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ABSTRACT 

 

Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are 

ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment 

including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and 

atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative 

details underlying these interactions have remained unclear. Deeper insight into these interfacial 

reactions is also required in addressing challenges in green chemistry, improved water quality, self-

assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and 

electrodes. This thesis describes experimental and theoretical investigation of proton transfer 

reactions at the air-water interface as a function of hydration gradients, electrochemical potential, 

and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also 

expected to aid understanding of complex biological phenomena associated with proton migration 

across membranes. 

Based on our current understanding, it is known that the physicochemical properties of the gas-

phase water are drastically different from those of bulk water. For example, the gas-phase 

hydronium ion, H3O
+(g), can protonate most (non-alkane) organic species, whereas H3O

+(aq) can 

neutralize only relatively strong bases. Thus, to be able to understand and engineer water-

hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness 

wherein the ‘function’ of chemical species transitions from one phase to another via steep gradients 

in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current 

experimental techniques because designing experiments to specifically sample interfacial layers       

(< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have 

provided valuable information regarding the structure of aqueous interfaces, but structure alone is 

inadequate to decipher the function. By similar analogy, theoretical predictions based on classical 

molecular dynamics have remained limited in their scope.  

Recently, we have adapted an analytical electrospray ionization mass spectrometer (ESIMS) for 

probing reactions at the gas-liquid interface in real time. This technique is direct, surface-specific, 

and provides unambiguous mass-to-charge ratios of interfacial species. With this innovation, we 

have been able to investigate the following: 
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1. How do anions mediate proton transfers at the air-water interface?  

2. What is the basis for the negative surface potential at the air-water interface?  

3. What is the mechanism for catalysis ‘on-water’? 

In addition to our experiments with the ESIMS, we applied quantum mechanics and molecular 

dynamics to simulate our experiments toward gaining insight at the molecular scale. Our results 

unambiguously demonstrated the role of electrostatic-reorganization of interfacial water during 

proton transfer events. With our experimental and theoretical results on the ‘superacidity’ of the 

surface of mildly acidic water, we also explored implications on atmospheric chemistry and green 

chemistry. Our most recent results explained the basis for the negative charge of the air-water 

interface and showed that the water-hydrophobe interface could serve as a site for enhanced 

autodissociation of water compared to the condensed phase.  

In a nutshell, this thesis presents an in-depth account of complementary experiments and theory 

employed to answer the questions listed above. It is primarily based on the following articles: 

1. H. Mishra, S. Enami, L. A. Stewart, R. J. Nielsen, M. R. Hoffmann, W. A. Goddard III, A. J. 

Colussi, Proceedings of the National Academy of Sciences (2012), 109(46), 18679 – 18683 

2. H. Mishra, S. Enami, R. J. Nielsen, W. A. Goddard III, M.R. Hoffmann, A. J. Colussi,  

Proceedings of the National Academy of Sciences (2012), 109(26), 10228 – 10232  

3. H. Mishra, R. J. Nielsen, S. Enami, M. R. Hoffmann, A. J. Colussi, W. A. Goddard III, 

International Journal of Quantum Chemistry (2013), 113(4), 413 – 417  

4. S. Enami, H. Mishra, M. R. Hoffmann, A. J. Colussi, Journal of Physical Chemistry A 

(2012), 116 (24), 6027 – 6032  

On the recommendation of the thesis committee, Appendix I and II have been added based on the 

following articles: S. Enami, H. Mishra, M. R. Hoffmann, A. J. Colussi, Journal of Chemical 

Physics (2012) 136(15), 154707, 1-7, and H. Mishra, C. J. Yu, D. P. Chen, W. A. Goddard, N. F. 

Dalleska, M. R. Hoffmann, M. S. Diallo, Environmental Science & Technology, (2012) 46(16), 

8998-9004. 
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1
C h a p t e r  1  

INTERFACES OF WATER WITH HYDROPHOBIC MEDIA 

Water, along with fire, air, and earth, has incessantly inspired the human imagination, and held an 

exalted, somewhat mystical, stature across all ancient civilizations. Albert-Szent Gyӧrgyi, a 

pioneering biochemist and a Nobelist, echoed with Paracelsus, a philosopher from the sixteenth 

century, when he touted water as the “matrix of life”: a sinew that participates, chaperones, solvates, 

catalyzes, and orchestrates vital chemical and physical interactions within the cellular milieu.[1, 2] 

Indeed, it has been increasingly realized over the last century that water plays vital roles in various 

phenomena in the environment leading to the origin, sustenance, and cycling of the organic matter, 

the atmosphere, the biosphere, the geosphere, and their delicate couplings.[3-15] Indeed, chemical 

reactions employing water in the condensed phase are well understood and the level of experimental 

techniques and theoretical framework in physical chemistry is quite satisfactory. Similarly, 

chemical reactions of water molecules and clusters in the gas-phase could be quantitatively 

analyzed, thanks to advances in the mass spectrometry, kinetic theory of gases, and the transition-

state theory. However, at the confluence of bulk and gas phases, i.e., at the surface of water, the 

continuum theories cease to hold and physical quantities such as dielectric constant, acidity/basicity, 

and electrochemical potential could not be linearly extrapolated from bulk measurements. 

Interestingly, however, the most important phenomena involving water in biology and atmospheric 

chemistry take place at interfaces of water with hydrophobic media, such as air and lipids (detailed 

below). As a natural outcome, experimentalists and theoreticians are vigorously investigating the 

water-hydrophobe interfaces, though not always in unison, thereby pushing the chemical physics of 

aqueous interface at the forefront of natural and applied sciences. Experimentalists are pushing the 

frontier to resolve the molecular details of evanescent, fluctuating aqueous interfaces, while 

theorists are developing forcefields, coarse-grained methods, and ansatz towards self-consistently 

capturing the collective dynamics to capture the interfacial chemistry and physics.  

This chapter introduces the essence and the efficacy of aqueous interfaces in biology, atmospheric 

chemistry, and green chemistry, along with challenges impeding a quantitative understanding. 

Towards the end, an outline of the thesis is presented. 



 

 

2
1.1 Interfacial Water in Biology 

Remarkably, all forms of known organic life are characterized by compartmentalization of structure 

and function within the cell wherein proteins drive cellular activities.[16] Expectedly so, the most 

interesting phenomena, such as molecular sensing, signaling, and chemical exchange, take place at 

the boundaries of compartments. Vital biological processes driven by membrane proteins at the 

lipid-water interface include synthesis of the adenosine triphosphate in mitochondria (energy 

transduction), light activated proton pumping in bacteriorhodopsin, proton channeling, neural 

signaling, olfaction, immunity and inflammation, and tumorigenesis.[17-24] While sustained 

research has unraveled structure-function relationships of biological ‘actors’, not much attention has 

been given to the roles of interfacial water enveloping them.[3-6] As a result, it is commonplace to 

find a pristine image of a multicomponent, self-assembled biomolecule in a textbook without a 

surrounding aqueous environment. In fact, it has been demonstrated that proteins isolated in their 

dry form exhibit drastically higher electrical impedance than their hydrated counterparts, as 

representing loss of their biological function.[1, 11] Hydration shells closest to biomolecules 

(known as the “biological water”) have been demonstrated to undergo dramatic departure from 

typical bulk water structure, and possibly function.[25, 26] But, details of the chemical behavior of 

interfacial water, confined within a microscopic hydrophobic pocket, or at bulk interfaces with 

hydrophobic media, are not entirely clear at this point.[3, 6] Indeed, a quantitative understanding of 

interfacial phenomena should help us address one of the central enigmas in science, i.e., how do 

non-covalent interactions such as hydrogen-bonding, in addition to the electrostatics, 

hydrophobicity, van der Waals interactions (including London dispersion, Debye, and Keesom 

forces), act in concert to set the stage for proteins to construct a multifunctional and conscious 

entity.  

Another baffling problem in biology pertains to the synthesis of ribonucleic acid (RNA) via 

condensation of amino acids through sequential peptide bond formation. Since these reactions 

involve elimination of a water molecule for every peptide bond formed, they are unfavorable in an 

aqueous solution. In fact, a large subunit of the ribosome is known to catalyze this reaction and 

involves (1) favorable orientation of peptide precursors, acid-base catalysis, and transition-state 

stabilization, and (2) the alteration in the pKa of the functional groups of the precursors at the water-

hydrophobe interface.[14, 17, 18, 27-30] Since the ocean contains precursors for amino acids, along 

with a host of transition metal ions, and acidic/basic residues exhibit pKa switching at water-
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hydrophobe interfaces[30], it has been speculated that interactions at the air-water interface played 

a vital role in prebiotic RNA synthesis.  

 

1.2 Interfacial Water in Atmospheric Chemistry 

An in depth investigation of chemical and physical phenomena at water-hydrophobe interfaces is 

crucial to understand heterogeneous processes on environmental surfaces, such as, for example, 

cloud drops, dew, fog, haze, aerosol, soil, and leaves. [12, 31-36] Unlike in bulk water, sharp 

changes in density, dielectric constant, and hydration level across the interfacial region of 

nanometer thickness could afford unique thermodynamic and kinetic constraints.[37-39] Thus, the 

air-water interface plays vital role in fundamental atmospheric processes, including (1) acidification 

of clouds and oceans,[40] (2) anion-catalyzed proton transfer reactions,[41] (3) formation and 

cycling of the secondary atmospheric aerosol, such as from biogenic isoprene,[42] (4) ocean-

atmosphere exchange,[36] and (4) interactions of NOx with marine aerosol towards formation of 

HONO[43]. Indeed, there is some experimental and theoretical evidence supporting the contribution 

of heterogeneous reactions and catalysis to be significant, even competitive to the well-established 

homogeneous reaction-pathways, in the life-cycles of various natural and anthropogenic 

emissions.[31-35, 42-57] Unfortunately, however, heterogeneous reactions are largely considered at 

an ad hoc basis in current climate models. For a detailed case study regarding isoprene, please take 

a look at reference [42]. Thus, quantitative estimation of heterogeneous reactions in the 

environment would render realism and accuracy to current climate models. 

 

1.3 Role of Interfacial Water in Green Chemistry 

Traditionally, organics are used as default solvents for organic synthesis because of the assumption 

“corpora non agunt nisi solute” (substances do no interact unless dissolved). But, curious synthetic 

chemists discovered dramatic rate accelerations when certain chemical reactions, including aldol 

condensation, Mannich reaction, Claisen rearrangement, Michael addition, benzoin condensation 

and Grignard-type additions, were carried out in an aqueous medium.[58-61] In addition to the rate 

acceleration, water also offers excellent thermophysical and chemical properties, such as high 
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boiling point, high dielectric constant, high specific heat, and non-toxicity under ambient and 

moderate conditions. More recently, it has been reported that rates of chemical reactions could be 

further enhanced if similar organic reactions were carried out in aqueous emulsions.[62-65] 

However, a challenge impeding advances in green chemistry ‘on-water’ has been a clear 

understanding of the role of water. Several proposals based on hydrophobicity[61], hydrogen-

bonding enabled transition-state stabilization[66-68], and acid-base catalysis[69] have been 

forwarded over the years, but a clear picture has not emerged. 

 

1.4 Challenges Associated with Investigation of Aqueous Interfaces 

Air-water and lipid-water interfaces were first studied by colloidal chemists while assessing ζ-

potentials of air-bubbles and oil-drops in water.[70-75] They noticed that (1) both air bubbles and 

oil drops in water drifted toward a positively charged plate in an electric field, (2) formation of an 

oil-water emulsion reduced the pH of water, and (3) the isoelectric point of air-water and lipid-

water interfaces was in the pH range 2–3. These experiments speculated that OH- ion concentration 

at the water-hydrophobe interface to be responsible for their negative potential and charge, but a 

molecular picture remained unclear. During past two decades various leading spectroscopists, 

including Shen[76-82], Saykally[83-90], Rossky[91, 92], Bakker[93], Zewail[94-96], and Skinner 

[97] have made great strides in experimentally probing the water-hydrophobe interface. It has been 

demonstrated that a characteristic vibration spectra of the interfacial water merges into that of bulk 

water within a depth, δ < 1 nm, though a detailed understanding of “structure making and breaking” 

effects of ions is not entirely clear.[98, 99] Thus, despite their remarkable efficacy to probe the 

structure of the interfacial water, surface-specific spectroscopies, including the sum-frequency 

generation (SFG) and the sum-frequency vibrational spectroscopy, have not been able to pin-point 

the function of chemical species at the water-hydrophobe interface.[100, 101] As summarized by 

Shen and co-workers, these measurements suffer from: (1) interpretational ambiguities depending 

on underlying assumptions, (2) inability to capture the functional aspects of interfacial phenomena, 

(3) sensitivity limitations that require the use of concentrated (> 1 M) solutions, and (4) 

contamination issues.[76]  

Theoretical predictions have played an important role in interpreting and predicting surface 

phenomena but current tools are limited by (1) uncertainties in the description of non-bonded 
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interactions, especially hydrogen-bonding interactions in water, and (2) the computational costs of 

dealing with realistic models.[102-106] For example, it has been realized recently that previous 

molecular dynamics calculations, employing polarizable versus non-polarizable forcefields, leading 

to inconsistent results regarding anion-fractionation at the air-water interface had inherent 

shortcomings.[107-111] 

We have recently adapted an electrospray ionization mass spectrometer (ESIMS) for probing 

chemical and physical phenomena at the gas-liquid interface in real time. This innovation has 

enabled us to investigate (1) anion-mediated proton transfers at the air-water interface, (2) the basis 

for the negative surface charge of the air-water interface, and (3) protonation and oligomerization of 

isoprene gas on the surface of mildly acidic water. In addition, theoretical predictions based on 

quantum mechanics (density functional theory) and molecular dynamics provided insights into our 

experimental results. Thus, this dissertation presents a complementary approach harnessing synergy 

between experiment and theory towards unraveling molecular details underlying interfacial 

phenomena pertaining to proton transfer reactions. [112]  

 

1.5 Outline of the Thesis 

Chapter 2 describes in detail our experimental platform. We have modified an electrospray 

ionization mass spectrometer into a surface-specific platform for probing phenomena at liquid 

surfaces. In addition to physical processes, such as anion fractionation and Hofmeister effects, this 

technique is also capable to capturing reaction intermediates and products in real time.  The 

experimental set up and the soft-ion-ejection process will be described in detail, along with results, 

to convince the reader of its high sensitivity, and surface specificity. 

Chapter 3 presents our report on the anion-catalyzed proton transfer reactions at the air-water 

interface. We investigated the role of electrostatic pre-organization in mediating proton transfers at 

water-hydrophobe interfaces. Gas-phase nitric acid was employed as the proton donor, and the 

common salt as the source for interfacial ions. Theoretical calculations based on quantum 

mechanics helped us identify the reaction mechanism. 
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Chapter 4 clarifies a long-standing debate regarding the origin of the negative surface potential 

and charge of the air-water interface. By colliding gas-phase (Brønsted) acidic molecules with the 

surface of water, we found unambiguous confirmation of interfacial hydroxide ions to be the source 

of the negative charge. Against common expectation, we observed OH- ions at the surface of water 

as acidic as pH = 2.5. Our complementary theoretical simulations employing density functional 

theory reinforced our results. 

Chapter 5 presents our results on protonation and oligomerization of isoprene, a stable, 

hydrophobic biogenic gas (> 1015 g/yr), whose chemistry is tremendously important, yet unclear, in 

the context of atmospheric science. Our experiments, along with quantum mechanical simulations 

underscore the vital role of hydration in controlling thermodynamics and kinetics of heterogeneous 

reactions of isoprene at environmental surfaces. These findings also provide an alternative 

mechanism for catalysis ‘on-water’. 

Chapter 6 concludes the thesis by summarizing key insights and introducing the ongoing effort into 

additional projects that resulted from this work. 
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C h a p t e r  2  

EXPLORING THE GAS-LIQUID INTERFACE VIA ELECTROSPRAY IONIZATION 
MASS SPECTROMETRY  

  



 

 

8
Abstract 

Electrospray ionization mass spectrometers (ESIMSs) have been widely employed in biochemistry 

and chemical engineering as a reliable method for generating soft-ions in the gas-phase and 

detecting them. General consensus regarding ESIM spectra is that they reveal information from the 

solution-phase, rather than the gas-phase. We revisit this notion and demonstrate that by changing 

the physical configuration and operating parameters of an ESIMS, it is possible to selectively 

sample the interfacial region. Consequently, ESIMS affords an unambiguous surface-specific 

technique for liquids ideally poised to detect and analyze chemical and physical phenomena, such 

as proton transfers, ion fractionation, and specific-ion effects. In this chapter we present this 

innovation along with three experimental investigations of the gas-liquid interface: (i) anion 

fractionation, (ii) proton availability and proton transfers during gas-liquid collision events, and (iii) 

protonation of organic acids at the air-water interface. Wherever relevant, our results are compared 

against other established surface-specific platforms, such as sum-frequency generation and sum-

frequency vibration spectroscopy, and found to be in excellent agreement. Thus, with this 

innovation, we have realized a reliable and unambiguous mass-spectrometry-based surface-specific 

platform to pursue chemical physics of liquid surfaces. 
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2.1 Introduction 

An electrospray ionization mass spectrometer (ESIMS) is established as a versatile analytical 

instrument for detection of condense-phase species and their interactions in natural and applied 

sciences.[113-116] Availability of continually refreshed uncontaminated solution jets at ambient 

conditions, along with unique soft-ion ejection and unambiguous mass spectral detection of intact 

complex species, render ESIMS an invaluable tool capable of operating at concentrations as low as 

micromolar range.[117] Flexibility to configure an ESIMS—comprising an inlet capillary, a 

nebulizer, and a mass spectrometer—along with freedom to assign potential to the capillary, conjure 

a multidimensional parameter space for ESIMS functions. Consequently, a large body of literature 

on variational developments and possible applications has accumulated over decades. [118-120] In 

this chapter, we raise the question: Has the entire parameter space for ESIMS function been 

explored? In 1984 Yamashita and Fenn perspicaciously noted about ESIMS, “another intriguing 

possibility is to use the technique on probing microscopic structure and properties of 

solutions”.[120] The question we set to address, in particular, in this article is: Is there a set of 

operation parameters that can afford sampling of only the interfacial region of solution, 

rather than its bulk?  

The operation and performance of an EISMS could be parametrically adapted by the following: (i) 

relative directions of the nebulizer flow and the mass- spectrometer inlet vector, (ii) electric 

potential assigned to the capillary and the fragmentor plate, (iii) solute-solvent characteristics, 

including concentration, surface tension, additives, along with temperature and the rate of injection. 

Over the course of last few years, Colussi and co-workers have optimized a set of conditions that 

render an ESIMS suitable to probe phenomena at the gas-liquid interface. They found that with an 

electrically grounded capillary augmented with a concentric high-speed nebulizer, imparting 

momentum to the sheared jet layers in a direction perpendicular to the mass-spectrometer inlet, it is 

possible to selectively sample the interfacial layers while the bulk of the jet goes unsampled (see the 

Experimental section and Figure 2.1). In this chapter we present our experimental method in detail 

to be followed by experiments probing chemical and physical phenomena at the gas-liquid interface 

and comparison with bona fide surface-specific techniques.  We will present our results on (1) 

relative anion fractionation at air-water interface[121, 122] in an equimolar polyelectrolyte solution 

and (2) proton transfer reactions at the air-water interface, including  protonation of gas-phase 
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bases[123] and weak carboxylic acids[124], which provide convincing evidence of the surface 

specificity of our technique. 

 

2.2 Experimental Method: ESIMS as a Surface-Specific Platform 

An electrospray ionization mass spectrometer (HP-1100 MSD) with an atmospheric pressure 

ionization interface of orthogonal geometry was used in this study. The orthogonal geometry 

ensured that only a small fraction of analyte reached the quadrupole mass-spectrometer, while the 

rest continued its forward trajectory without contributing to the ion-current (Figure 2.1). Since mass 

spectrometers only detect charged species, the ESIMS technique necessarily requires separation of 

pre-existing anions from cations from the charge-neutral anlayte as a first step.  

 

Figure 2.1: Schematic of an electrospray ionization mass spectrometer showing various stages to the 

best of our understanding: (a) a nebulizer gas shears the outermost layers of jet resulting in small 

droplets, (b) some of these resulting droplets carry excess charge(s), and change their trajectories 

under the influence of the electric field of the fragmentor plate, (c) solvent evaporation destabilizes  

droplets leading to smaller droplets via Coulomb explosions, (d) subsequent solvent evaporation 

leads to soft-ion ejection, and finally (e) ionic species undergo mass spectrometric detection. 
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Analyte solutions are pumped (50 µL min-1) into the spraying chamber through an electrically 

grounded stainless steel capillary injector of 100 µm diameter (Figure 2.1). Surrounding this 

capillary injector is a coaxial sheath (250 µm internal diameter) releasing a nebulizer gas (usually 

boil-off N2) at 13 L min-1 (Figure 2.1).  

Pneumatic shearing of the surface of a slow moving (≈ 0.1 m s-1) analyte jet by the nebulizer gas (~ 

250 m s-1) leads to smaller droplets. Why are some of the resulting droplets electrically charged?  

During the nebulization process, the kinetic energy of the nebulizing N2(g) gas is consumed to shear 

the interfacial region into smaller droplets. Thus, following a normal distribution, some of the 

resulting droplets carry excess positive or negative charges as expected from a random process. 

While the nebulizer gas easily shears the initial jet of ≈ 100 μm size, it cannot further break the 

smaller droplets due to inadequate energy density and only aids evaporation thereafter. Thus, a 

constant fraction of the number of pre-existing ions in the interfacial layers is separated in this 

process. 

How does ion-ejection take place? As shown in Figure 2.1, the jet emitted from the grounded 

nozzle proceeds in a direction orthogonal to the polarized inlet to the mass spectrometer. Due to 

electrostatic attraction, some of the charged droplets get preferentially deflected toward the 

polarized mass-spectrometer inlet.  As the smaller charged drops progress towards the mass-

spectrometer inlet, rapid solvent evaporation is accomplished via the nebulizer gas. Within ≈ 10 µs, 

the radii shrink to the Rayleigh limit, given by   q = 8π(ε γR3)1/2 at which the Coulombic repulsion 

between excess charges in the drop overwhelm surface tension, and the charged drop fissions into 

smaller droplets.[125] Here q is the charge on the droplet, ε is the dielectric permittivity, γ is the 

surface tension of the solvent and R, drop radius. Notice that these electrostatic Coulomb explosions 

do not separate negative from positive charges, but only the excess charges acquired during the jet 

break up by the nebulizer. It should be emphasized that anions may recombine with remaining 

counterions (or associate with neutrals) in shrinking charged droplets, but the net ions drawn per 

unit time from the initial jet (ions  time-1) is conserved in sprays of non-interacting droplets. As the 

smaller droplets undergo further evaporation, eventually excess ions are ejected into the gas-phase 

amenable for mass spectrometric detection. The event of ion ejection may or may not coincide with 

complete solvent evaporation: two models—ion evaporation model (IEM) and charge residue 

model (CRM)—are based on those conditions, respectively.[126-128] In either case, the number of 

excess ions, finally ejected, remains conserved in a drop since the jet breakup and during solvent 
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evaporation. As a result, the mass spectral intensity of the ejected ions correlates to the excess 

charge at jet breakup event, which correlates to the interfacial concentrations in the jet before 

breakup. 

 In following sections, results of Cheng et al.,[108, 121] on anion fractionation, and recent results on 

proton transfer reactions at the air-water interface are compared against bona fide surface-sensitive 

techniques and theoretical predictions. 

 

2.3 Ions at the Air-Water Interface 

We start this section with a brief historical perspective: Based on the celebrated theory of liquids of 

Debye and Hückel[129, 130], which was furthered by Wagner[131], Onsager and Samaras[132] 

established a theoretical framework linking ion adsorption at the air-water interface to the surface 

tension. This theoretical framework considered only the electric field between ions, neglecting ion-

dipole interactions with water molecules. The resulting paradigm was that the adsorption of ions at 

the air-water interface was impeded by (electrostatic) “image force” near the boundary. However, 

independent experiments of Heydweiller and Schwenker suggested presence of ions at the interface 

by measuring surface tension minima between low and high concentrations, but were ignored.[133] 

It was not until 1937, when Jones and Ray unambiguously established that the surface tension of 

aqueous electrolytes exhibited minima at a concentration ≈ 0.001N, and, thus, ions must be 

adsorbed at the air-water interface to relieve the surface tension.[133, 134] A molecular 

understanding of ‘Jones-Ray effect’ remains incompletely understood to date.[40, 90, 135-137] 

Recent application of complementary experiment and theory is expected to address it.[83, 121, 138, 

139] 

Thus, against the proposition of Onsagar and Samaras, anion fractionation at the air-water interface 

has been well established with a host of experimental techniques, including surface-specific 

nonlinear spectroscopy and electrokinetics. In fact, a recent phase-sensitive sum-frequency 

vibrational spectroscopy (PS-SFVS) study revealed that interfacial anion affinities of the following 

ions are in the order I- > NO3
- > NH4

+ > Cl- > K+ > Na+ in the concentration range 1 – 2 M.[140] 

Saykally and co-workers have applied resonant sum-frequency generation spectroscopy and 

confirmed the Jones-Ray effect and more recently suggested that capillary waves at the air-water 
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interface might explain the Hofmesiter effect (Also see Section 6.4.1 in Chapter 6).[83, 88] 

Though, SFVS and sum-frequency generation (SFG) platforms formally probe interfacial layers, 

they suffer from: (1) sensitivity limitations that require the use of concentrated ( > 1 M) solutions, 

and (2) interpretational ambiguities that might make the molecular assignment of SHG or SFVS 

spectral features depend on certain assumptions.[76, 141, 142] Even the theoretical community has 

not been able to put anion fractionation on a quantitative basis so far, e.g., molecular dynamics 

predictions of anion fractionation at air-water interfaces are very sensitive to the use of electronic 

polarization function.[87, 143-146] Theoretical methods, such as molecular mechanics with 

(non)polarizable forcefields, Car-Parrinello metadynamics[138, 140, 147] have been applied to 

study this phenomenon, but quantitative insights remain elusive. 

 

2.4 Investigating Anion Fractionation at the Air-Water Interface via ESIMS 

Cheng et al., applied ESIMS to investigate the anion fractionation at air-water interface by 

analyzing a mixed aqueous electrolyte solution containing equimolar concentrations of sodium salts 

(NaX, X- = Br-, I-, NO3
-, IO3

-, PF6
-, SCN-, BrO3

-, BF4
-) in the range 10 – 100 µM. If the ESIMS in 

our configuration did not sample only the interfacial region, resulting anion mass spectral signal 

strengths from the bulk solution would be similar in magnitude. On the contrary, Cheng et al., 

observed significantly varying mass spectral signal intensities in accordance with the Hofmeister 

series and in agreement with other surface-sensitive techniques for gas-liquid interface (Figure 2.2 

(A)).[147-149] This experiment beautifully established the our ESIMS as a surface-specific 

platform. While the surface-sensitive ESIMS setup is also limited to relative quantification of 

interfacial ion abundances at the gas-liquid interface, it offers high sensitivity and unambiguous 

mass-to-charge ratio at concentrations as low as 1 M. Normalized anion affinities, X-, were 

calculated from the sum of mass spectrometric ion counts, Im/z, for the isotopic variants of each 

anionic species [e.g., (I99 + I101) for ClO4
-] and the total ion count:  

/
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Relative anion affinities, X-, calculated relative to Br- (for bromide) as X- = fx- /Br-, are shown in 

Figure 2.2(A).  

