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ABSTRACT

We consider the following singularly perturbed linear two-

point boundary-value problem:

Ly
By

Q_(ele%lx) - Alx,e)%(x) = {0 DS X< (1a)

L(E)%(O) + .RK)%(U = %(e) € — o! (1b)

Here .D.(E) is a diagonal mgtrix whose first m diagonal elements
are 1 and last m elements are € . Aside from reasonable
continuity conditions placed on A, L ,R ,_’E > %, we assume the
lower right mxm principle submatrix of A has no eigenvalues
whose real part is zero. Under these assumptions a constructive
technique is used to derive sufficient conditions for the existence
of a unique solution of (1). These sufficient conditions are used to
define when (1) is a regular problem. It is then shown that as
€= C)+ the solution of a regular problem exists and converges cn
every closed subinterval of (O‘l) to a solution of the reduced prob-
lem. The reduced problem consists of the differential equation
obtained by formally setting € equal to zero in (la) and initial
conditions obtained from the boundary conditions (lb). Several
examples of regular problems are also considered.

A similar technique is used to derive the properties of the
solution of a particular difference scheme used to approximate (1).
Under restrictions on the boundary conditions (lb) it is shown that

for the stepsize much larger than & the solution of the differ-
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ence scheme, when applied to a regular problem, accurately rep-
resents the sclution of the reduced probiem.
Furthermore, the existence of a similarity transformation
which block diagonalizes a matrix is presented as well as exponen-
tial bounds on certain fundamental soluticn rnatrices asscociated with

the problem (1).
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0. INTRODUCTION

This thesis is concerned with the properites of the soluticn
of a singularly perturbed linear two-pcint boundary-value problem.

The form of this problem, called the general boundary-value prob-

lem, is:
Utx) Aixer Ao Agte Utx) ‘ Fixe
D € Vi = A-ulx,&) A 1 inEr € AZB(""’ ] rix} - iz(;'é; (1)
€wix A;.tx,&: e An(x,é[ Pl33 (xe) | L Wix i‘s(x,@.' j

e L L;lt)] ym-l % Ve, Reer Rye)| wo | = %(e)

Y’to) J ) (2)

o W)

0 < x4\ e—>o+

Here the square matrices A" . Au, 'A‘33 have the orders m, ™,
M, respectively, and there are m+m+m; linearly independent
boundary conditions. In addition to reasonable assumptions about
the continuity properties of the matrices Aiﬂ . L; 5 Ri and vectors

i; " % , we make the following:

Assumption: For some positive constants P € and each
(x,€) e 10,11xL0,€.] every eigenvalue of ARIX,H (3)
U\nh&.@) has its real part less that —/u (greater than /u.).

It is possible, as demonstrated in chapter one, to transform a
large class of singularly perturbed linear two-point boundary-value

problems into problems of the form presented in (1,2). In this
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transformation we use a nonsingular matrix whose existence and
properties are developed in chapter four.
One conseqguence of the assumption presented in (3) is

contained in the following:

Theorem: Suppose the matrices Auu,ﬂ, A;;k:,&) depend
continuously on X and € , for (x,é)Eb,l]x[oleo]:
and satisfy assumption (3). Define the fundamental (4)
solution matrices Y,_ix;u ,}glx,t) by the following

initial-value problems:

EDxY;LlX,TJ = Autx,m\/z(x,t; Y,_tt,'t) =1
06x,T %I
eb,g\/g, nx) A;;(x,e; X(x,t) Y3('C,'(J =1
Then there exist positive constants Co ;o 5 &

such that for all €£{5,€.d :
3 A
‘ f-l(x,'m ‘ ¢ G M[—{""g(x-‘t)‘ O<$T<xs!

lYB(x;n l £ (D MF {‘%’(t—xﬂl O¢ x€t4l

Here the symbol l' ' denotes the infinity norm. The proof of
this theorem may be found in [7] , and in chapter four we
present a slightly modified version of the same proof.

As a result of the theorem presented in (4) it is possible
to formulate a constructive proof that for all sufficiently small €
a solution of the differential equation (1) subject to the boundary

conditions:

|
ulo) = UE wlo) = €YV
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exists, is unique, and satisfies an a priori bound. Let it be
understood that we always require the parameter € to assume
only positive values. The boundary-value problem descrited by
equations (1) and (5) is called the special boundary-value problem.

Using the method of matched asymptotic expansions we
derive a formal asymptotic solution of the special boundary-vaiue
problem accurate to order € . This accuracy estimate is then
shown to be rigorously correct through the use of the a prior:
bound satisfied by the exact solution of the special boundary-value
problem.

At first it appears that we have gained little information
about the solution of the general boundary-value problem by solving
the special boundary-value problem. Fortunately, this is not true.
From a result found in [2] , and presented in Theorem .28, we
can use the asymptotic expansion of the solution of the special
boundary-value problem to state sufficient conditions for the exist-
ence of a unique solution of the general boundary-value problem.
These sufficient conditions constitute the basis of our definition of
a regular (general boundary-value) problem. In Corcllary 2.69 we
state that the solution of a regular problem exists, is unique, and
converges to the solution of the reduced problem on every closed
subinterval of (0,1) as € —~>0'. The reduced problem corresponding
to the general boundary-value problem consists of the differential
equation obtained by formally setting € equal to zero in (l) and an

initial condition obtained from the boundary conditions (2). We
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apply this corollary to several examples which are presented at
the end of chapter two.

Much of the work presented in this thesis was motivated by
a desire to discover the properites of the solution of 2 difference
scheme applied to the general problem (1,2). The form of this

difference scheme, called the general difference problem, is:

h h L 1 LY . T A
(,mrn) uli)} Au'}.’ le. AG] 1 ?_{".‘:(,'1‘—1)'.‘ Ek(a-) f‘] | -}_ﬂél
h E{qr‘a+l) fvia}} .ula,) A a) eAzsa) l "\f:ld"'ij J + ! i;‘z’ (6\
\WIJ*‘) 'urh‘a;f A;,a) € 323) AS}‘]’ w (a') L _:l')
h f
‘\-.‘ﬂ Lt Ls“"’-l ‘-*h‘” + [Ryie Ry Rgte)] }5}\(:;-! = Qe
(o) iy ) T
-k ‘_{.:J)
wile) ymj
Here we have defined:
-
h = T X.{ = "(k
'S h
Aii (2) = Aia'(xn+§_,51 t. = {’;(X“L,_,G)

We recognize the difference scheme presented in (6) uses a mix-
ture of the forward, centered, and backward Euler methods. The
choice of what difference scheme to use was motivated by the
desire to apply the following theorem, whose proof can be found

in chapter four.
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Theorem: Suppose the matrices An(!,t), Aﬂ!x,el depend
continucusly on X arnd & , for (X,GJELOH]R[",QO],

and satisfy assumption (3). Define the discrete

(8)

versions of fundamental soluticn matrices % k),
Ll
\/sl-‘i,k)by the fcllowing initial-value problems:
hoh _ -Ak gk A
eD; Yog o = Agyty TG Ry Y, ik, k= I
O0t;% I 0¢R%J
EDa- ya‘jl"" E A33(23 \)/3 (}’,k) Yotk =T

Then there exist positive constants Co’ A, €,

such that for all €&(9,¢]:

ik
Wogml € G/l ockgg

[

J

h k-3
IY,'"aa-,k;l ¢ Glli+ag)E o¢eheg

We recognize theorem (8) is similar to theorem (4). As a result
of this similarity it is possible to carry over many of the tech-
niques used in the general boundary-value problem to determine the
properties of the solution of the general difference problem. From
Corollary 3.72 we find that under suitable restrictions the solution
of the general difference scheme converges to the solution of the
reduced problem on every closed subinterval of (Oll) as E,}\—> g,

The restrictions placed on the problem for this convergence to

occur are that:

(a) the general boundary-value problem is regular,

(b) the boundary conditions (2) do not involve (1) or w(0).
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The most important point of this convergence result is the
fact that the solution of the reduced problem can be accurately
determined for h>»€. This fact is in sharp distinction to the
usual convergence results obtained for difference schemes, the
usual convergence results would require h<<é€ .

By using the results presented in this thesis it is possibie
to modify the general difference scheme and improve the results
obtained. One improvement eliminates the restriction (9b) by
applying the general difference scheme on a nonuniform mesh.
This nonuniform net has its mesh points concentrated near the
boundaries X=0,1 . Unfortunately, to retain a given degree of
accuracy in the representation of the solution of the reduced prob-
lem as €->0+ it is necessary to increase the total number of mech
peoint at a rate proportional to fm ‘EL . Another improvement uses
a modified version of the general difference scheme to improve the
rate of convergence of the solution of the difference scheme to the
solution of the reduced problem. Each of these improvements is
possible because we have detailed knowledge of the behavior of the
solution of the general difference scheme.

Singular perturbation problems of the general form presented
in (1,2) have been considered extensively in the literature, see for
example [9, 10; 115 12; 13] . The procedure used in this thesis to
study the boundary-value problem (1, 2) differs from those presented
in [9, 10, L1, 12, 13] in the fact that it is constructive. It is the
constructive nature of this procedure which allows us to apply it

almost directly to the study of the properties of the numerical
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scheme.
Throughcut this thesis a consistent eftort has been made to

adhere to the following notational convention:

D ... the derivative operator. A subscript is added
whenever the function differentiated has more

than one argument.

S
D' ... the forward difference operator. A subscript
is added whenever the function differenced has

more than one argument.

b .. the infinity vector norm or its induced matrix

norm.

The numbering of equations and results is done consecutively
throughout each chapter. When a reference is made tc a number
outside the present chapter it is preceded by the number of the
chapter in which it occurs, i.e. a reference to 2.76 means equation

seventy-six in chapter two.
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1. BASIC CONCEPTS

1.1 The General Problem

We consider the following two-point boundary-value problem:

i’g (xy = ﬂ(é)D"\%'.(m - A\‘\X,(-):g(x) poms "f(;;,e)

[

(43}

(B«'; = T_(m‘,}(m + R (e)%’m = 'g‘u (1)
XEI-:-' ‘_OJIJ

where:

€ ... a small positive parameter,
I - Qxl identity matrix,
{lw = [ :gm ',(t)' "%’_tx) = | ¥ }
€l ZFx ,
£ 2)
A (x,E) = 3 (K,G) 17_(1153 'F‘XJGJ — =1 X€)
1‘ (x,E) Au_(xjt) - + (xJEJ

-~

) ! mef
ﬂ ) A ) "% ) { . . . compatibly partitioned matrices
and vectors.

We shall assume, for some E;O and Eo = [O,E;‘ , that cne of the

following sets of continuity conditions holds:

(a) Af,LRg are infinitely differentiable
functions of X and/or € for (X,€)E IxEO.
Lood L ~ e - -~ ~) (3)
-t 1

continuous functions of X and/or € for (X,€ }EIxEO.



(3)
Clearly conditicns (3b) are satisfied whenever conditions (2a) hold.
-~

Furthermore, we require the matrix AI‘L to satisiy the following

eigenvalue (E.V.) condition:

E.V. Condition: For each (x,e):IxEo no eigenvalue

of Azz“‘:‘) has its real part equal to zerec. (4)

In the development of the theory which follows we shall see
the eigenvalue condition (4) has two important consequences. The
first consequence of (4) is contained in Theorem (1.29), while the

second consequence is described in the following:

Theorem 1.5: Let the matrix f‘n(";" depend continuously on

-

X and € for (x,e)eIxEo. 1f An(xie) satisfies the
eigenvalue condition (4) then there exists a nonsingular

matrix T(x,e) such that:
~)

-1 = Aixe O
(2) T(x,t: P\n_lr,e)T(x,e: = ~i2) ix,e)e ITx ED 5
0 Ajpwe
For each (x,€)elIxE every eigenvalue of
il & 2
(b) An)(x,e) ( ﬁn )(x.u ) has its real part (5)

negative (positive).
The continuity properties of ﬁu_(x,e) with

(c) respect to X and € are also enjoyed by
) L
T(x.e) JRu(x,e 3 Auu,g) .

The proof of Theorem (1.5) may be found in chapter four. In this
proof we show the existence of a positive constant F. (independent
of X and € ) which bounds away from zero the magnitude of the

real parts of the eigenvalues of An(x,é). With this in mind we

may interpret statements (5a,b, c) in the following manner. State-
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ments (5a,b) tell us the numnber of eigenvalues of An {(x,€) , count-

v

ing multiplicities, with negative (positive) real part is independen
of X and € . Once this fact is known, one may construct for each
- -
(x,e) a matrix T(x.l:) which '"block diagonalizes' An(x,e) in the
manner shown in (5a,b). Finally, (5c) states the existence of at
least one choice of the matrix lixe) which has as many derivatives
-

with respect to X and € as does Au(X,E) .

Note that the differential eguation:

g
eDiw = Apxe Ew
under the change of variables:

-

£ (X = Tixel £(x)
becomes:

=l -~
eD B0 = T(x,e:{ An(x,e)_ﬁu,u = g D‘T(x,e;} £ (&)

~
Therefore, when A‘t.?. satisfies the continuity conditions (3b) and the

eigenvalue condition (4), we may use Theorem 1.5 to choose -r(x,f:l

such that:

-} -
T(x,h{ An(x.ﬂ-rh,t) -e)D ‘Tu'@ } = Au‘i,‘:) eAu(x,e)
EAsz_(KJEJ A;S(X'Q) 3

reR O (6)
Au(x,é) = AZ.‘?. (x,e) + O-(E) N
€= 0

= {2)
As;u'e) = Au(x'el + G(ej

In an exactly analogous manner we will make the change of vari-
ables:

Im 0 W (x) '
x l 0 -Ex,e) 2 (7")

I 151
=
—_
M
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wx

where .T(x,e) is the matrix chosen in (6), to transform problem

2x) = [
L

(1,2, 3,4) into problem (8, 9,10, 11):
f-%(x) = .Qm-D«im - Atx,s)%m = ‘£(x,e}
@'\é = L(ehi(oy + Rm%m = a_(e) (8)
XEI = {.O:‘l

where:

€ ... a small positive parameter.
0<e <€, E,=100e]

Il L1k ﬂx‘l\. identity matrix.

I, 0 0 f xe
le= 0 GIm 0 f(x,e b fzf.x,éi
0 0 EIm-,_ fs x,©& (9)
An € An_'-lﬁ A‘?‘(x,e} Wex)

A(x.e'—'— A-L. (X&) Au(x,a eﬂlgl:.et '%m = Ty
A,,u,e} EAnlx,(-J f\,stx,e W

ﬂ N A, 1% ) i . « » compatibly partitioned matrices
and vectors.

Under the change of variables (7) we lose some of the differenti-

ability properties of the functions involved, therefore (3) becomes:



functions of

(12}
(2) .A\ " f ,L " .\‘? are infinitely differentiiable
X and/or & for (Y,€ )EI#.E‘.

A 3£)L&R23 ).DxAl‘z_,Dxpuz)Dx P‘?_z:D;P\;s are

continuous functions of X and/or €& for

(10)
(b)
(x,e )¢ IxE_‘.

As illustrated in (6), the eigenvalues of Anuﬁ.!;) are perturbations

o) -ﬁm
of those of An( n)- Therefore, by choosing €, sufficiently small
we deduce from (3,4, 5c, 6):

E.V. Condition: There exists a positive constant M such

that for each (x,€)eIxE, every cigenvalue of An(x,E)

(A”(x,e)) has its real part less that -}A (greater (11)
than "'}A )

We call problem (8, 9,10,11) the general problem.

Since the trans-
formation of variables (7) is nonsingular, we recognize the boundary-

value problems (1) and (8) are equivalent

To illustrate the type of behavior we can expect of the solution

of the general problem, we consider the following model problem:
T o
eDumi 4+ Duw = ¥

wio) s u’ NMUER'S

(12)
D$x €\

When written as a first order system, problem (l12) becomes:

1 0 UK 0

- : [w” - 0] (13")
0 ¢ iK) 0 -V J|vw {°



' o ’u(o)“l + .!b O G-i %’ : % L
o o) v Lt odlww) T [w] o

The exact solution of {13) is:

] I E
u | oo [ua + (ui—‘u"-“o) Li- UIP(“%)]/[HULP('Z')J + % J (14)

il Lé‘(u'—u‘-—{u} MP(-%) /[l-ml:{-éﬂ + §°

As E-’O* we find WX} is a bounded function on T.O, 11 while arx)
is bounded only on closed subintervals of (0,1]. Near the bounda-
ry X= 0 we find both W and ¥ make rapid transitions of an ex-
ponential nature from their value at ¥=0 to their value for X
near zero; in fact V(0] blows up like g

Therefore, considering the extra complexity of (8) when com-
pared to (13), we expect solutions of (8) tc have W bounded on o, 1]
while v,w are only bounded on closed subintervals of (0,1) . Near
the boundaries X% 0,1 we expect u,-'\r,‘ur to undergo rapid transi-
tions of an exponential nature from their boundary values to their
values near the boundary. In these regions of rapid transiticn,
called boundary layers, we expect ¥ and/or w to blow up like E_l .

