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Abstract

In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp

bounds in the studies of quantum many-body systems. The main advantage of this approach, as

opposed to the conventional field-theoretic argument, is that it depends very little on the precise

form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning

the structure of quantum states that are conditionally independent. Depending on the application,

some of these statements are generalized to quantum states that are approximately conditionally

independent. These structures can be readily used in the studies of gapped quantum many-body

systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived,

including (i) a universal upper bound for a maximal number of topologically protected states that

is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound

for the topological entanglement entropy that decays superpolynomially with the size of the subsys-

tem, and (iii) a correlation bound between an arbitrary local operator and a topological operator

constructed from a set of local reduced density matrices. I also introduce exactly solvable models

supported on a three-dimensional lattice that can be used as a reliable quantum memory.
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Chapter 1

Introduction and preliminary
materials

In this thesis, we shall study the generic properties of gapped quantum many-body systems by (i)

constructing exactly solvable models and (ii) exploiting the tools from quantum information theory.

In fact, we shall restrict our focus to a set of quantum many-body systems described by a local

Hamiltonian. We say a Hamiltonian H is local if it can be described by a sum of geometrically

local terms with a bounded norm. Note that, while each of the geometrically local terms in the

Hamiltonian have bounded norms, H itself might have an unbounded norm for an infinite system.

Two HamiltoniansH andH ′ are typically labelled to be in the same phase if they can be adiabatically

connected to each other without closing the energy gap between the ground state and the rest of

the spectrum.

One of the subtleties in defining a quantum phase lies on the fact that we are implicitly assuming

an infinite volume limit of some sequence of Hamiltonians. After all, any generic finite dimensional

Hamiltonian always has a gap between the first excited state and the ground state. Furthermore,

as shown by Wen[1], there can be systems that have degenerate ground states in the thermody-

namic limit even without any symmetry. Nowadays this is known as the topological ground state

degeneracy.[1, 2, 3] The topological ground state degeneracy arises because an energy splitting be-

tween the different “ground state sectors” are suppressed exponentially in the system size. Hence,

the energy splitting for a finite system may be nonzero due to the finite-size effect.

Even further complications may arise due to the existence of a gapless edge mode.[4, 5, 6] The

gapless edge mode refers to a gapless excitation that is localized along a boundary of a finite system.

For such systems, the energy spectrum of the excitations that are sufficiently far away from the

boundary must be separated from the ground state by a constant that is independent of the system

size. On the other hand, the energy spectrum of the excitations along the boundary is close to that

of the ground state with an energy difference that approaches 0 in the thermodynamic limit. We

shall call such systems to have a bulk gap and a gapless edge mode.



2

One of the approaches for understanding these phases is to study their trial wavefunctions. For

example, Laughlin was able to construct a wavefunction that predicted the partially filled Landau

level of a quantum Hall system as well as the existence of a quasi-particle with a fractional charge.[7]

Laughlin’s approach was subsequently vindicated by the discovery of an adiabatic path that in-

terpolates between Laughlin’s wavefunction and a realistic system with a Coulomb interaction.[8]

Also, Moore and Read proposed a trial wavefunction for a ν = 5
2 fractional quantum Hall state, and

predicted the existence of a quasi-particle that exhibits a non-Abelian statistics.[9]

Meanwhile, interesting developments were being made by several authors for the studies of one-

dimensional quantum many-body systems. Partly inspired by Wilson’s idea of the renormalization-

group (RG) flow,[10, 11, 12] White introduced a powerful numerical tool known as the density

matrix renormalization-group (DMRG).[13] Around the same time, Fannes et al. introduced a class

of quantum states known as the finitely correlated states (FCS).[14] It eventually became clear that

DMRG and FCS have an intimate connection. Several authors have studied the so called matrix

product state (MPS) formalism, and such an approach was successfully used in understanding the

structure of 1D gapped systems.[15, 16, 17, 18, 19] A justification for using the MPS formalism

in such setting is based on the area law of 1D gapped system.[20] The area law states that the

entanglement entropy S(A) = −Tr(ρA log ρA) of a subsystem A is bounded by the size of its area,

as opposed to its volume. Hastings proved that this is the case for 1D gapped systems, and also

showed that such states admit an efficient MPS description.[20]

The success of the MPS formalism was subsequently followed by the discovery other variational

ansatzes, such as the projected entangled-pair states (PEPS)[21] and the multiscale entanglement

renormalization ansatz(MERA)[22]. The motivation for studying these variational states are mainly

twofold. First, by having a succinct description of the quantum many-body wavefunction, one can

simulate their ground state properties efficiently. Second, one might be able to understand the

generic structures that arise from these variational classes.

These variational states typically have a well-defined parent Hamiltonian.[23, 24, 25] If the parent

Hamiltonian has a simple structure, it can substantially reduce the complexity of studying the

properties of the quasi-particles. In particular, if the Hamiltonian consists of a sum of commuting

terms, the underlying model is called as an exactly solvable model. Examples include the quantum

double model and the string-net model.[3, 26]1 While it is hard to construct a physical system that

realizes such a Hamiltonian exactly, the virtue of these models is that the properties of the phase

are stable against a small enough perturbation.[28, 29, 30] For example, consider the toric code.[3]

As noted by Kitaev,[3] a perturbation theory calculation of the ground state degeneracy splitting

decays exponentially in the system size. Recently, this result was put on a rigorous ground by

several authors.[28, 29, 30, 31] Once such a stability bound is obtained, one can formally use the

1It is important to note that there are examples which do not belong to such categories, see Ref.[27].
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quasi-adiabatic continuation technique to obtain rigorous statements about the properties of the

phase.[32, 33]

For example, a rather obvious consequence of the gap stability is the stability of the particle

statistics and the logical operator that can map one of the ground states to another.[29] Under the

adiabatic evolution, the quasi-particle excitations may spread out to a length that is comparable

to its correlation length. Hence, the conventional braiding operation can be still described by a

dressed string-like operator. Higher-dimensional analogues of these statements can be obtained

quite straightforwardly. An important lesson that one can learn from these examples is that, once

we are given a model with a protected energy gap, important properties of its phase can be rigorously

proven to be stable under a generic perturbation that is sufficiently weak. Therefore, one can consider

these exactly solvable models as representatives of each gapped quantum phases.2

For these exactly solvable models, there is a general tradeoff bound that constrains a number

of topologically protected ground states and its ability to protect against creation and diffusion

of the quasi-particles.[34, 35, 36, 37, 38] When applied to two-dimensional systems, these tradeoff

bounds imply that there has to be a constant energy barrier to construct a map from one of the

degenerate ground states to another ground state. Recall that Arrhenius’ law states that a transition

rate for such processes is of the order e−β∆E , where β is the inverse temperature and ∆E is the

energy barrier. Since this expression alone does not account for the entropic contributions, it must

not be considered as a mathematically rigorous result. However, this expression does cast doubt

in using two-dimensional topologically ordered systems as a stable quantum memory without any

active intervention. Indeed, there is a rigorous upper bound on the decoherence time for Kitaev’s

toric code that is independent of the system size.[39]

On the other hand, it is well-known that a variant of the toric code in four spatial dimensions

can have an extensive energy barrier that grows with the system size.[40] Later Alicki et al. were

able to obtain a rigorous lower bound on the decoherence time that scales exponentially with the

system size.[41] An important open question was whether it is possible to have such a stable quantum

memory in three spatial dimensions. A number of authors have introduced a possible generalization

of two-dimensional exactly solvable models to three spatial dimensions, but they were all shown to

have a constant energy barrier.[42, 43, 44, 45] Later we have obtained yet another variant of these

models, which was motivated from the fact that the previously known models could be manifestly

decomposed into the “electric” and the “magnetic” part, so that at least one of them has a constant

energy barrier.[46] This new model did not have such a manifest decomposition, yet it shared all the

qualitative features of the three-dimensional (3D) toric code.

Soon it was realized by Yoshida that there is a good reason behind why such conclusion was

2However, it is not clear if one can always obtain such exactly solvable models for any topologically ordered phase.
For example, the exactly solvable models introduced by Levin and Wen in Ref.[26] is unable to reproduce the chiral
gapless edge mode.
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inevitable.[47] He showed that, given a three-dimensional system described by a stabilizer group

formalism with a bounded number of encoded qubits, the energy barrier is always bounded by a

constant. Roughly at the same time, Haah published his breakthrough result which seemed to

have many counterintuitive properties.[48] One of the defining properties of Haah’s model is that

the quasi-particles cannot move freely without paying an extensive energy cost that grows with the

length it travels.[49] Due to this reason, his model quickly became a candidate for a self-correcting

quantum memory in 3D. However, it was later realized that the decoherence time only grows as

O(eβ
2

).[50] This bound does not grow with the size of the system, so Haah’s model is not a self-

correcting quantum memory in a strict sense. Nevertheless, it is interesting to see that one can

have a substantially longer lifetime than ordinary two-dimensional quantum memories at a low

temperature. The first part of the thesis will be about the results that hinge on these developments.

More specifically, we will describe two exactly solvable models that are similar to (i) the 3D toric

code and (ii) Haah’s model. These shall be covered in Chapter 3.

The direction of the rest of the thesis shall be rather different in that we will be studying the

generic properties of a gapped quantum many-body system from a rather small set of assumptions.

More specifically, we shall assume that (i) the system is gapped and (ii) it satisfies a certain form of

an area law. It is widely believed that the area law is true for a gapped quantum many-body system,

but there are several reasons to be careful about such an assertion. For one thing, the area law has

been only established for one-dimensional systems.[20, 51, 52, 53] Unfortunately, the techniques used

in these works do not seem to have an easy generalization that is applicable to higher dimensional

systems. Also, Michalakis was able to obtain a rigorous bound on the change of the entanglement

entropy under an adiabatic evolution.[54] In this stability bound, a logarithmic divergence is present

in any systems that are supported on a d ≥ 2-dimensional lattice. These results suggest that, even

if area law is true, rigorously proving it in d ≥ 2 spatial dimensions is likely to be a difficult task.

Therefore, instead of attempting to prove the area law, we shall take it as an axiom and study its

consequences. The key idea lies on an observation that (i) there is a special structure that arises for

states that are conditionally independent and (ii) the RG fixed-point ground state wavefunction of a

topologically ordered system has many subsystems with such a property.[55] These observations shall

be later explained in more detail, but for the moment we would like to sketch the general principle

behind this approach. A tripartite state ρABC is conditionally independent if its conditional mutual

information I(A : C|B) = S(AB)+S(BC)−S(B)−S(ABC) is equal to 0. If the state is conditionally

independent, there are several different ways to reconstruct the global state ρABC from the local

reduced density matrices, such as ρAB and ρBC . There are several scenarios in which this property

can be exploited.

For example, suppose we are given two quantum states, say |ψ1〉 and |ψ2〉 that are topologically

ordered. In other words, these two states are indistinguishable from each other if the measurement is
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restricted to their local subsystems. The local indistinguishability would imply that the local reduced

density of these two states are identical. At least in this idealized setting, one can conclude that the

conditional mutual information I(A : C|B) for the two states cannot be equal to 0. Otherwise, one

would be able to reconstruct the global state from the local reduced density matrices.[55] Since the

local reduced density matrices were assumed to be identical, the reconstructed states for |ψ1〉 and

|ψ2〉 must be identical to each other. However, such result contradicts the original assumption: that

|ψ1〉 and |ψ2〉 are orthogonal to each other.

The preceding argument is one of the many implications of the conditional independence. On

one hand, this is encouraging in that we can obtain strong statements about quantum states without

resorting to the properties of its parent Hamiltonian. On the other hand, a more careful analysis

must be worked out. For example, a big open question in quantum information theory concerns a

structure of states that are approximately conditionally independent. Realistic quantum states that

arise as a ground state of a quantum many-body system will generically have a small conditional

mutual information, rather than saturating its minimal value exactly. Hence, statements that are

robust against such small deviation of the conditional independence condition is highly desirable.

An important tool that shall be used in conjunction with the preceding idea is the quasi-adiabatic

continuation.[33, 56, 57, 58, 59, 60, 61, 29] Quasi-adiabatic continuation asserts that, given a set of

approximately degenerate ground states |ψi(s)〉i=1,···N that are sufficiently separated from the rest

of the spectrum by a constant along an adiabatic path s ∈ [0, 1], there exists a unitary operation

U(s) such that
N∑
i=1

|ψi(s)〉 〈ψi(s)| = U(s)

N∑
i=1

|ψi〉 〈ψi|U(s)† (1.1)

for all s ∈ [0, 1]. Further, the unitary operator U(s) is generated by a sum of path-dependent quasi-

local generators with a superpolynomially decaying tail. A similar statement can be obtained even

if the system only preserves the bulk mobility gap alone, see Ref.[61].

Existence of such a quasi-local generator implies that one can use the so called Lieb-Robinson

bound[33, 56, 57, 58, 59, 62, 63, 64, 65, 66, 60, 67, 68, 69, 70, 61, 29] to bound a speed at which

information can propagate. Lieb-Robinson bound asserts that, given a time-dependent Hamiltonian

H(t) that consists of a sum of differentiable quasi-local bounded-norm terms with a tail that decays

sufficiently fast, the dynamics generated by H(t) has an effective light cone: the correlation between

two observables that lie outside the lightcone is small. We shall show that these tools can be

used to make quantitative statements about (i) several properties of the topological entanglement

entropy[27, 71] and (ii) the structure of real-space entanglement spectrum.
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1.0.1 How to read this thesis

Due to the scope of the thesis, we explain the necessary background materials to read each of

the chapters. Chapter 2 concerns exactly solvable models that can be described by the stabilizer

group formalism, which is briefly explained in Section 1.2. Therefore, the technical tools used in

Chapter 3 will be irrelevant for the discussion. On the other hand, Chapter 4–6 will be based on the

tools described in Chapter 3. In Chapter 4, we shall construct a set of inequalities between long-

range entanglement and a topological ground state degeneracy. This result is based on the strong

subadditivity of entropy alone, which is explained in Section 1.1. Chapter 5 studies a structure of

the entanglement Hamiltonian in gapped quantum many-body systems. For this work, one would

need Section 3.1,3.3, and 3.4. In Chapter 6, we establish a first-order perturbative stability of the

topological entanglement entropy. All of the technical tools in Chapter 3 will be needed to understand

the material. In Appendix A, we describe some of the technical tools that were developed in an

attempt to attack the problems discussed in this thesis. These tools were superseded by the tools

described in the main text of the thesis. Nevertheless, we list these results since they may be

interesting in their own right.

1.1 Ground state properties of a topologically ordered sys-

tem

In this section, we review some of the well-known facts about topologically ordered systems, mainly

focusing on its ground state properties. Of course, it is not clear if the ground state wavefunction

alone gives a sufficient information to completely determine its underlying phase. This is due to the

fact that the properties of its quasi-particles may not be completely determined by the ground state

wavefunction alone. For example, there exists a gapless Hamiltonian whose ground state subspace

is exactly equal to that of the toric code Hamiltonian.[72] Such an example shows that one must

impose a certain “naturalness” condition to discuss the properties of the quasi-particles. However,

the situation may not be so bad in light of the result by Zhang et al.[73] They have shown that one

can infer the elements of the topological S-matrix and U -matrix from the ground state entanglement

alone. For certain systems, these data are sufficient to determine all the important properties of the

topological phase, see Ref.[74].

1.1.1 Topological ground state degeneracy

Topological ground state degeneracy refers to a set of states that are locally indistinguishable from

each other. It was first realized by Wen that a nontrivial ground state degeneracy can arise for

a spin liquid system on a compact manifold.[1] Subsequently Niu and Wen discovered a similar



7

behavior for a fractional quantum Hall system.[2] The character of such a degeneracy is different

from the degeneracy that arises from a symmetry breaking phenomenon. For example, consider

an Ising model at zero temperature. The degenerate ground states can be distinguished by a local

observable, namely the σz operator. This is not the case for a topologically ordered system. No local

observable can distinguish different ground state sectors. The local indistinguishability property is

at the heart of the topological protection of quantum information. In order to disturb the quantum

information that is encoded in the ground state subspace, a highly nonlocal operation must be carried

out. Furthermore, under a generic condition that is believed to be satisfied by many systems, the

degeneracy is protected by any local perturbation that is sufficiently weak.[28, 29, 31] We note in

passing that there are other types of topologically protected degeneracy that may arise.[3, 75, 76,

77, 78] We believe our tool can be applied to these systems as well, but we leave that for the future

work.

1.1.2 Topological entanglement entropy

It was first discovered by Hamma et al. for Kitaev’s toric code model[79] and later generalized by

Kitaev and Preskill[27] and Levin and Wen[71] that there exists a universal constant subcorrection

term of the entanglement entropy that characterizes the phase. More precisely, given a simply

connected subsystem A, its entanglement entropy S(A) can be expressed as

S(A) = a|∂A| − γ +O(e−|∂A|/ξ), (1.2)

where a is a nonuniversal constant, |∂A| is the boundary area of A, γ is the topological entanglement

entropy, and ξ is the correlation length of the system. It was argued by these authors that γ is an

invariant, in that its value changes very little under an adiabatic evolution of the system that

does not close the bulk gap. While a substantial amount of numerical work has confirmed their

predictions,[80, 81, 74, 82] rigorously proving its stability still remains as an open problem. In fact,

Bravyi has an unpublished model which can be adiabatically connected from a trivial state, yet has

a nonzero amount of topological entanglement entropy defined as in Ref.[27, 71, 83].[83] Bravyi’s

counterexample shows that a constant subcorrection term of the entanglement entropies in such

systems is not a stable invariant characterizing the phase. But then, what does γ represent? The

numerical examples give values that are close to what the ideal wavefunctions predict.[80, 81, 74,

82] Hence, it is natural to conclude that there exists an alternative definition of the topological

entanglement entropy that evades Bravyi’s counterexample.

Coming up with such a definition is an important problem, especially in light of the recent

result by Cincio and Vidal.[74] Their conclusion, which was drawn from the result by Zhang et

al.[73, 84], gives a complete information about the quasi-particles from the ground state wavefunction
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alone. Since the quasi-particles in two spatial dimensions can be used to perform a fault-tolerant

quantum computation,[3] it is important to have a correct definition of the ground state observables

to characterize such phases from the microscopic Hamiltonian. We do not have a complete answer

to this problem, but we shall propose an alternative definition that are in many ways natural. More

specifically, we shall derive a universal inequality relating the number of topologically protected

states and a certain linear combination of the entanglement entropies. This linear combination is

reduced to the topological entanglement entropy for an idealized wavefunction that is a fixed-point

of some RG flow. Furthermore, the inequality is saturated with an equality for Abelian anyon

models, giving an automatic one-sided stability bound for this newly defined quantity. Of course,

the one-sided stability result does not imply the stability of the topological entanglement entropy.

Nevertheless, our result implies that it suffices to prove a rigorous upper bound for the topological

entanglement entropy in order to prove its stability under an adiabatic evolution.

After the discovery of the topological entanglement entropy, several authors have attempted to

find its finite-temperature generalizations. For a two-dimensional system, it was quickly realized that

the topological entanglement entropy vanishes at any finite temperature.[85, 86] On the other hand,

the topological entanglement entropy does survive at finite temperature for certain systems, see

Ref.[43, 87]. There are some subtleties that are worth mentioning. For a three-dimensional variant

of the toric code, there exists an order parameter that is analogous to the topological entanglement

entropy.[85] The value of the order parameter vanishes at a sufficiently high temperature, but it

attains a nonzero value even in the thermodynamic limit below a certain critical temperature. On

the other hand, Hastings showed that the model can be mapped to a thermal state of a classical

Hamiltonian under a finite-depth local quantum circuit.[88] These two results together imply that

the topological entanglement entropy can be of a classical origin at a finite temperature. Therefore,

it is not clear if it is a stable invariant under a small perturbation. We make a partial progress

in showing the perturbative stability of this quantity. A similar technique shall be used to prove a

first-order perturbative stability of the ground state topological entanglement entropy as well.

1.1.3 Entanglement Hamiltonian

Another surprising property of the gapped systems is the locality of the entanglement Hamilto-

nian. Formally, entanglement Hamiltonian is defined as a logarithm of a reduced density matrix

of some region, say A. There is no a priori reason as to why such operator must have a special

structure. However, Li and Haldane showed that the spectrum of the entanglement Hamiltonian of

a ν = 5
2 variational FQHE wavefunction along the orbital cut resembles that of an one-dimensional

local Hamiltonian.[89] Furthermore, the spectrum contains information about the conformal field
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theory(CFT) that describes the FQHE wavefunction.3

Since the discovery of Li and Haldane, a number of authors followed up by investigating different

variational states.[90, 91, 92, 93, 94, 95] One of the conclusions uniformly drawn from these works is

that the spectrum of the entanglement Hamiltonian can be described by the spectrum of some local

Hamiltonian. Further, this spectrum contains information about the phase. Unfortunately, such

emergent local structure of the entanglement Hamiltonian was studied only by either investigating

a class of variational states[95, 94] or performing numerical experiments.[90, 91, 92, 93]

In Chapter 5, we make a partial progress in understanding this local structure. More specifically,

we shall show that a judiciously chosen linear combination of the entanglement Hamiltonian has

a small correlation with almost all local observables, given that the ground state wavefunction

obeys a certain form of an area law. Our result shows that the local structure of the entanglement

Hamiltonian may be attributed to the area law of entanglement entropy[96] and the exponential

clustering theorem[56, 57], which are believed to be the generic properties of a gapped quantum

many-body system.

1.2 Information measures

A fundamental quantity in quantum information theory is the von Neumann entropy S(ρ).

Definition 1.

S(ρ) := −Tr(ρ log ρ). (1.3)

The von Neumann entropy quantifies the amount of information that is present in a sequence of

many copies of the state. Schumacher showed that ρ⊗n can be compressed into n(S(ρ)− δ) qubits

with an error that vanishes in n→∞ limit for any nonzero δ.[97]

Entanglement entropy is a canonical measure for quantifying entanglement in a bipartite system.

Given a quantum state ρ, its entanglement entropy of a subsystem A is defined as follows.

Definition 2.

S(A) := −Tr(ρA log ρA), (1.4)

where ρA is the reduced density matrix over the subsystem A.

Given a multipartite system, one can define a linear combination of the entanglement entropy.

For example, mutual information is a measure of correlation that is present between two subsystems.

3In the literature, the spectrum of the entanglement Hamiltonian is called as the entanglement spectrum. We
emphasize that the entanglement Hamiltonian contains more information than the entanglement spectrum, since one
can simply read off the entanglement spectrum by computing the eigenvalues of the entanglement Hamiltonian.
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Definition 3. A mutual information between two subsystems A and B is

I(A : B) = S(A) + S(B)− S(AB). (1.5)

This also has an operational meaning, see Ref.[98]. We also define conditional mutual informa-

tion.

Definition 4. A conditional mutual information between A and C with respect to B is

I(A : C|B) = S(AB) + S(BC)− S(B)− S(ABC). (1.6)

The conditional mutual information has an operational meaning in the context of a quantum

state redistribution protocol, see Ref.[99]. We also define a quantum relative entropy, which is a

quantum analogue of the Kullback-Leibler divergence.

