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Abstract

A novel spectroscopy of trapped ions is proposed which will bring single-ion
detection sensitivity to the observation of magnetic resonance spectra. The approaches
developed here are aimed at resolving one of the fundamental problems of molecular
spectroscopy, the apparent incompatibility in existing techniques between high information
content (and therefore good species discrimination) and high sensitivity. Methods for
studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are
designed. They assume established methods for trapping ions in high magnetic field and
observing the trapping frequencies with high resolution (<1 Hz) and sensitivity (single ion)
by electrical means. The introduction of a magnetic bottle field gradient couples the spin
and spatial motions together and leads to a small spin-dependent force on the ion, which
has been exploited by Dehmelt to observe directly the perturbation of the ground-state
electron's axial frequency by its spin magnetic moment.

A series of fundamental innovations is described in order to extend magnetic
resonance to the higher masses of molecular ions (100 amu = 2X105 electron masses) and
smaller magnetic moments (nuclear moments = 10-3 of the electron moment). First, it is
demonstrated how time-domain trapping frequency observations before and after magnetic
resonance can be used to make cooling of the particle to its ground state unnecessary.
Second, adiabatic cycling of the magnetic bottle off between detection periods is shown to
be practical and to allow high-resolution magnetic resonance to be encoded pointwise as
the presence or absence of trapping frequency shifts. Third, methods of inducing spin-
dependent work on the ion orbits with magnetic field gradients and Larmor frequency

irradiation are proposed which greatly amplify the attainable shifts in trapping frequency.



The dissertation explores the basic concepts behind ion trapping, adopting a
variety of classical, semiclassical, numerical, and quantum mechanical approaches to
derive spin-dependent effects, design experimental sequences, and corroborate results
from one approach with those from another. The first proposal presented builds on
Dehmelt's experiment by combining a "before and after" detection sequence with novel
signal processing to reveal ESR spectra. A more powerful technique for ESR is then
designed which uses axially synchronized spin transitions to perform spin-dependent work
in the presence of a magnetic bottle, which also converts axial amplitude changes into
cyclotron frequency shifts. A third use of the magnetic bottle is to selectively trap ions
with small initial kinetic energy. A dechirping algorithm corrects for undesired frequency
shifts associated with damping by the measurement process.

The most general approach presented is spin-locked internally resonant ion
cyclotron excitation, a true continuous Stern-Gerlach effect. A magnetic field gradient
modulated at both the Larmor and cyclotron frequencies is devised which leads to
cyclotron acceleration proportional to the transverse magnetic moment of a coherent state
of the particle and radiation field. A preferred method of using this to observe NMR as an
axial frequency shift is described in detail. In the course of this derivation, a new quantum
mechanical description of ion cyclotron resonance is presented which is easily combined
with spin degrees of freedom to provide a full description of the proposals.

Practical, technical, and experimental issues surrounding the feasibility of the
proposals are addressed throughout the dissertation. Numerical ion trajectory simulations
and analytical models are used to predict the effectiveness of the new designs as well as
their sensitivity and resolution. These checks on the methods proposed provide
convincing evidence of their promise in extending the wealth of magnetic resonance

information to the study of collisionless ions via single-ion spectroscopy.
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Chapter 1: Introduction

The study of ions by cyclotron resonance techniques continues to expand more
than sixty years after its introduction.! The many types of cyclotron experiments all rely
on the determination of ion mass from its inverse relationship to the measured cyclotron
frequency in a given magnetic field. Earlier ion cyclotron resonance (ICR) experiments??3
scanned through a single frequency at a time and were, thus, relatively time consuming.
The advent of more sensitive detection electronics and of fast Fourier transformation by
computers led to Fourier transform ion cyclotron resonance (FT/ICR) experiments,3
which obtain the entire frequency spectrum at once. Chemical interest in ICR goes well
beyond mass spectrometry. The ion selectivity afforded by double resonance techniques,
where certain ions are purged from the cell by ICR excitation while other ions are
monitored, is useful in observing reaction rates.57 All ICR experiments rely on the ion
trapping due to cyclotron motion. The magnetic field confines ions transversely in
cyclotron orbits, and the addition of electrostatic plates leads to harmonic axial motion.
This combination of electric and magnetic fields keeps ions trapped as long as several
seconds in typical chemical applications. To study single trapped ions, however, physicists
employ precise field configurations such as the Penning trap:® a single electron has been
trapped for as long as ten months.® Values of the Lande g factor measured with a single
electron in a Penning trap are the most accurate to date.1?

