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Abstract

Meeting the world’s growing energy demands while protecting our fragile environment is a challenging

issue. Second generation biofuels are liquid fuels like long-chain alcohol produced from lignocellulosic

biomass. To reduce the cost of biofuel production, we engineered fungal family 6 cellobiohydrolases

(Cel6A) for enhanced thermostability using random mutagenesis and recombination of beneficial mu-

tations. During long-time hydrolysis, engineered thermostable cellulases hydrolyze more sugars than

wild-type Cel6A as single enzymes and binary mixtures at their respective optimum temperatures.

Engineered thermostable cellulases exhibit synergy in binary mixtures similar to wild-type cellu-

lases, demonstrating the utility of engineering individual cellulases to produce novel thermostable

mixtures. Crystal structures of the engineered thermostable cellulases indicate that the stabiliza-

tion comes from improved hydrophobic interactions and restricted loop conformations by proline

substitutions. At high temperature, free cysteines contribute to irreversible thermal inactivation in

engineered thermostable Cel6A and wild-type Cel6A. The mechanism of thermal inactivation in this

cellulase family is consistent with disulfide bond degradation and thiol-disulfide exchange. Enhanc-

ing the thermostability of Cel6A also increases tolerance to pretreatment chemicals, demonstrated

by the strong correlation between thermostability and tolerance to 1-ethyl-3-methylimidazolium ac-

etate. Several semi-rational protein engineering approaches — on the basis of consensus sequence

analysis, proline stabilization, FoldX energy calculation, and high B-factors — were evaluated to

further enhance the thermostability of Cel6A.
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Chapter 1

Introduction

1.1 Background

Meeting the world’s growing energy demands while protecting our fragile environment is a chal-

lenging issue. The total energy consumption in the US was >87 quadrillion BTU in 20121; 82% of

the consumed energy was from fossil fuels like petroleum, coal, and natural gas, and only 9% was

from renewable sources like solar, wind, hydroelectric power, and biomass (Figure 1.1) [1]. Despite

concerns that the emission of carbon dioxide and other pollutants from fossil fuel combustion con-

tributes to global warming, the future of alternative energy is unclear [2]. Energy policies and events

like the 2011 Fukushima nuclear meltdown or the discovery of shale oil on US soil can quickly change

the energy landscape and the public opinion on alternative energy [3]. Nonetheless, long-term use of

fossil fuels is not sustainable, and developing near-term renewable energy like biofuels is important

for transitioning into long-term renewable energy like solar fuels, whose feasibility depends on major

technology breakthrough [4, 5].

One of near-term renewable energy options is biofuel. Second generation biofuels are liquid

fuels like long-chain alcohols produced from plant biomass. One of the key biopolymers for biofuel

production is cellulose [6]. Along with lignin and hemicellulose, cellulose is the main structural

component of most plant cell walls, making it the most abundant biopolymer in the world. Cellulose

is a polysaccharide composed of glucosyl units linked by β-1,4 glycosidic bonds. The chain ends

can be characterized as the reducing end by the potential aldehyde group on the C1 atom or the

1Energy consumption data was collected from January to November of 2012.
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Figure 1.1: Total US energy consumption from January to November 2012 displayed by the energy
source in percentage. The pie graph was generated using data from the Monthly Energy Review
published by the US Energy Information Administration [1].

non-reducing end by the terminal hydroxyl group. The β-1,4 linkage ensures that the subunits rotate

180◦ every two glucose subunits, resulting in straight chains that can be bundled together tightly

[7]. X-ray diffraction and nuclear magnetic resonance studies have shown that cellulose chains form

intramolecular and intermolecular hydrogen bonds between the hydroxyl groups and the oxygen in

the pyranose ring. This extensive hydrogen bond network produces highly crystalline elementary

fibrils with strong tensile strength and low accessibility [8, 9]. In the absence of cellulases, cellulose

is a highly recalcitrant material, with a half-life of over four million years at 25◦C [10].

To utilize biomass for the production of fuels and higher-value chemicals, cellulose needs to be

hydrolyzed into glucose for microbial fermentation. Concentrated hydrochloric and sulfuric acids (40

– 90%) have been used to hydrolyze cellulose and hemicellulose from plant matter into monomeric

sugars. However, the high cost of the acids and the difficulty in acid recovery make the approach

economically unattractive [11]. Fungal cellulases are an alternative solution for hydrolysis and

have been used in industrial applications from cotton softening to pulp refining. For conversion of

lignocellulosic biomass to fermentable sugar, physical and chemical pretreatments need to be applied

prior to enzymatic degradation. Different pretreatment methods, structure-function relationship of

fungal cellulases, as well as engineering challenges are reviewed below.
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1.2 Pretreatments of lignocellulose

1.2.1 Physical pretreatments

To increase the accessibility of lignocellulose for subsequent enzymatic degradation, different physical

and chemical processes have been applied to pretreat the substrate. Physical pretreatments involve

different methods to reduce the particle size of the plant substrate, including chipping, milling,

and grinding [12, 11]. The reduced particle size allows the subsequent chemical pretreatments to

proceed more efficiently due to an increased surface area to mass ratio [13]. However, the energy

consumption of milling varies greatly depending on the milling condition and can take up to 40% of

the energy from the ethanol produced. To reduce the energy consumption, it might be preferable

to integrate milling and chemical pretreatment into a multi-step process, i.e. subject wood chips to

steam explosion before they are subjected to additional size reduction process [14].

1.2.2 Chemical pretreatments

Chemical pretreatments can be roughly divided into four categories: acid pretreatment, base pre-

treatment, steam explosion, and organic solvent fractionation. Acid pretreatments involve incubating

lignocellulosic substrates with dilute (0.5 – 2%) sulfuric acids at 140 – 220◦C [15]. Depending on the

pretreatment temperature and sulfuric acid concentration, up to 90% of xylose can be released dur-

ing pretreatment, leaving cellulose-rich solids after washing and detoxification [16]. But degradation

products like furfurals or 5-hydroxymethylfurfural are often produced during acid preatreatments

and can prohibit subsequent microbial fermentations [11]. Base pretreatments involve treating the

substrate with ammonia, calcium oxide, or other base as catalysts [17]. These base catalysts increase

substrate accessibility by removing acetyl groups from hemicellulose and lignin [13].

Steam explosion involves incubating the substrate at high temperature (up to 260◦C) and high

pressure for a few seconds before rapidly dropping the pressure and allowing the wood fiber to

expand [11]. For ammonia fiber expansion/explosion (AFEX), the substrate is pre-wetted with dry

ammonia and incubated at 130◦C and 650 psi for up to an hour before the pressure is purged. The
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advantage of AFEX is that ammonia is relatively easy to separate from the substrate compared to

other pretreatment chemicals. However, hemicellulases are required in addition to cellulases for the

hydrolysis of AFEX-pretreated substrate since AFEX does not solubilize hemicellulose [13].

Organic solvent pretreatments include methods that utilize organosolv and ionic liquids. For

organosolv process, mixtures of solvents (e.g. ethanol) and acids (e.g. sulfuric acids) are incubated

with the substrate at 100 – 250◦C to solubilize hemicellulose and separate lignin from cellulose

[11]. Ionic pretreatment involves solubilizing cellulose and lignin with low melting point salts and

is discussed in detail in Chapter 4. Regardless of the chemical pretreatment methods, operating

reactors and handling hazardous chemicals at high temperature and/or pressures are typically re-

quired. Detailed economic analysis and Green Chemistry assessments are necessary to identify the

pretreatments most suitable for commercialization [18].

1.3 Fungal cellulases

1.3.1 Cellulases secreted by Hypocrea jecorina

Despite the recalcitrance of cellulose, Nature has provided several enzyme solutions to hydrolyzing

cellulose into monomeric sugars that are utilized by microorganisms as a source of carbon and energy.

The mesophilic fungus Hypocrea jecorina (anamorph Trichoderma reesei) secretes an array of cellu-

lases that work synergistically to degrade cellulose to smaller oligomers and eventually to glucose.

Cellulases secreted by H. jecorina include at least five endoglucanases (EGI-V), two cellobiohydro-

lases (CBHI belonging to glycoside hydrolase family 7 and CBHII belonging to glycoside hydrolase

family 6), two β-glucosidases, and numerous hemicellulases. In particular, endoglucanases randomly

attack β-1,4 glycosidic bonds in the amorphous regions of the cellulose and increase the available

chain ends for cellobiohydrolases. Cellobiohydrolases incrementally shorten the chain length and

include enzymes that act on the reducing ends (CBHI or Cel7A) and the non-reducing ends (CBHII

or Cel6A) of cellulose. β-glucosidases hydrolyze soluble oligomers into glucose and reduce product

inhibition for endoglucanases and cellobiohydrolases [19, 9].
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Figure 1.2: NMR structure of family 1 cellulose binding module from H. jecorina (PDB 1CBH, [23]).
The disulfide bridges are shown in yellow, and the conserved residues are shown in sticks.

Cellobiohydrolases Cel7A, Cel6A, and endoglucanase Cel5A (EGII) comprise 60 ± 5%, 20 ± 6%,

and 12 ± 3% of total protein secreted by H. jecorina [7]. All three cellulases share the same feature

of a cellulose-binding domain and a catalytic domain connected by a highly O-glycosylated peptide

linker [9]. Both the Cel6A and Cel7A catalytic domains feature tunnel-shaped structures formed by

loops that are stabilized by disulfide bridges. In the Cel7A catalytic domain, two large antiparallel,

concaved β sheets form a β sandwich and together with long loops stabilized by nine disulfide bonds

form a ∼40 Å tunnel [20]. In the Cel6A catalytic domain, two extensive loops stabilized by two

disulfide bonds and an α/β-barrel structure form a ∼20 Å tunnel [21]. Cellobiose is the primary

product of cellulose hydrolysis by cellobiohydrolase Cel6A and Cel7A. However, it is worth noting

that the division of endo- and exo-acting cellulases is not absolute. Cel6A from Humicola insolens

has been reported to exhibit some endoglucanase activity, as have other cellobiohydrolases [22].

1.3.2 Cellulose binding module

The cellulose binding modules (CBM) from H. jecorina Cel6A and from most fungal cellulases belong

to family 1 CBM that bind specifically to crystalline cellulose [24, 25]. CBM1 contains roughly 36

residues and two to three disulfide bonds [26]. Previous studies on substrate binding and processivity

suggest that the flat binding face of CBM1 is composed of Y5/W5, Q7, N29, Y31/W31, and Y32

(Figure 1.2), and these residues are highly conserved among CBM1 [24]. CBM1 preferentially binds
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Figure 1.3: Structure alignments of Cel6A cellobiohydrolases from Humicola insolens. A) Compar-
ison between Cel6A cellobiohydrolase (blue, PDB 1OCN chain A, [30]) and Cel6B endoglucanase
(grey, PDB 1DYS chain A, [31]). Arrows indicate loop bending and truncation between a cellobio-
hydrolase and an endoglucanase. B) Comparison between Cel6A with substrate bound (blue, PDB
2BVW chain A, [32]) and without (grey, PDB 1BVW, [33]). Arrows indicate movements of the
active site-forming loops between open and closed conformations.

to the hydrophobic surface over the hydrophilic surface of the cellulose microfibrils, and binding

is dominated by the hydrophobic interactions between the aromatic side chains and the pyranose

rings [26, 27]. However, since lignin is composed of phenolic compounds and consequently very

hydrophobic, CBM1 also binds to lignin non-specifically, which reduces the productivity of cellulases

[28, 29].

1.3.3 Glycoside hydrolase family 6

Glycoside hydrolase family 6 (GH6 or Cel6) includes many fungal cellobiohydrolases and endoglu-

canases that are important in the enzymatic degradation of cellulose to fermentable sugars [34, 35].

Structures of nine Cel6 cellulases and their variants have been determined, and they share a dis-

torted (β/α)7 barrel fold with either a tunnel-shaped or cleft-shaped active site composed primarily

of surface loops (Figure 1.3A) [36, 31]. The different preferences in substrate sites between cellobio-

hydrolases and endoglucanases stem from the shape of the active site. The open cleft-shaped active

site allows endoglucanases to slide along the cellulose chain easily, while the closed tunnel-shaped

active site allows cellobiohydrolases to thread the cellulose chain through and incrementally cleave

glycosidic bonds. Interestingly, structure information of Cel6A cellobiohydrolases demonstrates that
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the active site loops exist in two conformations, open and closed, and move up to 4.5 Å when a

substrate is bound (Figure 1.3B) [32]. The movement of the active site loops is likely the basis of

the endo activity, i.e. internal cleavage of cellulose, observed in Cel6A cellobiohydrolases [37].

1.4 Cellulase engineering

1.4.1 Challenges of engineering cellobiohydrolase activity

Cellulose hydrolysis is a complex reaction that occurs at the liquid-solid interface and does not obey

Michaelis-Menten kinetics. The nature of two-domain cellulases is such that substrate binding is not

always productive, and the cellobiohydrolase needs to diffuse along the substrate until it encounters a

suitable reaction site [38]. Furthermore, the reaction rate declines rapidly during hydrolysis, leading

to long hydrolysis times to achieve complete conversion or the need to increase enzyme loading to

compensate for the slower rate [39]. The decline in hydrolysis rate is attributed to obstacles that are

encountered on the substrate surface or other slow-moving cellulases, which bring the processivity

of cellobiohydrolases to a halt [39, 40]. As a result, the reaction is limited by dissociation of the

enzyme-substrate complex, where the cellobiohydrolase must unbind and locate a new substrate site

before hydrolysis can continue [38]. Due to its tunnel-shaped active site, the rate of dissociation for

cellobiohydrolases is low. Efforts to increase the intrinsic activity of cellobiohydrolase have made very

little progress, in part due to the many parameters — substrate binding, diffusivity, processivity,

and dissociation — that are carefully balanced in catalysis. In addition, cellulases are primary

metabolic enzymes that are crucial to the survival of cellulolytic organisms. The cellulase activity

is likely already optimized since the selection pressure for higher catalytic rates is high. Cellulolytic

fungi have been reported to live at temperatures up to ∼55◦C. While the optimum temperatures of

the secreted cellulases can be slightly higher than the optimum temperature for growth [41], it is

conceivable that thermostability has not reached its optimum peak as it has not been subjected to

stringent selection pressure.
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1.4.2 Advantages of thermostable cellulases

For cellulosic biomass to become a feasible feedstock for transportation fuels and chemicals, the cost

of production needs to be competitive with fossil fuel production. Thermostable cellulases are desir-

able candidates for reducing the biomass degradation costs for several reasons. First, thermostable

cellulases tend to be more stable during production, storage and over a wide range of operating

conditions. Since chemical pretreatments are necessary for increasing the substrate accessibility

to enzymatic degradation, thermostable cellulases are preferred as they are more resilient towards

relatively harsh industrial treatments and conditions. Thermostable cellulases also allow cellulose

hydrolysis to proceed at high temperature with concomitant increased cellulose degradation rate

and reduced microbial contamination [42, 43]. Lastly, the process costs are lower at high hydrolysis

temperature because less energy is required to bridge the reactor temperatures for pretreatment and

for hydrolysis. The viscosity of hydrolysis mixture is also reduced at high temperature, lowering the

energy consumption of mixing [44].

1.4.3 Previous work on Cel6A

Previously, Heinzelman et al. constructed a library of thermostable family 6 fungal cellobiohydrolases

using structure-guided recombination [45]. Cel6A from H. insolens, H. jecorina, and Chaetomium

thermophilum were divided into eight blocks and recombined. The block boundaries were identified

using RASPP algorithm (Recombination as Shortest Path Problem) [46], aiming to minimize the

number of disrupted side-chain contacts relative to the average number of mutations in the library.

Based on the half-life data of 23 chimeras (out of 6,558 possible chimeric sequences), linear regression

models were built to qualitatively evaluate the blocks’ contributions to thermostability. The models

classified the blocks as stabilizing, destabilizing, or neutral and identified B1P1 (block one from

parent one), B6P3, B7P3, and B8P2 as stabilizing. Chimera 12222332, referred to as HJPlus in this

thesis, was constructed by substituting the four stabilizing blocks into H. jecorina Cel6A. HJPlus

Cel6A has activity close to the wild-type H. jecorina Cel6A but is more thermostable than the most

stable parent, H. insolens. The high thermostability coupled with the high expression level (∼10
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mg/L) in our heterologous expression host S. cerevisiae make HJPlus an excellent starting point for

directed evolution to further increase stability.

1.5 Thesis summary

Efforts to engineer thermostable Cel6A cellobiohydrolases are detailed in this thesis. In Chapter

2, HJPlus was evolved for higher thermostability with three rounds of directed evolution, and the

most thermostable variant was used to study the implication of utilizing thermostable cellulases

in cellulose hydrolysis. In Chapter 3, the mechanism of thermal inactivation for the engineered

thermostable Cel6A was studied by investigating the role of free cysteines in cellulase inactivation

at high temperatures. In Chapter 4, thermostability measurements and ionic liquid tolerance of the

Cel6A variants were examined in detail. In Chapter 5, a number of semi-rational protein designs

were surveyed to further enhance the thermostability of Cel6A.
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Chapter 2

Engineering Cellobiohydrolases for
Higher Thermostability

Material from this chapter appears in: Wu I, Arnold FH. (2013) “Engineered thermostable fun-

gal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures”,

Biotechnology and Bioengineering, DOI: 10.1002/bit.24864, and is reprinted with permission of Wi-

ley Periodicals, Inc.

2.1 Abstract

Thermostability is an important feature in industrial enzymes: it increases biocatalyst lifetime and

enables reactions at higher temperatures, where faster rates and other advantages ultimately reduce

the cost of biocatalysis. In this chapter, we report the thermostabilization of a chimeric fungal family

6 cellobiohydrolase (HJPlus) by directed evolution using random mutagenesis and recombination of

beneficial mutations. Thermostable variant 3C6P has a half-life of 280 minutes at 75◦C and a

T50 of 80.1◦C, a ∼15◦C increase over the thermostable Cel6A from H. insolens (HiCel6A) and a

∼20 ◦C increase over that from H. jecorina (HjCel6A). Most of the mutations also stabilize the

less-stable HjCel6A, the wild-type Cel6A closest in sequence to 3C6P. During a 60-hour Avicel

hydrolysis, 3C6P released 2.4 times more cellobiose equivalents at its optimum temperature (Topt)

of 75◦C than HiCel6A at its Topt of 60◦C. The total cellobiose equivalents released by HiCel6A at

60◦C after 60 hours is equivalent to the total released by 3C6P at 75◦C after ∼6 hours, a 10-fold
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reduction in hydrolysis time. A binary mixture of thermostable Cel6A and Cel7A hydrolyzes Avicel

synergistically and released 1.8 times more cellobiose equivalents than the wild-type mixture, both

mixtures assessed at their respective Topt. Crystal structures of HJPlus and 3C6P, determined at 1.5

Å and 1.2 Å resolution, indicate that the stabilization comes from improved hydrophobic interactions

and restricted loop conformations by introduced proline residues.

2.2 Introduction

High enzyme costs remain a major hurdle for the conversion of abundant and renewable cellulosic

feedstocks into fermentable sugars for microbial production of fuels and chemicals [47, 48, 49]. Strate-

gies to reduce enzyme-related costs include reducing the recalcitrance of plant substrate [50, 51],

improving pretreatment conditions [15, 52], and improving enzyme performance [53, 54]. One ap-

proach to improving enzyme performance is to enhance cellulase thermostability. Cellulosic biomass

hydrolysis with commercial fungal cellulase mixtures currently operates at ∼50◦C; increasing hy-

drolysis temperature could significantly improve process performance, provided the catalysts remain

active [55]. The multiple benefits of improving biocatalyst stability include extending the lifetime

during production, storage, and hydrolysis and conferring higher tolerance to pretreatment chem-

icals [56]. More importantly, cellulose degradation at higher temperatures increases degradation

rates and reduces microbial contamination [42, 43].

A fungal cellulase system for efficient cellulose degradation includes at least four glycoside hy-

drolases: a cellobiohydrolase to target the reducing ends of cellulose, a cellobiohydrolase to target

the non-reducing ends, an endoglucanase to reduce chain length and produce free chain ends, and

a β-glucosidase to convert soluble cellodextrin to glucose and relieve cellobiose inhibition for other

cellulases [19, 57]. Other lytic enzymes such as the combination of copper-dependent polysaccharide

monooxygenase and cellobiose dehydrogenase cleave crystalline cellulose through oxidative mecha-

nisms and work synergistically with cellulase-mediated hydrolysis [58, 59]. Accessory proteins such

as swollenins can also aid cellulose degradation by disrupting the structure of crystalline cellulose

[60].



