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Abstract 

A number of cell-cell interactions in the nervous system are mediated by 

immunoglobulin gene superfamily members. For example, neuroglian, a homophilic 

neural cell adhesion molecule in Drosophila , has an extracellular portion comprising six C-

2 type immunoglobulin-like domains followed by five fibronectin type ill (Fnlll) repeats. 

Neuroglian shares this domain organization and significant sequence identity with Ll, a 

murine neural adhesion molecule that could be a functional homologue. Here I report the 

crystal structure of a proteolytic fragment containing the first two Fnlll repeats of 

neuroglian (NgFn 1 ,2) at 2.0A. The interpretation of photomicrographs of rotary 

shadowed Ng, the entire extracellular portion of neuroglian, and NgFnl-5, the five 

neuroglian Fnlll domains, is also discussed. 

The structure of NgFn 1,2 consists of two roughly cylindrical B-barrel structural motifs 

arranged in a head-to-tail fashion with the domains meeting at an angle of -120°, as defined 

by the cylinder axes. The folding topology of each domain is identical to that previously 

observed for single Fnlll domains from tenascin and fibronectin. The domains of 

NgFn1,2 are related by an approximate two fold screw axis that is nearly parallel to the 

longest dimension of the fragment. Assuming this relative orientation is a general property 

of tandem Fnlll repeats, the multiple tandem Fnlll domains in neuroglian and other 

proteins are modeled as thin straight rods with two domain zig-zag repeats. When 

combined with the dimensions of pairs of tandem immunoglobulin-like domains from CD4 

and CD2, this model suggests that neuroglian is a long narrow molecule (20 - 30 A. in 

diameter) that extends up to 370A. from the cell surface. 

In photomicrographs, rotary shadowed Ng and NgFnl-5 appear to be highly flexible 

rod-like molecules. NgFn 1-5 is observed to bend in at least two positions and has a mean 

total length consistent with models generated from the NgFnl,2 structure. Ng molecules 
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have up to four bends and a mean total length of 392A, consistent with a head-to-tait 

packing of neuroglian' s C2-type domains. 
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Introduction 
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The development of Metazoan organisms required the evolution of mechanisms for 

specific cell adhesion. The formation and maintenance of tissues, cell motility, 

proliferation and cellular differentiation all rely on the ability of cells to adhere to other cells 

and the extracellular matrix. This adhesion is mediated by a diverse collection of proteins, 

comprising homophilic and heterophilic adhesion molecules that are expressed in a 

temporally and spatially regulated manner. The fundamental role played by cell adhesion in 

tissue morphogenesis was first demonstrated with dissociated embryonic cells, which were 

found to sort andre-aggregate to form tissue-like structures l -3. This phenomenon is now 

believed to be a general property of tissues from multicellular animals. These and more 

recent studies have led to the classification of cell adhesion molecules (CAMs) as 

"morphoregulatory" proteins4. 

Cellular adhesion is not a passive process simply mediated by an adhesion molecule's 

affinity for a receptor. Adhesion is an active process in which many CAMs are believed to 

direct changes in the cytoskeleton, a cell's force generating machinery, through their 

cytoplasmic domains5·6. This view is supported by experiments in which CAM 

cytoplasmic domains have been deleted, resulting in the cell-surface expression of stable 

molecules that can bind ligand but are unable to mediate cellular adhesion ?-to_ Some 

CAMs have also been demonstrated to interact with second messenger systems 1 1 ' 12. The 

cytoplasmic domains of several adhesion molecules are alternatively spliced, resulting in 

the production of proteins with identical extracellular regions but different patterns of 

expression and presumably different functions6·11 •13•14. 

Sequence analysis has revealed that several vertebrate adhesion molecules have 

Arthropod homologues, indicating that the progenitors of some adhesion molecule families 

were present before the divergence of Chordates and Arthropods15
. Most CAMs belong to 
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one of four major families of adhesion molecules: the selectins, the cadherins, the integrins 

or the immunoglobulin superfamily. 

Selectins 

Specific intercellular adhesion plays a vital role in the regulation of regional lymphocyte 

traffic and the localization of white blood cells at sites of inflammation. The extravasation 

of leukocytes into lymphatic and inflamed tissues is preceded by a multistep process in 

which the leukocyte specifically adheres to the vascular endothelium 16. This adhesion 

occurs under conditions of high shear and is characterized by an initial step in which the 

leukocytes are observed to roll along the endothelium at a rate that is approximately 20 fold 

slower than the blood flow 17·18. Leukocyte rolling, which is mediated by the selectin 

family of adhesion molecules, is necessary but not sufficient for the activation of integrins 

on circulating leukocytes. 6·19. Activated leukocyte integrins mediate a tighter adhesion 

that leads to extravasation 6· 16·20. Abnormal selectin expression or function can lead a 

variety of ailments, including recurrent bacterial infections or a number of inflammatory 

disorders commonly associated with excessive leukocyte recruitment 19. 

Selectins are glycoproteins that consist of an amino terminal carbohydrate recognition 

domain (CRD), followed by an epidermal growth factor (EGF)-like motif, multiple tandem 

repeats with sequence similarity to complement binding domains, a transmembrane domain 

and a cytoplasmic tai121 . It appears as though the CRD and EGF-like domains are both 

required for full adhesive function20. The CRD, which is related to those found inC-type 

(Ca2+ dependent) animallectins22 , binds Ca2+ and directly mediates the recognition and 

binding of specific carbohydrate ligands23-25. Crystallographic structure analyses of E­

selectin and a C-type lectin, mannose binding protein A, strongly suggest that a bound 

Ca2+ ion plays a direct role in selectin mediated carbohydrate recognition26-29. The role of 

the EGF-like domain in ligand binding is still a matter of speculation. 
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P-Selectin E-Selectin L-Selectin 

Figure 1-1 A schematic view of the three known selectins. The domain 
organization of each selectin was determined from primary structural information. P­
selectin, E-selectin, and L-selectin are shown with carbohydrate recognition domains 
labeled L (lectin), EGF-like domains labeled EGF, complement regulatory-like modules 
labeled CR, transmembrane domains labeled T, and the cytoplasmic tail labeled CT. 
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There are currently three members of the selectin family 19: L-selectin30•31 (gp9oMEL, 

LAM-1, LECAM-1), E-selectin32 (ELAM-1), and P-selectin33 (GMP-140,PADGEM) 

(Figure 1-1). L-selectin is constituatively expressed on the surface of neutrophils, 

monocytes and subsets of lymphocytes. It has been shown to play a role in the regulation 

of regional lymphocyte traffic as well as in the recruitment of leukocytes at inflamed 

tissues. E-selectin is expressed by endothelial cells in response to a variety of 

inflammatory stimuli. The protein reaches the cell surface within hours of induction and 

binds neutrophils, monocytes, eosinophils and subsets of lymphocytes to the vascular 

endothelium. This effectively results in a localization of leukocytes at the inflamed tissue. 

P-selectin is constituatively expressed by megakaryocytes and endothelial cells, which store 

the protein in platelet alpha granules and Weibel-Palade bodies, respectively. P-selectin 

also plays a role in the localization of leukocytes at regions of inflammation. However, P­

selectin is present on the surface of platelets and endothelial cells within minutes of the 

inducing stimulus. 

E-, P-, and L-selectins have been determined to bind the sialylated, fucosylated 

tetrasaccharide sialyl Lewisx (Neu5Aca2-3Gal~l-4[Fucal-3]GlcNAc~-) in a specific and 

Ca2+ dependent manner, suggesting that all three selectins may have similar physiological 

ligands25•34-37. These studies have demonstrated that the proper sialic acid and fucose 

linkages are both important for selectin binding. While the work with small synthetic 

sugars has lead to a greater understanding of selectin function, there is evidence that the 

physiological ligands may be significantly more complex. Purified P-selectin has a 

markedly higher affinity for myeloid HL-60 cells than CHO (Chinese hamster ovary) cells 

expressing sialyl Lewisx on their surface38. This difference in affinities raises the 

possibility that the high-affinity selectin ligands are not just glycans, but glycoproteins. 

High affinity glycoprotein ligands for L-selectin, P-selectin and E-selectin were recently 

isolated from lymphoid tissues, neutrophils and myeloid cells, respectively 19
. Both of the 
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ligands for L-selectin contain 0-link.ed oligosaccharides that are sulfated, sialylated, and 

fucosylated. The ligands for all three selectins have several potential sites for 0-link.ed 

oligosaccharides and only a few sites for N-linked glycans. This suggests that 0-link.ed 

glycans may play an important role in selectin binding. Treating the ligands with sialidase 

eliminates selectin binding, demonstrating that the selectins are specifically binding the 

ligand oligosaccharides. 

Cadherins 

Cadherins are transmembrane glycoproteins of 120-140 kDa that mediate Ca2+ 

dependent hemophilic adhesion 39. These receptors are specifically associated with 

adherens junctions 40-45 and interact with the cytoskeleton through their cytoplasmic 

domain. Cadherins are differentially expressed during embryonic development and have 

been implicated in several morphogenic processes including selective segregation, cell 

condensation, cell polarization and cell differentiation 46. Inhibition of cadherin function 

results in a loss of epithelial shape and a stimulation of cell motility and invasiveness 47-49, 

traits commonly associated with malignant transformation. Several undifferentiated tumors 

have also been found to have diminished cadherin function 50-52. 

There are three major subclasses within the cadherin family: E-cadherin (epithelial 

cadherin, also called uvomorulin), P-cadherin (placental cadherin), and N-cadherin (neural 

cadherin). The expression of each protein has a unique, non-exclusive distribution. Some 

tissues have been found to express multiple cadherin subclasses simultaneously, raising the 

possibility that the subclasses can be used combinatorially to produce wide range of 

specific adhesive interactions53. Different subclasses of cadherin from the same species of 

organism commonly share an overall sequence identity of approximately 50%, with the 

amino and carboxy terminal domains being highly conserved5•53. Most of the cadherins 

share a common domain organization5•54•55: three highly conserved amino-terminal 
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domains of approximately 110 amino acids each (ECl-3, Ectodomains 1-3), followed by 

one or two membrane proximal repeats (EC4 and 5), a transmembrane domain and a highly 

conserved cytoplasmic tail (Figure 1-2). 

ECI EC2 EC3 EC4 EC5 TM cr 
Mean % identity 73.8 72.4 66.3 66.1 52.0 57.6 75.5 

Figure 1-2 Average amino acid identity for domains from different 
cadherins. The top portion of the figure is a schematic representation of the stereotypical 
cadherin domain organization, with domains EC1-5 (EC1-5), a transmembrane domain 
(TM) and a cytoplasmic tail (CT). The mean percent amino acid identity for each domain 
was calculated for 16 different cadherins5. The following sequences were used in the 
comparison: human56, bovine57, mouse58, chicken59, Xenopus60, and zebrafish N­
cadherins5; chicken R-cadherin61 ; human62, bovine57 and mouse63 P-cadherins; human64, 
mouse65, and chicken66 E-cadherins; Xenopus EP-cadherin67; chicken B-cadherin68; and 
mouse M -cadherin 69. 

Cadherins are initially synthesized as precursor polypeptides that contain additional 

amino-terminal sequences (129 amino acids in E-cadherin) not found in the mature 

proteins. Experiments eliminating the endogenous 'presequence' cleavage site in E-

cadherin demonstrated that the precursor molecule was unable to mediate adhesion until the 

presequence was proteolytically removed 70. These results suggest that the amino terminus 

plays an important role in the adhesion process. This view is supported by studies 

demonstrating that the binding specificity of chimeric cadherin molecules is determined by 

the amino terminal domain54·71 . Further analysis has led to the identification of specific 

sequence motifs within the ECl domain that appear to play a role in homophilic adhesion. 

One such motif is the tripeptide HA V (Histidine-Alanine-Valine), which is conserved in the 
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EC 1 domain of virtually all cadherins5. An HA V synthetic peptide has been shown to 

block cadherin mediated morphogenesis 72 and the amino acids immediately flanking the 

HA V sequence have been shown to play an important role in the determination of cadherin 

specificity54. Some ECl sequences, including the HAY-region, share significant 

homology with sequences from the amino terminal domains of influenza strain A 

hemagglutinins 73 . It is not yet clear whether extracellular domains other than EC 1 play a 

role in cadherin mediated hemophilic adhesion. 

The cadherin cytoplasmic tail is essential for cadherin function 10 and is highly 

conserved between cadherins as measured by sequence analysis 5 and immunological data 

74. The cytoplasmic tail is known to contain at least two functionally distinct regions that 

interact with cytoplasmic regulators of cellular adhesion, such as the catenins 75·76. 

Catenins are known to mediate the interaction of cadherins with the actin filament network 

76 and thus regulate the adhesive function of cadherins 55·75·77. 

Integrins 

lntegrins are transmembrane heterodimeric glycoproteins which mediate the adhesion of 

cells to extracellular matrix (ECM) proteins, such as fibronectin, laminin, vitronectin and 

collagen6·78·79. These interactions require the presence of divalent cations (usually Ca2+ or 

Mg2+) and appear to be the primary means by which cells adhere to the ECM6. More 

recently, members of the integrin family were also discovered to mediate cation dependent 

intercellular adhesion through the binding of lg-like domains in cell surface members of the 

immunoglobulin gene superfamily80-82. The majority of integrins bind the adhesive 

sequence Arg-Gly-Asp (RGD), which is recognized in the context of the presenting ligand. 

However, several members of this family have been shown to recognize different adhesive 

sequences6. Integrin expression is developmentally regulated with most integrins being 

expressed by multiple cell-types and most cells expressing multiple integrins6·78. Integrins 
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were initially isolated from vertebrates but have also been found in Drosophila, 

demonstrating that the integrin family is evolutionarily ancient and arose before the 

divergence of protosomes and deuterosomes15. 

Integrin heterodimers are formed by the noncovalent association of two type I 

membrane proteins, a. and B (Figure 1-3). The proper association of a. and B subunits is 

required for cell surface expression and ligand binding83-85. At this time, 14 different a. 

and eight different B subunits have been identified in vertebrates6. Chemical crosslinking 

experiments and site directed mutagenesis have demonstrated that both subunits contribute 

to ligand specificity and binding6• 11 . This initially suggested that a few different a. and B 

subunits could be combinatorially mixed to generate a large number of unique receptors. 

However, since only 20 different heterodimers have actually been observed6, it now 

appears as though the number of viable combinations is relatively limited. 

At the primary structural level, an a.-chain consists of a large extracellular domain, a 

transmembrane domain and a short cytoplasmic tail. The extracellular domain contains 

seven tandem homologous repeats of approximately 50 amino acids that begin near the 

amino terminus of the protein6·79. Three or four of these repeats, depending on the identity 

of the a.-chain, contain putative cation binding sites homologous to the EF hands observed 

in other proteins that bind divalent cations6•79. Some a.-chains contain approximately 200 

amino acids of additional sequence inserted between the second and third homologous 

repeats. This interactive or "I" domain is similar to collagen binding domains from a 

number of other proteins, raising the possibility that it plays a role in some integrin­

collagen interactions6•79•86 . 

B-subunits have a large amino-terminal domain followed by four cysteine rich repeats 

of approximately 40 amino acids, a transmembrane domain and a cytoplasmic tail6·79. 

Overall, B-subunit cytoplasmic domains are larger than those of a.-subunits but are still 
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relatively short (<50 amino acids). One notable exception is the cytoplasmic tail of M, 

which contains over 1000 residues87. A variety of experimental techniques, including 

chemical cross-linking and B-chain mutagenesis, have provided solid evidence that the B 

amino terminal domain is involved in heterodimer formation and ligand binding6·88. The 

role played by the cysteine rich repeats is still unclear. Truncation experiments have 

recently demonstrated that these repeats are not necessary for the assembly, stability or 

functional activity of the a.nb-B3 integrin88. 

Unfortunately, the three-dimensional atomic structures of the integrin subunits and the 

nature of the dimer interface are still unknown. Some insight has been provided by 

electron micrographs of rotary shadowed heterodimers88-90. Each subunit is observed to 

form a long stalk that extends 12-15 nm from the plasma membrane before it terminates in a 

large globular head region formed by the association of the subunits (Figure 1-3). 

Although integrin cytoplasmic domains are usually quite short, they are known to 

mediate integrin-cytoskeletal interactions and may be involved in the initiation of a variety 

of other intracellular processes. The colocalization of integrins and cytoskeletal structures 

is well documented and there is some biochemical evidence of direct interaction between 

integrin cytoplasmic domains and the cytoskeletal proteins talin and a.-actinin6. 

Mutagenesis of integrin cytoplasmic domains has produced B-subunit mutants that fail to 

localize at focal contacts and a.-subunit mutants that are constituatively active 11 . These and 

other mutagenesis results suggest that integrin-cytoskeletal interactions are largely mediated 

by the B-subunit with the a.-subunit playing a regulatory role 11 . 
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Figure 1-3 Structural features of integrin receptors. (A) shows the overall 
shape, as deduced from electron microscopy, as well as the putative locations of the 
cystine-rich repeats of the~ subunit (crosshatched) and metal binding sites in the a subunit 
(M++). The shaded area represents the ligand-binding region that is known to be made up 
from both subunits based on cross-linking and binding data. (B) schematizes the 
arrangement of the polypeptide chains with the cystine-rich repeats internally folded and the 
head region of the j:S subunit containing internal disulfide loops, some but not all of which 
are shown. A disulfide bond ~rom the middle of the ~ subunit to a point close to the 
membrane has been proposed 1 but is omitted here for clarity. X's indicate positions of 
mutations (of human ~2 or ~3 subunits) known to affect ligand binding or a~ 
dimerization. The positions of alternatively spliced segments in Drosophila subunits are 
shaded. (Modified from Hynes RO. Integrins: versatility, modulation, and signaling in 
cell adhesion. Cell 1992;69: 11-25). 
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Integrins are capable of initiating several intracellular signaling events, including 

cytoplasmic alkalinization, tyrosine phosphorylation and the elevation of cytoplasmic levels 

of Ca2+6• 11 . The molecular link between ligand binding and the generation of these 

signals is currently unclear, but there is little doubt that the integrins are involved. 

Cytoplasmic alkalinization in fibroblasts, endothelial cells and lymphocytes is triggered by 

cellular adhesion to fibronectin or immobilized anti-integrin antibodies92. This change in 

pH is generated by activating the sodium/hydrogen ion antiporter93. A similar cytoplasmic 

alkalinization can be triggered by phorbol ester activation of protein kinase C, suggesting 

that integrin initiated alkalinization might involve the activation of protein kinase C 11 . 

There is also evidence that integrins can trigger tyrosine phosphorylation. Cellular 

adhesion to immobilized plasma fibronectin or anti-integrin antibodies results in the 

tyrosine phosphorylation of focal adhesion kinase (pp120, pp125FAK, FAK), a protein 

tyrosine kinase localized in focal contacts94-96. The kinase activity ofFAK is upregulated 

by phosphorylation, suggesting that integrin mediated adhesion initiates a tyrosine 

phosphorylation cascade95. Integrin function may also be coupled to the inositol 

triphosphate signaling pathway. Antibody mediated aggregation of the integrin LFA-1 has 

been demonstrated to induce phosphoinositide hydrolysis and a transient increase in 

intracellular levels of Ca2+97. 

Integrins, like other CAMs, are regulated at the level of protein expression. However, 

it is increasingly evident that integrin mediated adhesion is also controlled by modulating 

the activity and specificity of existing integrin molecules. This regulation of receptor 

function has been observed for the Bz integrins on leukocytes and the anbB3 integrin on 

platelets. The Bz integrins mediate several transient binding events that require the 

activation and deactivation of cellular adhesiveness. For example, Bz integrins play an 

important role in the localization of white blood cells at sites of inflammation. These 

integrins are present on the surface of circulating leukocytes but are unable to bind their 
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ligands without the help of selectins, which mediate the initial intercellular adhesion events 

required for integrin activation6. Once activated, B2 integrins provide the additional 

adhesion required for extravasation. A more specific example is provided by LFA-1 

(aLB2), which plays an important role in the adhesion ofT lymphocytes to target cells and 

antigen presenting ceUs98. In this case, crosslinking T lymphocyte antigen receptors with 

anti-CD3 antibodies produces a temporary increase in the affinity ofLFA-1 for its ligand 

ICAM-199• 
100

. A modulation of ligand affinity has also been observed for an integrin that 

mediates platelet aggregation, anbB3 . This integrin is present on the surface of circulating 

platelets, but is only capable of interacting with immobilized fibrinogen 101 . Platelet 

activation by thrombin, collagen, or ADP activates arrbB3, enabling it function as a receptor 

for soluble fibrinogen, von Willebrand factor, fibronectin, vitronectin and 

thrombospondin6• 
101

. There is evidence that the different observed functional states of 

anbB3 correspond to different protein conformational states. This correlation has been 

demonstrated immunochernically and biophysically6. 

The modulation of function observed with anbB3 and the B2 integrins strongly suggests 

that integrin activity can be controlled by intracellular signals. Thus, integrin mediated 

adhesion can be considered a bidirectional process in which ligand binding affects and is 

affected by intracellular events. Several second messenger pathways appear to be involved 

in the modulation of integrin function. Studies using permeabilized platelets have 

suggested that G proteins, inositol lipids, tyrosine kinases, protein kinase C, and Na+ffi+ 

anti porters all play some role in activation, although the relative importance of these roles is 

yet to be determined 11 . It is likely that some of these signaling pathways regulate the 

phosphorylation of integrin cytoplasmic tails, which contain serine and tyrosine 

phosphorylation sites 102
. Phosphorylation could affect integrin function by regulating 

integrin-cytoskeletal interactions. 



14 

Integrin activity and specificity can also be modulated by extracellular factors such as 

the identity of the divalent cations bound by the integrin 103-106 and the integrin ligands 

themselves. Ligand-mediated activation has been observed with cxnbB3 107. As described 

above, the binding of soluble fibrinogen by anbB3 requires agonist activation of the 

circulating platelet. However, this "inactive" integrin can bind RGD adhesive sequences 

when presented as short synthetic pep tides 1 08· 109. The binding of RGD peptides or 

ligand-mimetic peptides involves the same ligand pocket as fibrinogen binding and 

produces a conformational change resulting in the activation of the integrin 107. This new 

conformation is immunochemically distinct from that observed after agonist activation and 

may represent a "high affinity" state 107. This suggests that there are at least three integrin 

conformational states with distinct ligand binding activity: an inactive conformation in 

which the ligand binding pocket for the adhesive sequence is relatively inaccessible, an 

agonist activated state with an exposed ligand binding pocket, and a high affinity state 

triggered by the binding of the adhesive sequence 107. The agonist activated state may just 

recognize the adhesive sequence while the high affinity state would be expected to 

recognize additional ligand structural elements. 

Integrins can display distinct binding specificities when expressed by different cells 1 10, 

indicating that the regulation of integrin function is significantly more complex than a 

simple on-off switch. Some of this variability in function could be produced by alternative 

splicing. Several integrin subunits have alternatively spliced cytoplasmic tails and in some 

cases splicing leads to an exact cassette-type exchange of cytoplasmic domains6· 1 1. There 

are significantly fewer instances of alternative splicing in the putative ligand binding 

domains, with the only known examples being the Drosophila subunits PS2 (a) and PS3 

(B)6. Additional factors, which are known to regulate integrin function and could do so in 

a cell specific manner, include the phospholipid composition of the surrounding plasma 

membrane 111 and the glycosylation state of the integrin 112. 
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Integrins were initially divided into subfamilies by the identity of the heterodimer's B­

subunit. This division was based on the premise that each ~-subunit could interact with 

several different a-subunits, while a-subunits were limited to interaction with a single B. 

Several a-subunits are now known to form heterodimers with multiple B-subunits6, but 

this fact has not yet led to a change in the classification system. There are three major 

integrin subclasses: B 1, B2 and B3 78• 1 13. The nine members of the B 1 subfamily are 

expressed by a wide variety of cell types and generally mediate cell-ECM interactions, 

although at least one member is also involved in intercellular adhesion. These integrins are 

commonly referred to as VLA (very late activation) integrins, a moniker derived from the 

late appearance of atBt (VLAl) and a2b1 (VLA2) on T lymphocytes after in vitro 

activation. The B2 integrins are called the leukocyte integrins or leukocyte adhesion 

molecules. The expression of B2 integrins appears to be limited to leukocytes and 

haemopoietic precursors. The B2 integrins, however, are not the only integrins expressed 

by leukocytes. The three members of this subfamily are still commonly referred to by their 

old names: LFA-1 (aLB2), MAC-1 (aMB2), and p150,95(axB2). LFA-1 is expressed on 

almost all leukocytes and binds the cell surface proteins ICAM-1, ICAM-2 and ICAM-

3114. MAC-1 and p 150,95 are expressed by a large subset of leukocytes and function as 

receptors for inactive complement component C3b and fibrinogen. MAC-1 also appears to 

bind coagulation factor X and ICAM-1. The B3 subfamily contains two members: a11bB3 

and avB3. As described above, a11bB3 is present on the surface of platelets and mediates 

platelet aggregation. avB3 has a much wider tissue distribution and acts as a receptor for a 

number of adhesive ligands, including fibronectin, vitronectin, fibrinogen and von 

Willebrand factor. 

Immunoglobulin Gene Superfamily 

The immunoglobulin gene superfamily (IgSF) contains a wide variety of proteins 

involved in cellular recognition and adhesion. All members of this superfamily contain at 
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least one and usually multiple domains with an immunoglobulin-like (Ig-like) fold. 

Sequence analysis has revealed that many immunological molecules involved in adhesion 

and antigen recognition contain Ig-like domains, including T-cell receptors, class I and 

class II major histocompatibility molecules, CD4, CD8, LFA3, ICAM-1 and Thy-1 115
•
116

. 

Several neuronal proteins have also been determined to be IgSF members based on their 

deduced amino acid sequences. These proteins are thought to play a role in the 

development and maintenance of vertebrate and insect nervous systems. N-CAM, MAG, 

L1, F11, fasciclin II and neuroglian are a few of the IgSF proteins selectively expressed in 

the nervous system117 . Some IgSF members, including Thy-1, CD4 and MRC OX-2, are 

expressed in the immune and nervous systems 116• 117. It is not yet known whether these 

proteins perform similar functions in both tissue systems. 

The immune and nervous systems are complex entities. In each case, the development, 

maintenance and operation of the system requires the formation highly specific interactions 

between a large number of phenotypically distinct cells. In both instances, many of these 

interactions are mediated by members of the immunoglobulin gene superfamily, suggesting 

that both systems evolved from a common evolutionary ancestor. The progenitor IgSF 

molecule may have been very similar to the Po myelin protein, a homophilic neural 

adhesion molecule with a single V-type (see below) extracellular domain 115. 

The immunoglobulin fold, as the name implies, was fust structurally characterized in 

immunoglobulins, which are composed of four polypeptide chains: two identical light 

chains and two identical heavy chains. Disulfide bonds stabilize the light chain-heavy chain 

heterodimers and the heavy chain homodimer (Figure 1-4). 
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Figure 1-4 Schematic representation of a typical immunoglobulin structure. 
The figure shows the L (light) and H (heavy) polypeptide chains as solid lines, with the 
intramolecular disulfides linking cysteine residues, about 60 residues apart in the primary 
structure, that are characteristic of each immunoglobulin domain. The site of cleavage by 
papain is shown by the dashed line; this cleavage yields two Fab fragments and one Fe. 
The antigen-binding sites are at the tips of the Fab arms. (From Creighton TE. Proteins: 
structures and molecular properties. (2nd ed.) New York: W. H. Freeman and Company, 
1993) 
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Crystallographic analysis of light chain homodimers (Bence-Jones proteins) and 

immunoglobulin G Fab (Fragment, antigen binding) fragments defined two structurally 

related immunoglobulin folds: constant (C-type) domains and variable (V-type) 

domains 118
• 
119

. Immunoglobulin domains generally consist of 70-110 amino acids that 

form an anti parallel B-barrel with Greek key topology 115• 116• 120. The two B-sheets that 

form the barrel are covalently joined by a highly conserved disulfide bond. The C-type 

domain contains seven anti parallel B-strands that form opposing sheets of three and four 

strands (Figure 1-5). The four strand face is involved in the formation of C-type domain 

dimers. V -type domains are generally larger than C-type, with several of the "extra" 

residues participating in the formation of two additional antiparallel B-strands. These 

additional strands convert the C-type three B-strand sheet into a five strand sheet involved 

in the formation of V -type domain dimers (Figure 1-5). The loop connecting the additional 

strands forms complementarity determining region 2 (CDR2), which plays a direct role in 

antigen binding. 

Immunoglobulin-like domains are identified at the primary structural level using several 

criteria: sequence similarity, secondary structure predictions, and the presence of 

"invariant" cysteine and tryptophane residues 116• 121 . Sequence comparisons have also led 

to the identification of a third type of Ig-like domain, which was named C2-type because it 

appeared to lack the extra B-strands characteristic of V -domains 116• 121. V -type and C2-

type domains appear to be widely distributed in proteins of the immune and nervous 

systems, while C-type (now C1-type) domains have only been identified in the immune 

system117
. The three Ig-like folds have overlapping but distinct sequence motifs, with the 
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Figure 1-5 Schematic representation of the folding topologies of Fnlll (A), 
and C2-type (B) and V -type (C) immunoglobulin domains. Each domain is 
composed of two P-sheets. P-strands are shown as arrows, with the direction of the arrow 
indicating the amino to carboxy orientation of the polypeptide chain. Turns and loops are 
represented as lines. For each domain, the relative orientation of the two sheets in three 
dimensions can be obtained by closing the topology diagram as if the sheets were pages in 
an open book (lying face-up) . 
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C2-type motif being a hybrid of those originally found in C 1-type and V -type domains. It 

has been hypothesized that this "new" lg-like domain is actually the most evolutionarily 

ancient 116
. The sequences of different Ig-like folds are generally distinguished using a 

combination of several criteria, including the size of the domain, its predicted secondary 

structure, the number of residues between conserved cysteines, and the domain's sequence 

similarity to known Ig-like domains. 