While ICR and related techniques are highly sensitive, the only observable they
measure is mass (with the exception of the single electron g experiments). Conventional
ICR thus cannot distinguish two structurally different species of equal mass. This is in

marked contrast to nuclear magnetic resonance (NMR) and electron spin resonance



(ESR), which yield a wealth of information from low-energy spectral features, but have
poor sensitivity. This is a basic problem of experimental chemical physics and extends to
other forms of spectroscopy: discrimination and sensitivity seem incompatible. This
dissertation presents the theoretical framework for a spectroscopy of ions which will use
the fine sensitivity of trapped-ion techniques to observe highly discriminating magnetic
resonance spectra. The case of ions with spin 1/2 magnetic moments is treated here for
concreteness and relative theoretical ease, but the results may be extended to more

complex magnetic characteristics and to the rotational spectroscopy of ions.

1.1 Background

The cyclotron was first introduced by Lawrence and Livingston in 1932 as a tool
for "the production of high speed light ions without the use of high voltages."! Four years
later, Penning used magnetic and electric fields to increase the lifetime of electrons within
a discharge.® These experiments provided a solid base on which the field of ion cyclotron
resonance spectroscopy was later built. Its importance in studying chemical reactions was
demonstrated in the late 1960's by Beauchamp, Baldeschwieler, and coworkers,!!-12 using
double resonance techniques® where changes in the concentration of a product ion
(monitored via the intensity of its cyclotron signal) were monitored as a function of the
energy of a reactant ion (varied by resonantly pumping its cyclotron energy). The
manipulation of ion populations in an ion trap was extended by the introduction of
resonant ion ejection as a tool for isolating interesting chemical species.” The advent of
Fourier transform ICR in 1974 brought increased speed and sensitivity to these
applications. 313

While ICR development in chemistry labs from the late 1960's on had as one of its

fundamental goals increased bandwidth in order to study ions of widely ranging masses



simultaneously, research in physics labs at the time seemed directed orthogonally: narrow-
bandwidth detection with single-ion sensitivity to measure ionic masses with
unprecedented precision. The tools developed would thus enable the metrology of
fundamental constants. The first milestone on this road ‘was the trapping and detection of
a single electron in a 6 V deep Penning trap by Wineland, Ekstrom, and Dehmelt in
1973;'* the electron was viewed as bound to the earth (through the Penning trap), rather
than to an atom, and was thus termed "geonium." This experiment, in turn, led to the
metrology of the electron spin (Lande) g factor by measuring the spin dependence of the
detected axial frequency in the presence of a weak magnetic bottle.!51617.18  This
measurement of the electron magnetic moment from geonium spectra, which earned
Dehmelt the Nobel Prize in physics, provided a dual motivation to develop the proposals
included in this dissertation: its success suggested that magnetic resonance might be
carried out on trapped atomic and molecular ions, while its technical feasibility only for
masses as light as the electron necessitated the search for greatly amplified spin-dependent
effects which culminated in schemes for extended periods of spin-dependent work on
trapped ion motions.!9:20.21

More récent developments in trapped ion physics have extended the detection
sensitivity to single atomic and molecular ions by using one of two techniques: optical
detection or electrical detection. Optical methods use laser cooling to minimize ion
motions and therefore the effects of field imperfections, increasing resolution; cyclotron
frequency measurements accurate to up to 1 part in 1013 could be possible in the future.22
The fluorescence signal from single ions with appropriate internal level structure can then
be monitored?3-2* via schemes based on Dehmelt's electron shelving.25 Optical detection is
not generally applicable, since it is limited to ions which can be made to fluoresce.
Electrical detection has the advantage of promising single-ion sensitivity for any ion given
a large enough orbit, at the expense of the relative ease with which high resolution is

available after laser cooling to the single quantum level. In electrical detection, the ion's



image current induced on the trap electrodes couples the ion to electrical circuits attached
to the trap. Pritchard and coworkers have pioneered single-ion sensitivity in molecular ion
detection, observing the axial motion of single trapped ions by using a high-Q
superconducting tank circuit to couple the ion trap to an rf SQUID.2¢ Single-ion
cyclotron resonance (SICR) measurements in a Penning trap have already been carried out
with mass accuracy AM/M = 4x10-1027 Simultaneous observation of two ions in a
Penning trap with single-ion sensitivity,2® as well as classical squeezing with parametric
drives,?® promises to extend the accuracy to a part in 1012, The magnetic resonance
methods proposed presented in this dissertation will employ electrical detection with

single-ion sensitivity and moderate resolution requirements.

1.2 Outline

The classical description of ions stored in a Penning trap is presented in Chapter 2.
The effects of superimposed field gradients are considered, with particular attention paid
to the case of the so-called magnetic bottle field gradient, %3¢ which couples spin to the
spatial degrees of freedom. Trajectory simulations via numerical integration of the
classical equations of motion are introduced as a powerful tool for characterizing and
designing ion trap experiments. Ion cyclotron resonance is described within the classical
formalism of this chapter.