13

According to the CAZy (Carbohydrate-Active enZyme) database [61], the known fungal cellobio-

hydrolases that act on the non-reducing ends of cellulose are found exclusively in glycoside hydrolase

family 6. Despite the essential nature of Cel6A in the non-complexed fungal cellulase system, only

a few protein engineering studies have reported increases in the thermostability of fungal Cel6A

[45, 62, 63]. Lantz et al. (2010) at Genencor reported finding a thermostable Hypocrea jecorina

Cel6A variant with a ∼7◦C increase in melting temperature (Tm) compared to the wild-type Cel6A,

but the authors did not provide sequence information or describe its activity as a function of temper-

ature. In our previous work, we used crystal structure information to construct chimeric cellulases

by structure-guided SCHEMA recombination of Cel6A from Humicola insolens, H. jecorina, and

Chaetomium thermophilum [45]. A highly thermostable Cel6A chimera, HJPlus, was constructed

by incorporating three stabilizing blocks from H. insolens and C. thermophilum Cel6A into the

industrially-important H. jecorina Cel6A. HJPlus is more thermostable than all three of its parent

Cel6A enzymes and hydrolyzes more cellulose than the parents during long-time assays. In this chap-

ter, we chose this active, thermostable chimera HJPlus as the starting point for further stabilization

by directed evolution.

Wild-type cellobiohydrolases and endoglucanases from H. jecorina have been shown to hydrolyze

cellulose synergistically as mixtures, releasing more sugar than the sum of the sugar released by

the individual enzymes [64, 34]. Commercial mixture Celluclast� derived from H. jecorina has

been supplemented with thermostable cellulases to improve cellulose hydrolysis, but the optimum

temperature of Celluclast� mixture remains ∼50◦C [65, 66]. Celluclast� has also been compared

against a mixture of cellulases from different thermophilic fungi, but the novel cellulase mixture

gave a similar hydrolysis yield at 60◦C to Celluclast� at 45◦C [55]. To our knowledge, no study has

reported fungal cellulase mixtures that hydrolyze cellulose optimally at temperatures above 65◦C.

Furthermore, no one has investigated whether engineered cellulases exhibit synergy during hydrolysis

at elevated temperatures.

In this chapter, we describe how the thermostability of a family 6 cellobiohydrolase was increased

without compromising catalytic activity. In an effort to understand the mechanisms by which the
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thermal stabilization was achieved, we solved the crystal structures of the chimera parent Cel6A and

the thermostable Cel6A variant. We also show that the thermostable Cel6A hydrolyzes crystalline

cellulose synergistically with a thermostable fungal Cel7A that functions optimally at 65◦C [67]. A

mixture of the two thermostable enzymes is more active than the wild-type mixture and hydrolyzes

more crystalline cellulose during a long hydrolysis assay.

2.3 Methods

This section describes the medium-throughput screen, the cellulase assays, and the crystallization

methods used in this Chapter. For materials and general methods, please refer to Chapter 6.

2.3.1 Medium-throughput cellulase screen on Avicel

2.3.1.1 Library construction

The mutant libraries were constructed by error-prone PCR, using 100 ng of plasmid, 80 nmol of

dNTP, 20 pmol of forward primer, 20 pmol of reverse primer, 700 nmol of magnesium chloride, 5-20

nmol of manganese chloride, and 8 U of Taq polymerase in a 100 µL reaction. The PCR program

used 30 seconds at 95◦C for initial denaturation, with 20 cycles of 30 seconds at 95◦C, 30 seconds

at 52◦C, and 72◦C for 120 seconds, with 5 minutes of final extension at 72◦C. The gene inserts

were gel purified and extracted before transformation in S. cereviae with endonuclease digested

backbone. The forward primer (5’ CGG GTT ATT GTT TAT AAA TAC TAC TAT TGC CAG

3’) and reverse primer (5’ GAC ATG GGA GAT CGA ATT CAA CTC C 3’) were 73bp upstream

and 65bp downstream from the gene for the purpose of homology recombination in S. cerevisiae.

This protocol with 100 µM manganese chloride (10 nmol of manganese chloride in 100 µL reaction)

should yield ∼2-3 nucleotide substitution (∼1 amino acid substitution) per Cel6A gene.

Alternatively, the mutant libraries were constructed using the GeneMorph II Random Mutagen-

esis Kit, using 500 ng of gene insert (∼2.9 ug of plasmid), 40 nmol of dNTP, 125 ng of forward and of

reverse primer, and 2.5 U of Mutazyme II polymerase in a 50 µL reaction. The PCR program used
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2 min at 95◦C for initial denaturation, and 25 cycles of 30 seconds at 95◦C, 30 seconds at 50◦C, and

72◦C for 120 seconds, with 10 minutes of final extension at 72◦C. For each library construction, four

50 µL PCR reactions were set up in parallel. After PCR, the 200 µL PCR reactions were digested

with 2 µL of DpnI at 37◦C for 2 hours before the gene inserts were gel purified and extracted.

This protocol with the amount of gene insert and cycle number specified should yield ∼3 nucleotide

substitution (∼2 amino acid substitution) per Cel6A gene.

The recombination library was constructed via overlap extension PCR as described previously

[68].

2.3.1.2 Cellulase expression in S. cerevisiae in 96-well plates

To express the mutagenesis libraries in S. cerevisiae strain YDR483W BY4742 (ATCC No. 4014317),

a high-efficiency transformation protocol adapted from Chao et al. [69] was used. A single colony

was used to inoculate 5 mL of YPD medium and grown overnight at 30◦C and 250 rpm in an orbital

shaker. The Abs600 of the overnight culture was measured (typically with 1:50 dilution in water),

and the overnight culture was used to inoculate 20 mL of YPD medium to an Abs600 of 0.1. The

YPD culture was grown at 30◦C for ∼6 hours until the Abs600 reached 1.3 – 1.5 (typically measured

with 1:5 dilution in water). Once the cells reached the desired density, the culture was mixed with

200 µL of 1 M Tris buffer, pH 8.0, with 2.5 M DTT and shaken at 30◦C and 250 rpm for 15 minutes.

Cells were harvested by centrifugation at 2,500 x g at 4◦C for 3 minutes, resuspended with 10 mL

ice-cold buffer E (10 mM Tris buffer, pH 7.5, with 0.27 M sucrose and 2 mM magnisum chloride),

centrifuged again to be resuspended with 1 mL of ice-cold buffer E, and centrifuged a third time to

be resuspended with 200 µL of buffer E. Samples containing 50 µL of cell solution and 5 µL of 0.5 µg

backbone mixed with 0.5 µg of insert were electroporated at 0.54 kV, 25 µF, and infinite resistance

in 0.2 cm electroporation cuvettes (Biorad). The electroporated samples were immediately rescued

with 1 mL of warm YPD and recovered at 30◦C and 250 rpm for 1 hour. The transformed cells were

plated based on an average transformation efficiency of 10 colonies per µL of recovered cells and

grown for 3 days at 30◦C. Colonies containing mutant Cel6A were used to inoculate 50 µL SD-Ura
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medium in 96-well plates covered with AirPore sheet (Qiagen). The cultures were grown overnight

at 30◦C and 80% humidity in orbital shakers before the addition of 350 µL YPD medium and growth

for an additional 48 hours. The culture was harvested by centrifugation, and the supernatant was

used for activity assays without further treatment.

2.3.1.3 Medium-throughput Cel6A activity assay

Three-day culture supernatants (100 µL) were combined with 3 mg of Avicel in 96-well PCR plates

and incubated at 4◦C for 1.5 hours. Avicel and the bound enzymes were washed three times with

180 µL of 50 mM sodium acetate buffer, pH 5.0, before resuspended in 75 µL of buffer. The reaction

was incubated in 75◦C waterbath for two hours and then cooled on ice. After hydrolysis, 50 µL

of reaction supernatants were sampled for reducing sugar concentrations via Nelson-Somogyi sugar

assay. The library hits were streaked on SD-Ura agar plates and grown at 30◦C for 3 days. Single

colonies of the library hits were used to inoculate a new 96-well plate of culture and rescreened for

activity to verify performance over parental enzyme. To recover plasmid from library hits, 10 – 50

µL of resuspended cells were lysed and recovered using Zymoprep Yeast Plasmid Miniprep II Kit.

2.3.2 Thermostability measurements

2.3.2.1 Half-life measurements

All half-life measurements were conducted in 50 mM sodium acetate buffer, pH 5.0. Samples con-

taining 2 µg of Cel6A in 40 µL were inactivated at 75◦C for up to 5 hours in a Mastercycler Pro

Thermal Cycler (Eppendorf) with heated lid. After heat inactivation, the enzymes were incubated

at 50◦C for 2 hours with 60 µL of 5 % w/v Avicel to measure the residual activity. Half-lives were

determined from plots of the natural logs of residual activities versus the inactivation time. Reported

values were averaged from at least three independent measurements.
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2.3.2.2 T50 measurements

All T50 measurements were conducted in 50 mM sodium acetate buffer, pH 5.0. Samples containing

2 µg of Cel6A in 40 µL were inactivated at different temperatures for 15 minutes in a Mastercycler

Pro Thermal Cycler (Eppendorf) with heated lid. The temperature range was selected to ensure the

T50 value is bracketed by a 20◦C range. After heat inactivation, the enzymes were incubated at 50◦C

for 2 hours with 60 µL of 5% w/v Avicel to measure the enzyme’s residual activity. To determine

T50, the residual activities were plotted against the temperature using SigmaPlot (Systat Software

Inc) and fitted using the 4-parameter Botlzmann sigmoidal function (y = y0 + a
1+exp−(x−x0)/b ). T50

is the inactivation temperature with half maximal residual activity, or x0. Reported values were

averaged from at least three independent measurements.

2.3.3 Cellulase activity measurements

All cellulase activity measurements were conducted in 50 mM sodium acetate buffer, pH 5.0. To

determine activity-temperature profiles of Cel6A, samples containing 2 µg of purified Cel6A were

combined with 3 mg of Avicel in 100 µL and incubated at 40◦C to 90◦C for 2 hours or at 60◦C to

75◦C for 60 hours in a Mastercycler Pro Thermal Cycler (Eppendorf) with heated lid. To determine

the activity of the Cel6A and Cel7A mixture, purified Cel6A and Cel7A were combined at different

ratios to a final concentration of 0.5 µM along with 3 mg of Avicel in 100 µL and incubated at 50◦C

to 70◦C for 60 hours. After hydrolysis, the reaction supernatants were sampled for reducing sugar

concentrations via Nelson-Somogyi assay using cellobiose as the reducing sugar standard.

2.3.4 Cellulose adsorption measurements

Samples containing 2 µg to 8 µg of Cel6A in 200 µL of 50 mM sodium acetate buffer, pH 5.0, were

incubated with or without 3% w/v Avicel at 4◦C for 90 minutes. The protein concentrations of the

supernatants were determined using the Bradford assay. The measurements with and without Avicel

at different initial loading concentrations were used to determine the fraction of protein adsorption

to Avicel.
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2.3.5 Crystallography

2.3.5.1 Crystallization and X-ray data collection

For crystallization, the catalytic domains of HJPlus (HJPlus-cat) and 3C6P (3C6P-cat) with C-

terminal His6-tag were cloned and expressed in yeast. The catalytic domains were purified using

HisTrap HP columns and then HiTrap Q HP columns (GE Healthcare). The enzymes were degly-

cosylated with PNGase F as described in Chapter 6. HJPlus-cat was crystallized at 25◦C by the

sitting drop vapor diffusion method, using 34% poly(ethylene glycol) 1000, 200 mM zinc acetate, and

100 mM sodium acetate, pH 5.75. 3C6P-cat was also crystallized at 25◦C by the sitting drop vapor

diffusion method, using 38% poly(ethylene glycol) 1000, 100 mM ammonium sulfate, and 100 mM

sodium acetate, pH 6.0. A cryoprotectant solution was made by including 25% v/v glycerol in the

mother liquor and added to the crystals before they were looped and flash frozen in liquid nitrogen.

X-ray diffraction data were collected at 100 K at the Stanford Synchrotron Radiation Lightsource,

beamline 12-2 on a Dectris Pilatus 6M detector. Diffraction datasets were integrated with XDS [70]

and scaled using SCALA [71].

2.3.5.2 Structure determination and refinement

For HJPlus-cat, initial phases were determined using molecular replacement against the wild type H.

insolens structure 1OCN, chain A [37]. The initial phases of 3C6P-cat were determined using molec-

ular replacement against the structure model of HJPlus-cat, while maintaining the Rfree statistics of

HJPlus-cat to prevent over-fitting the data. Molecular replacement was accomplished using MOL-

REP [72] within the CCP4 software suite [73]. Refinement was accomplished with iterative cycles

of manual model building within COOT [74] and automated refinement using REFMAC [75] within

CCP4. Final cycles of REFMAC refinement included TLS parameters. All protein structure figures

were generated using PyMol (The PyMOL Molecular Graphics System, Version 1.3, Schrödinger,

LLC.).
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2.4 Results

2.4.1 Directed evolution for increased thermostability

Beginning with the thermostable fungal Cel6A chimera HJPlus [45], we identified further stabilizing

mutations by random mutagenesis and screening for improved total activity on crystalline cellulose

(Avicel) at 75◦C over a 2-hour period. The mutant cellobiohydrolase libraries were expressed and

secreted by S. cerevisiae in 96-well plate format, and Cel6A activity was quantified using the Nelson-

Somogyi reducing sugar assay. Because the reducing sugar assay does not distinguish between the

sugar released during hydrolysis and the sugar present in the culture medium, we eliminated the

background from the medium by first batch-purifying the mutated enzymes on Avicel, utilizing the

fact that the cellulose binding module (CBM) from H. jecorina Cel6A binds to Avicel irreversibly at

4◦C [76], before proceeding with the activity assay. Approximately 2,800 colonies from the HJPlus

random mutagenesis library were screened; improved variants exhibited up to 40% higher activity

than the parent. The best-performing variant 1G6 had a single amino acid substitution, S317P. The

second-generation random mutagenesis library was constructed using 1G6 as the template. Screening

identified variants with up to 60% higher activity than the parent 1G6. The best-performing variant

2B3 incorporated an additional mutation, leading to Q277L. No synonymous mutations were found.

Other mutations identified in the top five variants encoded substitutions S30F, V128A, V131E,

S293R, and S413F from the first generation, and M135L, S406P, S413P, and S413F from the second

generation. A third-generation library using variant 2B3 as the template was therefore constructed

to recombine potentially beneficial mutations at positions S30, V128, V131, M135, S293, S406, and

S413. Two amino acids were allowed at each position (three in the case of S413), wild-type or the

beneficial mutation discovered in the first- and second-generation libraries. The best variant 3C6P

found from this library after three-fold oversampling contained a total of seven mutations from

HJPlus: S30F, V128A, M135L, Q277L, S317P, S406P, and S413P.
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2.4.2 Characterization of thermostabilized HJPlus variants

The chimera HJPlus and its improved first-, second-, and third-generation variants 1G6, 2B3, and

3C6P were purified to homogeneity using standard Ni-NTA columns, as were the wild-type Cel6A

parent enzymes from H. insolens, H. jecorina, and C. thermophilum. The “wild-type” Cel6A enzymes

in this report are all recombinant enzymes expressed in S. cerevisiae as described in the Methods

section. Multiple sequence alignments of the wild-type Cel6 enzymes and 3C6P can be found in

Appendix A. Table 2.1 compares the thermostabilities of all these Cel6A enzymes using two different

metrics, the half-life at 75◦C and the T50. The half-life at 75◦C assesses how long an enzyme remains

active when incubated at this temperature, but is not very informative when the enzyme inactivates

at a lower temperature. The T50 measurement estimates the temperature at which 50% of the

enzyme is inactivated after 15 minutes of heat incubation and allows direct comparisons of enzymes

with very different thermostabilities. Both H. insolens (HiCel6A) and H. jecorina Cel6A (HjCel6A)

were completely inactivated within five minutes at 75◦C, while the half-life of C. thermophilum Cel6A

(CtCel6A) could not be determined because the enzyme unfolds at 75◦C but refolds (partially) when

the temperature is reduced. The three wild-type Cel6A have T50 values between 60.0◦C and 65.2◦C.

Thermostable chimera HJPlus unfolds irreversibly and has a half-life of 8.8 minutes at 75◦C and a

T50 at 71.9◦C.

Directed evolution of HJPlus to increase total activity at an elevated temperature led to a

significant increase in thermostability. The half-lives of the Cel6A variants at 75◦C increase more

than 30-fold, from 8.8 minutes for HJPlus to 280 minutes for 3C6P, while the T50 increases by 8.2◦C,

from 71.9◦C to 80.1◦C (Table 2.1). All of these Cel6A variants undergo irreversible unfolding and

exhibit first-order thermal inactivation kinetics. Example residual activity plots for determining the

half-life and T50 measurements of HJPlus, 3C6P, and wild-type Cel6A can be found in Appendix B.

The thermostability screen involves partial purification by binding to Avicel at low temperature.

Mutants that bind more tightly could therefore appear to have higher activity in the screen. We thus

tested adsorption to Avicel for HJPlus and variant HJPlus S30F at 4◦C with enzyme concentrations

similar to those used to measure cellobiohydrolase activity. As shown in Figure 2.1, the fraction of
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Table 2.1: Thermostabilities of wild-type and engineered Cel6A. HiCel6A, HjCel6A, and CtCel6A
are wild-type Cel6A enzymes from H. insolens, H. jecorina, and C. thermophilum, while HJPlus,
1G6, 2B3, and 3C6P are engineered Cel6A.

Enzyme Mutation(s) wrt HJPlus t1/2,75◦C (min) T50 (◦C)

HiCel6A 97 mutations ≤ 2.5 65.2 ± 0.1

HjCel6A 48 mutations ≤ 2.5 60.2 ± 0.4

CtCel6A 84 mutations N.D. 62.6 ± 0.4

HJPlus - 8.8 ± 0.6 71.9 ± 0.6

1G6 S317P 14 ± 3 73.2 ± 0.3

2B3 Q277L+S317P 37 ± 4 75.7 ± 0.3

3C6P S30F+V128A+M135L

+Q277L+S317P+S406P+S413P

280 ± 13 80.1 ± 0.4

HJPlus S30F bound to Avicel is higher than that of HJPlus, indicating that HJPlus S30F has a

higher affinity for Avicel than HJPlus.

Lastly, we investigated whether the mutations affected cellobiohydrolase activity at 50◦C, a

temperature at which HJPlus and its variants do not denature significantly during the hydrolysis

assay. At 50◦C, HJPlus and its variants all have activities that are comparable to the wild-type

Cel6A enzymes (Figure 2.2).

Figure 2.1: Adsorption of HJPlus and HJPlus S30F at 4◦C with 3% w/v Avicel.



22

Figure 2.2: Activities of wild-type and engineered Cel6A at 50◦C. HiCel6A, HjCel6A, and CtCel6A
are wild-type Cel6A from H. insolens, H. jecorina, and C. thermophilum. Purified Cel6A were
assayed for 2 hours with 3% w/v Avicel in 50 mM sodium acetate buffer, pH 5.0. Activities are
reported as the total cellobiose equivalents released.

2.4.3 Stabilizing mutations in H. jecorina Cel6A

We sought to determine whether these stabilizing mutations are also stabilizing in HjCel6A. With

the exception of Q276L (equivalent to Q277L in 3C6P; see Table 2.2), all the mutations in the

catalytic domain (M134L, S316P, S406P, S413P) are stabilizing in HjCel6A, with an increase of

T50 up to 3.6◦C (Table 2.2). S30F does not change the T50 of HjCel6A, but its higher affinity for

Avicel is expected to translate to HjCel6A, which shares the same CBM and linker with the HJPlus

variants.

2.4.4 Temperature-activity profiles of Cel6A

Directed evolution has increased the thermostability of HJPlus, as measured by half-life and T50,

at no cost to the enzyme activity at 50◦C. We next determined how this enhanced thermostability

translates to hydrolysis performance at high temperatures. First we examined the cellobiohydrolase

activities of HJPlus and 3C6P after 2-hour Avicel hydrolysis from 40◦C to 90◦C and compared those

with the activities of HiCel6A, HjCel6A, and CtCel6A, which are some of the closest wild-type Cel6A

in sequence to HJPlus. With an optimum temperature (Topt) between 60◦C and 65◦C, HiCel6A
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has the highest Topt and the highest total activity at its Topt of the three wild-type Cel6A enzymes

tested (Figure 2.3A). For this reason, all further comparisons with the engineered enzymes were

made to HiCel6A. Chimera HJPlus (which differs from HiCel6A at 97 positions) has a Topt of 70◦C,

an increase of roughly 5◦C. The 7 additional mutations in 3C6P increase Topt by another 5◦C, to

75◦C, a temperature at which all the wild-type Cel6A enzymes have only minimal activities. In 2

hours, 3C6P hydrolyzed 50% more sugar than HiCel6A and 20% more than HJPlus acting at their

respective Topt.