Several members of the lgSF have been found to play important roles in the 

development of the nervous system. These proteins are expressed in a spatially and 

temporally regulated manner and are known to be involved in a variety of processes, 

including the adhesion of neural cells, neurite fasciculation and elongation, and axonal 

guidance 117. An examination of the extracellular domains of nervous system IgSF 

molecules suggests that these proteins can be roughly divided into three categories: only 

lg-like extracellular domains (amalgam, MAG, Po and Thy 1), C2-type and fibronectin type 

III (Fniii) extracellular domains (N-CAM, Ll, axonin-1, F11, fasciclin II and neuroglian), 

and C2-type domains plus domains other than Fniii repeats (neurocan, trk) 12• 117. 

Fnlli domains were initially identified as repeats of approximately 90 amino acids in the 

extracellular matrix (ECM) protein fibronectin 122. They are characterized by a conserved 

pattern of hydrophobic residues and have been identified in a wide range of proteins, 

including several ECM proteins, neural adhesion molecules, cytokine receptors, 

cytoplasmic muscle proteins, receptor protein kinases, receptor protein phosphatases and 

bacterial enzymes that cleave carbohydrate 123. When present, Fniii domains are 

commonly found as multiple tandem repeats. Fibronectin itself contains 15-17 tandem 

Fnlli domains, with variation arising through alternative splicing124. The amino acid 

sequence Arg-Gly-Asp (RGD) in the tenth fibronectin Fnlll repeat (FnFn10) functions as a 

ligand for several integrins6•125. Although the RGD tripeptide alone can support integrin 



21 

mediated adhesion, full adhesive function appears to require the presence of Fnlli domains 

8-10, suggesting that the integrin binding site may actually span multiple domains 126. 

RGD tripeptides have also been found in the Fniii domains from other proteins, such as 

the ECM protein tenascin 127 and the neural adhesion molecules T AG-1 128, Ng-CAM 129 

and neurofascin 130. It is not yet clear, however, that these sequences play a role in 

adhesion. In most cases, FNIII repeats do not contain a known "adhesive sequence" and 

the function of these domains is still unknown. It is possible that some Fnlli repeats 

function merely as spacers involved in the optimal placement of "active" protein domains or 

the linking together of different functional domains in complex proteins such as fibronectin. 

However, it is still too premature to assign these domains such a passive role. 

The three-dimensional structures of the third tenascin Fniii repeat (TnFn3) and the 

tenth fibronectin Fnill repeat (FnFnlO) have been determined by x-ray crystallography and 

NMR 131
- 134. These structures revealed that Fniii domains are B-barrels composed of two 

antiparallel B-sheets: a three strand sheet and a four strand sheet. The Fniii domain 

topology is that of a Cl-type domain with strand C' having switched sheets, becoming a 

member of the CFG B-sheet rather than the ABE sheet as found in C 1-type domains 

(Figure 1-5). TnFn3 and FnFn 10 both contain RGD sequences in their F-G loops that can 

mediate integrin binding. It is likely that the structural similarities shared by Fniii and Ig­

like domains are the product of convergent evolution. This view is supported by the fact 

that the two domains have different patterns of conserved hydrophobic residues which 

contribute to the formation of distinctively packed hydrophobic cores 131 . 

Neural IgSF members with extracellular regions composed of Fniii and C2-type 

domains can be loosely categorized by structural homology to one of three neural 

glycoproteins: N-CAM, Fll, or Ll. These proteins contain 7-11 extracellular domains 

with the Fnlll and C2-type domains segregated into distinct clusters of tandem repeats 

(Figure 1-6). Although the large number of tandem domains in these proteins may serve 
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Ll Fll N-CAM 

Figure 1-6 A schematic view of Ll, Fll and N-CAM. Each of these proteins is 
representative of a subgroup of neural IgSF members containing Fniii and C2-type 
domains. The domain organization of each protein was determined from primary structural 
information. C2-type domains are labeled C2, Fniii repeats are labeled III, transmembrane 
domains are labeled T, cytoplasmic tails are labeled CT, and GPI 
(glycosylphosphatidylinositol) linkages are labeled GPI. N-CAM also exists in an 
alternatively spliced form (not shown) in which the transmembrane and cytoplasmic 
domains are absent and the protein is anchored to the lipid bilayer by 
gl ycosy lphos phatidy linosi tol. 
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only to place an amino-terminal binding site far into extracellular space, an equally likely, 

non-exclusive alternative is that they represent multiple distinct sites for intermolecular 

interactions. 

N-CAM was the first neural member of the IgSF to be identified and is perhaps the best 

characterized 135. N-CAM rnRNA is subject to alternative splicing which is 

developmentally regulated and may produce up to 192 different isoforms ofN-CAM, all of 

which have an extracellular region consisting of five C2-type domains followed by two 

Fniii repeats 136. N-CAM is expressed by a wide variety of tissues during development, 

including the nervous system, fetal kidney and muscle4. N-CAM's extracellular C2-type 

domains mediate Ca2+-independent homophilic adhesion and bind to the ECM component 

heparin 137. Homophilic adhesion may be regulated, at least in part, by the quantity of 

sialic acid attached to the protein and appears to be highly cooperative, with higher N-CAM 

surface density leading to a nonlinear increase in the rate of liposome aggregation. 138· 139. 

There is also evidence that N-CAM interacts with cytoskeletal elements 140·141 and 

secondary messenger pathways 142. Although no specific ligands for the two Fniii repeats 

have been identified, these domains have been found to promote some functions 

characteristic of intact N-CAM, including the spreading of neuronal cell bodies 143. An 

insect structural homologue of N-CAM, Fasciclin II, was initially identified in 

grasshopper144 and later in Drosophila 145. Fasciclin II and N-CAM share a common 

extracellular domain organization and 25-30% sequence identity 145. Although Fasciclin II 

and N-CAM are structurally homologous and almost certainly shared a common ancestor, 

their different patterns of expression suggest that they are not functionally homologous. 

Members of the Fll subgroup are GPI (glycosylphosphatidylinositol) linked proteins 

with extracellular regions consisting of six C2-type domains followed by four Fniii 

repeats. This subgroup includes F11 146 and axonin-1 147 from chick as well as their 
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species homologues F3 (mouse) 148 and TAGl (rat) 128respectively. These proteins are 

expressed in lipid-linked and soluble forms. Fll is most commonly expressed as a 

membrane bound protein and axonin-1 is usually soluble 12. It is not yet clear why these 

proteins are expressed in soluble and membrane bound forms . Members of this subgroup 

are expressed on the surface of axons and appear to mediate axonal growth and 

fasciculation through heterophilic binding12. Fll and axonin- 1 have been shown to 

interact with the neural adhesion protein Ng-CAM149·150. Fll has also been determined to 

bind the ECM proteins restrictin and tenascin 149·151 . Although the proteins of this 

subgroup lack any direct mechanism of transducing signals across the plasma membrane, 

they could potentially mediate cis-heterophilic interactions (interactions with other 

molecules within the same membrane) with a coreceptor capable of transducing signals. 

The vertebrate Ll subgroup of neural IgSF molecules includes murine Ll 152, rat 

NILE153, chick Ng-CAM 129, chick Nr-CAM154 and chick neurofascin130. Ll and NILE 

are probably the same protein from different species. Ll and Ng-CAM were initially 

classified as species homologues but this view has recently been challenged 155·156. The 

members of the Ll subgroup have an extracellular region composed of six C2-type 

domains followed by five Fniii repeats, a transmembrane domain and a cytoplasmic tail of 

approximately 110 amino acids. The cytoplasmic tail is the most highly conserved domain 

shared by Ll, Ng-CAM, Nr-CAM and neurofascin, suggesting that this region is important 

for function 12. The cytoplasmic tail might mediate interactions with cytoskeletal elements. 

This view is supported by the observed colocalization of Ng-CAM and actin in the 

filopodia of extending growth cones 140. There is also experimental support for Ll 

mediated signal transduction that may involve G-proteins 157·158. 

L 1 expression is developmentally regulated and is largely restricted to the surface of 

axons where it is thought to play a role in neurite extension and the formation of axonal 

fascicles 117. Ll, Ng-CAM and Nr-CAM appear to mediate Ca2+ independent homophilic 
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adhesion and heterophilic adhesion events 150·156·159·160. L1 interacts with axonin-\ and 

Ng-CAM has been demonstrated to interact with ax.onin-1 and F11. There is also evidence 

that Ll is involved in cis-heterotypic interactions with N-CAM161·162. The heterotypic 

ligand for Nr-CAM is still uncharacterized. The third Fniii repeats of Ng-CAM and 

neurofascin contain an RGD tripeptide predicted to be in approximately the same location as 

that found in FnFn 10 and TnFn3 12. Thus, these proteins may also interact with RGD 

binding integrins. 

A homologue of L 1 has also been identified in Drosophila and grasshopper 15· 163. 

Drosophila neuroglian consists of six C2-type domains followed by five type III 

fibronectin repeats, a transmembrane domain and an alternatively spliced cytoplasmic 

tail 14· 163. The neuroglian protein sequence is highly homologous to those of chick Ng­

CAM, chick Fll and mouse L1, with neuroglian and Ll sharing greater than 28% 

sequence identity over the entire protein 163. This suggests that these vertebrate and insect 

proteins shared a common evolutionary ancestor. Tissue specific and developmentally 

regulated alternative splicing of neuroglian mRNA produces at least two isoforms of the 

protein that differ only in the size and composition of the cytoplasmic tai114. The short 

form of neuroglian has an 85 amino acid cytoplasmic tail and is widely expressed by 

neuronal and non-neuronal tissues in the developing embryo. This isoform may function 

as a more general adhesion molecule. The long form of neuroglian has a 148 amino acid 

cytoplasmic domain and a more restricted pattern of expression, appearing only on neurons 

of the central nervous system and a few neurons and support cells of the peripheral nervous 

system. The restricted expression pattern of the neuroglian long form more closely 

resembles the expression pattern ofLl in mice14. Neuroglian mediates Ca2+-independent 

homophilic adhesion with neuroglian expressing cells sorting away from cells expressing 

other Drosophila adhesion molecules, including fasciclin I and fasciclin II (A. Bieber et al. , 

unpublished results). The similarities in primary structure and expression patterns shared 
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by neurogJian and Ll, combined with neuroglian's ability to mediate hemophilic adhesion, 

strongly suggest that neuroglian plays a role in neural adhesion and axon fasciculation. 

Biochemical and Structural Characterization of Drosophila 

Neuroglian 

Although biochemical characterization and mutagenesis studies have provided a wealth 

of information concerning the structure and function of many cellular adhesion molecules, 

it is often difficult to interpret these data without a three-dimensional atomic structure. At 

this point in time, there appears to be a remarkable shortage of known adhesion molecule 

structures given the large number of characterized adhesion proteins. This dearth of tertiary 

structural information is undoubtedly the result of several factors. 

Many of the proteins discussed in the previous sections were discovered and cloned 

only recently. Thus, they have simply not been available for structure determinations. 

Now that the genes are available, however, it should be possible to produce sufficient 

quantities of pure protein for crystallographic or NMR structure determinations. 

An incomplete characterization of molecular function is almost certainly another limiting 

factor. The biological role played by most adhesion molecules is still only partially 

understood and in many cases the protein domains responsible for the observed interactions 

have not yet been identified. Thus, for many adhesion proteins, there may not be enough 

biochemical data to entice crystallographers and NMR spectroscopists into carrying out a 

structure determination. Results from biochemical and mutagenesis experiments are rapidly 

improving this situation and have led to the identification of extracellular and intracellular 

ligands as well as ligand binding sites. 

The shear size and probable tertiary structure of many adhesion proteins also make 

them unlikely candidates for a structure determination. The extracellular portion of the 
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selectins, cadherins and most of the Ig-superfamily members contain multiple copies of a 

few domain motifs. These domains are thought to form linear arrays in the folded proteins, 

resulting in long and possibly highly flexible structures. Most of these adhesion molecules 

are too large to have their structures determined by NMR. While their size does not 

preclude a crystallographic structure determination, a high degree of flexibility might. 

Flexible proteins frequently produce poorly diffracting crystals, if they crystallize at all, 

because immobilization of the protein in a ordered crystalline lattice is a highly unfavorable 

process. Thus, in many cases, crystallographers and NMR spectroscopists have to resort 

to a "divide and conquer" approach, in which a model of the entire protein is pieced 

together from the structures of stable protein fragments. 

Here I report a biochemical and crystallographic characterization of the Drosophila 

neural cell adhesion molecule neuroglian. As described earlier, neuroglian has an 

extracellular region consisting of six C2-type domains followed by five Fnlll repeats. The 

whole extracellular portion of neuroglian and a fragment containing the five Fnlll repeats 

were successfully crystallized, but failed to diffract to high enough resolution for a 

structure determination. Since these proteins were expected to be long, flexible molecules, 

the poor quality of the diffraction was not surprising and the divide and conquer approach 

was adopted. Proteolysis of the five Fnlll repeat protein was found to produce a stable 

fragment containing the first two Fnlll repeats (NgFnl,2). The functional role played by 

any of the neuroglian Fnlll repeats is still unknown, although the first two Fnlll domains 

from the related protein L 1 have been shown to promote neurite outgrowth. 

While the structures of single Fniii repeats from ECM proteins have been reported 

previously (see TnFn3 and FnFnlO above), these domains do not share any statistically 

significant sequence identity with the Fnlll repeats in neural adhesion molecules. The 

neural domains were identified as Fnlll repeats by the presence of a characteristic pattern of 

conserved hydrophobic residues. These neural repeats were predicted to share the same 
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folcling topology as the ECM domains, but this had not been confirmed experimentally. 

When Fnlll repeats are present in a protein, they are usually found in groups of multiple 

tandem repeats. Since the previous structure solutions were of single Fnlll domains, they 

provided very limited insight into the packing of tandem repeats. Thus, the NgFn 1,2 

structure was pursued, despite the lack of any definite function, because it was felt that it 

would answer general structural questions concerning the topology of neural Fnill repeats 

and the packing of tandem Fnlll domains. Chapter 2 describes the generation, purification, 

crystallization and structure of NgFn 1 ,2. Chapter 3 is a detailed description of the 

NgFn1,2 structure refinement and the quality of the final model. 

One unexpected feature of the N gFn 1 ,2 structure was the presence of a bound metal ion 

at the interdomain interface. Similar metal binding sites could be present in other Fnlll 

interdomain interfaces. These sites would presumably stabilize the relative orientations of 

domains involved in receptor-ligand interactions and could play a role in the formation of 

long rigid filaments of Fnill domains. In order to better characterize the observed metal 

binding site, the identity of the metal ion was determined by soaking NgFn 1,2 crystals in 

solutions containing selected metal cations. Chapter 4 describes the results of these 

soaking experiments. 

Assuming that the relative orientation of the domains in the NgFn1,2 structure is a 

general feature of tandem Fnlll domains, a protein composed of several Fniii repeats is 

predicted to form a linear rod with a two domain zig-zag repeat. This prediction and the 

presence of a metal binding site at the NgFn 1,2 interdomain interface raised the possibility 

that the five neuroglian Fnlll domains (NgFn) form a long, relatively stiff, straight rod. It 

was not possible to test this hypothesis crystallographically because good quality crystals 

of NgFn or the whole extracellular portion of neuroglian (Ng) could not be obtained. It 

was possible, however, to better characterize the structure of NgFn and Ng by examining 
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electron micrographs of rotary shadowed molecules. The results of these studies are 

described in Chapter 5. 

Appendices A and B describe work I carried out prior to initiating the neuroglian 

project. These experiments involved the crystallization and biochemical characterization of 

the neonatal rat intestinal Fe receptor (FeRn) complexed with its ligand IgG or Fe. FeRn is 

a noncovalent heterodimer composed of a heavy chain and a ~2-microglobulin light 

chain 164. The FeRn heavy chain shares significant sequence identity with the heavy chains 

of class I MHC (major histocompatibility complex) molecules 165 , which also form 

noncovalent heterodimers with ~2-microglobulin. This primary structural homology 

strongly suggests that FeRn and class I MHC molecules have similar three-dimensional 

structures despite the fact that they bind very different biological ligands. Class I MHC 

molecules bind peptides of approximately nine amino acids (- 1 kDa) while FeRn binds 

whole IgG molecules (- 160 kDa). The structural mechanism by which these related 

proteins bind such different ligands is of general interest to those studying protein-protein 

recognition and binding. 
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Chapter 2 

Crystal Structure of Tandem Type III 
Fibronectin Domains from Drosophila 

0 

Neuroglian at 2.0A 

Figure 2-0 (following page) Neuron cover. A proteolytic fragment containing 
the first two fibronectin type Til repeats from Drosophila neuroglian as it is arranged in the 
crystals (space group F432, a= b = c = 241.8A) used to solve its structure. 
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Summary 

We report the crystal structure of two adjacent fibronec­
tin type Ill repeats from the Drosophila neural cell adhe­
sion molecule neuroglian. Each domain consists of two 
antiparallel 13 sheets and is folded topologically identi­
cally to single fibronectin type Ill domains from the ex­
tracellular matrix proteins tenascin and fibronectin. 13 
bulges and left-handed polyproline II helices disrupt the 
regular p sheet structure of both neuroglian domains. 
The hydrophobic interdomain interface includes a metal­
binding site, presumably involved in stabilizing the rela­
tive orientation between domains and predicted by 
sequence comparision to be present in the vertebrate 
homolog molecule ll. The neuroglian domains are re­
lated by a near perfect 2-fold screw axis along the longest 
molecular dimension. Using this relationship, a model 
for arrays of tandem fibronectin type I II repeats in neuro­
glian and other molecules is proposed. 

Introduction 

Many cell-cell interactions in the nervous system are 
mediated by immunoglobulin gene superfamily 
members (Yoshihara et al., 1991). In neural cell adhe­
sion molecules such as l1, TAG-1, contactin, fasciclin 
II , and neuroglian, tandem immunoglobulin-like do­
mains are connected in series with two or more fibro­
nectin type Ill (Fn-11 1) repeats. A number of such mole­
cules have been identified in both vertebrates and 
invertebrates (Grenningloh et al., 1990). For example, 
the extracellular portion of neuroglian, a Drosophila 
neural recognition molecule, consists of six immuno­
globulin repeats of the C2 type (Williams and Barclay, 
1988) followed by five Fn-111 repeats, a domain organi­
zation shared by the mammalian neural adhesion mol­
ecule l1 (Bieber et al., 1989). Neuroglian and l1 are 
28% identical at the amino acid level and are sug­
gested to share a common evolutionary ancestor 
(Bieber et al., 1989). Neuroglian is believed to function 
similarly to l1, which has been implicated in neural 
adhesion, neurite outgrowth, and axonal fascicula­
tion (Hortsch and Goodman, 1991). Neuroglian acts 
as a homophilic adhesion molecule in vitro, and cells 
expressing the protein sort away from cell clusters 
expressing other Drosophila cell adhesion molecules 

(A. Bieber et al., unpublished data). Mutant Drosoph­
ila embryos completely lacking neuroglian expression 
show relatively normal development of the central 
and peripheral nervous systems. However, this muta­
tion is lethal, and the orientation and extent of contact 
among sensory neurons normally expressing the pro­
tein are abnormal, consistent with the proposed role 
of neuroglian in cell adhesion events (Grenningloh 
et al. , 1990). 

Although commonly present in neural adhesion 
molecules such as neuroglian, Fn-111 domains were 
originally identified as a repeating motif of -90 amino 
acids in the extracellular matrix (ECM) protein fibro­
nectin. Some Fn-111 domains in ECM proteins interact 
with integrins via an Arg-Giy-Asp (RGD) sequence 
motif (Hynes, 1990). An example of an interaction of 
Fn- 111 domains with a member of the immunoglobulin 
superfamily is provided by the observation that some 
of the Fn-111 motifs of the ECM protein tenascin bind to 
contact in (Zisch et al., 1992). The interactions between 
the Fn-111 domains of neural adhesion molecules and 
their ligands are less well characterized. However, the 
two Fn-111 domains of the neural adhesion molecule 
N-CAM, whose extracellular region consists of five 
tandem immunoglobulin C2 repeats followed by two 
Fn-111 domains, have been found to be sufficient for 
some of the functions of N-CAM, including spreading 
of neuronal cell bodies (Frei et al., 1992). Other studies 
mapping the functions of l1 to specific domains show 
that the first two Fn-111 repeats of the molecule, in 
isolation, are capable of promoting neurite out­
growth, whereas the final three Fn-111 repeats cause 
adherence of small cerebellar neurons (Appel et al., 
1993). In addition to comprising parts of adhesion mol­
ecules and proteins of the ECM, Fn-111 modules have 
been found in cytoplasmic muscle proteins, the extra­
cellular regions of receptor protein kinases, receptor 
protein phosphatases, cytokine receptors, and pro­
karyotic enzymes that cleave carbohydrates (Bork and 
Doolittle, 1992). After a systematic screen of the pro­
tein sequence data base, it was estimated that the 
Fn-111 motif occurs in about 2% of all animal proteins 
(Bork and Doolittle, 1992), indicating that it is a com­
mon structural motif. 

The structures of single Fn-111 domains from the 
ECM proteins tenascin (third Fn-111 domain of tenascin 
[fnFn3]) and fibronectin (tenth Fn-111 domain of fibro­
nectin [FnFn10]) are known from X-ray crystallo­
graphic and nuclear magnetic resonance studies 
(Leahy et al., 1992; Baronet al., 1992; Main et al., 1992). 
These domains are related by statistically significant 
sequence identity and share a common fold, con­
sisting of seven 13 strands forming two antiparallel 13 
sheets, with conserved hydrophobic residues pack­
ing in their central cores. The topology is similar to 
that of an immunoglobulin constant region, except 
for the "sheet switching" of one 13 strand (Leahy et al., 
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1992). A structural similarity between cytokine recep­
tor domains and the Fn-111 module was predicted by 
analysis of patterns of hydrophobic and hydrophilic 
residues (Bazan, 1990; Patthy, 1990), and the predic­
tion was verified by the structure of the two extracellu­
lar domains of the human growth hormone receptor 
(DeVos et al., 1992). The Fn-111 fold is also identical to 
the topology of 13 strands in the bacterial chaperon in 
PapD (Holmgren and Branden, 1989) and the second 
domain of CD4 (Ryu et al., 1990; Wang et al., 1990). 
In these cases, however, the topological similarity to 
Fn-111 modules is thought to have arisen by convergent 
evolution (Main et al., 1992). 

We report here the 2.0 A crystal structure of two 
tandem Fn-111 domains from the Drosophila cell adhe­
sion molecule neuroglian. Although identifiable as a 
repeat -90-100 residues in length containing a con­
served pattern of hydrophobic residues, the Fn-111 
modules of the neural adhesion proteins do not show 
statistically significant sequence similarity (defined as 
> 15% or preferably >25% sequence identity between 
pairs of potentially related sequences; Doolittle, 1987) 
to ECM proteins. Nevertheless, the folding topology 
of each neuroglian domain is identical to that shared 
by the Fn-111 domains of tenascin and fibronectin 
(Leahy et al. , 1992; Baronet al., 1992; Main et al., 1992). 
The relative orientation of Fn-111 domains in series, as 
occurs in the neural adhesion molecules and ECM 
proteins, was previously unknown. In the ECM pro­
tein fibronectin, Fn-111 modules N-terminal to the 
RGD-containing Fn-111 domain are required for maxi­
mal adhesive function (Aota et al., 1991; Nagai et al., 
1991); thus, the interaction of Fn-111 repeats in series is 
of considerable interest. We find that the neuroglian 
domains are related by a near dyad axis of symmetry 
with a translation along the pseudosymmetry axis. A 
sodium ion with approximate square pyramidal coor­
dination is found at the interface between the two 
neuroglian domains, presumably stabilizing their rel­
ative orientation. An analysis of the arrangement of 
the two tandem neuroglian Fn-111 modules allows a 
general model to be proposed for the arrangement 
of multiple Fn-111 repeats in adhesion molecules, re­
ceptors, and ECM proteins. Together with structural 
information concerning immunoglobulin-like domains 
from the crystal structures of CD4 (Ryu et al., 1990; 
Wang et al., 1990; Brady et al., 1993) and C02 (Jones 
et al., 1992), the model can be used to estimate the 
overall dimensions of cell adhesion molecules, which 
are predicted to be narrow (20-30 AJ molecules that 
can extend up to 370 A from the cell. 

Results 

Expression of Neuroglian Fragments and Proteolysis 
of the fn-111 Repeats 
Plasmids for the expression of soluble fragments of 
neuroglian were prepared as described in the Experi­
mental Procedures. These secretion vectors were 
transfected into Drosophila 52 cells. Clonal cell lines 
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Figure 1. SDS- Polyacrylam1de Gel Electrophoresis (15%) of Gly­
cosylated and Deglycosylated Forms of the Chymotrypt1c Frag­
ment of the Five Fn-111 Repeat Protein 

Lane 1, Purified five Fn-111 repeat protein pnor to proteolysis; 
lane 2, punfied chymotrypsin NgFn1 ,2 fragment; lane 3, NgFn1 ,2 
protein denved from washed crystal s; lane 4, NgFn1,2 pro tein 
treated w1th TFMS; lane 5, NgFn1 ,2 protein treated with PNGase 
F; lane 6, crystall1zed NgFn1 ,2 protein treated w1th PNGase F. 
The slight difference 1n positiOn of the protein spec1es 1n lanes 
5 and 6 may be due to residual amounts of harvest buffer in the 
washed crystal sample altering 1ts gel mobil1ty, or the possibility 
that the protein which crystallized represents a minor popula­
tion of protein that is slightly smaller 1n mass than the majority 
of the starting protein . Arrows, molecular we1ght 1n kilodaltons. 

secreting high levels of the fragments were identified 
and used to produce large quantities of the proteins 
for structural analyses. 

Conditions were found that yielded crystals of the 
entire 160 kd extracellular portion of neuroglian, but 
these crystals did not diffract to sufficient resolution 
to allow a structure determination. Proteins com­
posed of multiple repeats arranged in series often do 
not form well-ordered crystals because of the flexibil­
ity between domains (Kwong et al., 1990). Therefore, 
a systematic approach was used to find a portion of 
neuroglian that cou ld form crystals capable of high 
resolution diffraction. A segment consisting of the five 
Fn-111 repeats was next crystallized, but again, these 
crystals did not diffract to atomic resolution. Because 
a stable proteolytic fragment of fibronectin consisting 
of three Fn-111 modules had been reported (Nagai et 
al., 1991), we next surveyed several proteases to iden­
tify one that could cleave the five Fn-111 repeat mole­
cule. Proteolytic cleavage with trypsin, chymotrypsin, 
or elastase yielded a fragment with an apparent molec­
ular mass of 37.5 kd on 50S-polyacrylamide gel (Fig­
ure 1). Sequence analysis showed that the chymotryp­
tic fragment started at residue 610, and the tryptic 
fragment started at 607, near the predicted beginning 
of the first Fn-111 repeat (Bieber et al., 1989). Upon 
treatment under denaturing conditions with peptide 
N-glycosidase F (PNGase F), which cleaves N-glycosi­
dic linkages, the apparent molecular mass on an 50S­
polyacrylamide gel was reduced to 31.5 kd (Figure 1). 
To rule out the possibility that some of the mass of 
the enzymatically deglycosylated fragment was due 
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Table 1. Data Collection Statistics 

Data Native 
Ethylmercuroc 
Phosphate 

Number of Crystals 
Resolution (A) 
Number of measurements 
Unoque reflections 
% Complete (resolution A) 
R merRt' 

1 
1 .8 

355,936 
45,766 

99 (2.0) 
0.050 

1 
2.4 

80,531 
19,507 

86 (2.6) 
0.079 

Rm.,•• = I: (II - <1>\)I(I: <1> ), in which I is the intensoty of a 
reflectoon, and < I> is the mean intensoty for the reflection. 

to the presence of 0-linked sugars, the fragment was 
deglycosylated with trifluoromethanesulfonic acid 
(TFMS), which removes all but the 0-glycosidically 
linked galactosamine and N-glycosidically linked glu­
cosamine of a complex carbohydrate moiety. The 
TFMS treatment did not reduce the apparent molecu­
lar mass beyond the mass reduction achieved by enzy­
matic deglycosylation, suggesting that the fragment 
contained only N-linked carbohydrates. 

Crystallization and Structure Determination 
Single well-ordered crystals of the chymotryptic frag­
ment were grown and characterized as space group 
F432 (a = b = c = 241.79 A) with one molecule per 
asymmetric unit. Surprisingly, 50S-polyacrylamide 
gel electrophoresis of the protein from washed crys­
tals revealed an apparent molecular mass of 34 kd, 
which was smaller than the mass of the protein used 
in the crystallization (Figure 1). PNGase F treatment 
of protein from washed crystals reduced the apparent 
molecular mass to -31 kd, similar to the deglycosy­
lated mass of the protein used in the crystallizations , 
suggesting that a less heavily glycosylated subset of 
the protein had crystallized out of a mixture of hetero­
geneously glycosylated species. 

Protein from washed crystals was analyzed by ma­
trix-assisted laser desorption mass spectroscopy. The 
mass of the protein species that crystallized was deter­
mined to be 26,102 daltons ( ± 65 daltons), 8 kd lower 
than the apparent molecular mass determined by 

Table 2. Phasong Stati stocs 

Resolutio n (A) 

25.0- 2.60 11 .90 7.87 

M ean figure of merot 
Acentroc 0.31 0.52 0.59 
Reflections (No.) 14,340 93 348 

Centric 0.45 0.40 0.56 
Reflections (No.) 2,304 73 169 

Phasing po wer (acentroc) 1.3 1 .3 1.9 

R.c.u, (acentric) 0.75 0.7 0.63 
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50S-polyacrylamide gel electrophoresis. lhese re­
sults are consistent with the crystal\ ization of a proteo­
lytic fragment consisting of the first two Fn-111 repeats 
and -3,000 daltons of carbohydrate, compatible with 
utilization of two of the three potential sites of N-linked 
glycosylation within these domains (Bieber et al., 1989). 
Native and derivative data sets were collected at the 
Cornell High Energy Synchrotron Source (CHESS; Ta­
ble 1) from cryopreserved crysta ls (Hope, 1990). A 2.6 
A solvent-flattened (Wang, 1985) electron density map 
calculated using phases derived from a single isomor­
phous derivative (Table 2) was of high quality (Figure 
2A), allowing the complete tracing of 205 residues of 
the polypeptide chain. The model has now been re­
fined to an R value of 20.2% for data between 5 and 
2.0 A, with good geometry (Tab le 3). 

