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ABSTRACT 

There is a growing amount of experimental evidence that suggests people often 

deviate from the predictions of game theory. Some scholars attempt to explain the 

observations by introducing errors into behavioral models. However, most of these 

modifications are situation dependent and do not generalize. A new theory, called the 

rational novice model, is introduced as an attempt to provide a general the~ry that takes 

account of erroneous behavior. The rational novice model is based on two central 

principals. The first is that people systematically make inaccurate guesses when they are 

evaluating their options in a game-like situation. The second is that people treat their 

decisions similar to a portfolio problem. As a result, non optimal actions in a game 

theoretic sense may be included in the rational novice strategy profile with positive 

weights. 

The rational novice model can be divided into two parts: the behavioral model and 

the equilibrium concept. In a theoretical chapter, the mathematics of the behavioral model 

and the equilibrium concept are introduced. The existence of the equilibrium is established. 

In addition, the Nash equilibrium is shown to be a special case of the rational novice 

equilibrium. In another chapter, the rational novice model is applied to a voluntary 

contribution game. Numerical methods were used to obtain the solution. The model is 

estimated with data obtained from the Palfrey and Prisbrey experimental study of the 

voluntary contribution game. It is found that the rational novice model explains the data 

better than the Nash model. Although a formal statistical test was not used, pseudo R 2 

analysis indicates that the rational novice model is better than a Probit model similar to the 

one used in the Palfrey and Prisbrey study. 
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The rational novice model is also applied to a first price sealed bid auction. Again, 

computing techniques were used to obtain a numerical solution. The data obtained from 

the Chen and Plott study were used to estimate the model. The rational novice model 

outperforms the CRRAM, the primary Nash model studied in the Chen and Plott study. 

However, the rational novice model is not the best amongst all models. A sophisticated 

rule-of-thumb, called the SOP AM, offers the best explanation of the data. 
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Chapter 1: Introduction 

There is a growing amount of experimental evidence that suggests people often do not 

behave according to game theory. Some examples of such evidence can be found in 

centipede game experiments 1, voluntary contribution game experiments2 and experiments 

with a version of the chain store paradox3. In the first price auction experiments, although 

game theory predicts behavior that is close to the data, the statistical variations in the data 

cannot be reconciled with the theory. The evidence against game theory is particularly 

strong in the centipede game and the voluntary contribution game because the subjects 

have been found to deviate even from dominant strategies. 

Another example can be found in the studies of first price auctions. Although all 

these studies show that Nash equilibrium models usually offer good fits to individual bids, 

deviations were always observed. The bids usually spread over a range that roughly 

centers at the Nash equilibrium. Nash models failed to explain the bid spread. Usually the 

statistical model used to fit the data is nothing more than the Nash equilibrium bidding 

function with an ad hoc random variable added. The reason that Nash models are 

incapable of explaining the bid spread is that all agents are assumed to be rational. As a 

result, the agents are required to follow very restrictive equilibrium strategy profiles that 

are the solution of complex mathematical problems. 

Palfrey and McKelvey in "An Experimental Study of the Centipede Game" suggest 

that imperfect agents may be the answer. They developed a model which assumes there is 

a mixture of rational and irrational agents. The irrational agents play a fixed non-optimal 

1 See Palfrey and Mckelvey, "An Experimental Study of the Centipede Game". 
2See Palfrey and Prisbrey, "Anomalous Behavior in Linear Public Goods Experiments: How much and 
Why?" 
3See Schmidt, "Reputation Building By Error Prone Agents" 
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strategy. The rational agents adjust their strategies given the probability of encountering 

an irrational agent. In a number of similar studies, people are indeed found to be imperfect 

as oppose to exhibit the kind of perfect rationality defined in game theory. Subjects behave 

as if they were trying to play optimal strategies but they were not sure where the optimum 

was. 

My goal is to develop a theory that can provide a coherent explanation of non 

game theoretic behavior across different economic environments. Irrationality will be 

modeled at a fundamental level. A new model, which is called the rational novice model. is 

introduced as an alternative approach to game theory modeling. It is not only able to 

explain deviations from game theoretic models, but is also able to provide quantitative 

predictions of the distribution of these deviations. 

The rational novice model is based on two ideas. The central idea of the rational 

novice model is that people systematically produce inaccurate guesses when they are 

evaluating their options in a game-like situation. This fact is common knowledge and 

people respond to it. The second idea is that people approach their decisions as if they are 

solving portfolio problems. This is different from the traditional game theory in which 

agents try to find optimal pure strategies. Instead, each agent considers a portfolio of 

strategies and determines the exact fraction of the times each strategies being played. This 

idea of a portfolio of strategies is also different from that of mixed strategies in which 

strategies are played randomly. One of the consequences is that risk averse people hedge 

their actions to reduce the risks associated with making incorrect evaluations. Thus, there 

is no single "optimal" strategy. 

This model will be different from the Palfrey and McKelvey's centipede model in 

two important aspects. First, there will be no distinction between rational and irrational 
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agents. All agents are assumed to be rational and irrational at the same time. Irrationality is 

modeled by introducing noisy signals into the agents' decision making mechanisms. 

Furthermore, while Palfrey and McKelvey's definition of an imperfect agent is game 

specific, this model provides a general theoretical framework of imperfection which can be 

applied to any environment. 

Another approach is to model agents as rational decision-makers with imperfect 

information. Harsanyi ( 1973) introduced a game theory model in which the payoff matrix 

is uncertain. McKelvey and Palfrey (1994) introduced a similar model called the quanta} 

choice model. In the quanta} choice model, each agent observes an erroneous payoff 

vector. Then each agent chooses a strategy that maximizes the observed payoff. The 

Quanta! Response Equilibrium (QRE) is then defined as a fixed point of this process. 

Given the statistical nature of the observed payoff vectors, the QRE puts positive 

probabilities not only on best responses. 

The Harsanyi setup and the quanta} choice model can be interpreted as a special 

case of the rational novice model. In all three models, agents observe erroneous payoffs. 

The agents in the quanta! choice model accept the observed payoffs as their real payoffs. 

On the other hand, the rational novice model assumes the agents understand that they are 

erroneous in calculating their payoffs and that they try to respond to it. They respond by 

treating their problem as a portfolio problem. The agents who do not care about errors 

(risk neutral agents) will be playing quanta) responses. Thus, the quanta! choice model is a 

special case of the rational novice model when everyone is risk neutral. 

Rosenthal (1989) has also developed a model of agents with bounded rationality. 

Rosenthal assumes that the probability of playing any strategy is linear in the payoff. Thus, 

inferior strategies will still be played, but with smaller probabilities. The rational novice 
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model is considerably different from the Rosenthal. The rational novice model bases the 

subjects' behavior on a maximization principle instead of an assumed response function. 

The advantage of the rational novice model can be seen when applied to the first 

price auctions. In previous studies, statistical models were constructed by adding an ad 

hoc nuisance random variable to the Nash model. The rational novice model does not 

require such construction. Furthermore, the statistical variations in bids are natural 

consequences of the rational novice model. 

This theory assumes a totally different level of rationality from the traditional game 

theory. Nash models assume agents have preferences that can be describe mathematically. 

Actions are chosen to maximize preferences. Let us call this the first level of rationality. In 

the rational novice model, the agents are not able to fully deduce the solution to the 

maximization problem in the first level of rationality. They are only capable of arriving at 

noisy guesses. Assuming that the agents realize their imperfection, a second level of 

rationality is added to the model. In this second level of rationality, the agents choose a 

portfolio of actions to reduce the risks associated with making the wrong guess. 

The main goal of this study is to answer two questions. Is the rational novice 

model a plausible theory? Does the rational novice model offer a good explanation to 

experimental data? The first question can be answered by determining whether the rational 

novice model is consistent with intuition and whether it has desirable theoretical 

properties. The only counter intuitive element in the model is that it seems that the agents 

are required to solve a more complicated mathematical problem (in the second level of 

rationality) while they are assumed to be incapable to solving a simpler one (in the first 

level of rationality). However, as can be seen in the later chapters, though complicated, the 

portfolio problem is essentially the same across different applications. On the other hand, 
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each different situation requires a different maximization problem in the first level of 

rationality. It is plausible that people can learn the solution to the portfolio problem over 

time and over different circumstances. Moreover, even if the agents are not able to 

perfectly solve the portfolio problem, it does not invalidate this approach. Recall that the 

second level of rationality is the response to the inability of behaving perfectly in the first 

level of rationality . As the theory moves from the first to the second level of rationality, a 

wider range of phenomena is explained. There may be a third and a fourth level of 

rationality that may even do better. 

A number of theoretical properties are derived in chapter 3. The most important 

one is the existence of the equilibrium. It is also established that when the Nash 

equilibrium is a special case of the rational novice equilibrium when the errors are small. 

Chapters 4 and 5 are two applications of the rational novice model. In both the voluntary 

contribution game and the first price sealed bid auction, the rational novice model is 

shown to provide better explanations to experimental data than Nash models. 
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Chapter 2: The Rational Novice Behavior 

The rational novice model can be divided into two parts. The first part describes the 

behavior of a single agent. This chapter is devoted to describe the behavior model. 

The model is based on two central principles. The first principle is that when 

people are calculating the utilities associated with their available actions, they make 

independent errors in their calculations. These errors may come from the fact that people 

round off when they are making calculations. For lack of a better term, these errors are 

called internal errors to distinguish them from external errors that are deviations from 

optimal strategies. The second principle is that people consider portfolios of strategies 

instead of single strategies when they make their decisions. Risk averse people dislike the 

risk associated with internal errors and they diversify this risk away by playing a mixture of 

actions. These two ideas are best illustrated by a simple example. Consider an agent faced 

with a game against nature. Imagine there are two jars full of coins and the agent has to 

pick one out of the two. The jars are of different dimensions and shapes. Ideally the agent 

will count the number of coins in each jar and pick the one with more coins. However, if 

the agent is not allowed to count or he has to make the decision in a hurry, he has to make 

a rough guess of the number of coins in each jar. Furthermore, the agent is aware of the 

inaccuracy of his guesses. Now if the agent is to play this game ten times with identical 

jars which he cannot open until the end of the games and he is not sure which jar has more 

money, it is to his advantage to hedge his actions. That is, he may want to pick jar one 

seven times and jar two three times to hedge against the risks of wrong guesses. This 

scenario is also analogous to the stock market. Consider each jar as a stock. The 

diversification by picking a mixture of different jars is similar to the diversification of 

portfolios in the stock market. The difference between the rational novice model and the 

other models with imperfect agents is that in the rational novice model, agents do not only 
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react to other agents' imperfection. The agents are also reacting to their own imperfection 

by minimizing their external errors according to some relatively simple rules. 

2.1 The Basic Framework of the Behavioral Model 

The two basic principles are summarized in the following: 

The Basic Principles 

• The Principle of Imperfect Agents: Agents make internal errors when they evaluate 

their actions in a game. 

• The Principle of Multiple Strategies: Each agent chooses a portfolio (exact 

frequencies) of actions to play. 

The following is the formal model. Consider an agent faced with a game against nature. 

The game is repeated T times. Define: 

a) the set of actions, A={ a 1 ,a2 
, ••• ,aM} 

b) the set of true values, v. e ~ for all a e A 

C) a VeCtOr Of beSt gueSSeS, g = {ga} aeA 

d) the error structure, 't:9tM ~ P(9tM) 

e) the conditional belief of the true value, P(vlg) 

f) strategy frequency profile, p = (p1
, p2

, ••• , pM) e I::!..M 

g) the utility function, u:9t ~ 9t. 
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The following assumptions are made to facilitate the tractability of the model. These 

assumptions are independent of the two central principles. 

1) The agents do not discount 

2) Each agent is paired with a random set of opponents in each game. There are no 

reputation effects. 

3) Agents are risk averse and have concave utility functions u(). 

The two central principles can be formally defined as follows: 

• The Principle of Imperfect Agents 

In each period, if the agent takes the action a E A, he receives v • . (Consider each 

action as a jar and v. as the amount of money in jar a.) An imperfect agent makes errors in 

his evaluation. For each action a, the agent arrives at a best guess g • . The best guesses 

g = {g.} aeA are generated by a joint probability measure 't ( v ), which is a function of the 

true values v = { v a} aeA . The function 't: 9tM ~ P(9tM) is called the error structure. Given 

the best guesses g, the agent is assumed to have a belief P(vlg) about the probability 

measure of the true values v conditioned on the best guesses g . In our "pick the jar" 

example, the agent guesses there are I 0 coins in jar a. However, he is not sure and he has 

some beliefs about the probabilities of the cases where there are 9, 10 or 11 coins in the 

jar. 

• The Principle of Multiple Strategies: 

The agents do not discount and they care about the total sum of values in all the 

T 

periods, L v ••. If the agent is perfect, he makes his decision in the following manner. He 
l = l 

makes an evaluation of each feasible action and chooses the action which gives the highest 

v. and plays it through all T periods. 
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Since the agent does not discount, the total sum of values only depends on the 

frequencies of actions and not the exact sequence of the actions. Define the strategy 

frequency profile of the agent to be p = (p1
, p2

, ... , pM) belonging to the simplex !:::.M .1 If 

the total number of games played is T, then the number of times action am is played is 

Tpm. (The agent is going to pick the jar, which is labeled by am, Tpm times.) The total 

T M 

value~ v,, can be written as T~pmv.m or Tp·v. 
t=l m=l 

Combining the two principles, the agent's preference can be represented by the following 

maximization problem : 

(2.1) M:X J u(Tp · v)dPCvlg) subject to p E t:::.M. 

