
walouen the Swo surfaces, Finally, the permissible points are wnd Poraly die-
trivuted in szsce, so thet o definite volune of' space (simil:zr in shepe to Tthe
andt wall of the vecioronae] iattica) 1a sssacietad +rith each point, The couni-
ing operetion ig thezredore souivelent Lo the neasuremesnt of Liae valuse of
(2,7,2) space lvying betrsen the two surfsces,

The suriuces just deseribed msy be tolen to bo these curfaeca absained

v inserting into the secular deberminsnt the Umits of the frequercy run e

under consideration, for the surfuces thus obtained Jo indsed possess wshe
roquired property ther «ll those frecuencies, and only vhose froguencies, which
lie betneen the frequency limits, lie also betwaen the surfaces,

Thus il wpoeurs thel lhe sobusl discrete frequercy spsctrum moy e ¢losely

approxin:ted by the continuous function
(2,1) N(J) = K dv/dv,

vihere K is the number of permissiule points per ualt volume oi (x,7,z) space,
and ¥(J) is the volums in (x,v,2) space enclesed by the surface v = canst,, 7

being regarded 23 a continuous functicn of the contbinuous verizvles (x,v,z).

S, Symmetry Properties of the Secular Determinant

Fhysically, one is sure that there can be no difference in the properties
of the crvstal in directions that are symmetrically oriented with respect to
the syinetry axes and plenes of the 2eystial, Thus, 11 may be sip2cted that the
roots of tihe seculsr daverminast would have the ssme syamebtry sropsrties ws the
cubic crystel, [his is reudily verified mathematically from the secular deter-

minent itssll, by merely observing thet the roots of the determdnant are ioveriant



to all the symmetry operations ol the cuble systeam, i,¢,,
substitution of % Loy =2, v for =y, or z for -2 (reflection in axial plunes);

I P [ o e v = oy 5 F e e .
[ YA AP R N ,{, L1Qr =Ly {;/ var 2 4 A Uit }jl 3 X .E U o=y

/

or 2 For 2, % Jor o2, y oy =y {rolation sbovt diguss] axes);

. 5 o N PR s e FEEN P S
itution of « for & v, o for = z, and ¢ vor L iroisbion shout

svoswitdtian ol o dor vy, oy For -, 2 loro oz oy dav

or 8 for %, & Tor =z, v for v {rotstion =bout Lesrs

Yhe arove considerations do not rogulre that the constent-irsqguency
surfnoes themselves posssss thesse symmebry properties individually, for it
is concalvable thet the surfaces could izmtersect wne anuther i such o way

thet ths sed of surisces would be davorianl to swaaetry operastions, out o .ch

<]

irdivideal surfecs sb111 not be invarisnl, 11, howevar, ons of ths surficoes
dozs not dintersscet sither of the other tvwo, ewch surisce must Ladiviaoually
possass the symmetry of the srvstal,

In uny cese, Tthe shengs of the constbsnt Lrequency surlscas in all

directions frowm the ovicin zre known 11 thelr shepess caon be detarnined iaside
the srullest solid sngle bounded v the syimetry planes of the crystal thit

throuzh the origin, For Shs cubie systen, this solid angle smmounts to

surrowiding the origing this may be taken to Ge

1/43 of tha tot=]l solid

thet region lving in the posivive octent, vounded by tha nleiss v = U, x = v,

and x = z, *This sketchad in

4, Feriodieity rFroperbies of <he Roolgof the wsoular Determinsnt

@

It is elear by imepcciion what the roots of sho scouler dotominont
are periodic in (x,v,z) with period 2n ia sach dirsction, This means that the

solutions in the neighborhuod of the poinvs (Zkynm, 2lgn, 2kgn), ddth (ky,kg,ks)



Flane x=2

Figure £,

The symmetry plenes of the roots of tne
gecular determinant,
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5 the solutioms in the corresponding nelghborhood

§u

stitution of [x + (2 +l)n, v + (Bkgel)n, z = (Zkﬁ+l}a]

resnectively for (x,v,2) leaves the seculer determinant unchanged, This in-

that the roote of the

eyege with the s adicls

lattice, Thet is,

pornt s transieted mmount sorrespondling bto an iavarisnt translation

the bodyv-centered lattice, it then coincides with a second point heving

s

the same roots as the [irst, Thersfore, i the constent-freguency surfaces

are known inside the unib cell of this body-centered lubiloe, Lhey will b
known et all other points in (x,7,z) spsce, This lattice will be called the

periodieity lettice for the roots of the sesular deberminant,

5, Renge of Variation of (lmm)

The results of the preceding two paragraphs mav now he used to deter-
mine the range of permissible values of (lmn)(see Faragreph 5, Section I),
The total number of possible combinsotions must of course be equal to Hgﬁ;ﬁg;
the number of atoms in the lettice, and there remains merely the task of
determining the locations in (x,v,z) spsce of the correspunding peralssible
points, The volume of (x,y,z) space occupled by these points will be N M.V,
whers Vg, is the "volume" of the unit cell of the lattice in (x,v,2) space upon
which the permissible péinﬁs lis, 7The primitive vectors for this lattice may

be obtalned, with the ald of equations(l,1l) and (1, 15b) as follows:

(2,2) Gy = adfy Ay, G = ndBy/lip, Op = ndDy /g

/

manrier , to he

The volume of the unit cell of this lattice is found, in the ususal
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{2,2) Vo= 31‘(52 K Cg) = (n¥a% figHgly) Bao (B X Bs),

Thus

end hence coincides with the mianlmum ovele of pericdicity of the roots of
H
Lhe seoular deberminent,
There remeins the problem of [iading the shape of the bouadery of the

wait eell of the periodicity lsttice, Here scme coriterion must be introduced

aferable to snother part

by which one pard of (x,7,2) space may be judged ;

of (x,v,2z) spece for our purposss, since, up to this point, any volume
included each point of the cycle of periodicity once and only onve, would suffice,
This vriterion is simply thet the propogstion veetor drewn from the origisn

to sny point inside our unit cell be shorter then sny of the infinite aumber

of other provagetion vectors that could be drawn from the sazme origin to
propag

sorresponding points in other periodicity eyeles, Fhysically, all such vectors
would describe the same displacements of the atoms, snd the one bLeing chosan

is thet which corresponds to the largest wave length (smellest weve number)
for the clastioe ia,rave, That this eriterion is roasonsble cen be seen quite
readi ly fro@ g considerztion of the ons-dimensional chein of mdss particles
shown -in Figura 3, ‘

Iﬁ is clear that the physical displacements of the stoms could he
represented as well mathamaﬁiéally by sine waves of many different wave
lengths; two of these are shown, It is also clear thet no physicsl signilicensce

cen be stbached to wave lengths shorter than the distance betwsen points in
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Figurs 3, Sinaewave disolasoments of @ chein
ai mags particles,
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Floure 4,  The first 3rillouln Zone of a fege-centeored
cuble crvatsel latnice, ’
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the chain, The ebove condition follows, gince thers is oanly ons sine weore
Fith wwe lenzth greaster than the distance betwsen adjscent points,
With this criterien, the regicn in which the nereissible points of

(4:7,2) spscz lie, »wili we sewn Lo have the shape of she firss Brilicuin

sonz' 9 Lp ae srvenal littice in question, The range of varistion of { Lmn )

ig, therefors, such tnat the correspondine {«,v,2) lie
inzide this zune,
The first Brillouin zone of the fsce-centsrad cubie erystal lattice

is showa in Figure 1, The intersections of the three symnstry planes, de-

s¢ribed in Paragraph 3 above, with the surface of the zone, are outlined bhv

heszwy lines, A lnowledge of the shapes of the frequancy surfices inside the

2

zone, and enclosed b7 those planes, is sufficient to determine the fraquency

distribution, (4), & shell c2ll the (x,y,z) space enclosed by these bound-

aries the fundamental region of the secular determinant,

3, Speeial Solutions of the Secular Determinant

It has been pointed out in Section I thet the secular dsterminent mey

be ['actored into third-order determinants of the form

2 + 2v/a sin*x
-c0s x(cos v+ cos z) sin x sin v sin x

)

253
Hv
o
Y

-
H

2 + 2y/u sin®y

{2,5) sin x sin y ~C S v(cos z+cos x) sin ¥ sin ¢z
-2
E . %
2+ 2v/a sin®z
gin x sin =z gin y =sin 2z -cos z(cos x+00n y)

~A%

wihere A% has been written for mw®/2a in equetion (1,17), The ouentity ) is a

dimensionless pesremeter, but for coavenience it will he referred to as the
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feequency, since it is Iine:rly raluted t9 the true frequensy, ¢ (or J/Zn).
R B ey .

The exvansion of this determinant l=ads to & cubic equation in MR which

cannot be solved convenieatly, In the svave v planes of the neriodicity

letvtzee, end in‘the plune z = n, howsver, the seculir determinent msv bz feotorad,
siwing thrae solutions vhieh may be writtan In & coarvenient form, It will be
Poand Ghsb the solabioos dn Lhe plans v o= O sy b2 mouched vilth the solutions

ig the wisnes X = 7, 0 o= 5, tad B o= 2 odn such o owey Shat thresz Jiswinet surisces

are wbtuiased for zach velue of A¥, The three fanilies of suriaces i1l be

callen the three braaches f the roots of the sszeular determinan and for
11 t ¥ 1 of tl oGt i oz ded t, d fo

covvenience they will be identified by the srhitrery litels, T, IT, I11,
is wn exeinple of ths solubion L0 the seculer detorninent in « special

nlsns, consider the plane x = v, In this plare, the seculuar dsternisant beccomes

2+ 2v/a sin®x
-cos¥x - cos X GO5 2 sin®x sin x sin z
)R
FaN
2+ 2v/u sin®x
{2,6) sin®x -cgs“z - C0S X COS z sin x sin z =0
-2
2 + 2v/a sin®
gin x sin =z sin x sin z -2 C03 X 2085 2
_‘}"d

One of the roobs of the determinant may be written down izmedistely:
Ir

2 + 24/a sin®x - cos™z - cos x cos z - A® = sin®x,

the first two rows (or columns) of the determinent will be equal, Hence,

one root is

15

(2,7) M =1 - cos x cos z + 2v/a sin®x,
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The remsining two roots (as well as the onz given ebove) mey be obbsined by

manipulakion of the rove 2nd columns of (2,8), The determinant is of the form
PO B C
{(2.8) b= B A - MR G = {)

¢

(]
o3 ]
1
g

o

The determinant may be transformed through a series of simple steps as

follows:
_ A-B-A* B G A-B-A* B c A+B-A% 20
2,9)
D = [B=i+)® a-27% O = 0 A+3=2F 20 | =(a~B-A®) G Beh€
0 c E-AR 0 ¢ =A%

The determinaant D ¢lsarly has the roots

A = A-B,

(2,10) A% = (A+B+E)/2 # -‘é V (A+B=-E)® 4 8C%,

Yhen the above process of solving the determinant in the three plenes of
symmetry is carried out, emd the solutions are metched along their cammon lines,

¢ne obtains for the three branches the following set of solutions:

Branch I

= 0: AS = 1 i 5 : 2 s s in
Plane y = O: AY = 2 - 3 cos x - 3 COS 2 = COS X C0§ z + zw/&aln x4+ g/h sin®g

(2,11a) -'V (r/a sin®x - y/a sin®z - % cos x + % cos z)¥ + sin®x sin®z

Plene x = y: A = 1 « cos x cos 2z + 27/& sin®x
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Branch II

O: M3 = 2 - cos x - cos 2

rlene vy =
(2,110)
leaw & = y: ANE = %(1 “uos ® cos z) ¢+ (1 + q/a)sin“x sin®y

v

- % }/ {(1-00s x cos gz -(2+2*/1)sin*x + 2v/asin®z ®© 4+ § sin®x sin®z

pranca 11X

Flerme v = O h% = 2 - % Cos X - % GO§ £ - GO R LoD g - §/3 sin®x - ﬂ/h sin®g
“ »/ (/1 sir®™i - " /Ja sin“z - £ ens x + § 205 2)R + sin®x sin"g
{2,11c)
Flene x = y: M = 3(1 = cos x cos z) + (1 + 4/a) sin®c + » /2 sin®s
+ % \/[ 1 -cos x cos z - (2 + 2¢/n)sin®x + 2v/2 sin”z ] ® + 8sin®x sin®z

The solution .for the pline x = z is olbtained, in ewch cuse, by substituting z for
v in the solution for ths plane x =y, and the solution for the plane x = n is
ontained by substituting nm - x for x smd 7 - 2 for ¥y in fhs solution for the
plene v = 0,

This identificstion of ths threé brenches is nos unique, and indeed it
will te necessary to study the mabtter more carsfully when the contours of the

sonstant freauency are plotted (Section III),

7, Orthogonality of Surfaces and Symmetry Flanes

It is clear, from ths fact thet a svmmetry plahe divides each surface
into two halves which are mirror imsges, thet the surfaces of constant frequency
either meet the planss at right ungles, or have sharp edges coineiding with the
planes, If the second derivative of A®, with respsct to s coordinete in & direc-
tion perpendicular to a symmetry plene, is finite, it follows that the corresponding

prineipal radius of curvature of the surfsece is not zero, and henoe thet the surface
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mgets the plsane normally,

