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Abstract 

The material presented in this thesis concerns the growth and characteriza­

tion of III-V semiconductor heterostructures. Studies of the interactions between 

bound states in coupled quantum wells and between well and barrier bound states 

in AlAsiGaAs heterostructures are presented. We also demonstrate the broad ar­

ray of novel tunnel structures realizable in the InAs I GaSb I AlSb material system. 

Because of the unique broken-gap band alignment of InAsiGaSb these structures 

involve transport between the conduction- and valence-bands of adjacent layers. 

These devices possess a wide range of electrical properties and are fundamen­

tally different from conventional AlAsiGaAs tunnel devices. We report on the 

fabrication of a novel tunnel transistor with the largest reported room temper­

ature current gains. We also present time-resolved studies of the growth fronts 

of InAsiGainSb strained layer superlattices and investigations of surface anion 

exchange reactions. 

Chapter 2 covers tunneling studies of conventional AlAsiGaAs RTD's. The 

results of two studies are presented: ( i) A test of coherent vs. sequential tunneling 

in triple barrier heterostructures, ( ii) An optical measurement of the effect of 

barrier X-point states on r -point well states. In the first it was found if two 

quantum wells are separated by a sufficiently thin barrier, then the eigenstates 

of the system extend coherently across both wells and the central barriers. For 

thicker barriers between the wells, the electrons become localized in the individual 

wells and transport is best described by the electrons hopping between the wells. 

In the second, it was found that f-point well states and X-point barrier states 

interact strongly. The barrier X-point states modify the energies of the well states 

and increase the escape rate for carriers in the quantum well. 

The results of several experimental studies of a novel class of tunnel devices 



Xl 

realized in the InAs/GaSb/ AlSb material system are presented in Chapter 3. 

These interband tunnel structures involve transport between conduction- and 

valence-band states in adjacent material layers. These devices are compared and 

contrasted with the conventional AlAs/GaAs structures discussed in Chapter 2 

and experimental results are presented for both resonant and nonresonant devices. 

These results are compared with theoretical simulations and necessary extensions 

to the theoretical models are discussed. 

In chapter 4 experimental results from a novel tunnel transistor are reported. 

The measured current gains in this transistor exceed 100 at room temperature. 

This is the highest reported gain at room temperature for any tunnel transistor. 

The device is analyzed and the current conduction and gain mechanisms are 

discussed. 

Chapters 5 and 6 are studies of the growth of structures involving layers with 

different anions. Chapter 5 covers the growth of InAs/GainSb superlattices for 

far infrared detectors and time resolved, in-situ studies of their growth fronts. 

It was found that the bandgap of superlattices with identical layer thicknesses 

and compositions varied by as much as 40 me V depending on how their internal 

interfaces are formed. The absorption lengths in superlattices with identical 

bandgaps but whose interfaces were formed in different ways varied by as much 

as a factor of two. First the superlattice is discussed including an explanation 

of the device and the complications involved in its growth. The experimental 

technique of reflection high energy electron diffraction (RHEED) is reviewed, 

and the results of RHEED studies of the growth of these complicated structures 

are presented. The development of a time resolved, in-situ characterization of 

the internal interfaces of these superlattices is described. Chapter 6 describes 

the result of a detailed study of some of the phenomena described in chapter 5. 

X-ray photoelectron spectroscopy (XPS) studies of anion exchange reactions on 



Xll 

the growth fronts of these superlattices are reported. Concurrent RHEED studies 

of the same physical systems studied with XPS are presented. Using the RHEED 

and XPS results, a real-time, indirect measurement of surface exchange reactions 

was developed. 
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Chapter 1 

Introduction 

1.1 Introduction to Thesis 

This thesis is concerned with the design, fabrication and characterization of 

novel semiconductor structures. By building up several layers of material with 

different electrical and optical properties, a wide range of novel semiconductor 

systems can be created. In order to create a truly new system, and not a sim­

ple superposition of the original subsystems, it is necessary for these layers to 

be extremely thin. Intuitively these layers would need to be on the order of the 

wavelengths of the charge carriers and/ or light interacting with them. This trans­

lates into layers '""'10 A thick For electronic devices and '""'1000 A for optical 

devices . This process of layering materials with different electrical and optical 

properties is known as bandgap engineering. This thesis is a study of some of 

the new devices - and novel physics - that can be explored using semiconductor 

heterostructures. 

The thesis can be divided into two parts. The first (chapters 2, 3 and 4) 

gives the results of design, growth, processing and characterization of novel tun­

nel devices. The purpose of this portion was to explore the range of behaviors 
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exhibited by these devices, and to explicitly test our theoretical understanding of 

them. The second part (chapters 5 and 6) is devoted to understanding and im­

proving the growth of these structures. Typical layer thicknesses in these devices 

are 10 to 100 A, while the cubic lattice constants of the materials used range from 

5.6 to 6.1 A. Comparing these two length scales makes clear the level of control 

over the morphology and chemistry of the internal interfaces necessary to realize 

these devices. Fluctuations of only a few atomic layers can result in significant 

changes in device operation. 

1.1.1 Summary of Results 

The first two chapters of this thesis concern experimental studies of tunnel­

ing in semiconductor heterostructures. AlAs/GaAs resonant tunneling diodes 

(RTD's) are used to probe the interactions between quasi-bound states in cou­

pled quantum wells and the effect of X-point barrier states on r -point well states. 

A series of AlAs/GaAs triple barrier structures were grown and fabricated into 

devices. By studying electrical transport in these structures, we conclude that 

if the barrier separating the two quantum wells is thin enough, then coherent 

electron states extend across both wells and the central barrier. In this case, 

electrons traveling through the device interact with both quantum wells simul­

taneously. For thicker barriers, the interaction between the wells decreases until 

eventually the states in the two wells can be thought of as independent. The 

electrons in the device become localized in the individual wells, and transport 

across the structure entails hopping between the wells. A set of double barrier 

structures were grown and their optical properties measured. By modulating the 

energy separation between states at the X-point of the AlAs barriers and states 

at the f-point of the GaAs well, interactions between these two type of bound 
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states was studied. We find that the X- and r-point states do interact and that 

the presence of the barrier states have a profound effect on confinement energies 

in the well and carrier escape times. In addition, we report the first observation 

of optical transistions that are indirect in both space and momentum. 

One of the main results of this thesis is the broad array of tunnel structures 

realizable in the InAs/GaSb/ AlSb material system. This group of nearly lat­

tice matched materials is possibly the optimal one for studying heterojunction 

devices. It has both type-I and type-II band offsets as well as the unique broken­

gap alignment of InAs/GaSb, where the bandgaps of GaSb and InAs do not 

overlap. Nine distinct types of structures were designed, grown and electrically 

characterized. Each type had current-voltage curves which displayed negative 

differential resistance. Over sixty wafers were grown to explore the properties 

of these different structures. The devices possessed a broad array of electrical 

characteristics with peak current densities ranging from 15 A/cm2 to 2 x 105 

A/ cm2 and peak-to-valley current ratios ranging from 1.2 to 88. The most novel 

of these devices are structures where charge carriers move between conduction­

band and valence-band states. Because of the unique broken gap band align­

ment in InAs/GaSb it is possible to study coupling and transport between the 

conduction- and valence-bands of adjacent layers. These unique structures were 

found to be fundamentally different from conventional AlAs/GaAs tunnel struc­

tures. Experimental studies along with complimentary theoretical studies of this 

novel class of heterostructures are reported. 

A novel tunnel transistor based on the two terminal devices realized in the 

InAs j GaSb j AlSb material system was designed, grown, fabricated and charac­

terized. Room temperature current gains as large as 100 were observed. This is 

the highest value reported for any tunnel transistor. 

The second portion of this thesis deals with growth issues. This work was 
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motivated by both the above tunnel devices and by InAs / GalnSb superlattices 

which are used as far infrared detectors. We found that the way in which the 

internal As/Sb interfaces are formed has a dramatic affect on the final bandgap of 

the detector. Structures with the same layer thicknesses and layer compositions 

can have bandgaps that differ by 40 me V depending on the details of the interface 

structure. For devices intended to operate beyond 10 J.Lm, this can result in 

a significant change in the detector's cutoff wavelength. We have developed a 

system for characterizing this structure's internal interfaces as they are being 

formed. We have also developed a real-time technique for indirectly probing 

surface exchange reactions on the crystal's growth front. 

1.1.2 Chapter Outline 

Section 1.2 motivates this thesis work. Semiconductor crystal growth is cov­

ered in section 1.3. Heterojunctions are covered in section 1.4 including the 

importance of lattice constants, bandgaps and band offsets to device design. Sec­

tion 1.5 explains the effect of heterostructures on band structure and discusses 

quantum confinement effects. The thesis is outlined in section 1.6. 

1.2 Motivation 

The motivations for studying these novel semiconductor systems are both pure 

and practical. Semiconductor heterostructures are one of the few areas where 

basic science and practical technological applications intersect. Among the prac­

tical devices dependent on bandgap engineering are visible lasers currently used 

in optical storage devices and compact disk players[l], infrared lasers which en­

able communication transmission over optical fibers[2] and solid state oscillators 

which operate at frequencies approaching 750 Ghz[5]. Fundamental studies which 
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are dependent on heterostructures includes Coulomb blockade structures where 

the granular nature of electric charge can be observed[4], and investigation of 

quantum dots and wires[5, 6]. 

In terms of pure science, this is one of the few physical systems which exhibit 

room-temperature behavior that can only be described by quantum mechanics. 

As such, they provide a test bed for theory. The level of theoretical sophistication 

brought to bear ranges from straightforward application of first year quantum me­

chanics, which gives a good qualitative description of these devices, to extremely 

complicated constructions that attempt to account for the 'messiness' present in 

any physical system. The class of structures described in Chapter 3 is fundamen­

tally different from conventional RTD's. These devices allows us to study a novel 

class of quantum transport issues. 

As mentioned above, there are examples of heterostructure devices currently 

in use. In a more speculative vein, bandgap engineering could very well be the 

basis for the next generation of integrated circuits. The current technology of Si 

based complimentary metal oxide semiconductor (CMOS) devices was invented 

over 30 years ago. The vast increase in computer power and the sharp drop in 

price over the last 20 years has been due to constant and gradual refinement of this 

technology. This process can not continue indefinitely, and many manufacturers 

believe that shortly after the turn of the century they will have reached the limit 

of Si CMOS performance enhancement. Semiconductor-based computation will 

be forced to change course. Among the possible directions are concentrating 

on developing software to take full advantage of existing technology. A second 

option is to use Si CMOS in a different way: analog. The overwhelming majority 

of circuits today are digital, where devices and circuits are designed to force 

them to occupy one of two states which correspond to '0' or '1'. In this design 

paradigm, the vast majority of a device's electrical characteristics are ignored. 
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In analog circuits, the designer attempts to use the full phase space of existing 

devices and circuits to carry out computation. 

The possibility that partially motivates this thesis is a complete design revo­

lution starting with the basic circuit building blocks. Here, the individual devices 

at the designer's disposal may no longer be simply conventional transistors. To 

realize this, a wide ranging exploration of novel devices must be completed be­

fore settling on the components which could eventually be integrated in a future 

integrated circuit technology. We believe that a marriage of the devices discussed 

in Chapter 3 with both conventional and unconventional transistors could prove 

to be such a basis set. Ongoing work in our group is trying to obtain the final 

pieces to this puzzle (notably a good insulating layer) and to begin the process 

of integration. 

1.3 Semiconductor Crystal Growth 

As mentioned in section 1.1 , precise control over a crystal's chemical com­

position, interface morphology and layer thickness are critical to realization of 

quantum effect devices. Given these constraints, a flexible, precise method of 

crystal growth is necessary. 

1.3.1 Molecular Beam Epitaxy 

Molecular beam epitaxy (MBE) is a physical vapor deposition technique where 

the constituent atoms of a crystal are directly deposited onto a substrate. If the 

fluxes and substrate temperature are correctly chosen, single crystal, thin films 

result. The growth fluxes are produced by evaporating ultrapure elemental or 

compound source materials with typical growth rates of 1 to 3 A per second. 

Each of the source ovens can be individually shuttered in order to change the 
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beam composition. Monolayer precision can routinely be achieved with MBE, and 

growth of nearly all of the most common III-V, II-VI and group IV semiconductors 

has been demonstrated. 

Crystal growth is done in an ultra high vacuum (UHV) chamber with base 

pressures rv 10-10 Torr, where hydrogen is the largest typical background gas. 

Because of these low pressures, the mean free paths of the material in the growth 

beams is much larger than the separation between oven and substrate. As a 

result, liquid or gaseous flow patterns do not complicate MBE growth as can be 

the case in chemical vapor and liquid deposition techniques. 

Fig. 1.1 shows the layout of a typical MBE chamber. It consists of stainless 

steel walls enclosing a growth volume of roughly a cubic meter. Nestled inside 

the chamber walls are hollow panels. During growth, liquid nitrogen is pumped 

through them to further reduce the base pressure. Our chamber is equipped with 

five effusion cells. Three of the cells hold group III material (Ga, Al, In) and 

two hold dopants (Si and Ge). Two cracker cells are used to produce As and Sb. 

These cells consist of two thermally isolated regions. In the first region, either 

As4 or Sb4 is sublimated off of a bulk charge. The cracking zone can be adjusted 

to be as much as 800 oc hotter than the sublimator. In the cracking zone, the 

group V species can be adjusted by cracking the tetramers down to dimers or 

monomers. Since the two zones are thermally isolated, adjusting the temperature 

of the cracker does not change the absolute group V flux. The flexibility of MBE 

is demonstrated by the fact that over 20 different compounds can be grown in 

this single chamber . 

Two in situ analysis techniques are typically available on MBE chambers . 

Reflection high energy electron diffraction (RHEED) is a method for analyzing 

the surface structure of the substrate. RHEED will be covered in some detail 

in section 5.3.1, but suffice to say that growth rates, surface reconstructions and 
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surface morphology can be obtained with it. As the sketch in Fig. 1.1 shows, the 

RHEED geometry does not interfere with the beams fluxes so the wafer's surface 

can be analyzed during growth. Residual gas analyzers give information about 

the gaseous species present in the growth chamber and can be used to adjust 

beam fluxes and identify background impurities. 

Given the assumption of UHV growth conditions, MBE is conceptually sim­

ple. In essence, there are only two variables that the grower can adjust: the 

growth fluxes and the substrate temperature. These two variables control the 

stoichiometry of the growth front and the surface mobility of physisorbed atoms 

which together determine the properties of the resulting epilayer. In general, 

substrate temperatures are as high as possible with the upper limit being deter­

mined by either the congruent sublimation temperature of the thin film or the 

temperature where bulk mobilities lead to interdiffusion of the individual layers. 

Given the substrate temperature, the incident fluxes are adjusted to achieve the 

proper stoichiometry at the growth front. The flexibility and conceptual simplic­

ity of MBE make it an ideal tool to explore a wide range of novel semiconductor 

structures. 

Fig. 1.2 is a schematic of the UHV growth system in the McGill lab. It 

consists of three separate growth chambers (III-V, II-VI and Si / Ge), a surface 

analysis chamber, a metallization chamber and a substrate heating and cleaning 

chamber. The chambers are connected by UHV transfer tubes so that wafers 

may be transferred between them without being exposed to atmosphere. This is 

done routinely. All of the heterostructures discussed in this thesis were grown in 

the III-V chamber shown in Fig.l.2. 
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1.3.2 III-V Crystal Growth 

While the growth conditions for each individual semiconductor is different, 

III-V materials share many general features. All III-V compounds preferentially 

desorb group V atoms. As a result, between three and ten times as many group 

V as group III atoms must be evaporated to grow a stoichiometric crystal. In 

addition, at growth temperatures, a constant group V flux is necessary to stabilize 

the surface. The group III flux controls the growth rate. At growth conditions, 

the group III ovens are 900 to 1200 °C depending on the specific materials being 

evaporated, while typical substrate temperatures are 400 to 700 °C. Because 

of this, the group III's have unity sticking coefficients; hence, their arrival rate 

determines the growth rate. III-V's exposed to atmosphere form a thin native 

oxide which must be removed before growth. This is done by heating the substrate 

to near its congruent sublimation temperature in a group V flux. Typically the 

oxide desorbs in two steps. The group V oxides desorbs first while at higher 

temperatures the group III oxides disassociate and the freed oxygen desorbs. 

Both RHEED and RGA give signatures for the desorption. The oxide desorption 

temperature is well defined, and is used to calibrate substrate temperatures. 

The structures studied in this thesis consisted of AlxGa1_xAs/GaAs, 

InAs/ AlxGa1_xSb and InAs/Ga,Inl_,Sb heterostructures. The growth condi­

tions of the individual structures are given in the appropriate chapters. In gen­

eral, their relative growth temperatures are: 

I nSb < I nAs < GaSb ~ AlSb < GaAs ~ AlAs 

As a result, the optimal As to group III to ratio is smaller for InAs than for 

either GaAs or AlAs. The sticking coefficient of Sb is much higher than that of 

As, hence the optimal group V to group III ratio is smaller for antimonide layers 

than arsenide layers. When layering materials with different optimal substrate 
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temperatures, an intermediate temperature is chosen. The growths rates and flux 

ratios are then adjusted to compensate 

1.4 Heterojunctions 

The work in this thesis is based on the concept of bandgap engineering. Here, 

structures consisting of thin layers of dissimilar materials are grown to achieve 

novel optical and electrical properties. In order to design and realize an interest­

ing heterostructure, a basic understanding of the relevant material properties is 

necessary. The most important of these are the lattice constant and bandgap of 

the individual materials, and the band offsets between materials. 

1.4.1 Lattice Constants 

Fig. 1.3 is a plot of bandgap vs. lattice constant for several common semicon­

ductors. The crystal structure of each consists of intertwined face-centered cubic 

lattices. In Si and Ge, all of the atoms are identical resulting in diamond's crystal 

structure. For the compound materials the individual atomic species are located 

on the separate sublattices, resulting in a zinc blend crystal structure*. When 

layering materials with different lattice constants, the material in the overlayer 

initially grows strained to the underlying layer. In the growth plane, the atoms 

in the two materials register. This distorts the overlayer which will adjust its 

lattice constant along the growth direction in an attempt to keep the volume of 

its unit cell constant. This imparts strain energy to the crystal, which if suffi-

*Note that the lattice constant used in Fig. 1.3 is the cubic lattice constant. For compound 

semiconductors it is common to quote the monolayer size which is the separation, projected 

onto one of the (100) crystal axes, between like atomic species. This distance is one half of the 

cubic lattice constant. 
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ciently large, will nucleate dislocations in the overlayer. If enough dislocations 

are present, the overlayer will relax to its natural lattice constant. Dislocations 

can scatter carriers and serve as recombination sites, hence their presence must 

be avoided, especially in minority carrier devices. In addition, strain modifies 

the crystal bandstructure which is critical to the operation of some devices. The 

thickness at which dislocations are generated depends on the elastic constants 

of the specific material. In general, the critical thickness decreases quite rapidly 

as the lattice mismatch between two materials increases. For mismatches of 1%, 

critical thicknesses are on the order of 1000 A . As a result, it is important to 

choose materials that are very nearly lattice matched. As Fig. 1.3 shows, the 

lattice constants tend to cluster around 5.65 and 6.1 A , making materials with 

these lattice parameters particularly suited to heterostructure investigation. 

1.4.2 Bandgaps 

The second important material parameter is the bandgap. For optical appli­

cations, the appropriate bandgap is obviously critical. For electrical applications, 

narrow gap materials are preferable. In general, the effective mass of a semi­

conductor scale inversely with the bandgap, hence narrow gap materials tend to 

have smaller effective masses and larger carrier mobilities. In the particular case 

of III-V's, the surface Fermi level tends to pin in the bandgap, one third of the 

way from the valence band. This gives a typical electron Schottky barrier of 

two thirds of the bandgap and a hole barrier roughly equal to one third of the 

bandgap. The smaller Schottky barriers typical of narrow gap materials facili­

tates the fabrication of ohmic contacts. Therefore, as long as optical constraints 

do not force the choice of a particular semiconductor, the materials clustered 

at a lattice constant of 6.1 A are the logical choice to use when investigating 
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heterostructures. Not only is there a wider range of available bandgaps, the nar­

row gaps of InAs and GaSb suggest superior electrical performance compared to 

the materials clustered at 5.65 A. InAs also has a negative Schottky barrier for 

electrons hence good ohmic contacts can be fabricated. 

1.4.3 Band Offsets 

When two materials with different bandgaps are placed next to each other, 

a discontinuity occurs in either the valence- or conduction-bands, or both. To 

first order, where the band discontinuity occurs and what its magnitude is can 

be estimated from the work functions of the two materials, though experimental 

measurements are necessary for actual device design. These band edge disconti­

nuities are used to create potential barriers for carriers which can lead to quantum 

confinement effects. For some applications, certain band alignments are crucial, 

e.g., injection of a particular carrier type. In general, though, systems with the 

greatest range of band offsets are best suited to the study of heterostructures. 

This again points to the materials clustered near 6.1 A. In addition, InAs and 

GaSb have a unique band offset in that their bandgaps do no overlap. This al­

lows the investigation of a novel set of heterostructures which involve transport 

between the valence- and conduction-bands of adjacent layers. 

The materials studied in this thesis are marked with closed circles m Fig. 

1.3. As argued above, the cluster of materials with lattice parameters near 6.1 

A are particularly interesting, and the bulk of this thesis concentrates on them. 

