Improving the Biological Activity of Pyrrole-Imidazole Polyamides

Thesis by David Church Montgomery

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology Pasadena, California 2013 (Defended March 11, 2013)

© 2013

David Church Montgomery All Rights Reserved For my family

Thank you for always supporting me

Acknowledgements

As my time at Caltech comes to a close, I am left to reflect on all of the incredible people I have had the pleasure to know that have greatly contributed to my experience in this unique environment. Perhaps only as I now move forward can I look back and truly appreciate the tremendous caliber of scientists and staff that have surrounded me for the past five years and who have allowed me to able to play a small role in the world-class research taking place around me. To the entire Caltech community, thank you.

To my research advisor, **Peter Dervan**, I am eternally grateful for you giving me the opportunity to work in your laboratory. I have learned a great deal from working with you, which I know will serve me well in the future. Your mentorship and support have been greatly appreciated, and your thoughtfulness and intelligence foster an excellent learning environment for the laboratory. To my committee, **Bob Grubbs**, **Judy Campbell**, and **Mark Davis**, thank you for supporting me and providing guidance over the years. I have always been struck by what an incredible wealth of knowledge, experience and intellectual analysis is present at my committee meetings, and you have all been very kind and professional throughout. In addition, I would like to thank **Linda Hsieh-Wilson**, who I worked with as a Ch7 TA. Your positive attitude toward teaching was really appreciated, and it was a pleasure to work for you.

Ben, what a blessing it's been having you as a baymate for the last five years. It's hard to quantify exactly what your friendship has meant throughout graduate school, but suffice it to say you've made my time at Caltech immeasurably better. Whether it was

talking research over coffee, talking anything and/or everything else over coffee, working late at night and blasting music, playing sports, going to concerts, etc., it's been a blast. You've been a great friend through the good times and the tougher times both in and outside of lab.

Jordan, I cannot thank you enough for all you have done for me over the last few years. You really helped me persevere through some tough times and get on the right track. You've provided an enormous amount of guidance, mentorship, support and advice. I find your practicality, determination and thoughtfulness inspiring. You have been a great friend outside of lab as well, and your ability to mix true professionalism with an easy-going, friendly and fun attitude is unparalleled.

Katy, your positive energy and sense of humor were infectious in the lab, and I always appreciated your guidance and advice. Perhaps the best compliment is that the lab really felt like it was missing something after you left. **JJ**, you have been a great friend and coworker, and I really appreciate your level-headedness and positive attitude, which make you always very pleasant to be around. **Jim**, you always seem to be willing to selflessly help when others ask for it. I have always appreciated your generosity, advice, and sense of humor. **Fei**, thank you so much for all of your help with various experiments and techniques over the years. You were very generous on many occasions and it didn't go unappreciated. **Mandy**, thanks for your assistance at various times over the years, you were a great collaborator and I appreciated your professionalism. **Dave C.**, thank you for

providing a great deal of assistance early on in my graduate career, you were always very thoughtful and generous.

To the rest of the **Dervan Lab**, it's been a pleasure working with all of you during my time at Caltech: Thomas, Jerzy, John, Justin, Dan H., Julie, Christian, Claire, Carey, Michelle, Mareike, Nick, Josh, Dan G., Sam, Jevgenij, Emil, Jamie, Tanja, Alissa, and Tim. What an incredible and talented group of people I've been able to work with over the years! I know I have learned a great deal from all of you, so thank you for providing a professional, comfortable, and intellectual environment at all times.

To my **friends outside of lab**, I'm so glad I was able to get to know all of you over the years, I couldn't have asked for a better supporting cast. In particular, my longtime roommates **Ian and Justin**, I'm so glad we ended up living together, thanks for choosing me and being so welcoming when I arrived and just being great friends throughout. I'd also like to give shout outs to Chris, Kristina, Keith, Chithra, Young-In, Myles, Jeanluc, Andrew, Thang, Allen, Matt W., Shannon, Eric L., Matthew V.W., Ted, Chethana and Eric, in no particular order, you all are the best! To my **non-Caltech friends**, thank you so much for being a constant source of support and being so welcoming over the years. You are all truly great friends, and I'm not sure I would have made it through grad school without you. In particular, thanks to Matt, Shin, Nick, Alyssa, Josie, Erin, Alex, Michelle, Adam, John K., Lam, Aaron, Mike. I'm blessed to have such incredible friends.

