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Abstract 

In this thesis we consider smooth analogues of operators studied in connection 

with the pointwise convergence of the solution, u(x, t), (x, t) E Rn x R, of the 

free Schrodinger equation to the given initial data. Such operators are interesting 

examples of oscillatory integral operators with degenerate phase functions, and we 

develop strategies to capture the oscillations and obtain sharp L 2 ---+ L 2 bounds. 

We then consider, for fixed smooth t( x), the restriction of u to the surface ( x, t( x) ). 

We find that u(x, t(x)) E L 2 (Dn) when the initial data is in a suitable L 2 -Sobolev 

space H 8 (Rn) , where s depends on conditions on t. 
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Introduction 

We begin this thesis by giving motivation for the objects we will study, placing 

them in their proper context. 

§1. The Schrodinger Equation and Pointwise Convergence 

Consider the initial value problem for the Schrodinger equation with no potential, 

(1) 

Then 

(2) 

{ 

i8tu(x, t) + .6.xu(x, t) = 0 

u(x, 0) = f(x) E L2(I~n). 

(x, t) E IRn X lR 

defines a (weak) solution of (1) such that lim u(x, t) = f(x) in the L2 sense. When 
t--+0 

the integral in (2) is absolutely convergent, the limit is a pointwise limit; so for 

example, iff has continuous derivatives of order up to s > n/2 in L 2 , then the limit 

exists pointwise. However, iff is an arbitrary L 2 function the integral in (2) may 

not be absolutely convergent, and we must take the right-hand side of (2) as the 

definition of u(x, t) . It is not self-evident that u converges pointwise to the initial 

data in this case, and in fact it sometimes does not. The question of what extra 

smoothness conditions on f will guarantee the existence pointwise a.e. of lim u(x, t) 
t--+0 

anses. 

For a given s ~ 0 let H 8 (1Rn) denote the L 2 -Sobolev space, 

HS(JRn) = { J E L2 (1Rn) : IIJIIH• = (ln (1 + 1~1 2 )8 1[(01 2 d~) l/
2 

< 00 }· 



Introduction 2 

In the context of L 2 -Sobolev spaces the question of pointwise convergence to the 

initial data is completely understood when n = 1. It was shown by Carleson [C) 

that ]~ u(x, t) = f(x) whenever f E H 8 (IR) , s 2: 1/4. Moreover Dahlberg and 

Kenig [DK] demonstrated that for all s < 1/4 there are functions f E H 8 (!R) such 

that lim u(x, t) = oo a.e .. 
t-+0 

The higher dimensional cases, n 2: 2, are not completely understood. For these 

cases Vega [V] and Sjolin [Sj] independently proved that the pointwise limit exists 

for all f E H 8 (!Rn) provided s > 1/2, while there are counterexamples just as in 

the 1-dimensional case when s < 1/4. But the question of what happens when 

1/4 ::; s ::; 1/2 is in general unanswered. However, some progress has been made 

in the case when n = 2. In [B), Bourgain shows that there is an E > 0 such that 

f E H 112 -f(JR2 ) guarantees pointwise convergence to the initial data. The value of 

this E, although in principle calculable, is not given (although E << 1/4). The point 

here is not what the value of E is, but that there is some improvement of the above 

results when n = 2. 

§2. The Schrodinger Maximal Operator and Oscillatory Integral 

Operators 

The study of the pointwise behavior of u(x, t) as t---+ 0 involves the study of the 

corresponding maximal operator, the Schrodinger maximal operator, 

(3) u*(x) = sup iu(x, t)i 
ltl~l 

with regard to its mapping properties- i.e., finding weak type or strong type in

equalities for u*. The idea in [C) and [B) is to replace the nonlinear operator u* 

by a family of linear operators. For each measurable function t(x), defined say on 
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on, the unit disk in !Rn, with the property that it(x)l ~ 1, one considers the linear 

operator 

f f-----t J ei(x·Ht(x)l€12) f(O de= u(x, t(x)). 

This is justified by the following. 

Proposition. Suppose that for some s 2: 0 there exists a constant C sucb that 

where 1 ~ p ~ oo and Cis uniform over all measurable functions t, with it(x)l ~ 1. 

Then 

In [B], L 2 estimates are considered. For a m easurable function t look at integral 

operators of the form 

k = 1,2, .. . . 

Here { fh}: is a partition of unity such that supp(th) C { y : 2k-l ~ IYI ~ 2k+l } 

when k 2: 1. 

Proposition. 1 Suppose there is a C and s 0 2: 0 sucb that 

Then for any s >so there is a C 8 , depending on C and s , sucb that 

Thus we have reduced to the case of finding L 2 to L 2 estimates on a family of 

linear operators. This is a common task in harmonic analysis, and this particular 

1 See lemma 5.1.1 or [B]. 
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one is aided by the similarites between the Rk 's and a general class of operators, 

'T>..f(x) = { ei>..tjJ(x,y)a(x, y)J(y) dy. 
}'(i.n 

Such operators, called oscillatory integral operators, are usually studied when the 

amplitude a E Cgo(JR.n X IR.n) and the phase function <P E C 00 (1R.n X IR.n), and one is 

concerned with the behavior of II'J'>..II as A---t oo. 

There are two major differences, though, between 'T>.. and Rk that must be con-

sidered. Firstly, since the phase function in Rk is not homogeneous, we cannot do 

a change of variables y ---t 2ky to get into the form of 'J'>._. However, for the purpose 

of obtaining an €-improvement in pointwise convergence results when n = 2, it is 

pointed out in [B] that it is sufficient to consider operators of the form 

(4) { (· lx- Yl
2 

) T>..f(x) = }fi.n exp ZAt(x) _ t(y) a(x,y)f(y)dy, 

where a E C0 and t and l are measurable functions such that 1 :::; It( x) -l(y) I :::; 2, 

and show that there exists an € > 0 such that 

(5) C independent of t and l. 

Such a result then implies an inequality as in (3) with so < 1/2. 

The second and more important difference is that the phase function in Rk (and 

T>..) is not smooth. The main results about 'J'>.. say that provided the derivitives 

of <P satisfy certain "non-degeneracy" conditions, liT>.. II :::; CA-m for some positive 

m depending on how non-degenerate <P is. 2 The techniques used in proving these 

results insist that <P is smooth. Nevertheless (5) is plausible due to the following 

theorem, whose proof is based on ideas in [B] . 

2 See chapter 2 for a more detailed discussion. 
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Theorem 1. 3 If T>.. is as above, then 

(6) 

where C is uniform over all measurable t and f such that 1 :::; It( x) - f(y) I :::; 2. 

From this, when n = 2, we "almost" recover (5). The heart of [B]lies in dealing 

with the non-smoothness in the phase function of T>.. to get the estimate in (5), 

which is an E improvement of (6). 

§3. Smooth Analogues 

In this thesis we discuss operators of the form T>.. and Rk when the functions t 

and fare assumed to be smooth. We begin by considering a special case ofT>.. when 

f= 0. 

Theorem 2. Let <fl(x,y) = lxt(;f where tis a smooth function such that t f= 0. 

(I) If~~~~)· (x -y) -1 f= 0 on supp(a), then IIT>../112 ;S >..-n/211/112. Moreover 

the exponent of).. is sharp. 

(II) In general, IIT>../112 ;S ).. -n/2+1/411/112· 

(III) For a given amplitude function a ¢. 0, there are functions t E c= such that 

the exponent of).. in II is sharp. 

This result is interesting by itself for a number of reasons. Firstly, the bulk 

of our main ideas and techniques are illustrated in the proof of theorem 2. This 

proof serves as a template for the proofs of other results found in this thesis, most 

notably theorem 4 below. Second, a theorem which is analogous to theorem 2 in its 

statement and proof is given, which is then used to prove theorem 3. 

3 See the appendix for a proof. 
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lx- Yl2 

Theorem 3. Let </> = where t and l are smooth functions such that 
t(x)-t(y) 

0 < lt(x) -l(y)l. Then 

(I) IIT,\JII2 ~ .A -n/2+1/ 2 · 
(II) For a given amplitude function a "¢ 0, there are t and l such that the bound 

in I is sharp. 

We find that it is possible to analyze t and l separately in order to prove inter

esting results about T>.. Thus if we have an estimate as in part I of theorem 2 fort 

or l (or both), we may find correspondingly better estimates in part I of theorem 3. 

And in general, estimates which are better than those in part II of theorem 2 lead 

to improved estimates in theorem 3. 

Finally we obtain some preliminary inequalities regarding Rk. Such inequalities 

then imply results of the form 

(7) 

where s depends on conditions on the derivitives oft. The most notable of these is 

when \lt is non-vanishing. 

Theorem 4. Suppose t E CCXJ is such that \lt(x) # 0 Vx E ID>n. Then for any 

s > 0, 

where C may depend on s and t . 

The organization of this thesis is as follows. Chapter 1 contains the tools that will 

be used in proving our main theorems. It contains results that are standard but are 

modified to suit our purposes. The next chapter on oscillatory integral operators 

also contains standard material on the subject. Again, a sharpening of some of 
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these results is given in order to further our aims. Chapter 3 contains a proof of 

theorem 2 given in considerable detail. This proof is typical of others in this paper: 

namely the proof of a variant of theorem 2 used in proving theorem 3, and a proof of 

theorem 4 . Chapter 4 is concerned with proving theorem 3 and a simple extension 

of it. Chapter 5 is about (7) in general and theorem 4 in particular. Finially the 

appendix has a proof of theorem 1, and, for the sake of completeness, a discussion 

of other issues raised throughout this thesis. Finially, we end the appendix with 

indications of further study along the lines taken up in these pages. 
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1. Preliminaries 

This chapter contains a variety of results, most of them already known, which will 

be used in proving our main theorems. In general, the operators we are interested 

in are integral operators-!~ J K(x, y)f(y) dy - and §2 contains those results 

about such operators that we will exploit throughout this t hesis. More specifically 

the kernels, K(x , y) , we consider are oscillatory and a careful examination of the 

method of stationary phase is crucial to our endeavors; this can be found in §3. 

Another result also in §3 is lemma 1.3.5, whose u sefulness is evident in chapter 4 . I 

am particularly indebted to my advisor T. Wolff for pointing out the main idea in 

this lemma to me. The last section in this chapter contains technical lemmas which 

are included here so as not to interrupt the flow of our other chapters. 

§ 1. Notation 

The following notation is used throughout. 

X, y, Z and e will denote variables in JR. n. 

x · y is the inner product in lRn: x · y = 2::~ XiYi· 

Mt denotes the transpose of the matrix M. 

H f will denote the Hessian of f. 

[(e) = J e-x·€a(x) dx is the Fourier transform of f. 

j(e) = (27r)-n J eix·e f(x) dx is the inverse Fourier transform of f . 

Oj is the differential operator 8/ ox i . 

S(JR.n) is the Schwartz class of functions on JR.n . 
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Br(P) = {x E !Rn: lx- PI < r }. 

on denotes the unit ball in !Rn. 

If E C !Rn is measurable, then lEI denotes the Lebesgue measure of E. 

If a( x, y) is a function of x E !Rn andy E !Rm, then denote by suppy( a) the projec

tion onto the y-coordinates of the support of a . Let \7 y a( x, y) denote the gradient 

of a as a function of y with x held fixed. Similarily .6.ya( x, y) = L:: 8 2 / 8y] a( x, y ). 

The expression x ;S y will mean that there is a constant C, which does not 

depend on quantities that are otherwise to be kept track of, such that x ::; C y. 

Dependence on such quantities will be explicitely noted. 

