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Abstract 

We investigate the 2d 0(3) model with the standard action by Monte 

Carlo simulation at couplings f3 up to 2.05 . We measure the energy density, 

mass gap and susceptibility of the model, and gather high statistics on lattices 

of size L :S 1024 using the Floating Point Systems T-series vector hypercube 

and the Thinking Machines Corp.'s Connection Machine 2. Asymptotic scal­

ing does not appear to set in for this action, even at f3 = 2.10, where the 

correlation length is 420. We observe a 20% difference between our estimate 

m/ AMs = 3.52(6) at this f3 and the recent exact analytical result . We use 

the overrelaxation algorithm interleaved with Metropolis updates and show 

that decorrelation time scales with the correlation length and the number of 

overrelaxation steps per sweep. We determine its effective dynamical crit­

ical exponent to be z' = 1.079(10); thus critical slowing down is reduced 

significantly for this local algorithm that is vectorizable and parallelizable. 

We also use the cluster Monte Carlo algorithms, which are non-local 

Monte Carlo update schemes which can greatly increase the efficiency of 

computer simulations of spin models. The major computational task in these 

algorithms is connected component labeling, to identify clusters of connected 

sites on a lattice. We have devised some new SIMD component labeling algo­

rithms, and implemented them on the Connection Machine. We investigate 
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their performance when applied to the cluster update of the two dimensional 

Ising spin model. 

Finally we use a Monte Carlo Renormalization Group method to directly 

measure the couplings of block Hamiltonians at different blocking levels. For 

the usual averaging block transformation we confirm the renormalized tra­

jectory {RT) observed by Okawa. For another improved probabilistic block 

transformation we find the RT, showing that it is much closer to the Stan­

dard Action. We then use this block transformation to obtain the. discrete 

,8-function of the model which we compare to the perturbative result. We 

do not see convergence, except when using a rescaled coupling .BE to effec­

tively resum the series. For the latter case we see agreement for m/ AMs 

at ,B = 2.14, 2.26, 2.38 and 2.50. To three loops m/ AMs = 3.047(35) at 

,B = 2.50, which is very close to the exact value m/ AMs = 2.943. Our last 

point at ,B = 2.62 disagrees with this estimate however. 
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Chapter 1 

Introduction 

Our best current theory of nature, the Standard Model, is a gauge theory. 

Four dimensional gauge theories thus form an essential part of our under­

standing of natural phenomena, but they are complicated and our compre­

hension of them is lacking in some respects . In particular non-Abelian gauge 

theories can provide analytical predictions only at very high energies where 

the coupling constant becomes small. This important phenomenon is called 

asymptotic freedom, and plays a key part in our ability to compare between 

experiment and theory. 

At lower energies analytical calculations can only be carried out in certain 

approximations and for simple models like, e.g., the non relativistic quark 

model. Thus important properties, like dynamical mass generation, and the 
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resulting physical quantities like, e.g., the ratio of the masses of nucleons, 

which stem from the infrared behavior of the theory can only be computed 

from first principles by using lattice gauge theory. 

There is another way to study these properties though, which is to study 

models that exhibit many similar properties. In fact, part of our knowledge 

of four-dimensional gauge theories is derived from the study of these sim­

pler models. One such class of models, the nonlinear sigma models in two 

dimensions have been studied extensively. 

Two-dimensional non linear sigma models, m common with four­

dimensional gauge theories, are asymptotically free in the ultraviolet (high 

energy limit), while in the infrared (at large distances) they are strongly 

coupled and generate a mass gap dynamically; some also have instanton so­

lutions. Studying the simpler models lends important insight into the study 

of the more complicated gauge theories. For this reason they have also been 

used to develop and evaluate many new methods later used to study gauge 

theories. 

The 0( N) non linear sigma models are a class of two-dimensional models 

that, for N > 2, are asymptotically free. They include the simplest model 

that possesses that property, the 0(3) model. The 0(3) model, but not the 

others, also possesses instanton solution in common with four-dimensional 
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gauge theories. 

Two-dimensional O(N) models, are related to lattice models known as 

n-vector models or O(N) invariant classical Heisenberg models . Our under­

standing of both of these models in the weak coupling regime (low temper­

ature in the classical Heisenberg model) originates in the Renormalization 

Group treatment of Polyakov1. To study the long wavelength limit he inte­

grated out the high momentum modes and showed that the beta function is 

negative at the weakest couplings. Thus by starting at weak coupling and in­

vestigating the behavior at larger length scales the running coupling should 

be driven into the regime of strong coupling (high temperature), which is 

known to have exponential correlation functions2
. The crossover between 

weak and strong coupling was observed and the prediction of a single phase 

was confirmed by the pioneering simulation of Shenker and Tobochnik3 using 

Monte Carlo and Monte Carlo Renormalization Group methods. 

Subsequent Renormalization Group calculations determined the f3 func­

tion and the anomalous dimension of the field 1 to two-loops 4, the extent 

of its universal part. From these the behavior of the mass gap and suscepti­

bility of the model in two dimensions can be obtained. The mass gap m is a 

multiple of the dynamically generated mass scale A : m = cAAA, where the 

subscript A is intended to show which quantities depend on the regularization 
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(or lattice action) chosen. Taking into account the subsequent calculations 

to three loops (made first in the modified minimal subtraction scheme5 and 

later for some lattice actions6) the scale is 

( 1.1) 

Thus, for different regularizations, the scale A, the value of 8 and the ratio 

m/ A change; however the different values of A can been related in a perturba­

tive calculation. This was done first by Paris/, who related the para~eter for 

the standard, nearest neighbor, lattice·action AsA and that for the modified 

minimal subtraction regularization of the continuum model m/ AMS> yielding 

m/ AMs/ AsA = 27.21. 

Later Monte Carlo simulations attempted to find scaling of the 

mass gap and susceptibility of the model according to the two-loop f3 

function8• 9• 10• 11 • 12, scaling which is known as asymptotic scaling. Using 

the nearest neighbor action they also confirmed the qualitative nature of the 

predictions but either did not see asymptotic scaling8• 9• lO , 12, or observed 

convergence to asymptotic scaling for the mass gap 11 (for f3 ~ 1.6) within 

large statistical errors. The value obtained for the proportionality constant 

mj AsA = 110 ± 10 was at a variance with that obtained by other methods, 
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notably large N and small volume expansions. Also recent high precision 

Monte Carlo calculations, particularly that of Wolff13 and ours14 (see chap­

ter 4), have shown that more precise estimates show large deviations from 

asymptotic scaling in this region. 

Several other methods have been used to probe the properties of the 

model. The original high temperature expansions and the strong coupling 

expansion demonstrated the existence of exponential correlations in that tem­

perature region. 

Our knowledge of the behavior of the model has also been greatly en­

hanced by the investigation of other aspects of the model. It has been shown 

to have an infinite set of non-local conservation laws. These in turn lead 

to the lack of particle production and conservation of particle number in 

particle interactions and factorizability of the scattering matrix. Using this 

property, Zamolodchikov15 proposed an O(N) invariant two particleS matrix 

and showed it was the correct one for the model in the large N limit. 

Bethe Ansatz solutions of the 0(3) and 0(4) models have been obtained 

by solving equivalent fermionic models 16• 17. Using these and relating them 

to the perturbative results a recent calculation by P. Hasenfratz et al. 18 

calculated the exact value of the ratio of the mass gap of the model to the 

A parameter; for the 0(3) model it ism/ 1\Ms = 8/e . This is an interesting 
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and important recent result. Because the applicability of the Bethe Ansatz 

has not been proven it is important to check this result with all methods 

possible. Monte Carlo simulation of the lattice version of the model offers 

the best prospects for such a test and has already played an important part 

in verifying the theoretical predictions of its properties. 

Now, with new algorithms which update the important degrees of free­

dom of the theory directly and thus much more efficiently, it is possible to get 

around the problem of critical slowing down that previously plagueq simula­

tions near critical points. The overrelaxation algorithm and the more recent 

cluster algorithms allow the study of the model on large lattices, enabling 

precise measurements of correlation functions and physical quantities even 

for large correlation lengths , of the order of hundreds, unaffected by finite 

size errors. Thus a clear test can be made of the weak coupling expansion 

obtained using the Renormalization Group (in particular of asymptotic scal­

ing of the mass gap and susceptibility of the model), and of the exact value 

of the mass gap. 

The previous most precise Monte Carlo calculations to date with the Stan­

dard Action (of Wolff13) do not see asymptotic scaling even at correlation 

length of about 120; even the latest MCRG calculation 19 reported asymptotic 

scaling for the standard and tree-level improved actions (TIA) at a value of 
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m/ AMs = 3.4(1) which is different from the exact value. While there is in­

teresting work using the 1/N expansion that compares with the exact result 

using numerical evaluation on finite lattices20, since, for N = 3 the expan­

sion parameter is not small, this expansion can obviously by itself provide 

conclusive evidence. Furthermore these results rely on numerical evaluation 

of large integrals (cost ex: L4
) and an extension from finite volume to infinite 

volume, and are thus very hard to compute for larger lattices; they are only 

available for /3 ~ 2.1, and thus although interesting cannot be used tp extend 

our knowledge about asymptotic scaling much, even in an approximate way. 

Thus Monte Carlo simulation and the Monte Carlo Renormalization 

group are the best methods that can be used to investigate non-perturbative 

aspects of the model and check asymptotic scaling. We performed a Monte 

Carlo simulation to obtain the infinite volume value of the correlation length 

and susceptibility. First, our simulations using the overrelaxation algorithm 

confirm the measurements of the susceptibility and mass gap of the model 

for /3 :S 1.9, i.e ., ~ ~ 120, made in the cluster Monte Carlo study of Wolff. 

This is important, as no other study has checked the results for values of 

/3 > 1. 7 because critical slowing down is severe for other algorithms; in par­

ticular, we verify the non-monotonic behavior of the ratio of the mass gap 

and susceptibility to the respective perturbative two-loop approximations. 
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Our results then go on to extend the region measured, first with the over­

relaxation algorithm up to f3 = 2.05 on a lattice of length L = 1024 where 

e c::: 300; subsequently we used a cluster Monte Carlo algorithm on a Connec­

tion Machine-2 (CM-2) to simulate at up to f3 = 2.15 on a lattice of length 

L = 2048, where e > 500. 

We are able to extract the infinite volume correlation length for f3 ::; 2.1 

and the susceptibility for f3 ::; 2.0. Our estimates are not consistent with 

asymptotic scaling for the mass gap and susceptibility of the mod~l in this 

coupling constant range. In particular the value obtained at f3 = 2.1 for the 

ratio of the mass gap to AMs• the lambda parameter in the modified minimal 

subtraction scheme, is mj AMs = 3.41( 4), which is still16% larger than exact 

result. This is the case even though the model is deep in the continuum limit, 

with e = 420 ± 5. The susceptibility also shows no clear sign of attaining 

asymptotic scaling, growing faster than the three-loop equation predicts. 

We also check on an assertion that using a rescaled coupling constant 

f3E, that is derived from the energy, improves the convergence to asymptotic 

scaling21 • 22. This is equivalent to the coupling f3 in the limit f3 --t oo and 

effectively perform a resummation of the series that it is argued could take 

into account the disturbance from any nearby unphysical singularities21 . We 

see that the two-loop results are much closer to the exact result of mj AMs· 
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However the third-loop correction, which we calculate, moves the results 

away from the exact results and towards that observed when using the usual 

coupling (3. Thus the proximity of the two-loop results to the exact value 

must be attributed to coincidence. 

Clearly there are other contributions to the /3-function of the model 

that cause the difference between the predicted and observed values of the 

mass gap. These could be either higher order perturbative terms or non­

perturbative effects . A possible source of non-perturbative effects !s a pair 

of singularities in the complex coupling constant plane, observed by Butera 

et al. 23 and estimated to occur at f3 = 1.9(1) ± 0.3i. Thus a search at higher 

values of f3 is of interest, since the influence of these singularities should be 

ameliorated. 

Before we describe our subsequent calculations we will concern ourselves 

with the Monte Carlo update algorithms we use for these simulations. For the 

first part of this study, we used a hybrid simulation algorithm that combines 

overrelaxation and Metropolis updates. Most other local Monte Carlo update 

algorithms, suffer from critical slowing down: autocorrelation times r diverge 

as a power z > 2 of the correlation length as the critical point of the model 

is approached ( r = cC). Thus large simulations at large correlation lengths 

would require CPU time proportional to ~d+z (where d is the dimension of 
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the system), i.e., ( 4 in our case, which is prohibitively large. 

The overrelaxation algorithm is a generalization of the successive over­

relaxation algorithm for the iterative solution of matrix equations for the 

update of simple multi-quadratic actions. It is a local algorithm and for free 

fields24 it obtains z = 1. For models that have additional interactions one 

of the ways to use the algorithm is to use it in its microcanonical variant 

and add some simple Metropolis to provide ergodicity. We already showed 

that, for the XY model, this hybrid overrelaxation method obtains significant 

speedup over other local algorithms25 and, when the number of overrelax­

ation sweeps per metropolis sweep is held constant, it reduced the dynamical 

critical exponent in this model to between z = 1.2 and 1.48. 

In our present study we observe that, by increasing the ratio of overre­

laxation sweeps to metropolis sweeps in proportion to the correlation length 

(, the effort expended to obtain the same autocorrelation time rises with a 

smaller exponent, z' = 1.08( 1 ). Since this hybrid overrelaxation algorithm 

is the fastest currently known for other models, in particular for quenched 

lattice gauge theory, (and for other actions of this model that include anti­

ferromagnetic interactions, like, e.g., the tree-level improved action) this re­

sult is of particular interest. Furthermore, our result has been confirmed in 

an analytical study of this algorithm for the Gaussian model by Wolff26 . He 
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shows that a similar choice of the mix of overrelaxation sweeps and heat bath 

sweeps obtains optimal performance with z = 1. In a recent paper Bathas 

and Neuberger27 showed that a class of generalizations of the overrelaxation 

algorithm are incapable of reducing z below its standard overrelaxed value 

of z .......- 1. They reach the tentative conclusion that there exists a barrier at 

z .......- 1 for local update algorithms. 

It seems that the only way to obtain faster decorrelation is to use the 

cluster algorithms invented by Swendsen and Wang28 for Potts mo_dels and 

extended to O(N) models by Wolff29 . These obtain very small decorrelation 

times for all correlation lengths, with exponents z that are so small they are 

hard to measure; in most cases z is between 0 and 0.3. 

However in order to use cluster algorithms on large lattices we had to 

resolve some issues involved in adapting them to parallel computers. The 

reason is that parallel computers offer the most powerful computing resources 

for Monte Carlo simulation of large systems at the present time. Capable 

of a large number of floating point operations - of the order of 1-10 GFlops 

for many current machines, they typically have large memories of several 

gigabytes (Gbytes) and are cost effective relative to other high performance 

computers, e.g., vector machines like Crays. Current trends are such that 

they will continue to the best performance for the foreseeable future . They 
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are very well suited to local algorithms, like the single site Metropolis and 

overrelaxation, in which information of a (small) finite volume around a site 

is used to update the degree of freedom. The advent of cluster algorithms, 

produced a problem. In one step of the method the bonds of the Hamiltonian 

are replaced by a freezing bond or deleted, and after this all sites joined by 

frozen bonds are updated simultaneously. An essential part of the update 

procedure is thus to identify the clusters of sites joined by frozen bonds. This, 

however, is a non-local task; at criticality, the largest cluster percolates, so 

information must travel over all length scales up to the length of the lattice, 

and via fractal labyrinthine paths. 

We address the particularly hard problem of obtaining a practical and 

simple algorithm for cluster identification within the data parallel model of 

parallel computation. This model is the most suitable for Single Instruction 

Multiple Data (SIMD) computers like the Connection Machine-2 and MasPar 

MP-1 and MP-2; algorithms for this model can also be adapted for Multiple 

Instruction Multi Data parallel computers like, e.g., the Ncube hypercubes 

and the Touchstone Delta. First we note that naive algorithms which use 

only local steps have very poor performance, since at criticality they require 

an average number of steps proportional to the length L of the lattice. We 

construct two algorithms to perform cluster labeling : the first is a simple 



13 

multi-scale algorithm that uses connection variables at lengths that are pow­

ers of two and a simple prescription that progressively sets more connections 

at each scale, thus accelerating the rate that information travels over large 

distances. The other uses the irregular communication routines to get and 

send cluster labels over ever increasing length scales . 

For both methods the average number of iterations required to label con­

figurations of bonds (at the critical point of the Ising model) scales with 

the logarithm of the length of the lattice. The time taken by the ~et/send 

algorithm is the best obtained for this problem on the CM-2. 

Finally we perform a Monte Carlo renormalization group study of the 

model. This probes a region of the model not previously investigated and 

provides the best comparison with the exact result that can presently be 

obtained. To perform the calculation we have made the first extensive use of 

an innovative MCRG method proposed several years ago , one of few practical 

and general methods for extracting the couplings of the block Hamiltonians. 

We find that the method performs well and can extract the block Hamil­

tonian for several blocking levels of the transformations we tried; its sys­

tematic errors are quantifiable - it has errors from the truncation of the trial 

Hamiltonian and from finite size effects . By studying the change of couplings 

under the standard (averaging) block transformation for the standard action 
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we see convergence to a renormalized trajectory after about four blocking 

steps. The same curve is obtained for an action proposed by Shenker and 

Tobochnik, who used simple block spin renormalization group arguments in 

an attempt to derive an action close to the renormalized trajectory. The 

trajectory is also close to that seen by Okawa using a very different method, 

but the two curves do not coincide; statistical errors however (not quoted for 

that work) and known systematic errors, which include truncation effects in 

both method and finite size effects (due to the older calculation's la~tice size 

of 1282 ) account for the differences. 

We also studied the flow of couplings for a probabilistic block transfor­

mation. This was proposed by P. Hasenfratz et al. 30 as an improved alter­

native, in order to obtain a transformation whose renormalized trajectories 

is closer to the nearest neighbor Hamiltonian and thus hopefully is reached 

after fewer blocking steps. The block spin b is chosen from a probability dis­

tribution P(b) <X e-Cb·S where Sis the sum of spins in a block and C = C((3) 

is a tunable parameter. For the choice C = Cf3 leading order perturbation 

theory suggests that c = Copt = 2.3 is optimal for the 0(3) model. We tried 

to find the renormalized trajectory for this transformation. Several points 

starting at low initial (3 appear to almost converge to a single curve; however, 

for larger initial couplings ((3 2: 2.0), some of the couplings do not converge 
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even after five blocking steps. Thus this choice does not seem useful. 

With another choice, C = 5.0, though, we are able to observe clear con­

vergence to a single curve, which we identify as the renormalized trajectory 

of this transformation. Using this, we extract the discrete f3 function of the 

model 6./3(/3) by comparing the results of simulations on different lattice 

sizes. ( The discrete beta function is defined by f:::./3(/3) = /3' - f3 where /3' is 

chosen so that ~(/3') = !~(/3) ). We obtain agreement with the measurements 

of Hasenfratz and Niedermayer at /3 = 2.14 and 2.26 and are able to measure 

up to f3 = 2.62 where the correlation length ~ = 9180 ± 100. A comparison 

to the perturbative three-loop results for 6./3 shows that for /3 :S 2.5 our 

results slowly converge to the prediction, with the last two being compatible 

with the three-loop equation within statistical errors; however our estimate 

at f3 = 2.62 is much larger than the three-loop expectation. Thus our results 

do not demonstrate asymptotic scaling within the region studied. 

