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Abstract

Vortex rings constitute the main structure in the wakes of a wide class of swimming and

flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi.

However, there is a physical limit, determined by an energy maximization principle called

the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve.

The existence of this limit is known to lead to the separation of a growing vortex ring

from the shear layer feeding it, a process known as ‘vortex pinch-off’, and characterized

by the dimensionless vortex formation number. The goal of this thesis is to improve our

understanding of vortex pinch-off as it relates to biological propulsion, and to provide future

researchers with tools to assist in identifying and predicting pinch-off in biological flows.

To this end, we introduce a method for identifying pinch-off in starting jets using the

Lagrangian coherent structures in the flow, and apply this criterion to an experimentally

generated starting jet. Since most naturally occurring vortex rings are not circular, we

extend the definition of the vortex formation number to include non-axisymmetric vortex

rings, and find that the formation number for moderately non-axisymmetric vortices is sim-

ilar to that of circular vortex rings. This suggests that naturally occurring vortex rings may

be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response

of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex

rings of increasing thickness and circulation, and their response to prolate shape perturba-



vi

tions is simulated using contour dynamics. Finally, the response of more realistic models

for vortex rings, constructed from experimental data using nested contours, to perturba-

tions which resemble those encountered by forming vortices more closely, is simulated using

contour dynamics. In both families of models, a change in response analogous to pinch-off

is found as members of the family with progressively thicker cores are considered. We posit

that this analogy may be exploited to understand and predict pinch-off in complex biolog-

ical flows, where current methods are not applicable in practice, and criteria based on the

properties of vortex rings alone are necessary.
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Ē Dimensionless energy for the Norbury and Pierrehumbert families, page 123

E∗ Impulse-normalized energy, page 10

E∗lim Limiting value of the impulse-normalized energy for steady vortex rings, page 10

E∗piston Impulse-normalized energy supplied by the piston-cylinder apparatus, page 10

E(k) Complete elliptic integral of the second kind, page 111

eφ Unit vector in the azimuthal direction, page 7

er Unit vector in the radial direction, page 8

ez Unit vector in the longitudinal direction, page 8

F Impulse-constrained energy, page 8

f Oscillating frequency of wing or tail, page 15

H Length of the rectilinear segment in Domenichini’s nozzles, page 54

h Ratio of the length of the flat segment to the diameter of the circular segment in

Domenichini’s nozzles, page 54

I Impulse, page 7



xviii

i Imaginary unit, page 110

J0 Bessel function of the first kind of order 0, page 142

J1 Bessel function of the first kind of order 1, page 142

K(k) Complete elliptic integral of the first kind, page 111

∆` Contour length of the vortex tail or filament after one eddy turnover, page 120

L Length of the column of fluid ejected during vortex formation, page 2

N Number of Fourier coefficients describing the boundary of a Norbury or Pierrehum-

bert vortex, page 109

n Number of regions in multiple-contour dynamics, page 137

n Approximate normal to a ridge in the FTLE field, page 30

R Ring radius (Norbury) or half the dipole spacing (Pierrehumbert), page 105

r Radial coordinate in cylindrical coordinate system, page 6

Re Reynolds number based on the nozzle (equivalent) diameter and mean piston speed,

page 25

ReΓ Reynolds number based on the vortex ring circulation, page 25

S Rate of strain tensor (symmetric part of ∇u), page 30

s Coordinate along the oblique DPIV plane, page 66

s′ Parametric coordinate along the length of the contour for the axisymmetric contour

dynamics formulation, page 111



xix

St Strouhal number, page 15

T Integration time for FTLE computation, page 25

T ∗ Formation time based on the diameter of the circular portion of the nozzles in

Domenichini’s, page 95

T̂ Vortex formation time, page 4

T̂model Formation time at which to extract vortex models, page 151

t Dimensional time in seconds, page 4

t∗ Dimensionless time for contour dynamics simulations of the Norbury and Pierre-

humbert families, page 113

t0 Time at initiation of particle trajectories, page 25

U Unperturbed speed of steadily translating vortex ring or dipole, page 7
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Chapter 1

Introduction

1.1 Vortex rings and their formation

Vortex rings are a recurring feature in a wide class of biological, atmospheric, and engineer-

ing flows. These vortex rings occur naturally in a variety of settings, and their beneficial

properties have been harnessed for a number of engineering applications. Under certain

conditions, erupting volcanoes can produce visible vortex rings (Johnston-Lavis, 1890), and

birds have been observed to exploit the vortex rings which appear in the atmosphere when

the ground is heated intensely (Cone, 1962; Pennycuick, 1971). Vortex rings are also found

in the discharge of blood from the atria into the ventricles in the human heart (Domeni-

chini et al., 2005; Bellhouse, 1972; Reul et al., 1981; Wieting & Stripling, 1984; Gharib

et al., 2006; Dabiri & Gharib, 2005a), as well as in the release of spores by Sphagnum moss

(Whitaker & Edwards, 2010) and certain fungi (Roper et al., 2010).

In man-made flows, buoyant vortex rings are often observed to form after explosions

(Turner, 1960) or the discharge of artillery rounds (Lugt, 1995), and in industrial chimneys

(Lugt, 1995). Additionally, cavitated vortex rings are used in underwater drilling (Chahine

& Genoux, 1983), and they have been used to combat fires at gushing oil and gas wells

(Akhmetov (1980), see Akhmetov (2009) for a review).
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Vortex rings are often found in the wakes of swimming and flying animals (Dickinson

et al., 2000). Jetting swimmers, such as jellyfish and squid, are known to generate nearly

axisymmetric vortex rings during normal propulsion (Dabiri & Gharib, 2005a; Bartol et al.,

2008, 2009; Linden & Turner, 2004; Dabiri et al., 2006, 2010). However, a wider class of

animals generates non-circular vortex rings for swimming, flying, or hovering. Flying and

hovering birds (Kokshaysky, 1979; Rayner, 1979) and insects (Dickinson & Götz, 1996;

Ellington, 1984) are known to generate elongated, non-circular vortex rings. Similarly,

chains of deformed vortex rings or loops have been observed in the wakes of swimming fish

(Drucker & Lauder, 1999; Kern & Koumoutsakos, 2006). Finally, vortex rings are known

to play an important part in the propulsion of animals such as water striders (Hu et al.,

2003) and basilisk lizards (Hsieh & Lauder, 2004), at the water surface.

Given their ubiquity in nature and technology, vortex rings have been the subject of

numerous studies, beginning with Helmholtz’s theory of vortex motions in the 19th century

(Helmholtz, 1858). Thereafter, the work of noted fluid dynamicists such as Lord Kelvin

(Kelvin, 1867), Osborne Reynolds (Reynolds, 1876), Ludwig Prandtl (Prandtl & Tietjens,

1934), Sir Horace Lamb (Lamb, 1932), and G.K. Batchelor (Batchelor, 1967), laid the

mathematical foundations for the understanding of ideal inviscid vortex rings. Thus, models

for ideal vortex rings were developed, and expressions for the fundamental properties of

vortex rings (impulse, energy, translational velocity) were derived.

Additionally, numerous dye visualization and digital particle image velocity (DPIV)

experiments have characterized the properties and behavior of real, viscous, laminar and

turbulent vortex rings. In the majority of these studies, vortex rings were generated using

the ‘piston-cylinder’ arrangement. In these experiments, a fluid column of length L is

ejected through the circular aperture or nozzle at the end of a hollow cylinder of diameter
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D, by a piston moving inside the cylinder with a prescribed velocity. A boundary layer of

vorticity forms on the inside of the cylinder as the piston moves, and then separates at the

edge of the aperture or nozzle and rolls up into a vortex ring.

A wide class of experimental studies of vortex rings using this arrangement have char-

acterized the evolution of the vortex ring’s size, position, velocity, circulation, impulse, and

distribution of vorticity, throughout its formation and as it advects away from the nozzle

owing to its self-induced velocity (Maxworthy, 1972, 1977; Weigand & Gharib, 1997; Did-

den, 1979; Glezer & Coles, 1990; Auerbach, 1987). The understanding of vortex rings that

stemmed from these experiments is described in the reviews of Shariff & Leonard (1992) and

Lim & Nickels (1995). In particular, a number of researchers have considered the evolution

of the vortex ring and its fundamental properties during vortex formation. Their analyses

relied on experimental results (Didden, 1979; Auerbach, 1987), as well as models based on

slug-flow and self-similar roll-up (Saffman, 1978; Pullin, 1979). These studies found the size,

circulation, and impulse of the vortex ring to increase throughout the formation process, as

the vortex ring accepted vortical fluid from the separated shear layer feeding it.

However, all of the aforementioned investigations considered the formation of experi-

mental vortex rings using only small ratios of the length L of the column of fluid ejected,

to the diameter D of the circular nozzle or aperture (called the stroke ratio L/D). In a

seminal paper, Gharib et al. (1998) showed that the growth of vortex rings during fluid

ejection cannot continue indefinitely, but rather there is a physical limit to their size. Using

a piston-cylinder arrangement, Gharib et al. (1998) considered the formation of vortex rings

using stroke ratios ranging from 0.5 to 14.5 , and a variety of piston velocity programs (i.e.,

different functions of piston velocity in time). The authors found the size and circulation of

vortex rings to increase with stroke ratio, in accordance with previous studies, until a stroke
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ratio of approximately L/D ≈ 4. Beyond this stroke ratio, Gharib et al. (1998) found that

vortex rings stopped accepting vorticity during fluid ejection, and additional vorticity flux

formed a wake of Kelvin-Helmoltz type vortices instead. They termed the disconnection of

velocity and vorticity fields of the vortex ring from its feeding shear layer ‘vortex pinch-off’.

Figure 1.1, shows planar laser-induced fluorescence (PLIF) visualizations of the vortex

wake in three cases. In figure 1.1(a), the stroke ratio is approximately two, and the resulting

vortex ring has accepted all of the vortical fluid ejected from the nozzle. The stroke ratio

of the vortex ring in figure 1.1(b) is L/D ≈ 3.8, and as a result the vortex in this figure

is larger than that shown in 1.1(a). Also in this case, almost all of the discharged fluid

has been entrained into the vortex ring. In figure 1.1(c), however, the stroke ratio exceeds

four (L/D ≈ 14.5), and a wake of trailing vortices is evident. Additionally, the size of the

leading vortex ring in 1.1(c) is comparable to that of the vortex ring in 1.1(b), indicating

that little vorticity flux was accepted by the vortex ring in 1.1(c) after the instantaneous

stroke ratio exceed four.

Gharib et al. (1998) defined a dimensionless vortex formation time T̂ = Upt/D, where

t is the dimensional time, Up is the instantaneous piston velocity, and Up = 1/t
∫ t

0 Up(t)dt

is the running average of the piston velocity. Since Upt represents the length of the column

of fluid already ejected at time t, the formation time is equivalent to the ratio of length

to diameter of the ejected fluid column. In order to determine the formation time at

which pinch-off occurred, Gharib et al. (1998) considered the total circulation discharged

by the piston-cylinder apparatus (Γ), as well as the circulation in the leading vortex ring

once it had separated from the trailing shear layer (Γring), as a function of the formation

time. The authors reasoned that only the vorticity which had emanated from the cylinder

before the vortex had ceased to accept vorticity (i.e., before the onset of pinch-off) could
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Figure 1
Visualization of vortex rings at downstream position X/D ≈ 9 for (a) T̂ = 2, (b) T̂ = 3.8, and (c) T̂ = 14.5.
Figure taken from Gharib et al. 1998.

Kelvin-Benjamin
variational principle:
states that a steady
axis-touching vortex
ring possesses
maximum energy with
respect to alternative
arrangements of the
vorticity with the same
total impulse

physical separation between the vortex ring and the trailing shear layer, which may occur later or
not at all.

We can understand the existence of a limiting dimensionless timescale for vortex ring for-
mation in terms of the energetics of the formation process. As described by Kelvin (1880) and
Benjamin (1976), a steady, symmetry-axis-touching vortex ring possesses maximum energy relative
to the equivalent rearrangements of its vorticity that maintain the same total impulse. Therefore,
a forming vortex ring can only accept additional vorticity (e.g., from a trailing shear layer) and
subsequently relax to a new configuration if the impulse-normalized energy of the new config-
uration is greater than the impulse-normalized energy of an alternative vortex ring/shear layer
configuration in which the additional vorticity is not accepted by the vortex ring. Pozrikidis (1986)
observed examples of the latter configuration using numerical simulations in which steady vortex
rings were locally perturbed. Figure 1c also shows an example of a vortex ring/shear layer con-
figuration that results when the requirement of the Kelvin-Benjamin variational principle is not
satisfied and vortex ring pinch-off occurs.

By using the slug model to quantify the energy of the shear layer delivered by the piston-cylinder
apparatus and by using the Norbury-Fraenkel family of vortex rings (Fraenkel 1972, Norbury
1973) to classify the experimentally generated ones, Gharib et al. (1998) quantitatively predicted
the observed limiting timescale for vortex ring formation. Whereas the normalized energy of
the leading vortex appears relatively constant in the model, the normalized energy of the shear
layer feeding the vortex ring decreases monotonically in dimensionless time. The crossover point
at which Êshear layer < Êvortex ring occurs near T̂ ≈ 4, in agreement with experiments. Subsequent
models based on flow kinematics (Linden & Turner 2001, Shusser & Gharib 2000), more complex

20 Dabiri

Figure 1.1: PLIF visualizations of vortex rings at T̂ ≈ 9 . (a) An isolated vortex ring with
L/D = 2. (b) An isolated vortex ring with L/D ≈ 3.8. (c) Vortex ring and wake in a case
where L/D ≈ 14.5. Figure reproduced with permission from Dabiri (2009)

accumulate in the vortex ring. In effect, the authors found the circulation in the leading

vortex ring to reach a constant value which was lower than the total circulation generated

by the apparatus. Therefore, they compared the time histories of the two circulations to

determine the T̂ at which the total circulation emanating from the cylinder equaled the

maximum circulation of the vortex ring. They termed this T̂ the ‘formation number’: the

dimensionless time at which pinch-off occurred.

In all of the cases considered, Gharib et al. (1998) found pinch-off to occur robustly at

a formation number of approximately four, suggesting that some physical process curtails

vortex growth once this non-dimensional time is reached. The universality of the formation

number has been verified by a number of subsequent experimental (Pawlak et al., 2007;

Krueger et al., 2006; Dabiri & Gharib, 2004a) and computational studies (Rosenfeld et al.,

1998; Mohseni et al., 2000). The concept of the universal formation number has also been
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extended to more complex vortex generator setups and computational frameworks, by ex-

tending the definition of the dimensionless vortex formation time to allow for variations

such as the presence of bulk co-flow (Krueger et al., 2006) or bulk-counter flow (Dabiri

& Gharib, 2004a), a time-varying exit diameter (Dabiri & Gharib, 2005a; Mohseni et al.,

2000), and differing velocity programs (Rosenfeld et al., 1998; Mohseni et al., 2000; Krueger

& Gharib, 2003; Olcay & Krueger, 2010) and velocity profiles (Rosenfeld et al., 1998). A

comprehensive overview of these modifications to the original definition of Gharib et al.

(1998) can be found in the review of Dabiri (2009), where the most general formulation for

the vortex formation time is presented.

1.2 Pinch-off and the Kelvin-Benjamin principle

Gharib et al. (1998) attributed the apparent physical limit on vortex formation to an energy-

based argument originally due to Lord Kelvin, who stated it without proof (Kelvin, 1880b).

The proof of Kelvin’s argument is due to (Benjamin, 1976), and the principle is hence

referred to as the Kelvin-Benjamin principle. Benjamin (1976) showed, using a variational

argument, that a steadily translating axisymmetric vortex ring, with constant density and

no swirl, is a solution of the Euler equations only when it constitutes a critical point of the

energy, with respect to re-arrangements of the vorticity density which preserve the same

total impulse. The proof is outlined below.

Consider an axisymmetric flow in cylindrical coordinates x = (r, z, φ) denoted by u =

(ur, uz, uφ). For constant density % and no swirl (uφ = 0), the fluid velocity can be expressed

in terms of the vector potential a:

u = ∇× a (1.1)
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where a = ψ/reφ, and ψ is the Stokes streamfunction. Additionally, the vorticity equation

under these conditions reduces to:

D

Dt

(ω
r

)
= 0 (1.2)

where ω is the vorticity in the azimuthal direction, all other components being zero.

Defining the vorticity density ξ = ω/r and letting y′ = 1/2r2, the preceding equation

can be written as:

Dξ

Dt
=
∂ξ

∂t
+
∂ψ

∂y′
∂ξ

∂z
− ∂ψ

∂z

∂ξ

∂y′
= 0 (1.3)

If ξ represents a steady solution consisting of a vortex translating with longitudinal velocity

U in the z-direction, then in the frame of reference translating with constant velocity U ,

ξ and ψ should be independent of time. That is ξ = ξ(y′, z′) and ψ = ψ(y′, z′), where

z′ = z − Ut. Therefore, a steadily translating vortex ring satisfies:

Dξ

Dt
=

∂

∂y′
(ψ − Uy′)∂ξ

∂z
− ∂

∂z
(ψ − Uy′) ∂ξ

∂y′
= 0 (1.4)

In the translating coordinate system, the fluid impulse I and kinetic energy E can be

written as (Saffman, 1992; Batchelor, 1967):

I =
1

2
%

∫
x× ωdV = π%

∫ ∫

A
y′ξdy′dz′ (1.5)

E =
1

2
%

∫
u · udV = π%

∫ ∫

A
ωψdrdz′ =

1

2
π%

∫ ∫

A
ξψdy′dz′ (1.6)

where A is the cross section of the vortex core (the projection of the support of ξ onto the

plane φ = 0). Maximizing the kinetic energy while preserving the impulse means finding
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the critical points of the functional:

F = E − UI = π%

∫ ∫

A

(
1

2
ψ − Uy′

)
ξdy′dz′ (1.7)

where U acts as a Lagrange multiplier.

Taking the first variation of F :

δF =

∫ ∫

A′

(
ψ − Uy′

)
δξdy′dz′ (1.8)

where δξ must be a rearrangement of ξ, and integration is now over A′, which is derived

from the support of δξ. Therefore, consider some arbitrary ε, and let:

δξ =

(
− ∂ε

∂z′
er +

∂ε

∂y′
ez

)
·
(
∂ξ

∂y′
er +

∂ξ

∂z′
ez

)
(1.9)

Then, the first variation becomes:

δF =

∫ ∫

A

[
−
(
ψ − Uy′

) ∂ε
∂z′

∂ξ

∂y′
−
(
ψ − Uy′

) ∂ε
∂y′

∂ξ

∂z′

]
dy′dz′ (1.10)

Or, after integration by parts:

δF =

∫ ∫

A

[
∂

∂z′
(
ψ − Uy′

) ∂ξ
∂y′
− ∂

∂y′
(
ψ − Uy′

) ∂ξ
∂z′

]
εdy′dz′ (1.11)

Therefore, for a stationary F :

∂

∂z′
(
ψ − Uy′

) ∂ξ
∂y′
− ∂

∂y′
(
ψ − Uy′

) ∂ξ
∂z′

= 0 (1.12)
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That is, requiring that ξ be a steadily translating vortex ring is equivalent to requiring that

ξ be a critical point of the energy (c.f. equation 1.4).

The stability of the steady solution is determined by the second variation δ2ξ: the

solution is stable when the second variation is definite (i.e., ξ constitutes a maximum or a

minimum), and unsteady otherwise. Kelvin (1880b) stated that for axisymmetric solutions,

ξ must represent an absolute maximum. Benjamin (1976) did not offer proof that the second

variation δ2ξ must be negative for steadily translating vortex ring solutions, but Wan (1988)

has proved that this is the case for a family of axisymmetric solutions introduced by Norbury

(1973) and described in detail in chapter 4.

Therefore, Gharib et al. (1998) posited that vortex pinch-off occurs because, due to

the Kelvin-Benjamin principle, a vortex ring can only accept additional vorticity from the

shear layer and continue to grow as long as the new configuration with a larger vortex ring

has greater kinetic energy than an alternative configuration with the same total impulse,

consisting of a vortex ring and shear layer. However, showing that a particular vortex ring

with a realistic vorticity distribution maximizes the total energy with respect to rearrange-

ments of the vorticity density which preserve the same total impulse, is impractical. As a

result, Gharib et al. (1998) relied on a combination of modeling and empirical results to

show that, at a formation time of approximately four, the piston-cylinder vortex generator

apparatus cannot meet the impulse-normalized-energy requirements necessary to generate

an isolated vortex ring. To quantify the normalized energy delivered by the piston-cylinder

apparatus, the authors used the slug-flow model, which assumes that the velocity external

to the boundary layer at the exit plane of the cylinder is simply the piston velocity. That

is, the fluid ejected from the piston-cylinder apparatus is modeled as a slug of fluid with

a flat velocity profile, constant diameter D, and length L(t). As a result, the circulation,
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impulse, and energy delivered by the apparatus are:

Γ =
1

2
U2
p t (1.13)

I =
1

4
π%D2U2

p t (1.14)

E =
1

8
π%D2U3

p t (1.15)

And the impulse-normalized energy defined by Gharib et al. (1998) is given by:

E∗piston =
E√
%IΓ3

=
(π

2

)1/2
(
L

D

)−1 U3
pUp

(U2
p )2

(1.16)

E∗piston scales with (L/D)−1, which decreases monotonically with increased ejection time.

However, the last term in 1.16 is dependent on the piston velocity program. Nonetheless,

Gharib et al. (1998) showed that E∗piston decreases monotonically for any realistic piston

velocity profile. For isolated vortex rings, on the other hand, the authors generalized the

results from an idealized family of vortex rings (the family of Norbury (1973), which is

described in detail in chapter 4) to suggest that E∗ diminishes to a limiting value E∗lim as

the core thickens. The value of E∗lim is dependent on the vorticity distribution, and was

found to be E∗lim = 0.33 in their experimental vortex rings. Hence, they suggested that

pinch-off occurs when E∗piston < E∗lim, and found that this crossover occurred at T̂ ≈ 4.

Thus, at T̂ ≈ 4, the piston-cylinder apparatus could no longer deliver normalized energy at

a rate compatible with the formation of an isolated vortex ring, leading to pinch-off.

Since the original model of Gharib et al. (1998) relied on empirical input, a number of

models explaining and attempting to predict pinch-off were developed subsequently. The
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first of these models is due to Mohseni & Gharib (1998), who constructed a model to

determine the non-dimensional time at which the vortex generator could no longer deliver

energy at a rate compatible with the requirement that the steady vortex ring maximize

energy as outlined by the Kelvin-Benjamin principle, using a slug-flow model for the jet

and modeling the steady vortex ring as a member of the Norbury family of vortex rings.

This family of exact solutions to the incompressible Euler equations was developed by

Norbury (1973) and Fraenkel (1972), and consists of vortex rings of increasing core size,

each with a distribution of vorticity given by ω = Ωr (where Ω is a constant). This family is

described in detail in chapter 4 and has been used in several models for pinch-off, including

the model of Linden & Turner (2001), which is similar to that of Mohseni & Gharib (1998).

Kaplanski & Rudi (2005), on the other hand, developed a model similar to that of Mohseni

& Gharib (1998) and Linden & Turner (2001), but used a more complex, viscous, family of

vortex rings as a model for the growing vortex ring.

Rather than using an energy argument, Shusser & Gharib (2000) developed a criterion

for pinch-off based on the kinematics of the vortex ring and trailing jet. Shusser & Gharib

(2000) also used the slug-flow approximation and the Norbury family of vortex rings as

models for the starting jet and vortex ring, respectively. The authors suggested that pinch-

off occurs when the model vortex ring attained a translational velocity equal to that of the

jet, and showed that this kinematic criterion is equivalent to the energy criterion of Mohseni

& Gharib (1998). Fukumoto & Kaplanski (2008) extended this model by developing similar

kinematic criteria, using a viscous model for the vortex rings. Gao & Yu (2010) also built

upon this model by using kinematic criteria, but additionally considering the effects of the

trailing jet on the growth of the leading vortex ring. Finally, Mohseni (2001) introduced an

alternative model for pinch-off based on statistical physics.
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The development of new models for pinch-off is constrained by the fact that it is imprac-

tical to apply the Kelvin-Benjamin principle directly on vorticity distributions to determine

whether or not they satisfy the requirement that they maximize the energy with respect

to all possible rearrangements of ξ that preserve the same total impulse. Furthermore,

using the Kelvin-Benjamin variational argument to find steadily translating solutions to

the incompressible Euler equations that might serve as the basis for these models, is ren-

dered impractical by the absence of simple and accurate formulae for the kinetic energy

(Saffman, 1992). In a series of recent papers, Luzzatto-Fegiz and Williamson (Luzzatto-

Fegiz & Williamson, 2010a,b, 2012b,a) have been successful in using imperfect impulse-

velocity diagrams to find new two-dimensional vortex equilibria, and asses the stability of

families of exact solutions. Their method involves introducing small perturbations that

break the symmetry of previously known vortex equilibria, in order to find hitherto un-

known branches of these families of solutions. By considering plots of the translation or

rotation velocity of these equilibria as a function of their impulse, they were able to identify

changes in the stability of the entire family. While this method has been very successful in

two-dimensional flows, it is not yet applicable to pinch-off because the only known analyti-

cal family of steadily translating vortex rings (the Norbury family) is known to be stable to

the types of perturbations introduced by Luzzatto-Fegiz & Williamson (2010a) (Benjamin,

1976; Wan, 1988).

1.3 Optimal vortex formation

All of the models described above are concerned with understanding and predicting pinch-

off. Understanding this phenomenon is of particular interest given the propulsive advantages

associated with the formation of vortex rings. These benefits of vortex ring formation for
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propulsion arise from two sources: the entrainment of ambient fluid by the forming vortex

ring, and the added mass of the fluid surrounding the vortex that must be accelerated

with the vortex ring. The propulsive force experienced by a vortex generator, be it an

experimental apparatus or a biological or engineered system, is proportional to the sum of

the fluid in the shear layer, the entrained fluid, and the added mass of the non-entrained fluid

(Dabiri, 2009). Vortex rings are known to entrain more fluid than steady jets (Auerbach,

1991; Dabiri & Gharib, 2004b; Olcay & Krueger, 2007; Shadden et al., 2007), thus providing

an advantage in propulsive-force generation. Since steady vortex rings translate as coherent

structures bounded by material lines, the added mass carried with the so-called ‘vortex

bubble’ is mathematically equivalent to the added mass carried by a solid body in potential

flow (Dabiri et al., 2006). The added mass of the vortex ring is thus also advantageous

in the generation of propulsive forces (Baird et al., 1977; Krueger & Gharib, 2003; Weihs,

1977; Ruiz et al., 2011).

Furthermore, these beneficial properties of vortex ring formation scale with increasing

vortex size (Krueger, 2001). Given that the growth of vortex rings is limited by the Kelvin-

Benjamin principle, this implies that a process of constrained optimization could lead to the

formation of ‘optimal’ vortices: vortices with maximum size given the constraint imposed

by the vortex formation time T̂ . This constrained optimization phenomenon is known

as ‘optimal vortex formation’. Krueger & Gharib (2003) showed that, for a pulsed jet,

maximum time-averaged thrust per pulse is achieved at a formation time right after pinch-

off, lending credence to the theory that the formation of ‘optimal’ vortices leads to the most

advantageous harnessing of vortex ring formation for propulsive purposes.

Logically, this leads to the intriguing question of whether the formation of vortex rings

in naturally occurring flows is ‘optimal’ as defined above. So far, researchers have uncovered
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some evidence of optimality in certain biological jetting flows. For example, Gharib et al.

