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Abstract

Noncommutative geometry is a source of particle physics models with matter Lagrangians

coupled to gravity. One may associate to any noncommutative space (A,H,D) its spectral

action, which is defined in terms of the Dirac spectrum of its Dirac operator D. When

viewing a spin manifold as a noncommutative space, D is the usual Dirac operator. In this

paper, we give nonperturbative computations of the spectral action for quotients of SU(2),

Bieberbach manifolds, and SU(3) equipped with a variety of geometries. Along the way we

will compute several Dirac spectra and refer to applications of this computation.
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Chapter 1

Introduction

Noncommutative geometry is a source of particle physics models with matter Lagrangians

coupled to gravity [18]. A noncommutative geometry consists of a triple (A,H,D), of an

algebra A and a self-adjoint, typically unbounded operator D concretely represented on a

Hilbert space H. Such spaces are usually referred to as spectral triples. The associated

action functional, which underlies these physics models, is defined as the trace of the cutoff

of the Dirac operator by a test function, and is called the spectral action. More precisely,

the spectral action is given by the expression

Trf(D/Λ). (1.1)

In this expression, Λ is a positive number, and f is a positive smooth even function decaying

rapidly at infinity.

There is a general asymptotic expansion for the spectral action, and by studying the

appropriate spectral triple, one can use this asymptotic expansion to recover the classical

Lagrangian and Einstein-Hilbert action, along with additional terms [23].

Noncommutative cosmology aims to build cosmological models based on the spectral

action [50]. To extrapolate these models to the recent universe, one cannot use the asymp-

totic form of the spectral action. The calculations below consist of more direct calculations

of the spectral action which are valid in a broader regime than the asymptotic approach,

and were undertaken in order to enable a further analysis of these cosmological models.

These calculations are possible in highly symmetric situations, where the spectrum of

the Dirac operator is exactly known and decomposable into arithmetic progressions indexed

by Zk or Nk, and the multiplicities are polynomials of the eigenvalues. In order to carry out
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the calculations one must first compute the Dirac spectrum. This is done by casting the

problem into familiar problems in representation theory. In several of the cases considered

below, the spectrum has been calculated explicitly by others. In other cases, formulae for

generating the spectrum are known, and we simply apply these formulae to produce the

explicit Dirac spectrum. In yet other cases, we determine for ourselves the formula for gener-

ating the spectrum. Once the Dirac spectrum has been computed, one then finds a suitable

decomposition of the spectrum into arithmetic progressions and discovers the polynomials

which describe the multiplicities of the eigenvalues. In this form, the spectral action may

be usefully expressed by applying the Poission summation formula or the Euler-Maclaurin

formula when the spectrum is indexed by Zk or Nk respectively. The first calculations of

this sort were performed in [16], in the case of SU(2) with the round metric and [17] in the

case of SU(2) equipped with the Robertson-Walker metric.

All of the spectral action computations below, with the exception of SU(3), use the

Poisson summation formula. Once the Dirac spectrum has been explicitly computed, there

is a unifying structure to all of the calculations, which we presently review. Suppose that

the spectrum has been computed and decomposed into one or several pieces as described

above, where the multiplicities are described by one or more polynomials, P . Specifically,

this means that the spectral action can be expressed as a sum of one or several terms of

the form ∑
n∈Zk

P (n0 + n)f

(
n0 + n

Λ

)
=
∑
n∈Zk

g(n), (1.2)

where g(n) = P (n0 + n)f
(
n0+n

Λ

)
.

Next, we apply the Poisson summation formula to g.

∑
n∈Zk

g(n) =
∑
n∈Zk

ĝ(n). (1.3)

Since f is a Schwarz function, one has the estimates

∑
n 6=0

|f̂ (j)((Λn)| ≤ CkΛ−k, (1.4)

where f̂ (j) denotes the Fourier transform of |x|jf(x).

As a result, as Λ goes to infinity, the sum of all terms ĝ(n) for n 6= 0 decays faster than
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Λk for any k > 0. The final expression for the spectral action is

Trf(D/Λ) = ĝ(0) +O(Λ−k), (1.5)

for arbitrary k > 0.

As for SU(3), we compute the spectral action using the Euler-Maclaurin formula. In

one-dimension, the formula is

b∑
k=a

g(k) =

∫ b

a
g(x)dx+

g(a) + g(b)

2
+

m∑
j=2

Bj
j!

(g(j−1)(b)− g(j−1)(a))−Rm, (1.6)

where Bj are the Bernoulli numbers, and the formula for the remainder Rm is

Rm =
(−1)m

m!

∫ b

a
g(m)(x)Bm(x− [x])dx. (1.7)

In the remainder formula, Bm(x) are the Bernoulli polynomials. When we use the Euler-

Maclaurin formula to compute the spectral action in this situation, we once again have

g(n) = P (n0 + n)f
(
n0+n

Λ

)
, except here n will be summed over N instead of Z. To compute

the large Λ behavior of the spectral action, we take a Taylor expansion of the integrand, g,

with respect to Λ, and estimate the remainder Rm for varying values of the parameter m.

In the case of SU(3), we need a two-dimensional version of the Euler-Maclaurin formula,

but the analysis is completely analogous.

In chapter 2, we review the author’s first calculations of the spectral action, on quater-

nionic space, the Poincaré homology sphere, and flat tori.

In chapter 3, we undertake a more systematic study of such calculations on Bieberbach

manifolds. In this case, we use symmetries of the spectrum to obtain expressions of the

spectra which are indexed over Zk.

In chapter 4 we undertake a more systematic study of such calculations on coset spaces

of SU(2). For these calculations, we apply general formulae to obtain explicit expressions

for the Dirac spectra. Guided by the spectral action calculations, we uncover a mistake in

the computation of the Dirac spectrum for lens spaces performed in [5].

In chapter 5 we study such calculations on twisted Dirac operators over coset spaces of

SU(2). These calculations were necessary in order to study the noncommutative cosmolog-
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ical models in the presence of matter.

In chapter 6 we study such calculations on a one-parameter family of Dirac operators

over SU(2) and SU(3). In this chapter, we review formulae used to produce the Dirac

spectrum developed by the author in collaboration with Alan Lai. To compute the spectral

action of SU(3) we apply a multivariate version of the Euler-Maclaurin formula.
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Chapter 2

Quaternionic Space, Poincaré
Homology Sphere, and Flat Tori

2.1 Introduction

To begin, we recall the first example of a nonperturbative calculation of the spectral action,

undertaken by Chamseddine and Connes in [16]. The space considered here is the three-

sphere, S3. This calculation uses the same techniques as the one performed in the sequel

and is somewhat simpler than the cases we will consider later on.

The basic tool used in this chapter is the Poisson summation formula. One version of

this formula states that for a test function h ∈ S(R) in Schwartz space,

∑
n∈Z

h(n) =
∑
n∈Z

ĥ(n). (2.1)

The notation ĥ denotes the Fourier transform,

ĥ(x) =

∫
R
h(u)e2πiuxdu.

For the calculations below, we need the slightly more general form of 2.1,

∑
n∈Z

h(x+ λn) =
1

λ

∑
n∈Z

e
2πinx
λ ĥ(

n

λ
). (2.2)

To compute the spectral action nonperturbatively the Poisson summation formula is

applied to a function of the form P (u)f(u/Λ), where P (u) is a polynomial whose value at

u is the multiplicity of the eigenvalue u in the Dirac spectrum, and f is a positive, smooth,
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even cutoff function of rapid decay. In the case of S3, the eigenvalues are given by 1
2 + n,

for n ∈ Z, with multiplicities n(n+ 1). Applying the Poisson summation formula gives the

desired result:

Trf(D/Λ) = Λ3

∫
R
v2f(v)dv − 1

4
Λ

∫
R
f(v)dv +O(Λ−k),

as Λ goes to infinity, where k can be any positive integer.

2.2 The quaternionic cosmology and the spectral action

Let Q8 denote the group of quaternion units {±1,±i,±j,±k}. It acts on the 3-sphere, with

the latter identified with the group SU(2).

2.2.1 The Dirac spectra for SU(2)/Q8

As we show here, the main reason why the case of SU(2)/Q8 can be treated with the same

technique used in [16] for the sphere S3 is because the Dirac spectrum is given in terms

of arithmetic progressions indexed over the integers, so that one can again apply the same

type of Poisson summation formula.

More precisely, we recall from [31] that one can endow the 3-manifold SU(2)/Q8 with a 3-

parameter family of homogeneous metrics, depending on the parameters ai ∈ R∗, i = 1, 2, 3.

The different possible spin structures εj on SU(2)/Q8 correspond to the four group homo-

morphisms Q8 → Z/2Z with ε0 ≡ 1 and Ker(εj) = {±1,±σj}, with σj the Pauli matrices.

The Dirac operator for each of these spin structures and its spectrum are computed explic-

itly in [31]. The case we are interested in here is the one where the metric has parameters

a1 = a2 = a3 = 1, for which SU(2)/Q8 is a spherical space form. For this case the Dirac

spectrum was also computed in [4].

In this case, see Corollary 3.2 of [31], the Dirac spectrum for SU(2)/Q8 with the spherical
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metric a1 = a2 = a3 = 1, is given in the case of the spin structure ε0 by

3
2 + 4k with multiplicity 2(k + 1)(2k + 1)

3
2 + 4k + 2 with multiplicity 4k(k + 1)

−3
2 − 4k − 1 with multiplicity 2k(2k + 1)

−3
2 − 4k − 3 with multiplicity 4(k + 1)(k + 2),

(2.3)

where k runs over N. For all the other three spin structures εj , j = 1, 2, 3, the spectrum is

given by 

3
2 + 4k with multiplicity 2k(2k + 1)

3
2 + 4k + 2 with multiplicity 4(k + 1)2

−3
2 − 4k − 1 with multiplicity 2(k + 1)(2k + 1)

−3
2 − 4k − 3 with multiplicity 4(k + 1)2,

(2.4)

again with k ∈ N.

2.2.2 Trivial spin structure: nonperturbative spectral action

By replacing k with −k−1 in the third row and k with −k−2 in the fourth row, we rewrite

the spectrum (2.3) in the form


3
2 + 4k with multiplicity 2(k + 1)(2k + 1)

3
2 + 4k + 2 with multiplicity 4k(k + 1),

(2.5)

where now k runs over the integers Z. This expresses the spectrum in terms of two arithmetic

progressions indexed over the integers. Now the condition that allows us to apply the Poisson

summation formula as in [16] is the fact that the multiplicities can be expressed in terms

of a smooth function of k. This is the case, since the multiplicites in (2.5) for an eigenvalue

λ are given, respectively, by the functions P1(λ) and P2(λ) with

P1(u) =
1

4
u2 +

3

4
u+

5

16

P2(u) =
1

4
u2 − 3

4
u− 7

16
.

(2.6)
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We then obtain an explicit nonperturbative calculation of the spectral action for SU(2)/Q8

as follows.

Theorem 2.2.1 The spectral action on the 3-manifold S = SU(2)/Q8, with the trivial spin

structure, is given by

Tr(f(D/Λ)) =
1

8
(Λa)3f̂ (2)(0)− 1

32
(Λa)f̂(0) + ε(Λ), (2.7)

with a the radius of the 3-sphere SU(2) = S3, with the error term satisfying |ε(Λ)| = O(Λ−k)

for all k > 0, and with f̂ (k) denoting the Fourier transform of vkf(v) as above. Namely,

the spectral action for SU(2)/Q8 is 1/8 of the spectral action for S3.

Consider a test function for the Poisson summation formula which is of the form

h(u) = g(4u+
s

2
), for some s ∈ Z.

Then the Poisson summation formula gives

∑
n∈Z

g(4n+
s

2
) =

∑
n∈Z

1

4
exp(

iπsn

4
) ĝ(

n

4
), (2.8)

which we apply to gi(u) = Pi(u)f(u/Λ), with Pi as in (2.6) and f the Schwartz function in

the spectral action approximating a cutoff.

This gives an expression for the spectral action on S = SU(2)/Q8 with the trivial spin

structure, and with the sphere S3 = SU(2) of radius one, which is of the form

Tr(f(D/Λ)) =
∑
Z
g1(4n+

3

2
) +

∑
Z
g2(4n+

7

2
)

=
∑
Z

1

4
exp(

3πin

4
)ĝ1(

n

4
) +

∑
Z

1

4
exp(

7πin

4
)ĝ2(

n

4
).

(2.9)

Assuming that f is a Schwartz function, then gi is also Schwartz, hence so is ĝi. There-

fore, for each k ∈ N, we get an estimate of the form

∑
n6=0

1

4
|ĝi(

n

4
)| ≤ CkΛ−k.

This shows that we can write the right hand side of (2.9) as the terms involving ĝi(0) plus
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an error term that is of order O(Λ−k).

One then computes

ĝ1(0) =
1

4
Λ3f̂ (2)(0) +

3

4
Λ2f̂ (1)(0) +

5

16
Λf̂(0). (2.10)

Similarly, one has

ĝ2(0) =
1

4
Λ3f̂ (2)(0)− 3

4
Λ2f̂ (1)(0)− 7

16
Λf̂(0), (2.11)

so that one obtains for the spectral action in (2.9)

Tr(f(D/Λ)) = 1
4 (ĝ1(0) + ĝ2(0)) +O(Λ−k)

= 1
8Λ3f̂ (2)(0)− 1

32Λf̂(0) +O(Λ−k).

(2.12)

The case with the 3-sphere SU(2) = S3 of radius a is then analogous, with the spectrum

scaled by a factor of a−1, which is like changing Λ to Λa in the expressions above, so that

one obtains (2.7).

2.2.3 Nontrivial spin structures: nonperturbative spectral action

The computation of the spectral action on SU(2)/Q8 in the case of the non-trivial spin

structures εj with j = 1, 2, 3 is analogous. One starts with the Dirac spectrum (2.4) and

writes it in the form of two arithmetic progressions indexed over the integers
3
2 + 4k with multiplicity 2k(2k + 1)

3
2 + 4k + 2 with multiplicity 4(k + 1)2.

(2.13)

In this case one again has polynomials interpolating the values of the multiplicities. They

are of the form

P1(u) =
1

4
u2 − 1

4
u− 3

16

P2(u) =
1

4
u2 +

1

4
u+

1

16
.

(2.14)

We then obtain the following result.

Theorem 2.2.2 The spectral action on the 3-manifold S = SU(2)/Q8, for any of the non-

trivial spin structures εj, j = 1, 2, 3, is given by the same expression (2.7) as in the case of
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the trivial spin structure ε0.

It is enough to observe that the sum of the two polynomials (2.14) that interpolate the

spectral multiplicities,

P1(u) + P2(u) =
1

2
u2 − 1

8

is the same as in the case (2.6) of the trivial spin structure. One then has the same value of

1

4
ĝ1(0) +

1

4
ĝ2(0) =

1

4

∫
R

(P1(u) + P2(u)) f(u/Λ) du,

which gives the spectral action up to an error term of the order of O(Λ−k).

2.3 Poincaré homology sphere

The Poincaré homology sphere, which is the quotient of the 3-sphere S3 by the binary

icosahedral group Γ, is also commonly referred to as the dodecahedral space, due to the

fact that the action of Γ on S3 has a fundamental domain that is a dodecahedron. The

dodecahedral space is obtained by gluing together opposite faces of a dodecahedron with

the shortest clockwise twist that matches the faces.

2.3.1 Generating functions for spectral multiplicities

To explicitly compute the Dirac spectrum of the Poincaré homology sphere, we use a gen-

eral result of Bär [4], which gives a formula for the generating function of the spectral

multiplicities of the Dirac spectrum on space forms of positive curvature.

In the generality of [4], one considers a manifold M that is a quotient M = Sn/Γ

of an n-dimensional sphere, n ≥ 2, with the standard metric of curvature one, and with

Γ ⊂ SO(n+1) a finite group acting without fixed points. It is shown in [4] that the classical

Dirac operator on Sn has spectrum

±
(n

2
+ k
)
, k ≥ 0, with multiplicities 2[n/2]

(
k + n− 1

k

)
. (2.15)

The eigenvalues of M are the same as the eigenvalues of Sn, but with smaller multiplicities.

The spin structures of M are in 1-1 corrrespondence with homomorphisms ε : Γ→ Spin(n+

1), such that Θ ◦ ε = idΓ, where Θ is simply the double cover map from Spin(n + 1) to



11

SO(n + 1). If D is the Dirac operator on M, then to specify the spectrum of M , for one

of these spin structures, one just needs to know the multiplicities, m(±(n/2 + k)), k ≥ 0.

These are encoded in two generating functions

F+(z) =
∞∑
k=0

m(
n

2
+ k,D)zk (2.16)

F−(z) =
∞∑
k=0

m(−(
n

2
+ k), D)zk. (2.17)

It is elementary to show that these power series have radii of convergence of at least 1 about

z = 0.

Now denote the irreducible half spin representations of Spin(2m) by

ρ+ :Spin(2m)→ Aut(Σ+
2m)

ρ− :Spin(2m)→ Aut(Σ−2m),

where Σ±2m are the positive and negative spinor spaces. Let χ± : Spin(2m) → C be the

character of ρ±. It is shown in [4] that the generating functions of the spectral multiplicities

have the form

F+(z) =
1

|Γ|
∑
γ∈Γ

χ−(ε(γ))− z · χ+(ε(γ))

det(12m − z · γ)
, (2.18)

F−(z) =
1

|Γ|
∑
γ∈Γ

χ+(ε(γ))− z · χ−(ε(γ))

det(12m − z · γ)
. (2.19)

2.3.2 The Dirac spectrum of the Poincaré sphere

In order to compute explicitly the Dirac spectrum of the Poincaré homology sphere, it

suffices then to compute the multiplicities by explicitly computing the generating functions

(2.18) and (2.19).

Let Γ be the binary icosahedral group. To carry out our computations, we regard S3 as

the set of unit quaternions, and Γ as the following set of 120 unit quaternions:

• 24 elements are as follows, where the signs in the last group are chosen independently

of one another:

{±1,±i,±j,±k, 1

2
(±1± i± j ± k)}. (2.20)
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• 96 elements are either of the following form, or obtained by an even permutation of

coordinates of the following form:

1/2(0± i± φ−1j ± φk), (2.21)

where φ is the golden ratio.

Then Γ acts on S3 by left multiplication. Similarly, if S3 is regarded as the unit sphere in R4,

then SO(4) acts on S3 by left multiplication. In this way, we may identify a+bi+cj+dk ∈ Γ,

with the following matrix in SO(4):


a −b −c −d

b a −d c

c d a −b

d −c b a

 .

2.3.3 The double cover Spin(4)→ SO(4)

Let us recall some facts about the double cover Spin(4)→ SO(4). Let S3
L ' SU(2) be the

group of left isoclinic rotations:


a −b −c −d

b a −d c

c d a −b

d −c b a

 ,

where a2 + b2 + c2 + d2 = 1. Similarly, let S3
R ' SU(2) be the group of right isoclinic

rotations: 
p −q −r −s

q p s −r

r −s p q

s r −q p

 ,

where p2 + q2 + r2 + s2 = 1. Then Spin(4) ' S3
L × S3

R, and the double cover Θ : Spin(4)→

SO(4) is given by (A,B) 7→ A · B, where A ∈ S3
L, and B ∈ S3

R. The complex half-spin
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representation ρ− is just the projection onto S3
L, where we identify S3

L with SU(2) via


a −b −c −d

b a −d c

c d a −b

d −c b a

 7→
 a− bi d+ ci

−d+ ci a+ bi

 .

The other complex half-spin representation ρ+ is the projection onto S3
R, where we identify

S3
R with SU(2) via


p −q −r −s

q p s −r

r −s p q

s r −q p



t

7→

 p− qi s+ ri

−s+ ri p+ qi

 .

2.3.4 The spectral multiplicities

We define our spin structure ε : Γ → Spin(4) to simply be A 7→ (A, I4). It is obvious that

this map satisfies Θ ◦ ε = idΓ. Therefore, given γ = a+ bi+ cj + dk ∈ Γ, we see that

χ−(ε(γ)) = 2a

χ+(ε(γ)) = 2.

We then obtain the following result by direct computation of the expressions (2.18) and

(2.19), substituting the explicit expressions for all the group elements.

Theorem 2.3.1 Let S = S3/Γ be the Poincaré sphere, with the spin structure ε described

here above. The generating functions for the spectral multiplicities of the Dirac operator are

F+(z) = − 16(710647 + 317811
√

5)G+(z)

(7 + 3
√

5)3(2207 + 987
√

5)H+(z)
, (2.22)

where

G+(z) = 6z11 + 18z13 + 24z15 + 12z17 − 2z19

− 6z21 − 2z23 + 2z25 + 4z27 + 3z29 + z31,
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and

H+(z) = −1− 3z2 − 4z4 − 2z6 + 2z8 + 6z10 + 9z12 + 9z14 + 4z16

− 4z18 − 9z20 − 9z22 − 6z24 − 2z26 + 2z28 + 4z30 + 3z32 + z34,

and

F−(z) = −1024(5374978561 + 2403763488
√

5)G−(z)

(7 + 3
√

5)8(2207 + 987
√

5)H−(z)
, (2.23)

where

G−(z) = 1 + 3z2 + 4z4 + 2z6 − 2z8 − 6z10

− 2z12 + 12z14 + 24z16 + 18z18 + 6z20,

and

H−(z) = −1− 3z2 − 4z4 − 2z6 + 2z8 + 6z10 + 9z12 + 9z14 + 4z16

− 4z18 − 9z20 − 9z22 − 6z24 − 2z26 + 2z28 + 4z30 + 3z32 + z34.

We can then obtain explicitly the spectral multiplicities from the Taylor coefficients of

F+(z) and F−(z), as in 2.16 and 2.17.