Furthermore, if we use our measurements of the discrete /3 function along 

the chain of points (/3 = 2.02, 2.14, .. . , 2.50, 2.62) and that of the correla­

tion length at f3 = 2.0 and 2.05, we can estimate the correlation length 

at each of these subsequent points. (This was the method used to obtain 

the estimate of ~(/3 = 2.62) = 9200.) From these we can obtain the value 

m/ AMs(/3 = 2.62) = 3.31( 4) . This remains compatible with the value 
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mj AMs = 3.4(1), measured for the TIA by Hasenfratz and Niedermayer, 

where asymptotic scaling for the b./3 function is seen within statistical er­

rors. Thus universality appears to hold. However for the standard action- as 

the equivalent measurement of the discrete beta function already showed- the 

value of m/ AM5 is not constant. Its value remains 10% higher than the exact 

value obtained from the Bethe Ansatz solution, showing that corrections to 

the three-loop formula for m (either higher order terms or non-perturbative 

effects) must be higher than expected. 

Using however the alternative coupling constant f3E we see that for the 

four points f3 = 2.14 to 2.50 the values of m/ AMs we get by dividing by the 

two- (or the three-) loop equations that agree with each other. This lead 

us to provisionally conclude that asymptotic scaling in this coupling may 

have been observed. A problem with this is that the last point, at f3 = 2.62, 

disagrees with these values; however, this point might be off because of a 

combination of statistical and systematic effects . If this objection is put 

aside for a moment we can examine the value we get for m/ AMs· To three­

loops this is m/ AMs = 3.04 7(35) at /3 = 2.50, which is very close to the 

exact value m/ AMs = 2.943; the difference is small enough that the next 

order correction could account for it. Thus it would appear that credence is 

lent to the assertion21 that the alternative choice of coupling f3E will achieve 
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asymptotic scaling much faster than the original coupling (3 . 

We will now describe the organization of the subsequent chapters. First, 

we will review some of the important treatments of the model that we have 

mentioned, that lead to the predictions of its properties, in chapter 2. We 

will then present the new monte Carlo simulation techniques that allow us 

to do high accuracy simulations of the model at large correlation lengths in 

chapter 3. Next we will describe our Monte Carlo simulations on large lattices 

to test asymptotic scaling of the mass gap and susceptibility in Chapter 4. A 

description of our algorithms for labeling clusters of spins and detailed results 

for these are presented in Chapter 5. Our Monte Carlo renormalization group 

calculation is in Chapter 6. 
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Chapter 2 

Theory of the Model 

The O(N) nonlinear sigma model and its lattice regularized counterpart, the 

classical Heisenberg model, have been extensively studied. 

Their behavior in two dimensions is dictated by the lack of spontaneous 

magnetization for models with a continuous symmetry for this number of 

dimensions, in accordance with the Mermin-Wagner-Coleman theorem31• 32. 

Their long wavelength behavior has been determined using perturbation the­

ory in the low temperature limit, and the behavior of the mass gap ( correla­

tion length) and susceptibility of the theory have been determined using the 

Renormalization Group. 

The models are believed to be asymptotically free for N > 2 and possess 

a dynamically generated mass gap; for N = 3 the model also has instanton 
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solutions, and both these properties are similar to those of non-Abelian gauge 

theories in four dimensions. 

The case of N = 2 is the XY model, which has very different behavior 

driven by topological effects33: it has an infinite order phase transition driven 

by a condensate of vortices which produces an infinite correlation length on 

the low temperature side of the transition, and a diverging correlation length 

in the high temperature phase, which is a phase of dilute vortices. 

In contrast, the O(N) model for N > 2 has only one phase, the. massive 

phase of exponential correlation functions that is seen in the high tempera­

ture/strong coupling expansions of the model2. These predictions are made 

by the Low Temperature Renormalization Group of Polyakov 1; we will review 

them in this chapter. 

Similarly to the Massive Thirring Model, the O(N) model has an infinite 

set of conservation laws which lead to conservation of particle number and 

factorizability of the S matrix. Using this an exact S matrix has been pro­

posed for the model. An exact solution of the model has also been obtained. 

We also examine the consequences of knowing the exact solution and the 

S matrix, in particular in combining it with the perturbative solution, to get 

the exact value for the ratio of the mass gap to the A parameter. 
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2.1 The connection between lattice and con-

tinuum models 

We start by examining the relation between the continuum model and its 

lattice regularized counterpart. This is the two-dimensional classical Reisen-

berg model, or O(N) invariant Heisenberg model ; the Hamiltonian of the 

model is 

H = - L V;j S; . Sj 
i,j 

(2.1) 

where s; is an N component vector of unit length and V;j = V(i- j) is a 

translation and rotation invariant potential. The partition function of the 

model is 

z = J II dfl(s;) e-+H (2.2) 
I 

where Tis a dimensionless temperature and d11() denotes the O(N) invariant 

measure. 

The constraint ( 5;) 2 = 1 means that the components of the spins s; are 

not independent degrees of freedom . In order to study the model we identify 

the N- 1 (independent) degrees of freedom by expanding the spin about a 

direction u: 

a a (- A) a 1r; = S; - S; • U U (2.3) 
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for a = 1, . .. , N - 1 and 

u = s; · u = J1 - ir2. (2.4) 

For dimensions other than two, u can be thought of as the direction of spon-

taneous magnetization. The partition function thus becomes 

Z _]IT dir; (_!__ ""'T/·· [-· - . ( -2)112( -2)1121) - . [1 - if2jl/2 exp T ~ viJ 7rl 7rJ + 1 - 7r; 1 - 7rj • 
' t t) 

(2.5) 

After expanding the Hamiltonian in powers of 1r
2

, a series in terms of loops 

can be obtained. This gives an expansion in the temperature T, in which the 

propagator involved is the inverse of the two-point Green 's function 

(2.6) 

where V(q) = Lj \tije<f·r;1 is the Fourier transform of the potential. 

The interactions in the model originate in the higher order terms of the 

expansion of the square roots in the u terms and from the integration measare 

IT 1 
= exp [- ~ Z::ln(1 -7fi 2

)] . )1 -2 2 . 
I - 1ri I 

(2. 7) 
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Since we are interested in the long distance limit of the model we eliminate 

all but the most divergent parts of the propagator to Gab ~ !;8ab· This 
q 

simplification makes the diagrammatic expansion the same as that of the 

nonlinear sigma model, with the action 

(2.8) 

In order to study this model the propagator's infrared divergences in 

two dimensions must be regulated. There are two approaches to this; the 

more recent one34 • 35 relies on Elitzur's theorem on the vanishing of infrared 

divergences for Green's functions that are invariant under the symmetry of 

the group36. Using it one studies only products of the fields like the two-point 

function and four-point functions. 

The original approach of Brezin and Zinn-Justin4 uses a magnetic field 

H along the Nth axis as a regulator. Thus the O(N) symmetry of the model 

is broken, and is recovered only in the limit of a vanishing field H ~ 0. The 

additional term -HiJ(x), which is introduced, can in turn be expanded in 

powers of 11'( x) and the two-point Green's function becomes 

(2.9) 
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The expansion of Z can then be carried out in d = 2 + t dimensions. The 

terms coming from the measure vanish in dimensional regularization. They 

have the effect of preserving the O(N) invariance of the theory by canceling 

the mass terms that would otherwise be induced by the breaking of this 

symmetry, which also vanish in this regularization. 

The four-point interaction can be read off from the action, and m mo-

mentum space is 

(2.10) 

Six and more point interactions are also generated, and can similarly read 

off. However the behavior for two dimensions remains problematic, e.g., the 

two-point vertex function r~!>(q) = 8abf( 2>(q) calculated to one loop is infinite 

(2.11) 

2.2 The Renormalization Group treatment 

This pole of the two-point vertex function in exactly two dimensions is a con-

sequence of ultraviolet divergences, and must be rectified by renormalization. 

The symmetry of the model insures that only two renormalization constants 
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are required. An arbitrary mass scale 1-l is introduced and the renormalized 

quantities are the dimensionless rescaled temperature t 

(2.12) 

and the field 1r'R: 

(2.13) 

The magnetic field can absorb the field renormalization and its reno~malized 

value is 

(2.14) 

The renormalized Greens and vertex function will thus become 

G(MJ( · t h ) - zM1 2G(MJ( .. ·z-lr z-lz- 1 H A) 
11" R Pi' ' ' 1-l - 11" 1r p, ' 1-l t ' t 1r , 

(2 .15) 

r (MJ( t h ) z-M/2r(Ml( · ·z-1T z-lz- 1 H A) 
1r R Pi ; , , 1-l = 1r 1r Pi ' 1-l t ' t 1r ' 

(2.16) 

where A is a reference scale. 

The right-hand side of these equations is expanded order by order in t 

and must be finite at each order in the limit oft: = 0. Expanding Zt and Z7r 



25 

and substituting into equation (2.11) leads to 

(2.17) 

N -1 z1f = 1 + --t + O(t2
) 

f. 
(2.18) 

This allows us to extract the f3 function, that determines the flow of the 

coupling constant with change of scale, and the anomalous dimension 1 of 

the 1r field from the variation in the mass f..l, 

f3(t, E)= at I 
f..la~ T = d- (N- 2)t2

- (N- 2)t3 + O(t4
) (2.19) 

(t) 8lnZrr 1 /1r = f..l a~ Bare -(N- l)t + O(t3
) (2.20) 

In the above equations we have also used the two-loop results4 . 

The connected correlation functions fulfill the Renormalization Group 

equation 

{ 
a a 1 . ( 1 .. f3(t) ) a } (M) . _ 

f..l af..l + f3(t) at+ 2N,pz(t) + 2'pz(t) + -t- -f. h ah GrrR (p;, t, h, f..l) - 0 

(2.21) 

Although the expansion used is not good in two dimensions, the renormal-

ization group functions f3(t, t) and /1r(t) are regular at f. = 0 and are thus 
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valid. Thus, from the beta function of equation (2.19) we see that in two di-

mensions the theory is asymptotically free for N > 2, like non-Abelian gauge 

theories in four dimensions . and, since the coefficients of the renormalization 

group expansion are regular at t = 0, the behavior in two dimensions can be 

extracted. The O(N) symmetry is restored and the field becomes massive. 

The correlation length ~ is determined by 

(2.22) 

Given the dimensional argument ~ "' J.l- 1
, can be integrated easily to deter-

mined the mass gap of the theory m = 1/ ~ 

m(t) = J.l C N:_2 exp (-
1 

) J(t) 
t(N- 2) 

(2.23) 

where J(t) is a function regular at t = 0. Perturbation theory cannot deter-

mine the value of f(O). 

The susceptibility of the theory is also determined: 

x(t) "'c 1
- N:_2 exp (-

2 
) 

t(N- 2) 
(2.24) 
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2.3 The S matrix 

The nonlinear O(N) sigma model in two dimensions has an infinite set of non­

local quantum conservation laws37. These lead to conservation of particle 

number, i.e., forbid particle creation, and thus lead to the factorizability of 

the S matrix into combinations of two particle S matrices. 

A.B.Zamolodchikov et a/. 15 determined the two particle S matrices that 

are compatible with the hypotheses that the elementary particles of the model 

are massive, do not form bound states and belong to vector O(N) multiplets. 

Conservation of two-momentum then lead to a simple two particle S matrix 

8(p1- p~)8(p2- p;) (8;kbjWI(s) + b;jbkW2(s) + b;tbjW3(s)) 

+(p~ ~ p~) 

where s = (p1 + p2 )
2

• Using the rapidities Oi of the particles to replace 

the momenta, P? = m cosh 0; and pJ = m sinh 0;, where m is the mass, 

simplifies the treatment. The Mandelstram variable s can then be replaced 

by 0 =I 01 - 02 I as s = 2m2 (1 +cosh 0). The functions ()(0) = (J(s(O)) are 
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related by the unitarity and analyticity of the S matrix, 

(2 .25) 

(2 .26) 

(2 .27) 

and two other similar equations. Furthermore the factorization of the S 

matrix into sums of two-particle terms requires certain relations ·between 

the u functions. These self-consistency equations ensure the coherence of 

outgoing waves, that is required in order that their monochromatic nature is 

maintained. The first of these three equations 

allows the elimination of u3 ( B) up to a parameter A 

which together with (2.27) determine u 1 in terms of u 2 . With the substitution 

of u 1 and u 3 two other equation determine the parameter A : A = ;}:2 . 
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Finally equation (2.25) leads to an equation for u 2 

This and equation (2.26) must be satisfied by u 2 ( B), leading to a general 

solution 

where ak are M arbitrary real constants and u~( B) is the solution with the 

least number of singularities. For N = 3 this is 

This solution is the only one whose spectrum has no isospin degeneracy. It 

also has no poles on the physical part of the s-plane, so there are no physical 

bound states. 

Thus using the unitarity, analyticity and factorization of the S matrix 

we have constructed a factorized S-matrix with O(N) isotopic symmetry, for 

N > 3, by the bootstrap program. This has been compared with the 1/ N 

expansion of the O(N) model showing that they are in agreement up to order 

1/N originally38 and subsequently39 up to order 1/N2
. 
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2.4 Bethe Ansatz solution of the 0(3) model 

Wiegmann 16 provided the exact solution of the 0(3) nonlinear sigma model 

using the Bethe Ansatz technique. The model is considered with a source 

hmu coupled to the Noether current J: = s x 8~>5. 

The goal is to determine the free energy of the model J( h) 

e-f(h} = j Ds(x) exp ( -A(s)- h~> · j d2xJ:) , (2.28) 

where h2 = h~> · hw 

Polyakov and Wiegmann17 solved the 0(4) nonlinear sigma model by 

using the relation to the SU(2) 0 SU(2) model and solving an equivalent 

fermionic model. A generalization of this method can be applied to solve the 

equivalent fermionic model of the 0(3) model. The exact solution is provided 

by a hierarchy of Bethe Ansatze that yields the ground state energy. From 

this the free energy difference of states in an external field is determined to 

be 

1 lB J(h)- f(O) = --m cosh e. E(B)dB 
27r -B 

(2.29) 
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where ~:( 0) derived from the integral equation 

~:( 0) - j_: 71" 2 + ( ~ _ ()')2 ~:( ()')d()' = h - m cosh() (2 .30) 

with B determined by the condition t(±B) = 0. 

2.5 The exact value of the mass gap 

Hasenfratz, Maggiore and Niedermayer 18 obtained the exact value of m/ AMs 

by comparing the Bethe Ansatz solution of the 0(3) model of Wiegmann16 

with the result of weak coupling perturbation theory. 

In particular, they consider the model in the presence of an external field 

h coupled to the Noether charge Q3 • Using perturbation theory they obtain 

an expansion of the free energy difference f (h) - f ( 0) in terms of AM s for 

the limit of h ~ m: 

h2 h h 
J(h)- f(O) = -- ( ln 112A- +In ln A-+ 0(1)) 

471" e MS MS 
(2.31) 

We then consider equation (2.29) from the Bethe Ansatz solution. We 

concentrate on the threshold h ~ m and the limit h ~ m . In the former a 
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simple iterative solution is possible giving: 

f(h)- f(O) = -~ J2ffi (h- m) 312 

3 7r 
(2.32) 

To check this one can observe that the proposed S -matrix is , in this limit, 

equivalent to that of a gas of impenetrable bosons in one dimension. From 

this one can obtain expression for the same free energy difference; the result 

agrees with the previous equation. 

In the limit of large h, an expansion in terms of h/m with a mu"ttiplying 

factor of h2 is expected, similar to equation (2.31). Assuming this form , 

a simple iterative calculation gives an approximate value for the constant 

term, and thus AMs· In contrast , considerable effort is required to prove 

this expansion by solving the integral equation in this limit using generalized 

Wiener-Hopf technique. The expansion obtained agrees with that of pertur-

bation theory and the comparison reveals the mass gap m in terms of the A 

parameter ( to within 10-s ) 

8 

e 
(2.33) 

This is an important theoretical prediction. If either the Bethe Ansatz 
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solution or the proposed S matrix is correct, this calculation means that the 

renormalization group determines the behavior of the mass gap of the theory, 

in the low temperature limit, with no free parameters. Furthermore, since 

this theory is much easier to simulate than gauge theory in four Euclidean 

dimensions, a more stringent test of the results of the Renormalization group 

is possible. 

It is with the methods we will use to conduct this test that we will concern 

ourselves next. 
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Chapter 3 

Monte Carlo Algorithms 

In the absence of analytical tools that evaluate most physical quantities of 

interest in the non-perturbative region , a powerful numerical method has 

been used on many problems: the Monte Carlo method. This tool is used in 

conjunction with analytical techniques applicable to special cases and limits. 

(There are many introductions to Monte Carlo, e .g. , Binder and Heermann 

40, and Sokal41 ). 

In order to discuss with more clarity, we will use a typical problem 

from Statistical Mechanics . We introduce a field S( x) on a d dimensional 

space with a Hamiltonian H . For a typical quantity one wishes to measure 

0{ S( x)}, the average of interest can be expressed as 
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< 0 >= f VS 0 exp -f31i(S) 
J VS exp -f31i(S) ' 

(3.1) 

where VS = llxdJ.L(S(x)) and dJ.L(S(x)) is the invariant measure of the field 

S(x) . 

In most cases people use importance sampling to generate a large num-

ber of different configurations S, using many different methods, that are 

distributed according to the probability distribution 

1 
Peq(S) = -rrs = Z exp[-/31i(S)] (3.2) 

where the normalization factor Z is the partition function: 

Z = j dS exp[-f31i(S)] (3.3) 

If N configurations Si are generated and N0 are left out to allow the system 

to thermalize, the estimate of the average is 

1 N 
< 0 >= N- N, L O(Si) 

0 i=No+l 

(3.4) 
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3.1 Dynamical Monte Carlo 

The dynamical Monte Carlo method is a widely used and general method 

for evaluating large dimensional integrals by importance sampling. It is a 

stochastic process and encompasses a large variety of techniques, which share 

a number of properties: starting from a configuration {50 ( x)} of the system 

a Markov chain of configurations { S;( x)} is generated using a transition rule 

T to generate each one from the previous one: 

T 

{ S; (X)} ~ { s: (X)} 

T is almost always probabilistic, and thus can be specified using the prob­

ability distribution W( <P ~ ¢/). In order that the configurations generated 

have a limit probability distribution, and that is the equilibrium one 1r 4>, it 

is enough that the transition procedure T satisfies two simple conditions, 

• Ergodicity. Starting from any configuration S there exists a possible 

path to any other configuration 5' . More precisely there exists a finite 

number of steps n > 0 for which the probability Pn(S ~ S') is finite. 

This is more precisely called irreducibility. 
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• Stationarity. For all configurations r , 

(3.5) 

If these conditions hold then we are guaranteed that the probability distri-

bution of configurations generated will approach the desired stationary dis-

tribution in the limit of infinite number of steps: The infinite time averages 

of quantities measured will tend to the ensemble averages. 

