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Abstract

Granular crystals are compact periodic assemblies of elastic particles in Hertzian con-

tact whose dynamic response can be tuned from strongly nonlinear to linear by the

addition of a static precompression force. This unique feature allows for a wide range

of studies that include the investigation of new fundamental nonlinear phenomena

in discrete systems such as solitary waves, shock waves, discrete breathers and other

defect modes. In the absence of precompression, a particularly interesting property

of these systems is their ability to support the formation and propagation of spatially

localized soliton-like waves with highly tunable properties. The wealth of parameters

one can modify (particle size, geometry and material properties, periodicity of the

crystal, presence of a static force, type of excitation, etc.) makes them ideal candi-

dates for the design of new materials for practical applications. This thesis describes

several ways to optimally control and tailor the propagation of stress waves in granular

crystals through the use of heterogeneities (interstitial defect particles and material

heterogeneities) in otherwise perfectly ordered systems. We focus on uncompressed

two-dimensional granular crystals with interstitial spherical intruders and composite

hexagonal packings and study their dynamic response using a combination of exper-

imental, numerical and analytical techniques. We first investigate the interaction of

defect particles with a solitary wave and utilize this fundamental knowledge in the

optimal design of novel composite wave guides, shock or vibration absorbers obtained

using gradient-based optimization methods.
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5.5 Schematic diagrams of two optimized designs obtained when 5.5(a) max-
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and gray particles, radius R = 9.52 mm) impacted from the left by

a stainless steel sphere (red arrow, v0 = 0.155 m/s) and enclosed by

a hexagonal wall (green). The black boxes represent the target areas.

5.6(a) Minimization of the peak energy at the wall opposed to the im-
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Chapter 1

Introduction

The work presented in this thesis describes new ways to control and tailor the me-

chanical energy associated with the propagation of stress waves in granular crystals

through the optimal use of heterogeneities (interstitial defect particles, material het-

erogeneities) in otherwise perfectly ordered systems. We primarily focus on square

packed two-dimensional (2D) granular crystals with interstitial spherical intruders

and composite hexagonal packings. In this introduction, we describe the motivation

behind this work, our goals and achievements, provide a general description of granu-

lar crystals followed by a brief historical review of the previous work in the field, and

finally present the organization of this thesis.

1.1 Motivation

Mechanical waves, defined as waves propagating through a medium, are omnipresent

in our world and part of our daily lives. For instance, oscillations of a string and

stress and seismic waves are common examples of mechanical waves. Their form

varies and depends on the medium that hosts them (e.g., acoustic waves in fluids and

elastic waves in solids). A large variety of different waves can also exist within a same

medium: surface oscillations of a membrane, torsional wave in a cylindrical rod, or the

various body and surface waves involved in the propagation of an earthquake. Present

in the natural world, mechanical waves are also used in a wide range of engineering

applications. It is consequently of great importance to understand their underlying
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mechanisms and to be able to control them.

Environmental forces such as wind or earthquakes acting on a structure or the

simple walking or stomping of crowds in a building can cause unwanted vibrations

potentially resulting in the damage or failure of the structure. Vibrations are some-

times directly associated with the functioning of an engineering device (e.g. vibrations

in heavy machinery). Explosions, falls, or any source of shock creation can similarly

damage a structure, object, or engineering device. These are a few of many applica-

tions for which the development of shock- and vibration-absorbing devices operating

at macroscopic wavelenghts is crucial. Some of the most common ways currently

used to mitigate shocks and vibrations include cushioning (including but not limited

to the use of polymeric foams) [1], harmonic absorbers [2] and viscous dampers (as in

a typical door closer for instance) among other examples. Most of these techniques

are based on the passive methods of dissipating the wave energy (e.g., dampers),

absorbing part of the wave energy (transmitted to tuned oscillating structures), or

dispersing the wave energy between a wider range of frequencies.

Granular materials, defined as large conglomerations of discrete macroscopic par-

ticles have been widely used as passive devices for impact and vibration absorption [3].

Their strong absorbing power is based on the large number of inelastic (dissipative)

collisions between neighboring grains and hence originates from a collective behavior

of the particles. Examples of applications include packaging fillers, recoiless hammers

or Hacky Sacks [4]. The properties of granular materials have been a subject of active

research for centuries, and this goes back to Coulomb who initially stated his friction

law for such materials. Faraday and Reynolds also took part in the initial develop-

ment of this field [5, 6]. Their complicated static and dynamic behavior makes it

impossible to attribute to them a single phase of matter as they combine properties

reminiscent of solids, liquids and gas [4]. The physics of granular materials is still rel-

atively poorly understood despite their being heavily represented both in nature and

industrial applications (sand, cereals, rice, fertilizers, and ball bearings being only a

few examples). The behavior of disordered granular materials is distinct from gran-

ular crystals, a subcategory defined as compact arrays of elastic particles in contact.
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Granular crystals are nonlinear lattices, and have been an area of intense research

ever since they have been shown to support the formation and propagation of a new

type of solitary wave [7], among other unique properties. The main advantage of

working with granular crystals as opposed to “random” comglomerations of particles

is the possibilty to take advantage of their interesting dynamics in a controlled and

optimal fashion, leading to the design of new engineered materials with potentially

application-specific properties, as evidenced in [8–12] for example.

In this thesis, we investigate new ways to control the wave propagation in granu-

lar crystals by the progressive inclusion of heterogeneities and by taking advantage of

their dispersing abilities. We make use of multi-disciplinary optimization techniques

originally developed for structural optimization and compliance minimization prob-

lems [13] in the last 30 years, which are now widely used in the aeronautical, car and

turbomachinery industries. The discoveries and methods presented in this thesis will

help to develop practical crystal-based devices and are expected be applicable to more

complex or analogous settings (3D granular crystals, different dynamical regimes or

in other discrete nonlinear systems).

1.2 Goals and achievements

This section summarizes the objectives pursued in this study. As part of this thesis,

we developed ad-hoc experimental and numerical techniques combined with simple

analytical models. We applied these approaches to the analysis and characterization

of new phenomena occuring in compact 2D assemblies of spherical particles. The

main goals of this work were to:

• gain a fundamental understanding of the effect of a single defect particle and its

interaction with a solitary wave, and investigate the mechanisms of interaction

of several defects;

• apply this fundamental knowledge to the numerical design of complex composite

materials via optimization techniques;
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• extend the study to a different kind of inhomogeneity introduced by material

mismatch;

• assess the performance of both the designs and the method;

• evaluate the feasibility of the practical implementation of our results through

experimental validation.

The effect of impurities in linear media is well understood. P.W. Anderson showed

in his landmark publication [14] the absence of diffusion in an impure linear medium

provided that the degree of randomness of the impurities is sufficiently large, and

explained the relation of disorder to strong localization. Several studies focused on

the presence of defects in 1D granular crystals [15–18]. In weakly nonlinear 1D gran-

ular crystals, Theocharis et al. showed that the inclusion of light mass intruders is

necessary to observe energy localization under the form of discrete breathers (extrin-

sic localization through disorder) [18]. In highly nonlinear crystals, defect particles

have been shown to localize energy when interacting with a solitary wave [15]. When

reached by a shock wave [17], a light intruder acts as a secondary source of solitary

waves, whereas a heavy one will be shifted by the shock and causes the transmission

of a train of waves of decreasing amplitudes.

Here, we conducted systematic numerical simulations and experiments to investi-

gate the effect of the material properties (elastic modulus and mass) of an interstitial

spherical intruder placed in the center of a 2D square packing submitted to an im-

pact. The number of intruders was progressively increased to study the interaction

of two intruders and we showed that one can effectively transfer half of the impact

energy into the chain adjacent to the one impacted through the nonlinear coupling

introduced by a line of intruders, passively redistributing half of the impact energy

into different areas of the crystal.

We extended this work to the study of the optimal placement of an arbitrary

numbers of defects into the same 2D granular crystal and the obtention of wave

mitigating and wave redirecting designs able to minimize or maximize the energy

or reaction force reaching a given part of the crystal. A gradient-based topology
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optimization was developed in order to solve these optimization problems, building

on the first step made towards the design of optimal granular crystals realized in [9].

The same method was adapted to the problem of material optimization in 2D

hexagonal packings and the design of optimized crystals in which every particle can

be made of either a soft or a stiff phase. The energy dispersion taking place in

the crystal is due in this case to a material property mismatch responsible for the

progressive decomposition of an initial pulse into a train of waves, as previously

investigated in 1D crystals for mass defects for example [7]. We established that the

numerical designs are much more effective at dispersing or focusing the input energy

than the analogous homogeneous crystals and other disordered configurations.

Several optimization methods were available which can be categorized into two

families:

• gradient-based methods employing local search strategies and termination cri-

teria;

• heuristic (also refered to as population or non gradient-based) methods.

A breeder genetic algorithm (BGA), heuristic method that uses selection schemes

inspired from natural selection and breeding [19], was chosen in an earlier work [9].

The advantages and shortcomings of the gradient-based methods over the heuristic

ones are discussed in [20]. In this thesis, we compared the designs of selected gran-

ular crystals obtained using a BGA and a gradient-based scheme and justified the

choice of the selected gradient-based scheme based on computational efficiency and

performance of the optimized design (see details in chapter 6 of this thesis).

For practical applications, it was important to be able to reproduce the numerical

results in real systems. To this end, and as will be described in detail in the next

chapter, we designed several experimental setups as well as a measurement technique

allowing us to directly and successfully compare the acceleration of any particle in

the real crystal to the numerical signals.
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1.3 Granular Crystals

Granular crystals are compact arrays of elastic particles in contact and can be mod-

eled as point masses interacting nonlinearly via the so-called Hertzian potential (see

Eq. 1.1). They arguably are the most important example of the Fermi-Pasta-Ulam

class of nonlinear lattices (a review of the studies of the principal nonlinear lattices,

Discrete Nonlinear Schrödinger Equation, Klein-Gordon and Fermi-Pasta-Ulam can

be found in [21]). The next sections focus on the origin of nonlinearity in these sys-

tems, how it affects the dynamics of organized assemblies of spherical particles (we

base our explanation on the theory initially developed by Nesterenko for 1D homoge-

neous crystals [7]) and give an overview of the previous works carried out on granular

crystals in the past 30 years.

1.3.1 Hertzian Contact and Nonlinearity

Hertzian contact relates the compression force Fij between two spherical particles i

and j to their relative displacement δij as follows:

Fij = Ai,j[δij]
3/2
+ , (1.1)

where [X]+ denotes the positive part of X.

It is important to point out that this dependance of F in the form δ3/2 is valid for

contacts between bodies of different shapes (not necessarily spherical) [22].

For the specific case of spherical particles, Ai,j =
4EiEj

√
RiRj/(Ri+Rj)

3(Ei(1−ν2j )+Ej(1−ν2i ))
. Ei, νi, Ri

represent the Young’s modulus, Poisson’s ratio and radius of particle i respectively.

The above interaction law is valid for linear elastic particles with elliptical contact

area, and the following assumptions were made by Hertz in its original derivation [23,

24]:

1. the contact area is small with respect to the radii of curvature of each particle,

2. the contact surface is frictionless and only supports forces normal to it,
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3. the interaction is quasi-static (i.e. the characteristic time of the problem is

much longer than the oscillation period of a particle).

The validity of the Hertz law for spheres of different materials is discussed in detail

in [24, 25] as well as more recently in [26] and was confirmed for a range of materials

including tungsten carbide, steel, brass, glass and nylon.

The nonlinearity in this case arises from the geometry of the contact and the

dramatic increase of the contact area with the compression force. The 3/2 power

law is softer than the harmonic case for small overlaps but becomes rapidly steeper

as compression increases, which makes it energetically expensive to sustain contact

for too long. Another unusual feature of granular crystals is the absence of tensile

strength which introduces an additional nonlinearity by breaking the symmetry of

the potential.

It is this intrinsic nonlinearity of the contact interaction that explains the non-

linearity of the granular crystals described in this thesis. These systems have drawn

considerable attention during the past years and this broad interest has emerged, to

a considerable extent, due to the unique ability to tune their dynamic response from

linear to essentially nonlinear by the addition of a static precompression force, as will

be described in the next section. This remarkable feature, along with the wide variety

of shapes, sizes and materials that one can consider, has allowed for a wide range of

studies that include the investigation of fundamental nonlinear phenomena in discrete

systems such as solitary waves [3, 27], shock waves [28], discrete breathers [29, 30] and

defect modes [18] or the design of new materials for practical engineering applications.

1.3.2 Dynamical Regimes and Example of the 1D Homoge-

neous Chain

The mathematical development of such systems is still relatively limited and we focus

in this section on the simplest granular crystal that one can encounter. The case of a

1D chain of identical spheres was first investigated by Nesterenko [7] and is described

in detail in [3]. Because the stiffness of each contact is much lower than the bulk



8

stiffness of the particles composing the crystal, we can model it by a spring-mass

system and using the expression for the force from Eq. 1.1 write the particle equation

of motion:

ü =
A

m
[(δ0 − ui + ui+1)3/2 − (δ0 − ui+1 + ui)

3/2], (1.2)

with A =
√

2RE
3(1−ν2)

. We denote by m, R, E and ν the mass, radius, elastic modulus and

Poisson’s ratio of a particle respectively, ui represents the displacement of particle i,

and δ0 is the initial displacement caused by the applied precompression force F0 (see

Fig. 1.1).

Figure 1.1: 1D homogeneous chain of spherical particles statically precompressed.

For a strongly compressed chain the dynamic displacement of a particle is small

with respect to the one caused by the static precompression, |ui+1−ui|
δ0

<< 1, and one

can expand Eq. 1.2 into an anharmonic approximation [7]. Further assuming that

the characteristic spatial size of the propagating perturbation is large with respect to

the size of a particle (long wavelength approximation), it is possible to show that the

dynamics of these systems is described by the Korteweg-de Vries (KdV) nonlinear

wave equation [31] of which Russel’s soliton [32] was later proved to be a solution for

the strain ξ = −ux:

ξt + c0ξx + γξxxx +
σ

2c0

ξξx = 0, (1.3)

where c2
0 = 6A

m

√
δ0R

2, γ = c0R2

6
and σ =

c20R

δ0
.

They are usually qualified as weakly nonlinear as the wave equation contains both

a linear part and a nonlinear part. When the compression load is much greater
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than any disturbance, the crystal becomes fully linear and one can derive its classical

dispersion relation [33]. Physically, one can understand it as the creation by the

static load of a continuous channel along the chain of beads in which small sound

oscillations can propagate.

However, when the compression load becomes of the order of the dynamic forces

created by the propagating signal ( |ui+1−ui|
δ0

& 1), a completely new highly nonlinear

regime describes the behavior of the granular crystal. The approach taken by Ne-

serenko in 1983 consisted of applying the long wavelength approximation previously

mentioned and expanding the displacement of particle i − 1 and i + 1 as a function

of u, displacement of particle i, and its space derivatives:

ui±1 = u± 2R

1!
ux +

(2R)2

2!
uxx ∓

(2R)3

3!
uxxx +

(2R)4

4!
uxxxx . . . (1.4)

Replacing each term in Eq. 1.2, he obtained the strongly nonlinear wave equation:

utt = −c2

[
(−ux)3/2 +

a2

10

[
(−ux)1/4

(
(−ux)5/4

)
xx

]]
x

, (1.5)

with c2 = 2E
πρ0(1−ν2)

and a = 2R, for which he found an exact stationary solution (i.e.

solution of the form u(x− V t)):

ξ =

(
5V 2

4c2

)2

cos4

(√
10

5a
(x− V t)

)
. (1.6)

V is the velocity of the highly nonlinear solitary wave. Unlike harmonic waves trav-

eling in linear media, the velocity of a solitary wave depends on its amplitude, and

larger amplitude waves move faster than those with smaller amplitudes [34]. In this

specific case, the wave velocity is nonlinearly related to the ratio of the maximum

dynamic contact force Fd divided by the static preload F0, noted fr:

V = 0.9314

(
4E2F0

a2ρ3(1− ν2)2

)1/6
1

f
2/3
r − 1

(
4

15

[
3 + 2f 5/3

r − 5f 2/3
r

])1/2

, (1.7)
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which simplifies to the well known relation:

V = 0.6802

(
2E

aρ3/2(1− ν2)

)1/3

F
1/6
d , (1.8)

which expresses the weak dependance of the phase velocity of the solitary on its

amplitude in the absence of static preload (F0 = 0) [35].

1.3.3 Historical Review

1.3.3.1 1D Granular Crystals

The study of packed granular crystals was initiated by Nesterenko in 1983 when he

theoretically and numerically predicted the existence of a new kind of highly non-

linear soliton-like wave in uncompressed 1D homogeneous granular crystals [7] that

otherwise do not support the propagation of sound vibrations (appropriately nam-

ing them “sonic-vacua”). Experimental confirmation of these new phenomena was

provided soon after in a subsequent study carried out with Lazaridi [36]. Following

his pioneering work, he published several other studies related to solitary wave and

shock propagation in these systems, looking at phenomena such as the transmission

of solitary waves at the interface between two granular crystals, the effect of the ran-

domization of the radii of the particles or the thermalization of impulses, which are

described in his book “Dynamics of Heterogeneous Materials” [3]. Granular crystals,

and the phenomena occuring in them not only in the highly nonlinear regime, but

also in the weakly nonlinear or linear regimes, have since then received considerable

attention and are today an extremely active area of research.

The initial derivation, which approach is described in the previous section, was

extended to homogeneous systems with the general nonlinear interaction F α δn [3]

and later to heterogenous diatomic crystals [37, 38]. MacKay published a rigorous

mathematical proof of the existence of the predicted solitary wave [39] based on the

existence theorem of Friesecke and Wattis for localized traveling waves in 1D lattices

with nearest-neighbor interactions [40]. This proof was later extended to the general
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case of arbitrary power-law type contact interaction [41]. Other approaches were also

taken: A. Chatterjee, for instance, developed an asymptotic solution for the solitary

wave [42] and S. Sen derived an iteratively exact solution [43] with better accuracy

than the original approximate solution.

In the early 1990’s, a few studies using experimental techniques focused on sound

propagation in sand [44, 45], a granular material far more complex than granular

crystals due to the complexity of the individual properties of each grain. For the

ideal case of 1D granular crystals submitted to a static force, Hertz theory predicts

that the sound speed is related to the pressure in the chain by the following relation:

c0 αP
1/6. When studying 3D pilings, Goddard observed deviations from the Hertzian

behavior (c0 αP
1/4) and attributed them to the presence of roughness in real systems,

conical interactions or the possible buckling of the chains [46]. De Gennes developed

models taking into account the effect of a small oxide layer [47] and plasticity at

the microcontacts [48] that both give the value 1/4 for the power-law relation sound

speed and pressure. Coste and Gilles reviewed alternate models to the Hertz theory

and showed with experiments that the propagation of waves in highly nonlinear and

precompressed (weakly nonlinear) 1D granular crystals was in agreement with the

Hertzian theory for a wide range of materials (elastic, elastic-plastic, oxidized, varying

the roughness among other factors) [26].

S. Sen and collaborators studied the vertical propagation of weak and strong

impulses in deep gravitationally loaded granular columns [49, 50] and studied the

formation, propagation and crossing of solitary waves in 1D highly nonlinear crys-

tals [51–53]. Several other studies consisted of numerical investigations of the inter-

action of a solitary wave with a mass defect with potential applications for detecting

burried impurities [53–55] (E. Hascoët and H. Herrmann numerically studied the re-

lated problem of the interaction of a shock impulse with a mass defect in an unloaded

1D granular chain [17]) . They provided the first study of tapered chains using numer-

ical simulations and suggested that these systems could be used as efficient granular

protectors able to thermalize impulses by breaking them down into trains of waves

of lower amplitude [56]. This early work motivated a series of publications focusing
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on analytical, numerical and experimental studies of uncompressed tapered chains,

some based on the independent-collision model of D. Wu [10, 57–61]. J. Hong and

collaborators also studied gravitationally loaded 1D chains [62] and revisited the idea

of identifying impurities by observing the signal backscattered from light or heavy de-

fects [63]. His later work consists of a numerical study in which he demonstrates the

power-law decay of impulses traveling in uncompressed “granular containers” com-

posed of granules of different shapes and masses, making them excellent candidates

for new granular protectors [12].