The **Caltech Staff** has always been extremely friendly and helpful to me. I'd like to thank Vicky Brennan and Lynne Martinez in particular, who have both done so much for the Dervan lab over the years, always with a smile. I would also like to thank Joe Drew, Ron Koen, Paul Carroad, Steve Gould, Anne Penny and Agnes Tong for all that they do. Your hard work and friendly attitudes are appreciated, and your value to the department is immense. In addition, the Caltech facilities are all very well run under the leadership of Mona Shahgholi, David Vander Velde, Scott Ross, Shelley Diamond and Scott Virgil. Thanks for all that you do.

To **Megha**, thank you so much for helping me survive grad school, you were a constant source of support. You are so smart, caring, funny, and amazing in so many other ways that I couldn't attempt to list them all. I'm blessed to have you in my life. To the whole Mehrotra-Somani family and Sunil and Pravina in particular, I've always enjoyed for your warmth and kindness, and occasional hilarious shenanigans. You've always made me feel welcome and part of the family, thank you so much!

Finally, truly none of this would be possible without my family. To my **Mom**, **Dad**, **Lauren**, **Tom**, **and Susie**, and my entire extended family your constant support has helped me in so many ways get to where I am today. I love you and I can't ever thank you enough.

Abstract

DNA is nature's blueprint, holding within it the genetic code that defines the structure and function of an organism. A complex network of DNA-binding proteins called transcription factors can largely control the flow of information from DNA, so modulating the function of transcription factors is a promising approach for treating many diseases. Pyrrole-imidazole (Py-Im) polyamides are a class of DNA-binding oligomers, which can be synthetically programmed to bind a target sequence of DNA. Due to their unique shape complementarity and a series of favorable hydrogen bonding interactions that occur upon DNA-binding, Py-Im polyamides can bind to the minor groove of DNA with affinities comparable to transcription factors. Previous studies have demonstrated that these cellpermeable small molecules can enter cell nuclei and disrupt the transcription factor-DNA interface, thereby repressing transcription. As the use of Py-Im polyamides has significant potential as a type of modular therapeutic platform, the need for polyamides with extremely favorable biological properties and high potency will be essential. Described herein, a variety of studies have been performed aimed at improving the biological activity of Py-Im polyamides. To improve the biological potency and cellular uptake of these compounds, we have developed a next-generation class of polyamides bearing aryl-turn moieties, a simple structural modification that allows significant improvements in cellular uptake. This strategy was also applied to a panel of high-affinity cyclic Py-Im polyamides, again demonstrating the remarkable effect minor structural changes can have on biological activity. The solubility properties of Py-Im polyamides and use of formulating reagents with their treatment have also been examined. Finally, we describe the study of Py-Im polyamides as a potential artificial transcription factor.

Table of Contents

Acknowledgementsiv	
Abstractviii	
Table of Contentsix	
List of Figures, Schemes, & Tablesxii	
List of Abbreviations xviii	
List of Symbols and Nomenclaturexxi	
Chapter 1: Introduction	
DNA Structure and Function	
The Central Dogma of Molecular Biology25	
Transcription Factors and Cellular Signaling	
DNA-Binding Small Molecules	
Recognition of the DNA Minor Groove	
Pyrrole-Imidazole Polyamides	
Development of Py-Im Polyamides with Therapeutic Potential	
Regulation of Gene Expression with Py-Im Polyamides	
Py-Im Polyamide-Mediated Gene Activation	
Scope of This Work	
References	

Chapter 2: Enhancing the Cellular Uptake of Pyrrole-Imidazole Polyamides	
Through Next-Generation Aryl Turns	
Abstract	5
Introduction	5
Results and Discussion)
Conclusions	7
Materials and Methods71	l
References	3

