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ABSTRACT 

We consider the following singularly perturbed linear two-

point boundary- value problem: 

'£. ;r<lC> = .O.t~> ])x }fx> - Ao,,E>~c-xl : ! tx,~J 

(B~ : L<Ela-(0) + "R<~}~(I) ':: ~(~} 

0$:X~I ( la) 

( 1 b) 

Here .fi(El is a diagonal matrix whose first m. diagonal elements 

are 1 and last )'11 elements are E . Aside from reasonable 

continuity conditions placed on A, L , "R , £ , %, we assume the 

lower right m'Xm principle submatrix of A has no eigenvalues 

whose real part is zero. Under thes e assumptions a constru-::tive 

technique is used to derive sufficient conditions for the existence 

of a unique solution of (1) . These sufficient conditions are used to 

define when ( 1) is a regular problem. It is then shown that as 

€ ->· o-+ the solution of a regular problem exists and converges o n 

every closed subinterval of (oJ l) to a solution of the reduced prob-

lem. The reduced problem consists of the differential equation 

obtained by formally setting E equal to zero in ( la) and initial 

conditions obtained from the boundary conditions (lb). Several 

examples of regular problems are also considered. 

A similar technique is used to derive the properties of the 

solution of a particular difference scheme used to approximate (1). 

Under restrictions on the boundary conditions ( lb) it is shown that 

for the stepsize much larger than £ the solution of the differ -
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ence scheme, when applied to a :r egula r problem, accura+-ely rep

resents the solution of the reduced probiem. 

Furthermore, the existence of a similarity transformation 

which block diagonalizes a matrix is presented a.::; well a.s exponen

tial bounds on certain fundamental solution rnatrices associated with 

the problem (1) . 
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0 . INTRODU C TION 

This thesis is concerned w ith the properite s ol t he s o lution 

of a singularly perturbed linear two-pcint b ounda ry - value problem. 

The form of this problen~, called the general boundary-value prob-

lem, is: 

l Ul" 
[ !\,,,,., A,-z.~"~ ) A,,tw 1\ ~I» l + i £, •••• , 1 

'D E ~(XI ~ ~1 lX1E. } Al1.Y~·,fl ~ A7..l'J(·"' 1\r!X/ f,lt,fJ ( l ) 

E 1¥fJ.J A,.,,x,E: 1 ~ Au('l..,cJ p,33 (X;~J J .. Yl.XJ J t•xfl j 

lL,<~l Lz.'El L3(f) 1 ~(0) l + [ R,«l 'R,«• ~,,. ,][ \!"1 l : ~(E) 
I 

YtOJ J ~(1) (2) 

~(OJ ~(l) 

O~X~\ 

Here the square matrices A11 , AL'l.. • P.33 have the orders fYl, "T.1 1 , 

"n\1 respectively, and there are m+11t1+ "l112 linearly independent 

boundary conditions. In addition to reasonable assumptions about 

the continuity properties of the matrices Atj , li , "Ri and vectors 

f; , % , we make the following: 

Assumption: For some positive constants f' , ~o and each 

( Y.., E ) i lo, l)lllO, ~o] every eigenvalue of AuiX,E: J 

{f\13\x,E:l) has its real part less that - f (greater than 

(3) 

F). 

It is possible, as demonstrated in chapter one, to transform a 

large class o f sing ularly perturbed linear two -point boundary- value 

problems into problems o f the form presented in ( 1, 2). In this 
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transformation we use a non singular matri--x whose existence and 

properties are developed in chapter four. 

One consequence of the assumption presented in (3) is 

contained in the following: 

Theorem: Suppose the matrices A-u()c1t>, Aj3 lx,f:J depend 

continuously on ')( and E , for (x,~> £ l 0
1l)x (O,E0 ) , 

and satisfy assumption (3) . Define the fundamental ( 4) 

solution matrices \h,L} , ~lX,'t) by the following 

initial-value problems: 

El\Y2 Lx ,-r.J -- A-n lX 1E- > 'iz. £x, \:J XtY,'t) ~I 
0 ~ X/t ~ I 

E 1J"' "{3 lX/'t ) = A33<x1e.J ~£x,"tJ Y3t1,1J ~I 

Then there exist positive constants L0 , A , E, 
I -such that for all E ~ ~,o> E1J : 

l ''f2txJ-r. J I ~ Co ~f{-{<x-1:)~ 

I ~ <x;tJ I ~ Co .Q]j(p ~- ~ (r-xJ t 

Here the symbol I · I denotes the infinity norm. The proof of 

this theorem may be found in L 7] , and in chapter four we 

present a slightly modified ve rsion of the same proof. 

As a result of the theorem presented in (4) it is possible 

to formulate a constructive proof that for all sufficiently small E 

a s olution of the differential equation (1) s ubject to the boundary 

conditions: 

0 
~ (O J :: ~ (f: ) 

I o 
f\r loJ : E ~ (f- > (5) 
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exists, is uniq•.1e, and satisfies an a prio ri bo•.1nd. Let it be 

understood that w e always require the parameter E to assume 

only positive values. The boundary- value proble m descrited by 

equations ( 1) and (5) is called the special b o undary - value problem. 

Using the method of matched asymptotic expansions "ve 

derive a formal asymptotic solution of the special boundary-va lue 

problem accurate to order E . This accuracy estimate is then 

shown to be rigorously correct through the use of the a priori 

bound satisfie·d by the exact solution of the special boundary- value 

problem. 

At first it appears that we have gained little information 

about the solution of the g eneral boundary- value problem by solving 

the special boundary- value problem. Fortunately , this is not true. 

From a result found in t2J , and presented in Theorem 1. 28, we 

can use the asymptotic expansion of the solution of the special 

boundary-value problem to state sufficient conditions for the e x ist

ence of a unique solution of the geaeral boundary- value problem. 

These sufficient conditions constitute the basis of our definition of 

a regular (general boundary-value) problem. In Corollary 2. 69 we 

state that the solution of a regular problem exists, is unique, and 

converges to the solution of the reduced problem on every closed 

subinterval of (oJ 1} as ~ -'>0+. The reduced problem corresponding 

to the general boundary-value problem consists of the differential 

equation obtained by formally setting ~ equal to z ero in ( 1) and an 

initial condition obtained from the boundary c o nditions (2 ) . v'Ve 
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apply this corollary t o seve!·2.: examples which 3.!"e presented at 

the e!'ld of chapte :::- tv.·o . 

Much of the work presented in this thesis was motivated by 

a desire to discover the properites of the soluticm of a di!ference 

scheme applied to the g eneral problem (I , 2 ) . The form of thi s 

difference scheme, called the gene ral d ifference problem, is: 

(6 ) 

0 (t; j 

(f ( 7 ) 

Here we have defined: 

We recognize the difference scheme presented in (6) uses a mix-

ture of the forward, centered, and backward Euler methods. The 

choice of what difference scheme to use was motivated by the 

desire to apply the follow ing theorerr., whose proof can be found 

in c hapte r fou r. 



(I.\ 
\~ I 

Theoren~: Suppo se the mat!"ices An\l1t), f.3~}'1· 1 ~) depend 

continuously o n X ar;.d E , for (:l1EJ f loll})\ L"1 ~ 0 ], 

and satisfy a~sumption (3). Define the discrete 
).. 

versions of fundame ntal solution matrices Y4'a 1~), 
V~' 
t3ti ,'~l by the following initial- value problems: 

.,... h 

e. -n ~ 'Yl., a , k.) 
. ~ h ~ 

-= A,1. ( 1') Y, ( j+ I )d Y, { R, h.l ':: I 

h h 
E 1)3 yi t~ ,\q 

\.. j.. o~a!:..T-1 J O~R~~ 

-= A "33 ( j J y3 ( l' k ) ~ ! k) k.) = I 

Then there exist positive constants (
0

, A , -E 1 

such that for all E l (o,~.J: 

.... I h ~-h 
' )', l a , \t l 1 ~ Co ( l+ !\e) 0~ R.~i~:r 

h 
(o I ( l +A *) R-J ~~::r 1 Y.ta ~~) 1 ~ c~ • I... , -

0 

(8) 

We recognize theorem (8) is similar to theorem (4). As a result 

of this similarity it is possible to carry over many of the tech-

niques used in the general boundary-value problem to determine the 

properties of the solution of the general difference proble1n. From 

Corollary 3. 72 we find that under suitable restrictions the solution 

of the general difference scheme converges to the solutio n of the 

reduced problem on every closed subinterval of (o11) as E1h -> O-*-. 

The restrictions p laced o n the problem for this convergence to 

occur are that: 

(a) the general boundary- value problem is regular, 

(b) the boundary conditions (2) do n o t involve ~(I ) or '!:(0). 
( 9) 
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The most important point of this co:rtvergence result is the 

fact that the solutio n of the reduced problem can be a ccurately 

determined for h>~ ~. This fact is in sharp distinction to the 

usual converg ence results obtained for difference schen1.e s , the 

usual converg ence results would require h<< E 

By using the results presented in this thesis it is possible 

to m.odify the general aifference scheme and improve thE- results 

obtained. One improvement eliminates the restriction (9b) by 

applying the general difference scheme on a nonunifo rm rnesh. 

This nonuniform net has its mesh points concentrated near the 

boundaries X.-: 0 1 I . Unfortunately, to retain a g iven d eg ree of 

accuracy in the representation of the solution of the reduced prob

lem as E->0+ it is necessary to increase the total number of me£h 

point at a rate proportional to k i . Another 1n1.provement uses 

a modified version of the general difference scheme to improve the 

rate of convergence of the solution of the difference scheme to the 

solution of the reduced problem. Each of these improvements is 

possible because we have detailed knowledge of the behav ior of the 

solution of the general difference scheme. 

Singular perturbation problems o f the general form presented 

in (1, 2) have been considered extensively in the l iterature , see for 

example l 9, 10, 11, 12, 13) The procedure used in this thesis to 

study the boundary-value problem ( l, 2 ) differs from those presented 

m ( 9, 10, ll, 12 , 13} in the fact that it is constructive. It is the 

constructive nature of this procedure which allows us to apply it 

almost directly to the study of the properties of the numerical 
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scheme. 

Throughout this tl<esis a cons i !;ten~ eftort has been made to 

adhere to the foilowing notational convention.: 

1) the derivative ope rator . A subscr ipt is added 

whenever the function differentiated has mo:-e 

than one argument . 

the forward difference operator. A subscript 

is added whenever the function differenced has 

more than one argument. 

I · I the infinity vector norm or its induced matrix 

norm. 

The numbering of equations and results is done c onsecutively 

throughout each chapter. When a reference is rr.ade to a number 

outside the present chapter it is preceded by the number of the 

chapter in which it occurs, i.e . a reference to 2. 76 means equation 

seventy-six in chapter two . 
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1. BASIC CONCEPT S 

1. 1 The General Problem 

We cons ider the following two-point boundary- value proble m : 

where : 

= n (t) n~(~· - A(.,f, ~(X) = ± <•, fl 
-' -
L(u~lO) + R (E)~\1} :: ~(c) 

X£ I E lO J I J 

. . . a small positive parameter . 

identity matrix. 

n.(f} r _, l ~!x) 

l - l i'~J 

= I r. ~ •.. J ] 
f {X1E) 
-l. 

n..A ~ + 
I l ~ J -

. • • compatibly partitioned matrices 
and vectors . 

( 1) 

(2) 

We shall assume, fo r s o m e E
0
>0 and E

0 
= [o,~ , t h a t one of the 

following sets of continuity conditions holds: 

(a) 

(b ) 

#JW ,.., ~ ~ 

A) f 1 l ,R li- are infinitely differentiable 

functions of X and/o r t for ( X,€ lEIXE. . 0 
P" .., -..· ~~""">~ ,.., ,...., '2. A.) 

A ,£ )llR >~ Px A 17..,~ A,.2 >DX A1..1. a r e 

con tinuo us func tio ns of X and/ o r E fo r ( .)(, E ) £ Ix E . 
0 

(3 ) 
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Clearly conditic:::1s (3b) are satisfied whe:;\:! ·;er (;Ondition s (3 a } i1old. 

Furthermore, we require the matrix A1'1. to satisfy the follow~ng 

eige!lvalue (E. V.) ccndit ion: 

E. V. Conclition: For each ( X,E ) th.E no eigenvalue 
0 

A of , '2.1. \~J') has its real part equal to ze r c . 

In the development of the theory which follows we shall ~ee 

( 4 ) 

the eigenvalue condition (4) has two important consequences . The 

first consequence of (4) is contained in Theorem (l. 2 9), while the 

second consequence is described in the following : 

_, 
Theorem 1. 5 : Let the matrix Au (~1 £) depend continuously on 

_..; 

x and £ for (X,t ) £lxE
0

• If All.tx,~ satisfies the 

eigenvalue condition (4) then ther e exists a nonsingular 

matrix T1. ~l E) such that : 

(a) 

(b) 

For each (~, E ) E I x E every eigenvalue of 
-ill ( -12.) )

0 

An \x,E} Atl. (t,4d has its real part 

negative (positive). .... 
The continuity properties of 1\l'l.. <x,~) with 

(c) respect to X and E. are also enjoyed by 

T -(1) -•z.l 
lli,El J Al.l. (XI€) J Au.\X,E). 

