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Abstract: The synthesis of a sterically tailored ligand array 

(M)2((CsH2-2-Si(CH3)3-4-C(CH3bhSi(CH3hl ("M2Bp") (M = Li, 16; K, 19) is 

described. Transmetallation of LbBp with YClJ(THF)3 affords exclusively the 

C2 symmetric product rac-[BpY(tJ.2-ClhLi(THFh], 20. A X-ray crystal structure 

of 20 has been determined; triclinic, P1, a= 13.110 (8), b = 17.163 (15), c = 20.623 

(14) A, a= 104.02 (7), f3 = 99.38 (5), y = 100.24 (6)0 , Z = 4, R = 0.056. 

Transmetallation of K2Bp with YCl3(THF)3 affords the halide free complex 

rac-BpYCl, 23. The corresponding rac-BpLaCl, 28, is prepared in an anlogous 

manner. In all cases the achiral meso isomer is not obtained since only for 

the racemic isomers are the unfavorable steric interactions between the 

Si(CH3)3 groups in the narrow portion of the [Cp-M'-Cp] wedge avoided. 

Alkylation of 20 or 23 with LiCH(Si(CH3hh affords rac-BpYCH(Si(CH3)3h, 26 

in good yield. Alkylation of 28 with LiCH(Si(CH3hh affords 

rac-BpLaCH(Si(CH3)3h, 29. Hydrogenation of 26 cleanly affords the bridging 

hydride species [BpY(tJ.2-H)h, 27, as the homochiral (R,R) and (S,S) dimeric 

pairs. 26 is an effici~nt initiator for the polymerization of ethylene to high 

molecular weight linear polyethylene. 27 catalyzes the polymerization of 

propylene (25% v/v in methylcyclohexane) and neat samples of 1-butene, 

1-pentene, 1-hexene to moderately high molecular weight polymers: 

polypropylene (Mn = 4,200, PDI 2.32, Tm 157 °C); poly-1-butene (Mn = 8,500, PDI 

3.44, Tm 105 OC); poly-1-pentene (Mn = 20,000, PDI 1.99, Tm 73 °C); 

poly-1-hexene (Mn = 24,000, PDI 1.75, Tm < 25 °C). 13C NMR spectra at the 

pentad analysis level indicates that the degree of isotacticity is 99% mmmm 

for all polymer samples. 27 is the first single component iso-specific a-olefin 

polymerization catalyst. The presumed origins of the high isospecificity are 

presented. 
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Abstract: A brief introduction to developments in both heterogeneous 
and homogeneous Ziegler-N atta catalysis is presented to provide context for 
the experiments performed in Chapters 2 and 3. 
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Introduction 

The transition metal-catalyzed polymerization of ethylene and 

propylene, now a multi-billion dollar industry was discovered fortuitously 

nearly four decades ago.l During their investigations of ethylene 

oligomerization using alkyl aluminum catalysts at elevated temperatures (the 

"Aufbau Reaction"), Ziegler and co-workers discovered that residual colloidal 

nickel in the reactor greatly facilitated the reaction. Subsequent investigations 

of other transition metal complexes revealed that various zirconium and 

titanium salts were exceedingly efficient catalysts. The production of large 

quantities of linear high molecular weight polyethylene at room temperature 

and atmospheric pressure was now possible.2 

Shortly thereafter, Natta and co-workers extended this process to the 

polymerization of propylene.3 The catalyst system of TiCl4/ Al(CH2CH3)3 was 

found to polymerize propylene into a heterogeneous material that could be 

fractionated into several components using different solvents. An oily 

acetone-soluble fraction, a rubber-like material that was soluble in diethyl 

ether, and a solid that was soluble in boiling heptane were isolated by 

successive extraction. Most importantly, there remained a white solid that 

was insoluble in boiling heptane. This new material was found to be highly 

crystalline and high melting(> 160 °C). Using a variety of techniques (IR 

spectroscopy, X-ray diffraction) the structures of the polypropylene was 

assigned that shown in Figure 1. The true three-dimensional structure of the 

resultant insoluble polypropylene is a 3t helical conformation with 

head-to-tail connectivity of the monomer repeat units. A remarkable feature 

of the polypropylene produced was the high degree of isospecificity, nearly 

every tertiary carbon center has the same relative configuration; such an 

arrangement is termed isotactic. The soluble polymer fractions contain 

mostly amorphous polypropylene in which there is random orientation of 

the pendant methyl groups, this configuration is termed atactic. 



Figure 1. The structures of isotactic (top), and atactic (bottom) 
polypropylene. 

Until these two discoveries high molecular weight samples of 

polyethylene and polypropylene were virtually unattainable by conventional 

polymer synthetic routes (e.g. free radical or cationic polymerization). For 

their contributions to the chemistry and technology of high polymers Ziegler 

and Natta were jointly awarded the Nobel Prize in Chemistry in 1963. 

Following these initial discoveries tremendous effort has been expended 

towards the development of new catalysts to achieve higher activities and 

greater control over the physical characteristics of the final polymers. 

Several different methods have been developed for determining the 

relative degree of polymer isotacticity. For polypropylene the percent of the 

polymer that is not soluble in boiling heptane was taken as a measure of the 

index of isotacticity. This method is generally only applicable to polymer 

samples of similar molecular weight, as polymers with either high or low 

molecular weights can give spurious results. A second method for 

determining polypropylene stereoregularity is infrared spectroscopy. A 

reference band (974 cm-1) is found to be independent of the degree of 

isotacticity. A second band (995 cm-1) has been assigned to absorption by 

isotactic helices. The ratio of these two absorptions is taken as the isotactic 

index of the sample.4 The current state of art for the determination of 

isotacticity relies on the use of 13C NMR spectroscopy. Details of these 

analyses are presented in Chapter 3. 

4 
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The first generation of heterogeneous catalysts were generally 

preformed solids that contained titanium halides in lower valence states and 

aluminum alkyls. Four different crystalline forms of TiCl3 exist, and each 

possesses unique reactivity when subjected to polymerization conditions.ld 

The a form is generated by reduction of TiCl4 with aluminum in a 

hydrocarbon solvent at 250 °C. The AlCh produced co-crystallizes with the 

TiCIJ to afford a-TiC13·0.33AlC13. Reduction at lower temperature, or with H2 

gives J3-TiCl3. Heating J3-TiCl3 to 150-200 °C produces y-TiCl3. The o form 

exhibits the greatest polymerization activity and can be obtained by prolonged 

grinding of either a- or y-TiCl3. The (3-form is found to produce amorphous 

polypropylene. The activity and stereospecificity of the catalyst mixtures is 

also dependent on the alkyl aluminum co-catalysts. These first generation 

catalyst systems yielded only moderate amounts of polypropylene, activities 

of -20 g polypropylene/ (g Ti). Commercialization of this process would have 

been unfeasible, not only because of the low yield of polymer produced, but 

also due to the required separation of the crystalline and amorphous 

polypropylene fractions. Therefore, increased catalytic activity and improved 

control over polymer morphology were sought. 

Increased activities were achieved upon addition of Lewis basic donor 

ligands to the Ti(III) chloride. These second generation catalysts were 

prepared by milling o-TiC13·0.33AlC13 with donors such as ethers, esters, 

ketones, amines and amides to produce active catalysts with increased 

specificities. The role(s) of the donors, however, remains to be elucidated. It 

is thought that the donors may either form complexes with various active 

centers and thereby render them chiral, or more stable. Donors may also 

serve to selectively poison the more active and supposedly less selective 

centers. Interactions between the Lewis basic donors and the various 

aluminum centers in the catalyst mixture may also be important. In several 

of these systems only a small fraction (< 1 %) of the titanium present in the 

catalyst is active.s The improved activities achieve polymer production of 

-500 g polypropylene/ (g Ti), and polymer isotacticities of >90%. 
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The discovery that dispersion of titanium chloride on certain high 

surface area supports resulted in increased activities lead to the third 

generation of Ziegler-Natta catalysts. Si02 or Al203 were useful as supports 

for ethylene polymerization catalysts; however, these supported transition 

metal catalysts are not useful for propylene polymerization. Magnesium 

alkoxides, magnesium dialkyls or activated MgCl2 as supports provide highly 

active catalysts for the polymerization of ethylene. These supported catalysts 

are generally produced by ball milling MgCb in the presence of ethylbenzoate 

to form small crystallites; ethylbenzoate is added to the MgCb to coordinate 

surface-exposed Mg centers and thus prevent reaggregation. TiC4 is next 

introduced, either neat or in solution, presumably displacing ethylbenzoate 

from certain sites. Activation with trialkyl aluminum compounds results in 

an ethylene polymerization catalyst. In order to catalyze propylene 

polymerization additional electron donors are required. Esters and various 

amines are found to give highly active and stereospecific catalysts. Once 

again, the exact role of the donor is unknown. Activities in the range of 5xl04 

g polypropylene/(g Ti) have been reported with high isotacticities of the 

resultant polymers being observed as well. A new high mileage catalyst 

systems has been described by Shel1.6 This so called "super high activity 

catalyst" uses a MgCb support and is reported to have only one type of active 

center and require only small amounts of alkyl aluminum co-catalysts. 

Excellent isotacticities and activities as high as 2xl06 g polypropylene/ (g Ti) 

are reported. 

While there has been tremendous success in developing 

heterogeneous Ziegler-Natta catalysis for the efficient production of 

polyethylene and stereoregular polypropylene the nature of these 

heterogeneous catalyst systems makes them ill-suited for detailed mechanistic 

study. The exact number and coordination environment about each active 

center remain unknown. The inclusion of electron donors to modify 

reactivity further confounds the issue. Parallel investigations into 

homogeneous Ziegler-Natta catalyst systems have by virtue of their relative 

simplicity proved more amenable to mechanistic investigation. 
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Shortly after the initial discoveries by Ziegler and Natta solutions of 

titanocene dichloride and alkyl aluminums were reported to be effective 

catalyst mixtures for the polymerization of ethylene.7 A major development 

in the field of homogeneous catalysis was the observation that small amounts 

of added water, previously thought of as a poison, when added to active 

catalyst mixtures actually gave increased activity.8 This fact eventually lead to 

the discovery by Sinn and Kaminsky that treatment of trimethyl aluminum 

with one equivalent of water results in a rather ill defined methylalumoxane 

(MAO) comprised of -Al(O)(CH3)- subunits that in combination with various 

metallocene dichlorides gave active catalysts.9 The exact nature of the 

resultant MAO is unknown, as a variety of linear and cyclic oligomers are 

present in solution.lO 

An outstanding achievement that greatly advanced homogeneous 

Ziegler-Natta catalysis was the discovery by Brintzinger and co-workers that 

the C2 symmetric rac-[ethylenebis-(4,5,6,7-tetrahydro-1-indenyl)zirconium 

dichloride, A, in conjunction with MAO produced polypropylene with 

activities and isospecificities that rival some of the very best heterogeneous 

catalysts.ll Unfortunately, the large amount of MAO required, 500-1000 fold 

excess of aluminum to zirconium, in order to achieve activity has made 

detailed mechanistic investigations into the nature of the active sites 

exceedingly difficult. 



s R 

racemic meso 

A B 

The ability of the A/MAO derived catalyst system to polymerize 

propylene to highly isotactic polypropylene indicates that this ligand 

ensemble is exceedingly efficient at selecting between the two enantiofaces of 

propylene for insertion across the metal-carbon bond of the growing chain. 

Enantiofacial discrimination is a key requisite not only for stereoregular 

a-olefin polymerization, but also for several transformations in organic 

synthesis. Resolution of the enantiomers of A has proven possible utilizing 

derivatization with two equivalents of 0-acetyl-R-mandelic acid to afford 

diastereomers that are easily separated by crystallization.12 Alternatively, 

using 0.5 equivalent of optically pure binaphthol affords the corresponding 

binaphtholate complexes in which the metal-ligand chirality matches the 

antipode of binaphthol chosen as an optically enriched diastereomer. 

Recrystallization once again affords optically pure binaphtholates.13 

8 
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Both stoichiometric and catalytic transformations in organic synthesis 

have recently been described using A or similar derivatives.I4 Use of an 

optically pure titanium derivative was demonstrated to be an efficient catalyst 

for the asymmetric hydrogenation of imines to afford chiral amines with 

moderate to excellent enantiomeric excesses.IS 

1) 2 n-BuLi 

H 2 (-2000 psi) 

X2 = (R,R)-1,1 '-binaphth-2,2'-diolate 

1-INR'' 

R~R' 
62-93% yield 
53-98% ee 

A persistent drawback to most of the metallocene syntheses described to date 

has been the co-production of the achiral Cs symmetric meso geometric 

isomer, B. While it is often possible to separate the racemic from the meso 

isomer by either column chromatography or repeated recrystallizations, the 

overall yield of the desired racemic isomers generally suffers. 

The work of Jordan16 Bochmann17 and Teuben18 on well characterized 

group IV metallocene alkyl cations has illuminated much about the nature of 

the active center in metallocene polymerization catalysts. The discrete 14 

electron alkyl cations are found to undergo olefin insertion as well as 13-H and 

13-methyl eliminations which model chain propagation and termination steps 

in Ziegler-Natta catalysis. However, these alkyl cations are generally isolated 

as Lewis base stabilized cations, and in this form do not polymerize 

propylene. 

Recent attempts to generate base-free 14 electron metallocene alkyl 

cations has focused on devising methods to remove a methyl anion from 

CpzZr(CH3)z. Several approaches have proved highly successful. The first 

relies on protonation of CpzZr(CH3)z using dimethylanilinium, 
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[C6HsN(CH3hH]+, to remove the methyl anion as methane.19 A second 

approach uses the trityl cation, [(C6Hs)JC]+, to abstract a methyl anion.20 In 

both cases the use of the non-nucleophilic perfluorotetraarylborate counter 

ion, [B(C6Fs)4]-, is chosen to prevent ion pairing, and suppress undesired side 

reactions. Generation of the 14 electron alkyl cation, [Cp2ZrCH3]+ in 

non-coordinating solvents leads to a catalyst that is capable of polymerizing 

propylene. An alternative strategy for generating the zirconocene cation 

utilizes the highly Lewis acidic B(C6Fsh to abstract the methyl anion 

generating [Cp2ZrCH3]+[CH3B(C6Fsh]-.21 

Investigation of isoelectronic yet neutral do group III and d0fn 

lanthanide metallocenes have shown these metallocene alkyl species to be 

single component catalysts for the polymerization of ethylene.22 Insertion of 

a-olefins and elimination sequences, both f3-H and f3-CH3, have been studied 

as models of olefin polymerization and termination steps. However, these 14 

electron alkyl complexes are found to produce only ollgomers of propylene 

and higher a-olefins. 