Definition 5. A relative entropy D(ρ‖σ) between two quantum states ρ and σ is the following.

D(ρ‖σ) := Tr(ρ(log ρ− log σ)). (1.7)

The relative entropy appears in the context of quantum hypothesis testing, see Ref.[100, 101, 102,

103]. Another standard distance measure between quantum states is the Schatten p-norm. Given

an operator O, its p-norm is defined as follows.

Definition 6.

|O|p := (
∑
i

epi )
1/p, (1.8)

where {ei} is a set of eigenvalues of |O| := (O†O)
1
2 .

A special attention must be given to p = 1 and p =∞ case. In particular, the Schatten ∞-norm

is typically called as the operator norm. We shall denote such norm as follows:

‖O‖ = |O|∞. (1.9)

1.2.1 Inequalities

A linear inequality is an inequality that is linear in the von Neumann entropy and quantum relative

entropy. One of the most basic linear inequalities is the concavity of the von Neumann entropy,

which easily follows from the operator convexity of a function f(x) = x log x.[104]4

S(cρ+ (1− c)σ) ≥ cS(ρ) + (1− c)S(σ), c ∈ [0, 1]. (1.10)

4In fact, this result can be proved from the convexity of f(x) alone.
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The concavity of the von Neumann entropy implies the nonnegativity of the quantum relative entropy

D(ρ‖σ) := Tr(ρ(log ρ − log σ)) between two quantum states ρ and σ. This can be easily seen by

dividing the both sides of Equation 1.10 by c and taking the c→ 0+ limit.

There exists a class of inequalities that cannot be directly derived from the concavity of the von

Neumann entropy. These are the descendants of the joint convexity of the quantum relative entropy:

cD(ρ1‖σ1) + (1− c)D(ρ2‖σ2) ≥ D(cρ1 + (1− c)ρ2‖cσ1 + (1− c)σ2), c ∈ [0, 1], (1.11)

where ρ1, ρ2, σ1, σ2 are some density matrices.[105] Equation 1.11 implies one of the most important

results in quantum information theory, which is known as the monotonicity of the quantum relative

entropy. The monotonicity of the quantum relative entropy asserts that the relative entropy between

two quantum states does not increase under a quantum channel. That is,

D(ρ‖σ) ≥ D(Φ(ρ)‖Φ(σ)) (1.12)

for a completely positive trace-preserving map Φ.

A rather straightforward consequence of Equation 1.12 is the strong subadditivity of entropy(SSA),

which asserts that the conditional mutual information is nonnegative:

I(A : C|B) ≥ 0. (1.13)

Another useful inequality for the purpose of this thesis is Fannes’ inequality, which holds for any

density matrices ρ and σ:

|S(ρ)− S(σ)| ≤ 2ε log d− 2ε log 2ε, (1.14)

where ε = 1
2 |ρ−σ|1.[106] We note in passing that an optimal improvement of the Fannes’ inequality

was recently obtained by Audenaeart:

|S(ρ)− S(σ)| ≤ ε log d+H(ε, 1− ε), (1.15)

where H(p, 1− p) is a binary entropy.[102]

H(p, 1− p) = −p log p− (1− p) log(1− p). (1.16)

1.3 Quantum error-correcting code

Given a Hilbert space H and a set of operators B(H), one can formally define a quantum code to

be a subspace C ⊂ H. We first start with several definitions.
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Definition 7. [107] A quantum code C detects an error E ∈ B(H) if there exists a constant c(E)

such that

∀ |ψ1〉 , |ψ2〉 ∈ C, 〈ψ1|E |ψ2〉 = c(E) 〈ψ1| |ψ2〉 . (1.17)

The vectors of the quantum code shall be called as the codewords. The physical systems that are

described by the quantum code typically consist of particles with bounded dimensions, say d. For

such systems, there always exists a canonical basis for B(H) that is described by the operators in a

tensor product form:

∀O ∈ B(H), O =
∑

i1,··· ,in

ai1,···inUi1 ⊗ · · · ⊗ Uin , (1.18)

where Uin is an operator supported on the local Hilbert space describing the nth particle.[108] Fur-

thermore, {Ui}i=1,··· ,d2 can be chosen to be a complete set of unitary operators that are orthonormal.

Tr(UiU
†
j ) = dδij . (1.19)

The operators do not necessarily have to be unitary, but it is a convenient choice for many of the

analysis. For d = 2 case, one can actually get more structure: the basis set for the operators can be

chosen to be Hermitian as well as unitary. The elements of this set is known as the Pauli operators:

I =

1 0

0 1

 , X := σx =

0 1

1 0

 , Y := σy =

 0 i

−i 0

 , Z := σz =

1 0

0 −1

 . (1.20)

Generally speaking, an operator of the tensor product form shall be called as a weight-w operator if

w of the local operators are not the identity operator. The code distance of a quantum code is the

minimal weight of the operator which is not detectable.

If the system is subject to an interaction with its environment, the underlying physical process

can be modeled by a quantum channel E , see Ref.[109]. It is typically convenient to use a Kraus

representation of a quantum channel {Ej}:

E(O) =
∑
j

EjOE
†
j . (1.21)

One can formally define what it means for a quantum code to be able to correct errors from such

processes.

Definition 8. A quantum code C corrects errors from E if

PE†iEjP = αijP (1.22)

for some number αij, where P is the projector onto the codeword subspace and {Ej} are the Kraus
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operators of E.

An interesting class of quantum error-correcting code is the so called topologically ordered systems.

Formally, we define a topological quantum order as follows.

Definition 9. [59] A set of orthonormal states {|ψi〉}i=1,··· ,N satisfies a (r, ε)-TQO condition if

they satisfy the following inequalities:

| 〈ψi|O |ψi〉 − 〈ψj |O |ψj〉 | ≤ ‖O‖ε

| 〈ψi|O |ψj〉 | ≤ 2ε‖O‖, (1.23)

where O is a bounded operator that can be supported on a ball of radius r.

If ε is set to 0, the TQO-(r, ε) condition implies that the quantum code spanned by {|ψi〉}i=1,··· ,N

can detect any error that is supported on a ball of radius r. We note in passing that the code

distance d and the TQO-radius r are not equal to each other in general. More specifically, their

relation depends on the dimensionality of the underlying lattice. For example, consider Kitaev’s

toric code.[3] The code distance on a L × L lattice is L. On the other hand, the code satisfies a

TQO-([L2 ]− 1, 0) condition. On the other hand, a 4D generalization of the toric code (i) has a code

distance that grows as Θ(L2) but (ii) satisfies the TQO condition with the TQO-radius r = O(L).[40]

1.3.1 Stabilizer codes

An important class of quantum error-correcting code is the stabilizer code, which was first introduced

by Gottesman.[110] One of the advantages of the stabilizer code is that it has an efficient description

of the codewords in terms of a set of commuting operators. The quantum code can be described

by a set of n − k commuting operators, where n is the number of qudits and k is the number of

encoded qudits. More specifically, the code is a set of states that are simultaneous +1 eigenstates

of the stabilizer group elements.

The stabilizer group is defined as an Abelian subgroup of the Pauli group which does not contain

−I as its element. A similar construction can be carried out if the qubits are replaced with qudits
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with a prime dimension.5 The unitary generalizations of the X and Z operators are given as follows:

Xij = 1 j = i+ 1 mod d (1.24)

= 0 otherwise. (1.25)

Zij = ωi j = i (1.26)

= 0 otherwise, (1.27)

where ω is the dth root of unity. We shall denote Xα1Zα2 as Sα with a symplectic pair α = (α1, α2).

As in the binary code case, X and Z satisfies a nontrivial commutation relation.

XZ = ZXω. (1.28)

We define a symplectic product :

〈α, β〉 = α1β2 − α2β1. (1.29)

The symplectic product has two useful properties. First, a commutation relation of two generalized

Pauli operators can be determined from a symplectic product of the symplectic pairs describing each

of the generalized Pauli operators.

SαSβ = SβSαω
〈α,β〉, (1.30)

Second, in prime dimensions, a symplectic product of two symplectic pairs is 0 if and only if they

are equivalent to each other up to a constant factor.

Lemma 1. If α 6= (0, 0), and d a prime number,

〈α, β〉 = 0 (1.31)

if and only if β = aα for some a ∈ Zd.

For a binary stabilizer code, one can measure the syndrome of the code by measuring the stabilizer

group elements. If the error rate is sufficiently low, one can make an intelligent guess on where the

errors occurred by measuring these operations.[40] Alternatively, one can engineer a Hamiltonian

whose ground state subspace is the code subspace of the stabilizer code:

H = −
∑
i

si, (1.32)

5The generalization can be straightforwardly carried out for any dimensions, but there are some subtleties that
may arise for non-prime dimensions. In this thesis, the statements about the quantum error-correcting code will be
translated to another statement about a vector space over a finite field. For prime dimensions, the corresponding
finite field is easy to find: it is just Fd = Zd. However, Zd is not a field when d is not a prime.
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where si is the generator of the stabilizer group. Of course, this construction works only if si is

Hermitian.

For a general qudit stabilizer code, one should hermitize the stabilizer generators in order to

engineer a Hamiltonian whose ground state subspace is described by the code. If d is an odd prime

number,

Pα(r) =
1

d

d−1∑
m=0

(ωrSα)m (1.33)

is a complete set of orthogonal projections.[108] Therefore, a simultaneous +1 eigenstate of the

following projector becomes the codeword of a qudit stabilizer code:

Ps,r =
1

d

d−1∑
m=0

smωrm, (1.34)

where s is the stabilizer generator. As in the standard stabilizer code, it does not matter which

value of r we choose for the error correction as long as the same convention is used throughout the

analysis.
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Chapter 2

Exactly solvable models

One of the simplest topologically ordered systems is Kitaev’s toric code.[3] Consider a square lattice,

where the qubits lie on the edges of the graph. Toric code can be formally defined as a set of

degenerate ground states of the following Hamiltonian:

H = −
∑
s

As −
∑
p

Bp, (2.1)

where As is the “star” operator and Bp is the “plaquette” operator. A star operator on a site s

is defined to be a tensor product of X operators along the edges that are touching s. Similarly, a

plaquette operator on a plaquette p is defined to be a tensor product of Z operators along the edges

surrounding the plaquette. By the construction, one can easily see that all of the terms commute

with each other. There are other properties of this system that can be easily verified, such as the

braiding statistics and the ground state degeneracy, see Ref.[3].

While the toric code can reliably store a quantum information at zero temperature against a

generic perturbation,[28, 29] it fails to do so at finite temperature.[39] This is due to the fact that

it only takes a constant energy barrier to produce a logical operator, see FIG.2.2

Figure 2.1: Kitaev’s toric code
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(a) Creation of the defects (b) Diffusion 1

(c) Diffusion 2 (d) Diffusion 3

(e) Diffusion 4 (f) Logical error

Figure 2.2: Defects can be created in pair, diffuse, and recombine to produce a logical operator. The
energy barrier for this process is constant.

There is a straightforward generalization of the toric code to a three-dimensional system. This

model is typically known as the three-dimensional (3D) toric code. Analogous to the construction

of the toric code, 3D toric code is defined to be a set of degenerate ground states of the following

Hamiltonian:

H = −
∑
s

As −
∑
p

Bp, (2.2)

where As and Bp are defined similarly to the 2D toric code. More precisely, qubits reside on the

edges of a cubic lattice. As is a tensor product of the σx operators meeting with a site s. Bp is a

tensor product of σz operators surrounding a plaquette p. There is a general intuition that as the

number of spatial dimensions increase, the order of the system becomes increasingly stable.[111] A

similar intuition holds for toric code too. While the toric code loses its topological protection under

a thermal noise, 3D toric code can store a classical information at a sufficiently low temperature.[43]

Unfortunately, this is not enough to ensure the protection of the quantum information, since the
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information encoded in the ground state cannot be protected against a phase flip error. An easy

way to see this is to consider a sequence of σz operators that makes a noncontractible loop. Once

the defects are created, they can diffuse freely without paying any extra energy cost. There are

other models that have similar properties to the 3D toric code, in that their Hamiltonian can be

manifestly divided into two parts. One part is analogous to the star operators, responsible for the

protection against the phase flip error. The other part is responsible for the protection against the

bit flip error. Section 2.1 provides a model that evades such a natural decomposition. However, the

conclusion is that these models also have a finite energy barrier.

2.1 XYZ-plaquette models

We place qubits on vertices of a 4-valent 3D lattice. The stabilizer group is generated by the following

operators:

Bxp = Πi∈pXi (2.3)

Byp = Πi∈pYi (2.4)

Bzp = Πi∈pZi, (2.5)

where p is the plaquette and {i ∈ p} denotes a set of vertices on a plaquette p. We shall partition a

set of plaquettes into Px(Py, Pz), which corresponds to a set of nontrivial supports for Bxp (Byp , B
z
p).

We shall call elements of these sets as X − (Y−, Z−)plaquettes.

This model is inspired by the construction of the 3D topological color code.[42] For the topological

color code, qubits reside on the vertices of a 3D lattice, and the lattice is 4-valent. The stabilizer

generators are either a product of Xs or a product of Zs, and they correspond to the unit cells of

different dimensions; in one example, generators are either in cubic form or plaquette form. Our

approach differs from theirs in a sense that we only allow plaquette operators as stabilizer generators.

(a) Vertex Figure (b) Unit Cell

Figure 2.3: The vertex figure and the unit cell of our model. Qubits reside on the vertices. One
can see that Bxpx meets with another Bxpx at one vertex, whereas it meets with Bypy and Bzpz at two
vertices.

A local description of our model can be seen in Figure 2.3(a). At each vertices, there are
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6 plaquette operators that share a nontrivial support. Each plaquette operators meet with the

same kind of plaquette operator on each vertices and meet with 4 other plaquette operators on 2

vertices. Thus the assignment in Figure 2.3(a) guarantees the commutativity between the stabilizer

generators. We must point out that not every lattice structure allows vertex figures like Figure 2.3(a).

There are only 4 translationally invariant convex tessellations that have tetrahedral vertex figure:

bitruncated qubic honeycomb, cantitruncated cubic honeycomb, omnitruncated cubic honeycomb,

and cantitruncated alternated cubic honeycomb.[112] Only the first three admits an arrangement of

plaquette operators similar to Figure 2.3(a) at every vertex. Here we mainly study the bitruncated

qubic honeycomb model for its simplicity, but analogous results shall be discussed in full generality

if possible. The unit cell is shown in Figure 2.3(b) and its tessellation is shown in Figure 2.4. The

bitruncated cubic honeycomb is a space-filling tessellation made up of truncated octahedra. It has

14 faces, 36 edges, and 24 vertices. There are 6 square faces and 8 hexagonal faces. Without loss of

generality, one can set the 6 square faces to be the Y plaquette operators, 4 of the hexagonal faces to

be the X-plaquette operators, and the remaining hexagonal faces to be the Z-plaquette operators.

Hamiltonian is a sum over these plaquette operators.

H = −J(
∑
px∈Px

Bxpx +
∑
py∈Py

Bypy +
∑
pz∈Pz

Bzpz ). (2.6)

Figure 2.4: Arrangement of the stabilizer generators. The translation of unit cells form a tessellation.

2.1.1 Code subspace

Euler characteristic χ is defined as an alternating sum of kns, where kn denotes a number of cells of

dimension n.

χ =

d∑
i=0

ki(−1)i (2.7)
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One of the main ideas that we used here is that χ can be also written as an alternating sum of Betti

number bis.

χ =

d∑
i=0

bi(−1)i (2.8)

bi is the rank of the n-th singular homotopy group. We briefly explain the Poincaré duality. Although

it has different forms depending on the context, here we use the one originally introduced by Poincaré

himself.

Theorem 1. (Poincaré, 1895) bk = bd−k for a closed orientable d-dimensional manifold.

A number of encoded qubits can be computed from the size of the stabilizer group and the number

of physical qubits. Since the plaquette operators are not independent to each other, we must count

the number of independent relations. In such a pursuit, a geometrical interpretation of our model

becomes useful. Note that multiplying all the plaquette operators on a unit cell reduces to an

identity, see Figure 2.3(b). Since any contractible closed surface on the lattice can be represented as

a union of unit cells, one can see that a multiplication of the plaquette operators on any contractible

closed surface reduces to the identity. Therefore we have C−1 independent relations which generate

smooth deformations, where C is the number of unit cells. We must subtract 1 because multiplying

all but one cell results in a relation for that very cell.

Let us consider a periodic boundary condition in all 3 directions. There exists a noncontractible

surface that reduces to the identity as one can see in Figure 2.5(a) and Figure 2.5(b). Since there are

3 topologically distinct noncontractible surfaces, we have 3 independent relations, resulting in C+ 2

independent relations. Finally, multiplying all X-like operators adds one independent relation. One

can check that multiplication of Y s and multiplication of Zs are implied by the previously mentioned

relations.

(a) Top view (b) Side view

Figure 2.5: Representation of the nontrivial constraints between the stabilizer operators. One can
see that the multiplication of all the plaquette operators on a noncontractible closed surface reduces
to the identity. At each vertices, there are either 1) exactly one X, one Y, and one Z or 2) two Xs
and two Zs.
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Accounting for these relations, the number of encoded qubits is V − F + C + 3 = 3 under a

periodic boundary condition, where V is the number of vertices, F is the number of faces, and C

is the number of unit cells. The first two correspond to the number of qubits and the number of

plaquette operators. The remaining terms represent a number of independent relations between

plaquette operators. We shall show that the number of encoded qubits only depend on the second

Betti number.

Lemma 2. For a stabilizer group {Bxpx , B
y
py , B

z
pz}, the number of encoded qubits is b2.

Proof : Let us consider the dual lattice. This can be constructed by replacing the k-dimensional

object to a (d−k)-dimensional object. For instance, a vertex of the dual lattice resides on the center

of the unit cells of the original lattice. A face on the dual lattice can be constructed by connecting

the edges so that the resulting surface is perpendicular to the edges of the original lattice. The Euler

characteristic is trivially 0 due to the Poincaré Duality. The unit cells of the resulting dual lattice

is an irregular tetrahedron. Let us denote kis to be the number of i-dimensional cells on the dual

lattice. The total number of vertices in the original lattice becomes k3, which is the number of unit

cells in the dual lattice. Similarly, F is identical to k1 and C is identical to k0. Note that k2 = k3,

since each cell contains 4 faces and each faces meet with two tetrahedral cells. Therefore, we have

V − (F − C) = k3 − k1 + k0 (2.9)

= −k3 + k2 − k1 + k0 = 0. (2.10)

Hence

k = V − (F − (C − 1 + 1 + b2)) (2.11)

= b2, (2.12)

where b2 is the second Betti number of the manifold. One can also use this intuition to prove that

the group generated by the plaquette operators does not contain −I.

Lemma 3. 〈Bxpx , B
y
py , B

z
pz 〉 does not contain −I.

Proof: Consider a product of plaquette operators that are proportional to the identity operator.

Any such configuration can be generated by a product of all the X-plaquette operators, a product of

all the Y -plaquette operators, a product of all the Z-plaquette operators, and a product of plaquettes

along a closed surface. The first three are trivially +I. For a unit cell, we have 24 vertices at which

X,Y, and Z meet each other. Since all the generators commute with each other, we can arrange the
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product in the following canonical form.

ΠpxB
x
pxΠpyB

y
pyΠpzB

z
pz . (2.13)

Since XY Z = i, the product of plaquette operators on a unit cell is 1. Similarly, for the product of

plaquette operators on a noncontractible surface described in Figure 2.5(a) and Figure 2.5(b), we

have 4n vertices where X,Y, and Z meet each other. Hence we arrive at the same conclusion. Since

any product of the plaquette operators that results in a trivial operator can be constructed by these

constraints, the group does not contain −I.

There are two logical operators that are reminiscent to the surface and the string operator of

the 3D toric code. These are drawn in Figure 2.6. One can see the surface operator on the top

of the lattice system, which is a product of Bzpys on a layer of Y -plaquettes. The complementary

logical operator is the string operator that has a sequence of Y ZY XY ZY XY ZY X · · · along the

line perpendicular to the surface operator. This string winds around the torus and completes a

noncontractible loop. These two operators anticommute with each other and both of them commute

with the stabilizer generators. One can similarly define two sets of complementary operators in other

Figure 2.6: There is one surface operator and one string operator for each qubits. The surface
operator corresponds to the product of ZZZZ on Y -plaquettes. The string operator is the line
perpendicular to this surface, with a sequence that goes as Y ZY XY ZY X · · · .

directions. One can easily check the expected commutation and anticommutation relations.

2.1.2 Low-energy excitation

Quasi-particle excitations in two-dimensional gapped systems are believed to have anyonic properties.

For the case of the toric code, there are two types of particles that are named as the “electric” and

the “magnetic” charge. If the electric charge winds around the magnetic charge, the wavefunction
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attains a nontrivial phase. In 3D, one can always contract the trajectory of the loop to a point, unless

the loop winds around the torus. Hence, one needs higher dimensional objects to attain a nontrivial

braiding statistics. In 3D, there are closed string-like excitations and particle-like excitations.[113, 43]

When the particle winds around the string, the system attains a nontrivial phase.

Despite the fact that our model is made up of only plaquette operators, it shows a similar

behavior. A pair of particle-like excitations can be created from the vacuum by a constant energy.

If we truncate a string-like logical operator, excitations form at the end points. When the particle-

antiparticle pair is created, they can diffuse without any extra energy cost. The closed string-like

excitations can be similarly thought as a truncated surface-like logical operator. There are excitations

near the boundary of the constraint. Therefore, the energy cost grows linearly with the size of the

surface. If a particle penetrates the closed string, we find that

|ψInitial〉 = SP |Φ〉 (2.14)

|ψFinal〉 = USP |Φ〉 = − |ψInitial〉 , (2.15)

where S is the closed-string excitation, P is the particle excitation, and U is a trajectory of the

particle. Therefore, the system picks up a phase of eiπ in this process. This is illustrated in Figure

2.7. One can see that as the particle penetrates through the surface operator and returns to the

original position, it meets with the surface operator at one vertex, giving the anticommutation

relation.

Figure 2.7: A representation of a particle penetrating through a string-like excitation. The truncated
surface operator is a product of Z-plaquettes. The trajectory of the particle is the nontrivial support
of the colored plaquette operators, which meets with the Z-surface at a point.

The low-energy excitation provides an intuitive picture for the thermal stability of the XYZ-

plaquette model. Particles can be created out of vacuum in pair and propagate freely. They can

diffuse and wind around the torus to produce a logical error. On the other hand, a closed string

has an energy cost that is proportional to its perimeter. Given a closed string-like excitation as in

Figure 2.7, the stabilizer generators anticommuting with the surface operator only reside near the
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boundary of the surface. Z-plaquettes trivially commute with the surface operator. X-plaquettes

commute with the surface operator since they meet at two vertices. However, there are Y -plaquettes

meeting at exactly one vertex at the boundary. Hence we expect our system to be a stable classical

memory.

