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Abstract

The condensation of phenanthroline-5,6-dione (phendione) with polyamines is a
versatile synthetic route to a wide variety of chelating ligands. Condensation with 2,3-
napthalene diamine gives benzoli]dipyrido[3,2-a:2",3'-c]phenazine (bdppz) a ligand
containing weakly-coupled orbitals of benzophenazine (bpz) and 2,2’-bipyridinde(bpy)
character. The bpy character gives Re and Ru complexes excited-state redox properties;
intramolecular electron transfer (ET) takes place to the bpz portion of the ligand. The
charge-separated state so produced has an extraordinarily-long 50 ps lifetime. The slow
rate of charge recombination arises from a combination of extremely weak coupling
between the metal center and the bpz acceptor orbital and Marcus "inverted region”
behavior. Molecular orbital calculations show that only 3% the electron density in the
lowest unoccupied molecular orbital lies on the bpy atoms of bdppz, effectively trapping
the transferred electron on the bpz portion. The rate of charge recombination decreases
with increasing driving force, showing that these rates lie in the inverted region.
Comparison of forward and back ET rates shows that donor-acceptor coupling is four
orders of magnitude greater for photoinduced electron transfer than it is for thermal
charge recombination.

Condensation of phendione with itself or tetramines gives a series of binucleating
tetrapyridophenazine ligands of incrementally-varying coordination-site separation.
When a photoredox-active metal center is attached, excited-state energy and electron
transfer to an acceptor metal center at the other coordination site can be studied as a
function of distance. A variety of monometallic and homo- and heterodimetallic
tetrapyridophenazine complexes has been synthesized. Electro- and magnetochemistry
show that no ground-state interaction exists between the metals in bimetallic complexes.
Excited-state energy and electron transfer, however, takes place at rates which are

invariant with increasing donor-acceptor separation, indicating that a very efficient



A%

coupling mechanism is at work. Theory and experiment have suggested that such
behavior might exist in extended n-systems like those presented by these ligands.
Condensation of three equivalents of 4,5-dimethyl-1,2-phenylenediamine with
hexaketocyclohexane gives the trinucleating ligand hexaazahexamethyltrinapthalene
(hhtn). Attaching two photredox-active metal centers and a third catalytic center to hhtn
provides means by which multiclectron photocatalyzed reactions might be carried out.
The coordination properties of hhtn have been examined; X-ray crystallographic
structure determination shows that the ligand's constricted coordination pocket leads to

distorted geometries in its mono- and dimetallic derivatives.
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Introduction
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The Modern Era of inorganic photochemistry began in 1972 with Gafney and
Adamson's report that Ru(bpy)32* acts as an excited-state electron-transfer reductant.!
The authors expressed their wish that the complex would someday find general use as a
photosensitizer. To date, thousands of papers of studies of Ru(bpy)32* and its derivatives
have been published. The "endearing properties"? of the molecule- photostability, high
visible-region extinction coefficients, and a long excited-state lifetime- have made this
huge body of work possible.

These qualities can be understood in terms of the MO diagram shown in figure
1.1. Octahedral symmetry splits the metal d orbitals into two sets of degenerate MOs,

three nonbonding 7 orbitals and two antibonding 6* orbitals. The six d electrons of Ru2+*
fill the ®# MOs, giving a singlet ground state. Empty bpy * orbitals lie between the
metal-centered orbitals, giving rise to a lowest excited state which is MLCT in character.
The singlet-singlet MLCT is allowed and intense (€=14,000 mol I-! cnr!) with an
absorption maximum of 450 nm, giving Ru(bpy)32* complexes their characteristic orange
color. Excited-state ligand dissociation is circumvented since the electron promoted does
not reside in an antibonding orbital. The heavy Ru atom promotes intersystem crossing
to the 3MLCT state with unit efficiency; spin-forbidden radiative relaxation to the
ground state is slow, giving the excited state a lifetime of 600 ns in fluid solution at room
temperature.? Ru(bpy)s2+* can participate in an exited-state reaction if the rate of inter-
or intramolecular ET or energy transfer is greater than the rate of radiative decays; its long
lifetime assures that such reactions are possible.