Previous work in the Bercaw group has focused on the reactivity of a 

series of scandocene and related derivative with alkanes and olefins. Initial 

investigations of permethylscandocene alkyl complexes (Cp*2ScR) 

demonstrated the activation of C-H bonds by a concerted four center process 

termed a bond metathesis, Figure 2.23 

Figure 2. Alkane a bond metathesis. 

At low temperatures permethylscandocenemethyl was found to catalyze the 

oligomerization of ethylene in a living fashion.24 Propylene does not 

undergo insertion into Cp*2Sc-CH3; instead a bond metathesis occurs to give 

the vinyl species C and methane. Insertion is presumably precluded due to 

unfavorable steric interactions as shown in D. 
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A second class of scandocenes utilized [Si(CH3hl linked 

cyclopentadienyl ring systems to afford a more accessible and reactive metal 

center. The hydride species (CH3hSi(115-Cs(CH3)4)2Sc(H)P(CH3>3 (E, 

OpSc(H)PMe3) and [meso-(CH3hSi(115-CsH3-3-C(CH3)3)ScHh (F, [DpScHh) 

were found to selectively dimerize a-olefins in a head-to-tail fashion and to 

cyclize a-co-diolefins.25 

E F 

11 

The rate of subsequent monomer additions is slower than the rate of 

intramolecular 13-H elimination, and dimer production dominates. Unusual 

C-C bond activation was observed for 1,4-pentadienes catalyzed by F through a 

series of reversible olefin insertion and 13-alkyl elimination steps.26 



F 140°C 

5 turnovers 

~ 
58.3% 

C 5H 10 isomers 

35.5% 

12 

4.9% 

1.3% 

Modification of the ligand environment about scandium by 

replacement of a single cyclopentadienyl unit with an alkyl amido fragment 

was implemented to render the metal center more electron deficient.27 The 

increased Lewis acidity of the metal center was expected to result in enhanced 

reactivity. The synthesis and characterization of a series of scandium 

complexes based on the dianionicligand array [(Cs(CH3)4)Si(CH3)z(NC(CH3)3)] 

("Cp*SiNR") has been reported.28 The bridging propyl dimer 

[[(Tt5-Cs(CH3)4)Si(CH3)z(rtLNC(CH3)3)]Sc(J.12-CH2CH2CH3)h, G, slowly catalyzes 

the polymerization of propylene, 1-butene, and 1-pentene to moderate 

molecular weight polymers (Mn 3,000-10,000, versus polystyrene standards, 

PDI = 1.5-2.1).29 

G 
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R R R 

G 
(n+2)~R 

n 

Analysis of the resulting polymer samples by lH NMR reveals vinyl 

endgroups, indicating that chain transfer is occurring predominantly through 

J3-H elimination.30 The 13C NMR spectra shows the polymers to be 

essentially atactic.31 This system is the first well-characterized single 

component a-olefin polymerization catalyst. Results of H2 terminated 

oligomerization studies indicate that the alkanes produced derive mainly 

(>99%) from head-to-tail coupling. 

3~ 
[( Cp*SiNR)Sc(H)PMe3 

>99% 

The relatively simple nature of this catalyst system permitted a detailed 

mechanistic investigation of olefin insertion into an actual polymerizing 

chain.32 

Two proposals for the mechanism of olefin polymerization have been 

suggested. Cossee and Arlman proposed that there is direct insertion of the 

olefin across the metal carbon bond, Figure 3. 33 A second proposal offered by 

Green and Rooney noted that titanium has a variety of accessible oxidation 

states, and olefin polymerization could occur by an a-elimination, 2+2 

cyclization and reductive elimination sequence, Figure 4.34 

Figure 3. Cossee Arlman direct olefin insertion mechanism. 



Figure 4. Green Rooney polymerization sequence. 

H 
LM~ + 

n 'CHR 

H 
/ 

Ln~-~HR 
I I 
I • • • • • I 

H 
LM~ 

n 'CHR 

14 

The polymerization ·activity of the do cationic zirconocene alkyls and 

the isoelectronic group III and lanthanide metallocenes (vide supra) rules out 

the possibility of the Green Rooney mechanism as these complexes are unable 

to undergo the formal 2 electron oxidation required for a-elimination. A 

modification of this mechanism was subsequently proposed by Brookhart and 

Green in which an a-agostic interaction serves to facilitate olefin insertion 

across the metal-carbon bond, Figure 5.35 

Figure 5. Modification of the Green-Rooney mechanism. 

Grubbs and co-workers designed a series of experiments to probe for an 

a-agostic interaction in the transition state of an intramolecular olefin 

insertion.36 Subsequent examinations indicated no isotopic perturbation of 

the stereochemistry of the products obtained, suggesting no a-agostic 

assistance for olefin insertion in their system. Recently, however, Bercaw and 

Brintzinger have reported isotopic perturbations in catalytic transformations 

on labeled substrates suggesting a M-CH a-agostic interaction being involved 

in C-C bond formation.37 

Given the ability of certain metallocene complexes to serve as catalysts 

for the polymerization of a-olefins to polymers of differing regularity and 

physical properties it is no wonder that this field of research continues to 
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receive considerable attention in both academic and industriallaboratories.38 

The emergence of metallocenes in both catalytic and stoichiometric 

transformations in organic synthesis will certainly promote further 

investigations into the development and exploration of new metallocenes. 

The astounding iso-specificities of polymers produced by C2 symmetric 

ansa-metallocenes as well as the excellent enantiomeric excesses observed in 

several transformations performed by optically pure derivatives prompted us 

to begin investigations into developing new C2 symmetric metallocenes. 

Chapter 2 describes the synthesis of a tailored ligand array that was designed 

with specific steric factors to favor the formation of Ci symmetric 

metallocenes, and minimize formation of the meso geometric isomer. These 

goals have been met with the synthesis and characterization of a series of 

novel ansa-yttrocene and ansa-lanthocenes.39 

The multicomponent nature of several homogeneous polymerization 

catalysts hampers detailed mechanistic investigations, therefore, we sought to 

develop a single component catalyst system capable of polymerizing a-olefins. 

Chapter 3 explores the reaction chemistry of several C2 symmetric 14 electron 

yttrocene alkyl and hydride derivatives towards a-olefins. Indeed these 

complexes have been found to be the first single component iso-specific 

a-olefin polymerization catalysts. The outstanding isotacticities of the 

resulting poly-a-olefins are demonstrated and a hypothesis concerning the 

origin of the stereoregularity is presented.40 These initial investigations were 

focused on studying formation of isotactic poly-a-olefins with the hope being 

that factors responsible for the isospecificity would not only lead to 

development of superior polymerization catalysts but also for extension to 

reagents or catalysts for enantioselective transformations in organic synthesis. 
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Abstract: The synthesis of a sterically tailored ligand array is described. 
Silylation of Li2[(CsH2-3-C(CH3)3hSi(CH3h] with 2 equivalents of ClSi(CH3)3 
followed by double deprotonation affords the tailored ligand salt 
M2[CsH3-2-Si(CH3)3-4-C(CH3)3hSi(CH3h] (M = Li, 16, M = K, 19) in moderate 
to excellent yield. Transmetallation with group III metal chlorides affords 
exclusively rac-[(CH3hSi(4-(CH3)3C-2-(CH3)3Si-CsH2hMCl] (M = Y, 23, M = La, 
28). The achiral meso isomers are not obtained since only for the racemic 
isomers are the unfavorable steric interactions between the Si(CH3)3 groups 
in the narrow portion of the [Cp-M-Cp] wedge avoided. The alkyl complex 26 
is obtained by treatment of 23 with LiCH(Si(CH3)3h. Hydrogenation of 26 
results in a dimeric hydride species 
[rac-(CH3hSi(4-(CH3)3C-2-(CH3)3Si-CsH2hM(J.l2-H))2, 27. 
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Introduction 

The cyclopentadienide anion has become one of the most versatile 

ligands in organometallic chemistry. Complexes of this ligand with all 

d-block and several f-block metals are known. Use of a single 

cyclopentadienyl results in a piano stool complex, CpMLn, use of a second 

cylcopentadienyl gives the familiar metallocenes, Cp2MLn. Cyclopentadienyl 

transition metal and metallocene complexes are known to serve as useful 

reagents, both in stoichiometric and catalytic fashions, for a wide variety of 

reactions. I Chiral analogs offer the possibility for performing 

enantioselective transformations.2 Attachment of a single chiral substituent 

to a cyclopentadienyl ring will result in a chiral C1 symmetric metallocene. 

Marks and co-workers have synthesized a series of chirallanthanide 

metallocenes, utilizing menthyl and neomenthyl substituents. These 

particular substituents are chosen such that diastereomeric formation during 

the synthesis allows for resolution to optically pure complexes, i.e. A. These 

complexes have demonstrated their utility in catalyzing the 

hydroamination-cyclization of aminoolefins.3 

A 

H 
A o·····' 

66% ee 

Erker and co-workers have adopted a similar strategy in employing at 

least one chiral substituent on each cyclopentadienyl ring.4 The steric 



influence exerted by the chiral substituents is, however, lessened by free 

rotation of the cyclopentadienyl ring about the metal-centroid axis. 

Cl-Zr-Cl 

P:'~ CH3 

C2 Symmetric C 5 symmetric 
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Dynamic NMR studies have shown there to be rapid interconversion 

between the C2 and Cs symmetric forms in solution. This class of 

metallocenes in conjunction with MAO is found to polymerize propylene to 

give polypropylene with both crystalline and amorphous blocks. This class of 

materials may find eventual use as thermoplastic elastomers. However, the 

multiple conformers present makes these metallocenes poorly suited for 

performing enantiospecific transformations. 

Arresting the cyclo!ientadienyl rotation can be accomplished by the use 

of an interannular bridge to link the two cylopentadienyl rings, resulting in 

the so-called ansa-metallocenes.5 This linkage does not in itself guarantee a 

C2 symmetric metallocene. It was not until 1982 that a report by Brintzinger 

and co-workers demonstrated that chiral, by virtue of their C2 symmetry, 

ansa-metallocenes could be synthesized using judicious placement of 

substituents on the cyclopentadienyl rings.6 
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s R 

racemic 

Following the pioneering work of Brintzinger there has been tremendous 

effort devoted by several workers toward the synthesis of C2 symmetric 

ansa-metallocenes. Early transition metal C2 symmetric metallocenes have 

received considerable attention as catalysts for the polymerization of ethylene 

and, more importantly, for the conversion of a-olefins to high molecular 

weight isotactic polymers.? Recently, these metallocenes have seen increased 

utility in both catalytic and stoichiometric transformations in organic 

synthesis. 8 

One rather severe drawback in the synthesis of C2 symmetric 

ansa-metallocenes from the reaction of the linked dicyclopentadienide 

dianion and transition metal halide is the co-production of the achiral meso 

geometric isomer which possesses an internal mirror plane relating the two 

cyclopentadienyl rings, Cs symmetric. 
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meso 

Assuming that the synthesis of these metallocenes proceeds in a stepwise 

fashion, it is clear that the attachment of the second cyclopentadienyl ring will 

determine the stereochemistry of the final product, either racemic (C2 

symmetric) or meso (Cs symmetric). While there has been a suggestion as to 

the mechanism of cyclopentadienide attachment to transition metal halides 

there remains much ambiguity as to the exact mode of pentahapto bond 

formation.9 Based on these hypotheses the reaction can be directed towards 

formation of either geometric product by influencing the mode of the second 

cyclopentadienyl ring attachment. Moreover, if a method were devised 

towards exclusive formation of the racemic isomers then factors that govern 

the first cyclopentadienyl ring attachment could be explored with the hope of 

eventually leading to stereoselective ansa-metallocene syntheses. 

In the syntheses of ansa-metallocenes, the two most prevalent choices 

for the interannular bridge are either a two carbon ethano (C2H4) linkage or 

the single atom dimethylsilyl ((CH3)zSi) linker. These are chosen for their 

relative ease in synthetic introduction starting from either 1,2-dibromoethane 

or dichlorodimethylsilane and two equivalents of the appropriate 
cyclopentadienide anion. In general, the single atom linker provides for a 

more rigid ansa-metallocene framework as evidenced by the formation of two 

crystallographically independent forms of several ethano bridged 

ansa-metallocenes.lO The deviations from C2 symmetry observed in the 

solid state are not apparent in solution as NMR spectroscopy indicates 

unrestricted fluctuation between the two conformations. 
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To date there have been numerous preparations of group IV 

ansa-metallocenes generally starting from the alkali metal salt of the tethered 

ligand and the appropriate metal chloride. One of the most widely 

investigated ansa-metallocene is the aforementioned 

ethylenebis-(4,5,6,7 -tetrahydro-1-indenyl)metal dichloride ((EBTHI)MCh) 1. 

Indeed, the first example of a homogeneous isospecific polymerization of 

propylene was performed with this ligand array.ll The enantiomers of this 

system can be resolved utilizing 0-acetyl-R-mandelic acid diastereomeric 

derivatization followed by crystallization.l2 Optically pure derivatives of 1 

have been used successfully for the catalytic asymmetric hydrogenation of 

imines, and the catalytic reduction of esters to alcohols.B 

racemic meso 
1 

a: M=Ti, b: M=Zr, c: M=Hf 

In practice, the synthesis of the precursor ethylenebis(indenyl)metal 

dichloride usually proceeds with a rather poor racemic/meso ratio, varying 

between 1 to 2 and 1 to 10. The racemic isomers are the thermodynamically 

preferred products with greater amounts being formed under higher reaction 

temperatures. The tetrahydro derivative is obtained by selective Pt02 

catalyzed hydrogenation of the exo face of the ethylenebis(indenyl)metal 

dichloride in order to afford more tractable complexes.13 In the case of 

titanium the geometric isomerization of the ansa-metallocene from the meso 

to racemic forms is conveniently carried out by photolysis. The racemic 

isomers are less soluble in a variety of solvents with the result being that pure 

rac-1a can be obtained as a crystalline solid directly from the photolysis. 