2.3.5 The spectral action for the Poincaré sphere

In order to compute the spectral action, we proceed as in the previous cases by identifying

polynomials whose values at the points of the spectrum give the values of the spectral

multiplicities. We obtain the following result.

Proposition 2.3.2 There are polynomials Pk(u), for k = 0, . . . , 59, so that Pk(3/2 + k +

60j) = m(3/2 + k + 60j,D) for all j ∈ Z. The Pk(u) are given as follows:

Pk = 0, whenever k is even,

P1(u) =
1

48
− 1

20
u+

1

60
u2,

P3(u) =
3

80
− 1

12
u+

1

60
u2,

P5(u) =
13

240
− 7

60
u+

1

60
u2,

P7(u) =
17

240
− 3

20
u+

1

60
u2,

P9(u) =
7

80
− 11

60
u+

1

60
u2,
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P11(u) = −19

48
+

47

60
u+

1

60
u2,

P13(u) =
29

240
− 1

4
u+

1

60
u2,

P15(u) =
11

80
− 17

60
u+

1

60
u2,

P17(u) =
37

240
− 19

60
u+

1

60
u2,

P19(u) = − 79

240
+

13

20
u+

1

60
u2,

P21(u) =
3

16
− 23

60
u+

1

60
u2,

P23(u) = − 71

240
+

7

12
u+

1

60
u2,

P25(u) =
53

240
− 9

20
u+

1

60
u2,

P27(u) =
19

80
− 29

60
u+

1

60
u2,

P29(u) = − 59

240
+

29

60
u+

1

60
u2,

P31(u) = −11

48
+

9

20
u+

1

60
u2,

P33(u) =
23

80
− 7

12
u+

1

60
u2,

P35(u) = − 47

240
+

23

60
u+

1

60
u2,

P37(u) =
77

240
− 13

20
u+

1

60
u2,

P39(u) = −13

80
+

19

60
u+

1

60
u2,
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P41(u) = − 7

48
+

17

60
u+

1

60
u2,

P43(u) = − 31

240
+

1

4
u+

1

60
u2,

P45(u) =
31

80
− 47

60
u+

1

60
u2,

P47(u) = − 23

240
+

11

60
u+

1

60
u2,

P49(u) = − 19

240
+

3

20
u+

1

60
u2,

P51(u) = − 1

16
+

7

60
u+

1

60
u2,

P53(u) = − 11

240
+

1

12
u+

1

60
u2,

P55(u) = − 7

240
+

1

20
u+

1

60
u2,

P57(u) =
39

80
− 59

60
u+

1

60
u2,

P59(u) = −119

240
+

59

60
u+

1

60
u2.

These are computed directly from the Taylor coefficients of the generating functions of

the spectral multiplicities (4.100) and (4.101).

We then obtain the nonperturbative spectral action for the Poincaré sphere.

Theorem 2.3.3 Let D be the Dirac operator on the Poincaré homology sphere S = S3/Γ,

with the spin structure ε : Γ→ Spin(4) with A 7→ (A, I4). Then, for any Schwartz function,

f , the spectral action is given by

Tr(f(D/Λ)) =
1

60

(
1

2
Λ3f̂ (2)(0)− 1

8
Λf̂(0)

)
, (2.24)

which is precisely 1/120 of the spectral action on the sphere.

The result follows by applying Poisson summation again, to the functions gj(u) =

Pj(u)f(u/Λ). This gives, up to an error term which is of the order of O(Λ−k) for any
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k > 0, the spectral action in the form

Tr(f(D/Λ)) =
1

60

59∑
j=0

ĝj(0) =
1

60

∫
R

∑
j

Pj(u)f(u/Λ)du.

It suffices then to notice that
59∑
j=0

Pj(u) =
1

2
u2 − 1

8
.

The result then follows as in the sphere case.

2.4 Flat tori

2.4.1 The spectral action on the flat tori

Let T 3 be the flat torus R3/Z3. The spectrum of the Dirac operator, denoted D3, is given

in Theorem 4.1 of [6] as

±2π ‖ (m,n, p) + (m0, n0, p0) ‖, (2.25)

where (m,n, p) runs through Z3. Each value of (m,n, p) contributes multiplicity 1. The

constant vector (m0, n0, p0) depends on the choice of spin structure.

Theorem 2.4.1 The spectral action Tr(f(D2
3/Λ

2)) for the torus T 3 = R3/Z3 is indepen-

dent of the spin structure on T 3 and given by

Tr(f(D2
3/Λ

2)) =
Λ3

4π3

∫
R3

f(u2 + v2 + w2)du dv dw +O(Λ−k), (2.26)

for arbitrary k > 0.

By (2.25), we know the spectrum of D2
3 is given by

4π2 ‖ (m,n, p) + (m0, n0, p0) ‖2,

where (m,n, p) runs through Z3, and each value of (m,n, p) contributes multiplicity 2.

Given a test function in Schwartz space, f ∈ S(R), the spectral action is then given by

Tr(f(D2
3/Λ

2)) =
∑

(m,n,p)∈Z3

2f

(
4π2((m+m0)2 + (n+ n0)2 + (p+ p0)2)

Λ2

)
,
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In three dimensions, the Poisson summation formula is given by

∑
Z3

g(m,n, p) =
∑
Z3

ĝ(m,n, p),

where the Fourier transform is defined by

ĝ(m,n, p) =

∫
R3

g(u, v, w)e−2πi(mu+nv+pw)dudvdw.

If we define

g(m,n, p) = f

(
4π2((m+m0)2 + (n+ n0)2 + (p+ p0)2)

Λ2

)
, (2.27)

and apply the Poisson summation formula, we obtain the following expression for the spec-

tral action:

Tr(f(D2
3/Λ

2)) = 2
∑

(m,n,p)∈Z3

ĝ(m,n, p)

= 2ĝ(0, 0, 0) +O(Λ−k)

= 2

∫
R3

f

(
4π2((u+m0)2 + (v + n0)2 + (w + p0)2)

Λ2

)
du dv dw

+O(Λ−k)

=
Λ3

4π3

∫
R3

f(u2 + v2 + w2)du dv dw +O(Λ−k).

The estimate
∑

(m,n,p)6=0 ĝ(m,n, p) = O(Λ−k) for arbitrary k > 0 is elementary, using

the fact that f ∈ S(R). We observe that the nonperturbative spectral action is independent

of the choice of spin structure.
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Chapter 3

Bieberbach Manifolds

3.1 Introduction

The simplest case of Bieberbach manifold is the flat torus T 3, which we considered in the

previous chapter. In general, Bieberbach manifolds are quotients of the torus by a finite

group action. In this section we give an explicit computation of the nonperturbative spectral

action for all Bieberbach manifolds with the exception of one class.

Calculations of the spectral action for Bieberbach manifolds were simultaneously inde-

pendently obtained in [60].

The Dirac spectrum of Bieberbach manifolds is computed in [63] for each of the six

affine equivalence classes of three-dimensional orientable Bieberbach manifolds, and for

each possible choice of spin structure and choice of flat metric. These classes are labeled

G1 through G6, with G1 simply being the flat 3-torus.

In general, the Dirac spectrum for each space depends on the choice of spin structure.

However, as in the case of the spherical manifolds, we show here that the nonperturbative

spectral action is independent of the spin structure.

We follow the notation of [63], according to which the different possibilities for the

Dirac spectra are indicated by a letter (e.g. G2(a)). Note that it is possible for several spin

structures to yield the same Dirac spectrum.

The nonperturbative spectral action for G1 was computed in [50]. We recall here the

result for that case and then we restrict our discussion to the spaces G2 through G6.
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3.2 The structure of Dirac spectra of Bieberbach manifold

The spectrum of the Bieberbach manifolds generally consists of a symmetric component and

an asymmetric component as computed in [63]. The symmetric components are parametrized

by subsets I ⊂ Z3, such that the eigenvalues are given by some formula λx, x ∈ I, and the

multiplicity of each eigenvalue, λ, is some constant times the number of x ∈ I such that

λ = λx. In the case of G2, G4, G5, G6 the constant is 1, while in the case of G3 the constant

is 2.

The approach we use here to compute the spectral action nonperturbatively is to use

the symmetries of λx, as a function of x ∈ I, to almost cover all of the points in Z3 and

then apply the Poisson summation formula as used in [16]. By “almost cover”, it is meant

that it is perfectly acceptable if two-, one-, or zero-dimensional lattices through the origin

are covered multiple times, or not at all.

The asymmetric component of the spectrum appears only some of the time. The ap-

pearance of the asymmetric component depends on the choice of spin structure. For those

cases where it appears, the eigenvalues in the asymmetric component consist of the set

B =

{
2π

1

H
(kµ+ c) |µ ∈ Z

}
,

where c is a constant depending on the spin structure, and k is given in the following table:

Bieberbach manifold k

G2 2

G3 3

G4 4

G5 6

.

For no choice of spin structure does G6 have an asymmetric component to its spectrum.

Each of the eigenvalues in B has multiplicity 2. Using the Poisson summation formula as

in [16], we see that the asymmetric component of the spectrum contributes to the spectral

action
ΛH

πk

∫
R
f(u2)du. (3.1)

The approach described here is effective for computing the nonperturbative spectral

action for the manifolds labeled in [63] as G2, G3, G4, G6, but not for G5. Therefore, we do
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not consider the G5 case in this paper.

3.3 Recalling the torus case

We gave in Theorem 8.1 of [50] the explicit computation of the non-perturbative spectral

action for the torus. We recall here the statement for later use.

Theorem 3.3.1 Let T 3 = R3/Z3 be the flat torus with an arbitrary choice of spin structure.

The nonperturbative spectral action is of the form

Tr(f(D2/Λ2)) =
Λ3

4π3

∫
R3

f(u2 + v2 + w2)dudvdw, (3.2)

up to terms of order O(Λ−∞).

3.4 The spectral action for G2

The Bieberbach manifold G2 is obtained by considering a lattice with basis a1 = (0, 0, H),

a2 = (L, 0, 0), and a3 = (T, S, 0), with H,L, S ∈ R∗+ and T ∈ R, and then taking the

quotient Y = R3/G2 of R3 by the group G2 generated by the commuting translations ti

along these basis vectors ai and an additional generator α with relations

α2 = t1, αt2α
−1 = t−1

2 , αt3α
−1 = t−1

3 . (3.3)

Like the torus T 3, the Bieberbach manifold G2 has eight different spin structures, pa-

rameterized by three signs δi = ±1, see Theorem 3.3 of [63]. Correspondingly, as shown in

Theorem 5.7 of [63], there are four different Dirac spectra, denoted (a), (b), (c), and (d),

respectively associated to the spin structures

δ1 δ2 δ3

(a) ±1 1 1

(b) ±1 −1 1

(c) ±1 1 −1

(d) ±1 −1 −1

.

We give the computation of the nonperturbative spectral action separately for each
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different spectrum and we will see that the result is independent of the spin structure and

always a multiple of the spectral action of the torus.

3.4.1 The case of G2(a)

In this first case, we go through the computation in full detail. The symmetric component

of the spectrum is given by the data ([63])

I = {(k, l,m)|k, l,m ∈ Z,m ≥ 1} ∪ {(k, l,m)|k, l ∈ Z, l ≥ 1,m = 0}

λ±klm = ±2π

√
1

H2
(k +

1

2
)2 +

1

L2
l2 +

1

S2
(m− T

L
l)2,

We make the assumption that T = L. Set p = m− l. Then we have equivalently:

I = {(k, l, p)|k, l, p ∈ Z, p > −l} ∪ {(k, l, p)|k, l ∈ Z, l ≥ 1, p = −l} =: I1 ∪ I2

λ±klp = ±2π

√
1

H2
(k +

1

2
)2 +

1

L2
l2 +

1

S2
p2.

Theorem 3.4.1 Let G2(a) be the Bieberbach manifold R3/G2, with T = L and with a spin

structure with δi = {±1, 1, 1}. The nonperturbative spectral action of the manifold G2(a) is

of the form

Tr(f(D2/Λ2)) = HSL

(
Λ

2π

)3 ∫
R3

f(u2 + v2 + w2)dudvdw, (3.4)

up to terms of order O(Λ−∞).

We compute the contribution to the spectral action due to I1. Since λ±klp is invariant

under the transformation l 7→ −l and p 7→ −p, we see that

∑
Z3

f(λ2
klp/Λ

2) = 2
∑
I1

f(λ2
klp/Λ

2) +
∑
p=−l

f(λ2
klp/Λ

2).

The decomposition of Z3 used to compute this contribution to the spectral action is dis-

played in figure 3.2. Applying the Poisson summation formula we get a contribution to the

spectral action of

HSL

(
Λ

2π

)3 ∫
R3

f(u2 + v2 + w2)−H LS√
L2 + S2

(
Λ

2π

)2 ∫
R2

f(u2 + v2),
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l

p

Figure 3.1: Lattice decomposition for the I1 contribution to the spectral action of G2(a).
Two regions and the set l = −p

plus possible terms of order O(Λ−∞).

As for I2 we again use the fact that the spectrum is invariant under the transformation

l 7→ −l, p 7→ −p to see that

∑
Z2

f(λ2
kl(−l)/Λ

2) = 2
∑
I2

f(λ2
klp/Λ

2) +
∑
p=l=0

f(λ2
klp/Λ

2).

The decomposition for this contribution to the spectral action is displayed in figure 3.1. We

get a contribution to the spectral action of

H
LS√
L2 + S2

(
Λ

2π

)2 ∫
R2

f(u2 + v2)−H
(

Λ

2π

)∫
R
f(u2)

plus possible terms of order O(Λ−∞).

When we include the contribution (3.1) due to the asymmetric component we see that

the spectral action of the space G2-(a) is equal to

Trf(D2/Λ2) = HSL

(
Λ

2π

)3 ∫
R3

f(u2 + v2 + w2)dudvdw

again up to possible terms of order O(Λ−∞).
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l

k

Figure 3.2: Lattice decomposition for the I2 contribution to the spectral action of G2(a)
Two regions and the set l = 0.

3.4.2 The case of G2(b) and G2(d)

The spectra of G2(b) and G2(d) have no asymmetric component. The symmetric component

is given by

I = {(k, l,m)|k, l,m ∈ Z, l ≥ 0}

λ±klm = ±2π

√
1

H2
(k +

1

2
)2 +

1

L2
(l +

1

2
)2 +

1

S2
(m+ c− T

L
(l +

1

2
))2.

Let us once again assume that T = L.

Theorem 3.4.2 Let G2(b) and G2(d) be the Bieberbach manifolds R3/G2, with T = L

and with a spin structure with δi = {±1,−1, 1} and δi = {±1,−1,−1}, respectively. The

nonperturbative spectral action of the manifolds G2(b) and G2(d) is again of the form

Tr(f(D2/Λ2)) = HSL

(
Λ

2π

)3 ∫
R3

f(u2 + v2 + w2)dudvdw, (3.5)

up to terms of order O(Λ−∞).
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l

p

Figure 3.3: Lattice decomposition for G2(b), (d) computation. Two regions.

With the assumption that T = L, and letting p = m− l, we can describe the spectrum

equivalently by

I = {(k, l, p)|k, l, p ∈ Z, l ≥ 0}

λ±klp = ±2π

√
1

H2
(k +

1

2
)2 +

1

L2
(l +

1

2
)2 +

1

S2
(p+ c+

1

2
)2.

Using the symmetry

l 7→ −1− l,

we cover Z3 exactly, (see figure 3.3) and we obtain the spectral action

Tr(f(D2/Λ2)) = HSL

(
Λ

2π

)3 ∫
R3

f(u2 + v2 + w2)dudvdw +O(Λ−∞).

3.4.3 The case of G2(c)

In this case, the symmetric component of the spectrum is given by

I = {(k, l,m)|k, l,m ∈ Z,m ≥ 0}

λ±klm = ±2π

√
1

H2
(k +

1

2
)2 +

1

L2
l2 +

1

S2
((m+ 1/2)− T

L
l)2.
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Again, we assume T = L.

Theorem 3.4.3 Let G2(c) be the Bieberbach manifolds R3/G2, with T = L and with a

spin structure with δi = {±1, 1,−1}. The nonperturbative spectral action of the manifold

G2(c) is again of the form

Tr(f(D2/Λ2)) = HSL

(
Λ

2π

)3 ∫
R3

f(u2 + v2 + w2)dudvdw, (3.6)

up to terms of order O(Λ−∞).

If we substitute p = m − l, we see that we may equivalently express the symmetric

component with

I = {(k, l, p)|k, l, p ∈ Z, p ≥ −l}

λ±klp = ±2π

√
1

H2
(k +

1

2
)2 +

1

L2
l2 +

1

S2
((p+ 1/2)2.

Using the symmetry

l 7→ −l p 7→ 1− p,

we cover Z3 exactly (see figure 3.4), and so the spectral action is again given by

Trf(D2/Λ2) = HSL

(
Λ

2π

)3 ∫
R3

f(u2 + v2 + w2)dudvdw +O(Λ−∞).

3.5 The spectral action for G3

Consider the hexagonal lattice generated by vectors a1 = (0, 0, H), a2 = (L, 0, 0) and

a3 = (−1
2L,

√
3

2 L, 0), for H and L in R∗+. The Bieberbach manifold G3 is obtained by the

quotient of R3 by the group G3 generated by commuting translations ti along the vectors

ai and an additional generator α with relations

α3 = t1, αt2α
−1 = t3, αt3α

−1 = t−1
2 t−1

3 . (3.7)

This has the effect of producing an identification of the faces of the fundamental domain

with a turn by an angle of 2π/3 about the z-axis, hence the “third-turn space” terminology.

As shown in Theorem 3.3 of [63], the Bieberbach manifold G3 has two different spin
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p

Figure 3.4: Lattice decomposition for G2(c) computation. Two regions.

structures, parameterized by one sign δ1 = ±1. It is then shown in Theorem 5.7 of [63]

that these two spin structures have different Dirac spectra, which are denoted as G3(a) and

G3(b). We compute below the nonperturbative spectral action in both cases and we show

that, despite the spectra being different, they give the same result for the nonperturbative

spectral action, which is again a multiple of the action for the torus.

3.5.1 The case of G3(a) and G3(b)

The symmetric component of the spectrum is given by

I = {(k, l,m)|k, l,m ∈ Z, l ≥ 1,m = 0, . . . , l − 1}, (3.8)

λ±klm = ±2π

√
1

H2
(k + c)2 +

1

L2
l2 +

1

3L2
(l − 2m)2, (3.9)

with c = 1/2 for the spin structure (a) and c = 0 for the spin structure (b).

The manifold G3 is unusual in that the multiplicity of λ±klm is equal to twice the number

of elements in I which map to it.

Theorem 3.5.1 On the manifold G3 with an arbitrary choice of spin structure, the non-
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perturbative spectral action is given by

Tr(f(D2/Λ2)) =
1√
3

(
Λ

2π

)3

HL2

∫
R3

f
(
u2 + v2 + t2

)
dudvdt (3.10)

plus possible terms of order O(Λ−∞).

Notice that λ±klm is invariant under the linear transformations R,S, T , given by

R(l) = −l

R(m) = −m

S(l) = m

S(m) = l

T (l) = l −m

T (m) = −m

Let Ĩ = {(k, l,m)|k, l,m ∈ Z, l ≥ 2,m = 1, . . . , l − 1}.

Then we may decompose Z3 as (see figure 3.5)

Z3 = I tR(I) t S(I) tRS(I) t T (Ĩ) tRT (Ĩ) t {l = m}. (3.11)
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Therefore, we have

∑
Z3

f(λ2
klm/Λ

2) = 4
∑
I

f(λ2
klm/Λ

2)

+ 2

∑
I

f(λ2
klm/Λ

2)−
∑

m=0, l≥1

f(λ2
klm/Λ

2)


+
∑
l=m

f(λ2
klm/Λ

2)

= 6
∑
I

f(λ2
klm/Λ

2)−
∑
m=0

f(λ2
klm/Λ

2)

+
∑

m=0, l=0

f(λ2
klm/Λ

2) +
∑
l=m

f(λ2
klm/Λ

2)

∑
I

f(λ2
klm/Λ

2) =
1

6

(∑
Z3

f(λ2
klm/Λ

2) +
∑
m=0

f(λ2
klm/Λ

2)

)

− 1

6

 ∑
m=0, l=0

f(λ2
klm/Λ

2)−
∑
l=m

f(λ2
klm/Λ

2)

 .

Therefore the symmetric component of the spectrum contributes to the spectral action

4

6
(

(
Λ

2π

)3

HL2

∫
R3

f(u2 + v2 +
1

3
(v − 2w)2)

+

(
Λ

2π

)2

HL

∫
R2

f(u2 +
4

3
v2)−

(
Λ

2π

)
H

∫
R
f(u2)

−
(

Λ

2π

)2

HL

∫
R2

f(u2 +
4

3
v2)) +O(Λ−∞)

=
4

6

(
Λ

2π

3

HL2

∫
R3

f(u2 + v2 +
1

3
(v − 2w)2)− Λ

2π
H

∫
R
f(u2)

)
+O(Λ−∞).

Combining this with the asymmetric contribution (3.1), we see that the spectral action

of spaces G3(a) and G3(b) is equal to

2

3

(
Λ

2π

)3

HL2

∫
R3

f

(
u2 + v2 +

1

3
(v − 2w)2

)
dudvdw +O(Λ−∞).
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l

m

Figure 3.5: Lattice decomposition for G3 computation. Six regions and the set l = m.
The dashed lines indicate one of the boundary lines which define the region Ĩ along with
its images under the symmetries of λklm. The other boundary line of Ĩ overlaps with the
boundary of I.