2.1.3 Duality

Typically, a strong-weak duality relation relates a strong coupling limit of one model to a weak

coupling limit of another model. We use a slightly different strategy here. We first show that our

model can be mapped into an Ising gauge theory, from which we can use the Wegner-type duality

relation with an Ising model.[114] Mapping from our model to the Ising gauge theory is not exact

for a finite sized lattice, but this difference vanishes in the thermodynamic limit. Starting from the

partition function of our model,

Z = Tr(exp(−βH)) (2.16)

= Tr(ΠSi∈S(coshβJ + Si sinhβJ)), (2.17)

where Si ∈ {Bxpx , B
y
py , B

z
pz},

Z = (coshβJ)ntr(Πi(1 + αSi)) (2.18)

= (coshβJ)ntr(

1∑
{ki}=0

Πiα
kiSkii ). (2.19)

Note that there were two kinds of constraints: the constraints coming from the closed 2-manifold

and the constraints coming from the space-filling products of X, Y s, and Zs. Therefore, we can

write down the partition function in the following form:

Z = (2 coshβJ)n(
∑
c

αAc + (1 + αnx)(1 + αny )(1 + αnz )− 1 + C.T.). (2.20)

Here
∑
c is a sum over the configurations of the closed 2-manifolds. Ac is the number of plaquettes

for each configurations. C.T. corresponds to the cross terms between the closed 2-manifolds and the

space-filling products of Xs, Y s, and Zs. nx,y,z corresponds to the number of X,Y, Z−plaquette

operators. The main idea is that the partition function is dominated by the first term in the

thermodynamic limit. The cross terms can be written as

C.T. =
∑
c

αAc
∑

i∈{x,y,z}

αni−2nci , (2.21)

where nx, ny, nz are the number ofX,Y, Z−plaquettes and ncx, n
c
y, n

c
z are the number ofX,Y, Z−plaquettes
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for a configuration c.

Lemma 4. There exists an 0 < ε1,2 < 1 such that

Ac + ni − 2nci ≥ ε1Ac + ε2ni (2.22)

for ∀c, i.

Proof : Consider i = x. The left hand side of the inequality is

ncy + ncz − ncx + nx ≥ ncy + ncz − (1− ε)ncx + (1− ε)nx (2.23)

≥ (
ε

2
)Ac + (1− ε)nx (2.24)

On the second line, we used the fact that the minimum is achieved for ncy = 0.

ncz = ncx =
1

2
Ac (2.25)

The same logic can be applied to i = z. For i = y,

ncx + ncz − ncx + ny ≥ ncx + ncz − (1− ε)ncy + (1− ε)ny (2.26)

≥ (
2

5
− 3

5
(1− ε))Ac + (1− ε)ny. (2.27)

Similarly, we used the fact that the minimum is achieved if one of ncx or ncz is 0. Then we have a

2 : 3 ratio between the X − (Z−)plaquettes and Y−plaquettes. Therefore, for ε > 1
3 , we have such

(ε1, ε2).

Lemma 5.

lim
vol→∞

Z(βJ)

ZIG(βJ)
→ 1. (2.28)

, where ZIG(βJ) is a partition function for the Ising gauge theory with a temperature β and a

coupling constant J . vol is the volume of the lattice.

Proof :

We use the following equation:

∑
c

αε1Ac =
(2 coshβJ ′)n

(2 coshβJ ′)n

∑
c

α′Ac (2.29)

= (
1

2 coshβJ ′
)nZIG(βJ ′), (2.30)

where

tanhβJ ′ = (tanhβJ)ε1 . (2.31)
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Thus the cross terms can be bounded by

ZIG(βJ ′)(
coshβJ

coshβJ ′
)nαδiε2n, . (2.32)

where δi = ni
n , where n is the total number of plaquettes. This expression becomes

ZIG(βJ ′)((
1− t2

1− t
2
ε1

)
1
2 t

ε2
δε1 )n, (2.33)

where t = tanhβJ ′. One can show that ( 1−t2

1−t
2
ε1

)
1
2 t

ε2
ε1δ < 1 for βJ > 0. Since the renormalized

coupling constant J ′ is larger than J , these correction terms become negligible in the thermodynamic

limit. Therefore,

| lim
vol→∞

Z(βJ)− ZIG(βJ)

ZIG(βJ)
| ≤ |ZIG(βJ ′)

ZIG(βJ)
λn +O(αn)|, (2.34)

where J ′ > J and 0 < λ < 1. In n→∞ limit, we get the desired result.

Lemma 6. Z−C.T.− (αnx +αny +αnz ) = ZIG(βJ), where ZIG is a partition function of the Ising

gauge theory on the same lattice with a temperature β and a coupling constant J .

Proof : Consider a mapping Bxpx → ZZZZZZ, Bypy → ZZZZ, Bzpz → ZZZZZZ, where

Z · · ·Z are products of Z on the edges of each plaquettes. The resulting model is an Ising gauge

theory on a bitruncated cubic honeycomb. The partition function is

ZIG = tr(exp(−βH)) (2.35)

= (coshβJ)ntr(1 + tanhβJSi), (2.36)

where Sis are either ZZZZZZ or ZZZZ depending on the plaquette. Since the Pauli operators are

traceless, a product of the plaquette operators survives only if the union of the plaquettes form a

union of closed manifolds.

ZIG(βJ) = Z − C.T.− (αnx + αny + αnz ). (2.37)

Using the duality relation between the Ising gauge theory and the Ising model, we can map our

model into an Ising model.

Lemma 7. Ising gauge theory on the bitruncated cubic honeycomb is dual to the Ising model on its

dual lattice.
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Proof:

Z = (coshβJ)ntr(Πi(1 + tanhβJSi)) (2.38)

= (coshβJ)ntr(

1∑
{ki}=0

Πiα
kiSkii ) (2.39)

= (2 coshβJ)n
1∑

{ki}=0

Πiα
kiΠeδ2(

∑
j

kj;e), (2.40)

where Πe is a product over all the edges and
∑
j kj;e is a sum over kjs that have nontrivial support

on an edge e. There are three such kjs. One can use kj;e = 1
2 (1 − ZZ), where ZZ is a product of

Zs on qubits that reside on the vertices of the dual lattice. For 8 spin configurations (Z1, Z2, Z3) =

(−1,−1,−1), (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1), (1, 1,−1), (−1, 1, 1), (1,−1, 1), they all

satisfy the delta function. Furthermore, we have 2 combinations for (k1, k2, k3) = (0, 0, 0), 2 combi-

nations for (0, 1, 1), (1, 0, 1), and (1, 1, 0). Plugging these relations in, we get

Z = (coshβJ)n
1∑

{Zi}=0

Πiα
1− 1

2Zi+n̂iZi−n̂i , (2.41)

where Zi±n̂i is the Z operator on the dual sites of the plaquette i. n̂i is the unit normal vector to

the plaquette. Therefore, up to a constant, the partition function is equal to the partition function

of the Ising model with β̃J = − 1
2 ln tanhβJ .

Theorem 2. The XYZ-plaquette model with a coupling constant βJ is dual to the classical Ising

model on a dual lattice with a dual coupling constant β̃J = − 1
2 ln tanhβJ .

Since the Ising model undergoes a finite temperature phase transition, so does our model. This

is analogous to the behavior of the 3D toric code under a temperature change. As in our model,

one can show that the 3D toric code has a critical temperature by using the duality relation with

the Ising model. Below the critical temperature, there is a symmetry breaking with respect to a

surface-like logical operator. The symmetry associated to the string-like logical operator is broken

only at the ground state.

One important difference though, is that the 3D toric code can be decomposed into two classical

Hamiltonians without spoiling the phase transition: the Hamiltonian responsible for correcting the

bit flip error is identical to the Ising gauge theory, which has a finite temperature phase transition.

On the other hand, the Hamiltonian responsible for correcting the phase flip error does not have a

phase transition. Therefore, one can intuitively understand that the 3D toric code can only correct

bit flip errors but not phase flip errors under the influence of a thermal bath. Our model does

not allow such a decomposition. Once we get rid of any of the Bxpx , B
y
py , or Bzpz , the partition

function does not exhibit a phase transition anymore. This shows that non-CSS code with a finite
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temperature phase transition in 3D does not necessarily provide a self-correcting quantum memory.

2.2 No-string rule

One of the defining properties of Haah’s code is that it has no string-like logical operator.[48] Since

we are dealing with a lattice system, one needs to precisely define what it means for an operator to

be a string. Since this is an important concept, we first reiterate some of the definitions introduced

by Haah.[48]

Definition 10. (Haah 2011) A set of sites {p1, p2, · · · , pn} is a path joining p1 and pn if for each

pair (pi, pi+1) of consecutive sites there exists a stabilizer generators that acts nontrivially on their

pair simultaneously, for i = 1, · · · , n− 1. A set M of sites is connected if every pair of sites in M

are joined by a path in M . A connected Pauli operator is a Pauli operator with connected support.

Definition 11. (Haah 2011) Let Ω1,Ω2 be congruent cubes consisting of w3 sites, and O be a finite

Pauli operator. A triple η = (O,Ω1,Ω2) is a logical string segment if every stabilizer generator that

acts trivially on both Ω1 and Ω2 commutes with O. We call Ω1,2 the anchor. The directional vector

of η is the relative position of Ω1 to Ω2. The length is the l1-length of the directional vector, and

the width is w.

Definition 12. (Haah 2011) A logical string segment η = (O,Ω1,Ω2) is connected if there exists

two sites p1 ∈ Ω1, p2,Ω2 that can be joined by a path in supp(O) ∪ {p1, p2}, where supp(O) is

a set of sites on which O acts nontrivially. Two logical string segments (O,Ω1,Ω2), (O′,Ω1,Ω2)

are equivalent if O′ can be obtained from O by multiplying finitely many stabilizer generators. η is

nontrivial if every equivalent logical string segment is connected.

We say that a quantum code has no string if, given a bounded width w, the length l of the logical

string segment is bounded by a function of w. On the other hand, a quantum code has a string

if such bound does not exist. Consider a toric code for an example. Given a set of defects, one

can always move around the defects freely by applying a sequence of Pauli operators. Therefore,

the length of the logical string segment is formally unbounded. On the other hand, consider a 4D

generalization of the toric code.[40] For such models, one cannot move a defect without paying an

extensive energy cost. For such models, the length of the logical string segment is O(1).

Haah’s code is special in a sense that the length of the logical string segment is bounded by a

function that grows with the width w. In particular, one of his codes(Code I) has a bound that

grows linearly with w. Further, this bound is tight in a sense that there exists a string segment that

matches this lower bound with a multiplicative factor.[48] Bravyi and Haah were able to exploit this

structure to obtain a rigorous energy lower bound for the logical error.[49]
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The existence of Haah’s code undoubtedly raises a lot of interesting questions. For example, an

interesting question to ask is if there exists models that share the same properties of Haah’s code.

The energy lower bound of Bravyi and Haah is only based on the bound on the logical string segment

length that grows linearly with its width. Once a family of models satisfying these conditions are

found, the extensive energy barrier should follow trivially.

2.3 3D local qupit code

We consider a qudit stabilizer code that is supported on a 3D square lattice. The qudits are located

at the vertices of the lattice. Recall that there were some complications that may arise when the

dimensions of the particle is not a prime number. Due to this problem, we shall simply assume that

the dimension is a prime number, hence the name qupit. In this setting, the stabilizer generator is

described in Figure 2.8. The stabilizer group is generated by the translation of these generators in

three different directions.

Figure 2.8: A stabilizer generator before enforcing any assumption

We assume that the stabilizer generators commute with each other. This assumption is necessary

to use the stabilizer group formalism. Given a cube, set the middle of the cube to be the origin.

Since two cubes can meet each other at a single vertex, the generalized Pauli operators located on

the vertices that are diagonal to each other must commute with each other. Since

〈α, β〉 = 0 (2.42)

if and only if α = aβ for some b ∈ Zp, the Pauli operators that are diagonally opposite with respect

to the origin must be described by the same symplectic pair up to a multiplicative constant. The

resulting code parameter is described in Figure 2.9. Similarly, two cubes can meet each other on an

edge. Enforcing the commutation conditions on the edges leads to two types of stabilizer generators,

see Figure 2.10.



30

Figure 2.9: A stabilizer generator after enforcing the commutation relation at the vertices.

Figure 2.10: Stabilizer group generators for CαβγδS and CαβγδA .

Under the aforementioned constraints, one can see that the quantum code is described by 4

symplectic pairs α, β, γ, δ and the symmetric/antisymmetric nature of the code. We shall denote

each of these codes as CαβγδA,S , where A stands for the antisymmetric code and S stands for the

symmetric code. Without loss of generality, we shall assume that the system has a periodic boundary

condition, with a fixed length in all three directions equal to L.

To compare our code to Haah’s code, Haah’s code has two local stabilizer generators per cube,

which corresponds to the generators responsible for the protection against the bit flip and the phase

flip error. Our code has one stabilizer generators for each cube. Some of Haah’s code is a CSS code,

but all of our codes are non-CSS. Perhaps more importantly, the local particle dimension of Haah’s

code is 22, while for our code it is a prime number p. We shall in fact see that p = 2 inevitably

leads to an existence of string logical operator, which confirms the numerical result by Haah.[48] As

we shall see throughout the rest of this chapter, the main difference comes from the structure of the

base field: the base field for our code is GF[p], while it is GF[22] for Haah’s code.

Our main contribution is a discovery of a simple sufficient condition for checking the absence
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of any string logical operator. Given a stabilizer code with cubic local generators, no string rule is

implied by a simple algebraic constraint on the parameters of the code over a finite field Fp. The

existence of the quantum code without string logical operator for p ≥ 5 follows from this result.

Another important point to discuss is that the codes described by a different set of symplectic

pairs may give rise to the same code. Of course, the actual codeword of the quantum code will be

not identical. However, they may be equivalent to each other under a local unitary transformation.1

If two quantum codes C1, C2 can be mapped to each other via such local unitary transformation, we

shall denote their equivalence with the following notation:

C1 ∼= C2. (2.43)

Any two codes are equivalent to each other if they can be mapped by a lattice symmetry or a

local unitary transformation. The lattice symmetry can be concisely represented as a permutation

of the symplectic pairs α, β, γ, δ. The following lemma trivially follows from the definition of the

code: the exchange of the symplectic pairs correspond to the rotation in the 3-space.

Lemma 8.

CαβγδA,S
∼= Cσ(α)σ(β)σ(γ)σ(δ)

A,S , (2.44)

where σ ∈ S4 over a set {α, β, γ, δ}.

Any local Clifford transformation can be represented as an element of SL(2, p).[115] One should

also note that multiplying a nonzero element a of GF[p] does not change the code. It corresponds

to merely changing the stabilizer element s into sa.

Lemma 9. If ∃a ∈ Fp,M ∈ SL(2, p) such that aM{α, β, γ, δ} = {α, β, γ, δ}

CαβγδA,S
∼= Cα

′β′γ′δ′

A,S , (2.45)

Finally, there is a subtle equivalence relation between the antisymmetric and the symmetric

code. Instead of performing the same local unitary operation on all the qudits, one can imagine

performing a unitary transformation on the even (or equivalently, odd) layer only, mapping A→ −A

for A ∈ {α, β, γ, δ}. This maps the symmetric code to the antisymmetric code and vice versa in

the bulk. However, if the length in the direction normal to these layers is odd, such an operation

is ill-defined. In other words, there exists a unitary operation that relates the antisymmetric and

symmetric code in the bulk if L is an even number.

Combining these equivalence relations together, we can get the following result.

1Typically, local unitary transformation in this setting is used in a much stronger sense. More specifically, a local
unitary transformation is a quantum circuit with a bounded width and depth. Here we consider a simpler version, in
that the width and the depth of the circuit are both 1.
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Lemma 10. For d = 3 code satisfying the deformability condition, there are two symmetric code

and two antisymmetric code up to lattice symmetry and local Clifford operation. The parameters of

the codes are {(1, 0), (0, 1), (1, 1), (1,−1)} and {(1, 0), (0, 1), (1, 1), (−1, 1)}.

2.3.1 Sufficient condition for the no-string rule

Recall that the existence of a string logical operator is the bulk property of the code. That is, the

formulation of the no-string rule does not involve anything about the boundary condition. Since

there always exists an one-to-one correspondence between a symmetric code and an antisymmetric

code that are described by the same symplectic pairs, it suffices to study only one of them for

checking the absence of any string logical operator. If an antisymmetric code does not have any

string logical operator, neither does the symmetric code with the same symplectic pairs. We shall

obtain a sufficient condition for the code to not have any string logical operator for an antisymmetric

code. The same statement for the symmetric code should follow trivially from this correspondence.

We first state our main result.

Theorem 3. For CαβγδS,A , the maximum length of a nontrivial string logical operator with a width w

is bounded by 2w, if the following conditions are satisfied.

• Deformability condition : 〈A,B〉 6= 0 ∀A 6= B, A,B ∈ {α, β, γ, δ}

• Absence of minimal string : det(T − T−1) 6= 0 for T = T γβδα , T
δγ
αβ , T

γβ
αδ .

• 〈A,B〉2 6= 〈C,D〉2 ∀A,B,C,D ∈ {α, β, γ, δ}. A,B,C,D are distinct.

The proof is quite technical, so we would like to give a brief overview. First, we note that

there is a canonical way in which an arbitrary 3-dimensional logical string segment can be deformed

into a quasi-2-dimensional surface. Such deformation procedure was originally used by Haah and

Preskill[36], and it was also later used by Haah in finding his code.[48] Next, we write down a number

of constraints that share a nontrivial support with the deformed quasi-2-dimensional surface. By

counting the number of constraints that are independent to each other, we will be able to obtain

the bound.

We note in passing that Haah’s code is rather special in this regard. Given a string segment,

deforming it into a canonical form of quasi-2-dimensional surface is a rather straightforward task.

The main difficulty arises in the second step of the proof. Haah was able to show that for his code,

the second part of the proof comes fairly easily as well. However, the same proof technique cannot

be used to his other codes.2

2While there is only one code that is known as Haah’s code, he actually proposed other codes without string logical
operators in Ref.[48]. Given a finite anchor, the string segment of Haah’s other codes are bounded by some function
that grows superlinearly with the width of the anchor. On the other hand, Haah’s code has a linear bound.
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Suppose there exists a string logical operator whose support is confined on a cross section with

a height h and a width w. Certain models allow such string operators to be deformed to a flat

surface. We will first explain the procedure, and then see what kind of condition is necessary for

such a procedure to be possible. Suppose the logical operator is supported on a h× w × l cylinder,

where l is the length in the direction perpendicular to the cross section. Pick one of the sites on the

edge of the cube. Two stabilizer generators in the cylinder share a nontrivial support with this site.

Multiply the logical operator with a combination of these stabilizer generators so that the resulting

operator acts trivially on that site. This procedure is possible if

det

α1 −α2

β1 −β2

 6= 0, (2.46)

or alternatively, 〈α, β〉 6= 0, where α, β are two symplectic pairs that share a nontrivial support with

the site. Applying the same logic to other directions, we conclude that any two symplectic pairs α, β

lying on a same edge must satisfy 〈α, β〉 6= 0.

Since we started from a logical operator and multiplied it by the stabilizer group element, this

operator must still commute with all the stabilizer generators. In particular, note that there are

stabilizer generators that share a nontrivial support with the string logical operator at a single site.

Using Lemma 1, one can see that the only way to get rid of the nontrivial support on these sites is

to force the relation α = aα′ for some a ∈ Zd. Applying the same logic in all three directions, we

obtain Figure 2.9.

Combining the commutation relation and the deformability condition, we arrive at the following

conclusion. For a code CαβγδS,A , if 〈A,B〉 6= 0 ∀A 6= B, where A,B ∈ {α, β, γ, δ}, the logical string

segment can be mapped into an equivalent flat segment. An immediate consequence of this result

is that if d = 2, it is impossible to come up with α, β, γ, and δ satisfying the conditions introduced

so far. Since there are only 22 − 1 = 3 nontrivial symplectic pairs, there has to be at least two of

these four pairs which are identical. Otherwise, one of them must be (0, 0). In either case, there

always exists a pair of symplectic pairs α, β such that 〈α, β〉 = 0. Hence, the minimal local particle

dimension that can satisfy these conditions is d = 3.

For these codes, any string logical operator with a finite thickness can be deformed into an

operator having a nontrivial support on a surface. In general, if we started with a string operator

with a cross section width w and a height h, such a logical operator can be confined in a surface

with a kink, see Figure 2.12. Therefore, we arrive at an important conclusion: that if each of the

symplectic pairs describing the quantum code have nonvanishing symplectic products with each

other, the string logical operator segment can be deformed into a canonical form that is supported

on a quasi-2-dimensional surface.

After deforming the string segment to a quasi-2-dimensional surface, we can enumerate all the
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constraints and write it in a matrix form. Given a logical string segment described by a tensor

product of generalized Pauli operators, the logical string segment must commute with the local

stabilizer generators except at the anchor. Therefore, there are number of constraints that grows

as the volume of the logical string segment. The main task is to determine the number of linearly

independent constraints relative to the size of the string segment. If the number of constraints are

too small, one will end up having a string logical operator as in the toric code case. On the other

hand, if the number of constraints are large enough compared to the size of the string segment, there

cannot be any string segment that can satisfy all of the constraints. In that case, one will end up

having no string.

We introduce the following notation to formalize the preceding intuition.

Definition 13.

Tαγ =

α1 −α2

γ1 −γ2

 (2.47)

T βδαγ =

β1 −β2

δ1 −δ2

−1α1 −α2

γ1 −γ2

 (2.48)

Roughly speaking, T βδαγ denotes a transition rule for a minimal string segment. As its name

suggests, a minimal string segment refers to a string operator with a minimal width. The motivation

for this transition rule comes from the following question: given symplectic pairs parameterizing the

code, is it possible to have a string operator supported on a straight line in x, y, or z direction?

Obviously, this is a much simpler problem than proving the absence of an arbitrary string logical

operator.

Given such a string operator, one can consider a length-2 string segment. There are four stabilizer

generators sharing its nontrivial support with the string. At the same time, four elements in Zp can

completely specify the string segment. Therefore, if the linear constraints imposed by the stabilizer

generators are all linearly independent to each other, there cannot exist any such string operator.

Alternatively, given one of the symplectic pairs describing the string segment, one can infer the

remaining symplectic pair from the condition imposed by two of the stabilizer generators.3 In this

sense T βδαγ is a transition matrix. One can construct another transition rule from the two remaining

stabilizer generators, see Figure 2.13. From the construction of our code, the transition rule enforced

by the other two generators are (T βδαγ )−1. Therefore, a minimal string segment exists only if

det(T βδαγ − T βδαγ )−1 = 0. (2.49)

3This is only true under the deformability condition.
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To summarize, we have discussed so far the motivation behind the conditions listed in Theorem 3.

We note in passing that the previously mentioned qutrit code satisfies first two of these conditions.