Presumably, the mechanism of isomerization involves homolytic cleavage of 
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the metal cyclopentadienyl bond as has been reported for other titanocene 

derivatives.14 The preparation of the zirconocene derivative rac-lb is 

fortuitous in that the racemic isomers preferentially crystallize from the 

reaction mixture. IS A revision of the original X-ray crystal structures for the 

racemic forms of the titanocene and zirconocene dichlorides has been 

published.l6 The structure of the hafnium complex rac-lc has been reported; 

however, neither synthetic details nor racemic/meso ratio data were given.l7 

A series of mono substituted ethano-linked titanocene dichlorides, 2, 

has been reported.l8 Variation of the alkyl substituents at the 13-carbon (R(3 = 
CH3 a, CH2CH3 b, CH(CH3h c, C(CH3)3 d) resulted in little change in the 

racemic/meso ratios ranging between 1:1.3 and 1:2. However, in at least one 

case, 2d (R(3 = C(CH3)3), the geometric isomers were separable by column 

chromatography. 

racemic meso 
2 
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In a related series of compounds prepared by these same workers a 

second set of alkyl substituents located in the proximal position adjacent to 

the interannular bridge, was found to afford improved racemic/meso ratios, 
Table J.19 Once again photolysis enriched the mixtures in the racemic 

isomers, and pure racemic compounds could be obtain by either 

crystallization or column chromatography. 

racemic meso 
3 

Table I. Synthetic and photostationary racemic/meso ratios for 3. 

Rex. Rj3 Synthetic Photostationary 

rae meso rae meso 

3a CH3 CH3 2 1 2.5 1 

3b CH3 CH(CH3h 2.6 1 4 1 

3c CH3 C(CH3)3 1.6 1 15 1 
' 
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Use of the more sterically demanding tetramethylethano bridging unit 

results in moderate selectivities for production of the desired racemic isomers 

of complexes 4 and 5, Table II.20 

racemic meso 
5 M=Ti, 6 M=Zr 

Table II. Racemic/meso ratios for 4 and s.a 
Rb M rae meso 

4a C(CH3h Ti 2.5 1 

4b Si(CH3)3 Ti 0.6 1 

1.8 1 

4c CH(CH3h Ti 1 1 

4d CH24Hs Ti 1 1 

4e C(CH3h4Hs Ti 1.2 1 

2.2 1 

4f C(CH2)s4Hs Ti 1.2 1 

2.2 1 

Sa C(CH3)3 Zr 1.5 1 

2 1 

5b Si(CH3)3 Zr 1.5 1 

2 1 

a) Multiple entries are for two different syntheses. 
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The use of a single atom tether in the case of the dimethylsubstituted 

ansa-cyclopentadienyl 6 did not produce the racemic isomer as evidenced by 

the inequivalency of the two methyl groups of the dimethylsilyllinker in the 

lH NMR spectrum. No mention was made to the particular product(s) 

obtained.21 

racemic 
Not Obtained 

6 
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In the synthesis of the corresponding zirconocenes, 7, no preference for 

the production of the racemic isomers over the meso isomer was observed 

with only one alkyl substituent present on each cyclopentadienly ring, Table 

ill 7a-d.22 Nevertheless, bias towards formation of the desired racemic 

isomers is observed when a methyl group is placed on the cyclopentadienyl in 

a position proximal to the dimethylsilyllinker, Table ill 7e-f. 

racemic meso 
7 

Table III. Racemic/meso ratios for dimethylsilyl bridged 7. 

Ra Rf3 rae meso 

7a H C(CH3)3 1 1 

7b H Si(CH3)3 1 1 

7c H C(CH3hC6Hs 1 1 

7d H C(CH2)sC6Hs 1 1 

7e CH3 C(CH3)3 2 1 

7£ CH3 CH(CH3h 6 1 
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An extensive study of the synthesis of several mono-, di- and 

trisubstituted dimethylsilyllinked zirconocene and hafnocenes reveals once 

again that the placement of methyl or tert-butyl groups on the 

cyclopentadienyl rings can give moderate improvements in the 

racemic/meso ratio, Table IV.23 

Table IV. Racemic/meso ratios for dimethylsilyl bridged 8 and 9. 

M R2 R3 R4 Rs R2· R3 ' R4• Rs· rae meso 

Sa Zr CH3 CH3 H CH3 CH3 H CH3 CH3 5.6 1 

8b Zr CH3 H CH3 H H CH3 H CH3 15.7 1 

8c Zr H C(CH3)3 H H H H C(CH3)3 H 2.7 1 

Sd Zr H CH3 H H H H CH3 H 7.3 1 

9a Hf CH3 CH3 H CH3 CH3 H CH3 CH3 13.3 1 

9b Hf CH3 H CH3 H H CH3 H CH3 100 1 

9c Hf H C(CH3)3 H H H H C(CH3)3 H 1 2.8 

9d Hf H CH3 H H H H CH3 H 1.1 1 

The improved racemic/meso ratio for the tert-butyl ansa-metallocene 

Sc in the present study (2.7:1) compared to that reported previously for 7a by 

Brintzinger (1:1) certainly reflects the different methods of workup and serves 

as a reminder that the values reported are not absolute. Nevertheless, they 
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do provide a good indication as to how efficiently the syntheses of the desired 
Cz symmetric ansa-metallocenes can be achieved. In general separation of the 

racemic isomers from the meso isomer is possible through either repeated 

recrystallizations or by column chromatography. 

Prior to the work presented in this thesis, the only other attempt to 

attach a potentially Cz symmetric ansa-ligand framework to a group III metal 

had been a report from this group on the synthesis of 10 starting with 

Lb[(CH3hSi(3-(CH3hC-CsH3hl and ScCl3(THF)3.24 The resulting product, 

however, was found to be exclusively the C5 symmetric meso isomer. 

10 

Recently there has been considerable interest in the synthesis and 

utility of chiral analogs to several of the ansa-metallocenes presented above. 

The use of an ansa-metallocene with a chirallinker is hoped to preclude the 

formation of the achiral meso isomer. An additional benefit is the potential 

of diastereomeric formation such that resolution of the resultant Cz 

symmetric ansa-metallocenes might prove possible. Several strategies have 

emerged based on the bis(indenyl) metallocene motif, Figure 1. 
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Figure 1. Chiral linker bis(indenyl) ligands. 

q?<o 

11 12 13 

The chiral dimethylethano bridged ligand 11 was found to give a 

mixture of isomers for both the titanium and zirconocene complexes. 

Photochemical interconversion gave a diastereomerically pure titanium 

derivative; however, the protracted synthesis of the ligand precursor coupled 

with the low overall yield makes this a poor choice for further study.25 The 

acetonide bridged indenyl species, 12, gave only the meso isomers for the 

zirconium complex, and presumably also for the titanium derivative.26 The 

binaphthyl bridged ligand, 13, was found to give chiral isomers; however, the 

solid-state structures for both the titanium and zirconium derivatives reveal 

that there is significant distortion from the desired c2 symmetric 

arrangement due to the large conformational constraints of the linker.27 

Two other strategies have been developed to enforce diastereomeric 

formation that have proven more successful. The first utilized a 

2,2'-biphenyllinker such that racemization is prevented by the rigidity of the 

biphenyl. However, the metallation steps were found to proceed in rather 

low yield (3-18%) following a rather lengthy and only moderately efficient 

synthesis.28 A second and more successful approach was the use of a chiral 

cyclohexane-1,4-diindenyl framework which afforded in high yield a single 

dias tereomer. 29 
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1) TiC13 

2) HCl 02 

Exclusive Product 

With the tremendous success of C2 symmetric ansa-metallocenes in a 

wide variety of catalytic and stoichiometric reactions, it is no wonder that the 

synthesis of new ligands is currently an area of very intense investigation. 
There are, however, several pitfalls with many of the current ligand designs 

including little or no control over the resulting racemic to meso ratio as well 

as lengthy and inefficient syntheses. While it is generally true that separation 

of the racemic isomers frmn the meso isomer can be accomplished, only in 

the case of the titanocene derivatives is the photolytic interconversion 

possible. Thus the separation by chromatography or selective crystallization 

may ultimately afford the desired racemic isomers, but this is usually 

accomplished with further reduction in yield. Realizing the importance of 

steric substitution at the position proximal to the interannular bridge in 

favoring the formation of the desired racemic products in ansa-metallocene 

syntheses, we reasoned that placement of a substituent that was more 

sterically demanding than a methyl group at the proximal should lead to 

enhanced racemic to meso -ratios. An obvious benefit to this strategy is that 

an increase in the racemic to meso ratio not only will make the overall 

synthesis more efficient, but may obviate the need to separate the undesired 

meso isomer should its formation be completely suppressed. The synthesis of 

such a ligand array is described and the exclusive formation of C2 symmetric 

ansa-yttrocenene and ansa-lanthanocenes is presented. 



Results and Discussion 

We have found a route into a synthetically tailored ligand precursor, 

"BpH2", 15, which starts with the known Li2[(CH3hSi(3-(CH3)3C-CsH3h] 

(Li2Dp) and utilizes silylation of the two cyclopentadienide anions to 

introduce two sterically demanding (CH3)3Si groups. The ligand precursor 

synthesis is shown in Figure 2. 

Figure 2. Synthesis of the ligand precursor 15. 

(CH3hC=O 
2 

pyrrolidine 
-H20 

Me Me 

M~C~.S~ 
"D H" CMe3 . p 2 

14 
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The condensation of cyclopentadiene with acetone is conveniently 

carried out using only a catalytic amount of pyrrolidine as opposed to a 

stoichiometric equivalent as reported previously.30 Addition of methyl 

lithium to 6,6-dimethylfulvene proceeds in nearly quantitative yield 
affording Li((CH3)3C-Cslf4]. Linking two equivalents of Li[(CH3)3C-Cslf4] with 

the single atom bridging precursor (CH3)2SiCl2 followed by deprotonation 

with 2 equivalents of n-butyllithium affords Li2[(CH3)2Si(3-(CH3)3C-CsH3hl 

(LbDp) in very good yield (>85%). Subsequent silylation is readily 

accomplished by addition of a slight excess of (CH3)3SiCl to a THF solution of 

. LbDp. Removal of the by-product LiCl followed by shortpath vacuum 

distillation of the crude product (150 °C, lJl Hg) affords the ligand precursor 



BpH2, 15, as a viscous yellow liquid in high yield. After standing for several 

weeks the liquid solidifies to a low melting yellow solid. 

37 

The silylation of 14 to give 15 occurs such that both the trimethylsilyl 

and the dimethyl linker preferentially reside on the doubly allylic ring 

carbon.31 As observed for many other main group substituted 

cyclopentadiene there exists several low energy Hand Si 1,2 sigmatropic 

shifts.32 This results in several possible regio- and stereoisomers for 15 such 

that the lH NMR is extremely complex, Figure 3. Subsequent double 

deprotonation of 15 (vide infra) results in only a single product. This result is 

not at all unexpected since the steric influence of the tert-butyl group is 

effectively greater than that of the trimethylsilyl groups due to the shorter C-C 

versus Si-C bond distances. The steric bulk of the tert-butyl group is held 

closer to the cyclopentadienyl ring and thus forces the two silyl groups to 

occupy neighboring positions.33 
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Figure 3. Several of the possible conformation isomers of 15. 
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Deprotonation of 15 can be accomplished with a variety of bases. The 

use of n-butyllithium is not entirely satisfactory due to the extremely high 

solubility of the resultant Li2Bp, 16, in cold hexanes which renders isolation 

of the final product problematic. Maximum yields of 16 isolated as a white 

crystalline solid range from 10-25%. The solution behavior of 16 in non­

coordinating solvents is intriguing. The lH NMR spectrum (C6D6) at ambient 

temperature displays a sharp singlet for the tert-butyl groups, however, the 

resonances for the trimethylsilyl groups and the dimethylsilyl linker are very 

broad. Upon warming these two resonances begin to sharpen, indicative of 

restricted rotation of these two neighboring groups being responsible for the 

broadened signals. 

The difficulty in isolating 16 prompted us to find alternative methods 

for the synthesis of the dilithio ligand salt. The use of the chelating Lewis 

base tetramethylethylenediamine (TMEDA) in conjunction with 

n-butyllithium results in immediate deprotonation of 15 and formation of a 

petroleum ether insoluble white solid which analyzes for (Li2(TMEDA)2Bp), 

17. When 1,2-dimethoxyethane (DME) is used as the Lewis base 
concentration of the resulting petroleum ether solution is required followed 

by cooling to -30 °C in order to eventually isolate a white crystalline solid 

(Li2(DMEhBp), 18. Unfortunately, both of these complexes proved to be less 

than ideal due to subsequent difficulties following the transmetallation steps 

(vide infra). 

In an attempt to avoid the commonly encountered problems in 

removing lithium ions from the product following transmetallation, routes 

to other alkali metal ligand salts were investigated. Deprotonation of 15 with 

KOtBu proved generally more satisfactory than using either KH or 

KCH2(C6Hs), as the former has greater solubility in THF. Following 

deprotonation the resultant white solid was ground to a fine powder and 

placed under vacuum at 60 oc overnight to ensure complete removal of 

tert-butyl alcohol. Yields are generally quite good to excellent with the added 

advantage that K2Bp, 19, is only moderately soluble in toluene and THF but 

insoluble in petroleum ether. The overall synthesis of 19 can be 



accomplished in six steps starting from cyclopentadiene with each step 

proceeding in greater than 80% yield. 
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The stereochemistry of metallocenes has been reviewed by Schl6gl.34 

Determination of chirality for ansa-metallocenes is based upon a modification 

of the Cahn-Ingold-Prelog system. If all bonds from the metal atom are 

arbitrarily considered as single bonds then asymmetric substitution of a 

cyclopentadienyl ring causes all of the ring C atoms to become chiral centers. 

Using the standard Cahn-Ingold-Prelog priority numbering system, the 

determination of the chirality at the bridgehead carbon will give the relative 

assignments. The three possible modes of coordination for the sterically 

tailored Bp ligand to a metal alkyl fragment are shown in Figure 4. 

Figure 4. Chiral (boxed) and achiral isomers of BpM-R. 

racemic 

(S) (R) 

\ 
. Si ··­..- \ 

meso 
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The reaction of 16 with YC}J(THFh proceeds readily in hot (80 oc) 

toluene over the course of three days. Examination of the crude reaction 

mixture shows there to be little or no formation of the meso isomer. 

Apparently, the eclipsed confirmation of the two trimethylsilyl groups in the 

narrow portion of the bent metallocene for the meso isomer is sufficient to 

preclude its formation. This results in the exclusive formation of the C2 

symmetric rac-[(CH3hSi(4-(CH3hC-2-(CH3hSi-CsH2h]Y(J.t-ClhLi(C4Hs0h, 20, 
Figure 5.35 

It should be noted that the retention of LiCl, as in the case of 20, is a 

common occurrence in the synthesis of highly Lewis acidic group III and 

lanthanide metallocenes.36 An X-ray diffraction study was conducted on a 

single crystal of rac-20 grown by slow cooling of a petroleum ether solution. 