Now, if one makes the change of variables (u, v, w) 7→ (u, v, t), where

t =
2w − v√

3
,

then the spectral action becomes

1√
3

(
Λ

2π

)3

HL2

∫
R3

f
(
u2 + v2 + t2

)
dudvdt+O(Λ−∞).

Notice that, a priori, one might have expected a possibly different result in this case,

because the Bieberbach manifold is obtained starting from a hexagonal lattice rather than

the square lattice. However, up to a simple change of variables in the integral, this gives

the same result, up to a multiplicative constant, as in the case of the standard flat torus.

3.6 The spectral action for G4

The Bieberbach manifold G4 is obtained by considering a lattice generated by the vectors

a1 = (0, 0, H), a2 = (L, 0, 0), and a3 = (0, L, 0), with H,L > 0, and taking the quotient of
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R3 by the group G4 generated by the commuting translations ti along the vectors ai and

an additional generator α with the relations

α4 = t1, αt2α
−1 = t3, αt3α

−1 = t−1
2 . (3.12)

This produces an identification of the sides of a fundamental domain with a rotation by an

angle of π/2 about the z-axis. Theorem 3.3 of [63] shows that the manifold G4 has four

different spin structures parameterized by two signs δi = ±1. There are correspondingly two

different forms of the Dirac spectrum, as shown in Theorem 5.7 of [63], one for δi = {±1, 1},

the other for δi = {±1,−1}, denoted by G4(a) and G4(b).

Again the nonperturbative spectral action is independent of the spin structure and equal

in both cases to the same multiple of the spectral action for the torus.

3.6.1 The case of G4(a)

Theorem 3.6.1 On the manifold G4 with a spin structure (a) with δi = {±1, 1}, the non-

perturbative spectral action is given by

Tr(f(D2/Λ2)) =
1

2

(
Λ

2π

)3

HL2

∫
R3

f(u2 + v2 + w2)dudvdw (3.13)

plus possible terms of order O(Λ−∞).

The symmetric component of the spectrum is given by

I = {(k, l,m)|k, l,m ∈ Z, l ≥ 1,m = 0, . . . , 2l − 1}

λ±klm = ±2π

√
1

H2
(k +

1

2
)2 +

1

L2
(l2 + (m− l)2).

First, we make the change of variables p = m− l. Then we use the symmetries

l 7→ −l

l 7→ p p 7→ l

l 7→ p p 7→ −l



32

l

p

Figure 3.6: Lattice decomposition for G4(a) computation. Four regions.

to cover all of Z3 except for the one-dimensional lattice {(k, l, p)|l = p = 0}. This decom-

position is depicted in figure 3.6. In the figure one sees that the points l = p such that

l < 0 are covered twice, and the points l = p such that l > 0 are not covered at all, but via

the transformation (l, p) 7→ −(l, p), this is the same as covering each of the points l = p,

l 6= 0 once. Observations like this will be suppressed in the sequel. Then we see that the

contribution from the symmetric component of the spectrum to the spectral action is

1

2

(
Λ

2π

)3

HL2

∫
R3

f(u2 + v2 + w2)dudvdw − 1

2

(
Λ

2π

)
H

∫
R
f(u2)du, (3.14)

up to terms of order O(Λ−∞). Combining this with the asymmetric component, we find

that the spectral action is given by (3.13).

3.6.2 The case of G4(b)

In this case there is no asymmetric component in the spectrum. The symmetric component

is given by the data

I = {(k, l,m)|k, l,m ∈ Z, l ≥ 1,m = 0, . . . , 2l − 2}
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λ±klm = ±2π

√
1

H2
(k +

1

2
)2 +

1

L2
((l − 1/2)2 + (m− l + 1/2)2).

We again obtain the same expression as in the G4(a) case for the spectral action.

Theorem 3.6.2 On the manifold G4 with a spin structure (b) with δi = {±1,−1}, the

non-perturbative spectral action is also given by

Tr(f(D2/Λ2)) =
1

2

(
Λ

2π

)3

HL2

∫
R3

f(u2 + v2 + w2)dudvdw (3.15)

up to possible terms of order O(Λ−∞).

We make the change of variables p = m− l. Using the symmetries

l 7→ 1− l

l 7→ p p 7→ l

l 7→ p p 7→ 1− l,

we can exactly cover all of Z3, as shown in figure 3.7 and so the spectral action has the

expression (3.15).

Remark 3.6.3 The technique we use here to sum over the spectrum to compute the non-

perturbative spectral action does not appear to work in the case of the Bieberbach manifold

G5, the quotient of R3 by the group G5 generated by commuting translations ti along the

vectors a1 = (0, 0, H), a2 = (L, 0, 0) and a3 = (1
2L,

√
3

2 L, 0), H,L > 0, and an additional

generator α with α6 = t1, αt2α
−1 = t3 and αt3α

−1 = t−1
2 t3, which produces an identi-

fication of the faces of the fundamental domain with a π/3-turn about the z-axis. It is

reasonable to expect that it will also give a multiple of the spectral action of the torus, with

a proportionality factor of HL2/(4
√

3).

3.7 The spectral action for G6

We analyze here the last remaining case of compact orientable Bieberbach manifold G6, the

Hantzsche–Wendt space, according to the terminology followed in [66]. This is the quotient
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Figure 3.7: Lattice decomposition for G4(b) computation. Four regions.

of R3 by the group G6 obtained as follows. One considers the lattice generated by vectors

a1 = (0, 0, H), a2 = (L, 0, 0), and a3 = (0, S, 0), with H,L, S > 0, and the group generated

by commuting translations ti along these vectors, together with additional generators α, β,

and γ with the relations

α2 = t1, αt2α
−1 = t−1

2 , αt3α
−1 = t−1

3 ,

β2 = t2, βt1β
−1 = t−1

1 , βt3β
−1 = t−1

3 ,

γ2 = t3, γt1γ
−1 = t−1

1 , γt2γ
−1 = t−1

2 ,

γβα = t1t3.

(3.16)

This gives an identification of the faces of the fundamental domain with a twist by an angle

of π along each of the three coordinate axes.

According to Theorems 3.3 and 5.7 of [63], the manifold G6 has four different spin

structures parameterized by three signs δi = ± subject to the constraint δ1δ2δ3 = 1, but all

of them yield the same Dirac spectrum, which has the following form.

The manifold G6 also has no asymmetric component to its spectrum, while the sym-

metric component is given by

I = {(k, l,m)|k, l,m ∈ Z, l ≥ 0, k ≥ 0}
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Figure 3.8: Lattice decomposition for G6 computation. Four regions.

λ±klm = ±2π

√
1

H2
(k +

1

2
)2 +

1

L2
(l +

1

2
)2 +

1

S2
(m+

1

2
)2.

We then obtain the following result.

Theorem 3.7.1 The Bieberbach manifold G6 with an arbitrary choice of spin structure has

nonperturbative spectral action of the form

Trf(D2/Λ2) =
1

2

(
Λ

2π

)3

HLS

∫
R3

f(u2 + v2 + w2)dudvdw (3.17)

up to terms of order O(Λ−∞).

Using the three transformations

k 7→ −k − 1,

l 7→ −l − 1,

k 7→ −k − 1 l 7→ −l − 1,

one exactly covers Z3, as seen in figure 3.8, and so we see that the nonperturbative spectral

action is given by (3.17).
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Chapter 4

Coset spaces of S3

4.1 Introduction

The spectral action is a functional which is defined on spectral triples (A,H, D) [15]. In

this paper, we only consider the commutative case of compact Riemannian spin manifolds.

For a spectral triple (A,H, D), the spectral action is defined to be

Trf(D/Λ), (4.1)

where f : R→ R is a test function, and Λ > 0.

A compact Riemannian spin manifold, M , may be viewed as a spectral triple by taking

A equal to C∞(M), H equal to L2(M,Σn), the Hilbert space of L2 spinor-valued functions

on M , and D equal to the canonical Dirac operator. Since we are considering compact

manifolds, the spectrum of the Dirac operator is discrete, and the meaning of the spectral

action becomes simply

Trf(D/Λ) =
∑

λ∈SpecD

f(λ/Λ).

We will be content in each case to determine the spectral action up to an error term which

is O(Λ−k) for any k > 0. We will use the notation O(Λ−∞) to denote such a term.

There is an asymptotic expansion for the spectral action in terms of heat invariants, valid

for large values of the parameter Λ, which is described in [16]. Since the heat invariants are

local, it follows that the asymptotic series is multiplicative under quotients. That is, if D is

the Dirac operator for a space X and D′ is the Dirac operator for X/H, where H is a finite

group acting freely on X, then the asymptotic expansion for Trf(D′/Λ) is equal to 1/|H|
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times the asymptotic expansion for Trf(D/Λ). In [16], Chamseddine and Connes obtain a

nonperturbative expression for the spectral action of the round 3-sphere, S3 = SU(2). In

the computation below we obtain a nonperturbative expression for the spectral action for

SU(2)/Γ, where Γ is a finite subgroup of SU(2) and this expression is a multiple of 1/|Γ|

of the expression derived in [16], and so the nonperturbative expressions satisfy the same

relation as the asymptotic expansions.

In this paper, we only consider one spin structure for each space, which we call the trivial

spin structure. In general the Dirac spectrum depends on the choice of spin structure, so

it would appear at first glance that the spectral action would also depend on the choice of

spin structure. However, the asymptotic expansion of the spectral action does not depend

on the choice of spin structure and so any such dependence must disappear as Λ goes to

infinity.

The method used to compute the spectral action is a very slight modification to the one

used in [16]. First, one computes the Dirac spectrum and decomposes the spectrum into a

number of arithmetic progressions and finds a polynomial which describes the multiplicities

for each arithmetic progression. Then one obtains a nonperturbative expression for the

spectral action by using the Poisson summation formula.

This nonperturbative form of the spectral action of a three-dimensional space-like section

of spacetime was used in the investigation, [50], on questions of cosmic topology. This

application motivated the computations in this paper.

Up to conjugacy is it well-known that the finite subgroups of SU(2) all lie in the following

list.

• cyclic group, order N , N = 1, 2, 3, . . .

• dicyclic group, order 4N , N = 2, 3, . . .

• binary tetrahedral group

• binary octahedral group

• binary icosahedral group.

The main result is the following:
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Theorem 4.1.1 Let Γ be any finite subgroup of SU(2), then if D is the canonical Dirac

operator on SU(2)/Γ equipped with the round metric and trivial spin structure, the spectral

action is given by

Tr(f(D/Λ)) =
1

|Γ|

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞). (4.2)

In sections 4.4–4.7, we compute the Dirac spectrum for SU(2)/Γ equipped with the

Berger metric, and the trivial spin structure, and the spectral action for SU(2)/Γ equipped

with the round metric and trivial spin structure, where Γ is cyclic or dicyclic. In sections 4.2

and 4.3 we review the results and definitions needed to perform the computation, following

the reference [5].

In sections 4.9, and 4.10 we compute the Dirac spectrum and spectral action in the case

where Γ is the binary tetrahedral group and binary octahedral group respectively. For these

two cases, we switch to the method of generating functions [4], because the representation

theoretic calculations become difficult. This method gives us the spectrum for the round

metric only. Again, we only consider the trivial spin structure. We review the key results

needed for the computation in section 4.8.

In section 4.11 we compute the Dirac spectrum and spectral action in the case where

Γ is the binary icosahedral group. We correct the expression of the Dirac spectrum found

in [50]. The expression for the spectral action derived here is the same as the one found in

[50].

There are two methods used to compute Dirac spectra, one which uses the representation

theory of SU(2) and one which uses generating functions. It is comforting to note that when

both methods were used to compute the Dirac spectrum of a dicyclic space, they yielded

the same answer.

In [31], the Dirac spectrum for SU(2)/Q8 was computed for every possible choice of

homogeneous Riemannian metric, and spin sructure. Q8 is the quaternion group of order

8, which is the same thing as the dicyclic group with parameter N = 2.

In this paper, we take the least element of N to be zero.
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4.2 Spin structures on homogeneous spaces

In this section we recall, for convenience, some facts about spin structures on homogeneous

spaces appearing in [5].

In what follows, M = G/H is an n-dimensional oriented Riemannian homogeneous

space, where G is a simply connected Lie group.

In this case, the principal SO(n)-bundle of oriented orthonormal frames over M takes

a simple form. Let V be the tangent space of H ∈ G/H, and let

α : H → SO(V )

be the isotropy representation induced by the action of H on G/H by left multiplication.

If we choose an oriented orthonormal basis of V , then we obtain a representation of H into

SO(n), which we also denote by α. The bundle of oriented orthonormal frames may be

identified with G×α SO(n), that is the space of pairs [g,A], g ∈ G, A ∈ SO(n), where one

has the equivalence relation

[g,A] = [gh, α(h−1)A], h ∈ H. (4.3)

Let π : G→ G/H be the projection map, and let p = π(e). The identification of G×αSO(n)

with the bundle of oriented frames is given by the formula

(g,A) 7→ dg(p) · b ·A, (4.4)

where b = (X1, X2, . . . , Xn) is our chosen basis of V .

The spin structures of M are in one-to-one correspondence with the lifts α′ : H →

Spin(n) satisfying

Θ ◦ α′ = α,

where Θ : Spin(n)→ SO(n) is the universal double covering map of SO(n). One associates

α′ to the principal Spin(n)-bundle G×α′ Spin(n). The right action of Spin(n) is given by

[g,Λ1] · Λ2 = [g,Λ1Λ2], (4.5)
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and the covering map onto the frame bundle is given by

[g,Λ] 7→ [g,Θ(Λ)]. (4.6)

In this paper we take G = SU(2) ∼= Spin(3), and for any subgroup Γ ⊂ SU(2), one

always has the spin structure corresponding to the identity map ι : SU(2)→ Spin(3), which

lifts the isotropy homomorphism α. We call this spin structure the trivial spin structure.

4.3 Dirac operator on homogeneous spaces

In the case where Γ is the cyclic or dicyclic group, we shall compute the spectrum of the

Dirac operator for the one-parameter family of Berger metrics. The key result that we use

is the following.

Let Σα′M denote the spinor bundle corresponding to the spin structure α′. Let ρ :

Spin(n) → U(Σn) be the spinor representation. Let Ĝ denote the set of irreducible repre-

sentations, πγ : G → GL(Vγ), of G up to equivalence. Let g be the Lie algebra of G. We

decompose g as h ⊕ p where h is the Lie algebra of H and p is an AdH-invariant subspace

of g.

Theorem 4.3.1 ([5], Theorem 2 and Proposition 1) The representation of the Dirac

operator on L2(M,Σα′M) is equivalent to

⊕
γ∈ĜVγ ⊗HomH(Vγ ,Σn).

Here, H acts on Vγ as the representation γ dictates, and on Σn via ρ◦α′. The Dirac operator

acts on the summand Vγ ⊗HomH(Vγ ,Σn) as id⊗Dγ, where given A ∈ HomH(Vγ ,Σn),

Dγ(A) := −
n∑
k=1

ek ·A ◦ (πγ)∗(Xk) +

 n∑
i=1

βiei +
∑
i<j<k

αijkei · ej · ek

 ·A. (4.7)

Here, ei denotes the standard basis for Rn, acting on spinors via Clifford multiplication,

βi =
1

2

n∑
j=1

〈[Xj , Xi]p, Xj〉, (4.8)
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αijk =
1

4
(〈[Xi, Xj ]p, Xk〉+ 〈[Xj , Xk]p, Xi〉+ 〈[Xk, Xi]p, Xj〉). (4.9)

The notation Yp denotes the projection of Y ∈ g onto p with kernel h, and the angle brackets

denote the pairing of tangent vectors via the Riemannian metric.

Let Vn ∈ ŜU(2) be the n+1-dimensional irreducible representation of SU(2) of complex

homogeneous polynomials in two variables of degree n. When G = SU(2), H is a finite

subgroup of SU(2), and G/H is equipped with the Berger metric corresponding to the

parameter T > 0, 4.7 becomes (see [5], section 5)

DnA = −
∑
k

ek ·A · (πn)∗(Xk)−
(
T

2
+

1

T

)
.

Let D′n denote the part

−
∑
k

Ek ·A · (πn)∗(Xk). (4.10)

Let Pk ∈ Vn be the basis polynomial

Pk(z1, z2) = zn−k1 zk2 . (4.11)

Now, we take Ak, Bk, k = 0, 1, . . . , n to be the basis for HomC(Vn,Σ3):

Ak(Pl) =



 1

0

 , if k = l, k is even

 0

1

 , if k = l, k is odd

0, otherwise

Bk(Pl) =



 0

1

 , if k = l, k is even

 1

0

 , if k = l, k is odd

0, otherwise
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We have the following formulas for D′n (see [5]):

D′nAk =
1

T
(n− 2k)Ak + 2(k + 1)Ak+1, k even

D′nAk = 2(n+ 1− k)Ak−1 +
1

T
(2k − n)Ak, k odd

D′nBk = 2(n+ 1− k)Bk−1 +
1

T
(2k − n)Bk, k even

D′nBk =
1

T
(n− 2k)Bk + 2(k + 1)Bk+1, k odd.

The formulas remain valid when k = 0 and k = n, provided that we take A−1 = An+1 =

B−1 = Bn+1 = 0.

4.4 Dirac spectra for lens spaces with Berger metric

In this section we compute the Dirac spectrum on lens spaces equipped with the Berger

metric and the trivial spin structure. This calculation corrects the corresponding one in [5].

To proceed, we need to determine which linear transformations, f ∈ HomC(Vn,Σ3) are

ZN -linear. A C-linear map f is ZN -linear if and only if f commutes with a generator of

ZN . We take

B =

 e
2πi
N 0

0 e
−2πi
N


to be our generator, and we define

 f1k

f2k

 := f(Pk). (4.12)

Since we are considering the trivial spin structure corresponding to the inclusion map

ι : ZN → SU(2), f is ZN linear if and only if

f ◦ πn(B) = ι(B) ◦ f,

which leads to the identity

 f1k

f2k

 =

 e2πi 2k−n+1
N f1k

e2πi 2k−n−1
N f2k

 .
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It follows that HomZN (Vn,Σ3) has the following basis:

{Ak : k =
mN + n− 1

2
∈ {0, 1, . . . , n},m ∈ Z, k even}

∪ {Bk : k =
mN + n− 1

2
∈ {0, 1, . . . , n},m ∈ Z, k odd}

∪ {Ak : k =
mN + n+ 1

2
∈ {0, 1, . . . , n},m ∈ Z, k odd}

∪ {Bk : k =
mN + n+ 1

2
∈ {0, 1, . . . , n},m ∈ Z, k even}.

With the basis in hand, let us now compute the spectrum.

N even

First let us consider the case N ≡ 0 mod 4.

In this case, mN+n−1
2 is an integer precisely when n is odd. In particular, this means

that HomZN (Vn,Σ3) is trivial if n is even.

If n ≡ 1 mod 4, and m is an integer, satisfying

−n ≤ mN − 1 < n, (4.13)

then

k =
mN + n− 1

2
(4.14)

is an even integer between 0 and n − 1, inclusive. Since k is strictly less than n, Ak+1

is not equal to 0. Therefore Ak and Ak+1 lie in HomZN (Vn,Σ3), and span an invariant

two-dimensional subspace of D′n. With respect to these two vectors, D′n has the matrix

expression  1
T (n− 2k) 2(n+ 1− (k + 1))

2(k + 1) 1
T (2(k + 1)− n)

 , (4.15)

which has eigenvalues

λ =
1

T
±

√
(1 + n)2 +m2N2

(
1

T 2
− 1

)
. (4.16)

Now let us consider the case n ≡ 3 mod 4. In this case, if 4.13 and 4.14 hold then k is
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an odd integer between 0 and n− 1 inclusive, Bk and Bk+1 lie in HomZN (Vn,Σ3), and span

an invariant subspace of Dn. Bk+1 is not equal to 0, and with respect to these two vectors

D′n once again has the matrix expression given by Equation 4.15, with eigenvalues given by

Equation 4.16.

If

mN − 1 = n, m = 1, 2, . . . , (4.17)

then B0, and Bn are eigenvectors of D′n with eigenvalue

λ = −n
T

=
1−mN

T
. (4.18)

In the case N ≡ 2 mod 4, the analysis proceeds exactly as when N ≡ 0 mod 4, except

for a few minor changes which do not alter the spectrum. Namely, for n ≡ 1 mod 4, it

is Bk, Bk+1 which span an invariant subspace of D′n, not Ak, Ak+1, and for n ≡ 3 mod 4,

Ak, Ak+1 span an invariant subspace of D′n, not Bk, Bk+1.

To determine the spectrum of D we just need to add −T
2 −

1
T to D′n, which just shifts

the eigenvalues, and then tensor with idVn which just multiplies the multiplicities by n+ 1.

To summarize we have the following.

Theorem 4.4.1 If N is even, then the Dirac operator on the lens space LN equipped with

the Berger metric corresponding to parameter T > 0, and the trivial spin structure has the

following spectrum:

λ multiplicity

{−T
2 ±

√
(1 + n)2 +m2N2

(
1
T 2 − 1

)
|

n ∈ 2N + 1,m ∈ Z,−n ≤ mN − 1 < n} n+ 1

{−T
2 −

mN
T |m ∈ N} 2mN

.

Note that the second row of the table corresponds to the case n = mN − 1, in which

case, n+ 1 = mN , which accounts for the factor of mN in the multiplicity.

N odd

In contrast to the case where N is even, HomZN (Vn,Σ3) may be nontrivial whether n is

even or odd.

As in the case when N is even, if 4.13 and 4.14 hold, then one of Ak, Ak+1, or Bk, Bk+1
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spans a two-dimensional invariant subspace of D′n, where D′n has matrix expression (4.15)

and eigenvalues (4.16).

When n is even, k is an integer if and only if m is odd. On the other hand, when n is

odd, k is an integer if and only if m is even.