What properties of the air-water interface do the uneven interfacial anion populations shown in 

Figure 2.2(A) correlate to? ESIMS data plots of lnfX
-
- vs. aX

- crystalline anion radii (Figure 2.2(B) 

were illuminating in this regard. Cheng et al., observed excellent linearity between lnX- and gas-

phase radii of ions (correlation coefficient, R2 = 0.97) thus establishing that the fractionation of ions 

at the air-water interface was strongly correlated to their size, or the hydration energy. Interestingly, 

they also demonstrated that there was no correlation between ion fractionation and anion 

polarizability as claimed by a large number of theoretical predictions and agreed upon by 

experimental results (Figure 2.2(C)). [107, 109-111, 121, 122, 143, 146, 150-152] Thus, the ESIMS 

setup working as a surface-sensitive technique provided important clues towards understanding 

anion fractionation phenomenon. 

             

Figure 2.2(A): ESIM spectrum of a 100 µm aqueous solutions of the sodium salts of: Br-, NO3
-, 

SCN-, I-, BF4
- and ClO4

- at pH 6.5. Ion signal intensities normalized to the total ion intensity: ∑Ix
- = 

1. ISCN
-
 = 0.097, INO3

-  = 0.033, IBr
- = 0.023, IBF4

- = 0.301, IClO4
- = 0.455, II

- = 0.090; Figure 2.2(B) 

Correlation between logarithmic normalized affinity and ion radii, from [153]. Solid line: linear 

regression: lnX-,α aX
- (R2 = 0.956); Figure 2.2(C): Correlation between anion polarizabilities and 

relative signal intensities of various anions: Br-, NO3
-, SCN-, I-, BF4

- and ClO4
- at pH 6.5 (no direct 

correlation) 

 

2.5     ESIMS for Investigating Reactions at the Gas-Liquid Interface 
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To investigate reactions at the gas-liquid interface using ESIMS, Colussi and co-workers 

designed numerous experiments wherein composition-adjusted liquid jets were intersected with 

reactive gases before the jet breakup by a nebulizing gas (Figure 2.3).[31, 33, 34, 37, 40, 42, 43, 47, 

51, 52, 54, 123, 154-159] For example, a 10% v/v solution of HNO3 in deionized water at 278 K 

has a partial pressure, p ≈ 4.8  10-8 atm due to nitric acid vapor.[160] Gaseous HNO3 vapor was 

transported from a solution of dissolved HNO3 by sparging 100 sccm N2 gas at a fixed temperature. 

A detailed analysis [161] based on mass balance and application of the kinetic theory of gases to 

fast gas-liquid reactions suggesting that the thickness of the interfacial region sampled in these 

experiments is most likely < 1 nm follows: From the frequency of HNO3 collisions on water’s 

surface given by the kinetic theory of gases: f[cm-2 s-1] = ¼  c n, where   1 is the reactive uptake 

coefficient, ܿ	= 3.2  104 cm s-1 is the mean speed of HNO3 molecules at 300 K, and n is the number 

density (molecules cm-3),[161, 162] we deduce that f  (/) = 1.9  1018 protons cm-3 = 10-2.5 M 

must be delivered to interfacial layers of thickness [cm] upon exposure to n = 3.3  1012 HNO3(g) 

molecules cm-3 during [s] life times, i.e., (/) = 0.014 cm s-1. Previous experiments have shown 

that   10 s [161]. Thus, we estimate that the thickness of the interfacial layers sampled in our 

experiments is:   1.4  10-7 cm (Also see Section 3.4 in Chapter 3). Various spectroscopists have 

demonstrated that characteristic vibration spectra of the interfacial water merges into that of bulk 

water within a depth, δ ≈ 1nm. [94-96, 163] Thus, we believe that our platform is ideally suited to 

probe the gas-liquid interface. Further, it must be noted that the gas-liquid collisions last for ≈ 5 ns, 

during which molecules can (de)adsorb or bounce off, while the aqueous jet has a life time of ≈ 10 

s after which it is sheared into smaller droplets. Within t ≈ 5 ns, the molecules can sample depths, 

x  = (D  t)1/2, where D ≈ 10-9 m2/s, leading to an average sampling of the interfacial region x ≈ 1 

nm deep.  

In all experiments described in this thesis, 50 L min-1 of deionized water (or aqueous electrolyte 

solution) was injected into the spraying chamber of an ESIMS held at 1 atm, 293 K via an 

electrically grounded stainless steel pneumatic nozzle (100 m) internal diameter. Note that the 

velocity at which the liquid jet emerges from the nozzle is ~ 500 times slower than that required for 

observing electrokinetic generation of H2 gas as reported by Saykally and co-workers  [164]. Other 

instrumental parameters were: drying gas (flow 6 L min-1, temperature 340 ºC), nebulizer pressure 

(1.02 atm), fragmentor voltage (40 V), Gain 1, threshold 25, step size 0.1, and peak width 0.3. The 

pH of aqueous solutions was adjusted via concentrated NaOH or HCl. 
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Figure 2.3: Schematic of our experimental setup for gas-liquid reactions. A microjet is created in the 

spraying chamber of an electrospray mass spectrometer by injecting water through an electrically 

grounded stainless steel nebulizer (100 m internal diameter) and briefly exposed to nitric acid 

vapors before is broken up (after ≈ 10 microseconds) into charged droplets by the nebulizer gas. 

After subsequent solvent evaporation and successive Coulomb explosions, excess ion are ultimately 

ejected to the gas-phase via field desorption, and detected by mass spectrometry in < 1 millisecond. 

The spray chamber is at 1 atm of N2, 293 K throughout. 

 

Could increasing concentrations and curvatures of drops trigger/influence surface reactions? To 

address this concern it is critical to note that (1) in the life cycle of a jet emitted from the nozzle, the 

nebulizer gas shears it only once, because the hydrodynamic forces required to further break/shear 

the microscopic drops significantly exceed the energy density carried by the nebulizer gas, (2) the 

ion ejection process pertains only to excess ions which are acquired during jet break up, and (3) 

even though chemical reactions take place on the surface of a concentrated micro/nano droplet, such 
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acid-base reaction, the excess charge/species will remain unchanged. Indeed, there is a possibility 

that depending on the ionic species, there could be substitution of ions in concentrated drops leading 

to noise or false signal. But we have not observed it in our set of experiments. Indeed, the 

observation of standard titration curves for dissolved acids/bases reproduced from our ESIMS also 

testifies that the sampling process is affected by these effects (See Figures 2.4 and 4.2). With our 

experience so far, it can be concluded that the mass spectrum of an ESIMS setup adapted for 

investigating gas-liquid reactions, as described, directly correlate to the excess charge carried by the 

droplets which in turn is related to the interfacial ion concentrations. 

 

2.5.1 Proton Availability at the Air-Water Interface  

A clear understanding of aqueous interfaces is quintessential in understanding myriad (a)biotic 

processes and phenomena. Recently, there have been several conflicting reports—both theoretical 

and experimental—on the nature of surface acidity of air-water interface.[85, 165-167] 

Unfortunately, most estimates based on classical molecular dynamics simulations and surface-

specific techniques can only predict “structures” of the air-water interface with known bulk acidity, 

but the “functional” information is not captured. In other words, presence of hydronium ions near 

the air-water interface does not render it “acidic”: the surface is acidic if (and only if) it protonates a 

base. Recently, Enami et al., employed gas-phase trimethylamine (TMA) to evaluate the functional 

acidity (or the availability of protons) at the air-water interface by intersecting pH-adjusted aqueous 

jets with gaseous beams of TMA/N2(g).[123] Compared to the proton affinity of the gas-phase 

water, PA(H2O) = 165 kcal mol-1, the proton affinity of gas-phase TMA is 227 kcal mol-1. Further, 

the acidity constant of the conjugated acid of TMA in aqueous solution, pKa (TMAH+) = 9.8 

suggests that TMA is a stronger base than H2O in both the gas and liquid phases. Expectedly, the 

reaction R1 is exothermic, ∆H  =  PA(TMA) – PA(H2O)) = -62 kcal mol-1, while R2 becomes viable 

after extensive ion hydration. 

                   (R1) 

            (R2) 
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Thus, the extent of protonation of TMA at the air-water interface provided functional insight into 

the surface acidity, or proton availability, at the air-water interface. Experiments were carried as 

described in the experimental section for gas-liquid collision reactions. Positive ion ESIM spectra 

produced by spraying pH-adjusted water jets crossed with 3.0 ppmv TMA/N2(1 atm) mixtures 

display TMAH+ (m/z=60) and (TMAH)2Cl+ (m/z=155, 157) signals. At constant concentration 

TMA(if), TMAH+ signal intensities were found to vary with bulk pH, as shown in Figure 2.4 (blue 

downward triangles). Experimental data yielded pKa = 3.0 ± 0.2 for interfacial protonation in 

striking contrast with TMAH+ signals from pH-adjusted solutions of TMA in water which showed 

an equivalence point at pKa  = 9.96 ± 0.2, matching closely with the reported value for 

pKa(TMAH+).  

 

Figure 2.4:  ESIMS TMAH+ signal intensities versus pHBLK on water microjets  exposed to 1.00 – 

3.0    (blue downward triangles) and 0.03 ppmv  TMA(if) (green upward triangles)  and on aqueous 

TMA/N2(if)  (red  circles).  Blue and red signal intensity data are normalized to TMAH+ = 1 at 

pHBLK = 1. Green data are relative to the blue data.  

 

The investigation by Enami et al., employing the ESIMS tracking proton availability at the air-water 

interface, concluded that (1) TMA is more basic than water in the gas and bulk liquid phases but not 

at the interface, (2) the proton activity sensed by TMA(if) at the air/water interface is indirectly 

related to the bulk pH, (3) from a functional point of view the surface of water is not acidic unless 

bulk is acidified to pH < 3, (4) at pH < 3 air-water interface exhibits partial gas-phase behavior, thus 
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protonating hexanoic acid.[124]  An isoelectric point at pH = 3.0 ± 0.2 for the water surface is in 

good agreement with the previous values derived from electrophoretic experiments on bubbles and 

droplets in water.[71-75]  It must be made clear that this result was insufficient to prove that 

hydroxide, OH-, ions selectively adsorb at air-water interface in that pH range; though, we will take 

up this issue in Chapter 4. At this point we also wish to point out that while it is true that the drops 

resulting from the pneumatic shearing of acidic jets in the range pH 4 – 7 become increasingly 

acidic as the solvent evaporates and TMAH+Cl- may form on their surface. But the ESIMS did not 

detect TMAH+ signal because the excess charge on the drop remains constant (zero) after 

pneumatic shearing process. This elucidates the importance of conservation excess charge formed 

during initial jet breakup. Protonation of TMA(if), and hence generation of some drops with excess 

charge only takes place on the surface of pH < 4 jets. We will again touch upon this in the next 

section. 

 

2.5.2 Protonation of Organic Acids on the Surface of Mildly Acidic Water 

How acidic is the surface of pH < 3 water? We applied acetic acid (RCOOH) and hexanoic acid 

(PCOOH) as molecular probes to investigate the surface of mildly acidic water as discussed in 

Section 2.5 and shown in Figure 2.3.[124, 168] Gas-phase proton affinity of both organic acids is ≈ 

187 kcal mol-1. Similarly, in the bulk solution the  pK = 4.8 and pKPCOOH2
+ = -3 suggesting that they 

are both weak acids and bases. Thus, thermochemistry alone suggests that gas-phase acids (like 

TMA(if) in the previous section) might accept proton from H3O
+(if) (reaction R3), but in condensed 

phase would easily remain unprotonated above pH ≈ 1 (reaction R4). We wish to find out the fate of 

interfacial PT reactions R5. 

                             (R3) 

                    (R4) 

                       (R5) 

We applied ESIMS in a series of experiments to monitor PT reactions during collisions of 

PCOOH(if) with the surface of pH-adjusted water  as described in the experimental section and 
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Figure 2.3. As shown in Figure 2.5, we observed (1) protonation of organic acids coming from 

the gas-phase on the surface of pH < 3 water, and (2) protonation of acids already dissolved in water 

as PCOOH(aq) was insignificant in comparison.  

 

 

Figure 2.5:  ESIMS PCOOH2
+ signal intensities versus bulk pH on aqueous jets exposed to 77 ppbv 

PCOOH(if) (blue circles) and within 1mM PCOOH(aq) jets in pure N2(g) (orange triangles). Data 

shows protonation of RCOOH at the surface of mildly acidic water, but not in the bulk.   

 

ESIMS experiments tracking interfacial PTs at air-water interface clearly show that from a 

functional point of view (i) the air-water interface is not acidic in the range 4 < pH < 7, (b) the air-

water interface exhibits superacidity at pH < 3, i.e., the proton activity of H3O
+(if) vastly exceeds 

H3O
+(aq) at same bulk acidity at pH < 3.   

In subsequent chapters the reader will find several other proton transfer reactions at the air-water 

interface probed via the ESIMS, corroborated by theoretical predictions and contemporary surface-

specific techniques. 
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2.6       Conclusions 

With all the experimental results presented above, it is evident that the tunable parameter space of 

ESIMS functions renders it capable of investigating characteristics of the gas-liquid interface and 

reactions thereon. As a surface-sensitive technique, our ESIMS setup exhibits high sensitivity, 

flexibility, contamination resistance, and operability at ambient conditions, thus exponentially 

expanding its scope and application. Using this technique, experimental results on anion 

fractionation at the air-water interface are in close agreement with other surface-specific techniques 

and keenly underscore the role of ion size versus polarizability in this phenomenon.[121, 122, 138, 

144, 146, 150, 169] While absolute quantification and exact details of ion enrichment and specific 

ion effects remain elusive, a rational approach for advancing scientific understanding would be to 

select robust correlations between experimental interfacial anion affinities and specific ion 

parameters and discard models that do not support such correlations and experimentally test the 

falsifiability of the ones that do support them.[121, 170] [171] Further, using the ESIMS setup we 

monitored gas-liquid reactions in situ and demonstrated that at the air-water interface protons do not 

become available to gaseous bases unless pH < 3. [123]Curiously, when pH enters the range pH < 

3, the surface of water becomes acidic enough to protonate weak gas-phase acids, including acetic 

and hexanoic acids which requires extreme acidic conditions in bulk phase.[37] Finally, in light of 

our results and the multitude of challenges confronting current surface-specific techniques and the 

level of theory to investigate chemical physics at the gas-liquid interface, we hope that the chemical 

physics community might favorably consider ESIMS as a complementary surface-sensitive 

technique. Recent articles by Laskin et al., [172] and Saykally[100] show the community is 

favorably receptive of our platform.
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C h a p t e r  3  

ANIONS DRAMATICALLY ENHANCE PROTON TRANSFER THROUGH AQUEOUS 

INTERFACES 
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Abstract 

Proton transfer (PT) through and across aqueous interfaces is a fundamental process in chemistry 

and biology. Notwithstanding its importance, it is not generally realized that interfacial PT is quite 

different from conventional PT in bulk water. Deeper insight into interfacial proton transfers is the 

key to understand enzymatic catalysis, and heterogeneous chemistries implicated in the atmosphere-

biosphere-oceanic coupling. It has been suggested that PT at aqueous events could be sensitively 

modulated by electrostatic fields of ions present at aqueous interfaces. In this chapter, we apply 

experiment and theory to assess the contrasting behavior of nitric acid (HNO3) at the air-water 

interface versus the bulk water as a model system to elucidate this phenomenon. HNO3 is a strong 

acid in bulk aqueous solutions, but behaves as a weak acid in the gas-phase. At the air-water 

interface, HNO3 does not fully dissociate upon collisions (jet life-time, τ ≈ 10 µs) unless a few 

anions (> 1 per 106 H2O molecules) are present therein. By applying surface-specific electrospray 

ionization mass spectrometry to monitor in situ the surface of aqueous jets exposed to HNO3(g) 

beams we found that NO3
- production increases dramatically on > 30 M inert electrolyte solutions. 

We also performed quantum mechanical simulations showing that the barrier hindering HNO3 

dissociation on the surface of small water clusters is significantly lowered in the presence of anions. 

Anions effectively assist in pulling the proton away from a laggard NO3
-, which stays behind at the 

interface because its incorporation into the cluster is hampered by the energetic cost of opening a 

cavity therein. Present results provide both direct experimental evidence and mechanistic insights 

on the relative slowness of PT at water-hydrophobe boundaries and its remarkable sensitivity to 

electrostatic effects. 
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3.1 Introduction 

Proton transfers (PTs) at aqueous interfaces, such as aqueous boundaries with air [57, 173] or lipid 

membranes [174], mediate vital phenomena in the nature. Arguably, the most important PTs are 

those through and across water boundaries rather than in the bulk liquid. Interfacial PTs participate 

in the acidification of the ocean [175], the growth of atmospheric aerosols [57], the generation of 

the electrochemical gradients that drive energy transduction across biomembranes [174, 176, 177], 

and in enzymatic function [29, 178, 179] because the activation of neutral species in aqueous media 

is most generally accomplished via acid-base catalysis [180]. Interfacial PT, in contrast with 

conventional PT in bulk water, depends sensitively on the extent of ion hydration therein because 

the density of water vanishes across  1 nm thin interfacial layers [97, 181]. The strength of 

hydronium at the interface, H3O
+(if), is expected to bridge that of H3O

+(aq), which protonates most 

non-alkane species in the gas-phase [182], and H3O
+(aq), which neutralizes only relatively strong 

bases in solution. Critically controlled by ion hydration in thin yet cohesive interfacial water layers 

that resist ion penetration [183], PT ‘on water’ confronts unique constraints. Species that behave as 

strong acids ‘in water’ could become weak ones ‘on water’ if dissociation were hindered by kinetic 

and/or thermodynamic factors in the interfacial region [184, 185].  

Herein we address these fundamental issues and report the results of experiments where we monitor 

the dissociation of gaseous nitric acid HNO3(g) molecules in collisions with interfacial water, 

H2O(if), reaction R1 

HNO3(g) + H2O(if)  NO3
-(if) + H3O

+(if)                                 (R1) 

 

3.2 The Technique 

Experiments were conducted using our electrospray ionization mass spectrometer (ESIMS) wherein 

continuously refreshed surfaces of free-flowing aqueous jets were intersected with HNO3(g)/N2(g) 

beams at ambient temperature and pressure (see detailed description in Section 2.5 in Chapter 2 and 

reference [161]). The decisive advantages of online mass spectrometry over spectroscopic 

techniques are that (i) it operates in situ, is fast, mass-selective and has high sensitivity, (ii) naturally 

discriminates against a background of neutral AH reactants and (ii) provides unequivocal 
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information about the molecular composition of product ions A-. We  have  previously 

demonstrated  the  surface-specificity  of  our experiments by  showing  that  (i) anion signal 

intensities in the mass spectra of equimolar salt solutions adhere to a normal Hofmeister series 

(rather than being identical) [186, 187], (ii) we could detect the products of gas-liquid reactions that 

could only be formed at the air-water interface [188].  

 

3.3 Experimental Results 

Figure 3.1 displays mass spectral NO3
- (m/z = 62) signal intensities, I62, as a function of pH (of the 

bulk aqueous solution) on liquid jets exposed to HNO3(if). I62 remains above detection limits on the 

surface of pH 4.5 to 9.5 jets, but sharply increases both on more basic and more acidic solutions to 

limiting values, I62
max, above pH 11 and below pH 3. Remarkably, we found that I62

max values are 

uniformly reached at all pH values on > 1 mM NaCl jets. Notice that the reported uptake coefficient 

of HNO3(if) on deionized water,  > 0.1, implies that only a fraction of the HNO3(if) molecules 

colliding with the surface of water are incorporated into the bulk liquid where they become fully 

dissociated [pKa(HNO3(aq)) = - 1.4]. [162, 189]  Therefore, the small NO3
- signals detected in our 

experiments on pure water jets indicate that we predominantly sample the outermost interfacial 

layers of the jet [190, 191], and most of the mass-accommodated HNO3 can diffuse in undissociated 

form through such layers into bulk water. The fact that the production of NO3
-(if) is dramatically 

enhanced by inert anions on water, starting at concentrations as low as 30 M, hints at the 

possibility that the barrier preventing HNO3 dissociation at the interface might be kinetic rather than 

thermodynamic [192, 193]. Thus, the results of Figures 3.1 and 3.2 provide evidence that (1) 

HNO3(if) behaves as a weak acid on the surface of water, and (2) extrinsic inert ions significantly 

catalyze proton transfer between gas-phase HNO3 and the air-water interface [185, 194].  
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Figure 3.1: Electrospray mass spectral nitrate signal intensities (I62) detected on water or 1 mM 

NaCl microjets exposed to 3  1012 molecules cm-3 of gaseous nitric acid for ≈ 10 s as functions of 

pH. Solid, dashed lines are a linear regression and 95% confidence limits, respectively, to the data 

on 1 mM NaCl. Error bars estimated from reproducibility tests. All experiments under 1 atm of N2 

at 293 K. 

 

It is well known that the air-water interface of electrolyte solutions is preferentially populated by 

anions. This is borne out by the negative surface potential of most electrolyte solutions [195], by 

surface-specific spectroscopic studies [196-199], and by theoretical predictions [193]. The 

saturation dependence of NO3
- production on electrolyte concentration (Figure 3.2) can be formally 

ascribed to catalysis by anions A- adsorbed to identical, non-interacting sites of the air-water 

interface, i.e.: I62 = I62,max [A
-]/(K½ + [A-]) [196]. The operation of long-range ionic effects on the 

surface of dilute electrolyte solutions was surmised long ago from the surface tension minima 

observed in electrolyte solutions at  1 mM. Such effects were accounted for by electrostatic 

interactions among ions that saturate the surface of water at  1 mM  [200], i.e., in the concentration 

range where we observe a sharp increase of HNO3 dissociation ‘on water’. From Figure 3.2 we 

derive K½ = 128 M (NaCl) and K½ = 77 M (MgSO4) (i.e., the concentrations at which the 

interface would be half-saturated with catalyzing anions), which are commensurate with the 

[NaCl]max = 400 M and [MgSO4]max = 200 M values deduced from SHG experiments [196]. 
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Although neither Cl- nor SO4

2- are as surface-active as I- or ClO4
- [198], they should approach the 

air-water interface closer than the Rion-ion separations prevalent at the onset of catalytic effects.  

  

Figure 3.2: (A) Electrospray mass spectral nitrate signal intensities (I62) detected on aqueous 

MgSO4, KClO4 or NaCl microjets exposed to 3  1012 molecules cm-3 of gaseous nitric acid for ≈ 10 

s as functions of electrolyte concentration. Solid curves fit experimental data with Langmuir 

adsorption functions: I62 = I62
max [electrolyte](K½ + [electrolyte])-1; K½ = 77 M (MgSO4), 117 M 

(KClO4) and 128 M (NaCl). Inset shows ESIM spectrum (signal intensities in arbitrary units) on 

deionized water (red) and 1 mM NaCl (blue). All experiments under 1 atm of N2 at 293 K. (B) 

Electrospray mass spectral nitrate signals (m/z = 62) detected on pure water, and on 1 mM HCl, 

NaCl or NaOH microjets exposed to gaseous nitric acid for ≈ 10 s as function of HNO3(if) 

concentration. All experiments in 1 atm of N2 at 300 K. 

 

3.4 Evidence for the Surface Specificity of Our ESIMS Platform 

Interfacial Hydronium ion, H3O
+(if), the counterpart of NO3

-(if) in R1, was tracked by using 

hexanoic acid (PCOOH) as a proton scavenger. PCOOH is both a weak acid and a weak base ‘in 

water’: pKa(PCOOH)(aq) = 4.8, pKa(PCOOH2
+)(aq) = -3. In Section 2.5, Chapter 2 we showed that 

the gas-phase hexanoic acid colliding with the surface of mildly acidic water could be protonated 

such that  pKa(PCOOH2
+)(if) = 2.5. Figure 3.3(A) is a schematic of the interfacial region of 1 mM 

PCOOH in 1:1/D2O:H2O microjets (at pH 8, adjusted by concentrated NaOH) exposed to either 

HNO3(if) or DNO3(if) is presented.  Figure 3.3(B) displays I117 (PCOOH2
+), I118 (PCOOHD+) and 
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I119 (PCOOD2

+) signal intensities from 1 mM PCOOH in 1:1/D2O:H2O jets as functions of gas-

phase HNO3(if) or DNO3(if)  concentrations. The inset in Figure 3.3(B) shows the corresponding I62 

and I115 (PCOO-) signal intensities versus HNO3(if) concentration. It is apparent that: (1) PCOO- is 

promptly neutralized, along with the appearance of NO3
- upon exposure to the lowest 

HNO3/DNO3(if) concentrations, whereas (2) the protonation/deuteration (hydronation) of the 

weaker base PCOOH requires exposure to at least n > 2  1012 molecules cm-3. The fact that 

HNO3(if) readily dissociates on water containing the anions of either a stronger acid [pKa(HCl)(aq) 

= -7 versus pKa(HNO3)(aq) = -1.4] or a weaker one [pKa(PCOOH)(aq) = 4.8] provides further 

support to the assertion that anions function as catalysts rather than proton acceptors. The 

appearance of hydronated species ((PCOOH2
+), (PCOOHD+) and (PCOOD2

+)) in fact reveals that 

the surface of the jet has been acidified (from pH 8) to pH < 2.5. In Figures 3.3 B andC, the ratios  

= I117/I118 = PCOOH2
+/PCOOHD+

,  = I118/I119 = PCOOHD+/PCOOD2
+ report the H/D composition 

of the interfacial layers of 1 mM PCOOH in 1:1/D2O:H2O microjets exposed to either HNO3(if) or 

DNO3(if). The statistical protonation/deuteration (hydronation) of PCOO- in interfacial layers of 

proton molar fraction ݔு  leads to:  ൌ ௫ಹ
ଶ	ሺଵି௫ಹ ሻ

 ; 	 ൌ ଶ௫ಹ
ଵି௫ಹ

. From the asymptotic ratios:  = 1.92, 

 = 6.0 measured under [HNO3(if)] > 7  1012 molecules cm-3 we derive: ݔு  = 0.77  0.02. 