To show thet tnis is the cese for the plane vy = 0, the second derivative
of ths seculesr determinent with respect to y will he written, v set equal to
goro, end the detsrminent solved for 0%39/2vy%, This pracess will hs msds

more cunpzet with the introducticn of the notation
(2,12) Do | Dy, Ugs s =0

where Dy represents, symbolically, the elewents of the first column of D, snd

similarly for Dy and Dy3 furthermore, if
o - n n .n n
(2.13) Dy = \Drys Days Ly

is defined +to be =n array, cach element of which is the n th dsrivstive, with
respact to y, of the corresponding element of D, one nmay write, symbolically,

using the rule for diilersntiation ol determinunts

1

1 .
Dla Dgya Dal + ID'lJ Des Df‘fj = 0

EX

(2,14) 2D/3y = |Diy, Da, Ds

(ha first determinant, for exsmple, is made up of the first colum of D%, and

e second and ohird solusms of D,) Similarly,

250/ 0y% =ik, Doy Da| + |Days Diys Ds| + [Diys Doy Loyl

+|Dy,DhyaDs| + [Dy s D&y, Da| + [D7 . Day.Dgy|
(‘303%) . ""D‘vi,.y:D:?: D?{'V, + ’D'ls D;«)rs Déyl + lD'L: Dg: L‘gyl
=lD;$:7,D2, Da l + JD’} a 7.%!/., Dg' + ' D5 3 Dg, Ugvl

4

+ 2|td,, Dk, . D | zlr%y, Do, D&,| + 2D, ik, 08, |

= 0,
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In the cease of the secular determinant for tThe face-centered crvstal

latoioe,
o3 x ain v
-ONE o sin x cos v ¢
(2, 15)
A« fa cin y cos
D}z =| sin x cos v +sin yv(vos z + cos x) gin z ¢us v
-~ ,L/' o
-INoy
0 sin z cos ¥y cos z sin vy
- on%/ oy
and
208 X COs Yy
SR ST -3in x sin y 0
(2,17)
D;;’; = -gin x sin y f’“’,/ﬂ 408 2y - 0% /'by*' 51n 2z sil ¥
. -c0s v (208 2 + COS X)
co8 2z 0S¥
0 -sin z sin vy T =ToRAR /o yR
/
ihus,
-2 Ay y 0 sin ¥ sin 2z
2 -cos X - cO§ 2 0
oD/ 2y = sin x -A%
y=0

‘ 2 + 2y/a sin®g
(2,18) 0 0 =008 z - GO X COS 2
-\
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2 + 2y/a sin®x
~(38 A= COS ¥ COS 2 sin x sin x sin sz
-
" 0 =205/ 2y U
sin x sin o sin z 2o 2 gdin oz
i,
~CO8 g - COS X GOS8 g
' _;\ozi
L, 18 count'd)
2+ 2y/a sin“x
-G08 X - C0S X C0OS 2 0 O
-\
+ 0 2 -~ cos8 X sin =z =0
-303 2 = AF
sin x sin z 0 - 225/ dy
Sulving for 9a%/2w,
R o : = 21 I~ 23 i v = S < ‘.
(239) =235/ [ O %) 08 + % - %) 5 0F - %) O - )| <o,

+he expression in the brackets venishes only =t points where two of the brenches

¢oincide, so that BA“‘/Dy is zero exhept possibly et such points, Similarly,

cos X
=R\ foyR 0 sin x sin z
X , l 2 - cos x
2%p/ vye = 0 -C0g z - A 0
Ty =0
0 0 2 + 2v/a sin®sz
(2,20) -~C08 Z - «;Ss XG0S 2




p—
he]

+

+ 2

+ 2

2 « 2%/a =in®“x
-30S X = CO8 X €45 2
-\=

0
sin x sin 2
2 + 22/ sin®x

~COS X - CO8 X COS 2
ae

sin X sin g

2,30
cont'd)

-2N/ oy

sin x

0

2 + 2v/a sin®x
~C0§ X = CO§ 2 GOS8 X
_p

0

sin x sin z

“dy/a = 354/ by
+eos y(cos z + cos x)

2 -~ A%

=308 X =

sin x

=Ny

sin z

2 - AR
COos 2

- C08 X -

b4

-

sin ® sin

Zz

2 + 24/a sin®yg

GO 4 ~ €205

-

0

0
cos z
=2 o R

sin x sin 2z

Qo

-AF
0

sin 2

23R/ 2y

sin 2z

X GO g

v 2v/a sin®x
08 X ~ COS X ¢OS 2
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Gollection of terms and utilizstion of the expressions (2,11) will

result in

{(2,21) --a@xa/agﬁ&[(xg - AR) (AF + 2F - 23%) & (OF - 2F) (W - a@)] + R =0

wheye X denoches vhe remuinder of the terns, that %28/ 292 cun he

infinite only s ths expression 1 the O ize, since A ls wlinvs

@O

finit For the three branches Gthis aXpression is

£

Brenoh T

Branch I

(6,22) (1\'[‘;a - )‘g) (}‘»;:? - AS)

Branch III

(2§ - 2§) (2% - 2F)

50 that the derivative 2 *A%/9y® can become infinits only where the constant
frequency contours of two branches interssct, e shall see in Section III thet
this occurs for a given vilus of A only at isolated puints or slong isolated
lines whose significance will tusa be c¢lear, IThe situstion is exsctly the sme
in the other syamatry plsnss of the seculsr determinant, Tné genarsl aonelusion
ig thzt sxoept at a fow noints the cangtant frequency surfaces west the syunehry

=lanes orthopomsally
L ] W
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SECTION III

THE SURFAGES OF I skl FREQUEBHOY

1, Introduction.

In the vresent section, ths three branches of the roots of the seculsy

s by Aguation (2,11, will be studied

determinant, defined ia the

~will be plotted in the symmetry

the p

In sntisipefion of a result of Sseb
heve a velue nesr -0,1 for orystals of dnterest, the Jamily of contours for each
sranch will be drevm for two valuss of this paremeter: 0O,u and -0, 1,

The contours for these Lwo cases are similar in shape snd position, so
tha’t in the interest of simplicity only the case of th equal Lo gero will bhe
trested ab length, The other case will bthen be bresbed as n small perturbation

af this case,

2, Pundaemental Region of Symmetry and Feriodicity

As has been pointed out in Peragrephs 3 and 5 of Section Ilﬁvthe symretry
and periodicity properties of the secular delerminant are sueh thet a knowledge
of the frequency surfaces inside a certain "fundamental region" is sufficient to
define the frequency spectrum of the lattice, This fundamental region is bounded
by the planes y = 0, x =y, x = 2, 2 =7, and X +y + z = 3n/2,

As long as no physical significance is attached to the indices (Imn), how-
@vyer, the Brillouin zone need not be taken as the shape of the outer boundsry of
the region, bﬁt any other houndary thet encloses the seme frequencies may be used,
In preparstion for the applicetion of these frequency contours to the calculation
of the frequensy disbridubtion in Secbion iV, one minor change will be made in the
shape of the fundamental region in order %o simplify the measurement of the volume
enclosed by each surface, This change is the substitution of the plsne x = n/?

for the plene x + y + z = Sn/é as one of the outer boundaries of the fundamental
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rogion, The new region su defined is incicated by the dotted lines in Figure 4,

3. Gontours for y/a = 0
"In the oase that 7/& is equal to zero, the solutions (2,11) of the secular

determinant taks on the specially simple forms

Branch 1
- . ,, L . A
vlme vy o= Gy M = 2 - BCOL W o= g s 2o~ CuS L 005

(2 cos ¥ - 3 cos z)° + sin®x sin®z

plane = = y: A = 1 = Ccous 4 0B &
Brench IT

eOos L —CQ8 2

o
I
&
1
&2
!

plans

-

(1 - cos x cos 2) + s1nx

fut )
i
]

plane x = y: A

- é,‘V(l - cns X 98 2 - 2 sin®x)® + 8 sin*x sin®z

Branch III

plane y = 0: 2g = 2 - S c0t X -3 00§ X = % COS Z =~ COS X GCS 2
. p 2

204

+ V(% cos X - % cos 2)* + sin®x sin®z

plene x = yv: 3§ = & (1 - ¢os x cos 2] + sin®x

g
8
Y A ) N R ik
+ 2 v/(i - to3s % cos z - 2 sin®x)® + & sin®x sin®z,

% are to be found in the same

e
it
=
g
o
N
it

The solubtions in the planes
menner as in Equation (2,11),

Bvartually the conbours wast be knowm for pireseribed valuegs of A, The
process by which these contours were found is as follows: Thosz of the &above
squations thet involve square roots (Ia, IIb, IITa,b) were solved for A at
intervels of n/12 in x end 2. The values of x and z for which A takes on the

desired values were then determined from these results by graphicel interpolation,
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Ths remaining two ﬂﬁufiions (I, IIe) were golved directly for z in terms of
» =4 i, and hence prascated no problem,

PThe values of & obtained by substitubing the warious velnes of x and z
invo mauasions (3,1) ave given ia ke follewing cobles, For convenience, veluwsg

. 2 e 2 oy w2y g D
cooard noarn elyer In d:.‘rg‘.. LG,

LABIE 1

Hoot of tne Saculur Deterudnuns Por Jeener T, slane v o= 0

SO S S PUN—

aodeg,
R 15 30 15 sU 75 9]

s deg

0 L 000 , 135 L5458 JEES] LUt L6l 1,00
15 L 163 L 1a7 J3a1 0 BO7 578 JBAD L 981

50 L 360 521 ey L 80 L6t oo 017
45 541 507 489 Xy Lots 78 L9%5
5C LT07 L6738 L8612 L6513 LTUT LBO3 Lazl

w5 L8611 L210 L 502 T 303 L a6 RN
30 |1,06C , 984 L0 ,925 .921 Lutd 1,000
106|112l 1,111 1,095 1,059 1,013 LUt 1,072
120 |1,215 1,219 1,200 1,178 1,181 1,152
155 |1.307 1,300 1,252 1,278 1,203 1,252 1,230
150 |1,356 1,383 1,338 1,31 1,311 1,337 1,528
165 |1.402 1,101 1,400 1,398 1,595 1,388 1,590
180 1,411  1.414  1.414 1,414 Q414 1,414 1,414

TABLE &

]
@

© Roox of the Seoulsr Jetarainant for Hieanch 1, Plung ¢

aodeg,
74280 g 15 30 45 su 75 9y
o (1,414 1,414 1,114 1,414 1,114 1,41% 1,414
15 1,414 1,402 1,392 1,388 1,388 1,348 1,390
30 1,414 1,392 L3887 1,316 1,388 1,329 1,330
45 1,414 1,388 1,346 1,308 1,276° 1,258 1,250
6U 1,414 1,348 1,338 1,278 1,223 1,185 1,161
.78 1,414 1,388 1,329 1,258 1,185 1,122 1,075
90 1,414 1,580 1,330 1,250 1,161 1,075 1,000




Racot of the Ssculsr Deteraminant f

TABIE &

‘or Braneh I1, Flsnes = v, % = z

z{or v)

deg,

x deg,
30 45 56U 78 g0

1,411
1,371

w
ey 2 d 3

707 1,178

L 687 i 765 1,084

LB51 4 888 1,023

1,000 ¢ 1,000 1,000

3 4 1,142 1,023
1,2

3 1,084
8 1,178
g 1,278
o 1,37
g

4 % ® = & H» $F ¥ & & % &

T O e OF A e (D

1,396
o 1371
1,414

et
&
L
R
|-
e e e o
QO T e 80 =T =D O

T

& & & ¢ & & B B ® & © ® @
‘ ¥

&
s

TABLE 4

Root of the Secular Determinant for Bransh 111, rlane ¥y = 0

z deg,

x deg,

O 15 30 45 50 75 90

"0
15
3U
45
60
(b}
90
105
120
135
150
165
180

,000  ,261 817 765 1,000 1,218 1,414
.261  ,411  ,622 840 1,081 1.252 1.436
517,622,796  ,982 1,183 1.336  1.494
765 840,982 1,137 1,289 1.451 1.559
1,000 1,051 1,183 1,289 1,414 1.528 1.428
1,218 1,262 1,336 1,431 1,528 1.613 1.679
1,414 1,436 1,494 1,559 1,628 1.879 1.732
1,586 1,599 1,630 1,670 1,710 1,741 1.761
1,782 - 1,786 1,748 1,781 1,775 1,779 1,774
1,848 1,846 1,841 1,835 1.819 1.798 1.772
1,982 1,925 1,910 1,885 1.849 1.805 1.761
1,983 1,972 1,850 1,914 1,887 1.808  1.740
2,000 1,990 1,965 1,925 1,870 1.804¢  1.752

<

fav]



TABLE 5

Root of the Secular Determinent for Braneh III, Planes x = v, x = 2

2 (or v) x dsg,
deg, O 15 30 15 0 75 o0
0 ,000 1,157 1,613 1
15 ,abl 1,188 1.646 i
20 JF13 1,291 1,722 1
45 . 785 1,414 1,805 1
60 1,000 1,583 1,.B78 1,954
= 1,218 ] 1,640 1,850 1
30 1,414 1,480 1,782 1,870 1,865 7, 0
1058 1,35 1,811 1,800 1,908 1,976 1 !
126 1,751 1,740 1,847 1,920 1,968 1,954
135 1,845 1,844 1,870 1,809 1,931 1,901
156 1,932 1,921 1,871 1,875 1,876 1,852
165 1,982 1,967 1,856 1,812 1,809 1,785
180 2,000 1,581 1,848 1,732 1,768 1,782

TABLE &

Root of the Seonlar Deberminant for Branch ITII, Plzns 2z = 7

) x deg,
7 ek, o 15 30 45 60 75 LU
0 1,414 1,426 1,460 1,512 1,580 1,855 1,7:3
15 1,426 1,449 1,483 1.541 1.802 1.671 1.739
30 1,460 1,488 1,538 1,592 1,849 1.705 1.758
15 1,513 1,541 1,592 1,643 1,693 1.738 1.722
80 1,580 1,602 1,645 1,693 1,732 1.758  1.777
75 1,855 1,671 1,705 1,736 1.758 1.765 1.761
90 1,732 1,739 1,758 1,772 1,777 1.761 1.732

From the data in the forepcing taebles, the curves of 2z ss a functian
of A, for fixed values of x, were drewn and velues of z corresponding to certain
values 6f A were read from the curves, A similer treatment with fixed values
of z yielded values of x corresponding to these seme values of A,