§2. Integral Operators and Frozen Operators 

Given x, y E !Rn, write x = (x', Xn) andy= (y', Yn), where x' andy' are in !Rn-l. 

Let K(x, y) be a given bounded measurable function, which for our purposes will 

be assumed to have compact support, and define an operator T: L2 (1Rn) ~ L2 (1Rn) 

by 

whose adjoint is 

Tf(x) = { K(x,y)f(y)dy, 
}w,n 

T* f(y) = { K(z, y)f(z) dz. 
}w,n 

For reference we quote the following result, Schur's lemma, a proof of which may 

be found in [St]. 

Theorem 1.2.1. Suppose there exists positive constant C1 and C2 such that 

Then 

sup r IK(x,y)ldy::; cl 
X }w,n 

and sup r IK(x, y)l dx::; c2. 
Y }w,n 
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If we fix Xn and Yn and let I<xnYn(x',y') = I<(x',xn,y',yn), then we get the 

family of frozen operators, TxnYn : L 2 (Rn-l) ---+ L2 (Rn-l) defined by 

T,nvnf(x') = { J<,nvn(x',y')J(y')dy'. 
J.fRn -1 

Note that there is no confusion between (T*)znvn and (Tznvn )* as the two are the 

same. 

Lemma 1.2.2. Suppose there exists a measurable function ry(xn, Yn) such that 

(1.2.1) 

(1.2.2) 

Then 

For completeness we give a proof. The idea of frozen operators can be found in 

[S]. 

Proof. We have by Minkowski 's inequality that 

II T f lb (IR•) = (j_: L-,I j_: L.}< ( x', x., y', Yn )f(y', Yn) dy' dyn I q dx' dxn )'fq 
:0: (j_: (j_: IIT .. ,.f(·,y.)llu(R•-•) dy. )' dx. )"' 

:0: (j_: li: ~(x.,y.) llf(-,yn)IIL•(JR•-•) dy·l' dxn) Ifq by (1.2.1) 

by (1.2.2), 

as stated. • 
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Now consider 

TT* f(x) = J f(z) (! K(x , y)K(z, y)dy) dz. 

Txnf(x') = { K(x',xn , y)J(y)dy, 
}JRn 

and T;n : L2(JRn-1) ~ L2(JRn) 

T;nJ(y) = { K(z',zn,y)f(z')dz' 
}JRn-1 

is its adjoint, then clearly 

(1.2.3) 

Lemma 1.2.3. 

(1.2.4) 

(1.2.5) 

Proof. For (1.2.4) we have that 

For (1.2.5) Minkowski's inequality gives that 
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the last inequality following from Holder's inequality. • 
§3. Old Results Newly Modified 

The following is a collection of already known theorems, some of which are mod-

ified to suit our purposes. The modifications consist mainly in our keeping track 

of constants that are usually ignored, as this is crucial to m any of our arguments 

below. 

We begin with a discussion of oscillatory integrals, J ei>.tf>(y)a(y) dy. 

Theorem 1.3.1. Let a E C0 (1Rn) and <P E c=(X), where X is a neighborhood of 

supp(a). Then for N = 1, 2, ... 

(1.3.1) If ei>.tf>(y)a(y)dy' ~ CA-Nisupp(a)l L supiD0 aiiV<Piioi-2 N 
iai=::;N 

where we may take C = C(N, n) II<PII~N+t(x)' 

A> 0, 

This theorem appears almost verbatim in [H1]. Our version of the theorem 

includes a statement about I supp( a) I, the volume of the support of a. See also [S], 

[St]. 

Proof. For j = 1,2 .. . n let Uj = {y E supp(a): l8j ¢Y(y) l > (2n)-112 IV¢Y(y)l} . The 
n 

Uj 's cover the support of a, so let a = 2..:: aj be a partition of unity subordinate to 
j=l 

{ Uj} 7=1 . Define operators 

Then we have that for any N = 1, 2, ... 
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Note that ( L j a i) N is a sum of terms of the form 

( i~) N a;oai(y)ojt ( a~q>) ... a;N ( a~q>) (y) where ao + · · · aN = N. 

Also of ( 1 I Oj q)) is a sum of terms of the form 

oT(ojq>) ... a?cajq>) 
cajq>)P+1 where a 1 + · · · + ap = (3. 

After noticing that lojq)(y)l-1 ;S IVq)(y)l-1 when y E Uj, good bookkeeping gives 

that 

if ei>.<f>(y)(Lj(aj(y)))N dyi::; j I(Lj(aj(y)))NI dy 

::;>.-NC(N,n) L supiDaai!Vq)llai-ZNIIq)ll~;11~/al j dy. 
iai~N supp(aj) 

Then (1.3.1) is given by summing over j. • 

Theorem 1.3.2. Suppose that a E S(!Rn ). Then for any positive integer k, 

where rk(x) is the remainder of the k-th degree Taylor polynomial of ex. 

This well-known result, an example of the method of stationary phase, is not 

usually expressed in this form. We find it convenient to include a form of the 

remainder term in the asymptotic expansion of the left-hand side of (1.3.2) in powers 

of>.. See [Hl), [St]. 

Proof. Since the Fourier transform of the function ei>.IYI
2 

is ( i>./rr )-n/Z e-il€1
2 

/
4 \ we 

have that 
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by the properties of the Fourier transform and by Taylor's formula. • 
Remark 1.3.9. Note that irk(x)l ~ lxlk /k! whenever Rex~ 0. Then an application 

of the Cauchy-Schwartz inequality shows that for any integer s > n/2, 

(1.3.3) 11n rk(il~l 2 /4-X)a(O d~l ;S ,\ -k L 11Daall2 • 

ial~2k+s 

A corollary of theorem 1.3.2 is needed in chapter 4, which is a variable parameter 

version of theorem 1.3.2. 

Corollary 1.3.4. Suppose that a is contained in a bounded subset X of S(!Rn x 

!Rm). Then for any multi-index a and any,\ 2:: 1 there is a constant C = C(a,X) 

such that 

(1.3.4) 

Proof. We may differentiate under the integral sign in the left-hand side of (1.3.4). 

Combining (1.3.2) and (1.3.3) with a(y) replaced by D~a(y, z), we find that for any 

givens > n/2 the left-hand side of (1.3.4) does not exceed 

c(~yD~a(O,z)+-X-1 L IID~D~al12)' 
I.BI9+s 

which is uniformly bounded given the hypothesis on a . • 
We end this section with a lemma about C[f' functions on the product space 

!Rn x !Rm. It is at times convenient that such functions be of the form a(x)f3(y), a 

so-called tensor, with a E CQ'(!Rn) and f3 E CQ'(!Rm). While it is not possible that 

any given CQ'(!Rn x !Rm) function is a tensor, the next best thing is true, that such a 

function is an absolutely convergent sum of tensors. Lemma 1.3.5, a restatement of 

the absolute convergence of the Fourier series of a smooth function, is a quantitative 

assertion of this fact . A similar result may be found in [E). 
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Lemma 1.3.5. Let '1/J E C0 (1Rn x !Rm). Then '1/J is an absolutely convergent sum 

of C0 tensors. That is for j = 1, 2, ... there exists functions ai ,/3j and ai E <C 

such that 

(1.3.5) llalloo ::=; 1 llf311oo ::=; 1 

f= lail:::; c( 11¢111 + L IID~'¢112) s > (n + m)/2. 
j=1 hl=s 

for which 
00 

,P(x,y) = Laiaj(x)j3j(y). 
j=l 

The constant C in (1 .3.5) is bounded once '1/J has bounded support. 

Proof. Suppose first that supp(¢) C [-1/4, 1/4]n+m, and consider its Fourier series 

on T = [-1/2, 1/2]n+m: 

,P(x, y) = L ake21ri(x,y)·(k., , k~)' 

kEA 

where A is the unit lattice in JRn+m , kx = (k1, ... kn) , ky = (kn+l ... km+n) and 

ak = i '1/J(x, y)e-21ri(x,y)·(k.,,k~) dx dy. 

It is well known that for any s > (n + m)/2 (cf. [StW]), 

L lakl ::=; ll'l/JII1 + Cn,s L IID~'¢112 · 
kEA l1l=s 

Choose g1 E C0 ([-1/2, 1/2]n) such that 91 = 1 on [-1/4, 1/4]n, and choose 92 E 

C0 ([-1/2, 1/2]m) such that g2 - 1 on [-1/4, 1/4]m. Let ak(x) = g1 (x) e21rix·k., and 

f3k(Y) = g2 (y)e2 1riy·k~ to finish this special case. 
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In general chooseR> 1 large enough so that supp('l/t) C [-R/4, R/4]n+m, and 

let 1/tR(x, y) = 1/t(Rx, Ry). Then supp('l/tR) C [-1/4, 1/4]n+m. Clearly, by appealing 

to the special case we may finish the proof once we note that 

111/tRIIt + L IID'i'1jJRII2 :S R-(n+m) ll1jJIIt + Rs-(n+m)/2 L IID'i''l/tll2' 
bi=s bi=s 

demonstration that C in (1.3.5) is bounded when 1jJ has bounded support. • 

§4. Miscellany 

We finish this section with a couple of lemmas about n X n matrices which are 

used in chapters 3 and 4. 

Lemma 1.4.1. Let M be an n x n matrix with entries Mij = Sf + aibj, where Sf 

is the Kronecker delta and ai , bj E R Then 

(1) det M = 1 + l::~=l aibi, 

(2) rank(M) 2: n- 1. 

Proof. We see that M is of the form M = (I + M) where I is the n x n identity 

matrix, and M is of the form Mij = ai bj for real numbers ai and bj. Let 11 , ... , In 

and Mt, ... , Mn be the rows of I and M respectively. Consider det(·) as ann-linear 

function of the rows of a matrix. Then 

When the above is expanded out by multilinearity, terms with two or more rows of 

M appearing in the argument of det vanish. Thus 

- -
det(M) = det(h, ... , In)+ det(lt, . .. , In-1, Mn) + det(lt, ... , In-2, Mn-1, In) 

+ ··· +det(lt,M2,··· •1n)+det(Mt,12, ··· •1n) 
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(2) If M = 0 then (2) is obvious; otherwise it is clear that rank(M) = 1, and (2) 

follows immediately. • 
Lemma 1.4.2. Let M be an n x n matrix of the form Mij = 8{+1 + aibj. Then 

Proof. Write M J + M where J is an n x n Jordan block with zeros on the 

diagonal, and Mij = aibj. Arguing as in lemma 1.4.1, we see that 

~ ~ ~ 

det(M) = det(Jl + M1, . .. , Jn + Mn) = det(Jl, h . . . , Mn) = anbl, 

as stated. • 
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2. Oscillatory Integral Operators 

We continue with preliminary material of a more specific nature than found in 

the previous chapter, and again we pay close attention to detail. 

§1. Introduction 

Having discussed the basic facts about integral operators and oscillatory integrals, 

we consider the family of operators 'T>. : L 2 (Rn)---+ L 2 (Rn), A> 1, of the form 

(2.1.1) 'T>.f(x) = { ei>.</>(x,y)a(x , y)f(y)dy, 
}JRn 

where the amplitude a E C0 (Rn X Rn ), and the real-valued phase function ¢ E 

c=(X) with X a neighborhood of supp(a). We call such operators oscillatory inte

gral operators in view of the exponential factor in the kernel of 'T>.. Under suitable 

conditions the oscillations of the exponential factor give rise to cancellations, and 

II'T>.II tends to zero as A tends to infinity. Just how rapidly II'T>.II decays dep ends, of 

course, on ¢, and the relevant thing to consider, as we shall see in §2, is the mixed 

Hessian of¢, the n x n matrix Hq,(x , y) defined by 

a2¢ 
(Hq,(x, y))i,j = a a (x, y). 