Though no III-V /II-VI devices were grown, integrating them into the reported 

heterostructures can only increase the richness of structures obtainable in this 

nearly lattice matched material system. 
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1.5 Band Structure and Quantum Confine­

ment in Heterostructures 

Fig. 1.4 is a series of drawings intended to describe the effects of band edge 

discontinuities on heterostructure band structure. Fig. 1.4 (a) is a physical rep­

resentation of a double barrier device. It consists of a thin layer of undoped 

GaAs, sandwiched between layers of undoped AlAs, between two doped GaAs 

electrodes. Layering two materials with different bandgaps modulates the po­

tential seen by electrons and holes. In the case of GaAs/ AlAs heterostructures, 

AlAs presents a barrier to both holes and electrons in GaAs. As a result, the 

carriers in the central GaAs layer in Fig. 1.4 (a) are in a potential well. If the 

GaAs layer is thin enough, then carriers in the well will simultaneously interact 

with both barriers. The length scale at which this occurs is on the order of 100 A 

. When this happens the eigenstates in the well become quantized. Conceptually, 

the system is similar to the classic problem of a particle in a box covered in first 

year quantum mechanics . 

Fig. 1.4 (b) is a sketch of the conduction-band energy diagram for an 

AlAs/GaAs double barrier. The continuous solid line represents the conduction­

band minimum and the central solid lines bound well states. In this case the 

potential barriers that form the well have finite height, so the bound state prob­

ability density will leak into the barriers . The amplitude of a state's probability 

density decays exponentially with barrier thickness. For sufficiently thin poten­

tial barriers, the well state has a nonzero amplitude in the outer GaAs electrodes. 

When this happens the bound, well state can couple to continuum electrode states 

and transport between the electrodes and well can occur. Such a state is termed a 

quasi-bound state (QBS). Fig. 1.4 (c) sketches the amplitudes of the two lowest 
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states. Notice that both are nonzero in the AlAs barriers. 

Now consider transport through the well states. Since the QBS energy is 

quantized, only electrons of a particular energy can elastically tunnel into the 

well. Transmission of electrons with energies that don't match that of the bound 

state are strongly suppressed. This leads to peaks in the electron transmission 

probability at QBS energies. This is represented in the sketch on the right hand 

side of Fig. 1.4 (b). In essence, the well acts as an energy filter on the incident 

electrons. When an electrical bias is applied across the device, the transmission 

resonances due to the confined well states can lead to current resonances. In high 

quality structures, these current resonances can be seen at room temperature. 

The quantum confinement described above can also change the optical prop­

erties of the crystal. Due to the confinement energy, emission from the well region 

occurs at an energy higher than the bandgap of the bulk semiconductor. Likewise, 

the threshold at which the bound well state absorbs optical energy is modified 

by the quantum confinement. Fig. 1.4 (d) shows the the effect of butting sev­

eral quantum wells up against each other. As in the case of a single well, if the 

barrier layers are thin, the confined states in the individual wells will leak out. 

If the states interact strongly enough, they will form an energy band. The new 

eigenfunctions of the system will be plane-wave like states with a fixed crystal 

momentum perpendicular to the barriers. 

1.6 Thesis Outline 

Chapter 2 covers tunneling studies of conventional AlAs/GaAs RTD's. A 

quick review of the theoretical basis of RTD's is presented. Then the growth, 

fabrication and characterization of these devices is discussed. The results of 

two studies are then presented: ( i) A test of coherent vs. sequential tunneling 
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in triple barrier heterostructures, ( ii) An optical measurement of the effect of 

barrier X-point states on r-point well states. 

The results of several experimental studies of a novel class of tunnel devices 

are presented in Chapter 3. These interband tunnel structures involve transport 

between conduction- and valence-band states in adjacent material layers. These 

devices are compared and contrasted with the conventional RTD's discussed in 

Chapter 2. Experimental results are presented for both resonant and nonresonant 

devices. These results are compared with theoretical simulations, and necessary 

extensions to the theoretical models are discussed. Finally, a summary of the ex­

perimental results and some rules-of-thumb for understanding this class of devices 

is presented. 

In Chapter 4 experimental results from a novel tunnel transistor are given. 

The measured current gains in this transistor exceed 100 at room temperature. 

This is the highest reported gain at room temperature for any tunnel transistor. 

The device is analyzed and the current conduction and gain mechanisms are 

discussed. 

Chapters 5 and 6 are studies of the growth of structures involving layers with 

different anions. Chapter 5 covers the growth of InAs/GainSb superlattices for 

far infrared detectors and time resolved, in-situ studies of their growth fronts. 

First the superlattice is discussed including an explanation of the device and the 

complications involved in its growth. The experimental technique of RHEED 

is reviewed. The results of RHEED studies of the growth of these complicated 

structures are then presented. The development of a time resolved, in-situ char­

acterization of the internal interfaces of these superlattices is described. Chapter 

6 describes the result of a detailed study of some of the phenomena described in 

Chapter 5. X-ray photoelectron spectroscopy (XPS) studies of anion exchange 

reactions on the growth front of these superlattices are reported. Concurrent 
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RHEED studies of the same physical systems studied with XPS are presented. 

Using the RHEED and XPS results, a real-time, indirect measurement of surface 

exchange reactions was developed. 
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Chapter 2 

GaAs/ AlAs Tunnel Structures 

2.1 Introduction and Outline 

The work covered in this chapter is slightly removed from the bulk of the 

thesis work which concentrated on mixed anion As/Sb heterostructures. The 

work in this chapter was undertaken as an introduction to the basic concepts 

of tunneling in heterostructures , MBE crystal growth and device processing and 

characterization. As a result the conceptually simpler AlAs/GaAs systems was 

investigated first. Likewise, because these crystals are composed of a single variety 

of anion, their growth and processing are more straightforward. 

A brief overview of tunneling in heterostructures is covered in section 2.2. 

Section 2.3 covers the growth of GaAs/ AlAs heterostructures. Results of electrical 

measurements of triple barrier devices are reported in section 2.4. Section 2.5 

reports on optical measurements of the role of X-point states in tunneling. The 

chapter is summarized in section 2.6. 
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2.2 Tunneling in Heterostructures 

A complete treatment of tunneling in heterostructures is beyond the scope 

of this thesis. However, an intuitive understanding of tunneling in necessary for 

understanding this and the following chapters. 

Fig. 2.1 is a series of drawings intended to describe resonant tunneling. Fig. 

2.1 (a) is a physical representation of a tunnel diode while below it is a sketch 

of the devices' bandedge profile. Fig. 2.1 (b) is a sketch of the conduction­

band energy diagram for an AlAs j GaAs double barrier. The continuous solid 

line represents the conduction-band minimum, the central solid line, a bound 

well state and the grey line, the probability density in the well. As mentioned 

in Chapter 1, AlAs presents a barrier to both holes and electrons in GaAs. This 

leads to the formation of a spectrum quasi-bound states ( QBS) in the GaAs well. 

Now consider transport through the well states. Since its energy is quantized, 

only electrons of a particular energy can elastically tunnel into the well. Trans­

mission of electrons with energies that don't match that of the bound state are 

strongly suppressed. This leads to a peak in the electron transmission probability 

at the QBS energy. This is represented in the sketch on the right hand side of 

Fig. 2.1 (b). In essence, the well acts as an energy filter on the incident elec­

trons. When an electrical bias is applied across the device, the energy difference 

between the well QBS and the electrode Fermi level is changed. When the elec­

trode Fermi level and QBS do not coincide, the device is very resistive due to the 

energy filtering of the quantum well. For biases that bring the Fermi level into 

resonance with the well state, the device is very conductive since the electrode 

electrons now have elastic access to the well state. This is represented in Fig. 2.1 

(c). Past resonance the device again becomes resistive because they are no longer 

on the peaked portion of the transmission curve. This modulation of the device 
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resistance leads to a region of negative differential resistance (NDR) as sketched 

in Fig. 2.1 (e). 

2.3 AlAs/GaAs Growth 

All of the samples reported here were grown on (100) GaAs substrates. The 

substrates were successively immersed in warmed solvents - trichloroethane, ace­

tone, isopropyl and deionized water - to remove organic contaminates from their 

surfaces. The substrates are then etched in 5:1:1, H2S04:H202:H20 for two min­

utes. This removes approximately 10 p,m of material from the surface, eliminating 

any polish damage or near surface contamination that may be present. Following 

the etch, the wafers are cleaved and indium bonded to molybednum blocks. The 

wafers are then introduced into the MBE growth system via a load lock. 

All of the samples were grown in a Perkin-Elmer 430 molecular beam epitaxy 

(MBE) system. The substrates are brought into the MBE chamber and heated 

in an As flux to remove the native oxide that forms when exposed to atmosphere. 

Oxide desorption is confirmed by monitoring the reflection high energy diffrac­

tion (RHEED) pattern from the crystal's surface. When the oxide desorbs, the 

RHEED pattern changes from a uniform background with a few diffraction spots, 

characteristic of the thin amorphous oxide layer, to a set of bright, streaky spots 

on a black background. The change in the RHEED pattern occurs at substrate 

temperatures of 600 °C and is used to calibrate the optical pyrometer and ther­

mocouple used to measure the substrate temperature. Monitoring the residual 

gas analyzer (RGA) gives a warning that the oxide is about to desorb. Just prior 

to desorption, large bursts of CO and C02 from the oxide layer are observed on 

the RGA. These peaks fall back to their background levels after oxide removal. 

At least 1 J-Lm of GaAs is deposited before growing the active region of the 
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device . This ensures optimal crystal quality and that no contaminants from the 

oxide incorporate in the active region. The devices in this chapter were grown at 

a nominal substrate temperature of 600 oc as calibrated by the oxide desorption 

point. It has been reported that higher quality AlAs and AlxGa1_xAs can be 

obtained at higher substrate temperatures. However, because of the short time 

needed to grow these thin layers, it was not possible to adjust the substrate 

temperature fast enough. To compensate for the lower substrate temperatures, 

the AlAs layers were grown more slowly than the GaAs layers: 0.25 pm for AlAs 

and 1.0 pm for GaAs. Lowering the AlAs growth rate partially compensates for 

the nonoptimal substrate temperature by giving the Al atoms more time to diffuse 

across the wafers surface before being buried by subsequent layers of material. 

The GaAs layers were grown with an As-terminated growth front as deter­

mined by the 2 x 4 RHEED reconstruction. It is believed that the highest quality 

GaAs is that grown with slightly more As than necessary to maintain the 2 x 4 

RHEED reconstruction. The ratio of the As and Ga peaks on the RGA was cali­

brated to the 2 X 4 to 4 x 2 reconstruction transition characteristic of the transition 

between an As terminated and a metal rich GaAs surface. Before growth, the 

As flux is adjusted to obtain the proper As to Ga ratio on the RGA. The same 

As flux was used for both the GaAs and AlAs layers since the thermal time con­

stant of the bulk As evaporator is several tens of minutes. Since the congruent 

sublimation temperature of AlAs is higher than that of GaAs, a smaller As flux 

would probably be sufficient to stabilize the AlAs surface. This partially explains 

the improved AlAs layer quality observed at higher substrate temperatures. 

The AlAs and GaAs growth rates were determined by a variety of methods. 

A tantalum wire was stretched across a portion of each substrate. This masked 

the substrate from the beam flux and created a trench in the epilayer. The trench 

depth was measured with a stylus profilometer. This allowed determination of 
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the GaAs growth rate. RHEED intensity oscillations were also used to measure 

both the AlAs and GaAs growth rates. A computer program was written which 

digitizes a video signal of the RHEED pattern. The computer program automat­

ically locates the specular RHEED spot and tracks any changes in its intensity. 

The program is able to deliver growth rates in real time from both stationary 

and rotating substrates. It was found that the growth rates obtained by RHEED 

were approximately 10% faster than those obtained by the shadow mask method. 

This was attributed to thermal transients in the source ovens due to shutter ac­

tuation. To correct this, 7/8 inch spacers were installed on the MBE chamber 

to increase the distance between the shutters and the ovens. This reduced the 

discrepancy between the growth rates to roughly 2%. The final method for de­

termining the growth rate used x-ray diffraction. Two types of samples were 

prepared. AlAs/GaAs superlattices were grown and the superlattice period and 

the position of the zeroth order superlattice peak was measured. From the period, 

the total amount of material deposited is determined, while the position of the 

zeroth order superlattice peak gives the average atomic spacing in the superlat­

tice which can be related to the average composition. Bulk AlGaAs layers were 

also grown. Since AlAs and GaAs have slightly different lattice constants, mea­

suring the lattice constant of the alloy layer gave the ratio of the AlAs to GaAs 

growth rates. Interference fringes characteristic of the thickness of the AlGaAs 

layer were used to determine the thickness of the alloy film. The individual AlAs 

and GaAs growth rates could then be determined. 
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2.4 Triple Barrier Heterostructures 

2.4.1 Sequential vs. Coherent Tunneling 

Since the initial proposal[l] and demonstration[2] of resonant tunneling in 

semiconductor heterostructures, a large body of theoretical and experimental 

work has been aimed at understanding the relevant current transport mecha­

nisms. One of the major unresolved issues is how the tunneling process that 

gives rise to negative differential resistance (NDR) should be treated. The early 

consensus was that the NDR seen in double barrier heterostructures was due to a 

resonant enhancement of the structure's transmission coefficient, analogous to the 

enhancement seen in the transmission of optical waves in a Fabry-Perot intefer­

ometer. Recently, sequential processes, wherein the electrons tunnel through the 

individual barriers making up a double barrier structure in independent steps, 

have been proposed. It was suggested that the NDR seen in such structures 

was due solely to tunneling from a three dimensional system into a two dimen­

sional system, with no need for a resonant enhancement of the structure's overall 

transmission coeffi.cient.[3, 4] The major difference between these two pictures is 

the length scale over which the electronic wavefunction is coherent. In the first 

model the electrons traversing the device interact with the entire heterostructure 

simultaneously, while in the second it is assumed that scattering processes limit 

the spatial coherence of the electron's wavefunction so that it interacts with the 

various layers of the heterostructure individually. 

In this section we examine the electron wavefunction coherence between two 

quantum wells. A series of double quantum wells separated by barriers of vary­

ing widths were grown. The devices' conduction band edge profile is shown in 

Fig. 2.2(a). In interpreting our current-voltage measurements we will consider 
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two cases: coherence and incoherence in the electronic wavefunctions across the 

central barrier. If the wavefunctions in the two quantum wells are uncorrelated, 

NDR due to elastic tunneling can occur only if the Fermi level in the source elec­

trode simultaneously lines up with the independent quasi-bound states in both 

the first and second quantum well. This coincidence does not generally occur 

except for a few specific choices of layer thickness. On the other hand, if the 

quasi-bound states in the two wells extend coherently across the middle barrier, 

the electrons interact with the entire structure as a whole, leading to multiple 

current resonances. 

2.4.2 Experimental 

Four structures were grown. Three consisted of two 54 A quantum wells 

separated by a middle barrier of widths 3, 6 and 12 monolayers (ML). The fourth 

structure was a standard double barrier diode with a 108 A well. In all four 

structures the outer barriers were 30 A thick. Spacer layers consisting of 25 A 

of undoped GaAs and 500 A of GaAs Si-doped at 2x1016 cm-3 were grown on 

both sides of the active region to inhibit the diffusion of silicon atoms from the 

degenerately doped electrodes into the triple barrier region.[5] Device mesas with 

a surface area of 9.2 X 10- 5 cm2 were fabricated using photolithography and a 

wet etch. Current-voltage (I-V) curves were measured at 300 K and 77 K using 

an HP 4145A semiconductor parameter analyzer. 

In Fig. 2.2 we display typical I-V curves taken at 77 K for the double barrier 

and the samples with 3 and 12 ML middle barriers (Fig. 2.2(b), (c) and (d), 

respectively). The samples showed as many as three distinct NDR regions, with 

the number and intensity of the current resonances decreasing for the sample 

with the thickest middle barrier. Fig. 2.3 shows the temperature dependence of 
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the I-V curves of the structure with a 3 ML middle barrier. The PVR and, to a 

lesser extent, the peak current density are strong functions of temperature. The 

behavior shown in the figure is representative of all the devices investigated. 

2.4.3 Electrical Characteristics vs. 

Thickness 

Middle Barrier 

In Fig. 2.4 we plot the measured peak current densities of the second reso­

nance versus middle barrier thickness. We show the data for the second peak only 

since it is present for all middle barrier thicknesses (for the 12 monolayer sample 

there is only one current resonance, but we designate it as the "second" peak on 

the basis of the applied bias at which it occurs). To show the range of device 

performance, we plot a cluster of points for each heterostructure corresponding to 

different devices on the same wafer. Within the range of samples, the current is 

only slightly affected when the middle barrier is introduced and actually increases 

when the thickness is increased from 3 ML to 6 ML even though the applied bias 

at which the second resonance occurs is very nearly the same. For the 6 ML sam­

ple, the total thickness of the structure's barriers has been increased by over 25% 

. If the electronic wavefunctions in the device do not extend coherently across the 

central barrier, the electrons would tunnel through each barrier separately and 

the current should decrease for thicker middle barriers rather than remaining con­

stant as our data show. The data indicate that the thin central barrier modifies 

the position in energy at which the transmission resonances occur, but does not 

affect the probability for an electron to tunnel across the entire heterostructure. 

Fig. 2.5 shows the range of measured peak-to-valley current ratios (PVR) 

at 77 K for the second peak versus middle barrier thickness. As in Fig. 2.4 

the plotted points show the variation in device performance. The PVR shows 
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Figure 2.2: Conduction band edge profile and typical I-V curves taken at 77 K. 

A) Conduction band edge at zero bias. B) I-V curve for single well structure. C) 

I-V curve for a double well structure with a 3 ML middle barrier. D) I-V curve 

for a double well structure with a 12 ML middle barrier. There is a resonance at 

low bias in the I-V curve of Fig. (b) which is obscured by the figures' scale. 
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a substantial increase when the 3 ML middle barrier is introduced and remains 

fairly constant when the barrier thickness is doubled. When the middle barrier 

thickness is increased to 12 ML, the PVR's drop sharply, indicating that different 

current transport mechanisms become important . For this sample the middle 

barrier is thicker than the first and third barriers and the I-V curves showed only 

one peak (see Fig. 2.2 (d)). The loss of two of the current resonances at the same 

central barrier thickness at which the peak current densities (see Fig. 2.4) and 

PVR's (see Fig. 2.5) drop dramatically indicates that phase coherence between 

the wells has been lost. With a thick AlAs barrier separating the wells, the low 

lying quasi-bound states no longer extend across both wells but are becoming 

more localized in the individual wells. (Our calculations show that in the sample 

with the 12 ML central barrier under an applied bias of 350 mV, over 98% of 

the probability density is located in a single well for the various calculated quasi­

bound levels in the system.) Further, recent measurements have shown that 

tunneling times depend exponentially on the barrier thickness[6]. As the middle 

barrier thickness increases, the time for electrons to tunnel across the entire 

structure increases, enhancing the probability that scattering will randomize the 

phase of the electron's wavefunction as it traverses the heterostructure. 

A summary of the measured resonance-peak voltages along with the calculated 

values is given in Fig. 2.6. The plotted points show the range of measured values, 

and the solid line shows the calculated positions of the first resonance. For the 

calculation, a resonance was said to occur when the energy of a quasi-bound state, 

with an appreciable probability density in both of the quantum wells, matches the 

Fermi energy in the source electrode. The energies of the resonant states in the 

biased heterostructure are computed with a one-band Wannier orbital model[7]. 

Spatial variations in the potential due to fixed and mobile charges were included; 

charge buildup in the wells was assumed to be small. The conduction band 
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profile was computed by solving Poisson's equation across the device and requiring 

overall charge neutrality in the structure. Thomas-Fermi screening theory was 

used to relate the local carrier concentration to the conduction band edge position. 

We have not extended the calculation to cases in which the applied bias is large (2:: 

600 m V) because the assumptions made in computing the band profile become 

invalid: low charge densities in the well, low carrier temperatures, ect. The 

good agreement between the calculation, which assumes a coherent interaction 

between the wells, and the experimental data for thin middle barriers suggests 

that coherent processes play an important role in tunnel heterostructures. 

The data in Fig. 2.6 show the effect of varying the central barrier width on 

the resonance positions. The difference between the voltages of the first peak 

for the double barrier structure and the sample with a 3-ML middle barrier can 

be understood by considering the wavefunctions of a particle in a box. Since 

the ground state wavefunction is peaked in the middle of the potential well, 

the introduction of a barrier in the center of the well significantly distorts the 

wavefunction raising the ground state energy. Doubling the central barrier's 

thickness to 6 ML had a minimal effect on the position of the first resonance 

indicating that the wavefunction still extends coherently across the middle barrier 

and both quantum wells. The data also show that the position of the second peak 

is insensitive to the thickness or even the presence of a middle barrier. This is as 

one would expect since the wavefunction of the first excited state of a particle in a 

box has a node where the central barrier is introduced and thus is not significantly 

perturbed. The effect of thin middle barriers on the measured resonance voltages 

is consistent with the quasi-bound states extending coherently across the central 

barrier. 

In passing we report anomalously large PVR's for the heterostructure with a 

3 ML central barrier (as high as 20.1:1 at 77 K as shown in Fig. 2.2(c)). It is 
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possible that a more detailed study of this phenomenon could lead to a better 

understanding of nonresonant current transport mechanisms. 

