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Abstract

In this thesis we investigate atomic scale imperfections and fluctuations in the
quantum transport properties of novel semiconductor nanostructures. For this
purpose, we have developed a numerically efficient supercell model of quantum
transport capable of representing potential variations in three dimensions. This
flexibility allows us to examine new quantum device structures made possible
through state-of-the-art semiconductor fabrication techniques such as molecular
beam epitaxy and nanolithography. These structures, with characteristic dimen-
sions on the order of a few nanometers, hold promise for much smaller, faster
and more efficient devices than those in present operation, yet they are highly
sensitive to structural and compositional variations such as defect impurities, in-
terface roughness and alloy disorder. If these quantum structures are to serve as
components of reliable, mass-produced devices, these issues must be addressed.

In Chapter 1 we discuss some of the important issues in resonant tunneling de-
vices and mention some of thier applications. In Chapters 2 and 3, we describe our
supercell model of quantum transport and an efficient numerical implementation.
In the remaining chapters, we present applications.

In Chapter 4, we examine transport in single and double barrier tunneling
structures with neutral impurities. We find that an isolated attractive impurity in
a single barrier can produce a transmission resonance whose position and strength
are sensitive to the location of the impurity within the barrier. Multiple impuri-

ties can lead to a complex resonance structure that fluctuates widely with impurity
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configuration. In addition, impurity resonances can give rise to negative differential
resistance. In Chapter 5, we study interface roughness and alloy disorder in double
barrier structures. We find that interface roughness and alloy disorder can shift
and broaden the n = 1 transmission resonance and give rise to new resonance
peaks, especially in the presence of clusters comparable in size to the electron
deBroglie wavelength. In Chapter 6 we examine the effects of interface roughness
and impurities on transmission in a quantum dot electron waveguide. We find that
variation in the configuration and stoichiometry of the interface roughness leads
to substantial fluctuations in the transmission properties. These fluctuations are

reduced by an attractive impurity placed near the center of the dot.
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Chapter 1

Introduction

1.1 Overview and Motivation

Novel semiconductor nanostructures, such as quantum wells, quantum wires and
quantum dots, have given rise to a wealth of new physics and offer promise for new
devices. With dimensions small compared to the electron mean free path, these
structures provide laboratories in which to study quantum confinement, quan-
tum interference and low-dimensional systems. Omne of the most widely studied
nanostructures is the double barrier resonant tunneling structure, consisting of a
quantum well composed of narrower band gap material such as GaAs, surrounded
by barriers composed of wider band gap material such as AlAs, and sandwiched
between doped electrodes. A quasibound level in the quantum well gives rise to a
transmission resonance [1], leading to negative differential resistance as originally
proposed by Tsu and Esaki [2] and demonstrated by Chang et al. [3]. Since the
initial demonstration, fabrication techniques have improved dramatically, leading
to better performance, and the double barrier has stimulated much interest in po-
tential applications such as very high frequency microwave devices, logic elements
with new functionality, and novel neural networks [4, 5, 6]. Lately quantum wires

and quantum dots have also attracted attention, both for their interesting new



properties and for their potential device applications [7, 8, 9].

Qualitative features of the current-voltage characteristics of the double barrier
resonant tunneling structure are understood [2, 10], but good quantitative agree-
ment with experiment is still lacking. One of the most important outstanding
problems is that calculated peak-to-valley current ratios are much higher than
those observed experimentally, causing considerable concern, as a good peak-to-
valley ratio is crucial to device performance. Likewise, transport in real quantum
wires and quantum dots is far from fully understood.

Discrepancies between experiment and theory are thought to be the result of
many complex physical phenomena. Among those which can play a role in the
operation of the double barrier and other nanostructures are electron-electron in-
teractions, electron-phonon interactions, band structure effects, and structural and
compositional imperfections. Much effort has been devoted to the understanding
of electron-electron interactions, as well as electron-phonon interactions and band
structure effects in double barriers. However, the treatment of structural and com-
positional imperfections, such as interface roughness, alloy disorder and impurities,
has been lacking, and these issues are believed to be a major source of remaining
differences between theory and experiment.

There is a great deal of experimental evidence that structural and compositional
imperfections can play a major role in transport in quantum structures. Improve-
ments in interface quality in double barriers since the first observation of negative
differential resistance by Chang et al. [3] have led to dramatic improvement in the
peak-to-valley current ratio [11, 12] yet there is substantial evidence that interface
roughness is still a dominant contributor to valley current. Gueret et al. [13, 14]
have given convincing evidence that interface roughness may account for most of
the disagreement of more than an order of magnitude between their measured and
calculated peak-to-valley ratios. (Their calculations assumed smooth interfaces.)
There is also considerable experimental evidence that defect impurities can dra-

matically alter transport in quantum structures. An isolated conductance peak



observed below the turn-on of the first transverse mode in a narrow constriction
has been attributed to resonant tunneling via a single impurity[15]. Degradation
in the quantized conductance steps of a dual electron waveguide has been seen
when the conductance channel is electrostatically steered into a scatterer[16].

Thus far, models of structural and compositional imperfections [17, 18, 19, 20,
21] have relied on first order perturbation treatments in essentially one-dimensional
simulations, limiting them to the weak scattering, weak localization regime and
preventing a realistic description of device imperfections and multiple scattering
in three dimensions. In addition, these one-dimensional models are incapable of
treating low-dimensional structures such as quantum wires and quantum dots.
If nanostructures are to serve as building blocks for reproducible circuits in fu-
ture technologies, atomic scale imperfections and fluctuations in their transmission
properties must be understood. Indeed, understanding the effect of structural im-
perfections offers the best hope for continued improvement in the characteristics
of double barriers as well as quantum wires and quantum dots—as proficiency in
fabricating and manipulating atomic structures improves, structural and compo-
sitional imperfections may be reduced or controlled.

In this thesis we study the effects of structural and compositional imperfections
in quantum structures. For this purpose, we have developed a supercell model of
quantum transport in three dimensions, capable of representing three-dimensional
potential variations on an atomic scale. This flexibility permits not only a more
accurate description of imperfections in double barriers, but it also allows us to
study novel geometries and material configurations and to understand quantum
wires, quantum dots and other low-dimensional structures. We find that interface
roughness, alloy disorder, impurities and other structural and compositional im-
perfections can dramatically alter device transport properties in ways that can only
be understood properly in terms of a three-dimensional model in which quantum
transport can be calculated exactly.

Although we do not treat the effects of electron-electron interactions, electron-



phonon interactions and detailed band structure, we will give a brief overview of
some of the important results in each of these areas and discuss how they could
affect the properties of the structures we consider. We find that, for our purposes, a
one-band, nearest neighbor, tight-binding Hamiltonian serves admirably to address
the effects of interface roughness, alloy disorder and impurities, yielding important
new insight in these areas.