The Neuroglian fn-111 Motifs Have Similar Structures 
The structure of the proteolytic fragment of the neu ro­
glian Fn-111 repeats (hereafter referred to as NgFn1,2) 
consists of two Fn- 111 structural motifs arranged in 
series at an obtuse angle with respect to each other 
(Figure 3A). The overall fold of each Fn-111 domain is 
identical to that reported for the structures of single 
Fn-111 domains from human tenascin and fibronectin 
(Baronet al. , 1992; Leahy et al., 1992; Main et al. , 1992). 
This fold is composed of seven J3 strands arranged in 
two antiparallel J3 sheets of four and three J3 strands. 
The seven strands are labeled A, B, C, C', E, F, and G, 
and the two sheets are composed of strands A-B-E 
and C'-C-F-G (Figures 3B and 3C). The Fn-111 fold is 
similar to the fold of an immunoglobulin constant 
domain, except for the sheet switching of strand C', 
which hydrogen bonds with strand C in the type Ill 
domain rather than with strand E as observed in the 
immunoglobulin domain (Leahy et al., 1992; Main et 
al., 1992). 

In the first neuroglian Fn-11 1 domain (NgFn1), a disul ­
fide bond joins residue 625 of strand A to residue 706 
of strand G. Although the disulfide bond connects 
the two J3 sheets of the Fn-111 domain, it bears no other 
relationship to the type of disulfide bond connecting 
J3 sheets in immunoglobulin variable and constant do­
mains and in domains of members of the immuno-

5.88 4.70 3.91 3.35 2.93 2.60 

0.56 0.49 0.39 0.32 0.25 0.18 
735 1,276 1,948 2,682 3,386 3,872 

0.62 0.54 0.45 0.44 0.38 0.29 
246 314 363 398 381 360 

2.1 1.8 1.3 1.2 1.1 1.0 

0.54 0.67 0.80 0.79 0.82 0.88 

Phasong power = < FH>IE,"', the rms heavy atom structure factor amplitude div ided by the resodualosomorphous lack o f closure er ro r; 
R.c. 11,. = I:\FH(obs) - FH(calc) \/I: FH(obs), on which FH(o b s) os the observed heavy atom structure facto r amplotude for a reflectoo n and 
FH(calc) is the calculated amplitude. 
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(A) Part of the 2.6 A initial electron density map obtained by 
SIRAS and solvent flattening used to trace the polypeptide chain 
(see Experimental Procedures). The region shown is in the vicin-

Table 3. Refinement Statostics 

R.,,.., 

Resolution (A) Fraction Complete Fo > o•o, 

10.0- 5.00 0.99 0.343 
5.00-3.62 1.0 0.187 
3.62-3.09 1.0 0.189 
3.09-2.77 1.0 0.205 
2.77-2.55 1.0 0.216 
2.55-2.39 1.0 0.217 
2.39-2.27 0.99 0.208 
2.27-2.16 0.99 0.209 
2.16-2.07 0.99 0.222 
2.07-2.00 0.99 0.237 

5.00-2.00 0.202 
10.0-2.00 0.232 

globulin superfamily, which connects strands B and 
F. The second Fn-111 repeat in neuroglian (NgFn2) does 
not contain a sim ilar disulfide bond, and cysteine resi­
dues are not found in the comparable positions in 
sequences of the other neuroglian Fn-111 domains 
(Bieber et al., 1989) or the Fn-111 domains in tenascin 
(Leahy et al., 1992), fibronectin (Main et al. , 1992), or 
human growth hormone receptor (DeVos et al., 1992). 

Two potential N-linked glycosylation sites (Figure 
3C) in NgFn1 are utilized. Clear density is seen for 
two N-acetylglucosamine residues attached to Asn-
652 and a single N-acetylglucosamine attached to Asn-
683. The two glycosylation sites are located on the 
adjacent~ strands C and F of the four-stranded face 
of NgFn1 (Figure 38). 

Each of the neuroglian Fn-111 domains is -100 amino 
acids long, as compared with 91 residues in the TnFn3 
and FnFn10 structures (Leahy et al., 1992; Main et al. , 
1992). The additional neuroglian residues are located 
at the C-terminus of each domain and in the loops 
connecting strands B and C. Although some individ­
ual~ strands have different conformations in the neu­
roglian and tenascin Fn-111 modules, the hydrophobic 
residues conserved in most Fn-111 domains occupy 
analogous positions in the TnFn3 and NgFn1 ,2 domain 
interiors. NgFn1 and NgFn2 are superimposed upon 
each other and upon the TnFn3 structure in Figures 
4A-4C. Overall, 61 carbon-a atoms of NgFn1 superim­
pose within 2.5 A of their counterparts in TnFn3 with 
a root-mean-square (rms) error of 1.3 A, with the com­
parable numbers being 67 carbon-a atoms and an rms 
error of 1.2 A for the superposition of NgFn2 and 

ity of three residues from strand E of NgFn2 (lle-775, Val-776, 
lle-777; top to bottom), contoured at the 1.0o level. Carbonyl 
oxygens and some water molecules (marked with a red cross) 
were identifiable in this initial map. The model shown is that 
obtained after the final refi nement cycle. 
(B) Corresponding section of a 2.1 A electron density (2F..,, -
F"'"'<1>" 1J map contoured at the 1.0o level. 

Rtree 

Fo > 3·o, Fo > o•o, 

0.343 0.336 
0.186 0.221 
0.187 0.220 
0.200 0.232 
0.209 0.253 
0.206 0.237 
0.199 0.242 
0.196 0.255 
0.205 0.265 
0.202 0.275 

0.195 0.235 
0.227 0.257 

R.,..,, = I:,(i Fo - Fci)/(I:,Fo), in which Fo and Fe are observed and calculated st ructure factor amplitudes and a E (refinement-set reflections); 
R,,. = L., <IFo- FcJ)/(E,Fo). in which t E (free-set reflections); a, is the estimated SO for each structure factor amplitude. 
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Figure 3. The Structure of NgFn1,2 and Sequence Alignment with TnFn3 

(A) Ribbon diagram of the two Fn-111 domains of neuroglian, showing ll strands as magenta arrows, polyproline helical segments in 
dark blue, a disulfide bond in yellow. and the metal ion at the domain interface as a red sphere. The F to G loops of each domain 
(location of the RGD sequence in ECM proteins) are highlighted in green. All other loops are light blue. This diagram was generated 
usi ng the program SETOR (Evans, 1993). 
(B) Schematic diagram of the folding topology of the NgFn1,2 fragment. Within a single Fn-111 domain, strands A, B, and E form one 
ll sheet, whereas strands C', C, F, and G form the other. Approximate positions of ll bulge elements are indicated by a break in the 
strand arrow , utilized N-linked glycosylation moieties by the letter C, and positions of left-handed polyproline II helix are indicated 
by cylinders with each helical turn denoted by the letter P. A si ngle turn of 3,0 helix is denoted by a cylinder marked 3-10. 
(C) Sequence alignments o f NgFn1, NgFn2, and TnFn3. These domains were aligned after superposition of their structures as described 
in the legend to Figure 4. The structural cores of residues whose carbon-a atoms are less than 2.5 A away from corresponding residues 
in the other do mains are marked by vertical lines. Residues commonly conserved in Fn-111 domains are underlined and shown in 
bold, res idues involved in ll bulges are shown as superscripts, and N-linked glycosylation sites are i n italics. Positions of the ll strands 
in each domain are shown below its sequence, with the strand positions for TnFn3 taken from Leahy et al. (1992). Residues in,volved 
in interdomain contacts in the NgFn1,2 structure are marked with an asterisk (defined as a residue with any atom within 4 A of an 
atom from a residue within the partner domain). 
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TnFn3. Each of the neuroglian domains is structurally 
more similar to TnFn3 than to its partner domain, as 
evidenced by the overall rms deviation of 1.6 A for 
the superposition of 50 carbon-a pairs from the two 
neuroglian domains. The domains superimpose sur­
prisingly well, considering the lack of significant se­
quence identity between the two neuroglian domains 
themselves and between either neuroglian domain 
and TnFn3 (16.5% identity between NgFn1 and NgFn2; 
13% identity between TnFn3 and NgFn1; 9% identity 
between TnFn3 and NgFn2; see Figure 3C). 

A comparison of the carbon-a atoms used in the 
alignment of the NgFn1, NgFn2, and TnFn3 domains 
yields a structural core of 42 residues that contains 
carbon-a atoms found to be within 2.5 A of each other 
in all three domains (marked with vertical lines in Fig­
ure 3C). Most of these residues are contributed by 
strands B, E, C, and F, the four strands that interact 
to form the hydrophobic core of each domain and that 
contain most of the highly conserved hydrophobic 
residues commonly found in Fn-111 domains. A por­
tion of the residues in the F toG loop is also part of the 
structural core relating the two neuroglian domains to 
TnFn3. This loop is the location of the RGD adhesive 
sequence in TnFn3 and FnFn10 (Leahy et al., 1992; 
Main et al., 1992). The overall rms deviation between 
these core residues is 1.4 A for the superposition of 
NgFn1 and NgFn2, 1.2 A for NgFn1 and TnFn3, and 
1.0 A for NgFn2 and TnFn3. 

Non-Jl Sheet Secondary Structure 
The residues from strands A, C', and G were difficult 
to align in the NgFn1,2 and TnFn3 structures primarily 
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Figure 4. Superposition of NgFn1 , NgFn2, 
and TnFn3 

The carbon-a backbone of each doma1n 
followong superpOSition 1s shown in ster'!O. 
Side cha1ns of residues that are commonly 
conserved in Fn-111 domains (Figure 3C, 
underlined and bold) are also shown. The 
domaons were originally aligned manually 
us1ng onteract1ve graphics. Carbon-a atoms 
that superimposed well were used in a least 
squares alignment, and those that superim­
posed w1th1n 2.5 A were used in a subse­
quent calculation to generate the alignments 
shown. N-and C-termini are indicated for 
the neurogllan domains in each stereoplot. 
These stereoplots were generated usong In­
sight II from B1osym Techno log1es of San 
D1ego. 
(A) NgFn1 (solid) supenmposed upon 
NgFn2 (dashed). 
(8) NgFn1 (solid) superimposed upon 
TnFn3 (dashed). 
(C) NgFn2 (sol1d) superimposed upon 
TnFn3 (dashed). 

because of the interruption of regular 13 strand geome­
try by the insertion of other elements of secondary 
structure, such as 13 bulges (Richardson et al., 1978) 
and polyproline II helices (Adzhubei and Sternberg, 
1993). Strand C' of NgFn1 contains adjacent 13 bulges, 
a classic bulge followed by a wide bulge, as defined 
by Richardson et al. (1978) (Figures 3B and 3C) . The 
bulges make it difficult to superimpose NgFn1 strand 
C' on the C' strand of NgFn2 or TnFn3, which lacks 
similar bulges. However, the positions of two other 
13 bulges are loosely conserved between the three do­
mains even though the type of bulge is not (Figures 
3B and 3C). 13 bulges are often found at active sites 
of proteins to orient side chains in needed directions 
and also serve as a mechanism for accommodating 
insertional mutations without completely disrupting 
13 sheets (Richardson et al., 1978). A high number of 
13 bulge secondary structural elements in the Fn-111 
modules of other proteins may contribute to their lack 
of statistical primary sequence similarity. 

The NgFn1,2 structure also contains several exam­
ples of polyproline II helix, a structural motif in globu­
lar proteins that is characterized as a left-handed helix 
with a three residue repeat (Adzhubei and Sternberg, 
1993). The main chain dihedral angles of polyproline 
II helices cluster in <l>,ljl space around -75°, 145°, and 
these helices are found in polymers of proline, as part 
of a triple helix in the fibrous protein collagen and 
as short stretches of single helix in other proteins that 
usually, but not always, include the residue proline. 
This motif generally occurs on the protein surface and 
tends to be among the more mobile parts of the pro­
tein, because it has few main chain hydrogen bonds 
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with the rest of the protein (Adzhubei and Sternberg, 
1993). Most of what was previously identified as strand 
Gin TnFn3 (Figure 3C; Leahy et al., 1992) is three turns 
of polyproline II helix in NgFn1. This helix comprises 
at least nine amino acids (Ser-697-Ser-705), thus repre­
senting one of the longest single polyproline II helices 
yet found (Adzhubei and Sternberg, 1993). The poly­
proline II helix contains three serines which are evenly 
spaced (n, n + 3, and n + 6), such that the nitrogen 
and side chain hydroxyl of each serine hydrogen bond 
with the main chain of strand F. Each of the serine 
side chain hydroxyls also hydrogen bonds with poly­
proline II helix main chain carbonyl oxygens (n + 1, 
n + 4, and n + 7). The helix terminates and regular 13 
strand hydrogen bonding resumes at Cys-706, which 
forms a disulfide bond with Cys-625. Examination of 
the <l>,llf angles of the comparable strands of NgFn2 
and TnFn3 shows they are also interrupted by polypro­
line II structure shortly after the 13 hairpin turn con­
necting strands F and G. 

The first serine in the NgFn1 polyproline II helix is 
conserved in NgFn2 and TnFn3 and is the first residue 
in the non-13 strand structure after the F to G loop. 
In TnFn3, residues Ser-882-Pro-884 form a single non­
ideal turn of polyproline II helix in which Ser-882 
forms main chain-main chain and side chain-main 
chain hydrogen bonds analogous to those formed by 
Ser-697 in NgFn1. In NgFn2, non-13 strand structure 
extends from Ser-799 to Glu-804, with residues Val-801 
to Glu-804 forming one turn of polyproline II helix. 

The F to G Loop 
The adhesive properties of the ECM proteins that con­
tain Fn-111 modules are in part conferred by a portion 
of the module containing an RGD sequence (Piersch­
bacher and Ruoslahti, 1984). The RGD sequences of 
TnFn3 and FnFn10 are located in a 13 hairpin loop be­
tween strands F and G (Leahy et al., 1992; Main et al., 
1992). The TnFn3 RGD loop is shorter by four amino 
acids than the FnFn10 loop and does not mediate in­
teractions with the vitronectin receptor unless the 
TnFn3 domain is isolated from the rest of tenascin 
(Leahy et al., 1992). The function, if any, of the compa­
rable loop in the Fn-111 modules of neural adhesion 
molecules is unknown. None of the Fn-111 modules 
in neuroglian or most other cell adhesion molecules 
(Bieber et al., 1989; Bork and Doolittle, 1992; P. Bork, 
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Figure 5. Environment around the Sodium 
ion-Binding Site 

The ftve oxygen ligands of the metal ion 
(M) are shown as solid spheres, and other 
atoms of the ligand residues are shown as 
open spheres. The residue number and 
identity of each ligand are indicated. SOL 
refers to the oxygen atom of an ordered 
water molecule. Dashed lines represent 
the intervening polypeptide chain be­
tween lle-740 and Asn-743. This stereoplot 
was generated using Insight II from Biosym 
Technologies of San Diego. 

personal communication) contain RGD sequences. In 
all five Fn-111 repeats in neuroglian, the strand F to G 
loop is shorter than the "active" loop of FnFn10, which 
mediates adhesive interactions in the whole fibronec­
tin protein (Hynes, 1990). In fact, the F to G loop of 
each neuroglian Fn-111 domain is a 13 hairpin turn and 
is the same size as the RGD loop in TnFn3 (Figure 3C). 
The F to G loop is the only loop that is spatially and 
structurally similar in the two domains of the NgFn1 ,2 
structure. Although the 13 hairpin turn between 
strands F and G of NgFn2 is near the interdomain 
interface, it is still solvent accessible because NgFn1 
is tilted away from this portion of the second domain. 
The F to G loop was reported to be mobile in the 
nuclear magnetic resonance structure of FnFn10 
(Main et al., 1992); however, a crystallographic temper­
ature factor analysis (data not shown) shows that these 
loops are well defined in both neuroglian domains. 

Metal-Binding Site and lnterdomain Contacts 
Contacts between the two Fn-111 modules in the 
NgFn1,2 structure are confined to the loops connect­
ing 13 strands at the bottom of NgFn1 and the top of 
NgFn2. The E to F loop of the first domain and the B 
to C loop from the second domain form the majority 
of the interface, including a metal-binding site. The 
metal cation has approximate square pyramidal coor­
dination geometry with a water molecule, side chain 
oxygens from Ser-679 (E to F loop, NgFn1) and Asn-743 
(B to C loop, NgFn2), and carbonyl oxygens from lle-
740 (B to C loop, NgFn2) and Pro-680 (E to F loop, 
NgFn1) as ligands (Figure 5). There is no electron den­
sity corresponding to a sixth ligand in the position 
expected for a site with octahedral coordination ge­
ometry. The average ligand to metal distance after 
refinement is 2.23 A, significantly smaller than the 2.7-
2.8 A distance published for potassium, but between 
the expected ligand to metal distances for magnesium 
(2 .1 Al and sodium or calcium (2.4 Al (Yamashita et 
al., 1990; Glusker, 1991). Refinement of the cation oc­
cupancy and examination of difference Fourier maps 
calculated after soaking crystals in solutions of EDTA, 
calcium, or sodium (described in the Experimental 
Procedures) suggest that the metal is a sodium ion 
rather than a magnesium or calcium ion. 

The remainder of the domain interface is predomi­
nantly hydrophobic and includes contributions from 
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the C to C' loop of NgFn1 . Contact residues are 
marked with an asterisk in Figure 3C. Most of the 
contact residues in NgFn2 are in the B to C loop, which 
contains approximately five more residues than the 
analogous loops in the FnFn10 (Main et al., 1992) and 
TnFn3 domains (Figure 3C). This loop has a different 
stucture in the two neuroglian domains, forming a 
turn of 3,o helix in NgFn2. 

The interface between domains is stabilized by 
some 830 A2 of total buried surface area, calculated 
by comparing the solvent-accessible surface area of 
NgFn1 ,2 with that of the separated domains. Similar 
calculations have been done for other structures con­
sisting of tandem domains arranged in series: 620-
880 A2 are buried in the association of the first two 
domains of CD4 (Ryu et al., 1990; jones et al., 1992), 
950 A2 are buried between the third and fourth CD4 
domains (Brady et al., 1993), and 400 A2 are buried 
between the two extracellular domains of C02 Uones 
et al., 1992). 

Arrangement of the Two Fn-111 Modules in the 
Neuroglian Fragment 
The relative orientation of the two Fn-111 domains in 
the crystal structure of NgFn1,2 is likely to be the same 
as what would be observed in solution for the follow­
ing reasons. The resistance of NgFn1 ,2 to further pro­
teolysis by three different proteases suggests that the 
fragment is a compact, stable structure without exces­
sive flexibility between the domains. The observed 
domain interface is largely hydrophobic, implying 
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Figure 6. Location of the Pseudosymmetry 
Axis Relating NgFn1 and Ngfn2 

The carbon-a backbone of Ngfn1,2 is 
shown in stereo with solid circles marking 
every tenth residue. The line indicates the 
position of the approximate 2-fold screw 
axis relating the two domains. The relation­
Ship between domains was calculated by 
superimposing NgFn1 upon Ngfn2 as de­
scribed in the legend to Figure 4. and is a 
175° rotation followed by a 37.7 A transla· 
tion along the rotation axis. This stereoplot 
was generated using Insight II from Biosym 
Technologies of San D1ego. 

that it would be buried in the protein in solution. 
The surface area buried between adjacent domains 
is similar to that seen for other proteins with domains 
arranged in tandem. Finally, the presence of a metal­
binding site at the domain interface strongly suggests 
that the orientation of the two domains is not merely 
a result of crystalline lattice contacts. 

Each Fn-111 domain in the neuroglian fragment can 
be roughly described as a cylinder of radius = 10 A 
and length = 40 A. The two domains meet at at angle 
of - 120°, as defined by the orientation of the two 
axes that would describe each cylinder. Because the 
two domains are tilted relative to each other, the 
length of the two domain fragment is - 70 A, as op­
posed to - 80 A, the predicted length of a linear two 
domain fragment. A tilted relationship of successive 
Fn-111 repeats in the hexabrachion arm of human ten­
ascin was proposed to reconcile the 36 A length of 
TnFn3 in the crystal structure to the 32 A repeat spac­
ing observed in electron microscopic studies of hu­
man tenascin (Leahy et al., 1992). It was also proposed 
that alternative Fn-111 domains would be rotated by 
-180° to create an approximate 2-fold screw axis re­
lating successive domains (Leahy et al., 1992). After a 
least squares superposition of the first NgFn1 upon 
NgFn2, the rotation and translation that relate the two 
domains are a 175° rotation followed by a 37.7 A trans­
lation along the rotation axis (Figure 6). This relation­
ship is close to an exact 2-fold screw axis, in accor­
dance with the predic tion (Leahy et al., 1992). One 
consequence of the near dyad axis of rotation is that 
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Figure 7. Proposed Model for the Alignment of Fn-111 Domains 
in Series 

Space-filling model in which main chain atoms in all domains are 
gray, and side chain atoms of each domain are colored differently 
than side chains of the neighboring domain. The F toG loop in 
each domain is highlighted in yellow. The model was generated 
by applying the rotation and translation that relates NgFn1 to 
NgFn2 three times in succession to generate the predicted posi­
tions of the f inal three Fn-111 domains, assuming they are oriented 
with respect to each other with a similar relationship as NgFn1 
and NgFn2. The result is a long fiber with a zig- zag repeat o f 
two Fn-111 unit s. Assuming other proteins containing multi ple 
Fn-111 repeats arranged in series are oriented in a similar manner, 
th ts model can be used as a first order approximation o f the 
structures of the Fn-111 domains tn neural CAMs and in ECM 
proteins. This diagram was generated using the program SETOR 
(Evans, 1993). 
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the loop between strands F and G (highlighted in Fig­
ure 3A), which contains the RGD adhesive sequence 
in some Fn-111 domains, would fall on opposite sides 
of the fiber on each successive repeat. 

The relationship of the tandem domains in the 
NgFn1,2 structure is closer to being an exact dyad axis 
than the rotation relating pairs of domains in other 
relevant structures. In these other cases, the relation­
ship between domains is a rotation of between 140° 
and 160° followed by a translation between 25 A and 
32 A. For example, the first two domains of CD4 are 
related by -160° (calculated using entry 1CD4 in the 
Protein Data Bank; Bernstein et al., 1977), as are the 
final two domains of CD4 (Brady et al. , 1993). The two 
domains of PapD are related by 140° (calculated using 
entry 3DPA in the Protein Data Bank; Bernstein et al., 
1977) and are oriented with a V shape creating a crev­
ice thought to be the interaction area with pili sub­
units (Holmgren and Branden, 1989). The extracellular 
domains of the human growth hormone receptor are 
also related by a 140° rotation (calculated using coor­
dinates obtained from A . De Vos), and the relative 
domains are arranged almost perpendicular to each 
other, so that the dimeric molecule has aT shape (De 
Vos et al., 1992). Thus, molecules containing tandem 
repeated domains show a number of different rela­
tionships between successive domains. Of the above 
examples for which structural information is known, 
only CD4 contains more than two repeats. 

The rotation axis relating NgFn1 and NgFn2 is ap­
proximately parallel to the longest dimension of the 
fragment (Figure 6), and successive application of the 
same rotation and translation along this axis yields 
a zig-zag arrangement of tandem Fn-111 repeats that 
would ultimately form a straight rod. A computer­
generated model of five Fn-111 repeats (Figure 7) was 
created by three applications of the 175° rotation and 
37.7 A translation to the coordinates of the two do­
main structure and serves as a first order approxima­
tion of the structure of the five successive Fn-111 do­
mains in the extracellular portion of neuroglian. If the 
relationship between domains depicted in Figure 7 is 
general for other proteins containing multiple Fn-111 
repeats, such as receptors or adhesive ECM proteins, 
the Fn-111 repeat portions of such molecules would 
also be straight rods, with a zig-zag repeat unit of 
two Fn-111 modules. Because the rotations that relate 
successive repeats in CD4, PapD, and human growth 
hormone receptor are not dyads, when the same pro­
cedure is used to create models of these proteins con­
sisting of five repeated units, the resulting models 
(data not shown) do not have the regular appearance 
of the model shown in Figure 7. 

Discussion 

We have described the structure of the two N-terminal 
Fn-111 repeats (NgFn1 ,2) from Drosophila neuroglian, 
a neural CAM. NgFn1,2 is the only structure of Fn-111 
repeats from an adhesion molecule and also represents 
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the first structure in which the arrangement oftandem 
Fn-111 repeats in an adhesion protein can be examined. 
The structures of single Fn-111 repeats from the ECM 
proteins tenascin (TnFn3) and fibronectin (FnFn10) 
have been reported previously (Baron et aL, 1992; 
Leahyet aL, 1992; Main et aL, 1992). Although the Fn-111 
motifs in neuroglian are related to the repeats in 
TnFn3 and FnFn10 by only a pattern of conserved 
hydrophobic residues and do not have detectable 
overall primary sequence similarity, both neuroglian 
domains have an identical topology to previously re­
ported repeats. The tenascin, fibronectin , and neuro­
glian Fn-111 domain structures are primarily composed 
of J3 sheet secondary structure, but the neuroglian 
domains contain an unusual number of J3 bulge ele­
ments that disrupt regular J3 sheet formation. The loca­
t ions of some of these bulges are in common with 
those found in TnFn3. In addition, we find a segment 
of left-handed polyproline II helix in both neuroglian 
domains, as well as in TnFn3, so that the polypeptide 
chain following the F to G loop is more accurately 
described as a helix, rather than as a J3 strand. 

The relative orientation of the two neu roglian Fn-111 
domains is stabilized by the binding of a sodium ion 
at the interface between the domains. Each domain 
contributes main chain and side chain ligands for the 
cation, which has approximate square pyramidal co­
ordination geometry. An important role of metal ions 
in nonenzymatic proteins is to enhance the protein's 
structural stability in the conformation required for 
biological function (Giusker, 1991). Sodium- and po­
tassium-binding sites have recently been observed in 
the structure of dialkylglycine decarboxylase (Toney 
et aL, 1993). Both ions are too distant from the active 
site to be directly involved in catalysis, but instead 
play a role in maintaining the enzyme in the correctly 
folded conformation, analogous to the role we pro­
pose for the sodium ion in the NgFn1,2 structure. Sub­
stituti on of a sodium ion for the potassium ion in 
dialkylglycine decarboxylase changes the coordina­
tion geometry and results in the movement of the 
loops that make up the metal ion- binding site (Toney 
et aL, 1993). The dialkylglycine decarboxylase struc­
ture provides a precedent for the possibility that 
the interdomain orientation could be altered in the 
NgFn1 ,2 structure by substituting an alkali metal with 
a different metal to ligand distance for the sodium 
ion, since the relative orientation of the two Fn-111 
motifs is partially dictated by the sodium ion at the 
domain interface. 

The discovery of a metal-binding site at the NgFn1 ,2 
domain interface raises the possibility that cation 
binding is a general feature of Fn-111 domain interfaces 
and might be necessary for the functional stabilization 
of long fi laments of Fn-111 domains, such as the five 
Fn-111 repeats of neu rogl ian. Alternatively, the NgFn1 ,2 
pair may be the only one stabilized by a metal-binding 
site at its interface, a hypothesis consistent with this 
fragment's resistance to proteolysis and which may 
indicate that the first two Fn-111 repeats play a unique 
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role in contact with a receptor. The division of func­
tions in the L 1 Fn-111 domains, such that the first two 
promote neurite outgrowth and the last three cause 
adherence of small cerebellar neurons (Appel et aL, 
1993), implies distinct roles for the two sets of Fn-111 
repeats, perhaps suggesting the differential necces­
sity for an interdomain metal-binding site. Using an 
alignment of the neuroglian and L 1 primary se­
quences (Bieber et aL, 1989), we find that three of the 
four metal ligand residues are conserved (including 
both of the side chain ligands), suggesting that L 1 also 
contains a metal-binding site at the interface between 
its first and second Fn-111 repeats. The ligand residues 
are not conserved in the comparable positions at the 
interfaces between the other domains of neuroglian 
or L 1. Discovery of the metal ion in the NgFn1,2 struc­
ture suggests a series of experiments to probe the 
significance of metals in the function of neuroglian 
and other cell adhesion molecules. For example, site­
directed mutagenesis to change Ser-679 and Asn-743 
of neuroglian and the comparable residues of L 1 
should eliminate the site, and the effects of these re­
placements could be explored in terms of the protein 
structure and function, specifically in the ability of 
these domains to promote neurite outgrowth. 

Several lines of evidence suggest that the relative 
orientations of tandem Fn-111 repeats are important 
for their function in ECM proteins and cell adhesion 
molecules. For example, tandem presentation of the 
two Fn-111 motifs from N-CAM promotes neurite out­
growth and cell spreading more effectively than either 
Fn-111 domain when presented alone (Frei et aL, 1992). 
Also, the binding of the immunoglobulin superfamily 
member contactin to the Fn-111 domains of tenascin 
is disrupted by the addition of three extra Fn-111 motifs 
that exist in an alternatively spliced isoform (Zisch et 
al., 1992). Thus, interactions of receptors with Fn-111 
motifs are not likely to be confined to a sing le Fn-111 
domain, and interactions with adjacent domains can 
be partially responsible for the ligand specificity of 
receptors that recognize Fn-111 repeats. In other exper­
iments, a proteolytic fragment consisting of Fn-111 re­
peats 8 through 10 of fibronectin was far more effec­
tive at promoting adhesion than the FnFn10 domain 
alone (Nagai et al., 1991). For ECM proteins, it is be­
coming increasingly clear that neither the RGD se­
quence alone, nor the domain that contains it, can 
account for the full cell adhesion properties of ECM 
proteins containing Fn-111 motifs (Yamada, 1991). 
Thus, contact with receptors must involve additional 
sites, probably on domains adjacent to the RGD­
containing domain. 

Recently, two distinct regions in the eighth and 
ninth Fn-111 modules were mapped as synergistic sites 
that contribute to adhesion properties together with 
the RGD loop of FnFn10 (Aota et aL, 1991; Nagai et 
aL, 1991). Based on the nuclear magnetic resonance 
structure of FnFn10, the synergistic site on the ninth 
repeat was suggested to include the C to C loop (Main 
et aL, 1992). In the NgFn1,2 structure, the C to C loop 
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of NgFn1 is -20 A from the F to G loop of NgFn2. 
The two loops do not interact directly, but both are 
on the same face of the molecule and could conceiv­
ably be contacted simultaneously. A protein con­
tacting these loops would also be predicted to interact 
with the B to C loop and the beginning of strand C 
of the second domain, making this region a potential 
target for site-directed mutagenesis to define the inte­
grin contact area further. 

