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Abstract 

In this thesis we study Galois representations corresponding to abelian varieties 

with certain reduction conditions. We show that these conditions force the image 

of the representations to be "big," so that the Mumford-Tate conjecture (:= MT) 

holds. We also prove that the set of abelian varieties satisfying these conditions is 

dense in a corresponding moduli space. 

The main results of the thesis are the following two theorems. 

Theorem A: Let A be an absolutely simple abelian variety, End0 (A) = k : 

imaginary quadratic field, g = dim(A). Assume either dim(A) :S 4, or A has bad 

reduction at some prime p, with the dimension of the toric part of the reduction 

equal to 2r, and gcd(r, g) = 1, and (r,g) -f: (15, 56) or (m -1, m(n;+I)). Then MT 

holds. 

Theorem B: Let M be the moduli space of abelian varieties with fixed polariza­

tion, level structure and a k-action. It is defined over a number field F. The subset 

of M(Q) corresponding to absolutely simple abelian varieties with a prescribed sta­

ble reduction at a large enough prime p of F is dense in M(C) in the complex 

topology. In particular, the set of simple abelian varieties having bad reductions 

with fixed dimension of the toric parts is dense. 

Besides this we also established the following results: 

(1) MT holds for some other classes of abelian varieties with similar reduction 

conditions. For example, if A is an abelian variety with End0 (A) = Q and 

the dimension of the toric part of its reduction is prime to dim( A), then MT 

holds. 
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(2) MT holds for llibet-type abelian varieties. 

(3) The Hodge and the Tate conjectures are equivalent for abelian 4-folds. 

( 4) MT holds for abelian 4-folds of type II, III, IV (Theorem 5 .~(2)) and some 

4-folds of type I. 

(5) For some abelian varieties either MT or the Hodge conjecture holds. 
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Introduction 

The study of algebraic cycles on an algebraic variety yields deep consequences 

for algebraic geometry, as well as for arithmetic ( cf. [T 0]). There are two famous 

conjectures due to Hodge and Tate related to the structure of the ring of algebraic 

cycles modulo homological equivalence. The Mumford-Tate conjecture suggests 

that for abelian varieties the two are essentially equivalent. The focus of my work 

is on the Mumford-Tate conjecture for special classes of abelian varieties. 

One can see that the Poincare duals of homological classes of algebraic cycles of 

codimension j on a (smooth projective) algebraic variety X;c sit in the component 

Hi.i(X) of the Hodge decomposition of H 2 i(X, C). More precisely, Ai(X) C 

1f.i(X) := Hi.i(X) n H 2i(X,Q). Hodge conjectured that all the Hodge cycles are 

algebraic: Ai(X) = 1f.i(X). We denote A:= EBAi, and 1i := EB1ii the rings of the 
j j 

Hodge and algebraic cycles respectively. As yet, the Hodge conjecture is neither 

proven nor disproven (cf. [Shi 0]). However, by the (1,1)-theorem of Lefschetz the 

Hodge conjecture holds for divisors, i.e., algebraic cycles of codimension 1. Let 

D(X) be the subring of A( X) generated by A 1 (X) . If for some X, 1i(X) = D(X), 

then the theorem implies the Hodge conjecture for such an X. 

On the other hand, for an algebraic variety defined over an algebraic number 

field, say K, one can consider £-adic etale cohomology H;t(X0 , Q 1). The G P!0is 

group Gal(Q/ K) acts continuously on n;t(X0 , Q 1). Set g to be the Lie algebra 

of the image of the Galois group in EndQ,(H;t(X0, Qt)). Then it turns out that 

the (cohomology classes of) codimension j algebraic cycles A1(X) are essentially 

invariant under the action of g, viz., they live in T/ (X) :=Hi! (X0 , Q,)(j)9, where 

Hi/(XQ, Qt)(j) is the ;th Tate twist of Hj/(XQ, Qt)· Tate [T 0] conjectured that 

Af(X) = 7f*(X). We denote 7l := EB T/ the ring of the Tate cycles. 
} 
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From now on, we restrict ourselves to the case of abelian varietie" defined over 

number fields. On the one hand, this case is more concrete, and some progress has 

been made; on the other, it has important arithmetical applications. 

Although not known in general, the analog of the (1,1)-theorem for the Tate 

cycles of codimension 1 for abelian varieties has been proved by Faltings [F]. Hence, 

as above, we can conclude that the Tate conjecture holds for an abelian variety A 

satisfying Tt(A) = V(A). It is known that generically, but not always, the Hodge 

(resp. the Tate) cycles are all generated by divisors [Ma], [Ab] . 

The first (counter)example due to Mumford [Po] features a CM abelian 4-fold. 

Weil [W] has shown that the essential feature of Mumford's example causing 1i = V 

to fail is an action in a special way of a quadratic imaginary field k on an abelian 

variety. Namely, consider a family of abelian varieties of even dimension, say 2d, 

whose endomorphism algebra contains such a field k with the signature of the k­

action ( d, d). Generically for such a family, the ring of Hodge cycles is generated 

by divisors together with the exceptional (non-divisorial) cycle of codimension d. 

Recently, C. Schoen proved the Hodge conjecture for one family of abelian 4-folds 

of Weil type (with an action of Q(p3 )). 

In general, both conjectures seem to be very difficult in codimensions > 1. 

Because of the existence of the comparison isomorphisms between the f-adic and 

singular cohomology theories, carrying algebraic cycles in one theory to another, 

the Hodge and the Tate conjectures are describing essentially the same object. So, 

it is natural to ask if the two conjectures are equivalent in some sense. The precise 

statement in the case of abelian varieties constitutes the Mumford- Tate conjec­

ture, which we denote by MT. It asserts that the Hodge and the Tate conjectures 

are equivalent for an abelian variety and all its self-products. Concretely, for an 
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abelian variety A over a number field, say K, there exists a reductive algebraic 

group Hg(A) over Q (resp. a reductive algebraic group Gt(A) over Ql for some 

prime nwnber fEZ), such that the Hodge (resp. the Tate) cycles of codimension j 

are obtained as invariants in H 2i (A , Q) ( resp. in Hi/ ( AQ, Ql)) under Hg( A ) ( resp. 

Gt(A)). Because of the comparison isomorphism between the two cohomology the­

ories, Hgt(A) := Hg(A) ®QQl acts on Hif(Aij, Ql)· MT says that Hgt(A) = Gt(A). 

Note that Gt(A) is not the image of Gal(Q/ K) in GL(H;t(A0 , Qt)), but (the con­

nected component of) the intersection of the (algebraic envelope of the) image of 

the Galois group with SL(H;t(A0 , Qt)) . That is why we do not Tate-twist the etale 

cohomology group. 

Deligne, Piatetskii-Shapiro and Borovoi proved a "half'' of MT, viz., Hgt(A ) 2 

Gt(A). Hence the Tate conjecture implies the Hodge conjecture. 

MT for abelian varieties of CM-type is a consequence of the results of Shimura 

and Taniyama [ShT], [Po] . This must have been the motivating factor behind MT. 

MT is proven in a few cases by imposing restrictions on the size of the en­

domorphism algebra and adding some divisibility conditions on the dimension of 

abelian varieties [S 0] , [C 0] . In these cases the Hodge and the Tate cycles are all 

generated by divisors. 

The main thrust of my work is to show that under suitable b ad reduction con­

ditions we can control the image of Galois; in particular, MT holds for a class of 

abelian varieties, including some Weil-type abelian varieties. 

Note that if A is an absolutely simple abelian variety, e = (End0 (A) : Q) the 

degree over Q of its endomorphism algebra, and A has bad reduction at some prime 

p, then the e divides the dimension of the toric part of the reduction. 
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The first main result of my thesis is the following theorem (see Theorems 8.1, 

9.10, 9.12). 

Theorem A: Let A be an absolutely simple abelian variety, End 0 (A) = k : 

imaginary quadratic field, g = dim(A). Assume either dim(A) ~ 4, or A has bad 

reduction at some prime p, with the dimension of the toric part of the reduction 

equal to 2r, and gcd(r,g) = 1, and (r, g) f. (15, 56) or (m- 1, m{n;+l) ). Then MT 

holds. 

This, in particular, implies the Tate conjecture for the class of Weil abelian 4-folds 

considered by Schoen. 

Now we can ask whether the abelian varieties considered above exist, and if the 

answer is "yes," then how "big" this set is. Concretely, let M be the moduli space 

of abelian varieties with fixed polarization, level structure and a k-action ( cf. 11.2). 

It is defined over a number field F. Then 

Theorem B: The subset of M(Q) corresponding to absolutely simple abelian 

varieties with a prescribed stable reduction at a large enough prime p ofF is dense 

in M(C) in the complex topology. In particular, the set of simple abelian varieties 

having bad reductions with fixed dimension of the toric parts is dense. 

See §14, Theorem 14.1 for more precise formulation. 

As mentioned above, MT is known to hold for CM abelian varieties. It is also 

known [ST] that such abelian varieties have good reduction at all primes, after 

possibly a finite base change. Although there exist non-CM abelian varieties with 

(potentially) good reduction everywhere (e.g., [So]), it is a very rare occasion. We 

have reasons to believe that the abelian varieties with minimal bad reduction (case 

r = 1 of Theorem A) are the "most typical" (see 15.2). 
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Along the way I established various other results. They are: 

(1) MT holds for some other classes of abelian varieties with similar reduction 

conditions (Theorems 8.1, 9.11, 9.12). For example, if A is an ~belian variety 

with End0 (A) = Q and the dimension of the toric part of its reduction, which 

is not necessarily even in this case, is prime to dim(A), then MT holds. 

(2) MT holds for Ribet-type abelian varieties (Theorem 1.2). 

(3) The Hodge and the Tate conjectures are equivalent for abelian 4-folds (The­

orem 5.0(1)). 

( 4) MT holds for abelian 4-folds of type II, III, IV (Theorem 5.0(2)) and some 

4-folds of type I (Theorems 5.0(2), 8.2). 

(5) For some abelian varieties, either MT or the Hodge conjecture holds (The­

orem 10.1, Remark 10.2( 4)). 
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Part I. Basics, generalities, first applications 

§0. Basics and Notation 

0.0 Let A be a &imple abelian variety defined over some nwnber field, say, 

K <.......+ Q (the embedding is fixed), D := End0 (A) := Endij(A) ®z Q, V := 

H 1 (A( C), Q). Then D ......_. EndQ(V). 

0.1 Recall that VIR := V ®Q IRis given the complex structure induced by the nat­

ural isomorohism between VIR and the universal covering space of A( C) ( cf. 

[MAV]) . Therefore we obtain a homomorphism of algebraic groups, 

t.p : T-+ GL(V), 

defined over IR, where T is the compact one-dimensional torus over IR, i.e., 

TIR = {z E C llzl = 1}, by the formula 

t.p(ei9
) = the element of GL(V), which is multiplication by ei9 

in the complex structure on VIR. 

Note that there is a non-degenerate skew symmetric (Riemann) form 0 

V x V -+ Q and that t.p satisfies the Riemann conditions: 

1. ~.p(T) ~ Sp(V, 0), 

2. e(v , t.p(i). v) > 0, Vv E v, X f= 0, 

see [M 1]. 

0.1.1 Definition (Mumford): The Hodge group Hg(A ) of A is the smallest alge­

braic subgroup of Sp(V) := Sp(V, 0) defined over Q which after extension 

of scalars to IR contains the image of t.p. 
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0.1.2 For the purpose of completeness and further reference, we give the following 

reformulation of the above construction and definition. The reference for 

what follows is [D 3], § 3. 

Since A( C) is a compact smooth Kahler manifold, Vc :=HI (A( C), C) admits 

a Hodge decomposition 

HI (A( C), C) = H -I,o(A) E9 Ho,-I (A). 

Thus we obtain a homomorphism 

J.l: Gm ,c --+ GL(V)c 

by defining J.L(z), 'Vz E ex, to be the automorphism of Vc which is multipli­

cation by z on H_ 1 ,0 (A) and by the identity on Ho,- 1 (A). 

0.1.3 Definition: The Mumford- Tate group M(A) of A is the smallest alge­

braic subgroup of GL(V) defined over Q which after extension of scalars to 

C contains the image of J.l · 

Clearly, over C, M(A) is the subgroup of GL(V)c generated by the conju­

gates uJ.l, 'Va E Aut(C). 