The stationarity condition is usually achieved by satisfying another more 

restrictive condition: detailed Balance : 

Autocorrelation: Since every configuration S' is generated starting from 

a previous one S, it will contain memory of it. A "essentially new" configu-

ration, statistically uncorrelated with S will only be produced after a certain 

number of Monte Carlo steps. The measure of the number of steps to a 

"new" configuration is the decor relation time T. 
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3.2 The Metropolis procedure 

The procedure proposed by Metropolis42 in 1953 and extended slightly by 

Hastings43 is a very general procedure that governs almost all Monte Carlo 

simulations. A change is proposed according to an arbitrary rule and is 

accepted according to a simple criterion. Let p(o) is arbitrary irreducible 

transition matrix, called the proposal matrix. Each transition ¢> ---+ X is 

then accepted with probability aq,x or rejected otherwise, leaving a trivial 

transition ¢> ---+ ¢>. 

In order to satisfy detailed balance it is necessary and sufficient that the 

probabilities aq,x follow: 

for all ¢>=/=X · This can easily be done by choosing 

where F: [0, +CX)] ---+ [0, 1) is a function for which for all x 

F(x) 
F(1/x) 

=X 

(3.6) 

(3.7) 

(3.8) 
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3.2.1 The single-site 'Metropolis algorithm' 

The most common choices of the very general Metropolis procedure are re-

ferred as the "Metropolis algorithm." In many cases the proposal matrix 

p(o) is symmetric, i.e., the 1rxp~0) = TrrJ>P~~· It thus cancels out in equations 

(3.6) and (3.7). a is usually adjusted to give an average acceptance of 50%. 

The most popular choice is making the proposal a change in the field at 

one site from ¢ to a nearby value ¢ + ary, where a is an adjustable parameter 

and TJ a unit Gaussian random variable. 

3.2.2 The Heat-Bath algorithm 

For many actions a very different approach is possible: Considering a single 

site, keeping all other sites fixed and consider the conditional probability 

distribution generated by the action as a distribution from which to pick a 

new element. Thus the previous value of the spin at that site is ignored. For 

example, in the 0(3) model the new spin is chosen from the distribution 

P11"(sii{sj},j =/= i) =A· exp (f3si · L sj) (3.9) 
<j,i> 

where A is a normalization constant . 
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Critical slowing down 

The single-site standard Metropolis and the heat bath algorithms provide 

a simple way to simulate many statistical systems. However they suffer 

from an important problem when used to study systems near criticality. As 

the correlation length of the system grows, the decorrelation time increases 

proportionately: 

T = c·C (3.10) 

where z is the dynamical critical exponent of the algorithm. The reason is 

that near the critical point spins are correlated over distances of the order 

of the correlation length ( Since these algorithms are local, information 

on a change will perform a random walk, and in 'time' t travels distance 

proportional to v'f,. Thus in order for a change to be made on the scale of~' 

it will take ' time' roughly e. Typically z 2:: 2. 

If this cannot be circumvented it will severely limit the ability to simulate 

close to critical points, i.e ., at large correlation lengths. In particular, as, 

with any algorithm, the time taken to do one sweep (update of all the sites 

of a lattice) is proportional to the volume, and the number of sweeps to 

generate a statistically independent configuration rises as C with z 2:: 2, the 

computational cost rises very rapidly - like C Ld ~ ~d+z. with the system 
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size L and correlation length ~. 

Thus algorithmic improvements that reduce the value of z are necessary 

in order to simulate large systems near criticality. 

3.3 The overrelaxation algorithm 

The first of these, the overrelaxation algorithm was invented by Adler44 by 

generalizing the successive overrelaxation methods for solving systems of lin­

ear equations to stochastic processes for multi-quadratic actions. This algo­

rithm was similar to the heat-bath algorithm; a new field was chosen from 

a probability distribution that is a function of the spins that field is coupled 

to. After identifying the minimum of the action we find the point opposite 

to the original value from the previous value of the field (and equidistant 

from the minimum), which we call the mirror point. The central point of 

the distribution is chosen at a point between the minimum and the mirror 

point. A new adjustable parameter w, analogous to that of successive over­

relaxation, determines both the location of the central point and the width 

of the distribution . 

For the multi-quadratic action 

S(x;, {xj,j f i}) = a(x;- x?) 2 + c (3.11) 
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with a, x? and c functions of { x #i}, detailed balance is satisfied by the choice 

x~ = x? + (1- w)x; + w(2- w)a- 112 ry (3 .12) 

where "7 is unit Gaussian noise. 

The values w can take are thus restricted: 0 < w < 2. Outside this 

range the algorithm diverges . In the limit that w -+ 2 the algorithm becomes 

deterministic and microcanonical, always choosing the mirror point while 

for w = 1 the heat-bath algorithm, while in values in between we obtain 

successive overrelaxation. 

Adler's overrelaxation algorithm has been shown to have significantly re­

duced critical slowing down for the Gaussian model24, to z = 1 for both the 

case of sequential updating and of checkerboard updating. For this perfor­

mance, it is necessary to tune the parameter w appropriately. 

For other models , which do not have a multi-quadratic action, the simple 

equation determining the probability distribution is no longer applicable. 

The correct probability distribution is more complicated . Therefore there 

is a choice of approaches. Either the probability distribution must be used, 

exactly or approximately using an accept/reject step, or the microcanonical 

limit can be used which must be combined with another update procedure 



43 

- needed to provide ergodicity. The latter , hybrid , approach is the one we 

have chosen. This provides a very simple and fast prescription for the key 

part of the update procedure which is easily vectorizable and parallelizable. 

In particular in our implementation we partitioned the lattice in one­

dimensional slices among the processors. We used an updating scheme in 

which several rows of reds spins were updated simultaneously, followed by 

the lower neighboring rows until all red spins had been updated, and then 

all black spins were updated in a similar manner. 

3.4 Cluster algorithms 

A very different method has been discovered recently that works to allevi­

ate critical slowing down even further . It is non-local , and is based on a 

correspondence between the Potts Model and the random percolation model 

long ago discovered by Fortuin and Kasteleyn45 . Swendsen and Wang28 in­

vented this algorithm for a ferromagnetic Potts model, and it has since been 

extended, principally for 0( N) models by Wolf£29 

In order to talk about the extension to the O(N) models, we will briefly 

describe the Potts model version28
. We define this for a spin a which take 
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the value 1 to q with the Hamiltonian: 

1{ = f{ L (8u .,u
1 

- 1) (3.13) 
<i,j> 

Starting from the partition function 

(3.14) 

they consider the interaction between two site I and m and remove it from 

the Hamiltonian: 

'H(I,m) = f{ ( 8CT CT - 1) 
" J 

(3.15) 
<i,j>#<l,m> 

and the partition function can be split into two parts 

z _ zsame + -K zdif f 
- <l,m> e <l ,m> (3.16) 

where the spins at I and m have been restricted to have the same 

(3.17) 
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and different values 

(3 .18) 

We can now define a partition function in which the term < l, m > does 

not exist , and the spins are independent: 

Z indep T ('1.../ ) zsame zdif 1 
<i,m> = r {u} exp I L(/,m) = <l ,m> + < l,m> (3.19) 

and in terms of this our original partition function is 

z _ (1 _ -K)zsame + -K z indep - e < l,m> e < l,m> (3 .20) 

If this procedure is used to eliminate all interactions one by one, one ends 

up with the partition function of the independent bond percolation model, 

with bond probability p = (1 - e-K) . 

Swendsen and Wang used this to define a procedure for updating a Potts 

model by using the following prescription: 

• All terms in the Hamiltonian are considered and bonds are created 

between sites that have the same spin value with probability p. 

• The sites which are connected by bonds are identified as a cluster 
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• The previOus values of the Ising variables are thrown out, and each 

cluster assumes a random value of the Potts spin 

Thus a new configuration of the model has been generated. This procedure 

obeys detailed balance, as can be shown by considering the transition from 

one Ising configuration to another through each possible bond configuration 

separately. 

The extension of this algorithm to the O(N) model was made by Wolf£29 , 

effectively by embedding Ising spins in the N component spin by using 

(3.21) 

where ris a unit N-vector, Cx = ±1 and a;= ax- I ax·r Iris the component 

Of a X perpendicular tO r. 

This method was studied numerically for the XY and 0(4) models in 

two dimensions46, and it was shown that critical slowing down is (almost) 

completely eliminated, with z about 0.1 for the XY model. 

A further contribution was the proposal to modify the cluster algorithm 

by building only one cluster at a time and always flipping it. Thus all the 

moves, rather than only half, will change the lattice, and decorrelation should 

be faster. This algorithm lies in the same universality class as the Swendsen-
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Wang dynamics for many models , but the decorrelation time is halved. 



48 

Chapter 4 

Large Volume Monte Carlo 

4.1 Introduction 

Monte Carlo studies of the two-dimensional 0(3) spin model, which is the 

discretized 1 +!-dimensional 0(3) nonlinear sigma model, have been pursued 

extensively for about ten years. An important reason for this is that in 1 + 1 

dimensions O(N) models with N ~ 3 are asymptotically free 1• 4, just as 

gauge theories like QCD are in 3 + 1 dimensions. Thus by investigating 

the simpler 0(3) model one hopes to understand critical behavior similar to 

that of QCD. Moreover, the 0(3) model also possesses instanton solutions -

another feature in common with QCD. 

A consequence of asymptotic freedom is that, at weak enough coupling, 



49 

all physical quantities will scale according to the two-loop f3 function; this 

is called asymptotic scaling. It is the main goal of the Monte Carlo simula­

tions of the 0(3) model to seek to test and hopefully demonstrate asymp­

totic scaling. This however has proven to be an elusive goal. Early studies 

of the standard, nearest neighbor, action (SA) using standard Monte Carlo 

techniques on smalllattices3• 8• 9• 10 (i.e., L ~ 100), and Monte Carlo Renor­

malization Group (MCRG) methods 11 • 12, failed to demonstrate asymptotic 

scaling. Berg et a/. 12 simulated a tree-level improved action (TIA), which 

includes next-nearest neighbor interactions, and a 1-loop improved action, 

with quadratic and quartic interactions up to a distance two, and observed 

behavior closer to the asymptotic behavior, but due to large statistical errors 

and the use of small lattices could not provide conclusive evidence. 

Analysis of high temperature expansions have also addressed the problem. 

P. Butera et a/. 23 explain the lack of asymptotic scaling for the suscepti­

bility in terms of a pair of complex singularities in x(/3) near the real axis. 

Knowledge of this behavior is used by Bonnier and Hontebeyrie47 to design 

a better fitting procedure. They used the 14 term high temperature series 

of Luscher and Weisz48 to obtain an expansion for the susceptibility. The 

result is a good fit to Monte Carlo data of Berg and L uscher9 for f3 ~ 1. 7, 

providing a better fit to the deviation from asymptotic scaling. 
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Recently, using his cluster algorithm, Wolff13 has investigated the 0(3) 

model up to f3 = 1.9, where the correlation length is 121. He finds that, 

even at this large /3, asymptotic scaling does not hold for the SA. Finally, 

Hasenfratz and Niedermayer19 using different MCRG methods in the region 

1.9 ~ f3 ~ 2.26 see agreement in the discrete f3 function 6./3 with the 2-loop 

results at f3 = 2.26. They also show that asymptotic scaling holds for the 

TIA starting at a correlation length of~ 40 with m/ AMs = 3.4(1), and the 

value form/ AMs agrees with that for the SA at f3 = 2.26, m/ AMs::::;: 3.3(1) . 

However the exact value for the mass gap of the 0(3) nonlinear cr-model. 

of Hasenfratz et al. 18• 49 is m/ AMs = 8/e c::: 2.943 . Thus there exists 

a significant gap between this prediction and the Monte Carlo results. In 

an attempt to bridge the gap between these results Wolff22 compared his 

cluster Monte Carlo results 13 with the exact result using a redefined inverse 

temperature f3E, and saw behavior much closer to asymptotic scaling. 

Another non-perturbative method that has been extensively developed 

recently is the 1/N expansion by Flyvbjerg and collaborators 5°. The three 

leading orders of the expansion have been obtained and evaluated for small 

lattices51. The comparison to the above Monte Carlo results shows differences 

that are comparable or smaller than the estimated size of neglected terms. 

These results have been extended to infinite lattices by finite size scaling20 
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giving behavior that tends slowly towards the exact value for ~ > 170 from 

about 10% away. 

Our results are m good agreement with Wolff13 and Hasenfratz and 

Niedermayer19. In fact they provide one of only two known computationally 

feasible methods by which the cluster algorithm results can be confirmed 

(in this region of large correlation lengths). The other method is multigrid 

Monte Carlo 52, which has used for j3 ~ 1. 7 We see that there is no dra­

matic change in the behavior of the mass gap and susceptibility in tJle range 

1.9 < j3 ~ 2.05. We also see that the behavior in the rescaled temperature 

f3E remains closer to the exact value, but the agreement does not get better 

with increasing correlation length. Finally we show that overrelaxation can 

be used in a manner in which the effective dynamical critical exponent is 

close to 1. 

4.2 The Model 

We study the simplest possible Hamiltonian, with only nearest neighbor in­

teractions. The Hamiltonian, which is also called the Standard Action be­

cause of the close correspondence to the one space and one time dimension 
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nonlinear sigma model, is in this case 

H =- Lsi· sj ( 4.1) 
<i,j> 

and thus the partition function becomes 

Z = J rr dp(si)e-{JH (4.2) 
• 

where si are unit 3-d vectors and < , > denotes the inclusion of nearest 

neighbor sites only in the sum. Here dp( S) is the measure on the sphere and 

f3 = 1/T is the inverse of the dimensionless temperature T. 

Its continuum limit is the 0(3) nonlinear sigma model in one space and 

one (imaginary) time dimension. Of interest is the behavior of this model 

in the low temperature, weak coupling limit. This was shown 1 to be a con-

tinuation of the high temperature phase of exponential correlation functions. 

The model is asymptotically free, and a renormalization group calculation 

has given the beta function of the theory to two-loops4 : 

dT 1 2 1 3 4 
f3(T) =- d(lna) = -21rT - (27r)2T + O(T) (4.3) 

where a is the lattice spacing. These terms are universal- i.e ., the same for 



53 

any regularization. Using this and the anomalous dimension we obtain the 

mass gap m and susceptibility x of the theory: 

m = C(27r fi) exp( -27rfi) { 1 +ad fi + 0( 1/ fi 2
)} ( 4.4) 

(4.5) 

where C and C' are constants that cannot be calculated In perturbation 

theory. 

The terms with coefficients a 1 and b1 are the first non-universal terms 

and arise for three-loop diagrams. Falcioni and Treves6 calculated these by 

computing of the third-loop contribution to the beta and gamma functions 

for the standard action. Their values are a 1 = 0.575/27r and b1 = 0.0; these 

have been confirmed by independent calculation53. 

4.3 The Simulation. 

To produce the sample configurations of our Monte Carlo simulation we 

use a hybrid of microcanonical overrelaxation 44• 54• 55 , and the Metropolis 

algorithm. For an O(N) spin-model, the rule used to obtain a new spin by 

microcanonical overrelaxation ( f..LOR ) is to reflect the old spin Sold through 
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the direction of the sum f of its neighboring spins . If i: = lfl- 1f, then 

(4.6) 

This provides the largest possible step while preserving the energy. To pro­

vide ergodicity OR updates are interleaved with Metropolis updates. In a 

simulation of the XY model25 this combination drastically improved critical 

slowing down, giving z = 1.48 and 1.2 for number of overrelaxation steps 

Nor = 8 and 15 respectively. The number of Metropolis steps was kept 

constant at Nmet = 2 . 

In each Metropolis step we construct a new trial spin by adding to the old 

spin a random vector of fixed length a. The resulting vector is normalized 

and then accepted or rejected using the usual Metropolis criterion 42. a is an 

adjustable parameter, chosen so as to give acceptances between 50 and 55 per 

cent. The random vectors are constructed to sample a uniform distribution 

on an 5 2 sphere. 

A 'sweep' is made up of a number of overrelaxation sweeps (Nor) , and a 

number of Metropolis sweeps (Nmet)· Measurements are made every ' sweep'. 

The errors in all quantities except the correlation length have been computed 

by binning the data in groups of 500 for 2562 lattices, 200 for 5122 , and 100 
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Beta L,T #or(K) Eff. Nor Energy X ( 
1.50 256 12600 18 8,12 1.20324(7) 176.4 ± 0.2 11.05(1) 
1.60 256 12400 38 12,15 1.27141(7) 448.4 ± 0.7 19.00(2) 
1.70 256 9100 85 12 1.32843(7) 1263.4 ± 2.9 34.39(6) 
1.70 512 11400 85 20,30,35 1.32848( 4) 1263.7 ± 3.3 34.44(6) 
1.75 512 7700 66 40,60,120 1.35329(5) 2208.1 ± 6.8 47.4(2) 
1.75 768 8000 98 50 1.35322(6) 2197 ± 15 47.2(2) 
1.80 512 10100 143 40,45 1.37599(4) 3845 ± 11 64.7(3) 
1.80 768 3100 141 40 1.37587(6) 3823 ± 21 64.5(5) 
1.85 768 11200 185 60,80 1.39667(3) 6732 ± 25 88.7(5) 
1.90 1024,512 6000 184 1.41583(4) 11602 ±59 121.5(1.1) 
1.90 1024 5900 263 100,120 1.41582(2) 11867 ± 62 122. 7(1.1) 
1.95 1024 700 330 200 1.43363(10) 20640 ± 310 164.8(5.3) 
2.00 1024 2700 420 250,300 1.45022(6) 35100 ± 400 224.3(4.2) 
2.05 1024 1800 510 300 1.46578(7) 56220 ± 550 295.6(5.2) 

Table 4.1: Data from Monte Carlo runs: /3, lattice length in each direction, 
total number of OR sweeps in thousands, average effort (i.e., decorrelation 
time in terms of OR sweeps), number of OR steps per full sweep, energy per 
lattice site, susceptibility and correlation length. 

for larger. We also calculate the 'sweep' to 'sweep' correlation by measuring 

the autocorrelation time of the magnetization TJJ = T. Table 4.1 summarizes 

our results. 

4.4 Results 

A comparison with Wolff13 of the energy per site E =< si · (si+i: + s;+Y) > , 

susceptibility x and correlation length ( shows good agreement on nearly all 

the values. There are two estimates which disagree to any significant degree, 
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X at f3 = 1.6 by 2.6CT and the energy at f3 = 1. 7 by 2.8CT. Our value for the 

latter is in good agreement with the result of a simulation using MultiGrid 

Monte Carlo52 
. Our results are consistent between a number of independent 

runs in each case, 3 and 2 respectively . The agreement to the high accuracy 

of these results , e.g., ~ about 0.3% for most points, provides confirmation 

that all these new methods work. 

4.4.1 Mass-gap 

To obtain the correlation length ~ or mass-gap m = 1/ ~ we fit the zero­

momentum correlation function (CF) 10 to A · ( e-rnx + e-rn(L-x)) . A fit 

is done in the interval ~ to 3~, where ~ is determined self-consistently. To 

estimate the statistical error of~ we split the data into 10 parts and averaged 

the values obtained from the individual fits. For f3 2: 1.9 we have used the 

jackknife method 56 to obtain estimates of the statistical error, because the 

increasing autocorrelation times make the statistics gathered less significant. 

