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Abstract 

Vulval differentiation in C. elegans is mediated by an Epidermal 

growth factor (EGF)- EGF receptor (EGFR) signaling pathway. I have 

cloned unc-101, a negative regulator ofvulval differentiation of the nematode 

C. elegans. unc-101 encodes a homolog of AP47, the medium chain of the 

trans-Golgi clathrin-associated protein complex. This identity was 

confirmed by cloning and comparing sequence of a C. elegans homolog of 

AP50, the medium chain of the plasma membrane clathrin-associated 

protein complex. I provided the first genetic evidence that the trans-Golgi 

clathrin-coated vesicles are involved in regulation of an EGF signaling 

pathway. Most of the unc-101 alleles are deletions or nonsense mutations, 

suggesting that these alleles severely reduce the unc-101 activity. A hybrid 

gene that contains parts of unc-1 01 and mouse AP4 7 rescued at least two 

phenotypes of unc-101 mutations, the Unc and the suppression of vulvaless 

phenotype of let-23(sy1) mutation. Therefore, the functions of AP47 are 

conserved between nematodes and mammals. 

unc-101 mutations can cause a greater than wild-type vulval 

differentiation in combination with certain mutations in sli-1, another 

negative regulator of the vulval induction pathway. A mutation in a new 

gene, rok-1, causes no defect by itself, but causes a greater than wild-type 

vulval differentiation in the presence of a sli-1 mutation. The unc-101; rok-1; 

sli-1 triple mutants display a greater extent of vulval differentiation than any 

double mutant combinations of unc-101, rok-1 and sli-1 . Therefore, rok-1 

locus defines another negative regulator of the vulval induction pathway. 

I analyzed a second gene encoding an AP4 7 homolog in C. elegans. 

This gene, CEAP47, encodes a protein 72% identical to both unc-101 and 
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mammalian AP47. A hybrid gene containing parts of unc-101 and CEAP47 

sequences can rescue phenotypes of unc-101 mutants, indicating that UNC-

101 and CEAP47 proteins can be redundant if expressed in the same set of 

cells. 
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CHAPTER I. INTRODUCTION 
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I. C. elegans as an experimental system for studying developmental 

biology 

Developmental biology deals with one of the ultimate questions in the 

biological science: how a single-celled egg develops into a perfectly organized 

adult that has many types of differentiated cells, tissues, and organs? Many 

experimental organisms have been studied to elucidate the mystery of 

development: the nematode C. elegans is one such organism. 

C. elegans is a free-living soil nematode found all around the world (Wood, 

1988). Several aspects of the biology ofthis nematode make it an excellent 

experimental organism for research in developmental biology. Development 

of C. elegans is rather simple and invariant. That is, development of one 

individual organism is essentially identical to that of any other individual, 

making it easy to observe developmental phenomenon reproducibly in 

different individuals. Cell division timings and patterns are almost always 

invariant, so that every cell division event and its resulting daughters can be 

easily observed. Indeed, a complete cell lineage map starting with a single­

celled fertilized egg has been established. In addition, C. elegans is 

transparent, permitting us to visualize every cell under high power 

microscopes such as N omarski microscopes. 

To establish its invariant cell lineages, C. elegans utilizes both cell­

autonomous and intercellular signaling. Signaling between cells or tissues is 

prevalent in the development of higher organisms, and may be studied more 

easily in this less complex system. For example, differentiation of vulval 

precursor cells into vulval cells requires an inductive signal from outside of 

the precursor cells, as discussed below. One can study cell-cell interactions in 
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vivo using C. elegans cell ablation technique(Sulston and White, 1980). Any 

single cell can be removed by use of a laser microbeam, and the consequence 

of the absence of this particular cell in the development process can be 

observed and tested. 

Genetics can be carried out with relative ease with C. elegans 

(Brenner, 1974). C. elegans has two sexes; hermaphrodites and males. Self­

fertilization by the hermaphrodites is the most common means for 

reproduction, but males can mate with hermaphrodites to make cross 

progeny. This aspect facilitates genetic experiments using C. elegans, as 

both self-fertilization and cross-fertilization can be used in constructing 

strains and genetic mapping. Adult animals are about 1 mm long, and feed 

on bacteria such as E. coli, making culturing a good number of strains 

relatively easy. Due to the short life cycle time(~ 3.5 days), one can carry out 

an· F2 screen in one week. Many phenotypes can be observed using a 

dissecting microscope, simplifying a mass screen of mutations of interest. For 

example, one can screen 10,000 worms for particular mutants in minutes to 

hours using dissection microscope. Mutagenesis can be carried out on a large 

scale using different kinds of mutagens as well as ethyl methane 

sulfonate(EMS) (Moerman and Baillie, 1981, Rosenbluth, et al., 1985, 

Stewart, et al., 1991),. C. elegans has five sets of autosomes and one set of 

sex chromosomes, thus genetic mapping of mutations is relatively easy. Also, 

duplications and deficiencies are available for fine mapping in many regions 

of each chromosome (Herman, et al. , 1979, Johnsen and Baillie, 1991, 

Rogalski, et al., 1982, Sigurdson, et al., 1984). Many genetic tools such as 

suppression experiments and epistasis experiments, can be used to study 

interactions of genes involved in particular developmental processes (A very 
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and Wasserman, 1992, Brenner, 1974, Hodgkin, et al., 1987, Wood, 1988). In 

suppression experiments, one can isolate mutations that suppress a mutation 

that causes a certain phenotype. For example, let-23 loss-of-function 

mutations cause a vulvaless phenotype, thus a defect in egg-laying, and these 

mutations can be used in a screen in which one looks for animals that can lay 

eggs. These animals are expected to carry another mutation that suppress 

the vulvaless phenotype of let-23 mutations (Jongeward and Sternberg, 

1993). In epistasis experiments, one can deduce which gene acts upstream or 

downstream of a particular gene involved in the same genetic pathway. For 

example, mutations in many loci cause a vulvaless phenotype, and mutations 

in other loci cause a multivulva phenotype. One can determine the hierarchy 

of genes in this pathway by constructing double mutants carrying a vulvaless 

mutation and a multi vulva mutation and observing the phenotype of the 

double mutant animals (Avery and Wasserman, 1992, Ferguson et al., 1987, 

Hodgkin et al., 1985). Genetic mosaic analysis can be carried out using 

duplications or transgenes to elucidate the focus of action of particular genes 

(Herman, 1984, Herman, 1987, Herman, 1989, Schedin, et al., 1991, Siddiqui 

and Babu, 1980). 

The molecular biology of C. elegans has been greatly pursued in the 

last few years. The genome size of C. elegans is about 1x 108 bases, which is 

only five times of the yeast genome. The C. elegans genome project has 

focused on the physical mapping and sequencing of the entire genome of the 

animal. So far, an almost complete physical map defined by overlapping and 

ordering YACs and cosmids covers about 97% of the genome, and is available 

through a database called ACEDB (A C. Elegans Data Base) (Coulson, et al., 

1991, Coulson, et al., 1988, Coulson, et al., 1986). A hybridization filter 



5 

containing YACs that cover the genome is available, and can be used to find 

physical map positions of cloned pieces of DNA. Furthermore, the physical 

map is well correlated with the genetic map, making it possible to clone 

genes which are only known by their genetic map positions, or to map genes 

which were identified by molecular methods. Cloning of genes known by 

their mutations is facilitated by transgenic animal techniques (Fire, et al., 

1990, Mello, et al., 1991). Transgenic animals are constructed using 

microinjection of a DNA of interest into the gonad of adult hermaphrodites, 

whose developing germ cells take up the DNA and inherit it to their progeny. 

The phenotype of the resultant progeny are tested for rescue of the phenotype 

by the presence of extragenic copies of injected DNA. Transposon tagging 

and polymorphism mapping using transposons can also be utilized to 

facilitate cloning of the genes ofinterest (Emmons et al., 1983, Moerman and 

Waterston, 1984). There are two different wild-type strains of C. elegans: the 

Bergerac strain and the Bristol strain. The Bergerac strain has many copies 

of the Tel transposons (-300 copies) actively transposing around the genome, 

whereas the Bristol strain has fewer copies of the transposon, which are 

inactive (Emmons, 1988). A Bergerac strain can be used to obtain mutations 

in a gene of interest by F2 screens or by Fl non-complementation screens 

(transposon tagging) (Moerman and Waterston, 1984). lin-3 was cloned using 

this method (Hill and Sternberg, 1992). Another way to utilize these two 

different strains is to make heterozygotes with one set of transposon-rich 

chromosomes marked with certain marker mutations, and one set of 

transposon-poor chromosomes marked with different marker mutations, and 

then to look for transposons closely linked to a gene of interest by making 

recombinants and using inverse PCR techniques (Ochman, et al., 1988, 
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Ruvkun, et al., 1989). One can map these transposon polymorphisms 

genetically and physically to correlate the genetic and physical mapping 

position ofthe gene ofinterest and the polymorphisms. unc-101 was cloned 

using this technique (Chapter 2). 

Many genes molecularly analyzed in C. elegans have homologs in other 

organisms (e.g., Aroian et al., 1990, Chen et al., 1993, Chisholm, 1991, Clark 

et al., 1993, Clark et al., 1992, Greenwald, 1985, Han et al., 1993, Han and 

Sternberg, 1990, Hill and Sternberg, 1992, Kenyon and Wang, 1991, Lochrie 

et al., 1991, Miller et al., 1993, Shackleford et al., 1993, Yochem et al., 1988), 

thus studying C. elegans homologs will help us understand aspects of 

development in higher organisms. Also it is possible that many genes will be 

more easily identified and analyzed in C. elegans, as compared to other 

higher organism. This hopefully will lead to the discovery of new genes 

essential for development of higher organisms including humans. 

II. Vulval differentiation in C. elegans and genes involved in the 

vulval induction pathway. 

One typical phenomenon in the development of multicellular 

organisms is that of 'induction', where developing cells receive signals from 

other cells to acquire an ability to undergo a particular developmental fate 

(Gurdon, et al., 1989, Hart, et al., 1990, Jessell and Melton, 1992, Smith, 

1989, Sternberg and Horvitz, 1989, Zipursky, et al., 1992). This process 

requires the production of a signal, a signal transduction cascade within 

responding cells, and possibly other regulatory events from the surrounding 

environments. The development of the vulva in the nematode C. elegans 

provides an excellent system for studying both in vivo and in vitro signal 
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transduction and its regulation in an induction process. 

Differentiation of the vulva : overview 

Hermaphrodites and males of C. elegans are similar in terms of general 

structure and anatomy, but they have different reproductive organs. Males 

produce sperm as gametes, and have specific structures for copulation in 

their tails, called spicules and rays. Hermaphrodites do not have spicules nor 

rays, but they produce both oocytes and sperm, allowing for self-fertilization. 

For laying eggs, hermaphrodites have a vulva, which is also used for 

copulation with males to produce cross progeny. The vulva is not an essential 

organ for viability, because animals without vulvae still can self-fertilize their 

oocytes and sperm, and these eggs can hatch inside the mother, eventually 

making their way out of the mother. 

In wild-type intact animals, the vulva is composed of 22 nuclei that are 

progeny of three ventral hypodermal vulval precursor cells (VPCs) called 

P5.p, P6.p, and P7.p (figure 1). Three other ventral hypodermal cells, called 

P3.p , P4.p, and PS.p, which normally divide once and fuse with the 

hypodermis, can produce vulval cells in some cases as discussed below. These 

six cells are collectively referred to as vulval precursor cells (VPCs) because 

they all have the potential to become vulval cells. The cell lineage generated 

by the progeny ofP6.p and either P5.p or P7.p, which normally give rise to 

vulval cells, are different. The P6.p cell undergoes two rounds oflongitudinal 

divisions to produce four grand daughters that all divide transversely (this 

pattern of division is called 'TTTT'), thus producing 8 nuclei. The P5.p or the 

P7.p cell undergoes two rounds oflongitudinal divisions to produce four grand 

daughters, one ofwhich does not divide, one ofwhich divides transversely, 

and two ofwhich divide longitudinally (this pattern is referred to as NTLL), 
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ending up with 7 nuclei. The P3.p, P4.p, and P8.p cells undergo only one 

round of cell division to give rise to two daughters that fuse with the 

hypodermis. The celllineage ofP6.p is considered the 'primary' fate because 

when the P6. p cell is ablated by a laser micro beam early enough in the 

development, a neighboring cell migrates in and generates the P6. p cell 

lineage (Stemberg and Horvitz, 1986, Sulston and White, 1980). The lineage 

ofP5.p or P7.p is considered the 'secondary' fate because when these cells are 

ablated, neighboring cells (P4.p, or P8.p) will adopt the cell lineage ofP5.p or 

P7.p, respectively. The P6.p cell does not adopt a secondary fate when P5.p 

or P7.p is ablated. If all three cells ofP5.p, P6.p, and P7.p are ablated, the 

other three VPCs, P3.p, P4.p, and P8.p, can replace them to produce a 

functional vulva. The cell lineage ofP3.p, P4.p, and P8.p are considered the 

'tertiary' fate. 

One of the reasons why vulval development is fascinating for studying 

developmental biology is that this process requires a signal from outside of 

the precursor cells, exemplifying the phenomenon of induction (Figure 2). 

The anchor cell (AC) in the somatic gonad is necessary and sufficient to 

induce the differentiation ofvulval cells (Kimble, 1981, Sulston and White, 

1980) When the anchor cell is ablated before any division of the VPCs occur, 

all six VPCs undergo the tertiary fate and fuse with the hypodermis (Figure 

3B). When the entire gonad except the anchor cell is ablated, a normal vulva 

is induced (Figure 3C). Mter these cell biological observations of the vulval 

induction, genetic analysis ofvulval induction mutants was the next step to 

study this phenomenon. Many genes have been identified by their mutant 

phenotypes associated with vulval development (Figure 4) (Ferguson and 

Horvitz, 1985, Horvitz and Sulston, 1980, Sulston and Horvitz, 1981). 
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Vulvaless (vul) genes such as lin-3, let-23, lin-2, lin-7, and lin-10 were 

identified because loss-of-function mutations in any of these genes resulted in 

a vulvaless (Vul) phenotype where fewer than three VPCs are induced. 

Multivulva genes such as lin-15 and lin-1 were identified because loss-of­

function mutations in these genes resulted in a multivulva phenotype where 

more than three VPCs are induced to become vulval cells. Other genes such 

as lin-45, unc-101, sem-5, let-60, and sli-1 were identified via reverse genetics 

or suppression genetics (Han, et al., 1990, Han, et al., 1993, Jongeward and 

Sternberg, 1993) (Beitel, et al., 1990, Clark, et al., 1992). These genes 

involved in vulval induction have been placed in a genetic pathway by 

epistasis analysis (Figure 5). Molecular analysis of the genes in vulval 

induction revealed a basic similarity of the vulval induction pathway to a 

mammalian epidermal growth factor(EGF)- EGF receptor (EGFR) signal 

transduction pathway (table 1). The following sections will describe genetic 

and molecular characteristics of genes involved in vulval development. 

lin-3 encodes the signal for vulval induction. 

lin-3 is a gene required for vulval induction because reduction-of­

function mutations of lin-3 result in a vulvaless phenotype in which fewer 

than three VPCs are induced to generate vulval cells (Ferguson and Horvitz, 

1985, Ferguson, et al., 1987, Horvitz and Sulston, 1980, Sulston and Horvitz, 

1981). Epistasis experiments suggested that lin-3 acts before let-23 and let-

60, genes required for vulval induction (Aroian and Sternberg, 1991, 

Ferguson, et al., 1987, Han and Sternberg, 1990). As discussed below, let-23 

encodes a homolog of Epidermal Growth Factor Receptor (EGFR), and lin-3 is 

the only vulvaless gene acting upstream of let-23, making lin-3 a good 
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candidate for the signal from the anchor cell. The lin-3 gene was cloned by a 

transposon tagging method (Hill and Sternberg, 1992). The molecular 

analysis of the lin-3 gene revealed that lin-3 encodes a protein with an 

extracellular domain similar to an Epidermal Growth Factor (EGF) motif 

(Carpenter and Cohen, 1990, Hill and Sternberg, 1992). When the lin-3 gene 

is overexpressed by extrachromosomal transgene, the transgenic animals 

display a gonad-dependent multivulva phenotype. The lin-3 transgene 

cannot cause a multivulva phenotype in the absence offunctionallet-23, 

indicating that lin-3 acts via let-23. The lin-3::lacZ fusion gene is expressed 

only in the anchor cell at the time of vulval induction. In the transgenic 

animals carrying a heatshock construct that allows for production of a 

secreted form of the Lin-3 protein, more than three VPCs undergo vulval 

differentiation in the absence of the entire gonad including the anchor cell. 

Therefore, the secreted form of the Lin-3 protein is sufficient to induce vulval 

fate (R. Hill, W. Katz, and P. Sternberg, in prep). When a VPC is isolated by 

ablation of all other VPCs in the heat-shocked animals carrying the 

heatshock construct of lin-3 , the VPC adopts either a primary or secondary 

fate, indicating that the EGF motif itself is capable of inducing both the 

primary and secondary fate of the VPCs (R. Hill, W. Katz, and P. Sternberg, 

in prep.). Those results, taken together, indicate that lin-3 encodes the signal 

for vulval induction made by the anchor cell. 

let-23 encodes a putative receptor for the signal. 

let-23 is a complex locus that is required in at least five different 

tissues, including the vulval cells (Aroian and Stemberg, 1991). let-23 

function is required for the proper induction of vulval cells. Complete loss-of-
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function of let-23 results in lethality and a vulvaless phenotype in which no 

VPCs are induced . Thus, let-23 activity is required for vulval induction. 

Also, a gain-of-function mutation of let-23 results in excessive vulval 

induction (W. Katz and G. Lesa, per. comm.). However, let-23 is also thought 

to be required for some sort of negative regulation of vulval induction, 

because certain alleles (for example nl 045) whose activity is between null 

and wild type can cause a hyperinduction of vulval cells so that more than 

three cells are induced to generate vulval cells (Aroian and Sternberg, 1991). 

Therefore, let-23 plays two opposite roles in vulval induction. 

let-23 was cloned by correlating the genetic and physical maps of its 

region (Aroian, et al., 1990). Molecular analysis of let-23 showed that it­

encodes a putative receptor tyrosine kinase of the EGFR family (Aroian, et 

al., 1990, Schlessinger and illlrich, 1992). Unlike the lin-3 transgene, the 

let-23 transgene does not cause any multivulva phenotype (Aroian, et al. , 

1990). Thus, it is conceivable that let-23 is not a limiting factor in this 

pathway, and that lin-3 is a limiting factor. It is possible that in the let-23 

transgenic animals, more LET-23 proteins can not be activated due to limited 

quantities of the LIN -3 protein. Another possibility is that although the 

transgene is present as multicopy, they cannot be overexpressed, or if they 

can. be overexpressed, they can not be activated, because of the presence of 

negative regulators of let-23 expression. 

Mosaic analysis using the fusion of a let-23 transgene and a free 

duplication (sDp3) bearing a cell-autonomous marker (nel-l) suggests that 

let-23 is required in the VPCs for vulval induction (M. Koga and Y. Oshima, 

personal comm.), consistent with the idea that let-23 encodes a receptor for 

the signal. 
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Molecular analysis of mutations associated with let-23 alleles showed 

that mutations in the kinase domain or ligand binding domain result in 

severe reduction of let-23 function, and that two less severe mutations 

bearing C-terminal truncations result in tissue-specific defects (Aroian, et al., 

1993) . Specifically, let-23(sy1) is a mutation that results in a truncation of6 

amino acid residues at the C-terminus. let-23(sy1) causes a vulvaless 

phenotype, but does not show any lethality. let-23(sy97) is a mutation that 

alters a splicing acceptor site at the C-terminus, resulting in a shorter 

protein than let-23(sy 1) . let-23(sy97) causes both lethality and a vulvaless 

phenotype. let-23(sy1) was the mutation that was used for isolating unc-101 

mutations as a suppressor of the vulvaless phenotype (chapter 2). 

lin-2, lin-7, and lin-10: genes required for vulval induction: 

lin-2, lin-7, and lin-10 are also required for vulval induction. 

Mutations in any of these genes cause a vulvaless phenotype (Ferguson and 

Horvitz, 1985, Horvitz and Sulston, 1980). However, unlike other genes (for 

example, lin-3, let-23, let-60, and lin-45) whose loss-of function mutations 

cause a lethality, mutations in these genes do not cause any other phenotype 

than a vulval defect, suggesting that these genes are specific to the vulval 

pathway. Like let-23, some reduction-of-function alleles of these genes cause 

a hyperinduced phenotype, suggesting that these genes are also required for 

some sort of negative regulation ofvulval induction (G. Jongeward, per. 

comm.). It is not clear where in the vulval induction pathway these genes 

act, because the phenotype of mutation in let-23, sem -5 and these genes are 

all vulvaless , making epistasis analysis impossible. Now that a gain-of­

function allele of let-23 is available, it might be possible to place these gen es 
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relative to let-23 in the pathway. 

lin-1 0 was cloned and was shown to encode a novel protein (Kim and 

Horvitz, 1990). lin-2 was cloned and shown to encode a GMP kinase (R. 

Hoskins and S. Kim, per. comm.). One way in which a GMP kinase might 

work is to activate let-60 ras. The Lin-2 protein is similar to a p55 protein, a 

palmylalyated membrane protein that co-purifies with a serine kinase, and is 

predicted to contain a GLGF repeat, an SH3 domain, and a domain similar to 

yeast guanylate kinase. The function of GLGF repeat is unknown. lin-7 was 

also cloned and shown to encode a protein with a GLGF domain without any 

apparent functional domains, unlike lin-2 (J. Simske and S. Kim, per. 

comm.). 

sem-5 encodes a protein that acts as an adapter between activated 

receptor tyrosine kinase and ras activator. 

Mutations in sem-5 cause at least two phenotypes: a sex myoblast 

migration defect and a vulvaless phenotype(Clark, et al., 1992). Each of these 

two phenotypes can be obtained independently by different alleles of sem-5, 

indicating that the SEM-5 protein may have separate domains required for 

each function. In the vulval induction pathway, sem-5 is thought to act 

between let-23 and let-60, based on the epistasis and molecular analysis in 

other systems. Molecular analysis of sem-5 revealed that this gene encodes a 

protein that contains essentially nothing but one SH2 domain flanked by two 

SH3 domains. In Drosophila and mammalian cells, the SH2 domain was 

found to be responsible for binding to a phosphorylated EGF receptor, and 

SH3 domains for binding to a guanidine exchange factor for ras (Buday and 

Downward, 1993, Egan, et al., 1993, Li, et al., 1993, Oliver, et al., 1993, 
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Rozakisadcock, et al., 1993, Simon, et al., 1993), Therefore sem-5 is believed 

to mediate the coupling of receptor tyrosine kinases to Ras signaling for 

vulval induction. 

let-60, a gene downstream of lin-3 and let-23, encodes a ras homolog. 

let-60 is believed to act as a switch in the vulval induction pathway as 

loss-of-function mutations cause a vulvaless phenotype and gain-of-function 

mutations cause a signal-independent multivulva phenotype (Beitel, et al., 

1990, Han, et al., 1990). There are also dominant negative mutations in let-

60 that cause a dominant vulvaless phenotype. Epistasis experiment showed 

that let-60 acts downstream of lin-3 and let-23. Molecular cloning of this gene 

showed that let-60 encodes a ras homolog (Barbacid, 1987, Downward, 1992, 

Han and Sternberg, 1990, Lowy and Willumsen, 1993, Milburn, et al., 1990). 

The genetic conclusions about let-60 acting downstream of lin-3 and let-23 is 

consistent with its molecular nature being a ras homolog. 

A rafhomolog is involved in vulval development, and is encoded by 

lin-45. 

raf is a serine/threonine kinase involved in signal transduction 

pathways (Heidecker, et al., 1992). A C. elegans raf homolog was cloned by 

its homology to mammalian raf and was found to be encoded by lin-45, a gene 

isolated as a suppressor of a lin-15 multivulva mutation (Han, et al., 1993). 

A reduction-of function mutation of lin-45 causes a vulvaless phenotype. A 

transgene that contains a presumed dominant negative mutation in lin-45 

can cause a dominant vulvaless phenotype. Therefore, a raf kinase is 

involved in the vulval induction pathway. Epistasis experiments suggested 
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that lin-45 acts either together with or after let-60 ras. 

A MAP kinase is involved in vulval induction pathway. 

Mitogen Activated Protein (MAP) kinases are serine/threonine kinases 

that are activated by ras-mediated signaling pathways and other signaling 

pathways (Howe, et al., 1992, Kyriakis, et al., 1992, Pelech and Sanghera, 

1992). Mutations in a MAP kinase gene were isolated as suppressors of a let-

60(gain-of-function: gf) multivulva phenotype (Y. Wu and M. Han, K. 