In many cases of interest our expectations about the behavior
of the solution of (8) will be correct. However, we hasten to point
out that our expectations can be wrong. For example, if w°= e

in (13) then both W and v blow up as €= 0% | while for u'=u’+4°

no boundary layer occurs at x=0 .

1.2 Banach Spaces and Differential Equations

In the theory which follows we shall use the idea of a Banach

Space (i.e. a complete, normed, linear space). Two examples of
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a Banach Space which we will use are:

h!
Example 1: The Banach Space~€m[0, 1. The linear space
involved is the space {0,1] of all contirucus N-
vector complex-valued functions defined on the interval

[0 \]. The norm involved is the sup-norm:
) E
hf€n = Mi:{ ffl: xelonl! (15)
1£8 = mw{l'i'jln“- ‘5}.“"}

N
Example 2: The Banach Space bwto,:x' . The linear space
N
involved is the space Do 71 of a1l N-vector complex-

valued functions defined on the integers (0,1,...,J}.

The norm invoived is the sup-norm:
WEu = (1Ed = feto,.ym} :
- MF\ -‘}} = }E 1‘1.-4) (lo)

From a Banach Space (X,{l-1), where X is the linear space
and !l the norm, one may construct a second Banach Space as
follows. Define f(X) to be the space of all linear operators
mapping X into itself. If K!z(X) we say K is bounded iff

the number:

KKl = wp{“Kx“: xtx amd. llxll=l} (17)

is finite. If we define Bi(}() to be the space of all bounded linear

operators, then under the norm (17) BI(X) is a Banach Space.

Example 3: If A(l,'g) is a continuous NxN complex-valued
matrix defined for (x,'g )£ (o, 1]:‘_0, 1] , then the

mapping:

X
K{(x) = fm +J;A(x,3) f“&’ ahé (18)




W
is in Gi(?c 0, ).

=

Example 4: If A(i,j_)is an NxN compiex-valued matrix
defined for (‘i,a‘ YE(O; 1, ¢ ) {0; 1;.4-«T); then the

mapping:
K'_r'xé:
is in 8 ¥ (HJo, 7).

«
1 -

El}‘) 3 E'Z
k

e
“

!
P Bk (19)

o

With these ideas in mind let us prove two well known results:

Theorem 1.20: (Banach Lemma) Let (X,l-ll) be a BRanach
Space and KEBI(X). £ UKl<) the operator I-K

is nonsingular and:

-1 _ o0 m
(2 (I-K L = Zm'—O K B (20)
(b) M-k’ € (- ugh)d
N m N
Proeocf: If we define L'N E ZM“K‘ , then {LN %o is a

Cauchy sequence in the Banach Space 6 X (X).

Therefore, for some | € GI(X) the sequence

@
{Lu}o converges to L . Furthermore, since:

Lo(I-K) = I-K

we find:
LT-K) = %«‘:;nmL,,(I* Kl = I
Therefore L’- (I‘K)-‘ . Since:

LW e Et\\Ku“‘s (V- wwi)™

then:

BLd = &m BLE € (1= akm)

N-=ya
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Theorem 1.21: ILet (X,k-fl) be a Eanach Space. If K,

-1 -l
K', LeBX(X) then for each positive €< K L

and all 1el$ €, the operator K+el is non-

singular. Furthermore:
@ (K+el)' = (I+4eKUK" |
) WK+ el & {i—eliLi)™ KN

}]

(21)

Proof: Since K is invertible we deduce:
-]
K+el = K{I+eKLl)
Therefore (21) follows because (I + €K.lL) is

nonsingular by the Banach Lemma (20). ##

Since the general problem (8) is a linear differential equation,
let us list the basic ideas underlying the solution of linear differen-
tial equations. Let Ctx) be a sguare matrix depending continuously
on x for x£[0,1] . Follewing Ince T1] we define another square
matrix Y(x,7) , called the fundamental solution matrix (F.S.M.)

for Ctx), by the initial-value problem:
D, Yixu = Cuw %x)

Y( gi) = I

KR RER (22)

Among the well known properties of Yt are the following:

(a) Y(X.T) is a uniquely determined nonsingular matrix

() Yo Yy, = T

(c) DTY(";_'“J = - le,T) C(T) (23)
(d Y=<y = T+ f:‘/(x,S) Cisrds

One obtains (23c) by differentiating (23b) with respect to T and using

(22,23a). To obtain (23d) replace ¥ by § in (23c) and integrate the



result from S=T tc $8=X

Consider the differential equaticn:

'm-%m = D%H} - Cw ‘%m = fw Dsxse) (24)

I 'S’_ is a continuous function of x for xt L0, 1], then the unique

solution of {24) satisfying the initial condition ‘%= g(s: at X=3 is:
X
%(K) = Y(K,S)'%‘S) +* JS YixT) f(ﬂ d (25)

Formula (25) gives us a representation of the solution % of (24)
given its value at some point $t[0, 1], and it is called the varia-
tion of parameters (V.O.P.) formula.

Finally, consider the following pair of boundary-vzalue

problems: .
m '4\'{);:) = fwo
BV(v): ) w; (
) -
® %tv) = ,%"‘o) 3“) = % (26)
v 051 0 ¢ xs 1
We note BV(0) may differ from BV(1l) only in the boundary

conditions. One well known result is the following:

Lemma: BV(y) has a unique solution for every £ %

1»)
iff the matrix @ Y(*,O) is nonsingular.

The proof of this lemma rests on the fact that any solution %“:Jx) of

BV(v) has the unique representation:

¥ m = Yix 02 ‘\_} 40) + J ‘/x,r: 'F(‘[']o{'l' (27)

derived from the V.O.P. formula (25). Using (27) we argue there

v
are as many solutions of BV(v) as there are solutions ‘3 (o) of
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the algebraic problem:
W) !
8 ‘y(-,o)} '\{y’(o) = % - R Jo‘/u,tj {1 dz

Following Keller and White L], we may use this lemma to prove

the following:

Theorem 1.28: If BV(0) has a unique sclution for every

'L a_ then there exists a unique matrix z {(x)

satisfying:
&

MZw =0 B =1 (28)

Furthermore, BV(l) has a unique solution for
o
every i,% iff ® ’Z is nonsingular.
The proof of this theorem follows by noting Zln has the rep-
resentation:
-1
{02
£w = th,o) { ® \/l-_.ol}
which, upon rearrangement , leads to the identity:
) Pl lo) 1
B Yoo 1@ 2B Yol
When we consider the general problem (8,9, 10,11) in the

following chapter, we shall make extensive use of the following:

Theorem 1.29: ( Exponential Dichotomy) Let Aulx,E),

A;—slx,tl be continuous functions of X and € , for
(x,€)¢ IxEl, which satisfy the eigenvalue condition
(11). If Yyx7),YylxT) are the F.S.M. for tA,x0,
%An‘*-i) respectively, then there exist positive constants
K,,E-,_,A such that for all 0<€%£é€,:

@ Phaol ¢ K mf(-%(x-tn} DsTExX £

(b) Iyg(tlnl £ KoMF l-%( ""} R ERER (29)
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As mentioned in section 1.1, this theorem is the first important
consequence of the continuity and eigenvalue conditions (3.4). The
proof of Theorem 1.29 will be found in chapter four. We should
note the norm used in (29) is the matrix norm induced by the vector

norm l'

1.3 A Perturbation Example

We illustrate the use of the basic principles outlined in the

previous section by considering the following initial-value problem:
i
D win ~+ Duwxy + EpixIuix = ‘F(x;

wie) = 0 Duter=0 (30)
O3 %%}

i
Here o.,,-F are in 'Em[o,s] and € is a small parameter. By

integrating equation (30) we find W  must satisfy:

Duwx)y = - wxy + ):{ for) - eqew un.—;lo(’c (31

If we note the F.S.M. for -1 is:

y(x,?.) = MF{" (X"T).‘

then an application of the V.O.P. formula (25) with $§=( allows us

to deduce from (31):

1§ € ¥
utxy = Jo U‘f“l!—tﬂ_’o {fs) - casruimt ds dz (32)

)
If we introduce the operators K’LE ‘Bz(fwlv,i]) defined by:
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X %

! 9 c X
kg(x) = -..‘o j wp&—ix-m}dr_ gts‘ds

S

(33)
Lgm = O-ingcx.\
we note we may write (32) equivalentily as:
(I+eKL)w= K4 {34)
If we choose €,» 0 such that:
UKL, <!
then an application of the Banach Lemma states:
M= - (T+ekL] KL lel s €,
exists for &l & €,, and satisfies the bound:
IMI s Mg = (=g KL JIKLD, tet<e,
Furthermore, we find:
(I+eKL) ' = IT+eM €l & €, (35)
Using the identity (35) we may write (34) as:
ws= (I+eM)k{ lel & €, (36)

We can interpret equation (36) in the following manner.
First, it states a unique solution of (40) exists for all sufficiehtly
small € ., Secondly, it states the unique solution of (30) satisfies

the a priori bound:
N lig, ¢ (14 €My ) Kl NFI e § €, (37)

Furthermore, equation (36) implies:



g~ K+ + Gle on '€l= 0
where the =~ sign and the symbol {r are used in the follow -

ing manner.

Let f,g be members of some Banach Space (X,l-l). We

interpret the statements:

+~ q + O oa 1€l =>0
(38)
‘F""‘(}"‘ 6“@) on €+ O
as implying the existence of positive constants ¢€,, K, satisfying
the inequalities:
m
l\{—%“ s K, el o~ l€1=>0
’ (39)
h{-—%“s K, ™ oo E-—>O+
Suppose the exact solution of (30) admitted the expansion:
wo ~owyta + Cte™ oo l€1—0
(40)

N-i
wy, X1 = ‘[;o Egugtx)

If we substitute wy into (30), collect like powers of € , and set
the coefficient of €™ (for m=0,1,2,...,N-1) equal to zero, then
we are led to the following sequence of problems:

y
'Duonu + D'uom = 'f(p

5 (41a)
U lo) =0 ~Du‘,(O) =0
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Z L . . .
Dujua T DU-,\UU B o= A0 Uy ix)

o (41b)
mytor = 0 -D‘u_.m(m = 0

We find (32) may be used to solve (41) with the result:

Ut = .r.f.uxf x-ttde fisids (42)

X x
Upix) = = J; _LL:F§-IX-TJ}Jt aes: u,_, s) ds 1S me N-)

Let w denote the exact solution of (30), while wr, is

defined by (40) and (42). We deduce from (30) and (41) that the

error €y F U=~ uy satisfies:

e N
'De,,uu + henlxi T caeyixy = ENali Upmy 1)
(43)
eyior = & deytor = 0O

By applying the a priori bound (37) to the exact solution of {43) we
deduce:
N
hegh, ¢ (14 e,M ) K Nau, g el lel$e, (44)

We recognize (44) as the rigorous justification of the statement that:
wx) ~wn, =+ 6(6”) ay €= 0

In general, if % satisfies the boundary-value problem:

;e %(n = flx) Q% = % (45)

and we have shown:
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-%l:n ~ owx * 0(6"') o, € >0

then we shall call w~ an asymptotic (expansion of the exact)

solution of the boundary-value problem /45).
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2. THE GENERAL PROBLEM

2.0 Formulation of the General and Special Problems

We consider the general problem:

f.%(x] = Q(EJD-\%—(!) e A(X,e)\i:(;o = {(X,E)

(1)

@'\* = L(e)m_:tw) < 3 R(é)%(\) = %le)
XEI = LOJ‘]

where:

€ ... a small positive parameter.
EI’O E|=l[0)e|]

Iﬂ e QxQ identity matrix,

Iﬂ'\ 0 O £| ‘X.G)-!
Qo= |0 eI, o foor = | funo
0 o L, fu ) g
Au (xe A TALAY A.slx,(-.) wix)
A(X,&) = Auu,el Au(x,a EABU'GJ %‘m = W (x)
Ay(l.‘:) EA;,_H,E: F\.‘G(x,a WX

-O- ) A. ‘ﬂ. > { . .. compatibly partitioned matrices
- and vectors,

We assume one of the following sets of continuity conditions

holds:



s
]
’

n

-~
{vl
fa

(a) A.‘F,L,R,g are iunfinitely differentiable functions

*
of X and/or € for (x,€ JeIsE,.

(b) A i f ,L, R, Q)DXA"L:D‘ A!:u Dx AﬁanAn are contin-

uous functions of X and € for (X,&)elxE

(3)

1
Furthermore, we place the following condition of the eigen-

values of the matrices AR,AB

E.V. Condition: There exists a positive constant IS such
that for each (X, E)t:I:-xE1 everv eigenvalue of
An(x,e) (Aéx,e)) has its real part less than -}a. (greater (4]

than -t’,t).

As mentioned in section 1.2 , the eigenvalue condition

(4) leads to the following:

Theorem 2. 5: (Exponential Dichotomy) Let Aa_(x,E) P

Anlx,e) be continuous functions of X and € , for
(x,€ )z Ivdi)1 , which satisfy the eigenvalue condition
4). I Yo, Yimm  are the F.S.M. for th e
"{P\B\x.a respectively, then there exist positive constants
C,,e_‘,A such that for all 0<e$¢€,:

A
@ haal ¢ C, mF(-z(x-t)} O5TE xS

B
(b) l\/,tx.t)l ¢ C,MP“%(’E-KJ} Dsxgnil (5)

We also consider the following special problem:

I—%m = fwe (6)

6*\# s \f_(g%(o) + R*(r-)«*m = %'je)

where:



I 0 0 0 0 0| s
L= |0 €I 0 Rie=]0 ¢ ¢ %f(er = | aree

0 0 o 0 0 €1 (&) (7)
‘%, ) lf, R*, %’ ... compatibly partitioned matrices and vectors.

We note the boundary-value problems (1) and (6) may differ only

in the boundary conditions.

2.1 Formal Asymptotic Solution of the Special Proklem

In this section we will derive, by the method of matched

asymptotic expansions, a formal asymptotic solution of the special

problem:
'f'%tx) = 'E(x,e)
(B*% - %‘(e)

We assume the continuity conditions (3a) hold in addition to the

XE 1

——~
[¢¢]
"

eigenvalue condition (4). Before we apply the perturbation method

let us define the following matrix and vector functionsa:
- -)
a(xie) £ Aulu,e: - A,,_lx,ei Au_lx,el A,,(x,i) - ABU(,(-) A;;‘x,(-) As‘ Ix, €)
v -1
Elx,(-) - 'L(x,(:) = A,-‘._lx,el Kulr,eli(x,e: . Austx,e) A33 & '.E;“‘ﬁ)

L

_ _ R _ (9')
A\im = A;: (x,0) A‘J = A,-)'(o) A’J = Ai;‘”

- L R-
f;m - ‘E;“‘."J f; = ‘_F.- (o) f; : i‘“’

Ay = (lx,0) Foo = E(x,O)



(27)

LR : 3

cl-;_ VA = Y\-D: Al‘;_lxwe) e 3 DE A,_.,-_(;QO’GJ Xo‘: ] '}u‘\. L
LR =, L™ :

C33 ) = KI)* AS?&“X"ID) 3 De A;g(\‘-‘(sjo) x0=\ +ﬂ R

\/.(x,'t.) oo FES.M. $0 O

{9")
LR (4 le \-R
N = axp { e Agt ... ESM $n A,
LA
%

LR LR
T = .tm?{ (x-T A3; 1... FESM fn AS}

_ LR LR LR LR
Y(x) = \/“.") };‘u) = yz. (x,0) 3 tn) = \lf-, t'x,o)

Since the eigenvalue condition {4) holds for the constant
LR

LR
matrices An. ) A'.B we find the following:

Theorem 2.10: There exist positive constants CO,A
such that:

L,R ~ = 3
(a) l Y‘L (x,o i $ C, ox I‘ Dix-T11 C s X-2 (10)
. | Y;}(xm 1s C, Lxp {—A(T-x) 1 0$ 2-x

The proof of this theorem may be found in chapter four.

