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Dynamic States in Rotating Rayleigh-Benard 
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by 
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A b stract 

A new geometry-independent state - a traveling-wave wall sta te - IS proposed as 

the mechanism whereby which the experimentally observed wall-localized states m 

rotating Rayleigh-Benard convection systems preempt the bulk state at large rota

tion rates. Its properties are calculated for the illustrative case of free-slip top and 

bottom boundary conditions. At small rotation rates, this new wall state is found 

to disappear. A detailed study of the dynamics of the wall state and the bulk state 

in the transition region where this disappearance occurs is conducted using a Swift

Hohenberg model system. The Swift-Hohenb erg model, with appropriate reflection

symmetry-breaking boundary conditions, is also shown to exhibit traveling-wave wall 

states, further demonstrating that traveling-wave wall states are a generic feature of 

nonequilibrium pattern-forming systems. A numerical code for the Swift-Hohenberg 

model in an annular geometry was written and used to investigate the dynamics of 

rotating Rayleigh-Benard convection systems. 
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Chapter 1 

Introduction 

(Patterns' are seen m myriad aspects of nature, from snowflakes, sand dunes, and 

billowing clouds, to perhaps the grandest and most interesting of all - biological 

patterns. Indeed, one may ask the question, "What is a pattern?" 

There is then the question of how patterns form. Progress has been made in 

answering this question for many classes of patterns in recent years. One such class of 

patterns are those which arise from homogeneous states due to the existence of linear 

instabilities [1]. This class includes Rayleigh-Benard convection roll patterns, Turing 

patterns or patterns arising in reaction-diffusion systems, and Taylor-Couette flow. 

The common feature of this class of patterns is the initial instability of a state with 

spatial structure eii·:i, which grows and usually saturates . The evolution of the final 

pattern however, depends on many different factors, among them nonlinear effects, 

the influence of boundaries, and noise. It is in attempting to understand these effects 

that much work has been expended. It is also for these reasons that much work has 

concentrated on Rayleigh-Benard convection systems, a system for which the basic 

(microscopic' equations (in this case the fluid equations) are well known, and for 
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l 

Figure 1-1: Schematic picture of a bulk roll pattern of infinite extent in a Rayleigh
Benard convection system. {Reprint from Fig. 9 of {8}.) 

which well-controlled quantitative experiments are possible. This enables a rigorous 

comparison of theory and experiment in the testing of theories, models, and concepts. 

One such concept is that of a geometry-independent 'bulk' state in an idealized, 

infinite, unbounded system [1, 2, 4]. By a 'bulk' state, we usually mean that a 'pattern' 

of 'non-finite' extent with spatial variation eiq.: is formed. A standard example is the 

formation of convection rolls in a Rayleigh-Benard convection system, where the wave 

number of the roll pattern is q. A schematic picture of a Rayleigh-Benard convection 

roll pattern may be seen in Fig.(1-1). 

In this thesis, it will be shown that another type of geometry-independent state 

- a wall-localized 'wall' state - can exist in nonequilibrium pattern-forming systems. 
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In analogy with the 'bulk' state mentioned above, it exists in a semi-infinite system 

- that is, a system bounded only by one straight, infinite sidewall. 

The existence of such wall-localized states induced by the boundary conditions 

was previously suggested by Kramer and Hohenberg (5) based on general arguments. 

In [6), wall-localized solutions of traveling-wave amplitude equations with general 

boundary conditions were also found. It was not clear though, whether these solutions 

could exist in a physical system. 

We will first demonstrate the existence of wall states in a real, physical system, 

namely in a rotating Rayleigh-Benard convection system. Then we will use a model 

pattern-forming system (the Swift-Hohenberg model) with boundary conditions; by 

incorporating the essential features that lead to the existence of wall states, we shall 

show that wall states can be a generic feature of pattern-forming systems. The model 

system will also be investigated numerically to elucidate the nature of various aspects 

of the wall state, for example, the transition from wall to bulk state. 

The influence of 'walls' or boundaries on patterns is a multifaceted question. In 

[30), for example, it was shown that even in a large laterally finite container, the 

allowed band of wave vectors is reduced from that of an ideal infinite system. The 

existence of wall states adds another dimension to the question, not only of its own 

merit, but also because it inspires the broader question of its influence on bulk pat

terns. 

A natural system for such a study turns out to be rotating Rayleigh-Benard con-
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vection, a simple system which nonetheless possesses enough ingredients for a substan

tive study of dynamical patterns - of dynamical wall states, dynamical bulk states, 

and their interactions. 

1.1 Schematic Experimental Set-Up and Equa

tions of Motion in Rayleigh-Benard Convec

tion Systems 

In a typical Rayleigh-Benard convection experiment, a thin layer of fluid is sandwiched 

between two horizontal plates of good thermal conductivity relative to the fluid. 

The two plates are maintained at constant temperatures, with the lower plate at 

a higher temperature than the upper one. The (positive) temperature difference is 

D.T. When the temperature difference D.T is less than a certain critical temperature 

difference D.Tc, the buoyancy force that drives convection is insufficient to overcome 

the thermal and viscous dissipation, and the stable state is one in which there is no 

convection, but a constant linear temperature gradient between the two plates, where 

heat is uniformly conducted from the lower to the upper plate. When D.T > D.Tc 

however, the linear conduction state becomes unstable, and convection sets in. This 

is illustrated in Fig.(l-1). 

It is usual to write the equations of motion describing the fluid in dimensionless 

variables. In the usual ones, length is measured in units of the cell height d, time 
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m units of the thermal diffusion time d2 
/ K- (where K. is the thermal diffusivity of 

the fluid), and temperature in units of K-vjagd3 (vis the kinematic viscosity, a the 

coefficient of thermal expansion, and g the gravitational acceleration). In these units, 

the equations of motion for the fluid velocity v = ( u, v, w ), the deviation of the 

temperature from its linear conduction profile, B, the deviation of the pressure from 

its conduction profile, p, and the incompressibility condition, are 

0"-1 [a-u (- v) -] at+ v. v - -o--1\7 (;0) + Bz + V2v (1.1) 

aB ( -) at + v · v B - Rw + \12
() (1.2) 

\7.-v - 0. (1.3) 

Here R = ag(~T)d3jK.v is the Rayleigh number, and a-= vjK- is the Prandtl number, 

while Po is the mean fluid density. 

The above equations are derived from the N a vier-Stokes equation and the heat 

equation, and are the well-known Oberbeck-Boussinesq equations, in which all fluid 

properties except the fluid density are regarded as constant, and variations in the 

density are included only when coupled to gravity, i.e., involve the buoyancy force 

[3]. 
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1.2 Linear Stability or Instability Analysis 

We shall use t he R ayleigh-Benard convection system described a bove as a prototypical 

example of a p att ern-form ing system in which the formation of spatial pattern is 

governed by the change in the linear stability of a Fourier mode eitf·x, as a control 

parameter, commonly denoted by R, is varied. (In Rayleigh-Benard convection the 

control parameter is the Rayleigh number.) As the control parameter is increased 

beyond a crit ical value Rc, a mode"" eitf.·x (qc =/= 0) becomes unstable and grows in 

amplitude, giving rise to a pattern with wave number qc. 

If we write the growth rate of any Fourier mode eitf·x as 1(q), (i.e., the spatial 

and temporal variation of the mode is e-y(q)teitf·fi) then when R < Rc, the growth rates 

of all modes are negative (l(q) < 0, Vq), and any instability will eventually decay 

away. If R = Rc, then one mode eitf. ·fi has zero growth rate, while all other modes 

have negative growth rates . And when R > Rc, a band of wave numbers centered 

about qc have positive growth rates, and instabilities of wave number q ~ qc will grow 

(until nonlinear effects saturate the growth), and a spatial pattern with wave number 

q ~ qc will form. This is illustrated in Fig.(l-2). (This scenario is generally valid in 

the weakly nonlinear regime, where R is not too much larger than Rc.) 

When studying the unstable convection modes in the Rayleigh-Benard system, 

one must also consider the boundary conditions at the top and bottom plates. The 

two most commonly considered types of boundary conditions are the rigid (or no

slip) boundary conditions, and the free-slip boundary conditions. For both of these 
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0::: 
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Figure 1-2: Schematic representation of the linear growth rate 1 = Re cr as a function 
of the wave vector q for different values of the control parameter R ,...._ E. {Reprint 
from {1}.) 

sets ·of boundary conditions, the thermal boundary condition is () = 0, owing to the 

fact that the plates are much better thermal conductors than the fluid. The fluid 

velocity boundary conditions though, differ. For the rigid boundary conditions, the 

fluid velocity is zero at the boundary ( u = v = w = 0), and is the more physical. 

But the free-slip boundary conditions, where the normal velocity and the tangential 

stresses are zero ( w = :~ = ~~ = 0), is the more tractable one analytically. For 

this reason, the free-slip top and bottom boundary conditions are commonly used in 

the study of pattern formation problems in Rayleigh-Benard convection, as they are 

usually sufficient to illustrate the basic behavior. 

For free-slip boundary conditions, the most unstable onset mode with spatial 
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dependence eiif.·x is found by writing the physical variables as 

Uo cos 1rz 

VQ COS 7rZ 

W 0 sin 1rz 

8 0 sin 1rz 

+ c.c .. (1.4) 

The coordinate system used is one in which the height of the cell is from z = 0 

to z = 1, and the x and y directions extend laterally to infinity. By taking the 

physical variables to be of this form, the boundary conditions at the top and bottom 

( 8 = w = ~~ = ~~ = 0) are automatically satisfied. This is the advantage of using 

free-slip boundary conditions. 

To find the critical Rayleigh number R(q) for given q, one substitutes (1.4) into 

linearized versions of (1.1) to (1.3) and solves a determinant condition to find R(q). 

The dependence R(q) is known as the neutral stability curve. Minimizing R(q) with 

respect to q leads to the critical Rayleigh number Rc and the critical wave number qc. 

For free-slip boundary conditions, Rc = 277r4 /4 = 657.511, and qc = 1rj.j2 = 2.2214. 

(For rigid boundary conditions Rc = 1701.762, and qc = 3.117 (4].) 

Thus for R > Rc, a bulk convection roll pattern of wave number q = qc arises in 

a convection cell of lateral size L large compared to q;1 . This is a standard example 

of a bulk state driven by a linear instability in a pattern-forming system. 
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1.3 Amplitude Equations 

As mentioned in §1.2, when R > Rc, a band of wave numbers centered about qc grows. 

The width of this band of unstable wave numbers f:J..q depends upon f:J..R = R - Rc. 

It is usual to define a reduced control parameter € = (R~~c), and when € is small, 

f:J..q "' €~. This is due to the growth rate of any wave number close to qc being 

(1.5) 

as qc is a maximum growth rate mode. Here To and <o are the appropriate time and 

length scale factors which depend on the actual system. 

When € is small, the unstable band of wave vectors, f:J..q, is small, and we can 

include the effects of having a band of unstable wave vectors in a modulating envelope 

of the basic instability eiqc ·"' . The envelope is known as the 'amplitude' A, and the 

physical variables X can now be described by 

X (x, y, t) = A(x, y, t) X o eiqc ·:r + c. c., (1.6) 

where X o eiqc·:r is the most unstable mode. Since f:J..q "' d, and 1 "' €, A varies on 

the slow length scale ;, "' d and the slow time scale %t "' €. From (1.5), it is clear 

that the linear part of the 'amplitude equation' for A is 

( 1. 7) 
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Since the linear growth usually saturates due to nonlinear effects, there is usually a 

cubic order saturating term -giAI2 A on the RHS, and the most basic form of the 

amplitude equation is 

(1.8) 

Here we have used the simplest case of a one-dimensional system with stationary 

instability eiqc:z:. More complicated cases exist; for example, for the traveling-wave 

instability ei(qc:z:-wt), the amplitude equation would be 

where there is now a group velocity term"' s, and complex coefficients. 

A standard technique used in calculating the coefficients in an amplitude equation 

is the 'multiple-scales' approach adopted by Newell and Whitehead [7]. This involves 

separating the variation of X into a fast varying part, eiqcx, and a slow varying part 

incorporated into A. One defines 'slow' variables X = t:t x and T = d, and the idea 

is then that A varies in space on the X length scale and in time on the T time scale. 

One can then expand in powers of d. 

There are also other approaches to understanding the amplitude equation, one of 

which is the idea of 'slaved' and 'central' modes favored by [2]. 
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Chapter 2 

Motivation and Background 

Experiments on rotating Rayleigh-Benard convection in (necessarily) finite systems 

have a long history, motivated at least initially by interest in convection in the oceans 

and the atmosphere (9, 10], where the earth's rotation affects the dynamics. Rossby, 

in one of the earlier quantitative experiments, observed that there was a significant 

discrepancy between the observed critical temperature for the onset of convection in 

water in a rotating cell and that predicted by a linear stability analysis for infinite 

systems. 

These observations were based on heat-transport measurements, where the heat 

transported across a cell (from lower to upper plate) is compared to that expected for 

a uniformly heat conducting state. An increase above that expected for the pure con· 

duction state is usually taken as a signature of the onset of convection. Furthermore, 

the ratio of the heat transported to that expected for a uniformly conducting state is 

known as the Nusselt number, and is a measure of the convection intensity. Rossby 

found that the Nusselt number started increasing beyond unity at temperature dif

ferences b.T much smaller than that predicted by the infinite system calculations. 
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This was especially surprising since for Rayleigh-Benard convection in nonrotating 

systems, the convection onsets at higher temperature differences in a finite system 

than in the ideal infinite system; this is because the boundaries of a finite (real) sys

tem suppress the onset of convection, and the increase in .6.Tc is of the order of L - 2 

(L is the system size). 

It was Buell and Catton [11) who first suggested that the early onset of convection 

in finite rotating systems was due to convection states localized near the sidewalls. 

They numerically solved for nonaxisymmetric modes in small aspect ratio cylindrical 

cells using the full fluid equations and realistic boundary conditions. Despite searching 

only for stationary modes, they found asymmetric modes localized near the sidewalls 

which had critical Rayleigh numbers below that of infinite unbounded systems. 