C. Coste and collaborators analytically studied highly nonlinear 1D granular

chains and provided one of the earliest experimental verifications of the formation

of solitary waves in these crystals [27].

More recently, S. Job and collaborators studied different aspects of the propa-

gation of highly nonlinear solitary waves in 1D granular crystals. They performed

experiments, numerical analyses and analytical techniques to describe the interac-

tion of a solitary wave with a boundary [64], with a mass defect [15], and at an

interface between two granular crystals [65] and studied the effect of a viscous fluid

surrounding the contacts [65] (in addition to the work on tapered chains previously

mentioned [60]).

K. Lindenberg and collaborators published several studies describing the response

of uncompressed 1D granular crystals through models including friction [66] and dis-

sipation [67] and developed a binary collision model in which the transfer of energy

along the chain is assumed to occur via a succession of two-particle collisions [68],

applied to the analysis of tapered and decorated chains [69, 70].

Additionally, it was shown that homogeneous granular media can support families

of strongly nonlinear traveling and standing waves [71], whereas heterogeneous media

can exhibit resonance and anti-resonance phenomena [72].

As one can see, extensive work has been carried out relating to highly nonlinear

1D granular crystals, the propagation of highly nonlinear solitary waves or shocks and

the effect of impurities, interfaces or boundaries. This was continued by C. Daraio

and collaborators who investigated with numerical simulations and experiments the
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propagation of highly nonlinear solitary waves in 1D chains of PTFE or polymer

coated steel particles [73, 74], their tunability [35], the propagation of solitary waves

in periodic crystals of higher dimensionality [37, 38], the coupling of highly nonlinear

solitary waves with a linear elastic medium [75] and the effect of dissipation on the

propagation of solitary waves [76]. Specific studies focused on how to better control

the energy propagation in 1D granular crystals by taking advantage of properties

specific to these systems, such as the anomalous reflection phenomenon occuring at

the interface of two 1D granular crystals [8], the ability to trap energy in a soft

section of a 1D crystal [11], the splitting and recombination of pulses in y-shaped

crystals [77] (with numerous potential engineering applications including new shock

absorbing devices [9, 11], sound scramblers [8, 73], actuator devices [75] or acoustic

lenses [78]).

More recently, increased attention was given to the study of 1D granular crys-

tals when operating in the linear or weakly nonlinear regime. Using concepts from

linear dynamics, several studies experimentally and numerically investigated highly

compressed (linearized) 1D granular crystals, the existence of band gaps in their dis-

persion relation, and the possibility of tuning them [33, 79–82]. Intrinsic localized

modes or discrete breathers, originally theoretically predicted to exist in anharmonic

lattices [83–86], are time-periodic, spatially localized (typically exponentially) solu-

tions numerically and experimentally observable in weakly nonlinear crystals (see for

example the studies realized on monoatomic crystals with defect [18] in which non-

linear breathing modes were obtained as a continuation of the linear modes induced

by the presence of such defects, diatomic crystals [29] or at the interface between

a monoatomic and diatomic crystal [87]). Understanding these phenomena and the

localization of energy in crystals is important to further the understanding of the

nonlinearity of these systems and could lead to the design of novel energy-harvesting

or filtering devices [88, 89].
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1.3.3.2 2D Granular Crystals

The study of higher dimension (2D and 3D) granular crystals is far less developed

and no general theoretical framework is yet available. The investigation of 2D and

3D granular crystals is experimentally challenging due in large part to the difficulty

of assembling “perfect” crystals: a slight tolerance on the radius of the particles can

disrupt the contact network by creating local precompressions or gaps. A. Shukla

and collaborators performed some of the earliest experimental work on 1D and 2D

uncompressed crystals using photoelasticity techniques combined with high speed

photography [90, 91] and qualitatively looked at various aspect of the wave propa-

gation in assemblies of photoelastic disks and elliptical beads including the effect of

the packing geometry [92], the role of the shape of the particle [93], and the pres-

ence of cracks in the particles [94]. S.G. Bardenhagen and J. U. Brackbill performed

numerical experiments to investigate the stress localization in 2D square packings of

polydisperse cylinders, comparing static and dynamic loading, and looked at the effect

of an interstitial material [95]. In 2002 B. Velický and C. Caroli provided a theoretical

mean-field description of 2D hexagonal crystals composed of Hertz-Mindlin balls [96]

whose diameters exhibit mild dispersion, and studied the dependence of an external

pressure field on the sound velocity [97]. Soon after, C. Coste and B. Gilles conducted

some of the earliest numerical and experimental studies on wave propagation in highly

compressed 2D hexagonal packed granular crystals [98, 99], looking at the effect of

the strength of the static prestress on the behavior (Hertzian or non-Hertzian) of the

system and interpreted the recovery of the Hertzian behavior at high stress in terms

of the progressive activation of contacts. M. Nishida and collaborators investigated

the absorbing abilities of 2D layered granular crystals using Discrete Element Method

(DEM) simulations and experiments [100, 101].

Very recently, Leonard and Daraio used numerical and experimental techniques to

describe the wave propagation in 2D uniform square packings (pseudo-1D systems)

and observed the formation and propagation of highly nonlinear solitary waves [102].

In a subsequent study, they showed how cylindrical intruders and their material prop-
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erties affect the shape of the 2D wave front [103].

While much work has been done on 1D highly nonlinear granular crystals (includ-

ing the interaction of solitary waves with defects), and some on 1D weakly nonlinear

or linear granular crystals, the behavior of higher dimension crystals, both submitted

to a static precompression force or in the highly nonlinear regime, is still relatively

poorly understood. This thesis will focus on uncompressed homogeneous and hetero-

geneous 2D granular crystals and several phenomena related to the presence of defect

particles in otherwise perfectly organized packings.

1.4 Conceptual Organization of This Thesis

The remainder of the thesis is organized as follows: in chapter 2, we describe in detail

the various experimental and numerical setups developed and used to carry out the

projects presented in the next chapters.

In chapter 3 we investigate the effect of spherical interstitial intruders placed in

a 2D uncompressed square packing on the wave propagation. We show the first

experimental and numerical demonstration of the dispersion caused by one spherical

intruder, study how its scattering power is related to its material properties (stiffness

principally) and look at the interaction of two spherical intruders depending on their

relative positions in the packing. Analytical rigid body collision models were derived

that corroborate the experimental and numerical results.

Chapter 4 presents a continuation of this work where we show with experiments

and simulations how a line of light spherical intruders redistributes the energy input in

the impacted chain into the adjacent chain until an equilibrium is reached where two

signals of same amplitude travel down the two chains (this is the first observation of

an equipartition phenomenon in a nonlinear granular crystal). This fully 2D system

is compared with a simplified 1.5D system in which the transverse motions of the

particles are neglected.

In chapter 5, we apply a gradient-based optimization method to the design of novel

granular materials in which the positions (topology optimization) and material prop-
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erties (material optimization) of the particles are optimized in order to best mitigate,

redirect or focus the impact energy. We first optimize the locations of stiff interstitial

intruders in 2D square packings and optimize the material properties of each bead in

a hexagonal packing. A wide range of optimization methods are available to perform

such optimizations which can be divided into two families: gradient-based and non

gradient-based (or heuristic), with specific advantages and inconveniences (discrete-

ness of the solutions, implementation, computational time, required knowledge of the

design space etc.).

In the numerical work of chapter 6, we compare two conceptually different ap-

proaches: we apply a Breeder Genetic Algorithm to some of the problems investigated

in chapter 5 and mainly focus on the performance of the optimized designs obtained

via each method as well as the computational times required in each case.
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Chapter 2

Experimental and Numerical
Setups

2.1 Experimental Setups

Several experimental setups were designed to test the dynamic response of uncom-

pressed 2D granular crystals arranged in square and hexagonal configurations. When

studying square packings, custom-made intruder particles were located in some of

the interstitial sites. The particles composing the granular crystals are R = 9.52 mm

± 0.01 mm radius particles made of 316 stainless steel or polytetrafluoroethylene

(PTFE). The spherical intruders are custom-made particles provided by [104] and

have radius Rd = 3.943 mm ± 0.001 mm (note that Rd ≈
(√

2− 1
)
R) in order to

fit exactly in the interstitial sites: each intruder particle is barely in contact with all

of its four neighbors. Four different materials were investigated to study the effect

of the stiffness of such spherical intruders: PTFE, 260 alloy brass, 316 stainless steel

and tungsten carbide (TC).

Even though the particle configurations and the materials used are different for

each experiment, the measurement method and the experimental procedure are the

same in each case, and the different setups share common features. A steel particle

of radius R and initial velocity v0 (typically in the [0 m/s ; 0.25 m/s] range) impacts

the granular crystal on one side, and the acceleration-time history of the propagating

excitations is visualized using calibrated custom-made sensor particles consisting of a
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Figure 2.1: Particles used in the various experiments. From left to right: PTFE
cylindrical stand, tungsten carbide 3.943 mm radius spherical intruder, steel 3.943 mm
radius spherical intruder, brass 3.943 mm radius spherical intruder, PTFE 3.943 mm
radius spherical intruder, steel 9.52 mm radius and PTFE 9.52 mm radius.

TC stainless steel brass PTFE

(kg/m3) ρ 15800 8000 8500 2200
(GPa) E 400 193 103 1.26

ν 0.28 0.30 0.37 0.46

Table 2.1: Densities, Young’s moduli and Poissons’s ratios of the different materials
used in our experiments and numerical simulations.
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triaxial accelerometer embedded in a spherical particle placed in a location of interest

in the crystal. The impact velocity is measured using an optical interruptor connected

to an oscilloscope (TEKTRONIC 2024B) and the experimental impact velocity is used

as an input for the numerical simulations. The acceleration data is sent to a signal

conditioner (PCB 481A02) and a data acquisition board (NI BNC-2110 and NI PCI-

6123) and passed to MATLAB (R2010a) for post-processing and visualization. The

boundaries (“walls”) and supporting plane are made of a polymer (PTFE or Delrin

for the walls, polycarbonate for the supporting plane) or coated with a PTFE layer.

Polymers were chosen (over metals) for several reasons. First of all, the reflection of

a solitary wave against a soft wall will be delayed (if compared with a stiffer wall)

due to the longer time needed for the last stiff particle to penetrate the wall. This

is important as we do not consider reflected signals in this work and hence want

to minimize boundary effects. Another reason is that they have a low coefficient of

friction in contact with the particles composing the crystal which diminishes the role

of dissipation caused by dry friction. Lastly, they are electrically insulating which

prevents cross-talk between sensor particles.

The following sections describe in further detail the various experimental setups,

sensor particles and data acquisition equipment.

2.1.1 Square Packings, Equipartition Experiment and Hexag-

onal Packings

2.1.1.1 Experimental Setup 1: Square Packing

A first experimental setup was designed to investigate the propagation of stress waves

in a 2D square packing with defect particles. It is presented in Fig. 2.2. The setup

was designed to be adjustable and can accomodate many different granular crystal

configurations and sizes. One can vary the particle type and size, and the location

of the impact site and sensor particles. It is composed of a flat polycarbonate base

(square base 762×762 mm2, thickness 12.7 mm) and four movable delrin walls (length

584 mm, height 50.8 mm, thickness 25.4 mm) to support and enclose the packing.
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All four walls can slide along their length and two of them can also be adjusted in

the direction perpendicular to their length. An opening (25.4 mm diameter circular

opening) was machined in one of them in order to impact the crystal. Typically,

packings of 20× 20 stainless steel particles (nonmagnetic, 316 type) were assembled,

which is sufficiently large to ensure the formation of stable solitary pulses [3, 105] as

well as avoiding boundary effects. For the experiments presented in chapters 3,4 and

5, custom-made PTFE cylindrical stands (radius Rd = 3.943 mm, height 5.58 mm)

were designed to support the small defect particles in order to have the centers of

mass of all the particles (square packing and interstitial defects) in the same horizontal

plane. PTFE was selected in order to minimize friction between the stands and the

intruders.

2.1.1.2 Experimental Setup 2: Equipartition

For some of the equipartition experiments presented in chapter 4, a longer setup was

needed that exceeds the maximum capacity of the previous one and requires only

two rows of particles. A modular setup was designed and is shown in Fig. 2.3. It

was designed using SolidWorks and printed using the Objet Connex 500 3D printer

available at the GALCIT facilities. We selected the printing material “Vero White”

which is the stiffest polymer available and coated the surfaces in contact with the

particles with a PTFE layer. Each part consists of a channel of width 38.1 mm, depth

19.05 mm, length 45.72 mm and a line of cylindrical stands of radius Rd = 3.943 mm

and height 5.580 mm, 2R = 38.1 mm apart from each other on the center line of the

channel. Each module can contain 2 × 24 particles of radius R and several modules

can be connected to each other to attain any desired length.

2.1.1.3 Experimental Setup 3: Hexagonal Packing

Finally, a third experimental setup was designed and printed to assemble the hexag-

onal packings studied in chapters 5 and 6. It is shown in Fig. 2.4 and consists of a

hexagonal wall (10R = 9.52 cm per side, height 31.75 mm, thickness 25.4 mm) that

encloses a hexagonal packing of 61 2R diameter particles (five particles per side). The
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wall is made of “Vero Clear”, material possessing properties similar to “Vero White”,

coated with PTFE and has a circular opening (25.4 mm diameter) located at the

center of one of the faces for impact.

Figure 2.2: Experimental setup designed for 2D granular crystals (chapters 3, 4 and
5).

2.1.2 Custom-Made Accelerometer Sensors

Previous experiments on 1D crystals measured the 1D force component applied on

a sphere using piezoelectric disks embedded into two half particles [15, 35, 73] or

measured the response at the edge of the granular crystal with force sensors [27,

36]. The latter technique was also used in the study of 2D granular crystals [99,

101] and other groups performed whole-field 2D measurements involving high speed

photography and photoelastic particles [90, 93, 106].

We fabricated in-situ accelerometer sensors to quickly and accurately measure the

response of individual particles in the granular crystal, as shown in Fig. 2.5. The



22

Figure 2.3: Experimental setup designed for the equipartition experiment (chapter 4).

Figure 2.4: Experimental setup designed for the study of 2D hexagonal packings
(chapters 5 and 6).
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sensors are composed of a mini triaxial accelerometer (PCB Piezotronics 356A01,

6.35 × 6.35 × 6.35 mm3, sensitivity 0.51 mV/(m/s2), commercially pre-calibrated)

embedded in a particle in which a square hole was drilled. It was shown in [102]

that the mass difference of the sensor particle does not significantly affect the wave

propagation in the crystal as the small mass mismatch (26.52 g for the steel sensor

particles versus 28.79 g for the solid steel particles in average) accounts for a signal

amplitude mismatch of approximately 1%, potentially near the experimental noise

level. The depth of the hole is 12.70 mm which ensures that the center of mass

of the accelerometer coincides with the center of the original spherical particle and

consequently avoids perturbations caused by the rotation of the particle. A stiff epoxy

was used to glue the accelerometer into the drilled particle in order to maintain the

bulk stiffness of the sensor particle. The resonant frequency of the accelerometer

is fr = 50 kHz and is well above the maximum frequency composing the measured

pulses for our range of impact velocities (Fmax ≈ 30 kHz, measured taking the Fast

Fourier Transform of a solitary wave propagating in a 1D granular crystal made of

steel particles). It can measure signal frequencies as low as Fmin = 2 Hz. This number

should be compared to the lowest frequency component of our signal, which can be

approximated by the inverse of the time width of a solitary wave 1
∆t

. The typical

velocity of a solitary wave propagating in a 1D chain of 19.05 mm steel particles is

around v = 400 m/s, and the space width of such a solitary wave is approximately five

particles [7]. This yields ∆t = v
10D

= 0.238 ms in the time domain and consequently

1
∆t
≈ 4 kHz, which is much greater than Fmin.

The vertical acceleration of the particles was not measured as we do not expect the

propagating signals to have a non-zero component in the out-of-plane direction. Both

in-plane directions of the accelerometer were aligned with the axes of reference of the

numerical setups and we directly compared the numerical output acceleration with

the experimental one. The next section describes in detail the method of acquiring

the acceleration data.
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Figure 2.5: In-situ accelerometer sensor. (left) Photograph of the accelerometer.
(right) Photograph of a steel sensor particle (accelerometer embedded in a drilled
steel sphere).

2.1.3 Data Acquisition and Post-Processing Apparatus

A Data Acquisition Board (DAQ board) was used to acquire the acceleration data.

The sensor particles are connected to a signal conditioner (PCB Piezotronics 481A02)

which powers the accelerometer and amplifies the signal at the source. The signal

is then passed to a connector block (National Instrument BNC-2110) and a PCI

card (National Instrument model PCI-6123) inside a PC driven by MATLAB via

the Data Acquisition Toolbox. A schematic diagram of the assembly is presented

in Fig. 2.6. The main factors involved in the selection of the DAQ board are the

sampling frequency fs which defines the maximum measurable frequency (fs/2 given

by the Nyquist criterion), and the number of analog inputs which determines the

maximum number of sensors that can be placed in the experiment as well as the

resolution of the converted digital signal. The DAQ board selected offers a 500 kS/s

simultaneous sampling rate over eight channels with a 16 bits resolution.

The sampling frequency is high enough to avoid aliasing phenomena that cause

frequency components above the Nyquist frequency to appear as low frequency com-

ponents in the measured signal. A digital filter was used to cut off frequency content
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Figure 2.6: Block diagram of the organization of the data acquisition devices.
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between 1/(∆t) and fs/2. In 2D experiments, we can access the acceleration at four

locations simultaneously (each channel corresponding to the x or y acceleration com-

ponent of a sensor particle). Accessing wave propagation data at more than four

locations at a time (see chapter 4 for example) requires to perform several runs with

the same time reference. This is achieved by keeping one sensor location fixed and

moving the other three. Lastly, the maximum voltage range [-10 V +10 V] of the

DAQ board was selected in every experiment. This allows us to measure accelera-

tion signals with an amplitude as high as 10
0.51e−3

≈ 20000 m/s2 (twice as much as

the measurement range of the accelerometer) with a high resolution (≈ 0.3 mV or

0.6 m/s2).

2.2 Numerical Setups

Several numerical setups and tools were used and developed in order to predict and/or

confirm our experimental observations and perform topology and material optimiza-

tions. In this section, we describe the modeling of our 2D granular crystals as well as

the numerical methods selected for the simulations. The optimization techniques are

presented in detail in the chapters of interest (chapters 5 and 6).

2.2.1 Numerical Modeling and Integration Schemes

We model our 2D granular crystal as coplanar point masses lying in the x-y plane

connected by nonlinear springs (see Fig. 2.7).

Each point mass possesses the material properties of the bead it represents (ra-

dius, mass or density, stiffness and Poisson’s ratio). The boundaries are modeled by

spherical particles of infinite radius and their displacements are prescribed and set

to zero. The compressive force applied by a particle interacting with its neighbors is

given by the Hertz law [23, 24] presented in Eq. 1.1.

We restrict our study to conservative systems only and neglect any dissipation phe-

nomena (dry friction, viscoelasticity, plasticity). A justification for this assumption is

provided in section 2.2.3. The rotation of the particles is also not taken into account



27

Figure 2.7: Schematic diagram of the numerical setup for a simplified 2 by 2 square
packing. A spherical interstitial intruder is placed in the middle of the packing and
the system is impacted from the left by a striker particle. Each (green) nonlinear
spring represents a 2-node element connecting the point masses (red dots).

and no external forces are applied on the system. Finally, the loading condition is set

by giving the striker particle some initial velocity v0.

2.2.2 Integration Schemes

The early simulations were run using an explicit fourth order Runge-Kutta integration

scheme to solve the nonlinear equations of motion:

üi = −
∑
〈j〉

Ai,j[(ui − uj). ~eij]
3
2
+ ~eij, (2.1)

where ui is the vectorial displacement of the ith particle from its equilibrium

uncompressed position and ~eij is the unit vector connecting the centers of beads i

and j, oriented from i to j; the symbols 〈j〉 denote that j needs to be a nearest

neighbor to i. [X]+ denotes the positive part of X as no interaction exists between

particles when they lose contact. Runge-Kutta schemes are widely used for their high

order accuracy and stability (at the expense of integration speed). We chose a time

step of 5 × 10−8 s, which ensures conservation of the total energy with an accuracy

better than 3× 10−7%.