Chapter 3 presents a quantum mechanical description of ion trapping which
replaces the Penning trap's normal modes with corresponding harmonic oscillators.
Position and momentum operators are thus replaced with quantum raising and lowering
operators. A strength of this quantum formalism is the relative ease with which it allows
the effect of field gradients to be considered through perturbation theory. This technique
is illustrated for the case of the magnetic bottle. The quantum operators are used to

describe classical systems by constructing semiclassical wavepackets which describe ion



motion. This treatment is used in a rotating frame calculation to derive cyclotron radius
changes due to ICR.

The experiments proposed in Chapter 4, ion orbit nudging rhrough resonance
induce cyclotron kinematics (IONTRICK), study a paramagnetic (spin 1/2) ion confined in
a Penning trap with a magnetic bottle superimposed, coupling spin and space operators.
This allows ESR magnetic transitions to be observed by monitoring changes in spatial
quantities, in particular the ion cyclotron frequency. A proposal to monitor the cyclotron
frequency change due to a change in axial energy after an induced spin transition is
presented. This idea is then extended by the use of multiple 7 pulses synchronized to the
axial motion such that spin-dependent work can be done on the ion's axial motion and
monitored through the cyclotron frequency. Results from simulations establish the
feasibility of the IONTRICK proposal, and its technical requirements and challenges are
discussed.

Chapter 5 presents a more general proposal, spin-/ocked internally resonant ion
cyclotron excitation (SLIRICE), enabling the observation of NMR transitions via electrical
ion detection. A historical precedent which provided some of the motivation for
SLIRICE, Bloom's deflection of neutral molecular beams by radiofrequency field gradients
(the "transverse Stern-Gerlach effect"),3132 is discussed. The conditions under which a
magnetic field gradient modulated at both the Larmor and cyclotron frequencies leads to
cyclotron acceleration proportional to the transverse magnetic moment of a coherent state
of the particle and radiation field are derived both semiclassically and quantum-
mechanically. The need for two additional magnetic field gradients is clarified: a
radiofrequency spin-lock field preserves spin coherence, and a static magnetic bottle
translates the spin-dependent cyclotron work into a corresponding shift in the axial
trapping frequency. Numerical simulations are employed to support the validity of the

SLIRICE proposal.



Concluding remarks are presented in Chapter 6. This is followed by two
Appendices. Appendix A describes the programs used to integrate the equations of ion
motion numerically. Appendix B describes the programs which simulate experimental
timelines analytically and allow the evaluation of expected signal-to-noise (S/N) ratios. In

each appendix, sample program source codes and run-time instructions are presented.
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Chapter 2: Ion Trapping and its Classical Description

The classical equations of ion motion in a Penning trap are presented in this
chapter. The analytical solution of these equations will be shown to yield cyclotron, axial,
and magnetron motional modes with respective characteristic frequencies. The effect of
field gradients on these modes will be addressed, with particular attention paid to magnetic
bottle field gradients. Ion trajectory simulations via numerical integration of the equations
of motion will be presented as a valuable tool to elucidate ion motion when field gradients
prevent the existence of analytical solutions. The chapter concludes with a discussion of
ion cyclotron resonance, with particular attention to the derivation of cyclotron excitation

and to experimental details.

2.1 Equations of motion

The general equation of motion of a charged particle of mass m in an
electromagnetic field (ignoring spin) is! (using the mks system of units)

%=%(E+wﬁ) [2.1]

where T represents the ion coordinates, t is time, q is the ionic charge, E is the electric

field, ¥ is the ion velocity, and B is the magnetic field. In the case of zero electric field

and a homogeneous, time-independent magnetic field B = By, ion motion is unrestricted

along the field and confined to a circular oscillation perpendicular to the field at the

cyclotron frequency,
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B
0 =q?°. [2.2]

The direction of rotation is clockwise for a positively charged ion (looking along the —Z
direction). The cyclotron motion thus constitutes a two-dimensional trap. To complete
the trapping in all three dimensions, a steady electric field is applied along the Z direction
by placing flat plates of potential Vy perpendicular to the magnetic field (at +z), such that
qVy > 0. The ion will then be kept confined to -z < z < z; as long as its axial energy is
not greater than qV,;. Conventional ICR cells utilize such flat plates to make cubic or
rectangular cells. Since the electric field near the center of these cells is nearly
quadrupolar, the axial motion is harmonic.2 Trapping times on the order of seconds can
be achieved with these relatively simple cells.

The Penning trap®43 uses three hyperbolic electrodes (two endcaps and a central
ring), as shown in Fig. 2.1, to produce a more exactly quadrupolar electric field, small
deviations can be corrected with compensation electrodes. The two endcaps are along
the two branches of the hyperbola of revolution

2 2 Pz
z :ZO+7’ [2.3a]

and the ring electrode lies along the hyperbola of revolution

g 9
2=f "Ho [2.3b]
2
The coordinate p is the radial distance of the ion from the z axis; that is,
p2 = x? +y24 [2.4]
Defining a characteristic trap dimension d by*
2
11 2, Po
d% == wb 4oL ; 2.5
i [2.5]

the electric field now takes the form



Fig. 2.1. Scale drawing of the electrodes of the Penning trap used in the single

electron experiments. Adapted from Ref 4.