The advantages of greater stability become even more significant during longer hydrolysis experi-

ments, where the thermostable enzyme is both more active and has a longer lifetime. To demonstrate

this, we tracked Avicel hydrolysis by HiCel6A and 3C6P over 60 hours, at their respective Topt, 60◦C

and 75◦C. As shown in Figure 2.3B, 3C6P hydrolyzed 1.6 times more sugar at 60◦C than HiCel6A

after 60 hours, which can be attributed to the longer half-life of 3C6P at this temperature. At

75◦C, HiCel6A had minimal activity, while 3C6P retained activity throughout the 60-hour period

and hydrolyzed 2.4 times more sugar than HiCel6A did at 60◦C. In addition, the total cellobiose

equivalents released by HiCel6A at 60◦C after 60 hours is equivalent to that by 3C6P at 75◦C after

approximately 6 hours, a 10-fold reduction in hydrolysis time, or by 3C6P at 60◦C after approxi-

mately 19 hours, a more than 3-fold reduction. In both comparisons, using a more thermostable

Cel6A enzyme can reduce loading or hydrolysis time, both of which profoundly affect enzyme costs.

Table 2.2: T50 of H. jecorina Cel6A (HjCel6A) variants containing mutations found in 3C6P.

Enzyme variant Equivalent mutation in 3C6P T50 (◦C)

HjCel6A - 60.2 ± 0.4

HjCel6A S30F S30F 60.3 ± 0.3

HjCel6A M134L M135L 62.0 ± 0.5

HjCel6A Q276L Q277L 58.6 ± 0.4

HjCel6A S316P S317P 61.9 ± 0.2

HjCel6A S406P S406P 61.5 ± 0.3

HjCel6A S413P S413P 63.8 ± 0.4
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Figure 2.3: Activity-temperature profiles of Cel6A enzymes. HiCel6A, CtCel6A, and HjCel6A are
wild-type Cel6A from H. insolens, C. thermophilum, and H. jecorina, while 3C6P and HJPlus are
engineered Cel6A variants. A) Total cellobiose equivalents released at 40◦C to 90◦C after 2-hour
Avicel hydrolysis. B) Total cellobiose equivalents released at 60◦C and 75◦C during 60-hour Avicel
hydrolysis. Purified Cel6A were assayed for 2 hours or 60 hours with 3% w/v Avicel in 50 mM
sodium acetate buffer, pH 5.0. Activities are reported as the total cellobiose equivalents released.

2.4.5 Exo-exo synergy between Cel6A and Cel7A

Fungal Cel7A is a cellobiohydrolase that acts on the cellulose reducing end. In our previous work, we

engineered Cel7A using recombination [77] and predictive methods [67] to construct a thermostable

Cel7A variant TS8 that is optimally active at 65◦C, with a T50 that is 9.2◦C higher than the ther-

mostable wild-type Cel7A from Talaromyces emersonii (TeCel7A). We examined whether wild-type

and engineered-thermostable Cel6A and Cel7A enzymes hydrolyze cellulose synergistically, the foun-

dation of efficient cellulose degradation. The total cellobiose equivalents released by thermostable

wild-type Cel6A and Cel7A (HiCel6A and TeCel7A) and the engineered-thermostable Cel6A and

Cel7A (3C6P and TS8), both as mixtures and as individual enzymes, were assessed after 60 hours at

50◦C, 60◦C, and 70◦C (Figure 2.4). The wild-type and engineered-thermostable Cel6A and Cel7A

mixtures both hydrolyze cellulose synergistically, releasing up to 2-fold more cellobiose equivalents

when acting as a mixture compared to the sum of the cellobiose equivalents released by the indi-

vidual enzymes. The mixture of 3C6P and TS8 is more active than the mixture of HiCel6A and

TeCel7A at both 60◦C and 70◦C, with the engineered thermostable mixture releasing 1.8 fold more
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Figure 2.4: Synergistic cellulose hydrolysis by wild-type and engineered-thermostable Cel6A and
Cel7A. HiCel6A is wild-type Cel6A from H. insolens; TeCel7A is wild-type Cel7A from T. emersonii ;
3C6P is an engineered thermostable Cel6A, and TS8 is an engineered thermostable Cel7A. Total
cellobiose equivalents released from 0.5 µM of purified Cel6A and Cel7A combined at different molar
ratios were assessed after 60 hours at 50◦C, 60◦C, and 70◦C. The cellobiose equivalents released by
Cel6A or Cel7A alone are included as controls. The dotted lines are the sums of cellobiose equivalents
release from the individual enzymes.

sugar at its Topt of 70◦C than the wild-type mixture at its Topt of 60◦C. The preferred molar ratio

in the thermostable mixture also trends towards higher Cel6A concentration as the temperature

increases, favoring the mixture with higher concentration of 3C6P, which is more thermostable than

TS8 Cel7A.

2.4.6 Crystal structures of HJPlus and 3C6P

To gain insight into the molecular basis of the significant increase in thermostability conferred by the

beneficial mutations, we solved the X-ray crystal structures of HJPlus and 3C6P to a resolution of

1.5 Å (PDB ID 4I5R) and 1.2 Å (PDB ID 4I5U), respectively. Statistics for data collection and final

protein structure models are given in Table 2.3. The structures of HJPlus and 3C6P both display

a distorted (β/α)7 barrel fold typical of family 6 glycoside hydrolases. HJPlus shares 87% sequence

identity with HjCel6A in the catalytic domain; superposition of the HJPlus and HjCel6A structure

1QK2, chain A, reveals a low backbone root mean square deviation (rmsd) of 0.32 Å, indicating that
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the chimeragenesis did not significantly alter the overall structure of the enzyme. HJPlus and its

variant 3C6P have a backbone rmsd of only 0.24 Å. In both cases, the mutations cause only subtle

changes in the structures.

The five thermostabilizing mutations in 3C6P are all near the surface of the enzyme, but only

the serine-to-proline mutations are solvent-exposed. Mutation M135L resides near the end of the

substrate tunnel and is surrounded by four aromatic residues as well as other hydrophobic residues

(Figure 2.5). In addition, surface mapping in the structure of HJPlus and 3C6P by a probe radius

of 1.4 Å demonstrates that there are cavities near M135 in HJPlus, which disappear after the

Table 2.3: Data collection and refinement statistics for HJPlus and 3C6P crystals. All data sets
were collected from single crystals. Highest-resolution shell is shown in parentheses.

HJPlus 3C6P
PDB ID 4I5R 4I5U
Data collection

Space group C 1 2 1 C 1 2 1
Wavelength 1.033 1.033
Cell dimensions

a, b, c (Å) 157.61, 45.26, 58.60 158.60, 45.41, 58.19
β (◦) 95.21 95.47

Resolution (Å) 35.3 - 1.5 (1.5 - 1.6) 35.3 - 1.22 (1.22 - 1.29)
Rmerge (%) 4.1(36.5) 2.7(21.5)
I / σI 16.1(3.1) 16.3(3.7)
Completeness (%) 97.9(97.7) 87.3(71.2)
Redundancy 3.4(3.2) 2.1(1.9)

Refinement
Resolution (Å) 35.3 - 1.5 35.3 - 1.22
No. reflections 61842 101502
Rwork / Rfree 0.15/0.18 0.14/0.16
No. atoms

Protein 2795 2833
Ligand/ion 47 76
Water 278 327

B-factors
Protein 16.3 9.78
Ligand/ion 36.4 30.5
Water 28.4 23.4

R.M.S. deviations
Bond lengths (Å) 0.028 0.030
Bond angles (◦) 2.52 2.61

Ramachandran map
In preferred regions (%) 95.3 95.8
In allowed regions (%) 4.7 3.9
Outliers (%) 0.0 0.3
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Figure 2.5: Local environment near M135L in 3C6P structure. Mutation M135L is surrounded by
conserved residues among the three parents and residues from H. jecorina. M135L is shown as balls,
and the residues within a 4 Å radius from the mutation are shown as sticks. The conserved residues
are colored grey, while the non-conserved residues are colored according to the recombination blocks.
Red represents block 1 from H. insolens. Orange and yellow represent block 2 and 3 from H. jecorina.
Indigo represents block 7 from C. thermophilum. Block definitions are from the work by Heinzelman
et al. [45] and can be found in Appendix C.

Figure 2.6: Surface mapping of the HJPlus and 3C6P structures. Residues at position 135 are shown
in sticks in HJPlus (grey) and 3C6P (blue). The two grey spheres shown in the center represent
cavities that are present only in HJPlus.
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leucine substitution (Figure 2.6). The increase in thermostability is likely due to an increase in

hydrophobicity and improved side chain packing. Mutation M135L is in a sequence block taken

from H. jecorina (the block definitions are based on the work by Heinzelman et al. [45] and can be

found in Appendix C) and is surrounded by residues that are conserved among the three parents

(Figure 2.6). None of the parents have L at this position. The non-conserved residues within 4 Å of

M135L are all wild-type residues from H. jecorina. Since M135L is surrounded by the same residues

that surround M134 from H. jecorina, the thermostabilization effect of M135L in 3C6P translates

well in HjCel6A .

In contrast, mutation Q277L is found to be stabilizing in 3C6P but not in HjCel6A. A close

examination of the Q277L local environment in 3C6P reveals that Q277L resides in an α-helix in

block 5 from H. jecorina, and it is adjacent to an α-helix in block 6 from C. thermophilum (Figure

2.7). Q277 is not conserved among all three parents and is I279 in C. thermophilum. Q277 is

surrounded by conserved residues within a 4 Å radius, with the exception of F334 in block 6 from C.

thermophilum, which is an isoleucine (I333) in H. jecorina. The interaction between Q277 and F334

in HJPlus is a novel contact arising from recombination, and the mutation Q277L in 3C6P restores

the hydrophobic side chain interaction between (iso)leucine and phenylalanine that is observed in

the C. thermophilum enzyme. Q276L in HjCel6A is not stabilizing because the same (iso)leucine-

phenylalanine interaction does not exist at the corresponding residues in HjCel6A.

Three thermostabilizing mutations — S317P, S406P, and S413P — are serine to proline muta-

tions in loop regions. Close examination of the mutations indicates that the substitutions of serine

with proline maintain the local loop structures (Figure 2.8). Strikingly, the Cα and Cβ atoms of

the serines in HjCel6A and HJPlus align remarkably well with the Cα and Cβ atoms from the

corresponding prolines in 3C6P. The thermostability enhancement is likely due to the limited con-

formational freedom the prolines provide without straining the backbone structure.
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Figure 2.7: Local environments near Q227L in 3C6P structure and the corresponding residues
in HjCel6A structure and CtCel6A structure. Mutation Q277L and the corresponding residue in
HjCel6A and CtCel6A are shown as balls, while residues within a 4 Å radius from the mutation
are shown as sticks. The side chain interaction between Q277L and F334 are shown in 3C6P,
and the corresponding residues in HjCel6A structure 1QK2 (orange) and CtCel6A structure 4A05
(cyan) are displayed in parallel. In 3C6P, the conserved residues are colored grey, and the non-
conserved residues are colored according to the recombination blocks. Green represents block 5 from
H. jecorina, and blue represents block 6 from C. thermophilum. Block definitions are from the work
by Heinzelman et al. [45] and can be found in Appendix C.

2.5 Discussion

Fungal cellulases are attractive candidates for optimization because industrially relevant fungal ex-

pression hosts such as H. jecorina are known to express cellulases at high levels — 100 grams per

liter and possibly more [53, 78]. Optimal cellulose hydrolysis can only be achieved through synergis-

tic actions of cellobiohydrolases, endoglucanases, and β-glucosidases, as well as other lytic enzymes,

and improving the activity and thermostability of the individual components remains much desired.

Several wild-type and engineered cellulases have been reported to be active above 70◦C. Parry et

al. reported wild-type Cel5 purified from T. aurantiacus to be optimally active at 70 – 80◦C [79].

Heinzelman et al. [77], Komor et al. [67], and Dana et al. [80] have all reported engineered ther-

mostable Cel7A homologous to T. emersonii Cel7A that are active at 70◦C, though their optimum

temperatures are 60 – 65◦C. In the present work, we have further enhanced the thermostability

of Cel6A to a Topt of 75◦C and demonstrated the advantage of the thermostable variant over its

wild-type counterparts. The thermostable variant can achieve the same overall cellobiose equiv-
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Figure 2.8: Local environments near the serine-to-proline substitutions in HjCel6A structure 1QK2
(orange), HJPlus (grey), and 3C6P (blue).

alent production as the wild-type enzymes at a small fraction of the hydrolysis time and release

significantly (up to 2.4 fold) more cellobiose equivalents during long-time hydrolysis reactions.

However, improvement of a single cellulase is irrelevant if performance of the cellulase mixture

is not improved. Wild-type fungal cellulase mixtures hydrolyze cellulose synergistically, releasing

more sugar than the sum of individual activities [19]. The cooperative activity of the cellulase

mixture is based on endo-exo synergy, exo-exo synergy, and the reduction of cellobiose inhibition

by β-glucosidase. The basis of exo-exo synergy, however, remains elusive [81, 40]. The degree of

synergistic effect decreases with longer hydrolysis time [34] and with saturating enzyme loadings [64].

Here we have shown that the exo-exo synergy holds for cellobiohydrolases from different fungi. The

degree of synergistic effect found in this study, ∼2 fold, is higher than that of the H. jecorina Cel6A-

Cel7A synergy on Avicel (∼1.2 fold after 48 hours) [34] and that of the H. insolens Cel6A-Cel7A

synergy on bacterial cellulose (∼1.5 fold after 24 hours) [22].

We obtained the crystal structures of HJPlus and 3C6P catalytic domains to infer the muta-

tions’ stabilizing mechanisms. The structure models indicate a high level of structural conservation

with H. jecorina Cel6A, despite a difference in T50 of ∼20◦C. High structural similarity among

enzymes of very different thermostabilities has been observed in both laboratory-evolved [82] and

wild-type enzymes [83]. Despite numerous studies applying observed stabilizing factors from hy-

perthermophilic enzymes, the apparent lack of correlation between thermostability and structural

motifs demonstrates the difficulty in pinpointing a universal recipe for stabilizing enzymes.
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In conclusion, we engineered a highly thermostable Cel6A variant and demonstrated that enhanc-

ing the thermostability of cellulases is an effective strategy for improving the efficiency of cellulose

hydrolysis. Engineered thermostable Cel6A and Cel7A retain synergies similar to wild-type mix-

tures, illustrating the utility of thermostabilizing individual cellulases to produce novel thermostable

mixtures. The ability to combine the most active or thermostable cellulases regardless of the origin

of the enzymes supports the approach of engineering individual components separately. The modu-

lar nature also opens up the possibility of designing novel cellulase mixtures for different hydrolysis

requirements.
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Chapter 3

Role of Cysteine Residues in
Thermal Inactivation

3.1 Abstract

Numerous protein engineering studies have focused on increasing the thermostability of fungal cel-

lulases to improve production of fuels and chemicals from lignocellulosic feedstocks. However, the

engineered enzymes still undergo thermal inactivation at temperatures well below the inactivation

temperatures of hyperthermophilic cellulases. In this report, we investigated the role of free cysteines

in the thermal inactivation of wild-type and engineered fungal family 6 cellobiohydrolases (Cel6A).

The mechanism of thermal inactivation of Cel6A is consistent with disulfide bond degradation and

thiol-disulfide exchange. Circular dichroism spectroscopy revealed that a thermostable variant lack-

ing free cysteines refolds to a native-like structure and retains activity after heat treatment over the

pH range 5 – 9. Whereas conserved disulfide bonds are essential for retaining activity after heat

treatment, free cysteines contribute to irreversible thermal inactivation in engineered thermostable

Cel6A as well as Cel6A from H. jecorina and H. insolens.

3.2 Introduction

Traditionally employed in the textile, detergent, or pulp refining industries, cellulases have recently

received attention for applications in production of biofuels from lignocellulosic feedstocks [19, 84, 85].
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Fungal cellulases from Hypocrea jecorina are attractive because of their high expression titers of up

to 100 grams per liter [78]. Various approaches to improving the thermostability of cellulases for

industrial applications have been published [82, 45, 86, 80, 67, 87, 88]. Nonetheless, thermostabil-

ities of engineered fungal cellulases still fall short when compared to hyperthermophilic cellulases

such as those isolated from the anaerobic bacterium Thermotoga maritima [89]. These hyperther-

mophilic cellulases, however, tend to have low activity on crystalline cellulose [90] and lack high

expression yields. Little effort has been devoted to understanding the mechanisms by which fungal

cellulases become thermally inactivated, even though such information might assist in the generation

of hyperthermophilic versions.

Mechanisms of irreversible protein thermal inactivation include deamidation of asparagine and

glutamine residues, peptide chain cleavage, and cysteine oxidation [89, 91]. Cysteine is one of the

least abundant amino acids in proteins but is also one of the most versatile, coordinating metals for

catalysis and participating in redox regulation [92]. Whereas strategically-placed cysteines can be

oxidized to form disulfide bonds, which impose structural rigidity crucial to protein stability and

activity, free thiols are susceptible to chemical modification and thiol-disulfide exchange, which can

lead to misfolding and aggregation [93, 94]. Free cysteines are similarly complex in their effects,

as both removal and strategic placement of cysteine have been shown to enhance thermostability

[95, 62, 96]. Given the reactivity of cysteine, optimizing the content of disulfide bonds and free

cysteines in an enzyme can have profound implications for industrial applications [97, 93].

Cellobiohydrolase II from H. jecorina belongs to glycoside hydrolase family 6 (Cel6A) and is an

essential enzyme for the degradation of cellulose for biofuel production [98, 34, 35]. The crystal

structure of H. jecorina Cel6A reveals a distorted (β/α)7 barrel fold with a tunnel-shaped active

site [21, 36]. The active site is composed primarily of surface loops, and the N-terminal loops

and the C-terminal loops each contain one of the two conserved disulfide bonds (Cys176-Cys235 and

Cys368-Cys415 in H. jecorina Cel6A) [99, 100]. Whereas the disulfide bonds are presumed to provide

loop stabilization important for substrate binding [101, 99], the role of free cysteines in Cel6A is

less clear. Previously, we engineered Cel6A cellobiohydrolases related to H. jecorina Cel6A using
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structure-guided recombination [45] and random mutagenesis [88] to improve thermostability. The

most thermostable Cel6A variant obtained, 3C6P, has five cysteine residues, four of which participate

in disulfide bonds (Cys177-Cys236 and Cys368-Cys415) and one of which is free (Cys246). In this

report, we investigated the mechanism of thermal inactivation of variant 3C6P and its H. jecorina

Cel6A and Humicola insolens Cel6A parents by exploring the effects of removing free cysteines.

3.3 Methods

This section describes the methods used to study thermal inactivation in this Chapter. For materials

and general methods, please refer to Chapter 6.

3.3.1 Residual activity measurements

Depending on the pH of the reaction, sodium acetate buffer (pH 5) or sodium phosphate buffer

(pH 6 – 9) was used. Samples containing 5 µg of purified Cel6A in 40 µL of 50 mM buffer were

inactivated at 70◦C to 90◦C for 15 minutes for residual activity measurements. After thermal

inactivation, 60 µL of 5% (w/v) Avicel in double-deionized water was added and incubated at 50◦C

for 2 hours. Alternatively, samples containing 2 µg of purified Cel6A in 40 µL of 50 mM buffer were

inactivated at 85◦C for 15 minutes. The samples were cooled to 4◦C for 45 minutes before addition

of 60 µL of 5% (w/v) Avicel in double-deionized water and incubation at 50◦C for 2 hours. The

supernatant was analyzed using Nelson-Somogyi reducing sugar assay with cellobiose as the reducing

sugar standard. Residual activity data were modeled with the 4-parameter Boltzmann sigmoidal

equation (y = y0 + a
1+exp−(x−x0)/b ).

3.3.2 Residual activity in the presence of Avicel

Depending on the pH of the reaction, sodium acetate buffer (pH 5) or sodium phosphate buffer (pH 6

– 9) was used. Samples containing 15 µg of purified Cel6A and 3% (w/v) Avicel in 100 µL of 20 mM

buffer were inactivated at 70◦C to 90◦C for 15 minutes for residual activity measurements. After

thermal inactivation, the enzymes were incubated with Avicel at 4◦C for 1 hour to promote maximum
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substrate binding. The sugar produced during the inactivation period was subsequently removed by

washing the Avicel-bound enzyme twice with 180 µL of fresh 20 mM buffer and resuspending the

solids in 75 µL of 20 mM buffer. The Avicel-bound enzymes were incubated at 50◦C for 2 hours

to determine residual activity. The supernatant was analyzed using Nelson-Somogyi reducing sugar

assay with cellobiose as the reducing sugar standard. Residual activity data were modeled with the

4-parameter Boltzmann sigmoidal equation (y = y0 + a
1+exp−(x−x0)/b ).