More recent experiments employing the shadowgraph vizualization technique by 

Zhong, Ecke and Steinberg [12] and Ning and Ecke [13) have clarified the nature of the 

convection states that occur at lower Rayleigh numbers than expected for unbounded 

systems. In the shadowgraph visualization technique, light is passed through the top 

plate (usually made of sapphire), passes through the fluid, and is then reflected off 

the top of the bottom plate (which in the experiments performed by Ning and Ecke 

is nickel-plated copper). It then passes again through the fluid (and the sapphire 

top plate) before being imaged and processed. The lateral density gradients due to 

the temperature differences between the rising fluid, which is warmer, and the falling 

fluid, which is colder, cause the light which passes through the fluid to be refracted to 
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different extents, mimicking a series of focussing and defocussing lenses. This leads 

to dark 'stripes' where the light has passed through rising (and hence warm) fluid, 

and bright 'stripes' where the light has passed through falling (and hence cold) fluid. 

(For a more detailed discussion of this technique, see for example (16].) Convection 

rolls can thus be 'seen' using the shadowgraph technique. (See Fig.(2-1).) 

Using this technique, it became experimentally clear that the early onset of con

vection is indeed due to convection states localized near the sidewalls. In addition, it 

was observed that the sidewall convection states precessed counter to the direction of 

rotation. A shadowgraph image of such a wall localized convection state is shown in 

Fig.(2-2). 

Furthermore, Goldstein et al. [17] performed a theoretical study of convection in 

rotating cylinders in which they solved for the fluid equations in a full cylindrical 

geometry for both insulating and conducting sidewalls. They found precessing modes 

localized near the sidewall of the cylinder at Rayleigh numbers below the critical 

Rayleigh number for unbounded, infinite systems. 

This led us to propose [19] that these sidewall states are not just a feature of 

small-aspect-ratio systems as might be thought from the earlier studies [11), but 

a geometry-independent traveling-wave wall state, the existence of which depends 

only upon the presence of the sidewall, and the addition of the reflection-symmetry

breaking Coriolis force in the equations of motion of the fluid . This approach allows 

for much simplification in calculating the characteristics of the sidewall state, and 
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Figure 2-1: Principle of the shadowgraphic method. (Reprint from Fig. 10 of reference 
{8}.) 

Figure 2-2: Shadowgraph image of a convection pattern below the bulk onset Rayleigh 
number. (Reprint fom Fig. 7 of reference {13}.} 
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also allows one to include the effect of realistic sidewall boundary conditions (viz 

sidewalls that are not necessarily perfectly conducting or insulating) with relative 

ease. The effects of a finite system can then be calculated as finite-size corrections 

to this ideal semi-infinite state, just as one treats the bulk convection state in a real, 

infinite system. 
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Chapter 3 

Traveling-"Wave "Wall State in Rotating 

Rayleigh-Benard Convection 

3 .1 Linear Stability Analysis 

3 .1.1 E quations of Motio n and Boundary C onditio n s 

We consider convection in a rotating semi-infinite horizontal layer of fluid with one 

straight infinite sidewall. The angular velocity Dv = Dvz is constant and in the 

vertical direction. 

The equations of motion are essentially the same as for Rayleigh-Benard con-

vection in a nonrotating system (1.1-1.3), but there is an additional term in the 

N a vier-Stokes equation due to the Coriolis force. This reflection-symmetry-breaking 

term proves to make a crucial difference. Wit h this addition, the equations of motion 

are now 

1 [a-u ( -) ] (}' - 8t + v 0 \l v (3.1) 
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(3.2) 

fJ.-v 0, (3 .3) 

where n = nDd2 I v is the dimensionless angular velocity. The term due to the 

centrifugal term, -(Oa2 /2[;) V ID xTJ 2
, which would be on the right-hand-side of (3 .1), 

has been neglected. In practice, this term is negligible compared to the gravitational 

buoyancy term if SL'blfg ~ 1, where lis the radius of the cell. 

The coordinate system is taken to be such that the height of the cell is from z = 0 

to z = 1, and the sidewall runs along the x-axis at y = 0, with the fluid occupying the 

positive y half of the xy-plane. The sidewall lies in the negative y half of the plan e, 

and is of arbitrary thickness. 

At the bottom, z = 0, and at the top, z = 1, we will be using the free-slip fluid 

velocity boundary conditions and the physical thermal boundary condition: 

ou ov 
w - -=-= 0 oz oz ) (3.4) 

e - 0. (3.5) 

The boundary conditions at the sidewall, y = 0, are the physical no-slip fluid velocity 

boundary conditions, 

u = v = w = 0, (3.6) 
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and the condition for the continuity of heat, 

a a ay - J.La = o, (3.7) 

where J.L depends not only on the thermal properties of the sidewall and the fluid, but 

also upon the nature of the solution in the fluid. 

For the linear stability problem in rotating convection, there are reasons to believe 

that the solution found with ~ree-slip boundary conditions to be quite accurate, and 

even exact in the large-rotation-rate limit . In their paper [17], Goldstein et al. showed 

that in finite cylindrical cells, at least for large rotation rates, the critical Rayleigh 

number, precession frequency and azimuthal mode number of the 'fast mode', which 

corresponds to the traveling-wave wall state, do not depend strongly upon whether 

one uses the free-slip or the no-slip boundary conditions at the top and bottom plates. 

Also, Clune and Knobloch [20] showed that for the bulk state, the no-slip and free-slip 

solutions to the linear stability problem become identical as n _... oo. The reason for 

this weak difference between free-slip and no-slip boundary conditions, particularly 

at large rotation rates, is the existence of thin("-' (v/Dn)t) Ekman boundary layers 

in the case of no-slip boundary conditions. Outside the thin boundary layers, the 

dominant mode may be similar to the mode for free-slip boundary conditions, and thus 

the linear onset solution will have similar critical parameters. This, however, probably 

does not hold for nonlinear calculations, which involve coupling the dominant mode 

to other modes. 
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3.1.2 Method of Solution 

Traveling-wave wall states in this coordinate system should have a basic space and 

time dependence that "" exp[i( q:z:x - wt )] . Thus to find the lowest Rayleigh number 

critical onset wall state, we seek solutions of linearized versions of equations (3.1) -

(3.3) of the form, (the components of k are the physical variables u, v, w and B) 

( t) ( ) i(q,.:z:-wt) + X x, y, z, = X 0 y, z e c. c. (3.8) 

for different q:z:, which also satisfy the boundary conditions (3.4) - (3.7), as well as 

the condition that X not diverge as y - +oo. The solution with the lowest onset 

Rayleigh number is then the critical onset wall state, and we have thus found Rc, We 

and q:z:c, the critical Rayleigh number, precession frequency, and wave number of the 

traveling-wave wall state. 

Writing the space and time dependence of the physical variables as 

( t) _ ( ) rt iq,.:z: + . X x,y,z, -Xo y,z e e c.c., (3.9) 

where r = 1- iw is complex, we can use the method of separation of variables to 

find a solution. The choice of free-slip boundary conditions at z = 0 and z = 1 now 

allows one to separate the y and z spatial dependences, and write the z-dependence 

of u and v as cos(n1rz), and that of w and (} as sin(n1rz), where n is an integer, so 

that the boundary conditions at z = 0 and z = 1 are automatically satisfied. It is 
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'intuitively' clear from dissipation considerations, and can also be shown, that n = 1 

will be the solution with the lowest onset Rayleigh number, and from now on we will 

just take n to be 1. 

It now remains to find they-dependence of~ 0 such that the boundary conditions 

at y = 0, (3.6)- (3.7), and the condition that x, 0 not diverge as y -t +oo are satisfied. 

The modes we sum over to satisfy the boundary conditions are of the form exp( iq11y), 

with Irn(q11 ) 2:: 0, i.e., we seek solutions of the form 

X. ( x' y' z' t) = ert eiq,.x '2:::: eiq,,;y 

j=l 

Uo; cos 1rz 

Wo; sin 1rz 

Go; sin ?rZ 

+ c.c .. (3.10) 

Equations (3.1)- (3.2) are four second-order differential equations in space. Thus 

upon linearizing and combining them, and using the incompressibility condition (3.3), 

one gets a fourth-order dispersion relation in q; + q; of the form, 

(3.11) 

where 

(3.12) 
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and 

Thus for each fixed q:z:, four (in general, complex) values of q; would give modes 

satisfying the equations of motion, but of these pairs of qll, only the one that allows 

X ~ 0 when y ~ +oo is included in the sum. Thus the index j in (3 .10) runs from 

1 to 4, summing over 4 complex q/s with Im(q,J 2': 0. 

For a solution of this form, the value of f-L in (3. 7) is (see Appendix A) 

(3.13) 

where Kw is the ratio of the thermal conductivity of the sidewall to that of the fluid, 

lw is the width of the sidewall, and with Kw the thermal diffusivity of the sidewall, 

k 2 C 2 2 - lr) 
w = q:z: + 7r + K,w • (3.14) 

One can also use the linearized versions of (3.1)- (3.2) to write the variables U0;, 

Vo; and Wo; in terms of 0 0;. Thus the four boundary conditions at y = 0 can be 



22 

written in the form of a complex boundary matrix condition on the Go; : 

al a2 a3 a 4 Got 

bl b2 b3 b4 Go2 
=0 (3.15) 

Ct c2 CJ c4 GoJ 

dl d2 d3 d4 Go4 

where 

with Q~i 2 2 2 
q-z; + qyj + 7r ' 

a · J 

r + Qi; 20q11; ) 

Qi; - 1r2(q-z: + a - lr + Qi; ' 

b· J -
r + Qi; 2nq-z; ) 
Q2 2(%;i- a - lr + Q2 ' lj- 7r lj 

c· J - r + Q~;, 

d · J tqyj - f.L· 

For a non-trivial solution to exist, the determinant of the matrix in (3.15) must 

be zero. Since the determinant of this matrix is complex, and we are seeking for a 

critical onset traveling-wave state of the form exp[i(q-z:x - wt)] (i.e., r = -iw ), for 

each fixed q-z:, we can find, numerically using a nonlinear root-finding routine (we used 

the PORT library routine DZONE), R and w, such that the (complex) determinant 

in (3.15) is zero. One can then also solve for the eigenvectors of the matrix to find 

the form of the onset solution. 
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This gives the onset Rayleigh number and frequency for a given q:z:. Minimizing 

the onset Rayleigh number with respect to q:z:, we find the critical Rayleigh number 

Rc, the critical frequency We, and the critical wave number q:z:c· 

3.1.3 Results 

In this section, we will present examples of results from the linear instability calcu

lations and compare when possible with data from experiments. Specifically, we will 

show results for Prandtl number a equal to 6.4 (which is that of water at around 

room temperature where experiments are mostly done), and for three types of side

wall thermal boundary conditions - the ideal limits of perfectly insulating (tL = 0) 

and perfectly conducting (11- ---. <X>) sidewalls, and sidewall boundary conditions cor

responding to the experiments of Ning and Ecke [13], for which we will also be able 

to compare some of our results with the experimental data. 

In Fig.(3-l, 3-2, 3-3), the critical Rayleigh numbers Rc, frequencies We, and wave 

vectors q:z:c for the different sidewall thermal boundary conditions are plotted as a 

function of n, the dimensionless rotation rate. The critical Rayleigh number for the 

bulk state is also plotted. It can be seen that though the critical Rayleigh number 

for the wall state is generally lower than that for the bulk state at the same rotation 

rate, the reverse is true when the rotation rate is smaller than some rotation rate nc. 

More interestingly, the critical solution for the wall state 'disappears' beyond some 

small rotation rate. At this rotation rate, the critical frequency goes to zero linearly, 
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Figure S-1: Critical Rayleigh number as a function of the rotation rate n for different 
sidewall thermal boundary conditions for Prandtl number CT = 6.4. 
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Figure B-2: Critical frequency We for the same conditions as in Fig.(B-1). 
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Figure 3-3: Critical wave vector qxc for the same conditions as in Fig.(3-1). 

as does the spatial decay rate Im q11 for one of the q11 , while Re q11 for this same q11 

goes to a nonzero constant . 

The situation becomes clearer if we fix the rotation rate, and :find the critical onset 

solution as a function of the wave vector, qx. In Fig.(3-4) we show this for n = 10. 

The solution 'disappears' beyond some wave vector q:, at which wave number the 

frequency w goes to zero linearly, as does the spatial decay rate Im q11 for one of the 

q11 • This is shown in Fig.(3-5, 3-6), where the other qy's are also plotted. 

The nature of this point at which the traveling-wave wall state solution disappears 

will be further explored in Section 4 using the modified Swift-Hohenberg model which 

also shows these apparently generic features. 
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Figure 3-4: Critical Rayleigh number as a function of the wave number qx for the 
fixed rotation rate n = 10. The Prandtl number rJ = 6.4, and the sidewall is perfectly 
insulating (J.L = 0). The point at which the wall state solution 'disappears' is indicated 
by a cross. 

That the traveling-wave wall state should 'disappear' at some finite, non-zero 

value of the rotation rate n at which point its frequency also goes to zero linearly 

is very intriguing. This is additionally an unexpected finding as arguments based 

on bifurcation theory (18, 17] (in a finite system) predict that the frequency of the 

traveling-wave will go to zero linearly with the rotation rate, i.e., w ,...._, n. How to 

connect our finding for the semi-infinite system, and the bifurcation argument for a 

finite system poses an interesting question. 

In Fig.(3-1, 3-2, 3-3), we have also included the experimental data from Ning and 

Ecke (13]. Their experiments were performed in an aspect-ratio-2.5 cylindrical cell 

in water at a mean temperature of about 23.5°C, for which the Prandtl number rJ 
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Figure 3-6: Critical frequency for the same conditions as in Fig. {3-4). 

is about 6.4. The sidewall in their experiments was made of Plexiglas, and of width 

lw = ~:~~= = 0.15 measured in units of the cell height. 

References [14] and [15] give the relative thermal conductivity of the sidewall to 

the fluid (water) as K = l.SmW.CTn-
1
.K-

1 
= 0 25 and the relative thermal diffusivity 

w 6.0m W.CTn 1 .K 1 • ' 

as K '"'"' 
0 ·0012CTT1

2

.~-
1 

= 1. The calculation for which the results are shown in Fig.(3-1, w '"'"' 0 .0015CTn2 .6 1 

3-2, 3-3), was thus done for lw = 0.15, Kw = 0.25, K.w = 1, and a= 6.4. 

