
Essays in Mechanism Design

Thesis by

Guilherme Pereira de Freitas

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended March 20, 2013)



ii

c� 2013

Guilherme Pereira de Freitas

All Rights Reserved



iii

To my parents, Maria do Rosário Pereira de Freitas and Vanildo de Freitas.



iv

Acknowledgements

I owe a debt of gratitude to the Caltech community as a whole for the friendly environment during

my years here. I am especially grateful to my advisor, John O. Ledyard, for the careful guidance,

patience and encouragement. The feedback from faculty and students at the graduate student

seminar in the division of Humanities and Social Sciences was invaluable; I thank all the partic-

ipants, especially Jean-Laurent Rosenthal, who is in my committee, and who was the standing

faculty member for most of the time. I also would like to express my gratitude towards the other

members of my committee Robert Sherman and Kim Border, as well as Matthew Shum, for the

feedback and advice they dispensed me. I express my deep thanks for my early mentors Célius
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Abstract

This dissertation contains three essays on mechanism design. The common goal of these essays is

to assist in the solution of different resource allocation problems where asymmetric information

creates obstacles to the efficient allocation of resources. In each essay, we present a mechanism

that satisfactorily solves the resource allocation problem and study some of its properties.

In our first essay, ”Combinatorial Assignment under Dichotomous Preferences”, we present

a class of problems akin to time scheduling without a pre-existing time grid, and propose a

mechanism that is efficient, strategy-proof and envy-free. The mechanism works without money

or transfers of any kind. We also specify some situations where the computations required by the

mechanism can be carried out efficiently and delineate how the mechanism can fail if one of the

assumptions about agents preferences does not hold.

Our second essay, ”Monitoring Costs and the Management of Common-Pool Resources”, stud-

ies what can happen to an existing mechanism — the individual tradable quotas (ITQ) mechanism,

also known as the cap-and-trade mechanism — when quota enforcement is imperfect and costly.

This study is done in the context of a fishery, where the open-access to a common-pool resource

(the fish) creates a well-known commons problem. Because quota enforcement is imperfect and

costly, the classic result stating that ITQs lead to an efficient harvest of the fish stock is no longer

true. We propose an adequate analogue of that statement, and prove that it holds as long as quota

violation fines depend only on the absolute magnitude of the violations. Our result implies in

particular that violation fines should not be based on the ratio of violations to quota held. We also

provide an extensive analysis of the set of equilibria and temporary equilibria, including exten-

sive comparative statics. Finally, we provide a first step in understanding the preferences of fishers
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over different levels of monitoring and the total allowable catch (the cap), two design variables

that must be set “correctly” if the fishery is to succeed. This analysis is significant because, among

other reasons, it highlights how the initial quota endowment can affect preferences which in turn

may impact the chosen the level of monitoring and the cap.

Our third essay, ”Vessel Buyback”, coauthored with John O. Ledyard, presents an auction

design that can be used to buy back excess capital in overcapitalized industries. It is common

for mismanaged fisheries to find themselves in a state where, there are too many boats and too

little fish. One way out of the situation is to implement an ITQ program, but that is sometimes

not politically feasible. Another solution that may be easier to implement is for someone to buy

back the excess capital. The problem with traditional buyback solutions is that they often require

significant subsidies from an outside source, typically the government. To avoid this financing

problem, note that the retirement of the excess capital benefits the vessels that stay active, and

thus we can auction the right to stay in the fishery and use the revenue from this auction to

compensate those leaving the industry. Our essay proposes an auction design along those lines

that is ex-post efficient and self-financing. If there are enough gains to be made by reducing the

capacity of the fleet, our auction design also guarantees that all vessel owners have something

to gain by participating in the auction, ensuring that our design is politically feasible. We also

provide and analysis of our assumptions and results in the context of a specific fishery model for

convenience.
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Chapter 1

Summary

The three essays in this dissertation are part of an exploding literature that applies the tools of

mechanism design theory to the creation of institutions that can solve particular resource alloca-

tion problems. See Roth (2002) for an overview of some high-profile examples.

We can trace the modern roots of mechanism design theory back to papers writen in the 1960’s

by Leonid Hurwicz, William Vickrey, David Gale and Lloyd Shapley. Hurwicz (1960) introduced

the idea of incentive compatibility (which was expanded in Hurwicz (1972)); Vickrey (1961) set the

tone for modern research in auction theory including the statement and proof of the first revenue

equivalence theorem; Gale and Shapley (1962) introduced the stable marriage problem and an

elegant solution for it, the deferred acceptance algorithm, kickstarting the work on matching

theory.

All these papers discuss mechanisms, which can be thought of institutions or “black-boxes”

that take messages from economic agents as input and output allocations. To evaluate the perfor-

mance of such mechanisms, we must make assumptions about the behavior of economic agents

and compare the mechanism outcomes under that behavior with some pre-established perfor-

mance standard. In other words, a mechanism is a solution to a problem of implementing a

certain performance standard in a certain environment under a certain behavior.1

Let us illustrate these concepts with a classic example. Given the problem of allocating one

object to n agents, we might want to allocate the object to the agent that values it the most; that
1 See Hurwicz (1960), Hurwicz (1972), Mount and Reiter (1974), and Reiter (1977) for a thorough explanation.
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is the description of our performance standard. To specify “the agent that values it the most” we

need a way to compare utilities, so we restrict ourselves to environments with quasilinear utility

functions that are linear in money. Finally, we would like the mechanism to be straightforward and

nonmanipulable, that is, we would like our mechanism to induce a game where the agents have

a dominant strategy that will lead to the agent with the highest value getting the object. That is

what we mean by implementing the performance standard above in dominant-strategy behavior.

Given these three components/requirements of the problem (environment, performance standard

and behavior), the question is then whether there exists a mechanism that solves the problem.

Vickrey (1961) answered this problem with a simple and powerful mechanism: the second-price

auction. Vickrey’s auction is defined by the following rules:

• Agents submit bids.

• Auctioneer assigns the the object to the highest bidder (breaking ties randomly).

• The winner (the highest bidder) pays the auctioneer an amount equal to the second highest

bid.

It is not hard to verify that theses rules create a game to be played by the bidders, and that each

bidder has a unique dominant strategy which is to bid his true value for the object.

Competitive markets can also be seen as mechanisms and Hurwicz’s early papers contain

extensive discussions about that. An important feature of competitive market mechanisms is

that they have the potential to allocate resources in a more-or-less decentralized way, using only

the price system to coordinate the decisions of different agents. This decentralization property

theoretically opens the door for the Pareto-efficient allocation of a large number of resources to a

large number of agents in a informationally efficient way. Indeed, it has been shown by Mount

and Reiter (1974) and more recently by Nisan and Segal (2006) that to verify that an allocation of

goods is efficient we need at least as many numbers as the number of prices that would exist in a

competitive market.

Contrary to what the previous examples suggest, mechanisms do not have to involve money or
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transactions of any sort. Obvious examples are the multitude of voting mechanisms. For another

example, imagine a parent of two children fighting for a slice of cake. That parent could do much

worse than using the following time-honored solution: let one child cut the cake and the other one

pick a slice, leaving the remaining slice for the child that cut the cake. Under mild assumptions,

this is a simple mechanism without money that guarantees not only Pareto efficiency but also

no-envy (both part of the performance standard) under Nash-equilibrium (or max-min) behavior.

Indeed, it is easy to see that assuming the cake is homogenous and that more cake is always

desirable, the only Nash equilibrium is for the first child to cut the cake exactly in half. See Brams

and Taylor (1995) for more on that literature.

This quick overview of some classic results and examples puts us in the right place to explore

the essays in this dissertation. Indeed, each one of the three essays in this dissertation touches on

points discussed in the examples above.

In the essay “Combinatorial Assignment under Dichotomous Preferences”, we present a mech-

anism that solves problems of the following type: imagine you have a chunk of time that you want

to to assign to different individuals that would like to have an interval of that chunk. How do you

make sure that you assign the largest number possible of individuals in an envy-free way? We an-

swer that question in environments where agents care about obtaining an acceptable interval but

do not care which particular interval they get. In this environment, our mechanism implements

the performance standard under dominant-strategy behavior. A difficulty arises because, in con-

trast to the cake-cutting problem discussed above, the resources in this problem are not divisible,

which makes it difficult to ensure fairness. However, we show how one can use randomization

to allocate lotteries over the resource thereby restoring the possibility of a fair allocation. Further-

more, we show that the computations for this mechanism can be carried out efficiently. Note

that the mechanism works in problems where the set of resources is less structured, but without

computational efficiency guarantees.

In the essay “Monitoring Costs and the Management of Common-Pool Resources”, we turn

our attention to the solution of a commons problem with a market-based mechanism. It is well
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known that many common-pool resources become overused or degraded over time because of

the incentives and dynamics of an open-access regime. Dales (1968) realized that in the context

of water pollution, and proposed a market-based solution: assign usage quotas for the resources

and let the agents in the economy buy and sell those quotas in a competitive market. In doing

so, the market should lead to an efficient allocation of the quota in a decentralized way. This is

sometimes known as a program of individual tradable quotas (ITQs). In our essaey, we lay down

a model of a fishery and analyze the outcomes of an ITQ program when quota enforcement is

costly and imperfect. In this setting, decisions about enforcement level should not be dissociated

from other design decisions — like the total quota available or its initial distribution. To support

those design decisions, we provide an extensive analysis of ITQ equilibria and full comparative

statics for steady-state equilibria. To the best of our knowledge, this is the first time this analysis

is carried out. We also provide an extension of the full-compliance result that states that an ITQ

program leads to an efficient use of the fish stock. Relaxing the assumption of full compliance,

we present a principal-agent model where the principal is a fishery owner and the agents are the

fishermen. The principal chooses how to allocate quota among the fishermen and how much to

invest in monitoring to set the enforcement level. Agents choose how much fish to catch in face of

their quota and the enforcement level. We show that, while the first-best outcome is not incentive-

compatible, second-best outcomes can be implemented by an ITQ program if, and generically only

if the expected violation fines depend on catch and quota only through absolute violations. (as

opposed to violations as a proportion of quota held, for example). Finally, we establish sufficient

conditions for fishermen’s preferences over small changes in enforcement to be single-peaked. We

emphasize that even though the distribution of quota endowments does not affect the attained

ITQ equilibrium directly, it may affect outcomes indirectly if fishermen can influence the process

that sets the cap or enforcement levels — with or without quota trading.

In the essay “Vessel Buyback” — coauthored with John O. Ledyard — we turn our attention

to rights-based policies as in the previous essay, but now using an auction to allocate permits

for staying in the fishery. The problem is the following: in an open fishery, the competition
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for the limited fish stock can lead fishermen to a “race for fish” with suboptimally high capital

investments. Buyback programs to reduce excess capacity in national fisheries have been oft-used,

but seldom successful. Where they have successfully reduced excess capacity, the programs have

come at a high cost, almost always in the form of governmental subsidies to buy out the excess

capacity. These subsidies may even exceed the full gain in social surplus from the fishery that is,

after all, the main purpose of the programs. While, in principle, the presence of excess capacity

implies there are Pareto-improving allocations of fishing rights, which involve the removal of

the highest cost or least efficient vessel capacity from the industry, the difficulty is in identifying

the least efficient vessels and providing the incentives for their owners to be voluntarily bought

out by the owners of vessels remaining in the fishery. Our essay explores, from a mechanism-

design approach, the possibilities for and limits of buyback programs - specifically auctions -

that are entirely self-financed. Our main result delimits conditions on the fishery (in terms of

how quickly aggregate profits in the fishery increase as excess-capacity is removed) that allow an

efficient, revenue-neutral (i.e. requiring no outside subsidies) auction design that will also satisfy

voluntary participation (i.e. all a priori identified vessel owners will choose to participate in the

auction.)
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Chapter 2

Combinatorial Assignment under
Dichotomous Preferences

2.1 Introduction

It is the same story every end of term: students’ schedules for extra activities change, and cello

teacher Vanessa Sullivan has to change her teaching schedule accordingly. Finding a schedule that

somehow satisfies all students is a frustrating process that involves a large number of emails and

stress, and in the end, nobody really knows how good the chosen schedule is.

Companies, government agencies and different organizations face the same kind of problem

every day: how to schedule the use of a scarce shared resource. High-tech equipment, a modern

conference room or a competent specialist are often expensive, or hard to find. In many cases, it

is only sensible for an organization to acquire a limited amount of such a resource and divide it

among its workers via time-sharing. Deciding how to assign time with the resource is the problem.

The usual solution is analogous to the cello teacher’s solution, with similar shortcomings: the parts

involved communicate somehow and try to reach an agreement. Such negotiations can be very

time consuming, and there is no guarantee that in the end an optimal solution will be found.

In principle, time shares of use of the resource can be assigned in any way. However, it is often

the case that only a specific finite set of shares are assignable, be it for technological or institutional

constraints. In those cases, time is an imperfectly divisible resource. If the set of shares is finite,

then this scheduling is not fundamentally different from the combinatorial allocation problem,
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where bundles composed of a finite number of objects must be assigned to a finite number of

agents. In this paper, we study all such problems under the umbrella of “imperfectly divisible

resources.”

When a resource is perfectly divisible, it is often called cake, and the problem of assigning

shares of a cake to agents that have additive and continuous preferences (a non-atomic measure on

the over some sigma-algebra of subsets of the cake) has been extensively studied. These additivity

and continuity assumptions have led to the proof of existence of mechanisms with very strong

efficiency, incentive and fairness properties. In the cake-cutting literature, actual procedures for

such mechanisms can be found.

On the other hand, by not assuming that the resource is perfectly divisible, but keeping the

assumption of additive preferences, Kojima (2009) has shown that for the combinatorial allocation

problem, there is no mechanism that is ordinally efficient, envy free and weakly strategy-proof.

In this paper, we instead obtain a positive result, by assuming dichotomous preferences, an idea

inspired by Bogomolnaia and Moulin (2004), which obtain very strong results for the problem of

assigning at most 1 object among a finite set of objects to a finite set of agents. The main difference

between this paper and Bogomolnaia and Moulin (2004) is that agents may be assigned multiple

objects, or, more abstractly, that agents may have preferences over shares/bundles that are not

jointly feasible.

In the following, we examine how previous literature relates to our main findings: the charac-

terization of efficient assignments, strategy-proof assignments, and a mechanism that is efficient,

strategy-proof and envy free. We provide an example that shows that unlike in the case of Bo-

gomolnaia and Moulin (2004), the existence of a Lorenz-dominant random assignment is not

guaranteed. We analyze the running times of computing efficient assignments, and argue that

even though worst-case scenarios are not efficiently computable, there are a number of reasons

to believe that many real-world applications will yield efficiently computable cases. We end by

analyzing what would happen if a mechanism designer used a mechanism that is tailored for

dichotomous preferences with agents that have more general preferences. In these mechanisms,
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agents are only asked to report which shares are better than nothing, and we show that in that

case there are preferences for which agents have an incentive to misreport.

2.2 Related Literature

Economists, mathematicians, computer scientists and social scientists in general have long been

interested in a family of problems that can be classified as assignment problems: problems where

agents have to be given “one share” of a resource that is not privately owned by them. In the

following section we present earlier attempts and results on different variants of the assignment

problem.

2.2.1 Concepts to Classify the Literature

The problem that we presented in the introduction was related to the literature of three different

problems, usually referred to as the assignment problem, which I will refer to as the house as-

signment problem1 and the cake-cutting problem. The first refers to problems such as assignment of

houses or jobs, and the second to problems such as assignment of time or land, when those are

perfectly divisible.

There are four types of concepts that we will use to organize the literature around the assign-

ment problem: first, the performance criteria to distinguish between “good” and “bad” assign-

ments, namely Pareto efficiency, “fairness” and incentives to truth-telling; second, the divisibility

of the resources; third, the continuity of preferences; and fourth, whether or not compensatory

transfers are allowed.

2.2.2 Linear Programming and the Optimal Assignment Problem

A typical problem in the early literature was the personnel assignment problem: if there are n jobs

and n workers whose productivity at each of the n jobs is known, what is the match of jobs and workers

that maximizes the firm’s profits, and how can we compute it? This problem illustrates the focus
1Also known as the one-sided one-to-one matching problem
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on some measure of efficiency, such as profits, and thus this family of problems was called the

optimal assignment problem. Computational aspects of the problem were emphasized, with no

concerns about fairness or incentives. Nonetheless, the problem was still of considerable economic

interest. Problems like the optimal assignment of production facilities to different locations, and

whether or not that can be achieved by a price system Koopmans and Beckman (1957) do not

depend on any incentive-compatibility constraints, and do not call for fairness concerns.

The literature on the optimal assignment problem started in the early fifties as an application of

nascent linear programming methods. The techniques used relied heavily on graph-theoretic ar-

guments, initially developed by Hungarian mathematicians in the thirties. König-Hall’s marriage

theorem, the Birkhoff-von Neumann decomposition theorem, and Dantzig’s simplex method were

at the foundation of the results obtained at that time. See Kuhn (1955) for a list of early references,

Berge (2001) and Papadimitriou and Steiglitz (1998) for textbook treatments.

As with the literature on the optimal assignment problem, we will be concerned with maxi-

mizing some measure of efficiency. However, we differ in a few key points: unlike houses, the

resources we are assigning are divisible, and; we will be concerned with issues of fairness, ef-

ficiency, and incentive compatibility. Finally, while we try to present constructive solutions as

much as possible, we will not attempt to describe and prove theorems about the performance of

algorithms to implement our solutions; our focus will be on the properties of the solutions. We

wait until the conclusion section to point out references that are relevant for computing some of

our proposed solutions.

2.2.3 Fair Ways to Cut a Cake

The problem is how to fairly allocate shares of a divisible and heterogeneous good, usually in-

carnated in the metaphor of a cake; one can cut a cake however one pleases, but different people

might like different parts of the cake.

It is hopeless to try to summarize the literature on fair division in a few pages, so we will

highlight some contributions that point to different directions in the literature and that are in
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some way related to our approach. The problem of defining fairness goes back to Plato; see the

first chapters in Moulin (2004) for a concise and modern overview. Whenever it is not crucial, we

will refer to “fairness” without specifying precisely which notion of fairness we are talking about.

Following the work of Steinhaus (1948) , mathematicians have been drawn to the problem of

fair division. That interest developed into what is often called the cake-cutting literature. See Bar-

banel (2005), Brams and Taylor (1996), and Robertson and Webb (1998) for textbook treatments.

A classic performance requirement for a solution is that each agent is assigned at least his/her

“fair share”. Another trademark of this literature is the assumption that utilities are measures,

that is, additive set functions. The focus is on fairness and efficiency, not incentives. See Berliant,

Thomson, and Dunz (1992) for an axiomatic treatment that includes incentives and uses Bew-

ley’s Bewley (1972) classic result on the existence of general equilibrium in infinite dimensional

economies to prove the existence of a group-envy free and efficient allocation.

As with the cake-cutting problem, we are interested in the division of a heterogeneous and

divisible good and we also care about fairness, in particular envy freeness. However, we differ

from that literature because we do not assume preferences are continuous, , which connects us to

the next branch of the literature.