E=E(§i+%9-zz). [2.6]
d
The equations of motion are
2
d?x) [o; e B
S —Zx+0.—
dt 22 dt
dzy O dx
— = Zty-0.— 2.7
dt2 2 5 Cdt [ [27]
d2
e I IS
dt )

with ©, defined as the angular frequency of the purely harmonic axial motion,

B = q—Vg [2.8]

md
The equations are solved analytically by introducing two new transverse
components of motion* or by introducing trial solutions for x and y that are superpositions
of harmonic oscillations at two different frequencies. These give equivalent descriptions
of the behavior, namely, that the transverse motion is the superposition of a fast cyclotron

motion (at a modified cyclotron frequency, ®,) and a slower magnetron motion (at the

magnetron frequency, ©_). The relevant frequencies are
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1
mizg(mciwfcog—%)?z‘). [2.9]

Introducing the transverse vectors V) such that

d : 5
> +sign(g)[o+2xp], [2.10]

where the dependence on the sign of the ionic charge has been made explicit by sign(q),
which is "+" for q > 0 and "-" for q < 0, the transverse Hamiltonian of the system can be

expressed as*

= 2 = 2
o +v(+) =y L=

o= [2.11]

m
.

2

The cyclotron and axial motions are bound harmonic oscillations. Although harmonic, the
magnetron motion is motion around a potential hill, not bound in a potential well, and

gives a negative contribution to the total energy. The relative magnitudes of the

frequencies are

04 >>0,>> 0. [2.12]
This hierarchy is typically most pronounced for smaller particles. Considering a magnetic
field of 1 T, with V, =10 V and d = 1 cm, the respective frequencies vy, v, , and v_ (with
®; = 2mv;) are 28 GHz, 21 MHz, and 8.0 kHz for an electron, 15 MHz, 490 kHz, and 8.0
kHz for a proton, and 145 kHz, 49 kHz, and 8.4 kHz for a 100 amu ion.

2.2 Modification of trapped ion motion by a magnetic bottle

In order to incorporate spin dependence into trapped ion experiments, it will be
necessary to couple spin to the spatial ion modes. This can be achieved by devising
situations analogous to the Stern-Gerlach experiment, which first established the
quantization of spin angular momentum.®?# In the Stern-Gerlach apparatus, an

inhomogeneous magnetic field coupled the spin of the valence 5s electron of silver atoms
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to the motion of the atoms in a beam, splitting the beam into two branches, one for each of
the quantized spin 1/2 orientations. A trapped ion analogy is the change in frequency of
the Penning trap modes in proportion to spin magnetic moment.>!° The symmetry of this
problem suggests the use of a cylindrically symmetric gradient. The simplest such field is

a magnetic bottle of the form*

2
AB=B, I:(zz - -"Z—Jz— zﬁ], [2.13]

where

p=xXX+yy. [2.14]
In the mks system, B, has units of T/m2, which are equivalent to G/cm2?. The reason for
the term "bottle" is obvious when a magnetic moment p is aligned along and on the z axis.

Then, the correction to the Penning trap Hamiltonian is

AH(p =0,z) = —uBy 2%, [2.15]
and, for pB, < 0, an axial harmonic potential traps the moment along the z axis.# Fields
similar to the magnetic bottle arise as inhomogeneities in laboratory magnets; the "z2"
shim coil of an NMR magnet has approximately this form.

Frequency shifts due to such inhomogeneities can be analyzed within the
framework of classical mechanics. The classical equations of motion for an ion in a
Penning trap are modified by the presence of a magnetic bottle. The extra Lorentz force

due to the bottle must thus be added to the equations of motion [2.7]. The addition of an

inhomogeneous field also introduces a spin-dependent force, Fg, given by!!
B =V(jieB)=(fieV)B. [2.16]

For classical trajectories in the absence of Larmor frequency magnetic fields, the

quantization direction for the spin magnetic moment adiabatically follows the
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instantaneous direction of the total magnetic field, B, and the direction of {l is parallel to

the direction of B, that is,

|

= [2.17]

foe]

(where [ = pj1, and p carries the sign of [i).