(5) 

The proof of Theorem (1. 5) may be found in chapter four. In this 

proof we show the existence of a positive constant ~ (independent 

of X and E ) which bounds away from zero the mag nitude of the 

real parts of the eig envalues o f Autx,t). With thi s in mind we 

may inte rpret statements (Sa, b, c) in t he following manner. S tate -
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ments (Sa, b) tell us the nurr..ber of eig e n va l ues of 

ing multip licities , w ith negative (pos it ive) real part is independent 

of X and t . Once this fact is known, one may c onstruct for each 

( X , ~ ) a mc.trix Ttx:u 
rJ 

which ''block diacronalize s' ; A (X~) ~ b 11. ) in the 

manner shown in (Sa, b). Fi.."lally, (Sc) states the existence of at 

least one choice of the matrix l<x,~) which has as many derivatives 
_, 

with respect to X and ~ as does Au('x, ~) 

Note that the differential equa.tion: 

.... 
ED¥: ( x> :; Au (X1EJ ~ <x> 

under the change of variables: 

--
becomes: 

,... 
Therefore, when A1z. satisfies the continuity conditions (3b) and the 

eigenvalue condition (4), we may use Theorem 1. S to choose T<x,~l 

such that: 

_, { ~ } 
Tc,,tl A2.l. l~.~/1\x,~) - E: 'Dx l(~~l = [ A,_.,. .... , 

E Al'Z. ~~~~, 
EA13 c<,EJ l 
A33ix,~l..; 

Aut~,~> 
- hl 

{)(E) 
(6) 

Az., < x,E: > + 
+ 

,..J(Z,) 
~ -:r 0 

An <x,El ~~ tx,E> + 6<~; 

In an exactly analogous manner w e will make the change of vari -

ables : 

[ 

~ (X) 1 
~ {X) j o J I \L (lt) J 

lfx,EJ ! ~~~ 
(7 I) 
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~ (X ) :! 

where Ttx,~> is the matrix chosen in (6), to transform problem 

(1, 2, 3, 4) into problem (8, 9, 10,11): 

f ~ (>J - ficE>D)txl- At~~>~<XJ = {ex, E > 

(B) - L<E1 l(O) + R (~)l(l) :. Q (~) 
~ 

X£ 1 - to,' 1 

where: 

~ , . . a small positive parameter. 

A1x,e=- I Au ~,E:J 
~,lt{ .. J 

A1, l-.,t) 

An.txft) 

Au tl(,£-) 

E: Antl(,~ 1 

E, = ( o, eJ 

identitv matrix. 

¥ (XJ I 
~bel ] 

:: ty'CXJ 

~()() 

cornpatibly partitioned matrices 
and vecto rs. 

(7') 

(8) 

(9) 

Under the change of variables (7) we lose s o me of t he differenti-

ability properties of the functions involved, therefore (3) becun1es: 
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(a) A,£ , L 
1 
R 

1 
~ are: infinitely di.ffere!ltiable 

functions of X and!or .E for ( ')(,( ) !h.E
1

• 

A , f) l~ R) Q. )'Dx A;1,.,~ A,J. >Dx A,_" . Dx A1?: are 
Cl 

continuous functions of ~ c...nd /o r ~ for ( X , E ) ll ~ E ., . 

(10) 
(b) 

As illustrated in (6), 

1: U)l~ :~) • 
of those of "u \1-t ._. J 

the eigenvalues of AnlJl·~~) are perturbations 

Therefore , by choosing ~ 1 sufficiently .small 

we deduce from (3, 4, Sc, 6): 

E. V. Condition: There exists a positive c onstant fA such 

that for e a ch ( X , E ) £ IxE 1 ever y eigenvalue of A.~1.()(1 E) 
l AJ3 he ,~> ) has its real part lesl:; that -fA (greater 

than -+ f' ) 

(ll) 

We call problem (8, 9, 10, ll) the general problem. Since the trans-

formation of variables (7) is nonsingular , we recognize the bo undary -

value probl-=ms (1) and (8) are equivale!1t. 

To illustrate the type of behavior we can expect of the s olution 

of the general problem, we cons ider. the following model problem: 

'l. 
~ D V-(X) + D lA. (X) 

'U. (O) : U. o U(l) ~ 1A' (12 ) 

When written as a first order system, probl em (12 ) becomes: 

( 13 I) 
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[ o ~ 1 I :::: l + 
r o 
I 

j 
t 

- ., r ... ... , l u I I ..... t.. -

0 J l '\-{1) J -
The exact soluti o:.1 o f (13) :;. s: 

r -u" + (-u'•l.l0 -fl)l ll- .tn:p(·tJJ/lt-~( .. i-)1 + t"x ,J 
l tt""'-u0 

.. .f0
) .QJY:p(-t> /[1-w.p{·t>l + fo 

( 14) 

As E-t o+ we find U(X) is a bounded fu.'1Ction on to, 11 w hile '\T(X) 

is bou.'1ded only on closed subintervals of (0, lJ. Near the bounda

ry x-:: 0 we find both "U. and 'II" make rapid transitions of an ex-

ponential nature from their value at }(: 0 to their value for X 

near zero; infact rv-(0) 
_, 

blows up like ~ . 

Therefore, considering the extra complexity o f (8) wher.. com-

pared to (13), we expect solutions of (8 ) to have u bounded on ro. 11 

while 'lr
1
"Ur are only bounded o n closed subintervals of (0, 1). Near 

the boundaries X~ 0, l we expect u 1 '\1j"Vr to undergo rapid transi-

tions of an exponential nature from their bo undary va lues to th e ir 

values near the boundary. In these regions o f rapid transition, 

-I 
called boundary layers, we expect 'II' and/or 'W" to blow up like E • 

In many cases of interest o ur expectations about the behav io r 

of the solution of (8) will be correct. However, we hasten to point 

out that our expectations can be wrong. For example , if 

in (13) then both 1A and '1r blow up as E: ~ o+ , w hil e for u': V.
0 + t 0 

no boundary layer occurs at x: 0 . 

1. 2 Banach Spaces and Differential Equations 

In t he theory which fo llows w e shall use the idea o f a Banach 

Space (i.e. a comple te, normed, linear space ) . T wo examples of 
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a Banach Space '1.-vhic h we will use a. re : 

w 
Example 1: The Banach Space t:oo (o> 1} . T h e linear s pace 

involved is the space eNtOJ\1 of all contir:uous N

vector cmnplex- v alued functions ciefined O !l the interval 

[ 0 1 \] • The norm involved is the sup-not·m: 

II f II -:: AUf { I f ( )lJ I : X £. t 0 J 11 .t 

-m.~J lt·l>-d ~ \~{:f Nf 
\ ~ ' If I -· 

('"' Example 2: The Banach Space ,ueto,J"j. The linear space 

involved is the space l)""to,.;:rJ o f all N - vector complex

valued functions defined on the integers ( 0, 1, ... , .I} . 

The norm invoived is the sup-norm: 

tlfH = 

(15 ) 

( 16) 

From a Banach Space (X, II· U), where X is the linear space 

and II • II the norm, one may construct a second Banach Space as 

follows. Define '£, (X) to be the space o f all linear operators 

mapping X into itself. If K l ct (X) we say K is boundeci iff 

the number : 

( 17) 

is finite . If we define tB ~(X) to be t he space of all bounded linear 

operators, then under the norm (17) d);t.(X) is a Banach Space. 

Example 3: If Acx,~) is a continuous N ~ N compl ex- valued 

matrix defined for ( x , "a ) l lo , llxlo, 1] , then the 

mapping: 

(18) 
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is in 8'£ (-E:to,lj ). 

Ex<unple 4: If Art.,~) is an N x N complex- valued matrix 

defined for ( "i ,i ) E (0, l, ... J)l< (0, 1, . . . J ) , then the 

mapping : 

KFt~l ~ 

is in~ t (I){o, J)). 
01> 

Fe ·) - } ( 19) 

With these ideas in mind l et us prove two well known results: 

Theorem 1. 20 : (Bana '= h L e mma} Let (X, n. II ) be a Ba!lach 

Space and KdB l (X). If l\1<11 < \ the operator I-K 
is nonsingular and: 

(a) ( !- K ( 1 
=. l:a) Km 

/'1\:::0 I 

(b) 1\ti-\<f'll ~ ( \- IIKHf 

Proo f : If we define { 
• fZ' 

, then LN ~0 is a 

Cauchy sequence in t h e Banach Space ~~(X } . 

Therefore, for some L £ art <X) the sequence 

{ LN 1: converges to L . Furthermore, since : 

-... I-K 1\'-tl 

we find : 

Lti-K) ':. ~i."'t Lw(!-KJ: I 
N->co 

Therefore L-:. (I-'Kf\ Since: 

IV. 

\\ LN \\ ~ ~ \\ K n m ~ ( \ - l\ K 11 r ' 
11\0 

then : 

n L \\ :: ~im 1\ LN u !: t \ - II K 1\ f'' 
N-)al 

(20 ) 

,, ,. 
fff 
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Theorem 1.21 : Let (X,h ·ll ) be a Banach Space. If K , 

K_, . L .. Kl..PiX) '- < IIK .... 'LI'I- 1 

. ~ w "' then for each positive "o 

the operator Ktt. l i s non -

singular. Furthermore : 

(a) { K+~Lf 1 = {I+ E K'Lf'~(' 
(b ) II { K t t. u-1 1\ ~ ( \- E 1\ K-1 L II r• I\ ~<:n 

( 21 ) 

Proof: Since K is invertible we deduce: 

K + ~ L ::: K l I + t: K-: LJ 

Therefore (21) follows because (I + E K_, l) is 

nonsingular by the Banach Lemma (20). ## 

Since the general problem (8) is a linear differential equation, 

let us list the basic ideas underlying the solution of linear differen

tial equatio:.s. .Let C(x) be a square matr:.X depending continuously 

on X for X£ {0, 1] Following lnce L 11 we define another square 

matrix Ylx1?) , called the bndamental solut ion matrix (F . S.M . ) 

for C OcJ , by the initial- value problem: 

T -
Among the well known properties of Y<x/r) c..re the following: 

(a) 

(b) 

(c) 

(d) 

Y<x
1
-r) is a uniquely determined nonsingular matrix 

Yv~ •• --o Yn J "'l -= I 
] .... Y<t. t.) = - Ytx,l.) Cn-; 

L I X, 

Ycxl·t) = I + \ y ()(,S) C(s} ch 

(23) 

One obtains (23c) by differentiating (23b) with respect to \ and using 

(22, 23a) . To obtain (23d) replace t" by S in (23c) and integ rate t h e 
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result from s~ 't to S= X . 

Consider the differential equation: 

,.. 
= ! (X.} (24) 

If is a continuous function o.~ '/. for ){E to, 11 , then the unique 

solution of (24) satisfying the initial condition ) = ~m 

~ 

~(1.l = Ylx,s>-~<Sl + ~ Y(;cJ"tl f<-r>d.-r 

at 'X.=.S is: 

(25) 

Formula (25) gives us a representation of the solution 7 of (24) 

given its value at some point St [0 , 1], and it is called the varia-

tion of parameters (V . 0. P.) formula. 

Finally, consider the following pair of bounda:ry-va.lue 

problems: 
7YJ tvJ _ f 
"l ~ ( 1. ) - ( XJ 

BV(v): 

~
l"ll) ) 

lY -

~ = L
(V) {V) (y) 1 (O) + R lY){t > :. ~ 

0 ~ X.~ I 

We note BV(O) may differ from BV(l) only in the boundary 

conditions. One well known result is the following : 

Lemma: B V( v ) has a unique solution for every 
ll)ll•Jy 

iff the matrix l.lJ (· , O} is nonsingular. 

(26 ) 

The proof of this lemma l'\IJ 
rests on the fact that any solutio n ~ txl o f 

B V(Y) has the unique representation: 

(Y) ¥ lXl Y ("II) 
::. <.._. ,ol ~ (oJ (27 ) 

derived from the V. 0 . P. formula (25). Using (27) we argue there 

\V) 

are as many solutions o f BV(v) as there are s o lutio ns ) (o) of 
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the algebraic problem: 

Following Keller and White l1..], we may use this lemma to prove 

the following: 

Theorem 1. 28: If B V(O) has a unique solution for every 

f 1 ~ then there exists a unique matrix Z <X) 

satisfying: 

Furthermore, B V( 1) has a unique solution for 

every f 1 ~ iff 63
11

~ is nonsingular. 

The proof of this theorem follows by noting lrxJ has the rep-

res entation: 

which, upon rearrangement , leads to the identity: 

When we consider the general problem (8, 9, 10, 11) in the 

following chapter, we shall make extensive· use of the following: 

Theorem 1. 29: (Exponential Dichotomy) Let Aut-t.1E), 

Ant~,f:J be continuous functions of ll. and E , for 

(X , E: ) f. I ){E 
1

, which satisfy the eigenvalue condition 

(11). If Yz.<X1T))~i)C1 ~ J are the F.S.M. for fAu\X,E>, 
i A33~J.,E) respectively, then there exist positive constants 

Ko
1 
~"1. 1 A such that for all O<f: ~ ~l..: 

(a) 

(b) 

I y~(X;Tl I ~ 

I '13 (lCI T:J I !: 

Ko ~f ~- ~ {X-"t) 1 
Ko ~f' \-t't -)()} 

O~'t~Xf 

o~x~-r.! 

(28) 

(29) 
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As mentioned in sect:on I. l, this theorem is the first important 

consequence of the continuity and eigenvalue conditions (3. 4). The 

proof of Theorem I. 29 will be found in chapter four . We should 

note the norm used in (29) is the matrix norm induced by the ve::::tor 

norm I · I . 