2.2.4 House Assignment Problems and Extensions

The classic house exchange market was introduced by Shapley and Scarf Shapley and Scarf (1974)

in 1974: each agent has one house, and can only have one house. Additionally, agents have

preferences over houses. How can we find an efficient allocation? Given the ownership structure,

is the core of this game nonempty? If so, how can we find it?

The canonical answer was given by Gale’s top trading cycles (TTC) algorithm.2 Assuming

preferences are strict, pick an arbitrary agent and let him point to his favorite house; the owner

in that house in turn points to his favorite house, so on and so forth. Because the number of

houses/agents is finite, this problem will eventually come to a cycle. Let the agents in this cycle
2First presented in Shapley and Scarf’s Shapley and Scarf (1974) paper, but attributed to Gale.
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trade their houses according to their preferences. Remove these agents from the economy. Restart

the procedure with the remaining agents. Cycles will be formed, and trades will occur until there

are no more agents left, which signals the end of the procedure. The assignment obtained in the

end is efficient, and it is the unique element in the core Roth and Postlewaite (1977). Moreover,

TTC provides the basis for the following strategy-proof direct mechanism Roth (1982): assign each

house to one agent; ask for the agents’ preferences; apply the TTC procedure to obtain the final

assignment.3

A related mechanism is the serial dictatorship, or priority mechanism, introduced by Satterth-

waite and Sonnenschein Satterthwaite and Sonnenschein (1981): fix a strict priority order among

the agents; ask for the preferences; give the agent at the top of the priority ranking his top choice,

the second agent in the priority ranking his favorite object among the remaining ones, etc. This

direct mechanism is strategy-proof, and if preferences are strict, it is also efficient.

It is clear that for every outcome of a TTC procedure, there exists a priority ranking of the

agents such that the outcome of the corresponding priority mechanism is the same as the one

given by the TTC. In this sense, TTC and priority mechanisms are “equivalent”.4

Priority mechanisms or TTC procedures have great efficiency and incentives properties, but

they can yield severely unfair outcomes. This is not a fault of the mechanism, but an inher-

ent property of deterministic mechanisms for assignment problems with non-transferable utility.

Think of the setting where all preferences are the same; any allocation is efficient, and someone

will face the worst possible outcome.

One way to restore fairness, at least exa ante, is to allow for random assignments. For example, a

random priority mechanism associates with each preference profile a probability distribution over

priority mechanisms and assigns houses according to a mechanism drawn from this distribution;

a TTC with random endowments assigns house-endowments randomly and then applies a TTC

procedure. A random assignment can also be viewed as a mapping from agents to lotteries over
3Roth’s Roth (1982) result does not require preferences to be strict, and then the mechanism has to be modified by

requiring that ties in the preferences be broken by a fixed rule.
4It is a trivial fact that, for a given outcome of a priority mechanism, there is always an initial assignment and TTC pro-

cedure that leads to the same allocation; just make the initial assignment equal to the outcome of the priority assignment.
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houses.

Abdulkadiroglu and Sönmez Abdulkadiroglu and Sonmez (1998) prove that, in the strict pref-

erence domain5 random priority assignments are “equivalent” to TTC with random endowments.

If the probabilities are chosen uniformly, both mechanisms are strategy-proof, ex post efficient, and

fair in the sense of equal treatment of equals.

However, random priority assignments are still unambiguously undesirable in the following

ways. First, there is no guarantee that for every preference profile there will be no envy among

agents with respect to the lotteries they are assigned. Second, if agents have von Neumann-

Morgenstern expected utilities, the outcome of these two mechanisms may be ex-ante inefficient,

as conjectured by David Gale and proved by Zhou (1990). Third, Bogomolnaia and Moulin (2001)

provide an example that shows that the outcome of a random priority mechanism may be first-

order stochastically dominated by another assignment for all agents in the economy.

To address this problem, Bogomolnaia and Moulin Bogomolnaia and Moulin (2001) propose

the concept of ordinal efficiency and the probabilistic serial mechanism that implements ordinally

efficient assignments. An assignment is ordinally efficient when it is not first-order stochastically

dominated by another assignment for all agents in the economy.6 The probabilistic serial mecha-

nism lets each agent “eat”, with equal speed, shares of one unit of their favorite object; as soon as

one object is fully eaten, the agents that were eating that object move to their second-best object,

and the process is repeated. After all objects have been eaten, each agent will have eaten shares of

different objects. The Birkhoff-von Neumann theorem then guarantees that there exists a random

assignment that gives to each agent a probability of getting a certain object equal to the share he

has eaten, and there are constructive procedures to accomplish this. The resulting random as-

signment is ordinally efficient and envy free; however, it is only weakly strategy-proof, that is, an

agent cannot obtain an allocation that first-order stochastically dominates the probabilistic serial

allocation by misreporting his preferences.

We want solutions to the cake assignment problem satisfying strong incentive, fairness, and
5Their results allow for indifferences, but the gist of their results is captured in the strict preference case.
6Alternatively, an assignment is ordinally efficient when there exists a utility profile such that the assignment is Pareto

efficient for that utility profile McLennan (2002). See Manea (2008) for a constructive proof.
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efficiency properties, such as the ones obtained by random priority or by the probabilistic serial

mechanism in the house assignment problem. However, the divisional structure of the resource

we are interested in is different: a cake is divisible, houses are not. We will see in examples that

this feature completely changes the problem. In particular, efficient allocations in the housing

problem always have someone obtaining his top choice; this will be no longer true in the cake

assignment problem.

2.2.5 There and Back Again

Unfortunately, none of the mechanisms mentioned above work well in the case of the combina-

torial assignment problem. Random priority mechanisms are known to be inefficient in the pref-

erences of preferences with large indifference sets, even in the house assignment problem. In the

case of strict preferences but in a combinatorial allocation problem, because one agent’s allocation

can block two agents’ allocations, random priority can lead to allocations that allocate something

to a small number of agents, which might be undesirable. And not even weak-strategy-proofness

is possible Kojima (2009) if we also require the random assignments to be ordinally efficient and

envy free.

The negative results above have a common feature: they try to solve the time assignment

problem in a relatively large preference domain. 7. In face of that difficulty, we will restrict our

focus to preferences where, for each agent, the set of assignable shares is partitioned in a set of

acceptable time slots and a set of unacceptable time slots. That is, there are only two indifference

sets: the acceptable shares, and the non-acceptable ones. As we focus on mechanisms that satisfy

voluntary participation, these preferences are equivalent to dichotomous preferences.

In the dichotomous preference domain, Bogomolnaia and Moulin Bogomolnaia and Moulin

(2004) obtain very strong results for the house assignment problem: their egalitarian solution is

efficient, group-strategy proof, envy free, and Lorenz dominant among all efficient assignments.

Their solution is not directly applicable to our problem. The reason is the following: in the house
7Kojima’s result about the impossibility of envy free weak strategy-proofness assumes additive preferences.
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assignment problem, a dichotomous preference profile can be represented by a bipartite graph

connecting agents to their acceptable houses. Efficient assignments are those that correspond to

maximal matchings of this graph. All such matchings correspond to feasible assignments; in our

case, where desired resources may overlap, some maximal matchings are not feasible.

On a final note, we must mention some other directions in the literature that attack similar

problems, but with techniques or assumptions very removed from ours. The seminal paper of

Hylland and Zeckhouser Hylland and Zeckhauser (1979) introduced the house assignment prob-

lem in the economics literature from the point of view of mechanism design. However, they

worked with cardinal preferences, while we only work with properties that hold for all cardinal

representation. Also in the domain of cardinal preferences, Ledyard, Noussair and PorterLedyard,

Noussair, and Porter (1996) present a framework for dealing with a time allocation problem with

capacities (like a many-to-one matching problem) in NASA’s Deep Space Network. They rec-

ommend the use of an ascending-bid auction, the Adaptive User Selection Mechanism (AUSM)

with tokens. They conduct some experiments to evaluate the performance of AUSM with tokens,

AUSM with money and a random mechanism (the sequential dictator algorithm) and conclude

that the AUSM with tokens is a better mechanism for situations with high level of conflict. We

focus on mechanisms that do not depend on any sort of transfer, and thus the AUSM mechanism

cannot be applied to our problem.

2.3 The Model

Consider the problem of assigning shares of a divisible resource to agents that only care whether

or not they get an “acceptable” share or not. As we will focus on mechanisms that satisfy voluntary

participation, there is no need to distinguish between the case where agents find unacceptable

shares strictly worse than the empty set (which means getting nothing from the mechanism)

and the case where they are indifferent between the empty set and unacceptable shares. Such

preferences are characterized by one indifference set, the set of acceptable shares, and are called
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dichotomous preferences.8

An instance of this problem is characterized by:

• a set X of resources.

• a finite collection F of subsets of X, including the empty set ∆, that denote the assignable

shares of the resource;

• a set N = {1, 2, . . . , n} of agents;

• for each agent i 2 N, an acceptable set A(<i) ⇢ F .

We denote the set of all dichotomous preferences over F by 2Pref, and we write <i2 2Pref to

indicate the preference relation of agent i that has Ai as the acceptable set. A preference profile

(<1, . . . ,<n) is denoted <.

A deterministic assignment is a mapping µ : N ! F subject to a feasibility restriction. This

feasibility condition depends on the problem. In the case of the cello teacher, it would be

i 6= j =) µ(i)
\

µ(j) = ∆. (2.1)

In the case of a set of resources that can be used by 5 people at the same time, like a room with 5

machines, the feasibility condition would be:

Â
i2N

1µ(i)(x) 6 5 8 x 2 X, (2.2)

where 1µ(i) : X ! {0, 1} is an indicator function, assuming the value 1 when x 2 µ(i) and the

value 0 otherwise.

Note that if for every B, C in F we have B \ C = ∆, then we are back to the classic housing

assignment problem Shapley and Scarf (1974), Hylland and Zeckhauser (1979). We reserve the

symbols µ and h for deterministic assignments, whose set we denote M.
8As defined, for example, in Bogomolnaia and Moulin (2004).
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We say a deterministic assignment respects preferences <i if µ(i) 6= ∆ =) µ(i) 2 Ai. We

denote r(<i) ✓ M the set of all deterministic assignments that respect <i, and we define r(<) =

T
i2N r(<i) the set of all deterministic assignments that respect all the preferences in <.

We need to define some more notation. For any function f , and binary relation R in the

codomain of f , we write [ f Rz] to indicate those elements x in the domain of f such that f (x)Rz,

where z is in the codomain of f . For example, [P > 0] is the support of the probability distribution

P and [µ 6= ∆] is the set of all assigned agents, while [µ = ∆] is the set of unassigned agents.

A solution to an instance of our assignment problem is a random assignment: a probability

distribution over deterministic assignments, that is, an element of 4M. A solution to our assign-

ment problem is a direct mechanism g : 2Prefn ! 4M, which maps every preference profile <

to a random assignment g(<) 2 4M. We want a solution to satisfy some minimum performance

requirements, namely efficiency, voluntary participation, strategy-proofness and fairness. Voluntary

participation is obtained by focusing on mechanisms that only put positive probability on assign-

ments µ that respect preferences, that is, g(<)(µ) > 0 =) µ 2 r(<) for all <2 2Pref

n. We define

and characterize the other concepts in the next sections.

2.4 Efficiency

We say that a deterministic assignment h Pareto dominates another assignment µ when h(i) <i

µ(i) for every i 2 N and h(i) �i µ(i) for at least one i 2 N. We say that µ is Pareto efficient, or

simply an efficient assignment, if there is no other assignment that Pareto dominates µ.

With dichotomous preferences, efficient assignments are in some sense maximal. Define the

preorder ◆ on the set of assignments M as follows:

µ ◆ h , [µ 6= ∆] ◆ [h 6= ∆],

in which case we say µ contains or includes h. It should be clear that the ◆ symbol on the left

side is the one we are defining, and the one on the right side refers to the usual set inclusion.
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The relations ), ✓ and ( on M are defined as one would expect. The following lemma is an

immediate conclusion of these definitions.

Lemma 1. Given two deterministic assignments µ, h 2 r(<), we say µ Pareto dominates h if and only if

µ ) h. An assignment µ 2 r(<) is efficient if and only if it is ◆-maximal in r(<): for every assignment

h 2 r(<), µ ◆ h whenever h ◆ µ.

Define f : M ! R to be ◆--monotonic if f (µ) > f (h) whenever µ ◆ h.

Corollary 1. If an assignment µ 2 r(<) maximizes a function f which is ◆-monotonic, then µ must be

efficient.

We say that a random assignment y Pareto dominates a random assignment f when the

probability of getting something acceptable in y is at least as great as in f for every agent i 2 N,

and strictly greater for some agent i 2 N. Our definition is motivated by the fact that for any

expected utility representation of a binary preference, the utility of a lottery y is greater than the

utility of a lottery f if and only if the probability of getting something acceptable in y is greater or

equal than the probability of getting something acceptable in f. Therefore, we use the probability

of obtaining an acceptable share as the canonical definition of the utility of a random assignment.9

We say that y is an efficient random assignment if there is no other random assignment that

Pareto dominates y. We say that g is an efficient mechanism if g(<) is an efficient random

assignment for every preference profile <2 2Pref

n.

It is easy to see that a random assignment f 2 4M is utilitarian efficient—that is, it maxi-

mizes the sum of the utilities—if and only if its support is composed of deterministic assignments

that respect preferences and that assign the largest possible number of agents.

2.5 Incentives to Truth-Telling

To keep the notation simple, we will extend an agent’s preference relation over the set of shares

F to the set of all random assignments 4M in the only natural way: for y, f 2 4M, we say
9Our definition of efficiency is then the standard notion of ex ante efficiency for random assignments setting the utility

of an acceptable share as 1 and the utility of an unacceptable share as 0.
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y <i f if and only if the probability that that i gets an acceptable share under y is at least as large

as the probability that i gets an acceptable share under f. Similarly, we say g(<0
i,<�i) <i g(<00

i

,<�i) when g(<0
i,<�i)(r(<i)) > g(<00

i ,<�i)(r(<i)). Remember that g(<) 2 4M is a random

assignment, that is, g(<)(µ) is the probability under g(<) that the assignment µ will be chosen.

We say that a mechanism is strategy-proof if for every agent there is never incentive for uni-

lateral manipulation:

g(<) <i g(<0
i,<�i) 8 <2 2Pref

n, 8 <0
i2 2Pref.

In the following, we will need the following notion: given preferences <i and <0
i, we say that

<i is less flexible than <0
i when A(<i) ✓ A(<0

i). Alternatively, we say that <0
i is more flexible than

<i.

Given <i and <0
i, we also define the join <i _ <0

i as the preference for which A(<i _ <0
i) =

A(<i) [ A(<0
i). We also define the meet <i ^ <0

i of these two preferences as the preference for

which A(<i ^ <0
i) = A(<i) \ A(<0

i). It follows that <i _ <0
i is more flexible than both <i and <0

i,

which are both more flexible than <i ^ <0
i.

Proposition 1. A mechanism g : 2Prefn ! 4M is strategy-proof if and only if g is monotonic and sub-

additive in the following sense: for all <�i and for every <+
i more flexible than <i we have, respectively,

g(<+
i ,<�i)(r(<+

i )) > g(<i,<�i)(r(<i)),

and

g(<+
i ,<�i)(r(<i)) 6 g(<i,<�i)(r(<i))

Proof. Until the end of the proof, fix the preferences of all agents but i at <�i. Suppose that a

mechanism g is monotonic and sub-additive. Let i’s true preferences be <i. Consider an alterna-

tive report <0
i for i. If A(<i) \ A(<0

i) = ∆, then i is better off reporting his true preferences, as

g respects preferences. Now, there are two cases. First, if A(<0
i) ( A(<i), then by monotonicity
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i is better off reporting the truth. Second, if A(<0
i) * A(<i), then by sub-additivity i is better

off reporting <i ^ <0
i. But then, we are back to the first case, and i is better off saying the truth.

Therefore, proves that a monotonic and sub-additive mechanism is strategy-proof.

To prove the converse, suppose that a mechanism g is not monotonic, that is, there are <i and

a more flexible preference <+
i such that

g(<+
i ,<�i)(r(<+

i )) < g(<i,<�i)(r(<i)).

Then if i’s true preference were <+
i , he would have an incentive to report <i instead, and thus g

cannot be strategy-proof. Now suppose that the mechanism g is not subadditive, that is, there are

<i and a more flexible preference <+
i such that

g(<+
i ,<�i)(r(<i)) > g(<i,<�i)(r(<i))

Then if i’s true preference were <i, he would have an incentive to report <+
i instead, and thus

g cannot be strategy-proof. It follows that a strategy-proof mechanism must be monotonic and

sub-additive, and this completes the proof.

In other words, to check strategy-proofness, we just have to insure that an agent will never

profit from two types of deviations: reporting a larger acceptable set (discouraged by subadditiv-

ity) or reporting a smaller acceptable set (discouraged by monotonicity).

Consider a mechanism such that, for every agent with some fixed preference it is always the

case that, for every possible report he could send, he is better off both dropping unwanted shares

from his report, and adding desirable shares to his report. It is clear that such a mechanism is

strategy-proof. However, it is not the case that all strategy-proof mechanisms have that property.

While it is true that, when facing a strategy-proof mechanism, an agent should drop unwanted

shares from his report (due to subadditivity), it is not the case that he should always add desirable

shares, as shown in the following example.
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Example 1. Let X = {a, b, c} be a set of objects and F = 2X the set of assignable shares. Let

N = {1, 2} be the set of agents, and let g be the following mechanism: if it is possible to give both

agents something acceptable under the reported preferences, the mechanism does so. Otherwise,

the mechanism gives player 1 an acceptable share, unless player 1 only accepts the whole set X.

We divide this remaining case in two, and we only give the winning probabilities of player 2;

player 1 gets X with the complementary probability.

If player 2 wants only one object, he gets it with probability .5. If he accepts two shares with

one object each (he may accept other shares, but they must have more objects), then he gets a

given acceptable object with probability .3. If he accepts three shares with one object each, then

he gets b with probability .46 and a or b with probability .12 each. If player 2 only accepts shares

with 2 or more elements, then gets nothing and player 1 gets X with probability 1.

It is easy to check that this mechanism is monotonic and subadditive, and therefore strategy-

proof. It is also efficient. Now suppose that player 1 reports X as his only acceptable share, and

player 2 accepts {a} or {c} and reports that he accepts {a} or {b}. With that report, he would

get something acceptable with probability .3. Now, if he added {c} to the report as an acceptable

share, he would get something acceptable with probability .24. Thus, it is not in his best interest

to add {c} to his report, even though it is a desirable share.

***

2.6 Fairness

A mechanism g induces individual lotteries zg(<) : N ! 4F . A mechanism is envy free when for

all <2 2Pref

n and all i, j 2 N we have zg(<)(i) <i zg(<)(j).