In its excited state, Ru(bpy)s2* is both a better oxidant and reductant than it is in
its ground state, as shown in figure 1.2. Oxidative quenching occurs by ET from the
energetic SMLCT excited state; the electron gained by reductive quenching fills the hole
in the LUMO vacated by the excited electron. The energy content of the excited state is
the amount of energy the incoming photon has in excess of the ground-state reduction

potential:



Figure 1.1. MO energy level diagram of Ru(bpy)s2+.
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Figure 1.2. Ground- and excited-state redox scheme for Ru(bpy)32*.
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E(A*/A")=E(A*/A)-E¢.0 1
E(A*/A)=E(A/A)+Eqo 2
where Eq g is the energy of the 0-0 transition of the emitting excited state. The relevant
energies of Ru(bpy);2+ are shown in a modified Latimer diagram in figure 1.3.3 The
excited state can reduce molecule A with E9(A/A-) > -0.86 V (Equation 3) and oxidize
molecule A with E9(A+/A) < 0.86 V (Equation 4).
Ru(bpy)s?* + A + hv -> Ru(bpy)32** + A -> Ru(bpy)s3*+ + A" 3
Ru(bpy)s2* + A + hv -> Ru(bpy);2** + A -> Ru(bpy)s* + A* 4
Thus light can be used to drive a reaction in a nonspontaneous direction. The
state so produced is thermodynamically unstable; back reaction to Ru(bpy)s2* and A is
rapid. If, however, another molecule B is present which can react with the transient Ru
species, net electron transfer between A and B can be effected by the photocatalytic
action of Ru(bpy);2+, shown in figure 1.4 This scheme is an inorganic equivalent of
photosynthesis, in which chlorophyll uses light energy to reduce CO; to carbohydrate
and, in the other half-reaction, to oxidize H,O to O,. The realization that photochemical
energy conversion using Ru(bpy)s2*+ was possible came in 1975,4 in the wake of the
OPEC oil embargo, an event that made Western nations aware, at least temporarily, that
oil was an exhaustible resource controlled by nations with different agendas. The Energy
Crisis that followed brought increased funding for research into alternative energy
sources, and the next ten years saw the publication of hundreds of papers utilizing
emissive coordination compounds in attempts to develop technologies to convert sunlight
into more useful forms of energy. Chief among these was splitting water.
Examination of the reactions relevant to the oxidation and reduction of H,O to O
and H; at pH 7 (Equations 5 and 6) shows that Ru(bpy)32+* is capable of performing both.
1/2 H,0 -> H* + 1/40; + ¢ E?=0.82 V 5
1/2H,0 + e -> OH- + 1/2H; E0=-041V 6



Figure 1.3. Modified Latimer diagram for Ru(bpy)s2+.
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Figure 1.4. Electron transfer photosensitized by Ru(bpy)s2+.
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It need only be able to carry out one of the half-reactions, since the Ru(bpy)s3* or
Ru(bpy)s* formed by ET quenching can accomplish the other half-reaction thermally.
Obviously, since Ru(bpy)32+ is emissive in water, water splitting does not happen. The
potentials in equations 5 and 6 are for overall oxidation and reduction; Ru(bpy)32+* is not
capable of direct one-electron reduction to Hj (E®=-2.69 V) or one-electron oxidation to
hydroxyl radical (E?=2.33 V).5 Catalysts are needed to stabilize radical intermediates and
make the rates of desirable reactions competitive with energy-wasting back reactions.
Energy-conversion systems become complicated rapidly.

Work led to the development of systems that could produce either H; or O2; no
one has ever been able to devise a coordination-compound-based method for visible-
light- induced decomposition of water into both its elements. Whether Oz- or Hz-
producing, these systems share the characteristic that Ru(bpy)32** does not react directly
with H;O, a feature shown in figure 1.5. The excited state is oxidatively quenched by a
reversible relay which reduces water with the aid of a catalyst; a sacrificial electron donor
such as triethanolamine prevents back ET by reducing Ru(bpy)s*.¢ To oxidize water,
Ru(bpy)32+* transfers an electron irreversibly to an acceptor such as Co(NH3)5Cl, which
is rapidly aquated. The Ru(bpy);3+ so formed can then produce O; in the presence of a
catalyst.”