2.4.4 Conclusions 

In summary we have grown a series of double quantum wells whose I-V curves 

show as many as three distinct NDR regions. These results are consistent with 

coherence between the electrons in the two quantum wells, since in the sequen­

tial model multiple NDR regions in a triple barrier structure are unlikely. The 

behavior of the peak current densities and PVR's as the thickness of the central 

barrier is increased provides further evidence that coherent tunneling plays a role 

in the observed NDR. The energies of the lowest resonances in the structures as 

a function of middle barrier width are in good agreement with values calculated 

using a coherent model of tunneling. The variation of the first and second current 

peaks is in qualitative agreement with a picture in which the eigenstates of the 

system extend coherently across thin middle barriers and both of the quantum 

wells. Finally, for thick middle barriers, the sequential picture of tunneling seems 

to be valid. For the sample with the thickest middle barrier, a single current res­

onance was observed. This single resonance was weaker than those in the other 

structures based on its peak current density and PVR. 

2.5 The Role of the X-point in Tunneling 

2.5.1 Introduction 

The photoluminescence (PL) signal from a quantum well is proportional to 

n · p, where n and p are the electron and hole concentrations in the well layer. If a 

nonequilibrium population of electrons and holes is placed in the well by a short 
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optical pulse, then the PL signal will decay over time as the carriers leave the 

well. Measuring the decay of the quantum well's PL signal gives the tunneling 

time, if tunneling is the dominate escape mechanism. Because of the extremely 

short tunneling times present in RTD's, direct measurement of the PL decay is 

extremely difficult. 

This section gives the results of measurements the intensity and energy of 

PL from a series of GaAs/ AlAs double barriers with fixed barrier thickness and 

varying well widths. Studying the PL from such structures gives two kinds of 

information about the structures. The energy of the PL gives the confinement 

energy which can be compared to bandstructure calculations. The intensity of 

the PL at the bound state energy is related to the escape time for carriers in 

the quantum well. If the carrier escape rate is comparable to or shorter than the 

radiative recombination rate, then some of the carriers will be able to leave the 

well before they can recombine and give off PL. Because of this, all other things 

being equal, the PL signal from a structure with a short tunneling time will be 

less intense than from one with a long tunneling time. 

Consider a double barrier device with a well width, Lw, and fixed outer bar­

rier thickness. In a one-band effective mass approximation, the change in the 

PL energy will go as 1/L~, where Lw is the well width. However, the carrier 

escape rate should be a very weak function of Lw since the bound state lifetime, 

hence the tunneling time for our purposes, is not greatly effected until the quan­

tum confinement energy becomes comparable to the barrier height. From this 

we would expect that the PL energy will be a strong function of Lw while the 

intensity should be rather insensitive to Lw . This is true as long as the con­

finement energy is not comparable to the barrier height. In certain situations, 

though, it is necessary to use a more detailed picture of the band structure of 

the device. In particular, examination of AlAs's band structure shows that the 
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lowest conduction band minimum occurs at the edge of the Brillouin zone in the 

[100] direction. This place is called the X-point. By contrast, in GaAs the lowest 

conduction band minimum occurs at the center of the Brillouin zone, the r -point. 

The X-point of GaAs is at a higher energy than the X-point in AlAs. The oppo­

site is true at the f-point. This means that at the f-point, AlAs is a barrier for 

GaAs electrons, while at the X-point, GaAs is a barrier for AlAs electrons. Fig. 

2.7 shows both the f-point and X-point bandedge diagram for a double barrier 

structure. In appropriately grown AlAs/GaAs double barriers, it is possible for 

the GaAs f-point bound states to be close enough in energy to the AlAs X-point 

bound states for them to interact. The samples studied in this section were so 

grown. 

2.5.2 Experiment 

Continuous PL experiments performed on a set samples at 5 K. The PL 

peak positions were compared to a calculation of the devices' band structure. 

The calculation included the effect of the X-point states in the AlAs barriers. 

By comparing the PL peak positions to the theory and examining the peak PL 

intensity as a function of well width, the role of these X-point barrier states was 

investigated. The sample set consisted of double barrier heterostructures where 

the barrier thickness was fixed at 38 A . Nine samples were grown with well 

widths varying between 26 and 58 A . The double barriers were capped with 300 

Aof GaAs, which is thin enough for optical energy to escape from the well, but 

thick enough to avoid quantum confinement in the cap layer. 
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Figure 2.7: Conduction band edges at the X-point and r-point for a GaAs/AlAs 

double barrier. The position in energy of the lowest quasi-bound states are 

schematically shown with dashed lines. (a) Wide GaAs quantum well where 

the r-point state lies below the X-point state. (b) Narrow GaAs well where the 

r- and X-point states are at comparable energies. 
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2.5.3 Results 

Fig. 2.8(a) shows the measured energies of the PL peaks. The appearance of a 

second peak in structures with Lw < 14.7 ML indicates that an additional bound 

electron or hole state is becoming important to the PL. Fig. 2.8(b) is a calculation 

of the energy of optical transistions between the ground state heavy-hole level 

and the lowest r-point state (rhh1), the lowest X-point state (X1hh1) and the 

first excited X-point state (X2hh1) which are labeled in the figure . Transitions 

from conduction-band states that are concentrated in the GaAs well are marked 

with an " x" symbol, while those from states concentrated in the AlAs barrier 

are marked by the "+" symbol. Transitions from conduction-band states that 

have comparable probability densities in the well and barrier are marked by both 

symbols. 

Comparing the experimental values to the calculation explains the origin of 

the PL peaks. For thick wells, the PL data is consistent with the calculated 

rhh1 transition. For wells with Lw < 14.7 ML, the high energy PL peak also 

corresponds to the rhh1 transition. The low energy PL peak for Lw < 14.7 ML 

is consistent with the calculated X1hh1 transition. This is the first observation of 

optical transitions that are indirect in both space and momentum. The presence 

of this second peak indicates that the r states in the GaAs well do indeed interact 

with the X-point states in the AlAs barrier. If so, then structures where the r­

and X-point states overlap in energy are expected to have shorter carrier escape 

times since there is now an additional escape mechanism available. 

The integrated intensities of the PL peaks are shown in Fig 2.9. For structures 

with well widths between 16 and 20.5 ML, the PL intensity is flat . This is 

consistent with the previous prediction of the quasi-bound well state lifetime 

based on a one band effective mass model. For Lw < 16 ML the PL drops sharply 



43 

1900 (a) Expt 
0 

1800 0 
0 0 

0 0 0 
0 

0 1700 0 
0 

..- 0 

> 1600 
Q) 

8 8 12 16 20 24 -
~ 
0.0 
s... 
Q) 1900 (b) Theory ~ • 
~ • 

1800 + • I ll' + + + + + + + + + X2hh 1 + + + • + I ~ + + + + + + + 
X1hh 1 1700 X 

X 
X 

X 
X 

X X r1hh1 1600 

8 12 16 20 24 

Well Width (ML) 

Figure 2.8: (a) Photoluminescence peaks at 5 K. The lower energy peaks ob-

served for Lw < 12 monolayers are due to spatially indirect transitions between 

X-point electrons and r -point heavy-hole states. (b) Calculated energies of the 

lowest f-point state, f1, and the two lowest X-point states, X 1 and X2 , to lowest 

heavy-hole (hhl) transitions. Transistions involving electron states with signif­

icant probability density in the quantum well are shown by the " x" symbol. 

Transitions involving conduction-band states that are concentrated in the AlAs 

barriers are marked by "+." 
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as the well width decreases. The PL intensity begins to drop precisely where the 

data and calculation in Fig. 2.8 indicates the r- and X-point states begin to 

mix. The rate of decrease changes near Lw = 12 ML where PL from the X 1hh1 

transition is observed. These results strongly suggests that the decrease in PL 

intensity is caused by faster electron escape from the GaAs quantum well since 

the X-point states in the AlAs barrier are now available to them. In a sequential 

model of tunneling, the electrons would tunnel from the r-like bound state in 

the GaAs well into an X-like state in the AlAs barriers then out into the GaAs 

electrodes. In a coherent picture of tunneling, the eigenstates of the double barrier 

structure will consist of mixed r -X states with significant probability density in 

both the GaAs well and the AlAs barrier. This would lead to states which are 

wider in energy and hence have shorter lifetimes. 

2.6 Summary 

In summary we have conducted studies of tunneling in AlAs j GaAs het­

erostructures. Examination of the electrical characteristics of triple barrier de­

vices with varying middle barrier thicknesses leads to the conclusion that the 

quasi-bound states in the system extend across both wells and the central bar­

rier. Because of this, the electrons in the two wells maintain phase coherence. An 

optical study of AlAs/GaAs double barriers was also reported. The intensity and 

energy of photoluminescence from structures with fixed barrier thicknesses and 

varying well widths was studied. For narrow wells, a second photoluminescence 

peak was observed. Comparing this peak to a theoretical model which included 

X-point states in the barrier led to the conclusion that the second peak was due to 

recombination between X-point conduction band states in the AlAs barrier with 

valence-band states in the GaAs quantum well. The intensity of the photolumi-
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nescence peaks was found to be a strong function of well width for sufficiently 

narrow wells. The intensity varied over five orders of magnitude between wells 

with 16 and wells with 9.5 monolayer GaAs quantum wells. This was attributed 

to faster carrier escape times in narrow quantum wells due to the availability of 

X-point states in the AlAs barriers. 
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Chapter 3 

Interband Tunnel Structures 

3.1 Introduction 

3.1.1 Background 

The nearly lattice-matched InAs/ AlSb/GaSb material system is almost ideal 

for studying electron transport in semiconductor heterostructures, since Type I, 

Type II and broken-gap band alignments are obtainable. Fig. 3.1 shows the 

relative energies of the conduction and valence bandedges of InAs, GaSb and 

A1Sb.[1, 2, 3] As shown in the Fig. 3.1, the band offset between GaSb and AlSb 

is Type I: the conduction and valence bandedges of GaSb lie within the band 

gap of AlSb. InAs and AlSb have a Type II alignment with the conduction band 

of InAs in the gap of AlSb and its valence band below that of AlSb. In this 

case AlSb is a large barrier for electrons in InAs and InAs is a small barrier 

for holes in AlSb. The final, and most interesting offset, is InAs/GaSb which 

has a broken gap alignment since the band gaps of the two materials do not 

overlap. Using AlSb and GaSb one can mimic almost any tunnel structure grown 

in GaAs/ AlGaAs, the most intensely studied of all semiconductor heterostructure 
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lnAs/GaSb/ AlSb material system. The energy gaps and band offsets allow the 

possibility of Type I, Type II, and Type II broken-gap band alignments. The 

indirect conduction band minimum is shown for AlSb. 
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systems. In addition, InAs/GaSb allows the study of transport and coupling 

between electron and hole states. These states can be either continuum or quasi­

bound depending on the structure grown. The 'Interband Thnnel Structures' 

(ITS) of the title of this chapter are devices which involve transport between 

InAs conduction band states and GaSb valence band states. 

Fig. 3.2 shows energy bandedge diagrams of some of the tunnel structures 

which were grown, processed and characterized for this work. Each of the panels 

is a sketch of band energy vs. position along the growth axis for several, multi­

layered structures. The shaded regions represent the bandgap of the individual 

layers. The top and bottom of the shaded regions denote the conduction band 

minimum and valence band maximum respectively. A great many more devices 

are possible by adding more layers to the active region of the structure. However, 

all of the basic physics of interband tunneling is demonstrated by the structures 

in Fig. 3.2 with other devices being minor variations of these. Table 3.1 gives a 

summary of some of the devices' electrical properties. Most of the structures in 

Fig. 3.2 will be dealt with in detail later in the chapter so the reader need not 

panic at the number of devices shown. The purpose of Fig. 3.2 and Table 3.1 is 

to show the tremendous variety of structures and device characteristics that can 

be realized in this single material system. 

3.1.2 Outline of Chapter 

Section 3.2 sketches out the growth and processing of InAs/GaSb/ AlSb tun­

nel devices. (A more complete treatment is contained in appendix ARG.) In 

sections 3.3 through 3.8 we present (in rough chronological order) the results of 

experimental and theoretical studies of the structures shown in Fig. 3.2. The 

experimental results in sections 3.3 through 3.8 are summarized in Table 3.1. Sec-
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Figure 3.2: Schematic energy band diagrams (energy vs. position) for ten different 

tunnel structures realized in the InAs/GaSb/ AlSb material system. Energy gaps 

for each material are shaded, so that the top (bottom) of each shaded region 

represents the conduction (valence) bandedge in the heterostructure. 
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Temp. Peak-to-Valley Peak Current 

Material Sequence (K) Current Ratio Density (Aicm2) 

InAs(n)l AlSbiinAsl AlSbiinAs(n) 300 4.0 3.7 X 105 

300 13.0 4.0 X 103 

InAs(n)l AlSbiGaSbl AlSbiinAs(n) 300 12.0 950 
300 21.0 50 
77 60.0 1.7 X 103 

77 88.0 90 
GaSb(p)l AlSbiinAsl AlSbiGaSb(p) 300 8.0- 10.0 450-500 

77 16.0 450-500 
InAs(n) I GaSb IInAs(n) 300 2.2 5.1 X 103 

300 1.2 1.2 X 105 

InAs( n) I GaSb IInAs I GaSb IInAs( n) 300 2.2 1.2 X 104 

InAs( n) I GaSb I AlSb I GaSb IInAs( n) 300 3.5 1.4 X 104 

InAs(n)IGaSb(p) 300 1.7 4.2 X 104 

300 1.2 8.4 X 104 

InAs(n) IGaSbl AlSbiGaSb(p) 300 1.5- 1.8 1.6 X 105 

300 1.5- 1.8 3.5 X 104 

InAs(n)l AlSbiinAsiGaSb(p) 300 1.5-1.7 3.1 X 103 

In As ( n) I AlSb I G aSb IInAs ( n) 300 15.0 - 18.o(R) 2.7 X 1Q3 (R) 
1.6- 2.2(F) 1.52 X 104 (F) 

Table 3.1: Summary of two-terminal device performance. When more than one 

set of electrical characteristics are given, the different sets correspond to different 

device layer thicknesses. The superscripts 'R' and 'F' refer to reverse and forward 

bias respectively. 
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tion 3.9 gives some rules-of-thumb which are helpful in understanding interband 

devices, and the chapter is summarized in section 3.10. 

3.2 Growth and Device Processing 

All of the samples reported on in this chapter were grown on [100] GaAs 

substrates in a Perkin-Elmer 430 molecular beam epitaxy system using cracked 

arsenic and antimony. The lattice constant of GaAs is about 7.0% smaller than 

that of the InAs/GaSb/ AlSb material system. As a result, a buffer layer at 

least 1pm thick of either InAs or GaSb was deposited before the active region of 

the tunnel structure. This relaxed buffer layer had ,...., 107 dislocations per cm2 

as estimated from transmission electron microscope images. Devices grown on 

lattice matched substrates showed no substantial improvement in either peak­

to-valley current ratios (PVR) or peak current densities (Jp) over devices grown 

on relaxed buffer layers deposited on GaAs substrates. Because of this, GaAs 

substrates were used for subsequent studies due to their cheaper cost. The de­

tails of growing high quality InAs, GaSb and AlSb layers on GaAs are given in 

appendix ARG. Unless otherwise stated, the films were deposited at a substrate 

temperature of 480 oc for InAs, 500 oc for GaSb and 520 oc for AlSb at a rate 

of 1.0, 0.5 and 0.25 f-lm/hr respectively. When forming an InAs/ AlxGa1_xSb (for 

all values of x) interface, the InAs growth rate was lowered to 0.5 f-lm/hr. The 

lower deposition rate helps to smooth the growth front and requires a smaller 

arsenic flux, leading to less arsenic incorporation in the antimonide layer.[4l At 

the heterointerfaces the growth was usually interrupted for 5 seconds, and the 

growth front was soaked in an antimony flux to achieve a smoother interface. If 

a doped layer was desired, codeposition of Si resulted in p-type GaSb (up to p 

,...., 4xl018cm- 3 (51 ) and n-type InAs (upton ""'8x1018cm-3 .) 
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During growth, the crystal's surface was monitored using reflection high en­

ergy electron diffraction (RHEED). The InAs (AlxGa1_xSb) surfaces showed a 

2 x 4 (1 x 3) RHEED pattern indicating an anion rich surface reconstruction. 

However, during growth interrupts when the InAs surface sat in an Sb flux the 

RHEED pattern changed to a 1 x 3 reconstruction similar to that of InSb in­

dicating As and Sb were exchanging on the surface. The results of subsequent 

studies of this and similar phenomenon are presented in Chapters 5 and 6. 

After growth, circular device mesas, ranging from 6 to 120 f.Lm in diameter, 

were formed using conventional photolithography and wet etches. A solution of 

H2S04 :H20 2:H20 = 1:8:80 was used to etch the lnAs layers and Br:HBr:methanol 

= 1:100:100 to etch the AlxGa1_xSb layers . Ohmic contacts to the devices were 

formed using thin Au/ Ge layers. Current-voltage (I-V) curves were typically 

measured at both room temperature and 77 K by probing the mesas with a thin 

gold wire. 

3.3 Resonant 

Structures 

3.3.1 Introduction 

Inter band Tunneling (RIT) 

The first type of ITS that was experimentally studied was the resonant in­

terband tunneling (RIT) device. RIT's come in two flavors which correspond to 

the devices in Fig. 3.2 (b) and 3.2 (c). Fig. 3.3 gives a more detailed description 

of their band energy diagrams. Even though band bending is ignored in Fig. 

3.3, following the Fermi level across the device gives a basic understanding of 

the current conduction path. For the upper, or p-well RIT, charge carriers tun­

nel across an AlSb barrier from continuum, conduction band states in the InAs 
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electrode layer into the GaSb valence band well. Once the charge carriers are 

in the valence-band well, they then tunnel through the second AlSb barrier into 

the conduction-band of the second InAs electrode. Of course the preceding is not 

intended to suggest that the tunneling process is sequential, but merely to trace 

out the current path. Depending on the thickness of the well, the valence band 

states can be either continuum or confined by the AlSb barriers. In our studies 

we restricted ourselves to well layers which gave rise to confined states. For n-well 

RIT's sketched in the lower portion of Fig. 3.3 the conduction path is similar. 

Charge tunnels from continuum valence band states into confined or continuum 

conduction band states in the lnAs well and back into the valence band of the 

second GaSb electrode. 

Because of the quasi-bound state (QBS) in the well layer, there is a sharp 

peak in the 1-V curves of these devices. Off resonance, the bandgap of the well 

layer combines with the AISb barriers to suppress current conduction. This thick 

barrier leads to RIT valley currents which are much smaller than in the conven­

tional intraband devices discussed in Chapter 2. A more detailed discussion of 

RIT's is given in section 3.3.3 following an examination of some experimental 1-V 

curves. 

3.3.2 Experimental 1-V Curves 

Fig. 3.4 shows representative RIT 1-V curves taken at room temperature. The 

upper (lower) 1-V curve in Fig. 3.4 corresponds to the upper (lower) band energy 

diagram in Fig. 3.3. When comparing these 1-V curves to those of AlAs/GaAs 

RTD's shown in Fig. 2.2, one thing is readily apparent: the PVR's of RIT's are 

much larger than those ofintraband RTD's. The comparison is especially striking 

since the RIT 1-V's were taken at room temperature. Typical RIT PVR's are 
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Figure 3.3: Band energy diagrams of the two types of RIT's. In the upper device, 

electrons move from the conduction-band of the InAs electrode into a bound state 

in the GaSb valence-band and back into the InAs conduction-band. For the device 

shown in the lower diagram, a complimentary current path is taken. 
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better than 20:1 at room temperature and 100:1 at 77 K. AlAs/GaAs RTD's have 

PVR's which are typically 3:1 at 300 K and 10:1 at 77 K. The reason for the vast 

improvement in PVR is discussed in detail in Section 3.3.3. 

Besides the dramatic difference in PVR, there are other differences between 

RIT and intraband I-V curves as a direct result of their different current conduc­

tion paths. Among then are: 

1. Intraband devices (Fig. 2.2) have an exponential current onset and the 

current drops sharply at the onset of NDR. RIT's by contrast (Fig. 3.4) 

are ohmic at small applied biases and the current saturates just before the 

NDR region. 

2. The temperature dependence of inter band and intraband I-V characteristics 

are very different. Fig. 3.5 shows I-V curves of the same RIT device taken at 

300 K, 77 K and 4.2 K. The data is not a strong a function of temperature. 

However, as discussed in section 2.3, temperature has a dramatic effect on 

intraband devices (see Fig. 2.4.2). 

3. The current valley is much broader in RIT's than in conventional RTD's. 

These differences are a direct result of the fact that both valence and conduction 

band states are involved in resonant conduction in RIT's. This is discussed in 

sections 3.3.3 and 3.4. Finally the large PVR's, temperature insensitivity and 

wide current valleys make RIT's especially suited for use in logic applications. 

While the foregoing is incomplete, hopefully it has suggested that interband tun­

nel devices are a new class of structures, distinct from conventional AlGaAs/GaAs 

RTD's. 
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3.3.3 Origin of NDR in the RIT Structure 

Before examining the operation of these devices, two points need to be cov­

ered: the nature of the mobile charge in these devices and an intuitive picture 

of transport between conduction and valence bands. When considering ITS it 

is helpful to think of only one type of charge carrier. Attempting to track both 

holes and electrons leads to an unnecessarily confusing picture of these structures. 

For the purposes of this thesis, we will view these devices in terms of electron 

conduction only, meaning that the valence-bands will be thought of as electron 

states that are almost full . Of course, the structures could be analyzed just as 

well by considering only holes . 