A second numerical setup was later developed in which a finite element approach

was taken. The crystal is composed of two-node elements that connect the centers of
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every pair of adjacent particles and we write the governing equation of motion under

the following semi-discrete matrix form:

R(u, ü) = Mü+ S(u)− Fext = 0, (2.2)

where R is the residual vector, M is the positive definite symmetric mass matrix, u

and ü are the displacement and acceleration nodal vectors, Fext is the external nodal

force vector and S(u) represents the internal nodal force vector. To obtain the fully

discrete form, we use a discrete implicit Newmark time integration scheme [107, 108]:



K
(n)
2 ∆a = −R

(
a(n), u(n)

)
= −Ma(n) − S

(
u(n)
)

+ F
(n)
ext

a(n+1) = a(n) + ∆a

u(n+1) = u(n) + ∆tv(n) + 1
2
∆t2

(
(1− 2β)a(n) + 2βa(n+1)

)
v(n+1) = v(n) + ∆t(1− γ)a(n) + ∆tγa(n+1)

(2.3)

where K
(n)
2 = ∂R

∂a(n) =

(
M + β∆t2

dS(u(n))
du(n)

)
is the stiffness tangent at time step n, u(n),

v(n) and a(n) are the approximations of the displacement, velocity and acceleration at

time step n and the parameters β and γ are the usual Newmark parameters.

This Newmark scheme (β = 1/4 and γ = 1/2) was implemented in a Newton-

Raphson iterative loop to solve for the root of the residual at every time step as the

residual R depends nonlinearly on the acceleration:K
(n)
2 ∆a = R

a(n) = a(n−1) + ∆a.

(2.4)

The external forces, included in Eq. 2.2 for generality, are equal to zero in this

study as the only external force, gravity, does not play a role. A time step of 1×10−6

s is enough to ensure conservation of the total energy with a similar accuracy as the

Runge-Kutta solver.
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2.2.3 Effect of Dissipation

The acceleration values measured experimentally are compared to the values obtained

from numerical simulations. However, when comparing numerical results with exper-

iments, several factors can account for discrepancies. The most important one is the

presence of dissipation in real systems. Dissipation itself can be attributed to a large

number of factors including (naming the most important mechanisms only):

• friction (between the granular crystal and the boundaries as well as between

each pair of interacting particles),

• viscolelasticity and plasticity of the particles,

• transfer of energy to internal or rotational modes of the particles.

Thermal fluctuations for example are completely negligible in granular media if

compared to the potential energy of each grain [4].

A first approach considers inelastic collisions via a restitution coefficient. Early

studies considered only a constant restitution coefficient [109, 110] and were later

improved in more realistic models taking into account the velocity dependence of

the restitution coefficient in viscoelastic processes [111, 112], plastic processes, or

both [113]. Lindenberg and collaborators produced several studies investigating the

effect of kinetic friction on the collision of two granules [114] and the pulse dynamics

of an entire chain [66]. Using analytical models and simulations, they showed that

friction increases the backscattering of the particles and is responsible for an overall

decay of the pulse energy which causes it to slow down while retaining its shape and

width.

Dissipation is typically modeled by the addition of a linear or nonlinear viscous

damping term proportional to the relative velocity of neighboring particles [76, 115] or

simply proportional to the velocity of the particle [66, 116]. The inclusion of friction

is necessary in order to investigate the effect of rotation of spherical particles with

normal contacts. Mindlin theory for frictional balls [96, 117], which extends Hertz



30

contact theory by taking tangential frictional forces into account, was used by several

groups for the study of 2D granular materials [97, 118].

In this thesis, experimental conditions were selected so as to minimize the effects

of dissipation: we chose polymer materials for the walls and supporting planes in the

different experimental setups in order to minimize friction, impact velocities were low

enough to ensure that the particles did not undergo plastic deformation [3, 24] and

most of the studies were conducted using metals for which viscoelasticity is limited.

Although observable in the experimental data, dissipation effects are reasonably low

for the selected materials and dimensions of the crystals presented in this thesis (≤ 20

particles) and the modeling of dissipation is not included in the scope of this thesis.
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Chapter 3

Wave Propagation in Square
Granular Crystals with Spherical
Interstitial Intruders

We investigate the propagation and scattering of highly nonlinear waves in granular

systems composed of spheres in contact and arranged in a square packing, and study

how the presence of small and light spherical interstitial defects, also referred to as

intruders, affects the wave propagation. The effects of a single defect are investigated

experimentally and compared to numerical simulations, showing very good quantita-

tive agreement. Transmitted and scattered waves are formed, whose characteristics

depend on the material properties of the defect in relation to the properties of the

particles in the lattice. Experiments and numerical simulations reveal that stiffer

defects are more efficient at redistributing energy outside the impacted chain and soft

defects induce a localization of the energy at the defect. Finally, the effects of the

presence of two defects, placed diagonally or aligned in the square packing, are also

investigated, as well as how their interaction depends on their relative positions.

3.1 Introduction

Several past studies focused on analyzing the interaction of a solitary wave with de-

fects in a 1D system [15, 17, 53], as well as the interaction of a solitary wave with

different interfaces [8, 11, 12, 63, 64, 87, 119, 120]. Interesting phenomena have been
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shown to occur when impurities are present in an otherwise homogeneous highly

nonlinear chain of spheres, and mass defects in particular have drawn significant at-

tention [15, 17, 53]. M. Manciu, S. Sen and A.J. Hurd [53] studied the backscattering

of a soliton-like wave as it encounters a lighter or heavier defect and suggested that

the propagation of acoustic pulses could be used to detect impurities burried in gran-

ular media. The elementary interaction of light or heavy intruders with shock waves

has been investigated numerically [17]. Hascoët et al. showed that a light defect

acts as a secondary source of solitary waves, whereas a heavier defect is simply trans-

lated, creating a train of solitary waves forward and a stable reflected wave. When

reached by a shock wave, a light defect will start oscillating between its two neigh-

bors. Those oscillations are damped as the defect becomes a secondary source of

solitary waves, and one can observe trains of solitary waves of decreasing amplitudes

in both directions as the defect collides with its nearest neighbors. A heavy impu-

rity will behave very differently: instead of exciting the defect, the shock will simply

shift it in its moving direction and the chain will be halved in two parts. A stable

reflected wave will propagate to the left of the defect, while the forward propagating

solitary wave will be decomposed in a train of pulses. Recently, it was experimen-

tally shown that the presence of a lighter mass defect can induce mechanical energy

localization [15] associated with a local linearization of the system around the defect.

When interacting with the solitary wave, the impurity starts oscillating with a fre-

quency which increases nonlinearly with the amplitude of the propagating pulse and

decreases with the size of the impurity. The inclusion of multiple defects has also

shown interesting dynamic effects [11, 12, 62, 63] and symmetry breaking phenom-

ena [18]. 1D “tapered” chains have been studied in detail and have been proposed

for the design of granular protecting devices based on the redistribution of the initial

energy input [10, 56–58, 60, 61].

Nesterenko numerically studied the effects of disorder in 1D systems consisting

of spheres of same material whose diameters were randomly assigned, and showed

how disorder is responsible for the attenuation and decomposition of shock waves and

solitary waves [3, 7]. In a more recent study by Ponson et al. [16], the propagation
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and scattering of highly nonlinear waves in disordered 1D composite granular media

was investigated. They studied a dimer chain composed of alternating stainless steel

and aluminum spheres in which defects were introduced by switching the positions of

neighboring particles, locally disrupting the symmetry of the crystal. It was shown

that two regimes exist depending on the level of disorder. In low-disordered chains,

they observed numerically and experimentally the propagation of a solitary pulse with

exponentially decaying amplitude. As the disorder increases, the dispersion capacity

of the system saturates and the wave becomes fully delocalized. Genetic algorithm

methods were used to optimize the distribution of defects in a 1D granular chain of

particles in order to reduce the maximum amplitude of the transmitted signal [9].

The natural extension to the study of 1D crystals is to explore the dynamic re-

sponse of simple 2D square packings (pseudo 1D systems) [102]. Leonard and Daraio

showed that, depending on the type of excitation imparted on the system (location,

number of particles impacted, temporal duration of the impact), solitary waves can

form in one or several different chains within the square array. The presence of in-

terstitial particles uniformly distributed in the packing (i.e., effectively forming a

centered squared granular lattice) has been shown to force the system to distribute

stress in 2D fronts, whose properties can be tailored by the selection of the particles’

material properties [103, 122].

It is important to note that the presence of defects in 1D chains is limited to

the presence of particles of different sizes, materials, or shapes placed in the chain

in contact with neighboring particles [15, 17, 53]. In 2D, this definition needs to

be extended as it is also possible to add particles on off-grid positions. In addition,

2D systems allow for the presence of vacancies (i.e., lattice points with no particles)

without completely disrupting the wave propagation. In this chapter, we describe the

interaction of highly nonlinear solitary waves with a single interstitial defect particle,

using experiments and numerical simulations to study the effects of force and energy

redirection, reflection and trapping, as a function of the defect’s material properties.

We also describe the interaction between two defects as a function of their relative

position in the lattice.
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Our presentation is structured as follows. In section 3.2, we present the experi-

mental and numerical setup at hand. In section 3.3, we examine the case of a single

defect (also of different stiffness and density characteristics). It is seen that the stiffer

the defect, the more it favors the redistribution of the energy in the system. A rigid

body collision model is also used based on the energy and momentum conservation

to establish a reasonable approximate estimate of the resulting distribution of the

relevant energy fractions. Finally, the case of two interstitial defects is considered

in section 3.4, both in the special setting where they are in contact with the same

particle, enhancing the number of directions that receive an observable fraction of the

pre-collision energy, and in that where they are more separated. In the latter case,

the intruders can be thought of as acting independently. Finally, in section 3.5, we

present some conclusions and possibilities for further study.

3.2 Experimental and Numerical Setups

Our 2D experimental setup is composed of a flat polycarbonate base and four movable

delrin walls to support the particles as shown in Fig. 2.2, and is described in detail

in section 2.1.1.1. We assemble a 20 by 20 square packing using 2R = 19.05 mm

diameter stainless steel spheres (nonmagnetic, 316 type). The defect particles consist

of custom-made spheres that fit exactly in the interstitial sites. We studied the

effects of several different materials for the defect particles: tungsten carbide (TC),

316 stainless steel, brass alloy 260 and polytetrafluoroethylene (PTFE). The material

properties of the defect particles studied are summarized in Table 2.1. The system is

impacted on one side by a single striker particle identical to the particles forming the

square packing and its velocity is measured with the use of an optical velocimeter.

The different particle arrangements considered in this study are reported in Fig. 3.1.

Custom-made sensor particles were built to access the acceleration at local posi-

tions in the setup and are described in section 2.1.2. The data was collected using

the equipment and procedure described in section 2.1.3.

We numerically model the square packing of 400 spherical beads plus one or two
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(a) (b)

(c)

Figure 3.1: Schematic diagrams of the different system configurations studied. 3.1(a)
Single defect case: a spherical intruder (black particle) is included in the center of a 20
by 20 square packing composed of stainless steel spheres confined by four delrin walls.
The system is impacted by a steel particle identical to the other particles in the lattice,
exciting a single row of spheres from the left side. 3.1(b) Configuration including
two defects placed diagonally, adjacent to the same particle. 3.1(c) Configuration
including two defects placed along the same row of particles. In all panels, the red
(grey) color identifies the particles involved in the wave propagation (reflections not
taken into account).
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interstitial spherical defects and a striker bead with (conservative) Hertzian interac-

tions between particles (see Eq. 2.1). Numerical simulations are run using a fourth

order Runge-Kutta integration scheme to solve the equations of motion of all the

particles (see section 2.2) and we directly compare the numerical accelerations to the

experimental ones.

Figure 3.2: Force versus position map obtained from the simulation of the dynamics
of a system composed by a steel intruder in a steel square packing at t = 0.6 ms. The
origin of time is the impact of the system at coordinates (X = 0.0 m, Y = 0.2 m) by
a steel striker particle with initial velocity 0.2 m/s. After interaction of the incoming
solitary wave with the defect, the transmitted, reflected and scattered solitary waves
are evident.
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Figure 3.3: Numerical results showing the displacement of the defect particle as a
function of time when it is made of 3.3(a) PTFE and 3.3(b) stainless steel. In both
cases, the solid blue curve represents the displacement of the defect particle in the
x direction and the dashed green curve represents the the displacement of the same
particle in the y direction.

3.3 Single Defect

The first system studied is presented in Fig. 3.1(a). A spherical defect is placed in

the center of a uniform steel square packing, and a horizontal chain in contact with

the defect is impacted by a steel sphere. Without the presence of the intruder, the

system would behave as an effectively 1D system, i.e., one in which the excitation

only propagates along its initial direction. However, the presence of the defect ad-

jacent to the impacted chains modifies the dynamic response of the system: after

the incoming solitary wave interacts with the defect, we observe one reflected, one

transmitted and three scattered waves (see Fig. 3.2), whose properties depend on the

material properties of the defect. A single solitary wave is always transmitted down

the impacted chain after the defect. This is due to the fact that the first bead after

the intruder in the impacted chain loses contact with both its left neighbor and the

intruder. We numerically evaluate the scattered energy by calculating the difference

between the input energy and the energy carried by the transmitted solitary wave.

We refer to the chains in which waves are propagating as “impacted”, “adjacent”,

“top” and “bottom” chains, colored in red on Fig. 3.1(a). After the incoming wave
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(a) (b)

(c)

Figure 3.4: Single stainless steel defect configuration, impacted by a stainless steel
sphere of diameter 19.05 mm, with initial velocity 0.19 m/s. 3.4(a) Simplified
schematic diagram representing the particles located around a single spherical in-
truder. The colors and labels of the particles correspond to the colors and labels of
the acceleration curves in panels 3.4(b) and 3.4(c). The arrow on the left represents
the impact direction. 3.4(b) Numerical results showing the particles’ acceleration as
a function of time for the incoming and reflected wave (solid dark blue curve labeled
“1”, four particles away from the defect), the transmitted wave (dashed green curve
labeled “2”, five particles away from the defect) and the scattered waves (dotted
red and turquoise labeled “3” and “4”, five particles away from the defect). 3.4(c)
Experimental results corresponding to 3.4(b).
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(a) (b)

(c)

Figure 3.5: Single PTFE defect configuration, impacted by a stainless steel sphere
of diameter 19.05 mm, with initial velocity 0.23 m/s. 3.5(a) Simplified schematic
diagram representing the particles located around a single spherical intruder. The
colors and labels of the particles correspond to the colors and labels of the acceleration
curves in panels 3.5(b) and 3.5(c). The arrow on the left represents the impact
direction. 3.5(b) Numerical results showing the particles’ acceleration as a function
of time for a particle immediately adjacent to the defect (solid blue curve labeled “1”)
and five particles away (dashed green curve labeled “2”). 3.5(c) Experimental results
corresponding to 3.5(b).
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reaches the defect particle, the defect’s motion is observed to be identical in the x

and y directions. This is shown in Fig. 3.3 where on can see that the two components

of the displacements of the defect particle are equal and opposite. This is due to

the fact that the center of mass of the intruder is placed along the line connecting

the centers of mass of its top-left and bottom-right neighbors (at a 45◦ angle with

the x-axis). We consequently observe, both experimentally and numerically, identical

signals propagating down the “adjacent” and “bottom” chains. When the transmit-

ted waves are reflected back from the boundaries they excite the intruder again, and

cause its motion to become disordered. In this study, we limit our analysis to the

interaction of the defect with the incoming wave, neglecting the effects of reflections.

First, we numerically investigated the effect of variations of the defect’s mass and

stiffness on the energy redirection through the crystal, for different impact velocities.

We showed that the defect’s mass has very little effect on the maximum amplitude of

the signal transmitted beyond the defect particle in the direction of impact, relative

to the input energy. However, the defect’s stiffness can play a nontrivial role in the

interactions: the stiffer the defect, the more energy is redirected from the impacted

chain to other parts of the system.

3.3.1 Single Steel Defect

The results obtained for a lattice composed of stainless steel particles and a single

stainless steel defect are shown in Fig. 3.4. It is evident that the system supports

the formation and propagation of a single solitary wave, and that the solitary wave’s

interaction with the defect results in a small amount of energy redirected from the

impacted chain to two solitary waves propagating sideways and, partially, to a single

solitary wave reflected backward. We find excellent agreement between numerical and

experimental results (compare Fig. 3.4(b) with Fig. 3.4(c)). However, the presence of

dissipative losses in experiments is evident from the decreasing wave amplitude of the

traveling waves. For this configuration, numerical calculations show that 14.32% of

the input energy is transmitted to other parts of the system and does not travel along
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(a)

(b)

Figure 3.6: Numerical results showing the horizontal displacement of the defect par-
ticle for the 3.6(a) stiff (steel) and 3.6(b) soft (PTFE) defect configurations, relative
to its two active neighbors (top left and bottom right particles adjacent to the defect
particles). The solid blue curve represents the relative displacement in the x direction
of the defect particle with respect to its top-left neighbor and the dashed green line
with respect to its bottom-right neighbor. Note that we do not show the relative
displacement in the y direction since it is equal to the relative displacement in the
x direction. The two particles are compressed against each other when the curves
are negative and they are not in contact when positive. The red step-curve is non
zero when a complete loss of contact occurs between the defect and its two active
neighbors.
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(a)

(b)

Figure 3.7: Numerical results showing the effect of density variation on the defect
particle’s displacement in the horizontal direction (along the striker direction). Note
that we do not show the displacement in the y direction since it is equal to the
displacement in the x direction. The numerical results are obtained from idealized
particles in which the elastic modulus (E) is kept constant, and the density is varied
arbitrarily. 3.7(a) stiff (E = 193 GPa) and 3.7(b) soft (E = 1.26 GPa) case. The
density values considered in both panels are: d = 1000 Kg/m3 (solid blue), d = 4000
Kg/m3 (dashed green) and d = 8000 Kg/m3 (dotted red) curves.
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the impacted chain after the intruder (4.15% is deflected up, 4.30% down, 4.30% in

the adjacent chain and 1.57% reflected).

3.3.2 Single PTFE Defect

The results obtained for the lattice composed of stainless steel particles and a single

PTFE defect are shown in Fig. 3.5. In this case, the interaction of the incoming

solitary wave traveling in the impacted chain with the soft intruder leads to the for-

mation of trains of solitary waves of decreasing amplitudes in the “top”, “bottom”

and “adjacent” chains, and we also observe a train of solitary waves of small ampli-

tude reflected backward. When reached by the incoming solitary wave, the PTFE

intruder is strongly compressed between its top-left and bottom-right neighbors, and

starts oscillating between them. As it oscillates, the PTFE intruder slowly pushes

its neighboring particles away from it, bouncing back and forth. The energy of the

intruder progressively decreases as multiple solitary waves are formed in all four direc-

tions, resulting in the trains of waves observed numerically and experimentally. For

this configuration, numerical calculations show that only 1.23% of the input energy

is transmitted to other parts of the system and does not travel along the impacted

chain after the intruder. For comparison, a stiffer tungsten carbide intruder deflects

17.7% of the total input energy, while a softer brass intruder deflects 11.33% of the

input energy.

3.3.3 Relative Displacements

The relative displacements of the defect particle with its neighbors are shown in

detail in Fig. 3.6 for the particle configurations analyzed in Fig. 3.4 and Fig. 3.5.

For the packing including a single steel defect (Fig. 3.6(a)), it is evident that the

top-left neighbor compresses the defect particle, which in turn compresses its bottom-

right neighbor, and all three particles are translated (at time = 0.4-0.6 ms). After

this translation the intruder loses contact, first with its first neighbor, and quickly

thereafter also with its second, and then bounces back and forth between the two. The
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two neighbors slowly become more and more distant from each other and the defect

also carries less velocity having imparted progressively more of it through subsequent

collisions. This leads eventually to “individual” interactions of the defect with one

neighbor at a time, mediated by longer travel times during which the defect is in

contact with neither of its neighbors. The relative displacement between the defect

and its neighboring particles is always small (0.2 microns) and these interactions give

rise to small secondary waves propagating laterally and in the row of particles adjacent

to the impacted one. This picture (of a sequence of collisions with top left and bottom

right neighbors) will also form the basis for our rigid body collision model theoretical

analysis of the relevant phenomenology presented below. For a soft PTFE intruder

(Fig. 3.6(b)), we observe that the first interaction with the first neighbor causes the

intruder to be strongly compressed between the two bigger and stiffer steel spheres.