2.2 Comments and Discussion 

This behavior model is similar to the ones that are used in the portfolio selection 

theories in the finance literature. Notice that in this model, the agents choose the 

frequencies of their actions. They are assumed to know exactly how often they play a 

certain action. It is also assumed that the sequences of their actions are randomized. For 

example, an agent may want to play action a 2 times and action b once. It is equally likely 

that he plays (a,a,b), (a,b,a) or (b,a,a). 

Since the agent chooses an action in each of the T games he plays, the only 

possible frequencies of each action are multiples of Iff. Therefore, although it is 

convenient to work with the continuous simplex !:::.M, the situation is better represented by 

the following maximization problem : 

1In actuality, the agents' can only choose between some points in the simplex. 
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M:X J u(Tp · v)dP(vjg) subject to p E ~~ , where ~~ is the T -discrete simplex 

defined by 

.<l~~{p ~ (p,.p, , ... ,p.+; E {H f} IIi and t. P; ~ 1} 

In a later section, it will be shown that when T gets large, the continuous formulation is a 

good approximation of the discrete one. 
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Chapter 3: Aggregate Behavior and the Rational Novice Equilibrium 

3.1 An Overview 

The previous chapter describes a model of behavior of an agent faced with a game against 

nature. This section extends the model to multi-player games. The central theme of the 

rational novice model of multi-player games is the concept of the rational novice 

equilibrium, which is a departure from the traditional game theoretic equilibrium concepts. 

Rather than defining an equilibrium concept that describes mutually dependent individual 

behavior of several players, the rational novice equilibrium defines a large population's 

average aggregate behavior that fulfills some self-consistent conditions. 

Definitions: 

a) A population of agents J 

b) A={ a 1, a 2 , ••• , aM}, the symmetric action set for the agents 

c) a_i = { apa2 , ••• , ai_., ai+~> · .. ,aJ, the action profile of the N-1 players excluding player j 

d) v! • , the payoff of player j when he is playing a. 
J" -· J 

e) v! (p) = L v! .• _, (P., · P.
2 

• ••• ·p·r-• · P.,., ·····P •• ), the average value of action a for j 
a_

1
eAxAx ... xA 

g) 't:9tM ~ P(9tM), the error structure 

h) u:9t ~ 9t, the utility function 

Consider the following environment. There is a population J of agents. In each 

period, each agent is matched with N-1 players to play a symmetric1 N player game. The 

random matching process is one such that the probability of playing against any group of 

1 The theory can be easily generalized to consider non-symmetric games. 



12 

N-1 players is the same for all agents. The draws are independent from period to period. 

Each player has the same action set A={ a 1, a 2 , ••• , aM} . The game is played forT periods. 

The value an agent receives from playing an action now depends on the actions of 

the group he matches with. Let v~r•-, be the value agent j receives when he plays a; and 

his opponents play a_i = { a~>a 2 , ••• ,ai-l' aJ+P ... ,aJ, where a 1 E A, a 2 E A ... and so on. 

Let p = {p.,, p .~, ... , p •" } be the probabilities that all the actions {a 1, a 2 , ••• , aM} are played. 

So the probability that the agent's opponents playing a_i = {al'a2 , • •• , ai-~>ai+P· · · · aJ is 

Pa · Pa ·. · · ·p. · Pa · ... ·p •. Define 
I 2 j-1 j+l n 

v! (p) = L v! .• _, (P., · P.~ ·. · · ·P.,..., · P.,., ·. · · ·p • .) · 
a_JeAxAx ... XA 

v! (p) is called the average value of action a for agent j. (This can be thought of as 

the average number of coins put in a jar by your opponents.) Since the game is symmetric 

v! (p)=v. (p) for allj . 

The agents are all assumed to be identical. The framework can be easily extend to 

heterogeneous agents by adding a type and making the error structure and the utility 

function depend on the type. 

To discuss the subjective probabilities of the average values given the best guesses, 

the priors of the average values and the process that generates the best guesses need to be 

defined. Assuming the agents have no information on the average value other than the best 

guesses, the prior distribution of the average values will be uniform in ':JiM. The process 

that generateS the beSt gueSSeS iS Called the errOr StruCtUre. Let Y( p )={ V a (p)} aeA. Define 

the error structure 't as follows: 
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The guesses defined in the last section are random variables with the property that 

g1 ={g!} has probability measure 't(v(p)) . The probability measure of the guesses g1 

aeA 

depends on the true values v(p) . 

Agent j's belief about his true values given his best guess gj is denoted by P(vjgj). 

The utility function of agent j is defined by u: 9t ~ 9t. Typically, if agent j receives value x 

from the games, his utility will be u(x) . Although the agents are all identical, they do not 

behave the same since they will have different draws of gj. 

Definition 1: 

Consider an environment (J, u(-), '!(·), P(-1·), T), qe !1M is a discrete rational 

novice equilibrium if 

Condition (A): gj has probability measure 't(v(q)) for all j. 

Condition (B): p (gj) is a selection of the solutions of the following problem for all j : 

M~ I u(Tp · v)dP(vlgj) subject to p e !1~. 
p 

Condition (C): q = I p(g)d't(v(q))(g) . 
9!M 

Definition 2: 

Consider an environment (J, u(·), '!(·), PC·I·), T), qe !1M is a continuous rational 

novice equilibrium if condition (A), (C) and the following condition hold. 
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Condition (B'): p (g l) is a selection of the solutions of the following problem for all j : 

M~ f u(Tp · v)dP(vjgJ, roJ ) subject to p e 11M . 
p 

Condition (C) states that in a rational novice equilibrium, q is the frequency of the 

actions played averaged over the random guesses and the distribution of the types. 

Condition (B) requires that each agent in the population behave according to the rational 

novice way. Condition (A) requires that the guesses that influence the behavior stated by 

condition (B) or (B') are distributed as a correct function of the equilibrium average 

frequencies q of the actions. As it has been mentioned earlier, the discrete rational novice 

equilibrium is a more faithful behavioral model since the agents can only choose their 

frequencies in multiples of Iff. However, the continuous rational novice equilibrium, as 

will be shown later, is a good approximation of the discrete one when T gets large. 

Furthermore, the continuous rational novice equilibrium is easier to work with in many 

applications. 

Although the frequencies of each agent are not probabilistic, since each agent 

draws his opponents randomly and the order of play is random for each opponent, the 

probability that an action is played in a certain period is equal to the average frequency 

that it is played. 

Each agent's strategy p(gj) is a random variable that has a probability measure 

depending on q. Hence the rational novice equilibrium q is the fixed point when 

averaging out individual strategies as functions of q. 

3.2 Theoretical Properties of the Rational Novice Equilibrium 
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The first two theorems establish the existence of the rational novice equilibrium. 

Theorem 1: If 

i) u(x) is concave and continuous in x, 

ii) A function f,:9tM x9tM ~9t exists such that -r(v)(B)=j8 f,(v,roi,x)dx 

for all Borel set B of 9t. (i.e. The density function of 't, f, exists.) 

f,(v ,x) is uniformly continuous in v . 

iii) P(vlgi) is weakly continuous in gi . 

then a discrete rational novice equilibrium exists. 

Proof: 

Let <p:9tM ~~ .6.~ be a correspondence defined by 

<p(g) ={p e !1~: p maximzes I u(Tp · v)dPCvlg)}. 

Let 11: !1M ~~!1M be a correspondence defined by 

I <p(g)d-r(v(q))(g) is the Gel'fand integral of the correspondence <p(g). We need to show 
9!M 

that Tl(q) has a fixed point. 

Define the set F={f::9tM ~ !1~ such that f is weakly measurable and 

"iix e 9tM, f(x) e <p(x)}. By the definition of Gel'fand integral, Tl(q) can be written as 

1]({[)={ j.f (g)d"( V({[) )(g): f e F} . 

Since u is continuous and P is weakly continuous in g, I u(Tp · v)dPCvlg) is a 

continuous function in p and g . Since .6.~ is a finite set and maximizing a continuous 
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function over a finite set always yields a solution, q>(g) ts always nonempty. This 

guarantees that ll(q) is non empty. 

Consider any f E F. Since f::~M ~ .1.~, f only has finitely many possible values. 

Let f1,f2' .. . ,fK be the possible values off. Let Bk ={xE9tMif(x)=fJ. Notice that Bk 

K 

can be the empty set for some k. I f(g)d't(v(q))(g) can be written as I, fk 't(v(q))(Bk) . 
~M k=l 

For all Bk, 't(v)(Bk)=I
8 

ft(v , x)dx. For any S>O, there exists a f. such that 
k 

I~lft(v,x)- ft(v' ,x*x<S if lv- v'l < E, since ft( v,c.oj ,x) is uniformly continuous in v. It 

implies that if lv-v'I<E, I
8
Jft(v,x)-ft(v' ,x)~<S since BkE~. Hence if lv-v'I<E, 

IIsk ft(v, x)dx- Isk ft (v', x)dxl <S. Therefore, 't(v)(Bk )= Isk ft(v, x)dx is continuous in v. 

By definition (please see (e)), v(q) is linear in q. Thus 't(v(q))(Bk) is continuous 

K 
in q for all k. Therefore, I f(g)d't(v(q))(g)= I, fk 't(v(q))(Bk) is a continuous function in 

~M k~ 

q for all f E F. Define a function h: .1.M ~ .1.M such that 

h(q) = I f(g)d't(v(q))(g). 
~M 

h(q) is a selection of ll(q) by the definition of ll(q). That is, h(q) E ll(q) for all q. We 

have shown that h(q) is continuous in q. Since .1.M is convex and compact and h(q) is 

continuous in q, h(q) has a fixed point. Hence, ll(q) has a fixed point. QED 

Theorem 2: If 

i) u(x) is concave and continuous in x, 

ii) 't (v) is weakly continuous in v, 
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iii) P(vjgj) is weakly continuous in gJ. 

then a continuous rational novice equilibrium exists. 

Proof: The following lemma is needed for the proof. 

Lemma 1: Let Y be a locally convex Hausdorff space. Let X and Z be topological spaces. 

Let q>:X ~~ Y be an upper hemicontinuous correspondence with nonempty cr(Y, Y')­

compact convex values. Let P:Z ~ P(X) which maps z into probability measures of x to 

be weakly continuous. Let 11: Z ~~ Y be a correspondence defined by : 

ll(Z) = J q>(x)dP(z)(x). 
X 

Further assume (y,y') is bounded. Then ll(z) is upper hemicontinuous. Furthermore, ll(z) 

has nonempty cr(Y, Y')-compact convex values. 

Proof of lemma 1: Define the support mapping of T](z) evaluated at y' to be the real 

function ZH hTJ<z>(y'), where 

hll(Z) (y') = max { (y, y'): y E ll(Z)}. 

By the Castaing and Valadier theorem (Castaing and Valadier, "Convex Analysis and 

Measurable Multifunctions," Theorem II-20, p. 51), it is sufficient to show that ll(z) has 

nonempty cr(Y, Y') -compact convex values and zH hTJ<z> (y') is upper semicontinuous for 

each y' E Y'. 

To show that T](z) has nonempty cr(Y, Y')-compact convex values, Strassen's 

Theorem is used. Strassen's Theorem (Correspondence Form) states that if (X,I..~) is a 

probability space and if q>: X ~~ Y has nonempty, cr(Y, Y') -compact convex values and 
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Jl/h<~>< x > //dl.l.(x ) < oo, then the Gel'fand Integral of q>, J q>(x)dl.l.(X) is nonempty, cr(Y , Y' ) -
x X 

compact and convex. 

hcp<x>(y')=max{(y, y'): yEq>(x)} . Since (y, y ' ) is bounded, hcp<x>(y') is bounded 

and so llhcp<x>IJ is bounded. Therefore, Jjjhcp<x> IJdl.l.(X) < oo . Strassen's Theorem is applied 
X 

and for each z, ll(Z) = J q>(x)dP(z)(x) is nonempty, cr(Y, Y')-compact and convex. 
X 

The only thing left to show is that z~ h
11
<z> (y') is upper semicontinuous for each 

y' E Y' . h11<z> (y') can be written as h J <p( x)dP(z)(x) (y') . We know that : 
X 

h J ~p(x)dP<z><x> (y')= j h 111<x> (y')dP(z)( x) . 
X X 

Because q>(x) is upper hemicontinuous, hcp<x>(y') is upper semicontinuous. Therefore, 

J h111<x> (y')dP(z)(x) is also upper semicontinuous. Thus h
11

<z> (y') is also upper 
X 

semicontinuous. QED. 

Once again, let q>:9tM ~~ ~M be a correspondence defined by 

q>(g)={p E ~M : p maximzes I u(Tp · vXJP(vjg,ooj)}. 