The results of this graphical iﬂﬁ@rpolation, together with the results

of direct computation are given in the following tables for Brench I, planes x =

¥
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and x = z, and Branch III, planes v = 0 snd z = n, In addition to thsse tsebular

data, values of 2z vs, N, X v8, A, or ¥y vs, A, are given along wvarious special

Lo

linss fur sesh braveh, These lines are the ones slong which the roots of 4he

sacnlar determinant may be wrlitten in svecially saimple form, The equation con-

3

b
&
-
R
e
[l
i}
%
¥
@

7

v, or 2 with M will be given for each case, Plnally, thers are also
given the welues of r vs,  along the line x = z/%z y = z/4, This line is not one
af the simple Tines menbioned sbove, but is, on the cembrery, almost as compli-
cated as any obher; in the next section it will be found thet information concern-
ing the variation of 2 along this line is useful in the mechenical determination
of ths frequency spectrum, because it makes almost sgual angles wisth the three
symmetry plenes, The secular determinent was solved for several polats squally

spaced along this line, snd the information given below was obteined fromthese

solutions by graphicel interpoletion,

TABLE 7

x(or z) as & Function of A and z (or x) in the Plane y = C (Brench I)

x (or &) ds

o
L@

=t
o w
[AV]
@ @

103,5 106,8 110,3 111,7 112.5  109.2
117,2 120,0 12%,2 125.1 126.4  126,5

& B

-]
ot
jor]

A 0 15 30 15 60 75 90
0,5 11,4 44,2 46,2 16,5/34,7 ——— ——— ——
0,6 50,2 §%.1 56,0 58,5 ——— e
G, 7 59,3 62,1 85,2 65,8 6@5/%8‘5f, - ———
0,8 68,9 71,4 74,8 75,6 74,8 32,2/57,8 ----
0,9 79,0 81,2 94,6 87,1 87.5 52,3 J—
1,0 50,0 91,8 95,5 98,2 99,4 98,2 90,0
1,1 1
1,2 1
1,3 5
1,4 7

L -
. 132 ¢ 1544 136.7 139.3 141.2 142.6  143.8
. 163, 184,5 165, 0 116,5 165,5 189, 0 1€3,3
line v = 0, %= = z: same gs for x = 0 in Takle 7,

i

Line v = 0, % = n=2: A® = 1 = cos 2

A | 1,0 1,1 1,2 1,3 1,4

: | so,0  e7,5 85,1 41,4 16,4



TABIE 8

X as a Function of A and z in the Flane y =

0 (Branch I)

* deg,
* 7108 120 135 150 165
1.1 19.5 — — —- o
1.2 ———— 30,0 — — e
1,53 ———- — 20,0 o e
1,4 —— B e T 30.0
T4BIE 9

x ag a Fanction of A and z in the Flane x

v {Branch I)

N x deg,

’ 0 15 50 15 50 75 50
0,5 41,5 39,1 B0,0  ememee memem memen memee
0.6| 50,2 48,86 494 95,2 memme memen cmeee
a,7 59,4 58,2 53,9 43,9 mememsm meeee eemee
0.8 68,9 58,1 65,4 50,4 44,0  emeen mmee
0,9 79,1 78,7 77,3 74,4 87,7 42,8 —mee-
1,00 90,0 90,0 30,0 90,0 90,0 90,0 90,0
1.1] 10,1 02,5 1040 107,83 14,8  144,2  ceee-
1.2] 138.1  117.1 120,56  128.4  1B1.7  eemmee e
1,3| 1z3,6  135,5  142,8  167.0  —mm-=  memee —meee
1,4| 163,484  meme= mmmem eeee i
Line = = y = z: A\ = sin”z

by 1 0,5 0.6 0,7 0,8 ¢,9 1,0
z | 30,0 26,9 44,4 53,1 64,1 90,0

Line x =y = n= z: A® = 1 + cos®z

A L1 oLz L5 14
x | 62,8 48,5 33,9 11,8




TABLE 10

%(or v) as a Function of A and v(or x) in the Plane z = a(Eraneh 1)
x(or y) deg,
A - -
0 15 30 45 19} 78 9y
1,0 | =mm- ——— R ————— — R
LA o -y [ERp— [ v ot £l ]#%;
1.2 v - s ——— e 54,8
1.3 - — ——— 47.5 23 2
1,4 s e 18,9 11,6 5.5 8.5

Line x = n/2, 2 = w-y: 8

sin®y = (22%

2 1,3 1,4

4 l 50,0 57,8

line = = z,/ﬁ, 5o z/fﬁ 8

41,3 26,7 g,28

0,7 .8 G,9 1,0 1,1 1,2

» | BL3 62,0

#{or z) as a Punetion

72,8 84,5 97,0 110,4 128,53 145,86

&

TABLE 11

of A and z(or x) in the Plane v = O (Branch II)

At

U 15

 (or z) deg,

11,5 B84
50,2  A7.7
59,4 57,1
68,9 66,8
70.1 77,1
90,0 88,0
62,1 160,1
11,0 113,09
135,6  130,9
185,7 1578

& L & 23 £ 3

& ¥ & @

&

o - - 2 - - -

oo it ot o et e 2t et OO O OO

& &

GO U R LIS e OO @B D

59,4 21,2 e e e
19,9 26,8  ceem- m—
60,4 49,3 50,7  ecmmm e

[ a——




87

TABLE 12

® ns 3 Puction of % exnd z in the Flane v = C {Braneh IT)

g deg, ‘

& 105 120 1353 150 165 180
1,2 55,1 ———— S ———— — S
1.5 55 4 35,0 — R S -
1.4 72.5 57.8 41,7 25.1 - ————
1,5 59,5 75,5 62,5 52,0 44 B 41,5
1,6 — —— 81,6 72,8 66,1 63,9
1.7 —— ——— —— ——— 85.6 83.7

u,nﬁyeoﬁxag;lﬂu2—2ooﬂz

A o5 o6 07 08 09 1,0 1,1 1,2 1,3 1,4
x | 28,9 34,9 41,0 47,2 63,5 60,0 66,7 73,7 61,1 88,8

TABLE 13

z as a Punction of A and x in the rlane x = y (Branch II)

N x dee .
o 15 20 15 50 75 90
0.5 | 41,4 43,6 12,4/30,0  ~-mwm=  aecee mmees ' -
0,6 | 50,2 52,4 48,4 = eemem ememe eceee -
0,7 | 59,8 61,2 60,3  B82,0/41,6  =mmm-  —mee- ————
0.8 | 88.9 70.2 70.6 65,8 = mmme= e —
0,9 | 79,0 79,6 80,3 78,8 32,9/72,0 =mw-- ———
1,0 | 90,0 90,0 90,0 90,0 0,0/90,0 51,8/90,0 90,0
1.1 {102,1 101,38 10,2 100.6 103.1 30.9/109.3 57,1
1,2 |116,1 - 113,8 111,3 111,¢ 114, 9 10,8/123,2 41,3
1,3 |133,7 129,2 123,53 121,8 125,9 135,4 26,7
1,4 |183,7 151,8 137,5 133,4 136,8 147,6 8,3
1,5 |wweme  wm—e- 157,9 146,4 148,5 160,7 ————
1,6 |mwmme wmmee e 162, 8 161,1 e ———
1,7 |memne weeee - . 175,0  eeee- S —
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TABLE 14

x 8g a Function of A and z in the Flane x = y (Branch II)

z deg, ,
") ‘ 15 el 45 40 7. 99
30,9 30,0
36,4 37,5
22,7 44,06
49,1 51,9
55,5 59,0
64,0 G6, % =
66,38 T4, 4
76,2 62,8
84,0 92,1

92,5 102,8/165,8
102,0/163,1  117,8/148,7
113,5/157,4  ==========-

- - o - - e B -

2| 0.5 0.8 0,7 0,6 0,9 1,0
x | 20,0 36,8 44,4  A3,1 64,1 90,0

TABLE 15

x(or y) &s a Funetion of A and y(or %) in the Fleme z = n (Brench IT)

\ vy (or x) desg,

0 15 30 45 80 75 90
1,5 ==-- 33,8 18,7 mmmem e 90,5 75,5
1,6 ==== 59,2 47,5 . 52,0 13,0/86,8 72,5 55,9
1,7 | ===- 81,4 73,5/88,6 62,3/79,4 7,3/671 235/51,1 27,2
3 | 90,0 88,0 82,3 73.0 60,0  42.2 0

Line z = m, = = yv: 2¥ = 1 + cos = + 2 sin®x (x€60), A° = 2(l+cous x) (x)60)

2 |' 1,5 1.6 - 1,7 1,7 - 1,8 1,5

#

% | 24,5 88,7 53,7 63,6 73,8 82,8



Line x = /2, z = n - y: 2 cos®y = (AR - 1)

A ! 1,0 1,1 L2 1,3 1,4 1,5 1.6 1.7

2 I'QQ*O 71,1 €2,0 54,0 4€,1 37,8 28,0 13,6

r | 105,00 118,0 132,0 144,2 162,2 183,9

TABLE 16

x(or z) 25 e Funetion of X and z(or x) in the Plene-y = O (Branch III)

x {or 2z)

~
~

T

L] -

66,7 55,1 41,5 21.8 - —
73,7 71,0 63,5 51,2 . 24,8 ——— —
81,1 78,8 72,0 61,0 46,4 24,0 F—

> 0 15 50 45 50 7% 90
0,5 28,9 21,9 - ——— ———- ———— ——-
U,B 54,9 28,6 12,8 — —— ——— ———
0,7 41.0 35,3 21,9 —— c— e mem
U, 8 47,2 42,2 50,2 9,9 ——— ———— ———

g 58,5 19,4 38,5 21,5 —— ———— ————

0 60,0 56,6 46,6 31,8 0,0 —— —

1 63,7 ;

2

o

« % & & & & & =
X

4 83, § 96, 5 81,1 71.5 59,4 40,0 S
5 87.2 95,6 91,1 82,9 71,3 55,5 31,9
6 106,3  104,9 1017 95,2 85,8 72,5 61,6
7 116, 4 115.7 113, 7 109, 6 10%.2 93.7 78.6
;] 128,53 128,1 127,8 127,5 127.2 137,5 ———
5 135, 3 135, 5 126, 7 139,1 151,8  mmeee S
43,8 1724,4 147,5 156,5  —emom e e

1541 156.5 164,7 mmmmm mmeme e ———
180,0  ==--- B T T U ————

DO o B hd et e bt bt et bt b e (O

3 @ # B =

O WO
Mo d




TABLE 17

x as a Fuwaction of » end z in the Plane y = O (Branch III)

) A

| 10F 120 135 154 168 18¢
1,8 13 S —— p— - S——
1;7 ﬁﬁ () — [PR—— - [ [
1.8 - i F—— 73.5 78,8 75,1
1,88 o o vt s S . 55@5 ﬁSWQ
1,9 e ST o YIRS 54,4
1,55 . o em oo o o — 58,7
4,0 e — o PO e ee 0,0

] 2 = - 2 ke

Line vy = 0, x = z: AF = 1 -~ cos z + 2 sin®z

A 0.5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1.8 1,4

£.8 0 22,0 26,1 30,4 34,5 58, 8 43,2 48,2 53,4 9.2

rMo1,5 1,8 1,7

z| 65,8 78,8 84,7
(2% - 2)(A" - 4)

(2A% - B)
AL, 1,85 1,8 1,95 2,0

iine y = 0, = = n - z: sin®z -

z| 52,8 41,8 32,1 k1,6 0

PABIAE 18

z as a Function of A and % ip the Plane x = v (Braach I1I)

x _deg,

A o . 15 30 45 50 75 §0
0,5 28,9 13,5 mmeme=  emmme  emme= meem= mmeee
0,6 34,9 21,7 memr= o mme== smeme emeee . emees
0,7 41,0 29,4 meeme= = sm—me mmeee cmcea ——
0.8 47,2  37.0 2.8 memmm memme eemee eme—
0,9 §3.5 44.5 19,1 = mmm===  mmmee mmmee e
1,0 60,0 52,2 30,0  seme= mmmme mceee emaee
1,1 66,7 60,0 40,0  eeeme  mmeee ceeeme meena
1,2 75,7 67,6 49,5 17,58 emee= eemmem e
1,5 81,1 75,8 59,0 31,0 = mmeme e meeee
1,4 88,8 84,4 59,4 42,9 mmmmm mmmee ceeee
1,5 97,2 93,7 80,6 55,5 24,4 = eeeee emea-
1,6 106,83 103,7 92,6 69,1 39,5 . memme ewes
1,7 118,4 115,0 106,8 34,6 54 .5 26,1  eceme-
1,8 128,3 128,1 1242 104_8 .75 0/167 § 44 _,0/166,6 22,8
1,85 | 135,2 135.8 136,5 121,5/172,5 84,65/156,6 54,5/1%5,5 33,2
1,9 Mz, 6 145,5 153,1  —=-=- 101,1/139,6  68,4/114,2 44,5
1,95 | 154,2 158,8 —-me=  semee ceeew 83, u/ias 5 58,3
2,0 180,00 =mmme  mewma smeme mecee e 90,0




TABLE 1g

% sg & Function of X and 2z in the Flane x = v (Branch I11)

CJ8: R— R &83%/112,0 79,0/112,0 71.4
----- 50,0

®

T 7z as=r,

A 15 80 75 20
0,F 5 14,3 Teees 0 T ——
0,6 22 14,5 e e
LT 22,8 - meses e
9,8 271 o v e s i s v
0, 54 31,58 - ot o e —
1,0 33,8 6.1 S e
’i'%’jy : : ’EG,;J 24 ‘% ——— T e e
1,2 48,2 45,9 22,8 mweme e
1,8 53,4 51,1 29,2 ——
1,4 59,2 56,8 56,0 ———
1.5 65,8 63,1 42,8 20,7
1,8 73,8 70,5 49,7 51,9
1,7 84,7 30,5 57,5 49,9/14 41,8
1,8 128,3 99,0 6", 9/143 8 5 u/luJ 1 51,9
1,8% | 185,2 133,86 799 a/ m % 1/1 8,6 BT
1,9 43,8 44,2 L1712 TO.6/121.5 658
1 154.2 153
2 80,0