The intruder oscillates between the two particles with a frequency of oscillation being

a nonlinearly increasing function of the amplitude of the incoming wave. The two

stiff neighbors are slowly pushed away by the intruder, and a train of solitary waves

is transmitted after the defect in the row of particles adjacent to the impacted one.

3.3.4 Effect of Density

Numerical simulations were run to investigate the role of density independently of

the role of stiffness of the defect particles. We created idealized particles, in which

we varied the particle density while maintaining a constant stiffness value. For these

cases, we plot the displacement of the intruder particle to show the variations in

the dynamics of the systems. Because of the symmetry of the system, the x- and

y-displacements of the intruder have equal norms. In Fig. 3.7 we present the x-

displacement (i.e., horizontal displacement) of the defect particle for both a stiff

(E = 193 GPa, Fig. 3.7(a)) and a soft (E = 1.26 GPa, Fig. 3.7(b)) material, varying

the density in each case. We note that as the incoming solitary wave reaches a stiff

defect from its top left neighbor, the defect is forced to translate laterally. This

translation is followed by small oscillations of the defect between its top left and
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bottom right neighbors, during which the defect alternately loses contact between

them. In this scenario, the incoming solitary wave is decomposed into transmitted,

reflected and scattered solitary waves, and the secondary oscillations result in small

amplitude trailing waves. When the incoming solitary wave reaches the softer defect,

we observe a transition to a different dynamic regime in which the defect particle

starts oscillating immediately, without a lateral translation (see Fig. 3.7(b)). In this

case, the defect is compressed between its two active neighbors (top left and bottom

right) and the large amplitude of oscillations is due to the larger deformations of the

soft intruder between the steel particles. Energy is localized similarly to what was

observed in 1D systems [15], and the defect particle excites secondary solitary waves.

The formation of transmitted trains of solitary waves, observed both numerically and

experimentally, are shown in Fig. 3.5.

3.3.5 Rigid Body Collision Model

For the case of stiff defects where we observe transmitted, scattered and reflected

solitary waves (as opposed to trains of solitary waves for soft defects), a natural model

has been developed to estimate the percentages of the input energy traveling in the

top, bottom, impacted and adjacent chains after interaction of the intruder with the

incoming solitary wave. We assume the spherical particles (see numbering in Fig. 3.8)

to be rigid bodies undergoing elastic collisions. This approach is a simplification of the

interaction of a multi-particle wave with the interstitial defect. A similar approach was

taken in the independent collision model of [57]. This approach is exact for perfectly

rigid spheres and a good approximation when the collision durations are short in

comparison to the time between two collisions, and was later used in [10, 58] for the

description of tapered chains. The analytical results obtained with this approximation

were found to be in very good agreement with the full field numerical model (which

considered energy and momentum exchanged between all the particles in the system).

We first consider the interactions between particles 1, 2 and 3, and denote by m

and md the masses of the particles in the packing and the defect respectively. The
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Figure 3.8: Numbering of the particles involved in the calculation of the rigid particle
model.

superscripts i, t, r and u represent the incoming, transmitted, reflected, and scattered

in the up direction velocities respectively. Using the conservation of momentum and

kinetic energy, we obtain the following system of equations:

mv(1i) = −mv(1r) +mv(2t) +

√
2

2
mdv

(3t) (3.1)

mv(1u) =

√
2

2
mdv

(3t)

1

2
mv(1i)2

=
1

2
mv(1r)2

+
1

2
mv(1u)2

+
1

2
mv(2t)2

+
1

2
mdv

(3t)2
.

We numerically observe that the amplitude of the reflected wave is small with

respect to the other scattered and transmitted waves (see Fig. 3.4). This is due to

the fact that md is small with respect to m and we consequently neglect v(1r) in our

analysis. Eq. 2 then yields:

v(1u) =
md

m+md

v(1i) (3.2)

v(2t) =
m

m+md

v(1i)

v(3t) =
√

2
m

md +m
v(1i).

Assuming that all the energy of v(2t) forms the transmitted part in the direction of

the initial excitation, we obtain the transmitted energy fraction for the homogeneous
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(a)

(b)

Figure 3.9: Numerical results showing the horizontal displacement of the particles
involved in the impulse redirection when two stainless steel intruders are located in
a square packing of stainless steel spheres impacted from the left by a steel particle.
3.9(a) Schematic diagram of the particles’ configuration. The arrows indicate the
labeling of the different chains of interest (where a signal is propagating). 3.9(b)
Displacements of the four numbered (and colored) particles in 3.9(a). On each plot,
the solid line corresponds to the results obtained when only a single defect is present
in the packing, and the dotted lines correspond to the results obtained when two
defects are present in the packing. The colors and labels of the particles correspond
to the colors and labels of the displacement curves in panel 3.9(b).
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case as:
Et
Ei

=
1
2
mv(2t)2

1
2
mv(1i)2 =

(
1

1 + (
√

2− 1)3

)2

= 87.17%. (3.3)

This is in good agreement with the numerical results for the same case (85.68%). The

contribution to the energy deflected up is
1
2
mv(1u)

2

1
2
mv(1i)

2 =
(

(
√

2−1)3

1+(
√

2−1)3

)2

= 0.44%.

We consider thereafter the interactions of the defect (which has velocity v(3t)) with

particles 1 and 4. We remind the reader that the motion of the intruder being along

the diagonal, it is unnecessary to consider the interactions with particle 2 and also with

the intruder’s bottom-left neighbor. We model the transmission of the energy from

the intruder to its two active neighbors by an infinite series of instantaneous elastic

collisions. Denoting by v(3tr) and v(4t) the velocity of the intruder and the velocity

transmitted to particle 4 after their first collision, conservation of momemtum and

kinetic energy yields:

v(4t) =
2md

md +m
v(3t) (3.4)

v(3tr) =
md −m
md +m

v(3t).

After this first interaction of the intruder with particle 4, another collision happens

between the intruder and particle 1, and so on. Notice that this is exactly in line

with the observations of Fig. 3.6(a). Summing the contributions of all the collisions,

one can calculate the energy fractions transmitted to particle 1 and 4:

E4

Ei
=

8(mmd)
2

(md +m)4

∞∑
k=0

(
md −m
md +m

)4k

(3.5)

E1

Ei
=

8(mmd)
2

(md +m)4

∞∑
k=0

(
md −m
md +m

)4k+2

.

We finally assume that the energy transmitted to particle 4 will be split equally

between the adjacent and the bottom chains. Similarly, the energy transmitted to

particle 1 by the intruder is assumed to be split equally between the top chain and

the impacted one (before the intruder). Hence, adding the contributions of the first
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Figure 3.10: Comparison of the shape of the acceleration signals propagating in the
“adjacent” chain after the defect particle with the analytical solution obtained by
Nesterenko for 1D homogeneous systems. The solid red curve (resp. black square
makers) represents the signal observed five (resp. nine) particles after the intruder.
The green dashed curve shows Nesterenko’s analytical solution.

up refl adj bottom trans

Rigid particle model 3.10 2.66 3.54 3.54 87.17
Numerical 4.15 1.57 4.30 4.30 85.68

Table 3.1: Comparison of the percentages of the input energy redirected in the system
in the rows and columns of spheres adjacent to the defects for the rigid particle model
and numerical calculations. We define energy “up” as the energy redirected upward in
the column of particles above the first defect, “reflected” as the energy reflected back
in the impacted chain, “adjacent” as the energy redirected in the right direction in
the row adjacent to the impacted chain, “bottom” as the energy redirected downward
in the column of particles below the first defect, and “transmitted” as the energy
transferred in the impacted chain after the defect.

part of the calculation, we can find the transmitted, scattered and reflected energy

fractions, in fairly good agreement with the numerical simulations. The results from

this calculation as well as the numerical ones are summarized for the case of a stainless

steel intruder in Table 3.1.

Understanding how a single spherical intruder interacts with a solitary wave is the

first step towards the understanding of more complex dynamics that appear when
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several defects are present. In the next section, we investigate the interaction of two

spherical intruders when placed in a square packing, for two different configurations.

3.4 Two Defects

We study the effects of the presence of two defects in the lattice as a function of

their relative position. As seen in the first part of this manuscript, when a single

solitary wave interacts with a single defect, the energy is redistributed only along

the few chains adjacent to the defect. If two defects are located sufficiently far apart

from each other in the granular crystal, we expect their individual behavior to be

independent of each other, and similar to that of a single defect, without any dynamic

interactions between them. However, when the two defects are sufficiently close to

each other, the dynamic behavior of the granular crystal is expected to be dependent

on the interaction between the two defects.

3.4.1 Two Defects in Contact with the Same Particle

In this section, we study the effect of two defects placed diagonally to each other, but

adjacent to the same particle in the crystal (Fig. 3.1(b)). Similarly to the case where

one defect only is present, the positions of the intruders with respect to their direct

neighbors will cause them to move along the diagonal connecting the centers of mass of

particles 1 and 3 (see Fig. 3.9(a)). The x-displacement and y-displacement of the first

intruder are hence equal, as are the x-displacement and y-displacement of the second

intruder. It is important to remember that this symmetric behavior is preserved

only before the waves reflected from the boundary of the system reach the intruders,

after which their motions become disordered. Similarly to the analysis performed

for the single defect case, we numerically calculate the total energy redirected from

the impacted chain by subtracting the energy carried by the solitary wave in the

impacted chain after the defects from the input energy. We restrict our analysis to

the case of stiff intruders. We show that the dynamic behavior of the first defect is

very similar to the dynamic behavior observed in a lattice with a single defect of the
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Case up refl adj adj2 bottom bottom2 trans

Steel (num) 4.15 1.57 4.30 0.00 4.30 0.00 85.68
Steel/TC (num) 4.69 2.05 2.53 1.28 2.53 1.28 85.65
Steel/steel (num) 4.64 2.00 2.86 1.00 2.86 1.00 85.65

Steel/steel (model) 3.98 3.54 1.16 1.50 1.16 1.50 87.17

Table 3.2: Percentages of the input energy redirected in the system in the rows and
columns of spheres adjacent to the defects. We define energy “up” as the energy
redirected upward in the column of particles above the first defect, “reflected” as the
energy reflected back in the impacted chain, “adjacent” as the energy redirected in
the right direction in the row adjacent to the impacted chain , “adjacent2” as the
energy redirected in the right direction two rows below the impacted chain, “bottom”
as the energy redirected downward in the column of particles below the first defect,
“bottom2” as the energy redirected downward in the row below the second defect and
“transmitted” as the energy transferred in the impacted chain after the defect. The
first three rows of the table show the numerical results for three different cases: the
single steel defect case, the cases where a second tungsten carbide defect is placed
diagonally with respect to the first one, or the case where a steel defect is placed diag-
onally with respect to the first one. The last row corresponds to the semi-analytical
rigid body collision model for the case of two steel defect particles.

same material. This can be seen comparing the displacement of the first intruder in

the x direction with the displacement of a single defect occupying the same interstice

(see Fig. 3.9). However, the presence of a second active defect provides extra stiffness

in the system, resulting in a reduction of the amplitude of oscillations.

The addition of a second defect placed diagonally with respect to the first one

does not have a significant effect on the energy dispersion. We calculate numerically

how the input energy is redistributed in the different chains of the system. For the

sake of simplicity, we consider only the cases with stiff defects - stainless steel and

tungsten carbide (TC) - for which energy localization can be neglected. The two

additional chains in which solitary waves are going to propagate due to the second

defect are referred to as “adjacent2” and “bottom2”. Because a second defect stiffens

the contact between the first defect and its bottom right neighbor, more energy is

scattered upward and reflected backward. The results for the steel/steel and steel/TC

are presented in Table 3.2.
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3.4.2 Rigid Body Collision Model

For this entire section, we use the numbering depicted in Fig. 3.9(a). While this

configuration appears to be only slightly more complicated than the single defect

configuration, adapting the rigid body collision model presents significant challenges.

This is because of the intricate effects of backscatter of beads 2 and 4 and their

interplay, especially with bead 3. The begining of the calculation is similar to what

was done for the modeling of the interaction of a single defect with a solitary wave:

particle 1 first interacts with its right neighbor in the impacted chain and particle

2, and we once again make the assumption to neglect any reflected energy during

this first interaction. The transmitted energy is identical to the single defect case

(87.17% of the input energy) as this model does not include any stiffening of the

contact between the first defect particle and its bottom right neighbor. Particle 2

then interacts with 3 (and 1) which subsequently partitions its energy between 4 and

the “adjacent” and “bottom” chains. In order to describe the following collisions,

it is useful to look at the numerical results presented in Fig. 3.9(b). After the first

interaction of particle 2 with particle 1, the former starts oscillating between particles

3 and 1 (green dashed curve labeled “2” between 0.6 and 0.8 ms) as particle 3 is being

pushed towards the second defect. The second defect then starts to oscillate between

particles 3 and 5 and particle 3 is pushed back towards the second defect (see black

curve labeled between 0.8 and 1.3 ms), and so on. We consequently consider that the

two defects are interacting independently and in an alternative fashion with particle

3, for about four oscillations each time (inferred from Fig. 3.9(b)). We also assume

that the energy of particle 1 is evenly distributed in the “up” and “reflected” chains,

whereas the energy of particle 5 is split between the “adjacent2” and “bottom2” chains

(see Fig. 3.9(a)). The results are presented in the last row of Table 3.2 along with the

numerical simulation data, and are in fairly good agreement with one another. This

approach clearly underestimates the input on the “adjacent” and “bottom chains”,

as the only contribution in our model comes from the first collision of particle 3 with

particle 4 and these two chains, yet is the best we can presently do without using
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too much feedback from the numerical simulations. We find the relevant analysis to

be instructive as a lower bound of the corresponding energy partition complementing

the transmitted portion of 87.17%.

(a) (b)

(c)

Figure 3.11: Comparison of the output accelerations observed experimentally 3.11(c)
and numerically 3.11(b) for the configuration 3.11(a) when two tungsten carbide in-
truders are located eight interstitial sites apart in a steel square packing impacted
by a steel particle. After the incoming solitary wave (blue solid curve labeled “1”)
interacts with the first defect, two waves travel towards the second defect: a transmit-
ted wave in the impacted chain, and a redirected wave (green dashed curve labeled
“2”) in the adjacent chain. The red dotted curve labeled “3” shows the two waves
propagating after the second defect in the adjacent chain. The colors and labels of
the particles correspond to the colors and labels of the acceleration curves in panels
3.11(c) and 3.11(b).
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3.4.3 Two Defects in a Line

We study the dynamic response of the granular system, when two defects are placed

along the same row of spheres, parallel to the impacted chain. The schematic dia-

gram of this configuration is presented in Fig. 3.1(c). We restrict our study to the

case of a steel square packing with two tungsten carbide intruders, impacted by a

steel particle. We note that the response of the system is dependent on the relative

distance of the defects in the packing: if the two defects are located far from each

other, the behavior of the system is similar to that observed for a single defect. In

this case, after an incoming solitary wave interacts with the first defect, two solitary

waves propagate towards the second defect: a transmitted wave traveling in the row

of particles impacted by the striker, and a redirected wave, traveling in the row of

particles parallel to it (and immediately below it). According to what was shown in

the single defect case, these two waves have different amplitudes, and hence different

velocities. Consequently, these waves reach the second defect separately, and the two

defects act independently of each other. The energy redirection properties of the

system are greatly improved as we observe a geometrical decrease of the leading trav-

eling energy in the impacted chain: as shown in the single defect study, a TC intruder

deflects 17.7% of the total input energy. This corresponds to 82.3% of the total initial

energy propagating in the impacted chain after the first intruder. 67.7% (or 82.3%

of the remaining energy) of the total initial energy will propagate in the impacted

chain after the second TC intruder, and so on if more intruders are present. Hence,

it is possible, for sufficiently many well separated intruders to obtain a transmitted

energy fraction as small as desired according to the following prescription. To ensure

that the transmitted fraction is smaller than α, then the number of intruders N that

must be used is N ≥ [log(α)/ log(0.823)], where the bracket stands for the integer

part.

If the two defects are sufficiently close, the waves transmitted in the impacted

chain after the first intruder and in the chain parallel to it will not reach the second

intruder separately. This leads to more complex dynamics of the second intruder as it
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interacts with two solitary waves of different amplitudes at the same time. Moreover,

the two solitary waves reach the second intruder from different sides (which is also

true when the two defects are far apart), inducing a disordered motion as the defect

is simultaneously pushed up and down with different forces.

Numerical calculations and experiments were run to estimate the minimum spac-

ing l necessary for two defects to be independent. This distance is expected to depend

on the velocity of impact, as well as the material of the defect particles, which both

affect the velocity of the transmitted and forward scattered solitary waves. We denote

by rt the force amplitude ratio between the amplitude of the wave transmitted in the

impacted chain after the intruder and the amplitude of the incoming wave (in the

impacted chain before the intruder), and by rs the force amplitude ratio between the

amplitude of the wave redirected in the chain parallel to the impacted chain and the

amplitude of the incoming wave. Assuming that the force-velocity scaling relation

v αF 1/6 [3] is valid for effectively 1D systems [102], we obtain the following relation-

ship relating the incoming signal velocity v to the transmitted wave velocity vt and

the redirected wave velocity vs:

vt − vs = (r
1/6
t − r1/6

s )v. (3.6)

In order to verify that the pulses detected in our system are solitary-like, we

monitored the shape of the propagating signals before and after the interaction with

the defect. We noted that the pulse shape remains constant as it travels down the

various chains. An example is given in Fig. 3.10 where we compare the shapes of the

acceleration signal in the “adjacent” chain five particles after the intruder (solid red

curve) and nine particles after the defect (black square markers). As one can see, their

shapes are identical and the two curves completely overlap. We also compared the

shape of these two curves to the predicted analytical shape for a solitary wave (the

Nesterenko’s solution obtained for 1D homogeneous systems - green dashed curve

in Fig. 3.10). We observe that the shapes of the two signals (numerical solution

and analytical solution) are very close. At the intuitive level, this can be justified
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as follows. For each row of the 2D chain, the traveling wave propagates without

affecting the other rows (as an effectively 1D entity). Hence, both before and after the

interstitial defect, we have effectively quasi-1D chains along which genuine traveling

waves can propagate. The only redistribution of energy occurs at the defect, which

routes that energy into transmitted (along the various directions, as explained by the

particle model) and reflected. Once this routing process is completed, naturally the

energy reorganizes itself into traveling waves along these effectively 1D directions. It

is consequently justified to use the scaling relation previously mentioned.

Since the velocity of the incoming wave depends weakly on the force amplitude,

and hence on the velocity of impact, we expect to see a small effect of the impact

velocity on l. The two ratios rt and rs depend on the Young’s modulus of the intruder

Edefect, rt being a decreasing function and rs an increasing function of Edefect, so that

l increases with Edefect. For the range of impact velocities experimentally investigated

(0.05 to 0.2 m/s), l was found to be around nine to ten particle diameters. Numerical

and experimental results are shown in Fig. 3.11 and Fig. 3.12, for the two cases

where the defects are eight and ten interstices apart. As one can see, when located

eight interstices away from each other, one cannot distinguish between the end of the

first wave and the beginning of the second one (red curve). This becomes possible,

however, when the spacing is set to ten interstices. When placed closer to each other,

the two defects start to interact, and the behavior of the second defect becomes

more complicated, as its interaction with the (fast) transmitted wave and the (slow)

scattered wave in the adjacent chain overlap. Preliminary numerical and experimental

results showed that in the extreme case where spherical defects are located in all

interstitial spaces in a line, one can achieve coupling of the impacted and adjacent

chain and equipartition of the input energy in those two chains.