3.3.3 Half-life measurements

Depending on the pH of the reaction, sodium acetate buffer (pH 5) or sodium phosphate buffer (pH

6 – 9) was used. Samples containing 5 µg of Cel6A in 40 µL were inactivated at 90◦C for up to 2

hours in a Mastercycler Pro Thermal Cycler (Eppendorf) with heated lid. After heat inactivation,

the enzymes were incubated at 50◦C for 2 hours with 60 µL of 5% w/v Avicel in double deionized

water to determine the residual activity. Half-lives were determined from plots of the natural logs

of residual activities vs. the inactivation time.

3.3.4 Circular dichroism measurements

CD measurements were collected on an AVIV 62DS spectrometer equipped with a thermoelectric cell

holder using a 1 mm path length cell. Spectra were recorded from 250 nm to 200 nm at every 1 nm,

with a bandwidth of 1 nm and an averaging time of 3 seconds. Three spectra were recorded at each

temperature to derive an average signal and standard error of the measurements. The measurements

were performed at pH 5 – 9 in 10 mM buffer (sodium acetate at pH 5 and sodium phosphate at

pH 6 – 9). The enzyme concentration in the CD experiment was 10 µM. The CD signals were

corrected with calibration curves from 2.4 mM of (D)-(-)-pantolactone (Sigma-Aldrich) and 2.3 mM

of (+)-camphor-10-sulfonic acid (Sigma-Aldrich) according to a published protocol [102].
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3.3.5 Crystallographic image processing

The FFT functionality under Maps & Mask Utilities in CCP4 suite [73] was used to convert the

MTZ files corresponding to the deposited structures of HJPlus and 3C6P to the 2Fo-Fc map and

the Fo-Fc map, where Fo and Fc refer to observed and calculated structure factors. All protein

structure images were generated using Pymol (The PyMOL Molecular Graphics System, Version

1.3, Schrödinger, LLC.). The 2Fo-Fc map was displayed using isomesh at 1σ level, while the Fo-Fc

map was displayed using isomesh at 3σ level to indicate missing electron densities and -3σ level to

indicate excess electron densities.

3.4 Results

3.4.1 Effect of removing free cysteine in engineered thermostable Cel6A

Thermostable Cel6A variant 3C6P is optimally active at 75◦C but inactivates irreversibly within 5

minutes at 90◦C [88]. A Cel6 sequence alignment revealed near-complete conservation of the two

disulfide bridges (202 out of 205 protein sequences examined), whereas the remaining free cysteine

Cys246 is not (55% Gly, 20% Cys). We introduced a glycine at position 246 in 3C6P and measured

residual activity after thermal inactivation at 70 – 90◦C, pH 5 – 9. At pH 5, the residual activity of

3C6P decreases sigmoidally with increasing temperature, and the enzyme was completely inactivated

after incubation above 85◦C (Figure 3.1A); the temperature of inactivation decreased with increasing

pH. Variant 3C6P C246G was also inactivated with increasing temperature, but never lost all activity

after the temperature was reduced. 3C6P C246G retained some activity even after incubation at

90◦C at all pH (Figure 3.1B).

The half-life of 3C6P C246G was examined at 90◦C, pH 5 – 9, conditions under which 3C6P is

completely inactivated within five minutes. The half-lives varied from 8 to 76 minutes (Table 3.1);

3C6P C246G is most stable at pH 6. The C246G mutation significantly increases the ability of this

cellulase to tolerate extreme temperatures.

To better understand the effect of the C246G mutation, we examined whether the change in the
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Figure 3.1: Residual activity profiles of 3C6P (A) and 3C6P C246G (B). Purified enzymes were
inactivated at different temperatures for 15 minutes at pH 5 – 9 before they were assayed for activity
at 50◦C for 2 hours with 3% (w/v) Avicel. Activity is reported as the total cellobiose equivalents
released.

thermal inactivation profile (Figure 3.1) was due to the absence of cysteine or the presence of glycine.

The Cel6 alignment revealed at least four other amino acids at this position: A (13%), L (9%), S

(2%), and N (1%). These mutations were introduced into 3C6P. Variant 3C6P C246N did not express

in our S. cerevisiae expression host, and no further experiments were performed for it. Residual

activities were determined after thermal inactivation at 70 – 90◦C and pH 7, where the difference in

residual activity profile is the most striking. As shown in Figure 3.2, all four variants with mutations

at residue C246 have residual activity profiles similar to that of 3C6P C246G, suggesting that the

absence of cysteine is important for retention of catalytic activity after heat treatment.

Table 3.1: Half-lives of 3C6P C246G at 90◦C and pH 5 – 9. Purified enzyme was incubated at 90◦C
for different lengths of time and then assayed for activity at 50◦C with 3% (w/v) Avicel.

Reaction pH t1/2,90◦C (min)

pH 5 8.3 ± 4.3

pH 6 76 ± 10

pH 7 48 ± 5

pH 8 20 ± 2

pH 9 8.9 ± 1.7
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Figure 3.2: Effects of different mutations at residue C246 on the residual activity of 3C6P. Purified
enzymes were inactivated at different temperatures for 15 minutes before they were assayed for
activity at 50◦C for 2 hours with 3% (w/v) Avicel in 20 mM sodium phosphate buffer, pH 7.
Activity is reported as the total cellobiose equivalents released.

Variant 3C6P is from a family of chimeric Cel6A cellobiohydrolases that have either one or two

free cysteines, C246 and C400. We sought to determine whether a free cysteine at residue 400 (which

is a serine in 3C6P) alters residual activity and also whether both the highly conserved disulfide

bonds contribute to the ability of 3C6P C246G to withstand high temperature incubation. Four

variants of 3C6P C246G were thus constructed: 3C6P C246G having the S400C mutation, 3C6P

C246G having only one disulfide bond (CC1, CC2), and 3C6P C246G with no disulfide bonds (CC0).

Table 3.2 summarizes the residual activities after thermal inactivation at 85◦C and pH 6, the pH

at which 3C6P C246G has the longest half-life. Mutation S400C reduces the residual activity of

3C6P C246G to the level of 3C6P, indicating that the absence of free cysteines is necessary for

high thermotolerance. In addition, removing the disulfide-forming cysteine pair Cys177-236 reduced

the residual activity of 3C6P C246G by one-third, while the absence of Cys368-Cys415 renders the

thermal inactivation almost fully irreversible, whether Cys177-236 is present or not.
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Table 3.2: Residual activities of cysteine and disulfide variants of 3C6P. Purified enzymes were heat-
inactivated at 85◦C for 15 minutes and assayed for activity at 50◦C with 3% (w/v) Avicel in 20
mM sodium phosphate buffer, pH 6. % residual activity is reported relative to activity before heat
inactivation.

Residue position

Variant 246 400 177-236 368-415 % residual activity

3C6P C S C-C C-C 1.6 ± 0.2

3C6P C246G G S C-C C-C 67 ± 1

3C6P C246G S400C G C C-C C-C 3.4 ± 0.8

CC1 G S C-C S-S 8.7 ± 1.1

CC2 G S S-S C-C 44 ± 2

CC0 G S S-S S-S 7.2 ± 0.6

3.4.2 Thermal denaturation by CD spectroscopy

To better understand the thermotolerance conferred by the C246G mutation, we compared the

secondary structures of 3C6P and 3C6P C246G using circular dichroism (CD) spectroscopy at pH

5 – 9. At each pH, wavelength scans were recorded at 25◦C to establish the spectrum of the folded

enzyme and at 90◦C to observe the secondary structure at high temperature. Wavelength scans

were conducted again once the sample was cooled to 25◦C.

Figure 3.3 shows the CD spectra of 3C6P and 3C6P C246G, grouped by the temperatures at

which the measurements were taken. Both variants have very similar spectra at 25◦C over the pH

range 5 – 9, with a global minimum at 208 nm and a local minimum around 225 nm. At 90◦C, both

3C6P and 3C6P C246G retain significant secondary structure. The global minimum shifted to 204

nm for both proteins, indicating a large fraction of random coil. When 3C6P was cooled to 25◦C,

the global minimum of the 3C6P spectra remained at 204-206 nm and approximated the spectra at

90◦C, indicating irreversible unfolding. In contrast, the spectra of 3C6P C246G after heat treatment

and cooling at pH 6 – 9 follow the native spectra closely, with a global minimum at 208 nm and

a local minimum at 225 nm. Thermal denaturation of 3C6P C246G thus appears to be partially

reversible at pH 6 – 9, which is in agreement with the residual activity data (Figure 3.1B). The CD

spectra of 3C6P C246G after thermal denaturation are very similar at pH 7 – 9, yet the enzyme



41

Figure 3.3: Far-UV wavelength scans of 3C6P (A) and 3C6P C246G (B) with CD spectroscopy. CD
spectra were taken at 25◦C, 90◦C, and 25◦C again after heat treatment. The average scans of 3C6P
or 3C6P C246G at 25◦C are shown in black for comparison.
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retains different levels of activity, implying that retention of native-like structure is not sufficient

to recover native activities. Other factors such as deamidation of asparagine and glutamine, whose

rate increases with increasing pH [103], may play a role as well. Methionine has also been reported

to undergo oxidation at high temperatures [89]. At pH 5, the spectrum of 3C6P C246G at 25◦C

after thermal denaturation retained the global minimum at 204 nm, indicating random coil in the

structure and minimal refolding consistent with loss of activity (Figure 3.3).

3.4.3 Residual activities in the presence of Avicel

To determine whether the observed residual activity profile is unique to enzyme inactivation in the

absence of substrate, heat inactivation of 3C6P and 3C6P C246G were conducted in the presence of

Avicel. Variant 3C6P is observed to withstand inactivation to higher temperatures in the presence

of Avicel (Figure 3.4), as the inactivation temperatures that 3C6P lost all activities are higher in

the presence of Avicel than in the absence. Instead of a sharp transition between the active and

the inactivated state, the residual activity of 3C6P declined linearly rather than sigmoidally with

increasing temperature in the presence of Avicel. However, 3C6P is still completely inactivated

at 90◦C. On the other hand, similar to the residual profile in the absence of Avicel, 3C6P C246G

retained residual activity at pH 6 – 9 after incubation at 90◦C. At pH 5, it is difficult to ascertain

whether 3C6P C246G retained residual activity after thermal inactivation at 90◦C as the cellobiose

equivalents released were too close to the detection limit of the Nelson-Somogyi assay.

3.4.4 Residual activities in the presence of DTT

To investigate how the disulfide bonds contribute to retention of activity after heat treatment,

variants 3C6P and 3C6P C246G were inactivated at 70 – 90◦C and pH 5 – 9 in the presence of 1

mM dithiothreitol (DTT). While DTT reduces disulfide bonds readily at pH 7 or above, it has also

been observed to retain its reducing power at pH 4.5 or 5 at high temperatures [104, 105]. As shown

in Figure 3.5, the residual activities of 3C6P and 3C6P C246G do not differ significantly in the

presence of DTT. They do differ, however, from the profiles measured without DTT (Figure 3.1).
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Figure 3.4: Residual activity profiles of 3C6P (A) and 3C6P C246G (B) inactivated in the presence
of Avicel. Purified enzymes were inactivated in the presence of 3% (w/v) Avicel at different tem-
peratures for 15 minutes at pH 5 – 9. The sugar produced during inactivation was washed away
before the enzymes were assayed for activity at 50◦C for 2 hours. Activity is reported as the total
cellobiose equivalents released.

The activities of 3C6P C246G are higher when DTT is not present during incubation, indicating

that the reversibility of thermal denaturation depends on correct formation of the disulfide bonds.

3.4.5 Crystallographic observations

In Chapter 2, crystal structure of 3C6P was determined at 1.2 Å (PDB ID 4I5U) to study the

mechanism behind the thermostabilizing mutations [88]. The protein crystal was obtained in sodium

acetate buffer at pH 5.8. During crystal structure construction, when the conserved cysteine pair

Cys177-Cys236 was modeled as cystine, the electron density between the cysteine side chains was

continuous, indicating that the residues were participating in a disulfide bond. However, the Fo-

Fc difference map showed a strong negative peak between the sulfur atoms, indicating that the

disulfide configuration did not represent the structure adequately and that the cysteines existed in

both oxidized and reduced states in the protein crystal (Figure 3.6). In addition, Cys236 could be

modeled with a reduced rotamer pointing toward the carbonyl oxygen of Asn226 and the carbonyl

oxygen of Asn230. A similar observation was made when modeling Cys368-Cys415 as well, although

the effect is much more pronounced in Cys177-Cys236 than Cys368-Cys415 (Figure 3.6).
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Figure 3.5: Residual activity profiles of 3C6P (A) and 3C6P C246G (B) inactivated in the presence
of reducing agent DTT. Purified enzymes were inactivated at different temperatures at pH 5 – 9
before they were assayed for activity at 50◦C with 3% (w/v) Avicel, 1 mM DTT.

3.4.6 Effect of removing free cysteines in H. jecorina and H. insolens

Cel6A

We examined whether the thermotolerance gained by removing free cysteines is unique to the engi-

neered thermostable Cel6A or whether there is a similar benefit in wild-type Cel6A. Cel6A from H.

insolens (HiCel6A) and H. jecorina (HjCel6A) contain one (Cys403) and two (Cys245 and Cys400)

free cysteines, respectively. These were mutated to serines, and the residual activities of the variants

were determined after thermal inactivation at 85◦C, pH 6. Both variants containing no free cysteine

Figure 3.6: Cysteine pairs Cys177-Cys236 and Cys368-Cys415 in 3C6P (PDB ID 4I5U) in both
oxidized and reduced conformations. Blue represents 2Fo-Fc electron density map displayed at 1σ
level. Green represents missing electron density from Fo-Fc difference map displayed at 3σ level,
and red represents excess electron density from Fo-Fc difference map displayed at -3σ level.
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Table 3.3: Residual activities of wild-type and cysteine variants of H. jecorina (Hj) and H. insolens
(Hi) Cel6A. Purified enzymes were heat-inactivated at 85◦C for 15 minutes and assayed for activity
at 50◦C with 3% (w/v) Avicel in 20 mM sodium phosphate buffer, pH 6. % residual activity is
reported relative to activity before heat inactivation.

Residue position (HiCel6A/HjCel6A)

Variant 249/245 403/400 % residual activity

HiCel6A L C 1.6 ± 0.2

Hi C403S L S 42 ± 2

HjCel6A C C 3.2 ± 0.3

Hj C245S C400S S S 70 ± 6

exhibited significant activity after thermal inactivation, whereas HiCel6A and HjCel6A were fully

inactivated (Table 3.3). After heat treatment, HjCel6A lacking its free cysteines recovered 70% ac-

tivity, comparable to 3C6P C246G under the same conditions, whereas the HiCel6A variant lacking

its free cysteine retained 42% activity. Removing the free cysteines thus allows the wild-type Cel6A

to better tolerate incubation at high temperatures.

3.5 Discussion

Thermal inactivation is the irreversible loss of activity when an enzyme is held at high tempera-

tures for a prolonged period of time [106]. A better understanding of the mechanisms of thermal

inactivation can aid us in engineering enzymes for industrial applications. In the present study,

we investigated the impact of free cysteines on irreversible thermal inactivation of Cel6A. All four

3C6P mutants lacking Cys246 (C246A, C246G, C246L, and C246S) retained some activity after 15-

minute incubation at 90◦C and pH 7, in contrast to 3C6P, which lost all activity. CD spectroscopy

and thermal inactivation with DTT indicate that the residual activity of 3C6P C246G stems from

disulfide-bond-assisted refolding to a native-like conformation. The mechanism of thermal inacti-

vation of Cel6A appears to involve disulfide bond degradation and thiol-disulfide exchange at high

temperatures. Degradation of disulfide bonds is initiated when hydroxyl ions either attack the sulfur

atom or deprotonate the α-carbon (β-elimination) or the β-carbon of the cysteine (α-elimination)
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[93]. Though believed to occur mainly in neutral or basic pH, β-elimination of disulfide bonds has

been observed at pH as low as pH 4 in a number of proteins at 100◦C [91, 107]. The half-life of

disulfide bonds at 100◦C is much longer at pH 6 than pH 8, which is in agreement with the half-lives

of 3C6P C246G at 90◦C reported here.

Thiol-disulfide exchange refers to the formation of new disulfide bonds when free thiols, including

those generated by disulfide bond degradation, attack another disulfide bond to form a new cystine

[108]. Such processes have been implicated in enzyme thermal inactivation at high temperatures.

Zale and Klibanov demonstrated that the irreversible inactivation of ribonuclease, which does not

have any free cysteines, was due to the shuffling of disulfide bonds at pH 6 and 8, and addition of free

cysteines greatly increased the rate of inactivation at 90◦C [91]. Similarly, the presence of the free

cysteine in 3C6P significantly decreases the half-life at 85 – 90◦C. In the absence of free cysteines,

the rate of thermal inactivation is limited by disulfide bond degradation, which occurs two orders of

magnitude more slowly than thiol-disulfide exchange [107].

The observation that the cysteines participating in disulfide bonds were found in both the bridged

and reduced states in the protein crystal may be attributed to ionizing radiation damage from

synchrotron X-ray. Ionizing radiation from synchrotron sources leaves specific damage to the protein

structure, including disulfide bond cleavage and decarboxylation of acidic residues, instead of non-

specific damage [109, 110]. In addition, there is a specific order of susceptibility to cleavage among

the several disulfide bonds within a protein, and the order of susceptibility has been suggested to

be related to the intrinsic stability of the different disulfide bonds [110]. In the crystal structure

of 3C6P, the disulfide bond Cys177-Cys236 is much more susceptible to cleavage than Cys368-

Cys415, as indicated by the Fo-Fc difference maps. This coincides with the residual activity data of

variant CC1 (containing only Cys177-Cys236) and variant CC2 (containing only Cys368-Cys415).

In particular, variant CC2 retained an order of magnitude higher activity than variant CC1 after

thermal inactivation at 85◦C, confirming that Cys368-Cys415 is more resistant to degradation than

Cys177-Cys236.

Two wild-type Cel6A related to 3C6P, H. insolens Cel6A (HiCel6A) and H. jecorina Cel6A
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(HjCel6A), are both irreversibly inactivated at temperatures above 70◦C, whereas Cel6A from

Chaetomium thermophilum (CtCel6A) partially refolds when the temperature is reduced [88]. We

hypothesize that this behavior reflects the presence or absence of free cysteines in the respective en-

zymes. Variants of HiCel6A and HjCel6A having no free cysteines retained up to 70% activity after

thermal inactivation at 85◦C, which suggests that wild-type Cel6A follow the same mechanism of

thermoinactivation as the thermostable 3C6P. We postulate that Cel6A enzymes have a propensity

to refold to their native conformation after thermal denaturation. However, free cysteines increase

the rate of thermal inactivation by participating in thiol-disulfide exchange and causing the protein

to misfold and aggregate.

In conclusion, fungal cellobiohydrolases from family 6 glycoside hydrolase are essential com-

ponents of cellulases used to degrade cellulose to produce higher-value fuels and chemicals. Un-

derstanding the mechanism of thermal inactivation in this enzyme family can aid future efforts to

engineer them to withstand harsh industrial conditions. Thermal inactivation involves disulfide-bond

degradation and thiol-disulfide exchange in engineered thermostable Cel6A as well as the wild-type

enzymes. Removal of free cysteines is essential if these enzymes are to tolerate high temperatures.

The high residual activities of Cel6A variants lacking free cysteine stems from disulfide-bond-assisted

refolding to native-like structure after thermal inactivation.
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Chapter 4

Thermostability and Ionic Liquid
Tolerance

4.1 Abstract

Lignocellulose is a complex substrate that is recalcitrant to enzymatic degradation, and substrate

pretreatments are necessary to increase the accessibility of lignocellulose to cellulases and hemicel-

lulases. Ionic liquids like 1-ethyl-3-methylimidazolium (EMIM) acetate are emerging as promising

pretreatment chemicals, but the production and recycling of ionic liquids are energy-intensive and

costly to implement. A cost-effective method is to eliminate the need to separate ionic liquids be-

fore enzyme hydrolysis and use cellulases and hemicellulases that are tolerant to ionic liquids. In

this chapter, we compared different thermostability measurements to assess the thermostability of

fungal Cel6A cellobiohydrolases and established correlations between thermostability measurements

and EMIM acetate tolerance. The inactivation effects of EMIM acetate are more severe at higher

temperatures, and the variants tolerated lower EMIM acetate concentrations at 70◦C than 50◦C. The

presence of EMIM acetate lowered the activities of the Cel6A variants, with the exception that 5%

EMIM acetate slightly enhanced the activity instead. The enhancing effect was observed for all vari-

ants with an IC50 of 10% or higher at 50◦C and/or 70◦C. Future investigations are needed to verify

that the correlations hold between thermostability and EMIM acetate tolerance with lignocellulosic

substrates and for other families of cellulases.
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4.2 Introduction

Lignocellulose consists mainly of three types of biopolymers — cellulose, hemicellulose, and lignin

— that are tightly woven together and connected by covalent bonds and non-covalent interactions

[111]. Composed of long linear chains of glucose, cellulose is the main component of lignocellulose

and forms extensive intermolecular hydrogen bonds with other cellulose chains and hemicellulose

[28]. Hemicelluloses are branched heterogeneous polymers of pentose (e.g. xylose) and hexose (e.g.

mannose, glucose), and the exact composition of the hemicellulose is dependent on the biomass

source [112]. Cellulose and hemicellulose like xylan can be converted to their respective monomeric

sugars by cellulases and xylanases. However, the tight knitted structure of lignocellulose and the

presence of lignin make the substrate very recalcitrant to enzymatic degradation [111, 113].