 Chapter 3: Synthesis and Biological Activity of Cyclic Pyrrole-Imidazole

 Polyamide Libraries
 87

 Abstract
 88

 Introduction
 89

 Results and Discussion
 91

 Conclusions
 108

 Materials and Methods
 109

 References
 123

1		2
Polyamide Aggregates126		
Abstract		
Introduction		
Results and Discu	ission	
Conclusions		
Materials and Me	ethods	
References		

 Chapter 5: Synthesis and Evaluation of Polyamide-Isoxazolidine Conjugates

 as Artificial Transcription Factors

 Abstract

 157

 Introduction

 158

 Results and Discussion

 167

 Conclusions

 191

 Section 5B: Synthesis of WM Conjugates

 192

 Materials and Methods

 195

 References

List of Figures, Schemes & Tables

Figure 1.1: The 3-D structure of helical dsDNA	24
Figure 1.2: Structures of DNA-binding proteins	26
Figure 1.3: Structure of the interferon-ß enhanceosome	27
Figure 1.4: Structures of actinomycin D and distamycin A	28
Figure 1.5: The electronic environment of the minor groove of DNA	29
Figure 1.6: Recognition of the DNA minor groove by distamycin	30
Figure 1.7: Recognition of the DNA minor groove by Py-Im polyamides	32
Figure 1.8: Structure of the Im-Py pairing adjacent to a G•C base pair	33
Figure 1.9: Polyamides can enter cell nuclei and access chromatin	34
Figure 1.10: The two routes of modulating transcription	35
Figure 1.11: The allosteric effect of polyamide-DNA binding	36
Figure 1.12: Transcription factor targets	38
Figure 1.13: A polyamide based transcriptional activator	39

Figure 2.1: Current polyamide structural motifs
Figure 2.2: Aryl turns allow increased uptake
Figure 2.3: Cytotoxicity and DNA-binding of β -substituted polyamides51
Table 2.1: Cytotoxicity of β-amino and β-aryl polyamides
Figure 2.4: Inhibition of gene expression by β -aryl polyamides
Figure 2.5: Inhibition of gene expression by β -aryl polyamides (cont.)
Figure 2.6: Time courses
Figure 2.7: Time course analysis of polyamide-mediated inhibition
Figure 2.8: Relative cytotoxicity of fluorescent analogues
Figure 2.9: Quantitative fluorescence analysis of β-turn substitution
Figure 2.10: Percentage of cells labeled as a function of time
Figure 2.11: Analysis of β -aryl and β -amino polyamide efflux
Figure 2.12: Confocal microscopy of β-aryl polyamide uptake
Figure 2.13: Time course of uptake of polyamide-FITC conjugates
Figure 2.14: Influence of polyamide dosage on cellular concentration
Figure 2.15. Cytotoxicity of various β-aryl polyamide cores
Figure 2.16. Inhibition of hypoxia-induced expression
Scheme S2.1: Monomers, dimers, and scheme for solid-phase synthesis74
Scheme S2.2: Scheme for solution-phase derivativization of polyamides75
Scheme S2.3: Complete structures of polyamides 21-2675
Scheme S2.4: Scheme and structures for fluorescent polyamides

Figure 3.1: Strategy for synthesis of differentially protected cycles	90
Table 3.1 Standard deprotection & microwave-assisted coupling times	91
Scheme 3.1: Microwave-assisted synthesis of cyclic polyamides 1-7	93
Table 3.2: MALDI-TOF data and yields for polyamides 1–8	94
Scheme 3.2: Preparation of cyclic polyamides 9-11	95
Scheme 3.3: Preparation of FITC-labeled cyclic polyamides	96
Scheme 3.4: Preparation of cyclic polyamide 8	97
Scheme 3.5: Preparation of hairpin polyamide 17	98
Figure 3.2: Models of substituted turn along the DNA minor groove	100
Table 3.3: Tm Values for polyamide library	101
Table 3.4: SRB cytotoxicity data on compounds 1-3, 9, and 15	103
Table 3.5: SRB cytotoxicity data on compounds 4-7, 10-11, and 16	104
Figure 3.3: Confocal microscopy of cyclic conjugates, A549	106
Figure 3.4: Confocal microscopy of cyclic conjugates, T47D	107
Figure S3.1: Confocal microscopy with bright field images, A549	120
Figure S3.2: Confocal microscopy with bright field images, T47D	121
Figure S3.3: Cytotoxicity of Cbz-conjugated hairpin	122