Similarly, from  = 0.93,  = 3.4 under [DNO3(if)] > 6  1012 molecules cm-3, we obtain: ݔு  = 0.64 

 0.01. As a reference, the  = 1.31 ratio measured in 1 mM PCOOH in 1:1/H2O:D2O at pH ≈ 3.0 

microjets not exposed to gaseous nitric corresponds to ݔு
଴  = 0.72 (rather than ݔு

଴  = 0.50). Therefore, 

the fraction of protons in interfacial layers increases from ݔு
଴  = 0.72 to ݔு  = 0.77 under HNO3(if) 

and decreases to ݔு  = 0.64 under DNO3(if). Since ݔு
଴  is perturbed to similar but opposite extents 

(by  9% on average) upon exposure to HNO3(if) or DNO3(if), we infer (1) a small KIE for the 

interfacial dissociation of H(D)NO3(if), (2) a ~ 90 % contribution by the 1:1/D2O:H2O solvent to the 

isotopic composition of interfacial layers under present experimental conditions. Since ~ 0.6 mM 

hydrons are delivered under n = 7  1012 H(D)NO3(if) molecules cm-3, we infer that the effective 

water concentration in the interfacial layers is ~ 0.03 M. In other words, since these results are 

achieved under conditions where the number of hydrons delivered by HNO3/DNO3(if) on interfacial 

layers is ~ 103 times smaller than those carried by the 50 L min-1 1:1/D2O:H2O aqueous jet, the 

former must be confined to thin ([cm]) interfacial layers during the lifetime of the jet.  
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Interestingly, the fact that the relative abundances of the PCOOH2

+, PCOOHD+, PCOOD2
+ 

isotopologues are appreciably different under HNO3(if) or DNO3(if) (Figure 3.3A and B) confirms 

that hydrons delivered by gaseous nitric acid remain (i.e., do not diffuse into and rapidly scramble 

their isotopic labels with the bulk solvent) in the interfacial layers sampled by our technique (See 

Figure 3.4).   

   

 

Figure 3.3(A): Schematic of our experiment wherein gas-phase HNO3/DNO3 molecules alight the 

surface of 1mM hexanoic acid solution in 1:1::H2O:D2O mixture maintained at pH 8 by addition of 

concentrated NaOH. Presence of OH- and hexanoate ions (arrows) at the surface facilitate proton 

transfers from the incoming nitric acid molecules, leading to protonation of the air-water interface 

exhibited as hydronation (i.e., addition of two H+, or two D+, or one H+, and one D+) of hexanoate 

ions and detected via mass spectrometry. Figure 3.3(B): Electrospray mass spectral signal 

intensities of protonated isotopologues of hexanoic acid (PCOOH): m/z = 117 (PCOOH2
+), m/z = 

118 (PCOOHD+) and m/z = 119 (PCOOD2
+) detected on 1 mM PCOOH solutions in 1:1/D2O:H2O 

microjets exposed to variable concentrations of gaseous HNO3 (a) or DNO3 (b). The inflection point 

corresponds to pKa(PCOOH2
+)(if) = 2.5.[52] The inset in Figure 3.3 (B) shows the evolution of the 

PCOO- (m/z = 115) and NO3
- (m/z = 62) signals detected in negative ion mode. All experiments 

under 1 atm of N2 at 293 K. 
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Figure 3.4: Electrospray mass spectral nitrate (m⁄z = −62) signal intensities detected on microjets of 

deionized H2O, 1-mM NaCl⁄H2O, D2O, and 1-mM NaCl⁄D2O exposed to 4-ppbv gaseous nitric acid 

for approximately 10 μs at pH of approximately 8. It is apparent that the extent of dissociation of 

gaseous nitric acid is nearly independent of reactant or solvent deuteration KIEs. All experiments in 

1 atm of N2(if) at 293 K. 

These observations raise a straightforward question: Why do the protons/deuterons delivered at the 

air-water interface not penetrated interfacial region, to be solvated in the bulk right away? In fact, 

recent experiments of Pohl and co-workers investigating the lipid-water interface also made the 

same observation, but a clear reasoning underlying the presence of ~ 10 kBT kinetic barrier for 

protons to re-enter the bulk remains unclear.[201] These observations are also in sync with the 

previous work of Mulkidjanian and co-workers investigating proton dynamics at protein-water 

interfaces.[17, 18] These results also remind us of the chemiosmotic phosphorylation implicated in 

bioenergetic transduction at lipid-water interface.[19, 202-206]  

 

3.5 Theoretical Predictions 

What is the minimum number of additional water molecules m that renders reaction R1 exoergic? 

The free energy required to produce a hydrated contact ion pair at the air-water interface, G0
1, can 

be estimated as the sum of the gas-phase process: G0
2(HNO3(g)  + H2O(g)   NO3

-(g)  + H3O
+(g)) 

= 160 kcal mol-1 [182], plus the electrostatic energy released as the infinitely distant gas-phase point 

charges reach a ~ 3.3 Å separation in the contact ion pair: Eel = - 100 kcal mol-1, plus the free energy 

of hydrating H3O
+(g): G0

3(H3O
+(g) + m H2O(aq)   m H2OH3O

+(aq)):  G0
1= G0

2 + Eel + G0
3 = 
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60 kcal mol-1 + G0

3. Extant thermochemical data on (m H2OH3O
+) clusters [207] show that 

G0
3(m  4) < -60 kcal mol-1, i.e., R1 is thermodynamically allowed for m  4, even if NO3

-(if) were 

not hydrated at all [208]. The hydration of NO3
-(if) will, of course, contribute to the exoergicity of 

the whole process. Since HNO3 should be able to interact with at least four water molecules upon 

impact with the surface of water [194], the barrier hindering reaction R1 may not be 

thermodynamic. Its origin, however, is not immediately apparent. It has been proposed that acid-

base equilibria at the air-water interface might be shifted (relative to bulk water) toward neutral 

species by ≈  2 pKa units [209]. In the case of nitric acid, pKa(HNO3(aq)) = - 1.4, this proposal 

would make HNO3(if) a strong acid at the interface: pKa(HNO3(if))  0, at variance with our 

observations. We wish to emphasize that in our experiments, in contrast with most other studies 

[210], HNO3 approaches the air-water interface from the vapor instead of the water side. Hence, 

gas-phase ion thermochemistry [182, 207] provides a more realistic framework for analyzing our 

results.  

Against this background, we performed density functional theory (DFT) simulations on water 

decamers W10 (W  H2O) interacting with HNO3 in the absence and presence of Cl- to ascertain the 

molecular basis of our experimental observations. Two model water clusters were considered as 

surrogates for the air-water interface: one with ten water molecules, and another with twenty at 

X3LYP[211-213] and B3LYP[214, 215] levels of theory, respectively. Gibbs free energies (G) at 

298K were computed from calculated enthalpies (H) and entropies (S) according to G = Eelec + 

ZPE + Hvib – TSvib. Geometries of energy minima and transition states were optimized using the 6-

31G**basis for light atoms [216], and 6-311G**++ for Cl- [217]. Hessians at these geometries 

provided harmonic zero-point energies, vibrational enthalpies and entropies. Neglect of 

anharmonicity effects (< 1 kcal mol-1) may not affect the main conclusions. Calculations of nitric 

acid interactions with water/electrolyte clusters were initialized by positioning a nitric acid molecule 

close to one of the waters of the cluster, and to the five waters nearest to chloride in (ClW10)
- 

(Figure 3.5). Product structures created out of the three lowest-energy adducts by separating the 

proton from nitrate with none, one or two waters were then energy-minimized. We found stable 

zwitterion products separated by one and two waters in the presence of chloride, and by two waters 

in its absence. The lowest-energy products in each case correspond to ion pairs separated by two 

waters. Transition states, TS, for transforming adducts into stable products were then searched by 

optimizing structures in which the six O-H bonds connecting nitrate with hydronium were 
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constrained, until the chosen set of constraints led to an imaginary frequency vibration. The path 

of steepest ascent is then followed by tracking the eigenvector of the motion associated with the 

imaginary frequency, until an energy maximum is found. Full Hessian harmonic calculations were 

then performed for the TS structures. We also investigated whether nitric acid would transfer a 

proton through rather than assisted by chloride. For a W10 system, structures in which nitric acid 

was hydrogen-bonded or fully transferred its proton to chloride, were found to lie G = 1.6 kcal/mol 

(H = 4.1 kcal/mol) and G = 9.0 kcal/mol (H = 8.38 kcal/mol) above the aforementioned lowest-

energy adduct. Thus, chloride assists rather than relay proton transfer in this system. After geometry 

optimization, the electronic energy Eelec was evaluated with the 6-311G**++ basis on all atoms. The 

free energies of nitric acid and nitrate at 1 atm were calculated using statistical mechanics for ideal 

gases. Figures 3.5A and B display the calculated Gibbs free energy (G0) and enthalpy (H0) 

profiles at 300 K.  

We confirmed that HNO3 embedded in W10 clusters dissociates spontaneously, in accordance with 

common knowledge, thermodynamics and Car-Parrinello molecular dynamics (CPMD) calculations 

[184, 185]. HNO3 molecule alighting on the surface of water weakly binds via two hydrogen bonds 

with H0 = - 13.0 kcal mol-1 and (by losing translational and rotational entropy) G0 = -1.2 kcal 

mol-1. The free energy barrier for transferring a proton from adsorbed HNO3 into the cluster, while 

leaving a NO3
- on its surface, is quite large: G = 14.1 kcal mol-1, or 12.9 kcal mol-1 above the 

reactants (Figure 3.5). 
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Figure 3.5: Calculated Gibbs free energies (G0) and enthalpies (H0) of reactants, adducts, 

transition states, and products of optimized water clusters in contact with nitric acid in the absence 

(A) and in the presence (B) of interfacial chloride. Proton wires highlighted. Energies in kcal mol-1. 
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These results are in complete agreement with the exhaustive theoretical work of Hynes and co-

workers on the dissociation of HNO3 at the air-water interface.[48, 218-223] The main contribution 

of our work is the investigation of the catalytic effects of anions in the proton transfer process. 

Remarkably, when a Cl- ion is present at the air-water interface, HNO3 not only binds more strongly 

(H0 = - 18.6 kcal mol-1, G0 = - 6.9 kcal mol-1) to the surface, but the free energy barrier for 

transferring a proton from adsorbed HNO3 to W10Cl- is dramatically reduced: G = 1.2 kcal mol-1, 

or 5.7 kcal mol-1 below the reactants. (Figure 3.5 B) 

To test for limitations in the W10 cluster, we repeated the calculations for a W20 cluster, which could 

provide a more accurate molecular framework to investigate local gas-water interactions. We used 

the energy optimized cluster of twenty water molecules, W20, composed of overlapping ten-

membered planes to represent the air-water interface.  Several low-energy W20 cluster structures are 

within a 1.0 kcal mol-1 free energy range. The structure chosen here is amongst the lowest-energy 

ones.[224, 225] We found that the results obtained for W20 and W10 clusters are in close agreement. 

Thus, we consider that our W20 model is adequate to capture the interfacial chemistry of our system; 

to be described next.  

To represent an air-electrolyte interface we optimized the (ClW20)
- adduct produced by adding a Cl- 

to the optimized W20 cluster. Since our motivation is to find a mechanism to explain our 

experimental results obtained on  1 mM NaCl solutions, we consider that the inclusion of a Na+ 

counterion within a W20 cluster would be unrealistic, since this would correspond to 2.8 M NaCl 

solution. In 1 mM solutions, counterions are separated by distances much larger than those 

accessible by our QM calculations on small clusters. We find that the Cl- is stabilized at the surface 

of W20 by accepting five H-bonds from surrounding water molecules. Our observation of anion 

‘floatation’ on water is in agreement with previous experimental[111, 121, 140, 226, 227] and 

theoretical[138, 145, 227, 228] work on anion fractionation. B3LYP-level DFT [214, 215] was 

applied towards capturing the phenomenon of anion affinity for the air-water interface, at least on a 

qualitative level. We tested several structures comprising a Cl- embedded into water clusters 

ranging from W10, W15, W16 and W20 (not shown here). For W20.Cl- the most stable geometry was 

chosen for studying proton transfer from HNO3(if) (Figure 3.6).  These results are all consistent 

with Figure 3.5B. Our conclusion that Cl- accumulates at the surface of W20 implies that the 

potential of the surface becomes more negative than the cluster interior, thereby enhancing proton 
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transfer from HNO3. There is experimental evidence that addition of electrolytes does increase 

the potential at air-water interfaces.[226] Figure 3.6B shows the free energy and enthalpy 

landscapes for dissociation of nitric acid on (W20.Cl)- at 298 K. In contrast to pure water case shown 

in Figure 3.5A, we observe that:  

1. Gas-phase HNO3 forms stronger H-bonds with the surface of water. The adduct A is more 

stable than the reactants by   ∆G0 = -5.6 kcal mol-1 and  ∆H0 = - 16.2 kcal mol-1, 

2. The free energy and enthalpy barriers for transferring a proton to W20Cl- are reduced 

dramatically relative to the pure water case above: ∆G = 4.5 kcal mol-1 and ∆H = 0.6 kcal 

mol-1.  The free energy and enthalpy of the product state after proton transfer were found to 

be ∆G0 = 2.2 kcal mol-1 higher and ∆H0 = -12.4 kcal mol-1 below than the corresponding 

values for the reactants. It should be pointed out that the electronic energy of the TS 

configuration is higher than that of product by 0.17 kcal mol-1, but the addition of zero-point 

energy corrections and temperature effects nearly equalize their free energies, thereby 

rendering the reverse ion recombination a diffusionally controlled process, as expected. 

By increasing the size of the water cluster, we expect that enhanced solvation of NO3
- ion should 

further stabilize the products. Thus, we expect that calculations on much larger clusters will still 

reflect significant anion effects on HNO3 dissociation at the surface of water.  From these results we 

envision the process of nitric acid dissociation on aqueous electrolyte surface as follows:  

1. A gas-phase HNO3 molecule collides with the surface of dilute aqueous electrolyte solution 

at sites that may be, on average, far removed from dissolved Cl- sticks to it by forming H-

bonds with ∆H0 =   -4.7 kcal mol-1.  

2. This weakly H-bonded, shallow HNO3 then diffuses’ across the surface for ≈ 1 picosecond  

eventually approaching a  Cl-, thereby falling into a deeper well followed by proton transfer 

to nearby waters. Or, the surface-bound HNO3 desorbs back into the gas-phase.  

3. Alternatively the HNO3 could diffuse undissociated into the bulk liquid where it will 

dissociate spontaneously a suggested by previous calculations [185, 229] and confirmed by 

us.  
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Figure 3.6: Calculated Gibbs free energies (G0) and enthalpies (H0) of reactants, adducts, transition 

states, and products of optimized water clusters in contact with nitric acid in the absence (A) and in 

the presence (B) of interfacial chloride. Concerted proton transfer process highlighted. Energies in 

kcal mol-1. 
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3.6     Discussion 

What is the origin of the barrier for dissociation of the gas-phase HNO3 on the surface of pure 

water, and how do interfacial Cl- ions catalyze this reaction? The answer depends critically on the 

solvation status of the interfacial NO3
-. There have been extensive theoretical and experimental 

investigations of dissolved NO3
- at air-water interface, but it is not entirely unclear whether NO3

- 

resides at the interface or in the bulk.[109, 230-232] We hypothesize that the large size of NO3
-, 

which is incompatible with the tetrahedral network of water, and the surface tension of water may 

conspire against its direct incorporation into water. Thus, after HNO3 transfers its proton to the 

surface of water producing an interfacial close ion pair, any further inward proton displacements 

will both entail moderate stabilization via enhanced H3O
+ hydration and a large electrostatic 

destabilizations, unless NO3
- follows in concert behind. For the aqueous electrolyte case, the 

interfacial chloride ion attenuates the electrostatic bias on hydronium, H3O
+, generated by NO3

-, 

thereby reducing the barrier. Theoretical simulations provide significant clues about the origin of 

the barrier to HNO3 dissociation ‘on water’. HNO3 binds to the surface of water both as a H-bond 

donor and acceptor, but the NO3
---H+

 proton, an intrinsic water ion, cannot readily slip into cluster 

leaving NO3
- behind (Figure 3.6A). The barrier to PT on the surface of water seems therefore 

associated with the fact that both (1) overcoming the electrostatic attraction in a disjoint [NO3(if)
----

H+] ion pair or (2) opening a cavity for NO3
- to follow after the proton into the cluster, entail 

significant energy costs. Calculations involving larger water clusters do not eliminate such barrier, 

as reported by Bianco et al. [194]. Clearly, the presence of chloride, primarily by countering the 

electrostatic bias imposed on H3O
+ by laggardly NO3

- lets H3O
+ advance into the cluster. We also 

noticed that the atomic rearrangements involved in binding HNO3(if) to the air-water interface are 

largely uncorrelated to those required for subsequent PT. In contrast, the stronger interaction 

between HNO3(if) and (ClW10)
- clusters also propitiously primes (ClW10HNO3)

- for PT. The 

reaction coordinate for PT on pure water is a combination of six internal modes involving 

displacements of heavy oxygen atoms, whereas in the presence of chloride PT proceeds 

adiabatically along a three-link proton wire between quasi-degenerate solvent states (See Figures 

3.7A and B and their animation at http://www.wag.caltech.edu/catalysis/projects/PT.html) [233].  
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Figure 3.7: Vibration modes of atoms during the proton transfer process: (A) heavy atoms vibrate, 

(B) heavy atoms vibrate much less. Thus, concerted proton transfer process is amenable in the 

presence of interfacial anion. Please see the animation of these vibration modes at 

http://www.wag.caltech.edu/catalysis/projects/PT.html 

After establishing the role of electrostatics in the catalysis of HNO3 dissociation on small water 

clusters, we need to understand why catalytic effects are observed in > 30 M electrolytes, i.e., at 

Rion-ion < 120 nm separations that vastly exceed the size of such clusters. On the basis of our 

calculations we envision that HNO3(if), after alighting on water, roams rather freely over its surface 

as HNO3(if) until approaches an interfacial Cl-, whereby falls into a deeper potential well and 

undergoes prompt dissociation. Consider a disk of interfacial water of radius RS, depth Δ =  1.4 × 

10−7 cm (from Section 3.4), and volume VS = πRS
2Δ, centered at a chloride ion. At 30 μM (by 

assuming uniform concentration throughout) there is 1 Cl− per NW = 2 × 106 H2O molecules of 

volume VW = 3 × 10−23 cm3. Therefore, RS = (VW × NW × Δ−1 × π−1)1⁄2 = 117 nm. Thus, a HNO3 

molecule hitting the surface of a > 30 μM solution will have to diffuse on average RS < 1.2 × 10−5 

cm to reach a Cl− and undergo barrierless dissociation. By assuming that the frequency of 

diffusional jumps between surface wells of depth ED can be estimated from transition-state theory as 

νD (s−1) approximately 1013 exp(−ED⁄kBT), we obtain: νD approximately 7 × 1010 s−1, with ED ∼ 3 

kcal mol−1 at 300 K. The time to make 376 jumps of length 3 × 10−8 cm to cover the distance RS = 

1.2 × 10−5 cm is therefore 376⁄νD approximately 5 nanoseconds, which is comparable to the 

residence time of adsorbed gases on the surface of water (11). Thus, we estimate that average 

number of hops required by HNO3(if) to reach a Cl- on the surface of > 30 M solutions would take 

a few nanoseconds, i.e., in a time scale and is commensurate with half-times towards back 

desorption into the gas-phase [161, 234, 235]. Thus, present experimental results substantiate a key 

role for electrostatics in the mechanism of HNO3 dissociation at water-hydrophobe interfaces, and 

suggest that even sparse anions can effectively catalyze this process.   
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C h a p t e r  4  

BRØNSTED BASICITY OF THE AIR-WATER INTERFACE 
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Abstract – Variations in the protonation of functional groups on either side of water-hydrophobe 

interfaces are essential to atmospheric aerosol-gas exchanges, enzymatic catalysis, molecular 

recognition, and bioenergy transduction. The sign and range of such variations, however, are 

essential to understand remain to be established experimentally. Herein we report experiments 

showing that gaseous carboxylic acids RCOOH(g) begin to deprotonate on the surface of water 

more acidic (by ≈ 2 pH units) than that supporting the deprotonation of the same acids dissolved in 

water. Thermodynamic analysis indicates that > 6 H2O molecules must participate in the 

deprotonation of RCOOH(g) on water, but quantum mechanical simulations on a model air-water 

interface predict that such event is hindered by a significant kinetic barrier unless OH- ions are 

present therein. Thus, by detecting RCOO- on pH > 2 water exposed to RCOOH(g) we demonstrate 

the presence of OH- on the aerial side of water. Furthermore, because in similar experiments the 

base (Me)3N(g) is protonated only on pH < 4 water (See Section 2.5.1 in Chapter 2), we infer that 

the outer surface of water is Brønsted neutral at pH ≈ 3 (rather than at pH 7 as bulk water), a value 

that matches the isoelectric point of bubbles and oil droplets determined in independent 

electrophoretic experiments. The OH- densities sensed by RCOOH(if) on the aerial surface of water 

(~109 cm-2) are 100 times smaller than those at the ( > 1 nm) deeper shear planes probed in 

electrophoresis thereby implying the existence of OH-gradients in the interfacial region, which 

could account for the weak OH- signals detected by surface-specific spectroscopies. Lastly, 

detection of pH ≈ 3 OH- at the air-water interface on the surface of pure water within  < 10 µs also 

indicates a faster autodissociation rate of water therein. 
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4.1      Introduction 

Acid-base chemistry at aqueous interfaces lies at the heart of major processes in chemistry and 

biology. Changes in the degree of dissociation of the acidic/basic residues upon translocation 

between aqueous and hydrophobic microenvironments orchestrate enzyme catalysis [236] drive 

proton/electron transport across biomembranes [237, 238] and mediate molecular recognition and 

self-assembly phenomena [239-241]. In spite of its importance, the characterization of acid-base 

chemistry at aqueous interfaces remains shrouded with unknowns [73, 166, 242-244].   

Air-water interface is characterized by fluctuations and sharp discontinuities in hydrogen-bonding 

network and density. The dielectric behavior of water within the interfacial region is also found to 

be anisotropic. Further, along with varying standard states on either side, chemical and physical 

phenomena at air-water interface have unique thermodynamic, kinetic and dynamic constraints, 

absent in bulk water. As a result several counterintuitive phenomena appear at the surface of water, 

such as (1) negative electrical potential/charge of the air-water interface at pH = 7, (2) specific 

Hofmeister effects, and (3) inability of HNO3 to dissociate at the air-water interface, though it is a 

strong acid in bulk water. Basic questions linger about the thickness of interfacial layers [97], how 

acidity changes through the interfacial region [245] and the mechanistic differences between proton 

transfer (PT) in interfacial (if) versus bulk (B) water [244, 246]. Since aqueous surfaces are usually 

charged relative to the bulk liquid [247], the thermodynamic requirement of uniform 

electrochemical activity throughout (including the interfacial regions) implies that the chemical 

activity of protons (pH) in interfacial(if) water can be different from that in the bulk (B) liquid. 

Reduced hydration of ionic species at the interface could force acids and bases toward their 

undissociated forms [209].  

Some of these fundamental issues have been extensively investigated via electrostatic [195] and 

electrokinetic experiments [73], surface tension studies (and analysis) [248, 249] surface-specific 

spectroscopies [77, 141, 243, 250] and theoretical (quantum mechanical and molecular dynamics) 

calculations [242, 251-253]. Some experimental [243] and theoretical [242, 253, 254] results were 

interpreted to signify that the air-water interface is more acidic than bulk water, whereas others 

reached the opposite conclusion [73, 77, 166, 251, 255]. The impasse stems in part from the failure 

to recognize that (Brønsted) acidity is a relative concept describing the extent of proton sharing 

between two conjugate acid/base pairs under specified conditions. Theoretical predictions and 
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surface-specific spectroscopies on the structure of interfacial water are therefore moot about its 

functional acidity. By definition [256], W is a Brønsted base if and only if it can accept protons 

from Brønsted acids AH, reaction R1  

AH + W                                  A- + WH+                   (R1) 

An operational measure of the basicity of W as a medium is given by the acidity constant of AH 

therein: KA = [A-] [WH+]/[AH]. If W is bulk water, the acidity constant KA,B can be derived from 

experimental data on the degree of dissociation: B = [A-]/([A-]+[AH]), as a function of pH via 

equation E1 

B = 1/(1 + 10 pKA - pH)                                          (E1) 

A formal extension of Eq. E1 to interfacial water would require (IF, pHIF) rather than 

experimentally accessible (IF, pH) data. This is an essential difficulty because the estimation of 

pHIF from pHB [209, 257] necessarily involves assumptions about ion distributions and the 

dielectric properties of water in double layers of molecular dimensions [258-261]. Lacking a 

thermodynamic pHIF scale based on independent measurements, interfacial acidity constants KA,IF 

become constructs circularly defined from estimated pHIF values. These simple considerations 

should make it clear that conventional concepts on acidity in bulk phases may be meaningless in 

connection with interfaces. 

It is however meaningful, and consequential, to ask whether the Brønsted basicity of water is 

different on either side of water/hydrophobe interfaces. Here we sought to answer this question by 

performing appropriate experiments. Experiments had to ensure that the acidic probe, AH, would 

exchange its proton with the interface immediately prior to the detection of (A- + XH+) products. 

Mapping interfacial layers of molecular thicknesses further calls for static molecular probes locked 

at specified depths, or dynamic ones that interact with the interface during intervals shorter than 

characteristic diffusion times through the interfacial region. Below, we report experiments in which 

the production of A- is monitored as a function of pH via online electrospray ionization mass 

spectrometry (ESIMS) of the interfacial layers of injected aqueous jets containing dissolved AH(aq) 

versus those collided with gaseous AH(if) molecules. [244, 262] 
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4.2 Experimental Method 

Gas-liquid experiments were conducted by intersecting free-flowing aqueous jets with 

C5H11COOH(g)/N2(g) beams in a chamber held at 1 atm, 293 K, and detecting the formation of 

C5H11COO- therein via electrospray ionization mass spectrometer (ESIMS). Our ESIMS has been 

described in detail in Chapter 2 and references [37, 40, 123]. 

 

 

Figure 4.1: Schematic of our ESIMS platform tracking proton transfer events during gas-liquid 

collisions. 
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4.3 Experimental Results 

The results of a typical experiment are shown in Figure 4.2, in which the formation of hexanoate 

(RCOO-, R  C5H11, m/z = 115, detected by online ESI-MS and reported as I115 signal intensities) on 

the surface of aqueous jets (1) containing dissolved RCOOH(aq) or (2) externally exposed to 

RCOOH(if), is plotted as a function of pH. Throughout, pH is the pH of the injected solutions, 

adjusted with HCl/NaOH and measured with a calibrated pH meter prior to injection. We found that 

50% of the injected RCOOH(aq) dissociates into RCOO- at pH½ = 4.8  0.2 (the inflexion point of 

the I115 versus pH titration curve), which is identical to the acidity constants, pKA, of short-chain 

alkyl carboxylic acids determined by conventional analytical procedures [263].  