(2006) found evidence of optimal vortex formation during diastolic filling of the cardiac

left ventricle of healthy human patients, as well as evidence that a pathology of the left

ventricle known as dilated cardiomyopathy leads to the formation of suboptimal vortices

with short formation times. Similarly, Dabiri & Gharib (2005a) found evidence of optimal

vortex formation during normal cardiac operation, and that pathologies such as cardiac

ischaemia lead to the formation of vortices with formation times above the optimal.

Evidence of efficient vortex formation has also been found in the swimming behavior

during cruise of several jellyfish species that are known to be ‘cruising predators’ (i.e.,

species that spend a large portion of their life cycle in constant swimming) by Dabiri et al.

(2010). Linden & Turner (2004) also found evidence of optimal vortex formation in juvenile

squid. However, one must bear in mind that propulsive efficiency is not necessarily the

principal objective of natural propulsive systems. For example, adult squid are known to

use primarily their lateral fins for low-speed propulsion, while using their jet-propelled mode

of locomotion primarily as an escape response (Anderson & DeMont, 2000; Bartol et al.,

2001; O’Dor, 1988). It is therefore reasonable to assume that this jet-propelled mode need

not be efficient, but rather that speed might be its principal objective. This is in agreement

with the observations of Anderson & Grosenbaugh (2005), that jetting in adult squids

persists for times much longer than T̂ ≈ 4. Similar results were reported by Dabiri et al.

(2010) for several jellyfish species that are known to swim primarily in short, high-speed

bursts. Therefore, the existence of additional constraints such as speed and maneuverability

must be taken into account when evaluating the ‘optimality’ of a natural system.

In addition to these constraints related to fluid mechanics and locomotion, the existence

of other constraints related to physiology, feeding and reproduction, for example, must be
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borne in mind before evaluating the optimality of natural behaviors. Furthermore, even in

those cases where propulsive efficiency can be reasonably assumed to be the primary goal,

such as the cruising behavior of animal species which are known to travel large distances

regularly or the normal operation of the human heart, one cannot assume out of hand that

naturally-existing solutions are necessarily optimal. It is important to note that natural

selection need not always (or indeed most of the time) arrive at the optimal solution.

However, a survey by Taylor et al. (2003) suggests the intriguing possibility that one such

optimal solution might govern the cruising behavior of a wide class of swimming and flying

animals.

Taylor et al. (2003) analyzed the cruising kinematics of a wide class of species of swim-

ming and flying animals ranging in size from locusts to dolphins, and including insects,

birds, fish, and mammals. The authors computed the non-dimensional Strouhal frequency

St corresponding to cruising:

St =
fAcruise
Ucruise

(1.17)

where f is the oscillating frequency of the wing or tail, Acruise is the oscillating amplitude

of the propulsive appendage during cruise, and Ucruise is the forward velocity of the animal,

also during cruise. In comparing the non-dimensional cruising frequency across species,

Taylor et al. (2003) found the cruising Strouhal numbers of this wide class of frequencies

to mostly fall in the interval 0.2 < St < 0.4. The authors suggest that efficiency concerns

constrain the range of Strouhal numbers animals cruise at, because natural selection is likely

to lead to cruising strategies with high propulsive efficiency.

In their review of animal locomotion, Dickinson et al. (2000) suggest that the forma-

tion of vortex rings is the unifying feature linking the forms of propulsion in water and air
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considered by Taylor et al. (2003). Given that these animals are known to generate vortex

rings, that the formation of these vortex rings is constrained by the Kelvin-Benjamin prin-

ciple, that maximum use of the beneficial properties of vortex rings for propulsive efficiency

is made by generating ‘optimal’ vortex rings, and that optimal vortex formation has been

shown to play a role in certain jetting natural flows; Linden & Turner (2004), Dabiri &

Gharib (2005a), and Dabiri (2009) have suggested that the formation of optimal vortex

rings might be the principle underlying the cruising behavior of swimming animals. Thus,

Dabiri (2009) suggests that the constraints on the growth of individual vortex rings imposed

by the Kelvin-Benjamin principle might govern the shedding of individual vortices in the

wakes of cruising animals, and that the constraints on efficient vortex ring formation might

manifests themselves in the narrow range of Strouhal frequencies observed by Taylor et al.

(2003).

Moored et al. (2012) developed an alternative framework, based on hydrodynamic wake

resonance theory, to explain the existence of optima in the flapping-fin type of propulsion

exhibited by the organisms in the survey by Taylor et al. (2003). The authors suggested a

different method for identifying maxima in the propulsive efficiency of flapping-fin propul-

sion, based on the hydrodynamic resonance of the wake produced by these animals. Their

method involves performing a linear spatial stability analysis of the velocity profiles mea-

sured in the wakes of swimming and flying animals to find the hydrodynamic resonant

frequency of the base flow (that is, the time-averaged jet). The results of Moored et al.

(2012), as well as those of previous studies by Lewin & Haj-Hariri (2003), Dewey et al.

(2012), and Triantafyllou et al. (1993), suggest that maxima in efficiency occur when the

driving frequency of the flapping appendage coincides with the resonant frequency of the

base flow in the wake. The framework of Moored et al. (2012) for predicting optima using
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wake resonance theory shows remarkable agreement with experimental results. Although

this method has proved very accurate, it must be remarked that the method is diagnostic

and not predictive: it can be used to determine whether a particular propulsive strategy

represents an efficiency optimum, but not to predict the location of these optima.

Furthermore, the framework developed by Moored et al. (2012) has proven difficult to

extend beyond the flapping-fin-type propulsion considered by the authors. The formation

of starting vortices from a piston-cylinder apparatus, or by jetting swimmers, for example,

cannot be examined as a perturbation on a mean flow in the style of the analysis of flapping

fins in Moored et al. (2012). The absence of a base flow renders linear stability analysis

impossible. Attempts at performing a linear stability analysis on a starting jet flow with

large stroke ratio yielded spurious eigenvalues with no physical significance (Moored, private

communication), suggesting that the formation of starting vortices is a highly non-linear

event which is not well captured by a linear stability analysis. Therefore, the link (if any)

between the wake resonance theory of Moored et al. (2012) and optimal vortex formation

remains unknown, and the wake resonance method cannot be applied to understand or

predict pinch-off.

1.4 Aims and scope of current work

Hence, identifying pinch-off in biological flows is of great interest, as is determining whether

optimal vortex formation plays a role in the optimal locomotion of swimming and flying

animals . This interest is compounded by the recent surge in investigations into the develop-

ment of efficient underwater vehicles, many of which employ biomimetic motions (Villanueva

et al., 2011; Fish et al., 2011; Triantafyllou & Triantafyllou, 1995) or rely on the formation of

vortex rings (Ruiz et al., 2011; Whittlesey, 2013; Moslemi & Krueger, 2010). At this stage,
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however, identifying and predicting pinch-off and diagnosing efficiency and performance, in

both natural and engineered swimmers and flyers, is rendered difficult by the shortage of

universally applicable models or criteria for identifying pinch-off and predicting the optimal

formation time.

Despite the wealth of models described in section 1.2, and the widespread acceptance

of the Kelvin-Benjamin principle as the driving physical mechanism behind pinch-off, no

single model has emerged as the preferred means of predicting pinch-off. This is due, in

part, to existing models not being easily applicable to all biological flows. Most existing

models rely on quantifying the circulation, impulse, energy, or velocity of the growing vortex

ring, as well as of the shear layer feeding it. Therefore, existing models prove difficult to

apply when the flux of circulation and energy into the vortex ring, or the velocity of the

shear layer, cannot be easily quantified. In these cases, which include most examples of

swimming and flying animals, the utility of the existing models is limited. In these complex

biological flows, criteria for identifying and predicting pinch-off based on the properties of

the vortex rings in the wake alone would be of great use.

However, developing such methods directly from the Kelvin-Benjamin principle is im-

practical for the reasons discussed in §1.2. At this stage, therefore, existing models pre-

dicting and explaining pinch-off and vortex formation are not applicable to all complex

flows of biological interest. Hence, current research on pinch-off in biological flows often

relies on using the method of comparing circulations introduced by Gharib et al. (1998)

as a diagnostic tool. There is need, therefore, for more general models for pinch-off that

might be applicable to a wider class of biological flows, as well as for criteria to facilitate the

identification of pinch-off in complex biological flows where the circulation criterion might

prove difficult to apply. Hence, the aim of this thesis is to address some of these issues
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by introducing an alternative criterion for pinch-off, extending the definition of the vortex

formation time to non-axisymmetric starting jets, and improving our understanding of the

perturbation response of model vortex rings in order to develop models for pinch-off based

on the properties of the vortex rings generated by swimming and flying animals.

In chapter 2 we introduce a criterion for identifying pinch-off based on the Lagrangian

coherent structures (LCS), which serve as finite-time analogues to the stable and unstable

manifolds in time-independent systems, in axisymmetric jetting flows. This method has the

potential to prove useful in identifying pinch-off in complex biological flows. Since most

naturally occurring vortex rings are not circular, in chapter 3 we consider the formation

number for non-axisymmetric vortex rings, and show that vortex rings with moderate de-

parture from axisymmetry can be modeled as circular vortex rings of the same equivalent

diameter. In chapters 4 and 5 we examine the perturbation response of model vortex rings

and dipoles of increasing complexity. The results highlight a link between the perturbation

response of models for isolated vortex rings, and pinch-off. This link provides the basis for

the development of models for pinch-off based on the properties of the vortices generated

by swimming and flying animals. Finally, concluding remarks and avenues for future work

are presented in chapter 6.
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Chapter 2

A Lagrangian approach to
identifying vortex pinch-off

2.1 Introduction

In their paper introducing the concept of the vortex formation number, Gharib et al. (1998)

calculated the formation number by comparing the time history of the total circulation

emanating from their vortex generator, to that of the leading vortex ring. Their method is

described in detail in the preceding chapter, and has been employed by Dabiri & Gharib

(2004a), Dabiri & Gharib (2005a), Krueger et al. (2006), and others to identify the for-

mation number for vortex rings in a variety of flow conditions, using the piston-cylinder

configuration. Dabiri & Gharib (2004a) considered the delay of pinch-off in piston-cylinder

vortex generators when a bulk counter flow was imposed. Similarly, Krueger et al. (2006)

considered the case of vortex rings in uniform co-flow. Dabiri & Gharib (2005a) considered

the formation of vortex rings when no background flow was imposed, but the exit diameter

of the cylinder was time varying.

Also using the circulation method of Gharib et al. (1998), several researchers have

identified pinch-off in other vortex-shedding configurations, such as starting and steadily-

oscillating circular cylinders (Jeon & Gharib, 2004), oscillating flat plates (Milano & Gharib,
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2005), and accelerating low-aspect-ratio flat plates (Ringuette et al., 2007). Furthermore,

vortex pinch-off has been observed in biological flows such as that through the mitral valve

in the human heart (Gharib et al., 2006) and the flow generated by jetting juvenile squid

(Bartol et al., 2009; Linden & Turner, 2004) and jellyfish (Dabiri et al., 2006, 2010).

The method of Gharib et al. (1998) poses several challenges, however. First, determining

the final circulation of the vortex ring requires that the ring be distinguishable from its

trailing jet from vorticity contours. Since such a distinction is not possible until the vortex

has advected away from the wake, it requires observation of the vortex ring’s evolution after

the initiation of pinch-off. In unsteady flows, vortex breakdown can obscure these long-term

observations. Second, even if one has the capability to record the vortex evolution for these

long times, it is essential that the vorticity field not diffuse and the vortex not distort

by interaction with other structures in the flow, both of which are common processes in

biological flows. Finally, as Bartol et al. (2009) remark, in low Reynolds number flows, it

can be difficult to discern whether or not the elongated nature of some naturally occurring

vortex rings represents pinch-off that has been obscured by viscous diffusion.

In this chapter, an alternate method for identifying vortex ring pinch-off using La-

grangian coherent structures (LCS) is proposed. LCS are finite-time invariant manifolds in

flows with arbitrary time-dependence, akin to the invariant manifolds in time-independent

flows. The manifolds are Lagrangian, in that they are derived from fluid trajectories. The

concept of LCS was formalized in a series of papers by Haller and co-workers (Haller, 2000,

2001a,b, 2002; Haller & Poje, 1998; Haller & Yuan, 2000), and precise quantitative defi-

nitions and properties of LCS were given by Shadden et al. (2005). In addition to being

nearly-invariant manifolds (at least for some finite time); LCS act as barriers to transport

(Du Toit & Marsden, 2010; Shadden et al., 2006; Peng & Dabiri, 2009; Beron-Vera et al.,
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2012),they act as separatrices between regions with qualitatively different kinematics (Shad-

den et al., 2006); and they provide a ‘skeleton’ of the flow by identifying regions of high

attraction and repulsion (Mathur et al., 2007; Olascoaga & Haller, 2012; Green et al., 2007).

As a result, LCS have been used to investigate turbulence (Mathur et al., 2007; Green et al.,

2007), to study transport and mixing in atmospheric and oceanic flows (Olascoaga & Haller,

2012; Du Toit, 2010; Beron-Vera et al., 2012, 2010), and to analyze blood flow in the human

cardiovascular system (Hendabadi et al., 2012; Arzani & Shadden, 2012; Shadden & Taylor,

2008; Vétel et al., 2009; Shadden et al., 2010).

LCS have been used in numerous studies as a structure identification tool, to identify

and investigate vortices in a variety of flows. Green et al. (2007, 2010) showed that LCS

can be used to identify the boundaries of Hill’s spherical vortex. Shadden et al. (2006) used

LCS to identify the boundaries of a vortex ring generated from a piston-cylinder apparatus,

and Shadden et al. (2007) studied the evolution of the LCS during the formation of a vortex

ring from this arrangement. Additionally, Green et al. (2007) used LCS to investigate the

evolution of a single hairpin vortex, while Green et al. (2010) considered the shedding of

vortices by a pitching trapezoidal panel using LCS. In these studies, Green and co-workers

demonstrated that changes in the LCS structure correspond to changes in vortex structure.

Following the success of LCS as vortex identification tools in classical experimental

setups, as well as canonical numerical and analytical flows, the technique has also been

applied to the study of biological vortex flows. For example, Shadden et al. (2006), identified

the region of fluid sampled by a free-swimming Aurelia aurita jellyfish during its recovery

stroke. This analysis was extended by Peng & Dabiri (2009),who studied the ‘capture

region’ of free-swimming jellyfish, and predator-prey interactions between jellyfish and their

planktonic prey. In numerical simulations, Lipinski & Mohseni (2009) analyzed the vortex
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wake of two types of jellyfish, while Wilson et al. (2009) considered the propulsion of jellyfish-

like swimmers at low Reynolds numbers, and Eldredge & Chong (2010) considered the

vortices shed by bio-inspired flapping wings.

In this study, we used the LCS framework to analyze a starting jet flow with a stroke

ratio of approximately twelve. We considered the evolution of the LCS during fluid ejection,

and searched for an indication of pinch-off in the LCS structure. Since the pinch-off process

involves the separation of distinct vorticity-carrying regions of the flow (i.e., the vortex ring

and trailing jet), we proposed that LCS are an effective tool for quantifying the process.

Indeed, using LCS, we were able to identify the onset of pinch-off, without requiring that the

circulation in the vortex ring be measured after pinch-off. Furthermore, the LCS approach

provided insight into the structure and dynamics of the trailing shear layer which analysis

of the vorticity alone, or other traditional metrics, overlooked.

This chapter is organized as follows. §2.2 contains an overview of the experimental

methods for generating vortex rings and for data collection. The LCS framework and

methods utilized in this chapter are introduced in §2.3. Results of the LCS analysis for

predicting pinch-off and studying vortex dynamics in the wake of the leading vortex ring,

are presented in §2.4 and §2.5, and the comparison between the LCS method and existing

criteria is discussed in §2.6. Finally, concluding remarks are presented in §2.7.

2.2 Vortex ring generation

Vortex rings were generated in a water tank using a piston-cylinder arrangement similar

to that described in Dabiri & Gharib (2004b). However, whereas Dabiri & Gharib (2004b)

considered low stroke ratios only (L/D = 2, 4), we consider a case where L/D ≈ 12.

Figure 2.1 shows a schematic of the experimental setup. Flow from a constant-head tank
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Figure 2.1: Schematic of the experimental setup for generating circular vortex rings.

was allowed to drive a piston through a hollow cylinder of internal diameter D = 2.54 cm

submerged in the water tank. A column of fluid of length L ≈ 30.5 cm was impulsively

ejected from the sharp-edged nozzle by the motion of the piston, and rolled up into a vortex

ring which propagated through the surrounding fluid owing to its self-induced velocity.

The resulting velocity field was recorded using digital particle image velocimetry (DPIV)

(Willert & Gharib, 1991; Adrian, 1991). A pulsed Nd:YAG laser sheet was used to illuminate

a symmetry plane of the axisymmetric flow, and the flow was seeded with nominally 13-

micron, neutrally buoyant glass spheres. The spheres scattered incident light from the laser

sheet onto a CCD camera whose image plane was positioned parallel to the sheet. The test

section measured approximately 12 cm (4.7D) radially and 20 cm (7.9D) axially, and the

resolution of the captured images was approximately 0.19× 0.19 mm. The resulting images

were interrogated using cross-correlation, with a separation of 18 ms between frames and an

interrogation window size of 32× 32 pixels with a 50% overlap. The velocity and vorticity
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fields were calculated using an in-house code, and the resolution for both was approximately

3× 3 mm (0.13× 0.13D) with an uncertainty of 1% and 3% respectively.

Experiments were conducted at a Reynolds number Re = UpD/ν = 1400, based on the

nozzle diameter and average piston velocity. The Reynolds number based on the circulation

of the leading vortex ring was ReΓ = Γring/ν = 4000. This data was previously reported

in Dabiri & Gharib (2004c). However, in that study the authors considered only the time

history of the total circulation emanating from the piston-cylinder vortex generator, and

proposed a correction to the slug model for the flux of vorticity from these devices. The

vorticity field was hence reported for the first time by O’Farrell & Dabiri (2010).

2.3 Lagrangian coherent structures

LCS are known to correspond with regions of high trajectory separation or attraction.

Just as two points straddling the stable manifold of a hyperbolic fixed point in a time-

independent system will diverge exponentially in forward time, points straddling a repelling

LCS will diverge in forward time. Likewise, points straddling an attracting LCS will diverge

in backward time, a behavior akin to the exponential divergence in backward time of points

straddling the unstable manifold of a hyperbolic fixed point. These properties of LCS are

exploited in developing methods for identifying their location in time-independent flows.

LCS are most often extracted from experimental, numerical, and analytical velocity

fields by means of a scalar quantity known as the finite-time Lyapunov exponent, or FTLE.

The FTLE is a measure of the divergence, in finite time, of trajectories starting near a point

x in the domain. Given a flow map φt0+T
t0

: x(t0) 7→ x(t0 + T ) that maps fluid particles

from their initial position at t0 to their position a time T later, the FTLE is given by:
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σTt0 =
1

|T | ln
∥∥∥∥
dx(t0 + T )

dx(t0)

∥∥∥∥
2

(2.1)

where dx(t0 + T )/dx(t0) is the deformation tensor. Here ‖·‖2 indicates the spectral norm

of the tensor, which corresponds to its largest singular value. As a result, σTt0 measures the

linearized divergence of trajectories starting near x(t0) over a time interval T . T may be

positive (indicating that the FTLE field is calculated by integrating trajectories in forward

time) or negative (indicating integration in backward time). Hence, high values of the

forward-time FTLE correspond to regions of large trajectory separation, while high values

of the negative-time FTLE correspond to regions of large trajectory convergence.

Regions of maximum fluid particle separation (for T > 0) or maximum fluid particle

attraction (for T < 0) produce locally maximizing curves known as ‘ridges’ in the FTLE field

(Haller & Yuan, 2000; Shadden et al., 2005). The integration time T is chosen according

to the particular flow being analyzed, with longer integration times leading to more of

the ridge being revealed, and to sharper ridges with higher spatial resolution. In practice,

however, T is bounded by the numerical costs of integrating trajectories, as well as by the

availability of velocity data. One of the advantageous properties of using the FTLE field

for fluid structure identification is that, unlike existing Eulerian criteria, the location of

the ridges remains unchanged when the integration time is varied (Green et al., 2007). If

the integration time is sufficiently large, the ridges in the positive-time and negative-time

FTLE will intersect, providing a boundary for the flow structure of interest.

However, ridges in the FTLE field need not necessarily represent hyperbolic LCS as

they may correspond to lines of high shear. In their study of the development of a single

hairpin vortex into a co-moving group of like vortices (or ‘hairpin packet’), Green et al.
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(2007) demonstrated the importance of verifying the hyperbolicity of LCS in studying vortex

interactions. In order to confirm that a ridge is indeed a hyperbolic LCS, the sign of the

instantaneous strain rate normal to the ridge must be checked (Haller, 2002). Ridges in

the forward-time (T > 0) FTLE field where the strain rate normal to the ridge is positive

(particle stretching away from the ridge) represent a repelling LCS. Conversely, ridges in

the backward-time (T < 0) FTLE field where the strain rate normal to the ridge is negative

(particle attraction towards the ridge) represent an attracting LCS (Haller, 2002).

Shadden et al. (2006) were able to identify the boundaries of a vortex ring with a stroke

ratio of approximately L/D ≈ 2 using LCS. The authors found that the attracting LCS

formed the forward-facing boundary of the vortex ring, while the repelling LCS formed the

rear boundary of the vortex, and their intersection provided a complete boundary of the

vortex. The results of Shadden et al. (2006) are replicated below, using the velocity data

for the L/D = 2 vortex ring reported in Dabiri & Gharib (2004b). The FTLE fields were

computed using Dr. Philip Du Toit’s software for efficient FTLE computation: Newman

(Du Toit, 2010). In figure 2.2, the forward-time FTLE is shown in blue, and the backward-

time FTLE is shown in red. It is evident from this figure that the attracting LCS formed

the forward-facing boundary of the vortex ring, while the repelling LCS formed its rear

boundary. In addition, while the vortex was forming, the repelling LCS consisted of two

segments attached to the nozzle of the vortex generator (figure 2.2(a)). Once fluid ejection

stopped, however, the two segments merged and formed the rear boundary of the vortex.

Using a setup which allowed the recording of velocity fields inside the vortex generator,

Shadden et al. (2007) were able to observe that the two segments in figure 2.2 actually

connect inside the vortex generator.

In figure 2.2, the forward- and backward-time FTLE fields are shown as contours ranging
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Figure 2.2: Repelling (blue) and attracting (red) LCS for the vortex ring with a stroke
ration of two considered in Dabiri & Gharib (2004b), at: (a) T̂ = 1.8, (b) T̂ = 2.3, (c)
T̂ = 7.1. Velocity vectors are shown in black for reference. Flow is from left to right, and
time T̂ = 0 corresponded to the initiation of fluid ejection.
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from white to blue, and white to red, respectively. Values of the forward-time FTLE below

70% of the maximum have been blanked out. No blanking was applied on the backward-

time FTLE values, in order to illustrate the effect of changing integration time on the FTLE

fields. In figure 2.2(a), the ridge in the backward-time FTLE is seen to be very diffuse. This

occurs because, at these early stages in the formation process, scarce velocity information

is available for backward integration. The integration time selected for the computation of

the FTLE fields was T = 3.3 s (UpT/D = 7.1). In the backward-time case, when sufficient

information was not available to allow the integration of trajectories backwards for a time

T = 3.3 s (i.e., when t0 < 3.3 s), the longest integration time possible was used. As a result,

T for the backward-time FTLE was 0.7 s (UpT/D = 1.5) in figure 2.2(a), 1 s (UpT/D = 1.5)

in figure 2.2(b), and 3.3 s in figure 2.2(c). The corresponding increase in the sharpness and

length of the ridges in the backward-time FTLE is evident in figure 2.2, and it highlights

the difficulty of using the backward-time FTLE for the study of the formation of new fluid

structures at short times after their formation is initiated, when backward-time velocity

data are scarcely available.

In the study that follows, the FTLE field was computed on a Cartesian grid with a reso-

lution of 0.3×0.3 mm (0.01×0.01D), using an in-house MATLAB R© (The MathWorks, Inc.,

Natick, MA) toolkit designed by Dr. Jeff Peng, and described in Peng et al. (2007). This

toolkit is freely available on the web at: http://www.dabiri.caltech.edu/software.html. At

each time t, each point on the grid was advected by the flow by numerically integrating the

velocity field data for the integration time T . A fourth-order Runge-Kutta scheme was used

for the numerical integration, and bilinear interpolation was used whenever interpolation of

the velocity data was required. The deformation tensor was then computed at each point

on the grid using central differencing with neighboring grid points. Finally, the FTLE field
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was computed by evaluating (2.1) at each point on the grid.

Ridges in the FTLE field were extracted using the method described in Mathur et al.

(2007). We identified regions around the ridges where the gradient of the FTLE (∇σTt0(x))

exceeded a set threshold (50% of the maximum) and used a two-dimensional gradient climb

within these regions to identify the locus of points on the ridge. A point was considered

to be on the ridge when the Hessian of the FTLE (∇2σTt0(x)) had at least one negative

eigenvalue and no appreciable change (Mathur et al., 2007) was observed in the angle

between the eigenvector corresponding to the eigenvalue of ∇2σTt0(x) with the smallest

norm and ∇σTt0(x). For each point on a ridge, we approximated the unit normal to the

ridge by n = ∇σTt0(x)/‖∇σTt0(x)‖2 and computed the instantaneous rate of strain normal

to ridge as 〈n,Sn〉, where the rate of strain tensor S is the symmetric part of the velocity

gradient tensor ∇u.

2.4 Vortex pinch-off

In figure 2.3 we present contours of the vorticity field at three separate instants. The

growing vortex ring is shown in its early stages of development in figure 2.3(a) (T̂ = 1.5).

At T̂ = 4.1, a trailing shear layer carrying significant vorticity had developed (figure 2.3(b)).

Figure 2.3(c) shows that at a formation time of T̂ = 8.5, the vortex ring had separated from

the trailing shear layer and advected away from it by self-induction. These results are in

agreement with those reported by Gharib et al. (1998) for large stroke ratios (see their figure

5).

To further study the pinch-off process, we computed the forward-time and backward-

time FTLE fields from the PIV velocity data. The integration time was T = 3.3 s (or

T̂ = 7.3), where time t0 = 0 corresponded to the initiation of fluid ejection from the
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Figure 2.3: Contours of vorticity at: (a) T̂ = 1.5, (b) T̂ = 4.1 and (c) T̂ = 8.5. Contour
levels, min = 25% of ωmax, max = 95% of ωmax, increment = 10%. Dashed lines indicate
negative vorticity. The cylinder exit plane is located in the z/D = 0 plane, and the z-axis
coincides with the vortex generator centerline. Flow is from left to right.

cylinder. The integration time was chosen because it yielded the complete forward-facing

boundary of the vortex and excellent spatial resolution in the ridges, while remaining feasible

in terms of computational expenses.

Figure 2.4 shows both the attracting and repelling LCS, in red and blue respectively, at

three time instants during the vortex formation process. The forward- and backward-time

FTLE fields are shown as contours ranging from white to blue, and white to red, respectively.

Values of the forward-time and backward-time FTLE below 70% of the maximum have been
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blanked out, in order to show the outline of the attracting and repelling LCS. Figure 2.4(a)

shows the LCS at T̂ = 3.0. Since this time instant was well before expected formation

number of four, the leading vortex ring was still accepting vorticity from the shear layer.