Different physical and chemical pretreatment conditions have been applied to increase the acces-

sibility of lignocellulose to cellulases and xylanases by separating cellulose, hemicellulose, and lignin

from each other. Dilute sulfuric acid pretreatment, steam explosion, and ammonia fiber expansion

(AFEX) are all commonly employed as pretreatment methods in the production of lignocellulosic

biofuels [11]. Each pretreatment method has its own advantages and drawbacks, and the high cost

of many pretreatment chemicals calls for their recovery and recycling. The choice of an optimal

pretreatment method requires the careful balance between minimizing the production of inhibitory

compounds, reducing lignin content, and the safe handling of the pretreatment chemicals, while

maximizing the accessibility of lignocellulose [13].

Ionic liquids (IL) are low melting-point salts that are emerging as an alternative pretreatment

chemical. A number of studies have examined the effects of different IL in pretreating lignocellulose,

and the combinations of imidazolium-based or pyridinium-based cations and acetate or chloride

as the anion are the most effective in dissolving cellulose [18]. In addition, the ability of 1-alkyl-

3-methylimidazolium-based IL to dissolve cellulose increases with decreasing alkyl chain length.

Even-numbered alkyl chains are also better at dissolving cellulose than odd-numbered alkyl chains

[18]. After dissolution of cellulose, an anti-solvent such as water is added to precipitate cellulose

and separate lignin [114]. Pretreatment with 1-ethyl-3-methylimidazolium (EMIM) acetate has been
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shown to significantly decrease the crystallinity of cellulose and reduce lignin content in switchgrass,

which translate to faster hydrolysis rates and higher total conversion [115, 116]. However, application

of IL pretreatment is currently limited by the high cost of the ionic liquid, and recovering ionic liquid

after pretreatment is energy-intensive and costly to implement [18].

An alternative cost-effective approach is to eliminate the separation step of ionic liquid after

pretreatment [116]. This requires that the cellulases and hemicellulases for hydrolysis be highly

tolerant of the ionic liquid used for pretreatment. However, the activity of commercial cellulase mix-

tures is strongly attenuated in the presence of 10% EMIM acetate at 50◦C [117, 118]. Studies have

reported the discovery of IL-tolerant cellulases from (hyper)thermophilic bacteria and archaea and

demonstrated that more thermostable cellulases retain activity better in the presence of ionic liquid

[119, 120]. Previously, we created a family of fungal Cel6A cellobiohydrolases by structure-guided

recombination [45]. Chimera 12222332, or HJPlus, is one of the chimeras closest in sequence to the

industrially relevant Cel6A from Hypocrea jecorina. By conducting random mutagenesis and recom-

bination of beneficial mutations on HJPlus, we obtained a series of thermostable Cel6A cellobio-

hydrolases [88]. In this chapter, we evaluated different thermostability measurements for assessing

the Cel6A variants and identified correlations between EMIM acetate tolerance and thermostability

in fungal Cel6A cellobiohydrolases. The result demonstrates that increasing thermostability is an

effective strategy for increasing EMIM acetate tolerance.

4.3 Methods

This section describes the methods used in this chapter to study thermostability and ionic liquid

tolerance. For materials and general methods, please refer to Chapter 6.
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4.3.1 Thermostability measurements

4.3.1.1 T50 measurements

All T50 measurements were conducted in 50 mM sodium acetate buffer, pH 5.0. Samples containing

2 µg of Cel6A in 40 µL were inactivated at different temperatures for 15 minutes in a Mastercycler

Pro Thermal Cycler (Eppendorf) with heated lid. The temperature range was selected to ensure the

T50 value is bracketed by a 20◦C range. After heat inactivation, the enzymes were incubated at 50◦C

for 2 hours with 60 µL of 5 % w/v Avicel to measure the enzymes residual activity. To determine

T50, the residual activities were plotted against the temperature using SigmaPlot (Systat Software

Inc) and fitted using the 4-parameter Botlzmann sigmoidal function (y = y0 + a
1+exp−(x−x0)/b ). T50

is the inactivation temperature with half maximal residual activity, or x0.

4.3.1.2 Melting temperature measurement by DSF

SYPRO Orange indicator dye (Invitrogen) was diluted to 10X concentration in 1.5 mL of 100 mM

HEPES buffer, pH 7.4, with 150 mM sodium chloride. Samples containing 15 µL of 10 µM purified

Cel6A were combined with 15 µL of 10X SYPRO Orange and subjected to thermal melting from

25◦C to 99◦C at a rate of 1◦C/min. The fluorescence signals at excitation wavelength of 490 nm and

emission wavelength of 530 nm were monitored every 30 seconds using a StepOne Plus Real-time

PCR machine (Applied Biosystems). To determine the melting temperature (Tm), the fluorescence

signals were plotted against the temperature using GraphPad Prism (GraphPad software) and fitted

with the 4-parameter Boltzmann sigmoidal function (y = y0+ a
1+exp−(x−x0)/b ). Tm is the temperature

with half maximal fluorescence intensity, or x0.

4.3.1.3 TA50 measurements

All TA50 measurements were conducted in 50 mM sodium acetate buffer, pH 5.0. Samples containing

2 µg of purified Cel6A in 40 µL were combined with 60 µL of 50 mg/mL Avicel and incubated at

different temperatures in a Mastercycler Pro Thermal Cycler (Eppendorf) with heated lid. The

incubation temperatures were selected to include the optimum temperature (temperature with the
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highest activity) and temperatures at which the enzyme loses all activity after 2 hours. The activity

was determined by measuring the reducing sugar concentration in the reaction supernatant using

Nelson-Somogyi sugar assay. To determine TA50, the activity data was first normalized with the

optimum activity, which was obtained by averaging the cellobiose concentrations of the three highest

activity readings. The temperature at which the activity first reached 95% or above was set as

the cut-off point, and activity data at temperatures below the cut-off point was discarded. The

remaining activity data was plotted against the temperature using SigmaPlot (Systat Software Inc)

and fitted with the 4-parameter Boltzmann sigmoidal function (y = y0 + a
1+exp−(x−x0)/b ). TA50 is

the temperature with half maximal activity, or x0.

4.3.2 Activity in the presence of ionic liquid

All activity assays with ionic liquid were conducted with 50 mM sodium acetate buffer, pH 5.0.

Samples containing 75 µL of 0.4 µM purified Cel6A were combined with 75 µL of 40 mg/mL Avicel

or IL-pretreated switchgrass in 50 mM sodium acetate buffer supplemented with 10%, 20%, 30%,

and 40% 1-ethyl-3-methylimidazolium (EMIM) acetate and incubated at 50◦C or 70◦C for 16 hours.

The incubation was performed in a Mastercycler Pro Thermal Cycler (Eppendorf) with heated lid.

Alternatively, samples containing 10 mg of IL-pretreated switchgrass were suspended in 125 µL

of 10%, 20%, 30%, and 40% 1-ethyl-3-methylimidazolium (EMIM) acetate and 61.5 µL of 50 mM

sodium acetate buffer and incubated with 13.5 µL of 40 mg/mL bovine serum albumin (BSA) at

50◦C or 70◦C for 1 hour. After the pre-incubation, 50 µL of 4.25 µM purified 3C6P were combined

with ILSG and incubated at 50◦C or 70◦C for 16 hours. The incubation was performed in a tabletop

Thermomixer Comfort (Eppendorf) shaking at 1400 rpm. After the 16-hour incubation, the reducing

sugar concentration in the reaction supernatant was determined using dinitrosalicylic acid (DNS)

sugar assay.



54

4.4 Results and discussion

4.4.1 Stabilizing mutations from mutagenesis libraries

Upon mutagenesis of HJPlus, we found five positions (M135, Q277, S317, S406, and S413) with

stabilizing mutations that increased the thermostability of the Cel6A enzymes [88]. Saturation

mutagenesis libraries with NNK degeneracy were constructed at each position in HJPlus and screened

for total activity at 75◦C after 2 hours. For each NNK library, 90 colonies were examined, a roughly

three-fold oversampling. For the NNK libraries at all positions, the beneficial mutations identified

from the random mutagenesis libraries were also found as the top variants in the NNK libraries.

For position S317 and S413, two new beneficial substitutions were identified: S317W and S413W.

Table 4.1 summarizes the T50 measurements of the Cel6A variants with different combinations of

stabilizing mutations. T50 is defined as the temperature at which the enzyme loses 50% of its activity

after 15 minutes of thermal inactivation. In general, the stabilizing mutations discovered as single

mutations were found to be stabilizing in combination with other mutations, with the exception of

the mutations at residues 317 and 413. The most thermostable variant has prolines at both positions,

even though tryptophan has been shown to be comparably stabilizing as single mutants in either

position.

4.4.2 Comparison between T50 and other thermostability measurements

The twelve Cel6A variants in Table 4.1 cover a range of 8.2◦C in T50 measurements. We sought to

evaluate the effectiveness of different thermostability measurements by comparing T50 with other

measures. The melting temperature of the enzyme based on loss of structural elements has been

commonly used to evaluate thermostability. The melting temperatures (Tm) of the variants were

determined with differential scanning fluorimetry (DSF) using the indicator SYPRO Orange, whose

fluorescence is unquenched when it binds to hydrophobic regions as the enzyme unfolds [121, 122].

As shown in Figure 4.1A, a comparison between Tm and T50 showed no correlation between the two

measurements (R2 = 0.03). Melting temperatures determined by differential scanning calorimetry
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Table 4.1: T50 measurements of the Cel6A variants. The amino acid at each position is displayed
at the top of the column, while the mutated amino acids in each variant with respect to HJPlus are
displayed in the grid.

Variant S30 V128 M135 Q277 S317 S406 S413 T50 (◦C)

HJPlus - - - - - - - 71.9 ± 0.6

1G6 - - - - P - - 73.2 ± 0.3

317F12 - - - - W - - 73.6 ± 0.5

413A1 - - - - - - W 74.3 ± 0.3

1F4 - - - - - - F 73.0 ± 0.3

2B3 - - - L P - - 75.7 ± 0.3

2F4 - - L - P - - 74.3 ± 1.1

2G6 - - - - P P - 74.9 ± 0.6

3C6 F A L L P P - 76.9 ± 0.2

3C6P F A L L P P P 80.1 ± 0.4

3C4W F A L L P P W 79.5 ± 0.4

3CW2 F A L L W P W 77.5 ± 0.5

or circular dichroism spectroscopy are needed to evaluate whether DSF is a valid method to assess

the unfolding of Cel6A. In addition, the Tm measurements of the variants are consistently higher

than the T50 measurements, suggesting that the variants are inactivated before the enzymes expose

significant areas of hydrophobic regions.

The T50 measurements are based on residual activity data after incubation at high temperature.

We sought to examine whether T50 correlates with activity at high temperatures. The optimum

temperature of Cel6A, the temperature at which the catalytic activity is highest, is a likely can-

didate for examining activity at high temperatures. However, since the optimum temperatures of

Cel6A tend to cover a broad range (∼5◦C), a different measurement of thermostability, TA50, was

investigated. TA50 is defined as the temperature at which the enzyme loses 50% activity relative to

activity at its optimum temperature. As shown in Figure 4.1B, a comparison between TA50 and T50

measurements of the variants showed a good correlation between the two (R2 = 0.90), unlike the

relationship between Tm and T50. TA50 is consistently higher than T50 for all the variants examined,

which is likely due to the fact that Avicel exhibits stabilizing effects with cellulases. In the presence
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Figure 4.1: Comparison between different thermostability measurements. A) The correlation be-
tween T50 and Tm. B) The correlation between T50 and TA50. T50 is the temperature at which
the enzyme loses 50% of its activity after 15-min heat inactivation. Tm is the apparent melting
temperature determined by monitoring the thermal unfolding of Cel6A with SYPRO Orange. TA50

is the temperature at half-maximal activity. All three thermostability measurements were obtained
by modeling the activity or fluorescence data with the 4-parameter Boltzmann sigmoidal function.

of Avicel, the enzymes undergo thermal denaturation at a slower rate due to their interaction with

the substrate.

4.4.3 IL tolerance with Avicel as substrate

To determine if a correlation exists between Cel6A thermostability and tolerance to ionic liquid, the

activities of the variants were measured at 50◦C or 70◦C for 16 hours in the presence of different

concentrations of EMIM acetate using Avicel as substrate. To quantify EMIM acetate tolerance,

IC50 of the variants were determined by fitting the activity at different concentrations of ionic liquid

with a 4-parameter sigmoidal plot. IC50 is defined as the inhibitor concentration at which the

enzyme loses 50% of maximal activity. At 50◦C, IC50 did not vary dramatically (from 15% to 18%)

among the variants examined, though a reasonable correlation between IC50 and T50 at 50◦C (R2

= 0.83, Figure 4.2A) existed. At 70◦C, the variation in IC50 is larger (from 5% to 11%), and a

stronger correlation exists between IC50 and T50 at 70◦C (R2 = 0.91, Figure 4.2A). The correlations

improved further when IC50 was compared with TA50, with a R2 of 0.84 at 50◦C and R2 of 0.94 at

70◦C (Figure 4.2B). At both temperatures, the tolerance to EMIM acetate, IC50, increases as the
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Figure 4.2: Correlation between thermostability and ionic liquid tolerance at 50◦C and 70◦C. A)
Correlation between T50 and IC50. B) Correlation between TA50 and IC50. Activity in the presence
of EMIM acetate was determined by incubating Cel6A with 3% (w/v) Avicel and 0 – 20% EMIM ac-
etate at 50◦C or 70◦C for 16 hours. IC50 is the EMIM acetate concentration at half-maximal activity
determined by modeling the activity data with the 4-parameter Boltzmann sigmoidal function.

thermostability of the variants increases. In all the variants examined, IC50 at 50◦C is higher than

IC50 at 70◦C, indicating that the activity declined faster at 70◦C than at 50◦C as the concentration

of EMIM acetate increased. In other words, the effects of thermal inactivation and inactivation

by EMIM acetate are cumulative, and EMIM acetate is more detrimental to cellulase activity at a

higher temperature.

4.4.4 IL tolerance with pretreated biomass as substrate

Avicel is a commercially available substrate of microcrystalline cellulose commonly used to determine

the activities of cellobiohydrolases, but it does not adequately reflect the complexity of lignocellulosic

substrate used in biofuel production. We sought to determine if similar trends exist between T50

and ionic liquid tolerance when lignocellulosic substrate is used. The activities of the variants were

again determined at 50◦C or 70◦C for 16 hours in the presence of different concentrations of EMIM

acetate using IL-pretreated switchgrass (ILSG). ILSG has been washed and dried to remove any

ionic liquid from the substrate pretreatment process, and the different concentrations of EMIM

acetate were achieved by suspending the pretreated biomass in sodium acetate buffer supplemented
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with EMIM acetate. Unlike Avicel, which is uniform in size with a particle size of ∼50 µm, ILSG

is not homogeneous in size, has a much larger average particle size, and is difficult to pipet in a

liquid suspension. As a result, the well-to-well variation in the amount of ILSG dispensed was

large. A new substrate dispensing method is needed to improve the well-to-well variation, either by

accurately dispensing milligrams of dry substrate per well or by dispensing liquid substrate dissolved

in ionic liquid. However, the amount of ILSG in each well was in excess compared to Cel6A and

should not be the limiting factor in this hydrolysis experiment. Unfortunately, the activities of the

variants on ILSG after 16 hours were below the detection range of DNS reducing sugar assay. This

is most likely due to the lignin content in the substrate, to which cellulases bind non-specifically and

non-productively [29].

4.4.5 IL tolerance in the presence of BSA

To obtain sufficient cellulase activity on IL-pretreated switchgrass (ILSG), it was necessary to either

include an additive to block non-specific binding to lignin or use a different lignocellulosic substrate

with a lower lignin content before the experiment can proceed. Different surfactants and additives

have been added during cellulose hydrolysis to decrease nonspecific lignin binding [123, 124]. In

particular, studies by the Wyman group have shown that addition of bovine serum albumin (BSA)

increases the hydrolysis yield by preventing non-productive binding of cellulase onto lignin and

decreasing the crystallinity of cellulose [125, 126]. We sought to determine if the addition of BSA,

a non-catalytic protein in the mixture, would allow us to measure cellulase activity on ILSG in

the presence of EMIM acetate. Due to the difficulty in dispensing liquid-suspended ILSG, in this

experiment 10 mg of ILSG were carefully weighed and dispensed in individual sample tubes to ensure

that the tube-to-tube variation was at a minimum. BSA was pre-incubated with ILSG prior to the

addition of 3C6P. As shown in Figure 4.3, the activity of 3C6P on ILSG at 50◦C was similar as

the concentration of EMIM acetate increased from 10% to 20%, suggesting that the combination

of ILSG and BSA dampens the inactivating effect of EMIM acetate at 50◦C. However, the same

trend was not observed with the activity on ILSG at 70◦C. Furthermore, the activity in the presence
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Figure 4.3: Normalized activity of variant 3C6P on Avicel and IL-pretreated switchgrass with dif-
ferent concentrations of EMIM acetate. Purified 3C6P was incubated at 50◦C or 70◦C for 16 hours
with 3% (w/v) Avicel or 4% (w/v) ILSG supplemented with 0 – 20% EMIM acetate. The ILSG
samples were pre-incubated with 7.5% BSA w/w of ILSG for 1 hour before the addition of 3C6P.
Activity on Avicel was normalized by the activity at 50◦C and 0% EMIM acetate on Avicel, while
activity on ILSG was normalized by the activity at 50◦C and 0% EMIM acetate on ILSG.

of EMIM acetate would suggest that the IC50 at 50◦C is higher with ILSG than Avicel but that

the IC50 at 70◦C is higher with Avicel than ILSG. Further investigation is needed to elucidate if

different cellulose substrates alter the IC50 of the Cel6A variants. Also, the presence of BSA likely

alters the dynamics of the enzyme denaturation and further complicates the quest to understand

the effect of ionic liquid. As a result, a lignocellulosic substrate with a lower lignin content than the

present study should be used instead of supplementing the hydrolysis reaction with BSA.

4.4.6 Activity enhancing effect of 5% EMIM acetate

The Cel6A activity on Avicel decreases as the concentration of EMIM acetate increases. The exact

mechanism of inactivation — let it be denaturation, inhibition to catalysis, or inhibition to binding

— requires further investigation. Interestingly, 5% of EMIM acetate slightly enhanced the activity

at 50◦C on Avicel for most Cel6A variants examined in this study. The enhancing effect of 5%

EMIM acetate increased the Cel6A activity at 50◦C by up to 38%, and it does not correlate with

the thermostability of the variants (Figure 4.4). At 70◦C, the enhancing effect is only observed for

variants with IC50 above 10%, increasing the activity of those variants by up to 16% (Figure 4.4).
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Figure 4.4: Effect of 5% EMIM acetate on Cel6A activity on Avicel. A) Activity ratio between
5% and 0% EMIM acetate at 50◦C. B) Activity ratio between 5% and 0% EMIM acetate at 70◦C.
Activity was determined by incubating Cel6A with 3% (w/v) Avicel supplemented with 0% or 5%
EMIM acetate at 50◦C or 70◦C for 16 hours. The dashed line represents when the activity in the
presence of 0% and 5% are equivalent, above which 5% EMIM acetate has an enhancing effect on
the activity of Cel6A.

The cutoff of IC50 at 10% holds true at 50◦C as well, as all Cel6A variants have IC50 above 14% at

this temperature.

Similarly, 5% EMIM acetate also enhanced the activity of 3C6P on both Avicel and ILSG at

50◦C and 70◦C (Figure 4.3), and the effect is most pronounced on ILSG at 70◦C, increasing the

activity of 3C6P by 61%. Further investigation is needed to study the enhancing effect with activity

on ILSG and ensure that BSA is not the cause of the activity enhancement.