Let 11: ~M ~~ ~M be a correspondence defined by 

ll(<f)= I q>(g)d't(v(q))CiD . 
9!M 

To show that a continuous rational novice equilibrium exists, it is sufficient to show that 

ll(q) has a fixed point. Since ~M is compact and convex, according to the Kakutani Fixed 
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Point Theorem, if 11CCD is upper hemicontinuous with nonempty convex compact values, 

then T)(q) has a fixed point. 

Since u is continuous and P is weakly continuous in g, f u(Tp · v, ro )dP(v\g) is a 

continuous function in p and g. Since !:J.M is a compact and convex subset of 9tM, 

according to the Maximum Theorem, <p(g) is upper hem.icontinuous in g with compact 

values for each roe n. To show that <p(g) has convex values, consider p1 e <p(g) and 

p2 e <p(g). Since u is concave, for all A e [0, 1], 

u(T(Ap1 +(1- A)p2 ) · v) ~ Au(Tp1 • v)+(l- A)u(Tp2 · v). This implies, 

I u(T(Ap1 + (1- A)p2 ) • v)dP(vjg) ~A f u(Tp1 • v)dP(vjg) +(1- A)f u(Tp2 • v)dP(vjg) 

And since p1 and p2 maximize I u(Tp· v)dP(vjg), 

J u(T(A.p, +(1- A.)p2 ) • v )dP(vlg) ~ A.j u(ip· v)dP<vlg)+(l-A.)j u(rp · v)dP<vlg) 

for all p e !:J.M. Therefore, 

I u( T(Ap1 + (1- A)p2) · v )dP(vjg) ~ f u(Tp · v)dP(vjg) V'p e !:J.M. 

Hence Ap1 + (1- A)p2 also maximizes I u(Tp · v)dP(vjg) on !:J.M. So Ap1 + (1- A)p2 e <p(g) 

and <p(g) has convex values. 

!:J.M is locally convex. <p(g) is upper hemicontinuous with nonempty compact 

convex values. 't is weakly continuous in v and hence 't(v(q)) is weakly continuous in q 

since v(q) is continuous in q. (y, y') is bounded since y e !:J.M and y' e !:J.M. (The dual of 

!:J.M is !:J.M itself.) Applying lemma 1, T)(q) is upper hem.icontinuous with nonempty 

compact convex values for each roe n. Therefore, T)(q) has a fixed point. QED 

The next theorem establishes that the continuous rational novice equilibrium is a 

good approximation of the discrete rational novice equilibrium when T is large. 
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Theorem 3: If 

i) u(x) is concave and continuous in x, 

ii) A function f,:9tM xc:RM --7 9t exists such that 't(v)(B)= J8 f,(v,roi,x)ctx 

for all Borel set B of 9t. (i.e. The density function of 't, f, exists.) 

f,(v ,x) is unifonnJy continuous in v. 

iii) P(vlgi) is weakly continuous in gl. 

then there exist a continuous rational novice equilibrium q which is the limit of a 

subsequence of discrete rational novice equilibrium qT as T gets large. 

Proof The following lemma is needed for the proof. 

Lemma 2: Define a real continuous function f:K --7 9t and a sequence of real continuous 

functions fn: K --7 9t. Assume for each n, fn (x) = 0 has a solution X
0

• If K is compact and 

f" --7 f unifonnJy then f(x)=O has a solution when is a limit of a converging subsequence 

of {xJ. 

Proof Since K is compact, { xJ has a converging subsequence. Without loss of 

generality, it can be assumed that {xJ converges. Let x=Lim X
0

• It is sufficient to show 
n-+-

that f(x)=O. Assume otherwise. 

Assume jf(x)j > 0. Thus there exists e>O such that jf(x)j >e. Using the definition 

of X 0 , we have fn (xn) = 0 for all n. By adding and subtracting fn (x) and f(x), we have 

Therefore 

hence 

fn (xn)- fn (x) + fn (x)- f(x) + f(x) = 0 for all n. 

fn (xn)- fn (x) + fn (x)- f(x) = f(x), 

lf(x)l = lfn (xn)- fn (x) + fn (x)- f(x)l, 
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and 

Since f" (x) is continuous in x and x=Lim x", there exist some N such that if n>N 
n-.-

If" (x")- f" (x)l < e I 2. Since f" --7 f uniformly, there exist some M such that if n>M, 

If" (x)- f(x)l < e I 2. Thus jf(x)j:::; e and contradicts jf(x)j >e. QED 

By theorem l, a discrete rational novice equilibrium exists. Fu~eiJTiore, there 

exists a continuous function in qT' hT(qT)= IPT(g)d't(v(qT))(g). For all g. 
9!M 

PT (g) e <p(g)={p e !J.~: p maximzes I u(Tp · v)dP(vjg)}. 

Similarly, a continuous rational novice equilibrium exists. In addition, there exists a 

continuous function in q, h' (q) = I p(g)d't(v(q))(g). For all g , 
9!M 

p(g) e <p' (g)={p e !J.M : p maximzes I u(Tp · v)dP(v!g)}. 

A discrete rational novice equilibrium and a continuous rational novice 

equilibrium is given by qT = hT(qT) and q = h' (q) respectively. Let fT(x) = x-hT(x) and 

f(x) = x- h' (x) . Since I u(Tp · v)dP(vjg) is continuous in p, for all E > 0, there exists a T 

such that ifT>T, for all g .!PT(g)- p(g)l <E. Therefore, 

Hence IIPT(g)-p(g)ld't(v(x))(g)<E. So lhT(x)-h'(x)l<c . 
9!M 

Therefore, 

hT(x) --7 h' (x) ltniformly. Hence x- hT(x) --7 x- h' (x) uniformly. Apply lemma 2, we 
i 

have the solution of x- h(x) = 0 (which is a continuous rational novice equilibrium) is the 
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limit of x- hT(x) = 0 (which is a discrete rational novice equilibrium) as T gets large. 

QED 

The next theorem addresses the issue of the relation between the rational novice 

model and the Baysian Nash equilibrium model. Consider a symmetric N player game in 

which agent j is paid v a
1
.a_, when j is playing a i and his opponents play the joint action 

a _i = { a~>a2 , • • • ,ai-~>ai+~>· .. , aJ . Each player has M moves. The Baysian Nash equilibrium 

is the vector of mixed strategies (sp s2 , ••• , sN) where si = (s;, s~, ... , s~) is a solution to 

M L L ( a 1 a, a,.., al•J a, ) a b" t t - !::..M ax v •.•. , s ,s -, ... ,s ,s , ... ,s s su ~ec o s e . 
s=(s 1 .s 2 

••..• SM) 
a •-J 

Theorem 4: If 

i) the error structure 't(v) assigns probability one to v and zero to all other possible 

g E 9tM, and 

ii) P(vlgj) assigns probability one to gi (i.e., the agents believe their guesses are correct), 

then any continuous rational novice equilibrium frequency q is equal to a mixed strategy 

s of the Nash equilibrium of the single period game. Notice that the rational novice 

equilibrium q may not be unique. 

Proof Consider a rational novice equilibrium that satisfies conditions (A), (B) and (C). 

Since 't(v) assigns probability one to v , condition (A) implies gi=v(q) for all j . Since 

P(vlgj) assigns probability one to gi=v(q), condition (B) becomes for all j, p(v(q)) is the 

solution of 

M~ u(Tp · v(q)) subject to p e t::..M . 
p 
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Since u is increasing in the first argument, this is equivalent to 

Max Tp · v(q) subject to p E t::.M. 
ii 

which is equivalent to 

Max L Pa LV a.a _, CCI., . q.1 · ... ·qa,.., . qai', · .. . ·q •• ) 
P a_

1
e Ax Ax ... xA 

So condition (C) becomes 

q E p(q) 

which is equivalent to q is the solution of 

Max ""' Pa ""' v. a (q. · Cla · .•• ·q. · Cla · • • • ·q. ) p ~ ~ • -J I :! rl ;.1 n 
a a_JeAxAx ... xA 

which is the definition of a Nash behavior. QED 

Notice that even though the continuous rational novice equilibrium q is equal to 

the Baysian Nash equilibrium in the above case, it is not necessary that each agent is 

playing a Baysian Nash equilibrium. For example, consider a 2x2 game in which an agent 

chooses strategy A or B. Suppose that the Nash equilibrium is the mixed strategy playing 

A with probability 1/2 and B with probability 112. In a rational novice equilibrium of the 

same game, only the population average frequencies of A and B are 1/2. The agents are 

not required to play 1/2 A and 1/2 B. For example, a rational novice equilibrium may be 

one in which 1/2 of the agents play A all the time and 112 of the agents play Ball the time. 

The previOus example also illustrates the fundamental difference between the 

rational novice equilibrium concept and the Nash equilibrium concept. The structure of 

errors and beliefs in the rational novice model is identical to a signaling game in which 

each player receives a signal about their payoffs. Hence, each agent is faced with a 

maximization problem as if he is a Nash player in the appropriate signaling game. 
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However, in a Nash equilibrium, each player is reacting to his opponents while m a 

rational novice equilibrium, each player is reacting to a population of opponents. 

All of the above theorems assume the population is homogeneous. It is the author's 

conjecture that the same theorems hold if the population is heterogeneous. 
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Chapter 4: The Voluntary Contribution Game 

4.1 Overview 

In this chapter, the rational novice model is applied to a Voluntary Contribution game. 

There are two reasons why the voluntary contribution game is chosen. The first one is that 

experimental data available for analysis suggests that people are deviating from Nash 

dominant strategies. The rational novice model offers a potential explanation. The second 

reason is that in the particular voluntary contribution game that is studied in this paper, the 

rational novice behavioral model can be tested independently from the rational novice 

equilibrium concept. Recall that there are two parts to the rational novice model: the 

individual behavioral model and the rational novice equilibrium concept. In this particular 

environment, any valid rational novice individual behavioral profile is a valid rational 

novice equilibrium. Therefore, we can directly test the behavioral model without putting in 

play the aggregate principles of the rational novice equilibrium. In a later chapter, the full 

strength of the rational novice model will be tested. 

With the permission of Jeffrey Prisbrey and Thomas Palfrey1, the rational novice 

model is tested u·sing the data of their voluntary contribution game experiments. The data 

analysis consists of fitting the rational novice model to the data and making comparisons 

between the rational novice model and statistical models employed in the Prisbrey and 

Palfrey study. 

The following section will be a description of the voluntary contribution game. The 

rational novice model will be applied and a solution representing the behavioral profile will 

be solved. 

1The author would like to thank Jeffrey Prisbrey and Thomas Palfrey.here for their permission to use their 
data of voluntary contribution game experiments. 
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4.2 The Behavior Model of the Voluntary Contribution Game 

Consider a series of T voluntary contribution games. In each game, the population is 

randomly divided into groups of n. In the beginning of each game, each participant 

receives a token that is worth r dollars.2 For each agent, there are two possible actions in 

the game. The agent can choose to contribute or not to contribute his token. If he 

contributes his token, everyone in his group receives s dollars. In traditional decision 

theory, it is a dominant strategy for each participant not to contribute 'if r > s and 

contribute if r ~ s . Each game can be represented by the following payoff table: 

if k other QarticiQants contribute 

not contribute ks+r 

contribute (k + l)s 

Another variation of the game is that each agent receives N tokens, given N> I. 

The agent is allowed to contribute any number of tokens uptoN. This scenario is essential 

the same as if he plays the single token game N times under the treatment of the rational 

novice model. A more detailed discussion is provided in the next section. 

In several experimental studiesJ, subjects have been observed to contribute even 

when their dominant strategy is not to. They also do not contribute when it is a dominant 

strategy to contribute. In Palfrey and Prisbrey 1992, a series of voluntary contribution 

2In some experimental subjects receive N tokens and each can contribute none, some or all. We analyze 
that situation below. 
3 For example, see Palfrey and Prisbrey 1992, Isaac, Walker and Thomas 1984, and Saijo and Yamaguchi 
1992. 
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experiments are reported. A substantial amount of contribution was observed in their 

experiments. Only 45 percent of their observations are consistent with subjects playing 

Nash strategies. But most of the players played with only a little anomalous variation in 

their choices. Furthermore, assuming each subject was employing the same cut point 

strategy, the cut point that minimizes the classification errors is very close to the one 

predicted by a Nash equilibrium. Palfrey and Prisbrey concluded the results track quite 

closely the predictions of non-cooperative theories. We want to see whether the rational 

novice model provides a better explanation for the anomalous variations. 

Each participant is assumed to have a discount factor of I. That is, the situation is 

identical to the one in which each participant is playing T voluntary contribution games 

simultaneously instead of in sequence. This assumption is reasonable when the 

experiments are carried out in a relatively short time. 