&
ey
o

[

B
<
@

* et

-
for
=
[e)
od
¥
b

d
1
o1
.
ot
#
o
o
e
o
[

» | o5 0,6 07 08 09 1,0 1,1 1

z 14,5 17.4 20,4 23,6 26,7 30,0 E3.3 E6,8 40,5

s
P

B 1,6 1,7 1,8 1,05 9 1,95 2

1
.4 48,5 53,1 58,2 84,0 67,7 71,8 77.2 90,0

170 - 96 AR 4 128

14

line x = v =1 = 23 8§ sin®x = 2°
¥

1,95 2,0

";'w‘
[\
&
o
f)
L]
1w
oy}
Foed
L3
w
*_.3
»
o]

< | o 18,9 28,5 55,1 66,8 90,0
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TABIE 20

v or x as a Function of X\ end x or v in the Flane z = n (Brenech III)

Y %, ¥y d8g,

B 15 30 45 60 75 g0
1,8 74,1 66,0 57,8 12,3 11,1 ———
1,85 62,9 56,2 44,5 22,9 ———— ————
1,9 49.9 5 25,5 ——— ———— —
1,95 35,5 ———— ———— ———— ———

= n/2, =1 = v 8§ sin®yv = (£2°F - 5)F - 1

A 1,8 1,85 1,9 1,85 2,0

v | 22,6 83,2 44,5 58,3 90,0

»| 0,5 0,8 0,7 08 0% 1,0 1,1 1,2 1,3

r| 26,6 32,2 37.8 43,5 43,4 55,8 61,8 68,5 75,5

4 1,5 1,6 1,7 1,8 1,85 1,85 1,8

r| 83,0 91,1 101,0 112,0 128,0 146,5 172,8 197,6

Figure B is a three-dimensional plot of the data given in the foregoing
tables, The transparent sheets of the figure are labaled to correspond with

the nlanes they represent, and whesn folded up snd joined together they illustrsate

ot

n a pssudo-three-dimensional manner the nature of the constant-Irequency

surfeces in (%,v,2) space,

4, Gomplebe Identification of the Branches

Witn the eid of Figure 5 it is easy to see that the identificetion of
the fhr@e brenches ia the verious planes, as given by Zquations (2,11), is
sabsﬁan@iaily carrest, There are, however, two exceptions to this identi-
ficationy thess excepticns will now be discussed,

First, i% is necessary to interchange the solutions for Branches 11



FicUrREe

5.

A THREE- DIMENSIONAL
FLOT OF THE C(ONTOURS OF
CONSTANT FREQUENCY.
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and III, in the plane z = n, when 2¥ = 3, Thus, all the contours of Branch
1IT in the plane x = m and lying between the dashed curve A® = 3 and the z
axis, are defined by the equetion given for Branch II, and vice versa, This
interchange clearly makes the solutions in thet plane meteh the solutions in
the adjoining plenes along their common boundaries,

Tue second interchange ol solublons is less ewnsily visualized than the
abova one, for it is not a guestion of matching the contours along boundaries,
It will be noted fram Figure 5 thet the contours for Branches I end II coincide
2l all points along the z axis and along the line x = y = 53 end thet the btwo
contours for A = 1,0 coincide everywhere in the plane x =y, Jinece the contours
coincide along these two boundery lines the question is raised azs to which seb
of ocontours goes with whieh brench of the seeculsr determinant, Depending upon
the answsr to this question, there will exist one or the other of two situations,
Pirst, if the contours for each branch in the plane x = z have the same equeation
(with v repleeing z) as tha contours in the plene x = y (i,e., if the identifi-
cation of the brenches is correctly given by BEouations (3,1) ), the contours im
the plane x = 2z can be obtained from the contours in the plene x = y by robating
the pzrt of this plane nearest the z plane, about the line x = y = z, until it
coincides with the plene x = z, (This process csn be visuasllized easily with
the aid of Figure 5,) In this case, since the contours do not intersect the
line x = v = z orthogonally, the surfaces will be sharply wwiﬁkled near this
line, as shown in Figure 6,

Ths point of view in Figure 6 is from the interior of the fundamental
region, with the x = y and x = z plenes located to one's left and right,
regpectively,

The surfaces for the two branches will clearly intersect one anocther

along some line lying in the interior of the region; by symmebry this line
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4/? - z/@ = O (for points lying near the line x = v = 2,

and the line x = v = 2 are squal

the Bauabtions (3%1) with the result thet,

ool

far Brench I, (1/42) da/ 4x = %an a4 = -1/ {8; for Branoh 11, (1//2) az/ dx =
tan B = ~5/Y2;and the slope of the line x = y = z in the vlane x = vy is ten ¢ =

/42, fThus, tan (4=G) = tan (G-B), This is shown in Figu
¢ El &

Un the ovher hand, if the equabions for the contours of esch brench

are not thoss given in Eguation (3,1), but are instead

nged in tha

plane X =y For A 1,0, the situation nesr the line X = v = z will be thet

in Figure 8,
In %his case, the surfeces for the two branches will not intersect one
ancthar, except at the cusps of the conicsl sections, snd the interssetions of
the surfeces with the plmne x = y/ﬁ - z/? = 0 will be along two separate lines
which interseet the line x = y = z st the seme angle 28 do the lines in the
symmetry planes,

The method by which this guestion csn be answered is now clear, If the
secular determinant is solved for one point, on the line perpeandicular Lo
x =y = z and lying in the plane x - yv/2 = z/% = 0, sueh theat this point is
near enough to the line =z = v = z, one of two results will be obteined: either
two of the roots will be squal (or very neerly so), or all of the roots will be
distinct, end the difference bebtween the nearest two will be consisbent with
the shapes and specing of the successive surfasss, i,e,, their values will be
nearly given by the first two terms of a three-dimensionsl Taylor sxpansioa,

Procesding aceording to this plan, one finds thet the line which lies



Firgure 6, Surfeoces near the
line x=y=z for one possible
correlletion of sofiutioms,

[ Plene x = y

Plane x =

Plans x = y/2 + 2/2

Figure 7, Branches I and II make

Plene x = y equal angles with the line x=y=z,

FPlane x = g
I

Figure 8, Surfaces near the line
xwymng for the other possible
correlastion of solutions,

Flene x = y/2 + z/2



in the plane x - y/ﬁ = { and is perpendicular to the line x =y = z has the

i s / PO N . N o 2
gouation (v + 2z = 2k, x = k), The neighborhood of the point x =y = 2 = 30,
where X haes the walue of G,5 for both Branches I and I, will now be considered,

S . - ° N
plicity the point (30 ,25 ,35 ), one may expand *

.
fim

bl on

3¢ - 1,52660 X 4 ,500740% - 08735 = O,

which has the roots

A\ o= % ABTS,

it

Ap = * L5304,

and Ag = *1, 00384,

Bince the roots are distinct and the Iirst two lie on opposite sides
of 0,6, it is immediately suspected that the second sibustion mentioned ebove
is the actual cese; however, s somewhat more certain test may be mede, If i% is
assumed that the directional derivative of A along a radiel line passing through

2 Ed o o Lrd © 4 2 >
the point (30 , 25 , 35 ) is the same as along the line x = v = z, approximate
distances of the surfaces fyvom the point may be evelusted, For these two

branches,

A = sin z = sin (r/¥3)

dr/dr = (1/Y8) cos (rAB) = (1/¥3) cos 30 = % per radian * ,0l per degree,

Hence

r = A/(dN/dr) = ,0804/,01 = 3° for A

and

r = -,0125/.01 = ~1.3° for A,.

u

Figure 9 shows grasphically the degree of approximation to which the
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above regsults corressond to vhe cansours given in Maure 3,

The above considerstions heve snown thabt ths neiture ol the surizces is

58 shown in Pigure &, which correspoads to an iaverchange ol the equations

{5.1) for Braneh I and Braack II in the plaie & =y for A< 1,0, Thls inver=

chanse nhas been taken into account in Flpgure 5,

5, Gontours for 7/& = =g,

been investi

[t

The contours for bhe case 4/a = O hay ed 1a the previous

prragrash, aasd the information contained in the tsbular data is roughly rep=
resented bv Figure 5, 1The convours for this case will now bs glvea nore

sccurately, and the contours Tor the case 1/@ = «0,1 will bhe found, Instead
of repeasting for the latter case all of the operations that were used in the

sravious warszranh for the basie case, cze mey solvez the secular deterninsnt
B E) 3 v

siong the lines where the roots heve especially simple Torm, trhen, with the
asswanbion thet “ne ngw conbours heve nearly the swie shape as the cuntours
for the cuse w/a = (, vhe curves may be drawm,

sBquations (2,11) for the solutions of the secular determinant in the
syaunetry pleanes visld the following expressioms for the three bresnches of the

constant-frequency suriaces:

Branch 1
Line v = O, x = O: A% = 1 - cog &

Line y = 0, x = z: A® = 1 - cos 2 + 2y/a sin~z

Line 7 = U, x = n/2: 1 = 44%/a% + 2(A% - 2)y/a cos®z =+ (M - 2) - 2y/o cos 2
+ (A% = 2)% « 4 (A - 2)v/a + 4% /e -1 =0

Lina y = 0, 2 = m: 2™ = 2 + 24/a sin™x

Line v = 0, x =7 =2 1 4%/ - 4y/a sin¥z + 2(2% - 3)(1 - 2¢/a) + 1 sin z
+ (¥*® -3)* -1 =60

Line x = v = z3 A = 1 + 2y/a sin®x



Flane x = y

Mean of 0,5 and 2,0
is 1,25 (ocompare 1,3)
Mean of 3,1 and 3,0
is 3,05 {compare 3,0)

2,0°
3,0°
Flane x = g

11

Figure 8, Illustration of the degree of approximation
to which the results of the analysis in the text core
responds to the contours given in Figure 5, The point
(30, 25, 35) is 7,1° from the point (30, 30, 30), and
the distance of each contour from a point in the plane
of the oontours and lying 7.1° frem the latter of the
above points is therefore showm, If the curvss in the
plane x = y/2 + 2/2 are about halfway between the
{rotated) curves in the plenes x = y and x = z, the

graphical results agree quite well with the analyticsl
results of the text,
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o= - B: A% = 2(1 - 2v/a) sin®s

y, z = nf2: A% =14 2v/a sin®x
y=n/2: A¥ =1+ 2v/a |

v, X =n: A® = 1 + cos x + 2v/a sin®x
¥, X = 0: A® = 1 - cos x + 2v/a sin

n/2, y = - zi sin®x: (A% - 2 - 29/0)(2F - 3) / (2 + 2APv/a - 405/aR)

Branch II

Fleme ¥ = 0: A® = 2 = cos x ~ cos 2

Line x =y = 2z: M = (1 + 2¢/a) sin®z

Iine

line

Iine
line

Line

X

X

v

Line y

line y

Line
Line
Line
Line

Line

=

y = n/2: sin®z = (3% - 2)(A% - 3 - 2v/0) / (2 + 20R/a - 6v/a + A8R/a®)
“/29 vy = n - 2: sin®z = (3 - A‘-’*) / (2 - 2‘?/&)

Branch III

O: A¥ = 2 - 2 cos 2z + 2y/a sin®z

o

w
2]
[}

0, x=2: A* =1-cos z + (2 + 2¢y/a) sin®z
n/2: 1 - Ay%/a® + 2(A° - 2)y/a cos®z + (A® - 2) - 2v/a cos 2

o

»

e
#

+ (M = 2)® - 4(A® - 2)v/a + 4 ARAaR -1 =0
0, 2z =n: A ® =3 4+ cos x |
n - 2; (473/h3 - 4y/a) sin®z + 2(A% - 5)(1 - 2y/a) + 1 sin 2
+ (AW®=-5)*-1 =0

Ler)

w
™
i

A = (4 + 2y/a) sinsz

Ty

y =z
v = = 2: A 4 2¢/a sin®z (Where A% is solutions for 4/a = 0)

V. & o= n/2: sin®x = (AR - 2)(AR-1-2v/a) / 20%(1 + y/a)-2-8y/a - A4Fa®

y = n/2: sin®z = (AR-2)(a% - 3 - 2y/a) / (2 + 2A®y/a - 6vR/aR)

/2, vy =a - z: sin®z = (A% - 2 - 20/a) (3 - B) / (2+20% /o = 4 /fa-44%/a")
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Figures 10 to 15 wers drawn with the aid of the tebulsr dete given
for the basic cese y/a = 0 as well a5 the numerical values obbained from the
preceding expressions for the cass 7/a = =0,1, Each contour for the labter
case was drawn through its known Intercepbts with the warlous lines, and was
then made to go smoothly from one intercept to another along a path thelt re-
sembled s ﬂeé?by contour for the basic case, In mosh instsnces the correspond-
ing contours for the basic case and the other case are ouite close together,

so thet no difficulty was encountered in this procedure,

6, Hature of the Contours Wear the Urigin

It can easily be showm from the secular determinant that the frequency
spevbrum resembless Deuye distributlon In the reglon of low freousncies, It
is jmportant for the work of Section IV that the contours be determined For
this case, The low Irecuencies sre found near The origin in (x,v,z) space, so
that the spproximations sin & = & and ¢os ® = 1 - x”/E are valid, With Lbhese
and similsr expressions for v and z, the secular determinant (2,5) becames

(1 + 2v/a)x* .
v y%/2 4 2R 2 aF v w2

o 1+ 2yfa)y® o V
(3.2) Y +(x““/2 z/z"%";z - AR vz =0

(1 + 2y/a)z”
% 2 v 2 + x5/ 5 y¥ /e 07

Transformation to sphericel polar coordinetes and division of the

. . 6 C
secular determinant by v~ yields
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% + 3%/& )sin®e Oosfﬁ  sin®9 sin @ cos ¢ sin ¢ cos @ cos d
N :

i
i E.’J/E"