The remainder of this chapter is organized as follows: we first present some
background on the double barrier resonant tunneling structure, describing early
theoretical and experimental work and some considerations of electron-electron
interactions, electron-phonon interactions, band structure and work thus far on
interface roughness, alloy disorder and impurity scattering. We then describe our
supercell model and how it can be used to study not only double barriers but novel
geometries and low-dimensional structures such as quantum wires and quantum
dots as well. We present a brief overview of some of the important issues in one-
and zero-dimensional structures, and we conclude with a summary of the thesis

and our results.

1.2 Background

1.2.1 Early Investigations

We begin with a discussion of early theoretical and experimental efforts on the
double barrier resonant tunneling structure. The basic operation of the double
barrier can be described as follows. A typical double barrier structure consists of a
quantum well of narrower band gap material (such as GaAs) in between two bar-
rier layers of wider band gap material (such as AlAs). The structure is sandwiched
between two heavily doped electrodes for carrier injection (see Figure 1.1). Con-
finement along the growth direction gives rise to a quasibound state in the well,

since the barriers are neither infinitely thick nor infinitely high. The transmis-



sion coefficient for the double barrier, as shown in Figure 1.1, therefore exhibits
a resonance of finite width centered on the quasibound level. At low bias, the
quasibound level lies above the Fermi energy, and little current flows through the
structure. As the bias is increased, the quasibound level is lowered below the Fermi
energy, and a substantial number of electrons can tunnel resonantly through the
double barrier, increasing the current. As bias is further increased, the quasibound
level drops below the conduction band edge in the emitter, and electrons can no
longer tunnel resonantly, leading to a reduction in current and negative differential
resistance (see Figure 1.1).

The first calculation of current-voltage characteristics in the double barrier
resonant tunneling structure is due to Tsu and Esaki [2]. In their model, the
double barrier was assumed to possess perfect translational symmetry in the plane
normal to the growth direction, and the transmission coefficient was calculated by
solving a one-dimensional effective mass Schrodinger equation. An applied bias was
assumed to produce a linear drop across the double barrier region, similar to that
shown in Figure 1.1. The transmission coefficient was integrated over the Fermi
distributions in the electrodes and over the in-plane momenta to yield the current.
In this model, the current exhibits a peak when the applied bias is approximately
twice the quasibound energy in the well (since the well band edge is assumed to
drop by an amount equal to half the applied bias), and at higher bias the current
drops sharply, leading to a large peak-to-valley current ratio and a narrow region
of negative differential resistance, even at room temperature.

Shortly after this theory was presented, negative differential resistance was
first observed experimentally [3] in GaAs/Gag3AlyrAs double barriers. At 77 K,
structures with 80 A barriers and a 50 A well showed rounded peaks in the cur-
rent and negative differential resistance, but the peak-to-valley ratio was much
lower than predicted by the theory of Tsu and Esaki. When the temperature
was lowered to 4.2 K, the structure in the negative differential resistance did not

sharpen, and the authors attributed this and the discrepancy from predictions in
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Figure 1.1: The basic operation of a double barrier resonant tunneling structure
is as follows. At low bias, the quasibound level lies above the Fermi energy, and
little current flows through the structure (stage 1). As the bias is increased, the
quasibound level is lowered below the Fermi energy, and a substantial number of
electrons can tunnel resonantly through the double barrier, increasing the current
(stage 2). As bias is further increased, the quasibound level drops below the
conduction band edge in the emitter, and electrons can no longer tunnel resonantly,

leading to a reduction in current and negative differential resistance (stage 3).



the Tsu-Esaki model to structural fluctuations and impurity scattering in the sam-
ples used. Subsequent improvements in fabrication techniques led to improvements
in performance of the double barrier resonant tunneling structure [11, 22, 23, 24],
yet substantial departures from theory persisted. Most notably the peak-to-valley
ratio remained much higher in theory than in experiment, owing to substantial val-
ley current in real devices. In addition, early theories did not predict the intrinsic
tristability [25] measured in real double barriers, as we shall discuss. Several phe-
nomena are thought to be responsible for these effects. Band bending and space
charge in the well, longitudinal optical phonon emission, real band structure effects
and elastic scattering due to structural and compositional imperfections have been
shown to impact the physics of resonant tunneling. In what follows, we give a brief

overview of results in each of these areas.

1.2.2 Electron-Electron Interactions

We first consider some of the effects of electron-electron interactions. In semi-
conductor quantum structures, many effects of electron-electron interactions have
been successfully treated with Thomas-Fermi theory, wherein electrons collectively
give rise to a charge distribution leading to changes in the potential each electron
senses. The accumulation of space charge in the electrodes and in the well causes
screening of the applied bias and can lead to hysteresis and tristability, which we
discuss below. This accumulation of charge density in double barriers has, in fact,
been observed experimentally [26, 27, 28, 29).

Theoretical analysis of space charge in double barriers must account for the fact
that, as bias is applied, the conduction band profile changes, leading to modified
transmission characteristics and to a new charge distribution which in turn alters
the conduction band profile, etc. A proper treatment calls for a simultaneous
solution of the Schrédinger and Poisson equations at each applied bias [30, 31,

32, 33]. Schrodinger-Poisson self-consistent calculations begin with a guess for the



conduction band potential profile, and then a transmission spectrum is calculated
from which a charge distribution is determined. This is then used as a source
term in the Poisson equation, from which a new potential profile is calculated.
The procedure is repeated until the potential profile has converged to the desired
degree of accuracy.

The resulting potential profiles exhibit band bending. In most double barrier
structures, the barriers and the well are intrinsic, while the electrodes are heavily
doped (typically between 10'"/cm?® and 2 x 10'®/em3). Therefore, at zero bias,
the conduction band edge in the well lies above the conduction band edge in the
emitter (see Figure 1.2). The details of the bending will depend upon whether or
not undoped spacers are included between the electrodes and the double barrier.
(Spacers are often included to reduce the number of ionized impurities in the
barriers and in the well.) In general, the band bending increases with increasing
electrode doping and with increasing temperature [33].

As bias is applied, an accumulation layer forms between the emitter and the left
barrier, and a depletion layer forms between the collector and the right barrier (see
Figure 1.2). The effect is a decrease in the bias across the double barrier region,
although the position of the well resonance is not changed relative to the emitter
Fermi energy unless the band bending in the left and right electrodes is unequal
(as might be the case when the electrodes are doped with different concentrations,
for example). The general impact of band bending, therefore, is that the rise in
the conduction band edge in the well due to electrode doping leads to a higher
threshold voltage for resonant tunneling, since the quasibound level in the well
must be lowered more to establish resonance.