Developing an intuitive picture of transport between conduction and valence 

band states can be awkward, though less so if only one type of charge carrier 

is considered. One way to view current flow in a semiconductor crystal is in 

the tight-binding (TB) formalism. In the limit of widely separated atoms, TB 

treats conduction as hopping between atomic states on adjacent atoms. The 

probability for an electron to jump from one atom to a neighbor is proportional 

to the integral of the wavefunction overlap between the initial and final states. 

This matrix element is inversely proportional to the effective mass of the charge 

carrier: large wavefunction overlaps give rise to small effective masses. In the 

TB picture, the conduction-band is due to the interaction of s-type atomic states 

and both the light-hole and heavy-hole valence-bands come from p-type atomic 

levels. Suppose the coordinate system in the crystal is chosen so that current is 

flowing in the z direction. In the limit of widely separated atoms, the light-hole 

band corresponds to electrons hopping between P z orbitals on adjacent atoms. 

Hopping among the P x and P y atomic orbitals give rise to the heavy hole band. 

Since the effective mass of a band is inversely proportional to the overlap integral 
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between atomic states, the light-hole mass will be much smaller than the heavy­

hole mass. Now consider coupling between bands. In the limit we are considering, 

the coupling between electrons and heavy-holes will be exactly zero due to the 

relative symmetry of the S, P x and P y atomic orbitals. Similarly, light and heavy 

holes will not couple. However, there are no symmetry restrictions on coupling 

between electrons and light-holes. If the S and P z atomic orbitals do have a 

spatial overlap, electrons can move between them. 

Now consider the case where the atoms are brought close together as in a 

semiconductor crystal. It is no longer valid to think of the carriers in the crystal 

as being localized in atomic orbitals. The electron eigenstates are now delocalized 

plane waves. The S orbitals interact to form the conduction band, the P z atomic 

orbitals give rise to the light-hole band and the P x and P y atomic orbitals form 

the heavy-hole band. Eventhough the underlying atomic orbitals are no longer 

eigenstates of the system, their symmetry does effect the bands they give rise to. 

From our consideration of the case of widely separated atoms, we would expect 

that the conduction and light-hole bands will couple but that neither will interact 

with the heavy-hole band. In addition, the electron and light-hole mass will be 

comparable while the heavy-hole mass is much larger. This picture is valid for a 

bulk material. 

The above picture is inadequate for heterostructures. Once the crystal's spa­

tial symmetry has been broken, it is possible that the conduction and valence­

bands of adjacent layers will overlap in energy. If this happens, as it does for InAs 

and GaSb, than electrons can move between the conduction and valence-bands of 

the different materials. In addition, the breaking of the crystal's symmetry leads 

to mixing of the various bands at an interface. Because of this, the individual 

bands in the crystal lose their exclusive S or Pi nature, and the coupling between 

the conduction and both valence-bands increases. Finally, for electrons with 



62 

crystal momentum parallel to a heterostructure, the distinction between light­

hole and heavy-hole bands is blurred. This also increases the coupling between 

the valence and conduction bands of adjacent layers. 

For our purposes, we will only consider the coupling between the conduction 

and light-hole bands of adjacent layers. From the symmetry of the underlying 

atomic wavefunctions, this should be much stronger than electron/heavy-hole 

coupling. A theoretical treatment confirms that the majority of current conduc­

tion is due to electron/light-hole coupling[8]. The major effect of the heavy hole 

states is to modify the energy and dispersion of the light hole bands. In order to 

see directly the effect of heavy holes, it is necessary to study these devices in the 

presence of a magnetic field. 

Once these devices are viewed only in terms of electron conduction and the 

nature of the electron/light-hole coupling has been demystified, understanding 

how RIT's work is rather straightforward. Panel (a) Fig. 3.6 shows a typical 

RIT I-V curve. Three regions of the curve are marked and correspond to Figs. 

3.6 (b), 3.6 (c) and 3.6 (d). At low bias, in the ohmic onset region of the I-V 

curve, electrons resonantly tunnel between the InAs electrodes via the QBS in 

the GaSb valence-band as indicated in Fig. 3.6 (b). Fig. 3.6 (c) sketches the 

RIT's band structure near the current peak. Here, the number of available states 

in the GaSb well decreases, hence the current saturates. Finally, when enough 

bias has been applied to move the quasi- bound well state past the Fermi level of 

the electrode, current is blocked by the bandgap of the well as shown in Fig. 3.6 

(d). Since an actual bandgap is blocking conduction, the inelastic and thermionic 

processes which give rise to valley currents are strongly inhibited. This explains 

the extremely large PVR's and broad current valleys observed in RIT's. 
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Figure 3.6: A sketch of the NDR mechanism of RIT's. Panel (a) shows a typical 

I-V curve. Panels (b) , (c) and (d) show the device's band structure under three 

different applied biases. The markers on the I-V curve correspond to the three 

band-bending profiles. 
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Figure 3.7: Sketch of the band structure for an intraband tunnel device. 

3.4 Differences Between Interband and Intra-

band Tunneling 

To understand the different shapes of AlAs/GaAs RTD's and RIT's, it is nee-

essary to consider the details of their respective band structures. First consider 

the intraband case sketched in Fig. 3. 7 and representing the 1-V curves shown in 

Fig. 2.2. In the upper portion of the figure is a sketch of a typical, intraband de­

vice bandedge diagram. The shaded regions signify the bandgaps of the materials 

and the central, solid line represents a QBS. The arrows are intended to suggest 

the current path in the structure. Below the band diagram are two drawings of 

the dispersions in the well and source electrode layers. The leftmost drawing is 

for small applied biases, and the rightmost drawing is for voltages just past the 

current peak. The solid dispersions represent a quasi-bound well state while the 
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gray curves signify the continuum of electrode states. 

Since both the cladding layer and well states are in the conduction band, 

the sign of their curvature will be the same. If the well and electrode have the 

same material composition, then to first order their dispersions will be identical 

except for an energy offset due to quantum confinement. The band structure of 

the device will consist of a continuum of parabolas in the electrode and a single 

parabola in the quantum well. The continuum parabolas will be populated ac­

cording to the Fermi distribution. At small biases the source electrons that have 

access to the quasi-bound well state are those in the high energy tail of the Fermi 

distribution. As the applied bias is increased, a series of electrode parabolas are 

swept in and out of resonance with the quasi- bound well state. A 'single' state in 

the electrode continuum resonates with the well. The population of the resonant 

electrode state is given by the Fermi function. Therefore, as the applied bias is 

increased, the Fermi tail of the source electrode is swept across the bound state, 

causing the exponential current onset shown in Fig. 2.2. Once the QBS in the 

well dips below the Fermi level, the number of source electrons available to tun­

nel will depend on how far below the Fermi level the resonanting electrode state 

is . However, typically the Fermi level is very near the conduction-band edge, 

hence this is a small effect. At the current peak, the most populated electrode 

state resonates with the well state and a large resonant current is carried though 

the structure. For biases slightly past resonance, the current drops sharply since 

there are no longer any elastically accessible well states. The voltage needed 

to shift the device from resonant to nonresonant conduction is on the order of 

the energy width of the well state: a few me V's. Past resonance, the current 

conduction will be the sum of any thermionic currents, electrode electrons that 

are scattered into the well state, and carriers in the Fermi tail that overlap any 

higher lying QBS. This sudden change in the number of accessible well states is 
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Figure 3.8: Sketch of the band structure for an interband tunnel device. 

what causes the sharp onset of NDR in intraband devices. This also explains 

the strong temperature dependence of intraband devices. At high temperatures, 

the populations of the electrode states are smeared out. This has the effect of 

broadening the measured current resonance. Lowering the temperature reduces 

this Fermi smearing, increasing the p eak current and reducing the magnitude of 

the onset current . Past resonance, the thermionic valley currents and inelastic 

currents due to phonon scattering are suppressed at low temperature. In intra-

band devices, lowering the temperature sharpens the measured current resonance 

and reduces the valley currents. 

RIT's (and interband devices in general) work substantially differently. Fig. 

3.8 is a sketch of the dispersion curves of the well and electrode states that 

contribute to the resonant tunneling. The diagram on the left represents the case 
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of a small applied bias while that on the right is for a voltage just past the device's 

current peak. There are a continuum of parabolic electrode states and a single 

well state. Here the analysis departs from the intraband case. Since the masses 

of electrons and holes have different signs, the curvature of the allowed states 

will change sign when moving across the AlSb barriers. Because of this, an entire 

range of electrode states will simultaneously resonate with the well state. As the 

applied bias is increased, the overlap between the well state and the continuum 

of electrode states decreases. As a result the portion of the well state that is 

available for resonant conduction monotonically decreases as the applied voltage 

is increased. 

By examining the energy and momentum overlap between the well and elec­

trodes states, the number of well states that are available for conduction goes as 

(K - Vapp) 312
. Here K is a constant related to the geometry of the conduction 

and valence-band parabolas and Vapp is the applied bias. Now, as the bias is 

increased the electric fields in the cladding layers build up which increases the 

electron velocity. If we assume that the lifetime of the QBS is small compared to 

the transit times in the cladding layers, then the electron velocity ex Vapp given 

that the electron velocity has not saturated. To first order the current will be 

proportional to the product of the number of well states contributing and the 

electron velocity: I ex (K- Vaw) 312 
· Vapp· Fig. 3.9 shows a fit of this equation to 

an experimentally measured 1-V curve. The curves match very closely up to the 

NDR region. When the device 's differential resistance goes to zero, the parasitic 

inductances and capacitances in the circuit used to measure the 1-V curve have 

a dramatic effect on the measured data. This continues throughout the NDR re­

gion. In addition, at the current peak, the current is observed to oscillate wildly 

at very high frequency. Because of this the simple equation described above is 

not expected to match the data after the onset of NDR. However, the equation 
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derived does match the data very well before the NDR region. In fact, this simple 

equation describes the pre-NDR I-V curves of all the devices listed in Fig. 3.1. 

Examining the equation in the NDR region leads to the conclusion that inter­

band devices are still resonanting in the ND R region. The current peak occurs 

at a bias where the overlap between well and electrode states begins to decrease 

faster than the electron velocity is increasing. The voltage at which NDR occurs 

is directly related to the shape of the well and electrode dispersions, not just the 

confinement energy of the well state as in intraband tunneling. 

From the preceding discussion it should be clear that interband tunnel de­

vices are qualitatively different from conventional AlGaAs/GaAs resonant tunnel 

diodes. The difference between them is not simply that the bandgap of the well 

blocks the nonresonant current leading to extremely large PVR's. Because the ef­

fective mass of the mobile charges changes sign as they move across the structure, 

ITS are fundamentally different from conventional RTD's. In intraband struc­

tures 'individual' electrode states move in and out of resonance with the well as 

the voltage is increased. By contrast, a wide range of electrode states simulta­

neously resonate with the well in the interband case. As the bias is increased 

the overlap between the well and electrode states monotonically decreases. This 

leads to the conclusion that in interband devices the structure is still resonanting 

in the NDR region. 

3.5 Barrierless Resonant Interband Transmis­

sion (BRIT) Structures 

In this section we discuss barrierless resonant interband transmission (BRIT) 

structures. BRIT's consist of thin, undoped GaSb layers sandwiched between 
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heavily doped InAs cladding layers. The central, GaSb, layers were 50 A to 

300 A thick. These devices are a natural extension of the RIT's discussed in 

section 3.3; the difference being that the AlSb barriers are not present in BRIT's. 

Fig. 3.10 shows an energy bandedge diagram for a BRIT. The current transport 

mechanism in this device has been claimed by some investigators to be simply 

ohmic conduction between the InAs electrodes through the GaSb valence band[6]. 

However, our study of BRIT structures indicated that because of the different 

symmetries of the electronic wavefunctions in the InAs conduction band and the 

GaSb valence band, the charge carriers are partially confined in the GaSb. This 

confinement is due to the two partially reflecting InAsjGaSb interfaces in the 

structure in the same way that an optical resonator can be constructed from 

two half-silvered mirrors. These QBS in the GaSb valence band can give rise to 

resonances in the devices' transmission probability and hence NDR. In this section 

we present experimental evidence demonstrating the formation of these QBS, 

despite the absence of classically forbidden barrier regions in these structures, 

due to the imperfect coupling between the InAs conduction-band states and the 

GaSb valence- band states. 

3.5.1 Experimental 1-V Curves 

Representative BRIT I-V curves taken at 300 K and 77 K are shown in Fig. 

3.11. Approximately a dozen devices were grown, and the I-V curves of all the 

BRIT structures are qualitatively similar to this one. BRIT's with GaSb layers 

thicker than 70 A showed NDR at room temperature with PVR's ranging from 

1.6:1 to 3:1 and Jp's ranging from 1.5 to 6 x 104 A/cm2. None of the device's 

I-V characteristics changed significantly between room temperature and 77 K 

indicating that thermionic currents are not important in these structures. The 
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increase in voltage of the position of the current peak at lower temperatures is 

due to an increase in parasitic and contact resistances as the devices are cooled. 

All of the devices had the asymmetric I-V curves shown in Fig. 3.11: higher J P 

and lower PVR when electrons were injected into the crystal's surface and the 

opposite when electrons were extracted from the crystal's surface. 

3.5.2 Origin of NDR in the BRIT Structure 

An analysis of these devices reveals a number of interesting features. Because 

interband tunneling devices involve both conduction and valence band states, 

any model for these structures must include both bands and must correctly ac­

count for the interactions between these bands. A simple two-band tight- binding 
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model, incorporating the conduction and light-hole bands, that satisfies these re­

quirements was developed by collaborators in order to understand better the 

experimental data. [7] The heavy- hole valence band was neglected, based on the 

assumption that the coupling between the conduction and heavy-hole bands was 

small. Later work by Ting et al. verified this assumption but showed that the 

strong interaction between the light and heavy- hole bands, away from the center 

of the Billion zone, meant that heavy- holes play an important role in current con­

duction across BRIT structures since they modify the energy and dispersion of the 

light hole band[8]. However, the two-band model, in conjunction with realistic 

band bending calculations, allows us to simulate quickly and semi-quantitatively 

the I-V characteristics of a wide variety of interband tunneling devices. 

Growth, processing and measurement of a series of BRIT's with varying GaSb 

layer widths, and subsequent simulations of these devices provides strong evidence 

that current transport through the GaSb layer is indeed resonant. Fig. 3.12 

shows calculated transmission coefficients in the energy range between the InAs 

conduction bandedge (0 eV) and the GaSb valence bandedge (0.15 eV) for devices 

with three different GaSb layer widths. The most striking feature is that, despite 

the absence of any classically forbidden barrier regions, transmission resonances 

are formed due to the two partially reflecting InAs/GaSb interfaces. For the 45 A 

GaSb well (Fig. 3.12(a)), the quantum confinement energy places the QBS below 

the InAs conduction bandedge where it is inaccessible to electrons in the InAs 

electrodes. In this case, resonant transport cannot occur. For the 90 A GaSb well 

(Fig. 3.12 (b)), a single broad resonance is present in the transmission coefficient. 

The 300 A GaSb well (Fig. 3.12 (c)) has five narrower resonances between the 

InAs conduction band edge and the GaSb valence bandedge. This variation in 

the transmission coefficient leads to a strong dependence of Jp on the GaSb layer 

width. The absence of an accessible resonance should lead to very small currents 
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for devices with thin GaSb wells. Structures with intermediate GaSb layer widths 

should exhibit much higher resonant current densities, due to the presence of the 

single broad resonance. For wide GaSb layers JP should decrease because the 

resonances are significantly narrower than for GaSb layers of intermediate width 

and therefore allow less of the incoming electron distribution to be transmitted 

across the GaSb layer. 

Fig. 3.13(a) shows the calculated Jp's for BRIT's of varying GaSb layer thick­

nesses. Fig. 3.13(b) shows the difference between the peak and valley current 

densities experimentally measured for devices with different GaSb layer widths. 

The difference between the peak and valley current densities, rather than simply 

JP, has been used in order to eliminate contributions to Jp from inelastic transport 

mechanisms, which were not included in calculations. Thermionic currents were 

ignored since Fig. 3.11 indicates their contribution to the non-resonant current 

is relatively small. 

Both the experimental and the theoretical curves in Fig. 3.13 show the qual­

itative dependence on GaSb layer width expected from our analysis of the indi­

vidual transmission coefficients of these structures. In particular, the sharp drop 

in the resonant current for narrow GaSb layers is strong evidence that the cur­

rent flow in these devices is due to transport through a resonance in the GaSb 

layer, rather than simple ohmic conduction through the GaSb valence band that 

is eventually blocked by the GaSb band gap. If the transport mechanism were 

simply ohmic conduction, the current would not decrease sharply in devices with 

narrow GaSb layers. The quantitative discrepancy between the theoretical and 

experimental curves could arise from a number of factors . The calculated Jp's are 

quite sensitive to the separation between the InAs conduction bandedge and the 

GaSb valence bandedge, meaning that uncertainties of a few hundredths of an e V 

in the InAs/GaSb valence band offset, or small amounts of As incorporated into 
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the GaSb layers, will significantly affect the quantitative agreement between the­

ory and experiment. The qualitative behavior that we observe, however, should 

not be affected by these uncertainties. Taken together, the experiments and cal­

culation show that a QBS is formed in these structures even though no classical 

barrier is present. 

3.6 A Hybrid RIT /BRIT Structure 

3.6.1 Experimental 1-V Curves 

In this section we will consider a structure which is a hybrid of the RIT and 

BRIT devices discussed in sections 3.3 and 3.5. The device consists of a GaSb well 

sandwiched between two InAs electrodes. A single AlSb barrier layer is grown 

between the GaSb well and one of the InAs electrodes. The band structure of 

the device corresponds to Fig. 3.2 (j). For convenience we will call this device 

the HYB or hybrid device. 

The HYB is a hybrid of a RIT and a BRIT in the sense that the bound 

state in its GaSb valence band well is confined on one side by an AlSb barrier 

(which is RIT like) and by the mismatch between valence and conduction band 

states on the other (BRIT like). The difference between RIT-like confinement and 

BRIT-like confinement is important. For the case of a true barrier, the bound 

state is only a few !-" V wide, which is less than the Fermi spread of the cladding 

layer electrons. As a result, only a portion of the incident electrons can access 

the bound state. This reduces the device's resonant current. Inelastic currents 

are suppressed for the same reason. The net result of narrowing the resonance 

is to decrease the device's Jp's but to increase its PVR. BRIT's on the other 

hand have extremely broad resonances ("'-' 10 meV), which explains their much 
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larger Jp · BRIT PVR's are much smaller, however, since the broad transmission 

resonance is not as effective at suppressing nonresonant currents. The HYB was 

grown in order to explore the effect of the resonance width on current conduction. 

Two HYB's having the same well width were grown. In one of the devices 

the AlSb barrier was placed on the substrat e side of the GaSb well. In the other 

HYB, t he AlSb barrier was grown on the surface side of the well layer. Both 

geometries were grown to ensure that we could distinguish between asymmetries 

in the devices' I-V curves due to the barrier placement and those due to doping 

asymmetries or the phenomena of inverted interfaces. 

Fig. 3.14 shows the room temperature I-V curves for the two structures. 

For both I-V curves, positive applied bias is defined as the top of the device 

mesa being at a higher potential than the substrate. In other words, positive 

applied bias means that electrons are extract ed from the top of the device mesas. 

Negative bias means that electrons are injected into the surface of the crystal and 

extracted from the substrate. For the upper I-V curve, whose AlSb barrier is on 

the surface side of the GaSb well, a positive applied bias t ransports electrons from 

the substrate side InAs electrode, into the GaSb well, across t he AlSb barrier and 

back into the conduction band of InAs. When a negative bias is applied to the 

device in Fig. 3.14, electrons encounter the AlSb barrier before the GaSb well. 

In the lower curve, the AlSb barrier is on the substrate side of the GaSb well. 

Applying a positive bias to this device means that the electrons encounter the 

barrier before the well layer . 

Both of the 1-V curves are asymmetric as might be expected since the device 

itself is asymmetric. However, the two I-V curves are virtually identical if reflect ed 

about the line y = -x. This indicates t hat any growth asymmetries that may be 

present have a small effect on the 1-V curves. After examining the curves in Fig. 

3.14 the real motivation for considering these devices to be RIT / BRIT hybrids 
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1s apparent. Both of the I-V curves look RIT-like (see Fig. 3.4) in one bias 

direction, and BRIT-like (see Fig. 3.11) for the opposite applied bias. Because 

this behavior is evident in both structures, it is not an artifact of the growth. 

The shape of the I-V curve depends on whether the electrons encounter the AlSb 

barrier before or after the GaSb well. 

3.6.2 Origin of the Asymmetry in the 1-V Curves 

To tmderstand the origin of the asymmetry in the I-V curves it is necessary 

to look at the devices ' transmission coefficients. In Fig. 3.15 we plot the trans­

mission probability through a HYB. The zero of the energy scale is chosen to be 

the conduction bandedge of InAs. Two transmission curves are shown for devices 

under an applied bias. The lower energy resonance corresponds to the case of 

the barrier side of the GaSb well being at a higher potential than the GaSb /InAs 

interface. The high energy resonance is for the opposite case. Simple sketches of 

the band structure of the two calculated cases, along with the direction of elec­

tron travel, are inset in the figure. From the plotted curves, it is clear that the 

transmission probability across the device depends on the direction of electron 

travel once a bias is applied. (Of course, with no bias the transmissions must be 

identical or there would be current conduction without an applied voltage.) 