A molecular drawing is shown in Figure 6. The full details of this 

investigation have been reported elsewhere,37 and thus only selected features 

will be presented herein. There are virtually two identical molecules for each 

enantiomer in the asymmetric unit and all discussion of metrical parameters 

will use an average of the two values obtained. A center of inversion in the 

unit cell relates the Rand S enantiomers. The centroids of the Cp rings are 

2.388[6] A from theY atoms, but the Cp planes are not perpendicular to theY­

Cp centroid vectors. The Y-C(Cp ring) distances range from 2.585[5] A to 

2.817[6] A with the carbon atom attached to the Si linker having the shortest 

distance. This decrease in Y -C bond distance is also evidenced by a 

compression of the C-Si-C bond angle to 99.3[3]0 . One remarkable feature of 

the structure that attests to the large steric presence of the (CH3)3Si group are 

the bond angles about silicon. There are two normal bond angles of 108.4[4]0 

and a third larger angle of 117.0[10]0 . Examination of the close contacts to the 

unique CH3 group reveals that at or slightly below the van der Waal distance 
there is a close contact to the CH3 group of the silicon linker, and another 

close contact to the tert-butyl group of the opposite ring. By far the shortest 

contact present, 3.68[3] A, is to a carbon of the opposite cyclopentadienyl ring. 

All other distances and angles within the molecule are normal. 



Figure 5. Exclusive synthesis of rac-20. 
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Attachment of either 17 or 18 to YCl3(THF)3 proceed in an analogous 

manner to the synthesis described above. The resulting products, 21 and 22 

respectively, were found to be exclusively racemic and of a form very similar 

to that of 20. 

21 22 

Transmetallation of YCl3(THFh with 19 occurs cleanly and in good 

yield upon refluxing overnight in either toluene or tetrahydrofuran. The 

identity of the final product is dependent upon the workup conditions 

employed. Removal of the volatiles in vacuo yields a white solid which can 

be slurried in toluene, filtered to remove KCl, followed by concentration of 

the filtrate and precipitation of the product with petroleum ether affording 

the base and halide free complex [BpYCl], 23. Complex 23 is found to be 

exclusively the racemic isomer. Filtration of the crude reaction mixture in 

THF affords, after concentration and precipitation with petroleum ether, 

BpYCl(THF), 24. The larger ionic radius of K+ compared to Li+ results in the 

former being too large to fit in the resultant Cl-Y-Cl cleft and thus KCl is 

readily displaced, allowing for the isolation of salt free 23 or 24.38 

The lH NMR spectrum of 24 shows a species with overall C2 symmetry 

which is indicative of a rapid THF dissociative/ associative process that 

interconverts 24a and 24b such that the ligand resonances are rendered 

equivalent (vide infra). On the contrary, the corresponding pyridine adduct, 

25, does not undergo a similar rapid exchange process as evidenced by a 

doubling of each lH NMR resonance due to loss of C2 symmetry. Conversion 



of 24 to 23 is possible by simply dissolving 24 in toluene followed by 
removing the volatiles in vacuo. 

-THF THF 

"BpYCl" 
THF -THF 

24a 24b 

The synthesis of the alkyl derivative BpYCH(Si(CH3hh, 26, is 

conveniently accomplished by addition of LiCH(Si(CH3hh to either 20 or 23 

in toluene followed by recrystallization from petroleum ether. 

26 

45 

The hindered rotation of the -CH(Si(CH3hh group in 26 is evidenced by the 

loss of C2 symmetry relating the two cyclopentadienyl rings.39 A doubling of 

each ligand resonance is observed in the 1 H NMR speCtrum. The two 

Si(CH3)3 groups of the CH(Si(CH3hh ligand are not equivalent irrespective of 

whether or not there is hindered rotation about the Y-C cr bond. 
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The alkylation of 21 and 22 with a variety of lithium alkyls, such as 

LiCH(Si(CH3)3h, LiCH2Si(CH3)3, or LiCH2P(CH3)2,40 were unsuccessful. In 

each case the starting material was recovered essentially unchanged. 

Attempts to remove DME from 22 by heating under vacuum (150 oc, 1 f.1 Hg) 

only resulted in decomposition. 

Hydrogenation of 26 proceeds cleanly and rapidly in petroleum ether to 

afford a dimeric hydride, 27, and H2C(Si(CH3)3h. 

:h-i- ,, 
~~_:_rJ~s(,, Hz 

M S. Y-CH ~ ----l-
"2 ·~ ;sc -CH2<SiMe,>, 

S1 ... 
~ 

[rac-Bp Y -CH(SiMe3)z] 

26 

rac(S,S)-[BpY-H)z 

27 

SiMe2 

The formulation of 27 as a dimer is based upon the presence of a triplet at 8 

4.87 ppm in the 1 H NMR spectrum assigned to the hydride resonances. The 

signal is a 1:2:1 triplet <IY-H = 31 Hz) due to coupling with two equivalent 89y 

nuclei (1=1/2; 100% natural abundance). The product is presumably the 

homochiral (R,R) and (S ,S) dimers since the heterochiral (R,S) dimer is 

expected to have unfavorable steric interaction between the C(CH3)3 groups. 
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Slow cooling of a petroleum ether solution afforded single crystals that were 

of suitable quality for X-ray diffraction studies. 

Complex 27 crystallizes in space group P2/c (#13) with a= 16.577 A, b = 
10.937 A, c = 23.200 A, and a= y = 90°, j3 = 127.55°. Complete refinement of the 

structure, however, proved impossible due to the presence of disordered 

solvent molecules within the unit cell. The metal-metal distance of 3.7 A is 

within the range expected for a Y(JJ.-HhY core based on crystallographic data 

for related lanthanide hydride dimers.41 An interesting feature of 27 is that it 

has nearly perfect D2 symmetry. The three perpendicular C2 symmetry axes 

are easily seen with the aid of the coordinates shown in Figure 7. A 

molecular drawing of the (S,S) homochiral dimer is shown in Figure 8. 

Figure 7. 

\ 

Three perpendicular C2 symmetry axes for 27. 

rac(S,S)-[BpY-H] 2 

27 
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Due to the oligomeric nature of LaCl3 the synthesis of BpLaCl, 28, is 

most conveniently accomplished by first dissolving LaCh in a combination of 

6 M HCl and THF (1:1 v /v) followed by removal of the volatiles in vacuo and 

dehydration of a THF slurry using SOCb. The resultant LaCl3(THF)x has 

sufficient solubility in refluxing THF for transmetallation with 19 to afford 28 

in moderate yield. The product was found to be exclusively the racemic 

isomer. The low solubility of 28 in noncoordinating solvents precluded the 

determination of the solution molecular weight. Alkylation of 28 using 

LiCH(Si(CH3hh affords the alkyl derivative 29 in good yield. Hindered 

rotation about the La-C a bond is evidenced by the doubling of all ligand 

resonances in the 1 H NMR spectrum of 29 in C6D6. 

's('" 

Ms.~ 
~·~ 

St ... 
~ 

[rac-BpLa-Cl] 

28 

Conclusions 

ks{' 
M~Si"~/5s( 

St ... 
~ 

[rac-BpLa-CH(SiMe3)2] 

29 

The use of the stericall y tailored ligand 

[M+]2[(CH3hSi(4-(CH3hC-i-(CH3hSi-CsH2hF- (M = Li, K) has allowed for the 

syntheses of several novel ansa-yttrocenes and ansa-lanthocenes. The most 

notable feature of this ligand is the two trimethylsilyl groups positioned 

proximal to the interannular bridge. The large steric demand of these two 

groups has lead to the exclusive synthesis of racemic ansa-metallocenes. The 

ease of preparation of this synthetically tailored ligand array should allow for 

the exploration into other transition metal systems. Given the importance of 

C2 symmetric ansa-metallocenes in a variety of catalytic and stoichiometric 

transformations suggest that further investigations utilizing the Bp ligand are 

warranted. 
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Table V. lH NMR data for ligand salts 16-19. 

Compound Assignment o (ppm) J (Hz) 

Li2Bp (16) CsH2 6.24, 6.08 (s) 

C(CH3)3 1.22 (s) 

Si(CH3)2 0.43(s, br) 

Si(CH3)3 -0.071 (s, br) 

Li2(TMEDA)2Bp CsH2 6.53, 6.61 (d) 1.84 

(17) C(CH3)3 1.55 (s) 

Si(CH3)2 0.907 (s) 

Si(CH3)3 0.294 (s) 

(CH3)2NCH2CH2N(CH3)2 1.83 (s) 

(CH3)2NCH2CH2N(CH3)2 1.48 (s) 

Li2(DME)2Bp CsH2 6.71, 6.52 (s, br) 

(18) C(CH3)3 1.58 (s) 

Si(CH3)2 0.89 (s) 

Si(CH3)3 0.38 (s) 

(CH3)0CH2CH20(CH3) 2.92 (s) 

(CH3)0CH2CH20(CH3) 2.44 (s) 

CsH2 6.08, 6.36 (d) 1.8 
K2Bp (19) C(CH3)3 1.28 (s) 

Si(CH3)2 1.09 (s) 

Si(CH3)3 0.54 (s) 
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Table VI. lH NMR data for LiCI complexes 20-22. 

Compound Assignment o (ppm) J (Hz) 

CsHz 7.00, 6.67 (s) 
Bp Y(~ -Cl)zLi(THF)z C(CH3)3 1.51 (s) 

(20) Si(CH3)z 1.07 (s) 

Si(CH3)3 0.60 (s) 

THF a-CHz 3.40 (s, br) 

THF ~-CHz 1.25 (s, br) 

CsHz 6.63, 6.92 (d) 2.0 
Bp Y(~-Cl)zLi(TMEDA) C(CH3)3 1.48 (s) 

(21) Si(CH3)z 1.02 (s) 

Si(CH3)3 0.55 (s) 

(CH3)zNCHzCHzN(CH3)z 1.94 (s) 

(CH3)zNCHzCHzN(CH3)z 1.27 (s) 

CsHz 7.00, 6.64 (d) 2.05 
Bp Y(~-Cl)zLi(DME) C(CH3)3 1.51 (s) 

(22) Si(CH3)z 1.04 (s) 

Si(CH3)3 0.58 (s) 

(CH3)0CHzCHzO(CH3) 2.97 (s) 

(CH3)0CHzCHzO(CH3) 2.50 (s) 
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Table VII. lH NMR data for complexes 23-25. 

Compound Assignment o (ppm) J (Hz) 

CsH2 6.93, 6.60 (d) 2.00 
BpYCl (23) C(CH3)3 1.50 (s) 

Si(CH3h 1.06 (s) 

Si(CH3)3 0.62 (s) 

CsH2 6.92, 6.58 (d) 2.12 
Bp YCI(THF) (24) C(CH3)3 1.49 (s) 

Si(CH3h 1.05 (s) 

Si(CH3)3 0.61 (s) 

THFa-CH2 3.46 (t, br) 

THF ~-CH2 1.40 (t, br) 

CsH2 7.16, 6.60, 6.53, 5.35 (d) 2.2Hz 
BpYCl(Pyr) (25) C(CH3)3 1.44, 1.06 (s) 

Si(CH3h 1.03, 0.85 (s) 

Si(CH3)3 0.42, 0.66 (s) 

C6HsN 8.79, 6.69, 6.37(m) 
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Table VIII. 1 H NMR data for complexes 26 and 27. 

Compound Assignment d (ppm) J (Hz) 

CsH2 7.31, 6.70, 6.48, 6.36 (d) 2.0, 2.1 
BpYCH(TMSh C(CH3)3 1.34, 1.20 (s) 

(26) Si(CH3h 0.92 

Si(CH3)3 0.41, 0.34, 0.28, 0.18 (s) 

YCH 0.05 (d) 0.36 2J<Y-H) 

CsH2 6.93, 6.43 (s) 
[BpY-Hh C(CH3)3 1.35 (s) 

(27) Si(CH3h 1.01 (s) 

Si(CH3)3 0.38 (s) 

YH 4.87 (t) 31 J(Y-H) 

Table IX. lH NMR data for complexes 28 and 29. 

Compound Assignment 8 (ppm) J (Hz) 

CsH2 6.57, 6.31 (s) 
BpLaCl (28) C(CH3)3 1.23 (s) 

Si(CH3)2 0.83 (s) 

Si(CH3)3 0.31 (s) 

CsH2 7.09, 6.82, 6.57, 6.45 (d) 2.1 
BpLaCH(TMSh C(CH3)3 1.33, 1.27 (s) 

(29) Si(CH3h 0.905, 0.900 (s) 

Si(CH3)3 0.40, 0.33, 0.30, 0.22 (s) 

LaCH -0.343 (s) 
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Table X. 13C[lH] NMR data for complexes 23-25. 

Compound Assignment 8 (ppm) 

CsH2 118.3, 120.0, 124.9, 146.7 
BpYCl (23) C(CH3)3 33.03 

C(CH3)3 31.92 

Si(CH3)2 0.527 

Si(CH3)3 2.78 

BpYCl(THF) CsH2 148.1, 146.7, 124.9, 120.0,118.3 

(24) C(CH3)3 33.03 

C(CH3)3 31.90 

Si(CH3)2 0.546 

Si(CH3)3 2.806 

THF a-CH2 67.84 

THF J3-CH2 25.65 

BpYCl(Pyr) CsH2 209.4, 148.1, 147.8, 126.3, 124.3, 
(25) 123.3, 122.7, 121.6, 118.7, 116.2 

C(CH3)3 32.25, 32.98 

C(CH3)3 31,44, 31.70 

Si(CH3h 0.04, 1,26 

Si(CH3)3 2.49, 3.28 

C6HsN 151.1, 139.4, 128.9, 127.1, 124.7 
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Table XI. 13C[lH] NMR data for complexes 26 and 27. 

Compound Assignment B (ppm) 

CsH2 150.7, 150.1, 126.8, 126.2, 125.8, 
BpYCH(TMSh 

125.1, 125.0, 124.9, 120,4, 122.2 

(26) C(CH3)3 33.3, 33.0 

C(CH3)3 32.3, 32.0 

Si(CH3h 2.37, 2.70, 3.32, 5.93 

Si(CH3)3 0.141, 0.443 

Y-C 26.0 (d 1J(B9y_13C) = 34.2 Hz) 

CsH2 153.9, 145.1, 141.3, 122.0, 120.5 
[BpY-Hh C(CH3)3 . 31.1 

(27) C(CH3)3 33.9 

Si(CH3h 3.63 

Si(CH3)3 2.94 

Table XII. 13C[lH] NMR data for complexes 28 and 29. 