First, let us define the concept of no envy and Lorenz dominance. The output of a mechanism

is a random assignment g(<), and associated to this random assignment are individual lotteries

zg(<) : N ! 4F for i 2 N. We say that a mechanism is envy free when for every preference

profile < every agent i 2 N prefers his lottery zg(<)(i) to any lottery zg(<)(j) of another agent
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j 2 N. For every vector x 2 Rn, let �!x = x(1), x(2), . . . , x(n) be a permutation of the coordinates of

x where x(i) < x(i + 1). Given utility profiles u, v 2 Rn we say that u Lorenz dominates v when

Âk
i=1(

�!u i ��!v i) >= 0 for all k 2 {1, . . . , n}.

Kojima (2009) shows that there is no mechanism that is ordinally efficient, envy free and

weakly strategy-proof for the problem of randomly assigning arbitrary bundles of a finite number

of objects when preferences are additive. On the other hand, (Bogomolnaia and Moulin (2004))

show that the problem of randomly assigning a finite number of objects (not bundles) to agents

that have dichotomous preferences admits a mechanism that is group-strategy-proof, envy free

and always yield a random assignment that is Lorenz dominant in the class of all efficient random

assignments.

The results we will present falls between the aforementioned results in the literature. By

requiring preferences to be dichotomous, we open the door for mechanisms that are not only

efficient and envy free, but also strategy-proof. However, as the example below shows, it is not

always possible to obtain Lorenz dominant random assignments.

Example 2. Let N = {1, 2, 3, 4, 5} and suppose we obtain the following utilitarian efficient support

uE f f (<):

a1 = (1, 1, 1, 0, 0) (2.3)

a2 = (0, 0, 1, 1, 1) (2.4)

a3 = (0, 1, 0, 1, 1) (2.5)

Note that for a random assignment to be Lorenz-dominant in the class of all efficient assignments,

it has to assign the largest number of people, that is, it has to be utilitarian efficient.

Let a random assignment with support in uE f f (<) be represented by a triple p = (p1, p2, p3)

where pi is the probability that deterministic assignment ai will be selected. If there was a Lorenz-

dominant assignment p for these preferences, then this random assignment would have to maxi-

mize any social welfare function u 7! Ân
i=1 f (ui) where f is strictly increasing and strictly concave
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(see Olkin and Marshall (1980). However, if we select p so as to maximize the Nash social welfare

function and the Rawlsian welfare function (that maximizes the utility of the lowest-utility agent

in society), we obtain different results. Therefore there cannot be a Lorenz-dominant assignment

in this example.

***

Before we proceed, we need to define some more notation. We say that two assignments µ and

h in M are equivalent when [µ 6= ∆] = [h 6= ∆], that is, when they assign the same set of agents.

For every set of assignments M ✓ M let eM be the set of the corresponding equivalence classes of

assignments in M. Note that the utility profiles of the agents are the same across assignments in

the same equivalence class. Thus, when we say we will choose an element from eM at random, we

mean that we choose an equivalence class at random, and then choose an arbitrary assignment in

it for implementation purposes.

Proposition 2. The mechanism where g(<) is the uniform distribution over ]uE f f (<) is utilitarian effi-

cient, strategy-proof and envy free.

Proof. Fix arbitrary representatives for each equivalence class in ]uE f f (<). We already argued that

g is utilitarian efficient and strategy-proof. It remains to show that g is envy free. Let i and j be

two different agents in N, and suppose that i weakly prefers j’s random lottery to his. Precisely,

suppose

zg(<)(j) <i zg(<)(i). (2.6)

We will show that in fact, i must be indifferent between the two lotteries.

Condition (2.6) holds if and only if there is a set of shares S acceptable to i such that the

probability that j obtains a share from S under g(<) is greater or equal than the probability that

i obtains an acceptable share under g(<). Let Mj be the set of assignments in ]uE f f (<) such that

j gets a share from S and i is assigned the empty set. For every assignment µ 2 Mj, we can

construct an assignment h 2 M where h(l) = µ(l) for every l 2 N \ {i, j} and h(i) = µ(j). Denote

the set of such assignments h by Mi. By construction, all assignments in Mi respect preferences.
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Because each µ 2 Mj is in a different equivalence class of ]uE f f (<) and assigns the same number

of people to acceptable shares, there must be an agent in each [µ 6= ∆] that is assigned the empty

set in the other elements of Mj. It follows that each h 2 Mi is also in a different equivalence class

in ]uE f f (<). Because the mechanism is utilitarian efficient and the number of agents in Mi is the

same as the number of agents in Mj, it follows that all assignments in Mi are in uE f f (<). Finally,

as i reports his true preference and the mechanism chooses assignments from ]uE f f (<) with

uniform probability, it must be the case that g(<)(Mi) = g(<)(Mj). Therefore, as Mi ⇢ r(<i), it

must be the case that

zg(<)(i) <i zg(<)(j),

which proves that g is envy free.

2.7 Computational Aspects

A mechanism can be applied in a real-life problem only if we can carry out the computations that it

requires in a “reasonable amount of time”. Here we show that any utilitarian efficient mechanism

in our setting requires computations that in the worst case, run in time that is at least exponential

in the number of agents. Worst-case analysis is the usual way of comparing running time of

algorithms in computer science. However, we will also point out that many real-life applications

of such mechanisms should lead to running times that are at worst polynomial in the number of

agents. In what follows, we consider the feasibility constraint on deterministic assignments µ to

be µi \ µj = ∆ for all i 6= j in N.

We will show the problem of computing an efficient assignment is equivalent to the problem

of finding an inclusion-maximal independent set in a graph. An independent set in a graph is

a subset of vertices such that no two vertices are connected by an edge. An inclusion-maximal

independent set is an independent set that is not strictly contained in another independent set

Proposition 3. For every assignment problem AP = (N, X,F ,<) with <2 2Prefn, we can construct
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an undirected graph G = (V, E) where every efficient assignment in AP corresponds to one and only

one inclusion-maximal independent set in G and vice-versa. Conversely, for every undirected graph G =

(V, E), we can construct an assignment problem AP = (N, X,F ,<) with <2 2Prefn such that every

inclusion-maximal independent set in G corresponds to one and only one efficient assignment in AP and

vice-versa.

Proof. Let AP = (N, X,F ,<) with <2 2Pref

n be an assignment problem. For every agent i 2 N,

define Zi = {i} ⇥ A(<i), and let V = [i2N Zi. Now, let E be the set of all pairs (a, b) 2 V,

a = (ia, ra), b = (ib, rb), such that either the individuals ia and ib coincide, or the desired shares

ra and rb are not jointly feasible, that is, ra \ rb 6= ∆. It is easy to see that there is a bijection

between the feasible assignments of AP and the independent sets of G = (V, E). Furthermore, it

is easy to check that the efficient assignments in AP correspond exactly to the inclusion-maximal

independent sets of G.

Conversely, let G = (V, E) be a undirected graph. Define the following assignment problem

AP = (N, X,F ,< with <2 2Pref

n: let N = V, X = E, F = 2X and let the acceptable set

A(<i) of every agent i 2 N contain only one share: the set of all edges for which i is one of the

vertices. Then there is a bijection between independent sets of G and feasible assignments of AP

and the inclusion-maximal independent sets of G correspond exactly to the efficient assignments

of AP.

The proof of proposition 3 gives us a recipe for computing efficient assignments: cast the

problem as an independent set problem and compute the desired independent sets. Software

for computing independent sets (or cliques, which are the dual problem) is readily available10.

Computing an inclusion-maximal independent set can be done efficiently; computing all such

sets is an NP-hard problem.

A maximum independent set (or cardinality-maximal) is an independent set that has no less

vertices than any other independent set. It is well known (see Kleinberg and Éva Tardos (2005))
10For a useful but incomplete list, check Skiena (2008), or the companion website http://www.cs.sunysb.edu/

~

algorith/.

http://www.cs.sunysb.edu/~algorith/
http://www.cs.sunysb.edu/~algorith/
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that the problem of finding a maximum independent set or listing all inclusion-maximal indepen-

dent sets is an NP-hard problem, that is, the worst-case running time is at least exponential in

the number of vertices. Using the reduction provided in the proof of proposition 3, we conclude

that to compute utilitarian efficient assignments (those that assign the largest possible number of

agents) is equivalent to computing cardinality-maximal independent sets.

Corollary 2. Computing a utilitarian efficient assignment is NP-hard: the worst-case running time is at

least exponential in the number of agents.

To sum up: finding merely efficient (inclusion maximal) assignments is computationally easy;

finding utilitarian efficient (cardinality-maximial) assignments is hard. We remark that the compu-

tational difficulties presented above have nothing to do with strategic issues: the problem is solely

that of computing efficient and utilitarian efficient assignments, even if agents report truthfully.

However, the worst case scenarios necessary to obtain exponential running times might not

reflect many real-world problems. For example, problems of time scheduling are often just a

problem of assigning time intervals; for the graphs generated by these problems—called inter-

val graphs—it is easy to find maximum-cardinality independent sets. Independent sets can be

computed in polynomial time for many other special families of graphs, like planar graphs. Ad-

ditionally, for some families of “sparse” graphs, cliques11 (the duals of independent sets) can be

computed in polynomial time. See Chiba and Nishizeki (1985) for details.

2.8 Robustness

So far, we have shown how to assign shares of a imperfectly divisible resource to agents that

have dichotomous preferences in a way that is efficient (even utilitarian efficient), strategy-proof

and envy free. Such mechanisms are not very complicated from a communication point of view,

requiring agents only to report a subset of acceptable shares. Even so, as we argued in the previous

section, the computations necessary to run the mechanism are potentially very lengthy. Therefore,
11A clique in a graph is a subset of vertices such that every two vertices are connected by an edge.
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it is reasonable to want to use mechanisms that are no more complicated than the mechanism of

proposition 2 for this kind of problem. This is especially the case if the mechanism designer only

cares about assigning the largest number of agents to some acceptable share (imagine a company

selling uniformly priced time slots for some service).

In real-world applications, it may be naive to assume that agents only care about obtaining an

acceptable share or not. Even though that can be the only thing that the designer cares about,

it may well be the case that agents have strict preferences between acceptable shares. It would

be a very positive result if the designer could implement his objective of assigning the largest

number of agents to some acceptable share by asking only each agent’s acceptable shares (those

that are better than nothing). In the next proposition, we show that this is impossible: indeed, any

strategy-proof mechanism for our assignment problem with dichotomous preferences may give

incentives for some agents to report an acceptable set that is smaller than the true one. To make

things simpler, in the following we assume that F is a finite algebra of subsets of X.

It is easy to see now that efficiency and strategy-proofness (in the strong sense that it has

to holds for all possible utility representations of non-dichotomous preferences) are not always

compatible if we only ask agents to report their acceptable sets. A simple example is the following:

suppose we have a monotonic and additive mechanism g and all agents but agent 1 report the

empty set as the only acceptable set. Then efficiency requires that whenever agent 1 accepts

something, he must be given that with probability one. In particular, if A, B 2 F are disjoint,

and 1 reports reports A as the only acceptable set, then efficiency demands that 1 gets A with

probability 1; if 1 reports B as the only acceptable set, then efficiency requires that 1 gets B with

probability one. However, if 1 reports exactly A and B as acceptable, then additivity requires that

1 obtains A or B with probability 2, which is absurd. It is easy to see that such problems would

occur in less artificial settings. This remark yields the following corollary.

Proposition 4. Let g : 2Prefn ! 4M be a mechanism that is strategy-proof in 2Pref. If an agent i 2 N

has preferences represented by any utility function ui : F ! R, then it is in i’s best interest to report a

subset of {z 2 F : ui(z) > ui(∆)} as his acceptable set. For some ui, it may be a best reply to report a
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strict subset of {z 2 F : ui(z) > ui(∆)}.

2.9 Conclusion

In this paper we present alternatives for a mechanism designer that wants to simplify the complex

process of assigning shares of a divisible resource by allowing agents to report only a set of

acceptable shares.

Assuming preferences are dichotomous, we show that strategy-proof assignment mechanisms

are characterized by a monotonicity and a sub-additivity condition, which translate into the prop-

erty that no agent would like to report a larger or a smaller acceptable set. We note that by

requiring preferences to be dichotomous, we avoid impossibilities given by Kojima (2009) for

more general preferences, and we provide a strategy-proof, efficient and envy free mechanism.

However we show that, unlike the case of assignment of individual goods, the existence of a

Lorenz-dominant assignment is not guaranteed.

We also provide an analysis of how easy it is to run such mechanisms “in the real world”, by

examining their computational complexity and the incentive compatibility of these mechanisms

when agents have general preferences. Drawing on theorems about the computational complexity

of finding independent sets/cliques in graphs, we show that finding utilitarian efficient assign-

ments in arbitrary problems is “hard”(NP-hard), but that this worst-case scenario might not reflect

the difficulties of a real-world application. Drawing on the same literature, we remark that an ef-

ficient assignment, not necessarily utilitarian efficient, can be computed in polynomial time. We

also show that agents with general utility functions may want to report an acceptable set that

is significantly smaller than {A 2 F : u(A) > u(∆)}, and that there is no way to guarantee

strategy-proofness and efficiency when agents have strict preferences among acceptable shares

(those better than nothing).
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Chapter 3

Monitoring Costs and the
Management of Common-Pool
Resources

3.1 Introduction

Since the seminal papers of Dales (1968), Montgomery (1972) (in the context of pollution) and

Moloney and Pearse (1979) (in the context of fisheries), individual tradable quotas (ITQs) have

become a very popular tool in the management of common-pool resources (CPRs), attracting a

lot of attention not only in academia, but also in government and industry.1 To have an idea

of the impact that an improvement on the management of such programs can have in fisheries

worldwide, we point out that, according to Bonzon, McIlwain, Strauss, and Van Leuvan (2010)),

one out of every five coastal countries are using some form of catch-share regime to manage over

850 species of fish, and the adoption of ITQ programs continues to increase.

ITQs became so popular not only because they can prevent the collapse of a natural resource,

but also because they allow the resource stock to be exploited efficiently without requiring cen-

tralized knowledge of information about individual agents’ private information. The argument is

by now standard and featured in standard textbooks:2 the cap will avoid over-exploitation3 of the
1 See Freeman and Kolstad (2007), Grafton, Arnason, Bjorndal, Campbell, Campbell, Clark, Connor, Dupont, Hannes-

son, Hilborn, Kirkley, (2006), and Bonzon, McIlwain, Strauss, and Van Leuvan (2010).
2 See for example Perman, Ma, Common, Maddison, and Mcgilvray (2012), Clark (2010), Tietenberg and Lewis (2008),

and Conrad (2010).
3 Of course, this depends on the growth rate of the resource and on the discount factor of the quota-holder, as exem-

plified by the case of the Antarctic blue whale fishery Clark (1973). For an argument that this should not be a problem in
general, see Grafton, Kompas, and Hilborn (2007).
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resource, while the quota market will allow the more efficient producers to buy the production

rights from the less efficient producers and produce the target output at a lower cost.4 There are

other theoretical arguments in favor of ITQs, but those are beyond the scope of this paper.5

Beyond theoretical predictions, there is strong evidence that cap-and-trade programs often

perform well in practice: Costello, Gaines, and Lynham (2008) compiled a global database on

11,135 fisheries from 1950 to 2003 and concluded that the fraction of ITQ-managed fisheries that

collapsed was about half that of non-ITQ fisheries.6 ITQs also avoids the race for fish and the

consequent rent dissipation. See Knapp and Murphy (2010) for an experimental argument and

Bonzon, McIlwain, Strauss, and Van Leuvan (2010) for a large number of references on the effects

of ITQs.

One point where both academics and managers agree is that no cap-and-trade program can

work without adequate monitoring and quota enforcement. For example, Copes (1986) explains

how quota violations led to the abandonment of the cap-and-trade program at the Bay of Fundy

herring fishery.7 However, little theoretical work has been done to understand how costly and

imperfect enforcement affect outcomes. The work that is closest to ours was done by Malik (1990),

in the simpler context of air pollution, and Hatcher (2005) and Chavez and Salgado (2005) in the

context of fishing.8 However, none of those models take into account the stock dynamics of the re-

source or technological differences among fishermen. Without the first, steady-state analysis is not

possible, and without the second, we cannot examine how preferences for the cap or enforcement

levels may differ across economic agents.

Our point of departure is a classic result in the cap-and-trade literature with perfect and cost-

less monitoring: the outcomes of an optimal.9 command-and-control policy can be achieved by

setting a total output cap and a market for quotas. That is the well-known efficiency of ITQ mar-

4 That ITQ programs stand on those two pillars—the cap and the market— is the reason why such programs are also
known as cap-and-trade policies.

5 See the aforementioned textbooks or Bonzon, McIlwain, Strauss, and Van Leuvan (2010).
6 Their definition of collapse is taken from Worm, Barbier, Beaumont, Duffy, Folke, Halpern, Jackson, Lotze, Micheli,

Palumbi, Sala, Selkoe, Stac (2006): a fishery collapses in year t if the harvest in that year is less than 10% of the maximum
recorded harvest up to that year.

7 He also discusses other hurdles that can get in the way of the well functioning of a cap-and-trade program.
8 See Montero (2004) for some related empirical work.
9 In the sense of maximizing the total industry profit.
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kets An important question is whether or not there is a similar result in the case of imperfect

enforcement. If violations were perfectly and costlessly observable, the problem would be easy:

set fines for violation high enough and nobody will violate their quota in equilibrium, which we

know is the first-best outcome. In reality it is costly to observe quota violations, and therefore it

may not be socially optimal to have zero quota violations. This new optimum is what we call the

second-best outcome, a concept we make precise in Section 3.4. In the simpler setting of air pollu-

tion, Malik (1990) showed that for the attainment of a second best, it is necessary that expected

violations depend only on absolute violations instead of, say, violations as a proportion of quota,

or magnitude of the catch. We provide a similar and more complete characterization in the more

complicated case of renewable resources: it is sufficient and generically necessary that expected

fines depend only on absolute violations for a second best to be attainable by an ITQ program.

While building this result, we uncover the fact that optimal cap and enforcement levels imply a

positive amount of quota violations.

We go on to build, from the bottom up, the equilibrium notion we will focus on: the stable,

steady-state equilibrium. The most important concept we need before the aforementioned equi-

librium is that of a temporary equilibrium given a stock level s, which is simply a competitive market

equilibrium when the stock level is s. We present full comparative statics for both types of equilib-

ria, in particular how the steady-state equilibrium changes with respect to changes in the cap and

enforcement levels. Along the way, we show that ITQ equilibria have the following all-or-nothing

property: either nobody violates their quota, or everyone violates their quota.

Note that while Chavez and Salgado (2005) provide some comparative statics for what we call

temporary equilibrium, they do not have a model for the replenishment of the natural resource, and

thus cannot present steady-state comparative statics. As we will see, steady-state analysis is a more

delicate matter than temporary equilibrium analysis because we may have multiple equilibria, and

an equilibrium may be degenerate or unstable. The work of Hatcher (2005) also does not touch

on steady-state issues and makes the decision to comply with or violate quota exogenous, thereby

leading to a result that is different from ours: that if expected violation fines are a function of
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absolute violations as a fraction of quota held, then the quota price in a compliant market may be

lower than in an otherwise non-compliant market.