If n = mN − 1, where m is a positive integer, then B0 and either Bn or An, (depending

on whether n is even or odd) are eigenvectors of D′n each with eigenvalue − n
T = 1−mN

T .

We have shown the following.

Theorem 4.4.2 If N is odd, then the Dirac operator on the lens space LN equipped with

the Berger metric corresponding to parameter T > 0 and the trivial spin structure has the

following spectrum:

λ multiplicity

{−T
2 ±

√
(1 + n)2 +m2N2

(
1
T 2 − 1

)
|

(n ∈ 2N + 1,m ∈ 2Z) or

(n ∈ 2N,m∈ 2Z + 1), −n ≤ mN − 1 < n} n+ 1

{−T
2 −

mN
T |m ∈ N } 2mN

.

4.5 Spectral action of round lens spaces

The Berger metric corresponding to T = 1 is the round metric. By substituting T = 1 into

Theorems 4.4.1 and 4.4.2, we obtain the following expressions for the Dirac spectrum.

If N is even, then the Dirac operator on the lens space LN equipped with the round

metric has the following spectrum:

λ multiplicity

{−3
2 − n,

1
2 + n|

n ∈ 2N + 1,m ∈ Z,−n ≤ mN − 1 < n} n+ 1

{−1
2 −mN |m ∈ N} 2mN

. (4.19)

If N is odd, then the Dirac operator on the lens space LN equipped with the round

metric has the following spectrum:
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λ multiplicity

{−3
2 − n,

1
2 + n|

(n ∈ 2N + 1,m ∈ 2Z) or

(n ∈ 2N,m ∈ 2Z + 1), −n ≤ mN − 1 < n} n+ 1

{−1
2 −mN |m ∈ N} 2mN

. (4.20)

However, these are not the simplest expressions for the spectra. In this special case,

the eigenvalues in the first row of the spectrum no longer depend on m, so we should count

the values of m which satisfy the inequality as a function of n in order to eliminate the

dependence of the spectrum on m.

4.5.1 Round metric, T = 1

N even

Let us write n = kN + 2s+ 1, for s ∈ {0, 1, 2, . . . N−2
2 }, and k ∈ N (recall that n is always

odd in this case). Then we may replace the inequality

−n ≤ mN − 1 < n

by the inequality

−kN ≤ mN ≤ kN,

where −kN and kN are respectively the minimum and maximum values of mN which

satisfy the inequalities. From these new inequalities, it is clear that there are 2k+ 1 values

of m satisfying them.

We now have the following form of the Dirac spectrum, which is still not quite the

definitive form.

λ multiplicity

{3
2 + kN + 2s|k ∈ N, s ∈ {0, 1, . . . , N−2

2 }} (2k + 1)(kN + 2s+ 2)

{−5
2 − k

′N − 2s′|k′ ∈ N, s′ ∈ {0, 1, . . . , N−2
2 }} (2k′ + 1)(k′N + 2s′ + 2)

{−1
2 −mN |m ∈ N} 2mN

. (4.21)
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The definitive form of the spectrum of the lens space LN equipped with the round

metric, with N even, is obtained when one realizes that the first row of table 4.21 already

completely describes the spectrum as soon as one lets the parameter k take values in all of

Z as opposed to just in N. To see that this is indeed the case, one absorbs the third row

into the second row by making the substitution m = k′+ 1, which affects the multiplicity of

the second row only in the case s = N−2
2 . Next, one shows that when k is allowed to take

values in all of Z, one combines the parts of the spectra corresponding to s and s′, when

s + s′ = N−4
2 if s and s′ are less than N−4

2 and when s = s′ = N−2
2 otherwise. As a result

we have the following corollary.

Corollary 4.5.1 If N is even then the Dirac operator on the lens space LN equipped with

the round metric has the following spectrum:

λ multiplicity

{3
2 + kN + 2s|k ∈ Z, s ∈ {0, 1, . . . , N−2

2 }} (2k + 1)(kN + 2s+ 2)
.

N odd

The corresponding expression in the case N odd is only slightly more complicated. Here,

we need to divide our analysis according to whether n is even/odd, and k is even/odd. We

write

n = kN + j, j ∈ {0, 1, 2, . . . , N − 1}, k ∈ N. (4.22)

Suppose n is odd. Then if k is even, one can see that there are k + 1 even values of m

satisfying the inequalities 4.13. If k is odd, then there are k such values of m.

If n is even, then when k is even there are k odd values of m satisfying the inequalities,

and if k is odd, there are k + 1 such values of m.

Therefore, we have the following expression for the Dirac spectrum in the round, odd

case.

If N is odd, then the Dirac operator on the lens space LN equipped with the round

metric has the following spectrum:
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λ multiplicity

{−5−4aN−4b
2 |a ∈ N, b ∈ {0, . . . N−3

2 }} (2a+ 1)(2aN + 2b+ 2)

{3+4aN+4b
2 |a ∈ N, b ∈ {0, . . . N−3

2 }} (2a+ 1)(2aN + 2b+ 2)

{−3−(4a+2)N−4b
2 |a ∈ N, b ∈ {0, . . . N−1

2 }} (2a+ 1)((2a+ 1)N + 2b+ 1)

{1+(4a+2)N+4b
2 |a ∈ N, b ∈ {0, . . . N−1

2 }} (2a+ 1)((2a+ 1)N + 2b+ 1)

{−3−4aN−4b
2 |a ∈ N, b ∈ {0, . . . N−1

2 }} 2a(2aN + 2b+ 1)

{1+4aN+4b
2 |a ∈ N, b ∈ {0, . . . N−1

2 }} 2a(2aN + 2b+ 1)

{−5−(4a+2)N−4b
2 |a ∈ N, b ∈ {0, . . . N−3

2 }} (2a+ 2)((2a+ 1)N + 2b+ 2)

{−5−(4a+2)N−4b
2 |a ∈ N, b ∈ {0, . . . N−3

2 }} (2a+ 2)((2a+ 1)N + 2b+ 2)

{3+(4a+2)N+4b
2 |a ∈ N, b ∈ {0, . . . N−3

2 }} (2a+ 2)((2a+ 1)N + 2b+ 2)

{−1
2 −mN |m ∈ N} 2mN

. (4.23)

Just as in the even case, we can simplify the expression 4.23 by combining rows. The

last row can be split into two parts and combined with the third and fifth rows, altering

the multiplicity in each case for b = N−1
2 . Then, the first and fourth rows, second and

third rows, fourth and eight rows, and fifth and sixth rows may be combined by letting the

parameter a run over all of Z instead of just N. The definitive form of the spectrum in the

odd case is given by the following corollary.

Corollary 4.5.2 If N is odd then the Dirac operator on the lens space LN equipped with

the round metric has the following spectrum:

λ multiplicity

{3+4aN+4b
2 |a ∈ Z, b ∈ {0, . . . N−3

2 }} (2a+ 1)(2aN + 2b+ 2)

{1+(4a+2)N+4b
2 |a ∈ Z, b ∈ {0, . . . N−1

2 }} (2a+ 1)((2a+ 1)N + 2b+ 1)

{1+4aN+4b
2 |a ∈ Z, b ∈ {0, . . . N−1

2 }} 2a(2aN + 2b+ 1)

{3+(4a+2)N+4b
2 |a ∈ Z, b ∈ {0, . . . N−3

2 }} (2a+ 2)((2a+ 1)N + 2b+ 2)

.

4.5.2 Computing the spectral action

First we consider the case where N is even. For s ∈ {0, 1, 2, . . . N−2
2 }, define

Ps(u) =
−3 +N − 4s− 4u+ 2Nu− 8su+ 4u2

2N
.
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Then, Ps(λ) equals the multiplicity of

λ = 3/2 + kN + 2s. (4.24)

Moreover, we have the following identity:

N−2
2∑

s=0

Ps(u) = −1

4
+ u2. (4.25)

Now to compute the spectral action, we proceed as in [16], and use the Poisson summa-

tion formula, except here we sum over N−2
2 arithmetic progressions instead of just one.

The Poisson summation formula is given by

∑
Z
h(k) =

∑
Z
ĥ(x), (4.26)

where our choice of the Fourier transform is

ĥ(x) =

∫
R
h(u)e−2πiuxdu. (4.27)

In each instance of a spectral action computation below, we encounter the situation

described by the following lemma:

Lemma 4.5.3 Let f ∈ S(R) be a Schwarz function, and let P (u) =
∑n

j=0 cku
j be a poly-

nomial. Define g(u) = P (u)f(u/Λ), h(u) = g(a+ uM), for real constants a and M , then

∑
Z
h(u) =

1

M

n∑
j=0

Λj+1cj f̂
(j)(0) +O(Λ−∞),

where f̂ (j) is the Fourier transform of vjf(v).
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Furthermore,

ĥ(k) =

∫
h(x)e−2πixkdx

=

∫
g(a+ xM)e−2πixkdx

=
1

M
(e

2πia
M )k

∫
g(v)e2πi vk

M dv

=
1

M
(e

2πia
M )kĝ(k/M).

Since f ∈ S(R), so too are the functions f̂ (j) and so we have the estimate as Λ approaches

plus infinity,

∑
k 6=0

|ĥ(k)| =
∑
k 6=0

1

M
|ĝ(k/M)|

≤
n∑
j=0

|cj |Λj+1
∑
k 6=0

|f̂ (j)(kΛ/M)|


= O(Λ−∞).

On the other hand,

ĥ(0) =
1

M
ĝ(0) =

1

M

∫
P (v)f(

v

Λ
)dv

=
1

M

n∑
j=0

cj

∫
vjf(

v

Λ
)dv

=
1

M

n∑
j=0

Λj+1cj f̂
(j)(0).

Now one applies Lemma 4.5.3 and the identity 4.25 to compute the spectral action of

the round lens spaces for N even:

Tr(f(D/Λ)) =

N−2
2∑

s=0

∑
k∈Z

Ps(
3

2
+ kN + s)f((

3

2
+ kN + s)/Λ)

=
1

N

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞).
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In the case where N is odd, the interpolating polynomials are collected in the following

table.

Pb(u) = −3−4b+2N−4u−8bu+4Nu+4u2

4N , b ∈ {0, 1, . . . N−3
2 }

Qb(u) = −1−4b−8bu+4u2

4N , b ∈ {0, 1, . . . N−1
2 }

Rb(u) = −1−4b−8bu+4u2

4N , b ∈ {0, 1, . . . N−1
2 }

Sb(u) = −3−4b+2N−4u−8bu+4Nu+4u2

4N , b ∈ {0, 1, . . . N−3
2 }

.

With these polynomials in hand, we obtain the identity,

N−3
2∑
j=0

Pj +

N−1
2∑
j=0

Qj +

N−1
2∑
j=0

Rj +

N−3
2∑
j=0

Sj = −1

2
+ 2u2. (4.28)

Then using Lemma 4.5.3 and equation 4.28 we see that

Tr(f(D/Λ)) =
1

2N

(
2Λ3f̂ (2)(0)− 1

2
Λf̂(0)

)
+O(Λ−∞) (4.29)

=
1

N

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞). (4.30)

We have shown the following:

Theorem 4.5.4 For each N = 1, 2, 3, . . . the spectral action on the round lens space LN ,

with the trivial spin structure is given by

Tr(f(D/Λ)) =
1

N

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞).

4.6 Dirac spectra for dicyclic spaces with Berger metric

Here we consider the space forms S3/Γ, where Γ ⊂ SU(2) is the binary dihedral group, or

dicyclic group, concretely generated by the elements B and C, where

B =

 e
πi
N 0

0 e
−πi
N

 ,

and

C =

 0 1

−1 0

 .
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First we consider the trivial spin structure corresponding to the inclusion ι : Γ→ SU(2).

Therefore, a linear map f ∈ HomC(Vn,Σ3) is Γ-linear, if f in addition satisfies the conditions

f ◦ πn(B) = ι(B) ◦ f, (4.31)

and

f ◦ πn(C) = ι(C) ◦ f. (4.32)

We once again use the notation of Equation 4.12, whence the Equations 4.31 and 4.32

become the set of conditions

f1k = e
iπ
N

(2k−n+1)f1k, (4.33)

f2k = e
iπ
N

(2k−n−1)f2k, (4.34)

f1k = (−1)n−k+1f2(n−k), (4.35)

f2k = (−1)n−kf1(n−k). (4.36)

These conditions imply that for k ∈ {0, 1, . . . , n}, f1k = 0 unless 2k−n+1
2N is an integer

and f2k = 0 unless 2k−n−1
2N is an integer.

When performing our analysis for the dicyclic group of order 4N , we need to break up

our analysis into the cases N even, and N odd.

N even

Suppose
2k − n+ 1

2N
= m ∈ Z. (4.37)

Then

k =
2mN + n− 1

2
. (4.38)

k is an integer precisely when n is odd. Therefore, we only need to consider the cases

n ≡ 1, 3 mod 4.

First, if n ≡ 1 mod 4, one deduces from conditions 4.33 – 4.36 that for each integer m
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such that

−n ≤ 2mN − 1 < −1, (4.39)

v1 = Ak +An−k (4.40)

and

v2 = Ak+1 +An−k−1 (4.41)

span an invariant two-dimensional subspace of D′n. With respect to the ordered pair (v1, v2),

D′n has the familiar matrix expression 4.15, which gives the eigenvalues

1

T
±

√
(1 + n)2 + 4m2N2

(
1

T 2
− 1

)
, (4.42)

which are slightly different from those given in equation 4.16, the difference being due to

the fact that the relationship between k and m is slightly different. When 2mN − 1 = −1,

i.e. when m = 0, then

k =
2mN + n− 1

2
=
n− 1

2
, (4.43)

and Ak +An−k is an eigenvector with eigenvalue

λ =
1

T
+ n+ 1. (4.44)

Now suppose n ≡ 3 mod 4. This case is very similar to the case n ≡ 1 mod 4. In this case,

for each integer m such that 4.39 holds,

v1 = Bk −Bn−k (4.45)

and

v2 = Bk+1 −Bn−k−1 (4.46)

form an invariant two-dimensional subspace of D′n. Once again, with respect to the pair

(v1, v2), D′n has the matrix expression 4.15. When

2mN − 1 = −1, (4.47)

Bk −Bn−k is an eigenvector of D′n with eigenvalue 1
T − (n+ 1).
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The only remaining case is when

n = 2mN − 1, (4.48)

in which case k = n, and Bn −B0 is an eigenvector of eigenvalue −nT .

As in the lens space case, to determine the spectrum of the Dirac operator, we simply

shift the spectrum of D′n by −T
2 −

1
T and multiply the multiplicities by n+ 1.

Therefore we see that if N is even, then the Dirac operator on the dicyclic space S3/Γ

equipped with the Berger metric corresponding to parameter T > 0, and the trivial spin

structure has the following spectrum:

λ multiplicity

{−T
2 ±

√
(1 + n)2 + 4m2N2

(
1
T 2 − 1

)
|

n ∈ 2N + 1,m ∈ Z,−n ≤ 2mN − 1 < −1} n+ 1

{−T
2 + n+ 1|n ∈ N, n ≡ 1(4)} n+ 1

{−T
2 − (n+ 1)|n ∈ N, n ≡ 3(4)} n+ 1

{−T
2 −

2mN
T |m ∈ N} 2mN

. (4.49)

N odd

Now let us consider the case where N is odd. Unlike the case of lens spaces, the expression

for the spectrum is the same whether N is even or odd. As in the case where N is even,

k is an integer only when n is odd, which means that HomΓ(Vn,Σ3) is trivial unless n

is odd. So suppose n is odd. For every integer m such that 4.39 holds either the set

{Ak + An−k, Ak+1 + An−k−1} or the set {Bk − Bn−k, Bk+1 − Bn−k−1} span an invariant

two-dimensional subspace for D′n, when k is even or odd respectively. The eigenvalues of

each two dimensional subspace are given once again by expression 4.42. Exactly as in the

case when N is even, for each n ≡ 1(4),

An−1
2

+An+1
2

(4.50)

is an eigenvector of eigenvalue 1
T + n+ 1, and for each n ≡ 3(4),

Bn−1
2
−Bn+1

2
(4.51)
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is an eigenvector of eigenvalue 1
T − (n + 1). For each m ∈ N, Bn − B0 is an eigenvector of

eigenvalue 1
T −

n+1
T . These eigenvectors form a basis of HomΓ(Vn,Σ3), and we see that the

spectrum has the same expression as when N is even.

Theorem 4.6.1 Let Γ be the dicyclic group of order 4N . The Dirac operator on the dicyclic

space S3/Γ equipped with the Berger metric corresponding to parameter T > 0, and the

trivial spin structure has the following spectrum:

λ multiplicity

{−T
2 ±

√
(1 + n)2 + 4m2N2

(
1
T 2 − 1

)
|

n ∈ 2N + 1,m ∈ Z,−n ≤ 2mN − 1 < −1} n+ 1

{−T
2 + n+ 1|n ∈ N, n ≡ 1(4)} n+ 1

{−T
2 − (n+ 1)|n ∈ N, n ≡ 3(4)} n+ 1

{−T
2 −

2mN
T |m ∈ N} 2mN

.

4.7 Spectral action of round dicyclic space

4.7.1 Round metric, T=1

Substituting T = 1 into Theorem 4.6.1, we obtain the spectrum for dicyclic space equipped

with the round metric:

λ multiplicity

{−3
2 − n|n ∈ 2N + 1,m ∈ Z,−n ≤ 2mN − 1 < −1} n+ 1

{1
2 + n|n ∈ 2N + 1,m ∈ Z,−n ≤ 2mN − 1 < −1} n+ 1

{1
2 + n|n ∈ N, n ≡ 1(4)} n+ 1

{−3
2 − n|n ∈ N, n ≡ 3(4)} n+ 1

{−1
2 − 2mN |m = 1, 2, 3, . . .} 2mN

.

Now, we may write n ∈ 2N + 1 uniquely as

n = 2kN + 2s+ 1, k ∈ N, s ∈ {0, 1, 2, . . . N − 1}. (4.52)
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Then the inequality 4.39 becomes

−2kN − 2s− 1 ≤ 2mN − 1 < −1

−2kN − 2s ≤ 2mN < 0

−2kN ≤ 2mN < 0

−k ≤ m < 0,

whence we see that there are k integer values of m satisfying the inequality. Therefore we

may rewrite the spectrum as follows:

λ multiplicity

{3
2 + 2kN + 2s|k ∈ N, s ∈ {0, 1, . . . , N − 1}} (2kN + 2s+ 2)k

{−5
2 − 2kN − 2s|k ∈ N, s ∈ {0, 1, . . . , N − 1}} (2kN + 2s+ 2)k

{1
2 + n|n ∈ N, n ≡ 1(4)} n+ 1

{−3
2 − n|n ∈ N, n ≡ 3(4)} n+ 1

{−1
2 − 2mN |m = 1, 2, 3, . . .} 2mN

. (4.53)

In order to find the definitive form of the spectrum, we must first analyze the rows into

commensurable parts. To do the analysis we need to consider the cases where N is odd and

N is even separately.

N even

In this case, the third and fourth rows of 4.53 may be decomposed into N/2 parts and

written as

λ multiplicity

{3
2 + 2kN + 2s|k ∈ N, s ∈ {0, 1, . . . , N − 1}, s even} 2kN + 2s+ 2

{−5
2 − 2kN − 2s|k ∈ N, s ∈ {0, 1, . . . , N − 1}, s odd} 2kN + 2s+ 2

. (4.54)

The fifth row of 4.53 can be combined with the case of s = N − 1 in the second row.

Combining the rows together yields the following expression for the spectrum in the even

case:



57

λ multiplicity

{3
2 + 2kN + 2s|k ∈ N, s ∈ {0, 2, . . . , N − 2}} (2kN + 2s+ 2)(k + 1)

{3
2 + 2kN + 2s|k ∈ N, s ∈ {1, 3, . . . , N − 1}} (2kN + 2s+ 2)k

{−5
2 − 2kN − 2s|k ∈ N, s ∈ {0, 2, . . . , N − 2}} (2kN + 2s+ 2)k

{−5
2 − 2kN − 2s|k ∈ N, s ∈ {1, 3, . . . , N − 3}} (2kN + 2s+ 2)(k + 1)

{−1
2 − 2kN − 2N |k ∈ N} (2kN + 2N)(k + 2)

. (4.55)

At this point it is easy to check that the first two rows of 4.55 describe the entire spectrum

if k takes values in all of Z, in which case the second row accounts for the third row, and

the first row accounts for the fourth and fifth rows. Writing s alternately as 2t and 2t+ 1

we obtain the following definitive form of the spectrum in the even case.

Corollary 4.7.1 If N is even then the Dirac operator on the dicyclic space SU(2)/Γ, where

Γ is the dicyclic group of order 4N , N ≥ 2, equipped with the round metric and trivial spin

structure has the following spectrum:

λ multiplicity

{3
2 + 2kN + 4t|k ∈ Z, t ∈ {0, 1, . . . , N−2

2 }} (2kN + 4t+ 2)(k + 1)

{7
2 + 2kN + 4t|k ∈ Z, t ∈ {0, 1, . . . , N−2

2 }} (2kN + 4t+ 4)k

.