We note the boundary conditions for the special problem

may be written as:

o -]
U ue i 9 2o &
Vvie) = .é- _b(.Gi ~ 3 1;.‘: o -: + O(E) e->0 (11)
1 '
W Twe w, w,

We now apply the method of matched asymptotic expansions

to derive a formal asymptotic solution of (8). Consistent with the

expected behavior of the solution of problem (8), as discussed in

section 1.1, we assume the following expansions are valid:



(28}

Outer Solution: In each closed subinterval of (0,1} we

expect w,w ,w to remain bounded as €=20%. We

try in this, the outer region:

UK @ 3N J)
m d
Vix) ~ ZD € i oo €¢— 0
m
W ’\_;_rn(x,

Left Boundary Layer: (L.B.L.) Near the left boundary

we expect u,¥ ,w to undergo rapid transitions
of an exponential nature from their values at

x= 0 to their values for X near zero. In this
region of rapid transition we expect U to remain

bounded while ¥ and/or w may blow up like

-l

3 as €>0¥. We try in the L.B.L.:
L
Bml [ve) - ‘1.'.‘,.“)

+
voo | 7 2 € N s @ €= 0°
w m ! L )j
Y W, (5

. = X
u =0 $§= & $20

Right Boundary Layer: (R.B.L.): Near the right boundary

we expect ¥ ,Y ,w to undergo rapid transitions

similar to those encountered in the L.B.L. We

try in the R.B.1..:

R
LU LI B R P
v | 7 Z.‘ € v Rn on € 0
m

wix) '\u’Rtw
~ -

R - - X=1
w_,tm= 0 = T&0

(12)

(13)

(14)

Note that the three expansions (12,13, 14} have the form of
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a power series in € . The important difference between these
expansions lies in the choice of the independent variable X,§, or
¥

Once the expansicns used in each region have been chosen,
the procedure for recursively determining the unknown functions is
straightforward. The steps one might follow are:
1. Choose one of the expansions (12, 13, 14).
2. Change the independent variable, if necessary, to the

one used in the expansion.

3. Substitute the expansion into the differentizal equation,

expand A and ‘I’_ with respect to € , and collect like

powers of €

After these steps have been performed, one is left with an

equation of the ferm:

0 = f%(.) - i-[.]e,) ~ Zm’ Gm-Pm(-)

o e»0t (19
) .. X5,00 ¥
Since € varies independently of X,S§, or v, cne then argues
that (15) will hold for €-»0O% iff:
?m(.) = B o swma m
(16)

(.) e & & x,s““

If we wish to find the solution in each region to order € ,

we must solve the following sequence of problems:
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Quter: Dsxs¢ i
t
I —-'{‘o“" A“m F\nm A.,m U tx) i _'&_.tx;
P B l o | = | Apw Apw © voo |+ | fw (17)
0 I. Az‘lm 0 Anln ’\:r‘(l,.J i':gn
Liw B Lusls S$=z20
L L L
P D l}_j"-‘ ) = A'L'L O '!-.| (s)
- 1. S L = A‘- |
"E‘:l (s 0 217 '\f’_.(” (18)
L
’l..}:w OL o 0 1-‘5:‘5’ ﬂ{z ".’-\u'l‘."’ + R\E ‘:"—E“’ .
| 9
Py: Ds ’Lf:uf = Ax An vots) | G s +hA,w et f;
ke L
'\gf:ul Ay, o Ay \_v:uw An Az sy 4 Gatorwlis + ‘E:
R.B.L.: v &0
R
U ir) A, © VoM
P D = AR -‘% ;
=1 r Lo 0 33 w (19)
R ®» R Ow
Bt‘r} ‘ - ‘.*:m Ap 4 Rz i a]
- LI ® R *, R
Py .Dr '!:‘” - A?J All 0‘ Y:"” +| G - +‘R A:?‘A*’-'.”"’ » i").l
R R _R s, . , IR
'hfn‘f) w l p‘!l o] AB 15_:-:”, P‘hl’.—."”* Cnhr) rmT ‘!’s J

By using the V.O.P. formula (l.25) we may solve problems (17,
18,19). Since the representations of the solution in (13, 14) are
valid at the boundaries X=0, 1, it is reasonable to demand these
representations satisfy the appropiate boundary conditions listed

in (11). We therefore deduce:

OQOuter: LIRS S

x
W, = Y.m U, o) + .fo Yixzy Fimdz

(20")

'tl'o{x, = - Alll” { A?_‘lxi W00 + {1“)}



-1 *!
r&rq‘x) 1 A_s_s(x‘ { Ix: W (k) + 33{!} 5
L.B. L. §20
7
L ° %
__-:'IS) = Y;‘S) v, ‘ty;f'm = \/3(9 '1_011‘(03
2 v 4
L - L i Lo Y g
W, 51 = U + -L ‘ A.ﬂ_{"t) "+ AQ'RJ:‘(T) bt
L S L
Lo L L
sy = Y.,_ts: ve + jo \l‘._ls,t){ Av w oty + G v
L/ Ly
+ A'*.:s'.".‘.-“_ = + '_F,_ b d=
/
L L L
"f-o (s) = Y v w ‘o) + j y ‘S,{) I A3|“ Lt} + Asl "'-l
A
+ C33(LJw lL) + ‘F A"'
/
BBl r&0
R R/‘ R R )
Y-?"N = Yzlr) v, 80l wo = Yy” w.,
/ :
r 7
R R L
‘I.L:'lﬂ = _Roth + 'Io{ Au'l_ff.‘(t) =+ A.;fg_ltwl‘it
f F i
N = Yoo o Yo A .
e SR L' Ty10)

R
-+ fo Y,_hr,‘t) { Az: \_J_L:'(—\; + (ntr)/’lr_‘(-c)
® R
+ AB 15-?“" + :E,_ b de
A
L R "'\ R R R
w,n = Y; Ul ﬁgo‘ - jo )’3 T I As.'i_lg:n) + Ah 'U'R(t,
3
+ G whie, 4+ 114z

The solutions determined in (20,21, 22)
undetermined constant vectors:
U, (o) wt

Lk Y n
) W, lo) y W, o) ’lr__.w, » YU loy v, (8]

involve the as yet

(720")

{21)

(22)
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To determine these unknowns we employ the following elementary

version of a matching principle:

Matching Principle:

(@) Lom TLB.L. SlTiom | Bioe § O, St}

$-Dec ) A=>0 (24)
) fim {RBL Sk b = Lim | Ofon Soliliew | ‘

T=> =co x=> 1

If we note:

L L L . L 3
Yy, = Y Yo Qom Y0 = @
S=- o
R R R i 2
yz tr,o) = \fq_cn Y,_(O,'c) L/m \/7_ lr) = @ )

T =0

then the limits as §9%e® and r--o occuring ir (24) will exist

iff:
1_9':(0) = 0 , __?'(o) =0
v J“’ tor | AL oL LoL 38
“g’o te) + s Yz (o,T) A!l‘fg‘""-" + Agz"fqtt’ + 1 }al'c = 9
=~
R R R_R R R
g (0 -+ .L \/z("f“ { Au ey + Auﬂf_v:‘(r; - {':. }ol‘c =0
These results lead to the cancellation of the terms /-’ indicated in
(21,22) and a further simplification of ‘\g;l' and 'y-:‘" Using
these results we find (20,21,22) become:
Outer: 0 < x<l
X
u ) = Ypu u, e + Jo \/,x,t) Fade (25")

-l
'lro (xy = = Au\l» { A.“(x) WU ix ) * ‘Ezu,.';



A\
{33)

-y b
e (%Y = = Asz(” I As:“” w v + '_&imj (25")
Tsu B Tasis $20
__“—(5) = Yl(S) 'P"_Io 1_!_7'_.-(3 = 0

i = ° js L oL
U s) = u, + An'\_r,ll‘nd‘c

L L 0 [s ¢ LoL & K " 2]
o s = Y, 6] LA SR AR {Au Ut (-‘._ltngr_‘m'*-fdé‘c
. T et A aden + AL £
Wresy =07 s\/3(s,tr 3l‘u_\o[1;;+ 37___.£m+ l;d't.
B.B, Y r<0
R
vl = 0 . -
Y-
R g
wm = wher + JD A w tridz (27)
-o0
R R_R R_R R
’I_I";er = J _\/,_(f.z) { Au EO(TJ + Al'i 15; (r+ ‘Ez fJI‘
R
"ir:“;) = Yj u‘)‘\u“ + j y \f'tl‘{ As‘u (T + C3slT1 (T) + } }J‘t
Using the functions (25,26,27) one finds the matching principle
(24) is satisfied iff:
'go(o) = 'L\ + J AI?. (T]C‘T - An. 2 --1
" (28)
- R
u ly = °(0J+ .( A‘, w‘.(t)olt & 1L in) = Axs P‘33

From the properties of the F.S.M. as described in section 1.2,
and the relations (28) obtained from matching, we may partially

integrate (26,27) with the resuit:
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L Akt A
u ol + A AL, Vs

whm =
- s Lo 5 ys ‘AL AS
W ls) = v te) + L) LY, - qu(o)} ¥ o \/Lfs,?) { A-u Au A?.z.

L - ]
-+ Cnm} Y ttidr A

(3
'y_r:(sl = '\_x_!;(o) = J:g:a (S,'t]{ Pil Alﬂ f'\ + A }Y‘T)t:lt
(29)

-)
ROk !
user = ow, W+ Al As Yoo wy

"\I:‘n) = o - .I Y IT,t){Aup A AB} ((:Jt ‘\g..l.
‘urr(f) = w W + Y \‘fl‘.'w' ‘h-\'“)] +J l\rt){ 'q;ﬂAlsP'

+ Chm I Ywde !

Note that the first term on the right of each equality in (29) rep-

resents the common term shared by both the outer solution and

each boundary layer solution. If the expansions (12, 13, 14) are

added and these common terms subtracted, one may obtain the

following composite expansion:”

an E->O+

'%nu ~ ‘itx) + Gle)

(30)

A =
\;txl

(1]
15> li) (73

where:



"

_ AL AL AL X R
U uos + A AL ﬁl\e)' 2 4+ AR Ay

~ _'_ L i a x.l
Vo Voo 4 <@ Bt + \-’1(‘5;’{‘_'“50- vl + U0 w!

w oo + € (&) 2+ é@*(x? \/ (%) L. Ef.,“‘]

A
W ix) 3

X
U x wa ulo -+ jo Y{X,t) Foadr

-1

oy ® - Au(x: i P\l\m w,tx; + lem‘

wt 5
= A;; (%) § Az;lxﬂ}.o(x) + -Lbu |

w, e
= o (31)
Ulor = % - Anﬂ v,

R
1_10(.\] E I‘uR(iN - A f';s J_J_P_‘

- Loab Al
P = Yom + Ejo\’ 5,71 R'u Ao Ay -+ \ulul Y ndz

6’,_m - *[r \/:w,'n { F\: ﬂ; A:; An” (e
@,(s» "= = Js Y;ts,t) ‘ A;" A,-: Ai_ + P.;“l} \/:m dt

R L. 1 A R
6’4m : \/,lﬂ + € jo \lzl*r,‘t){ Az, A,’; A:‘! + Gito '}\/3tr>i~c

2.2 Existence of a Solution for the Special Problem

In this section we will prove the special problem (6), subject

to the continuity conditions (3b) and eigenvalue condition (4), has a

unique solution. Furthermore, we will derive an a priori bound

which this unique solution satisfies. Before we state the theorem,

let us define the following matrices and a norm on .C Loal:
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: - 5 -1 R
Cli.x,en i A“lx,h = »c‘\-_:(l.éiAu(u,h Au(z,m - A& A_v,glx,é) Hg. {x,€)

Xlx,t) ... F.8.M. -}n A tx,€) Xm) = yl(x,a)
XL
Y.ixo... FSM fo € Ape Yz"" = Y, (x,0) 2
/
1
Yixzy... 8 M foo € Au(x,e; y:tx): Y (x,1)

I
hgn, = J 1w ldx

Theorem 2.33: Under the continuity and eigenvalue condi-

tions (3b,4) the special boundary-value problem

(6):

*®
I%lx) = ftx,e) 8 ‘% = gle)
has, for all sufficiently small € , a unique solution.

Furthermore, for all sufficiently small € , this

unique solution satisfies the bound:

Nl Clruml+eluwml + ¢ Pl + D40+ 0g 0, + B0, }
(L4 W C.{ il + Ive b+ ebwo b4 WEL+ 045+ 0E), } (33)

0wl $ C.{ VuigJ+ bl + Lol + 040+ 00,4 \tltsﬁw}
Here C. is a positive constant independent of €

Proof: Consider the differential equation i-% = £ .  Integrate
the equation for ¥ from x%=0 and apply the V.O.P.
formula (1.25) with S=0 (S'-'-‘) to integrate the equation

for & (w ). The result may be written as:



I- KA, 'KoAiz —“(0‘5"-3
9 = 9, = €K4= -klAu
-K3A3|

X
K. 2o = JD Zods
X
KI T = Jayl(X,TJ Zindz
) X
K?. £ = € Jo Y;_(x,'c) el dt

. ik
Kizws= © J; Y1 2o de

(34)
] 0 0 0
0 =& 0 0 KzAn
T 10 KA, o
B(Q} * K"i‘-u .[
Y,_"\ICOJ + Kz'f,_
X"‘f“; + Kzl";
(35)
Z e 'CNLO.t]

Yoz = Y oo
'3y i = Aia.(x,e) 20

Qew= lx,e) &l

N
IN + « « the identity operator in 'e [0,1]

By using the continuity conditions (3b) and the exponential

dichotomy (5), one may prove the linear operators K;,
X- , A"l' 5 O. are bounded. These bounds, as weil as

those which follow, may be chosen to hold uniformly in
€ for all & sufficiently small.

Note that for suitable matrices o , F ;e

Ll Ll flen

Q= oz-‘o‘P



(38)
Therefore, by comparing the forms (35, 36) one deduces

the inverse of e, (if it exists) has the form:

_ 1o oo . | ., _
6= |0 1,0 | + | kA& [T ka. KA,
0 0 TIn Ky An (37)
Q ¥ 1= KoAu - KoAuKz.Au - K,:.A|3 KiAs
For some €& in (0 ,€21 we will prove:
'Q. = (T+ekKg) (T+ KAL) Q<€ s g (38)

where KB is a bounded linear operator. Therefore the

-1
identity (37) will be wvalid, and 6. will be a bounded linear
operator for 0<€$€;. To establish the identity (38) we

first prove:

KeAn KRy = = K AAL A, + €Ks

bees €, (39)

Ko Ais K; A = - Ko ABP:; At €K,

where KS’KL are bounded linear operators.

Let us establish in detail the second identity:

S S
- 1
KoK Ap iz 2 jo Aglse e J‘ Y60 Agie 2o de ds

X
= -éj

o

\
A‘sls,ﬂ js Ys (s,1) A.;lT,G) todtds

split the T integral.
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3 ~%
‘ f
- E.! Az )

o iz < Y; (5,0 A\s‘-{:‘) Ty J'T. J»s -+ K‘ ‘-EE;U

, -+~ change the order of integration.
X T
' —
= =% Jo L Ay 0 Yts,ods Antt, e 2ode + K zwo

i -
€ \13(5,1') e Antg,u .Ds\é(s.t) "
integrate the § integral by

parts.

-l

X
- J:-, Ase Au e Pate zvyde 4+ €K 20

"

- Koy Ay Azt + €K 2

Note that for 0<ef¢g;:

l.I

A \/3(5,1'; A;JT,EJ Az dv ds

— ] 'K

-‘- — | b 4 i
E KLglx) + ‘EJO ‘_ Alslo,el An(o'e) )[,. o) +

Ko ztn

T " ;
-Lbs{ Autsio) Ay s,01 fiso d;] A, e ewde

By the continuity conditions (3b) and the exponential dicho-
tomy (5) satisfied by Y, we find K{ is a bounded linear
operator for D<é&¢ €. To establish the first identity in

(39) we note:
X o
Ko ALK AL 20 = Jo ALiser € L hisv A ire 2 deds

change the order of integration.



X X
b 4
= € Jo J—: A h6,tds Ayer 2in da

-L - |
£ Y1‘-S,T} = All \'S,G.’ D_‘yllS:T);
integrate the S integral by

parts.

]

X -1
..Jo F\nﬁ‘,ﬁ) A-‘._,_IT,G) A.u(?)e) §(71J7. + < KS Zix)

-1
- Ko Altp\zz. Au%(") + € Ksil“'—’

where:

5 P -
K; ) = € Jo [An(x,sp Alq_‘x,él);lx,t) -

ijs{ Az-(s’“ A:LIS,G)} \Als,t: ds ] Al.(*;,é) (D dt
T

From the continuity conditions (2b) and the exponential dicho-
tomy satisfied by Y‘)_ we find Ks is a bounded linear oper-

ator for 0<¢€<¢€g. By using the identities (39) we may write:

® = I-K, 0 - €K,
K'rE K5+KL

(40)

where, for O¢€£¢€,, K-, is a bounded linear operator . Note

that:

K, 0K, = K=K, (41)



(41)
because:
= I* |
K|0uKD¥_-.(x) e \/,lx,s; a{S;e) A 1_'5(1-:«:!7(!5
. change the order cf integration.

X X
= Io » Vx5 Qe ds 2ade

. use the identity (1.23d).