The two error estimates agree for f3 = 1.9. ( In Table 4.1 we quote these 

values. ) 

To check the stability and significance of these fits, further fits were also 

done in the intervals ~~ to ~~, ~ to 2~, ~~ to ~~, up to as large a distance as a 

fit as can be obtained. In all cases we saw that the estimates obtained for all 
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subintervals were consistent. We note that the statistical errors increase in 

this progression. This was expected since the relative error of the correlation 

function increases with distance - because the variance of the measurements 

of the CF is roughly constant , while the CF itself falls exponentially. Also for 

f3 < 1.9 the value of the effective mass log(C(n)/C(n + 1)) was plotted and 

in all cases showed a plateau at least between 10 and 3~. This allows us to 

extract a mass-gap with confidence that finite size effects are not significant 

for f3 ~ 1.9. 

For our largest values of f3 the finite lattice size will affect our measure­

ments. To obtain an estimate of the effect on the mass-gap we used the 

estimate of Luscher57 of the leading correction to the infinite-volume limit . 

This can be understood as the self interaction of a particle around the finite 

box and has been computed using the proposed S matrix. 

The correction factor 0( () is defined from the ratio of masses measured 

on a lattice of finite length L to that on an infinite lattice: 

m(L)/m(oo) = 1 + 0(() (4.7) 
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where ( = L · m( oo ). The correction is dominated for large ( by 

(4.8) 

with B(() = Bo(() + O(e-<><) where o: > fij2. For large(, B(() obviously 

behaves like e-<. These result were tested and used extensively in conjunction 

with Monte Carlo results in section 4 of Bender et al. 58 , showing that for 

z = m(L)L > 1.5 a very good estimate of the correction is 

80 (z · [1- 80 (z)]) (4.9) 

For all our runs with f3 ::; 1.95 except that at f3 = 1.90 with L = 512 and 

T = 1024, the ratio of the lattice length and the correlation length, z = f, 
is larger than 6. Thus the correction to the correlation length is very small, 

i.e., 80 ( () < 2 ·10-3 Only for the cases f3 2:: 2.0 and the one singled out above 

is the correction appreciable. With 3.46 ::; z ::; 4.56 we use equation ( 4.9) to 

obtain an estimate of the correction B( z). This is a valid estimate only if the 

length in one direction is very much larger than the correlation length, but 

the numerical results of Bender et al. lead us to believe that for all these cases 

they provide a good estimate of the correction. For L = 1024, the correction 

is only appreciable for f3 = 2.05, where 80 ( z) = 2.9%; even for f3 = 2.00 it is 
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only Oo(z) = 0.77%. The corrected values are ~(/3 = 2.00) = 226.0 ± 4.2 and 

~(/3 = 2.05) = 304.1 ± 5.3 . 

To compare the behavior of the correlation length with asymptotic scaling 

predictions we use the correlation length defect {jf. . This is obtained by 

dividing the correlation length by the 2-loop result, i.e., equation (4.4): 

( 4.10) 

Obviously asymptotic scaling is seen if Of. goes to a constant as f3 -+ oo. 

Figure 4.3 shows that asymptotic scaling does not set in for f3 < 2.00, but 

it is not possible to draw a clear conclusion for f3 2: 2.00 . We note that the 

finite size correction affected our evaluation of of., so we must expect it to be 

important in the case of the susceptibility. 

In order to compare with the exact result of Hasenfratz et al. 18 we use 

our estimates for the correlation length to calculate the ratio of the mass-gap 

to the A parameter m/ AMs· In our case it is given by 

( 4.11) 

where AMs/ AL = 27.31 is the ratio of the lattice and modified minimal 

subtraction scheme A parameters calculated by Parisi7.As figure 4.2 shows, 
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Figure 4.1: Correlation length defect 8e , i.e., correlation length scaled by 
the 2-loop form. The solid squares are corrected for the expected finite size 
effect. Note that the errors on these are the same as those for the uncorrected 
points. 
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Figure 4.2: The estimates of the ratio m/ AMs to 2- and 3-loops in terms of 
(3 and f3E = 1/(2- E) vs. the inverse temperature (3. 
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using the 3-loop correction term moves our results towards the analytical 

result, but by a small amount compared to the distance from it. Thus at 

f3 = 2.05 our estimate m/ AMs = 3.52(6) is 20% higher than the analytical 

result . 

We can also compare with the results of Hasenfratz and Niedermayer19 

who used Monte Carlo Renormalization Group (MCRG) methods to ob­

tain estimates of the discrete beta function . The values are consistent with 

asymptotic scaling for {3 ~ 2.14, giving m/ AMs = 3.35(9). To co~pare di­

rectly with our results we used their data and the 3-loop correction to obtain 

m/ AM5 ({3 = 2.02) = 3.47(8). An interpolation of our results at the two 

neighboring points, yields m/ AM5 ({3 = 2.02) = 3.55(5) ; we see that the 

two estimates differ by about one standard deviation. Our results are thus 

consistent with those of the MCRG calculation, although they tend to favor 

a slower fall of m/ AMs towards the exact result. 

A comparison to the results of the third order 1/N expansion ( see the 

figure in H. Flyvbjerg et al. 20 ), shows that for increasing {3 their estimate 

of m/ AMs and our measurements are tending closer. 

Another approach to the problem of asymptotic scaling, proposed by 

S.Samuel et al. 21 and tried recently by Wolf£22 , uses a redefined inverse 

temperature derived from the energy. This is an alternative bare coupling, 
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and effectively performs an infinite order resummation; there are arguments 

that asymptotic scaling in fJs should be observed earlier21 . fJs is defined 

from the 0(1/ /3) perturbation expansion of the energy . For our definition of 

the energy ( Eours = 2Ewolff ) it is fJs = (2- E)-1
. As figure 4.2 shows, our 

results agree with Wolff that asymptotic scaling in fJs (i.e., the 2-loop curve) 

is better and much closer to the exact value predicted by Hasenfratz et a/. 

18. However the effect of the 3rd-loop correction (for which we calculated 

that a 1 = 0.575/(27r) + 1/8- 4997r/4000- see appendix A) moves the result 

away from the analytical result and towards the results scaled by fJ. We note 

that the statistical error of our estimates of the energy are much smaller 

than those of Wolff13, e.g., for fJ > 1.6 it is more than an order of magnitude 

smaller. This makes the contribution of the statistical error of fJs to the 

error of our estimates of m/ AMs(fJs) negligible, which is not the case for the 

points at higher values of fJ of Wolff22 . 

4.4.2 Susceptibility 

We measured the susceptibility on lattices of different size for fJ = 1. 70 to 

1.80 and at 1.90. The agreement, within errors, seen for 1.70 ~ fJ ~ 1.80 

shows that the finite size effects are very small, so that, effectively, the infinite 

volume limit has been reached. The disagreement at fJ = 1.90 shows that 
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there is a finite size effect for this point on the smaller lattice, but the data 

for the other f3s lead us to believe that the larger lattice gives us an estimate 

with very small finite size error. We would expect that for /3 2:: 2.0 the finite 

size effect would be significant ; a rough estimate would be something of the 

same order as that for the mass gap , i.e., a fraction of a percentage point 

and a few percent for /3 = 2.00 and /3 = 2.05 respectively. 

To compare with the expected behavior, from equation 5, we divide this 

behavior out and get a 'scaled susceptibility' or susceptibility defect. Dx Berg 

and Luscher9 : 

( 4.12) 

This should behave as a power series in T = ~, and approach a constant for 

T ~ 0. From figure 4.3 it is obvious that we have not reached the region of 

f3 where a constant can be extracted, and that the susceptibility for /3 = 2.05 

at least suffers from finite size effects. We note that for the standard action 

the third-loop term for the susceptibility is 0 to the accuracy calculated6, 

and thus doesn't affect this result. 

We also compare the behavior of the susceptibility with predictions based 

on the assumption of complex singularities in x(/3). Table 4.2 shows another 

susceptibility defect G3 for our data and the values obtained by a sophisti­

cated Pade approximant of the 14 term high temperature series. This shows 
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Figure 4.3: Susceptibility defect 8x , i.e., susceptibility scaled by the2-loop 
form. Note that the 3-loop correction is zero. 
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j3 G3 
MC Pade BL 

1.50 1028.5 ± 0.3 1015 1048 
1.60 1011.8 ± 0.4 983 962 
1.70 1017.4 ± 0.7 964 927 
1.75 1027.8 ± 1.8 
1.80 1039.2 ± 0.8 
1.85 1050.0 ± 1.0 
1.90 1055.0 ± 1.7 
1.95 1069.6 ± 4.0 
2.00 1070.7 ± 3.1 
2.05 1055.0 ± 2.6 
00 944 

Table 4.2: Comparison of results for another susceptibility scaling defect 
G3 ex o;/4 • Our Monte Carlo estimates are labeled MC , the Pade Approx-

imant of Bonnier and Hontebeyrie47 Is Pade and the numbers of Berg and 
Luscher9 are BL. 

that this approximant is unable to adequately describe the defect in this re-

gion of /3, although it does a good job of coarsely describing the significant 

deviations from asymptotic scaling at smaller values of /3 . 

It would be interesting to extend this work by incorporating the high 

precision numerical estimates into the Pade approximants to obtain a better 

fit for the behavior of the susceptibility. This would require the use of multi-

point Pade approximants. Also a set of values for x at different beta values 

would be used and the results averaged , in order to simulate the statistical 

errors in the Monte Carlo estimates of X. 
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4.4.3 Dynamical critical exponent of overrelaxation 

The decorrelation timeT is used to measure the speed with which new, i.e., 

statistically independent, configurations are generated. Its dependence on 

the correlation length is parameterized by the dynamical critical exponent z 

T = c·C ( 4.13) 

Most local algorithms, like Metropolis and heat-bath, have z ::=: 2 . For a free 

field overrelaxation24 gives z = 1. Neuberger59 argues that for an interacting 

field, z should not change substantially from this. Our previous work with 

the same algorithm as we use for the 0(2) or XY model25 measured Texp 

(defined, e.g., by Sokal60 ) and gave z = 1.48 for Nor = 8 and z = 1.2 for 

Nor= 15 where Nmet = 2. For the 0(4) model Heller and Neuberger61 used 

another variation of overrelaxation and showed that in 1 dimension z = 1, 

but could not determine it for 2 dimensions. 

We obtain the decorrelation time by measuring the auto-correlation func­

tion of the magnetization. We will use c( n) to denote this, where n is a 

distance in number of MC sweeps. For the integrated decorrelation time Tint 
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and its estimator Tint we use the definitions of Madras and Sokal62 

Tint= f: c(n) 
n=-oo c(O) 

Tint = f= c(n) 
n=-M c(O) 

( 4.14) 

with M a multiple of T, in our case M = 4T, defined self-consistently. Using 

these measurements and fitting to the equation 4.13 for Nor = 12 gives 

z = 1.33(1). 

However we discovered that it is possible to improve on this substantially. 

We note that when ~ increases and more work is required to produce a 

decorrelated configuration, it is natural to increase Nor· This allows us to 

perform measurements only on configurations that are less correlated. What 

we observed was that the performance of the algorithm improves. To compare 

the speed of decorrelation between runs with different Nor we define a new 

quantity which we call 'effort' 

e =Nor. T. ( 4.15) 

It is roughly proportional to the computational effort expended to obtain a 

configuration 1 T away. 

We found that we can define a new exponent z' from e """C' when Nor is 

tuned to keep T constant. This choice was made because we observed that 
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the effort has a plateau at almost the same value of r for every ~· We also 

found that the behavior of the decorrelation time can be approximated over 

a good range by 

T = C " . t z . N- zf z' 
'> or (4.16) 

A fit to logr = c" + z log~- ?logNor gives z' = 1.1(1) , for r in the 

ranges 1.1 -+ 1.8, 2.1 -+ 2.4 and 3.0-+ 3.6. This indicates we have achieved a 

considerable improvement . A fit to the set of points ( Nor , ~ , r > 1.0) gives 

z = 1.301 ± 0.012, z' = 1.079 ± o.o1o and has a x 2 1 dof = 1.86 for 32 degrees 

of freedom. Figure 4.4 shows the decorrelation time r vs . the number of 

overrelaxation sweeps for different values of the coupling /3. The solid lines 

show the fit to the above equation. We note that the points for r < 1.0 

were not included in these fits because they do not follow equation (4.16) . 

Finally, the values for z and z' we measure are, of course, only effective values 

because in the limited range of r and ~ we worked in , logarithmic corrections 

can mask the true (limit) values. 

We also try to fit to a general scaling function 53 by plotting r I ~d vs. 

Norle . A plot for f = 1.0 and d = 0.0 shows that this is close to the 

correct behavior. Using our knowledge from ( 11) we constrained the values 

of d and f to one free parameter with d = 1.33- f z l z '. For 1.06 < f < 1.14 all 

points lie on a universal curve, but we tend to favor the central value f = 1.1 . 
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Figure 4.5 shows the data in this case. Only the points for f3 > 1.95 do not lie 

on a universal curve; such a deviation is expected for those points with small 

values of L/~ . Another way of presenting the relationship between these 

quantities is used in figure 4.6. This shows a scaled effort e/ ~f+d (instead of 

a scaled T ) versus N or/e for all values of (3. The tightness of the points 

in these plots around a single curve demonstrates conclusively that, for T 

roughly constant, the effort e ex ~1.1. 

We can attempt to understand the lower value of z' in the following way: 

the overrelaxation algorithm has a tendency to decorrelate much faster than 

other local algorithms, i.e., with an exponent close to the free field value 

of 1 . The addition of the Metropolis steps destructively interferes with it. 

The J.LOR algorithm moves on a deterministic path through phase space. 

But when ~ is increased the distance in phase space that a set number of 

overrelaxation steps travels decreases. Thus the addition of Metropolis steps 

can cause a larger disruption. 

This explanation indicates that the effort should flatten out for increas­

ing Nor· Our data clearly shows that after a broad plateau the effort slowly 

increases. This can be seen in figure 4.6, which is a log-log plot. ( This effect 

is also the one that causes the deviation of points with T < 1.0 from our fit to 

equation 4.16 . ) We can understand the minimum in e vs . N or if we assume 
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that a certain set of (Nor, Nmet) corresponds to a pure, non-microcanonical, 

overrelaxation algorithm (as used by Heller and Neuberger61 ) with a param­

eter w =/:- 2. It is obvious that as ~";;;' --t 0 that w --t 2. What is seen in 

the case of 0( 4) in one dimension, by Heller and Neuberger61 , is that the 

function r(w) has a minimum close tow= 2. 

4.5 Conclusions and discussion 

Our results confirm those obtained using the Wolff cluster algorithm and 

extend them to larger lattices and correlation lengths. However asymptotic 

scaling is not reached with the standard action even at f3 = 2.05 and ~ = 300 

and our results give a value of m/ AMs that is 20% higher than the exact 

result. 

We also showed that overrelaxation can be used in a manner In which 

the effective decorrelation exponent is close to 1, confirming the prediction 

of Neuberger59. This result has been confirmed in an analytical study of 

a similar algorithm for the Gaussian model by Woiff26 . He shows that a 

choice of the mix of overrelaxation sweeps and heat bath sweeps obtains 

optimal performance with z = 1. In that case it was necessary to vary the 

number of overrelaxation sweeps randomly with a the mean proportional to 
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the correlation length; however this is a feature of the free model, due to the 

lack of interactions that mix different Fourier modes. In the case of the O(N) 

model, changing this mix does not provide any benefit. 

By comparison, cluster algorithms do not exist for most models of inter­

est, or even, e .g., for actions with mixed ferromagnetic anti-ferromagnetic 

terms for the Ising model; any frustration defeats current methods of ob­

taining practical algorithms. Where they are applicable they require many 

orders of magnitude fewer arithmetic operations at large correlation lengths 

- because they have a smaller dynamical critical exponent. However they 

require special effort to be used on vector or parallel computers. Overrelax­

ation, and hybrid overrelaxation in particular, remains a simple, vectorizable 

and efficient algorithm well suited to vector and parallel machines and com­

petitive for many problems. In particular it is the most efficient algorithm 

discovered to date for pure gauge lattice gauge theory. 

It is not clear what causes this effect. One can speculate that another 

possibility is that they are connected to instantons, which are a property of 

this model unique amongst O(N) models. A first calculation of the effect of 

instantons by Evertz64, however, does not provide an answer. The correction 

to the beta function calculated has the wrong sign to explain the deviations 

from asymptotic scaling observed by us. However other O(N) models show 
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similar but smaller deviations from asymptotic scaling, as seen for the 0( 4) 

and 0(8) models by Wolff22
. Since they do not possess instantons this would 

tend to discount the possibility that effect is due to this topological factor. 

The most likely cause are singularities in the partition function for the 

standard action. These are seen for the susceptibility in the complex f3 plane 

by Butera et a/. 23 . The same effect is also seen in models interpolating be­

tween the XY and 0(3) models using a mass term to suppress one component 

of the 0(3) field 65 . A critical line in the coupling constant space. extends 

from the critical point of the XY model towards the region of non-monotonic 

behavior of the beta function we saw in the 0(3) model 

Additional simulations 

After the above work was published, additional simulations were done 

using a cluster algorithm. We simulated at the same couplings 2.00 ::; f3 ::; 

2.05 on a 20482 lattice and also extended to f3 ::; 2.15 on the same size 

lattice. The results supported our previous conclusions. The Monte Carlo 

update algorithm we used was the Wolff Wolff embedding29• 60 of the O(N) 

spins onto Ising spins, which were simulated by Swendsen-Wang dynamics. 

The same method is used for the update in the MCRG study in chapter 6. 

Here we wish to mention some of the results, which will later be referred to 
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for comparisons in chapter 6. 

First, we verified the implementation of our algorithm by measuring the 

energy, susceptibility and correlation length at {3 = 1.5 on a 2562 lattice and 

at {3 = 1.9 on a 10242 lattice. For the susceptibility in addition to the usual 

estimator X = -t < M2 >, where M is the magnetization - i.e ., the total 

spin of the lattice, we also used the improved cluster estimator of Wolff29. 

We also used a variant of the correlation function estimator of Wolff13 to 

measure the zero momentum correlation function. We quote the improved 

correlation length (derived from this correlation function) and the improved 

susceptibility in tables 4.3 and 4.4, in addition to the values from the usual 

estimators. 

Simulations were done on a 20482 lattice as this was the largest that 

could fit on the large memory 16, 384 (16K) processor Connection Machine-2 

we used. On this lattice size simulations beyond {3 2: 2.15 do not seem to 

be of value when one is seeking the infinite volume value of mass-gap and 

susceptibility, since even at {3 = 2.15 the correlation length cannot be reliably 

extracted from the data for the zero-momentum correlation function. 

Comparing with the values of the correlation length estimated using the 

overrelaxation algorithm on 10242 lattices, the current estimates are in rea­

sonable agreement. Agreement between improved and standard estimators 
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/3 # Energy ~ ~improved 
2.00 13750 1.45023(2) 228.9 ± 6.0 
2.00 13300 1.45022(2) 245.0 ± 12 
2.00 7600 1.45025(3) 221.1 ± 8.0 225.0 ± 3.2 
2.05 34000 1.46578(2) 299.7 ± 5.5 
2.05 19500 1.46578(2) 315.5 ± 7.5 312.3 ± 4.2 
2.10 28200 1.48036(2) 412.2 ± 9.3 415.6 ± 5.1 
2.10 37200 1.48035( 1) 426.3 ± 7.1 

Table 4.3: Data from cluster Monte Carlo simulations at /3 = 2.0 to 2.1 on 
a 20482 lattice: Energy and correlation length estimates (the latter obtained 
from standard and improved zero-momentum correlation function· estima­
tors). 