However, these codes do not satisfy the third condition. This is not to say that these qutrit codes

have a string logical operator. In fact, we have numerically checked the maximum length of a

nontrivial string logical operators for these codes. Up to a width w = 20, the length was bounded

by w+1. Hence we conjecture that these codes are free of string logical operators as well. In light of

this numerical work, the third condition seems to be of a technical nature. The following equations

are couple of useful facts about the transition matrix that will come handy throughout the analysis.

TABCD = TBADC (2.50)

(TABCD )−1 = TCDAB (2.51)

TABCDT
CD
EF = TABEF (2.52)

Given a string segment, one can always enumerate all the constraints imposed by the local

stabilizer generators. These constraints can be written as the rows of a larger matrix that we call

as the constraint matrix. The objective is to show that, given a bounded string width w, there

exists a length of the segment for which the number of independent constraints equals the number

of variables that describe the string segment. If such condition is satisfied, these constraints can be

formally written as:

Tv = 0, (2.53)

where T is the constraint matrix and v is a vector describing the string segment. If the rank of T is

full, the only v satisfying the constraint is the zero vector, which corresponds to a tensor product of

identities on all sites. Hence, the problem of proving the absence of string logical operator reduces

to the problem of bounding the rank of the constraint matrix. For a general matrix over a finite

field, this is a hard problem. However, we can exploit the translational invariance of the system,

which will give rise to a special structure.

We first define the relevant tools. Let V be a n-dimensional vector space over a finite field F. T

is a linear operator T : V → V and v ∈ V .

Definition 14. mT,v(x) is a polynomial with a least degree which satisfies the relation

mT,v(T )v = 0. (2.54)

We call mT,v as a minimal polynomial of T on v.
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Definition 15. mT (x) is a polynomial with the least degree which satisfies the relation

mT (T )v = 0 ∀v ∈ V (2.55)

Lemma 11.

mT,v|mT (2.56)

mT |χT , (2.57)

where χT is a characteristic polynomial of T .

Lemma 12. Let the degree of mT,v be d. Then v, Tv, T 2v, · · · , T d−1v are linearly independent to

each other.

The sketch of the proof is as follows. Suppose we are given a logical string segment with a bounded

anchor size. The segment must commute with the local stabilizer generators. As the length of the

segment increases, the number of constraints increases, since more local stabilizer generators must

commute. At the same time, the number of unknowns to specify the segment increases as well.

One can show that the rate of the increase for the constraints is larger than that of the number

of unknowns. Eventually the number of constraints overcome the number of unknowns. If the

constraints are sufficiently independent to each other, the rank of the constraints becomes identical

to the number of unknowns. In such cases, the logical string segment satisfying the commutation

relation must be trivial.

The most general shape of the string segment is a quasi-2-dimensional surface with a kink.

However, we first start with a case for a surface without a kink to illustrate the idea. Suppose the

logical string segment can be supported on a flat surface which is normal to one of three x̂, ŷ, ẑ

orthogonal directions. A logical string segment can be represented as a set of symplectic pairs on

the vertices. Given a width w and a length l segment, we have total of wl symplectic pairs, which

results in 2wl unknowns over a field F. We shall represent the logical operator as a 2wl-dimensional

vector over F: the ith row, jth column, and the kth element of the symplectic pair is labeled by

2(j − 1)n+ 2(i− 1) + k, see Figure 2.14.

Within this convention, the constraints from the local stabilizer generators takes the following

form:

cT vL = 0, (2.58)

where vL is the vector representing the logical operator and c is the constraint. For instance,

consider w = 1, l = 2 string segment. The set of local constraints can be represented by the
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following constraint matrix: Tγβ Tδα

Tδα Tγβ

 , (2.59)

where each entries are 2 × 2 blocks. The rank of this matrix is preserved under a block Gaussian

elimination. After some manipulation, the matrix can be transformed into a block upper triangular

form. I T γβδα

0 T δαγβ − T
γβ
δα

 . (2.60)

This matrix is full rank if and only if T δαγβ−T
γβ
δα is rank-2. Hence we arrive at the following conclusion.

Lemma 13. A string logical operator with width 1 exists if and only if

det(T δαγβ − T
γβ
δα ) 6= 0. (2.61)

A pattern emerges as we increase the width of the segment. For instance, a constraint matrix

for w = 2, l = 3 is the following.

Tγβ 0 Tδα 0 0 0

Tαδ Tγβ Tβγ Tδα 0 0

0 Tδα 0 Tγβ 0 0

0 0 Tγβ 0 Tδα 0

0 0 Tαδ Tγβ Tβγ Tδα

0 0 0 Tδα 0 Tγβ


(2.62)

After a sequence of suitable block Gaussian elimination, we can arrive at the following canonical

form. Here the width w was set to n.



I2n T2n 0 0 · · · 0 0

0 I2n T2n 0 · · · 0 0

0 0 I2n T2n · · · 0 0
...

...
...

...
. . . 0 0

0 0 0 0 · · · I2n T2n

0 v2n 0 0 · · · 0 0

0 0 v2n 0 · · · 0 0
...

...
...

...
. . . 0 0

0 0 0 0 · · · 0 v2n



, (2.63)
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where

T2n =


T γβδα 0 · · · 0

(−T γβαδ )x T γβδα · · · 0
...

...
. . . 0

(−T γβαδ )n−1x (−T γβαδ )n−2x · · · T γβδα

 (2.64)

and

v2n =
(

(T γβαδ )n−1x (T γβαδ )n−2x · · · (T γβαδ )1x x
)
. (2.65)

I2n is a 2n × 2n identity matrix. Given a length l, the dimension of the constraint matrix is

2(w+ 1)(l− 1)× 2wl. The rank of the constraint matrix can be bounded by 2w(l− 1) +Rank(A2n),

where

A2n =



v2n

v2nT2n

...

v2n(T2n)2n−2

v2n(T2n)2n−1


. (2.66)

Lemma 14. Let v1,2
2n be the first and second column vector of v2n.

max
1,2

(deg(mT2n,v
1,2
2n

)) = 2n (2.67)

if the conditions in Theorem 3 is met.

Proof.

χT2n
= χn

Tγβδα
. (2.68)

Under the conditions in Theorem 3,

χTγβδα
(T2n) =



0 0 · · · 0 0

A 0 · · · 0 0

B A · · · 0 0
...

...
. . .

...
...

D C · · · A 0


, (2.69)

where det(A) 6= 0.

One can then show that

v2nχTγβδα
(T2n)n−1 6= 0, (2.70)

since the first 2 × 2 block of the matrix is of the form (T γβαδ )n−1xAn−1, and this is a product of

invertible matrices. Hence the minimal polynomial of T2n cannot have a degree of 2(n − 1). If
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χTγβδα
(x) is irreducible, we are done. Otherwise, consider a nontrivial factor of χTγβδα

(x) and denote

it as f(x) = x + a. Consider the first 2 × 2 block of v2nχTγβδα
(T2n)n−1(T2n + a). It has the form of

xAn−1A′, where A′ is a rank one matrix. Hence, at least one of v1,2
2n has a minimal polynomial for

T2n with a degree 2n.

A similar idea is used for the most general form of the string segment. Given a set of constraints,

one can bound the linear independence of these constraints by determining the minimal polynomial

of a certain matrix. Under the same procedure, Equation 2.62 can be derived, but T2n and v2n are

changed. Their precise forms are not so concise, but for the proof only the following information is

necessary. First, the first 2×2 block of v2n is (T γαβδ )w−w1Tint(T
γβ
αδ )w1−1x, where Tint = T γαδ0 −T

γα
βδ T

γα
α0 .

An important property of Tint is that det(Tint) = 〈α, γ〉〈α, δ〉〈δ, α〉 6= 0 due to the deformability

condition. Second, T2n is a 2× 2-block lower triangular form with following entries.

(T2n)ii = T γβδα i < w1 (2.71)

= T γαδβ i ≥ w1, (2.72)

(T2n)(i+1)i = −T γβαδ x i < w1 (2.73)

= −T γαβδ x i > w1, (2.74)

where w1 is the width before we encounter the corner. The rest of the entries can be computed as

well, but they are irrelevant for the proof. Argument goes as follows.

χT2n(x) = χTγβδα
(x)w1−1χTγαδβ (x)w−w1+1. (2.75)

The minimal polynomial must contain the factor of χTγβδα
(x)w1−1. Otherwise, the first 2× 2 block of

v2nχγβ
δα

(T2n) is an invertible matrix. Consider a polynomial g(x) = χγβ
δα

(x)w1−1χTγαδβ (x)w−w1 . The

(w1 + 1)th 2 × 2 block of v2ng(T2n) is nonzero, since it has the form of (T γαβδ )n−1xAw−w1 for some

invertible matrix A. If χTγαδβ (x) is irreducible, we are done. Otherwise, use the argument used for

the string segments without a kink.

2.3.2 Logical operators

The logical operators of the code is either a fractal or a noncontractible surface. We shall study the

surface operators here. Depending on the system size, there are at least 1, 2 or 4 surface operators

for each directions. Given a surface normal to one of the unit vectors x̂, ŷ, ẑ, the number of distinct

surface operators normal to the vector depends on the width and the height of the surface. If both

of them are even, there are 4 surface operators. If one of them is even, there are 2. If none of them
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are even, there is 1. The construction is quite straightforward.

If the width and the height of the surface are both even, all the periodic structures shown in

Figure 2.15 are allowed. Otherwise, none of them are allowed. It is still possible, however, to

construct logical operators by multiplying two of the logical operators in Figure 2.15. For instance,

multiplying the first and the second or the third and the fourth in Figure 2.15 results in a periodic

structure in the x direction. Similarly, multiplying the first and the third or the second and the

fourth results in a periodic structure in the y direction. Similarly, when both the width and the

height are odd numbers, multiplying all 4 of them results in a periodic structure in the x and the y

directions. One can apply the same logic for all three different directions.

One final note we would like to point out is that the antisymmetric codes always have at least

one encoded qudit. Given a system with n qudits, there are n cubic stabilizer generators. There is

at least one nontrivial relation between the generators: multiplication of all the generators equals

the identity. The same logic cannot be applied to the symmetric code.
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Figure 2.11: This diagram represents a deformation procedure. One can multiply a suitable choice
of stabilizer elements so that the action of the string operator on B is 0 = (0, 0). If two symplectic
pairs on the diagonal line are linearly independent to each other, one can further deform C ′ into 0.
Repeat this procedure until we get rid of the entire line.

Figure 2.12: Deformation of the string logical operator viewed from the direction normal to its cross
section.
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Figure 2.13: Two different kinds of boundary constraints. A and B are the unknown symplectic pairs
and the cubes represent the stabilizer generators that share the support with the logical operator
only at these two sites.

Figure 2.14: Notation for the basis vectors

Figure 2.15: Construction of the logical operators on a plane. Each of them can be mapped into
each other by a unit translation.
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Chapter 3

Technical tools for studying generic
quantum many-body systems

We describe four of the main technical tools used in this thesis. Each sections can be read indepen-

dently. Section 3.1 deals with an operator extension of the strong subadditivity of entropy. This work

also appears in [116]. It is worth noting that Ruskai subsequently extended some of these results to

a much more general setting.[117] Section 3.2 deals with applications of the Lieb-Robinson bound

that are relevant to this thesis. We would like to note the readers that there is a nice pedagogical

introduction to this subject written by Hastings.[118] Unfortunately, the scope of Hastings’ review

article misses some of the results that are necessary for obtaining the main results of this thesis.

Also, there has been a recent development in the subject by several authors which is particularly

well-suited for the purpose of this thesis.[119] We shall describe some of the materials, focusing on

the relevant results that shall be used here. Section 3.3 deals with a deformation technique developed

by myself. Section 3.4 deals with a systematic regularization procedure for introducing a cutoff for

an entanglement Hamiltonian. These works also appear in Ref.[120, 121]

We would also like to mention that each of the forthcoming chapters need different set of technical

tools. For reader’s convenience we list the relevant tools for each of the chapters. One may skip

some of the sections accordingly depending on their interests. In Chapter 4, we shall construct a set

of inequalities between long-range entanglement and a topological ground state degeneracy. None of

the tools presented in this chapter is needed for this result. In fact, a judicious usage of SSA alone

would lead to the main result. Chapter 5 studies a structure of the entanglement Hamiltonian in

gapped quantum many-body systems. For this work, one would need Section 3.1,3.3, and 3.4. In

Chapter 6, we establish a first-order perturbative stability of the topological entanglement entropy.

All of the technical tools in this chapter will be needed to understand the materials.
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3.1 Operator extension of strong subadditivity of entropy

A tripartite state saturating the equality condition of SSA has a very restrictive structure. Namely,

the state forms a quantum Markov chain.[122, 123, 124] One desirable generalization of this result

would be to understand the structure of states that are approximately conditionally independent.

Unfortunately, only negative results exist in the literature. Ibinson, Linden, and Winter studied the

following problem: given a tripartite quantum state ρABC , what is its minimal distance from a set of

quantum Markov chain?[125] More specifically, they have set the distance measure to be the relative

entropy. Their motivation behind this choice comes from the fact that the distance becomes the

conditional mutual information for a classical state. They have shown that, an inequality between the

conditional mutual information and the distance has to be nonlinear as well as dimension-dependent.

Like any good no-go theorem, this result should be considered as a sign pointing away from the

wrong direction. Note that the quantum Markov chain property is just one of the many properties

that follows from the conditional independence. The most immediate consequence of the saturation

of the SSA is the existence of a perfect recovery map.[122] This recovery map has been rediscovered

many times throughout the literature under different names. To the best of author’s knowledge, the

discovery of this recovery map goes back as far as to the work of Accardi and Cecchini, where they

named it as a generalized conditional expectation.[126] Later a more general recovery channel was

discovered, which includes the generalized conditional expectation as a special case.[127] Petz later

found the same recovery channel on a rather unrelated setting,[122] and this lead to the famous

structure theorem discovered by Hayden et al.[123]

A relatively unknown result of Petz is the following necessary and sufficient condition for the

conditional mutual information to be exactly 0.

Theorem 4. (Petz 2003) Assume that ρABC is invertible. SSA holds with an equality if and only

if the following equivalent conditions hold:

(1)ρitABCρ
−it
AB = ρitBCρ

−it
B (3.1)

(2) log ρABC − log ρAB = log ρBC − log ρB . (3.2)

Some comment on the notation is in order. Here log ρAB is a short-hand notation for log ρAB⊗IC .

Similarly, whenever a logarithm of a reduced density matrix appears, a tensor product with the

identity for the rest of the subsystems is implicitly assumed. While the work of Ibinson et al.

precludes a possibility of constructing a linear inequality between conditional mutual information and

a minimal relative entropy between ρABC and a quantum Markov chain state, a certain approximate

version of Theorem 4 may be still true. This will be the direction that we shall pursue.
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The main result of this section is the operator extension of the SSA.

Theorem 5.

TrAB(ρABC(ĤAB + ĤBC − ĤB − ĤABC)) ≥ 0. (3.3)

Several remarks are in order. First, Theorem 5 implies SSA as a special case. This can be easily

seen by taking a partial trace over C. Second, each terms in the left hand side of Equation 3.3 is

Hermitian. Third, a similar inequality cannot be true if the partial trace is either restricted to A

or B only: in that case, the resulting operators are not even Hermitian. Hence, if one considers a

general quantum state, one cannot expect to come up with a linear operator inequality that includes

Equation 3.3 as a special case.

3.1.1 Proof of Theorem 5

Since Lieb and Ruskai’s original proof of SSA[128], alternative proofs have been introduced by several

authors.[122, 129, 130, 131] In particular, Effros recently presented a proof based on the perspective

of an operator convex function.[131] Effros basically extended the notion of perspective function

from real numbers to operators. Given a function f , a perspective of f is defined as

g(x, t) = f(x/t)t.

If f(x) is convex, g(x, t) is jointly convex in x and t. The main insight of Effros is that a similar

statement holds for a function f that is operator convex. To be more precise, he proved the following

statement.

Theorem 6. (Effros 2009) If f(x) is operator convex, and [L,R] = 0, perspective

g(L,R) = f(L/R)R (3.4)

is jointly convex in the sense that if L = cL1 + (1− c)L2 and R = cR1 + (1− c)R2 with [Li, Ri] = 0

(i = 1, 2), 0 ≤ c ≤ 1,

g(L,R) ≤ cg(L1, R1) + (1− c)g(L2, R2). (3.5)

Theorem 5 can be derived from a simple application of Theorem 6. Recall that Theorem 5 asserts

the following inequality:

TrAB(ρABC(ĤAB + ĤBC − ĤB − ĤABC)) ≥ 0. (3.6)
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Proof. We choose a matrix algebra B(H) with an inner product structure of 〈X,Y 〉 = Tr(XY †),

where X,Y are n × n matrices. Following Effros, we choose L and R to be superoperators that

multiply a matrix from the left or the right. For X ∈ B(H), L and R are defined as follows.

LX = ρX

RX = Xσ. (3.7)

L and R commute with each other. One can also show the following relations.

log(L)X = log(ρ)X

log(R)X = X log(σ). (3.8)

Now we set f(x) = x log x and apply Theorem 6 with a judicious choice of operators. Since f(x)

is operator convex[104], g(L,R) = L log(L)− L log(R) is jointly convex in L and R. Therefore,

〈g(L,R)(O), O〉 = Tr(ρ log ρOO† − ρO log σO†) (3.9)

is jointly convex in L and R for all O ∈ B(H).1 Choose ρ = ρABC , σ = ρAB ⊗ IC
dC

, O = IAB ⊗ PC ,

where PC is an arbitrary projector supported on C and dC is the dimension of C. Note

IA
dA
⊗ ρBC =

1

d2
A

d2
A∑

i=1

UA,iρABCU
†
A,i (3.10)

for a set of unitaries {UA,i} that forms an orthogonal basis for B(HA). An example can be found in

Ref. [108]. Using joint convexity,

Tr(
IA
dA
⊗ ρBC(ĤB − ĤBC)PC) ≤ Tr(ρABC(ĤAB − ĤABC)PC). (3.11)

The left hand side of the inequality is equal to Tr(ρABC(ĤB − ĤBC)PC). Since the inequality holds

for all PC ,

TrAB(ρABC(ĤAB + ĤBC − ĤB − ĤABC)) ≥ 0. (3.12)

An important application of Theorem 5 is the following result:

Corollary 1.

Tr(OAρABC(log ρABC + log ρB − log ρAB − log ρBC)) ≤ I(A : C|B)‖OA‖. (3.13)

1The joint convexity of Equation 3.9 was originally proved by Petz.[132]
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Proof.

Tr(OAρABC(log ρABC + log ρB − log ρAB − log ρBC))

≤ TrA(OATrBCρABC(log ρABC + log ρB − log ρAB − log ρBC))

≤ ‖OA‖|TrBCρABC(log ρABC + log ρB − log ρAB − log ρBC)|1

= ‖OA‖I(A : C|B) (3.14)

In comparison to Theorem 4, we have an interesting conclusion. Note that Petz’s condition can

be reformulated as:

Tr(OρABC(log ρABC + log ρB − log ρAB − log ρBC)) = 0 (3.15)

for any bounded operator O. Our result is weaker in that Equation 3.13 is a statement about

an operator that is either supported on A or C. On the other hand, our result is more general

in that we do not have to assume the conditional mutual information is 0. Our result becomes

particularly powerful for systems that have a small yet nonzero conditional mutual information. For

such systems, the following operator analog of the conditional mutual information,

log ρABC + log ρB − log ρAB − log ρBC , (3.16)

has a small correlation with any local operator supported on A or C.

We note in passing that a much stronger inequality can be obtained if one assumes the reduced

density matrices to commute with each other.

Lemma 15. If all the reduced density matrices commute with each other for a tripartite state ρABC ,

TrA(ρABC(log ρABC + log ρB − log ρAB − log ρBC)) ≥ 0. (3.17)

However, a similar inequality cannot be true for quantum states. The left hand side of Equation

3.17 is not even Hermitian in general.2

2We have also tested variants of Equation 3.17 that are manifestly Hermitian, such as TrA{(ρABC , (log ρABC +

log ρB−log ρAB−log ρBC)} and TrA(ρ
1
2
ABC(log ρABC+log ρB−log ρAB−log ρBC)ρ

1
2
ABC). Numerical counterexamples

were found for both of these conjectures.
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3.2 Lieb-Robinson bound

Lieb-Robinson bound asserts that, given a Hamiltonian described by a sum of geometrically local

bounded norm terms, the unitary evolution generated by the Hamiltonian has an effective light cone.

As in the relativistic quantum mechanics, correlations outside the effective light cone is small.3 We

shall not give a proof of this statement, but rather assume the quantum many-body Hamiltonian

satisfies the Lieb-Robinson bound and study its consequences. For a pedagogical introduction to

the subject, we recommend Hastings’ lecture note.[118] Given an observable OA(OB) supported on

A(B), Lieb-Robinson bound can be formally stated as follows.

‖[OA(t), OB ]‖ ≤ c‖OA‖‖OB‖min(|A|, |B|)ec1(vt−d(A,B)), (3.18)

where 0 < c, c1, v < ∞ are some constants that depend on the parameters of the Hamiltonian and

d(A,B) is a distance between A and B. O(t) = e−iHtOeiHt is a time evolution of an operator O

under the Hamiltonian.

While Equation 3.18 is already useful for some applications,[133, 32] it is important to consider

variants of the Lieb-Robinson bound in more general settings. A mathematical interest aside, such

a generalization is absolutely necessary in constructing Hastings’ quasi-adiabatic continuation tech-

nique. The quasi-adiabatic continuation asserts that, given a set of eigenstates of a Hamiltonian

along some path s ∈ [0, 1] that is separated from the rest of the spectrum, there exists a path-

dependent “Hamiltonian” that generates a unitary flow between s = 0 and 1. Furthermore, if (i) the

underlying Hamiltonian H(s) consists of geometrically local, s-differentiable, bounded norm terms

and (ii) those states are separated from the rest of the spectrum by a constant that is independent

of the system size, the unitary flow can be generated by a sum of path-dependent quasi-local terms

with a superpolynomially decaying tail. Therefore, the path-dependent quasi-local terms appear

inevitably in the analysis of such systems. For the scope of this thesis, we shall not need to worry

about the complications arising from the path-dependence.

An important concept in the application of the Lieb-Robinson bound is the so called filter

function. Unfortunately the notation in the literature is not uniform, so we begin by defining

the following superoperator:

Φf (O) =

∫ ∞
−∞

e−iHtOeiHtf(t)dt. (3.19)

It is worth noting that in the energy eigenbasis,

Φf (O)|ij = f̃(Ei − Ej)Oij , (3.20)

where f̃(ω) is an inverse Fourier transform of f(t). By making a judicious choice of f , one can make

3Correlation is strictly 0 outside the light cone in a relativistic quantum mechanics.
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(i) the off-diagonal terms of Φf (O) to decay sufficiently fast and (ii) f(t) to decay sufficiently fast

in t. Under such a choice of f , Φf (O) can be approximated by a diagonal matrix while maintaining

its locality approximately.

More specifically, we can define a truncated superoperator ΦTf by introducing a cutoff T .