0.1.4 Definition: The Hodge group Hg(A) of A (or the special Mumford-Tate 

group of A) is the connected component of the identity of the intersection 

M(A) n SL(V) in GL(V). 

Remarks: 1. The construction of M(A) furnishes it with a canonical char­

acter 11 : M(A) --+ Gm defined over Q and characterized by the condition 

11 o J.l = idGm. Then Hg(A) = Ker(11) . 

2. One can easily show that the two definitions of Hg(A) are equivalent. 
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0.1.5 Theorem (Mumford): 1. Hg(A) is a connected reductive group. 

2. D (=End0 (A)) = EndHg(A)(V) = End.,(A), where~:= Lie(Hg(A)). 

We can improve on part 1 for abelian varieties of types I, II ~nd III (in the 

Albert's classification of End0 A). 

Proposition (Tankeev, Zarkhin): Hg(A) is semi-simple for an abelian va­

riety A of type I, II or III. 

Remarks: 1. Hg(Aa x Bb) C::! Hg(A x B) for any abelian varieties A, B. 

2. Part 2 of the previous theorem implies that A is simple if an only if V is 

~-simple if an only if (Schur's lemma) D is a division algebra. 

0.1.6 Recall that the Hodge classes of A are classes of type (p, p) in the Hodge 

decomposition of homology of A . 

0.1. 7 The Hodge conjecture states that all the Hodge classes are algebraic . 

• 
0.1.8 By the Kiinneth formula H.(A) = I\H1 (A) (cf. [MAV]), hence Hg(A) acts 

on H.(A). One can show (e.g., [M 2], [W]) that the Hodge classes of A are 

exactly those classes in H.(A) that are fixed by Hg(A). In fact , the Hodge 

group has the following characteristic property. 

Proposition (Mumford): The Hodge group Hg(A) is the largest (reductive) 

subgroup of GL(V) fixing all the Hodge classes of k', s ~ 1. 

3 

0.1.9 By the Kiinneth formula H 2 (A 3
) = _9 H 2 (A). Hence, in the view of the 

t=l 

previous proposition, the Lefschetz (1,1)-theorem for abelian varieties takes 

the following form. 

Theorem (Lefschetz, Mumford): Let s E N, sV := V 9 ... 9 V(s times), 
2 

then the ~-invariants (/\ s V)" is exactly the (Q-span of homological classes 
Q 

of) divisors on A 3 =A x ... x A (s times). 
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0.1.10 Definition (Murty, R.ibet): The Lef.,chetz group L(A) of A is the group 

of units of the connected component of the identity of the centralizer of 

End0 (A) in EndQ(V). 

The following axe the main results about the Lefschetz group. 

Theorem (Murty, Ribet, Hazama): 0. (i) L(A) is a connected reductive 

algebraic group defined over Q, Hg(A) ~ L(A). 

0. (ii) L(A) is semi-simple for A of type I, II or III. 

0. (iii) L(A~1 X ... X A~·)= L(Al) X ... X L(A.,). 

1. All the Hodge classes on As are divisorial if an only if Hg(A) = L(A) and 

A is not of type III. 

2. If A is of type III, then it has a non-divisorial Hodge class. 

Remark: Let [ := Lie(L(A)), then ~ ~ [ ~ sp(V), ~.,., ~ [.,.,, CIJ ~ 

C 1• Here C? is the center of? and?.,., is the semi-simple part of?. 

0.1.11 Let k ~ D be an imaginary quadratic field, Gal(k/Q) = {a,p},p (= o-2 ) is 

the fixed (identity) embedding k ~ Q. In this case VIR := V 0 lR has two 

complex structures. One is given by the isomorphism VIR= Lie(A(C)), (cf. 

0.1), and the other by the action of k 0 Q JR(~ C). Hence the splitting VIR= 

vu EB VP. The two complex structures coincide on one of the subspaces, say, 

VP, and conjugate on the other (in this case, vu). If mu = dimc(Vu), mp = 

dimc(VP), then (mu, mp) is the signature of the k-action; mu + mp = g = 

dimc(VIR) = dim(A). 

0.1.12 Recall that the Rosati involution is the involution on D = End0 (A) induced 

by the Riemann form ( cf. 0.1 ). The basic fact about the Rosati involution 

is that it is positive. Consequently, a field fixed by the involution is totally 

real ( cf. [MAV]). 
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In the case k ~ D, we always assume that the Rosati involution preserves 

k. The positivity of the involution implies that it acts on k non-trivially. 

Hence this action coincides with (the complex conjugation) u. 

0.1.13 Since~ and (centralizeD (cf. 1.1.5 and 1.1.10) 

~ <-+ ( <-+ sp(V)k <-+ sp(V), 

where sp(V)k is the centralizer of kin sp(V). (0.1.11) & [D 3], Lemma 4.6, 

imply 

sp(V)k = u(V), 

the Lie algebra of the unitary group of a k-Hermitian form on V viewed as 

the k-vector space. Extending scalars to k we get 

(0.1.13.1) 

where ~k := ~ ®Q k, (k := ( ®Q k, vk := v ®Q k = v E9 u, u is the same 

V, but with the conjugate k-vector space structure. 

0 .1.13.2 The ~-invariant k-Hermitian form referred to above is a non-degenerate el­

ement of V ® (J (cf. 0.1.11 & [D 3] , Lemma 4.6), hence the isomorphism 

of ~-modules . Clearly the projection of ~k to u(V) is ~ ' thus we can rewrite 

(0.1.13.1) as 

(0.1.13.3) ~ - ~ (g 0 ) ~ <-+ £ <-+ u(V) <-+ sp(V E9 V), g ~---+ O t
9
-I · 

(Note: the em beddings above are considered over k.) 

0.1.14 From this we get: 

- - ~ -
~ <-+ £ <-+ gt(W) <-+ sp(W E9 W), 
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0.2 Let Vt := Tt(A) ®zt Qt ~ V ®Q Qt, where Tt(A) is the t'-adic Tate module 

( = H1 ((A X K Q)et' Zt) = lim tnA(Q), where tnA(Q) = kemel of multipli-
+--

n 

cation by R_n : A(Q) --. A(Q)) , V = H 1 (A( C), Q) as above. Let Gt be 

the algebraic envelope ( = Zariski closure) of the image of Gal( Q/ K) in 

EndQl(Vt), K : the base field of A, Qt := Lie(Gt), Qt := Qt n sl(Vt) . It is 

known (e.g., (MAV]) that Gt ~GSp(Vt), hence Qt ~ sp(V). As Qt · 1vt .......... 

Qt (Bo), Cgt = Cgt ffi Ql" 1 Vn g£" = g/". 

Note: 9t does not depend on finite extensions of K ( cf. (S 2]). 

Remark: Vt ~ Vt(r), Vr E Z, as Qt-modules, but not as Qt-modules. 

0.2.0 The Tate conjecture states that the Tate cycles, i.e., the Galois invariants 
• 

H.(Aet, Qt)9t = (/\ H1 (Aet, Qt))9t, are algebraic. 

0.2.1 Faltings proved the analogs of the Theorem 0.1.5 of Mumford (a special case 

of the Tate conjecture) and the (1,1)-theorem for abelian varieties. 

Theorem (Faltings ): 
2 

1. Let s E N, (/\ sVt)9t is exactly the (Qt-span of homological classes of) 
Ql 

divisors of A" =Ax ... x A (s times). 

3. 9t is reductive. 

0 .2 .2 ~t := ~ ®Q Qe .......... EndQt (Vt). The known relation between ge and ~e is given 

by the following theorem. 

Theorem (Deligne, Piatetskii-Shapiro, Borovoi): 
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Remark: In this thesis I consider abelian varieties defined over number 

field". However, this theorem holds for abelian varieties defined over arbi-

trary finitely generated field" of characteri"tic 0 ( cf. [D 3], § 2). Since any 

abelian variety over C has a model over a finitely generated field, the the­

orem implies that the Hodge conjecture is a consequence of the (suitably 

stated, loc. cit.) Tate conjecture. 

0.2.3 The Mumford-Tate conjecture ( =: MT) states gl = ~l· Since gl and ~t are 

reductive, it is the same as equivalence of the Hodge and the Tate conjectures 

for an abelian variety and all its self-products. 

0.2.3.1 In order to prove MT it is enough to establish the conjecture for one f ([LP], 

Theorem 4.3). 

0.2.3.2 Moreover, it is enough to show gt - i)l, where gt 

~l ® Q( Ql ([Z 2), §5, Key Lemma). 

2 2 
0.2.4 Remark: The (1 ,1)-theorems 0.1.9, 0.2.1(1) imply (/\sVt)g( = (1\sVt )~(. 

Q( Q( 

0.2.5 The theorems 0.2.2 and 0.2.1 (2) imply g? <-t ~? . C 9( <-t C~c 

In fact , C 9( = C~c This can be shown in a way similar to the proof of MT 

for CM abelian varieties (cf. [ShT] , and also [D 1]). 

So, in order to prove MT one must show that gr = ~;s . 

0.2.6 Let a be a semi-simple Lie algebra over an algebraically closed field of char-

acteristic 0, and a = a1 x ... x an be the decomposition of a into the 

product of its simple ideals. For any faithful irreducible representation 

U of a, U decomposes as a tensor product of irreducible representations 

ui of aj. Since u is faithful , none of the Ui 's is trivial. Moreover, if the 

representation U admits a non-degenerate invariant bilinear form, then so 
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does each ui. 

We say that the representation is minuscule if the highest weight of each 

Ui is minuscule, see [B], ch.VIII, §7.3. The following is the list of minuscule 

weights, [B), ch.VIII, §7.3 and Table 2: 

type Am (m ~ 1) : tv1, tv2, ... , tvrnj dim(tv.,) = (rn;1); 

type Bm (m ~ 2) : tv1; dim( tv I)= 2m+ 1; 

type Cm ( m ~ 2) : tv1; dim( tv I) = 2m; 

dim(tv ) - dim(tv ) - 2rn-l. m-1 - m - ' 

tv1, tv6 ; dim( tv1) = dim( tv6) = 27; 

tv7; dim( tv7) = 56; 

there is no minuscule representations for the types E 8 , F 4 , G2. 

0.2. 7 It is known that the representations of gf"', f);" are minuscule ( cf. [S *], 

[D 2]). It is also known that g;" is not exceptional, see [S *],Theorem 7 (for 

the corresponding result for f);" see [D 2) , Remarque 1.3.10(i)). 

0.2.8 Let again k <-t D and kt := k ® Q Qt. Then, as in 0 .1.13, 

If l splits in k, >., >.' being the primes of k over 1, >.' = >. u, then kt "' Ql EB 

Qt, Vt = VAEBVA' , VA, VA' :vector spaces over kA ~ Qt, kA' ~ Ql respectively. 

Since >.' = >.u, as in 0.1.13.2 we conclude VA' ~ VA and can rewrite the 

above sequence as 
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Remark: If .e does not split in k, then kt is a field, (kt : Qt) = 2 and the 

rest is identical to 0.1.13. 

0.2.9 As in 0.1.13, by extending the scalars to Qt we get 

Remark: For .e non-split ink, the same holds (cf. 0.1.13, 0.1.14). 

0.3 We shall need the following simple facts. We assume that D = k . 

0.3.1 Proposition: The representations of fit and i)t are non-self-dual. 

Remarks: 1. This is true for any irreducible subrepresentation of W>. for 

any type IV abelian variety (e.g., [Mu], [H]). 

2. If the abelian variety is of type I (respectively II, respectively III), then 

the irreducible components are symplectic (respectively symplectic, respec-

tively orthogonal) (loc.cit). 

0.3.2 Proposition: fit and i)t are semi-simple if an only if the signature of the 

k-action is ( m, m ). Further, if this is not the case, the centers Cg-t , Gilt are 

1-dimensional. 

Remarks: 1. If the signature of the k-action of a type IV abelian variety is 

( m, m ), we call such an abelian variety a Weil type abelian variety ( cf. [W] ). 

2. Since ge , ~t are semi-simple for abelian varieties of types II or III (0.1.5, 

0.2.5), if k '-+ End0 (A), A : of type II or III, then the signature of the 

k-action is necessarily (m, m) (see the proof of the proposition 0.3 .2 below). 