Finally, with imperfect and costly enforcement, the question of how much enforcement be-

comes central, as well as the complementary effects of raising enforcement or lowering the cap.

Monitoring affects all fishermen irrespective of who paid for it, and therefore fishermen may have

an incentive to free-ride on the contributions of others. Indeed, it is not hard to show that letting

enforcement be paid solely by voluntary contributions will lead to no enforcement at all. There is

a more basic problem however: even if no fisherman has to pay for monitoring costs, one fisher-

man might want more monitoring, while another might want less. The reason is simple: all else

equal, buyers in the quota market want a low quota price, and sellers want a high quota price.

Intuitively (and shown in Theorem 7) a higher level of monitoring leads to higher quota prices.

At an even more fundamental level, agents may disagree on the level of monitoring even when no

quota trade is allowed. That is because increased monitoring leads on one hand to higher stock

levels and thus lower costs for fishermen, but also to higher violation fines for the same fisher-

men. For some fishermen, the cost decrease might offset the steeper violation fines; for others, it

might not. In light of the ambiguity outlined above it is hard to obtain strong conclusions about

collective preferences over monitoring. We conclude the paper with a first-step in that direction

with a local result (theorem 8), saying that under certain conditions —including no quota trade,

or no wealth effects in the quota market— if a given boat wants slightly more monitoring, then all

larger boats will want slightly more monitoring.

We now proceed to the model in Section 3.2. There we will define the primitives of the model

and our core Assumptions. In Section 3.3 we define our notion of ITQ equilibrium. Section 3.4

presents the single-owner problem and some of the properties of a solution. In that Section we

establish our first main result: the solution to the single-owner problem can be implemented by an

ITQ program if and generically only if expected violation fines depend only on absolute violations.

We go on to perform a detailed analysis of equilibria in Section 3.5. We split the analysis in three

layers: individual optimal behavior, temporary equilibrium (a competitive equilibrium given a
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fixed stock level). and steady-state equilibrium. This conceptual organization allows us to analyze

existence, multiplicity, regularity and stability of equilibria in a convenient and intuitive way. In

this Section we also establish our second main result: in any temporary equilibrium either nobody

violates their quota or everyone does. Restricting ourselves to regular, stable equilibria, we then

show how equilibrium points change when the monitoring expenditure M and the T AC level

suffer small changes. We close the paper with a brief analysis of a fishery with larger boats and

smaller boats (multiple types). We provide some comparisons between the equilibrium decisions

of different fishermen, and explain how endowments may affect equilibria if fishermen have any

influence on the design variables that determine the enforcement levels or the cap. Precisely,

we show that if endowments are such that changes in the design variables cause no changes in

wealth, then support for more monitoring will come from larger boats, if from anyone at all. A

brief conclusion follows, where we provide final remarks on our results and directions for future

research.

3.2 The Model

Let I be a set of n 2 N fishermen. Each fisherman produces an amount yi > 0 of fish (referred

to i’s production, output or catch) using a technology qi 2 Q. The cost c(yi, s, qi) 2 R incurred

by agent i depends not only on his catch yi and technology qi but also on the stock of fish s > 0.

The fishermen can sell their output in a competitive market where the price of fish is p > 0. Their

objective is to choose a level output yi such that their profits are maximized.

The stock of fish is governed by the law

s0 = g(s)� Y(s) (3.1)

where g : R+ ! R is a growth function and Y(s) is the total catch, that is, the sum of each

fisherman’s i’ catch yi(s) when the stock of fish is s. We will restrict attention to steady-state

outcomes, that is, those where s0 = 0.
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Our goal is to study the performance of this industry under a cap-and-trade program —also

known as a program of individual tradable quotas (ITQs)— when monitoring is imperfect. To

that end, we will introduce a regulator in the model. She10 has three regulatory instruments: the

cap, the initial quota endowments, and the level of monitoring (we will also call those design vari-

ables). In more detail, the regulator sets a total allowable catch T AC > 0, and allocates initial

endowments of quota wi > 0 to each fisherman i such that Âi wi = T AC. She also determines the

monitoring expenditure M > 0. The fishermen then observe the regulator’s decisions, the stock

level s and the quota price q and make their choices: how much quota to buy and how many fish

to catch. The regulator’s instruments (M, T AC) affect the fishermen via a quota market where the

price of quota will be denoted q > 0 and through quota violation fines f(M, yi, wi) > 0 charged

to agent i for catching yi while holding quota wi. In that setting, a fisherman’s profit is given by

pi = pyi � c(yi, s, qi)� q(wi � wi)� f(M, yi, wi). (3.2)

3.2.1 Notation, Conventions, and Assumptions

Unless otherwise noted, we write y = (y1, . . . , yn), w = (w1, . . . , wn), w = (w1, . . . , wn), and

capital letters denote aggregates, so Y = Âi2I yi. When we make a statement involving yi, wi, qi

without specifying which agent i we are talking about, it is to be understood that the statement is

true for any fixed i 2 I that is consistent with the given context.

We denote the partial derivative of a function f : Rn ! R with respect to it’s i-th argument

as Di f , and we define Dij f ⌘ Di(Dj f ). When we want to differentiate a mathematical expression

h with respect to a certain variable x we write Dxh. Example: we use D1c for marginal cost, and

DMp⇤
i for the derivative of a value function p⇤

i with respect to the parameter M.

When defining monitoring functions f, it is useful to have a shorthand notation for the positive

part map which we will write as [x]+ = max{0, x}.

We will always maintain the following Assumptions on the functions c, g, and f.

10 Simple convention: fishermen are male, regulator is female.
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Assumption 1. We define agent i’s technology qi 2 Q as his boat capacity, and assume that

c(yi, s, qi) = • whenever yi > qi. Furthermore, we assume that where yi < qi, c is twice differ-

entiable, strictly increasing, and strictly convex in output y, and decreasing in stock s. Finally,

we assume that marginal costs D1c are decreasing in both stock s and boat size q. The convexity

Assumption is standard, and will contribute to making the individual optimization problems (3.4)

convex; the Assumption of D1c decreasing in q expresses the heterogeneity among agents, namely

that larger boats, with higher fixed cost, have lower marginal costs.

Assumption 2. The growth function s 7! g(s) is concave, satisfies g(0) = 0, g(K) = 0, and

g(s) > 0 when s 2 (0, K), where K > 0 is the maximum stock of fish that can be sustained by that

environment’s resources in a steady state, known as the carrying capacity of that environment.

We also assume that the maximum of g —known as the maximum sustainable yield (MSY)— is

attained at a unique stock level sMSY > 0.

Assumption 3. The monitoring function is defined by

f+(M, yi, wi) = max{0, f(M, yi, wi)} (3.3)

where (M, yi, wi) 7! f(M, yi, wi) is twice continuously differentiable, increasing in M, increasing

and convex in yi, decreasing and strictly convex in wi. equal to zero whenever M = 0 or yi = wi.

The easiest way to think of f is to assume it has the form

f(M, yi, wi) = r(M)v(yi, wi)

where r(M) is the probability of being audited and v(yi, wi) is some penalty function for viola-

tions. It should be clear that we are implicitly making the important implicit Assumption that fishermen

are risk neutral.
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3.3 Equilibrium with Individual Transferable Quotas

From the regulator’s point of view, her choice of (M, T AC, w) leads to an outcome (y, w, q, s) (all

entries being non negative). We assume the fishermen behave competitively —that is, they do not

take into account the impact of their catch on the stock— and we study equilibrium outcomes.

An (ITQ) equilibrium is an outcome (y, w, q, s) that satisfies the following three conditions.

1. Fishermen maximize profits. Given the regulator’s choice of M, T AC, w, the price of fish p, the

price of quota q and the state s, every fisherman’s i 2 I choice of yi, wi maximizes profits

(3.2), i.e., it solves

maximize

yi ,wi
pi subject to yi > 0, wi > 0. (3.4)

2. The quota market clears. That is,

Â
i2I

wi = T AC. (3.5)

3. The fish stock is at a steady state. In other words, the total amount of fish caught is the same

as the amount by which the stock grows:

Y = g(s) (3.6)

An outcome that satisfies conditions 1 and 2 above is called a temporary equilibrium.

The set of equilibria corresponds to the set of non negative solutions to a system of equations.

Recall that the individual problems (3.4) are convex, and all the constraints are affine. Therefore,

we can write the Lagrangian of the problem of agent i as

Li(yi, µ
y
i , wi, µw

i ) = pyi � c(yi, s, qi)� q(wi � wi)� f(M, yi, wi) + µ
y
i yi + µw

i wi (3.7)

and conclude that the following conditions are necessary and sufficient for an outcome (y, w, q, s)

with yi 6= wi for all i 2 I (that is the smooth case, we will deal with the nonsmooth case shortly)
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to be an equilibrium: for every i 2 I there exists µ
y
i > 0 and µw

i > 0 such that the system of

equations below is satisfied. Notation: we write ci for c(yi, s, qi) and fi for f(M, yi, wi).

p � D1ci � D2fi + µ
y
i = 0 i = 1, . . . , n (3.8)

�q � D3fi + µw
i = 0 i = 1, . . . , n (3.9)

µ
y
i yi = 0 i = 1, . . . , n (3.10)

µw
i wi = 0 i = 1, . . . , n (3.11)

n

Â
i=1

wi � T AC = 0 (3.12)

n

Â
i=1

yi � g(s) = 0 (3.13)

Note this is a square system: 4n + 2 variables and equations. The first 4n equations indicate

individual optimal behavior; the last two equations say that the quota market clears and the

environment is at a steady state, respectively. The first 4n + 1 equations characterize a temporary

equilibrium.

When yi = wi for some i 2 I , the monitoring function f need not be differentiable and thus

the equations in (3.8, 3.9) are replaced by the following conditions (see Lemma 12 in page 81 for

more details). For every i such that yi = wi there exists µ
y
i > 0, µw

i > 0, and ai 2 [0, 1] such that

yiµ
y
i = 0, wiµ

w
i = 0, and

p � D1ci � aiD2fi + µ
y
i = 0 (3.14)

�q � aiD3fi + µw
i = 0 (3.15)

where D2fi and D3fi are the lateral derivatives defined earlier.

Remark 1. First, because fishermen have quasilinear preferences, the regulator’s choice of quota

endowments w 2 Rn
+does not affect the equilibrium outcome, only the equilibrium profits. Sec-

ond, the regulator’s choice of the T AC enters the agents decision problem only indirectly; it affects

equilibrium solely through the market-clearing condition (3.5). Third, observe that condition 1
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above is equivalent to (y, w) solving the centralized problem

maximize

y,w Â
i2I

pi

subject to yi > 0 8i 2 I

wi > 0 8i 2 I.

(3.16)

In other words, the n individual optimization problems in 2 variables are equivalent to one cen-

tralized optimization problem in 2n variables. Fourth, (y, w, q, s) satisfy conditions (1, 2) above

—characterizing temporary equilibria— if and only if (y, w) solve (3.16) with the added constraint

Â wi = T AC and q is a Lagrange multiplier for that constraint.

A classic result from the cap-and-trade theory with perfect monitoring is that we can attain

optimal outcomes that could be obtained in a centralized way by setting up a cap on total output

and a market for output quotas. We will investigate whether a similar result carries over to the

case of costly imperfect monitoring in Section 3.4.

3.4 The Single-Owner Problem and ITQ Implementability

Consider a central manager that is charged with running a quota-managed fishery for the fisher-

men. Suppose the manager solves the following problem.

maximize

y,w,s,M

n

Â
i=1

[pyi � c(yi, s, qi)]� M

subject to y, w, s, M > 0

n

Â
i=1

yi 6 g(s)

(IC) yi 2 argmax pyi � c(yi, s, qi)� f(M, yi, wi) i = 1, . . . , n

(3.17)

This is essentially a moral-hazard problem with imperfect monitoring where the principal is the

central manager and the agents are the fishermen.

For simplicity, we will assume only in this Section that the monitoring function f+ is smooth
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at zero violations; that is, when yi = wi, the derivatives D2f(M, yi, wi) and D3f(M, yi, wi) are

uniquely defined and are equal to zero. That makes the problem smoother, and focuses on the

interesting case here, which is the case when there are quota violators in the industry. We also

assume that f is strictly convex in yi, which guarantees the existence of certain useful derivatives,

notably Dwi y
⇤
i and DMy⇤i in (3.19).

Under our Assumptions, for every (wi, s, M) there exists a single y⇤i that satisfies the IC con-

straint. We can rewrite the manager’s problem (3.17) by changing yi to this optimal y⇤i , and

optimizing only over w, s, M. The Lagrangian would then be

L = Â
i
[pyi � c(y⇤i , s, qi)]� M + Â

i
µ

y
i yi + Â

i
µw

i wi + µs

 
g(s)� Â

i
y⇤i

!
+ µM M (3.18)

In that case, the system of equations characterizing equilibrium (aside from complementary slack-

ness conditions and original constraints) would be given by the fishermen’s IC’s FOC on y and

the manager’s FOC on w, s, M. In that order:

p � D1ci � D2fi + µ
y
i = 0 i = 1, . . . , n

Dwi y
⇤
i (p � D1ci � µs) + µw

i = 0 i = 1, . . . , n

Â
i
[Dsy⇤i (p � D1ci � µs)] + µsg0(s) = 0

Â
i
[DMy⇤i (p � D1ci � µs)]� 1 + µM = 0

(3.19)

Remark 2. Note agent i violates his quota if and only if Dwi y
⇤
i > 0 or, equivalently DMy⇤i < 0.

It follows that the summation in the last equation in (3.19) (the first-order-condition in M) has

positive terms only on violators, and therefore, it cannot be satisfied with M > 0 if there are no

violators. That shows that in any given solution to the single-owner problem, at least one agent

must be a quota violator.

However, it cannot be the case that all violators have positive quota; indeed, for any such i we

would have yi > wi > 0, and thus by the second equation (first-order-condition on wi), it must
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be the case that p � D1ci � µs = 0. Therefore, if all violators had positive quota, the first-order

condition on M > 0 also would not be satisfied.

We conclude that in the single-owner solution, either M = 0 or there must be a quota violator

that is given zero quota.

The intuition is clear for the case n = 1: the objection function in (3.17) tells us that, all else

equal, we want to spend as little money as possible with monitoring. Therefore, it is cheaper to

reduce the fisherman’s output with a lower T AC than with a higher M. It follows that we should

set w1 = 0.

3.4.1 ITQ Implementability of the Single-Owner problem

We will now show that a quota market can implement the optimal single-owner solution as long

as the fines depend on catch yi and quota wi only through the absolute violation yi � wi.

Theorem 1. Let (ey, ew,es, eM > 0) be a solution of the single-owner problem. Then there exists q >

0 such that (ey, ew, q,es) is an ITQ equilibrium at monitoring level eM and cap Â ewi if D2f(M, y, w) =

�D3f(M, y, w) for all M > 0, y > w > 0.

In other words, the single-owner optimal solution is ITQ implementable if the penalty function f depends

on y, w only through the absolute violation y � w.

Proof. Suppose that D2f(M, y, w) = �D3f(M, y, w) for all M > 0, y > w > 0. Let eµy, eµw > 0 be

the Lagrange multipliers of the nonnegativity constraints in the single-owner problem (3.17) and
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eµs > 0 the multiplier of the output/stock-growth constraint. Define

yi = eyi

µ
y
i = eµy

i

wi = ewi

µw
i = eµs + D3f( eM, eyi, ewi)

q = eµs

s = es

A quick check reveals that (y, w, q, s) satisfy the system of equations that characterize an ITQ

equilibrium (see p. 36) at monitoring level eM and cap Â ewi as long as wi, µw
i > 0 satisfy the

complementary slackness condition µw
i wi = 0. To verify that, remember that D3fi = D2fi, and

thus

µw
i = eµs � D2f( eM, eyi, ewi)

The first-order conditions on wi for the single-owner problem ((3.19), second equation) guarantee

that µs � D2f( eM, eyi, ewi) > 0, because Dwi y
⇤
i is always no non negative and eµw

i > 0. Therefore

µw
i > 0. Furthermore, if wi > 0, then eµw

i = eµy
i = 0 and Dwi y

⇤
i > 0 at the single-owner solution,

which implies by (3.19) (first two equations) that eµs � D2f( eM, eyi, ewi) = 0. Therefore, µw
i wi = 0, as

desired.

From the point of view of the manager, every situation she faces is characterized by p, c, g, f, q

satisfying our Assumptions; those form the set of possible environments.

The manager chooses M, T AC, s, y, w to induce an industry-profit-maximizing outcome (y, s, M).

While she chooses M directly, s 2 [0, K] and y 2 Rn
+ must satisfy steady state and incentive com-

patibility conditions. We say an outcome (y, s, M) is ITQ implementable if there exists eM, T AC

and an ITQ equilibrium (ey, ew, eq,es) such that ey = y,es = s, eM = M.

We showed in Theorem 1 that for any environment with a monitoring function that depends on
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yi, wi only through yi � wi, every solution to the manager problem is ITQ implementable. We now

show that this is a rather special feature of that particular monitoring function. In other words,

the impossibility of ITQ-implementation is a generic property (see definition in Appendix A.3).

The intuition behind the proof is simple: a solution of (3.17) requires that D2fi be equalized for all

violators, while an ITQ equilibrium only guarantees that D3fi are equalized among quota holders.

Intuitively, that should not hold for most monitoring functions f+. The economic interpretation is

the following: the single-owner solution requires that marginal costs be equalized for all violating

quota holders; we can see from the first-order condition on yi that this will happen only if the

marginal fine D2fi is equalized among such agents. However, an ITQ equilibrium only equalizes

the marginal benefit of quota �D3fi among those agents. Therefore, if �D3f = D2f, then in an

ITQ equilibrium, we also equalize marginal costs D1ci among violating quota holders.

Theorem 2. Fix p, c, g, q and let F be a set of monitoring functions f+ that are smooth at zero violations,

are restricted to some compact domain, and such that any solution (M, T AC, s, y, w) of the single-owner

problem (3.17) hands out strictly positive aggregate quota Â wi. Given a solution (y, s, M) to the single-

owner problem (3.17), let F0 ⇢ F be the subset of monitoring functions for which we can implement

(y, s, M) with an ITQ program. Then F \ F0 is a generic set in F.

Proof. First remember that in this Section we are assuming that f+ is differentiable at zero viola-

tions, and therefore every active fisherman in an ITQ equilibrium is a violator. Clearly, if a solution

to the single-owner problem has active fishermen respecting their quota, then that solution is not

ITQ implementable. For that reason, we restrict attention to solutions of the single-owner problem

where all active fishermen are violators.

If a solution to the single-owner problem is ITQ implementable, then the square system of

equations (3.8–3.6) has to be satisfied. In addition, it follows from the second equation in (3.19)

that p � D1ci has to be equalized for all violators with positive quota. We will now argue that

this is generally impossible. The intuition for that generic impossibility is that we need to satisfy

a smooth system with more equations than variables. Let us make that precise.