4.5 Future directions

This chapter details the comparison between different thermostability measurements and ionic liq-

uid tolerance as determined by IC50. Although the correlation between TA50 (or T50) and IC50 is

excellent with a R2 value as high as 0.94, the thermostability range covered by the Cel6A variants

in this study is limited to ∼8◦C in TA50 or T50. Inclusion of additional Cel6A variants with ther-

mostability outside of this range, such as wild-type Cel6A from H. jecorina (HjCel6A) and Cel6A

chimeras constructed with HjCel6A, would significantly increase the applicability of the established
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correlation. In addition, examining whether the same correlation holds true with other family and

types of fungal cellulases would also increase the impact of the study.

An efficient cellulase mixture includes different endoglucanases and cellobiohydrolases as well

as other accessory enzymes that work synergistically to hydrolyze lignocellulosic substrate. Conse-

quently, the optimal cellulase for hydrolysis in the presence of ionic liquid would not only be tolerant

to ionic liquid but also retain its synergism with other cellulases. To demonstrate the advantage

of using thermostable cellulases as ionic-liquid tolerant enzymes, a long-time hydrolysis experiment

should be conducted using thermostable mixtures of cellulases to hydrolyze lignocellulosic substrate

in the presence of ionic liquid as compared to wild-type cellulase mixtures or commercial cellulase

mixtures.
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Chapter 5

Semi-rational Protein Design

A small section of material from this chapter appears in: Wu I, Arnold FH. (2013) “Engineered

thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated

temperatures”, Biotechnology and Bioengineering, DOI: 10.1002/bit.24864, and is reprinted with

permission of Wiley Periodicals, Inc.

5.1 Abstract

Small libraries or rationally designed mutations are desirable for protein engineering as evaluating

large mutagenesis libraries can be time consuming and energy intensive. Several semi-rational pro-

tein designs were evaluated in this chapter. Consensus sequence analysis, backbone stabilization

by prolines, and B-factor analysis were used to design mutations to enhance the thermostabil-

ity of variant 3C6P. However, none of the consensus amino acid substitutions or designed proline

mutations increased the T50 measurements of 3C6P, though it might be necessary to verify the

contribution of the neutral mutations by examining their activity at high temperatures. A corre-

lation was established between the change in the free energy of unfolding estimated using FoldX

(∆∆GFoldX) and the change in T50 (∆T50). Even though the mutations predicted to be stabiliz-

ing by ∆∆GFoldX did not enhance the T50 of 3C6P, the correlation between ∆∆GFoldX and ∆T50

demonstrated that ∆∆GFoldX can be used to eliminate point mutations that have detrimental effects

to thermostabilitfy. Lastly, saturation mutagenesis libraries designed on the basis of high average

B-factors identified several mutations with higher total activity than 3C6P in medium-throughput
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Cel6A screens at 80◦C. Detailed characterizations of the mutants are needed to understand the

contribution of these mutations. Small libraries or rationally designed mutations are desirable for

protein engineering as evaluating large mutagenesis libraries can be time consuming and energy

intensive. Several semi-rational protein designs were evaluated in this chapter. Consensus sequence

analysis, backbone stabilization by prolines, and B-factor analysis were used to design mutations to

enhance the thermostability of variant 3C6P. However, none of the consensus amino acid substitu-

tions or designed proline mutations increased the T50 measurements of 3C6P, though it might be

necessary to verify the contribution of the neutral mutations by examining their activity at high

temperatures. A correlation was established between the change in the free energy of unfolding

estimated using FoldX (∆∆GFoldX) and the change in T50 (∆T50). Even though the mutations

predicted to be stabilizing by ∆∆GFoldX did not enhance the T50 of 3C6P, the correlation between

∆∆GFoldX and ∆T50 demonstrated that ∆∆GFoldX can be used to eliminate point mutations that

have detrimental effects on thermostability. Lastly, saturation mutagenesis libraries designed on the

basis of high average B-factors identified several mutations with higher total activity than 3C6P in

medium-throughput Cel6A screens at 80◦C. Detailed characterizations of the mutants are needed

to understand the contribution of these mutations.

5.2 Introduction

Random mutagenesis is an effective strategy for evolving a protein of interest for improvements in

thermostability, novel activity, and substrate specificity [127]. However, evaluating large libraries of

variants is time consuming and energy intensive. The frequency of beneficial mutation is low, and a

large fraction of the random mutagenesis library is often rendered inactive by deleterious mutations

[128, 129]. The trend in directed evolution has been moving toward constructing smaller and smarter

libraries that enrich for active variants [130]. The advances in the mechanistic understanding of

proteins and the increasing availability of protein structures have also prompted rational protein

designs as the emerging choice for protein engineering [131].

In this chapter, several semi-rational protein engineering approaches were applied to further
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enhance the thermostability of 3C6P, the most thermostable Cel6A obtained thus far. The mutations

were chosen on the basis of consensus sequence analysis, backbone stabilization by prolines, and B-

factor analysis. Consensus-guided mutagenesis has been applied to increase the thermostability

of various enzymes. The hypothesis is that since stabilizing mutations are more likely to be kept

during protein evolution, consensus amino acids from homologous proteins have a higher probability

of contributing positively to protein stability than nonconsensus amino acids [132, 133, 86]. Another

method of increasing thermostability is to decrease the entropy of the unfolded state by introducing

proline substitutions that restrict backbone conformation [134]. Studies have reported that prolines

at the N-cap positions of helices and in β-turns were stabilizing [135]. The stabilizing proline

substitutions in 3C6P were also found in or near loop regions [88]. As a result, proline substitutions

were designed to replace residues residing at the N-cap positions of -helices and 310 helices as well

as residues at the i+1 positions of Type I, II, and IV β-turns. The last semi-rational approach is

saturation mutagenesis on the basis of high B-factors, which has been shown to dramatically increase

the T50
60 of Bacillus subtilis lipase by 45◦C [136]. B-factors in crystal structures represent atomic

smearing of electrons relative to their equilibrium positions, and residues with high B-factors are

perceived to have large movements and thus represent flexible regions within the protein [137]. By

targeting residues with high B-factors using saturation mutagenesis, we sought to discover amino

acid substitutions that provide rigidity and enhance the thermostability of 3C6P.

5.3 Methods

This section describes semi-rational protein engineering approaches used in this chapter. For mate-

rials and general methods, please refer to Chapter 6.

5.3.1 Multiple sequence alignments

Cel6A protein sequence was analyzed using pBLAST by searching the query sequence against the

non-redundant protein sequence database. Pairwise alignments were run between each sequence from

the database and the query sequence using the Multiple Sequence Comparison by Log-Expectation
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(MUSCLE) tool. Sequences having less than 25% identity with the query sequence or sequences

that were composed of more than 50% gaps were disregarded. The consensus sequence is defined

as the sequence in which more than 50% of the aligned sequences share the same amino acid at a

particular position. The identity of the amino acid was left blank when there was no amino acid

that was represented by more than 50% of the aligned sequences at a particular position.

5.3.2 FoldX energy calculation

FoldX version 3.0 beta4 was used for all the energy calculation. The structure of 3C6P (PDB ID

4I5U) was first repaired by removing the water molecules and ligands and moving the side chains

to remove bad torsion angles and Van der Waals clashes. The mutations, either the point proline

mutations or the position scans, were generated as semicolon separated lists and analyzed using the

BuildModel functionality. The difference in the energy of unfolding between the mutant and 3C6P

was reported with the unit in kcal/mol.

5.4 Results

5.4.1 Consensus amino acid substitutions

Cel6A from Humicola insolens, Hypocrea jecorina, and Chaetomium thermophilum were used to

identify Cel6 sequences that share 25 – 95% sequence identity with the query sequences. After

eliminating sequences with more than 50% gaps from the query sequences, a total of 205 Cel6

sequences were aligned and analyzed for consensus sequence. A sequence alignment between 3C6P

and the consensus sequence as well as the list of all the Cel6 sequences used in the multiple sequence

alignment can be found in Appendix D. Eighteen positions were found to have a strong consensus

amino acid (over 50%) whose identity is different from the amino acid in 3C6P. The consensus

amino acid substitutions were constructed in 3C6P, with the exception of mutation M135V as it

coincides with the beneficial mutation M135L found in the random mutagenesis library. An NNK

saturation mutagenesis library at position 135 identified leucine as the most stabilizing mutation
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(Chapter 4). The T50 measurements of the consensus mutations are listed in Table 5.1, with the

amino acids representing 51 – 66% consensus at the indicated positions. However, none of the

consensus mutations increased the T50 of 3C6P, suggesting that these mutations are either neutral

or destabilizing.

5.4.2 Designed proline substitutions

Three out of five stabilizing mutations in 3C6P are serine-to-proline substitutions in loop regions.

A crystal structure alignment between HJPlus and 3C6P indicates that the loop conformations

are conserved by the proline substitutions [88]. Secondary structural analysis of the 3C6P crystal

Table 5.1: T50 measurements of the strong consensus mutations in 3C6P. Multiple sequence align-
ment of 205 Cel6 sequences indicate eighteen strong consensus mutations, which are substitutions
with amino acids that are present in 50% of the Cel6 sequences at the indicated positions.

Enzyme variant Consensus (%) T50 (◦C)

3C6P - 80.1 ± 0.4

3C6P W99Y 63 79.2 ± 0.2

3C6P N102P 66 77.2 ± 0.2

3C6P R122A 51 78.7 ± 0.4

3C6P A124K 51 75.4 ± 0.3

3C6P M146L 52 78.8 ± 0.4

3C6P I153A 66 79.4 ± 0.4

3C6P Y186L 62 80.0 ± 0.3

3C6P C246G 55 80.1 ± 0.6

3C6P V251L 58 80.1 ± 0.3

3C6P S292G 57 79.4 ± 0.2

3C6P L297V 52 79.3 ± 0.5

3C6P P321W 51 76.8 ± 0.5

3C6P F334L 53 79.3 ± 0.2

3C6P P358G 53 69.2 ± 1.1

3C6P G360R 53 74.7 ± 0.4

3C6P Q361R 64 76.3 ± 0.2

3C6P T373A 61 76.6 ± 0.2
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structure was performed using PROMOTIF [138] as part of the PDBSum analysis functionality

[139]. Two of the proline mutations, S317P and S413P, reside on the N-terminal caps of 310 helices,

while the third serine-to-proline mutation, S406P, resides on the i+1 position of Type I β-turn. As

a result, additional proline substitutions were designed to mimic the proline substitutions from the

random mutagenesis libraries.

To stabilize helices, we chose three proline substitutions that reside on the N-cap position of 310

helices and four proline substitutions that reside on the N-cap position of -helices. The pyrrolidine

ring of proline restricts the number of conformations that the amino acid can adopt [140]. All the

chosen residue positions have φ angles near -60◦ and ψ angles near -35◦ with the exception of one (-

17◦), which are angles that proline can tolerate. The proline substitutions were introduced in 3C6P,

and the thermostability of the proline mutants were evaluated using T50 measurements. However,

none of the proline substitutions as N-caps of helices were stabilizing (Table 5.2).

To stabilize the loop regions, we chose ten residues based on their locations as the i+1 residue in

β-turns for substitution with proline in 3C6P. All chosen residue positions again have φ angles near

-65◦ and ψ angles near -20◦ or 130◦, which are also angles that prolines can tolerate. In addition,

none of the chosen residues forms a hydrogen bond at its backbone amide, and most lie in exposed

loops. Based on the T50 measurements of the proline mutants, these proline mutations are either

neutral or destabilizing (Table 5.3). To test whether the proline substitutions might stabilize a less

thermostable Cel6A, four proline mutations corresponding to mostly neutral proline mutations in

3C6P (3C6P S211P, 3C6P L231P, 3C6P A381P, and 3C6P E386P) were introduced in the Cel6A

from H. insolens (HiCel6A). These proline mutants have T50 values that are comparable to HiCel6A

(Table 5.4), suggesting that the mutations are again neutral with the exception of Q390P.

Strategic incorporation of prolines in loop regions stabilizes the protein by restricting the con-

formational freedom of the peptide backbone [135, 89, 141]. Given that prolines have the highest

propensity to reside in the i+1 position of Type I and II β-turns [142], we examined fourteen pro-

line substitutions in β-turns in 3C6P and HiCel6A. These proline substitutions are all neutral or

destabilizing with the exception of one. One possible explanation is that stabilizing prolines by



69

Table 5.2: T50 measurements of 3C6P with proline mutations residing on the N-cap positions of
α-helices or 310 helices. The ∆∆GFoldX is the change in the free energy of unfolding predicted by
FoldX relative to the free energy of 3C6P.

Enzyme variant Helix ∆∆GFoldX (kcal/mol) T50 (◦C)

3C6P - - 80.1 ± 0.4

3C6P N102P α-helix -0.4 77.2 ± 0.2

3C6P I113P 310 helix 5.5 70.1 ± 0.7

3C6P L140P 310 helix -0.6 77.6 ± 0.1

3C6P I188P 310 helix 1.7 76.1 ± 0.2

3C6P L224P α-helix 3.3 71.2 ± 0.1

3C6P A268P α-helix 3.9 70.3 ± 0.1

3C6P Q432P α-helix -1.9 76.4 ± 0.3

Table 5.3: T50 measurements of 3C6P with proline mutations residing in β-turns. The ∆∆GFoldX

is the change in the free energy of unfolding predicted by FoldX relative to the free energy of 3C6P.

Enzyme variant β-turn ∆∆GFoldX (kcal/mol) T50 (◦C)

3C6P - - 80.1 ± 0.4

3C6P S211P Type I -0.3 79.6 ± 0.2

3C6P L231P Type I 0.7 78.2 ± 0.4

3C6P V304P Type II 2.2 69.7 ± 0.2

3C6P G352P Type IV 6.1 72.1 ± 0.4

3C6P W364P Type I 1.4 72.3 ± 0.1

3C6P A381P Type IV -1.4 79.9 ± 0.2

3C6P E386P Type I -1.0 80.3 ± 0.3

3C6P V394P Type IV 5.1 75.6 ± 0.2

3C6P G397P Type II -0.0 77.9 ± 0.3

3C6P A427P Type II -1.6 76.9 ± 0.3
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Table 5.4: T50 measurements of H. insolens Cel6A (HiCel6A) with proline mutations residing in
β-turns.

Enzyme variant β-turn T50 (◦C)

HiCel6A - 65.2 ± 0.1

HiCel6A S215P Type I 65.6 ± 0.3

HiCel6A M235P Type I 63.1 ± 0.1

HiCel6A A385P Type IV 64.7 ± 0.2

HiCel6A Q390P Type I 66.1 ± 0.4

rational incorporation in β-turns has been reported in mostly small proteins (18 kDa or smaller)

[135, 141, 143, 144, 145, 146, 147]. Similar proline substitutions in a larger protein are either neutral

or destabilizing in the same study [147]. Combined with our results, this suggests that prolines are

well tolerated in β-turns if placed strategically, but the incorporation of prolines in loops does not

necessarily confer greater stability.

5.4.3 FoldX analysis and predictions

FoldX is a protein design algorithm that uses energy functions with empirically determined coeffi-

cients to study the importance of atomic interactions in proteins. The effects of mutations on protein

stability can be estimated by comparing the free energy of unfolding between variants [148]. The

∆∆GFoldX was computed for seventeen proline mutants compared to the free energy of unfolding

for 3C6P and are listed in Tables 5.2 and 5.3. Based on the ∆∆GFoldX calculation, FoldX esti-

mated that seven out of seventeen prolines have a negative ∆∆GFoldX value, suggesting that these

mutations are stabilizing. Even though none of the proline mutations increased the T50 of 3C6P,

a correlation between ∆∆GFoldX and T50 was found with a R2 of 0.56 (Figure 5.1). Qualitatively

speaking, the seven proline mutants with negative ∆∆GFoldX values all had T50 within -4◦C from

the T50 of 3C6P, while the proline mutants with positive ∆∆GFoldX values had T50 at least 4◦C

lower than the T50 of 3C6P, with the exception of one (L231P). In other words, ∆∆GFoldX might

be useful to qualitatively compare the effects of different mutations but cannot be used to predict
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Figure 5.1: Correlation between ∆T50 and ∆∆GFoldX of the proline mutants. The ∆∆GFoldX is
the change in the free energy of unfolding predicted by FoldX relative to the free energy of 3C6P,
while ∆T50 is the change in T50 measurement relative to the T50 of 3C6P. A negative ∆∆GFoldX

indicates that the mutation is predicted to be stabilizing, while a positive ∆∆GFoldX indicates
that the mutation is predicted to be destabilizing. A negative ∆T50 indicates that the mutation is
destabilizing.

the extent to which these mutations affect thermostability.

One of the proline mutations found in the random mutagenesis libraries, S317P, is a proline

in the wild-type Cel6A from H. insolens, one of the parents used to construct the Cel6A chimera

library. A close examination of the Cel6A from H. insolens and from C. thermophilum indicated

that four prolines exist in the wild-type Cel6A that are not found in 3C6P. In particular, two of the

proline mutations are adjacent insertion mutations that are truncated in 3C6P and the Cel6A from

H. jecorina (Figure 5.2). The effects of the insertion proline mutation (163PP) and two wild-type

prolines (D344P and S445P) in the thermostability of 3C6P were evaluated. FoldX was used to

estimate the ∆∆GFoldX of point mutations and predicted both wild-type proline substitutions to

be stabilizing. In addition, FoldX also predicted that a weak consensus proline substitution (A235P,

43% Pro) to be stabilizing, which was constructed in 3C6P and evaluated as well. All four variants

had T50 measurements comparable or lower than 3C6P (Table 5.5).

One possible explanation that ∆∆GFoldX does not accurately predict stabilizing mutation is

that the change in the energy of unfolding of the above mutations is not large enough compared
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Figure 5.2: The truncated proline loop in 3C6P (PDB 4I5U, purple) compared to C. thermophilum
Cel6A (PDB 4A05, cyan). The prolines missing in 3C6P are shown as sticks in Cel6A. The structure
alignment was performed in Pymol.

to the error in the calculation. As a result, the energy of unfolding for all possible mutations in

3C6P — 19 amino acid substitutions for all 358 residues in the catalytic domain — were determined.

The seven mutations listed in Table 5.6 have ∆∆GFoldX less than -3, which are lower than all the

proline mutations examined thus far. Since the reversion mutations (L135M, L277Q, P317S, P406S,

and P413S) of the stabilizing substitutions in 3C6P all have ∆∆GFoldX of ∼2 with the exception

of L135M, it might be of merit to examine the mutations with ∆∆GFoldX around -3 or -4 for

enhancement in thermostability.

Table 5.5: T50 measurements of 3C6P with proline mutations from wild-type Cel6 sequences. The
∆∆GFoldX is the change in the free energy of unfolding predicted by FoldX relative to the free
energy of 3C6P. The ∆∆GFoldX calculation was not performed for 3C6P 163PP.

Enzyme variant Type of mutation ∆∆GFoldX (kcal/mol) T50 (◦C)

3C6P - - 80.1 ± 0.4

3C6P 163PP Insertion ND 79.8 ± 0.3

3C6P D344P Substitution -0.8 78.8 ± 0.3

3C6P S445P Substitution -1.2 79.2 ± 0.4

3C6P A225P Consensus -2.3 80.1 ± 0.3
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Table 5.6: Amino acid substitutions predicted to be stabilizing with ∆∆GFoldX lower than -3
kcal/mol. The ∆∆GFoldX is the change in the free energy of unfolding predicted by FoldX relative
to the free energy of 3C6P.

Mutations ∆∆GFoldX (kcal/mol)

E107Y -3.2

E107L -3.1

S133L -3.2

Q166L -3.5

Q166M -3.0

D171L -4.4

D171N -3.5

5.4.4 Saturation mutagenesis based on B-factors

The B-factors for all the atoms in HJPlus and 3C6P were extracted from the PDB structures (PDB

4I5R and 4I5U), and the average B-factors for each residue were calculated. As shown in Figure

5.3, the highest average B-factors for HJPlus are near positions 94, 118, 181, and 407, while the

highest average B-factors for 3C6P are near positions 94, 118, 386, and 409. The average B-factors

for HJPlus tend to be higher than that for 3C6P due to the fact that HJPlus is a lower resolution

structure than 3C6P [136]. The structures of HJPlus and 3C6P have a backbone root mean square

deviation (RMSD) of 0.24 Å, but the residues with the highest average B-factors from the structure

of HJPlus and from the structure of 3C6P are different, suggesting that the choice of structure for

B-factor analysis is crucial to the library design.