X

.L { p 4T -'I} C_&l?)dt
= K|§lx) = Kbli_(x)

Therefore , we find:

(T+k0(T-K,0) = T+HKO-K,0~-KaK0 =T

from which we deduce:

(I- K,,(l)-‘ = I+ KQ (42)

From (35,40) we have:

43
Q= (T-kO| T-emrkk, ] o
If we define:
€= 3 ™ {ntz+x0d lel:) hé:'K*ll;‘, 2¢. |
Kg = (T- elTHKalK, )-‘[I+K.a] K, (44)

Ke= (I- €6, K,) 8 Ky



(42)

then by the Banach Lemma (1.20) :

hKgh, ¢ 2 Iz+Kal Kl
0CE < g,

Kyl € 2 1 6Kl

Therefore, we conclude the operators KS’ K9 are bounded
independently of € for 0<&$¢€; . By an application of

Theorem (1.21) we deduce from (37,43, 44):
= -}
(I— Eg;‘K4) = 1T+ ng
-1
(T-elT4K,01 K;) = T+ eKg

-] =]

O<et€; (45)
= (X4 ng)B,

g

‘Q-‘ = (T4+eKg) (I+KQ)

If we collect the results contained in (34, 35,37, 45) we find

for some bounded linear operators Ke,Kg

O<es€y  (46)

i o 0 0 = -
0,=| 0 T.. 0 |+ KAy |Q LT KAw KeA,]
0 0 -I'm:. K3 A3l

R = (I+eKy )T+ K Q)
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From (46) we deduce the result that the special boundary-

value problem has, for all sufficiently small € (i.e.

for 0<€£€; ), a unique solution. The derivation of the

a priori bound also follows from our knowledge of the detaii-
-1

ed form of © . To derive this a priori bound let us

note the identities:

(T+ K0 K, = K,

(47)
(T+ KO ue = Y, wo

The first identity follows from (41), while the second identi-

ty may be deduced from (l.23d). As a result we find:

=)

B LT KA, Kipd B = LT+ eKgllue + (48)

K\'_E. <3 K;A\q_(yz”\_r“”'{' Kz.i:q) + K‘A!3(Y;"‘.‘:"“J+ KB .{3)]

From the continuity conditions (3b) and the exponential dicho-

tomy (5) satisfied by Y, Yz, we deduce from (48):

BBTT Kohw KoRulB i ¢ C Ll luwl + e Tvwl +
(49)
elwaol + B4L + 080+ 080, ]

for some constant C-,. and all € in (0,53]. Combining
this bound with the result contained in (46) we obtain the

a priori bound (33), valid for all O<efé€z . ##
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2.3 Asymptotic Solution of the Special Problem

In section 2.1 we derived a formal asymptotic solution (30,
31) of the special problem (6). In section 2.2 we deduced that the
special problem (6) had, for all sufficiently small € , a unique
solution. This unique solution also satisfied the a priori bound
(33). We will now use this a priori bound to rigcrously jusitfy

(30) as an asymptotic solution of the special problem.

Corollary 1.50: Let the continuity conditions (3a) and the

eigenvalue condition (4) hold for the special problem
(6). Then, for all sufficiently small € , the unique (50)
solution of the special problem has the asymptotic

expansion (30, 31).

Proof: The steps we perform in the proof of this corollary are the
same as those presented in section 1.3, where we justified
(1.40). From Theorem 2.33 we know, for all sufficiently
small € , the special problem {6) has a unique solution
‘%tx) . Let ‘%!KJ be the formal asymptotic solution (30,31)

of the special problem. Define:

€ (x) = %w - ‘%(x)

‘I_A_el X)

€
)

i

Cuo

who

We immediately find that:



_9;8
. -
Be = | 9| ~ Owr o € O (51)
_ge

Let us define:

e
foea = i%(x) - E!X,(»

€
fxe
itx,e = 'Ef_(x,e)
* ad

and note:

np €
ig(x) = ‘Elx,él

By using (31) we find:

@ ®

m L L o] 1 1
i"elxiq) = ‘Dgotvq + é P\n_yz l%) v, + € As \73R x?-) }f’_l.,
® =YL SR @|
-A.,(x,ev{'u ) =+ Au. l;.-:. Yzlg v+ A‘;A:a )’3 (E‘_:-'

- -]

t:-

>(

- Aatxo {,'l,f,,!,xJ 1 Q(%)"i’:*‘ “é“ Lo -"rl03] A }

@ ® @ ;

- Ague {'t_a_r_m + 6 Z)n? +7 G’ (x"j w +)f ,[J_h o))
®

he i‘(x,GJ
If we note:

® ... from the continuity properties of R,? . f
with respect to €, and the relations between
W, V,, and w, , these terms cancel to
order &
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LR L
P : vl
@ ... due to the exponential dichotomy );_ and /3
satisfy, these terms each make at most an crder
& contribution to ihe i-norm of ¥

-y

@ ... from the continuity properties and exponential

_dichotomies:

-
I (AS- Awral L3120, ~ B @St mp 400 an ] ~ Ot

% ' y &
I I:\/:(%,T){ A:. A;A;'i‘ C:;_h; J Yotwde o B, ~

O ( J: Mr (‘é‘) Jo—{(l*'t) dv dx ) s 0(6)

and so the l-norm of the difference of the terms
@ is of order €

@ ... by reasoning analogous to that used in @ above,
the l-norm of the difference of the terms @ is

of order &

then we deduce:

“‘f_‘e“,"" w03 on €0 (52)

Next, comsider f, . We find from (31):

®

© ® @ B
‘E:W.e)= ehy;m+'!é@,'( Bl + ALY, (2) Tl - i) + B1%)

-l

@ 9 - @
_A.uuc){uu.)-i-An_AuY( }:u- -rABABSY( Jw} }

® L . ® e
- Anlx,e){‘\_[bm +e Pl '2:? + Y, (3)- yoml + € (%) w,

@ ) @

&P\h(xe){wm-!-e( )V + e@ )‘lu’ +Y (XL‘.'W-‘w-mJ}

@
= ‘E'z_ (x,€)



If we note:

® ... each of these terms is of order € .

from the continuity properties of A, , ‘_‘;7__ with

respect to € and the relation between P
these terms cancel to order €
® ... from (31):
' L T T E L
Cesr = AnBis +E{ A, AL AL + G FY, i)
the ‘continuity properties of A,,, A,
L L
A-h_(l,G) . A11+ EC‘L},('%) + O(ll-l-ex +€1)
t €30
L
Al,u,e) ~ A,_, + Oxt e
and the estimate:
&
o ’”flt--gﬂ ~ O In %20 0 €26" (53

we deduce the terms @ cancel to order €

@ ... from the continuity properties of A?.L and the

estimate (53) the terms @ cancel to order €

@ ... from (31):
* ¥ R ] R
B = ALCe + TASALAL + ARt Yiom
R
@,mf' Yy ey + 8o e €2 0O

the continuity properties of A],)':

R .
All-tx,c: e A‘i + G((\-x) + €) on €0
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and the estimate:
A '
(\-x)"m‘;\-'e(l—n} ~ G fa X8 oa €90

we deduce the terms @ cancel to order €

Therefore, we find:

hE N, ~ O o €2 0" (=

In a manner analogous to the argument yielding (54) we

estimate:

e +
It f‘ \, ~ G e €20 (55)

By using the estimates (51, 52,54,55) in the a priori bound
(33) satisfied by § we deduce, for all sufficiently small

€
hely, ~ G s &3 O (56)

The estimate (56) is the rigorous justification of the error
A
estimate made in (30), in other words 1# and ’% agree

to order € , uniformly for x& 10, 1], as e—=ot. ##

2.4 Fundamental Matrices of the Special Problem

In this section we define two fundamental matrices related
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to the special problem (6).

Definition: Let Zo(xi be that matrix which satisfies the

boundary-value problem:
LE, 00 =0 8%, -
olxl = o= 1 (57)
Let 'Z,(n be the matrix defined by:

Z,m = Zm_[:, (58)

where:

I ALAL O
=) 0 T O (59)
0 0 &

Under the continuity conditions (3b) and the eigenvalue
condition (4) we find Theorems 1.28 and 2.33 guarantee the exis-
tence and uniqueness of the matrix 2, for all sufficiently small €
Of great interest to us will be the values 2,,2, assumes at

A= 0,l.

Corollary 1.60: Under the continuity conditions (3a) and the

eigenvalue condition (4) the matrix ZD admits the

asymptotic expansion:

N
an ~ Z;x, - G(GJ o €0

(60')

T o

A 0
ZD(O) = LcC.l L -ELI
-A33 A3| @5 0



(50)

. YIIJ )h) A;—‘_ A'-ll - A!:; AR"i
2011) = nRI,YU F\,_z Au Yy A ,1/\ & (60")
0 0 o

where:

gl I S VY G
6)3 o) + A33 AZI Hn, Au. G?L = P?.(D)

Furthermore, we deduce:

Z‘m ~ 'Z,(x; + b 0s e->o+

¢ i
. I A;AL 0
F0 = o ¥I 0

[ sA.’n @; to 0 (61)

R

. o o0 As A
Zly = A“ ANYw 0 @, 0

L o GI

(\) -
Proof: Let 'Z ) and €; represent the ¥~ column of Zo and

I respectively. We recognize Z m satisfies the special

problem:

f zh:n = 0 3 Zm

This problem has, for all € sufficiently small, a unique
solution. Furthermore, from Corollary 1.50 we deduce
‘_ol(":) admits an asymptotic expansion obtained from (30,
31). ‘These asymptotic expansions lead directly to (60).
By multiplying through by the matrix To , defined in (59),

we also deduce the form given for z; p ##

Due to the improtant role the matrices Zo, 'Z, play in the

determination of the existence of solutions of the general problem
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(1), we shall call Z\s ,E( the fundamental matrices associjated

with the special problem (6).

2.5 Existence of a Solution of the General Problem

A direct application of Theorems 1.28 and 2.33 jg the

following:

Theorem 2.62: Consider the general problem (1) subject
to the continuity and eigenvalue conditions (3b, 4).

Let Z,, E, be the fundamental matrices of the

62
special problem (6). Then the general problem )

has a unique solution, for arbitrary f ,Q and
g
all € sufficiently small, iff the matrix tB'Zo
(8%, ) is nonsingular.
Proof: Under the continuity and eigenvalue conditions (3}, 4) we
know, by Theorem 2.33, that the special problem has
a unique solution for arbitrary f ,s, and all sufficiently
small € . Since Vo, as defined in (59), is nonsingular
we deduce the conclusion of this the'orem by applying -

Theorem 1.28. 4y

Unfortunately, we do not have enough information to calcu-
late either GZ, or B#, , so Theorem 2.62 is not immediately
applicable. Before we apply Theorem 2.62 let us make the

following:

Definition: The general problem (1) is said to be regular jsi:

(a) the continuity and eigenvalue conditions (3a, 4) hold. (63")
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A A
{(b) the matrix Bo= gimo+820 (B'zgf;“;ﬁi') exists {63")

and is nonsingular.

With this definition we now prove the following:

Corollary 2.64: In the general problem (1) is regular then

it has a unique solution for arbitrary f ,% for (64)

all sufficiently small £
Proof: Since the general problem (1) is regular we know the

matrix Be is nonsingular. Consider the identity:

8%, = Bl I+ B [6Z,-8,1}
From the definitions of Bo s %o we find:

Sim B, LBZ,-B,] = 0 ,

€0
Therefore we infer from the Banach Lemma (1l.2C) that the
matrix L+ B‘;L@i;.a,l is nonsingular for all sufficiently
small € , i.e. the matrix BZ. is nonsingular for all

€ sufficiently small. Furthermore, since the matrices

2
L) , Ro admit asymptotic expansions to 0 we infer

from (60) that:

+
8%, ~ B, + O) on €20 "
If the general problem (1) is regular we deduce from the

definition of Z‘H), the continuity of %!6], and the relations given

in (30, 31) that WU,lo) may be determined as follows:

0 - b
h = g +Lls| © + R A‘S{A':fo‘i-f:} (65')

Anty 0

-



(53)

i
Fo = ‘LYI“!T) E('{)a!t

- (65)
w,0) -

€ i) ~ B\ b + 0@ or €0 (66)
€w)

Therefore, from (30,31) we may deduce an asymptotic expansion of

the solution of the general problem. When we consider the nature

of this solution we recognize in any closed subinterval of (0, 1):

w0
Yo N Yo + 6 ¢e) %'(x; = | v a €> 0 (g7
w00

Furthermore, we recognize from (17) that %"w satisfies the initiaj-

value problem:

x?%o(x\ .Q_(o) D%btﬂ - A(X,O)‘%otu - 'Elx)O)

-1 (68
o) '%‘m = QB h )

Since the solution of the general problem (1) reduces to the solution
of (68) as € 0", we call (68) the reduced problem. From these

statements we deduce the following:

Corollary 2.69: Suppose the general problem:

is regular. Then the general problem has a unique
solution for all sufficiently small € . Furthermore,

on every closed subinterval of (0, 1) we find:
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'%(x) ~ ’%O(xl + & oa €0 (70)

where %D!x) is the solution of the reduced problem:

x%om = 'E(x,o)
(71)

0] to; Yoo = N B, h

Let us consider several examples of regular problems. In

each example we implicitly assume the continuity and eigenvalue

conditions (3a,4) hold.

Example 1: The special problem (6) is one example of a reguiar
problem. In fact, the definition of a regular problem was
based on the properties of this special problem. For the

special problem we find B,‘-‘I >

Example 2: Suppose the boundary operator ® has the following

form:
° opb -7 o o,R &
L -G.L AuAu 0 R o) “ER Alg A33
Lcer = 0 el 0 R = 0 o 0
0 0 0 0 o el

U+ Royl(l\ .+, nonsingular
Then the general problem is regular because the matrix:

L+RYy 0 o

B, = 0 i o
) 0 : &
is nonsingular. Furthermore, the reduced problem may

equivalently be written as:
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(-]
r"io(” = ‘Elx,o)
d (72)
0 )
L".’.‘o'“’ + Ryom = %‘(o)

where o) represents the first m rows of %(o) . The
equivalence of the prcblems (71, 72) follows from the non-

singularity of the matrix |°4 ROY‘U)

Example 3: If the general problem is in diagonal form,
that is the matrix A(K,GJ has the following form:

A, xe 0 0
Axer = 0 Ahcx,e; 0 (73)
) 0 A33(x,er

then the boundary operator 8 with:

1° o | R° R 0]
Lio=| o e U Rie = R R 0 }
i o 5 RY R et
Lo‘!' R" \l|u) ... nonsingular

leads to a regular problem. In this case we find:

sRYw © 0
B,= | L+RYw I 0
B+rRYw o T

is nonsingular. Again the reduced problem has the equiv-
alent formulation given in (72). One simple case where
we may transform the matrix A to the form (73) occurs

when A does not depend on X.
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We hasten to point out the foliowing fact. The above
examples constitute one representative of an entire class of equi-
valent regular problems, differing only in their boundary con-

ditions. Let the problems:
I».;m = 'i’tx,(-)
(B%" = 4

both be regular. Then we say the problems BV(y) are equivalent

BV(y):

)
iff the conditions under which Bo (¥ =0,1) are nonsingular are

equivalent.

Example 4: Let Lte:,Ru:: as given in example 2 be the boundary
matrices for BV(0). Define

W
Lter = Lte) - 3 6114 Lu;m

(kR

R@® = R+ R, Rie

1)
J\.(e; Ute)

4)
J\.((—v R (e)

A(e; ... a nonsingular matrix depending continuously
on €,

Then BV(V) are equivalent regular problems because:
o) _ tu s -B“)

We note, however, that examples 1-4 do not include the
most basic singular perturbation problem described in (1. 12).

For this reason consider the following example:
q

Example 5: Consider the boundary-value problem:
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ED-L'E.‘“) -Blanm - Ctx)'b_\lu = ih)

(74)
Uio) = ¥ unhy = l‘.’»_

We suppose B, nu ,i have the following (compatible)

partitioned forms:

‘B“) i An‘” 0 A-u. ... an mxm, matrix
l_ V] A;;‘ x) Ag; «+. an Myxwm, matrix

m = m+m,
C(KJ - P\.“ln ] Au ... an mxm matrix
L Al‘“‘l A;. «+. 2n Myxm matrix

An"-’ [ I’“'] A. ... an mxm, matrix

Aﬂ = [ o \ A.; ... an mxm; matrix

S
Dum = l Vo l . i(x) = lfz‘” ] '\-’-).Ez : Tm;-vectors
Wiy f;w w, i—_,, .. Tm,-vectors

Using these partitioned forms of B 4 L , W ,f we write (74) as

the following equivalent system:

Ul 0 A,  As || uw 0
SLle) D Vix) = Anln Au““ 0 Viw| = fz."”
wix Ayw 0 Agwlil wea Yoo

(75)

\ In 0 O] Ui Iy [ 0 0 o||uw -
0 0 ol|vw I o o]|lvw
Wle) win
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We assume the continuity and eigenvalue conditions (3a, 4)

are satisfied by the system (75). Introduce the lollowing par-

titions of w , % , g , Y

b4 T I
el3l wlg] el

l
w4

R

o <
’MI . 8 &I ... ‘M, -vectors
u 0 t
_,,o_(,p... T, -vectors

\/'U) = [\/n Yu.] Y“ ... an Mixm, matrix

Y“ y“_ ... an wm,xm, matrix

Using these partitions we find the matrix B| has the following

representation:

I, © A O

B | © . o

Y“ yn. 0 0
0

h yll y'l.!.