The magnitudes of the calculated resonance curves are consistent with the 

asymmetric I-V's shown in Fig. 3.14. The calculation shows that the magnitude 

of the transmission probability is smaller and the resonance occurs at lower volt­

ages when the electrons tunnel across the barrier into the well. This corresponds 

to negative applied bias in the upper and positive voltages in the lower panels 

of Fig. 3.14 respectively. When the electrons must tunnel across the barrier to 

leave the well, the device is more conductive and the resonance occurs at larger 



Figure 3.14: Room temperature 1-V characteristics for the hybrid RIT /BRIT 

device. The device consists of a GaSh well between a pair of n-InAs electrodes. 

An AlSb barrier layer is inserted between one of the electrodes and the InAs well. 

Positive applied bias corresponds to electrons being extracted from the top of 

the device mesa. Negative bias corresponds to electrons being injected into the 

surface side of the crystal. 
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applied voltages. This corresponds to positive (negative) voltage in the upper 

(lower) panel in Fig. 3.14. The experimental I-V curves qualitatively agree with 

the conduction asymmetry predicted by the calculation. 

An examination of the device's band diagram under bias leads to an intuitive 

understanding of the conduction asymmetry shown in both the experimental and 

theoretical curves. The voltage difference b etween the current peaks in the two 

cases is a result of the bias that is dropped across the AlSb barrier. In the 

calculation, the effect of the applied bias is approximated by a linear voltage 

drop across t he barrier and well. This is a reasonable assumption since both 

the barrier and well are undoped, and lifetime of the QBS in the GaSb well is a 

few picoseconds.[8] Therefore, in the case of the left-hand inset in Fig. 3.15 the 

energy difference between the InAs conduction bandedge and the QBS will be 

decreased by the voltage that is dropped across the barrier. For the right-hand 

inset, the voltage across the AlSb barrier will not affect the conduction-band 

edge, bound state energy separation. This means that the current peak will 

occur at lower applied voltages for the bias corresponding to the left-hand inset 

in Fig. 3.15 as shown in the data. The separation between the peaks is much 

larger in the experimental data t han in the calculation. This is partially due to 

series resistance. In the more conductive bias direction, which has the higher 

energy bound state, the increased current leads to a larger voltage drop across 

the parasitic series resistance that is present in all real devices. This magnifies 

the energy shift in the resonance position. 

The difference in PVR's shown in Fig. 3.14 is attributed to the leaky 

InAs/GaSb interface. The large valley currents when the device is biased as 

in Fig. 3.16 (b) are due to nonresonant processes. Since there is not a true 

barrier between the source electrode and the bound state, electrons are easily 

scattered between them leading to large inelastic currents. Once carriers are in 
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the bound state, they can easily continue across the device since by definition 

they are on resonance. This leads to small PVR's for voltages corresponding to 

Fig. 3.16 (b). For bias leading to Fig. 3.16 (a), however, the AlSb barrier strongly 

suppresses scattering between the source electrode and well state. This greatly 

reduces the valley current and leads to the large PVR's shown in the data. The 

above analysis suggests that in a general resonant tunneling device, the barrier 

between the source electrode and well largely determines the structure's PVR. 

More directly, this says that once carriers get " into" a well, it is easy for them to 

get "out" the other side. 

The asymmetry in the Jp's is partly a result of the larger inelastic currents 

present in Fig. 3.16 (b). However, both the calculated resonance and the exper­

imentally measured change in current density across the NDR region are larger 

for Fig. 3.16 (b). Both the calculation and measurement suggests that when 

the device is biased as in Fig. 3.16 (b), it is more conductive than Fig. 3.16 

(a). Inspection of the two band diagrams under bias suggests that in Fig. 3.16 

(a) the bandgap of the GaSb well partially impedes conduction at resonance. In 

summary, while the HYB structure is not fundamentally different from the RIT 

and BRIT structures, a detailed analysis of its I-V curves helps in understanding 

the basic properties and mechanisms of interband tunneling. 

3. 7 Heterojunction Esaki Diodes (HED) 

In this section we report the experimental observation of NDR in a device 

consisting of a single InAs/GaSb interface which we call a heterojunction Esaki 

diode (HED). Two types of RED's were grown. The first consisted of 2000 A 

of p-type GaSb grown on 7000 A of n-type InAs which was deposited on an 

insulating GaAs substrate. The second device was identical expect that 100 A 
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of undoped material was grown on either side of the InAs/GaSb interface. The 

structures were terminated with GaSh so that after processing, lateral conduction 

will be through the lower resistance InAs. The devices had room temperature 

NDR in forward bias, with Jp's of 8.2x104 A/cm2 and 4.2x104 A/cm2 for struc­

tures with and without undoped spacer layers on each side of the heterointerface, 

respectively. These Jp's represent an average over 25 randomly chosen devices, 

with a standard deviation in the measured value of "'0.2x104 A/cm2 . The room 

temperature PVR ranged from 1.1:1 to 1.5:1 with the doped interface giving the 

higher value. In 1977 Sakaki et al. m easured the I-V curves of a structure with 

an In.84Ga.16As/GaSb.gAs.1 interface, but did not observe NDR.[9) We believe 

that this was due to the fact that the mesas they fabricated had a device area 

over 250 times larger than the ones reported here. Because of the large current 

densities found in these structures (which are comparable to those measured by 

Sakaki et al.) it is essential to fabricate small area devices so that ohmic heating 

due to contact and parasitic series resistance does not destroy the device before 

it can be biased into the NDR region. 

3.7.1 Origin of NDR in the HED Structure 

The mechanism that causes NDR in this structure is identical to that of an 

Esaki diode (hence its name.) The difference between a HED and a conventional 

Esaki diode is the depleted region that separates the n-type and p-type portions 

of the crystal. Figs. 3.17( a) and 3.17(b) are respectively a band edge diagram for 

the structure and the calculated transmission coefficient at flat band. The trans­

mission probability is found from a two band model incorporating electrons and 

light holesPl The calculated transmission coefficient does not have a Lorentzian 

lineshape, showing that the device does not have a QBS, as in traditional resonant 
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tunneling structures. However, the modulation of the structure's transmission co­

efficient as shown in Fig. 3.17 (b) indicates that current conduction in the device 

is not merely ohmic in nature. The calculation also shows that the InAs/GaSb 

interface is reflective as the results of section 3.5 indicated. The NDR observed 

in the structure is due to the GaSb band gap blocking the current channel in a 

manner similar to that of a forward biased, p+ -n+ junction tunnel diode. 

3.7.2 Experimental 1-V Curves 

In Figs. 3.18 and 3.19 we show representative I-V curves for the structures 

with and without the undoped spacer layers, respectively. Both devices show 

NDR at room temperature with peak current densities greater than 8.2x104 

(4x104 ) A/cm2 for the structure with (without) undoped spacer layers at the 

heterointerface. I-V curves are shown at both 77 K and room temperature. The 

fact that the device's performance is virtually unchanged at the lower tempera­

ture indicates that thermionic emission plays only a minor role in the large valley 

current. The low temperature I-V curves are shifted to slightly higher bias due 

to the higher contact and cladding layer resistances present at 77 K. 

The valley currents in these structures are surprisingly large considering that 

they should be blocked by the GaSb bandgap. However, because there is not 

a true barrier between the InAs conduction band and the GaSb valence band 

(see Fig. 3.17(b)), there is little to suppress inelastic processes from scattering 

electrons from the InAs conduction band into the GaSb valence band. The lack 

of a barrier layer causes the small PVR's observed in this device. 

It is interesting to note that for the two different devices shown in Figs. 3.18 

and 3.19, the difference between the peak current and the minimum valley current 

is almost identical. The absolute size of the current change in the NDR region 



..._... 
c 
()) 

u --()) 

0 
(_) 

c 
0 
en 
en 
E 
en 
c 
0 ,__ 

I--

87 

(a) lnAs/GoSb 
.--------E 

_ ___.I---------- E c 
v 

(b) 

0.8 

0.4 GaSb 

0 
0 0.06 0.12 

Energy ( eV) 

Figure 3.17: a) Schematic bandedge diagram (neglecting band bending) of a 

hetero junction Esaki diode (HED). b) Theoretical calculation of the transmission 

coefficient across the structure. The zero of energy is taken to be the InAs 

conduction band. 
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Figure 3.18: Representative I-V curves from a HED structure with undoped 

spacer layers on both side of the InAs/GaSb interface. The solid line was taken 

at room temperature and the dashed at 77 K . 
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seems to be fixed. The difference between the 1-V curves of the two devices is the 

value of the small bias resistance and the applied voltage at which NDR occurs. 

The device in Fig. 3.19, which has undoped layers, is more conductive and NDR 

occurs at a larger applied bias. This is due to the different doping profiles of the 

two structures which changes the band bending at the InAs/GaSb interface. 

Because the NDR observed in these devices is not associated with a QBS 

which may have a long lifetime, this device holds promise for the fabrication of 

high frequency oscillators. The intrinsic upper limit of this structure's oscilla­

tion frequency will be determined by the transit time across the heterointerface 

and the inherent frequency response of the materials. Furthermore, because this 

device can be grown without undoped spacer layers, limiting processes such as 

transit time delays across depleted regions which are important in conventional 

double barrier structures will be eliminated in this device) lO] For this struc­

ture to prove useful, however , it will be necessary to improve the PVR to 2 or 

greater. It may be possible to achieve this by optimizing the structure's dop­

ing profile or by tuning the bandgaps and offset at the heterointerface by using 

AlwGal-wAsxSbl-x/lnyGal- yAszSbl-z· Further, it should be pointed out that 

there is"" 0.6% lattice mismatch between InAs and GaSb. From this we estimate 

that the critical thickness for GaSb grown on InAs will b e on the order of several 

hundred angstroms which is much less than the thickness of the GaSb epilayers 

reported on here. Due to this we anticipate misfit dislocations at the InAs/GaSb 

interface and threading dislocations in the GaSb epilayers which may degrade 

device performance. By growing thinner layers it should be possible to reduce or 

even eliminate the number of these interfacial misfit dislocations and potentially 

enhance device performance. 
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3.8 Resonance Enhanced Heterojunction 

Esaki Diodes 

The structures discussed in this section can be thought of as modified RED's. 

Fig. 3.20 shows schematic bandedge diagrams of the HED structure from section 

3.7 (Fig. 3.20(a)), and the devices covered here (Figs. 3.20(b) and 3.20(c)). 

The three structures in Fig. 3.20 are very similar. In the two lower energy 

band diagrams, a thin AlSb barrier layer is inserted into the device away from 

the InAs/GaSb interface. Based on the results of the previous section, all three 

structures depicted in Fig. 3.20 would be expected to display NDR when sufficient 

positive bias is applied to the GaSb(p) electrode to shut off elastic transport of 

electrons from the InAs(n) electrode into available GaSb states . In this section, 

we give evidence for the formation of a QBS between the InAs/ GaSb interface 

and the AlSb barrier. This quantum effect results in a resonant enhancement of 

current transport as compared to the HED structure depicted in Fig. 3.20(a). 

For this reason the devices in Figs. 3.20(b) and 3.20(c) will be referred to as 

resonant heterojunction Esaki diodes (RHED). 

Table 3.2 gives the layer sequences and thicknesses for the samples discussed 

in this section. Sample Dl corresponds to the bandedge diagram in Fig. 3.20(a). 

Fig. 3.20(b) corresponds to sample D2 and samples D3 and D4 are shown in 

Fig. 3.20(c). In all the samples, the InAs electrode is degeneratly doped n-type 

while the GaSb electrode is p-type. In samples D2, D3 and D4, the AlSb layers, 

quantum wells, and an additional 100 A spacer layer on the InAs sides of the 

active regions were undoped. There were no undoped layers in sample D 1. 
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Figure 3.20: Schematic bandedge diagrams for (a) an InAs(n)/GaSb(p) inter­

face (HED), (b) an InAs(n)/GaSb/AlSb/GaSb(p) heterostructure (RHED), and 

(c) an InAs(n)/AlSb/InAs/GaSb(p) heterostructure (RHED). In all three dia­

grams, the conduction (Ec, solid) and valence (Ev, dashed) bandedges are shown. 

The insertion of the AlSb barrier layers in (b) and (c) is hypothesized to create 

quasi- bound states in the regions between the AlSb barrier and the InAs/GaSb 

interfaces leading to a resonant enhancement of the current. 
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Sample Band 

Number Diagram Layer Sequence 

D1 Fig. 3.20(a) InAs(n)/GaSb(p) 
D2 Fig. 3.20(b) InAs(n)/GaSb(51 A) / AlSb(12 A)/GaSb(p) 
D3 Fig. 3.20(c) InAs(n)/ AlSb(21 A)/InAs(120 A)/GaSb(p) 
D4 Fig. 3.20(c) InAs(n)/AlSb(21 A)/InAs(80 A)/GaSb(p) 

Table 3.2: Material sequences and layer thicknesses of the samples discussed in 

this section. 

3.8.1 Experimental 1-V Curves 

Fig. 3.21 shows representative I-V curves (positive bias on the GaSb(p) elec­

trodes) taken at room temperature for samples D1 (dashed) and D2 (solid) . The 

peak current density is much larger in sample D2 (~ 1.6 x 105 A/cm2) than in 

sample D1 (~ 0.4 x 105 A/ cm2) even though a barrier layer has been added to 

sample D2. RHED's complimentary to D2 were also grown and characterized. 

Room temperature I-V curves from D3 and D4 are shown in Fig. 3.22. Here 

the AISb barrier is placed on the opposite side of the InAs/GaSb interface as 

compared to D2. As shown in Fig. 3.22, D3 shows NDR with a PVR of 1.5:1 

and a Jp of 6.7 x 103 A/cm2 . (The AlSb layer in D3 and D4 is thicker because of 

the complications involved in growing the mixed anion InAs/ AlSb interface. This 

issue is covered in detail in Chapters 5 and 6.) The different I-V characteristics 

of D3 and D4 and their lower JP as compared to D2 is due to the resonant nature 
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of current transport in RHED 's. This is explained in Section 3.8.2. For now 

the important thing is that, as Figs. 3.21 and 3.22 show, RHED's show room 

temperature NDR and can have current densities larger than RED's eventhough 

they have an additional AlSb barrier. This result suggests t hat adding the barrier 

layer creates a QBS in these devices. 

3.8.2 Origin of NDR in the RHED Structure 

Fig. 3.23 displays transmission coefficients for samples D1 (dashed) and D2 

(solid), calculated at flat band conditions using a two-band model which incor­

porates electrons and light holes [7). In the figure , the zero of energy is taken to 

be the InAs conduction bandedge. At resonance, the reflection coefficient for the 

carriers in sample D2 nearly vanishes. In contrast, significant reflection occurs at 

all energies for a single InAs(n) /GaSb(p) interface, due to the imperfect coupling 

of InAs conduction-band states with GaSb valence-band states. Fig. 3.23 shows 

that sample D2 possesses a wide transmission resonance which peaks well above 

the maximum transmission probability for the single InAs(n) /GaSb(p) interface. 

The formation of this QBS in the RHED explains why it is more conductive than 

a simple InAs/GaSb interface. The observed enhancement in JP in sample D2 

again indicates that reflection coefficients at the InAs/GaSb interface are not neg­

ligible (see sections 3.5.2 and 3.6.2). The formation of a QBS in the quantum well 

of this structure is dependent upon non- negligible reflections at the interfaces (a 

Fabry-Perot effect). 

It may not be obvious that the enhanced current density observed in sample 

D2 is due to a resonant state. The difference between the peak and valley currents 

in D 1 and D2 is rather small, and it could be argued that the difference in current 

density between D1 and D2 is caused by an inelastic process. However, as pointed 
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(solid). The enhanced current density in sample D2 is consistent with resonant 

tunneling via a quasi- bound state in the GaSb quantum well. 
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Figure 3.22: I-V curves for RHED devices with different well widths. The only 

difference between the two devices is the width of the InAs well. A resonance 

forms between the AISb barrier and the InAs/GaSb interface in both structures. 

In the case of the narrow well, the confinement energy of the quasi-bound state 

pushes it above the GaSb valence bandedge where it is not accessible to electrons 

in the InAs electrode. 
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out in section 3.4, because the sign of the effective mass in valence-band and 

conduction-band states is different, interband tunnel devices are on resonance at 

zero applied bias. All of the RRED 's grown had smaller resistances at low bias 

than the RED 's. This is true even in devices that had Jv's less than that of 

sample Dl. Further, the difference between the peak and valley currents in all of 

the RHED's that showed NDR was greater than the change in current observed 

in the RED's investigated. Taken together, these indicate that a QBS does form 

in the RRED's. 

The data shown in Fig. 3.22 is a further test of whether a QBS does form 

in RRED's. Samples D3 and D4 are identical except for the separation between 

the AlSb barrier and the InAs/GaSb interface. If a resonant state does form in 

this region, these devices will be very sensitive to the size of this separation. To 

first order, the confinement energy of a bound state will vary as 1/ £ 2 , where L 

is the dimension of the confined region. If the size of this region - in the InAs 

conduction band for samples D3 and D4 - is too small, then quantum confinement 

will increase the energy of the state to the point where it is no longer accessible. 

For samples D3 or D4, this would mean pushing the QBS in the InAs conduction­

band up above the valence-band minimum of the adjoining GaSb layer. In this 

case the AlSb layer and the InAs layer sandwiched between it and the GaSb 

electrode will function as a thick barrier for electrons in the InAs electrode since 

there will not be any available states in the InAs well. Because of this, devices 

with sufficiently thin InAs wells will not show NDR while devices with wider InAs 

wells will. This is exactly the result shown in Fig. 3.22 and similar to the change 

in BRIT current density as a function of GaSb well width discussed in section 

3.5.2. 

Fig. 3.24 shows plots of the calculated Jp for the structures depicted in Figs. 

3.20(b) and 3.20(c) as functions of the separation between the AlSb barrier layer 
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electrons and light holes. T he InAs conduction bandedge is taken to be the zero 

of energy. 
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and the InAs/ GaSb interface. The AlSb barriers were taken to be 24 A thick. 

The curves in Fig. 3.24 have similar shapes, with the maximum current density 

occurring at narrower widths for GaSb quantum wells than for InAs quantum 

wells, due to the difference in the effective masses of the two materials. For 

relatively thick GaSb layers (:=::::: 170 A) , Fig. 3.24(a) shows a current density 

enhancement due to the appearance of a second QBS. Because of the sensitivity 

of the calculation to the input parameters (such as band offset values) , we have 

not attempted to compare the calculated current densities t o those measured 

experimentally. However, the calculation does show that there is an optimal 

position for placement of the AlSb barrier. This position corresponds to a single 

QBS with an energy in overlap between the InAs conduction band and the GaSb 

valence band .. (Conceptually, this is identical to the result for BRIT's shown in 

Figs. 3.12 and 3.13). Fig. 3.24 also explains the different Jp's observed in samples 

D2 and D3. As Fig. 3.24 shows, the RHED sketched in Fig. 3.20 (b) should have 

a larger maximum JP than the RHED shown in Fig. 3.20 (c). This is consistent 

with the experimental result. In addition, the JP in RHED's is a strong function 

of either the InAs or GaSb well width which will also effect the size of Jp in D2 

and D3. 

3.9 An Experimentalist's 'Theory' of Inter­

band Tunnel Structures 

After reading this chapter the wide variety of interband devices should b e 

clear. While the shear mass of data and interpretation may seem overwhelming, 

inter band tunneling is actually rather simple. Much of it can be understood using 

the concepts of conventional tunnel device theory with a few extensions. Below 
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are a few simple rules-of-thumb for analyzing this new class of structures. The 

following list of concepts is by no means complete. However, applying them to 

interband devices give a broad, qualitative understanding of these structures. 

• When considering interband structures it is helpful to restrict your analysis 

to one carrier type. 

• Carriers can freely move between the conduction and valence bands of ad­

jacent materials as long as there are no energy restrictions. 

• The InAs/GaSb interface partially reflects carriers moving between the InAs 

conduction-band and GaSb valence-band. This is due to the mismatch in 

wavefunction symmetry between the two bands. Because of this partially 

reflecting interface, it is possible to form a quasi-bound state without a 

barrier layer. 

• Because there is no classical barrier at the interface, devices with 

InAs/GaSb tend to have large nonresonant currents associated with them. 

This leads to small PVR and large current densities. 

• The first highly reflecting interface the carriers encounter, whether a classi­

cal barrier or an InAs/GaSb interface, tends to determine the device's I-V 

characteristics. 

• Because the mass of the electrode and well layers have different signs, in­

terband devices are ohmic at small bias and have a soft onset of NDR. 

• Interband devices without InAs/GaSb interfaces have large PVR's since the 

well layer acts as a barrier when the device has been biased past resonance. 
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• The I-V curves of inter band devices are rather insensitive to temperature 

changes since they are on resonance from zero bias until past the current 

peak where the well suppresses thermionic current. 