Kornfeld, and R. Horvitz, per. comm.). A MAP kinase gene was also cloned 

by reverse genetics (M. Lackner and S. Kim, per. comm.). The gene is called 

sur-1 or mpk-1. While a let-60(gf) mutation causes a multivulva phenotype, 

the double mutation of let-60(gf) and this MAP kinase gene results in a 

largely wild-type vulval induction. Epistasis experiment shows that this gene 

likely acts after let-60. The phenotype of a single mutation of this MAP 

kinase is wild type. A hybrid construct that contains the regulatory region of 

sur-1 and a eDNA portion of the mammalian ERK2 gene can functionally 

complement a mutation ofsur-1 (Y. Wu and H . Min, per. comm.). 

lin-1, a gene downstream of lin-45, may encode a transcription factor. 

A loss-of-function mutation in lin-1 causes a gonad-independent 

multivulva phenotype. Epistasis experiments showed that lin-1 is the most 

downstream gene characterized so far in the vulval induction pathway, 

because a mutation in lin-1 can suppress the vulvaless phenotypes of lin-3, 

let-23, sem-5, or lin-45(Ferguson, et al., 1987)(Ferguson et al., 1987, Clark et 

al., 1992, Han et al., 1993, Han and Sternberg, 1990). Unlike other genes in 

the main pathway of vulval induction such as lin-3, let-23, let-60, sem-5, and 
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lin-45, lin-1 is required for preventing VPCs from adopting vulval fates. 

There is no gain-of-function mutation of lin-1 available that can test whether 

hyperactivity of this gene can act to prevent vulval induction. lin-1 was 

cloned and shown to encode a transcription factor of the Ets family (G. Beitel 

and R. Horvitz, per. comm.). 

lin-15, a negative regulator, encodes two new proteins. 

Because only three out of six VPCs are induced to generate vulval cells 

in wild-type intact animals, there must exist mechanisms to regulate proper 

induction so that only three AC-proximal VPCs are induced. One way would 

be production of limited amount of signal. The production of the signal is 

well regulated so that the signal is produced in only the anchor cell at the 

time of vulval induction, and the level of production is limited. It is also 

possible that the processing ofLIN-3 protein may be involved in the 

regulation. To get invariant development, however, the animals may need 

much more regulations. A way to make sure that only cells receiving the 

inductive signal can adopt vulval fate would be to prevent VPCs from 

adopting vulval fates in the absence of signal. One such pathway is defined 

by lin-15. 

Loss-of-function mutations in the lin-15 locus confer a gonad­

independent multivulva phenotype in which more than three VPCs are 

induced even in the absence of the entire gonad. This phenotype is 

suppressed by let-23 mutations, indicating that lin-15 acts before let-23, and 

that let-23 is negatively regulated by lin-15. The wild-type function of lin-15 

is thought to prevent activation of the LET -23 receptors in the absence of the 

signal (Huang, et al., 1993). The inductive signal is thought to override this 
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negative regulation and induce three proximal VPCs to generate vulval cells. 

As shown by mosaic analysis (Herman and Hedgecock, 1990), lin-15 acts in a 

non-autonomous manner. lin-15 is required for its function probably in the 

hypodermis that surrounds the VPCs. This result is consistent with the fact 

that let-23 encodes a receptor and lin-15 acts upstream of let-23. 

Genetically, the lin-15 locus is a complex locus that consists of two sub­

complementation groups each ofwhich complements the other. These groups 

are named class A and class B (Ferguson and Horvitz, 1989). To cause a 

multivulva phenotype, members ofboth classes should be mutated. Any 

mutations in the lin-15 (A) locus combined with any mutations in the lin-15 

(B) locus will give a multivulva phenotype. There are many other genes that 

act as either class A or class B genes. A mutation in any one of the class A 

genes can cause a multivulva phenotype in combination with a mutation in 

any of the class B genes. Therefore, lin-15(A) with other class A genes and 

lin-15(B) with other class B genes define two redundant pathways for 

negative regulation of vulval induction. 

Molecular analysis of lin-15 showed that indeed lin-15 encodes two 

functional transcripts (L. Huang et al., in prep.). These two transcripts are 

under the control of a single promoter, demonstrating a polycistronic gene in 

eukaryotes (Spieth, et al., 1993). The gene products of lin-15 do not show 

any similarity to any known proteins, including other class A or class B genes 

cloned so far. This result is not very surprising because in in vitro systems 

such as tissue culture system, cell non-autonomous genes can not be 

identified through biochemical or genetic methods. 

There are more negative regulators: unc-101, sli-1, and rok-1. 
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Another way to regulate vulval induction would be to regulate the 

EGFR signaling pathway by negative regulators within VPCs. Many such 

candidate genes, for example unc-101, sli-1 and rok-1 , have been isolated and 

characterized (G. Jongeward, personal comm., studies in this thesis). A 

combination of all these regulatory actions will ensure proper induction of 

three VPCs to generate vulval cells in intact animals. 

sli-1 and unc-101 mutations were isolated as suppressors of a vulvaless 

phenotype of certain reduction-of-function alleles of the let-23 receptor 

tyrosine kinase gene. Mutations in sli-1 and unc-101 can suppress the 

vulvaless phenotype of a let-23(sy1) mutation to a hyperinduced phenotype. 

A single mutation of either sli-1 or unc-101 does not cause any vulval defect. 

Double mutant animals for sli-1 and unc-101, however, display greater than 

wild-type vulval induction, indicating that these two genes are partially 

redundant negative regulators of the vulval induction pathway. Mutations in 

unc-101 or sli-1 do not suppress null mutations of let-23, suggesting that 

these genes cannot bypass the absence of active LET-23 receptors. Therefore, 

the roles of these genes are thought to be in the fine regulation of active 

receptors. Genetic interaction experiments suggested that these genes act 

near or at the let-23 step in the pathway (G. Jongeward and P . Sternberg, in 

prep., Chapter 2 ofthis thesis). sli-1 mutations can suppress let-23, sem-5, 

lin-2, lin-7, and lin-10 mutations, but not mutations in lin-3, let-60, or lin-

45. unc-101 mutations suppress certain alleles of let-23, lin-2, lin-7, and lin-

10 very well, and also partially suppress lin-3 and lin-45 reduction-of­

function alleles. 

Although unc-101 and sli-1 are partially redundant, it is conceivable 

that unc-101 has its own functions that are not redundant, because unc-101 
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mutations confer pleiotropic phenotypes on its own. unc-101 mutant animals 

are defective in coordinated movement (D. Riddle, per. comm.), defecation 

(Thomas, 1990), neuronal uptake of a dye (E. Hedgecock, per. comm.), male 

spicule structure (H. Chamberlin, per. comm.), and viability (Lee, et al., 

1993), suggesting that unc-101 is involved not only in the EGFR signaling 

process of vulval precursor cells, but also in other signaling process in other 

types of cells. 

sli-1 was cloned and found to encode a protein similar to a proto­

oncogene c-cbl (C. Yoon, G. Jongeward, J. Lee, and P. Sternberg, 

unpublished results). The Junction of c-cbl in the oncogenic process is not 

known. Further studies of sli-1 will extend the understanding of the role of 

the c-cbl proto-oncogene in the EGFR signaling pathway. 

unc-101 has been cloned and shown to encode a homolog of AP47, the 

medium chain ofthe trans-Golgi clathrin associated protein complex, 

suggesting that clathrin coated pits and vesicles are involved in the negative 

regulation of an EGF signaling pathway (See Chapter 2 for details). It is not 

clear whether clathrin coated pits and vesicles on the plasma membrane are 

also involved in the regulation of this pathway. Further study on coated 

vesicles in C. elegans will help extend the understanding of roles of clathrin 

coated vesicles in this signal transduction process. 

A rok-1 mutation was isolated by its phenotype of a hyperinduced 

vulva in the presence of a sli-1 mutation (Chapter 4). Because sli-1 

mutations can cause a hyperinduced phenotype with unc-101 mutations, and 

because we assumed that there are more negative regulators involved in this 

pathway, we carried out a mutagenesis where sli-1 mutant animals were 

mutagenized and animals with hyperinduced vulvae were isolated. In 
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addition to a rok-1 allele, alleles of other genes that had been expected to be 

isolated by this screen were also isolated. A single mutant for any of unc-101, 

sli-1, or rok-1 displays wild-type vulval induction. However, double mutants 

of unc-101; rok-1, rok-1; sli-1, and unc-101; sli-1 display greater than wild 

type vulval induction. Furthermore, the triple mutants of unc-101; rok-1; sli-

1 display even greater vulval induction than any of the double mutants 

mentioned above. Therefore, these three genes, unc-101, rok-1, and sli-1 

define redundant negative regulators of the vulval induction pathway. It is 

not clear whether there is any more negative regulators of vulval induction 

pathway as the screen using sli-1 mutant animals has not been performed to 

saturation. 

Are there any more genes involved in vulval induction? 

Basically, the vulval induction pathway is an EGF-EGFR signaling 

pathway (Horvitz and Sternberg, 1991, Sternberg and Horvitz, 1991). 

Considering a parallel pathway in mammalian cells, some components that 

play important roles in mammalian pathway are still missing in the vulval 

induction pathway. For example, GAP protein, Protein Kinase C and PLC-y, 

are not implicated in the vulval induction pathway yet (Parsons, 1990) 

(Margolis, et al., 1990, Simon, et al., 1991, Troppmair, et al., 1992). It is not 

clear whether these genes are not involved in vulval induction, or their 

functions are redundant in C. elegans, making it difficult to isolate 

mutations. Or mutations in these genes might be lethal. Reverse genetics to 

obtain these genes may help understand their roles in C. elegans. 

Genetic and molecular analysis ofthe negative regulators revealed new 

components ofthis signal transduction pathway. The lin-15 gene encodes 
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novel proteins (Huang, et al., 1993), and unc-101 being a clathrin adaptor 

protein (Chapter 2) serves as the first genetic evidence that the trans-Golgi 

clathrin-coated vesicles are involved in the negative regulation of the EGFR 

signaling pathway. sli-1 cloning revealed a new proto-oncogene as a 

component of this signal transduction pathway. It would not be surprising if 

new genes involved in the vulval induction pathway encode novel proteins. 

Further genetic screens and analysis using newly identified genes such as 

unc-101, sli-1, and rok-1, will likely identify more genes regulating the vulval 

induction pathway. 

III. Clathrin coated vesicles 

unc-101, a negative regulator of the vulval induction pathway, encodes 

a homolog of AP4 7, the medium chain of the trans-Golgi clathrin-associated 

complex AP-1 (Chapter 2). This is the first genetic evidence that trans-Golgi 

clathrin coated pits and vesicles are involved in negative regulation of the 

EGF signaling pathway. In this section I summarize the structure and 

function of clathrin coated vesicles and their associated protein complexes 

(APs). 

Clathrin coated vesicles 

Clathrin coated vesicles are organelles that originate from the plasma 

membrane and the trans-Golgi membrane and mediate intracellular protein 

trafficking (figure 6). The clathrin coated pits on the plasma membrane is 

involved in the endocytosis of signaling receptors such as the EGF receptor, 

and constitutively recycling receptors such as the LDL receptor and the 

mannose-6-phosphate receptor (Schmid, 1992). The endocytosis of signaling 
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receptors is different from that of constitutive receptors because receptors 

such as the LDL receptors are meant to be recycled for continuous function, 

and signaling receptors such as the EGF receptors are to be degraded after 

endocytosis. The endocytosis of activated receptors can serve as a way of 

down-regulating the signaling pathway. The cytoplasmic tails of many 

receptors contain signals for internalization via clathrin coated vesicles 

(Chen, et al., 1990, Johnson, et al., 1990, Prywes, et al., 1986, Riedel, et al., 

1989, Sosa, et al., 1993). 

One of the best known functions of the coated vesicles on the trans­

Golgi is for intracellular sorting of the lysosomal enzymes (Kornfeld, 1990). 

Lysosomal enzyme sorting occurs via two routes. For some enzymes such as 

lysosomal acid phosphatase, enzymes are secreted, and then recaptured via 

plasma membrane clathrin-coated vesicles for packaging into lysosomes. For 

most enzymes, sorting occurs intracellularly via trans-Golgi clathrin coated 

vesicles after biosynthesis of lysosomal enzymes. Clathrin coated vesicles on 

the trans-Golgi collect mannose-6-phosphate receptors that recognize and 

bind lysosomal enzymes tagged with mannose-6-phosphate, and transfer 

these receptor/ lysosomal enzyme complexes to the lysosome. There are two 

kinds ofmannose-6-phosphate receptors: cation-independent mannose-6-

phosphate receptors (CIMPRs) and cation-dependent mannose-6-phosphate 

receptors (CDMPRs). CIMPR is thought to be involved in both the sorting 

mechanisms, and CDMPR is involved in only the intracellular sorting 

mechanism, although both the receptors are known to recycle between the 

Golgi and the plasma membrane. 

Coated vesicles are composed of membrane, membrane proteins for 
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trafficking, clathrin triskelia, and an associated protein complex (also called 

adaptor complex, abbreviated as APs; Figure 6). A clathrin triskelion is 

composed of three clathrin heavy chains and three light chains (Figure 7). 

The Carboxyl termini of the heavy chains are located at the center of the 

triskelion, and the amino termini form the terminal domain. The light chains 

are bound to the heavy chains at heavy chain segments about 60kD from the 

carboxy terminus. There are two types of clathrin light chains, namely LCa 

and LCb, in mammalian cells (Brodsky, 1988). 

Genes for the clathrin heavy chain have been cloned from rat, bovine, 

Drosophila, nematode, and yeast (Bazinet, et al., 1993, Kirchhausen, et al., 

1987, Payne and Schekman, 1985, Waterston, et al., 1992). It seems that 

there is only one gene for the heavy chain in these species. Two clathrin light 

chains are encoded by separate genes in mammalian cells. In addition, 

clathrin light chain genes are transcribed in different spliced forms in 

different tissues (Jackson, et al. , 1987) (Kirchhausen, et al., 1987). Neuron­

specific transcripts of both LCa and LCb have extra nucleotides due to 

alternative splicing events. Together with separate genes encoding similar 

gene products, alternative splicing is a way of offering a diversity of proteins 

with important functions . It is known that the kinase activity associated 

with the EGF receptor can phosphorylate LCa, not LCb , on its tyrosine 

residues (Gliekman, et al., 1989), suggesting that phosphorylation on LCa 

may be required for internalization of the receptors. In yeast, only one type 

of clathrin light chain is expressed (Silveira, et al., 1990). 

Clathrin-associated protein complexes (APs) 

The APs lie between the membrane proteins for transport and the 
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clathrin cage in the clathrin coated vesicles, probably interacting with both 

the proteins and the membrane. The APs are also known to promote clathrin 

assembly. While the clathrin triskelion is a common structural unit of both 

the plasma membrane and trans-Golgi membrane coated vesicles, the APs 

are the components that appear to confer specificity to the plasma membrane 

and trans-Golgi coated vesicles (reviewed in (Keen, 1990, Pearse and 

Robinson, 1990) ). 

AP-1 and AP-2 are tetramers of four different subunits (Figure 8), and 

have very similar structures. The components of the APs are different, but 

are molecularly related. AP-1, the associated complex specifically located on 

the trans-Golgi coated vesicles (Able, et al., 1988), consists of two heavy 

chains, 13' and y-adaptin, one medium chain, AP4 7, and one small chain, AP19 

(Matsui and Kirchhausen, 1990). AP-2, the associated complex specifically 

located on the plasma membrane coated vesicles, consists of two heavy chains 

of a and ~-adaptin, one medium chain, AP50, and one small chain, AP17. 

Amino acid sequences of a- and y-adaptin revealed their homology, so did 

those of 13- and 13'-adaptins, (Kirchhausen, et al., 1989, Robinson, 1989, 

Robinson, 1990). AP50 and AP47 are about 40% identical to each other 

(Nakayama, et al., 1991, Thurieau, et al., 1988). Small chains are also 

similar to each other (Kirchhausen, et al., 1991). All the genes for these 

components have been cloned from rat, mouse, or bovine tissues. a-adaptins 

are encoded by two different genes in mouse (Robinson, 1989). Although both 

of the genes are expressed in the same sets of cells, the expression level is 

different in different type of cells. Whether these two proteins have different 

functions is not known. Single genes are thought to encode all other 

components. However, it is not clear whether thorough search for additional 
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genes has been carried out for the other genes. In yeast, homologs of f3-

adaptin, small chains and medium chains have been cloned (Kirchhausen, 

1990, Kirchhausen, et al., 1991, Nakayama, et al. , 1991). In C. elegans, three 

homologs of medium chains and a homolog of y-adaptin have been cloned 

(Chapter 2, Chapter 3, and appendix, this thesis). 

Biochemical functions ofthe components are not clear, but there have 

been reports that the medium chains may have kinase activity, though 

sequence analysis did not reveal any homology to known kinases (Myers and 

Forgac, 1993, Nakayama, et al., 1991, Pauloin, 1982). 

There is a third clathrin-associated protein that is different from AP-1 

and AP-2 in terms of structure and localization (Murphy, et al., 1991) . While 

AP-1 and AP-2 are found almost ubiquitously regardless of cell types (of 

course their subcellular localization is the trans-Golgi and the plasma 

membrane, respectively), this third AP, namely AP-3, is found only in 

neuronal cells. AP-3 is not a tetramer, but a single polypeptide of 180 KD. 

AP-3 was found to be more active than the other APs in promoting clathrin 

assembly (Lindner and Ungewickell, 1992). AP-3 was cloned from rat brain 

and was shown to encode a protein essentially identical to a mouse 

phosphoprotein F1-20 whose function had not been known (Morris, et al., 

1993, Zhou, et al., 1993). Because AP-3 is found only in the neuronal cells, 

and actively promotes clathrin assembly, it is thought that AP-3 is required 

for clathrin assembly function specialized for the needs of the synapses such 

as synaptic vesicles. This gene is also subject to alternative splicing. 

Interaction of clathrin-associated protein complexes 

The interaction of clathrin-associated protein complexes within 
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themselves and with other components of clathrin-coated vesicles have been 

studied in the mammalian cells. Most biochemical studies have been carried 

out using AP-2, because AP-2 is more abundant than AP-1, is easier to purify, 

and the structures of AP-1 and AP-2 are considered similar. 

The AP complexes undergo a strong, rapid self-assembly. The 

interactions between the components of AP-1 and AP-2 within the APs are so 

strong and stable that most in vitro purification methods cannot separate 

these components. That is one of the reasons that biochemical studies on the 

roles of each component has been very difficult. A study by expressing cloned 

components and trying reconstitution experiment in different conditions are 

being carried on (T. Kirchhausen, per. comm.). Another good method for 

studying individual components of the APs is genetics in which one can study 

the consequences of mutations in each protein. 

As mentioned above, APs lie between the plasma or Golgi membrane 

and clathrin in the coated vesicles. It is conceivable that APs interact with 

membranes, receptors, and clathrin molecules. The domains of AP-2 

required for the interaction of AP-2 and clathrin is the trunk domain of AP-2 

that contains theN-terminal half of a- and 13-adaptin, and intact AP50 and 

AP17 (Peeler, et al., 1993) (Figure 8). There is a conflicting report that 13-

adaptin is responsible for this interaction (Schroder and Ungewickell, 1991). 

The ear domain of AP-2 (Figure 8), which contains C-terminal halves of a­

and 13-adaptin, is not required for this interaction (Peeler, et al., 1993). 

Interaction of APs with receptors have also been studied. Clathrin 

associated protein complexes AP-1 and AP-2 can bind the cytoplasmic tail of 

CIMPR. Tyrosine residues in the cytoplasmic tail are required for the 

interaction with AP-2, but not for AP-1, indicating that endocytosis arid 
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trans-Golgi sorting may utilize different signals. CDMPR cytoplasmic tails 

contain two signals for their rapid endocytosis: two phenylalanines and one 

tyrosine residue (Johnson, et al., 1990). It is known that the trunk domain of 

AP-2 preferentially bind activated EGF receptors(Sorkin and Carpenter, 

1993). For this interaction, phosphorylated tyrosine residues in the 

cytoplasmic region ofEGFR are required (Sorkin, et al., 1992). It is not 

known which subunit of AP-2 directly binds the receptor. The trunk domain 

of AP-2 is also capable of binding the cytoplasmic domain of lysosomal acid 

phosphatase (LAP) with high affinity (Sosa, et al., 1993). An internalization 

signal in the LAP may be tyrosine or phenylalanine residue. AP-1 is not 

capable of binding the LAP cytoplasmic tail. 

Interaction of APs with the plasma or Golgi membrane fraction also 

requires the trunk domain of AP-2 (Peeler, et al., 1993). When dissociated 

subunits of AP-2 were tested, a-adaptin, not 13-adaptin, was found to be able 

to bind the plasma membrane fraction (Chang, et al., 1993), suggesting that 

a-adaptin mediates the interaction between AP-2 and the plasma membrane. 

By analogy to the AP-2 result, it is conceivable that y-adaptin might mediate 

the interaction between AP-1 and the trans-Golgi membrane. Although it is 

not known whether there are specific receptors for the APs on the 

membranes, it is possible that there are proteins that are specifically located 

on the plasma membrane and the trans-Golgi membrane, and interact with 

AP-2 and AP-1, respectively. 

Genetic studies on the clathrin vesicle proteins 

Clathrin heavy chains have been shown to play important roles in both 

single-celled yeast and multicellular organisms such as the fruit fly. In yeast, 
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mutants deficient in a clathrin heavy chain are defective in the retention of 

the Kex2p protein in the Golgi apparatus (Seeger and Payne, 1992, Seeger 

and Payne, 1992). Kex2p protein is a protease in the trans-Golgi that is 

required for maturation of the a-mating factor. With mis-localization of 

Kex2p proteins, premature mating factors are secreted from these mutant 

cells. In addition, clathrin heavy chain-deficient yeast cells are inviable in 

some strains; in other strains that have suppressor genes, these mutants cells 

are viable, but slow growing (Lemmon, et al., 1990, Munn, et al., 1991). 

Bazinet et al. (1993) have recently found that a clathrin heavy chain gene is 

essential in Drosophila. In Dictyostelium, clathrin heavy chain-deficient cells 

display slower growth, defective pinocytosis, defective osmoregulation, and 

inability to complete the starvation-induced development cycle (Ohalloran 

and Anderson; 1992). A clathrin heavy chain was cloned in C. elegans 

(Waterston, et al., 1992), but no genetic data is available as to what roles 

clathrin heavy chains play in the nematode. There is no genetic data 

available in any system on functions of clathrin light chains. 

Deletion of yeast homologs of the small chains of the associated protein 

complexes has little effect on cell growth, protein export, or endocytosis (H. 

Phan & G. Payne, personal comm.). Similarly, the deletion of a yeast 

homolog of medium chains does not result in any obvious phenotypic 

consequences, although there might be subtle phenotypes associated with 

these mutations (S.K. Lemmon, personal comm.). On the contrary, mutations 

in the medium chain AP4 7 of C. elegans result in pleiotropic phenotypes in C. 

elegans (Chapter 2). An AP47 protein is encoded by unc-101. Mutations in 

the unc-101 gene cause behavioral and developmental defects including 

· subviability, an uncoordinated movement, a defecation defect, a male spicule 
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defect. Also, mutations in unc-101 suppress the vulvaless phenotype of a let-

23(sy1) EGFR mutation, suggesting that unc-101 is involved in the negative 

regulation of the vulval induction pathway. This is the first genetic evidence 

that clathrin-coated vesicles are involved in an EGF signal pathway. There is 

another AP4 7 homolog (called CEAP4 7) in the nematode (Chapter 4). A 

hybrid gene containing a part ofunc-101 and a part ofCEAP47 can 

complement the UNC-101 function when expressed under the control of the 

unc-101 promoter, indicating that these two proteins share some redundant 

functions. No genetic mutations for the CEAP47 gene is available, thus it is 

difficult to genetically analyze the extent of redundancy of the two medium 

chain genes. 
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Figure 1. Development ofthe vulva of C. elegans : Cell lineages ofVPCs in 

vulval differentiation. Three out of six vulval precursor cells (VPCs), P5.p, 

P6.p, and P7.p undergo vulval cell differentiation, and the other three VPCs, 

P3.p, P4.p, and P8.p, fuse with syncytial hypodermal cells. The P6.p cell 

adopts a primary fate, P5.p and P7.p, secondary fates (see the text for 

details). T indicates a transverse cell division, and L , a longitudinal cell 

division. N stands for no cell division. 
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Figure 2. Three developmental fates ofVPCs. (A) In intact animals, the 

P5.p, P6.p, and P7.p cells are induced to generate vulval cells. (B) If the P6.p 

cell is ablated by a laser microbeam, the P5.p or the P7.p cell migrates in to 

adopt 1° fate. (C) Ifthe P5.p or the P7.p cell is ablated, the P4.p or the P8.p 

cell can replace these cells. (D) If the P5.p, the P6.p, and the P7.p cells are 

ablated, the other three VPCs can replace them to generate a normal vulva. 
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Figure 3. The anchor cell is required and sufficient for vulval induction. 