0.3.3 Proof of0.3.1: As was shown above, k ®Q Qt"' Qe EB Qt S ch}r Vt ®Qt Qt has 

2 irreducible non-isomorphic components. But Vt 0Qt Qe = W>. EB W>, . 0 
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Proof of 0.3.2: This is proved in [D 3), [W]. Let us briefly say why this 

holds and fix some notations. 

Let JJ : Gm,C --+ GL(VIR) be the cocharacter defining the Hodge structure 

on V, then the map h: S = .Rc;IRGm--+ GL(Vc) is given by h(z) = JJ(z) on 

VIR, ( cf. 0.1.2) h( z) = JI( z) on UIR, where UIR is Va with the conjugate k ®IR­

action, Vc = VIR EB UIR (cf. 0.1.11). If the k-signature is (mu, mp) then 

VIR = Vnf EB Vnf, dimc(Vnf) = mu, dimc(V.:') = mp (k acts by u(k) on 

VJ{ and by p(k) on Vnf). But VIR = H-1,o, hence the power of z by which 

JJ( z) acts on VJ{, VHf is 1. We shall call this power the JJ- weight. Similarly, 

Vc = H1(A(C),C) = VcEBVt. But also Vc = H-1,oEBHo,-1(= VIREBUIR) and 

these two decompositions commute, since the former is determined by k ~ 

D and the Hodge group centralizes Din EndQ(V). Hence we can write 

Vc = VIR EB UIR 

= (VJ{ EB Vnf) EB (Ui EB u:) 

= (VJ{ EB Ui) EB (VHf EB u:) 

where Ui (respectively u:) is the conjugate of VHf (respectively Vnf). Thus 

dimc(U~R) = mp, dimc(U~) = mu, so dimc(VC') = mp + mu = g = 

dimc(Vt'). 

The JJ-weight of UIR is 0, hence the decomposition 

is according to J..t-weights 1, 0. (This exactly corresponds to the Hodge­

Tate decomposition of the .A-adic representation below.) Now the j..t-weight 
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(respectively the Hodge type) of 

g m., mp g 

f\Vc = 1\ VJ{ 0 f\UIR <; f\Vc 
c c c 

g 

1s mer (respectively ( -m.,., -mp) ) . Hence 1\ V is a Hodge cycle (i.e., of 
k 

Hodge type (- f,- f)) if an only if m.,. = mp. Hence it is fixed by ~ if 

an only if mer = mp, i .e. , ~ <..-.+ sl(V) n u(V) only in this case (here V is 

considered as a k-vector space). In other words, the center Cl) of ~ kills 
g 

the determinant 1\ V (and hence "# { 0}) if an only if mer "# m P. Now, since 
k 

- - - - .t. -
V := V ®Q = W ffiW, W is irreducible,~<..-.+ gl(W)---+ sp(V). Summarizing, 

- -tJs - .t. -
~ = ~ ffi Q <..-.+ gl(W) ---+ sp(W ffi W) if mer =/= mp. 

Now, using 0.2.5 we can conclude 

- -H 'h 'hlJS ·f g = g , ,, = ,, , 1 m.,. = mp, 

0 

Remark: As one can see from the proof, if k <; End0 (A) (not necessar­

ily equal), and m.,. "# mp, the center CIJ of ~ must kill the determinant 
g 

1\ V, hence the center is non-trivial. However, if k -:j; End0 (A), then the 
k 

center can be non-trivial even if mu = mp (e.g., CM case) . 
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§1. On the Hodge-Tate decomposition 

1.0 We recall here certain basic facts on the Hodge-Tate decomposition and then 

give some applications. The classical/standard reference is [T 1). 

1.0.1 According to Tate and Raynaud, Vt := Vd~Ct = Ht(Aet,Qt)®Ql Ct, Ct: 

completion of Ql, admits a decomposition 

- -(i) 
where V t( i) ·- V l ®Ql Ct , i = 1, 2. The Qt-subspaces (but not Cr 

-(i) -
subspaces) V t 's of V t are defined as follows: 

where Xt : Gal(QtfQt) --+ z; is the cyclotomic character. Recall that the 

Galois group Gal(QdQt) acts continously and semi-linearly on V l ( cf. [S 2), 

-(i) -
1.2), and, clearly, the V t 's are Galois submodules of V t· The Galois group 

Gal(QtfQt) acts on Vt(i) by the formula 

extended by linearity. 

1.0.2 According to S. Sen ([Se), Section 4, Theorem 1), to the the Hodge-Tate 

decomposition on V l one can associate a cocharacter 

by defining </>(z ), Vz E c;, to be the automorphism of V t which is multipli­

cation by z on Vt(1) and by the identity on Vt(O). This association is made 
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in such a manner that Gt (cf. 0.2) turns out to be the smallest algebraic 

group defined over Qt which after extension of scalars to Ct contains the 

image of </>. 

Remark: One can see that this cocharacter </> is completely analogous to 

the cocharacter J.L associated to the Hodge decomposition on Vc, Gt is the 

analog of M(A) and Ql is the analog of f), see 0.1.2-Q.l.4. 

1.0.3 Before proceeding, recall that for a Gal(QdQt)-module X, the Tate twist 

X(1) of X is defined to be X @Qt Qt(l) with the Galois structure of a tensor 

product of Galois modules (as in 1.0.1 ). Here Qt(1) is the Tate module: 

with the natural Gal(QtfQt)-action by Xt: 

(',. = (xt(u), Va E Gal(QtfQt), ( E J.Ltn, for some n . 

1.0.4 The Hodge-Tate decomposition of V t can be rewritten in the following ex-

plicit form ([T 1), § 4, Corollary 2, see also the Remark following that 

Corollary): 

where Lie( Act )vis the cotangent space of the dual abelian variety Act at its 

origin and Lie( Act )(1) is the tangent space of Act at its origin Tate-twisted 

by Xt· 

1.0.5 On the other hand, we have a Hodge decomposition on Vc = H 1 (A( C), C) 

( cf. 0.1.2): 

Ht(A(C), C) = Ht(Ac,OA«=) ffi Ho(Ac,n~«=) 

= Lie(Ac)v ffi Lie(Ac), 



1. On Hodge- Tate decompo.5ition 19 

or, in our notation, 

see the proof of 0.3.2. 

1.0.6 Fix an isomorphism Ct ~C. Then the comparison isomorphism 

provides isomorphisms 

1.0. 7 On the other hand, both homology groups admit decompositions according 

to the action of k ~ End0 (A) : 

Vc := Vc EB V[. 

These two types of splittings commute, and consequently Vc, V[ admit the 

Hodge decomposition, and V.x, V.x• admit the Hodge-Tate decomposition. 

The map c respects these splittings, hence maps either Vc to V _x , or V[ to 

V_x. 

1.0.8 Let's assume that 
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As a result we conclude 

c : v; ~ v~(I), 

(Remark: If c : Vt' --+ V ~ . then mu and mp exchange roles. This does not 

affect our results.) 

1.1 For abelian varieties of type I , II and III gt, ~l are semi-simple and have the 

same invariants on Vt ®Qt Vt (cf. 0.2.4 and Remark 0.3.1(2)). In the case of 

type IV, the Lie algebras can be non-semi-simple. Since g£" ~ ~i", a priori 

g? can have more invarints than ~;" in the tensor powers of Vt . However, 

we shall show that if D = k, g(" has "as many" invariants in Vt ®Qt Vt as 

~€" does. 

Theorem: If D = k, then gf" is symplectic (respectively orthogonal, re­

spectively non-self-dual) if an only if ~f" is so. 

Remark: If the abelian variety is of type IV, but the representations are 

semi-simple we get nothing new (cf. Proposition 0.3.1 and Remark 0.3.1(1)). 

1.1.1 Proof: 0. If g(" is symplectic or orthogonal, then so is g(" ® ijt Ct . If 

f);" ®ijt Ct fixes a bilinear form on V t coming from Vt ®Qt Qt then f);" fixes 

the form. So, we can extend scalars to Ct and shall use the same notation 

fJt , gt for the corresponding extentions of the Lie algebras. 

1. Let 's consider first the symplectic case. 
2 

Let X ~ 1\ V ~ be a !-dimensional grsub-representation. The Hodge-Tate 

decomposition implies 

2 2 2 

f\ V ~ = f\ V ~ (0) EB (V ~(1) 0 V ~(0)) EB f\ V ~(1). 
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The Hodge-Tate weight of the terms on the right is 0, 1 and 2 respectively. 

Since dimct(X) = 1, it is of pure Hodge-Tate weight 0, 1 or 2. x9 12 = 
_ g_ m,._ mp_ 

det(V.\) := 1\Y.\ = 1\ V .\(1) 0 1\ V .\(0), the Hodge-Tate weight of the RHS 

is m 17 • Hence the Hodge- Tate weight of xgf2 is m 17 • On the other hand, the 

weight of xgf2 is g/2-times the weight of x, hence is equal to 0, g/2 or g. So 

m 17 = 0, g /2 or g . The cases m 17 = 0 or g correspond to the k-signature 

(0, g) or (g, 0). In either case the abelian variety is isogenous to a product of 

CM elliptic curves ([Sh 1], Proposition 14). In the case m 17 = g/2 we have 

m 17 = mp and the Lie algebra gl = ii? (as well as i)l = 1);8
) is non-self-dual 

( cf. 0.3.1) , hence this x does not exist! 

2. The orthogonal case is a direct consequence of the symplectic and 0.2.4 
2 

(takes= 2: Sym2 (V .\) '--+ /\(2V .\)). 0 

1.1.2 Remark: One could have used instead an argument of Fontaine-Messing, 

[FM), 3.4, (see also our Remark in 0.2) to conclude the Theorem. Either way, 

the result is a consequence of the existence of the Hodge-Tate decomposition. 

1.2 We can apply this consideration of the Hodge-Tate decomposition to abelian 

varieties with D = k and k-signature (m17 , mp) such that gcd(m17 , mp) = 

1 (we call them Ribet-type abelian varieties, cf. [Ri]) , then an argument 

of Serre ([S 1), §4) implies all the conjectures (Tate, Hodge, MT) in that 

case. Indeed, Ribet 's proof of Theorem 3 loc.cit. verbatim provides the Tate 

cycles are generated by divisors and hence ( cf. 0.2.2) the following theorem. 

Theorem: If A is a Ribet-type abelian variety, then the Tate cycles (on 

the abelian variety, and all its self-products) are generated by divisors and 

hence the Tate, the Hodge and the Mumford-Tate conjectures hold. 

1.2.1 Sketch of proof: The representation of Ql on V .\ is irreducible (see 
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the proof of 0.3.1 in 0.3.3) and V .x - V .x(O) EB V .x(1), dimV .x(O) = mp , 

dimV.x(1) = mu, (1.0.7). Since gcd(mp,mu) = 1 and End(V).) = Ct, (cf. 

0.3.3), we are in a position to apply [S 1], §4, Proposition 5, to conclude 

that the projection of gt on End(V ).) is surjective. 

Furthermore, by replacing the cocharacter 11- associated to the Hodge de­

composition on Vc (cf. 0.1.2) by the cocharacter <P associated by the Sen's 

theorem (1.0.2) to the the Hodge-Tate decomposition on V t, and hence on 

V )., we, as in [Ri], p.536, Proof of Theorem 9, conclude that g1 = g[(V ).) = 

It , (cf. 0.1.13-0.1.14). Here lt := Lie(L(A)) ®Q Ct , L(A) is the Lefschetz 

group (0.1.10). 

Recall now that by (0.2 .2) Pt ~ ~l· From (0.1.10) it follows that if ~l = 

[t, then in our case, i .e. , End0 (A) = k, all the Hodge classes on all the self­

products of A are generated by divisors. 

By putting all these results together we conclude the theorem. 0 

1.2.2 Remark: W . Chi [C 1] considered the Hodge-Tate decomposition in a very 

similar context. He proved the theorem (by exactly the method indicated 

above) in the case of abelian varieties of prime dimension. He stopped short 

of stating the result in the above form, even though the only thing he uses 

is the fact that gcd(mu, mp) = 1. 