 

Figure 4.2: Normalized electrospray ionization mass spectral signal intensities of hexanoate ion 

RCOO- (R = C5H11, m/z = 115) on the surface of water jets (1) containing 1 mM RCOOH(aq) 

(downward triangles), (2) exposed to 770 ppbv RCOOH(if) (upward triangles) for ≈ 10 s (1 ppbv 

= 2.4  1010 molecules cm-3 at 1 atm, 293 K) as functions of the pH of jet water. Midpoints at (1) 

pKA = 4.8  0.2, (2) pH½ = 2.8  0.2. The inset shows the results of case (2) experiments carried 

over a wider pH range. Detection of interfacial hexanoate ions via our ESIMS setup on-water (blue) 

and in water (red). Experimental procedure described in detail in Section 2.5 of Chapter 2. 
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This result corroborates the reliability of our experimental setup and provides a calibration set-

point for our measurements. The key finding, however, is that RCOOH(if) dissociates upon 

colliding on the surface of water jets that are ≈ 2 pH units more acidic than in case (1), leading to a 

titration curve with a pH½ = 2.8  0.2 midpoint (Figure 4.2).  The second major difference between 

both experiments is that the limiting I115 signals reached above pH  5 only extend to pH  9, before 

increasing again about fivefold above pH  10 (see inset, Figure 4.2). This fact indicates that the 

nature of the W/WH+ conjugate pair presented by the surface of water to incoming RCOOH(if) 

changes above pH  10. To sum up, the results of Figure 4.2 represent unambiguous evidence that 

RCOOH(if) and RCOOH(aq) are deprotonated to significantly different extents on either side of the 

air-water interface at the same pH. They also confirm that the RCOO- detected in case (2) are 

produced on the aerial side of the interface, i.e., prior to the dissolution of RCOOH(if) in bulk 

water, because otherwise we should have obtained the same titration curve in both cases. The 

addition of inert electrolytes, such as NaCl, in the sub-millimolar range has little effect on these 

results (Figure 4.3). Present results, which are the counterpart of the observations we made in 

similar experiments involving the protonation of the strong-base trimethylamine (See Section 2.5.1, 

Chapter 2) on aqueous jets [244], represent, to the best of our understanding, the first experimental 

determination of the functional basicity of the air-water interface.  
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Figure 4.3: Dissociation of gaseous hexanoic acid vapors at the air–water interface as a function 

of the pH of bulk water in the absence and presence of inert electrolytes. Unlike the case of the 

strong HNO3 (as seen in Chapter 3, Figure 3.1), inert anions are unable to catalyze the dissociation 

of a weak carboxylic acid. All experiments in 1 atm of N2 at 293 K. 

 

Figure 4.4 shows how RCOO- increases as a function of the concentration of RCOOH(if) on water 

jets of three different acidities. Notably, RCOO- production plateaus above ≈ 300 ppbv RCOOH(if) 

both at low (pH 2.1) and high (pH 10.1) acidities, but still increases at  800 ppbv RCOOH(if) over 

pH 5.1 water. It is apparent that (i) RCOOH(if) does not transfer its proton directly to the aerial side 

of water, i.e., W in reaction R1 is not H2O but a more reactive basic species, probably interfacial 

OH-, OH-
IF, (ii) the production of RCOO- on the surface of water is limited by the availability of 

OH-
IF at pH 2.1 and 10.1, and by [RCOOH(if)] (up to and beyond 800 ppbv) at midrange pH values.  

 

Figure 4.4: Normalized electrospray ionization mass spectral signal intensities of hexanoate ion 

RCOO- (R = C5H11, m/z = 115) on the surface of water jets exposed to variable concentrations of 

RCOOH(if), at pH 2.1, 5.1 and 10.1. Curves correspond to data regressions to Langmuir adsorption 

isotherms:  = MAX
  [RCOOH(if)]/(K½ + [RCOOH(if)]) MAX

 = I115,MAX = 9.1 103, 6.5  104, and 

7.2  104 (in arbitrary units); K½ = 42, 308 and 46 ppbv at pH 2.1, 5.1 and 10.1, respectively. 
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Regression of the data of Figure 4.4 to a Langmuir adsorption functional:  = MAX

  

[RCOOH(if)]/(K½ + [RCOOH(if)]), yields: MAX
 = I115,MAX = 9.1 103, 6.5  104, and 7.2  104 (in 

arbitrary units), K½ = 42, 308, and 46 ppbv at pH 2.1, 5.1 and 10.1, respectively. The physical 

implications of these results are that (i) the surface becomes saturated with OH-
IF at pH > pH½ = 2.8 

(because MAX(10.1)   MAX(5.1) >> MAX(2.1)) and (ii) OH-
IF is  ~ 7 times less reactive at pH 5.1 

than at pH 10.1 (because K½(5.1) is ~ 7 times larger than K½(10.1)). In other words, it is the 

reactivity of OH-
IF toward RCOOH(if), rather than its concentration, that increases above pH 10.1. 

The higher reactivity of OH-
IF above pH 10.1 is consistent with its closer approach to an 

increasingly screened negatively charged interface in more concentrated solutions. 

The OH-
IF surface density, OH-IF, sensed by RCOOH(if) molecules on the aerial side of water could 

be estimated from the frequency of RCOOH(if) collisions with the surface of the jet given by the 

kinetic theory of gases: f[cm-2 s-1] = ¼  c n. We obtain: OH-IF  (3 – 15)  109 OH- cm-2, at pH 5.1 

and 10.1, i.e., a surface-charge density of: qOH  (0.5 – 2.5) nC cm-2. We notice that the estimated 

value of qOH is ~ 103 times smaller than the surface-charge densities  > 1 C cm-2 deduced from 

the -potentials measured in the electrophoretic of bubbles and oil droplets in water of pH higher 

than their isoelectric point pI  3 [73, 166]. The discrepancy exceeds the combined stated 

uncertainties of qOH and  and is deemed significant. This issue is analyzed later in Section 4.6 

and 4.7. 

 

4.4 Thermochemical Considerations 

The above observations are conveniently framed in terms of the thermodynamics of proton transfer 

from the prototypical carboxylic acid CH3COOH to X = H2O or OH- [208, 246, 264, 265] reactions 

R2 and R3 

CH3COOH(g) + H2O(g)                           CH3COO-(g) + H3O
+(g)                     (R2) 

CH3COOH(g) + OH-(g)                             CH3COO-(g) + H2O(g)                       (R3) 

viz.: G2 = 182 kcal mol-1, G3 = - 43 kcal mol-1 [264]. The large endoergicity of R2, in which 

infinitely separated ions are created from neutral species, is reduced by  100 kcal mol-1 if products 
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are brought to the contact ion-pair separations ( 3 Å) reached in the early stages of proton 

transfer [208]. The participation of six additional H2O molecules, leading to partially hydrated 

[CH3COO-(H2O)3 + H3O
+(H2O)3] contact ion pairs, is sufficient to render R2 exoergic [265]. 

Exoergic proton transfer, however, could nevertheless be hindered by a significant kinetic barrier 

that would prevent R2 from proceeding fast enough during CH3COOH(g) collisions with the surface 

of water [126, 266]. Reaction R3, in contrast, is exoergic as written, spontaneous both in gas-phase 

and in aqueous solution and therefore expected to proceed readily at the interface. To provide a 

molecular underpinning to these anticipated behaviors we carried out quantum mechanical 

calculations on model water clusters. 

 

4.5 Quantum Mechanical Calculations 

We applied the M06 level DFT with 6-311G**++ diffuse basis set to analyze our experimental 

results. M06 is a hybrid meta-GGA functional that contains kinetic energy density and exact 

exchange energy on top of a GGA formulation.[103, 267]  Various groups, including ours, have 

confirmed that M06 provides a better description of hydrogen bonding, internuclear distance and 

chemical kinetics of water clusters than other GGA-, dispersion- corrected GGA, meta-, and hybrid-

GGA functionals.[103, 268] Furthermore, we have shown recently that such small water clusters 

could indeed provide insight into interfacial processes at air-water interface.[40, 269] Gibbs free 

energies (G) at 298K were computed from calculated enthalpies (H) and entropies (S) according to 

G = Eelec + ZPE + Hvib – TSvib. Geometries of energy minima states were optimized using the M06 

functional [270] and 6-311G** basis [271] for all the atoms. After geometry optimization, the 

electronic energy Eelec was evaluated with the 6-311G**++ basis[272]  The Hessians at these 

geometries were used to determine that the minima and transition states led to 0 and 1 imaginary 

frequency, respectively. Vibrational frequencies provided zero-point energies and vibrational 

contributions to enthalpies and entropies. The free energies of acetic acid at 1 atm were calculated 

using statistical mechanics for ideal gases.  

Here we considered clusters of water containing twenty molecules, W20 (W = H2O), and clusters 

containing an additional OH- ion, W20.OH-. For the W20.OH- cluster we find that the excess OH- ion 

prefers to be at the surface of the cluster. Thus, our model system provides the OH- at the air-water 
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interface required to explain the interfacial chemistry observed in our experiments. For pure 

water, we found that (i) CH3COOH coordinates to the surface of W20 producing weakly bound 

adducts [CH3COOHW20], (ii)  for a variety of [CH3COO-W19H3O
+] initial structures in which 

CH3COO- is placed on the periphery of W19H3O
+ we find that all relax spontaneously to 

[CH3COOHW20] (Figure 4.5). These results indicate the existence of a significant barrier for 

CH3COOH dissociation on the surface of pure water, which is not lowered by the presence of strong 

acid anions such as Cl- (pKA(HCl) = -7 << 4.8).  

 

Figure 4.5: (A) Calculated Gibbs free energies (G) and enthalpies (H) (in kcal mol-1) of reactants, 

adducts, transition states, and products of optimized water clusters containing hydroxide, W20OH- 

in contact with acetic acid. Calculations in the absence of OH- did not yield stable [CH3COO- + 

H3O
+] dissociation products. (B) With W10OH-. 
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Interestingly, this behavior contrasts with our observations on the dissociation of the strong 

HNO3 at the air-water interface, described in Chapter 3 and reference[40, 41]. This dissociation of 

the weak CH3COOH on the surface of water is hindered both by the intrinsic kinetic barrier limiting 

this process ‘in water’ (a process previously investigated via Car-Parrinello QM metadynamics with 

the HCTH/120 density functional [266]), and by the additional cost of creating a cavity to 

accommodate the resulting CH3COO- inside the bulk liquid . In the case of a W20OH- water cluster, 

the reaction coordinate for proton transfer from CH3COOH to W20OH- involves 3 or 4 water 

molecules, leading to a negligible (G = 2.7 kcal mol-1, (H = -0.6 kcal mol-1 kinetic barrier  and 

stable reaction products on both free energy and enthalpy surfaces (Figure 4.5). We find that these 

results depend little on the various close-lying energy minima or the anharmonicity of low 

frequency vibrations in WnOH- clusters [273]., Since G3 = - 43 kcal mol-1, it is quite plausible 

that an OH- near the interface would induce barrierless PT.  

The mechanism by which anions (including OH-) are driven to the interfacial region, however, falls 

outside the scope of this study, which is to investigate the pH dependence of RCOOH dissociation 

on both sides of the air-water interface. The hierarchy of the interactions (which include 

electrostatic, inductive, hydrogen-bonding and dispersive interactions) responsible for driving OH- 

to the interface are not fully resolved by current density functionals [103, 104, 270, 274-279].   

 

4.6 Discussion 

Our reactive gas-liquid experiments demonstrate that OH-
IF

 ions become available to RCOOH (pKA 

= 4.8 in bulk water) on the aerial side of pH > 2 water. We conclude that the pH at which [H3O
+

IF] 

and [OH-
IF] balance each other on the aerial side of water, the point-of-zero-charge, is pHPZC  3. 

Quite significantly, this value coincides with the isoelectric point of water, pI  3, measured at the 

shear plane of air bubbles [280] and of hydrophobic oil drops [73] in electrophoretic experiments 

[281]. The ‘shear plane’ is the outer surface of the water shells that move along with migrating 

bubbles and drops, and lies a few nm away from the interface proper [73, 166]. Since RCOOH(if) is 

a specific probe for OH-
IF (recall that PT from RCOOH(if) to the surface of water is kinetically 

hindered regardless of the orientation of water molecules therein) whereas electrophoretic 

measurements report net electric charge, the essential coincidence of pHPZC and pI values suggests 
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that the negative charge of the air-water interface above pH  2.5 should be ascribed to the 

presence of excess interfacial OH-
IF [73, 166]. This view is consistent with the fact that negative -

potentials of colloidal drops and bubbles in the static electric fields of electrophoretic experiments 

require the presence of negatively charged discrete entities that can migrate independently of their 

counterions, such as OH-, rather than of inward-pointing water dipoles or charge transfer [H2O
-

H2O
+] moieties [282-285]. A potential role for hydrated electrons, H2Oe-, as discrete carriers can 

be discarded because its formation via: 3 H2O = H2Oe- + H3O
+ + OH, is thermodynamically 

forbidden under ambient conditions [283, 286, 287].   

Some surface-specific non-linear spectroscopic studies [199, 243], most theoretical calculations 

[242, 288, 289], and the ion partitioning analysis of surface tension data on electrolyte solutions 

[249] have predicted the accumulation of H3O
+ at and the exclusion of OH- from the air-water 

interface. On the basis of such evidence it has been argued that ‘water surface is acidic’ [242, 253]. 

It should be apparent by now that ‘acid’ and ‘basic’ qualifiers designate the ability of certain bodies, 

the air-water interface in this case, to exchange protons with other entities under specific conditions 

and, therefore, strictly apply to chemical reactions rather than to structural features.  

 

4.7 Implications on the Extant Research Literature 

The finding that the charge density on the aerial side of the interface, qOH, estimated from our 

reactive gas-liquid experiments is significantly smaller than that detected at the shear hydrodynamic 

plane,, suggests the existence of non-monotonic OH-
IF vertical profiles. We have recently shown 

that different anions populate interfacial layers at depths that are inversely correlated with their 

relative surface affinities [290]. The emerging picture is that surface affinities reflect how close 

anions approach the interface rather than their relative concentrations within a single subsurfacial 

layer. Thus, the possibility arises that ion profiles within interfacial double layers could not follow 

monotonic distributions [259] and, as a result, experiments probing water basicity at different 

depths can lead to dissimilar results. As a consequence, the low affinity of OH- for the air-water 

interface predicated by some calculations [242, 253] and implied by some surface-specific 

spectroscopies [243] is not in principle incompatible with the sizable charge densities deduced from 

electrophoretic experiments [166]. Note that these implications are necessarily conditional because 
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the reported  values against which the comparison is made are derived from experimental -

potentials by using a continuous Gouy-Chapman model for the double layer based on the dielectric 

constant of bulk water [259, 260], which may undergo revision.   

4.8 Implications on the Autodissociation of Water at the Air-water Interface 

The experimental results presented in this chapter were based on sampling the composition of the 

surface of nascent water jets exposed to RCOOH(if) within ≈ 10 µs after emerging from an 

electrically grounded nozzle. Thus, our finding that pHPZC  pI seems to suggest that equilibrium is 

established in both cases. However, since our molecular probes find OH- ions at the air-water 

interface even at pH = 7, within reaction time < 10 µs, they must be produced at faster rates than 

those estimated from the dissociation of bulk water, whose characteristic time, dissociation = kforward
-1 = 

(Kw kbackward)
-1  (10-14  1011 M-1 s-1)-1 = 103 s [291, 292], vastly exceed the lifetimes of our water 

jets [242]. Water autolysis concurrent with OH- diffusion and binding at the interface may 

effectively shorten relaxation times into the sub-millisecond timescale [38, 39, 281], but other 

explanations are possible [293]. We consider that the resulting difference in the concentration of 

OH- ions at the air-water interface and bulk gives rise to the negative potential as shown in the 

Figure 4.6.  
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Figure 4.6: Schematic of the air-water interface with an interfacial OH- ion surrounded by water 

molecules. Applying Nernst’s equation to the concentration of OH- at the air-water interface and the 

bulk yields a surface potential of -240 mV as measured by Fawcett and co-workers[247].  

We are currently exploring this issue in further detail (See Section 6.4.3 in Chapter 6).  
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C h a p t e r  5  

HETEROGENEOUS CHEMISTRIES ON THE SURFACE OF WATER: IMPLICATIONS IN 

GREEN CHEMISTRY AND ENVIRONMENTAL SCIENCE 
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Abstract 

Recent reports on the acceleration of various organic reactions in aqueous emulsions have spurred a 

drive to step up the application of green chemistry and engineering.[62] Indeed, the prospect of 

employing water as a co-solvent is tantalizing due to its environmental benevolence, economy, non-

toxicity, and excellent thermophysical properties. These findings also bear heavily on 

heterogeneous chemistries prevalent in the environment, such as interactions of isoprene and 

monoterpenes with mildly acidic drops of water in clouds, fog, and dew drops. However, the 

mechanism(s) underlying chemical activation and reactions at the interface of water with 

hydrophobic media, such as air, lipids and several biomaterials, remain unclear. Various 

mechanisms based on hydrophobicity, hydrogen bonding, and acid-base catalysis have been 

proposed. By applying our surface-specific electrospray ionization mass-spectrometer (ESIMS) 

setup, it was demonstrated that the gas-phase isoprene (2-methyl buta-1,3-diene, ISO) could be 

protonated (as ISOH+) and oligomerized into (ISO)2H
+, (ISO)3H

+ during collisions with the surface 

of pH < 4 water drops during life time of ≈ 10 µs.[42] Based on these observations, we expected the 

probability of protonation per collision (γ ~ 10-5) corresponding to a process hindered by E ~ 7 kcal 

mol-1 kinetic barriers. We also applied quantum mechanics to explore the interactions of ISO with 

(H2O)nH3O
+ clusters as surrogates for the air-water interface with excess hydronium (H3O

+) ions. 

We found that ISO weakly binds to (H2O)2H3O
+ clusters, whereupon ISO(H2O)2H3O

+ rearranges 

into (H2O)3ISOH+ via a ΔG‡  = 6.9 kcal mol-1 barrier. A second ISO alighting on 

(H2O)3ISOH+ readily yields an acyclic C10-oligomer via a ΔG‡  = 2.1 kcal mol-1 barrier, in 

accordance with our experiments. Surprisingly, the rate-controlling proton transfer in a fully 

coupled larger cluster, viz.: ISO(H2O)35H3O
+  (H2O)36ISOH+,  has a prohibitively high barrier: 

ΔG‡  ~ 17 kcal mol-1. We infer that the catalysis ‘on-water’ is extremely sensitive to the extent of 

hydration of H3O
+(if),[294, 295] and the protonation of hydrophobic species (like ISO) on the 

surface of water involves minimally hydrated interfacial H3O
+ species along trajectories that avoid 

the free energy penalties associated with disrupting extended water domains.  These findings should 

aid development of strategies in green synthesis and realistic modes in atmospheric chemistry. 
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5.1 Introduction 

Molecular activity and reactivity depend crucially on the extent of solvation. As a result, reactions 

spontaneous in the aqueous phase are thermodynamically forbidden in the gas- phase, and vice 

versa.[296] In anisotropic interfacial layers separating water from hydrophobic media, steep 

hydration gradients and unbalanced long-range forces may lead to unique thermodynamic and 

kinetic constraints that remain poorly understood.[83, 100, 102, 154, 278] Continuum physical 

models, based on concepts such as dielectric constant, density, surface tension, and hydration, 

cannot capture phenomena at heterogeneous aqueous interfaces.[295, 297, 298] Indeed, several 

unintuitive physical and chemical phenomena manifest at the air-water interface, including 

enhanced ionic products,[38, 154] negative surface potentials,[154, 278] Hofmeister effects,[136] 

unequal  fractionation of ions,[121] contact electrification,[7] anion-catalyzed chemistries,[40] and 

the Jones-Ray effect[90]. It has been suggested that enzymes exploit heterogeneity at the protein-

water interface to tune the acidity/basicity of functional groups via subtle conformational 

adjustments.[28, 29] But whether this process is causative or subsidiary to their function is still 

controversial. The unique characteristics of interfacial processes are also essential in the 

atmospheric chemistry of marine aerosols,[32, 36, 44, 47] cloud acidification,[32, 40, 41, 44, 47] 

secondary organic aerosol formation,[34, 35, 42, 123, 158] and to ‘green chemistry’ in 

general.[299]  

In 1980s, Breslow and co-workers discovered that several Diels-Alder cycloaddition reactions, such 

as between cyclopentadiene and butenone proceed orders of magnitude faster and exhibiting 

stereospecificity, if carried out in a homogeneous aqueous phase rather than a standard organic 

solvent, like isooctane.[59, 61] Other important reactions that experienced rate accelerated in 

aqueous environment over organic phase included, aldol condensation, Mannich reaction, Claisen 

rearrangement, Michael addition, aldol condensation, benzoin condensation and Grignard-type 

additions.[300, 301] Employing hydrophobic pockets of β-cyclodextrin, several researchers 

attributed this phenomenon to the hydrophobic aggregation of reactants;[58, 61, 302, 303] though, 

other theorists and experimentalists proposed that hydrogen bonding between solutes and solvents 

played a key role in stabilizing transition states leading to rate acceleration.[301, 304, 305] More 

intriguingly, researchers have recently discovered even higher enhancements in rates of similar 

organic reactions in aqueous emulsions when carried out with vigorous shaking.[62-65] Since the 

reacting hydrocarbons are practically insoluble in water, the drivers for enhancement in rates must 
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reside at the surface of water; hence these reactions are referred to as ‘on-water’. Further, since 

hydrophobic effects in aqueous emulsions cannot be higher  than in the homogeneous aqueous 

phase, other effects have been proposed to account for this unanticipated phenomenon, such as 

favourable stabilization of polar transition states by the dangling OH groups ‘on water’ versus those 

interlocked ‘in water’,[45, 66, 67] strong adsorption of the hydroxide ion at aqueous interfaces,[69, 

306] and the superacidity of hydronium ions at the air-water and oil-water interfaces.[32, 37]  

 

5.2 Review of Various Mechanisms Proposed to Explain the Catalysis ‘On-Water’ 

An important outstanding question relates to the minimum number of water molecules needed to 

simulate these reactive processes ‘on water’. For example, Jung and Marcus investigated interfacial 

cycloaddition reactions via transition-state theory, and U-B3LYP/6-31+G* level density functional 

theory.[67] They employed three explicit water molecules to represent the oil-water/air-water 

interface, and concluded  that the preferential stabilization of the transition states via free dangling 

OH bonds (as shown by Shen and co-workers)[80, 82] of polar organic reactants at aqueous 

interfaces could explain the observed effects.[67] Subsequently, they validated these results on a 

larger slab of water (1264 molecules) via a mixed quantum mechanics/molecular mechanics 

study.[66] Ensconced within the framework of hydrogen bonding, while their model explained rate 

accelerations quite well, it was unable to account for the significant kinetic isotope effects 

observed in the experiments.[42, 62, 67, 69] Jorgensen and co-workers also studied Diels-Alder 

additions between cyclopentadiene with 1,4-napthoquinone on a slab of 1220 water molecules by 

applying QM/MM calculations using Monte Carlo simulations and free energy perturbation theory 

(semiempirical PDDG/PM3 molecular orbital theory and TIP4P water model).[68] They found that 

(1) transition-state structures for reactions at the air-water interface were less stable than in the bulk, 

and concluded that (2) “consideration of the possible role of interfacial hydronium ions” was 

“warranted” to explain the experimental result.   

Providing an alternative hypothesis based on the specific adsorption of OH- ions ‘on-water’ (and 

free H3O
+ ions), Beattie and co-workers pointed out that most of the reactions investigated ‘on 

water’ were acid-catalyzed, i.e., involved molecular activation via protonation; though did not 

observe a correlation between the catalysis and the bulk pH.[69, 306] Indeed, proposals based on 

hydrogen bond stabilized transition states versus acid-base catalysis could be subjected to scrutiny 
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by investigating ‘on-water’ reactions of (non-polar) hydrophobic molecules, such as 

hydrocarbons, that would gain minimal stabilization via dangling OH bonds at the aqueous 

interface. Herein we analyze these proposals in the light of our experimental and theoretical results.  

 

5.3 Thermochemical Considerations 

We chose isoprene (ISO) as the test candidate because (1) it is a hydrophobic molecule and should 

put the hydrogen-bonding theory to test, and (2) it is an important player in atmospheric chemistry, 

though it remains unclear how much of it gets converted to secondary organic aerosol. In dealing 

with Brønsted acidity, A is a stronger Brønsted acid than B if protons would bind preferentially to B 

therein.[256] Because the proton affinity of water (PA = 165 kcal mol-1) is lower than ISO (197 kcal 

mole-1), [182] hydronium, H3O
+(g), protonates it in the gas-phase (reactions R1, R4 and Figure 5.4). 

In contrast, aqueous H3O
+(aq) can protonate only relatively stronger bases in bulk water (reaction 

R2) 

B(g)    +  H3O
+(g)                              BH+(g)   +   H2O(g)                (R1) 

B(aq)  +  H3O
+(aq)                          BH+(aq) +   H2O(aq)                (R2) 

B(if)   +  H3O
+(if)                           BH+(if)  +   H2O(if)                  (R3) 

Thus, ion hydration might play a crucial role in controlling the extent of proton transfers between 

Brønsted acids and bases on the surface of water (reaction R3). Considering that the density of water 

changes by a thousand-fold from the bulk to the vapor phase within a nanometer, the nature of 

proton transfers in interfacial layers is expected to be an extraordinarily sensitive function of depth. 

In fact, Morokuma,[294] and more recently Doi et al.,[295] have investigated the role of 

microhydration on model SN2 reactions X- + CH3I  XCH3 + Y- via application of both theory and 

experiment. They found drastic variations ranging over 104-1020 times enhancement in rates of 

reactions as a function of interfacial hydration in clusters. Thus, our working hypothesis, which we 

validate via theory herein, is that under conditions of vigorous shaking, interfacial H3O
+ ions could 

exhibit partial gas-phase behavior.[37, 42]  
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5.4 Experimental Section 

As noted in Section 2.5.2 in Chapter 2, we recently found that certain organic gases could be 

protonated on pH < 4 aqueous surfaces.[37, 123] This unforeseen phenomenon is ascribed to the 

superacidity of weakly hydrated hydronium ions at the air/water interface.[37, 307]Although ISO 

has been shown to polymerize on extremely acidic surfaces, the possibility that it might do so on 

less acidic environmental surfaces has never been considered before.[308, 309] Experiments were 

conducted by intersecting continuously refreshed, uncontaminated surfaces of free-flowing aqueous 

jets with ISO(g)/hexane(g)/N2(g) beams at ambient temperature and pressure, and detecting the 

formation of carbocations, such as ISOH+(if) (see reaction R4 below) by our ESIMS setup. 

Conditions in typical experiments were: drying gas flow rate: 10 L min-1; drying gas temperature: 

340 oC; inlet voltage: - 3.5 kV relative to ground; fragmentor voltage: 17 or 26 V. Isoprene (> 99 %, 

Sigma-Aldrich) was used as received. All solutions were prepared in purified water (Resistivity = 

18.2 M cm) from a Millipore Milli-Q gradient water purification system. Solution pHBLK was 

adjusted by adding HCl and measured with a calibrated pH meter (VWR). 

 

5.5 Experimental Results 

Figure 5.1 shows a positive ion ESIM spectrum of the surface of water microjets at pH 2.3 exposed 

to dilute ISO(g)/hexane(g)/N2(g) mixtures for ≈ 10 µs. Note the intense ESIM spectral signals at 

m/z = 69, 81, 137, and 205 Da. No other signals were detected at lower or higher masses. The 

gaseous carrier, hexane, is not protonated on these microjets at any pH (see blue trace in Figure 5.1) 

as expected from its low gas-phase proton affinity PA(hexane) = 159 kcal mol-1 < PA(H2O) = 165 

kcal mol-1.[182]In accord with this rationale ISO (PA = 197 kcal mol-1) is readily protonated in 

interfacial layers giving rise to the carbocations ISOH+, (ISO)2H
+ and (ISO)3H

+. 
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Figure 5.1: Positive ion ESIM spectra of pH 2.3 water microjets exposed to 88 ppmv 

isoprene/hexane/N2 gas mixtures for  ≈ 10 s (red trace). Blue trace corresponds to experiments 

without isoprene. 1 ppbv = 2.4 1010 molecule cm-3 at 1 atm, 293 K experimental conditions. 