The orientation between the two neuroglian Fn-111 
domains is nearly an exact 2-fold screw axis, which 
was predicted to relate successive Fn-111 repeats in 
tenascin (Leahy et al., 1992). The actual relationship 
is a 175° rotation followed by a 37.7 A translation along 
the rotation axis, which is approximately parallel to 
the longest dimension of the fragment. Knowing the 
rotation and translation that relate the two domains 
in NgFn1,2 allows us to model all five neuroglian Fn-111 
repeats through the placement of additional domains 
using the same mathematical operation. The gener­
ated five Fn-111 repeat structure is approximately a 
straight rod, a consequence of the near dyad rotation 
axis and the translation operation being parallel to 
the longest dimension of the fragment. The model 
generated in Figure 7 predicts that the Fn-111 repeat 
portion of neuroglian is long ( -175 Al and narrow 
(width, 20-30 A). Thus far, Fn-111 modules in cell adhe­
sion molecules have been found C-terminal to varying 
numbers of immunoglobulin-related repeats. Infor­
mation from structural studies of CD4 (Ryu et al., 1990; 
Wang et al., 1990; Brady et al., 1993) and C02 Uones 
et al., 1992), which respectively consist of four and two 
tandem immunoglobulin-like repeats, can be used to 
estimate the approximate dimensions of two tandem 
immunoglobulin-like repeats as 60-65 A long and 25-
35 A wide. Combining this information with the model 
of tandem Fn-111 modules presented here predicts that 
the whole neuroglian molecule (and also its verte­
brate homolog L 1), with six immunoglobulin-related 
and five Fn-111 domains, could extend up to 370 A from 
the cell, assuming no significant bends or kinks be­
tween successive domains. Varying the number of 
immunoglobulin-related repeats and Fn-111 modules 
would cause cell adhesion molecules to either gain 
or lose length. For example, Drosophila fasciclin II 
(Harrelson and Goodman, 1988) and its vertebrate ho­
molog N-CAM each have five immunoglobulin-like 
repeats and two Fn-111 modules, with a predicted maxi­
mum length of -230 A from the cell surface. Other 
cell surface molecules contain even greater numbers 
of tandem Fn-111 repeats, such as a human receptor 
protein tyrosine phosphatase, whose extracellular re­
gion consists of 16 repeats (Krueger et al., 1990). In 
addition to or perhaps alternative to mediating spe­
cific interactions with receptors, some of the Fn-111 
motifs in molecules containing many domains in se­
ries may serve as spacer regions to increase the length 
of the molecule and the distance of functional regions 
from the cell surface. 

Experimental Procedures 

Expression 
To generate a plasmid for the expression of a soluble form of 
the entire neuroglian extracellular region, a 3375 bp Sacii-Avall 
eDNA fragment encoding amino acids 1-1121 (Bieber et al., 1989) 
was ligated into the Kpnl site of the Drosophila expression vector 
pRmHa-3 (Bunch et al., 1988) using Kpni-Sacll (GGTACCA­
ATTCCGCGG) and Avaii-Kpnl (GGACCATGAGCGTGGTACC) 
linkers. The Avaii-Kpnl linker adds a termination codon in the 
open reading frame, and the resulting plasmid directs the secre­
tion of a 160 kd neuroglian fragment that contains most of the 
extracellular domain of the molecule, terminating with the pro­
line at amino acid residue 1121. 

Th1s neuroglian secretion plasmid was used to create a second 
plasmid for secretion of the Fn-111 repeats. A 1580 bp Mlui-Kpnl 
fragment, containing the Fn-111 repeats, was excised from the 
secretion vector and joined to a 118 bp Kpni-Hinfl fragment 
containing the neuroglian leader peptide, using a Hinfi-Miul 
linker (AGAATCGCGCGGACG). The resulting plasmid directs 
the secretion of a neuroglian fragment that contains the five 
Fn-111 repeats and corresponds to amino acids 1-31, 597-1121 
(Bieber et al., 1989). 

The neuroglian secretion vectors were introduced in Drosoph­
ila 52 cells (Schneider, 1972) by DNA-calcium phosphate copreci­
pitation (Wigler et al., 1979). The transformation and selection 
procedures were essentially as described by Snow et al. (1989) 
using the plasmid pPC4 Uokerst et al. , 1989) to confer a-amanitin 
resistance as a selectable marker. Populations of transformed 
cells were cloned in soft agar (Cherbas and Cherbas, 1989). Neu­
roglian secretion from individual cloned lines was induced by 
addition of cupric sulfate to 0.7 mM, and the lines were tested 
for high levels of neuroglian secretion by Western blot analyses 
of culture medium aliquots. Cell lines secreting the entire extra­
cellular domain of neuroglian yielded up to 4 mg of neuroglian 
protein per liter of culture medium. 

Purification 
The whole neuroglian extracellular protein and the secreted five 
Fn-111 repeat protein were purified from cell growth medium by 
immunoaffinity chromatography using the monoclonal anti­
body 1B7 (Bieber et al., 1989). Eluted protein was further concen­
trated by vacuum dialysis (Schleicher & Schuell, Inc.) and dia­
lyzed into 100 mM Tris-HCI (pH 8.0), 100 mM NaCI, 2 mM EDTA. 
Protein concentrations were determined using a BCA assay 
(Pierce Biochemicals). 

Proteolysis to Generate Fragment 
Chymotrypsin-Na-p-tosyl-t-lysine or trypsin-N-tosyl-t-phenylal­
anine chloromethyl (Worthington Biochemicals) was added to 
the five Fn-111 repeat protein (final protease-protein mass ratio 
of 1:50) in 100 mM Tris-HCI (pH 8.0), SO mM NaCI, 22 mM CaCI,. 
The mixture was incubated at 37°C for 1 hr, and the digestion was 
stopped by adding phenylmethanesulfonyl fluoride to a final 
concentration of 1 mM. The major proteolytic fragment was puri­
fied by running the digest over a Hiload 26/60 Superdex 200 
Preparative Grade gel filtration column (Pharmacia), and frac­
tions were analyzed by 15% 50S-polyacrylamide gel electropho­
resis. Fractions containing the fragment (apparent molecular 
mass, 37.5 kd) were concentrated with a Centricon 10 micro­
concentrator (Am icon) to a final concentration of 5 mg/ml in 10 
mM Tris-HCI (pH 8.0), 0.05% NaN,. 

N-Terminal Sequencing and Estimation of Fragment 
Molecular Weight 
The purified chymotrypsin and trypsin fragments of the neuro­
glian Fn-111 repeats were analyzed by automated Edman degrada­
tion using an Applied Biosystems Model 477A protein sequencer. 
The chymotrypsin fragment was deglycosylated with PNGase F 
(Boehringer Mannheim) according to the manufacturer's instruc­
tions or with TFMS as described (Edge et al., 1981). Mass spectrom­
etry was performed on a Finnigan Lasermat mass spectrometer. 
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Crystallization and Preparation of Derivative 
Crystallozation conditions were initially obtained using a factorial 
trial screen Oancarik and Kim, 1991). Crystals were grown by the 
hanging drop vapor diffusoon method (McPherson, 1976) over 
a reservoir of 1.6 M (NH,),SO,, 150 mM Li2SO,, 100 mM HEPES 
(pH 7.5). The space group of the crystals was identified as F432 
(a = b = c = 241.8 A) by screened precession photography. Based 
on average volume to mass ratios of proteon crystals (Matthews, 
1968) and assuming a molecular weight of 26 kd for the fragment , 
the asymmetric unit of the crystal is estimated to contain one 
fragment and 78% solvent. Crystals were harvested and stored 
in 100 mM HEPES (pH 7.5), 45% saturated Li2SO,, as no heavy 
atom compounds were observed to bind to the crystals in an 
(NH,),SO, harvest buffer (assayed by comparison of screened 
precession photographs of potential derivatives to native preces­
sion photographs). The derivative crystal was soaked overnight 
in Li,SO, harvest buffer including 10 mM ethylmercuroc phos­
phate. 

Cryopreservation of Crystals 
Natove and derivative crystals were transferred to Li2SO, harvest 
buffer oncluding 24% glycerol as a cryoprotectant. A single crystal 
was mounted in a thin film of cryopreservation buffer, supported 
by a 1 mm diameter glass loop (Teng, 1990), and quickly cooled 
to -165°C in a nitrogen gas stream using a Siemens LT-2A cryo­
stat. Frozen crystals were screened for mosaic spread and diffrac­
tion limit on a Siemens proportional multiwire area detector 
mounted on a Siemens rotating anode (200 ~m focal cup; 50 kV, 
90 mA). Reflections were observed from native crystals to -2.7 A 
resolution. Acceptable crystals were transported in a liquid nitro­
gen dewar to CHESS for further data collectoon. 

Collection of Diffraction Data 
Data were collected from cryopreserved crystals at -185°C at 
the CHESS F1 beam line (A. = 0.91 A) using an oscillation camera 
and low temperature device. Diffraction data were recorded on 
Fuji HR-111 image plates and digitized with a BAS 2000 Fuji scan­
ner. Native data (2.0° oscillations) and derivative data (3.0° oscil­
latoons) were each collected from a single crystal, with typocal 
exposure time per image of 90-120 s. The relatively I on$ exposure 
times allowed the co llection of native data to -1.8 A and were 
not detnmental to the crystals because of the vortual el imination 
of observed radiation decay at these temperatures (Hope, 1990). 
This represents an extension of nearly 1 A in resolution over the 
data collectable from the same frozen crystal using the lower 
flux of X-rays available from a rotating anode. 

Data Processing and Reduction 
The orientation of the randomly aligned crystal for each data 
set was determined using the autoindexing routine from the 
program REFIX (Kabsch, 1988). The orientation was refined, and 
the raw data were indexed and integrated with the program 
DENZO, wrotten by Z. Otwinowski. Profile fit intensities were 
scaled and merged into unique reflections with the ROTAVATA 
and AGROVATA programs from the CCP4 package (The SERC 
Collaborative Computing Project No.4. A Suote of Programs for 
Protein Crystallography distributed from Dares bury Laboratory, 
Warrington, WA4 4AD, England [1979)) (Table 1). 

Initial Phase Determination 
The structure was solved using the isomorphous replacement 
method with a single heavy atom derivative (single isomorphous 
replacement). Difference Patterson syntheses were calcu lated 
in space group Pm. Two heavy atom sites were located using a 
general Patterson search procedure (written by B. Hsu). Differ­
ence Fourier syntheses revealed the presence of a third lower 
occupancy si te. Phases were calculated including anomalous 
scattering information (SIRAS phases) in the standard way and 
refoned using the program MLPHARE in the CCP4 package. De­
spite the low figure of merit and phasing power (Table 2), an 
initial map calculated at 2.6 A showed continuous density and 
a clear boundary between protein and solvent. The phases were 

improved using the solvent-flattening procedure (Wang, 1985) 
implemented in reciprocal space on the CCP4 package (Leslie, 
1987). 

Electron Density Interpretation, Refinement, 
and Structure Analysis 
Electron density fitting was performed using the program TOM 
on IRIS 4D series work stations (Silicon Graphics Incorporated). 
The program ABONES Uones and Thirup, 1986) was used to pro­
duce a skeleton of the electron density, which clearly showed 
the positions of two domains that contained the expected Fn-111 
topology. The carbon-a coordinates of the TnFn3 structure 
(Leahy et al., 1992) were placed in the electon density using the 
skeleton, and these coordinates were used as a rough guide 
during building. The initial model included all main chain resi­
dues from lle-610 (theN-terminus of the chymotrypsin fragment) 
to Arg.g14 (numbered according to Bieber et al., 1989). 

All crystallographic refinement, interdomain contact, and sol­
vent accessibility (probe radius , 1.4 A) calculations were done 
using the program X-PLOR (Brunger, 1990). No standard devia­
tion cutoff was applied to the data, and a randomly selected 
10% of native structure factor amplitudes were excluded from 
automated refinement and used to compute a "free" R factor 
(R.,~I (Brunger, 1992) throughout refinement. A conventional 
crystallographic R factor (R..,..,) was computed for the remaining 
reflections that were included in the refinement. 

The initial model was refined by conjugate gradient minimiza­
tion using data between 5 and 3 A, followed by additional minimi­
zation using data to 2.7 A. Several more cycles of manual rebuild­
ing, conjugate gradient minimization, and restrained individual 
B factor refinement yielded a model (R.,.,. E 30.4%; R...,,. = 25.6%1 
for data between 5 and 2.5 A. Solvent molecules were then placed 
in peaks that were at least 4 times the rms deviation (om•p) in 
(Fob, - F"1<),<1>"" difference electron density maps. Water mole­
cules were only placed in positions where they could form hydro­
gen bonds and where it was unlikely that the density corres­
ponded to an alternative side chain position . At 5-2.3 A (R.,.,. = 

27.7%; R...,., = 23.2%), a sulfate molecule was identified at His-734. 
At 5-2.1 A (R1,.,. = 26.0%; R...,., = 22.4%), strong spherical density 
was located within -2.2 A of five potential oxygen ligands and 
identified as a metal ion because its coordination geometry and 
ligand distances differed substantially from those expected for 
ordered water molecules. To obtain unbiased metal to ligand 
distances, the metal ion was assigned a charge of zero, and van 
der Waals interactions were minimized by reducing the Len­
nard-Janes parameters of the ion to near zero. Upon setting the 
B factor of the ion to the average B factor of the ligand atoms, 
the occupancy of the metal was refoned assuming it was either 
calcium, magnesium, or sodium. Refinement of either sodium or 
magnesium yielded an occupancy & 0.77, and the coordination 
geometry and ligand distances were compatible with either of 
these metals. Further minimization and manual intervention re­
sulted in the current model (5-2.0 A; R.,.,. = 23.5%; R...,., = 20.2%), 
which contains residues 610-814, one sodium ion, three N-acetyl­
glucosamine residues, one sulfate molecule, and 237 ordered 
water molecules (Table 3). The model rms deviations from ideal 
geometry are O.Q15 A for bond lengths and 1.9° for angles. The 
correctness of the structure was verified by a number of evalua­
tive functions, including calculation of a real-space R factor on 
a per residue basis Uones et al., 1991), the use of an unbiased 
R factor during refinement (R1,.,.; Brunger, 1992), and comparison 
of the main and side chain conformations in the model to a data 
base of peptide fragments from well-refined structures Uones 
et al., 1991). 

To characterize the metal-binding site further, data were col­
lected from crystals soaked in Na2EDTA, CaCI,, or NaCI overnight 
at 22°C. The CaCI, soak was preceded by an overnight soak in 
Na2EDTA. The Na2EDTA and CaCI, soak solutions consisted of 
100 mM HE PES (pH 7.5), 45% saturated Li,SO,, and either 20 mM 
Na,EDTA or 10 mM CaCI2• The NaCI soak solution consisted of 
1.88 M (NH,),SO,, 100 mM HEPES/NH,OH pH 7.6, 10 mM NaCI. 
After soaking, crystals were transferred to a buffer composed 
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of the final soak solution with 25% glycerol as a cryoprotectant. 
The crystals were flash cooled as described earlier, and data 
were collected on an R-AXIS IIC X-ray detector mounted on a 
rotating anode. 

Difference Fourier analyses revealed a positive electron den­
sity peak at the location of the metal ion for all three soak condi­
tions (Na,EDTA, 4.8om,.; NaCI, 4.4om,0 ; CaCI1, 2.7om,0}, demon­
strati ng that the occupancy oft he metal ion increased. Assuming 
it w~s a sodium ion, the metal occupancy was refined using the 
2.0 A native coordinates against the structure factors from the 
three soak data sets, resulting in occupancies of 1.00 (Na1EDTA 
data set; 10-2.65 Al, 1.04 (NaCI data set; 10- 2.8 Al. and 0.95 (CaCI1 

data set; 10-2.65 Al. The increase in ion occupancy produced by 
soaking crystals in Na,EDTA suggests that the ion is sodium 
rather than magnesium. The NaCI soak also brought the metal 
ion to full occupancy. The low sodium occupancy observed in 
the native data set presumably resulted from an exchange of 
lithium for sodium driven by the high concentration of li1SO, 
in the oroginal harvest buffer. The increased occupancy pro­
duced by the CaCI1 soak was likely the result of soaking the 
crystals in Na,EDTA prior to the CaCI, soak, since the occupancy 
increase was too low to have been produced by calcium. 

Acknowledgments 

We thank Michael Blum for help with freezing crystals; Michael 
Blum and the staff at CHESS for assistance with data collection; 
Alfonso Mondrag6n for programs and advice during data pro­
cessing; Barbara Hsu for her Patterson search program; Art Chir­
ino and Bill Weis for advice during refinement; Dan Leahy, 
Wayne Hendrickson, and Harold Erickson for the TnFn3 coordi­
nates and many helpful discussions; Abraham De Vos for the 
human growth hormone receptor coordinates; Bill Lane and the 
Harvard Microchemical Facility for mass spec and other analyses; 
the Caltech Microchemical Facility for N-terminal sequence anal­
yses; Peer Bork for aligned sequences of Fn-111 repeats; Roland 
Strong for making Figure 3B; Douglas Rees for helpful discus­
sions about metal sites; and our colleagues for critical reading 
of the manuscript. The program X-PLOR was run on a CRAY-YMP 
at the San Diego Supercomputer Center, supported by the Na­
tional Science Foundation. This work was supported by the How­
ard Hughes Medical Institute (P. ). B.}, a Howard Hughes Medical 
Institute predoctoral fellowship (A. H. H.), the National Science 
Foundation (IBN-9120981 to A. j. B.}, the American Cancer Society 
(IRG IN-17 to A. j. B.}, and the Purdue Research Foundation 
(A. j . B.}. 

Coordinates will be deposited with the Brookhaven Protein 
Data Bank. Until processing is complete, they will be available 
by e-mail (ahhacitray.caltech.edu}. 

The costs of publication of this article were defrayed in part 
by the payment of page charges. This article must therefore be 
hereby marked "advertisement" in accordance with 18 USC Sec­
tion 1734 solely to Indicate this fact. 

Received November 4, 1994; revised january 21 , 1994. 

References 

Adzhube1, A. A ., and Sternberg, M . j . E. (1993}. Left-handed poly­
proline II helices commonly occur in globular proteins. j . Mol. 
Bioi. 229, 472-493. 

Aota, S., Nagai, T., and Yamada, K. M . (1991}. Characterization 
of regions of fibronectin besides the arginine-glycine-aspartic 
acid sequence required for adhesive function of the cell-binding 
domain using site-directed mutagenesis. ). Bioi. Chern . 266, 
15938- 15943. 

Appel, F., Holm,)., Conscience, ).-F., and Schachner, M. (1993). 
Several extracellular domains of the neural cell adhesion mole­
cule L 1 are involved in neurite outgrowth and cell body adhe­
sion. ) . Neurosci. 13, 4764-4775. 

Baron, M ., Main, A. L., Driscoll, P. C., Mardon, H. L. , Boyd, )., 
and Campbell, I. A. (1992). 'H NMR assignment and secondary 

6 3 

structure of the cell adhesion type Ill module of fibronectm . 
Biochemistry 37, 2068- 2073. 

Bazan,). F. (1990}. Structural design and molecular evolution of 
a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87, 
6934-6938. 

Bernstein, F. C., Koetzle, T. F., Williams, G. j. B., Meyer, E. F., 
Brice, M.D., Rodgers, j . R., Kennard, 0 ., Shimanouch1, T., and 
Tasumi, M. (1977}. The Protein Data Bank: a computer-based ar­
chival fi le for macromolecular structures. j. Mol. Bioi. 112, 535-
542. 

Bieber, A. j., Snow, P. M ., Hortsch, M., Patel, N. H., jacobs, j . 
R., Traquina, Z. R., Schilling, ) ., and Goodman, C. S. (1989}. Dro­
sophila neuroglian: a member of the immunoglobulin superfam­
ily with extensive homology to the vertebrate neural adhesion 
molecule L1. Cell 59, 447-460. 

Bork, P., and Doolitt le, R. F. (1992). Proposed acquisition of an 
animal protein domain by bacteria. Proc. Natl. Acad. Sci. USA 
89, 8990-8994. 

Brady, R. L., Dodson, E. )., Dodson, G. G., Lange, G., Davis, 
S. )., Williams, A. F., and Barclay, A. N. (1993). Crystal structure 
of domains 3 and 4 of rat CD4: relation to the NH1-terminal 
domains. Science 260, 979- 983. 

Brunger, A. T. (1990}. X-PLOR (Version 2.1) Manual (New Haven, 
Connecticut: Yale University). 

Brunger, A. T. (1992). FreeR value: a novel statistical quantity for 
assessing the accuracy of crystal structures. Nature 355, 472-475. 

Bunch, T. A. , Grinblat, Y., and Goldstein, L. S. B. (1988}. Character­
ization and use of the Drosophi la metallothionein promoter in 
cultured Drosophila melanogaster cells. Nucl. Acids Res. 76, 
1043-1061. 

Cherbas, L., and Cherbas, P. (1989}. Cloning tissue culture cells. 
In Drosphila: A laboratory Manual, M . Ashburner, ed. (Cold 
Spring Harbor, New York: Cold Spring Harbor Laboratory Press), 
pp. 136-137. 

DeVos, A. M ., Ultsch, M., and Kossiakoff, A. A. (1992). Human 
Growth Hormone and Extracellular Domain of Its Receptor: Crys­
tal Structure of the Complex. Science 255, 306-312. 

Doolittle, R. F. (1987). Of URFS and ORFS: A Primer on How to 
Analyze Derived Amino Acid Sequences (Mill Valley, California: 
University Science Books). 

Edge, A. S. B., Faltynek, C. R., Hof, L., Reichert, L. E., Jr., and 
Weber, P. (1981}. Deglycosylation of glycoproteins by trifluoro­
methanesulfonic acid. Anal. Biochem. 118, 131-137. 

Evans, S. V. (1993). SETOR: hardware lighted three-dimensional 
solid model representations of macromolecules. j. Mol. Graph­
ics 4, 134-138. 
Frei, T., von Bohlen und Halbach, F. , Wille, W ., and Schachner, 
M. (1992}. Different extracellular domains of the neural cell adhe­
sion molecule (N-CAM) are involved in different functions. ) . 
Cell Bioi. 118, 177- 194. 

Glusker, j. P. (1991). Structural requirements of metalliganding 
to functional groups in proteins. Adv. Prot. Chern. 42, 1- 76. 

Grenningloh, G., Bieber, A. j ., Rehm, E. )., Snow, P. M ., Traquina, 
Z. R., Hortsch, M., Patel, N. H., and Goodman, C. S. (1990}. Molec­
ular genetics of neuronal recognition in Drosophila: evolution 
and function of the immunoglobulin superfamily cell adhesion 
molecules. Cold Spring Harbor Symp. Quant. Bioi. 55, 327- 340. 

Harrelson, A. L., and Goodman, C. S. (1988}. Growth cone guid­
ance in insects: fasciclin II is a member of the immunoglobulin 
superfamily. Science 242, 700-708. 

Holmgren, A., and Branden, C.-I. (1989}. Crystal structure of chap­
erone protein PapD reveals an immunoglobulin fold. Nature 342, 
248- 251. 

Hope, H. (1990). Crystallography of biological macromolecules 
at ultra-low temperature. Annu. Rev. Biophys. Chern. 19, 107-
126. 

Hortsch, M ., and Goodman, C. S. (1991}. Cell and substrate adhe­
sion molecules in Drosophila. Annu. Rev. Cell Bioi. 7, 505-557. 



Structure of Tandem Neuroglian Fn-111 Repeats 
731 

Hynes, R. 0. (1990). Fibronectins (New York: Springer- Verlag). 

)ancarik, )., and Kim, S. H. (1991). Sparse-matrix sampling -a 
screening method for crystallization of proteins. ). Appl. Crys­
tallogr. 24, 409-411. 

Jokerst, R. S., Weeks,). R., Zehring, W. A., and Greenleaf, A. L. 
(1989). Analysis of the gene encoding the largest subunit of RNA 
polymerase II in Drosophila. Mol. Gen. Genet. 275, 266-275. 

)ones, T. A., and Thirup, S. (1986). Using known substructures 
in protein model building and crystallography. EMBO ). 5, 819-
822. 

)ones, T. A ., Zou, ) .-Y., Cowan, S. W., and Kjeldgaard, M. (1991). 
Improved methods for building protein models in electron den­
sity maps and the location of errors in these models. Acta Crys­
tallogr. A 47, 110-119. 

)ones, E. Y., Davis, S. )., Williams, A . F., Harlos, K. , and Stuart, 
D. I. (1992). Crystal structure at 2.8 A resolution of a soluble form 
of the cell adhesion molecule C02. Nature 360, 232-239. 

Kabsch, W. (1988). Automatic indexing of rotation diffraction pat­
terns. ). Appl. Crystallogr. 27, 67-71. 

Krueger, N . X., Streuli, M., and Saito, H. (1990). Structural diver­
sity and evolution of human receptor-like protein tyrosine phos­
phatases. EMBO ). 9, 3241-3252. 

Kwong, P. D., Ryu, S. E., Hendrickson, W. A., and Axel, R. (1990). 
Molecular characteristics of recombinant human CD4 as de­
duced from polymorphic crystals. Proc. Nat I. Acad. Sci. USA 87, 
6423-6427. 

Leahy, D.)., Hendrickson, W. A., Aukhil, 1., and Erickson, H. P. 
(1992). Stlucture of a fibronectin type Ill domain from tenascin 
phased by MAO analysis of the selenomethionyl protein. Science 
258, 987-991. 

Leslie, A. G. W. (1987). A reciprocal space method for calculating 
a molecular envelope using the algorithm of Wang, B. C. Acta 
Crystallogr. A 43, 134-136. 

Main, A. L., Harvey, T. S., Baron, M., Boyd, )., and Campbell, I. 
A. (1992). The three-dimensional structure of the tenth type Ill 
module of fibronec1in: an insight into RGD-mediated interac­
tions. Cell 77, 671-678. 

Matthews, B. W . (1968). Solvent content of protein crystals. ). 
Mol. Bioi. 33, 491- 497. 

McPherson, A. (1976). The growth and preliminary investigation 
of protein and nucleic acid crystals for X-ray diffraction analysis. 
In Methods of Biochemical Analysis, D. Glick, ed. (New York: 
John Wiley & Sons, Inc.), pp. 249-345. 

Nagai, T., Yamakawa, N., Acta, S., Yamada, S. S., Akiyama, S. K., 
Olden, K., and Yamada, K. M . (1991). Monoclonal antibody char­
acterization of two distant sites requ ired for function of the cen­
tral cell-binding domain of fibronectin in cell adhesion, cell mi­
gration, and matrix assembly.). Cell Bioi. 114, 1295-1305. 

Patthy, L. (1990). Homology of a domain of the growth hormone/ 
prolactin receptor family with type Ill modules of fibronectin. 
Cell 67, 13-14. 

Pierschbacher, M . 0., and Ruoslahti , E. (1984). Cell attachment 
activity of fibronectin can be duplicated by small synthetic frag­
ments of the molecule. Nature 309, 30-33. 

Richardson,) . S., Getzoff, E. D., and Richardson, D. G. (1978). The 
~bulge: a common small unit of non repetitive protein structure. 
Proc. Natl. Acad. Sci. USA 75, 2574-2578. 

Ryu, S.-E., Kwong, P. 0., Truneh, A ., Porter, T. G., Arthos, ). , 
Rosenberg, M., Oai, X., Xuong, N.-h., Axel, R., Sweet, R. W ., and 
Hendrickson, W. A. (1990). Crystal st ructure of an HIV-binding 
recombinant fragment of human C04. Nature 348, 419- 426. 

Schneider, I. (1972). Cell lines derived from the late embryonic 
stages of Drosophila melanogaster. ) . Embryo!. Exp. Morphol. 
27, 353-365. 

Snow, P. M., Bieber, A . )., and Goodman, C. 5. (1989). Fasciclin 
Ill: a novel hemophilic adhesion molecule in Drosophila. Cell 
59, 313-323. 

Teng, T.-Y. (1990). Mounting of crystals for macromolecular crys-

64 

tallography in a free-standing thin film. ). Appl. Crystallogr. 23 , 
387-391 . 

Toney, M. 0., Hohenester, E., Cowan, S. W., and )ansonius, 
). N. (1993). Oialkylglycine decarboxylase structure: bifunctional 
active site and alkali metal sites. Science 267, 756-759. 

Wang, B.-C. (1985). Resolution of phase ambiguity in macromo­
lecular crystallography. Meth. Enzymol. 90, 90-112. 

Wang, )., Yan, Y., Garrett, T. P. )., Liu, ). , Rodgers, D. W., Garlick, 
R. L., Tarr, G. E., Husain, Y., Reinherz, E. L., and Harrison, S.C. 
(1990). Atomic structure of a fragment of human CD4 containing 
two immunoglobulin-like domains. Nature 348, 411-419. 

Wigler, M., Pellicer, A., Silverstein, S., Avel, R., Urlaub, G., and 
Chasin, L. (1979). DNA-mediated transfer of the adenine phos­
phoribosyltransferase locus into mammalian cells. Proc. Natl. 
Acad. Sci. USA 76, 1373-1376. 

Williams, A. F., and Barclay, A. N . (1988). The immunoglobulin 
superfamily-domains for cell surface recognition. Annu. Rev. 
lmmunol. 6, 381-405. 

Yamada, K. M. (1991). Adhesive recognition sequences. ). Bioi. 
Chern. 266, 12809-12812. 

Yamashita, M . M., Wesson, L., Eisenman, G., and Eisenberg, D . 
(1990). Where metal ions bind in proteins. Proc. Natl. Acad. Sci. 
USA 87, 5648-5652. 

Yoshihara, Y. , Oka, S., Ikeda,)., and Mori, K. (1991). Immunoglob­
ulin superfamily molecules in the nervous system. Neurosci. Res. 
10, 83-105. 

Zisch, A. H., O'Aiessandri, L., Ranscht, B., Falchetto, R., Win­
terhalter, K. H., and Vaughan, L. (1992). Neuronal cell adhesion 
molecule contactin/F11 binds to tenascin via its immunoglobu­
lin-like domains.). Cell Bioi. 779, 203-213. 