Considering that the calculations were done for free-slip boundary conditions, 

while the experimental boundary conditions were naturally rigid, the critical Rayleigh 

numbers show remarkably good agreement except for small rotation rates where the 

bulk mode begins to onset before the wall mode. At these small rotation rates, 

the discrepancy between calculation and experiment is also relatively larger for the 
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frequency and wave vector. 

In a finite system, even the bulk mode would be expected to gain a small rotation 

rate (probably going as L-1
, where L is the size of the system). Thus how the wall 

and bulk modes merge in a finite system poses an interesting problem which we will 

study using the modified Swift-Hohenberg model in Section 4. 

3.1.4 Asymptotic Results 

In the case of the bulk convection state in an infinite unbounded system, Chan-

drasekhar [4] showed that, when the rotation rate is large, the asymptotic behavior 

of Re and qe for both free-slip and no-slip top and bottom boundary conditions is 

The traveling-wave wall state has a different asymptotic limit at large rotation 

rates, and this limit also depends upon the thermal boundary condition imposed at 

the sidewall. In the case of insulating, or nonperfectly conducting, sidewalls, we find 

the asymptotics to be Re "-' n, q:z;e --+ constant and We --+ constant, in the limit 

n --+ CX). In the case of perfectly conducting sidewalls, the asymptotic behavior is 

Re "-' nt, q:z;e "-' n~, and We "-' nt, as n --+ CX). These asymptotic limits can initially 

be 'guessed' at by considering the numerical results at large rotation rates, and by 

balancing the terms in the dispersion relation. 

Using these asymptotic limits to scale the solutions, one can solve for the exact 

asymptotic solutions at large n. The case of insulating, or nonperfectly conducting, 
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sidewalls was solved for in both [21) and [19), and the case of perfectly conducting 

sidewalls was solved for in [21]. 

In the case of nonperfectly conducting sidewalls, it is observed in the numerics 

that in the limit n- oo, 

Rc o(n), 

We - constant, 

and Q~1 q; + q~1 + 1r
2 

"' O(n-1
) + i(w + O(n-1 

)), 

Q~2 O(n}) + i ·constant, 

Q~3 
2 2 

o(n3) + i. o(n3), 

Q~4 
2 2 

o(n3) + i. o(n3), 

qy1 -4 constant+ i ·constant, 

where, furthermore, qy4 - -q;3 , and consequently, Q~4 -4 Q~;. 

Using these scalings, one can now solve for the exact asymptotic limit . The onset 
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Rayleigh number and frequency at wave vector q:z: are found to be given by 

(3.16) 

with J.L(q:z:,w) given by (3.13) and R = Rj21rn, and where qy1 = (iw- q;,- 1r2)t is 

the complex wave vector component giving the decay normal to the sidewall. (Note 

the other wave vectors giving the decay normal to the sidewall, qyj, j = 2, 3, 4, have 

decay lengths scaling as n- t ---+ 0 0) 

For the special case of perfectly insulating sidewalls, J.L = 0, one can solve (3.16) 

analytically to find 

q:z;e ---+ V 2 + yf37r 6.069, 

Re ---+ 21r 2 f6]3n - 63.63D., 

and We---+ - 27r2 V6 + 3v'3 -66.05. 

For the parameters and boundary conditions corresponding to the experimental bound

ary conditions of (13], (3.16) can be solved numerically to give the asymptotic solution 

of Re ---+ 74.40D., q:z:e ---+ 5.545 and We ---+ -57.68. Fits to the numerical results up 

to n = 50 000, assuming corrections to the asymptotic limit go as a polynomial in 

n- ~ give good agreement with these values . These fits and the asymptotic limits are 

shown in Fig.(3-7). 
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3.2 Amplitude Equation for the Traveling-Wave 

Wall State 

Near onset, the traveling-wave wall state may experience slow modulations in both 

space and time (along the wall), and the dynamics may be calculated by expanding 

in a small parameter E = (R- Rc)/ Rc. The amplitude A is the complex envelope of 

the basic traveling-wave, exp[i(q,c- wet)], i.e., the physical quantities are 

~ (x, y, z, t) = A(x, t) ei(qzc:>:-wct) ~ o(y, z) + c.c. + h.o.t., 

where A,..... Et and the higher order terms (h.o.t. ) are O(E). The amplitude equation 

is one-dimensional in the sense that the dynamics of the amplitude depend only upon 

the spatial variations parallel to the sidewall, and can be written as 

(3.17) 

to lowest nonlinear order. Here A is the complex envelope of the basic traveling-wave, 

and the parameters s, To, <o, g, eo, c1 and c3 are (real-valued) parameters that can be 

calculated and measured. s is easily seen to be the group velocity, and To and <o are 

the time and length scales of the modulation respectively. The cubic term turns out 

to have negative real part (g is positive), thus the solution A saturates when lA I ,..... Et, 

and the bifurcation is forward. 
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The parameters in the linear part of the amplitude equation can be calculated by 

finding (numerically) the complex growth rater= 1- i(wc + .6.w) as a function of 

€ = (R- Rc)/ Rc and the wave number difference k = qx - qxc for small € and small 

k, such that, as in calculating the onset parameters, the dispersion relation and the 

boundary conditions are satisfied for the solutions found for the linearized equations 

of motion. Since the physical variables"' A(x,t)exp[i(qxcX- wet)], from the simple 

case A(x, t) "'exp((l- i.6.w)t] exp(ikx), we find that 

-1 
To ~~ l<=k=O 

(3.18) 

s 8(.6.w) I 
8k .:=k=O 

(3.19) 

<6 - -~To 82, I (3 .20) 
2 8k2 <=k=O 

Co - -To 8( .6.w) I (3.21) 
8€ <=k=O 

and 1 C 2 8
2
(.6.w) I (3.22) Ct 2To o 8k2 . 

<=k=O 

In Fig.(3-8, 3-9, 3-10, 3-11, 3-12) we show these parameters of the amplitude 

equation as a function of the rotation rate, for Prandtl number O" equal to 6.4, and 

the three types of thermal boundary conditions of before. It is worth pointing out 

that the group velocity s, which is positive, is in the opposite direction to the phase 

velocity wcfqxc, which is negative. In Fig.(3-8, 3-9, 3-10, 3-11, 3-12), we also include 

one set of experimental measurements of these parameters at rotation rate n = 544 

from (13] for comparison. When comparing theory and experiment, one should bear 



36 

0.08 

0 .06 

--- perf. cond. 

- - - perf. ins. 
-- expt'l cond'ns 

• expt'l datum 

\ '· 
~ ' 
~ ' ~ -, - ~ 

~0 0.04 

~ 
~ 
~ 
~ 

' ' 

' 
~ 
~ 
~ ' ' --• 

0 .02 

'· -4 0.00 ~0~~~1~~~2~~~3~~~4~~~5~~610 
10 10 10 10 10 10 10 

Rotation Rate n 

Figure 3-8: Amplitude equation time scale parameter r0 for the same conditions as in 
Fig.(3-1). 

5.0 

4.0 

(f) 3.0 

2 .0 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ -- \ 

- - - perf. cond. 
- -- perf. ins. 
-- expt'l cond'ns 

• expt'l datum -
\ 

" ....----- ~ 
' ' ·-- ------

1.0 ~0~~~~~~~~~~~~~~~~~610° 
I 0 I 0

1 
I 0

2 
I 0

3 
I 0

4 
I 0

5 
I 0 

Rotation Rate n 

Figure 3-9: Amplitude equation group velocity s for the same conditions as in Fig. (3-
1). 



37 

0.40 

- - - perf. cond. 
0.35 - - - perf. ins. 

-- expt'l cond'ns 
• expt'l datum 

0.30 
0 

uJ' 

0.25 -
0.20 • 
0 . 1 5 .._,0__.__._ ............... .....__.___.__._ ............... -,--'-_.__._._.u..u.J..____.___._~""--.......................... __._ ............... u..w 1 0-2 

10 101 102 103 104 105 106 

Rotation Rate n 

Figure 3-10: Amplitude equation length scale parameter eo for the same conditions as 
in Fig. (3-1) . 

0 
(.) 

1.5 

1.0 

0.5 

--- perf. ins. 
-- expt'l cond'ns 

• expt'l datum 
-- - perf. cond. 

/ 

/ 

• 
------------------_..-

0.0 ~0~~~1~~~2~~~3~~~4~~~5~~6 
10 10 10 10 10 10 10 

Rotation Rate n 
Figure 3-11: Amplitude equation parameter eo for the same conditions as in Fig.(3-1). 



0.6 

0.4 

0 .2 

0.0 

-0.2 

-0.4 

38 

• 

--------

....----, 

- - - perf. ins. 
-- expt'l cond'ns 

• expt'l datum 
-- - perf. cond. 

---· 

-0 .6 ~0~~~1~~~2~~=-3~~~4~~~5~~6 
10 10 10 10 10 10 10 

Rotation Rate n 

Figure 3-12: Amplitude equation parameter c1 for the same conditions as in Fig.(:J-1). 

in mind the fact that the experiments were performed in a finite system, and that the 

measurements of Co and c1 are relatively indirect [13]. Furthermore, the calculations 

were done for free-slip top-and-bottom boundary conditions, whereas the experiments 

were naturally done under rigid boundary conditions. 



39 

Chapter 4 

Swift-Hohenberg Models 

The Swift-Hohenberg model is a relatively simple 'microscopic' model that exhibits 

the same basic linear instabilities which lead to pattern formation as Rayleigh-Benard 

convection systems (as well as other pattern-forming systems falling in the same 

class). For this reason, it has been used extensively to study pattern formation as it 

is generally much more tractable analytically and much easier to simulate numerically. 

The original Swift-Hohenberg model [23) is a two-dimensional system (here taken to 

be the x - y plane) and takes the form 

( 4.1) 

where qo is generally taken to be q0 = 1. 

Equation ( 4.1) exhibits a basic linear instability at the wave number q0 when 

€ > 0. Expanding about if= q0 x, for example, we observe that the linear growth rate 
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r for wave number if= ( q0 + flqx) · x + 6.q11 • y is 

(4.2) 

which is of the same form as that for the basic linear instability in Rayleigh-Benard 

convection. The cubic nonlinear term, here ,P3
, leads to nonlinear saturation when 

1 
,P ,...._, €2, and respects the symmetry ,P ---+ -1/J. 

The nonlinear term is often modified to generate different patterns at the nonlinear 

level, but the linear terms are kept the same as they contain the 'mechanism' for the 

basic linearly unstable pattern at the wave number q = qo. 

In this section, the original Swift-Hohenberg model will be modified in two ways 

to mimic the effects of rotation in a real Rayleigh-Benard convection system. We will 

show that the traveling-wave wall state seen in rotating Rayleigh-Benard convection 

systems can be induced in a Swift-Hohenberg model by the addition of reflection-

symmetry-breaking boundary conditions. This state, as mentioned previously, also 

disappears. We will therefore use this system to study in detail the wall state - bulk 

state transition region. A numerical study of this region will provide the basis for 

an understanding of this transition based on a phenomenological amplitude equation 

description of the transition region. 

We will also discuss the other, historically better known, dynamical aspect of 

rotating Rayleigh-Benard convection - the Kiippers-Lortz instability and its Swift-

Hohenberg model equivalent. 
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4.1 Swift-Hohenberg Model with Reflection-Sym-

metry-Breaking Boundary Conditions 

In Section 3, we saw that the traveling-wave wall state in rotating Rayleigh-Benard 

convection is due to a linear instability of the form exp(i(qx- wt)) decaying away 

from the wall, and that the physical ingredients for the existence of this state are the 

existence of a wall allowing complex wave vectors in the direction normal to the wall, 

and the loss of the reflection symmetry x ---+ -x along the wall. 

We shall show that the traveling-wave wall states can also be seen in the original 

Swift-Hohenberg model ( 4.1 ), but with the addition of a semi-infinite straight wall at 

which boundary conditions breaking the reflection symmetry are imposed. 

4 .1.1 Reflection-Symmetry-Breaking Boundary Conditions 

The boundary conditions imposed at the sidewall should 

• be homogeneous, or linear, in 'f/;, 

• respect rotation symmetry, 

• break reflection symmetry, 

and include the orientation of the wall. One of the simplest sets of boundary condi

tions, which is non-trivial, and fulfills the above expectations, is 

( 4.3) 
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'1/J, ( 4.4) 

where n is the unit normal vector pointing inwards from the boundary, and z =X X y 

is the unit vector normal to the plane of the system (the x - y plane). In ( 4.4), qo 

is taken to be the maximally unstable wave number, q0 = 1, in the bulk, so that, 

in some sense, ( 4.4) represents the breaking of reflection symmetry with respect to 

the orientation of the 'rolls' to the wall. .>. and J.L are adjustable parameters, where J.L 

is the parameter which represents the strength of the reflection-symmetry-breaking. 

For a wall state to exist, we will find it necessary for .>. to be negative, representing a 

decay in the amplitude of the state away from the wall. 

4.1.2 Linear Instability Analysis for the Traveling-Wave Wall 

State 

The linear instability analysis for the wall state in the Swift-Hohenberg model with 

reflection-symmetry-breaking boundary conditions follows the same principles as the 

analysis in the case of Rayleigh-Benard convection in a rotating system, but is much 

simpler. 

In the Swift-Hohenberg model, the dispersion relation is second-order in Q2 
-

2 2 d . qx + q
11

, an lS 

( 4.5) 
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Thus the traveling-wave wall state can be written in the form 

,P(x, y, t) = ei(q.,x-wt) 2:::.: ,f;;eiqvill, 

i=1,2 
( 4.6) 

where again, of each pair of %/s satisfying the dispersion relation with equal value of 

q;, only the one that has Im(%;) 2: 0 is included. The boundary conditions (4.3- 4.4) 

at y = 0 can again be written in the form of a complex boundary condition matrix 

of the form 

where 

a · 3 

b · 3 

( 4.7) 

( 4.8) 

( 4.9) 

Thus for gtven q.,, we can find numerically, € and w, such that the characteristic 

equation of this complex matrix condition is satisfied. The eigenvectors of this matrix 

then give the form of the onset solution. Minimizing the onset € with respect to q.,, 

we find the critical € 1 €c, the critical frequency we, and the critical wave number q.,c, 

as well as the form of the critical onset solution. 