Compound Assignment B (ppm) 

CsH2 123.68, 126.00, 127,42, 128.84, 129.63 
BpLaCl (28)a C(CH3)3 32.92 

C(CH3)3 32.33 

Si(CH3h 1.064 

Si(CH3)3 2.604 

BpLaCH(TMSh CsH2 124.43, 124.78, 126.22, 126.36, 126.99, 

(29) 127.84, 130.86, 132.34, 151.36, 152.18 

C(CH3)3 32.63, 38.72 

C(CH3)3 32AO, 32.82 

Si(CH3h 1.402, 2.052 

Si(CH3)3 0.784, 2.380, 4.026, 5.319 

a) Spectrum taken in THF-ds. 
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Experimental Section 

General Considerations. All manipulations requiring air and moisture 

sensitive work were performed using Schlenk, high vacuum and inert 

atmosphere techniques as described previously.42 Solvents were predried by 

distillation from appropriate drying agents, stored in solvent pots over either 

Na/benzophenone or titanocene,43 and were vacuum-distilled from the 

solvent pots into reaction vessels immediately prior to use. All other 

reagents were purified using standard methods.44 Elemental analyses were 

performed by Fenton Harvey of the California Institute of Technology 

Elemental Analysis Facility. When indicated V20s was added directly to the 

sample as a co-oxidant to assist in combustion. lH and 13C[1H] NMR spectra 

for all new complexes are shown in Tables V-XII. 

Instrumentation. NMR spectra were recorded on a General Electric QE-300 

Spectrometer (lH, 300.1 MHz; 13C, 75 MHz). All spectra were recorded in C6D6 

unless otherwise noted. Spectra are referenced versus the residual protio 

signal at 8 7.15 ppm (lH) and versus the center resonance of the benzene-d6 

Be triplet at 8 128.0 ppm (13C). 

Reagents. Dicyclopentadiene was thermally cracked and the distilled 

cyclopentadiene was stored at -60 °C. Methyl lithium was obtained as a 1.4 M 

solution in diethyl ether (Aldrich) and n-Butyllithium as a 1.6 M solution in 

hexanes (Aldrich); both were used without further purification. 

Dichlorodimethylsilane and chlorotrimethylsilane were distilled from CaH2 

immediately prior to use . . YCl3(THFh was prepared using a procedure 

identical to that reported by Manzer for the corresponding scandium 
complex.45 KOt-Bu was sublimed prior to use and stored in an inert 

atmosphere drybox. Li[(CH3)3C-CsH4] was prepared in nearly quantitative 

yield by the addition of methyl lithium to 6,6 dimethylfulvene in a procedure 

analogous to that reported by Sullivan and Little.46 

Li2[(3-(CH3)3C-CsH3hSiMe2l (Li2Dp) was prepared as reported previously.47 

LiCH(Si(CH3hh was prepared by lithium-halogen exchange of 

ClCH(Si(CH3hh (Aldrich) by the method of Cowley.48 
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6,6-Dimethylfulvene. A modification of a literature procedure49 is given that 

is amenable to multigram (-100 g) preparations. Cydopentadiene (27 g, 0.41 

mol) and acetone (60 mL, 0.82 mol) were combined with 250 ml methanol in 

a 500 mL round bottom flask. Pyrrolidine (3.3 mL, 0.04 mol, 10 mol%) was 

added and the solution immediately became yellow. After 14 h of stirring at 

room temperature the reaction was halted by addition of 250 ml of Et20 and 

250 mL of 5% acetic acid. The layers were separated and the aqueous layer 

washed twice with 100 mL portions of Et20. The ether layers were combined 

and washed twice with 100 mL portions of saturated aqueous NaHC03. The 

ether solution was dried over MgS04. Removal of the Et20 by rotorary 

evaporator followed by vacuum distillation gave 39.3 g (90%) of an orange 

liquid that was identical by 1 H NMR spectroscopy to that previously reported. 

(CH3hSi((CH3hCCsH3Si(CH3hh (BpH2), 15. A 250 mL round bottom flask 

was charged with U2Dp (16.13 g, 51.6 mmol) and THF (125 mL) was added by 

vacuum transfer. Chlorotrimethylsilane (32 mL, 250 mmol) was added by 

vacuum transfer and the reaction allowed to stir at room temperature for 24 

h. The volatiles were removed in vacuo. Petroleum ether was added and the 

LiCl removed by filtration. Removal of the volatiles in vacuo and vacuum 
distillation of the residual liquid (150 °C, 1J.1 Hg) yielded 16.75 g (73%) of a 

thick viscous yellow oil. Due to the large number of potential regioisomers 

resulting from silyl migration about the cyclopentadiene rings (vide supra) 

NMR spectroscopic characterization of the product proved difficult. 

Satisfactory elemental analysis was obtained. Upon standing for several 

weeks, the yellow liquid solidified to a low melting solid. 
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Lh[(CH3hSH4-(CH3)3C-2-(CH3)3Si-CsH2hl (Li2Bp), 16. To a solution of Li2Dp 

(6.01 g, 19.24 mmol) in THF was added ClSi(CH3)3 (15.5 ml, 122.1 mmol, 6.3 

equiv.). The resulting solution was stirred at ambient temperature for 20 h. 

The volatiles were removed in vacuo. The resulting yellow oil was dissolved 

in petroleum ether and the LiCl removed by filtration. The filtrate was 

cooled to 0 °C and n-BuLi (26 ml of a 1.6 M solution, 41.6 mmol, 2.17 equiv.) 

was added by syringe against an argon counterflow. After several days a white 

crystalline product was isolated by filtration. Overall yield for 2 crops of 

crystals was 2.06 g, (23.7%). Elemental analysis calculated for C26li46Li2Si3: C, 

68.37; H, 10.15. Found C, 64.87, 65.69; H, 10.39, 10.55. 

Liz[(CH3hNCHzCHzN(CH3hh[(CH3hSi(4-(CH3)3C-2-(CH3hSi-CsH2)il 

(Liz(TMEDAhBp), 17. To a petroleum ether solution of 15 (0.886 g, 1.99 

mmol) was added TMEDA (0.48 g, 4.31 mmol). A 1.6 M solution of n-BuLi 

(2.5 mL, 4.0 mmol) was added in a single portion. After stirring for several 

hours at ambient temperature 16 had precipitated from solution and was 

isolated by filtration. Yield 0.866 g (63%). Elemental analysis calculated for 

C3sH7sLi2N4Si3: C, 66.22; H, 11.41; N, 8.13. Found C, 70.84, 68.58, 66.78; H, 

11.94, 11.66, 11.42; N, 8.78, 8.35, 7.86; added V20s used to aid combustion. 

Liz( CH30CHzCHzOCH3h[ (CH3hSi(4-( CHj)JC-2-( CH3)3Si-CsHz)iJ 

(Liz(DMEhBp), 18. To a petroleum ether solution of 15 (0.860 g, 1.88 mmol) 

was added DME (0.706 g, 7.88 mmol). A 1.6 M solution of n-BuLi (2.4 mL, 3.84 

mmol) was added in a single portion. After stirring for 12 h at ambient 

temperature the reaction mixture was cooled to -30 °C overnight. The 

resulting white precipitate was isolated by filtration and dried in vacuo, yield 

0.433 g (34.2%). Elemental analysis calculated for C34H66Li204Si3: C, 64.11; H, 

10.44. Found C, 64.13, 64.61, 63.90, 65.07; H, 10.23, 10.61, 10.55. 10.76; added 

V20s used to aid combustion. 

Kz[(CH3hSi(4-(CH3hC-2-(CH3hSi-CsHzh1 (KzBp), 19. 15 (13.90 g, 30.4 mmol) 

was dissolved in THF (300 mL). KOtBu (6.82 g, 60.8 mmol) was added and the 

reaction stirred at room temperature for 22 h. The volatiles were removed in 

vacuo. The resulting solid was powdered and the solid was heated to 60 °C 
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under dynamic vacuum overnight to remove the last traces of tert-BuOH. 

Yield 14.67 g (90%). Elemental analysis calculated for C26li46K2Si3: C, 59.93; H, 

8.90. Found C, 59.45, 60.80; H, 8.93, 8.92; added V20s used to aid combustion. 

[(CH3hSi(4-(CH3hC-2-(CH3)JSi-CsHzh1Y()l-ClhLi(C4H80h 

(BpY()l-ClhLi(THF)u20. YCl3(THF)J (0.458 g, 1.13 mmol) and 16 (0.0506 g, 1.11 

mmol) were dissolved in 30 mL of toluene. The solution was warmed to 78 

°C for 12 h. The reaction mixture was cooled to room temperature the LiCl 

removed by filtration and washed once with 5 mL toluene. The volatiles 

were removed in vacuo. Petroleum ether was added and the resulting white 

precipitate isolated by filtration. Yield 0.309 g, (39%). Elemental analysis 

calculated for C34H62Ci2LiOSi3Y: C, 54.17; H, 8.29%. Found C, 54.30; H, 8.15; 

added V20s used to aid combustion. 

[( CH3hSi(4-( CH3)JC-2-( CH3lJSi-CsHzh]Y()l-ClhLi( ( CH3hNCHzCHzN(CH3h) 

(BpY()l-CDzLi(TMEDA), 21. YCIJ(THF)J (0.597 g, 1.45 mmol) and 17 (1.02 g, 

1.48 mmol) were dissolved in 35 mL of toluene. The resulting slurry was 

heated to 75 °C overnight. The solution was filtered to remove LiCl and the 

volatiles removed in vacuo. Petroleum ether was added and the white solid 

isolated by filtration, yield 0.946 g (88%). Elemental analysis calculated for 

C32H62Ci2LiSi3N2 Y: C, 52.95; H, 8.61; N, 3.86. Found C, 52.85, 54.28, 53.30; H, 

8.57, 8.85, 8.82; N, 3.46, 3.37, 3.26; added V20s used to aid combustion. 

[ ( CH3hSi(4-( CH3hC-2-(CH3lJSi-CsHzh]Y()l-ClhLi( CH30CHzCHzOCH3) 

(BpY()l-CDzLi(DME), 22. A 100 mL round bottom flask was charged with 17 

(0.452 g, 0.696 mmol) and YCl3(THF)J (0.291 g, 0.707 mmol). Toluene (50 mL) 

was added and the reaction warmed to 80 °C for 60 h. The LiCl was removed 

by filtration, concentration of the filtrate followed by precipitation with 

petroleum ether afforded 0.303 g (62%) of 22 as a white solid. Elemental 

analysis calculated for C3oHs6Ci2Li02Si3Y: C, 51.45; H, 8.14. Found C, 51.11, 

50.71; H, 7.88, 7.84; added V20s used to aid combustion. 
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[[(CH3hSi(4-(CH3)3C-2-(CH3)3Si-CsH2h1Y(J.1-CDh (BpY(J.1-Cl),2, 23. A 250 mL 

round bottom flask was charged with 18 (4.0 g, 7.5 mmol), YCl3(TifFh (3.09 g, 

7.5 mmol), TifF (100 mL) and the reaction mixture refluxed for 40 h. The 

volatiles were removed in vacuo, and toluene added and removed in vacuo 

to render the solid free of TifF. Toluene was again added and the KCl 

removed by filtration. Concentration of the filtrate followed by precipitation 

with petroleum ether gave 3.17 g (75%) of 23 as a white solid. Elemental 

analysis calculated for C26I-i46Si3 Y: C, 58.72; H, 8.72. Found C, 49.86, 49.95; H, 

7.58, 7.71; added V20s used to aid combustion. 

[(CH3)2Si(4-(CH3)3C-2-(CH3)3Si-CsH2h]YCl(C4HsO) (BpYCl·THF), 24. A 250 ml 

round bottom flask was charged with 19 (5.01 g,9.4 mmol), YCl3(TifFh (3.86 g, 

9.4 mmol) and equipped with a reflux condenser. Tetrahydrofuran (175 mL) 

was added and the reaction refluxed for 40 h. The volatiles were removed in 

vacuo. Toluene was added and the KCl removed by filtration. Concentration 

of the filtrate followed by precipitation of the product by addition of 

petroleum ether gave 2.82 g (53%) of 24 as a white solid. Elemental analysis 

calculated for C3oHs4ClOSi3Y: C, 56.63; H, 8.20. Found C, 51.34, 50.09, 50.81, 

50.33, 50.91; H, 7.69, 7.81, 7.71, 7.56, 7.67; added V20s used to aid combustion. 

[(CH3hSH4-(CH3hC-2-(CH3)JSi-CsH2h1YO(CsHsN) (BpYO·Pyridine), 25. A 50 

ml round bottom flask was charged with 24 (0.200 g, 0.313 mmol) and 25 mL 

of toluene. Pyridine (0.14 ml, 1.73 mmol) was added by vacuum transfer. The 

solution was stirred at ambient temperature for 24 h. The volatiles were 

removed in vacuo leaving 25 as a white solid. Yield 0.148 gm (76%). 

Elemental analysis calculated for C29Hs1ClNSi3Y: C, 55.97; H, 8.26; N 2.25. 

Found C, 52.50, 54.19, 54.09, 56.37; H, 7.50, 7.64, 7.46, 7.86; N, 1.90, 1.78, 1.80, 2,28; 

added V20s used to aid combustion. 
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[ ( CH3hSi(4-( CH3)JC-2-(CH3)JSi-CsH2hlYCH(Si( CH3)3h (Bp YCH(TMSh), 26. 

(A) 20 (0.552 g, 0.776 mmol) and LiCH(Si(CH3)3h (0.135 g, 0.812 mmol) were 

dissolved in 50 mL of toluene. The solution was stirred at ambient 

temperature for 12 h. The volatiles were removed in vacuo and the resulting 

solid extracted into petroleum ether. The LiCl was removed by filtration. 

Removal of the volatiles gave 26 as an off white solid, yield 0.419 g (78%). 

Elemental analysis calculated for C33H6sSisY: C, 57.34; H, 9.48. Found C, 56.97, 

56.66; H, 9.38, 9.25; added V20s used to aid combustion. (B) 23 (1.25 g, 2.20 

mmol) and LiCH(Si(CH3bh (0.454 g, 2.73 mmol) were combined in a 50 mL 

round bottom flask. Toluene (40 mL) was added and the reaction stirred for 

24 h. The volatiles were removed in vacuo and the product extracted with 

petroleum ether. The LiCl was removed by filtration. Concentration of the 

filtrate and cooling to -78 oc gave 26 as a white solid after isolation by 

filtration, Yield 1.00 g, (65.8%). Elemental analysis calculated for C33H6sSisY, 

C 57.34; H 9.48. Found C, 55.98, 56.52; H, 9 .. 24, 9.97; added V20s used to aid 

combustion. 