Another interesting effect involves accumulation of space charge in the well of
a double barrier. Transport calculations accounting for space charge [34, 35, 36,
37, 38] have predicted intrinsic tristability (see Figure 1.3) and a region where
the current is a triple-valued function of bias in double barriers on account of

the direct Coulomb interaction. The extent of the region in which the current is
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Figure 1.2: At zero bias, the conduction band edge adjusts to accommodate the
difference in doping concentrations in the various regions of the double barrier.
When a bias is applied, an accumulation layer forms between the emitter and the

left barrier, and a depletion layer forms between the right barrier and the collector.
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Tristability

Load Line

Figure 1.3: Due to the accumulation of space charge in the well, the current-voltage
characteristic of a double barrier can exhibit a region where the current is a triple-
valued function of the applied bias. A conventional load line analysis reveals three

stable operating points.
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a triple-valued function of bias is slightly reduced by exchange interactions [35].
Although tristability has only very recently been observed [25], Goldman et al. [39,
40, 41] first observed its consequences, reporting hysteresis in the current-voltage
characteristics measured while sweeping the bias up and down in the region of peak
current. This phenomenon depends on a feedback mechanism due to the buildup
of significant charge density in the well as bias is applied, and it is hence much
more prevalent in asymmetric double barriers where the collector barrier is higher
and/or thicker than the emitter barrier, allowing charge to tunnel easily into the
well near the resonance, but making escape difficult.

An intuitive explanation of hysteresis is as follows. At low bias, the quasi-
bound state in the well is above the Fermi energy, little current flows, and there
is little charge density in the well (region 1 in Figure 1.4). As bias increases, the
quasibound level approaches the Fermi energy, significant current begins to flow,
and charge begins to build up in the well. As the charge density increases with
increasing bias, the resulting electric field causes the portion of the potential drop
occurring across the left barrier to be less than that across the right barrier, and
thus additional bias is required to reach peak current (region 2). When enough
bias is applied so that the quasibound level finally drops below the emitter con-
duction band edge, the current drops (region 3), the space charge leaks out of the
well, and the quasibound level drops to well below the conduction band edge in
the emitter. Next the bias is lowered. Throughout region 4, the quasibound level
remains below the emitter conduction band edge, and little current flows. When
the bias is decreased to where the quasibound level again rises above the emitter
conduction band edge, resonance is again established, and current increases (region
5).

Since hysteresis depends on the accumulation of significant charge density in the
well, it is most prevalent in asymmetric structures, as described earlier. Since we
do not consider structures where, at zero bias, the collector barrier is substantially

higher or thicker than the emitter barrier, the effect of space charge in the well
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Figure 1.4: Conduction band edge diagrams of a double barrier at key points
labeled on the schematic current-voltage characteristic. The bias is swept slowly
up and down in the region from a to b. When bias is increasing from below
resonance, charge builds up in the well, raising the band edge (part 2) and causing
the peak current to occur at higher bias than when bias is decreasing from above

resonance (parts 4 and 5).
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should be minimal. For instance, in a typical example of a double barrier that we
consider with a peak current density of J = 10°A/em? and a quasibound state
lifetime of 7 = h/AE =~ 107'3s (where AFE is the resonance width), the areal
charge density, o, in the well should be o ~ Jr &~ 10*e~ /cm? [42]. (For thicker
barriers, the increase in 7 is compensated by a decrease in peak current [13], so this
estimate for o should be representative for a range of double barriers.) This charge
density gives rise to an electric field of E = o /2¢pe, = 10°V/m, where €. =~ 10 is
the barrier dielectric constant. This leads to an increase in the well band edge of
only on the order of 1 meV in a double barrier with 10 A thick barriers. This shift
is negligible compared to the 60 meV shift in peak position due to alloy clustering

as calculated in Chapter 5 (see Figure 5.6).

1.2.3 Electron-Phonon Interactions

Another factor which can influence the operation of the double barrier resonant
tunneling structure is electron-phonon interactions. Electrons in the double bar-
rier can interact with acoustic phonons (deformation potential) and with optical
phonons (polarization field). Although acoustic phonons in double barriers have
been considered [43, 44], their effect on transport is substantially less than that of
optical phonons [43] due to the weaker electron-phonon coupling of the deforma-
tion potential. Electrons can, however, interact strongly with longitudinal optical
phonons through the electric field of the polarization wave, which gives rise to a
long range Coulomb interaction, different from the deformation potential inter-
action. Transverse optical phonons generally interact less strongly on account of
their smaller electric field. Absorption and emission of phonons allows electrons to
change energy and momentum en route through the double barrier enabling reso-
nant tunneling from energies in the emitter different from the quasibound level in
the well. This leads to replica peaks in the current-voltage characteristics as we

discuss below. At low temperature phonon absorption is minimized, but phonon
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emission (notably longitudinal optical phonon emission) can still impact transmis-
sion [45].

The example of longitudinal optical phonon emission serves well to illustrate
the effect of electron-phonon interactions. An intuitive description of this process,
which can result in a peak or shoulder in the region of the valley current, fol-
lows. When the applied bias is high enough that the quasibound level in the well
lies below the emitter conduction band edge, electrons cannot tunnel resonantly
through the double barrier directly from the Fermi sea in the emitter. When the
quasibound level lies within fiwo of the band edge, however, electrons from the
emitter can create a longitudinal optical phonon, losing energy hwro, and tunnel
resonantly through the well (see Figure 1.5). This leads to a replica peak in the
valley current at a bias approximately 2Awro /e above the bias required for peak
current.

A number of quantitative theoretical models [43, 46, 47, 48, 49, 50, 51, 52, 53, 54]
have investigated inelastic scattering by phonons. Phenomenological models [46,
47] have predicted sidebands of the main resonance at multiples of the phonon
energy (corresponding to the emission and absorption of multiple phonons). An
exactly solvable, one-dimensional model due to Wingreen et al. [48] predicts a
downshifting and diminishing of the elastic transmission resonance peak in addition
to the appearance of sidebands. Calculations based on Fermi’s golden rule have
shown [43, 49] that the inelastic current (due to phonon assisted tunneling) can
be several orders of magnitude higher than the elastic current (without phonon
assisted tunneling) in certain ranges of applied bias. Calculations involving the
Wigner distribution function [52] and real-time path integral techniques [53, 54]
have also been used to account for electron-phonon interactions.

Effects of electron-phonon interactions have also been observed experimentally,
both in single barriers [55] and in double barriers [45, 56]. In a GaAs/Aly4GaggAs
double barrier, for example, there are three energies to consider: that of the lon-

gitudinal optical phonon in the pure GaAs well (36 meV), that of the GaAs-like
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Figure 1.5: Electrons can emit a phonon of energy fiw en route through a double
barrier, allowing resonant tunneling at a bias above that for which elastic resonant
tunneling is possible. This can result in the appearance of a replica peak in the
valley current due to longitudinal optical phonon emission, for example. The
electron-acoustic phonon coupling is much weaker and does not substantially alter

the current-voltage characteristics.
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phonon in the alloy barriers (35 meV) and that of the AlAs-like phonon in the
barriers (47 meV) [57]. In a structure with a 56 A thick well and 85 A thick bar-
riers, an AlAs-like longitudinal optical phonon emission peak in the valley current
with a magnitude of 4% of that of the main elastic current peak was observed in
the current-voltage characteristics at 4.2 K [45]. In a similar structure, Leadbeater
et al. [56] observed interaction with both GaAs longitudinal optical phonons and
with AlAs-like longitudinal optical phonons via studies involving a magnetic field.