Each participant IS going to choose a frequency p of playing the option of 

keeping the token. If the game is going to be played T times, then each participant is going 

to keep the token pT times and contribute (1-p )T times. p can be different for each 

participant. Each participant is assumed to have a single period utility function equal to 

the monetary payoff. Let n denote the action of keeping the token. Let c denote the 

action of contributing. The respective single period values of the actions are given by: 

v(n) = ks+r, and 

v(c) = (k+l)s, 

where k is the expected number of contributors. The rational novice model assumes the 

agents to make errors when they evaluate their options. The internal error structure is 

assumed to be the following. Each agent makes guesses about the value of their two 
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strategies: keeping the token (denoted by n) and contributing (denoted by c). The best 

guesses can be written· as 

g(n) = ks+r+£ , 

g(c) =(k+1)s+8, 

where E and o are random variables that are independently and identically distributed. 

E(£) and E(8) are assumed to be zero. Let E(£2
) = cr; and E(82

) = cr~. For reasons that 

will be apparent later, £-8 is assumed to be normally distributed. E(£-8)=E(£)-E(8)=0 

and E(£-8)2=E(£2 )+E(82 )-2E(£8)=cr~ +cr~. E(£8)=0 since E and o are independent. 

Given their guesses, the agents have beliefs on the true value of their options. The value 

conditioned on their guesses are given by: 

v(njg(n)) = g(n)-£, and 

v(cjg(c)) = g(c)- 8 . 

The above belief structure assumes that every agent's belief is accurate. The value of 

playing frequency p in a single game is given by 

v(p)=p(g(n)- £) +(1- p)(g(c)- 8). 

The value of playing T games is V(p)=Tv(p). Each participant solves the following 

maximization problem: 

Max u(V(p)) subject to 0 $; p $;I . 
p 
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u() is assumed to be EV(p)-a[EV(p)~ -(EV(p))2
]. That is, a linear combination 

of the expected value and variance of V(p). The reason to make this choice is that the 

resulting individual behavior is relatively easy to solve and similar across different games. 

If a more complex utility function, such as the Jog or the constant relative risk averse 

utility function, is used, then computation of behavior becomes intractable. 

Participants are assumed to be either risk neutral or risk averse. Therefore, they 

either dislike or do not care about variance. This assumption can be represen~ed by setting 

a ~ 0 . The expectation and the variance of the value of playing T games is 

EV(p) = T{pg(n)+(l-p)g(c)} , and 

EV(p )2
- (EV(p ))2 = T2 

{ cr; p 2 + cr~ (1- p )2
}. 

The participant's problem can be written as: 

Max T{pg(n)+(l-p)g(c)}-aT2 {cr;p 2 +cr~(l-p)2 } subjecttoO~p~l . 
p 

A variation of the voluntary contribution game allows the agents to receive and 

contribute more than one token. Let the number of tokens received in each game beN. In 

the situation in which agents receive a single token per period for T periods, the rational 

novice model assumes that the agents are making their T decisions simultaneously. It is 

equivalent to the situation where an agent has to decide how many tokens out of N to 

contribute. Let z be the number of tokens withheld by an agent. The expected value is 

EV(p) =zg(n)+(N-z)g(c), 

=N{( ~)g(n ) +( I-~)g(c)}. 
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This situation is equivalent to a single token voluntary contribution game in which T=N 

and p=z!N. We are not going to distinguish the difference between the single token case 

and the multiple token case in our following discussion. 

Given the maximization problem of our agents, the first-order conditions are: 

if T(g(n)- g(c))- 2aT2 {p(cr; + cr~)- crn ~ 0 then p=O 

or if T(g(n)- g(c))-2aT2 {p(cr; +cr~)-cr~} ~ 1 then p=1 

otherwise T(g(n)- g(c))- 2aT2 {p(cr; + cr~ )- crn = 0. 

The solution for p is given by: 

(*) p={2aTcr~+~(n)-g(c) if 
2aTcr~ + 2aTcr; 

1 

2aTcr~+g(n)-g(c) <O 

2aTcr~ + 2aTcr; -

0 
2aTcr~+g(n)-g(c) 

1 < < . 
2aTcr~ + 2aTcr; 
2aTcr~ + g(n)- g(c) 

1 < ----"--::--"'----~-
- 2aTcr~ + 2aTcr~ 

The second-order condition for the non-comer solution is -2aT2 
{ cr; + cr~} ~ 0 which is 

satisfied automatically given our assumption that a~ 0. 

Notice that the solution now allows non-Nash behavior. Furthermore, the 

comparative statics of the solution are consistent with intuition. First, p increases as g(n)-

g( c) increases. In other words, when participants guess that the tokens have higher values 

than the public good, they are more likely to increase their frequency of keeping the token. 

~ 02 
Furthermore, p converges to 

2
°5 

2 
as a or cr~ approaches infinity. p=____::.Q_ is the 

o0+0E O~+o; 

frequency when the risk (variance of V(p)) is at a minimum. It is consistent with our 
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. k ai ) intuition that the participants will play more to minimize the ns (i.e., closer to ~ , 
Oji +O£ 

when they are making bigger errors or they care about their errors more. 

4.3 Rational Novice Equilibrium of the Voluntary Contribution Game 

Each agent can be completely characterized by o:,cr; and cr~. Hence, a type of an 

agent is a triplet ro=(o:,cr;, cr~) . The following assumptions are mad~ about the 

distribution of types : 

• o: is identical for every agent. 

• cr; and cr~ are independently and identically distributed with log normal distributions. 

The rational novice equilibrium frequency q(r-s) can be calculated by directly 

applying the definition of a rational novice equilibrium. Notice that the rational novice 

equilibrium is dependent on the environment r-s. The ability to track behavior over 

different environments enables us to estimate the model. According to condition (C), q(r-

s) can be calculated by integrating the rational novice behavior given by (*) over the 

guesses and the distribution of types. 

Notice that the rational novice behavior in the voluntary contribution game does 

not depend on q. Hence the conditions of the rational novice equilibrium are met as long 

as the agents are diversifying to hedge against their guesses. The requirement of adjusting 

to the average strategy of the population is met trivially. This special feature allows us to 

test the rational novice behavior model independent of the rational novice equilibrium 

concept. 
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q(r-s) is given by The first expectation of 

is taken over the guess g(n)- g(c). Recall 

g(n)-g(c)=r-s+E-b. Recall that £-8 is assumed to be independently and normally 

distributed. The mean of E -8 is zero and the variance of£ -8 is cr; +cr~. E (p/a.cr~,cr;) 
E-0 

can be calculated as follows . To simplify the notation, let x = 2aTcr~, y = 2aTcr~, 

~ = E- S, cr2 = cr; + cr~ and a=r-s. 

We have 

=~ <I> y-a -<I> -x-a + a e--w--e 2o· + 1-<1> y-a 0 { ( ) ( )} l h+a)2 ~~ ( ) 

x+y a a 0J27t(x+y) a 

Since a constant multiplied by a random variable distributed log normally is also 

distributed log normally (with a different mean), x and y are distributed log normally and 

independently with the same mean and variance. Let ii be the mean of log(x) and log(y) 

and cr2 be the variance of log(x) and log(y). The rational novice equilibrium q can be 

written as : 
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Notice that since the solution to individual behavior (equation (*)) is a non decreasing 

function of r-s, so E (pia. cri, cr~) is also a non decreasing function of r-s. Hence, q is also 
E-0 

a non decreasing function of r-s regardless of the distributions of a, cr~ and cr; . 

4.4 Data Analysis : Techniques and A Description of the Data 

The availability of the Palfrey and Prisbrey data enables me to study the application of the 

rational novice model to the voluntary contribution game empirically. The model was 

estimated using maximum likelihood techniques. The pseudo R 2 is used as a benchmark of 

how well the model fits the data. The rational novice model was tested against the Nash 

equilibrium model and compared to a Probit model that is analyzed in the Palfrey and 

Prisbrey paper. 

The subjects were randomly matched into groups for the experiments. Each 

subject received 9 tokens per game4 . In each game, each subject could contribute up to 9 

tokens. Each token is worth r dollars to the owner and each token contributed is worth s 

dollars to all in the group. This game has the same rational novice structure as one in 

which each subject receives one token and plays the game for 9 times as explained in the 

last section. The experimental parameters r and s varied from period to period. 

The rational novice model is estimated as follows. For each subject and each set of 

parameters (r,s), the frequency of not contributing is calculated. A typical data point looks 

like (p,r,s) where p is the frequency of a subject withholding the tokens. A data point is 

generated from each subject in each period. Recall, the rational novice frequency is given 

by: 

4Palfrey and Jeffrey have run a number of experiments. The subjects received different number of tokens 
in different experimental sessions. In this study, only the experimental-sessions in which each subject 
received 9 tokens are analyzed. 
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2aTcr~ + 2aTcr; 
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2aTcr~ +g(n)-g(c) <O 
2aTcr~ + 2aTcr; -

0 
2aTcr~+g(n)-g(c) I 

< < . 
2aTcr~ + 2aTcr; 

I< 2aTcr~ + g(n ) - g(c) 
- 2aTcri + 2aTcr! 

Since the distributions of g(n)-g(c), cr; and cr~ are known and a is assumed to be a 

constant, the log likelihood function of p can be calculated as follows. Letting x = 2aTcr; , 

y = 2aTcr~. ~ = E- 0, cr2 = cr; + cr~. and z=2aT. Notice that cr2 can be expressed as 

(x+y)/z. (*) becomes : 

(*) p={y+~+~ if 
y+x 

I 

y+a+~50 
y+x 

0 y+a+~ I < < . 
y+x 

I5y+a+~ 
y+x 

x and y are distributed with the same log normally density. Let the mean and variance of 

log(x) and log(y) be u and cr2 respectively. The probability of observing p=O is 

prob( ~ 5 -y- a)= r fo- <1>( -:-• ~<I>( log<~H )d<t>( log<r >-u) . The probability of observing p= I is 

prob(~ 5 x- a)= J: fo- <1>( •:• ~<1>( log<~>-ii )d<t>( log<~>-ii). The density of p for O<p<I 

(
y(p-l)+xp-a)2 

iS r- r- I e - cr d<l>( log(~ )-u)d<t>(log(~)-u). 
Jo Jo 7fT[ cr cr 
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Each data point represents the decision a subject made in one period. In each 

period, each subject received 9 tokens and he could choose to contribute any number of 

them. Let P; be the fraction of tokens a subject keeps for himself. Let r; and s; be the 

relevant private good value and public good value respectively. Since the number of 

tokens received is 9, P; is only feasible when it is in increments of 1/9. However, the 

continuous model is used as an approximation when the likelihood function is calculated. 

The Jog likelihood function L; of the data point (P;, a, = r;- s;) with parameter set 

(u, cr2 ,z) can be written as: 

P; =0 

if 0 < P; < 1. 

P; = 1 

The total log likelihood of a data set is L(u,cr2 ,z)= L,.L;. The estimates and maximum log 
i 

likelihoods are listed in Table 1. 

The maximum likelihood technique requires the data to be distributed 

independently. The rational novice model cannot guarantee independence when a subject 

has to face the same private good value and public good value pair more than once. 

Therefore, if the same subject received the same private good value and public good value 

in two different periods, the data from both periods would be discarded. 

With the estimated (u ,cr2 ,z), the rational novice equilibrium frequency q(a) can be 

calculated. Although q(a) itself has no statistical significance, it is a useful aid to give a 
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sense of how accurate the rational novice model is on average. To give a sense of how 

close q(a) and the actually average frequency is, the pseudo R 2 is calculated. The pseudo 

ssr 
R 2 is defined as pseudo R 2=1-=, 

ssr 

where 

If the model explains the data set perfectly, the sum of residuals ssr will be zero and the 

pseudo R 2 will be one. The closer to one the pseudo R 2 is, the better explanatory power 

the model has. The pseudo R 2 is listed in Table 3. To convey graphically how well the 

model is fitting, the average frequency of the subjects playing not contributing is 

calculated for each a=r-s. This is compared to the estimated average frequency q(a) in 

Figure 1. 

The Nash equilibrium is a special case of the rational novice equilibrium. The Nash 

equilibrium corresponds to the special case when (u = -oo, cr2 = 0 ). (All the agents are 

making no mistakes when cr~ =a;= 0.) The likelihood for (u = -oo,cr2 = 0) is zero if the 

data deviates from the Nash equilibrium theory in any amount. Instead of testing 

(u =-co, cr2 = 0) which will result in automatic rejection of the Nash theory, the 

hypothesis (u = -c, cr2 = 0) is tested. Some latitude is given to the Nash equilibrium. I call 

the hypothesis (u = -c, cr2 = 0 ) the relaxed Nash model. c is chosen such that -c is a lot 

smaller than the maximum likelihood estimate of u. c=25 is used. For larger values of c , 

the likelihood of the relaxed Nash model becomes very small. The hypothesis 
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(u = -c, cr" = 0 ) is tested using the likelihood ratio test. The appropriate restrictions and 

statistics are listed in Table 2. 

In the Palfrey and Prisbrey paper, a Probit analysis was performed to estimate the 

agents' responses. In this paper, a similar Probit analysis is carried out and compared to 

the rational novice model. Only the simplest Probit model in the Palfrey and Prisbrey paper 

is analyzed in this paper. The dependent variable is the investment decision. The 

independent variables are the constant and the marginal rate of substitution between the 

private and the public good. The Palfrey and Prisbrey study uses the marginal rate of 

substitution between the public good and the private good, the inverse of the variable used 

here. The estimates and the maximum log likelihood are listed in Table 1. Two methods 

are used to compare the rational novice model to the Probit model. The pseudo R 2of the 

Probit model, which is used as a benchmark for the explanatory power of the model, is 

calculated and is listed in Table 3. The pseudo R2 is an adequate benchmark for the 

performance of a model but it does not enable an investigator to reject one model 

statistically in favor of another. 