Fix k > 2 and let eF be the vector space of all Ck functions (M, y, w) 7! f (M, y, w) from a
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compact set11 to R such that D2 f = D3 f = 0 whenever y = w. Equipped with the usual norm of

uniform convergence of the function and its k derivatives eF is a Banach space. It is also separable

because the set of all polynomials on that same domain is dense in eF (as stated by the Stone-

Weierstrass Theorem). Now define eF0 ⇢ eF as the set of members of eF (not necessarily members

of F) where the overdetermined system we just mentioned has a solution. It follows then from

the transversality Theorem 7 that eF \ eF0 is a generic set in eF.

It remains to show that F \ F0 is a generic set in F. To that end, consider the set of all Ck

strongly convex monitoring functions with a positive parameter, that is, those elements of F hose

hessian have all eigenvalues greater than some m > 0 across their domain. It is not hard to show

that this is a dense subset of F that is also open in eF; it is therefore a generic set in F. Because

the intersection of two generic sets is also generic, it follows that F \ eF0 is generic in F. From

F0 = F \ eF0 we conclude that F \ F0 generic in F as desired.

3.5 The Set of Equilibria

We will now build our equilibrium notion by separating the economic equilibrium and the envi-

ronmental equilibrium parts. This separation makes the analysis conceptually clearer, and allows

us to build the equilibrium in a “bottom-up” way, making clear the interdependence relations

between the different variables of the model.

On the economic side, we have two “layers”:

• In the bottom layer, we study individual optimal behavior in both fishing activity and trading

activity in the quota market. Agents take p, M, T AC, q, s as given and make their optimal

decisions about how much quota wi to hold and how much fish yi to catch. This corresponds

to the first condition for equilibrium: fishermen maximize profits by solving (3.4). At this

level, the concept of quota demand and the distinction between quota violators and quota holders

are central.
11 Realistically, y, w, M are all nonnegative and bounded above, so this technical requirement does not get in the way of

realism.
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• On top of the previous layer, we impose the market-clearing condition (3.5). At this level,

outcomes are denominated temporary equilibria, and a lot of what we want to know is sum-

marized in the variables that quantify total output Y and quota price q. The parameters

p, M, T AC, s are still exogenous.

On the environmental side, we have the final layer.

• If we impose the steady-state condition (3.6), we obtain the definitive notion of equilibrium in

this model. At this level, the only free parameters are the price of fish p and the regulator’s

design variables M and T AC.

The center of our approach lies in the Section on temporary equilibria; once that is well un-

derstood, the results about existence, number and stability of equilibria can be inferred after a

graphical analysis of the growth curve s 7! g(s) and the temporary equilibrium total output curve

Y(s).

3.5.1 Competitive Behavior: Fishing and Quota Demand

From a fisherman i’s point of view, he takes M, T AC, wi, s, q as given and his choice of yi, wi leads

to a certain private outcome (yi, wi, q, s) with an associated profit pi.

Let us define some terminology.

• We define for every i 2 I , q > 0 and s > 0 the optimal catch

eyi(q, s) and optimal quota

holdings

ewi(q, s) as the yi > 0 and wi > 0 that maximize profits pi as defined in (3.2).

• Given a stock s, note that open-access behavior is given by fishermen’s optimal behavior at

q = 0. That is eyi(0, s) is agent i’s open-access catch when the stock is s. Analogously, the

pure-poaching catch of agent i at stock s is equal to eyi(•, s).

We say that a fisherman i is active when yi > 0; we say he is a violator when yi > wi.

In Appendix A.2, p. 80, we characterize the agents that will be active and those who will hold

positive amounts of quota. Based on Lemma 12 presented there, we can also say something about
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who will violate quota, and who will not. It is easy to see, for example, if q > 0 and D3f = 0 when

violations yi � wi are zero, then any active agents will be violators. This observation applies to the

case where the monitoring function f+ is smooth at zero violations. Theorem 3 below specifies

what can happen when this condition fails.

Theorem 3. Consider arbitrary M > 0, T AC, q, s, and let (y, w) be profit maximizing for all fishermen.

Then either no active fisherman violates his quota or every active fisherman violates his quota.

Proof. We will prove the following equivalent statement: if there is an agent that holds positive

quota and does not violate it, then no fisherman violates his quota.

Before we proceed, note that the T AC is irrelevant here, and any case with M = 0, s = 0 or

q = 0 is trivial.

Let i be the non violating quota holder. According to Lemma 12 in Appendix A.2, his optimal

wi satisfies

� q � aiD3fi = 0. (3.20)

for some ai 2 [0, 1].

Let j be another fisherman. Suppose, by means of contradiction, that j violates his quota. His

optimal wj satisfies

� q � D3fj + µw
j = 0 (3.21)

for some µw
j > 0. Subtracting (3.21) from (3.20), we obtain

µw
j = D3fj � aiD3fi

Because j violates his quota while i does not, and because we assume that f is strictly convex

in quota holdings when violations are positive, (see Assumption 3 in page 34) we must have

D3fi > D3fj (remember D3f is always non positive). It follows then from ai 6 1 that µw
j < 0,

which is a contradiction.

Remark 3. Note that in the proof of Theorem 3 above, it was crucial to assume that the monitoring
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function f was strictly convex in wj. If f was simply convex in wj, we would only be able to

conclude that ai = 1 and µw
j = 0 which does not contradict our knowledge that µw

j > 0.

The following Lemmas are a preparation for Section 3.5.2 where we study temporary equilib-

ria. They help us establish monotonicity properties of the excess demand function so that quota

prices can be uniquely defined in temporary equilibria.

Lemma 2. Fix M, T AC, s, i and q > 0. Then for every yi > 0 there is a unique w⇤
i that maximizes profits.

The implicit mapping yi 7! w⇤
i (yi) is nondecreasing and continuous, differentiable where w⇤

i 6= yi with

w⇤
i (yi) 6 yi. Furthermore, there is si > 0 such that w⇤

i (s) = 0 if and only if s 6 si. Where s > si, the

map s 7! w⇤
i (s) is strictly increasing.

Proof. Existence of w⇤
i is a consequence of limwi!• p = �• and Weierstrass’ Theorem; unique-

ness follows from strict concavity of the profit function in wi. Continuity of the implicit mapping is

an implication of the maximum Theorem. The monotonicity properties follow from the increasing

differences of the profit function in (wi, yi). Differentiability is a consequence of the invertibility

of the hessian of the profit function —see Lemma 8 in Appendix A.1.

Lemma 3. Fix M, T AC, i. Then for every q > 0, s > 0 there exists a unique pair eyi, ewi that maximizes

profits; it must be the case that ewi 6 eyi. The maps (q, s) 7! eyi(q, s) and (q, s) 7! ewi(q, s) are continuous,

continuously differentiable where q, s > 0 and eyi > ewi and strictly decreasing in q once ewi, eyi > 0. The

map eyi is strictly increasing in s once eyi > 0, and ewi is strictly increasing in s once ewi > 0.

Proof. Note that the profit function pi(yi, wi) = pyi � c(yi, s, qi)� q(wi � wi)f(M, yi, wi) is contin-

uous and defined over a closed domain. It is also coercive, that is, for all i 2 I and all t < 0 there

exists r > 0 such that if k(yi, wi)k > r then pi < t. We can then bound the domain and appeal to

Weierstrass’ Theorem to conclude that the set of (yi, wi) that maximize pi is not empty.

Let us now show that the set of profit-maximizing (yi, wi) is a singleton. First, take the case

where there exists a maximizer such that wi > 0. We know from Lemma 2 that associated to

that wi there is a single profit-maximizing yi, and that for any other possible maximizer (eyi, ewi)

we must have (yi � eyi)(wi � ewi) > 0. Suppose eyi > yi. As we assumed that D11c > 0, we have
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D1c(eyi, s, qi) > D1c(yi, s, qi). The first-order conditions on output are p = D1c + D2f. Therefore,

we must have D2f(M, eyi, ewi) < D2f(M, yi, wi). But that implies that D3f also moved, violating the

first-order condition on quota holdings D3f = q. The argument for the case eyi < yi is analogous.

That proves that the set of maximizers is a singleton.

The monotonicity results come from the fact that the profit function pi has increasing differ-

ences in (yi, s) (strict when yi, s > 0), in (wi,�q) (strict when wi, q > 0, and in (yi, wi).

That eyi and ewi are continuous functions of q, s follows from the maximum Theorem.

Because the hessian (A.1) of the profit function is always invertible when yi, wi > 0 and varies

smoothly with q, s > 0 it follows from the implicit function Theorem that eyi, ewi are smoooth

functions of q > 0 and s > 0 when eyi > 0, ewi > 0.

Given M, T AC, define the excess demand function as

z(q, s) =

 

Â
i2I

ewi(q, s)

!
� T AC (3.22)

but only for strictly positive values of q. We have then the following Corollary from Lemma 3.

Corollary 3. The excess demand function in (3.22) is non increasing in q > 0. Furthermore, if z(q, s) = 0

with q > 0, then there exists an open interval around q where z(·, s) is strictly decreasing.

Remark 4. We studied eyi(q, s) and ewi(q, s) when q > 0. Matters are simpler when q = 0. In this

case a pair (yi, wi) maximizes profits if and only if yi maximizes operational profits pyi � c(yi, s, qi),

and wi is high enough that f(M, yi, wi) = 0. As we assumed c strictly convex in yi, it follows that

there is only one profit-maximizing yi.

3.5.2 Temporary Equilibria

We show in Theorem 4 that a temporary equilibrium always exists at every stock level and that it

is unique when the T AC is lower than the open access catch at that stock level. In Theorem 5, we

show that the equilibrium maps s 7! q(s) and s 7! Y(s) are continuous and nondecreasing.
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Theorem 4. Fix M, T AC, s > 0 arbitrarily. There exists w 2 Rn
+ and unique y 2 Rn

+, q > 0 such that

(y, w, q, s) is a temporary equilibrium. If q > 0, then w is also unique. Furthermore, q > 0 if and only if

Âi eyi(0, s) > T AC.

In more detail: if Âi eyi(0, s) > T AC then there exists unique q > 0, y, w 2 Rn
+ such that (y, w, q, s)

is a temporary equilibrium. If Âi eyi(0, s) < T AC, then (y, w, q, s) is an equilibrium if and only if q = 0,

y = ey(0, s), Âi wi = T AC, and wi > yi for all i. Finally, if Âi eyi(0, s) = T AC, then (y, w, q, s) is an

equilibrium if and only if y = w = ey(0, s) and q = 0.

Proof.

Case 1. First, suppose T AC � Â eyi(0, s) < 0. We claim excess demand of quota will be positive

if q = 0. Indeed, if yi, wi solve (3.4), then q = 0 implies wi > yi, and thus z(q = 0, s) > 0.

Therefore, we can restrict our search to temporary equilibria with positive quota price. We know

that z(q, s) ! �T AC as q ! •, and thus by the intermediate value Theorem there will be q > 0

such that z(q, s) = 0. It follows from Corollary 3 that there is only one such q. Furthermore, in an

equilibrium with q > 0, we must have wi 6 yi for all i. Therefore, profits pi are strictly concave in

(yi, wi) thus proving the uniqueness of the temporary equilibrium at s.

Case 2. In case T AC � Â eyi(0, s) > 0, there can be no temporary equilibrium with q > 0. To see

that, notice that at positive price wi 6 yi at a solution of the fishermen problems (3.4). Therefore,

excess quota demand will be negative if q > 0. We will now show that there is a temporary

equilibrium with q = 0. Set q = 0 and let

S = {(y, w) 2 Rn
+ ⇥ Rn

+ : (y, w) solve (3.16)}

As for all (y, w) 2 S and any w0 > y we have (y, w0) 2 S we conclude that there are points

(y, w)in S such that Â wi = T AC because Â eyi(q = 0, s) 6 T AC. Let (y, w) be any such points.

By construction, the tuple (y, w, q, s) satisfies all the conditions for a temporary equilibrium. Fur-

thermore, we cannot have any wi < yi in a temporary equilibrium with q = 0 because fisherman

i could increase his profit by buying more quota for free.
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Case 3. Finally, T AC � Â eyi(0, s) may be zero. In that case, a natural equilibrium candidate is

(y, w, q, s) with q = 0, y = w = ey(0, s). We can verify that (y, w, q, s) is indeed a temporary

equilibrium by checking that there exists µ
y
i , µw

i > 0 for all i 2 I such that conditions (3.14–3.15)

are satisfied with ai = 0 for all i. In fact, we can show that this is the only temporary equilibrium.

To see that, suppose (y, w, q, s) is a temporary equilibrium. Because T AC > 0, some fisherman

i must have positive quota wi > 0. As yi = wi, his choice of yi must be an interior maximizer

of operational profits pyi � c(yi, s, qi) It follows from first-order conditions that, p = D1c(yi, s, qi).

Therefore, condition (3.14) holds only if ai = 0. It follows from (3.15) that q = 0, and therefore

y = w = ey(0, s).

Lemma 4. Given M, T AC and under our simplifying Assumptions, the temporary equilibrium maps

s 7! y(s), s 7! w(s) are continuous. The temporary equilibrium map s 7! q(s) is continuous on all points

but those s⇤ where Y(s⇤) = T AC; where that happens, q(s⇤) might be a set, but if marginal violations D2f

are zero when violations yi � wi are zero, then q(s⇤) is a point, and q is continuous at s⇤.

Proof. Fix M and T AC arbitrarily. The tuple (y, w, q, s) is a temporary equilibrium if and only if

y, w solve

maximize

y,w Â
i2I

pyi � c(yi, s, qi)� f(M, yi, wi)

subject to yi > 0 8i 2 I

wi > 0 8i 2 I

T AC � Â
i2I

wi = 0

(3.23)

and q is equal to the multiplier of the last constraint. It follows from the maximum Theorem that

the temporary equilibrium maps s 7! y(s) and s 7! w(s) are continuous functions.

Let us now prove that s 7! q(s) is continuous. Define the set

V(es) = {i 2 I : yi(es) > wi(es)}
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as the set of violators and

H(es) = {i 2 I : wi(es) > 0}

as the set of quota holders. Suppose that Y(es) > T AC. This Assumption guarantees that V(es) 6= ∆

and the constraint T AC � Â wi = 0 in the problem above guarantees that H(es) 6= ∆. Theorem 3

guarantees that ∆ 6= H(es) ⇢ V(es). Therefore we can pick a fisherman j in V(es) \ H(es).

Because of the continuity of the maps y(s), w(s) and the fact that q(s) > 0 whenever Y(s) >

T AC we can find an open interval U containing es such that for all s 2 U

j 2 V(s) \ H(s) and q(s) > 0

Therefore, using the optimality condition on wi in the problem above, we conclude that for all

s 2 U

q(s) = �D3f(M, yi(s), wi(s))

It follows from the continuity of D3f that s 7! q(s) is a continuous function on U, as desired.

From here, the cases where Y(s) 6 T AC are straightforward.

Theorem 5. Given M, T AC > 0 the temporary equilibrium maps s 7! q(s) (aside from, possibly, a point

where (Y(s) = T AC)) s 7! Y(s) are non decreasing, Y(s) > T AC implies q(s) > 0, and Y(s) < T AC

implies q(s) = 0. Furthermore, where q, Y > 0, those maps are strictly increasing in s. If D2f = 0 when

violations yi � wi are zero, then Y(s) = T AC implies q(s) = 0.

Proof. Remember that q(s) and Y(s) are the quota price and total output associated with the

temporary equilibrium at s. Note that as s increases, marginal costs D1c(yi, s, qi) (for fixed yi) go

down, and thus the marginal benefit of violating the constraint T AC � Â wi > 0 cannot go down.

Therefore, q(s) cannot be decreasing in s. Indeed, as we assumed that D21c(yi, s, qi) < 0 for all s,

it follows that the marginal benefit of violating the constraint goes up once there is any benefit at

all. By the same token, Y(s) cannot be decreasing in s and is strictly increasing once Y(s) > 0.

Note that for all s, the temporary equilibrium yi(s) is given by the optimal catch eyi(q(s), s).
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Now, fix s such that Y(s) > T AC. As Y(s) = Âi eyi(q(s), s) > Âi eyi(0, s), we must have Âi eyi(0, s) >

T AC. It follows from Theorem 4 that q(s) > 0. We now prove the converse via its contrapositive.

Fix s satisfying Y(s) < T AC. Then a solution of problem (3.23) is also a solution of the same

problem without the constraint Âi wi = T AC. Therefore, 0 has to be a multiplier of that constraint,

and thus a temporary equilibrium quota price q at s. As we already showed in Theorem 4 that for

every s > 0 and T AC > 0 there is at most one temporary equilibrium q(s), we conclude that q(s)

has to be zero.

Corollary 4. Fix M, T AC > 0. There exists at most one point s > 0 such that Y(s) = T AC. If such a

point exists, then

s < s =) q(s) = 0

s > s =) q(s) > 0

Lemma 5. The temporary equilibrium variables y, w, q are smooth functions of p, M, T AC, q, s as long as

yi > wi > 0 for all agents i.

Proof. Follows from the implicit function Theorem. See Lemma 10 in Appendix A.1.

Lemma 6. Fix s, M, T AC > 0 and an associated temporary equilibrium (y, w, q, s) such that every active

fisherman violates his quota. There exits an open neighborhood V ⇥ W of (M, T AC) where the tempo-

rary equilibrium map M 7! Y(M, T AC, s) is decreasing and the temporary equilibrium map TAC 7!

Y(M, T AC, s) is increasing.

Proof. We already showed in Lemma 5 that those maps are differentiable. The monotonicities are

very intuitive, and can be verified by computing the partial derivatives.

3.5.3 Steady-State Equilibria

An outcome (y, w, q, s) is an equilibrium when it is a temporary equilibrium and Y = g(s). Thus,

with the results from Section 3.5.2 we can now visualize the set of equilibria by making a super-

imposed plot of the maps s 7! g(s) and s 7! Y(s) where Y(s) is the total output of the temporary
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equilibrium at s. We say an outcome (y, w, q, s)is a high-stock equilibrium if s > sMSY where

sMSY = argmax g(s) is the stock associated with the maximum sustainable yield. We say that the

outcome is a low-stock equilibrium if s < sMSY.

Remark 5. For fixed T AC, M, an equilibrium with stock at least s > sMSY exists if and only if

Y(s) < g(s). If such an equilibrium exists, then it is the only high-stock equilibrium. It follows

that if the pure-poaching catch eY(•, sMSY) is larger than the maximum sustainable yield MSY,

then a high-stock equilibrium is attainable only if the monitoring expenditure is raised. In other

words, if closing the fishery cannot bring the total catch to levels below MSY, then a high-stock

equilibrium will not be attained without more investment in monitoring.

Remark 6. Given a fixed monitoring expenditure M, we can use the Theorems in Section 3.5.2 to

classify possible instances of our model in three categories:

• High cost of fishing the T AC. In this case, agents can never sustain a low-stock equilibrium

with positive stock, that is, Y(s) < g(s) for all s 2 (0, sMSY). Here, we have one and only

one equilibrium besides the one at s = 0, and it presents a high stock level.