3.5 Summmary

In this chaper, the interaction of a solitary wave with spherical interstitial defects

placed in an uncompressed, 2D square packing of stainless steel spheres is studied,
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(a) (b)

(c)

Figure 3.12: Comparison of the output accelerations observed experimentally 3.12(c)
and numerically 3.12(b) for the configuration 3.12(a) when two tungsten carbide
intruders are located ten interstitial sites apart in a steel square packing impacted
by a steel particle. After interaction of the incoming solitary wave (solid blue curve
labeled “1”) with the first defect, two waves travel towards the second defect: a
transmitted wave in the impacted chain, and a scattered wave (green dashed curve
labeled “2”) in the adjacent chain. The red dotted curve labeled “3” shows the two
waves propagating after the second intruder in the adjacent chain. The colors and
labels of the particles correspond to the colors and labels of the acceleration curves
in panels 3.12(c) and 3.12(b).
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investigating in a first time the effect of a single defect in the packing. The numerical

calculations and experimental results show that spherical defects redirect part of

the impact energy, in four directions along the rows and columns of particles in

contact with the defect. The defect particle’s stiffness plays an important role in

the impact energy redirection in the system, and the mass of the defect and the

velocity of impact have a much smaller effect on the impulse redirection. A soft

defect particle spatially localizes a small percentage of the incoming energy in the

crystals, as it oscillates between its nearest neighbors. A stiffer defect particle redirects

part of the incoming energy into single deflected and reflected solitary waves, and a

simple rigid particle collision calculation was constructed for this case which describes

the reflected, scattered and transmitted energy fractions in good agreement with

numerical simulations and experimental results. The setting of two defects placed in

different configurations in the packing was also analyzed and it was noted that the

energy redirection efficiency of the system, measured as the amount of input energy

not traveling along the impacted chain, is greatly enhanced when placing multiple

defects in a line. If the defect particles are located far enough from each other (around

nine to ten particles in our study), then they act independently and their individual

behavior is identical to a single defect isolated in a square packing. This enabled a

specific prediction for ensuring that the transmitted fraction stays below a prescribed

fraction of the original energy. If the defect particles are located close to each other,

their dynamic response is influenced by the respective presence.

The work presented in this chapter provides a fundamental understanding of the

effect of a single defect in 2D granular crystals, and paves the way to more complex

analyses involving a larger number a defect particles and especially a deeper under-

standing of their complex interplay, as can be seen in the next chapters of this thesis,

applying topology optimization techniques in particular [13].
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Chapter 4

Energy Equipartition in
Two-Dimensional Granular
Systems with Light Spherical
Intruders

We study the effects of a line of spherical interstitial particles (or intruders) placed

between two adjacent uncompressed chains of larger particles in a square packing of

spheres, using experiments and numerical simulations. We excite one of the chains of

particles adjacent to the intruders with an impact and show how energy is transmitted

across the system until equipartition is reached from the excited (or impacted) chain

to the absorbing (or adjacent) chain. The coupling of the two chains, although a

purely two-dimensional effect, is modeled by a simplified one-and-a-half-dimensional

(1.5D) system in which transverse motions of the particles are neglected.

4.1 Introduction

Granular crystals have been proposed as new structured materials for the control and

redirection of stress waves (see for example [12, 63, 103, 119, 123, 124]). The exper-

iments reported in this chapter provide the first observation of energy equipartition

between two adjacent and nonlinearly coupled chains of particles. In particular, we

show that when one chain is excited by an impulse while the other is as rest, the

energy is redistributed between the two chains within a short spatial distance. A
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similar equipartition phenomenon was studied numerically in an earlier work [125]

for weakly coupled chains. This phenomenon is of interest in the creation of new

acoustic wave guides, delay lines and stress mitigating materials. Energy transfer

and equipartition phenomena in weakly coupled one-dimensional granular chains were

studied [125, 126], and in [124] have been studied through a macroscopic realization

of the Landau-Zener tunneling quantum effect. The energy equipartition principle

is well known for elastic waves. Seismic waves for example have well known regimes

where the P and S wave energy density equilibrates in a unique way that is inde-

pendent of the details of the scattering. Interaction of solitons in coupled nonlinear

lattices (scalar models) have been considered for various classical configurations such

as coupled Toda lattices [127], coupled nonlinear Schrödinger equations [128, 129] or

coupled Ablowitz-Ladik chains [130] for example. In the case of coupled Toda lat-

tices, it was shown numerically that solitonic excitations supplied to each one of the

coupled chains may result in the two distinct dynamical regimes (attractors) [127]. A

non-uniform initial excitation (solitons with different amplitudes and/or phase mis-

matches) may lead to the formation of the identical solitons on each one of the chains,

propagating with the same speed and zero phase mismatch (first attractor) as well as

the formation of two unequal solitons (i.e. with different amplitudes and phases also

propagating with the same speed, second attractor). Here, we report an extension of

energy equipartition phenomena in 2D granular media perturbed by lines of intruders.

4.2 Experimental Setups

Two experimental setups were designed to study the response of a 2D square packing

of elastic spheres with the presence of a line of interstitial defects (or intruders) for

the two configurations presented in 4.1.

The first one (see Fig. 2.2) is presented in section 2.1.1.1 and consists of a poly-

carbonate base and four delrin walls that support and enclose a 20 × 20 granular

crystal composed of 316 stainless steel spheres (R = 9.52 mm radius). A line of tung-

sten carbide spherical intruders (Rd = 3.943 mm ± 0.001 mm) was placed in between
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the excited and absorbing chains, lying on custom-made PTFE cylindrical stands to

ensure that the centers of mass of all the particles are in the same horizontal plane.

The second one (see Fig. 2.3) is presented in section 2.1.1.2 and consists of a

“Vero White” channel that contains two rows of steel particles (radius R) and built-

in cylindrical stands to support the tungsten carbide intruders (radius Rd). Two

modules were connected and we assembled a 40 × 2 square packing in which every

other interstitial site was occupied by an intruder particle.

In both experiments, the system was impacted from one side by a steel striker

particle identical to the ones composing the square packing, and custom-fabricated

sensor particles were used to access the acceleration at every location of interest in

the crystal (red particles in Fig. 4.1). The sensor particles and data acquisition equip-

ment is described in detail in sections 2.1.2 and 2.1.3 respectively. The experimental

accelerations were then directly compared with the ones obtained from numerical

simulations.

4.3 Numerical Setup

We numerically model our square packing plus the intruders and one striker particle

via the discrete particle model described in section 2.2. The nonlinear equation of

motion (Eq. 2.1) is directly integrated using an explicit fourth order Runge-Kutta

scheme.

4.4 Results and Discussion

4.4.1 Monomer Configuration

We first present the results obtained for the monomer configuration shown in Fig. 4.1(a)

where tungsten carbide intruders are located in every interstitial site between the ex-

cited and absorbing chains. We study the temporal evolution of the transmitted

acceleration along the x direction in the chains of particles adjacent to the intruders

Copyright (2013) by the American Physical Society [131]



62

(a)

(b)

Figure 4.1: Schematic diagram of the experimental setups for 4.1(a) the monomer
configuration and 4.1(b) the dimer configuration. The small (black) particles corre-
spond to the spherical intruders. The red (gray) particles show the positions chosen
for the placement of the sensor particles.

(Fig. 4.2). We compare results obtained from experiments (Fig. 4.2(a) and Fig. 4.2(b))

with the corresponding numerical simulations (Fig. 4.2(c) and Fig. 4.2(d)). Each

curve corresponds to a different sensor location placed in all even particles in the

impacted chain and in the chain adjacent to the intruders (Fig. 4.1(a)). Without

the presence of the line of intruders, a solitary wave forms and propagates along the

excited chain (pseudo 1D case, see [102]). The presence of intruders introduces a

nonlinear coupling between the two chains, leading to reciprocal energy and momun-

tum transfer between them. We observe in experiments and numerical simulations

that the input energy of the leading propagating pulse (minus what is radiated in

the transverse chains) is equally split between the excited and absorbing chains after

approximately eight particles, as two distinct pulses with similar velocity and am-
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Figure 4.2: Acceleration-time diagrams showing the evolution of the transmitted
signal in the two chains of particles adjacent to the line of intruders for the monomer
configuration, along the x direction. (a) Experimental results in the excited chain (at
all even particles in the chain). (b) Experimental results in the absorbing chain. (c)
Numerical data corresponding to (a). (d) Numerical data corresponding to (b). In
all panels, the system is impacted by a stainless steel sphere of radius 9.52 mm with
initial velocity 0.147 m/s. The horizontal black lines show the stabilized amplitude
of the leading acceleration pulse (≈ 800 m/s2 in the numerical simulations and 400
m/s2 in the experiments).
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plitude form and propagate down the two chains. We use the term “equipartition”

to describe the phenomenon of equal division of energy and momentum between two

adjacent granular chains, after one of the two is excited by an impulse.

The intruders are also responsible for the scattering of energy in the y direction,

and we observe the formation of solitary waves travelling perpendicular to the excited

and absorbing chains. For each particle in these two chains, the amplitude of the

velocity in the y direction is small (≈ 20%) in comparison to that in the x direction.

This corresponds to ≈ 4% of the kinetic energy, and we neglect the leakage of energy

in the transverse direction.

The amplitude of the wave traveling in the excited chain decreases drastically

within the first few particles as energy is transfered to the absorbing chain through

each light intruder. It was shown in [121] that 82.3% of the energy of a solitary

wave reaching a TC intruder is transmitted along the chain after interacting with the

intruder. The rest of the energy is scattered in adjacent and perpendicular chains,

or reflected. Reversely, the amplitude of the wave propagating in the absorbing

chain increases from zero to the same level as the signal in the excited chain. It

is important to note that these systems are tunable: the material selected for the

intruders affects the speed of the energy transfer since weaker interactions between

the line of intruders and the excited and absorbing chains will result in a slower

transfer of energy. Numerical simulations and experiments were also performed for

a line of Teflon defect particles (Young modulus 1.26 GPa) in order to evidence this

effect (not shown here).

We find excellent agreement between our numerical and experimental results (com-

pare Fig. 4.2(a) with Fig. 4.2(c) for the excited chain; Fig. 4.2(b) with Fig. 4.2(d) for

the absorbing chain). The effect of dissipation is visible in the experimental data, and

the stabilized amplitude reached in the two chains in experiments is smaller than in

our numerical calculations. After equipartition, we observe in the numerical data a

slow decrease of the amplitude of the two waves, due to radiations in the y direction,

as the central light intruders push the heavy steel particles away from the centerline.

Although we expect the same effect to be present in the experimental data, it is
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difficult to determine how much of the loss is accounted for by the radiations versus

dissipation.

4.4.2 Dimer Configuration

Several extensions to this work are possible and we expect to observe similar equipar-

tition phenomena with intruders made of different materials or between more than

two chains for example. In this section, we present the experimental and numerical

results obtained when tungsten carbide intruders are located in every other inter-

stitial site between the excited and absorbing chains (Fig.4.1(b)). We refer to this

configuration as the dimer configuration.

As for the monomer configutarion, we study the temporal evolution of the trans-

mitted acceleration along the x direction in the chains of particles adjacent to the in-

truders (Fig. 4.3) and compare the results obtained from experiments (Fig. 4.3(a) and

Fig. 4.3(b)) with the corresponding numerical simulations (Fig. 4.3(c) and Fig. 4.3(d)).

The same observations can be made for the dimer configuration and these results show

that equipartition is a robust phenomenon that is still observable when the density of

intruders is decreased: the input energy is progressively transfered from the excited

chain to the absorbing one, only at a slower rate. Equipartition is reached after ap-

proximately 16 particles or twice the distance needed for the monomer configuration.

In the next section, we present a new analytical model which explains how this

fully 2D phenomenon can be described by a simplified 1.5D system, and compare

this simplified theoretical model to our experimental and numerical results for the 2D

system (similar in form to the one studied in [124–126]). We consider the monomer

configuration only.
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Figure 4.3: Acceleration-time diagrams showing the evolution of the transmitted
signal in the two chains of particles adjacent to the line of intruders for the dimer
configuration, along the x direction. (a) Experimental results in the excited chain (at
all even particles in the chain). (b) Experimental results in the absorbing chain. (c)
Numerical data corresponding to (a). (d) Numerical data corresponding to (b). In
all panels, the system is impacted by a stainless steel sphere of radius 9.52 mm with
initial velocity 0.161 m/s. The horizontal black lines show the stabilized amplitude
of the leading acceleration pulse (≈ 800 m/s2 in the numerical simulations and 400
m/s2 in the experiments).
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4.5 Simplified 1.5D Modelization and Comparison

with Full 2D System

Upon arrival of the incoming pulse, the presence of each intruder induces a displace-

ment of the two larger spheres located after it in both the x and y directions. However,

the amplitude of the waves traveling in the y direction is small. In our model, we

neglect the energy loss in the y direction, constraining the particles of the excited

and absorbing chains, and the intruders, to move only horizontally. For simplicity,

we limit our analysis to modeling the dynamics of the intruders and the particles of

the excited and absorbing chains. Although all particles are contrained to move in

the x direction, energy transfer between the excited and absorbing chains in the y

direction is still possible due to the strongly nonlinear coupling induced by the line

of intruder (1.5D system).

We denote by m, ν, E and ρ the mass, Poisson’s ratio, Young’s modulus and

density of the heavy steel particles. The same quantities with subscript d correspond

to the properties of the light TC defect particles. We then use the normalized dis-

placement x = X
R

and time τ = t
√

E
πR2ρ

to rewrite the set of equations (2.1) into the

non-dimensional equations describing the motions of the intruders (4.1), the particles

composing the excited chain (4.2) and particles composing the absorbing chain (4.3):

εxdi
′′

= β
[
f(xei − xdi )− f(xai+1 − xdi )

]
+ β

[
f(xei − xdi )− f(xei+1 − xdi )

]
, (4.1)

xei
′′ = β

[
f(xei − xdi−1)− f(xei − xdi )

]
+ α

[
g(xei−1 − xei )− g(xei − xei+1)

]
, (4.2)

Copyright (2013) by the American Physical Society [131]
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xai
′′ = β

[
f(xdi−1 − xai )− f(xai − xdi )

]
+ α

[
g(xai−1 − xai )− g(xai − xai+1)

]
, (4.3)

where α = 1
2
√

2(1−ν2)
, β =

√
2−
√

2
2

Ed

E(1−ν2d)+Ed(1−ν2)
and ε = md

m
is our small pa-

rameter. We used f(x) =
(√

2−
√
x2 + 1

)3/2

+
and g(x) = (x + 2)

3/2
+ , x is the scalar

non-dimensional displacement of the particles (constrained in the x direction), and

x′′ represents the second derivative with respect to the normalized time τ . The su-

perscript d corresponds to the defect particles, e corresponds to the particles in the

excited chain, and a to the particles in the absorbing chain. The subscript i indicates

the position of every particle in their chains, oriented along the positive x axis.

For the materials chosen in our study, ε = 0.134, β = 1.022 and we assume the

ratio ε
β

to be small enough to neglect the inertia of the intruders. Equating the right

term of Eq. (4.1) to zero leads to:

f(xei − xdi )− f(xdi − xai+1) = −[f(xai − xdi )− f(xdi − xei+1)]. (4.4)

We numerically showed that the two sides of Eq. (4.4) are independently small and

we can consequently assume:

f(xei − xdi ) ≈ f(xdi − xai+1),

f(xai − xdi ) ≈ f(xdi − xei+1). (4.5)

This means that, to a first order approximation, the diagonal forces applied on a

defect particle are independent from each other. Eq. (4.5) yields:

xdi ≈
xei + xai+1

2
≈
xai + xei+1

2
. (4.6)

Further analytical treatment assumes that the right-hand side and left-hand side

of Eqs. (4.5) and (4.6) are equal. We can replace xdi and xdi−1 in Eqs. (4.2) and (4.3) to

Copyright (2013) by the American Physical Society [131]
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Figure 4.4: x-velocity vs time signals obtained for the 1.5D model with linear damping
coefficient λ equal to 0.006. Each curve represents the velocity of every particle in the
excited chain (a) and the absorbing chain (b). The system is impacted by a stainless
steel sphere of radius 9.52 mm with initial velocity 0.147 m/s.

obtain a system of equations for the excited and absorbing chains only. To incorporate

the radiation effect, we finally add a linear damping term in order to account for the

decay caused by the energy leakage in the transverse direction:

xei
′′ = β

[
f

(
xai−1 − xei

2

)
− f

(
xei − xai+1

2

)]
+ α

[
g(xei−1 − xei )− g(xei − xei+1)

]
− λxei

′, (4.7)

xai
′′ = β

[
f(xei−1 − xai )− f(xai − xei+1)

]
+ α

[
g(xai−1 − xai )− g(xai − xai+1)

]
− λxai

′. (4.8)

We used a vectorized fourth order Runge-Kutta scheme to integrate this simplified

set of equations. The numerical setup consists of two adjacent chains of 20 particles

Copyright (2013) by the American Physical Society [131]
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Figure 4.5: Comparison of the numerical x-velocity vs time signals obtained from the
2D and simplified 1.5D models (from Fig. 4.4). The results for the excited chain are
shown in (a), and (b) shows the results for the absorbing chain. In both plots, the
curves are obtained from the 2D model, whereas the (purple) stars indicate the peak
amplitudes of the corresponding signals obtained from the 1.5D model.

each (absorbing and excited chains) and 19 interstitial intruders. Similarly as before,

the walls are modeled as fixed spherical particles of infinite radius. The excited chain

is impacted by a striker particle with initial velocity obtained from experiments. We

show the numerical solution in Fig. 4.4. We clearly observe the energy equipartition

previously evidenced in our experiments and in the fully 2D numerical simulations.

Similarly to what observed earlier, also in the 1.5D model the velocity stabilizes in

the two chains after approximately eight particles.

The results obtained from the simplified 1.5D model are compared with the fully

2D system in Fig. 4.5. The only fitting parameter used in the 1.5D model is the

linear damping coefficient λ (dimensionless), which is taken to be 0.006. The results

show that the 1.5D approximation captures very well the main features of the 2D

system: the energy equipartition is reached after the same number of particles, and

the amplitudes of the leading pulses are in very good agreement.
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4.6 Summary

In this chapter we showed with experiments and numerical simulations that the mech-

anism of solitary wave equipartition previously observed in linearly coupled, nonlin-

ear lattices persists in full 2D granular setups with a more complex type of coupling

(strongly nonlinear, non-smooth, diagonal coupling via light interstitial intruders).

This energy equipartition phenomenon could be used for the creation of novel acous-

tic delay-lines, wave guides and protective materials. The regime of the primary

pulse transmission in the strongly-nonlinear, heterogeneous, 2D granular crystal is

well captured by our simplified, reduced order model (granular scalar model). The

results of the present work will pave way for further analytical, numerical and exper-

imental studies of the mechanisms of energy transfer and wave redirection in higher

dimensional granular crystals. Moreover, the mechanism of equipartition of solitary

pulses in granular crystals realized through the placement of interstitial intruders is of

great practical importance in the design of granular shock absorbers able to efficiently

distribute the initially localized shock over the entire granular medium.

Copyright (2013) by the American Physical Society [131]
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Chapter 5

Topology and Material
Optimization of Two-Dimensional
Granular Crystals Using
Gradient-Based Methods

In this chapter, we apply gradient-based optimization methods to the design of new

composite granular materials with interesting wave mitigating properties. In a first

approach, we investigate the optimal distribution of spherical interstitial intruder

particles in an uncompressed square packing of spheres (topology optimization). In a

second approach, we optimize the material distribution in hexagonal packings where

each particle can be composed of either a stiff or soft material. In both cases, our goal

is to create designs that minimize or maximize a given objective function (e.g. total

energy or reaction force) in a prescribed part of the system, when the latter is subject

to an impact. Specific problems (e.g. dispersion, focusing, shielding) were studied

to prove the efficiency of the design method and the numerically obtained optimized

designs were compared to several benchmark cases. Finally, we successfully performed

experimental verifications to validate the practical feasibility of such designs.

5.1 Introduction

Under normal conditions of impact, it was shown that a 2D square packing behaves

as a pseudo-1D system [102]. However, as described in chapters 3 and 4, when
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an intruder (also referred to as defect particle) occupies an interstitial site in the

wave propagation path, we observe the formation of reflected and scattered waves

traveling in the various chains of particles in contact with this defect particle [121].

This highly directional response can be used as a basis to design granular crystals

with predetermined wave propagation paths capable of mitigating stress wave energy.