Xi Yj 

When Hq, is non-singular the decay of II'T>.II is as rapid as possible, and in such case 

we have the following theorem ([H2], [St]). 

Theorem 2.1.1. Suppose that Hq, is non-singular on supp(a). Then 

(2.1.2) 
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In §2 we explore theorem 2.1.1 in some detail, and again we are careful when 

keeping track of the constant C that appears in (2.1.2). In §3 we show how the 

estimate in (2.1.2) cannot be improved, and we outline a general strategy for showing 

how degeneracies of H¢> translate into slower rates of decay for IIT.x.ll - i .e., slower 

than in (2.1.2). 

§2. The Main Estimate 

The constant C in (2.1.2) may depend on the L= norm of finitely many deriva

tives of a and </Y , on the volume of supp(a) and on n. For the purposes of our 

subsequent work we are interested in the dependance of C on the properties of a. 

This leads to the following theorem, whose proof follows the outline of that in [H2). 

Theorem 2.2.1. Suppose tha.t H¢> is non-singular on supp(a) and tha.t the follow

ing quantities are uniformly bounded on supp(a): 

(i) 11Hi1(x, Y)ll 

(ii) IIVyD~<PIIL=(x/or a.ll a with lal = 2 

(iii) IIV xD~<PIIL=(x/or a.ll a with lal ~ n + 2. 

Then if M =max { 1, I suppx(a)l} and 

( { } ~)1/2 Ma = llall= M I suppy(a)l L ~u~ ID~a(x, y)a(x, z)l , 
l<>l~n+l Y 

(2.2.1) 

then 

(2.2.2) 

where C is bounded. 

Proof. Assume without loss of generality that llall= ~ 1. It is sufficient to consider 

':T .x. ':T~ and show that 

(2.2.3) 
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We note that 'Y>..'Ylf has the form 'Y>..'Ylf(x) = JR" K>..(x,z)f(z)dz, where 

K>..(x, z) = { exp(i.A{ ~(x, y)- ~(z, y)} )a(x, y)a(z, y) dy. }JRn 

We will show that there is a constant C so that 

(2.2.4) 
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and in doing so we will keep careful track of C, showing that it is bounded once 

the quantities in (i), (ii) and (iii) are uniformly bounded. By theorem 1.2.1, (2.2.4) 

implies (2.2.3) since 

[ IK>..(x, z)! dz ~eM; [ (1 + .Aix- zl)-(n+1) dz }JRn }JRn 
= CM;_..\-n { (1 + lzl)-(n+1) dz = CM;_..\-n. 

}JRn 

Note that 

(2.2.5) 

By Taylor's formula we have that 

(2.2.6) 'ly(~(x , y)- ~(z,y)) = H</>(z,y)(x- z) 

t ( 82~ ) +~(Xi- Zi)(Xj- Zj) lo 'ly axiaXj (tx + (1- t)z,y)(1- t)dt. 
'J 

Since H</> is non-degenerate on supp(a), IH<t>(z, y)(x- z)! 2: IIH¢1 1!-1 Ix- z!, while 

the remainder term in (2.2.6) is O(!x- z!2 ) depending on (ii). If we were to assume 

that !x- z! ;S IIH¢:1 11-1 then (2.2.6) would guarantee that 

(2.2.7) 
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If suppx(a) is partitioned into small balls (whose size depends on HtJ>) we may indeed 

assume that lx- zl is as small as necessary by writing (2.1.1) as a sum of like terms; 

in doing so, by considerations of almost orthogonality1 , we gain the factor of M 112 

in (2.2.1). Given assumption (iii) about the uniform boundedness of the derivitives 

of r/J, by the mean value theorem, 

'
D~rjJ(x,y)-D~rjJ(z,y)' <II~ Dor/JII < 1 

lx - zl - x Y oo "' ' 

when lal ~ n + 2. And so by (2.2.7) and theorem 1.3.1 (with N = n + 1), 

(2.2.8) II<(x, z)l ;S (>.ix- zl)-(n+I)I suppy(a)l L sup ID0 a(x, y)a(z, y)i, 
lol~n+l y 

the implicit constant in (2.2.8) being bounded given (i), (ii) and (iii). Clearly then, 

(2.2.5) and (2.2.8) give that 

( { } 
(n-.:1)) -(n+l) 

IK,\(x,z)l ;S lsuppy(a)l 1+.XIx-zl L supiDa a(x,y)a(x,z)l 
lol~n+l xyz 

This is essentially (2.2.4) which gives the result. • 
Remark 2.2.2. When bounding 11Hi1 ll uniformly form above it is convenient to use 

the classical theorem for the inverse of a matrix, Hi 1 = ( det HtJ>)-1 adj Ht/>. Then 

we need only bound det H t/> uniformly from below and the entries of H t/> uniformly 

from above. 

The situation when rank Ht/> < n is not completely understood. However, we 

may still say something about II'J,\11 in this case, though we shall not do so in as 

much detail as in theorem 2.2.1. 

Theorem 2.2.3. Suppose that rankHt/> ~ k on supp(a) . Then 

(2.2.9) 

This is a corollary of theorem 2.2.1 once we have the following change of variables 

lemma for H tJ>, whose proof is an easy application of the chain rule and is omitted. 

1 See the appendix for a discussion of almost orthogonality. 
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Lemma 2.2.4. Suppose that <P is a given c= function, and let F, G : n --+ !Rn be 

c= diffeomorphisms on a domain n c !Rn. If,P(x , y) = <P(F(x),G(y)), then 

(2.2.10) HI/J(x, y) = (DF(x))tH.p(F(x), G(y))DG(y). 

Proof of theorem 2.2.:1. After a linear change of variables, given (2.2.10), we may 

assume that 

det (a::~;)~;~' # o 
on supp(a). Write x = (x, x), y = (y,y) as a splitting of variables in JRk x Rn-k. 

Then, since a has compact support 

( 
2 ) 1/2 

II'TAfll2 = j j IJ j eiA</J(x,y)a(x, y)f(y) dy dyl dx dx 

( 
2 ) 1/2 

::;c j JIJ eiA</J(x,y)a(x,y)f(y)dyl dx dy 

::; c>.-k12 llfll2, 

by theorem 2.2.1 applied to the k-dimensional case. • 
§3. Lower Bounds 

It is easy to show that the exponent of >. in (2.2.2) is sharp in the sense that 

lim ).P II'TAII = oo whenever p > n/2. On the other hand the exponent of >. in 
A-+= 

(2.2.9) is not necessarily the best possible. This first statement can be seen from 

the following well known result , whose proof is implicit in [H2]. The second one will 

be illustrated in chapters 3 and 4. 

Theorem 2.3.1. Let 'TA be as in (2.1.1). Suppose that there are measurable sets 

R C suppx(a) and R C suppy(a) and measurable functions <P1 and <P2 such that 

(2.3.1) when ( x , y) E R X R . 
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If ia(x, y)l ~ c > 0 when (x, y) E R x R, and 

(2.3.2) 

then there is a positive constant C such that 

I'T.\f(x)l = le-i.\</>t(x) 'j.\f(x)l 

~ lfna(x, y)dyl-lk ( ei.\(¢(x,y)-<!>t(x)-</>2(Y)) -1) a(x,y)dyl 

=I+ II. 

By condition (2.3 .1) 

II II ::; 1/2 k ia(x, y)l dy. 

Thus (2.3.2) guarantees that 

ki'J.\f(x) l2 dx ~ CIRIIRI 2
, 

and dividing by 11111; gives the result. • 
Now let ( xo, Yo) be a fixed point in supp( a) . Suppose that we let <P1 ( x) = <P( x, Yo) 

and <P2(y) = <P(xo, y)- <P(xo, Yo). If we expand <I>( x, y) = <P(x, y)- <Pt(x) - <P2(y) in 

a Taylor series about the point (xo, Yo), we see that 

<I>(x , y) = Hq,(x, y)(x- xo) · (y- Yo)+ O(lx- xoi 2 IY- Yo I+ lx - xo iiY- Yol2
). 

Assuming that lx- xo l ;S >..-112 , IY- Yol ;S >..- 1 / 2 and that a(xo,yo) =/=- 0, we may 

apply theorem 2.3.1 to see that for any given 'jA with a¢. 0, II'TAII ~ c>..-n/2
. We 

shall use similar arguments in chapters 3 and 5. 
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3. Main Theorem, A Special Case 

For a given fixed amplitude a E C0 (1Rn x !Rn) we shall consider certain examples 

of oscillatory integral operators. In the first instance, in §1, we look at the special 

case ofT>, defined in (4) of the introduction when t = 0. Theorems 3.1.2, 3.1.6 and 

3.1. 7 below characterize the behavior of liT>. II in this specific case. The details of 

the proofs are fully given, and the ideas and techniques involved will be exploited 

throughout the rest of this thesis. The second example will involve a phase function 

that is similar to the one studied in § 1. Its purpose is to provide a means of 

understanding T>, in its full generality. The phase function involved, <P(x, y) 

-2x · y + t(x)lyl2 , is more suited to this task from a technical standpoint. We could 

have just as easily applied theorem 3.1.6 to the more general case ofT>,, but the 

proofs of theorems 3.2.1, 3.2.2 and 3.2.3 follow closely those of their counterparts, 

theorems 3.1.2, 3.1.6 and 3.1.7, and we get these results almost for free. 

§1. The Core Arguement 

We let a E CQ"(!Rn x !Rn) be a fixed given function, and lett E c=(JRn) be such 

that 0 i- t(x) on suppx(a). We shall consider oscillatory integral operators T>, with 

. lx- Yl 2 
• 

phase functton <P( x, y) = t( x) and catalogue the behavtor of II T>, II below. 

Remark 3.1.1. Since suppx(a) is compact and 0 i- t(x) Vx E suppx(a), there is a 

constant c > 0 such that c ~ lt(x)l Vx E suppx(a). 

The best possible case is when Hrp is non-degenerate, and this situation is char

acterized in theorem 3.1.2 below. 
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V7t( X) 
Theorem 3.1.2. If1-~·(x-y) =1- 0 on supp(a) tben IIT.xfllz::; c>..-n/ZIIfllz, 

and tbe exponent of>.. is sbarp. Moreover if we fix c1 > 0, tben :3 c2 (wbicb depends 

on c1 and supp(a)) sucb tbat tbe constant C above is uniform over tbe set1 

L: = L:(cl,cz) = { t E c= : C}::; lt(x)l, IV7t(x)l, II Ht(x)ll::; Cz \:lx E supp(a)}. 

Proof. It is easy to calculate that 

(3.1.1) 

Then we see that H,p is of the form described in lemma 1.4.1, and we conclude that 

(3.1.2) (
-2)n( V1t(x) ) detH,p(x,y)= t(x) 1-~·(x-y) . 

The first part of the theorem follows now from theorem 2.2.1; the second part will 

follow after a careful examination of the hypotheses in (i), (ii) and (iii) of theorem 

2.2.1 as they relate to </J. 

First note that if c2 is chosen to be small enough, and IV7tl ::; cz, then 

I~~~~) · (x - Y )I ::; c!
11V7t(x )12 diam(supp( a)) ::; 1/2. 