As a result, the LCS structure resembled that shown in figure 2.2(a) for a stroke ratio of

two. At later times (figure 2.4(b) and (c)), differences emerged between the L/D = 2 and

L/D = 12 cases. Rather than close up to form the rear boundary of the vortex, the repelling

LCS was found to elongate as fluid ejection continued, and new structures were observed

developing in the wake of the leading vortex. In contrast, the attracting LCS resembled the

LCS in the stroke-ratio-two case even up to formation times after the expected occurrence

of pinch-off (figure 2.4(b)). At long formation times, however, new attracting structures

appeared in the wake of the leading vortex (figure 2.4(c)).

The structure of the attracting and repelling LCS in figure 2.4 suggests that the forward-

time FTLE field is most useful when studying pinch-off. The repelling LCS, extracted from

the forward-time FTLE, was found to form the rear boundary of the vortex ring, which

was most affected by pinch-off as evidenced by the differences between figures 2.2 and

2.4. Secondly, computing the backward-time FTLE requires backward-time data which,

as mentioned previously, is not always available in sufficient quantities by the initiation of

pinch-off. Furthermore, and perhaps due to one or both of the aforementioned reasons,

changes in the LCS structure between the isolated vortex ring and pinched off vortex case

(figures 2.2 and 2.4, respectively) were not seen until later formation times in the attracting

LCS. Therefore, we focused our attention on the forward-time FTLE field and the repelling

LCS.

Figure 2.5(a) shows a contour plot of the forward-time FTLE field at the arbitrary time

t0 = 1.3 s (T̂ = 2.8), before the vortex ring pinched off. In figure 2.5(b), the locus of
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Figure 2.4: Repelling (blue) and attracting (red) LCS for the vortex ring with a stroke ratio
of twelve, at: (a) T̂ = 3.0, (b) T̂ = 6.2, (c) T̂ = 9.8. Flow is from left to right.
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Figure 2.5: Contours of the forward-time FTLE field at T̂ = 2.8. In (b) the strain rate
normal to the LCS has been superimposed. Positive strain rate is shown in white, negative
in black.

points on the repelling LCS has been superimposed on the FTLE field, and points where

the rate of strain was negative have been colored black, while regions of positive strain

rate have been colored white. The spiral regions that corresponded to the vortex ring

core showed alternating patterns of positive and negative strain rate, consistent with the

shearing rotational flow within them (Green et al., 2007). Upstream of the spiral regions,

the strain rates normal to the LCS were positive, indicating that the ridge did indeed

represent a hyperbolic repelling line. The hyperbolicity of the LCS was checked throughout

the formation process, but the strain rate information was omitted from subsequent figures

to avoid obscuring important details of the LCS structure.

As fluid continued to be ejected out of the cylinder, the vortex ring convected down-

stream by self-induction and the repelling LCS lengthened until, at a formation time of

4.1 (t0 = 1.9 s), there was an abrupt change in the structure of the LCS. A new ridge,

discontinuous from the original one, appeared and the first LCS ended on the upstream end



35

Figure 2.6: Contours of the forward-time FTLE field at T̂ = 4.5. A detail of the boxed
region in (a) is shown in (b). A new repelling LCS has formed and is indicated in (b) by
an arrow.

a few instants later. Figure 2.6 shows a contour plot of the FTLE field, at a formation time

of 4.5 (t0 = 2.1 s). The presence of a new ridge just downstream of the cylinder exit plane

(z = 0) is evident in this figure, which corresponds to an instant 0.2 s (0.43 formation time

units) after the first appearance of the new ridge. The termination of the first repelling

LCS was visible a few instants later, and is evident in figure 2.7, taken at a formation time

of 5.9.

At a formation time of T̂ = 4.7 (t0 = 2.1 s), a third disconnected ridge appeared just

downstream of the cylinder exit, and the second repelling LCS ended several time steps

later. Figure 2.7 shows a contour plot of the FTLE field, at a formation time of T̂ = 5.9

(t0 = 2.7 s). The presence of a new ridge just downstream of the cylinder exit plane is

evident in this figure, which corresponds to an instant 0.5 s (1.1 formation time units) after



36

Figure 2.7: Contours of the forward-time FTLE field at T̂ = 5.9. A detail of the boxed
region in (a) is shown in (b). LCS 1 through 3 are indicated by arrows in (b). A new
repelling LCS (LCS 3) has just formed, and the termination of LCS 1 after the appearance
of LCS 2 is also evident at this time.

the first appearance of the third ridge. The termination of the second repelling LCS was

not evident until several time steps after the appearance of the third ridge, but it is clearly

visible in figure 2.10.

Following Gharib et al. (1998), we computed the total circulation emanating from the

piston-cylinder apparatus by integrating the vorticity contained within the lowest detectable

contours. The circulation in the leading vortex ring was measured for large formation

times, where the separation between the vorticity contours of the ring and those of the

shear layer was clear. Figure 2.8 shows the total circulation and vortex ring circulation

as a function of formation time. Gharib et al. (1998) found that for large stroke ratios

the vortex ring circulation increased in a step-like fashion after long formation times (see
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their figure 10). This step-like increase was caused by the leading vortex in the trailing

wake (hereafter referred to as vortex 2) catching up to and coalescing with the original

vortex ring (hereafter referred to as vortex 1). This phenomenon is commonly observed in

configurations with two co-axial vortex rings traveling in the same direction. The leading

vortex ring induces a velocity on the second vortex ring, which causes it to contract and

accelerate. Simultaneously, the velocity field induced by the trailing vortex causes the first

vortex to expand in diameter and decelerate. As a result, under certain conditions, the

trailing vortex may catch up to the leading vortex. If the initial conditions are favorable,

the second vortex ring can be drawn through the center of the leading vortex ring and pass

through it, a phenomenon known as ‘leapfrogging’ (Yamada & Matsui, 1979; Lim, 1997).

Often, however, the vortices instead coalesce into a single vortex ring (Maxworthy, 1972;

Oshima et al., 1975).

In figure 2.8 we observe a similar step-like behavior after formation times of T̂ ≈ 10,

due to the merger of vortices 1 and 2. For formation times between T̂ ≈ 8 and T̂ ≈ 10, the

vortex ring circulation was constant at Γ = 40±2. A straight line in figure 2.8 shows that at

a formation time of approximately 4.2 the total circulation equaled the circulation of vortex

1 for formation times between ≈ 8 and ≈ 10. The formation number was hence 4.2 ± 0.2,

which agreed well with the appearance of the second repelling LCS. A second straight

line in figure 2.8 shows that at a formation time of T̂ = 4.6 ± 0.2 the total circulation

equaled the final vortex ring circulation (i.e., the circulation of the combined vortices 1 and

2, Γ = 47.7 ± 1.5), meaning that vortex 2 must have itself pinched off from the trailing

jet at this formation time. The initiation of pinch-off of vortex 2 at a formation time of

T̂ = 4.6 ± 0.2 was found to correspond well with the appearance of a third repelling LCS

at a formation time of T̂ = 4.7.
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Figure 2.8: Total circulation and vortex ring circulation as a function of formation time. The
solid straight line indicates the T̂ at which vortex 1 pinched-off, and dashed line indicates
the T̂ at which vortex 2 stopped accepting circulation. The step-like increase in the vortex
circulation is due to vortex 2 coalescing with vortex 1.

2.5 Vortex pairing

Observing the continued evolution of the LCS revealed the appearance of additional, dis-

connected, repelling LCS at later times. The location of these LCS corresponded to the

location of additional vortex rings developing in the trailing shear layer, so that the de-

velopment of each new repelling LCS provided insight into the evolution of vortices in the

trailing wake. As new repelling LCS developed, many of them began to roll up into spirals,

and their structure began to resemble that of the vortex ring core in the first LCS.

However, some of the new LCS did not develop fully into tight spirals consistent with the

formation of a new vortex ring, but rather merged with the preceding LCS. Figure 2.9(a)

shows the first and second repelling LCS intersecting and beginning to merge. Figure 2.9(b)

shows that LCS 2 merged completely with the first repelling LCS and eventually became
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indistinguishable from it. This process was indicative of the beginning of the merger of

vortices 1 and 2.

The third repelling LCS (whose corresponding vortex we shall refer to as vortex 3) did,

however, develop fully into a tight spiral. Figure 2.10(a) shows the third repelling LCS

rolling up into a spiral. Figure 2.10(b), on the other hand, shows the fourth repelling LCS

(corresponding to vortex 4) intersecting with the third LCS. This intersection persisted in

time and constituted the first stage in the merger of the third and fourth repelling LCS, a

process akin to the merging of the first and second LCS in figure 2.9(b). The merging of

the third and fourth repelling LCS was indicative of the beginning of the merger of vortices

3 and 4.

Continued observation of the evolution of the emerging repelling LCS revealed a con-

sistent ‘pairing’ of adjacent vortices in the trailing jet. This phenomenon of vortex ring

pairing in circular jets is well documented in the literature of turbulent mixing layers (Grin-

stein, 1995; Winant & Browand, 1974; Ho & Huerre, 1984; Hussain & Zaman, 1980; Yule,

1978). This pairing process is believed to be initiated by wave instabilities in the shear

layer causing small radial displacements of the vortex rings in the jet (Petersen, 1978; Ho

& Huerre, 1984; Grinstein, 1995). The mutual interaction of the vortex rings then leads to

their merger at nearly fixed locations (Grinstein, 1995).

Although the appearance of new, disconnected repelling LCS is a subtle feature, the

new LCS were found to be persistent in time. The second repelling LCS remained apparent

from the forward-time FTLE field until the merger of vortices 1 and 2 at a formation

time of approximately 6.7, when it disappeared as the repelling LCS corresponding to

these vortices merged into a single coherent structure. In contrast, the third repelling LCS

remained separate from LCS 2 until the jet had shut off completely, since vortex 3 did not
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Figure 2.9: Contours of the forward-time FTLE field. (a) T̂ = 6.7. The boxed regions show
the initial stages of the merger of LCS 1 and 2. (b) T̂ = 8.0. The first and second repelling
LCS have merged at the regions indicated by the boxes.
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Figure 2.10: Contours of the forward-time FTLE field. (a) T̂ = 9.8. The boxed regions
show the third repelling LCS beginning to curl into a spiral. (b) T̂ = 10.2. The third and
fourth repelling LCS are merging at the regions indicated by the boxes. In both (a) and (b),
the termination of LCS 2 (now merged with LCS 1) several time steps after the appearance
of LCS 3, is evident.
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merge with the vortex ahead of it. Subsequent repelling LCS remained disconnected from

their neighbors either until they disappeared due to the merger of two vortices and their

corresponding LCS, or until fluid had ceased to exit the nozzle.

The FTLE field is not an instantaneous measure of fluid particle separation, but rather

an indication of the divergence of nearby trajectories over the integration time T . As a

result, Haller (2002) has shown that LCS are robust to local anomalies in the velocity field,

or short-lived features which have little or no effect on the overall flow. The observed

appearances of new repelling LCS were therefore robust indicators of a physical change in

the underlying vortex structures, as also found by Green et al. (2010). The appearance of

a new repelling LCS and termination of an existing one was the result of the separation of

two distinct regions of vorticity-carrying fluid, which resulted in the formation of regions

with separate dynamics. The merger of two repelling LCS into a single coherent structure,

on the other hand, was indicative of the merger of two regions of vorticity into a single

vortex.

2.6 Comparison with other criteria

Figure 2.3(b) shows a contour plot of the vorticity field at the initiation of pinch-off (T̂ =

4.1). Although the vortex ring ceased to accept vorticity at this time, it had not yet advected

away from its trailing shear layer. A clear separation between vorticity contours of ring and

wake was not evident until more than 4 formation time units later (figure 2.3(c)), and hence

vorticity contours alone were insufficient to identify the initiation of pinch-off.

The vorticity field, however, can be integrated to obtain the circulation and apply the

criterion of Gharib et al. (1998). Using this criterion, Krueger et al. (2006), Dabiri &

Gharib (2004a), and others (Jeon & Gharib, 2004; Milano & Gharib, 2005; Ringuette et al.,
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2007) were able to determine the formation number for a variety of flow configurations.

As discussed previously in §2.4, our results are in excellent agreement with the circulation

method proposed by Gharib et al. (1998). Moreover, unlike the circulation criterion of

Gharib et al. (1998), the current Lagrangian method is ‘instantaneous’: the initiation of

pinch-off was evident from the forward FTLE field corresponding to the instant when it

occurred. This does not imply, however, that the need for recording data past pinch-off

is eliminated, but knowledge of only the velocity field is required. This is of particular

relevance in many real flows of biological interest, where the vorticity field breaks down and

diffuses due to viscous effects (Bartol et al., 2009), and criteria based on circulation prove

difficult to use.

Like LCS, instantaneous streamlines can be derived from the velocity fields alone and

have been previously used to approximately describe vortex ring flows (Stanaway et al.,

1988; Dabiri & Gharib, 2004b). Figure 2.11 shows the instantaneous streamlines of the

flow, computed in the laboratory reference frame. We do not present the streamlines in

the reference frame of the leading vortex ring, unlike Dabiri & Gharib (2004b), since the

leading ring and trailing jet are known to translate with different velocities (Shusser &

Gharib, 2000). Since all of the flow structures do not translate at the same speed, a Galilean

transformation to the frame of reference of the vortex ring cannot be applied.

In figure 2.11, the streamline patterns before the initiation of pinch-off (2.11(a)), as

pinch-off is initiated (2.11(b)), and after the completion of the pinch-off process (2.11(a)),

are at formation times of T̂ = 2.2, 4.1 and 8.7, respectively. There is no salient feature in

figure 2.11(b) to indicate the initiation of pinch-off, and moreover there are no significant

qualitative differences between the streamline patterns in figures 2.11(a) through (c).

A variety of Lagrangian metrics also yielded relatively little insight into the dynamics of
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Figure 2.11: Instantaneous streamlines in the laboratory reference frame at: (a) T̂ = 2.2,
(b) T̂ = 4.1 and (c) T̂ = 8.7.
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pinch-off. Figure 2.12 shows the paths traced by twenty particles released at the nozzle exit

plane as the jet was initiated. Figures 2.12(a) through (c) show the pathlines before pinch-

off, at the onset of pinch-off, and after pinch-off, respectively. Figure 2.13 shows streaklines

starting at ten different locations on the nozzle exit plane before (2.13(a)), at the onset of

(2.13(b)), and after pinch-off (2.13(c)). Finally, figure 2.14 shows the timelines of the flow

at points before (2.14(a)), at the initiation of (2.14(b)), and after pinch-off (2.14(c)). There

are no salient features in figures 2.12(b), 2.13(b) and 2.14(b), to reveal that the pinch-off

process has been initiated. Moreover, careful comparison of the three parts in each figure

does not suggest that either pathlines, streaklines, or timelines give insight into the pinch-off

process.

While none of these Lagrangian metrics were particularly effective at identifying pinch-

off, LCS are provide effective tool because they are a quantitative indicator of relative

Lagrangian trajectories over time. Repelling LCS identify regions of high particle separa-

tion and act as separatrices between regions of qualitatively different flow (Shadden et al.,

2006; Haller, 2002), and are thus suited for identifying the separation of different regions

of vorticity-carrying flow that occurs during pinch-off. Furthermore, instantaneous stream-

lines, like streaklines and other Lagrangian metrics, are frame-dependent and thus not

suited for robust identification of the vortex structure in unsteady flows (Shadden et al.,

2006; Mathur et al., 2007). In these cases, robust vortex identification requires knowledge

of the time history of the motion (Lugt, 1995), information that is built into the definition

of the frame-independent FTLE.
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Figure 2.12: Pathlines for twenty particles released at T̂ = 0, at : (a) T̂ = 1.5, (b) T̂ = 4.1
and (c) T̂ = 10.0. The velocity vector field is shown in the background for reference. The
boxed arrows represent a speed of 4 nozzle diameters per second (D/s)
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Figure 2.13: Streaklines originating a ten different points on the nozzle exit plane, at: (a)
T̂ = 2.2, (b) T̂ = 4.1 and (c) T̂ = 5.9. The velocity vector field is shown in the background
for reference. The boxed arrows represent a speed of 4 nozzle diameters per second (D/s)
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field is shown in the background for reference. The boxed arrows represent a speed of 4
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2.7 Conclusions

A Lagrangian criterion for identifying vortex ring pinch-off in jet flow was proposed, and

demonstrated on a starting jet with a stroke ratio of twelve. The appearance of a new

repelling LCS, disconnected from the original one, and the subsequent termination of the

original repelling LCS, was found to coincide with the initiation of pinch-off. The new re-

pelling LCS were found to either roll up into spirals, indicating the appearance of persistent

vortices, or merge with the preceding LCS, indicating the merger of vortices in the shear

layer. Hence, the appearance of a new repelling LCS was found to be indicative of the ini-

tiation of vortex pinch-off and used to determine the formation number. Results obtained

using the LCS criterion were compared to those obtained using the circulation criterion of

Gharib et al. (1998), and were found to be in good agreement.

Furthermore, whereas Gharib et al. (1998) and others using similar methods have

recorded and identified the merging of the detached vortex ring with the first vortex in

its trailing wake, the repelling LCS revealed a consistent pattern of vortex pairing that

extends beyond these first and second vortices. This continuous vortex pairing pattern

has been identified as a recurrent feature in turbulent circular jets by various hot wire

studies (Petersen, 1978; Hussain & Zaman, 1980; Yule, 1978), yet it is difficult to observe

from the velocity and vorticity fields alone. The LCS, on the other hand, allowed for clear

identification of the pairing process from DPIV data.

Other pinch-off identification criteria, both Eulerian (vorticity contours, instantaneous

streamline patterns) and Lagrangian (pathlines, streaklines and timelines) were considered,

but found to yield little or no insight into the dynamics of pinch-off. The proposed LCS

criterion therefore proved a superior identifier of pinch-off for the flow considered. Further,
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because the proposed LCS criterion is frame-independent, independent of velocity deriva-

tives, and robust to anomalies in the velocity field, it has the potential to prove a robust

identifier of pinch-off in a wide variety of flows.

In particular, the proposed LCS criterion may prove to be a more suitable tool for

characterizing unsteady and low Reynolds number biological flows, such as those generated

by jetting swimmers (Dabiri & Gharib, 2005b; Bartol et al., 2009) or in the human heart

(Gharib et al., 2006; Hendabadi et al., 2012). Future work focused on applying the proposed

criterion to such flows, should determine the suitability of the criterion and its robustness.

The proposed Lagrangian approach to vortex pinch-off is of particular interest in con-

junction with the concept of ‘optimal’ vortex formation introduced in §1.3. This question

has been previously addressed (Linden & Turner, 2004; Gharib et al., 2006; Bartol et al.,

2009; Dabiri et al., 2006; Dabiri & Gharib, 2005a), but the proposed LCS analysis has the

potential to provide a more robust pinch-off identification criterion to aid in future studies

of optimal vortex formation in more complex biological flows. Additionally, proposed LCS

criterion could prove useful in assessing and understanding the performance of bio-inspired

and biomimetic underwater vehicles which incorporate pulsed jets.

Finally, it must be noted that although the LCS criterion is ‘instantaneous’ in the sense

that the LCS signature of the pinch-off process is evident at the initiation of pinch-off, it

does not eliminate the need for recording forward-time data past pinch-off. Computing the

forward-time FTLE field requires integrating particle trajectories in forward time, and thus

requires recording the velocity field after pinch-off. However, the LCS criterion is dependent

only on the forward-time velocity field, whereas criteria based on vortex circulation rely on

the vorticity field. So although the need for forward-time data persists, the LCS metric

eliminates the dependence on velocity derivatives, which become increasingly noisy during
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vortex breakdown.

Although this criterion provides a useful tool for identifying pinch-off in starting and

pulsed jets, the criterion is diagnostic and not predictive. While such criteria are useful

in uncovering the kinematics of the flow, they provide little insight into the dynamics of

the pinch-off process, and hence do not shed light on the underlying physical principles.

However, understanding these dynamics is key in predicting pinch-off. Therefore, in the

chapters that follow we examine the dynamics of pinch-off. Since most most naturally

occurring vortex rings are not circular, and the pinch-off of these types of vortices has not

been characterized in the past, we consider the formation of non-axisymmetric vortex rings

in the following chapter.

The material in this chapter was published in O’Farrell C and Dabiri JO (2010) “A

Lagrangian approach to identifying vortex pinch-off,” Chaos 20: 017513. Copyright 2010,

American Institute of Physics. It is reproduced here with permission.
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Chapter 3

Pinch-off of non-axisymmetric
vortex rings

3.1 Introduction

The robust occurrence of pinch-off in axisymmetric jet flows has been demonstrated in a

number of configurations (Gharib et al., 1998; Dabiri & Gharib, 2005b; Krueger et al., 2006).

However, naturally occurring vortices are rarely circular, and axisymmetric flows, such as

those generated by squid or jellyfish, are scarce in nature. In fact, most swimming and flying

animals generate elongated loop-like vortices rather than circular vortex rings (Kokshaysky,

1979; Rayner, 1979; Dickinson & Götz, 1996; Kern & Koumoutsakos, 2006; Kim & Gharib,

2011). For example, nearly elliptical vortices have been observed in the wakes of flying birds

(Kokshaysky, 1979), chains of elongated loop-like vortices have been found in the wakes of

an anguilliform swimmer by Kern & Koumoutsakos (2006), and Dickinson & Götz (1996)

found that fruit flies generate deformed vortex rings during flight. Similarly, the mitral

valve in humans is not axisymmetric, so circular vortex rings do not describe the flow in

the human left ventricle with complete accuracy (Domenichini et al., 2005; Bellhouse, 1972;

Reul et al., 1981; Wieting & Stripling, 1984) .

The departure from axisymmetry of most vortex rings of biological relevance is of im-
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port because the limit on vortex ring growth imposed by the Kelvin-Benjamin principle

has only been shown to apply to axisymmetric jetting flows. Benjamin (1976)’s proof of

Kelvin’s argument relies on the the assumption of axisymmetry. In other, non-axisymmetric,

vortex-shedding configurations, no limit on the growth or size of vortices is known. In the

case of vortex formation from two-dimensional orifices, for example, recent experimental

(Afanasyev, 2006) and computational (Pedrizzetti, 2010) results suggest that there is no

limit on the growth of a vortex dipole.

In this regard, the work of Domenichini (2011) is of particular interest. Domenichini

(2011) studied the formation of vortices from slender orifices whose outline consisted of two

semicircular portions connected by two rectilinear segments of varying length (figure 3.1). In

his computations, the author found that the roll-up of the shear layer and vortex formation

process on the circular and rectilinear segments differed considerably. In particular, for

nozzles with rectilinear segments of sufficient length, he found evidence of pinch-off at the

center of the circular portions at a non-dimensional time consistent with the work of Gharib

et al. (1998), but no evidence of pinch-off at the center of the rectilinear portions. The

author ascribed these differences to the dependence on local curvature of the self-induced

velocity of the lead vortex ring (Saffman, 1992; Leonard, 1985; Hussain & Husain, 1989),

which caused the portions of the vortex closest to the circular sides of the slender orifices to

move away from the shear layer faster than the portions near the rectilinear sides. Hence,

Domenichini (2011) concluded that pinch-off in these non-axisymmetric vortex rings can be

a local phenomenon, determined by local curvature.

In his concluding remarks, Domenichini (2011) theorized that his findings could, with

small modifications, extend to other non-axisymmetric geometries in general, and elliptical

vortex rings in particular. However, while the behavior of isolated non-circular vortex rings
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H

D

Figure 3.1: Schematic of Domenichini’s slender orifices. The orifices consisted of two semi-
circular segments of diameter D connected by rectilinear segments of length H. The ratio
of the length of the flat segment to the diameter of the circular segment (h = H/D) was
varied in order to consider increasingly slender orifices.

and of non-axisymmetric jets have been the subject of extensive study, the vortex formation

process for non-axisymmetric rings has not been studied in detail. Hence, Domenichini’s

conjecture remains untested.

The evolution of isolated vortex rings of non-circular shape has been examined in a

variety of computational, analytical, and experimental investigations. In particular, the

behavior of elliptical vortex rings is well documented, mostly through computational stud-

ies which make use of the localized induction equation of Arms & Hama (1965) (Viets &

Sforza, 1972; Kimura, 2006), the Rosenhead-Moore approximation (Dhanak & de Bernar-

dinis, 1981), or other vortex filament methods (Fernandez et al., 1995; Ryu & Lee, 1997).

These simulations are complemented by a number of experiments, including smoke and dye

visualizations (Viets & Sforza, 1972; Dhanak & de Bernardinis, 1981; Hussain & Husain,

1989; Hussain & Hussain, 1991), hot wire studies (Oshima et al., 1988), and particle image

velocimetry measurements (Adhikari, 2009). The bulk of these studies focused on the time-

dependent deformation of the elliptical vortex ring due to the curvature-dependence of the

vortex propagation velocity (Arms & Hama, 1965; Dhanak & de Bernardinis, 1981; Viets

& Sforza, 1972). Similar experimental and numerical methods have been applied in studies
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of the deformation of isolated vortex rings with other non-circular geometries, including

those with initially rectangular (Viets & Sforza, 1972; Grinstein, 1995; Kambe & Takao,

1971) and lenticular (Kambe & Takao, 1971; Oshima, 1972) shapes. Viets & Sforza (1972)

considered the evolution of a vortex ring whose initial shape was described by a superellipse

or Lamé curve. It is interesting to note that Kiya & Ishii (1991) and Kiya et al. (1992)

characterized the deformation of isolated ‘pseudo-elliptic’ vortex rings of a shape identical

to those considered by Domenichini (2011).

Considerable attention has also been devoted to the study of non-circular free jets,

much of it motivated by their favorable mixing properties and reduced jet noise when

compared to circular jets (Gutmark & Grinstein, 1999; Ho & Gutmark, 1987; Ahuja et al.,

1990). Since the dynamics of the non-circular vortex rings in these jets are thought to

be the driving force behind these beneficial properties, numerous studies on non-circular

jets have focused on the dynamics of the vortex rings in the jet. In particular, Husain

and Hussain (Hussain & Husain, 1989; Hussain & Hussain, 1991; Husain & Hussain, 1993)

conducted a comprehensive study of the dynamics of vortex rings in elliptic jets. A similarly

detailed treatment of the dynamics of vortex rings in rectangular jets is found in the works

of Grinstein, Gutmark and others (Grinstein, 2001; Grinstein et al., 1995; Gutmark &

Grinstein, 1999).

Except for the work of Adhikari (2009), however, all of the above studies focused on

either isolated vortex rings at low stroke ratios, or on the dynamics of vortices in a steady

jet. Adhikari (2009) considered the effect of increasing stroke length on the formation of

elliptical vortex rings, and compared the interaction of the growing vortex ring with its

trailing shear layer to the dynamics and pairing of vortex rings in elliptic jets as described

in Husain and Hussain’s work (Hussain & Husain, 1989; Hussain & Hussain, 1991; Husain
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& Hussain, 1993). In addition to many excellent dye visualizations of elliptical vortex

rings at different stroke ratios, Adhikari (2009) conducted the only experimental study of

non-circular vortex rings using DPIV to date. However, the author did not address the

existence of any limits on the size of the vortex ring, nor did he compute a formation

number analogous to that of Gharib et al. (1998) or consider the dependence of the vortex

formation on curvature. As a result, the relationship of Adhikari (2009)’s vortex rings to

Domenichini’s conjecture remains unknown.

This chapter describes investigations into the formation of non-axisymmetric vortex

rings at long stroke ratios, and into the effect of curvature on the vortex formation process

and on the maximum size of the vortex ring. This study bridges the gap in our current

understanding of non-circular vortex rings, by considering the intermediate states lying

between isolated non-axisymmetric vortex rings, and steady non-circular jets. In particular,

we tested Domenichini’s hypothesis in a wider class of non-circular vortex rings, in order

to determine what role local and global parameters play in the onset of pinch-off in non-

circular starting jets. Ultimately, the goal of this study was to define an analogue to

the formation number of Gharib et al. (1998), for the development of vortex rings with

moderate departure from axisymmetry of relevance to biological flows. To this end, we

conducted an experimental study of the formation of vortex rings from three non-circular

nozzles: two elliptical nozzles with aspect ratios of two and four, respectively, and an oval

nozzle constructed from two pairs of tangent circular arcs.