N odd

By writing k alternately as 2a, and 2a+1, and also by writing s alternately as 2t and 2t+1,

the first two rows of 4.53 may be written respectively as



58

λ multiplicity

{3+8aN+8t
2 |a ∈ N, t ∈ {0, . . . , N−1

2 }} (4aN + 4t+ 2)(2a)

{7+8aN+8t
2 |a ∈ N, t ∈ {0, . . . , N−3

2 }} (4aN + 4t+ 4)(2a)

{3+8aN+4N+8t
2 |a ∈ N, t ∈ {0, . . . , N−1

2 }} (4aN + 2N + 4t+ 2)(2a+ 1)

{7+8aN+4N+8t
2 |a ∈ N, t ∈ {0, . . . , N−3

2 }} (4aN + 2N + 4t+ 4)(2a+ 1)

{−5−8aN−8t
2 |a ∈ N, t ∈ {0, . . . , N−3

2 }} (4aN + 4t+ 2)(2a)

{−1−8aN−4N
2 |a ∈ N} 4a(1 + 2a)N

{−9−8aN−8t
2 |a ∈ N, t ∈ {0, . . . , N−3

2 }} (4aN + 4t+ 4)(2a)

{−5−8aN−4N−8t
2 |a ∈ N, t ∈ {0, . . . , N−3

2 }} (4aN + 2N + 4t+ 2)(2a+ 1)

{−1−8aN−8N
2 |a ∈ N} 4(1 + a)(1 + 2a)N

{−9−8aN−4N−8t
2 |a ∈ N, t ∈ {0, . . . , N−3

2 }} (4aN + 2N + 4t+ 4)(2a+ 1)

. (4.56)

We have separated out the case t = N−1
2 from the fifth and eighth rows and given them

their own rows to make it clear how this case combines with the other rows.

Next, we analyze the third and fourth rows of 4.53 each into N arithmetic progressions,

and then separate each set of progressions into two groups. Doing this we obtain the table

λ multiplicity

{3+8aN+8t
2 |a ∈ N, t ∈ {0, . . . , N−1

2 }} 4aN + 4t+ 2

{7+8aN+4N+8t
2 |a ∈ N, t ∈ {0, . . . , N−3

2 }} 4aN + 2N + 4t+ 4

{−9−8aN−8t
2 |a ∈ N, t ∈ {0, . . . , N−3

2 }} 4aN + 4t+ 4

{−5−8aN−4N−8t
2 |a ∈ N, t ∈ {0, . . . , N−3

2 }} 4aN + 2N + 4t+ 2

{−1−8aN−8N
2 |a ∈ N} 4aN + 4N

. (4.57)

Again, we separated out the case t = N−1
2 from the fourth row so that the rows combine

simply.

The fifth row of 4.53 can be decomposed into two parts yielding

λ multiplicity

{−1−8aN−4N
2 |a ∈ N} 4aN + 2N

{−1−8aN−8N
2 |a ∈ N} 4aN + 4N

(4.58)
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At this point, the rows have been decomposed into commensurable parts. Rows with the

same value of λ can be combined by summing the multiplicities together. Once this is done,

it is easy to check that rows coming from the positive spectrum combine perfectly with rows

coming from the negative spectrum just as in the case of lens spaces. One checks this by

making the variable substitutions a = −a′ − 1, t + t′ = N−3
2 , (with the case t = t′ = N−1

2

being a special case which is also easy to check), and allowing the variable a to run through

all of Z.

We now have the definitive form of the spectrum in the odd case.

Corollary 4.7.2 If N is odd then the Dirac operator on the dicyclic space SU(2)/Γ, where

Γ is the dicyclic group of order 4N , N ≥ 2, equipped with the round metric and trivial spin

structure, has the following spectrum:

λ multiplicity

{3+8aN+8t
2 |a ∈ Z, t ∈ {0, . . . , N−1

2 }} (4aN + 4t+ 2)(2a+ 1)

{7+8aN+8t
2 |a ∈ Z, t ∈ {0, . . . , N−3

2 }} (4aN + 4t+ 4)(2a)

{3+8aN+4N+8t
2 |a ∈ Z, t ∈ {0, . . . , N−1

2 }} (4aN + 2N + 4t+ 2)(2a+ 1)

{7+8aN+4N+8t
2 |a ∈ Z, t ∈ {0, . . . , N−3

2 }} (4aN + 2N + 4t+ 4)(2a+ 2)

. (4.59)

4.7.2 Computing the spectral action

To compute the spectral action, in the even case, one observes that the two rows of Corollary

4.7.1 can respectively be interpolated by the polynomials

Pt(u) =
1

2
− 3

8N
− t

N
+ u− u

2N
− 2tu

N
+

u2

2N

Qt(u) =
−7

8N
− t

N
− 3u

2N
− 2tu

N
+

u2

2N
.

One has the identity

N−1
2∑
t=0

Pt(u) +Qt(u) = −1

8
+
u2

2
. (4.60)

In the odd case, the rows of Corollary 4.7.2 are interpolated respectively by the polyno-
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mials

Pt(u) =
1

2
− 3

8N
− t

N
+ u− u

2N
− 2tu

N
+

u2

2N

Qt(u) =
−7

8N
− t

N
− 3u

2N
− 2tu

N
+

u2

2N

Rt(u) = − 3

8N
− t

N
− u

2N
− 2tu

N
+

u2

2N

St(u) =
1

2
− 7

8N
− t

N
+ u− 3u

2N
− 2tu

N
+

u2

2N
.

We have the identity

N−1
2∑
t=0

Pt(u) +

N−3
2∑
t=0

Qt(u) +

N−1
2∑
t=0

Rt(u) +

N−3
2∑
t=0

St(u) = −1

4
+ u2. (4.61)

Therefore using identities 4.60 and 4.61, and Lemma 4.5.3 we have:

Theorem 4.7.3 The spectral action for round dicyclic space with the trivial spin structure

is given for each N ≥ 2 by

Tr(f(D/Λ)) =
1

4N

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞). (4.62)

4.8 Generating function method

When Γ is the binary tetrahedral, binary octahedral, or binary icosahedral group, it becomes

difficult to determine HomH(Vγ ,Σn), so we turn to another method to compute the Dirac

spectrum, which we presently review. The key results, taken from [4], are presented here

for convenience. A similar discussion was presented in [50].

In this case, we only consider the round metric on Sn. Let Γ be a finite fixed point free

subgroup of SO(n+ 1), acting as usual on Sn ⊂ Rn+1. The spin structures of Sn/Γ are in

one-to-one correspondence with homomorphisms

ε : Γ→ Spin(n+ 1) (4.63)

which lift the inclusion

ι : Γ→ SO(n+ 1) (4.64)
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with respect to the double cover

Θ : Spin(n+ 1)→ SO(n+ 1). (4.65)

That is, homomorphisms ε such that ι = Θ ◦ ε.

Let M = Sn/Γ, equipped with spin structure ε. Note that we may assume that n is

odd, since when n is even, the only nontrivial possibility for M is RPn, which is not a spin

manifold. Let D be the Dirac operator on M . The Dirac spectrum of Sn equipped with

the round metric is the set

{±(n/2 + k)|k ∈ N}. (4.66)

The spectrum of D is a subset of the spectrum of Sn, and the multiplicities of the eigenvalues

are in general smaller. Let m(a,D) denote the multiplicity of a ∈ R of D. One defines formal

power series F+(z), F−(z) according to

F+(z) =

∞∑
k=0

m
(n

2
+ k,D

)
zk, (4.67)

F−(z) =
∞∑
k=0

m
(
−
(n

2
+ k
)
, D)

)
zk. (4.68)

Using the fact that the multiplicities of D are majorized by the multiplicities of the Dirac

spectrum of Sn, one may show that these power series converge absolutely for |z| < 1.

The complex spinor representation of Spin(2m) decomposes into two irreducible repre-

sentations, ρ+, ρ− called the half-spin representations. Let χ± be the characters of these

two representations. The key result is the following.

Theorem 4.8.1 ([4], Theorem 2) With the notation as above, we have the identities

F+(z) =
1

|Γ|
∑
γ∈Γ

χ−(ε(γ))− z · χ+(ε(γ))

Det(I2m − z · γ)
(4.69)

F−(z) =
1

|Γ|
∑
γ∈Γ

χ+(ε(γ))− z · χ−(ε(γ))

Det(I2m − z · γ)
. (4.70)

One may identify SU(2) with the set of unit quaternions, and choose {1, i, j, k} to be

an ordered basis of R4, then via the action of Γ on SU(2) by left multiplication one may
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identify the unit quaternion

a+ bi+ cj + dk ∈ Γ (4.71)

with the matrix in SO(4) 
a −b −c −d

b a −d c

c d a −b

d −c b a

 . (4.72)

4.8.1 The double cover Spin(4)→ SO(4)

The text in this section is reproduced with slight modification from [50].

Let us recall some facts about the double cover Spin(4)→ SO(4). Let S3
L ' SU(2) left

isoclinic rotations: 
a −b −c −d

b a −d c

c d a −b

d −c b a

 ,

where a2 + b2 + c2 + d2 = 1. Similarly, let S3
R ' SU(2) be the group of right isoclinic

rotations: 
p −q −r −s

q p s −r

r −s p q

s r −q p

 ,

where

p2 + q2 + r2 + s2 = 1. (4.73)

Then

Spin(4) ' S3
L × S3

R, (4.74)

and the double cover

Θ : Spin(4)→ SO(4) (4.75)

is given by

(A,B) 7→ A ·B, (4.76)
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where A ∈ S3
L, and B ∈ S3

R. The complex half-spin representation ρ+ is just the projection

onto S3
L, where we identify S3

L with SU(2) via


a −b −c −d

b a −d c

c d a −b

d −c b a

 7→
 a− bi d+ ci

−d+ ci a+ bi

 .

The other complex half-spin representation ρ− is the projection onto S3
R, where we identify

S3
R with SU(2) via


p −q −r −s

q p s −r

r −s p q

s r −q p



t

7→

 p− qi s+ ri

−s+ ri p+ qi

 .

In this paper, when Γ is the binary tetrahedral group, binary octahedral group, or binary

icosahedral group, we choose the spin structure corresponding to

ε : Γ→ Spin(4), (4.77)

A 7→ (A, I4), (4.78)

and we call this the trivial spin structure. It is obvious that ε lifts the identity map, and

hence that it corresponds to a spin structure.

4.9 Dirac spectrum of round binary tetrahedral coset space

Let 2T denote the binary tetrahedral group of order 24. Concretely, as a set of unit quater-

nions, this group may be written as

{
±1,±i,±j,±k, 1

2
(±1± i± j ± k)

}
, (4.79)

where every possible combination of signs is used in the final term.

Theorem 2 of [4] provides formulae for generating functions whose Taylor coefficients
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about z = 0 give the multiplicities for the Dirac spectra of spherical space forms. Using

these formulae we obtain the following generating functions for the Dirac spectra of S3/2T :

F+(z) = −2(1 + z2 − z4 + z6 + 7z8 + 3z10)

(−1 + z2)3(1 + 2z2 + 2z4 + z6)2
,

F−(z) = −2z5(3 + 7z2 + z4 − z6 + z8 + z10)

(−1 + z2)3(1 + 2z2 + 2z4 + z6)2
.

The kth Taylor coefficient of F±(z) at z = 0 equals the multiplicity of the eigenvalue

λ = ±
(

3

2
+ k

)
(4.80)

of the Dirac operator of the coset space S3/2T .

The Taylor coefficients of a rational function satisfy a recurrence relation. Using this

recurrence relation, one may show by induction that the multiplicity of

u = 3/2 + k + 12n, n ∈ Z, (4.81)

is given by Pk(u), where Pk, k = 0, 1, 2, . . . , 11 are the polynomials

Pk(u) = 0, if k is odd

P0(u) =
7

16
+

11

12
u+

1

12
u2

P2(u) = − 7

48
− 3

12
u+

1

12
u2

P4(u) = −11

48
− 5

12
u+

1

12
u2

P6(u) =
9

48
+

5

12
u+

1

12
u2

P8(u) =
5

48
+

1

4
u+

1

12
u2

P10(u) = −23

48
− 11

12
u+

1

12
u2.

Let

F+(z) =

∞∑
k=0

akz
k (4.82)
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be the series expansion for F+ about z = 0. Clearly,

Pk(3/2 + k + 12n) = ak+12n (4.83)

for each n if and only if

Pk(3/2 + k + 12(n+ 1))− Pk(3/2 + k + 12n) = ak+12(n+1) − ak+12n (4.84)

for each n and

Pk(3/2 + k + 12n) = ak+12n (4.85)

for some n. Now, let
P∑

j=m

bjz
j ,

M∑
j=0

cjz
j (4.86)

be the numerator and denominator respectively of the rational function F+(z). Then for

each k, one has the recurrence relation

bk =
M∑
j=0

ak−jcj . (4.87)

In particular, for each k > P , we have

M∑
j=0

ak−jcj = 0, (4.88)

and hence also
M∑
j=0

(ak+12−j − ak−j)cj = 0. (4.89)

We don’t need to worry about the smaller values of k since we can simply check those by

hand. Therefore to verify that

Pk(3/2 + k + 12n) = ak+12n (4.90)

for each k and n, one simply verifies that the values Pk(3/2 + k + 12n) satisfy the same

recurrence relation as ak+12n and checks that these two values are equal for small values of

n. The recurrence relation is given by
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P[k](3/2 + k + 12(n+ 1))− P[k](3/2 + k + 12n) =

−1

c0

M∑
j=1

(P[k−j](3/2 + k + 12(n+ 1)− j)− P[k−j](3/2 + k + 12n− j))cj ,

for each k from 0 to 11, and this can be checked by direct evaluation of the polynomials.

Once one also verifies that the polynomials interpolate the spectrum for small eigenvalues,

then by induction (12 inductions in parallel) one has shown that the polynomials interpolate

the part of the spectrum in the positive reals. Here [a] is the integer from 0 to 11 to which

a is equivalent modulo 12.

The polynomials Pk also interpolate that part of the spectrum in the negative reals. To

verify this, one checks a recurrence relation much like the above except derived from F−

instead of F+. Namely, if the numerator and denominator of F− are given respectively by

P∑
j=m

bjz
j ,

M∑
j=0

cjz
j (4.91)

then the recurrence relation for the polynomials Pk that must be checked is

P[k]′(−3/2− k − 12(n+ 1))− P[k]′(−3/2− k − 12n) =

−1

c0

M∑
j=0

(P[k−j]′(−3/2− k + j − 12(n+ 1))− P[k−j]′(−3/2− k + j − 12n))cj ,

which again can be checked by direct evaluation. Here [a]′ is the number between 0 and 11

such that [a] + [a]′ + 3 is a multiple of 12. This ensures that we have the set equality

{−3/2− k′ − 12n|n ∈ Z} = {3/2 + k + 12n|n ∈ Z}, (4.92)

which is clearly the condition we need to have in order for the polynomials Pk to interpolate

the entire spectrum.

By this procedure we have:

Proposition 4.9.1 For the round binary tetrahedral space with the trivial spin structure

the spectrum of the canonical Dirac operator D is contained in the set {±(3/2 + k)|k ∈ N}.
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The multiplicity of 3/2 + k + 12t, where k ∈ {0, 1, . . . 11} and t ∈ Z, is equal to

Pk(3/2 + k + 12t). (4.93)

Now observe that
11∑
k=0

Pk(u) =
1

2
(u2 − 1/4). (4.94)

Therefore by Lemma 4.5.3 we have computed the spectral action of the binary tetrahedral

coset space.

Theorem 4.9.2 The spectral action of the binary tetrahedral coset space is given by

1

24

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞). (4.95)

4.10 Dirac spectrum of round binary octahedral coset space

Let 2O be the binary octahedral group of order 48. Binary octahedral space is the space

SU(2)/2O. It consists of the 24 elements of the binary tetrahedral group, (4.79), as well as

the 24 elements obtained from

1√
2

(±1± i+ 0j + 0k), (4.96)

by permuting the coordinates and taking all possible sign combinations.

The generating functions are

F+(z) = −2(1 + z2 + z4 − z6 + 2z8 + 2z10 + 10z12 + 4z14 + 4z16)

(−1 + z2)3(1 + 2z2 + 3z4 + 3z6 + 2z8 + z10)2
,

and

F−(z) = −2z7(4 + 4z2 + 10z4 + 2z6 + 2z8 − z10 + z12 + z14 + z16)

(−1 + z2)3(1 + 2z2 + 3z4 + 3z6 + 2z8 + z10)2
.
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We define polynomials Pk(u), k = 0, 1, 2, . . . , 23, where

Pk(u) = 0, if k is odd,

P0(u) =
15

32
+

23

24
u+

1

24
u2,

P2(u) = − 7

96
− 1

8
u+

1

24
u2,

P4(u) = −11

96
− 5

24
u+

1

24
u2,

P6(u) = − 5

32
− 7

24
u+

1

24
u2,

P8(u) =
29

96
+

5

8
u+

1

24
u2,

P10(u) = −23

96
− 11

24
u+

1

24
u2,

P12(u) =
7

32
+

11

24
u+

1

24
u2,

P14(u) = −31

96
− 5

8
u+

1

24
u2,

P16(u) =
13

96
+

7

24
u+

1

24
u2,

P18(u) =
3

32
+

5

24
u+

1

24
u2,

P20(u) =
5

96
+

1

8
u+

1

24
u2,

P22(u) = −47

96
− 23

24
u+

1

24
u2.

One uses the procedure of section 4.9 to show the following.

Proposition 4.10.1 For the round binary octahedral space with the trivial spin structure

the spectrum of the canonical Dirac operator D is contained in the set {±(3/2 + k)|k ∈ N}.

The multiplicity of 3/2 + k + 12t, where k ∈ {0, 1, . . . 11} and t ∈ Z, is equal to

Pk(3/2 + k + 24t). (4.97)

The sum of the polynomials is

23∑
k=0

Pk(u) =
1

2
(u2 − 1/4). (4.98)

By Lemma 4.5.3, we have the following.
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Theorem 4.10.2 The spectral action of the binary octahedral coset space is given by

1

48

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞). (4.99)

4.11 Dirac spectrum of round Poincaré homology sphere

When Γ is the binary icosahedral group the space SU(2)/Γ is known as the Poincaré ho-

mology sphere.

This case was discussed in [50]. Unfortunately, the expressions for the generating func-

tions F+(z), F−(z), and the interpolating polynomials Pk in [50] are incorrect. They are

necessarily incorrect because they imply that the spectrum of the Poincaré homology sphere

is not a subset of the spectrum of binary tetrahedral space, which is a contradiction, since

the binary tetrahedral group is a subgroup of the binary icosahedral group. However, the

expression for the spectral action in [50] is correct, which was the only thing that was used

in the rest of [50], and so the rest of the paper is unaffected. The correct expressions are

found below.

Let S = SU(2)/Γ be the Poincaré homology sphere, with the spin structure ε described

here above. The generating functions for the spectral multiplicities of the Dirac operator

are

F+(z) = (4.100)

− 2(1 + 3z2 + 4z4 + 2z6 − 2z8 − 6z10 − 2z12 + 12z14 + 24z16 + 18z18 + 6z20)

(−1 + z2)3(1 + 2z2 + 2z4 + z6)2(1 + z2 + z4 + z6 + z8)2

and

F−(z) = (4.101)

− 2z11(6 + 18z2 + 24z4 + 12z6 − 2z8 − 6z10 − 2z12 + 2z14 + 4z16 + 3z18 + z20)

(−1 + z2)3(1 + 2z2 + 2z4 + z6)2(1 + z2 + z4 + z6 + z8)2
.

In order to compute the spectral action, we proceed as in the previous cases by finding

interpolating polynomials. Using the procedure of section 4.9 we obtain the following result.

Proposition 4.11.1 There are polynomials Pk(u), for k = 0, . . . , 59, so that Pk(3/2 + k+
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60j) = m(3/2 + k + 60j,D) for all j ∈ Z. The Pk(u) are given as follows:

Pk = 0, whenever k is odd,

P0(u) =
39

80
+

59

60
u+

1

60
u2,

P2(u) = − 7

240
− 1

20
u+

1

60
u2,

P4(u) = − 11

240
− 1

12
u+

1

60
u2,

P6(u) = − 1

16
− 7

60
u+

1

60
u2,

P8(u) = − 19

240
− 3

20
u+

1

60
u2,

P10(u) = − 23

240
− 11

60
u+

1

60
u2,

P12(u) =
31

80
+

47

60
u+

1

60
u2,

P14(u) = − 31

240
− 1

4
u+

1

60
u2,

P16(u) = − 7

48
− 17

60
u+

1

60
u2,

P18(u) = −13

80
− 19

60
u+

1

60
u2,

P20(u) =
77

240
+

13

20
u+

1

60
u2,

P22(u) = − 47

240
− 23

60
u+

1

60
u2,

P24(u) =
23

80
+

7

12
u+

1

60
u2,

P26(u) = −11

48
− 9

20
u+

1

60
u2,

P28(u) = − 59

240
− 29

60
u+

1

60
u2,
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P30(u) =
19

80
+

29

60
u+

1

60
u2,

P32(u) =
53

240
+

9

20
u+

1

60
u2,

P34(u) = − 71

240
− 7

12
u+

1

60
u2,

P36(u) =
3

16
+

23

60
u+

1

60
u2,

P38(u) = − 79

240
− 13

20
u+

1

60
u2,

P40(u) = − 37

240
+

19

60
u+

1

60
u2,

P42(u) =
11

80
+

17

60
u+

1

60
u2,

P44(u) =
29

240
+

1

4
u+

1

60
u2,

P46(u) = −19

48
− 47

60
u+

1

60
u2,

P48(u) =
7

80
+

11

60
u+

1

60
u2,

P50(u) =
17

240
+

3

20
u+

1

60
u2,

P52(u) =
13

240
+

7

60
u+

1

60
u2,

P54(u) =
3

80
+

1

12
u+

1

60
u2,

P56(u) =
1

48
+

1

20
u+

1

60
u2,

P58(u) = −119

240
− 59

60
u+

1

60
u2.

These are computed directly from the Taylor coefficients of the generating functions of

the spectral multiplicities (4.100) and (4.101). Notice that

59∑
j=0

Pj(u) =
1

2
u2 − 1

8
. (4.102)
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Once again, using Lemma 4.5.3 we obtain the nonperturbative spectral action for the

Poincaré homology sphere.