I learned of his proof after finishing this work. 
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§2. Abelian 4-folds of types II, III and IV 

Now let A be a simple 4-dimensional abelian variety. We show that all such 

varieties of type II, III, IV (i.e., exactly those that admit an embedding 

k '-+ D) verify MT. We shall divide the proof in several steps according to 

what D = End0 (A) is. The possibilities are (cf. [MAV], §20): 

1) type IV, D = quaternion algebra over an imaginary quadratic field k; 

2) type IV, D = E a CM-field, e = (E: Q)l2g = 8 => e = 2, 4, 8; 

3) type II (respectively III), D = totally indefinite (respectively totally def­

inite) quaternion algebra over Q; 

4) type II (respectively III), D = totally indefinite (respectively totally def­

inite) quaternion algebra over a real quadratic field E . 

Note, that in the CM-case (i.e., type IV, e = 8) MT holds ( cf. [Po]). 

First we prove the case (1 ), then (2), e = 2 and conclude with cases (2), 

e = 4, (3) and ( 4) which are similar. 

2.0 We shall need the following simple fact . 

Lemma: a '-+ s£(U) is a faithful irreducible minuscule representation of a 

semi-simple Lie algebra a over an algebraically closed field of characteristic 

0. If dim(U) = 4 then a is either st(U)( = s£4 ), or s._,(U)( = sp4 ), or 

so(U) ( = s(2 x s(2 ). 

Hence, 
a is non-self-dual if and only if a = st(U) , 

a is symplectic if and only if a = sp(U), 

a is orthogonal if and only if a= so(U) . 

Proof: Immediate from 0.2.6. 
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2.1 Proposition: If D is a quaternion algebra over an imaginary quadratic 

field k, then MT holds. 

Proof: Vt ® Qt = W.x EB W_x , W.x = Vt ®1,.x Qt (cf. 0.2.9) , End-g
1
(W.x) = 

EndiJ
1
(W.x) = D ®k,.x Qt ~ M2(Qt)::} W = Vt EB V2, V1 ~ V2, Vt : Qr,fJr 

irreducible. Hence 

and, consequently, g(", f);" are either {0} or 5[2. But g(", f);" =/= {0}, since 

the abelian variety is not of CM-type ::} ii/" = f);" ~ 5b. D 

2.2 Proposition: If D = k is an imaginary quadratic field , then MT holds. 

Proof: Vt ® Qt = W.x EB W.x, di!Ilij
1 
(W.x) = 4, D ® Qt ~ Qt EB Qe,::} 

W_x is 4-dimensional Qr, fJrirreducible representation. Hence g/" '-+ f);" '-+ 

5[(W.x) "' 5[4 are semi-simple 4-dimensional irreducible representations. If 

-u ...J. ~"" h -as "' "" lf d al ( f ) . di . Qe -r •Jt t en ~t = s[4 , iit : se - u c . Lemma 2.0 , m contra chon 

with Theorem 1.1 . D 

Remark: If the k-signature is (2,2), then fit , fJe are semi-simple, non-self­

dual (Propositions 0.3.1 , 0.3.2), hence equal to 5[(W.x) ~ 5[4 . 

2.3 Proposition: If D = E is a CM-field, e = (E: Q ) = 4, then MT holds. 

Proof: Vt ® Qt = W.x EB W_x, di!Ilij
1 
(W.x) = 4, D ® Qt ~ Qt EB Qt EB Qt EB 

Qt ::} W.x = Vt EB V2, V1 ~ V2, ~ is a 2-dimensional iir , fJrirreducible 

representation. Hence 
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2.3.1 Clearly, the only semi-simple subalgebras of .s£2 are {0} and .s£2, hence 

A) The only semi-simple subalgebras of .sb x .sb are: 

{0} X {0}, {0} x .sb, .s£2 x {0}, .s£2 x .s£2, graphs of automorphisms of .s£2. 

B) ~1 ~~;,for some T E Gal(E/k), since they are components of ~t ® Qt and 

~t is defined over Qt . 

C) ~1 is not isomorphic to ~2 via an inner isomorphism: ~ 1 1- ~~, g E .s£2 (since 

D) Qi, ~i i= {0} simulteneously Vi, since the abelian variety is not CM. 

E) (A) & (C) => g("' ();" i= .s£2 X .s£2. 

F) (A) & (B) => g("' ();"' i= {0} X .s£2, .s£2 X {0}. 

G) (E) & (F) & (D) => g(", ();"' are both graphs of automorphisms of .sb. But 

there exists a unique 2-dimensional irreducible representation of .s£2 and 

D 

2.4 Note: In the remaining cases Qt, ~t are semi-simple ( cf. Remark 0.3.2). 

Proposition: If D is a (totally definite or totally indefinite) quaternion 

algebra over a totally real field E of degree e = 1, 2, then MT holds. 

W2, W1 ""W2, Wi is a 4-dimensional Qr, fJrirreducible representation. The 

representations of gt, fJt are symplectic (respectively orthogonal) if the abel­

ian variety is of type II (respectively III). Lemma 2.0 provides Qe = fJt· 

2. If e = 2, (E : real quadratic), then D ® Qt ~ M2(Qt) EB M2(Qt) => 

Vt ® Ql = w1 EB w2 , WI 1- w2 , wi = V?' Vi is a 2-dimensional Qr , fJr 

irreducible representation=> gt '----+ fJt '----+ .sl(V1 ) x .s[(V2)· Using the same 

argument as in 2.3.1 we conclude gl = f)l c~ .s[2)· D 

Remark: If e = 2 then ii't = f)t ~ .s[2 and, hence, symplectic. So, this shows 
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that there does not exist a type III ~imple abelian variety A with End0 (A) 

being totally definite quaternion algebra over a real quadratic field. In fact, 

such an abelian variety is isogenous to a product of 2 copies of a CM abelian 

variety ([Sh 1], Proposition 15). 
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§3. Abelian 4-folds of type I 

For a simple abelian 4-fold A of type I, D = End0 (A) = E is a totally 

real field of degree ejg, so g = 4 => e = 1, 2, 4. We shall show that MT 

holds if e = 2, 4 . If e = 1 and the abelian variety has bad, but not purely 

multiplicative reduction , then, as we show later, the conjecture also holds. 

3.1 Proposition: If E is a real quadratic field, then MT holds. 

Proof: E ® Qt ::: Qt EB Qt => Vt ® Qt = Vi EB V2, VI 'F V2, Vi is 4-

dimensional symplectic ii"r , ~rirreducible representation, i = 1, 2 => (the 

projections) Qi, ~i are 4-dimensional irreducible symplectic, hence isomor­

phic to sp4 (Lemma 2.0). As in 2.3.1, ii"t ._ ~t ._ sp(Vi) x sp(V2) =:: 

sp4 x sp4 , are both graphs of automorphisms of sp4 , hence ii"t "'sp4 "' ~t·D 

3.2 Proposition: If E is a totally real field of degree 4, then MT holds. 

Proof: E ® Qt ~ Qt EB Qt EB Qt EB Qt => Vt ® Qt = VI EB V2 EB V3 EB V4, Vi 'F 

Vj, i =/:. j, Vi is a 2-dimensional ii"r , ~rirreducible representation, hence ii"t ._ 

~t ._ s[(VI) x s[(V2) x s[(V3) x s[(V4 ). Defining ~ij := prij(~t) ._ s[(Vi) x 

s[(Vj)::: sr2 xsb, gii := prii(Pt) ._ sr(Vi) xsr(Vj)::: sr2 xsr2, gii ._ ~ij, we, 

as in 2.3.1, conclude Qij =:: ~ij are graphs of automorphisms of s[2· This holds 

Vi,j => ii"t ._ ~t are both graphs of maps s[2 ._ sr2 x s[2 x s[2 x sr2 => ii"t = 

~t (=:: sr2). o 

3.3 If E = Q , then Vt ® Ql is a symplectic irreducible representation of itt, ~t· 

The list 0.2.6 of minuscule representations contains only one such a simple 

Lie algebra, vis. sp8 . If the Lie algebra, say, a, is not simple then a = a I x 

a2 ._ sr(VI ® V2), ai ._ sr(Vi ) :irreducible, dim(VI) = 2, dim(V2) = 4. 
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Hence a1 = s[2 • Since both a and a1 are symplectic, a2 must be orthogonal. 

Then Lemma 2.0 provides a= s[2 x s[2 • So, there are 2 choices for gt, ~t : 

sb x sb x sb and sp8 . 

Remarks: 1. Generically f)t = sp8 and all the Hodge cycles are divisorial 

(cf. [Ma]) . 

2. Mumford in [M 2) constructed a simple abelian 4-fold with D = Q and 

f)t = s!2 x s!2 x s!2. In this case MT holds, as well as the Hodge and the 

Tate conjectures ( cf. Theorem 3.3.3). 

3.3.2 But even if this happens, the following lemma holds . 

Lemma: Let s[2 x s(2 x s(2 <--+ sp8 <--+ s!(V), dim(V) = 8, be the irreducible 

representations over an algebraically closed field of characteristic zero, then 

6 6 

(/\ Vt'2xsl2xsl2 = (/\ VtPs, 'Vs EN. 

Proof: From what was said above follows, that the only case to con­

sider is s = 4. By calculating the formal character one can check that 
4 

(/\ V)612 xsl2x 612 is 1-dimensional ( cf. [Ta), Lemma 4.10). On the other hand, 
4 2 4 4 

(/\V)6P8 ~ (I\V)®2 thus non-zero and (/\V)6Ps ~ ( /\V)612 x612x612; we con-

elude that the invariants are the same and generated (in a clear sense) by 

the symplectic form. 0 

3.3.3 The Lemma applied to the abelian variety in question provides the following 

result. 

Theorem: If A is a simple 4-dimensional abelian variety with D = Q, then 

the rings of Tate cycles and Hodge cycles coincide and are generated by 

divisors. Hence the Hodge and the Tate conjectures hold. 0 
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3.3.4 Remark: Similar to 3.3.2 calculations ([H 1), Lemma 5.2, (5.2.2)) show that 
4 2 

(t\(V EB V))• 12 xsl2x• 12 is not generated by (t\(V EB V))• 12 xsl2 x 612 . Hence the 

Hodge cycles on the "square" of the abelian 4-fold constructed by Mumford 

(3.3, Remark) are not all divisorial. 
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§4. Remarks 

4.1 3.3 and 3.3.2 imply that if E = Q, then either MT holds (if gt = f)t) or the 

Hodge cycles on the self-products of the abelian variety are all divisorial. 

Indeed, in this case the (Lie algebra of the) Hodge group is equal to the (Lie 

algebra of the) Lefschetz group f)= [ = sp8 (cf. 0.1.10). 

4.2 In the considered in §2 and §3.1- 3.2 cases of abelian varieties of types I and 

II one can easily see, that the Galois and Hodge groups coincide with the 

Lefschetz group and hence all the Hodge and the Tate cycles are generated 

by divisors (although this is not true in general for type III (cf. 0.1.10), the 

Hodge conjecture holds in that case too). Thus the Hodge and the Tate 

conjectures hold ( cf. 0 .1.9(Lefschetz) and 0.2.1(Faltings) ). 

4 .3 On abelian varieties with D = k (type IV) and the signature of the k-action 

(1,3) or (3,1) all the Hodge (and Tate) cycles are divisorial (cf. 1.2). 

4.4 However, in the Weil case (cf. Remark 0.3.2(1)), generically, the ring of 

Hodge cycles is not generated by divisors ([W], see also [MZ]). So, if there 

are any doubts about the Hodge conjecture (and hence the Tate conjecture), 

the Weil abelian varieties are the ones to look at. Recently, C. Schoen ([Sc), 

see also [vG]) succeded in proving the Hodge conjecture for one family of 

Weil 4-folds admitting an action of Q(J..L3 ). 

4.5 2.2 answers a question of Tate ( cf. [T 2), p. 82) on whether the Tate 

conjecture is true for the Schoen family. This has been a motivation for this 

work. 
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§5. The Mumford-Tate conjecture for abelian 4-folds 

Summarizing the above discussion we can state the theorem. 

5.0 Theorem: 1. If A is any 4-dimensional abelian variety, then the rings of 

the Tate cycles and the Hodge cycles coincide (hence, the Hodge and the 

Tate conjectures for this variety are equivalent). 