(A) The anchor cell induces three VPCs to generate vulval cells. (B) When the 

anchor cell is ablated, all VPCs adopt non-vulval fates, fusing with 

hypodermal cells. (C) When the entire gonad but the anchor cell is ablated, 

VPCs still can be induced. 
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Figure 4. Mutations that disrupt wild-type vulval induction. (A) Wild-type 

vulval induction. (B) Vulvaless phenotype. Even in the presence of the 

anchor cell, no VPCs are induced. This phenotype can be caused by loss-of-

. function mutations in the genes required for signal production or genes 

responsible for receiving and transducing signals. (C) Multivulva phenotype. 

Even in the absence of the anchor cell, more than three VPCs are induced. 

This phenotype can be caused by loss-of-function mutations in the genes 

required for inhibition or negative regulation of vulval induction or gain-of­

function mutations in the genes required for responding to the signal. (D) 

Hyperinduced phenotype. More than three VPCs are induced. Vulval 

induction in this phenotype is dependent on the presence of the gonad. This 

phenotype can be caused by gain-of-function mutations in the genes required 

for the production of the signal, or loss-of-function mutations in the genes 

that are involved in negative regulation of the activated responding pathway. 
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Figure 5. Diagram of genetic pathway of vulval induction. Genes have been 

placed in this pathway by epistasis analysis and molecular analysis. lin-3 

encodes the signal for the induction. let-23 encodes a receptor tyrosine kinase 

that is likely the receptor of LIN -3 signal molecules. sem-5 encodes an 

adapter protein with SH2 and SH3 domains. let-60, and lin-45 encode ras 

and raf, respectively. lin-15 encodes two new proteins. unc-101 encodes a 

clathrin associated protein. sli-1 encodes a homolog of c-cbl proto-oncogene. 

See text for details. 
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Figure 6. Structure of clathrin-coated pits. 

Clathrin-coated vesicles are composed of membrane, receptors, clathrin 

triskelions, and the associated protein complex (AP). Clathrin-coated pits 

are found on the plasma membrane and the trans-Golgi membrane. 



41 

clathrin 

adaptor complex 



42 

Figure 7. Structure of clathrin triskelion. . (A) A triskelion of clathrin is 

composed of three molecules of clathrin heavy chain and three molecules of 

light chains. At the center of each triskelion are located theN-termini of the 

heavy chains. The light chains are bound to the arms of the heavy chains. 

(B) The triskelions form a cage oftriskelions that is a basic structure ofthe 

clathrin-coated pits. 
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Figure 8. Structure of clathrin-associated protein complex AP-1 and AP-2. 

AP-1 is the clathrin-associated protein complex located on the Golgi 

membrane, and AP-2, the clathrin-associated protein complex located on the 

plasma membrane. Each AP is composed of four subunits: two large chains, 

one medium chain, and one small chain. The trunk domain of the APs 

include an intact medium chain, an intact small chain, and theN-terminal 

regions of the large chains; the ear domains include C-terminal regions of the 

large chains. The hinge region between these two domains is subject to 

protease treatment. 
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Table 1. Summary of molecular analysis of genes involved in the 

vulval induction pathway. 
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Gene Gene product Reference 

liiV3 protein with EGF Hill & Sternberg, 1993 
motif: a signal 

let-23 EGFR homolog Aroian et al., 1990 

sem-5 SH2-SH3- SH2 adapter Clark et al., 1992 

let-60 rashomolog Han & Stemberg, 1990 

lin-45 rafhomolog Han et al., 1993 

sur-1 MAP kinase homolog Y. Wu &M. Han; Lackner 
(mpk-1) et al., per. comm. 

lin-2 G:MP kinase with R. Hoskins & S. Kim, per. 
GLGFrepeat comm. 

lin-7 protein w/GLGF repeat J . Simske & S. kim, per. 
comm. 

lin-10 novel protein Kim & Horvitz, 1990 

lin-15 novel proteins Huang et al., 1993 

sli-1 
c-cbl homolog 

C. Yoon, G. Jongeward, J. 
Lee, P. Sternberg., 
unpublished results 

unc-101 AP47 homolog Lee et al., 1993 (Chapter 2) 
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Abstract 

Our genetic analysis indicates that the unc-101 gene of the nematode 

C. elegans is required for many aspects of development and behavior, 

including negative regulation of vulval induction. We have cloned unc-101 

and found that it encodes a homolog of the mammalian AP4 7 and AP50 

proteins, medium chains of clathrin-associated protein complexes located at 

the trans-Golgi and the plasma membrane, respectively. Therefore, clathrin­

mediated events contribute to the negative regulation of vulval 

differentiation. Comparison of sequences including a full length sequence of 

a C. elegans AP50 homolog reveals that UNC-101 is most closely related to 

AP47. Mouse AP47 and nematode UNC-101 proteins are functionally 

equivalent as assayed in transgenic nematodes. We have determined 

mutations ofunc-101 alleles from various genetic screens and shown that all 

but one allele are deletions or nonsense mutations, suggesting that these 

alleles severely reduce unc-101 function. 

Introduction 

Clathrin coated pits and coated vesicles are organelles that originate 

from the plasma membrane and the trans-Golgi in eukaryotic cells and 

mediate intracellular trafficking of membrane proteins (Figure 1A; reviewed 

in Brodsky, 1988; Keen, 1990; Pearse & Robinson, 1990; Schmid, 1992). The 

main protein components in the coated vesicles are clathrin and their 

associated protein (AP) complexes. While clathrin triskelions are common 

structural units to both the plasma membrane and the trans-Golgi coated 

vesicles, the AP complexes differ in these compartments, probably conferring 

specific functions to differentially located clathrin vesicles. The trans-Golgi 
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associated protein complex AP-1 consists of two large chains, Wand y, one 

medium chain, AP47, and one small chain, AP19 (Ahle et al., 1988; Keen, 

1987; Matsui and Kirchhausen, 1990; Figure 1B). The plasma membrane 

associated protein complex AP-2 consists of two large chains, a and ~'one 

medium chain, AP50, and one small chain, AP17. While the large chains~ 

and~' are similar in sequence (Kirchhausen, 1989), the large chains a andy 

have a more diverged primary structure. Both medium chains and small 

chains are homologous to their counterparts. 

The coated vesicles of the plasma membrane are involved in the 

endocytosis of membrane proteins such as LDL receptor, transferrin receptor, 

and EGF receptor,. while trans-Golgi coated vesicles are involved in sorting of 

proteins such as lysosomal enzymes, and are also thought to be involved in 

regulated secretion (for example, Keen, 1990; Pearse & Robinson, 1990; 

Sorkin & Carpenter, 1993) . 

. Genetic analysis of a clathrin heavy chain in Saccharomyces cerevisiae 

showed that mutants deficient in a clathrin heavy chain are defective in the 

retention of the endonuclease Kex2p protein in the Golgi apparatus (Seeger 

and Payne, 1992). However, deletion ofyeast homologs of the small chains of 

the APs has little effect on cell growth, protein export, or endocytosis (H. 

Phan & G. Payne, personal comm.). Similarly, the deletion of a yeast 

homolog of medium chains does not result in any obvious phenotypic 

consequences, although there might be subtle phenotypes associated with 

these mutations (S.K. Lemmon, personal comm.). Since yeast is a single-cell 

organism and yeast clathrin vesicles and their APs may have different 

functions than those in multicellular organisms, it is useful to examine the 

functions of coated vesicles in a multicellular organism. Indeed, Bazinet et 
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al. (1993) have recently found that clathrin heavy chain is essential in 

Drosophila. 

The unc-101 mutants of C. elegans were originally identified by virtue 

of their uncoordinated movement (D. Riddle, personal comm.), and by their 

abnormal uptake of dye by sensory neurons (E. Hedgecock, personal comm.). 

We first identified unc-101 alleles as extragenic suppressors of a reduction-of­

function mutation of let-23, an epidermal growth factor receptor-like tyrosine 

kinase (G. Jongeward and P. Sternberg, in prep.). Here, we determine the 

loss-of-function phenotype ofunc-101, and provide evidence for its role in 

regulating vulval induction. We describe the cloning of unc-101, its sequence, 

and its functional equivalence with the mouse AP4 7 protein. C. elegans thus 

provides an opportunity to use molecular genetics to study clathrin­

associated protein complexes in a multicellular organism. 

Results 

Pleiotropic effects of unc-101 mutations 

unc-101 mutations have pleiotropic effects on the behavior and 

development of C. elegans. Homozygous unc-101 animals have uncoordinated 

movement. They are very sluggish, do not respond to a light touch, and tend 

to coil. unc-101 animals also display abnormal uptake of the dye fluorescein­

isothiocyanate (FITC) (E. Hedgecock, personal comm.). In wild-type animals 

six pairs of neurons in the amphid and two pairs of neurons in the phasmid 

are filled with FITC (Hedgecock et al., 1985). In unc-101 animals, one pair of 

amphid neurons stains weakly, and the phasmid neurons are generally faint 

or unstained. unc-101 mutant animals show irregularity in their defecation 
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cycle (Thomas, 1990). We have also isolated unc-101 mutations as 

suppressors of the vulvaless phenotype of let-23(sy1) hemizygotes (G. 

Jongeward and P. Sternberg, in prep.). unc-101 animals also have male tail 

defects such as abnormal ray and spicule structure (8. Emmons, H. 

Chamberlin, personal comms.). In addition, unc-101 animals are subviable, 

as about half of unc-101 animals do not survive to reach adulthood. These 

inviable animals arrest in late L1 stage, and in few cases in the L2, L3, or L4 

stages. 

Isolation of additional alleles of unc-101 

The unc-101 alleles m1, rh6, sy108, and sy161 had previously been 

recovered from independent F2 screens for the different phenotypes of unc-

101 mutations. Although they were recovered in screens for different 

phenotypes, animals homozygous for these alleles display essentially 

identical phenotypes to those described above. Since the F2 screens could 

have failed to recover null alleles of unc-101 had the null phenotype been 

lethal, we performed several genetic screens that could recover null alleles of 

unc-101 (Figure 2). 

We first screened for new alleles that failed to complement the Unc 

phenotype ofunc-101(sy108) (non-complementation screen). Null alleles can 

be isolated in this screen because some animals carrying unc-101(sy108) in 

trans to a deletion of the unc-101 locus are viable. Two alleles, sy168 and 

sy169, were recovered in a screen of 15,000 EMS-mutagenized F1 gametes. 

The phenotypes animals homozygous for these two alleles were essentially 

identical to those of other alleles. As described below, sy 168 and sy 169 are 

likely either products of gene conversion events of sy108 or the result of 
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recombination before recovery. 

We recovered sy216 by virtue of its failure to complement unc-101(rh6) 

in a similar non-complementation screen of 11,000 trimethylpsoralen (TMP)­

mutagenized gametes. Animals homozygous for sy216 arrest immediately 

after hatching without any apparent post embryonic divisions and live for 

several days before finally dying. This arrest phenotype is different from that 

associated with other unc-101 alleles, since dying homozygotes of other alleles 

arrest and die rapidly. The lethality ofunc-101(sy216) I unc-101(sy108) 

trans-heterozygotes is slightly enhanced. However, other phenotypes such as 

suppression of the let-23(sy1) mutation are not enhanced (see Methods). 

Based on the genetic and molecular analysis of sy216, we believe that sy216 

is a deletion ofthe entire unc-101locus and some essential gene(s) nearby 

(see Methods). 

The non-complementation screens described above could have missed 

some of the new mutations because about half of the progeny from 

homozygous unc-1 01 mothers die. We therefore designed another screen to 

avoid loss of new alleles due to subviability by providing a wild-type maternal 

copy ofunc-101(Fig. 2c). All animals ofthe genotype unc-101(sy108) I unc-

101(sy216) from an unc-101(sy108) I+ mother are viable. Therefore, the 

maternal copy of unc-1 01 ( +) is sufficient to rescue the inviability of any new 

allele in trans to the visible allele sy108. We recovered two EMS induced 

alleles, sy241 and sy242, from a screen of 20,000 F1 mutagenized gametes. 

sy241 animals are viable and have phenotypes similar to those of animals of 

previously identified alleles. sy242 was lost before it could be analyzed. 

We conclude that the phenotypes represented by homozygotes of viable 

alleles are those associated with strong reduction-of function or null alleles. 
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We base this conclusion on two genetic arguments. First, the frequency of 

recovery, 117,500 - 1110,000, is close to that ofloss-of-function alleles (1/2,000 

. - 1/5,000, e.g., Brenner, 1974; Greenwald & Horvitz, 1980). Second, 

homozygotes for these alleles are phenotypically indistinguishable. The 

exception to the second criterion is sy216, which is a deletion of unc-101 locus 

and adjacent gene(s). As discussed below, our molecular analysis is 

consistent with this argument. 

unc-101 is a negative regulator of the vulval induction pathway. 

In C. elegans, a signal from the anchor cell (AC) of the somatic gonad 

induces three out of six vulval precursor cells (VPCs) to generate vulval 

tissue. Proper vulval development requires genes that mediate the induction 

of vulval cells and also that prevent excessive induction. Many genes 

required for the production of vulval tissue have been genetically and 

molecularly characterized and shown to encode homologs of mammalian 

signaling molecules (lin-3, let-23, sem-5, let-60, and lin-45; reviewed by 

Horvitz and Sternberg, 1991). Reduction-of-function mutations in these 

genes result in a vulvaless (Vul) phenotype. Other genes (lin-2, lin-7, and lin-

1 0) are also required for vulval induction. There are a number of genes that 

act as negative regulators of the induction pathway. For example, loss-of­

function mutations of lin-15 cause a gonad-independent multivulva 

phenotype (Ferguson and Horvitz, 1985; Ferguson et al., 1987; L. Huang, P . 

Tzou, P. Sternberg, unpublished results). lin-15(+) activity from cells other 

than anchor cell or VPCs antagonizes the inductive signal (Herman and 

Hedgecock, 1990). 

We recovered two alleles ofunc-101 (sy108 and sy161 ) as suppressors 
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of the Vulvaless (Vul) phenotype of the weak let-23 allele, sy1 . let-23 is a C. 

elegans homolog of the epidermal growth factor (EGF) receptor tyrosine 

kinase that is involved in the development of several structures including the 

hermaphrodite vulva (Aroian et al., 1990). While mutations at the unc-101 

locus confer no defect in the extent of vulval differentiation in the absence of 

another mutation, averaging three VPCs forming vulval tissue per animal, 

several non-null mutations of let-23 are suppressed by an unc-101 mutation 

(Table 1). let-23(sy1) , the allele used in the original screen, is suppressed 

strongly. let-23(sy1) animals average one VPC per animal forming vulval 

tissue, whereas unc-101; let-23(sy1) animals are hyperresponsive to the 

signal, averaging 3.6 VPCs forming vulval tissue per animal. After ablation 

of the gonad ofthe unc-101(sy108); let-23(sy1) double mutant animals, no 

animal displayed vulval differentiation (n=7), suggesting that the vulval 

differentiation of the double mutants is still gonad-dependent and require the 

signal from the gonad as in unc-101 mutant animals (n= 6) or in wild-type . 

animals. 

A more severe, but not a null, mutation, let-23(sy12) is suppressed from 

an average of less than one to nearly three VPCs per animal forming vulval 

tissue. Another severe allele, let-23(sy97) , is suppressed but only to a very 

slight extent. In contrast to suppression of these alleles, the allele let-

23(n1045) is enhanced by an unc-101 mutation at all temperatures tested. 

For instance, at 20°, let-23(n1045) animals average 2.5 VPCs forming vulval 

tissue, while unc-101; let-23(n1045) animals average only 0.7 VPCs forming 

vulval tissue. The nature of the n1045 allele is quite complex as it produces 

multiple products, making interpretation ofunc-101; let-23 interaction 

difficult (Aroian et al. , 1993). 
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let-23 is necessary for several aspects of development (Aroian & 

Stemberg, 1991). unc-101 mutations suppress let-23 mutant phenotypes in a 

subset of these cells. Approximately 85% of let-23(sy97) animals die as L1 

larvae. This lethality is not suppressed by an unc-101 mutation (data not 

shown). Complete loss-of-function alleles of let-23 confer L1larvallethality 

on all homozygotes. Nor does an unc-101 mutation suppress the lethality of 

homozygotes for complete loss-of-function alleles of let-23. The sterility of the 

allele let-23(sy12) is partially suppressed. While all viable let-23(sy12) 

hermaphrodites are sterile, approximately 65% ofunc-101; let-23(sy12) 

animals are at least slightly fertile. 

To determine ifthe interaction ofunc-101 is limited to let-23 or ifunc-

101 mutations are capable of suppressing mutations of other genes required 

for vulval induction, we constructed a series of double mutants and examined 

their extent ofvulval differentiation (Table 1). lin-2, lin-7, and lin-10 are 

genes that act formally near let-23 and are required for vulval induction 

(Figure 3). lin-2, lin-7, and lin-10 mutants have defects exclusively in the 

vulval induction process (Horvitz & Sulston, 1980; Sulston & Horvitz, 1981; 

Ferguson & Horvitz, 1985; Ferguson et al., 1987; Sternberg & Horvitz, 1989; 

Kim & Horvitz, 1990). Strong reduction-of-function alleles of any of these loci 

cause a vulvaless phenotype with an average of 0.4 to 0.9 VPCs per animal 

undergoing vulval differentiation. unc-101 mutations can suppress the 

vulvaless phenotype of each of these mutants to an average of 3.4 VPCs 

differentiating per animal. 

lin-3 encodes a member of the EGF family of growth factors and is 

most likely the inductive signal for vulval differentiation (Hill and Sternberg, 

1992). Reduction-of-function mutations at this locus are suppressed only 
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partially by an unc-101 mutation. Specifically, lin-3(n378) homozygotes 

average less than one vulval precursor cell (VPC) per animal forming vulval 

tissue, while unc-101; lin-3(n378) double mutants average slightly more than 

two VPCs forming vulval tissue per animal (three VPCs form vulval tissue in 

wild-type animals). This partial suppression is also true for animals bearing 

the allele lin-3(e1417). 

let-60 encodes a C. elegans ras homolog. Loss-of-function mutations or 

dominant negative mutations (dn) of this locus result in lethality and a 

vulvaless phenotype (Beitel et al., 1990, Han et al., 1990, Han and Sternberg, 

1990). Dominant negative mutations of the let-60 gene are not suppressed 

by unc-101 . Neither animals of genotype let-60(dn) nor unc-101; let-60(dn) 

display any vulval differentiation. 

lin-45 encodes a raf homolog that likely acts downstream of let-60 (Han 

et al., 1993). A reduction-of-function mutation of lin-45 is partially 

suppressed by an unc-101 mutation. lin-45(sy96) animals average one VPC 

forming vulval tissue, while unc-101; lin-45(sy96) animals average 1.9 VPCs 

forming vulval tissue. 

To summarize, unc-101 mutations suppress reduction-of-function 

mutations of several ofthe genes required for vulval differentiation. We 

conclude that unc-101 is a negative regulator of vulval induction, required for 

the proper regulation ofEGF-Receptor mediated signaling (Figure 3). lin-3 

(the putative inductive signal, Hill and Sternberg, 1992) and lin-45 (Han, et 

al. 1993) are only partially suppressed. let-60 dominant negative mutations 

are not suppressed. Therefore we propose that unc-101 acts at or near the 

let-23 step. The fact that unc-101 mutations do not suppress any complete 

loss-of-function mutations for this pathway suggest that unc-101 mutations 
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do not simply lead to a bypass of this signaling pathway. 

Correlation of the genetic and physical maps near unc-101 

To clone unc-101, we correlated the genetic and physical maps around 

unc-101 by identifying and mapping transposon polymorphisms close to unc-

101 (Fig. 3). Multipoint restriction fragment length polymorphism (RFLP) 

mapping (Ruvkun et al., 1989) was used to map two transposon 

polymorphisnis, TCUNC101A and TCUNC101E, with respect to the genetic 

markers unc-75, ced-1, unc-101 and unc-59. The source of these RFLPs was 

the strain MT3618 (unc-75 ced-1 unc-59), which contains a transposon rich 

region between unc-75 and unc-59 (8. Glass, T. Gerber and R. Horvitz, 

personal comm.), relative to the unc-101 (sy108) strain, a typical Bristol 

strain. We recovered Unc-59 non Unc-75 recombinants from++ unc-

101(sy108) +I unc-75 ced-1 + unc-59 heterozygotes. By inverse PCR of 

genomic DNA from different recombinant animals (Ochman e~ al., 1988), we 

identified the flanking region of two polymorphisms, TCUNC101A and 

TCUNC101E. We found that TCUNC101A was present in the congenic 

strain, but was not present either in the+++ unc-59 or the + + unc-101 

· unc-59 recombinants, indicating that this polymorphism is to the left of unc-

101 on the genetic map. TCUNC101E was present in+++ unc-59, but not in 

+ + + unc-101 unc-59 recombinants; therefore, TCUNC101E is near unc-101 

and to the right ofTCUNC101A. 

We further mapped these two polymorphisms physically and 

genetically. By hybridization to a yeast artificial chromosome (YAC) grid 

filter (Coulson et al., 1991), we located TCUNC101A on the physical map on 

the right arm of chromosome I. TCUNC101E was located about 600 kb to the 
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right ofTCUNC101A on the same contig. To genetically map these 

polymorphisms, we recovered 75 more recombinants from the heterozygotes 

described above, and performed either Southern hybridization with 

TCUNC101E as probe or PCR with TCUNC101Eprimers. No recombination 

events were observed between TCUNC101E and unc-101, indicating that 

TCUNC101E is very close to unc-101. Using these recombinants, the relative 

genetic distance between ced-1, unc-101, and unc-75 could be more precisely 

defined. The relative frequency ofrecombination was: unc-75 (5/38) ced-1 

(12/38) unc-101 (21138) unc-59. The other 37 recombinants were recovered in 

a screen biased to detect recombination between unc-75 and unc-101 . Since 

the physical distance between the two polymorphisms is about 600 kb, and 

since TCUNC101E is inseparable from unc-101(+) marker, we proceeded to 

test genomic cosmid clones within 100 kb of TCUNC101E for the ability to 

complement the unc-101 phenotype. 

Rescue of unc-101 mutations by DNA-mediated transformation 

We identified a genomic cosmid that can rescue the uncoordinated 

phenotype ofunc-101 mutations by DNA-mediated transformation. We 

tested five cosmids within 100 kb ofTCUNC101E for their ability to rescue 

the uncoordinated phenotype ofunc-101(sy108) by introducing cosmid DNA 

as an extrachromosomal multicopy transgene (Figure 4). Only cosmid 

W05A3 was able to rescue unc-101(sy108). A 6.3 kb subclone ofW05A3, 

pJL5, is the smallest genomic fragment capable of rescuing the 

uncoordinated phenotype. The pJL5 subclone rescues at least three other 

phenotypes of unc-101(sy108): lethality, defective uptake ofFITC, and 

suppression of let-23(sy 1) vulvaless phenotype. The partial lethality of unc-
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101(sy108) was rescued in the transgenic animals carrying pJL5 (Table 2). 

The viability of non-transgenic animals is 4 7%. By contrast, 72% of the 

progeny of the transgenic parents were viable. pJL5 also suppresses the 

FITC staining defect ofunc-101(sy108) animals (data not shown). The vulval 

differentiation of the transgenic animals of genotype unc-1 01 ( sy 1 08); let-

23(sy1); Ex[pJL5] was lowered to 0.8 VPCs induced per animal (n=20), 

which is the level of let-23 (sy1) single mutant animals but unlike the vulval 

differentiation of unc-101(sy108); let-23(sy1) double mutant animals (3.6 

VPCs per animal). Therefore, pJL5 also rescues the suppression of the let-

23(sy1) mutation. We did not test the rescue of the other phenotypes 

associated with unc-101 mutations. 

Genomic and eDNA structure of unc-101 

We isolated a full length eDNA clone from a eDNA library (Barstead 

and Waterston, 1989) using the pJL2 plasmid as probe (Figure 4), and 

determined its nucleotide sequence (Figure 5A). There are three in-frame 

stop codons 5' to the putative ATG codon. Also, the 5' end of the eDNA 

sequence has seven nucleotides that are identical to the 3' end sequence of 

the trans-spliced leader sequence SLl (Krause and Hirsh, 1987) indicating 

that this eDNA has a full length coding sequence and that unc-101 is a trans­

spliced gene. A polyadenylation signal, AATAAA, is present at nucleotide 

1844. The nucleotide sequence predicts that the unc-101 gene product is a 

protein of 422 amino acids. 

We inferred the genomic structure ofunc-101 by partial genomic 

sequence data and PCR with primers specific to eDNA regions (Figure 5B). 

The unc-101 eDNA is divided into seven exons by six introns. The smallest 
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rescuing plasmid, pJL5, has 95 nucleotides 5' to the SL1 acceptor sequence. 