To these ends, we propose a topology optimization scheme [13, 132] to tailor the

energy propagation in 2D granular crystals under impact loads. Topology optimiza-

tion, and more specifically gradient-based approaches, is a highly developed tool for

structural optimization. We present the first application of this method to granular

crystals. In our model, each interstitial site can be occupied by a spherical intruder.

The presence (or absence) of the intruder is characterized by a volume fraction, and

we use topology optimization to optimize the material distribution in these interstitial

sites.

Our goal is to obtain optimized discrete (or 0/1) designs in which each interstitial

site is either empty or occupied by an intruder, and we consequently investigate

different approaches to penalize intermediate values for the volume fraction. One

approach is to employ the Solid Isotropic Material with Penalization (SIMP) method,

in which intermediate densities are suppressed by making them a “costly” design

[133, 134]. Another approach is the Sum of Reciprocal Values (SRV) method, which

uses an additional optimization constraint to remove intermediate densities in the

domain [135, 136]. We also penalize intermediate density values by adding a penalty

term in the objective function. To accomplish wave tailoring, we define two types

of objective function: the total energy in a prescribed area of the domain and the

interaction force between the beads and the enclosing walls. The goal of our transient

topology optimization scheme is to find the distribution of intruders in the domain

that minimizes (dispersion) or maximizes (focus) one or a combination of these given

objective functions.

A second part of the work presented in this chapter consists of implementing a

similar optimization scheme that optimally selects the material properties of each

particle in a hexagonal packing. In this case, we intend to create designs with similar
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abilities by taking advantage of the material distribution instead of the particle loca-

tion. Non discrete designs are easier to interpret physically, as we can potentially find

an existing material corresponding to an in-between value selected by the optimizer,

but are still less desirable for practical reasons and intermediate stiffnesses can again

be penalized by adding a penalty term to the objective function.

We validate our numerical results with experimental data. New experimental

setups were designed and experimental data was collected using mini tri-axial ac-

celerometers embedded in selected beads. This provides us with local experimental

accelerations that are then directly compared to the numerical outputs, with excellent

agreement.

The work presented in this chapter illustrates how to optimally use multi-scattering

and different material phases in organized granular crystals to mitigate or focus the

energy originating from an impact and could lead to the creation of efficient designs

for new composite structures with targeted wave tailoring applications: protection

from explosives and impact pulses or wave guides for example.

The rest of this presentation is organized as follows. In Sec. 2, we present the

model at hand. In Sec. 3, we describe in detail the optimization problem and nu-

merical setup. The numerical results are presented in Sec. 4. We demonstrate the

abilities of our numerical setup by looking at two sample problems for the topology

optimizations (a dispersion problem in which we minimize the energy at the wall

opposed to the impact and a deflection problem in which we maximize the energy

redirected in the middle sections of the side walls) and three sample problems for the

material optimization (minimization of the peak energy at the center of the system,

at the wall opposed to the impact and maximization of the energy at the side walls).

Sec. 5 contains a description of the experimental setups used to verify the numerical

results as well as a comparison of numerically obtained optimized designs with real

systems. Finally, in Sec. 6, we present some conclusions and possibilities for further

studies.
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5.2 Model

In this work, we investigate the dynamic response of square and hexagonal packings of

spherical beads impacted on one side by a striker particle. A finite element approach

described in section 2.2 is taken using two-node elements that connect the centers

of every pair of adjacent particles. In the absence of body loads, the governing

equations for the nonlinear elastodynamic is given in a semi-discrete form by Eq. 2.2,

and Fext = 0 in this study. A implicit Newmark integration scheme [107, 108] is used

to time discretize the equations of motion and solve for the displacements, velocities

and accelerations at every time step (see Eq. 2.3).

5.3 Optimization Problem

5.3.1 General Formulation of the Optimization Problem

We perform topology and material optimizations using a gradient-based approach. In

the first case, we optimize the positions of intruder particles occupying the interstitial

sites in a square packing in order to minimize or maximize a given physical cost

(or objective) function. In the second case, we achieve the same goal optimizing

the material properties of the particles composing a hexagonal packing. Topology

optimization problems are by nature discrete problems, and are commonly relaxed to

continuous ones. In both cases, we can write the general formulation of the continuous

optimization problem as follows:

min
x
f(x)

s.t.

gk(x) ≤ gk k = 0, ...,M

xmin ≤ xi ≤ xmax = 1 i = 1, ..., N

, (5.1)

where x is the design variable vector, f is the cost function, M is the number of

constraint functions gk, and N is the number of design variables xi, constrained to

stay within the bounds xminand xmax. The multiobjective cost function f is given by:
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f(x) =

Nobj∑
k=1

αk

Nt(k)∑
j=1

(
Nstep∑
n=1

(
f̂

(k)
j,n (x)

)T)S/T
1/S

with f̂ =

Total energy

Reaction force

. (5.2)

As can be seen from Eq. 5.2, one can choose to optimize a combination of Nobj

objective functions f̂ (k), αk taking the value 1 (resp. -1) if the user wants to minimize

(resp. maximize) the objective function f̂ (k). Nt(k) represents the number of particles

in the kth target area and Nstep is the total number of time steps for each simulation.

The peak value of the total energy or interaction force in the target area over space and

time is approximated by nested p-norms with large enough values of the exponents

S and T (typically S = T = 8). The average value of the same function is obtained

by setting S = T = 1.

5.3.2 Design Variable and Regularization Techniques

We define our design vector x as the particle volume fraction: a volume fraction

equal to zero corresponds to a void (or absence of particle) whereas a volume fraction

equal to one corresponds to the presence of a particle, the material of which can be

chosen from several preselected ones. Our goal is to obtain discrete designs with only

vacant sites, xi = xmin = 0.001 or occupied by a particle, xi = 1. In order to use

continuous methods, an “artificial-material” model is used where the volume fractions

can temporarily take any values between xmin and 1. We can also define non-design

regions, in which particle positions and/or material properties are known.

In this work, we adopt a “three-phase” material model, in which the material

properties of each bead can be interpolated as follows:

CH
i = ξpi (φ

p
iC

A + (1− φi)pCB), x = [φ1 . . . φN/2 ξ1 . . . ξN/2], (5.3)
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where CA,B represents the compliance tensors of the two predefined homogeneous

materials [137]. This yields:

EH
i =

µHi
(
3λHi + 2µHi

)
λHi + µHi

, νHi =
λHi

2 (λHi + νHi )
,

with

µ
H
i = ξpi (φ

p
iµ

A + (1− φi)pµB)

λHi = ξpi (φ
p
iλ

A + (1− φi)pλB).

(5.4)

The densities are interpolated in a similar manner:

ρHi = ξqi (φiρ
A + (1− φi)ρB). (5.5)

We investigate two optimization problems. In the first one, the beads area ar-

ranged in a square packing of n × n particles with known radii and material prop-

erties, forming the non-design space. Each interstitial site can be either a void or

occupied by an intruder. Hence, the design vector is defined by the variables ξi and

φi associated to each interstitial site i. In this chapter, we refer to this problem as

the “intruder optimization”. In the general case, each design particle can either be a

void or a particle made of material A or B (as explained before, intermediate values

are also admitted in order to use a continuous method). Prescribing φi = 1 for all i,

the design vector reduces to the ξi and each design particle can be either a void or

made of material A (two-phase material model).

The second optimization problem consists of an hexagonal packing without in-

truders. Here all the beads form the design space. Since the existence of a bead is

no longer a variable, we set ξi = 1 for all i in Eqs. 5.4 and 5.5, and the design vector

reduces to the φi only. Hence, each particle in the system is now made of material

A or B (or any intermediate material given by Eqs. 5.4 and 5.5). We denote this

problem as the “material optimization”.

For practical reasons, we are not interested in final designs containing gray areas

(or “artificial” materials), but would like each design particle to be empty or occupied
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by baseline materials (denoted by the superscripts A and B ). In order to steer the

values of the volume fractions back to xmin and ones, three methods are implemented.

The first one consists in adding a penalization term to the objective function, which

can be expressed as:

f̃ = f + w

N∑
i=1

(xi(1− xi))2 , (5.6)

where w is a weight parameter which is tuned for each optimization problem. The

SIMP method [133], originally developed for compliance minimization problems, is

also implemented, with good results. Last, one can add an SRV constraint [135] which

creates discrete designs with a specified number of occupied sites. This method will

be described in more detail in the next section.

5.3.3 Constraints

In the intruder optimization problem, we may want to limit the maximum number

of intruders (nmax) in the domain. This is particularly interesting when we want to

compare the optimized designs with experiments, since configurations containing too

many defect particles are significantly more difficult to reproduce experimentally. We

limit the number of intruders by limiting the sum of volume fraction, i.e.

g1(x) ≤ g1. (5.7)

where g1 = nmax + (N − nmax)xmin.

As mentioned previously, we use the SRV constraint, in order to obtain discrete

designs. The sum of reciprocal values function is given by:

g2(x) =
N∑
i=1

1

xi
. (5.8)

Fuchs et al. [135] showed that for a given design vector x that satisfies the equality

constraint g1(x) = g1, the function g2(x) is maximal when x is discrete, i.e., when all

entries are equal to xmin or 1.
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Therefore, in order to obtain a discrete design we set the equality constraint

g1(x) = g1 (5.9)

and the inequality constraint

g2(x) ≥ g2, (5.10)

where g2 = (1 − η)
(
nmax + (N−nmax)

xmin

)
and η = 0.001 (we use an inequality con-

straint instead of the equality g2(x) = g2 to avoid numerical errors).

5.3.4 Sensitivity Analysis

To solve Eq. 5.1, we use gradient-based optimization algorithms and thus require the

sensitivities of the cost function f with respect to the design parameters to search the

design space. We adopt a discrete approach in which the problem is both spatially

and temporally discretized, as can be seen from Eq. 5.2. We define the cost function

f over the displacements, velocities and accelerations vectors u(n), v(n) and a(n) at

every time step n. These response vectors are in turn functions of the design vector

x and we write the explicit and implicit dependence of f on x as follows:

f(x) = f ∗
(
u(1)(x), ..., u(Nstep)(x), v(1)(x), ..., v(Nstep)(x), a(1)(x), ..., a(Nstep)(x), x

)
,

(5.11)

where Nstep is the total number of time steps.

We express the sensitivity as:

∇f = Df ∗ +

Nstep∑
n=1

(
Du(n)T ∂f ∗

∂u(n)
+Dv(n)T ∂f ∗

∂v(n)
+Da(n)T ∂f ∗

∂a(n)

)
, (5.12)

where we invoke the chain rule and use the notation DX to denote the derivative of

X with respect to the design vector x, i.e., DX = ∂X
∂x

. The terms Df ∗, ∂f∗

∂u(n) ,
∂f∗

∂v(n) and
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∂f∗

∂a(n) are directly evaluated as the cost function f ∗ is explicity defined. The evaluation

of the reponse derivatives terms Du(n), Dv(n) and Da(n) is more complicated due to

the implicit dependence of the response variables on the design vector. The adjoint

method [138] was used to eliminate the implicit derivatives Du(n), Dv(n) and Da(n)

and we follow an approach similar to [139] in order to evaluate the left hand side of

5.12.

Adjoint sensitivities are obtained by augmenting the sensitivity expression in

Eq. 5.12 with the derivatives of the governing equation and the derivatives of the

Newmark update equations 2.3:

∇f = Df ∗ +

Nstep∑
n=1

(
Du(n)T ∂f ∗

∂u(n)
+Dv(n)T ∂f ∗

∂v(n)
+Da(n)T ∂f ∗

∂a(n)

)

+

Nstep∑
n=1

λ
(Nstep−n+1)
0

T (
(−DM)a(n) −DS(un)

)
+

Nstep∑
n=1

λ
(Nstep−n+1)
0

T
(
−K(n)

2 Da(n) − ∂S(n)

∂u(n)
(1− 2β)

∆t2

2
−∆t

∂S(n)

∂u(n)
Dv(n−1) − ∂S(n)

∂u(n)
Du(n−1)

)

+

Nstep∑
n=1

λ
(Nstep−n+1)
1

T
(
−Du(n) +Du(n−1) + ∆tDv(n−1) +

∆t2

2
(1− 2β)Da(n−1) + β∆t2Da(n)

)

+

Nstep∑
n=1

λ
(Nstep−n+1)
2

T (
−Dv(n) +Dv(n−1) + ∆t(1− γ)Da(n−1) + ∆tγDa(n)

)
,

(5.13)

where λ
(n)
0 , λ

(n)
1 and λ

(n)
2 are arbitrary adjoint vectors and K

(n)
2 =

(
M + β∆t2 ∂S

(n)

∂u(n)

)
.

We rearrange the above equation, factoring the implicit derivative terms and select

the arbitrary adjoint vectors that make these terms vanish. We consequently obtain

the simplified expression for the desired sensitivities:
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∇f = Df ∗ +

Nstep∑
n=1

DS(u(n))
T
λ

(Nstep−n+1)
0

+
(
Da(0)

)T (−∆t2

2
(1− 2β)

∂S(u(1))

∂u(1)

T

λ
(Nstep)
0 +

∆t2

2
(1− 2β)λ

(Nstep)
1 + (1− γ)∆tλ

(Nstep)
2

)

+
(
Dv(0)

)T (−∆t
∂S(u(1))

∂u(1)

T

λ
(Nstep)
0 + ∆tλ

(Nstep)
1 + λ

(Nstep)
2

)

+
(
Du(0)

)T (−∂S(u(1))

∂u(1)

T

λ
(Nstep)
0 + λ

(Nstep)
1

)
, (5.14)

where λ
(n)
0 , λ

(n)
1 and λ

(n)
2 are the solutions of the adjoint problem,



λ
(n)
1 = λ

(n−1)
1 + ∂f∗

∂u(Nstep−n+1) − ∂S(u(Nstep−n+2))

∂u(Nstep−n+2) λ
(n−1)
0

λ
(n)
2 = λ

(n−1)
2 + ∂f∗

∂v(Nstep−n+1) −∆t∂S(u(Nstep−n+2))

∂u(Nstep−n+2) λ
(n−1)
0 + ∆tλ

(n−1)
1

K
(Nstep−n+1)
2 λ

(n)
0 = ∂f∗

∂a(Nstep−n+1) + β∆t2λ
(n)
1 + γ∆tλ

(n)
2 + (1− 2β)∆t2

2
λ

(n−1)
1 + (1− γ)∆tλ

(n−1)
2

−(1− 2β)∆t2

2
∂S(u(Nstep−n+2))

∂u(Nstep−n+2) λ
(n−1)
0 .

(5.15)

Du(0), Dv(0) and Da(0) are easily determinated from the imposed initial conditions.

We choose λ
(0)
0 = 0, λ

(0)
1 = 0 and λ

(0)
2 = 0 to solve the terminal value problem 5.15.

Fig. 5.1 summarizes the organization of the numerical setup. After selecting an

arbitrary initial design vector, we enter the optimization loop. The transient anal-

ysis precedes the evaluation of the sensitivities and/or value of cost function. The

optimizer (the authors used the commercial nonlinear Knitro solver from Ziena Op-

timization LLC) then updates the design vector and a test decides if the termination

criteria were met (final solution) or not (reenter the optimization loop).

The next section presents numerical results obtained using our numerical setup,

focusing mainly on five sample problems.
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Figure 5.1: Block diagram presenting the structure of the numerical setup.
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(a) (b)

Figure 5.2: Schematic diagrams of the two topology optimization problems investi-
gated. Both consist of a 20 by 20 stainless steel square packing (grey particles, radius
R = 9.52 mm) impacted from the left by a particle identical to the ones composing
the square packing (black arrow). The tungsten carbide intruders are illustrated in
red and the black boxes show the target areas. In 5.2(a), we minimize the peak energy
that reaches the wall opposed to the impact. In 5.2(b), we maximize the average en-
ergy that reaches the two middle sections of the side walls. Both 5.2(a) and 5.2(b) are
the optimized designs obtained when applying the SRV constraint where nmax = 20.

5.4 Numerical Results

5.4.1 Topology Optimizations (Intruder Problem)

5.4.1.1 Test Cases: Dispersion and Deflection Problems

Two different problems were investigated to test the efficiency of our numerical setup

and are presented in Fig. 5.2. We study a square packing of 20 by 20 particles (radius

R = 9.52 mm). The striker particle is identical to the ones composing the packing and

is given some initial velocity v0. The intruder particles have radius r = (
√

2− 1)R.

In the first problem, we want to minimize the peak force along the wall opposed to

the impact (dispersion problem). In the second one, we want to maximize the average

energy in the middle parts of the side walls (deflection/focusing problem). In both

cases, every interstitial site in the square packing can potentially host a tungsten

carbide defect particle. The system is impacted symmetrically from the left. For
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each case, we present results for unconstrained and constrained optimizations. The

constrained designs are obtained for nmax = 20 and are depicted in Fig. 5.2. We also

compare the optimized designs with three different benchmark configurations: no

intruders, intruders in every interstitial site and an educated guess consisting of 20

intruders organized in a triangular shape. This choice of educated guess is motivated

by the fact that triangular patterns are often seen in our numerical designs and are

efficient at dispersing energy by redirecting it to the sides.

Figure 5.3: Numerical study for the dispersion problem. We plot the peak total energy
(i.e. the maximum over the number of elements in the target area) as a function of
time. Each curve shows the response of a different design when impacted by a steel
particle with initial velocity v0 = 0.095 m/s. The labeling and color of each curve
corresponds to the labeling and box coloring of the various configurations around
the plot. For each schematic, the gray particles compose the square packing, which
is impacted from the left by an identical striker bead. The red dots are the defect
particles, and the black boxes show the target area.

The numerical results for the dispersion problem are presented in Fig. 5.3. Starting

from the top-left configuration and going counter-clockwise, we present the different

designs from the worst configuration to the best. One notes that the numerical

setup yields symmetric designs, as we have a symmetric problem (packing, impact



85

and boundary conditions). After impact, two solitary waves of constant amplitude

travel in the two central chains [102] (as well as two solitary waves traveling up and

down in the first transverse chain). As expected, the worst case corresponds to the

configuration without any intruders, as none of the input energy is scattered: the

two solitary waves reach the end wall without being perturbed and the peak energy

reaching the wall is 4.5×10−5 J. The educated guess is almost twice as good as the 20

intruders scatter part of the energy from the two solitary waves (Emax = 2.5 × 10−5

J). The constrained optimized design is itself 52% more efficient than the educated

guess (Emax = 1.24 × 10−5 J). It is interesting to note that the optimizer places the

first 20 intruders in two lines, corresponding to a symmetric case of the equipartition

phenomenon previously observed in [131]. Placing intruders in every possible location,

one obtains an efficient design where the input energy is geometrically diluted as a

2D wave front forms, similar to that described in [103]. This configuration performs

almost as well as the unconstrained optimized designs, expected to be the best design,

and which requires fewer intruders (in both cases, Emax = 0.23× 10−5 J).

The numerical results for the deflection problem are presented in Fig. 5.4. Again,

we organized the different configurations from the worst one (top-left) to the best one

(bottom-right). In this problem, we are interested in the average deflected energy

in time and space since we intend to maximize the total energy deflected, and not

to see a short-lived signal localized in space (we consequently select S = T = 1).

The configuration without any intruders is once again the least efficient for the same

reason as precedently: no energy is scattered and no signal reaches the target area

(middle sections of the side walls). The full configuration, as described previously,

is good at dispersing the input energy. But it does so in an isotropic manner (with

the formation of a circular wave front) and is hence not optimal when one wants to

focus or redirect the input energy into a specific area of the system. Our educated

guess, consisting of only 20 defect particles included in the square packing, performs

1.3 times better than the full configuration as the triangular pattern is strategically

placed to scatter and redirect the input energy towards the target areas. Finally, the

two optimized designs provided by our numerical setup perform best: 1.8 times (resp.
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Figure 5.4: Numerical study for the focusing problem. We plot the average total
energy (averaged over the number of elements in the target area) as a function of
time. Each curve shows the response of a different design when impacted by a steel
particle (v0 = 0.155 m/s). The labeling and color of each curve corresponds to the
labeling and box coloring of the various configurations around the plot. For each
schematic, the gray particles compose the square packing, which is impacted from
the left by an identical striker bead. The red dots are the defect particles, and the
black boxes show the target area.