2. If, additionally, End0 (A) =/= Q , then MT holds. 0 

Remarks: 1. Later (Theorem 8.2) we shall see that even when End0 (A) = 

Q, MT holds under some reduction conditions. 

2. Recall (0.2.3), that MT implies that the Hodge and the Tate conjectures 

are equivalent for an abelian variety and all its self-products. 

Proof: If A is simple, these results were proved in §§ 2, 3. 

If A is a non-simple abelian 4-fold, say A is isogenous to A 1 x A2, then 

dimAi ::; 3. Hence, by the (1,1)-theorems (0.1.9), (0.2.1) and duality, all 

the Hodge cycles on Ai are divisorial. The embeddings g£8 <-+ ~ts <-+ 

sp(Vt) factor through the sub-representations corresponding to the simple 

components of A. The dimensions of the sub-representations are ::; 6 , and 

arguing as in §§ 2, 3, we conclude that g;s = ~ls , hence MT holds. 0 

Note: If A is non-simple, then the second hypothesis of the theorem is 

satisfied. 

5.1 Let me indicate what is the situation regarding the Hodge and the Tate 

conjectures for non-simple abelian 4-folds. As above, let A be a non-simple 

abelian 4-fold, A ~ A 1 x A2, and all the Hodge and the Tate cycles on the 

A; 's are divisorial. 
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5.1.1 We can also say that all the Hodge cycles (and hence the Tate cycles) on 

A are generated by divisors in the following cases: 

1. Neither of theA/sis of type IV ([H 2), Theorem 0.1). 

2. A1 is not of type IV, A2 is of CM-type (loc. cit. , Proposition 3.1). 

3. If the A/s are non-CM, type IV abelian surfaces, then according to [Sh 1), 

Theorem 5, Propositions 17, 19, the Ai's are products of CM elliptic curves. 

Hence so is A = A1 x A2 and for such abelian varieties the result stated 

above is known ([Im]; [H 1], Theorem 2.7). 

4. If the Ai 's are isogenous CM surfaces, then by remark 0.1.5(1) and 0.1.10, 

Hg(A) = Hg(AI) , L (A) = L(A1 ). By 0.1.10(1) L(AI) = Hg(AI) , hence 

L(A) = Hg(A), and applying 0.1.10(1) once again we conlude the result. 

5.1.2 For the remaining case, viz., both the Ai's are non-i3ogenous CM abelian 

varieties, let me just mention that Shioda constructed an example of a prod­

uct of a simple CM 3-fold , say A1 , with a CM elliptic curve, say A2, such 

that on A = A1 x A 2 there are exceptional, non-divisorial, Hodge cycles, 

[Shi 1], Example 6.1. In this example, however, the Hodge (hence the Tate) 

conjecture holds. 
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Part II. Abelian varieties with reduction conditions 

§6. Bad reduction and inertia action 

6.0 Let A be an abelian variety defined over a number field K. Assume A has 

bad reduction at a prime p of 0 K , let A be the identity component of the 

special fiber of the Neron model of A. Then A is semi-abelian: 

0 --+ H --+ A --+ B --+ 0, 

where H is the affine subgroup of A, B is the abelian quotient. 

6.0.1 Since we are concerned with the Lie algebra of (the image of) Galois, we 

can pass to a finite extension of K ( cf. Note 0.2) . So, according to the 

semi-stable reduction theorem, by extending the base field if necessary, we 

can assume that the reduction is stable (i.e., H is a torus) and split (i.e., 

H is split : H ~ G~) . 

The dimension r of H we call the toric rank of (the reduction of) A. 

6.0.2 D = End0 (A) as before, there is a homomorphism D --+ End0 (H) , 

6.1 Consider the corresponding specialization sequence ( cf. [SG A 7 I] , Exp. IX, 

Proposition 3.5) 

sp -
0--+ W--+ Ve(A) --+ Ve(A) --+ 0, 

where W is the module of vanishing cycles (®Qe) , Ve(A) is the Tate mo­

dule (®Qe) of A. We have dimQ1 (Ve(A)) = 2g, dimQ1 (Ve(A)) = 2g - r , 

dimQ1 (W) = r. 



II. Abelian varieties with reduction conditions 34 

6.2 Let I := J(p) '---+ G(p) be the inertia and the decomposition groups at 

p. Then the above sequence is a sequence of G(p )-modules, hence of I-

modules. The !-action is called local monodromy action. 

6.3 Vt(A) is a trivial !-module. Let V/ be the !-invariants of Vt(A), then 

V/ is isomorphic to Vt(A) via the reduction map [ST], W '---+ V/ and 
red 

W ~ Vt(H) ~ Qt(IY ("red'' is the reduction map; cf. [I], [0]). 

6.4 The monodromy action on Vt(A) is, in general, quasi-unipotent (e.g., [ST], 

[0]). However, since (we assumed that) the reduction of A is stable and split, 

this action is, in fact, unipotent. Repeat, that V/ r~d im(Vt(A) ~ Vt(A)) = 

Vt(A)/W. So, picking some vector subspaces U, T of Vt(A) specializing to 

Vt(H), Vt(B) respectively, we get the matrix form of the monodromy action: 

V/ { W{ (lr 
T{ 0 

U{ 0 

0 

*rl 0 . 

lr 0 

Passing to the Lie algebra i := Lie(J), we conclude the existence of nilpo­

tents, say r E i '---+ Qt, of order 2 (r2 = 0) and rank (with respect to Vt) 

rkvt ( r) :S: r, where rkvt ( r) := dimQt ( r Vt) = rank of the matrix of r E gl(Vt ). 

Note: The Neron-Ogg-Shafarevich criterion ensures that 3r =/=- 0, since 

A has bad reduction. 

Remark: If N is given by the above matrix, then r = N -129 =logarithm 

of the monodromy, and the sequence in 6.1 corresponds to the weight filtra-

tion. 

6.5 By extending scalars to Ql we get the corresponding nilpotents (of the 

same order) in each irreducible component of Vt 0 Qt with the sum of 
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the ranks with respect to each of the components being equal to the rank 

with respect to Vt . 
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§7. Minimal reduction 

7.0 Definition: An abelian variety A over a number field has minimal bad 

reduction at a prime p of this field (or, just minimal reduction, for short) if 

the reduction is bad and the rank of the toric part H of A ( cf. 6.0) is the 

minimal possible. 

7.1 Let us go back to the case D = k , in which gl '--+ lJt '--+ g[(W..\) ~ 

s~(W..\ ffi W..\) ( cf. 0.2.9). The toric rank should be even (6.0.2), say, 2r. If 

r' = .6.( r) E ..6.(gt) is a nilpotent of rank rkvt~ijt ( r') ::; 2r, then r 2 = r'
2 

= 

0, rkw ... (r)::; r . 

7.1.2 6.0.2 implies that in our case, i.e., when D = k , the minimal rank of His 2. 

7.1.3 Hence in the minimal reduction case 3r E 9t '--+ lJt '--+ g[(W..\), such that 

r 2 = 0, rkw ... ( r) = 1. The same, clearly, holds if we replace the Lie alge­

bras with their semi-simple components, since all nilpotents live in these 

components. 

Let us denote g( 8 just by g, f);s by ~ (this shall not cause any confusion 

with~= Lie(Hg) ~ g[(V)), W..\ by W. Then we rewrite the above as: 

r E g '--+ ~ '--+ s[(W), r 2 = 0, rkw( r) = 1, 

g, ~ semi-simple irreducible representations. 

Such an element r of rank 1 and order 2 is called a transvection. 

7.2 It is a very restrictive condition for a semi-simple irreducible representation 

to contain a transvection. 
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Lemma: If a <....-t s((W) is a semi-simple irreducible representation, 

1 E a, 1 2 = 0, rkw(r) = 1, then a is simple and, moreover, it is either 

sp(W) or s((W). 

Proof: This is proved in [MeL] ( cf. also [PS]). 

We prove here the first part, since we shall need a consequence of the proof. 

If a is non-simple, let r = r 1 x 12 E a 1 x a2 = a, a; <....-t s [(W;) 

semi-simple, i = 1, 2, W = W 1 @ W2; 11 x 12 acts on W1 @ W2 as 11 @ 

1 + 1 @ r2, i.e., (11 X r2)(v1 @ v2) = r1(vi)@ v2 + Vt@ 12(v2). 

Case 1: ker(11) =/=- {0}. 

3vf E V1 \ {0}, such that r 1 ( vf) = 0, then 0 = ( 11 x 12)2( vf @ v2) = 

v~ 0 riv2 => 1iv2 = 0, Vv2 E V2 => ri = 0 => ker(r2) =/=- {0}. So, 

ker(rt) =/=- {0} {::::==> ker(r2) =/=- {0}, and in this case one of 1;'s is a zero map. 

Indeed, rl = 0 = ri, and if r 1 =/=- 0, then 3v1 such that 11 ( v1) = : v; =/=- 0, and 

0 =(It X r2)2(vl @ v2) = 2rl(vi) @ r2(v2) = 2v; @ 12(v2), Vv2 E w2, => 

12(v2) = 0 Vv2 => 12 = 0. 

Case 2: ker(r1) =/=- {0} =/=- ker(r2 ) . 

Fix an eigenvalue, say a =/=- 0, of r 1 and let f3 be any eigenvalue of r 2; let 

v;, i = 1, 2, be the corresponding eigenvectors. Then 

Hence r 2 = 0 {::::==> (a+ {3)2 = 0 {::::==> f3 = -a, i.e., all the eigenvalues of 

T.2 are the same and equal to -a => all the eigenvalues of r 1 are the same and 

equal to a, i.e., 11 =a+ p 1, 12 = -a+ p 2, and J.li E g((W;) are nilpotents. 

But then (11 X r2)(v1 @ v2) = (p1 X J.l2)(v1 @ v2) and ker(p;) =/=- {0} . So, we 

are in the case 1 with p;'s replacing r; 's. Hence one of p; 's is a zero map, 

say J.l2 = 0, and r 2 = -a E Ca 2 = {0} (a is semi-simple)=> a= 0 contrary 
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to our assumption. 

So, Tt E at is an order 2 nilpotent in s[(W1 ), T2 = 0 :::;. rkw( T) = dim(W2) · 

rkw1 (r1 ) = 1 :::;. dim(W2) = 1 & rkw1 (ri) = 1. But a2 is faithful and 

semi-simple thus a2 = 0 :::;. a is simple. D 

Remark: One can convince oneself that any "non-standard" representation 

(i.e., the highest weight is not t:V1 ) of a simple Lie algebra cannot contain 

elements of rank 1. But even in the "standard" representation of an or­

thogonal algebra there is no such elements, since the rank of a quadratic 

nilpotent in such an algebra is even (cf. [St], ch. IV, 2.19) . 

7.3 As a consequence of the above proof we get 

Corollary: If rkw( T) is prime to dim(W), then a is simple. 
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§8. Applications of minimal reduction 

An immediate application of 7.1.3 (existence of rank 1 quadratic nilpotents 

in g) and Lemma 7.2 is the following theorem. 

8.1 Theorem: If A is a simple abelian variety with D C k, having minimal 

reduction, then MT holds. 

Moreover, if D = Q , then all the Hodge and the Tate cycles are divisorial , 

hence the Hodge and the Tate conjectures hold. 

Proof: 1. If D = Q, then the Tate module Vt(A) is absolutely irreducible 

and symplectic. The minimality of reduction implies that the rank of a 

correspondent nilpotent is 1. The result follows from 7.2 and 1.1. 

2. If D = k, the result follows from 7 .1.3 and 1.1. 0 

Remarks: 1. As we show later, in part III, such abelian varieties exist and, 

moreover, form a subset dense in the complex topology in the corresponding 

moduli space. 

2 . The importance of the Weil type abelian varieties is not limited to the 

fact that they (may) have non-divisorial Weil cycles (cf. 4.4) . Proving the 

algebraicity of the Weil cycles is a critical ingredient in proving the Tate 

conjecture (cf. (D 3] , §§ 4-6) . 

8 .2 Now we can extend Theorem 5.0 in the following way. 

Theorem: If A is a simple abelian 4-fold with D = Q, admitting bad, 

but not purely multiplicative reduction, then all the Hodge and the Tate 

cycles are divisorial , hence the Hodge conjecture, the Tate conjecture and 

MT hold. 
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Proof: The possible values of the toric rank in this case are 1, 2, 3 

( 4 corresponds to the purely multiplicative reduction). Theorem 8.1 takes 

care of the rank 1 case. 