It would ·be useful if one model were nested in the other but unfortunately that is 

not true here. Recall that r=the private good value and s=the public good value. The 

probit model can be written in the following way. A subject does not contribute if 

a+ b( ~) + E >0 where a,b are parameters of the model and E a normally distributed 

random variable with mean zero. The condition can be rewritten as ar+bs+rE >0. The 

rational novice model is given by(*) . If a.>O then these are clearly non nested models. In 

the special case that a.=O, a subject does not contribute if r-s+l; >0. This is only equivalent 

to the probit model if a=-b and the distribution of l; depends on s. So although a special 

case of the rational novice model is equivalent to a special. case of the probit model, the 
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two models are non nested. The above arguments apply to the case in which each subject 

is given one token. Since both the rational novice model and the Probit model treat all the 

decisions on the 9 tokens to be simultaneous, the above arguments should extend to the 

multiple token case. In our analysis, each subject receives 9 tokens in each period. 

Therefore, for each data point, the likelihood function of the Probit model can be written 

as: 

Li = (~)Prob(a+b(~)+E>O)z' Prob(a+b(~)+£:50)9-z•, 

where zi is the number of tokens the subject does not contribute. This likelihood function 

is not nested into the one of the rational novice model stated earlier. 

4.5 Data Analysis : Results 

The rational novice model is estimated using the Palfrey and Prisbrey data sets5. The 

techniques of the estimation and the log likelihood function are discussed in the last 

section. The estimates and log likelihood statistics are listed in Table 1. Figure 1 and 2 

display graphical representations of the estimation of the rational novice model with the 

whole data set and with the first five periods discarded. In the figures, the rational novice 

equilibrium frequencies are calculated using the maximum likelihood estimates and are 

compared to the data. The estimates (u,cr2 ,z) represent the distribution of the errors cr~ 

and cr; in the population. (Recall cr~ and cr; have the same distribution.) The distribution 

of cr 5 and cr E is plotted in figure 3 for the whole data set and in figure 4 when the first 5 

periods are discarded. The errors cr5 and crE are plotted in the unit of the U.S. dollar. cr5 

or cr E is smaller than 0.61 dollars 80 percent of the time and less than 1.26 dollars 90 

percent of the time when the whole data set is used for estimation. If the first 5 periods are 

51 thank Thomas R.Palfrey and Jeffrey E. Prisbrey for letting me use their data. 
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discarded, then a 5 or a r is smaller than 2.3 dollars 80 percent of the time and smaller than 

5 dollars 90 percent of the time. As it can be seen, with typical public good values from 3 

to 15 dollars and private good values ranging from I to 20 dollars, most of the time the 

subjects were making small errors (in relation to their public or private good values). 

The following are the major results. The first result deals with the statistical 

accuracy of the rational novice model. There is no absolute measure of how accurate a 

model is. However, the pseudo R 2 defined in the previous section is a benchmark of 

explanatory power that a model has. The interpretation of the actual numbers is left to the 

reader. 

Result 1 : The rational novice model is a fairly accurate statistical model. 

Support : The pseudo R 2 of the rational novice model is 0.67 when all the data is used 

and 0.75 when the first 5 periods are discarded from all the experiments. 

It is also interesting to see that the explanatory power of the rational novice model 

increases when the data from the first 5 periods of the experiments are discarded. It looks 

as if the subjects were "learning" to play the rational novice equilibrium. 

Since the Nash model is a special case of the rational novice model, the rational 

novice model will always have better statistical accuracy. The important question is 

whether the rational novice model is a significant improvement over the Nash model. The 

answer to this question according to result 2 is yes. The Nash model can be rejected in 

favor of the rational novice model that were estimated. 
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Result 2 : The relaxed Nash model can be rejected as a special case of the rational novice 

model. 

Support : Using the likelihood ratio test, the relaxed Nash models (c=25) can be rejected 

at 5 percent significance. The test statistics are listed in Table 2. 

Rejecting the Nash model should come as no surprise. It is more interesting to see 

if the rational novice model can do better than the Probit model. Although we did not 

conduct any statistical tests, it is our conjecture that the rational novice model performs 

better than the Probit model. 

Conjecture : The rational novice model is better than the Probit model. 

Support : The pseudo R 2 s of the rational novice model are higher both when all the data 

are used and when the first 5 periods are discarded. 

4.6 Comments and Discussions 

This research introduces a new approach to game theory modeling. This new approach is 

aimed at explaining deviations from traditional game theory predictions. Some theorists 

attribute deviations from game theory to errors people make. Both the Harsanyi model 

and the McKelvey and Palfrey quanta! response model assume subjects observe erroneous 

payoffs. The rational novice model takes one step further by adding a principle of optimal 

response to the risks associating with erroneous payoffs. The rational novice model is able 

to explain human errors as a function of the economic environment. A combination of 

bounded rationality and risk diversification is utilized to develop the rational novice 
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equilibrium model. The general framework of this new model is discussed and the 

equilibrium for the voluntary contribution game is solved in this framework. 

The voluntary contribution game represents a paradox in game theory modeling. 

On one hand, in traditional game theory, people are predicted not to contribute when their 

marginal rate of substitution between the private and the public good is greater than I . On 

the other hand, experimental investigations have shown that people indeed do contribute 

when the traditional game theory predicts otherwise. In a series of experiments reported in 

Palfrey and Prisbrey 1992, substantial contributions are observed to be at odds with the 

traditional game theory. Palfrey and Prisbrey's analysis show that the observations are 

mostly consistent with non-cooperative theories but there are still deviations that cannot 

be explained. Some subjects even deviated from the Nash strategy when their marginal 

rate of substitution between the private and the public good was less than one. Palfrey and 

Prisbrey employ a Probit analysis which explains the data fairly well. 

The rational novice model is proposed as an alternative model to explain non-Nash 

behavior in voluntary contribution games. Instead of assuming each agent has an 

additional incentive to deviate from the Nash strategy, deviations come naturally when the 

agents diversify against the risk of miscalculating the values of their options. 

Result 1 suggests that the rational novice model is a fairly accurate model in 

explaining the data. The estimates show that assuming that agents were making small 

errors is enough to explain the variation in the data. Result 2 indicates that the rational 

novice model is not only a more accurate model than the Nash model, the improvement 

over the Nash model is significant according to the likelihood ratio tests. This should not 

come as a surprise since we know that Nash models fail to explain why people deviate 

from dominant strategies while the rational novice model offers an explanation. It is also 



42 

my conjecture that the rational novice model performs better than the Palfrey and Prisbrey 

Probit model. 

In summary, the rational novice model is a reasonably accurate model of agents' 

behavior in voluntary contribution games. Additional data analysis is underway to provide 

a statistical test to distinguish between the Probit model and the rational novice model. 

The power of this new approach is that the general framework of the rational novice 

behavioral model is applicable to any finite game. 
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Chapter 5: First Price Sealed Bid Private Value Auctions 

5.1 Overview 

The first price sealed bid auction has been studied. In "Theory and Individual 

Behavior of First-Price Auctions," Cox, Smith and Walker 1988 (CSW) concluded that 

game theory could adequately explain auctions generated under laboratory conditions. 

Kagel, Harstad and Levin (KHL) in a 1987 study concluded that one Nash model, namely 

the Risk A verse Symmetric Nash Equilibrium (RASNE), was the best model amongst the 

ones they investigated although when applied to individual bids, sophisticated discounting 

models could not be statistically ruled out. Most of the previous studies were under a 

linear environment. Chen and Plott conducted a series of experiments under nonlinear 

conditions and found that the Constant Relative Risk Averse Model (CRRAM), another 

Nash model, offers a good explanation of individual behavior. However, it failed to 

outperform a sophisticated piece wise linear rule-of-thumb. 

In the Chen and Plott study, the solution of the CRRAM is defined by a differential 

equation that does not have a closed form solution. The authors had to employ 

complicated computer techniques to calculate a numerical solution. It is unlikely that all 

the subjects were able to arrive at the same solution simultaneously. The fact that the 

CRRAM can explain the data reasonably well but not perfectly indicates that the subjects 

may be trying to behave rationally without complete success. 

The rational novice model was developed as an attempt to provide a better 

theoretical model. Agents are no longer modeled as perfect rational decision makers. 

Instead, random noise is introduced into agent's decision making process. The size of the 

noise defines the amount of rationality an agent has. A small amount of noise results in 
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strategy profiles close to that of Nash models while a large amount of noise leads to Jess 

"perfect" behavior. One natural consequence of this approach is that statistical variations 

are no longer a random unexplainable phenomenon. Given a structural framework of this 

noise, the fluctuations in behavior can be predicted. 

The objective here is to solve the first price auction under the rational novtce 

model and compare that solution to the solutions of other Nash models. The specific Nash 

model focused here is the CRRAM. The CRRAM is a very extensively studied model (see 

Chen and Plott). It explains the data reasonably well. In the Chen and Plott study, the 

CRRAM tracks the observed nonlinear behavior with success. It was also found that the 

CRRAM is the best amongst a number of other Nash models (mostly ones that assume 

homogeneous agents). 

No closed form solution was found for the rational novice model. Numerical 

solutions were found using computational techniques. The specific rational novice model 

developed here is a one parameter model. The model depends on a single parameter that 

describes the average of the risk attitude in the population. This parameter is estimated 

from the data obtained from the Chen and Plott experiments. Notice that the rational 

novice model is a one parameter model while the CRRAM has as many parameters as the 

number of agents. In the Chen and Plott study, there were twelve subjects in each 

experimental session. Thus, the CRRAM has twelve parameters. Just in a pure data 

analysis point of view, it is more likely that the CRRAM will perform better than the 

rational novice model. If it turns out that the rational novice model can explain the model 

better, it will be strong evidence that the rational novice model has captured certain 

aspects of behavior that elude the Nash models. 
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5.2 First Price Sealed Bid Auction 

Consider an N-person first price sealed bid auction. Let j= { 1 , ... ,N} index agents. 

The value of the unit being auctioned to the jth agent is a random variable vi . v J has the 

distribution H(x) and it is independent across j and time. vJ is realized in the beginning of 

each auction and is the jth agent's private information. Each agent then submits a bid and 

the highest bidder buys the unit at the price of his bid. Let bi be the bid of the jth agent. If 

the jth agent is the highest bidder, then his profit from this auction will be vi- b i. All the 

other agents receive no profit. 

The N-person first price auction is well studied. Cox, Smith and Walker 

developed the Constant Relative Risk A verse Model (CRRAM) to explain a series of first 

price auction experiments they have conducted. In "Nonlinear Behavior In Sealed Bid 

First Price Auctions," Chen and Plott make comparisons between three Nash models 

under conditions different from the CSW study .1 The three Nash models are the Risk 

Neutral Nash Equilibrium Model (RNNE), the Risk Averse Symmetric Nash Equilibrium 

Model (RASNE) and CRRAM. Under RNNE, all agents are identical and risk neutral. 

Under RASNE, agents are identical but risk averse. Under CRRAM, agents are 

heterogeneous and risk averse. Risk aversion is characterized by a one parameter utility 

function. It is assumed that the distribution of risk aversion is common knowledge. In both 

the CSW study and Chen and Plott study, the CRRAM was found to be the best model. 

The next section provides a brief overview of the three variations of the Nash 

model studied in the Chen and Plott paper. The only differences among these three 

variations are the assumptions made on the risk attitudes of the subjects. 

1The Chen and Plott study was made with nonuniform distributed private values while the CSW study 
used uniform distributions. The nonlinearity in the Chen and Plott study enables the researchers to 
separate the models with relative ease. 
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5.2.1 Nash Equilibria 

In the Chen and Plott paper, three Nash equilibrium models are studied. Although 

only one of the three models will be compared to the rational novice model in the data 

analysis section, all three are listed here for completeness. 

1) The Risk Neutral Nash Equilibrium Model 

Agents are assumed to be identical and risk neutral. They are expected utility 

maximizers with the utility function u(x)=x. With uniform distributed private values, the 

equilibrium bidding function is ~ v where n=number of bidders in the auction and 
n 

v=private value. 

2) The Risk A verse Symmetric Nash Equilibrium Model 

Agents are assumed to be identical and risk averse. They are expected utility 

maximizers with the utility function u(x)=x r. r is called the risk aversion parameter. Since 

all the agents are assumed to be identical, r is the same for every agent. With uniform 

distributed private values, the equilibrium bidding function is "~;~r v. When the agents are 

more risk averse (r decreases), bids increase. 

3) The Constant Relative Risk Averse Model 

Agents are assumed to be risk averse and have utility function u(x)=x r. The risk 

parameter r is assumed to distribute according to some publicly known distribution G(r). 
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All three Nash models are deterministic and do not allow for fluctuations in 

behavior. For example, the RNNE predicts a perfect linear relationship between the bids 

and the private values. However, in previous empirical studies, investigators found that the 

bids and private values did not correlate perfectly. Ad hoc random variables are usually 

added to the equilibrium bidding functions to "accommodate" observed fluctuations in 

previous analyses. 