In addition to classical Eulerian techniques, we visualized the non-circular vortices by

means of the Lagrangian coherent structures (LCS) in the flow. LCS were introduced in the

preceding chapter, and are finite-time analogues to the stable and unstable manifolds, for

systems with arbitrary time dependence. These structures have been employed for structure
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identification and for investigating vortex dynamics in the preceding chapter, as well as by

Shadden et al. (2006, 2007), Green et al. (2007, 2010), and others.

The results of the Eulerian and Lagrangian analyses suggested that, for vortex rings

with a moderate deviation from axisymmetry such as those found in biological flows, global

parameters dominate the formation process. Hence, a non-dimensional critical formation

time, or formation number, for this class of vortex rings was defined based on the equivalent

diameter of the nozzle (the diameter of a circular nozzle with equivalent cross-sectional area).

This chapter is organized as follows. In §3.2 we describe the experimental setup and

methods utilized to collect planar velocity data on the non-circular nozzles, as well as the

numerical methods used to compute the LCS. The formation and later deformation of the

vortex rings are described in §3.3 and §3.4, from the Eulerian and Lagrangian perspectives,

respectively. The effect of curvature on the growth and limiting formation number of non-

axisymmetric rings is examined in §3.5. Finally, a comparison of our results with those of

Domenichini (2011), and their implications to the study of biologically relevant vortex flows

are considered in §3.6.

3.2 Methods

3.2.1 Experimental methods

We considered the formation of non-axisymmetric vortex rings from three nozzles of different

cross sectional shape: an elliptical nozzle with an aspect-ratio of two, an elliptical nozzle

with an aspect-ratio of four, and an oval nozzle constructed from four connected segments

with constant, non-zero curvature. These nozzles will henceforth be referred to as the AR2

nozzle, the AR4 nozzle, and the oval nozzle, respectively. The three vortex generator devices



58

Driving flow

Nozzle
L
block

H
block

W
block

L
nozzle

L
cavity

L
piston

Figure 3.2: Vortex ring generator geometry. The vortex generator consisted of an acrylic
block attached to a non-circular nozzle with one of three cross sectional shapes: an ellipse
with an aspect-ratio of two, an ellipse with an aspect-ratio of four, and an oval constructed
from tangent circular segments of constant curvature.

Dimension AR2 ellipse AR4 ellipse Oval nozzle

Lblock 19.05 19.05 24.13

Wblock 12.7 12.7 12.7

Hblock 5.1 5.1 5.1

Lnozzle 8.89 8.89 8.89

Lpiston 2.54 2.54 2.54

Lcavity 25.4 25.4 30.48

Table 3.1: Key dimensions (in cm) of the vortex generators with different nozzle geometries.

consisted of an acrylic block culminating in a sharp-edged nozzle with a cross section in

one of the three aforementioned shapes (figure 3.2). A hollow cavity with the same cross

sectional shape as the nozzle ran the length of the device, and an identically-shaped piston

was allowed to slide freely along the cavity. Table 3.1 shows the key dimensions of the three

vortex generators with different nozzle geometry.

A summary of the geometrical properties of the three nozzle shapes considered is given

Nozzle shape Deq (cm) κmin (cm−1) κmax (cm−1) Max. piston stroke (cm)

AR2 ellipse 4.45 0.16 1.26 21.6

AR4 ellipse 4.45 0.06 3.6 21.6

Oval 3.62 0.33 1.31 26.4

Table 3.2: Shape and dimensions of the three non-axisymmetric nozzle shapes considered.
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in table 3.2. The three nozzle shapes were selected to encompass a wide class of those

non-circular nozzles not considered by Domenichini (2011). In the two elliptical nozzles,

the curvature varied continuously from it minimum value at the minor axis of the ellipse,

to its maximum value at the major axis. However, the range of curvatures was much larger

in the AR4 nozzle, than in the AR2 nozzle (κmax/κmin ≈ 60 and ≈ 8, respectively). This

allowed us to asses the relative importance of local curvature and global parameters to

pinch-off, and to ascertain whether large variations in curvature were required to produce

the spatially varying results reported by Domenichini (2011).

However, the nozzles considered by Domenichini (2011) did not exhibit a smooth varia-

tion in the curvature, but rather they contained discontinuities in their curvature where the

straight segments met the circular segments. Furthermore, the curvature on the rectilinear

segments of Domenichini’s nozzles was zero, while the elliptical nozzles described above did

not include regions of zero curvature. In order to ascertain whether discontinuities in curva-

ture are required to produce the spatially varying pinch-off observed by Domenichini (2011),

we constructed an oval nozzle from the intersection of two pairs of circular segments with

distinct curvature, which resulted in discontinuities in the curvature at the intersections of

the segments.

The vortex generators were submerged in a water tank, and vortex rings were generated

using an arrangement similar to that described by Dabiri & Gharib (2004b). Figure 3.3

shows a schematic of the experimental setup. Flow from a constant-head tank, delivered by

a computer-controlled solenoid valve, was allowed to drive the piston forward in its cavity.

A column of fluid of was impulsively ejected from the sharp-edged nozzle by the motion of

the piston, and rolled up into a vortex ring which propagated through the surrounding fluid

owing to its self-induced velocity.
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Figure 3.3: Schematic of the vortex ring generator setup.

The resulting velocity field was mapped using two-component, planar digital particle

image velocimetry (DPIV) (Willert & Gharib, 1991; Adrian, 1991). A pulsed Nd:YAG laser

sheet was used to illuminate a plane through the non-axisymmetric nozzle, and the flow

was seeded with 13µm neutrally-buoyant glass spheres. Light from the incident laser sheet

was scattered by the glass spheres onto a CCD camera whose image plane was positioned

parallel to the laser sheet. The test section measured approximately 18 cm × 18 cm, and

the resolution of the captured images was approximately 0.18 × 0.18 mm2. The resulting

images were interrogated using cross-correlation, with a separation between images of 33

ms, and an interrogation window size of 32 × 32 pixels with a 50% overlap. The velocity

and vorticity fields were calculated using an in-house code, and the resolution for both was

approximately 3× 3 mm2 with an uncertainty of 1% and 3%, respectively.

The first of the non-axisymmetric nozzles considered had a cross section in the shape

of an ellipse with an aspect-ratio of two. The nozzle measured 6.35 cm at the major axis,
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Figure 3.4: Data-collection points along the edge of the AR2 nozzle. The nozzle outline is
shown in black, and seven data-collection points spanning the range of available curvatures
are shown in red. The corresponding DPIV planes are denoted by the blue lines.

and 3.17 cm at the minor axis, and its equivalent diameter (Deq =

√
4×Area

π ) was 4.45 cm.

The local curvature along the nozzle contour varied from a minimum of κ = 0.16 cm−1 at

the minor axis, through a maximum of κ = 1.26 cm−1 at the major axis. To determine

the effect of local curvature on vortex formation, we recorded the velocity field at seven

locations between the major and minor axes. Figure 3.4 shows the outline of the nozzle

with the AR2 elliptical cross section, as well as the location of the seven data-collection

points along the nozzle edge, which spanned the entire range of available curvature values.

At each curvature point, the vortex generator was oriented such that the laser sheet

was locally normal to the nozzle edge, so as to minimize out-of-plane motions. The precise

alignment of the laser sheet and nozzle at each curvature point was achieved by constructing

a device that secured the vortex generator at a set of pre-defined angles. The mounting

device consisted of a three-sided box, with slots etched into the inside of the two opposing

faces of the box (the side-walls). The box sat on the bottom of the tank on its bottom

plate, and acrylic plates could be fitted into the two sets of slots to complete the front and

back walls of the open-top box (see figure 3.5). The acrylic plates were laser-cut to hold the
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rectangular portion of the vortex generator at a specific angle, and could be interchanged to

achieve each of the pre-set angles precisely. The laser sheet and camera were aligned with

the mounting box at the start of the experiment, and remained stationary throughout data

collection. Since the main body of all three vortex generators consisted of a rectangular

block with the same dimensions, the design of the mounting box allowed us to conduct

experiments on the second and third nozzles using the same setup.

Removable plates

Vortex generator

Figure 3.5: Vortex generator mounting box. Pairs of acrylic plates slid into slots on the
sides of the mounting box. The plates were designed to hold the vortex generator at several
pre-defined angles, to collect data at different curvature values and ensure proper alignment
of the laser sheet and camera.

The second nozzle had an elliptical cross section of the same equivalent diameter as the

AR2 nozzle, but with an aspect-ratio of four. This nozzle, which is referred to as the AR4

nozzle, measured 8.89 cm at the major axis, and 2.22 cm at the minor axis. In this case,

the curvature ranged from κ = 0.06 cm−1 on the minor axis, to κ = 3.6 cm−1 on the major

axis. Since this nozzle spanned a much larger range of curvatures than the AR2 nozzle,

the deformation of the elliptical vortex ring was more pronounced in this case. As a result,

we were only able to collect data on planes aligned with the major and minor axes of the

ellipse, since the deformation was symmetric about these two planes. The increased range

of curvatures is evident in figure 3.6, which shows the outline of the AR4 nozzle.
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Figure 3.6: Data-collection points along the edge of the AR4 nozzle. The nozzle outline is
shown in black, and the two data-collection points on the major and minor axes are shown
in red. The corresponding DPIV planes are denoted by the blue lines.

Finally, we considered a third nozzle with a non-circular cross section. However, rather

than having an elliptical cross section where the curvature varied smoothly, the third nozzle

nozzle was constructed from segments with one of two distinct, non-zero, curvature values.

Figure 3.7 shows the outline of this oval nozzle, which was constructed from two pairs

of tangent circular arcs. On the two segments nearest the x-axis, the curvature of the

nozzle was κ = 1.31 cm−1, whereas the curvature on the remaining two segments was

κ = 0.33 cm−1. The four circular segments were tangent at their intersection, but there

was a discontinuity in the local curvature at the four intersection points. This oval nozzle

had an equivalent diameter of Deq = 3.62 cm. DPIV measurements were only conducted at

the two symmetry axes of the nozzle, which corresponded to the midpoints of the constant

curvature segments (the x- and y- axes).

The coordinate system for all experiments was defined relative to the nozzles as follows:

the z-axis was parallel to the direction of fluid ejection, and set to coincide with the nozzle

centerline, with the nozzle exit plane located at the plane z = 0. The x-axis was aligned

with the major axis of the nozzle, and the y-axis coincided with the minor axis of the nozzle.

In all three cases, experiments were conducted at a Reynolds number based on the piston

speed and equivalent diameter of the nozzle (Re = UpDeq/ν) of approximately 2000, and a
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Figure 3.7: Cross section of the oval nozzle. The two sections closest to the x-axis are
tangent to a circle of radius R = 0.8 cm (– –), and the two sections nearest to the y-axis
are tangent to a circle of radius R = 3.1 cm (– –)

Reynolds number based on vortex ring circulation (Γring/ν) between 3000 and 4000.

3.2.2 Lagrangian coherent structures

We identified the LCS on each data-plane, from the recorded planar velocity data, using

the method described in §2.3. The FTLE field was computed on a Cartesian grid with a

resolution of 0.6 × 0.6 mm, using Newman (Du Toit, 2010). At each time t, each point

on the grid was advected by the flow by numerically integrating the velocity field data for

the integration time T . A fourth-order Runge-Kutta scheme was used for the numerical

integration, and bilinear interpolation was used whenever interpolation of the velocity data

was required. T was chosen to be ±3.3 s (UpT/Deq = ±4 for the elliptical nozzles, and ±5

for the oval nozzle), since this integration time was found to yield the complete boundary

of the vortex, while remaining practical in terms of computational expense.
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3.3 Eulerian analysis

3.3.1 AR2 elliptical nozzle

We recorded the velocity field at seven locations along the edge of the AR2 nozzle, where

the local curvature was κ = 1.26 cm−1 (major axis), 1.04 cm−1, 0.82 cm−1, 0.60 cm−1,

0.39 cm−1, 0.20 cm−1, and 0.16 cm−1 (minor axis). In order to investigate the separation

of the leading vortex ring from its trailing shear layer, experiments were conducted at the

longest piston stroke length possible (21.6 cm). In accordance with Hussain and Husain’s

finding that the equivalent diameter is a proper choice of length scale in elliptic jets with

moderate aspect-ratio (Hussain & Husain, 1989), distances were normalized by Deq, and

time by Deq/Up. The resulting stroke ratio in experiments conducted on this nozzle was

L/Deq = 4.8.

Figures 3.9 through 3.15 show contours of the out-of-plane vorticity ω at two time in-

stants, for all seven curvature planes. Since the flow is symmetric about the major and

minor planes of the nozzle, on these two planes we recorded nearly symmetric data corre-

sponding to the two locations where the DPIV plane intersected the nozzle contour at right

angles. The major axis symmetry plane is aligned with the x-z plane (figure 3.9) in our

coordinate system, and the minor axis symmetry plane is aligned with the y-z plane (figure

3.15).

On the remaining planes, the flow was not symmetric, and the DPIV plane only in-

tersected the nozzle contour at right angles at one location. In figures 3.10 through 3.14,

results have been plotted in s-z coordinates, where s is the coordinate along the DPIV

plane, in the direction normal to the direction of flow (the z-axis). The origin of the s-axis

is located at the intersection of the DPIV plane and the major axis (see figure 3.8). Only
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Figure 3.8: Coordinates in the oblique data planes.

the vorticity fields in the region where s > 0 where analyzed, since it is in these regions

that the DPIV plane is correctly aligned with the nozzle.

Part (a) of figures 3.9 through 3.15 depict the growing elliptical vortex ring in its early

stages of development, at T̂ = Upt/Deq = 1.6. At this stage, the roll-up the shear layer was

locally two-dimensional, on a plane normal to the nozzle edge (Domenichini, 2011). As a

result, the vortex core cross section was roughly the same shape and size on all data planes,

and had advected approximately 0.3Deq downstream in all cases.

At later stages in the development of the elliptical vortex (part (b) of figures 3.9 through

3.15) however, significant differences were evident in the major and minor axes cross sec-

tions. Since the velocity induced by a vortex ring is a function of the local curvature

(Saffman, 1992; Leonard, 1985; Hussain & Husain, 1989), the self-induced velocity of the

elliptical vortex ring was greater at the major axis than at the minor axis. As a result,

the vortex ring deformed. On the major axis, the vortex cores advected downstream faster

than anywhere else on the nozzle contour, and the resulting deformation caused the cores to

move towards each other along the direction parallel to the major axis of the elliptical nozzle

(the x-axis, see figure 3.9(b)). In contrast, on the minor axis, the downstream velocity of
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Figure 3.9: Contours of vorticity on the major axis of the AR2 nozzle at (a) T̂ = 1.6, and
(b) T̂ = 4.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax, increment= 10%.
Flow is from left to right.

the vortex cores reached a minimum value which was lower than the jet velocity, causing

the shear layer to curve around the front of the ring in order to feed into the vortex cores

(figure 3.15(b)). On this plane, the deformation caused the cores to move away from each

other along the y-axis. As a result, what was originally the minor axis became the major

axis of the deformed vortex ring, the curvature trend was reversed, and the deformation

process continued.

On the major and minor planes, the vorticity fields were qualitatively in good agree-

ment with those reported by Adhikari (2009). Adhikari (2009) showed the evolution of the

vorticity field only for stroke ratios of two and six. A stroke ratio of two resulted in the

formation of only an isolated vortex ring, but at a stroke ratio of six, the geometry of the

vortex ring and shear layer reported by Adhikari (2009) is qualitatively very similar to that

shown in figures 3.9 and 3.15. On the remaining five planes, we can observe the gradual

transition between the geometry at the major axis, and that at the minor axis.
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Figure 3.10: Contours of vorticity on the plane of the AR2 nozzle where κ = 1.04 cm−1

at (a) T̂ = 1.6, and (b) T̂ = 4.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax,
increment= 10%. Flow is from left to right.

The shape of the entire vortex ring can be appreciated by reconstructing the three-

dimensional vorticity field from the planar vorticity data. In each of the seven data planes,

the out-of-plane vorticity was assumed to dominate and was taken as an approximate mea-

sure of the total vorticity magnitude. Because the deformation of the vortex ring was

symmetric about the x- and y-axes, we were able to reconstruct the deformed vortex ring

from the approximate vorticity magnitude on the seven planes of available data. At each

z-location, we interpolated the vorticity field onto a rectangular x-y grid from the data avail-

able along the seven data-planes. This was achieved by using MATLAB R© (The MathWorks,

Inc., Natick, MA) built-in functions to find the Delaunay triangulation of the available data

points, using it to construct a surface of the form ω = f(x, y), and finally interpolating this

surface at the points specified by our rectangular grid. By compiling the planar data at

each z-location into a volume, we then obtained an approximate three-dimensional field of

the magnitude of the vorticity.
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Figure 3.11: Contours of vorticity on the plane of the AR2 nozzle where κ = 0.82 cm−1

at (a) T̂ = 1.6, and (b) T̂ = 4.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax,
increment= 10%. Flow is from left to right.

Figure 3.16 shows iso-surfaces of constant vorticity magnitude for the reconstructed

vorticity field at four separate time instants. Initially, the vortex shape closely resembled

the nozzle shape, and the plane of the vortex ring was parallel to the nozzle exit plane,

as shown in figure 3.16(a). However, at later stages (figures 3.16(c) and (d)) the vortex

had deformed significantly, and the deformed vortex resembled the seam on a tennis ball

(Hussain & Husain, 1989). The shape of the vortex ring obtained from iso-surfaces of the

reconstructed vorticity was in excellent agreement with the dye visualizations of Adhikari

(2009) for similar stroke ratios.

In addition to deformation of the vortex ring, the development of a trailing shear layer

of significant length was observed on all planes by the termination of fluid ejection at

T̂ = 4.8. The geometry of the vortex ring and shear layer bore qualitative resemblance to

the geometry observed by Domenichini (2011).
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Figure 3.12: Contours of vorticity on the plane of the AR2 nozzle where κ = 0.60 cm−1

at (a) T̂ = 1.6, and (b) T̂ = 4.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax,
increment= 10%. Flow is from left to right.

3.3.2 AR4 elliptical nozzle

A second set of experiments was conducted on the AR4 elliptical nozzle, at the largest

possible stroke ratio of L/Deq = 4.8. The AR4 nozzle spanned a much larger range of

curvatures than the AR2 nozzle: the curvature on the major axis was sixty times that on

the minor axis. Figures 3.17 and 3.18 show contours of vorticity on the major and minor

axes of the aspect-ratio four nozzle. Vorticity data is not available on curvature planes

other than the two symmetry planes because the deformation of the elliptical vortex ring

was more pronounced in this case, owing to the wide range of curvatures. As a result,

we were only able to collect data on planes aligned with the major and minor axes of the

ellipse, since the deformation was symmetric about these two planes. On other curvature

data planes along the nozzle contour, we found that the vortex deformed so rapidly as to

exit the DPIV plane before the lead vortex had pinched off. The severity of the deformation

is in qualitative agreement with the results of Hussain & Husain (1989), who encountered
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Figure 3.13: Contours of vorticity on the plane of the AR2 nozzle where κ = 0.39 cm−1

at (a) T̂ = 1.6, and (b) T̂ = 4.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax,
increment= 10%. Flow is from left to right.

similar effects when studying elliptic jets with aspect-ratios greater than approximately 3.5.

On the symmetry planes, however, the development of the vortex ring was qualitatively

similar to that of the AR2 vortex ring shown in figures 3.9 and 3.15, although the defor-

mation was much more pronounced in the AR4 ring. Figures 3.17(a) and 3.18(a) show the

growing AR4 vortex ring in its early stages of development, at T̂ = 1.6. Even at this early

stage, the deformation of the vortex ring was already evident, since the cores had translated

approximately 0.5Deq on the major axis, but only 0.25Deq on the minor axis. At T̂ = 4.8,

the displacement of the vortex cores towards the centerline of the nozzle along the major

axis (figure 3.17(b)), and away from the centerline on the minor axis (figure 3.18(b)) was

apparent. Once again, a significant trailing jet was observed on both planes at T̂ = 4.8, in

a configuration that is qualitatively similar to that observed by Domenichini (2011).
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Figure 3.14: Contours of vorticity on the plane of the AR2 nozzle where κ = 0.20 cm−1

at (a) T̂ = 1.6, and (b) T̂ = 4.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax,
increment= 10%. Flow is from left to right.

3.3.3 Oval nozzle

The final set of experiments was conducted on the oval nozzle. Along the contour of this

nozzle, there were four points of discontinuity in the curvature, located at the points of

tangency of the circular segments. These discontinuities in curvature engendered highly

three-dimensional motions in their vicinity, which we were unable to capture using planar

DPIV. As a result, we once again recorded velocity data only on the two symmetry planes

of the nozzle. The oval nozzle had a smaller cross sectional area than the elliptical nozzles

(Deq = 3.62 cm for the former, and Deq = 4.45 cm for the latter), which allowed us to

consider stroke ratios up to L/Deq = 7.3.

Figures 3.19 and 3.20 show contours of vorticity on the major and minor axes of the

two-contour nozzle, for a stroke ratio of L/Deq = 6.3. It is evident from these figures that

the development of the vortex ring ejected from the oval nozzle was qualitatively similar

to that of the two elliptical vortex rings considered in this study. The deformation of the
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Figure 3.15: Contours of vorticity on the minor axis of the AR2 nozzle at (a) T̂ = 1.6, and
(b) T̂ = 4.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax, increment= 10%.
Flow is from left to right.

vortex ring due to the curvature-dependence of the ring’s propagation velocity is once again

evident in figures 3.19(b) and 3.20(b), as is the development of a trailing jet similar to that

observed by Domenichini (2011).

3.4 Lagrangian analysis

The length of the trailing jet observed from vorticity contours in all three nozzles (e.g. figures

3.19(b) and 3.20(b)) suggested that pinch-off was likely to have occurred on at least some

portions of the nozzles. Hence, we sought to determine the formation time at which pinch-

off occurred. This required applying the method of Gharib et al. (1998), i.e. comparing the

total circulation ejected by the vortex generator, to the lead vortex circulation. However,

in some of the vorticity distributions presented in the previous section, the boundaries of

the leading vortex ring were ambiguous. On the major axis (and the data planes adjacent

to it, in the AR2 case), the boundaries of the leading vortex were easily identifiable, as
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Figure 3.16: Iso-surfaces of 33% of the maximum vorticity at (a) T̂ = 0.5, (b) T̂ = 1.6, (c)
T̂ = 3.2, and (d) T̂ = 4.8. The elliptical nozzle is shown in grey, and the black line is a
spline fit through the core center at each plane.

the vorticity field consisted solely of a shear layer and circular lead vortex core (e.g. figure

3.19(b)). On the data planes closer to the minor axis, however, the vorticity field consisted

of a shear layer, circular lead vortex core, and a crescent-shaped vortex segment connecting

the two (e.g. figure 3.20(b)).

Adhikari (2009) also identified this crescent-shaped vortex structure, which he termed

“flow structure 1” in his visualizations of elliptic vortex rings generated with a stroke ratio

of L/Deq = 2. At these small stroke ratios, Adhikari (2009) found the crescent vortex to

merge with the vortex ring completely at later times. In contrast, for larger stroke ratios (e.g.
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Figure 3.17: Contours of vorticity on the major axis of the AR4 nozzle at (a) T̂ = 1.6, and
(b) T̂ = 4.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax, increment= 10%.
Flow is from left to right.

L/Deq = 6), he found that this structure overtook and separated from the circular vortex

cores on the minor axis plane, and developed into what he termed an “arc-like structure.”

However, this arc-like structure was observed from dye visualizations to connect to the outer

regions of the core on the major axis (c.f. figures 4-41 and 4-42 in Adhikari (2009)). As a

result, it was unclear whether the crescent vortex observed in contours of vorticity on the

minor axis of all three nozzles constituted a part of the leading vortex ring, or a separate

flow entity.

In these situations, where the vortex structure consists of several component vortices

moving at different velocities, Eulerian quantities such as vorticity can prove difficult to

interpret. This is especially true when the perceived size and shape of the vortices varies

depending on the thresholds or contour levels in use. In contrast, LCS often prove useful

in these cases because they are frame-invariant, their location is independent of threshold

selection, and they identify kinematically distinct regions even in complex vortex flows
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Figure 3.18: Contours of vorticity on the minor axis of the AR4 nozzle at (a) T̂ = 1.6, and
(b) T̂ = 4.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax, increment= 10%.
Flow is from left to right.

(Shadden et al., 2006; Green et al., 2007; O’Farrell & Dabiri, 2010). Therefore, to resolve

the ambiguity in defining the boundary of the leading vortex ring, we considered the LCS

in the flow.

Since the oval nozzle had a smaller cross-sectional area and a longer cavity, it allowed

us to consider a greater range of stroke ratios than the elliptical nozzles. As a result, we

conducted a set of experiments on the oval nozzle, at four stroke ratios ranging from 1.8

to 7.8, and we observed the evolution of the crescent vortex. For each of these cases, we

recorded the velocity and vorticity fields, and computed the FTLE field at several time

steps using the methods outlined in §3.2.2. In figures 3.21 through 3.24 we present the

forward-time and backward-time FTLE fields at four separate time instants, for experiments

conducted using stroke ratios of L/Deq = 1.8, 3.3, 6.3, and 7.8. The forward-time and

backward-time FTLE fields are represented in the form of contours ranging from white to

blue and white to red respectively, and contours of vorticity are superimposed on the FTLE
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Figure 3.19: Contours of vorticity on the major axis of the oval nozzle at (a) T̂ = 1.6, and
(b) T̂ = 5.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax, increment= 10%.
Flow is from left to right.

fields for reference.

Figure 3.21 shows contours of vorticity and FTLE for an experiment conducted using

a stroke ratio of 1.8. In this case, the stroke ratio was sufficiently small as to result in

the formation of an isolated circular vortex core on both the major and minor axis planes

of the oval nozzle. Figures 3.21(a) and (e), depict the vortex ring at T̂ = 1.2, on the

major and minor axes of the nozzle, respectively. At this stage, fluid ejection had not

yet stopped, so the rear boundary of the vortex (formed by the repelling LCS) was not

complete. By T̂ = 4.1, fluid ejection had stopped and the attracting and repelling LCS

formed the boundaries of the vortex ring on both planes (figures 3.21 (b) and (f)). In this

case, the LCS structure on both planes qualitatively resembled that observed by Shadden

et al. (2006) for isolated circular vortex rings formed at similar stroke ratios. In addition,

the time-varying deformation of the isolated vortex ring was evident from the oscillations

in the diameter of the vortex ring on both the major and minor planes (figures 3.21 (b)-(d)
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Figure 3.20: Contours of vorticity on the minor axis of the oval nozzle at (a) T̂ = 1.6, and
(b) T̂ = 5.8. Contour levels: min= 25% of ωmax, max= 95% of ωmax, increment= 10%.
Flow is from left to right.

and (f)-(h)).