3.10 Summary 

Interband transport structures are a general class of semiconductor het­

erostructure devices realized in the lattice-matched InAs/ GaSb/ AlSb material 

system. These structures involve carrier transport between conduction-band 

states in InAs and valence-band states in GaSb. The unusual conduction- and 

valence-band alignments in this material system permit considerable flexibility 

in the design of heterostructure devices and allow the realizat ion of new device 

concepts that are not possible in more conventional m aterial systems such as 

GaAs/ AlxGa1_xAs. In this chapter we presented an overview of experimental 

and theoretical studies of transport in two-terminal interband transport struc­

tures. A wide variety of interband transport structures exhibiting negative dif­

ferential resistance were grown, fabricated, and characterized. Various device 

structures have been found to yield extremely high peak current densities or 

high p eak-to-valley current ratios, making them of considerable interest for high­

frequency oscillators or various logic applications. In addition, it was shown that 

InAs/ GaSb is partially reflecting which can lead to quantum confinement and 

resonant transport without a barrier layer. 
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Chapter 4 

Experimental Realization of a 

Novel Tunneling Transistor 

4.1 Introduction 

4.1.1 Background 

Attempts to fabricate quantum effect transistors have a long history stretch­

ing back over 30 years[l]. One motivation is to exploit the inherent speed of 

quantum phenomena to fabricate extremely fast and dense electronic circuits. 

A second motivation is to use the rich variety of quantum effect I-V curves (as 

shown in Chapters 2 and 3) to increase the computational power of the indi­

vidual elements in an integrated circuit. More concretely, the goal is to provide 

the circuit designer with a three terminal device in which two of the terminals 

have an I-V characteristic showing NDR, with the third terminal electrostatically 

controlling the position or height of the current resonance. 

To date, these efforts have failed to produce useful devices; typical cur­

rent gains are 2-3 due to the large leakage currents in the terminal intended 
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to control the emitter-collector (E-C) current[2, 3, 4]. One attempt to correct 

this problem was the Stark effect transistor (SET)[5]. It was proposed that 

an AlxGa1 _xAs/ GaAs double barrier, tunneling heterostructure with barriers of 

substantially different widths be grown, and that electrical contact be made to 

the quantum well and both of the GaAs cladding layers surrounding the double 

barrier structure. The E-C current would flow from one GaAs cladding layer 

through the thinner barrier and into the quantum well where it would be ex­

tracted. It was reasoned that applying a bias across the thicker barrier would 

electrostatically modulate the E-C current through Stark shifts of the energy lev­

els in the quantum well. Because of the asymmetry in the thickness of the two 

AlxGa1_xAs barriers, the base current should be substantially smaller than the 

modulation of the collector current leading to current gains. Beltram et al. [6] 

subsequently demonstrated the SET concept: large asymmetries in the base and 

emitter currents and electrostatic modulation of the collector current. However, 

transistor action was only reported at 7 K which severely limited the device's 

usefulness. A second problem with the experimentally realized device was that 

surface Fermi level pinning depleted the exposed GaAs well leading to very large 

E-C resistances. 

4.1.2 Outline of Chapter 

This chapter reports a tunnel transistor with measured current gains as high 

as 100 at room temperature. Section 4.2 explains the device concept and shows 

how it is a natural outgrowth of the work reported in Chapter 3. The sample 

growth and device fabrication are detailed in Sections 4.3.1 and 4.3.2, respec­

tively. Experimental results including 2-terminal I-V characteristics (4.4.1), room 

temperature current gains ( 4.4.2) and the effect of illumination on the structure 
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( 4.4.3) are given in Section 4.4. Section 4.5 discusses the potential of the device 

and the chapter is summarized in Section 4.6 . 

4.2 Device Concept 

Figs. 4.1(a) and 4.1(b) are a schematic bandedge diagram of the resonant 

interband tunneling Stark effect transistor (RITSET) and the geometry of the 

processed device, respectively. As stated above, the key concept in a SET is the 

asymmetric barriers. In its original conception this was accomplished by growing 

AlxGa1_xAs barriers of different widths. In this work we exploit the tremendous 

flexibility in band alignments offered by the InAs/GaSb/ AlSb material system 

to achieve the barrier asymmetry. Inspection of Fig. 4.1 (a) shows that the 

E-C current flows across the highly conductive InAs/GaSb interface, without 

tunneling through a classically forbidden region (see reference [7] and Section 3. 7) . 

However, current flowing from the base into the collector must tunnel through 

an AlSb barrier. This leads to large differences between the I-V characteristics of 

the E-C junction and the collector-base (C-B) junction, which allows a voltage 

applied between the base and collector to electrostatically control the E-C current 

without drawing large base currents. It should be noted that even though there 

is no quantum barrier between the collector and emitter, a quasi-bound state 

still forms in the InAs collector (as was shown in Section 3.8). The design of the 

structure builds on the concepts and results of Chapter 3: the E-C current flows 

through a BRIT like structure (Section 3.5) while the C-B current path is more 

RIT like (Section 3.3). The combination of these two very different structures is 

what gives the asymmetry in current conduction that is necessary for realizing the 

RITSET. The RITSET's bandstructure was suggested by the hybrid interband 

tunnel device covered in Section 3.6. 
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InAs was chosen as the well material since the negative Schottky barrier of n­

type InAs allows a good ohmic contact to be made to a thin layer[9]. Further , this 

negative Schottky barrier ensures that surface depletion of the exposed collector 

well will not hamper device performance as was the case in the earlier attempt 

to realize a SET structure.[6] 

4.3 Experimental 

4.3.1 Sample Growth 

The samples studied here were grown on semi-insulating GaAs substrates by 

a molecular beam epitaxy system equipped with cracked Sb and As sources. The 

growth started with 2000 A of undoped GaAs followed by a 10 period, 1 mono­

layer/1 monolayer, GaAs/GaSb superlattice. After the growth of a 0.75 J..Lm 

buffer layer of GaSb the device structure itself was grown (see Fig. 4.1). The 

GaSb buffer layer and the active region were grown at a substrate temperature of 

490 °C. The superlattice and thick buffer layer are necessary since the lattice con­

stant of the substrate is ,......, 7% smaller than that of the active region of the crystal. 

This choice of substrates was dictated by the fact that there are no commercially 

available semi-insulating substrates that lattice match the InAs/ AlGaSb material 

system. 

The thick GaSb buffer layer and cap layer were both doped p-type with Si[10] 

(p ~ 1 x 1018 cm-3 ). The InAs well and AlSb barrier were not intentionally 

doped. 
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4.3.2 Device Fabrication 

The fabrication of a working RITSET is rather involved , entailing three sep­

arate photoresist (PR) applications and patternings, two metal contact deposi­

tions, and three different wet etches. In order to fabricate a working, device 

it is necessary to etch off the GaSb cap layer without removing the underly­

ing InAs collector layer which is only 250 A thick. To do this reproducibly an 

etch that selectively dissolves the antimonide layers but not the arsenide lay­

ers was n eeded. After much trial and error it was found that a basic solution 

(N H 30 H : H 2 0 = 1 : 4) etches the antimonide layers but not the arsenide layers 

while an acidic solution (H20 : H202 : H2S04 = 80 : 8 : 1) had the opposite 

effect. The development of these etches was crucial to the successful fabrication 

of the transistor. 

The device processing steps are schematically shown in Fig. 4.2. First a chip 

"' 5 mm on a side is cleaved from the sample wafer and degreased in acetone, 

isopropyl alcohol and d eionized water. Next PR is spun onto the chip and pat­

terned with ultraviolet light shown through a mask consisting of circles 40 J-Lm 

in diamet er. After developing the PR, circular holes are left in the PR (see Fig. 

4.2(a).) Next rv 2000A of Au/Ge is evaporated onto the surface of the chip. This 

metal layer is much thinner than the PR which is about 1.5 J.J.m thick. As a result, 

when the chip is placed in acetone in an ultrasonic cleaner to strip off t he PR, 

the AujGe on top of the PR is lifted off with it leaving metal circles 40 J.J.m in 

diameter on the surface of the crystal (see Fig. 4.2 (b).) These metal circles serve 

as the emitter contact as well as a m ask for the first basic etch that exposes the 

InAs collector well (see Fig. 4.2(c).) That the etch is stopped in the well layer is 

confirmed by placing two probe wires on the surface of the chip and measuring 

an I-V curve. If the first basic etch has stopped on the InAs layer, then the I-V 
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curve will be ohmic due to the negative Schottky barrier of InAs. However, if the 

chip's surface is part of the GaSb emitter layer, then the I-V curve will show the 

Schottky barrier between the Au probe wire and GaSb. If the etch went past the 

InAs layer into the AlSb layer, the surface of the crystal turns a milky blue color 

due to the hydroscopic nature of AlSb. The etch depths were also measured with 

a stylus profilometer. The vertical resolution of the instrument is 100 A which is 

comparable to the thickness of the emitter layer hence its usefulness is limited. 

The above process of PR application and patterning, Au/Ge deposition and 

PR lift off are then repeated. The same mask is used during the exposure to the 

ultraviolet light, but the mask features are displaced "" 20 f..Lm from the emitter 

contact. The result is a collector contact next to the emitter contact (see Fig. 

4.2(d).) After this, PR is applied again and a mask which is a negative of the 

one used to form the contacts is used to pattern the PR. This mask is aligned so 

that the unexposed PR overlaps with the two metal contacts. This PR protects 

the current path between the collector well and the collector contact during the 

device isolation etch. After developing the PR the chip's surface will look like 

Fig. 4.2(d). At this point the unprotected InAs collector layer is removed with 

the acidic etch. The removal of the InAs layer is confirmed by watching for 

the surface to turn a milky blue color, indicating that the AlSb surface layer is 

reacting with the water in the etch (Fig. 4.2(e).) The individual devices are then 

isolated from each other by etching through the AlSb barrier and approximately 

half of the GaSb buffer layer using a second basic etch (see Fig. 4.2(f).) The 

remaining PR is stripped off of the sample which is then mounted on a header for 

measurement. Electrical contact to the base electrode is made by applying silver 

paint directly to the now exposed GaSb buffer layer. The final device geometry 

is shown in Fig. 4.1 (b). 

Following processing the devices were probed with Au wires "" 25 f..Lm in di-
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ameter and I-V curves were taken using an HP 4145A semiconductor parameter 

analyzer. All electrical measurements were taken with the transistor in the com­

mon collector configuration. It should be pointed out that even though the col­

lector contact is at ground, the collector well that is beneath the emitter contact 

is not at ground. Because there is lateral current flow in the InAs collector well, 

there must be a voltage drop along it . The potential in the InAs layer is very 

complicated, involving the E-C current and having emitter and the base biases, 

the voltage of the collector contact, as well as the pinned surface of the exposed 

InAs as boundary conditions. 

4.4 Electrical Results 

4.4.1 Current-Voltage Curves 

Fig. 4.3 shows representative I-V curves taken at room temperature for the 

E-C terminals. E-C curves are shown for base biases ranging from -400 m V to 

200 m V in 200 m V steps. All four of the E-C curves pass through the origin 

showing that the base leakage current is small compared to the emitter current. 

This suggests that the base bias is rearranging the charge in the collector well 

rather than simply injecting current into it. The modulation of the E-C current 

due to the base bias can be thought of in two ways. Either the base bias is 

changing the band bending in the InAs well which affects the conductivity of the 

InAs/ GaSb interface (Section 3. 7), or that the base bias modulates the energy 

of the quasi-bound state in the InAs collector well through the Stark-effect. The 

net result of both pictures is the same. 

Fig. 4.4 is the C-B I-V curve for the same device. The base biases applied in 

Fig. 4.3 are in the flat region of the C-B curve where the C-B current is small. 
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Figs. 4.3 and 4.4 show that the E-C and C-B junctions have very different electri­

cal characteristics, as predicted by Fig. 4.1, and that the base is electrostatically 

controlling the collector current. 

4.4.2 Measured Gain Curves 

Base currents for voltages in the range from -400 m V to 200 m V are on the 

order of 10 microamps which is larger than typical gate currents in field effect 

transistors. As a result , instead of measuring the transconductance of this device, 

its current gain ({3 - 8 I Ee / 8 I B) was measured. f3 was determined by numerically 

differentiating plots of l Ee vs. 13 . Fig. 4.5 shows f3 as a function of injected 

base current for a fixed E-C voltage. The value of VEe chosen for the plot was 

arbitrary. Different values of VEe shifted the position of the peak in the gain 

curve and changed its height but did not affect its shape. The region of highest 

current gain corresponds to base biases in the fiat region of Fig. 4.4. In the inset 

of Fig. 4.5 we show the measured current gain near the maximum. The gain 

in this region of base current is relatively constant, indicating that t his device is 

potentially useful as a small signal amplifier which requires a reasonably fiat gain 

curve. The range of base biases that correspond to the base currents shown in 

the inset of Fig. 4.5 is about 300 m V. 

Fig. 4.6 plots f3 as a function of E-C voltage for a fixed base current. f3 was 

determined by superimposing a small modulation current onto the injected d.c. 

base current. The change in lEe as a function of .6.13 was measured at each value 

of the E-C voltage shown. The figure shows maximum current gains of over 100. 

The value of 13 used to collect the data shown in Fig. 4.6 was chosen to maximize 

the measured current gain. The shape of the gain curve is not sensitive to 13 , 

but the height and position of the peak gain are weak functions of it. The value 
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of IB that maximized the peak current gain varied less than 5% between devices. 

4.4.3 Effect of Light on the Device 

While making measurements on these devices it was noted that the maximum 

current gain was cut in half if the sample was illuminated during measurement. 

In Fig. 4. 7 the effect of illumination on the current gain is shown. The probe 

station used to make the electrical measurements is equipped with a microscope 

to facilitate making contact to the transistors. The two curves were consecutively 

measured using the same device. The only difference between them is whether or 

not the incandescent microscope lamp is turned on. As Fig. 4. 7 shows, the lamp 

decreases the maximum current gain by a factor of two and changes the shape of 

the gain curve. 

In order to understand what causes the change in current gain, two-terminal 

1-V curves were taken with the sample both illuminated and in the dark. The 

measurements were taken consecutively using the same device. During all of the 

two-terminal measurements the potential of the third terminal was allowed to 

float . Fig. 4.8 shows the change in E-C current with illumination. The change 

in current divided by the dark current is plotted. The figure shows that the E-C 

current decreases slightly, but it is unlikely that the ,...., 0.005% change in emitter 

current could account for the dramatic change in the current gain plotted in Fig. 

4. 7. Fig. 4.8 indicates that the optical radiation is not greatly affecting the E-C 

current path. 

In Fig. 4.9 the percent change in the C-B current is plotted. At small bi­

ases the C-B current increases as much as 45% which is more than enough to 

account for change in current gain. As the C-B bias is increased, the effect of 

the illumination decreases but the C-B current is still ,...., 20% larger at ± 400 m V 
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than when the sample is dark. Figs. 4. 7, 4.8 and 4.9 are representative of all the 

devices measured. The size of the effect increased monotonically with the optical 

power incident on the sample. 

Taken together, Figs. 4.8 and 4.9 indicate that the decrease in current gain 

when the transistor is illuminated is due to a 'leakier' C-B current path. It isn't 

surprising that light should effect the structure since the majority of the active 

region consists of direct, small bandgap materials: InAs and GaSh. Because all 

of the GaSb cap layer which is left in the processed device is covered by ,......, 2000 A 

of Au/Ge (see Fig. 4.l(b)), it is unlikely that much of the incident light reaches 

the GaSh emitter layer. As a result , the effect is probably due to electron-hole 

production in the InAs collector well between the emitter and collector contacts. 

Since the bandgap of InAs is small ( 450 me V) compared to the energy of visible 

light, very little of the light incident on the InAs layer should reach the underlying 

AlSb or GaSb layers. Therefore, the incident light must be affecting the InAs 

collector layer. Examination of Fig. 4.l(a) makes it clear that electron-hole pairs 

created in the InAs collector will increase the C-B current. Neglecting band 

bending, there are no barriers for holes in the InAs collector from diffusing into 

the valence bands of either the AlSb barrier layer or the GaSb emitter layer, 

irrespective of the sign of the C-B bias. For electrons the situation is slightly 

more complicated. If the base is negative with respect to the collector, there 

is no barrier keeping the excess electrons in the collector from flowing into the 

valence band of the GaSh emitter layer. However, if the base is positive with 

respect to the collector, the AlSb barrier will keep the electrons in the InAs layer 

so they will not contribute to the C-B current. This difference in the barriers 

that holes and electrons see when they are in the InAs collector well explains the 

asymmetry shown in Figs. 4.8 and 4.9. 
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Discussion of Device Potential 

It is difficult to predict the potential performance of any discrete device when 

it is placed in a circuit. In general, the actual speed of any integrated circuit is 

limited by parasitic R-C time constants which are highly dependent on the clever­

ness of the design engineers. Still, the RITSET holds promise for fabricating high 

speed switches and high frequency amplifiers. Because electrons can easily move 

across the InAs/GaSb interface[7], the E-C current should be able to respond 

very quickly to changing electrical fields. Furthermore, the small base currents 

should minimize delays due to tunneling across the AlSb barrier. Moreover, in 

a well designed RITSET the base bias modulates the E-C current by rearrang­

ing the charge in the InAs collector well rather than by charging the collector 

via the base electrode. In any case, the base current can be greatly reduced by 

simply growing a thicker AlSb barrier between the base and collector. (However, 

the AlSb barrier can not be made arbitrarily thick because the "' 0.5 % lattice 

mismatch between GaSb and AlSb will eventually nucleate dislocations in the 

barrier layer which would presumably hamper device performance.) 

The RITSET's speed will also be limited by the intrinsic response time of the 

materials and its interface capacitances as well as the lifetime of the quasi-bound 

state in the InAs collector well. The latter is extremely short and should not 

be a significant factor.[8] The zero-bias, junction capacitances are determined by 

the amount of charge that must be transferred across the InAs / GaSb interface 

because of the difference in energy between the bulk Fermi levels of GaSb and 

InAs. [11] By carefully controlling the doping of the layers in order to minimize 

this charge transfer, the junction capacitance can, in principle, be made extremely 

small. 

Another possible limiting factor of the SET's speed is the large mass of GaSb 
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heavy holes. Because the base current is small, the current density in the thick 

GaSb buffer layer is very small and should not be a major limitation of device 

performance. The current densities in the GaSb emitter layer are much larger 

and could be a problem. However, for basic symmetry reasons electrons at the 

InAsiGaSb interface will couple most strongly to the light hole band of GaSb.[12J 

If the GaSb cap layer is sufficiently thin, the electrons could potentially travel 

between the collector and the emitter contact through light hole states without 

scattering into the heavy hole states. Since the mass of light holes in GaSb is 

smaller than the mass of electrons in GaAs, the conduction of charge through the 

GaSb cap layer should not be a major limitation if it transverses the layer via 

light hole states. This is not an unreasonable possibility. Because of the large 

GaSb heavy hole density of states, the Thomas-Fermi screening length of GaSb 

doped at p= 5 x 1018 cm-3 is about 20 A. Hence, cap layers as thin 50 to 100 

A should be sufficiently thick so that Fermi level pinning at the emitter contact 

does not effect the E-C junction. 

4.6 Chapter Summary 

In summary we have measured current gains as high as 100 at room tem­

perature in a novel transistor. The device was grown in the InAs I GaSb I AlSb 

material system which offers three distinct types of band alignments. Because 

of this flexibility, the collector and base terminals are separated by a classically 

forbidden region while the emitter and collector terminals are not. This asym­

metry in current transport between the terminals of the device allows base biases 

to modulate the emitter-collector current without injecting large base currents. 

Because current conduction in this unique structure is due to resonant transmis­

sion, it is potentially useful in the fabrication of high speed switches and high 
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frequency oscillators. 
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Chapter 5 

Time Resolved RHEED Studies 

of Superlattice Growth 

5.1 Introduction and Outline 

The structures which motivated this chapter are close cousins to the devices 

covered in Chapter 3: InAs/Ga1_xlnxSb strained layer superlattices (SLS.) These 

superlattices were proposed and demonstrated as candidates as far infrared de­

tectors(8 - 20 11-m)[1, 2, 3, 1]. While the basic detection mechanism has been 

demonstrated, the material quality of these SLS's must be improved before they 

can be employed in applications. In the course of studying the properties of these 

detectors it was found that the way in which their internal interfaces are formed 

has a dramatic impact on performance. We have observed that the background 

carrier type changes between structures whose only difference is the manner in 

which their internal interfaces are formed. The magnitude of the optical absorp­

tion is also seen to vary by over a factor two depending on how the structure 

is grown. In addition, the bandgap of nominally identical SLS's can vary by as 

much as 40 me V which is a large fraction of the bandgap of devices with intended 
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cutoff wavelengths beyond 10 pm. 

The importance of understanding and controlling the formation of mixed 

anion heterointerfaces is not limited to this device, however. In addition to 

InAs/Gal-xinxSb SLS's, as evidenced by Chapter 3, there is a rich variety 

of tunnel structures realizable in the mixed anion, InAs/ AlGaSb material sys­

tem. There are also a number of interesting, related structures incorporating ar­

senide/antimonide (As/Sb) heterointerfaces. Among them are InAs/AlSb RTD's 

with oscillation frequencies in excess of 750 GHz[5l , GainAsSb/ AlGaAsSb lasers 

with wavelengths suitable for optical fiber applications[6], promising AlSb/InAs 

transistor technologies [7, 2, 9, 10] and far infrared InAs/InAsSb [ll] detectors . 