Figures ( 4-1,4-2,4-3) show an example of the critical € 1 frequency and wave number 

as a function of J.L, the symmetry-breaking parameter, for fixed>.. As presaged in Sec-
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Figure 4-1: Critical E 1 Ec 1 as a function of J.L for >. = -0.1 for the wall state in the 
Swift-Hohenberg model. The critical onset solution for the wall state disappears when 
J.L = J.L• at the point denoted by a cross. 
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15.0 



45 

tion 3, the traveling-wave wall state in this model system exhibits the same interesting 

feature as the wall state in the rotating Rayleigh-Benard convection system, viz the 

critical onset wall state disappears at some small value of the reflection-symmetry

breaking parameter, in the present case, 11-· Again, the critical frequency goes to zero 

linearly at this point, and one of the complex wave vectors q11 becomes purely real , 

while the other one becomes purely imaginary (see Fig.( 4-4)). 

In Fig.( 4-5,4-6,4-7), the onset t: and frequency w, as well as the wave number 

normal to the wall, q11 , are shown as a function of q"', the wave number parallel to the 

sidewall, for fixed .A and 11-· Again, as in the the rotating Ray1eigh-Benard system, 

the wall state solution disappears beyond some wave number q;, at which point the 

frequency w approaches zero linearly, and one of the q11 becomes purely real, and the 

other purely imaginary. 

4.2 Kiippers-Lortz Instability 

In 1969, Kiippers and Lortz (24] showed that there exists a nonlinear instability of 

the parallel roll state in Rayleigh-Benard convection in a rotating system. In this 

instance, they showed that for the special case of infinite Prandtl number (a- --+ oo) 

and free-slip boundary conditions, the parallel roll state is maximally unstable to 

a set of rolls oriented at 58° (in the sense of rotation) to the original set of rolls 

when the Taylor number (T = (20)2 ) exceeds the critical value 2285. Later, Kiippers 

(25] showed that the same phenomenon exists for finite Prandtl numbers and rigid 
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Figure 4-3: Critical wave number qxc for>. = -0.1. 
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Figure 4-5: Critical € as a function of q:z: for>.= -0.1, J.L = -15. The point at which 
the wall state solution disappears is indicated by a cross. 
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Figure 4-1: Critical q11 as a function of qx for>.= -0.1, fL = -15. 

boundary conditions. 

As the orientation of the set of rolls which is maximally unstable is at an angle 

of 58° ~ 60° with respect to the original set of rolls, Busse and Heikes [26] proposed 

a three mode dynamical model to study the dynamics of the system. Each mode 

variable Aj, with j = 1, 2, 3, represents the amplitude of the set of bulk rolls at a 

particular angle, with A 2 representing the amplitude of the set of rolls oriented at 

120° with respect to the set represented by the amplitude A 1 , and so on. 

The dynamical equations take the form 

j = 1,2,3 ( 4 .10) 
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with 911 = 922 = 933, and 9 1 2 = 923 = 931 = 9+, and 9 21 = 932 = 9 13 = 9- due to the 

rotational symmetry. In the physical system, 9+ and 9- depend upon the rotation rate 

n. Scaling the Ai to set the 9ii = 1, the condition for the Kiippers-Lortz instability 

to exist is 9+ > 1 and 9- < 1. 

When 9+ > 1 and 9- < 1, the three variable dynamical system (4.10) has three 

unstable :fixed points, each with two stable directions and one unstable direction. The 

three fixed points are, with 9ii = 1, (A1, A2, A3) = (Ao, 0, 0), (0, Ao, 0) and (0, 0, Ao), 

where A~ = ~:, and are joined by a heteroclinic orbit. In the absence of noise or 

other disturbances, any orbit would gradually approach the heteroclinic orbit, thus 

the system would spend longer and longer periods of time in the neighborhood of each 

of the unstable :fixed points, and the return time would eventually diverge. This was 

first shown by May and Leonard (27] for these equations in the context of competing 

and interacting species. 

The case of diverging return times is not observed experimentally, and Busse and 

Heikes (26] proposed the addition of random noise to explain the finite but fluctuating 

return times observed. They also pointed out the likelihood of the importance of the 

spatial dependence of the rolls, which would be another source of disturbance. In 1992, 

Tu and Cross (28] studied the three mode model including the spatial dependence, 

and ( 4.10) becomes a set of coupled amplitude equations, 

(4.11) 
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and the two equations with the permutations 1 -t 2 -t 3, 

(where x 1 is the coordinate in the direction of the wave vector q]., i .e., x 1 = x · 

q]., lql.l = 1,) in a two-dimensional periodic geometry. Though they did not include 

random noise in their model, they found, amongst other things, that there is a finite 

characteristic switching time (which, not surprisingly, depends upon the nonlinear 

interaction coefficients, 9+ and g_). 

The above model, though it includes the aspect of diffusing domains of rolls, does 

not address the question of whether the three types of domains themselves are well

defined entities - the orientation of the domains of rolls could be changing in time, 

there could effectively be more than three domain orientations, and at any particular 

point, there may not be a well-defined domain or orientation. These aspects are 

not included in the three domain orientation model ( 4.11 ), but could exist in a real 

system, and may affect the long-term dynamics of the system. The effects of sidewall 

boundaries (as must exist in any real system) upon the dynamics is also not included 

as the boundary conditions were periodic in both directions. 
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4.2.1 Modified Swift-Hohenberg Model 

A modified Swift-Hohenberg model, with a modified nonlinear term, can be used to 

mimic the Kiippers-Lortz instability. A modified model [29] is 

where, as before, the system is in the x- y plane, z is the unit vector normal to this 

plane, and q0 is taken to be 1. Thus the nonlinear term g2i · V X (IV'l/JI 2V'¢) breaks 

the reflection symmetry at the nonlinear pattern selection level. 

We can write'¢ in terms of the rolls at various orientations qj, (iqji = 1): 

.1. A iqi ·x +A iq2 ·x + + '+' = 1e 2e ... . . c.c .. (4.13) 

The amplitude equations for the Ai take the form, 

( 4.14) 

where ()ik is the angle from qj to qlc, 

and the coordinates are Xj = x · qj and Yi = x · (i x qj) . The reflection symmetry is 



52 

broken by the nonlinear term 92 sin(2B;~c). 

Equation ( 4.14) has fixed points, the equivalent of parallel roll states, at 

A·-/[; ,- ' 
9o 

A~c = 0, k =1- j, 

and their stability is determined by the nonlinear terms. A stability analysis reveals 

that the fixed point A; = F79o, A~c = 0, k =1- j, 'parallel roll' pattern is unstable to 

perturbations in the A~c direction if 

Differentiating with respect to B, one finds that the maximum and minimum of 9(8) 

occur when tan 28 = 92/93 , and thus that 

9(B)min = 691 + 493- 2)9~ + 9j, 

9(B)ma:z: = 691 + 493 + 2V9~ + 9j. 

( 4.16) 

( 4.17) 

Provided91 > 0 (which would be the usual case), (4.15) and (4.16) imply the nonlinear 
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roll state A; = Mo, Ak = 0, k =J j, will lose its stability when 

(4.18) 

Thus, for example, if we wish to mimic the Kiippers-Lortz instability where the rolls 

are maximally unstable to another set of rolls at Be = 1r /3 to the original rolls, we 

would set 

and require ( 4.18) 

92 7r {;; - = tan2Bc = tan2(-) = -v3, 
93 3 

( 4.19) 

( 4.20) 

For 91 > 0, this is just 93 /91 > 1 and 92 = ---/393 . Note that a band of orientations 

6.() ,......, (93/91- 1)t will actually be unstable. Also, with these conditions, the fixed 

point A; = Mo, Ak = 0, k =J j, is stable to perturbations in the Ak direction for 

Numerical studies of the modified Swift-Hohenberg model ( 4.12) in the equiva-

lent of a two-dimensional annular geometry - periodic boundary conditions in one 

direction (x-direction) and 'rigid' boundary conditions in the other (y - direction)-

should thus be able to further understanding of the effects of sidewalls on the domain 

dynamics of the Kiippers-Lortz instability. 
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4.3 Amplitude Equation for the Traveling-Wave 

Wall State 

As for the traveling-wave wall state in rotating Rayleigh-Benard convection, we can 

calculate the amplitude equation for the wall state in the modified Swift-Hohenberg 

model. The linear terms To, s, e5, Co and cl in the amplitude equation 

8A 8A . 2 . )8
2 
A ( . )I 12 

To( ot +sox)= r(1 + tco)A + eo(1 +tel 8x2 -9 1 + tC3 A A (4.21) 

are derived and calculated numerically in a similar way as before by finding the 

complex growth rater= r- i(wc + b.w) as a function of r = E- Ec and k = qx- qxc· 

For the Swift-Hohenberg model, however, To = 1 and Co= 0. 

In Fig.( 4-8,4-9,4-10), the linear coefficients are shown as a function of J.L for fixed 

>.. 

4.3.1 Calculation of the (lowest order) Nonlinear Coeffi.-

cient in the Amplitude Equation 

Though to calculate the the linear coefficients in the amplitude equation one can use 

the method described above, to calculate the lowest order nonlinear coefficient, one 

may follow a multiple scales approach. Here, we will denote the 'small' expansion 
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Figure 4-8: Group velocity s in the amplitude equation for>. = -0.1. 
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Figure 4-10: Amplitude equation parameter c1 for A= -0.1. 

parameter as 

r = € - €c, ( 4.22) 

where €c is t h e critical € at the instability onset of the traveling-wave wall state. 

We can then expand 1/; in powers of rt as 

( 4 .23) 

where the '1f;; are formally of 0(1). We also introduce the slow scales T, and X by 

defining them as 

X 
1 

r2x, 
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T = rt. 

We then separate the fast and slow variations in the differential operator by substi-

tuting 

a a a 
at -t at + raT' 

a a 1 a 
--t-+rl"-ax ax ax' 

where %t and :x now act only on the fast variables t and x respectively, and a~ and 

a~ act correspondingly only on the respective slow variables, T and X. 

Expanding ( 4 .21) thus in powers of r~ and defining the fast varying Laplacian to 

- 2 a• a• 
be \7 = ax• + ayl ' we find 

( 4.24) 

O(r): 

( 4 .25) 

and 

3 
O(rl") : 
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Luckily however, since we have already calculated the linear coefficients, we can sim-

plify the calculation by neglecting the slow spatial variation a~, and setting a~ - 0 

in the equations. [Note that in ( 4.21) the linear group velocity term is actually 'un-

balanced' as a power in r anyway!] Our main interest here then, is in calculating the 

coefficient for the nonlinear term. 

The equations we wish to solve are then 

0 ( 4 .27) 

0 ( 4 .28) 

( 4.29) 

and the boundary conditions 

( 4.30) 

( 4.31) 

to all orders in j. 

The third equation, equation ( 4.29), provides the route to calculating the lowest 

order nonlinear coefficient in the amplitude equation - the Fredholm theorem, or 



59 

solvability condition, states that the RHS of ( 4.29) must be orthogonal to the ker-

nel of the adjoint operator of the LHS, for a solution to ( 4.29) to exist. [The first 

two equations ( 4.27), ( 4.28) and boundary conditions ( 4.30 - 4.31) just state that 

,P0 (x,y,t) = A 0 (X,T)u0 (x,y,t) and 1/;1(x,y,t) = A 1 (X,T)uo(x,y,t) where uo(x,y,t) 

is the linear onset traveling-wave wall state solution found in §4.1.2.] 

The adjoint operator L t is defined by 

( 4.32) 

where L = :t - €c + ('\72 + q5)2 and the boundary conditions on L are ( 4 .3), ( 4.4) . 

The scalar product (vlu) here is defined as 

;_: dt ;_: dx fooo dy v•(x,y,t)u(x,y,t). ( 4.33) 

The usual integration-by-parts method leads to the adjoint operator being 

(4.34) 

with boundary conditions 

v=O ( 4 .35) 
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and 

Assuming the solutions to be of the form 

v(x,y, t) = ei(q,.o:-wt)ii(y) ( 4.37) 

leads to more practical expressions for the boundary conditions of 

v=O ( 4.38) 

and 

. a (( a2 
2 2) C 2) _ . C 8

2 
2 2 - av C ) tj.Lq., oy 8y2 - q., + qo + 2 1 - qo )v - tj.L>.q., f)y2 - q., + qo)v + oy = 0 4.39 

at y = 0. 

(Actually (4.35) and (4.36) were deduced from (4.38) and (4.39).) 
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4.3.2 Solving for the K ernel of the Adjoint Operator 

As for solving the original problem, we will assume a solution in the kernel of the 

adjoint problem of the form 

v(x, y, t) = v(y)ei(q.,:r-wt) = ei(q.,:r-wt) L: v;eikyjll 
i=1,2 

where w, q,, k 11; satisfy the dispersion relation 

0 . ( 2 k2 2)2 = 2W - Ec + q, + yj - qo · 

( 4.40) 

(4.41) 

As this is just the complex conjugate of the dispersion relation in the original problem, 

it follows that (since we still require Im(k11;) 2 0 ) the relevant wave vectors in the 

y-direction are 

where the q11; would be the wave vectors for the original problem also with a traveling-

wave dependence ei(q.,:r-wt) . Thus the kernel of the adjoint operator L t will be func-

tions of the form 

v(x, y, t) = ei(q.,:r- wt) L v;eikyjll = ei(q.,:r-wt) L v;e-iq;;Y, 
i=1,2 i=1,2 
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indexed by the wave number q:z:, whilst the kernel of the operator L will be functions 

of the form 

,P(x,y,t) = ei(q.,:z:-wt) .2::::: {;;eiqll;ll, 

j=l,2 

( 4.42) 

with the v; and {;; determined by the appropriate respective boundary conditions 

( 4.35 - 4.36) and ( 4.30 - 4.31 ). Not surprisingly, it turns out that for a given q:z:, 

the frequency, w, that leads to solutions satisfying both the original and the adjoint 

boundary conditions is the same. Thus it is easy to see, using boundary condition 

( 4.35) that the kernel of the adjoint problem consists of functions of the form 

v(x, y, t) 

with 

ei(q.,:z:-wt) E v;e-iq;;11 

j=l,2 

and with w and q11; for a given q:z: determined through the original problem. 