It is difficult to envision an homogenous system that splits water; the highly-
energetic species needed to perform the oxidation and reduction would be most reactive
toward each other, short-circuiting the process. A possible solution to the problem is the
physical separation of the components needed for each half-reaction. The next phase of
research examined ET behavior in heterogenous systems, including polymers,?
functionalized electrodes,? and membranes.!? While a great deal of creativity and energy
went into these studies, it appears that the initial promise Ru(bpy)32* showed as a
sensitizer for photochemical energy conversion will go unfulfilled. Such is the nature of

basic research.
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Figure 1.5. Hj and O; production with Ru(bpy);2*.
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The Modern Era is far from over, however. Ru(bpy);2* continues to generate
substantial interest; nearly 100 papers on Ru(diimine)32* complexes were published in
1993.11 Inorganic photochemistry has grown to include many additional compounds
which exhibit excited-state properties like those of Ru(bpy)32+, including [ Aus(bis-
(dicyclohexylphospino)ethane);]2+12, Re(CO)3(bpy)C113, [Ir(u-pyrazolyl)
(cyclooctadine)],.!4 The field continues to flourish.

In a sense, research in the area of ET employing inorganic chromophores has
come full circle, through the period of energy conversion research, back to 1974, when
Meyer et al. published the first paper providing direct spectroscopic evidence of the
ability of Ru(bpy)3®** to act as an ET agent.!® The study employed MV2+, which
becomes intensely colored upon reduction, to oxidatively quench the excited state.
Transient absorption spectroscopy showed that MV+* and Ru(bpy)s** were formed upon
laser irradiation of a solution containing MV2+ and Ru(bpy)s2+, proving that ET had
taken place. The system was now in an unstable state, and the rate of thermal ET from
MV +* back to Ru(bpy)3+ was measured by following the decay of MV+* absorbance.
In theory, it could have been possible to measure the rate by mixing MV+** and
Ru(bpy)s3+ generated by chemical reduction and oxidation in a stopped-flow apparatus.
The rate of charge recombination, 8.3 x 10° M-1 s-1, was much faster than could be
measured using stopped-flow techniques, however, and this work showed that using an
ET sensitizer allowed the rates of very exothermic reactions to be measured. For
reactions slow enough to be followed via mixing, photon-triggered production of the
redox partners provided a much more convenient method of determination since the
reactants were generated in situ.. It was also possible, of course, to measure the rates of
photoinduced ET from the excited state by transient absorption spectroscopy and by
measuring loss of emission intensity and excited-state lifetime in the presence of a

quencher.
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While Ru(bpy)s;2* will not solve the world's energy problems, it is invaluable for
its use as a probe of ET properties and will continue to be for the forseeable future.
Bimolecular experiments exactly like those performed twenty years ago are still
providing new insight into ET phenomena.!® Donor-acceptor pairs containing bpy-based
chromophores have been covalently attached to a great number of molecular spacers to
investigate the role the intervening medium plays in promoting thermal and photoinduced
ET. These spacers have been biomolecules such as DNA!7 and proteins,'® to examine
reactions fundamental to life, and synthetic spacers which serve as simpler models for
biological systems.!?

The work described in this thesis is an exploration of ET in Ru and Re
polypyridophenazine-based donor-acceptor systems. The following three chapters are
united by a common synthetic motif, shown in Figure 1.6 - the condensation of -
polyketones with a-polyamines to give substituted phenazines.

In Chapter 2, phendione is condensed with 2,3-diaminonapthalene to give bdppz,
which acts as independent bpy and bpz units. The bpz portion of the molecule, which
acts as an electron acceptor, is very poorly coupled to the coordinated photoactive metal
center, leading to a photoinduced charge-separated state with an extraordinarily long
lifetime. This lifetime is further lengthened by increasing the thermodynamic force for
thermal charge recombination, pushing the kinetics deeper into the "inverted region”
predicted by the Marcus theory of electron transfer.20 Extracting the coupling matrix
elements from plots of ET rate versus driving force for forward and reverse ET reveals
that photoinduced ET out to the bpz portion of the molecule is electronically coupled four
orders of magnitude more strongly than thermal charge recombination.