The spin force due to the total magnetic field in this case is

T [ (B()-i--B——p )*+y(-30+%2_p2)9+2z(130+32 zz)i:l. [2.18]

In this semiclassical treatment, this spin-dependent (and, therefore, intrinsically quantum

mechanical) force is added to the classical equations of motion [2.7], which now become

AT ﬂ[p_J Byt B g By o),

v I m 2 Jjdt m " dt m[B| 2
2 [ 2]
d—~2¥- = coiy— coc+qll P d—x—ﬂhngﬁ—“';}[—Bo +§-2—p2)y [2.19]
dt m 2 )J|dt m dt m|B 2
d?z ) #
3 mzz+£2—z(xdy y£)+-2£_.2(BO+B§z2)z
dt m dt ~dt) m[B|
\

Due to the extensive coupling of these differential equations, the classical problem
has no analytical solution, and may only be solved approximately or numerically, a
numerical integration is discussed below. Quantum mechanical perturbation theory can
also provide estimates of trapped ion behavior in a weak magnetic bottle, as will be shown
in Chapter 3. Laukien!? calculated the first order frequency shifts due to generic magnetic
field gradients. Applying his results to the magnetic bottle (in the limit of axial and

magnetron amplitudes small compared to the cyclotron radius p.) leads to the cyclotron

frequency shift

A, =——LB,p? [2.20]
2m

and the axial frequency shift
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L

Fig. 2.2. Double loop variable magnetic bottle. Adapted from Ref. 5.

qo ¢ 2
Aw, =—B 2 2.21
2 2mo, 2Pe [221]

2.3 The variable magnetic bottle

The design of magnetic bottles is reviewed in detail by Brown and Gabrielse.* The
bottle field is typically produced by a loop of ferromagnetic material in the x-y plane of the
Penning trap, at the center of the z axis, and is constant in time. Variable bottles, also
feasible, are a central component of the experiments proposed throughout this

dissertation.

2.3.a  Coplanar double loop variable magnetic bottle (superconducting flux

transformer)

Van Dyck et al.® discuss the design and successful implementation of a variable
bottle made from a single continuous superconducting NbTi loop twisted into two

concentric loops (Fig. 2.2). The double loop is inserted into the homogeneous magnetic
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field above its critical temperature, as it cools to the superconducting state, the enclosed
flux is frozen in. Application of the field from a third magnet (an external solenoid of
variable current) leads the now superconducting double loop to resist the new flux via
Lenz's law, producing a persistent current. It is this current that adds a bottle field; since
the field is proportional to the expelled flux, the apparatus is called a superconducting flux
transformer. A single loop would have the same effect, but the double loop has an added
advantage. There exists an optimum ratio, o, of the outer loop radius to the inner loop
radius for which the only contribution to the field is the magnetic bottle itself. No other
terms are added to the magnetic field, most importantly no zeroth-order term; in fact, a
double loop with ratio a improves the uniformity of the homogeneous field at the center
of the trap.® Thus, the double loop can serve as a shim to cancel out precisely any stray
magnetic bottle-like inhomogeneities due to the trap itself (by creating a bottle field of
opposite sign) and increase the uniformity of the remaining field. In the experiments
proposed below, the main attraction of the double loop bottle is its variability and its

capacity to produce large bottle fields, at least on the order of 100 to 1000 G/cm?.
2.3.b Coaxial triple loop variable magnetic bottle (room temperature)

While the superconducting flux transformer succeeds in producing a variable
magnetic bottle field, its requirement that the loops be immersed in liquid helium
introduces a significant technical challenge. Even if this is done, the requirement for an
external solenoid to drive the bottle complicates the geometry. As an alternative, a
variable magnetic bottle may be designed from three coaxial current loops. Each loop is a
simple non-persistent electromagnet, which could be at any convenient temperature. The
end loops both have the radius R, and each is separated from the central loop (of radius
Ry) by the distance d, as shown in Fig. 2.3. Note that a configuration with Ry>R; will be
ideally suited to use with a Penning trap, since the trap will fit nicely inside the loop

assembly. The problem to be solved now is finding a choice of Ry, Ry, d, and the currents
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Fig. 2.3 Tn’ple loop variable magnetic bottle. The individual Cartesian and
spherical coordinate systems for each of the three loops are labeled: (x.yi.z4)<>
(r1,64,¢.) for the top loop, (x,y,z)¢>(r,0,9) for the central loop, and (x_,y_,z_)<>(r—6_
,¢_) for the top loop.

I; (end loops) and I; (central loop) that will produce a pure magnetic bottle field, no

homogeneous field, and minimum error terms.

The problem is solved by considering the vector potential for the system.
Jackson'? gives the vector potential for a single loop of radius R with current I, in

spherical coordinates:

o (2- k2)K(k)-2E(k)

A (r,6)=
: C\/R2 +12 4 2Rrsin® k2

, [2.22a]

A=K =0 [2.22b]
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where

rRrsin B
R2 +r2 +2Rrsin®

e

[2.22¢]

and K and E are the complete elliptic integrals. The total vector potential for the case of

the triple loop assembly is the superposition of the respective single loop potentials.