[[(CH3hSi(4-(CH3)JC-2-(CH3)JSi-CsH2hlY-Hh (BpYH)2127. 26 (0.271 g, 0.392 

mmol) was dissolved in 25 mL of petroleum ether. Hydrogen (1 atm) was 

admitted and the reaction stirred for 7 h. The solution was concentrated and 

cooled to -78 oc. 27 was isolated as a pale yellow microcrystalline solid by 

filtration. Yield 0.093 g, 45%. Elemental analysis calculated for C26H47Si3 Y: C, 

58.61; H, 8.89. Found C, 58.78, 59.20, 58.98; H, 9.15, 9.08, 9.26; added V20s used 

to aid combustion. 
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[(CH3hSH4-(CH3)JC-2-(CH3)JSi-CsH2h1LaCI (BpLaCI), 28. Anhydrous LaCIJ 

(1.95 g, 7.95 mmol, AESAR 20 mesh) was ground to a fine powder. The white 

powder was slurried with THF (4 mL) and HCl (4 mL, 6 M) and heated to 80 

°C in a sealed bomb. After 3 h two clear immiscible layers had formed. The 

volatiles were removed in vacuo and fresh THF added. The resulting slurry 

was dehydrated with SOCl2 (10 mL). The volatiles were once again removed 

in vacuo to yield LaCl3(THF)x as an off-white solid that was not characterized 

further but used directly in the next step. 19 (4.06 g, 7.61 mmol) and the 

LaCl3(THF)x were combined in a 250 mL round bottom flask equipped with a 

reflux condenser. THF (100 mL) was added and the reaction refluxed for 40 h. 

The product was slurried in toluene and isolated by filtration. Yield 2.06 g, 

43%. Elemental analysis calculated for C26H46ClLaSi3: C, 50.59; H, 7.51. Found 

C, 54.98, 53.52; H, 8.08, 7.96; added V20s used to aid combustion. 

[ ( CH3hSi(4-( CH3)JC-2-( CH3)JSi-CsH2hJLaCH(Si( CH3)sh (BpLaCH(TMSh), 29. 

A 100 ml round bottom flask was charged with 28 (0.700 g, 1.11 mmol) and 

LiCH(Si(CH3)3h (0.190 g, 1.14 mmol). Toluene (60 ml), was added and the 

reaction stirred at ambient temperature for 24 h. The volatiles were removed 

in vacuo and the product extracted with petroleum ether. LiCl was removed 

by filtration. Removal of the volatiles from the filtrate afforded 0.470 g, 57%, 

of 29 as a white solid. Elemental analysis calculated for C33Hs6LaSis: C, 53.47; 

H, 8.84. Found C, 53.05, 55.30, 52.07, 53.49, 52.36; H, 8.92, 9.04, 8.97, 9.17, 9.01; 

added V 20s used to aid combustion. 
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Abstract: The alkyl species 26 is an excellent intiator for ethylene 
polymerization. The dimeric hydride 27 catalyzes the polymerization of 
propylene (25% v /v in methylcyclohexane) and neat samples of 1-butene, 
1-pentene, and 1-hexene to moderately high molecular weight polymers. 13C 
NMR of the resulting polymers at the pentad analysis level show a 
remarkably high degree of isotacticity for all samples. The presumed origins 
of this isospecificity are presented. 
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Introduction 

Homogeneous Ziegler-Natta polymerization was pioneered by the 

independent discoveries of Natta and Breslow that combinations of 

titanocene dichloride and either triethylaluminum or diethylaluminum 

chloride produce a catalyst capable of polymerizing ethylene.l However, 

these systems were found to have no activity towards the polymerization of 

propylene. It was later observed2 that the addition of small amounts of water 

to various group IV metallocene alkylaluminum catalyst mixtures resulted in 

increased polymerization activity. This discovery eventually lead to the 

development of a halide free aluminum co-catalyst.3 The addition of water to 

solutions of trimethyl aluminum in the ratio of between 1:2 to 1:5 is found to 

give alumoxanes that exhibit maximum polymerization activity; the 

resultant structures are known to consist of several cyclic and linear 

fragments comprised of -O-Al(CH3)- building blocks.4 The use of methyl 

alumoxane (MAO), generally in large excess, in conjunction with group 4 

metallocenes is found to produce catalysts capable of polymerizing ethylene, 

propylene, and higher a-olefins. 

An original proposal5 that the active center in these polymerization 

catalysts is a cationic metallocene alkyl species has been verified by the 

extensive work of Jordan and co-workers.6 Several discrete zirconocene alkyl 

cations have been isolated and fully characterized, generally as stable THF or 

acetonitrile adducts. Investigations have shown that these zirconocene alkyl 

cation adducts do indeed undergo several key steps in Ziegler-Natta catalysis. 

Ethylene can be rapidly polymerized by these Lewis base stabilized cations to 

polyethylene. However, these stabilized cationic systems are found to only 

oligomerize propylene and higher a-olefins. 

The large excess of MAO required for activation of zirconocene 

dichloride severely hampers any attempt at in situ investigation of the active 

species, as well as greatly increasing the cost of performing polymerizations. 

Recently tremendous effort has been directed toward the use of stoichiometric 

or near stoichiometric activators in conjunction with preformed zirconocene 

dialkyls. The use of non-coordinating solvents during generation of the 
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cations should result in base free 14 electron zirconocene alkyls that promise 

to exhibit a-olefin polymerization activity. The relative simplicity of these 

catalyst systems should make them more amenable to mechanistic study. 

Perhaps the most successful strategy for generation of a base-free alkyl 

cation has been the work of Turner and Hlatky.7 A key discovery was the use 

of the robust non-nucleophilic anion [B(C6Fs)4]- for the stabilization of the 

reactive [Cp2Zr(CH3)]+ fragment. Generation of the alkyl cation is readily 

accomplished by protonation of Cp2Zr(CH3h with the dimethylanilinium salt 

[(C6Hs)N(CH3hH]+[B(C6Fs)4]- in non-coordinating solvents . Alternatively 

methyl anion abstraction from Cp2Zr(CH3h can be performed using the stable 

carbocation [(C6HshC]+, once again use of non-coordinating solvents and the 

[B(C6Fs)4]- counterion results in very active a-olefin polymerization 

catalysts.8 A clever method for generation of a zirconocene alkyl cation 

utilizes the high Lewis acidity of B(C6Fsh to abstract a methyl anion from 

Cp2Zr(CH3h forming [Cp2Zr(CH3)]+[CH3B(C6Fshl-. This abstraction is 

reversible as evidenced by dynamic NMR studies, however, polymerization 

activity is observed.9 

Parallel investigations by several different groups on the isoelectronic 

neutral group III and (ignoring f electrons) lanthanide metallocene analogs 

has further revealed several key mechanistic aspects of Ziegler-Natta catalysis. 

In a series of elegant experiments, Watson demonstrated that the 

bispentamethylcyclopentadienyllutetium fragment ((115-Cs(CH3)shLuR) is 

capable of undergoing olefin insertion reactions that serve as models for 

polymer chain propagation. She also observed 13-hydride and 13-alkyl 

eliminations as possible chain termination pathways.1° This system only 

oligomerizes propylene as the measured rate of elimination is comparable to 

the bimolecular rate of olefin insertion. With ethylene, the rate of 

polymerization is much greater than that of chain termination, and 

consequently polymerization is observed. Related work has shown that 

complexes of the type (115-Cs(CH3)shM-R (M = Y, Nd, Sm, Lu) are generally 

very good ethylene polymerization catalysts.11 However, these metallocenes 

are found to only oligomerize propylene. 
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Previous work in the Bercaw group with a family of scandocene alkyls 

has also demonstrated several key steps in the postulated mechanism of 

Ziegler-Natta catalysis. Permethylscandocenemethyl was found to 

oligomerize ethylene in a living fashion at low temperature.12 Propylene was 

found to undergo vinylic C-H bond activation presumably due to overriding 

steric constraints preventing insertion across the Sc-alkyl bond. The 

ansa-scandocenes (CH3hSHCs(CH3)4]zSc(H)P(CH3h (OpSc(H)PMe3) and 

[meso-(CH3hSHCsH3-2-C(CH3hhScH]z ([DpScH]z) selectively dimerize 

a-olefins in a head-to-tail fashion, and cyclize a,ro-diolefins,13 indicating that 

the rate of J3-H elimination from the dimeric scandium alkyl is greater than 

the rate of subsequent olefin insertions. 

From the studies mentioned above and several other investigations a 

general consensus has emerged as to the various prerequisites for 

Ziegler-Natta catalysis. The requirements for polymerization activity, 

especially for a-olefins, appears to be a 14 electron metallocene alkyl fragment 

that has two empty frontier orbitals.14 Current mechanistic thinking in 

regards to the mode of olefin insertion stems from the suggestions of Cossee 

and Arlman that the olefin inserts directly across the metal carbon bond, 

Figure 1.15 

Figure 1. Cossee Arlman mechanism of olefin insertion. 

Brookhart and Green16 have suggested that modification of an earlier 

proposal by Green17 and Rooney18 to include an a-agostic interaction in the 

transition state for olefin insertion may be necessary. Grubbs and co-workers 

noted no isotopic perturbation of stereochemistry in the products obtained 

from a stoichiometric cyclization experiment designed to probe the transition 

state for an a-agostic assistance in olefin insertion.19 However, Bercaw and 

Piers demonstrated an isotopic perturbation of stereochemistry in the 

OpSc(H)PMe3 catalyzed hydrocylcization of trans,trans-1,6-d2-1,S-hexadiene to 
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d2-methylcyclopentane.20 Brintzinger and Krauledat have observed similar 

isotopic perturbations in the hydrodimerization of trans-d1-1-hexene 

catalyzed by rac-ethylenebis-(4,5,6,7-tetrahydro-1-indenyl)zirconium 

dichloride/MA0.21 The explanation offered for these observations is that an 

a-agostic interaction is present during the C-C bond formation for these 

systems. An extended Hucke! calculation indicates that the a-agostic 

assistance should serve to lower the overall barrier to olefin insertion into a 

metal carbon bond by -12 kcal/mol relative to the non a-agostic insertion.22 

These results indicate that while an a-agostic effect may assist olefin insertion 

across a metal alkyl bond, it is not a general requirement for C-C bond 

formation. The requirement for a 14 electron alkyl species for olefin 

polymerization is rationalized by the assumption that one empty orbital 

serves as the coordination site of the olefin and that the second may or may 

not be involved in an a-agostic interaction that serves to assist olefin 

insertion. 

Unlike the case with ethylene, the insertion of propylene into a metal 

alkyl can, in principle, occur with two different regiochemical results. 

Insertion of the olefin can occur in a 1-2 fashion by placement of the metal at 

the primary position of the new alkyl complex, Figure 2a. The reverse, 

addition in a 2-1 fashion results in a secondary metal alkyl, Figure 2b. 

Figure 2. Regiochemistry of a-olefin insertion, a) 1-2 and b) 2-1. 

+ \ 
R' 

... 



Both modes of insertion have been observed for the heterogeneous systems 

of titanium and vanadium chlorides in combination with alkyl aluminum 

activators.23 Investigation of the polymer end groups produced using 

metallocene catalysts shows that the mode of insertion is almost exclusively 
1-2.24 

In addition to the possible regiochemical outcomes, the insertion of 

propylene and higher a-olefins can result in several stereochemical 
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outcomes. These possibilities arise because of the relative stereochemistry 

between the pseudochiral methine carbon atoms along the polymer backbone. 

Polypropylene with each-rnethine carbon atom having the same relative 

stereochemistry, that is all pendant methyl groups directed toward the same 

side of the main chain, is termed isotactic, Figure 3a. Strict alternation of the 

orientation of the pendant methyl groups give the syndiotactic form of 

polypropylene, Figure 3b. A random orientation of the methyl groups results 

in atactic polypropylene, Figure 3c. 

Figure 3. Different tacticities of polypropylene a) isotactic; 
b) syndiotactic; and c) atactic. 

a) 
~ 

b) ~ 
-
:~ 

Isotactic polypropylene has found numerous industrial applications 

due to its high degree of crystallinity, and high melting point (Tm > 165 °C). 

Its high stiffness and tensile strength, as well as its ease of injection molding 

and extrusion make it ideally suited for numerous applications. The current 

production of several billion pounds per year in the United States alone 

attests to its incredible utility.25 Syndiotactic polypropylene is slightly less 



crystalline yet still retains a great deal of mechanical strength. Atactic 

polypropylene is an amorphous, waxy semi-solid and has little or no 

commercial value. 
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Distinguishing between the various tactic segments along a polymer 
sequence is readily accomplished using 13C NMR spectroscopy.26 The 

chemical shift of the various carbon atoms along a polymer chain are 

sensitive to the relative stereoconfiguration of the neighboring monomer 

units. The chemical shifts of the pendant methyl groups are found to be the 

most diagnostic resonances. An analysis of a five monomer sequence is 

possible since the chemical shift of the central methyl group is dependent 

upon the relative stereoconfigurations of the two monomer sequences 

directly preceding and following along the polymer chain. For simplicity, the 

various pentads are generally abbreviated using the convention shown in 

Figure 4.27 

Figure 4. Stereochemical notation for polypropylene. 

= =mmmm 

= I = rrrr 

The polymer backbone is represented as a horizontal line and the relative 

orientations of the pendant methyl groups are shown as vertical lines. Each 

pentad is also given a four letter representation in which a lower case m 

designates a meso relationship between two adjacent chiral methine carbons. 