5.3 The Rational Novice Equilibrium 

In this section, a rational novice equilibrium will be solved for the first price sealed 

bid auction. The central principle of the rational novice model is that each agent evaluates 

their strategic situation imperfectly and responds to the imperfection in a risk averse (or 

risk loving) manner. In the first price sealed bid auction, a lower bid increases the profit 

and decreases the probability of winning the auction. Each agent must find an optimal 

balance between possible profit and the chance of winning. In the rational novice model, 

each agent is incapable of evaluating the probability of winning correctly. Each of them 

only receives a noisy signal of what that probability is. 

This model predicts that if the auctions are played repeatedly with different 

opponents, each agent will diversify his actions and employ a spread of bids instead of just 

a single optimal one. 

The formal theory is as follows. 

5.3.1 The Rational Novice Model 
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Consider a symmetric game in which each agent has K actions to choose from. 

Agents are chosen from a large population to play the game. Agents are assumed to be 

imperfect. Imperfection is defined by a sequence of random variable {Ek: k = 1... K} . When 

each agent tries to evaluate the value of his k th choice, he received a noisy signal. Let xk 

be the true value of the k th action and gk be the signal the agent received. It is assumed : 

We assume that Ek has zero mean and is distributed independently across k. Ek is also 

assumed to have a normal distribution. Let cr; be the variance of Ek . Each agent bases his 

decision on his signals { gk : k = I ... K} . Having only observed his noisy signals, the true value 

of the k th action is a random variable given by : 

where Sk is also independently and normally distributed with mean 0 and variance cr~. The 

game is repeated T times. Each agent chooses what his actions will be in the T games. The 

agent is assumed not to discount. Therefore, the order of play is not important. The agent 

only cares about how many times each action is played. Let pk be the fraction of times that 

the agent is playing action k. In T games, the total number of times the k th action played is 

K 

pk T. The total value of the T games to the agent is TI,pk (xk lgk ). Notice that pk is not a 
k~l 

probability and not a mixed strategy. p~ is the exact fraction of the times an action is 

played in T games. 

Assuming the agent maximizes a weighted sum of the expected value and the variance, 

the maximization problem is : 
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K 

subject to L Pk = J2, 
k=l 

where E(.) denotes taking expectation over the random variable xklgk. Var(.) is the 

variance operator. Substituting (3.1) into (3.2), we have 

K 

(5.3) subject to I,. pk = 1 and Pt 2: o for all k. 
k=l 

Let A. be the Lagragian multiplier. The first order condition of (3.3) is given by : 

Notice that for a risk averse agent, a > 0 . Thus the second order condition is always 

satisfied. Solving (5.4), we have 

if 

The summation is taken over k's where Pt >0. 

Pt is called the optimal behavioral strategy of the agent. The optimal behavioral 

strategy Pt of each agent depends on his signal which is random. Thus, Pt is also random 

in nature. Therefore, it is more interesting to look at the population-average of the optimal 

behavioral strategy. a and cr~ are assumed to be identical across agents. To simplify the 

2 pk is also constrained to be non-negative. In the following discussion, we assume that this constraint is 
not binding. 
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problem, an approximation was made. For any continuous function f(x), the Taylor 

expansion implies Ef(x)=E(f(Ex)+f(Ex)(Ex-x)+ ... ). When the central higher moments of x 

is small, Ef(x) can be approximated by f(Ex). The population-average rational novice 

strategy pk is obtained by taken the expectation of pk with respect to gk. When the errors 

are small, the population-average of the optimal behavioral strategy, pk, is approximated 

by 

(5.5) if 

Each individual optimal behavior is not a mixed strategy, and thus does not 

describe a random distribution of actions. However, since the signals are random, the 

population-average of the optimal behavioral strategy pk describes the distribution of 

actions. Hence, when a large group of agents is brought in and made to play the game, the 

observed probability of the k'h action being chosen should be pk . 

5.3.2 Rational novice Behavior in First Price Sealed Bid Auctions 

Consider a population of identical agents. Let us assume that each agent's private 

value is restricted to integers from 0 to v. Also assume that the bids are also restricted to 

integers. Each agent is going to adopt a different bidding profile for each private value v. 

Assume that the agents only care about their expected profit in the first price sealed bid 

auctions. When the private value is v, the bid b is worth x; = (v- b)G(b) to the agent. G(b) 

is the probability of winning when bid b is submitted. 
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The choice of a~ is less obvious. The choice of a constant a~ would make the 

problem technically easier to solve but represent a less "realistic" scenario. My guideline to 

pick a~ is that a~ should be roughly increasing with the true value x ~. The choice of a~ is : 

a~ =a 2 (v-b)2 G(b) . 

where a 2 is a convenient scaling factor. The choice of a~ is made based on two reasons. 

The first is an intuitive one. One would expect the size of the error to be dependent of the 

potential value. Consider the extreme case where the bid is close to the private value. 

Since the potential profit is the difference between the two, when the bid is close to the 

private value, one would expect the agent to consider this an unworthy bid no matter how 

he evaluates G(b). On the other hand, when the potential profit is larger, there is more 

room for the agent to make errors. The second reason is a practical one. A few other 

choices of a~ were used as trials and they do not provide reasonable results. For example, 

if a~ is constant (i.e., a~ does not depend on the private value and the bid), the model 

predicts underbidding when agents are risk averse. This is consistent with neither other 

models nor experimental observations. 

For each value v, the bid is restricted to a value from 0 to v-1. This restriction is 

made solely because of this particular choice of a~ =a2 (v -b)2 G(b) . The reason is that at 

the point b=v, a; is zero. Consequently, an interior solution does not exist. Therefore, this 

restriction is put in place mainly to facilitate the derivation of a solution. 

Substituting x~ = (v- b)G(b) and a; =a 2 (v-b) 2 G(b) into equation (5.5), the 

population-average rational novice behavior is given by : 
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(5.6) 
{ 

0 
r-' -r p ' = I I I k v-k • Y[ v-b- (v-b)'G(b) ;,._.,,0 ,.,] 

if 

I [ I 
y v-b 

I [ I 
y v-b 

where y = 2acr2T. The summation over k is taken over k's where 'P: >0. 

The rational novice equilibrium of the first price auction is a collection of bids' 

distribution, one for each possible private value. Equation (5.6) characterizes this 

distribution. This is called the rational novice distribution of bids. 

The probability of winning G(b) is a function of the rational novice distribution of 

bids. Therefore, if we want to fully characterize the rational novice equilibrium, we have 

to solve for the G(b) for each possible b. Let qv be the probability that v is drawn as the 

private value. If we draw an agent randomly from the population, let pb be the probability 

that he will submit the bid b. pb is given by : 

Let pb<B be the probability that in the population, a bid will be less than B. Pb<B is given 

by: 

In anN-person auction, G(B) is given by : 

(5.7) G(B) =(pb<Bt-
1 
+ m~2 (:~1J(PBr-

1 

(pb<Bt-m ~ for B=O to v-1. 
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The first tenn is the probability that every other bidder submits a lower bid. The second 

tenn is the probability that the agent wins the auction if he ties with m-1 other agents. 

When there is a tie, the unit is randomly assigned to one of the agents. 

Equation (5.6) and (5 .7) fully characterize the rational novice equilibrium of the 

private value first price auction. 

5.3.3 Comparative Statics 

In this section, I would like to examine the effects of risk aversion on the rational 

novice equilibrium. In past studies, it was shown that risk aversion generally will cause the 

agents to bid more in the first price auction. Since in the rational novice equilibrium it is no 

longer true that agents follow a single-value bidding function, the corresponding behavior 

is a little more complicated to describe. 

Essentially, there are three aspects of the effects of risk aversion I would like to 

study. The first one is the spread of the bids. Intuitively, a more risk averse population will 

spread the bids in over wider range. This concept is difficult to quantify. The measure I 

use in this paper is the number of bids with a positive probability of being played. 

The second aspect is that when risk aversion goes to zero, we expect to see the 

risk neutral Nash equilibrium. The third aspect is that of the sizes of the bids. In a Nash 

model, agents bid more when risk aversion is present. Does the same still hold in the 

rational novice model? Since the agents in the population are now bidding according to a 

distribution, it is a little more complicated to determine whether the agents are bidding 

more or less. One method is to look at how the expected bid changes when risk aversion 

changes. Unfortunately, the analysis of the expected bid is ·inconclusive. The expected bid 
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can go either way when risk aversion changes. Another way is to look at the bid at which 

p~ is at a maximum. 

The following subsections describe the effects of risk aversion on the bid spread 

and the bid submitted with maximum probability. 

5.3.3.1 Bid Spread 

The rational novice equilibrium is characterized by a distribution of bids given by 

equation (5 .6). The model only has one parameter y which describes the characteristics of 

the population. Recall y = 2acr2T. Thus, the effects of risk aversion (a), relative size of 

the errors ( cr2
) and the number of auctions carried out (T) are inseparable in the model. 

Recall the rational novice distribution of bids is given by : 

(5.6) p~=j..!_ [_l 
y v-b 

0 

I r_!_-y l k v-k if 
[ 

I l 1 I 1 r - -1 
- --- k v-k <0 
'( v-b (v-b)

2
G(b) ~ ( v-k )' G<k> -

[ 
I l I I I ~ v-h-7 

---- >0 
'( v-b ( v-b)

2
G(b) ~ < v- k ),G( k) 

while the summation with index k is over the bids with positive probability. 

Claim 1: For a fixed v, the number of bids with positive probability (i.e., p~>O) is non 

decreasing in y . 

Proof: It is sufficient to show that when y increases, all the bids with positive probability 

remains so. Let B be the set of bids with positive probability given v. So, for all be B, 



55 

(5 .8) - -- 2 keB v-k >0. 1 

[ 

1 1 I - '- y l 
y v-b (v-b) G(b) k;B (v-k )2 G(k ) 

Let y+>y. Assume when y increases toy+, some bid b has probability 0 . Let B-=B-{b} . 

If bid b has probability 0, the follow must be satisfied. 

(5.9) 
_1_[_1_- 1 kJs-~-y+ l < 0 
y+ V- b ( V- b ) 2 G(b) ke~- ( v-k)2 G{k ) - • 

Since y and y+ are positive, (3.8) and (3.9) implies 

which implies 

I - 1 
-y+ I - 1

- - y 
k eB- v-k > ___::kc::.EB:::..._v-_,.k __ 

I 2 I 2 
keB- (v-k) G{k) keB {v-k) G{k ) 

Since B-=B-{b}, I _ I_= I _1 ___ 1_ 
kEB- V-k k EB V-k V-b 

and 

Therefore, 

After some algebra, one arrives at: 

(5.10) (y•-y) I ~ +-
1
- I ~ - 1 I - 1- + y <0 

keB (v-k)2 G(k) v-b keB (v-k)2G(k) (v-b)2 G(b) keB v-k (v- b)2 G{b) · 

However, (5.8) alone implies 

-
1
- I I - I I - 1-+ y >0 

v- b keB (v-k )2G(k ) (v-b)2G(b) keB v-k (v-b)2 G(b) · 
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Since (y• - y ) I ., >0, we arr1ve at a contradiction. Therefore all the bids with 
lce B ( v-lc )-G( Ic ) 

positive probability will remain so if y increases. QED. 

The bids spread out more when y increases. Recall that "( = 2acr2T . y increases with both 

risk aversion (a) and the potential size of errors ( cr2 
). Claim 1 is consistent with our 

intuition. When people become more risk averse, they will spread their bids out more to 

hedge against their potential errors. The same thing will happen if their risk attitude 

remains constant while the sizes of their potential errors increase. 

5.3.3.2 Bids Submitted with Maximum Probability 

Let us first examine the case where y is very small. It is expected that the rational 

novice equilibrium will resemble the risk neutral Nash equilibrium when y goes to zero. 

Claim 2: When y approaches zero and when there is only one bid with positive 

probability, that bid is the risk neutral Nash equilibrium. 

I 
I I r--r 

proof Consider a continuous function defined by f(b, y)=---
2 

k v- k 

v-b (v-b) G(b) ;(v-k >'G<kl 

When f(b,y) is greater than zero, f(b,y) gives the values of p~. Let f(b.,y) be the 

maximum of f(b, y). b · is obtained by differentiating f with respect to b and setting it equal 

to zero. It yields the following : 

r....!......-r 
(v-b.)G(b. )2 =(2G(b. )- (v-b)G'(b. )) kv-k 

; (v-k )2 G(k ) 

Since only bid b has positive probability, I - 1- =- 1- and I 1 
1c v-k v- b 1c ( v-k )2 G(k) 

go to zero, we have 

I L . 
( v-b)2G(b) . ettmg y 
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I 

(v- b • )G(b • )2 = (2G(b* ) - (v- b)G' (b• )) v-b· 

which implies 

G(b *) = (2G(b* ) -(v- b)G' (b *)) 

Simplifying the above, we have: 

(5 .11 ) (v-b)G'(b* ) =G(b*). 