(%+27/h)siﬁﬁﬁ sin®y

3.3 sin~e sin ¢ cos . R
( ) g ﬁ & j_; - }f“»/z,m

sin € cos @ sin

( 3'" + 2v/a) cos”
+ % - Ak/}

sin 6 cos 6 cos f sin & cos @ sin

m

It is clear thatb thié determinant will have solutions of the form
r® = A% P(o, ,d) s0o that the volume enclosed bv cach constanb-freguency surface
will be proporbional to A®, Thus, the distribution function, which is propor=-
tional to the derivetive of the volmme with respect to A, will have the form
W(A) = A A%, for small enocugh values of A, The constant A will be determined
in Section IV,

To find the contours in the three symmetry planes, the determinent (3,3)

ean be solved in the planes f = 0 and @ = n/4, with the following results:

Braneh I

Plane y = 0, M/r® = 3/4 + y/a - %y/(g + 2v/a)® + (3/% - 2¢/a - 44%/a®)sin® 28

Plane x = y: M/r® = 2 - (1/1 - y/a)sin® @

ol Lo

Branch II
Flane y = 0: A5/r% = '

o

Flane x = v: 25/2% = 3/1 4 v/a + (1/8 - 4/2a) sin® @

) é \/[ 5+ 2/a) = (5/ » 8y/a) sin® 0] ® 4 sin® 20
Branch I11
Flene y = O: AF/r® = 5/4 + y/a + %V,(% + 2v/a)® & (3/4 - 2v/a - 44%/aF)sin®2 @ ‘

Flane = = y3 M/r® = 3/ + 4/a + (1/8 - 4/2a) sin®e

+ %W% + 2y/a) - (B/% + 3v/a)sin® Q] % 4+ gin®2 @,
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The contours of consteant freguency for 4/ a = 0 and g/h = -0, 1 are
drevm in Figure 13, The scule of this flgure and the value of A wers

chosen to spras with Figures 10 to 135 for luber spplications,
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Figure 16, Canstant-frenuency cantours for y/a = 0
and y/a = ~ 0,1, negleoting higher order
terms in the series expansioms of the trigon-
omotrie terms of the secular determinsnt,
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SACTICH IV

THE FRYQUINCY SPECTRUN OF A FaCE-~UENI:aED CUBIC GRYSTAL LATIICE

1, Introduction

The final step in the solution of the dynamical problem of the vibrastional
motion of a face-centered cubic crystal lattice is the actual numericsl calcula-
tion of the frequency spectrum, using the deta of Section III, There are many
different ways in which such a computstion could be mede; the method used here
has been chosen for its inherent simplicity, and beossuse results thet are correct
to within e few percent are obtainable more guickly and with less chance of
computetional error than by other methods. This method consists in actuelly
modeling the constant-frequency surfaces in three dimensions, end then measur-

ing the volumes enclosed by these surfaces with the help of Archimedes' principle,

2, Construction of the Constant-Frequency Surfaces

Plaster of Paris is sn excelient material for modeling the surfaces, for
it can be cast sO &8 to reproduce tne smallest detaal of a mold without shrinkage

or expansion; it csn be machined (sawed, sanded, csrved); it is »igid, so thet

[

it maintains iwe shape; it is inexpensive; it is convenisnt to use becsuse it
requires only cold water in mixiang, end the proportions srs not critical,
4 mold was constructed of 1/8-inch sheet brass, having the sheve snd
size of the boundary planes of Figure 5, with the boundery plane x = vy omitted,
Yhe mold was mechined so thabt u £lel sheet of material, plsced upon the open
feee of $he wold, coincided vwith {the plane x = y, A& small hole was drilled in
the center of one edge of the mold, so thet a wirs streteched Irom the corigin
treough Shis hols corresponded to the line (x = z/2, y = z/4), (This is a
line along which the secular determinant was solved in the preceding section, )
Ueing this mold, nine blocks of plaster were cast in the shape of Figure 5

Section III in the following manner: the nold waes greased with Petroletum, £nd



h2
then a straizght piece of 1/16-inch drill rod wes lsid in it to define the line
desceribed above, The plasta? was mixed with a slight waount of Le repets plus
to rebard setlting, After the plaster was plecad in the mold it was wpitoted o
nake air bubblss rise, WNozt of iths oxcese plastver wus then scraped of ' snd Lie
remaindor was forcoed oub by a olab of L/4—inoh rrobe glags, presced aover un the
open face of the mold, After the plaster hed set it was removed from the mold
by foreing & smell stresm of compressed azir from a soft rubber tube betveen the
slightly flexible brass mold and the plaster block, The blocks were then allowed
to dry for a few days,

A number of reference lines were scratched on the sxposed edges of tle
mold and on the exposed faces of the plaster blocks, This was done to faeilitats
the later renlacement of the plaster pieces in their proper positions in ths
mold, Conbours corresponding to Figures 10 - 15 of Section IIT were carsfully
drswn upon three sheets of coordinste paver which hed been cut out so thet they
conld be foldsd up inso Tthne shape of Figure 5, Section III, The contours ou
thes2 sheets were then transferred to the surfaces of the plester bLloclks by
weapping a sheet around e bloek end pricking through the paper with s pin along

each cuantour, and loter drawing the curves in ovencil, In this wey & pair of

duplies Lz s:bs wes draw for esch branch for the besic case, :nd ons sel was
drewn for euch branch for the other value of 4/a,
dach block was cut inte a numbsr of pisces by swving betwesn slternate
paire of contours, snd the surfaces were cerved, Actually, this procass s
curried out Wy sawing olf one plece gv a Tinme, starting with the piec: furthsst
Tran e origing this method nermitbted the intvercent of eaclh surfzce +ith tihs
line (x = 3/2, v z/1) to be laid off & ccurstely by placing the olock in the
5i9ld sad easurisg from she origin (in the mold) to the surface ol the block
“erinho oz ovidvae of the proper length, This procsdire wes nscessary becauss the

plester slwavs brokze nesr the origin when the drill rod, which defined the



above liine, “ras removed from the block, Ihe duplicate sets of surfeces for

ench branch of the basic cuse (%/a = 0) were not curved in exaectly the sen

3

&

way; for one set of 2 pair, the saw culs were hall way betoecen the saw vuts
for the othesr seh, so that esch surface wyas carved once from ius convex side
and once from its concave side, In this way it was possible to mininize the
psyvehological errors in estimating whether the surfuces wers orthogeonal to
the boundary plenes,

The sbove process thus ylelded a anumber of' pieces, 2acn bounded by one
or two of the constant-frequency surfaces snd the boundsry planes, (o oblsin
the elternste pieces of esch sot (the ones that were destroyed by ths saw-cuts
and the carving process) the carved pieces were gressed and plsced into the
mold, snd a thin mixzture of plaster was poured into the speces between them,
After this plaster had seb, the pileces were removed from the mald and were
separated by applying gentle hut firm pressure with the fingers; all of the

ieces wezre then bolled in paralfin t : ir tendency o absorp water
then boiled { to reduce their tendsnc ] .

"

3, Measurement of Volumnes

The volumes snclaosed by successive surfaces rere next measured hy weigh-
iﬂg the mioant of water displuced ov the corresponding pieces of plester, This
was done by #wighing esach piece of sach set twice - first while 1t as submersed
(after it khed ceased to absorb water), end then in ailr (after all weter draos
had besen wipad off), The difference hetween these two weichtis in grems is then
equal 4o the volume of the plece in cubiec cenmtimsters, within the limits of
accurecv of thz neasurements, Tables 21 to 26 (inclusive) give the results of

daiching whe aine sets of surfsces thet ere carved, The totel volums occupied

b7 &ll wi Lhe nieces of a set should theoretically be 486,0 ¢,c,



TsBIE 21

Tolwae of Flaster Lodels of Constant-irsquoncy suriaces
Branch I, 4/a = U

Tnterral S0t oa 3ut 3 ;
Moto 2. | Woole) Mogele,) e, o, Migole.) 7 aelEl) v(c,e,)

¢.0 (.5 7,33 20,17 15,70 5,45 18,43 12,18
0,5 C,6 4,77 14,07 9,50 6,87 . 17,16 10, 26
0.7 5,56 25,07 15,50 8.5 20,17 13.88

. 0.8 8. 89 28,91 20,02 15.47 58, 30 2. 87
) C,9 18,5 52,1 25, 14,8 1a.4 28,6
1.0 21,9 37.5 45,5 31,8 83,4 51,6

s 3

Q
101 1.8 157.5 RN 53. 2 111, ¢ 78. 6
1.2 7.0 1.1.0 84 51.2 159. 4 58,4
1,
1,

AR T OW D N

@

2 5y.2 139, 4 88,53 10,5 12,0 83,5
8 1224 82,8 41,3 20,7 4.2
3 14,7 11,1 5,0 15,8 16,8

Y

e T OO OO

£

Total Tolume, V 491,11 Tobel Voluame, ¥ 457,65

o ot

T4BLE 22

folume of Plaster YNodels of Constant-freoquency Surfaces
Brench 111, 4/a = 0

ITnberval 3zt 4 ok B

Mo B | olel)  Mair(cL) Ve, ) | TH 00 ) Tair(e,) V(e,e,)
0,0 0,5 3,93 11,50 7,51 A8 11,02 7,56
G5 0,3 2,05 8,03 6,00 2 7,95 5,78
0,6 0,7 5,75 12,08 8,27 v 50

& s %

B O DO >
B ot LR A

0,7 U, 5,08 17,61 12,56 6 17,50 15,84
G,4 0,5 6.5 27,9 19,4 10,
oo 1.0 11,7 41,4 29.7 10,53 55, G ST
1,0 1,1 19,0 61,1 42,1 22,0 67,7 45,7
1,1 1,2 7.0 2e, 1 4g.1 19,1 HE,U tie, 3
L2 1,8 21,0 73,5 52,5 20,7 £3,0 53,8
1,0 . 3,8 81,9 65,7 20,6 Ta,h 57,9
0% 1,5 27.0 160, 3 75,8 4.5 126,85 £1,8
1.5 1.5 254 00,1 75.7 21,0 95.1 671
s 1.7 15.8 56. 1 42.5 | 21.0 6.2 45,2
1,7 ¥3 2,21 8,50 5,29 2,37 7.77 1, 80

J

Totel wolusz, V@ 487,5 Totel volue, v @ lol 4




TABLE 23

Volume of Fleshter Nodels of Constant-freauency Surfaces
Brench III,v/a = 0

Interval k Set A set B
w0 dp | WH00g.)  Maiw(ga) V(e,o,)| Wipole.)  Wair(g,) Vie,e,)
0,0 0,5 ,97 2,70 1,73 1,12 2,86 1,74
N CL7 z,0R 5105 3,08 1,48 4,68
0.7 0,9 2,41 g, 14 5,73 3,88 9,47
0,9 1,1 8,67 14,84 10,17 1,48 14,01
1,1 1,3 £,5 25,8 17,3 10,8 28,2 17,4
1,5 1,5 19,0 48,5 26,5 9,0 38,0 29,(
1,5 1,7 23,4 80,9 57,5 30,1 90,1 50,0
1.7 1.8 57.4 150, 2 92,8 39,0 125,9 86,9
1,8 1,85 41,0 139,9 98,9 66,0 173,2 112,2
i,85 1,9 48,5 141,6 92,1 27,9 112,0 84,1
1,9 1,95 21,0 75,2 54,2 32,7 68,8 56,1
‘1,95 2,0 14,5 40,7 26,2 To7 31,9 24,2
Tobal Volume, VO 486,1 Total Volume, 7, 491,2
TABLE 24
Tolume of Plaster lodels of Constant-frequency Surfeces
Brench I 4/a = -0,1
Interval ; .
.2\"_{ .t;(.) % ;vﬁgo(g.) gvair(gl) V(eaea )
0,0 0,5 10,21 2¢, 83 18,61
0,5 0,%32 2,70 24,75 15,05
0,6 0,7 10,65 30, 25 19,60
0,7 0,8 21,0 53,7 32,7
0,8 0,9 21,6 61,1 39,5
0,9 1,0 44,0 117,6 75,6
1,0 1,1 37,9 108,7 - 70.8
1,1 1,2 46,8 125,5 78,7
1,2 1,3 41,1 120,9 79,8
1,83 1,4 34,1 81,6 57,5
1,4 V2 1,4 3.7 2,9

Total volume, Vg, 488,2

Wi
e



TABLE 25

Yolume of Flester Models of Gonstent-frequency Surfaces
: Branch I, v/a = =0,1

Intervsl
}\"j "tO ;\}‘E g}jﬁﬂ(ga ) 1133\&1'(@@ ) V(Qacg )
0,06 .5 4,20 11,98 7,78
0.5 ¢,6 4,36 10,98 5,62
C,8 0.7 4,490 14,19 9,29
0,7 0.8 10,6 26,7 16,1
0,8 0,9 11,58 34,8 25,40
0.9 1,0 24,7 63,4 38,7
1,0 1,1 20,5 60,1 89,6
1,1 1,2 32,8 83,6 51,0
1,2 1,3 22,1 68,8 46,1
1,3 1.4 44 .1 111,4 87,3
1,4 1,5 33,0 101,3 68,53
1,5 1,6 48,3 117,5 71,2
1,8 1,7 18,0 58,9 40,9
1,7 5 2,0 4,9 2,9
Total Volume, V, 488,8
TABLE 26