ΦTf (O) =

∫ T

−T
e−iHtOeiHtf(t)dt. (3.21)

A Lieb-Robinson type locality bound for Φf can be established as follows.

‖[Φf (OA), OB ]‖ ≤ ‖[ΦTf (OA), OB ]‖+ ‖[∆T
f (OA), OB ]‖, (3.22)

where ∆T
f = Φf − ΦTf . The first term can be bounded by

∫ T

−T
|f(t)|dt‖OA‖‖OB‖cec

′(vT−d(A,B)) (3.23)

from the Lieb-Robinson bound. The second term can be bounded by

∫
R\[−T,T ]

|f(t)|dt‖OA‖‖OB‖. (3.24)

Depending on the function f , one can optimize the bound with a judicious choice of T . Many of the

rigorous results using the Lieb-Robinson bound uses this line of logic.

3.2.1 Application to the finite-temperature systems

An important example of a filter function is the following function:

f̃β1 (ω) =
tanh(βω/2)

βω/2
. (3.25)

To the best of author’s knowledge, f̃β1 was first used by Hastings to obtain the correlation decay

bound for fermionic systems at a finite temperature.[133] Later a similar technique was used in

justifying an approximation used in the quantum belief propagation(QBP) algorithm.[134] The mo-

tivation for using this function is mainly twofold. First, given a strictly local operator vi, one can

straightforwardly show that Φf̃β1
(vi) can be well approximated by a strictly local operator. More

specifically, we have the following Lieb-Robinson type bound.

Lemma 16. If H satisfies Lieb-Robinson bound,

‖[Φfβ1 (OA), OB ]‖ ≤ c‖OA‖‖OB‖min(|A|, |B|)e−
c′d(A,B)

1+c′vβ/π , (3.26)
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for some constant 0 < c, c′ <∞.

Subsequently, one can obtain the following local approximation of Φfβ1
(vi).

Corollary 2.

‖Φfβ1 (vi)− [Φfβ1
(vi)]vi(r)‖ ≤ c

′‖vi‖e
− c′r

1+c′vβ/π , (3.27)

where vi(r) is a set of sites whose distance from the support of vi is less or equal to r. We have

used the following notation introduced by Bravyi et al.[59] to approximate a quasi-local operator by

a strictly local operator:

[O]A =
1

dimAc
TrAc(O)⊗ IAc . (3.28)

The proof follows a rather standard technique[59, 118] which is based on the “twirling” idea: that

one can perform a partial trace operation by randomly applying a unitary over the Haar measure.

Secondly, Φfβ1
is a quantum channel that appears naturally when computing a directional deriva-

tive of a density matrix.4

Lemma 17. For ρ(s) = e−βH(s)

Z ,

d

ds
ρ(s)|s=0 =

β

2
(Φfβ1

(V )ρs + h.c.)− β〈Φfβ1 (V )〉, (3.29)

where h.c. is Hermitian conjugate.

Therefore, provided the original Hamiltonian H is local, the infinitesimal change to the Gibbs

state under a local perturbation V is generated by a sum of quasi-local terms.

3.2.2 Quasi-adiabatic continuation

The quasi-adiabatic continuation was originally conceived by Hastings in his proof of the higher

dimensional generalization of the Lieb-Schultz-Mattis theorem.[32] This technique was later refined

and generalized by a number of authors.[33, 56, 57, 58, 59, 60, 61, 29] Due to the vastness of the

related literature, we will not be able to cover all of the details of this technique. Rather, we will

give several important remarks that are relevant to this thesis.

The quasi-adiabatic continuation in its original form is formally defined as the following unitary

operator[33]:

V (s) := S ′ exp(−
∫ s′

0

∫ ∞
0

dτe−(τ/tq)
2/2[ũ+

s′(iτ)− h.c.]), (3.30)

4To see that Φ
f
β
1

is a quantum channel, note that it has an integral Kraus representation. Furthermore, one can

easily check from the normalization of fβ1 that this channel is trace preserving.
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where us = d
dsH(s) and

Ã+(iτ) :=
1

2π

∫
dtÃ(t)

1

it+ τ
. (3.31)

Here S ′ represents a path-ordered product in the variable s′ and H(s) is a family of Hamiltonian

parameterized by s ∈ [0, 1]. tq is some parameter that will determine the “fidelity” of the quasi-

adiabatic flow, in that V (s) converges to the true adiabatic evolution in the tq → 0 limit. For

certain applications, one can show that the quasi-adiabatic continuation simulates the true adiabatic

evolution with a small error even if one chooses tq to be sufficiently small. For such small choices

of tq, one can approximate the generator of the flow by a sum of geometrically local bounded-norm

terms.

However, a number of improved bounds were obtained recently. A particularly notable example

is derived Ref.[29], where the authors have obtained the generator of the exact adiabatic evolution

which consists of a sum of quasi-local bounded-norm terms with a superpolynomially decaying tail.

For a continuous family of Hamiltonian H(s) = H0 + sV , s ∈ [0, 1], the quasi-adiabatic continuation

operator Ds is defined as follows:

Ds := i

∫
dtF (t)eiHstV e−Hst, (3.32)

where F (t) has the following properties:

• F̃ (ω) = −1/ω for |ω| ≥ 1
2

• F (t) = −F (−t)

• F (t) is infinitely differentiable.

Then the unitary time evolution generated by Ds simulates the adiabatic evolution exactly. Note

that we have not specified F (t) yet. Bachman et al. essentially optimized the asymptotic behavior

of this superpolynomial decay by making an intelligent choice of F (t).[119] Their result shall be the

version of the quasi-adiabatic continuation we use in this thesis. They showed that the generators

is of the following form:

Ds = ΦWΓ
(
dH(s)

ds
), (3.33)

where Γ = mins∈[0,1] Γ(s) and WΓ(t) is some superpolynomially decaying function. In our setting,

dH(s)
ds = V . Each of the local terms vi in V can be approximated as follows.[119]

‖ΦWΓ(vi)− [ΦWΓ(vi)]vi(r)‖ ≤ C‖vi‖G
(I)(

Γr

2v
), (3.34)

where v is the Lieb-Robinson velocity appearing in Equation 3.18, and GI(x) is a function that
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satisfies the following property.

G(I)(x) =
K

Γ
0 ≤ x ≤ x0

= 130e2x10u2/7(x) x > x0. (3.35)

Estimates for the constants are K ≈ 14708, 36057 < x0 < 36058.[119] Also, ua(x) is defined as

follows.

ua(x) = e−a
x

ln2 x . (3.36)

3.3 Deformation moves

One of the basic properties of the quantum conditional mutual information is its chain rule. The

chain rule is the following identity, which can be easily shown by a direct calculation:

I(A1A2 : C|B) = I(A2 : C|B) + I(A1 : C|A2B). (3.37)

Note that Equation 3.37 is merely a statement about a set. Therefore, the following operator,

defined as the conditional mutual spectrum should also satisfy a similar relation:

ĤA:C|B = ĤAB + ĤBC − ĤB − ĤABC , (3.38)

where ĤA is the entanglement spectrum of a subsystem A:

ĤA := − log ρA ⊗ IAc . (3.39)

Again, one can easily check that the following chain rule of the conditional mutual spectrum holds:

ĤA1A2:C|B = ĤA2:C|B + ĤA1:C|A2B . (3.40)

Deformation move is a certain linear combination of Equation 6.5. Roughly, the main goal of

the deformation move is to achieve the following specific task. Given a conditional mutual spectrum

ĤA:C|B and a local operator O, one would like to decompose ĤA:C|B into a sum of the conditional

mutual spectra ĤAi:Ci|Bi such that (i) I(Ai : Ci|Bi) is small or (ii) AiBiCi is sufficiently far away

from the support of O. We have not enforced any structure on the state so far, so one must first

define what it means for the conditional mutual information to be small. Furthermore, we should

also define what it means for the subsystems to be far away from each other.
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Implicitly we are assuming the Hilbert space to have a tensor product structure:

H = ⊗iHi, (3.41)

where Hi is the local Hilbert space with a bounded Hilbert space dimension. Here i can be thought

as a site on a lattice. Hence, one can define a metric that assigns a distance between each sites.

Similarly, one can define a distance between subsystems to be the minimal distance between two

sites that lie on each of the subsystems.

Regarding the smallness of the conditional mutual information, we are implicitly assuming that

the extensive terms of the entanglement entropy can be attributed to the local contributions. From

a heuristic argument about the scaling properties of the entanglement entropy, one may argue that

the entanglement entropy of a subsystem A with a smooth boundary has the following form:

S(A) =

n∑
i=0

ail
d−i, (3.42)

where l is the linear size of the subsystem and d is the spatial dimension of the system.5 Further,

we are assuming that the extensive terms can be canceled out by making a judicious choice of the

subsystems.

Undoubtedly one of the most interesting physical systems that satisfy these properties is the

ground state of a gapped system. While a rigorous proof does not exist yet, there is a reason to

believe that the entanglement entropy of a two-dimensional gapped systems has the following form:

S(A) = a|∂A| − γ, (3.43)

where a is a nonuniversal constant and γ is the topological entanglement entropy. |∂A| is the

boundary area of A.[27, 71] An important point is that γ only depends on the topology of A. More

precisely, it only depends on the number of connected components of the boundary of A.

Keeping this example in mind, we introduce three elementary deformation moves. While all of

these deformation moves can be derived from the chain rule of the conditional mutual spectrum, it

shall be easier to define the elementary moves to simplify the process. We would like to first point

out a rather obvious property of the conditional mutual information I(A : C|B): that it is invariant

under the exchange of A and C. This fact can be easily verified from the definition of the conditional

mutual information. Therefore, it is natural to make a distinction between B and the rest of the

subsystems.

We shall call A and C as target parties, and B as the reference party. In the diagrams, we shall

5It is a well known fact that such scaling relation fails in general. For example, one-dimensional critical systems
have a logarithmic scaling law of entanglement entropy.[135] Therefore, one must be careful in using these assumptions.
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represent the target parties with the “T” signs. Similarly, we shall represent the reference party

with an “R” sign. Given an observable O whose support is sufficiently small compared to the size

of the subsystems, our strategy is to deform a given conditional mutual spectrum as follows.

1. Isolation move : If the observable has a support that overlaps with the reference party, deform

the target as well as the reference party. After the deformation move, the support of the

observable does not have any overlap with the new reference party.

2. Separation move : If the observable has a support that overlaps only with the target party,

deform the target party. After the deformation move, the support of the observable does not

have any overlap with the target party.

3. Absorption move : If the support of the observable does not overlap with any of the target

or reference parties of a conditional mutual spectrum whose conditional mutual information

is small, deform one of the target parties. After the deformation move, the support of the

observable is contained in one of the target parties.

An astute reader may have noticed a somewhat conflicting agenda between the separation move and

the absorption move. An important difference between these two moves is the conditional mutual

information that is described by the conditional mutual spectrum that we are deforming. In the case

of the separation move, there is no a priori assumption about the smallness of the conditional mutual

information. On the other hand, we are explicitly assuming the conditional mutual information is

small for the absorption move.

We have applied these moves to a two-dimensional gapped quantum many-body system. The

isolation move is depicted in Figure 3.1. After applying the isolation move, the conditional mutual

X

T

T

R R

X

T

T

R R

X

T

T

R R= -

Figure 3.1: Isolation move

spectrum is deformed in such a way that (i) for the new conditional mutual spectrum, X is sufficiently

far away from the reference party, and (ii) the difference is a conditional mutual spectrum with a

small conditional mutual information. One can see that the deformed reference party does not have

any overlap with the support of the observable X. Further, there is a correction term that appears

on the second part. More formally, this decomposition can be written in the following way:

ĤA:C|B1B2
= ĤAB1:C|B2

− ĤB1:C|B2
. (3.44)
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One should note that

I(B1 : C|B2) ≈ 0 (3.45)

for two-dimensional gapped systems in general.

The separation move is depicted in Figure 3.2. In an algebraic form, the separation move can be

X

T

T

R R

X

T

T

R R

X

T

R

T

= +

Figure 3.2: Separation move

written as follows:

ĤA1A2:C|B = ĤA2:C|B + ĤA2:C|A1B . (3.46)

After applying the separation move, the conditional mutual spectrum is deformed in such a way

that (i) for the new conditional mutual spectrum, X is sufficiently far away from both the reference

and the target party (ii) the difference is a conditional mutual spectrum with a small conditional

mutual information

By first applying the isolation move and then the separation move, one can always deform the

configuration to be distance Ω(l) away from X, where l is the linear size of the subsystems.6

Finally, the absorption move is depicted in Figure 3.3.

X

T

T

R R

X

T

T

R R

X

T

T

R R= -

Figure 3.3: Absorption move

In an algebraic form, the absorption move can be written as follows:

ĤA1:C|B = ĤA1A2:C|B − ĤA2:C|A1B . (3.47)

As stated previously, the goal of the absorption move is to change the correction terms to a sum of

the conditional mutual spectrum ĤAi:Ci|Bi such that (i) the support of X is contained in either Ai

or Ci and (ii) I(Ai : Ci|Bi) is small.

6We are implicitly assuming that all of the subsystems are sufficiently smooth.
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To summarize, given a conditional mutual spectrum ĤA:C|B and an arbitrary operator X that

does not overlap with any of the boundaries, one can decompose the conditional mutual spectrum

into a linear combination of the conditional mutual spectrum ĤAi:Ci|Bi . Further, these conditional

mutual spectrum can be classified into two types. The first type is the conditional mutual spectrum

that is far away from the operator X. The second type is the conditional mutual spectrum ĤAi:Ci|Bi

such that (i) it has a small conditional mutual information and (ii) only one of its target parties

overlap with the support of X. For the terms of the second type, one can use Equation 3.13 to

bound its value.

3.4 Regularization of the entanglement Hamiltonian

In this section, we introduce a systematic procedure for regularizing the entanglement Hamiltonian.

The motivation behind this procedure comes from the following question. Suppose we are given a

subsystem A, and we apply a unitary transformation that is generated by a quasi-local Hamiltonian

which is centered around a region that is far away from A: while the Hamiltonian is nonlocal, it can

be approximated by a strictly local Hamiltonian with a small tail that decays sufficiently fast.

Intuitively, one would expect the resulting change of the entanglement entropy would be small.

More precisely, one can expect the unitary transformation U to be approximated by another unitary

Ũ that is strictly local, with the following bound on their difference:

‖Ũ − U‖ ≤ ε. (3.48)

Infinitesimally, one can approximate U ≈ 1 + iHt, where H is the quasi-local Hamiltonian generates

that the unitary evolution. Approximating H by a strictly local operator H̃, one can bound the

infinitesimal change of the entanglement entropy as

d

ds
S(A) = −iTr([ρ,H] log ρA) (3.49)

= −iTr([ρ, H̃] log ρA)− iTr([ρ,H − H̃] log ρA), (3.50)

using the standard perturbation theory technique. One can näıvely try to bound the correction term

using the following inequality:

Tr(AB) ≤ |A|1‖B‖. (3.51)

However, we run into a problem: the operator norm of log ρA is formally unbounded.

A conventional remedy to this problem is to simply disregard the infinite eigenvalues of log ρA.

However, there is a physical reason why this approach will not be very successful in general. Consider

the toric code for example. If one takes the logarithm of some reduced density matrix, it will have
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infinite eigenvalues. These infinite eigenvalues correspond to the zero eigenvalues of the reduced

density matrix. Once a perturbation is added to this system, these eigenvalues will be lifted to

a finite value. Since everything is finite throughout this procedure, the zero eigenvalues will be

continuously increase to a nonzero value. Therefore, simply getting rid of the infinite eigenvalues of

log ρA will not be able to get rid of these eigenvalues that are large but not infinite.

Motivated from these examples, we define a regularized version of the entanglement Hamiltonian.

Definition 16. Regularized entanglement Hamiltonian ĤΛ
A with a cutoff Λ is

ĤΛ
A = −

∑
p≥1/Λ

log pi |i〉 〈i| , (3.52)

where |i〉 is an eigenstate of ρA with an eigenvalue pi.

Before we present the key lemma, we emphasize two points. First, the bound is determined from

the cutoff value Λ and the dimension of a single subsystem A. Secondly, by choosing the cutoff value

to be Λ = Θ(d6
A), one can make |ρAB∆Λ

A|1 arbitrarily small while bounding the operator norm of

ĤΛ
A by O(log dA). Roughly speaking, this means that log ρA can be regarded as an operator with

an operator norm O(log dA) for bounding its correlation with other local observables.

Lemma 18.

|ρAB∆Λ
A|1 ≤

d3
A

Λ
1
2

log Λ, (3.53)

where ∆Λ
A = ĤA − ĤΛ

A.

Proof. Purify ρAB to |ψ〉ABC . |ψ〉ABC admits the following Schmidt decomposition.

|ψ〉ABC =

dA∑
i=1

√
pi |i〉A |i〉BC , (3.54)

where pis are the eigenvalues of ρA and |i〉A (|i〉BC) are the basis states for the Hilbert space

HA(HBC).

For any operator O ∈ B(HAB), it allows the following decomposition.

O =

d2
A∑

i=1

d2
B∑

i=1

1

dAdB
Tr(UA,i ⊗ UB,jO)U†A,i ⊗ U

†
B,j , (3.55)

where UA,i(UB,j) are unitary operators that are supported on A(B) with appropriate normalization

conditions.

Tr(UA,iU
†
A,j) = dAδij

Tr(UB,iU
†
B,j) = dBδij . (3.56)
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In other words, {UA,i/
√
dA} ({UB,i/

√
dB}) is a complete set of orthonormal basis for B(HA) (B(HB))

under a Hilbert-Schmidt inner product 〈O1, O2〉 = Tr(O†1O2). Such basis set always exists for a finite

dimensional Hilbert space.[108] Equation 3.55 is equivalent to the following expression.

O =

d2
A∑

i=1

OB,i ⊗ U†A,i, (3.57)

where

OB,i =
1

dA
TrA(UA,iO) (3.58)

=

dB∑
j=1

1

dAdB
Tr(UA,i ⊗ UB,jO)U†B,j . (3.59)

Also, OB,i can be bounded as follows.

‖OB,i‖ =
1

dA
sup
|φ〉BC

dA∑
i=1

〈φ|BC 〈i|A UA,iO |i〉A |φ〉BC (3.60)

≤
dA∑
i=1

1

dA
‖UA,iO‖ = ‖O‖. (3.61)

Rewriting Tr(ρAB∆Λ
AOB,i ⊗ U

†
A,i) as 〈ψ|ABC ∆Λ

AOB,i ⊗ U
†
A,i |ψ〉ABC ,

〈ψ|ABC ∆Λ
AOB,i ⊗ U

†
A,i |ψ〉ABC = Tr(ρ

1
2

A∆Λ
AU
†
A,iρ

1
2

AÕ
T
B,i), (3.62)

where ÕB,i = V OB,iV
† with an isometry V =

∑
i |i〉A 〈i|BC . OT is the transpose of O. Equation

3.62 can be bounded by

|ρ
1
2

A∆Λ
A|1‖U

†
i ρ

1
2

AÕ
T
i ‖ ≤

dA

Λ
1
2

log Λ‖Oi‖. (3.63)

Summing over all i, we get

|Tr(ρAB∆Λ
AO)| ≤ ‖O‖ d

3
A

Λ
1
2

log Λ (3.64)

One immediate consequence of this lemma is the following corollary.

Corollary 3.

|Tr(ρAB log ρAO)| ≤ 6‖O‖ log dA (3.65)

Using this bound, one can obtain an infinitesimal change of the entanglement entropy under a
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unitary evolution generated by a quasi-local Hamiltonian.

|dS(A)

ds
| = O(ε log dA), (3.66)

where ε = |H − H̃| is the error for approximating the quasi-local Hamiltonian H by a strictly local

Hamiltonian H̃.

It is even possible to obtain a similar bound for the connected correlation function.

Corollary 4. Consider a connected correlation function C(O1, O2) = 〈O1O2〉 − 〈O1〉〈O2〉. If

C(O1, O2) ≤ ‖O1‖‖O2‖ε for all O1, O2,

|C(ĤA, O)| ≤ ε‖O‖(18 log dA + 4 log
1

ε
). (3.67)

While Lemma 18 is a bit technical, it has a succinct physical meaning: for the purpose of

bounding a correlation between the entanglement Hamiltonian ĤA and other local observables,

one can regard it as a bounded operator with an operator norm that scales as the O(log dA). In

the case of the quantum many-body systems, O(log dA) = O(VA log d), where VA is the volume

of the subsystem and d is the local particle dimension. This is a good sign, since in many cases

correlation decays superpolynomially for the systems we are interested in. For example, it is known

that correlation decays exponentially fast in a gapped quantum many-body system.[56, 57] Also, the

nonlocal observables that appear in the theory of quasi-adiabatic continuation can be approximated

by a strictly local operator with a superpolynomially decaying tail.[119] Indeed, this regularization

technique will prove to be useful for analyzing the local properties of the entanglement Hamiltonian

and the stability of the topological entanglement entropy, which are explained in Chapter 5 and 6.
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Chapter 4

Long-range entanglement is
necessary for a topological storage
of quantum information

Entanglement entropy is a canonical measure for quantifying entanglement in a bipartite pure

state.[136] One of the motivations behind these studies is that the entanglement entropy is a use-

ful probe for detecting the phase of the quantum many-body system. For example, entanglement

entropy in one-dimensional critical systems follows a universal logarithmic scaling law, and its pref-

actor is related to the conformal charge of the theory.[135] In two spatial dimensions, the quantum

dimension of the topological quantum field theory describing the low-energy physics can be inferred

from a constant subcorrection term of the entanglement entropy.[79, 27, 71]

Another important motivation comes from the numerical simulation of quantum many-body sys-

tems. Classes of variational ansatz such as the matrix product states(MPS),[14, 137] projected en-

tangled pair states(PEPS),[21] and the multi-scale entanglement renormalization ansatz(MERA)[22]

have certain entropy scaling laws. Since these variational states reproduce the entanglement scaling

of gapped/critical systems, they are suitable for efficiently simulating the ground state properties of

the quantum many-body systems. In particular, a rigorous argument can be made for 1D gapped

systems, where an explicit scaling relation between the entanglement entropy and the MPS bond

dimension is known.[20, 52, 53]

Recently another possibility has been explored by several authors.[55, 120, 116] Their approaches

differ from the conventional ones in several aspects. For one thing, they explicitly use the entan-

glement entropy over multiple subsystems simultaneously. Moreover, the main objective of these

works is not necessarily focused on obtaining an order parameter of the phase. Rather, they are

interested in identifying a hidden structure of the quantum many-body phase that protects their

universal properties.