So if we assume that t E L: for this choice of Cz (and c1 ), then I det H ,pI ~ c!n2n-I, 

and, given (3 .1.1) and remark 2.2.2, IIHi1 ll is uniformly bounded on supp(a) and 

over all t E L:. We claim also that II V7 xD~ <PI I Loo is uniformly bounded for all a with 

lal ::; n + 2. In fact lal ::; 2 will suffice as all higher order derivatives vanish. The 

claim is evident from the form of <P as 

1 Here II Htll denotes the matrix norm of then X n matrix H. 
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and t E :E. Finially we check that ll\7 yD~¢>II£oo is also uniformly bounded when 

a= 2 since 

The hypotheses of theorem 2.2.1 being satisfied, the theorem is proven. • 
The more interesting case is when det H,p = 0. Lemma 1.4.1 and theorem 2.2.3 

readily give the estimate IIT.x/11 ;S ,\ -n/2+l/2 11/11 2 in this case. But before proving 

a stronger estimate, a few remarks are in order. 

Remark 3.1.3. If we cover suppx(a) with balls of radius S and take a partition of 

unity subordinate to these balls, we may assume that diam(suppx(a)) < S without 

any loss of generality if we provide that S does not depend on ,\. Then Sis chosen 

to be as small as necessary to assist in technical matters. 

Remark 3.1.4. (3.1.2) says that we may assume (after a partition of unity) that on 

the support of a, 1 ;S l\7t(x)l. Otherwise H,p is non-singular, and we may again 

appeal to theorem 2.2.1. 

Remark 3.1. 5. If A is a rotation then the change of variables ( x, y) - (Ax, Ay) 

"preserves" ¢>in the sense that ¢>(Ax, Ay) = lxt-:!1
2 

is of the same form as ¢>(x , y), 

the form of phase function presently under consideration, with t replaced by to A . 

Similarily if A is a translation, ¢> is again "preserved" under the operation ¢>( x, y) -

¢>(Ax, Ay). Since such transformations are measure preserving, the norm of the 

oscillatory integral operator with phase function ¢>(x, y) and amplitude a(x, y) 1s 

the same as the one with phase ¢>(Ax, Ay) and amplitude a(Ax, Ay). 

Theorem 3.1.6. Let ¢> be as above. Tben in general 
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Proof. Let x E suppx(a) be given. By remark 3.1.4 we may find a rotation Ax 

such that V't( x )Ax is parallel to the n-th unit vector en in !Rn. Let z = A;1 x 

and t A., = t o Ax. Then \7 t A., ( z) is parallel to en. Assuming that Ax is also a 

dialation, Y'tA.,(z) = en. Furthermore IY'tA., I 2: 1. Then there is a neighborhood 

Ux of z, a neighborhood Vx of x and a diffeomorphism Px : Vx -t Ux such that 

tA., o Px(w) = Wn for all w E Vx. Moreover Dpx(z) = I, and we may assume 

that diam(Ux) and diam(Vx) are as small as necessary. Let Ux = A(Ux), and 

take a finite subcover {Ux;} :
1 

of suppx(a). By remark 3.1.3 we may assume that 

suppx(a) C Ux 1 for example. Since Ax1 is a rotation, by remark 3.1.5 we may assume 

therefore that there is a ball B 0 (xo) and a diffoemorphism p: B 0 (xo)--+ suppx(a) 

such that tp(x) = Xn, and Dp(xo) =I. 

Given this, it suffices after a change of variables to consider the operator 

If s).. = f'/r;., then s).. is an integral operator with kernel 

1m ( . { lp(x)- Yl 2 
lp(z)- Yl2 

}) Kp(x,z) = exp z). - a(p(x),y)a(p(z),y)dy. 
JRn Xn Zn 

We must show that 

(3.1.3) IIS>..JII2 ;SA -n+l/2 llfll2 · 

Let 'lj; E Cgc'(B1 (0)) be such that '1/J = 1 on B 1 ; 2 (0), and let '1/J = 1- '1/J. Then 

(3.1.4) 

S>..J(x) = Ln f( z )Kp(x, z)'lj; ( Xn ~ Zn) dz + Ln j(z)Kp(x, z)J; ( Xn ~ Zn) dz 

= Slf(x) + S{J(x), 

where f. is to be chosen. Sl represents when lxn - znl is small, and S{ represents 

when lxn - Zn I is large. Each operator is studied via differing strategies. Sl is 
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considered as the composition of two operators, and we study the factors separately. 

Si is found to be the sum of oscillatory integral operators, and an estimate is made 

for each term. 

First consider Sl and its corresponding frozen operators 

(3.1.5) 

(Sl).,nznf(x') = 1/J (Xn- Zn) { f(z')(Kp)o:nzn(x',z')dz' 
E }JR.n-1 

= 1/J ( Xn ~ Zn) (T/fn.,nznf(x'). 

Recalling (1.2.3) and (1.2.5), we consider (T.x).,nun for fixed Xn and Yn· The (n-

1) x (n- 1) matrix 

is the mixed Hessian for (T.x).,nun. As noted above, when x = xo this is -2 times the 

( n - 1) x ( n - 1) identity matrix. So in a small neighborhood of x 0 the determinant 

of the above matrix does not vanish (see remark 3.1.3). Hence 

where X is compactly supported. Then this along with (1.2.3) and (1.2.5) implies 

that 

where x' is also compactly supported. By theorem 1.2.1 and lemma 1.2.2 we have 

(3.1.6) 

Now consider S~ and its corresponding frozen operators (Si).,nzn for fixed Xn 

and Zn· Note that 

(3.1. 7) 

\p(x)- y\2 
_ \p(z)- yJ 2 

= (~ _ _!__) Jy _ F(x , z)J2 _ Jp(x', Xn)- p(z', Zn)\
2

, 

Xn Zn Xn Zn Xn - Z n 



where 

(3.1.8) 

Let 

(3.1.9) 

Then 

(3.1.10) 
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F(x, z ) = Znp(x)- Xnp(z). 
Xn- Zn 

A(x, z ,y) = a(p(x),y)a(p(z),y), 

11- = >.. (...!._ - ~) . 
Xn Zn 

I<p(x',z').,nzn = ;j (Xn- Zn ) exp (i ~ Jp(x)- p(z) J2 ) 
€ Zn Xn 

X r eiJLIYI
2
A(x,z,y+F(x,z))dy 

}JRn 

is the kernel of ( S1).,n •n. By theorem 1.3.2, for fixed N to be chosen, 

(3.1.11) { ei~tiYI 2 
A(x, z , y + F(x, z)) dy 

}JRn 

= C:) -n/
2 

(}; (4ip)-j Ll.tA(x, z, F(x, z))/j! 

+ ln rN(ilel 2 /4p)e-ie·F(x ,z) A(x, z, e) ae) ' 
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where A denotes the inverse Fourier transform in the last variable. In view of 

(3.1.10) and (3.1.11), (S1).,nzn is a sum of oscillatory integral operators 

(3.1.12) ( 

. ) -n/2 ( ) N -n/2-1· 2 ~ X - Z "'\:""'" /1- · 
- 1/J n n L....J ( 4 . ) . I R;' ' 
1r € ZJ. 

j=O 

>..' = >.. ' 
Xn- Zn 

where 

(3.1.13) 

R~,f(x') = { ei>.'ip(x)-p(z)I\~~A)(x,z,F(x,z))f(z')dz' j = 1, ... ,N -1 
}JRn 

R;;,f(x') = Ln ei>.'lp(x)-p(z)l
2 

11-N (Ln rN(ilel 2 /4p)e -ie·F(x,z) A(x, z, 0 ae) f(z') dz' 
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Each R{, has phase function of the form lp(x' , Xn) - p(z' , Zn)l2 for fixed Xn and Zn . 

Look at the mixed Hessian: 

Since Dp(xo) =I, 

( 

[)2 ) n-1 
det d ·d _lp(x',xn)-p(z' ,zn) l2 =(-2)n-l 

X, Z; i,j=l 
when x = z = x 0 • 

So we may assume that this mixed Hessian is non-degenerate (see remark 3.1.3). 

Now for j = 1, ... , N- 1, R{, h as amplitude D.tA(x, z, F(x, z)). Since 

(3.1.14) 

we see that 

(3.1.15) 

To apply theorem 2.2.1 we must calculate, for fixed Xn and Zn, the volume of 

SUPPz•(D.tA(x, z, F(x , z))). Note that by the properties of supp(A) we must have 

that F(x, z ) ;S 1 - i.e., lxnp(z) - Zn p(x )I ;S lxn - znl· This says that for fixed x, 

p(z) is in the ball of radius _!_lxn- znl centered at Zn p(x). Since lxnl is bounded 
Xn Xn 

from below (see remark 3.1.1) and pis a diffeomorphism, z lies in a set of diameter 

rv lxn- Zn l· So 

(3.1.16) for j = 0, ... , N - 1. 

,\ 
Putting (3.1.15) and (3.1.16) into (2.2.1) (recalling that .A'= ( )) gives that 

Xn- Zn 
for j = 1, . .. , N - 1, 

(3.1.17) 
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where X has compact support. 

Coming toR~, it has amplitude, call it AN(x,z), equal to 

This means that in view of the remark 1.3.3 and (3.1.14) 

(3.1.18) 

Then (3.1.18) implies that 

(3.1.19) 

Looking at (3.1.12), (3.1.17) and (3.1.19) we see that 

IICSi).,nZn tii£2(JR"-1) ;S;;; ( Xn ~ Zn) x(xn, Zn) 

(3.1.20) X ( ,\-n+1/ 2lxn- Znl-1/ 2 . 

N-1 

(3.1.20') + L ,\-n+1/2-jlxn- Znl-1/2-j 

j=1 

(3.1.20") + ,\-n+1/2-Nixn- Znl-n/2-N) IIJII£2(JR"-1) 

where xis compactly supported. Now we apply lemma 1.2.2 to obtain 

(3.1.21) 

(3.1.21 ') 

(3.1.21") 

X ( ,\ -n+1/2 

N-1 
+ L ,\ -n+1/2-j fl/2-j 

j=l 

+ ,\ - n +l/2-N €-n/2- N+l). 

31 
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In consideration of (3.1.6) and (3.1.21") set 

In this case 

I N I I 
n-2(N±2) A -n+l€ = A -n+l 2- €-n 2-N+I =A -n+l 2 A 2(nt2 N) • 

Also, it is easy to check, in consideration of (3.1.21'), that 

for this choice of € . Evidently (3.1.21) is the main term in the estimate of IIS.xll pro

vided that n ::; 2(N + 2) . Since N can be arbitrarily large, (3.1.3) is demonstrated, 

and the proof of theorem 3.1.6 is complete. • 
Given the general nature of theorem 3.1.6, it is natural to ask whether or not the 

result is sharp. We shall find in the next theorem that we may not always be able 

to improve the exponent of .A in theorem 3.1.6. 

Theorem 3.1.7. For a given amplitude function a :/= 0, tbere are t E c= sucb 

tbat tbe exponent of .A in theorem 3.1 .6 is sbarp. 

Proof. By assumption there is a point ( x o, yo) such that a( xo, Yo) f= 0. After perhaps 

a translation and a rotation- in view of remark 3.1.5- we may assume that xo =en, 

the n-th unit vector in !Rn , and y0 = 0. Then let t(x) = Xn, and note that we may 

assume Xn f= 0 on supp(a). Let JE(y) = f(y')f(Yn), where 0 ::; f E CQ'(!Rn-l ), 
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. _};_I 12 ·!..n_ 1 1
E 2 

e-•:>..x"T>.J(x) = JRn-
1 

e"'nlx -y I f(y') -E e'>."'na(x,y',yn)dyndy' 

( 
·A ) -(n-1)/2 1 1

E 

= _z_ 2tf(x')-
2 

a(x,x',yn)dyn 
Xn1r € -E 

Z/\ 1 i>.!..n. 
( 

. , )-(n-1)/2 1E ( 2 ) 

+ Xn1r J(x) -E e "'" -1 a(x,x',yn)dyn 

+ _z_ 2t r1(ixnlti2/4A) ( 

.A ) -(n-1)/2 

1 Xn1r JRn -1 

x (!(x' + · ) ;€ lEE ei>.~ a(x, · + x' , Yn) dyn)~(t) dt 

=1+11+111. 