Condensation of phendione with benzenetetramine gives tatpp, a ligand with two
diimine binding sites. Mono- and dimetallic compounds of tatpp and related tetradentate
ligands with varying binding-site separations are synthesized in Chapter 3. Ground- and

excited-state energy and electron transfer in these complexes is examined in a number of
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Figure 1.6. Ligands employed in this work: bdppz, top; tatpp; middle; hhtn, bottom.
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ways. Ground-state metal-metal coupling in electrochemically-generated mixed-valence
Ru'Rul! dimers is treated with Hush theory,2! which shows that the metal centers are
essentially uncoupled. This finding is independently verified by variable-temperature
magnetic susceptibility measurement s, which also indicate that there is no
communication between the metal atoms in dimeric Cull complexes of the ligands.
Time-resolved spectroscopic studies of Ru(bpy),-spacer-M;where M is Ru, Os, or Cu;
shows that photoinduced ET from Ru to M is very rapid, the result of good excited-state
donor-acceptor coupling. The lack of ground-state coupling manifests itself in thermal
charge recombination rates orders of magnitude lower than forward photoinduced rates.
Energy and electron transfer in Ru-Os complexes appears to take place with rates that are
independent of the metal-metal separation distance. This behavior has been predicted in
extended, planar m systems.

Condensation of 4,5-dimethyl-1,2-phenylenediamine with hexaketocyclohexane
gives hhtn, a ligand with three metal-binding sites. Re and Pd complexes of hhtn are
examined in Chapter 4 in an initial investigation of the use of hhtn as platform for
constructing photochemical systems capable of performing multielectron photochemistry.
X-ray crystallography reveals the structures of mono- and dimetallic derivatives of the
ligand to be very distorted. Based on these initial results, suggestions are made for the

development of future multielectron photocatalytic systems.
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Chapter 2

Long-lived Charge Separation in Simple Molecules
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Introduction

The photosynthetic reaction center is a marvel. Charge separation over a distance
of 17 A takes place on an extremely fast time scale. As shown in Figure 2.1, the crystal
structure of the membrane-bound reaction center in Rhodopseudoomonas viridis,!
photoinduced ET from the special pair (SP) to bacteriopheophytin (BP) takes place in 3
ps; the electron then jumps to menaquinone (MQ) in 200 ps. The charge-separated states
produced have charge-recombination kinetics that are slow relative to the rate of their
formation; the SP*/BP- state has a lifetime of 15 ns; charge recombination of SP*/MQ- to
SP/MQ has a rate constant of 10 s-1.2 The nine-order-of-magnitude difference between
the rates of charge separation and charge recombination assures that the photon energy
absorbed by an organism is converted into useful chemical energy and none is lost to
wasteful return to the SP/MQ state.

A great deal of effort has gone into elucidating the structure and photophysics of
the photosynthetic reaction center. Much research has also been directed toward the
construction of simple systems which model specific parts of the photosynthetic system,
both to help understand biological systems and, as discussed in Chapter 1, to achieve the
ends of photosynthesis artificially.> An understanding of the factors which govern ET
rates is needed to understand the extraordinary kinetic behavior of natural systems and to
devise ways to exploit these factors to design new compounds whose charge-separation
properties resemble those found in organisms.

Marcus has derived a semiclassical expression for the rate of ET, given in

Equation 1.4 Examination of the equation shows that the ET rate, kgr, is governed by

kgr=

2(Ha)* f w0\ ((AG°+ 7\.)2)
h (KRT) P\TIRTA

three factors: the degree of coupling between donor and acceptor, Hyp, the

thermodynamic driving force for the reaction, -AG?, and the reorganization energy , A.
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Figure 2.1. X-ray crystallographic structure of the photosynthetic reaction center of

Rhodopseudoomonas viridis. Figure from Reference 1, rates from Reference 2.
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These three parameters are shown graphically in Figure 2.2. H,p, is one half of the

separation between the potential surfaces of the reactants and products at the crossing
avoidance point, -AG? is the difference between the minimum of the reactant and product
energy wells, and A is the difference between the reactant surface minimum and the
product surface when -AG9=0. The barrier to ET, AG#, is defined as the difference in
energy between the minimum of the reactant potential surface and the point where
reactant and product potential surfaces intersect.