• Low cost of fishing the T AC. In this case, the agents are productive enough to sustain a low-

stock equilibrium, that is, there exists s 2 (0, sMSY) such that Y(s) = g(s). While one might

think that a high-stock equilibrium should exist too, that need not be the case, as shown in

figure 3.1.

• Extremely low cost of fishing the T AC. In this case fishermen always want to fish more than

the environment can provide, that is, Y(s) > g(s) for all s > 0. The only equilibrium is total

stock collapse at s = 0.

See figure 3.1 for some illustrations.12

12 Both x and y axis are measured in tons of fish. The parabola in green is the stock-growth function g(s), and the
other curve in red is the temporary equilibrium total output function Y(s). In the top left, the agents are “too productive”
and the only equilibrium is stock collapse. In the top right, there is a low-stock, unstable equilibrium and a high-stock
stable equilibrium. In the bottom left, the agents are “not very productive” in the sense that there is a stable high-
stock equilibrium and no low-stock equilibrium besides collapse. In the bottom right, there is a minimum stock level
for positive production, and that allows the emergence of a stable low-stock equilibrium. All plots were generated by
numerically computing the temporary equilibrium at s = 0, 1, 2, . . . , 100 for different instances of the model.
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Figure 3.1: Temporary equilibrium graphs

We say an equilibrium (y, w, q, s) is degenerate when the temporary equilibrium curve s 7! Y(s)

is tangent to the stock-growth curve s 7! g(s) at s. An equilibrium is regular when it is not

degenerate. From now on, we will focus on regular equilibria because they are the only outcomes

from this model that we could, in principle, actually observe. We will make that precise now.

A necessary and sufficient condition for regularity of an equilibrium with violators is that

the Jacobian of the equilibrium system (3.8–3.6) (depicted in page 75) be invertible. The implicit

function Theorem allows us to write regular equilibria locally as a continuously differentiable

function of the parameters p, M, T AC.

It follows that, starting from a regular equilibrium, if we perturb the parameters p, M, T AC

“just a little bit”, we will obtain a new equilibrium that is also regular. This is graphically intuitive.

Perturbing the parameters p, M, T AC entails perturbing the temporary equilibrium curve s 7!

Y(s); it should not be surprising then that if a curve s 7! Y(s) at first crosses the growth curve

s 7! g(s) then a perturbation of Y should also cross g.

Degenerate equilibria on the other hand do not have that property. Intuitively, if the temporary

equilibrium catch curve s 7! Y(s) is tangent to the growth curve s 7! g(s) at s, then a small

perturbation of the parameters can lead to either the curves crossing each other, or not intersecting

at all.

Real-world measurements of Y, s, g and other variables always contain some error. In that
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sense, it is virtually impossible to observe a degenerate equilibrium. Theorem 6 formalizes the

discussion up to here.

Theorem 6. Almost all equilibria are regular. More formally, consider an open set G ⇢ R3 of tuples

(p, M, T AC) for which equilibrium exists. Let G0 ⇢ G be the set of such tuples where the associated

equilibria are regular. Then G \ G0 is a nowhere dense set of measure zero.

Proof. Locally, this is a consequence of the implicit function Theorem and Lemma 11 in Appendix

A.1. We can then globalize the result because G is separable and the countable union of sets of

measure zero has measure zero. Nowhere denseness is a local property, so we do not have to

worry about globalizing that.

The arguments presented here deal with the problem of determinacy of equilibrium. See Debreu

(1970) for the start of this literature in economic theory and Shannon (2008) for a comprehensive

survey that includes pointers on how to extend these arguments to the nonsmooth case.

3.5.4 Stability of Equilibrium under Myopic Dynamics

Here we analyze what happens to equilibria when we slightly perturb the stock level. The dy-

namics are determined by

s0 = g(s)� Y(s) (3.24)

where Y(s) is the temporary equilibrium total output at stock s, so Y(s) = Âi yi(s) where each

yi(s) is in a solution to (3.4).

We say a regular equilibrium (y, w, q, s) is (locally) stable when it is robust to small pertur-

bations in the stock level s. A necessary and sufficient condition for that is g0(s) < Y0(s). In

other words, at a stable equilibrium, the temporary equilibrium curve Y cuts the stock-growth

curve g from below. It follows that high-stock equilibria are always locally stable, while low-stock

equilibria may not be.

Remark 7. Stable equilibria are the only outcomes of this model that could, in principle, be

“credible” outcomes in a steady state. Indeed, while we do not incorporate stock shocks into our
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model, in reality they do exist; the only equilibria that can persist under such shocks are stable

ones. It is reassuring then to know that high-stock equilibria are always stable. However, as

figure 3.1 shows, very inefficient, low-stock equilibria can also be stable. If this model is a suitable

approximation of reality, then this last observation suggests that, if a high-stock equilibrium is

desired, then fisheries with severely depleted stocks should cease activities for some time to allow

the stock to recover before a cap-and-trade system is put in place.

3.6 Comparative Statics: Varying the Design Variables

We now investigate how changing the monitoring level M > 0, the T AC > 0 and quota endow-

ments w 2 Rn
+ affects equilibrium.

Theorem 7. Fix (p, M, T AC) 2 G0 as defined in Theorem 6. Fix an associated regular, stable equilib-

rium (y, w, q, s) with positive violations. The equilibrium variables Y, q and s have the following local

monotonicity properties:

• The stock s is increasing in the monitoring level M.

• All other parameters equal, q varies in the same direction as s.

• At a high-stock equilibrium, Y is decreasing in M.

• At low-stock equilibria, Y is increasing in M.

• Lowering the T AC changes Y, q, s in the same direction as raising M.

Proof. From what we discussed in Section 3.5.3, we know that regular equilibria (y, w, q, s) are

locally continuously differentiable functions of M and T AC. Therefore, we can pin down the

monotonicity results we want by analyzing the appropriate derivatives.

Making explicit the role of M in the steady-state equation (3.6), we obtain

g(s(M, T AC))� Y(s(M, T AC), M, T AC) = 0
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differentiating that with respect to M we obtain

DMs =
YM

g0 � Ys

where Ys, Ym are partial derivatives of the temporary equilibrium map (s, M, T AC) 7! Y(s, M, T AC)

and g0 is the derivative of the growth function s 7! g(s). As YM < 0 (remember, this is a temporary

equilibrium map, so it just measures the direct effect of M on total catch) it follows that the sign

of DMs is the sign of Ys � g0. Remember that Ys is the slope of the temporary equilibrium map

s 7! Y(s), and thus at stable equilibria, Ys � g0 must be strictly positive. It follows that DMs > 0,

as desired.

Remember from Theorem 5 that the direct effect of s on q is positive and because q is the La-

grange multiplier of the market-clearing constraint in (3.23) it must be the case that the direct effect

of M on q is positive. Differentiating the equilibrium map (M, T AC) 7! q(s(M, T AC), M, T AC)

with respect to M we conclude that DMq = qsDMs + qM. We conclude from what we just dis-

cussed and the previous paragraph that DMq > 0.

The sign of DT AC s and DT ACq can be obtained analogously, and it should be clear by now

why their signs are opposite to the signs of the corresponding M-derivatives.

The monotonicity on Y is graphically intuitive: raising M lowers the temporary equilibrium

curve s 7! Y(s); therefore, it will intercept the graph of g at lower points.

The effects of the T AC are opposite because raising it pushes the temporary equilibrium curve

s 7! Y(s) up.

3.7 Larger Agents vs. Smaller Agents

In order to compare equilibrium outcomes across agents, we will need to make further Assump-

tions.

Assumption 4. The type space Q is an interval of real numbers. Given agents i, j 2 I , we say i is

larger than j or that j is smaller than i when i has a higher fixed cost and a lower marginal cost
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than j; we indicate that by setting their types qi > qj. Given our Assumptions, the geometrical

meaning is that the marginal cost curve yi 7! D1c(yi, s, qi) of a given agent i is always below the

marginal cost curve of agents smaller than i.

Assumption 5. The larger agents bear the brunt of the externality: for all y, s > 0 we have

D2c(y, s, q) decreasing in q. Remember D2c is always negative. The intuition is that, holding the

catch fixed, with a big boat costs rise sharply if the stock decreases, or equivalently, costs fall

quickly if the stock increases. One can imagine that with a very low stock, both a big boat and a

small boat would need to spend more or less the same number of hours in the water, while with

high stock the big boat can catch a lot of fish very quickly on the same spot, spending less time in

the water than the small boat. The cost increases or decreases are then explainedby the fact that a

big boat has higher operational costs per hour.

Lemma 7. In equilibrium, larger agents produce more and buy more quota. Precisely, if qi > qj, then in

equilibrium wi > wj and yi > yj. Furthermore, if wi > 0, then these inequalities are strict.

Proof. Let qi > qj as in the Theorem statement. Note that p has strictly increasing differences in

(yi, qi) and (weakly) increasing differences in (wi, qi) and (yi, wi). Therefore, if yi, yj maximizes

the profits of fishermen i, j, we must have yi > yj. Finally, by Lemma 2, it follows that wi > wj.

3.7.1 Varying the Design Variables

The message of Theorem 8 below is the following: if wealth effects are absent (identical net trades

of quota across agents) or larger for larger agents, then larger agents benefit marginally from

monitoring more than smaller agents. For this result, we will need to assume that f depends on

yi, wi only through the absolute violation yi � wi).

Theorem 8. Fix an interior equilibrium. Let qi > qj and suppose wealth effects are absent or larger for the

larger agent, that is, wi � wi > wj � wj. Then DMpi > DMpj.

Proof. Suppose wi � wi = wj � wj for simplicity. It follows from Lemma 7 that yi > yj. As



57

DMpi = DMq(wi � wi)� DMsD2c(yi, s, qi)� D1f(M, yi, wi),

DMpi � DMpj = DMs
�

D2c(yj, s, qj)� D2c(yi, s, qi)
�

= DMs
�

D2c(yj, s, qj)� D2c(yj, s, qi) + D2c(yj, s, qi)� D2c(yi, s, qi)
�

It follows from our Assumptions that both the first difference and the second difference in the

parentheses above are positive. Therefore, as DMs > 0 by Theorem 7, DMpi � DMpj > 0, as

desired. It should be clear now that if wi � wi > wj � wj then the gap DMpi � DMpj > 0 is

further widened.

Theorem 9. Fix an interior equilibrium. Let qi > qj and suppose wealth effects are absent or larger for the

larger agent, that is, wi � wi > wj � wj. Then DT ACpi < DT ACpj.

Proof. Analogous to the proof of Theorem 8, but note that DT AC s < 0 according to Theorem 7.

3.8 Final Remarks

In this paper we studied individual tradable quota (ITQ) programs for the exploitation of renew-

able resources when monitoring is imperfect and costly. We examined how the welfare, political

and stability properties of equilibria change as we vary the intensity and technology of enforce-

ment or the level of the cap. We also investigated the properties of the second-best solution to the

fishery problem and of the multiple steady-state equilibria that may arise in an ITQ program.

We learned that the optimal single-owner choice of enforcement and cap is associated with

positive quota violations and that in an ITQ equilibrium either nobody or everyone violates quota.

We also learned that if expected fines f depend on the catch yi and quota held wi only through

the absolute violation yi �wi, then the second-best outcome is ITQ immplementable, and, if quota

holdings are “right”, then larger boats are more likely to want more enforcement and a lower cap.

Finally, we saw how the initial allocation of quota —while incapable of affecting equilibria

directly— can indirectly affect outcomes if fishermen can influence the choice of the cap and en-
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forcement levels.

We believe these results provide a foundation for what is the next step in this research agenda:

a good mechanism that regulators could use to set the T AC, its distribution among fishermen,

and enforcement levels.

It is natural to expect that in most institutional setups, the expenditure on monitoring is largely

influenced (if not paid for) by the members of the industry, while the T AC is insulated from

such influence. It is therefore crucial to know, given a certain status quo, which fishermen will

support more monitoring, and which will support less monitoring; that knowledge will tell us

which outcomes are feasible from a political point of view. While we provide the first steps

in that direction, significant work remains ahead: crucially, we do not know when the optimal

monitoring level (in the sense of (3.17)) is supported by a majority of fishermen, a topic left for

future research. We believe any new developments in that direction could be of great value to

regulators and managers of tradable quota programs.
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Chapter 4

Vessel Buyback

4.1 Introduction

When access to a fishery is unrestricted, there is an incentive for fishers to invest in capital so

they can catch more fish before other fishers. This incentive leads over time to low fish stocks

and excessive investment in capital, a combination that has led the World Bank and the UN (see

Willman, Kelleher, Arnason, and Franz (2009)) to report that 50 billion dollars are lost every year

across marine fisheries worldwide. To reduce these losses, the total fishing effort must be reduced

and part of the excess capital must be retired. Buyback policies (buybacks from now on) accomplish

that by setting up a market where the excess capital can be sold.

Buybacks have multiple purposes, among them:

• modernizing the fleet;

• addressing compensational and distributional concerns;

• creating an opportunity for a transition to stronger rights-based policies;

• presenting an alternative when stronger rights-based policies (like individual tradable quo-

tas) are not feasible.

However, a buyback also present some challenges, the most fundamental of them being that it

does not address the main failures of open-access fisheries: it does not restrict access and it does

not assign clear property rights.
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In practice (see references in Clark, Munro, and Sumaila (2005)), buybacks have required enor-

mous amounts of money in the form of subsidies, as much as one third of all subsidies to fisheries

(Munro and Sumaila (2001)). As explained by Clark, Munro, and Sumaila (2005), the losses from

such subsidies can be amplified if fishers expect buybacks to occur; in those cases even more

money will be spent and the stock of fish will be lower than if there were no buybacks. For a

recent survey on the effects and practices of buybacks, see Squires (2010).

This paper addresses the problem of excessive subsidy in buyback auctions using the tools

of mechanism design theory. We first cast the problem in the language of that theory, and then

explain when certain desirable properties of these policies are simultaneously attainable.

4.2 The Model and Preliminary Results

4.2.1 The Fishery

We model the fishery in a standard manner. There is a set I = {1, . . . , n} of vessel owners

(henceforth fishers). Each fisher i has a cost-relevant, private characteristic qi 2 Q = [q, q] ⇢ <+

(henceforth i’s type). Each fisher pays a cost c(yi, s, qi, ki) to fish an amount yi 2 <+ of fish (re-

ferred to as the catch) when the stock of fish is s 2 <+ and the vessel’s capacity is ki 2 <+. It

is assumed that c has continuous second derivatives, is convex in yi, increasing in yi and ki, and

decreasing in s and qi.

We assume the market for fish is competitive and, thus, the profits of fisher i are given by

p(yi, s, qi, ki) = pyi � c(yi, s, qi, ki). (4.1)

The fisher will choose yi to maximize profits in each period. Let yi(s, qi, ki) = arg maxyi p(yi, s, qi, ki)

and p⇤(s, qi, ki) = maxyi p(yi, s, qi, ki).
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The stock of fish s obeys a growth function

st+1 � st = g(st)�
n

Â
i=1

yi(st, qi, ki). (4.2)

The function g is initially increasing in s and single-peaked. We say s is a steady state

1 when

0 = g(s)� Âi yi(s, qi, ki)

4.2.2 Buyback Policies

In this paper we are interested in the use of buyback programs to transform a low profit, poorly

managed fishery into a high-profit, well-managed fishery. The idea is simple. To make the analysis

transparent, we compare two steady states stocks, s0 and s1, where s0 < s1. At the initial stock

levels, s0, all fishers in I are active and g(s0) = Ân
i=1 yi(s0, qi, ki). Since ∂c/∂s < 0, if the total catch

does not change and if we can increase the stock from s0 to s1, then the profits of each boat would

also increase. But, without further control, as s increases, y also increases which drives the stock

back down towards s0. So unless y is controlled, per period profits remain around p⇤(s0, qi, ki).

Buyback policies are intended to control the catch so that increases in profits can be main-

tained. In simple terms, a buyback policy identifies a set of boats W ⇢ I which will remain in

the industry. The rest of the boats leave the industry after being bought out. The aggregate catch

of those who stay is yW(s) = Âi2W yi(s, qi, ki) < y(s). This leads to a new steady state, s1 > s0,

satisfying g(s1) = yW(s1). For the boats in W, profits are higher. Further, if the more efficient boats

are chosen, then this increase in profits will be high enough to allow the winners to compensate

the losers without any subsidization by outside sources.

More formally, the outcome of a buyback policy is (W, t) where W is the list of fishers re-

maining in the fishery, and ti is the amount that fisher i pays (or receives if ti < 0.). A buy-

back policy is an outcome for each possible value of q = (q1, ..., qn). That is, it is a function
1Note that this does not take into account the possible entry or exit of boats as a function of profits. We will come to

that later
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(W(q), t(q)) : Q ! (2I ,<n).

In this paper we are interested in identifying a buyback policy with outcomes satisfying some

desirable properties. We are going to assume that a target stock K⇤ is chosen prior to our analy-

sis.2 Given a target stock, a desirable buyback policy will be self-financing (requiring no subsidy

and generating no surplus), select the more efficient boats to stay in the fishery, and to leave all

fishers better off than they would have been with no policy. Whether a policy does depends on

the profits of the fishers both in the current fishery and in the fishery after the policy has been

implemented.

The key part of the environment is the expectations of the fishers for profits in the fishery

both before and after the buyback policy is implemented. We let u0(qi, ki) be fisher i’s expected

present discounted value of being in the fishery if there is no buyback policy and the current

situation continues. In the initial situation, all boats are in the fishery and so, in the steady state,

g(s0) = Ân
i=1 yi(s0, qi, ki). So ui

0(qi, ki) is proportional to p⇤(s0, qi, ki). We let ui(qi, ki) be fisher i’s

expected present discounted value of being in the fishery if the buyback policy is implemented

and fisher i is in W. This value, of course, depends on the composition of the boats in W which

is unknown until after q is revealed and the policy is implemented. But the key fact the fisher

would like to know is the stock in the new steady state, s1 where g(s1) = Âi2W yi(s1, qi, ki). We

assume for purposes of this paper, that the fisher ignores the effect of the composition of W and

just estimates s1. Then i can estimate p⇤(s1, qi, ki). ui(qi, ki) will be proportional to p⇤(s1, qi, ki).

Knowing the values the fishers have for ui
0(qi, ki) and ui(qi, ki) we can formally define some

desirable properties that a buyback policy should have.

• (Efficient Selection) Given K⇤, the boats that stay are the most efficient ones;

2It is possible to expand the analysis to make the choice of K⇤ endogenous, but we leave that for future work.
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W(q) 2 arg max
W2I Â

i2W
ui(qi, ki) subject to Â

i2W
ki  K⇤. (4.3)

• (Self-Financing) Any revenue from the policy should go back to the fishers; any loss from

the policy should be paid by the fishers;

Â
i2I

ti(q) = 0. (4.4)

• (Voluntary Participation) All fishers should be better off at the policy outcome than they

would have been without any policy;

ui(qi, ki)� ti(q) � ui
0(qi, ki), 8i = 1, ..., n. (4.5)

And we want all of this to be implemented in a way that is consistent with the fishers’ incen-

tives.