/3 # X X improved Tint,x, 7 intM 

2.00 13750 35000 ± (> 875) 36970 ± 290 6.26(57) 
2.00 13300 37860 ± 600 36990 ± 250 3.50(24) 2.32 ± 0.14 
2.00 7600 35440 ± 700 36492 ± 314 4.02( 43) 2.28 ± 0.18 
2.05 34000 63060 ± 660 63680 ± 540 5. 74(32) 2.44 ± 0.09 
2.05 19500 65000 ± 870 64620 ±470 5.14(37) 2.46 ± 0.12 
2.10 28200 106130 ± 1250 108130 ±820 5.46(33) 2.38 ± 0.10 
2.10 37200 110200 ± 1100 109780 ± 740 5.41(28) 2.44 ± 0.08 
2.15 4700 176200 ± 4500 174600 ± 3700 7.0(1.1) 2.45 ± 0.24 

Table 4.4: Data from cluster Monte Carlo simulations at /3 = 2.0 to 2.15 on 
a 20482 lattice. Statistics(#), standard X and improved Ximpoved estimators 
for the susceptibility and estimates for the integrated decorrelation time for 
the latter and the magnetization. 
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is good. The agreement between different runs for the standard estimator of 

the susceptibility at f3 = 2.0 and 2.1 is not good, but not very bad. 

The behavior of the mass gap ration m/ AM5 in this range, to two and 

three loops, can be seen in the figure 6.9 in the next chapter. The trend 

towards the exact value continues, but agreement is not seen for f3 S 2.10. 
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Chapter 5 

New SIMD Algorithms for 

Cluster Labeling on Parallel 

Computers 

Monte Carlo simulation is a very important numerical technique for study­

ing a wide range of problems in the physical sciences, and in particular, the 

statistical mechanics of spin models of magnets66• 67. Unfortunately, tradi­

tional Monte Carlo algorithms for these models, such as the commonly used 

Metropolis algorithm42, suffer from critical slowing down near the regions 

of interest - the critical points separating different phases of the system. 

This means that the autocorrelation time (the number of iterations needed 
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to generate a new, statistically independent, data point) increases as Lz at 

the critical point, where L is the linear size of the system, and z is the dy­

namic critical exponent68• 60. z is at least 2 for most local algorithms, such 

as Metropolis, so the efficiency of these methods decreases rapidly as the size 

of the system is increased. 

The reason for this poor performance is that standard Monte Carlo al­

gorithms are local. In the lattice of spins which represents, for example, a 

magnetic material, only a single spin at a time is changed, and this change is 

influenced only by the spins on neighboring sites . Information undergoes a 

random walk on the lattice, and thus takes a time of order L 2 to propagate 

throughout the lattice. In the last few years, algorithms have been invented 

for certain types of spin models which make large-scale , non-local changes, 

and greatly reduce critical slowing down28 • 29. In these so-called cluster al­

gorithms, clusters of spins (rather than single spins) are changed at each step 

of the Monte Carlo procedure. The clusters are formed by generating bonds 

connecting neighboring sites, using a probabilistic procedure which varies 

between different models and algorithms (for reviews of cluster algorithms, 

see Refs. 68, 60, 69 , 70 ). 

The major computational task of these cluster algorithms is the identifi­

cation and labeling of the clusters of connected sites, given the configuration 
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of bonds. This is an instance of a connected component labeling problem 

for an undirected graph 71 ' 72 , where the vertices are the lattice sites and the 

edges are the bonds between connected sites. The goal of the component 

labeling algorithm is to end up with the same label on all connected sites, 

and different labels for all disconnected clusters. 

Sequentially, this can be done in time of order V (the number of vertices, 

which in our case is the volume, or number of sites, in the lattice), and con­

sequently the cluster algorithms run about as fast as the local algorithms 

(see Refs. 71 , 73, 74 for a discussion of sequential labeling algorithms). 

However this may not be the case if our computer is a distributed memory 

parallel machine. Local algorithms perform very efficiently on parallel ma­

chines, whereas efficient component labeling on a parallel machine is a very 

difficult problem 73. Here the information concerning the connectivity of a 

given physical part of the lattice is only contained in a single processor, and 

obtaining information from distant regions of the lattice (and hence also of 

the computer) can be very slow if the clusters are large, and thus contain 

sites which are distributed over many processors . 

Let us assume that the time taken to label the clusters scales asymp­

totically as Ld+y for a lattice of L d sites, where y is an exponent indicating 

computational slowing down, in analogy with the dynamical exponent z ex-
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pressing the critical slowing down of a Monte Carlo simulation. This means 

that the overall computational cost of a Monte Carlo cluster algorithm sim­

ulation at the critical point will scale as Ld+y+z. If we cannot find a parallel 

labeling algorithm for which y is zero, the advantages of cluster update al­

gorithms over traditional local algorithms may be eliminated on a parallel 

machine by the computational complexity of labeling the clusters. 

Our aim is to find a parallel component labeling algorithm with no compu­

tational slowing down (i.e., y = 0). We will consider here the case ~here the 

parallel computer is a Single Instruction Multiple Data (SIMD) machine, al­

though the ideas described here could also be applied to Multiple Instruction 

Multiple Data (MIMD) machines. We have implemented all the algorithms 

on the CM-2 Connection Machine, which is a typical massively parallel SIMD 

computer75. 

In order to test the algorithms we have studied the clusters formed in the 

physically interesting case of the Swendsen-Wang cluster algorithm28 applied 

to the Ising spin model at its critical point. These clusters are very similar to 

those created by the simple procedure of randomly connecting neighboring 

sites on a two-dimensional lattice with probability ~ - Clusters created in 

this way are very difficult to label efficiently on a parallel machine, since 

the clusters in a particular configuration of the connections come in many 
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different sizes, have extremely irregular shapes, with small clusters embedded 

in larger ones, and typically including a very large cluster which will span 

the lattice. This type of problem is consequently an excellent test of parallel 

component labeling algorithms. 

We also note that the worst case behavior of the labeling algorithms is 

not relevant for this problem - what we are really interested in is the average 

time to label physically realistic configurations of clusters which occur in the 

cluster update of the spin model. We have therefore obtained all our: data by 

averaging over a large number (typically 400) of different realizations of the 

site connections, taken from different Swendsen-Wang bond configurations 

for the Ising model at its critical point. This is in order to get statistically 

significant results from which we can obtain the scaling behavior of our al­

gorithms, and timings for our implementations of these algorithms on the 

CM-2. 

5.1 Simple parallel algorithms 

The simplest and most obvious SIMD component labeling algorithm is local 

label propagation 73 • 76. We start with a different label on each site, and with 

a list of nearest neighbor connections (these will be Boolean variables in the 
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following: off means no connection is present and on means that there is a 

connection). Each site then looks to each of its neighbors in turn. If it is 

connected to this neighbor, and if its neighbor's label is smaller than its own 

label, then it replaces its label with that of its neighbor. This procedure is 

repeated until there is no change to the labels, at which time each cluster 

will be labeled by the minimum initial label of all the sites in that cluster. 

This local algorithm suffers from computational slowing down, and for 

many problems of interest (such as spin models at their critical p.oint) its 

performance degrades very fast with increasing volume. This is because 

there is typically a large cluster whose graph-theoretic diameter or chemical 

distance, defined as the maximum value of the shortest path length between 

two points in the cluster, scales as Lf, where the exponent f is approximately 

1 for the two-dimensional Ising model77, i.e., the diameter of the largest 

cluster scales approximately linearly with L. For any local labeling algorithm, 

the minimum label has to diffuse across this large cluster, so we expect that 

y=J~l. 

This algorithm can be improved by making the propagation step non­

local. One way of doing this is, instead of propagating the labels only to 

neighboring connected sites, to propagate them as far as we can along a 

given direction, until we come to a site with no connection in that direc-
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tion. On the CM-2 this can be done very quickly by using the intrinsic 

scan_with_minimum function78. This routine operates on a row of num­

bers (labels in our case), each of which has an associated Boolean flag (the 

connections). It runs along each connected section of the row and deposits 

at each site the minimum of the numbers in the section up to that point 

(this is done in a distance doubling way, taking log 2 L steps). One step of 

this labeling method consists of a scan in each of the forward and backward 

directions of every axis. If periodic boundary conditions are used, t~is must 

be supplemented by a local label propagation step, since the scan routine 

does not wrap around the lattice. 

Another way of improving the above algorithms is the notion of con­

nection improvement. So far we have considered the bonds between sites 

to be static, in other words they are set up at the beginning and remain 

unchanged throughout the labeling procedure. However it is actually very 

useful to change, or improve, the connections as the labeling procedure pro­

gresses, and we learn more about the connectivity of the sites. It will often 

happen that neighboring sites will not have a bond between them, but will 

still be part of the same cluster, as shown in Fig. 5.1. If we compare the 

labels of neighboring sites at each step of the labeling algorithm, then at 

some point we will find that these two neighboring sites have the same label. 



87 

(h) 

Figure 5.1: An illustration of connection improvement. The original bonds 
are shown as the thick lines. If at some point in the labeling algorithm it is 
found that sites i and j (denoted by the filled circles) have the sarp.e label, 
then a new bond (the dashed line) is introduced, so that changes in the 
labels are now propagated faster between these two points. For the multi­
scale algorithm the same idea is used, except that i and j do not have to be 
neighboring points. 

We could then place a connection between these sites, since we now know 

that they are in the same cluster. Improving the bonds in this way means 

that new labeling information can now flow directly between these two sites, 

rather than by an indirect route via the original bonds. 

Connection improvement is especially useful when applied to the scan 

algorithm, since in that case the addition of extra connections means that 

labels may be propagated much further in a single scan operation. This can 

be seen in Fig. 5.2, which shows a log-log plot of the average number of itera-

tions required to complete the cluster labeling for the local algorithm and the 

scan algorithm, both with and without connection improvement . In Table 5.1 
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algorithm y 

local 1.08(2) 

scan 1.09(3) 

local improved 1.01(2) 

scan improved 0.84(3) 

Table 5.1: Exponents y of computational slowing down for some simple com­
ponent labeling algorithms applied to clusters of Swendsen-Wang bonds for 
the Ising model. 

we show the exponent y for computational slowing down for each of these 

algorithms, which are obtained from the straight line fits shown in Fig. 5.2. 

As expected, the exponents are all near 1, except for scan with connection 

improvement, which is substantially smaller, although still far from zero. 

However we should note that these results are very dependent on the type 

of bond configurations used. Note for example that configurations for which 

the clusters are fully connected, smooth, regular shapes , such as may occur 

in labeling objects in image processing applications, would be labeled in a 

very small number of scan operations. We might expect that y would be zero 

for the scan algorithm for those particular types of configurations. 
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5.2 A multi-scale algorithm 

In this section we describe a regular, synchronous, multi-scale algorithm for 

cluster labeling79. We present numerical evidence that the average number 

of iterations and the average time taken do not undergo any power-law com­

putational slowing down (i.e., y = 0) for our application of labeling Ising 

model clusters. 

The algorithm is effective on a general SIMD machine provided that the 

switching network has some very basic non-local connections. In the following 

we will assume that the machine allows very fast communication between 

sites which are a distance of 2m sites away in any direction of the physical 

lattice. These are the only non-local connections we need in order to build an 

algorithm which is not affected by power-law slowing down. Such connections 

would be provided, for example, by a machine with a hypercube topology. 

On the CM-2 the mapping of the physical structure of the lattice to 

the (almost) hypercube processor communication network provides specific 

communication to nodes of the lattice that are at a distance of any power 

of two away, known as power _of_ two operations. This involves the transfer 

of information over not more than two links of the hypercube, and should 

thus be executed at not less than half the speed of local communications; 
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however the relative timing compared to a local communication depends on 

the virtual processor to physical processor (VP) ratio (i.e., the number of 

lattice sites per processor), as we will see later. 

In common with the method proposed by Brower, Tamayo and York76 , 

this method uses a multi-scale approach in propagating cluster labels, in 

order to overcome the slowing down inherent in local labeling algorithms. 

However this algorithm is much simpler, and seems to have better scaling 

properties. 

Our algorithm works for a lattice of any dimensionality d, but for ease 

of description we will consider a two-dimensional problem. In this case the 

key variables used are Boolean connections that are set up in the x and the 

y axis at a distance 2m, form= 1, ... , 1- 1 (where the lattice size L = 21), 

by a logical AND of connections at level m - 1. For example, the distance 

2 connection between sites i and i + 2x is set (i.e., turned on) if both the 

connections between sites i and i + x and sites i + x and i + 2x are already 

on. These connections are rebuilt in this way at each iteration. In addition 

to building up the long distance connections in this manner, at each iteration 

we also use connection improvement, thus a connection between two sites at 

a generic distance M which was originally off can be set (i.e., declared to 

be on) if the two sites are found to have the same label. Using connection 
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improvement greatly reduces the number of iterations needed to converge to 

the final values of the labels. 

Thus, during one multi-grid label updating cycle each site will look in turn 

at each of its 2d neighbors at each level m of the multi-scale connections. 

It will update, when possible, its label and also update its connection by 

merging the level m- 1 connections and by using connection improvement. 

A full cycle of the algorithm sweeps all l connection levels, and a single such 

cycle solves the trivial case where all connections are on. As the.labeling 

progresses, what happens is that an increasing fraction of ever longer distance 

connections are set as sites are recognized as belonging to the same cluster, 

and these connections become fast long distance communication channels. 

In Fig. 5.3 we show the average number of iterations needed to label the 

Ising clusters as a function of log L. The logarithmic slowing down is very 

clear. We do not see any sign of power-law behavior, or of a higher power 

of the logarithm. Each iteration of the algorithm involves a multi-grid cycle 

of log2 L steps, with each step taking approximately the same amount of 

time, which is proportional to Ld / N, where N is the number of processors 

(N ~ Ld). Thus the total CPU time goes as Ld(logL)2 /N, or (log£) 2 for a 

machine with Ld processors. Hence this algorithm adds only a (log L )2 term 

to the overall slowing down of a spin model cluster algorithm. The average 
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clusters using the full depth multi-scale and the get/ send algorithms. 
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labeling time per site as a function of log L is shown in Fig. 5.4. 

The effect of different VP ratios means that the times for the multi-scale 

algorithm on a fixed number of processors for different lattice sizes do not 

scale simply as Ld(log L)2 /N. Firstly, we note that local operations are more 

efficient at higher VP ratios, since a greater proportion of the neighboring 

sites will be on the same processor, so less inter-processor communication 

is required. This effect decreases as the depth of the multi-scale procedure 

is increased, since more sites at a distance 2m are going to be on _different 

processors as m increases. Eventually the communication distance will be 

greater than the size of the sub-domain on each processor, so that all data 

must be communicated between processors. The communication time will 

therefore be roughly constant at this level and higher, and at the highest 

levels it is roughly independent of the VP ratio. (The situation is actually 

slightly more complicated than this, since on the CM-2 there are 16 processors 

per chip, and it is inter-chip, rather than inter-processor, communication 

which is costly.) Thus the ratio of the time taken to do a step at the largest 

depth to the time to do a local labeling step increases from about 2 at L = 128 

to about 6 at L = 2048 on a 16394 (16K) processor CM-2. 

There is a way however to combat the higher cost of deep iterations and 

significantly reduce the running time of our algorithm with only a simple 
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modification. Clearly at the beginning of the labeling procedure the long 

distance connections are all off, and due to the fractal structure of the con­

nections, it takes several iterations before a significant number of long dis­

tance connections are generated. It is thus very useful to tailor the number 

of multi-grid levels as a function of the cycle number: a lower depth is useful 

at the beginning, while using longer distance connections is more useful to­

wards the end of the procedure. Fig. 5.3 shows the average iterations for the 

simplest case, where the depth is constant, while Fig. 5.4 gives the. timings 

for both the full depth version and the optimized method. 

In order to investigate the effect of varying the depth of the multi-grid 

procedure, we have measured the number of connections at every multi-grid 

level after each iteration of the full depth algorithm. We show this for a 

typical configuration in Fig. 5.5. It can be seen that the points where the 

different levels become useful, i.e., where there are a reasonable number of 

connections (of the order of 10%, for instance), increases roughly linearly 

with the number of iterations. We therefore chose in our modified algorithm 

to make the depth a linear function of the iteration number. Since the 

usefulness of a connection at a certain level depends on the relative timings 

of different operations on a specific machine, this relation must be determined 

empirically. 
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a function of iteration number for the multi-scale algorithm, for a lattice of 
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Although Fig. 5.5 shows that a large number of connections at higher 

levels exist, we found that steps at the highest levels cost too much and were 

thus of comparatively little use, so a maximum depth of dmax = log2 L- Nmax 

steps was used. We thus parameterize the depth at each iteration by 

depth= min{slope * iteration,dmax}, (5.1) 

and seek to find the optimum value for the slope and the maximum depth 

parameter Nmax, which is the number of high level iterations that are not 

used. 

The behavior of the average labeling time versus the slope for some differ­

ent values of L and Nmax can be seen in Fig. 5.6. A minimum exists between 

0.3 and 0.5 in all cases. The minimum is fairly broad and its breadth tends 

to increase as L increases. Fig. 5.4 shows the average labeling time per site 

for the optimized algorithm as well as the full depth multi-scale procedure. 

Note that the time for the optimized procedure is significantly smaller. The 

optimal value of Nmax is 3 (i.e., the three highest levels are not used) for 

most lattice sizes, although for large L it is slightly more efficient to exclude 

the fourth highest level as well, since the ratio of the time taken at the higher 

levels to the time for a local iteration is greater at large L. 
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We also tried a very simple telescoping scheme in order to determine 

whether any benefit could be derived from reducing the size of the problem in 

such a way. For this we used only the top level and one lower level, consisting 

of the even-even coordinate sites, and attempted to solve this partial problem 

by iterating until the labels of this sub-lattice did not change. Neither this 

nor an attempt to do a fixed number of multi-scale iterations on the lower 

level managed to reduce the amount of time required for the full labeling 

procedure. We note that only a single reduction and expansion w.as tried. 

This poor result was not due to the overhead of communicating between 

the different lattices, which cost very little time, but must have been due 

to the lack of information at the lower level about enough of the important 

connections. 

5.3 Get/send : An algorithm using general 

communications 

We now present a different component labeling algorithm80 that was inspired 

by the efficiency of the SIMD algorithm of Hillis and Steele81 for finding the 

end of a linked list. We treat the labels as pointers in a dynamic tree-like 

structure, making our method similar to the sequential algorithms of Galler 
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and Fisher82 and of Hoshen and Kopelman83 and the parallel algorithm of 

Shiloach and Vishkin84. 

All the cluster labeling algorithms discussed to this point start with each 

site being given a unique label. It is convenient to set the original label to 

be the site number. We will again label a cluster by the smallest starting 

label of all the sites in that cluster. For a two-dimensional lattice we could 

assign the original cluster label C of the site (x,y) to be (y * L) + x, for 

example. During the cluster labeling procedure we can consider the current 

label as a pointer to the site where it originated (i.e., Xorig = C mod L , 

Yorig = C / L ). The site (xorig,Yorig) started with the current label of the 

site ( x, y), and as we shall see, at any later time in the labeling procedure it 

must have a label which is less than or equal to this value. Thus at any time 

each site can get the label of the origin (x orig,Yorig) of its current label and 

use it as its new label. On the Connection Machine this is done using the 

general communication routine get. To ensure that the algorithm eventually 

gives the correct result, at each stage a local label propagation step must be 

performed as well. 