Figure 4.1: The use of solubilizing agents	129
Figure 4.2: Hairpin polyamide library	130
Figure 4.3: Cyclic polyamide library	131
Table 4.1: Estimated radii of polyamide aggregate particles	133
Figure 4.4: Soluble concentration of select polyamides	134
Figure 4.5: Soluble concentration of polyamides with cyclodextrin	136
Figure 4.6: HPLC traces of mouse plasma	138
Figure 4.7: FITC-labeled mouse injections	139
Figure 4.8: Timecourse of plasma addition to cell culture	140
Figure S4.1. Concentration vs. peak area plot from HPLC traces	148
Figure S4.2. Structures of carbohydrate solubilizing agents	149
Table S4.1: Estimated radii of polyamide aggregate particles	150
Table S4.2. Mass spectrometry for unpublished compounds	151

Figure 5.1: Structures of DNA-binding proteins
Figure 5.2: Modes of polyamide-based gene regulation
Figure 5.3: A polyamide attached to a peptide activation domain161
Figure 5.4: Synthetic activation domains161
Figure 5.5: Luciferase assay for active and inactive isoxazolidines162
Figure 5.6: General structure of a polyamide-isoxazolidine conjugate163
Figure 5.7: Targeting the pG5luc promoter region164
Figure 5.8: Isoxazolidine compounds sent from the Mapp laboratory
Figure 5.9: Proposed library of polyamide-isoxazolidine conjugates
Figure 5.10: Solid phase synthesis route167
Figure 5.11: Cleavage and coupling of protected isophthalic acid168
Figure 5.12: Synthesis of carboxylic-acid derivatized polyamide169
Figure 5.13: Retrosynthesis of polyamide 7
Figure 5.14: Synthesis of t-butyl protected tail171
Figure 5.15: Synthesis of tetramers172
Figure 5.16: Solution-phase synthesis of full polyamide
Figure 5.17: Synthesis of acid-functionalized polyamide175
Figure 5.18: Isoxazolidine coupling and <i>tert</i> -butyl deprotection
Figure 5.19: Initial synthesized stock of proposed conjugate library177
Figure 5.20: Second batch of isoxazolidines from Mapp laboratory
Figure 5.21: Routes for linker attachment (long linker variant)
Figure 5.22: Synthesis of polyamide-isoxazolidine with longer linker

Figure 5.23: Compounds for initial luciferase assay by Mapp laboratory 180
Figure 5.24: Initial luciferase results from Mapp laboratory180
Figure 5.25: Luciferase assay for longer linker conjugate
Figure 5.26: LNAR+ experimental timeline
Figure 5.27: Compounds used in LNAR+ assay
Figure 5.28: LNAR+ assay results184
Figure 5.29: LNAR+ assay raw data185
Figure 5.30: LNAR+ assay results for 43 186-7
Figure 5.31: Polyamide downregulation of GILZ transcription188
Figure 5.32: qPCR data for polyamide-isoxazolidine compounds
Figure 5.33: WM target compounds
Figure 5.34: Synthesis of WM conjugate