1. 3 A Perturbation Exa mple 

We illustrate the use of the basic principles outlined in the 

previous section by considering the following initial-value problem: 

1.(.l0) :: 0 ~u.to>:: 0 (30) 

o~x$1 

Here "" f "'J 
' are in 'E~ to J 1] and ~ is a s mall paramete r. By 

integrating equation (30) we find "U.. must satisfy: 

1h.L lXl = - l.J.t x.l + f { flT > - E CtnJ 1J.t1;l 1 ch:. 
0 

(3 1) 

If we note the F. S.M. for -1 is : 

then an app lication of the V. 0. P . formula (25) with S• 0 allows us 

to deduce from (31): 

~ \ 

J mr {- hc-"t" 1 i J { ·hj> - ~ a<s ' uc,,} J.s JL 
0 0 

(32) 

I 

If we introduce the operators KJ LE (B;l ( 'ewlo, 1)) defined by: 
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(33) 

we note we may write (32) equivalently as: 

(I i" E KL)-v..: K.f {34) 

If we choose ~Q~ 0 such that: 

then an application of the Banach Lemma states: 

-· M -= -· (J: + E K L) K L 

exists for 1 ~I. ~ € 0 , and satisfies the bound: 

Furthermore, we find: 

(35) 

Using the identity (35) we may write (34) as : 

u = (I+E:H)k{ (36) 

We can interpret equation (36) in the following manner-. 

First, it states a unique solution of (40) exists fo r all sufficiently 

small € Secondly, it states the unique solution of (30) satisfies 

the a priori bound: 

(3 7) 

Furthermore, equation (36) implies: 
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K ii' + " 'U.. ""' t:J(~) 04 IE I -"> 0 

where the """" sign and the symbol (j- arc used in the follow-

ing manner._ 

Let f,~ be mernbers of some Banach Space (X,ll·ll) . We 

interpret the statements: 

~ I~\ -"> o 

(38) 

as implying the . t exls-ence of pos itive constants € ,, K, satisfying 

the inequalities : 

\\ f - ~ 1\ 4 K, \ (;. t tlA. lEI-> 0 

(39) 

ll t - ~ \i < \<, Ell\ ~ 
' ~ ~ -> 0 

Suppose the e x act solution of (30) admitted the expansion: 

(40 ) 

If we substitute VN into (30) , collect like powers of E , and set 

the coefficientof {m (for m~O,l,Z, .• . ,N-1) equalto zero, then 

we are led to the following sequence of problems: 

P : 
0 

(4l a ) 



P: n 
'V..~(OJ : 0 ))-u tcJ -'= 0 

/)'\ 

We find (32) may be used to solve (41 ) w ith the result : 

lA.f'r\ \X ) I$ m~ N-1 

Let u denote the exact solution of (30), while 'W""' is 

( 4lb) 

(42) 

d e fined by (40) and (42). We deduce from (30 ) and (41) that the 

error ep,~ = 1). - -w;._. satisfies: 

(43) 

~tJ ( 0) = c 

By applying the a priori bound (37) to the exact solution of (43) we 

deduce: 

We r e cognize (44) as the rigorous justification of the statement that: 

04 lEI-> 0 

In general, if ~ satis fies the boundary- value problem: 

{45) 

and we have shown: 
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1i ho roJ ~ (x> + (J(f:~) 

then we shall call ~ an asymptotic (expansion of the exact) 

solution of the boundary-value problem ~45). 
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2. THE GENERAL PROBLE~'l 

2. 0 Formulation of the G e neral and Special Problems 

We cons ider the general proble1n: 

t "'+ (~l - n (EJ n 1()C) - A <x,f.> 't {X) :::::: f CX1E.> 

~) - L (E) 1: l 0} + R (E) i (I) -::. ~(EJ 

X€.1 - L o, 1] 

where : 

E . , . a small positive pararneter. 

E1 ~ 0 E,:. [0) EJ 

I~ . . . Q X Q identity matrix. 

0 [I~ (t ] ~ [ f, lx, ~Jl 
.a(~) -: ~ e Tm, f (X,~) 

f2\l,El J 
0 f3 ~ll.~} 

~ 

compatibly partitioned matrices 
and vectors. 

( 1) 

( 2 ) 

We assume one of the following sets of continuity conditions 

holds : 
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(a) A 
1 
f J L, R

1 
~ are infi.nitdy differentiable functions 

of X and/or ~ for ( X,<: ) £. I :~~E 1 . 
(3) 

(b) A 1 f 1l 1 R>iJ'D~AI'~.~D~A 1~, Dxfo . ._l. lDJlA 33 are conti..."'l -

uous functions of X. and E. for (X, E ) E lxE
1

. 

Furthermore, we place the following condition of the eigen 

values of the matrices An., A33 

E. V . Condition: There exists a positive constant f" such 

that for each ('X, E. ) tl)(E
1 

every eigen value of 

Au(~1E:J ( A~/'·•'->) has its real part i ess than "f' (g reater 

than-+ f )· 

As mentioned in secti on 1. 2 , the eigenvalue condition 

(4) leads to the following : 

Theorem 2. 5 : (Exponential Dichotomy) Let An'X,El, 

where: 

A'P.l tx, E) be continuous functions of X and E. , for 

(x, € )..E I ).E 
1 

, which satis fy the eigenvalue condition 

(4). If )il'lc,•>; ')i.tx,T) are the F . S . M. fo r iA. l?..(X,f:) 

~f\?3bc,~) respectively , then there exist positive consta.nts 

( 01 ~6., 6 such that fo r all O<E:$ El.: 

(a) IYt.('lC14)1 ~ Cowp{-~<x•-r)} Q$'t~'f..~\ 

(b) 1 'is ,x,.:> I ~ C.0 ~r ~- ~ (~-x> l o $ x ~ "t $ i 

We a lso consider the following spec ial problem: 

t. ~')Cl = ftx,o 

L<O 1 (0) + R~(f)) (I) :: 

( 4) 

(5) 

(6) 
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0 1 

r J 
fo 0 0 

E;J 
~ Ct} 

R* l ~ 0 .lS tl 

't} :: 9. ({I ':. 1\r {(: ' 

0 
ct 

"::!. ( { ) (7) 

compatibly partitioned matrices and vectors . 

We note the boundary- value problems ( 1) and (6) may Jiffe!" only 

in the boundary conditions. 

2. 1 Formal Asymptotic Solution of the Special Problem 

In this section we will derive, by the method of rnatched 

asymptotic expansions, a formal asymptotic solution oi the special 

problem: 

t ¥ (Y.) :: f tx,E > 

X~ I (8} 
(B .. = ~-(f) l 

We assume the continuity conditions (3a) hold in addition to the 

eigenvalue condition (4). Before we apply the perturbation method 

let us define the following matrix and vector functions: 

L 
Aij :: A,i (O) 

( 9') 

of~: {. (o) 
-1 -· 
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L,i\. -
r."b~ A11_t xQ1 e) + .D(: A2.1..<~) o) 

l )(o-=. 0 1~ l c '-)-1.1.'" -

1 L."R 
t..1>.JC. A31tx .. 1D) + UE A33{x~, 0} 1~ R C1~ lll.) = Xo= \ 

'f.< x,-o ••• t. s. f~. fcrt Q. (X) 

L 1R { Ll'k A L,'Po. y ("X~) - ~r (x--rJ Au. l fS.M. fer'\. 'l' l (. ... 'Zl. 

'I. L.,l. 
~t{ All'-) f: S. ~1. tcrt A LIP.. 

1 l~,"tl - ( )(-""tl 31 l 33 . . . 
y('J() = "1(.~,0) ljR i..1R 

\ tx.> = Y, <x;o) 
Lr'- L..,~ 

~ tx.J = ~ t:X/0) 

Since the eigenvalue condition ( 4) holds for the constant 

llLl~ 1\ \..1R 
matrices "'2-l- , "n we find the following: 

Theorem 2 . 10: There exist positive constants Co ~ 
I 

such that : 

I L.,~ i ~ Co ~r l- A <x--rd (a) Yl. tx,1:, c~ X-?; 

y ... 1- (iO) 
(b) I 3 lX,"ll I " co .2..'):r ~- ~(-r-x, 1 0 $ ~-}(. 

The proof of this theorem may be found in chapte::- four. 

We note the boundary conditions for the special problem 

may be written as: 

l ;::: 1 ':. 
Wll> -

+ 
E-? D (11) 

We now apply the method of matched asymptotic expansions 

to derive a formal asymptotic solution of (8) . Consistent with the 

expected behavior of the solution of problem (8), as discussed in 

section 1. l, we assume the following expansions are valid: 
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Outer Solution: In each closed subint erval of (O , 1) we 

expect ~' ![ .~ to remain bounded as E-~0+. We 

try in this, the outer region: 

+ E: -> 0 

Left Boundary Layer: (L. B. L.) Near the left boundary 

we expect 1:t, ~ ,~ to undergo rapid transitions 

of an exponential nature from their values at 

x: 0 to their values for X near zero. In ~his 

region of rapid transition we expect ~ to rer..'lain 

bounded while ~ and/or "'!£ may blow up like 

~ _, as E:-"> o"' . We try in the L. B. L.: 

~lXI L (X) f:.NI I ~:ll ) l 
#OJ ~ l ~·X> l l '\r (SI J ~ t~O· 

('(\ _, 
~}<s> '\E1XI 

1... 0 s:. X s >, 0 ~-~ {l) - E 

Right Boundary Layer: (R. B. L. ): Near the right boundary 

we expect ~ , y , ~ to undergo rapid transiti.ons 

similar to those encountered in the L. B. L. We 

try in the R. B. L.: 

R. - 0 
~-· (Y') :: 

l R. 1 Cb u. l Y') 

l;;-1 ~M ;~t•J 
'\.lr U'l -,. 

'r = 

(12) 

(13) 

( 14) 

Not e that the three expansio ns (12, 13, 14) have the fo rm of 
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a power series in E T h e impnrt<...nt difie.t·ence between these 

expansions lies in the choice of the independent variable X, l , or 

r 

Once the expansions used in each regl.on have been chosen, 

the procedure for recursively determining the ur.known functions is 

straightforward. The steps one might follow are : 

1. Choose one of the expansions (12, 13, 14) . 

2. Change the independent variable , if necess<>-ry, to the 

one used in the expansion. 

3. Substitute the expansion into the differential equati on, 

expand A and f with respect to E , and colle ct like 

powers of ~ 

After these steps have been p e rformed, one is lef t with an 

e quation of the form: 

0 : 
( 15 ) 

Since E varies independently of X, S , or r , one theu argues 

that { 15) will hold for E ~ o"t iff: 

0 

( 16) 

If we wish to find the solution in each region to o rder E , 

w e must solve the following sequence of problems: 
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Outer : 

t ~rJ = l Au('/./ 

Au tao 

A~, IX• 

L. B. L.: s ~ 0 

Ds l ~.~(l ) l ~ t ~~~ ll l l 0 ~-1 lSJ 
'l.lTLls• A~'L 'lAT.~($/ - ... a 

t ~~·· 1 l 0 0 

0 1\ ~L'>' 1 -o 

D~ AL L 
0 ".r\s 1 ~0~1 '::: A,'L 'll 

A~1 _:;\l. 'W"LUI A~ 0 
-o -o 

R.B.L.: Y~O 

l R , L~ H ~ 1 'lr ( ,..) 0 '\r (1') 

p D,. _:;,-r) j ~ R --1 

-r An -ur""" (,., __ , __ , 

~0()'.} 

'\1"' {XI _o 

~o(l'.• J 

(17) 

(18) l AL L L L ] 
ll. ~-1 L$l + f\,l \!'"-1 U) 

I. L 1.. L. .fl.. + CtlsJ '!T"_1tsl + A1l ~-:11 + -1. 

1..1.. I.\. L 
~.~Ill)+ CJ3(Sl "!-.,,l•.;. £J 

( 19) 

t ~ l t ll§J+t 
'R ~ ~ ~ 1 

'U. ( Y) 0 0 0 An.~'"') ~ A.,}-ur·,,-y-, 

1>r ;~,..J A~ 
!\. -· -- jl.l () .,. ~ ,..,. 