These efforts have resulted in a large number of promising devices. In order for 

this broad class of structures to reach their full potential, a basic materials issue 

must be understood: how to control the structural and chemical properties of the 

As/Sb interfaceJ2l 

Because the vapor pressures of the group V's (As and Sb) are substantially 

larger than those of the relevant group III 's (In, Ga and Al), their sticking co­

efficients are very different at typical substrate temperatures. As a result, it 

is necessary to evaporate 4 to 10 group V atoms for each group III atom in 

order to grow a stoichiometric crystal. In structures involving a common an­

ion - such as AlAs/GaAs heterostructures - this is not an issue. However, in 

As/Sb heterostructures the question of what to do with the excess anions is very 

important. There are two distinct problems. The first is controlling cross con­

tamination of the group V's: As incorporation in the GaSb layers when growing 

an InAs/GaSb superlattice for instance. The second is the composition of the 

interface. For example, when switching between InAs and GaSb layers, one could 

imagine preparing an interface that consisted of InAs/In/Sb/GaSb or one with 

InAs/ As/Ga/GaSb or some intermediate composition (see Fig. 5.1). There is no 
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a priori reason to believe that these different kinds of interfaces would lead to 

similar electrical and optical properties. In fact, as mentioned above, the type of 

internal interfaces does effect the characteristics of InAs/GalnSb SLS's. In the 

InAs/ AlSb material system, the interface composition affects the carrier mobility, 

carrier concentration, and the InAs/ AlSb valence band offset [2, 3) . 

Section 5.2 explains how these lnAs/Gal-xlnxSb SLS's works and shows their 

sensitivity to how their internal interfaces are formed. The experimental setup 

is described in Section 5.3. The results of the experiments are presented and 

discussed in Sections 5.4 and 5.5 and the chapter is summarized in Section 5.6. 

5.2 InAs/Ga1-xlnxSb Infrared Detectors 

5.2.1 Theory of Operation 

Fig. 5.2 sketches how these SLS's work. The upper part of the figure shows 

the device's bandedge diagram, with the resulting probability density distribu­

tion shown below. The structure consists of thin alternating layer of InAs and 

Ga1_xlnxSb. The layers are 15 to 50 A thick, with values of x between 0.10 and 

0.40. The structures are strained to thick GaSb buffer layers, grown on GaAs 

substrates. The relative sizes of the lattice constants, Ax, are: 

AlnAs < AaaSb < AaainSb 

with AaainSb increasing for larger In mole fractions. As a result, the layers of 

the superlattice are under alternating compressive ( GainAs) and tensile (InAs), 

biaxial strain. Quasi-bound states form in the valence-band of the GalnSb layers 

and in the conduction-band of the InAs layers. Since the SLS layers are thin, the 

states in the individual layers interact and form bands. 
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The SLS bandgap can be altered by two means. Adjusting the superlattice 

period changes the quantum confinement and hence the absorption edge. Increas­

ing the In content in the Sb layer narrows the SLS bandgap. The lattice constant 

of GaSb is about 0.5% bigger than that of InAs. InSb is roughly 7.0% larger 

than InAs. As a result, increasing the In mole fraction increases the compres­

sive strain in the GainSb layer which raises the heavy-hole bandedge, reducing 

the SLS bandgap. Because there are two independent means of adjusting the 

bandgap, a range of SLS periods and In mole fractions will give a desired detec­

tor cutoff wavelength. In general, the shortest period SLS will give the highest 

absorption since the carriers are less well localized in the individual superlattice 

layers. However, the In content in the GainSb layer can not be made arbitrarily 

high due to the large strains in the structure. The largest X1n typically employed 

is 0.40. 

5.2.2 Effect of the Internal Interfaces of Device Charac­

teristics 

As mentioned in the introduction, there are two ways to form an interface 

between different compound semiconductors. Fig. 5.1 sketches them for the care 

of an InAs/GaSb interface. In the left hand figure, there are a row of Ga-As 

bonds. These types of interfaces will be called 'GaAs-like' or 'GainAs-like' in 

the case of an InAs/GainSb superlattice. In the right hand figure the crystal is 

shown with a row of In-Sb bonds. These are termed 'InSb-like' interfaces. In 

an actual crystal, the interfaces will likely be an intermediate composition. As 

will be detailed later the MBE grower can force the crystal towards either of the 

two extremes by the oven shuttering sequence at the interface. In Section 5.2.1 

the crucial role of strain in these structures was covered. Comparing the lattice 
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constants of GaAs and InSb to that of GaSb explains why the interface has such 

a dramatic effect on device operation: the lattice constant of GaAs is about 7% 

smaller while that of InSb is roughly 7% larger than GaSb. 

Fig. 5.3 shows the effect of the interface on the InAs/GalnSb SLS's bandgap. 

Hall data is shown for two SLS's which have the same period and GainSb com­

position. The only difference between the two samples is the manner in which 

the interfaces are formed. The data were taken for temperatures where the SLS's 

have intrinsic carrier concentrations. The superlattice bandgap is determined by 

fitting the data to 

where A is a constant, T is the temperature, kb is the Boltzman constant and E9 

is the bandgap. The bandgaps of these nominally identical SLS's differ by almost 

15% due to the different interfaces with the sample with GainAs-like interfaces 

having the larger bandgap. This means that for a given desired cutoff wavelength, 

a GalnAs-like SLS will have a larger period. This indicates that for a given SLS 

bandgap, samples with InSb-like interfaces will have higher absorptions. The 

SLS's whose data is shown in Fig. 5.3 were grown in a Varian Gen two. However, 

similar samples were grown in two separate Perkin-Elmer 430 MBE chambers 

by three different growers. In samples grown in these two chambers, it was 

observed that the type of intrinsic background carrier changes when comparing 

SLS 's grown with the two different types of interfaces. 

Fig. 5.4 shows x-ray rocking curves taken from two nominally identical su­

perlattice which differ only in how their interfaces are formed. The data were 

taken in the (004) direction. In the data, the signal from the GaAs substrate and 

the relaxed GaSb buffer layer are apparent, as well as the superlattice fringes. 

The data for the GalnAs-like sample is much broader since it has roughly half 
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as many superlattice periods as the InSb-like SLS. Comparing the period of the 

superlattice fringes shows that the two SLS's have the same period, and the com­

position of the GalnSb layers in the two structures was held constant. However, 

the positions of the zeroth order superlattice peaks do not match. The position of 

this peak is related to the average atomic spacing in the growth direction. Data 

taken in the (115) and (IT5) directions confirms that both structures are coher­

ently strained to the GaSb buffer. Therefore, the difference in the two structures 

must be due to the type of interface employed. The change in the internal strain 

is what causes the shift in superlattice bandgap between structures with iden­

tical periods and layer composition. Photocurrent measurements confirm that 

the bandgap of the GalnAs-like SLS is almost 20 meV larger than that of the 

InSb-like sample. 

5.3 Experiment 

5.3.1 Reflection High Energy Electron Diffraction 

(RHEED) 

Reflection high energy electron diffraction (RHEED) is a standard sample 

characterization technique used during MBE growth. In RHEED, electrons are 

diffracted off the sample's surface at glazing angles and onto a phosphor screen. 

Because the electrons are typically 1 ° to 3 ° from the surface parallel, the electron 

gun and phosphor screen do not interfere with the MBE beam fluxes which are 

nearly normal to the wafer 's surface. As a result, at RHEED geometries it is 

possible to monitor the surface's diffraction pattern during growth (see Fig. 1.1) . 

Because of the glancing angle geometry, the electrons penetrate '"" 5 A into the 

crystal hence RHEED is only sensitive to the first few atomic layers of the crystal. 
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Typical RHEED energies and currents are 10 keV and 0.5 rnA, respectively. A 

word about the relevant length scales is also helpful. The electron spot size is 

on the order of 1 mm in diameter. Therefore, because of the glancing angle 

of incidence, the RHEED footprint on the sample is roughly 1 mm by 40 mm. 

The natural length scale of growth front ranges from a few A (lattice constants) 

to a few hundred A (island and step sizes and diffusion lengths) . As a result, 

fluctuations in the surface morphology are washed out in the diffraction pattern. 

RHEED patterns consist of streaks normal to the growth surface. These 

diffraction streaks are characteristic of any surface periodicity and are called 

integral order streaks. For a crystalline surface , the spacing of the integral order 

streaks is inversely proportional to the surface lattice constant. In addition, 

for certain surfaces under certain growth conditions, a second set of diffraction 

streaks, more closely spaced than the integral order streaks, are present. This 

longer range order is due to reconstruction of the surface, where the topmost 

layer of atoms rearrange themselves to terminate any dangling bonds. During 

growth, the surface reconstruction and transitions in the surface reconstruction 

are used to calibrate flux ratios and substrate temperatures. Other information 

can be extracted from RHEED patterns: 3-d vs. 2-d growth, the presence of 

amorphous puddles on the surface, surface oxide desorption point, average island 

size, etc. The most common use of RHEED is to calibrate growth rates. Suppose 

the MBE conditions are chosen such that 2-d growth occurs. When a layer is 

nucleated, the growth front will initially consist of randomly distributed islands 

scattered across the surface. As more material is deposited, the islands grow 

together until the entire atomic layer has been filled in. The next monolayer of 

material then nucleates islands and the process continues. This modulation of the 

surface roughness causes the intensity of the specular RHEED spot to oscillate 

with a period equal to the growth rate. 
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In order to study the formation of the As/Sb interfaces, an in situ, time 

resolved measurement of the crystal during growth is needed. In this chapter, we 

report measurements of the dynamics of the growth surface of InAs/Ga1_xlnxSb 

SLS's using electron diffraction. We find that the streak spacing of RHEED 

pattern changes during growth. The dynamics of the streak spacing was found 

to be reproducible between growths using the same shuttering sequence at the 

GainSb /InAs interface. The streak separation dynamics of growths employing 

different interface shuttering schemes was found to vary markedly. 

5.3.2 Experimental Apparatus 

In order to extract information from the RHEED pattern, we have developed a 

technique for digital data acquisition. First the diffraction pattern is videotaped 

using a CCD camera and a S-VHS video cassette recorder. We focus on the 

specular and first order streaks in order to most accurately measure the streak 

separation, but any portion of the RHEED pattern could be videotaped (see Fig. 

5.5). The tape is then played back and digitized into a 640 x 480 array of single­

byte data with a RasterOps framegrabber installed in a SPARC 2 workstation. 

To increase the data acquisition rate, only a portion of the videotaped pattern is 

digitized. The system can digitize between 2 and 10 frames/second depending on 

the size of the portion of the pattern that is being examined. After digitization the 

data can be either integrated to obtain intensity variations or fit with a Lorentzian 

plus a linear function to determine the streak positions. Recording large portions 

of the diffraction pattern on videotape provides a great deal of flexibility. One 

of the goals of this project is to identify which portions of the RHEED pattern 

are relevant to understanding the nature of the As/Sb interface. The ability to 

examine different parts of the diffraction pattern of the same growth is crucial 
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for realization of this goal. 

All of the samples studied were grown in a Perkin-Elmer 430 molecular beam 

epitaxy system equipped with cracked Sb and As sources. The strained layer su­

perlattices (SLS) were grown on semi-insulating GaAs substrates and particular 

care was taken to use substrates from different boules in order to decrease the 

likelihood that the peculiarities of a particular lot of wafers would affect the data. 

The SLS's were grown on a thick stress relaxed GaSb buffer at a substrate tem­

perature of""' 385 °C. The growth rate of the InAs was 0.12 monolayersjsecond 

and that of the GalnSb was 0.64 monolayers/second. The In mole fraction in the 

antimonide layers was 0.24. From x-ray diffraction analysis of the SLS's, they 

are coherently strained to the thick GaSb buffer with the InAs layers under 0.6% 

tensile stress,. and the GalnSb layers under 1.5 % compressive stress. A more 

detailed description of the growth can be found in reference [13). 

5.4 Results from InAs/Ga1-xlnxSh Superlat­

tices 

Fig. 5.6 shows the measured spacing between the specular streak and the first 

order streak during the growth of an InAs / GalnSb SLS. Each period consists of 28 

A of InAs and 23 A of Ga0.76Ino.24Sb. At the end of each layer, before switching 

materials , the growth surface is soaked in Sb. Because of this soak the internal 

interfaces of the SLS are termed to be 'Sb-like.' The data were taken on the [110) 

azimuth at a rate of 2.5 data points per second. Fig. 5.6(a) shows the dynamic 

streak spacing for a single period of the SLS. The times at which the oven shutters 

are opened and closed are marked with arrows. Fig. 5.6(b) is an overlay of four 

consecutive periods of the SLS where the profile labeled 'period 1' is the one 
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Schematic of RHEED pattern 

Part of the videotaped pattern 
used to extract the intensity profile 

of the A HEED streak. 

measured streak 

spacing 

Position 

fjrst order streak 

/ reconstruction line 

Figure 5.5: Schematic representation of the data acquisition system. 



~ 
(/) -
Q) 
X ·-CL ........_... 

z 
0 
I--
<( 
0:::: 
<( 
a... 
w 
(/') 

~ 
<( 
w 
0:::: 
I--
(/) 

348 

346 

344 

342 

346 

344 

342 

340 

.. 
..a..: 
If) c .­
"' c 
~ X. 

0 

143 

:05 Sb/1:19 lnAs/:05 Sb/:12 GalnSb 

160 

160 

TIME 

period 
period 
period 
period 
period 

f .. 
..:..a 
.51/) 

c 
I 8. 
0 0 u 

200 

2 -----· 
3 .................. 

4 - ·- ·- · - · 

5 -------

200 

(seconds) 

8 
.5 

I 
0 
u 

Figure 5.6: Separation between the specular streak and first order diffraction 

streak in the RHEED pattern of an InAs/Gal-xlnxSb SLS. Fig. (a) notes the 

times when the shutters are either opened or closed, and Fig. (b) is an overlay 

of five consecutively grown periods of the SLS showing the reproducibility of the 

effect. 



144 

shown in Fig. 2(a). There are no vertical offsets in the data shown and the 

timing of the shutter actuations were determined from the clock on the VCR and 

period of the SLS. Three things stand out in the data. First, the apparent lattice 

spacing (ALS) -which is inversely proportional to the streak separation- of the 

surface of the crystal changes during growth. Secondly, abrupt changes in the 

ALS are correlated with either opening or closing a shutter. Thirdly, Fig. 5.6(b) 

shows that different periods of the same SLS have very similar dynamic streak 

spacings. Subsequent growths showed that when the same interface shuttering 

scheme was used, the profiles of the ALS matched those shown in Fig. 5.6. 

To ensure that the features in the ALS that are correlated to the shutter open­

ings are due to changes in the incident fluxes and not an electrical or mechanical 

artifact of the growth chamber, we measured the dynamic position of the spec­

ular and first order streaks while opening and closing the shutters of ovens that 

were at their idle temperature of 300 °C. The measurements were done on GaAs 

surfaces along both the [110] and [liO] azimuths while growing GaAs and during 

As-flux soaks. To within our experimental resolution of about 0.5 pixels out of 

a streak spacing 420 pixels, neither the specular streak nor the first order streak 

moved. This indicates that the measured changes in the streak spacing when the 

shutters are actuated are due to changes in the incident flux and hence changes 

in the growth surface. It should be noted that the sizes of the measured shifts 

are small. In Fig. 5.6(a), the streak separation increases by about one pixel after 

the Sb shutter is closed and the In and As shutters are opened. This translates 

into ,......, 0.3% change in the ALS. 

In Fig. 5. 7 we compare the measured streak spacing of the SLS shown in 

Fig. 5.6 with the intensity variation of the specular streak for slightly more 

than one period of the structure. The solid upper line is the data shown in 

Fig. 5.6 (a), and the lower dashed line is the intensity variation of the specular 
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spot. The pairs of dotted vertical lines denote the extent of the Sb soaks. The 

two curves have similar shapes, and the plot of RHEED intensity has sharp 

features when the growth fluxes are changed just as in the case of the ALS profile. 

These intensity variations are reproducible when comparing different periods of 

the SLS. The features of importance in this graph are the oscillations in the 

intensity at the start of the InAs layer (second vertical line.) These oscillations 

have the same period as the oscillations in the streak separation with a period 

equal to the monolayer deposition time. These types of intensity oscillations are 

routinely used by many investigators to determine growth rates, and are believed 

to be caused by periodic changes in the roughness of the growth front .[l7],[ l8] 

The strong correlation between the ALS profile and the RHEED intensity profile 

indicates that the streak separation modulation is sensitive to changes in the 

texture of the growth front. 

We have examined the RHEED characteristics of roughly a dozen different 

interface shuttering schemes. In every case, abrupt changes in the ALS were 

correlated with changing the growth flux, and the changes in the ALS were re­

producible between different periods of the SLS and different growths using the 

same or similar interface schemes. 

Fig. 5.8 compares the measured streak spacing of two InSb-like SLS's grown 

with similar, but not identical interface shuttering schemes. The two structures 

have the same compositions and layer thicknesses and were grown under the 

same conditions. The data are vertically offset by four pixels for clarity. The 

extent of each Sb soak is marked by a pair of vertical dashed lines. The upper 

curve is the same as shown in Fig. 5.6(a). The difference between the shuttering 

schemes is that in the lower curve a single monolayer of In is deposited at the 

beginning and end of the InAs layer without an accompanying group V flux. The 

two curves are qualitatively similar but not identical. At the start and end of 
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the In As layer (the second and third vertical lines respectively), the two curves 

are markedly different. These differences occur at precisely the times when the 

fluxes incident on the growth surface are different. This observation indicates 

that the measurement is sensitive to subtle changes in the growth surface. This 

similarity in ALS profiles when comparing similar interface shuttering schemes 

was observed in all the SLS's that were studied. 

Fig. 5.9 compares the ALS profiles of two SLS's with the same layer thick­

nesses and compositions which were grown under the same conditions. The lower 

curve is the same as the lower curve in Fig. 5.8 (an InSb-like SLS). For the upper 

curve, each layer is terminated in an As soak, and 0.64 monolayers of Ga0.76In0.24 , 

without an accompanying group V flux, are deposited at the beginning and end of 

the GainSb layer: a GainAs-like SLS. The two curves are vertically offset by five 

pixels for clarity and the positions of the group V soaks are marked by the pairs of 

vertical lines, Sb in the case of the lower curve and As for the upper curve. In this 

case the interface shuttering schemes are very different as are the ALS profiles. 

While both curves show decreasing streak separation, with oscillations having a 

period equal to a monolayer deposition time, at the start of the InAs layer, the 

net change in the streak separation during growth of the InAs layer is different 

for the two SLS's. In the upper curve (GainAs-like) the separation decreases over 

the course of the InAs layer while in lower curve (Sb-like) the streak separation 

has increased after growing the InAs layer. In addition, the response of the ALS 

to the group V soaks is very different. In the upper curve, the ALS does not 

change during the As soaks of the InAs layer (see the third vertical line) while at 

the interrupts on the GainSb layers (the first and fifth lines) the streak separation 

rises very slightly. In the lower curve, the ALS is not effected by the Sb soaks on 

the GainSb layers (first and fifth vertical lines) while the ALS changes markedly 

at the Sb soak on the InAs layer and at the start of the GainSb layer. The sharp 
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dip in the streak separation in the upper curve during the GalnSb layer (between 

the fourth and fifth lines in the upper curve) is a reproducible feature and not a 

noise spike. Fig. 5.9 shows that the ALS profiles of structures grown with very 

different interface shuttering schemes are correspondingly different. 

These two type of interface schemes shown in Fig. 5.9 are especially m­

teresting to compare. We have found that undoped SLS's grown with Sb-like 

interfaces have a p-type background carrier concentration as determined by low 

temperature, four-point Hall measurements and that undoped As-like, SLS's have 

n-type background carrier concentrations. It is our hope that careful study of 

the RHEED characteristics of these different shuttering schemes will help us un­

derstand this behavior. 

5.5 Discussion of Superlattice Results 

Interpreting the change in streak separation of these SLS's is complicated. 

The greatest difficulty is understanding the relationship between the surface pe­

riodicity we are measuring and the final bulk lattice constant . X-ray diffraction 

measurements on these structures show that the SLS's are coherently strained to 

the GaSb buffer layer, yet the periodicity of the growth front is clearly changing. 

One possibility is that as the strained material is grown, it nucleates in islands 

which have interatomic spacings intermediate between those of the coherently 

strained structure and the natural lattice constant of the material. If this were 

the case, it would only be after the islands coallessed and were buried under sub­

sequent layers that the material would reach its final, coherently strained lattice 

constant. This explanation is consistent with oscillations in streak separation 

having a period equal to the monolayer deposition time. A second difficulty is 

that the RHEED pattern moves during growth. We have observed rotations of 
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the diffraction pattern about an axis parallel to the direction of electron travel 

and translations normal to the direction of electron travel or both. Without 

corrections for these effects, quantitative measurements are impossible. Finally, 

the dearth of techniques which are capable of probing the chemistry and struc­

ture of individual, buried interfaces complicates analysis of the final structures. 

Nevertheless, we are hopeful that this technique will prove to be useful in un­

derstanding mixed anion interfaces at least to the level of providing an empirical 

tool for growth of high quality, reproducible SLS's. 

