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Abstract

Among the branches of astronomy, radio astronomy is unique in that it spans the largest portion
of the electromagnetic spectrum, e.g., from about 10 MHz to 300 GHz. On the other hand, due to
scientific priorities as well as technological limitations, radio astronomy receivers have traditionally
covered only about an octave bandwidth. This approach of “one specialized receiver for one primary
science goal” is, however, not only becoming too expensive for next-generation radio telescopes
comprising thousands of small antennas, but also is inadequate to answer some of the scientific
questions of today which require simultaneous coverage of very large bandwidths.

This thesis presents significant improvements on the state of the art of two key receiver com-
ponents in pursuit of decade-bandwidth radio astronomy: 1) reflector feed antennas; 2) low-noise
amplifiers on compound-semiconductor technologies.

The first part of this thesis introduces the quadruple-ridged flared horn, a flexible, dual linear-
polarization reflector feed antenna that achieves 5:1-7:1 frequency bandwidths while maintaining
near-constant beamwidth. The horn is unique in that it is the only wideband feed antenna suitable
for radio astronomy that: 1) can be designed to have nominal 10 dB beamwidth between 30 and 150
degrees; 2) requires one single-ended 50  low-noise amplifier per polarization. Design, analysis, and
measurements of several quad-ridged horns are presented to demonstrate its feasibility and flexibility.

The second part of the thesis focuses on modeling and measurements of discrete high-electron
mobility transistors (HEMTs) and their applications in wideband, extremely low-noise amplifiers.
The transistors and microwave monolithic integrated circuit low-noise amplifiers described herein
have been fabricated on two state-of-the-art HEMT processes: 1) 35 nm indium phosphide; 2)
70 nm gallium arsenide. DC and microwave performance of transistors from both processes at room
and cryogenic temperatures are included, as well as first-reported measurements of detailed noise
characterization of the sub-micron HEMTs at both temperatures. Design and measurements of two
low-noise amplifiers covering 1-20 and 8-50 GHz fabricated on both processes are also provided,
which show that the 1-20 GHz amplifier improves the state of the art in cryogenic noise and band-
width, while the 8-50 GHz amplifier achieves noise performance only slightly worse than the best
published results but does so with nearly a decade bandwidth.
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