( 4.43) 

To calculate the nonlinear coefficient of the amplitude equation we expand the 

RHS of ( 4.29) and take its scalar product with the kernel of the adjoint operator 

given by ( 4.43). The normalization we will choose is 

liio1 + iio2l = 1 ( 4.44) 

so that the maximum of ,P at y = 0 is 

1 

1/lma:z: = 2rl"jAol, ( 4.45) 
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1/;(x, y, t) = r~ Aoei(q.,:z:-wt) '2:: ii.o;eiqv;Y +c. c . . 
i=1,2 

( 4.46) 

Thus we find that the amplitude equation (without its spatial derivative part) is 

8A0 ( T/1 T/2 T/3)l 12 -- = Ao - 91- - 92- - 93- Ao Ao, 
8T TJo TJo TJo 

( 4.4 7) 

where 

-·-. "" V;Um 
TJo = t ~ ' 

j,m=1,2 qyj + qym 

and 

1 
T/3 = i '2:: • { -3q~iijii.;umii.n 

j,l,m,n=1 ,2 ( qyj - qvl + qym + qyn) 

- 3q;vjii.;(qvmii.m)(qynii.n)- 2q;vj(qyzii.t)*(qvmii.m)ii.n 
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Thus the cubic order nonlinear coefficient in the amplitude equation 

for the traveling-wave wall state is 

with the normalization '1/Jmo.x = 2JAI at y = 0. 

11,4-12) . 
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Figure 4-11: Nonlinear coefficient scaling factors c9 i for the amplitude equation when 
.X= -0.1. 
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Figure 4-12: Nonlinear coefficient G for 91 = 1, 92 
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An important known nonlinear instability for traveling-waves is the Benjamin-Feir 

instability [1]. The Newell criterion for the instability is 

when all plane wave solutions become unstable. Thus we will also be interested in 

the quantity 

Im(G) 
1 + cl . Re( G) , 

an example of which is shown in Fig.( 4-13). 
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Figure 4-13: The quantity 1 + c1c3 in the Newell criterion for the Benjamin-Feir 
instability (see text)1 for the same parameters as in Fig.(4-12). 

4.4 Numerical Study of the Traveling-Wave Wall 

State in the Swift-Hohenberg Model 

A numerical study of Swift-Hohenberg models in an annular geometry - periodic 

boundary conditions in the x-direction and 'rigid' boundary conditions in the y-

direction - provides the means for 

• understanding the wall state - bulk state transition at the point where the wall 

state 'disappears', and 
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• investigating the effects of the traveling-wave wall state (and the effects of finite

size) on the bulk state, especially the chaotic dynamics associated with the 

Kuppers-Lortz instability. 

In this section, we will describe the algorithm used in the numerical study, and some 

general observations of the numerics. In the next section we will study in detail the 

wall- bulk transition region. A true investigation of the effects of the wall state and 

the finite-size effects on the chaotic dynamics must be left to the future, though a 

sample simulation will be included to give a foretaste of what may be found. 

4.4.1 Numerical Algorithm 

The advantage, which is also the reason, for having periodic boundary conditions in 

one of the directions (here, the x-direction) lies in the ability thus to decompose the 

problem into Fourier modes in this direction and to incorporate the pseudospectral 

method. In the other direction (the y-direction), since there are 'rigid' boundary 

conditions, one uses finite differences to approximate the spatial derivatives, and 

iterates in time (for each Fourier mode) using the Crank-Nicholson method. A more 

detailed exposition of the method follows. 

The basic idea underlying the pseudospectral method is that it is easier to calculate 

nonlinear terms in real space than in Fourier space where a cubic term, for example, 

would involve three summations over all possible wave vectors. This would necessitate 

of the order of M 3 operations when there are M wave vectors. The spatial derivatives, 
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on the other hand, are much better calculated in Fourier space, since the derivative 

;x is just multiplication by iq in Fourier space. The pseudospectral method thus 

alternates between real and Fourier space, calculating the nonlinear term in real 

space, but stepping forward in time and calculating the spatial derivatives in Fourier 

space. The transforms between real and Fourier space, through the use of the Fast 

Fourier Transform (FFT's ), involve only of the order M log M operations at each time 

step. 

The actual iteration scheme used for stepping forward in time is the Crank-

Nicholson scheme, which is accurate to second-order in time. In this method the 

differential equation is discretized in time in the following way: 

.,P(t + ~t)- .,P(t) 
~t 

1 
- 2[€- (\72 + 1)2](1/J(t + ~t) + .,P(t)) 

+1.5N[.,P(t)] - 0.5N[.,P(t- ~t)] ( 4 . .50) 

where N stands for the nonlinear term. This can be rewritten with the unknown 

values at timet+ ~ton the LHS of the equation as 

+3N[.,P( t )] - N [,P( t - ~t )) . ( 4.51) 



69 

For the Fourier mode eiq:r, this can be written as 

( 4.52) 

( 4.53) 

where 

The coupled equations ( 4.52 - 4.53) for {;q(t + .6.t) and (q(t + 6.t) are now solved 

by discretizing in space in the y-direction, and using fourth-order finite differencing 

to approximate the spatial derivatives. The resulting equations are then a matrix 
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equation of the form (j = 0, 1, · · · ,m- l, m are they-grid points) 

~~(t + b.t) 

(~(t+b.t) 

~~(t + b.t) 

(~(t + b.t) 

Mq = R q (t, t- b.t) ( 4.54) 

~';-1 (t + b.t) 

(~-1 (t + b.t) 

~';(t + b.t) 

C;'(t + b.t) 

where Rq is a vector containing the known values of the RHS of ( 4.52) - ( 4.53), and 

Mq is a band diagonal matrix since one only needs four neighboring grid points for the 

fourth-order finite differencing approximation of the spatial derivatives, and there are 

otherwise no non-local terms in the differential equation. The boundary conditions 

( 4.3)-( 4.4) are imposed at the points j = 0 and j = m, so that the first and last two 

rows of Mq 'express' the discretized version of the boundary conditions. 

The vector of unknown ~t's and (g's at timet+ b.t in ( 4.54) can now be solved 

essentially by inverting the matrix M q in the matrix equation ( 4.54). In practice 

however, ( 4. 54) is solved using the L U de composition method for a band diagonal 

matrix. The factored matrix Mq for each q only needs to be calculated once at the 
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beginning of a numerical run and is then stored. Furthermore, because the matrix is 

of compact diagonal form, the number of memory locations required for each matrix 

Mq is only of the order m instead of m 2
• The specific 'black box' algorithm code 

we used for this was from the library LINPACK. The algorithm procedure can be 

summarized in the schematic diagram of Fig. ( 4-14). 

time t Calculate the .. Fourier Space vector ,. 
"' 

(wrt x-diroction) R q (t,t-L'.t) 

Iterate Forward 
., in time using 

Crank-Nicholson 

FFr 

"' 
time t+L'.t Calculate Ff 

Fourier Space of Spatial 
(wrt x-diroction) 

Derivatives 

inverse FFr 
' fo 

Calculate 

Nonlinear ., Real Space ... 
Term inverse FFT 

Figure 4-14: Schematic diagram for the numerical algorithm. 

The code was tested in various ways. First, the linear part was tested by using as 

the initial condition a known time-independent analytic solution and checking that 

the output solution was the input solution (with allowances made for 'errors' due to 

the use of the finite-difference approximations for the spatial derivatives in y ). Other 
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tests of the linear part included checking that the error in the solution scales with 

~t as (~tY when ~tis small, and that the error scales with ~y as (~y)4 when ~y 

is small. There was no noticeable error scaling with ~x, which is as expected, since 

this error should scale as exp( -q~axt). 

The nonlinear part was tested by making the nonlinear term a linear function 

and checking the results against the equivalent linear problem. It was also checked 

by testing observed saturation amplitudes against expected saturation values. The 

flexible grid code (see next section) was further tested against the even grid code, 

with the time evolution at corresponding positions checked against one another. 

In Fig.( 4-15) we show a wall state for the parameters .A = -0.5, ,u = -15, g1 

1, g2 = 93 = 0 atE= -1.15. 

4.4.2 Grid Selection in the y-direction 

The grid division in they-direction was in the initial phase an evenly spaced grid (the 

actual grid size naturally was variable) . But because the boundary layers usually 

require a finer grid size than the bulk region to support the traveling-wave state, 

this presents a limitation on the size of the system one can simulate. To circumvent 

this problem, they-direction was later divided into three regions - the two boundary 

regions on the two ends, and a bulk region. Within each of these regions, the grid 

division was again an evenly spaced one for simplicity of definition. The two boundary 

regions, in practice, always had the same sized grid spacings. This method allows one 
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Figure 4-15: Wall state: For parameters see text. System size is l:r: = 128, ly = 30; 
grid is l:!,.x = 1, l:!,.y = 1/3 in both the boundary and bulk regions. The x-axis is from 
left to right, and the y-axis is from top to bottom. The wall state at y = 0 is traveling 
to the left (negative phase velocity), and that at y = ly is traveling to the right. 
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to simulate much larger systems. The choice of grid size and width of the boundary 

region was made mainly through the method of 'guess and test'. The initial choice 

of grid was usually arrived at through the method described below. 

Since there are two complex q11 modes in the linear wall state, there are two decay 

lengths and two oscillatory wavelengths. Usually, the width of the boundary region 

was chosen to be 'several' (e.g., three) times the more slowly decaying decay length 

( e-3 < 0.05), and the grid size was chosen such that there would be 'several' (e.g., 

five) grid points per decay length of the faster decaying decay length. Furthermore, it 

was then checked that there was at least six to ten grid points per wavelength of the 

faster oscillating wavelength. The actual grid densities needed for the same accuracy 

in the amplitude seemed to also depend on the values of the gi. The grid size in the 

bulk region was usually chosen to be q0
1 = 1, because this gives approximately six 

grid points per bulk wavelength (27r). Note that if the decay length and oscillating 

wavelength of the more slowly decaying wavelength were sufficiently large that the 

bulk grid size would meet the requisite criteria, then the boundary region can be 

appropriately decreased in width. 

With the above method for choosing the initial grid size and boundary regions, 

the choice was then tested by seeing if the amplitude of the wall state was in sufficient 

agreement with the prediction of the amplitude equation. Another method consisted 

of doubling the grid density and/or doubling the width of the boundary regions and 

checking that the basic dynamics did not change. 
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4 .4 .3 An (Unexplained) Observed N onlinear Instability 

An instability that cannot obviously be explained within the amplitude equation 

description of the traveling-wave wall state was observed for certain parameters. More 

specifically, it seems to occur sometimes when g 3 ;/= 0. In the following, we will 

describe a fairly detailed investigation of this instability, including the tests performed 

to check that it is not (obviously) a numerical problem but a 'physical' instability of 

the equations . 

The instability was observed in one instance for the parameters >. = -0.1, 11- = 

-15, 91 = 92 = 0 and 93 = -20. The instability appears to be caused by the 

size of the nonlinearity as it occurs where E = -0.02 but not when E = -0.0455066. 

For these parameters the critical onset traveling-wave wall state has Ec = - 0.0465066, 

qxc = 0.422675, (Ac = 14.8653), and We = -0.343127. The coefficients of its amplitude 

equation ares= 1.0847, e5 = 0.43348, c1 = -4.7863 and G = (0.68526, - 4.7623) = 

g(1 + ic3 ) . For these parameters then, we observe that there should be no Benjamin

Feir instability as 1 + c1 c3 = 34.263 > 0. The feature that may be relevant to 

understanding the instability is perhaps the large (absolute values) of c1 and c3 . 

The instability manifests itself (numerically at least) as a delta-function-like peak 

in the x-direction, and a decaying oscillation in the y-direction. If one starts with a 

periodic initial condition, then one gets a periodic series of delta-function-like peaks. 

A Fourier spectrum analysis at fixed y near the boundary shows the higher qx modes 

growing in amplitude. An example is shown in Fig.( 4-16) . 
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Figure 4-16: Fourier spectra at different times t at y = 1.5 for the initial condition 
'1/Jo = 10-4 sin(0.392699:z:) and € = -0.02j 6.:z: = 0.5, and in the boundary region 
6.y = 0.25 . (For more details see text.) 
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Figure 4-17: ,P(t) at (x = 4, y = 0) for various grids (t1y is for the boundary region). 

To check that this instability was not due to the choice of grid size in either the x 

or y directions, the grid size in each direction was successively halved (with the width 

of the boundary region kept at 20). Plotting the change in ,P as a function of time 

for example, we observe (see Fig.( 4-17)) that the 'blow-up' occurs at about the same 

time independent of the grid size. This is indicative of a finite-time singularity [22). 

One item, however, remains that should make one somewhat wary about conclud-

ing that this is definitely a physical nonlinear instability. We observed that for the 

grid size of l1y = 0.5 in the boundary region, 

• there was a 'blow-up' even for e = -0.0455066 (which does not occur for l1y = 

0.25 or smaller), and 

• for € = -0.02, the 'blow-up' happened at an earlier time than that for the 
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smaller grid sizes shown in Fig.( 4-17). 

4 .5 The Wall State - Bulk State Transition 

As mentioned earlier, an interesting and peculiar feature of the traveling-wave wall 

state is its 'disappearance' at some point as the wave number Qx is increased. (This 

would be for a fixed rotation rate n in the case of Rayleigh-Benard convection, and 

for fixed >. and f.L in the Swift-Hohenberg model.) In this section we explore this 

transition region numerically for the Swift-Hohenberg model for fixed >. and f.L, and 

propose an amplitude equation to model and explain the transition region and the 

phenomena observed there. 

The parameters picked for the detailed study are >. = -0.6 and f.L = - 10. For 

this set of boundary condition parameters, the wall state disappears at approximately 

Qx = 1.314. Thus we will study the transition region in the Qx - E plane for 1.20 ~ 

Qx ~ 1.32. 