4.2.3 Policy Design

Mechanism design is a well-developed theory we can use to identify conditions under which a

satisfactory buyback policy may exist. In this Section, we explore what can be learned about

good buyback policies from that theory. We begin with the basics: environments, the revelation

principle, and incentive compatibility. We then go over some results.

The Environment In the current situation, fisher i has expected present discounted profits of

ui
0(ki, qi) if i continues to fish. A buyback policy has been announced with a target of K⇤ capac-
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ity to remain in the fishery. Fisher i has expected discounted profits of ui(ki, qi) if the policy is

implemented and fisher i continues to fish. Types qi are private information and are indepen-

dently distributed with densities fi on Q. Everything except q is common knowledge. We assume

fishers are risk neutral. We define q�i as the list of types of all agents other than i and define

f�i(q�i) = ’j 6=i f j(qj).

The Revelation Principle Given K⇤, a buyback policy selects a set of fishers, W, to stay in the

fishery and a set of transfers, t. Since Q is private information, any process that implements a

buyback policy on the basis of information collected from the fishers, can be viewed as a Bayesian

game. For example, if an auction is held then fishers provide information in the form of their

bids and (W, t) is determined by the auction rules and the equilibrium strategies of the fishers.

This process produces a buyback policy (W, t) : Q ! (2I ,<n). The Revelation Principle is that

any buyback policy attainable through the Bayesian Equilibrium of some process is also attainable

through a Direct Revelation Process that is Incentive Compatible.

Incentive Compatibility A Direct Revelation Process asks fishers to report their value of qi and

then chooses (W(q), t(q)). A Direct Revelation Process is Incentive Compatible if reporting truth-

fully is a Bayesian Equilibrium. Let qi(q) be the probability that i 2 W(q). The interim prob-

ability that i will win (i.e., i 2 W) if they report qi, and others report truthfully is Qi(qi) =

R
Qn�1 qi(q) f�i(q�i) dq�i. The expected payment of i will be Ti(qi) =

R
Qn�1 ti(q) f�i(q�i) dq�i.

The interim utility of i from reporting qi when their true type is q̂i is therefore vi(qi, q̂i, ki) =

ui(q̂i, ki)Qi(qi)�Ti(qi). The policy, (W(·), t(·)) is Incentive Compatible (IC) if q̂i 2 arg maxQi vi(qi, q̂i, ki).

Desirable Properties We gather up some well-known properties of direct revelation mechanisms

that are relevant for buyback policies. Let Vi(qi, ki) = maxq̂i
ui(qi, ki)Qi(q̂i)� Ti(q̂i). A policy (W, t)

satisfies
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Incentive compatibility (IC) iff V(q, k) = V0 +
R q

q uq(s)Q(s)ds,

Self-financing (SF) iff Â ti(q) = 0,

Efficient selection (ES) iff W(q) 2 arg maxA⇢I Âi2A ui(qi, ki) subject to Âi2A ki  K⇤, and

Voluntary participation (VP) iff Vi(qi) � ui
0(q

i) for all qi.

Some Standard Results There are well-known results that can help us to understand whether

buyback policies with desirable properties can be found.

• There are policies (W, t) that satisfy (IC), (ES) and (SF).

The direct revelation mechanism of d’Aspremont and Gérard-Varet (1979), sometimes called

the expected externality payment mechanism, can be easily modified to fit our situation and

that is (IC), (ES), and (SF).

• In general, there may be no direct revelation polices (W, t) that simultaneously satisfy (IC),

(ES), (SF), and (VP).

This follows from the work of Myerson and Satterthwaite (1983). See also Ledyard and

Palfrey (2007).

• To see whether the environment is such that we can have a policy satisfying (SF), (IC), (VP),

and (ES) is straight-forward if complex.
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First recognize3 that given W there are t such that (W, t) satisfies (SF), (IC) and (VP) iff

Â
Z
(ui � 1 � Fi

f i ui
q)Q

idFi � Â max
q

[ui
0(q)�

Z q

q
ui

q(s)Q
i(s)ds]. (4.6)

Let W⇤(q) 2 arg maxA⇢I Âi2A ui(qi, ki) subject to Âi2A ki  K⇤. Compute Qi(qi). Then plug

this into (4.6). If the functions u0 and u are such that the inequality holds then for this

fishery, then it is possible to design a buyback policy that satisfies (SF), (IC), (VP), and (ES).

Unfortunately that computation is complex and not very informative, so we do not do that

here.

4.2.4 A Weak Sufficient Condition

If we are willing to relax (ES) a little it is possible to use (4.6) to provide a set of simple sufficient

conditions on the fishery so that there is a buyback policy that satisfies (SF), (IC), and (VP), and is

almost (ES). Suppose that the environment satisfies a regularity condition4 that

d

(
ui � 1�Fi

f i ui
q

)

dq
> 0 (4.7)

Let q̄i solve ui(q̄i)� 1�Fi(q̄i)
f i(q̄i)

ui
q(q̄i) = 0 and let Ri = u(q̄i, ki). Think of Ri as a reserve price for which

fisher i has to pay to be considered for continued fishing. Let W⇤⇤ 2 arg maxA⇢I Âi2A ui(qi, ki)

subject to Âi2A ki  K⇤ and i /2 A if ui(qi, ki) < Ri. W⇤⇤ selects boats according to essentially

the same criteria as (ES) but does not consider boats with values below their reservation value.

Aggregate profits will be less under W⇤⇤ that under (ES) unless the private type of all boats is

such that they all above their reservation prices.

3See Section B.1.
4This is a standard monotonicity condition used in auction theory that ensures there is no pooling in the optimal

solution.
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Now note that Â
R
(u(qi, ki) � 1�Fi

f i uq(qi, ki)Q⇤⇤(qi)dFi � Â
R
(ui � 1�Fi

f i ui
q)dFi � Âi u(q, ki).5

The latter is true since
R

udF �
R

1dq �
R

Fdq =
R

udF � (u(q) � u(q)) + (u(q) �
R

udF). It is,

therefore, sufficient for (4.6) to hold that Âi u(q, ki) � Â maxq [ui
0(q)�

R q
q ui

q(s)Q
i(s)ds]. Now notice

that, since uq > 0 and du0/dq > 0, maxq [ui
0(q)�

R q
0 ui

q(s)Q
i(s)ds] < u0(q

i, ki). Combining all of

this we have the following

Theorem 10. If the regularity condition d[u � 1�F
f uq ]/dq > 0 holds, and if u(qi, ki) � u0(q

i, ki), then

there is a payment scheme t⇤⇤ such that (W⇤⇤, t⇤⇤) satisfies (SF), (IC), and (VP).

In words, if the regularity condition is true and if the payoff to the worst type in fishery after

capacity is limited is at least as great as the payoff to the best type in the current fishery, then there

is a buyback policy that is self-financing, satisfies voluntary participation, and provides efficient

selection subject to a reserve policy.

4.2.5 Second Best Selection

To get a sense for how strong the conditions in Theorem 10 are, consider the following problem:

Choose a policy (W, t) to maximize aggregate profits subject to (IC), (SF), and (VP1), where (VP1)

requires that V(qi, ki) � ui
0(q). Note that (VP1) is stronger than (VP) in the sense that any policy

that satisfies (VP1) will also satisfy (VP). More formally, using the (IC) condition and (4.6), choose

(W, t) to solve

max
q2[0,1]n

Â
Z

V0(ki) +
Z q

q
uqQ(x)dxdF(x) (4.8)

subject to

Â V0(ki) = Â
Z
(ui � 1 � Fi

f i ui
q)Q

idFi � Â u0(q1, ki) (4.9)

Â
i2A

kiqi(q)  K⇤ (4.10)

Actually we are now choosing the probability that any fisher i will be a winner rather than choos-

ing W by slightly changing the efficient selection problem. Earlier we chose W by maximizing over
5q is the lowest possible type.
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q 2 {0, 1}. Here we choose q 2 [0, 1]. This helps us avoid some messy issues raised by discrete-

ness. With this change, however, there may be one fisher for whom 0 < qi < 1. The interpretation

is that there is a random draw to determine whether they are in or out.6

Substituting the left-hand side of (4.9) into (4.8) and letting l be the Lagrange multiplier for

the right-hand side of (4.9), we can rewrite part of this, given l, as

max Â
Z
[(1 + l)ui � l

1 � Fi

f i ui
q ]QdF (4.11)

subject to

Â
i2A

kiqi(q)  K⇤ (4.12)

This is equivalent to, for each q, where d = l/(1 + l),

max
q2[0,1]n

Â[u(qi, ki)� d
1 � F

f
uq(q

i, ki)]qi(q) (4.13)

subject to

Â
i

kiqi(q)  K⇤. (4.14)

Note that if the (VP) constraint is not binding, l = 0 and d = 0, and this yields (ES). As the (VP)

constraint binds tighter, l increases to • and d increases to 1. When (VP) binds as tightly as it can,

we have (W⇤⇤, t⇤⇤) as the solution as in Theorem 10. That is, (W⇤⇤, t⇤⇤) is the worst one needs to

do to satisfy (VP), (IC), and (SF). One can do better by setting lower reserve prices. But to choose

the right one requires solving the problem (4.8), which is not particularly easy in practice.

We take up a simpler approach in the next Section.
6An alternative interpretation is that this boat gets to use only qi of its capacity. This interpretation makes sense if

there are constant returns to scale in capacity; that is, ui(qi , ki) = ri(qi)ki . We are not sure whether this is a reasonable
assumption or not.
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4.3 A Simple, Sealed-Bid, Buyback Auction Design

In the previous Section, we saw that under some very plausible conditions, it was possible to

design a direct revelation buyback policy that satisfied incentive compatibility (IC), self-financing

(SF), and voluntary participation (VP). We had to back off a bit from efficient selection (ES) to get

this because of the use of a reserve price. In this Section we push a little harder to see whether

we can get (IC), (SF), (VP), and (ES). We do this by considering a standard auction format, the

sealed-bid auction, and modifying it slightly to fit our situation. With an additional condition on

the environment, we can accomplish our goal.

Consider the buyback auction described by the following steps, where K⇤ is the capacity de-

sired after the auction:

1. Ask the participants to submit bids b1, . . . , bn. A bid is loosely interpreted to be a fisher’s

(per capacity) willingness to pay to stay in the industry; that is, it is related to ui(qi, ki)/ki.

2. The bidders are ranked from 1 to n according to bi. Then as many winners as possible are

chosen in order from 1 to n while keeping the aggregate capacity of the winners less than or

equal to K⇤. We allow the possibility that only part of a boat will win; that is, qi 2 [0, 1].

3. Collect from each winner, i, a fee equal to the highest losing bid times qiki.

4. Distribute the sum of the payments collected in the previous step equally among all partici-

pants, proportionally to ki .

More formally the simple, sealed-bid, buyback auction is described as follows.

1. (Bidding Rule) Each fisher i submits a bid bi.
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2. (Winners Determination) Let q⇤ solve

max
n

Â
i=1

qikibi (4.15)

subject to

n

Â
i=1

qiki  K⇤ (4.16)

qi 2 [0, 1]. (4.17)

Notice that there may be one i for whom 0 < q⇤i < 1. We interpret q⇤i as the probability that

i 2 W.

3. (Payment Rule) Let P⇤ = maxi2L bi and let C⇤ = Âi2I P⇤q⇤i ki. ti = Pq⇤i ki � C⇤ ki
Ân

j=1 kj .

Note that the first three steps constitute a standard Vickrey-Clarke-Groves (VCG) auction. If

we stopped there, it would be a dominant strategy for all agents to bid their true value of stay-

ing in the fishery, and that would meet our efficiency requirement. However, that auction would

neither be revenue-neutral nor satisfy voluntary participation. The last step of the auction tweaks

the VCG auction to ensure revenue-neutrality. The improvement comes at a cost in terms of com-

plexity for the bidders: it is no longer a dominant strategy for agents to bid their true valuations.

The open question at this point is: if bidders play a Bayes equilibrium, under what conditions

do (ES) and (VP) hold for this simple auction.

4.3.1 Efficient Selection

An Bayes equilibrium for the auction is a function bi(qi) ! <+. If b is symmetric, bi(qi) = b(qi),

and increasing, q̂i > qi implies that b(q̂i) > b(qi), then the Winners Determination insures that

(ES) will hold; those fishers with the highest per capacity profits will be chosen to remain in the

fishery. But to find an equilibrium that is symmetric and increasing requires some additional

assumptions. To get the increasing part, we need our familiar monotonicity condition. To get
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the symmetry part we need two things: constant returns to scale and sufficiency of q. Constant

returns to scale means ui(qi, ki) = ri(qi)ki. Sufficiency means ri(x) = r(x), 8i. That is, q captures

all of the differences between fishers.

Theorem 11. If ui(qi, ki) = r(qi)ki, 8i, and d[u � 1�F
f uq ]dq � 0,then there exists a symmetric and non-

decreasing Bayes-Nash equilibrium for the auction above such that ties happen with probability zero.

Proof. This result is a consequence of results established by Araujo and de Castro (2009). In that

paper, they use the Kakutani-Glicksberg-Fan fixed-point theorem to show that the best-reply map

on the space of nondecreasing bid functions7 to show that there exists a nondecreasing, pure-

strategy equilibrium. Modifying the proof of Lemma 3 (on p. 43) in a standard way8 we obtain a

symmetric monotone pure-strategy equilibrium.

To see that ties happen with probability zero, remember that bidders weigh the expected value

from obtaining the object plus the expected value of raising the rebate against the expected loss

of paying more than the object’s value to the bidder, and that this weighing is done in an additive

way. Therefore, if qj is best-replying, these potential gains and losses must offset each other. If

qi > qj, then his value for the object is higher and expected loss is also lower, so he cannot offset

the potential gains and losses from bidding with the same bid as qj. It follows that a symmetric

equilibrium must not have ties with positive probability.

Corollary 5. There exists a Bayes-Nash equilibrium for the simple, sealed-bid, buyback auction that satisfies

(ES) and (SF) with probability one.
7 They actually work on the equivalence classes of such functions that are equal almost everywhere.
8 Instead of using the best reply correspondence Gi , use a correspondence that maps a nondecreasing bid-function bi to

the bid functions b⇤
i that are a best reply to all other n � 1 agents playing according to bi . The rest of the argument follows

through without change, and we obtain a correspondence Ui (that is the restriction of Gi to the space of nondecreasing bid
functions) that is upper-semicontinuous and convex-valued. It follows from the Kakutani-Glicksberg-Fan theorem that Ui
has a fixed point that is a symmetric, monotone pure-strategy equilibrium.
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4.3.2 Voluntary Participation

For the simple, sealed-bid, buyback auction to satisfy (VP) we need the following to be true:

ui(qi, ki)� P⇤ki +
ki

Âj kj
P⇤K⇤ � ui

0(q
i, ki), 8i 2 W (4.18)

ki

Âj kj
P⇤K⇤ � ui

0(q
i, ki), 8i 2 L (4.19)

For ease of analysis we consider the case of a competitive auction. Since we set the price P⇤

to be the value of the first rejected bid, the only time a bidder can have an effect on the price is if

they are that first rejected bidder. If n is large then the probability of that is small and bi(qi) will

be near ui(K⇤, qi)/ki . If in addition a bidder bids behaviorally by ignoring that probability, then

they will bid their true value. That is, bi(qi) = ui(K⇤, qi)/ki.

Assumption The auction is competitive and bidders are behavioral; bi(qi) = ui(K⇤, qi)/ki.

Under this assumption, in order for (VP) to hold it must be true that P⇤ K⇤
K � ui

0(q
i ,ki

ki
), 8i, where

K = Âi2I ki. It is easy to see that this will certainly be true if K⇤
K mini

ui(q,ki)
ki

� maxi
ui

0(q,ki)
ki

. We

thus have

Theorem 12. Suppose qi is sufficient, there are constant returns to scale, and the regularity condition

d[u � 1�F
f uq ]/dq > 0 holds.

If mini u(qi, ki) � K
K⇤ maxi u0(q

i, ki), then the simple, sealed-bid buyback auction satisfies (SF), (IC),

and (VP).

Notice that this is stronger that what was needed in Section 4.2.3. In that Section we could

consider asymmetric payments to the various fishers. Here we are restricting ourselves to a sym-

metric payments, differentiated only by whether one is a winner or loser. Therefore we need to

insure that the surplus in the fishery after contraction is sufficiently larger to accommodate this.
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4.4 Conclusion

We have presented an auction design that is self-financing and has an ex post efficient selection.

We also present conditions that guarantee that profit-maximizing fishers will voluntarily agree to

participate in the auction. Because we interpret capital simply as vessel capacity, this model cannot

address all of the goals and concerns related to buyback policies (see Squires (2010)). However,

this restriction allows us to focus on a very important issue that have been plaguing buybacks:

the large losses due to excessive subsidies (see Clark, Munro, and Sumaila (2005)).
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Appendix A

Appendix to Chapter 3

A.1 Invertibility of the Jacobian of Various Equilibrium Subsys-

tems

The smoothness of the temporary equilibrium maps (and later, the equilibrium maps) depend on

the invertibility of the Jacobian of the subsystem relevant to temporary equilibrium (for equilib-

rium, we will need to look at the whole system) The Jacobian of the equilibrium system (3.8–3.13)

in the case n = 2 and y1 6= w1, y2 6= w2 is displayed in figure A.1.

Figure A.1: Jacobian of the equilibrium system, n is 2.

y1 w1 µ
y
1 µw

1 y2 w2 µ
y
2 µw

2 q s
y1 �D11c1 � D22f1 �D32f1 1 0 0 0 0 0 0 �D21c1
w1 �D23f1 �D33f1 0 1 0 0 0 0 �1 0
µ

y
1 µ

y
1 0 y1 0 0 0 0 0 0 0

µw
1 0 µw

1 0 w1 0 0 0 0 0 0
y2 0 0 0 0 �D11c2 � D22f2 �D32f2 1 0 0 �D21c2
w2 0 0 0 0 �D23f2 �D33f2 0 1 �1 0
µ

y
2 0 0 0 0 µ

y
2 0 y2 0 0 0

µw
2 0 0 0 0 0 µw

2 0 w2 0 0
q 0 1 0 0 0 1 0 0 0 0
s 1 0 0 0 1 0 0 0 0 �Dg

We partitioned the Jacobian matrix in blocks and labeled each column by its corresponding

variable, and we assigned to each equation its key related variable. For example, y1 is associated

with the first-order conditions on output of the individual optimization problem for agent 1, µ
y
1

with the complementary slackness condition of the constraint y1 > 0 and q with the market-

clearing condition. The dependency relationships between variables in the equilibrium system



76

is illustrated by the sparsity pattern of the matrix in figure A.1. It may be easier to analyze it in

figure A.2. The block relevant for temporary equilibrium is the top-left square block of size 4n+ 1.

Figure A.2: Sparsity pattern of the Jacobian of the equilibrium system, n is 2

.

The top-left square block of size 4n corresponds to individual optimal behavior.