Po: - A.u. (.1._t'r l 1'\."" nl ~ AnY l l'J + f, -
"'R 

__ , "R •• -J 
~~~ 

~ ~ . ~ . ~ 
""" \ 1') • 0 A-n'\.~ - \ T) ~ C.~ly' jT_ ('r' ) or- .f 
-I> u -o -·1 - I -3 

By using the V.O.P. formula (1.25) we may solve problems (17, 

18,19). Since the representations ofthe solution in (l3 ,14)are 

valid at the boundaries X:. 0, 1, it is reasonable to demand these 

representations satisfy the appropiate boundary conditions listed 

in (11) . We therefore deduce: 

Outer: 0' "- <. \ 

'Ycx1 1A (o) , -o 

X 

+ Jo Y,.tx1'tl fn·)Ch: 
(20') 



1.\r (It) 
-o 

L.B.L.: 

L 
fiT (Sl : -o 

L 

"E"o (S) -

R. B. L.: 

R -'U l Y') --o 

1'. 
'lr \ V') : 
-o 

(31) 

A, , {Y..; U . {X.) + 
;ll _,) 

r l 
.,. • i'~~-> r 
-:. ) 

L Js L J AL L y7.. ts l ')[: + 0 Y2 tS11:) \ ~\ 1!-o! ! ) 

+ L ( f.,l } J ~ A .. -:s ~:- l-cJ 
I 

'T .. __ , 
/ 

'/,L L 
l (~I W lO) -o + Jos\~s)T l ~ AL l 

31 ~0 Ll) 

(?.0 I J 

l l + c,1..l4:) y_,(-.:J { 21) 

+ AL l 
3L. 2!:, '1: ) 

(22) 

The solutions determined in (20, 21, 22) involve the as yet 

undetermined constant vectors: 

L L 
~.lol J ~. lo; '~o to) 

R l. '!\ 
~-t < o ) I ~ o I o > J 'Y"o < o ) 

(23 ) 
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To determine these unknowns we employ the follo ... ving elementary 

version of a matching principle: 

Matching Principle: 

(b) 
1->oo 

~ { R.-s.L. scrt.:t~ t = 
1.-)0 

~ \ o~ s~~~ {24) 

,.._.. -oo x.-> \ 

If w e note: 

L L L. 
~ 

L 
"/1 (S>T> -= '11 u> \l()1-z;J "/3 (S) :. 0:::> 

$•>CD 

1l l\ R 
~ 

~ 
y~ (Yl\) - 'I._ t T'} '14 (O I\) y"l.. { Y'} - co -

1'-> -IX) 

then the limits as S~c» and 1'~ -ex. occuring ir.. (24) will exist 

iff: 

'-
~-· (0) :. Q 

"R T-, (0) :. Q 

-::. 0 

These results lead to the cancellation of the terms .? indicated in 
/ 

{21, 22) and a further simplification of d 'lr~ an ... 0 
Using 

these results we find (20, 21, 22 ) become: 

Outer : 0 ( X<. I 

~0bo Yj'Kl ~~ {O ) + JoxYfX,t:J fc~ld."t {25 ') 

'\r (X} = - A-,~ 1'1..1 { A?..({,., ~(II )1. ) + t l)l. ) ~ 
-o -~ 
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•I 

I + j;..,} 1.t~- (X) 'I:. - .A.3'3 (X. ) Al,lx.J llDVv + -0 -3 

L.B. L .: S>,.O 

L L L 
~-\ (S > 

:. Y~.. (S) '\ro __ , ~,o: -: 0 

L. 
~o (S) 

l. 
1\.r (!. ) -o 

= 0 

~0 

::. 

R. B. L. : '1' ~ 0 

~ 
1A \l') -· 

'R ": ,..,... ll' l -o 

~ -iAr (l') 
-() 

+ 1~ L L 

o A l't. '}!:., ( .. tl J -c 

Using the functions (25, 26, 27) one finds the matching principle 

(24) is satisfied iff : 

lb L L • L -1 

1.l. {0) - 'U,O + Jo A14 'lr-.1 (Tl J 4 ': 1A An .. A~1. '}!"_~ -o -o -o 

-CD R · \ 
~ J l\ ~ ~ A R I 

~0 (I) - 1!-0 lO) + A,1 ~' l"t} J:t ~ ~. (o) - \3 P.n -tg_, 
0 

(25 1 ) 

(2 6) 

(28 ) 

From the properties of the F . S.M. as described in section 1. 2, 

and the relations (28) obtained from matching, we may partially 

integrate (26, 27 ) with the result: 



(34) 

U L{l) = 1,L lO) 
-o -o + 

L. -\ l 

An .. A~ X. <s> ~;" 

L + 't~s) l !!"oo- Yo (o)) + J: Yl-~s,v { A L. ' ct "'" (~) - '".r (O) z.• A,~ A-u.. -o -o 

-+ C'-~ t 'l 1 Y."~-\·rj J 't 0 
'\.r-_ ... , 

'\A.rl.U,) ::. 'Ur (o} 
reo 'P. l L L. C' l ~ 

.. s '>; ts;tJ Ast A,4- p.," + A34 J Y,t-r;J."t ~~ -o -o 

_, 
'/"K. ' 

(29) 
u~ .,..) = "U.. ll} + 1\~~ .$ P ' ) ~-\ 
-· l 

-o 
-a> 

'\r~t l') J y_~ { '1\ l. i\ ~ ~ ~ I = '!!'o (\} - ..,.. "L I rll"J ~ Au All+ ~~ Y3 t '1: J.'t "!'"-I -· 
k :. 1»" t\) + ~\ ¥l L ~~- 'lE"o (IJ + Jo'"' ~Rh·,·t) { A~ A~ A~:1 

'Ur ,..,..) -· -o 

Note that the first term on the rig ht of each equality in (2 9) rep-

resents the common term shared by both the outer solution and 

each boundary layer solution. If the expansions (12, 13, 14) are 

added and these common t erms subtracted, one may o btain the 

following composite expansion:-

l'~) "' ~ ()1.) + ec~) 44- ~ -'>- o+ 

l 
./' 

] 
(30) 

L.L ( t. ) -A ""\ 

~(~) - 1!" l,t ) 

" ~ l)CJ 

where : 



" u (~ J --
,. 
~(~, -

6>1.tl') : 

1..U" l X l -o 

5 - A~ (X.J f A2,t)(l ~0tx. 1 + f~l.l'- > ~ 

- - A~~ ex.\ \ A~~'-.:1.> ~o(l(' + ·fst}t) 1 

1)..0 
-o 

2. 2 Existence of a Solution for the Special Problem 

(3 1) 

In this section we will prove the special problem (6), subject 

to the continuity conditions (3b) and eigenvalue condition (4), has a 

unique solution. Furthermore, we will derive an a priori bound 

which this unique solution satisfies. Before we state the theorem, 
w 

let us define the following matricea and a norm on 'e t.o.l':!: 
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X ( x,·q .•• F. S.M. fn Q ( x,~} ~ (l(} : Y, (lll,O) 

x_,x;t> ... fS .M. tO'\ i Au<'ll.E:> '>'t I.X) : y2. ( x, 0 ) 

tO'&. 
I 

~(>:): Y$(xJI) ~ {)(.~) ... r. .s. M. ~ AlJ> 'x·"' 
I 

I\ ! n, - Jo I ±oo I J.ll. 

Theorem 2. 33: Under the continuity and eigenvalue condi

tions (3b, 4) the special boundary-value problem 

( 6): 

t ~IX) :. ± (l( 1~ ) Q3 *1 : ff (~) 
has, for all sufficiently small E , a unique solution. 

Furthermore, for all sufficiently small € , this 

unique solution satisfies the bound: 

ll ~uoo~ c, {I ~1°) I+ € I tylo) I + ~I "'!:ll> I + II tll. + 1\ t. UOo + ll f~ u(b 1 

(32) 

II y ~et> ~ C 1 { I·;: to) I + J I'{ lol I + E I~ ll~ I 4- \l 'f. U, 4- 1\ !:J oo + k f~ ll()) } ( 3 3) 

U:!ll(b~ c,{l~;o1 l+tl~toJ I + l!!o)l + if.i\,+\\f:l-1~+ \lf3 liool 

Here C, is a positive constant independent of E . 

Proof: Consider the differential equation t"i : f Integrate 

the equation for ~ from X'= 0 and apply the V. 0. P. 

formula (1 . 25) with s-::ob~\) to integrate the equation 

for ~ ( ~ ). The result may be w ritten as : 
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(34) 

t = I ~l [ ~(o) + k.f, l 
~ - 'f~ytoJ + K: :L. -

~·'!:ctj + Kli3 -
X N 

Ko !t)t) = J ~rt1 J-c ~ t 'L lo 11] 
0 -

(35} 

X 

K, !cX1 = JO Y. (X1'TJ ~lTJ d4 ~ 'l. (XJ = ~(X) '!l>O 
'\. -

K, ~IX> = I J"' 'f 
0 

Y~..(t.,T:J ~(~' J.1: A1i !t~' = Ai,IX,E) !-(t.J 

K"J ~ (-t> = ' Jx ~ I X (l(/tJ !-ltJ d"t a ~ Ll(.) = a [~ EJ 'l. (X.) 
I .. 

"' rN • • . the identity operator in e to 1 \) 

By using the continuity conditions {3b) and the exponential 

dichotomy (5}, one may prove the linear o perators K;, 

are bounded. These bounds, as well as 

those which follow, may be chosen to hold uniformly in 

{: for all ~ sufficiently small. 

Note that for suitable matrices ol , ~ , ~ 

t -~ -; f'= l : ; l + t ~ 1 r£' l :r )'] 
(36 ) 

~: o{-)'~ 



-I 

(38) 

Therefore, by comparin g the fo rms (35, 36) one deduces 

the inverse of e, (if it exists) has the form: 

0 
e : 

' 
!.,.., 
0 

+ 
(37) 

For some E1 in ( 0 .~4) we will prove : 

_, 
~ : <I+ E Kg) (I+ K, Q.) (38) 

where k8 is a bounded linear operator. Therefore the 

e-1 
identity (37) will be valid, and 

1 
will be a bounded linear 

operator for 0 <~ ~ El . To establish the identity (38) we 

first prove: 

where Ks, K, are bounded linear operators. 

Let us establish in detail the second identity: 

. . . split the 't integral. 



= ..... 

-.. 

Note that for 

, . . . change the order of integration. 

1 -a 
7 Y3t'SJ-c> = A ncs.1, , Ds ~(s,tJ, 
integrate th~ .s integral by 

parts. 

B y the continuity conditions (3b) and the exponential dicho 

tomy (5) satisfied by ~ we f~d K(. is a bounded linear 

o p era to r for ~ <E~~l; To establish the first identity in 

(39) w e n ote : 

.. . change the order of integration. 



( 40 ) 

where: 

J.. _, 
~ Y, <s,T> = Az., \s,E) b.l X ls, T )~ 
integrate the .S integ 1·a l by 

parts. 

From the continuity conditions (3b) and the cxponentic..l dicho

tomy satisfied by Yl. we find Ks is a bounded linear oper -

ator for 0 <E~E.z.. By using the identities (39) we may write : 

I - K ll- E\< 0 7 

(40) 

where, for 0H~E2., K7 is a bounded linear operator . Note 

that : 

( 41) 



( 41) 

because: 

X S 

K,O..Ko~(ll)- Jo Y.rl(/sJatss~ ) ~!cT >J-r: J~ 

. . . change the order es f integration . 

. . . use the identity ( 1. 2 3d). 

Therefore , we find: 

from which we deduce: 

(42) 

From (35, 40) we have: 

e-= el Lr- E e~\<t] 
(43) 

~-:. (I-Kotl.) l I-~ (1:+\<,n.) K7 ] 

If we define: 

I { -t _, _, 1 
E1 : 1. ~ I\ \.1: + K, o..1 \<"7 \1~ J n e, Kct nee. 1 2. ~ .. 

K8 • (I- ~ LI+K,o.l K, tt I+ K, o..] K"J ( 44) _, _, 
K~ = (I-E 9, K.'-) 9, K4 



(42) 

then by the Banach Lemma ( l. 20) : 

Therefore, we conclude the operators k8 , KC) are bounded 

independentiy of E for D<E:~ E-1 . By an application of 

Theoren1 (I. 21) we deduce from (37, 43, 44): 

_, _, 
( I- E: e~ K4 ) =- I + E Kc; 

_, 
(I- ElitK,O..) K1l = I+ tKs 

... ) _, 
e --= (I+ e K9 ) e! 

. -\ 

~ ~ . t I+(:Kg) ti+ K,C\.) 

0 < E ~- E~ 
~ (45) 

If we collect the results contained in (34, 35, 37, 45) we find 

for some bounded linear operators K8 , K<j : 
_, 

S = 9 H -

(46) 

_, 
~ ~ ( I+ ~ K8 ) (I+ K, 0.) 



( ~.;J) 

From (46) we deduce the result that i;he special boundary-

value problem has , for all suificiently small ~ (i.e. 

for 0 <(: ~ ~l ), a unique solution. The derivation of the 

a priori bound also follows from our knowledge of the detaii -_, 
ed form of 9 . To derive this a priori bound let us 

note the identities : 

(I+ \<, 0..) K0 : K, 
(47 ) 

The first identity follows from (41), while the second identi -

ty may be deduc ed from (1. 23d). As a result we find: 

(48) 

From the continuity conditions (3b) and the exp onential dicho

tomy (5) satisfied by 'Yz , Y3 , we deduce from (48): 

i\ ~
1

li K0 At-z. KoA I:~ ] H l\
00 
~ C 4 LI1!1oJ I + t I ![loll + 

E ·~(\)I + 1\f,U, + \lf41\Cb + \\f3\\<X>] 
( 49) 

fo r s ome constant cl. and all f in ( 0 '~3) . Combining 

this bound with the result contained in (46) we obtain the 

a priori bound (33), valid for all (') < E ~ f 3 . ## 



(44) 

2. 3 Asymptotic Solution of the Specia~ . Pro:,lem 

In section 2. l we derived a formal asymptotic solution ' 30 
t ' 

31) vf the special probl em (6). In section 2. 2 we deduced that the 

special problem (6) ha2., for all sufficiently s1nall f , a unique 

solution. This unique solution also satisfied the a priori bound 

(33). We will now use this a priori bound t o r igorously jusitfy 

(30) as an asymptotic solution of the special problem. 

Corollary l. 50: Let the continuity conditions (3a) and the 

eigenvalue condition (4) hold for the special problem 

( 6). Then , for all sufficiently small E , the unique 

solution of the special problem has the asymptotic 

expansion (30, 31). 

(50) 

Proof: The steps we perform in the proof of this corollary are the 

same as those presented in section 1. 3, where we jt~stified 

( l. 40). From Theorem 2. 33 we know, for all sufficiently 

small E , the special problem (6) has a unique solution 

... 
ll'X) . Let ~lxJ be the formal asymptotic solution (3 0, 31 ) 

of the special problem. Define : 

" e !'lo ¥('/.1 - ~(J() 

l . J 
1A (Jt.} 

e l)(l 
.... ;ettJ 

~e.(J) 

We immediately find that : 



( 4 5) 

t 
e 

l ¥:tO) 

~ .fo ~ e 
N (}(!::1 ~ 

')[(OJ o..~ t -"> 0 
~ 

¥<n 

Let us define : 

e i ~()t) .. t ()( {-> f('x,f: l -
- I 

l l~lX.J€) 
l 

~ 

i ()()~ :. f~tx,~J 
f~ lX,'=I .i 

and note: 

= 

If we note : 

(D from the continuity properties of A.~ , f, 
with respect to E , and the relations between 

"'' ... :- and ~0 , these terms cancel to 
~0 ' ~I)' -

order ~ 

(51) 



Y..l~ \J1..1F• 
<%) due t~ the exponential dichotomy l. and ,

3 

satisfy, these terms each make at mo s t an crde:t" 
1'e 

~ contributicm to the l-nonn of J
1 

® from the continuity properties and exponential 

_ d ic hotomie s: 

X 

() ( f illf (·~t-)] i'( H· 4} d1: J~ ) 
0 0 

and so the 1-norm of the difference of the te rms 

@ is of order E-

~ by reasoning analogous to that used in @ above , 

the 1-norm of the difference of the te:;:ms @ is 

of order E 

then we deduce: 

(52) 



( 47} 

If we note : 

each of these terms i.:; o£ order E . 

~ from the continuity properties of Au , f'l, with 

respect to ~ and the relation behveen ~. , ~0 , 

these terms cancel to order E 

® from (31): 

the 'continuity properties of A1.._, ~.1 

and the estimate: 

! . + I"' X~ 0 Cl,;... E ~ 0 

we deduce the terms @ cancel to order € . 

@) from the continuity properties of A2.1. and the 

estimate (53) the terms ~ cancel to order E 

® from(31): 

, l- !:) r R 'II. i._, A~ .. 1 ~ 
f~trl: Al"1\h.tT'J + \ A"l, A,lAP + ~ l v~ (T') 

~4 lT'l,..~ y;.Y') + &cf) 

the continuity properties of Az.i : 

(53j 



(48) 

and the estimate : 

we deduce the terms ® cancel to order f 

Therefore, we find: 

(54) 

In a manner analogous to the argument yielding (54 ) we 

estimate: 

(55) 

By using the estimates (51, 52, 54, 55) in the a priori bound 

(33) satisfied by ~ we deduce, for all sufficiently small 

(56) 

The estimate (56) is the rigorous justification of the error 
,A 

estimate made in (30), in other words ~ and ~ agree 

to order E , uniformly for 1-{ lo, 1], as f:_,O+ ## 

2. 4 Fundamental Matrices of the Special Problem 

In this section w e d e fine tw o fundame ntal matrice s r ela t ed 



(49) 

tothe specialproble1n (6). 

Definition: Let Z0o~i be that matrix which satisfies the 

boundary-value problem: 

CB~l :: I 
0 

L et .z.{ll) be the matrix defined by: 

Z1tx> :: ~(X) 1: 
where: 

t 
l .:' 

0 

J 

:r A h. Au 
1':: 0 I 0 0 

0 0 'I 

Under the continuity c onditions (3b) and the eigenvalue 

(57) 

(58) 

(59) 

condition (4) we find Theorems 1. 28 and 2. 33 guarant ee the exis

tence and uniqueness 0f the mat rix t 0 for all sufficiently small € 

Of g r e a t inte r est to u s will be the valu e s "'lo , 7, assumes at 

X. ~ 0 , 1. 