When the stroke ratio was increased to 3.3, a small crescent vortex was evident on the

minor plane during formation (figure 3.22(f) and (g)). Pinch-off was not observed in this

case, so nearly all of the vorticity ejected from the nozzle was entrained into the vortex ring

and the remainder dissipated due to viscous diffusion. Once the vorticity in the short shear

layer had been entrained into the leading vortex core, the LCS structure largely resembled

that observed in the case where L/Deq = 1.8 (c.f. figures 3.22(c) and (g), and figures

3.21(b)-(d) and (f)-(h)). However, two new branches were observed to form in the repelling

LCS, and they are shown to intersect the crescent vortices on the minor plane at T̂ = 5.9 in

figure 3.22(g). The small amounts of vorticity which were separated from the main vortex

core by these new branches in the repelling LCS (e.g. “Region 1” in figure 3.21), were found

to overtake the leading vortex core and form the flow structure observed by Adhikari (2009)

(figure 3.22(h)). At T̂ = 8.6, the core was also observed to become more diffuse on the major
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Figure 3.21: Contours of the forward-time (white to blue) and backward-time FTLE for an
oval vortex ring with a stroke ratio of 1.8. (a)-(d) Major axis. (e)-(h) Minor axis. Contours
of vorticity are superimposed: min = 10% of the maximum ω, max = 95% of the maximum
ω, increment = 15%. Formation time increases down each column: T̂ = 1.2, 4.1, 7, 10.
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axis, leading to the appearance of a gap between the attracting and repelling LCS on this

plane (figure 3.22(d)). This structural change in the LCS was indicative of the connection

of the flow structure identified on the minor axis, to the outer regions of the core on the

major axis as observed in Adhikari’s dye visualizations at larger stroke ratios. Throughout

the formation process, the crescent vortex was found to remain within the bounds of the

leading vortex formed by the LCS, thus indicating that the crescent vortex was part of the

leading vortex ring.

The LCS structure observed in figure 3.22 for a stroke ratio of 3.3 persisted for higher

stroke ratios, including those exceeding 4, in which the formation of a persistent trailing

jet was observed. Figure 3.23 shows the LCS structure and contours of vorticity for the

experiment conducted with a stroke ratio of 6.3, and previously analyzed in §3.3.3. In

this case, a clear crescent vortex was observed in the minor plane (figure 3.23(g)), and the

portions of this crescent vortex delimited by the branching repelling LCS were observed to

form a much stronger vortex pair which overtook the leading vortex core at large formation

times (figure 3.23(h)). The deformation of the core on the major axis at large formation

times, due to the connection of the vortex pair on the minor axis to the outer regions of the

core on the major axis, was found to be more pronounced in this case as well (figure 3.23(d)).

In addition, a significant amount of vorticity was found to trail in the regions behind the

boundaries of the leading vortex core, and a secondary vortex ring was even observed to

form in the minor plane by T̂ = 9.1 (figure 3.23(h)). However, unlike the secondary vortex

in the wake, the crescent vortex was found to remain within the bounds formed by the LCS

for the duration of the vortex formation process.

A similar structure was observed in the experiments conducted on the oval nozzle at the

maximum achievable stroke ratio of 7.8. Figure 3.24 shows the LCS structure and contours
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Figure 3.22: Contours of the forward-time (white to blue) and backward-time (white to
red) FTLE for an oval vortex ring with a stroke ratio of 3.3. (a)-(d) Major axis. (e)-(h)
Minor axis. Contours of vorticity are superimposed: min = 10% of the maximum ω, max
= 95% of the maximum ω, increment = 15%. Formation time increases down each column:
T̂ = 1.2, 4.0, 5.9, 8.6.
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Figure 3.23: Contours of the forward-time (white to blue) and backward-time (white to
red) FTLE for an oval vortex ring with a stroke ratio of 6.3. (a)-(d) Major axis. (e)-(h)
Minor axis. Contours of vorticity are superimposed: min = 10% of the maximum ω, max
= 95% of the maximum ω, increment = 15%. Formation time increases down each column:
T̂ = 1.2, 4.0, 6.4, 9.1.
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of vorticity for this stroke ratio. In this case, several Kelvin-Helmholtz-type vortices were

seen to develop in the wake of the leading vortex at long formation times (figure 3.24(h)),

and new repelling LCS similar to those observed in a circular starting jet in chapter 2, are

visible in the wake in figures 3.24(e) and (h). However, the kinematics of the crescent vortex

remained unchanged.

The main features of the LCS structure observed in figures 3.23 and 3.24 can also be

identified in figures 3.25 and 3.26, which depict contours of vorticity superimposed on the

contours of the forward-time and backward-time FTLE fields for the AR2 and AR4 nozzles,

respectively. Once again, the crescent vortex was found to remain within the boundaries of

the vortex ring during formation, and branches of the repelling LCS were found to delimit

the portions of the crescent vortex which would later form the arc-like structure observed

by Adhikari (2009). Therefore, the LCS analysis revealed that the crescent vortex observed

in the minor planes of all three nozzles was part of the leading vortex ring. In addition,

the LCS predicted the development of the arc-like structure, which was found to connect

portions of the crescent vortex to the outer boundaries of the core on the major axis. The

deformation and eventual break-up (Adhikari, 2009) that results from the formation of this

arc-like structure, while interesting, is not relevant to the study of vortex pinch-off, since

it occurs after the vortex has separated from the nozzle. Thus, it has no impact on the

properties of the vortex ring during formation.
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Figure 3.24: Contours of the forward-time (white to blue) and backward-time (white to
red) FTLE for an oval vortex ring with a stroke ratio of 7.8. (a)-(d) Major axis. (e)-(h)
Minor axis. Contours of vorticity are superimposed: min = 10% of the maximum ω, max
= 95% of the maximum ω, increment = 15%. Formation time increases down each column:
T̂ = 1.2, 4.0, 5.9, 8.6.
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Figure 3.25: Contours of the forward-time (white to blue) and backward-time (white to
red) FTLE for a vortex ring formed from the AR2 nozzle with a stroke ratio of 5.8. (a)-(d)
Major axis. (e)-(h) Minor axis. Contours of vorticity are superimposed: min = 10% of the
maximum ω, max = 95% of the maximum ω, increment = 15%. Formation time increases
down each column: T̂ = 0.8, 2.7, 4.7, 6.7.
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Figure 3.26: Contours of the forward-time (white to blue) and backward-time (white to
red) FTLE for a vortex ring formed from the AR4 nozzle with a stroke ratio of 5.8. (a)-(d)
Major axis. (e)-(h) Minor axis. Contours of vorticity are superimposed: min = 10% of the
maximum ω, max = 95% of the maximum ω, increment = 15%. Formation time increases
down each column: T̂ = 0.9, 2.8, 4.8, 6.8.
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3.5 Vortex formation number

3.5.1 AR2 elliptical nozzle

Following Gharib et al. (1998), we computed the total circulation emanating from the piston-

cylinder apparatus, as well as the circulation in the leading vortex ring, by integrating the

vorticity contained within the lowest detectable contours. Figure 3.27(a) shows the total

circulation as a function of non-dimensional formation time based on the nozzle equivalent

diameter, for the seven values of curvature considered. In all the planes considered, the total

circulation increased at an almost constant rate until fluid ejection stopped at approximately

T̂ = 4.8, when it leveled off at final value ranging between Γ = 48 cm2/s and Γ = 54 cm2/s.

In figure 3.27(b), we present the time history of the circulation in the leading vortex ring for

the seven curvature points. Once again, the seven cases considered exhibited similar trends,

with the lead vortex circulation achieving a final value ranging from Γring = 31 cm2/s to

Γring = 36 cm2/s, at a approximately T̂ = 6.

When computing the lead vortex circulation, we defined the lead vortex core as outlined

in §2.3. Figure 3.28 shows the outline of the lead vortex core on the major and minor

planes of the AR2 nozzle. The fact that the circulation within the core as defined above

was found to be constant at long formation times confirms our definition of the lead vortex

on planes near the minor axis. In contrast, the circulation of the circular portion of the

leading vortex on the minor plane continuously increased by drawing circulation from the

crescent-shaped vortex. Hence, although the final circulation in the lead vortex was found to

be approximately constant across the different curvature planes (figure 3.27(b)), the shape

of the lead vortex varied significantly between the major axis and the minor axis.

By comparing the time history of the total circulation and the final circulation in the
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Figure 3.27: Time history of (a) the total circulation emanating from the nozzle, and
(b) the circulation in the lead vortex, at seven different curvature points. The error in
the measurements was ≈ 6%, and it is shown in grey for the curve on the major axis, for
reference. κ = 1.26 cm−1 (—); 1.04 cm−1 (– –); 0.82 cm−1 (—); 0.60 cm−1 (– –); 0.39 cm−1

(—); 0.20 cm−1 (– –); 0.16 cm−1 (–.–).

lead vortex, one can determine the non-dimensional time at which the lead vortex ceased to

accept additional circulation. We performed this comparison at each data plane, in order to

determine whether the formation time at pinch-off varied with the local curvature. Figure

3.29 illustrates this comparison for two of the seven curvature planes considered: the major

and minor axes. On the major axis (figure 3.29(a)), the formation time at pinch-off was

found to be T̂ = 3.6 ± 0.4, whereas on the minor axis (figure 3.29(b)) it was found to be

T̂ = 3.4± 0.4.

Figure 3.30 shows the formation time at pinch-off as a function of curvature, for the

seven curvature points along the elliptical nozzle. The symbols show the formation time at

pinch-off at each data plane, and the black line shows the average formation time at pinch-

off (T̂ = 3.3± 0.4), over the seven curvature points. These results suggest that there is no

dependence of the formation time at pinch-off on the local curvature, but rather pinch-off
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Figure 3.28: Contours of vorticity on (a) the major axis and (b) the minor axis at T̂ = 4.8.
The region considered to correspond to the lead vortex in each plane is outlined in red.
Contour levels: min= 25% of ωmax, max= 95% of ωmax, increment= 10%. Flow is from
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occurs simultaneously throughout the nozzle contour, at a formation number based on the

equivalent diameter of the nozzle of T̂ = 3.3± 0.4.

3.5.2 AR4 elliptical nozzle

The results of the experiments on the formation of vortex rings from an elliptical nozzle with

an aspect-ratio of two suggest that, in this kind of moderate aspect-ratio elliptical vortex

rings, pinch-off is a global process governed by the equivalent diameter of the nozzle. In

contrast, local curvature affects only the shape of the forming vortex. However, these results

would appear to contradict those of Domenichini (2011), which suggest that local curvature

is a key factor governing the local vortex formation process. Therefore, we compared the

vortex formation process on the AR2 nozzle to the formation of vortices from the remaining

two nozzles: the elliptical nozzle with an aspect-ratio of four, and the oval nozzle. Since the

AR4 nozzle spanned a much larger range of curvatures, it allowed us to determine whether
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Figure 3.29: Time history of the total circulation (—) and lead vortex circulation (◦) on:
(a) the major axis, and (b) the minor axis of the AR2 elliptical nozzle. Comparing the
final circulation in the lead vortex with the time history of the total circulation yields the
non-dimensional time at which the vortex stopped accepting vorticity (– –).

the independence of the formation number on local curvature extends to the formation of

elliptical vortex rings of larger aspect-ratios, where the curvature on the minor axis is close

to zero (κmin = 0.06 cm−1 in this case).

Figure 3.31 shows the time history of the total circulation emanating from the nozzle,

as well as the circulation in the lead vortex ring, on the major and minor axes of the AR4

nozzle. Comparing the final circulation in the lead vortex ring to the time history of the

total circulation yielded a formation time at pinch-off of T̂ = 3.1 ± 0.4 on the major axis,

and T̂ = 3.5± 0.4 on the minor axis. Therefore, the formation number based on equivalent

diameter for the AR4 nozzle was found to be identical to the formation number for the AR2

nozzle, within experimental error.

The results in figure 3.31 are similar to those for the symmetry planes of the AR2 nozzle,

with the exception of a step-like increase in the circulation of the lead vortex ring at T̂ = 5.5
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average over all curvature points (T̂ = 3.3± 0.4) is denoted by the solid black line.

in figure 3.31(a), which is absent in figure 3.29(a). In their study of circular vortex rings,

Gharib et al. (1998), found that for large stroke ratios, the vortex ring circulation increased

in a step-like fashion after long formation times. This step-like increase was caused by the

first vortex in the trailing wake catching up to, and coalescing with, the leading vortex

ring (see §2.4). This same phenomenon was responsible for the jump in the lead vortex

circulation in figure 3.31(a), as illustrated by the vorticity contours in figure 3.32. However,

unlike in the circular case, the jump occurred before the lead vortex circulation has leveled

off (i.e. before the vortex ring had pinched off).

3.5.3 Oval nozzle

Although in the AR4 nozzle the portions of the nozzle contour adjacent to the minor axis

had a curvature close to zero, the curvature varied smoothly between its maximum value at

the major axis and its minimum value at the minor axis. In contrast, the slender orifices of

Domenichini (2011) consisted of connected segments with constant, distinct curvatures, with
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Figure 3.31: Time history of the total circulation (—) and lead vortex circulation (◦) on:
(a) the major axis, and (b) the minor axis of the AR4 elliptical nozzle. Comparing the
final circulation in the lead vortex with the time history of the total circulation yields the
non-dimensional time at which the vortex stopped accepting vorticity (– –).

discontinuities in the curvature at their points of tangency. Given that Domenichini (2011)

found stark differences in the vortex formation process between the curved segments and

the straight segments of his slender orifices, and that these differences were not replicated

in our results for elliptical nozzles, the question of whether discontinuities in the curvature

are required to produce a spatially varying formation number was of interest. Therefore, we

studied the occurrence of pinch-off on two planes of the oval nozzle, which also contained

points of discontinuity in the curvature along its contour.

Figure 3.33 shows the time history of the total circulation emanating from the nozzle,

as well as the circulation in the lead vortex ring, on the major and minor axes of the oval

nozzle. In this nozzle, pinch-off was found to occur at a formation time of T̂ = 3.9 ± 0.4

and T̂ = 3.6± 0.4, on the major and minor axes respectively. Our results are summarized

in figure 3.34 , which shows the formation time at pinch-off as a function of curvature,
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for all three nozzles. These results suggest that there is no dependence of the formation

time at pinch-off on the local curvature. Moreover, it appears that, for the nozzle shapes

considered, the critical formation time, or formation number, is a function of the equivalent

diameter of the nozzle.

3.6 Conclusions

In this chapter, we investigated, the formation of vortex rings from three different non-

circular nozzles: an elliptical nozzle with an aspect-ratio of two, an elliptical nozzle with an

aspect-ratio of four, and an oval nozzle constructed from tangent circular arcs. The nozzles

selected encompass a wide class of those non-circular nozzles not considered by Domenichini

(2011), since they include nozzles with both smooth and discontinuous variation in the

curvature, and span from nozzles with a moderate range of curvatures to those with extreme

variations in curvature (κmax/κmin = 4 in the oval nozzle, and ≈ 60 in the AR4 nozzle.)

On all three nozzles, we found that the limiting size and circulation at saturation of the

vortex ring were not spatially varying along the nozzle contour, and thus not a function of

the local curvature. Therefore, pinch-off was not found to be a local phenomenon in either

of the three nozzle shapes considered. The shape of the leading vortex ring was found to

vary along the contour of the nozzle in all three cases, and to be strongly dependent on

the local curvature. However, the LCS analysis revealed the leading vortices of various

shapes to belong to a single coherent leading vortex core during the formation process, thus

leading to the observed invariance of the circulation. In addition to the spatial variation in

the vortex ring shape, we observed the time-dependent deformation of the vortex, which, in

the case of elliptical nozzles, was in agreement with previous studies (Viets & Sforza, 1972;

Dhanak & de Bernardinis, 1981; Hussain & Husain, 1989; Adhikari, 2009). The deformation
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of vortex rings from oval nozzles is reported here for the first time, and was found to be

qualitatively similar to the deformation of elliptical vortex rings.

In agreement with Hussain & Husain (1989), we found that the equivalent diameter of

a non-circular nozzle is a proper length scale in quantifying the formation of vortex rings

with moderate departure from axisymmetry. As a result, we extended the definition of the

formation number introduced by Gharib et al. (1998), to vortex rings of this class, using

the equivalent diameter of the nozzle as the relevant length scale (T̂ = Upt/Deq). In all

three nozzles considered, we found the formation number thus defined to be constant along

the contour of each nozzle, and to lie in the range between 3 and 4. This range falls slightly

below that observed in circular vortex rings by Gharib et al. (1998) (approximately 3.6 to

4.5), yet is in remarkably good agreement given the wide class of nozzles considered, and

their departure from axisymmetry.

The present results for the shape and deformation of elliptical vortex rings are in good

agreement with those of Adhikari (2009). However, our results for the formation number

of vortex rings of the three shapes considered contradict Domenichini’s conjecture that

pinch-off in these geometries should be a local phenomenon governed by the curvature.

Given the stark differences between our conclusions about the role of curvature in vortex

formation, and those of Domenichini (2011), a comparison of the results of the two studies

is illuminating.

At the early stages of vortex development, our findings regarding the shape and de-

formation of the vortex agreed qualitatively with those of Domenichini (2011). Moreover,

our results appear compatible with Domenichini’s results for the formation of small-aspect-

ratio vortex rings (h = 0.05, 0.5 in Domenichini’s formulation). In these cases, Domenichini

(2011) found the evolution of the non-circular vortices to be similar to that of circular vor-
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tex rings, albeit with some deformation. Furthermore, in these cases, pinch-off appeared to

occur simultaneously on the straight and circular sections of the vortex ring.

For larger aspect-ratios (h = 1.5, 2 in Domenichini’s formulation), the geometry of the

vortex ring and shear layer on the symmetry planes was similar in Domenichini’s computa-

tions and our experimental results. In both studies, a leading vortex ring and trailing shear

layer were observed on the major axis plane, while a geometry consisting of a leading vortex

ring, crescent vortex, and circular vortex core was observed in the minor plane. However,

Domenichini (2011) concluded that the circulation in the leading vortex was higher in the

flat portions of the vortex than in the circular portions, and that pinch-off occurred exclu-

sively on the circular portions of the orifice at a formation time T ∗ = Ut/D = 3.6 based on

the diameter of the circular portion of the orifice (D).

The discrepancy between our results and those of Domenichini’s computations for more

slender orifices can be attributed, in part at least, to a difference in the definition of the

boundaries of the leading vortex on the minor axis between the two studies. Domenichini

(2011) presented only results for the circulation on the major plane for one of his pseudo-

elliptic orifices (h = 2). However, the author kindly granted us access to time-resolved

vorticity fields on the two symmetry planes for two of his orifices: one where h = 2, and one

where h = 4. When computing the circulation of the vortex in both symmetry planes of

the h = 2 orifice using the definition of the vortex boundaries outlined in §3.5, we found the

circulation in both planes to be similar, indicating that pinch-off occurred simultaneously

on both sections of the orifice.

On both axes of the h = 2 orifice, however, pinch-off appeared to take place at a

formation time of 3.6 based on the diameter of the circular portion of the orifice (T ∗ =

Ut/D), which corresponds to a formation time of T̂ = 1.9 based on the equivalent diameter
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of the orifice. Since Domenichini (2011) did not present the time history of the total

circulation and vortex ring circulation for orifices other than the h = 2 case, the relevance

of the diameter of the circular segments (D) or the equivalent diameter of the orifice (Deq)

as length scales for Domenichini’s flows cannot be ascertained.

Additionally, the crescent-shaped vortex observed in the minor plane in both our exper-

iments and those of Adhikari (2009) was not found in the vorticity data for Domenichini’s

most slender orifices (h = 4). In this case, the shear layer was found to curve around the

leading vortex, but no separation of the crescent-shaped portion of the shear layer from

its main section was observed. The absence of the crescent vortex might be indicative of

a change in the vortex formation process for very high aspect-ratio orifices which resemble

thin slits. Such a change is consistent with the two-dimensional roll-up observed in the

limiting case of extremely thin slits (Afanasyev, 2006; Pedrizzetti, 2010).

The present results have potentially far-reaching implications for the study and mod-

eling of vortex ring flows of biological relevance. Elliptical, elongated, and otherwise non-

circular vortex rings such as those investigated in this chapter are known to be a distinguish-

ing feature in many biological flows (Kokshaysky, 1979; Dickinson & Götz, 1996; Kern &

Koumoutsakos, 2006; Bellhouse, 1972; Domenichini et al., 2005). Our results on the forma-

tion number of vortex rings of this class therefore allows for a more accurate understanding

of the parameters governing the formation of vortex rings in the human left ventricle, for

example.

Furthermore, the concepts of the vortex formation number and optimal vortex formation

have been applied successfully to evaluating the efficiency or optimality of propulsive flows

(Krueger & Gharib, 2003; Dabiri et al., 2010; Linden & Turner, 2004) which feature vortex

rings of almost circular shape. However, in other locomotory flows where non-axisymmetric
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vortex rings are the norm, the absence of known limits on vortex ring size previously pre-

cluded this sort of analysis. The present results, however, suggest that we can reduce vortex

rings with moderate departure from axisymmetry to circular vortex rings with the same

equivalent diameter. Such a reduction allows for greater ease of modeling, and a decrease

in computational complexity in numerical studies, through the exploitation of axisymme-

try. Such a reduction has been perfumed in the past by researchers studying both cardiac

(Steen & Steen, 1994; Gharib et al., 2006; Kheradvar & Gharib, 2007) and locomotory flows

(Drucker & Lauder, 1999; Dickinson et al., 2000; Hsieh & Lauder, 2004).

Once reduced to a circular shape, these vortex rings can be studied using a variety of

numerical and analytical tools. In the two chapters that follow, we introduce a method for

studying pinch-off by analyzing the perturbation response of model axisymmetric vortex

rings. The results presented in this chapter allow us to extend these types of methods to

non-circular vortex rings by reducing them to circular vortex rings.
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Figure 3.32: Contours of vorticity on the major axis of the AR4 nozzle at (a) T̂ = 5.4,
(b) T̂ = 5.8, and (c) T̂ = 6.1. In (a), the first vortex in the trailing jet is identifiable just
before merging with the lead vortex. (b) shows the early stages of the merger of the lead
vortex and the first vortex in the trailing jet. In (c), the two vortices have coalesced and
are indistinguishable. Contour levels: min= 25% of ωmax, max= 95% of ωmax, increment=
10%. Flow is from left to right.
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Figure 3.33: Time history of the total circulation (—) and lead vortex circulation (◦) on: (a)
the major axis, and (b) the minor axis of the oval nozzle. Comparing the final circulation
in the lead vortex with the time history of the total circulation yields the non-dimensional
time at which the vortex stopped accepting vorticity (– –).
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Figure 3.34: Non-dimensional pinch-off time (T̂ = Upt/Deq) as a function of curvature for
the three nozzle shapes: •, AR2 nozzle; N, AR4 nozzle; �, oval nozzle. The average over
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Chapter 4

Perturbation response and
pinch-off of vortex rings and
dipoles

4.1 Introduction

Several arguments and models predicting or explaining pinch-off have been put forth, begin-

ning with the original study of Gharib et al. (1998). These include the models of Mohseni

& Gharib (1998), Shusser & Gharib (2000), Linden & Turner (2001) and Gao & Yu (2010),

which are described in the introductory chapter to this thesis. However, no definitive model

for pinch-off in every configuration has been presented yet. The principal shortfall of these

methods is that they require modeling of the shear layer feeding the vortex, as well as the

vortex rings themselves. As a result, these models are application-specific, as well as diffi-

cult to apply to flows of biological interest beyond jetting flows. Our objective, therefore,

is to determine a physically rooted criterion for pinch-off that can be applied to all vortex

loops. We desire such a criterion to be tractable for wake-only measurements. However,

since direct application of the Kelvin-Benjamin to vortex wakes is impractical, we resort to

a modeling and perturbation-response approach.

Notably, both the argument of Gharib et al. (1998) and the aforementioned models make
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use of a family of vortex rings introduced by Norbury (1973), as a model for axisymmetric

vortex rings. The Norbury family consists of steadily translating axisymmetric vortex rings

with finite core size, ranging from classical thin-cored vortices to Hill’s spherical vortex. In

all members of the family, the vorticity density (ω/r, where r is the radial coordinate) is

constant inside the core. These vortex rings serve as a low-order model of experimentally

generated vortex rings of different core sizes. Despite its simplicity, the Norbury family of

vortex rings has been successfully employed as a model for axisymmetric vortex rings at

different stages in their development (Gharib et al., 1998; Mohseni & Gharib, 1998; Shusser

& Gharib, 2000; Linden & Turner, 2001; Kaplanski & Rudi, 2005; Gao & Yu, 2010).

That Hill’s spherical vortex and nearly spherical members of the Norbury family are

the solution to a maximization problem on the energy function as outlined by Benjamin

(1976) was shown by Wan (1988). Moffatt & Moore (1978) considered the linear stability of

Hill’s spherical vortex subjected to axisymmetric perturbations, and found that these decay

everywhere except in a region near the rear stagnation point, where a tail of growing length

develops. Building on this analysis, Pozrikidis (1986) studied the nonlinear instability of

Hill’s spherical vortex to axisymmetric shape perturbations of finite size. When subjected to

an axisymmetric prolate perturbation, Pozrikidis (1986) found that Hill’s vortex returned to

a smaller spherical vortex by detraining rotational fluid into a tail. Gharib et al. (1998) noted

that this circulation shedding is analogous to pinch-off, thus suggesting such perturbations

might be a promising avenue of research for improving our understanding of pinch-off. In

contrast, Ye & Chu (1995) investigated the response of a member of the Norbury family

of moderate core thickness to similar shape perturbations, and found no evidence of tail

shedding. However, the nonlinear response of the remainder of the Norbury family to

prolate shape perturbations is unknown, and the transition from the observations of Ye &
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Chu (1995) to those of Pozrikidis (1986) has not been previously characterized.

In two dimensional flows, a coherent structure similar to the axisymmetric vortex ring

is often observed: the symmetric vortex dipole. Dipolar vortices have been observed experi-

mentally in flows in which three-dimensional motions have been suppressed by stratification

(van Heijst & Flór, 1989), by utilizing a thin soap film (Couder & Basdevant, 1986) or two-

fluid interface (Afanasyev, 2006), by rotation of the ambient fluid (Velasco Fuentes & van

Heijst, 1994; Trieling et al., 2010), or by the imposition of a magnetic field on a layer of mer-

cury (Nguyen Duc & Sommeria, 1998). In these experiments and in computational studies

(van Geffen & van Heijst, 1998; Duran-Matute et al., 2010; Pedrizzetti, 2010), thick-cored,

nearly symmetry-axis-touching dipoles were often observed, leading to speculation that the

physical constraint on vortex growth identified by Gharib et al. (1998) for axisymmetric

vortex rings does not extend to two dimensional vortex pairs. Nitsche (2001) also found

a difference in the behavior of axisymmetric vortex rings and vortex dipoles using vortex

sheet methods. The author observed self-similar shedding of circulation into a tail in the

roll-up of a spherical vortex sheet into a vortex ring, but no shedding of circulation in the

in the roll-up of a cylindrical vortex sheet into a vortex pair.

Recently, Afanasyev (2006) and Pedrizzetti (2010) have considered the formation of two

dimensional dipoles by the ejection of fluid from thin slits. Unlike in the axisymmetric

case, both studies found that vortex pairs continue to accept vorticity after ejection times

well beyond those observed in circular vortex rings. Afanasyev (2006) also observed that,

throughout their formation, vortex dipoles formed by the ejection of fluid from thin slits

could be modeled by different members of a family of steadily translating vortex pairs

described by Pierrehumbert (1980). These vortices form a family of constant-vorticity

vortex pairs of finite core size, ranging from point vortex dipoles to the symmetry-axis-
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touching limit. Although the dipoles could be more realistically modeled by the more

complex vorticity distributions proposed by Kizner & Khvoles (2004) and Khvoles et al.

(2005), the Pierrehumbert family is of interest because of its simplicity, and because it

serves as a two dimensional analogue to the Norbury family of vortex rings.