A lower case r is used to represent a racemo relationship between adjacent 

chiral methine carbons. The ten possible pentad sequences are shown in 

Figure 5. 
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Figure 5. The ten possible pentad sequences for polypropylene. 

mmmm mmrr rrrr 

mmmr mmrm rrmr 

rmmr rmrr mrrm 

mrmr 

In purely atactic polypropylene the probability that the next monomer 

inserted into the growing polymer chain will have either the same or 

opposite stereoconfiguration as the penultimate insertion is equal. Therefore, 

all ten pentad signals should appear as singlets in the methyl region of the 

proton decoupled 13C NMR spectrum with their intensities related to the 

probability of their occurrence, Figure 6.28 

In reality only nine of the possible ten pentads can be observed as 

shown in Figure 7, since the mmrm and rmrr pentads are found to have 

chemical shifts that are not resolvable. The three regions of apparent 1:2:1 

triplets are referred to as the isotactic, heterotactic and syndiotactic triads. 
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Figure 7. 13C NMR spectrum of atactic polypropylene. 
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Stereoselection can be envisaged as arising from two different 

mechanisms. The first is enantiomorphic site control, wherein the ligand 

array about the transition metal catalyst is responsible for determining which 

prochiral face of the a-olefin inserts into the growing polymer chain.29 In the 

chain end control mechanism, enantiofacial selection is dictated by the 

stereochemistry of the J3-C of the last inserted monomer which direct the 

subsequent olefin insertion into the polymer chain.30 Distinguishing 

between these two types of insertion control is conveniently determined by 

13C NMR spectroscopy. For enantiomophic site control an error that occurs 

in olefin insertion will immediately be corrected in the next insertion, 

whereas in a chain end control the error will continue along the chain. This 

leads to two different mistake sequences in a polymer chain, type I for 

enantiomorphic site control and type II for chain end control. The 

experimentally observed tacticity generally results from a combination of both 
chain end and enantiomorphic site control.31 

I 

II I I 

The first reported homogeneous isospecific polymerization of 

propylene and 1-butene was reported using the C2-symmetric 

ethylenebis(4,5,6,7-tetrahydroindenyl)zirconium chloride (racemic lb) in 

combination with methylalumoxane.32 A remarkable feature of this system 

is that under certain conditions the activity is comparable or even surpasses 

the activity of the best heterogeneous "high mileage" catalysts. The 

regiochemistry of insertion was determined to be predominately 1-2. The 
resultant polymers were highly isotactic with evidence for enantiomorphic 

site control being implicated as the cause of the stereoregularity. 
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s R 

racemic lb meso lb 

The corresponding achiral meso derivative (meso lb) was found to have 

much lower activity and produce atactic polypropylene.33 These two results 

taken together clearly demonstrate that during activation of the metallocene 

dichlorides with MAO both tetrahydroindenyl rings remain attached to the 

metal center, and that isomerization does not occur. Removal of a single 

tetrahydroindenyl ring from either racemic or meso lb would result in 

analogous structures that would presumably give polymers of similar 

microstructure. 

The synthesis of syndiotactic polypropylene has recently been 

accomplished using a homogeneous catalyst derived from the combination of 

isopropyl(cyclopentadienyl-1-fluorenyl)zirconium dichloride (30) and MAQ.34 

This was one of the first reports of syndiotactic polymerization occurring at or 

above ambient temperature. The mode of insertion was found to be 1-2 and 

the resultant syndiospecificity was found to be produced through an 
enantiomorphic site control mechanism. 
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30 

An explanation for the different tacticities observed for the polymers 

produced by racemic 1 b and 30 is shown in Scheme 1. For insertion of 

propylene into the growing polymer chain (P) of the ionic complex rac-31, 

addition occurs in a 1-2 fashion. The insertion should take place at the open 

coordination site represented by the shaded box. Based on steric 

considerations, the olefin should approach with the methyl group pointed 

away from the six membered ring of the tetrahydroindenylligand.35 By 

virtue of the overall C2 symmetry of the complex the enantioface of insertion 

is identical regardless of whether olefin adds from the left or the right (rac-31 

= rac-31'). Thus insertion of an olefin into the growing polymer chain 

generates the same relative configuration at each methine carbon and 

formation of isotactic polypropylene results. For the cationic C5 symmetric 

complex 32 1-2 olefin insertion with the propylene methyl group directed 

away from the six membered rings of the fluorenylligand results in insertion 

of different enantiofaces into the growing polymer chain. Complexes 32 and 

32' are enantiomers, and olefin insertion into 32 leads to formation of 32' and 

vice versa. Thus, repeated insertions result in the generation of methine 

carbons with opposite relative stereocenters and, therefore, formation of 

syndiotactic polypropylene. 
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Scheme 1. 

Ccp~~ 
P ___ zr+ 0 

c~:> 
0 zr+ 

---p 

rac31 rae 31' 

32 32' 

With the apparent general requirement for olefin polymerization 

activity being a 14 electron alkyl as noted earlier. A series of investigations 

into the possibility that several of the yttrocene complexes reported in chapter 

2 to catalyze the Ziegler-Natta polymerization of a-olefins was undertaken. 

With the high degree of isotacticity observed for polymers produced by 

complex rac-1b and other C2 symmetric ansa-zirconocene dichlorides in 

conjunction with MAO it was further hoped that the resultant poly-a-olefins 

produced would possess a high degree of isotacticity. 
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Results and Discussion 

The yttrium alkyl species 

[(CH3)2Si(4-(CH3hC-2-(CH3)3Si-CsH2h]YCH(Si(CH3hh, 26, efficiently initiates 

ethylene polymerization. Solutions of 26 in methylcyclohexane were found 

to catalyze the rapid polymerization of ethylene to high molecular weight 

linear polyethylene. The physical data for the polyethylene produced is 
presented in Scheme 2. 

Scheme 2. 

26 

~H 
Mn = 720,000 
PDI = 2.01 

Tm =137°C 

n = 26,000 

The overall yield of isolated polymer is only 50%, presumably due to 

mass transport problems during polymerization since the polymer almost 

immediately precipitates from solution. The average number of monomers 

per chain, (n= 26,000), is much higher than the starting monomer I catalyst 

ratio 3200:1. This discrepancy indicates that the rate of propagation is much 

greater than the rate of initiation; consequently, only a small fraction of 26 

initiates ethylene polymerization. The exact mode of initiation remains 

uncertain; ethylene may insert directly across the Y-C cr bond of 26, or perhaps 

cr bond metathesis of ethylene to form a BpY-vinyl species that could initiate 

polymerization is occurring.36 
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From a manufacturing standpoint very high molecular weight linear 

polyethylene has several desirable features, toughness and excellent chemical 

resistance are but two attractive properties. However, processing becomes 

more difficult as the molecular weight increases. The copolymerization of 
ethylene and 1-butene allows for the incorporation of ethyl side chains that 

disrupt crystalline packing forces and allows for easier processing while at the 

same time maintaining excellent mechanical properties. Copolymers of 

ethylene and 1-butene have been prepared using 26 as a catalyst. 

Polymerization of a.-olefins is not observed in the presence of 26. The large 

alkyl group, -CH(Si(CH3)3)2, is apparently sufficiently bulky so as to preclude 

initiation of a-olefin polymerization. 
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Solutions of [[(CH3hSi(4-(CH3hC-2-(CH3hSi-CsHz)z]YHh, 27 ([BpY-H]2), 

are found to slowly polymerize a.-olefins to moderately high molecular 

weight polymers, Scheme 3. The physical characterization data for the 

polymers produced are shown in Table I. 

Scheme 3. 

R R 

(n+2)~R 
2 

27 
n 

Table I. Physical data for poly-a.-olefins prepared with 27. 

Polymer Mn PDI ope Tm°C 

polypropylene 4,200 2.32a 100 156 

poly-1-butene 11,000 1.83b 187 109 

poly-1-pentene 20,000 1.99b 284 73 

poly-1-hexene 24,000 1.75b 287 <25 

a) GPC versus authentic molecular weight polypropylene. b) GPC values versus narrow 
molecular weight polystyrene standards. c) Average degree of polymerization. 

R 

The polymerization is quite slow, presumably due to the inactivity of the 16 

electron dimeric hydride complex 27. A 14 electron hydride or alkyl 

derivative is probably required for a.-olefin polymerization.37 Faster 

polymerization rates can be achieved by in situ generation of the 14 electron 

monomeric hydride species "BpY-H" by hydrogenolysis of 26 in the presence 

of a large excess of a.-olefin. The results obtained for each of the 

poly-a.-olefins produced will be discussed in turn. 
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Polypropylene 

Polymerization of solutions of propylene in methylcyclohexane (1:3 

v /v) proceed smoothly using 27 as the catalyst. As the reaction progresses, 

polypropylene is observed to precipitate from solution. After the reaction was 

quenched with acidic methanol to remove the catalyst, the solid was isolated 

by filtration. Drying the solid in vacuo generally gave a 50-75% yield of 

polymer based on monomer consumption. The results of a detailed 13C 

NMR pentad analysis of the unfractionated polypropylene reveals that the 

mmmm resonance accounts for >99% of the methyl resonances present. 

Chain end analysis by lH NMR shows both vinyl and vinylidene end groups 

indicative of both 13-H38 and !3-methyl elimination39 pathways for chain 

termination. Infrared analysis of a thin film of the polymer indicates the 

isotacticity index to be 96.9%.40 Analysis of the resultant polymer by powder 

X-ray diffraction methods indicate that the polypropylene is highly crystalline, 

Figure 8, and exists in a monoclinic unit cell with two enantiomorphous 

helices facing one another, (modification a).41 

Figure 8. Powder X-ray diffraction of polyprot:>_y_!ene prod~~~ by 27. 
t----'--
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Comparison with the polypropylenes produced by zirconocene 7, 

Scheme 4, that has a similar ansa-ligation to the Bp ligand reveals the 

importance of alkyl substitution about the cyclopentadienyl rings.42 The 

presence of a methyl group at the Ra position in 7e, 7£ was found to decrease 

the number of 1-3 misinsertions from 1.5 to 0.6%. 1-3 Misinsertions are the 

net result of a 2,1 misinsertion followed by rapid isomerization of the 

secondary alkyl to a primary zirconocene alky1.43 The corresponding 

percentage of 1,3 misinsertions found for the polypropylene produced by 27 

was <0.1 %. The tremendous importance of the tert-butyl group is attested to 

by the precipitous drop in isotacticity found upon replacement of the 

tert-butyl group with the less sterically demanding iso-propyl group, cf. 7e, 7£ 

Table II. 

Scheme 4. 

Table II. 13C NMR pentad analysis of polypropylene produce by 7. 

Ra R_a % mmmm 

7a H C(CH3)3 77 

7e CH3 C(CH3)3 94 

7£ CH3 CH(CH3h 73 
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Increased rates of polymerization can be achieved by the in situ 

hydrogenolysis of 26 in the presence of propylene. Hydrogenation of a-olefin 

solutions of 26, monomer I catalysts >3000, presumably results in initial 

formation of a 14 electron monomeric hydride complex, "BpY-H", which 

rapidly initiates polymerization, Scheme 5. For both propylene and 1-butene 

polymerizations polymer precipitation was apparent almost immediately 

upon hydrogenation. The results of a study that measured the effect of 

temperature on the polymerization of propylene is presented in Table III. 

Scheme 5. 

26 

Table III. Molecular weight data and activity for polypropylene produced by 
in situ hydrogenolysis of 26. 

Tp (oc)a Mn PDib DP Tm (°C) Activityc 

50 2200 1.7 53 142 709 

24 7000 2.6 167 153 1760 

6 3800 3.4 90 141 305 
a) Polymerization temperature ± 2 °C. b) GPC data versus authentic molecular weight 

polypropylene. c) [g Polymer]/[(mol Y)h] 
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While the data presented in Table III display considerable scatter due to 

experimental difficulties, several features are worthy of note. The use of H2 

for the in situ generation of "BpY-H" does result in an increased rate of 

initiation, however, the rate of hydrogenation of 26 is slower than that of 

hydrogenation of the growing alkyl chains. This results in the production of 

low molecular weight oligomers, the GPC traces for these polymer samples 

show bimodal distributions with a small bias towards short chain oligomers. 

While the hydride dimer is stable at elevated temperatures the thermal 

stability of a putative hydride monomer or growing alkyl chain is unknown. 

A recent report by Marks and co-workers reveals that a C2 symmetric 

ligand array is not a direct prerequisite for isotactic poly-a-olefin formation. 

A series of ansa-zirconocenes were prepared in which a menthyl or 

neomethyl substituent was attached at the 3 position to one cyclopentadienyl 

ring. Activation of the zirconocenes with MAO produced catalysts capable of 

polymerizing propylene. However, isotacticities comparable to those reported 

here could only be achieved by conducting the polymerizations at -40 °C.44 

>:51 
M 5

./-rez ... ~c c1 e2 1 r 
~ 'c1 

MAO 

Numerous investigations, both experimental and theoretical, have 

been undertaken to elucidate the nature of the transition state of a-olefin 

insertion, the step that determines the stereochemical outcome, into the 

growing polymer chain. Olefin hydrogenation and oligomerization studies 

have been conducted using optically pure (R) and 

(S)-(ethylenebis(4,5,6,7-tetrahydroindenyl)zirconocenes and 

methylalumoxane.45 These studies indicate that the most probable transition 



state for olefin insertion into the metal-alkyl bond occurs with the alkyl 

substituent of the a-olefin directed away from the tetrahydroindenyl ring. 

Using this proposed transition state geometry, Scheme 6, molecular 

mechanics calculations derived the energy difference between insertion 

leading to isotactic chain extension, III, to be 3-6 kcal/mollower in energy 

than the insertion leading to a syndiotactic defect, IV. 46 

Scheme 6. 

III IV 
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One important feature that has been neglected in zirconocene alkyl cation 

polymerizations is the role of the methylalumoxane counterion. 

Experimental studies are generally conducted in benzene or toluene, and the 

degree of ion pairing between zirconocene alkyl cation and the MAO anion 

may play a crucial role in determining the tacticity of the resultant polymer.47 

Our current mechanistic thinking as to the geometric constraints of the 

transition state for a-olefin insertion parallel those presented above. 

However, due to the neutral nature of the BpY catalysts no adjustment for a 

counterion is required. Preliminary investigations in collaboration with T . 

Herzog analogous to those conducted by Piers and Bercaw on 

l,6-d2-l,S-hexadiene hydrocyclization using 26 indicate an isotopic 

perturbation of stereochemistry in the resultant methylcyclopentane-d2 

products. This result suggests that an a-agostic effect may operate during C-C 

bond formation,48 but the result is not definitive. 
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The presumed transition state geometry is shown in Scheme 7. Two 

views each are shown for the favored (left) and disfavored transition states 

(right). The preferred enantioface for propylene insertion is dictated by 

approach of the olefin such that the methyl group is pointed away from the 

tert-butyl group of the ligand, as well as in a transoid arrangement with the 

growing polymer chain. The size difference between the two distal 

substituents on the cyclopentadienyl ring, H versus tert-butyl, may permit an 

avenue of approach ideally suited for a-olefin insertion. The possible role of 

an a-agostic interaction may be two-fold. First, such an interaction may lower 

the transition energy required for olefin insertion as suggested by the 

calculations of Brintzinger. Second, adoption of an a-agostic interaction 
. . 

serves to orient the two remaining substituents on the a-C toward the 

cyclopentadienyl rings. The preferred orientation should be such that the 

smaller hydrogen atom is directed toward the tert-butyl group of the upper 

ring, while the larger polymer fragment, P, is pointedinto the open region 

between the tert-butyl and trimethylsilyl groups of the lower ring. The 

overall substitution pattern of the Bp ligand in conjunction with the 

adoption of an a-agostic interaction may provide a well defined steric 

environment for a-olefin insertion. Regardless of whether or not there is an 

a-agostic effect present, the specific substitution pattern of the Bp ligand is 

expected to effectively discriminate between olefin enantiofaces. Repeated 

isospecific insertions are expected to yield highly isotactic polypropylene as 

shown in Scheme 8. 
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Scheme 7. 