Physical basis ofunc-101 mutations 

To confirm our identification of the unc-101 coding region, we analyzed 

the lesions associated with unc-101 alleles. We determined the locations of 

the mutations of eight alleles ofunc-101 (Figure 5B). We determined the 

mutations by directly sequencing PCR·amplified DNA preparations from 

genomic DNA or single mutant animals (Kretz et al. , 1989). All but one 

mutation are predicted to result in truncated proteins due to either deletions 

or nonsense mutations. sy108 is a deletion of 115 nucleotides in exon 3 and 

intron 3 and an insertion of 8 nucleotides at the deletion point. sy168 and 

sy169, which were obtained in the non-complementation screen using sy108, 

were the same mutation as sy108, suggesting that these are results of gene 

conversion events, or recovery of the maternal allele. sy237, sy241, m1 and 

rh6 are nonsense mutations, encoding truncated proteins. sy237 is a G to A 

transition at the nucleotide 550, making a TGG to a TAG stop codon. sy241 is 

a C to T transition mutation at the nucleotide 1284, changing a CAA to a 

TAA stop codon. m1 is aCto T mutation at the nucleotide 1314, changing a 

CAA to a TAA stop codon. rh6 is another C toT mutation at the nucleotide 

1086, changing CAA to TAA. sy161, the only missense mutation, is aCto T 

mutation at the nucleotide 552, changing a CGC (arginine) to a TGC 

(cysteine). This arginine residue is conserved in both AP47 and AP50 (See 

results below). We were unable to amplify by PCR any genomic DNA from 

sy216 homozygotes, suggesting that this mutation is a deletion of the entire 
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gene (see Methods). 

unc-101 encodes a clathrin-associated protein. 

A database search with the translation of the unc-1 01 eDNA sequence 

indicated high similarity to two mammalian proteins, mouse AP47, the 

medium chain of the trans-Golgi associated clathrin-associated complex AP-1, 

and rat AP50, the medium chain of plasma membrane associated clathrin­

associated complex AP-2 (Fig. 7; Nakayama et al., 1991; Thurieau et al., 

1988) UNC-101 is also similar to a yeast protein, Yap54, the yeast homolog 

of AP47 (Nakayama et al., 1991). UNC-101 protein is 74% identical to AP47, 

and 42% to AP50, suggesting that UNC-101 is a homolog of the mammalian 

AP47. 

To confirm that UNC-101 is a homolog of AP47 protein, we sought to 

identify AP50 homologs in C. elegans. The C. elegans genome sequencing 

consortium has identified a eDNA encoding a homolog of AP50 (Waterston et 

al., 1992). Using this eDNA clone as a probe, we isolated three more eDNA 

clones, one of which contained a full length eDNA, and determined their 

sequences. All three are products of a single gene. One of the three eDNA 

clones had a full length coding sequence (Figure 6). The comparison of the 

amino acid sequence of this protein with those of other homologs revealed 

that this AP50 homolog protein is 81% identical to AP50 and 40-42% identical 

to AP4 7 homologs, indicating that this sequence is indeed an AP50 homolog 

(Fig. 7). Based on the extent ofthe amino acid sequence identity, we believe 

that unc-101 encodes a C. elegans homolog of AP47 protein. 

We physically mapped the AP50 homolog to the X chromosome by YAC 

grid hybridization, and identified a cosmid (T16D11) that contains the entire 
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genomic region of AP50 homolog in the middle of its insert (data not shown). 

When injected into unc-101 (sy108) animal.s, this cosmid did not rescue the 

Unc phenotype of unc-101 (sy108) animals. This negative result is consistent 

with unc-101 being a homolog of AP47, but not AP50. 

The function of AP47 clathrin-associated protein is conserved in 

mam.m.als and nematodes. 

Since the amino acid sequence ofunc-101 is similar to that ofthe 

mammalian homolog AP4 7, it is conceivable that their function has been 

conserved during evolution. To test this hypothesis, we examined whether 

the mammalian AP47 homolog can rescue the mutant phenotype of unc-101 

animals. We constructed a hybrid gene with unc-101 genomic DNA and 

mouse AP47 eDNA (Figure 8). In the mouse/ nematode hybrid construct, 298 

amino acid residues of 422 amino acids are from the mouse eDNA. We also 

constructed an unc-101 eDNA hybrid gene that is identical to the AP47 

hybrid except that it has unc-101 eDNA portion instead of AP47 eDNA. Bot h 

of these hybrid genes rescue the Unc phenotype of unc-101(sy108) animals 

(Figure 9). The level ofvulval differentiation of the transgenic unc-

101(sy108) ; let-23(sy1) animals carrying the AP47 hybrid gene was an 

average of 2 .0 VPCs per animal (n= 10), compared with 3.6 VPCs of unc-

101(sy108); let-23(sy1) animals without the transgene (n= 20), indicating that 

the suppression of the let-23(sy1) vulvaless phenotype was also rescued 

(Figure 10). Thus, mouse AP47 and C. elegans UNC-101 are not only very 

similar in sequence, but also functionally exchangeable. Rescue . of the 

lethality associated with unc-101(sy108) animals was not checked due to the 

low transmission of the transgene. 
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Discussion 

We have analyzed the C. elegans unc-101 gene genetically and 

molecularly. unc-101 mutations suppress the vulvaless phenotype ofweak 

alleles of let-23, a C. elegans EGF receptor homolog required for vulval 

induction. We have cloned the unc-101 gene and shown that it encodes a 

homolog of AP4 7, the medium chain of the trans-Golgi associated clathrin­

associated complex. We also determined a full length sequence of a homolog 

of AP50, the medium chain of plasma membrane associated complex. 

Sequence comparison clearly showed that UNC-101 is an AP47 homolog. 

This homology was confirmed by the fact that a nematode unc-1011 mouse 

AP47 hybrid gene could functionally replace the nematode unc-101 gene. For 

now, unc-101 is the only case in which mutations of the clathrin AP genes 

cause any visible phenotype. Since unc-101 mutations have pleiotropic 

phenotypes in many different tissues, and since mammalian AP4 7 and 

nematode UNC-101 are functionally interchangeable, one can study the 

function of clathrin coated vesicles in the regulation of a signal transduction 

processes. Further study ofunc-101 and homologs of other components of 

the clathrin coated vesicles on the plasma membrane and the trans-Golgi 

compartment will help understand the nature of the coated vesicles and their 

roles in a well-characterized signal transduction pathway. 

Null phenotype of unc-101 

We analyzed alleles of unc-1 01 recovered in several screens to define 

the null phenotype of this locus. We are convinced that the visible alleles 

represented by sy108 severely reduce unc-101 function for the following 
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reasons. First, the non-complementation screens we performed should be 

able to recover null alleles of unc-101 and the recovery frequency was close to 

that for typical null alleles (Brenner, 1974; Greenwald and Horvitz, 1980). 

Second, with the exception of sy216, all alleles recovered from non­

complementation screens display very similar phenotypes to the previously 

recovered alleles. The lethal phenotype of sy216 is quite different from that 

of other alleles, indicating that this lethality is due to a mutation in other 

essential gene(s) near unc-101. Supporting this possibility are the facts that 

we were unable to amplify any unc-101 genomic DNA from sy216 

homozygotes, that the rescuing cosmid could not rescue sy216 despite its 

ability to rescue the lethality ofunc-101(sy108), and that the Southern 

analysis failed to show any polymorphism in sy216 I hln1 heterozygotes 

using the rescuing cosmid as probe (data not shown), indicating that the 

deletion of sy216 is larger than 30 kb. Third, sequence analysis of the mutant 

alleles showed that all but one allele are deletions or nonsense mutations, 

encoding truncated, and probably non-functional proteins. 

The subviability of unc-101 mutant animals could be explained either 

1) by the residual function of unc-101 or 2) by the presence of a partially 

redundant homolog of AP47. This redundant homolog could be expressed at 

different levels in different individual animals, and a higher level of 

expression might take over some essential function ofUNC-101 protein, 

enabling them to survive despite loss of unc-101 . Our preliminary 

observations indicate that there is another homolog of AP4 7 in C. elegans (J. 

Lee, unpublished results). 

It is also formally possible that theN-terminal residues of the predicted 

truncated mutant proteins provide some essential function. 
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Structure and function of AP50/ AP47 proteins. 

It is not surprising that AP50 and AP4 7 sequences are similar ( 40% 

identical over 422 amino acids; Nakayama et al., 1991), since other 

components ofthe clathrin-associated complexes also are similar. 

Mammalian AP17 and AP19 small chains have 44% identity, and J3 and P' 

heavy chains show the highest degree ofidentity of84% (Kirchhausen et al. , 

1991). The exception is a andy heavy chains, which are only 29% identical. 

Given the extent of similarity between the components of the APs, it is 

conceivable that J3 and J3' chains have common functions such as binding to 

clathrin trimers, and that the medium chains and small chains have some 

specific and some common functions. In contrast, a and y heavy chains may 

have specific functions such as binding to specific membrane marker proteins 

or membrane receptor proteins. 

Amino acid residues conserved in both AP4 7 and AP50 may have 

common functions such as interaction with clathrin trimers and membrane 

components. These residues are distributed throughout the peptide 

sequence. Amino acid residues specifically conserved in either AP4 7 or AP50 

homologs may be important for their specific functions such as interaction 

with specific membrane proteins, and/or other components of their own type 

of associated complex. These residues are also scattered throughout the 

peptide sequence, making it difficult to predict the domain structure of the 

proteins. 

We have so far failed to find residues important for AP47-specific 

function. Most alleles are deletions or nonsense mutations. sy 161 is the only 

missense mutation, and it occurs at an amino acid conserved in both the 
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AP47 and AP50 proteins. To identify AP47-specific residues, more extensive 

screens for unc-101 mutations could be performed using the protocols we 

described here. 

The m1 and rh6 alleles encode proteins missing just a few C-terminal 

residues but confer identical phenotypes to other alleles. It is possible that 

the C-terminal residues are important for its function, stability, or regulation. 

Negative regulation of C. elegans vulval induction 

We have shown that unc-101 also acts as a negative regulator of 

vulval differentiation. Mutations at unc-101 suppress defects associated with 

mutations in genes such as let-23, lin-2, lin-7 and lin-10 that are required for 

specification ofvulval fates, suggesting that the wild-type function ofunc-101 

is to negatively regulate the process ofvulval induction. The loss ofunc-101 

activity in an otherwise wild-type animal confers no vulval differentiation 

defect (unc-101 homozygotes, however, do have defective vulval 

morphogenesis, resulting in an egg-laying defect), suggesting that unc-101 

acts to refine the response to the inductive signal, rather than to prevent cells 

from generating vulval cells. Consistent with this, unc-101 mutations are not 

capable of bypassing the complete lack of either the inductive signal, LET-23 

receptors, or LET-60 ras proteins, suggesting that an unc-101 mutation (and 

therefore the removal of one pathway of negative regulation) is not sufficient 

·to promote vulval fates in the absence of any inductive signal. The 

enhancement of the let-23(n1045) allele is difficult to interpret because the 

n1045 mutation results in a variety of abnormal messenger RNAs (Aroian et 

al., 1993). We suspect that some species of proteins produced might have 

inhibitory negative effect on the signal transduction (see Aroian & Sternberg, 
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1991) and that this effect is enhanced by the lack of negative regulation by 

unc-101. 

Roles of clathrin-associated complexes and unc-101 

The AP complexes are thought to drive clathrin coat formation and to 

couple the clathrin lattice with distinct membrane proteins. The core of the 

complex (Figure 1), which contains N terminal halves of large chains and the 

medium and small chains, can bind to clathrin trimers (Matsui and 

Kirchhausen, 1990; Peeler et al., 1993). The function of each component of 

AP complex is not well understood. It is possible that the medium chains 

function as regulators of the clathrin-associated protein complexes. 

Since unc-101 mutations have many different effects on the behavior 

and development of C. elegans, the wild-type UNC-101 protein has important 

functions in many different types of cells such as neurons, vulval precursor 

cells, and male spicule cells. How would UNC-101 function in these cells? 

Besides a general role in regulating membrane trafficking, one function could 

be negative regulation of receptor-mediated signal transduction as in vulval 

differentiation. The involvement of unc-101 in the let-23 pathway may be 

exhibited in some· subsets of cells such as vulval precursor cells, but it is also 

possible that unc-101 may regulate different types of receptors in other cells. 

Further genetic analysis may help reveal the full spectrum of unc-101 

interactions. 

Based on the results from the biochemical studies on coated vesicles 

and assuming that UNC-101 is a trans-Golgi clathrin-associated protein, 

there are many possible molecular mechanisms by which UNC-101 could act 

within the cells involved in the C. elegans vulval induction. UNC-101 might 
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Methods 

Strains and genetic methods 

Methods for culturing and handling the nematode and gene;ral genetic 

methods were described by Brenner (Brenner, 1974). All genetic experiments 

were performed at 20 °C. Mutagenesis protocol using trimethyl psoralen was 

provided by M. Yandell and L. Edgar (personal comm.). The standard strain 

N2 was from Brenner (1974). The alleles for examining genetic interactions 

of unc-101 were as follows: lin-3: e1417, n378 (Horvitz and Sulston, 1980); 

let-23: sy1, sy97, sy12, (Aroian and Sternberg, 1991) n1045 (Ferguson and 

Horvitz, 1985); lin-2: n768 (Ferguson and Horvitz, 1985) , e1309 (Horvitz and 

Sulston, 1980); lin-7: e1413 (Ferguson and Horvitz, 1985); lin-10: e1439 

(Ferguson and Horvitz, 1985); let-60: sy100dn (Han et al., 1990); lin-45: sy96 

(Han et al., 1993). The starting strain for identifying the polymorphisms 

associated with unc-101, MT3618 (unc-75 (e950) ced-1 (n1506) unc-59 (e261) ), 

which has a portion of chromosome I (between unc-75 and unc-59) from the 

mutator TR679 strain, was provided by S. Glass, T. Gerber and R. Horvitz. 

Tlie unc-101 alleles sequenced for localization of mutations were m1 (D. 

Riddle), rh6 (E. Hedgecock), sy108, sy161 (G. Jongeward and P . Sternberg, in 

prep.), sy168, sy169, sy241 (this study), and sy237 (J. Lee, unpublished 

results). 

Inverse PCR and mapping of the polymorphisms 

The method for inverse PCR was described by Ochman et al. (1988). 

We picked recombinants from heterozygous progeny of++ sy108 +I unc-75 

ced-1 + unc-59, and made them homozygous. We digested genomic DNAs of 
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these recombinants with Hindiii, diluted, and self-ligated them, then used 

them as templates for PCR with Tel internal primers of Hill and Sternberg 

(1992). Mter finding two polymorphisms, TCUNClOlA and TCUNClOlE, 1.1 

kb and 0.8 kb long, respectively, on an analytic agarose gel, we subcloned the 

fragments into a pBluescript vector. We used the inserts of these subclones 

as probe for physical and genetic mapping (Williams et al., 1992). We 

determined the DNA sequence of TCUNC 10 lE polymorphism and made two 

PCR primers for further mapping. 

-EPRl: 5 ' GGTGA TAGCA CCATA TGGTT CC 3' 

EPR2: 5' ATATA GTGCT GTGCG GAACT C 3' 

We designed these primers so that if the recombinants had the polymorphic 

transposon, the PCR-amplified band using either of these primers and the 

Tel internal primer would be 125 bp long, and if not, an 80 bp band would be 

amplified from EPRl and EPR2 as extending primers. 

Cosmids and C. elegans physical map 

We obtained all cosmids and the physical map data from A. Coulson 

and J. Sulston (MRC, Cambridge, UK; Coulson et al. , 1988, Coulson et al., 

1986). 

DNA -mediated transformation of unc-101 mutants 

Microinjection of cosmids or subcloned DNAs was described by Mello et 

al. (1991). We used unc-101 (sy108) animals as host strain for rescuing the 

Unc and the lethality ofthe visible allele. We co-injected unc-101 (sy108) 

animals with pRF4, which bears a dominant rol-6 mutation that results in a 

rolling phenotype. Selection of this marker phenotype facilitates selecting 
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the transgenic animals. We used unc-101(sy108); let-23 (syl) animals for 

examining the rescue of the suppression of the let-23 (sy 1) vulvaless 

phenotype. We injected these animals with the rescuing subclone pJL5 

without any other marker, because the rescue of the Unc phenotype itself 

serves as a good marker for the presence of the trans gene. 

Genomic DNA and eDNA manipulations and sequencing 

All procedures of handling genomic DNA and eDNA were as described 

(Sambrook et al., 1989). 

Sequence data analysis 

The Macvector software package ofiBI (New Haven CT.) and the 

software of the Genetics Computer Group v7.0 (Devereux et al, 1984; GCG, 

1991) was used to edit the genomic and eDNA sequences. Database search 

was performed using the BLAST program. Pileup and Prettyplot commands 

were used to generate the comparison of the amino acid sequences. 

Determination of mutations 

We m ade ten PCR primers from the intron sequences, 5' end and 3' 

nontranslated region as follows. 

INT1: TTCCG CTAAT TTTCT CCGG 

INT2: ATI'GC GTCAT TTTCA ACGG 

INT3: CGCTC CAATG ATAAA ACAC 

INT4: GCATT TI'CGC ATI'GG AGCG 

INT5: AAATG TGTTT TTCGA CTCG 

INT6: AAAAA CTAGG CCACA TCAC 
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INT7: AAGTC AGGCC ATGCC TCAA 

INT8: CATAA ATCTC ACATI GGGCA 

INT9: GAGAA TTATG TGATT TTTIG 

INT10: CTCGG CCACG GTCGT TTTI 

With these PCR primers, we could amplify all the exons and their 

flanking intron sequences. We used genomic DNA or single worms of the 

homozygous mutant in PCR to amplify the exons and their boundaries. We 

directly sequenced the amplified DNAs using the same sets of primers (Kretz 

et al., 1989). 

Construction of hybrid plasmid with unc-101 and AP47 

To construct an unc-1011 AP47 hybrid gene, we used the unc-101 

rescuing plasmid pJL2, the unc-101 eDNA subclone, and mouse AP47 eDNA 

subclone as sources for the sequences. We kept the first two introns of the 

rescuing pJL2 plasmid in this construction because pJL2 has only 95 

nucleotides 5' to the SL-1 acceptor sequence, and because expression of 

transgenes are more efficient in the presence ofintrons (e.g., Brinster et al. , 

1988, Buchman and Berg, 1988, Fire et al., 1990). We digested the rescuing 

plasmid pJL2 with Nrul and EcoRV, and purified the 7.2 kb fragment from a 

low melting point agarose gel and ligated it with the 0.9 kb Nrul/ EcoRV 

fragment from the unc-101 eDNA subclone. The resulting plasmid was the 

unc-101 eDNA hybrid gene. We made two PCR primers from the AP47 eDNA 

sequence to amplify the corresponding region of Nrull EcoRV fragment of 

unc-101 eDNA. 

47-1: 5' CGACAACTTT GTCAT CATCT A; 

47-2 : 5' ATCCA CTCTT CTCAA TGATT TIC 3' 



90 

To facilitate subcloning, we replaced three nucleotides of the 5' ends of 47-1 

and 47-2 primers with the recognition sequence ofNrul and EcoRV, 

respectively. This replacement does not change the coding amino acid. We 

ligated the amplified DNA into the pJL2 Nrull EcoRV fragment. We 

confirmed the correct reading frame by regeneration of the Nrul and EcoRV 

sites. This construct has the 5' region of unc-101 including the 5' region of 

the rescuing plasmid pJL2 and 5' coding region with two introns up to eDNA 

nucleotide 388, fused in frame to the AP47 eDNA from 389 to 1281, unc-101 

eDNA nucleotide from 1282 to the stop codon, and all the 3' untranslated 

region of unc-101. 

Assay for the rescue of the phenotypes of unc-101 animals by the 

nematode/mouse hybrid gene. 

We obtained stable lines of transgenic animals after microinjection ofthe 

hybrid gene. For the U nc phenotype rescue, we transferred five transgenic 

animals to a spot on new plates, and after given time, we photographed the 

tracks that the animals created by moving on the bacterial lawn viewed in a 

Wild M5A stereomicroscope. For the rescue of the suppression of let-23(sy 1) 

vulvaless phenotype, we examined the vulval induction of the transgenic 

animals bearing the hybrid gene in their late L3 stages using N omarski 

optics. 

Analysis of sy216 

To phenotypically examine sy216 and other unc-101 alleles, we 

constructed trans-heterozygous animals bearing sy216 / sy108. The lethality 

ofsy216/ sy108 trans-heterozygotes is enhanced. 74% ofsy216/ sy108 
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heterozygous animals are inviable compared to 45% of sy108/ sy108 animals. 

However, suppression of the vulvaless phenotype of let-23(sy1) is not 

enhanced. sy216/ sy108; let-23(sy1) animals averaged 3.6 VPCs undergoing 

vulval differentiation, which is the same level of vulval differentiation of 

sy108 I sy108; let-23(sy1) animals (n= 20, respectively). 

Since TMP is known to induce high frequency of small deletions (L. 

Edgar, personal comm.), we suspected that sy216 could be a small deficiency 

that deletes neighboring genes as well as unc-101. To address this issue 

genetically, we tested whether any of nearest genes are deleted by sy216. We 

constructed the trans-heterozygote unc-101(sy216) I eDf3. eDf3 fails to 

complement the mutations that define the nearest genetically defined loci to 

the right, unc-59, let-201, let-202, and let-203 (Figure 2A). This heterozygote 

is viable and wild-type. Therefore, sy216 does not delete the nearest 

genetically defined loci to the right. sy216 does not delete the nearest gene to 

the left, ced-1. Specifically, an animal of genotype dpy-5 + sy216 I hln1 was 

found among the cross-progeny of a + ced-1 sy216 I dpy-5 + unc-101(rh6) 

hermaphrodite mated with hln1 males. Therefore, the sy216 chromosome 

must contain a functional ced-1 gene. However, it is likely that there are 

essential gene(s) in the interval between ced-1 and eDf3, as this region is not 

saturated for lethal mutations. 

To examine the rescue of the lethality of sy216 by the rescuing cosmid 

W05A3, we used sy216 I hln1 unc-54 (h1040) heterozygotes as host for the 

transgene. hln1 is an inversion that suppresses recombination in the region 

between unc-75 and unc-59 (Zetka and Rose, 1992). We co-injected the 

W05A3 cosmid and the pRF4 marker DNAs, picked rolling F1 transgenic 

animals, and transferred twenty F2 individual animals to new plates and 
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checked their segregation of unc-54 marker. All of them segregated unc-54, 

indicating that there was no animal of genotype sy216/ sy216; [Ex W05A3 + 

rol-6]. 

To amplify genomic DNA from the sy216 I sy216 arrested animals, we 

picked two or three arrested animals, and performed PCR as described above. 

As an internal positive control, we used a set of let-23 PCR primers in the 

same PCR reactions with unc-101 primers. We tried five different sets of 

unc-101 primers, but only recovered an amplified band of let-23 genomic DNA 

from the let-23 primers. 

To detect any polymorphisms linked to sy216, we used genomic DNA of 

sy216 I hln1 heterozygotes digested with various restriction enzymes in a 

Southern hybridization with W05A3 cosmid as probe. We did not detect any 

polymorphism compared with hln1 homozygotes as control. 
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Table 1. Interaction ofunc-101 with other genes in the vulval 

induction pathway. Vulval differentiation in approximately twenty 

animals per each genotype was examined using Nomarski optics. A wild-type 

animal has three VPCs induced. Fewer than three VPCs induced result in a 

vulvaless phenotype. When more than three VPCs generate vulval tissue, a 

normal vulva and pseudovulval tissue are usually produced. 
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unc-101(.+2 unc-1 01 (_sy_1 08 2 
VPCs/animal %animals VPCs/animal % 

animals 
Genotype forming vulval wl>3 VPCs forming vulval w/>3VPCs 

tissue tissue 

+ 3 0 3 0 
lin-3(e1417) 0.8 0 1.4 0 
lin-3(n378) 0.8 0 2.1 0 

let-23(sy97) 0 0 0.06 0 
let-23(sy 12) 0.02 0 2.9 13 
let-23(sy 1) 0.8 0 3.6 44 
let-23(n1045) 15° 1.1 0 0.2 0 
let-23(n1045) 20° 2.5 10 0.6 0 
let-23(n1045) 25° 3.4 45 2.0 0 

lin-2(n768) 2.8 0 3.2 20 
lin-2(e1309) 0.5 0 3.4 35 
lin-7(e1413) 0.9 . 0 3.4 40 
lin-10(e1439) 0.5 0 3.4 30 

let-60(sy100 dn) 0 0 0 0 

lin-45(sy96) 0.9 0 1.9 7 
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Table 2. Complementation of unc-101 mutation by pJL5 : Suppression 

of lethality. Eggs were transferred to new plates from hermaphrodites of 

three different genotypes, and the number of surviving adults and rolling 

animals were counted after three days. The number of rolling animals 

represent the stability of the transgene. pJL5 plasmid, when maintained in 

the transgenic animals, can enable the animals to survive (see text for 

details). 
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Genotype of Trans gene Number of Number of Viability Number of Stability of 
parent present e~~s picked viable adults roUers the trans~ene 

+I+ Yes 390 354 91% 161 41% 

sylOB I+; Yes 261 256 98% 79 31% 

sy108/sy108 Yes 241 173 72% 76 32% 

sylOB/sylOB* No 91 43 47% 0 N/A 

* Unc animals from the transgenic line, that have lost the transgene. 