C o r olla r y 1. 60 : Under the continuity conditions (3a) and the 

e ige nvalue condition (4) the matrix t 0 admits the 

asymptoti c expansion: 

" 
ltt"J """' ZJxJ + 0({} ~ E -> o""" 

l l 
0 

J 

/\ 0 
Lto) : c ti 0 

0 L• 1 l 
@5 - As3 A3, t7 

(60 ') 



where: 

Furthermore, we deduce : 
A 

t: I (XI ,..,; ll (y_; + 8u:> + 
04. E ->0 

l ~ L -1 

J 
A,'LA~ D ,.. 

l,<o) = 0 ti 0 ct L 
-fl;~Al, G>l (OJ 0 ( 61 ) 

R"'J .A I Y,w 
0 A~ A33 

~.(\} - A~~f\~,'f.(l) 0 {P
2 

I D) 

D ti 
l~l 

Proof: Let t0 <xl and e-
-1. 

represent the 
.. -tt '7 
• - colur.on of C 0 and 

I respectively. We recognize 
ti) 

~01lcJ satisfies the special 

problem: 

rp --zti> -
tA. r. (.)() - 0 

-o 

This problem has, for all E sufficiently small, a unique 

solution. Furthermore, from Corollary 1. 50 we deduce 
:z ('\) 
f 0 l')() admits an asymptotic expansion obtained from (30, 

31). ·These asymptotic expansions lead directly to ( 60 ) . 

By multiplying through by the matrix To , defined in (59), 

we also deduce the form given for ~ 1 ## 

Due to the improtant role the matrices ~0 , ~ 1 play in the 

determinat ion o f the existence of solutions of the g ene ral problem 



{51 ) 

(1), we shall call t~ ,f:.., t h e fundamen~al matrices asso ciated 

with the special problem ( 6). 

2. 5 Existence of a Solution of the G eneral Problem 

A direct application of Theorems 1. 28 and 2. 33 is the 

following : 

Theorem 2. 62: Consider the general problem ( 1) subject 

to the continuity and eigenvalue conditions (3b, 4). 

Let Z0 , t., be the fundamental matrices of the 

special problem (6). Then the general problem 

has a unique solution, for arbitrary f , Q. and 

all E sufficiently small, iff the matrix a tB l 0 

( ~ 'l, ) is non singular. 

Proof: Under the continuity and eigenvabe conditions (3b, 4 ) we 

know, by Theorem 2. 33, t hat the special proble1n has 

( 62) 

a unique solution for arbitrary f , s- and all sufficiently 

small E Since To , as defined L"l (59), is non singular 

we deduce the conclusion of this theorem by appl ying to 

Theorem 1. 28. ## 

Unfortunately, we do not have enough information to calcu-

late either Gll 0 or (B'l, so Theorem 2. 62 is not immediately 

applicable. Before we apply Theorem 2. 62 let us make the 

following: 

Definition: The general problem (I) is said to be regular iff: 

(a) the continuity and eig envalue conditions (3a , 4 ) hold . ( 631) 



(52) 
A 

(b) the matrix Bo:: ~~:+Bto 
(-')0 

exists 

and is nons ingular. 

With this definition we now prove the following: 

Corollary 2. 64: In the general problem ( 1) is regular then 

it has a unique solution for arbitrary + , '% 
all sufficiently small E 

for 

Proof: Since the general problem ( 1) is regular we know the 

matrix Bo is nonsingular. Consider the identity: 

II. 

From the definitions of "80 , ~0 we find: 

(63 1
) 

(64) 

Therefore we infer from the Banach Lemma ( 1. 20) that the _, 
matrix ! + 'B0 l~i0 -s~1 is nonsingular for all sufficiently 

small € , i.e. the matrix ~ t.. is nonsingular for all 

E: sufficiently small. Furthermore, since the matrices 

L(tJ , R(E> admit asyn1ptotic expansions to ~((;.7.} we infer 

from (60) that: 

+ 0/). ~ _, 0 
## 

If the general problem ( 1) is regular we deduce from the 

definition of t
1
{)(J, the continuity of ~((- ), and the relations given 

in (30, 31) that ~0 (0 ) may be determined as follows: 

b - ~(0) (65 1
) 
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F 
-o (65 1

) 

(66) 

Therefore, from (30, 31) we may deduce an asymptotic expansion of 

the solution of the general problem. When we consider the nature 

of this solution we recognize in any closed subinterval of ( 0, 1} : 

(67) 

Furthermore, we recognize from ( 17) that l
0
txl satisfies the initial

value problem: 

J:L (ol 1) '10£x. ) - A<x,o> ~0(x.) -:. £(xJ 0) 

-I 

lL(ol ], h 
(68) 

Since the solution of the general problem ( 1) reduces to the solution 

of (68)- as ~ -~o+ , we call (68) the reduced problem. From these 

statements we deduce the following: 

Corollary 2. 69: Suppose the g eneral problem: 

(69) 

is regular. Then the general problem has a unique 

solution for all sufficiently small E: Furthermore, 

on every closed subinterval of (0, 1) we find: 



where 

(54) 

¥(X) -v -1
0 

Ot) + $!1:) 

l~>!>t) is the solution of the reduced problem: 

0 

;;fl"(JC) '= !txJo ) 

n (0; ~0(o): Jl{o) 'B~I h 

Let us consider several examples of regular problems. 

each example we implicitly assume the continuity and eigenvalue 

conditions (3a, 4) hold. 

(70) 

(7 1) 

In 

Example 1: The special problem (6) is one example of a regular 

problem. In fact, the definition of a regular problem w as 

based on the properties of this special problem. For the 

special problem we find B-:1 0 

Exam;ele 2 : Suppose the boundary operator ~ has the following 

form: 

l<<> = l Lo • L L•
1 

1 
R," • [ 

0 ~ .-'J - E.L ~,l.Al.l. 0 Ro D -~ "K ~~3 An 
0 ~! 0 0 0 

0 0 0 0 0 EI 

non singular 

Then the general problem is regular because the matrix: 

a 
I 
0 

is nonsingular. Furthermore, the reduced problem may 

equivalently be w ritten as : 



(55) 

(72) 

where ~ 1 1 o) represents the first tr\ rows of ~Lo; The 

equivalence of the problen1s (71, 72) follows f1·om the non 

singularity of the matrix L" ~ R0 Y, ( 1) . 

Example 3: If the general problem is in diagonal form, 

that is the matrix Atx,, J has the following form: 

= l Al\lx,(:> 0 0 

) A<-~.,tJ 0 ~-z-('1.,~) 0 

0 0 A33 (X,fl 

then the boundary operator tB with: 

Llll= l Lo 0 

L' 1 
R•<> : l Ro R' D 1 

L~ ~1 l! R"L ~ () 

J Llt 0 Ls R4 Rs {;1 

L'\ R0 "f, w ... non singular 

leads to a regular problem. In this case we find: 

l 
, 0 

~1 
L + 'R Y,LI ) 0 

"B,~ 4 """y l + "R ,ll ) :r. 
~+~~Y,liJ D 

(73) 

is non singular. Again the reduced problem has t he equi v -

alent formulation given in (72). One simple case where 

we may transform the matrix A to the form (73) occurs 

when A does not depend on X . 
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We hasten to point out the following fact. T he above 

examples constitute o n e representative of an P.ntire class of equi-

valent regular problems, differing only in their boundary con-

ditio ns. 

BV(-y ): 

Let the problems: 

1. l'") : I tx, ~) 

<B l" : ~ (') 
b oth b e r egu lar . The n we s a y the p roblems BV(y ) arc equivalent 

"Qb) 
iff the conditions under which 0 0 ( y =0, 1) are nonsingular are 

e quivalent. 

E x a mple 4: Let l£t-1, 'R(t-1 as given in example 2 be the boundary 

m a tr i ces for BV( o ) . Define 

l"l.) 

R ,~l = Ul A <e. ~ "R c~ , 

a nonsingular matrix depending continuously 

on E • 

The n B V( Y ) are equiva lent regular problems because: 

'B(.I) 
0 

-· h.) 
- _A.toJ "80 

W e note , however, tha t examples 1-4 do not include the 

mo s t basic singula r perturbation problem described in ( 1. 12). 

For thi s reason consider the following exa m p le: 

Example 5: Consider the boundary - value problem: 
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E D'l. ~be} - Bl:~l l)"!!lltJ - c,~, '1! ,.,_, :;: llY-) 

We suppose B . C.~ 

partitioned forms: 

'B(l~) -= [ A, .. txJ ~, .. ] 0 

l ] ((X) ~ ~1lXI 
A1,t)I:J 

A,-z, ~ l ~~· l 
A,l -: l ~,..\ 
\)~ ()() ~ l ~~., I f<x1 

'lgl)r.l 

r 
.! 

': 

(74 ) 

have the following (compatible) 

f\.u. an m,'Xln, matrix 

Au an ~3-l("ll'll. matrix 

"' : "'n\ ' + 71\~ 
~. an nl

1
'1.m matrix 

A], an 'l'l1;a.XIYI matrix 

An ... an 1\'\Xm~ matrix 

A.3 ... an fr\ xm1 matrix 

l !,;., l 'V".f -m,-vectors -I-~ .•• 

f1(JU '\.lT t 
.,. I .:...J • • • 17\~- vectors 

Using these partitioned forms of "B , C: , ~ , f we write (74) as 

the following equivalent system: 

t 
'I,... 

0 

0 

0 

0 

0 

0 l[1A(t) 
0 ;(\) 

'~¥< IJ 

(7 5 ) 
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We aasun·1e the continuity and eigenv~lue conditions (3a , 4) 

are satis fied by the s ystem (75). Introduce the following par-

titions of \k , ~ , ~ , "'(\ ) 

[ !: ] l 
~ l 

~~ 
ex ex '= 

1 1I. 
~ 

1A'l "t 'I 
D( ~ .. . ·fh , -vector s - , - 1 

-au u li 
-~~ I ~ ... m1 -vectors 

'f, l ~) ': [ Y., 'i,~ 1 Yu · · · an lt\, ll m 1 matrix 

'1,, Y'l.~ Y~~ ... an m 1 x 11l2. matrix 

U s i ng these partitions we find the matrix "8, has the following 

r epre sentation: 

_, 
'-Iln, 0 Au 0 

'B, : 0 Il!l.l 0 0 

'1,, Y,1. 0 0 -, 
'yl., yl."'&. 0 A~ 

S inc e the conditions (3a, 4) are sat isfied it follows that (75) is 

a r egu lar p roblem iff the matrix Yu is nonsingular . If Yu is 

'b-.· nons ingu lar we find the following repre s entation for o 

_, _, 
0 -Y,, Y,l- '1,, 0 

-· 0 'Ill'll. 0 0 B, --
1.. - · AL.. L. 

An 'f,, Y.l. - A11. Y .. 0 ll. 
~ \ _, } K - , II. 

0 - Au '12.'1.-Y-~.~ Y" Y.1 -A~ \ .Yu An 
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Furthermore, if Yu is singular we deduce "B, is singular from 

the fact that: 

6-' -

is a null-vector of "B, whenever 't is a null- vector of Yu 

We assume the problem (75) is regular, i.e. (3a, 4) hold 

and the matrix "111 is nonsingular. Define: 

F<t 
-o . . . an 'll\1 -vector 

an ~-ve ctor 

From (65, 66) we infer the initial condition satisfied by the reduced 

problem corresponding to (75) is: 

Since ~1 is nonsingular we find 1J.,JOJ also is the unique solution _, 

of the following linear system: 



( 60) 

From this result we infer the reduced problem corresponding to 

(75) is : 

Furthermore, from the definition of Y.t~l and Theorem 1. 28 it 

follows that (76) has a unique solution for all -I , ~"7. , ~lL iif 

the matrix Yu is nonsingular. 

Combining these results we find under the continuity and 

(76) 

eigenvalue conditions (3a, 4) that the original problem (75) is regular 

iff the reduced problem (76) has a unique solution for every -t 
'1 JL ! , ~ . 
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3. DIFFERENCE APPROXIMATION OF THE GENERAL 

PROBLEM 

3. 0 Introduction 

Consider the general prob lem: 

t 1- (X) : f<~fJ 

L (~J 1 (0) + R (EJ i( I) :: ~(E) 

described in detail in (2 . l, 2. 2). Associated with the general 

problem ( l) is the special problem: 

t. l (X) "= f ( X,f:> 

~ (~)) (o) + 'R1E'(E) l (I~ -:: 

described in detail in (2. 6, 2. 7). We will assume: 

(a) The general problem ( 1) is regular. 

(b) The boundary operator d3 does not involve 

')f(l) or ~lo) . 

As a consequence of (3a) we find: 

(a) The special problem (2) is regular. 

(b) The fundamental matrix 'lo defined in (2. 57) exists 

and admits the asymptotic expansion (2. 60). 

(c) The matrix 13~> defined in (2. 63) is nonsingular. 

We make the following definitions: 

( 1) 

(2) 

(3) 

(4) 
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I 
h ':: :r 

h. 
A .. a t x1+.\., E: > 

h f ()CJ"+.!. E) A\j l.t) -= J:.tp :: - .. , 

t 
A~lal E 

~ 

A~'il ) Al.tl)T 
Ahla> = A~tjl E f\~ta)T ~ A~ 'i' 

A~,'a' E eA~ti)l p;331a) 

{ 5 ) 

T . . . shift operator 

I . . . identity operato r 

E : l {"T-+I1 a ve raging operator 

b~ = ~ \ T- 1 } ... forward difference op e ra to r 

Using these definitions t he numerical scheme used to solve (1) 

can be written as follow s : 

(6) 

~(E) 

Associated with the g eneral difference problem (6) is t he special 

difference problem: 

0 tis :r-1 

~lf(~J 
(7 ) 

We note (6 ) a nrl (7) may differ only in the boundary conditions. 
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The principal result o f thi s chapt er is given in Corollary 

3. 72. 

3. 1 Definitions and Useful Identities 

Analogous to the definitions make in (2 . 9) we define: 

~ A\, " 1\' ~ ~ ~.- · L. O.•i) - n •a) - AR'i) Anti ) A2,'"d' - A,3 ·a) A-n 'a I Al, ,j 1 

... 
f~·a ~ - A" ~-· ., L.. \,-' " 

~ 'j ) - n.'i) An'a' t•f - A,,3'iJ A13 (i' f11i' 

A~~ A- . IO ) 
ft ; At· - A·. cr-1) 

l~ 14 a ~~ 

a.h,L I. a"l " - (ltD) - (). {.1-1 J 

~L ~ f~~ " f. - t . (OJ - f . (;J- \J 
-C} -a -a --
CL ! 

L - 1 l L'' ~ l _, ~L L-r 

t1-~ o:~ 1 A~ A~ cl= ti+-ah J A A~ 
' '2. - 1. 11. '1"1. 

~ 
A,. I.U.> -

d -

_, IC' 

CR. = rl+ ~ nl-'llJ A.._,. A~ 
1 - L '- l_..l 11 1:s 

).. 

A,--t.il lt9. ) ) -

Analog ous to the operators defined in (2 . 3 5 ) we define: 

\,. 

K1. -~'a") 
\,. 

K~ ~~a"' 

(8 I) 

(8 I) 
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In the definition of the operator s we have used the discrete 

analog s '4 h of the funda1nenta l solution matrices Y, defined 

in {2. 3 2 ). v, ...... 
The matrices li. are defined to be the solutions of 

the following difference equations: 

h. 
D a 'Y, ( i , ~) = ~ " y~ ~~ ld ="I Y...... - h ac ~) E/t 'il~> t•i) :: ~'a" Jo) 

h 
~ 'D-a "/,_l~l ~) ; 

h ..... J... ~ ~ Al'l l~lT y'l. Li~ RJ X< It, "p= :r X. 'il = Y, ti ,o) ( 8 I) 

h ~ 

A33li J YJ 1 i/"l 
~ y3 ( ~)ll = ! h \, 

~(il: y'$ tj,"S) 

Using the matrices Y
h 

fl. we define the following operators: 

11 2,3 
(8 I) 

"' Analogous to t he norm \\ • 11 1 defined on '(: l"t'l we define: 

(81) 

Although not explicitly shown as an argument we note the matrices 

Ah. 'h. h L,it h. .._ 
'i 1 [ i YR. 1 (~ and the vectors f J £R depend on ~ 

From the eigenvalue condition (2 . 4) satisfied by the 

matrices An, An we deduce the matrices Y'l.'h. , Y
3

1.. are 

well defined for all positive h and E In chapter four w e 

prove the following: 

Theorem 3. 9: (E x ponential Dichotomy) Let Ah£x,EJ, A11lK,, J 

be continuous functions of 'X and E , fo r 

( X , t ) l I x E 
1 

, which satisfy the eigenvalue 
\... A"' yh yl.. condition (2. 4) . Let An. , n , , , 3 