 

The m/z = 81 and 95 signals are typical fragments of the collisionally induced decomposition of 

protonated monoterpenes C10H17
+ (m/z = 137) into C6H9

+ (+C4H8) and C7H11
+ (+ C3H6), 

respectively.[310] This assignment is in sync with the reciprocal evolution of m/z = 81 and 95 

versus m/z = 137 and 205 signal intensities as functions of fragmentation voltage (not shown here). 

Notice that present evidence establishes the molecular formula but not the molecular structure of 

our (ISO)2H
+ and (ISO)3H

+ oligomers. The absence of any such signals from the ESIM spectra of 1 

mM ISO in water:acetonitrile (50/50) solutions at 1.9 < pH < 4.3, which contain the same 

components present in the gas/liquid experiments, demonstrates that ISO can be protonated at the 

gas/water interface, but not in bulk solution, in this pH range.[37]In other words, the carbocations 

detected in these experiments are produced at the ISO(if)-water jet interface rather than in deeper 

liquid layers, in accordance with the body of evidence gained in previous experiments from our 

laboratory.[35, 37, 123, 158] 
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Figure 5.2: (A) Normalized ISOH+ (m/z = 69), (ISO)2H
+ (m/z = 137) and (ISO)3H

+ (m/z = 205) ES 

mass spectral signal intensities, (B): Ratios of M/(M+1) ES mass spectral signal intensities as a 

function of bulk pH, in experiments performed on H2O:D2O (50/50) microjets exposed to 88 ppmv 

gaseous isoprene(if) for  ≈ 10 s contact times. All experiments in 1 atm N2(g) at 293 K.  

 

Figure 5.2A shows that all species appear below pH ≈ 4 and evolve along a steep saturation curve 

possessing an inflection point at pH½ = 3.63  0.05. It also confirms our previous reports on the 

emergence of strongly acidic hydronium species, H3O
+(if), to the surface of water in this pH 

range.[37, 123] H3O
+(if) behaves as a partially hydrated species that, like H3O

+(g), can protonate 

gases having proton affinities larger than that of gaseous water.[182] Most non-alkane gases meet 

the latter requirement and might be similarly protonated on the surface of mildly acidic water.[182] 

It is important to note that, although thermodynamics ensures that the chemical potential  of the jet 

(adjusted to  0.1 pH units prior to injection) is the same throughout (i.e., in the bulk as at the 

surface of the liquid) [311] the protonating ability of H3O
+(if) toward gas-phase species impinging 

on the surface is quite different from that of H3O
+(aq) toward the same species after they become 
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fully hydrated in bulk water.[37, 123] The chemical potential at the surface of the jet should be 

minimally affected by ISO(if) at the low exposures employed in these experiments. Since the pH½ = 

3.6 derived from Figure 5.2A nearly matches the pH½ ≈ 3 previously measured in experiments 

using the much weaker base hexanoic acid gas (PA = 187 kcal mol-1) as proton acceptor, (Section 

2.5.2 in Chapter 2 and reference [37]) we infer that the curve of Figure 5.2A reflects an equilibrium 

established on water rather than in the gas-phase. The steepness of the saturation curves is 

consistent with the emergence of H3O
+(if) to the air-water interface and excludes unspecific ion 

effects. A common saturation curve for all carbocations further implies that the rate-determining 

step is the protonation of ISO, i.e., that the rate constants for:  

  H3O
+(if) + ISO(if)                           ISOH+(if)                         (R4) 

ISOH+(if) + ISO(if)                          (ISO)2H
+(if)                      (R5) 

(ISO)2H
+(if) + ISO(if)                      (ISO)3H

+(if)                        (R6) 

are in the order: k1 < k2 ~ k3. We ascribe the fact that oligomerization stops at (ISO)3H
+ to the small 

exposures (exposure = xISO  ; xISO is mixing ratio,  is contact time) prevalent in our experiments. 

The fact that cationic polymerization proceeds at all under these conditions, i.e., in the presence of a 

nucleophile, is a remarkable confirmation of the low activity of water at the gas-liquid 

interface.[312] Figure 5.2B displays the isotopic ratios RH+/RD+ measured in experiments on 

H2O:D2O (50/50) microjets as functions of pH. Notably, RH+/RD+ = ISOH+/ISOD+ (69/70) follows 

a  saturation curve similar to that of Figure 5.2A, whereas (ISO)2H
+/(ISO)2D

+ (137/138) and 

(ISO)3H
+/(ISO)3D

+ (205/206) vary linearly as functions of pH. We infer that ISOH(D)+ preserves 

the isotopic labeling generated by a direct kinetic H-isotope effect in the protonation of ISO by 

H3O
+(if), and (ISO)2H(D)+ and (ISO)3H(D)+ scramble their isotope labels with the solvent prior to 

detection. Figure 5.2B Observation of large kinetic isotope effect ( > 1.4) as noted by Sharpless and 

co-workers confirms our hypothesis that interfacial H3O
+ ions play a key role in catalysis ‘on-water’ 

whereas the role of hydrogen bonding might secondary, such as in the stabilization of carbocations. 

Figure 5.3 shows the dissimilar dependences of ISOH+, (ISO)2H
+ and (ISO)3H

+ signal intensities as 

functions of ISO(if) exposure. Recall that reactant conversion is proportional to exposure rather 

than to mixing ratio alone. Thus, exposures of 1 ppbv  s are realized by exposing water to 1 ppbv 

ISO(if) for 1 s or to 1 ppmv ISO(if) for 1 ms (1 ppbv = 2.4 1010 molecule cm-3 under 1 atm, 293 K 
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experimental conditions). It is apparent that both ISOH+ and (ISO)2H

+ are produced with non-

zero initial slopes, i.e., as primary products. The implication is that the relatively smaller ISOH+ 

signals correspond to an intermediate formed in a rate-determining protonation reaction at the 

gas/water interface, which is rapidly converted to (ISO)2H
+. Accordingly, ISOH+ signals approach 

steady-state whereas (ISO)2H
+ and (ISO)3H

+ production accelerates at larger exposures. Taken 

together, these findings represent direct evidence that ISO(if) undergoes cationic 

 

 

Figure 5.3: ES mass spectral signal intensities from aqueous microjets at pH 2.3 exposed to gaseous 

isoprene for ≈ 10 s contact times as a function of exposure (exposure  mixing ratio  contact 

time). Note the inverse curvatures of ISOH+ versus (ISO)2H
+ and (ISO)3H

+ curves, and the non-

vanishing initial slopes of both ISOH+ and (ISO)2H
+ curves, as expected for a stepwise 

oligomerization process. 1 ppbv = 2.4 1010 molecule cm-3 at 1 atm, 293 K experimental conditions. 

 

polymerization upon impact on gas/mildly acidic water interfaces.[37, 123, 307] It should be 

pointed out that if the surface of water were already saturated with ISO(if) at the ppmv 

concentrations employed in our experiments, the degree of polymerization, i.e., the relative 

concentrations of ISOH+, (ISO)2H
+ and (ISO)2H

+, would depend on ISO concentration rather than 

exposure and, therefore, might be different under typical atmospheric conditions. The probability of 

ISO(if) protonation in collisions with water is, of course, independent of ISO concentration. 
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5.6 Theoretical Approach 

To gain deeper insight into the catalysis ‘on-water’, we also applied quantum mechanics on model 

systems.  We carried out density functional theory (DFT) calculations at M06 level shown to 

provide an accurate description of clusters of ground-state thermochemistry and thermochemical 

kinetics of ISO and water.[103, 313-315] Calculation of transition-state structures and energies of a 

series of organic reactions with M0-6 have been found in good agreement with experimental 

data.[103, 316] Bryantsev et al., evaluated binding energies of water clusters, Wn, (range n = 2 – 8, 

20) along with hydration and neutralization energies of hydroxide and hydronium ions using DFT 

functionals (M06, M06-2X, M06-L, B3LYP, X3LYP), and compared against high-level theory 

(CCSD(T)/aug-cc-p VDZ level).[313] They found the results from M0-6 to be in excellent 

agreement with high-level theory, with and without the basis-set superposition error correction. 

Here we used the 6-311G** basis set for H, C and O atoms.[317] Geometries were minimized and 

single point electronic energy Eelec was evaluated with the diffuse 6-311G**++ basis set for all 

atoms.[318] The Hessians at these geometries were used to determine that the minima and transition 

states led to 0 and 1 imaginary frequency, respectively. Transition-state structures were obtained by 

following the steep ascent/descent along the vibration mode with imaginary frequency till the saddle 

point was reached. The vibrational frequencies from the Hessians were also used to provide zero-

point energies, and the vibrational contributions to enthalpies and entropies. The free energies of 

isoprene at 1 atm were calculated using statistical mechanics for ideal gases. 

 

5.7 Theoretical Results 

As a starting point, our simulations predict that the gas-phase proton transfer between H3O
+(g) and 

ISO(g) (reaction R1, B  ISO)) is exothermic with ∆G0 = - 30 kcal mol-1, in accordance with the 

difference between the gas-phase basicities (GB) of H2O (GB = 157.7 kcal mol-1)  and ISO (GB = 

190.6 kcal mol-1): ∆GB = 32.9 kcal mol-1.[182] (Figure 5.4) Adding trans- or cis-ISO(if) to (ISOH+ 

+ H2O)  spontaneously leads to cyclic (∆G0 = - 40 kcal mol-1) or acyclic monoterpenes (∆G0 = - 9 

kcal mol-1)  (Figures 5.5A, B).[312, 319]  
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Figure 5.4: Protonation of gas-phase isoprene (ISO(if)) with gas-phase hydronium ion (H3O
+(if)). 

Theory at M0-6/6-311g**++ level accurately predicts change in energy 

 

 

     

A.                                                                                 B. 

Figure 5.5: (A) Oligomerization of a trans-isoprene (ISO(if)) molecule with a protonated trans-

isoprene leading to a linear product; (B) Oligomerization of gas-phase cis-isoprene (ISO(if)) with a 

protonated trans-isoprene molecule leading to a cyclic product. 

It has been reported that protons at the lipid-water interface might be impeded by a kinetic barrier > 

8 kBT toward entering the bulk water.[17, 201] Further, vigorous shaking protocol in the experiment 

could render H3O
+ ions minimally hydrated.[102] Thus, our model air-water interface with an 

excess proton is represented by a (H2O)2.H3O
+ cluster. In this configuration, the H3O

+ ion is a 
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proton donor. In 1 mM aqueous solutions (pH = 3), ions are separated by distances much larger 

than the size of our water clusters, thus the inclusion of a counterion, say Cl-, within (H2O)3H
+ 

cluster was unrealistic. We found that ISO(if) interacted strongly with the cluster via H-bond 

donation to C1 with  ∆H0  = - 14.2 kcal mol-1 while losing 43.7 cal K-1 mol-1 of translational and 

rotational entropy (Figure 5.6). The H-bonded adduct underwent proton transfer over a ∆G‡ = 5.8 

kcal mol-1 barrier, which is consistent with our experimental results.  

 

Figure 5.6: Free energy and enthalpy landscape for the oligomerization process of isoprene on a 

(H2O)3H
+ cluster. Kinetics of the predicted mechanism is commensurate with our experimental 

results. 

The addition of a second ISO(if) was also exothermic. Our results (Figure 5.6)are summarized as 

follows:  

1. ISO(if) interacted with (H2O)2H3O
+ leading to an [ISO---(H2O)3H

+] adduct (A-I) that is 

∆G0 = -1.1 kcal mol-1and ∆H0 = -14.2 kcal mol-1 more stable than the reactants (R). 

2. The overall kinetic barrier for transferring the proton from (H2O)2H3O
+ to ISO leading to 

marginally stable products (∆G0 = 5.6 kcal mol-1, ∆H0 = - 6.1 kcal mol-1) was ∆G‡ = 6.9 

kcal mol-1 (∆H‡ = 8.2  kcal mol-1) (Figure 5.7). 
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3. A Mulliken population analysis showed that the tertiary C2 carbon in (H2O)3ISOH+ 

acquired a partial + 0.2 positive charges. C4 also gained a smaller positive charge due to 

resonance.  

4. The kinetic barrier for C-C bond formation between the two ISO units in A-II was ∆G‡ = 

2.1 kcal mol- 1 (∆H‡ = 1.7 kcal mol-1) leading to products with ∆G0 = -3.2 kcal mol-1 (∆H‡ = -

3.5 kcal mol-1) below the transition state. (Figure 5.6) 

5. Note that the entire process takes place downhill over an exothermic surface, but was 

hindered by the entropy losses resulting from restricting the external motions of polyatomic 

gas-phase species. 

6. From the computed free energy landscape we estimated an uptake coefficient, ߛ ൌ ݁
ି
∆ಸ°

ೖಳ೅ ൌ

10ିହ, which is consistent with our experimental estimates.[42]  

 

Remarkably, similar calculations on larger (H2O)35H3O
+ clusters, which should presumably provide 

more realistic models of the surface of water, led to unrealistically large kinetic barriers (Figure 

5.7). In the larger cluster containing an excess proton, (H2O)35.H3O
+, the hydronium ion resided at 

the surface, thus allowing us to investigate interfacial reactions. But unlike the smaller cluster 

((H2O)2.H3O
+), wherein H3O

+  donated two hydrogen bonds to nearby water molecules and third to 

the isoprene molecule, the interfacial H3O
+ in (H2O)35.H3O

+ donated three hydrogen bonds to three 

surrounding water molecules (Figure 5.7). Thus, an incipient ISO(if) molecule accepted a proton via 

a proton wire connecting the H3O
+ ion to a water molecule at the edge of the cluster. It is this 

difference in structure, state of hydration, and coordination environment of the interfacial H3O
+ that 

aggravated the kinetic barrier. The calculated kinetic barriers for protonation and C-C bond 

formation were: ∆G‡ = 16.6 kcal mol-1 and ∆G‡ = 25.4 kcal mol-1, respectively (Figure 5.7). Such 

barriers would be insurmountable in the time scale (τ < 10 µs) of our experiments conducted under 

ambient conditions.[42] Furthermore, calculations with larger clusters led to protonated alcohols, 

ISO-OH2
+ and (ISO)2-OH2

+, rather than the ISOH+ and  (ISO)2H
+ that we detected by mass 

spectrometry.[42]  Our calculations substantiate the observations that the condensed-phase 

chemistry of ISO dissolved in 30 – 50% sulfuric acid solutions leads to short-chain alcohols instead 
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of the olefinic and aliphatic hydrocarbon polymers produced by in > 65% sulfuric acid.[312, 319, 

320]  

 

 

 

Figure 5.7: Protonation and oligomerization of gas-phase isoprene (ISO(if)) on a larger water 

cluster (W35) with an excess proton leading to a linear product. The predicted kinetic barriers are 

insurmountable under ambient conditions, and at variance with our experimental results. 

 
 
 

5.8 Discussion 
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At present, it is not clear what interfacial properties or processes are influenced by short- versus 

long-range interactions; whether density functionals created to fit thermodynamic properties of bulk 

water could be confidently applied to predict the rates of interfacial reactions, or whether the 

optimal sizes of the water ensembles used to simulate different phenomena are comparable. 

Molecular simulations of surface tension and surface excesses, which, by definition, involve 

integration of distribution functions over semi-infinite slabs, may not be generally invoked as 

references for the description of localized dynamical interfacial processes. Thus, the protonation 

and oligomerization of ISO(if) on the surface of mildly acidic pH < 4 water detected during ≈ 10 s 

contact times [42] involves a subset of interfacial H3O
+ ions that remains uncoupled from 

surrounding waters. It should be emphasized that olefinic ISO lacks hydrogen bond acceptors and, 

therefore, its cationic oligomerization ‘on water’ must be due to the ‘superacidity’ of interfacial 

H3O
+. Since the interfacial protonation and oligomerization of all the olefins we studied exhibit the 

same pH dependence, the rate-determining step is the initial protonation in all cases. This 

observation underscores the role dynamic microhydration in tuning the activity of reactants in the 

interfacial layers, we infer that our reactive gas-liquid collisions involve less abundant (H2O)2H3O
+, 

rather than lower energy (H2O)35H3O
+ interfacial species, because they lead to lower energy 

pathways for proton transfer. Vigorous shaking during experiments might lead to minimally 

solvated H3O
+ ions that would drive this reaction. We are currently designing a more elaborate 

theoretical framework to capture such effects  

While this work answers some questions pertaining to catalysis ‘on-water’, it also highlights 

important questions to be addressed surrounding the nature of interfacial protons. We hope that 

application of theory and experiment could answer the following questions (1) how does the 

interplay of enthalpy of hydration and entropy drives H3O
+ ions to the air-water interface,[80, 169, 

201, 276] (2) how to probe acidity at the air-water interface as a function of bulk acidity,[37, 40, 

154] and (3) what is the origin of kinetic barrier(s) impeding the migration of interfacial H3O
+ ion 

into bulk water,[17, 18, 201]. While slower protonation/oligomerization of ISO on the surface of 

pure water remains to be demonstrated, this work presents an alternative mechanism for ‘on-water’ 

catalysis.  

 

5.9 Environmental Implications 



 

 

70
The rapid decay of ISO observed in and atop canopies after sunset, i.e., in the absence of 

photogenerated OH or NO3 radicals [321-325]has remained unclear for some time based on 

homogeneous chemistries operating in the environment. Among the first to study this phenomenon, 

Jacob and Wofsy[321]pointed out that ‘nighttime losses of ISO exceed rates of reaction with NO3 

and O3 and appear to reflect dry deposition processes’. Zimmerman et al.,[325]reported ISO vertical 

profiles up to 400 m altitude above ground that revealed the existence of ‘a strong ISO sink near the 

surface at night’. Hurst et al.[323]noticed that ‘essentially every evening, ISO concentrations fall 

from several ppbv to levels below 100 pptv, with an average lifetime of 2.7 hours. Since this decay 

rate exceeds that expected from established nighttime chemistry, other possible mechanisms (may 

be operative)’. Remarkably, Hurst et al. argued that ‘since ISO is a non-polar species, dry 

deposition is an unlikely candidate for the ISO sink’ and postulated a dark source of OH radicals at 

nighttime to account for their observations.[323]    

Thus, all indications suggest that current atmospheric chemistry models underpredict secondary 

organic aerosol (SOA) mass both in the boundary layer and aloft. This negative bias has been 

variously ascribed to: (1) gross uncertainties in emission inventories of precursor VOC emissions, 

(2) missing physical and chemical processes that contribute to SOA formation in the aerosol phase, 

(3) errors associated with the extrapolation of laboratory data to atmospheric conditions,[326](4) 

uncertain meteorological inputs, or (5) errors in the measurement of ambient aerosol loads.[326] 

Our experimental results support the notion that ISO emission inventories may have been 

overestimated due to missing heterogeneous losses. Atmospheric chemical models that incorporate 

enhanced canopy reduction factors driven by interfacial acid-catalysis may approach resolution on 

the fate of biogenic gas emissions. 

5.10 Conclusions 

Our experimental and theoretical results, in conjunction with other independent experimental and 

theoretical reports, support the notion that ‘on-water’ catalysis is driven by interfacial H3O
+ due to 

fluctuating hydration levels at the air-water and lipid-water interfaces.[31, 42, 68, 69, 123] In the 

proposed mechanism for catalysis ‘on-water’, explicit proton transfers are involved, thus, 

significant KIEs (> 1.4) could be explained. Specifically, the kinetic barrier for protonation and 

oligomerization of ISO at the air-water interface predicted by our theoretical investigation 

corresponds to uptake coefficients, ~ 10-5, which are commensurate with our experimental 
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results.[31, 42] These results have direct implications on green chemical synthesis and 

heterogeneous chemistry of biogenic isoprene and monoterpenes in the atmosphere. 
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C h a p t e r  6  

CONCLUSIONS AND FUTURE WORK 
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In this chapter the key ideas of this thesis are summarized, which are, (1) the role of anions in 

catalyzing interfacial proton transfer (PT) reactions, (2) the origin of the negative surface charge of 

the air-water interface, and (3) protonation and oligomerization of inert organic species on the 

surface of pH < 4 water. Our application of both experiment and theory in this regard has provided 

complementary insights into molecular underpinnings of these phenomena. During the process, we 

also furthered the understanding of electrospray ionization mass spectrometry (ESIMS) as a 

surface-sensitive platform for liquids. In the section dedicated to future work, we will discuss 

several new sub-projects that arose during the course of this dissertation and are being pursued.  

 

6.1 Anion-Catalyzed Proton Transfer Reactions at Aqueous Interfaces  

Applying our surface-specific electrospray ionization mass spectrometer (ESIMS) platform, we 

discovered the catalytic role of inert anions in proton transfer (PT) reactions at the air-water 

interface, a model water-hydrophobe interface. We employed gas-phase nitric acid (HNO3), a 

strong acid in bulk water, as a molecular probe for the aerial side of the interface. As a first step, our 

experiments and theory confirmed previous results regarding the weakness of HNO3 as a Brønsted 

acid at the air-water interface.[40, 41, 48, 218-222, 327] Our density functional theory (DFT) 

calculations at a B3LYP/6-311G**++ level employing a twenty water cluster as a surrogate for the 

air-water interface provided insights at the molecular level. We found that, though, the proton of 

HNO3 could readily slip into water, further inward displacement is favored by hydration of the 

H3O
+, but opposed by the electrostatic attraction from the NO3

-.  Thus, kinetic barriers of ΔG = 10 

kcal mol-1, and ΔH = 4 kcal mol-1 on the free energy, and enthalpy landscapes, respectively, appear 

due to the expense of opening a cavity for the NO3
- ion in the interfacial aqueous layers. Curiously, 

while investigating the effects of pH on the PT process via our ESIMS setup, we serendipitously 

found dramatic enhancement in the rate of PTs when inert anions, such as Cl-, SO4
2-, ClO4

-, and 

CH3(CH2)4COO- were present at the air-water interface.[40, 41] Subsequently, our DFT simulations 

showed that the presence of interfacial anions at the air-water interface led to a significantly stable 

hydrogen-bonded adduct, that was structurally similar to the transition state [Figure 3.5 and 3.6]. 

Thus, the reaction coordinate for PT on pure water was a combination of internal modes involving 

displacements of heavy oxygen atoms, whereas in the presence of chloride PT proceeded quasi-

adiabatically along a proton wire leading to a significantly lower kinetic barrier [Figure 3.7].  
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6.1.1 Implications in Atmospheric Chemistry 

 

Our finding that PT across water-hydrophobe interfaces is catalyzed by anions has important 

implications in many fields. Whether HNO3 dissociates on aqueous surfaces, for example, bears on 

various environmental issues [328]. Whereas NO3
- is a sink for active nitrogen in the atmosphere 

because it can be removed by dry and wet deposition, undissociated HNO3 may be react via:           

2HNO3 + NO  3 NO2 + H2O, thereby sustaining the atmospheric impact of nitrogen oxides[329]. 

Adsorption of HNO3(g) on ice also depends critically on whether HNO3 dissociates therein, i.e., 

whether coverage is a function of P or P½ (P  HNO3(g) partial pressure)[330]. Our results suggest 

that HNO3(if) will dissociate upon impact on most environmental aqueous surfaces, including pre-

melted films on ice that contain electrolytes impurities at least at millimolar levels.  

 

6.1.2 Implications in Enzymatic Catalysis and other Membrane Phenomena 

Insights derived from our work should hold at the lipid-water interface due to thermophysical 

similarities, especially in the dielectric composition, and the dominance of entropic effects at water-

hydrophobe interface.[331] Thus, our demonstration of PT across water-hydrophobe interface 

catalyzed by electrostatics is intimately related to the concept of anion-mediated water bridges for 

PT in proteins [236, 332-334]. It also accounts for the fact that inert anions, such as chloride, 

acetate, and hexanoate, could catalyze proton transfers along membrane surfaces [283, 335]. In 

regards to proton diffusion along membrane surfaces between sites of proton release and 

consumption, it is crucial to identify whether the migrant proton proceeds via binding and 

unbinding events with anions (such as PO4
3-), or simply cruises through proton wires facilitated via 

interfacial water molecules under the influence of such anions. Our simple model of the water-

hydrophobe interface (presented in Section 3.4 in Chapter 3) suggested the latter mechanism could 

be significant and has been independently confirmed by elegant experiments of Pohl and co-

workers.[201] These results are at variance with theoretical predictions on the large stabilization of 

protons in vicinity of PO4
3- and RCOO- ions at the lipid membrane-water interface, such that their 

release is at the same time scale as the motion of the membrane.[336-338] Lastly, our experiments 
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also demonstrated that hydrons (protons or deuterons) delivered at the water-hydrophobe 

interface do not scramble with the protons in the bulk (See Section 3.4, Chapter 3), as verified by 

Pohl and co-workers[201], and Mulkidjanian and co-workers[17, 18, 30] at the lipid-water and 

protein-water interfaces, respectively.  
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6.2   Brønsted Basicity of the Air-Water Interface 

Recent debate on the acidity versus basicity of the surface of water has generated lot of excitement 

in the chemical physics community, but it is not a new problem. In fact, since the nineteenth century 

a number of experimentalists investigating electrokinetics, electricity, colloidal chemistry, and 

tribology, had reported on charging and electrification phenomena at the aqueous interface.[70-72, 

133-135, 339, 340] Meteorologists have also been keenly investigating the physics and chemistry of 

thunderstorms due to clouds and volcanoes, and the role played by precipitation and wind in the 

process.[340-348] Physicists and physical chemists have analyzed spraying[349, 350], 

bubbling[351] and splashing[352] of water with a variety of experiments, ranging from Millikan 

oil-drop experiments[353], to bubble-bursting[351]. Effects of relative humidity (RH) in contact 

electrification was found to be critical: Diaz and co-workers reported on dramatic decrease in 

contact electrification at 0% RH, compared to maximum at 30% RH.[7, 354] It was proposed that 

formation of a “water-bridge”, of thickness ~ 1 – 2 nm < Debye length facilitated ion diffusion via 

change in entropy, along with electrostatics.[354] Measurement of electrophoretic mobilities of 

xylene, dodecane, hexadecane and perfluoromethyldecalin drops in water as a function of pH 

concluded excess hydroxide ions, OH-, at the oil-water interface.[73] Similar, measurement of the 

zeta-potential of air bubbles in electrokinetic experiments, under ambient conditions, also confirmed 

a negative surface charge alluded to OH- ions adsorbed at the interface.[74] Most recently, same 

results have been confirmed by electrophoresis cells and via electroacoustic methods; further, with 

the addition of concentrated acid the isoelectric point (also the point of zero charge) of the oil-water 

interface was found to be at pH ≈ 3 (at which bubbles became stationary, i.e., the aqueous interface 

became charge neutral). [75, 355-360] The overall consensus was that the negative charge was due 

to the specific adsorption of hydroxide ions at the water-hydrophobe interface, releasing hydronium 

ions in the bulk. Thus, the air-water interface thought to be basic in nature. 