In the study presented in this chapter, we investigated the nonlinear perturbation re-

sponse of the members of the families of vortices introduced by Norbury (1973) and Pier-

rehumbert (1980) to prolate shape perturbations similar to those considered by Pozrikidis

(1986). The class of prolate perturbations considered was similar to that described in

Pozrikidis (1986), yet differed slightly in its mathematical formulation due to geometrical

constraints outlined in §4.2.2. These perturbations are not of the circulation- and impulse-

preserving type described by Benjamin (1976). However, they are of interest because the

perturbations experienced by forming vortex rings and dipoles in an experimental setting

are also not of the type described by Benjamin (1976). The response of the entire Norbury

family to this type of perturbations was considered, in order to bridge the gap between the

observations of Ye & Chu (1995) for thin-cored rings and those of Pozrikidis (1986) for Hill’s

spherical vortex. In particular, we searched for a change in the perturbation response as we

considered vortex rings of increasing core thickness. Finally, we considered the difference in

the responses of the Norbury and Pierrehumbert families, to ascertain whether they reflect

the differences observed in the formation of vortices in axisymmetric and two dimensional

experiments.

Contour dynamics methods (Zabusky et al., 1979; Shariff et al., 2008) were employed

to compute the nonlinear evolution of members of the Norbury and Pierrehumbert families

subject to prolate shape perturbations. We identified a change in the perturbation response

of vortex rings as we considered members of the Norbury family with progressively thicker
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cores, and this change was found to be analogous to the onset of pinch-off in experimentally

generated vortex rings. Furthermore, we found no such change in response when considering

members of the Pierrehumbert family of increasing core size. This difference in behavior

between the two families is akin to the absence of a critical time scale, or formation number,

in two dimensional vortex dipole formation. Hence, we hypothesized that these findings on

the perturbation response of low-order vortex models can be used to study and possibly

predict pinch-off in real flows with more complex vorticity distributions.

The chapter is organized as follows. In §4.2 we introduce the mathematical formulation

of the two vortex families, as well as the perturbation method and the contour dynamics

procedures employed. This numerical method is employed in §4.3 and §4.4 to examine

the nonlinear evolution of perturbed members of the Norbury and Pierrehumbert families,

respectively. Finally, concluding remarks are presented in §4.5.

4.2 Mathematical formulation and numerical method

4.2.1 The Norbury and Pierrehumbert families of solutions

In two dimensions, the vorticity equation for inviscid, constant-density flow reduces to the

following simple form:

Dω

Dt
= 0 (4.1)

Evidently, this equation is satisfied for all time by any region of constant vorticity ω = Ω,

where Ω is a constant. Therefore, one can find exact solutions to the Euler equation in

two dimensions, which consist of one or more such patches of constant vorticity. These

patches might translate and undergo deformations, but their area, impulse, and kinetic

energy remain constant.
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Similarly, in cylindrical coordinates (r,z,φ), the vorticity equation for inviscid, constant-

density, axisymmetric flow without swirl (uφ = 0) is reduced to:

D

Dt

(ω
r

)
= 0 (4.2)

In this case, the vorticity equation is satisfied for all time by any region containing

a distribution of vorticity which is linear in r: ω = Ωr. Therefore, one can find exact

solutions to the axisymmetric Euler equations, which consist of one or more toroidal or

spherical regions with a linear distribution of vorticity. The position, cross-sectional area,

or shape of these regions may vary, but their volume (of which the circulation is a constant

multiple), impulse, and kinetic energy remain constant.

Norbury (1973) introduced a family of steadily translating solutions of the axisymmetric

Euler equations, in the form of vortex rings with core boundary ∂A that satisfy:

ω =





Ωr inside ∂A

0 outside ∂A

(4.3)

He classified these rings by the parameter α =
√

A
πR2 , where A is the core cross-sectional

area and R is the ring radius (defined as the radial distance to the center of the core).

The parameter α is the ratio of the mean core radius to the ring radius, and it describes

a family ranging from thin-cored vortex rings as α tends to zero, to Hill’s spherical vortex

for α =
√

2. In figure 4.1(a), we present the calculated core boundary for Norbury vortices

with various values of α, ranging from 0.2 to
√

2.

Similarly, Pierrehumbert (1980) found a family of steadily translating solutions to the

two dimensional Euler equations, in the form of symmetric vortex pairs with boundary
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∂A1,2 that satisfy:

ω =





Ω inside ∂A1

−Ω inside ∂A2

0 elsewhere

(4.4)

Following Norbury (1973), the resulting family can also be parametrized by α =
√

A1
πR2 ,

where in this case R is defined as the distance from the symmetry axis to the center of

one of the symmetric vortices. The Pierrehumbert family spans the range from point-

like vortices as α → 0, to symmetry-axis-touching vortex pairs. Figure 4.1(b) shows the

calculated core boundaries ∂A1,2 of Pierrehumbert pairs for values of α ranging from 0.1 to

1.7.

The shapes of the members of the Norbury family were determined using the numer-

ical method outlined in Norbury (1973), which required solving the integral equation for

the streamfunction using a modified Newton-Raphson method. Similarly, the shapes of

the members of the Pierrehumbert family were determined by solving the corresponding

integral equation for the streamfunction using the relaxation method described in Pierre-

humbert (1980). Note that the symmetry-axis-touching solution is not depicted in figure

4.1(b). Pierrehumbert (1980) found an axis-touching solution which included a cusp at

the symmetry axis. Shortly thereafter, Saffman & Tanveer (1982) demonstrated that the

axis-touching solution is not unique, and presented an alternative solution with no cusp.

However, whether this solution is the limiting case for the Pierrehumbert family remains an

open question (Saffman & Szeto, 1980). In this study, we have excluded the axis-touching

case from the analysis for simplicity.
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Figure 4.1: The Norbury (a) and Pierrehumbert (b) families of vortices. Core shapes for
various values of α ranging from 0.2 to

√
2 (Norbury) and 0.1 to 1.7 (Pierrehumbert)

4.2.2 Shape perturbations

Pozrikidis (1986) studied the response of a limiting member of the Norbury family, namely

a Hill’s spherical vortex of radius 2R, to prolate and oblate shape perturbations. He intro-

duced the spheroidal perturbations by expressing the boundary of the vortex in the form:

ρ = 2Rγ
(

1 +
ε

4
(1 + 3 cos 2ζ)

)
(4.5)

where ρ and ζ are, respectively, the vortex radius and polar angle defined in figure 4.2. The

spheroidal perturbations were achieved by introducing a perturbed second order Fourier

mode which was scaled by a fraction of the unperturbed vortex radius (3ε
2 R), to the expres-

sion for the vortex core boundary. The sign of the parameter ε indicates the direction of the

deviation from the spherical shape, with a positive value corresponding to an oblate pertur-

bation and a negative value corresponding to a prolate perturbation. The factor γ(ε) was
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Figure 4.2: Perturbations and coordinates defined in the text. Hill’s spherical vortex and a
Norbury vortex with α = 0.6 are depicted by the solid lines. The dashed lines represent a
perturbation of ε = −0.1 to Hill’s spherical vortex, of the type studied by Pozrikidis (1986),
as well as a perturbation to the Norbury vortex of δ = −0.1 as defined in equation 4.7. The
vortices propagate from left to right.

introduced to preserve the original vortex core circulation, implying that the perturbations

constitute re-arrangements of the vorticity density (ξ = ω/r).

In the formulation of Pozrikidis (1986), the vortex radius and polar angle were measured

from the center of the spherical vortex, which is on the symmetry axis of the flow. In the

more general case of the Norbury and Pierrehumbert families, however, such a formulation

is not possible, as the vortex cores are not symmetry-axis-touching in general. As a result,

the core boundary for each member of the Norbury and Pierrehumbert families was defined

here in polar coordinates measured from the center of the core. In this coordinate system,

the core boundary ∂A can be expressed in the form of a Fourier cosine polynomial:

σ = f(η, α) =

N∑

j=0

aj(α) cos jη (4.6)
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where N was chosen to be 30, and the quantities σ and η (defined in figure 4.2) are the

local core radius and the polar angle measured from the center of the core, respectively.

In this formulation, perturbations to the core boundary similar to those first introduced to

circular vortex patches by Kelvin (1880a) can be readily introduced. Following Pozrikidis

(1986), we introduced shape perturbations to ∂A by adding a fraction of the mean core

radius (δαR) to the second-order mode:

σ = f(η, α) = γ

N∑

j=0

a′j(α) cos jη (4.7)

a′2 = a2 + δαR (4.8)

a′j = aj for j 6= 2 (4.9)

δ expressed the deviation from the unperturbed shape, and it took on positive values for

oblate perturbations and negative values for prolate perturbations. For consistency with

the previous studies by Pozrikidis (1986) and Ye & Chu (1995), the factor γ(α, δ) was

introduced in order to preserve the unperturbed core circulation. For each member of the

family and perturbation size δ, analytical expressions for the circulation of the perturbed and

unperturbed vortices were obtained by integrating the vorticity over the regions described by

equations 4.6 and 4.7—4.9. To meet the requirement that the circulation remain unchanged,

these two expressions were equated and the value of the multiplicative constant γ(α, δ) was

determined by solving the resultant cubic equation.

Like the perturbations introduced by Pozrikidis (1986), these perturbations constitute

re-arrangements of the unperturbed vorticity (in the two dimensional case) or the vortic-

ity density (in the axisymmetric case). However, both types of perturbations differ from

those described by Benjamin (1976) in that the perturbed vortices do not preserve the un-
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perturbed vortex impulse. These perturbations are of interest because the perturbations

encountered by vortex rings and dipoles in an experimental setting are also not of the

impulse- and circulation-preserving type described by Benjamin (1976). Furthermore, the

fact that, in his study of Hill’s vortex, Pozrikidis (1986) reported a detrainment of circu-

lation analogous to pinch-off utilizing these types of perturbations, suggests that they are

suited for the study of an analogue to pinch-off in the Norbury and Pierrehumbert families.

The perturbations described in equations 4.7—4.9 differ from those described in equation

4.5, in that Pozrikidis perturbed only the shape of the outer boundary of the vortex core (a

semi-circle of radius 2R) while scaling the portion of the boundary nearest the symmetry

axis (for Hill’s spherical vortex, a straight line at the symmetry axis), in order to preserve

the continuity of the core boundary. In contrast, our formulation results in a perturbation

being introduced to the entire core boundary. As a result, for Hill’s spherical vortex, our

perturbation is not equivalent to the type of perturbations considered by Pozrikidis (1986).

Hence, the perturbation scheme described in equation 4.5 was employed in validating our

implementation of the numerical method described in the following section against the

results of Pozrikidis (1986) (§4.2.5). Subsequently, however, the perturbations described in

equations 4.7—4.9 were applied in order to investigate the nonlinear perturbation response

of the Norbury and Pierrehumbert families.

4.2.3 Contour dynamics formulation

The evolution of the perturbed vortex cores was computed using contour dynamics methods.

The original two dimensional contour dynamics solution is due to Zabusky et al. (1979);

however, we employed an alternative formulation from Pullin (1981). The velocity induced

by one of the symmetric vortex patches in a Pierrehumbert pair at a point z = x + iy in
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the complex plane was computed using:

ux + iuy = − Ω

4π

∮

∂A

z− z′

z̄− z̄′
dz′ (4.10)

Shariff et al. (2008) extended the contour dynamics method to the case of axisymmetric

vortex rings with a linear vorticity distribution in the radial direction, such as the Norbury

family. In this case, the velocity induced by a compact region of vorticity A at a point x is

given by:

u(x) = Ω

∮

∂A
[(z − z′)G(s′) cos θ′ − rH(s′) sin θ′]ẑ + r′H(s′) cos θ′r̂ds′ (4.11)

G(s′) =
r′

π
√
C +B

K(k) (4.12)

H(s′) =
1

2πr
(

C√
C +B

K(k)− E(k)
√
C +B) (4.13)

k =

√
2B

C +B
(4.14)

C = (z − z′)2 + r2 + r′2, B = 2rr′ (4.15)

where θ(s′, α) is the angle of the outward-pointing normal relative to the symmetry axis, and

K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively.

4.2.4 Numerical method

The contour dynamics formulation reduces the evolution problem to tracking the motion of

a collection of marker points on the core boundary by numerical integration of equation 4.10

or equation 4.11. Contour integration was performed by discretizing the boundary using

linear segments, and evaluating the contribution from segments not adjacent to the field
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point using Gaussian quadrature. The singularities in the evolution equations were dealt

with by explicit evaluation in the two dimensional case, and using the method outlined by

Shariff et al. (2008) in the axisymmetric case.

The solution was marched forward in time using a fourth-order Runge-Kutta scheme. At

each time step, additional marker points were inserted where the linear segments stretched

beyond 0.016R, and removed where segments shrunk below 0.004R (Shariff et al., 2008).

Following Shariff et al. (2008), the time step was chosen to satisfy ∆t = 0.05
Ω0

, where Ω0 is

the vorticity at the center of the vortex ring core in the axisymmetric case (Ω0 = ΩR), or

the strength of the positively signed vortex patch in the two dimensional case. The flow

invariants (circulation, impulse, and energy) were monitored and their change was kept

below 0.01% over one eddy turnover period for the impulse and circulation, and 0.02% over

the same period for the energy.

4.2.5 Verification

In order to validate our implementation of the numerical algorithms described in the pre-

ceding section, we began by considering the response of Hill’s spherical vortex to spheroidal

shape perturbations of the type investigated by Pozrikidis (1986) and described in equation

4.5. Figure 4.3 illustrates the response of Hill’s spherical vortex to a small amplitude prolate

perturbation with ε = −0.05. The perturbed vortex is seen to detrain rotational fluid into

a vortex tail (figure4.3(c)), which experiences continual elongation (figure 4.3(d)) and tends

to form an independent low-circulation entity which trails behind the ring (figure 4.3(e)).

As noted by Gharib et al. (1998), the shedding of rotational fluid into a vortex tail is akin

to the pinch-off phenomenon observed in experimentally generated vortex rings.

The results presented in figure 4.3 agree qualitatively with the results of Pozrikidis
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(1986) for a spherical vortex subjected to the same perturbation, and computed using a

different contour dynamics formulation and numerical scheme (cf. figure 2 in Pozrikidis

(1986)). In figure 4.4(a) we present the deviation of the non-dimensional vorticity centroid

location from its unperturbed equivalent (z∗c = (Ut − zc)/R, defined in Pozrikidis (1986))

as a function of non-dimensional time t∗ = Ut/R, where U is the translational speed of the

unperturbed spherical vortex. The lines indicate the present results for vortices subjected

to perturbations of ε = −0.05, ε = −0.15, and ε = −0.3, and the symbols indicate the

results of Pozrikidis (1986) for the same perturbations. Similarly, figure 4.4(b) shows the

present measurements of the time evolution of the vortex speed (Uc = dz∗c/dt
∗) for the same

three perturbation sizes, as well as those of Pozrikidis (1986). In both figures 4.4(a) and

4.4(b), the agreement with Pozrikidis (1986) was found to be excellent.

4.3 Response of the Norbury family of vortex rings

Having validated our implementation of the numerical method described in §4.2.4, we con-

sidered the response of the remaining members of the Norbury family to shape perturbations

of the type described in equations 4.7—4.9. Pozrikidis (1986) reported detrainment of cir-

culation into a vortex tail only for prolate shape perturbations, a phenomenon of interest

because it is analogous to pinch-off. Therefore, we limited our study to the response of

the remainder of the family to prolate perturbations, with the goal of characterizing the

response of the entire Norbury family and investigating the extent of the shedding behavior.

We simulated the evolution of members of the Norbury family with α ranging from 0.2 to

1.2, subject to prolate perturbations with δ = −0.01, δ = −0.02, and δ = −0.05.

Figures 4.5 through 4.7 show the evolution of different Norbury vortices subjected to

a perturbation of 5% of the mean core radius (δ = −0.05). Thin cored-members of the
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Figure 4.3: Evolution of Hill’s spherical vortex subject to a Pozrikidis perturbation with
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family (α < 0.7) were found to propagate along the axial direction whilst their vortex cores

underwent a quasi-periodic deformation. Eventually, the formation of small mounds on the

core boundary led to the development of thin filaments, which wrapped around the vortex

core. The filamentation of the vortex is a common feature in vortex dynamics, and it is

observed even in linearly stable configurations (Saffman, 1992; Dritschel, 1988b,a; Deem &

Zabusky, 1978; Crowdy & Surana, 2007). Thus, Pozrikidis (1986) and Ye & Chu (1995)

remark that the appearance of thin filaments is of negligible importance to the dynamics

of the perturbed vortex. Figure 4.5 depicts the evolution of a Norbury vortex with α = 0.5

subject to a perturbation of δ = −0.05. Initially, the vortex core was found to undergo

a quasi-periodic shape deformation (figures 4.5(a)-(c)). The small deformation which was

initially seen to propagate along the contour (figures 4.5(b) and (c)), eventually sharpened

into a corner (figure 4.5(d)) and developed into a thin filament by t∗ = Ut/R = 6.75 (Figure

4.5(e)).

For members of the Norbury family with increasing core thickness, the core cross-section

increasingly resembled a semi-circle, and the curvature of the portion of the boundary closest

to the symmetry axis approached zero. The perturbation scheme outlined in equations

4.7—4.9 therefore resulted in a perturbed vortex shape that was locally concave (see figure

4.2). As these vortices evolved, the region of concavity propagated along the contour, due

to the motion of the rotational fluid within. Once the region of concavity reached the corner

near the front of the vortex, it led to the formation of a small mound on the contour, which

rapidly developed into a vortex filament. The filamentation of a sufficiently perturbed vortex

has been observed consistently in previous studies (Saffman, 1992; Dritschel, 1988b,a; Deem

& Zabusky, 1978; Crowdy & Surana, 2007), and as such the emission of a filament by these

perturbed Norbury vortices is to be expected. What is particular to these vortices is the
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Figure 4.5: Evolution of a Norbury vortex with α = 0.5 subject to a prolate perturbation
of δ = −0.05 at: (a) t∗ = 0; (b) t∗ = 1.5; (c) t∗ = 3.5; (d) t∗ = 5; (e) t∗ = 6.75
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development of the filament consistently at the location of the region of initial concavity,

by the mechanism described above.

Figure 4.6 depicts the behavior typical of Norbury vortices with 0.7 < α < 0.95, when

subjected to a perturbation of δ = −0.05. In figure 4.6(a), a perturbed Norbury vortex

with α = 0.9 exhibits a region of local concavity on the portion of its boundary nearest

the symmetry axis of the ring. A small mound was seen to develop as the region of con-

cavity reached the front of the vortex, which by t∗ = 2.5 had developed into a sharp spike

(figure 4.6(b)). At later times, this spike was seen to develop into a thin filament which

wrapped around the vortex core (figures 4.6(c)-(e)). The filament increased in length as

the simulation progressed, however no detrainment of circulation into a trailing vortex tail

was observed. These results are in good qualitative agreement with those of Ye & Chu

(1995), who considered the unsteady evolution of a Norbury vortex with α = 0.8, subject

to a perturbation of δ = −0.15.

However, for thicker-cored members of the family subject to perturbations of the same

size, a change in response was observed. For Norbury vortices with α > 0.95, the introduc-

tion of a prolate perturbation with δ = −0.05 resulted in the detrainment of rotational fluid

into a vortex tail which lingered behind the vortex ring. Figure 4.7 shows the evolution

of a Norbury vortex with α = 1.2, subject to a perturbation of this magnitude. Initially,

excess rotational fluid from the outer regions of the core was convected towards the rear

of the vortex (figure 4.7(b)). Figures 4.7(c)-(e) depict the elongation of this region of ac-

cumulated vorticity, under the influence of the high-strain region near the rear stagnation

point, into a long tail which lingered behind the vortex ring and formed an independent low-

circulation entity. These observations are consistent with the results of Pozrikidis (1986) for

the evolution of Hill’s spherical vortex under similar shape perturbations, as well as with
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Figure 4.6: Evolution of a Norbury vortex with α = 0.9 subject to a prolate perturbation
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the observations of Gharib et al. (1998) for experimentally generated vortex rings above a

formation time of T̂ = Upt/D = 4.

In comparing the shedding of a vortex tail by a perturbed Hill’s vortex and the phe-

nomenon of pinch-off, Gharib et al. (1998) found that the processes are analogous, since

both occur when patches of rotational fluid at the outer regions of the core are no longer

contained within the region of fluid translating with the vortex ring, and are hence con-

vected to the rear of the vortex. In doing so, the excess rotational fluid enters the high-strain

region near the rear stagnation point and is elongated, under the influence of the stagnation-

point flow, to form a vortex tail. In nearly spherical members of the Norbury family, the

boundary of the vortex core lies close to the stagnation streamline. Consequently, a large

enough shape perturbation was found to lead to the presence of excess rotational fluid in

the region were fluid particles were being swept past the ring. The excess vorticity was

hence convected to the rear of the vortex, were the proximity of the rear stagnation point

resulted in its detrainment into a tail. In contrast, for thin-cored members of the Norbury

family, the excess vorticity was found to revolve around the vortex core and eventually cause

filamentation, but it was not detrained due to the remoteness of the rear stagnation point.

A simple metric for comparing the response of the different members of the family is the

contour length of the vortex tail or filament after one eddy turnover (∆`), expressed as a

percentage of the initial contour length. In figure 4.8 we present the contour length (∆`) as

a function of the parameter α for three different perturbation sizes: δ = −0.05, δ = −0.02,

and δ = −0.01. The results for δ = −0.05 form a curve with three distinct sections, labeled I,

II, and III in figure 4.8. For small values of α, the change in the contour length is negligible,

since these thin-cored rings were found to undergo quasi-periodic deformations for several

eddy turnovers before thin filaments began to develop (region I). For values of α in the 0.7-
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Figure 4.7: Evolution of a Norbury vortex with α = 1.2 subject to a prolate perturbation
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a percentage of the initial contour length) for members of the Norbury family subject to
perturbations of different magnitudes: N, δ = −0.01; �, δ = −0.02; •, δ = −0.05.

0.95 range, ∆` increases with increasing core thickness (region II). This region corresponded

to the members of the family for which a perturbation of this magnitude resulted in an initial

core shape which exhibits regions of local concavity. For these vortices, thin filaments were

found to develop immediately, and result in a finite ∆` after one eddy turnover.

The most salient feature of the curve, however, is the sharp increase in contour length

when the core thickness parameter is increased past α = 0.95 (region III). This discontinuity

coincides with the first instance of tail shedding in the family, and is indicative of a change

in the response of the Norbury family to perturbations of this size. The sharp increase in

∆` is also evident in the results for δ = −0.02 and δ = −0.01, shown in figure 4.8, and it

was also found to coincide with the onset of trailing vortex tail formation for perturbations

of these sizes. Notably, the value of α at which the detrainment of circulation into a tail

was first observed appeared to be dependent on the perturbation size.

When simulating the evolution of vortex configurations which tend to form thin fila-
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ments, a technique known as contour surgery, developed by Dritschel (1988b), is sometimes

employed. This technique allows for the simulation of vortices, whose computational costs

would otherwise be prohibitive due to the large numbers of segments necessary for dis-

cretization of the filaments, for long times after the formation of filaments. In the preceding

figures, on the other hand, contour surgery was not applied. Instead, the filaments and

vortex tails were allowed to grow, in order to observe the initial development of the insta-

bility. In his study of perturbations to Hill’s spherical vortex, however, Pozrikidis (1986)

was able to continue simulating the evolution of vortex rings after the formation of long

filaments and tails, by excising the filaments and continuing the simulation of the vortex

without the tail or filament. Furthermore, Pozrikidis (1986) found this simplification to

have a negligible effect on the accuracy of the simulations of the evolution of the remaining

vorticity. Therefore, following Pozrikidis (1986), we excised the filaments or tail after one

eddy turnover, and continued the evolution of the vortices in the Norbury family without

them.

By excising the vortex filaments, we observed the development of the perturbed vortices

into nearly steady vortex rings whose asymptotic shape was another member of the Norbury

family. Figure 4.9 shows the non-dimensional kinetic energy (Ē = E/(%Ω2R7)) as a function

of the non-dimensional circulation (Γ̄ = Γ/(ΩR3)), for steadily translating and perturbed

members of the Norbury family. The solid line depicts the Γ̄-Ē curve for the unperturbed

members of the Norbury family, while the black dots represent the initial circulation and

energy of the perturbed vortices (δ = −0.05), and the crosses represent the asymptotic

states. Since the perturbations are circulation-preserving, the perturbed vortices are shifted

downwards from the unperturbed curve by an amount ∆Ē(α), which is greater for thicker-

cored members of the family. The perturbed vortices in regions I and II were found to
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Figure 4.9: Kinetic energy (Ē) vs. circulation (Γ̄) for Norbury vortices subject to a per-
turbation of δ = −0.05. The solid line shows the Γ̄-Ē curve for the unperturbed Norbury
family. The filled dots represent the initial circulation and energy of the perturbed vortices.
The crosses represent the values that the perturbed vortices asymptote to after contour
surgery. These same quantities are shown on the inset, which focuses on the thick-cored
members of the family.

lose small amounts of both energy and circulation through filamentation, as their shape

slowly approached a nearly steady state with a slightly smaller mean core radius than they

originally possessed. In contrast, in detraining circulation into a vortex tail, the vortices

in region III rapidly shed circulation and a comparatively small amount of kinetic energy.

This resulted in a near-horizontal shift in the Γ̄-Ē curve, as shown in figure 4.9. After

the initial detrainment, these vortices continued to approach a steady state by successively

losing small amounts of circulation and energy by filamentation, much like the vortices in

regions I and II.

The nonlinear response of the Norbury family to arbitrary shape perturbations intended

to resemble those encountered by experimentally generated vortex rings (such as adding a

‘tail’ of vorticity to the rear of a Norbury vortex) was also considered. For these perturba-
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tions, the results were qualitatively similar to those reported above for prolate shape per-

turbations, with thick-cored members of the family exhibiting detrainment of circulation,

and thinner-cored members displaying only filamentation. However, these perturbations

were found to be of use when considering more complex models for vortex rings, and are

described in §5.6.

4.4 Response of the Pierrehumbert family of vortex pairs

Unlike that of the Norbury family, the stability of the Pierrehumbert family has been

the subject of numerous contour dynamics studies. Dritschel (1995) examined the linear

stability of the family of dipoles, and used contour dynamics to find the nonlinear stability

bounds for asymmetric perturbations. Recently, Makarov & Kizner (2011) used contour

dynamics methods to show that all members of the Pierrehumbert family are stable with

respect to symmetric perturbations. However, the nonlinear response of this family to

prolate perturbations of the type described in §4.2 has not been previously reported. Since

a comparison between the perturbation responses of the two families is instructive, we

considered the response of several members of the Pierrehumbert family to perturbations

of the same kind and size as those introduced to the Norbury family.

Given the recent results of Makarov & Kizner (2011) it is unsurprising that, in the case

of the Pierrehumbert family, we found no evidence of detrainment of rotational fluid into

a trailing vortex tail, even when thick-cored members of the family were subjected to the

largest of the perturbations considered (δ = −0.05). Figure 4.10 depicts the evolution of a

Pierrehumbert vortex pair with α = 1.2 under a perturbation of δ = −0.05. The cores of

the vortices in this pair are quite thick, yet the pair’s behavior resembled that of the thin-

cored Norbury vortex depicted in figure 4.5. The vortex cores were observed to undergo
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quasi-periodic shape deformations, and thin filaments eventually began to form where the

perturbed cores were locally concave, much like in the thin-cored members of the Norbury

family.