Transgene derived from the microinjection of pJL5 with rol-6( d) as dominant 

marker. 
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Figure 1. Clathrin vesicles and their associated protein complexes 

(A) coated pits and vesicles. A coated pit is composed of membrane fraction, 

collected membrane proteins, and clathrin triskelion cage with its associated 

protein complex. Coated pits are invaginated to form coated vesicles, which 

travel to their destinations such as lysosome and the plasma membrane. 

(Modified from. Pearse and Robinson, 1990) 
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(B) Schematic structure of the clathrin associated protein complex. AP-1 

complex is composed of four different peptide chains: two large chains, (3, y, 

one medium chain AP47, and one small chain AP19. AP-2, not shown in the 

figure, has similar structure to that of AP-1, and is composed of two large 

chains, a, f3, one medium chain AP50, and one small chain AP17 (Modified 

from Nakayama et al., 1991). 
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Figure 2. Isolation of null alleles of unc-101. 

(A) genetic map around unc-101. 

(B), (C) Non-complementation screens for the isolation of the null 

alleles ofunc-101. EMS or trimethylpsoralen was used as mutagen. dpy is a 

marker for distinguishing the cross progeny from the self progeny. eD/24 is a 

deficiency that deletes the rRNA genes on the chromosome I, conferring 

lethality to the homozygotes for this deficiency. hln1 is an inversion of 

chromosome I that suppresses recombination in the region between unc-75 

and unc-54 . This balancer is marked with unc-54, facilitating the 

discrimination of the homozygotes. 
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Figure 2B 
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Figure 2C 
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Figure 3. unc-101 is a regulator of the vulval induction pathway. 

The inductive signal produced by the anchor cell is likely to be encoded 

by lin-3 (Hill and Sternberg, 1992). The signal encoded by lin-3 is likely to 

be received by the let-23 gene product, an EGF receptor homolog (Aroian et 

al., 1990). The genes sem-5 and let-60, proposed to act downstream of let-23, 

encode a GRB2 homolog with SH2 and SH3 domains, and a ras homolog, 

respectively (Clark et al., 1992; Han and Sternberg, 1990). lin-45 , which 

likely acts after let-60, encodes a C. elegans rafhomolog (Han et al., 1993). 

lin-2, lin-7, and lin-10 are also required for the vulval differentiation. unc-

101 mutations strongly suppress mutations of lin-2, lin-7, lin-10, and let-23, 

suggesting that unc-101 may act at or near these genes (See text and table 1 

for details). 
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Figure 4. Cloning of the unc-101locus 

(A) Genetic and physical map near unc-101. The genetic distance 

between ced-1 and unc-101 is about 5 map units. The two RFLPs are marked 

as triangles. TCUNC101A is in the same YAC as the ced-1 YAC. 

TCUNC101E is 600 kb from TCUNC101A, and genetically inseparable from 

unc-101(+) marker. The W05A3 cosmid, but not the other 4 cosmids, had the 

ability to rescue Unc phenotype of unc-101(sy108). 
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(B) Map ofW05A3 cosmid and its subclones. pJL5, a 6.3 kb subclone, is the 

smallest genomic region capable of rescuing. pJL3 does not rescue the 

phenotype, suggesting that this restriction enzyme site disrupts the unc-101 

gene. Restriction sites shown are as follows: 8, Spel; N, Ndei; H, Hindiii; P, 

Pstl; and A, Apal. 
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Figure 5. eDNA sequence and genomic structure of unc-101. 

(A) unc-101 eDNA sequence and its predicted translation product. The 

region identical to the 3' end of SL-1 sequence is underlined. The start and 

stop codons, and a polyadenylation signal sequence are also underlined. The 

sites for the construction of the mammalian AP4 7 hybrid gene are marked as 

lines with an arrowhead. The first nucleotide G is the last nucleotide of the 

vector. 
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GAAGTTTGAGTATTTTCCAGTAGCTGCCACGTGGAATTTGACGATTTTAACGAGAAAATC 60 
GCAAAAAATCGTCGAAAATQGCGACTTCCGCCATGTTTATACTGGATTTGAAGGGAAAAA 120 

M A T S A M F I L D L K G K 
CGATAATTTCTCGAAATTATCGCGGAGACATCGACATGACGGCAATCGATAAATTCATTC 180 
T I I S R N Y R G D I ·o M T A I D K F I 
ATTTACTCATGGAAAAAGAGGAAGAAGGCTCGGCAGCGCCCGTTTTGACCTATCAGGACA 240 
H L L M E K E E E G S A A P V L T Y Q D 
CGAATTTCGTGTTTATCAAGCACACAAATATTTATTTGGTCTCAGCATGCCGTTCAAACG 300 
T N F V F I K H T N I Y L V S A C R S N 
TCAACGTCACAATGATTTTGTCATTTTTGTACAAATGCGTCGAAGTTTTCTCCGAATATT 360 
V N V T M I L S F L Y K C V E V F S E Y 
TCAAAGATGTCGAAGAGGAGTCGGTTCG~CAATTTTGTCGTTATCTATGAACTTTTGG 420 
F K D V E E E S V R D N F V V I Y E L L 
ACGAAATGATGGATTTCGGGTTCCCACAGACGACTGAGAGTCGAATTCTACAAGAATACA 480 
D E M M D F G F P Q T T E S R I L Q E Y 
TCACACAAGAAGGTCAAAAACTAATTTCGGCACCCCGTCCCCCGATGGCAGTGACAAATG 540 
I T Q E G Q K L I S A P R P P M A V T N 
CCGTCTCATGGCGCTCTGAAGGCATAAAATACCGAAAAAACGAGGTTTTCCTGGACGTAA 600 
A V S W R S E G I K Y R K N E V F L D V 
TCGAAAGTGTGAACATGTTGGCCAGCGCCAACGGTACCGTACTTCAATCGGAAATTGTTG 660 
I E S V N M L A S A N G T V L Q S E I V 
GAAGCGTTAAAATGCGTGTCTATCTTACCGGAATGCCTGAACTTCGGCTGGGTCTTAACG 720 
G S V K M R V Y L T G M P E L R L G L N 
ATAAAGTACTTTTTGAGGGCAGTGGACGCGGAAAAAGCAAATCTGTGGAACTGGAAGACG 780 
D K V L F E G S G R G K S K S V E L E D 
TGAAATTTCATCAATGTGTACGCCTGTCGCGTTTTGACACGGATCGAACGATCTCCTTCA 840 
V K F H Q C V R L S R F D T D R T I S F 
TACCGCCCGACGGAGCATTTGAGCTTATGAGCTATCGATTAACAACCGTGGTGAAGCCGC 900 
I P P D G A F E L M S Y R L T T V V K P 
TGATCTGGATCGAGACAAGCATCGAACGTCACAGTCACAGCCGTGTCTCGTTTATAATCA 960 
L I W I E T S I E R H S H S R V S F I I 
AAGCGAAATCACAATTCAAACGGCGCTCCACTGCTAATAACGTGGAAATCATTATTCCAG 1020 
K A K S Q F K R R S T A N N V E I I I P 
TCCCGTCGGACGCTGATTCACCGAAATTCAAGACAAGCATCGGTTCGGTGAAGTATACGC 1080 
V P S D A D S P K F K T S I G S V K Y T 
CCGAGCAATCGGCCTTCGTATGGACTATTAAGAATTTTCCCGGCGGAAAAGAGTACCTTT 1140 
P E Q S A F V W T I K N F P G G K E Y L 
TGACCGCCCATCTATCTCTACCGTCTGTGATGAGTGAAGAGTCTGAAGGACGGCCGCCGA 1200 
L T A H L S L P S V M S E E S E G R P P 
TTAAAGTCAAATTTGAAATTCCGTATTTTACGACCAGCGGCATTCAGGTCCGTTATCTGA 1260 
I K V K F E I P Y F T T S G I Q V R Y L 
AAATCATCGAGAAAAGAGG~ATCAAGCATTGCCGTGGGTCCGCTACATTACTCAAAATG 1320 
K I I E K R G Y Q A L P W V R Y I T Q N 
GAGAATACGAGATGCGGATGAAATAATTCCTGAAAAAATTACCTAAATTCATATTTTATT 1380 
G E Y E M R M K * 
GTATTTTATTCCCAATTTTACTCTTAATTTTTGGAATTTTTTATGAAAAATTGGTGAAAA 1440 
ACGACCGTGGCCGAGTTTTTGGAAAATTTGGAGGCTAGGCCACCATGCTTCCAGTGGTGG 1500 
GCTAACTTTTCGAAAATCCTAGCCACGGCCCCGTTTTCCATCAATTTTTGCCTCTTTTAA 1560 
TGTCAAACATCTCCAATTTTTTCTGTGAAAATTTAATGCTCCGCGAGCTGCTCCCCGGCT 1620 
CAAAACATGTGTTGTGTGTGCTCTTTCCCCTGATGACCCCGAACTCTATTTTTTTTTGTT 1 680 
CGAAAATTTTTATTTTATTTTTCCCACCGATTTATTTATTGATTTTTATCGCATAATTTA 1740 
GATTTTTTCCAGAAAAACGAGTTTTTTCCCTTTCCCACCAGCATAATTTTCTCACCACAT 180 0 
GGATCCTCATCAATTTTTCCCGTTTTCCTTTTTTCAGTAAATCAATAAAATTTTCTGTCA 1860 
T AATT AA.AAAAAAAAAAAAC 18 8 3 
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(B) Genomic structure of unc-101. unc-101 has seven exons and six introns. 

The size of introns varies from 50 bp to 1.0 kb. The numbers above the 

structures represent the first nucleotide of the eDNA after SL1 sequence, the 

translation starting point, and the last nucleotides of exons. The locations 

and characteristics of mutations are marked as such. 
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Figure 6. AP50 homolog in C. elegans: 

eDNA sequence of an AP50 homolog in C. elegans and its predicted 

translation product is shown. The start and stop codons, and a putative 

polyadenylation signal are underlined. 
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CGGTTTGAGCAAACTCGGGGhTGATTGGTGGATTGTTCGTTTACAATCACAAAGGAGAAG 60 
M I G G L F V Y N H K G E 

TGCTCATTTCGAGAATCTATCGAGACGATGTAACCCGGAACGCAGTCGACGCCTTCCGAG 120 
V L I S R I Y R D D V T R N A V D A F R 
TCAACGTCATCCATGCCCGACAGCAAGTTCGCTCGCCAGTCACCAACATGGCTCGTACTT 180 
V N V I H A R Q Q V R S P V T N M A R T 
CGTTCTTCCATGTGAAGCGTGGCAACGTCTGGATTTGTGCGGTGACACGTCAAAATGTCA 240 
S F F H V K R G N V W I C A V T R Q N V 
ACGCTGCCATGGTTTTTGCGTTCTTGAAACGCTTCGCCGACACCATGCAGTCTTACTTTG 300 
N A A M V F A F L K R F A D T M Q S Y F 
GAAAACTGAACGAGGAGAATGTGAAGAACAACTTTGTGTTGATTTATGAGTTGCTCGACG 360 
G K L N E E N V K N N F V L I Y E L L D 
AGATTCTCGACTTTGGATACCCCCAGAATACGGACCCTGGTGTGCTGAAAACTTTCATCA 420 
E I L D F G Y P Q N T D P G V L K T F I 
CCCAGCAAGGAGTCAGAACAGCTGATGCTCCTGTCCCAGTGACCAAAGAGGAGCAGTCAC 480 
T Q Q G V R T A D A P V P V T K E E Q S 
AAATCACGTCTCAAGTGACTGGCCAAATTGGATGGCGTCGGGAGGGTATTAAGTACCGCC 540 
Q I T S Q V T G Q I G W R R E G I K Y R 
GAAATGAGCTCTTCCTGGATGTTATTGAATATGTCAACTTGCTCATGAATCAACAAGGAC 600 
R N E L F L D V I E Y V N L L M N Q Q G 
AAGTATTATCTGCTCATGTTGCCGGAAAAGTTGCGATGAAATCCTATTTGAGTGGAATGC 660 
Q V L S A H V A G K V A M K S Y L S G M 
CGGAGTGCAAATTTGGCATCAACGACAAAATTACCATCGAAGGAAAGTCGAAGCCAGGAA 720 
P E C K F G I N D K I T I E G K S K P G 
GTGATGATCCAAACAAAGCAAGCCGTGCCGCAGTGGCCATTGATGACTGTCAATTCCACC 780 
S D D P N K A S R A A V A I D D C Q F H 
AATGCGTGAAGCTGACGAAATTTGAGACGGAGCACGCGATTTCTTTTATCCCACCGGACG 840 
Q C V K L T K F E T E H A I S F I P P D 
GCGAGTACGAGCTGATGAGATACCGTACCACTAAGGATATCCAACTGCCATTCCGTGTGA 900 
G E Y E L M R Y R T T K D I Q L P F R V 
TCCCATTGGTTCGTGAAGTGTCTCGTAACAAGATGGAAGTTAAGGTTGTCGTCAAGTCTA 960 
I P L V R E V S R N K M E V K V V V K S 
ACTTCAAGCCATCCCTTCTTGCTCAAAAGCTCGAAGTTCGCATTCCAACCCCACCAAATA 1020 
N F K P S L L A Q K L E V R I P T P P N 
CATCCGGCGTTCAACTTATTTGCATGAAGGGAAAAGCCAAGTACAAGGCAGGCGAGAATG 1080 
T S G V Q L I C M K G K A K Y K A G E N 
CCATTGTGTGGAAAATAAAGCGTATGGCCGGAATGAAGGAAAGCCAAATTTCTGCGGAAA 1140 
A I V W K I K R M A G M K E S Q I S A E 
TCGATCTTCTCTCAACTGGAAACGTTGAGAAGAAGAAATGGAATCGCCCACCGGTCAGCA 1200 
I D L L S T G N V E K K K W N R P P V S 
TGAACTTTGAGGTTCCGTTTGCTCCATCTGGACTCAAAGTTCGCTACTTGAAGGTGTTTG 1260 
M N F E V P F A P S G L K V R Y L K V F 
AGCCAAAACTGAACTATTCGGATCATGACGTCATCAAATGGGTTCGTTACATTGGAAGAT 1 320 
E P K L N Y S D H D V I K W V R Y I G R 
CGGGACTGTATGAAACCAGATGCTAGAACTTCACCCAACCCTTTCTATCTTCATTTGCTC 1380 
S G L Y E T R C * 
CCCAGCCGTCAAGCTTGAACATTTGCTCATTCTCGGTTCCAAGTGTTAAATATTATTTAT 1440 
TTGCTTCATACAATTTTTAATTTTTTGTAATATTTTTGTATTATTTTCCAAATTTCATAA 1500 
TGTAGAGTCATCGCAGCATTACAGTACTGTAAGAGTTGTTTTCAATTTATAAGAACTATT 1560 
AGATCTTTAGACGTCTCGATAAGCATTTCGCATGCTTATAATTCCATGCATTTTCCGTGC 1620 
CAAAATTCAAAACCCCCGCCCCACCCCGTTCCATCTTTATTTATTGTCAGTGTAAAATTT 1680 
CAAAATTTCTGGAATCTTTTTCCATCATAAAATTCACTTCAAACGTCTTCTGACCCGTTG 1740 
GAGCAATAACATTTTTAAAATATTTTTTTCATTTACCTTTTCTTCATAATTCATCATAAT 1 800 
TTATTGTAACGGCTTAATTTGATATATTGTTCTTTCTACATTCCATTTTTTGTCTCTCTC 1 860 
TCAAAATTTTCAAATTTCTATTGTTCATTTCTCATTTCTAGGTCGCAATTCAATAAGTTT 1920 
GTAATTCAAATGAATAGCATAATATTTATTTTAAbTAAAAGTTTTTTTTATTAAAGCGGA 1980 
ATTCC 1985 
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Fig 7. UNC-101 is a clathrin-associated protein. 

(A) Amino acid sequence alignment ofhomologs ofUNC-101. AP47 

and AP50 are the medium chains of trans-Golgi clathrin-associated protein 

complex and plasma membrane clathrin-associated protein complex, 

respectively (Nakayama et al., 1991; Thurieau et al., 1988). CEAP50 is an 

AP50 homolog in C. elegans (this study). This alignment only highlights the 

residues that are identical between UNC-101 and AP47 or between all four 

homologs. 
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(B) Diagram of the comparison of identity among the homologs of 

medium chains of clathrin-associated complexes. The numbers represent the 

identity at amino acid sequence level. The most prominent homologies are 

marked by bold lines. This shows that UNC-101 and AP47 are of a group, 

and AP50 and CEAP50 are of another. 
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Figure 8. Schematic of mouse-nematode hybrid gene construction. 

The Nruii EcoRV fragment of the rescuing plasmid pJL2 was replaced 

with the corresponding eDNA fragments from unc-101 eDNA clone or mouse 

AP47 eDNA clone in the unc-101 hybrid gene and in the unc-101 /AP47 

hybrid gene, respectively. 
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Figure 9. Rescue of Unc phenotype by the mouse-nematode hybrid 

gene. 

The tracks that the worms create by moving on the bacterial lawn are 

shown. A, N2 wild type, 5 minutes after transfer; B, unc-101 (sy108), 40 

minutes after transfer; C, transgenic animal of unc-101 (sy108); Ex[AP47 

hybrid], 5 minutes after transfer. The uncoordinated movement of unc-101 

(sy108) is suppressed by the transgene. 
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Figure 10. Rescue of suppression of the vulvaless phenotype of let-

23(sy1) by the mouse-nematode hybrid gene. 

The VPCs in the L3 molt stage, when the VPCs should have divided 

twice to generate four progeny, are shown. The triangles represent the 

anchor cell. A, N2, three VPCs each generated four progeny; B, let-23(sy1), 

no VPC divided to generate four progeny; C, unc-101 (sy108), same as N2; D, 

unc-101(sy108); let-23(sy1), four VPCs divided to generate four progeny; E, 

unc-101(sy108); let-23(sy1); Ex[AP47 hybrid], no VPC divided to generate four 

progeny. The scale bar is 20 J.lm. 
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ABSTRACT 

We analyzed the rok-1 (regulator of kinase) locus (IV) that was 

isolated in a genetic screen for new negative regulators of the vulval 

induction pathway of the nematode C. elegans. rok-1(sy247) causes 

essentially no phenotypes in an otherwise wild-type background. 

However, in combination with mutations in other negative regulator 

genes, unc-101, and sli-1, it causes subviability, a male spicule defect, 

and .excessive vulval differentiation. Animals defective in all three 

negative regulatory genes have a greater extent of vulval 

differentiation than any single or double mutants. We propose that 

rok- 1 defines a new redundant negative regulator in the vulval 

induction pathway. These genes display different redundancy 

patterns for vulval differentiation and viability. 
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Introduction 

Vulval induction in the nematode C. elegans is an excellent genetic 

system for studying intercellular and intracellular signal transduction. The 

anchor cell (AC) in the gonad induces three out of six equipotential epidermal 

vulval precursor cells (VPCs) to generate vulval cells. Genes required for the 

induction of the VPCs have been genetically and molecularly studied and 

many of them have been shown to encode homologs of the proteins involved in 

the mammalian epidermal growth factor (EGF) signal transduction pathway 

(reviewed in Horvitz and Sternberg, 1991). lin-3 encodes· a protein with a 

single EGF motif on its extracellular region that is the induction signal 

produced by the gonadal AC (Hill, et al., in preparation, Hill and Sternberg, 

1992). let-23 encodes an EGF receptor homolog that is thought to be the 

receptor for the Lin-3 signal(Aroian, et al., 1990). let-60, lin-45, and sem-5, 

genes acting downstream of let-23, encode ras, raf, and GRB2 homologs, 

respectively (Clark, et al., 1992, Han, et al., 1993, Han and Sternberg, 1990). 

The C. elegans system proves to be very useful in genetic studies of 

negative regulators of the EGF mediated signal transduction pathway. For 

example, several genetic loci have been characterized thus far as negative 

regulators of the vulval induction pathway, an EGF mediated signal 

transduction pathway. Mutations in the lin-151ocus cause the activation of 

this pathway. lin-15 products are thought to be acting in cells other than the 

AC or the VPCs, probably in the hypodermal hyp7 cell (Herman and 

Hedgecock, 1990). lin-15 encodes two novel negative regulator proteins (L. 

Huang, P. Tzou and P. Sternberg, in prep.). Additional negative regulators of 
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vulval differentiation are defined by the genes unc-101 and sli-1 . unc-101 

and sli-1 mutations were isolated as suppressors of let-23 vulvaless mutations 

(G. Jongeward and P. Sternberg, in prep.). Mutations in either unc-101 or 

sli-1 suppress a vulvaless phenotype of certain reduction-of-function alleles of 

let-23. For example, double mutant animals ofthe genotype unc-101(sy108); 

let-23(sy1) or let-23(sy1); sli-1(sy143) display greater than wild-type vulval 

differentiation (hyperinduced phenotype; Hin), whereas let-23(sy1) single 

mutant animals have a vulvaless phenotype. Vulval differentiation in these 

doubly mutant animals is dependent on the presence of the gonad, unlike lin-

15 mutations which cause a multivulva (Muv) phenotype independent of the 

presence of the signal. The unc-101 and sli-1 loci are different from lin-15 in 

that single mutants ofunc-101 or sli-1 do not display any vulval defects; lin-

15 mutations confer a multivulva (Muv) phenotype where more than three 

VPCs are induced to generate vulval cells. More complicated is the fact that 

double mutants of unc-101 and sli-1 show a partially gonad-independent 

multivulva phenotype, suggesting that these two genes are partially 

redundant negative regulators of the vulval induction pathway (G. 

Jongeward and P. Sternberg, in prep.). 

Molecular analysis ofunc-101 revealed that this gene encodes a 

homolog of mammalian AP4 7 protein, the medium chain of the trans- Golgi 

clathrin-associated protein complex (Lee et al., in prep., Chapter 2). sli-1 

encodes a homolog (30 % identical at amino acid level) of the proto-oncogene 

c-cbl (C. Yoon, G. Jongeward, J . Lee, P. Sternberg, unpublished results). SLI-

1 and c-cbl proteins have a putative Ring-type Zn finger, possibly acting as a 

DNA binding protein. Molecular analyses of unc-101 and sli-1 suggest that 

the interaction of these two genes may not be direct and that more genes may 
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be involved in this interaction. In this study, we took advantage of the fact 

that sli-1 mutations can cause a synthetic Muv phenotype with unc-101 

mutations. We performed genetic screens where we isolated hyperinduced or 

Muv mutants after mutagenizing sli-1 mutant animals. Here we report the 

isolation and genetic analysis of rok-1, a new negative regulatory gene. 

Materials and Methods 

Strains and general methods 

Methods for culturing and handling the nematode and general genetic 

methods were described by Brenner (Brenner, 1974). All genetic experiments 

were performed at 20 °C. The standard strain N2 was from Brenner (1974). 

The markers for linkage mapping and three factor crosses of rok-1(sy247) are 

as follows: 

LG I: dpy-5(e61) 

LG II: dpy-10(e128) 

LG III: dpy-17(e164) 

LG IV: dpy-20(e1282) unc-22(s7), unc-31(e169), unc-24(e138), dpy-13(e184), 

dpy-4(e1166) 

LG V: dpy-11(e224) 

LG X: dpy-3(e27) unc-1(e719), sli-1(sy143) 

The alleles for examining genetic interactions of rok-1(sy247) are as follows: 

let-23(sy1) (Aroian and Sternberg, 1991) , unc-101(sy108), sli-1(sy143), and 

lin-15(n744). 