By itself this method will correctly label any lattice but performs very 

badly, because in many places labels propagate only with the local step, on 

paths that can be very long. To overcome this problem we have added an 
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important supplement - an inverse step which propagates information large 

distances in the opposite direction and proceeds as follows. Each site saves 

its label, and then performs a local iteration. It then compares its current 

label with that old label and , if they are different, sends the current label 

to the originating site of its old label. For this step we use the Connection 

Machine routine send_with_minimum, for which any site that is sent more 

than one value keeps only the smallest. Each site then takes the minimum 

of the labels it is sent, if that is smaller than its current label. 

Doing a send step before each get ~eans that if the label of any site is 

changed, the new label is then propagated immediately (by the get) to all 

sites with the old label. Thus we can wholly relabel a large area, or sub­

cluster, in one step as soon as it contacts another large sub-cluster with a 

smaller label. In Fig. 5.3 we show the average number of iterations required 

to label the Ising model clusters . The data fit perfectly to a logarithmic 

increase with the lattice size. 

The costliest parts of this algorithm are the get and send steps, which 

require general communication routines which take about ten times longer 

than local grid communications on the CM-2. This is compensated of course 

by the value of the information which is passed over large distances. However 

a way of doing some of the work by a less costly method will reduce the total 
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running time. Since in the first few iterations the get/send step is able to do 

very little useful work, at a large cost, it is always faster to wait for i initial 

iterations before using it. Also, depending on the machine specifics and the 

efficiency with which get and send are implemented, it may be more efficient 

to do the get/send step only at every pth iteration of the algorithm, with just 

local label propagation for the other iterations. The parameters i and p can 

be tuned to optimize the algorithm for any particular application, system 

size, and parallel computer. We found that for our application on the CM-2, 

p = 1 or 2 and i between 4 and 8 generally gave the best results . 

We also note that for large lattices it is not necessary to get the label of the 

originating site for every point since, in any sizable cluster, most neighboring 

points belong to the same cluster. We have experimented with having only a 

portion (we use a quarter) of the sites perform a get. The new labels received 

are then transferred to neighboring sites by the subsequent local iteration. 

Whether this modification proves to be the fastest option depends of course 

on the communications hardware and software of the particular machine. For 

the CM-2, the time for each get is roughly halved, although the number of 

iterations required is increased slightly, so there is a trade-off. For an earlier 

implementation of the get routine on the CM-2 this method was substantially 

faster; however, an improved get now means that it is about 10% faster to 
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do the get step at every site. 

Another way of improving the performance of this algorithm is to combine 

it with the scan operation. Using scan in some of the initial iterations pushes 

the label more efficiently over moderate distances. On the CM-2, doing a get 

and a send is about as expensive as doing the 4 scans (one in each direction) 

of a scan step, however it provides a much better way to propagate labels by 

making large changes at ever increasing length scales, and of handling the 

large, irregular and labyrinthine clusters for which the scan algorithm fares 

poorly. Including a few initial scan steps makes the algorithm slightly more 

efficient at large VP ratios (i.e., larger lattice sizes), but again this will be 

highly dependent on the specifics of the problem and the machine. 

Of course we continue to use connection improvement for the local steps, 

and see a benefit for all the variations of the algorithm. Fig. 5. 7 shows 

the average time per site to label lattices of different sizes. It is evident 

that between sizes of 128 and 512 the efficiency of large VP ratios reduces 

the average time, while for larger lattices this behavior subsides and it is 

dominated by the increase in the number of iterations needed to converge. 

The average labeling time per site for the basic get/send algorithm ( i = 

0, p = 0, and no scans), as well as the optimized algorithm, is shown in 

Fig. 5.4. We can see that this method is substantially faster than the multi-
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scale algorithm. 

5.4 Discussion and conclusions 

Our labeling algorithms are very general, and can be applied to any appli­

cation where component labeling is necessary, such as percolation85 , image 

analysis72 , and for the various cluster Monte Carlo algorithms which have 

been proposed for many different spin models68• 60 • 70 . 

We have presented numerical evidence that the average number of iter­

ations required by our algorithms to label percolation-like Swendsen-Wang 

clusters at the critical point of the Ising model, which are highly irregular 

in both shape and size, scales with the logarithm of the lattice size. Up to 

corrections caused by differing VP ratios on the Connection Machine, the 

times required for the labeling using these algorithms scale as (log2 L )2 per 

lattice site. 

There is only a subtle difference between the multi-scale and scan algo­

rithms: both methods look at connections at distances 1, 2, 4, etc., but for 

multi-scale we also do a comparison at each distance and set the connection 

accordingly. This connection improvement is enough to give the multi-scale 

algorithm significantly better scaling behavior. 
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Our multi-scale algorithm is simpler than that of Brower et aL.76 , and 

appears to scale better with increasing lattice size. For the lattice sizes of 

interest (of order 1024 x 1024), our optimized algorithm gives an average 

labeling time for the Ising problem of 6.5 microseconds per site on a 16K 

CM-2 running at 7 MHz, which is comparable with the time of 6.0 f..LS per 

site obtained by Brower et al. for the same size machine. However this time 

for the optimized getjsend algorithm is substantially better, at 2.6 f..LS per 

site. 

These kind of SIMD algorithms work quite well on massively parallel fine 

grained SIMD machines like the CM-2, as long as the objects to be labeled are 

fairly small , for example in image processing applications such as analyzing 

images on a radar screen. However fine grained SIMD parallelism does not 

usually work well for problems which are very irregular and require a lot of 

non-local communication. Unfortunately the clusters to be labeled in spin 

model and percolation applications are very large and irregularly shaped, and 

we would therefore expect that it would be very hard to get good performance 

for labeling algorithms on these problems using fine grained SIMD machines. 

This is reflected in our results, since cluster labeling for the Ising model 

can be done at a rate of about 5 f..LS per site on a single IBM RS/6000-550 

workstation, compared to 2.6 f..LS per site with our best algorithm on a 16K 
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CM-2. 

However we have previously obtained quite good efficiencies on coarse 

grained MIMD machines for parallel component labeling algorithms which 

use only local propagation of labels 73 , and thus do not scale well for very 

large numbers of processors. Incorporating the above multi-scale and general 

communication (get/ send) ideas into these MIMD algorithms promises to 

allow us to greatly improve their efficiency and scalability, and thus exploit 

the power of large MIMD parallel supercomputers such as the nCUBE, the 

Intel machines , and the CM-5. 

Note added: After this work had been substantially completed, and prelim­

inary results reported at a conference80, we found that the get/ send algorithm 

had been independently proposed by P . Rossi and G.P. Tecchiolli86. 
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Chapter 6 

The Renormalized Trajecto~y 

and the (3 Function. 

As we have seen, Monte Carlo simulation of the 0(3) model on large lattices 

has not been able to find asymptotic scaling for the standard action. Since 

the limits of current computational resources have been reached in the study 

on lattices large enough for the correlation to have its infinite volume value, in 

order to investigate the model further other techniques are needed. One of the 

most important techniques developed in recent years that can be profitably 

used to extend our range of investigation is the Monte Carlo renormalization 

group (MCRG). 

A recent study of the model using an MCRG technique by Hasenfratz and 
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Niedermayer19 measured the discrete beta function 6./3(/3) for the standard 

action (SA) up to f3 = 2.24 (where~::: 1090) and for the tree-level improved 

action (TIA) up to f3 = 1.92 (~ ::: 330) . The discrete beta function 6./3(/3) 

is the difference between the coupling f3 and that coupling /3' at which the 

correlation length~ is half that at /3, i.e., 6./3(/3) = f3- /3' where /3' is chosen 

so that ~(/3') = ~~(/3). Thus it tracks the behavior of the f3 function of the 

theory between f3- 6./3(/3) and /3. 

For the TIA they observed convergence of 6./3 to the asymptotic scaling 

predictions (within their statistical errors) starting from ~ ::: 40; from this 

they calculated the value of m/ AMs = 3.4(1). For the SA only the last point 

at f3 = 2.26 is compatible with asymptotic scaling; since the value obtained 

m/ AMs = 3.3(1) agreed with that for the TIA, they surmised that AS is 

probably achieved. However, the evidence is not convincing for the standard 

action because only one measurement of 6./3 agrees with the prediction. 

It was the same authors, together with Maggiore18 , that then calculated 

the exact value of m/ AM5 by relating the Bethe Ansatz solution of the model 

with perturbation theory. The value obtained, m/ AMs = 8/ e ::: 2.943 is in 

obvious disagreement with the MCRG result. Since the numerical results are 

unconfirmed for f3 > 2.1 and there is a gap between the measurements and 

theory we have decided to undertake an investigation of the model using an 
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alternative MCRG technique. We will use this to check the previous calcu­

lation and extend the results further in the continuum limit of the theory. 

In the subsequent sections we will, respectively, introduce the Monte 

Carlo Renormalization Group, review the methods for directly obtaining 

the couplings of the block Hamiltonians, present the equations of motion 

method, test the method and our implementation, present our results for the 

standard block transformation and for a probabilistic block transformation, 

and derive our conclusions. 

6.1 The Monte Carlo renormalization group 

The Renormalization Group (RG) is an important tool for the investigation 

of field theories. By studying the way in which thinning the degrees of 

freedom of a theory changes the Hamiltonian in the vicinity of a critical point, 

many properties of a theory can be extracted. Analytical renormalization 

group calculations have provided much insight into the behavior of many 

models, including, as we saw, the ultraviolet limit of the O(N) nonlinear 

sigma model. However analytical calculations cannot be performed for all 

models and cannot be extended from the critical points to all regions of 

interest of a model. To fill this gap a powerful technique has been developed 
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that merges the strengths of the Renormalization Group with the flexibility 

of the Monte Carlo simulation methods87· 88 . With this method, the Monte 

Carlo Renormalization Group (MCRG), a theory can be studied in regimes 

in which perturbation theory and other expansions cannot be applied and 

its behavior can either be independently explored or it can be tracked into a 

region where it is well understood. 

The basic feature of a renormalization group study of a model is tracking 

the flow of the Hamiltonian under a change of scale. The degrees of.freedom 

are merged or thinned by being integrated out. In the real space renormal­

ization group this blocking is achieved by merging neighboring degrees of 

freedom, usually in a hypercube of length b, into a single field. The remain­

ing degrees of freedom are governed by a new Hamiltonian. By repeated 

block transformations the Hamiltonian will move (in the space of possible 

Hamiltonians) in a manner which reveals the long distance behavior of the 

model. Thus for models with a second-order phase transition there is a fixed 

point that governs the critical properties of the theory. 

Different block transformations can be used and will lead to different 

fixed points, all of which reside on the critical hyper-surface of the model. 

However all physical results, for example critical exponents, must be inde­

pendent of the choice of transformation. We also note that an important 
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additional assumption that is made (which is required for the method to be 

practically useful) is that the fixed point Hamiltonian is dominated by short 

range interactions. 

The MCRG methods most commonly used do not directly determine the 

couplings of the block Hamiltonian. Instead they involve either Swendsen's 

procedure to determine derivatives of the block couplings with respect to the 

previous level coupling constants88 • 89 or Wilson's technique90 of matching 

correlation functions (or ratios of such functions) attempting to pair up points 

(Hamiltonians) which have correlation lengths that differ by a constant fac­

tor, usually two, in order to retrieve the discrete beta function of the model. 

The matching method requires that the original line of Hamiltonians chosen 

is close to the renormalized trajectory of the block transformation that is 

used. Only then can there be agreement between the correlation functions 

measured at corresponding blocking levels. 

Most MCRG calculations have been done usmg a variant of this tech­

nique: in the first type an action must be chosen so that it is close to the 

renormalized trajectory of the chosen block transformation, as proposed by 

Wilson90 and utilized and extended by Shenker and Tobochnik3, Hirsh and 

Shenker91 and Hasenfratz and Margaritis 11 . In the second type a line of 

actions is chosen and the block transformation is adjusted such that the 
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renormalized trajectory is close to this action, as proposed by Hasenfratz 

I 30 d s 92 0 et a . an wendsen . For a rev1ew of many of these methods see, e.g., 

R. Gupta93 . 

6.2 Determining the Block Hamiltonian 

The matching techniques work well in the vicinity of the fixed point and the 

renormalized trajectory. However, as they depend on the chosen action being 

close to the renormalized trajectory of the transformation, they cannot be 

used for arbitrary values of the couplings. Thus an assumption has to made 

at the outset that the line of actions is close to the renormalized trajectory, 

and this must be validated afterwards. 

What is needed in order to get around these restrictions is a method 

for directly extracting the couplings of the renormalized Hamiltonian. Then 

the effect of the block spin transformation can be studied in detail and the 

renormalized trajectory can be found in a straightforward way. 

More powerful techniques do exist that directly determine the coupling 

constants of the block Hamiltonians. At least three practical techniques 

have been proposed that attempt to do this for an arbitrary renormalization 

group transformation (RGT). The first is based on the Schwinger-Dyson 
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equations, another relies on a variant of the microcanonical simulation, while 

a third uses a trial block Hamiltonian and an additional way of measuring 

correlation functions (that uses it) to iterate to the correct value. These 

methods, somewhat surprisingly, have remained largely unused and to our 

knowledge there have been no comparative tests of their relative efficacy, 

especially their different sources of systematic errors, the statistical errors 

of the resulting estimates, their robustness and the costs involved in using 

them. Preliminary results, though , are encouraging for all these methods. 

In particular, the first method determines the coupling constants of block 

Hamiltonians using the Schwinger-Dyson equations94 . These can be ex­

pressed as equations of motion for different correlation functions, e.g., for 

two-spin dot products like the nearest or next nearest neighbor spins. They 

equate expectation values of two-point and higher-order correlation functions 

and of products of spins and derivatives of the Hamiltonian. By truncating 

the range of the interactions and substituting the coefficients of the unknown 

Hamiltonian, a simple linear system of equations is retrieved. This is solved 

to obtain the values of the relevant coupling constants. 

The next method is based on an extension to the microcanonical sim­

ulation method of Creutz95 known as Creutz's demon. Creutz's demon is 

a Monte Carlo method that relies on an extra degree of freedom, called a 
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demon. The demon travels around the lattice updating the spins at each site 

such that the sum of the energy of the lattice and the demon remains constant 

and the energy of the demon always remains positive. The value of the cou­

pling is not an input parameter of the simulation, but is derived as a result of 

the run; the estimate of the energy provides the data from which the value of 

the coupling constant can be extracted. By introducing one demon for each 

of the correlation functions of interest (and using an auxiliary simulation 

for each blocking level of interest) M. Creutz, A. Gocksch, M. Ogilvie, and 

M. Okawa96 obtained an estimate for the corresponding coupling constants. 

Swendsen's method was actually the first one proposed97 . It uses a trial 

block Hamiltonian and an additional estimator for correlation functions that 

depends on that trial Hamiltonian. In an iterative process, the two estimates 

for each of several observables are compared for the same simulation, and 

the differences provide a correction for the Hamiltonian. 

6.3 The equations of motion method 

We use the method developed by M. Falcioni, G. Martinelli, M.L. Paciello, 

G. Parisi, and B. Taglienti94. It is based on Schwinger-Dyson equations, 

so we have called it the "equations of motion method." It computes the 
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couplings of the block renormalized Hamiltonians and can thus be used to 

extract the trajectory of an arbitrary renormalization group transformation, 

starting from any point (initial Hamiltonian). 

We have obtained a more general and compact formulation of the equa-

tions of motion of any observable by using the Langevin equation. For an 

observable A, we consider its derivatives 

(6.1) 

(the lower index i is the site index and the upper indices are the spin com-

ponent labels) and the generalized force derived from the Hamiltonian 

(6.2) 

The derivatives in the previous equations are taken without considering the 

constraint on the spins 2:a(O'f) 2 = 1. In order to formulate the equation of 

motion compactly we introduce a projection operator 

(6.3) 

The lower site index i is not summed over in the above or subsequent equa-
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tions; the upper indices (the spin component labels), however, are summed 

over when repeated. The equation of motion for the quantity A can be ob-

tained by imposing the condition that its average is invariant under O(N) 

rotations of the fields and is derived in appendix B. It is 

A ap.abpb + p~dA cd = (N -1)a'!-A a 
,, 1 1 t ,,, t ,, (6.4) 

where the equality is understood to refer to averages of the correlation func-

tions . 

We can consider the equations of m.otion for observables which span a set 

of short range correlation functions, for example the nearest neighbor correla-

tion function and the diagonal one (1, 1). If we use a truncated Hamiltonian 

H with short range couplings we obtain a system of linear equations in the 

couplings f3a of H. The simplest useful observable is the two-spin correlation 

function A = ii0 · iij, with j =/:- 0 any lattice point. For this the equation of 

motion becomes 

(6.5) 

If we take a Hamiltonian with two terms, the nearest neighbor and first 
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i 
i-=±y 

where the index i runs over all sites, we can derive the force 

. 
;.=±±,±fl 

(6.6) 

(6.7) 

and substitute it into equation (6 .5). We obtain equations (one for each 

point j) for the nearest neighbor and diagonal couplings 

f3d 'L [(O"o · O"j)- (O"o · O"j)(aj ·a a)] 
t1EVd 

where the sets of vectors are VNN = {x,y,-i: ,-y} and Vd = {x + y,x-

y, -x + y, -x- y}. Thus using the above equation for at least two points j 

we have a system of linear equations in the couplings f3NN and (3d, which we 

can solve to obtain estimates of their values. 

In this case, and in general, the coefficients of the system of linear equa-

tions and the inhomogeneous term (or source vector, i.e., b of A· x =b) are 
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sums of correlation functions, which can be evaluated efficiently using Monte 

Carlo simulation. 

We also note that equation (6.5) is the same as that is obtained by the 

approach of Falcioni et al. 94 . Our approach however simplifies its expression 

and is much better suited for calculating the equations for more complex 

observables and Hamiltonians. 

For a more realistic case than our simple example more couplings must 

be included. As many as possible of the relevant interactions and those that 

are generated with large coefficients near the chosen starting points should 

be used, in order to obtain reliable and meaningful results. In this model this 

means that we must use the two point interaction for the nearest neighbor 

(NN), diagonal (d), and next nearest neighbor (NNN) [and where necessary 

and possible the third-nearest neighbor (3, 0)] points and the shortest range 

four point interactions. These should include the four-spin couplings of the 

type ( s; · s1 )
2 that couple to the square of the correlation function used in 

each of the above two-spin interactions, and some that involve spins at three 

and four neighboring sites, particularly (so· s:r)(so · s:V) and (so· s:r)(s:V · s:V+X)· 

Unfortunately the last two examples introduced too much complication for 

the present study, as they would have required measuring several large new 

classes of correlation functions beyond those we currently measure. 
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We obviously require at least as many equations as there are coupling 

constants to find. We also note that simple observables, which are sym-

metric in their endpoints, generate only one equation. Other unsymmetric 

observables ( where the endpoints are not all interchangeable, for example 

8o ·ax 8o ·ail ) generate two or more. Thus in general we will need at least 

as many observables as equations. 