List of Abbreviations

А	adenine
Ac	acetyl
Ac ₂ O	acetic anhydride
A595	absorbance maximum
AR	androgen receptor
ARE	androgen response element
A·T	adenine Watson-Crick hydrogen bonded to thymine
ATCC	American Type Culture Collection
β	beta-amino alanine
Boc	<i>tert</i> -butyloxycarbonyl
Boc-Im-OH	(4-[(tert-Butoxycarbonyl)amino]-1-methylimidazole-2-carboxylic acid)
Boc ₂ O	di- <i>tert</i> -butyl dicarbonate
Boc-Py-OBt	[(1,2,3-Benzotriazol-1-yl 4-[(tert-Butoxycarbonyl)amino]-1- methylpyrrole-2-carboxylate)
bp	base pair
BSA	bovine serum albumin
°C degrees	Celsius
С	cytosine
C·G	cytosine Watson-Crick hydrogen bonded to guanine
calc'd	calculated
Cbz	carbobenzyloxy
ChIP	chromatin immunoprecipitation
cm	centimeter
Da	Dalton
dATP	2'-deoxyadenosine triphosphate
DABA	diaminobutyric acid
DCM	dichloromethane
dex	dexamethasone
DFO	deferoxamine
DHT	dihydrotestosterone
DIEA	N,N-diisopropylethylamine
DMF	N,N-dimethylformamide
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
Dp	N,N-dimethylaminopropylamine
DPPA	diphenylphosphoryl azide
DTT	dithiothreitol
EDTA	ethylenediaminetetraacetic acid
ELISA	enzyme-linked immunosorbant assay
EMSA	elecrophoretic mobility shift assay
ESI	elecrospray ionization
Et ₂ O	diethyl ether

List of Abbreviations

Ex	excitation
FBS	fetal bovine serum
FITC	fluorescein isothiocyanate
Fmoc	fluorenylmethyloxycarbonyl
γ-DABA	γ-2,4-diaminobutyric acid
G	guanine
G·C	guanine Watson-Crick hydrogen bonded to cytosine
GABA	γ-aminobutyric acid
HIF-1α	hypoxia inducible factor 1α
Hr	hour(s)
Нр	3-hydroxypyrrole
HPLC	high-performance liquid chromatography
HRE	hypoxic response element
Im	N-methylimidazole
IPA	isophthalic acid
Ka	association constant
Kd	dissociation constant
λ	wavelength
LN ₂	liquid nitrogen
m/z	mass to charge ratio
μ	micro (1×10^{-6})
Μ	molar
m	milli (1 x 10 ⁻³)
Max	Myc associated protein X
max	maximum
MALDI	matrix-assisted LASER desorption/ionization
min	minute(s)
mol	mole(s)
mRNA	messenger ribonucleic acid
MS	mass spectrometry
Ν	A, T, G, or C
n	nano (1 x 10 ⁻⁹)
n-BuLi	n-butyl lithium
NF- % B	nuclear factor-xB
OBt	hydroxytriazole ester
р	pico (1×10^{-12})
PCR	polymerase chain reaction
PSA	prostate-specific antigen
Py-Im	pyrrole-imidazole
qPCR	quantitative polymerase chain reaction
RT	room temperature
RT-PCR	reverse transcriptase polymerase chain reaction

List of Abbreviations

PAGE	polyacrylamide gel electrophoresis
PBS	phophate-buffered saline
Ру	N-methylpyrrole
PyBOP	(benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate
R	guanine or adenine
RCF	relative centrifugal force
RIPA	radio immunoprecipitation assay
RNA	ribonucleic acid
RNAi	ribonucleic acid interference
RT	reverse transcription
siRNA	small interfering ribonucleic acid
Smad	Sma and Mad-related protein
Т	thymine
Τ·Α	thymine Watson-Crick hydrogen bonded to adenine
t-BuOH	<i>tert</i> -butanol
TF	transcription factor
TFA	trifluoroacetic acid
TFO	triplex-forming oligonucleotides
THF	tetrahydrofuran
Tm	midpoint of transition temperature
TOF	time-of-flight
TFRE	transcription factor response element
tri/triamine	3,3'-diamino-N-methyldipropylamine
U	uracil
UV	ultraviolet
VEGF	vascular endothelial growth factor
Vis	visible
W	adenine or thymine

 ^جې NH -GABA- \tilde{z} ∬ 0 ۶^۶ NH -(R)-2,4-DABA-(NH3+ ૢઽ ઽ 'NH₃+) O ۶^йн "NH₃+ ••••NH3⁺ -(R)-3,4-DABAž [] 0 H N V |⊕ _N _H -(+ -Dp H H H Sight Street H H -tri-Ο -IPA IPA 0