Since the conditions (3a,4) are satisfied it follows that (75) is

a regular problem iff the matrix Y,, is nonsingular. If Yu is

-)
nonsingular we find the following representation for B.

’ 0 "\/’,: Y Y“- ‘ 0 -]
B = 0 T, o o
An ARV, AW 0

: 0 B A‘; I y"‘-- YDY“ Yu.} - A‘;S\Illya A:; J
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Furthermore, if Y, is singular we deduce B, is singular from

the fact that:

(T d

- “An ¥
v'A§3yz|§ )

is a null-vector of B, whenever ¢ is a null-vector of Y
We assume the problem (75) is regular, i.e. (3a,4) hold

and the matrix Y, is nonsingular. Define:

I i
:[ < l = -L Yix,t) Fande

0
T
o
... an m,; - vector

i
_F.; ... an Ma_vector

From (65, 66) we infer the initial condition satisfied by the reduced

problem corresponding to (75) is:

u (o) = l y;:‘x'yn.&‘m*gi',:}l
-0 T

o/

Since Y,. is nonsingular we find ulol also is the unique solution

of the following linear system:

(PR AR RE
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From this result we infer the reduced problem corresponding to

(75) is

= Am .Dl-_lnht) = B(x: uler = flx)

['0 O 1 u e+ [Im. °]gam= l
0 Tn, o o

(76)

Furthermore, from the definition of y'(x) and Theorem 1.28 it
follows that (76) has a unique solution for all i’ s gt R gg'n iff
the matrix Y“ is nonsingular.

Combining these results we find under the continuity and

eigenvalue conditions (3a,4) that the original problem (75) is regular

iff the reduced problem (76) has a unique solution for every 'E_ .
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3. DIFFERENCE APPROXIMATION OF THE GENERAL

PROBLEM

3.0 Introduction

Consider the general problem:

f%lx) - f‘xﬁl

xeT
B'% - L(c-)-%to) + R %(1) = %tel (1)
described in detail in (2.1,2.2). Associated with the general
problem (1) is the special problem:
&F %(x) ® f(x,e;
e (2)
. - * *® -
B 3’ = L(e)r%(b) + R 1}(!3 = %rel
described in detail in (2.6,2.7). We will assume:
(a) The general problem (1) is regular.
(b) The boundary operator B does not involve (3)

() or wie) .

As a consequence of (3a) we find:

(a) The special problem (2) is regular.
(b) The fundamental matrix Za defined in (2.57) exists
(4)

and admits the asymptotic expansion (2.60).

(c) The matrix Bo defined in (2.63) is nonsingular.

We make the following definitions:



tj-
»
2
"
!
"y

h =
h
A"]' ) = Ata'(xj.-h’“e) i““}) = i(kﬂ_—i)é)
R E AT Any

Ahla') = A:,:PE A,:_taf)-r el\;:;,
A;“ga',E EA:‘L]')T A‘;ala‘)

{5)
T ... shift operator T Ela'J = Elj+l)
L ... identity operator T }_'-la) = f!a')

\
E = "z'_{T‘l'I; ... averaging operator

N -
Dt = h ‘T"I} ... forward difference operator

Using these definitions the numerical scheme used to solve (1)

can be written as follows:
h 7 h
ij%k‘i’ = D_(E)-D %}\(aj - Ak\é_kla') = :E(a_)
; 0
Bk%" = L 1%"‘10; + Rce)-%“t:r) = %(e)

Associated with the general difference problem (6) is the special
difference problem:

% b

T},%ta'z = -_[-_ 4)

D‘a" J- (7)

(B: %"‘ = e %"m + Ree %k(:n = %"tej

We note (6) and (7) may differ only in the boundary conditions.
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The principal result of this chapter is given in Corollary

« T2

.1 Definitions and Useful Identities

Analogous to the definitions make in (2.9) we define:

A
Qe

m

h
Elj)

H

AkL z Ao

l'a' i

hi
& = G
ht h
i:é = fj“”
L -3
"= lr-ia1 A A,

h h ~1 -
An'a') = Ap,la') Pt:,lz'; A:,lj) = A;*a') Ahnta'y A;,la';

a L W h S i h
ltu'a" - Auli’ Pz g) fz‘z" - Aug Ay ty

R
A,é A{d' (:“)

Ok (J-1)

=
(1]

WR h

“‘. (J-1)

-a' _3
h apla ARt
¢tz (14307 A

kL. 1
xS

s [T+ ATAL

k
£ = Aij (1) ()

Analogous to the operators defined in (2.35) we define:

h ZT‘ZIH
R ]

K: Zla‘)

a“z_ W = Q02

A - -1
K, le) = h ?3 \/‘ktjjh; [T+ Li ak!lv] Z (k)

K: gla') 2 h gz \/:(a'.k) £k

A =k
K, iy = - h Eé Yslj‘h-h) £k

(8")

(8")
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h
|
In the definition of the operators Ki we have used the discrete

h
analogs X_ of the fundamental solution matrices y{ defined
h
in (2.32). The matrices \/;, are defined to be the solutions of

the following difference equations:

h h
DiVig,k) = d(;) Ele"‘j,u Y,tk, k) =T y,'},-,:- :‘.d-)o)

hy h h N
eD VG m = A TY b Y:(h,k)=1 X‘;{’E Lig,0) (89

hy - ah h R y :
€ Di y;t}: Ry = Aza‘}" Y;Ii»‘“ Ytk =T LTEE Y,ai,'fj

h
Using the matrices yﬂ we define the following operators:

N T _
Y, 24 = Yo i§? %za) Q=123 o)

N
Analogous to the norm W'l defined on T el we define:

J-1 N
“glh = kgko ‘.E_(L)' Zi 3 LOJ\T-I_I (8")
Although not explicitly shown as an argument we note the matrices
h h yh LR h oh

Aia', a 5y£ i C;J and the vectors E ifﬁ depend on €

From the eigenvalue ‘condition (2.4) satisfied by the

h -

matrices Au, A;3 we deduce the matrices Ya. 3 \/3 are
well defined for all positive h and € ? In chapter four we

prove the following:

Theorem 3. 9: (Exponential Dichotomy) Let Ah(:,e), Anlx,GJ

be continuous functions of X and € , for

(x,€ )!IxEl , which satisfy the eigenvalue

N [N
condition (2.4). Let A; , A;; , Y,_ i Y3
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be as defined in (4) and (8). Then there exist
positive constants Co ; & €, such that for
all 0<e€%e, and O<h¢l
1-R
7 h 13
lyq,_tj,th < Co/il-ﬂ‘.\?} oshsa-s-;

- (9)
2 h -
RATHVE B Cof {140 83" 0474 keI

From the difference equation satisfied by Yl}‘ we deduce:

h hh T h
Yiysng) = lz-32 0«3‘)]‘.1+§at3¥] (10)
Therefore, for:

0<hsh,¢l wrhae ho N QR ¢! A1)

h
we may use the Banach Lemma (1.20) to prove \/, is a well
defined nonsingular matrix. Through the use of (10), the difference

k
equation satisfied by Y, given in (8), and the estimates:

1+x

g £ \+4-x O <x%¢

N~

1+4x ¢ explax]  oex
we deduce:
O¢s1 ks T
IV el ¢ eplzial,l v -
1 }i P
0¢ h ¢ he

Through the use of the identity:

R G A
églh-u%l“ = B (13)
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and the bounds given in (9, 12) we deduce k: ) KiL ) Klk , K‘:
are bounded linear operators on .B: 12,31 . These bounds can
be chosen to be independent of €
Analogous to the rules governing the differentiation of a
product of matrices and the integration by parts formula we find:
Dk[B(h)C(k)] = { b"B(h)- C{k+|) -+ Blk)-])\‘cnu
Bk - D'Cl) 4+ DBl - C(k

(14)

b b-t h
ki‘f\ab“am (k) = B+ Ctb) - B Clw) = h gaBtw -D Clk)

b N -1
h 2@ RR)I-DCR) = Bk Uty - B Ciar = h Zha D}'B!‘fd « Clk4w)
R

8 h
From the difference equation satisfied by y,_ and yg , the

identities given in (8, 14), and the identity:
NI ATV ¢3heT
ynlh,a) ylﬂjjhl = I 9=2)3 0« }] b
we deduce:

Ve Nk
eD; k) = - Yz(k,a-J Azty)
b h \ b OEpRES (15)
€Dy Vo hj) = -Vikge Ay

Consider the following set of initial-value problems:

N h
D 'li-kta') = 0.16] E'l!‘(a'J . 3 '_E(-i_) 'g_k(o) ..+ given
h W K 16)
€ D T = Auléw-r q_rk(é) + ‘_{_’(}’) 'y_'kto) ... given e

W h - N K
€ :D 'l}_"c}‘) = A;;l&') w ta') + i‘}l wh¢,‘r) ... given
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Analogous to the variation of parameters formula (1.25) we find

the solutiqns of (16) admit the representations:

Wiy = Yﬁl@\ Wi + h gfﬂ \/::é,h (143 O.k‘h'T '_Fl}')

‘\_rhta') = \/:l]',l ‘}_rk(o) + k 2:3'-' Y:‘j,b 'ita'i (17)
wtiy) ® ‘I:m ’E’Lm - k Xh? Y.:(}',EH) ita')

The representation given in (17) for ‘u.k can be obtained as

-~

follows. Suppose W satisfies the following relationship:

g"t}) YI} 11 ip

|
Substituting the above form for W into the difference equation

satisfied by 1_1_.“ and using (l14) we arrive at the relation:

'D‘/,ia)-‘\ 0 + Yt})-b'u Gl = D_t :EY uc&) + flaj,

h
From the difference equation satisfied by y| this relation upon

rearrangement becomes:
L1+ 7.0-13)]\/ s D utai = il}')
Using the identity :

- ¥
'i‘;aa') = 2o + hﬂ D 2k

Ak Ak oy -
wigl = uto) + h'ﬂho Y, (R [z+30'00] fik

l
o
!



(68)

From the above expression for .&k and the relationship between
I
'I_g_.k and ‘l‘_;: we deduce the representation given in (17) for
“L .

We end this section by presenting the following:

Lemma 3. 18: Suppose €,4,x are positive constants and

0<h£t T._ = Then:
I
. ]k . { .‘:s }LX
{42zt s 173

Proof: For h%0 we find the function 3“\) defined by:
)
- h
gy = !lagl 1+ Ag}

is a decreasing function of h . We therefore find for
]
O<h ¢ LT

{':IA—%?A = xp {-x%(m}

s amp (-x%(,{)}
P (_LASJLJ‘

Next consider the function ‘Fla’) defined by:

fi) = -—-il‘-h— = ih oy {‘}:Io {_H-ﬁ%]}
3 h‘*bc}} } F ‘3

\

For !37;0 the function +'&’ has a maximum at 13:30 where:

|
do 903[!+A“;‘]
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Since 3 assumes only integer values we find:

may fi5) £ F Yot !
a"o d ‘[’(3‘) 4302 I
We note:
h -\
x> Qglitoelie) <« he F€

Therefore, for o? l

-1
=€ ¢ €
A

{-ué,g = '5'/3m ¢ é!/g(g&"é) = & 8%

We also estimate:

- ¢ £
oo = +ag DB

Therefore (18) has been established.

3.2 Existence of a Solution of the Special Difference Problem

Furthermore,

f##

In this section we prove the special difference problem (7)

has a unique solution for all sufficiently small h and €

Theorem 3.719: Suppose the special problem (2) is regular.

Then for all sufficiently small € and h the special

difference problem (7) has a unique solution. Further-

more, this unique solution satisfies the bound:

this solution satisfies the a priori bound given in
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¥ it h it h 1 5 b
il < C,{ tviod relviof selind + EL L+ 0EL, + f;\lm}

it ¢ C{ ldiol + Bt l +elwal + DEN+ LI+ 1 E 1

—
Yo
0
N

h . ¢h
“wk“né Cl{ h&k\oll + Ei"\i“:m‘ <+ I"J_.."}‘[J‘}‘ + B {" {ill + h flua‘i’ \1§;l‘&}

Here C, is a positive constant independent of €

Proof: This proof is similar to that given in section 2.2, the
similarity will be made clear thrcugh the use of the same
notation. = The operators we consider belong to the space
,B: LO,.‘I] and when such an operator is bounded we will
always imply the bound can be chosen to be independent of
€.

In the special difference scheme (7), sum the equation for
1_1}‘ and apply the variation of parameters formula (17)

to the equations for ‘\_f‘“ and y-" . The result may be

written, through the use of (8), as follows:

&'y =

S Loy L h 0
h h h Im. Ko ALE 'KoAn.T "K,Ar, 0 P "
0 =08 -eKy= -K'{‘_A:,E I, 0 |-€|o o K. An
KRBT 0 I, 0 KT o
1 (20)
!.l. {_‘- ‘.’«kl"’ + K: 4:
-l k n k-
3}‘ = | =1 = | Y v + Ky i
w k YVoww + K

N
I, ... the identity operator in B Lo, 3]
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As in {2.36,2.37) we {find:

l D Ci o % I If,. orf
h o h S
Gl - [v] I,M ) { B3 k;: c Q [Im Ko’\::r K:Al:l }
b o I, | KR E (21)

T

Q= T~ KAE- CATICALE - KA, K AL E

provided Q exists. We will prove for some €3 in

(6,€;] , where €, is the constant used in (9):

h -
[I +¢ KgHI+ K:‘d‘al Dces €y (22)

kL
Here Kg is a bounded linear operator. Once (22) has
Py

h
been established it will follow that 9, exists as a

bounded linear operator. To establish (22) we first prove:

K TICR, = ~KMALAL AL 4 eK!
KA A = -KEALRL A + ekt

D<€ & (23)

Here K; " KL are bounded linear operators. To establish

the first identity given in (23) we note:
K: P\‘({\' K'Q A:Z_:;: ZTAnth) ;‘TY:( k41, 9) P\:(HZ(N
change the order of summation.
h:ﬂz{% i‘f&mf‘ ket 0 } Wt FAL9)

h wi h . h
'é‘\/.,.(h-ﬂ,h = AL D LG

sum by parts using (14).
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R SR . e | L
-hzb A.zimf\m_m}\u{mim + € ‘r{s 1’:1.3;

‘\.‘

‘K A An: a-t&; + “(5 £

%

In the above derivation the operator Ks is defined tc be:

hoFEY L . b
K:Z_:a') = ¢ z::; { A.lt&'-n Aua}'-u /z(j;“ -
RN 2 1ok Tk
‘\Zh:: Dh[A’:,_(kz A ] Lt F A () 240)

For 04€%€, the exponential dichotomy (9) and the identity

(13) allow us to estimate:

gt~ Ol E {ragrs + hE (et ULE e
~ 02 {M\+hz ENIE, e e
~ & )z,

h
We therefore conclude ks is a bounded linear operator.

‘To establish the second identity given in (23) we note:

I

K.,A‘.;K"A:,Z;a; = -kz Ary (k- 62 YmmA SN ER

split the R sum.

= -hZ}A (%) 52 Y(hhl)t’\m(‘llﬁﬂ)+€K¢,Z(3)

change the order of summation.

L

e L h h h ~h
\120 %20 Ak Y (R, Q41) } AL ER) + e K, £
T R
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LR K Rk
€ )%(h,ﬁ«rl) = hﬂlwbkyg (h,5%41),
sum by parts using (14).

1"

P Kk h
-kZ’ A:(U RO AL £ + e X )
9° - -
hoh o Lk h
= KO :‘\\3 Ail AS‘ 'éij) + € Kcz_lji

n

In the above derivation the operators K‘ . K‘ are defined

to be:

I-1

~h _h oY
K¢ L&') = Z P\B(h)- - Z Y (k, 240 A;l () )
h
K‘ Ela‘) = RG Zla', Z' { Al}(o) An (6) (D 2¢1) <+

l-i

bh[Au(uA,sm | Y thar, 040 | As, (2) £ 1)

For 0<e¢ €, we may use (9,13} to estimate:

LT N
i Rt@é)l ~ O( %Zk" ‘2’ Z’é (lwab ™ )l\_t:ilm
h =3 L S
o~ @(E 2o (H_h%)}.‘g‘z Z’ (1+a€)i+|a)d£“
et O(%“)“Z“m &e_>0+

- heody ! 11 .
IKEg-Rzpl ~ O Y Ggr + 70, marsiliz,
~ 0z +e i hian,

~ 0 %)zl

We therefore conclude K‘ is a bounded linear operator.