5.6 Summary 

In conclusion, we have used RHEED to study the surface periodicity of the 

growth front of InAs/GainSb SLS's. We found that the apparent surface lat­

tice spacing reproducibly changed during growths which subsequent X-ray mea­

surements indicated were coherently strained. Abrupt changes in the measured 

streak spacings were found to occur when the oven shutters were either opened 

or closed. Care was taken to check that these changes in the RHEED pattern 

were due to changes in the fluxes incident on the growth surface and not elec­

trical or mechanical artifacts of the shutter actuator mechanism. The profile 

of the dynamic streak spacing was found to be reproducible when comparing 

consecutive periods of a SLS's or different SLS's employing the same shutter­

ing scheme at the InAs/GainSb interface. Finally, when the interface shuttering 

scheme was changed it was found that the dynamic streak separation profile also 

changed. Large changes in the shuttering scheme led to dramatic differences in 

the streak separation profile, and small changes in the shuttering scheme led to 

minor changes in the profile. In both cases, the differences in the surface pe­

riodicity profile occurred at the parts of the growth where the incident fluxes 
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differed. 
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Chapter 6 

RHEED and XPS Observations 

of Surface Exchange Reactions 

6.1 Introduction and Outline 

Chapter 5 showed the wealth of information contained in the RHEED pat­

tern during the growth of mixed anion superlattices (SL) . It was shown that the 

dynamics of the RHEED pattern gave a reproducible signature for how the in­

ternal interfaces of InAs/GalnSb SL's are formed. Because the information was 

real-time and time-resolved, it suggests the possibility that detailed analysis of 

the diffraction pattern could greatly increase our understanding of the growth 

of these devices . The drawback of the work presented in Chapter 5 is that too 

much information, about a very complicated system, is available. In an attempt 

to understand the physics and chemistry of these complex structures, we carried 

out a study of a much simpler system. In this chapter we concentrate on the 

formation of these mixed anion interfaces by examining the effect of exposing an 

InAs surface to an Sb flux. 

As noted in Chapter 5, the fashion in which the As/Sb interface is formed 
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can greatly affect macroscopic device performance[! , 2, 3]. One way to form the 

interface is to briefly expose the arsenide layers to an Sb flux before depositing the 

antimonide layer. Typically these Sb soaks last 5 - 10 seconds. It is believed that 

this leads to a layer of Sb-ln chemical bonds which are thought to give superior 

performance in field effect devices and infrared SL detectors. (Similarly, when 

depositing InAs on GaSb an analogous layer of Ga-As bonds can be formed.) 

The samples studied for this chapter were grown to mimic the Sb soaks that are 

typically employed before nucleating an antimonide layer on an arsenide layer. 

In this chapter we report the results of two complimentary studies of these 

soaks using x-ray photoelectron spectroscopy (XPS) and RHEED. The XPS mea­

surement gives chemical information about the crystal's surface, but has no time 

resolution. In essence, the XPS can deliver a chemical 'snapshot' of the surface 

after a particular soak length. The RHEED experiment is time resolved and can 

be carried out during the Sb /InAs soak. However, since RHEED is a diffraction 

technique, it carries no information about the chemistry of the surface. By com­

bining the time resolution of RHEED with the chemical information from XPS, 

we believe we have developed an indirect , real-time probe of an anion, surface 

exchange reaction. 

From the XPS study, we find that exposing an InAs surface to an Sb flux 

initiates an Sb /As exchange reaction. Using the data we can estimate the time 

needed for the reaction to go to completion. The XPS data also indicate that the 

exchange reaction is self-limiting after the topmost layer of As has exchanged. 

We also find that when an InAs surface is exposed to an Sb flux, the intensity of 

the specular RHEED spot first decreases then recovers toward its initial value. 

The time needed for the RHEED pattern to stabilize after starting the Sb soak 

is extremely reproducible as long as the absolute Sb flux and the Sb species 

employed are held constant. The stabilization time (ST) is much shorter when 
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using a beam of cracked Sb (consisting mainly of Sb2 with some Sb) as opposed 

to a beam of uncracked Sb (composed exclusively of Sb4 ). Increasing the absolute 

Sb flux also decreases the ST of the diffraction pattern. The RHEED data are 

compared to the XPS results. The times obtained from the XPS experiments are 

in good agreement with the ST from the RHEED patterns. The effect on the 

ST of varying the Sb flux and Sb species as well as the good agreement between 

the XPS data and the RHEED data are consistent with the conclusion that 

the temporal changes in the RHEED intensity are due to the Sb/ As exchange 

reaction. 

In the following section we describe both the RHEED (6.2.1) and XPS (6.2.2) 

measurements. In Sections 6.3 and 6.4 we give the results of the XPS and RHEED 

experiments, respectively. Section 6.5 compares the RHEED and XPS data and 

the chapter is summarized in Section 6.6. 

6.2 Experimental 

The samples studied were grown under the same conditions as those in Chap­

ter 5. The samples consisted of 100 A thick InAs layers grown at a rate of 0.5 

monolayers/second. The InAs epilayers showed a 2x4 RHEED reconstruction 

during growth, indicating that the growth front was As rich[6]. After growth, the 

sample was soaked in an As flux for a few minutes to ensure that all of the In 

bonds were terminated with As. The samples were grown on relaxed InAs buffer 

layers deposited on (100) GaAs substrates. The growth of the InAs was followed 

by exposing the epilayer to an Sb flux . Two groups of samples were concurrently 

grown: a set for XPS and a set for RHEED analysis. Before growing each XPS 

sample, a RHEED measurement was made so that the results of the two data 

sets could be compared. The RHEED measurement consisted of videotaping the 
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diffraction pattern on the (110) azimuth while soaking an InAs surface in Sb. 

These Sb soaks typically lasted 1 minute. Following this, the surface was buried 

under an lnAs layer and an XPS sample was prepared under the same MBE 

conditions. 

A range of Sb species were used. The Sb cell used to prepare the samples 

consists of two thermally isolated zones. Each of the zones is equipped with a 

heating filament so that the temperatures can be individually controlled. The 

first filament sublimates Sb off of a bulk charge. Typical bulk evaporator tem­

peratures are 510-550 °C. The temperature of second, or cracking zone, can be 

varied between 520 and 1050 oc without appreciably affecting the absolute Sb 

flux. In the cracker, Sb4 from the bulk evaporator can be broken down into Sb 

dimers and/ or monomers depending on the cracker temperature. For the XPS 

experiments two different cracker temperatures were investigated. The resulting 

Sbx beams will be referred to as cracked and uncracked Sb. We estimate that 

the cracked Sb flux consisted primarily of Sb2 with some Sb while the uncracked 

flux was entirely Sb4 [5]. For the RHEED experiments the full range of cracker 

temperatures were investigated. 

6.2.1 RHEED Measurements 

The videotape of the RHEED screen was digitized and a computer program 

tracked and recorded any changes in the intensity and width of the specular spot 

during the Sb soaks. The system used to digitize and analyze the RHEED pattern 

was similar to the one in Chapter 5, except that a DataCell 82200 framegrabber 

was substituted for the previous card. This upgrade resulted in a marked increase 

in the speed and flexibility of the system. With the new card it was possible to 

obtain 30 - 50 data points per second. 
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6.2.2 XPS Measurements and Data Analysis 

The XPS measurements and analysis were carried out by another student, 

and a complete discussion of them can be found elsewhere[4]. A brief summary 

is included here in the interest of readability. In XPS, x-rays are directed at the 

surface of the sample. The x-rays eject photoelectrons from the crystal which are 

passed through a hemispherical energy analyzer. Even though the penetration 

depth of the x-rays is ~ 1p,m, the escape depth of the photoelectrons is typically 

20- 30 A [7, 8, 9]. Because of this, XPS is only sensitive to the near surface region 

of the sample. The photoelectrons come from two distinct sources. Studying 

the energies of electrons ejected from the energy bands of the crystal allows 

experimental determination of the band offsets between two semiconductors[10). 

(Though not reported in this thesis, a large number of structures were grown 

for this purpose.[ll, 12, 13, 14, 15]) The second flavor of photoelectrons- which 

were examined for this work - are those from deep within the atomic cores of the 

crystal's constituent atoms. Because these electrons are largely shielded from the 

rest of the crystal by the valence electrons, their energies are characteristic of the 

individual atoms that make up the lattice. By examining the energy spectrum of 

the photoelectrons, it is possible to determine what types of atoms are present 

in the crystal[10]. Comparing the intensities of peaks due to different chemical 

species leads to estimates of relative abundances. Detailed studies of the shapes 

and any energy shifts in these core-level peaks gives information about what types 

of chemical bonds are present in the crystal[12, 10]. 

The XPS measurements were obtained using a Perkin-Elmer Model5100 anal­

ysis system with a monochromatic Al Ka source (hv = 1486.6 eV). All of the 

samples studied were transferred from the growth chamber to the XPS chamber 

via an ultra high vacuum transfer tube. The base pressure in the XPS cham-
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ber was typically ,....., 1 x 10-lO Torr. Care was taken to ensure that the escape 

orientation of the photoelectrons remained constant from sample to sample to 

minimize any electron diffraction effects due to the single crystalline nature of 

the samples. 

The difficulty in obtaining results with XPS lies in the analysis and not the 

data collection, which is rather straightforward. Fig. 6.1 (a) is a plot of the 

photoelectron energy loss spectrum from an InAs surface exposed to an Sb2 flux 

for 15 seconds. Evident in the spectrum are the As 3d and In 4d core-level peaks 

from the InAs epilayer, as well as an Sb 4d peak that was not present before 

the Sb soak. To infer the stoichiometry of the surface it is necessary to measure 

the relative areas of the three core-level peaks. This was done by first making 

measurements on reference samples. These included bulk InAs, GaAs and GaSb 

epilayers as well as a metallic Sb film. From these it was possible to obtain 

the shapes of the individual core level features - As 3d, In 4d and Sb 4d- by 

fitting them to Voight functions . (Note that each of the three features actually 

has two peaks. This is due to the splittings between spin up and spin down 

electrons in the various atomic levels.) To obtain the core-level peak areas in the 

samples of interest, the corresponding peaks from the reference standards were fit 

to the experimental data. When fitting the data from the InAs surfaces soaked 

with Sb, the magnitude and position of the reference peaks were free parameters 

while their shapes were fixed. Before measuring the core-level intensities, through 

the fitting procedure discussed above, the individual peaks must be isolated. 

As shown in Fig. 6.1 (a), there is a slowly rising background as you move to 

higher binding energy which must be removed from the experimental data. In 

addition there are plasmon replicas of the core-level peaks, which must be stripped 

from the spectrum before measuring any peak areas. These subtractions were 

accomplished by using the spectra of the reference samples. Fig. 6.1 (b) shows 
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Figure 6.1 : XPS data from an Sb soaked InAs surface. Panel (a) shows core level 

peaks associated with In, As and Sb atoms. Panel (b) is a blow up of the Sb 4d 

peak after the background has been subtracted, along with its numerical fit. To 

get an estimate of the Sb coverage, a similar fit was done on the In peak and the 

ratio of the areas of the Sb and In peaks was compared. 
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the resulting fit. The experimental data shown has been stripped of both a slowly 

rising background and a plasmon replica from the In 4d peak which coincides with 

the Sb 4d core-level. The peak shapes used to fit the data are shown as well as 

the final fit. The origin of the chemically shifted second peak is discussed below. 

6.3 XPS Results 

For the XPS study, a series of InAs epilayers were soaked in either cracked 

or uncracked Sb fluxes. The length of the Sb soaks varied from 2 seconds to 15 

minutes. These samples were then transferred under UHV to an analysis chamber 

where their electron energy loss spectra were obtained (see Fig. 1.2). The core­

level peak areas were then measured by the method detailed in section 6.2.2. The 

measured (Sb 4d)/(In 4d) peak area ratios, as a function of either Sb2 or Sb4 soak 

time, are shown in Fig. 6.2. Note that the measurement of Sb surface coverage is 

a relative and not an absolute one. This is due to the uncertainty in the escape 

depths of the photoelectrons[7, 8, 9]. The contribution of any particular atomic 

layer to the overall photoelectron spectrum is an exponentially damped function 

of distance from the crystal's surface. Because of this exponential dependence 

and the uncertainty in electron escape depths, it is difficult to make absolute 

measurements of chemical abundances with XPS alone. 

The XPS data in Fig. 6.2 leads to four main conclusions. First, after even 

the shortest Sb soaks there is Sb present on the crystal surface. Though not 

shown, it was also found that the As 3d to In 4d ratio decreased as the strength 

of Sb 4d signal increased. Further, the magnitude of the drop in the As 3d 

signal was consistent with the amount of As present on the surface of the crystal 

decreasing by roughly the same amount that the Sb coverage increased. From 

this we conclude that the Sb has exchanged with As atoms from the crystal and 
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Figure 6.2: Sb 4d/In 4d peak area ratios as measured by XPS. The data were 

measured on InAs surfaces that were exposed to Sbx soaks of differing durations. 

The upper panel shows the result of soaking the InAs in Sb4 . The lower panel is 

for Sb2 soaks. 



164 

is not merely being deposited on top of the InAs epilayer. Second, comparing 

the data in the two panels shows that this exchange reaction occurs much faster 

when using cracked Sb (Fig. 6.2 (b)) instead of uncracked Sb (Fig. 6.2 (a)). 

Third, the size of the Sb peak initially increases rapidly then saturates and shows 

only a slow increase afterwards. The level at which the Sb 4d to In 4d peak 

area ratio saturates is consistent with the exchange of only the topmost As layer 

with Sb from the beam flux. This indicates that the surface exchange reaction 

is self-limiting. Fourth, the Sb 4d core-level actually consists of two components. 

(Fig. 6.1 (b) shows that two doublets, one shifted in energy and diminished in 

intensity, are needed to fit the experimental data.) Studying the behavior of the 

two components leads to the conclusion that the lower binding energy peak is due 

to Sb that exchanges with As in the crystal and bonds with In atoms. The high 

binding energy peak is attributed to the formation of small islands of metallic Sb 

on the crystal surface[4). 

These XPS results should have a major impact on device growth. First, we 

have conclusive proof that these Sb soaks do initiate an anion exchange reac­

tion. Next, the data indicates this reaction is self-limiting. This suggests that 

in order to ensure the Sb /As exchange goes to completion, longer Sb soaks can 

be employed without the danger of depositing additional Sb or exchanging more 

As out of the crystal. The minimum length of the Sb soak needed to complete 

the exchange reaction depends strongly on the composition of the beam flux. 

Finally, the presence of the metallic Sb islands on the InAs/Sb surface must be 

accounted for to ensure optimal crystal quality. Growth experiments to test the 

implications of these XPS measurements are currently being undertaken. 
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6.4 RHEED Results 

In Fig. 6.3 we plot the measured change in the specular spot intensity of the 

RHEED pattern when an InAs surface is exposed to an Sb flux. The data were 

taken with the cracking zone of the Sb effusion cell at different temperatures. We 

estimate that for the bottom curve the Sb flux consisted entirely of Sb4 while for 

the top curve the Sb flux was predominantly Sb2 with some Sb[5]. The curves are 

labeled with the nominal Sb cracker temperature used when obtaining them. The 

Sb beam composition monotonically changes between these extremes. The start 

of the Sb soak is denoted by the dashed vertical line and the data are vertically 

offset for clarity. The substrate temperature and total Sb flux were held constant 

for all the data shown. 

The curves in Fig. 6.3 are qualitatively similar. In each of them the specular 

intensity decreases at the start of the Sb soak then recovers back toward its value 

before the Sb soak was initiated. The difference between the curves is the time 

needed for the specular spot intensity to stabilize after exposing the InAs surface 

to the Sb flux. From Fig. 6.3 it can be seen that the ST monotonically decreases 

as the cracking zone temperature increases. From the XPS results in Section 6.3, 

we know that an Sb /As surface exchange reaction will occur in this situation. 

Further, physical intuition suggests that the exchange reaction will occur faster 

for a flux of either Sb or Sb2 than for a flux of Sb4 . This is because Sb and 

Sb2 should be more reactive than Sb4 (otherwise Sb4 would not be the dominate 

species that sublimes from solid Sb.) Also, assuming that the absolute Sb flux 

is held constant, when the Sb is cracked the number of Sbx particles increases. 

This leads to higher Sb coverage of the InAs surface, and consequently a faster 

Sb/ As exchange reaction. The behavior of the ST in Fig. 6.3 is consistent with 

the changes in the diffraction intensity being due to the As/Sb exchange. 
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Figure 6.3: Plots of the change in the specular RHEED spot intensity during 

Sb j As exchange reactions. The curves are vertically offset for clarity. The dashed 

vertical line denotes when the InAs surfaces are first exposed to an Sbx flux. The 

lowest curve was obtained by exposing an InAs surface to an Sb4 flux. In the 

upper curve the beam consisted mainly of Sb2 with some Sb. For the middle 

curves an intermediate Sb flux composition was used. Each data set is labeled 

with the nominal Sb cracker temperature used. 
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Fig. 6.4 shows the reproducibility of the data discussed above. The two 

panels show overlays of RHEED data taken over the course of about six weeks. 

The upper panel shows data taken while using a cracked Sb beam (mainly Sb2 

with some Sb) and the data in the lower panel was taken while using Sb4 . The 

dashed vertical lines indicate when the Sb soak was started. Great care was 

taken to hold the substrate temperature and absolute Sb flux constant. The 

curves within each panel are very similar. The profiles of the intensity decreases 

are extremely similar in size, shape and length of time. Most importantly, the 

ST is the same for the different curves. The only difference between the curves 

is the final value of the diffraction intensity which we believe is due to surface 

morphology and not the exchange reaction itself[16]. 

We also looked at the effect of varying the bulk Sb cell temperature for fixed 

cracker temperatures. We found that the ST was inversely proportional to the 

bulk cell temperature. By comparing the ST to Sb vapor pressure tables we 

found that the ST scaled as one over the total Sb flux. This further indicates the 

the RHEED dynamics are characteristic of the Sb I As surface exchange reaction. 

The ST's scaling behavior, with respect to absolute Sb flux, also suggests that 

the Sb I As exchange rate is limited by the arrival of Sb and not the exchange 

reaction itself. 

6.5 Comparison of RHEED and XPS Results 

In Fig. 6.5 we show a comparison of representative RHEED data from Fig. 6.4 

with XPS measurements of the relative Sb coverage of InAs surfaces after Sb soaks 

of various lengths. As can be seen from the data, the ST of the RHEED pattern 

corresponds quite closely with the time measured by XPS for the Sbl As exchange 

reaction to saturate. The minimum in the temporal RHEED intensity profile 
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Figure 6.4: Overlays of plots of the change in the intensity of the specular RHEED 

spot while the anion exchange reaction is occurring. The dashed vertical lines 

signify when the InAs surfaces are exposed to the Sb flux initiating the As/Sb 

exchange reaction. The upper panel shows data taken when the Sb flux was 

predominantly composed of Sb and Sb2 , while in the lower panel a beam composed 

exclusively of Sb4 was used. The group of curves within each panel show several 

measurements of the exchange reaction taken under identical machine conditions 

showing the reproducibility of the RHEED dynamics. 
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corresponds to a fractional Sb coverage. This suggests that the change in the 

RHEED intensity during the Sb soak could be due to a mechanism similar to that 

believed to cause RHEED oscillations during MBE growth: temporal modulation 

of the surface roughness[17, 18]. The roughness could be morphological since 

there will be large Sb atoms diffusing across the InAs surface during the exchange 

reaction. Also, the XPS results indicated the formation of islands of metallic 

Sb on the crystal's surface. These islands could be the cause of the intensity 

modulations. Another possible source of the surface 'roughness' could be the 

stoichiometry of the surface. At the start of the Sb soak As will cover the crystal 

surface (with the growth conditions employed). By the time the RHEED pattern 

stabilizes, the XPS measurements show that Sb is the dominate surface species. 

Since the form factors for electrons scattering off of Sb and As differ, this could 

lead to the 'surface roughness' used to explain RHEED intensity oscillations 

during MBE growth. 

6.6 Summary 

In summary, we have used RHEED and XPS to explore a surface exchange 

reaction. From the XPS study, we know that exposing an InAs surface to an Sb 

flux initiates an Sb /As exchange reaction. The XPS data also indicate that the 

exchange reaction is self-limiting after the topmost layer of As has exchanged. 

We also found that the reaction occurred faster when using cracked rather than 

uncracked Sb. A RHEED study of the same physical system was also undertaken. 

In particular, we measured the change in the specular spot intensity diffracted 

from an InAs surface while exposing it to an Sb flux. We find that the specular 

intensity drops sharply at the start of the Sb soak then recovers toward its initial 

value. The time needed for the diffracted intensity to stabilize is a strong function 
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Figure 6.5: A comparison of representative RHEED data from Fig. 6.2 and 

XPS measurements of relative Sb surface coverage of InAs surfaces exposed to 

an Sb flux. Each RHEED data curve is representative of a series of data sets 

taken immediately prior to preparing a surface for an XPS measurement. The 

timescales on which the RHEED dynamics occur and Sb surface coverage changes 

are very similar. This indicates that the changes in the RHEED specular spot 

are related to the Sb /As exchange reaction. 
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of the Sb species incident on the InAs surface. For fluxes consisting primarily of Sb 

and Sb2 , the diffraction patterns stabilize much faster than incident fluxes made 

up of Sb4 . We also find that the surface stabilizes faster when the absolute Sb 

flux is increased. Both of these behaviors are consistent with the conclusion that 

changes in the RHEED pattern are due to the Sbl As exchange reaction occurring 

on the crystal's surface. We also compare the RHEED data to time-dependent 

XPS measurements of the relative Sb coverage of InAs surfaces soaked in Sb 

fluxes. The stabilization time of the RHEED pattern is in good agreement with 

the time indicated by the XPS measurements for the Sb I As exchange reaction to 

reach completion. This further suggests that the RHEED dynamics are caused by 

the Sb I As exchange reaction. Though further study is necessary to confirm this 

conclusion, the RHEED results indicate the possibility of indirect, time-resolved 

studies of surface exchange reactions and interface formation. This result could 

have a wide array of potential applications ranging from basic material science 

studies to MBE process control in manufacturing. 
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