From the proof of Lemma 7.2 we see that r = rkw(r) = dim(W2) ·rkw1 (rt) 

(notations as in 7.2). Hence, if r = 2 (respectively 3), then either dim(W2) = 

1 & r 1 = rkw1 ( r 1 ) = 2 (respectively 3), or dim(W2) = 2 (respectively 3) 

& r 1 = 1. In the former case g , ~ are simple, hence isomorphic to sp8 (7.2 & 

3.3). In the latter case, g = g 1 x g2, where g1 is simple by Lemma 7.2 and 

g2 is simple since dim(l¥2 ) is a prime number. But the only "non-simple" 

possibility for g is sb xsb xs[2 (3.3) which does not work. So, g = ~ ~ sp8 in 

these cases and 0.1.10 finishes the proof. 0 

Remark: G. Mustafin [Mus] considered abelian varieties with purely mul­

tiplicative reduction, but in geometric setting (i.e., with the action of the 

geometric monodromy). It appears, a suitable adaptation of his methods 

could be used to prove MT in that case. 

8.3 Remarks: 1. The idea of using special element( s) in the representation of 

the Hodge group has been used before. However, to my knowledge, in those 

earlier cases the element was semi-simple (e.g., [Z 1]) of rank 1 or 2 and the 

results then follow from a theorem of Kostant [Ko] ( cf. also [Z 3]). 

2. Katz used special unipotent elements to show that certain monodromy 

groups are large. However, the unipotents he considered were of the maximal 

possible rank, i.e., having only one Jordan block ([Ka 1] , ch. 7). He was 

also using semi-simple elements, [Ka 2]. 
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§9. Another type of bad reduction 

9.0 Now we want to show the result analogous to Theorem 1.2 for another type 

of bad reduction, although not minimal, but satisfying the conditions of 

Corollary 7 .3 . In this case g, ~ (notation as in 7.1.3) are simple and con­

tain nilpotents r of rank prime to the dimension of the representations. 

To achieve this goal we use the results of Premet-Suprunenko [PS] on clas­

sification of quadratic elements (i.e., nilpotents of order 2) and quadratic 

modules (i.e., representations containing non-trivial quadratic elements) of 

simple Lie algebras. (This terminology is apparently standard in the finite 

groups theory, cf. [Th].) 

We use the fact that the representations of g , ~ are minuscule and g is not 

exceptional (0.2. 7). 

We assume that the dimension of the representations is > 4. 

9.1 Theorem: If a '-+ b '-+ s[(W), a =f b, both Lie algebras are simple and 

the representations are irreducible and minuscule, then b is classical and (its 

highest weight is) ro1 . 

Proof: Since any minuscule representation is quadratic ( cf. [B], ch VIII, 

§7.3), we can apply [PS] , Theorem 3, and exclude non-minuscule represen-

tations. 0 

9 .2 Now, we, case by case, consider all the possibilities of g ~ ~ · Denote r = 

rkw(r), n = dim(W). The standing assumptions are: gcd(r,n) = 1, ~ : 

classical, ro1 . 
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9.3 First we exclude the cases p = (Dm, tVm_I), (Dm, wm) form> 4. 

Lemma: If T E p <--+ s[(W), p = (Dm, tVm-1 ), (Dm, tVm) , Tis a quadratic 

element, then gcd(r, n) > 2. 

Proof: [PS], Lemma 21 & Note 2 & Lemma 17 => r = 2m-J or 2m-2 , while 

2m-l n= . D 

9.4 p =I (D4,w3), (D4,w4) either. It is enough to show this for w 4, since they 

are (graph) isomorphic. 

Proposition: (D4 , w 4) '/-+ (classical, wi). 

Proof: Note that n = 8 here. 

1. (D4, w4) '/-+ (B., w 1 ), since the dimension of the RHS is odd. 

2. (D4,w4)'/-+ (C.,w1 ) , since the LHS is orthogonal while the RHS 1s 

symplectic ( cf. [B], table 1 ). 

3. (D4,w4) '/-+ (D4,w1 ) (e.g., [Z 2], §5, Key lemma, although that is an 

overkill). 

4. p = (D4, w4) , f)= (A. , w 1 ) is impossible by Theorem 0.4, since the LHS 

is orthogonal, the RHS is not. D 

9.5 Proposition: If p = (Dm , w 1 ), then p =f). 

Proof: Assume p = (Dm, w 1 ). 

1. f) =A., C. are excluded by Theorem 0.4: p is orthogonal , f) is not. 

2. f) =B. is excluded by a dimensional reason. D 

9.6 Proposition: If p = (Cm,w1), then p =f). 

Proof: f) =A., B. , D. are not symplectic ... D 

9.7 Proposition: If g = (Bm,w1 ), then g =f). 
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Proof: ~=A., C. are not orthogonal ... 

( D • , tv 1 ) is even -dimensional ... 

9.8 Proposition: If g =(Am, tv.,), then~ must be (An-1,tvJ). 

43 

0 

Proof: First note, that the only self-dual representation of Am is tv, with 

s = mi1 (there is no such a representation if m is even). So, if~ is self-dual, 

then so is g (Theorem 1.1) and we may assumes= mt1 , m: odd. But then 

dim( Am, tv,) = (2,!1) : even, thus ~ f. B • . To exclude the other cases (i.e., 

C., D.) we use the fact that r = rk(r) = (':~n ([PS), §2 & Lemma18): r = 

( 2(•-1)) n = (2") = (2(,-1)) (2t~-1)2t~ = r 2(2t~-1). gcd(n r) = 1 => ris which &-1 ' , &-1 !12 " ' ' 
is not true. Since n > 4, this follows from 

Claim : (2/) > t + 1, for t ~ 2. 

Indeed, fort= 2, (2
/) = (~) = 6 > t + 1 = 3. If (2/) > t + 1, then (2\7})) = 

(2/) 2(~!~ 1 ) > 2(2t + 1) > t + 2. Hence the claim and the proposition. 0 

Remark: If the k-signature of the abelian variety is (m 00 , mp) with moo =/:-

mp, then, in general (i.e., when g is not necessarily simple), simple compo-

nents of g are of type A ( cf. [Y]). In our case, g is of type A itself. 

9.9 So, the only possibility for g ~ ~is g = (Am, tv,) for somes, ~ = (An-1, tvt ). 

In this case we can say the following. 

Proposition: Let g = (Am,tv,) <-+ ~ = (An- 1 ,tvt) = .sr(W) (fix the 

isomrphism), 2 ~ s < mi 1
, r E g, r = rkw( r ), gcd( n, r) = 1. Then one of 

the following holds: 

1. s = 3, m = 7, 

2. s = 2, m ¢. 3 (mod 4). 
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Proof: r = (':~n ([PS], §2 & Lemma 18), n = (m~ 1 ) = (':~n ~(~~i~~)' 

gcd( r, n) = 1 => r I s( m + 1 - s) and a half of the result follows from the 

following lemma. 

Lemma: r = (':~nis(m + 1- s) if and only if (m,s) = (7,3) or s = 2. 

Proof: 1. Claim: (':~n > s(m + 1- s) form~ 8, 3 ~ s < mfl. 

Indeed, this is true form= 8. 

If this is true form, then C:\) = c:~n m::-~ > s(m + 1- s) m+n;-~ -
ms > s(m + s- 2), since s ~ 3. Hence the claim. 

2. If m ~ 7, 3 ~ s < mf 1 
, then the calculations show that only for 

(m,s) = (7,3), ('';~f)ls(m + 1- s). D 

Now, back to the proof of the proposition. Assumes= 2, then r = (":~n = 

m -1, n = (m~l) = m(~+l) . Note that gcd(m, m- 1) = 1, gcd(m- 1, m + 

1) = 1 or 2. So, gcd(r, n) = 1 if and only if m : even or m = 1 (mod 4) 

<===} m ¢ 3 (mod 4) . D 

9.10 So, we have the following result. 

Theorem: If A is a simple abelian variety with D = k, g = dim(A) having 

bad reduction with the toric rank 2r and r is prime tog, then MT holds if 

(g,r) is neither (56, 15) nor of the form (m(~+l),m -1). D 

Remark: According to (the proof of) Proposition 9.9, gcd( m(~+I), m-1) = 

1 if and only if m ¢ 3 (mod 4). 

9.11 If D = Q, then ge , ~l' are symplectic (cf. 0.3.1(2)), hence the above theorem 

holds without any exceptions ( cf. 9.1 - 9.9). 

Theorem: If A is an abelian variety with D = Q, g = dim(A) having bad 

reduction with the toric rank r prime to 2g, then MT holds. 0 
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9.12 Using the same methods one can handle the case of quadratic elements of 

rank r = 2. Namely, the following result holds. 

Theorem: Let A be a simple abelian variety, D ~ k. If A has bad reduction 

with toric rank r = 2 · (D : Q), then MT holds. 0 

9.13 All the varieties considered in §9 exist and dense in the corresponding moduli 

spaces (cf. Theorem 14.1). 
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§10. A strange result 

Let's mention another application of Theorem 9.1. 

10.1 Theorem: If A is a simple abelian variety with (semi-simple parts of) 

~' gt simple, satisfying one of the following conditions: 

1. the variety is of type I or II, 

2. D = k, the variety is of non-Weil type (i.e., the k-signature is (mo-, mp) 

with mo- f. mp), 

then either MT holds or the Hodge cycles are all generated by divisor classes. 

Proof: As we mentioned in 9.0, the representations of ~t, g, are minuscule, 

hence quadratic ( cf. [B), ch VIII, §7.3, Proposition 7), then so is Ct := 

C 0 Q Qt ( cf. 0.1.10) and iii" <-+ ();" <-+ £;" <-+ sC(W) ( cf. 0.1.14 ). If iii" ~ 

();" (i.e., MT is wrong), then by Theorem 9.1 ();" '--+ sC(W) is classical and 

'WI. Thus r;" is also simple, classical and 'WJ. We want to show that in this 

case ~l = 1t and the theorem shall follow from Theorem 0.1.10. 

Consider first the case of an abelian variety of type I or II. The Lie al­

gebras lJt and 1t are both symplectic (cf. [Mu], Lemma 2.3), simple (cf. 

O.l.lO(O(ii))), classical and ro1 . Hence lJt = s.,(W) = 1t, and the result 

follows. 

If D = k, then Gilt is !-dimensional (0.3.2), hence Gilt = Cit and it is enough 

to show ();" = r;". It is known that in this case r;" = sC(W) ( cf. loc. cit.). 

Since ();" is simple and ro1 , it is enough to show that ();" is non-self-dual. 

Yamagata [Y] has shown that in this case, i.e., mo- f. mp, iii" is of type 

A. One can use his argument to prove the same for ();". We know that 

g[ 8 and();" are self-dual or non-self-dual simultaneously (Theorem 1.1 ). The 

only self-dual representation of an algebra of type A is (A2s-1, ro 8 ). Hence 
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in this case 9i" =I);". But we assumed 9? -:f= I);", so i);" (as well as 9i") is 

non-self-dual. The theorem follows . 0 

10.2 Remarks: 1. Abelian varieties with bad reduction as in 9.10 have simple 

(semi-simple parts of) Hodge and Galois groups. 

2. For the Weil type varieties CiJ
1 
= {0} -:f= C1l generically. This is the main 

result of [WJ. 

3 . One can consider the motivic Galoi.'J group ( cf. Deligne-Milne [DM], [J]). 

It is reductive and contains the Hodge group (it "sits between" the Hodge 

and the Lefschetz groups if an abelian variety is not of type III, since V. K. 

Murty [Mu] has shown that the invariants of L(A) are exactly the divisorial 

cycles if A is not of type III , cf. 0.1.10(1)). The Hodge (respectively the 

Tate) conjecture follows from equality of the Hodge (respectively the Galois) 

group to the motivic Galois. 

Suppose the (semi-simple parts of) Hodge and Galois groups are simple, 

then we can conclude that either MT holds or the semi-simple parts of the 

Hodge and motivic Galois groups coincide. So, the Hodge conjecture in that 

case is equivalent to the equality of the centers of these two groups. 