However, at variance with the 150 years of experimental evidence, Jungwirth and co-workers 

claimed that “water surface is acidic” based on their ab initio molecular dynamics (AIMD) 

calculations employing the BLYP functional with DZVP basis set.[165] While BLYP functional 

has been known to inaccurately capture dispersion forces, especially the hydrogen bonding, [103-

105] this article sparked an acrimonious debate between the theorists and the experimentalists [85, 

89, 100, 152, 337, 338, 356, 361-367]. In fact, ignoring previous advances in the area, researchers 

(re)started arguing whether the negative potential of the air-water interface was due to specific 
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alignment of water dipoles therein; though, if that was the case, the observed electrophoretic 

mobility and negative zeta-potential of bubbles/drops could not be explained.[278, 368, 369] Even 

the role of solvated electrons was also evoked, but rejected due to magnitude of energies associated 

in exciting electrons in water.[367] Since there is confusion regarding the depth of the shear plane 

associated with the zeta-potential measurements, and its being representative of the interfacial 

phenomenon, surface-specific spectroscopy was expected to quantitatively resolve the issue.[85] 

But, unfortunately, it was not possible due to interpretational ambiguities, and experimental 

constraints, especially when probing H3O
+ ions.[76, 79, 80, 85, 100] In fact, recent AIMD 

predictions have not been unanimous when applied to understand the propensity of OH- at air-water 

interface. For example, while Mundy and co-workers[276] observe only 1 kBT potential well for 

OH- by potential of mean force calculations, Kudin and Car[279] observed that near a water-

hydrophobic interface OH- behaved as an ‘amphiphilic’ surfactant more so than H3O
+. Most recent 

multistate empirical valence bond (MS EVB)[370, 371] based calculations by Wick reported “no 

free energy minimum at the air-water interface”, except for a shallow -1.5 kcal mol-1 minima 

observed if polarizability was added “on the hydronium ion alone” in the model.[169] We posit, 

that all molecules are ions are polarizable. Also, it is interesting to note that despite all the 

disagreement most of these models capture the radial distribution function (RDF) of water perfectly. 

Thus “accurate” RDF should not be seen as primary metric when judging the molecular models, but 

it is most heavily employed. 

We sought to investigate the nature of the negative surface potential (and charge) of the air-water 

interface with our ESIMS-based surface-specific platform. We employed gas-phase carboxylic 

acids (hexanoic and acetic acids) for the molecular reconnaissance of the air-water interface from 

either side: (1) aerial side via gas-liquid collisions, and (2) water side via dissolving organic acid in 

water, and analyzing ESIMS spectra (described in detail in Section 4.2 in Chapter 4). Thus, with a 

completely different setup than those used in previous electrokinetic experiments, we confirmed (1) 

presence of interfacial hydroxide ions at the aerial side of the air-water interface at pH > 2.5, (2) 

isoelectric point observed ≈ pH 2.5 in sync with electrophoretic experiments, and (3) enhanced 

autodissociation rate of water at the air-water interface. While the first two findings were not 

shocking to us, the third result is and we are exploring its details and implications(See Section 6.4.2 

in Chapter 6). Two recent articles that have caught our attention in this regard are listed as 

references [38, 39].  
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It is curious to estimate the surface-charge density due to interfacial OH- ions at the air-water 

interface. Applying electrokinetic measurements on aqueous emulsions, Beattie and co-workers 

have found this value to be “one hydroxide about every nm2”, which amounts to a surface density of 

about 1600 nC/cm2.[75] Our measurements with a surface-specific electrospray ionization mass 

spectrometer, detailed in Chapter 2, could also be employed to estimate the surface density of the 

OH- ions. With an uptake co-efficient, γ ~ 0.05, and the average speed of gaseous molecules (at 298 

K), c ~ 30,000 cm/s, and the flux of incoming gaseous molecules to be, n ~ 1012 molecules/cm3, we 

get the number of proton transfer events to be, N = γ  c  n/4  ≈ 1.5  1015 molecules/cm2s. If the 

time duration for these collisions at the aqueous surface is,   ≈ 5 µs, we get a surface density of 

OH- ions to be, NOH- = N   = 7.5  109 molecules/cm2 ( = 7.5  10-5 molecules/nm2) leading to a 

surface-charge density to be:   ≈ NOH-  q ~ 1.2  nC/cm2. This estimate is ~ 103 times lower than 

the value reported by Beattie and co-workers. However, it is interesting to note that the isoelectric 

point reported in our experiments matches with other macroscopic electrokinetic measurements. We 

like to point that the zeta-potential measurement is not at the interface, but, in fact, at the slip-plane 

of the interface, that moves along with the air bubbles, or oil drops.[85] Thus, estimation of the 

interfacial charge may not be straightforward. 

 

We also applied density functional theory simulations to gain deeper insight into our experiments. 

The theory predicted that the presence of interfacial OH- ions was required for transferring protons 

from a gas-phase acetic acid to the surface of pure water, and the accepted proton neutralized the 

basic OH-at the surface (described in Section 4.5 in Chapter 4).[100, 154] In the absence of an 

interfacial anion, OH- in this case, we could not find a stable geometry after proton transfer, i.e., the 

proton hopped back to the carboxylate anion. Unfavorable electrostatics and the large size of acetate 

ion underlie the nature of the kinetic barrier, similar to the dissociation of nitric acid on water 

described in the Section 3.6 in Chapter 3; further, acetic acid is also a much weaker acid (pKa = 4.8) 

than nitric acid (pKa = -1.3). Thus, with a complementary application of experiment and theory not 

only were we able to ascertain the surface density of the OH- ions at the air-water interface, but also 

gain molecular insight in the process. It is hoped that these results will settle the debate on the 

acidity versus basicity of the air-water interface.[100] 
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6.3 Heterogeneous Chemistries on the Surface of Mildly Acidic Water   

Nearly 0.01 % of the entire water on the planet Earth exists in the atmosphere. While this fraction 

appears tiny compared to ~ 97% in oceans, and ~ 2.1% in polar ice caps, and 0.6% in aquifers, the 

net surface area of water drops in clouds exceeds the surface area of our planet by a factor of ~ 

50.[9] Thus, it is imperative to quantitatively realize the scope of heterogeneous chemistry on the 

surface of water, especially with gases capable of forming hydrogen bonds, such as, for example, 

HNO3, NOx, and SOx.[9] During our investigation of the pH dependence of acid-catalyzed reactions 

at the air-water interface, via the surface-specific ESIMS, it was found that the surface of pH < 3 

water could protonate most non-alkane organics with gas-phase proton affinity > 165 kcal/mol.[37, 

42] We were surprised to find that coming from the gas-phase, inert hydrophobic molecules of 

isoprene (ISO) could be protonated (ISOH+) and oligomerized  ((ISO)nH
+, n < 4) at the air-water 

interface (See Figure 5.2, Chapter 5). Our theoretical calculations with density functional theory 

showed the role of hydration in the process, i.e., the hydration status of hydronium, H3O
+, ions 

could be such that it could exhibit thermochemistry akin to the gas-phase. In fact, the recent work of 

Doi et al.,[295] and previous findings of Morokuma et al.,[294] confirm the key role of 

microhydration in controlling the thermodynamics and kinetics of chemical reactions. These 

findings should have implications in both atmospheric chemistry, and green chemistry. 

 

6.3.1 Environmental Implications: Heterogeneous Chemistry of Biogenic Isoprene 

It is estimated that an annual flux of ~ 0.6 × 1015 grams of gaseous isoprene (ISO) is emitted by the 

biosphere.[326] To put the magnitude in perspective, it represents half of total volatile organic 

compound (VOC) emissions and amounts up to 10 % of photosynthetically fixed carbon.[372]In 

spite of the magnitude of these numbers and the anticipated response of this process to global 

warming and anthropogenic perturbations, it is not entirely how and how much of it is converted to 

aerosol.[326, 373] We considered that our experimental and theoretical findings could help solve 

the puzzle. In Chapter 5, we reported on protonation and oligomerization of ISO(g) on the surface 

of mildly acidic water. But how common are such surfaces in the environment is a pertinent 

question.  
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It is known that all environmental surfaces, including leaves, foliage, soil, buildings, and 

materials, have molecular layers of water molecules physisorbed on them.[55, 374] Key interactions 

at these interfaces include, hydrogen bonding, electrostatics, dispersion, induction, and 

repulsion.[375] Interestingly, several independent studies, some of which are listed herein, confirm 

that the water-lining on arboreal surfaces could contain proton concentrations equivalent to pH < 3 

water. Water films produced by the condensation of ambient moisture on the cuticles of leaves are  

10 m thick (determined from the weight gained by dried leaves of known surface area after they 

reach equilibrium in 90% relative humidity air) and persist down to low relative humidity.[376, 

377]These waxy cuticles are polyelectrolytes with isoelectric point pHIP ≈ 3 and have low proton 

conductance. [378, 379]The intrinsic acidity of such  polyelectrolyte cuticles can be inferred from 

the additional weight gained by the leaves saturated in 90% relative humidity upon exposure to 

NH3(g). van Hove and Adema performed these experiments and found[376] that 50 moles of NH3 

cm-2 were absorbed irreversibly[380]by the  10 m thick water films, thereby leading to  5 mM 

NH4
+ solutions. Thus, it could be inferred that the water films produced by condensation of water 

vapor on leaves are not pristine water but (at the time they were exposed to NH3(g)) acidic water at 

pH  2.3. The detection of gas-phase hyponitrous acid, HONO(g), with pKa = 2.9 [381]in the forest 

air by independent groups provides compelling evidence that these ecosystems, as a whole, are 

indeed at pH < 4. Further, HONO(g) emissions are largely the result of microbial activity in forest 

soils that are verifiably acidic (i.e., the pH of soil extracts, as measured using calibrated pH-meters, 

is acidic).[382] Notice, in passing, that reported soil pH values are actually upper limits (i.e., soils 

are actually more acidic than their extracts) because extracts are produced by lixiviating 1 g soil 

samples with 1 g of water.[383, 384] In addition to the leaves, and foliage, perhaps not 

coincidentally, forest soils have been reported to be sinks for ISO.[385] Given the large surface-to-

volume ratios (LAI) of typical forest foliages, we inferred that the overhead foliage cannot be much 

less acidic than the soil beneath, for otherwise it would efficiently scavenge HONO(g) soil 

emissions (pKa 2.9). In this context, it should be emphasized that the pH sensed by ISO upon 

contact with undisturbed leaves in a pristine forest during dry, sunny conditions is unrelated to the 

pH of dew or rainwater collected from such leaves at dawn or after rainfall. In addition to the 

intrinsic acidity of foliage, vegetation, even in remote locations, is exposed to acidic deposition. 

Notice moreover that the acidity of fog, rain or aerosol droplets just fallen on canopies is actually a 

lower bound to the acidity that ensues upon water evaporation.[386-388] For example, fine aerosol 

particles consisting of NH4HSO4 eventually deliquesce and reach pH = -0.5 in ambient air at 80% 
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relative humidity.[389]Particles containing excess (non-volatile) oxalic acid would approach pH 

= 0.3 under similar conditions.[389]Thus, our observations indicate that environmental surfaces 

could provide a heterogeneous sink for isoprene as significant (50-70%) as the gas-phase 

reactions.[42] 

 

6.3.2 Implications in Green Chemistry 

Sharpless and co-workers reported on the dramatic acceleration in rates of organic reactions, 

including aldol condensation, Mannich reaction, Claisen rearrangement, Michael addition, benzoin 

condensation and Grignard-type additions, when carried out in aqueous emulsions rather than pure 

organic phase.[62-65] The use of water in organic synthesis has obvious benefits owing to its 

abundance, non-toxicity, and non-corrosiveness, and thus has led to much excitement. However, 

despite its potential, underlying mechanisms for ‘on-water’ catalysis are not entirely clear. Various 

proposals have been put forth to account for this unanticipated phenomenon, such as favorable 

stabilization of polar transition states by the dangling OH groups ‘on water’ versus those 

interlocked ‘in water’,[45, 66, 67] strong adsorption of the hydroxide ion at aqueous interfaces,[69, 

306] and the superacidity of hydronium ions at the air-water and oil-water interfaces.[32, 37]  Our 

recent report on protonation and oligomerization of inert and hydrophobic isoprene at the surface of 

mildly acidic water (pH < 3) suggests that stabilization of transition states via hydrogen bonds at the 

air-water interface may not suffice an explanation.[66, 67] Based on the pH dependence of the 

experimental results, and our theoretical calculations (Section 5.5 and 5.7 in Chapter 5), we have 

demonstrated that the hydration gradient of hydronium ions at the air-water interface control the 

thermodynamics and kinetics of proton transfer reactions ‘on-water’. We found that minimally 

hydrated interfacial hydronium ions at the surface of pH < 3 water are implicated in protonation and 

oligomerization of gas-phase isoprene at the air-water.[42] Recently, Enami et al., have confirmed 

these results on biogenic monoterpenes, such as limonene, α-pinene and β-pinene.[31] We consider 

that these superacidic hydronium ions can protonate most gas-phase non-alkane hydrocarbons 

according to the trends in the gas-phase thermochemistry.[37] We consider that vigorous shaking 

during the experiments reported by Sharpless and co-workers might play a crucial role in enabling 

the formation of minimally hydrated H3O
+(H2O)n clusters, but it remains to be demonstrated 

theoretically. In the future, we plan to apply a reactive forcefield, ReaxFF,[390] developed by 
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Goddard and Duin to investigate acid-catalyzed oligomerization of isoprene on a realistic 

aqueous system in silico. Our initial attempts have not been successful in this regard, i.e., we did not 

observe proton transfer or oligomerization during a time of 1 ns at elevated temperature (100 ºC) to 

expedite the kinetics (results not presented here). 
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6.4 Future Work 

Presented below are new scientific inquiries that arose during the course of this dissertation.  

 

6.4.1 How Do Interfacial Phenomena Manifest at Low Salt Concentrations? 

A natural, but profound, observation during our experimental investigation of anion-catalyzed 

proton transfer reactions at the air-water interface was the emergence of the catalytic activity at 

electrolyte concentrations as low as 30 µM (Debye length ~ 10 nm, ion-ion separation ~ 100 nm). 

How could the effect of anions pervade through such long distances and influence the propensity of 

faraway interfacial water molecules towards accepting protons from HNO3(if)? Indeed, these 

findings are reminiscent of the Jones-Ray effect, wherein a depression in the surface tension of 

water is observed in the < 1 mM concentration range, followed by monotonic increase.[133, 134] 

Jones-Ray effect falls out of the scope of the theory of surface tension developed by Wagner, and 

Onsager and Samaras, based on interionic electrostatics.[131, 132] In their classic article, Jones and 

Ray concluded with the rational speculation of McTaggart[71, 72], “If we add a salt to water in such 

great dilution that the interionic forces are negligible, there must nevertheless be a disturbance of 

the normal arrangement of the water molecules in the vicinity of the ions. The electric forces 

between the water dipoles would oppose this disturbance and tend to thrust the disturbing ions out 

into the surface, thus causing positive adsorption. In view of the electrically unsymmetrical 

character of the water molecules, this force may well be different for positive and negative ions, 

thus accounting for the effects described by McTaggart”. Inspired by the insightful work of 

Frumkin, Dole invoked the idea of dynamic “active spots” at the air-water interface, one per ~ 

25,000 water molecules, such that negative ions from the interior followed Langmuir adsorption 

statistics enforced via electrostatic attraction.[135] For completeness, while this model could 

account for the Jones-Ray effect, it fails to account for the specific-ion effects at the air-water 

interface.[15, 136] In particular, the observation of the Hofmeister effect has remained unexplained, 

wherein ions influence each other specifically at the air-water interface at micromolar dilutions. A 

recent review article by Marcus provides an in depth account of “structure making and breaking 

effects” of ions in/on water.[98]  

An alternative way for propagating (electrical) signals across interfacial water molecules via sparse 

anions could be via a joint effect of (1) vectorial rotation of anion-bound water dipoles, and (2) 
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electrodynamic percolation network of hydrogen bonds propagating across long distances (See 

Appendix I). Since anions attract the hydrogen-end of a water molecule, the dipolar vector could 

perturb adjacent dipoles and propagate perturbation to long distance (Figure 6.1). Note that this is 

not possible in the case of interfacial cations as they attract the central oxygen atom of a water 

molecule, thus locking its azimuthal orientation (Figure 6.1). We present some of our ongoing work 

in this direction.  

 

 

Figure 6.1: (Left) Schematic of interactions between water-dipoles and cations at the air-water 

interface; (Right) Schematic of interactions between water-dipoles and anion at the air-water 

interface. 

 

6.4.1.1 Experiments 

Recently, Enami and co-workers investigated specific ion effects at the vapor-liquid interface of 

water, methanol, and isopropanol. Remarkably, they found that water and methanol exhibited long-

range specific ion effects, while IPA did not.[137] By applying molecular dynamics simulations, we 

are currently simulating the extent of percolation networks of hydrogen bonds in methanol and 

isopropanol. Our initial results are as follows: 
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6.4.1.2 Theoretical Approach 

Our simple model of the liquid-vapor interface consisted of a 200 molecules of methanol (or 

isopropanol, or water or acetonitrile) in a cube of size determined by the bulk density (methanol: 

792 Kg/m3, isopropanol: 786 Kg/m3). The methanol slab was a cube of edge ≈ 3nm, while the IPA 

slab was a cube of edge ≈ 2.4 nm. To simulate the liquid-vacuum interface, the z-dimension of a 

slab was extended into vacuum by 40 Å. A harmonic potential wall of stiffness 10 kcal mol-1 was 

placed at a distance of 5 Å from the liquid-vacuum interface to preempt the loss of atoms during the 

course of dynamics. With periodic boundary conditions in place, each slab had 6 – 8 layers of the 

solvent, thus affording a gradual transition from the bulk phase to vacuum.  To describe methanol 

and isopropanol, we used a Dreiding forcefield, that has been demonstrated to provide an accurate 

description of structures and energetic of organics.[391] We consider that this model is adequate to 

capture the percolation network of the hydrogen bonds; there are no charges in our current systems.  

 

6.4.1.3 Molecular Dynamics procedure 

Energy minimization was carried out by a conjugate gradient algorithm, wherein at every step the 

force gradient is combined with the previous iteration information to compute a new search 

direction perpendicular to the previous search direction. Iterations terminated when one of the 

stopping criteria (energy or force tolerance) was satisfied. The local energy minimum afforded a 

good starting point for the dynamics. As a starting point, all atoms were assigned velocities 

following a Gaussian distribution with a mean situated at T = 10K. Following this, time integration 

on Nose-Hoover style non-Hamiltonian equations of motion, designed to generate positions and 

velocities sampled from the canonical (NVT) ensemble, was applied to ramp the temperature of the 

system up to 298 K. The time step was chosen to be 1fs, and the equations of motion used were 

those of Shinoda et al.,[392] which combine the hydrostatic equations of Martyna et al., [393] with 

the strain energy proposed by Parrinello and Rahman[394]. The time integration schemes closely 

followed the time-reversible measure-preserving Verlet and rRESPA integrators derived by 

Tuckerman et al[395]. AT 298 K, the system explored different configurations in an NVT ensemble 

for 1 ns and the data for analysis was extracted from the last 20 ps. 
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6.4.1.4 Percolation network analysis 

For equilibrated slabs of methanol and isopropanol, the top 6 Å region was investigated for 

percolation networks of the hydrogen bonds. Two molecules were regarded to belong to a cluster if 

they were connected via a hydrogen bond. For every oxygen atom within the top 6 Å region, at the 

liquid-vacuum interface, hydrogen atoms within a range of 0.9 Å < d < 2.0 Å were evaluated. For 

statistical efficacy, several snapshots of the 20 ps dynamics trajectory (post NVT equilibration at 

298 K) were analyzed. Our results consistently indicated that methanol surface was connected by 

long-range percolating hydrogen bond network, whereas the surface of isopropanol was marked by 

sporadic, small clusters connected via hydrogen bonds (Figure 6.2). Intuitively, it makes sense 

because of the steric hindrance due to the methyl groups and the van der Waals attractive 

interactions between them. In the past, reports on the percolation network of hydrogen bonds at the 

surface of water have appeared, and agree with our findings.[396, 397] Thus, the long-range effects 

may not be crucially influenced solely due to the pinching of capillary waves as suggested recently 

by Geissler and co-workers. [83] 

 

 



 

 

87
Figure 6.2 (A) Hydrogen bond percolation networks at the vapor-liquid interface of methanol; 

(B) Hydrogen bond percolation networks at the vapor-liquid interface of isopropanol; (C) Depth 

profile of the methanol slab; (D) Depth profile in the case of isopropanol. This simple model 

suggests that in the case of methanol the percolation network of hydrogen bonds is denser and 

longer. 

 
 
In the future, it would be interesting to add charges and consider them via polarizable forcefields to 

see the effect of long-range percolation networks on translocation of partial charges via fluctuations, 

and induced dipole-dipole interactions. Another interesting direction would be to study the mixtures 

of isopropanol and water and analyze the extent of resulting percolation networks. Insights derived 

should have implications across natural and applied sciences. 
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6.4.2 CO2 Uptake and Release from the Ambient Atmosphere by Controlling  

Hydration at the Gas-Solid Interface 
 
 

As seen in Chapter 5, hydration could play a crucial role in interfacial chemistries. Herein, we 

propose to understand, and develop materials capable of absorbing CO2 gas from the ambient 

atmosphere. Indeed, global concern over carbon dioxide (CO2) emissions from unsustainable 

consumption of fossil fuels requires CO2 capture and sequestration.[398-400] Desired processes 

should be sustainable, cost-effective and scalable.[401] Traditional methods for trapping CO2 from 

industrial waste gases have been dominated by aqueous alkanolamines and alkali solutions 

(reactions R1 and R2) leading to carbamates and carbonates, respectively.[402] The problems 

impeding their global acceptance are threefold: (i) corrosive nature [403], (ii) formation of stable 

carbamates and carbonates (bond strengths > 50 kcal mol-1) requiring intense thermal kick to desorb 

CO2 for sequestration[399, 401, 404], and (iii) globally distributed CO2 emission sources call for a 

pragmatic CO2 capture technique that could capturing CO2 from the air anywhere.[399, 401, 405] 

Recent reports by Lackner and co-workers on the prospect of using commonly available, low cost 

anion-exchange resins to this end have sparked optimism. [401, 406-408] 

 

Reaction scheme I: (R1) for gaseous CO2 capture with alkanolamine leading to formation of 

carbamates, and (R2) for alkali solutions forming strong carbonate bonds. 

 

 

6.4.2.1 Ion-Exchange Media as Gas-Sorbents 

 

As early as 1960s, ion-exchange resins were investigated for molecular sieving of industrial 

pollutants like SO2, NOx and H2S.[409] Operating on an entirely different binding mechanism than 

alkanolamine solutions, these solid sorbents seem to offer an effective solution to the CO2 problem. 

For example, strong-base ion-exchange resins, in hydroxide form, present moderate binding 
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strengths (< 10 kcal mol-1) with gaseous CO2, and faster kinetics than amine solutions.[401] 

Quinn and co-workers were the first to report that CO2 from process gas-streams could be captured 

into salt hydrates containing quaternary ammonium fluoride (reaction R3). Further, they made a 

curious observation that the uptake of CO2 was inversely related to the extent of hydration in the 

salt hydrates.[410, 411] By flowing mixed gas-streams containing CO2 on quaternary ammonium 

fluoride/acetate/chloride/hydroxide salt hydrates, they found that (i) F- form captured CO2 and could 

regenerate easily, (ii) CH3COO- form was sluggish at both uptake and release, (iii) heats of 

absorption of CO2 by F- and CH3COO- forms were moderate, ranged from 4-8 kcal mol-1, (iv) Cl- 

form did not uptake CO2, and (v) hydroxide form did not regenerate, i.e. formed permanent 

bicarbonate.[411] Quinn and co-workers also analyzed strong-base ion-exchange resins for 

reversible CO2 uptake and found results similar to salt-hydrates.[410] Recently Lackner and co-

workers have spearheaded development of inexpensive, non-toxic, stable and robust materials based 

on hydroxide form of strong-base anion ion-exchange resins.[401, 406-408] These materials are 

able to reversibly uptake gaseous CO2 from the ambient atmosphere (partial pressure ~ 38 Pa) under 

standard conditions simply by adjusting the relative humidity level on the resinous films. However, 

mechanisms underlying the reversible uptake of ambient CO2 gas in this material are not entirely 

clear. We consider that the thermochemistry of hydration of OH- ions at the gas-solid interface 

could explain the process.   

 

 

6.4.2.2 Thermochemical Considerations 

 

As demonstrated in Chapter 5, the chemical activity of ionic species at aqueous interfaces is 

extremely sensitive to the extent of hydration.[312, 412]. We consider that under dry conditions, 

hydroxide functionalized quaternary ammonium salts may behave as strong bases. 

Tetralkylammonium anion-exchange resins have been reported to be minimally solvated under dry 

conditions, thus, rendering hydroxide groups stronger bases than in bulk water.[413] Gas-phase 

thermochemistry literature reveals that hydroxide, OH-, in gas-phase is a significantly stronger base 

than in bulk water (proton affinity, PAOH
- = 390 kcal mol-1 compared to PAH2O = 165 kcal mol-1). 

Thus, extremely basic OH- residing on the surface of a resin can neutralize an acidic gas like CO2 

subject to the hydration gradients therein. This explains the Langmuir-type surface saturation 

behavior as observed by researchers.[408, 411] Under dry conditions, this acid-base reaction at the 

gas-resin interface is exergonic and leads to formation of interfacial HCO3
- (reaction R3). 
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Reaction scheme III: for gaseous CO2 capture with OH- bound to solid resin or salt-hydrate 

leading to formation of bicarbonate 

 

In the gas-phase reaction R4 is exothermic with a ΔG° = -38 kcal mol-1. Thus, the equilibrium 

constant is described in the gaseous standard state as,	ܭ௣ ൌ 	
ଵ

ൣ௣಴ೀమ൧
ൌ ݁

ష∆ಸሺ೒ሻ
°

ೃ೅                

If pressure in gas phase is 1 bar and α describes the fraction of CO2 left after HCO3
-(if) formation, it 

can be easily shown that α ~ 0. It means that in dry state, interfacial OH- should bind ambient CO2. 

Similar analysis explains the observations of F-, Cl-, CH3COO- and CO3
2- containing salt hydrates or 

resin leading to the formation of interfacial bicarbonate with or without co-participation of a water 

molecule. Next, as the resin is gradually hydrated the standard state at the interface starts shifting 

from the gas-phase towards that aqueous phase shown in reaction R4.  