Working in the central loop coordinate system, the problem is solved by transforming the

end loop potentials to this coordinate system through the use of the identities

rf =12 + 42 —2rdcosH,

0, :sin—l[ rsin® :|
\P+d2 —2rdcosb

rf =2 +d? +2rdcos6,

and

0 =sin~! rsin@ ]
\/r2 +d? +2rdcos®

The magnetic field corresponding to the total vector potential is

1 0.
B rsin® E(SmeA‘#)’

Bg = ———(fA¢),

B¢=0.

[2.23]

[2.24]

[2.25]

[2.26]

[2.27a]

[2.27b]

[2.27¢]

The procedure now involves manipulating the loop variables until Eqs. [2.27] describe a

magnetic bottle field gradient (Eq. [2.13]).

The constraint applied enforces the magnetic bottle shape over the plane of the

central loop, thus requiring that
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2 2
T 2 X +Yy
B,|6=—|=B o A

The calculation is carried out near the center of the loop assembly, and B, is thus

r2
=By ) [2.28]
f=—

2

expanded in r about r = 0, for small r (r « R and r « Ry), yielding

c|Rp (d2+Rf)3/2 e Rg (d2+Rf)5/2

+1zn§0 2_(5_) [B_q+5(1_1] ﬂ]r2+0(r3)_ [2.29]
CRO IO R] I0 RO

According to the constraint, B, should have no r0 or r! terms. Setting the 0 coefficient to

2 3
2I1R 2I1R

zero yields the condition
3/2
2., 42
(R1 +d )

I, =-1g [2.30]

2RR?
Setting the r! coefficient equal to 0, solving for I, and equating the result to the

expression above produces the second condition
2 2
d* =RoR; —-R7J. [2.31]

Since d2, Ry, and R; are all positive numbers, Ry > R;. Combining the expressions for I;

1 {RO
Iy =——0p |2, 232
1 S04 R [2.32]

This expression may be inserted into the r2 coefficient; setting the coefficient equal to —

and d2 results in

B,/2 and solving for B, gives the magnetic bottle strength

=22 [L_L) [2.33]
cR2 \Ro Ry)

whose sign is opposite to that of the current I,

B,



20

The design is made easier to construct in practice by using the same current
magnitude in all three loops (with opposite orientation in the end loops relative to that in
the central loop): I; = -I,. This sets the loop radii at R| = 0.25R, with the end loops
separated from the central loop by d = 0.25J3_R0 =0.433R. Under these conditions,
the magnetic bottle strength is

~36ml
By =—20. [2.34].
cR0

A likely design would call for Ry = 1 cm, R; = 0.25 cm, and d = 0.43 cm; with a 10 A
current, this would yield a bottle strength of 113 G/cm? for each turn of wire used,
requiring nine turns to reach 1000 G/cm2. Note that, for resistive wire, there is a tradeoff
between cooling requirements and the validity of the approximations used. Specifically,
bundles of thinner wire are more likely to resemble current loops of infinitesimal cross
section, but the higher resistivity of thin wire will increase severely the amount of heat
dissipated. For example, a 3x3 bundle of 20-gauge wire will have a large cross section
radius of 0.12 cm, but its power consumption at 20° C will be only 27 W, whereas the
small cross section radius of a 32-gauge bundle (0.03 cm) will require handling 450 W,
which is feasible with a circulating coolant. (Values for wire diameters and resistivities are
available in the CRC Handbook of Chemistry and Physics.’4) Superconducting analogs of
this geometry are also worth pursuing, in which case the magnetic bottle would be

included in the same cryostat as the detection electronics.

2.4 Numerical simulation of classical ion trajectories

The complexity of the equations of motion [2.19] in a Penning trap and magnetic
bottle does not allow a classical analytic solution of the problem. Furthermore, the
trajectories of interest fall outside the range of application of the guiding center

approximation,!’ especially considering the extreme accuracy needed (~10-7 in frequency).
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The equations must thus be solved numerically via an iterative integration of individual ion
trajectories for given sets of initial conditions. A good simulation program can be useful
in determining the stability of trap configurations, extracting the frequencies of the various
ion modes, and understanding the requirements and resuits of hypothesized experiments.
The trajectory simulations written to support much of the work in this dissertation
are included in Appendix A. They allow the study of ion motions in three dimensions and
can be altered to include any combination of electric and magnetic fields. Changes in
motional amplitudes can then be analyzed by direct observation of Cartesian positions. In

addition, Fourier transformation facilitates the extraction of motional frequencies.