2.3 times) more efficient than the full design. One will note that the constrained

design (blue curve, cross shaped markers) is slightly better than the unconstrained

one. This is due to the fact that gradient-based methods seek local optima, and the

final optimized design depends on the initial guess for all the initial volume fractions.

5.4.1.2 Other Examples: Layered Design, “3-Phase” Material Model and

Combination of Cost Functions

In order to demonstrate all the available features of the numerical setup, we provide

two more sample designs in this section. Fig. 5.5(a) presents an optimized design

obtained when maximizing the reaction force at the top and bottom walls. A “two-

phase” material model is used, in which the interstitial sites can be either empty or
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(a) (b)

Figure 5.5: Schematic diagrams of two optimized designs obtained when 5.5(a) max-
imizing the reaction force at the top and bottom walls and minimizing the reaction
force at the end wall, using a three-phase material in which the interstitial sites can
be either empty or occupied by a steel intruder particle (red) or a brass intruder par-
ticle (black) and 5.5(b) maximizing the reaction force at the top and bottom walls,
using a two-phase material model in which the interstitial sites can be either empty
or occupied by a preselected material (tungsten carbide in the left half of the system
and brass in the right half of the system). In both cases, a square packing of 20 × 20
steel particles (shown in blue, R = 9.52 mm) is impacted from the left by an identical
steel striker particle. The black boxes show the target areas for each problem.

occupied by a spherical particle of a predetermined material. In this example, the

left sites can potentially be occupied by steel intruders, whereas the right half can be

occupied by brass intruders.

Fig. 5.5(b) presents an optimized design obtained when both maximizing the

reaction force at the top and bottom walls and minimizing the reaction force at the

end. A “3-phase” material model is used, in which each interstitial site can be either

empty or occupied by a particle made of steel or brass. As one can see, the optimizer

preferably selects the stiffest material (steel) for almost all sites where an intruder

particle is placed. This is in agreement with the findings presented in chapter 3

or [121] in which it was shown that stiffer spherical interstitial defects are better at

scattering energy in a square packing.
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5.4.2 Material Problem

Three different problems were investigated to test the efficiency of the material op-

timization setup and are presented in Fig. 5.6. We study a hexagonal packing of 61

particles (radius R = 9.52 mm). As for the topology optimizations, a stainless steel

particle of identical radius impacts the system symetrically from the left with some

initial velocity v0. Each particle in the system can take the properties of PTFE or

steel or any intermediate value. However, these intermediate values are penalized

through an extra term added in the objective function (see Eq. 5.6).

It was observed that material optimizations can require a number of iterations to

reach convergence for which the propagation of numerical errors during the calculation

of the sensitivities becomes significant, leading to non-symmetrical designs. This

shortcoming was avoided by the symmetrization of the numerical setup.

In the first problem (Fig. 5.6(a)), we minimize the peak energy along the wall

opposed to the impact. In the second problem (Fig. 5.6(b)), we minimize the peak

energy at the center of the system. Finally, in our third sample problem (Fig. 5.6(c)),

we maximize the peak energy at the back side walls. For each case, we present

optimized designs obtained for different initial guesses and weight parameters w,

and compare the response of the various optimized designs with the two extreme

homogeneous cases (all PTFE and all steel hexagonal packings) by looking at the

peak energy in the target area as a function of time.

The numerical results for the minimization of the peak energy at the end wall are

presented in Fig. 5.7. The initial guess for the four designs was 1
4
Esteel and different

weight coefficients were tried (higher values for the initial guess were also investigated

but results are not presented here). The weight parameter w was chosen so that the

initial value of the penalty term stays between 0.5 and 15 % of the physical cost

function. The weight parameters for the designs labeled 1, 2, 3 and 4 in Fig. 5.7 are

equal to 2.0 × 10−14, 1.0 × 10−13, 3.0 × 10−13 and 5.0 × 10−13 respectively. For this

particular problem, each value of w leads to a different looking solution corresponding

to different local optima. Each design performs much better than the uniform cases:



89

(a) (b) (c)

Figure 5.6: Schematic diagrams of the three material optimization problems inves-
tigated. Each consists of a 61 particle hexagonal packing (black, white and gray
particles, radius R = 9.52 mm) impacted from the left by a stainless steel sphere
(red arrow, v0 = 0.155 m/s) and enclosed by a hexagonal wall (green). The black
boxes represent the target areas. 5.6(a) Minimization of the peak energy at the wall
opposed to the impact. 5.6(b) Minimization of the peak energy at the center particle.
5.6(c) Maximization of the peak energy at the back side walls.

the peak energy at the end wall is equal to 11.98%, 11.66%, 11.21% and 8.61% for

design 1,2,3 and 4 respectively of that of the uniform steel case (15.00%, 14.60%,

14.03% and 10.79% respectively of that of the uniform PTFE case). It is interesting

to note that even though the optimal cost function is roughly the same for each

design, we obtain better solutions for lower values of w, which naturally correspond

to designs consisting of larger gray areas. In all cases, the optimizer takes advantage

of heavy/light stiff/soft interfaces to break down the incoming wave into a series of

weaker signals. Similarly to what is observed in 1D systems [119], a heavy particle

impacting a hexagonal system composed of light particles will create several successive

wave fronts of smaller amplitudes than what is observed when impacting a hexagonal

system composed of same-mass particles. This breaking down phenomenon appears

every time a signal encounters a heavy/light interface. On the other hand, part of

the incoming energy will be reflected at a light/heavy interface. This explains the

presence of a soft PTFE area located just after the impact, followed by a group of

heavy steel beads.

The same ideas are utilized in the designs presented in Fig. 5.8, when minimizing

the peak energy at the center of the hexagonal packing. We once again show opti-

mized designs obtained selecting different initial guesses and weight parameters w.
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Figure 5.7: Numerical study for the first minimization problem (peak energy at the
end wall). We plot the peak total energy (i.e. the maximum over the number of
elements in the target area) as a function of time. Each curve shows the response of
a different design when impacted by a steel particle (v0 = 0.155 m/s). The labeling
and color of each curve corresponds to the labeling and box coloring of the various
configurations around the plot and a gray scale is used for each design in order to
show the stiffness of each particle (white corresponding to PTFE and black to steel).
(1) Optimized design obtained for w = 2.0×10−14 and Einit = 1

4
Esteel. (2) Optimized

design obtained for w = 1.0 × 10−13 and Einit = 1
4
Esteel. (3) Optimized design

obtained for w = 3.0× 10−13 and Einit = 1
4
Esteel. (4) Optimized design obtained for

w = 5.0× 10−13 and Einit = 1
4
Esteel.

The designs labeled 1 and 2 were both obtained chosing w = 1.2 × 10−13 but with

different initial design vectors: 3
4
Esteel and 1

4
Esteel respectively. The designs labeled

3 and 4 were obtained selecting the same initial guess as for the second design but

decreasing w (w = 5.0 × 10−14 and w = 2.0 × 10−14 respectively). The efficiency of

our numerical setup is evidenced again by this second sample problem: the optimal

objective function values of designs 1, 2, 3, and 4 are 13.6%, 3.19%, 2.62% and 2.08%

of that of the uniform steel system respectively (or 19.42%, 4.56%, 3.74% and 2.97%

of that of the uniform PTFE system). We noticed that the optimizer performs better

for low values of the initial design vector. However, a feature common to all the
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Figure 5.8: Numerical study for the second minimization problem (peak energy at
the center). We plot the peak total energy (i.e. the maximum over the number of
elements in the target area) as a function of time. Each curve shows the response of
a different design when impacted by a steel particle (v0 = 0.155 m/s). The labeling
and color of each curve corresponds to the labeling and box coloring of the various
configurations around the plot and a gray scale is used for each design in order to
show the stiffness of each particle (white corresponding to PTFE and black to steel).
(1) Optimized design obtained for w = 1.2 × 10−13 and Einit = Einit = 3

4
Esteel. (2)

Optimized design obtained for w = 1.2 × 10−13 and Einit = Einit = 1
4
Esteel. (3)

Optimized design obtained for w = 5.0 × 10−14 and Einit = Einit = 1
4
Esteel. (4)

Optimized design obtained for w = 2.0× 10−14 and Einit = Einit = 1
4
Esteel.

designs is the shielding of the center particle by the placement of heavier and stiffer

steel particles around it, effectively reflecting the incoming wave as well as the later

signals formed after reflection on the boundaries.

The numerical results for the last sample problem (maximization of the peak

energy at the back side walls) are presented in Fig. 5.9. The designs labeled 1 and

2 were obtained selecting w = 2.0 × 10−14 for both, and different initial guesses (

1
4
Esteel and 3

4
Esteel respectively). Several other combinations have been investigated

(not shown here) which resulted in equally efficient designs. This sample problem is

simple enough that the same solution is consistently obtained. More precisely, the
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Figure 5.9: Numerical study for the maximization problem (peak energy at the cen-
ter). We plot the peak total energy (i.e. the maximum over the number of elements
in the target area) as a function of time. Each curve shows the response of a different
design when impacted by a steel particle (v0 = 0.155 m/s). The labeling and color of
each curve corresponds to the labeling and box coloring of the various configurations
around the plot and a gray scale is used for each design in order to show the stiffness
of each particle (white corresponding to PTFE and black to steel). (1) Optimized
design obtained for w = 2.0 × 10−14 and Einit = 3

4
Esteel. (2) Optimized design ob-

tained for w = 2.0 × 10−14 and Einit = 1
4
Esteel. (3) Optimized design obtained for

w = 2.0× 10−14 and Einit = 3
4
Esteel.

optimizer always places stiff particles in the two chains originating from the impacted

particle, surrounding them by PTFE particles with the exception of the last interior

positions (see first design in Fig. 5.9). These locations are the only ones that affect

the value of the peak energy reaching the target areas, and different initial guesses

result in the placement of additional steel particles in the rest of the packing as can be

seen for the last two designs if the initial value of the stiffness is closer to that of steel.

This result is intuitive since these two chains offer straight paths of aligned contacts

connecting the impact site to the middle of the target areas (where the amplitude

is expected to be the largest) and stiffer particles will transmit a signal of larger
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amplitude than PTFE ones. Surrounding the two stiff chains with PTFE particles

minimizes dispersion along them and maximizes the amplitude of the signal traveling

through them. One could have expected to obtain a discrete design with two lines of

steel (black) particles (stiffest contact). The fact that we see gray particles instead

is due to the fact that we have a 2D system. To verify this hypothesis, a similar

maximization problem was run for a 1D chain of particles and the obtained solution

consists of steel particles only.

It is also important to note that the material chosen in the solution for the stiff

particles is slightly dependent on the total time of the simulation since reflections at

the boundary affect the value of the cost function. A example is provided (third design

in Fig. 5.9) for which the length of the simulation was decreased in order to cancel

such reflection phenomena. Interestingly, the solution provided in this case consists

of two lines of stiff particles with progressively decreasing stiffnesses and densities

(surrounded by lines of PTFE particles themselves surrounded by areas consisting of

steel particles). However, the efficiency of the design stays almost unchanged, and

all the optimized designs are 5.07 times (resp. 7.25 times) more efficient than the

uniform steel case (resp. uniform PTFE case).

The next section describes the experimental setups and presents experimental

reproduction of some of the optimized designs.

5.5 Experimental Results

5.5.1 Experimental Setups

A first 2D experimental setup was used to test topology optimization designs, de-

scribed in section 2.1.1.1. It is presented in Fig. 2.2. We assembled a 20 by 20 square

packing using R = 9.52 mm radius stainless steel spheres (nonmagnetic, 316 type).

and custom-made tungsten carbide intruder particles were placed in some of the in-

terstitial sites. A second setup was designed to test the material optimization designs

and is described in section 2.1.1.3. It contains an hexagonal packing (five particles
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(a)

(b)

(c)

Figure 5.10: Comparison of the experimental acceleration vs time signals with the
numerically obtained ones for the constrained dispersion problem 5.10(a). The system
is composed of a steel square packing impacted (see black arrow) by a striker particle
(R = 9.52 mm, v0 = 0.095 m/s) with tungsten carbide interstitial intruders (red
particles). 5.10(b) Experimental acceleration of the particles numbered in 5.10(a).
The top panel shows the acceleration in both x and y directions for one of the two
impacted particles. The bottom panel shows the acceleration in the x direction for
the two particles labeled in the target area. 5.10(c) Numerical results corresponding
to 5.10(b).
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per side) made of PTFE and stainless steel particles with radius R = 9.52 mm. The

material properties for the different materials used in this study are given in Table 2.1.

In both cases, the system is impacted from a side by a stainless steel striker particle

and its velocity is measured with an optical velocimeter. Custom-made sensor parti-

cles were used to measure local particle accelerations when perturbed by the traveling

waves and compare them to their numerical counterparts. A complete description of

the measurement method is provided in sections 2.1.2 and 2.1.3.

5.5.2 Comparison and Discussion

5.5.2.1 Topology Optimizations (Intruder Problem)

We experimentally investigate the optimized designs presented in Fig. 5.2. Each case

being symmetrical, we only present the signals observed in one half of the systems.

In the dispersion problem (Fig. 5.10), the optimized design consists of two lines

of intruders (except for the isolated ones near the impact site) and we consequently

expect signals at only four elements in the target area (the four central ones). The

two chains of defect particles radiate energy in the transverse direction and cause

the leading pulses of the waves propagating in the two central chains of the square

packing to progressively decrease. The top curves of each panel in Fig. 5.10(c) and

5.10(b) show the x and y acceleration versus time evolution for the first particle in

the top central chain after impact, and serves as a time reference to compare the

signals reaching the target area in the experiments and numerical simulations. The

bottom panels show the x acceleration versus time for the last particles of the top two

chains, out of the four where a signal is expected. We observe excellent qualitative

agreement between the experiments and the numerical results, in terms of signal

shape, amplitude and time of arrival.

For the deflection/focusing problem (see Fig. 5.11), the optimized design mainly

consists of a mass of intruders located in the center of the square packing, that

redirects part of the energy carried by the two incoming solitary waves towards the

target area (centers of the side walls). The top panels in Fig. 5.11(b) and 5.11(c) show
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(a)

(b)

(c)

Figure 5.11: Comparison of the experimental acceleration vs time signals with the
numerically obtained ones for the constrained deflection problem 5.11(a). The system
is composed of a steel square packing impacted (see black arrow) by a striker particle
(R = 9.52 mm, v0 = 0.155 m/s) with tungsten carbide interstitial intruders (red par-
ticles). 5.11(c) Experimental acceleration of the particles numbered in 5.11(a). The
top panel shows the acceleration in the x direction for one of the two impacted par-
ticles. The middle panel shows the y acceleration of the four particles in the top half
of the target area. The bottom panel shows the acceleration in the x direction for the
three first particles in that same target area. 5.10(c) Numerical results corresponding
to 5.10(b).
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(a) (b) (c)

Figure 5.12: Schematic diagrams of the three systems investigated for experimental
validation. Each one consists of a 61 particle hexagonal packing (steel in black and
PTFE in white radius R = 9.52 mm) impacted from the left by a steel sphere (red
arrow, v0 = 0.155 m/s) and enclosed by a hexagonal wall. The black boxes represent
the target areas. In 5.6(a), we minimize the peak energy that reaches the wall opposed
to the impact. In 5.6(b), we minimize the peak energy at the center particle. In 5.6(c),
we maximize the peak energy that reaches the two backside walls.

the acceleration in the x direction versus time for the first particle in the top central

chain and as previously provides us with a time reference for the experimental runs.

The bottom panels show the acceleration in the y direction for the four particles in the

top half of the target area. The presence of the two intruders located in the top and

bottom left corners is explained by the fact that they redirect a portion of the energy

carried by the two solitary waves traveling up and down in the first transverse chain

after impact into the top and bottom horizontal chains. This adds up to the energy

reaching the target area after being scattered by the central group of intruders, as

can be seen on the bottom panels of (b) and (c), that show the x acceleration versus

time for the first three particles in the top half of the target area. We again observe

excellent quantitative agreement between the numerical results and the experiments.

5.5.2.2 Material Problem

We experimentally investigate the three configurations presented in Fig. 5.12. Con-

trary to what was observed for the intruder optimizations, the optimized designs are

not necessarily entirely discrete. As discussed previously in this chapter, this is in

theory not problematic as we could find materials in nature corresponding to the
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(a)

(b)

(c)

Figure 5.13: Comparison of the experimental acceleration vs time signals with the
numerical ones for the first sample problem (minimization of the peak energy at the
end wall) 5.13(a). The system is composed of a hexagonal packing impacted (see red
arrow) by a steel striker particle (R = 9.52 mm, v0 = 0.155 m/s). 5.13(b) Numerical
accelerations of the particles labeled and colored in 5.13(a). 5.13(c) Experimental
results corresponding to 5.13(b). In both 5.13(b) and 5.13(c), each panel shows the
acceleration of the corresponding labeled and colored particle in 5.13(a). Solid curves
correspond to x acceleration signals whereas dotted curves correspond to accelerations
in the y direction. Note that when a particle is located on the axis of symmetry of the
system, only the x acceleration is shown since the response of the system is symmetric.
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grey areas. Nevertheless, for practical reasons, we want to test discrete designs made

entirely of PTFE and steel particles. To this end, we experimentally studied discrete

designs whose features are directly inspired by the non discrete optimized designs (or

obtained through basic filtering) and compared the experimental outputs with the

corresponding discrete numerical models. The results are shown in Figs. 5.13, 5.14

and 5.15.

For each configuration we monitored the acceleration of the impacted particle,

which once again provides us with a time reference necessary to compare simula-

tions and experiments, as well as the particles in the target areas. The symmetry

argument invoked previously allows us to reduce the number of sensor locations: we

present results for the signals observed at the labeled and colored particles shown in

Figs. 5.13(a), 5.14(a) and 5.15(a).

We observe good quantitative agreement between the numerical simulations and

the experiments. The main source of discrepancy is the presence of soft PTFE parti-

cles in the designs, which is at the origin of more dissipation than in systems composed

of steel and tungsten carbide, or simply steel. This causes delays and smaller signal

amplitudes in the experimental data. This is particularly visible far from the impact,

where the geometric energy dilution inherent to hexagonal packings is combined with

the dissipation effect. We consequently expect a better agreement for the first config-

uration, where all the sensors are located in the first half of the system, than for the

second, where the target area is opposed to the impact. Note that for the third con-

figuration (see Fig. 5.15) where the impact is transmitted through two linear chains

of steel particles, the times of arrival and amplitudes are in excellent agreement as

dissipation plays a weaker role.

5.6 Conclusion

In this chapter, we demonstrated that gradient-based optimization is an efficient tool

for the design of new composite granular materials with specific wave propagation

behaviors. Topology optimizations were performed and several sample problems were
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(a)

(b)

(c)

Figure 5.14: Comparison of the experimental acceleration vs time signals with the
numerical ones for the second sample problem (minimization of the peak energy at
the center) 5.14(a). The system is composed of a hexagonal packing impacted (see red
arrow) by a steel striker particle (R = 9.52 mm, v0 = 0.155 m/s). 5.14(b) Numerical
accelerations of the particles labeled and colored in 5.14(a). 5.14(c) Experimental
results corresponding to 5.14(b). In both 5.14(b) and 5.14(c), each panel shows the
acceleration of the corresponding labeled and colored particle in 5.14(a). Solid curves
correspond to x acceleration signals whereas dotted curves correspond to accelerations
in the y direction. Note that when a particle is located on the axis of symmetry of the
system, only the x acceleration is shown since the response of the system is symmetric.
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(a)
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(c)

Figure 5.15: Comparison of the experimental acceleration vs time signals with the
numerical ones for the second sample problem (minimization of the peak energy at
the center) 5.15(a). The system is composed of a hexagonal packing impacted (see red
arrow) by a steel striker particle (R = 9.52 mm, v0 = 0.155 m/s). 5.15(b) Numerical
accelerations of the particles labeled and colored in 5.15(a). 5.15(c) Experimental
results corresponding to 5.15(b). In both 5.15(b) and 5.15(c), each panel shows the
acceleration of the corresponding labeled and colored particle in 5.15(a). Solid curves
correspond to x acceleration signals whereas dotted curves correspond to accelerations
in the y direction. Note that when a particle is located on the axis of symmetry of the
system, only the x acceleration is shown since the response of the system is symmetric.
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studied that all evidenced the clear superiority of the numerical optimized designs over

homogeneous configurations and non-optimized designs, improving their efficiency by

up to a hundred times.