Figure 4.11 shows a plot of the excess energy (Ē = E/(%Ω2R4)) as a function of circu-

lation (Γ̄ = Γ/(ΩR2)) for the unperturbed Pierrehumbert family (solid line), and for the

initial and asymptotic states of the members of this family subject to shape perturbations

with δ = −0.05 (filled circles and crosses, respectively) . It is interesting to note that, in

the case of the Pierrehumbert family, symmetric perturbations of the same type and size

as those introduced to the Norbury family result in very small changes in the excess energy

of the dipoles. Whereas for the Norbury family, perturbations with δ = −0.05 resulted

in decreases in the kinetic energy of the perturbed vortex of up to 4.5%, in this case the

change was found to be less than 0.3%. Furthermore, it was found that producing percent-

age decreases in the energy on the order of those observed for the Norbury family required

introducing perturbations so extreme that the perturbed vortices resembled figure-eights

(figure 4.12). This robustness of the of the energy to shape perturbations leads to the

observed absence of tail shedding.

4.5 Conclusions

The nonlinear response of the Norbury family of axisymmetric vortex rings to prolate shape

perturbations was considered in this chapter. Our contour dynamics computations suggest

that, for prolate shape perturbations, there is a dynamical change in the perturbation

response as we traverse the Norbury family from thin-cored members to thicker-cored vortex

rings, which is analogous to the onset of pinch-off in experimentally generated vortex rings.

Thin-cored vortex rings were found to undergo quasi-periodic shape deformations, and to
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Figure 4.10: Evolution of a Pierrehumbert vortex with α = 1.2 subject to a prolate pertur-
bation of δ = −0.05 at: (a) t∗ = 0; (b) t∗ = 2.5; (c) t∗ = 5; (d) t∗ = 7.5; (e) t∗ = 10
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Figure 4.12: Insensitivity of the kinetic energy in the Pierrehumbert family, relative to the
Norbury family. (a) Norbury vortex with α = 1.2 (—), along with the prolate perturbation
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with the prolate perturbation which leads to a 5% change in Ē (– –).
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eventually develop thin filaments which were largely dynamically unimportant. In contrast,

in thick-cored vortex rings we observed the transport of excess rotational fluid from the

outer boundaries of the core to the rear of the vortex, which led to the development of a

trailing vortex tail and the detrainment of circulation into a separate trailing entity.

While the behaviors of Hill’s spherical vortex and of one thin-cored member of the family

under similar conditions have been previously reported, the present results illustrate the

behavior of the entire family in a manner consistent with the results of Pozrikidis (1986)

and Ye & Chu (1995) for these two special cases. Furthermore, the change in response

observed as we traversed the Norbury family is consistent with experimental observations

of the formation of circular vortex rings. Thick-cored vortex rings have been shown to

detrain excess vorticity into a trailing jet in numerous experiments (Gharib et al., 1998;

Dabiri & Gharib, 2004a; Krueger et al., 2006; Pawlak et al., 2007). As Gharib et al. (1998)

remark, this process is analogous to the detrainment of circulation into a tail by thick-cored

members of the Norbury family observed in this study.

In contrast, we found no evidence of detrainment of circulation or tail shedding for mem-

bers of the Pierrehumbert family of all core sizes subject to equivalent perturbations. This

suggests a difference in the perturbation response of the two dimensional family compared

to the axisymmetric Norbury family, which is attributed to the insensitivity of the kinetic

energy of the Pierrehumbert dipoles to shape perturbations of the type considered (figure

4.11). This difference in response is of interest because it mirrors the observed differences

in the vortex formation processes in the two dimensional and axisymmetric configurations.

Recent studies by Nitsche (2001), Afanasyev (2006) and Pedrizzetti (2010) suggest that the

limiting time scale for axisymmetric vortex ring formation does not apply to the formation

of two dimensional vortex dipoles. In light of our findings for the Norbury family, the ab-
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sence of tail shedding for any members of the Pierrehumbert family is in good agreement

with these studies.

The present results show that only instantaneous shape perturbations to low-order vor-

tex patch models are required to produce a change in response between thin-cored vortex

rings and thicker-cored rings which is consistent with experimental results, whereas no such

transition is evident in vortex dipoles of any size. This is of particular interest given that

the Norbury family has been successfully employed to model the growth of experimental

vortex rings (Gharib et al., 1998; Mohseni & Gharib, 1998; Shusser & Gharib, 2000; Linden

& Turner, 2001), and that Afanasyev (2006) has noted that vortex dipoles closely resemble

members of the Pierrehumbert family during their development.

The results of this study suggest the existence of a relationship between vortex formation

and the perturbation response of the leading vortex in a starting jet, which allows for the

possibility of predicting pinch-off based on simple models for the developing vortex ring. As

was mentioned in the preceding chapter, such a perturbation-response-based criterion has

the advantage that it could potentially be extended even to non-axisymmetric vortex rings,

and could thus prove useful in a variety of biological applications where asymmetric vortex

rings are the norm, and the feeding shear layer is difficult to model. Examples include the

wakes of swimming and flying animals (Dickinson & Götz, 1996; Kern & Koumoutsakos,

2006; Kim & Gharib, 2011) and the flow through the mitral valve in the human heart

(Domenichini et al., 2005; Bellhouse, 1972; Reul et al., 1981; Wieting & Stripling, 1984).

In reality, however, vortex rings and dipoles formed from roll-up of a shear layer exhibit

a smooth vorticity distribution and are subject to a continuous injection of vorticity from

the shear layer. A more realistic vorticity distribution within the vortex cores could be

achieved by employing nested contours. Although more computationally expensive, further
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work employing more realistic vorticity distributions, and analyzing the response to pertur-

bations where vorticity is continuously injected at the rear of the vortex, could yield further

insight into the dynamics of the pinch-off of vortex rings from their feeding shear layer. In

the following chapter, we consider more complex models for vortex rings and dipoles, con-

structed using nested patches of vorticity such as the ones employed in the current chapter.

In addition, we consider a more physically pertinent class of perturbations, which simulates

the injection of fluid at the rear of the vortices by a feeding shear layer.

The material in this chapter was published in O’Farrell C and Dabiri JO (2012)“Per-

turbation response and pinch-off of vortex rings and dipoles,” Journal of Fluid Mechanics

704: 280-300. Copyright 2012, Cambridge University Press. It is reproduced here with

permission.



132

Chapter 5

Nested-contour models for vortex
rings and dipoles

5.1 Introduction

In chapter 4 we discussed the existence of a process analogous to pinch-off in the perturba-

tion response of a family of vortex rings introduced by Norbury (1973). Given that these

vortices have been used to model vortex rings at different stages in their growth (Gharib

et al., 1998; Mohseni & Gharib, 1998; Shusser & Gharib, 2000; Linden & Turner, 2001; Gao

& Yu, 2010), the existence of a change in perturbation response, when considering Norbury

vortices of increasing core size, suggests that the perturbation response of models for iso-

lated vortex rings could be a useful tool in understanding the pinch-off of vortex rings in

real flows. This conjecture is supported further by the fact that no such change in response

was observed in the two-dimensional Pierrehumbert family of vortex dipoles (Pierrehum-

bert, 1980), where pinch-off was not expected to occur (Afanasyev, 2006; Pedrizzetti, 2010;

Domenichini, 2011).

The vortex rings and dipoles considered in the previous chapter, however, consisted of

patches where the vorticity was constant (in the two-dimensional case), or a linear function

of the distance from the axis of symmetry (in the axisymmetric case). In contrast, exper-
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imentally generated vortex rings are characterized by a Gaussian distribution of vorticity

(Weigand & Gharib, 1997), and the vorticity in experimentally generated dipoles is well-

approximated by Bessel functions (Flór & van Heijst, 1994; Trieling et al., 2010) . Therefore,

there is room for improving our understanding of the relationship between the perturba-

tion response of models for isolated vortex rings and dipoles and the pinch-off phenomenon

observed in laboratory flows and in the field, by considering more realistic models for the

vortices. In two dimensions, more realistic vortex models with continuous distributions of

vorticity have been previously studied by Boyd & Ma (1990); Kizner & Khvoles (2004);

Khvoles et al. (2005); Albrecht (2011), and others; whereas Kaplanski & Rudi (2005) and

Fukumoto & Kaplanski (2008) have considered viscous models for vortex rings. Unlike the

inviscid solutions of Pierrehumbert (1980) and Norbury (1973), these models were viscous,

and studying their perturbation response required the use of viscous flow solvers.

However, more realistic models for both vortex rings and dipoles can be constructed

by extending the methods described in the previous chapter to allow for multiple nested

patches of vorticity. This arrangement enables the approximation of more realistic, con-

tinuous distributions of vorticity, by piecewise-constant or piecewise-linear distributions, in

two-dimensional and axisymmetric flows, respectively. Thus constructed, the models re-

main inviscid, and their evolution can be computed by simple modifications to the contour

dynamics algorithms discussed in the preceding chapter.

In two dimensions, vorticity distributions of arbitrary complexity can be approximated

in a piecewise-constant fashion by using multiple nested patches of constant vorticity. This

idea was first introduced by Zabusky et al. (1979), and its value lies in that the contributions

from individual patches to the contour dynamics velocity equation can be added together

by simple linear superposition. However, most past studies in contour dynamics employing
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multiple contours have focused on groups or arrays of vortices consisting single patches of

vorticity. Examples include those of Dritschel (1985); Overman & Zabusky (1983); Saffman

& Szeto (1981) and Makarov & Kizner (2011). A comprehensive review of these studies of

arrays of vortex patches is found in Pullin (1992). Nested patches have also been useful

in the study of annular vortices: two-dimensional vortices with a patch of zero vorticity at

their center. Dritschel (1986), for instance, considered the perturbation response of a class

of these vortices.

However, a handful of studies have employed nested patches to simulate the evolution

of vortices with smooth vorticity distributions. Dritschel (1989) simulated the evolution of

an elliptic vortex modeled after the elliptic vortices with smooth vorticity distributions

considered by Mellander et al. (1987), using eight nested regions of constant vorticity.

Similarly, Pullin & Jacobs (1986) conducted four-contour simulations of Corcos-Lin vortex

arrays (Corcos et al., 1984; Corcos & Lin, 1984; Lin & Corcos, 1984), and Jacobs & Pullin

(1989) utilized eight- and sixteen-contour approximations to study the evolution of a shear

layer with a Gaussian vorticity distribution.

None of these studies, however, considered dipolar vortices such as those studied by

Pierrehumbert (1980) and investigated in chapter 4. Along with monopolar vortices, dipolar

vortices are commonly found in two-dimensional turbulence (van Geffen & van Heijst, 1998;

McWilliams, 1984). As a result, vortex dipoles have been the subject of numerous studies,

a subset of which are listed in §4.1. In these studies, the most commonly used model for

the dipolar vortices is an analytical solution to the incompressible Euler equations known

as the Lamb dipole (Lamb, 1906). van Geffen & van Heijst (1998), Kizner et al. (2010),

Delbende & Rossi (2009), for instance, conducted numerical studies of vortex pairs which

closely resembled the Lamb dipole. However, these studies made use of a combination
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of theoretical analysis and direct numerical simulation. Given the ubiquity of Lamb-like

vortices in studies of two-dimensional turbulence, the feasibility of modeling such vortices

using nested contours is of interest.

In the case of axisymmetric flows, the contributions from multiple regions of linear

vorticity distribution may be combined by linear superposition to allow the simulation

of systems with multiple patches, using the axisymmetric contour dynamics algorithm of

Shariff et al. (2008). In fact, Shariff et al. (2008) mentioned the the possibility of using

nested contours to approximate arbitrary vorticity distributions by piecewise-linear ones.

However, the authors considered only the case of a ‘hollow’ spherical vortex, which consisted

of a region of zero vorticity nested within a spherical region with a linear distribution of

vorticity (i.e., Hill’s spherical vortex). To date, no studies are available which make use

of nested contours to construct approximations to experimental vortex rings that are more

realistic than the Norbury family employed by most existing models for pinch-off.

The goal of the current chapter was to construct more realistic models for the dipolar

vortices found in two-dimensional turbulence and the vortex rings found in starting jets,

than those considered in the preceding chapter. In the two-dimensional case, a model for the

analytical Lamb dipole was constructed using several nested contours. In the axisymmetric

case, model vortex rings were constructed from experimental data from a starting jet, and

consisted of several nested contours. Since the model vortices where described by several

contours, perturbations to the vortices could be easily introduced in the form of deformations

to the shape of the contours. Hence, we analyzed the response of the model vortex rings

to shape perturbations in a manner similar to our analysis of the Norbury family in the

preceding chapter.

In order to obtain a more realistic model for the perturbations that vortex rings ex-
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perience during formation, we devised a perturbation scheme that consisted of deforming

the rear boundary of the vortex by introducing a small protuberance. This perturbation

mimicked the introduction of a small amount of vorticity at the rear of a forming vortex

ring by interaction with its feeding shear layer. Using this perturbation scheme, we were

able to identify a change in the behavior of our model vortex rings which was consistent

with pinch-off. Similar methods can be applied to the construction of models for vortex

rings in biological flows and, by studying their perturbation response, enable prediction of

the pinch-off phenomenon in more complex biological flows.

This chapter is organized as follows. In §5.2 we outline the mathematical and numer-

ical framework for computing the evolution of multiple regions of vorticity using contour

dynamics algorithms. The methods described in this section are used in §5.3 to model the

Lamb dipole. In §5.4 and §5.5, we discuss the construction of model vortex rings from

experimental data for a starting jet, and we consider the perturbation response of these in

§5.6. Finally, concluding remarks are presented in §5.7

5.2 Mathematical formulation and numerical method

5.2.1 Contour dynamics formulation for multiple contours

The vorticity equation for inviscid, incompressible flow in two dimensions introduced in

chapter 4 (equation 4.1) is satisfied by any number of patches of constant vorticity, which

may or be not be nested within each other. Similarly, the vorticity equation for inviscid,

incompressible axisymmetric flow without swirl (equation 4.2) is satisfied by any number of

regions with a distribution of vorticity which is linear in the radial coordinate. As a result,

nested patches of vorticity can be utilized to construct piecewise-constant and piecewise-
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linear approximations to more complex distributions of vorticity, in the two-dimensional and

axisymmetric cases, respectively. Furthermore, the contour dynamics equations describing

the motion of single patches of vorticity introduced in §4.2.3, can be extended to these

piecewise-constant and piecewise-linear distributions by linear superposition.

In two dimensions, the velocity at a point z = x + iy in the complex plane due to n

patches Aj (j = 1, . . . , n) of constant vorticity (nested or otherwise) is given by:

ux + iuy = − 1

4π

n∑

j=1

Ωj

∮

∂Aj

z− z′

z̄− z̄′
dz′ (5.1)

where j iterates over all contours. Where the contours are nested, Ωj represents the

jump in ω when crossing the jth contour inwards (Dritschel, 1988b; Pullin, 1981). When

simulating vortex dipoles, we consider only the case where the flow is symmetric about the

x-axis. Therefore, in these cases, n refers to the number of nested contours comprising one

of the symmetric vortex cores, usually taken as the positive core.

Similarly, the axisymmetric contour dynamics algorithm of Shariff et al. (2008) admits

multiple contours by addition of the contributions from individual contours. Therefore, the

equation for the velocity induced at a point x by n regions Aj with a linear distribution of

vorticity is given by:

u(x) =

n∑

j=1

Ωj

∮

∂Aj

[(z − z′)G(s′) cos θ′ − rH(s′) sin θ′]ẑ + r′H(s′) cos θ′r̂ds′ (5.2)

Where here Ωj represents the jump in ξ = ω/r when crossing the jth contour inwards,
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and H and G are given by:

G(s′) =
r′

π
√
C +B

K(k) (5.3)

H(s′) =
1

2πr
(

C√
C +B

K(k)− E(k)
√
C +B) (5.4)

k =

√
2B

C +B
(5.5)

C = (z − z′)2 + r2 + r′2, B = 2rr′ (5.6)

Here too θ(s′, α) is the angle of the outward-pointing normal relative to the symmetry

axis, and K(k) and E(k) are the complete elliptic integrals of the first and second kind,

respectively (§4.2.3).

These contour dynamics algorithms for multiple contours reduced the evolution problem

to tracking the motion of a collection of marker points on the boundary of each contour,

by numerical integration of equation 5.1 or equation 5.2. Numerical integration was carried

out using the method outlined in §4.2.4. At each time step, additional marker points were

inserted in each contour where the linear segments stretched beyond 0.016R, and removed

where segments shrunk below 0.004R (Shariff et al., 2008). For nested contours, R was

defined as the radial coordinate of the center of the innermost contour in the axisymmetric

case, and as the distance from the symmetry axis to the center of the innermost contour in

one of the symmetric vortices in the two-dimensional case.

Following Shariff et al. (2008), the time step was chosen to satisfy ∆t = 0.05
Ω0

, where Ω0 is

the vorticity at the center of the vortex ring core in the axisymmetric case (Ω0 =
n∑
j=1

ΩjR),

or the vorticity inside the innermost contour of the positively-signed vortex patch in the

two-dimensional case (Ω0 =
n∑
j=1

Ωj). The flow invariants (circulation, impulse, and energy)

were monitored and their change was kept below 0.01% over one eddy turnover period for
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the impulse and circulation, and 0.02% over the same period for the energy.

5.2.2 Verification

The contour dynamics algorithms described above may be used to simulate the evolution of

arbitrary configurations of nested patches, and they have been used extensively to simulate

the evolution of “hollow” vortices. That is, vortices with a zero-vorticity patch at their

center. In order to verify our implementation of the contour dynamics algorithms described

in the previous section, we began by considering the evolution of such hollow vortices.

Dritschel (1986) considered the evolution of several annular vortices, which consisted of a

zero-vorticity patch nested within a constant-vorticity patch. Figure 5.1 shows the evolution

of one such annular vortex. The vortex consisted of a Kirchhoff elliptic vortex (Kirchhoff,

1876) with an aspect ratio of 1.22, whose major axis initially lay in the horizontal plane, and

from which a region of vorticity-carrying fluid was removed. The boundary of the removed

region was an ellipse with an aspect ratio of 1.33 and an equivalent diameter of 70% of the

outer vortex equivalent diameter. The major axis of the removed region was aligned with

the vertical axis (figure 5.1). Dritschel (1986) denoted the ratio of the equivalent diameter

of the zero-vorticity patch to that of the constant-vorticity patch by a, and he normalized

the time as τ = (1 − a2)t/(1 + a2). The annular vortex in figure 5.1 was found to develop

into two elongated vortices which spiraled towards the origin. These results were found to

be in excellent qualitative agreement with those of Dritschel (1986).

A similar pattern of breakup into smaller vortices was found when considering the

evolution of a pair of symmetric annular vortices, such as those shown in figure 5.2(a).

The vortices were constructed by removing regions of vortical fluid from one of the steadily

translating dipoles described by Pierrehumbert (1980) and introduced in §4.2.1. Following
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(a) (b ) (c ) (d )

Figure 5.1: Evolution of an annular vortex from Dritschel (1986), at: (a) τ = 0; (b) τ = 3;
(c) τ = 6; (d) τ = 9. The vortex was constructed by removing a region of vortical fluid
from a Kirchhoff elliptic vortex (Kirchhoff, 1876; Saffman, 1992) of aspect ratio 1.22. The
boundary of the removed region is an ellipse with an aspect ratio of 1.33, and an equivalent
diameter of 70% of the outer vortex (a = 0.7). Time has been normalized by (1+a2)/(1−a2),
where a is the ratio of the equivalent diameter of the inner ellipse to that of the outer ellipse.

Shariff et al. (2008), the boundaries of the removed regions were chosen to be the interior

streamlines of the unperturbed dipole where ψ = ±0.25. Figures 5.2 (b)-(e) show the

evolution of the hollow vortex pair into a symmetric arrangement of eight vortices connected

by thin filaments. Time t∗ = Ut/R was normalized using the speed of the unperturbed

dipole (U) and the distance from the symmetry axis of the center to one of the vortices (R),

as described in chapter 4.

The evolution of hollow vortices into patches of vorticity connected by thin sheets was

also observed to occur in the axisymmetric case by Shariff et al. (2008). Therefore, in order

to verify our implementation of the axisymmetric contour dynamics algorithm for multiple

contours, we considered evolution of a hollow spherical vortex constructed by removing a

region of vortical fluid from Hill’s spherical vortex of radius 2R. Following, Shariff et al.

(2008), the boundary of the region removed was chosen to be an interior streamsurface of

the unperturbed Hill’s vortex. In our case, the boundary of the removed regions was the

streamsurface where ψ = Ω
10r

2
(
(2R)2 − r2 − z2

)
= 0.21. Figure 5.3 shows the breakup

of the hollow vortex. Once again time t∗ = Ut/R was normalized as in chapter 4: using

the speed and radius of the unperturbed Hill’s vortex. The results in figure 5.3 agree
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Figure 5.2: Evolution of a pair of annular vortices formed by removing a region of vortical
fluid from a Pierrehumbert dipole (α = 1.2), at: (a) t∗ = 0; (b) t∗ = 7.5; (c) t∗ = 15; (d)
t∗ = 22.5; (e) t∗ = 30. The boundaries of the regions removed were the interior streamlines
of the unperturbed dipole where ψ = ±0.25.
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qualitatively with the evolution of the vortex described by Shariff et al. (2008). However,

since Shariff et al. (2008) did not indicate the streamsurface they selected for their study,

an exact comparison is not possible.

Having verified our implementation of the contour dynamics algorithms for multiple

regions of vorticity in the two-dimensional and axisymmetric cases, we proceeded with

the construction of model vortex rings and dipoles using nested contours. We began by

considering an exact solution of the incompressible Euler equations in two dimensions: the

Lamb dipole.

5.3 Example: modeling the Lamb-Chaplygin dipole

The Lamb-Chaplygin dipole is a steadily translating solution to the two-dimensional, incom-

pressible Euler equations, which takes the form of a vortex dipole with a circular boundary

and a continuous distribution of vorticity. Inside the circular dipole of radius R, the vortic-

ity and stream function are linearly related by ω = b2(ψ− λ), where b and λ are constants.

This general form of the dipole is due to Chaplygin (Chaplygin (1903) in Russian, Chaplygin

(2007) in translation), and was recently brought to the attention of the scientific commu-

nity by Meleshko & van Heijst (1994). Previously, the special case where λ = 0 had been

described by Sir Horace Lamb, and is known as the Lamb dipole (Lamb, 1895, 1906).

The resulting vorticity field is given by:

ω =





2Ub
J0(bR)J1(bρ) sin ζ + λb2

[
1− J0(bρ)

J0(bR)

]
ρ ≤ R

0 ρ > R

(5.7)

Where the polar coordinates (ρ,ζ) are those defined in §4.2.1, and J0 and J1 are Bessel

functions. The constant b is such that bR is the smallest positive root of J1(bR) = 0. When
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Figure 5.3: Evolution of a hollow spherical vortex formed by removing a region of vortical
fluid from Hill’s spherical vortex of radius 2R, at: (a) t∗ = 0; (b) t∗ = 3.4; (c) t∗ = 6.8; (d)
t∗ = 10.2; (e) t∗ = 13.6. The boundary of the region removed was the interior streamsurface
of the unperturbed Hill’s vortex where ψ = Ω

10r
2
(
(2R)2 − r2 − z2

)
= 0.21.
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λ = 0, the two halves of the circular dipole are symmetric, and the vortex is asymmetric

when λ 6= 0. In all cases, however, the dipole translates forward with constant velocity U .

Figure 5.4(a) shows contours of the vorticity distribution inside the circular dipole for the

symmetric case (λ = 0, the Lamb dipole). Since this analytical solution describes an inviscid

steadily translating symmetric vortex dipole similar to those described by Pierrehumbert

(1980), it is an ideal candidate for modeling using nested contours to achieve a piecewise-

constant approximation to a continuous distribution of vorticity. The black lines in figure

5.4(a) show the five contours selected for a nested-contour model of the Lamb dipole. As

noted previously, we assumed symmetry of the flow across the x-axis, so that the positively

valued half of the core was modeled using five contours, and the contribution from the

other half was derived from symmetry. Figure 5.4(b) shows the vorticity distribution along

the centerline of the positively valued core of the Lamb dipole (in black), along with the

piecewise-constant approximation obtained from the nested-contour model (in red).

Figure 5.5 shows the evolution of the five-nested-contour model of the Lamb dipole,

where time and length have been normalized by R/U and R, respectively. Initially, a

small amount of irrotational fluid was entrained at the rear of the vortex (figure 5.5(b)).

Eventually, the entrained fluid formed a thin cap near the forward stagnation point, which

is visible in figure 5.5(d). A small amount of vortical fluid was also detrained into a small

filament, which is seen trailing behind the dipole in figure 5.5(e). The formation of this tail

of vorticity was also observed by van Geffen & van Heijst (1998) in their viscous numerical

simulation of the Lamb dipole, and deemed by the authors to have minimal influence on

the motion of the vortex. Despite the formation of these thin filaments, the model dipole

retained a shape that closely resembled the analytical Lamb dipole. In addition, the vortex

was found to have translated forward by an amount exceeding the expected 5R by only



145

x/R
(a)

y
/
R

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0 0.5 1
0

0.25

0.5

0.75

1

y/R
(b)

ω
/
ω

m
a
x

Figure 5.4: The Lamb dipole, and a five-contour approximation to the analytical solution.
(a) Contours of ω/ωmax for the Lamb dipole. The black lines show the locations of five
contours used in a piecewise-constant approximation. The dipole propagates from left to
right. (b) Analytical (—) and piecewise-constant (—) vorticity distributions along the
centerline of the positively valued vortex. The location of the cross section is shown by a
dashed line in (a).
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0.6%, at t∗ = Ut/R = 5 (figure 5.5(e)).

The accuracy of the nested-contour models for the Lamb dipole was found to improve

when the number of contours used in the approximation was increased. Figures 5.6 (a-d)

show four different nested-contour models at t∗ = 4.7: a three-nested-contour model, a five-

nested-contour model, a ten-nested-contour model, and a fifteen-nested-contour model. The

position of the analytical Lamb dipole at the same time instant is shown in figure 5.6(e),

for comparison. As the number of contours was increased, the amounts of irrotational fluid

entrained by the dipole and rotational fluid detrained by the dipole decreased, and the

filaments became less prominent. The black line across all parts of figure 5.6 corresponds

to the position, at t∗ = 4.7, of the forward stagnation point in the analytical solution. It

is evident from the figure that as the number of contours was increased, the translation

velocity of the nested-contour model approached the analytical value U .

The improved performance of the nested-contour models with increasing number of

contours is illustrated by figure 5.7. Figure 5.7(a) shows the circulation in one of the

trailing filaments, expressed as a percentage of the circulation in the positive core of the

analytical solution, as a function of the number of contours in the model. Similarly, figure

5.7(b) shows a comparison of the average velocity of the model dipole (Ū), and velocity of

the Lamb solution (U), for increasing number of contours. It is clear from figure 5.7 that the

nested-contour models constituted a remarkably faithful approximation to the Lamb dipole

even for small numbers of nested contours, and that the accuracy of the models increased

with increasing number of contours.
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Figure 5.5: Evolution of a five-contour approximation to the Lamb dipole at, at: (a) t∗ =
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has been colored by ω/ωmax. Time and length have been normalized by the radius of the
circular dipole (R) and the translation velocity of the analytical solution (U).
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in the vortex filament, expressed as a percentage of circulation in the analytical solution,
as a function of the number of contours. (b) Comparison of the average translating velocity
of the model dipole (Ū) and the analytical value (U), as a function of number of contours.