Now it is easily seen that 

and by (1.3.3) 

IIIII ;S €A-nj2
-

1
1

2 L IID~,f(x' + · );€ JE ei>.~a(x, · ,yn)dynii 
lal::::;2+n/2 -E £2(JRn-1) 

< €A -n/2-1/2 
rv . 

Supposing that € is small we have that 

on a set of positive measure in x-space. If we let € = CA - 112 where c is a small 

constant independent of A (i.e., let tA-n/2+112 = t 3 A-n/2+312 ), then clearly 

So 
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as desired. • 
Remark 9.1 .8. Using a result of Pan and Sogge [PS] it is a routine matter to show 

that if H t( x )( x - y) · ( x - y ) =/= 0 on supp( a) where H t( x) denotes the Hessian of t 

at x, then 11Tlfll2::; c;..-n/2+1
/

6 11!112. See the appendix for details. 

§2. A Variant 

Here, as in §1, we let a E C0 (1Rn x !Rn) be a given fixed amplitude function, 

but we let t denote any smooth function. Now we shall study oscillatory integral 

operator T>., with phase function fjJ(x,y) = -2x ·y+t(x)iyl2
• Theorems 3.1.2, 3.1.6 

and 3.1.7 find their analogues in theorems 3.2.1, 3.2.2 and 3.3.3 respectively. The 

proofs of theorems 3.2.1 and 3.2.2 follow the same pattern as their counterparts, 

and while being complete, they are brief. Theorem 3.2.3 is proved using theorem 

2.3.1. 

Theorem 3.2.1. I£1- V't(x). y =I= 0 on supp(a) then IIT>.fll2::; c;..-n/211!112, and 

the exponent of >. is sharp. Moreover 3 c such that the constant C is uniform over 

the set 

I:= I:( c) = { t E c cc IY't(x )I, II H til ::; c Vx E supp(a) }. 

Proof. We note that 

(3.2.1) 

So lemma 1.4.1 guarantees that 

(3.2.2) det H.p(x, y) = ( -2)n (1- Y't(x) · y). 

Hence the bound for T>. is as given. 
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The reasoning for the boundedness of Cover :E is the same as in theorem 3.2.1. 

If c is small enough and IVtl .::; c, then 

IVt(x) ·vi.::; cdiam(supp(a)y).::; 1/2. 

This and (3.2.1) allow us to conclude that 11Hi1 11 is uniformly bounded on supp(a). 

Noting that the absolute value of 

a~. D~¢>(x, z) = -2D~yj + ajt(x )D~ IYI2 

J 

on supp(a) for all lal .::; 2 depends only on t E :E and diam(supp(a)), and that the 

same is true for 

the proof is complete. • 
Theorem 3.2.2. Let ¢> be as above. Then in general 

Proof. Remark 3.1.3 still applies, (3.2.2) means that remark 3.1.4 is still in order, 

and remark 3.1.5 is still valid if we only allow A to be a rotation. Given this, 

as before, we may assume that there is a ball B 0 (xo) and a diffeomorphism p 

B 0(x0 )---+ suppx(a) such that to p(x) = Xn and Dp(xo) =I. 

Again too, it suffices to consider 

where supp(a) is sufficiently small. As in the proof of theorem 3.1.6 let S>. 

'i\(i\)*, an operator with kernal 

I<p(x, z) = Ln exp ( -2(p(x) - p(z) · y) + (xn - zn)IYI2
) a(p(x ), y )a(p(z ), y) dy, 
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and writeS>. = Si + S~ just as in (3.1.4). 

First consider Sl. For fixed x n and Yn we readily find that 

as (7\).,nl'n has mixed Hessian 

( 
82 ) n-1 

d d - 2p(x) + XniYI
2 

= ( -2DiPj(x))~~~1 , 
X. y. I,J-

I J i,j=l 

which is non-degenerate on supp(a) . Hence, as in (3.1.6), we find after an applica

tion of theorem 2.1.1 and lemmas 1.2.2 and 1.2.3 that 

(3.2.3) 

The similarities between the operators considered in theorem 3.1.6 and the ones 

considered here becomes apparent when we note that (cf. (3.1.7)) 

where this time we let 

F( ) 
= p( X) - p( Z) 

x,z ' 
Xn- Zn 

(3.2.4) A(x,z,y) = a(p(x),y)a(p(z ),y), 

Then, as in (3.1.10), 

I<p(x' , z').,nzn = ;j ( Xn ~ Zn) exp (i Xn ~ Zn jp(x)- p(z)l 2
) 

x f ei~tiYI 2 A(x,z,y+F(x,z))dy 
}JRn 

is the kernel of (SD.,nzn . We see now that (SD.,nzn is virtually identical to its 

counterpart in the proof of theorem 3.1.6, the only (minor) differences being in the 
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definitions of J.L and F ( cf (3.1.8) (3.1.9) (3.2.4)). Then we may proceed exactly as 

before taking care only when we must consider J.L or F. 

With f-L and F as above we have that (S1).,nzn is a sum of oscillatory integral 

operators as in (3.1.12) with R{,, j = 1 · · · N as in (3.1.13). We know that each R{, 

has the same non-degenerate phase function, and so we will have exactly the same 

estimates, (3.1.17) and (3.1.19), as before once we examine the amplitude function 

of each R{, and find that they satisfy estimates like (3.1.15), (3.1.16) and (3.1.18). 

Estimates (3.1.15) and (3.1.18) follow from (3.1.14), and it is clear that the new F 

satisfies (3.1.14) . So we need only calculate the volume of SUPPz•C~tA(x , z, F(x, z ))) 

for fixed Xn and Zn. We argue only slightly differently than before; the only dif

ference is that, unlike in theorem 3.1.6, we do not have to assume that t(x) =/= 0, 

and so we need not appeal to remark 3.1.1. By the properties of supp(A) we must 

have that F(x, z) ;S 1 - i.e. jp(z )- p(x)i ;S lxn- znl· This says that for fixed x, 

p(z) is in the ball of radius lxn- znl centered at p(x). Since pis a diffeomorphism, 

z lies in a set of diameter ,....., lxn- znl· So (3.1.16) holds. Now it is clear that we 

have exactly the same bound for (S1).,nzn as in (3.1.20), (3.1.20') and (3.1.20"), and 

consequently IIS~JII 2 is bounded as in (3.1.21), (3.1.21') and (3.1.21"). The proof 

is completed by choosing e as before. • 

As expected we have the following result regarding the sharpness of the exponent 

of .>. in theorem 3.2.2 

Theorem 3.2.3. For a given amplitude function a ¢. 0, there are t E c= such 

that the exponent of.>. in theorem 3.2.2 is sharp. 

Proof. We shall apply theorem 2.3.1. Let ( xo, Yo) be such that a( xo, Yo) =/= 0. After 

a rotation we may assume that Yo is parallel to en; let Yo = ke n with k > 0. Take 
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t(x) = Xn/k and notice that 

-2x · Y + t(x)IYI 2 = -2(x'- x~) · y' + Xkn IY'I2 + Xkn IYn- kl2 - kxn- 2x~ · y 1
• 

Take <P1(x) = -kxn and cP2(Y) = -2x~ · y and let 

R = {X : lx' - x~ I :S c).. - 1
/

2
, lxn I ;S 1 } 

R = { Y : IY'I :S c>..-112 , IYn- kl :S c>-.-1/2 }, 

38 

where c is a small constant (independent of >-.). If c is small enough then (2.3.1) 

and (2.3.2) hold, and 

as desired. • 
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4. Main Theorem 

We now turn our attention to the family of operators T>. with phase function 

of the form </>(x, y) = t(l;)-=._)~
2

y) where t and l are smooth functions such that 0 < 

It( x) -l(y) j. In what follows we will always take a to be a fixed amplitude function 

with compact, connected support. Hence we may assume without loss of generality 

that there is a constant c > 0 such that c ~ t(x)- l(y) on supp(a). This will be 

our general setup throughout this chapter. 

In §1 we shall find it to be possible that rankH<I> = n-2, and therefore the ideas 

in chapter 3 do not carry over into the analysis of IIT>.II· Instead, we would like to 

consider T>. as a composition of operators whose factors are known to us, and as 

alluded to previously, these factors already have been studied in §2 of the previous 

chapter. We may then use the estimate in theorem 3.2.2 to get sharp results forT;>.. 

In actual fact, though, we will not realize T>. directly as a composition, but nearly 

so. The composition of operators we consider has the same phase function as T>. 

but has a different amplitude. The transition to T>. in theorem 4.2.1 from theorem 

3.2.2 is facilitated by lemma 4.1.2, which allows us to compare oscillatory integral 

operators with the same phase function but different amplitudes. We prove this 

lemma in §1. In §2 we prove sharp estimates forT>. and we discuss further the idea 

of considering T>. as a composition. 

§ 1. Preparations 

We begin with the following result about the singularities of H <l> . 
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Proposition 4.1.1. Let <P be as above. Then rankH,p(x,y) ~ n-2, and moreover 

rank H,p(x, y) = n- 2 if and only if 

(
.) 

1 
_ V't(x) · (x- y) _ 

1 -0. 
t(x) -t(y) 

(ii) 1- Y'f(y). (x- y) = 0. 
t(x)-t(y) 

(iii) \i't( X) · \i'f(y) = 0. 

Proof. We begin by noting that 

( 4.1.1) 

a2 ¢J(x, y) - -2 ( j 1 ( a -( ) a 
axiaYj - t(x)- t(y) oi- t(x)- t(y) ayj t y (xi- Yi) + axi t(y)(xj- Yj) 

Suppose first that V'f(y) = 0. Then from (4.1.1), 

+ lx _ Yl2 ait(x)aif(y))). 
t(x)-t(y) 

-2 ( · (x·-y·) ) 
(H,p(x, y))ij = t(x)- t(y) of- t(x)- tCy) ait(x) ' 

and such a matrix has rank ~ n - 1 by lemma 1.4.1. So we may assume that 

V't(y) -=/= 0. In fact we may assume that V'f(y) II en. For let A be a rotation 

of IRn such that Y't(y)A II en. Consider <fJA(z, w) = <P(Az, Aw) = (lz)- wl
2

( ) , 
tA Z -tAW 

tA = to A, fA = f o A. Then H¢>A = At H,p(Az, Aw )A by lemma 2.2.4. For given 

x andy, let z = A-1 x, w = A-1 y. Then clearly rankH¢>(x,y) = rankH¢>A(z,w). 

Moreover, it is routine to check that 

(i') 
1 

_ Y't(x) · (x- y) = 1 _ \i'tA(z) · (z- w). 
t(x)- t(y) tA(z)- tA(w) 

(ii') 
1

_ Vf(x) · (x- y) = 1 _ V'tA(w) · (z- w). 
t(x)- t(y) tA(z)- tA(w) 

(iii') V't(x) · \i't(y) = V'tA(z) · V'tA(w). 

Since V'f(y) II en, we have that the (n- 1) X (n- 1) submatrix H~ of H,p formed 

by deleting the last row and last column is of the form 

-2 . 
(H~(x, y))ii = t(x) _ t(y) (of- (xi- Yi)ajt(x)) 1 ~ i ~ n- 1, 1 ~ j ~ n- 1. 
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This submatrix has rank~ n- 2 (by lemma 1.4.1); hence so does H,p. 