(v-b' )2 G(b' ) 

The risk neutral Nash equilibrium is given by maximizing (v-b)G(b). Differentiating with 

respect to b, we have 

(v-b)G'(b)=G(b) 

which is exactly (3.11 ). QED 

In claim 2, we have established that in the limit where everyone is risk neutral, the rational 

novice equilibrium becomes the Nash equilibrium. The following claim examines the 

effects of risk aversion in the neighborhood of the risk neutral case. 

Claim 3: The bid with maximum probability is increasing in y . 

Proof : Recall in the proof of claim 2, it is shown that the bid with the maximum 

probability is given by 

r_!_-r 
(v- b')G( b' )2 =(2G(b' )-(v - b)G' (b' )) kv-k • 

f (v- k ) 2G( k ) 

Rearranging terms, we have : 

I 
( v-b')G(b' ) 2 

_ f~-r 

(2G(b' )-(v-b)G'(b' )) - f <v- k ),G( k ). 

Taking derivatives with respect to y on both sides, we have : 
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[ 2(v- b. )0 (b' )0' (b' ) -O(b' )~ ][ 20 (b. )-( v - b. )0' (b. >]-[ (Y - b • )0 (b' )2 
] [ 30 ' (b' ) - (v-b. )0" (b" >] db' _

1 

(20 (b' ) - (v-b)O' (b" ))' dy - fc·-••'Glkl 

In the neighborhood of risk neutrality, (v- b)G' (b • ) = G(b • ). Substituting into the above, 

we have 

( 2G(b' )2 -G(b' )2
]( 2G(b. ) - G(b ' )]-( G(b.)3 I G' (b *)]( 3G' (b' ) - (v- b' )G'' (b' )] db' = - ---.-1-

(G(b' ))
2 

dy f <v-ldG<k> 

Simplifying the above, we have 

( G(b • )- [ G(b •) I G' (b •) ][ 3G' (b •) - ( v- b • )G" (b •) J) ~ • = - t 

"( ~ ( v-k)2G(k} 

The above implies 

The Nash equilibrium is obtained by maximizing (v-b)G(b). Therefore, the 2nd derivative 

of (v-b)G(b) should be negative. Thus, (v-b)G"(b)-2G'(b)<0. Hence 2G'(b)-(v-b)G"(b)>O. 

So (5.12) implies db • >0. QED. 
dy 

In a way, the above result shows that risk aversion leads to overbidding. This is 

consistent with both the traditional Nash models and the observed behavior in 

experiments. 

5.4 Numerical Analysis 

Equation (5.6) and (5.7) characterize the rational novice equilibrium of the private 

value first price auction. No closed form solution is found for the rational novice bid 

distribution. However, numerical methods are developed· to calculate this distribution 
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under the experimental conditions that we are about to analyze. The only relevant 

experimental condition that affects the rational novice equilibrium is the distribution of the 

private value q • . 

The numerical method is an iterative procedure that will provide the solution for 

{G(B):B = o ... v -1}. The procedure starts with a guess of the function {G(B):B = o ... v -1} . In 

this study the starting guess is of the form : 

l 
ax 

G (x) = b 
,..... a+(l-a)(~) 

1000-b 

if 
x<b 

b s; x"'" 

Then, the following steps are carried out. 

Step 1 :Set G 1(b)=G,uc_.. (b) for b=O,l, ... ,v-1. 

Step 2: Calculate p~ as a function of {G,(b):b=O ... v-1} using the following: 

p~={_!_ [_1 
y v-b 

0 

I r _:_-y l 1c. v - k if 
[ 

r-' -y l _!_ _1__ 1 k v-k s;o 
y v-b (v b)

2
G 1 (b) ~ (v-k)' G,(k ) 

[ 
I l I I I ~ v-h -y 

---- >0 
y v-b (v-b)

2
G 1(b) ~<•-k >' G,(kl 

Step 3: Calculate G2 (b) by using the following equations: 

8-1 = I: pb 
b=O 
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~- 1 ~ 

Step 4 : Calculate 6.= I,(G 1(b)- G2 (b))-. When 6. is smaller than a certain threshold value, 
h =O 

stop. Otherwise, set G1(b)=G 2 (b) for b=O,I , ... ;v-1 and go back to step 2. 

When 6. =0, the above procedures will ensure that G 1 (b) (and G 2 (b)) is a solution 

to equation (5.6) and (5.7). Analysis revealed that this process converges quite fast. Under 

our experimental parameters the process usually converges in fewer than 10 iterations with 

a threshold of 0 .1. 

5.5 Data Analysis: Techniques and A Description of the Data 

In the Chen and Plott study, several experiments were conducted in which non­

uniform distributed private values were assigned to the subjects. Six experiments were 

conducted in the Chen and Plott study. There were twelve subjects in each experiment. 

Some subjects participated in more than one experiment. The experiments were conducted 

in periods. In each period, the subjects were randomly divided into groups of three who 

would bid against each other in a sealed bid auction. After the subjects were randomly 

assigned, the private value would be revealed to the appropriate subject via a computer 

link. The subject then entered a bid into the computer. 

Although the private values were known only to the appropriate subject, the 

distribution of the values was common knowledge. The private values were drawn from 

distribution of the following form. In three of the six experiments, the values are drawn 

from either a range from 0 to 999. Let q v be the probability of v being drawn. The 

probability of drawing the private value vis given by: 



{ 
a I 500 

q' = (1- a) I 500 
if 

v <500 

500< v 
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In the other three of the six experimental sessions, an offset of 500 was added to 

all the private values. That is, the values are drawn from a range from 500 to 1499. And 

the corresponding probabilities are : 

{ 
a/ 500 

q , = (1-a)/ 500 if 
v < 1000 

1000< v 

There were two values of a being used in the experiments. In four of the six experiments, 

a=0.8. In the other two, a=0.2. In table 4, a summary of the different parameters of the 

experiments is reported. 

Since the rational novice model depends only on (v-b), a linear transformation is 

performed on the data to bring the range of the values and the bids down to [0,999]. Then 

the same estimation procedure is carried out. 

In the Chen and Plott investigation, the Nash equilibrium is studied. The Nash 

equilibrium under this experimental environment exhibits nonlinear bidding functions. 

Subjects were observed to have employed nonlinear strategies. One Nash model, the 

Constant Relative Risk Averse Model (CRRAM) offers a good explanation. The CRRAM 

manages to outperform nearly all other models except one, the Sophisticated Ad Hoc 

Mode (SOP AM) which basically is a piece-wise linear model. 

All the models studied in the Chen and Plott study predict single-valued bidding 

strategies as functions of the private value. The econometrics model used in the Chen and 

Plott paper is artificially constructed by adding a normally distributed error to the Nash 

bidding strategy. The variance of this error is independent .of the value and the bid. On the 
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other hand, the rational novice model explicitly characterizes the distribution of bids. It is 

the goal of this paper to determine whether a distribution of bids based on theory (the 

rational novice model) can perform better than an arbitrary distribution assigned solely for 

the sake of fitting errors. In this section, the rational novice model is estimated and 

compared to the results in the Chen and Plott paper. The rational novice model is found to 

be a better model than the Nash model. Since a visual inspection of the data will show that 

the sizes of the errors change with the value (usually increasing in the value), the reason 

that the rational novice model does better may be that the additional statistical 

assumptions in the Chen and Plott model are inadequate. 

The maximum likelihood technique is used to estimate all the relevant models. The 

observations are in the form {(v;,b;}:i=I...n} where (vi,bJ is the observed value and bid 

of a subject in an experimental auction. Given the parameter y, section 5.4 has outlined a 

method to compute the numerical solution for the corresponding rational novice 

equilibrium by solving equation (5.6) and (5 .7). The rational novice model is estimated by 

the following maximum likelihood procedures. 

For each value of y , the likelihood function can be calculated by: 

1) applying the technique in section 5.4 to solve for a equilibrium (i.e., calculating G(b) for 

each possible b,) and 

2) calculating the log likelihood function by 

(5.8) l(y)=:iJog("P;: ), where p~~ is calculated by equation (5.6). 
o=l 

The Golden Section Search method is then used to find the value of y that gives 

the maximum of the log likelihood function. y is estimated from the Chen and Plott 
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nonlinear first price auction experiments. The results of the estimation are listed in Table 

4 . The rational novice model characterized by p~ only allows bids in the range from 0 to v-

1. The model is unable to explain bids greater than or equal to the private value. In theory, 

this restriction does not pose a conflict with the Nash models since bidding the private 

value is always a dominated strategy. However, in practice we do observe people bidding 

their value or sometimes even above that. In the experiment, there are a few instances that 

the subjects bid greater than or equal to their private values. Those data are ignored in the 

estimation procedures. 

In the Chen and Plott study, five models are estimated and compared to the 

CRRAM. They are the two Nash models (RNNE and RASNE as described in section 

5 .2. I) and three ad hoc rules of thumb. The three rules of thumb are: 

1) The Markdown Model (MM) in which the bid=factor x private value. 

2) The Simple Ad hoc Model (SIMAM) in which the bid is a linear function of the private 

value. And, 

3) The Sophisticated Ad hoc Model (SOPAM) in which the bid is a piece wise linear 

function of the private value in the form: 

b .d . { a+l3value 
1 =bid= 

a+ [3value + y( value - 500) 
if 

v <500 
500:5 v· 

The two Nash models are shown to be inferior to the CRRAM. Therefore, they will be 

ignored in the analysis. The rest of the models, CRRAM, MM, SIMAM and SOP AM, are 

compared to the rational novice model. 

All of the above behavioral model can be generalized into the form: bid=f(value). 

Given the data set { (vI I b; ): i = I ... n}, the econometrics model ·estimated is : 
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b. =f(v.)+£. 
I I I 

where Ei are independent and normally distributed with mean zero. The appropriate 

parameters are estimated by the maximum likelihood method. Since a number of data 

points are ignored in the estimation of the rational novice model, the same group of data is 

ignored in the estimation of the Chen and Plott models. 

As in the Chen and Plott study and the last chapter, Young's Model Selection Test 

was used to compare the other models to the rational novice model. Recall that the 

Young's Selection Test is defined as follows: 

Let us consider the general case where one wants to compare two nonnested models f and 

g. Let I ~ be the maximum log likelihood of data point t under the model f and I ~ be the 

maximum log likelihood of data point t under the model g. Let T be the number of data 

points. Define : 

LR=L(I~ -In , and 
I 

w2 = ~ ""(Ir -ls)2 -(~ LR)2 
T""" I I T .:. 

l 

Consider the foliowing three hypotheses: 

H 0 : f and g are equivalent, 

H r : f is better than g, and 

H~ : g is better than f. 

Young's theorem 5.2 states that 

LR 
a) under H 0 : ..ffw ---+ n(O, I ) 

LR 
b) under H r : ..ffw ---+ +oo 
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LR 
c) under HG : .Jfw ~ -oo 

The above theorem provides a simple directional test for model selection. Choose 

a critical value c determined by the desirable significance level. Calculate the statistics 

..J;;'w . If ..J;;'w s; lei, one cannot discriminate between f and g. If ..J;;'w >c, one rejects the 

null hypothesis that the models are equivalent in favor of f. If ..J;;'w <-c, then one chooses g 

rejecting the same null hypothesis. 

Young's Selection Test does not take into account the complexity of the models. 

However, there is an additive correction factor that compensates for that. Let m be the 

number of parameters in model f and n be the number of parameters in model g. The 

correction factor used in the Chen and Plott study is K(n,m,T)=(m-n)log(T)/2. The revised 

Young statistics is ..J;;'w +K(n,m,T). As one can see, the correction factor K(n,m,T) adjusts 

the Young statistics in favor of the less complicated model. For example, if model g has 

more parameters than f (i.e., m>n), then the Young statistics are corrected in the favor off 

(K(n,m,T)>O). 

It was shown in Young's paper that a number of different correction factors are all 

asymptotically equivalent. Furthermore, they were all shown to be equivalent to not 

applying a correction factor. Hence, there is no method to choose a correction scheme 

optimally. For consistency, the correction factor used in the Chen and Plott study is 

employed here. The results both with and without the application of this correction factor 

are reported. 
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Young's Selection Test was performed at two levels. The test was performed on 

the pooled data of all six experiments to determine what is the best overall model. The test 

was also performed on individual experiments so that we can find out if difference 

experimental conditions will affect the relative performances of the models. 

5.6 Data Analysis: Results 

The techniques discussed in the previous section were used to estimate the rational 

novice model for the six experiments conducted in the Chen and Plott study. The estimates 

of the log likelihood function suggest that the rational novice model is a better overall 

model than the CRRAM. 

Table 4 reports all the relevant statistics of the six Chen and Plott experiments. The 

first three rows contain the parameters of the experiments. Parameter a and the offset are 

explained in the previous section. A number of data points were ignored in the estimation. 