2.5 Axial motion in strong magnetic bottles: numerical simulations

Simulations of ion trajectories in Penning traps with strong magnetic bottles show
frequency shifts which scale with the size of the magnetic bottle strength. Table 2.1 lists
the cyclotron and axial frequencies observed in trajectory simulations of a singly charged,
positive, 100 amu ion in a Penning trap with By = 1T, Vo =10V, and d = 1 cm. The
simulations were all carried out with a frequency resolution of 15 Hz and with an
integration time step of 6.9x10-8 s (except for the 10000 T/m?2 calculation, carried out
with a 2.5 ns step). As the bottle intensity is increased, the axial transform continues to
consist of a single frequency (to better than 1 %) in strong bottles (B, ~ 1000 G/cm? in
Penning traps with B, ~ 1 to 5 T). This is understood qualitatively if the axial motion is
assumed to remain strongly decoupled from the cyclotron and magnetron modes (a point
that will be important in the experiments proposed below).

The simulation programs also reveal previously unreported behavior in the strong
bottle limit: the cyclotron motion is modulated at twice the axial frequency. Small
motional sidebands of the o, centerband, with intensity up to ~ 10 % of the centerband,

appear at ©; + 20, in the Fourier transforms of the transverse coordinates (both ®, and



B, 0, /2% ®,/27 o, -20,) | o, +20,) | I(peak"noise")
(T/m2) from x from z (o) (o,) o,)
FFT (Hz) | FFT (Hz) in x FFT in x FFT in z FFT (%)
(%) (%)
100 147450 50790 1.3 0.4 0.02
1000 147465 55545 11.1 1.8 0.3
10000 146010 90270* 7.3 11.8 2.3
Table 2.1. Trapping frequencies for varying magnetic bottle field strengths.

Trajectory simulation parameters are described in the text. The frequencies have a
resolution of 15 Hz. Peak "noise" is the largest intensity in the axial spectrum other

than the axial trapping frequency.

o, are shifted by the bottle). The transverse transform sidebands are easy to understand
qualitatively as frequency modulation (FM) sidebands. A stable axial oscillation at
frequency ®, varies the z2 term in the Z component of the bottle field (Eq. [2.13]) at a
frequency of 2w,. Since 04 » ©,, a given cyclotron orbit averages out the transverse
components of the bottle, but keeps the axial component: hence the modulation of the
cyclotron frequency at twice the axial frequency. This FM model, however, grossly
overestimates the sideband intensities, emphasizing the need for the quantitative trajectory
simulation. The small size of the axial frequency sidebands and the absence of other
modulation facilitates the development of the theory presented below. The size of the
frequency shifts observed will be justified quantitatively by quantum mechanical

perturbation estimates in Chapter 3.
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2.6 Spin dependent axial potentials

Examination of equations of motion [2.19] in light of the decoupled axial motion
observed in numerical simulations suggests a helpful simplification which will be used to
derive analytical solutions for the effect of magnetic resonance on the axial motion. The
only dependence of the axial equation of motion on the transverse coordinates comes in

through the term with X((ji_)t, - y%—’f—, and through ’Bl It is interesting to note that insertion

of the transverse solutions for a Penning trap with no magnetic bottle (the sum of two
oscillators with frequencies @, and ©_) makes the term with derivatives vanish. In the
presence of a bottle, this term must also remain small, since no modulation of the axial
motion by the transverse modes is observed in simulations. This term, in fact, defines the
mechanical magnetic moment p;, of the ion,

o = %(xj—f—y%f), [2.35]
which is an approximate constant of the motion.!> Note that, in an ideal Penning trap with

no magnetic bottle, the mechanical magnetic moment reduces to

1 1
W = Eqm +pi +—2—qm _pi. [2.36]

Neglecting spin, the magnetic bottle shifts the axial frequency by

_ HmB)
mo,

Ao [2.37]

z

In the limit of no magnetron motion, this expression reduces to the shift calculated by

Laukien!2? and presented in Eq. [2.21]. Furthermore, in the limit where |AI§]«B0 over all

points sampled by the ion trajectory (which occurs for typical orbit sizes, even for

relatively large B,), the term in the axial equation of motion which involves E‘ can be

expanded about B, ~ 0:
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2 2 2B’ :
%(BO +B§zz)z= l’fz z- mBs z[z2 ,%}O(Bg). [2.38]

The term quadratic in B, can be neglected and helps explain the decoupled axial motion
observed in the axial simulations, since the axial and transverse coordinates remain
decoupled through first order in B,. Under these conditions, the axial equation of motion
becomes
d?z [ , 2B,
dt—2+[mz+T(um-u)]z=o. [2.39]
Since the case under consideration is a spin 1/2 ion, p = +glug|/2 for mg =+ 1/2. Eq.
[2.39] is now split into an explicitly spin dependent equation,
%+{wi+%(um¥%|u3‘ﬂz=0 [2.40]
formg ==+ 1/2.
This differential equation may be solved by the energy method.!¢ Straightforward
integration of the equation with respect to the axial coordinate gives the potential energy
per unit mass. Defining spin up and spin down potentials as U, and U_ , respectively, the

potential per unit mass is

2B -
}%Ui :J.{[mi +—r;l'g-(um +%|nB|)]Z}dZ, [2.41]