In Fig.( 4-18) we show the critical E, €~ and the critical frequency, we, for the wall 

state as a function of Qx for >. = -0.6 and f.L = -10. We also show the critical E, ~, 

for the lowest onset bulk state of the same wave vector Qx· It is worth pointing out 

that E~ - E~ changes sign at around Qx = 1.253, and the bulk state becomes the state 

with the lower onset E for wave vectors greater than Qx = 1.253. This turns out to be 

important in understanding the transition. 
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Figure 4-18: Critical f. 1 f.~ 1 and critical frequency, Wc 1 for the wall state for>.= -0.6 
and J.L = -10. The point at which the wall state disappears is indicated by a cross. 
The wave number at which this occurs is q;. Also shown is the critical f. 1 f.~ 1 for the 
bulk state. 
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4.5.1 N umerical S tudy 

The transition region was investigated numerically by simulating the Swift-Hohenberg 

model, equation ( 4.12), with 9 1 = 1, and 9 2 = 93 = 0. Since we are only interested 

in, for this study, the wall state - bulk state transition and not the dynamics asso-

ciated with the Kiippers-Lortz instability it is only necessary to include the simplest 

nonlinear term, -91 -r/;3 . The goal of the numerical study is a 'phase diagram' of the 

steady-state solutions of the Swift-Hohenberg equation with q:r and € as the variables . 

One can then use the phase diagram to understand how the wall state disappears and 

merges with the bulk state at the nonlinear, steady-state level. 

For the phase diagram study, the Swift-Hohenberg equations were iterated in 

time in an annular geometry with dimensions l:r = 2-><- in the periodic direction ( x-
q., 

direction), and 111 = 150 in the direction with 'rigid' boundary conditions (y-direction). 

By restricting l:r to be 2
"" , we wish to ensure that only modes with wave number equal q., 

to q:r are excited (modes with wave vector nq:r, where n is an integer greater than 

1 are strongly damped). However, it turned out to be also necessary to modify the 

numerical code for this study, and always set the amplitude of the mode with q:r = 0 to 

zero. Otherwise, the state with q:r = 0 would grow and end up dominating, thwarting 

any study of the transition region. This is understandable since the bulk state with 

q:r = 0 (and q.,, = 1) has a critical onset € of Ec = 0, and the transition region has 

€ > 0. 

The grid choice was the same for all of the runs. The number of grid points in the 
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x-direction was n, = 16, and in the y-direction, the boundary region, where there is 

a finer grid, was of width 5 and a mesh size of 6 grid points per unit length. For the 

bulk region of the y-direction the mesh size was 1 grid point per unit length. Thus 

the total number of grid points in the y-direction is 30 + 140 + 30 + 1 = 200 + 1. 

This choice of grid in the y-direction was checked to be sufficient by increasing 

the size of the boundary region and/or doubling the grid density and then comparing 

the results of the simulation on the new 'higher-grade' grid with the results on the 

original chosen grid. This was done for a few (hopefully representative) parameters. 

The basic dynamics and final steady-state solutions on the different grids were found 

to be essentially the same for these parameters. There were differences in the actual 

values which grew with time, but the underlying dynamics did not change. 

The phase diagram was arrived at by setting up grids for various qx's, and simu

lating the Swift-Hohenberg equations for different values of € for each q,. The final 

runs were continued until an approximate steady-state solution was arrived at for 

each E. 

4.5.2 The Phase Diagram and the Various States 

Apart from the trivial solution (1/; = 0), the nonlinear steady-state solutions can be 

classified into four classes - what we will here call 

• the wall state, 

• the wall-plus-bulk state, 
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• the oscillating one-state, and 

• the steady one-state. 

In Fig.( 4-19), we show the phase diagram, with the different types of states ob

served in the simulations identified. 

The Wall State 

The 'wall state' is easily understood - it exists when one is above the critical onset 

<=, <=~(q.,), for the traveling-wave wall state, and below the critical onset <=, c~(q.,) , 

for the bulk state, and just consists, as its name implies, of the traveling-wave wall 

state. This picture is confirmed by the parameter values ( ~:, q.,) for which this is the 

steady-state in the phase diagram. 

We will be using various types of pictures and figures to identify and characterize 

the different classes of states. The wall state for q., = 1.2, and E = 0.19 will be 

analyzed and presented in this way, even though it is not essential for classification 

purposes. 

Since movies are hard to include in a thesis, we will just present one or more 

frames from what would be a series of color intensity plots of 1/J in time that would go 

to making up the frames of a 'movie' showing the time evolution of 1/J. Other types 

of pictures and figures we will use are 

• color intensity plots of 1/J as a function of y and t for fixed x, 

• color intensity plots of 1/J as a function of x and t for fixed y, 
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Figure 4-19: The phase diagram for the wall state - bulk state transition region for 
). = -0.6 and fL = - 10. 
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• plots of '1/; vs t for fixed ( x, y ), and 

• the frequency spectra of the '1/; vs t plots. 

Fig.(4-20(a)) is a frame from a simulation for the parameters q"' = 1.2, and € = 

0.19. The nonlinear steady-state is a traveling-wave wall state. The traveling-wave 

at y = 0 (top of the picture) is traveling to the left (negative phase velocity) and the 

traveling-wave at y = [11 = 150 (bottom of the picture) is traveling to the right. A 

plot of '1/; vs t for x = l:c/4 andy= 1 is shown in Fig.( 4-21), and the Fourier spectrum 

(Welch window) for 250 < t ~ 1000 in Fig.( 4-22). Thus the nonlinear steady-state is 

a pure traveling-wave with frequency w = -0.08. This is smaller in magnitude than 

the frequency of the linear wall state - We = -0.095. 

Figure ( 4-20) shows two types of time-slice plots. Fig.( 4-20(b )) is a color intensity 

plot of '1/; vs y and t for fixed x = l:c/4. Notice that in both boundary regions there 

is an 'even' cycling through of high and low intensities, indicative of the existence of 

a pure traveling-wave. And in the bulk, we essentially have a '1/; = 0 state. Probably 

the most useful type of plot for identifying the type of steady-state that exists is of 

the kind shown in Fig.(4-20(c)) ; it is a color intensity plot of '1/; vs x and t for fixed 

y. In Fig.( 4-20( c)), this value of y is 0, i.e., we are looking at the points on the 

boundary. In this simple illustrative case, we note that the oscillations in '1/;, e.g., 

those of Fig.(4-20(c)), can be seen as arising from a traveling-wave because if '1/; is 

viewed as '1/; = aeic/> + c.c., (a and cp real), then 

• the constant cp contours are clearly the straight lines cp = qx- wt in (x, t) space, 
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(a) 

(b) 

(c) 

Figure 4-20: Wall state: (a) 1/;(x,y) fort= 1000, qx = 1.2 and € = 0.19 . {x-axis is 
from left to right, y-axis from top to bottom.) Also note that the boundary regions are 
to a larger scale {6 x ) . The array density is 30 + 140 + 30 for lengths of 5 + 140 + 5. 
(b) 1/;(y,t) for x = lx/4 and 0 ~ t ~ 1000; they-axis is from left to right, and the 
t-axis is from bottom to top. (c) 1/;(x,t) for y = 0 and 0 ~ t ~ 1000; the x-axis is 
from left to right. 
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or in more generalizable terms, 

• for all x, the phase ~ can be seen as a monotonically increasing (or decreasing) 

function of time when one takes into account the 27r periodicity of the phase 

variable. 

The Wall-plus-Bulk State 

At a linear level, the 'wall-plus-bulk' state is easy to understand. It is just what 

one would expect when both the wall and the bulk state are excited. However, the 

dynamics of the wall-plus-bulk state is more complicated than what would just be 

the linear superposition of the wall state and the bulk state. We will also here state 

the criteria for classification as a wall-plus-bulk state - they are 

• the existence of a bulk state in the bulk region, 

• the existence in the boundary regions of a state which at any point has a mono

tonically increasing (or decreasing) phase. 

In the following, we will use the wall-plus-bulk steady-state at qx = 1.24 and 

€ = 0.34 as an illustration. Fig.(4-23(a)) is a plot of '1/J vs (x,y) (at t = 3000 for 

comparison with the next figures). In the central region, there is a steady bulk state, 

and in the boundary regions, what at first seems to be just a traveling-wave. A more 

careful analysis however, shows that the value of '1/J at the boundaries might be better 

interpreted as the sum of a steady (but spatially oscillating) value due to the bulk 

state and an oscillating superposed value due to a traveling-wave. The value of '1/J at 
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(a) 

(b) 

(c) (d) 

Figure 4-23: Wall-plus-bulk state: qx = 1.24 and € = 0.34. (a) .,P{x,y) fort = 3000. 
{b) .,P(y,t) for x = lx/4 and for 0 ~ t ~ 3000. {c) .,P{x,t) for y = 1 and 0 ~ t ~ 3000 . 
{d) For y = 75. 
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Figure 4-24: '1/;(t) for {x)y) = (Z,/4)) for the wall-plus-bulk state in Fig.(4-23) . 

x = 1,/4 andy = 1 is plotted against time in Fig.( 4-24). It is clear that '1/; is oscillating 

- unlike for the pure wall state - about a nonzero mean. Furthermore, '1/; no longer 

has a pure harmonic oscillation - the dynamics of the traveling-wave is distorted by 

the presence of the bulk, with the traveling-wave preferring to 'sit' aligned with the 

bulk state 'rolls' as in Fig.( 4-23( a)). A spectral analysis of '1/; - see Fig.( 4-25) - reveals 

the presence of higher harmonics as one would expect . It is also worth noting that 

the fundamental frequency here is about w = -0.035 though the linear frequency is 

We = -0.0609. 

Fig.( 4-23( c)) and Fig.( 4-23( d)), color intensity plots of '1/; vs x and t for y = 1 and 

y = 75 respectively, show that we do indeed have a traveling-wave in the boundary 

region and a steady-state bulk state in the central region. Fig.( 4-23(b )), a color 
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Figure 4-25: Frequency spectrum for (x,y) = (l'l:/4,1) and 1000 < t ::; 3000; for the 
wall-plus-bulk state in Fig.(4-23). 

intensity plot of 'ljJ vs y and t for x = l'l:/4 indicates the presence of 'distorted' traveling-

waves (i.e., traveling-waves which are not purely harmonic) in the boundary regions, 

and a steady bulk state in the bulk. 

The Oscillating One-State 

The oscillating one-state was an unexpected discovery. Fig.( 4-26( a)) provides a 'snap-

shot' of this state for the parameters E = 0.44, q'l: = 1.28. The difference between 

this state and the wall-plus-bulk state lies in the boundary region dynamics - there 

no longer seems to be a traveling-wave, however distorted, in the boundary regions, 

instead, a spatial wave eiq'l: seems to 'slosh' jerkily back and forth, as if oscillating at 

the bottom of a potential well. In the bulk region, there is no difference - there is 
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just a steady bulk state. The identifying feature of this state is that in contrast to 

the wall-plus-bulk state, the phase ¢ at any particular point in the boundary region 

cannot be viewed as a monotonically increasing or decreasing function of time. This 

is most clearly brought out in the color intensity plots of 1/J as a function of x and t 

for fixed y. In Fig.( 4-26( c)), we show such a plot for y = 1. 

In Fig.(4-26(d)), we show the same, but for y = 75. This is in the bulk region, and 

as expected, the state is steady. Fig.(4-26(b)), a plot of 1/J as a function of y and t for 

fixed x = lx/4 also shows that the boundary regions are no longer traveling-waves, 

but that there however is an oscillation. It also shows that the bulk region is steady. 

Fig.( 4-27), plots of 1/J as a function oft for x = lx/4, y = 1 and x = lx/4, y = 75, 

shows an oscillation in time in the boundary region, and a steady-state in the bulk 

region. From just such a plot however, one cannot distinguish between traveling-wave 

wall-plus-bulk states and oscillating one-states. 

The Steady One-State 

The steady one-state is just as its name implies - after its steady-state is reached, 

there is no dynamics. Fig.( 4-29( a)) is a picture of such a state occurring at the 

parameters qx = 1.28 and € = 0.43. Figures ( 4-29(b)) and ( 4-29( c)) are the color 

intensity plots of 1/J as a function of (x, t) for fixed y = 0, and as a function of (y, t) 

for fixed x = lx/4, respectively. And Fig.( 4-28) shows the time-evolution of 1/J at a 

boundary point, (x, y) = (lx/4, 0), and a bulk region point, (x, y) = (lx/4, 75). All 

these figures confirm the lack of dynamics in the steady-state. 
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(a) 

(b) 

(c) 
(d) 

Figure 4-26: Oscillating one-state: qx = 1.28 and E = 0.44. (a) '1/;(x,y) fort= 3000. 
(b) '1/J(y,t) for x = lx/4 and for 0 ~ t ~ 3000. (c) '1/;(x,t) for y = 1 and 0 ~ t ~ 3000. 
(d) For y = 75. 
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Figure 4-27: -rjJ(t) for x = Z:.,/4 andy= 1 andy= 75,· for the oscillating one-state in 
Fig. (4-26}. 
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(a) (b) (c) 

Figure 4-29: Steady one-state: qx = 1.28 and f. = 0.43. (a) 7./J(x,y) fort = 13,000. 
{b) 7./J(x,t) for y = 0 and for 0 ~ t ~ 13,000. (c) 7./J(y,t) for x = lx/4 and for 
0 ~ t ~ 13,000. 
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4.5.3 A Detailed Study of the Nonlinear Steady-State Fre-

quency at q-z = 1.2 

The nonlinear frequency of the wall and the wall-plus-bulk state decreases as E In

creases, and culminates in the transition from wall-plus-bulk state to steady one-state, 

at which the frequency goes to zero. In Fig.( 4-30) we show this change for q:z: = 1.2. 

Also shown in the figure is the critical linear onset frequency of the wall state, E~. 

The frequencies in Fig.( 4-30) were calculated using two methods on essentially the 

same data. 

The equations were evolved in time for each E until it was judged that the system 

was 'reasonably' close to its steady-state. The values of 'lj;(x = lx/4, y = 1, t) for 

when the system is 'sufficiently close' to its steady-state were then used to calculate 

its nonlinear frequency- both by taking a Fourier transform (Welch window) of the 

relevant segment of data, and by calculating an average period using several periods, 

usually over a shorter length of data which is at the end (and hence is supposedly 

close to the final steady-state). In Fig.( 4-31) and Fig.( 4-32) we show an example of 

the time-dependence of 'lj;(x = l:z:/4,y = 1) forE= 0.3483, and part of its Fourier 

spectrum. Note the rapid drops in 'lj; from its maximum value to its minimum value 

followed by a gradual and slowing rise back to its maximum value. 