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be as defined in (4) and {8) . T hen the re exist 

positive constants Co , ~ , E1. 

all 0<~~ ~~ and 0< h.~ I 

I h j-R. 
I Y. · 1.. J ~ Co { I+ ~7} 4(JIK) ~ 

such that for 

{9) 

'VIh From the difference equation satisfied by 1
1 

we deduce: 

( 1 0) 

Therefore, for: 

0 < h s hl>' \ ( 11) 

we may use the Banach Lemma ( l. 20) to prove Y,-.. is a w ell 

defined non singular matrix. Through the use of ( 1 O), the difference 

Y,'
h 

equation satisfied by given in (8), and the estimates: 

~ I+ 4x 

we deduce: 

Through the use of the identity: 

I 

= c. 

( 12) 

( 13) 
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and the bounds g iven in (9 , 12) we deduce 

are bounded linear operators on .B: lo 1 :I] These bounds can 

be chosen to be independent of E . 

Analogous to the rules g overning the differentiation of a 

product of matrices and t he integ ration by parts formula we find: 

D~l'Bl~)CCk>l = { ~Bt~)- Cli~-TI) 
'B<h.+\) • 1)\-.COz.J 

-t Bl~>· 'D\..COv 
+ D~BChi·C(I-J 

\... \., 
From the difference equation satisfied by Y'- and Y3 , the 

identities given in (8, 14), and the ~dentity: 

we deduce: 

"' ~ e TI~ Y, o~,J) 
k k 

- Y7. o~.,i J A"l"l'j) 

}-. \. 

E na "3 t~~a > = 
}.. \.. 

- yl o~.,j+\> Al>'a> 

Consider the following set of initial-value problems : 

+ ftil 

! (~J 

f, 4. J 

l. 
~ toJ ••• given 

~ 'k (O ) • • • given 

g ive n 

( 14) 

(15) 

( 16) 
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Analogous to the variation of parameters formula (l. 25) we find 

the solutions of ( 16) adxnit the representations: 

"'U~ l . ) 
~ h 

: Y, (~1 ~ (O) - ~ 

h h " 'V"t ") = '17.. t} J 1\r (O) - cl - (17) 

" 
~ ~ 

~ 'jl : '/
3 

lS) ~ ,:r, 

The representation given in ( 17) for ~h can be obtained as 

"h follows. Suppose ~ satisfies the following relations hip: 

Substituting the above form fo r ~\... into the diffe r ence equation 

satisfied by ~ \.. and using ( 14) we arrive at the :::-elation: 

h 
From the difference equation satisfied by Y, this relation upon 

rearrangement becomes : 

Using the identity : 

we find: 
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From the above expression for -\A..k and the relationship betvteen 

"" .... and u we deduce the representation given in ( 17) for 

We end this section by presenting the following: 

Lemma 3. 18: Suppose ~ 1 ~ 1 "~- are positive constants and 
I 

.0 < h. ~ L Then: 

"h 
'T'fW1. + h - ~ 

~lO \ \+~ { t~ 
I 

{ l+~~ ~XIh. ~ 

€ -A 

\ ~ 1Lx 

Proof: For h ~ 0 we find the function ~(h) defined by: 

(18) 

is a decreasing function of h 

' 
We therefore find for 

o<h~L. 

{\+~ill''~ : ~r ~-xca(hll 

~ ~r t -x ~ ( 1:) } 
~ ( ~ )Ll' 

Next consider the func tion ttal defined by: 

For ~~0 the function f,d) has a maximum at ~:~0 where: 
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Since assume s only i:1teger values we find: 

We note: 

<=> 

Therefore, for ~0~ l 

We also estimate : 

h 

Therefore (18) has been established. ## 

3. 2 Existence of a Solution of the Special Difference Problem 

In this section we prove the special difference problem (7) 

has a unique solution for all sufficiently small h and ~ 

Furthermore, this solution satisfies the a priori bound given in 

( 19). 

Theorem 3. -19: Suppose the special problem (2) i s regular. 

Then for all sufficiently small E and h the special 

difference problem (7) has a unique solution. Further

more, this unique solution satisfies t he bound : 
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M ~~~ .. ~ cl { 1 \j.~Oll + E I ~1ojl + '"- '~~:nf + " f~\\. + i\ t uco + ll f;uco 1 
{ ... - \... I • " l 'I ~ h I f l-. l' f\., I l II 'Y"" \1., 1i c I I ~\0} I + I ~\Ol 8 + E i 1!( (Jj + I t \:,-+ ~ -l. \Ill>+ I - 3 IQ:) { (l9) 

U:{l\.,~ c,{ ~~~o11 + £1~~0) 1 + I y~n I +\\ !~II,+ li t:uCl)-+ \lf~llco } 

He r e C, is a pos itive cons t a nt ind e p end ent o f € • 

P roof: This proof i s similar to that given in s e c tion 2 . 2 , the 

s im ilarity will be made clear t:hrc u g h the use of the san1e 

n otation. The operators w e cons ider belong to the space 

f)~ lo 1 J) and when such an opera tor i s bounded we will 

a lways imp ly the bound can be chosen to be independent of 

€ . 

In the s p ecial difference s cheme (7 ). sum t he equa t ion fo r 

1t;'h a nd a p ply the variation of pd.rameters fo r m ula ( 17) 

to t he e qu a tions for and The result may be 

w ritten, through the use of (8), a s follow s : 

eh 'f .... = Bh l h L L L -~A~ l l o 
0 

0 l I,..- Ko An 'E - Ko An. I 
h h h 1.. ... e = a.-~ K'\ = "' .... -K1.A1.1t 'I"l>\, 0 - E b 0 K~u ~ A., I,..~ o 

h ... 
- \<s ,;t 0 K1 A,1 

(20) 

I..., . . . the iden tity operato r in £)'\o,~) 



( 7 1) 

As in (2. 36, 2. 57) VJ~ find: 

r o 
I 

0 0 i 

+ ll~rl <flr~ • 
e, l: I . " KA" l - I~ .. 0 K:t\"Li - ' 

I} J 
K" \-. 

0 r"' J ~ f\)1 'E {21) 
-z. 

\..-' 
provided ~ exist.s. Vf e will prove for som.e E1 in 

t 61 t-z.) , where ~-z. i s the constant used in (9}: 

(22) 

h 
Here Kg is a bounded linear operator. Once (22 ) has 

,_ .. , 
been established it will follow that e, exist s as a 

bounded linear opera to r. To establ ish (22) we first prove: 

(23) 

Here are bounded linear operators. To establish 

the first identity g iven in (23) we note : 

. . . change the order of summation. 

j-1 h j-1 I, h 
h t:o { ~ ~ i A~'lt~l Y. o~:tlli.J l Au (R~ ~LV 

I "' ~· \.. h f 'fl.l~:tl 1 l } :: An l ~) 1)k Yl. ( ~)J 
sum by parts using ( 14). 
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\f}·l h h-I h I 

: ... h ~ 0 A1,\Q) f\i2> Au!9.) ~;19J + E k; ~IJ) 
h h "-' ~ ,.._ - - v A 'r t-..·· -z · .. ~ K -:z.( . 

- r\o n. T\l-2 "-u t; 'a- J 'T o:;;; ' 5 '::- ~J 

h 
In the above derivation the operator Ks is defined to be: 

For 0< E ~ E2 the exponential dichotomy (9) and the identity 

(13)allow us to estimate: 

ksh 
We therefore conclude is a bounded linear operator. 

To establish the second identity given in (23) we note: 

. . . change the o r d er o f summation . 
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I ' h (1 r. h 
t Y3l~1h1> = A33 llV b"- y!. c~>.,Y.t,) , 
sum by parts using ( 14). 

~~-\ h. '"'-' 1.. . h = -h~0 A~(i)A33(~)A3J~l ~.(0 + E \\~;(j) 

'1.. "' h_ , ~ ~ h = - Ko f\\3 t\B A3, tij ) + E Kc, ~li) 

In the above derivation the operators 'K" Kh 
~ ' (. are defined 

to be: 

-'I.. 

K, ~·a> 
h 

K, ~ti> 

We therefore conclude 

From the definition of 

+ 
ll4 ~ -> 0 

h Kc, is a bounded linear operator. 

'IO!h 
""< and the identities (23 ) we find: 
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k
\,. ~. - + K c S t_ · •1. L 

Su p pose § and ;::' are related through the equation: 

(24) 

We not e the s um involved in the a bove expr essicn satisfies 

the difference equ ation given fo r V.h in ( 16) . From t h i s 

fact we find upon differencing the above equation: 

'b\,.Ci(a ) = t~f~i } + in~i} E{~,a>-fta) 1 +a.~~) Ef{i j 

~ 1J\.. f ~~ ) + u ~i ) E ~ 'o) 

B y summing this diffe r e n ce equa tion for 0 we fi..'ld: 

~ '~ > - ~ (o) f ta) - fto) I:"*' h ~ + h Cl<~J E~(~J 
~ 0 

"' h ~ l~) = f, i J + ko (l E ~ 'i l 
h "' Fc · 1 -= ~'a·] - \<o U. E Gjt<f; 

- d 

F - L 't - K~ u hE. ) ~ -

F r om this last identity and the original relationship between 

,:-- and ~ we conclud e: 
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(I- k.h o."' t ]-
1 

-= I + k,~a.hE. (25) 

By the same argum.er.t.s '.lsed in the d~::rivation of ' ? • 3 2 , \ ..... '± - . 4o) 

we find for some E:3 in (0)~4.1 : 

{26) 

"" h Here K9 and K9 are bounded linear operators. Fro1n 

the identity: 

which is valid for 0<-{; ~ (3 we deduce : 

(27) 

Following steps similar to those used to der i ve (25 ) we 

find: 

(28) 

Collecting the results contained in (21, 26, 28 ) we find: 



{ 0 

l : 

(2 9) 

Through the use of th~ identities g iven in (29) we c<dculate: 

For s ome positive c onstant C~ and 0 < € ~ E3 we estimate 

through the use of (9, 13, 30) : 

-1 

\1 ~h t"r \<~ h~\ \( f\~ 1 ~ \\co ~ C.2 LI1{toJ I + ~ l ~\o) I + 

~ I ~" (:]") I + \\ l~ l\ 1 + \\ f; \\m + \\ £~ \\m ] 
(3 1) 

Through the use of the results and definitions given in 

(20, 2 9, 3 1) we deduce the a priori bound given in (19). 
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3. 3 Asymptotic Soluti0n of the Special D ifference P r oblem 

VIe will use the result s contained in the d erivation of 

Theorem 3 . 19 to derive and asymptotic expans ion of the solution 

of the special difference problem. This e x pansion is given in 

(32) and is the discrete analog of the expansion given in (2 . 31) , 

C orollary 3. 32: Suppose the special problem (2) is regula r . 

Then for all sufficiently small E and h the unique 

s olutio n of the special difference p roblem (7) admits 

the asymptotic expansion: 

whe r e : 

"'"' '¥'«~ l 

A~ 
-w- ' ') - . 

= { 

:: 

-::: 

find: 

I ~i~-:f 

~ f:-"> o-+ 
0~1~J"-I 
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Proof: We recall from (7 ) that the boundary - va lues for the 

special problem are: 

l *'' I l 0

, 1 I 1.10 

1 -·o 
r.J 

'IT" + {)(E; tv. ~ -> o+ '![ill) f "IT I + 
:: j l -o l " --w-' ~(.J') 
__ , 

-D 

(33) 

From the definitions (20) and identities (29) we find: 

(34) 

Since 
h ·-' \.. 

K~ , {;}; , K4 are bounded linear ope rators and: 

we estimate: 

(35) 

By calculations similar to those used to derive (23) we find: 

(36) 

We note for ISj ~ :r 

(37) 
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To derive the expansio r.s given in {3 7) we argue as follows: 

'~ hh ~ h 
14 C\..-t l) = E :"\ulk) "D· Y~Ck.), 
for j. ~ 1 surn by parts 

using (14), estimate the 

remaining sum as 6(E:""L). 

+ eu-) 

use the Lipschitz continuity 

of D.. A,- · wit:h respect to X 
I J 

and ( 18) to estimate the 

error in 

0 as 

replacing ;f-1 
6ct:~. 

}.. ~· h ~ 
~ Uu-:. E Ail~ (k.. D ~ l k; , 
for j )j I sum by parts 

using (14), estimate the 

remaining sum as tctl.J. 

b y 

for h\ I use ( 18) to e stimate 

Y.i.,._Lo> as fJ(t'J , use the 
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Lipschitz continuity of a. A .. 
I ld 

with respect to x. and 

( 18) to estimate the error 

in replacing i-' by ~-1 

as 6<"1.) . 

Combining the results given in (30, 33, 36, 37) we find: 

where: 

""" ~·~ ) 

L-
~o(t l 

:: { 
": 

0 

~0 

~:'i)-+ c~yl.h'i ' ~-~ + ciY3~'iJ1!'_', 

'1,\~j t ~!- c~ Y-~ l -+ \<,}. f~aj 

""' }.. From (29, 33, 38) we find 9, ~ , the first term in (34), 

admits the asymptot ic expansion: 

h 
From the definition of K4- given in (20) and the estimate 

given in (40) we find: 

(38) 

(3 9} 

(40) 

( 41) 
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Using the identities given in (29) and the e stimate (41) 

we find: 

(42 ) 

Through the use of (9, 13 ) we estimate the terms in the 

above e x pression as fo llows: 

_. f) { E:) 

The above bounds allow us to estimate (42 ) as follows: 

(43) 

( 1 1-. k- l r. 
Combining (29, 41, 43) we find t e, K~ e, tl , the second 

term in (34), admits t he asymptotic expansion: 

(44) 



(82) 

By combining the estimates given in (35 , 40, 44) we obtain 

from (34) the asymptotic expansion given in {32). 

The estimate s of g i ven in (3 2) are 

obtained by using ( 15), preforming a summation by 

parts using (14), and estimating the remaining sum b y 

using (9) and (13). 

3. 4 Fundamental Matrix for the Special Differen ce Proble m 

-, 
Analogous to the definition of the fundamental matrix L. 0 

given in (2. 60) we make the following: 

h 
Definition: Let f 0 li} be that m atrix which satisfies the 

boundary- value problem: 

-rh 
Due to the important role the matrix ~0 plays in the 

"7h 
general difference problem we call 1:. 0 the fundamental matrix 

associated with the special difference problem. We derive an 

asymptotic expansion for the boundary -values assumed by 

in the following: 

Corollary 3. 46: Suppose the special problem (2) is regular. 

Then for all sufficiently small E and 

1~ t~) defined b y (45) exists, is unique, 

asymptotic expansion : 

h the matrix 

and admits the 

## 

(45} 

(46') 
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•.vhere : 

·" h t L 

(\ 0 \ 
-, - () ~I 0 l "to ( 0) -

.:• 1.. h ~h .. A~ A~. E Y, \oJ 0 

l > 

Y.h \.. crt l "~ 
Y, <3J - I l.J) ( 1 _, 

t,k-
1 

1\R- \. L 
1 

lo l:!) : 
\,R \,~ h 

~: -An P\~ [ '/1 (S- lJ An Au t:. Y,l.:r-•> C1 

0 t'I. 

Proof: We derive below the asymptotic expansion of the: second 

- h 
block column of t 0 The asymptotic expansions af 

7h 
the remaining block columns of 1:0 are det ermined in 

a similar manner . 

(46 '} 

Since e ach column of sat is fie s the special difference 

problem, Theorem 3. 19 establishes the existence and 

7~ L 
uniqueness of ~0 fo r all sufficiently small E and 1"\ • 

h 
We obtain the desired asymptotic estimates of 1~ through 

the use of Corollary 3 . 32 . 

h 
Let the second block column of t 0 be represented by: 



Frotn the definition o f g iven 
~ 

in ( 43) w e deduce lrn .. 

satisfies the special d ifference problem: 

Using Corollary 3 . 32 we therefore find: 

+ fj( (: j 

+ 0t.> E -"> 0 

From (9 , 13, 18) and the last estimates given m (3 2 ) we 

find : 

~ ~ 'I\ 
\(, All E u tS ) 

kh Ah E ... L 
- ~ ZJ Y. I i} c, + fJ(E) 

-· h~ hR h L 
tilE) - Au 1\11 E ~ '~-•) c. + 

h ~ ... 
K~ A1, E U <o;, = khAh { L h . ~ 

1 ~' E cl.. '/4 - t~ )', t (oj 

The matrix is defined to be: 