Theorem 4.11.2 Let D be the Dirac operator on the Poincaré homology sphere S = S3/Γ,

with the trivial spin structure and round metric. Then the spectral action is given by

Tr(f(D/Λ)) =
1

120

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞). (4.103)
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Chapter 5

Twisted Dirac Operators

5.1 Introduction

Following the method developed in [16] and [50], [73], we compute the spectral action of

the quotient spaces S3/Γ equipped with the twisted Dirac operator corresponding to a

finite-dimensional representation α of Γ as follows. We define a finite set of polynomials

labeled P+
m , and P−m which describe the multiplicities of, respectively, the positive and

negative eigenvalues of the twisted Dirac operator, in the sense that P±m(u)(λ) equals the

multiplicity of the eigenvalue

λ = −1/2± (k + 1), k ≥ 1 (5.1)

whenever k ≡ m mod cΓ, where cΓ is the exponent of the group Γ, the least common

multiple of the orders of the elements in Γ.

The main technical result we will prove is the following relation between these polyno-

mials:
cΓ∑
m=1

P+
m(u) =

cΓ−1∑
m=0

P−m(u) =
NcΓ

#Γ

(
u2 − 1

4

)
. (5.2)

Since the polynomial on the right-hand-side is a multiple of the polynomial for the spectral

multiplicities of the Dirac spectrum of the sphere S3 (see [16]), we will obtain from this the

relation between the non-perturbative spectral action of the twisted Dirac operator DΓ
α on

S3/Γ and the spectral action on the sphere, see Theorem 5.1.1 below.

Furthermore, we shall show that the polynomials P+
m(u) match up perfectly with the

polynomials P−m(u), so that the polynomials P+
m(u) alone describe the entire spectrum by

allowing the parameter k in equation 5.1 to run through all of Z. Namely, what we need to
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show is that

P+
m(u) = P−m′(u), (5.3)

where for each m, m′ is the unique number between 0 and cΓ − 1 such that m+m′ + 2

is a multiple of cΓ. To be more precise,

m′ =


cΓ − 2−m, if 1 ≤ m ≤ cΓ − 2

cΓ − 1, if m = cΓ − 1

cΓ − 2 if m = cΓ

. (5.4)

Define

gm(u) = P+
m(u)f(u/Λ). (5.5)

Now, we apply the Poisson summation formula, to obtain,

Tr(f(D/Λ)) =
∑
m

∑
l∈Z

gm(1/2 + cΓl +m+ 1)

=
N

#Γ

∑
m

ĝm(0) +O(Λ−∞)

=
N

#Γ

(∫
R
u2f(u/Λ)− 1

4

∫
R
f(u/Λ)

)
+O(Λ−∞)

=
N

#Γ

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞),

and so we have the main result.

Theorem 5.1.1 Let Γ be a finite subgroup of S3, and let α be a N -dimensional repre-

sentation of Γ. Then the spectral action of S3/Γ equipped with the twisted Dirac operator

is

Trf(D/Λ) =
N

|Γ|

(
Λ3f̂ (2)(0)− 1

4
Λf̂(0)

)
+O(Λ−∞). (5.6)

Here f̂ (2) denotes the Fourier transform of u2f(u).

Similar computations of the spectral action have also been performed in [50], [51], and [73].
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In the sequel we describe how to obtain equation (5.2), by explicitly analyzing the cases

of the various spherical space forms: lens spaces, dicyclic group, and binary tetrahedral,

octahedral, and icosahedral groups. In all cases we compute explicitly the polynomials of

the spectral multiplicities and check that (5.2) is satisfied. Our calculations are based on

a result of Cisneros-Molina, [19], on the explicit form of the Dirac spectra of the twisted

Dirac operators DΓ
α, which we recall here below.

5.2 Twisted Dirac spectra of spherical space forms

The spectra of the twisted Dirac operators on the quotient spaces are derived in [19]. Let

us recall the notation and the main results.

Let Ek denote the k+ 1-dimensional irreducible representation of SU(2) on the space of

homogeneous complex polynomials in two variables of degree k. By the Peter–Weyl theorem,

one can decompose C∞(S3,C) = ⊕kEk ⊗ E∗k as a sum of irreducible representations of

SU(2). This gives that, on C∞(S3,C2 ⊗CN ) = ⊕kEk ⊗E∗k ⊗C2 ⊗CN , the Dirac operator

D ⊗ idCN decomposes as ⊕kidEk ⊗ Dk ⊗ idCN , with Dk : E∗k ⊗ C2 → E∗k ⊗ C2. Upon

identifying C∞(S3,C2 ⊗ CN )Γ = ⊕kEk ⊗ HomΓ(Ek,C2 ⊗ CN ), one sees that, as shown in

[19], the multiplicities of the spectrum of the twisted Dirac operator DΓ
α are given by the

dimensions dimC HomΓ(Ek,C2⊗CN ), which in turn can be expressed in terms of the pairing

of the characters of the corresponding Γ-representation, that is, as 〈χEk , χσ⊗α〉Γ. One then

obtains the following:

Theorem 5.2.1 (Cisneros-Molina, [19]) Let α : Γ → GLN (C) be a representation of Γ.

Then the eigenvalues of the twisted Dirac operator DΓ
α on S3/Γ are

−1

2
− (k + 1) with multiplicity 〈χEk+1

, χα〉Γ(k + 1), k ≥ 0,

−1

2
+ (k + 1) with multiplicity 〈χEk−1

, χα〉Γ(k + 1), k ≥ 1.

Proposition 5.2.2 (Cisneros-Molina, [19]) Let k = cΓl +m with 0 ≤ m < cΓ.
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1. If −1 ∈ Γ, then

〈χEk , χα〉Γ =


cΓl
|Γ| (χα(1) + χα(−1)) + 〈χEm , χα〉Γ if k is even

cΓl
|Γ| (χα(1)− χα(−1)) + 〈χEm , χα〉Γ if k is odd.

2. If −1 /∈ Γ, then

〈χEk , χα〉Γ =
NcΓl

#Γ
+ 〈χEm , χα〉Γ.

5.3 Lens spaces, odd order

In this section we consider Γ = Zn, where n is odd. When n is odd, −1 /∈ Γ, which affects

the expression for the character inner products in Proposition 5.2.2.

For m ∈ {1, . . . , n}, we introduce the polynomials,

P+
m(u) =

N

n
u2 + (βαm −

mN

n
)u+

βαm
2
− mN

2n
− N

4n
,

where

βαm = 〈χEm−1 , χα〉Γ,

and m takes on values in {1, 2, . . . , n}.

Using Theorem 5.2.1 and Proposition 5.2.2, it is easy to see that the polynomials P+
m(u)

describe the spectrum on the positive side of the real line, in the sense that P+
m(u)(λ) equals

the multiplicity of the eigenvalue

λ = −1/2 + (k + 1), k ≥ 1

whenever k ≡ m mod n.

For the negative eigenvalues, the multiplicities are described by the polynomials

P−m(u) =
N

n
u2 +

(
2N

n
+
mN

n
− γαm

)
u+

3N

4n
+
mN

2n
− γαm

2
,

m ∈ {0, 1, . . . n− 1}, in the sense that P−m(u)(λ) equals the multiplicity of the eigenvalue

λ = −1/2− (k + 1), k ≥ 0
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whenever k ≡ m mod n. Here γαm is defined by

γαm = 〈χEm+1 , χα〉Γ.

Let us denote the irreducible representations of Zn by χt, sending the generator to

exp(2πit
N ). Here t is a residue class of integers modulo n.

For the sake of computation, we take Zn to be the group generated by

B =

 e
2πi
n 0

0 e−
2πi
n

 .
Then in the representation Ek, B acts on the basis polynomials Pj(z1, z2), j ∈ {0, 1, . . . k}

as follows:

B · Pj(z1, z2) = Pj ((z1, z2)B)

= Pj(e
2πi
n z1, e

− 2πi
n z2)

= (e
2πi
n z1)k−j(e−

2πi
n z2)j

= e
2πi
n

(k−2j)Pj(z1, z2).

Hence, B is represented by a diagonal matrix with respect to this basis, and we have:

Proposition 5.3.1 The irreducible characters χEk of the irreducible representations of

SU(2) restricted to Zn, n odd, are decomposed into the irreducible characters χ[t] of Zn

by the equation

χEk =

j=k∑
j=0

χ[k−2j]. (5.7)

Here, [t] denotes the number from 0 to n− 1 to which t is equivalent mod n.

In the case where −1 /∈ Γ, that is to say, when Γ = Zn where n is odd, by equating

coefficients of the quadratic polynomials P+
m and P−m′ , the condition 5.3 is replaced by one

that may be simply checked.

Lemma 5.3.2 Let Γ be any finite subgroup of SU(2) such that −1 /∈ Γ the condition 5.3 is
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equivalent to the condition

βαm + γαm′ =


χα(1), if 1 ≤ m ≤ cΓ − 2

2χα(1), if m = cΓ − 1, cΓ

, (5.8)

where α is an irreducible representation of Γ. Furthermore this condition holds in all cases.

Using proposition 5.3.1, it is a simple combinatorial matter to see that

n∑
m=1

〈χEm−1 , χα〉Γ = N
n+ 1

2
, (5.9)

for any representation α of Zn.

For the argument to go through, one also needs to check the special case

P+
cΓ

(1/2) = 0.

By direct evaluation one can check that this indeed holds.

For the negative side, we see that

n∑
m=1

〈χEm+1 , χα〉Γ = N
n+ 3

2
, (5.10)

for any representation α of Zn, and so:

Proposition 5.3.3 Let Γ be cyclic with #Γ odd, and let α be a N -dimensional represen-

tation of Γ. Then
n∑

m=1

P+
m(u) =

n−1∑
m=0

P−m(u) = Nu2 − N

4
.

Note that in the statement of Theorem 5.2.1, the first line holds even if we take k = −1,

since the multiplicity for this value evaluates to zero. Therefore, we automatically have

P−cΓ−1(−1/2) = 0,

which we still needed to check.
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5.4 Lens spaces, even order

When n is even, we have −1 ∈ Zn. When −1 ∈ Γ, from Theorems 5.2.1 and 5.2.2 it follows

that the multiplicity of the eigenvalue

λ = 1/2 + lcΓ +m, l ∈ N

is given by, P+
m , m ∈ {1, 2, . . . , cΓ},

P+
m(u) =

1

|Γ|
(χα(1) + (−1)m+1χα(−1))u2+(
βαm −

1

#Γ
(m(χα(1) + (−1)m+1χα(−1))

)
u

+
1

2
βαm −

1

4#Γ
(χα(1) + (−1)m+1χα(−1))

− 1

2#Γ
m(χα(1) + (−1)m+1χα(−1))).

The one case that is not clear is λ = 1/2. It is not an eigenvalue of the twisted Dirac

operator. However, it is not clear from Theorems 5.2.1 and 5.2.2 that

P+
cΓ

(1/2) = 0, (5.11)

and this needs to hold in order for the argument using the Poisson summation formula to

go through. Evaluating equation (5.11), we see that one needs to check that

〈χEcΓ−1 , χα〉 =
cΓ

#Γ
(χα(1) + (−1)cΓ+1χα(−1)), (5.12)

and indeed it holds for each subgroup Γ and irreducible representation α.

Proposition 5.4.1 For any subgroup Γ ⊂ S3 of even order, the sum of the polynomials
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P+
m is

cΓ∑
m=1

P+
m(u) =

cΓ

#Γ
χα(1)u2

+

(
−
c2

Γχα(1)

2#Γ
− cΓ(χα(1)− χα(−1))

2#Γ
+

cΓ∑
m=1

βαm

)
u

− cΓχα(1)

2#Γ
−
c2

Γχα(1)

4#Γ
+

cΓ

4#Γ
χα(−1) +

1

2

cΓ∑
m=1

βαm.

Since the coefficients of the polynomial are additive with respect to direct sum, it suffices

to consider only irreducible representations.

In the case of lens spaces, cΓ = #Γ, and χt(−1) = (−1)t. As a matter of counting, one

can see that:

Proposition 5.4.2
cΓ∑
m=1

βtm =

 n+2
2 if t is even

n
2 if t is odd

Putting this all into the expression of proposition 5.4.1, we have, for an N -dimensional

representation, α,
cΓ∑
m=1

P+
m(u) = N

(
u2 − 1

4

)
. (5.13)

The negative eigenvalues are described by the polynomials

P−m(u) =
1

#Γ
(χα(1) + (−1)m+1χα(−1))u2+(

2 +m

#Γ
(χα(1) + (−1)m+1χα(−1))− γαm

)
u

3 + 2m

4|Γ|
(χα(1) + (−1)m+1χα(−1))− 1

2
γαm,

m ∈ {0, 1, . . . cΓ − 1}. And so, we have the following proposition.

Proposition 5.4.3 For any subgroup Γ ⊂ S3 of even order, the sum of the polynomials
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P−m is

cΓ∑
m=1

P−m(u) =
cΓ

#Γ
χα(1)u2+(
χα(1)c2

Γ

2#Γ
+

3χα(1)cΓ

2#Γ
+
χα(−1)cΓ

2#Γ
−
cΓ−1∑
m=0

γαm

)
u+

χα(1)cΓ

2#Γ
+
χα(1)c2

Γ

4#Γ
+
χα(−1)cΓ

4#Γ
− 1

2

cΓ−1∑
m=0

γαm.

By counting, one can see that

cΓ−1∑
m=0

γtm =

 n+4
2 if t is even

n+2
2 if t is odd

. (5.14)

To complete the computation of the spectral action one still needs to verify the condition

(5.3). We have the following lemma, which is obtained by equating the coefficients of P+
m

and P−m′ , and it covers the cases of the binary tetrahedral, octahedral and icosahedral groups

as well.

Lemma 5.4.4 Let Γ be any finite subgroup of SU(2) such that −1 ∈ Γ the condition (5.3)

is equivalent to the condition

βαm + γαm′ =


χα(1)(χα(1) + (−1)m+1χα(−1)), if 1 ≤ m ≤ cΓ − 2

2χα(1)(χα(1) + χα(−1)), if m = cΓ − 1

2χα(1)(χα(1)− χα(−1)), if m = cΓ

, (5.15)

where α is an irreducible representation of Γ. Furthermore this condition holds in all cases.

5.5 Dicyclic group

The character table for the dicyclic group of order 4r is, for r odd,
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Class 1+ 1− 2l r0 r1

ψt 2 2(−1)t ζ lt2r + ζ−lt2r 0 0

χ1 1 1 1 1 1

χ2 1 −1 (−1)l i −i

χ3 1 1 1 −1 −1

χ4 1 −1 (−1)l −i i

,

and for r even,

Class 1+ 1− 2l r0 r1

ψt 2 2(−1)t ζ lt2r + ζ−lt2r 0 0

χ1 1 1 1 1 1

χ2 1 −1 (−1)l i −i

χ3 1 1 1 −1 −1

χ4 1 −1 (−1)l −i i

.

Here ζ2r = e
πi
r , 1 ≤ t ≤ r − 1, 1 ≤ l ≤ r − 1. The notation for the different conjugacy

classes can be understood as follows. The number indicates the order of the conjugacy class.

A sign in the subscript indicates the sign of the traces of the elements in the conjugacy class

as elements of SU(2).

For the dicyclic group of order 4r, the exponent of the group is

cΓ =

 2r if r is even

4r if r is odd
.

One can decompose the characters χEk into the irreducible characters by inspection,

and with some counting obtain the following propositions.

Proposition 5.5.1 Let Γ be the dicyclic group of order 4r, where r is even.

cΓ∑
m=1

βαm =


r
2 χα ∈ {χ1, χ2, χ3, χ4}

r χα = ψt, t is even

r + 1 χα = ψt, t is odd
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cΓ−1∑
m=0

γαm =


r
2 + 1 χα ∈ {χ1, χ2, χ3, χ4}

r + 2 χα = ψt, t is even

r + 1 χα = ψt, t is odd

.

Proposition 5.5.2 Let Γ be the dicyclic group of order 4r, where r is odd. The following

equations hold:

cΓ∑
m=1

βαm =



2r χα ∈ {χ1, χ3}

2r + 1 χα ∈ {χ2, χ4}

4r χα = ψt, t is even

4r + 2 χα = ψt, t is odd

cΓ−1∑
m=0

γαm =



2r + 2 χα ∈ {χ1, χ3}

2r + 1 χα ∈ {χ2, χ4}

4r + 4 χα = ψt, t is even

4r + 2 χα = ψt, t is odd

5.6 Binary tetrahedral group

The binary tetrahedral group has order 24 and exponent 12. The character table of the

binary tetrahedral group is

Class 1+ 1− 4a+ 4b+ 4a− 4b− 6

Order 1 2 6 6 3 3 4

χ1 1 1 1 1 1 1 1

χ2 1 1 ω2 ω ω ω2 1

χ3 1 1 ω ω2 ω2 ω 1

χ4 2 −2 1 1 −1 −1 0

χ5 2 −2 ω2 ω −ω −ω2 0

χ6 2 −2 ω ω2 −ω2 −ω 0

χ7 3 3 0 0 0 0 −1

.

Here, ω = e
2πi
3 .

For the remaining three groups, we can use matrix algebra to decompose the characters

χEk .
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Let χj , xj , j = 1, 2 . . . , d denote the irreducible characters, and representatives of the

conjugacy classes of the group Γ. Then since every character decomposes uniquely into the

irreducible ones, we have a unique expression for χEk as the linear combination

χEk =
d∑
j=0

ckjχj .

If we let b = (bj) j = 1, . . . , d be the column with bj = χEk(xj), and let A = (aij) be the

d × d matrix where aij = χj(xi) and let c = (ckj ) j = 1, . . . d be another column, then we

have

b = Ac.

A is necessarily invertible by the uniqueness of the coefficient column c, and so c is given

by

c = A−1b.

By this method, we obtain the following proposition.

Proposition 5.6.1 Let Γ be the binary tetrahedral group. The following equations hold:

cΓ∑
m=1

βαm =


3, χα ∈ {χ1, χ2, χ3}

7, χα ∈ {χ4, χ5, χ6}

9, χα = χ7

cΓ−1∑
m=0

γαm =


4, χα ∈ {χ1, χ2, χ3}

7, χα ∈ {χ4, χ5, χ6}

12, χα = χ7

5.7 Binary octahedral group

The binary octahedral group has order 48 and exponent 24. The character table of the

binary octahedral group is
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Class 1+ 1− 6+ 60 6− 8+ 8− 12

Order 1 2 8 4 8 6 3 4

χ1 1 1 1 1 1 1 1 1

χ2 1 1 −1 1 −1 1 1 −1

χ3 2 2 0 2 0 −1 −1 0

χ4 2 −2
√

2 0 −
√

2 1 −1 0

χ5 2 −2 −
√

2 0
√

2 1 −1 0

χ6 3 3 −1 −1 −1 0 0 1

χ7 3 3 1 −1 1 0 0 −1

χ8 4 −4 0 0 0 −1 1 0

.

Proposition 5.7.1 Let Γ be the binary octahedral group.

cΓ∑
m=1

βαm =



6, χα ∈ {χ1, χ2}

12, χα = χ3

13, χα =∈ {χ4, χ5}

18, χα ∈ {χ6, χ7}

26, χα = χ8

cΓ−1∑
m=0

γαm =



7, χα ∈ {χ1, χ2}

14, χα = χ3

13, χα =∈ {χ4, χ5}

21, χα ∈ {χ6, χ7}

26, χα = χ8

5.8 Binary icosahedral group

The binary icosahedral group has order 120 and exponent 60. The character table of the

binary icosahedral group is
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Class 1+ 1− 30 20+ 20− 12a+ 12b+ 12a− 12b−

Order 1 2 4 6 3 10 5 5 10

χ1 1 1 1 1 1 1 1 1 1

χ2 2 −2 0 1 −1 µ ν −µ −ν

χ3 2 −2 0 1 −1 −ν −µ ν µ

χ4 3 3 −1 0 0 −ν µ −ν µ

χ5 3 3 −1 0 0 µ −ν µ −ν

χ6 4 4 0 1 1 −1 −1 −1 −1

χ7 4 −4 0 −1 1 1 −1 −1 1

χ8 5 5 1 −1 −1 0 0 0 0

χ9 6 −6 0 0 0 −1 1 1 −1

.

Here, µ =
√

5+1
2 , and ν =

√
5−1
2 .

Proposition 5.8.1 Let Γ be the binary icosahedral group.

cΓ∑
m=1

βαm =



15, χα = χ1

31, χα ∈ {χ2, χ3}

45, χα ∈ {χ4, χ5}

60, χα = χ6

62, χα = χ7

75, χα = χ8

93, χα = χ9

cΓ−1∑
m=0

γαm =



16, χα = χ1

31, χα ∈ {χ2, χ3}

48, χα ∈ {χ4, χ5}

64, χα = χ6

62, χα = χ7

80, χα = χ8

93, χα = χ9
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5.9 Sums of polynomials

If we input the results of propositions 5.4.2, 5.5.1, 5.5.2, 5.6.1, 5.7.1, 5.8.1 into propositions

5.4.1, 5.4.3 and also recalling proposition 5.3.3 we obtain the following.

Proposition 5.9.1 Let Γ be any finite subgroup of SU(2) and let α be an N -dimensional

representation of Γ. Then the sums of the polynomials P+
m and P−m are given by

cΓ∑
m=1

P+
m(u) =

cΓ−1∑
m=0

P−m(u) =
NcΓ

#Γ

(
u2 − 1

4

)
.