Volume of Plaster Models of Constant-frequency Surfeces
Branca 1II, /o = -0,1

Im%ervaf |

: b o {
Moto g My 0(ea) ToiplEe) v (e.e.)
0,0 | 0.5 1,25 5.27 2,02
0,5 . 0,7 1,87 5,17 3,30
0,7 . 0,8 4,80 11,27 7,07
0,9 } 1,1 6,23 17,70 11,47
1,1 1,3 11,6 31,6 20,0
1,3 1,5 11,5 44 .4 32,9
1,5 1.7 43,1 118.8 75,7
1,7 1,8 46,1 153,5 107,4
1.8 1,85 64,0 177.4 1174
1,88 1,9 30,6 100,9 73,3
1,9 1,95 22,2 61,0 36,8
1,95 2,0 1.5 15,2 8.7

Total volmme, Vo 491,1
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In addition to the nins complete sets of surfaces, there were also
cavvad six individual pisces, corresponding to the contours of Figure 185,
The results of wel

g these individual blocks are given in Table 27,

TABLE 27

"{/’/a Branch it 20 (2,) iz, ) Vle,e,)
0,0 I 25,8 70,1 44 3
0,0 I1 11,1 39.3 25.2
0.0 11 4n0 9.9 59
=, 1 I 41,3 114,9 78,8
-0, 1 17T 15,4 42,6 27.2
.1 111 3.0 10,5 6.k

4, The Fregueney Spectrum

Tho deba given in the above tables will now he used to svaluate a
gquantity which is proportionel %o the distribubion function H(v), Three
dimensionless functions Gi(h) of the dimensionless parameter A may be defined

9 : :

as follows:
(4,1) & (A) = (2/37,) avy /aA

where V. ié the volume of propaguation vector spece enclosed by the surface

A = const, for the brench i (i = I, II, or III), snd Vg, is the tosal volume

of propagstion vector space included in the unit cell of the periodicity lattice,
GClearly, the funetions Gi(A) are independent of the units in which volume is

messured, Further, the function G(A) defined as

(2,2) G(A) = 67 (A) + Gpp(d) + Gppp (X)



5y

iIs elosely assoclated wilh bhe dislribubion funciion 5(v), For, recalling
the discussion of Paragraph 2 of Section II, one may write, using the notation
of Bouetions (2,1) snd (4,1):

y
,;)m

(4,8) W(vidy = ] (a7/dv)dv = KV = 31,

O

s

(since the total aumber of normal modes of a orystal made

up of ¥, atoms is
! 0

3% 0) and

: v W :
. m ) m i
(4,%) G(2)dx = 2/37 (a7 /AN & dVp/aN + @V g/d)) dA = 2,

9] o
Inesmuch as ) and ¥ are linsarly related (see Zguation (2,5) ), one of the

above expressions may be divided by the other to obtain

v

o
W(v)dv H(v)dv

(4.5) = = B3N, /2,

Y
n G(a)ar

G(2Ydx

(1,8) 0(v) = (U, /2) G(A) dr/av = 3nN }fm/2a G(n),

Thus the function G(2) is proportional to the distribution function H(v),
Table 8 contains the values of (2/3V.) dV;/d\ tabulated sgainst the
upper limits of the intervals AMA, These intervels are the same as for the

corresponding AV, in Tables 21 - 26,






TABLE 28

Values of (2/3V,)AV;/AN for Plaster Yodels of Constant-freguency Surfsces

Branch: Set: v/a
M T1:4:0.0 1:8:007T:=:=0 1/T7:4:0 IT:8:0 T1s=3=0, 1/ITT:4:0 130358:0 IIT3w:=G. 1

0.8 127 L1241, 208 ,082 078 L0890 | sewme emoen

0,71 .z11 ‘189 258 J113 0 .1z0 0,127 L021 o2s

0,81 272 L8189 AT R R N 2 )

0,9 L4586 W OHE L340 2 6506 s 268 LB 1B o 8G9 ey

1,01 ,620 L707 1,01 LA08 L0718 dI28 | memme e

O B 1,07 .97 1575  .G623 (541 , 070 LOTL

1,211, 14 1,21 1,07 L6748  BBE 857 | eeewes emeen

1,51 1.20 1,14 1,09 20 ,808  ,630 L 117 117

1.4 1,13 1,18 ,79 900  ,794  ,920 | mememm ceeee

V2 | 1.469 1,06 o R e seess woe—— sommm emeen s
1,5 | meew mm—— - 1,00 1,12 . 935 . 200 , 197 L2238
1,6 | ——-- e 1,01 , 89 L9768 | ———ee O
L7 === ——— mmem .08 . 658 . D60 . 554 LACT L5112
V8 | ~-m~ e W .28 2al .18 R
1,8 | ~--- R ——— mem e 1,27 1,18 1,48
1,85 ---- wmm= meee wemm  meme wemes 2,70 3,06 5,08
1,9 | w=== mm—— == ———— emes e 2,51 2,28 1,91
1,99 ~--- e mem. mem= mmeee 1,28 1,52 1,08
2,0 | ---- et S wem=  mmmm e 74 .65 . 24

Figure 17 shows the curves Gy(2) for the basic case (4/a = Q) and for
tha case %/h = =0,1, These were drawn so that the area under each curve is

|

ampruﬁ%n/tﬁlv gqual to the srea urder the corresponding stevwise plot of the
4

date f Isble 28, The G, (A) curves are added together for each case Lo form

the Gor?eShond1ng G(2) curve,

5, Frequeancy Spectyum for Low Frequencies

The curves of Figure 17 ere definsd by the data of Tabhle 28 only from
A= 0,5 %0 A= 2,0, The intervel from & = 0 to A = 0,56 is also important,
however, 28 1T is this part of the spectrum thabt governs the specific hest
at low Lemperatures, It is possible to evaluate graphically the first “two

or three terms in @ power series ex zpension in the neighborhood of the origin,

by expressing the fractional volume oecupied by all freguencies less Tthen A,



For each brangh, in the fom

(%7) Zig(r)/ 57 = kgat (1

I
Pt
s
s
L]
w

11I7)

. o 4 o o y .
% ggihw s kgsN o+ - e - - = - 0dd powers of b do not s

The velues o ok Ter A = U

gbrbained from the data of Teble 27, which represents the volunms would

be enclosed by the surfaces A = 1/ 1f all the surfaces werse of the same
k / :

2

©

s those Por very small walues of &, (In this case, G(A) would be

essentially o Debye distribution,)

Pl

Smooth curves were dramn through the points defining the upper and

s

limits of the messured wvelues, and z men

drev

@

between these extremes, It should be noted that the suscessive polnits for
gzch set genmerally Tall slternstely above and below the corresponding points

for the duplicete set, This indiecstes thet there was a

ot
0y

endency to csyve

way too little material from each surface,

TABLE 29

Valuag of k; for FPlester Models of Congtant-frequency Surfesces

k; = 20y (A) /8077

\ /o =0 /6 = =01
‘1o Frp | Frza rps | Frpna Friss b kyp kgpg

&
o
<
1
i
1

—mwe Q71 [, 0LT ————— LEUB 07T ,U18
LE39 0 1831 ,083 L0892 L UL87 , 0187 L 204 085,022
L1539 1421 CBL 085 | eem- —— L2133 ,091  =me-
L149 1451 Qg o ,087 | L0186 L0184 .21z ,08% 021

(5. L0835 091 | mwe- - .229  ,106  --w=-
L7700 1651 ,102 101 | L0187 L0201 L2857 117,023
SR 18t ovie s 1Ia ——— e L4722 180 wee-
Lea9 s asr e 151 . 129 L U212 L0217 L2768 145,024

&

E]

*

&

5
-t T GO A
*

51
%

L
=
w2
iu)

ot bt
&




Lof K amd k__

Tesla..

Y

Figure 18 _ Velues

7
+
|
o i
NS LS S

e &
H 1
o b i e e

e N

i

.
|
!
i

, _.,
,,,,,,,,




61

The mean curves for the three branches were added together to produce

a curve of k vs, A where

(4.8) k = 2V(N)/30%V = kg + kod® 4 ka4 - - - -

V(A) = VI(A) + Vip(2) + VIII(A)

These two curves of k vs, A (one for each of the two values of v/a) were
differentiated graphically three times, The latter curves are slso shown in
Figure 18,

The values of ko, kz, and k, were determined from the intercepts and

slopes of these curves at A = O, with the following results:

TABLE 30
Vealues of ko, k., and ks of Equation (4,8)
" y/a " kg ko 2
0,0 .22 . 048 . 040
-0,1 .30 , 055 L 035

The distribution function G(2) may be obtained from (4,8) as follows:

G(A) = 2/8V,aV(R) / dh = d/dh (kgA® + kpdAB & KyAT 4 - - - =)

(#.9) = 3k A% & koA + Tkl
T ofph F9Kph + KA 4= m -
Thus, for ¥/a = O,
(1,10) G(A) = 0,66A% + 0,230% + 0,2806 + - - -

and for 4/a = =0,1,

(1,11) G(A) = 0,882% + 0,272% + 0,2408 4+ - - -
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The coefiicients of the \* terms sre of course known more accurately than
those of the higher order terms, but for the ecompubation of specifie
heets these expressions are sufiiciently sccurate,

The disbribution functicns G()) ars thus defired by the exor

3 W g
2561 0n%

(2,10) and (4,11) fram % = 0 to A = 0,5, and by the curves of Figure 17

for other values of A,
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SECTION V
ATOHIC FORCE COUSTANTS

1, Introduction

In the preceding sections, the equations of motion of the fsce-ceniersd
F el 3

subie ervetel labitiee heave been solved, snd bhe frequency distribubions huve

heen obbained for certein reletive values of the two stbomie foree conshbents

3]

It is the purpose of thlis section to consider the naeture of the slastic pronerties
pury P ]

ge-gsoele

of motuel cwrvetals, end to carrclate the foreo cansbtants with the 1£
elestic properties, I is clear that =an additional esswmpblion must necessarily
'ﬁa'mad%, pefore the two etomic Torce constants, a and 4, can be eveluated in
terms of the observed elastlie properties of o given crystalline sclid; for a
cuble crystal has, in gensral,three independsnt elastic constents, This
asswiption will involve the contribution of conduction electrons to the elastie
constants of metals,

Finally, numerical values will be obbtained for the stomic force constants
of several elements, This will make it possible, in the next section, to
evaluatr numerically the specific heét curves of these elements, and to compare

the resulbs wiﬁh‘experimenfal specific heats end with the Debye theory,

2., Outliné of the Properties of the Hlaestic Constants

The elastic constants of a crystalline body are defined by the
Generslized Hoake 's Law Eouation, which reletes the components of stress end

strain experienced by en element of volume of en elastic medium:

(5,1) Ti5 = ©34%1 %K1 »

[ N

the summation convention being used,



A

5

In this Gensor egyuotion I,.: stends for lhe component slong the il-2x1s

i3

of the force acting on a unit area perpendicular to the j-asxis, end 8] stands

for the first-order usit sirain defined by the relstion

5

(5.2) o1 = § (ou /oxp + ouy /ox

s

£

where uy, 18 the kecomponent of the displacement of a point, in the strained

mediwn, from its position in Lhe vasirelned medium, Ihe Cijk1 form a

Cartesian tensor of the fourth rank, The stress P44 ds conventionally mder-
stood to be the force acting on thet portion of the medium lyiag in the direction

of' smaller velues of the coordinstes x:. The x4 are rectenpular Cartesian
3 J -

coordinztes,

Considerations of the static eguilibrium of =n roitrary element of

the medium require thet

e
L
Lde
[

(5,3) T = T

while the definition of +the unit strains ensures that

(5.4) ®rl = Clke
These two relations then require thet

(5.5) @13k1 T 31kl TCi3jlk “C3ilk,

The deformetion energy per unit volume of the medium may be written

by coatraction of (5,1) with the strains 0141

(5.6) 26 = 754055 = C4 25 4%
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which requires thet
(5.7) ©35x1 = Oklije

The sbove reletions reduce the number of independent c¢ompeorents of

the elastic consgtent tensor Irom §1 to 21, Thus, the most general crystalline

body would possess 21 independent elastic constants, but speciel propsriies
af the cryetal, such as symmebry, will voduce this aurber, The cuble syeten,
hazving the highest degree of symmetry, retains only three independent elastic
sonsgteats,

The relations (5,5) and (5,7) permit the use of & less cumbersome

notetion, in which the subseripts are reduced from four to two, If the old

subseripts are identified with new ones according to the rule,

(5,8) 0ld subscripts 11 22 33 23,32 13,31 12,21

Al

New subscriptes 1 3 4 5 8

the relations (5,5) are satisfied sutomatically, while the condition (5,7)

reduces to

(f:l.g) ' G = Goas

in the new notation,
The three elastic constants required for the cubic system ars cqq, C1psChy 5

in terms of these constants, the poténtial energy per unit volume of a deformed

eubic crystal isg

g K= ' “
(5,10) 20 = cq1(e®1n + e®.p + e®yg) + 20qp(e110p5 + €potas + paeys)
+ 4o, (€% + e%pg + 0%51),
The nobatioa for the elastic consbtents used in this brief outline is the ssme

as thet used by‘ﬁcas%er(IB{
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Ho mentlon has vet been made of the substences to which the results
of the previous sections are to be avplied, A survey of the slements shows
that, at ordinery temperatures, the only monctomic erystals heviag fece-

gentered cubic lstltices are mebalsy; in perticular, the noble mehals and

aluminum are of this clasa, The oueotion is therefore ralsed as 4o whe
possible effects the conduction electrons of these metals wmight have upon
the slaestie properties and upon the frequency spectrum, .