From the definition of 'Q and the identities (23) we find:



h h Ab L h
'Q e I = k‘b 0. E - K'-;

h w_ b (24)
K., = Kg E+ Kl. E.

Suppose g and E are related through the equation:
A,
g= [T+K0elE
'k . SN E
gl}') = E‘j) 2 h?o Ylta',h)LI"iﬁ(h)] Qi E Flk)
We note the sum involved in the above expressicn satisfies

the difference equation given for 'I_J:h in (16). From this

fact we find upon differencing the above equation:

1

h
D“Qlj) -Dk E‘}‘ & I_d;a; E{ (_‘;13')’533} + &t;} E Eli;

h - h
D Eaa{; + Cll}'JEC_I"!Ia')

By summing this difference equation for C; we find:

¥k
%‘}" - C;,le) fca-)- E(o) + kgo a(k)E(im
G

E(a’]

Ela'l + K:C\hE (_:113'1

Gy - K:OL‘E(}N&'J

F o= Lli-kaelg

From this last identity and the original relationship between

E and @ we conclude:



(75)
=1
{1- K:‘a*E] = 14 K.“&“E (25)

By the same argumenic used in the derivation of (2.43-2,4¢)

we find for some €& in (O;G-;] -

lz-e6 k)T = T+ek

[z - elTsidel, ['= Teekg
6 = [T+exilol

Q7= Lr+ ek 10z + kM ohE]

0<€s € (26)

k h
Here Kg and Kg are bounded linear operators. From
the identity:
- -l -
il | 8 - '\l L W LN
[z-ea' k] = T+el1-cbi kel 6K,

which is valid for 0%€%€3; we deduce:

-1 5 = -y
e = L1+ G{I—FEK;}B:“K:] 8:‘ (27)

Following steps similar to those used to derive (25) we
find:
- h zh h _ h
[.L+K;0-E]K0- KI
[I+ K, G E]\/,(J') = \/‘ ()

Collecting the results contained in (21,26, 28) we find:
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o - | [I+exyloM . .
LII+ eofqp s+ e ko le
0 © o] ka o L "
o T o)+ |KAEIT LT KRT KA)]
o o T1 LKIAE!

-
Fe [1eekgilTei0tE ]

(29)
0 o) 0
L. hoh
K4 = 0] \\Ok KLAQ
0 KA, T O

.k
h ok L
[T+ kel K, = K
[T+ k" k‘]YT‘F "
\ a e 1 d | &)
Through the use of the identities given in (29) we calculate:

LT AT KA = [Trekgl I b +

. 3 “hy h (30)
Kf 4+ KATI o+ G 414 K Al Y P + G E]

For some positive constant C.L and O0<¢€¢ €3 we estimate

through the use of (9, 13,30):

8T AT KA, ¢ G LIt + elvml+

elwv' ol + \\-_F_'l‘\\l - “f:“m 4 “f: i, ] (31)

Through the use of the results and definitions given in

(20,29,31) we deduce the a priori bound given in (19).
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3.3 Asymptotic Solution of the Special Difference Problem

Ve will use ithe results contained in the derivation of
Theorem 3.19 to derive and asymptotic expansicn of the solution
of the special difference precblem. This expansion is given in

(32) and is the discrete analog of the expansion given in (2.31).

Corollary 3.32: Suppose the special problem (2) is regular.

Then for all sufficiently small € and h  the unique
sclution of the special difference problem (7) admits

the asymptotic expansion:

'%ht&) s {‘&kla') + G oo &-7 ot
where:
Ah . w’ 1 =0
"}:«}: T C;l_' Y.,_na') vo o+ C3Ry3a3; w! AR
h \ ® ° Y Koo - k | s
&k‘j) = Ytal‘ziz'}.’.“""{o} + KI{ADEEk+§1+ A;.E?..’:-'}‘E)
(32)
h 1 1 i 1S o S 3 h &
'Qrk‘i’ = ‘);u}') { 'L'E".,’r _; 1+ K { A,.E 1;-} f3 + A;ZT‘/;'rlg_.}ljm
A 'S h h
]A:tj,) = \’,41){'15:‘— C.L'g’.?} v 3 K, E&a'.]
.k Hy
Furthermore, if Di_ﬁ £ wlﬂ,3“] we find:
h h L) -
K Z‘j’ ~ hy Ahn Zo - A};;lj—u £ t ber 1454T

b s € 0*
‘ Kt Z_sj; —~ \/313') A‘Z\B Z(:r) = A;; ta') Eea:, - e(e, os}‘ £ J-1
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Proof: We recall from (7) that the boundary-values for the

special problem are:

1_.5‘.\5) \ 0 1 l E.: ]
'fh‘l) ~ -e- EJ:: i + 1)‘: ‘ + Bie: & e O+ (33)
Ifcr) w4 l w!

From the definitions (20) and identities (29) we  find:

s lT+eefkl + ke kb ]aw"

(34)
h o5 ek
Since K3 , 6, Kq are bounded linear operators and:
Bt 54
H 6(z) os €~ O
we estimate:
bR h K L B -
le Kg, 9‘ K4 9. H “m (e) on €20 (35)

By calculations similar to those used to derive (22) we find:

KEALTIOES ~ - KOALAL S + Oc
Loohk ok Lok ok Me-—>o+
Ka Al; K3 ‘&3 - - Ky Au A;; 5-.3 + Gle

We note for 153":3‘

K?A:T \/;_\li_) 3 ClL \(:‘13‘) - GY:E:J (; + 6H

L . e €+ 0 (37)
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To derive the expansions given in (37) we argue as follows:

™o e koA THik %
KEALT YN = hZh?b Y Lz Q] Ab o Vs

Y hyh
Y:dm} = e AL DY k)
for 3}%1 sum by parts
using (14), cstimate the

remaining sum as C(€).

-1 =) i
~ el1-3 a"ca-..,] A.:';'—u l-"\:;l}'—u Yy -

¥
o5 €20

X ok 3 pk. ol .
eXaj)[I'\-i(Aloi] Anto AL ler 4+ B

... use the Lipschitz ccntinuity
of ﬂ,'Ai}- with respect to X
and (18) to estimate the
error in replacing jJ=1 by

0 as Oy
L . h h L - +
~ € Y,_‘a) - EYIIJJC.L + G as €%20
h " h T A
K:.A:: L L h YL;'\‘ \/,(j,h)[l"*%.afk)] A};(hl\/s(h)

% W h >
Y, o= eA ko DY (hy
for 321 sum by parts
using (14), estimate the

remaining sum as Ceey.
Kok T R At A
~ & [-I"'i (laa'-u] An(}'-l) AB‘}"’ VB 13') -

o Ead

€ X‘:}')[I"'biaklw] A‘Lgto) A:;m \/:(0) + 0&)

for h*l wuse (18) to estimate

h .
Y; oy as 6(&‘) , use the



Lipschitz continuity of (l,ﬁ,-d-
with respect to X and

(18) to estimate the error
in replacing 3 by I~

as Ot .

Ry h
~ ¢G5 \/3 13') + GeH oa &2 o
Combining the results given in (30, 33, 36, 37) we find:
W hah hah T o ab 2 +

where:

“brt 1) = { u:
— S = h
¢ kld'; + C;_' Y: ‘}" Y_': + Cs \/3 G’ Ef.l-

-0
(39)
N h v Lo i =
go(('.' = \il ‘j]{ 150- C\ &:} + k' E ‘a’
Bk
From (29,33,38) we find 8 B, the first term in (34),
admits the asymptotic expansion:
0 e
' H ~¢ Yot |+ Y'{.. gl K TALE D +11 | +6h (40)
ol LY w4 kg AER s B

h
From the definition of K4 given in (20) and the estimate

given in (40) we find:

-l h
ekpol 1 - | kALY
Ky AT Y.

Qk
\/3 + Be) (41)

i
=i
w3
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Using the identities given in (29) and the estimate (4])

we find:

. 0
K L S S VLI 3
LT KAT KAIK 6 B~ | K ATKS Al !

%
_ | + 0wy (a2
K AL K AL T s

Through the use of (9, 13) we estimate the terms in the

above expression as follows:

Sy e’

P g v = |
l KI P\nT K-‘_ A (}3‘ - ( hE 0 (H_b__}kﬂ—ﬂ (l &E_ T4
p k i
e BT e
- 0( h Lgxomng-)”' € %“’ (H.A.%J“"")

~ C(g) o €5 6

NP PR S ( Ji ] ) 3
lKl hu K; Aﬂ\y'l.‘a)l = Glhz Zh (‘ ﬁe—l-lvl'-h(”b\_;)ﬂﬂ)
v}" I k S
- 6( o (l+h%)hﬁ T € Ek (\-H\.h i h)
3 ad 6 ( E) on € =2 0+

The above bounds allow us to estimate (42) as follows:

s ~

-1
e’Qh [I Ki‘A:{T K,,A jK,,,Q H ~ B oa g = O (43)

(S NN TN
Combining (29, 41,43) we find €8, K:Q‘ H . the second

term in (34), admits the asymptotic expansion:

N N LR N h s.gh )
€B, Ky B B ~ | ALY, w, | + 0@ asemot (49
A N
3 A:IT Y‘L' ’:



(82)
By combining the estimates given in (35,40, 44) we obtain
from (34) the asymptotic expansion given in {32).
) . 3 . owh . .
The estimates of K,_?_: and Ks Z given in (32) are
obtained by using (15), preforming a summation by
parts using (l14), and estimating the remaining sum by

using (9) and (13). #

3.4 Fundamental Matrix for the Special Difference Problem

Analogous to the definition of the fundamental matrix zo
given in (2.60) we make the following:

h
Definition: Let 2‘,‘;) be that matrix which satisfies the

boundary-value problem:
_h - h
'.I’,\Zo(&’) = 0 G io = I (45)

h
Due to the important role the matrix Zo plays in the
h
general difference problem we call Zo the fundamental matrix
associated with the special difference problem. We derive an

h
asymptotic expansion for the boundary -values assumed by Z‘,

in the following:

Corollary 3.46: Suppose the special problem (2) is regular.

Then for all sufficiently small € and h  the matrix
Ao
£,j) defined by (45) exists, is unique, and admits the

asymptotic expansion:

A Sh
Zijp ~ Loip t0© o €0 (46")
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where:
T o G 1
2h i)
(0 = 0 el 0
|,‘l...'l kL % k
Ay A EYe & 0
h R
N RASS Y =Y C,
= WL LR .k L
£, 0= | -A, P\L EY, @ An A Yl 3 ¢r
0 0 iy (46")
W

TMECY + ALYt

1] ll
=
~

h
st Aa ECG \/:+ A:ZTY:\} (03 A!} A Ey © €+ ﬂ_
_\1
€

Y (2,1) A;l ( z-C:’)

We derive below the asymptotic expansion of the second
block column of Z: ; The asymptotic expansions of
the remaining block cclumns of Z:‘ are determined in
a similar manner.

Since each column of Z: satisfies the special difference
problem, Theorem 3.19 establishes the existence and
uniqueness of Z: for all sufficiently small € and h.
We obtain the desired asymptotic estimates of Zo through

the use of Corollary 3. 32.

Let the second block column of Zo be represented by:
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) h h
From the definition of za given in (45) we deduce Z,;_

satisfies the special difference problem:

: e
‘TI\ z02. =0 @‘Zo‘z: l' X
0
Using Corollary 3.32 we therefore find:
U}"J"" { ko b ocllie S ‘ + (e
=% G+ G AT AT

Vip ~ % + KALEUY + 6
WI“', ~ K:{ F\:,EUL+ A;_T \/zh}‘}'l + Ot
From (9, 13, 18) and the last estimaies given in (32) we
find:
K:A:EUhm - Kt A; EY,’:I, C. + B

- A:flA*;K E Y,hw-u ¢+ G

B &> ot (48)

h ok :
ks A, E{ C;Y:\- C.L'Y‘k}(ol ¥ @:

P S
h h S Ak:lAhLECLyk +?l\+6(6)
A
The matrix @‘ is defined to be:

h 3 h oy h L L L
G =12 € 0,1 A, Leo-¢t (49)

L A
From the definitions of C-;_' ; Cl we find ?‘ is O“\J :
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Combining (47, 48,49) we obtain the asymptotic expansions
1N
of Zop given in (46). ##

The most significant difference between the expansions
P

given in (2.60) and (46) occurs in the terms G).l s @5 and
h h
G’.‘_ : @S respectively. For h?> € detailed calculations of
h "
the differences @-,_' @1 5 (?5’ @5 show them to be of order

one. This difference explains why we have made assumption (3b),
; h
for when (3b) is true the errors in '\_Fk:!‘),'xf(o) cannot affect the

determination of the boundary-values assumed by the sclution of

the general problem. However for h<<¢ we find the differences
h 3
@t- (P_‘L , (Ps-@s are of order € . This fact may be proved

by appealing to the stability and consistency of the scheme as
h~> ot . We should also note the dependence of the matrices
A ' o 6 @ -
iilA' upon } and € foundin 2 @5 does not occur in
their analogs 6)-,_ 5 @s = Through the use of (9, 13, 18) we
N
estimate the error incurred by replacing Az‘i‘&" by Ai!“&-ﬁ:o) in
@1 is of order € . In a similar manner we estimate the error
h h
incurred by replacing Aﬁtz'; by A;g (X.;._,UJ in @5 is of order € .
[
Therefore we conclude the dependence of A;Q upon & and €

h h
in @1 s @5 is inessential.

3.5 Properties of the Solution of the General Difference Problem

The main results of this section are given in Lemma 3.57
and Corollary 3.72 . To prove these results we need the following

lemmas.
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Lemma 3.50: Suppose the special problem (2) is regular.

A : . !
Let w0, WP be the solutions of the following

initial-value problems:

Dugw = Qoo ug + Fu 0¢x<)  u e = x
Muly, = O.F: DEbGs + Fy 0t T W =y
_ot}) p Ll a" L8 ‘3' = ]’ Q =

Then for sufficiently small h there exist continuous
functions | %) }T independent of h and € such

that for every N

i |

78 v
".’:‘;tjl ~ Wpixg) + ;, W Walx3) + 0% e) me,k—>o+(5m

Proof: The regularity of the special problem (2) implies the matrices
A;J(!,-El and vectors i’;ﬂ.ﬂ are infinitely differentiatble

functions of X and € for (x,€ )EIxE Recalling the

1

definitions (8) and (2.9) these continuity properties imply:

(l“uj) ~ aué*..i) + O
X 0¢j¢F e o
£ i~ E(xjp_t) + Blo

These estimates are independent of h . From the
stability of the difference scheme used to determine léb 5

see Keller [8] , we find:

. h
) ~ 'l’_kola'J + B o e-o0" (51)

where f..}: is the solution of the initial-value problem:
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A .' = k
DE:'@' = Cllxja.‘-;) E{_l:.jn + t(xé"la.) @to::g
Using the continuity properties of O and Fw we obtain,

as shown in Keller [8] , the asymptotic expansion:

N-i
A 1N
]_,:_:(}') -~ 1‘.’.‘0"‘3') 3 ?. hﬂl_&n["jl - 6“’\ )

as h=0t (352
®
The functions !L_{.mi!)'l‘ are continuous and independent of
h white N s any fixed positive integer. Combining

the estimates (51,52) we obtain the asymptotic expansicn
given in (50).

#H
We note the general and special difference schemes

(6,7)
can be equivalently formulated as the following linear systems:

h
th\l Fk the general difference scheme

(53)
h ks .
&7 = F,

the special difference scheme

"

h
The matrices le, $k and vectors \[’E"F: are derined to be:

r - k - ( i ‘( * .[

() (€) 73
. %. -%‘(o; &%m
7

\f

x 3
. Fh = : ﬁ = ,
h h
Lyin) | fiz-), i ‘{;’I.T-G)‘ -
I
B'h: [Im,o,.-.JDJ

an m@+Dxm matrix

ol #
ﬂ:h = [Lm-L(c)) C,.- .‘OJ-R(GJ-'R*(G)]

.an mxm(I+) matrix
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Qo HD 0
$h = \
0
L G’S-\ H_T—;n
Lte) R ‘
G = \
e 9
G, Hyy | (547)
h 9
. ',L_A‘,:n;;; ) A'H’
G} = pfua - 3 A:'lp 0 ¢ Ala)
2 31(]-) 0 A ‘}i.
os}'s J-1
L
. ?An‘j‘ A‘.‘lcin 0
Hj = 7 &le -] 3 A:‘aé, ;‘2_.3-} o
L ah. N
7 Rap € Agyy o}

The following lemma will be used to relate the nonsingularity

of the matrices $g\ and @}\

Lemma 3.55: (Woodbury Formula) Suppose the matrices
A, B ,C ., D have the dimensions:

A . x N D... mxm
B...Nxm C... mxN
Let the matrices A s D be nonsingular. Then

the matrix:



Proof:

rank annihilation

(89
H= A4+ BDC

-t -
. . - . D
is nonsingular iff the matrix D+ (A B is
nonsingular. Furthermore, if H is nonsingular

then:

- -1

= - R P
H =R - AB[T%tAs] CA - (55)

-1 -
Suppose the matrix D +CA B  is nonsingular. From the

result :

[A'- AB[U'+chRTca I{ A+BDel = T

-
we deduce the matrix H is nonsingular and H  has the
representation given in (55).