88

Chapter 6

One-Parameter Family of Dirac
Operators, SU(2) and SU(3)

6.1 Introduction

6.2 One-parameter family of Dirac operators Dt

Let us recall the one-parameter family of Dirac operators constructed by Agricola [2] on a

Lie group G. Instead of considering just the Levi-Civita connection, one may consider a

whole family of connections,

∇tX := ∇0
X + t[X, ·],

where ∇0 is the connection induced by left-multiplication.

One checks that ∇t is a metric so(g) connection. The torsion, T (X,Y ) = (2t−1)[X,Y ],

vanishes when t = 1/2 and so we see that ∇1/2
X is the Levi-Civita connection.

The so(g) connection ∇t lifts to a metric spin(g) connection ∇̂t [62] given by the formula

∇̂tX = ∇0
X + t

1

4

∑
k,l

〈X, [Xk, Xl]〉XkXl.

Let C l(g) denote the Clifford algebra generated by g with the relation XY + Y X =

−2〈X,Y 〉 for X,Y ∈ g. Let {Xi} denote the set of orthonormal basis of g with respect to

the metric 〈·, ·〉. The Dirac operator in C l(g)⊗U(g) induced by ∇̂t is given by the formula

Dt :=
∑
i

Xi ⊗Xi + tH ∈ C l(g)⊗ U(g), (6.1)
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where

H :=
1

4

∑
j,k,l

XjXkXl ⊗ 〈Xj , [Xk, Xl]〉 ∈ C l(g)⊗ U(g).

6.3 Spectrum of D2
t

In this section we review a general analysis of the spectrum of D2
t given in [43].

The operator D2
t can be written in terms of the Casimir operator Cas. This is useful

because the action of Cas on irreducible components of a Lie algebra representation is

well-known.

Let us recall the calculation for D2
t , done in [2].

Proposition 6.3.1 ([2]) Let {Xi} be the set of orthonormal basis of g, Dt to be defined as

in Equation (6.1). Then

D2
t = 1⊗ Cas +(1− 3t)

1

2

∑
k,l

XkXl ⊗ [Xk, Xl] + 9t2|ρ|2.

Now, we write the degree one term in terms of the Casimir as well, using the homomor-

phism,

Theorem 6.3.2 ([40]) The map π : g→ C l(g) given in the orthonormal basis Xk ∈ g by

π(Xi) :=
1

4

∑
k,l

〈Xi, [Xk, Xl]〉XkXl

is a Lie algebra homomorphism.

For a semi-simple Lie algebra, π is an injection. Extend π to π : U(g) → C l(g). Now

write the degree one term in D2
t as

1

2

∑
k,l

XkXl ⊗ [Xk, Xl] =
∑
i

1

2

∑
k,l

〈[Xk, Xl], Xi〉XkXl ⊗Xi

= 2
∑
i

π(Xi)⊗Xi.

Let ∆ : U(g) → U(g ⊕ g) = U(g) ⊗ U(g) denote the co-multiplication given by the

diagonal embedding

∆(Xi) := Xi ⊗ 1 + 1⊗Xi ∈ U(g)⊗ U(g).
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Then

∆ Cas = −
∑
i

(Xi ⊗ 1 + 1⊗Xi)
2

= 1⊗ Cas + Cas⊗1− 2
∑
i

Xi ⊗Xi.

Thus,

−1

2

∑
k,l

XkXl ⊗ [Xk, Xl] = (π ⊗ 1) (∆ Cas−1⊗ Cas−Cas⊗1) .

We obtain

Theorem 6.3.3 For Dt defined as in Equation (6.1), D2
t can be written as

D2
t = (π ⊗ 1)Tt

where

U(g)⊗ U(g) 3 Tt := 1⊗ Cas +(3t− 1)(∆ Cas−1⊗ Cas−Cas⊗1) + 9t2|ρ|2.

Since π is injective, the action of D2
t is determined by the action of Tt which in turn is

written as a combination of 1⊗ Cas, Cas⊗1, and ∆ Cas.

Lemma 6.3.4 ([38]) Let Vλ be an irreducible representation of g with highest weight λ.

Then Cas acts as a scalar on Vλ, and the scalar is given by

|λ+ ρ|2 − |ρ|2 = 〈λ+ 2ρ, λ〉.

Suppose that S is a Clifford C l(g)-module so that C l(g) ⊗ U(g) acts on S ⊗ L2(G),

where C l(g) acts on S via the Clifford action and U(g) acts on L2(G) as left-invariant

differentiation.

By the Peter-Weyl theorem, L2(G) decomposes as the norm closure of

⊕
λ∈Ĝ

Vλ ⊗ V ∗λ ,
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where λ ranges over the irreducible representations Ĝ of G.

Since U(g) acts as left invariant differential operators on L2(G), it acts as the identity

on the dual components V ∗λ .

Theorem 6.3.5 ([40]) Let S be any C l(g)-module. Then the g-representation on S defined

by composition with π is a direct sum of ρ-representations, where ρ is the half sum of all

positive roots, the Weyl vector.

The theorem implies that as a U(g)⊗ U(g) representation, S ⊗ L2(G) decomposes as

S ⊗ L2(G) =
⊕
ρ

⊕
λ∈Ĝ

Vρ ⊗ Vλ ⊗ V ∗λ .

The sum
⊕

ρ and the dual components V ∗λ only change the multiplicity of the action. We

will for the moment ignore them and only look at the Vρ ⊗ Vλ part.

We can read off how Cas⊗1 and 1 ⊗ Cas act on Vρ ⊗ Vλ already by directly applying

Lemma 6.3.4. However to know how Tt, hence D2
t , acts on Vρ ⊗ Vλ, we need to know the

action of ∆ Cas, which can be obtained if one knows the direct sum decomposition of Vρ⊗Vλ
into irreducible components, the so-called Clebsch-Gordan decomposition. In effect, we are

reducing the study of the spectrum of D2
t to the Clebsch-Gordan decomposition of Vρ⊗Vλ.

Suppose that Vρ ⊗ Vλ decomposes as

Vρ ⊗ Vλ =
⊕
γ

Vλ±γ (6.2)

for some weights γ.

We examine on it the action of

Tt = 1⊗ Cas +(3t− 1)(∆ Cas−1⊗ Cas−Cas⊗1) + 9t2|ρ|2.

One has

(
−(3t− 1) Cas⊗1 + 9t2|ρ|2

) ∣∣∣
Vρ⊗Vλ

= −(3t− 1)〈ρ+ 2ρ, ρ〉+ 9t2|ρ|2

= (3t− 1)(3t− 2)|ρ|2 + |ρ|2.
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and

((3t− 1)∆ Cas−1⊗ Cas)
∣∣∣
Vρ⊗Vλ

= (3t− 1)
(
〈λ± γ + 2ρ, λ± γ〉 − 〈λ+ 2ρ, λ〉

)
= 2(3t− 1)〈λ+ ρ,±γ〉+ (3t− 1)|γ|2

= 2〈λ+ ρ,±(3t− 1)γ〉+ |(3t− 1)γ|2 − (3t− 1)(3t− 2)|γ|2.

Thus, the action of Tt on Vρ ⊗ Vλ is given by the following.

Theorem 6.3.6 Let γ denote the weights in the Clebsch-Gordan decomposition of Vρ ⊗ Vλ
as in Equation (6.2). Then

Tt

∣∣∣
Vρ⊗Vλ

= |λ+ ρ± γ(3t− 1)|2 + (3t− 1)(3t− 2)
(
|ρ|2 − |γ|2

)
. (6.3)

Notice that for t = 1/3, T1/3 acts on Vρ ⊗ Vλ as |λ+ ρ|2, obviating the Clebsch-Gordan

decomposition.

By the injectivity of π ⊗ 1, one obtains as well the action of D2
t on Vρ ⊗ Vλ.

6.4 Spectral action for SU(2)

Using the results of the previous section, we can now compute the spectral action for the

one-parameter family of Dirac operators on SU(2).

In the case of SU(2), let Vm denote the irreducible representation of SU(2) of dimension

m + 1, m ∈ N. The Weyl vector is given by ρ = 1, and the tensor product decomposition

that we need for our calculation is

V1 ⊗ Vm = Vm+1 ⊕ Vm−1.

For m = 0, we ignore V−1 and the equation reads V1 ⊗ V0 = V1. In this case, the Clifford

module S equals just a single copy of V1.

Plugging λ = m, ρ = 1, and γ = 1 into Equation (6.3), one obtains the action of Tt

is m + 3t on Vm+1 with multiplicity (m + 2)(m + 1) for m ≥ 0; and m + 2 − 3t on Vm−1

with multiplicity m(m+ 1) for m ≥ 1, which can alternatively be written as −n− 3t with

multiplicity (n + 2)(n + 1) for n ≤ −1 by the change of indices m + 2 = −n. Hence, the

spectrum of D2
t is given by (n + 3t)2 for n ∈ Z with multiplicity (n + 2)(n + 1), and tthe
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spectrum action Tr f
(
D2
t

Λ2

)
is

Tr f

(
D2
t

Λ2

)
=

∑
n∈Z

(n+ 2)(n+ 1)f

(
(n+ 3t)2

Λ2

)
. (6.4)

Now we follow the analysis of Chamseddine and Connes [16]. Let g(u) = (u + 2)(u +

1)f
(

(u+3t)2

Λ2

)
. Its Fourier transform, denoted by ĝ(x), is

ĝ(x) =

∫
R

(u+ 2)(u+ 1)f

(
(u+ 3t)2

Λ2

)
e−2πixudu

=

∫
R

(Λy − (3t− 1))(Λy − (3t− 2))f(y2)e−2πix(Λy−3t)Λdy

= Λ3e−2πix(−3t)

∫
R
y2f(y2)e−2πixΛydy

−Λ2e−2πix(−3t)

∫
R

3(2t− 1)yf(y2)e−2πixΛydy

+Λ

∫
R

(3t− 1)(3t− 2)f(y2)e−2πixΛydy.

Now let f̂ (m) denote the Fourier transform of ymf(y2). By the Poisson summation

formula,
∑
Z
g(n) =

∑
Z
ĝ(x), the spectral action Tr f

(
D2
t

Λ2

)
(6.4) then becomes

Tr f

(
D2
t

Λ2

)
=

∑
Z
ĝ(n)

= Λ3
∑
Z
e−2πin(−3t)f̂ (2)(Λn)

−Λ2
∑
Z

3(2t− 1)e−2πin(−3t)f̂ (1)(Λn)

+Λ
∑
Z

(3t− 1)(3t− 2)e−2πin(−3t)f̂(Λn).

By taking f to be a Schwartz function, f̂ (m) has rapid decay, thus for all k

∣∣∣f̂ (m)(Λn)
∣∣∣ < Ck(Λn)−k

and ∣∣∣∣∣∣
∑
n6=0

f̂ (m)(Λn)

∣∣∣∣∣∣ < C ′kΛ
−k.
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As a result, ∑
n6=0

ĝ(n) ∈ O(Λ−∞).

Finally, we obtain:

Theorem 6.4.1 The spectral action of Dt for SU(2) is

Tr f

(
D2
t

Λ2

)
= ĝ(0) +O(Λ−∞)

= Λ3f̂2(0)− Λ2f̂1(0)3(2t− 1) + Λf̂(0)(3t− 1)(3t− 2) +O(Λ−∞)

= Λ3

∫
R
y2f(y2)dy + Λ(3t− 1)(3t− 2)

∫
R
f(y2)dy +O(Λ−∞).

The result of Theorem 6.4 coincides with that of [16] for t = 1/2, where D1/2 is the

spin-Dirac operator.

6.5 Spectrum of Dirac Laplacian of SU(3)

First, let us summarize our results for the spectrum of the Dirac Laplacian of SU(3).

Theorem 6.5.1 In each row of the table below, for each pair (p, q) with p, q in the set of

parameter values displayed, the Dirac Laplacian D2
t of SU(3) has an eigenvalue in the first

column of the multiplicity listed in the center column.

Let

λ(u, v) = u2 + v2 + uv,

and

m(a, b) =
(p+ 1)(q + 1)(p+ q + 2)(p+ 1 + a)(q + 1 + b)(p+ q + 2 + a+ b)

4
.

We denote by N≥a, the set {n ∈ N : n ≥ a}, and we take N to be the set of integers greater

than or equal to zero.
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Eigenvalue Multiplicity Parameter Values

λ(p+ 3t, q + 3t) m(1, 1) p ∈ N, q ∈ N

λ(p+ 2− 3t, q − 1 + 6t) m(−1, 2) p ∈ N, q ∈ N

λ(p+ 1, q + 1) + 3(3t− 1)(3t− 2) m(0, 0) p ∈ N, q ∈ N, (p, q) 6= (0, 0)

λ(p+ 3− 6t, q + 3t) m(−2, 1) p ∈ N≥1, q ∈ N

λ(p− 1 + 6t, q + 2− 3t) m(2,−1) p ∈ N, q ∈ N

λ(p+ 1, q + 1) + 3(3t− 1)(3t− 2) m(0, 0) p ∈ N≥1, q ∈ N≥1

λ(p+ 3t, q + 3− 6t) m(1,−2) p ∈ N, q ∈ N≥1

λ(p+ 2− 3t, q + 2− 3t) m(−1,−1) p ∈ N, q ∈ N

There is some flexibility in the set of parameter values. For instance in the second line,

we could have used instead p ∈ N≥1 since for that line the multiplicity is zero whenever

p = 0.

6.5.1 Spectrum for t = 1/3

In the case of t = 1/3, the expression of the spectrum becomes much simpler, as we no

longer need to take the Clebsch-Gordan decomposition into account.

Theorem 6.5.2 The spectrum for the Dirac Laplacian D2
1/3 of SU(3) is given in the fol-

lowing table.

Eigenvalue Multiplicity Parameter Values

p2 + q2 + pq 2p2q2(p+ q)2 p ∈ N, q ∈ N

We will later apply the Poisson summation formula to the result of Theorem 6.5.2, and we

will make use of the nice property that the multiplicities of (p, 0) and (0, q) are zero for

p, q ∈ N.

6.5.2 Derivation of the spectrum

The pairing 〈·, ·〉 is in general the dual pairing on the weight space of a nondegenerate

symmetric bilinear form on the Cartan subalgebra of g. Such a nondegenerate symmetric

bilinear form is necessarily a constant multiple of the Killing form, which for SU(3) is given
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by

κ(X,Y ) = 6 Tr(adX adY ), (6.5)

where the trace and multiplication are taken in the natural representation of X,Y as 3× 3

matrices. One may identify g∗ with g by identifying λ ∈ g∗ with the unique Xλ such that

〈Xλ, Y 〉 = λ(Y ), for all Y ∈ g. This is possible due to the nondegeneracy of the pairing

on g. In this way, one defines the dual pairing on g∗. The particular pairing which occurs

depends on the normalization of the Riemannian metric.

Henceforth, we assume that the metric is normalized so that 〈ρ, ρ〉 = 3. This leads to

the simplest expressions for the spectrum.

In order to derive the spectrum of the Dirac Laplacian, one must first analyze the pairing

of weights. We take for our basis of the Cartan subalgebra, h, the set {H1, H2},

H1 =


1 0 0

0 −1 0

0 0 0

 , H2 =


0 0 0

0 1 0

0 0 −1

 . (6.6)

We identify weights concretely using this basis, i.e. for λ ∈ h∗, we identify λ with (λ(H1), λ(H2)).

In terms of Theorem 6.3.6, in the case of SU(3) we have λ = (p, q) ∈ N× N, ρ = (1, 1),

γ = (a, b) = (0, 0), (1, 1), (2,−1), or (−1, 2); and its multiplicity is 1
4(p + 1 ± a)(p + 1)(q +

1± b)(q + 1)(p+ q + 2± (a+ b))(p+ q + 2). And S = V(1,1).

The weights λ1 = (1, 0) and λ2 = (0, 1) form an N-basis of the highest weights of

irreducible representations of SU(3). The pairing of weights can be determined up to

normalization, using duality, and the Killing form, from which one deduces the relations

〈λ1, λ1〉 = 〈λ2, λ2〉 = 2〈λ1, λ2〉. (6.7)

From these relations and Lemma 6.3.4, we immediately obtain the following lemma.

Lemma 6.5.3 On the irreducible representation of highest weight (p, q), p, q ∈ N, the

Casimir element acts by the scalar

Cas
∣∣∣
V(p,q)

= (p2 + q2 + 3p+ 3q + pq)〈λ1, λ1〉. (6.8)

For the normalization that we are considering, we have 〈λ1, λ1〉 = 1.
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We have listed the irreducible representations of SU(3) as well as the action of the

Casimir operator on them. To write down the spectrum of the Dirac Laplacian the only

obstacle now is to understand the term ∆ Cas in Theorem 6.3.6; i.e. we need to know the

Clebsch-Gordan coefficients of the tensor products Vρ⊗V(p,q). These were computed in [61].

We recall the Clebsch-Gordan coefficients that we will need below.

Lemma 6.5.4 ([61]) The decomposition of Vρ ⊗ V(p,q) into irreducible representations is

Vρ ⊗ V(p,q) = ⊕µVµ, (6.9)

where the summands Vµ appearing in the direct sum are given by the following table:

Summand Parameter Values

V(p+1,q+1) p ∈ N, q ∈ N

V(p−1,q+2) p ∈ N≥1, q ∈ N

V(p,q) p ∈ N, q ∈ N, (p, q) 6= (0, 0)

V(p−2,q+1) p ∈ N≥2, q ∈ N

V(p+2,q−1) p ∈ N, q ∈ N≥1

V(p,q) p ∈ N≥1, q ∈ N≥1

V(p+1,q−2) p ∈ N, q ∈ N≥2

V(p−1,q−1) p ∈ N≥1, q ∈ N≥1

. (6.10)

Each summand in the left column appears once if (p, q) lies in the set of parameter values

listed on the right column. For instance for (p, q) = (1, 1), the summand V(p,q) = V(1,1)

appears twice in the direct sum decomposition, since V(p,q) appears twice in the left column,

and (p, q) is in the set of parameter values in each of the two rows.

By combining Theorem 6.3.6, Lemma 6.5.3, and Lemma 6.5.4, we obtain Theorem 6.5.1.

The multiplicities are obtained using the Weyl dimension formula

dimV(p,q) =
1

2
(p+ 1)(q + 1)(p+ q + 2). (6.11)

When t = 1/3, the formula for the Dirac Laplacian in Theorem 6.3.6 simplifies to

D2
1/3 = 1⊗ Cas + 3. (6.12)
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Therefore, we no longer need to decompose any tensor products into irreducible components,

and using just Lemma 6.5.3, one obtains Theorem 6.5.2.

6.6 Spectral action for SU(3)

In this section, we compute the spectral action, Tr f(D2
t /Λ

2). In the case t = 1/3, one

may apply the Poisson summation formula as in [16] to quickly obtain the full asymptotic

expansion for the spectral action. For general t however, this approach no longer works. An

expansion can however still be generated using a two variable generalization of the Euler-

Maclaurin formula [37]. However, this requires more work to produce, and produces the

full expansion of the spectral action if the test function f is taken to be “flat” at the origin.

The flatness assumption of f is natural as the role of f is to act as a cut-off function. Here,

we compute the spectral action to order Λ0.

6.6.1 t = 1/3

Let f ∈ S(R) be a Schwarz function. By Theorem 6.5.2, the spectral action of SU(3), for

t = 1/3 is given by

Tr f(D2
1/3/Λ

2) =
∞∑
p=0

∞∑
q=0

2p2q2(p+ q)2f

(
p2 + q2 + pq

Λ2

)
. (6.13)

In order to apply the Poisson summation formula, one needs to turn this sum into a sum

over Z2. For this purpose, one takes advantage of the fact that the expressions for the

eigenvalues and multiplicities are both invariant under a set of transformations of N2 which
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together cover Z2. The linear transformations of N2 which together cover Z2 are

T1(p, q) = (p, q),

T2(p, q) = (−p, p+ q),

T3(p, q) = (−p− q, p),

T4(p, q) = (−p,−q),

T5(p, q) = (p,−p− q),

T6(p, q) = (p+ q,−p).

Each of the transformations is injective on N2. The union of the images is all of Z2. The

six images of N2 overlap on the sets {(p, q) : p = 0} and {(p, q) : q = 0}. However,

the multiplicity is equal to zero at these points, and so this overlap is of no consequence.

Therefore, we may now write the spectral action as a sum over Z2 as

Tr f(D2
1/3/Λ

2) =
1

6

∞∑
p=−∞

∞∑
q=−∞

2p2q2(p+ q)2f

(
p2 + q2 + pq

Λ2

)
. (6.14)

For a sufficiently regular function, the Poisson summation formula (in two variables) is

∑
Z2

g(p, q) =
∑
Z2

ĝ(x, y). (6.15)

Applying Equation (6.15) to Equation (6.14), and applying the argument used in [16]

we get the following result.

Theorem 6.6.1 Let f ∈ S(R) be a Schwarz function. For t = 1/3, the spectral action of

SU(3) is

Tr f(D2
1/3/Λ

2) =
1

3

∫∫
R2

x2y2(x+ y)2f(x2 + y2 + xy)dxdy Λ8 +O(Λ−k), (6.16)

for any integer k.
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6.6.2 General t and the Euler-Maclaurin formula

The one-variable Euler-Maclaurin formula was used in [17] to compute the spectral action

of SU(2) equipped with the Robertson-Walker metric. A two-variable Euler-Maclaurin

formula may be applied here to compute the spectral action on SU(3) for all values of t.