Genetic screen and backcross 
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We mutagenized 10,000 F1 chromosome sets of sli-1(sy143) by ethyl 

methane sulfonate (EMS), and screened F2 progeny for mutants with more 

than wild-type vulval induction (hyperinduced; Hin), which is indicated by 

the presence of additional bump(s) on the ventral side of the animals which is 

visible under a dissecting microscope. From the first round of mutagenesis, 

we analyzed the candidate mutants, and found that lin-2 and lin-10 

mutations had the most frequent recovery rates. Thereafter, we performed 

the complementation tests with lin-2 and lin-10 alleles as soon as we isolated 

candidate Hin animals to see if they are alleles of these genes. If any 

candidate complemented lin-2 and lin-10 mutations, we proceeded to further 

map the mutations. We performed backcrosses with either a wild-type (N2) 

or a sli-1 strain (Figure 2). Three to four days after crossing N2 or sli-

1(sy143) males with the Hin animals from the mutagenesis, we transferred 

many L4 hermaphrodites to a new plate, and the next day we transferred 

single wild-type animals to new plates. We scored F2 animals for the 

segregation of wild type, hyperinduced, and vulvaless "bag" phenotypes. If 

we observed 3/16 of the F2 progeny of N2 backcross were egg laying-defective 

(Egl) due to a vulvaless phenotype, we concluded that the new mutation is 

dependent on the presence of sli-1 mutations and is an allele of a vulvaless 

gene unlinked to X. If we observed about the same number of F2 Hin 

animals (1/4) from both N2 and sli-1 backcrosses and few or no vulvaless 

animals in N2 backcross, we concluded that either the mutation is dependent 

on the presence of sli-1 and linked to X, or the mutation is independent of sli-

1. If 114 of sli-1 backcross F2 and 1/16 ofN2 backcross F2 are Hin, and no F2 

animals in N2 backcross are vulvaless, then this mutation is dependent on 

the presence of sli-1 , and is not an allele of a vulvaless gene. 
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Genetic mapping ofrok-l(sy247) 

We used marker; sli-1 double mutants to map rok-1(sy247) by linkage 

mapping, because rok-1 needs the presence of sli-1 mutations to show a Hin 

phenotype (see Results). We followed a standard mapping method as 

described in (Brenner, 1974). We then used the triple mutants of dpy-13 unc-

24; sli-1, unc-22 dpy-4;sli-1, unc-22 unc-31; sli-1, and unc-31 dpy-4; sli-1 

strains to map rok-1(sy247) by three factor crosses. We mated N2 males with 

these marker strains, and the male progeny of genotype marker I+; sli-1 I¢ 

were mated into rok-1(sy247); sli-1(sy143) hermaphrodites. We isolated 

many L4 progeny from this mating, isolated recombinant animals in the next 

generation from the plates that segregated parental markers, and checked 

the segregation ofthe Hin phenotype in the next generation. We also 

performed complementation tests with deficiencies to find any deficiency that 

deletes rok-1 . The deficiencies used were sD/22 and sDf60. 

Nomarski microscopy 

We observed the extent of vulval differentiation using Nomarski optics 

as described in (Han and Sternberg, 1990). We observed the vulva 

differentiation of the animals in their L3 molt stage, when the induced VPCs 

should have divided twice to generate four daughter cells and uninduced 

VPCs have divided once to generate two daughter cells. The a verage number 

of induced VPCs were calculated as the total number ofinduced VPCs divided 

by the number of animals observed. The average number of induced VPCs is 

in wild-type animals is three, and tha t in Hin animals is greater than three. 

We observed the male spicules ofN2, rok-1(sy247), and rok-1(sy247); sli-
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1(sy143) males with the help ofH. Chamberlin. 

Microsurgery 

To ablate the anchor cell, we performed microsurgery using a laser 

microbeam. The procedure for microsurgery was described in (Avery and 

Horvitz, 1987, Sulston and White, 1980). We ablated the Z1, Z2, Z3, and Z4 

cells, which include the precursors of the germ line, the gonad and the anchor 

cell, in the very early L1 stage animals. When the ablated animals are in 

their L3 molt, we observed their vulval differentiation using Nomarski optics 

as described above. 

Exanrination of viability of mutant animals 

After transferring eggs from a culture plate to a new plate, we counted 

the number of adults after three days. The viability of a mutant strain is 

calculated as follows. 

viability(%)= number of adult animals I number of eggs x 100 

lethality(%)= 100- viability(%) 

We used N2 wild-type strain as a control strain for viability. The viability of 

N2 is theoretically 100 %, but due to damage during egg transfer, or animals 

that escape from the plate, the viability of N2 was calculated as 94 %. 

Strain construction 

For marker: sli-1 strains, we mated marker/+ males with sli-1(sy143) 

hermaphrodites, and obtained marker or+ I+; sli-1 I¢ males. These males 

were mated with sli-1 hermaphrodites, and their hermaphrodite progeny 

were transferred to individual plates and checked for segregation of marker 
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phenotypes. The animals with the marker phenotype are of the genotype 

marker; sli-1 . 

For sy247 single mutant construction, we used an unc-31 dpy-4 

chromosome to balance sy247, as it maps within 0.2 m.u. ofunc-31. Single 

males from the mating between unc-31 dpy-4 I + males and sy247; sli-

1(sy143) hermaphrodites were mated with unc-31 dpy-4 hermaphrodites. 

Males of the genotype unc-31 dpy-41 sy247; sli-1 I¢ will generate Unc Dpy 

male cross progeny from this mating, and males of the genotype unc-31 dpy-

4 I +; sli-1 I¢ will not generate any Unc Dpy male cross progeny. From a 

mating plate with Unc Dpy males, we picked wild-type males whose genotype 

should be unc-31 dpy-41 sy247; sli-1 I¢, and mated them with unc-31 dpy-4 

hermaphrodites. We then mated the wild-type male progeny of this mating, 

whose genotype should be unc-31 dpy-41 sy247; +I¢, with unc-31 dpy-4 

hermaphrodites. Wild-type cross progeny of from this mating have the 

genotype of unc-31 dpy-4 I sy247; +I+ . Among the progeny of these mothers, 

we picked many wild-type L4 animals to individual plates. Animals that did 

not segregate any Unc, Dpy, or Unc Dpy animals were of the genotype sy247; 

+. We confirmed the presence of sy247 in this final strain by mating sy247 

hermaphrodites with sli-1 males and checking segregation ofHin animals in 

the F2. 

For unc-101: sy247.· sli-1 triple mutants, from the mating ofunc-101 I+ 

males with sy247; sli-1 hermaphrodites, we isolated unc-101 or+ I +; 

sy247 I+; sli-1 I+ progeny. In the next generation, we selected nonUnc Hin 

animals from the plate with Unc segregants, and among the progeny of these 

Hin animals, we isolated Unc animals whose genotype should be unc-101; 

· sy247; sli-1. 
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For unc-101: sy247 double mutants, we isolated nonUnc progeny from 

the mating of sy247 males with unc-101 hermaphrodites, whose genotype is 

unc-101 /+; sy247 /+. We observed the Unc progeny of these mothers by 

Nomarski optics, and found that some ofthem are Hin. These Hin Unc 

animals are ofthe genotype ofunc-101; sy247. 

For let-23Csyl); rok-1Csy247) double mutants. we first constructed sy1; 

unc-31 dpy-4 strains. From the mating of sy247 males with sy1; unc-31 dpy-4 

hermaphrodites, we isolated cross-progeny whose genotype is sy1 /+; 

sy247 /unc-31 dpy-4. We picked many individual non-Unc-31 non-Dpy-4 Vul 

animals in the next generation, whose genotype could be one of the two 

classes: sy1 /sy1; sy247 /sy247 or sy1 /sy1; sy247/unc-31 dpy-4, depending on 

whether sy24 7 suppresses the vulvaless phenotype. If sy247 does not 

suppress the vulvaless phenotype to wild type or Hin, 113 of the non-Uric-31 

non-Dpy-4 Vul animals would be of the first class, which is the wanted 

genotype, and segregate no Dpy Unc animals. The other 2/3 of the non-Unc-

31 non-Dpy-4 Vul animals would be of the second class, and segregate Dpy 

Unc animals. If sy247 does suppress the vulvaless phenotype, then all the 

non-Unc-31 non-Dpy-4 Vul animals would be ofthe second class, and 

segregate 114 ofUnc Dpy Vul animals, 2/4 ofnon-Unc non-Dpy Vul animals 

that segregate Unc Dpy progeny, and 114 ofnon-Unc non-Dpy non-Vul 

animals that do not segregate any Unc Dpy animals. Animals of the last 

category are of the genotype sy1; sy247. 

For sy247: lin-15 CA) double mutants, we used unc-31 dpy-4; lin-15 (A 

or B) strains in the construction. We mated the sy247 males with 

hermaphrodites of the genotype unc-31 dpy-4; lin-15(n744). The male 

progeny from this mating, whose genotype should be unc-31 dpy-4 I sy247; 
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n744l¢, were mated again with hermaphrodites ofthe genotype unc-31 dpy-

4; lin-15(n744). The non-Unc non-Dpy hermaphrodite cross-progeny from 

this mating are ofthe genotype unc-31 dpy-4 I sy247; n744ln744. Among 

the progeny of these hermaphrodites, the non-Unc non-Dpy animals that do 

not segregate any Unc Dpy progeny were of the genotype sy247 I sy247; 

n7441n744. 

Results 

Recovery of rok-l(sy247) as a synthetic Hin with sli-1. 

To identify more negative regulators of vulval differentiation, we 

performed a genetic screen in which we mutagenized sli-1(sy143) animals, 

and looked for animals with greater than wild-type vulval differentiation. 

Since sli-1(sy143) suppresses the vulvaless phenotype of lin-2, lin-7, lin-10, 

and let-23 mutations to a Hin phenotype, and causes a multivulva phenotype 

with unc-101 mutations, we expected to recover alleles of these genes from 

our mutagenesis as well as mutations in new genes. Also we expected to 

recover mutations in any gene downstream in the vulval induction pathway 

that cause a multivulva phenotype, for example, lin-1 . Indeed, we recovered 

four lin-2 alleles, five lin-10 alleles, one unc-101 allele, and one lin-1 allele as 

well as one new mutation, sy247. 

sy247 causes a Hin phenotype in the presence of a sli-1 mutation. By 

Nomarski optics, the average number ofVPCs induced in the sy247; sli-1 

double mutants is 3.8 VPCs, compared with 3.0 ofN2 wild type or sli-1 single 

mutants. A gonad ablation experiment showed that vulval induction in these 
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Hin animals is still dependent on the presence of the gonad; in gonad-ablated 

animals, no vulval induction was observed (n=4). This gonad-dependency is 

different from that of unc-101; sli-1 double mutants, since the unc-101; sli-1 

double mutants still display some vulval induction after gonad ablation ( G. 

Jongeward and P. Sternberg, in prep.). 

We mapped sy247 using linkage mapping and three factor crosses 

(described in Materials and Methods; Figure 4, Table 1) to the left of unc-22 

and to the right of dpy-4 on the chromosome IV. rok-1 maps very close to unc-

31, because from the three factor crosses using unc-22 unc-31; sli-1 and unc-

31 dpy-4; sli-1, rok-1 was inseparable from the unc-31 locus. None of 3 Unc-31 

non-Unc-22 recombinants from unc-22 unc-31 I rok-1 heterozygous mothers, 

and none of 27 U nc-31 nonDpy-4 recombinants from unc-31 dpy-4 I rok-1 

mothers segregated Hin progeny. We cannot tell whether rok-1 is to the left 

or to the right of unc-31 at this point. We found that the deficiencies sDf22 

and sDf60 delete the rok-11ocus (see the following result). 

The sy247 mutation reduces the rok-1 activity. 

We compared the extent of vulval differentiation in rok-1(sy247) I rok-

1(sy247); sli-1(sy143) I sli-1(sy143) animals with that in sDf22 I rok-1(sy247); 

sli-1(sy143)1 sli-1(sy143) animals. sDf22lnT1 heat-shocked males were 

mated with dpy-13 unc-24;sli-1 hermaphrodites, and individual male 

progeny, whose genotype are either sDf22 I dpy-13 unc-24 or nTll dpy-13 unc-

24; sli-1 lf/J, from this mating were mated with dpy-13 sy247; sli-1 

hermaphrodites. Non-Dpy cross-progeny of each mating, whose genotype is 

either nT1 I dpy-13 sy247; sli-1 or sDf22 I dpy-13 sy247; sli-1, were examined 
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for their vulval induction. From one plate, 9 nonDpy cross-progeny were 

obtained, and they showed an average of 3.8 VPCs induced, which is virtually 

indistinguishable from rok-1(sy247) I rok-1(sy247); sli-1(sy143) I sli-1(sy143) 

animals. Moreover, four of nine animals had more than three VPCs induced 

(44 %), similar to rok-1(sy247) I rok-1(sy247); sli-1(sy143) I sli-1(sy143) 

animals. Therefore, the vulval phenotype ofrok-1(sy247) I rok-1(sy247); sli-

1(sy143) I sli-1(sy143) animals is as severe as that of sDf22 I rok-1(sy247); sli-

1(sy143) I sli-1(sy143) animals. Another plate had three nonDpy progeny 

with wild-type vulval differentiation, indicating that the genotype of these 

animals was nT1 I dpy- 13 sy247; sli-1. 

We also measured the lethality ofthe heterozygotes of sDf221 rok-

1(sy247); sli-1(sy143) compared with that of rok-1(sy247) I rok-1(sy247); sli-

1(sy143) animals. We scored the heterozygotes of the genotype sDf22 I dpy-13 

rok-1(sy247); sli-1 for their segregation ofDpy and nonDpy progeny. From 

the heterozygotes ofthe genotype sDf221 dpy-13 rok-1(sy247); sli-1, 271 

animals were Dpy, and 139 animals, nonDpy. The ratio ofDpy animals to 

nonDpy animals is 2:1. If the lethality ofheterozygotes of the genotype 

sDf221 dpy-13 rok-1(sy247); sli-1 had been enhanced, the ratio ofDpy/nonDpy 

would have been less than 2. Therefore, the homozygotes of the genotype 

dpy-13 rok-1(sy247) I dpy-13 rok-1(sy247); sli-1(sy143) has as severe a 

lethality phenotype as the heterozygotes ofthe genotype sD/22/dpy-13 rok-

1(sy247); sli-1 We conclude that the sy247 mutation reduces the rok-1 

activity. 

sy247 causes additional phenotypes in the presence of a sli-1 

mutation 
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We constiucted sy247; him-5(e1490); sli-1(sy143) triple mutants to 

examine the male phenotype of sy247 in the presence of sli-1 mutations. 

Under Nomarski optics, the males display an abnormal spicule structure 

(Figure 3E, marked with an arrowhead), and the mating capability is 

abolished in these males (data not shown). 

The double mutants of sy247; sli-1 genotype also show partial lethality, as 

55.6 % of the progeny of the homozygous mothers died as embryos or early 

larvae (n=261). 

sy247 is a silent mutation. 

We constructed sy247 single mutants as described in Materials and Methods, 

and found that they display wild-type vulval induction. We obtained sy247 I 

sy247 males by heatshock at 30° C for six hours, and found that they had 

wild-type spicules and normal mating capability. The lethality is essentially 

not obvious in this single mutant animals, because the viability was 91% in a 

viability test, which is similar to the N2 viability (94%) (Table 3). Therefore, 

sy247 mutation alone does not cause any visible phenotype. 

Interaction with other negative regulators (1): vulval induction 

So far, there have been four redundant negative regulators of the 

vulval induction pathway: lin-15(A), lin-15(B), sli-1, and unc-101. To 

examine how sy247 interact with other negative regulators, we constructed 

double mutants or triple mutants containing mutations in these negative 

regulatory genes. The extent ofvulval differentiation of these mutants are 

summarized in Table 2. unc-101; sy247 double mutants have an average of 

3 .5 VPCs induced (n=19). As described above, rok-1; sli-1 double mutants 
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have an average of3.8 VPCs induced. unc-101; sli-1 double mutants show an 

average of 3. 7 VPCs induced (G. Jongeward, per. comm.). Interestingly, unc-

101; sy247; sli-1 triple mutants show an even greater extent of vulval 

differentiation (an average of 4.9 VPCs) than any of the three double mutant 

combinations. When comparing the percentage of Hin animals in these 

mutants, the enhanced phenotype becomes more obvious. In any single 

mutants, no animal shows greater than wild-type induction. In double 

mutants, 4 7 to 65 % of animals in the populations show greater than wild­

type induction, and in the triple mutants, 100 % of animals in the population 

show greater than wild-type induction. Therefore, rok-1 defines a new 

redundant negative regulator of vulval induction, acting together with unc-

101 and sli-1. 

We examined whether vulval differentiation in the double and triple 

mutants of unc-101, sli-1, and rok-1 is dependent on the presence of the 

anchor cell. We ablated the precursor cells of the gonad and the anchor cell 

as described in Materials and Methods, and observed the animals at their L3 

molt stages to examine the extent ofvulval differentiation (Table 1). In the 

double mutants of rok-1; sli-1 and rok-1; unc-101 , none of the ablated 

animals displayed vulval differentiation (n=4, and 10, respectively). In the 

ablated triple mutants ofunc-101; rok-1; sli-1, the average number ofVPCs 

induced was 2.3 VPCs per animal (n=9), which is virtually identical to that of 

unc-101; sli-1 double mutants (G. Jongeward, per. comm.). 

The lin-15 locus contains two functional groups, class A and class B. 

Certain mutations of lin-15 abolish functions of both the class A and class B, 

resulting in a multivulva phenotype. Certain mutations in lin-15, however, 

abolish either class A or class B function, resulting in no vulval 
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differentiation defect. To display a multivulva phenotype, both class A and 

class B functions must be mutated. No double mutants ofthe same classes 

cause vulval defects. sli-1 can act as a class B multivulva gene at 25°C, as 

double mutants of genotype lin-15(A); sli-1(sy143) display a gonad­

independent Muv phenotype at 25°C (Jongeward and Sternberg, 1993). To 

examine whether rok-1 can interact with a lin-15(B) gene, we constructed a 

double mutant strain of rok-1(sy247); lin-15(B) . lin-15(n744) is a class B 

gene. The average number of induced VPCs of the double mutant animals 

was 3 at 20°C, and 3.2 (n=21) at 25°C. Thus, rok-1 can act as a class A gene 

at 25°C. 

Interaction with other negative regulators (2): lethality 

We also compared the lethality associated with single, double, and 

triple mutants (Table 3) The sli-1 and rok-1 mutations do not cause any 

lethality alone, whereas unc-101 mutations result in about 45% lethality: 45 

% ofthe progeny ofunc-101 homozygous mother die. As described above, 56 

%of rok-1; sli-1 double mutants die before adulthood. Double mutants 

defective in both unc-101 and sli-1 show 54% lethality, which is not very 

different from unc-101 single mutants. Therefore, sli-1 mutations do not 

enhance the lethality caused by unc-101 mutations. On the contrary, double 

mutants of unc-101; rok-1 show enhanced lethality: 82% lethality (n= 185). 

Therefore, a rok-1 mutation enhances the lethality caused by unc-101 

mutations. The lethality of the triple mutants was about 79 % (n= 109 ), 

which is about the same as that of unc-101; rok-1 double mutants. 

rok-l(sy247) suppresses the vulvaless phenotype of a let-2~(syl) 
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mutation. 

sli-1 was identified by its mutations that suppress the vulvaless phenotype of 

let-23 mutations. To test whether rok-1 can also suppress a mutation in let-

23 gene, an EGFR homolog, we constructed a let-23(sy1); rok-1(sy247) double 

mutant strain as described in Materials and Methods. sy1 is an allele that is 

suppressed by unc-101 or sli-1 mutations from an average of 1 VPC induced 

per animal to 3.5 VPCs per animal. The let-23(sy1); rok-1(sy247) double 

mutants displayed an average of 2.3 VPCs induced per animal. Therefore, 

rok-1(sy247) can suppress the let-23(sy1) mutation, though not as well as the 

other two negative regulator mutations. 

Discussion 

rok-1 defines a new negative regulator of the vulval induction 

pathway. 

Based on the results, we propose that sy247 defines a fifth negative 

regulator of the vulval induction pathway. First, the triple mutants of unc-

101; rok-1; sli-1 display a greater extent of vulval differentiation than any 

double mutant. In these triple mutants, all the animals observed under 

Nomarski optics showed greater than wild-type differentiation, while in 

double mutants some animals showed wild-type induction, and some, greater 

than wild-type differentiation. In the triple mutants, the sensitivity ofVPCs 

are greater than VPCs in the double mutants, where they show fluctuations 

of induction level in individual animals. Second, sy247 mutation suppresses 

the vulvaless phenotype of let-23(sy1), though not as well as the other two 

negative regulators. Further analysis of the interactions of rok-1 and other 
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genes in the vulval induction pathway will help to understand the roles of the 

rok-1 gene. 

The ablation experiment showed that the double mutants of unc-101; 

sli-1 and the triple mutants ofunc-101; rok-1; sli-1 displayed some extent of 

vulval differentiation (-2 VPCs per animal) after ablation of the entire gonad, 

whereas the double mutants of unc-101; rok-1 and rok-1; sli-1 did not display 

any vulval differentiation after ablation. This suggests that the combination 

of the unc-101 and sli-1 gene activity may negatively regulate the basal 

activity of the vulval induction pathway as well as the activated activity of 

the pathway, while rok-1 does not seem to be involved in negative regulation 

of the basal activity. The rok-1 activity may be involved in negative 

regulation ofthe activity of the vulval induction pathway only after activation 

by the signal. 

In addition to unc-101, rok-1 , and sli-1, there are other negative 

regulator genes in the vulval induction pathway. lin-15 is a locus consisting 

of two sub-complementation groups, namely class A and class B(Ferguson 

and Horvitz, 1989). Mutations in both the classes of the sub­

complementation groups cause a gonad-independent multivulva phenotype, 

while mutations in one group do not cause any vulval defect. There are other 

genes that act as either class A or class B groups. Any mutations in class A 

genes can cause a multivulva phenotype in combination with any mutations 

in class B genes. Thus, there are at least five different pathways for the 

negative regulation for proper vulval induction in the nematode. A 

combination of activities of all these negative regulators will ensure that only 

three VPCs out of six VPCs, which all have the potentials to generate vulval 

cells, are induced by the LIN-3 signal. It is difficult at this point to explain 
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how rok-1 and sli-1 can act as a class A and class B genes, respectively, at 

25°C, while unc-101 does not act as class A or class B gene. 

The fact that any single mutation in these five classes of negative 

regulator genes does not cause excessive vulval differentiation alone indicates 

that the activities of these genes have some redundant functions to make 

sure this system works properly. This seems to be true for the cells in the 

higher organisms. In the carcinogenesis process in humans, any single 

mutation hardly causes cancerous cells. Instead, the cancer cells undergo 

many events of mutations in a variety of regulating genes including 

protooncogenes and tumor suppressor genes. In higher organisms, activation 

of an EGFR pathway by oncogenic mutations is one of the causes of cancer. 

Similarly, in C. elegans, activation of an EGFR pathway by gain-of-function 

mutations of lin-3 (EGF homolog), let-23 (EGFR homolog), and let-60 (ras 

homolog) result in excessive vulval differentiation. Thus, these mutations 

can be considered 'oncogenic' to some extent. It is possible that the negative 

regulatory genes in vulval induction may help to define novel tumor 

suppressor genes. 

Three negative regulator genes show differential redundancy for 

different functions. 

As described in the results, all three double mutant combinations ofunc-101, 

rok-1, and sli-1 are hyperinduced, and the triple mutants show an even 

higher hyperinduction, suggesting that the activity of each gene is partially 

independent of the others so that the loss of activities is additive. On the 

contrary, the lethality associated with unc-101 single mutants or unc-101; 

rok-1 double mutants is not enhanced by the presence of a sli-1 mutation. A 



153 

sli-1 mutation does enhance the lethality of a rok-1 mutation, suggesting that 

activity of sli-1 for survival may be independent of that of rok-1, but may be 

overlapping with that ofunc-101. The causes of the lethality associated with 

sli-1 and unc-101 mutations and that with a rok-1 mutation seem to be 

independent: if these genes are in the same pathway for survival, the 

lethality should not be increased by adding a rok-1 mutation. Therefore, these 

three genes show different redundant aspects in different gene activities. A 

possible reason for the different redundancies is that different cellular 

processes may have different sensitivities to a loss of activities of these three 

genes. In another simple model, three activities are required for both 

prevention of excessive vulval induction and survival of animals, and two of 

the activities may be sufficient for proper function of these systems. In vulval 

induction, all three genes may act as different activities. Then any double 

mutants would be defective in two of the three activities, causing a greater 

than wild-type vulval differentiation. For survival of an animal, unc-101 may 

be involved in two of the activities, · rok-1 in a third, and sli-1 in one of the 

activities unc-101 is involved in. Then, unc-101 single mutants would show 

some lethality, while the other two single mutants would not. 
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Figure 1. The sli-1 mutagenesis. (A) Schematic of the mutagenesis 

procedure. This scheme is for isolating recessive mutations that cause 

hyperinduction ofVPCs in the presence of a sli-1 mutation. sli-1(sy143) 

animals are mutagenized with EMS as chemical mutagen. Mutated 

chromosomes exist as heterozygotes in the Fl progeny, and show phenotypes 

in the F2. EMS = ethyl methane sulfonate, Hin = hyperinduced, WT = wild 

type, and m= a new mutation. 
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Figure l(B). Results of the sli-1 mutagenesis. lin-2 and lin-10 mutations 

were the most frequent mutations recovered. One allele of lin-1 and unc-101 

were recovered in addition to a mutation in a new gene, rok-1. The recovery 

frequency for the genes are shown. 
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Figure 2. Backcross of new mutations 

If 3/16 of the F2 progeny of an N2 backcross are Egl, while 1/4 of the F2 of a 

sli-1 backcross are Hin, the new mutation is an allele of a vulvaless gene 

unlinked to X that is dependent on the presence of a sli-1 mutation for the 

Hin phenotype. If there are about 1/4 of Hin animals in the F2 progeny of 

both N2 and sli-1 backcrosses and few or no vulvaless animals in an N2 

backcross, it can either be that the mutation is dependent on the presence of 

sli-1 and linked to X, or that the mutation is independent of sli-1. If 1/4 of 

the F2 progeny of a sli-1 backcross and 1/16 of the F2 progeny of an N2 

backcross are Hin, and there is no vulvaless animals in the F2 progeny of the 

N2 backcross , then this mutation is dependent on the presence of sli-1, and 

is not an allele of a vulvaless gene. N2 is a wild-type strain of C. elegans; m, 

a new mutation; Hin, hyperinduced phenotype ofVPCs; WT, wild type; Vul, a 

vulvaless phenotype. 
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Fig 3 Phenotype of rok-1 (sy247). (A) Vulval induction of a rok-1 single 

mutant animal with three VPCs induced to generate four daughters, (B) a 

rok-1; sli-1 double mutant animal with four VPCs induced to generate four 

daughters, and (C) an unc-101; rok-1; sli-1 triple mutant with five VPCs 

induced. These photos show only typical examples of vulval differentiation in 

the double and triple mutants. The extent ofvulval differentiation varies in 

individual animals. The anchor cell is indicated by an arrowhead. 