This hidden structure by in large can be attributed to the structure of states that are ap-
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proximately conditionally independent. A tripartite state ρABC is conditionally independent if its

conditional mutual information I(A : C|B) = S(AB)+S(BC)−S(B)−S(ABC) is equal to 0, where

S(A) = −Tr(ρA log ρA) is the entanglement entropy of the subsystem A. Similarly, a tripartite state

is approximately conditionally independent if its conditional mutual information is close to 0. At

least for gapped quantum many-body systems, there is a good reason to expect such subsystems to

appear quite naturally.[55] The power of these approaches lies on the fact that their argument only

relies on the generic properties of the ground state alone. Moreover, the structure that arises from

the vanishing conditional mutual information is manifestly nonlocal: it gives a nontrivial constraint

between the density matrices over large regions.[122, 123, 124]

Here we explore this structure further in the context of finding a fundamental limit on the

information storage capacity of the quantum many-body system. There has been a number of

results in recent years, where information storage tradeoff bounds for local quantum codes have been

obtained.[34, 35, 36, 37, 38] A local quantum code refers to a set of degenerate ground states stabilized

by a sum of geometrically local commuting projectors. Important examples include quantum double

and Levin-Wen model.[3, 26] Bravyi et al. showed that the following bound holds for such systems

kd2/(D−1) = O(n), (4.1)

where k is the number of qubits, d is the code distance, D is the spatial dimension of the lattice,

and n is the number of particles.[35]

Local quantum codes cover a rich array of systems. Indeed, it has been conjectured that Levin-

Wen model can describe any non-chiral topologically ordered systems in two spatial dimensions.[26]

However, none of these models give rise to the chiral gapless boundary excitations. Hence, the

tradeoff bound cannot be applied to physical systems exhibiting the integer quantum Hall effect or

the fractional quantum Hall effect(FQHE).[5, 6] Furthermore, there are models that are topologically

ordered yet do not necessarily have a local commuting parent Hamiltonian. Examples include certain

quantum dimer models,[138, 139] parent Hamiltonians of PEPS,[24, 25] and Kitaev’s honeycomb

model.[140]

To deal with such systems, we approach this problem by focusing only on the properties of

the state. More precisely, we obtain an upper bound on the number of topologically protected

qubits in terms of a linear combination of entanglement entropies over some local regions of a

single wavefunction. Entanglement entropies are later related to the code parameters. At first,

the preceding claim might seem oxymoron to some of the readers. How can one bound a number

of degenerate ground states without knowing the parent Hamiltonian? Further, how can one even

define an entanglement entropy of a subsystem if there are multiple states? Answers to both of these

questions lie on an important difference between a classical error-correcting code and a quantum
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error-correcting code.

The key property of the quantum error-correcting code that sets apart from its classical coun-

terpart is the local indistinguishability property. While a more general version of this definition

exists,[141, 142, 143] it will be convenient to use the concept of topological quantum order(TQO)[59]

for our purpose. As we have covered in Chapter 1, we say that a set of states {|ψi〉}i=1,··· ,N satisfies

a TQO condition with (r, ε)-error if

| 〈ψi|φ |ψj〉 | ≤ ‖φ‖ε, i 6= j

| 〈ψi|φ |ψi〉 − 〈ψj |φ |ψj〉 | ≤ ε‖φ‖, (4.2)

holds for any φ that is restricted to a ball of radius r, where ‖ · · · ‖ is the operator norm. If the

approximation radius r and the approximation error ε are obvious from the context, we shall simply

say that the states are locally indistinguishable. An important consequence of Equation 4.2 is that

the reduced density matrices of the locally indistinguishable states are close to each other in a trace

norm. Therefore, one can unambiguously define the entanglement entropy of the aforementioned set

of states up to a small error, so long as the subsystem can be contained in a ball of radius r. We

shall call such subsystems to be local.1

Roughly speaking, each of the qubits in the quantum error-correcting code is entangled to each

other so that the information can be stored nonlocally. As the number of encoded qubits increase,

more entanglement is necessary to distribute the information sufficiently nonlocally. Hence, there

has to be an inherent limit on the number of protected qubits if the entanglement across different

subsystems are bounded.

Here we shall set this intuition on a rigorous ground. Our approach is purely information-

theoretic: we only use the strong subadditivity of entropy as our main technical tool.[144] However,

we believe it would be more instructive to discuss some of the related results to understand the

motivation behind our construction. Strong subadditivity of entropy asserts that the conditional

mutual information I(A : C|B) of a tripartite quantum state ρABC is nonnegative. While this

statement is true for any quantum states, a special structure arises when the inequality is satisfied

with an equality. In particular, Petz[122] showed that a tripartite state ρABC can be reconstructed

from ρAB and ρBC
2 if the conditional mutual information vanishes:

ρABC = ρ
1
2

ABρ
− 1

2

B ρBCρ
− 1

2

B ρ
1
2

AB . (4.3)

Recursively applying Petz’s result, Hastings and Poulin showed that quantum systems that

1We note in passing that classical error-correcting codes in general do not satisfy Equation 4.2, e.g., a classical
repetition code.

2Note that ρB can be obtained from either ρAB or ρBC .
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saturate the equality condition for certain subsystems can be completely reconstructed from the

local reduced density matrices alone.[55] A simple corollary of their result is that there cannot be

another distinct state that is locally indistinguishable from the original state. To understand why,

suppose there are two distinct states ρ1, ρ2 that are locally indistinguishable. Since both states

have the same local reduced density matrices, the conditional mutual information computed from

these local density matrices must be both 0. Due to the same reason, a recursive application of

Equation 4.3 must yield a same recovered state for both ρ1 and ρ2. Since ρ1 and ρ2 were assumed

to be distinct, this contradicts the original assumption. While this argument can be applied quite

generally, it is not robust against a small deviation from the original assumptions: if the conditional

mutual information is only approximately equal to 0, Equation 4.3 cannot be used anymore. Also,

Hastings and Poulin’s result applies only to tree graphs. We shall discuss how these issues can be

circumvented by giving several concrete examples. Before we go into the details, we would also like

to mention that some of the work also appears in Ref.[145].

4.1 1D system : correlation decay limits topological protec-

tion

We first apply our result to an one-dimensional system, see Figure 4.1. Without loss of generality,

let us assume that there are N states that satisfy the TQO condition with a sufficiently large

approximation radius and zero approximation error. For a maximally mixed state over the N states

{|ψi〉}, apply the strong subadditivity of entropy:

I(A : C|B) ≥ 0, (4.4)

where A,B, and C are three contiguous subsystems that partition the chain. Rearranging the

entanglement entropies over the subsystems, we conclude:

S(AB) + S(BC)− S(B) ≥ logN, (4.5)

where the underlying state is the maximal mixed state over the N states. Since each of the states

|ψi〉 are locally indistinguishable from each other, the inequality can be rewritten in the following

form:

I(A : C) ≥ logN, (4.6)

where the underlying state is one of the topologically ordered states. Here we have used the purity

of the global state.

From this analysis, one can see that the mutual information between two different subsystems is
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A B C

A B C

Figure 4.1: 1D chain with an open and closed boundary condition.

bounded from below by a constant if there exists at least two topologically ordered states. Therefore,

any 1D system with an open boundary condition cannot have more than one locally indistinguishable

ground states if correlation decays sufficiently fast. More precisely, consider a 1D chain with n qubits,

a code distance d, and a number of encoded qubits k. Equation 4.6 implies that one cannot have

a code distance almost saturating n, i.e., d = n − O(1), if correlation decays asymptotically. The

reason is that (i) I(A : C) can be bounded in terms of |ρAC−ρA⊗ρC |1 using Fannes inequality, and

(ii) the trace distance between ρAC and ρA ⊗ ρC can be tightly bounded by a connected correlation

function between two local observables[52]:

|ρAC − ρA ⊗ ρC |1 ≤ min(dA, dC) max
MA,MC≤I

〈MAMC〉 − 〈MA〉〈MC〉,

where 〈O〉 is a short-hand notation for the expectation value of O on one of the ground states.

Our approach lets us bound even the storage capacity for critical systems. Despite the large

amount of entanglement present in the critical state, there cannot be another locally indistinguishable

state with a code distance d = n−O(log n) since correlation decays algebraically. The power of our

approach comes from the fact that we do not need any specific information about the Hamiltonian

for obtaining a bound on the number of topologically ordered states.

4.2 2D system : an inequality between topological entangle-

ment entropy and topological degeneracy

We discuss a class of models in two spatial dimensions that satisfy a strict form of area law. Loosely

speaking, we say a model satisfies a strict form of area law if the nonuniversal contribution to the

entanglement entropy can be canceled out by taking a judicious choice of a linear combination. The
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entanglement entropy of these models can be written as

S(A) = a|∂A| − b0(A)γ +O(e−|∂A|/ξ), (4.7)

where a is a nonuniversal constant, |∂A| is the number of particles along the boundary of A, ξ is

the correlation length, and γ is the topological entanglement entropy.[27, 71] b0(A) is the number

of connected of components of the boundary of A. The correlation length will be equal to 0 for a

fixed-point wavefunction of some RG flow, but otherwise would remain nonzero.

Suppose we have N states {|ψi〉}i=1,··· ,N with (cL,O(e−L/ξ))-TQO condition that satisfy Equa-

tion 4.7 for a local subsystem. Here we have assumed our system to be on a L×L torus. The specific

value of the numerical constant 0 < c < 1 is irrelevant for the analysis, as long as it is sufficiently

close to 1. Our first main result gives a rigorous lower bound of γ in terms of N , up to a small

correction that vanishes in the thermodynamic limit.

logN ≤ 2γ +O(L2e−L/ξ) (4.8)

The idea for proving Equation 4.8 is to apply the Markov entropy decomposition(MED) to a

maximally mixed state over the N states.[55] More precisely, consider a sequence of subsystems

Ai, Bi, Ci, i = 1, · · · , n such that (i) AiBiCi = Ai+1Bi+1 (ii) A1B1 and BiCi are local (iii) AnBnCn

is the entire system. For such choice of subsystems, following linear combination of entanglement

entropy is nonnegative due to the strong subadditivity of entropy:

n∑
i=1

I(Ai : Ci|Bi) = S(A1B1) +

n∑
i=1

S(BiCi)− S(Bi)

− S(AnBnCn).

By choosing the global state to be a uniform mixture of the N locally indistinguishable states, i.e.,∑N
i=1

1
N |ψi〉 〈ψi|, we arrive at the following bound:

logN ≤ S(A1B1) +

n∑
i=1

S(BiCi)− S(Bi). (4.9)

Since A1B1, BiCi, and Bi are all local, their entanglement entropy can be replaced by an entan-

glement entropy of one of the states |ψj〉 with a small correction. The correction term can be

estimated by using Fannes inequality[106] which holds for any quantum states ρ, σ supported on a

d-dimensional Hilbert space:

|S(ρ)− S(σ)| ≤ ε log d− ε log ε, ε := |ρ− σ|1, (4.10)
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Figure 4.2: An example of the subsystem partition.

where | · · · |1 is the trace norm. Equation 4.8 can be derived by choosing an appropriate set of

subsystems such that the boundary contributions cancel out, while the universal term survives. One

choice of such subsystems is depicted in Figure 4.2. Each of the diagrams depict the subsystems

Ai, Bi, Ci, i = 1, 2, 3 with a property AiBiCi = Ai+1Bi+1. The only nonlocal contribution in the sum

of the conditional mutual information
∑3
i=1 I(Ai : Ci|Bi) is the entanglement entropy of A3B3C3,

which reduces to logN for a maximally mixed state over N locally indistinguishable states. The

rest of the contributions can be computed from the formula for the entanglement entropy of local

subsystems, i.e., Equation 4.7.

Equation 4.8 confirms the intuition that an amount of long-range entanglement limits the topo-

logical ground state degeneracy. For 2D models supporting anyons, this result is already known.

The ground state degeneracy of a topologically ordered system is n2
p, where np is the number of

particle types.[2] On the other hand, the topological entanglement entropy is related to the total

quantum dimension of the system:

γ = log

√∑
a

d2
a,

where da is the quantum dimension of a particle with a topological charge a.[27, 71] Since non-Abelian

charges can have a quantum dimension that is strictly larger than 1, topological entanglement

entropy has to be always larger or equal to 1
2 logN .[27] However, we emphasize that we did not

assume anything about the Hamiltonian at all. Equation 4.8 was derived only from the property of

the states. Our result shows that even the topological ground state degeneracy - typically thought

as a property inherited from the Hamiltonian - is already strongly constrained by the structure

of the state alone. Admittedly our premise about the form of the entanglement entropy is quite

restrictive. However, we note that there are number of models whose ground state entanglement

entropy can be either analytically computed[3, 26, 27, 71, 146, 25] or computed with a good numerical

precision[147, 148, 149, 150, 151].

It is also important to note that the following expression gives an alternative definition of the

topological entanglement entropy that is inherently robust in one direction, at least for certain

models.

γ :=
1

2
min

Ai,Bi,Ci
[S(A1B1) +

n∑
i=1

S(BiCi)− S(Bi)]. (4.11)
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An advantage of Equation 4.11 over the conventional definition - constant subcorrection term of the

entanglement entropy- is that it is well-defined even for systems that are not translationally invariant.

For fixed-point Hamiltonians supporting Abelian anyons, Equation 4.8 is saturated with an equality.

Since the ground state degeneracy is protected from a generic local perturbation, the lower bound

for γ defined as in Equation 4.11 remains stable under an adiabatic evolution. Hence, one can

obtain an one-sided stability bound for the topological entanglement entropy from the stability

property of the ground states alone. For such models, the stability of the topological entanglement

entropy would follow by giving a tight upper bound matching the lower bound of Equation 4.8 in the

thermodynamic limit. The adiabatic evolution can be simulated by a unitary evolution generated

by a path-dependent quasi-local “Hamiltonian” with a superpolynomially decaying tail.[33] Hence,

locally indistinguishable states become approximately locally indistinguishable with a correction

decaying superpolynomially in the system size. These observations suggest that, in order to prove

the stability of topological entanglement entropy for Abelian anyon models, it suffices to obtain a

rigorous upper bound under the adiabatic evolution.

There are several assumptions that we have implicitly assumed in the preceding analysis. First,

we have assumed that the entanglement entropy of a region that can be contained in a radius of

cL for a sufficiently large value of 0 < c < 1 is expressed as Equation 4.7. However, we did not

specify the value of c explicitly. We have also assumed that the corrections to the area law and the

local indistinguishability property decays exponentially in the system size. Here we show that these

conditions can be relaxed significantly in general.

More precisely, we obtain an inequality analogous to Equation 4.8 under the following set of

assumptions.

• The system satisfies the (cL, ε)-TQO condition with 0 < c < 1, with ε = O( 1
Lα1

), α1 > 0.

• A number of locally indistinguishable states satisfying the preceding TQO condition is N

• The correction to the area law decays algebraically, i.e., S(A) = a|∂A| − γ+O( 1
|A|α2

), α2 > 0.

• Local dimension of the particles is d.

We begin by bounding a difference between the entanglement entropy of a single wavefunction,

say |ψ1〉, and the entanglement entropy of a mixed state ρ = 1
N

∑N
i=1 |ψi〉 〈ψi|. Without loss of

generality, we shall assume that Equation 4.7 is the entanglement entropy formula for |ψ1〉. Denoting

the entanglement entropy of the single wavefunction as S1(A) and the entanglement entropy of the

mixed state ρ as Sρ(A), we obtain the following bound.

Lemma 19. Let A be a region that can be contained in a ball of radius cL.

|S1(A)− Sρ(A)| ≤ ε(d|A| − log ε) (4.12)
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This result follows from a simple application of the Fannes inequality, see Equation 4.10.

As we did previously, consider a sequence of subsystems Ai, Bi, and Ci such that AiBiCi =

Ai+1Bi+1. By choosing the subsystems A1B1 and BiCi to be small enough to be contained in a ball

of radius cL,

logN ≤ Sρ(A1B1) +

n∑
i=1

Sρ(BiCi)− Sρ(Bi) (4.13)

≤ S1(A1B1) +

n∑
i=1

S1(BiCi)− S1(Bi) + εLA, (4.14)

where εLA is the approximation error from Equation 4.12. One can choose the size of the subsystems

A1B1 and BiCi to be Θ(c2L2), in which case n becomes n = Θ( 1
c2 ). Therefore,

εLA = O(εdL2). (4.15)

Also,

S1(A1B1) +

n∑
i=1

S1(BiCi)− S1(Bi) = 2γ +O(
c−2(1+α2)

L2α2
). (4.16)

Combining these bounds together, for a constant c and d, we conclude that

logN ≤ 2γ +O(L2−α1) +O(L−2α2). (4.17)

Therefore, for a sufficiently large system size, our main result holds for any α1 > 2, α2 > 0. The

significance of this bound comes from the fact that a conservative estimate for the area law correction

term gives α2 = 1
2 .[27, 152] The preceding analysis shows the robustness of our bound. Even under

an algebraic correction to the ideal wavefunction, the inequality remains intact.

We would also like to explain the intuition behind why a factor of 2 appears in front of γ. It

should be clear from the construction that the area terms cancel out. Therefore, one only needs

to be concerned about the topology of the subsystems A1B1, BiCi, and Bi. The general idea is

that for the construction in Figure 4.2, A1B1 and B1C1 are simply connected, yet B1 is a union

of two simply connected subsystems. Hence the topological contribution must be γ for A1B1 and

B1C1, and 2γ for B1. Similarly, B2C2 gives a contribution of γ, while B2 gives 2γ. B3C3 is simply

connected, so it gives a contribution of γ. B3 is an annulus, hence it gives 2γ. Combining these

results together, the topological contribution to our bound becomes 2γ. A similar analysis can be

carried out for other choice of subsystems as well. What is important is that Equation 4.13 holds

for any choice of subsystems. Therefore, one can always optimize over different set of subsystems to

obtain the best bound.
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4.3 Higher-dimensional systems

The preceding argument is based on the observation that the entanglement entropy of the subsystem

can be decomposed into two parts. The first part is the local entanglement, which can be canceled

out by making a judicious choice of the subsystems. More precisely, we expect the entanglement

entropy of a subsystem A to have the following form:

S(A) = Slocal(A) + Stopo(A),

where Slocal(A) is an entanglement that can be decomposed into strictly local contributions.[152]

The rest of the contributions, including the finite-size effects, are included in Stopo(A). For such sys-

tems, the maximal number of topologically protected states depends on the scaling law of Stopo(A).

Alternatively, a quantum error-correcting code with an extensive ground state degeneracy would im-

ply that there is an extensive subcorrection term for the entanglement entropy. Interesting examples

include Chamon’s model and Haah’s cubic code, which are known to have a ground state degener-

acy that increases as N = 2Θ(L) for certain choices of L.[153, 154, 48] Therefore, the entanglement

entropy of these models must have a subcorrection term that grows as Ω(L). Also, one may argue

on a physical ground that the subcorrection term to the area law for gapped systems typically scales

as |A|D−2.[152] For such systems, the maximal number of topologically protected qubits is bounded

by O(LD−2).

4.4 Bounds for more generic systems

In general, one cannot expect the leading terms of the entanglement entropy to be canceled out

by choosing an appropriate set of subsystems, especially for critical systems and ground states of

nonlocal Hamiltonian. We show that, even for such generic systems, a nontrivial tradeoff bound

can be obtained. Using the subadditivity of entropy, i.e., I(A : B) = S(A) + S(B) − S(AB) ≥ 0,

Equation 4.9 yields the following inequality:

k ≤
∑
i

S(Xi), |Xi| < d (4.18)

for a quantum code with a code distance d and a number of encoded qubits k = logN , where {Xi} is

a partition of the system. Dividing both sides of the inequality by the number of particles n, we find

that the rate of a quantum error-correcting code k
n is bounded by the average entanglement entropy

per volume over any partitions {Xi}, |Xi| < d. Our result shows that studying the entanglement

properties of a quantum error-correcting code is a relevant problem for understanding its fundamental

limit. In particular, Equation 4.18 gives a necessary condition for a quantum error-correcting code
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to have a nonvanishing rate: its average entanglement entropy over subsystems smaller than the

code distance must satisfy a strict volume law.

Equation 4.18 can be used to obtain a tradeoff bound for quantum codes satisfying a subvolume

law of entanglement entropy. If the entanglement entropy satisfies a subvolume law,

S(A) = O(|A|α),

we can obtain the following tradeoff bound:

kd1−α = O(n). (4.19)

There are several important differences between Equation 4.1 and Equation 4.19. On one hand,

Equation 4.19 is more general than Equation 4.1 in that it does not require any structure about

the parent Hamiltonian. On the other hand, Equation 4.19 provides weaker tradeoff bound than

Equation 4.1 does.

4.5 Stability of the lower bound

Based on the idea that long-range entanglement is necessary for a topological storage of quantum

information, we obtain a rigorous lower bound for the topological entanglement entropy that re-

mains stable under a local unitary transformation. More precisely, the existence of the topological

entanglement entropy can be attributed to the existence of a set of states that are locally indis-

tinguishable. Since an adiabatic evolution that does not close the energy gap can be simulated by

a unitary generated by a sum of quasi-local Hamiltonians, we can use the Lieb-Robinson bound

technique to formalize this statement.

We show that a set states with a (r, ε)-TQO condition remains to satisfy a (r′, ε′)-TQO condition

with some modified constants r′ and ε′ under a unitary evolution generated by a local Hamiltonian.

Suppose the unitary evolution generated by the Hamiltonian satisfies the Lieb-Robinson bound:

‖[OA(t), OB ]‖ ≤ c‖OA‖‖OB‖min(|A|, |B|)ec1(vt−d(A,B)). (4.20)

| 〈ψi(t)|OA |ψi(t)〉 − 〈ψj(t)|OA |ψj〉 (t)| = | 〈ψi(0)|U†(t)OAU(t) |ψi(0)〉 − 〈ψj(0)|U†(t)OAU(t) |ψj〉 (0)|

(4.21)

≤ ‖OA‖ε+ ‖OA‖|A|ec1(vt−x), (4.22)
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where x is chosen to be the largest distance such that any operator that is supported on a set of

points that are distance x or more away from A is locally indistinguishable for any of the states

{|ψi(0)〉}. Therefore, (r, ε)-TQO condition becomes a (r − x, ε + O(rDec1(vt−x)))-TQO condition,

where x is a free parameter. For a constant value of t, one can set x to be Θ(log r) to ensure that

the approximation error vanishes in the thermodynamic limit. Therefore, under a unitary evolution

generated by a local Hamiltonian, the TQO condition remains stable. Since the quasi-adiabatic

continuation can be generated by a sum of quasi-local bounded operators, we expect a similar

treatment should be possible for a generic adiabatic evolution as well.
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Chapter 5

Structure of the entanglement
Hamiltonian

It is commonly believed that the gapped phase of quantum many-body systems exhibits area law:

entanglement entropy of a simply connected subsystem increases with the area of the boundary.[96]

An overwhelming amount of evidences supporting this statement has been suggested, including the

explicit proof for a ground state of a one-dimensional gapped system[20], exactly solvable models[26],

and variational wavefunctions[155]. The constant subcorrection to the entanglement entropy - also

known as the topological entanglement entropy - can be extracted by judiciously choosing a set

of subsystems that cancel out the boundary contributions.[27, 71] The topological entanglement

entropy is believed to be a universal constant characterizing the phase of the quantum many-body

system.