~~~ -:: l. h. yh,o I) AI"\L r cl.- eLi 
• ... E 3 ' 4 31 \ -~ l I 

From the definitions of 
L L c.,. I c I 

a.c.. ~-') o+ 
h 

-t (r'" 

is ~(h) . 

(47) 

(48) 

(49) 
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Combining (47, 48, 4 9) •ne obtain the asymptotic expans ions 
h 

of t 0 '1. given in (46). 

The most significant difference between t he expansions 

in (2. 60) and (46) occurs in the terms Q>'l. , (ps and given 
h 

~l. " , (ps re spe cti ve 1 y. For h ~> E. detailed calculations of 

## 

the differences G''L- CJ>-z.h. s how them to be of order 

one. This difference explains why we have made assumption (3b), 

for when (3b) is true the errors in y-~~) 1 ,J'to) cannot affect the 

determination of the boundary-values assumed by the s o lution of 

the general problem. However for h<<' we find the differences 

are of order 
b.. 
e This fact may be proved 

by appealing to the stability and consistency of the scheme as 

n -> o+ . 
~ 

Aig.ljl upoTl 

their analogs 

We should also note the dependence of the matrices 

l and t found in d oe s net occur in 

Through the use of (9, 13, 18) we 

k 
estimate the error incurred by replacing Aii '31 b y A ill ~i 10} in 

is of order € In a similar manner w e estimate the error 

incurred by replacing A\.. rush it'iJ by Ai2 (X~, OJ in \J, is of o rder { 

Therefore we conclude the dependence of upon a and ·E 

in is inessential. 

3. 5 Properties of the Solution of the General Difference Problem 

The main results of this section are given in Lemma 3. 57 

and Corollary 3. 72 . To prove these results we need the following 

lemmas. 
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Lemma 3. 50: Suppo se t he specia i. problcrr.. (2 ) is reg ular . 