As far as current-voltage characteristics are concerned, electron-phonon inter-
actions mainly affect the operation of double barrier resonant tunneling structures
through longitudinal optical phonon emission, contributing to increased valley cur-
rent and a broadened negative differential resistance region which persists even as
zero temperature is approached. As these effects are already fairly well understood,
we shall be concerned with elastic scattering from structural and compositional im-

perfections such as interface roughness, alloy disorder and impurities.

1.2.4 Band Structure

The model of Tsu and Esaki, based on an effective mass Schrodinger equation,
describes transport with a single conduction band having a single minimum at
k = 0. Detailed semiconductor band structures are actually much more complex.
In Figure 1.6, we show the band structure of GaAs, which has the zinc-blende
crystal structure, whose underlying Bravais lattice is the face centered cubic lattice.
The Brillouin zone for the face centered cubic lattice is also shown in the figure with
high symmetry points labeled. Local minima in the conduction band of GaAs occur
at the T'—point (k = 0) as well as at the X- and L-points. The I-point minimum
is the lowest, roughly 250 meV below the L-point minimum and 400 meV below
the X-point minimum.

These details of the real band structure can lead to interesting effects. Mixing

between states in different valleys in the conduction band (such as I'X mixing)
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Figure 1.6: Band structure for GaAs. Symmetry points are labeled on the Brillouin
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can impact tunneling [58, 59, 60]. Mixing of light holes and heavy holes in the
valence bands can substantially affect hole-tunneling times in double barrier het-
erostructures [61]. Since we consider n-type devices, however, the majority carriers
are electrons, so we will not be concerned with the valence bands. In addition,
since the Fermi energy in the GaAs electrodes in our structures rarely exceeds 50
meV (corresponding to a doping of 2 x 10'®/cm3), transport in our calculations is
well described by the parabolic region near the I'-point minimum (see Figure 1.6).
In addition, it has been shown that I'-X mixing is not critical in double barrier
structures with wide wells and Al,Ga;_,As barriers where z < 0.4 [59, 60], so
a one-band, nearest neighbor tight-binding Hamiltonian serves admirably for our

purposes.

1.2.5 Elastic Scattering

In addition to electron-electron interactions, electron-phonon interactions and real
band structure effects, structural and compositional imperfections can play a vital
role in transmission in nanostructures. Interface roughness [12] is thought to be a
leading contributor to the valley current measured experimentally in double barrier
structures [13, 14] at low temperature. Localized states due to defect impurities are
believed to provide preferential current paths and to give rise to resonant tunneling
in a variety of nanostructures [62, 63, 64, 65, 66]. Alloy disorder should also play a
role in transport, especially when substantial clustering exists, as we demonstrate
in Chapter 5.

Nevertheless, theoretical treatments [17, 18, 19, 20, 21] of these topics seem
unsatisfactory, and quantitative understanding of the effects of elastic scattering
is lacking. Models proposed thus far rely on perturbation theory or are essentially
one-dimensional in nature, imposing restrictions on the effects which they can
treat. For example, perturbation theory allows only investigation of the weak

scattering limit, and important effects such as multiple scattering and virtual
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transitions are excluded from the analysis. In addition, correlations in the im-
perfections, such as clustering and ordering, are neglected, and the models cannot
adequately address fluctuations. Limitation to one dimension also imposes restric-
tions. One-dimensional simulations are inherently unphysical and do not make a
realistic account of scattering. In addition, they exaggerate disorder and structural
imperfections. More importantly, the models to date are not capable of treating

transport in low-dimensional structures such as quantum wires and dots.

1.3 Supercell Model

In order to understand the effects of structural and compositional imperfections
in a variety of nanostructures, we propose a supercell model of quantum transport
in three dimensions, capable of representing three-dimensional potential variations
on an atomic scale. This flexibility allows us to treat elastic scattering due to
interface roughness, alloy disorder and impurities in a physically realistic, three-
dimensional setting. In addition, we can address strong scattering and correlation
effects due to alloy clustering and interface island formation or impurity clustering.
An added advantage of the model is the capability to investigate novel geometries
and low-dimensional structures, such as quantum wires and quantum dots, with
structural and compositional imperfections as well.

A basic description of the model is as follows. We model a three-dimensional
device structure as a series of monolayer planes normal to the z-direction. Each
plane consists of an infinite periodic array of identical rectangular supercells n,
sites in the z-direction and n, sites in the y-direction, as in Figure 1.7. The sites
for the supercell in a particular plane are chosen to reflect the properties of that
plane. For example, if the plane represents a region of bulk material, the sites
are identical. To represent a cross-sectional plane of a quantum dot with interface
roughness and an impurity in the center we configure the supercell as in Figure 1.7.

Three materials are represented: one for the impurity, and one each for the interior
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and an impurity in the cavity. The supercells repeat in the planes normal to
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material of the quantum dot, and the lightly shaded site in the center represents

an impurity.
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of the dot and the confining region, which meet at a rough interface. Thus in the
supercell method, the infinite layers normal to the z-direction are modeled by a
finite supercell, and a device structure is specified by a finite series of supercells
normal to the z-direction.

A drawback to this model is the fact that the supercells repeat in the z- and
y-directions in the planes normal to the z-direction, imposing somewhat artificial
periodic boundary conditions. This repetition of supercells can lead to artifacts
in the transmission coefficient curves (see Chapters 4 and 5). To fully represent
macroscopic cross sections, we would need to employ supercells with a computa-
tionally prohibitively large number of sites. We have generally found, however,
that a 25 x 25 supercell is adequate for the issues we consider. In any event, our
model is particularly well suited to simulating local probing over an area of a few
nanometers on an edge, such as with scanning tunneling microscopy. As we shall
see in Chapter 4, local probing of a single barrier with impurities can lead to a
detailed resonance structure in the transmission coefficient. Whether or not this
fine structure would be observed in a macroscopic sample would depend on the de-
tails of the impurity distribution. At low temperature, we might observe resonant
transmission through impurities in a single barrier of macroscopic cross-section
for a high concentration of well-isolated impurities confined to the middle barrier
layer, for example (see Chapter 4).

A major advantage of our approach is that it allows us to study novel geometries
such as quantum wires and quantum dots. These structures have stimulated great
interest, offering both new physics and promise for new technologies. Just as the
double barrier, however, these structures exhibit imperfections. Interface rough-
ness over the scale of a few monolayers is currently unavoidable in etched quantum
wires. In addition, compositional variation, particularly due to impurities, is dif-
ficult to eliminate. These structural and compositional imperfections play a vital
role in the transport properties of one-dimensional and zero-dimensional structures.

A small width increase in one place in a quantum wire has been shown to pro-
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duce dips in the step-like conductance structure[67]. An isolated conductance peak
observed below the turn-on of the first transverse mode in a narrow constriction
has been attributed to resonant tunneling via a single impurity[15]. Degradation
in the quantized conductance steps of a dual electron waveguide has been seen
when the conductance channel is electrostatically steered into a scatterer[16]. In
Chapter 6 we examine the impact of interface roughness and impurities on the
transport properties of a quantum dot. We find that interface roughness over a
single monolayer leads to substantial fluctuations in the transmission coefficient
and that neutral impurities can dramatically alter the resonance modes of the dot.
For background we present a brief overview of one- and zero-dimensional systems

in the next section.