 

 

Reaction scheme IV: for binding interaction of CO2 with OH- (aq) in wet resin or salt-hydrate 

 

In the aqueous phase, R5 is thermodynamically favored by a ΔG° = -9 kcal mol-1 along with a 

kinetic barrier of ΔGⱡ =13 kcal mol-1. Thus, the equilibrium constant is described in the condensed 

phase as, 

 

௣ܭ ൌ 	
ଵ

ൣሺଵିఈሻ஼಴ೀమ൧
ൌ ݁

ష∆ಸሺೌ೜ሻ
°

ೃ೅                                                        (R5) 

 

If the concentration of CO2 in the condensed phase is CCO2 = 1M, and α describes the fraction of 

undissociated CO2, it can be easily shown that α ~ 0.2. Thus, in aqueous phase a significant amount 

of CO2 is thermodynamically disfavored to be converted in to HCO3
- form. Thus, a 

physicochemical analysis of the reaction between OH- and CO2 leading to HCO3
- in appropriate 

standard states shows that the dry state OH- leads to extremely low partial pressures of CO2(g), and 
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the trend might reverse as the standard shifts to the aqueous phase. Similar analysis explains the 

observation of F-, Cl-, CH3COO- and CO3
2- containing salt hydrates or resin leading to formation of 

interfacial bicarbonate with or without co-participation of a water molecule. Reversible conversion 

of gaseous CO2 into HCO3
- is achieved by harnessing the gas-phase thermochemistry of ion 

solvation at gas-solid interface. Why is CO2 uptake in ion-exchange resins so sensitively dependent 

on hydration gradients? In a recent study of anion-exchange resins via x-ray absorption 

spectroscopy, Yuchi and co-workers found that (i) all the water molecules adsorbed at the resin-air 

interface were assigned to anion hydration, following which and (ii) the adsorbed water molecules 

were ascribed to multilayer adsorption or condensation in resin pores.[414] 

 

 

6.4.2.3 Conclusions  

 

The analysis based on standard states in gas- and condensed-phases qualitatively captures the CO2 

uptake phenomenon at gas-solid interface. In reality, neither the dry resin bound OH- is exactly gas-

phase, nor is the bound HCO3
- in wet resin completely aqueous. We envision that with increasing 

hydration the interfacial anions have several intermediate hydration states to traverse through before 

acquiring full hydration. Figure 6.3 shows that during this gradual transition of hydration states 

from gas-phase to condensed phase, the interconversion of HCO3
-(if) to OH-(if) + CO2(if) takes 

place which is constrained by a sizeable kinetic barrier in aqueous state. In the future, we hope to 

investigate the role of hydration in this process by theory. Based on this approach, inexpensive 

materials could be engineered for CO2 absorption from the ambient atmosphere. 
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Figure 6.3: Hydration gradients at the solid-gas interface control the reversible binding of CO2 in 

the resin. (The numbers represent qualitative energy landscape since interfacial OH- has only a 

partial gas-phase character) 
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6.4.3 Faster Autodissociation of Water at the Air-Water Interface 

 
The ionic product of bulk water, Kw, has a fundamental bearing on both chemical and physical 

processes in aquatic systems and ubiquitous aqueous interfaces. Eigen and DeMayer have provided 

an elegant review of autodissociation and proton transport in water. [292] At the time of this 

dissertation, it is well established regarding water that (1) the forward dissociative event is impeded 

by an enthalpic barrier of ΔH = 13.5 kcal mol-1, kf  ≈ 2.5 × 10-5 s-1, as well as an entropic cost ≈ ΔS = 

-30 cal.mol-1K-1 due to tightly bound solvation shells around resulting ions, and (2) the backward-

half reaction is controlled by molecular diffusion with a recombination rate, kb ≈ 1011 LM-1s-1. Thus, 

the equilibrium autodissociation constant for bulk water is KEq = kf/kb = 10-15.7 M, which leads to the 

ionic product of water, Kw = KEq[H2O(aq)] = 10-14 M2, where [H2O(aq)]= 55.5 mol/L. (Figure 

6.4).These results readily yield the fact that bulk water is electroneutral at pH = 7, i.e., [H3O
+] = 

[OH-] under ambient conditions (T = 298 K, and P = 1 atm). However, whether or not the value of 

Kw holds at aqueous interfaces with air, i.e., Kw = Kw,Int or Kw ≠ Kw,Int, remains an important question 

with implications across natural and applied sciences. Indeed, there are various independent reports 

on anomalous (1) enhancements in the proton conduction at the phospholipid-water interface,[206] 

(2) correlation between the contact electrification and relative humidity,[7, 354] and (3) lateral  

conductivity in scanning tunneling microscopy[415, 416] and spectroscopy experiments[17, 18, 30, 

201, 417] of wet phospholipid membranes. These phenomena are fundamental to various natural 

processes, as listed in the introductory section in Chapter 1. 

 

 

Figure 6.4: Enthalpy landscape drawn based on experimental dissociation barrier for 

autodissociation of water in the bulk solution.  
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6.4.3.1 Experimental Results  

 

Our experimental results, validating plethora of macroscopic electrokinetic measurements of the air-

water, and oil-water interfaces, unambiguously showed the isoelectric point of the air-water 

interface to be at pH ≈ 3. It implies that the concentration of OH- ions at the air-water interface, i.e. 

top δ ≈ 1 nm slice, has p[OH-] ≈ 3, i.e. [OH-]  = 10-3 mol/L. Imagining a slab of water with 

thickness δ ~ 1 nm, this concentration pertains to a surface density of : NOH
- ≈ 10-4 #OH-/nm2 that is 

commensurate with our calculation of the surface density of OH- at the air-water interface as 

presented in section 6.2 above. This surface density is equivalent to a surface charge density of 1.6 

nC/cm2. This is a very interesting result because, owing to the charge neutrality of the aqueous slab, 

the concentration of the counterion, H3O
+ = 10-3 M in the layers below the air-water interface. Thus, 

we propose that the autoionization constant for the water at the air-water interface to be, KW,Int ≈ 10-6 

(mol/L)2 under ambient conditions.  

 

This finding suggests that water is not just a solvent with a large dielectric constant, high dipole 

moment, decent polarizability, and curiously sculpted hydrogen bond for physical interactions. Due 

to the faster autoionization of water at the air-water interface, the scope of roles and functions for 

water grows exponentially. Independence of ion concentration at the interface from the bulk pH 

adds a new frontier to be explored regarding surface charging, ion solvation, and transmission of 

electrical signals across interfaces. In fact, recent articles by Stuve and co-workers,[38, 418] and 

Bonn and co-workers,[39] have considered the possibility of enhanced autodissociation of water at 

interfaces with electrodes and phospholipids arising from excessive electrical fields of ions therein. 

Unfortunately, however, this explanation rapidly leads to the ‘cause-effect quagmire’, i.e., how did 

ions manifest in first place.  

 

Herein we base our arguments primarily on entropic effects. Indeed, the natural surface 

charge/potential at the air-water interfaces would have a supporting influence on fast autoionization. 

 

 

6.4.3.2 Thermochemical Considerations 

 

We consider a possibility of a larger rate of unimolecular dissociation of water molecules at the air-

water interface compared to bulk. Let’s assume that a water molecule at the air-water interface 
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autoionizes unimolecularly with an activation energy equal to the experimentally measured, H 

= 13.5 kcal/mol, of ionization in the bulk. This is the minimum energy cost of dissociating water. 

The resulting ions are assumed to be fully stabilized by hydration at the interface, i.e., they are at the 

interface but connected to the rest of water. 

 

H2O (aq)                             H+ (aq)  + OH- (aq)     

        (R1) 

 

In bulk water, for a typical O-H vibrational stretch frequency at ν ~ 3600 cm-1 (~ 1  1014 s-1), we 

estimate a rate constant for the autodissociation reaction using the transition-state theory: 

 

          (R2) 

 

 

Since, the experimental value for kf  = 2 ×10-5 s-1, and ΔHAct = 13.5 kcal/mol, we expect the entropy 

of activation to be ΔSAct = -30 cal/mol-K. Next we ask could water dissociate with a zero entropic 

penalty? Is so, where? Because, curiously, as the entropic penalty at the  air-water interface, ΔSAct,Int, 

limits to zero, the upper limit of the forward rate of autodissociation reaction, Kf,Int ~ 0.45 × 102 s-1. 

We expect the rate of ion recombination to remain the same, thus, leading to the equilibrium 

constant KEq,Int and the ionic product, Kw,Int at the air-water interface to be larger than Kw by a factor 

of 





 

RT
ActH

e = 5.5 × 107 (mol/L)2, i.e. Kw,Int ~ 10-6 (mol/L)2. Curiously, the predicted value matches 

with our experimental report on the ionic product at the air-water interface. 

 

 

6.4.3.3 Vibrational Entropy at the Air-Water Interface 

 

Assuming water to be an ideal gas of I-D harmonic oscillators, we note that the partition function 

for the vibrational energy for a mole to be ܳ௩௜௕ ൌ ൬1 െ ݁ି
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number. For vibration frequencies of the O-H bond > 2000 cm-1, hν >> kT, thus, ܳ௩௜௕approaches 

unity. [419] As a result, all thermodynamic functions for vibration, such as entropy, approach zero. 

Interestingly, it appears that at the air-water interface, soft (collective) modes of water will play 
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dominant role in sampling the configuration space. Since the air-water interface is prone to 

reorganization, it is conceivable that autodissociation would accrue minimal entropic cost. Besides 

these simplistic arguments, we are conducting molecular dynamics simulations on slabs of water 

with vacuum on either sides, to be followed by a two-phase thermodynamics analysis to estimate 

entropy and enthalpy of H3O
+ and OH- ions at the air-water interface. [420] 

 

 

6.4.3.4 Compensation Effect in Chemical Thermodynamics 

 

The compensation effect is considered the sine qua non in chemical thermodynamics, i.e., with a 

reduction in entropy, there should be a concomitant increase in the enthalpy of the O-H bond 

dissociation.[421] We consider that at the air-water interface it might be possible to have the 

entropic penalty for proton transfer to go to zero, without affecting the enthalpic penalty by 

assuming that the resulting species are reasonably hydrated. Currently, we are thinking and 

exploring this area to come up with a reasonable theoretical explanation for our experimental 

results. An interesting reference in this regard is listed in [422]. 

 

 

6.4.3.5 Implications in Biology 

 

We would like to consider the impact of faster autoionization of water at water-hydrophobe 

interfaces in biological processes dealing with proton gradients. Recently Maret and co-workers 

presented a curious case regarding the volume of cellular compartments and pH values ascribed to 

them commonly.[423] Their key observation was that several cellular compartments with volumes 

ranging within femto- (10-15) to atto- (10-18) to zeptoliters (10-21) with prescribed pH ranging within  

~ 5-7, at 37 ºC, are too small to contain even a single proton. They asked how do H+ and OH- 

dependent biochemical reactions take place. Our proposal for the enhanced autodissociation at 

water-hydrophobe interface might help resolve this issue. 

 

 

6.4.3.6 Implications in Atmospheric Chemistry 
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Towards understanding activation of aerosol particles and growth of clouds, Davidovits and co-

workers designed a beautiful set of experiments wherein they investigated the mass accommodation 

coefficient (MAC), and surface accommodation coefficient (SAC) of gas-phase H2O and D2O on 

the surface of water.[424] While the MAC is the probability that a gas-phase molecule alighting on 

the gas-liquid interface would enter the bulk phase, SAC is the probability that a gas-phase 

molecule alighting on the gas-liquid interface becomes a part of the surface (likely via 

chemisorption). Similar to our experiments described in Chapter 3, the gas-phase D2O molecules (~ 

1014 cm-3) strike the surface of water and get adsorbed. In the absence of surface reactions, the 

surface-bound species would desorb, or stay attached to the surface, or enter the bulk. They found 

SAC to be ~ 1 and the MAC to be ~ 0.2 and insensitive to ambient thermal fluctuations. However, it 

has remained unclear why the SAC was so high. Our report on the presence of interfacial OH-, and 

faster dissociation of the interfacial water would imply fast exchange of H-D at the surface of 

water.[425] 
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6.5       Cation-π Interactions at the Water-Hydrophobe Interface 

 

In recent years, it has been shown that the magnitude of interactions between cations and π-systems 

could be comparable to hydrogen bonds, ion-pair, and hydrophobicity in aqueous phases.[426] In 

particular, these interactions have been shown to play key roles in neurotransmission, nicotine 

addiction[427], ion channels,[428] molecular recognition and catalysis,[429] and nerve signaling[430]. 

In an exhaustive analysis of the protein data bank, Dougherty and co-workers concluded that about a 

quarter of all tryptophan residues in proteins experience energetically significant cation-π 

interactions.[431] Cation-π interactions might also have noteworthy impact in the environment due to 

ubiquity of Na+ and K+ in surfaces. Currently, only gas-phase and liquid-phase trends in the binding 

energy of cation-π interactions are known and values at the interface are obtained by extrapolation. 

Employing the surface-specific platform at Caltech, we have recently started experiments investigating 

the cation-π interactions of Li+ with pyridine and pyrrole. We found pure pyrrole to be inactive during 

the collision times in our experiments (results not shown). However, we found an interesting trend in the 

interaction of pyridine (Pyr) with Li+ ions. As shown in Figure 6.5, the trend in cation-π interactions 

changed as pyridine molecules approached the air-water interface from the aerial versus the aqueous 

side. We found the formation of a complex of Li+ ion with two Pyr molecules to be strongly favored 

when Pyr approached the air-water interface from the gas-phase. 

 

 

Figure 6.5: (A) Mass spectra of the cation- π species formed in the aqueous phase, (B) Mass spectra 
of the cation-π species at the air-water interface 
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In the future, more work on this problem, especially investigating the competitive cation-π 

interactions among, for example, H+, Li+, Na+, K+ ions and Pyr at the air-water interface could provide 

chemical insight about the efficacy of Li+ ions in specific medical applications.[432] 
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ABSTRACT: Ions both induce specific (Hofmeister) and non-specific (Coulomb) effects at aqueous 

interfaces. After more than a century, the origin of specific ion effects (SIE) eludes explanation, mainly 

because the causal electrostatic and non-electrostatic interactions are neither local nor separable. Since 

Coulomb effects essentially vanish below  10 M (i.e., at > 50 nm average ion separations), we decided 

to investigate whether SIE still operate at, hitherto unexplored, lower concentrations. Herein we report the 

direct detection of SIE above  0.1 M in experiments in which relative iodide/bromide populations,  = 

I-/Br-, on the surface of aqueous (NaI + NaBr) jets were determined by online electrospray mass 

spectrometry in the presence of XCl (X = H, Na, K, Cs, NH4 and N(C4H9)4) and NaY (Y = OH, Cl, NO3 

and ClO4). We found that (1) all tested electrolytes begin to affect  below  1 M, (2) I- and Br- are 

preferentially suppressed by co-ions that match their individual interfacial affinities. We infer that these 

phenomena, by falling outside the reach of even the longest-ranged electrostatic forces, are dynamical in 

nature. 

 . 
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I. INTRODUCTION 

The specific partitioning of ions of the same valence to water-hydrophobe interfaces underlies important 

chemical, physical and biological phenomena.1-4 Specific ion adsorption at the surface of the ocean is 

reflected by the distinct composition of marine aerosols,5-8 and its significant impact on the chemistry of 

the atmospheric boundary layer.5,9-14 Enzyme activities,15 protein binding16 and self-assembly processes in 

general17-22 also show pronounced specific ion effects (SIE). Controlling the self-aggregation of 

nanoparticles and biopolymers via SIE is a tantalizing goal that requires a full understanding of the role 

and relative contributions of structural, Coulombic and non-electrostatic effects at low, intermediate and 

high concentrations.21 It has become apparent that the specificity and range of SIE cannot be explained by 

merely appending many-body electrodynamic (dipolar and dispersive) forces to electrostatics, as assumed 

by the classical DLVO theory of surface interactions.4,23-27 The full consequences of quantum fluctuations 

within extended dielectric media in the presence of charges are being investigated using molecular 

dynamics (MD) simulations,28 and continuum non-local electrostatics models based on a dielectric 

function (r, r’) of both the local electric field and the long-range polarization of the surrounding 

medium.29-31  

A key parameter in models dealing with cooperative effects is the length of correlations, , in this case 

those induced by hydrated ions on the structure of interfacial water. Hitherto an adjustable model 

parameter,  should be independently determined by experiments. A recent experimental study has 

provided evidence of SIE in < 50 M electrolytes (one ion in > 106 water molecules) at a solid/water 

interface,4,32 suggesting that the dilution threshold or, equivalently, the limiting value of  had not been 

reached. The operation of unidentified long-range interactions on the surface of electrolyte solutions had 

been surmised from the surface tension minima observed in electrolyte solutions at  1 mM.33-35 Seventy 

five years ago, Dole realized that a model that invoked electrostatic interactions among ions that saturate 

the surface of water at  1 mM could formally account for such minima, but was physically implausible. 

He conjectured that ‘some other (unknown) factor such as an electric effect (by ions on the solvent)’ was 

involved.33 The fact that Dole’s ‘unknown’ factor remains to be characterized points to a phenomenon 

whose interpretation might require new perspectives. 

We recently exploited the high sensitivity, surface selectivity and unambiguous identification capabilities 

of online electrospray mass spectrometry (ESMS) (see below)36,37 to investigate SIE on the surface of 

electrolyte solutions at low concentrations (See EXPERIMENTAL SECTION).38 ESMS is conventionally 

used to investigate the composition of bulk liquids.39 However, we have demonstrated that by changing 

the instrumental configuration and operating parameters it is possible to selectively sample the interfacial 
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layers of liquid jets under ambient temperature and pressure conditions.5,36,37,40-42 An inherent challenge in 

studying liquid surfaces is that, because of the relatively small surface-to-volume ratios prevalent in most 

experiments, they are easily contaminated by the accumulation of ubiquitous surfactant species. Present 

experiments should be minimally influenced by contamination both because they are performed on fast-

flowing, continually refreshed water jets, and monitor simultaneously the ions whose ratio,  = I-/Br-, is 

the observable reported herein (see below). We had validated the claim that the mass spectra obtained in 

our instrumental configuration reflect the ion composition of the outermost layers of the jet by showing 

that: (1) relative anion abundances, i.e., relative mass spectral signal intensities, measured in jets 

consisting of equimolar multi-electrolyte solutions follow a normal Hofmeister series,6,7,43 and are 

specifically affected by added cationic or anionic surfactants,6,42 (2) our mass spectra detect products 

necessarily formed in the air-water layers of jets exposed to reactive gases.36,37,40,41,44 Herein, we report 

relative iodide/bromide ion abundances,  = I-/Br-, in air-water interfacial layers of mixed electrolyte 

solutions in the sub-M to  1 mM range.  

II. EXPERIMENTAL SECTION 

Our experiments involve the injection of aqueous electrolyte solutions as jets into the spraying chamber 

of an electrospray mass spectrometer (ESMS, Agilent 6130 Quadrupole LC/MS Electrospray System, 

Kyoto University) held at 1 atm and 298 K. The ion composition of the outermost layers of the jet is 

monitored in situ via online mass spectrometry, after the electroneutral jets are nebulized by an annular 

coaxial nebulizer gas into droplets possessing net charge of either sign. The excess anions (i.e., the 

fraction lacking balancing counterions) carried by the negatively charged droplets are ultimately ejected 

to the gas-phase and become amenable to mass spectrometric detection.45 The present experimental setup 

is essentially the same as that reported in previous reports from our group.36,37,41,42 Iodide and bromide 

ions already present on the surface of the injected liquid are monitored and quantified by online ESMS in 

less than a few milliseconds. Solutions are pumped (100 L min-1) into the spraying chamber through a 

grounded stainless steel needle (100 m bore) coaxial with a sheath issuing nebulizer N2(g) at high flow 

rates. The fast nebulizer gas strips the interfacial layers of the much slower liquid jet into microdroplets 

that carry excess anions or cations. Note that the production of charged microdroplets from a neutral 

liquid is the normal outcome of the charge fluctuations expected in a statistical breakup process.39,46-48 

Thus, droplet charging via nebulization does not require the application of an external electric bias to the 

needle, as in classic (‘Taylor cone’) electrospray mass spectrometry.49 Charged microdroplets 

subsequently evaporate solvent while being drawn to the electrically polarized inlet of the mass 

spectrometer with increasing acceleration. Since sampled microdroplets are the progeny of the nascent 

droplets stripped from the surface of the jet, they are naturally enriched with interfacial species. We had 
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previously verified that this setup operates as a quasi-linear transfer device, that is ESMS signals are 

directly proportional to ion concentrations (up to  0.1 mM) prior to their breakup, in experiments in 

which we monitored the acid-base equilibrium of dissolved tri-methyl-ammonium as a function of bulk 

pH.36,42 We have presented detailed data analysis, based on mass balances and the application of the 

kinetic theory of gases to fast gas-liquid reactions, which strongly suggest (but do not conclusively prove) 

that the thickness of the interfacial layers sampled in these experiments is likely less than one nm, and 

certainly within a few nm.36 Further experimental details and validation tests could be found in previous 

publications.36,37,41,42  

III. RESULTS AND DISCUSSION 

Anions generally approach the air-water interface closer than cations. This is borne out by the negative 

surface potential of most electrolyte solutions,50,51 by surface-specific spectroscopic studies,34,52-54 and by 

model calculations.2,55-58 A recent phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS) 

study reported interfacial ion affinities in the order I- > NO3
- > NH4

+ > Cl- > K+ > Na+ between 1 M and 2 

M.54 

Figure 1 shows the negative ion ES mass spectra obtained from 1 M equimolar (NaI + NaBr) aqueous 

solutions in the absence and presence of 10, 100 and 1000 �M NaCl. It is apparent that: (1) the 

population of I- in the interfacial layers, P127, as reported by m/z = 127 signal intensities, is about three 

times larger (more precisely 3.04  0.24 times, the average of fifteen independent measurements) than 

that of Br-, P79+81, i.e., the sum of m/z = 79 and 81 signal intensities, confirming previous reports by 

Cheng et al.,6,7 (2) both P127 and P79+81 decrease with increasing NaCl concentrations. The larger 

interfacial affinity of iodide relative to bromide is consistent with a number of previous independent 

experimental results and theoretical predictions.34,52,57,59,60  

Figure 2 shows how both P127 and P79+81 decrease in the presence of increasing concentrations of XCl, 

where X is H, Na, K, Cs, NH4 or N(C4H9)4. Note that the surfactant N(C4H9)4
+ has the largest depressing 

effect on both P127 and P79+81, which decrease by 50%, respectively, upon addition of 11 M and  20 

M N(C4H9)4Cl. Similar effects require the addition of  110 M and 70 M NaCl, respectively. 

Interestingly, the depressing efficiencies of the large Cs+ and of the small, non-polarizable H+ (or H3O
+) 

on P127 are found to be similar.  

Figure 3 shows the specificity of co-ion effects upon addition of NaY, where Y = OH, Cl, NO3 and ClO4. 

It is immediately apparent that anions both induce larger and more specific effects than cations, in accord 

with the Hofmeister effects observed in most phenomena.4,16,61,62 Note that among the anions studied, 
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ClO4
- and OH- have the strongest and weakest effects respectively: P127 is halved by  1 M NaClO4 and 

 230 M NaOH. The weak effect of OH- on interfacial ions is intriguing because the negative potential 

of the air-water interface has been ascribed to strong OH- adsorption to water-hydrophobe interfaces in 

general.51,63,64 

Figure 4A, which displays the ratio  = P127/P79+81 = I-/Br- as a function of NaY concentrations, reveals 

that ClO4
- and NO3

- have the largest depressing effects on P127 and P79+81, respectively. From the relative 

affinities of Br- (  1.0), NO3
- ( = 1.4), I- ( = 3.1) and ClO4

- ( = 19) for the air-water interface 

previously measured in a similar setup,6 we infer that stronger effects occur among anions having closer 

interfacial affinities. Present results are in qualitative agreement with the PS-SFVS results showing that 

(Cl-) < (NO3
-) < (I-).54  is also a function of (NaI + NaBr) concentration, displaying a broad minimum 

at  50 M, in the absence of added electrolytes (Figure S2). Counter-ions have significant specific 

effects on  (Figure 4B). The significant depressing effect of tetra-butyl-ammonium chloride on  (Figure 

4B) is consistent with previous findings by Cheng et al., that the cetyl-trimethyl ammonium chloride 

(CTAC) cationic surfactant strongly enhances the interfacial populations of Br- and NO3
- without 

affecting that of I-.6 Notably, the depressing efficiency of the small H+ (or H3O
+) is similar to that of the 

large surfactant N(C4H9)4
+. Neither P127, P79+81 nor  are affected by the addition of up to 1.3 mM 2-

propanol. 

We had previously proposed, on the basis of the strict exponential dependence of relative anion affinities 

on ion radius rather than ion polarizability observed in our experiments,6,7 that anions, by having a 

dielectric permittivity lower than the solvent but higher than air: W  > ion > 1, are necessarily rejected to 

the air-water interface by many-body electrodynamic interactions.26,27,51,65 However, since W(z) is not a 

monotonic but oscillating function of depth z, which displays both positive and negative values separated 

by sharp discontinuities within 0.5 nm of the interface,29,66-68 interfacial ion distributions would not be 

expected to be monotonic or even continuous functions of depth.66 From this standpoint, relative ion 

affinities would reflect the dissimilar depths, zi, at which ions balance the electrodynamic forces driving 

them to the interface with the entropic losses partially associated with the creation of interfacial ion 

concentration gradients. Thus, different ions are envisioned to populate interfacial layers of different 

depths rather than a common interfacial region with different probabilities, as confirmed by the charge-

specific effects induced by cationic versus anionic surfactants.6,14,44 

The similar effects of H+ and N(C4H9)4
+ on  therefore suggest that H+, once it emerges to the surface at 

pH < 4,36,37,42 reaches interfacial layers of depths intermediate between those occupied by I- and Br-. We 

have previously shown that gaseous trimethylamine is protonated in collisions with aqueous jets only at 
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pH < 4.36,42 Thus, present results confirm that H+ becomes available in the outermost layers below pH  

4.36,37,42 Our results, by showing that OH- barely affects I- or Br-, in contradistinction with NO3
- or ClO4

-, 

indicate that OH- from NaOH does not reach the outermost interfacial layers sampled herein. This 

conclusion will be consistent with a recent analysis of surface tension data showing that the surface-to-

bulk partitioning ratios are in the order H+ > Li+ ~ K+ ~ Na+ in XCl and I- > NO3
- > Br- > OH- in NaY.69 

However, OH-, as an intrinsic ion at aqueous interfaces, may not conform to the general pattern 

established by other anions. Whether and under what conditions OH- becomes available to gaseous acids 

at the air-water is the subject of an upcoming report from our group.70 Summing up, the results of Figure 

4 represent compelling evidence of specific interactions among ions at the air-water interface down to the 

hitherto unexplored sub-micromolar range. 