Let m be a positive integer. Let g be a function on R2 with compact support. One

instance of the two-variable Euler-Maclaurin formula is [37]

∞∑
p=0

∞∑
q=0

′g(p, q) = L2k(
∂

∂h1
)L2k(

∂

∂h2
)

∫ ∞
h1

∫ ∞
h2

g(p, q)dpdq
∣∣∣
h1=0,h2=0

+Rstm(g). (6.17)

The notation
∑∑′ indicates that terms of the form g(0, q), q 6= 0, and g(p, 0), p 6= 0

have a coefficient of 1/2, g(0, 0) has a coefficient of 1/4, and the rest of the terms are given

the usual coefficient of 1. The operator L2k(S) is defined to be

L2k(S) = 1 +
1

2!
b2S

2 + . . .+
1

(2k)!
b2kS

2k, (6.18)

where bj is the jth Bernoulli number. The number k is defined by k = bm/2c. The

remainder Rstm(g) is

Rstm(g) (6.19)

=
∑

I({1,2}

(−1)(m−1)(2−|I|)
∏
i∈I

L2k(
∂

∂hi
)

∫ ∞
h1

∫ ∞
h2

∏
i/∈I

Pm(xi)
∏
i/∈I

(
∂

∂xi

)m
g(x1, x2)dx1dx2

∣∣∣∣∣
h=0

.

Equation (6.17) is proved in an elementary way in [37], by casting the one-variable Euler-

Maclaurin formula in a suitable form, and then iterating it two times.

Using Theorem 6.5.1, one may write the spectral action in terms of eight summations

of the form

∑
(p,q)∈N2

gi(p, q),

where

gi(p, q) = f

(
λi(p, q)

Λ2

)
mi(p, q), i = 1, . . . , 8.
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The notations λi(p, q) and mi(p, q) denote the eigenvalues and multiplicities of the spec-

trum in Theorem 6.5.1.

One then applies the two-variable Euler-Maclaurin formula to each of the eight summa-

tions to replace the sums with integrals. Then to obtain an asymptotic expression in Λ,

one controls the remainder, Rstm(g), to arbitrary order in Λ by taking m to be sufficiently

large, and computes the big-O behavior of the other integrals to arbitrary order in Λ by

applying the multivariate Taylor’s theorem to a large enough degree. The terms in the

Taylor expansions of the integrals yield the asymptotic expansion of the spectral action.

6.6.3 Analysis of remainders

Let us consider in detail the case I = {}, of the remainder, (6.19). The functions Pm(xi) are

periodic, and hence bounded. Furthermore, they are independent of Λ. Therefore to study

the big-O behavior with respect to Λ of the remainder, (6.19), we only need to estimate the

integral ∫∫ ∣∣∣∣ ∂m∂pm ∂m

∂qm
f(sλ(p, q))m(p, q)

∣∣∣∣ . (6.20)

The integration happens over (R+)2 = [0,∞) × [0,∞), and m(p, q) is the multiplicity

polynomial. The differentiated function is a sum of terms, whose general term is given by

Csif (i)(tλ)λ(a1,b1)(p, q) . . . λ(ai,bi)(p, q)m(j,k)(p, q), (6.21)

where C is a combinatorial constant, s = Λ−2, and where j and k are less than or equal to

m and 0 ≤ i ≤ 2m− j − k and

∑
(ai, bi) = (m− j,m− k).

Since m is degree 4 in both p and q, we know that j ≤ 4 and k ≤ 4. Since λ is degree

2 in both p and q we know that each of the coefficients ak, bk is less than or equal to 2.

Therefore, one has the estimate

2i ≥
∑

ai = m− j ≥ m− 4, (6.22)
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and so

i ≥ m− 4

2
. (6.23)

It is not too hard to see that the integral

∫∫
f (i)(sλ)λ(a1,b1)(p, q) . . . λ(ai,bi)(p, q)m(j,k)(p, q)dpdq (6.24)

is uniformly bounded as s approaches zero, and therefore we have that the integral has a

big-O behavior of O(s
m−4

2 ) as s goes to zero.

The same argument gives the same estimate for the terms in the cases I = {1} and

I = {2}. Therefore we have shown:

Lemma 6.6.2 The remainder Rstm(g) behaves like O(Λ−(m−4)) as Λ approaches infinity.

Since the sum in the Euler-Maclaurin formula, (6.17), gives only a partial weight to terms

on the boundary, and since the functions gi(p, q), are at times nonzero on the boundary,

{p = 0} ∪ {q = 0} even when there are no eigenvalues there, we must compensate at the

boundary in order to obtain an accurate expression for the spectral action.

In doing so, one considers sums of the form

∞∑
p=0

gi(p, 0) and
∞∑
q=0

gi(0, q).

One treats these sums using the usual one-variable Euler-Maclaurin formula, which for a

function, h, with compact support is

∞∑
p=0

h(p) =

∫ ∞
0

h(x)dx+
1

2
h(0)−

m∑
j=1

b2j
(2j)!

h(2j−1)(0) +Rm(h), (6.25)

where the remainder is given by

Rm(h) =

∫ ∞
0

Pm(x)

(
∂

∂x

)m
h(x)dx. (6.26)

The necessary estimate for the remainder (6.26) is as follows.

Lemma 6.6.3 Rm(g(p, ·)) and Rm(g(·, q)) behave as O(Λ−m+4) as Λ approaches infinity.

To prove this, we observe that since the polynomial Pm(x) is bounded and independent
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of x, we only need to estimate for instance

∣∣∣∣∫ ∞
0

(
∂

∂x

)m
gi(x, 0)dx

∣∣∣∣ .
The function gi(x, 0) is of the form

f

(
ax2 + bx+ c

Λ2
+ d

)
m(x, 0), (6.27)

where a, b, c are independent of Λ and x, and d is independent of x. The polynomial m(x, 0)

is of degree 4 in x. Therefore, when one expands the derivative of (6.27) using the product

rule, the derivatives of f(ax
2+bx+c

Λ2 + d) are all of order j ≥ m − 4. A simple inductive

argument shows that the expansion of (∂/∂x)jf(ax
2+bx+c

Λ2 + d) under the chain rule the

terms are all of the form

1

Λk
f (i)

(
ax2 + bx+ c

Λ2
+ d

)
α(x),

where k ≥ j, and α(x) is a polynomial. Finally we conclude the proof of the lemma by

observing that ∫ ∞
0

(
∂

∂x

)j
f

(
ax2 + bx+ c

Λ2
+ d

)
α(x)dx (6.28)

is uniformly bounded as Λ goes to infinity.

6.6.4 Analysis of main terms

With the remainders taken care of, one still needs to work out the big-O behavior of the

spectral action with respect to Λ of the remaining terms coming from the two-variable and

one-variable Euler-Maclaurin formulas.

The calculation required is lengthy, but the technique is elementary. One changes vari-

ables to remove (most of) the Λ dependence from the argument of the test function f .

Then, one uses Taylor’s theorem to remove the Λ dependence from the limits of integration,

and whatever Λ dependence remains in the argument of f . In this way, one can obtain

the big-O behavior of the spectral action with respect to Λ to any desired order. We have

performed the computation up to constant order in Λ. If one assumes that the test function

f has all derivatives equal to zero at the origin, then one obtains the asymptotic expansion
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to all orders in Λ.

To give a better idea of how the calculation proceeds, let us consider in detail a couple

of terms coming from the Euler-Maclaurin formulas.

One term that appears upon application of the Euler-Maclaurin formula is

∫ ∞
0

∫ ∞
0

g1(p, q)dpdq, (6.29)

where

g1(p, q)

= f

(
(p+ 3t)2 + (q + 3t)2 + (p+ 3t)(q + 3t)

Λ2

)
(p+ 1)(q + 1)(p+ q + 2)(p+ 2)(q + 2)(p+ q + 4)

4
.

First, one performs on (6.29) the change of variables,

x =
p+ 3t

Λ
and y =

q + 3t

Λ
,

whereby one obtains

1

4

∫ ∞
3t/Λ

∫ ∞
3t/Λ

f(x2 + y2 + xy)(1− 3t+ xΛ)(2− 3t+ xΛ)×

× (1− 3t+ yΛ)(2− 3t+ yΛ)(2− 6t+ xΛ + yΛ)(4− 6t+ xΛ + yΛ)Λ2dxdy.

Next, one does a Taylor expansion on the two lower limits of integration about 0. The first

term in this Taylor series is obtained by setting the limits of integration to zero.

1

4

∫ ∞
0

∫ ∞
0

f(x2 + y2 + xy)(1− 3t+ xΛ)(2− 3t+ xΛ)× (6.30)

×(1− 3t+ yΛ)(2− 3t+ yΛ)(2− 6t+ xΛ + yΛ)(4− 6t+ xΛ + yΛ)Λ2dxdy.

Remarkably, if one sums the analog of (6.30) for g1, . . . , g8 one obtains the complete

spectral action to constant order. All of the other terms which appear in the computation

(of which there are many) cancel out, to constant order in Λ, in an intricate manner.

The end result of the calculation is the following.

Theorem 6.6.4 Let f be a real-valued function on the real line with compact support. To
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constant order, the spectral action, Tr f(D2
t /Λ

2) of SU(3) is equal to

Tr f(D2
t /Λ

2)

= 2

∫∫
(R+)2

f(x2 + y2 + xy)x2y2(x+ y)2dxdy Λ8

+3(3t− 1)(3t− 2)

∫∫
(R+)2

f(x2 + y2 + xy)(x4 + 2x3y + 3x2y2 + 2xy3 + y4)dxdy Λ6

+9(3t− 1)2(3t− 2)2

∫∫
(R+)2

f(x2 + y2 + xy)(x2 + xy + y2)dxdy Λ4

+6(3t− 1)3(3t− 2)3

∫∫
(R+)2

f(x2 + y2 + xy)dxdy Λ2 +O(Λ−1).

Here, the integrals are taken over the set (R+)2 = [0,∞) × [0,∞). When f is taken to be

a cut-off function so that it is flat at the origin, this expression gives the full asymptotic

expansion of the spectral action.

The linear transformations, T1 . . . T6 in Subsection 6.6.1, are all unimodular, and the images

of (R+)2 cover R2, up to a set of measure zero. Therefore, in the case of t = 1/3, integrating

over R2 multiplies the result by a factor of 6, and we see that Theorem 6.6.4 agrees with

Theorem 6.6.1.

When computing the asymptotic expansion of the spectral action using the Euler-

Maclaurin formula, as a result of the chain rule, the negative powers, Λ−j appear only

with derivatives f (k)(0), k ≥ j. This is why the terms of the asymptotic expansion vanish

for negative powers of Λ, when the derivatives of f vanish at zero.

6.7 Details of the Calculations

Since the Dirac Laplacian spectrum of SU(3), Theorem 6.5.1 is divided into eight pieces,

the spectral action also naturally divides into eight pieces of the form

∑
p,q

g(p, q),

where

g(p, q) = f(tλi(p, q))mi(p, q), i = 1, . . . , 8,
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and the index values taken on by p and q are determined by the expression of the spectrum,

Theorem 6.5.1.

By the Euler-Maclaurin formula, we have

∞∑
p=0

∞∑
q=0

′g(p, q) = L2k(
∂

∂h1
)L2k(

∂

∂h2
)

∫ ∞
h1

∫ ∞
h2

g(p, q)dpdq
∣∣∣
h1=0,h2=0

+Rk(g).

The apostrophe in the double sum indicates that the terms g(p, 0), p 6= 0, and g(0, q), q 6= 0

are taken with weight 1/2, and the term g(0, 0) is taken with weight 1/4. We compensate

for these weights, and arrive at the equation

∑
(p,q)

g(p, q) = L2k(
∂

∂h1
)L2k(

∂

∂h2
)

∫ ∞
h1

∫ ∞
h2

g(p, q)dpdq
∣∣∣
h1=0,h2=0

+Rk(g)

+α
∞∑
q=0

g(0, q) + β
∞∑
p=0

g(p, 0) + γg(0, 0),

where the indices taken on by p and q are the appropriate ones as determined by the

spectrum in Theorem 6.5.1, and the constants α, β lie in the set {−1/2, 0, 1/2}, as deter-

mined by the spectrum. The term γg(0, 0) is there to ensure one has the correct term at

the corner (p, q) = (0, 0). One then applies the one dimensional Euler-Maclaurin formula

to these boundary sums, to get our final formula

∑
(p,q)

g(p, q) = L2k(
∂

∂h1
)L2k(

∂

∂h2
)

∫ ∞
h1

∫ ∞
h2

g(p, q)dpdq
∣∣∣
h1=0,h2=0

(6.31)

+αL2k(
∂

∂h
)

∫ ∞
h

g(0, q)dq + βL2k(
∂

∂h
)

∫ ∞
h

g(p, 0)dp (6.32)

+γg(0, 0) +Rk(g). (6.33)

We have collected the remainders coming from the two-dimensional Euler-Macularin for-

mula and the two instances of the one-dimensional Euler-Maclaurin formula into a single

remainder, Rk(g). We already demonstrated that Rk(g) can be made to behave like O(Λ−s)

for any s, so long as k is chosen to be sufficiently large.

Now let us analyze this final formula term by term, and demonstrate how to transform

these terms into asymptotic expressions in Λ.
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6.7.1 The Identity Term

First we consider the term

∫ ∞
h1

∫ ∞
h2

g(p, q)dpdq
∣∣∣
h1=0,h2=0

, (6.34)

which is in a class of its own. Let us work out one concrete example. We take

g(p, q)

= f

(
(p+ 1)2 + (q + 1)2 + (p+ 1)(q + 1) + 3(3t− 1)(3t− 2)

Λ2

)
1

4
(p+ 1)2(q + 1)2(p+ q + 2)2.

We perform the change of variables (p + 1)/Λ = u, (q + 1)/Λ = v. Then the integral

(6.34) becomes

Λ2

∫ ∞
1
Λ

∫ ∞
1
Λ

f

(
u2 + v2 + uv +

3(3t− 1)(3t− 2)

Λ2

)
P (u, v,Λ)dudv. (6.35)

Here and below, P denotes a generic polynomial. To move the remaining Λ dependence

outside of f , we make the Taylor expansion replacement

f(x+ y) = f(x) + f ′(x)y + f ′′(x)y2/2! + f ′′′(y3)/3! + f ′′′′(y4)/4! +O(y5),

where

x = u2 + v2 + uv and y =
3(3t− 1)(3t− 2)

Λ2
.

Here, y5 is O(Λ−10), which is enough to suppress the positive powers of Λ in the remaining

part of the expression, if one is working up to constant order.

Next, we perform a Taylor expansion in the two lower limits of integration. This process

leads to three classes of terms.

If we let h(x, y) denote the double integral, where x and y are the two lower limits of

integration, then the expansion is of the form

h(x, y) =
∑
i+j≤s

h(i,j)(0, 0)
xiyj

i!j!
+O(Λ−s).

This expansion naturally leads to three classes of terms
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Class 1: i=j=0.

This is simply the double integral (6.35) with lower limits set to zero

Λ2

∫ ∞
0

∫ ∞
0

(· · · )P (u, v,Λ)dudv.

If one collects this term for each of the eight pieces of the spectrum one obtains all of

the terms which contribute to the expansion of the spectral action.

Class 2: Exactly one of i, j equals zero.

Suppose for instance that i = 0, then the terms in this class look like

Λ2

∫ ∞
0

(−1)

(
∂

∂u

)j−1 (
(· · · )P (u, v,Λ)

)∣∣∣
u=0

dv

(
1

Λ

)j 1

j!
. (6.36)

This class of terms has non-vanishing terms up to order Λ5.

Class 3: Neither i nor j equals zero.

This class of terms is very straightforward to compute. They are of the form

Λ2

(
∂

∂u

)j−1( ∂

∂v

)i−1 (
(· · · )P (u, v,Λ)

)∣∣∣
u=0,v=0

(
1

Λ

)i( 1

Λ

)j 1

i!j!
. (6.37)

This class of terms only has non-vanishing terms to constant order or lower in Λ. The

constant order term is a degree 8 polynomial in t.

When working to constant order, only small values of i and j are needed. For large

values of i and j the powers of 1
Λ suppress the powers of Λ appearing in the remainder of

the expression.

6.7.2 The terms b2i
(2i)!

(
∂
∂h

)2i ∫∫
g(p, q)dpdq

Here b2i are the even Bernoulli numbers. The ones we need to compute up to constant order

in Λ are b0 = 1, b2 = 1/6, b4 = −1/30, b6 = 1/42, b8 = −1/30. We now consider the next

set of terms in (6.31). Performing the partial derivative in h gives

(
∂

∂h

)2i ∫ ∞
0

∫ ∞
h

g(p, q)dpdq
∣∣∣
h=0

=

∫ ∞
0

(−1)
∂

∂p

2i−1

g(p, q)
∣∣∣
p=0

dq. (6.38)
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Once again, let us work out one case concretely. We let

g(p, q) = f

(
(p+ 3t)2 + (q + 3t)2 + (p+ 3t)(q + 3t)

Λ2

)
mult(p, q). (6.39)

In this case, the expression (6.38) becomes

∫ ∞
0

(−1)P

(
f (b)

(
(3t)2 + (q + 3t)2 + (3t)(q + 3t)

Λ2

)
, q, t,Λa

)
dq. (6.40)

Here and below, the argument f b(x) in the polynomial indicates that f and some of its

derivatives evaluated at x are variables of the polynomial. Next, one does the variable

substitution (q + 3t)/Λ = v, to get

Λ

∫ ∞
3t/Λ

(−1)P

(
f (b)

(
v2 +

(3t)2 + 3tΛv

Λ2

)
, v, t,Λa

)
dv. (6.41)

Finally, one makes the replacement

f (b)(x+ y) = f (b)(x) + f (b+1)(x)y . . .+ f (b+8)(x)
y8

8!
+O(y9), (6.42)

where x = v2 and y = ((3t)2 + 3tΛv)/Λ2. Since y9 is O(Λ−9) this is enough to suppress the

other powers of Λ when working to constant order.

The final expression will be of the form

Λ

∫ ∞
3t/Λ

(−1)P
(
f (b)(v2), v, t,Λa

)
dv. (6.43)

Next we do the Taylor expansion in the lower limit of the integral:

h(x) =
∑
j=0

h(j)(0)
xj

j!
.

This leads to two classes of terms

Class 1: j = 0 Here one simply sets the lower limit of integration to zero.

b2i
(2i)!

Λ

∫ ∞
0

(−1)P
(
f (b)(v2), v, t,Λa

)
dv.

This class of terms has non-vanishing contributions up to order Λ5.
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Class 2: j 6= 0 These terms are of the form

b2i
(2i)!

Λ(−1)
∂

∂v

(j−1)

P
(
f (b)(v2), v, t,Λa

)∣∣∣
v=0

(
3t

Λ

)j 1

j!
.

This class of terms only has non-vanishing contributions no higher than constant order in

Λ. This constant order term is a polynomial in t of degree 5.

6.7.3 The terms b2i
(2i)!

b2j
(2j)!

(
∂
∂h1

)2i (
∂
∂h2

)2j ∫∫
g(p, q)dpdq

These terms generate just a single class of terms, which are easy to handle. They are of the

form
b2i

(2i)!

b2j
(2j)!

∂

∂p

j−1 ∂

∂q

i−1

g(p, q)
∣∣∣
p=0,q=0

.

This works out to an expression of the form

b2i
(2i)!

b2j
(2j)!

P
(
f (b)

( · · ·
Λ2

))
. (6.44)

In order to get an asymptotic expansion to constant order, one simply replaces the argu-

ments of all of the f (b) with zero.

The resulting expression has non-vanishing contributions no higher than constant order,

and this term is constant with respect to t.

6.7.4 Boundary Term
∫
g(0, q)dq,

∫
g(p, 0)dp

In the two-dimensional Euler-Maclaurin formula, the terms corresponding to the boundary,

p = 0 and q = 0 are not given full weight. In addition, there may or may not be eigenvalues

with positive multiplicity at the boundary, depending on which of the eight pieces of the

spectrum one is considering. Therefore, one must fill in or take away the sum at the

boundary in order to obtain the full spectral action. One can do this by applying the

one-dimensional Euler-Maclaurin formula.

Now let us consider the terms that come when compensating for the boundary. The

first terms are of the form ∫ ∞
0

g(0, q)dq,
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and ∫ ∞
0

g(p, 0)dp,

by symmetry in p and q, it is sufficient to consider only one of these cases. Let us consider

the case p = 0, and take

g(p, q) = f

(
(p+ 3t)2 + (q + 3t)2 + (p+ 3t)(q + 3t)

Λ2

)
mult(p, q). (6.45)

Then ∫ ∞
0

g(0, q)dq =

∫ ∞
0

f

(
(3t)2 + (q + 3t)2 + (3t)(q + 3t)

Λ2

)
mult(0, q)dq.

We perform the variable substitution (q + 3t)/Λ = v so now we have

Λ

∫ ∞
3t/Λ

f

(
v2 +

(3t)2 + 3tΛv

Λ2

)
P (Λ, v, t)dv.

Next we remove the Λ dependence out of f using a Taylor expansion to get

Λ

∫ ∞
3t/Λ

P (f (b)(v2),Λa, v, t)dv.

Performing the Taylor expansion in the lower limit of integration we are led to two

classes of terms

h(x) =
∑
j=0

h(j)(0)
xj

j!
.

Class 1: j = 0.

Simply set the lower limit to zero, and use a Taylor expansion. This class of terms has

non-vanishing contributions up to order Λ5.

Class 2: j 6= 0.

These terms have non-vanishing contributions no higher than constant order in Λ. The

constant order term in Λ is a polynomial in t of degree 5.
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6.7.5 The Boundary Terms b2i
(2i)!

(
∂
∂h

)2i ∫
g(0, q)dq

These terms are straightforward to handle and are of the form

− b2i
(2i)!

(
∂

∂q

)2i−1

g(0, q)
∣∣∣
q=0

.

These terms contribute no higher than constant order in Λ. The constant order term in Λ

is constant in t.

6.7.6 Corner Term

Finally we have the term γg(0, 0). This contributes no higher than constant order in Λ,

and the constant order term in Λ is constant in t.
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