4. Also, the consideration of the motivic Galois implies (as in the proof of 

Theorem 10.1) that for type III abelian varieties with simple Hodge and 

Galois groups either MT or the Hodge conjecture holds . 
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Part III. Moduli spaces and reductions 

§11. Motivations. Moduli space interpretation 

11.0 Now I would like to address the problem of existence of abelian varieties 

considered in Part II, and to know how "big" the set of such abelian varieties 

is (or, how "typical" are the properties we required in 8.1, 9.10 - 9.12). 

11.1 The strategy is the following. Consider the boundary component of a 

(smoothly) compactified moduli space (over the residue field of some prime) 

corresponding to semi-abelian varieties with the needed toric rank. Describe 

the set of (Q- )points of the moduli space that get reduced modulo this prime 

to a chosen point in the boundary component. Show that the subset of the 

points corresponding to simple abelian varieties with a prescribed endomor-

phism ring( ®Q) is dense in the (set of (>points of the) moduli space in the 

complex topology. 

0 

11.2 Let M be a connected component of the moduli space of (suitably rigidified, 

cf. [Mi], Remark 1.4(b), p . 171) abelian varieties, say T, of dimension g with 

some (fixed) polarization, level N structure (for some N ~ 1), embedding 

k <-+ End 0 (T) such that k is stable with respect to the Rosati involution ( cf. 

0.1.12) and the signature (cf. 0.1.11) of the k-action is (m ,. mp) , m 17 +mp = 

g ( cf. [D 1], [Sh 2]). 

Remark: The choices of the level structure and the polarization are neces-

sary in order to get a nice moduli space, but irrelevant for our purposes. 

0 0 

11.3 Let M be a smooth compactification of M. It is known that M (as well as M) 

has a model over a number field, say F, which is of finite type over F ([D 1], 
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0 

[Sh 2], [Pi]) and that the universal abelian scheme A over M(K) extends to 

a semi-abelian scheme over M (cf. [FC], ch. IV,§§ 5,6), which we again 

denote by A . Hence we can find a finite set of primes of the ring of integers 

OF ofF, such that A;M admits an integral model over 0 := OF[S-1 ], where 

S is the product of these primes. We denote the integral models of A by 

A and of M by M. 

11.3.1 Let K be a finite extension ofF, R be the integral closure of 0 in K . Let 
0 

x beaK-point of M which is the generic fiber of an R-point x of M 

0 

Spec(K) ~ M <--+ M 

1 1 

Spec(O) 
x 

-----+ M 

We also assume that the reduction of the abelian variety Ax (corresponding 
0 

to x E M(K)) at a prime p of K, p f S, is stable (cf. 6.0.1). Then the fiber 

Ax over x is isomorphic to the identity component of the Neron model of 

Ax, (cf. [BLR], 7.4.3). 

0 

11 .3.2 Let y be the generic fiber of some other R-point y of M , withy E M( K) , and 

such that the special fibers 

xP: Spec(~~:(p))----+ Spec(R) ~ M 

and 

Yp: Spec(~~:(p))----+ Spec(R) J.. M 

coincide. Then the reductions modulo p of the abelian varieties Ax , Ay 
0 

corresponding to the points x, y of M, are the same. Indeed, the fibers 

Ax , Ay are naturally isomorphic to the identity components of the Neron 
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models of Ax , A 11 respectively (cf. [BLR], 7.4.3), and the condition that 

Xp = Yp exactly means that the special fibers of the identity components 

of the Neron models are the same, i.e., Ax, Ar have the same reductions 

modulo p. 

11.3.3 Clearly, ifyP E M(RL) , where Lis a finite extension of K, RL is the integral 

closure of R in L, and p L is some prime of L over p , then, by considering x to 

be an RL-point via the natural embedding M(R) ~ M(RL), we conclude 

that if x, y have the same reductions modulo p L, then the corresponding 

abelian varieties (over L ) have the same reductions modulo pL . 

Remark: Since A x has stable reduction, the identity component of the 

Neron model behaves nicely with respect to base change ( cf. [BLR], §7). 

11.3.4 Let rPL : RL -t K(pL) := OL/PL be the reduction map, which induces 

the map rPL : M(RL) -t M(K(PL)). Let x E M(K(p)) '-+ M(K(p)) be 

the reduction of the fixed point x and BL,pL := r~L (x) . It follows from the 

argument in 11.3.2- 11.3.3 that the abelian varieties corresponding to the 

image BL,pL('--+ M (RL)) ~ M(L) have the same reductions at PL as Ax . 

11.3.5 If the point x we started with in 11.3.1 corresponds to an abelian variety 

with bad reduction modulo p of some toric rank, say r , then all the (abelian 

varieties corresponding to the) points in B L,pL have the same toric rank in 

their reductions modulo the prime p L over p . 

We want to show that the set of abelian varieties defined over number fields 

(containing K) having the same reduction as x is "big" . So, we have to 

study the sets B L,pL for all algebraic extensions L over K. 

11.3.6 Finally, an abelian variety with a prescribed toric rank of a reduction cer­

tainly exists, e.g., one can take T0 = T1 x T2 , where dim(T1 ) = r, 
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dim(T2) = g - r and T1 has purely multiplicative reduction at p , T2 has 

good reduction at p and the conditions on the endomorphism ring, polar­

ization, level structure, etc ... are satisfied for both T1 and T2 . We may also 

assume that p f S (cf. 11.3.1). Any such an abelian variety can be taken 

for the point x . 
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§12. Localization of the problem 

12.0 The problem of describing the set of all abelian varieties with the same 

reduction as x ( cf. 11.3.5) is local at p . Indeed, suppose we can find an 

abelian variety over a local field, say L, which is an extension of the local-

ization of K at p. This abelian variety is defined over a finitely generated 

field, and this field is a subfield of Q, since L is. Hence this abelian variety 

is defined over a number field and has the prescribed reduction modulo p. 

So we may replace K with its localization at p, and R with Og. We use 

the same notation for rPL : M(OL)-+ M(~~:(pL)), BL,PL := r;;1Cx) for any 

extension (of local fields) L / K. 

12.1.1 Let L be the completion of L at PL, OL be the corresponding ring of in­

tegers, rPL' rPL be the reduction-modulo-pL maps of OL , OL respectively, 

B~ := rPL1 (x). Then we have the following commutative diagram: L,pL 

~-----------B~ L,pL 

12.1.2 The Hensel 's lemma ensures that the "pL-adic ball" Bz.PL is non-empty. 

Lemma: (i) Bz =!= 0. 
oPL 

(ii) Bz is an open set in M(L) in the topology induced by the PL-adic 
oPL 

valuation on L. 

Proof: Part (i) is just the Hensel 's lemma ( cf. "Newton's Lemma" in [Gr] 

and also [Ba], Theorem 1, Corollary 1). Part (ii) is immediate from the 

definition of the p L -adic topology. 0 
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12.1.3 Clearly, BL "'L = BL- n M(OL) '--+ M(OL). However, unless we impose ,.., ,pL 

some extra conditions on L, there is no reason for BL ,PL to be non-trivial. 

This will be the case though if M(L) '--+ M(L) is PL-adically dense. 

12.1.4 Note: Let L be a number field or a local field, L be its completion at a 

prime PL· Then the set M(L) has an induced topology via the embedding 

M(L) '--+ M(L), where M(L) is taken with the topology induced by the 

valuation on L. We say that a subset of M(L) is PL-open, or PL-dense if 

this subset has this properties in the induced topology on M ( L). 

On the other hand, if L '--+ Q is a fixed embedding, then M(L) ~ M(L) ~ 

M(C) has an induced complex topology, and we use similarly the notions of 

C.-openness, C.-density, etc ... 

Also, if p is a prime of Q, we consider in M(Q) p-opens, etc ... ; and also 

C.- opens, etc ... 

12.1.5 Remark: We are interested in algebraic points of the moduli space which 

are p-adically close to x, hence having the same reduction mod p. So we 

are free to consider any extensions of K as long as they live in Q. 

12.2 Let h-n be the Henselization of K (see [N] , ch. VII, § 43 or [R], ch. VIII 

for definitions); h..n is the largest extension of K in Q in which p splits 

completely ( cf. [N]). Denote j{h the completion of Kh . Although h..n is a 

fairly large extension of K, here is the main reason why we are considering 

it. 

12.2.1 Theorem: M(Kh) '--+ M(j{h) is p-adically dense. 

Proof: See [BLR], 3.6, Corollary 10 or [Gr], § 3, Lemmas 1, 2 ( cf. also [A], 

Theorem 1.10). 0 
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12.2.2 Corollary: BK",p = Bi(i. ,p n M(Kh) is a non-empty p-open subset of 

M(Kh). 

Proof: Bj(i. <.......+ M(J?h) is a p-open. 
,p 

0 

12.2.3 Remarks: 1. B K" ... is p-dense in B;:;;. . 
,.,... n··,p 

2. BKM>,p is Zariski-dense in M(Kflh), where J(M is the strict Henselization 

of K ( = maximal subfield of Q unramified at p, cf. [R], [N]). 

12.3 Proposition: M(Q) <.......+ M(Qp) is p-dense. 

Remark: Here Q is the algebraic closure of K, Qf> is the algebraic closure 

of K. 

Proof: Let U <.......+ M(Qp) be a p-open set, pick any point t E U, then 

::3 L ~ Qf> : finite extension of K, such that t E L. This L is, in fact , a 

completion of some finite extension L of K (e.g., [BGR], 3.4.2 Proposition 5), 

thus UL := U n M(L) -=/= 0. So, if Lh is the Henselization of L, Lh is 

the completion of Lh, then ufj. := u n M(V) is non-empty, p-open in 

M(Lh). But by the theorem M(Lh) <.......+ M(Lh) is p-dense (the topology on 

M(Lh) is induced from M(Qp)), hence U Lh n M(Lh) <.......+ U n M(Q) -=/= 0. 0 
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§13. Global picture. First density theorem 

13.0 Now we would like to return to the global setting. All previous considera­

tions (12.0-12.3) correspond to fixing one prime p of Q over p and ignoring 

all other such primes. 

13.0.1 First, for a fixed p in Q, if L ~ L', then BL,pnL C Br, ,pnL', BL,pnL 

~ Bu ,r>nL'· So we can define Bij_,,p := ~ BL,pnL C M(Qp), BQ,p := 

U BL r>nL ~ M(Q). Clearly, BQ- - = B-Q - n M(Q) (in M(Qp)). Let me L ' ,p _,,p 

stress the fact that BQ,p is non-empty by 12.2.2. 

Now combine together these p-adic balls in M(Q) for all pJp 

U B Q- i; ~ M(Q). 
PIP ..... 

13.1 We would like to prove the following theorem. 

Theorem: BQ,p ~ M(Q) is (>dense. 

We will prove the theorem in several steps. 

13.2 Step 0. Preliminary reductions. 

Let U be a non-empty C-open subset of M(Q). We have to show that 

U n BQ,p f. 0, and we may clearly shrink U as much as necessary. Since 

M(Q) is covered by Zariski affine opens {Va}, U must meet some V0 . 

Then, since the analytic topology is stronger than the Zariski topology, 

U n Va is a non-empty open set in Va. Hence we may effectively assume 

that M itself is affine. Moreover, suppose there exists a birational map 

c.p : M -. W . Then there exists a Zariski open V ~ M such that c.p is an 

isomorphism on V . Since the complement of V has positive codimension 

in M, U n V f. 0. So we may replace U by U n V and even c.p(U n V), 

and replace M by W . Note also that by the same reasons for any subset of 
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M the properties to be p-open or p-dense, etc... hold if we restrict to an 

affine open in M or apply a birational isomorphism (the adic topology is 

stonger than Zariski topology; no Zariski closed set can contain a p-open). 

Further, any irreducible variety is birationally isomorphic to a hypersurface 

( cf. [Shaf), ch. I, § 3, Theorem 6), so we may assume that M is a hyper­

surface V(f(t,z)) <......-+ An+l, t = (t 1 ,t2 , ••• ,tn), f E K[t,z): irreducible. 

Then we have the natural projection A n+l ~ An (corresponding to the 

embedding K[t) ~· K[t, z]), which, when restricted to M, gives a finite 

map 7r: M-+ An, deg(1r) = degzf(t, z) =:d. Let B := B Q,p' D := 1rB. So 

we have the following commutative diagram: 

pr! 