In Fig.( 4-33) we show the frequency near the bifurcation point, where the wall

plus-bulk state bifurcates to the steady one-state. In this figure we also show the 
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Figure 4-30: Nonlinear frequency w as a function of € at qx = 1.2. 
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Figure 4-31: ,P(t) for (x, y) = (Zx/4, 1) at qx = 1.2 and E = 0.3483 . 

three parameter fit to the data of the form 

For both sets of frequency data, we find 

Eo = 0.349, 

'T/1 = 0.068, 

'T/2 = 0.34. 

We expect the frequency to approach zero at the bifurcation point as w "' (Eo - E )112
, 

because if ~ = ~( </J) has a minimum value ~min, at some value </J = <Po (as it must 

if ~ is a 27r-periodic function of </J ), then the bifurcation point corresponds to the 

transition from ~min > 0 to ~min < 0 at ~min = 0. When ~min > 0, </J just cycles 
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Figure 4-32: Part of the frequency spectrum for Fig.(4-31). 

through 27r, but when ~min < 0 there is a stable fixed point at one of the values of 

¢;for which ~min = 0. When ~min > 0 is small, the period is dominated by the time 

spent near ¢; = ¢0 where ~min is small. We also expect in general that ~min goes 

through zero linearly as a function of (Eo- E) = b.E, i.e., near the bifurcation point, 

we can write 

Thus we can approximate the integral for the period as 
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4.5.4 A Study of the Nonlinear Steady-State Frequency at 

qx. = 1.278 

For q:z: = 1.278, a study of the €-dependence of the frequency was undertaken in order 

to understand the oscillating one-state to wall-plus-bulk state transition. Unlike the 

frequency study for q:z: = 1.20, the frequencies here were not as carefully calculated 

due to time and disk space constraints, and also for the reason that it turned out not 

to be necessary for this transition. 

In Fig.( 4-34) the type of nonlinear steady-state and its frequency is shown for 

various values of €. The most striking observation is that the value of w is a smooth 

function of € as one goes through the transition. 

Another important observation (not only here, but also for other values of q:::) 

is that near the transition, it becomes very hard to distinguish between an oscillat

ing one-state and a wall-plus-bulk state for the reason that periodically the whole 

boundary region becomes near zero in amplitude. This makes it very hard to know 

whether the phase ¢; is monotonically increasing (decreasing) or not. For example, 

see Fig.(4-35(a)) and Fig.(4-35(b)) . One would thus also expect the transition point 

to correspond to the value of € for which the amplitude of the boundary region does 

actually periodically go through zero, and for which times the phase is therefore 

undefined. 

The transition from oscillating one-state to steady one-state was not studied in 

detail, as the time scales involved in the approach to steady-state were 'large' com-
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(a) 

(b) 

Figure 4-95: {a) ,P(x,y) at a time when the whole boundary region becomes near zero 
in amplitude. Here qx = 1.278, € = 0.445. (b) ,P(x, t) at y = 0. ~T = 600 for this 
sequence. {This is actually an oscillating one-state.) 



103 

pared with the period. However, as will be explained later, it is expected that the 

frequency variation there is just a linear function, w = w0 + TJ( €- €o), where w0 and 

€0 are the values of the frequency and € at the transition point respectively (and 7J is 

some negative constant). Coupled to this is the observation that if it were not for the 

occurrence of the steady one-state, the frequency looks as if it would just continuously 

change into the linear frequency as € is decreased. 

4.5.5 An Amplitude Equation to Describe the Dynamics 

In this section, we derive an amplitude equation to describe the dynamics in the 

transition region. This amplitude equation is an expansion about the state eiq.,.xeiqv•ll, 

which is the bulk part of the wall state at the point ( q:rc, €c) where the critical onset wall 

state disappears and its frequency goes to zero. This expansion will not be rigorous in 

the sense of the 'multiple-scales approach' with a well-controlled expansion parameter, 

but will nonetheless provide useful insights into the dynamics of the transition region. 

Let us write the linear wall state at the point it disappears as eiq=•"' ( ,[;1 eiqv•IJ + 

{;2e-K.Y) where qyc and K- > 0 are both real. For fixed q:r, in the neighborhood of 

this point, i.e., !:::..q:r = q:r - qzc and !::::..€ = €- €c 'small', we wish to treat the mode 

ei(q ... +~q .. )zeiqv•ll as the one which has the 'slowly' varying envelope amplitude A(y, t) 

describing its dynamics on large length scales into the distance, and ei(q ... +~q.,):re-K.IJ as 

the fast-varying mode localized to the boundary which will be 'eliminated' to obtain 

a boundary condition on A; a more rigorous exposition of this method can be found, 
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for example, in (30]. Thus the variable 1/J will be written as (for fixed q"' = q:cc + llq:c) 

( 4.55) 

where here "Y = y", but Y will be treated as the 'slow' variable incorporating the 

slow variations of the envelope amplitude A. 

The linear part of the amplitude equation for A(Y, t) can, as usual, be deduced 

from the dispersion relation, r = E - ( q; + q~ - 1 )2 • Here, we will expand the 

dispersion relation about the state eiq.,cll eiq11 <11 (which satisfies the relation 0 = Ec -

( q;c + q~c - 1 Y) to first-order in tlq"' and second-order in Q = q11 - q11c· Since we 

expect an asymmetry tlq"' +-t -llq:c, just keeping the terms to O(llq:c) should retain 

the relevant phenomena, and we will keep terms of 0( Q2
) since we want an amplitude 

equation that is second-order in 8~ . With this expansion method, we find the linear 

part of the amplitude equation for A to be 

( 4.56) 

where 

a(llq:c) 4qyc( Fc + 2q:cc(llq:c)), 

and iJ(llq:c) - 2 (C.JE;. + 2q~J + 2q:cc(llq:c)). 

W ( ) 8.$ d 82.$ e now seek the boundary condition on A . Expanding 4.55 for 811 an 8112 

where ,P(x, y, t) = ei(q.,c+6.q.,):c;j;(y, t) , we find 

( 4 .57) 
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( 4.58) 

Substituting (4.57) and (4.58) into the boundary conditions on '1/J, (4.3) and (4.4), 

leads to 

A'+ (iq11c- >.)A=("+ >.)C ( 4.59) 

where A" = ~~ IY=O, A' = ~¢ IY=O and A = AIY=O· We now can use ( 4.59) to 

eliminate C in ( 4.60) and thus find that the boundary condition on A at Y = 0 is 

(4.61) 

where 

and 

4.5.6 Solutions to the Amplitude Equation 

For the mode A"' eiQY ert, the dispersion relation of the amplitude equation (4.56) 

g1ves 

( 4.62) 
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and thus there are two wave vector solutions for each eigenvalue r, viz 

( 4.63) 

The discriminant D = a2 + 4j3(€- r) in ( 4.63) is 

In some sense we have been assuming %;c is 'small' (even though in taking out the 

'rapid' variation eiqv•ll we were assuming q11c is 0(1) or 'large'!), because the unstable 

band of y-wave vectors, captured in the term Q (or 8~ of the amplitude equation), is 

of width 2q11c when E = Ec and q:z: = q:z:c· (This stems from the band of unstable real 

y-wave vectors being -q11c::; q11 ::; q11c when E = Ec and q:z: = q:z:c·) Now we can seek the 

zero growth rate (r = 0 and r = -iw) solutions of the amplitude equation ( 4.56) and 

its boundary condition at Y = 0, ( 4.61 ), since the unstable modes can be captured in 

'slow modulations' of this mode (in some sense another amplitude equation envelope 

of even slower variation will modulate this r = 0 mode). 

The value of the discriminant D in ( 4.64) determines the type of solution or mode 

we are considering. If D > 0, then Q+ and Q_ are real, and represent bulk solutions. 

We can thus write a bulk solution mode as 

where A+fA_ is determined by the boundary condition (4.61) to be 

Q~1J2(!:lq:z:)- Q - 1Jl(!:lq:z:) -1]o(!:lq:z:) 

Q~1J2(!:lq:z:)- Q+1Jl(!:lq:z:) -1]o(!:lq:z:). 

( 4.65) 

( 4.66) 
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Notice that a(~q,) < 0, (for q11c < 0 in the cases J.L < 0), thus Q_ is 'small', and ~ 

is small, corresponding to the original mode q11c being dominant. Furthermore, when 

~q, = 0 and ~E = 0, Q_ = 0, and thus A+fA_ = 0, reproducing the mode about 

which we are expanding. However, the 'best' value, if any, of ~E for which we should 

seek the r = 0 mode is not clear. 

We can also look for zero growth solutions with an oscillating time-dependence 

e-iwt . In this case, the discriminant D is complex and so are Q+ and Q_. Even 

though they are not complex conjugates of one another, their imaginary parts are the 

negatives of each other, and only one of them, clearly Q_ by continuation from the 

point of expansion, can be a valid solution with Im(Q-) > 0. Therefore we seek a 

mode of the form Aw(Y, t) = A_eiQ-Y e-iwt where w, Q_ and ~E are determined by 

the boundary condition ( 4.61 ). It seems reasonable to expect the solution to have 

w "' ~q, and ~E "' ~q,; therefore we expand Q_ and the boundary condition to 

O(~q,) in order to seek a lowest order solution. Indeed, this will be found to be 

self-consistent. Expanding, we find 

( 4.67) 

(provided w < 0 for %Jc < 0). Separating the real and imaginary parts of the boundary 

condition ( 4.61) gives the boundary matrix equations: 

( 4.68) 
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where 

1 J.Lq:z:c.,ft;. + 1 
a - --

4qyc ~t+.A 

b 
J.Lq:z:c 
2 

and Ct It! A [ ~:: (J.Lq:rcFc + 1) - J.Lqyc( Fc- 2q;J] 

Cz - -J.L [Fc +It~ A (Fc- 2q;c)] · 

Thus the critical onset wall state has ~€ and w given by 

( 4.69) 

As expected, ~€ ,....., ~q:r and w ,...., ~q:z:. Furthermore when ~q:r changes sign at 

~q:r = 0, and ~q:r becomes positive, the expansion loses its validity as Im(Q_) 

becomes negative, and the time oscillating solution 'disappears' as expected. 

4.5. 7 Implications 

One expects (or assumes) a saturating nonlinear term to be part of the dynamics 

of the amplitude equation ( 4.56). Therefore, we will write the nonlinear amplitude 

equation as 

( 4. 70) 

In addition, it was shown in the previous section that there is a bulk state solution, 

hence we expect G to be real. 
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At the simplest level, we can write A(Y, t) as a sum of its two types of modes-

wall modes 

Aw(Y, t) = Aw(1, t)eiQwY ( 4.71) 

and bulk modes 

( 4.72) 

where again 1 = Y = y with the assumption that it contains the slow variations on 

an even longer length scale than Y. 

The amplitude equation ( 4. 70) then implies that 

a.Aw ·Q y a.AB ·Q y ·Q y 
--e' w + - - ( re' + + e' - ) 

at at 
- - ·Q y - a.Aw ·Q y - a2 Aw .Q y 

= (€- aQw- ,BQ~ )Awe' w + i(a + 2,8Qw) a
1 

e' w + ,B a12 e' w 

+ [CE- aQ+- ,BQ~)reiQ+Y + (€- aQ_- ,BQ~)eiQ_Y] AB 

( 
- .Q y - .Q y) aA.B +i (a+2,BQ+)re' + +(a+2,BQ_)e'- a1 

-a2 AB .Q y .Q y + ,B a12 (re' + + e' - ) - Nonlinear Term. ( 4. 73) 

As the dispersion relation is r = 1- iw = € - aQ - ,8Q2
, (4.62), (4.73) becomes 

8Aw f (Y) a.AB f (Y) 
at w + at 8 

- - aA.w -a2 Aw 
= (~Ew- iw)Awfw(Y) + i(a + 2,8Qw) a

1 
fw(Y) + ,8 a12 fw(Y) 

+ ~EBABfB(Y) + i (afB(Y) + 2,8(rQ+eiQ+Y + Q_eiQ_Y)) aa.A._; 

-a2 AB 
+ ,8 a12 fB(Y) 

- G{IAwl 2 Aw ·lfw(Y)I2 fw(Y) + 2IABI 2 Aw · I!B(YW fw(Y) 
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+ (ABAw )Aw · fiJ(Y)f~(Y) 

(4.74) 

where .6.cw = € - €~ and .6.€B = € - ~, and €~ and €~ are the zero growth (or 

critical onset) €'s for the wall mode fw(Y) = eiQwY, and bulk mode, f 8 (Y) = 

To properly project out the dynamical equations for Aw and AB, one needs to find 

the eigenvectors of the adjoint linear operator and the adjoint boundary conditions 

to (4.70) and (4.61). We found the adjoint operator to be 

aB (- . _ a (3- a2 )B - - = Ea + ta- + --at ay aY2 
( 4. 75) 

and the adjoint boundary conditions at Y = 0 to be 

h B " a2 B I d 1 • w ere = ay2 Y=o, . . . , an a so 7J2 = T/2· 

Though we did not find the adjoint eigenvectors and thus project out the equations 

for Aw and AB, we can still write down model dynamical equations for the two. In 

the boundary region, where 1' is small and the spatial variation of Aw and AB is 

negligible, we expect to be able to extract the mode equations describing the dynamics 

of Aw and AB in the wall region. Leaving out the negligible spatial dependence one 

obtains: 

aAw - · - 2-7ft= (.6.cw -iw)Aw- (gw +igiv)IAwl Aw 
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-perhaps other nonlinear coupling terms (4.76) 

and 

-perhaps other nonlinear coupling terms, (4.77) 

where the 9's and h's are real-valued parameters. 