(D, E) Male spicule of a wild-type(D) and a rok-1; him-5; sli-1 mutant 

animal(E). The rok-1; him-5; sli-1 mutant animal has an abnormal spicule 

structure as indicated by an arrowhead. 
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Figure 4. Genetic map ofrok-1. rok-1 is mapped to chromosome IV near unc-

31 . The scale bar is 1 map unit. The deficiencies, sD/22 and sDf60 , delete the 

rok-1 locus. 
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Table 1. Genetic mapping of rok-l(sy247): Three factor crosses. See the 

material and methods for detail. Dpy is a dumpy phenotype; nDpy, non-Dpy; 

Unc, uncoordinated; nUnc, non-uncoordinated. 
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Genotype of Phenotype of Number of recombinants 
heterozygotes recombinants segregating of Hin 

selected phenotype 

dJzy.-13 unc-24 DpynUnc 
rok-1 3/3 

unc-22 unc-31 Unc-31 nUnc-22 0/3 
rok-1 

unc-31 duy_-4 UncnDPy 0/27 
rok-1 

unc-22 dJl.y_-4 DpynUnc 4/5 
rok-1 
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Table 2 Vulval differentiation of single, double, and triple mutants carrying 

unc-101, rok-1, or sli-1. Vulval induction of each animal was examined using 

Nomarski optics. For intact animals, Average numbers of induced VPCs per 

animal, and percentage of the animals having more than three induced VPCs 

are also shown. Wild-type vulval induction is three VPCs per animal. The 

maximum number ofVPCs that can be induced is six. For the gonad-ablated 

animals, the average numbers of induced VPCs per animal after ablation are 

shown. The numbers shown in the parentheses are the numbers of animals 

examined. Data with asterisks are from Jongeward and Sternberg, (1993). 
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Intact Gonad-ablated 

Average# o/o animals Average# 
of induced with >3 VPCs of induced 

Genotype VPCs induced VPCs 

+ 3 0 (>20) 0 (>10) 

s/i-1 3 0 (>20) 0 (6)* 

rok-1 3 0 (>20) 0 (6) 

unc-101 3 0 (>20) 0 (6)* 

rok-1; sli-1 3.8 64 (22) 0 (4) 

unc-101; s/i-1 .3.8 65 (20) 1.9 (7)* 

unc-1 01; rok-1 3.5 47 (19) 0 (10) 

unc-101; rok-1; s/i-1 4.9 100 (13) 2 (9) 
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Table 3. Viability table of single, double, and triple mutants carrying unc-101, 

rok-1, or sli-1. Viability was calculated as nillnber of adult animals divided 

by number of eggs picked for examination. 
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Genotype 

+ 

sli-1 

rok-1 

unc-101 

rok-1; s/i-1 

unc-101; sli-1 

unc-101; rok-1 

unc-1 01; rok-1; sli-1 

viability o/o (number of 
animals examined) 

94 (96) 

92 (278) 

91 (45) 

55 (521) 

44 (261) 

46 (134) 

18 (185) 

21 (109) 
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CHAPTER 4. TWO DISTINCT AP47 HOMOLOGS IN THE NEMATODE 
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ABSTRACT 

The AP47 protein is the medium chain of the clathrin-associated 

protein complex AP-I located on the trans-Golgi membrane in 

mammals. Here we report that the nematode C. elegans has at least 

two genes encoding AP47 proteins. One AP47 protein is encoded by 

unc-101, mutations in which gene cause pleiotropic effects (Lee, et 

al., 1993). Another AP47 is encoded by the second gene CEAP47. 

Amino acid comparison shows that the CEAP47 protein is 72% 

identical to UNC-101, and 72% identical to the mammalian AP47. We 

predict that the mammalian cells will also have at least two distinct 

AP47 proteins. A hybrid protein of UNC-101 and CEAP47 can 

complement unc-101 function when expressed under the control of 

the unc-101 promoter. We also discuss the redundancy ofCEAP47 

and UNC-101 in the nematode. 
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Introduction 

Clathrin coated pits and vesicles are ubiquitous organelles found in all 

the eukaryote cells that mediate intracellular protein trafficking (Brodsky, 

1988, Keen, 1990, Pearse and Robinson, 1990). Clathrin coated vesicles are 

composed of membrane fraction, selected receptors on the membrane, 

clathrin, and clathrin-associated proteins (APs) (Figure 1). While clathrin is 

a common structural unit to all the clathrin-coated vesicles (hence name of 

vesicles is clathrin-coated vesicles), APs vary depending on the localization of 

the vesicles at the cellular and subcellular level (Ahle, et al., 1988). Most 

cells contain AP-1 and AP-2 protein complexes on the Golgi and the plasma 

membrane as clathrin-associated protein, respectively, and neuronal cells 

contain AP-3 protein as neuronal cell-specific APs in addition to AP-1 and 

AP-2 (Morris, et al., 1993, Murphy, et al., 1991, Zhou, et al., 1993). AP-1 and 

AP-2 are similar in their composition and structure in that they are hetero­

tetramer oftwo large chains, one small chain, and one medium chain (Matsui 

and Kirchhausen, 1990). AP-1 complex contains b'- and r-adaptin as large 

chains, AP47 as a medium chain, and AP19 as a small chain . AP-2 has a­

and b-adaptin as large chains, AP50 as a medium chain, and AP17 as a small 

chain. The large chains share some similarity in their amino acid sequence 

(Kirchhausen, et al., 1989, Robinson, 1989, Robinson, 1990), so do those of 

medium chains and small chains (Kirchhausen, et al., 1991, Nakayama, et 

al., 1991, Thurieau, et al., 1988). AP-3, however, is unique, because it is a 

single peptide of 180 kD, and does not show any homology to any subunits of 

AP-1 ~r AP-2 (Morris, et al., 1993, Murphy, et al., 1991, Zhou, et al., 1993). 

Since clathrin vesicles are present in almost every type of cell, one 

question rises: Do they perform same function in every cell? If they do not, 
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how do they perform different functions? There are a few indications of 

clathrin-coated vesicles showing some tissue-specificity, suggesting that they 

can function differently in different cells. For instance, clathrin light chains 

have two different versions: LCa and LCb(Brodsky, et al., 1991). Although 

they are expressed in the same cells, their expression level varies in different 

tissues. In addition, both the genes encoding clathrin light chains are subject 

to alternative splicing that produces neuron-specific transcripts with 

additional stretch ofnucleotides (Jackson, et al., 1987, Kirchhausen, et al., 

1987). Clathrin light chains are thought to have a regulatory function for 

clathrin assembly. It is conceivable that while structural units of the 

clathrin-coated vesicles (e.g., clathrin heavy chains) are ubiquitously present, 

molecules with regulatory functions vary in different compartments, cells, or 

tissues, conferring specificity's to the clathrin-coated vesicles. The medium 

chains ofthe clathrin-associated protein complexes were reported to have 

kinase activity, although their amino acid sequences do not show any 

homology to known kinases (Myers and Forgac, 1993, Nakayama, et al., 1991, 

Pauloin, 1982), suggesting that they might also have regulatory functions for 

the AP assembly or other interactions that APs are involved in, for example, 

interaction with receptors, clathrin triskelions, or membranes. Another 

example for tissue-specificity is the presence of AP-3 in the neuronal cells, 

which can provide additional specific function for neuronal cells such as 

synaptic vesicle assembly. AP-3 is known to promote clathrin assembly more 

efficiently than AP-1 or AP-2 (Lindner and Ungewickell, 1992). 

a-adaptin, a large subunit of the plasma membrane clathrin-associated 

protein complex AP-2, is encoded by two separate genes (Robinson, 1989). 

Also, Robinson (1990) reported that there might exist more than one gene for 
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the g-adaptin. For the medium chains and small chains of AP-1 and AP-2, it 

is not clear whether they are encoded by a single gene or whether they have 

different versions. 

Genetic analysis of unc-101, a gene encoding a medium chain (AP47) 

of AP-1 in the nematode C. elegans showed that mutations in this protein 

cause pleiotropic effects including subviability, an uncoordinated movement 

(D. Riddle, pers. comm.), a defect in dye uptake of certain neuron cells (E. 

Hedgecock, per. comm.), a male spicule defect (H. Chamberlin, per. comm.), a 

defecation defect (Thomas, 1990), and suppression of a reduction-of-function 

mutation in the epidermal growth factor receptor (EGFR) gene (Lee, et al. , 

1993). Interestingly, putative null mutations of unc-101 do not cause 100 % 

lethality, but 50 % lethality: 50% of progeny from homozygous mother of unc-

101 /unc-101 genotype will survive (Lee, et al., 1993), suggesting that there 

might exist another gene encoding the medium chain of AP-1 that is partially 

redundant with unc-101 and can replace the essential function of unc-101 in 

some individuals when unc-101 is defective. 

Here we report identification of a second homolog of AP4 7 , the medium 

cha:ln of the trans-Golgi-associated protein complex AP-1, that might provide 

tissue-specific functions for the clathrin vesicles. We also show that the 

protein encoded by this gene can complement unc-101 when expressed under 

the control of unc-101 promoter. We discuss evolutionary concerns about 

these genes. We propose that in wild-type animals, these two genes are 

expressed in non-overlapping patterns, performing different functions in 

different compartments or cells. 
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Results 

Molecular cloning of CEAP47, a second homolog of AP47, the medium 

chain of trans-Golgi clathrin-associated protein complex AP-1 

A C. elegans eDNA sequencing project identified a eDNA clone 

(CEED20) containing a partial sequence similar to unc-101 (Kervalage, per. 

comm.). We first determined the sequence of the CEED20 clone, and found 

that this clone contains a sequence of 817 nucleotides. A sequence 

comparison showed that the translation of this sequence has a homology to 

the AP47 protein from the amino acid #238, and to the CEAP50 protein from 

the amino acid #251. We compared this partial eDNA sequence with that of 

unc-101 and other medium chain homologs. Amino acid sequence encoded by 

this partial sequence was 73 % identical to the corresponding unc-101 

sequence, and 42 % identical to AP50, indicating that this sequence encodes 

a protein more similar to AP47. A nucleotide sequence comparison showed 

that 2/3 of the differences between CEAP47 and unc-101 were at the base of 

the codons (data not shown). We confirmed that this sequence is a sequence 

from C. elegans, not from any contaminant organism, by two means. First, 

the Southern hybridization of C. elegans genomic DNA digested with various 

restriction enzyme with radiolabeled probe made of this eDNA insert under 

highly stringent condition showed single bands hybridized, indicating that 

this sequence is from C. elegans (data not shown). Second, when we 

performed a PCR reaction of C. elegans genomic DNA with two primers made 

from the eDNA sequence, we found an intron in the genomic DNA sequence 

(Figure 2). This intron is 50 bp long, which is typical of C. elegans introns, 

and contains sequences mostly conserved in C. elegans introns (Wood, 1988). 
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We then screened a eDNA library provided by Barstead and probes made 

from the eDNA ofCEED20. We isolated three full length eDNA clones, and 

determined one of the sequences (Figure 3). 

Sequence analysis of CEAP47 gene 

The eDNA sequence of the clone D20-3 is 1549 bases long, and contains 

an open reading frame from the second nucleotide through the nucleotide 

1294. The first methionine codon ATG is likely at the nucleotide 14, based on 

the homology with other medium chain homologs. The putative translation 

from this sequence is 426 amino acid long. Comparison of the sequence of 

CEAP47 with other medium chain homologs indicated that this protein is 

more related to AP47 than to AP50 (Figure 4). Surprisingly, CEAP47 is as 

similar to the mammalian AP47 as to UNC-101 in C. elegans (72% identity 

in both cases). The DNA sequence comparison between CEAP47 and unc-101 

showed that the discrepancies are biased toward the third bases of codons. 

There was not much homology in the 5' non-translated region, nor in the 3' 

non:..translated region(data not shown), suggesting that these two genes 

might be subject to different regulation. 

CEAP47 protein can complement UNC-101 protein. 

Because mutations in the unc-101 gene, which encodes a protein 72% 

identical to CEAP4 7, show pleiotropic phenotypes when the CEAP4 7 gene is 

intact, it is conceivable that CEAP4 7 gene has different functions from those 

of unc-101. However, we have shown that a hybrid construct, which contains 

the unc-101 promoter region, and most of the mammalian AP47 (which is 

again 72% identical to unc-101 ), and 3' region of unc-101, can rescue at least 
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two phenotypes associated with an unc-101 mutation when introduced into 

the mutant animals by microinjection (Lee, et al. , 1993). To test whether 

CEAP47 protein also can complement functions ofUNC-101 protein, we 

constructed and examined a hybrid gene. The hybrid gene contains exactly 

the same contents as other constructs used for mammalian AP4 7 experiments 

(Lee, et al., 1993), except that this hybrid gene contains the eDNA portion of 

CEAP47 (figure 5). We microinjected this hybrid gene into the gonad of the 

unc-101(sy108); let-23(sy1); dpy-20(e1284) animals with a cloned DNA of dpy-

20(+) as selection marker. The resultant transgenic animals were examined 

for their extent of movement and suppression of the vulvaless phenotype of 

the let-23(sy 1) mutation. The uncoordinated movement was rescued, because 

the transgenic animals could move as well as wild-type animals. The 

suppression of the vulvaless phenotype of the let-23(sy 1) mutation was also 

rescued, because 4 out of 8 transgenic animals had restored the vulvaless 

phenotype. The uncoordinated movement (Unc) phenotype was an easier 

phenotype to rescue by the transgene, because we observed the non­

uncoordinated (non-Unc) animals from the F1 transient transgenic animals 

as well as stable lines of transgenic animals. On the contrary, we did not 

observe the rescue of the suppression of the vulvaless phenotype of the let-

23(sy 1) mutation until we established stable lines of transgenic animals. 

DISCUSSION 

Two distinct AP4 7 genes in the nematode C. elegans: indication of 

the second type of the trans Golgi clathrin-coated vesicles? 

We have identified a second homolog of AP4 7, the medium chain of the 
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trans-Golgi clathrin-associated protein complex AP-1. Only one gene has 

been identified in the mammalian cells that encodes an AP47 protein. As 

described above, CEAP47 is 72 % identical to UNC-101 and also 72% 

identical to the mammalian AP4 7. This extent of identity among the AP4 7 

homologs suggests that there may exist a second gene for a mammalian 

AP4 7. If AP4 7 genes were duplicated after the nematode and the higher 

organisms such as mammalian lineages diverged during evolution, CEAP4 7 

and UNC-101 should show higher homology to each other than to 

mammalian AP47. It is conceivable that these AP47 genes were duplicated 

very early during evolution, and remained homologous to each other because 

of their redundant functions. It is also conceivable that one copy of these 

genes were not lost during evolution because each of the genes has its own 

unique function. 

Clathrin-coated vesicles on the trans-Golgi membrane are thought to 

be involved in 1) sorting and targeting mannose-6-phosphate receptors loaded 

with lysosomal enzymes into the lysosomes, and 2) targeting proteins to 

secretory granules (Keen, 1990, Kornfeld, 1990, Pearse and Robinson, 1990). 

How could the clathrin-coated vesicles with the same APs perform two 

different functions on the same membrane compartment? Could it be that 

there are two distinct coated vesicles on the trans-Golgi membrane containing 

different, yet highly related, APs? Robinson (1990) suggested that y-adaptin 

might be encoded by more than one gene, and that the presence of different 

forms of y-adaptin in the mammalian cells could provide specificity for the 

clathrin-coated vesicles on the trans-Golgi compartment. In this report, we 

showed that in C. elegans, there is a gene encoding the second homolog of the 

medium chain of the trans-Golgi clathrin-~ssociated protein complexes. 
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Though the indications on y-adaptin and AP4 7 homologs are from different 

species, it is conceivable, based on their highsimilarity to their homologs and 

conserved functions, that in both the species, there might exist second 

homologs of the other components of AP-1, and that there might exist the 

second type of the trans- Golgi clathrin-coated vesicles. Further analysis of 

the genes of the subunits of the trans-Golgi clathrin-associated protein 

complexes in both the species will solve this question. 

Redundancy of CEAP47 and unc-101 

Because mutations in the unc-1011ocus cause pleiotropic effects, unc-

101 seems to be not redundant with CEAP47. However, the phenotypes of 

unc-101 putative null mutations are not identical in all the animals bearing 

the same mutations in unc-101. For example, the lethality associated with 

the putative null mutations is not completely penetrant. Only 50 % of the 

progeny of homozygous hermaphrodites will die, while the other 50% will 

survive. The defecation defect is more fluctuating even in a single animal 

(Thomas, 1990). Each defecation cycle in C. elegans is composed of an 

anterior body muscle contraction (aBoc), a posterior body muscle contraction 

(pBoc), and an expulsion (Exp) step. In unc-101 mutant animals, the aBoc 

step is missing in half of the defecation cycles. In the other half cycles of 

defecation, the aBoc is normal. Therefore it is conceivable that there may 

exist a gene that shares partial redundancy with unc-101. CEAP47 may be 

one such gene. We showed that hybrid proteins, 2/3 of which is from the 

CEAP47 gene and 1/3 from unc-101, can complement the defective UNC-101 

protein function, if they are expressed under the control of the unc-101 

promoter and regulation. This result suggests that CEAP4 7 may be 
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redundant with unc-101 in the wild-type animals. The extent of redundancy 

ofthe CEAP47 and the unc-101 gene in the wild-type animals is not known. 

There are a few possibilities. One possibility is that unc-101 and CEAP47 

have identical functions, and that a full expression of both the genes are 

required for production of sufficient quantity of proteins. This is unlikely 

because if this is the case, the mutations in the unc-101locus would be 

dosage-dependent. But they are fully recessive, indicating that loss of one 

copy of unc-101 does not cause any defect. However, one still cannot exclude 

the possibility that there is a threshold for the expression level of these genes 

to execute proper functions. From this hypothesis, one can predict 1) that the 

CEAP47 mutant animals will have the same phenotype as unc-101 mutant 

animals, 2) that the double mutants for both the genes will be 100 % lethal, 

and 3) that the heterozygotes ofCEAP47 +I+ unc-101 trans-heterozygotes 

will have the same phenotype as unc-101. 

Another possibility is that although the proteins ofCEAP47 and UNC-

101 have the same functions, these proteins are expressed in different types 

of cells. When unc-101 is mutated, a basal level ofCEAP47 expression might 

be somehow activated in the cells that normally produce UNC-101 protein, 

and compensate for a defect in the Unc-101 protein. If this is the case, 1) 

mutations in the CEAP47 locus will have different phenotypes than unc-101, 

2) the heterozygotes of CEAP47 +I + unc-101 will have a wild-type 

phenotype. It would be hard to predict whether the double mutant will be 

completely lethal. 

A third hypothesis is that although these two proteins are redundant, 

CEAP4 7 is not actively expressed in the wild-type animals, and is expressed 

only when unc-101 is mutated. If this is the case, 1) mutations in the CEAP47 
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will be silent, and 2) The double mutants will be 100% lethal. 

If one assumes the presence of the second clathrin coated-vesicles on 

the trans-Golgi membrane as hypothesized above, one plausible hypothesis is 

that CEAP47 is a component ofthe second type ofthe trans-Golgi clathrin­

associated protein complex as hypothesized above, performing different 

functions from the UNC-101-containing clathrin-associated protein complex, 

and that CEAP47 can somehow compensate for the UNC-101 functions only 

when CEAP47 is overexpressed and/ or unc-101 is mutated. If this is the 

case, one can predict 1) that singly mutants for CEAP4 7 will probably have 

different phenotypes than unc-101, and 2) that doubly mutants for unc-101 

and CEAP47 will be 100% lethal, 

At this point, we cannot distinguish among these hypotheses because 

no genetic mutations are available for the CEAP4 7 gene yet. Studies of 

expression patterns by transgenic animal techniques using hybrid genes with 

reporter molecules such as [3-galactosidase gene might help solve some of 

redundancy problem (Mello, et al., 1991). However, this technique has some 

limitations. Because the transgenes have multicopy of the gene of interest, 

the expression pattern by the transgenes may not reflect the intact 

expression patterns. Also, the transgenic animals tend to lose the transgenes 

randomly during cell divisions, making it difficult to interpret the expression 

patterns exhibited by the transgenic animals. 

Materials and Methods 



186 

eDNA screening 

We used the eDNA clone CEED20 (accession number T00259) from the 

Genbank database as a start point for cloning full length eDNA clones. We 

used the CEED20 DNA as probe in a eDNA screening for full length clones. 

We used a standard hybridization procedure (Sambrook, et al. , 1989). We 

isolated three eDNA clones from a C. elegans eDNA library (Barstead and 

Waterston, 1989), all ofwhich contained inserts ofthe same length. We 

determined the sequence of one of the clones, CEED20-3. Sequencing 

reactions were performed using Sequenase 2.0 and reagents from United 

States Biochemical. 

Sequence analysis 

Compiling of DNA and amino acid sequences were carried out using 

Macvector™ program (IBI) and the GCG package v7.0, a software of the 

Genetics Computer Group (Devereux, et al., 1984, GCG, 1991). The BLAST 

program of the GCG software was used to search and compare homologies of 

the sequences. The Pileup and Gap programs were used to generate the 

comparisons of the amino acid sequences. 

PCR reactions for comparing eDNA and genomic sequence of 

CEAP47 

We made two primers for PCR from the eDNA clone CEED20: CE-1, 5 ' 

CGTTTATCTCGCTTTGATTC and CE-4, TTTTGCTGTACCTGCTCCAG. 

These primers were also used as primers for sequencing the PCR product. 

We used genomic DNA of N2 strain as template for PCR. PCR reactions were 
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performed by a standard procedure (Ausubel, et al., 1992, Sambrook, et al., 

1989). 

Southern hybridization 

A southern blot of genomic DNAs of N2 and lin-3 strains was a gift 

from R. Hill. We used the CEED20 DNA as template for making random­

primed probe in the hybridization. Hybridization method was standard and 

washing condition was high stringency (Sambrook, et al., 1989). 

Construction of hybrid genes. 

Construction of the unc-101 hybrid genes was described (Lee, et al., 

1993). To construct the CEAP4 7 hybrid gene, we amplified the CEAP4 7 

eDNA from nucleotide #325 through #1229 using two PCR primers. Both the 

5/ and 3' subcloning sites, Nrul and EcoRV, are conserved in CEAP47. The 

two PCR primers are: CE-6, 5'CGATAATTTCGTTATTATTTATG3', and CE-

7, 5'ATCCAGATTTCTCTATGATTTT. 