Li and Haldane(LH) were the first to realize that the spectrum of the reduced density matrix

may reveal an information about the phase that cannot be inferred from the entanglement entropy

alone.[89, 90] While LH studied reduced density matrix in the orbital cuts, one may study its

spectrum along a real-space partition and arrive at a similar conclusion.[91, 92, 93] In particular, it

has been recently suggested by several authors that the entanglement Hamiltonian along a real-space

partition has a low-lying part that can be described by a local field theory.[94, 95]

Topological entanglement entropy can be obtained from a real-space entanglement Hamiltonian

of variational wavefunctions, similar to the way it is extracted from the entanglement entropy.[95]

Consequently, the corresponding linear combination of the entanglement Hamiltonian is “topolog-

ical,” in a sense that (i) it does not interact with any local observable and (ii) it is equal to the

topological entanglement entropy.

Here we claim that the existence of such topological operator can be attributed to an approx-

imate conditional independence of these quantum states. A tripartite state ρABC is conditionally

independent if conditional mutual information I(A : C|B) = SAB + SBC − SB − SABC is equal to

0. A state is approximately conditionally independent if 0 is replaced by a small number ε > 0.
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To the best of author’s knowledge, Hastings and Poulin were the first to point out that there can

be configurations that are conditionally independent even in a quantum many-body system with

long-range entanglement.[55] To illustrate their idea, suppose entanglement entropy satisfies an area

law with a universal constant subcorrection term.

SA = a|∂A| − γ, (5.1)

One can show that I(A : C|B) = 0 for a choice of A,B,C such that (i) AB,BC,B,ABC are all

simply connected and (ii) A and C do not share a boundary.

A state that is conditionally independent saturates the equality condition of the strong subaddi-

tivity of entropy.[128] Such state forms a quantum Markov chain, and the structure of the reduced

density matrix is vastly restricted compared to an arbitrary state.[122, 123, 124] It is important

to note that one cannot directly use these results for a generic quantum many-body system, since

the conditional independence condition is unlikely to hold exactly. Still, one may hope for these

properties to hold approximately for a sufficiently small conditional mutual information. This is

precisely the key idea behind this paper. More specifically, we shall use the recently discovered

operator extension of the strong subadditivity of entropy as our main technical tool.[120]

The rest of the paper is structured as follows. In Section 5.1, we shall briefly review several

information-theoretic inequalities. In Section 5.2, we shall introduce a diagrammatic trick that leads

to the main result of this paper. Its physical interpretation shall be given in Section 5.3.

5.1 Approximately conditionally independent states

Strong subadditivity of entropy is one of the most widely used tools in quantum information theory.

Its importance stems from the fact that there exists a variety of nontrivial structure theorems that

relate the reduced density matrix of different subsystems if the inequality is saturated with an

equality condition.[122, 123, 124] In particular, Petz showed that the following relation holds if and

only if the conditional mutual information I(A : C|B) is equal to 0.[122]

ĤAB + ĤBC − ĤB − ĤABC = 0, (5.2)

where ĤA = −IAc⊗ log ρA is a formal definition of the entanglement Hamiltonian. From now on, we

denote the left hand side of the equation as ĤA:C|B and refer to it as a conditional mutual spectrum

of ABC. It follows that

C(ĤA:C|B , X) = 0, (5.3)
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where C(ĤA:C|B , X) = 〈ĤA:C|BX〉 − 〈ĤA:C|B〉〈X〉 is a connected correlation function between the

conditional mutual spectrum and an arbitrary operator X. 〈· · · 〉 denotes ground state expectation

value.

While such operator trivially has zero correlation with any local operator, exact conditional

independence is rarely satisfied by any realistic physical systems. Motivated by this observation, we

have obtained an operator extension of the strong subadditivity of entropy, see Equation 3.3. We

rewrite the inequality for the reader’s convenience:

TrBC(ρABCĤA:C|B) ≥ 0. (5.4)

We should again emphasize the important consequence of this inequality: that Equation 3.3

reproduces a statement similar to Equation 5.2 when the conditional mutual information is 0.

|TrABC(ρABCĤA:C|BOA)| ≤ ‖OA‖I(A : C|B), (5.5)

where ‖ · · · ‖ is l∞ norm.

If the conditional mutual information vanishes, the corresponding conditional mutual spectrum

has zero correlation with any operator supported on A. Furthermore, since both ĤA:C|B and I(A :

C|B) are symmetric under the exchange of A and C, the same statement holds for an operator

supported on C as well. Secondly, Equation 3.3 is satisfied by any quantum states. Therefore,

unlike Equation 5.2, it can be applied to quantum states that approximately saturate the strong

subadditivity of entropy.

5.2 Correlation bound for the entanglement Hamiltonian

The main goal of this section is to obtain a statement that resembles Equation 5.3 when the global

state is a ground state of a gapped quantum many-body system. Such correlation bound can be

easily obtained in certain cases using Equation 3.13 alone, but there are also important caveats.

For example, there are choices of subsystems that yield a nonzero value of the conditional mutual

information even at a fixed point of some renormalization-group flow.[27, 71] Furthermore, Lemma

Equation 3.13 alone cannot produce any bound on the correlation between the conditional mutual

spectrum ĤA:C|B and an operator supported on B. We shall show that, despite these shortcomings,

it is still possible to obtain a bound analogous to Equation 5.3 under a reasonable set of assumptions.

We postulate the following modified formula for the entanglement entropy to account for the

deviations from the ideal area law.

SA = a|∂A| − γ + εA. (5.6)
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SA + SB − SAB = εA:B . (5.7)

For a large enough subsystem size, we expect εA to approach 0. εA:B denotes a long-range corre-

lation of the ground state. Due to the exponential clustering theorem, we expect εA:B to scale as

min(|A|, |B|)2e−
2l
ξ , where ξ is the correlation length and |A| is the volume of the subsystem A.1

To simplify the analysis, we assume that each of the subsystems are sufficiently smooth and their

boundary lengths are O(l). We assume that the support of X is sufficiently small compared to the

size of the subsystems. We also assume that X is supported on only one of the subsystems that

partitions the system.

5.2.1 Modified form of exponential clustering theorem

Before we explain the details of our analysis, we would like to present a technical background about

the subject. Exponential clustering theorem states that

|C(OA, OB)| ≤ c‖OA‖‖OB‖min(|A|, |B|)e−
d(A,B)
ξ (5.8)

for two spatially separated operator OA and OB , provided there is a gapped parent Hamiltonian

that consists of a sum of geometrically local bounded-norm terms.[56, 57] Since the spectrum of

ĤA is formally unbounded, one cannot directly apply exponential clustering theorem. We circum-

vent this problem by regularizing the entanglement Hamiltonian and bounding the error from the

regularization procedure.

Recall that the regularized entanglement Hamiltonian ĤΛ
A with a cutoff Λ is defined as follows:

ĤΛ
A = −

∑
p≥1/Λ

log pi |i〉 〈i| . (5.9)

A simple consequence of this construction is that the operator norm is bounded, i.e., ‖ĤΛ
A‖ ≤ log Λ.

The correction from the regularization can be bounded using the following lemma.

Lemma 20.

Tr(ρAB∆Λ
AOB) ≤ ‖OB‖

log Λ

Λ
dA (5.10)

for Λ ≥ 2, where ∆Λ
A = ĤA − ĤΛ

A.

Proof. Purify ρAB to |ψ〉ABC . Rewrite the formula as Tr(ρAB∆Λ
AOB) = 〈ψ|ABC ∆Λ

AOB |ψ〉ABC .

Note that |ψ〉ABC admits a Schmidt decomposition |ψ〉ABC =
∑
i

√
pi |i〉A |i〉BC , where ρA =

1The volume factor was chosen in such a way that the bound on connected correlation function from mutual
information in Ref. [156] yields the exponential clustering theorem in Ref.[57].
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Figure 5.1: Levin-Wen configuration

∑
i pi |i〉A 〈i|A. This in turn can be expressed as

∑
pi≤1/Λ

−pi log pi 〈i|BC OB |i〉BC . (5.11)

Using −pi log pi ≤ 1
Λ log Λ and | 〈i|OB |i〉 | ≤ ‖OB‖, one can complete the proof.

5.2.2 Derivation of the correlation bound

Consider a configuration proposed by Levin and Wen, see Figure 5.1.[71] From the area law of

entanglement entropy, one can see that

I(A : C|B) = 2γ + o(1). (5.12)

Given an operator X that does not have any overlap with the boundary, the objective is to

bound a connected correlation function between X and ĤA:C|B . If X is sufficiently far away from

ABC, one can simply use the modified form of the exponential clustering theorem to conclude that

their correlation is small. There are three nontrivial cases. First, the support of X is located in a

region that is distance Θ(1) away from ABC. Second, the support of X is located in one of the

target parties. Third, the support of X is located in the reference party. We shall show that the

correlation is small for all of these cases. Further, we show that the bound can be obtained in a

sequential manner: one can reduce the third case to the second case, and the second case can be

reduced to the first case.

Keeping this reduction in mind, we deal with the third case first. That is, we assume the support
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of X is contained in B. In this setting, we apply the isolation move:

C(ĤA:C|B , X) = C(ĤAB1:C|B2
, X)− C(ĤB1:C|B2

, X) (5.13)

≤ C(ĤAB1:C|B2
, X) + 2‖X‖I(B1 : C|B2), (5.14)

where B1 ⊂ B is a subsystem that contains X and B2 = B \ B1, see Figure 3.1. We have used the

isolation move and Equation 3.13 from the first line to the second line.

Notice that the support of X is contained in the target party of the deformed subsystem AB1.

Now we study the second case. Since the conditional mutual spectrum is invariant under the exchange

of two target parties, we assume that the support of X is contained in one of the target parties, say

A. We apply the separation move in this setting:

C(ĤA:C|B , X) = C(ĤA2:C|B , X) + C(ĤA2:C|A1B , X) (5.15)

≤ C(ĤA2:C|B , X) + 2‖X‖I(A2 : C|A1B), (5.16)

where A2 ⊂ A is a subsystem that contains X and A1 = A \A2, see Figure 3.2

For a sufficiently large subsystem size, the deformed subsystems can be sufficiently separated

from X. Therefore, one can use the modified form of the exponential clustering theorem. There is

a subtle issue that was left out in the preceding discussion. For example, the support of X can be

contained in the target party and has a distance Θ(1) to the reference party. One can still apply the

separation move so that the deformed subsystem does not contain X. However, the distance will

not be small in general. In order to circumvent this issue, one must first apply the isolation move,

so that the support of X is sufficiently far away from the reference party. The correction term from

this move can be bounded by the absorption move, see Figure 3.3.

5.3 Physical interpretation

Setting Λ = dABCe
O(l)/ξ, we arrive at the following conclusion.

|C(ĤA:C|B , X)| ≤ ‖X‖(ε1(l) + ε2(l))l2, (5.17)

where ε1 represents a deviation from the ideal area law, and ε2 represents an error from the long-

range correlation. As l → ∞, the conditional mutual spectrum has vanishing correlation with any

local operator, provided that (i) X is supported on one of A,B,C, or (ABC)c and (ii) both ε1 and

ε2 decays sufficiently fast. In l→∞ limit, we have

〈ĤA:C|BX〉 = I(A : C|B)〈X〉. (5.18)
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We conclude that the operator ĤA:C|B is topological, in a sense that (i) it has vanishing corre-

lation with any operator that is localized in one of the subsystems and (ii) its eigenvalues contain

information about the phase. A set of assumptions to conclude so was that (i) correlation decays ex-

ponentially, (ii) the extensive terms of the entanglement entropy cancel out each other, and (iii) the

deformation procedure separating X from ABC does not change the topology of the configuration.

We emphasize that the derivation of our result is not necessarily restricted to a pure state. At

finite-temperature, entanglement entropy obtains volume contributions, but one may be able to show

that those contributions can be canceled out as well. In particular, we expect these conditions to be

met for quantum many-body systems at sufficiently high temperature.

In the large volume limit, it seems the local contribution of the reduced density matrices cancel

out each other, at least when I(A : C|B) = o( 1
l2 ). We do not have a definitive proof for this

statement, but we argue as follows. If ĤA:C|B contains a localized term, one could have chosen X to

be an operator supported nearby so as to have a large correlation with the local term. Such terms

will violate Equation 5.18. Our result suggests a decomposition of the entanglement Hamiltonian

into (i) terms that can be canceled out by a suitable choice of subsystems and (ii) terms that cannot

be canceled out and have a small correlation with almost any local operators. It would be interesting

if the terms of the first kind can be shown to be quasi-local.

To summarize, We have presented a general argument as to why certain linear combination of

entanglement Hamiltonian allows a cancelation of its local degrees of freedom, owing in part to a

recently discovered information-theoretic inequality. While our formulation is not as precise as the

ones described by the variational wavefunction,[94, 91, 95] it has an advantage of being applicable to

a more general class of quantum states. Indeed, we have only used an approximate form of the area

law and the exponential clustering theorem, which are strongly believed to be generic properties of

a gapped phase.

It would be interesting if the approximate conditional independence can be shown to hold in

other systems. There are evidences suggesting that models based on BF theory should satisfy such

a condition[43], yet no studies have been performed for exotic models in three dimensions such as

Haah’s code.[48] As for the finite-temperature states, the approximate conditional independence is

one of the key ideas of the quantum belief propagation(QBP) algorithm.[134] Success of the QBP

indicates that our result may be applicable to finite-temperature quantum states as well.[157]

On the other hand, we wish to find a deeper insight as to why the conditional independence arises

in these systems. In particular, exactly solvable models that satisfy exact conditional independence

can be thought as a fixed point of some renormalization-group procedure.[158] Does conditional

mutual information of topologically trivial configurations monotonically decrease under such flow?
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Chapter 6

Perturbative analysis of topological
entanglement entropy

Topological order is a new kind of order that cannot be described by Landau’s symmetry breaking

paradigm. Properties of these exotic phases include a ground state degeneracy that depends on the

manifold, anyonic statistics, and long-range entanglement.[3, 26, 27, 71] Such phases are expected to

be stable against a generic perturbation if its strength is sufficiently weak and its interaction range

is bounded. Indeed, it was shown by several authors that the spectral stability follows under a set

of reasonable assumptions.[28, 29, 31]

If the energy gap remains open under the perturbation, one can adiabatically continue from

the ground state of the original Hamiltonian to the ground state of the perturbed Hamiltonian.[33]

Since the generator of this flow consists of quasi-local terms which decay almost exponentially,

the perturbed Hamiltonian has similar properties to the unperturbed Hamiltonian.[33, 64, 29] For

example, one can define local operators that create defects with well-defined energies and string

operators that can move around the defects. One may argue that the long-range entanglement in

the ground state can be preserved in a similar vein, although one must define precisely what the

long-range entanglement is.

Long range entanglement in a 2D system refers to the nontrivial constant subcorrection term of

the entanglement entropy, also known as the topological entanglement entropy.[79, 27, 71] While a

proof with a full mathematical rigor has not been established to the best of author’s knowledge, it

is widely accepted by now that the topological entanglement entropy is a universal constant that

characterizes the phase of the gapped quantum many-body system. If one accepts the topological

quantum field theory description of the low-energy physics, there is a simple explanation as to why

the topological entanglement entropy remains stable against a generic perturbation.[27] There are

also mounting numerical evidences suggesting its stability.[159, 80, 81]

The presence of the long-range entanglement can be interpreted as a consequence of some non-

trivial nonlocal constraint. For example, in the ground state of a 2D gapped system supporting
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anyonic quasi-particles, the total charge enclosed in some region must add up to be a trivial charge.

However, the existence of the constant subcorrection term alone does not necessarily imply that the

nature of the constraint is quantum. 3D toric code at a finite-temperature has nonlocal contribu-

tions to the entanglement entropy[43], yet such state can be mapped to a Gibbs state of a classical

Hamiltonian under a local unitary transformation.[88] We wish to understand if this nonlocal con-

tribution to the entanglement entropy is an invariant of the phase. We would also like to understand

the mechanism behind their stability, instead of arguing on the ground of an effective field theory.

In such pursuit, we introduce a property of these states that has apparently been unnoticed so far

with few notable exceptions.

As we have been alluding in the previous chapters, we shall exploit the properties of the condition-

ally independent states by using the deformation move. However, the aforementioned deformation

move suffers from a problem: that it is only applicable to an observable that does not have an

overlap with the boundaries of the subsystems. In order to circumvent this shortcoming, we will

need to introduce a variant of the deformation move. Unfortunately, this can be achieved only by

enforcing a rather strong assumption: that the state satisfies a c0-boundedness condition. We shall

explain what this condition is later. For the moment, we would just like to note that the states

in this family include (i) the ground state of the quantum double or Levin-Wen model and (ii) a

finite-temperature Gibbs state of a stabilizer Hamiltonian.

6.1 The setup

The Hilbert space has a tensor product structure ⊗iHi where Hi corresponds to the local Hilbert

space located at vertices of a square lattice. Local Hilbert space dimension is d. We assume a

periodic boundary condition with a sufficiently large system size. We define a set of operators

having nontrivial support on HA as B(HA). The boundary of subsystem A is denoted as ∂A. |A|

represents the volume of A and similarly |∂A| is the boundary area of A. We set the size of the

subsystems to be O(l) unless specified otherwise.

We consider a family of Hamiltonian H(s) = H0 + sV and study its behavior in the vicinity of

s = 0. Both the original Hamiltonian H0 =
∑
i hi and the perturbation V =

∑
i vi consists of a sum

of terms that are supported on a ball of radius r0 and the interaction strength is uniformly bounded

by J , i.e., ‖hi‖, ‖vi‖ ≤ J . ‖ · · · ‖ is l∞ norm. We denote the spectral gap as Γ(s).

Following Bravyi et al.’s construction[59], we define an approximation of a quasi-local operator

as follows.

[O]A =
1

dimAc
TrAc(O)⊗ IAc (6.1)

This approximation is motivated from the fact that a correlation generated by a local Hamiltonian

falls off exponentially outside an effective light cone. The quasi-local operators generated by such
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time evolution can be approximated by a local operator supported on a ball of a finite radius R,

with the correction term decreasing superpolynomially with R.

O(l)

O(l)
R

L

L

ξ : correlation length

Figure 6.1: The shaded region represents an effect of the perturbation that is smeared out in space.
We shall approximate this effect by a strictly local operator with a finite radius R. The correction
decreases superpolynomially with R.

Entanglement spectrum of a subsystem A is defined as ĤA = −IAc ⊗ log ρA, where ρA is the

reduced density matrix of A. We define conditional mutual spectrum as ĤA:C|B = ĤAB + ĤBC −

ĤB − ĤABC . Note that

Tr(ρABCĤA:C|B) = I(A : C|B). (6.2)

We also define 〈· · · 〉 = Tr(ρ · · · ) as an expectation value. Throughout this chapter, constants c and

c′ denote numerical constants, and their exact values may be different in each contexts.

6.2 Deformation move for a c0-bounded states

Here we construct a variant of the deformation move that is applicable to c0-bounded states. As

in Ref.[120], the statement concerns a correlation bound between ĤA:C|B and an arbitrary operator

O. The main difference is that here we relax the condition on the support of O: O is allowed to be

located anywhere, as long as its support is sufficiently small compared to the subsystem. The price

we have to pay is that we must impose a condition on the reduced density matrices.

Definition 17. ρABC is c0-bounded if

|TrC(ρABCĤA:C|B)|1 ≤ c0I(A : C|B). (6.3)

Note that all classical states are 1-bounded. Reduced density matrices of a finite-temperature

Gibbs state for the so called “stabilizer models” are also 1-bounded. A detailed explanation about

these states shall be presented in Section 6.5. If I(A : C|B) = 0, conditional mutual spectrum is
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1-bounded by Petz’s theorem.[122] More specifically, Petz showed that

ĤA:C|B = 0 (6.4)

if and only if I(A : C|B) = 0.1

Following the previous conventions, given a conditional mutual spectrum ĤA:C|B , we shall refer

B as a reference party. A and C shall be referred as target parties. Diagrammatically, the reference

party will be denoted with an “R” sign and the target parties will be denoted with the “T” signs.

We reiterate the key idea behind the deformation move. For any local operator O, one can

decompose ĤA:C|B into ĤAi:Ci|Bi such that either (i) I(Ai : Ci|Bi) = o(1) or (ii) O is sufficiently far

away from AiBiCi. Such a decomposition can be expressed as a linear combination of the following

chain rule, which can be verified easily.

ĤA1A2:C|B = ĤA2:C|B + ĤA1:C|A2B , (6.5)

Similar to the previous approach outlined in Chapter 3, we define three elementary deformation

moves.

The first step in the deformation procedure is to apply an isolation move. Goal of the isolation

move is to deform the boundary between the reference and the target party so that the support

of O is sufficiently separated from the reference party, see Figure 6.2 Applying the isolation move,

the conditional mutual spectrum is deformed in such a way that (i) for the new conditional mutual

spectrum, O is sufficiently far away from the reference party and (ii) the difference is a conditional

mutual spectrum with a small conditional mutual information.

O

T

T

R R

O

T

T

R R

O

T

T

R R= -

Figure 6.2: Isolation move for a c0-bounded state

Once the support of O is isolated from the reference party, we can apply a separation move,

which separates the support of O from the target parties, see Figure 6.3. Applying the separation

move, the conditional mutual spectrum is deformed in such a way that (i) for the new conditional

mutual spectrum, O is sufficiently far away from both the reference and the target parties and (ii)

the difference is a conditional mutual spectrum with a small conditional mutual information.

1Here the value of the constant actually does not matter, since both sides of the inequality is 0.



83

O

T

T

R R

O

T

T

R R

O

T

R

T

= +

Figure 6.3: Separation move for a c0-bounded state

The last step is to apply an absorption move. Absorption move enables us to write the correction

terms as a linear combination of ĤAi:Ci|Bi such that (i) the support of O is contained in either AiBi

or BiCi and (ii) I(Ai : Ci|Bi) = o(1), see Figure 6.4. Applying the absorption move, the conditional

mutual spectrum is expressed in terms of a linear combination of the conditional mutual spectrum

ĤAi:Ci|Bi such that (i) the support of O is contained in either AiBi or BiCi and (ii) I(Ai : Ci|Bi)

is small.

O

T

T

R R

O

T

T

R R

O

T

T

R R= -

Figure 6.4: Absorption move for a c0-bounded state

To summarize, given a local operator O, one can decompose the conditional mutual spectrum

ĤA:C|B into ĤA′:C′|B′ and correction terms with the following properties. First, the distance between

A′B′C ′ and the support of O is O(l). Second, the correction term consists of a sum of the conditional

mutual spectrum such that the support of O is contained in the reference party and one of the target

parties. Third, the conditional mutual spectra in the correction term have a small conditional mutual

information for the ground state of the topologically ordered system.

In Section 6.3 and 6.5, we shall frequently encounter terms of the following form.

Tr(ρABCĤAi:Ci|BiO), (6.6)

where O is an operator whose support is contained in AiBi. If ρABC is c0-bounded, this term can

be bounded as follows.