Several regularization techniques were implemented to guarantee the obtention of

discrete designs. When using a three-phase material model, we noted that the stiffest

material (TC) was almost always selected due to the better scattering properties of

stiff defect particles in 2D granular crystals. When the material properties of each

particle in the system can be selected from a stiff or a soft material, we observe that

interfaces are advantageously placed to break down the initial impact signal into wider

signals of much weaker amplitude effectively decreasing the peak amount of energy

felt in any specified area.

Experimental validations were also conducted to reproduce the responses of the

optimized designs. The acceleration outputs were compared and excellent agreement

was observed. This is particularly important for future practical applications and the

method presented in this chapter could lead to, for example, new optimized granular

crystals with specific applications such as shock absorbers or waveguiding properties.
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Chapter 6

Comparative Study of the Material
Optimization of Granular Crystals
Using a Gradient-Based Method
and a Breeder Genetic Algorithm

In this chapter, we apply two optimization techniques to the design of new granular

crystals with wave mitigation properties and compare their efficiency. Focusing on the

particular material optimization problems of chapter 5, we compare the fitness of each

design provided by a continuous gradient-based method to the ones obtained via a

discrete breeder genetic algorithm. We also compare the computational time efficiency

of each approach, and consistently observe that the breeder genetic algorithm yields

fitter solutions at the expense of a much greater computational time.

6.1 Introduction

In this present work, we provide a comparative study of two different optimization

techniques (gradient-based and non gradient-based) applied to the tailoring of the

stress wave propagation in 2D granular crystals in which we seek to find the optimal

distribution of material properties (material optimization) given a specific goal.

The wealth of dynamical regimes under which granular crystals can operate com-

bined with the possibility of playing with a wide range of parameters (such as ma-

terial properties, size, and geometry, for example) make the potential engineering
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applications of these systems numerous and great candidates for optimization and de-

sign. In chapter 5, several examples were given of granular crystal designs optimally

handling the energy propagation following an impact, improving on the consider-

able effort that has been made in the past towards exploiting the strongly nonlinear

dynamics of granular crystals to create new shock or energy absorbing devices [9–

12, 59, 60, 77, 101, 140].

When conducting topology and material optimizations, a wide range of methods

is available, which has been developed over the past 50 years. Evolutionary Algo-

rithms (EAs) are non-gradient based methods first developed in the 1960s and refer

to a family of probabilistic search methods inspired by the principle of natural se-

lection [141–145]. Each parameter to optimize (volume fraction, material property

in our case) corresponds to one “gene” of an “individual” (a granular crystal design

in our case) whose performance is evaluated via the calculation of a fitness para-

mater or cost function. Breeder Genetic Algorithms (BGAs) are a specific type of

EAs that use both a stochastic and deterministic selection scheme, in that the fittest

“individuals” (solutions) are selected from a current generation and enter the “gene

pool” to be recombined and mutated as the basis to form the new generation, fit-

ter population, and arrive at an optimal solution [146, 147]. Non gradient-based (or

heuristic) methods (see simulated annealing [148, 149], genetic algorithms [150–154],

evolutionary computation [147, 155–158] among other examples) are well suited for

problems where the solution space is multidimensional, multimodal, discontinuous,

and noisy [159]. However, they require long computational time which may become

prohibitive when studying a problem with many variables. Gradient-based topol-

ogy optimization methods were introduced just over two decades ago [13, 132] for

structural optimization and have since become a powerful tool commonly used in the

industry. A variety of approaches exist to treat continuous problems (homogenization

approach [132, 137], density approach [133, 134, 160], level-set approach [161, 162],

evolutionary structural optimization approach [163] among others) and discrete final

designs can be obtained through regularization techniques or post-processing, for ex-

ample [133, 135, 136]. The use of first-order information about the fitness function
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(in addition to the fitness value) and sometimes second-order information makes the

search much more efficient at the expense of the globality of the optimum reached.

In this chapter, we compare two approaches (BGA and gradient-based method),

both applied in previous studies to the optimal design of granular crystals [9]. More

specifically, we compare the designs and fitnesses obtained when performing material

optimizations on 2D hexagonal packings. The rest of this study is organized as follows.

In the next section, we describe the different optimization problems investigated. We

then present the results obtained for each approach and each problem. Finally, we

compare and discuss the results obtained from the two methods.

6.2 Model at Hand and Optimization Techniques

6.2.1 Numerical Modeling

The numerical model chosen to describe our granular crystals is presented in sec-

tion 2.2. We numerically model our 2D granular crystals as an assembly of point

masses lying in the same horizontal plane connected through nonlinear Hertzian

springs, taking a finite element approach and integrate the discretized system of

equations 2.3 according to a Newmark time integration scheme [107, 108].

6.2.2 Optimization Problem and Approaches

The formulation of the optimization problem is the same as in chapter 5. We perform

material optimizations of 2D granular crystals and optimize the response of our system

when impacted from one side by a spherical striker particle. We typically maximize

or minimize the peak total energy in some area of the crystal and write the general

form of the optimization problem as follows:

min
x
f(x)

s.t. xi = xmin or xmax ∀i ∈ [1, ..., N ] (6.1)
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where x is the design vector, f is the cost (or fitness or objective) function, N is

the number of design variables xi. f(x) =

[∑Nt
j=1

(∑Nstep

n=1

(
f̂j,n(x)

)T)S/T]1/S

where

f̂j,n represents the total energy at element j and time step n. The peak value of the

objective function in time over the target area is approximated by nested p-norms

with large enough values of the exponents S and T. We look for discrete designs and

xi is bound to take one of the two values xmin or xmax. Note that we do not have

constraint inequalities in this study as we only consider material optimizations.

x contains the elastic moduli of each particle and xi = xmin = E1 corresponds

to a particle made of material 1 whereas xi = xmax = E2 corresponds to a particle

made of material 2. The rest of the material properties are then interpolated from

the design vector.

6.2.2.1 Gradient-Based Method

A first approach was taken using a gradient-based continuous method (described in

detail in chapter 5), which requires the relaxation of the initial problem into a non-

discrete one where the design variables can take any value between the two extrema

xmin and xmax. In order to start the optimization iterative process, a random con-

figuration is selected and a first analysis is performed, followed by the evaluation of

the fitness and sensitivity analysis which provides the first derivative of the cost func-

tion f with respect to the design vector x. The design vector is then updated and a

new analysis and sensitivity analysis are performed. This procedure is repeated until

termination criteria are met. We used the commercial nonlinear Knitro solver from

Ziena Optimization LLC.

In order to obtain final discrete designs, we penalized the cost function by the

addition of an artificial term (see Eq. 5.6). As one can see, discrete solutions minimize

f̃ as the penalty term is always positive and equal to zero for fully discrete solutions.

The weight parameter w needs to be tuned in order to obtain black and white designs

but should not be too high in order to avoid local minima corresponding to unphysical

solutions.
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6.2.2.2 Breeder Genetic Algorithm

A second approach was taken using a breeder genetic algorithm (non gradient-based).

Breeder genetic algorithms are more effective than other evolutionary algorithms as

they use both a deterministic and a stochastic selection scheme and are well suited

for discrete problems with a large search space.

A first random population (or collection of random design vectors) is evaluated

and the individuals (designs) are ranked according to their fitness. Let us call λ the

number of individuals in the population.

A first selection step consists of keeping the best µ individuals as the basis for

the new generations. The truncation threshold T = µ
λ

is usually in the 2% to 20%

range and we selected T = 0.15 for this study, in agreement with [9]. A second

step consists of creating a new generation by recombining genotypes belonging to

two parents selected from the current generation. The best individual will always be

conserved in the new generation. In order to create the other λ − 1 individuals of

the new generation, parents are selected among the best µ individuals according

to a uniform probability distribution, and recombined by means of an Extended

Intermediate Recombination (EIT) scheme. Let us call xParent1 and xParent2 two

such selected parents. The genotype of the offspring will be calculated as follows:

xOffspringi = xParent1i + ci
(
xParent2i − xParent1i

)
,∀i ∈ [1, .., N ], (6.2)

where ci is a scaling factor uniformly chosen in the interval [−d, 1 + d]. The selection

of d = 0.25 is a good choice which allows the obtaining of new solutions located both

within and outside the continuous interval defined by the two parents, exploring the

search space more efffectively. Finally, a last step consists of mutating the offspring

variables by the addition of small random values with low probability (inversely pro-

portional to the number of parameters to optimize). Analyses are then performed for

the new population which in turn is selected, recombined and mutated to obtain a

fitter population. More detail on this method can be found in [19].

The next section describes the various optimization problems considered and
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presents the results obtained via each approach.

6.3 Optimized Designs and Dynamic Responses

Figure 6.1: Schematic diagram of the various optimization problems considered in
our study. Material optimizations of hexagonal packings impacted by a steel particle
(arrow). Steel particles are represented in black, PTFE particles in white and the
boxes show the locations of the target area for each case: (1) minimization of the
total energy at the end, (2) minimization of the total energy at the center and (3)
maximization of the total energy at the sides.

Three different problems were investigated to compare the efficiency of the two

approaches. They are presented in Fig. 6.1.

We studied a hexagonal packing composed of 61 particles. Each particle in the

system can be made of stainless steel or PTFE (material optimization) and the system

is impacted from the left by a steel striker particle. We seek the optimal distribution

of steel and PTFE beads such that:

1. we minimize the peak total energy at the end wall (target area labeled “1” in

Fig. 6.1),
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Figure 6.2: Comparison of the designs (top) and evolution of the fitness (bottom)
obtained using the penalized gradient-based method (left) and the breeder genetic
algorithm (right) when minimizing the energy at the end opposed to the impact
(vstriker = 0.155 m/s). In each design, the black particles are made of steel and the
white particles are made of PTFE. Note that the GA design is discrete whereas some
grey areas can be found in the solution obtained using the gradient-based method. In
each bottom plot, the black horizontal line shows the converged value of the fitness
obtained using the other approach.

2. we minimize the peak total energy at the center (target area labeled “2” in

Fig. 6.1), and

3. we maximize the peak total energy at the side walls (target area labeled “3” in

Fig. 6.1).

The numerical setup was symmetrized in order to force the acquisition of mean-

ingful designs since both the loading and boundary conditions are symmetric. This is

particularly important when using the genetic algorithm approach as the stochastic

processes involved in the creation of the new generations would lead to the formation

of highly asymetric and hence unphysical solutions. We consequently have 33 design

variables when running optimizations of hexagonal packings composed of 61 particles.
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Figure 6.3: Comparison of the designs (top) and evolution of the fitness (bottom)
obtained using the penalized gradient-based method (left) and the breeder genetic
algorithm (right) when minimizing the energy at the center (vstriker = 0.155 m/s). In
each design, the black particles are made of steel and the white particles are made
of PTFE. Note that the GA design is discrete whereas some grey areas can be found
in the solution obtained using the gradient-based method. In each bottom plot, the
black horizontal line shows the converged value of the fitness obtained using the other
approach.

When taking the evolutionary approach, the number of individuals contained in each

population should be of the order of the number of genes or design variables of our

problem. We selected Npopulation = 50.

The optimized designs as well as the plots showing the evolution of the fitness

with the number of iterations (or generations when using the BGA approach) are

presented in Figs. 6.2, 6.3 and 6.4.

6.3.1 Interpretation of the Optimized Designs

Although the two methods employed in this study are fundamentally different, we

observe similar features in the solutions provided by each. For the two minimization
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Figure 6.4: Comparison of the designs (top) and evolution of the fitness (bottom)
obtained using the penalized gradient-based method (left) and the breeder genetic
algorithm (right) when maximizing the energy at the sides (vstriker = 0.155 m/s). In
each design, the black particles are made of steel and the white particles are made
of PTFE. Note that the GA design is discrete whereas some grey areas can be found
in the solution obtained using the gradient-based method. In each bottom plot, the
black horizontal line shows the converged value of the fitness obtained using the other
approach.

problems (see Figs 6.2 and 6.3) the particle impacted (and sometimes a patch of par-

ticles near the impact site) is made of PTFE. This is consistent with several previous

studies that described how an impulse is broken down when reaching a light mass

defect or a heavy/light interface (see [17, 119] for example). Several light/heavy/light

interfaces are then placed between the impact location and the target area, adequately

surrounding it. When maximizing the energy at the sides (see Fig. 6.4), both solu-

tions are extremely similar and place two lines of steel particles directly connecting

the impact site with the centers of the target areas, where the energy is expected to

be maximal. These two lines are surrounded by soft PTFE particles, which minimizes

the dispersion as the signals propagate down the stiff chains. In the solution gener-
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ated via the breeder genetic algorithm, these neighboring PTFE chains are themselves

surrounded by steel particles, which maximizes the energy reflected back towards the

target areas (although this effect is small). The designs obtained for this specific

problem are expected to be close to the global maximum.

In the next section, we compare the performance of each approach for each sample

problem in terms of fitness and computational time.

6.4 Comparison and Discussion

Figure 6.5: Evolution of the peak energy over the target area (approximated by
the p-norm of the total energy) as a function of time for the material optimization
problem consisting of minimizing the peak total energy at the end wall. The solid
blue curve shows the response of the solution obtained via the BGA approach and the
dotted green curve shows the response of the solution obtained via the gradient-based
approach.

6.4.1 Performance

We present the dynamic responses of each solution in Fig. 6.5, 6.6 and 6.7. In order

to measure the performance of each solution, we calculate the total energy at each

location in the target area for each time step. Each figure shows the peak total

energy in space as a function of time. The various fitnesses are also summarized in

Table 6.4.1. As one can see, the genetic algorithm approach provides better solutions

for every problem. This is expected as this method uses a global search strategy and
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Approach Material: min end Material: min center Material: max side

Genetic algorithm 2.47×10−6 2.73×10−7 2.03×10−4

Gradient-based method 3.39×10−6 3.43×10−7 1.95×10−4

Table 6.1: Comparison of the performance of the two approaches for each optimization
problem.

is better at exploring the design space than the gradient-based approach that instead

converges towards a local optimum located near the initial guess. In order to verify

that the BGA approach indeed provides a global optimum, simulations were run using

different initial populations, and we observed convergence to the same design solution.

Depending on the problem, we estimate the BGA approach to be between 5% and

30% more efficient in terms of fitness. This seems to indicate that most of the local

optima of the design space have performances similar to the global solution.

Figure 6.6: Evolution of the peak energy over the target area (approximated by
the p-norm of the total energy) as a function of time for the material optimization
problem consisting in minimizing the peak total energy at the center. The solid blue
curve shows the response of the solution obtained via the BGA approach and the
dotted green curve shows the response of the solution obtained via the gradient-based
approach.

6.4.2 Computational Time

In order to accurately compare the computational times taken by each approach, the

same numerical setup was used to evaluate the fitness of each design. If we denote by

T the time taken to perform one transient analysis (or fitness evaluation), Npopulation
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Figure 6.7: Evolution of the peak energy over the target area (approximated by
the p-norm of the total energy) as a function of time for the material optimization
problem consisting in maximizing the peak total energy at the side walls. The solid
blue curve shows the response of the solution obtained via the BGA approach and the
dotted green curve shows the response of the solution obtained via the gradient-based
approach.

Approach Material: min end Material: min center Material: max side

Genetic algorithm 10000 T 10000 T 5000 T
Gradient-based method 1000 T 750 T 100 T

Table 6.2: Comparison of the approximated computational times of the two ap-
proaches for each optimization problem.

the number of individuals in each generation and Ngeneration the number of generations

required, the total computational time of the BGA approach is approximately equal

to Npopulation ×Ngeneration × T . No optimality criterion is available with this method

and we choose the maximum number of generations to be 200 (but less is sometimes

required). Npopulation is of the order of the number of design variables N . This is

to be compared to the number of transient and sensitivity analyses performed when

taking the gradient-based approach Niteration× (1 + εM)T , with M being the number

of design variables and constraints and ε typically equal to 0.004 in our study. The

number of design variables N is equal to 33 for the material optimization problems

we consider. The computational times are compared in Table 6.4.1. In every case,

the computational time is considerably larger when using the BGA (between 10 and

50 times larger).
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6.5 Summary

In this chapter, we compared the optimized designs obtained when applying two

conceptually different optimization methods to the design of granular crystals: a con-

tinuous gradient-based method that makes use of a sensitivity analysis to seek local

optima and a discrete breeder genetic algorithm that searches for the global optimum

using evolution and breeding principles and only requires fitness evaluations. We

specifically looked at the performance and computational time for various test prob-

lems and consistently observed that the BGA yields better solutions at the expense

of a much greater computational time. Despite the apparent suitedness of evolution-

ary methods for our discrete systems, we conclude that a gradient-based approach

is preferable, all the more so when the number of controls of the problem reaches

“large” values.
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Chapter 7

Conclusion

This thesis described several new ways to control and tailor the mechanical energy

associated with the propagation of stress waves in granular crystals through the use of

heterogeneities (interstitial defect particles and material heterogeneities) in otherwise

perfectly ordered systems. We primarily focus on square packed 2D granular crystals

with interstitial spherical intruders and composite hexagonal packings. The potential

applications of this work include novel shock and vibration absorber devices, delay

lines, or wave guides.

In chapter 3, we used numerical simulations and experiments to investigate the

interaction of a highly nonlinear solitary wave with spherical intruders in 2D un-

compressed square packings. It was demonstrated that a defect particle scatters the

impact energy and redistributes it in the various chains in contact with the intruder.

The amount of energy dispersed is strongly related to the elastic modulus of the

intruder, stiffer defects having a better scattering power, whereas other parameters

such as the mass of the defect or the impact velocity have a much smaller effect on

the impulse redirection. It was evidenced that several regimes occur depending on

the stiffness of the intruder and a localization phenomenon was observed at the site

were a soft defect is placed. The setting of two defects was also analyzed and we

found that the redirection efficiency of the system is greatly enhanced when placing

multiple defects in a line.

The study presented in chapter 4 demonstrated with simulations and experiments

the mechanism of solitary wave equipartition in a strongly nonlinear crystal in which
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two chains are coupled by a line of light and stiff defects. The intially localized

impulse is progressively transfered from one chain to the adjacent one over a short

spatial distance (slighty larger than the distance needed for the stabilization of a

solitary wave). The transfer of energy stops when the amplitude of the two waves

traveling in each chain are equal, after which the defects are responsible for low radial

leaks in the direction transverse to the direction of propagation. A simplified 1.5D

analytical model was developed which captures well the principal features of this

phenomenon.

In chapter 5, we described the first use of gradient-based optimization techniques

applied to the design of engineered crystals with specific wave propagation behaviors.

A new numerical setup was developed that includes several material-phase models

and regularization methods in order to obtain practically feasible (discrete) solutions.

Topology and material optimizations were performed and several sample problems

were studied. In all cases, we demonstrated the clear superiority of our designs when

compared to the homogeneous and other non-optimal benchmark configurations. Ex-

perimental validations were conducted and we were able to reproduce the responses

of the numerical designs with excellent agreement.

Finally, in chapter 6 we provided a comparison of two conceptually different opti-

mization methods. A breeder genetic algorithm was applied to the design of hexagonal

packings in which we optimized the material distribution, and compared the efficiency

of the solutions in terms of cost function and computational time, a posteriori justi-

fying the approach taken in chapter 5.

The findings and methods presented in this research can be used as the starting

point for the study and design of more complicated granular crystals (increasing the

number of controls in the optimization for instance, but also looking at different im-

pact conditions, combining material and topology optimization etc.) in more realistic

applications and could potentially be applied to other discrete nonlinear systems.

Another interesting and relevant continuation of this work would consist of studying

the effect of different kinds of defect particles, including conformal matrix, which in

addition to having tunable dispersion properties similar to spherical defect particles
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would bring integrity to the structure. It would also be of interest to further study 2D

granular crystals in the linear and weakly nonlinear regimes, extending the ongoing

research focusing on the phenomena taking place in linearized or weakly nonlinear

1D crystals.
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