5.4 Constructing piecewise-linear models for axisymmetric

vortex rings

Multiple nested contours can also be used, in axisymmetric flows, to obtain piecewise-

linear approximations to the vorticity distributions inside vortex rings. Unlike in the two-

dimensional case, however, no exact solutions to the inviscid Navier-Stokes equations for

a vortex ring are known, other than those considered by Hill (1894) and Norbury (1973).

Therefore, we used several nested contours to construct models for axisymmetric vortex

rings generated using a piston-and-circular-cylinder arrangement.

For this purpose, we considered the vortex rings generated in the long-stroke-ratio

(L/D = 12) starting jet we described in chapter 2. Our objective was to obtain nested-

contour models for the vortex ring at different stages of its growth, up until its satura-
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tion and pinch-off. Therefore, we constructed models for vortex rings with stroke ratios

(
L
D

)
desired

= 1, 2, 3, and 4. Rather than conducting four different experiments to generate

isolated vortex rings at these desired stroke ratios, we considered the equivalent vortex rings

obtained from different time instants of the L/D = 12 data. That is, the vortex rings ex-

tracted from the L/D = 12 data whose total circulation matched the expected circulation

in vortex rings formed using the same experimental parameters, but with the desired stroke

ratios.

When looking at the time history of the L/D = 12 data, we considered that if fluid

ejection were halted at a non-dimensional time of T̂ = Upt/D =
(
L
D

)
desired

, the resulting

isolated vortex ring would have a circulation equal to the total circulation ejected by the

apparatus up to T̂ =
(
L
D

)
desired

, which we called Γdesired. However, all of Γdesired need not

be found in the leading vortex immediately after T̂ =
(
L
D

)
desired

. Figure 5.8 shows the time

histories of the total circulation emanating from the apparatus (Γ), as well as the circulation

in the leading vortex ring (Γring). In the figure, Γring is identical to the total circulation

until T̂ ≈ 2. For T̂ > 2, the vortex ring advected away from the nozzle, while remaining

attached to the shear layer and continuing to accept circulation from it (Gharib et al., 1998;

Gao & Yu, 2010; Domenichini, 2011). As a result of this separation of the vortex ring from

the nozzle edge, vortical fluid ejected after T̂ ≈ 2 was not immediately absorbed by the

vortex, and Γring increased at a rate slower than the total circulation.

Consequently, it was not sufficient to look at instantaneous contours of vorticity at T̂ =

(
L
D

)
desired

to obtain model vortex rings at these desired stroke ratios. Rather, we compared

Γring(T̂ ) for the L/D = 12 data to the time history of the total circulation(Γ(T̂ )), to find

the T̂model at which Γring(T̂model) = Γ
((

L
D

)
desired

)
= Γdesired. We then used instantaneous

contours of vorticity at T̂model to model the vortex ring with
(
L
D

)
desired

. The annotations
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Figure 5.8: Total circulation emanating from the nozzle (—) and vortex ring circulation
(◦) as a function of formation time T̂ for an experimentally generated vortex ring. The red
arrows illustrate the method used to determine T̂model when modeling a vortex ring with a
stroke ratio of four. The total circulation emanated from the nozzle at T̂ = 4 was compared
with the time history of the vortex ring, to determine the T̂ at which all of the circulation
ejected by T̂ =

(
L
D

)
desired

= 4 (Γdesired) had been absorbed by the vortex ring.

and arrows in figure 5.8 illustrate this process for
(
L
D

)
desired

= 4, where T̂model was found

to be 7.8.

Having determined T̂model, we constructed a nested-contour model by extracting con-

tours of the vorticity density (ξ = ω/r) for the leading vortex in the experimental data.

Figure 5.9(a) shows contours of vorticity at T̂ = T̂model = 7.8. In order to apply the

axisymmetric contour dynamics algorithm described in §5.2.1, our models were required

to consist of nested regions with linear distributions of vorticity ωm =
∑m

j=1 Ωjr (where

m ∈ [1, . . . , n]). Therefore, we constructed our models by extracting contours of constant ξ

from the experimental data, and assuming the value of ξ within each contour to have a con-

stant value ξm =
∑m

j=1 Ωj (where m ∈ [1, . . . , n]). Figure 5.9(b) shows five instantaneous
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contours of vorticity density at T̂ = 7.8, used to construct a five-nested-contour model for

a vortex ring with a stroke ratio of four.

Figure 5.10 shows these same contours of ξ, along with the five-contour model of the

vortex which was constructed from these contours (in red). The vorticity density ξ in the

leading vortex ring core at T̂ = 7.8 (shown in figure 5.10) was averaged with the distributions

of ξ in the cores at the two adjacent time steps, in order to provide a smoother distribution.

The vorticity densities around the cross sections of the ring in the positive r half-plane, and

the negative r half-plane, were also averaged to increase the smoothness of the contours

in the model. Five contours of constant ξ were then extracted from the averaged vorticity

density, and used to construct the model shown in red in figure 5.10. Because the vortex

ring remained attached to the shear layer, the rear boundary of the ring was not easily

distinguishable. However, isolated laminar vortex rings are known from flow visualization

experiments to exhibit high degrees of fore-aft symmetry (Lim & Nickels, 1995). Therefore,

we reflected the contour shapes obtained for the front half of the vortex, about the core

centerline, and constructed the symmetric core shown in figure 5.10.

A comparison of the distributions of ξ and ω along the centerline of the vortex core, in

the experimental and model vortex rings is shown in figure 5.11. Since, in the model vortex

ring, the vorticity density was assumed to be constant inside each contour (ξm =
∑m

j=1 Ωj

where m ∈ [1, . . . , n]), the experimental distribution of ξ was approximated by a series

of steps (figure 5.11(a)) in the model. The vorticity inside each contour in the model

vortex, however, was given by ωm = ξmr =
∑m

j=1 Ωjr (where m ∈ [1, . . . , n]). Hence, the

model vorticity tracked the experimental vorticity well on the half of the core closest to the

symmetry axis, where ω had a positive slope in both cases (r/D < 0.85 in figure 5.11(b)).

However, where the experimental vorticity was decreasing in r, the model ω (which was



153

z /D

r
/
D

(a)

0 1 2 3 4 5 6
−1.5

−0.5

0.5

1.5

z /D

r
/
D

(b )

0 1 2 3 4 5 6
−1.5

−0.5

0.5

1.5

Figure 5.9: Contours of vorticity and vorticity density at T̂ = 7.8, the time instant at which
all of the vorticity generated by T̂ = 4 had been accepted by the vortex ring. (a) Contours
of ω. Levels: min = 10% of ωmax, max = 90% of ωmax, increment = 10%. Negative values
denoted by the dashed lines. (b) Contours of ξ/ξmax, where ξmax is the maximum ξ inside
the cores. Levels: 0.09,0.36, 0.49, 0.68, 0.88. Flow is from left to right.



154

z /D

r
/
D

2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 5.10: Contours of ξ/ξmax at T̂ = 7.8 and superimposed five-contour model of a
vortex ring with a stroke ratio of four (—). Contour levels: 0.09,0.36, 0.49, 0.68, 0.88. The
direction of flow and the direction of propagation of the model vortex ring coincide with
the direction of increasing z.

constrained to have a positive slope) had a jagged shape ( r/D > 0.85 in figure 5.11(b)).

5.5 Finding steady state models for experimental vortex rings

Using the numerical scheme described in §5.2.1, we simulated the evolution of the nested-

contour model for the vortex ring with a stroke ratio of four shown in figure 5.10. Figure

5.12 shows the evolution of the vortex ring as a function of the normalized time t∗ = Upt/D,

where Up and D are the time-averaged piston velocity and nozzle diameter from the ex-

perimental data, respectively. Since the model was seen to detrain circulation into a tail

of considerable size, the five contours obtained directly from the experimental data did not

comprise a steady solution of the inviscid Navier-Stokes equations. This is not unexpected,

for a number of reasons. At least a small amount of detrainment is expected, given our
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Figure 5.11: (a) Experimental (—) and five-contour model (—) distribution of ξ/ξmax along
the centerline of one of the cores of the vortex ring. (b) Experimental (—) and five-contour
model (—) vorticity distribution along the centerline of one of the cores of the vortex ring.

findings in modeling the Lamb dipole. In the case of the Lamb dipole, however, the vorticity

distribution was an exact solution to the inviscid Navier-Stokes equations. In the axisym-

metric case, the vorticity distribution being was obtained from a viscous case (Re = 1400),

while the contour dynamics algorithm solves the inviscid vorticity equation. Therefore, the

contours obtained from the experiment were not expected to closely approximate an inviscid

solution.

At the stage shown in figure 5.12(e), the computational costs associated with resolving

the stretching of the tail made continuing the simulation prohibitively expensive, in terms

of computational costs. Continuing this calculation in its current state would have required

implementing the contour surgery algorithm developed by Dritschel (1988a), which implied

additional computational costs and a large increase in the complexity of the algorithm. As

was mentioned in chapter 4, however, Pozrikidis (1986) was able to continue simulating the

evolution of perturbed spherical vortices after filament formation, by excision of the vortex
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Figure 5.12: Evolution of a five-contour model of a vortex ring with L/D = 4, at: (a)
t∗ = Upt/D = 0; (b) t∗ = 2.1; (c) t∗ = 4.3; (d) t∗ = 6.5; (e) t∗ = 8.6. Inside each contour,
ξ = ω/r = Ωj is constant, and the interior of the contours has been colored by ξ/ξmax,
where ξmax is the maximum vorticity density in the experimental data.
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filaments. Furthermore, Pozrikidis (1986) found this simplification to have a negligible effect

on the accuracy of the simulations of the evolution of the remaining vorticity, and the same

method was successfully applied in chapter 4. Since the vortex tail in figure 5.12(e) was not

of particular interest, we adopted the strategy described in Pozrikidis (1986) and excised

the tail at t∗ = 8.6. We then continued the simulation of the vortex without the tail.

Parts (a) through (e) of 5.13 show the evolution of the model vortex ring after the

excision of the tail. Once again, the vortex was found to shed circulation into a tail which

trailed behind the ring. However, the amount of circulation shed by the vortex ring in this

case was significantly reduced. A second excision of the vorticity in the tail allowed the

simulation to continue to longer times. The evolution of the vortex ring after the second

excision is shown in parts (f) through (i) of figure 5.13, where the formation of filaments

which wrapped around the vortex core was observed, but no vorticity was detrained into

a tail. The formation of filaments was observed previously in chapter 4, and is known to

occur in contour dynamics simulations wherever there are regions of local concavity in the

contour outline.

We repeated this excision process several times, and monitored the evolution of the

vortex after each excision. Figure 5.14 shows the decrease in the vortex ring circulation

after each excision, expressed as a percentage of the circulation immediately preceding the

excision. It is clear from this figure that the amount of circulation shed by the vortex

decreased after each excision. Furthermore, the vortex appeared to be approaching an

asymptotic steady state, since the decrease in circulation was under 0.1% by the sixth

excision. Therefore, we used the configuration of the five-contour-approximation after the

sixth excision as our model for vortex rings with a stroke ratio of four.

The method outlined in §5.4 was used to extract nested-contour approximations for
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Figure 5.13: Evolution of a five-contour model of a vortex ring with L/D = 4 after filament
excision, at: (a) t∗ = 8.7; (b) t∗ = 10.1; (c) t∗ = 11.6; (d) t∗ = 13.1; (e) t∗ = 14.5. After
the second filament excision, at: (f) t∗ = 14.6; (g) t∗ = 16.7; (h) t∗ = 18.8; (i) t∗ = 21;
(j) t∗ = 23.1. Inside each contour, ξ = ω/r = Ωj is constant, and the interior of the
contours has been colored by ξ/ξmax, where ξmax is the maximum vorticity density in the
experimental data.
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Figure 5.14: Circulation in the vortex filament right before each excision, expressed as a
percentage of the vortex circulation before the excision.

vortex rings with stroke ratios of L/D = 1, 2, 3, 4 from the experimental data. Each of

these models was evolved numerically in time as outlined in the preceding paragraphs, with

filaments being excised as needed, until their asymptotic steady shape was determined.

Figure 5.15 shows the resulting five-nested-contour models for vortex rings at stroke ratios

of one, two, three, and four. These models comprised a family which was used to model

vortex rings at different stages of their growth. Following Pozrikidis (1986), Ye & Chu

(1995), and our work on the Norbury and Pierrehumbert families of vortices (chapter 4

and O’Farrell & Dabiri (2012)), we therefore investigated the perturbation response of this

family of vortex rings.
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5.6 Perturbation response of model vortex rings

In order to study the perturbation responses of model vortex rings in a starting jet at

different stages in their growth, and their relationship to pinch-off, we considered a type

of perturbation which simulated the addition of vorticity from a trailing shear layer. The

perturbation involved adding a small amount of circulation at the rear of the vortex by

perturbing the shape of the outermost contour. The perturbation to the outer contour had

the following form:

z′ =





z
[
1 + d sin

(
r−r(π)
w π

)]
π ≤ η ≤ ηw

z elsewhere

(5.8)

where z′ was the perturbed coordinate, z and r the unperturbed coordinates, and η the

polar angle as defined in figure 5.16. The r coordinate was unchanged, so the perturbation

amounted to inserting a tail of vorticity of length d and width w at the rear of the vortex.

ηw was the polar angle at which r = r(π) + w, indicated in figure 5.16. We considered

perturbations where w = 2R/3, and d was varied in order to investigate the change in the

perturbation response of the vortices as the amount of circulation introduced was increased.

We introduced perturbations of the form described above to the four model vortices in

figure 5.15, and simulated the evolution of the perturbed vortices using the method described

in §5.2.1. The size of the perturbations was quantified by the amount of circulation added

to the vortex ring by the perturbation, expressed as a percentage of the circulation in

the unperturbed vortex ring (∆Γ/Γ(%)). Figure 5.17 depicts the evolution of a model

vortex ring with a stroke ratio of two, subjected to a perturbation containing 2% of the

unperturbed vortex circulation. The tail introduced by the perturbation was seen to develop

into a vortex filament, much like those observed in chapter 4 when perturbing sufficiently
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Figure 5.16: Perturbation simulating a trailing shear layer, for a one-contour vortex. The
unperturbed vortex (a Norbury vortex with α = 0.8 in this case) is depicted by the solid
lines. The dashed lines represent a perturbation of the type defined in equation 5.8 to the
outer contour of a model vortex. The vortices propagate from left to right.

thin-cored members of the Norbury family, as well as all members of the Pierrehumbert

family. Like in those cases, the filament was found to wrap around the vortex core and

continue to move with the vortex ring, with no detrainment of vorticity into a tail.

When the size of the perturbation was increased, however, we noticed a change in

the response of the stroke-ratio-two model vortex ring. Figure 5.18 shows the evolution

of the model vortex ring with a stroke ratio of two, when subjected to a perturbation

containing 4% of the unperturbed vortex circulation. In this case, the vortex ring was

found to detrain vorticity from the outermost contour into a tail which lingered behind

the ring. This difference is indicative of a change in perturbation response, and mirrors

the transition identified in our study of the perturbation response of the Norbury family of

vortices (chapter 4 and O’Farrell & Dabiri (2012)).
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Figure 5.17: Evolution of a five-contour model of a vortex ring with L/D = 2, subject to a
perturbation containing 2% of the unperturbed circulation, at: (a) t∗ = 0; (b) t∗ = 2.7; (c)
t∗ = 5.4; (d) t∗ = 8.1; (e) t∗ = 10.8.
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Figure 5.18: Evolution of a five-contour model of a vortex ring with L/D = 2, subject to a
perturbation containing 4% of the unperturbed circulation, at: (a) t∗ = 0; (b) t∗ = 2.7; (c)
t∗ = 5.4; (d) t∗ = 8.1; (e) t∗ = 10.8.
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For the model vortex ring with a stroke ratio of four, the change in perturbation response

was found to occur at a perturbation size smaller than any of those introduced to the stroke-

ratio-two vortex. The evolution of a stroke-ratio-four vortex ring subjected to a perturbation

containing 2% of the unperturbed vortex circulation is shown in figure 5.19. The shedding

of vorticity into a tail was apparent in this vortex even for perturbations containing only 2%

of the unperturbed vortex circulation, which had not been observed to lead to tail-shedding

in the stroke-ratio-two vortex (figure 5.17).

The fact that the stroke-ratio-two vortex ring was able to withstand larger perturbations

than the stroke-ratio-four vortex without detraining vorticity into a tail, suggests that the

response of the model vortices to this type of perturbation might be related to the occurrence

of pinch-off in starting jets. We therefore determined the maximum perturbation size that

all four model vortex rings could accept before detraining vorticity into a tail. These results

are shown in figure 5.20, and indicate that the amount of circulation the model vortex rings

could accept before shedding a tail decreased with increasing stroke ratio, before leveling

off at a stroke ratio of approximately three.

For small stroke ratios, a decrease in the maximum allowable perturbation size before

shedding was expected, as the model vortex rings grew closer to a limiting size known to

exist from the experiments of Gharib et al. (1998) and others (Dabiri & Gharib, 2004a;

Krueger et al., 2006; Pawlak et al., 2007). At a stroke ratio of approximately three, this

decrease in the maximum perturbation size stopped, indicating that the stroke-ratio-three

and -four vortex rings were comparably close to the limiting size. This similarity suggests

that, in our family of model vortex rings, “pinch-off” occurred near a stroke ratio of three.
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Figure 5.19: Evolution of a five-contour model of a vortex ring with L/D = 4, subject to a
perturbation containing 2% of the unperturbed circulation, at: (a) t∗ = 0; (b) t∗ = 1.9; (c)
t∗ = 3.8; (d) t∗ = 5.7; (e) t∗ = 7.6.
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Figure 5.20: Maximum perturbation size accepted by the model vortex, as a function of the
vortex stroke ratio. The perturbation size was quantified by the circulation added to the
vortex (∆Γ), expressed as a percentage of the vortex circulation.

5.7 Conclusions

This chapter was concerned with the modeling of vortex rings and vortex dipoles using sev-

eral nested patches of vorticity, and their simulation using contour dynamics methods. The

use of nested contours allowed us to construct more realistic approximations to vortex rings

and dipoles, while retaining the computational simplicity of the inviscid contour dynamics

method.

In two dimensions, we constructed nested-contour models for the Lamb dipole, and found

their agreement with the analytical solution to to be excellent, even for models consisting of

as few as five contours. In our contour dynamics simulations, we demonstrated that nested

regions of vorticity can be used to approximate dipolar solutions to the inviscid Navier-

Stokes equations with high fidelity. The contour dynamics models for dipolar vortices
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presented here are of great interest, given the widespread use of the Lamb dipole and Lamb-

like vortices in studies of two-dimensional turbulence. In addition to the Lamb dipole, nested

contours could be used to model the families of deformed vortices derived from the Lamb

dipole by Boyd & Ma (1990), Kizner & Khvoles (2004), and Khvoles et al. (2005), which

have also been used to model the dipolar vortices found in two-dimensional turbulence and

geophysical flows.

In the case of axisymmetric vortex rings flows, we obtained nested-contour models for

the vortex rings formed in starting jets. These models were constructed using contours

of vorticity density from experimental data from a piston-cylinder experiment with a long

stroke ratio, and were then allowed to asymptote to a steady state. From these steady

states, we were able to construct a family of model vortex rings at different stroke ratios.

We considered the perturbation response of the model vortex rings to physically per-

tinent shape perturbations, which simulated the addition of a small amount of circulation

to the rear of a vortex ring by the feeding shear layer. The results of the perturbation

study suggest that there is a transition in the behavior of the vortices at a stroke ratio of

approximately three. For stroke ratios below three, we found that the relative amount of

circulation a model vortex ring could accept before shedding vorticity into a tail decreased

with increasing stroke ratio. This suggests that the model vortex rings of increasing stroke

ratio were progressively closer to the saturation size. After a stroke ratio of three, however,

the relative amount of circulation the vortex rings could accept leveled off. This change in

behavior was believed to be in agreement with pinch-off: vortex rings of increasing stroke

ratio were found to be increasingly sensitive to perturbation by addition of vorticity, until

a stroke ratio of three. Model vortex rings with a stroke ratio of three and four were found

to be approximately equally sensitive to perturbation, suggesting they are quite similar in
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structure and perturbation response, and perhaps indicating that pinch-off occurs when

experimental vortex rings reach a size comparable to these two models.

The change in behavior in the model vortices at a stroke ratio of approximately three

reported here differs from the occurrence of pinch-off at a stroke ratio of four reported by

Gharib et al. (1998) for circular starting jets, and at T̂ = 4.2± 0.2 for this particular data

set (chapter 2 and O’Farrell & Dabiri (2010)). However, given that the inviscid models were

constructed from viscous experimental data and allowed to shed vorticity until they reached

a steady state which differed from the experimental vorticity contours, the agreement is

encouraging. The present results show that only instantaneous shape perturbations to low-

order models for vortex rings are required to produce a change in response which is consistent

with pinch-off. However, the perturbations experienced by experimentally generated vortex

rings during formation differ from those introduced to steady-state models in this chapter.

Avenues for future work on contour dynamics models, including those for constructing more

physically pertinent perturbations, are presented in the final chapter of this thesis. In this

final chapter, we also present conclusions and suggestions for future work pertaining to the

entire thesis.
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Chapter 6

Conclusions and future work

6.1 Conclusions

Vortex rings, whether they be nearly axisymmetric or visibly non-circular, are found in

the wakes of all manner of swimming and flying animals (Dickinson et al., 2000; Dabiri

& Gharib, 2005a; Kokshaysky, 1979; Drucker & Lauder, 1999). It is thought that, by

harnessing the propulsive advantages that vortex rings provide over steady jets, animals have

achieved propulsive efficiencies that exceed those of engineered vehicles. Thus, swimming

and flying organisms have captured the attention of engineers attempting to improve the

efficiency of current underwater vehicles. However, it is believed that vortex pinch-off

and the existence of a limiting size for vortex rings govern the shedding of vortices by

animals during locomotion, by means not yet fully understood or characterized. The aim of

this thesis was therefore to shed additional light on those aspects of vortex formation and

vortex pinch-off that are relevant to biological propulsion, and to provide future researchers

with tools to assist in identifying pinch-off in biological flows, as well as understanding and

predicting its occurrence. It is hoped that these tools will aid in uncovering the mechanisms

by which vortex formation shapes swimming and flying behaviors in nature, as well as aiding

in the design and evaluation of the next generation of underwater vehicles which incorporate
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our understanding of optimal vortex formation.

In chapter 2 we introduced a criterion for identifying pinch-off in starting jets, based

on the Lagrangian coherent structures in the flow. This method provides an alternative

to the circulation criterion of Gharib et al. (1998), which we believe will prove useful in

identifying pinch-off in complex biological flows where the vorticity field can obscure pinch-

off and make the circulation criterion difficult to apply. The proposed LCS criterion has

the disadvantage of being more computationally intensive than existing methods, but it

possesses the advantages associated with LCS of being dependent on the velocity field only,

robust to errors in the velocity field, and frame-invariant.

Since most naturally occurring vortex rings are not circular, and the effect of departure

from axisymmetry on the vortex formation number had not been previously characterized,

in chapter 3 we considered the formation of vortex rings from non-axisymmetric nozzles.

The results of our experimental study suggested that the local curvature does not influence

the vortex formation number to a large degree, at least for vortex rings with moderate

departure from axisymmetry. Instead, the definition of the vortex formation number can be

extended to vortex rings of this kind by considering the equivalent diameter of the nozzle

(the diameter of a circular nozzle with identical area). These findings have potentially

far-reaching implications for the study of biological flows where non-circular vortex rings

are the norm. In particular, the results of our investigations into the formation of non-

circular vortices suggest that vortex rings with moderate departure from axisymmetry can

be reduced to circular vortex rings by means of the equivalent diameter.

This reduction has the potential to aid significantly in the modeling and prediction of

pinch-off in biological flows. However, even when the results of chapter 3 are considered,

modeling pinch-off in many biological flows is at this stage difficult and often impractical.
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This difficulty arises from the reliance of existing models on approximations for the rates of

injection of circulation, impulse, and energy by a feeding shear layer into the vortex ring.

In complex biological flows, such as those generated by swimming and flying animals, such

approximations are often difficult to obtain, as the shear layers themselves are difficult to

characterize. In these cases, a framework for identifying, understanding, and predicting

pinch-off based on the properties of the vortex rings generated by the animal alone would

be beneficial.

In chapters 4 and 5 we developed such a framework by studying the perturbation re-

sponse of model vortex rings. In chapter 4, we considered the response of the Norbury

family of vortex rings to prolate shape perturbations, using contour dynamics methods. We

identified a change in response as we considered members of the family of increasing core

radius, which was analogous to pinch-off. In chapter 5, on the other hand, we considered

the response of more realistic models for vortex rings constructed from experimental data

using nested contours, to perturbations which more closely resembled those encountered

by forming vortex rings. These simulations were also conducted using contour dynamics

algorithms, and once again resulted in the identification of a shedding behavior analogous

to pinch-off.

6.2 Avenues for future work

Throughout this thesis, we presented a set of tools for identifying and predicting pinch-off in

biological flows. In this final section, we therefore suggest future research directions relating

primarily to the application of these tools to biological flows. In chapter 2 we introduced a

criterion for identifying pinch-off, which we believe will prove useful in complex biological

flows. Therefore, characterizing the performance of this criterion in biological flows in the
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field and in the lab would be a useful next step.

Our analysis of pinch-off in non-axisymmetric vortex rings covered a class of vortices

with moderate departure from axisymmetry. While the extent to which our findings are

applicable to vortex rings outside of this class is not known, such highly non-circular vortex

rings are not relevant to applications in biological propulsion. However, given the differences

between the results presented in chapter 3 and those of Domenichini (2011), determining

the extent to which the equivalent diameter is the relevant length scale in defining a global

formation number is of interest from the perspective of vortex dynamics. Further studies on

the formation of vortices outside of the biologically relevant class might enable us to define

a (possibly locally varying) analogue to the formation number of Gharib et al. (1998), which

extends to a large class of vortex ring geometries and recovers the asymptotic behavior of

circular vortex rings and two-dimensional vortex dipoles.

In chapters 4 and 5, we introduced two families of models for the vortex rings found

in the wakes of swimming and flying animals. Future work could focus on improving the

accuracy of the contour dynamics models, to develop increasingly realistic models for nat-

urally occurring vortices. To this end, nested-contour models could be constructed using a

larger class of experimental data sets, as well as for numerical data, which has the advantage

of providing smoother vorticity contours from which to extract models. The accuracy of

the vortex models could also potentially be improved by increasing the number of nested

contours which comprise them.

At this stage, the greatest impediments to carrying out studies with increased number

of contours or on a larger class of data sets, are those expenses associated with obtaining the

asymptotic shapes of the vortex rings. In the present study, the contour shapes obtained

directly from the experimental data were not found to correspond to steadily-translating
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shapes. As a result, these shapes were allowed to approach their asymptotic states by

simulating them for times up to t∗ = 60. This necessitated costly long-time simulations,

as well as labor-intensive excisions of filaments. However, these simulations suggested that

steady solutions to the incompressible Euler equations in the form of vortex rings with nested

contours exist, since our vortices were found to approach such steady states asymptotically.

Future work in developing a numerical method for finding equilibrium shapes using nested

contours similar to Norbury’s scheme (Norbury, 1973), could sharply reduce these costs. The

work of Aref & Vainchtein (1998) on finding asymmetric point vortex equilibria, starting

from previously known symmetric equilibria, is suggested as a basis for finding nested-

contour solutions, starting from existing single-contour solutions.

In addition to developing vortex models of increasing accuracy and complexity, there

is ample opportunity for future work on applying the models introduced in this thesis to

the vortices shed by swimming and flying animals. The perturbation response framework

developed here can then be applied towards predicting pinch-off in the wakes of specific

animals, where existing models prove difficult to apply.
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