The quadratic form of the Marcus equation predicts that at fixed H,p, and A kgt
will increase as -AG9, the driving force for the reaction, increases, reaching a maximum
when -AGO= A. As the reaction becomes more exothermic, kgt should actually begin to
fall. This surprising behavior is said to take place in the "inverted region" where -AGO>A.
The reason for the existence of the inverted region is shown graphically in Figure 2.3.
The barrier to ET which exists when -AG9=0 vanishes when -AG0= A because the reactant
and product surfaces now cross at the minimum of the reactant potential well. When
-AGO becomes greater than A, a new barrier arises from the nesting of reactant and
product potential wells. A plot of In(kgr) versus -AG? (Figure 2.4) is thus parabolic with
a maximum at -AG%= A. While such a relationship may be counterintuitive, the existence
of the inverted region has been proven by several different researchers. The relationship
between kg and Hyy, is more straightforward; since it is a pre-exponential term,
increasing C at fixed -AG? and A increases kg as electron donor and electron acceptor
become better-coupled. The effect is to displace the entire parabola vertically, as shown
in Figure 2.5. The reorganization energy is the sum of two components, the inner-sphere
reorganization energy, A;, which is the energy required for the changes in bond lengths
and angles which accompany changes in oxidation state resulting from ET, and the
solvent reorganization energy, A, the energy required to reorganize solvent dipoles after

ET occurs. For a given Hy, increasing A has the effect of broadening the parabola since
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Figure 2.2. Graphic representation of the factors governing Kgr.
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Figure 2.3. Variation of AG¥ with -AG? at constant H,, and A.
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Figure 2.4. Theoretical plot of In(kgt) versus -AG? at constant H,, and A.
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Figure 2.5. Effect of increasing Hy, on plot of In(kgt) versus -AGP at constant A.

Hab(1)>Hab(2).
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its maximum, at -AG%= A, is moved to higher energy. The effect of increasing A on a
plot of In(kgt) versus -AG? is shown in figure 2.6.

Marcus theory offers two explanations for the extremely long lifetime of the
SP+MQ- state in the photosynthetic reaction center. The first is that Hyp, is much greater
for forward ET than it is for thermal charge recombination. This would be possible if
excited-state photoinduced ET took place through a higher-lying, better-coupled pathway
than the ground-state pathway used for the back reaction. Work in Ru-modified proteins,
however, has shown that Hy, is the same whether photoinduced or thermal ET is
operative.® It seems that the same should be true in the peptide framework of the
reaction center.

More likely is that the fast forward reactions lie near the apex of the Marcus
parabola while the back reactions occur at -AG>A and lie in the inverted region. An
energy-level diagram for the reaction center of Rhodopseudoomonas viridis is presented
in Figure 2.7. As shown by the diagram, ET from SP* to BP and from BP-to MQ both
have a driving force of about 0.3 eV. The reorganization energy of 0.3 eV required to put
the rates of these reactions at the apex of the parabola seems too small compared to the A
of 1.0 eV observed in most Ru-modified proteins.® It must be remembered, though, that
these studies employed solvent-exposed surface-bound Ru probes. A generally makes a
larger contribution to the overall A than does A;, so that in the absence of extensive
solvent reorganization A is small. The reaction center is a membrane-bound protein, so
the "solvent" is the surrounding peptide. It is unlikely that the residues near the redox
centers undergo much reorganization as ET takes place, so a A of 0.3 eV seems very
plausible. The result, shown in Figure 2.8, is a narrow Marcus parabola. kgt drops off
very rapidly in the inverted region, and the driving force for thermal recombination of
SP+/BP-to SP/BP of 1.0 eV