Suppose that (i), (ii) and (iii) are satisfied. Since "'Vt(y) II en and (iii) holds, we 

have that Ont(x) = 0. So by (ii), 

H.;( X' y) = ( ------=o:--H-~-( x_, -y )-------,0:-1---] 

Since (i) (or (ii)) holds, x- y f:- 0. Clearly, 

(0, 0, ... , Xn- Yn)H,p(x, y) = 0, 

while by (i) 

(x'- y',O)H,p(x,y) = 0. 

So rankH,p(x,y) = n- 2. 

Now suppose that rankH,p(x , y) = n- 2 (assuming again that "'Vt(y) f:- 0). In 

particular, by lemma 1.4.1, H~ has rank n-2, and "'\1 xrl(x )·(x'-y') = t(x )-t(y) f:- 0. 

So we know that x' - y' f:- 0. Now it is clear that (i), (ii) and (iii) hold if we know 

that Ont(x) = 0. The claim is that indeed Ont(x) = 0, for suppose not. Consider 

the ( n - 1) X ( n - 1) submatrix of H ,p given by deleting the first row and n-th 

column. It is of the type described in lemma 1.4.2. Thus (x 1 - yl)ont(x) = 0, and 

hence (x1 - y1 ) = 0. Now delete the second row and n-th column from H,p. After 

switching two columns, we may again apply lemma 1.4.2 to obtain that x2 - Y2 = 0, 

and continuing in this way we find that x'- y' = 0 which is a contradiction. • 

It is easy now to construct t and t such that (i), (ii) and (iii) of proposition 4.1.1 

are satisfied, and we give a simple example to demonstrate this fact. Let t( x) = X 1 

and t(y) = Yni then (i)- (iii) are satisfied on the set { (x, y) : x1 = Xn, Yl = Yn }. 

Suffice it to say that there are many t and t such that rank(H,p) = n- 2, and we 
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reserve a more detailed discussion of this for a later writing prefering to move on to 

the main technical lemma of this chapter .1 

It is the nature of the singularities of the phase function as reflected in the mixed 

Hessian that determine how rapidly the norm of an oscillatory integral operator 

tends to zero as the parameter ..\ tends to infinity, while the amplitude plays only 

an auxiliary role, provided that it does not vanish when H ¢> is singular, and that 

finitely many of its derivatives are bounded. Given two oscillatory integral operators 

with the same phase function and different amplitudes it is not unreasonable then 

to believe that a favorable estimate for the norm of one should imply a similar 

estimate for the other, given that the two amplitudes satisfy certain conditions. 

More generally, the norms of two different integral operators may be compared 

once their respective kernels satisfy relationships outlined in the following lemma, 

which makes use of lemma 1.3.5. 

j = 1,2. 

Suppose that there is an open set U C !Rn such that 

(4.1.2) 

If there are constants C 1 , C2 and C3 > 0 such that 

IIK2/KtlluciR"xiR")::; Ct, 

(4.1.3) II L D()/(1<2/ Kt)ll ::; c2 for somes> n, 
lOti= a L2(JR" x!R") 

1 See however the appendix §4. 
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Tben 

Proof. Note that K2(x,y) = ~:~::~~K1(x,y) on supp(K2). Clearly by (4.1.2) 

K2/ K1 E C0\ so 
00 

K2(x,y) = K1(x,y) Laiaj(x)f3j(Y) 
j=l 

where aj, Oij and /3j are as in lemma 1.3.5. Then by (1.3.5), 

00 

IIT2II :S L lail IITI!I :S CIITIII, 
j=l 

as stated. • 
If we let K1(x, y) = ei>.<t>(x,y)b(x, y) and K2(x, y) = ei>.<t>(x,y)a(x, y), the conditions 

(4.1.2) and (4.1.3) in this case translate as 

( 4.1.2') :3 U C !Rn open, supp(a) C U and b -=J. 0 on tJ, 

lla/bii£1(1R"x!R") :S C1, 

( 4.1.3') 
II L Da(ajb)ll :S C2 for somes > n, 

lol=s £2(JR" x!R") 

supp(a) C Bc3 (0) x Bc3 (0). 

§2. The Main Theorem 

From proposition 4.1.1 we readily obtain the result IIT>.JII 2 :S c>..-(n-2)/2 11!112 

by considering theorem 2.2.3, and although it is possible to find functions which 

satisfy conditions (i) , (ii) and (iii) of proposition 4.1.1 at a point, or on even larger 

varieties, it is not possible that H q, should be so singular that such an estimate is 

sharp. This is the content of our main theorem. 
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Theorem 4.2.1. LetT>. be the oscillatory integral operator with phase function¢> 

as above. Then 

Proof. Let Bn = {x E R_n : jxj < R}. Suppose with out loss of generality (after 

perhaps a dialation) that supp(a) C B1 X B1. Assume also (after a change of the 

parameter..\) that 1 ~ t(x)-f(y). Choose t/J E COO(B5 ) with t/J = 1 on B 4 • Consider 

the following operators: 

( 4.2.1) 

( 4.2.2) 

Sif(x) = { ei>.(-2x·y+t(x)IYI2)t/J(x)t/J(y)f(y) dy, 
}IT?.n 

S~f(x) = r ei>.(-2x·y+l(x)IYI2)¢(x)t/J(y)f(y) dy. 
}[?.n 

We know that 

IIS{jj ,:S ..\ -n/2+1/4 j = 1,2. 

Thus 

Now 

where 

( 4.2.3) 

) - n/2 t/J(x)t/J(z) r i>.iyi2 tP2 ( y X - Z ) d 
h(x, z - ..\ (t(x)- t(z))n/2 }IT?.n e (t(x) - t(z))l/2 + t(x)- t(z) y. 

We wish to apply lemma 4.1.2 to finish the proof; this amounts to checking 

(4.1.2') and(4.1.3') for a and h. Let U = B2 x B2, and suppose that (x, z) E U

i.e., jx j ~ 2, jzj ~ 2. We apply theorem 1.3.2 to the integral in ( 4.2.3) to obtain 

that 

!!. - i!!.11' t/J(x)t/J(z) ( 2 ( x- z ) ( )) 
b>.(x,z)=?r2 e 4 (t(x)-t(z ))n/2 tP t(x) - t(z) +Ex, z ' 
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where E(x, z) is the first-order remainder in (1.3.2). Now since 

I 
x-z I 

t(x)- t(z) ::; 
4 when (x, z) E tJ, 

then 

'I/J2 ( X- Z ) - 1 
t(x)- t(z) -

when (x, z) E tJ. 

Moreover by 1.3.3, 

IE(x,z)l::; c.x-1 when,\~ 1. 

So for large ,\ (depending only on rjJ), lbA(x, z)l > 1/2 on tJ. We also see from 

corollary 1.3.4 that 

for lal ::; n + 1. 

Clearly then ( 4.1.2') and ( 4.1.3') are satisfied with C 1 , C2 and C 3 ;S 1. • 
Again, we may not make an improvement in theorem 4.2.1 as evidenced by the 

follwing. 

Theorem 4.2.2. For a given amplitude function a :!- 0, we may find t and l such 

that the exponent of,\ in theorem 4.2.1 is sharp. 

Proof. Let t(x) = Xn and t(y) = Yn· We may assume that on supp(a), 0 < Xn < 1 

and 2 < Yn < 3. Choose ( Xo, Yo) E supp( a) such that a( xo, Yo) =/= 0, and without loss 

of generality assume that supp(a) is contained in a small neighborhood of (x0 , y0 ). 

For fixed Xn and Yn define a family of operators T(xn, Yn) : L2 (~n-l) -l- L2(~n-l) 

by 
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We know by the discussion after theorem 2.3.1 that there exists g E Ccf'(!Rn-1) 

with 11911 2 = 1 such that 

( 4.2.4) 

Since supp(a) is small, (4.2.4) is true for all Xn and Yn in supp(a) . 

Le t f(y) = eiAYng(y')X[0 ,1j(Yn); then 11!112 = 1. Note that 

lx- Yl 2 lx'- Y'l2 
.:....._____:::.._:_ = + X n - Y n · 
Xn - Yn Xn- Yn 

Then by the mean value theorem (for integrals) there exists t E suppxn (a) and 

s E suppYn (a) such that 

1

2 ) 1/2 
X a(x, Xn , y', Yn)g(y') dy' dyn dx' dxn 

= )..-n/2+1/2 11T(t,s)gll2 2: )..-n/2+1/2 , 

as desired. • 
We finish this section by noting that the estimate in theorem 4.2.1 may be im

proved when we have a better bound on one of the "factors" Sl or S1 ofT.\. If for 

example t and t satisfy the hypothesis of theorem 3.2.1 then infact IIT.\11 ,:S >..-n/2 • 

More precisely we have the following theorem whose proof is simply that of theorem 

4 .2.1. 

Theorem 4.2.2. Let t, t and <P be as above. For a given amplitude a with support 

contained in B1 x B1, let 
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H Sl and S~ in (4.2.1) and (4.2.2) are such that 

then 
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5. Applications to the Schrodinger 
Equation 

§1. Introduction 

In this chapter we consider, for a fixed smooth function t( x ), the solution to 

the Schrodinger equation (2) at time t = t( x)- u( x, t( x) ). As pointed out in the 

introduction, this is motivated by a desire to understand the Schrodinger maximal 

operator in ( 4). We obtain results of the form 

where s depends on conditions on the derivitives oft. We do this by first considering 

fork= 0, 1, ... the operators Rk : L2 (1Rn)---+ L2 (1D>n) of the form, 

( 5.1.1) 

Here { fh} :o is a partition of unity subordinate to diadic intervals: Oo E C0 (IYI :S: 

2), Oo(Y) = 1 when IYI :S: 1; Ok(Y) = Oo(2-ky)- Oo(21-ky), when k ~ 1. Before 

stating our main results we prove a lemma which is the beginning step in all that 

follows ( cf. [B]). Its purpose is to reduce H 8 estimates to L 2 estimates. 

Lemma 5.1.1. Suppose tbere tbere is a C and an so sucb tbat 
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Then for any s > so there is a constant C s depending on C and s such that 

(5.1.2) 

11Rkfii£2(Jl)ln) ~ C2sok ( j if(y )1 2 dy ) 

1/2 

supp(BA:) 

Then by Minkowski's inequality, 

00 00 

jju( · ' t( · ))jj£2(Jl)ln) ~ L 11Rkfii£2(Jl)ln) ~ C L 2-(s-so)k IIJIIH• = Cs IIJIIH• 
k=O k=O 

Remark 5.1.2. We may multiply Rk by a Cgc' function a which is unity on ID>n, if 

necessary, and all results about this "new" Rk will be the same as for that in (5.1.1). 

By abuse of notation Rk will denote either one. 

§2. No Critical Points 

Our first result is obtained by applying the techniques in the proof of theorem 

3.1.6 to Rk. It involves the important special case when '\lt does not vanish. 

Theorem 5.2.1. Suppose t E coo is such that "Vt(x) -=f. 0 Vx E ID>n . Then for any 

s > 0, 

where C may depend on s and t. 

This follows immediatly from Lemma 5.1.1 and the following. 
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Theorem 5.2.2. Lett be as above. Then there is a constant C, which is indepen

dent of k, such that 

Proof. Since '\lt does not vanish, arguing as in theorem 3.1.6, we may assume that 

suppx( a) is a small neighhborhood of a point xo such that there is a c= diffeomor

phism p, whose range lies in suppx(a), and such that top(x) = Xn, and Dp(x0 ) =I. 