The amplified DNA was ligated to the 7.2kb Nrui/EcoRV fragment of 

pJL2. The resulting plasmid is the CEAP4 7 hybrid gene. This construct 

contains the 5' promoter region of unc-101, the 5' coding region of unc-101 up 

to the unc-101 eDNA nucleotide #388, the CEAP47 eDNA from Nrul site to 

EcoRV site (corresponding nucleotides in unc-101 are #389 to #1281, the unc-

101 3' region from #1282 to the end of eDNA, and the untranscribed 3' 

region of unc-101. The protein predicted to be made from this construct 

contains 301 amino acid residues from CEAP47, and 123 amino acid residues 

from unc-101. 
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Microinjection experiments 

Microinjection of DNA into the gonad of C. elegans hermaphrodite 

adults was described by Mello et al.(l991). We used unc-101(sy108); let-

23(syl); dpy-20(el282) animals as the host for microinjection. We injected 

the hybrid gene with a dpy-20(+) clone as a selection marker. Mter 

microinjection we selected nonDpy transgenic animals, established stable 

lines that inherited the transgenes, and examined the phenotype ofUnc and 

vulval differentiation. 
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Figure 1. Structure of clathrin-coated vesicles and their associated protein 

complexes. (A) clathrin-coated pits and vesiCles. Clathrin coated pits and 

vesicles are composed of membrane, proteins such as receptors, clathrin 

triskelions, and associated protein complexes (APs). 



coated vesicles 

190 

c 

coated pits 

! membrane protein (MP) 

r:::::::~ associated protein 
complex (AP) 

_.2_ clathrin (C) 



191 

Figure 1. (B) Structure of clathrin-associated protein complexes AP-1 and AP-

2 complexes. Both the APs are composed of four subunits: two large chains, 

one medium chain, and one small chain. AP-1, the complex located on the 

trans-Golgi, contains y- and W-adaptin, AP47, and AP19. AP-2, the complex 

located on the plasma membrane, contains a- and ~-adaptin, AP50, and 

AP17. 
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Figure 2. Comparison of partial genomic sequence of CEAP4 7 and its 

corresponding eDNA sequence. The upper lines of sequence is partial eDNA 

sequence of the CEED20 clone from a database. The bottom lines of sequence 

is the genomic DNA sequence obtained from a genomic PCR reaction using 

primers from the CEED20 sequence. Two sequences are identical except for 

an intron inserted in the genomic sequence. The arrowhead indicates the 

location of an intron in the unc-101 gene. 
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TTATCGATTGACAACACAAGTTAAACCATTGATTTGGGTTGAGGCTGCAG 

TTGAGAGACATGCACATTCAAGAGTTGAATATATGGTTAAA 
TTGAGAGACATGCACATTCAAGAGTTGAATATATGGTAATA GTGATTACT 

GCGAAATCT 
TTCACTTCCAAATTATGAATTATAGAATCTCTACTTTCCAG GCGAAATCT 

CAATTCAAACGTCAATCTGTTGCCAATCATGTCGAAGTTTATTATCCCTG 
CAATTCAAACGTCAATCTGTTGCCAATCATGTCGAAGTTTATTATCCCTG 

TTCCATCCGACGTCAGTGCTCCAAAATTTAAAACTGGAGCAGGTACAGC 
TTCCATCCGACGTCAGTGCTCCAAAATTTAAAACTGGAGCAGGTACAGC 
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Figure 3. eDNA sequence of CEAP4 7 and its translation. The first 

methionine and the stop codon was assigned based on the homology between 

the translated sequence of this gene and the AP4 7 protein sequence. The 

DNA sequences used for designing PCR primers are underlined. The 

CEED20 clone starts at the nucleotide #733. 
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CGGAGAAATCGACATGTCGATTTCCGGTCTCTTCATCTTGGACCTCAAAGGAAATGTAGT 60 
M S I S G L F I L D L K G N V V 

AATATCGAGGAATTACCGCGGAGATGTGGATATGTCGTGTATCGAAAAGTTTATGCCACT 120 
I S R N Y R G D V D M S C I E K F M P L 

GTTGGTTGAAAAGGAAGACGAAGGAAGTGCATCTCCAGTATTAGTGCATCAAGGAATTAG 180 
L V E K E D E G S A S P V L V H Q G I S 

TTATACATATATTAAATATATGAATGTTTACTTGGTGACGATTTCGAAGAAAAACACGAA 240 
Y T Y I K Y M N V Y L V T I S K K N T N 

TGTGATTCTTGTATTGTCGGCTCTTTACAAAATTGTCGAGGTTTTCTGCGAATATTTCAA 300 
V I L V L S A L Y K I V E V F C E Y F K 

AACATTGGAGGAAGAAGCTGTTCGCGATAATTTCGTTATTATTTATGAACTTTTCGACGA 360 
T L E E E A V R D N F V I I Y E L F D E 

AATGCTCGATTTTGGATATCCACAGACAACGGAGAGCAAGATTCTTCAAGAATTCATAAC 420 
M L D F G Y P Q T T E S K I L Q E F I T 

ACAACAAGGTAATCGTTTGGAGACAGTTCGTCCACCCATGGCAGTCACAAACGCGGTTTC 480 
Q Q G N R L E T V R P P M A V T N A V S 

ATGGAGATCAGAAGGGATCAAATATCGGAAAAATGAAGTTTTTCTCGATGTTATTGAAAG 540 
W R S E G I K Y R K N E V F L D V I E S 

TGTTAATATGCTGGCAAATGCTCAAGGAACCGTACTCCGTTCAGAAATCGTTGGTTCAAT 600 
V N M L A N A Q G T V L R S E I V G S I 

TCGATTCCGTGTTGTTCTTTCTGGAATGCCGGAACTTCGACTTGGACTTAATGACAAGGT 660 
R F R V V L S G M P E L R L G L N D K V 

GTTCTTCCAGCAATCTGGTGCAAGTTCTAGACGTGGTAACAGTGGAAAAGGAGTCGAATT 720 
F F Q Q S G A S S R R G N S G K G V E L 

GGAAGATATCAAATTCCATCAATGTGTCCGTTTATCTCGCTTTGATTCCGAAAGAACCAT 780 
E D I K F H Q C V R L S R F D S E R T I 

TTCTTTTATTCCACCGGATGGAGAATTTGAGCTGATGAGTTATCGATTGACAACACAAGT 840 
S F I P P D G E F E L M S Y R L T T Q V 

TAAACCATTGATTTGGGTTGAGGCTGCAGTTGAGAGACATGCACATTCAAGAGTTGAATA 900 
K P L I W V E A A V E R H A H S R V E Y 

TATGGTTAAAGCGAAATCTCAATTCAAACGTCAATCTGTTGCCAATCATGTCGAAGTTAT 960 
M V K A K S Q F K R Q S V A N H V E V I 

TATCCCTGTTCCATCCGACGTCAGTGCTCCAAAATTTAAAACTGGAGCAGGTACAGCAAA 1020 
I P V P S D V S A P K F K T G A G T A K 

8TATGTTCCAGAGCTTAATGCTATTGTTTGGAGTATTCGAAGCTTCCCAGGAGGCCGTGA 1080 
Y V P E L N A I V W S I R S F P G G R E 

ATATATAATGAGATCTTCGTTCATGCTCCCATCAATTGGCTCCGAAGAGCTGGAAGGCCG 1140 
Y I M R S S F M L P S I G S E E L E G R 

TCCGCCAATCAATGTTAAATTTGAAATTCCTTACTACACAACTTCCGGACTACAAGTTCG 1200 
P P I N V K F E I P Y Y T T S G L Q V R 

ATATTTAAbbATCATAGAGAAATCTGGATATCAAGCACTTCCATGGGTACGATATGTTAC 1260 
Y L K I I E K S G Y Q A L P W V R Y V T 

TCAAAACGGAGATTATCAAATGAGAATGACCTAATAAGAAGCTTTCTGTTCCCAATATCC 1320 
Q N G D Y Q M R M T * 

TTCAAGCCACCTTCAAGCCAAAACAGTCATCCCTGTAATTTTTGTTCTATTCAATTCCCC 1380 
CGCCATTCGGTCCCTTGGGTGCCTTATATTTTTTTTTTAATGTTTAATTTTATTCCGAGA 1440 
GAGAAAAAAACTAGTAATTTATTAACTGTGATATTGTCTTTTGTTGCTCTTTTCAACGCT 1500 
TTTCATCCCCTGGTTTCTTGTATCTTTCCTTTTTTTTGTTTCGTTTTTC 1549 
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Figure 4. (A) Comparison of amino acid sequences ofCEAP47, UNC-101, and 

mammalian AP47. The amino acid residues that are identical in all three 

homologs are highlighted. 
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(B) Diagram showing the identity of amino acid sequences among the 

homologs of the medium chains of the clathrrin-coated vesicles. CEAP4 7 is 

more similar to AP4 7 than AP50 homologs. 
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Figure 5. CEAP47proteins can complement UNC-101 proteins. (A) The 

CEAP47 hybrid gene contains the 5' putative promoter region ofthe unc-101 

gene, the 5' coding region of unc-101 up to the Nrul restriction site, CEAP47 

coding region to the EcoRV site, and the 3' region of the unc-101 gene. The 

resultant protein predicted to be produced from this hybrid gene contains 301 

amon acids of CEAP47, and 123 amino acids unc-101. A positive control 

construct, the unc-101 hybrid gene, contains all amino acids from unc-101. A 

negative control contstruct contains only 123 amino acids from unc-101, and 

no amino acids from CEAP47. (B) The result ofmicroinjection of the hybrid 

genes. The positive control gene and the CEAP4 7 hybrid gene rescued at 

least two phenotypes ofunc-101 mutations, while the negative control did not 

rescue any. The unc-101 /CEAP47 hybrid gene rescued both the phenotypes 

(see the text for details). 
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Appendix 1: A C. elegans homolog of y-adaptin, a large chain of the 

trans-Golgi clathrin-associated protein complex AP-1 
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Clathrin coated pits and vesicles are involved in intracellular protein 

trafficking such as endocytosis, lysosomal enzyme sorting, and retention of 

Golgi proteins (Brodsky, 1988, Keen, 1990, Payne and Schekman, 1989, 

Pearse and Robinson, 1990, Schmid, 1992, Seeger and Payne, 1992). Clathrin 

coated vesicles are composed of membrane, membrane proteins such as the 

receptors to be transported, clathrin, and its associated protein complex. 

There are at least two different classes of coated pits, one on the plasma 

membrane, and another on the trans-Golgi (Ahle, et al., 1988, Keen, 1987, 

Kirchhausen, et al., 1989). Clathrin is a structural component common to 

both the coated pits, and their associated protein complexes are the 

components that provide localization specificity for either the plasma 

membrane or the trans-Golgi coated pits. Each complex is composed of four 

different subunits: two large chains, one medium chain, and one small chain 

(Kirchhausen, 1990, Kirchhausen, et al., 1991, Kirchhausen, et al., 1989, 

Nakayama, et al., 1991, Robinson, 1990). 

Mutations in unc-101, which we have shown to encode a medium chain 

ofthe trans-Golgi-associated protein complex, cause many different 

phenotypes, for example, uncoordinated movement, a FITC staining defect, 

subviability, and suppression ofvulvaless phenotype of a mutation in the 

receptor tyrosine kinase let-23 (Chapter 2). To understand the roles of 

clathrin associated protein complexes, it is necessary to study the other 

components. For example, would elimination of a y-adaptin have the same 

phenotypes as unc-101 mutants? 

A eDNA clone encoding a homolog of y-adaptin, the large chain of the 

trans-Golgi associated protein complex AP-1, was isolated by a random 

sequencing of a eDNA library (A. R. Kerlavage et al. , personal comm.). U sing 



209 

this eDNA clone, which has only the middle part of the gene, we identified 

additional eDNA clones. One clone contained six nucleotides on its 5' end 

that are identical to SL-1, indicating that this clone indeed contains a full 

length transcribed region (Spieth, et al., 1993). We determined a full length 

eDNA sequence (Figure 1). The eDNA is 3,040 nucleotides long, and is 

predicted to encode a single peptide of 803 amino acids. An amino acid 

sequence comparison reveals that C. elegans y-adaptin is 52% identical to 

mammalian y-adaptin (Robinson, 1990)(Figure 2), 29 to 30% identical to a­

adaptins (Robinson, 1989), and only 20-21% identical to~- and P'-adaptin 

(Kirchhausen, 1990). In addition, we found that theN-terminal half of the 

proteins is more homologous among these adaptins than the C-terminal half. 

We have mapped this eDNA to the right end of chromosome IV by 

hybridization to a YAC grid filter provided by A. Coulson (Coulson, et al., 

1991, Coulson, et al., 1988). 
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Figure 1. The eDNA sequence and its translation of a y-adaptin homolog in C. 

elegans. The putative start and stop codons are underlined. A putative poly 

adenylation signal is also underlined. 
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GTTTGAGGGTGAGGCTCCAAGGATGGCGAC GGCTGTCGAGCTAGCCATTGAGAAGATCGA 60 
TGAGTATAAGTCGAAGATTGGAAGAACTCT CGGCACTCCGATGCGGCTTCGAGACCTAAT 1 20 

TCGGCAGGTCAGAGCGGCACGAACGATGGC 
R Q V R A A R T M A 

TGCGAATATTCGAGAAAGCTTCCGAGACGA 
A N I R E S F R D D 

GAAATTGCTCTATATTCATATGCTCGGCTA 
K L L Y I H M L G Y 

M R L R D L I 
TGAAGAGCGAGCAGTGGTGGATAGAGAAAG 18 0 

E E R A V V D R E S 
TGATTCTCCGTGGAAATGTAGAAATATCGC 240 

D S P W K C R N I A 
CCCAGCGCATTTTGGACAGATGGAGTGCAT 300 

P A H F G Q M E C M 
GAAACTGGTGGCTCACCCCCGATTCACTGA CAAACGAATTGGGTATCTTGGAGCTATGCT 360 

K L V A H P R F T D 
TCTTCTCGATGAACGATCGGAAGTTCATAT 

L L D E R S E V H M 
CACCTGTTCCACCCAATTCGTCAGCGGACT 

T C S T Q F V S G L 
AGCGGAAATGTGTCGAGACCTGGCCAACGA 

A E M C R D L A N E 
GTATTTAAAGAAAAAAGCGGCGCTCTGTGC 

Y L K K K A A L C A 
GATGGAAGTCTTCATTCCATGTACCCGATC 

M E V F I P C T R S 
GATGGGCGCAACGACTTTGGTCACAGAAAT 

M G A T T L V T E M 
TTTTAAGAAATTGGTGCCGAATTTGGTACG 

F K K L V P N L V R 
TTCGCCGGAACACGAGCTCACCGGCATCTC 

S P E H E L T G I S 
ATTATTGAGAGTTTTGGGNAAGGATGACGT 

L L R V L G K D D V 
GGCGCAAGTGGCAACGAATACGGAAACGGC 

A Q V A T N T E T A 
GACTGTACTCACGATTATGGAGATTAAGAG 

T V L T I M E I K S 

K R I G Y L G A M L 
GCTCGTCACTAATTCGCTTAAAAACGACCT 420 

L V T N S L K N D L 
AGCTCTCTGCACTCTGGGCTCAATTTGCTC 4 80 

A L C T L G S I C S 
GGTTGAGAAGATCATCAAGCAGAACAATGC 540 

V E K I I K Q N N A 
GTTCCGTATCGTTCGAAAAGTGCCGGAGCT 600 

F R I V R K V P E L 
GCTTCTGGGAGAGAAAAATCACGGAGTTTT 660 

L L G E K N H G V L 
GTGCGAGAAATCTCCGGATGTCTTGAATCA 720 

C E K S P D V L N H 
GATTCTAAAGAATCTTCTAATGAGTGGATA 

I L K N L L M S G Y 
TGACCCGTTCCTTCAGGTCAAAATTCTGAG 

D P F L Q V K I L R 
ACGTGTCACTGAAGAGATGAATGATATTCT 

R V T E E M N D I L 
GAAAAATGTCGGAAACGCGATTCTCTATGA 

K N V G N A I L Y E 
CGAGAGTGGCCTGCGCATTTTGGCTGTGAA 

E S G L R I L A V N 

780 

8 40 

900 

960 

1020 

CATTCTTGGACGATTCCTTTTGAATACGGA TAAGAATATTCGATATGTGGCGTTGAATAC 1080 
I L G R F L L N T D K N I R Y V A L N T 

GCTTCTGAAGACTGTTCATGTTGATTATCA GGCCGTACAACGTCACCGTAACGTAGTCGT 1140 
L L K T V H V D Y Q A V Q R H R N V V V 

TGAATGTCTCAAAGATCCGGATATTTCGAT CAGAAAACGTGCAATGGAGCTCTGCTTTGC 1200 
E C L K D P D I S I R K R A M E L C F A 

TCTGATGAACCGTACAAATATCGCAATAAT 
L M N R T N I A I M 

CGCCGACGCTGAATTCAAATCGGAATGTGC 
A D A E F K S E C A 

TTCGCCGAATCATGAATGGCATTTGGATAC 
S P N H E W H L D T 

ATACGTTCCTGACGAGGTGGTCTCCTGTAT 
Y V P D E V V S C M 

GCAGAGCTATGCAGTATCCCAGCTTTACCA 
Q S Y A V S Q L Y H 

ACCACTGCTTCAAGTAGCTTTCTGGACAAT 
P L L Q V A F W T I 

AACAGACGTTGATAGTACTCCAATCTCTGA 
T D V D S T P I S E 

TCTTCCGTCTGCTCTAACCTCACTTTGGAC 
L P S A L T S L W T 

CGTGGGAACCAGGTTCCAGTCGACTGGAGA 
V G T R F Q S T G D 

GACGAAAGAAGTGCTCATTTTCCTCGAGAC 1 260 
T K E V L I F L E T 

TTCACGAATGTATATTGCAACGGAAAGATA 1320 
S R M Y I A T E R Y 

GATGATTACTGTACTTAGATTGGCCGGAAA 1380 
M I T V L R L A G K 

GATCCAAATGATTTCGGCGAATGAGCAACT 1440 
I Q M I S A N E Q L 

TGCCGCTCAAAAAGATGCAATCAATGCTCA 1500 
A A Q K D A I N A Q 

TGGAGAATTTGGAGATTTGTTACTTCAACC 1560 
G E F G D L L L Q P 

AAATGATGTTGTCGGAGTATTTGAATCGGT 1620 
N D V V G V F E S V 

AAAATGTTATGGAGTTACTGCTCTTGCGAA 
K C Y G V T A L A N 

TCGAATTGGAGCACTTGTTCGTATGAATCA 
R I G A L V R M N Q 

1680 

1740 
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GGCTCATATTCAGTTGGAGTTACAGCAGCG ATCTGTGGAATTCAATGTGATTTTGAATTT 1800 
A H I Q L E L Q Q R S V E F N V I L N L 

GGGAGATTTGAGAGACGGACTGCTCGAACG AATGCCAGTAATCACCCATAATTCCCTAAA 1860 
G D L R D G L L E R M P V I T H N S L N 

TGCCGCTGCTCCATCAATGATCGATGAGGA AGTTTCTGCAGAATCGGGAGCACCAGTAGT 1920 
A A A P S M I D E E V S A E S G A P V V 

AACCAATGGAGATCTCCTTGGTGATCTGAA CCTTGGTGGTGGTGGTTCAACGAATCCATC 1980 
T N G D L L G D L N L G G G G S T N P S 

AAATGACTATAGTTCTGATCTTTTGGGTGT TGGAGTTGGTAGTGGAGCAGCTTCTGCTCA 2040 
N D Y S S D L L G V G V G S G A A S A Q 

GGCACCACCACCACCACCACCACCTACCTC AAATTCGAATATTTTGGACATTTTCGGCGA 2100 
A P P P P P P P T S N S N I L D I F G D 

TACACCATCTTCAAATGCTGCTGGTGGTTT TGACTTTGGAATGGCTGCTCCAGCGAAGGA 2160 
T P S S N A A G G F D F G M A A P A K E 

GCCCACTTATCAGCCGGTAATCGCTATCAA CAAGGGCGGAATCGAAGTTCAACTGCAAGT 2220 
P T Y Q P V I A I N K G G I E V Q L Q V 

CATCGAAACGTGGAAAAACGAGAAGGCTCG TCTGAGAATGACGGCTTACAACTATACACC 2280 
I E T W K N E K A R L R M T A Y N Y T P 

AAGAACTCTTTCGAACTATAATTTCTTCGC AGCCGTCACAAAAACGTTTGAAATTGCACT 2340 
R T L S N Y N F F A A V T K T F E I A L 

GGAACCGGCTTCATCGCCAAATATTGATCC AAATGAGCATACTACTCAATTTATGACTAT 2400 
E P A S S P N I D P N E H T T Q F M T I 

TACAAGAAAAGCACCTAATACTACTGCTCG CATGCGCACCAAAATCTCGTACATTGTCGA 2460 
T R K A P N T T A R M R T K I S Y I V D 

CGGAACGGAACAAGTCGGCGAAGGAGTTGT CAACGAGTTTCCCGGATTGTAAAAATCTAA 2520 
G T E Q V G E G V V N E F P G L * 

TTTTCCCCCAAAAAAAATTTCCCAAATGCC ACGTTTTTTCCTAATTTATTGATTTTTTTT 2580 
TCTATGTGTTTCTAAAAATACCATTTTTGT TCTTATTTTAGTGTGTGTGTGTCTATTGTC 2640 
AAATAATGTGAGAAAACTCTAATGGTTGTG ATTATTTTTATTTAATTTTTTTTCTTCAAA 2700 
TTCCTGCTGCTAGGGGTTACTGTGATAATA TTTTCCCCTATTTACCCGAAAAAATTCCAA 2760 
AAAAATTGCACTCCCGACCCCCACTTTTCC ACCACCAAAAAATCCGCTTTTTCATGTATT 2820 
TACCCCTAAAATTGCACAAATAGGCACCTG CCTGCCCACATACCTACAGGCAGTGCCTTG 2880 
TAGGTAGGCACGCAGGTAGCAAGCCTACTA TCCTCAATAATTAGTTTTTTATTGGCTAAA 2940 
AAANNCAAAAAAATATCGTCTTGGCAGAGT AGAGATTCCCCATTTTTTTTTATTGGATTT 3000 
TATTAATbAACCCCCACTTTTTGAGCAAAA AAAAAAAAAA 3040 



213 

Figure 2. Comparison of the amino acid sequences of the C. elegans y-adaptin 

and its mammalian homolog, y-adaptin. The amino terminal half of the 

proteins is more conserved than the carboxy terminal half. 
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Appendix II: Interaction of unc-101 with daf-1, a gene encoding a 

putative receptor serine/threonine kinase involved in dauer 

formation in C. elegans 
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Because unc-101 encodes a clathrin-associated protein on the trans­

Golgi membrane, it is possible that the UNG-101 protein may be involved in 

other signal transduction processes than the vulval induction pathway. We 

tested whether unc-101 interacts with a gene encoding a putative receptor 

involved in another signaling pathway. Dauer is an alternative, dormant 

developmental stage of the nematode, in which the nematodes maintain a 

very low metabolism, and are resistant to harsh environmental conditions 

such as limited food supply and the lack of moisture (Cassada, 1975, Cassada 

and Russell, 1975, Golden and Riddle, 1984, Riddle, 1988). Dauers can 

survive longer than normally developed nematodes. Dauer formation is 

induced when food supply is limited or there are too many nematodes around. 

The dauer formation is regulated by many genes that are either required for 

dauer formation, or required for preventing dauer formation (Riddle, et al., 

1981, Vowels and Thomas, 1992). daf-1 is one ofthe genes required for 

preventing dauer formation. Loss-of-function mutations in daf-1 causes a 

temperature-sensitive dauer-constitutive phenotype. At 25°C, the mutants 

animals are 100% dauers, and at 15°C, they are wild type. We chose daf-1 as 

our first gene to test for interaction with unc-101, because this gene encodes a 

putative receptor serine/ threonine kinase (Georgi, et al., 1990). 

We used three alleles of daf-1, m40, m122, and m213 for constructing 

double mutants with an unc-101(sy108) mutation. m40 is a genetic null 

allele, and m213 is a mutation in the kinase domain of the DAF-1 protein, 

and probably is a molecular null. m122 is a reduction-of-function allele (D. 

Riddle, per. comm.). We used the dpy-9 marker to balance daf-1. The 

genetic distance between the two genes is 0 with error rate of 0.05. We mated 

dpy-9 males with daf-1 hermaphrodites. The male progeny from this mating 
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were mated with unc-101; dpy-9 hermaphrodites. In the next generation, we 

picked non-Dpy non-Unc hermaphrodite progeny, whose genotype is unc-

101 I+; daf-1 I dpy-9, and transferred them to 15°C. From the progeny of 

these mothers, we picked 20 individual Unc non-Dpy animals, and check 

their genotype by the segregation of Dpy animals at l5°C. The animals that 

did not segregate any Dpy progeny are of the genotype unc-101 lunc-101; daf-

1 ldaf-1. 

The unc-101; m40 double mutants and the unc-101; m213 double 

mutants had the same dauer phenotype as the m40 or m213 single mutants, 

because at 15°C they are wild type, and at 25°C they are all dauers. 

However, the unc-101; m122 double mutants displayed an enhanced 

phenotype. Specifically, at 15°C, about 57% of the double mutant animals 

were dauers ( 494 animals examined). This suggests that unc-101 interacts 

with daf-1 in an allele-specific manner, and that unc-101 mutations do not 

suppress or enhance the null mutation of the daf-1 gene. This result also 

suggests that unc-101 is not just involved in an EGF signaling process, but 

also can be involved in other signaling pathways. The function ofunc-101 

may be down-regulation of broad range of cellular signaling processes. 
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