1.4 1D and 0D Systems

Laterally restricting a quasi-two-dimensional system, such as a quantum well, pro-
duces a quasi-one-dimensional system, where motion is free in only one direction
and limited in the other two. This leads to the interesting and useful property of
quantized conductance. When a small bias is applied along a quantum wire, the
conductance as a function of the Fermi energy in the electrodes, Er, is quantized
in multiples of 2e%*/h. Here we give a short derivation of the conductance in a
quasi-one-dimensional system following Weisbuch [68].

The Schrédinger equation for an electron in a quasi-one-dimensional wire of
size L, X L, X L, oriented along the z-direction can be written

P2 + p2 + p?
2m*

[ + Viz, y)lv(z,y,2) = EY(z,y,2), (L.1)

where m* is the effective mass of the electron in the wire, and V' (z, y) is the lateral

confining potential. Since the motion is free along the z-direction, we can write

1/J(93ay,z) = Ci(may)eikzz: (1'2)

E\H
™
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for the ith subband, where (;(x,y) satisfies

BB 4 v, )Gl y) = BiG(a,v). (1:3)

The subband dispersion relation is

thQ
By, = B + 2mf (1.4)
where
£2n2 g2 "
E’i = Eﬂ G Tl = £ .

in the case of an infinitely high confining potential, for example. Each state con-
tributes efhk,/m*L, to the current. When a small bias V is applied, the chemical
potential for states with k, > 0 in the left electrode lies eV above that for the
states with k£, < 0 in the right electrode, so the current from each subband for

which F; < Er is

Lj == m*Lz 9 6‘/, (16)
where
Qm*(EF = E,)
ki(EF) = V - , (1.7)
and
gs L. m*
D;,(E)=2 (1.8)

is the familiar one-dimensional density of states assuming periodic boundary con-
ditions of period L, along the z-direction, and g, = 2 to account for electron spin.

Thus the conductance from each subband is

2¢2

P

LV = (1.9)

The higher the Fermi energy in the electrodes, the more subbands there are avail-

able to carry current. In the case in which L, << L,, for example, the conductance

versus Fermi energy has a staircase-like structure, as we plot in Figure 1.8.
Whether or not the effects of this quantized conductance can be observed exper-

imentally depends on the deviation of real quantum wires from ideality. Roughness
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Figure 1.8: In the top panel, the staircase-like conductance versus Fermi energy
for an ideal quasi-one-dimensional quantum wire with L, << L,, for example,
is shown. The one-dimensional subband edges are labeled E;. In the bottom
panel, different transport regimes are shown. L is the length of the wire, W is a
characteristic cross-sectional dimension, [, is the elastic mean free path between
scattering processes involving structural and compositional imperfections, and I, is

the inelastic or phase breaking mean free path between phonon scattering events.
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in the walls of the wire, impurities and phonons can all play a role in transport.
(Thermal broadening can also smooth out the sharp step-like structures observed
at low temperatures.) Elastic and inelastic scattering will contribute to the de-
terioration of ideal characteristics to different degrees in different regimes. To
discuss the different regimes, it is convenient to define two length scales: ., the
elastic mean free path between scattering processes involving structural and com-
positional imperfections, and [4, the inelastic or phase breaking mean free path
between phonon scattering events. The relation between each of these lengths and
the longitudinal and lateral dimensions, L and W, of the wire will determine what
effects are important. In the ballistic regime (see Figure 1.8), L, W, << [, << l4,
electrons sense only the confining potential of the structure, and the wire behaves
ideally, giving quantized conductance. In the universal conductance fluctuation
regime, W << I, << L <<y, and there are a few defects along the wire (see Fig-
ure 1.8) which can cause mixing of different wire modes, increasing the reflection
probability for electrons entering the wire. Multiple scattering from impurities and
the walls of the wire can lead to trapped states, localized on the length scaie of
.. These states no longer contribute to current. The behavior of the wire in this
regime depends strongly on the particular configuration of the impurities. In the
diffusive regime at low temperature, [, << W < L << l4, and impurity scattering
dominates, so wire modes no longer have meaning. States are localized on the scale
of I, (see Figure 1.8) and no longer sense the confining potential of the structure.
No states exist that extend from one end of the structure to the other, and at
low temperatures, there will be no conductivity. Transport could, however, take
place via inelastic scattering between localized states at higher temperatures. In
the classical Boltzmann regime, L, W >> [,, electrons diffuse through the wire,
effectively averaging over impurity positions. Thus the temperature and dimen-
sions of the wire and characteristics of structural and compositional imperfections
will determine different regimes corresponding to quite different behavior.

One-dimensional structures have been fabricated using a number of techniques.
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Lateral confinement of a quantum well has been achieved by deep mesa etch [69],
electrostatic confinement [70], shallow etch [71], ion beam exposure [72, 73], and
selective growth on a patterned substrate [74, 75, 76, 77]. Several device applica-
tions for quantum wires, such as the quantum modulated transistor [7] and the
split-gate dual electron waveguide [8] with voltage tunable conductance properties
have been suggested. Nonetheless, measured properties of these devices deviate
substantially from predictions for ideal structures. Interface roughness over the
scale of a few monolayers is currently unavoidable in etched quantum wires. In
addition, compositional variation, particularly due to impurities, is difficult to
eliminate. As a consequence, the effects of these variations on device performance
have drawn considerable attention.

Theoretical studies of interface roughness in quantum wires have revealed al-
terations of the transmission spectra. A small width increase in one place in
a quantum wire has been shown to produce dips in the step-like conductance
structure[67]. It has also been shown that cross-sectional area variations along a
wire lead to a smearing of the peak-like structure of the average density of states
plotted as a function of carrier energy[78].

Impurities in quantum wires have been studied both experimentally and the-
oretically. An isolated conductance peak observed below the turn-on of the first
transverse mode in a narrow constriction has been attributed to resonant tunnel-
ing via a single impurity[15]. Degradation in the quantized conductance steps of
a dual electron waveguide has been seen when the conductance channel is elec-
trostatically steered into a scatterer[16]. Theoretical studies of an impurity in a
narrow channel have revealed the ways in which scattering alters the transmission
properties[79, 80, 81]. In these papers, dips, peaks, and shifts in the conductance
and transmission coefficient curve features as a function of impurity location and
strength have been calculated. Calculations involving a T-shaped quantum wire
junction have shown that a repulsive impurity can either enhance or suppress

transmission[82]. Impurities near the aperture of an electron waveguide have been
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shown to destroy quantized conductance[83], and ionized donors have been shown
to affect the quantized conductance of point contacts in a way that reflects the
detailed configuration of the impurities[84].