It should be emphasized the observed SIE in micromolar electrolyte solutions cannot be solely accounted 

for by electrostatic interactions across interfacial water layers characterized by a dielectric constant W.71 

In the < 1 M solutions studied herein, the average ion-ion separations Rion-ion > 120 nm exceeds the 

Bjerrum length (i.e., the separation at which the electrostatic energy of an ion pair becomes 

commensurate with thermal energy): B = e2/(40kBT) = 56 nm in vacuum (� = 1).27 Furthermore, the 

requisite interactions carry specific chemical information over long ranges. A definitive explanation may 

not be provided at this time, but it is conceivable that thermal capillary waves, which are powered by the 

thermal surroundings and span broad frequency CW and wavelength CW domains,76 could be the carriers 

that propagate such perturbations. Recent simulations have shown that anions significantly bias surface 

height fluctuations several molecular diameters away by pinning thermal capillary waves.77 The fact that 

the preceding dipole moments of water molecules bound to interfacial anions, in contrast with those 

bound to cations, can generate oscillating fields parallel to the surface might be part of the propagation 

mechanism.78,79 

IV. CONCLUSIONS 

We found that the populations of I- and Br- on the surface of equimolar 1 M (NaI + NaBr) solutions are 

significantly and specifically affected by the presence of various NaY and XCl electrolytes in the 0.1 M 

to 103 M range. Our results represent clear evidence that Hofmeister effects operate even in sub-

micromolar electrolyte solutions. The specificity of the observed effects indicates that I- and Br- are 

suppressed more strongly by those ions having similar interfacial affinities, e.g.: I- by ClO4
- and Br- by 

NO3
-. Remarkably, H+ and the cationic surfactant N(C4H9)4

+ have similar effects on  = I-/Br-, whereas 

OH- has none. We infer that these phenomena, because they fall outside the reach of even the longest-

ranged electrostatic forces, are dynamical in essence. Given the importance and universality of 
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Hofmeister effects across many fields, present findings may have deep implications for understanding 

specificity in biology and chemistry at aqueous interfaces. 
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FIGURE 1 Negative ion ES mass spectra from aqueous (1 M NaI + 1 M NaBr) jets before and after 

adding 10, 100, 1000 µM NaCl.  
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FIGURE 2 Semi-logarithmic plots of normalized I- (upper panel) and Br- (lower panel) ES mass spectral 

signal intensities from aqueous (1 M NaI + 1 M NaBr) jets as a function of added XCl concentrations. X 

 H, Na, K, Cs, NH4 or N(C4H9)4. 
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FIGURE 3 Semi-logarithmic plots of normalized I- (upper panel) and Br- (lower panel) ES mass spectral 

signal intensities from aqueous equimolar (1 M NaI + 1 M NaBr) jets as a function of added NaY 

concentrations. Y  OH, Cl, NO3 or ClO4. 
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FIGURE 4 Semi-logarithmic plots of the ratio of ES mass spectral signal intensities  = I-/Br- from aqueous 

(1 M NaI + 1 M NaBr) jets as a function of added NaY (Y  OH, Cl, NO3 or ClO4) (A) and XCl (X  H, 

Na, K, Cs, NH4 or N(C4H9)4) (B) concentrations. Dashed horizontal lines correspond to (0) = 3.04 + 0.24. 
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Abstract  

Extraction of boron from aqueous solutions using selective resins is important in a variety of applications 

including desalination, ultrapure water production, and nuclear power generation. Today’s commercial 

boron-selective resins are exclusively prepared by functionalization of styrene-divinylbenzene (STY-

DVB) beads with N-methylglucamine to produce resins with boron-chelating groups. However, such 

boron-selective resins have a limited binding capacity with a maximum free base content of 0.7 eq/L, 

which corresponds to a boron sorption capacity of 1.16 ± 0.03 mMol/g in aqueous solutions with 

equilibrium boron concentration of ~70 mM. In this article, we describe the synthesis and characterization 

of  a new resin that can selectively extract boron from aqueous solutions. We show that branched 

polyethylenimine (PEI) beads obtained from an inverse suspension process can be reacted with glucono-

1,5-D-lactone to afford a resin consisting of spherical beads with high density of boron-chelating groups. 

This new resin has a boron sorption capacity of 1.93 ± 0.04 mMol/g in aqueous solution with equilibrium 

boron concentration of ~70 mM, which is 66% percent larger than that of standard commercial STY-DVB 

resins. Our new boron-selective resin also shows excellent regeneration efficiency using the standard 

acid/base wash required for regeneration. 
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Introduction 

Extraction of boron from aqueous solutions is important in a variety of applications including (i) 

desalination, (ii) ultrapure water treatment, (iii) the production of high purity magnesium oxide 

from brines and (iv) nuclear power generation.[1-4] Boron is an essential nutrient for plants.[5]  

However, it adversely affects plant growth and damages crops (e.g. citrus and corn) when 

desalinated water containing more than 0.3 mg/L of boron is used in irrigation.[2] In 

semiconductor manufacturing, boron is used as a p-type dopant to silicon.[6] To control the level 

of boron in a silicon chip, ultrapure water with boron concentrations less than 1 ppb (g/L) is 

required. In the production of high purity magnesium oxides by pyrohydrolysis of magnesium 

chloride (MgCl2.) brine, excess boron (> 10 mg/L) in the brine causes embrittlment of the final 

metal oxide products.[3] In nuclear power generation, 10B-enriched mixtures of boric acid with 

lithium hydroxide provide inexpensive yet efficient neutron-absorbing media in the primary 

coolant water of pressurized water reactors. The availability of an efficient and highly selective 

boric acid recovery system is the key bottleneck for the wide scale implementation of these 

neutron absorbing  media.[4, 7]  

 

Sorption with selective and regenerable resins has emerged as an efficient and cost-effective 

process for  extracting boron from aqueous solutions. [2] The predominant boron species in 

aqueous solutions, H3BO3 versus B(OH)4
-, is determined by the pH of the solution [H3BO3(aq), 

pKa = 9.24]. It is well  known that boron/borate can selectively complex with organic moeities 

containing two or more vicinal hydroxyl groups (e.g. diols).[8]  For example, host 

functionalization with diol-bearing compounds has been carried out on a variety of polymeric 

matrices and hybrid organic-inorganic meosoporous materials to synthesize boron-selective 

ligands and sorbents.[7, 9-11] Today’s commercial boron-chelating resins are exclusively prepared 

by functionalization of crosslinked styrene-divinylbenzene (STY-DVB) beads with diol-bearing 

compounds such as N-methylglucamine. However, commercial STY-DVB resins with N-

methylglucamine groups (e.g. the Amberlite IRA-743 resin) have a limited capacity with a 

maximum free base of 0.7 eq/L, which corresponds to a nominal boron binding capacity of 1.09 

mMol/g in aqueous solutions with equilibrium boron concentration of ~100 mM.[12] In this 

article, we describe the synthesis and characterization of a new family of resins that can 

selectively extract boron from aqueous solutions. We show that crosslinked branched 
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polyethylenimine (PEI) beads obtained from an inverse suspension process can be reacted with 

glucono-1,5-D-lactone to afford a resin consisting of spherical beads with high density of boron-

chelating groups. This regenerable resin has a boron sorption capacity of 1.93 ± 0.04 mMol/g in 

aqueous solution with equilibrium boron concentration of ~70 mM, which is 66% percent larger 

than that of standard commercial STY-DVB resins. The overall results of our studies suggest that 

crosslinked branched PEI beads provide versatile and promising building blocks for the 

preparation of reusable boron-chelating resins with high binding capacity. 

 

Experimental Methods and Procedures 

 

Chemical and Materials 

Reagent grade chemicals were used to synthesize all the base PEI beads and boron-selective PEI resins 

described in this study. Reagent grade (> 98 wt%) anhydrous potassium chloride (KCl), sodium chloride 

(NaCl), sodium sulfate (Na2SO4) and ACS grade (99.5%) boric acid were purchased from Alfa Aesar. 

Concentrated hydrochloric acid (12 M) was purchased from EMD. The precursor polyethyleneimine 

macromolecules (PEI) [SP-018 (molecular weight Mn = 1800) and SP-200 (Mn = 10,000)] were 

purchased from Nippon Shokubai Co., Ltd. Sulfonic 100 (branched dodecyl benzene sulfonic acid, 97%) 

was purchased from the Stepan Company. Reagent grade (≥99.0%) D-Glucono-1,5-lactone, 1-bromo-3-

chloropropane (BCP), diisopropyl ethylamine (DIPEA) and epichlorohydrin (ECH) were purchased from 

Sigma-Aldrich. Methanol, ethanol, toluene, sodium bicarbonate (NaHCO3), calcium chloride dihydrate 

(CaCl2-2H2O), magnesium chloride hexahydrate (MgCl2-6H2O), and sodium hydroxide (NaOH) were 

purchased from Mallinckrodt Chemicals. Deionized (DI) water was obtained from a Milli-Q filtration unit 

(minimum resistivity 18 MΩ). All chemicals were used as received. The commercial STY-DVB resin 

Amberlite IRA-743, which was specifically designed to remove boric acid and borate from aqueous 

solutions, was purchased from the Dow Chemical Company (Midland, MI, USA). 

 

Resin Synthesis 

All base PEI beads (BPEI-1 and BPEI-2) were synthesized using an inverse suspension of water-in-

toluene stabilized by a surfactant. (Figure 1). The base PEI beads were functionalized, respectively, with 

2-oxiranylmethanol and glucono-1, 5-D-lactone to produce two new boron-selective resins (BSR-1 and 

BSR-2) with boron-chelating groups (Figure 1). 
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Resin Characterization 

 

The boron-selective PEI resins (BSR-1 and BSR-2) were characterized using a broad range of analytical 

techniques/assays including (i) FT-IR spectroscopy, (ii) scanning electron microscopy (SEM), (iii) 

particle size distribution (PSD) analysis and (iv) measurements of water and amine contents. The FT-

IR spectra were acquired using a Bruker VERTEX 70/70v FT-IR spectrometer with potassium bromide 

(KBr) pellets and OPUS software for data processing. All of the reported IR spectra represent averages of 

more than 100 consecutive scans.  The SEM images were acquired using a Zeiss 1500VP field-emission 

scanning electron microscope (FESEM). Prior to imaging, each resin sample was coated with a 

conducting 20 nm graphite film. The average diameter of the BSR-1 beads was determined using the 

ImageJ software.[13] The mean diameter of the BSR-2 beads was measured using a Malvern Hydro 2000S 

particle size analyzer. 

The water content of each resin was determined by drying a 2 g sample of media in a dessicator at 

ambient temperature under vacuum and recording its weight until it remained constant. The free base 

capacity (amine content) of each resin was determined by performing a Mohr titration as described in 

ASTM 2187 sections 100-109.[14] In a typical titration experiment, 4 g of resin was mixed with 10 mL of 

deionized water. The resin slurry was packed in a graduated cylinder and allowed to equilibrate for 1 h. 

The bed volume (BV) of the resin was then measured. Subsequently, the resin slurry was packed in a 

fritted glass column and filled with 1 L of 1.2 M HCl. The acid was passed through the sample at the rate 

of 20 to 25mL/min, keeping the samples submerged in acid at all times. Following this, the liquid was 

drained to the level of the samples and the effluent liquid was discarded. The column was then washed 

with 600-750 mL of ethanol until a 10 mL portion of the effluent mixed with 10 mL of water achieved a 

constant pH >3.9. The chloride ions bound to the protonated amine groups of the resins were then eluted 

out with a 1 L of 2.0 wt% solution of sodium nitrate (NaNO3). Following this, the concentration of 

chloride in the effluent was measured by titrating 100 mL of the effluent solution with a solution of silver 

nitrate (AgNO3). The total amine content [TAC] (meq/mL) was expressed as: 

    

   TAC = V × N × DR/BV            Eq. 1 

where V and N are, respectively, the volume (mL) and normality (meq/mL) of the AgNO3 

solution, BV (mL) is the volume of the swollen resin and DR is the dilution ratio, which is equal 

to 10 in this case.   

 

Boron Sorption onto Pristine Resins 
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To evaluate the performance of our new boron-selective resins, we carried out batch studies to measure 

their sorption capacity in deionized (DI) water and model electrolyte solutions. Batch sorption studies 

were carried out to measure the boron sorption capacity of the pristine BSR-1 and BSR-2 resins in DI 

water, 0.1 M NaCl solution and a model seawater reverse osmosis (RO) permeate. To benchmark the 

performance of the BSR-1 and BSR-2 resins, we also measured the boron sorption capacity of the 

commercial IRA-743 resin in DI water. Boron sorption onto each resin was measured by mixing known 

quantities of dry resin mass, m, with aqueous solutions containing varying concentrations of boron at 

ambient pH. Following equilibration of the vials for 24 hours, the amount of boron sorbed onto the resin 

(qsorbed) [millimoles of boron per g of resin] was determined using the equation given below: 

   qsorbed = (Cbi – Cbf)/(1000×m)    Eq. 2  

where Cbi and Cbf are, respectively, the initial and final amounts of boron (mM) in solution measured by 

titration against 0.05N NaOH and m is the dry-mass of resin per 50 ml solution. Congruence of initial 

boron concentrations, Cbi°, and those experimentally measured by the titration method, Cbi, within 0.5-3% 

in the range Cb > 2 mM confirmed accuracy and precision of this method.[8] The errors in measurements 

increased in the lower concentration limit. For this purpose (excess) 10 mL of 0.5 M mannitol solution 

was added to the analyte, Vanalyte = 1 ml, obtained from the supernatant from each equilibrated solution. 

Excess mannitol ensured binding of the dissolved boron thereby releasing H3O
+.[8] Subsequently, in 

presence of phenolphthalein (indicator), the solution was titrated against  0.05M NaOH solution until it 

became and remained pink for more than 30 seconds. Concentration of boron in the supernatant solution, 

Cbf, after equilibration was calculated using the normality equation as: 

   Cbf = VNaOH × NNaOH / Vanalyte               Eq. 3 

 

where VNaOH and NNaOH  are, respectively, the volume (mL) and normality (mEq/L) of the NaOH solution.  

Boron Sorption onto Regenerated Resins 

We also carried out batch studies to measure the boron sorption capacity of the BSR-1 and BSR-2 resins 

following one regeneration cycle to assess their regeneration potential. In a typical experiment, 1 g of 

resin (dry-weight equivalent) was packed in a fritted glass column and eluted with a 50 mM of boric acid 

solution until the effluent concentration was equal to the feed concentration. The resin was regenerated by 

elution with a 1.0 M HCl followed by neutralization a solution with 0.1 M NaOH. Similar regeneration 

conditions were employed in previous studies of boron-selective resins. [9-10, 12] Each regenerated resin 

was subsequently washed with DI water until the pH of the rinse water achieved remained constant. The 
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neutralized resins were collected by filtration over a Büchner funnel. Batch sorption studies were 

subsequently carried out to measure the boron sorption capacity of the regenerated BSRs in DI water 

using the procedures described above. 

Results and Discussion 

 

Synthesis and Characterization of Boron-Selective PEI Resins 

Boron-selective resins (BSRs) such as the commercial Amberlite IRA-743 resin are prepared by 

functionalization of crosslinked STY-DVB beads using a two-step process.[15] In the first step, 

chloromethyl groups are attached to the STY-DVB resins via a Friedel-Crafts reaction involving the 

aromatic rings of the resin and an alkyl halide such as chloromethoxymethane in the presence of a Lewis 

acid catalyst. In the second step, the chloromethyl groups are reacted with N-methylglucamine to produce 

boron-chelating resins with vicinal diol groups. While the amination of chloromethylated STY-DVB 

beads is a facile reaction, which takes place in high yield, extensive side-reactions including the 

secondary crosslinking the aromatic rings of STY-DVB beads via “methylene bridging” occur during 

chlomethylation.[15, 16] This reduces the number of functional sites available for amination and, as a result, 

STY-DVB resins with N-methylglucamine groups such as the Amberlite IRA-743 resin have a limited 

capacity with a maximum free base of 0.7 eq/L. In our efforts to develop boron-selective resins (BSRs) 

with higher binding capacity than those of commercial STY-DVB resins, we selected branched 

polyethyleneimine (PEI) as precursor both for its high content of reactive primary/secondary amine 

groups and availability from commercial sources.[7, 17, 18] The new BSRs were prepared using a two-step 

process as illustrated in the reaction schemes shown in Figure 1. During the first step, two branched PEI 

macromolecules [with molar mass (Mn) of 1800 and 10,000 Da] were, respectively, crosslinked with 

epichlorohydrin and a mixture of epichlorohydrin (ECH) and 1-bromo-3-chloropropane (DCP) to afford 

spherical beads using the inverse suspension process described by Chang et al.[19] In the second step, the 

PEI beads [prepared using the PEI precursors with Mn= 1800 and 10,000 Da] were functionalized, 

respectively, with 2-oxiranylmethanol and glucono-1,5-D-lactone to prepare two new boron-selective 

resins (BSR-1 and BSR-2) with boron-chelating groups. These new resins were characterized using a 

broad range of analytical techniques/assays including (i) measurements of water and amine contents, (ii) 

FT-IR spectroscopy, (iii) SEM imaging and (iii) particle size distribution analysis.  

 

Table 1 lists the total amine contents (TAC) of the BSR-1 and BSR-2 resins along with those of the base 

BPE-1 and BPE-2 beads that were, respectively, used to prepare these resins. Not surprisingly, the TAC 

of the BPE-1 and BPEI-2 resins are both equal to ~9.0 mMol/g. However, consistent with the reaction 
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schemes of Figure 1, the TAC of the BSR-2 resin (7.21 mMol/g) is lower than that of the BSR-1 resin 

(8.02 mMol/g).  Figure 2 shows the FT-IR spectra of the BSR-2 and BPEI-2 resins. Consistent with the 

reaction schemes of Figure 1, the FT-IR spectrum of the BSR-2 resin (Figure 2) exhibits some 

characteristic features of compounds with amide groups (e.g. C=O stretch at 1660 cm-1) and hydroxyl 

groups (e.g. OH stretching at 3257 cm-1). Using the ImageJ image analysis software[13] , we estimate the 

average diameter of the BSR-1 resin beads to be equal to 60.4 µm ± 11. Note that the average diameter of 

the BSR-1 resin beads is significantly lower than those of STY-DVB resin beads. The particle size 

distribution (PSD) of such commercial resin beads range from 300 m to 1200 m with a mean diameter 

of 700 m.[15] In this case, the PSD of the BSR-2 beads, which was measured using a Malvern Hydro 

2000S particle size analyzer, range from 352 m to 829 m with a volume-averaged mean diameter of 

551 m. 

 

Boron Sorption onto Selective PEI Resins 

Figure 3A shows the sorption isotherms of boron onto the BSR-1, BSR-2 and Amberlite IRA 743 resins 

in DI water. Figure 3B highlights the reproducibility of the sorption measurements. We subsequently used 

the IGOR Pro 6 [20] software to fit the sorption isotherms to a Langmuir model as given below: 

   qsorbed

KbCmaxCeq

1.0 KbCmax

             Eq. 4 

where qsorbed (mMol/g) is the mass of sorbed boron, Cmax (mMol/g) is the resin sorption capacity at 

saturation, Kb (mM-1) is the resin sorption constant and Ceq (mM) is the equilibrium concentration of 

boron in the aqueous phase. Table 2 of lists the estimated Cmax and Kb values for the BSR-1, BSR-2 and 

Amberlite IRA-743 resins. Table 2 shows that the boron sorption capacity (Cmax =1.21 ± 0.13 mMol/g) of 

the BSR-1 resin in DI water is comparable to that of a commercial resin (Amberlite IRA-743), which has 

a sorption Cmax =1.16 ± 0.03 mMol/g. Note that our estimated Cmax value for the Amberlite IRA-743 resin 

is very close to the measured value of 1.09 mMol/g reported by Xiao et al.[12] Table 2 shows that the BSR-

2 resin has a boron sorption capacity of 1.93 ± 0.04 mMol/g in aqueous solution with equilibrium boron 

concentration of ~70 mM. This sorption capacity is 66% percent larger than that of the Amberlite IRA-

743 resin. Note that Figure 3A suggests the Amberlite IRA-743 resin has a higher sorption capacity at 

lower boron concentration, i. e. ~ 2 mM. However, additional studies using more sensitive boron assays 

are needed to quantify the performance of the BSRs in aqueous solutions containing low concentration of 

boron due to the limited sensitivity of our boron detection method by titration. As a preliminary 

assessment of the selectivity of the BSR-1 and BSR-2 resins, we measured their boron sorption isotherms 

in (i) a 0.1 M NaCl solution and (ii) a simulated permeate of a seawater reverse osmosis (SWRO) 
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desalination plant. We simulated a seawater desalination RO permeateusing the software IMSDesign 

2007.[21]. Figure 4 shows a slight but consistent increase of boron uptake for the BSR-1 resin in 0.1M 

NaCl solutions compared to that in DI Water. For the BSR-2 resin, however, this increase is negligible. In 

this case, the Cmax value of the BSR-2 resin in the simulated seawater RO permeate is very close to that in 

DI water (Figure 4 and Table 2). We speculate that the increase in boron uptake by the BSR-1 in 0.1 M 

NaCl compared to that in DI is the result of two synergistic effects: (i) an increase in borate [B(OH)4
-] 

concentration with increasing solution ion strength  and (ii) borate binding to the protonated tertiary 

amine groups of the BSRs via ion pairing.[22] However, additional experiments are needed to validate this 

hypothesis. We also evaluated the regeneration potential of the BSR-1 and BSR-2 resins by measuring 

their boron sorption capacity in DI water after eluting the boron-laden resins with a 1.0 N HCl solution 

followed by a rinse with DI water and a wash with 0.1 N NaOH. Similar regeneration conditions were 

employed in previous studies of the Amberlite IRA-743 resin. [9-10, 12] We found that the boron sorption 

capacities of the pristine BSR-1 and BSR-2 resins in DI water were not affected by regeneration (Figure 5 

and Table 3).  

 

The overall results of the sorption experiments show that branched PEI beads provide versatile building 

blocks for the preparation of boron-chelating resins. As shown in Table 1, the base PEI beads have a high 

content of N groups (9.0 mMol/g) including reactive primary and secondary amine groups. Thus, they can 

be functionalized with polyols and lactones to afford resins with high densities of boron-chelating 

groups.[7, 17, 18] Based on the mechanisms of boron coordination with vicinal diol groups proposed by 

Yoshimura et al.[23], we postulate the formation of two types of boron-diol complexes in our boron-

selective PEI resins. For the BSR-1 resin, we hypothesize that the mechanism of boron coordination 

involves the formation of a tetradentate and bischelate complexes with [B(OH)4)]
- involving two hydroxyl 

groups from two different and contiguous branches of the resin (Figure 6). For the BSR-2 resin, we 

postulate a mechanism of boron coordination involving the formation of a tetradentate and monochelate 

complexes with boron/borate involving four hydroxyl groups from the same branch of a resin  bead 

(Figure 6). Note that in both coordination models, the tertiary amines of the BSR-1 and BSR-2 resins are 

not coordinated to boron (Figure 6). We postulate that these tertiary amine groups provide buffering 

capacity inside the BSR-1 and BSR-2 resins for favorable boron sorption at lower pH by binding the 

protons released by boric acid following complexation by the resin diol groups.[23] We also speculate that 

the protonated tertiary amines of the BSR-1 and BSR-2 resins could bind additional borate [B(OH)4)]
- via 

ion-pairing. Additional investigations are being conducted in our laboratory to validate the postulated 

mechanisms of boron coordination with the resin boron-specific groups (Figure 6).  
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Environmental Implications 

As previously stated in the introduction, extraction of boron from solutions is important in various 

environmental/industrial processes including (i) desalination, (ii) ultrapure water treatment and (iv) 

nuclear power generation.[1-4] In SWRO desalination plants,  several strategies have been evaluated to 

extract boron from aqueous solutions water including (i) the addition of 1-2 additional RO passes with 

high pH (~9) adjustment [24, 25]  and (ii) the utilization of enhanced membrane processes such a micellar 

enhanced ultrafiltration [24]. However, due to its ease of implementation, sorption with selective and 

regenerable resins has emerged as an efficient process extracting boron from aqueous solutions. The 

overall results of our experiments show that crosslinked branched polyethyleneimine (PEI) beads provide 

versatile building blocks for the preparation of boron-selective resins (BSRs) with high sorption capacity. 

Additional investigations are being conducted in our laboratory to optimize the physical properties (e.g. 

particle size distribution and mechanical strength) and performance (e.g. sorption capacity and 

regeneration efficiency) of our new and PEI-based boron-selective resins in environmentally relevant 

conditions, e.g. dilute electrolyte solutions containing low concentrations of boron (< 5 mM). 
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Table 1. Water and Total Amine Contents of the Boron-Selective and Base PEI Resins Evaluated in 
This Study. 
 

Resin Matrix Functional group 
Water 

Content 
(%) 

Total 
Amine 

Content 
(mMol/g) 

BSR-1 aCrosslinked PEI cis-diol 37 8.02 

BSR-2 bCrosslinked PEI pentahydroxyhexanamide 43 7.21 

BPEI-1 aCrosslinked PEI aminesa 68 ~9.0  

BPEI-2 bCrosslinked PEI aminesa 65 ~9.0  

 
aThe base PEI resins BPEI resins contain primary, secondary and tertiary amines. 

bAvailable online at http://www.amberlyst.com/literature/a4/743.pdf 
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Table 2: Estimated Sorption Capacities (Cmax) and Sorption Constants (Kb) for BSR-1, BSR-2 and 
Amberlite IRA-743 Resins in Deionized Water and Model Electrolytes. The Cmax and Kb values were 
determined by fitting the sorption isotherms to a Langmuir model (See Eq. 4). 

Resin Cmax (mMol/g) Kb (mM-1) 

BSR-1 (Deionized Water) 1.21 ± 0.13 0.13 ± 0.05 

BSR-1 (0.1 M NaCl) 1.17 ± 0.08 0.32 ± 0.11 

BSR-2 (Deionized Water) 1.93 ± 0.04 0.26 ± 0.03 

BSR-2 (RO Permeate) 2.13 ± 0.10 0.20 ± 0.03 

IRA-743 (Deionized Water) 1.16 ± 0.03 6.60 ± 2.03 

 

We subsequently used the IGOR Pro 6 software [20] to fit the sorption isotherms to a Langmuir model as 

given below: 
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Table 3: Estimated Sorption Capacities (Cmax) and Sorption Constants (Kb) for Pristine and 
Regenerated BSR-1 and BSR-2 Resins in Deionized Water. The Cmax and Kb values were determined 
by fitting the sorption isotherms to a Langmuir model (See Eq. 4). 

Resin Cmax (mMol/g) Kb (mM-1) 

BSR-1 (Pristine) 1.21 ± 0.13 0.13 ± 0.05 

BSR-1 (Regenerated) 1.23 ± 0.16 0.13 ± 0.06 

BSR-2 (Pristine) 1.93 ± 0.04 0.26 ± 0.03 

BSR-2 (Regenerated) 1.92 ± 0.05 0.26 ± 0.04 
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Figure 1: Functionalization of PEI Resins with Boron-Chelating Groups.  
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Figure 2: FT-IR Spectra of the BSR-2 Resin and the Corresponding Base BPEI-2 Resin. 
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Figure 3: Boron Sorption onto the BSR-1 and BSR-2 Resins and Commercial Amberlite IRA-743 
Resin in Deionized Water at Room Temperature. 
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Figure 4: Boron Sorption onto the BSR-1 and BSR-2 PEI Resins in 0.1 M NaCl and Model Model 
RO Permeate. 
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Figure 5: Boron Sorption onto the Regenerated BSR-1 and BSR-2 PEI Resins in Deionized Water 
at Room Temperature. 
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Figure 6: Postulated Mechanisms of Boron Coordination With the BSR-1 and BSR-2 PEI Resins in 
Aqueous Solutions. These coordination models have not been validated by independent spectroscopic 
and atomistic simulation studies.  
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