65 

Chapter 3 

Refinement of the Structure: A Detailed Description 
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Introduction 

This chapter describes the refinement of the crystallographic structure of the first two 

type III fibronectin repeats from Drosophila neuroglian (NgFn 1 ,2). The goal of 

crystallographic refinement is to produce a structural model consistent with the observed 

diffraction data and standard stereochemical constraints. The overall refinement process is 

iterative and the production of the final model generally requires several refinement "cycles" 

or "stages," each of which can be further divided into three distinct steps: model building, 

automated refinement and evaluation of the refined model. 

Model Building 

Crystallographic refinement starts as soon as an initial model of the structure has been 

completed. Unfortunately, the experimentally derived phases for a structure are often 

inaccurate and to relatively low resolution (3.5-3.0A), resulting in electron density maps 

that are ambiguous and difficult to trace. Thus, the models used during the early stages of 

refinement are commonly incomplete and have poor geometry. 

After completion of the first cycle of refinement, the refined model is modified and 

hopefully improved using the initial maps as well as difference maps as a guide. During 

the first few cycles of refinement, the new maps are generally calculated using the 

experimental phases or some combination of experimental and calculated phases (<l>caJc, 

phases calculated from the model). The most commonly used difference maps are 

calculated with [2Fo-Fc] or [Fo-Fc] Fourier coefficients, where Fo and Fe respectively 

represent observed structure factors and structure factors calculated from the model. Errors 

in the structure are highlighted in [Fo-Fc] maps, with positive electron density peaks 

corresponding to missing atoms and negative density corresponding to included atoms that 

are incorrectly placed. The interpretation of these maps is sometimes difficult because they 
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are often quite noisy, and correctly placed atoms with artificially low B-values will generate 

negative difference density. Maps calculated with [2Fo-Fc] Fourier coefficients are 

equivalent to the summation of maps calculated with Fo and [Fo-Fc] coefficients. These 

maps also highlight errors in the model but do so in the context of the rest of the molecule's 

electron density. Although the maps generated during refinement are generally of much 

better quality than the initial maps, they are biased by the refinement process and sometimes 

contain errors. If the experimental phases were generated using isomorphous replacement 

or MAD phasing, the initial maps are unbiased and can periodically be used to check the 

validity of the refined model. 

As the refinement progresses, the phases calculated from the refined model become the 

best estimate of the true phases. Eventually, the new maps are generated using only 

calculated phases. This switch from experimental to calculated phases enables phase 

extension beyond the resolution achieved with the derivative data. 

Automated Refinement 

Differences between observed and calculated structure factors as well as errors in model 

stereochemistry are minimized using some form of automated refinement. This process is 

limited during the early stages of a structure refinement by the low resolution of the initial 

phase information. Each atom in a model is described by at least five parameters: the x, y, 

z coordinates of the atom, an isotropic temperature factor B cA2), which describes the 

thermal motion of the atom, and Q, the occupancy of the atomic position. The first four of 

these parameters are commonly refined for all atoms in a model, leading to a minimization 

calculation with several thousand parameters. At the resolutions commonly used during the 

early stages of the refinement process, the low number of possible data points (structure 

factors) frequently results in a minimization problem that is only slightly overdetermined or 

sometimes even underdetermined. This initial paucity of observed data is partially 
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compensated for by including stereochemical restraints m the refinement process. 

Eventually, the refined phases are extended, allowing the use of additional (higher 

resolution) native data. 

X-PLOR is a program commonly used for macromolecular refinement and molecular 

dynamics 1. The program refines an atomic model by minimizing the value of EToT AL· an 

energy function that describes the overall energy for the input structure. ETOTAL is actually 

the sum of two different "classes" of calculated energy: EEMPIRICAL. which is derived 

from model geometry and crystal packing, and EEFFECTIYE· which is commonly related to 

the correlation between calculated and observed data. 

ETOT AL = EEMPIRICAL + EEFFECTIVE (3-1) 

EEMPIRICAL includes several independent energy terms that are functions of model 

geometry and nonbonded interactions. The value of each term is calculated using force 

constants empirically derived from small molecule crystal structures and spectroscopy. 

EEMPIRICAL = EBOND + EANGLE + EmHE + EIMPR (3-2) 

+ EHBON + Evow + EELEC + Epvow 

The terms EBOND. EANGLE. EmHE and EIMPR describe the energy of atomic 

interactions that involve covalent bonds. EBoND and EANGLE are the bond and bond angle 

energy terms while EmHE and EIMPR involve dihedral angles, chirality and planarity. 

EHBON. Evow and EELEC describe noncovalent (nonbonded) energies that are a result of 

intramolecular interactions or intermolecular interactions between molecules related by non­

crystallographic symmetry. Evow and EELEC are terms for van der Waals and electrostatic 

energies, respectively. EHBON represents a hydrogen bond energy term that is only used 
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with certain force fields. van der Waals and electrostatic interactions resulting from the 

packing of symmetry related molecules are described by Epvow + EPELE· 

EEFFECTIVE is an "energy" target function composed of several terms, only a few of 

which are used during any given type (crystallographic, NMR) or cycle of refinement. 

Some terms are used to restrain or constrain changes in model coordinates or angles and 

others are used to measure the correlation between a model and the observed data. Ex­

RAy, a component of EEFFECTIVE, is the crystallographic target function, which measures 

how well the model explains the observed crystallographic data. X-PLOR provides a 

choice of several possible target functions for the Ex-RAy term, only one of which can be 

used during a given minimization job. The most commonly used (default) target for Ex­

RAy is based on the crystallographic residual and takes the form 

where h represents (h,k,l), the Miller indices of the selected reflections; W is an overall 

weight factor for the Ex-RAy term; Wh is an individual weight for each reflection; Fo and 

Fe are observed and calculated structure factors; k is a scale factor; and EPx-ray is a term 

that can be used to add phase restraints to the refinement. 

Two different approaches can be used to minimize ETOTAL within X-PLOR: conjugate 

gradient minimization using the Powell algorithm2 or a molecular dynamics based 

simulated annealing. Conjugate gradient minimization will effectively minimize the energy 

target function. However, since this algorithm only moves down a gradient, it is 

susceptible to getting stuck in local minima; a shortcoming which sometimes makes this 

algorithm unsuitable for problems with multiple local minima, such as crystallographic 

refinement. 
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In simulated annealing, the model is heated to a defined "temperature" by assigning 

initial velocities, from a Maxwellian distribution, to the atoms of the structure. The atoms 

of the model are then allowed to move freely within the constraints provided by the force 

field , a process commonly referred to as molecular dynamics. If the kinetic energy of the 

system is high enough, the structure can escape local minima by temporarily moving up an 

energy gradient. At regular intervals, the model is "cooled" by slightly reducing the energy 

of the system, a process which results in a dampening of atomic motion. The molecular 

dynamics simulations are stopped when the overall kinetic energy of the system has 

reached a level at which it is unlikely the model will escape the nearest energy minimum. 

At this point, several cycles of Powell-method conjugant gradient minimization are used to 

bring the model to the nearest energy minimum and to regularize the stereochemistry. 

The refinement of an overall B-factor for the structure and the refinement of atomic 

occupancies are both carried out using conjugate gradient minimization with Ex-RAy as the 

target function. Individual isotropic atomic B-factors are also minimized by conjugate 

gradient minimization. In this case the target function is 

where Ex-RAy is the crystallographic target function, Ws is a weight factor (included 

within the termER in the X-PLOR manual) and ER is a restraining term used to limit the 

deviation in atomic B-values between atoms joined by covalent bonds and bond angles. If 

Ws is not defined by the user, a value is calculated by X-PLOR (automatic weighting). 

Unrestrained atomic B refinement can be carried out by setting the value of Ws to zero. 

Structural Analysis 

At the end of each cycle of refinement, the model' s deviation from ideal stereochemistry 

and the observed data needs to be evaluated. This is an important step in each cycle that 
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enables one to assess the effectiveness of the refinement process as well as the reliability of 

the refined structure. The information obtained by monitoring changes in model reliability 

as a function of refinement cycle is used to choose the force fields and the method of 

minimization, to modify weighting terms, and to decide which terms are to be included in 

EEFFECTIVE, resulting in an overall 'tuning' of the refinement process. An analysis of 

model stereochemistry on a per residue basis is also very useful because it highlights 

energetically unfavorable regions of the model that are probably incorrect and need to be 

fixed. 

The two most commonly quoted indicators of overall structural reliability are the 

resolution to which the structure was refined and the crystallographic residual (R-factor). 

The R-factor, which is sometimes quoted as a percentage, is calculated using the model and 

the observed diffraction data and is defined as 

R = Lh IFo - Fci/LhiFol (3-5) 

where h represents (h,k,l), the Miller indices of the selected reflections. While the R­

factor does give a rough estimate of overall model quality it is generally insensitive to small 

regions of incorrect structure if the protein is large. The R-factor has the additional 

disadvantage of being closely related to the crystallographic target function commonly used 

during energy minimization. This raises the possibility that the R-factor, which is 

supposed to reflect the information content of the model, can be artificially lowered or 

"biased" by the energy minimization algorithm. An unbiased or "free" R-factor (Rfree)3 can 

be calculated using a randomly selected subset (typically 5-10%) of the observed data that 

is excluded from minimization calculations during the entire refinement process. The 

conventional crystallographic R-factor (Rcryst) is calculated with the data used in the 

refinement process. The average positional error in model coordinates, another indicator of 
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model reliability, can be estimated with a Luzzati plot4, which is constructed by plotting the 

R-factor as a function of resolution. 

It is also common to evaluate the reliability of a refined model through a detailed 

examination of model geometry. Some characteristics, such as the model's root mean 

square (r.m.s.) deviation from ideal bond distances and angles, are commonly quoted to 

show that a model is stereochemically sound. Another barometer of stereochemical 

reasonability is the Ramachandran plot. This plot is a graphical representation of the 

polypeptide backbone dihedral angles, phi and psi. The phi, psi combinations that can be 

adopted by non-glycine amino acids are highly constrained by unfavorable steric collisions. 

Residues with disallowed phi, psi combinations are in a an energetically unfavorable 

conformation and are probably incotTectly placed in the model. Thus, a Ramachandran plot 

of the entire protein is a graphical representation of the overall quality of the structure. 

These plots are also useful during the building of a model because they show which 

residues or regions of the structure have unfavorable conformations. Some of the other 

stereochemical quantities that are reported on a per residue basis and used during model 

building are side chain dihedral angles, peptide bond planarity and carbon-a chirality. 

Completion of Refinement 

It can be difficult to tell when to actually stop the refinement process because the model 

will asymptotically approach the true representation of the structure. Each new set of maps 

will reveal "new" inconsistencies and errors in the current model. Thus, finishing 

refinement is essentially deciding that the remaining errors are minor and do not affect the 

interpretation of the structure. This point is usually reached when difference Fouriers do 

not reveal any large unexplained peaks and when the structure has been refined to the limits 

of the available data with a good R-factor (20% or lower) and good geometry (r.m.s. bond 

< 0.03A and r.m.s. angle < 3°). 
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Materials and Methods 

The Initial Structure 

As described in Chapter 2, the initial phases for the structure were determined to 2.6 A 

with a single isomorphous derivative and were used to calculate an initial 2.6 A map which 

was improved by solvent flattening. An electron density "skeleton" calculated from the 

initial map revealed two domains with the expected topology. The carbon-a coordinates of 

the TnFn3 (third type III fibronectin repeat from tenascin) structure 5, placed in the initial 

map using the skeleton, were used as a rough guide during the building of the initial model. 

The initial model included all backbone atoms from residue Ile610 (theN-terminus of the 

chymotrypsin fragment as numbered previously6 ) to Arg814 and three N­

acetylglucosamine (NAG) residues. All atoms were given a B-value of 20 A2. 

Refinement 

All crystallographic refinement of model parameters (atomic coordinates, temperature 

factors and occupancies) was performed with the program X-PLOR 1. All molecular 

dynamics and energy minimization calculations were carried out using the protein force 

field parhcsdx. pro 7, the carbohydrate force field param3.cho8 and the param 19 .sol9 force 

field for ordered water molecules. 

Structure Analysis 

The programs X-PLOR 1, PROCHECK 10, and 0 11 were used to analyze the overall 

quality of the model, model stereochemistry on a per residue basis, and the real space 

correlation between the model and the observed electron density, respectively. X-PLOR 

was used to calculate Rcryst and Rrree as well as r.m.s. deviations in bond lengths and 

angles. This program was also used to analyze crystal packing and solvent accessibility. A 

detailed examination of model stereochemistry was performed with PROCHECK, which 
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compares the geometry of the model to that observed in a database of well refined 

structures. The results of the analysis, which are output numerically and graphically, are 

evaluated for the structure as a whole as well as on a per residue basis. The program 0 

was used to calculate a real-spaceR-factor on a per residue basis for backbone and side 

chain atoms. The experimental 2 .6 A solvent flattened map and refined [2Fo-Fc] maps 

were used in the calculations. 

Model Building 

Model building was carried out with the interactive graphics programs TOM and 0 11 

on IRIS 4D series workstations (Silicon Graphics Incorporated). The building of the initial 

model was described above. Most of the subsequent models were constructed using four 

maps: the experimental 2.6 A SIRAS map (phases derived with Single Isomorphous 

Replacement+ Anomalous Scattering), the 2.6 A solvent flattened SIRAS map, and the 

most recent [2Fo-Fc], <!>calc and [Fo-Fc], <!>calc difference maps. The difference maps were 

calculated with a low resolution cutoff of 10 A because including the low resolution terms 

appeared to yield cleaner maps with better connectivity. 

Results and Discussion 

The Refinement Process 

The NgFn 1,2 model can be viewed as the product of two individual refinement efforts. 

In the first cycle of the first refinement attempt, the initial model was minimized with 

simulated annealing using data from 6 to 2.1 A. High resolution data are not generally 

included during the early stages of a crystallographic refinement because they decrease the 

radius of convergence; the distance, in parameter space, the true minimum can be from the 

starting point and still be found by the minimization algorithm. In this case the high 

resolution data were included because the high quality of the intitial maps allowed a reliable 
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tracing of the polypeptide backbone and because the model was being refined by simulated 

annealing. When a high initial temperature is used, simulated annealing can move atoms 

large distances and appears to have a larger radius of convergence than other algorithms. 

The results of the first refinement cycle looked quite promising. The R-factors for the 

initial model (Rtree = 40.80, Rcryst = 40.46) were substantially reduced (Rfree = 34.88, 

Rcryst = 30.52) and the geometry of the refined model was reasonable (r.m.s. bond and 

angle deviations of 0.026 A and 2.50° respectively). 

The second and subsequent refinement cycles used conjugant gradient minimization so 

that the effort spent during the rebuilding process was not lost during molecular dynamics. 

By the beginning of the fourth refinement cycle, it was becoming difficult to tell how to 

proceed. The model had reasonable geometry (r.m.s. bond and angle deviations of 0.014 

A and 1.87°, respectively) and very few errors were evident in [Fo-Fc] difference maps. 

The placement of 62 ordered water molecules improved the R-factors (Rtree = 34.88, Rcryst 

= 30.52) but still did not reduce Rcryst below 25%, the value at which the refinement of 

incorrect structures frequently stalls 12. At this point, it was decided that the refinement was 

not proceeding as one would expect for a correct model and that the inclusion of data to 2.1 

A during the initial refinement cycle was a mistake. Refinement cycle 5 was stopped after 

15 cycles of minimization because there was little change in the R-factors . In preparation 

for the second refinement process, individual atomic B-factors were discarded and an 

overall B-factor was refined for the structure. 

The "new" refinement process began with cycle 6, in which the model from the cycle 5 

rebuilding step was refined with conjugate gradient minimization using data from 5.0 to 3.0 

A. Several more refinement cycles using conjugate gradient minimization produced the 

final model. A detailed account of the cycles from both refinement attempts is given below. 
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Refinement cycJe 1. Before minimization, the value of W (equation 3-3) that would 

weight EEMPIRICAL and Ex-RAY approximately equally (Wideal) was determined using the 

CHECK protocol distributed with X-PLOR. W was set to twice the calculated "ideal" 

value in order to increase the importance of the observed data in the minimization process 

and thereby avoid placing unnecessarily rigid constraints on atomic motion. Subsequent 

refinement cycles also used twice the ideal Ex-RAy weight. 

Simulated annealing, as implemented in X-PLOR, commonly involves three 

independent minimizations: "prepstage" (PS), simulated annealing (SA), and conjugate 

gradient minimization (CG). In the prepstage step, the carbon-a atoms of the input model 

are restrained to their initial coordinates by a harmonic energy term (part of EEFFECTIVE) 

and bad contacts are eliminated with conjugate gradient minimization. This step is often 

necessary because strain or bad contacts present in the initial model can cause the model to 

"fly-apart" when heated during simulated annealing. The post-prepstage model of 

NgFn 1,2 was minimized by simulated annealing using an initial temperature of 3000, 50 

molecular dynamics steps of 0.5 femptoseconds at each temperature, and cooling steps of 

25. The simulated annealing output was then subjected to 120 cycles of conjugate gradient 

minimization. 

The first refinement cycle decreased Rcryst by 9.9% and Rfree by 5.9% (Table 3-1), with 

the largest drop occurring during prepstage. None of the loops that were poorly defined in 

the original maps had adopted new conformations as a result of the molecular dynamics. 

However, a comparison of the refined and the input model coordinates revealed that several 

residues had moved significantly from their initial positions. Some of these new residue 

positions were obviously inconsistent with the initial electron density maps. 
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Refinement cycle 2. Powell-method conjugant gradient minimization was used to 

refine the model's atomic coordinates (positional refinement) during this and all subsequent 

refinement cycles (Table 3-1). The rebuilt model did not include Ile610, Arg814 or 

residues Pro758-Ala760 because their electron density was weak or ambiguous in the 

([2Fo-Fc],q>calc) map. Positional refinement was followed by overall B refinement, which 

optimizes the overall B-value of the model by calculating a shift that is applied to all atomic 

B-values. Refinement cycle 2 resulted in an Rcryst that was higher than that of the previous 

cycle (Table 3-1). However, the value of Rrree decreased 0.73%, indicating that the model 

had actually been improved. The positive shift in Rcryst and the relatively small negative 

shift in Rrree were not very encouraging. Early in the refinement process, one generally 

expects to observe substantial drops in the R-factors due to the correction of major errors 

present in the initial model. 

Refinement cycle 3. The [2Fo-Fc], CVcalc map generated after refinement cycle 2 

was well defined and continuous except for a small stretch of weak backbone density at 

residues Pro758 and Ala759. The [Fo-Fc], CVcalc difference map was relatively clean except 

for density that apparently belonged to ordered water molecules. Since the agreement 

between the input model (refinement cycle 2 output) and the new difference maps was quite 

good, despite the relatively poor R-factors, it was difficult to locate errors in the model. 

The new model contained all residues from Ile610 to Asp813 except for Pro758 and 

Ala759. 

Positional refinement was followed by the refinement of restrained, individual atomic 

B-values because it was evident that positional refinement alone was not going to 

significantly reduce the R-factors. The initial refinement of atomic B-values commonly 

produces a significant drop in Rcryst because the additional parameters enable the model to 

better approximate reality. It was hoped that this step would significantly improve the 
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phases and thereby make it easier to locate model errors. However, the introduction of 

additional refinement parameters can also "artificially" lower Rcryst and obscure errors in 

the model. Refinement cycle 3 produced a substantial (2.11 %, Table 3-1) drop in Rfree. 

indicating that the model had been improved (Table 3-1), but Rcryst was still quite high for 

a model refined to 2.1A with good geometry and relatively clean difference maps. 

Refinement cycle 4. Once again, both difference maps ([2Fo-Fcl.<l>calc and [Fo­

Fc],<J>calc) indicated that the input model was essentially correct. Several large positive 

peaks, which appeared to be ordered water molecules, were present in the [Fo-Fc] map. 

The placement of water molecules usually produces substantial drops in Rcryst• but can lead 

to errors in the model that are difficult to detect after minimization. These errors, which 

usually involve placing water molecules in protein electron density, may produce an initial 

drop in Rcryst but result in higher final R-factors. The best way to avoid such errors is to 

place the water molecules only after the model has been refined to a reliable value of Rcryst· 

At this point in the refinement of the NgFnl,2 structure, Rcryst was still dangerously high 

but the placement of water molecules was the only correction that clearly needed to be 

made. Water molecules were placed in +4cr [Fo-Fc] difference peaks that allowed the 

formation of chemically reasonable hydrogen bonds. Minimization stalled after 25 cycles 

and was terminated. The resulting model had tight geometry (r.m.s. bond and angle 

deviations of 0.012A and 1.8° respectively) and improved R-factors (Rfree = 29.26, Rcryst 

= 26.43) but Rcryst was still above 25% and in the "danger zone" proposed by Branden 

and Jones 12. The stereochemistry of the model was examined with PROCHECK and 

found to be reasonable (Figure 3-1 ). 
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Figure 3-1 (following pages) Modified Procheck output from analysis of 
model produced by refinement cycle 4. (A) Ramachandran plot of model phi, psi 
angles. An analysis of 118 structures solved to at least 2.0 A resolution with an Rcryst of 
no greater than 20% suggests that a good quality model will have over 90% of its phi, psi 
angles in the most favored regions. The most favorable regions of phi, psi space have the 
darkest shading in the diagram. Less favorable regions have less shading. (B) Plot of chi-
1 versus chi-2. The dashed crosses represent the ideal gauche and trans regions for chi-1 
and chi-2 dihedral angles. The crosses extend to one standard deviation from the ideal 
values and points that are more than 2.5 standard deviations from the ideal are shown as 
empty squares. This plot includes 107 of the 202 residues present in the model. Fourteen 
of these residues are represented as empty squares. This program artificially inflates the 
number of residues with poor chi-1, chi-2 angles by including asparagine residues in the 
analysis. These residues do not have ideal chi-2 values at 60, 180 and 300° . (C) 
Assessment of quality of polypeptide backbone parameters. These plots present the overall 
quality of the polypeptide backbone's stereochemistry in terms of the following parameters: 
phi and psi dihedral angles, peptide bond planarity, bad non-bonded interactions, carbon-a 
tetrahedral distortion, and hydrogen bond energies. The line through the middle of the 
shaded area in each plot is the mean value expected for a well refined structure. The shaded 
area itself represents one standard deviation about the mean. The value for the NgFn 1,2 
structure is represented by a shaded square. (D) Assessment of the quality of side chain 
parameters. These plots present the overall reliability of the placement of side chains in the 
model in terms of chi-1 and chi-2 angles. The shaded band in each plot represents one 
standard deviation about the mean value (central line) expected for a well refined model. 
The value for the NgFnl,2 model is represented by a shaded square. (E, F and G) Plot of 
stereochemical parameters on a per residue basis. Deviations in chi-1 angles, peptide bond 
planarity and carbon-a chirality are plotted on a per residue basis allowing the identification 
of problematic areas in the model. Highlighted residues are those that deviate by more than 
2.0 standard deviations from ideal. 
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Refinement cycle 5. The agreement between the refinement cycle 4 output model 

and the new difference maps was quite good. The rebuilding step produced a model 

containing all residues from Ile610 to Asp813, two N-acetylglucosamine (NAG) residues 

and 62 water molecules. Automated refinement was stopped after 15 cycles of conjugate 

gradient minimization because the R-factors were no longer being reduced. This 

refinement cycle produced a slight increase in both Rcryst and Rfree (Table 3-1 ). 

The refined model had tight geometry as measured by r.m.s. bond length and angle 

deviations and analysis with PROCHECK indicated that the stereochemistry was 

reasonable. Difference maps appeared to support the refined model and failed to point out 

any major modeling errors. This suggested that the only required modification was the 

placement of ordered water molecules. However, it seemed unlikely that additional water 

molecules would lower Rcryst from 26.6% to near 20%. It was apparent that this 

refinement process was not going to produce an acceptable model. 

One factor that may have caused the refinement process to fail was the inclusion of data 

to 2.1 A during the initial and subsequent refinement cycles. It was possible that the true 

positions of several model atoms were outside the radius of convergence permitted by the 

high resolution data. To test this possibility a "second" refinement process was started 

using an initial high resolution cutoff of 3.0A. In order to remove any model bias that 

might be present in the individual atomic B-factors, all individual temperature factors were 

set to 20.0 A2 and the overall B-value for the model was refined (Table 3-1, cycle 5) . The 

final overall B for the model was 24.0 A2. 

Refinement cycle 6. The refined model from cycle 5 was rebuilt. The new model 

contained all amino acids from Ile610 to Asp813 and two NAG residues. This model was 
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refined in two steps that used different cutoffs for the high resolution data (Table 3-2). The 

first step, consisting of 45 cycles of conjugate gradient minimization using data from 5-3.0 

A, produced very reasonable R-factors (Rfree = 28.75, Rcryst = 23.94). This was followed 

by an additional 30 cycles of conjugate gradient minimization that included higher 

resolution data (5.0 - 2.7 A). The second minimization step produced higher final R­

factors (Rfree = 30.31, Rcryst = 25.93), but this increase was at least in part due to the 

inclusion of the additional data. 

Refinement cycle 7. In order to reduce model bias carried over from the failed first 

refinement process, the model was rebuilt using the initial SIRAS and solvent flattened 

SIRAS maps, as well as difference maps calculated with combined phases. The new 

model included residues Ile610 to Pro815 and two N-acetylglucosamines. Positional 

refinement and the refinement of individual restrained isotropic B-factors (automatic 

weighting) reduced the unbiased R-factor, Rfree. a full percentage point, indicating that the 

information content of the model had been improved (Table 3-2). 

Refinement cycle 8. Phases were extended to 2.5 A because the final Rcryst (Rcryst 

= 24.01%) in the previous cycle was quite reasonable. The difference maps used during 

this refinement cycle and all subsequent refinement cycles relied on the most recent refined 

model for all phasing information. The rebuilt model was minimized using a lower 

multiple (1.5x instead of 2x) of Wideal. the value of Win equation 3-3 that results in an 

equal weighting of EEMPIRICAL and Ex-RAY· This step was taken in order to tighten up 

the model's geometry. The increase in final Rfree and Rcryst values was probably due to the 

phase extension. 

Refinement cycles 9 and 10. Neither of these cycles produced significant changes 

in the R-factors. In fact, both R-factors were a little worse after refinement cycle 10 than 

they had been at end of cycle 8. The models had good stereochemistry and most of the 
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[Fo-Fc] difference peaks were due to ordered water molecules. One peak was obviously 

not part of the protein and was too large and electron dense to be an ordered water 

molecule. This peak, which was within hydrogen bonding distance of His646, was 

modeled as a sulfate anion in cycle 9 because the crystallization conditions contained 

ammonium sulfate. A second sulfate was also placed during cycle 9 in another large 

difference peak. Both sulfates were removed during refinement cycle 10 because they 

were covered with negative [Fo-Fc] difference density and had severely distorted 

geometries. 

Refinement cycle 11. No model errors were clearly evident in the difference maps. 

The stereochemistry of the model was analyzed with PROCHECK and several residues 

with energetically unfavorable side chain conformations were examined. Water molecules 

were placed in +5cr [Fo-Fc] difference density if it was obvious the density could not 

belong to the protein and the position allowed the formation of chemically reasonable 

hydrogen bonds. These very stringent criteria resulted in the placement of six water 

molecules. 

Refinement cycles 9 and 10 had failed to produce any improvement in Rfree or Rcryst 

and relatively little rebuilding appeared to be needed during cycle 11 . Further minimization 

using data from 5.0-2.5 A was not likely produce a significant improvement in the model 

and so the high resolution data cutoff was extended to 2.3 A (Table 3-2). 

Refinement cycle 12. An additional 55 ordered water molecules with at least +4cr 

[Fo-Fc] difference density and chemically reasonable hydrogen bonds were placed in the 

model. During this refinement cycle the value of the Ex-RAy weight, W, started being set 

at twice Wideal · The value of W was boosted in order to loosen up the geometry and to 

increase the importance of the crystallographic data in the minimization process. 

Automated refinement produced R-factors that were substantially lower than those of the 
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previous cycle (Rcryst = 24.03%, Rfree = 28.71%) but the final value of Rcryst was still 

relatively high. 

Refinement cycle 13. All waters with refined B-values greater than 50 A2 were 

deleted during the rebuilding process. Thirty ordered water molecules were added to +4cr 

[Fo-Fc] difference density peaks and the sulfate anion near His646 was placed in the model 

again because the orientation of the oxygen atoms was obvious. Model stereochemistry 

was examined with PROCHECK during the rebuilding process and a real space correlation 

coefficient was calculated for backbone and side chain atoms using the program 0. The 

orientations of model peptide bonds were also examined using the Pep_flip utility in 0. 

Both R-factors were significantly reduced during automated refinement (Table 3-2). 

Refinement cycle 14. As in previous cycles, the rebuilding process relied heavily 

on [2Fo-Fc] and [Fo-Fc] difference maps and the analysis of model stereochemistry. 

There was still a poorly defined loop (Asp756-Ala761) in the structure that had weak [2Fo­

Fc] difference density. Several of the residues in this loop had -4cr [Fo-Fc] difference 

density on or near residue atoms. The questionable amino acids in the loop were omitted 

and a simulated annealing omit map was calculated with data from 5.0-2.3A. The loop 

residues were then placed in the model using the omit map. Calculating the omit map 

required the following steps: removal of the questionable region from structure, prepstage, 

simulated annealing (initial temperature = 2,000), conjugate gradient minimization, and 

calculation of the [2Fo-Fc],<l>calc difference map. All water molecules with B-values greater 

than 50 A2 were removed from the model and 24 new water molecules were placed using 

+4cr [Fo-Fc] difference density peaks. Minimization produced substantial drops in the R­

factors (Rcryst dropped by 1. 22%, R free dropped by 1. 51%). 

Refinement cycles 15 & 16. The rebuilding steps were carried out essentially as 

described for previous refinement cycles. Since the R-factors at the end of cycle 14 (Rcryst 
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= 21.94%, Rrree = 26.24%) were very reasonable, the high resolution data cutoff for 

automated refinement was extended to 2.1 A during refinement cycle 15. The model used 

in refinement cycle 16 included amino acids Ile61 0 to Glu812, two NAG residues, 158 

ordered water molecules and two sulfate anions. This model had good geometry and 

improved R-factors (Table 3-2). 