An(Q) 

Further, we may assume x = 0 E An+ 1 . Then 

1 - n+l- · - } B = {y = (Yl, ... , Yn+l) E M(Q) ~A (Q)I\fz, :3piiP a prime of Q, Yi E Pi , 

i.e., by definition, B = {y' E M(Q) I y'*(ti),y'*(z) E Pi, \fi, Pilp}. Hence 

D = 1rB = {y = (yl,···,Yn) = pr(y') = pr((yl, ... ,yn,Yn+l)) I Y1 E B}. 

Denote /y(z) := f(yl,···,Yn,z), \fy = (yl , ···,Yn) E 1rM. Note that a finite 

map is surjective ( cf. [Shaf), ch. I, § 5, Theorem 4), thus 1r M = An. Clearly, 

y = 7r(y') 
m. 
E <l'rst

5
, S = (s1, ... ,sn) E Nn, lsi:= s1 + ... + Sn, t• := t~ 1 

••• t~"· 
I•I=O 
For a polynomial h(u) = E hiui E L[u], L: an extension of K , PLIP: prime, 

l 

define its PL-Gauss norm as lh!PL := m~{lhiiPL} (cf. [BGR), 1.4.1). 
l 
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13.3 Step 1. Reduction to A". 

Next proposition reduces the theorem 13.1 to showing that D ~ A "(Q) is 

(>dense. 

13.3.1 Proposition: 1r·1 D = B. 

Indeed, this result implies the following. 

13.3.2 Proposition: D ~A "(Q) is C-dense if and only if B ~ M(Q) is. 

Proof: The "if' part is trivial, so assumeD~ A"(Q) is C-dense. 

Let U ~ M(Q) be C-open, then 1rU is C-open in A"(Q), because 1r being 

a finite map is open in C-topology (local uniformization, implicit function 

theorem). Since D ~ A" ( Q) is assumed to be C-dense, D n U =I 0. If U was 

choosen sufficiently small, then 1r-
1 U = {Ua h~a~deg("") and B = 1r-1 D (by 

proposition 13.3.1) intersects every sheet U1, i.e., B ~ M(Q) is C-dense. 0 

13.3.3 Proof of Proposition 13.3.1 : Let y' E B ~ M(Q), y := 1ry'. Set L := 

K(y) := K(yt,·· ·, Yn) : field of rationality of y, L' := L(y~+1 ) = K(y'). 

Then 
1r-1 y = M x Spec(L) 

/i:.",y 

= Spec(K(t, z]/(f(t,z)) 0 L) 
K[t],y• 

= Spec(L[z]/(fy(z))0 L) 
L 

= Spec(L'0 L ) 
L 

EB Spec(L'u). 
uEAut(L' / L) 

Therefore, we can rewrite this as 

1l"-
1Y = {y" E M(Q) I !y(Y~+l) = 0} 

= {y'u = (yi,···,Yn,y'~+I) I a E Aut(L'/L)}. 

However, y'n+I E p', for some prime p' of L' over p ~ 'Va E Aut(L'/L), 

y'u E p'u : prime of L'u ~ y" E B ( cf. the description of B in 13.2) . 0 
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13.4 Step 2. Proof for An. 

Let Bf> (= Bij,f>) C B be the p-part of B (cf. 13.0.1) for some prime p\p of 

Q, and Df> := 1rBf> ~ An(Q). We show that 

1. Df> is p-open in An(Q), 

2. any p-open subset of An(Q) is dense in the complex topology. 

This will finish the proof of the theorem 13.1. 

13.4.1 Proposition: Df> is p-open in A n(Q). 

Proof: Let y(l) E Df>, 8 a small positive number, and let y< 2
) E A n(Q) a 

point satisfying IY~l) - y~2 ) If> < 8, Vi. Such y< 2)'s exist, since p-opens in 

An(Q) are "big," by the same reasons as in 12.3: An(Q) ~ A"(Qp) is p­

dense, hence a p-adic 8-neighborhood of y(l) E An(Q) has many Q-points. 

Alternatively, it can be seen as a consequence of the weak approximation 

for number fields. In any case, /y(l l(z) is close to fy <2J(z) in p-Gauss norm: 

lar(Y(l))- ar(Y(2))1p = I E O'rs(Y(l)•- Y(2 )
5

)1f>, 
1•1=0 

and IY(l)•- y<2 )
5

1f> < 8, Vs E Nn 

By the "p-adic continuity of roots" ([BGR], 3.4.1, Proposition 1), this im­

plies that the roots of fy(I J(z) are p-close to the roots of /y<2>(z): for each 

root y~+l of !y(I J(z) there exists a root y~+l of fy <2J(z) such that 

where d = deg/y( z) (Vy ). But Bf> is p-open ( cf. 12.1.2), hence the fiber over 

y<2 ) is in Bf> => y<2 ) E Df> c D . 0 
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13.4.2 Remarks: 1. This is a down-to-earth proof of the openness of a finite map 

in the adic topology. It would not have been necessary if I could have found 

a "standard" reference for this fact. 

2. This proof is neither the shortest, nor the easiest, nor, probably, the most 

elementary. 

13.4.3 Proposition: Dp is C-dense in An(Q). 

Proof: Since Dp is p-open, it contains a p-neighborhood Uy of each of 

its points y. It suffices to show that Uy is C-dense. Let y E Dp, K' := 

K(y), p' := p n K', and consider Uy to be a p-neighborhood of y of the 

form "y + p'azn, = {y' E An(Q) I (Yi- yi) E p'az, Vi}, where a E N, Z ~ 

Q is the ring of algebraic integers. To prove that this p-neighborhood of 

y is C-dense in An(Q) it is enough to do this for n = 1 ("coordinate-wise 

approximation"). But the case n = 1 is a consequence of the following two 

simple lemmas. 

13.4.4 Lemma: Let A~ Q be a subset. Then A is C-dense if and only if a+,BA := 

{a+ ,Ba I a E A} is dense Va,,B E Q, ,8 f. 0. 

Proof: Fix some a , ,8 then Vt E Q, it- (a+ ,Ba)l < E <:::=> i(t -a),B-1 -a I < 

1.8-l jf. 0 

13.4.5 Lemma: Z is dense in C. 

Proof: First, find some subset R ~ ZnJR dense in JR. (Everyone has his/her 

own favorite choice; here is a couple of examples: 

1. integers in a real quadratic field, e.g., Z[v'2] := {m + nv'2 I m, n E Z} ~ 

lR is dense ("irrational wrapping" !), 

2. {m + n(21/r -1) I m,n E Z, r EN}.) 
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Then "spread" this set over the whole C by roots of 1 : J.loo R := { (r I r E 

'R., (m = 1 for some m E N} ~ Z is dense in C. Here is a prescription for 

approximation of some z = eei9 : first, "turn" it by some ( to make it close 

to e E Rand then approximate e by an o E 'R. : 'tif > 0, let m, n E Z be 

such that !!l < ..!_ < !!!±.!. 21r£n < -
2
( ·, let z' := ze-i2 1r":, choose o E R such 

n - 21r n ' 

that lo - el < ~' then 

lz'- ol ~ lz'- el + le- ol 
m € 

< e(B- 21r-) + -
n 2 

1 € 
< (!27r- +-

n 2 
€ € 

<-+-
2 2 

< €. 

Now lz- o(l = l(-1 llz'- ol < €. 0 

13.4.6 To conclude the proof of Proposition 13.4.3 choose a uniformizer for p', say 

ro. By lemma 13.4.4, Yi + roaz is dense in tQ if and only if Z is. Lemma 

13.4.5 finishes the proof of the Proposition and hence of Theorem 13.1. 0 
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§14. A second density theorem: 

Existence of simple abelian varieties with prescribed reduction 

14.0 So, we have found a subset of the moduli space (since the boundary com­

ponents of the compactification are of positive codimensions, we can safely 

forget about them), which is dense in the usual C-topology and each point 

of the set corresponds to an abelian variety defined over a number field 

(depending on this abelian variety) with the prescribed reduction. But for 

applications in Part II of this thesis we need simple abelian varieties with 

endomorphism ring( ®Q) exactly equal to the imaginary quadratic field k ( cf. 

8.1, 9.10). 

14.1 Let us change notation slightly and set M to be a connected component 

of the moduli space of (suitably rigidified) abelian varieties, say T, of even 

dimension g > 2 with some (fixed) polarization, level structure, embedding 

k ~ End0 (T) such that k is stable with respect to the Rosati involution 

and the signature of the k-action is (m.,., mp), m.,. · mp =/: 0 , (cf. 11.2). 

Theorem: There exists N > 0, such that Vp with the absolute norm 

N p > N, the set of simple abelian varieties in M with a prescribed stable 

reduction modulo p and the endomorphism ring( ®Q) equal to k is C-dense 

in M. In particular, the set of abelian varieties having bad reductions with 

fixed toric rank is dense. 

Proof: 1. First notice, that because of the Poincare reducibility theorem 

and Schur's lemma, if an abelian variety A has End0 (A) = k , then A is 

simple. 
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2. The number N is the upper bound of norms of "bad" primes dividing 

S (cf. 11.3). 

3. There is an analytic open subset U of M (which is a complement of 

a countable union of subvarieties of positive codimension (cf. [M 1]; [An], 

Lemma 4) for each point of which the corresponding abelian variety has the 

"smallest possible" endomorphism ring. Since m(T · mp # 0 and g > 2, by 

[Sh 1], Theorem 5, this "smallest" ring(®Q) is exactly k. Since the set of 

our abelian varieties is (>dense, its intersection with such an analytic open 

set U is C-dense in U . 0 
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§15. Comments 

15.1 Remarks: 1. We can assume that abelian varieties from the analytic subset 

of the moduli space considered in the proof of Theorem 14.1 have exceptional 

Hodge classes ( cf. [W]) . 

1'. Theorems 8.1, 9.11- 9.12 deal also with abelian varieties with endomor­

phism ring( ®Q) = Q . Clearly, the density results hold for such abelian 

varieties as well. 

2. For the first density theorem, instead of ( compactification of) the moduli 

space we could have considered any family of abelian varieties over a base 

which is of finite type over a number field. If there is a C-open subset of the 

base, over which the fibers are simple, then the proof of the (part of the) 

second density theorem (regarding density of simple varieties) goes through 

as well. 

3. We did not need the point x we started with. We could have taken any 

smooth point x corresponding to a semi-abelian variety with a fixed toric 

rank. 

4. One can prove similar density results for abelian varieties with prescribed 

reduction modulo any finite powers of any finite set of primes. The basic 

idea is the same: reduce the problem to an affine space case where it is easy. 

5. One can apply the previous remark to prove density of simple abelian 

varieties with a prescribed reduction regardless of the endomorphisms. Just 

impose an extra condition that at some auxiliary prime the reduction is a 

simple abelian variety. If there are simple abelian varieties in the family ( cf. 

2. above) this is certainly possible. 
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6. There is another way of proving the existence of an abelian variety with 

prescribed reduction (using deformation theory a la Faltings-Chai, Artin). 

By a trick of Oort and van der Put ([OP], Lemma 3.1) we, in fact, could have 

guaranteed that the conditions on the endomorphism ring are also satisfied. 

The way we have chosen is somewhat similar, but all the deformation theory 

is hidden in moduli and the existence of compactifications that we have 

assumed. 

7. There is another way of proving (>density of simple abelian varieties with 

reductions of needed toric rank, once we have at least one such abelian vari­

ety. Namely, use [Bor] (cf. also [D 1], Proposition 5.2) to show that the set 

of abelian varieties isogenous to the given one is dense in the corresponding 

Shimura variety. 

15.2 I would like to mention separately that abelian varieties admitting minimal 

reduction (cf. 7.0) at some prime of their field of definition are, in some very 

vague sense, the "most typical." These abelian varieties are "liftings" of the 

biggest boundary components of moduli (from all positive characteristics), 

since "minimal toric rank <=:::> maximal dimension of the abelian quotient." 

So, for each prime, "most" of the abelian varieties with bad reduction at this 

prime have minimal reduction. Since there are "very few" abelian varieties 

having good reduction everywhere, "most" abelian varieties have minimal 

reduction (at some prime). 

Is there a sensible way to describe the set of such abelian varieties (more) 

precisely? 
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