>>> 

favored disfavored 



Scheme 8. 

J 

~R!I 
q 
1 a-olefin Isotactic Po y-
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Poly-1-butene 

Polymerization of neat samples of 1-butene with either 27 or by in situ 

generation of "BpY-H" gave polymers with a very high degree of isotacticity. 

The polymer produced by the hydride dimer was found to have a higher 

molecular weight and a narrower polydispersity (Mn 10900, PDI 1.84) than the 

polymer produced by the in situ method (Mn 1850, PDI 4.44). The melt 

transition temperature was also found to be higher for the longer polymer 

sample, 109 oe versus 94 °C. The high degree of isotacticity is readily apparent 

by inspection of the 1 H and Be NMR spectra of the high molecular weight 

sample, Figure 9. Analysis of a thin film, by IR spectroscopy revealed that the 

poly-1-butene exists in the more stable of the two possible helical forms.49 

The helical form with three repeat units per turn is known to have greater 

tensile strength and a higher melting point than the less stable form with 11 

monomer units per two helical turns. 

Poly-1-pentene 

1-Pentene is polymerized by 27 over the period of several days to a 

polymer of moderately high molecular weight. The overall yield of polymer 

corresponds to approximately 50% of the monomer being consumed. Unlike 

the hard and brittle polypropylene and poly-1-butene produced, the 

poly-1-pentene is a much softer, waxy material. lH NMR analysis of the 

polymer reveals vinyl end groups indicating chain termination by ~-H 

elimination. Be NMR analysis of the polymer indicates that the degree of 

isotacticity is extremely high, Figure 10. Assignment of the various pentad 

chemical shifts for poly-1-pentene have recently been reported.50 The e3 

methylene resonances for the poly-1-pentene produced by 27, and a sample of 

poly-1-pentene produced by a classical heterogeneous Ziegler-Natta catalyst 

system are presented in Figure 11. The reported isotacticity of the 

poly-1-pentene produced by the heterogeneous catalysts is only 51% mmmm, 

comparison with the poly-1-pentene produced by 27 shows the isotacticity to 

be at least 95% mmmm if not higher. 



Pol y-1-hexene 

1-Hexene is polymerized in excellent yield (-95%) by either initiation 

system mentioned previously. The resulting polymers were very viscous 

semi-solids with a melt transition below 30 °C. 13C NMR analysis reveals 

only six resonances for each type of carbon atom along the polymer chain as 

expected for highly isotactic poly-1-hexene, Figure 12. 

94 



Figure 9. 

a) 

a) lH NMR spectrum (400 MHz) (a-dichlorobenzene/ 

benzene-d6, 9:1 v /v, 100 °C) with tentative assignment of 
resonances. b) 13C NMR spectrum (100 MHz) 

(o-dichlorobenzene/benzene-d6, 9:1 v /v, 100 oc) obtained by 
polymerization of neat 1-butene at 25 oc with 27. 
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Figure 12. 13C NMR spectrum (100 MHz) (a-dichlorobenzene/ benzene-d6, 

9:1 v /v, 25 °C) obtained by polymerization of neat 1-hexene at 25 

oc with 27. 
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1,5-Hexadiene 

Recently Waymouth and co-workers have investigated several unique 

features of poly(methylenecyclopentane), a polymer first prepared by Marvel 

and Stille.51 In a preliminary account, trans selectivity was noted for 

1,5-hexadiene cyclopolymerizations using Cp2ZrCb in conjunction with 

MAO as the catalyst system. Use of the more sterically demanding 

pentamethylcyclopentadienyl analog (Cp*2ZrCb) gave predominantly 
cis-poly(methylenecyclopentane).52 Use of the optically active 

(R)-ethylenebis(tetrahydroindenyl)zirconium (R) bina,phtholate and MAO 

was found to cyclopolymerize 1,5-hexadiene to produce an optically active 

trans-poly(methylenecyclopentane), Figure 13.53 The two requirements for 

polymer chirality are isotacticity of the main chain, and trans-fused 5 

membered rings. These results demonstrated unambiguously that chiral and 

optically active polymers can be prepared starting from achiral monomers by 

judicious choice of catalyst. 

Figure 13. Trans-diisotactic poly(methylenecyclopentane). 

Neat 1,5-hexadiene is readily cyclopolymerized by addition of 27. 

Analysis of the product reveals a polymer of moderate molecular weight (Mn 

17,000) and broad unimodal molecular weight distribution (PDI 3.2 versus 

polystyrene standards). Little or no crosslinking via pendant vinyl side 

chains, which would result from incomplete cyclizatioh, is observed. 13C 

NMR analysis of the poly(methylenecyclopentane) shows the 5-membered 

rings to be predominantly trans-fused.54 Detailed triad analysis was not 

possible due to the limited spectral resolution. The high isotacticities 

observed in the polymerization of various a-olefins (vide supra), and the 

observed trans ring formations suggest that 27 or closely related derivatives 

might serve as possible enantioselective cyclopolymerization catalysts 

provided that suitable resolution methods for this class of ansa-metallocene 

can be devised. 
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Gem-disubstituted Olefins 

The sluggishness or complete inability of geminally disubstituted 

olefins to undergo Ziegler-Natta polymerization prompted us to investigate 

whether or not a single insertion across BpY-H might be observed. 

Furthermore we hoped that the alkyl derivatives if formed could serve as an 

initiator for a-olefin polymerizations. Addition of isobutylene to 27 shows 

no reaction at room temperature. Heating the sample to 80 °C cleanly 

afforded a single organometallic species identified (lH NMR) as the 

2-methylallyl complex 33, resulting from cr bond metathesis of an allylic 

methyl group. 

33 34 

Whether the product is the result of direct allylic C-H cr bond metathesis, or 

results from either intra- or intermolecular rearrangement of the vinylic 

species 34 is unknown. The vinylic species is a logical intermediate given the 

greater propensity of sp2-hybridized C-H bonds to undergo cr bond metathesis 

relative to sp3-hybridized C-H bonds. 55 Isomerization of the allyl (113-11 L113) is 

slow on the lH NMR timescale, as indicated by the lack of overall C2 

symmetry of the Bp ligand array. 
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The reaction of 2-methyl-1-pentene and 27 once again proceeds with 

allylic C-H bond activation to ultimately yield the allyl species 35. The 

product was found to be almost entirely the result of cr bond metathesis with 

the less sterically hindered C-H bonds of the 2-methyl group. As with the 

product of the analogous reaction with isobutylene, 35 undergoes allyl 

isomerization only slowly, (1 H NMR). 

35 

Addition of methylenecyclopentane to 27 results in little or no reaction 

at room temperature. After heating at 80 °C for 6 h a new C2 symmetric 

product is formed. Removal of the reaction volatiles in vacuo followed by 

re-examination of the organometallic species indicates that the product is 

presumably the result of vinylic C-H bond activation 36 (lH NMR). 

36 

Addition of 10 equivalents of 1-pentene to the 36 results in oligomerization. 

However, only a small fraction of the metal centers catalyze the 



102 

oligomerization, as -90% of 36 is still present after all the 1-pentene has been 

consumed. 

The reaction of 1,3-butadiene and allene with 27 both require rather 

forcing conditions for formation of the crotyl 37, and allyl species 38, again 

allylic rearrangement is slow on the lH NMR time scale. 

37 

. \ 

Me2Si~ 
S1-

~ 

38 
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Conclusions 

We have realized several of our goals. The alkyl derivative 26 is an 

excellent initiator for ethylene polymerization. Most gratifyingly, the dimeric 

hydride species 27, and the putative monomeric hydride generated via 

hydrogenolysis of 26 are the first single component iso-specific 

polymerization catalysts. The high iso-specificities of the resultant 

poly-a-olefins presumably result from subtle steric factors exerted by the 

ligand substituents; thus the ligand array dictates which of the two prochiral 

enantiofaces of the incoming a-olefin inserts. The enantiofacial selection is 

remarkably high, even when distinguishing between such subtle steric 

differences as H versus CH3. This discrimination is remarkably efficient such 

that isotacticity of the polypropylene produced is greater than 99% mmmm. 

Whether or not an a-agostic effect operates during polymerization has yet to 

be determined. The single component nature of this a-olefin polymerization 

catalyst should provide an unprecedented opportunity for a detailed 

investigation into the rate of olefin insertion in an actual iso-specific 

polymerization system. Finally, the high fidelity of olefin insertion into the 

yttrium alkyl bond suggest that if suitable resolution methods can be 

discovered optically active derivatives of 26 or 27 may prove to be useful 

catalysts for enantioselective transformations. 
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Experimental Section 

General Considerations. Complexes 26 and 27 were prepared as described in 

Chapter 2. Olefins were dried over CaHz, LiA1}4 or titanocene.56 

Polymerizations of ethylene and propylene were conducted using solutions of 

the appropriate olefin in methylcyclohexane (1:3 -1:4 v/v). Caution! 

Polymerizations should never be conducted in glass reaction vessels on a neat 

sample of ethylene or propylene as the olefin vapor pressures are too great to 

be safely contained. Polymerizations of 1-butene, 1-pentene and 1-hexene 

were conducted on neat samples with the concentrations being; 1-butene 11.4 

M, 1-pentene 9.12 M, and 1-hexene 8.00 M. 

Instrumentation. Molecular weight distribution and melt transition 

temperature measurements for all polymer samples were performed at the 

Exxon Chemical Company Polymer Research Center in Baytown Texas. 

Molecular weight distributions were obtained using Gel Permeation 

Chromatography (GPC) on a Water model 150C chromatograph at 145 oc. 

Three Shodex mix bed columns were used. The solvent was 

1,2,4-trichlorobenzene at a flow rate of 1 ml/mihute. The system was 

calibrated using narrow molecular weight polystyrene standards. For 

polypropylene, a universal calibration with the appropriate Mark-Houwink 

constants was used to calculate molecular weights. For all other polymer 

samples the polystyrene calibration was used. Melt transition temperatures 

(Trn) were measured on a DuPont 9900 Differential Scanning Calorimeter. 

The values reported are those obtained upon second melting after first 

annealing the sample by heating from room temperature to 200 °C at a rate of 

10 oc;minute. The sample were held at 200 °C for 5 minutes then cooled at a 

rate of -10 °C/minute. The values reported are the minimum from the 

endotherm recorded during the second heating cycle (10 °C/minute). lH and 

Be NMR spectra were recorded on either a JEOL GX-400 (400 MHz lH, 100 

MHz 13C) or a General Electric QE-300 (300 MHz 1 H, 75 MHz Be) 

spectrometer. Delay times of 3-5 seconds were used when recording Be 

spectra. Polymer samples were run as 10 wt% solutions in either 1,2-C6D4Ch 

or C6D6/1,2-C6f4Clz (1:9 v /v). Powder X.,.ray diffractions were performed on a 



Scintag XDS 2000 diffractometer utilizing Cu Ka radiation. Samples were 

scanned from 5° to 32° in 28 at a scan rate of 20 I min. 
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Polymerizations were conducted in thick walled glass reaction vessels 

(bombs) equipped with Kontes valve seals. Utmost care was taken to ensure 

that the olefins used were of the highest possible purity. Representative 

examples of polymerizations are presented below. 

Polyethylene. A thick walled reaction vessel was charged with 26 (15.2 mg, 22 

J..Lmol) and evacuated. A second thick walled reaction vessel was charged with 

titanocene and 10.0 mL of methylcyclohexane. Ethylene (2.0 g, 71.3 mmol, 

3200 equiv.) was condensed onto the titanocene at -196 oc. The resulting black 

solution of ethylene/methylcyclohexane was allowed to warm to room 

temperature with stirring. Caution! While no difficulties were encountered 

in handling solutions of ethylene/methylcyclohexane, extreme care should be 

exercised when working with solutions whose vapor pressure is greater than 

1 atmosphere. Adequate shielding must always be employed when working 

with such solutions. The ethylene/methylcyclohexane solution was cooled to 

-78 oc and trap-to-trap distilled into the cold (-196 oc) reaction vessel 

containing 26. The reaction was initially warmed to -78 octo allow the 

solvent to melt, followed by slow warming to ambient temperature. 

Initiation was generally observed at or near room temperature as evidenced 

by the formation of small white flakes that aggregated and precipitated as the 

polymerization proceeded. Adequate temperature control is necessary as the 

polymerizations are quite exothermic. After 20 minutes, the excess ethylene 

was vented in a fume hood, and the solid isolated and washed with acetone. 

Overall yield 1.08 g, 50% based on consumed monomer. 

Polypropylene Method L A thick walled reaction vessel was charged with 26 

(18.3 mg, 27 J.lmol) and evacuated. A second thick walled reaction vessel was 

charged with titanocene and 9.3 mL of methylcyclohexane. Propylene (2.9 g, 

68.9 mmol, 2600 equiv.) was condensed onto the titanocene at -196 °C. The 

resulting black solution of propylene/methylcyclohexane was allowed to 

warm to room temperature with stirring. The solution was cooled to -78 °C 

and trap-to-trap distilled into the cold (-196 °C) ·reaction vessel containing 26. 
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An atmosphere of H2 ("" 73 equiv.) was admitted to the head space above the 
frozen solution. The reaction mixture was first allowed to thaw at -78 oc, 
then allowed to warm to room temperature with stirring. After 48 h, the 

reaction was halted by venting the remaining monomer and precipitating the 

polymer by addition of acidic methanol. Isolation of the polymer by filtration 

followed by drying in vacuo afforded 2.24 g of polypropylene, 77% based on 

consumed monomer. 

Poly-1-pentene Method II. A thick walled reaction vessel was charged with 27 

(16.0 mg, 29.71J.mol) and evacuated. 1-Pentene (9.6 g, 0.137 mol, 4600 equiv.) 

was added by vacuum transfer. The resulting pale yellow solution was stirred 

at ambient temperature for 7 days. The reaction became more viscous with 

time. The polymer was precipitated by addition of acidic methanol. The 

polymer was dissolved in diethyl ether and washed twice with small portions 

of water. Removal of the ether in vacuo yielded 4.7 g of a white waxy solid, 

49% based on consumed monomer. 
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