Let >. = 2k. After making a change of variables ( x ---+ p( x ), y ---+ .Ay) it suffices to 

show that 

(5.2.1) 

where 

Write a(x,y) = a(x)Bl(Y) and proceed as in theorem 3.1.6. If 

K(x, z) = { exp (i { .A(p(x)- p(z)) · y + .A2 (xn - Zn)IYI2
}) a(x, y)a(z, y) dy, 

}JRn 
~ ~ 

then, if we let S>. = R>.Rt, 

S>.J(x) = ln f( z)K(x, z)1/J ( Xn ~ Zn) dz + ln f(z)K( x, z);f ( Xn ~ Zn ) dz 

= Sif(x ) + S~f(x), 

where 1/J is as in theorem 3.1.6. 

Once again we find that the frozen operators ( Si).," zn have the form 

For fixed Xn, since Xn iYI 2 is a function of y only, we may consider (R>.).,n~n as an 

oscillatory integral operator with phase function p( x) · y. Clearly, by the constru c

tion of p, the mixed Hessian of this phase function is non-degenerate on supp( a) . 
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Arguing as in theorem 3.1.6, we apply theorem 1.2.1 and lemmas 1.2.2 and 1.2.3 to 

see that 

(5.2.2) 

if we take € = >. - 1 . In what follows we shall take € = >. - 1 , and in doing so we may 

assume, given the support properties of J;, that >.ixn- Znl 2: 1. 

Now we turn our attention to S~. Note that 

p(x)- p(z) 
where F(x, z) = >.( ) . Let A(x, z , y) = a(x, y)a(z, y) and 11 = >.2 (xn- zn)· 

2 Xn- Zn 
Then the kernal of S~ is 

./. (Xn- Zn) (- .lp(x)- p(z)l
2

) 1m ittiYI 2 A( F( )) d 
'f' exp z 

4
( ) e x, z , x, z y. 

€ Xn- Zn JRn 

Here we have that 

f eittiYI
2 
A(x, z, F(x, z)) dy 

}]Rn 

= c: r•/Z ( A(x, z, F(x, z )) + L. r, ( ilel' /41' )e;<·F(z,z) A( x, z , e) de) 
where A denotes the inverse Fourier transform in the last variable (cf. (3.1.11)) . So 

(SD.,nzn is the sum of two terms, (SD~nzn and (SD~nzn having kernels K'(x', z') 

and K"(x', z') respectively. Since 

(

. ) -n/2 ( ) K'(x', z ') = z: J; Xn ~ Zn exp (i>.'ip(x)- p(z)l 2
) A(x, z, F(x, z)) , 

where >.' = 
4 

1 
, we may treat (SD~n zn as an oscillatory integral operator 

Xn- Zn 
with phase function lp(x',xn)- p(z',zn)l2 and amplitude A(x,z,F(x,z)). And 
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although this phase function does depend on>., because (>.lxn- znl)-1 ;S 1 we may 

uniformly bound finitely many z'-derivitives of A. Moreover, since lxl, lzl :=; 2, then 

I suppz' AI ;S 1. So by (2.2.2) 

(5.2.3) !ICSD:nznfii£2(JRn-l) ;S ;j; ( Xn ~ Zn) ).-nlxn- Zni-112 IIJII£2(JRn-l) · 

Also (SD~nzn may be treated as an oscillatory integral operator as 

K"(x', z') = ( -i7r)n/2 J-l-n/2-t;j; ( Xn ~ Zn) exp(i>.'lp(x)- p(z)l2) 

X J-l { Tt (il~l 2 /4p)eie·F(x ,z) A(x, z, 0 d~. 
}JRn 

The phase function is the same as in the previous case, but the amplitude is different. 

To apply thorem 2.2.1 we must consider z'-derivatives and the volume of the z'

support of this amplitude, 

and find L 00 bounds on these quantities which are independent of>.. Since lxl, lzl :=; 

2 when this amplitude does vanish, and by consideration of (1.3. *)it suffices to show 

that for s > n/2 

L IIDeD~, (eie·F(x,z) A(x, z, 0 d0IIL2(de) ;S 1, 
lal9+s 

for all I.BI :=; n, and this is easily seen to be so given that i>.(xn - Zn)i ~ 1. Then 

(2.2.2) shows that 

Using lemma 1.2.2, (5.2.2), (5.2.3) and (5.2.4) we see that 
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and this implies (5.2.1). • 
In some sense this represents a best possible case given the strength of the result 

in theorem 5.2.2- i.e., the constant C is independent of k. It is interesting to 

remark though that this constant must become unbounded as l~tl tends to zero, 

for otherwise the result in [DK) would be contradicted. 

§3. Non-Degenerate Critical Points 

The case when ~t f. 0 represents the easiest to treat usmg the methods of 

theorem 3.1.6. When ~t vanishes, the situation is more complicated. However the 

case when the Hessian oft is non-singular whenever ~t vanishes-i.e., t has non

degenerate critical points-is treated below. We limit ourselves to the case when 

n = 1 or n = 2. 

Theorem 5.3.1. Suppose that t bas only non-degenerate critical points. Then for 

any s > 0, 

llu( · , t( · ))II£2(D") ~ C IIJIIH• ' 

when n = 1 or n = 2. 

This follows from 

Theorem 5.3.2. Suppose tba.t t bas only non-degen erate critical points. Then 

when n = 1 or n = 2. 

Before giving the proof of theorem 5.3.2, we state a technical lemm a whose proof 

is given at the end of this section. 
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Lemma 5.3.3. Let n = 1 or n = 2, and suppose that A is an n x n diagonal matrix 