4.5.8 Dynamical Mode Equations ·for the Boundary Region 

Using ( 4. 76) and ( 4. 77) we can now write down coupled mode equations for Aw and 

AB which will describe the dynamics observed in the numerical simulations of the 

transition region. Writing Aw and AB in terms of their real-valued magnitudes aw 

and aB, and phases, ¢wand ¢B, (4.76) and (4.77) become 

aaw b.. r 2 r 3 

at 
€waw- g2aBaw- 9waw 

-[g~ cos ( ¢w- ¢B)- 9~ sin ( ¢w- ¢B)]aBa~ ( 4 . 78) 

a¢w i 2 i 2 

at 
-w- g2aB- 9waw 

-[9~ cos (¢w- ¢B)+ 9~ sin (¢w- ¢B)]awaB (4.79) 

aaB 
l::..€BaB- h2a~aB- 9Ba1- h1 cos (¢w- ¢B)awa~ ( 4.80) 

at 
a¢B 

h1 sin(¢w- ¢B)awaB . ( 4.81) 
at 

-

However, as the bulk state extends to 'infinity', we expect the phase of AB to 

be preferentially pinned to its bulk phase, and thus introduce a damping term, 
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-pa~ sin ( ¢!B -</!If), (or -pa~( ¢!B - <P'B)), into the RHS of ( 4.81). Additionally, 

we can without loss of generality, set <P'B = 0. 

There are many unknown parameters in this set of coupled equations, but we do 

have a few constraints. Most importantly, 

therefore .6.t:w - .6.t:8 varies linearly in .6.qx (for small .6.qx) and is constant fot fixed 

.6.qx. At qx = qxe> E~ - E~ < 0, but as .6.qx decreases (.6.qx < 0 in the interesting 

region), f! - E~ becomes positive; for example, see the phase diagram in Fig.( 4-19) . 

Naturally, w, for which we have w,...... .6.qx, goes to zero as .6.qx--+ 0. Furthermore, 

we argue that the imaginary parts of the complex coefficients (the 9i), for symmetry 

reasons, are expandable in odd powers of w, viz, if w --+ -w, 9i --+ -9i. And hence, 

when .6.qx --+ 0, w --+ 0, and 9i --t 0. 

In addition, in order for the magnitudes of the amplitudes to saturate at the 

cubic-order level, we will assume that 

9B > o, 9w > o, 9; > o, 

and as it seems that the term h2a~aB is not important, we will take h 2 = 0 (otherwise, 

we would expect h 2 > 0) . For similar reasons, we will assume 9~ > 0 and ht > 0. 

Finally, because we observe that the nonlinear frequency (in magnitude) decreases as 

E increases, we will also assume 9; > 0 and 9tv > 0 for w < 0. 

Solving the coupled ordinary differential equations ( 4. 78) - ( 4.81 ), we find that 

the various nonlinear steady states in the wall state- bulk state transition region can 
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be explained in terms of the different types of fixed points and limit cycles of these 

dynamical equations. Since for the simulations of the Swift-Hohenberg equation, the 

variable we are looking at is actually 1/; = Aei(q .. c+t..q .. )o:eiqvcll + c.c., and for constant 

and small Y, A= 7]Aw + AB, where 7J is some complex number, the quantity that is 

significant is A. We will just study A= Aw + AB, since the actual value of 7J will not 

affect the qualitative results. 

'Projecting' the trajectories of the variables aw, aB, ¢wand ¢Bin phase space onto 

the complex plane A= aei4> = (ReA, Im A)= (aw cos ¢w + aB cos ¢B, aw sin ¢w + 

aB sin ¢B) we find that (not counting the trivial solution A = 0, also a fixed point), 

there are two types of solutions -

• (nontrivial) fixed points, and 

• projections of limit cycles. 

There are two types of limit cycles- those for which their projection in the A-plane 

encircles the origin (A= 0), and those for which their projection does not. In addition, 

the cross-over from the latter to the former is smooth- the limit cycle in some sense 

just gets bigger as aw increases and its projection passes through A= O! 

Thus we identify the steady one-states with the fixed points, the oscillating one

states with limit cycles not encircling the origin of A, (the phase of A, ¢, cannot 

be seen as monotonically increasing or decreasing), the wall-plus-bulk states with 

limit cycles encircling the origin of A, ( ¢ in this case can be seen as monotonically 

increasing or decreasing), ~nd wall states also with limit cycles encircling the origin of 
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A, but for which aB = 0. This explains the smooth change in frequency through the 

transition from oscillating one-state to wall-plus-bulk state, as well as the observation 

that near this transition, periodically the amplitude for the entire boundary region 

approaches zero (this is just the limit cycle passing through A= 0). 

One further feature of the phase diagram explained by the model equations, ( 4. 78) 

- ( 4.81), is the existence of steady one-states at values of € just above €~ when 

e~ > e~ . Equation ( 4. 78) states that the effective growth rate for the traveling

wave wall state is Eeff = .6.t:w - g;a~, thus if the bulk state onsets before the wall 

state, it suppresses the wall state at the linear level. This is the justification for the 

comment made in §4.5.4 with regard to the frequency just changing linearly through 

the oscillating one-state to the steady one-state transition - the only reason there is 

a steady one-state instead of an oscillating one-state is because aw ---t 0, not because 

8~f ---t 0 as in the wall-plus-bulk state to steady one-state transition. 

This leads to another observation and comment. For the steady one-states below 

(in the sense of e) the oscillating one-states, we observed that to approach its final 

steady state, the system took the route of decaying oscillations. For the steady one

states above the wall-plus-bulk states, this was not the case, instead the route was 

essentially one of monotonically approaching the steady-state value. This would seem 

to correspond to spiralling into the fixed point for the former case, and approaching 

the fixed point linearly for the latter. In the region very close to the disappearing 

point, where there are only steady one-states for all values of e, it appears that the 
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spiral trajectories around the fixed points 'unwind' as € mcreases, probably gomg 

continuously from a stable fixed point with complex eigenvalues to a stable fixed 

point with real eigenvalues. 

4.5.9 Numerical Study of the Dynamical Mode Equations 

In this section we will present some results (mainly figures) from simulating equations 

( 4. 78) - ( 4.81) numerically (using Mathematica) . In this particular study, we took 

We will show the phase space trajectories for three values of D.q:.:, D.q:r: = -0.1, -0.02 

and -0.005. For the first two values (the ones larger in magnitude) we evolved the 

reduced equations 

daw 

dt 

daB 

dt 

d<Pw 
dt 

( 4.82) 

( 4.83) 

( 4.84) 

( 4.85) 

which appear to contain the dynamics of the wall-plus-bulk state and the oscillating 

one-state and their various transitions. For D.q:r: = -0.1, €~ = -0.40 and €~ = -0.34 
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- this is the case €;v < €~. For l::!.q:z: = -0.02, €;v - -0.08 and €~ -0.10, and 

For the case l::!.q"' = -0.1, and the parameters 9w = 1, giv = 0.1, gr = 0.2, 

g~ = -0.25, g~ = 0.1, g; = 0.2, 9B = 2.5, h1 = 0.2, and p = 1, as € is increased, we see 

a transition from wall state to wall-plus-bulk state to steady one-state as anticipated. 

(See Figures( 4-36) - ( 4-39) .) In the case l::!.q"' = -0.02, (and the same parameters), 

we see the transition from steady one-state to oscillating one-state to wall-plus-bulk 

state to steady one-state. (See Figures( 4-40) - ( 4-43).) For l::!.q:z: = -0.005, we took 

the limit of small w, and let gi --+ 0. In this case, the reduced equations used above 

were not sufficient to reproduce the expected dynamics, and the magnitudes aw and 

aB needed to be coupled to the phase variables. The equations evolved were 

daw 
dt 

daB 
dt 

d</Jw 
dt 

d</JB 
dt 

-w- g~ sin (<Pw- </JB)awaB, 

( 4.86) 

( 4.87) 

( 4.88) 

( 4.89) 

For the parameters 9w = 1, gr = 2, g; = 0.1, 9B = 2.5, h 1 = 0.2, and p = 1, the 

long-time solution to these equations was always a fixed point, and in addition, the 

spirals of the fixed point unwound as € was increased. (See Figures (4-44)- (4-46).) 
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Figure ..{.-36: qx = -0.1, € = -0.36. uWall state" trajectory: (a) complex A-planej (b) 
Re(A),......, 1/J vs tj {c) complex Aw-planej {d) aB cos c/;B vs t. (For details see text.) 
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Figure 4-81: q:z: = -0.1, E = -0.31. "Wall-plus-bulk state" trajectory: (a) A-plane; 
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Chapter 5 

Conclusion and Future "Work 

In this thesis we have shown the existence of a new type of geometry-independent 

state in nonequilibrium pattern-forming systems - the traveling-wave wall state. We 

showed its existence is not just confined to rotating Rayleigh-Benard convection sys

tems, but can exist generically in systems with broken reflection symmetry and side

walls . Furthermore, this state, which exists in an idealized semi-infinite system, pos

sesses the intriguing feature of disappearing before the reflection-symmetry-breaking 

parameter goes to zero. At its point of disappearance, the linear wall state also be

comes a bulk state of infinite extent and zero frequency. How the wall state and the 

bulk state merge was a major thrust to this work. 

A detailed numerical study was undertaken of the wall - bulk transition region ; 

and coupled dynamical mode equations for the wall mode and bulk mode were pro

posed. We were able to use these equations to successfully model the dynamics 

observed in the wall state - bulk state transition region on a qualitative level, leading 

to an understanding of the underlying dynamics of the region. This understanding 

indicates that it is the nonlinear effects involved in the dynamic coupling of the wall 
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and bulk states which hold the key to understanding how the wall and bulk states 

come together; this question is of especial relevance when one wants to apply the un

derstanding gained in idealized infinite (or semi-infinite) systems to real experimental 

systems which are always finite . 

More detailed experiments on rotating Rayleigh-Benard convection systems [18], 

especially at small rotation rates, would conversely be useful in testing the theoretical 

models and ideas of the transition region. 

There are many avenues for future work on the effects of walls and wall states 

on bulk state dynamics. The possible effects of wall states on the dynamics of the 

Kupper-Lortz instability were mentioned earlier. Before we show some pictures that 

demonstrate an effect, we will first mention another interesting observation of the 

effects of the wall state - bulk state interaction. In studying the wall - bulk tran

sition region, when the nonlinear steady-state was either a wall-plus-bulk state or 

an oscillating one-state, it was observed that the two wall states at either boundary 

tended to 'break' (in the case of wall-plus-bulk states) or 'jerk back' (in the case of 

oscillating one-states) at the same time! This is despite being separated by a 'large' 

distance. A more precise statement would perhaps be to say that if one plots 1/J vs 

t for different points in the two boundary regions, they will undergo sharp changes 

at exactly the same time. (See Fig.(5-1 ). ) Clearly the bulk state and wall states are 

strongly coupled. It would be interesting to understand this in terms of the idealized 

infinite system bulk and wall states. 
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Figure 5-1 : '1/;(t) for (x,y) = (Z,:/4,1) and (l:z:/2,ly -1). 

Now we conclude with some pictures demonstrating that at least in systems which 

are not too large, the wall states do affect the bulk dynamics of the Kiippers-Lortz 

instability. These pictures demonstrate a preferential aligning of the bulk rolls along 

an orientation given by the wall state rolls . 

In Fig.(5-2) we would be seeing the domains of 'preferred' rolls aligned with the 

wall rolls moving into the central bulk region. 

In Fig.(5-3(a) & (b)), time-slice plots of '1/;(x, t) for fixed y = 49 and of '1/;(y, t) 

for x = 32 respectively clearly demonstrate a preferred orientation of the rolls in the 

bulk, and a more careful analysis indicates that if the orientation is cycling through 

81 - 82 - 83 - 81, and 81 is the preferred one, then the orientation 83 is 'extremely 

unstable' to 81 , barely lasting at all. It must remain for future work to understand 
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Figure 5-2: 1/;(x ,y) for € = 0.2, A= - 0.1, J.L = - 8, g1 = 1, g2 = 2.078 and 93 = 1.2; 
the system size is lx = 64, Zy = 85 and grid points in the y-direction of 50 + 35 +50 
for lengths of 25 + 35 + 25. 
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(a) (b) 

Figure 5-3: (a) ,P(x, t) for y = 49; {b) ,P(y, t) for x = 32; for the system of Fig.(5-2). 
Total time is about 1000. 
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how these and other phenomena carry over into the dynamics of larger systems at a 

quantitative level. 
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Appendix A 

The Thermal Boundary Condition 

In this appendix, we will derive the relationship, (equation (3.13)) 

(A.1) 

which is used in the thermal boundary condition, (equation (3 .7)), 

a a 
By - 11-B = 0. (A.2) 

For a sidewall of thickness lw, one end of which is in contact with the fluid , and 

the other end with a vacuum, the thermal boundary conditions on the temperature 

deviation Bw in the sidewall are (see Fig.(A-1) for the coordinate system), 

at z = 0,1 

(perfectly conducting plates on the top and bottom) 

(conservation of heat) 

8Bw = O 
8y 

and 

at y = - lw 

(A J ) 

(A.4) 

(A.5) 
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Figure A-1: Coordinate system for sidewall - fluid boundary 

at y = 0, (A.6) 

where Kw is the ratio of the thermal conductivities of the sidewall to the fluid. 

In the sidewall layer ( -lw < y < 0), the governing equation is the heat equation 

OBw 2 Bt = K.w \l Bw, (A.7) 

where K.w is the thermal diffusivity of the sidewall. 

Since the boundary conditions at z = 0, 1 are Bw = 0, we can expand 

Bw(x, y, z, t) = L sin(mrz)eiq.,:z: fn(Y, t) + c.c., (A.8) 
n 

and as we will just be looking for the lowest order n = 1 mode in the fluid, we need 

only consider the n = 1 mode here as well. Thus let us write 

(A.9) 
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Substituting this into the heat equation gives 

where k! = q; + 1r
2 + ~t~1 r. The boundary condition (A.4) is thus 

hence 

9+ - 2kwl,., - -e . 
9-

(A.lO) 

(A.ll) 

(A.12) 

Using this ratio in (A.lO) leads to the form for 9(y), 9(y) = 9o cosh(kw(Y + lw)), 

where 9o is some arbitary constant. Now we use the two boundary conditions (A.5) 

and (A.6) at y = 0 linking () and Bw to find the boundary condition on () at y = 0. 

Let us write 

(A.l3) 

then (A.5) implies 

(A.l4) 

and (A.6) implies 

h'(O) = Kw9okw sinh(kwlw)· (A.l5) 

So we find the boundary condition on () at y = 0 to be ~~ - ji-B, where JL = 
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