Suppose the matrix H is nonsingular. Let Y satisfy:
d

[T+ cA'R) y =0 (56)

Multiplying (56) by BD and rearranging terms we find:
-1
[A+®Dc]f'sy = 0

Since H was assumed to be nonsingular we conclude
-1
A B% =0 . Using this fact in (56) we find y=0 .
-1 -1
Therefore the nonsingularity of H implies D+CAB

is nonsingular. ##

The Woodbury formula (55) is the basis of the method of

, a method which is used to calculate the inverse
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of a matrix. See Noble l‘?], secticn 5.7, for other uses of

(55).

We now consider the relationship between the solutions of

the special problems (2) and (7).

Lemma 3.57: Suppose the special probiem (2) is regular.

Proof:

Let ]éo(’-) be the solution of the reduced problem
corresponding to (2} and \5_ Py the solution of the
special difference problem (7). Then there exist

@
continuous functions ‘%m"” }‘ independent of A and

€ such that for 6%0 and 84x}~sl-s
N=I
g N
hir ™ Yot + 5, Ky + 6% oot

Here N is any fixed positive integer. Furthermore,

if the boundary conditions for (2) and (7) have %’l&l:Q

then as EIL\ ~> O+ -

Nv-\g
N-1
h 2 N
Vip ~ Yy + 21 h‘l_r’l.xé)+0(k+ej 5« 2y

3
N1
'!,rktj,) ~ W + g, ha’l;\_rgua') - @“\N«te) 0¢ l}'i -$

Here N is any fixed positive integer and the vectors
1’%“&0} which occur in (57) have been partitioned
into the form “_‘u lxl,'*_f,,(xl un.]T}

h
Let y’(h 3 %‘(i) be the solutions of the following boundary-

value problems:

I‘%‘(x; = tue @.%* = 0
k h *
Ipﬂf l}') = £"a” L;g“: 0

(59)
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; : e s X_ | . AT
Intrcducing the partition .;! = L, T 8T we find

from (2.31):

'li."\x) ~ u:(x} + 6(6) o<x <1\

-} &
'\_{*(x; - -Aulm { Al,(xx 'L_;_L:(xr + 'E_L(:h} + 6!’0 Js x&)
06 €= 0+ (60}

-\ §
'h_{*(x) gt | P\n(m'] F\Bllv 7&:(1) 4 -Ea(,u } 3 6‘61 0¢%¢ -3

X
’E:ln = Ja \/\(K,T) Fiodr

) ) ‘;,_[ R < . | g
Introducing the partition Wé_ =L VT W ] we find

from (32):
ny L
Vep ~ %@+ G R PRY

LY

| 5 E
q’rt (}'J ~ = Anfi—l){ A'?Ji'é"” E 'Ié: li-l) o f:‘]-’_” } + 08 §¢ ,15 <
-1 3 m(:,‘!\" ct (61)
p K : n A
1_‘_," (}') -’ ‘A;;ljz ‘ A;!}) E'l_&t @ + £S G }+O(g OSxJ-S. -$

jo ey
Wy = R, Mgk L1+ 4 dil Fhe

K
We note -: and 1_5: are the solutions of the initial-

value problems:

Dujw = lw wos + Fuo Us(or = O
N N h h
; - . * - 5 .\
Dl = W B+ T Y, 0 =g

oo
*
By Lemma 3.50 there exist continuous functions {!m(xll’,

independent of € and h such that:
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Nasl
h
1_,5:{}') ~ 'g:{x‘-‘) + g' hil.-tf“lxa'} + B(h'te) an €, h>at  (62)

Here N is any fixed positive integer. From the
continuity properties satisfied by A‘é and fg we find:

h i
A;g(z'.) - A;g(x-+ak) + Gle»

¢
o €~0F (63)

h . 1
fi GG - 1[;(1‘;“"3 + Gle,
Substituting (62, 63) into (61) and preforfning further
expansions in powers of h  we obtain the asymptotic
expansions given in (58).
Now suppose %“(EJ*Q . We note the solutions of (2) and

(7) may be written as:

'15(1) = 1é’l'(;u 5 %m

'S xr ~h L
'n.an}‘s = 1& Y +%t})

k ~ ~
Here '{(x;, ‘}R‘Jl are the solutions of (59) and ‘%(11,1}]:3)

are the solutions of the boundary-vaiue problems:

x‘glx) =0 B'\; = %‘le»
(65)

Py "%kla') =0 @*15" = d©

1
From (9) and (18) we find for 0O<h€$ 2§

h 2
l\/-,_La'xl ~ Cley Ssxjs\

an €= O (66)

h
lys‘j" ~ 0(61') OSx‘-s\-—S
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3 g e n ~ ~ T
Introducing the partition ‘% = 4T, &7, w7} we find

from (2.31):

~

Ao ~ w, 0+ Ole

S$sxe¢ -8

- _
Vix ~ - Anhﬂ Alev U i+ Go

_ av €—=> 0 (67)
-~ -
win ~ 'Anlm alx U o) + Gw
W
Bci!j & yl‘p l L( - A\Z Al" —--I }

b T .-k"" o KEoF
WYY we find

Introducing the partition ‘% 3‘.

from (32) and the estimates (£6) :

» ok
Mo~ BTG + e

ah - N SSX&'$ -
v y "An(}'-u Av(i—l) E _‘b_l}uj) + Gle)
i s> ot (68)

- w‘
‘\gh( y -~ la) A&(}; Eu ‘3 - Cle)
hiys = \/,\11»{’&3- covsd

h
Recall \Ilbn, \/‘ na', satisfy the initial-value problems:

DY = alx)Y‘lX) Yitor= T

> /(&a = thj: EY,'}a'; ‘/,k(oa =1

By an application of Lemma 3.50 to each column of

h
\/IXJ Y {x) we infer the existence of continuous matrix-
valued functions {V{mlx)r‘b independent of € and h such

that:
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A Nebo 2N
yl.j, ~ \/\tx‘-) : E!:' n Wgu,-)-l' Oh +¢) aaeik-»o"' (69)
Here N is any positive integer.

k.
From the definition of C, in (8) and the asymptotic
expansions given in (63,09) we infer the existence of

~ @

continuous functions 12-,3:1, independent of € and h

such that:

“k o N"g_.\, N
'l.lola'l ~ ED(Xa') +§, h yﬂtij) -+ 0”‘*6) anei}\->0+ (70

Here N is any fixed positive integer.

Substituting (63, 70) into (68) and preforming further
expansions in powers of h we infer the existence of
continuous functions {%mh"}? independent of ¢ and h

such that for §#¢ xi ¢ 1-8

o
1'%“4) ~ g 4 Eﬂ:, h‘%’nw + OW%e) oo ghost (71)

Combining the asymptotic expansions given in (58, 64, 71)

we obtain the asymptotic expansion given in (57). ##

Through the use of the preceding lemma we prove the

following :

Corollary 3.72: Suppose the general problem (1) satisfies

the conditions given in (3). Then for all € and h
sufficiently small, the general difference problem (6)
has a unique solution. Furthermore, for §>0 and

§ ¢ % ¢ \=§ this solution admits the asymptotic

expansion:



. - h . £ i g ) | - o " <
‘%la’ %é";) + g, h %!lxi) + dlh4c) Ga €)h 7 0 {72)

Here N is any positive integer, '%oix) is the solution
of the reduced problem corresponding to (1), and

© : : . .
{'%b(m‘. are continuous functicns independent of
€ and h .

Proof: The general difference problem (6) has a unigque solution
iff the matrix G;.‘ defined in (53, 54) in nonsingular.
From the definitions of %y, §, , By, € given in (54)

we deduce the identity:

G, = 3. + B.C

From Theorem 3.19 we infer the matrix $\n is
nonsingular for all € and h sufficiently small.
Therefore Lemma 3.55 implies G\\ is nonsingular

iff the following matrix is nonsingular:

@hlt = I + Qkf}:l&, (73)

We are justified in calling the matrix on the right

® h
of the equality in (73) LZO because:

- h
I+ CL$,\' B. = L@ £, 4+ Rig Z:(J) (74)

h
To obtain (74) we note the definition of Zo given in

(45) implies:

h h
e Z (0 + Re Z2» = T (75")
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] Zt(o) i
= ’ (75")
$h Bh = .

h
_Zo (I |

From (75) we find:

T4 0:.}\$.;:Bh 1+ [ Lter- lf(e)} ‘z_:[o) + rLRW'RTe;] Z';(I)

A " el
L@, + RewZ,@

Rz,

]

This last equality justifies the relationship given in (73).
By combining (3b, 46, 63,69) and performing asymptotic
expansions in terms of € ,h we infer the existence of

~ o
matrices zBm}| - independent of € and h such that:

N-1
8}\2}; ~ B, +?, kgﬁﬁ + G(h%e) v €h=>0" (76
In (76) we have used the matrix B, defined in (2. 63).

By (4c) we know Bo is nonsingular. Applying Theorem
1.21 we conclude for all sufficiently small € and h

the matrix @Li: is norsingular, i.e. for all sufficiently
small € and h the general difference problem (6) has

a unique solution.

o

From (76) we infer the existence of matrices {Bm}.

independent of € and h such that:



(97}

"B\\lt-‘r‘” ‘B‘:.‘i‘.‘;‘:"7!’\'.:\i B} + 6( hM+€-} [« 7 ¥ E'}‘s-?db (77)

Define ‘%m, “%hlal) to be the solutions of the special

boundary-value problems:

I Y (x) = ‘hx,e: R*z =0
% # e

L3y = £ijs B,y =0

h
The solutions %ur > %léi of the general boundary-value

problems (1) and (6) then admit the representations:

1_4,():) = '%;(1) + 'Za““ %,

(79)

~N

h
}klz') = '%kta-) + 20(8')5_)"

h
Here 0_(,,0_( are the unique solutions of the linear

systems:

[8Z,] %, = g - @’1;
[83\_22]5}. = gl - @th o0

From (78) and the representations (79) we find 'g 5 gk

also satisfy the boundary -value problems:

I%(X) = ‘E(x,e) @*‘3 = &,

(81)

h A
Ih%‘i’ ‘E (3 Gt}kg ‘Z.‘k

From the definitions of 7% s v given in (78) and the
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asymptotic expansion of these solutions given in (58)
we infer the existence of vectors gm, independent

of € and h such that:

N-t
~ k ~ i N
(BH‘& o @13 + ER:' B! By + O(h+e) an € h=>0% (82)

From the prooi of Corolilary 2.64 we recall:

Gio =) Bo % Bfé) 04 € = O+ (83)

By combining (77,80, 82,83) we deduce the existence of

©
vectors ‘;-_(mh independent of € and h such that:
N Nt c "
o« ~ oLy + Zn hWag + Ohte)  an e b0t (39
] .
From the asymptotic expansion (57) given in Corollary

3.57 and (81, 84) we obtain the expansion given in (72).

##
One application of Corollary 3.72 arises when we use the
general difference scheme (6) to numerically solve the boundary-
value problem described in (2.75). From the asymptotic expan-
sion (76) we infer the numerical solution of the general difference
problem accurately represents the solution of the reduced problem
corresponding to (1) on the interval [§ ,i"81 . Furthermore, the
expansion (76) also shows Richardson extrapolation may be used
to further increase the accuracy of the numerical solution, the

limiting accuracy obtainable being GKE] ;
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4. APPENDIX

4.1 A Matrix Transformation

In this section we will prove the following:

™M
Theorem 4.1: Let K be a compact subset of R which

is star-shaped about the origin. Let Alg) be an

NxN complex-valued matrix which depends con-

tinuously on X for x&K . If for each X&¥ no
eigenvalue of A(g) has its real part equal to zero

then:

(a) There exist positive constants },{!Aw such that

for each x£K and any eigenvalue A’x) of

A(z) :
[Re 20 1 2 w 1Al ¢ As (1)

(b) The number cf eigenvalues of AlZ) , counting
multiplicities, whose real part is positive
(negative) is independent of X

(c) There exists a nonsingular matrix Ul;; , with
the same continuity properties as A(!) , which

""block diagonalizes' A(l_n as follows:

"
U Ao Ui, = (A‘*‘y 0 ) xeK (2)
o 0 A_hu

Here, every eigenvalue of A_\_u_i_) ( An_() ) has

its real part positive (negative).

In the proof of this theroem we will use the following

lemmas:

m
Lemma 4.3: Let {;\3‘]‘ be the m distinct eigenvalues of

the NxN matrix A , and 'm} the multiplicity

of the eigenvalue 3\)' . Then for all sufficiently (3)
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small positive € there is a positive number
such that if §B-A1<§ then the matrix B  has

exactly 'n\é eigenvalues in the disk of radius g

0~

about K}‘

1

Proof: See Franklin {34, page 191. 4

Lemma 4.4: (Spectral Projection) Let A be as described

in Lemma 4.3, and re a contour which encloses

the eigenvaluss b‘ahs . Then the matrix:

‘ -l =
P== §’P(£I-A) dz kS
has the following properties:
(2) The matrix P s idempotent, commutes with
S
A , and has rank ?fz,m&'.
(b) Let U be any nonsingula_';' matrix which

diagonalizes P as follows:

LY

PU = U(Ih °) -

Then the matrix U diagonalizes A as

follows:

AU = U ( A+ AO ) (6a)
Y -
where:

A+ ... a square matrix whose eigenvalues
S
are {'A‘}, with multiplicities ‘ma (6b)
A'... a square matrix whose eigenvalues

m
are h-)'}“' with multiplicities 'ml'

Proof: The proof of (a) may be found in Lancaster 14] , chapters

four and five. Since P s idempotent we know it is

simple. Furthermore, since -P has rank PS we know



1Ny
\LUe

-

P has 1 as an eigenvalue ‘f, times and 0 as an

eigenvalue Nﬁ‘?’ tirnes.  Define:

nr
-l -1
V=
-
- N
From (5) we deduce:
€4 ¢
Py = { 3 €S s
: e B4 €7 ¢ N

(7)

0
1=
[~ ¥}
"
P
t
i~ a
"
" —g-
w

Furthermore:
N
UU:‘.’.I =y I=2|1§"_T
3 ¢ 3
and so from (7):
b
P= PI = Z’lsy_-v?
: a (8)
N
— - BFL;: 5
Q= QT ?]a,-n “L-an-’-}'
Since ?,Q commute with A we deduce from (8):

bs or
A"ég = APE} = ?Ay_ﬁ = g‘ ('\_rJ Ayg) EJ. 1< g bs (9")



I
-
A'g = A@E; = QA.’!;{-; = ;Pﬁ,(?j.’\uﬂga- Eus)'sN (9%
Therefore, ifor some matrices A-HA- -

SERAWEY

Suppose A were an eigenvalue of A+ that lies outside

the contour @ 3 Then for some W#Q
Ayw = 2w

Consider the vector:
A gy
w= U[¥] 30
Q

From (5,6) we conclude:

A A
Pw = W%
(10)
A
A = Al
A
Thus W is an eigenvector of A belonging to the eigen-
value A . Since A lies outside & we deduce from
(4) that:
| - __l -
Pid o= S I-AT G de = T d@A Tde= O
which contradicts (10). Therefore, every eigenvalue of
A+ lies within 'E . In an analogous manner we deduce

every eigenvalue of A_ lies outside 'E : Since the

totality of all eigenvalues of A+ and A_ are the
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eigenvalues of A , we cenclude (6) is true. 4

Proof of Theorem 4. 1:

Since lAh_z_)‘ is a continuous function of X on the compact
set K , it is bounded. Therefore, Ace exists.
For each XE K et {7\3“5‘ : 'H*a'$ "“’_‘"; be the distinct

eigenvalues of A!gt_) , each of multiplicity T X)) . Define:

¢

P‘lx: J—ZM{\RE?\"(:}_!‘ = \‘jsn\(l)}

wih-

dix = e { \‘Aa'(z?-'A{tpl I A i#J' ¢ m(p}

€x} = Tum { UES d ]
Bu,§ = | g bgrale 3t

Since every eigenvalue of A‘}_J has non-zero real part it
follows that P()_U‘ao . Choose EEfO,Ehy) and 6> 0 such
that Lemma 4.3 holds. By the continuity of A at X

we may choose 8(‘5_)70 such that:

lp\l%) —Ahyl < § ug %E B(:_(,Snp} n K

From Lemma 4.3 we then conclude that for %EB‘E,SEJJDK
the matrix A(gl has exactly ’m&' eigenvalues, counting
multiplicities, in the disk of radius €(x) about Zd‘{z) .
Since {B(I,S(p) : XE K'} is an open cover of the compact set
K there must exist a finite subcover {B}'-'.B‘lfi,hp) p H‘QEIJ

of K . we may then choose:
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p= ""“‘“I‘“ﬁ” . 12 £¢ 1]

Therefore, (la) has been established.