Tr(ρABCĤAi:Ci|BiO) = TrAiBiTrCi(ρABCĤAi:Ci|BiO)

≤ |TrCi(ρABCĤAi:Ci|Bi)|1‖O‖

≤ c0I(A : C|B)‖O‖. (6.7)
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6.3 Ground state of exactly solvable models

The exact formula for the entanglement entropy is known for quantum double and Levin-Wen

models.[79, 71, 160] If the subsystem is simply connected, the entanglement entropy satisfies the

area law.

SA = a|∂A| − γ, (6.8)

where γ is the topological entanglement entropy. These systems have zero correlation length, so

the density matrices of two nonoverlapping regions factorize, i.e., ρAB = ρA ⊗ ρB . Therefore, the

following formula holds for the entanglement entropy:

SAB = SA + SB , (6.9)

where A ∩B = ∅.

Using the standard perturbation theory, for a family of quantum states ρ(s) that are differentiable

with respect to s,
dSA
ds

= Tr(
dρ

ds
ĤA). (6.10)

Therefore,

dI(A : C|B)

ds
= Tr(

dρ

ds
ĤA:C|B)

= i
∑
j

Tr([ΦWΓ
(vj), P0]ĤA:C|B), (6.11)

where P0 is a projector onto the ground state.

Without loss of generality, let us consider terms vj that are distance al or less away from ABC,

where a > 0 is some constant. Using the deformation moves,

ĤA:C|B = ĤA′:C′|B′ +
∑
i

aiĤAi:Ci|Bi , (6.12)

where d(vj , A
′B′C ′) = O(l) and I(Ai : Ci|Bi) = 0. By Petz’s theorem, ĤAi:Ci|Bi = 0. Now

approximate ΦWΓ(vj) by [ΦWΓ(vj)]vj(cl) for some c > 0 such that the support of [ΦWΓ(vj)]vj(cl) does

not overlap with A′B′C ′. This implies the following relation.

Tr([[ΦWΓ
(vj)]vj(cl), P0]ĤA′:C′|B′) = 0. (6.13)
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To see this, consider an operator O that is supported on one of A′, B′, C ′, or D = (A′B′C ′)c.

iTr([O,P0]ĤA′:C′|B′) =
d

dt
Tr(eiOtP0e

−iOtĤA′:C′|B′)

=
d

dt
I(A′ : C ′|B′), (6.14)

where the infinitesimal generator generates a unitary transformation supported on (A′B′C ′)c. Since

the entanglement entropy is invariant under a local unitary transformation, this is 0. The correction

terms are of the following form.

iTr([ΦWΓ
(vj)− [ΦWΓ

(vj)]vj(cl), P0]ĤA′:C′|B′). (6.15)

Using Equation 3.65 and 3.34, we conclude that the effect of each terms are bounded by cJG(I)(c′ Γl2v )l2d

for some constant c and c′. Since there are O(l2) terms that are distance al or less away from the

configurations, the local contributions from this region scales as O(JG(I)(c′ Γl2v )l4d).

Terms that are distance al or more away from ABC can be bounded by approximating ΦWΓ
(vj)

as [ΦWΓ
(vj)]vj(R), where R is the distance between vj and ABC. There are some subtleties that

are worth mentioning. If the approximation radius is set to a constant for all the terms, the bound

does not converge in the thermodynamic limit. However, by setting the approximation radius to

be the distance between vj and ABC, the approximation errors from each of these terms scales as

O(JG(I)(c′ ΓR2v ))l2d. Recall that G(I)(x) is a superpolynomially decaying function. Therefore,

∫ ∞
al

G(I)(x)xdx = H(I)(al), (6.16)

where H(I)(x) is some superpolynomially decaying function. Combining all of these contributions

together, we arrive at the following bound:

dγ

ds
|s=0 ≤ cJ(

Γl

v
)10l4u2/7(c′

Γl

v
), (6.17)

where we have assumed l to be sufficiently large. One can see that the bound diverges for gapless

systems. For certain systems, we can assume that the Lieb-Robinson velocity v to be approximately

equal to J up to some constant that depends on the range of the Hamiltonian. For such systems,

|dγ
ds s=0

| = O(l14∆10u2/7(Ω(l∆))), (6.18)

where ∆ is the gap when J is set to 1. Setting the correlation length ξ as 1/∆, we get

|dγ
ds s=0

| = O(l4(
l

ξ
)10u2/7(Ω(l/ξ))). (6.19)
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We note in passing that the same technique can be applied to topologically trivial configura-

tions, i.e., I(A : C|B) = 0. Under a general perturbation that consists of a sum of short-range

bounded-norm terms, conditionally independent configurations become approximately conditionally

independent. One may wish to establish a bootstrapping argument that recursively uses the approx-

imate conditional independence of these configurations. The main difficulty of this approach lies on

proving the c0-boundedness.

6.4 Higher-dimensional deformation move

We emphasize that the deformation technique only exploits (i) the large distance between the target

parties and (ii) the smoothness of the subsystems. Therefore, there is no reason why this technique

should only work in two spatial dimensions. Here we apply the same ideas to a three-dimensional

system to demonstrate the generality of these arguments. Of course, we will have to make some

assumptions about the state to ensure that certain subsystems are conditionally independent to

each other. A suitable example that fits this description is the ground state of the models that are

described by the BF theory, e.g., 3D toric code.

In the 3D toric code, one can define the topological entanglement entropy to be the conditional

mutual information I(A : C|B), where each of the subsystems are labeled in Figure 6.5.

As for the case of the two-dimensional topologically ordered system, one can bound the infinites-

imal change of the topological entanglement entropy by applying the isolation move, the separation

move, and the absorption move sequentially. For example, given a local operator that is localized

near the reference party, one can apply the isolation move depicted in Figure 6.6 so that the new

reference party is sufficiently separated from the local operator. Repeating the same analysis, we

have the following bound:

|dI(A : C|B)

ds s=0
| = O(l6(

l

ξ
)10u2/7(Ω(l/ξ))). (6.20)

Of course, the preceding argument can be generalized to any conditional mutual information that

is invariant under a deformation of the subsystems in any dimensions. For a D-dimensional system,

the bound becomes the following:

|dI(A : C|B)

ds s=0
| = O(l2D(

l

ξ
)10u2/7(Ω(l/ξ))). (6.21)

6.5 Stabilizer models at finite-temperature

Unlike the ground state of the exactly solvable models, the exact formula for the entanglement

entropy of a finite-temperature system is not known except for few special cases.[85, 43, 86] To
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(a) ABC (b) AB

(c) BC (d) B

Figure 6.5: Subsystems involved in the calculation of the topological entanglement entropy.

cope with this difficulty, we make a nontrivial but natural assumption: that the corrections from

the deformation moves consist of the conditional mutual spectrum with a small conditional mutual

information. For the 3D toric code, topological entanglement entropy does not depend on the size

of the subsystem for a sufficiently large subsystem.[43] We shall denote the conditional mutual

information in the correction terms as ε(l) and study how the first order perturbation effect depends

on it.2 We shall also assume that the correlation decays exponentially.

C(OA, OB) ≤ ‖OA‖‖OB‖min(|A|, |B|)e−d(A,B)/ξ. (6.22)

Stabilizer model refers to a Hamiltonian of the following form

H = −
∑
i

Jisi, (6.23)

where Ji > 0 is the coupling constant and si is the element of the stabilizer group. Important

property of the stabilizer models is that their reduced density matrices commute with each other.

2Something that one must be careful about is the invariance of the topological entanglement entropy under an
arbitrary deformation. Castelnovo and Chamon proved size independence in Ref.[43], but that does not necessarily
imply the invariance under an arbitrary small deformation. In this paper, we have implicitly assumed the invariance
under arbitrary deformation.
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(a) ABC (b) AB

(c) BC (d) B

Figure 6.6: Deformed subsystems after applying the isolation move.

Lemma 21. ρA =
∑
Si∈S(A) ciSi for some coefficients {ci}.

Proof. ρ can be expanded as a sum of the stabilizer group elements. After taking the partial trace,

any operator that has a nontrivial support on Ac vanishes. Any stabilizer group element that has a

nontrivial support only on A survives. These terms are generated from the generator of the stabilizer

group, so they are again elements of the stabilizer group.

It trivially follows that for the Gibbs state of the stabilizer Hamiltonian, reduced density matrices

commute with each other. Therefore, any reduced density matrix ρABC for the stabilizer model is

1-bounded. To see this, recall that the following inequality holds

D1(lnD1 − lnD2) ≥ D1 −D2 (6.24)

for positive semidefinite operators D1, D2 which commute with each other. Setting D1 = ρABC

and D2 = ρABρ
−1
B ρBC and taking a partial trace over C, we conclude that TrC(ρABCĤA:C|B) is a

positive semidefinite operator. Since l1 norm is equal to the trace for a positive semidefinite operator,

ρABC is 1-bounded.

Consider terms vj that are distance al or less away from ABC. Using the deformation moves,



89

ĤA:C|B = ĤA′:C′|B′ +
∑
i aiĤAi:Ci|Bi , where d(vj , A

′B′C ′) = O(l) and I(Ai : Ci|Bi) = ε(l). Choose

an approximation radiusR such that Φfβ1
(vj) is approximated by [Φfβ1

(vj)]vj(R). The first order effect

of vj can be divided into three parts: the connected correlation between [Φfβ1
(vj)]vj(R) and ĤA′:C′|B′ ,

the approximation error of Φfβ1
(vj), and the corrections from the deformation moves. Terms that are

distance al or more away from ABC can be similarly bounded by using the exponential correlation

decay and making a judicious choice for the approximation radius R. All of these effects combined

together results in the following bound.

1

βJ

dγ

ds
|s=0 ≤ O(l2D(e−c1l/ξ) +O(l2De−c2l/β)) +O(lDε(l)), (6.25)

where D is the number of spatial dimensions and c1, c2, c3 are some numerical constants.

6.6 Higher order terms

A close inspection of the first order bound reveals that the c0-boundedness plays a pivotal role in

the derivation. For example, consider a perturbed ground state of the topologically ordered system

which satisfies the area law approximately. Equation 6.17 is only modified by including the area law

correction terms, provided the c0-boundedness condition holds.

It turns out that the c0-boundedness in a finite neighborhood of s implies a nontrivial bound for

the higher order terms as well. The key idea is that Equation 6.17 can be applied to the topologically

trivial configuration as well as the topologically nontrivial configuration. Since Equation 6.17 relied

on the fact that the conditional mutual information of a topologically trivial configuration is small,

we can bootstrap this argument to bound the higher order terms.

Assuming the c0-boundedness for s ∈ [0, s0), the following inequality holds.

| d
ds
I(A : C|B)s| ≤ δs(l) +

∑
i

aiI(Ai : Ci|Bi)s, (6.26)

where δs(l) is a function that decreases superpolynomially with l, and ai is a finite number that is

uniformly bounded for s ∈ [0, s0]. I(Ai : Ci|Bi)s is a conditional mutual information appearing in

the correction terms of the deformation moves.

If the energy gap remains open for s ∈ [0, s0), δs(l) can be uniformly bounded by some δ(l) that

decays superpolynomially in l. As a result, one can obtain the following recursive bound.

|γs − γ0| ≤
∫ s

0

δ(l) +
∑
i

aiI(Ai : Ci|Bi)s′ds′

= sδ(l) +
∑
i

ai

∫ s

0

∫ s′

0

dI(Ai : Ci|Bi)s′′
ds′′

ds′′ds′, (6.27)
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Here we used the fact that the conditional mutual information arising from the deformation move

is 0 at s = 0. Recursively applying this logic, the second order term can be bounded by O(l2δ(l)).

Higher order terms can be obtained in a similar manner.

To investigate the validity of the c0-boundedness for a general quantum many-body system, we

have generated random density matrices and studied a relationship between both sides of Equation

6.3. We have first performed this numerical test over a random mixed state. We have randomly

generated the eigenvalues of the density matrix from a uniform distribution over [0, 1], normalized,

and applied a random unitary operation drawn from the Haar measure. The result is plotted in

Figure 6.7. As one can see, the observed value of c0 does not deviate too much from 1, but this

Figure 6.7: We have numerically computed I(A : C|B) and |TrCρABCĤA:C|B |1 for 106 randomly

generated mixed states. The largest observed ratio |TrCρABCĤA:C|B |1/I(A : C|B) was 1.08.

could be an artifact of the low Hilbert space dimension. Furthermore, the result does not look as

promising for randomly generated pure states, see Figure 6.8. For pure states, we have applied a

random unitary from Haar measure. It seems that for certain states that have a small conditional

mutual information, the smallest value of c0 increases significantly. For this reason, we urge the

readers to be careful in using this condition in general. This difficulty can be circumvented for

stabilizer models against stabilizer perturbations, since the commutativity of the reduced density

matrices is preserved. However, it remains to be seen if the correction terms from the higher order

deformation moves are small.

We would like to make two remarks about the c0-boundedness. First, the first order bound

is only modified by a polynomial factor of the subsystem size if the value of c0 has a dimension

dependence that grows polylogarithmically.3 Such a contribution will only add a factor that grows

polynomially with the subsystem size, which can be controlled by the superpolynomially decaying

function u2/7(x). However, even if the c0-boundedness condition holds, the higher order perturbation

expansion obtained from Equation 6.27 may not converge. This is due to the fact that at the nth

3More precisely, it should depend only on the dimension of one of the target parties and the reference party.
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Figure 6.8: We have numerically computed I(A : C|B) and |TrCρABCĤA:C|B |1 for 106 randomly

generated pure states. Largest observed ratio |TrCρABCĤA:C|B |1/I(A : C|B) was 24.2.

order of the perturbation series, there are O(ln) local terms. Näıvely bounding these terms will result

in the factor of eO(l), which cannot be controlled by the function u2/7(x). In higher dimensional

systems, the situation is even worse. There the local contributions from a näıve counting argument

gives a factor of O(ln(D−1)) at the n-th order of perturbation series. Such a bound cannot be

controlled even if u2/7 is replaced by an exponentially decaying function.

To summarize, we have demonstrated that the conditional independence condition strongly con-

strains the structure of quantum many-body system so as to ensure the first order perturbative

stability of the topological entanglement entropy. Admittedly, our technique gives bounds in limited

settings where (i) an exact conditional independence is achieved or (ii) the reduced density matrices

commute with each other. However, once these conditions are met, the argument can be applied

quite generally. In particular, we expect our method to be applicable to the studies of Chamon’s

model and Haah’s model.[153, 48] These models satisfy the topological quantum order conditions

introduced by Bravyi et al., and their Hamiltonian consists of a sum of frustration-free commuting

projectors.[29] Therefore, the energy gap is protected against a generic perturbation that consists of

a sum of short-range bounded-norm terms.

There are compelling reasons to believe that these models are not described by the BF theory

or multiple stacks of Chern-Simons theory: the movement of the quasi-particles are constrained

in a peculiar manner, and their ground state degeneracy is determined by some number-theoretic

function that depends on the size of the system.[154, 49] It would be interesting if one can apply

our method to find a linear combination of the entanglement entropy that allows the first order

perturbative stability.

We have also shown that our method can be extended to higher orders of perturbation series if

the c0-boundedness holds in a finite neighborhood of s, but such statement seems unlikely to hold

for general quantum states. It would be very interesting if one can find an alternative technique
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that relies on the operator extension of SSA.

As for the the finite-temperature topological entanglement entropy in 3D, we needed two non-

trivial assumptions to bound the first order perturbation effect. First, the connected correlation

function between two observables decay exponentially. Second, the correction terms from the defor-

mation moves can be expressed as a sum of small conditional mutual information. We emphasize

that neither of these assumptions were explicitly proved. Further studies in explicitly bounding both

of these terms are necessary.
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Appendix A

Special quantum channels in
quantum statistical mechanics

Here we list some of the technical tools that were developed in an attempt to solve the problems dis-

cussed in this thesis, but was superseded by the alternative tools discussed in the previous chapters.

Nevertheless, we list these results because they may be interesting in their own right. While many of

these results are already known, they are unfortunately scattered around the literature in different

contexts. The aim of this chapter is to put these materials in the context of quantum statistical

mechanics.

We first define the following quantum cannel Φρf(ω):

Φρf(ω)(σ) =

∫ ∞
−∞

ρitσρ−itf̃(t)dt, (A.1)

where f̃(t) is the normalized inverse Fourier transform of f(ω), ρ is an invertible density matrix,

and f̃(t) ≥ 0. Clearly, Φρf(t) is a unital quantum channel. Denote the eigenbasis of ρ as {|i〉}. In

this basis, one can easily check that

Φρf(ω)(σ)ij = σijf(log ρi − log ρj), (A.2)

where f̃(ω) is the fourier transform of f(t) and ρi = 〈i| ρ |i〉.

In the quantum stiatistical mechanics, we are interested in the Gibbs state:

ρ =
e−βH

Tr(e−βH)
, (A.3)

where β is the inverse temperature and H is the Hamiltonian describing the system. The goal is

to develop a machinery that produces sensible answers in the limit ‖H‖ → ∞. The main difficulty
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comes from the fact that the following expression is unbounded in general:

e−βHV eβH , (A.4)

even if V is bounded. One may think that the problem may be resolved if one imposes that (i) V

is a strictly local term and (ii) H consists of a sum of geometrically local, bounded-norm terms.

Unfortunately, such a statement is not known. In fact, to the best of author’s knowledge, the only

quantitative result in such direction was pursued by Araki.[161] Unfortunately, Araki’s result only

concerns one-dimensional systems.

Therefore, we would like to avoid Equation A.4 at all costs. We would like to also get rid of the

normalization condition to simplify the analysis. We shall consider a perturbation of the following

form:

ρ→ elog ρ+εH . (A.5)

Note that the normalization condition can be restored by shifting H by some constant. We define

a directional derivative that generates the infinitesimal change as follows:

∂Hf(ρ) := lim
ε→0

f(elog ρ+εH)− f(ρ)

ε
. (A.6)

Therefore,

∂H log ρ = H. (A.7)

As it was discussed in Section 3.2.1, we obtain the following formula:

Lemma 22.

∂Hρ =
1

2
{ρ,Φρf1(x)(H)}, (A.8)

where

f1(ω) =
tanh(ω/2)

ω/2
. (A.9)

Proof. The identity can be easily checked by comparing both sides in the eigenbasis. The nontrivial

part is showing that f̃1(t) is nonnegative. We resort to the following identity:

tanh z

z
=

∞∑
k=0

8

4z2 + (2k + 1)2π2
. (A.10)

Since the Fourier transform of 1
1+ω2 is nonnegative, this completes the proof.
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A.1 Construction of quantum channels from positive definite

functions

f1(ω) is an example of a positive definite function.

Definition 18. [162]f(x) is positive definite if the following n×n matrix F is nonnegative for any

choice of λi ∈ R.

Fij = f(λi − λj). (A.11)

The following result is a special case of the Bochner’s theorem, which gives a useful characteri-

zation of the positive definite function.[162]

Theorem 7. f(x) is positive definite if and only if its Fourier transform is nonnegative.

Proof. Without loss of generality, consider a vector |v〉 =
∑
i ai |i〉.

〈v|F |v〉 =
∑
j,k

aja
∗
kf(λj − λk) (A.12)

=
∑
j,k

aja
∗
k

1√
2π

∫ ∞
−∞

f̃(ω)eiω(λj−λk) (A.13)

=
1√
2π

∫ ∞
−∞

f̃(ω)|
∑
j

aje
iωλj |2. (A.14)

Therefore, we conclude the following:

Corollary 5. These three statements are equivalent.

• f is a positive definite function.

• Φρf(ω) is a unital quantum channel for any invertible density matrix ρ.

• Fourier transform of f is nonnegative.

We define two functions that shall be extensively used.

Definition 19.

f2(ω) :=
ω/2

sinh(ω/2)
. (A.15)

f3(ω) :=
1/

cosh(ω/2)
. (A.16)

Lemma 23. f2 and f3 is positive definite.
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Proof. ∫ ∞
−∞

1

cosh t
eiωtdt = π

1

cosh(πω2 )
≥ 0. (A.17)

∫ ∞
−∞

t

sinh t
eiωtdt =

π2

2

1

cosh2(πω2 )
≥ 0. (A.18)

Lemma 24.

ρ
1
2V ρ

1
2 =

1

2
({ρ,Φρf3(ω)}(V )). (A.19)

Proof. Since ρ was assumed to be invertible, the statement is equivalent to the following:

V =
1

2
(ρ−

1
2 Φρf3(ω)(V )ρ

1
2 + ρ

1
2 Φρf3(ω)(V )ρ−

1
2 ). (A.20)

The identity can be verified in the eigenbasis of ρ.

These results can be used to obtain an infinitesimal change of the entanglement Hamiltonian.

More precisely, given a density matrix ρ, we obtain a closed-form expression for ∂H log ρA.

Lemma 25.

∂H log ρA =
1

2
ρ
− 1

2

A TrAc [Φ
ρA
f2(ω)({ρ,Φ

ρ
f1(ω)(H)})]ρ−

1
2

A (A.21)

Proof. First note that

∂HTrAcρ = ∂He
log ρA (A.22)

= ρ
1
2

AΦ̃ρAf2(ω)(∂H log ρA)ρ
1
2

A, (A.23)

where we have used Duhamel’s formula:

d

ds
eH+sV |s=0 =

∫ 1

0

etHV e(1−t)Hdt (A.24)

= e
1
2H

∫ 1
2

− 1
2

e−tHV etHe
1
2H (A.25)

= e
1
2HΦ̃e

H

f2(ω)(V )e
1
2H , (A.26)

and Φ̃ρf(ω) is defined as

〈i| Φ̃ρf(ω)(V ) |j〉 = Vij
1

f(log ρi − log ρj)
. (A.27)

Note that

Φ̃ρf(ω) ◦ Φρf(ω) = Φρf(ω) ◦ Φ̃ρf(ω) = I, (A.28)
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where I is the identity element in B(H). Rearranging the terms, we can derive the result.

While the statement of Lemma 25 is rather convoluted, we emphasize that both ΦρAf2(ω) and Φρf1(ω)

are unital quantum channels. More importantly, these superoperators are norm-nonincreasing.

In particular, consider a scenario in which H commutes with ρ. For example, a physical exam-

ple would be the change of the Gibbs state under an infinitesimal temperature change. Using

1
2{ρ,Φ

ρ
f1(ω)(H)} = ρ

1
2Hρ

1
2 , the expression can be reduced to the following:

ΦρAf2(ω) ◦ ΦAc|A ◦ Φρf1(ω)(H), (A.29)

where

ΦAc|A(O) = ρ
− 1

2

A TrAc(ρ
1
2Oρ

1
2 )ρ
− 1

2

A (A.30)

is the conditional expectation channel. This channel was first introduced by Accardi and Cecchini

in Ref.[126], see also Ref.[124]. Unfortunately, this approach is only limited to the case that the

perturbation commutes with the density matrix. Nevertheless, it is important to note that the effect

of the perturbation can be expressed as a composition of norm-nonincreasing maps. While these

tools are primitive at this stage, one can see that the imaginary time evolution may be avoided in

the analysis of quantum statistical mechanics if the “right” questions are asked.
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