Lemma 8. The hessian of the profit function (yi, wi) 7! pi(yi, wi) is invertible whenever yi > wi > 0.

Proof. The hessian of the profit function is given by

Hpi =

2

664
�D11ci � D22fi �D23fi

�D32fi �D33fi

3

775 (A.1)

Its determinant where yi > wi > 0 is

det Hpi = (D11ci + D22fi)D33fi � (D23fiD32fi)

As D11ci > 0 when yi > 0, it follows that where yi > wi > 0

det Hpi > D22fiD33fi � (D23fiD32fi) (A.2)

The right-hand side of (A.2) is the determinant of the hessian of fi as a function of (yi, wi).

The convexity of fi in (yi, wi) implies that the hessian on the right-hand side of (A.2) is positive

semidefinite, and thus its determinant is non negative. We conclude that det Hpi > 0 whenever

yi > wi > 0, as desired.
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Lemma 9. Take p, M, T AC, s, q arbitrarily and let (yi, wi) maximize the profits of fisherman i. Then the

4 ⇥ 4 block corresponding to individual optimal behavior in the Jacobian above is invertible if and only if

either yi > wi > 0 or µ
y
i , µw

i > 0.

Proof. We can write one such 4 ⇥ 4 diagonal block as a block matrix

Ji =

2

664
Hpi I

diag(µy
i , µw

i ) diag(yi, wi)

3

775 (A.3)

where each block is 2⇥ 2. The matrix Hpi is the hessian of the profit function (yi, wi) 7! pi(yi, wi)

2

664
�D11ci � D22fi �D32fi

�D23fi �D33fi

3

775

Note that the two bottom blocks of Ji are diagonal matrices and therefore they commute (i.e.,

their matrix product is the same, irrespective of the order of multiplication). We can thus write

the determinant of Ji as

det Ji = det(Hpi diag(yi, wi)� I diag(µy
i , µw

i ))

Expanding the first product

Hpi diag(yi, wi) =

2

664
yi(�D11ci � D22fi) wi(�D32fi)

yi(�D23fi) wi(�D33fi)

3

775

and thus

det Ji = det

2

664
yi(�D11ci � D22fi)� µ

y
i wi(�D32fi)

yi(�D23fi) wi(�D33fi)� µw
i

3

775

It can now be verified by simple substitutions that the determinant of the 2 ⇥ 2 matrix above is

zero if and only if yi, wi > 0 or µ
y
i , µw

i > 0, which completes the proof.
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Corollary 6. Consider p, M, T AC and (y, w, q, s) such that yi, wi maximizes profits for every fisherman

i. The Jacobian of the individual optimality subsystem (3.8–3.11) is invertible if and only if for all agents

i 2 I either yi, wi > 0 or µ
y
i , µw

i > 0.

Proof. The block corresponding to individual optimal behavior is a block-diagonal matrix with

n 4 ⇥ 4 diagonal elements coming from the four equations and four variables involved in the

first-order conditions of problem (3.4). Therefore, this whole 4n ⇥ 4n block is invertible if and

only if each of the diagonal blocks is invertible. The conditions for invertibility are proved in the

preceding Lemma.

Lemma 10. The Jacobian of the top-left square block of size 4n + 1 of the Jacobian in (A.1), referring to the

temporary equilibrium equations, is invertible whenever yi > wi > 0 for all i 2 I .

Proof. We can write the temporary equilibrium block as the following block matrix:

J =

2

664
A B

C D

3

775 (A.4)

Block A corresponds to the top-left square block of size 4n corresponding to the individual opti-

mality conditions. B is 4n ⇥ 1 C is 1 ⇥ 4n, and D is 1 ⇥ 1.

As we already know from Corollary 6 that A is invertible, we can write the determinant of the

matrix J in (A.4) as

det(J) = det(A)det(D � CA�1B)

Because D = 0, the invertibility of J hinges on the invertibility of CA�1B.

Note that because of the block-diagonal structure of A, we can restrict ourselves without loss
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of generality to the case n = 1 displayed in (A.5).

2

6666666666666666664

y1 �D11c1 � D22f1 �D32f1 1 0 0 �D21c1

w1 �D23f1 �D33f1 0 1 �1 0

µ
y
1 µ

y
1 0 y1 0 0 0

µw
1 0 µw

1 0 w1 0 0

q 0 1 0 0 0 0

s 1 0 0 0 0 �Dg

3

7777777777777777775

(A.5)

In that case, CA�1B is a 1 ⇥ 1 matrix, and some calculation shows that its value is

D11ci + D22fi
det Hpi

which is always strictly negative by Assumption. Therefore, J is invertible, as desired.

Lemma 11. Let G ⇢ R3 be the set of tuples p, M, T AC where agents violate quota in equilibrium and the

Jacobian of the equilibrium system (A.1) is not invertible. Then G is a nowhere dense set of measure zero.

Proof. Graphically, invertibility of the Jacobian corresponds to the temporary equilibrium curve

s 7! Y(s) being transversal to the stock growth curve s 7! g(s). It may be the case that those curves

are tangent, and therefore we cannot prove that the Jacobian (A.1) of the equilibrium system will

be invertible for all (p, M, T AC). However, we can use the transversality Theorem from Appendix

A.3 to show that this will happen only in a nowhere dense set of measure zero.

To that end, substitute the column corresponding to the derivatives with respect to s with a

column with derivatives with respect to the T AC to obtain the following square matrix (again,
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the case n = 1 is sufficient)

2

6666666666666666664

y1 �D11c1 � D22f1 �D32f1 1 0 0 0

w1 �D23f1 �D33f1 0 1 �1 0

µ
y
1 µ

y
1 0 y1 0 0 0

µw
1 0 µw

1 0 w1 0 0

q 0 1 0 0 0 0

s 1 0 0 0 0 �1

3

7777777777777777775

(A.6)

Again, partitioning the matrix in (A.6) in blocks A, B, C, D as in (A.4), with A being the 4n⇥ 4n

individual optimality part (which is invertible), we can write its determinant as

det(A)det(D � CA�1B)

Because we know A is invertible, the invertibility of the Jacobian matrix above hinges on the

invertibility of D � CA�1B. We can show that

D � CA�1B =

2

664

�D11ci�D22fi
det Hpi

�1

�D32fi
det Hpi

0

3

775 (A.7)

It is clear that the determinant of the matrix in (A.7) is not zero. Therefore, the matrix in (A.6) is

invertible.

The result follows then from the transversality Theorem. See Theorem 14 in Appendix A.3.

A.2 Nonsmooth Optimality Conditions when Violations Are Zero

Suppose q, s are such that there are optimal yi, wi for agent i where yi = wi. At this point, the map

(yi, wi) 7! f+(M, yi, wi) need not be differentiable. The first-order conditions at this point are

0 2 ∂yi ,wi L (A.8)
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where ∂yi ,wi L is the subgradient of the Lagrangian

L = pyi � c(yi, s, qi)� q(wi � wi)� f+(M, yi, wi) + µ
y
i yi + µw

i wi

So (A.8) translates into

p � D1ci + µ
y
i = h

�q + µw
i = n

(A.9)

for some (h, n) 2 ∂yi ,wi f
+. As f+ = max{f, 0} and f is convex and differentiable, we can write

the subgradient ∂yi ,wi f
+ as the convex combination of ryi ,wi f and (0, 0). Therefore, we can state

the following.

Lemma 12. Fix M, T AC, q, s. If yi, wi > 0 with yi = wi maximizes profits for i, then there exists

ai 2 [0, 1], µ
y
i > 0, and µw

i > 0 such that yiµ
y
i = 0, wiµ

w
i = 0 and

p � D1c(yi, s, qi) + µ
y
i = aiD2f(M, yi, wi)

�q + µw
i = aiD3f(M, yi, wi)

We can now examine who will have positive production and who will hold positive amounts

of quota.

Lemma 13. Fix M, T AC, q, s. If p > D1c(0, s, qi) for some fishermen i, and (yi, wi) maximizes profits,

then yi > 0. Conversely, if there is a profit-maximizing (yi, wi) with yi > 0, then p > D1c(0, s, qi), with

strict inequality if q > 0.

Proof. Straight out of the first order conditions. See Lemma 12 at page 81.

Lemma 14. Fix M, T AC, q, s, yi > 0. If q < D3f(M, yi, 0) for some fishermen i, and (yi, wi) max-

imizes profits, then wi > 0. Conversely, if there is a profit-maximizing (yi, wi) with wi > 0, then

q < �D3f(M, yi, 0).

Proof. Follows from the first-order conditions and the fact that f is strictily convex in wi.
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A.3 Transversality Theory

Some of our results rely on a collection of propositions loosely referred to as “the transversal-

ity Theorem(s)”. These results formalize and generalize the heuristic analysis of the solution set

of a system of nonlinear equations through “counting equations and unknowns” by stating that

smooth curves and surfaces (more generally, manifolds) are generally transversal. It is thus nec-

essary to be precise about the definitions of “smooth”, “manifold”, “generic” and “transversal”.

These concepts have had useful applications in economic theory for a long time (see Mas-Colell

(1985)). We provide a brief introduction to these topics in this Appendix. See Guillemin and

Pollack (2010) or Hirsch (1976) for a textbook treatment of the subject. The Theorems listed here

were taken from Aubin and Ekeland (2006).

Let X ⇢ Rk and Y ⇢ Rl be arbitrary. We say a map f : X ! Y is smooth map of class Cr if for

each x 2 X there is an open set U ⇢ X about x and a map F : U ! Rl of class Cr, r > 1 such that

F coincides with f on U \ X. We call f a diffeomorphism if it is a smooth bijection with a smooth

inverse. Examples of smooth maps and diffeomorphisms: the identity map is always smooth, but the

map x 7! x3 of (�1, 1) on itself is not a diffeomorphism; it is smooth with a continuous inverse,

but the inverse y 7! y1/3 is not differentiable at y = 0.

A set X ⇢ Rn is a m-dimensional smooth manifold if every point x 2 X has a neighborhood

in X that is diffeomorphic to an open subset of Rm. Examples of smooth manifolds: any singleton is

a 0-dimensional smooth manifold; any open set in Rk is a k-dimensional manifold; the graph of

any smooth function f : Rk ! R is a smooth manifold of dimension k � 1.

Let x be an element of an m-dimensional manifold M ⇢ Rn Let U ⇢ Rm be an open set

containing x, and g : U ! M the smooth parametrization of a neighborhood of x. The tangent

space at x relative to M, denoted by Tx M, is the image of the linear operator Dg(x) : Rm ! Rn.

One can prove that the tangent space does not depend on the choice of parametrization g. Examples

of tangent spaces: for every x 2 Rn we have TxRn = Rn; relative to the 2-dimensional unit-sphere

in R3, the tangent space at any point is R2. One can show that the tangent space has the same

dimension as the manifold it is tangent to.
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Consider two smooth manifolds M ⇢ Rk and N ⇢ Rl and a smooth map f : M ! N with

f (x) = y. The derivative D f (x) : Tx M ! TyN is defined as follows. Since f is smooth, there

exists an open set about x and a smooth map F : W ! Rl that coincides with f on W \ M. For

all v 2 Tx M define the D f (x) · v to be equal to the directional derivative DF(x) · v. One can prove

that the derivative of f at x does not depend on the choice extension F.

Let us now move on to the notion of genericity. Let X be a complete metric space. A Gd subset

of X is defined as the intersection of a countable family of open subsets of X. We say Y ⇢ X is

generic set if it contains a dense Gd of X. We say a statement P(x) about points x 2 X is a generic

property if the set {x 2 X : P(x) is true } is generic.

Finally, let us define the notion of transversality. It is a generalization of the notion of regularity.

Let f : X ! Y be a smooth map between smooth manifolds and Z be a submanifold of Y such

that Z \ f (X) 6= ∆. It may or may not be the case that f�1(Z) is a smooth submanifold of X. A

sufficient condition for that is that f be transversal to Z in a sense that we explain now in increasing

level of generality.

• Let X = Y = Rn, Z = {0}. In this case, f (x) 2 Z represents a square system of nonlinear

equations. We say f is transversal to Z if for all x 2 f�1(Z) the derivative D f (x) is invertible.

The inverse function Theorem guarantees that f�1(Z) is a set of isolated points, or, in other

words, it is a manifold of dimension 0 (equivalently, with the same codimension of Z in Y:

n).

• Let X = Rn, Y = Rp, Z = {0}. In this case, f (x) 2 Z represents a nonlinear system of equations

We say f is transversal to Z if for all x 2 f�1(Z) the derivative D f (x) is surjective (synonym:

onto). This is the same as saying that 0 is a regular value of f . The implicit function Theorem

guarantees that f�1(Z) is a smooth manifold of dimension n � p (equivalently, with the

codimension of Z in Y: p).

• Let X = Rn, Y = Rp, and Z some m-dimensional submanifold of Y. In this case, f (x) 2 Z
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represents a system of nonlinear inclusions. We say f is transversal to Z if for all x 2 X:

Im(D f (x)) + Tf (x)(Z) = Rp

The implicit function Theorem will guarantee that f�1(Z) is a smooth manifold of dimension

n � p + m (equivalently, with the codimension of Z in Y: p � m).

• General case, where X, Y and Z ⇢ Y are manifolds. In this case, f (x) 2 Z represents a system

of nonlinear inclusions. We say f is transversal to Z if for all x 2 X:

Im(D f (x)) + Tf (x)(Z) = Tf (x)Y

The implicit function Theorem guarantees that f�1(Z) is a smooth manifold with codimension

equal to the codimension of Z in Y.

in the nonlinear system f (x) 2 Z. The dimension of f�1(Z) is the formalization of the idea of

“number of degrees of freedom” in the nonlinear system f (x) 2 Z.

We can now state versions of the transversality Theorem that are sufficiently general for our

needs. In the following, U is an open subset of Rn, L is a separable Banach space and Z is a C•

submanifold of Rp with codimension q.

Theorem 13 (Transversality Theorem 1). Let f : U ⇥L ! Rp be a smooth map of class Cr, r > 1. If f

is transversal to Z and r > max{1, n � q + 1} then

L = {l 2 L : x 7! f (x, l) is transversal to Z}

is a generic set in L.

The fact that V is infinite dimensional allows us to pick the function itself as a parameter.
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Corollary 7 (Transversality Theorem 2). The property

P( f ) = { f : U ! Rp is transversal to Z}

is generic in Cr(U; R).

In particular, this Corollary implies that “for most” (that is, generic) smooth, square, nonlinear

systems of equations, the solution set is a set of isolated points (a 0-dimensional manifold). More

generally, if this square system of equations has k (exogenous) parameters then “for most” (that is,

generic) smooth, nonlinear systems of equations, the solution set as a function of the exogenous

parameters is a manifold of dimension k.

Let us quickly relate the transversality Theorem to the heuristic analysis of the solution set via

“numbers of variables vs. numbers of equations” arguments that is familiar from linear algebra.

The dimension of the solution set f�1(Z) is the formal concept of “degrees of freedom”; The

codimension of the solution set f�1(Z) “typically” is the number of equations. The transversality

Theorem formalizes, generalizes and generically validates the following heuristic local analysis of

systems of nonlinear equations:

• degrees of freedom = number of variables - number of equations;

• positive degrees of freedom imply multiple solutions;

• negative degrees of freedom imply no solutions (because the empty set is the only manifold

of negative dimension);

• zero degrees of freedom imply a unique solution.

If we confine ourselves to a finite-dimensional set of parameters L, we can strengthen the

conclusion of the transversality Theorem.

Theorem 14 (Transversality Theorem 3). Let M ⇢ Rn, L ⇢ Rl , and Z ⇢ Rp be smooth manifolds. Let
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f : M ⇥ L ! Rp be a smooth map. If f is transversal to Z then

L = {l 2 L : x 7! f (x, l) is transversal to Z}

is a generic set in L, and L \ L has measure zero.

A.4 Assumptions on the Monitoring Function

We now make some additional Assumptions based on the interpretation of f(M, yi, wi) as the

expected fine for violation. First, we assume f to be jointly convex in (yi, wi), but not necessarily

strictly so, as that rules out interesting violation measures like v(yi, wi) = (yi � wi)/(1 + wi).

Second, we also assume that |D2f| 6 |D3f| That means that given any change in catch yi, there is

a (weakly) smaller change in quota holdings wi that changes the total fine at least as much as the

change in yi. Third, we assume that for all (yi, wi) 6= (yi, eyi) we have

(D2f(M, yi, wi)� D2f(M, eyi, ewi)) (D3f(M, eyi, ewi)� D3f(M, yi, wi)) > 0

That simply means that if the marginal fines D2f go up, then so should the marginal fine savings

from buying quota �D3f, and vice-versa. Finally, note that it follows from our Assumptions that

if D2f and D3f exist at a point where yi = wi, then D2f = D3f at that point. This equality may

or may not hold at other points depending on the violation measure (for example, it will always

hold if violations are measured absolutely).

Note that it may well be the case that f+ is not differentiable when violations are exactly

zero, that is, when yi = wi. Example: f(M, yi, wi) = r(M)((yi � wi) + (yi � wi)
2). Allowing this

type of nonsmoothness at zero violations makes the analysis of first-order conditions a little more

complex but it enriches the model in a way that we believe is significant: it makes it possible for

respecting one’s quota to be an optimal action.
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Appendix B

Appendix to Chapter 4

B.1 Auxiliary Results

From (IC) and (BB): T = uQ�V0 �
R q

0 uq(s)Q(s)ds. Given Q, let A =
R q

0 uq(s)Q(s)ds�u(q)Q(q).

Let ti = �Ai + ai + 1
N�1 Âj 6=i Aj. Then Ti = �Ai + ai + 1

N�1 Âj 6=i Āj. Thus, V0 = �ai �

1
N�1 Âj 6=i Āj. Now Â ti = 0 if and only if Â T̄i = 0 iff Â ai = 0 iff Â Vi

0 + Â Āi = 0 iff Â Vi
0 +

Â
R
[
R q

0 ui
q(s)Q

i(s)ds�ui(q)Qi(q)]dFi = 0 iff (integrating by parts) Â Vi
0 �Â

R
(ui � 1�Fi

f i uq)QidFi =

0 iff Â
R
(ui � 1�Fi

f i uq)QidFi = Â Vi
0.

From (IC) and (VP): Given Q, V0 � u0(q)�
R q

0 uq(s)Q(s)ds, 8q. For standard models in which

u0(q) = u0, a constant, and uq > 0 then this requires V0 � u0. In our case, however, du0/dq > 0,

so the standard approach does not work. An alternative that would work if du0/dq � uq8q, is

to note then that we would need V0 � u0(q1)�
R q1

q0
uqQds. But for fishing it is probably true that

du0/dq  uq , 8q. Therefore the most we can say is that V0 � maxq [u0(q)�
R q

0 uq(s)Q(s)ds].

All Together Therefore we have the following result: Given Q there are t such that (Q, T) satisfies

(BB), (IC) and (VP) iff

Â
Z
(ui � 1 � Fi

f i uq)QidFi � Â max
q

[u0(q)�
Z q

0
uq(s)Q(s)ds]. (B.1)
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