Saturation mutagenesis libraries with NNK degeneracy were constructed for residues Glu94,

Asp118, Glu386, and Pro409 in 3C6P and screened for total activity at 80◦C in 96-well plates. For

each NNK library, 90 variants were examined, a roughly three-fold of oversampling. A total of

thirteen variants exhibiting 10% or higher activity than 3C6P from all four libraries were selected

for rescreening. However, none of the variants had total activities that were 10% higher than 3C6P

during the rescreen. Given that the four positions selected for single NNK libraries also had nearby

residues with high average B-factors, additional single and double NNK mutagenesis libraries were
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Figure 5.3: Average B-factors for the residues in HJPlus (PDB 4I5R) and in 3C6P (PDB 4I5U).
The labeled positions are the residues with the highest average B-factors in HJPlus and/or 3C6P.

constructed at Thr117-Asp118, Asn382, His385-Glu386, and Ala408-Pro409 and screened for total

activity at 80◦C in 96-well plates. A total of 90 and 450 variants were sampled for the single and

double NNK libraries respectively, and thirteen variants exhibiting 15% or higher activity than

3C6P from all four libraries were selected for rescreening. Five variants had a total activity that was

10% or higher than 3C6P during the rescreen. DNA sequencing revealed that the mutations were

N382A, N382D, N382G, A408N-P409P, and A408S-P409P. Interestingly, the two improved mutants

from the Ala408-Pro409 double NNK library both contain proline at position 409, indicating that

a single NNK library at Ala408 might be a more suitable library design. Since the improvement

in total activity at 80◦C could stem from an improvement in expression, catalytic efficiency, or

thermostability, detailed characterization of the mutants using purified enzymes is needed to evaluate

how the mutations are beneficial.

The B-factor analysis identified several residues with high B-factors in close proximity of each

other and provided many, perhaps too many, different library design options and combinatorial

library designs. In addition, analysis done using different structures led to slightly different library

designs, suggesting that the choice of protein structure is pivotal. As a result, using B-factor analysis

as the basis of library designs might not be desirable if the goal is to limit the library size for screening.
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5.5 Future directions

This chapter details the thermostability measurements of semi-rationally designed mutations using

consensus sequence alignment, strategic incorporation of prolines, and B-factors from structure

analysis. Even though none of the mutations is stabilizing in 3C6P, the FoldX analysis allowed

us to identify a correlation between ∆∆GFoldX and the change in T50. In particular, the result

demonstrates that ∆∆GFoldX might be useful in avoiding mutations that are the most detrimental

to the thermostability of 3C6P. In addition, seven mutations were identified as having ∆∆GFoldX

less than -3, which are promising substitutions for enhancing the thermostability of 3C6P.

The thermostability parameter used to evaluate the mutants is T50 in this chapter. However,

as shown in Chapter 4, other thermostability parameters might be more suitable for the evaluation.

Specifically, variant 3CW2 has a TA50 that is comparable to 3C6P but has a T50 that is -2.5◦C

lower than 3C6P. As a result, it is likely that many neutral mutations with comparable T50 to 3C6P

(163PP, Y186L, A225P, S211P, V251L, A381P, and E386P) might have higher TA50 than 3C6P.

Since TA50 closely reflects the activity at high temperatures, it is important to evaluate the TA50

measurements of these neutral mutants to determine if their contributions to thermostability are

truly neutral.
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Chapter 6

Materials and General Methods

6.1 Materials

6.1.1 Chemicals and commercial kits

For media preparation, yeast extract, peptone, Tryptone, and casamino acids were purchased from

BD Bacto, and yeast nitrogen base without amino acids from BD Difco. SD-Ura powder was

purchased from MP Biomedicals. LB powder and TB powder was purchased from RPI Corp.

Sodium chloride, D-glucose, and carbenicillin were purchased from Sigma Aldrich. Sodium phos-

phate monobasic monohydrate and sodium phosphate dibasic heptahydrate were purchased from

Mallinckrodt Chemicals.

For library construction, Taq DNA Polymerase was purchased from Roche. Phusion High-

Fidelity DNA Polymerase, endonucleases (NheI, Acc65I, NdeI, KpnI, and NotI), and Taq DNA

ligase were purchased from New England Biolabs. GeneMorph II Random Mutagenesis Kit was

purchased from Stratagene. Sybr gold was purchased from Invitrogen. Pellet pain co-precipitant

was purchased from Novogen.

For protein purification, Nelgene 0.2 µm PES filters, Vivaspin 20 concentrators with 10 kDa or

30 kDa MWCO, and imidazole were purchased from VWR. HisTrap HP columns, HiTrap Q HP

columns, HiPrep 26/10 desalting columns, and PD-10 desalting columns were purchased from GE.

Guanidine hydrochloride and quartz cuvettes were purchased from Sigma Aldrich.

For cellulase assays, Avicel PH-101, dithiothreitol (DTT), and ammonium molybdate were pur-
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chased from Sigma Aldrich. 1-ethyl-3-methylimidazolium (EMIM) acetate and IL-pretreated switch-

grass were provided by the Joint Bioenergy Institute.

QIAprep Miniprep Kit, QIAquick Gel Extraction Kit, and QIAquick PCR Purification Kit were

purchased from Qiagen. Frozen-EZ Yeast Transformation II Kit and Zymoprep Yeast Plasmid

Miniprep II Kit were purchased from Zymo Research.

6.1.2 Media preparation

For E. coli, LB medium was prepared by combining 5 g/L of yeast extract, 10 g/L of sodium chloride,

and 10 g/L of Tryptone and sterilized by autoclaving. TB medium was prepared by dissolving 47.6

g/L of TB powder in double distilled, deionized water and sterilized by autoclaving. 2x YT medium

was prepared by combining 10 g/L of yeast extract, 5 g/L of sodium chloride, and 16 g/L of Tryptone

and adjusting the pH to 7.0 with sodium hydroxide (1 pellet of sodium hydroxide per liter). SOC

medium was prepared by combining 5 g/L of yeast extract, 20 g/L of Tryptone, 0.58 g/L of sodium

chloride, 0.19 g/L of potassium chloride, 0.95 g/L of magnesium chloride, and 3.6 g/L of D-glucose

and sterilized by autoclaving.

For S. cereviae, SD-Ura medium was prepared by dissolving SD-Ura powder in double dis-

tilled, deionized water as directed and sterilized by autoclaving. SD-CAA medium was prepared by

combining 8.6 g/L sodium phosphate monobasic monohydrate, 10.2 g/L sodium phosphate dibasic

heptahydrate, 6.7 g/L yeast nitrogen base without amino acids, 5 g/L casamino acids, and 20 g/L

D-glucose and sterilized by autoclaving. YPD medium was prepared by combining 10 g/L yeast

extract, 20 g/L peptone, and 20 g/L D-glucose and sterilized by autoclaving.

All media sterilization by autoclaving was done at 120◦C for 20 minutes.
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6.2 Molecular cloning

6.2.1 Plasmid construction

All genes encoding Cel6A and Cel7A were cloned into yeast expression vector YEp352/PGK91-1-

αss using NheI and KpnI endonuclease restriction sites and Gibson assembly. The wild-type and

chimeric Cel6A genes were synthesized with S. cerevisiae codon bias and share the same N-terminal

coding sequences for the cellulose binding module (CBM), the linker region, and the first five residues

in the catalytic domain from the wild-type H. jecorina Cel6A. For protein expression in E. coli, the

gene of interest was cloned into pET-22b(+) vector from Novogen using NdeI and NotI endonuclease

restriction sites.

6.2.2 Primer designs

Primers used for error-prone PCR and overlap-extension PCR were designed using the following

guidelines. Primers must begin (on the 5’ end) and end (on the 3’ end) with a G or C with 40 – 60%

GC content. If the beginning and the end of the primer cannot both contain a G or C, then designing

a G or C on the 3’ end takes priority over the 5’ end. When the primer contains a mutation relative

to the template, the mutation site is placed in the middle, bracketed by at least 12 bp of nucleotides

on either side. The exact length of the flanking region is determined by the melting temperature

of the region as determined by Vector NTI (Invitrogen), based on the Nearest Neighbor theory of

DNA duplex stability [149]. The length of the flanking region is determined to achieve a melting

temperature at 35 – 40◦C. The melting temperature of the overall primer should be ∼60◦C for a

primer that is an exact match to the template and 70 – 75◦C for a primer that contains a mutation

relative to the template. The sequence used to insert His6 tag is CATCACCATCACCACCAT,

while the sequence used to insert His8 tag is CATCACCATCACCACCATCACCAT. To introduce

a new restriction site at the beginning (5’ end) of the primer, a short nonsense sequence CTGCA is

included prior to the restriction site to provide the endonucleases a handle for restriction digest.
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6.2.3 Gibson assembly

To assemble gene insert with plasmid backbone, the DNA fragments need to share 50 – 75 bp of

overlaps. This was achieved by designing PCR primers 50 – 75 bp upstream and downstream of

endonuclease restriction sites. Plasmid backbone was constructed by digesting the expression vector

with NheI and KpnI (2 – 3 U endonuclease per mg of plasmid) at 37◦C for 6 hours in NEBuffer 2 (1

mM Tris buffer, pH 7.9, supplemented with 5 mM sodium chloride, 1 mM magnesium chloride, and

0.1 mM DTT) and 0.1 mg/mL BSA. Gene insert was by constructed overlap-extension PCR, using

10 ng of plasmid, 20 nmol of dNTP, 25 pmol of forward primer and 25 pmol of reverse primer, 1x

Phusion HF buffer, and 1 U of Phusion polymerase in a 50 µL reaction. The PCR program used 10

seconds at 98◦C for initial denaturation, with 30 cycles of 10 seconds at 98◦C, 10 seconds at 55◦C

or 60◦C, and 72◦C for 30 seconds per 1000 nucleotides, with 5 minutes of final extension at 72◦C.

The gene inserts were gel purified and extracted before assembling with plasmid backbone. Gibson

master mix was made by mixing 320 µL of 5x isothermal reaction buffer with 6.4 µL of 1 U/µL T5

exonuclease, 20 µL of 2 U/µL Phusion polymerase, 160 µL of 40,000 U/µL Taq DNA ligase, and

694 µL of sterile deionized water. 5x isothermal reaction buffer was made by mixing 1.5 mL of 1 M

Tris buffer, pH 7.5, with 75 µL of 2 M magnesium chloride, 120 µL of 400 mM dNTP, 150 µL of 1

M DTT, 0.75 g of PEG8000, 150 µL of 100 mM NAD, enough sterile deionized water to bring the

final volume to 3 mL. To assemble the DNA fragments, 50 ng of backbone and 50 ng of insert in 5

µL were mixed with 15 µL of Gibson master mix and incubated at 50◦C for 1 hour. The mixture

was subsequently transformed with 100 µL of chemical competent E. coli and plated in LB agar

plates supplemented with 100 µg/mL carbenicillin. Sequencing reactions were carried out to verify

the fidelity of the PCR reactions.

6.2.4 DNA precipitation by pellet paint

Per 500 µL of sample, the DNA sample was mixed with 2 µL of pellet paint co-precipitant and 2.5

sample volume of 100% ethanol and vortexed after each addition. After the mixture was incubated

on ice for 5 minutes, the DNA was precipitated by centrifugation at maximum speed on a tabletop
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Eppendorf centrifuge for 5 minutes at 4◦C. The supernatant was aspirated carefully with a pipet, and

the pellet was washed with 200 µL of 70% ethanol and vortexed. The sample was again centrifuged at

maximum speed for 30 seconds at 4◦C, supernatant aspirated, washed with 200 µL of 100% ethanol,

and centrifuged at maximum speed for 30 seconds at 4◦C. After the supernatant was aspirated

to remove the last drop of ethanol, the DNA pellet was dried at 55◦C in a tabletop Eppendorf

thermomixer, with the cap open, for maximum of 10 minutes. Total removal of ethanol was ensured

when the pellet jumped around the tube after light flicking. The DNA pellet was resuspended with

sterile deionized water or buffer to the desire concentration.

6.2.5 Chemically competent E. coli preparation

One colony of DH5α or XL1-blue was used to inoculate 5 mL of LB medium and grown at 37◦C

and 250 rpm overnight in orbital shakers. The overnight culture (2 mL) was used to inoculate 200

mL of LB medium and grown for 3 hours at 37◦C and 250 rpm or until Abs600 reached 0.6 – 0.8.

The culture was centrifuged in cold 50 mL conical tubes at 1,200 x g for 5 minutes at 4◦C. The

supernatant was carefully removed, and the cell pellet was resuspended by pipetting in 8 mL of

ice-cold TSS buffer (LB medium at pH 6.5 supplemented with 50 mM magnesium chloride, 10% w/v

PEG8000, and 5% v/v DMSO). The cell solution was aliquoted into 100 µL tubes, snap-frozen on

dry ice, and stored at -80◦C. For transformation, the frozen cells were thawed on ice for about 10

minutes before adding 20 µL of Gibson reaction and incubating on ice for an additional 15 minutes.

The cell mixtures were heat shocked at 42◦C for 90 seconds on tabletop Eppendorf Thermomixer

before returning to ice for 2 minutes. The cell mixtures were rescued by adding 1 mL of warm

SOC medium per transformation and incubating at 37◦C and 250 rpm for 1 hour. The cells were

concentrated to 100 µL by centrifuging at 2,500 x g for 1 minute and removing all but 100 µL of

supernatant and plated on LB agar plates supplemented with 100 µg/mL carbenicillin.
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6.3 Enzyme purification

6.3.1 Large-scale enzyme production in S. cerevisiae

Plasmids containing the desired gene construct were transformed into yeast using Frozen-EZ Yeast

Transformation II Kit, and the transformed yeast was grown at 30◦C on SD-Ura agar plates for 3

days. Yeast colonies expressing Cel6A with C-terminal His6 tag or Cel7A with N-terminal His8 tag

were used to inoculate 5 mL to 10 mL SD-Ura medium and grown overnight at 30◦C and 250 rpm

in an orbital shaker. The overnight culture was expanded in 100 mL to 200 mL YPD medium and

grown at 30◦C and 250 rpm for an additional 48 hours. Alternatively, the overnight culture was

expanded in 100 mL SD-Ura medium and grown at 30◦C for 24 hours before expanding in 1 L YPD

medium for an additional 48-hour growth at 30◦C and 250 rpm.

6.3.2 Large-scale enzyme production in E. coli

E. coli BL21 colonies expressing the desired protein construct under lac operon were used to inoculate

5 mL of LB medium supplemented with 100 µg/mL of carbenicillin and grown overnight at 37◦C

and 250 rpm in an orbital shaker. The overnight culture was used to inoculate 300 mL of TB

medium supplemented with 4 mL/L glycerol and 100 µg/mL of carbenicillin and grown at 37◦C and

250 rpm for 3 hours or until the Abs600 reached 1.6 – 1.8. The culture was cooled on ice until the

orbital shaker was cooled to 16◦C or 20◦C. Fresh IPTG stock of 100 mM was made at this point by

dissolving 0.12 g of IPTG in 5 mL of sterile water. Once the shaker cooled, protein expression was

induced by adding IPTG to a final concentration of 100 µM and grown at 16◦C or 20◦C and 250

rpm for 24 hours.

6.3.3 Protein harvest

Cellulases expressed in S. cerevisiae were harvested by centrifuging the cells at 5,000 x g for 10

minutes at 4◦C. The supernatant was collected and filtered with 0.2 µm PES filter unit from Nelgene.

If the expected protein yield was low, the pH of the supernatant was adjusted with 10% sodium
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hydroxide to pH ∼7.

Cellulases expressed in E. coli were harvested by centrifuging the cells at 5,000 x g for 10 minutes

at 4◦C. The cell pellet was resuspended in 5 mL cold lysis buffer per gram of cells (20 mM Tris buffer,

pH 8.0, with 100 mM of sodium chloride and 2 mg/L DNAse I) and lysed via sonication on ice.

Samples containing 1 µL of unlysed cell suspension were collected for further analysis by SDS-gel

electrophoresis. The cell suspension was sonicated at 15 W with 1-minute program, pulsing for 1

s for every 0.5 s. The 1-minute program was repeated several times until the cell solution changed

from milky to translucent grey. The soluble fraction was harvested by centrifugation at 27,000 x g

for 30 minutes at 4◦C and filtered with 0.2 µm PES filter unit from Nelgene. Samples containing 1

µL of soluble fraction were collected for further analysis by SDS-gel electrophoresis.

6.3.4 One-step his-trap purification

Cellulases with terminal His6 tags were purified with HisTrap HP columns, using 20 mM Tris buffer,

pH 8.0, supplemented with 100 mM sodium chloride and 10 mM imidazole as binding buffer and

20 mM Tris buffer, pH 8.0, supplemented with 100 mL sodium chloride and 300 mM imidazole as

elution buffer. After sample loading, the bound protein was washed with 5 column volume (CV) of

binding buffer before eluting with a linear gradient of 0 – 80% elution buffer in 20 CV. The eluted

cellulase peak is typically found at 30 – 40% elution buffer (∼100 mM imidazole). The purified

cellulase fractions were pooled and buffer-exchanged with 20 mL of 50 mM sodium acetate buffer,

pH 5.0, for three times before being concentrated to a final volume of 300 µL to 500 µL.

6.3.5 Desalting and buffer exchange

One method to desalt purified cellulase samples was via Vivaspin 20 device with 30 kDa molecular

weight cutoff (MWCO) for full-length Cel6A or Cel7A, or with 10 kDa MWCO for Cel6A catalytic

domain. Typically, the Vivaspin column was centrifuged at 4,000 x g for 30 to 60 minutes per 20 mL

diluted sample. Alternatively, the pooled fractions from his-trap purification were desalted using

HiPrep 26/10 desalting column. The desalting column was first equilibrated with the target buffer
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for 1.5 CV before loading ∼2 mL of pooled his-trap fractions onto the column. The volume of sample

loaded was adjusted to ensure that the protein was eluted before the salt elution began. The process

was repeated until all pooled his-trap fractions were loaded onto the column and buffer-exchanged

to the target buffer.

6.3.6 Two-step his-trap anion-exchange purification

Large cultures (1 L and above; purified with 5 mL HisTrap columns) of cellulases often require

two-step purification to achieve the same purity as cellulases from smaller cultures (50 – 200 mL;

purified with 1 mL HisTrap columns). Cellulases with terminal His6 tag were purified as described in

the one-step his-trap purification method. After his-trap purification, the purified cellulase fractions

were pooled and buffer-exchanged with 20 mL of 20 mM Tris buffer, pH 8.0, for three times before

concentrated to a final volume of 500 µL. The concentrated protein sample was diluted with 40 mL

of 20 mM Tris buffer, pH 8.0, and purified with HiTrap Q HP, using 20 mM Tris buffer, pH 8.0, as

binding buffer and 20 mM Tris buffer, pH 8.0, supplemented with 1 M sodium chloride. After sample

loading, the bound protein was washed with 5 column volume (CV) of binding buffer before eluting

with a linear gradient of 0 – 30% elution buffer in 20 CV. The eluted cellulase peak is typically found

at ∼10% elution buffer (∼100 mM sodium chloride). The purified cellulase fractions were pooled

and buffer-exchanged with 20 mL of 50 mM sodium acetate buffer, pH 5.0, for three times before

concentrated to a final volume of 300 – 500 µL.

6.3.7 Cleavage of N-glycosylation

Samples containing 15 mg of purified cellulases in 50 mM sodium acetate buffer, pH 5.0, were

combined with 30 µL of 500 U/µL PNGase F (New England Biolabs) and a final concentration of

50 mM sodium phosphate buffer, pH 7.5 supplied by the manufacture. The reaction was carried

out at 37◦C for 6 – 8 hours. After the digest, the reaction was diluted with 20 mL of 20 mM Tris

buffer, pH 8.0, supplemented with 100 mM of sodium chloride and 10 mM of imidazole and purified

with HisTrap columns as described above. After purification, the samples were concentrated to
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∼1 mL using the Vivaspin 20 device with 10 kDa MWCO and desalted and buffer-exchanged to

50 mM sodium acetate buffer, pH 5.0, using a PD-10 desalting column. The eluted samples from

PD-10 desalting columns (in 3.5 mL in accordance to the protocol from the manufacturer) were

concentrated to ∼500 µL. After protein concentration determination, the sample was adjusted to a

final concentration of 20 µg/µL, snap-frozen with dry ice, and stored at -80◦C.

6.3.8 Protein concentration determination

Protein concentrations were determined by denaturing protein samples in 6 M guanidine hydrochlo-

ride, 25 mM sodium phosphate, pH 6.5, at 25◦C and measuring the Abs280 of ∼5 – 20 µL concen-

trated protein samples in 1 mL of guanidine hydrochloride. The volume of added protein samples

was determined to reach a target Abs280 of 0.1. The protein concentrations were calculated using

theoretical extinction coefficients determined using the amino acid composition with ProtParam on

the ExPASy server [150]. Extinction coefficients for the variants reported in this study can be found

in Table 6.1.