: ’ : S 2
Performing the integration, and substituting in Eq. [2.8] for oz,

qVo - 2 hoyp
U =) 2 %4 | s Tl B |22 & 2210 2.42
+ [Zdz (“m 2|MB|) 2]2 > [2.42]
L0

; : ho )
where the constants of integration i—z—— are the z=0 energies of each curve. At z=0,

the only potential energy contribution arises from the Zeeman splitting of the electron spin

levels in the homogeneous magnetic field ByZ; thus,

U,(z=0)-U_(z=0)=hoy,. [2.43]
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Note that these potentials are independent of mass, and U, > U_ up to a crossing point,
since U_ is steeper than U, over this region. The two potential curves cross at
+,/Bg /B, ; with By=1 T and B,=1000 T/m2, the crossing point occurs at 3.16 ¢cm, much
larger than typical trap dimensions, so the crossing -points play no role here. The
difference in axial frequencies due to the different curvatures is negligible; this will be
corroborated by the negligible weight of the spin-dependent term in the quantum
perturbation estimate for the axial frequency shift to be presented in Chapter 3.

The difference in curvature of the two potentials implies that a given amount of

axial energy will translate into a larger axial amplitude in the shallower (spin up) curve.

Following the usual notation, |OL) stands for the spin up (mg=1/2) state, and lB} stands for

the spin down (mg=—1/2) state. Then,

a) <> |B) transitions should cause a change in the
axial amplitude of a trapped ion. Consider transitions due to © pulses precisely at z=0 to
maximize the effect, when all of the axial trapping energy is "stored" as kinetic energy.
The ion carries this kinetic energy with it when the 7 pulse moves it from one potential to
the other. Moving between these potentials of different curvature changes the classical

turning points, i.e., the amplitude of the axial motion. Defining z, as the axial amplitude in

state |oc), and z_ as that in state |B), the axial amplitude change for a transition is obtained

by solving the equation

U+(z:z+):U_(z:z_)+th0. [2.44]
This effect will be employed directly to design techniques for monitoring ESR of trapped

ions in Chapter 4.
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Chapter 3: Quantum Mechanical Description of Ion Motion
in a Penning Trap

3.1 Introduction

A quantum mechanical description of motion in the Penning trap is possible. This
advantageous tool yields new insight into the motion and makes perturbation estimates of
modifications due to more complex fields readily available. An early motivation for a
quantum treatment was that an electron or positron at a temperature of 4 K is not a
classical particle and, in particular, its cyclotron motion (more so than the magnetron and
axial motions) must be described quantum mechanically.! Since the research proposed in
this dissertation deals with molecular ions, the need for a quantum mechanical formalism
must be justified. Other workers?3? have described ICR by building classical oscillators
from superpositions of quantum mechanical states. The approach followed here relies
only on energy eigenstates to yield perturbation results. The classical limit is obtained by
considering large quantum numbers characteristic of the kinetic energies of interest. This
provides an easy mechanism to calculate the perturbation of ion motions by modifications
of the electric and magnetic fields. This is illustrated by the calculation of the radial and
axial dependence of cyclotron frequency shifts due to the addition of a magnetic bottle
field. These and other quantum results can be checked against numerical classical
simulations, providing corroboration of each method. Thus, quantum and classical

mechanics become complementary techniques in the study of trapped ion motions.
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3.2 Solutions for the axial and transverse modes

Brown and Gabrielse! develop a quantum mechanical treatment that relies on the

raising and lowering operators for the axial, cyclotron, and magnetron degrees of freedom.

Since the motions are harmonic, the solution of the quantum harmonic oscillator is readily

applied to each case. It is best to begin with the axial motion, since it is an exact harmonic

oscillator in one dimension, with Hamiltonian

2. 2.2
P mo-z
H,=—%+—%—
2m 2
and canonical commutation relation
[z,pz] =ih.

The usual creation and annihilation operators are

al = [0z, -
2=V 2n 2mho, 7
a —Jmmzzﬂ .
J 2h 2mhoazpz’
with
| -
[az,az]—l.
Inverting equations [3.3],
e [ (at4a),
2mo,  * *

Pz = 11/ mhzm = (al —az)'

Substituting equations [3.5] into the Hamiltonian [3.1] yields

H, = hmz(aZaz +%)

[3.1]

[3.2]

[3.3a]

[3.3b]

[3.4]

[3.5a]

[3.5b]

[3.6]
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with the usual orthonormal energy eigenkets |k), k=0,1,2,... with corresponding energies
E, =ho,(k+1) [3.7]

and the creation and annihil