Adding another degree of confinement, we come to quasi-one-dimensional struc-
tures, where the electron is confined in all dimensions, giving rise to a set of
discrete levels. Since early work on tunneling in systems with small metal parti-
cles [85, 86, 87, 88|, these structures have drawn much attention for their novel
transport properties. Recently, periodic, two-dimensional arrays of quantum dots
with an effective diameter on the order of 100 nm have been fabricated [9] us-
ing holographic lithography and deep mesa etch. A similar field effect array
has been fabricated by depositing a metal gate over a photoresist mask on an
n-AlGaAs/GaAs heterojunction [9]. With discrete levels, these dots act like artifi-
cial atoms, and periodic arrays of dots are suggestive of crystal lattices, stimulating
renewed interest in band structure engineering [9, 89]. Quantum dots have also
been proposed in applications such as cellular automata [68].

Tunneling through a quantum dot isolated from electrodes by thin barriers has
attracted a great deal of attention. In the absence of a magnetic field, two main
phenomena play a role in transport through a zero-dimensional structure: electron
charging and energy quantization in the structure. In large metallic particles, the
lowest empty electron energy levels are closely spaced, almost forming a continuum,
and electron charging plays the dominant role, leading to the Coulomb blockade
effect [90]. In small, semiconducting quantum dots, where only a few electrons are
present, the lowest available levels are spaced further apart. When the level spacing
is comparable to the single electron charging energy, both energy quantization and
electron charging play a role in tunneling [91]. We will focus on the effects of
structural and compositional imperfections on the quasibound levels in quantum
dots. We shall see that imperfections can substantially impact the transmission
properties of quantum dots.

Indeed, one of the main challenges in engineering quantum dots into useful
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devices will lie in achieving reproducibility and uniformity. Atomic scale variations
in the structure of quantum dots lead to fluctuations in their properties. In this
thesis, we examine fluctuations in the transmission coefficient of a quantum dot
with interface roughness. We find that variations in both the stoichiometry and
configuration of the roughness lead to fluctuations in the transmission resonance
positions, widths and maxima. If these novel quantum structures are to find use

in future technologies, these fluctuations must be understood.

1.5 Summary of Thesis and Results

The remainder of this thesis is organized as follows. In Chapter 2, we develop the
formalism of our supercell model. Expressions for the transmission coefficient, elec-
tron wave function, probability current density and current-voltage characteristics
are derived. We conclude with an indication of how our model could be adapted
to incorporate more extensive band structure, which would extend the range of
applicability to include interband transport and hole transport, for example.

In chapter 3 we develop the numerical tools for calculating transport in the
supercell model. It is only by way of highly efficient numerical techniques that we
are able to implement our exact three-dimensional model on presently available
computers. Our numerical technique relies on a new method [92, 93, 94] for cal-
culating quantum transport in the tight-binding model. The method formulates
the quantum transport problem into a linear system of equations, overcoming in-
stability problems which plague the transfer matrix method [95, 96] in structures
with active regions longer than a few tens of A [97]. For a typical device structure,
calculation of a single transmission coefficient at a given energy requires solving a
40,000 x 40,000 system of equations. This presents a formidable challenge, both
in terms of execution time and storage requirements. We give an overview of the
various methods we have considered for solving large, sparse linear systems and for

storing sparse matrices. We then describe the particulars of our implementation
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and present storage and execution time benchmarks for some typical calculations.
In certain cases our calculations are highly amenable to parallel computing, and
thus we conclude the section on numerics with a discussion of various topics in
concurrent computing.

In Chapter 4, we present our results on transport in single and double barrier
tunneling structures with neutral impurities. We find that an isolated attractive
impurity in a single barrier can produce a transmission resonance whose position
and strength are sensitive to the location of the impurity within the barrier. We
also study transmission in the presence of two closely spaced impurities as a func-
tion of their separation and orientation relative to the incident plane wave. Mul-
tiple impurities can lead to a complex resonance structure that fluctuates widely
with impurity configuration. In addition, impurity resonances can give rise to
negative differential resistance.

In Chapter 5, we study interface roughness and alloy disorder in double bar-
rier structures. We find that interface roughness can affect transmission in two
ways: in-plane momentum (k) scattering produces a transmission enhancement
just above the n = 1 resonance, and wave function localization broadens and re-
duces the energy of the n = 1 resonance. We also find that the degree of disorder
and clustering in the alloy barriers of a double barrier structure has a dramatic
impact on transmission. An analysis of the transmission coefficient curve for dif-
ferent cluster sizes reveals that as the cluster size increases, the barriers grow less
confining, broadening resonances and shifting them to lower energy. In addition,
localized states arise, leading to new transmission resonance structure.

In Chapter 6 we examine the effects of atomic scale imperfections on the trans-
mission properties of a quantum dot resonator. We find that variation in the
surface roughness of quantum dots leads to substantial fluctuations in the trans-
mission properties. Impurities in a quantum dot are studied as a function of im-
purity strength and location, and it is found that an attractive impurity near the

center of a dot can reduce fluctuations caused by surface roughness. Nevertheless,



30

the presence of more than a single impurity can give rise to a complex resonance

structure that varies with impurity configuration.
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Chapter 2

The Supercell Model

2.1 Formalism

A three-dimensional, one-band, nearest neighbor, rectangular lattice tight-binding
model forms the basis for all calculations in this thesis. A solid is represented with
a rectangular lattice, each site of which is assigned a material type, specified by a
band edge and an effective mass. This translates into assigning an onsite energy
to each site in the lattice and a hopping matrix element to the bond between each
nearest neighbor pair of sites. A uniform bulk region, for example, is represented
by assigning the same onsite energy to each site and the same hopping matrix
element to each nearest neighbor bond in the region. This yields a cosine-shaped
band structure, as shown below. In a disordered alloy region, by contrast, the
onsite energies and hopping matrix elements vary throughout. The model thus
accounts for potential variations in three dimensions.

Representing a macroscopic sample in this manner would require on the order
of 10?3 sites, a prohibitively large number for present-day computers. We therefore
apply a planar supercell method to the model, implementing periodic boundary
conditions. We model a device structure as a set of monolayer planes along the

z—direction. (The z—axis is chosen along the direction separating the electrodes
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by which the structure is probed.) Each plane consists of an infinite periodic array
of identical rectangular supercells n, sites in the z-direction and n, sites in the
y-direction, as in Figure 2.1. The sites for the supercell in a particular plane are
chosen to reflect the properties of that plane. For example, if the plane represents
a region of bulk material, the sites are identical. To represent an impurity in a
particular layer, we choose the supercell for that layer to contain a site representing
the impurity, and we assign to the other sites the appropriate type of surrounding
material. To represent the binary alloy A,B;_., we assign material of type A to
a fraction z of the sites, and material of type B to the remaining sites. Thus the
infinite layers along the z—direction are modeled by a finite supercell, and a device

structure is specified by a finite set of supercells along the z—direction.
The nearest neighbor tight-binding Hamiltonian for a structure can be written
H=Y ealn)nl+ ¥ tam/n)(ml. (2.1)

n <nm>

The {|n)} are orbitals localized at the lattice sites, the {en} are the onsite ener-
gies, and the {tnm} are hopping matrix elements. The second sum extends over
all nearest neighbor pairs of sites in the lattice. As stated above, site |n) is charac-
terized by a particular type of material with band edge Fy, and effective mass m,,.