In the Hamiltonian we chose to include all symmetric bilinear terms of 

distance less than r and the square of all such terms. We chose r = .2 and in 

some cases r = 3. Thus the Hamiltonian we use is 

where a is an index running over the vectors that characterize the couplings 

- (1, 0), (1, 1), (2, 0), (2, 1), (2, 2) for r = 2 - and T01 is the set of vector that 

are the reflections and rotations of the a modulo the rotation by 1r, i.e., for 

a vector a= (i,j) where i-/= j, T01 is the set {(i, ±j), (±j, i)}. 

We also chose to use as observables A in 6.4 the set of bilinear correlation 

functions 80 · 8;,and of their squares (80 · 8;)2 with i visiting all possible sites 

whose coordinates have an absolute value not greater than I. More precisely 

i E {(s, t)/0 ~ s ~ t ~I and a> 0}. We made the choice I= 2 in most cases 
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because of the large computational cost involved in choosing higher values, 

but also ran tests with l = 3. 

Having chosen the trial Hamiltonian and the set of observables we mea-

sure, for each blocking level of interest, the set of correlation functions re-

quired to determine all the coefficients and the inhomogeneous terms of the 

system of linear equations. 

Let us also briefly describe the method of Creutz et al. 96 for comparison 

purposes. To use it first one measures the correlation functions corresponding 

to the coupling constants desired for a set of block lattices (e.g., for f3NN we 

would measure < s; · ( s;+;r + s;+Y > ). Then a lattice with initial values of 

these correlation functions H; equal to the mean E;,o of the measurements is 

prepared. An extra degree of freedom, called a demon, is then introduced for 

each correlation function i and is allowed to take values Eb in a restricted 

range. An auxiliary simulation is then run with the partition function 

Z11-c= L 
-l<EiJ<l 

IT 8 (H;(S) + Eb- E;.o) (6 .9) 

where H;(S) is the value of the i correlation function that is coupled to the 

coupling constant /3; . From the average value < Eb > of the i demon's 

"energy" one can extract the value of the coupling constant /3; by using the 
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following equality 

. 1 1 
< Eb >=-- . /3; tanh /3; (6 .10) 

This is valid in the large volume limit, so in some cases finite volume correc-

tions are needed. We note that this method is not ergodic, so checks must 

be made whether the results are reliable. However in all cases to date this 

has not presented a difficulty. 

This technique is unfortunately less well suited to parallel computers. 

To preserve the method it seems necessary to simulate it exactly as if it is 

run sequentially. Satisfying the constraints necessary to do this in a parallel 

environment would make the method fairly inefficient. 

6.4 Test ing the equations of motion method 

We performed several tests in order to measure the accuracy of the method 

and to test the correctness of our implementation. But before we show results 

of such a comparison we will mention a few details of our simulation. 

We used a cluster Monte Carlo update algorithm; in particular we used 

the Wolff method29 to map the 0(3) spin model onto a ferromagnetic Ising 

spin model. However we did not use his single cluster dynamics, in which 

only one cluster is built at a time starting from a random point on the lattice 
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and that cluster is always flipped. We chose instead to use the Swendsen­

Wang dynamics28 which identifies all clusters and flips each cluster with 

probability 1/2. We did this because we believe it makes better use of the 

parallel computer we used, the Connection Machine-2 from the Thinking 

Machines Corporation. 

To check how fast the algorithm produces new configurations we measured 

and saved the total spin of the lattice and the energy after every sweep. We 

observed that the integrated autocorrelation time of the magnetiz-ations is 

T;';!t :::::::::: 2.5, i.e., in all cases it remains small. Measurement of the appropriate 

correlation functions was made every 20 sweeps, so that we measure these 

quantities on configuration that are correlated little. In this way the update 

consumes about 20 per cent of the CPU time. Correlation functions are 

summed over a certain number of iterations, 2500 for L = 256, 1500 for 

L = 512 and 500 for L = 1024 and saved. They are then read in by a separate 

analysis program which computes and solves the system of linear equations 

for each set saved. Errors are obtained by averaging the measurements and 

also by using the jackknife method in the following way: the possible sets 

of all but one correlation function measurements are constructed, the linear 

system of equations are solved for each set and the jackknife error equation 

is used to recover the error estimates56. The two methods give similar errors, 
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f3NN f3d f3NNN 
2.0010(15) 0.0018(23) -0.0016(16) 

!3(3,0) !3(3,1) !3{3,2) /3(3,3) 

!3(2,1) 

0.0022(6) 

-0.0034(12) -0.0016(8) 0.0011(15) -0.0013(18) 

!3(2,2) 

0.0002(21) 

Table 6.1: Direct test of the method using no blocking and running at f3 = 
2.0. Couplings extracted using the Schwinger-Dyson equations with only 
bilinear couplings in the Hamiltonian are shown. We included all interactions 
in an orthogonal triangle with small sides of length r = 3 and one point at 
the origin (0,0). 

and we use the latter ones. 

We used our method on a sample of configurations generated by Monte 

Carlo simulation without doing any blocking. Obviously the original cou-

plings should be recovered in this case, allowing us to check the accuracy 

and robustness of our procedure. Table 6.1 shows the results of such a test 

using only 750 measurements of all appropriate correlations functions. The 

agreement with the input values of the simulations and small estimated er-

rors show that we can faithfully extract the value of the couplings for these 

cases and that statistical errors are under control in our estimates. 

The couplings obtained are obviously not statistically independent. They 

have a complicated covariance matrix . We cannot show all the elements of 

this nine by nine (and in other cases ten by ten or larger) symmetric matrix 

for each case because it would take too much space to do so. Instead we 

will quote the error derived from just the diagonal parts of the covariance 
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matrix for each entry in our tables. We do use the full matrix, however, in 

appropriate parts of our subsequent analysis. We will note that the values of 

the linear correlation coefficients derived from the covariances take on similar 

values for the same entry on different lattices and levels. Different entries 

exhibit almost the full range of possible values, from close to -1 to about 

0.8. 

As a further check, we measure the couplings at each blocking level. Then 

we simulate a Hamiltonian with couplings equal to our estimates of the block 

Hamiltonian at the first blocking level on a lattice half the size. We compare 

the measurements (at one level less) in this simulation with the estimates on 

the original lattice. 

Table 6.2 shows the results of the above tests starting at f3 = 2.0. We see 

that matching between corresponding levels is reasonable but not very good 

- other terms in the Hamiltonian (in particular the quadratic terms with the 

1 couplings, the third neighbor bilinear coupling f3NNN and possible other 

quadratic spin couplings). A simulation with these 1 couplings included 

in the second Hamiltonian and in the analysis of both runs is needed to 

determine whether agreement would be much improved by their inclusion. 

This has not yet been possible. We also see that including the 1 couplings 

in just the second simulation changes those results substantially. 
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L lv f3NN /3d f3NNN /3(2,1) /3(2,2) 

1024 0 2.0 
1024 1 3.2342(8) -0.0105(8) -0.3985(10) -0.0436(5) 0.0184(9) 
1024 2 3.9654(16) -0.1963(25) -0.6758(23) -0.0337(17) 0.0487(27) 
1024 3 3.9563(36) -0.2806(62) -0 . 7266(50) -0.0168(34) 0.0510(54) 
512 0 3.234 -0.011 -0.398 -0.044 0.018 
512 1 4.0185(10) -0.1554(22) -0. 7899( 18) -0.0379(14) 0.0643(17) 
512 2 3.7190(23) -0.2512(31) -0.7284(19) -0.0156(22) 0.9562(28) 
512 3 2.6176( 46) -0.1578(64) -0.4702(56) -0.0165( 40) 0.0257(47) 
512 4 1.9779(84) -0.0739(84) -0.3504(83) -0.0149(72) 0.0124(74) 
512 1' 4.908(6) -0.211(6) -0.986(2) -0.044(2) 0.080( 4) 
512 2' 4.734(9) -0.367(10) -0.940(4) -0.015( 4) 0.065(6) 
512 3' 3.042(11) -0.207(15) -0.550(8) -0.014(7) 0.026(7) 
512 4' 2.182(14) -0.077(17) -0.380(10) -0.015(9) 0.014(9) 

L lv INN /d /NNN /(2,1) /(2,2) 

512 1' -0.629(4) 0.027( 4) 0.171(2) 0.015(2) -0.015( 4) 
512 2' -0.740(7) 0.067(7) 0.198(3) 0.013(3) -0.007( 4) 
512 3' -0.375(9) 0.029(12) 0.113(8) 0.010(6) -0.002(9) 
512 4' -0.233(12) -0.007(15) 0.074(8) 0.002(7) 0.010(10) 

Table 6.2: Coupling estimates at different levels for two simulations: one at 
beta = 2.0 on a 1024 lattice and the other on a 512 lattice at the coupling 
estimates of the first level of the previous one. Statistics are 13x500 for 
beta = 2.00 at L = 1024 and 36x1500 for L = 512. For the latter lattice we 
also show for comparison the couplings obtained when square bilinear terms 
are included in the analysis (levels 1', 2', ... ) 
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By also measuring the correlation length we can establish whether the 

most significant part of the physics is captured when we cut off the couplings. 

Finding ~ = 67 ± 4 for the simulation starting from the estimated couplings 

of level one of the run at /3 = 2.0 we see that it is much less than half 

the correlation length for f3 = 2.0. So using only these bilinear couplings 

neglects important effects . For our extensive runs we added the quadratic 

spin couplings 10: as well; a full check for this case has not yet been possible, 

as we mentioned above. 

Since truncation errors seem to be significant we have tried to estimate 

their effect. We have done so by seeing how the neglect of terms similar 

to those used, but covering longer distances, generate systematic error. In 

order to do this we measured the correlation functions needed to determine 

the Hamiltonian truncated to r = 3 for runs with the standard action at 

f3 = 1.4. We then fitted to Hamiltonians with r = 2 and r = 3. The results 

can be seen in table 6.3. They show that couplings are stable, and others 

have a difference in a number of couplings of about 0.02, which is larger 

than the statistical errors . This gives us an estimate of the systematic errors 

because of truncation for coupling estimates using this renormalization group 

transformation. 

Truncation errors are unavoidable in most methods. Even methods that 
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Hamiltonian with radius= 2 in the analysis, correlation functions with R=l+r=4 

lv r 1 f3nn fJd f3nnn /32,1 /32,2 1'nn 1'd 1'nnn 1'2,1 1'2,2 

1 2 2 1.8384(6) 0.0374(6) -0.2282( 4) -0.0340(3) 0.0075(3) -0.0334(6) -0.0057(8) 0.0352(5) 0.0098(2) 0.0012(6) 
2 2 2 1.7428(12) 0.0021(11) -0.2685(6) -0.0321( 4) 0.0115(6) -0.0804(9) -0.0058(12) 0.0393(8) 0.0078(5) -0.0008(7) 
3 2 2 1.2031(10) -0.0003(8) -0.1796(9) -0.0212(6) 0.0066(6) -0.0720(9) -0.0114(11) 0.0148(8) 0.0027(8) -0.0016(11) 
4 2 2 0.6465(10) -0.0009(7) -0.0848(11) -0.0090(9) 0.0040(8) -0.0328{12) -0.0048(12) 0.0016(13) -0.0024(13) -0.0002(15) 

Hamiltonian with radius r=2 in the analysis, correlation functions with R=6 

lv r 1 fJnn /3d f3nnn 132,1 /32,2 1'nn 1'd 1'nnn 1'2,1' 1'2,2 

1 2 4 1.8343(16) 0.0261(15) -0.2237(12) -0.0243(9) 0.0035(9) -0.0328(14) -0.0036(13) 0.0347(11) 0.0068(7) 0.0027(12) 
2 2 4 1.7393(28) -0.0111(24) -0.2603(23) -0.0208(22) 0.0075(17) -0.0808(29) -0.0081(36) 0.0345(23) 0.0060(19) 0.0007(18) 
3 2 4 1.2040(35) -0.0060(26) -0.1787(26) -0.0159(24) 0.0031(21) -0.0736(32) -0.0067(31) 0.0190(28) 0.0060(35) 0.0026(33) 
4 2 4 0.6489{38) -0.0076(24) -0.0807(33) -0.0075(20) 0.0017{30) -0.0299( 48) 0.0008{ 49) 0.0050{32) 0.0005(35) 0.0075{37) 

Hamiltonian with Radius = 3 in tl;te analysis, 

lv r 1 fJnn /3d f3nnn /32,1 132,2 /33,0 /33,1 /33,2 /33,3 

1 3 3 1.8384(15) 0.0412(14) -0.2417(12) -0.0404(7) 0.0009(12) 0.0262(12) 0.0066(10) -0.0003(6) 0.0002(10) 
2 3 3 1.7432(22) 0.0108(21) -0.2890(18) -0.0430(17) 0.0096(21) 0.0418(19) 0.0090(16) -0.0018(14) -0.0002(16) 
3 3 3 1.2066(35) 0.0037(25) -0.1965(21) -0.0277(23) 0.0061(24) 0.0311(26) 0.0056(12) -0.0002(17) -0.0033(20) 
4 3 3 0.6499( 40) -0.0068(25) -0.0860(37) -0.0081(21) 0.0022(26) 0.0147(36) -0.0014(21) -0.0010(22) 0.0027(24) 

lv r 1 1'nn id 1'nnn 1'2,1 1'2,2 1'3,0 1'3,1 1'3,2 1'3,3 

1 3 3 -0.0322(14) -0.0057(14) 0.0362(10) 0.0097(7) 0.0027(9) -0.0005(10) -0.0016(10) 0.0005(7) 0.0004(10) 
2 3 3 -0.0763(25) -0.0103(32) 0.0365(22) 0.0092(15) 0.0003(19) -0.0045(15) -0.0023(14) 0.0007(18) -0.0019(15) 
3 3 3 -0.0700(28) -0.0073(33) 0.0186(26) 0.0069(34) 0.0018(32) 0.0013(31) 0.0043(26) 0.0010(21) . 0.0028(23) 
4 3 3 -0.0290( 47) 0.0009(50) 0.0052(32) 0.0013(36) 0.0073(36) 0.0079(45) 0.0078( 47) 0.0035(46) 0.0076( 49) 

Table 6.3: Comparison of couplings of block Hamiltonians at blocking levels 1-4 (lv) for different choices of truncations and sets of observables 
used to obtain them. The runs are at f3 = 1.4 on a 2562 lattice. The Hamiltonians include all quadratic couplings Pi (that correspond to two 
spin correlation functions) and the quartic couplings 1'i as defined in the text. Only those which have and endpoint at (0,0) and at another 
point inside or on a triangle of side r are used [e.g., if r = 1, the points would be (1,0) and (1,1) while for r = 2 it also includes (2,0), 
(2,1) and (2,2) ] . r here takes the values r = 2 and 3. All similar observables A within a similar triangle of side l are used for to obtain 
Schwinger-Dyson equations the linear system of which was solved to obtain the couplings shown. This neccesitated measuring all two, most 
four and many six point functions with endpoints in a box extending R = l + r each side from a lattice point. 



130 

do not involve explicit truncation of the Hamiltonian, like the microcanonical 

method, including different couplings produces different results. These shifts 

have, for example, been seen in a simulation of the SU(2) gauge theory in four 

dimensions using the microcanonical method98. It is hard to compare the 

magnitude of these effects for different methods without doing an extensive 

comparative study, which is not possible in the current work. However the 

magnitude of these systematic errors seems to be no worse for the method 

we use than for other methods. 

We should also point out that it is important to find the smallest set 

of correlation functions, which include all those needed and is also regular 

and thus simple to measure. The reason for this is the correlation functions 

of order four and six that are needed are those with endpoints at (0, 0) 

and two other points with coordinates of absolute value less than /, i.e., 

r = (x,y) : lxl, IYI < l. Their number is proportional to 14, which grows 

very fast with increasing 1. By appropriate choice we have limited the number 

of correlation functions (other than the two-point functions) measured from 

4(4r + 1)2 [(2r + 1)(r + 1)- 1] to 4(3r + 1)2 [(r + 1)(r + 2)/2- 1], which 

represents a significant decrease in the computation cost, i.e., even for r = 2 

it goes from 4536 to 980. 

Lastly we note that the smallest lattices we take measurements on are 
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162 • On smaller lattices the correlation functions we measure will obviously 

be dominated by finite size effects. Also, since the statistical errors grow 

much larger as the depth increases, we judged that measuring on smaller 

lattices would not be worthwhile. 

6.5 Results for the standard RG transfor-

mat ion. 

It is natural as a first case to study the simplest RG transformation. In this 

the block spin is chosen parallel to the sum S of the spins in a 2 x 2 block: 

We do this for intermediate to large couplings of the Standard action, 1.6 ~ 

f3 ~ 2.6. 

Our results for intermediate couplings, 1.6 ~ f3 ~ 2.0, which are the 

most precise, can be seen in figure 6.1. Most couplings at first increase in 

magnitude after the first (and sometimes) block transformation. Then all 

converge to a single curve, the renormalized trajectory and proceed to follow 

it, decreasing in magnitude. This behavior and the renormalized trajectory 
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in this range of couplings and for this transformation were first observed by 

Okawa99 , using the microcanonical method of Creutz et al. 96. He started 

from some standard action points, but found best convergence from two 

points with the block spin renormalization group improved action of Shenker 

and Tobochnik3. Comparing our results, in figure 6.1 we see that the tra­

jectories are close but not overlapping. The broad similarity lends some 

credence to both methods, which are very different. The differences in the 

lines are probably due either to the truncation errors in both methods, or 

partly due to the finite effects in Okawa's measurements99 which used 1282 

lattices. 

Our confidence that we have found the renormalized trajectory is bol­

stered by the fact that simulating the action of Shenker and Tobochnik 3, 

our blocking steps also converge to the same curve. This can also be seen in 

figure 6.1. 

Figure 6.1 shows that after three iterations of the block transformation we 

reach the renormalized trajectory. With further blocking steps the coupling 

constants remain on a single trajectory, evidence that we have found the 

renormalized trajectory. 

What happens for larger values of the initial couplings /3 for the standard 

action can be seen in figure 6.2. Although there are larger errors in the 
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Figure 6.1: The coupling constants for the different blocking levels starting 
from the standard action and that of Shenker and Tobochnik using the stan­
dard RGT. Convergence to a single line, the renormalized trajectory, is clear. 
The line is the renormalized trajectory obtained by Okawa. Shown are the 
next nearest neighbor coupling and the diagonal coupling versus the near­
est neighbor coupling. Different blocking levels are distinguished by their 
symbols. 
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Figure 6.2: Flow of bilinear couplings under standard block transformation 
starting from several points of the standard, nearest neighbor action. 
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estimates for f3 ~ 2.2 , the convergence to a single curve that is the extension 

of the one seen at lower values of f3 is clear - for those coupling constants for 

which the value is much larger than the statistical error. 