The elasbtic constents of some typical monovalent, cubic metalé have

,

‘been calculated by‘Fuchs&li}, who obtained good agreement with experiment in
all cases by regarding the conduction electrons as a guas of perfeetly free
noninteracting Fermi particles, The energy of such a guas depémds only upon
its volume, so thet the conduction electrons contribute to the deformetion
energy only if the volume of the orystal chenges, By considering two types
of deformation that leave the volume of the crystal unchanged, Fuchs found
that the quantities (cyq = Cqp) and €, Should be independent of the properties
of the Fermi gas,

Fuihs' regult will be used in the evaluastion of the stomic force

constents o and 4, but it must first be shown that the compressibility of the

Fermi gas will not affect the frequency spectrum of the lattice, Clearly,
the Born-von Karmsn boundary condition (Sea%iun‘lj requires that the volune of
Lhe oryetal, and henese the enerpy of the Perml gas, remaln constant, so Luab

the conduction electrons can heve no effect upon the mobtion of the lettice,

and will therefore not affect the frecuency spectrun,

A4, Evaluation of a snd &

The atomic force constants, a and 4, will now be evaluated for the

lattice considered in Section I, The procedure to be followed is to express
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the potentiel ensrey of the lattice, for a state of hamogensous deformetion, in
f T E] 3

7

terms of g and A by mesns of Bouation (1,3) asnd then to identify the coeflicisnts
H o % «

3 o3 » 2 2 v, - k' 2
of € yq, ©qq Smga and ey respectively, in this form with the elastic consbantbs

Ciqs Crp, Touetion (5,10), In carrying out this process, the expression

(5,2) for the uni®t strains will be used, along with the expression
(5,11) 1 = § (Pug/ %1~ duy/omy),

which defines the components of rotetion of the erystel, (u,gp is the component

of the rotetion sbout the z sxis,)
Thus ,
(5,12) duy/ 2%y = ey + By = ey - Oy

If the crystal is in a stabte of homogenzous delormation, the gquantities
?11/’31 are constents, so that the relative displacements of adjacent stoms

which appear in Bouation (1,3) may be treated as follows:

(2v/ox)ox + (dv/ey)ay + (0v/23z2) Az

Y100 " Vo <
(5,13) = % d (evfRy+ 2v/01)
— l .

The first form of writing of the sbove equation utilizes the fact that the
deformaetion is homogeneous, s0 thet the higher terms in the Taylor expansion
dissppear; the second form results from the insertion of 4 x,8y, and & z into
the first Torm (refer bo Figure 1, Section I); the third form follows from the
identificetion of uy, ug, =nd us in the elasticity notation of the present section
with u, v, end w respectively of Bquetion (1,3), and a further substitution of
the unit strains snd rotations for the partiael derivatives, in sccordance with

Equation (5,12),
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If the rest of the terms of the Boustion (1.3) are trested in o similar

manner, the snergy of deformation becomes

2V = E%: {ﬁdﬁfg { (epp + 2pg + g + epg + eéz + agp)®
zhe

(5 1&}'+ (eag + @gq + Wgqy + @19 + 8y + W)™ + (017 + e1g + Wyp + Opg + gy + W )T
L g AL

+ (€10 = e1g = By * Ggm - gy~ Way )T (@aﬁ T Yegy T dgz v Sag <~ Sygp - CEFY

o o . o © < - O ] ]
+ (%3;5;3 - 8zq = Wy + Bqq = 69 = ,»)«1;3) }-l' "(d"c Svq EB’QE + Ggg%‘)}

Observing from (5,2) end (5,11) that ey)] = ey and wy] = =21}, and cerrying

oub the summetions over (sbe),

20 = NyNoNg [ (ad®/8) { 2(epp + o35 )® + BBy + 2(egg + ©491)% + Bely
+ 2(eq1 + €pa)® + Bef, } + yd®(e§, + egﬁ + offs) ]
' = Nalighy [ (ad®/8) { 4e%; + 408, + defip + 4e119pp + Legedns + Lengeqy
(5.35) + Begs + Befq + Befg.} + ya¥(efy + eZp + efs) ]
= MNNa® [ (a/2 + 4) (efy + efg + ofa)
+ 2(a/t) (e112pp + epzezp + eggery) + 4(a/t)(efy + of: + §y) ]

where the first equality follows from the fact thet all terms of the sum over (she)

are the sé@a for a homogeneous deformetion, and the total nmumbor of different valuos

assumad b»i he indiees (ebe) is ecual to the number of atoms of the erystal: the
second and Ghird forms then follow by simple steps,

For comparison with (5,10), the energy per unit volume must be used; this

is obtained from (5,15) by dividing both sides by the volume of the crystal,

NqNgiigd® /43

2 = GV Tighsd® = (1/d)(2a + 4v)(e#y + By + efg)

(5,16) + 2(a/d)(e1180p + Sopers + €zpe11) + A(afd) (e¥p + €% + ef1).
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" Gomparison of the right-hend sides of Equationa (5,10) snd (5,16) yields

]

elyy = (2a + 44)/d,
(5,17) tla, = a/d,
1, a/d.

s

[

A',

“he prines dndicsbe thet these are the conbributions of the lettice ions

o the elastic constants, exclusive of the compressibility of the electron ges,

To svaluste a end %, Fuchs' resulb 1s teken inbo sccount by writing

(531ﬁ} . Glyq = @'12 = Q11 -~ Gip = (u - 47) / d
and

1 =
Cly = Cag = afﬂi,

where the sobual numericsl values for the slastic congbtants of s fece-cantsred
oublc orystal mzy now be used,

In Teble 31 are given the elastic consSants at room temperature, together

with the values of o end %/h, compubed from Equation (5,18) for some typicel face-

cenbered ﬁlemeﬁts,

i

TABLE 31

Flas+%“ Constants (9), Atomiec Forece Constants, and Cell D1m9n51ons
of some Face-centered Metels, (11,010, end €4 in uniss of 10 dynes/em®,)

Metal d(g) Caa Cip Caq C11~C1a ax10® «/a
Cu 3,61 17,0 12,3 7.5 . 4,7 .27,1 =0,09
Az 4,08 lp,a 9,1 4,4 3,1 13,0 -0,08
A 107 5.7 15.7 4.4 5.0 17.9 -0, 08
Al 4,04 1i,9 6,2 2,9 5,7 11,7 +0,25

The czse of silver will be treated numerically in ¥the next section, It

is 1n ths reziun of alsolute zero that the predictions of the theory will be
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6qmparad with experiment, so that the atemic force oonstants at absolute zero
st bhe usged, Eﬁoken(a) in 1913 used a value for the shear modulus of silver at
sbsolute zero that was derived from Grineisen's theory, Tals value slso agreed
with the experimental data existing at that time, The ratio of the shear modulus
at absolu.e sero to the same st room Vempersture (for a poly-orystalline sample)
i3 assumed to be the samo as the correspondlng ravio of the values of ¢, ,

upon waish the basio consvant o depends, Thus, 8t ebsoluse zero, the cemsbant

a for silver would have the value

ao = Ho/Mg g) ap g,

(5,19) = 3500/2960 X 18,0 X 10° = 1,18 X 18 X 10°
= 21,3 X 10° ,

The change in the ocell dimension d due to thermal expansion is negligible

over thig temperature range,
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SECTION VI

SPROCIFIC Huals OF FALE-CENTERED CUBIC ALEMEKRTS

1, Introduction

The frogueney digtribubions of the normal modes of vibretion of a face-

which ware obbtained in Seetvion IV, will bs anplied in

Lhe @1 seabion Lo ths compubation of the spescifle hests of elements having
this erystal strueture, It is possible o evsluate the specific hests without

using ths nﬁmeric&l deta of Seetion V, and this will be done, In ordsr to com-
pare thess theorebical results with experimental cbacrvationas, however, the nu-
mericsl values of the atomic force consteats must be used,
The course of the treatment is as followsg: first, the speciiic heat integral

(0,4) will be written in terms of the dimensionless parameter %, WNext, the specific
heat will be evaluated for & number of vilues of = second parameter, T/ﬁ, where 1
is the absolube temperabure snd B is a conshant cherecteristic of thé‘element
being studied and heving the dimensions of tempersture, These values of the
specific heat will then be compared with a teble of Debye specific hests, and
the values of 9/T corresponding to the chosen values of T/B will be found, © is
the so;calzed Debve characteristic tempersture (refer to pxiil of the Introduction),
Finally, %é@ values of @/7 will be multiplied by ths cofresponding valﬁes of T/ﬁ
to obtain Q)ﬁ 28 a funetion of T/B, This function then yields a curve of @vs, T
for any given element for which the value of B cen be caleulated,

 Values of 8/p as e function of ©/p will be obteined for very small values
of T/8 by a method which utilizes the series expressions (4,10) and (4,11) for the
distribution function G(A), Finally, these results will be compared numerically
with the sxpsrimentsal values for the case of silver, for which specific heat data

end elastic deta arve svailable,

2, The §pecific Hest Integral

The specific heat integral wes derived in the Introduction for a gensral
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solid body characterized by the frequenoy distribution #(v), This inbtegral is
Vm  y®  ghv/kT

(ehv/kT -1)*%

(6.1) g, = h¥/fcR
(5]

N (v) av,

The frequency distribution for s fece-centered cubie labtice has heen
obtained in the form of = dimensionleoss function :r(}) of the dimensionless
parametber A, The above integral will therefore be in = more convenisnt form
if it 1s rewritten in terms of the parameter A,

Accarding to the definition of A in connéctiﬁn with Equation (2,5)
(6,2) A=0 mf2a =2y nf2a ,
and from Bquation {4,4)
(6,3) W(v)av = (310,/2) G(A)d:r

where W _ will now be taken ss Avogadro's number,

o]

Using (6,2) one may write
(6.4) h /el = BA/T,
whare X - B* = hPa/2n®mk,

Thus (8,1) Lakes the form

(/)R P

@ 'w c
- Gy = 3 Mk Y G(A)da
(6,5) o
’ 2 oBA/T
=% (/D)2 o/ G(2) éx,
(s] (GB}\/T “1)2

since Nok = R, the geas consbent per mole, and Ay = 2.0,
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of facs-centered cubic eluments,

75

The expression (6,5) will now be used to evaluate the specific heats

mast first be evslusted numerically,

Table 32 eontains values of (§A/T)% ep“"/i?_‘,»"'(:eﬁ'?‘/'/‘T -1)

/3 end A,

TABLE 32
The Punction (pA/I) = (A1) / (eBMT -1)%

o]

“ 8 a fanetion o

The quantities sppesring in the integrand

f

) T/

) g, 10 0,15 0,20 0, A 0,30 = 0,55 0,40 U, 50 1,00
0,0 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
0,1 922 L 064 L, 980 . 987 . 990 . 993 998 .998 1,000
0.2 L7253 . 864 .922 . 950 . 064 . 974 . 980 , 987 L9988
03 “195 1725 . 351 ,889 ,922 L9tz . 955 L T2 . 993
04 s01 ‘569 703 ,812 . 864 .898 .922 L 950 ., 987
Q.8 L171 s L, 607 W 723 2798 L, 843 . 878 , 922 . 960
0.8 090 L 504 L4058 ,629 .723 L786 882 ., 889 L9728
0,7 L0145 L2070 ,392 .539 L6483 723 L779 L8352 ,961
0,8 ,021 . 137 . 504 L4544 .569 2657 27253 .812 . 950
6,9 LU10 . 090 . 288 YLD . t0b L5890 , 660 . 7639 « 385
1.0 Toot L 056 J171 L, 304 423 L6525 L6083 723 L9232
1,1 .ooz L, 035 . 125 . 242 .357 JAB3 . 550 LB77 . 504
1.2 L0010 L021 , 090 , 163 . 304 LA05 495 .629 .389
1,5 L 00 .013 L, 064 . 150 . 250 . 350 LA42 .585 ,871
1.4 "800 . 006 045 L118 . 207 502 .392 539 .852
1.5 ,Q00  ,004 L0381 089,171 289 346 495 831
1.6 , 000 L, 003 Lozl L, 067 137 .222 504 A4 812
1.7 L 040 ,002 L0153 .050 .110 . 186 « 263 L4138 . 790
1,83 . 000 .001 ,010 .037 .090 .155 ,228 L3748 ,769
1,9 , 000 ,000 008 ,028 LO70 130 198 . 338 L 746
2.0 , 000 . 000 .00 . 020 . 056 , 108 L171 , 304 L7203

The values given by the sbove table are to be multiplied by the corresponding
average values of G()) 4\ end summed over the renge of A, The following values
of G(A) were obtained from Figufe 17 end Equations (4,10) and (4,11), These values

do not correspond to the ordinstes of the distribution function, but rather to

averages over the intervals of width &AM = 0,1 centered asbout the given values of A,
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TABLE 33
Values of G(A) for v/a = 0,0 and v/a = -0,1

G(A)
A
yfa = 0,0 vfa = =0,1

0,0 . 000 ,000
0,1 ,007 ,009
0,2 . 028 . 088
0,3 ,0861 .08l
0,4 2113 . 149
0,8 .18 .48
0,6 .88 )
0,7 A1 .56
0,8 .59 .80
0,9 .86 1,17
1,0 1,46 1,88
11 1,87 1,76
1,2 1.908 1,89
1,8 2,12 1,96
1,4 1,83 1,48
1.8 1.28 1,27
1,6 1,20 1,20
1,7 1,02 1,138
1.8 2,28 2,44
1,9 1,95 1,58
2,0 0,35 0,12

The process of multiplying corresponding ordinates and summing was
carried out on a caleulating mechine; whon these results were multiplied by
(3/2) Ré the following values were obtained for C,

| TABLE 34

Cvy in cal, /mole deg, for Face-centered Cubic Elements

. Cy ( Cal,/mol, deg, )
/B ¥/a_= 0.0 /6 = <01
0.10 L0594 ,0792
0,15 « 238 . 284

0,20 .585 .681

0,25 1,080 1,170

0,30 1,565 1,692

0. 35 27075 21200

0.40 2,548 2. 670

1,00 5,07 5,11
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The specifiec hests obtained by the ebove prosess wore then compared

;;x Y - s 3 g
with a table of Debwe specilic heats(l‘j, The valuss of the Debyve parsmebsr