6.4 Reducing sugar assays

6.4.1 Nelson-Somogyi reducing sugar assay

For reducing sugar in the range of 0.15 mM to 2 mM, a modified Nelson-Somogyi assay was used

[151, 152]. Typically, 50 µL of sugar solution was mixed with 40 µL of the carbonate-tartrate

reagent (180 g/L Na2SO4, 15 g/L Rochelle salt, 30 g/L Na2CO3, and 20 g/L NaHCO3) and 10

µL of the copper reagent (180 g/L Na2SO4 and 12.8 g of anhydrous CuSO4) and boiled at 95◦C

for 15 minutes in a Thermocycler with a heated lid. The reaction was subsequently cooled to 4◦C

and mixed with 50 µL of the arsenomolybdate solution (50 g/L (NH4)2MoO4, 1.5 N H2SO4, 6 g/L

NaH2AsO4, incubated at 37◦C for 16 – 24 hours for the formation of the chromogenic compound

and stored in the dark). The reagents were mixed thoroughly to ensure the evolution of CO2 was

completed and the maximum color development was achieved. After centrifuging the reagents briefly
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Table 6.1: Extinction coefficients used to determine protein concentration.

Enzyme variant Extinction coefficient (M−1 cm−1)

Wild-type Cel6A

HiCel6A 99405

Hi C403S 99405

Hi proline mutants 99405

HjCel6A 98040

Hj C245S C400S 97915

CtCel6A 99405

HJPlus lineage

HJPlus, 1F4, 1G6, 2B3, 2F4, 2G6, 3C6, 3C6P 92415

317F12 97915

413A1 97915

3C4W 97915

3CW2 103415

Catalytic domain only

HJPluscat 75080

3C6Pcat 75080

3C6P cysteine mutants

3C6P C246A, C246G, C246L, C246S 92415

3C6P C246G S400C 92415

CC1 92290

CC2 92290

CC0 92165

3C6P consensus mutants

3C6P W99Y 88405

3C6P Y186L 90925

3C6P P321W 97915

Rest of the consensus mutants 92415

3C6P proline mutants

3C6P W364P 86915

Rest of the proline mutants 92415

Cel7A

TeCel7A 81260

TS8 Cel7A 81260
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Figure 6.1: Example glucose and cellobiose standards for Nelson-Somogyi reducing sugar assay.
Actual absorbance and conversion factor between the sugar concentration and Abs520 vary slightly
from experiment to experiment.

to remove the CO2 in the solution, the absorbance of the sugar solution at 520 nm was obtained

using a SpectraMax microplate reader with or without cellobiose solution as standard. Example

glucose and cellobiose standards and their Abs520 can be found in Figure 6.1.

6.4.2 Park-Johnson reducing sugar assay

For reducing sugar in the range of 20 µM to 150 µM, a modified Park-Johnson assay was used

[153]. Typically, 50 µL of sugar solution was mixed with 100 µL of the ferricyanide reagent (0.5

g/L K3Fe(CN)6, 0.2 M K2HPO4, pH 10.6) and 50 µL of the carbonate-cyanide reagent (5.3 g/L

Na2CO3, 0.65 g/L KCN, stored in the dark) and boiled at 95◦C for 15 minutes in a thermocycler

with a heated lid. The reaction was subsequently cooled to 4◦C and mixed with 100 µL of the

ferric iron solution (2.5 g/L FeCl3, 10 g/L polyvinylpyrrolidone, 2 N H2SO4). After 30 seconds to 5

minutes of color development, the absorbance of the sugar solution at 590 nm was obtained using a

SpectraMax microplate reader, with cellobiose solution as standards.
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6.4.3 DNS reducing sugar assay

For reducing sugar in the range of 2 mM to 5 mM, a modified DNS assay was used [154]. Typically,

75 µL of sugar solution was mixed with 75 µL of DNS reagent (14 g/L dinitrosalicylic acid, 280 g/L

sodium potassium tartrate, 14 g/L NaOH, stored in the dark) and boiled at 95◦C for 5 minutes in a

Thermocycler with a heat lid. The absorbance of the sugar solution at 540 nm was recorded using

a SpectraMax microplate reader.
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Appendix A

Wild-type Cel6A and 3C6P
Alignment

Multiple sequence alignment between 3C6P and wild-type Cel6A enzyme from Humicola insolens,

Hypocrea jecorina, and Chaetomium thermophilum used in this study.

H_jecorina ASCSSVWGQCGGQNWSGPTCCASGSTCVYSNDYYSQCLPGAASSSSSTRAASTTSRVSPT 60
3C6P ASCSSVWGQCGGQNWSGPTCCASGSTCVYFNDYYSQCLPGAASSSSSTRAASTTSRVSPT 60
H_insolens ASCSSVWGQCGGQNWSGPTCCASGSTCVYSNDYYSQCLPGAASSSSSTRAASTTSRVSPT 60
C_thermophilum ASCSSVWGQCGGQNWSGPTCCASGSTCVYSNDYYSQCLPGAASSSSSTRAASTTSRVSPT 60

H_jecorina TSRSSSATPPPGSTTTRVPPVGSGTATYSGNPFVGVTPWANAYYASEVSSLAIPSLTG-A 119
3C6P TSRSSSATPPPGSTTTRVPPVGSGTATYSGNPFEGVQLWANNYYRSEVHTLAIPQITDPA 120
H_insolens TSRSSSATPPPGSTTTRVPPVGSGTATYSGNPFEGVQLWANNYYRSEVHTLAIPQITDPA 120
C_thermophilum TSRSSSATPPPGSTTTRVPPVGSGTATYSGNPFSGVQLWANTYYSSEVHTLAIPSLS-PE 119

H_jecorina MATAAAAVAKVPSFMWLDT-LDKTPLMEQTLADIRTANKNGGN--YAGQFVVYDLPDRDC 176
3C6P LRAAASAAAEVPSFLWLDT-LDKTPLMEQTLADIRTANKNGGN--YAGQFVVYDLPDRDC 177
H_insolens LRAAASAVAEVPSFQWLDRNVTVDTLLVQTLSEIREANQAGANPQYAAQIVVYDLPDRDC 180
C_thermophilum LAAKAAKVAEVPSFQWLDRNVTVDTLFSGTLAEIRAANQRGANPPYAGIFVVYDLPDRDC 179

H_jecorina AALASNGEYSIADGGVAKYKNYIDTIRQIVVEYSDIRTLLVIEPDSLANLVTNLGTPKCA 236
3C6P AALASNGEYSIADGGVAKYKNYIDTIRQIVVEYSDIRTLLVIEPDSLANLVTNLGTPKCA 237
H_insolens AAAASNGEWAIANNGVNNYKAYINRIREILISFSDVRTILVIEPDSLANMVTNMNVPKCS 240
C_thermophilum AAAASNGEWSIANNGANNYKRYIDRIRELLIQYSDIRTILVIEPDSLANMVTNMNVQKCS 239

H_jecorina NAQSAYLECINYAVTQLNLPNVAMYLDAGHAGWLGWPANQDPAAQLFANVYKNASSPRAL 296
3C6P NAQSAYLECINYAVTQLNLPNVAMYLDAGHAGWLGWPANLDPAAQLFANVYKNASSPRAL 297
H_insolens GAASTYRELTIYALKQLDLPHVAMYMDAGHAGWLGWPANIQPAAELFAKIYEDAGKPRAV 300
C_thermophilum NAASTYKELTVYALKQLNLPHVAMYMDAGHAGWLGWPANIQPAAELFAQIYRDAGRPAAV 299

H_jecorina RGLATNVANYNGWNITSPPSYTQGNAVYNEKLYIHAIGPLLANHGWSNAFFITDQGRSGK 356
3C6P RGLATNVANYNAWSIASPPPYTSPNPNYDEKHYIEAFAPLLRNQGFD-AKFIVDTGRNGK 356
H_insolens RGLATNVANYNAWSVSSPPPYTSPNPNYDEKHYIEAFRPLLEARGFP-AQFIVDQGRSGK 359
C_thermophilum RGLATNVANYNAWSIASPPSYTSPNPNYDEKHYIEAFAPLLRNQGFD-AKFIVDTGRNGK 358
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H_jecorina QPTGQQQWGDWCNVIGTGFGIRPSANTGDSLLDSFVWVKPGGECDGTSDSSAPRFDSHCA 416
3C6P QPTGQLEWGHWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDPSAPRFDPHCA 416
H_insolens QPTGQKEWGHWCNAIGTGFGMRPTANTGHQYVDAFVWVKPGGECDGTSDTTAARYDYHCG 419
C_thermophilum QPTGQLEWGHWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGESDGTSDTSAARYDYHCG 418

H_jecorina LPDALQPAPQAGAWFQAYFVQLLTNANPSFL 447
3C6P LPDALQPAPQAGAWFQAYFVQLLTNANPSFL 447
H_insolens LEDALKPAPEAGQWFNEYFIQLLRNANPPF- 449
C_thermophilum LSDALTPAPEAGQWFQAYFEQLLINANPP-- 447
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Appendix B

Example Raw Data for
Thermostability Measurements

Example raw data used to determine T50 and half-life for Cel6A variants are presented here.

Figure B.1: Example raw data for determining T50 of Cel6A. Black dots represent actual data, while
the solid lines represent the Boltzmann sigmoidal model.
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Figure B.2: Example raw data for determining half life, t1/2, of Cel6A. Black dots represent actual
data, while the solid lines represent the linear model.
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Appendix C

Cel6A SCHEMA Recombination
Blocks

The Cel6A sequences from Humicola insolens (parent 1), Hypocrea jecorina (parent 2), and Chaetomium

thermophilum are listed according to block divisions.

Block 1

H_insolens 90 GNPFEGVQLWANNYYRSEVHTLAIPQITDPALRAAASAVAEVPSF 134
H_jecorina 90 GNPFVGVTPWANAYYASEVSSLAIPSLT-GAMATAAAAVAKVPSF 133
C_thermophilum 90 GNPFSGVQLWANTYYSSEVHTLAIPSLS-PELAAKAAKVAEVPSF 133

Block 2

H_insolens 135 QWLDRNVTVDTLLVQTLSEIREANQAG 161
H_jecorina 134 MWLD-TLDKTPLMEQTLADIRTANKNG 159
C_thermophilum 134 QWLDRNVTVDTLFSGTLAEIRAANQRG 160

Block 3

H_insolens 162 ANPQYAAQIVVYDLPDRDCAAAASNGEWAIANNGVNNYKAYIN 204
H_jecorina 160 GN--YAGQFVVYDLPDRDCAALASNGEYSIADGGVAKYKNYID 200
C_thermophilum 161 ANPPYAGIFVVYDLPDRDCAAAASNGEWSIANNGANNYKRYID 203

Block 4

H_insolens 205 RIREILISFSDVRTILVIEPDSLANMVTNMNVPKCSGAAS 244
H_jecorina 201 TIRQIVVEYSDIRTLLVIEPDSLANLVTNLGTPKCANAQS 240
C_thermophilum 204 RIRELLIQYSDIRTILVIEPDSLANMVTNMNVQKCSNAAS 243
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Block 5

H_insolens 245 TYRELTIYALKQLDLPHVAMYMDAGHAGWLGWPANIQPAAELFAKIYEDAGKPRAVR 301
H_jecorina 241 AYLECINYAVTQLNLPNVAMYLDAGHAGWLGWPANQDPAAQLFANVYKNASSPRALR 297
C_thermophilum 244 TYKELTVYALKQLNLPHVAMYMDAGHAGWLGWPANIQPAAELFAQIYRDAGRPAAVR 300

H_insolens 302 GLATNVANYN 311
H_jecorina 298 GLATNVANYN 307
C_thermophilum 301 GLATNVANYN 310

Block 6

H_insolens 312 AWSVSSPPPYTSPNPNYDEKHYIEAFRPLLEARGFP 347
H_jecorina 308 GWNITSPPSYTQGNAVYNEKLYIHAIGPLLANHGWS 343
C_thermophilum 311 AWSIASPPSYTSPNPNYDEKHYIEAFAPLLRNQGFD 346

Block 7

H_insolens 348 -AQFIVDQGRSGKQPTGQKEWGHWCNAIGTGFGMRPTANTGHQYVDAFVWVKPGGEC 403
H_jecorina 344 NAFFITDQGRSGKQPTGQQQWGDWCNVIGTGFGIRPSANTGDSLLDSFVWVKPGGEC 400
C_thermophilum 347 -AKFIVDTGRNGKQPTGQLEWGHWCNVKGTGFGVRPTANTGHELVDAFVWVKPGGES 402

Block 8

H_insolens 404 DGTSDTTAARYDYHCGLEDALKPAPEAGQWFNEYFIQLLRNANPPF- 449
H_jecorina 401 DGTSDSSAPRFDSHCALPDALQPAPQAGAWFQAYFVQLLTNANPSFL 447
C_thermophilum 403 DGTSDTSAARYDYHCGLSDALTPAPEAGQWFQAYFEQLLINANPP-- 447
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Appendix D

Cel6 Multiple Sequence Alignment

D.1 Consensus sequence

The alignment between 3C6P and the consensus sequence from the multiple sequence alignment is

presented here. The consensus sequence is composed of amino acids that are present in more than

50% of the aligned sequences or ‘-’ if no consensus is found at each position.

3C6P GNPFEGVQLWANNYYRSEVHTLAIPQITDPALRAAASAAAEVPSFLWLDTLDKTPLMEQT 60
Consensus GNPF-G---Y-NP-Y--EV---------D--LAAKA--VA--PTFVWLD-------L--- 27

**** * : * * ** * * * * .* *:*:*** :

3C6P TANKNGGNYAG--QFVVYDLPDRDCAALASNGEYSIADGGVAKYKNYIDTIRQIV 118
Consensus L--A------G--PP---QFV-YDLP-RDCAALASNGEL-----G---YK-YID-I---L 59

* * . *** **** *********** * ** *** * :

3C6P VEYSDIRTLLVIEPDSLANLVTNLGTPKCANAQSAYLECINYAVTQLNLPNVAMYLDAGH 178
Consensus --Y-D-R---VIEPDSL-NLVTN-----C--A---Y--G--YAL--L--PNV--Y-DAGH 90

* * * ******* ***** * * * **: * *** * ****

3C6P AGWLGWPANLDPAAQLFANVYKNASSPRALRGLATNVANYNAWSIASPPPYTSPNPNYDE 238
Consensus -GWLGW--N--P-A-LF------AG----VRG--TNVANY-----------T-WN---DE 116

***** * * * ** *. :** ****** * * **

3C6P KHYIEAFAPLLRNQGFDAKFIVDTGRNGKQPTGQLEWGHWCNVKGTGFGVRPTANTGHEL 298
Consensus --Y--AL---L---G----FI-DTGRNG--G-RR---G-WCN--GAG-G-RP-A-TG--- 145

* *: * * ** ****** : * *** *:* * ** * **

3C6P VDAFVWVKPGGESDGTSDPSAPRFDPHCALPDALQPAPQAGAWFQAYFVQLLTNANPSFL 358
Consensus -DA-VWVKP-GESDG-S-----R-D--C----AL--AP-AG-WF-AYF--L--NA-P--L 177

** ***** ***** * * * * ** ** ** ** *** * ** * *
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D.2 Genbank ID

The GenBank IDs for the Cel6 sequences used in the multiple sequence alignment are listed here.

Cel6A sequences from H. insolens, H. jecorina, and C. thermophilum were used as the query se-

quence for Protein BLAST.

Table D.1: List of GenBank IDs for the Cel6 sequences used in the multiple sequence alignment.

H insolens H jecorina C thermophilum XP 001903645.1 ABY52793.1

AAM76664.1 ZP 06907851.1 ACI26721.1 XP 001258843.1 ZP 06710849.1

BAF80327.1 YP 003342336 AAL01212.1 XP 001841132 ZP 07297522.1

ZP 16176803.1 XP 001598803.1 XP 748511.1 XP 001795501.1 XP 002484367.1

AAU05379.2 YP 003555625.1 ZP 07269959.1 AAD41097.1 XP 662886.1

ABY52799.1 ZP 06922080.1 AAD02028.1 YP 431432.1 YP 004453442.1

ZP 07309615.1 YP 003487397 YP 003511715 YP 003325739.1 AAC09067.1

YP 003494467.1 NP 823029.1 XP 001934153.1 XP 001226518.1 XP 001264772.1

YP 003636992.1 AAB92679.1 XP 001392295.2 AAQ76094.1 ABS72374.1

ACH96126.1 P49075.1 YP 003653250.1 1OCN A ABG48766.1

AAB92678.1 XP 002391276.1 AAK28357.1 AAL92497.1 AAF34679.1

P46236.1 YP 001912004.1 XP 001210279.1 ZP 06710849 AAF35251.1

ZP 06485553.1 XP 001933777.1 Q9C1S9.1 AAW64927.1 YP 001544904.1

YP 001828440.1 YP 003342336.1 ZP 07284935.1 ZP 06920986.1 ABY52798.1

ZP 12210081.1 ZP 06920986 BAH08705.1 1HGY A Q7SIG5.1

NP 630629.1 YP 003099982.1 ABY52797.1 BAH59082.1 1OC5 A

ACZ34301.1 YP 001544904 YP 003074285.1 Q5B2E8.2 YP 872374.1

XP 001806560.1 XP 003000565.1 ZP 08240659 XP 001216114.1 NP 298556.1

XP 001269265.1 NP 522144.1 YP 003117370.1 AAQ72468.1 XP 001226029.1

Continued on next page
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Table D.1 – Continued from previous page

YP 004582927.1 XP 001552807.1 YP 003115582.1 XP 001836853 YP 003099982

YP 003555620.1 ZP 08240659.1 XP 960770.1 XP 002149891.1 XP 383804.1

YP 004926939.1 AAG39980.1 YP 003375006.1 AAP33843.1 BAL63102.1

AAP30749.1 XP 002380541.1 AAL01211.1 NP 638506.1 XP 001839612

AAK95564.1 YP 001775232.1 XP 001903209.1 ZP 04605447.1 XP 002999918.1

XP 001836853.1 XP 002560902.1 XP 001796781.1 AAD51054.2 AAQ09256.1

YP 003160702.1 AAT64008.1 ZP 06575512.1 YP 004582311.1 1HGW A

YP 003075283.1 XP 003710956.1 BAA74458.1 XP 003344888.1 XP 001841132.1

XP 001903170.1 AAC49315.1 YP 001982934.1 ZP 00683852.1 AAL15038.1

XP 003344598.1 ADC83999.1 YP 003075283 AAQ09258.1 XP 001931623.1

YP 452834.1 XP 001839612.1 YP 003487397.1 AAC09066 YP 003494467

YP 003838150.1 YP 001538764.1 YP 003074285 XP 001903893.1 XP 003710385.1

XP 003346794.1 4B4F A AAA72922.1 YP 003511715.1 YP 001160411.1

1CB2 A XP 003006976.1 BAH59083.1 NP 638880.1 JC7931

ZP 06488345.1 AAC09066.1 ZP 16328686.1 3VOG A ABY52799

AAD51055.1 AAO47726.1 XP 956581.1 XP 957415.1 ZP 00944606.1

ZP 06922080 YP 004800724.1 XP 003049522.1 XP 001395308.1 YP 001828440

ZP 06827307.1 ZP 07297522 YP 003680375.1 BAB83928 AAQ93324.1

BAG48183.1 ADO33720.1 XP 003004556.1 ZP 16176803 BAB83928.1

AAR08200.1 ZP 07307649.1 XP 001273717.1 NP 821732.1 XP 002392869.1

ACH91035.1 XP 001226566.1 AAA50608.1 XP 001792324.1 YP 527744.1

CBF87814.1 XP 003713150.1 YP 001618727.1 XP 001224490.1 XP 003713150.1

YP 001618727.1 XP 001224490.1 ZP 01462143.1
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Appendix E

List of Abbreviations

Words and phrases abbreviated in this thesis can be found in the following.

Table E.1: List of abbreviations.

BSA Bovine serum albumin
CBM Cellulose binding module
CD Circular dichroism
Cel6A Cellobiohydrolase, family 6
Cel7A Cellobiohydrolase, family 7
CtCel6A Cel6A from Chaetomium thermophilum
CV Column volume
Da or kDa Dalton or kilo-dalton
DNS Dinitrosalicylic acid reducing sugar assay
DSF Differential scanning fluorimetry
DTT Dithiothreitol
EMIM 1-ethyl-3-methylimidazolium
GH Glycoside hydrolase
HiCel6A Cel6A from Humicola insolens
HjCel6A Cel6A from Hypocrea jecorina
IC50 Inhibitor concentration with 50% activity
IL Ionic liquid
ILSG IL-pretreated switchgrass
IPTG Isopropyl β-D-1-thiogalactopyranoside
LB Luria broth
MWCO Molecular weight cutoff
rpm Rotation per minute
SD-Ura Synthetic defined medium without uracil
SD-CAA Synthetic defined medium with casamino acids
SOC Super optimal broth
t1/2 Half-life
T50 Temperature with 50% residual activity
TA50 Temperature with half-maximal activity
TeCel7A Cel7A from Talaromyces emersonii
Tm Melting temperature
YPD Yeast extract, peptone, dextrose medium
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