Refinement cycle 17. Water molecules with a refined temperature factor greater 

than 55 A2 were deleted. The cutoff for an acceptable water molecule temperature factor 

was raised because water molecules deleted in previous cycles were reappearing in the new 

difference maps. A strong, positive [Fo-Fc] difference peak was located at the model's 

interdomain interface. This spherical difference density was within approximately 2.2 A of 

five potential oxygen ligands that formed a site with approximate square pyramidal 

coordination geometry, suggesting that the difference density belonged to a metal ion. The 

ion was initially modeled as a magnesium cation with a charge of 2+ and estimated 

Lennard-Jones parameters. Energy minimization involved positional refinement and the 

unrestrained (WB set to zero, equation 3-4) refinement of individual isotropic temperature 

factors. 

Refinement cycle 18. The model was carefully examined during rebuilding for 

unusually high temperature factors that would be indicative of incorrectly placed atoms. 

The rebuilt model included residues Ile610 to Arg814, two N-acetylglucosamines, 193 

ordered water molecules, two sulfate anions, and a Mg2+ cation. Starting with this cycle, 

individual reflections were weighted during the minimization process using the equation for 

wh (from equation 3-3) given below: 

Wh = 1.0 I ( 10.0- 85.0 X ( S()/2.0- 0.16667))2 (3-6) 

where SO represents the length of the reciprocal lattice vector for each reflection. This 

weighting scheme was designed to increase the weight of high resolution reflections and 
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decrease the weight of low resolution reflections such that data at 5.0 A and 2.1 A make 

approximately equal contributions to the Ex-RAy term. The high resolution data cutoff was 

increased to 2.0 A for automated refinement, which included positional refinement and the 

refinement of restrained individual temperature factors. During the temperature factor 

refinement, the weight (Ws) of the restraining termER (equation 3-4) was set to twice the 

value automatically determined by X-PLOR in order to better meet the target deviations in 

atomic B-values. Ws was similarly inflated in all subsequent refinement cycles. After the 

temperature factor refinement, the B-value of the metal ion was set to the average of the 

oxygen ligand B-values and the occupancy of the ion was refined to the following values: 

Mg2+ = 75.7%, Ca2+ = 51.8%, Na+ = 78.1%. 

Refinement cycle 19. Several corrections were made during this rebuilding step: 

all water molecules with B >55 A2 were deleted; 23 new water molecules were manually 

placed; one sulfate was removed because it had high B-values and poor geometry; the 

Mg2+ was changed to Na+; and the second NAG was removed because it had high B­

values and strong negative [Fo-Fc] difference density. In order to obtain metal-ligand 

distances not biased by electrostatic and van der Waals forces , the charge on the Na+ ion 

was set to zero and the ion' s Lennard-Janes parameters were set to values near zero. 

Minimization produced a significant drop in Rfree indicating that the information content of 

the model had been improved. The B-value of the ion in the refined model was set to the 

average B-value of its oxygen ligands and the occupancy of the Na+ ion was refined to 

77 %. 

Refinement cycle 20. All water molecules with B-values greater than 56 A2 were 

deleted from the initial model and 38 new waters were manually placed in +4cr [Fo-Fc] 

difference peaks. The N-acetylglucosamine residue at the second utilized N-linked 

glycosylation site (Asn683) was finally placed. Strong positive density attached to the 

Asn683 side chain had been observed previously but this was the first [Fo-Fc],<l>calc map in 
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which the orientation of the sugar ring was clear. Positional refinement and restrained 

isotropic temperature factor refinement produced a significant drop in Rfree (Table 3-2). 

Refinement cycle 21. During the last few refinement cycles, water molecules 

deleted during one cycle for having too large a B-value were frequently reappearing in the 

following cycles. These molecules had +4cr [Fo-Fc] difference density and reasonable 

hydrogen bonding partners. In this refinement cycle, the cutoff for a water molecule 

atomic B-value was raised to 61 A.2 and new water molecules were placed in +4cr [Fo-Fc] 

difference density. Other changes made during this rebuilding step included: fixing the 

orientation of Asn and Gin side chain amide groups and placing the second NAG residue at 

the Asn652 N-linked glycosylation site. Positional and restrained atomic B-factor 

refinement failed to produce any further improvement in the model as judged by the R­

factors (Table 3-2). 

The Final Model 

The final refined model includes amino acid residues Ile610 to Arg814, three N­

acetylglucosamine residues, 237 water molecules, a sulfate anion, and aNa+ cation. The 

reliability of this model was examined using several criteria. 

Common indicators of overall reliability. The final model has good geometry 

(r.m.s. bond and angle deviations of 0.015A and 1.9° respectively) and reasonable R­

factors (Rcryst = 20.17% Rfree = 23.48%) for all data from 5 to 2.0 A. The unbiased R­

factors (Rfree) for recently published structures typically have values which range from the 

low thirties to the middle twenties (expressed as a percentage) and thus the Rfree value for 

this structure is particularly low. 

However, the absolute value of Rfree is not currently used to judge the reliability of a 

model because it is not yet clear what values are reasonable. Some structures with good 
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conventional R-factors (Rcryst) have relatively high values for Rrree· While the magnitude 

of the difference between Rcryst and Rrree is, in some part, a reflection of model quality, it 

is also influenced by noise in the data, the completeness of the atomic model, and the 

observable to parameter ratio 13 . None of these factors were considered to be a problem 

with the NgFn1,2 structure. 

Geometry. Analysis of the model's geometry confirmed that main chain and side 

chain stereochemistry is reasonable. The phi , psi angles for all non-glycine residues are 

within allowed regions with over 88% of these residues falling within most favored regions 

(Figure 3-2A). PROCHECK uses several criteria to evaluate the stereochemistry of the 

backbone. These are shown in Figure 3-2C and include Ramachandran plot quality, 

peptide bond planarity, bad non-bonded interactions, carbon-a tetrahedral distortion, and 

hydrogen bond energies. The values for all of these criteria were better than average 

(determined from a database of well refined structures) for the NgFn1,2 structure, with 

peptide-bond planarity being particularly good. 
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Figure 3-2 (following pages) Modified Procheck output from analysis of 
final model. (A) Ramachandran plot of model phi, psi angles. An analysis of 118 
structures solved to at least 2.0 A resolution with an Rcryst of no greater than 20% suggests 
that a good quality model will have over 90% of its phi, psi angles in the most favored 
regions. The most favorable regions of phi, psi space have the darkest shading in the 
diagram. Less favorable regions have less shading. (B) Plot of chi-1 versus chi-2. The 
dashed crosses represent the ideal gauche and trans regions for the chi-1 and chi-2 dihedral 
angles. The crosses extend to one standard deviation from the ideal values and points that 
are more than 2.5 standard deviations from the ideal are shown as empty squares. This 
plot includes 117 of the 205 residues present in the model. Twelve of these residues are 
represented as empty squares. This program artificially inflates the number of residues 
with poor chi-1, chi-2 angles by including asparagine residues in the analysis. These 
residues do not have ideal chi-2 values at 60, 180 and 300°. (C) Assessment of quality of 
polypeptide backbone parameters. These plots present the overall quality of the 
polypeptide backbone's stereochemistry in terms of the following parameters: phi and psi 
dihedral angles, peptide bond planarity, bad non-bonded interactions, carbon-a tetrahedral 
distortion, and hydrogen bond energies. The line through the middle of the shaded area in 
each plot is the mean value expected for a well refined structure. The shaded area itself 
represents one standard deviation about the mean. The value for the NgFn 1,2 structure is 
represented by a shaded square. (D) Assessment of the quality of side chain parameters. 
These plots present the overall reliability of the placement of side chains in the model in 
terms of chi-1 and chi-2 angles. The shaded band in each plot represents one standard 
deviation about the mean value (central line) expected for a well refined model. The value 
for the N gFn 1 ,2 model is represented by a shaded square. (E, F and G) Plot of 
stereochemical parameters on a per residue basis. Deviations in chi-1 angles, peptide bond 
planarity and carbon-a chirality are plotted on a per residue basis allowing the identification 
of problematic areas in the model. Highlighted residues are those that deviate by more than 
2.0 standard deviations from ideal. 
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The stereochemistry of model side chains is checked by analyzing the side chain 

dihedral angles chil and chi2. Due to stereochemical constraints, 60°, 300° (gauche) and 

180° (trans) dihedral angles are most energetically favorable. PROCHECK produces a plot 

of chi 1 vs. chi2 which is somewhat analogous to a Ramachandran plot. PROCHECK also 

presents an overall analysis of chi-1 and chi-2 values for the structure (Figure 3-2D) which 

shows that NgFn1,2 has better than average chi-1 and chi-2 values (compared to database 

of well refined structures). 

A combination of backbone and side chain parameters are evaluated and used to rate the 

stereochemistry of each amino acid (Figure 3-2E-G). These parameters include chi-1 

values, peptide bond planarity and carbon-a tetrahedral distortion. 

Peptide bond orientations were monitored with the Pep_flip utility in the program 0. 

For each residue i , Pep_flip searches a database of well refined structures for pentapeptides 

that have the same backbone conformation as the model fragment containing residues i-2 to 

i+2. The r.m.s. deviation between model and database backbone oxygen coordinates for 

residue i is used as an index of fit. Pep_flip values of greater than 2.5 A are considered 

suspect, with r.m.s. deviations greater than 3 A indicating that model and database oxygens 

are pointed in opposite directions. The Pep_flip analysis of the final model is shown in 

Figure 3-3A,B. There are four backbone carbonyls in the NgFn1 ,2 structure with Pep_flip 

values greater than 3.0. Two of these oxygen atoms were involved in hydrogen bond 

formation suggesting that they were correctly placed. None of the four oxygens had 

unusually high B-values or associated positive or negative [Fo-Fc] difference density that 

would indicate they were incorrectly placed. 
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Real space correlation coefficient. Another method of evaluating the structure 

on a per residue basis involves measuring how well each residue fits the observed electron 

density 14. This real space fit can be calculated with the Rs_fit utility in the program 0, 

which expresses the quality of fit as a correlation coefficient. Figures 3-4 and 3-5 show the 

real space fit of the final model to three electron density maps: a SIRAS map calculated to 

2.6 A, a 2.6 A solvent flattened SIRAS map, and the final [2Fo-Fcl.<!>calc difference map. 

The real space fit was calculated separately for backbone atoms (Figure 3-4) and side chain 

atoms (Figure 3-5). 

Analysis of temperature factors. Scattering power, which measures how 

effectively an atom scatters x-rays, is a function of electron density. An atom's scattering 

power is reduced by thermal motion because the electron cloud of the atom is spread over 

the volume covered by the motion. This reduces the observed electron density for that 

atom. Atomic temperature factors, which are used to model the effects of thermal motion, 

are large ( >60 A2) for atoms placed in weak electron density and low ( <25A2) for atoms 

placed in strong density. Thus, an analysis of temperature factors can be used to evaluate 

structural mobility with anomalously high temperature factors frequently indicating errors 

in the model. 

The mean atomic temperature factor for all atoms in the NgFnl ,2 model is 29.4 A2 with 

backbone and side chain atoms having average B-values of 28.2 A2 (0.92 A2 r.m.s. 

deviation) and 30.6 A2 (1.84 A2 r.m.s. deviation), respectively. It was somewhat 

surprising that this structure had such a high average B-value since it diffracted to high 

resolution and the data were collected from frozen crystals. However, this average 

temperature factor is consistent with the fact that the high resolution data (data past 2.7 A) 

were quite weak and could only be collected at a synchrotron. 
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Structural mobility within the NgFn1,2 model was evaluated by plotting a backbone 

temperature factor versus residue number (Figure 3-6). X-PLOR used the individual B­

values of backbone atoms to calculate a temperature factor for each residue. There are three 

regions that have elevated temperature factors in both domains: the A to B loop, the end of 

the C to C' loop (including the beginning of strand C'), and strand G. 

Reliability of the NgFn1,2 structure. Several criteria used to judge the quality 

of structural models were evaluated for the NgFnl ,2 structure. These criteria included 

Rrree and Rcryst crystallographic residuals; r.m.s. deviations in bond lengths and angles; 

phi, psi, chi-1 and chi-2 dihedral angles; peptide bond planarity; carbon-a tetrahedral 

distortion; non-bonded and hydrogen bond energies; real space correlation coefficients for 

main and side chain atoms; backbone temperature factors and the deviation between model 

peptide carbonyl oxygen coordinates and those found in a database of well refined 

structures. The values derived from the NgFnl,2 model are consistent with a well refined 

high resolution structure. 
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Chapter 4 

Identification of the Metal Ion Bound at 
the Interface Between the First Two 

Fibronectin Type III Repeats of Drosophila 
Neuroglian 
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Introduction 

An unexpected feature of the N gFn 1 ,2 structure was the presence of a metal cation at 

the interdomain interface. The metal was first identified when strong spherical density was 

observed to lie within ::::::2.2 A of five potential oxygen ligands: the backbone carbonyl 

oxygens from lle740 and Pro680, side chain oxygens from Ser679 and Asn743, and a 

water molecule (Chapter 2). The binding site has approximate square pyramidal 

coordination geometry with an average refined metal to ligand distance of 2.23A. This 

distance is significantly less than that expected forK+ (2.7 to 2.8A) and between the metal 

to ligand distances commonly observed for Mg2+ (2.1A) and Na+ or Ca2+ (2.4A) 1-3. 

While the information present in the native structure does not permit an unambiguous 

identification of the bound metal ion, it does enable one to make an educated guess. 

Proteinaceous binding sites for divalent metal cations commonly utilize carboxylate oxygen 

atoms from aspartic and glutamic acid residues as metal ligands. These side chain groups 

are usually ionized under physiological conditions and contribute to the local neutralization 

of the metal ion's charge. The absence of any carboxyl ligands in the NgFnl,2 binding site 

suggests the site is specific for monovalent rather than divalent cations. Since the observed 

electron density is too strong for Li+ and the average metal to ligand distance is too short 

forK+, the identity of a bound monovalent cation would most likely be Na+. 

In order to further characterize the metal binding site and possibly identify the bound 

cation, data were collected from crystals soaked in solutions containing Na2EDT A, CaCl2, 

NaCl or KCl. Difference Fourier analyses and ion occupancy refinement were used to 

monitor changes in the ion binding site. 
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Materials and Methods 

Crystal Growth and Ion Soak Conditions 

Native crystals of NgFn1,2 were grown as described in Chapter 2 and were soaked in 

solutions containing Na2EDTA, CaCl2, NaCl, or KCl overnight at 22°C. The CaCl2 soak 

was preceded by an overnight soak in Na2EDT A. The Na2EDTA and CaCl2 soak 

solutions consisted of 100 mM Hepes (sodium salt)/NaOH pH 7.5, 45% saturated Li2S04 

and either 20 mM Na2EDTA or 10 mM CaCl2. The NaCl and KCl soak solutions 

comprised 1.88 M (NH4)2S04, 100 mM Hepes (free acid)/NH40H pH 7.6 and either 10 

mM NaCl or 10 mM KCl. Each crystal was transferred to a mounting buffer immediately 

before freezing. The mounting buffers were essentially the final soak conditions with 25% 

(v/v) glycerol as a cryoprotectant. 

Data Collection and Processing 

Single crystals were suspended in 1 mm diameter glass loops by a thin film of 

mounting buffer4 and were flash frozen using an LN2 low temperature system (Molecular 

Structure Corporation). The average temperature of the N2(g) coldstream during crystal 

freezing and data collection was approximately -165 oc. Diffraction data were collected 

with an R-AXIS IIC x-ray detector mounted on a "Rotaflex" RU-200 Series rotating anode 

x-ray generator (Rigaku Corporation). The determination and refinement of crystal 

orientation as well as the indexing and integration of the raw data were performed with the 

R-AXIS IIC data processing software. Profile fit intensities were scaled and merged into 

unique reflections with the ROT AVA T A and AGROV AT A programs from the CCP4 

package (CCP4, The SERC (UK) Collaborative Computing Project No. 4. A Suite of 

Programs for Protein Crystallography distributed from Daresbury Laboratory, Warrington, 

WA44AD, UK (1979)) (Table 4-1). 
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Map and Occupancy Calculations 

Data sets were scaled to each other using the RSTATS program (CCP4 package) which 

performs a non-linear least squares minimization of a linear scale factor and an exponential 

temperature factor. Difference maps, using coefficients (Fsoak-Fnative) or (FKci-FNaCI), 

were calculated with the FFf program (CCP4 package) using phases derived from refined 

native structures. Maps were interpreted with the program 0 5 on IRIS 4D series work 

stations (Silicon Graphics Incorporated). 

Occupancy refinement was carried out with the program X-PLOR6. The refined native 

coordinates, with the B value of the ion set to the average ligand B value, were used in all 

occupancy calculations. 

Results and Discussion 

Data Quality 

Overall, the soak data are less reliable than the native data (as judged by Rmerge values 

for data sets) and were collected to a significantly lower resolution (Table 4-1). This 

discrepancy in data quality is not surprising. The native data were collected at a 

synchrotron, which provides a very intense source of x-rays. A rotating anode x-ray 

generator, which provides significantly less x-ray flux than a synchrotron, was used during 

the collection of the soak data sets. The higher flux available at a synchrotron results in a 

better signal to noise ratio and allows the collection of data that would be too weak to 

collect using a rotating anode x-ray source. There was also a difference in the quality of the 

crystals from which the data were collected. Many of the crystals used in the soak 

experiments were smaller and older than the crystal used to collect the native data. These 

differences in available x-ray flux and crystal quality make it difficult to assess how much 

the ion soak conditions affected the crystalline lattice. While it is likely that the ion soaks 
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damaged the crystals, none of the soak conditions visibly disrupted the crystalline lattice or 

produced significant changes in the unit cell dimensions (Table 4-1 ). 

NgFn1,2 Metal Binding Site is not Specific for Divalent Cations 

The intensity of the ion peak in the native structure was comparable to that observed for 

well ordered water molecules (data not shown), suggesting that the ion was either aNa+ or 

Mg2+ with relatively high occupancy or a Ca2+ with lower occupancy. In order to test the 

possibility that the bound ion was a Mg2+, native crystals were soaked in 20 mM 

N a2EDT A. If EDT A chelated the bound ion, one would expect to observe a strong 

negative peak at the ion position in (FNa2EDT A -Fnative) difference Fourier maps . 

Difference Fourier analysis produced a strong positive peak instead of a strong negative 

peak. This suggested the site was being occupied by Na+ ions (Table 4-2) which were 

present in the Na2EDTA and the Hepes buffer used to make the soak solution. The refined 

occupancy of aNa+ at this site is 100% (Table 4-3). These data strongly suggest that the 

metal binding site observed in the native crystals is not occupied by a Mg2+ ion. 

The observed density for the ion in the native structure could be modeled as a Ca2+ 

with 47% occupancy (Table 4-3). Crystals were soaked in CaCl2 in an attempt to either 

bring the proposed Ca2+ ion to full occupancy or to exchange Ca2+ for the bound ion. 

Ca2+ binding would generate a large positive peak in (FcaCJ2-Fnative) difference Fourier 

maps. These soak conditions produced only a small positive difference peak, suggesting 

that the protein was binding the Na+ present in the soak solution rather than the Ca2+ 

(Table 4-2). This conclusion is supported by occupancy refinement calculations which 

estimate the occupancy of the ion to be 95% when modeled as aNa+ (Table 4-3). Ca2+ is 

significantly more electron dense than Na+ and thus modeling a fully occupied Ca2+ ion as 

aNa+ ion should produce an occupancy greater than one. 
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The results of the Na2EDT A and CaCl2 soak experiments strongly suggest that 

NgFn I ,2 does not preferentially bind divalent cations. In fact, these experiments 

demonstrated that the metal site could bind Na+ ions. As described earlier, an absence of 

carboxylate oxygen ligands and an observed metal to ligand distance of 2.23A suggest that 

aNa+ ion is bound in the native crystals. 

NgFn1,2 metal binding site specifically binds Na+ 

The crystal used to solve the native structure was exposed to a relatively high 

concentration of Na+ ions. The synthetic mother liquor used to harvest and preserve the 

native crystal contained of 45% saturated (22 °C, :::::1 M) Li2S04 and 100 mM Hepes 

(sodium salt)/NaOH pH 7.5. At first glance, the high Na+ ion concentration suggests that 

the ion might be bound nonspecifically. However, if NgFn 1,2 nonspecifically bound 

monovalent cations, the approximately 20-fold higher concentration of Li+ would favor the 

binding of Li+ ions. The refined occupancy of aLi+ ion in the native structure is 400%, 

demonstrating that the majority of the bound ion is Na+. While Na+ does appear to be 

preferentially bound, the refined occupancy for aNa+ ion is only 77%, suggesting that Li+ 

can compete for binding when present at high concentrations. 

The Na2EDTA and CaCl2 soak solutions also contained at least 100 mM Na+ because 

the sodium salt of Hepes was used as a buffer. Thus, one could argue that the binding of 

Na+ observed in these experiments was nonspecific. In order to further demonstrate that 

NgFn 1,2 specifically binds Na+ ions, native crystals were soaked in a solution containing 

only 10 mM NaCl. The other components of this soak solution, (NH4)2S04 and Hepes 

(free acid)/NH40H, were not potential sources of monovalent cations. The NaCl soak data 

produced a positive difference peak (Table 4-2) at the ion position and a refined Na+ 

occupancy of 100%, confirming that Na+ binding is specific. 
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NgFn1,2 metal binding site does not bind K+ 

The existence of a metal binding site at the NgFn1 ,2 interdomain interface suggests that 

the relative orientation of the domains is stabilized by the binding of a metal ion, in this case 

Na+. The location of this site also raises the possibility that the relative orientation of the 

two domains could be altered by substituting a different ion for the Na+. Since there are 

not any carboxylate groups near the metal binding site, it is likely that the Na+ would be 

exchanged for another monovalent cation such asK+. The substitution of Na+ forK+ at an 

ion binding site has been observed to produce significant conformational changes in the 

enzyme dialkylglycine decarboxylase (DGD)3. This enzyme requires K+ ions for stability 

and activity and is inhibited by Na+ and Li+ ions. The bound monovalent cation is near the 

active site but is not close enough to play a direct role in catalysis. In the DGD structure, 

replacing a bound K+ with Na+ requires a gross change in the ion coordination geometry 

and results in conformational changes that extended far beyond the local environment of the 

ion binding site. By analogy, substitution of K+ for Na+ in the NgFnl ,2 structure could 

produce significant changes in the relative orientation of the two Fniii domains. Thus, if 

both domains of NgFn 1,2 contribute to the binding site for a receptor, neuroglian-receptor 

interactions could be modulated by the identity of the ion bound at the N gFn 1,2 

interdomain interface. 

The ability of NgFnl,2 to bind K+ was tested by soaking native crystals in an 

(Nf4)2S04 based synthetic mother liquor containing 10 mM KCl. This soak condition did 

not produce positive (FKct-Fnative) difference map peaks at the ion position but rather 

strong negative peaks that enveloped the ion and the ligand oxygen provided by the Ser679 

side chain. The observed negative difference density and the refined ion (Na+) occupancy 

of 42% demonstrate that K+ is not bound by the protein and that the KCl soak actually 

decreases the occupancy of the ion site. The negative density on the Ser679 side chain 

oxygen and the presence of nearby positive difference density suggests that the side chain 
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can adopt an alternate conformation in the absence of a bound ion. A similar positive 

density peak is present in native (Fobserved-Fcalculated) and (2Fobserved-Fcalculated), <\>calc 

difference maps . As mentioned previously (above and in chapter 2), the calculated 

occupancy for aNa+ ion in the native structure is 77%. These data suggest that the metal 

binding site in the native crystal is either partially empty or the Ser679 side chain oxygen is 

not needed for Li+ binding. 

It is possible that crystallized NgFn 1,2 cannot bind K+ because the binding event 

requires a conformational change prohibited by crystal lattice contacts. Thus, the results of 

the KCl soak experiments do not prove that the protein in solution is incapable of binding 

K+. This possibility can be tested by assaying the ability of the solubilized protein to bind 

a radioisotope of K+ or by solving the NgFn 1,2 structure with crystals grown in the 

presence of K+. 
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Table 4-2 Difference map peaks at ion binding site. 

difference peak 
Map position value Ccr.!lliU2 multiple) 

FNa-FNative 1on 4.4 

FEDTA-FNative ion 4.8 

Fca-FNative lQn 2.7 

FK-FNativc ion -4.5 

FK-FNativc Ser 679, Oy -6.0 

FK-FNa ion -7.6 

FK-FNa Ser 679, Oy -8.2 
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Table 4-3 Refined values for ion occupancy. 

Resolution 
Soak __kill_ of data <A) Occupancy (% ) 

None (Native) Na+ 10.0 -2.00 77 

None (Native) Na+ 10.0 - 2.80 74 

None (Native) Na+ 10.0- 3.20 86 

None (Native) Ca2+ 10.0-2.00 47 

None (Native) Li+ 10.0 - 2.00 400 

Na2EDTA Na+ 10.0-2.65 100 

CaCl2 Na+ 10.0- 2.65 95 

NaCl Na+ 10.0- 2.80 104 

KCl Na+ 10.0- 3.20 42 
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Chapter 5 

Characterization of the Extracellular 
Domains of Drosophila Neuroglian By 

Electron Microscopy 
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Introduction 

As described in Chapter 2, the structure of the first two fibronectin type lli repeats from 

Drosophila neuroglian (NgFnl,2) was used to model the five tandem fibronectin type lli 

repeats (NgFnl-5) in whole neuroglian. In the resulting model, the fibronectin type III 

(Fniii) domains pack end-to-end to form a 175 A long linear rod with a two domain zig­

zag repeat. If one assumes that neuroglian's six tandem Ig-like domains (Ngigl-6) also 

form a linear array, the dimensions of Ngig can be can be estimated using known 

structures. Pairs of tandem Ig-like domains from CD4 1-3 and CD24 are 60-65A long, 

suggesting that Ngig is approximately 180-195A long. Given the above models, the entire 

extracellular portion of neuroglian (Ng), comprising six tandem Ig-like domains followed 

by five Fniii repeats, is predicted to be a long, thin rod that extends up to 370 A from the 

cell surface. 

While these models do give an estimate of the overall dimensions of linear NgFnl-5 

and Ng molecules, they do not address questions concerning molecular flexibility and 

overall morphology. Of the ten interdomain interfaces between tandem domains in the 

extracellular portion of Ng, only the interface between the first two Fniii repeats, NgFnl 

and NgFn2, has been structurally characterized. The remaining interdomain interfaces are 

potential sites of molecular flexibility. Electron micrographs of rotary shadowed N-CAM, 

L-CAM and I-CAM have demonstrated that each of these intercellular adhesion molecules 

forms a long rod with a single flexible bend5•6. This flexibility may promote intercellular 

adhesion by enabling proteins to form interactions that would not be sterically possible with 

pairs of rigid rod-like molecules5. It has also been suggested that a high degree of 

flexibility would facilitate diffusion of the molecule's binding site(s) in the extracellular 

environment and thereby enhance binding kinetics6. 
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Electron micrographs of rotary shadowed NgFnl-5 and Ng were generated by Harold 

Erickson (Duke University) in order to view the conformations adopted by these molecules 

in solution. Hundreds of molecules, prepared under identical experimental conditions, can 

be viewed in a single electron micrograph. This allows a reliable estimation of the overall 

dimensions and flexibility of the protein. Rotary shadowed NgFnl-5 and Ng are thin rods 

with lengths of approximately 190 A and 380 A, respectively. These dimensions are 

consistent with the modeling of these proteins as linear arrays of tandem repeats aligned 

end to end. Ng and NgFnl-5 are observed to be highly flexible molecules with up to four 

and two bends, respectively. Neuroglian has been reported to mediate homophilic 

adhesion 7 (A. Bieber et a!., unpublished results) . However, no evidence of homophilic 

dimerization or aggregation was observed with NgFn 1-5 or Ng, suggesting that the 

homophilic affinity of the molecules in solution is weak. 

Materials and Methods 

Protein Expression and Purification 

Soluble forms ofNg and NgFnl-5 were expressed as secreted proteins in Drosophila 

S2 cells and were purified from the growth medium by immunoaffinity chromatography 

(chapter 2). The expression vectors and transfected cell lines used to produce Ng and 

NgFnl-5 were generated in the lab of Dr. Allan Bieber at Purdue University. 

Electron Microscopy 

Dr. Harold Erickson of Duke University prepared electron micrographs of rotary 

shadowed Ng and NgFn 1-5 as described previously8. All photomicrographs of the 

observed images were generated at a total magnification of 150,000X. 

Measurement of Images in Photomicrographs 
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Molecular dimensions were measured to the nearest 0.1 mm on photomicrographs 

using a 7X measuring magnifier (Bausch & Lomb). Straight segments of bent molecules 

were measured as shown in Figure 5-1. One nm was subtracted from the calculated length 

of segments containing a molecular terminus in order to compensate for the metal shell 

deposited during rotary shadowing. Measured molecules were not randomly selected, but 

rather chosen from a large population because they had clearly defined molecular borders 

and a specific shape (e.g., straight, one bend, etc.). 

B 

Figure 5-l Measurement of segments from a bent molecule. The arrows 

show the distances that would be measured for molecular segments A, B and C of a 

molecule with two bends. 
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Estimation of the Number of Domains in NgFnl-5 Arms 

The total length measured for straight NgFnl-5 proteins was assumed to be more 

accurate than that measured for bent molecules because it is difficult to measure bent 

regions accurately. The mean length of straight NgFnl-5 was divided by five to obtain the 

average translation per Fnlll domain (38.6A). The number of domains in the straight 

segments of bent NgFn 1-5 molecules was determined by dividing segment length by 

38.6 A. 

Results and Discussion 

Electron Micrographs of the Five Neuroglian Fnlll Repeats (NgFnl-5) 

Straight molecules as well as molecules with one or two clearly defined bends could be 

identified in photomicrographs of rotary shadowed NgFn1-5. The large number of 

observed molecular conformations strongly suggests that N gFn 1-5 is a highly flexible 

protein. 