In terms of these material parameters, the onsite and hopping matrix elements are

€n = FEn-— ztnma
m

o = et B (2.2)
W B Oy DM '

The sum in the first line above runs over all nearest neighbors m of n. The
parameter dn m is the distance between sites n and m.

It should be noted that Eq. (2.2) implies that the hopping matrix element
between sites of different materials is taken as the arithmetic mean of the hopping
matrix elements of bulk samples of each of the materials. This, along with the

dependence of the onsite energy on the hopping matrix elements to the nearest
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Figure 2.1: 5 x 5 supercell representation of an electrode followed by an alloy
region. The supercells repeat in the 2— and y—directions. In the tight-binding
model, an onsite energy corresponds to each site, and a hopping matrix element

corresponds to each nearest neighbor pair of sites.
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neighbors, stems from a discretization [1, 2] of the simplest manifestly Hermitian
Hamiltonian incorporating a varying effective mass, namely
A2 .|

B==—3V o®

V 4+ V(r). (2.3)

The {dnm} in Eq. (2.2) are the discretization lengths, chosen based on typical
dimensions and the rate of change of the potential in a particular problem. More
complicated formulations have been proposed [3], but the above serves well when
the variation in the effective mass is not too large [1].

The definitions in Eq. (2.2) are familiar in the case of a bulk region of uniform
onsite energy € and effective mass m. The Hamiltonian then becomes

H=¢) [n)n[+t > [n)(m], (2.4)

<nm>

and, due to complete translational symmetry by any direct lattice vector, the
eigenstates can be chosen with definite crystal momentum k:

k) = == 3 *n). (2.5)

nel

Here N is the number of sites in the lattice I', representing the discretization
of the Schrodinger equation. The energy band structure as a function of crystal

momentum k is thus
(k|H|k) = € + 2t(cos k,d, + cos kyd, + cos k.d,) (2.6)

where d,, d, and d. are the discretization lengths along the z—, y— and
z—directions.

In the supercell method, the in-plane translational symmetry is reduced (hav-
ing the period of the supercell), and we must choose a new basis. In addition,
there may be no translational symmetry along the z—direction, as in the case of
most epitaxially grown structures. Thus we choose eigenstates of definite in-plane

momentum, k:

‘k||,0,a>= Z eik“'“ln). (27)

nels -
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Here o indexes the plane along the z—direction, and « indexes the supercell sites.
The sum is over all sites in the lattice I', , (see Figure 2.2) comprised of site «
in each supercell in plane . Due to the reduced in-plane translational symmetry,
k; ranges over the reduced Brillouin zone, shown in Figure 2.3. In this basis,
the Hamiltonian is block diagonal in k. With only nearest neighbor interactions
involved, only matrix elements between supercell basis states in the same plane
and in adjacent planes need be considered.

We may write the electron wave function
w — Z Ca,a|k\|: O—) a> (2.8)
o,a

as a linear combination of the supercell basis. In this representation, the

Schrodinger equation, (H — E)y = 0, becomes

Ha,a—lca—l + ﬁa,aco -+ HU,U+ICG+1 = 07 (2‘9)
where ) )
Col
002
C, = ) g (2.10)
L CUM -
[ﬁa,a]ayaf = <(7, x, k‘||(H = E)|O’, a',k”), (211)
[Ha,gf]a’at = (O‘,C!,k“|H|OJ,Ct,,kH>, (212)
and M = n,n, is the number of sites in a supercell. The significance of the

matrices H, 11 and H, , is illustrated schematically in Figure 2.4. H,, contains
information about the electron energy and the hopping matrix elements and onsite
energies in plane o, and H, ;.1 describes the hopping matrix elements between
planes ¢ and o + 1.

In order to solve for the wave function 1, we need to specify the boundary

conditions. All the devices we consider are bounded by bulk material electrodes
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Figure 2.2: The lattice I',, consists of site « in each supercell in plane o. The

supercells are identical and repeat in the z— and y—directions.
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Figure 2.3: The reduced Brillouin Zone, shown shaded above, corresponding to a
5 x 5 supercell. The {qi“rl‘m} used in (2.15) are given by the solid circles. Electrons
incident with in-plane momentum kfl”c can scatter only into states with k; given

by the set of open circles.
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Figure 2.4: Schematic for the two types of sparse blocks appearing in the matrix
in Eq. (2.19). Blocks of the form H, ,4; describe the hopping matrix elements
between adjacent planes, and blocks of the form H,, contain information about
the electron energy and the hopping matrix elements and onsite energies in plane

ag.
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on each end along the z—direction. The boundary conditions we specify are that
in the emitter we have an incident plane wave characterized by an energy E and
by in-plane momentum kmc along with reflected plane waves, and that in the

collector we have only transmitted plane waves. Thus the boundary conditions are

’l,be = znc, Zné: £ Z ™, m znc 58 qllf‘m’ ki:’?%
Im
'ch == Z 173 mlk'znc + q|'1n, kiT’ (2'13)

Lm

where 9, and 1, are the wave function in the emitter and collector, respectively.

Here qfl e %, I%,’;Z; ). Due to the reduced in-plane symmetry of the supercells,

a plane wave with in-plane momentum kﬁ”c can scatter only into a state with k| =

Im

kmc +q (see Figure 2.3). Once the electron energy and the in-plane momentum,
k, are specified, k, is determined, depending on the local band structure. Thus
k..(E, k) and k. .(F, k) may be different functions, such as when a positive bias
is applied to the device, lowering the collector band edge relative to that of the
emitter.

We need to translate these boundary conditions into the supercell basis set
{|k|, 0, @)} used in expressing Schrédinger’s equation. We do this by writing the
plane wave basis {|kj,k,)} in terms of the supercell basis {|kj,o,a)}. Since

|kj,o,a) is a state localized on the sublattice I'y,, C; and C; for the state

S e T 1Y q”m ko) + Tt Prm| K + qﬁ’", kL) in the emitter are given by

¥ ' Tze

s U Uve || 1
= (2.14)
O UVve U r

where

[U]ag = ™4,

[Ve]a,ﬁ = 5a,ﬁeik?6d:= (2‘15)
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1,1

P12

and

Ng,Ny |
In the above a and 3 index supercell sites, and ki = kine 4 qj. Likewise, in the

collector we have

Cﬂ.:—-l U uve t
= (2.16)
o uve U 0

for the state 33, trm|k{ + qf[’m kL™), where t is analogous to r. From this we

have
C;, = UI+UV¢r,
C, = UV°I+ Ur,
Cn;—l = Ut, (217)
Gy, = UV

Eliminating r and t from the above gives

C; —UVUIQ, = Ul — UV,
C,, —UvVU'C,._; =0, (2.18)

where we have invoked the unitarity of U.