(The reason is also explained in the previous section.) The amount of data ignored are 

reported in row 4. Recall that y = 2acr2T . Both y and y rr are reported in table 4 . The 

estimates of y rr provide a sense of how risk averse the subjects are. Also reported are the 

log likelihood and the Young statistics of all the models. The Young statistics are 

calculated with respect to the rational novice model. If the statistics are greater than 1.65, 

then the Young test chooses the rational novice model over the other one. If the statistics 

are smaller than -1.65, then the Young test chooses the other model. If the absolute value 

of the statistics is less than 1.65, then the Young test cannot distinguish between the 

rational novice model and the other model. The Young statistics with the correction factor 

(n-m)log(T)/2 are also reported. This correction factor is also explained in the previous 

section. 
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The following summarizes the important results. 

Result 1: The rational novice model is a better overall model than the CRRAM. 

Support: In the pooled data set, the CRRAM can be rejected at five percent significance in 

favor of the rational novice model independent of whether the correction factor K(n,m,T) 

is applied. 

Result 1 alone will indicate that the rational novice is a better model than the 

CRRAM. However, if the test is carried out on individual experimental sessions, the result 

is less clear. 

Result 2: In the six experiments, the rational novice model sometimes performs better than 

the CRRAM and sometimes does not. 

Support: In two out of the six experiments, the CRRAM can be rejected at five percent 

significance in favor of the rational novice model. In the other two experiments, the 

rational novice model can be rejected at five percent significance in favor of the CRRAM. 

In the remaining experiments, the two models are not distinguishable. 

The first result indicates that the rational novice model explains the data better 

than the CRRAM. Even with the less unambiguous result 2, the rational novice model 

seems to provide as much explanatory power as the CRRAM. This is quite remarkable 

considering the fact that the rational novice model is a one parameter model while the 

CRRAM has twelve. 

Result 3: The rational novice model is a better model than the MM. 
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Support: In the pooled data set and four out of the six individual experimental sessions, 

the MM can be rejected at five percent significance in favor of the rational novice model. 

In the remaining two experiments, the Young Model Selection Test chooses MM over the 

rational novice model in one experiment and cannot distinguish the two in another. The 

correction factor does not affect this result. 

The third result should come at no surprise. In the Chen and Plott study, it is 

shown that MM is not as good as the CRRAM. Since result I and 2 have already shown 

that the rational novice model performs as well as the CRRAM, it should do better than 

MM. 

Result 4: The rational novice model is a better model than the SIMAM. 

Support: In the pooled data set and two out of the six individual experimental sessions, the 

SIMAM can be rejected at five percent significance in favor of the rational novice model. 

In the remaining four experiments, the Young Model Selection Test chooses MM over the 

rational novice model in one experiment and cannot distinguish the two in the others. If 

the correction factor is applied, then the SIMAM can be rejected in four of the six 

experiments as well as the pooled data set. 

There is still some ambiguity since the rational novice model does not outperform 

the SIMAM in all experiments. However, considering the fact that the rational novice 

model does better in most experiments (with correction factor applied) and in the pooled 

data set, it would seem that it is the better model. Similarly, the CRRAM is shown to be 

marginally better than the SIMAM in the Chen and Plott study. Thus there is no surprise 

since the performance of the rational novice model is close to that of the CRRAM Notice 

that SIMAM has 24 parameters while the rational novice model only has one. 
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Result 5: The rational novice model may be not good a model as the SOP AM. 

Support: In two out of the six experiments, the SOP AM can be rejected at five percent 

significance in favor of the rational novice model. In the other four, the test chooses the 

SOP AM. If a correction factor is applied, then the Young test only chooses SOPAM over 

the rational novice model in three experiments and cannot distinguish between the two in 

the remaining one. In the pooled data set, the SOP AM is chosen if no correction factor is 

applied. Otherwise, the rational novice model is chosen. 

Result 5 is very ambiguous. If one considers the pooled data set, then the result 

depends on the application of the correction factor. Otherwise, the SOPAM explains the 

data better than the rational novice model in most but not all experiments. In experiment 5 

and 6, the rational novice model does better. 

Although SOP AM has no theoretical foundation, it explains the data better than 

the CRRAM. It seems that people may, after all, follow some sophisticated ad hoc rule of 

thumb than behaving rationally. The SOPAM has 36 parameters. The CRRAM has 12 and 

the rational novice model has one. Even without the application of a correction factor that 

penalizes high number of parameters, the Young Model Selection Test rejects the SOP AM 

in favor of the rational novice model in two experiments. So if one only considers that two 

experiments or the pooled data set with a correction factor, one may conclude that people 

are more likely to behave in some rational ways than just acting on rules of thumb. 

On the other hand, the SOP AM provides a better explanation in four of the six 

experiments. It is frustrating that one cannot find a coherent picture. There are two 

possible explanations of this confusing result. Since the Young Selection Test is only 
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asymptotically consistent, we may not have enough data to distinguish between the two 

models. Furthermore, since a number of different correction factors are asymptotically 

equivalent, with a finite number of data points, our choice of the correction factor may be 

over or under compensating for the complexity of the model. When the difference between 

two models is large (such as the difference between the MM and the rational novice 

model), these factors may not manifest themselves. 

5. 7 Summary and Comments 

This research applies the rational novice model to the first price sealed bid auction. 

Auctions have been a well-studied subject in both the fields of theoretical modeling and 

the experimental studies. In a previous experimental study of nonlinear bidding behavior 

(Chen and Plott), it was found that "people do not exhibit the full extent of the kind of 

rationality that game theory assumes. The CRRAM is not as accurate as the SOP AM nor 

is the rational expectation hypothesis supported by the data." 

The goal of this study is to develop and apply an alternate way of game theory 

modeling that does not require a very high degree of rationality. The rational novice 

equilibrium is proposed as this alternate approach. It is likely that the rational novice 

model will offer a better fit of the data since it does not have to make a wild guess at the 

distribution of the bids. 

The rational novice model takes into account rationality as well as the potential of 

making mistakes. Nash models assume a very high degree of rationality. Since the data do 

not indicate the full extent of rational behavior, it is more likely that in addition to rational 

deduction, there are some other unknown phenomena going on. The rational novice model 

offers a better explanation. The agents are modeled with the ability of rational deduction 
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as well as the capability of responding to mistakes. The comparative statics show that 

when the agents are more risk averse, they are likely to increase their bids as well as 

increase the size of their bid spreads. The first deduction is consistent with Nash models. 

The second is a new result that tells a better story. The rational novice model is a model 

not only capable of predicting the average bids, but also able to characterize the 

distribution of the bid spread. 

Merely characterizing the distribution of the bid spread will not be of any value if 

such characterization is not supported by empirical analysis. Results I through 5 reported 

in section 5 show the rational novice model also provides a better empirical fit to data 

gathered in the Chen and Plott study than the MM and the SIMAM. It is likely that the 

rational novice model performs better than the CRRAM but the evidence is inconclusive. 

In the case of the SOP AM, the rational novice does not seem to do as well. But again, the 

evidence is inconclusive. 

In summary, the rational novice model is applied to the first price private value 

auction in this research. The results suggest that the rational novice model is likely to be 

more accurate than any Nash model (in particular, the CRRAM) as well as a number of ad 

hoc rules-of-thumb. However, the most sophisticated ad hoc model (SOP AM) seems to be 

a better model than the rational novice model. If one accepts the rational novice model as 

a possible explanation, then one would expect people not to exhibit the full extent of the 

kind of optimal behavior described by game theory, neither are they behaving in some 

random way without a discernible pattern. The rational novice model seems to have struck 

the appropriate middle ground between rational and irrational behavior and provides a 

good explanation of people's behavior. 
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There are three possible directions of future research. The first is to gather more 

data and find out whether the models can be better separated from one another. The 

second is to test if the rational novice model performs well in different games. This 

approach involves the application of the existing rational novice framework to other 

games. The third direction is to expand the theoretical framework of the rational novice 

model. For example, the rational novice framework can be expanded to handle extensive 

form games, imperfect perception or a number of other features which are not included in 

the present framework. One important such feature is learning which is not addressed in 

the rational novice model. Although multiple games are played, they are assumed to be 

played simultaneously. In actual life or in experiments, most often games are played 

sequentially and often people learn. One possible way to model learning is to assume 

people play sequential segments of simultaneous games and model the error structure as a 

function of the time specific segment. 
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Table 1: Log Likelihood Estimations of Voluntary Contribution Games 

Model Jog likelihood parameter estimates 
Rational novice -800.8 u =-3.26 
(whole data set (j =3.30 

N=773) z=l .67 
Rational novice -260.8 u =-4.72 
(first 5 periods (j =3.25 

discarded z=0.035 
N=437) 
Pro bit -2496 constant coef=-1.39 

(whole data set mrs coef=0.81 
N=773) 
Pro bit -1185 constant coef=-1 .88 

(first 5 periods mrs coef= 1.35 
discarded 
N=437) 

Relaxed Nash -19017 u =-25 (constraint) 
(c=25) cr =0 (constraint) 
N=773 z=O 

The total number of data points in the whole data set = 1280. 
The total number of data points with first 5 periods discarded = 640. 

The estimation of the rational novice model requires independence across data points. 
Some subjects received the same (private good value, public good value) pair more than 
once in an experiment. The rational novice model does not guarantee these decisions to be 
independent of each other. These data are discarded. 

The number of data points after discarding the dependent data= 773. 
The number of data points after discarding the dependent data and the first 5 periods = 
437. 

Since the Probit model is a discrete choice model while the rational novice model is a 
continuous model, the relative performance of the models can not be determined by 
comparing the log likelihoods of the two. 
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Table 2 : Test Statistics of Voluntary Contribution Games 

Model Test statistics parameters constraint 
tested 

Rational novice 36432* u =-25 
VS (p-value= 1.00) (j =0 

Relaxed Nash 
(c=25) 

The models are tested against the hypothesis that the Nash model is true. 
A* indicates that the Nash equilibrium can be rejected at five percent significance. 
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Table 3: Pseudo R2 Statistics for Voluntary Contribution Games 

Model Pseudo R2 

Rational novice 0 .67 
(whole data set) 
Rational novice 0.75 
(first 5 periods 

discarded) 
Pro bit 0.57 

(whole data set) 
Pro bit 0.68 

(first 5 periods 
discarded) 
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Table 4: Log Likelihood Estimation and Voung's Statistics in First Price Auctions 

Experiment 

I 2 3 4 5 6 pooled 
Number of 60 120 70 100 100 100 
Periods (T) 

Parameter a 0.8 0.2 0.8 0.2 0.8 0.8 

Offset 0 0 500 500 0 500 
Number of 17 38 57 39 13 100 264 
Data Points (2.36%) (2.64%) (6.79%) (3.25%) (1.08%) (8.33%) 
Discarded 

(percentage) 
Number of 703 1362 783 1161 1187 1100 6296 
Data Points 

Used 

Estimate of 1.905441 2.423428 2.055558 2.557898 2.155390 1.813302 -
y in 

rational 
novice 
model 

<r ro 0.0318 0.0202 0.0293 0.0256 0.0216 0.0181 

Likelihood 
Estimates 
Rational -3512 -7236 -4202 -6542 -5913 -5523 -32928 
novice -3300 -7232 -4158 -6376 -6344 -5901 -33311 

CRRAM -3666 -7289 -4295 -6362 -6358 -5979 -33949 
MM -3548 -7207 -4209 -6303 -6309 -5908 -33484 

SIMAM -3100 -7035 -3961 -6227 -6220 -5758 -32301 
SOP AM 

w 

CRRAM 44.48 60.10 38.91 60.14 74.86 51.36 58.10 
MM 50.49 69.43 56.04 57.85 73.10 55.59 62.31 

SIMAM 45.48 60.09 41.63 60.06 78.51 51.59 59.33 
SOP AM 64.87 74.10 49.94 61.31 73.99 57.57 65.36 
Young's 
Statistics 
CRRAM -4.76 -0.05 - 1.12 -2.76 5.76 7.37 6.59 

MM 3.06 0.77 1.66 -3.12 6.08 8.21 16.39 
SIMAM 0.81 -0.48 0.16 -3.98 5.04 7.47 9.37 
SOP AM -6.34 --2.71 -4.83 -5.14 4.15 4.09 -9.59 
Young's 

Statistics w/ 
correction* 

CRRAM -3.95 -0.61 -0.18 -2.12 6.28 8.12 11.56 
MM 3.78 1.34 2.31 -2.45 6.61 8.90 21.02 

SIMAM 2.47 0.90 2.00 -2.63 6.08 9.03 19.54 
SOP AM -4.57 -1.00 -2.49 -3.13 . 5.82 6.21 4.46 
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* The correction factor for Young's Statistics is K(n,m,T)=(n-m)log(T)/2 where n=number 
of parameters in the other model, m=number of parameters in the rational novice model 
and T=number of data points. 

When the Young Test is conducted at five percent significance, the critical value of the 
statistics is 1.65. That is, if the statistics is > 1.65, the other model is rejected in favor of 
the rational novice model. If the statistics is <-1.65, the rational novice model is rejected in 
favor of the other model. If the statistics is between -1.65 and 1.65, then the rational 
novice model is indistinguishable from the other model given the data. 
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Figure 2 
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figure 3: Distribution of Errors (whole data set) 
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figure 4: Distribution of Errors (first 5 periods discarded) 
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