Straight NgFnl-5 molecules. NgFnl-5 can form straight rods with an average 

length of 193 A (Table 5-1 , Figure 5-2A). However, these molecules account for a small 

percentage (5% or less; data not shown) of the total molecular population, suggesting that 

the protein is highly flexible with only a few molecules having a straight conformation at 

any given time. Assuming the translation and rotation relating each pair of tandem domains 

in NgFnl-5 is approximately the same, the observed molecular length corresponds to a 38 

A translation per domain. These dimensions are consistent with a linear array of tandem 

Fnlll repeats having a 37.7 A translation per domain as modeled using the NgFn 1,2 

structure (chapter 2). 
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NgFnl-5 molecules with a single bend. Visual inspection identified two major 

populations of single-bend NgFnl-5 molecules (Figure 5-2B,C,D). These molecules have 

arms of two and three domains or arms of one and four domains (Tables 5-1 and 5-2). The 

angle between the arms of single-bend molecules was observed to vary from close to 180 o 

(Figure 5-2C) to approximately 90° (Figure 5-2D), demonstrating that the bend regions are 

quite flexible. 

The existence of two distinct populations of single-bend molecules implies that 

NgFn 1-5 must contain at least two points of flexibility. It is not possible to determine from 

the photomicrographs alone which domains flank the bend regions because all five domains 

are homologous in size and shape. However, crystallographic and biochemical 

characterization ofNgFn1,2 strongly suggests that the interface between the first two Fnlll 

repeats is not flexible (chapter 2). Thus, the electron micrograph data is best explained by a 

model in which bending occurs between the fourth and fifth Fnlll repeats (NgFn4 and 

NgFn5) and between either or both of the domain pairs NgFn2,3 and NgFn3,4. 

NgFnl-5 molecules with two bends. Virtually all molecules with two clearly 

identifiable bends had a two domain middle segment and arms of one and two domains 

(Figure 5-2E,F). These images, as well as those of single bend molecules, are consistent 

with a model of NgFn1-5 capable of flexing between the second and third Fnlll domains 

and between the fourth and fifth Fnlll domains. Although a model with just two points of 

flexibility can account for all of the observed data, it is not possible to rule out bending at 

the NgFn3,4 interface. Molecules with a single bend at this interface cannot be 

distinguished from molecules which bend at the NgFn2,3 interface. Bending at these sites 

could be distinguished in two-bend proteins, but it is likely that molecules with bends at 

NgFn2,3 and NgFn3,4 or NgFn3,4 and NgFn4,5 are not clearly defined in the 

photomicrographs. 
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NgFnl-5 molecules with two bends can be divided into two groups: 'cis' proteins with 

both arms on the same side of the middle segment (Figure 5-2E) and 'trans' molecules with 

arms on opposite sides of the middle segment (Figure 5-2F). The existence of cis and trans 

molecules suggests that at least one of the two bend regions also has a large degree of 

rotational freedom. 

Electron Micrographs of the Entire Extracellular Portion of Neuroglian 

Ng, the extracellular portion of neuroglian, was found to be a long, thin and highly 

flexible protein. 

The absence of straight Ng molecules. None of the images in the 

photomicrographs of Ng were clearly identified as a straight molecule. This apparent 

absence of straight proteins could be due to a high degree of molecular flexibility . If the 

protein contained several highly flexible bend regions, very few molecules would be 

expected to be in a straight conformation at any given moment in time. It is also possible 

that straight molecules are not observed because Ng has a structurally defined bend. Since 

NgFnl-5 is capable of adopting a straight conformation, this bend would have to occur 

within the tandem Ig-like domains or at the interface between the sixth Ig-like domain and 

the first Fnlli repeat. 

Ng molecules with bends. Measurement of Ng molecules containing 1, 2 or 3 

defined bends yields a mean total molecular length of approximately 380 A.. Given the 

measured length of straight NgFnl-5 (Table 5-1), the six tandem Ig-like domains 

(Nglgl-6) are calculated to be approximately 190 A in length, consistent with our modeling 

of these repeats as a linear tandem array (chapter 2). 

Ng molecules with up to four distinct bends were identified in photomicrographs 

(Figure 5-3). Since only two bends were observed in NgFnl -5 molecules, at least two of 
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the four bends in Ng involve Ig-like domains. One of these bend regions must lie within 

the tandem Ig-like domains, with the other site possibly located at the interface between 

Nglg6 and NgFn 1. Consistent with this suggestion is the observation that the neural cell 

adhesion molecule N-CAM is flexible at the interface between its five Ig-like domains and 

two Fniii repeats 1. 

The Affinity of Ng-Mediated Homophilic Adhesion 

No hemophilic dimers or higher order aggregates were observed in electron 

micrographs of NgFn 1-5 or Ng. The hemophilic adhesion molecule N-CAM also fails to 

dimerize when prepared under similar conditions5 . This suggests that N-CAM and 

neuroglian mediate hemophilic adhesion through one or more relatively weak interactions 

that may require the proteins to assemble in large cell-surface arrays. This view is 

supported by experiments demonstrating that N-CAM hemophilic binding is weak but 

highly cooperative9. 

How Flexibility Might Affect Function 

As proposed for other rod-like adhesion molecules with single flexible bends5 , 

hemophilic adhesion between opposing neuroglian molecules on moving or 

noncomplementary surfaces may require a high degree of molecular flexibility (Figure 5-

4A). Also, numerous bend points may be required to make multiple binding sites on 

neuroglian simultaneously accessible to different receptors. A high degree of flexibility 

combined with multiple binding sites could allow neuroglian to interact with several 

different types of receptors independently or simultaneously and might result in the 

formation of a complex web of intermolecular interactions (Figure 5-4B). 
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Figure 5-2 Representative photomicrographs of rotary shadowed 
molecules juxtaposed with schematic models of the observed proteins. Four 
images are shown of each observed molecular shape: (A) straight NgFnl-5 molecules , 
(B) single-bend NgFnl-5 molecules with arms of 1 and 4 domains , (C) single-bend 
NgFnl-5 molecules with a large angle between arms of 2 and 3 domains, (D) single-bend 
NgFnl-5 molecules with a small angle between arms of 2 and 3 domains, (E) two-bend 
NgFnl-5 molecules with a 'cis' conformation, (F) two-bend NgFnl -5 molecules with a 
'trans' conformation. 
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Figure 5-3 Photomicrograph images of Ng molecules with at least four 

bends. 
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A. 

B. 

' ' ' ' ' ' ' ' ' ' ' ' ' ' 

; 

Figure S-4 Schematic models of N-CAM- and neuroglian-mediated 
intercellular adhesion. (A) Arrays of N-CAM molecules on one cell interact with 
similar arrays on apposing cells . The flexible hinge in N-CAM may allow specific 
intermolecular contacts to be made even when cell surfaces are in motion or are not 
complementary in shape. (From Becker, J.W., Erickson, H.P., Hoffman, S., 
Cunningham, B.A. & Edelman, G.M. (1989). Topology of cell adhesion molecules. Proc. 
Natl. Acad. Sci. USA 86, 1088- 1092.). (B) Multiple points of flexibility could enable 
neuroglian to simultaneously interact with multiple receptors. Neuroglian molecules are 
schematized as long, thin, transmembrane proteins with four bends. Hemophilic adhesion 
(left) and heterophilic adhesion (right) are depicted although only hemophilic binding has 
actually been demonstrated. 
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C R YSTALLIZATION NOTES 

Crystallization and Stoichiometry of Binding of a Complex 
between a Rat Intestinal Fe Receptor and Fe 

Andrew H . Huber 1
, Robert F. Kelley\ Louis N . Gastinel 1 and 

Pamela J . Bjorkma n t 

1 I )i l"i-'ion of Biology u nd 11 O/Ntrd fl uyhes Jl nliml 1 nsf it ule 
('alifornio Jnslitute c~f Tn·hnology. Pasadena. ('A .971:2:5. C.S.A. 

2 Dt•JiartmPnt ~~f Protein Engineering. Ot•iu•nlerh. I nc . 
-/(){) J>oinl San Bruno Bll'd. South ,<..,'an Frrnzrism. ('A f)./080. C.S.A. 

( Rerei1'1d li Sol'l! lllber !fJ.9:2: orwpted ;2./ Sm·t•mhn J!J.CJ:!) 

F1· l'<'l'l'ptor" C'XJH'I'"sl'd in the gut of n<•whorn rodpnb bind to matprnal immunoglobulin in 
milk at pH lj·.) . and tmnsport it to tlw bloodstream of tlw neonate'. ,,·hel'P it disso('iatp,.; at 
pl-1 7·.J-. Thl' rat intpstinal Fl' l'I'I'I'Jltor (l"r·Rn) <·onsi,;b of a hPa\·y ehain. with signitieant 
s<'qu<'lli'P ,;irnilarit.'· to tlw hl'<l\'." c·hain of c· lass I :'II H{' molf.'<·u les. <·ompi<'XI'd tot lw c· lass I 
light <·hain. /1~·lllil'roglohulin. Although PeRn is prPdictPd to <·ontain a p:roO\'l' analogou;.; to 
that whieh ;.;pn·ps a,., tlw :'IIH(' pPptidP-hinding ><ill'. thP immunoglobulin ligand of Fl'H.n is a 
rna<'l'OnHJI<•<·ulc· instPad of a pC'ptid<:>. \\'p han' exprc>ssed and erystallizPd a s<·<·retl'd form of 
Fd~n. and here rPport thl.' erystallization of a <·ompll'X between FI'Rn and its F<· ligand . 
lsolated Fd~n-Fe <·ompll.'xes <-ryMallize in SIHH'e gmup 1'1.2'2 or /~ 1 2 1 ~ 1 with unit <·Ec>ll 
dinwnsions 11= 125 :\.1!= If>~ r\ and r=~J(j . .\ . Tlw <'r'\'stals diffra<'t to;)·;) A •·<•solution with 
an i~ot ropil' d i ffral'l ion to 3·;) A. Data <·oiiEc>et ion from. <'ryopn•s<•n·pd crystals m a.Y allow t lw 
rP .. olution limit to he C'XtPnd<•d. sinee tlw major n•a:;on for tlw poor n•solution appt>;u·s to IH' 
radiation dEc>cay . En•n a low-resolution ,· iew of how Fd{n hinds F<· would I)(' of iniP rPst to 
sP<· if the binding sill' c·o•Tesponds to tlw furwtiona l part of an :'IIH(' molel'ule . Si1we tiH• 
st ru<·turC' ofF<' is known. and a strud un• determination of F!'l{n is und!'T'way. it ma.Y he 
po~:;ib le to loeate the Fe binding s ite on Fdtn at lm,· n•so lution . :\,.; an initial 
l'haraet<:>rization of the Fc·Hn F<' mode of interaetion . and to fa<·ilitate tlw structun· 
det<·rmination . we ha\'P determined tlw stoiehiomptr.\· of binding of FeRn to Fl' . \ \'p show 
that two FeRn molpc·ul<•s bind pN Fl'. as determinPd by analysis of gl'ls of washed c rysta ls. a 
<·olumn binding assay. and i::;othermal titration <·alorinwtry. 

/,-ey1cords: F'e re<·eptor: stoiehiomet ry of hind ing: i:;ot llC'rmal tit ration calorinwt r.,·: 
protein crystallization: histoeompatihi lity mol<·<·ules 

The transmission of matPI'nal immunoglobulin (: 
( lg(:! l to fetal or nponatal mammal:; JH'o,· ides an 
important defen,.,e to tlw nPwhorn hefon• its 
immurw n 's iHlllse is full~· fundional. Suekling rats 
pa;.;sin·ly ac·quirP innnunit.Y hy transport ing lgC 
fmm milk across the intestinl' and into the eirc·u la­
tion (('ullwrtson. l !l:~H). R<·<·Ppton< on epithelial 
brush hordpr:; h ind to the Fc· portion of l g(; at the 

t .\uthor to \1 hom all eorrespondeneP should hP 
addn·sst>d. 

t . \ hbn·,·ia tions usPd : f i!(:. immunoglobulin(:: F\· . 
t·ommon or pffN·to•· n•gum of immunoglobulins: Fd{n. 
IIPonatal Fl' n•<·eptor: :'II H(' . major histo c·ompatahility 
n'gion: FI'L<'. fast protPin liquid t·hrornatography: F'ah. 
antig!·'n-hinding region of irnllltllwglohulins: ( ·H:l. 
immunoglobulin ht>a, .. ,. t·hain c·onstant rPg ion :~. 

acidic pll of tlw gut lum<•n (fHl to (i';)) . and thl' 
l gG- rPt·eptor complex is t ranc·ytos!'d to tlw hnsola ­
teral nwmhrarw. wher<:> tlw lgG cliss<l<'iates from thl' 
l'<'<·eptor at the slip:htl.'· ha;.;ic pH of the blood (7·.J- ) 
( J~odewa ld. 19/(i). Fr- rf'<•Pptors (FeHn. rwonatal) 
ha\'e heen affinity-purifiNI from rat intestinal epi­
t lwlial <·PII brush borders. and shown to I)(' lwtEc>ro­
dimEc>n; eonsistinp: of two polypept id<· l'hains of 
rPiatin· moiPeu lar massPs of .J-;) ,000 :)3.000 and 
l .J-.000 (S imister & RPPS. HlH5). Tlw F c· Rn hPa\·y 
d1ain i" predi<'tPd to <·onsist of thr<•P Ec>xtnu·PIIu lar 
domains. a s inglP tram;memhrarw :;panning n·gion. 
and a c·.\'loplasrni<· tail. Tlw extnu·pllular domains 
ha n• signific·ant :;equent·<' similarit.'· to t lw l'OITP­
sponding domains of major histol'ompatihility 
<·omplc·:-.. (;\IH(') clas::; T molenriPs (SimistPr & 
:'l lostO\·. I!)H~ln.b). This sequenc·e similarity implies a 

1077 
. .... • • "t • 
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;.;t I'll<' I ural hornolo<ry that i:- I urt lwr n•i11for('l'd ll\· 
th<' findin!.! that,.., tiH' F('HII "mall "uhunit ;,.. 
/1'2 rni<·mglohulrn (~imi"t('r t\: :\Jo,tm·. I!IH.) ). till' 
;.;aiiH' lr!!ht drain a:- t•mployt·d h.Y !'Ia"" I :\Ill< ' 
lll<d<•c· u(p,, .\It hough tlw t\\·o lwtProdinwr" appt•ar to 
Ill' ,.,( nr!'\umll.' n •latPd . tht"ir phy,..iologi<·al ligand,.. 
and fulf('(iorh an· ,.,.1'\ difT'Pn·11t. :\11-1( ' moiP<·uiP" 
hind intra<·•·llularh priH-<'""''d l•t·ptidl'>- a11d display 
IIH'rll 011 the· <'l'll ,;urfa('t' for 1'\'I'O!!Ilition ll\· T <·t ·IJ,.. 
(Tmi' II>WtHI t\: Hod nwr. I !IH!J). 1\ hi lc · I hP F<· i{ 11 hind" 
and t ran,porh 1!!< :. a largt· mac·romolt·t·uiP . ( ' ry,;tal 
:-tnrl'l Ill'<'" of c·Ia-.,,.. I molt·c·ul<'.._ n·,·t·al a d<'P(I gn><>Y<' 
loc·att·d IH'tii<'L'll til<> :x- lwli <'t':- that ha,., a "lw pc· 
id<•a ll _,. "uil<·d for I he•ir pe·pt icl(' - hinding furwt ion 
( Bjorknuln 1/ rtl .. I!IH/(I.h : C:arrPtt rl nl .. I!JH!I: 
Hjorkman t\: l'ar·ham. I!I!HI . :\lnddPn rt rtl .. I!J!ll : 
Frl'nHmt r/ rtl .. I !1!1'2) . Tilt• e·on;.;t• rTat ion of <·ril ic·nl 
rPsidu<•;.; I hat form t lu• <·Ia,;,. I grocl\'(' ,.uggl'sls that 
I hi,. fpa tIll'<' i,. prC':-e·n·pr( i 11 Fd~ 11 ( !--;1111 i"l t' l' ..\: 
:\l o,..lo\'. I!IH!Jfl.h). hut tlw rnndP of binding to F" i,. 
unktHllln. Tlw :--tnu·tnral ,; imilnrit1· IH't\\t'e·n thi, F(' 
n·t·t•ptor and da,;s I :\Ill( ' lllolc'TuiP,; affords an 
opportunity to ::<truly hm1 ,.,·o lution ha;.; ll"l'd thi;.; 
strul'lural lllotif f(>r difT't·n·nt prrrpo,;C's . ..\:--a first 
sll'p in a "t rul'\ural anah·,..i,; of FPHn a11d it,; moeh· of 
l>indrn!.! to 1!!( :. 1\1' ha1:1. pn'JHII'l'd and e· ry,..tall izPd 
<·omplt'.'\l':-- of Ft·Hn hound to F't· . Tlw stoil'hionwtrY 
of till' Ft·Hn F<· intna('(ion ha, hP<'Il anaiYzC'd t.o 
f;H·ililat<· tiH· sol ution o f thl' t·r.n.;tal strue·tt;r'P. and 
to obtain illl initial dtanu·tPrization of tlw binding 
of 1·\· Hn and its ligand . 

(a) / s()('o/iull (11/(/ rrys/(11/i:;(l/iun of 
Fr H II Ft· r·om filr.rrs 

.\ so lubiP form of i'l' l{n . e·on,;i::<tin)! of tlw thrl'f' 
<>xtrn<·l'llular domain,; of the lwa1·y d1ain t·omplt-xPd 
to l'ilt /J-2-mHTO!!Iobulin. was t'.'.prp,.;,.;pd in ('hin<'>'C' 
hamstt·r onu·~· (C'l-10) <·c•IJ,; (C:n,;tinPI PI rd .. 1!1!1'2) . 
Tht· lwt e rodinwr 11as purified through us!' of it s pH 
dPpe·rHit>nt h11rding to imrnobilizPd lg( ; (C:asti rw l l'l 

rd .. I !J!l-2). ('om pit>.'\(';.; of Fl'i-{n and;,; rat Fe (.Ja<·kson 
fmmunoHP,..l'ardr) IH' n' pn' JHl rt>d h.\' m ·prnight 
irH·uhnt ion (-l (')at pll (i<l of a prott>in solution at a 
mol;tr ratio of apJH'O.'.irnately t\\o Fl'l{n mole{'ulp,; 
pe•r· Ft· . l'nlH>tnHimol<•t·ult·" wen· ,.;pparatl'd from tlw 
t·omplex b_,. gt .. l filtration on a HiLoad™ :W /IiO 
~upt·rde•x TM '200 pr('p gmdt' FI'L(' t·olumn. and tlw 
JWak t·orn•:-ponding to t lw t·omplex 11 as <·ont·t· n ­
tralt•d to 1.) Ill!.! mi. ,\t a :Z: 1 molar mtio of F'l'Hn to 
P<· . rwarl~· <\ II of tlw F'l' pmtt'in app<'an·d to migrat<• 
as a e·ornpiC'x (data not 1--hown). but unbound Ft·Hn 
e·ould not lw fully ,.,eparated from tlw <·ornplt-x pl'ak. 
hindt•ring I lw dPtPrmination of I lw Pxad stoil'hio­
nwt ry of binding. ('r.n;tals of llw <·ompiPx 1\'(' l'l' 
gnl\1 11 by t lw mic·ro-1·apor diffu,;ion nwt hod 
(:\I<' Plwr,.,on . I !JH:Z). and initial e· rysta llizat ion <·ondi­
tions 1\'l'T'l' ohtairwd fmm a fa<·torial trial se·n·en 
(.Jarll'arik & Kim . lflfll ). Large• s inglt• <'ryl'tals ll'l'l'l' 
grm1 n from protPin solutions ( l?i mg mi. 
10 nnt - pipt·razine-.\'.S'- bj,..(:Z-Ptharw sulphoniC' a!'id 
pH (i·-L 0·0.'> 0

0 :\a:\ 3 ) in tHil .\1 sodium tartaratl'. 
100 rmt -eitrate (pl-1 :''i-Ii). 200 rmt -:\lg('l 2 (Fig. I ). 

-0.4mm 

Figure I. FeH11 F <· cr.l:-tab. Lt>ngth of <Tystals 
i11dwatl'cl h_1 tlw har 

~I>~ 1'.-\(; E anal~·si:- of 1\ <biH·d <T_,·,.,tal" shm1· haneb 
L'OITl'" IH>Ild rng to tlw Ft·Hn hPal·_,. and light l'hain" 
and Fl' ( Fig. '2) . 

Tlw ~pat·t· :.rroup and <·t•ll dimt•nsion" of the 
l'l'_\'"1 ;II:- 11 L'l'l' d!'!t•rmirwd by pn•t·t•,.;:-;inn photo-

kDa 
1 2 3 4 

116 ~ 

66 ~ 

45 ~ 

29 ~ • 
20 ~ 

14 ~ 

Figure 2. :-;():-; 1.) 0
0 1',\(:E dt'IIHIIH<tration that \laslwd 

t·rystals <·onta in hoth Fe· and Fd{n pt·otPi ns. Ha nt•,.,tt·d 
<·r·~·stals \II'I'P waslwd in 0·7:) ~r - :\a('l. ltJO nDI at·Ptatl' 
(p ll -l·fi ) and dissoht·d in n·dtll'illl! gPI samplt• huffPr. 
Lnrw I. :lJH! purifiPd F<· (.lat·kson lmnHIIH>Ht•span·h)~ 

ian .. :.!. ~.)PI! purifiPd Fc·Rn : larw :l. molt•t·ular \\l'il!ht 
,.,tandards: latH' -l. \1 aslwd t·n·stals. I lt•n,.;it omN n· of t \I'O 

gpb: four difiPI'Pilt knm1 11 qu~ntitiPs of puriti ... d f~<· l {n and 
thr·pp quantitu··s of Ft· \\f-'1'1 .. run on Pa<·h :-;():-; 15 " 0 1'.\C:E 
1-!t'l. (;p(,._ \ll'r<' ~tairwd with ('oomassil' lkilltant Bltu· and 
indi\'idual lanPs \\'t•r•· d<·nsitomt'lt•t'Pd usinj.( a C'on>puting 
()pnsitollWl<'l' (.\ lolt••·ular l>\'namil's) and tlw C:ELTOOL 
proj.(nt m . 'I'Iw m<'asur('d d;•nsit.l of t·;wh standard \\as 
plott('(( I'('J'>'ll" pg of protl'in and uspd to P\'<liuatp thP 
amount of Fd{n and Ft· pt'('Sl'llt in thn•t• \1 aslwd t·r_,·,..tal 
sampl ... s .. \ ssuming l'f-'lati\'P mol<•t·ular llHtssf's of -lil.OOO for 
tlw Ft·Rn \wan· t·hain . l :l.O(HI for tlw Fd{n light <·harn. 
()0.000 for Ft· (~ dimPr of l\\ o :lO.IHHI polyp<·ptidl' <·hains). 
tlw molar mtios (Fd{ll F<·) for thrP<' indi1·idual lanPs of 
\\ aslwd t·r.l'stals ar£' l·H . 1·!1 and l·li. 
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~raphy and data <·oJipded on a ~ienwns propor­
tional multiwin• art>a dt>te<·tor mountt>d o n a 
:-iiPnwn" rot;l\ 111 1-( anod e (:?00 J.llll f<H'al <· up.,)() k\'. 
HO mA). Data w<>r<' re du ('ed with the XE:\t:EX 
pa<·kagp of program,; (H o ward PI rtl .. IHH7 ). Tlw 
s pa<·P gmup of tlw <'rysta);., i" /:?:?:!. o r· /:!. 1 :!. 1 :!. 1 "it h 
unit l'l'll dinw n s io n s a= I:?:) • .\ . IJ = I ;):!. A and 
I'=:!. Hi r\ ( I .-\=O·Inrn). Based o n <1\'t' I'Hf.!<' \'Oiunw 
t o llHIS" nttioo< (l'ml o f protein ct·~·stals (;\lattlwws. 
I!Hil'l ) and us,.:uming a :? : I m o lar ratio of F<'l{n 
m oiP<·uiC's t o F <· (sN· h l'low). thP a,;ymnwtri<· unit of 
thP ('J'.n•tal i;., e,;ti m a t pd t o <·onta in <>rW <·ompl<'x and 
;)/ 

0 
0 ,;oh·<·n t. BP<·a U ><<' t h P dt>tector data " t-n• "<·ak 

h<·~·ond (i ..\. t lw pra<·t ic·al l'l'so lu t ion I i mit of t lw 
<·r.'·"tal;., u,;ing a ro tating anodP is() . .\ . Pn•liminan· 
diff'rad ion photograph" of <·om plt>x <'l'~·,;ta l :- ta kP;l 
at tlw S tanford :-1\'lwhmtmn f{ adiat ion 
Lahomtorip,., (i. = I·OH . .\) ;ho\\· ani:-otropi<" diffnH· ­

tion alo11 g tlw dirPI'lion of tlw a -axis to :l·:) .\ . with 
diffrac·t ion to.)·.) .\ in tlw dire('[ ions of tlw o th<· r· t" o 
axPs. \\'(' ha \' (' o ht a itw d l' rn;ta ls ofF<' Rn a lone that 
difTra!'l t o :!.·:? .-\ r·pso lut i~n (L.:\ .(; .. :'11. Blum & 
P .. J . B .. unpuhlis lwd re,;ult,:). a nd a <TYst a l st ru!'l un• 
dPtP nnination i,; in prog rpss. L':sing tl~<' F<'l{n s tru<· 
t lli'P and t IH• kno wn s tru c·t u r·p of F<' ( I>PisPnhofpr. 
HlHI ). it shou ld b (' possi hiP t o lo('at P tlw region of 
Fd1n im·o ln•d in binding to F<· f'\' (•n in a l<l\\ -

A 
(1) (il) 

rpso luti o n e le<· tmn dc•nsity map. To fal' ilit atl' int<'I'­
JH'Pta t ion oft h l' ('()Ill plex "t ru<'l u r P at low reso lu t ion. 
\\P dPIPrrnitwd th(' " t o i<·h ionwt ry o f Fd{n Fl' 

hind in~. 

(h) l hmm/8/ml ion /hat two Fr Hn muil'<'ttles !'(Ill 

l1i II(/ to o si nyl! Ft· 

l>e n s itonw t ry o f thr<·<· indi,· idua l gel latws of 
washpd <·r,\·stals suggpst::; a molar r a tio oft \\'0 F'd{ n 
m o le<'ul<>,; per F <' (s<'<· legend to Fig.:!.). ln order t o 
vPri f\ · tlw,;!' ch1ta. \\'P d<·,· i,;Pd a c·olurnn binding 
assay to dt't<>r·mirw wlwt lwr mon• than o n <• Fd{n 
mol<·<·ulc' <'<1 n hind pPr Fe·. 

Solu hie Fd{ n was <'O\' a l<•n t I,\' l'OU pl<'d to 
(':\Br-aC'linltPd Sq>harosp -+ll (Sigma). Jrnmohi lizc'd 
Fd{n hound fg(; and F (' in tlw sam<' pH -d<·pendent 
manrl('r as solubll' F<·Bn and c·p)) -,;urfa<'P F<·Bn 
(Simis t Pr & H<'PS . J!)H."i ). a llowing <'Xt>c· ution o f an 
PX )JPrinwnt to d Ptl' rmirw whl'lher two FeRn 
rnoiP<·u)ps <·an ,;i multanc•o us ly bind t o on<' F (' frag­
m ent (Fig. :{A). Purified rat F (' w a,; hound to thP 
<·olumn at pll 6·0. followed by 1:? <"olumn Yolunws 
o f pH (:Hl \\·ash huffp r (;)0 mM -phosphatP (pH !-Hl) . 
:?i50 nnt -:'\a('l ). ~oluiJi c.> i"<'Hn was tlwn pass<'d o\·pr 
tlw l'olumn . a nd tlw c·o lumn w as waslw d with an 
a dditional 20 c·olumn ,·o lunws o f buffPr. Pro tein:s 

B 
kDa 1 2 3 
116 ~ -

66 ~ -
45 ~ 

29 ~ 

20 ~ 

14 ~ 
Figure 3. I>E:' mo nst ration that a s ing lp F<· <·a n bind two F<'Rn molP<' UIPs. A . <'olumn E'XpE' rim t>nt described 

:-wlwmatica ll ,\' . (i) PurifiPd FeRn ( l !:l mg : rpprPsPnted s('ht•m atic·a lly b.v hat<·lwd sy mbo ls) was CO\'alent ly eoupled to 
:!.·.) ml (':\'B r-adi,·ated i'epharose 413 (:-iigma) . Samples of rat FC' (light s hading) wert' passed over the <'olumn in 
iiO tn)t-phos phate (pH fHl) . 250 mM -:\'a('l. and thE' <'ol umn wa~ washPd with 1:1 ('olumn ,·olurnes of thP :-;arne pH 6·0 
huff<>r. (ii) l'urifiPd F<'Rn (hateht>d ~ymhols) was thPn passed O\'er tlw c·o lumn in 50 mM -phosphate (p H 6·0). 
2ii0 nut -:\'a('l. a nd thP column wa~ washPd with :10 <·olumn \'Oiume;; of t h P pH 6·0 buffer. Bo und Fe and FC'Rn wer<' 
PlutPd "ith .)0 nn1 -phos phatP (pH !l·O). 2.">0 lll)t -::\a( 'l. and thP elutNI fractions were anal_v~Pd by SJ)i' I i·5°0 PAC;t.:; 
under redtwing ('Ondi tions. B. lanp I. :1il,ul of 1·0 ml frac·tion ofF<' flowthrough: lane 2.:10 ,ul of 1·0 ml fra<"tion ofsolubiP 
F<"Rn flowthrough : lanp 3 . 53 ,ul of 1·0 ml fraC'tion of prott>in t•luted at pH H·O. Bel'aURP FeRn does not bind to thP FC'Rn 
l'olumn in tlw absem·t> ofF<' (data not s hown) . any F<'Hn protPin Plutt>d from thP eolumn must be bound to a n F e 
mulpc·uiP that is a lso binding immobilized F<·Rn . 
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Figure 4. CalorimHrie titration of F <' Rn and a human 
lt<C I moncH·Ional antibody (Carter et a/ .. 1992). 
hotlwrmal titration <'a lorimetr~· was pt>rformP<I on a 
Mieroeal. Inc. O:IIEGA ealorimPtt'r at 2!}·;) ('. 