whose eigenvalues are ± 1. If A( x) denotes the quadratic form A x · x, then 

(5.3.1) { dx < (ln(-\)) n 

~~~ }Jl)n (1 + -\2j A(x)- A(z)j)n/2 ,-v -,\-

Proof of theorem 5.9.2. We know that t only has finitely many isolated critical 

points in ID>n. Away from these critical points jVtj ;::: c > 0. Near a given critical 

point we may change variables in such a way that t is a quadratic form. After a 

partition of unity, an application of theorem 5.2.1 and a change of variables, we 

may assume that Rk is of the form 

Rkf(x) = A n/2 { exp(i[Ap(x) · y + -\2 A(x )jyj2])a(x, y)J(y) dy, 
}JR.n 

where,\= 2k, A is as in lemma 5.3.3, pis a C 00 diffeomorphism and a E C0 (ID>n X 

ID>n ). As always RkRk has a kernal I< of the form 

I<(x,z) =An { exp(i[Ap(x)- p(z) · y + -\2 (A(x)- A(z ))jyj2 ])a(x,y)a(z,y)dy. 
}JRn 

In general II<(x, z)l ;S An, while by stationary phase II<(x, z)l ;S ,\n(,\2 (A(x) -

A(z)))-n/2. Then an application of theorem 1.2.1 and lemma 5.3.3 yields the desired 

result. • 
We restrict ourselves to the case n = 1, 2 because the estimate in (5.3.1) is no 

longer valid for larger n. The estimate that one does get for n ;::: 3 is not good 

enough to prove results that are better than those already found in [Sj] and [V]. 

Proof of lemma 5.9.9. We consider the cases of when n = 1 and n = 2 separately. 

Case 1, n = 1. 

After a change of variables, x ~---+ x /,\ it suffices to show that 

1>.. dx 
sup (1 + I 2 2j)l/2 ;S ln(A). 
lzl~>.. 0 X - Z 
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We calculate, for fixed lzl :::; A, that 

r>< dx 
1o (1 + lx2 - z21)1/2 

{lzl dx {>. dx 

= 1o (1 + z2 - x2)1/2 + 11zl (1 + x2 - z2)1/2 

. ( z ) (A+ vf1- z2 + A2) 
= arcsm -J1 + z 2 + ln lzl + 1 ~ ln(A). 

Case 2, n = 2 and A = ± I (say A = I). 

Again we change variables as before, so it suffices to show that 

(5.3.2) 1>. r dr < ( )2 
sup ( I 2 I 121) rv ln A . lzl~>< 0 1 + r - z 

We make a further change of variables, s = r 2 so that the left-hand side of (5.3.2) 

is equal to (modulo a constant factor) 

r>-2 dr flzl2 dr r>-2 dr 

1o 1 + lr- lzl21 = 1o 1 + lzl2 - r + 11zl2 1 + r- lzl2 

= ln(1 + lzl2) + ln(1 + A2 
- lzl2) ~ ln(A). 

Case 3, n = 2 and A=± ( ~ ~1 ) · 
We must consider, where c = Az · z, 

{ dxdy 

1n(o,1) 1 + Alx2 - y2
- cl· 

After the change of variables u = x + y, v = x - y and a dilation, we may consider 

1
>.1>. dx dy 

->. ->. 1 + lxy - cl 

In fact it is clear that we only have to consider 

{>. {>. dx dy 

11 11 1 + lxy - cl 
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By changing variables the above is equal to 

(' ]:_ (l>..y dx ) dy ~In( .X?' 
J1 Y y 1 + lx - cl 

and this completes the proof. • 
§4. Counterexamples 

It is not possible that we may always get estimates as in theorems 5.2.1 and 5.3.1 

for all s > 0 as the following !-dimensional counterexample shows. The heart of 

the matter is found in theorem 5.4.2, but first a simple lemma is needed. 

Lemma 5.4.1. Lett be a fixed C 00 function and let Rk be as in (5.1.1). Suppose 

there exists constants C and p, independent of .X, sucb that as an operator form 

(5.4.1) 

Then the map 

(5.4.2) Sf(x) = u(x,t(x)) 

Proof. The condition (5.4.1) means that for each k = 1, 2, ... there exists a function 

fk E L2 such that llfkll2 = 1, supp(fk) E supp(Bk) and for which 

Choose 9k E L2 such that g = fkBk . Fix an s for which Sin (5.4.2) is a bounded 

map from H 8 (1Rn)---+ L2 (JD>n). On the one hand, by (5.4.1), 
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On the other hand, by the choice of s, 

IISgkiiL2 (1D>") :::; C'llgiiH• = C' (! lf(x)l 2 (1 + lxl 2 t dx) 112 

::=; C"2sk11Jib = C"2sk . 

Hence 2(p-s)k ;S 1, which is only possible when p ::=; s. 

57 

• 
This lemma is the counterpart to lemma 5.1.1 and justifies our reduction form 

H 8 norms to L 2 norms. The only drawback to this scheme is that it does not give 

endpoint results-i.e., when p =sin lemmas 5.1.1 and 5.4.1. 

Theorem 5.4.2. Let t(x ) = ---;1 xm wbere m;::: 2. Tben 

We will apply theorem 2.2.2 to Rk, with </>(x,y) = xy- t.xxmjyj2 . Let (x0 ,y0 ) = 
-1 

((m.A) m-1, 1). We expand ci>(x, y) = </>(x, y)- </>(xo, y)- </>(x, Yo)+ </>(xo, Yo) in a 

Taylor series around the point ( Xo, Yo) to obtain 

ci>(x, y) = -(m.A)"~S(x- xo)2(y- Yo)- (x- xo)(y- Yo? 

+ O(lx- xoi 3 IY- Yo I+ lx- xoiiY- Yol3 + lx- xoi2 IY- Yol 2
). 

Now assume that lx -xo I :::; c.A -p and IY-Yo I :::; c..\ -q, where p = 3(~~\), q = 3(~-=:1 ) 

and cis a small constant independent of .A. On this rectangle, .Aici>(x, z)l :::; 1/2, and 

an application of theorem 2.3.1 gives the desired result. • 
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6. Appendix 

In this final chapter we discuss those issues previously mentioned, not central to 

our main ideas, which have not been adequately discussed. In §1 we give a proof of 

theorem 1 of the introduction. The idea of almost orthogonality as it was used in 

chapter 2 is discussed in §2. In §3 we continue the discussion of oscillatory integral 

operators taken up in chapter 2 and segue into §4 where we remark on questions of 

further research. 

§ 1. A Proof of Theorem 1 

In the introduction we stated the following theorem. 

Theorem 6.1.1. Let 

{ (· lx-yl2
) T;>J(x) = }Jll'.n exp z.At(x) _ t(y) a(x , y)f(y)dy, 

where a E C0 (1Rn X !Rn) and t and tare measurable functions defined on suppx( a) 

and suppy(a) respectively such that 1 ~ it(x)- t(y)l ~ 2. Then 

(6.1.1) 

where C is a universal constant independent of all such t and f. 

Although this theorem does not appear in [B], some of the ideas in the proof 

may be found there. It is interesting to note that in spite of the non-smoothness of 

the phase function, I ITA II --t 0 as .A --t oo when n > 2. 
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Proof. For e to be chosen, let 

Uj = { x E suppx(a) : je :S t(x) < (j + l)e} 

tJk = { x E suppy(a) : ke :S t(y) < (k + l)e} 

Letting Xi(x) and Xk(Y) be the characteristic functions of Uj and f)k respectively, 

we see that T>.f(x) = 

~ { (. lx - Yl
2 

) f": JIR" exp z-\t(x) _ t(y) Xi(x)a(x,y)xk(Y)f(y)dy 

= L r exp (i-\ lx- Yl
2

) Xj(x)a(x, Y)Xk(y)f(y) dy 
jk }JPl.n tj- tk 

l ~( (· lx- yj
2 

) (· lx- yj
2
)) + ~ exp z-\ ( ) _ ( ) - exp z-\ . _ Xi(x)a(x, Y)Xk(y)f(y) dy 

IR" jk tx ty t1 tk 

where tj E [je, (j + l)e) and lk E [ke, (k + l)e). When x E Uj andy E f)k it is 

clear that 

I (., lx-yl
2 

) (.,lx-yj
2 )1 <, 

exp z"'t(x) -t(y) -exp z"'tj -tk rv/\€. 

Then by theorem 1.2.1 

(6.1.2) 

Now we estimate IIT>-2 11 by duality. Let g E L 2 be such that ll9llz = 1. First notice 

that the number of indices j or k rv C 1
, and let Tj k be the oscillatory integral 



Appendix 60 

lx- Yl2 
. 

operator with phase function ti _ tk and amphtude Xi(x)a(x,y).Xk(y). Then 

IL" T>.2J(x)g(x) dxi 

= IL [ [ exp (i>-. 1
;.- ~~

2

) g(x)xj(x)a(x, y).Xk(Y)f(y) dx dyl 
j k }JR.n }JR.n J - k 

s: t= IIYX' II, IITj .u Xi) II, s: ~ ( ~ IIYX' u; f' ( IITj .u Xilll; r ,, 
;S llgll2llfll2 ;..-n/2E-

1 by theorem 2.1.1. 

So 

(6.13) 

Choosing E = ;..-n/4 - 112 in (6.1.2) and (6.1.3) yields (6.1.1). • 

§2. Almost Orthogonality 

We consider a collection of operators { Ti} : 1 on L 2 (1Rn), or more generally any 

Hilbert space, and we wish to improve upon the estimate 

(6.2.1) 

If the Tj's were mutually orthogonal, that is TiTk = 0 = TlTk when j =/= k, then 

we may bound the left-hand side of (6.2.1) by max{IIT11i, ... , IITNII}. The next 

best thing is when the Tj 's are almost orthogonal, when we may favorably bound 

the number of compositions TiTk, TlTk which are not identically zero. This is 

the subject of Cotlar's lemma, which appears below as theorem 6.2.1; our proof is 

adapted to fit our needs in chapter 2 form the one found in [St]. 
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Theorem 6.2.1. Let {Tj} ~1 be operators on a Hilbert Space. Let 

Then 

M =max{ IIT1II, · · ·, IITNII} 

A1 = max I { k : TjTk =/:- 0 } I 
1~j~N 

A2 = max I{ k : Tj*Tk =1- 0 }I . 
1~j~N 

Proof. Let T = L::~ 1 Tj . Since II Til = IIT*TII1/2
, then for any n, 

and we have that 

N N N N 

(6.2.2) II(T*T)nll S L L "· L L 11Tj*1 Tk1 "' TJ*n TkJI. 
J1=1 k1=1 Jn=1 kn=1 
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A typical term in (6.2.2) is bounded by M 2n, and if we count the number of non

vanishing terms we find that there are N A~-1 A~ of them. Thus 

and letting n -+ oo gives the result. • 
As an application of this theorem, we consider what happens when we partition 

the support of the kernel of an integral operator. As in §2 of chapter 1, let J( E 

Cg"(!Rn X !Rm), and let Tf(x) = J K(x,y)f(y)dy. Suppose that {ai}~1 , {,Bj}:1 

a re partitions of unity subordinate to covers of suppx(I<) and suppy(K) respectively 

such that the number of ai 's and ,Bj 's with over-lapping support is a fixed constant 

independent of N 1 and N2. Then T = I: Tij where Tij is the integral operator with 
1} 
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kernel ai(x)K(x, y)f3j(y), and we find that At "'N1, A2 "'N2. The theorem then 

says that IITII ;S M.JN1N2 which is an improvment over the estimate in (6.2.1), 

II Til :::; M N1N2. So if for example the ai's are all supported in balls of radius "" 1, 

and say N2 = 1, then IITII ;S I suppx(K)I1/2 M. This is the situation occurring in 

the proof of theorem 2.2.1. 

§3. A Non-Folding Canonical Relation 

We recall the situation in §1 of chapter 3. We are given an oscillatory integral 

operator with phase function </> = lx tCx ~~
2

, where t E c=, t =/= 0. We mentioned in 

remark 3.1.8 that if 

(6.3 .1) Ht(x)(x- y) · (x- y) =/= 0 on supp(a) , 

then we have an even stronger result than in theorem 3.1.6, namely 

(6.3.2) IIT_x/lb :::; C). -n/2+1
/

6 IIJII2 · 

This follows from a result in [PS] regarding oscillatory integral operators in general. 

For a given phase function </> let C<t> denote the manifold 

c</> = {(x , </>~(x, y), y, -</>~(x , y))}, 

and let Ilj : C<t> -t IRn (j=1, 2) be the projections 

IT2(x,~,y,ry) = (y,ry). 

If'J,x is as in (2.1.1) and if the II/s have at most folding singularities1
, then (6.3.2) is 

true of'J-\ . The condition on t given in (3.1.6) is just a restatement of the conditions 

on the Ilj's. 

1 See (Hl , Vol III] for the definition of a folding singularity. 
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In fact, if we consider the case ofT>. as above we easily find that 111 has only 

folding singularities, while Il2 may or may not depending on whether or not the 

condition in (6.3.1) is satisfied. Nevertheless we find that the inequality in theorem 

6.3 .1 is always satisfied. This is no coincidence as we have recently found the 

following result in [GS]. 

Theorem 6.3.1. Let 'J'>. be as in (2.1.1). Suppose that one of the Ilj's has at most 

folding singularities. Then 

Our result in theorem 3.1. 7 shows that in general this result cannot be 1m

proved. It is interesting to consider intermediate cases-i.e., when say 111 has 

fold singularities, and the singularities of Il2 are such that liT>. II ;S >.-n/2+r, where 

1/4 < r < 1/6- and apply this to the operator in §1 of chapter 3, but in the context 

of pointwise convergence this does not seem fruitful. 

§4. Further Directions 

What does seem fruitful is a study of the dependence of liT>.!! and IIRkll on the 

C 00 data oft and f . As we are originally interested in the pointwise convergence of 

Schrodinger operators, as noted in the introduction, the case when t and fare only 

assumed to be measurable is really our main concern. On the one hand we have 

an estimate on I!T>-11 as in theorem 6.1.1 which does not depend at all on the coo 
data of t and f, while on the other hand the estimate in theorem 4.2.1, although 

much better in terms of the expenent of >., assumes that t and fare smooth. In 

dimension n = 2 theorem 6.1.1 is not good enough to prove a pointwise convergence 

result, and it would be too much to that theorem 4.2.1 be valid when t and fare 

only measurable. How much can we relax the smoothness assumption on t and f 
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and still prove a theorem better than theorem 6.1.1? 

The question of smoothness also relates to counterexamples-i.e., finding when 

pointwise convergence results are not valid for all H 8 functions. Perhaps it is possi

ble to find sequences of functions { t i}, { ti} whose c= data becomes unbounded in 

such a way that in the limit theorem 3.1.6 is no longer valid. 2 In dimension n = 2, 

at least, this may provide counterexamples. Also, a la theorem 5.4.2, we may find 

counterexamples by considering smooth functions { ti} whose limit is "bad." 

Of course, we do not have a full understanding of the Rk 's even when t is an 

arbitrary smooth function. It would be interesting to find a "good" estimate on 

JIRkJI which is valid for any smooth t. One approach is as in theorems 5.2.1 and 

5.3.1 where we deal directly with Rk· Another approach is along the lines pursued 

in [B] where we reduce to the case of T>. in ( 4). The argument there does not 

lend itself very easily to sharp results about I IRk Jl, and it would be interesting to 

develop strategies to deduce results about IIRkll from those about IIT>.JI, which we 

now understand. 

2 This approach was suggested to me by T. Wolff. 



65 

References 

[B] J. Bourgain, A remark on Schrodinger Operators, Isr. J. of Math. 77 (1992), 

1-16. 

[C] L.Carleson, Some Analytical Problems Related to Stastical Mechanics , Eu

clidean Harmonic Analysis, Lecture Notes in Math., vol. 779, Springer-Verlag, 

Berlin and New York, 1979, pp. 5- 45. 

[Co] M. Cowling, Pointwise Behavior of Solutions to Schrodinger Equations, Har

monic Analysis, Lecture Notes in Math., vol. 992, Springer-Verlag, Berlin 

and New York, 1983, pp. 83- 90. 

[DK] B . Dahlberg and C. Kenig, A note on the Almost Everywhere Convergence of 

Solutions of the Schrodinger Equation, Harmonic Analysis, Lecture Notes in 

Math., vol. 908, Springer-Verlag, Berlin, 1982, pp. 205- 209. 

[E] L. Ehrenpries, On the Theory of Kernels of Schwartz, Proc. Amer. Math. 

Soc. 7 (1956), 713- 718. 

[GS] A. Greenleaf and A. Seeger, Fourier Integral Operators With Fold Singulari

ties, Preprint. 

[H1] L. Hormander, The Analysis of Linear Partial Differential Operators I and 

III, Grund. der math. Wiss #256 and 274, Springer-Verlag, Berlin and New 

York, 1990. 

[H2] , Oscillatory Integrals and Multipliers on F LP, Ark. Mat. 11 (1971 ), 

1- 11. 

[PS] Y. Pan and C. Sogge, Oscillatory Integrals Associated to Folding Canonical 



References 66 

Relations, Colloquium Mathematicum 60 (1990), 413- 419. 

[Sj] P. Sjolin, Regularity of Solutions to the Schrodinger Equation, Duke Math. J. 

55 (1987), 669-715. 

[S] C. Sogge, Fourier Integrals zn Classical Analysis, Cambridge Univ. Press, 

Cambridge, 1993. 

[St] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton N.J., 1993. 

[StW]E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean 

Spaces, Princeton Univ. Press, Princeton N.J., 1971. 

[V] L. Vega, Schrodinger Equations: Pointwise Convergence to the Initial Data, 

Proc. Am. Math. Soc. 102 (1988), 874-878. 