These equations, together with the Schrédinger Eq. (2.9), can be formulated
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into the following linear system:

o, | [ur-uve?r ]
Cs 0
A (?3 = (_) (2.19)
' 0
an o .. 0 J

where A is the n,n,n, x n,n,n, matrix

1 —_uveut 0 0
H,, I:L,_ H, 3 0 0
0 H; Hj, H;, 0 0
0 0 Hy_inv-2 Hy-inv-1 Hyoaw
I 0 0 —_uveyut 1 |

The quantum transport problem is thus formulated into a linear system of equa-
tions. This method is just as efficient and easy to implement as the transfer matrix
method[4], but it has the advantage of numerical stability. For devices with long
active regions, exponentially increasing modes can “blow up” causing the transfer
matrix method to fail. The above linear system, however, always has a stable

solution.

2.2 Physical Quantities

2.2.1 Transmission Coefficient

Having solved for the coefficients C, ., the electronic wave function in the device

is known, and we can calculate many quantities of physical interest. For example,
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the transmission coefficient is given by

c Im
lvs(E, k“ )|

T(E ki'n.c = t m E kinc 2—_
(B = 2 lan B M e )

l,m

(2.20)

where v§ and v{ are the group velocities along the z—direction in the emitter and

collector, respectively. They are given by

(B k™) = mﬁd sin (kL7'd),
vi(B, k™) = mﬁ;z sin (k°d,). (2.21)
(2.22)
The {t;,,} are determined from (2.16):
t =T, (2.23)

By calculating the transmission coefficient at different incident energies and at
different incident in-plane momenta, one can gain insight into the characteristics
of a device. This will form the basis of much discussion in subsequent chapters,
wherein the effects of imperfections on transmission are studied.

Examining the transmitted and reflected state amplitudes in a bulk region other
than the electrodes (in a quantum well, for example) can also yield interesting
information. For layers ¢ and ¢ + 1 in a region where both transmitted and

reflected states exist, we have

C, U uv t t
= =D . (2.24)
5 uv U ||e r
t L =
-D , (2.25)
r Co+1

where the quantities are as defined earlier. Motivated by the form of D when U

and V are scalars, and paying attention to the order of the matrices in products,
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we can calculate

" (1—Vv2) 'yt —(1-v3)~vut .98
—(1 - V) lyut (1 - v tui '
where
5 1
[(1=-VH ap = bap T —amds (2.27)

From this the transmitted components {#;,,,} and the reflected components {r;,, }

can be computed.

2.2.2 Electronic Wave Function

The electronic wave function can shed much light on quantum transport phenom-
ena. The probability density at site (o, &) is just |C,.o|?, and the phase of the wave
function is Arg[Cs.]. To help provide a stronger intuitive grasp of the physics,
plots of the electronic wave function probability density are included in parts of

this thesis.

2.2.3 Probability Current Density

Another useful construct is the probability current density, which, for a particle of

mass m with continuous wave function 1, is given by

13
J = —(¢*"Vy —yVy"). (2.28)

~ 2im
In our model, the mass varies in space according to the material configuration, so
we need to reformulate J slightly. In addition, our model is based on a discrete
tight-binding Hamiltonian, so we need to use some care. We derive below an
expression for J which represents the flow of probability density from site to site.
The derivation is motivated by the traditional one in which a quantity J is sought,
such that
_ ol

V-I=—=- (2.29)
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A solution to the Schrodinger equation can be written

P = Enj an(t)[n). (2.30)

The probability density at site n is |an|?>. We seek a quantity J on the lattice such

that
0
7lan (@ =V - Jn, (2.31)
where V- is taken as
@ L —J= JY - wese JHU % —JF
e s e ] (2.32)
= y Z

J is then a vector field which represents the flow of probability density from site

to site. Now,

(nlH) = ihaan(?)
= Ztn,m<m|¢)+€n(n]¢>
_ Ztn,mam(t)+enan(t)=iﬁ%an(t). (2.33)

The sums in the above are over the nearest neighbors m of site n. Multiplying the

above equation by a},(¢) and then subtracting the complex conjugate, we have

15, —1 . 4
a|an|2 i ; tnm(@n0m — anay,) =V + Jy. (2.34)

We make the Ansatz (motivated by the derivation of J in the continuum case with

a constant effective mass) that

—1

Tu = Tt st tumss] —vale— 1]
+ %15’ tnn-d,3dy[a5(an — @n_4,5) — an(ay — arl—dyf’)]
28t a0l (0 — Onmis) — an0h — di_y 0]
= % %—;’*%(aﬂaﬁ_d,g — agan_4.5) (2.35)
+ ¥ &Tﬁﬂ(aiaﬁ—m ~ OqOn_a,y)
+ 2 ——Qtn’n%d:idz (an0f_0.s — Gn0n_d.5),

where af = R{an}, and aof, = I{an}.
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2.2.4 Current-Voltage Characteristics

Once the transmission coefficient for a device has been calculated, the current-
voltage characteristics can be determined. To calculate current density J at a
specified bias V/, the transmission coefficient is integrated over the in-plane mo-
mentum and the Fermi distributions of electrons in the electrodes, including the

appropriate velocity factors:

7= 47r3{fdk”d2k“T—>(E k) f(E)1— f(E+eV)] (aé;ci) -0

[ b odR T (B, X)) F(E + V)1 = f(E )]_( ;jfc) }, (2:36)

where f(E) and f(FE + eV) are the Fermi distributions in the emitter and in the
collector, and (gTE) is the group velocity along the z—direction. 7., and 7' refer
to the transmission coefficients for electrons traversing the device from emitter to
collector and from collector to emitter respectively.

The above integral may be simplified substantially in special cases. We shall
describe two. The first case is that of a device at 0K for which the transmission
coefficient may be approximated as independent of the direction of k. In this case,
we may integrate over the direction of k; analytically. In addition, at 0K, the
second integral vanishes in forward bias, since there are no empty states available
in the emitter to be filled by those tunneling from the collector. The expression

for current then reduces to
e
J = 5o [Rdky [ dET(B, X F(B)[L - £(B + V)], (2.37)

where F, is the energy corresponding to k, in the emitter. This integral requires
considerably less computational effort than the general form (2.36). We shall
attempt to provide some justification for this approximation when we invoke it in
Section 4.2.5. The second case involves approximating T'(F, k||) as independent of

ky, and T (F) =~ T,(E). In this situation,

J = 4W3ﬁde 27’rk1|dk||T( ){f(E) = f(E+ eV)]
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emkpT [ 1+ e—(B:—p)/kpT
S e dET(E)n({——m=w=—pmat )

(2.38)

where m is the effective mass in the electrodes, Ej is the conduction band edge in
the emitter, and p is the Fermi level in the emitter. The approximations behind
this formula serve well for devices with mild deviations from full translational
symmetry in the z —y plane, such as for a double barrier with interface roughness.
This integral requires even less computation than Eq. (2.37) and could therefore
be used in simulations where ca