CorwE>ntratE>d :;olutions of IgC and solubh, Fc·Rn in 
20 tn)J - 2 - (.\" -morpholim•) etharw sulfonie aeid (pH {i·i>). 
U· / ~1 - XaC'I wE>rt> :sterile filtered b.v passage thmugh 
0·22 !Jm :llillipor!' Millex-{:\' filt!'rs. Protein 
eoneentrations Wt'rP determirwd In· ah:;orban<·t> 
nwasur!'m!'nts using an e280 of 22;) tn)l .1 em - 1 for thP 
1!!:(; and 8~ mM - 1 ('tn 1 for F<·Rn. The lgG and F<·Rn 
solutions w<•rp d iluted to 10 IJM (lgG) or 20 IJ)1 (F<·Rn) 
and one of thE' proteins was plaeNI in tht> <·alorimE't!'r <'!'II 
( J·:l9~:3 ml). For thesP protein <·ontentrations. th E' .. r .. 
valut> (\\"ist'man el a/., 19H9) is b!'tween 10 and 100. and 
thus the param!'ters n. K. and !1H tan bt> dt>tPrmi rwd in a 

direetlv and indire<·tlv bound IH" tlw immohilizPd 
Fd~n ~vere e lut ed at p.H H·O. and .tlw <·olumn flowth ­
roughs and eluates were <•xarnined hy ~DS-I'A(;E 
(Fig. 3B). In tlw ahse1H"e of Fe. F<·Hn doe::; not hind 
to the Fd~n eolumn (data not shown). ~ill("(' ,;oluble 
FeHn could on l.'· lw retainPd on tlw eolumn h.Y 
binding to an Fe molecult> that was abo bound h.\· 
an immohilizt>d F c Hn. the JH"l'SeiWf' of FeRn in the 
e luat l' indi<·a tes that mort> than on<• Fe H n moleeult> 
c·an bind to a single Fe. 

(<·) Isothermal titrntion raforimelry /o mer/81/H' 

8toichiom Pir.IJ of binding in solution 

hothPrmal titration C"alorimetry may lw us<•d to 
d('terrnirw tlw indPpt>ndPnt tlwrmodynamic· para­
rne!Prs (1\. and Ill/) as wc•ll as tlw numbc•r of 
binding sitc·s (11) govE'rning a prot('in- ligand intt>r­
a<·tion. prm·id('d that therP is a nwasurahl<' Ill/ . and 
A', i::; in tlw rangt> of 103 < /\',< 109 

)J 
1 (\\"iseman el 

af .. l !lB!l) . Aliquot::; of a ligand protein ar<' add<•d to 
a ::;olut ion in tlw c·aJorinw!<'r e('ll containing a fixed 
c·oncentration of tlw binding prot('in . and tlw lwat 
of rE'action is nwasurf'<l until th<' r!' i::; no furtht>r 
enthalpi<' ehangP. If tlw stoiehionwtry i,.; diff!'rt>nt 
from I: I. thE' \"aiuE's of Ill/ and 11 will difft>r 
dE'pending on whic·h <'011lJ>OIWnt is in tlw calorinwtPr 
cE.'ll and whi<·h is bE.'ing titratE.'d . SinN• \\"(' C"an 
J>Prform the titration exJwrirnt>nt with Pitlwr FeRn 
or its lgC ligand in the c•alorimE.'tN <"<'II. W!' han· 
ust>d this nwthod to ,·erif.v that thc• F<'Rn- Fc· intN­
a<·tion has a :? : I stoichiometry. 

singk t'XJ>Primt>nt. The injeetion syringP (2i>O 111 ) was filll'd 
with a <'On<·Pntrat!'d solution (0· 1 ;)~ nnr) of tlw otht>r 
<·omponent . mountt>d in thE' ealorimetN. and aiJm,·pd to 
I"OJilt' to tlwrmal <•quilihrium at 25·5 (' with stirring at 
~00 rp,·s min . :\ st>ries of injf'l'tions spai"Pd ~ rnin apart 
wert> madP. and tlw ohsen·NI hPat puls1•s wt>rP intPgrated 
using softwart' suppliP<I b.v thP manufac·turPr. Ht>ats of 
dilution nwasur!'d in spparatP e:qwrinwnts hy injl' !"lion of 
lg(; or Fc·H.n into buffer Wl'r<' ~uhtraet('(l from tlw 
intf'gratpd \·alm•s .vil'lding thf' ht>ats of hinding. Tht> 
thPnnod.\·namie pararnet<•rs 11 . fi. and !:1// werP 
dett>rmitwd b.v non -lint>ar regrp;;sion anal.vsis of tlw 
binding isotherm . . \ . ('alorinwtri<· titration of Fd{n "ith 
lg(: at 2;)·:) ('. Ht>at pulses ohspn·ed for 12 inj<·<·tions 
( 14 1<1 eaeh) of a solution ofO· I !)~ nn1 - lg(; into a solution 
of 20 IJ)!-FeRn. lnjPetions \\Prt' madP P\' t>r.'· ~min . 
B . ('alorirnt>trie titration of lg(; with F'c·Hn at 2;)·;) (' . 

Ht>at pulsE's obs!'n·t>d for 10 injel'tions (22 111 I'>H·h) of a 
solution of 0·15~ m~t -F<·Rn into a solution of 10 JDt - lgC . 
lnj<•ction;; W!'l"!' made !'\"!'ry ;) min . (' . ~toithiometry of 
lg(; F<'Rn intt>ra<·tion . Binding isother·ms ob~en·pd hy 
ealorimt>try for titration of FrRn with lg(: (triangiP~) or 
for titration of lgG with FrRn (eir<·l!'s) art> plottt>d t•ersus 
the molar ratio of titrant to binding protein obtained at 
thE' end of the injeetion . Tlw ~olid linE's are thP rP~ult of 
fitting the data to a singlE' elass of non-intemeting binding 
sit<•(s) model. For titration of FeRn with lg(: . this 
analysis yil'lded tlw thermodynami<· paramC'ters: 11 = O<JH 
( ±IHll). K.=2<3 (±0·5)x l()6 )1 -

1
. ami M/= - 11·0 

(±0·-l) hal mol. Titration of Jg(: with F<·Rn yit>ldt>d the 
thermodynamie parameter~ : n=2·05 ( ±0·0-l). K,=l·i 
(±IH)x 106 M -

1
• and 6H= - :l·9 (±0· 1) hal /mol. 
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('a lor·inwtri!' rnt'asun•m<•nls of th(' interaction of a 
human l g(: I monodonal ant ibod,\' (<'artPr 1'1 a/ .. 
I !HI~) with solubll• FeRn an• shmn1 in Figure ..J..-\ for 
titration of F<"Rn with Tg<:. and in FigurP ..J.B for 
thP opposit<• <'XIWrinwntal <"Onfigurat ion. Xon-lirwar 
n·gression analyses of tiH• data using a ,.;ingl!' class of 
non-interading binding sitP(s) rnociPI ren•a iPd a 
binding l'Oilslant ( A. .• ) of ~ x 106 ~~ 1 ( A.'0 = (1-:) 101) 
for both ('XpPrimenb. H owPI'N. tlw clPrin:>d 1·alutos 
of !!.// and 11 differPd cl(•p(•nding on which protein 
1\'lt>' lwing tit rated. :\ largPr 1·alut> of 11 (11 = :Nl?i) and 
smaller ntlul' of/!,. // (- :~·!l kcal mol I <'ai=-1-· 18-J. .J) 
WPI'l' ohtairwd for titration of IgC with FeRn . as 
<·ompart-d with tit ration of F<"Rn with l g(; (II =O·a8. 
!!.11 =-I I ·0 kcal mol : Fig . ..J..-\ to ('). Thl' dPpt-n­
dl'n<·P of th<• nt luPs of !!.II and n upon whieh protl'in 
is being titratPd suggests that thP lgG FeRn 
stoi<"hionwtr\' is diff'prent than I : I , and both 1·alues 
of 11 prt>diet. that two F<"Rn moleeult•s hind to a 
single Tg(;. The good fit of thP data to a single dass 
of non-inleraeting binding site(s) model srrggc•sls 
that mon• <"Om pli(·atNI Jl1()(1Pi s im·oh·ing two sitt>s of 
diff('J'ing atlinit_1·. or <"ooperati,·ity bet 11·een lhP t 11·o 
sill's. ean hl' eliminated. 

(d) !Jiscus8ion 

\\'to ha1·e begun a structural inl'estigation of a rat 
F<" re<"E'ptor (FeRn) with an intriguing struetural 
sirnilarit~· to elass I :\IH (' moleeules. ThE' prt'­
dominant fpaturt' in lhP crystal struetur·es of class I 
:\1 H (' prot<•i ns is a gr·oo1·e ioea ted lH't Wt'en two long 
e~:-lwliees. whieh is thP binding sitE' for pt'ptidt's 
dl'ril·t'd from self and fort'ign antigens ( Bjorkman PI 
a/.. I !)87a./i: Garn•t t et a/.. 1989: Bjorkman & 
Parham. 19!)0: ;\ladden eta/ .. 1991: Fremont PI a/ .. 
19!)2). Although FeRn i!'; predieted to sharp the 
lwlin•s and {J-shPE't that form thE' :\1 HC peptide­
binding sitC' (~irnister & :\l ost01·. 1989a). the 
immunoglobulin ligand of Fc·Rn is a macrornol<:>ctrle 
instPad of a pt'ptidl' . and it i~ not obl'ious how tht­
F<· portion of lp:(: (·ould fit into a gmov<:> of similar 
dimensions as tlw elass I :\IH(' peptidl' binding :;ite. 
Comparison with <-lass I MHC' molt'eules suggt'sts 
two oth<:>r candidatt• regions for the Fe-binding site 
(~imister & :\l ost01·. 198Ba): the C'Ountt'rparts of 
either t he• (•lass 1 binding sites for T -e('llrt'ceptor. or 
for· ('1>8. a eo- rt'eeptor on cytotoxic· T cells. The 
hyppn·aria hiP region,; of the Fab-likt' T -et'll rt'et'ptor 
hal'(' lw<'n suggt'stt'd to eontaC't the two o:-ht' li ces of 
tlw ;\IH(' molt'eule. neet'ssitating simu ltan('ous 
<"Ontaet with a peptide oeeupying the sitE' (Chothia 
rl a/ .. 1988: l><ll'i~ & Bjorkman . 1988: ('la,·t'rit' PI a/ .. 
198!1). and C'DS intt'ral'ls with thE' mt'mbrarw proxi­
mal port ion of the <·lass I a 3 domain (('onnoll_1· e/ a/., 
1988: ~alt('r et a/.. 1989). As an initial stt'p in 
(·om paring tlw inte raetion between FeRn and its 
immunoglobulin ligand with the recognition of 
dass l :\1H('- peptide cornplt'xes by immunoglobulin 
supt'rfamily membpr·s. we ha1·p nystallized an 
FcRn- Fc complex. The nystals are extremely 
radiation st'nsitivt', and reflections ar<:> on lv 
observt>d to low (3·.'5 A to 5·.'5 A) resolution at roo~ 

l<'mJ)('rattll'('. l'sing a high - intpnsit~· beam at a 
s.l'nchrotron fa<"ility . it is possible that higlwr resolu ­
tion data <·an lw coll<·<·tt>d from cry<>IH'<'st'rTed 
crystals (HopP. 19!10). whic·h han• an essf'ntially 
infinite lifl'tinw in the X -ray ht'arn. 1n thE' <·ase of 
the FeHn crYstals. W<' ha1·~ obsen·NI a dramatie 
inn·pasc· in re.solution h.1· c·ollt-cting data at - 1()5 (' 
at t lw ( 'onwll High ErH'rg_,. ~ynchrotron ~oun•p 
(('HE~~). l'ndN tht>;;<• eonditions. data were 
eoiiPI'lPd to ~-2 . .\. as c·ompar·ed to a maximum 
rl'solntion -:~·;) -'\ at room t('mp('ratur(' ( L .X . (~ .. 
:\1. L. Blum & 1' .. 1. B .. unpublished re;;ults ). Thf' 
c·onditiom: for IH't•paration of eryopn·s('rTed crystals 
of the Fc·Rn- F<· <·ompl('x arp hl'ing t'xplort'd. 
L'ltimatt>ly. result,; of tlw stnH·tu rf' d('tt'rmination of 
FeHn alon<• (Castirwl et of .. 1992) coupiPd with tlw 
known Fe· C'ryst al stntl't un• ( I kis('nhof<:'r. 198 1) 
should allow idC'ntific·ation of tht> port ions of FeRn 
and Fe in1·oh·t'd in binding PH'Il at low re,;olution . 

Because tlw F!' portion of an l gG i;; a ehc•rnieal 
dim('r. it wa~ possiblE' that two FeRn moleeull's bind 
pPr Fe. analogou,; to the ohserl'at ion of a ~ : I 
stoieh ionwt ry in t lw st nrclu r<' of tlw <"Om plPx of a 
fragment of prot('in A with Fe ( J)('isPnhofPr . 1981 ). 
A 1 : I stoichionwtry of binding was possiblt> in tlw 
t'I'Pnt that th(' binding of on<:' FeRn stc•rieally 
hindt'rs a sp<·ond from binding. or the binding :site 
on Fe is n•pr<:'st'nted onl.\' orwe in it>: struettll'{' (for 
l'Xampll'. tlw binding sitE' is formed at thE' bottom of 
thto Fe molt'eull' spanning th<' two ('H3 domain>:). 
Densitomet r~· of gpl,; of was hE'd er_l'~t a ls suggt•st that 
tlw c'l'ystallized eom piP X eontain;; two Fe· Rn 
rnole('u)('s per Fe. To I'Prify that more than on<· 
FeRn ean bind pt'r Fe in solution. IH' ust•d a 
column-binding a~say to show that Fe hound to 
immobilized FeRn c·an bind add itional FeRn . whieh 
i::; only possible if there is more than one binding ,:;ill' 
for FeRn on Fe. 

Isothermal titration calorimt'tr.v was used as the 
final v<•rifieation that FeRn hinds to lgG with a~: I 
s toiehionwtry. Fr·om thPs(' expt'riml'nts. WE' <·aleu ­
latt'd thP tht'rmod~·nami<· pararnt't('r-;: 11. K. and !!.II 
for Fc·Rn titrating a human TgG I monoelonal anti ­
body (Carter PI a/.. I !)92) and for TgC: titrating 
FcHn. From tlw titration of FeRn with lg(:. we 
ohtaint'd a valuE' elose to (H) Fe molt>ntlt>s bound pt'r 
FeRn (11 =0·38). while tlw titration of lgC: with 
FeRn vi<:'lded a Yalut' <"lost' to 2·0 FeRn molpeult's 
bouncl.pt'r Fe (n= ~·05) . Both expPriments yi(')d('d 
K. val ups e lose to ~-0 x I 06 ~~ - 1

. This val uP suggests 
a lowN affinit.l' of rt'<'E'ptor- 1gG int<:'ra(·tion than 
l'alues obtainNI ))I· ~eatehard analYsis of the 
binding of monodor;al rat lgG l or lg(i~b to dett'r­
gent-isolatt'd whole rec-eptors purifi<:'d from nt'onatal 
mt intt'stine (1<.=2x 107 to 3x 107 ~~ 1

: Hobbs 1'/ 
al.. 1987) . Tlw affinit_,. difft'rt'll<'(' may n•t\pc·t a 
differt'llCE' in rnt'thod. a diffe rence in tlw li!!and 
(human TgGI 1·ersus rat l gG2a or 2b). or a differ­
ence in the rt'('E'ptor (a truneated Ft·Rn moleeule 
la('king its transme mbranE' rt'gion in our study). 

Prior to this report. the stoiehiometry of purifit'd 
FeRn binding to Fe had not been determint'd. but 
attempts wert' made to estimatE' the moleeular 
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weight of thP funPtional unit of lg(; binding in 8ilu . 
EIPctron irradiation oflyophilizNI and rP<·onstituted 
intl:'stinal brm;h borclfi't'S suggpstt:>d an approximatfi' 
relative molt•<·ular mass of II 0.000 (Simister & Ree~. 
198:3). Ot' 90.000 to 107 .000 from preliminary stuclit:>s 
on brush border mc•m brant:> suspension~ <'OOit:>d to 
-100 (' (1-iimister & Rees . 1983). Tht:>SE:' data 
sugg<•sted that a single FeRn heterodimt:>r (relative 
molec·ular mass -65,000) was not funetional in IgG 
binding, and it was h,vpothesized that a disulfide 
linked dimer of hean· C'hains formed the funetional 
rPeeptor (Parham, 1989: SimistE'r & :\1oslov, lfl8!)a). 
However. \H' sec no e\·idenee of eo\·alcnt dirncr­
iza.tion of solublE' F<'Rn by tomparison of the 
mobility on SDS-PAGE gels run under reducing and 
non -t·fi'duting eonditions. and puriflfi'd FeRn elutes 
from a gel Hltration <·olumn at the position expecl«>cl 
for a <'Omplex of a single heavy and li!!ht chain 
(Castine) et a! .. 199:!). In addition. thfi' ohsfi'n·ation 
that thl:' immobilized FeRn heterodimPrs still bind 
to F<· further sugg«>sls that a si ngiP FeRn hetero­
dimer is functional in Fe bindin!!. Our data suggest 
that two FeRn heterodimers C'an bind to a single FC', 
but t hal the fum•tional unit is not by ne<·essity a 
dimPr of two hea\',\' C'hains with two' /12-micmglo­
bulin subunits. Howfi'\·er. juxtaposition of two F<·Rn 
lwterodimers on int«>stinal membranes rna\· facili­
tate l gG binding and transport. through bi;1ding of 
each Fe portion by two receptors. Knowledge of the 
FeRn-Fe stoiehiometry of binding will facilitate the 
<'r:.·stal strueturfi' determination of the complex. and 
sl"rve;,; as an initial e haractNization of the mod<:' of 
FeRn intcrac·tion with its immunoglobulin ligand. 
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Appendix B 

The Relative Affinity of Monoclonal and 
Polyclonal IgG for a Rat Intestinal Fe 

Receptor 
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Introduction 

FeRn, an Fe receptor transiently expressed by the intestinal epithelia of neonatal rats, 

functions to transport maternal immunoglobulin G (IgG) from the lumen of the intestine to 

the bloodstream. FeRn was predicted to be structurally similar to class I major 

histocompatibility complex (class I MHC) molecules based on an analysis of primary 

structure 1. Despite the apparent structural similarity, FeRn and class I MHC molecules 

bind very different physiological ligands. FeRn binds the Fe portion of whole IgG (- 160 

kDa) while class I MHC molecules bind peptides of approximately 9 amino acids (- 1 

kDa). The manner in which FeRn interacts with Fe is of considerable interest because it 

may provide insight into how class I MHC molecules interact with members of the 

immunoglobulin gene superfamily, such as T -cell receptors and CDS. The structure of an 

FcRn-IgG complex is also of general interest because it would reveal how the same 

structural framework can be utilized for very different biological functions. 

The crystallographic structure of an FeRn-Fe complex was pursued because the three­

dimensional atomic structure of such a complex would permit the function of FeRn to be 

understood at a molecular level (Appendix A). Crystals were initially obtained using a 

purified, soluble form of FcRn2 and the Fe portion of polyclonal rat IgG. Unfortunately, 

these crystals diffract to relatively low resolution (5 .5A, with anisotropic diffraction to 

3.5A in the direction of the a -axis) and are highly sensitive to radiation damage. It was 

proposed that flash cooling the crystals to N2(l) temperatures might allow the collection of 

high resolution data that could not be observed at room temperature due to radiation 

damage. Flash freezing did eliminate radiation decay but no improvements were observed 

in the diffraction limits of the crystals (A. Huber, unpublished results). In order to 

facilitate the solution of a low resolution FeRn-Fe crystal structure and to better characterize 

FeRn function, the stoichiometry of the FcRn-IgG complex was determined biochemically 
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(Appendix A). This work demonstrated that two molecules of FeRn can bind to a single 

IgG molecule and that the stoichiometry of binding in the FeRn-Fe crystals is two FeRn per 

Fe. 

While crystallography does yield tremendous insight into molecular structure and 

function, it can only provide a static picture of dynamic molecules and processes. Thus, 

crystallographic structure information generally needs to be complemented with a 

biochemical analysis of function. Biochemical characterization is sometimes a matter of 

necessity, especially when a crystallographic analysis has stalled. Since it was not clear 

that the poorly diffracting complex crystals could be solved, a study of the relative affinity 

of FeRn for different IgG molecules was undertaken. This type of analysis can identify 

high affinity complexes for crystallization and could lead to the localization of the ligand 

binding site. Information concerning the location of the FeRn binding site on lgG would 

facilitate the solution of a low resolution complex structure. 

Competition assays are frequently used to measure the relative affinities of ligands for a 

common receptor3. The relative affinities of different IgG for cell surface FeRn can be 

easily measured using a competitive radioimmunoassay (Louis N. Gastinel, personal 

communication). This assay measures the ability of unlabeled (sample) lgG to inhibit the 

binding of radiolabeled (standard) IgG by lipid-linked FeRn expressed on the surface of 

Chinese hamster ovary (CHO) cells2 . Measurements are taken at several different 

concentrations of sample IgG and are used to calculate the concentration of sample IgG 

required to inhibit binding of the standard by 50 percent (lso). 

If two monoclonal immunoglobulins are shown to have very different affinities for an 

Fe receptor, chimeric molecules can be used to determine which part of the 

immunoglobulin is being recognized by the receptor. A large difference in the affinities of 

human IgG3 and lgG2 for FcyRI, a high affinity lgG Fc-receptor, was used to localize the 
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region of IgG bound by the receptor4 . Chimeric IgG molecules were produced by 

swapping domains between human IgG3 and IgG2 and the relative affinities of the 

chimeric molecules for FcyRI was determined. These experiments demonstrated that the 

subclass identity of the immunoglobulin CH2 domains modulates FcyRI binding. Chimeric 

immunoglobulins could potentially be used to identify where FeRn binds IgG. This 

knowledge would significantly advance our understanding of FeRn function and would 

facilitate the generation of physiologically relevant Fe fragments that might yield high 

quality FcRn-Fc co-crystals. 

An examination of FeRn's affinity for different immunoglobulins might identify 

promising candidates for chimera studies and could also lead to the localization of the FeRn 

binding site through sequence comparisons. Differences in affinity should be reflected in 

heavy chain constant domain sequence differences . If a sufficient number of 

immunoglobulins were tested, one might find sequences that are conserved only within 

immunoglobulins that have a high affinity for FeRn. This type of analysis was used to 

identify regions within the IgG CH2 domain that were likely to interact with FcyRI4 . As 

mentioned earlier, such a localization of the FeRn binding site would not only better 

characterize FeRn function, but might lead to crystallization of physiologically relevant 

complexes of FeRn and a fragment of Fe. Identifying which IgGs have a high affinity for 

FeRn might also facilitate the growth of better FcRn-Fc or FcRn-IgG cocrystals. 

Complexes produced with high affinity IgG or Fe ligands might be more stable than the 

FeRn-Fe complex used in the original crystallization trials. The additional stability of the 

complex and differences in Fe sequence could lead to the growth of new crystal forms that 

diffract to higher resolution. 

Here I report the results of competitive binding assays that measured the affinity of 

FeRn for different human IgG subclasses as well as polyclonal lgGs from a variety of 

animal species. The experiments with human lgG subclasses were done as a preliminary 
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test to see if it was feasible to use human chimeric IgG proteins4 to localize the FeRn IgG 

binding site. The relative affinities of bovine, goat, rabbit, human and rat polyclonal IgG 

for FeRn were also measured. These experiments were carried out in order to determine 

which IgG should be used in future complex crystallization trials. The results of the 

polyclonal affinity assays could not be used for a sequence-based localization of the FeRn 

binding site because the polyclonal IgG contain a variety of IgG subclasses. 

Materials and Methods 

Reagents 

Dialyzed fetal bovine serum and fetal bovine serum were from GIBCO/BRL. 

Methionine sulfoximine was from Sigma. a-minimum essential medium was from Irvine 

Scientific. AFRC-MAC 193, a rat IgG2a, was a gift from Geoffrey Butcher (AFRC, 

Babraham Institute) and 125I labeled AFRC-MAC 193 was prepared by Louis N. Gastinel. 

Cell Suspensions 

CHO cells expressing FeRn with a lipid-linked heavy chain (p51-DAF) 2 were cultured 

m a-minimum essential medium supplemented with 10% dialyzed fetal bovine serum, 100 

units/ml penicillin/streptomycin and 500 j..tM methionine sulfoximine. Wild-type CHO cells 

were grown in a-minimum essential medium with 10% dialyzed fetal bovine serum and 

100 units/ml penicillin/streptomycin. 

Adherent p51-DAF expressing cells and untransfected CHO cells were removed from 

culture dishes by incubation with phosphate buffered saline (PBS), 10 mM EDT A for 10 

minutes at 37° C. Pelleted cells were resuspended in 50 mM Phosphate-NaOH, pH 6, 150 

mM NaCl, 1% (w/v) BSA, to a final concentration of 2x106 cells/mi. 
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Binding Assay 

Each competitive inhibition assay contained: 125J labeled rat IgG2a (AFRC-MAC 193), 

competitor cold immunoglobulin and approximately 2xl05 p51-DAF cells. Assays were 

brought to a final volume of 500 J..LL with 50mM phosphate, 150 mM NaCl, 1% (w/v) 

BSA, pH 6. Assays containing no competitor IgG were used to determine the signal for 

0% inhibition and the level of background was estimated by using wild-type CHO cells and 

no competitor. 

After incubation for 1 hour at room temperature, the assays were centrifuged in a model 

5415 Eppendorf Micro Centrifuge for 1 minute at 14,000 rpm. Supernatants were 

discarded and the pellets were washed with 1 mL of cold 50 mM phosphate, 150 mM 

NaCl, pH 6. The samples were centrifuged a second time and the supernatants were 

discarded. The pellets were counted with a gamma counter. 

Calculation of lso 

The signal for 0% inhibition (Total) was calculated by subtracting the estimated 

background from the number of counts observed without competitor. The number of 

counts for each sample (Sample) was also adjusted by subtracting the background. The 

percent inhibition in a given assay was calculated as follows: 

% inhibition= [(Total-Sample)/Total]xlOO 

The concentration of competitor required to inhibit binding of the labeled rat lgG2a by 

50 percent (lso) was estimated by plotting percent inhibition versus log(competitor 

concentration, nM) for each inhibitor IgG. When plotted in this manner, the inhibition 

curve is commonly sigmoidal with a linear range from approximately 20-80% inhibition. A 
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linear line of best fit was calculated for each competitor using data points from competitor 

concentrations that resulted in 20-80% inhibition. This line was used to estimate Iso. 

Results and Discussion 

Affinity of FeRn for Human IgG lsotypes 

The concentrations of human IgG 1, IgG2, IgG3 and IgG4 estimated to cause 50% 

inhibition of binding were all within the same order of magnitude (Fig. B-lA-E and Table 

B-1 ). Thus, all four subclasses of human IgG were bound by FeRn with similar affinities, 

with IgG 1 and IgG2 having the highest affinity and human IgG4 having the lowest (Fig. 

B-lA-D and Table B-1). Since no substantial differences in affinity were observed, it was 

not feasible to use human IgG chimeric proteins4 to identify the region of Fe bound by 

FeRn. 

Affinity of FeRn for Polyclonal IgG from Different Animal Species 

The average affinities of polyclonal bovine, goat, human, rabbit, and rat IgG for FeRn 

were estimated by competitive radioimmunoassay. FeRn has a very low affinity for bovine 

lgG with less than 15% inhibition observed at a bovine IgG concentration of 320 nM (data 

not shown). The relative affinities of the other IgG for FeRn, as determined by estimated 

lso values, are as follows: rabbit> human> rat>> goat>> bovine (Table B-1). Given 

the strong binding observed for rabbit and human IgG, it is likely that the Fe portions of 

these molecules bind FeRn with a higher affinity than rat Fe. An increase in complex 

stability coupled with changes in the amino acid sequence of the Fe could lead to new and 

better FcRn-Fc cocrystals. However, preliminary crystallization trials with rabbit and 

human IgG have not produced crystals that diffract to a higher resolution than those 

previously reported. 
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Table B-1 Estimated concentration of IgG required to inhibit FeRn binding 
of an 1251 labeled rat IgG2a by 50 percent (lso). 

Immunoglobulin Tested 

Human IgG1 
Human IgG2 
Human lgG3 
Human IgG4 

Rat IgG2a 
Goat polyclonal IgG 

Human polyclonal IgG 
Rabbit polyclonal IgG 

Rat polyclonal IgG 
Bovine polyclonal IgG 

150. nM 

20 
20 
35 
70 
50 

400 
30 
10 
55 

>1,000 
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Figure B-1 Results of competitive inhibition assays for purified subclasses 
of lgG. Percent inhibition is plotted as a function of log [competitor, nM] for purified 
human IgGl (A), IgG2 (B), IgG3 (C), IgG4 (D) and rat IgG2a (E). Data points for IgG 
concentrations yielding 20-80% inhibition were used to plot the line of best fit. Three 
replicates were measured for each IgG concentration. 
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Figure B-2 Results of polyclonal IgG competitive inhibition assays. Percent 
inhibition is plotted as a function of log [competitor, nM] for goat (A), human (B), rabbit 
(C) and rat (D) polyclonal IgG. Data points for lgG concentrations yielding 20-80% 
inhibition were used to plot the line of best fit. Four replicates were measured for each IgG 
concentration. 



163 

References 

1. Simister, N.E. & Mostov, K.E. (1989). An Fe receptor structurally related to MHC 

class I antigens. Nature 337, 184-187. 

2. Gastinel, L.N., Simister, N.E. & Bjorkman, P.J. (1992). Expression and 

crystallization of a soluble and functional form of an Fe receptor related to class I 

histocompatibility molecules. Proc. Natl. Acad. Sci USA 89, 638-642. 

3. MUller, R. (1983). Determination of affinity and specificity of anti-hapten antibodies 

by competitive radioimmunoassay. Meth. Enzymol. 92, 589-601. 

4. Canfield, S.M. & Morrison, S.L. (1991). The binding affinity of human IgG for its 

high affinity Fe receptor is determined by multiple amino acids in the CH2 domain 

and is modulated by the hinge region. J. Exp. Med. 173, 1483-1491. 