To establish (1lb), define pix) to be the number of eigen-
values of All_n , counting multiplicities, with positive real
part. We consider F to be a mapping of K into R .
From the above arguments we deduce i; is integer-valued
and constant on the sets BjnK . By considering sequential
limits we find P‘&’ is a continuous function. Since K s
star-shaped we know it is connected , therefore P(K) is
connected since P is continucus. We recall the only
connected subsets of IR are the intervals. Since pIK} is
connected and yet consists solely of integer vailues we deduce
P(K) consists of a single integer, that is P is constant
on K . Therefore, (lb) has been established.

Let us recall ll is the infinity vector or matrix norm.
From Gerschgorin's Theorem , see Franklin IB] , wWe

deduce for every xe K and l‘i‘m()_()

“\j(!)\ ¢ Ay | Re R?‘n_z_)l %
Therefore, as shown in Figure 4.1, 3.3'(15,) must lie in
either 2+ or T,_ ; From (l1b) we also know the

number of eigenvalues of A(E) , counting multiplicities,

in 24, ( 2- ) is independent of X .  Let 'E.‘. be the
contour enclosing i:'l- shown in Figure 4.1. Define:
- § -1
Py = ni rE(?.]Z-Any) dz (11a)

+
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Figure 4.1

-l

By considering sequential limits we deduce J(zI- f\{!)‘j 1 is
- . -

a continuous function of (Z,X) on the ccmpact set (yx K

Therefore, for some Ko"O

-1
LiI-Aw) 1 ¢ K, (2,X) € ‘E’+xK (11b)

We know Pn_n is idempotent by Lemma 4.4, and from the
remarks above we also deduce the rank of .P(gs) is
independent of X for xteK . For 5,}! K and gtt’

we find:

1

(2I- AlyJ_‘ - (%I-Pﬂalrl (EI-A(E)S-‘(A|§J—AI3))(EI" A(atj-'
I Po-Puy | £ '1'-|_|r K:-§IAE\ '|Al§v—A!%)|
X 3 .

Hence, we deduce P(x\ is a continuous function of X on
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K . For )_(3£K define:

Sh_t_,la) = I + ‘_.Plgi--Phé) ]I_Z?l‘#’! ‘1—1

Since lT_'Pla)-Il is a continuous functiorn of % on the

compact set K we know for some constant K"? 0

llPt%)*IléK, ‘%fk

From the uniform continuity of Plz) on the compact set

K we deduce for some h»0 :
‘ :
1 Pexs - -Pca) I /zK, %E B(;,h)

An application of the Banach Lemma (1.20) then tells us
Sly_,%) is a nonsingular matrix for g_& B()g,k) . We

also note, for _)S%EK 2
P Su_(_,%) - Slz,\é)-ﬂ%) (12)

Since K is a compact set there exists an integer N

such that:
Ixl < Nk x £ K
Define :
oZm = ™/N mz o, ., N

From the fact that K is star-shaped with respect to the

origin and the estimate:

Vo, % - wizxl < h xeK 5200 Nl
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we deduce the matrix:

T = S(n{@l,cl,:ﬁ) g S(d~_,§,x~§)
(13)

= Slg,ox) -« - 3 lotyix, %)

is a well-defined, ceontinuous, nonsingular matrix for all

X E K . Furthermore, f{rom (12) we find:

Pio) Tixy = Tix) P x ¢ K (14)

-

Let U(Q] be any nonsingular matrix which diagonalizes

?lgl as in (5). Define:
-l
Uixo = Tux Ule) x e K (15)

L
T s - 5 s .
Then LIE) is a continuous nonsingular matrix for all X¢ K.

Furthermore, from (5, 14,15) we find:

Py Uit = Vi (Ii's 0 ) xe K
0 0

Therefore, by applying Lemma 4.4 we deduce:

Ax;Uxy = U*U(A‘*"“ o ) XEK
0 A_u_u

|

A_‘_lgt_1 ... a square matrix, depending continuously on X
for X & K , whose eigenvalues lie in 21,.

A_hp ... a square matrix depending continuously on x

for sz , whose eigenvalues lie in Z_.

By considering (11) we deduce Aq) and Pix) share the same
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continuity properties (differentiate under the integral sign).

Therefore, since K is star-shaped with respect to the
origin the matrices S(e{jv}_,tj“:_(_} 3 'TI;_E) ) Uhp share
the continuity properties of. [:\(i_(_! . Therefore (2) has
been established. 44

We recall the existence of the matrix S(z(_,\é) allowed us to
construct the matrix UQ‘_) . Other interesting uses of the matrix
S(;,g) may be found in Coppel [5,61 .

To prove Theorem 1.5 we note the correspondence:

- (x,&) K-> IxE,

X

Therefore, Theorem 1.5 follows as a corollary of Theorem 4. 1.

4.2 Exponential Dichotomy

Let us prove the exponential dichotomy mentioned in 1.29,

2.5,2.10,3.9 exists. First, make the following:

Definition: Let K(A“",‘)’ for P’Am’o , be the set of all
Nx N complex-valued matrices A satisfying:

IAL< A, Re 2 (A) $-p (16)
Here, AlA) is any eigenvalue of A

- With the definition of K(Amnf‘) we now prove the following:
2

N
Lemma 4.17: The set K(A,,,ju) is a compact subset of C «  {17)
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3
— N
Prcof: The compact subsets of 0: are those which are closed

and bounded. Clearly K{Am,,]is a bounded set. To show

"l
K(A;.,)u) is closed let {A,,jl be any Cauchy sequence in
K (Ao,}.&) . Since (;:

N .
is complete P\z ,Q,m'. An\ exists.
: ey €0

From the continuity of the norm 11 we deduce:

IP\" Eim‘Aml < Aap

ey Q0
Furthermore, if some eigenvalue alAY of A satisfies the

condition:
Rea(A)>-u

we conclude from Lemma 4.3 that some eigenvalue K‘Ah}of
An , where m is sufficiently large, also satisfies the

condition:

RQ ?\(Ams > ")4-

But this contradicts the fact that Ah\E K[Am; ") ) . Therefore:
7

Rea (A) ¢ -p

for all eigenvalues alA) of A . Thus A K(Am'“) “and
Fl

NT
hence K(Am,ju) is a closed subset of 0: ; ##

Since l ‘ ' is the infinity norm we deduce from Gerschforin's
Theorem (see Franklin [3] ) that the eigenvalues of any matrix
AE K(Amnf&) lie in the region 8_ illustrated in Figure 4.1

From this fact we have the following:
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Lemma 4.18: There exists a constant K,? 0 such that for

any A{ k(Am,’u)

N

™ g fez-AV T 1dai K, (18)

-1

Proof: Since }=zT-A) I is 2 continuous function of (zih} on the
compact set f_x K”‘zo,‘_u) we know it is bounded. Therefore,
since re., has finite length , (18) immediately follows.

Note the constant K‘ depends onlyon Q4 , F\,, : Iu. - f#
Using these lemmas we now prove the following:

Theorem 4.19: Let €0 , 1=[0,17, Eos(o,ep). Suppose

P\(x,&) is a square matrix, depending continuously

on X and € for (x,e )¢ IxEo, with the property
that for each (%x,¢e )¢ IxEo every eigenvalue of A(x,e)
has its real part negative. Then for some positive
constants Ko , 0\, , €, and all €€ (0,¢,] the
F.S.M. Y(x,‘tl for éA‘Kﬁ) satisfies the bound:

& :
| Vixe |l < K, MF{"?"‘“’ } OFTEHRS | (19)

Prcof: Let }*-, Am be as given in Theorem 4.1 and 'e_ the

path illustrated in Figure 4. 1. We know:
\ .
&.Dx YT = A X /tx,'r) Y{r,n = i

Let x, &€ I, then we may wrife the above differential equation

as:

ED,Y(x,-c; = A(x.,e)\/(x,n =+ {A(x,e) - A(x,,n]’ Yix,©

By the V.O.P. formula (1.25) we therefore deduce:
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X7 X e x-s ‘
\_/(x,'c) = wp {—e_ A%FJ}'*' g_,!.:“’—'FF{ € A(xgé) {A(S»‘J“A’Xmﬁi Y(S,tlols (20)
We know:
x=T

1 - -
bgp{ % P,«x,,ew{ = T §(z'r_—- Alxo,e))lufl Telda
- T

and so from Lemma 4. 18 we deduce:

AT i
lmv‘%ﬁlxe,elll $ K, MF"’Z_(X‘E‘J} x-t20 (21)

Since Alx.E) is a continuous function on IxEo its modulus
of continuity exists. Therefore, there is a continuous

increasing function w($) for $ € 1 such that:

i Atx’q) —Aiu,e» S w(\x-al) x,ue I

(227)
fim wis) = 0
10"
We extend the definition of W as follows:
w(f) = wy) §v 1 (22')
Choose ® & ( 0,1) and set F*\—o( . Define:
LA
Exo = ol MP{% (x-) } (23)

If we take X =X in (20) and consider only QS$téx<\ then

from (20,21, 22,23) it follows that:
x
Exr ¢ K, + €K J-cw“‘” oxp ‘“%(X'S’} Es,mds  (24)

Define the constants Em . & as follows:

Em = ‘M‘P{ E(x,t): DETEAREN }
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g [mv‘g‘, 4 wib “P{ ve‘g j

’J[.’

Then for 0%¢t¢Xx%¢}V and ez {0,5,]-

we estimate:

% P eng |- Bocnr s ¢ 1 [ o [ e g

K,
3 G[j‘i'.‘,_,jw(s:u;‘;{ ;
(25)
£ !(E-'[B&‘JJWE’) +$€"'\wu) QFX— A,l]
< .1

Hence for 0¢t¢x4\

-

and G((O,GJ we find (24, 25) imply:

Elx,'t) < K‘ + 31‘_ Ew =7

—

e * 2K,

Therefore using (23) we deduce for

lle,U i

et (0,61 :

LK, o 1-%8 o]

CSTE L)
Choosing Al = o(A and

K°=?_K‘ we recognize (19) holds.
This proof differs

from that given in Flatto and Levinson

[7] only in the fact that A‘ may be chosen to lie anywhere
in the interval (0, Q). ##
Suppose Bixg) were a square matrix, depending continvous-

ly on X and € for [y ,€ YEIx Eo’ with the property that for
each (x,€ )tIxEO every eigenvalue of B(K,E) has positive real

part. Define Wix,) to be the F.S.M

!
for € Bxe), that is:

E.D‘ ‘V\/lx,'l! = le,e: ‘N(x,t.\ WC'I,T) =
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If we define:
13 = |- x s= |I=-t
Aha,&) = B(l—y,ﬂ
Y(aa,s: = W(\-a) -s)

then we conclude:

E'Da\/h},s\ & = Al\a)e;Yf‘a,S) Yissi= T

By applying Theorem 4. 19 we conclude for some positive

constants K,, A , €, and all e(0,¢,] :
lYaa,sxl < K, I"F{-%(T”} oéssus [
or in terms of WixT)
i W(x,t)l ¢ Ko'mF{‘%(T"X)){ 0¢ xét4) (26)

Combining (19, 26) we obtain the continuous versions of the
exponential dichotomy wused in 1.29, 2.5,2.10. The derivation of
the discrete version of the exponential dichotomy 3.9 1is only

slightly more complicated.

Theorem 4.27: Let Alx,e) be as described in Theorem 4. 16.
Then for some positive constants K,, 4, , € and
all €€ (0,€] the matrix \/tj,k) defined by:

DY = AlLjaaihe) Yk Yhw =T

)
satisfies, for all 0%¢#$1 and K= /3' , the bound:
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.k
UNIPRSE B KL+ 221" 0¢k$7<J 27)

Proof: Let ,.l. s Am be as given in Theorem 4.1 and '(.o_ the path

illustrated in Figure 4.1. Since the proof below works for

any a"E[O,l] we choose to carry it out for &=0 We
note:
h o = § ) = Lo
[I"’{Aljl-.l&)] = lwft[EI'Atak,u] [l-z' zl dz
and so from Lemma 4. 18:
- !\ .
liz-3 Pua'k,e)] s« K/Li+az] (28)
We note:
1=}
- |
Yla',\z) - J‘T ['I.--:- Ach,a1) 0¢kejeT  (29)
=

< the bound (27) easily follows from

Therefore, for K, €1
(28, 29). 1f K\'?l we proceed as follows. Define:

.Y
C.," %{-Kl-‘] A?.= K,
and note:
‘[’(x) 4
Li+ax]
K.Li+2,x]
s i
— :
' » X
Cs

Figure 4.2
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Therefore, for %z Co
K (148, 2) ¢ (14 a%)
=  K/luag] ¢ ‘/[\+ B, 5]
and from (29) we conclude:
I\/¢J"L7l ¢ ‘/Lmsl%]i-h t-r,c,, 6¢h$7¢J (30)

For '2‘ C, we carry out the discrete version of the proof
given in Theorem 4. 19. Write the difference equation for

Y(]‘,H as follows:
. . - \Y . s :
EbéYt],kI = A‘]J\,ﬂ /ta,b-i- {Alak,e]—A(].L,e)} \/(a,lw.)
By the discrete versicn of the V.O.P. formula we have:

]:-I
Yig o = Wig k) + z‘kgh W(J'IQ){A(Qt\,e)-l\lj,L,e;I‘lli,kJ

=({-k
Wik = lz-% F\t;,k,e;]]

(31)
" - LY
* m §h‘l’.-A(]‘°k,e1] Li-2z] Tz
L
By Lemma 4.18 we deduce:
b i
Pwgml ¢ Ki/Lixat ) (32)
Choose o € (0,1) and define:
|-
p o 1+ (D
(33)

"~k
Eyk = |\/13‘,Ll| Litapgd?
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B .
We note for € S G
) AL i
iTHD e
i . < ) h %5 C 34
P+ 05 i+pag o (34)

et w be as described in the proof of Theorem 4.19 and

choose fo’j in (31). Combining (31,32, 33, 34) we deduce:

~!
Ela,b s K, + K\& 2 w(tj-ak) Bl k) /[lﬂal\el} (35)

If we note the function Hh) defined by:

2
b= /lapad) ™ B8,k >0

is an increasing function of KN then:

e
tm s Y0+ §aC, ) o e * G

As €-0% this upper bound on Hh) decreases. This

means we may choose £,70 such that:

K, Vel h
g\ww?; $ w /{1+3E] le3  T4G,eel0e] 6

For %SC‘, and €&Z(o0€,] we estimate:

> 9 L o® .
%gi w (Lj~11h) /[H-pAel? £ K.Z;.w‘m/[H}A%]ﬁ

N

h el o
$Ke ‘-T,;- 4 7;Vz'lw]"’“"‘:/[”P&f(m
Ve
< "Eﬁ L woe) + wn /[ @%] ol

< 3
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If we define:
E.* ms:Ela',h; : 0% ks-‘fsﬁ (38)
then we deduce from (35,37) for és (, and e (o]
Eijho ¢ K,+3 Eo

=> B K,
Recalling (33,38) we therefore have for all €€(c€,] :

Vgl ¢ 2K./Du T ochegeT hec, 69)
If we then define:

K,= 2K, D= min Bg,ud]
we deduce from (30, 39) that for all l’\"'_"f and €Z (0€,] :

VYl ¢ Ko/[“"ﬁ\%]frk 0s h$a'$3'
This establishes (27). ##

Suppose B(X,h were a square matrix, depending continuously

and € for (x,€ )E IxEO, with the property that for each

(x,e)e IxEo every eigenvalue of th,&) has positive real part.

Let the matrix lellﬂ satisfy:

where

e Dy Wi, b = Blyjevah,e) Wy Wi =1

0¢341l . By following steps analogous to those used to
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derive (26) we conclude for some positive constants Ka . 4, , €

]
and all € ¢ (0,¢,} , h=7F

- h.‘k-‘
IWgol € K /Tea 21" ocicheT (o

Of course, in the proof of (40) we appeal to Theorem 4.27.
This completes the derivation of the exponential dichotomies

used in the previous chapters.
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