@/T wihich yield specific heebs equal to those in Table 33 were determined,

lues of 6/7, w multiplied Wy T/8, yielded the values of 9/@ tShat

appesr in Tehle 35,

TABLE &5

" 6/8 as e Fuaction of 1/B for Face-centered Cubic Elements

v/ o/F
v/B /e = 0,0 o= 01
C,10 1,585 1,605
0,15 1,875 1741
0,20 1.824 1,722
0.25 1,812 1,728
030 1,310 1,741
0. 55 1,813 1.750
0.40 1,812 1,751
0,50 1,814 1,760
1,00 1,825 1,780

4, ©/f vs, T/p Curves for Very Low Temperetures

The integral (6,5) is not in a convenient form for the evaluation of
specifi¢ heats and charscteristic temperatures at very low temperatures, 1In
%he‘ranlﬁ of temperature whare E/ﬁ < 0,05, the function given in Table 31 hes
an &ppre%;able value only inside the rsnge where (4,10) end (4,11) hold, Be-
cauge of %his fact, it 1s possible to mske use of these series éxpaﬁsianﬂ to
obtzin a simple expression for (/B) in the low-temperature renge,

Inasmucﬁ as the funetion of Table 31 decresses exponentially for lurge
valueé of ﬁA/I, and is negligible outside the range of validity of the series
expressions (4,10) snd (%4,11), no spprecisble error will be made if the intsgral
» (6,5) is evaluated from A = 0 to A = ° , using these series expressions for

G(A) over this entire infinite range, Thus (6.5) would beecome, using the

notation of (4,6):
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" g s @
- ¢ SBA/T o 3 5
Cy= 5 R B ! - (Bigd - + Blgh™ + yk418 + = = =) dAr
(6,6) L 1F (eFMT -1)R
’ . 3 5
= %,ﬁ [3k6(?f@) (%) + Bky (/) D(8) =+ 7k¢(T/ﬁ) D(8) + = = _]
whare ©
WX
(6,6a) b(n) = Kedx

=t -3 i
( & - 1 ) E
In the range of very low temperatures that is now being discussed, the
Debye specific heat given by Equation (0,7) takes the form

(6,7) C = 9R (T/0)" D(4)

To find the Debye characteristic tempersture, € , as a function of T/ﬁ,

the expressions (6,6) and (6,7) may be equated, with the result

(6,8) 9R (1/0)° D(4) = § R (1/B)® D(4) [ 8k, + 5kgT%/B% D(6)/d(4)

+ Tky TQ/ﬂA’D(B)/D(V»@) + - --]

This equation may now be solved for 6/p: o
| E

oo 6
(6,9) | o/8 = [ s 1 }

Bl + SkpU/ D(6)/ D(4) + Tigt™/B" D(8)/ D(4) + -1

y

1 . .
To evaluete the D(n) function appearing in (6,8), integration of (6,6a) by

parts and subsequent expansion of the denominator in a series yields

NLX ® n-1 * n-1 ix
D(n) xHetdx = n _f;”__gf - n X ® ax
* -1)= ' (e* =1) A 1 -e™

(8,10) / g~k e'ri dx = n Z ((n-l:)L;n
Y +

r=0

= al :E:: /s = (a2n)® /2 B?/d (n even),

8=1
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whara By, s tha 3/2 th Bernonlli Humber, as tabuleted by pwlgﬁﬁi‘), Duright eives

= 1/30, By = 1/42, By= 1/30

50 that ‘
B(4) = an* /15, D(8) = 16 n3/21, Db(8) = 64n5/15

and hencs

e

\ i ” -
(6,11) () / p(a) = 20 2"/

Insertion of (6,11) into (8,3) vields

Bt b

(6.12) /g = [ °

Blg + 100 kym“® /7% & 112 kyn®s* /g% oo
Table #6 contains values of 6/8 caloulated from Squetion (6,12) and Teble 30,

TABLE 36

Values of 9/p Calculated from Equation {6,12) and Table 30,

— 5/
/3 ‘

v/ = 0,0

2, Owc

%O,GZ 3 08
‘k}ﬁ ﬁ Olb
, 08 8,0%6
U,u8 2,025
0,10 1,985

5, Gurves of €/f vs,7/B snd Discussion of Results

The dota of Tables 35 end 36 are shown in Flgure 19, For ths basic
case (central forces bebween nezrest neighbors only), the charscteristiec fHem-

pereture drops sbruptly from its velue 2% absolute zero, o a value approximately






¢

fiftesn peroent below the initial value, where 1% remains sensibly canstent

‘over a lerge temperature rsnge, In the case of weak cousling between next-

thet is epparently characteristic of the noble

metals, th istic temperature falls sbruptly as for the basie csase,

daefinite mix

tant, 1t

but instesd of remaining neerly cu

seems Lo bhe the curve for the basic

diffearence batwaen the meximum and minimum velues of the cherscteristic

temperature is in this case only about ten percentk,

It is true that the atomlie model used in this discussion is not refined

gnough to revesl small detells in the characteristic te Are CUrve, becauss

of the neglect of the effects of the more distant neighbors, the neglsct of
hizher order terms in the potential energy expression (1,3), end the asswmption
that the conductiica electrons are perfectly free, It seems szfe 4o assert,
however, thet the importent terms sre included, and hence thet the rise of the
charsoteristic temperature with decreasing shsolute tempersture near ebsclute
zero is g property of real crystals, It may also be reasoneble td expect thet
the wvalne of ‘\(/a st room temperabture would give some indiestion se te its velue
atvabSOlu;e zero, In this case, one would expect the charscteristic tempersture

3

Lo pass ﬁﬁ%ou & minimuo near T/h = 0,2, and then to rise slowly with increasing

a

temperature,

it shéuld be pointed out that it is in jﬁst this region near sbsolute
zero Lhab Lhe Delye thwory 1s urdinarlly Shought bo be most nearly true, Thut
is, it is for low-frequency (long wave lgngth) waves that the motion of the
atomic lettice should resemble most closely the motion of a contimuwa, This
viewpoint 1s of courss justified, but the renge of bemperature over which the
Debye theory is valid extends only from sbsolute zero %o sbout f/@ = 4,068, @
raﬁgekwhich is almost negligible for practicel purposes,

)

It may be of interest for further compsrison with the Debye thsorv %o



evaluate the cheracteristic temperebure for a Debye distribubtlon which has

the seme upper limit as the distribution function G()), In this cese, the

gistribution funehion would he of the form

v
—
o
p—y
it

o=
R
u

and the total maumber of normal modes must be the same ass for G(h), Using (%4,4)

one thus writss

2 =2
F(A)dh = 2 = M° /3 = 8/54
G 0
or A= 3/,

Insertion of this valus of A for Sk in the expression {6,9) vields

e = 28,
Thus, a Tebye frequency distribution which has the same upper freguency limit
25 does the distribubion for the atomic case has a charecteristie temperaturs

equal to fwiece the value of the constant j,

l
ﬁ
|
i
e

6, Specific Heal of Silver

The}results of the last paragraph will now be compared numerics1lly with
the observed specific heat of silver, ¥#First, the constant B which wss del'ined
in Equation (6‘4) must be evalusted for silver at sbsolute zero, Using the

numericel value of a et absolute zero as given by (5,19), 8 may be evalusted:

2 = -3 r*—" 2
% = h¥a_ / 2n®uk
= (6.52 % 10727)% X 21,5 x 10%/2 X 1.79 X 107%R
X (1,38 £ 10-18)%
= 1,39 x 10t

or

oW
4]

- 118 deg,
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The experimental waluss Tor the Debve charsoteristic e aof
29 P P
gilvar were taken from the work of Kessom and Glﬁrk(i“}, and fucksn, Clusius

gz the experimental velues for the ch

. directh measurs

1t of the specific

by which the o

formulas v in fect not be exactly correct,
I7 thers ere no difficulties in the experimental methed which might
ceuse systemstic errvors, such as en incorrect daterminedion of the t%m@araturé
scale or the presence of & gas whose heat of adsorption might contribute %o
tne measurements, the quantity thet is actually measured is the specific heat
et constent pressure of metallic silver, These measursments st constent pressurs

are transformed into values of the specific heat at constant volums by mesns ol

the thermodynamic relation(7),

V. e
{6,18) ; {Jp - Lv = koa Z’M?/e

where

k is the bulk modulus of the matérial,

a is its volume coefficient of expansion,

M is its atanic weight,

T is the absolute temperature, and

? is its density,

Any inasccuracies introduced through the use of this expression result

from & lsck of knowlédge of the temperature variation of quantitiss anpeering
on the right-hend side, The bulk modulus, for example, is cusbumerily evelusted

-

at low temperatures by extrapolating from considerebly higher temperatures
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The speeific heab st Oﬁﬁ“ﬁaﬂu voluke so cblained ?epr%sﬁﬁts the fotal
gpecific heat of the metal; thet is, it includes the spevific henst of the
lattice, that of the conduction electrons, and any other contrivutions thet
might result from an intersction between the conduction electrons and the
lattice or from excitetion of nonconduction electrons,

Keesom and alayk(lgj subtracted from the above value, the specific
heat of the (perfectly free) conduction electrons, which czn be caleulated

(17) .

from Samerfaldis formula :

il

where
n is the number of free electrons per atam,
m is the mass of an electron,

HO is Avogadrol's number, and

x

the other symbols have their usual signifisance,

subvracstion of this term

5

ware than translated into suuivalent Delye eharacteristic temperatures,
Bucken, Glusius, and Wolbinek did mot corveet for the conduction elsetrans,
50 that their charscteristie temperabures are for the entire speciiie heav
at constant volume,

Figure 20 shows the theoreticsl curve for ﬁ/b = ~0,08 (obbained by
linesr interpolation vebween bthe two curves of ¥l

gure 19) snd Lhe saperingnils

<

sioothed values, whereas the others are nob,

It is clear fran an inspeckion of Figure 20 that ia some respecis the

riven by bhe above suthors, The values given by Keesom 2ad Glark ars



8, (Debye Temoereture)




experimental éﬂd theoreticeal curves agree, and that in others they do aot,
There is falr agreement bebween the two with regsrd bto the rise of the
0hara&t@?i stic bemperature with decressing ebsolube temperature helow ﬁ/p

and the existence of a winlmum charscteristic tempersture at sbout this value
of ?/B. It is also eviden®t that there is a radical differenee in bshavior

betwesn the two in the very-low-temperabture renge, Here, the theoreticsl
IS i P

~curve aphbbains

@

‘reletively brosd meximum at sbsolute zero, while the experimental
curve shows a verv sharp maﬁimum at aboub 5OK, with = second minimum sab about
5,5%, This sawe behavior is shown by the charscterisbic Lemperature of

potassium ehloride, which is an lonic crvstal having no conductien électrans,
This matter is discussed for both silver and potassium chloride by Keesam

and Glarkclg),

Blackman(5} dedueed thet the frequenecy spectrum of the sodium-chloride
lattice increased more ?a?idly then a Debye spectrum in the low frequency
region, snd henoe concluded thet the charascteristie hemperature of this lattice
should decrease from e meximum st shsolute zero, This coneclusion cen also he
drawn for the fece-centered lettice, both from the actusl curves of Pigure 1
and from the positive velues of the coefficients in the series expansions
(1,10) snd (4,11), For this reason, it seems quite clesr thet the verv-low-
bomperature Dehevior of the charscteristic Ltempersture © cannot be explained
in bverms of the differences bétw@en the frequency spectrum of a Debye continuum
end that of san atomic lattice,

On the obher hand, it seems reasonable to assume that the agreement
between the experimental and theoreticel curves in the renge fram 7% to 50%

is not purely fortuitous, sspecially as the theoretical resulis were abtained

by direct cealeulation, with no abvempt to fit the experimental deta as is ofben

done in the Debyve theory,



83

7. Conclusions

It was ooncluded in the last paragreph that the low-temperature anomalies
found by Keesom and Clark heve no simple explenstion in terms of the vibrational
speotrum of an atomic lettice, Furthermore, since the effect is very nearly the
seme for potassium chloride (an insulating, iomic crystal) as for silver, 1% is
unlikely that the explanatiom lies in the properties of the comduction electroms,

rossibilities for further investigavion are present, For example, it would
be worthwhile %o kmow whether there exlst distribution funcitions G(A) which are
everywnere positive and wnich yield the proper € (T) curves for potassium chloride
and silver, ‘nis could be done by solving the Equatiom (8,5) which is an integral
equation of the first kindy; or, since the region of interest is that of very low
temperatures, such vhat B/T>> 1, the function G(A) might be expanded in a power
series, and the coefficients of the various terms evaluated with the use of
Equations (6,6) and (6,8), V

Another possibility for further investigstion is the application of the
continuum and lattice theories to the evaluation of other properties of orystals,
such as thermal scattering of A-rays and the temperature variatiom of eleoctrical
resistance near ebsolute zero, Such a compurison would be rendered much easier
by the existence of the distribution functiom which is obtained in the present

work,
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ABSTRACT

The equations of motaon of tue atoms of a face-centered, cubic orystal
lattice are written, assuming éentral, Hooke's law forces between emch atom
and itas eighteen nearest neigzhbors, and the seocular determinant definimg the
normal frequenc.es ig obtained, This determinant is written a5 a product of
third order determinants, The properties of the roots of the secular deter-
minant are disoussed, and it is showm that the surfaces of comstant frequency
have the symmetry properties (im reciprocal-vector space) of a body-oentered
cubic lattice, This fact is used to simplify the ocomputation of the dlstridbution
of the normal frequencies, The fiaquancy spectrum is found by actually modeling
the constant frequenoy surfaces in plaster of Paris and measuring the volumes
onc losed between successlve surfaves, The frequency spsctrum so obtained is
“used in the evaluation of the specifio heat of a general orystél of the type
treated, and numerical values are presented for the element silver, The
present tneory (that of Born and von Karman), is in muoh better agreement with
the experimental values for temperatures below 100° X than is the Debye theory,
Certain enomalies in the specific heat curves of silver and potassium ohloride
at temperatures below 10° X are not explicable in terms of the stomic modeal that

i3 used,
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