6.6 The improved RG transformation. 

Another way to investigate the model is to vary the block transformation 

in order to obtain one that has a renormalized trajectory near the standard 

action. Hasenfratz et al. 30 suggested an improved renormalization group 

transformation. In this block transformation the block spin b is chosen from 

a probability distribution weighted by the dot product with the sumS of the 

spins in the block: 

P(b) =A( C) exp ( -Cb · s) (6.11) 

where the parameter C is arbitrary; A(C) is chosen to provide the correct 

normalization. However C must be chosen so that the transformation has a 

fixed point. This dictates that C - oo as f3 - oo, which makes the choice 

C = c/3 a natural one. Hasenfratz et al. 30 used perturbation theory to 

obtain the optimal value for c for the O(N)N-+oo model, so that matching 

could be possible at low blocking levels. In particular they observed that the 

continuum value of the beta function 6./3 = ~; was found by matching the 
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third and second blocking levels (3/2 matching) using the nearest neighbor 

correlation function and then also for 4/3 matching. ( This comparison was 

made in the range 0.6 :S f3 :S 2.0 corresponding to correlation length of 

10::; ~ ::; 30000 .) 

Hasenfratz and Margaritis 11 also used this method for the 0(3) model and 

adopted the tree-level optimal value Copt = 2.3. They were able to observe 

the change in the beta function from the crossover region (3 < 1.6 where it 

is larger than the two-loop result 

ln 2 1 
D.f321oop((3) = 271" ( 1 + 271" (3) (6.12) 

to a region where it is consistent within their large error with this result. 

We used this prescription ( C = Copt/3) and obtained estimates for the 

standard action starting from several values of (3. Using this transformation 

the flow of Hamiltonians under blocking seems close to converging to a tra-

jectory for many of the points simulated; all couplings come close to merging 

to a line. Thus the renormalized trajectory is probably close to the standard 

action, as seen in figure 6.4. However clear convergence is not obtained even 

for small couplings and as f3 increases some of the couplings do not get all 

the way to the curve. Thus the number of blocking steps required to reach 
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the trajectory gets large and it is not reached even after , for example, five 

blocking steps at f3 = 2.0. 

In order to get around this, and in an attempt to find a transformation 

which converges to a renormalized trajectory in a few steps, we then tried 

the prescription C = 5.0 used by Hasenfratz and Niedermayer19. With it 

we obtained convergence to a renormalized trajectory within a few blocking 

iterations for all the couplings we measure - within the statistical errors of 

the measurements. In particular, as figures 6.6 and 6. 7 show, pro:x:imity to 

the trajectory is obtained within two iterations and the points seem to lie on 

it after that. 

levels: 4/3 5/4 6/5 
f3 L x2 6.(3 x2 6./3 x2 6.(3 

2.14 512 129.3 0.1145(11) 5.2 0.1140(14) 
2.26 512 50.4 0.1177(20) 3.1 0.1149( 9) 
2.38 512 71.9 0.1185(31) 9.4 0.1157(15) 
2.50 512 62.3 0.1236(20) 12.9 0.1163(16) 
2.50 1024 125.7 0.1200( 2) 21.8 0.1183(18) 8.0 0.1166(36) 
2.62 1024 137.4 0.1264(33) 4.5 0.1225(13) 10.2 0.1232(23) 

Table 6.4: The discrete beta function 6./3(/3) for the Standard Action from 
measurements using the Improved block transformation with C = 5.0 Shown 
are the coupling f3 and length L of the larger lattice, x2 and the value of 6./3 
at each the pair of levels matched. 

Since such clear convergence to a trajectory is observed, we use the es-

timates for the coupling constants of the block Hamiltonians to obtain the 
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discrete beta function l::if3({3). To do this we fit the vector of couplings at 

each level to those obtained at one level less, on a lattice half the size, at 

several nearby coupling constant values. Intermediate values for the small 

lattice, between those simulated, are obtained by interpolation. We include 

in the fits the measured covariance matrix of the coupling constants obtained 

from the simulations. The estimates we get for !::i{3({3) can be seen in table 

6.4. 

We note that the reason we include the covariance of the couplings is 

that there is a significant correlation between the different coupling con­

stant values obtained (which is expected). In particular a check of a few 

typical examples shows that each coupling f3a and the corresponding Ia are 

anti-correlated with linear correlation coefficients ranging between -0.55 and 

-0.98, while other coefficients range between -0.7 and 0. 7. 

Agreement between the results for subsequent levels is good in most of 

these cases, except for {3 = 2.50 at L = 512 to 256. However, since we are 

comparing actual coupling values, it is not as necessary to rely only on this 

agreement to check consistency - as is required when only a few correlation 

functions are used. We can also evaluate the values of x2 obtained in order 

to get a check of whether matching is good, and for the case quoted above we 

also have the match at larger lattice sizes which indicates good agreement. 
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Figure 6.8: The discreet {3 function 6.{3({3). Crosses are our measurements, 
triangles those of Hasenfratz et al. The solid line is the 3-loop perturbation 
theory result and the dashed line is the universal 2-loop result. 

In general we see that matching the fourth level of blocking with the third 

( 4/3) we get large x2
, as the number of degrees of freedom is 9 (10 couplings 

minus one fit parameter) . However matching deeper levels, 5/4 and where 

available 6/5, we see good values of x2
• Since the fits at the 6/5 levels have 

much larger statistical errors we use the 5/4 match values as estimates for 

the discrete beta function 6.{3({3) . 
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A comparison of 6.(3((3) with the results of Hasenfratz and Niedermayer19 

reveals that our result for the discrete beta function at f3 = 2.14 is in good 

agreement , while the one at f3 = 2.26 is lower and does not agree at about the 

2.0 to 2.4o- level. Our results do not support their conclusion of convergence 

to the expected 3-loop result 

6.(3((3) = ln 2/27r (1 + 
2

1
/3 + "' 2 + 0 (/3-3

)) 
7r (27r/3) 

(6.13) 

at f3 = 2.26. For the standard action "' = 0.777. As can be seen in figure 

6.8 we observe slower movement towards the perturbative result, and only 

for f3 = 2.38 and 2.50 are our results consistent with it . The estimate at the 

largest f3 value, 2.62, however, overshoots the 3-loop result continuing the 

upward trend of the previous four points. This is a surprising result, since it 

is expected that any non-perturbative effects that would cause the deviations 

from the perturbative result would decay away in this regime of correlation 

lengths of a few thousand. The small change between the universal 2-loop 

and the standard action 3-loop result and the very slow variation of the 

additional term makes it unlikely that any single higher perturbative term 

could explain this large deviation. Thus if this estimate holds up it would be 

hard to reconcile with expectations. 
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A calculation of the next, 4-loop, term of the j3 function would never­

theless be very useful, as it would allow a check to see whether there are 

terms of oscillating sign that could contribute to the unusual behavior of the 

j3 function. It would be a difficult calculation, but as Falcioni and Treves6 

showed, it would require only a 3-loop calculation to obtain the difference of 

the 4th loop term for the standard lattice action from that for the modified 

minimal subtraction scheme. The latter has been calculated by Wegner100. 

We can use the measurements of the discrete beta function to obtain 

the value of the correlation length by making use of the fact that ~(/3) = 

2~(/3- 6.j3(j3)). The results allow us to check the value of mj AM5 , as a 

function of the coupling /3, against the predicted exact value and against 

that measured directly in chapter 4. Checking for asymptotic scaling (using 

the coupling /3) yields no new information, as it is equivalent to scaling for 

the discrete j3 function . However we can use it to check whether rescaling in 

the alternative coupling J3E improves the outlook for asymptotic scaling. 

In figure 6.9 we show the ratio m/ AM5 of the mass gap to the lambda 

parameter in the modified minimal subtractions scheme obtained from this 

MCRG calculation and from direct Monte Carlo simulation on large lattices 

(chapter 4). The values shown include the two and three-loop estimates for 

the original coupling j3 and the rescaled coupling f3E that is derived from 



147 

4.5 e 
e €} 

MC MCRG 

... m oe 2-loop, fJ 
A • m 

4.0 ~ 
6.& 3-loop, fJ !D 

~ ~~ 0. 2-loop, {JE 

~! ~ oe 3-loop, {JE 
I~ IiliQ2 
~ 3.5 !II • s 

"' !ll ! ! 
I I 

X%1 mm ~ :I :! :! e mm~ 
3.0 • • • 

e 8 
m: m: m:~ m :1 

e I I 

2.5 e 

1.4 1.6 1.8 2.0 2.2 2.4 2.6 
(3 

Figure 6.9: The mass gap to A parameter ratio for different values of the 
coupling constant /3. The two-loop and three-loop results are shown, using 
the original coupling j3 and the rescaled one f3E, derived from the energy. 
Open points are from direct Monte Carlo measurements of the correlation 
length (chapter 4), and solid points from this MCRG calculation. The solid 
horizontal line is the exact result. 
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the energy. The first point of the MCRG data uses the correlation function 

estimate only at f3 = 2.02 (derived from the measurements of m/ AM5 at 

f3 = 2.0 and f3 = 2.05). We notice that the MCRG estimates at f3 = 2.14 

and 2.26 and the values obtained by direct Monte Carlo measurements join 

smoothly. 

We see that the value of m/ AM5 for the original coupling f3 remains more 

than 10% larger than the exact result (m/ AMs)exact = 2.94 at the largest 

coupling measured: m/ AMs(f3 = 2.62) = 3.31( 4). However the resu~ts using 

the two- or three-loop equations in the rescaled coupling constant f3E are 

compatible with asymptotic scaling between f3 = 2.14 and 2.50, and give a 

three-loop value of 

at f3 = 2.5- not far from the exact result. This tentative agreement is spoiled 

by the disagreement of the estimate at f3 = 2.62, m/ AM5(f3E) = 3.169(34); 

this effect is the same that made the measurement differ widely from the 

possible convergence of the discrete f3 function to the asymptotic result for 

smaller f3. 

Thus it would very interesting to obtain a check of our results using an­

other method, in order to test the possible asymptotic scaling in the rescaled 

coupling f3E and see whether it extends to higher f3 values or whether the 
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discrete f3 function does actually show further non-monotonic behavior as 

our results at f3 = 2.62 suggest. 

6.7 Conclusions and discussion. 

We have demonstrated the utility of an interesting MCRG method coupled 

with the cluster MC update algorithm. We have confirmed the position of the 

renormalized trajectory for the standard block transformation, and showed 

how it extends to higher coupling constants . We have also shown that the 

probabilistic block transformation with 'optimal' constant choice C = Coptf3, 

with Copt = 2.3 does not give good convergence to a renormalized trajectory 

when starting from the standard, nearest neighbor action. 

We have obtained the renormalized trajectory for the same probabilistic 

block transformation with the choice C = 5.0 and used matching to obtain 

the discrete beta function of the theory. Our values for this are more accurate 

than those obtained by other methods and favor a slower convergence to the 

weak coupling series value than obtained by Hasenfratz eta/. 19 (at f3 = 2.24) 

but after this agreement with the two-loop results our last point (at f3 = 2.62) 

overshoots it. 

The results of Kim101, making a new assumption for Finite Size Seal-
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ing (FSS), indicate that the correlation length scales asymptotically for 

j3 ~ 2.25 but the susceptibility does not. In particular, assuming asymp­

totic scaling and that their FSS equation holds, they observe agreement with 

these assumptions for runs at j3 = 2.246, 2.381, 2.509 and 2.628. Our numbers 

are compatible with the two-loop discreet j3 function at 2.38 and 2.50 but not 

at 2.62; thus we agree with compatibility between the first three points of 

theirs, but not the last. Since they use the comparison to validate both their 

FSS method for this model (which is shown to work for the 2d Ising model) 

and asymptotic scaling, a fortuitous coincidence could hide discrepancies in 

both. 

The unusual behavior of the long range physical quantities, the suscep­

tibility and correlation length, has prompted a search for an explanation. 

As we have mentioned, Butera, Comi and Marchesini23 used the Schwinger­

Dyson equations to obtain high temperature expansions for the O(N) model 

in two (and other) dimensions for general N through /311 and later extended 

them 102 to j314 using the series results of Luscher and Weisz103 obtained 

using the linked cluster expansion . They saw that the critical singularity 

of the Ising and XY model exists on the real axis for N ~ 2.4 and then 

collides with another singularity and becomes a pair of singularities in the 

complex j3 plane. For small values of N > 3 these singularities are near the 
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real axis, and thus can influence the behavior of physical quantities, and for 

larger N they move further away. For N = 3 they estimate that they are at 

f3/N = ±0.63(6) ± 0.12(6)i. This would mean that, if the singularities were 

at the high end of the estimate f3 = 1.9(2) ± i0.4(2), they might be able to 

influence the behavior of physical quantities in the vicinity of our measure­

ments, and be the cause of the large deviation from asymptotic scaling seen 

in this region. 

Further study of these singularites is needed to resolve their location. This 

might be possible using an alternative _method, the Monte Carlo approach of 

Marinari104. ( Such a study is currently being tried by K. Anagnostopoulos 

using our simulation program). In principle this would also allow us to check 

whether singularities exist for larger values of the couplings, i.e., f3 > 2.4. 

Furthermore it would provide us with a way of correcting for their presence, 

similar to that used by Bonnier and Hontebeyrie47. 

Lending support to this conclusion is the Monte Carlo simulation study 

by Klomfass et al. 105 that interpolates between the 0(3) and 0(2) (or XY) 

model. In this a mass term is added that couples to one component of the spin 

!:::..H = +r L:x(s;;') 2 that tends to suppress that component. They attempt 

to explain the non-monotonic behavior of the f3 function around f3 = 1.6 by 

studying how the Kosterlitz-Thouless transition of the 0(2) model ( a.k.a. 
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the XY model) extends in the /, f3 plain from the KT point to the region 

near the 0(3) model. They see that even for 1 = 1/15 there is a transition 

at f3 = 1.68( 4) between a phase of bound vortices and a disordered phase 

like the only phase of the 0(3) model. Thus they ascertain that the effect is 

a lattice specific, non-perturbative phenomenon which would thus get more 

pronounced the smaller that N gets (for N > 3 ), as, e.g. , observed in Monte 

Carlo simulation by Wolf£22 , where the 0(4) and 0(8) models are seen to 

exhibit smaller deviations from asymptotic scaling. 

Our results show that when a rescaled coupling constant f3E is used, 

several values of m/ A.Ms(f3E) show agreement to two or three loops, giving 

the estimate m/ A.Ms(f3E) = 3.047(35) at three-loops. The disagreement of 

the last value, at f3 = 2.62 and the lack of a confirming calculation remain 

the major obstacles to firmly establishing this result. 

We also show the utility of an interesting Monte Carlo Renormalization 

Group method that calculates the couplings of blocked Hamiltonians using 

the Schwinger Dyson equations. This has extracted the renormalized trajec­

tories for two block transformations and provided very competitive estimates 

of the f3 function of the model. 
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Appendix A 

Calculation of the 3-loop 

coefficient for f3 E 

We saw that using the rescaled temperature f3E = 4~=1) and correcting for 

the universal two-loop behavior of the mass gap we obtain results much closer 

to asymptotic scaling than using the coupling /3. Since the next term, the 

third-loop term, is non-universal and can provide an important correction 

to the leading behavior when we compare our results with the asymptotic 

formula for the mass gap we have undertaken to calculate it. 

The three-loop term for the mass gap and susceptibility has been calcu­

lated for the modified minimal subtraction scheme of the continuum theory5 

and for several lattice actions6. In order to obtain the three-loop correction 
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for the mass gap for f3E, we will relate it to the value for the standard, nearest 

neighbor, lattice action. 

For ease of calculation we will use the inverse of f3E, and we will call it 

TE = 13~. To calculate the third-loop term for the mass gap we must get the 

same term for the /3-function of the theory 

dTE 
f3(TE) = d(loga)" (A.l) 

From this definition it is obvious that we can obtain the rescaled values using 

the chain rule 

dT dTE 
f3(TE) = d(loga) (T(TE)) · dT (T(TE)) (A.2) 

and substituting T as a function of TE into the resulting equation. 

We proceed to calculate each part. From the weak coupling expansion of 

the energy for the standard action 

E= _N-1T_N-1T2 _3(N-1){ (N- )} 1 
4 32 2000 

5 + 4 1 (A.3) 

and the definition of TE we can obtain a Taylor expansion forTE as a function 
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ofT 

T = T ~T2 3 [5 + 4(N- l))T3 O(T4) 
E + 8 + 500 + 0 (A.4) 

We invert this and get 

T=T -~T2 3[5-96(N-l))T3 O(T4) 
E 8 E + 4000 E + E 0 (Ao5) 

By using the perturbation expansion for the ,B-function of the standard 

lattice action 

(Ao6) 

where b0 = - 2~, b1 = -(2!)2 and b2 = -00575/(211")3, and appropriate sub-

stitutions we can obtain the same expansion for TE, 

(Ao7) 

where h2 is 

(Ao8) 

As it is easy to see that h2 is simply related to the third-loop term of the 

expansion of the mass gap h, we can extract the difference in h because of 
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h2 f. b2, (sustituting N = 3) 

1 1 { 499 } f).j2 = --(h2 - b2) = -- 1 - -Jr 
b6 8 500 

(A.9) 
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Appendix B 

Proof of the Schwinger-Dyson 

equations 

In order to show that our formulation of the Schwinger-Dyson equations of 

the model is correct we will consider a correlation function A( { s}) = A that 

is invariant under O(N) transformations of the spins. For ease of notation 

we will use S = - H in our action. Then the integral 
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will be invariant under infinitesimal local transformations of the spins 

o-(x)---+ o-'(x) = ( 1 + ~ t"(x)T") o-(x) 

where T" are the ~N(N- 1) generators of O(N) rotations. This leads to the 

condition 

where E"(y) are the local differential operators that generate rotations at site 

y and obey the condition [E"(y),o-(x)] = DxyT"o-(x). Since O(N) invariance 

means that averages of odd powers of the fields are zero, taking the first term 

in the Taylor expansion in E gives a trivial equation. The second term in the 

expansion yields 

j IT dJ.L(x)E"(y)Ef3(z)e5 A= 0 
X 

(B.2) 

Furthermore, because for y i= z or a i= f3 the resulting quantities are not 

O(N) invariant, and must be zero, the terms left are those for which y = z 

and a= /3. From that we obtain 

j IT dJ.L(x) L E"(y)e5 {AE"(y)S + E"(y)A} = 0 (B.3) 
X C> 
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Because the domain is compact and the measure is invariant the two terms 

each must be seperately zero. Thus by taking the right part and dividing by 

the partition function Z we obtain an equality of expectation values, i.e., 

Up to here we followed the derivation of Butera et al. 23 . Now we use the 

definition of Ea(y) to obtain [E"'(y),B] = 8~~>T"'a(y) and substitu~e this in 

the previous equation. We also drop the < ... > for convenience and take 

equations to mean an equality of expectation values. We get 

~ (a:fy)r"'a(y)) (a:~)r"'a(y)) + 

+ LL a~( ) (a al1 )) T;~ak(y) l:T/:;,am(y)+ 
a ik a Y a Y lm 

+ L L a:i1y)T/:nr::.nan(y) = 0. 
Ct lmn 

We then use the properties of the generators T"', namely 

L T"'Tk/ = 8;18jk - 8;k8jl 
Ct 
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and we obtain 

This can be more compactly expressed using the projection operator pab(y) 

as 

-A ap?-bSb _ p.cdA 7d + (N -l)aaA a= 0. 
'' I ,s I ''' t ' ' 

We get our equation of motion if we also substitute S - H and use the 

definition of the generalized force F/ = -H.~: 

A ~p?-bpb + p.cdA cd = (N -l)a?-A a. 
,, ' t t ,,, ' ,, 
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