" . Let u. ll\.), ~ t 1.l b e the solutions of the following -c -o e 

initial-value problems : 

"b 't:olx.> 

n" " l:!o' jl 

Then for 

functions 

that for 

:.. O.lx.> 1.l £x) 
-c> + fc~; o~x~t "l!o toJ ; ~ 

h • ~ 
O~i~J-1 " : Utjl E~:(~) + f ·a~ U (OJ 0::: 0{ 

-o 

sufficiently small h there exist continuous 

l "U. tx> lCD independent of h and c such 
- 1"\ ' Ill; 

every N 

Proof: The regularity of the special p r oblem. (2) implies the matr ices 

A~ IX;E: l and vectors tll(,\} are infinitely differentiable 

functions of X and t for ('X, € ) E I x E 
1

. Recalling the 

definitions (8) and (2. 9) these continuity properties imply: 

h a" )(a+i l f)(f:;l O:&j) #V + 
0 ~j ~ ,J-t OA- E-~ o+ 

'h t){~] f 'i' - f (Xiti.) + 

These estimates are independent of h From the 

stability of the difference scheme used to determine 

see Keller [sl , we find: 

(51) 

""" where 1.l is the s o lution of the initial-value problem: 
-o 



(87) 

Using the continuity properties of U.llC J and f{x' we obtain, 

as shown in Keller ls] , the a:::ymptotic expansion: 

(52) 

The functions { ~tnlx> \~ are continuous and independent of 

h while N is any fixed positive integer. Combining 

the estimates (51, 52) we obtain the asymptotic expansion 

given in (50). ## 

We note the general and special difference schemes (6, 7) 

can be equivalently formulated as the following linear syste1ns: 

~"''f .... : fh 

$k YJ~ :: r: 
The matrices (;{h , $~ 

. h 
~(OJ 

y/' = 

~~;;rJ 

~ ... -:;: ( I/r\ j 0 J • 

fh 

the general difference scheme 

(53) 

the special difference scheme 

and vectors )7~~) r; are deiined to be: 

~ 
~(EJ t{EJ 

I. 1 (trJ -ftol 

= ~- = 

h flr ... l) fh-1} 
(54 1

) 

i ) () J an mr.T+I)}l rn matrix 

r Lt~ I -~C' ) b n 4 ] l J 0 i • # •; 0 J r"\(~)- r.. {EJ •• • an rnx rn (J"+I) matrix 
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--

UtJ 

l ~ . I. 
'2. A .. ~~' 0 A,3ti' 

G· 
I I A\.. ~ = --iLl~) - "i ,,tj} 0 , A

23
tjl h 4-

I f4:~ . N' . 'i llld) 0 l3l)J 

[ • A' l 
O~j.~ .!-\ 

" ~ n'i; An.'i' 0 
I I ~ 

H· = h .U.t~> - 1: A7}~ J A;,~ , 0 
~ 

I Ah 
E A~~a) l 'i lll~l 0 

The following lemma will be used to relate the nonsingularity 

of the matrices .Jh and ~h 

Lemma 3. 55: (Woodbury Formula) Suppose the matrices 

A. "B , C , b have the dimensions: 

A ... NJ. N 

B N-,. rn ... 

Let the matrices A , 1) 

the matrix: 

c 

be nonsing ular. Then 
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H = A + "B1JC 
_, _, 

is nonsingular iff the matrix 1J + C A B lS 

nonsingular . Furthermore, if H is nonsingular 

then: 

_, _, 

. (55) 

Proof: Suppose the matrix "b + C.A "'B is non singular. From the 

result 

we deduce the matrix H 
~I 

is nonsingular and H has the 

representation given in (55) . 

Suppose the tnatrix H is nonsingular. Let ~ sat i sfy: 

(56) 

Multiplying (56) by 'Btl and rearranging terms we find: 

Since H was assumed to be nonsingular we conclude 

Using this fact in (56) we find ~:::. Q . 
-1 -1 

Therefore the nonsingularity of H implies b -+ C~ 'B 

is non singular. ## 

The Woodbury formula (55) is the basis of the method of 

rank annihilation , a metha.d which is used to calculate the inverse 
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of a mat rix . See Noble l? 1, sect ion 5 . 7 , £or other u s es of (55). 

We now consider the relationship oetwe~n the s olutions of 

the s p ecial problems (2) and (7). 

L e mma 3. 57: Sup pose the special problem (2 ) is regular-. 

Let ~()1.) be the solution of the reduced problem 

co rresponding to (2) and 1j\a> the solution o£ th~ 

special difference problem (7) . Then there exist 

continuous functions \ 1~:u l~ independent of h and 

E. such that for 0 -,.o a nd 6 $1~ 1-! : 

H e r e N is any fixed positive integer . Furthermore , 

if the boundary conditions for 

t h en as ~ ,h -"> o+ : 
* (2) and (7) have a(~ ) -;; 2 

~h'a l -

}. 
1\rl ")-- ~ 

0 ~ x.· ~ 1 • 

Here N is any fixed p o s itive integer and the vectors 

hti1\.(Xl'\~ which occur in (57) have been partitioned 
. "i 1 f 7 :T T J~tOQ mto t h e form \ L~(Xl;Y,.\X 1 1 'J!',..u 1 • 

(57 ) 

(58) 

Proof: Let 
J( .~-. 

~(Yl, ~ (~) be the s olutions of the following boun dary -

value problems : 

t "t,.{y._) = f (~ ,tJ ~· If 0 '1 : 
(59) t _h h r:r,* .... ~a- lll = t ( . ) h 'i :: 0 - ~ 
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Intrcd.l.!cing the p a r tition we find 

f ro1n {2. 3 1): 

0~ l( ~ I 

In t r oducing the partition w e find 

from {3 2 ) : 

We note 
.h 

and "' ·· are the solutions of the initial -~o 

v a lue p roble ms : 

1) l!:{X) = a ()() 1l~ ( X J -t f { J(J 
j( 

Q ~0 ( 01 : 
- o 

l) "~ a~ E ~~ · F~ .k 
1A. l~ ) = tiJ ~oL"J } + - 4i ) '!&t> ( o l • 0 -l> 

r ,. - oo 
B y Lemma 3. 50 there exis t continuous funct ions 'l ~m bo ~ 1 
independent o f ~ and h such that : 
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Here N is any f ixed positive integer . From the 

continuity propertie s sc.tisfied by A;i d ·~ an f. _ .. we find: 

h 
Ai~li) -

f: {i} N 

(63) 

Substituting (62, 63) into (61) and prefor:rr..ing further 

expansions in powers of h we obtain the asymptot~c 

expansions given in (58). 

Now suppose ~-(f J :f Q 

(7) may be written as: 

We note the solutions of (2 ) and 

• ,.. 
-~oo = ~ ()t} + llXJ 

h . 
~ '1 ; 

.. l.. -vh 1 <jl + l tj ) 

Here ~1xJ, "lA~·l are the solutions of (59) and 

are the solutions of the boundary-value problems : 

l 

From (9) and (18) we find for 0< h ~ fi 

I "\/h_ ' IV e (f;(.. l l'l.Lal ./ 

I y1\a) I ,.J 6 (f:"') 

~ ~ xi f \ 

~ (: -'> o+ 
D ~xis\-~ 

(64) 

(65) 

(66) 
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Introducing the partition 
,., 
~ :: 

f r om (2. 3 !): 

+ {}{~) 

... 
1A ll(J 
-o ~ L_TJ l "i_'c.o - Al AL ,. .. o ) 

' ' \4. 7<- .!:!-· 7 

we find 

.... J.. t ,_ ~.,-r ,..~,...,. IV k T)"f 
Introducing the par tition 1J -:: ~ 1 r![ 1 ~ we fir..d 

f r om (32) and the estimates (66) : 

"""k • 
y lt ) 

I'V 

-" 'W" ( ~} .w 

- t 

"" h v.. ta , 
- fr # 

: 

- L.•• ~ -l. Antt•j A1, tj-•) E ~. 'i , + (J({: ) 

~ ' X.: ~ 
~ 

1- ~ 

h·' ~ OA- e -> o+ 
- As?. t,p A3, <j J E ~~La ) + {}{") 

~h l - () I l-j.) ~o - C L'lro l 
' --1 

s a tis fy the initial - value p roblems: 

Y1toJ = 'I 

~ Y. lO) = I 

(67) 

(68) 

By an application of Lemma 3. 50 to each column of 
'1\ 

);lx> , Y. lXI we infe r the existence of continuous matrix-

valued functions t Wllltxd7 independent of E and h such 

that: 
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Here N is any positive integer. 

C\
L 

From the definition of in (8 ) and the asymptot ic 

expansions given in (63 , 6 9) w e infer t he existenc e o f 

continuous functions { ~-n}xl t~ independent of ~ a nd h 

such that: 

Here N is any fixed posit ive integer . 

Substituting (63, 70 ) into (68) and preforming further 

expansions in powers of h we infe r the existence of 

continuous functions { ~ (jl.lxl 1~ independent of E and h 

such that for t' "'i ~ \-~ 

Combining the asymptotic expansions g iven in (58, 64 , 71 ) 

we obtain the asymptotic expansion given in (57 ) . 

Through the use of the preceding lemma w e pro ve the 

following : 

Corollary 3. 72 : Suppose the general problem ( 1) satisfies 

the conditions g i ven in (3 ) . Then for all E and h 
sufficiently small , the g e n E> ral diffe rE>nc e pro ble m (6) 

has a unique solution. Furt hermore, for ~,.0 and 

& ~ ti 4 ,, ~ thi s s o lution admits the asymptotic 

expan sion: 

(69) 

(7 0 ) 

## 
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E t. -> o+ 
I 

Here N is any positive integ e r, lj-JX.J is the solution 

of the reduced problem corresponding to ( 1) , and 

{ l.Jxl\~ are continuous functicns independent of 

E. and h . 

Proof: The general difference problem (6) has a unique solution 

iff the matrix ~h defined in (53, 54) in nonsingular. 

From the definitions of $'h, ~~ , B'h. , (h given i:n (54) 

we deduce the identity: 

From Theorem 3. 19 we infer t he matrix .$'n is 

nonsingular for all { a~d h suff:ciently small. 

Therefore Lemma 3 . 55 implies dih is nonsingular 

iff the following matrix is nonsingular: 

We are justified in calling the matrix on the right 

of the equality in {73) ~~.z.: because: 

~ 
To obtain {74) we note the definition of 1 given in 

0 

(45) implies: 

(72) 

(73) 

{74) 

(7 5 1
) 
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= 
. 
h 

L :Zt> l:J') 

From (75) we find: 

= 

This last equality justifies the relationship g iven in (73 ) . 

By combining (3b , 46, 63, 69) and perfo rming asymptotic 

expansions in terms of E; , h we infer the existence of 

matrices t 'B,.l~ · independent of E and h such that: 

In (76) we have used the matrix defined in (2. 63) . 

(75 ') 

(76) 

By (4c) we know 'Bo is nonsingular . Applying Theo rem 

1. 21 we conclude for all sufficiently small E and h 
h 

the matrix '.B'L..io is nor.singular, i.e. for all sufficiently 

small E and h the general difference problem (6) has 

a unique solution. 

From (76) we infer the existence of matrices 

independent of E and h. such that: 
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.... "'" -Define ~lxl , i 'Jl to be the solutions of the special 

boundary- value problems : 

e•j = Q 

~~jh s Q 

" The solutions }{;j(l , ~',f'' of the general boundary - value 

problems (1) and (6) then admit the representations : 

Here o< 0( ~ -·'- are t he unique solutions of the linear 

systems : 

h 
From (78) and the r epresentations (79) we f ind 'j , ~ 
also satisfy the boundary- value problems : 

'l ~<X> = f(x1~ 1 GS*l = ~0 

'lhi(il 
1\ (B" h O(h ::: ! tj) "i : -

From the definitions of 
,... "'" give:! (78) and the 1 'l 1n 

(78) 

(7 9) 

(80) 

(8 l) 
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asymptotic e;~pa!1sion of ~hese solutions given in (58) 

t 10') 
we infer the existence of vectors • pM r, independent 

of E and h. sucn that: 

From the proof of Coroilary 2 . 64 we r e call : 

+ (U.. E -'> 0 

By combining (77, 80, 8 2, 83) we deduce the existence of 
_, 

vectors ~~ ..... l 1 independent o f E and h such that: 

From the asymptotic expa nsion (57) given in Coro llary 

3. 57 and (81 , 84) we obtain the expansion given in (7 2) . 

(82) 

(83) 

(84} 

## 

One application of Corollary 3. 72 arises w hen we use the 

general difference scheme (6) to numerically s olve the boundary-

value problem described in (2. 75). From the asymptotic expan-

sion (76) w e infer the numerical solution of the general dif£ere:1ce 

problem accurately represents the solution of the reduced problem 

corresponding to (l) on the interval l~, 1-&1 . Furthermo r e , the 

expansion (76) also shows P.ichardson extrapolation may be used 

to further increase the accuracy of t he numerical solution, the 

limiting accuracy obtainable being OlE) 
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4. APPENDIX 

4. 1 A Matrix Transformation 

In t hi s section we will prov~ the follo·wing: 

Theorem 4. 1: Let K be a compact subset of fR.M ·.:vhich 

is s t ar- shaped about the origin. Let Al!) be an 

N-,. N complex- valued matrix which ciepend~ con

tinuously on ~ for ~ E K If for each ~£ ~\ no 

eigenvalue of Ac~} has its real part equal to ze r o 

then: 

(a) There exist positive constants fJAfN such that 

for each ! E K and any eigenvalue A{~ ) of 

A<'!, : 

\ Re A.l~> \ ~ 
1
1A. b At~> \leo ~ A co ( 1 i 

(b) The number of eigenvalues of At~) , counting 

multiplicities, whose real part is posit ive 

(negative) is independent of X 

(c) There exists a non singular matrix Ut!> , w ith 

the same continuity properties as A(~ J , which 

11block diagonalizes 11 At~> as follows: 

u!~ ) A(~>vc~. ~ : (~o(~ , 0 ) 
A_lxJ 

Here, every eigenvalue of A-\-1~1 A lX) ) has . -
its real part positive (negative). 

In the proof of this theroem we will use the following 

lemmas: 

Lemma 4. 3: Let { A~ 1 ~ be the m distinct eig envalues of 

the N1- N matrix A , and 1T\j. the multiplicity 

(2} 

of the eig envalue "i Then for all sufficiently (3) 
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small positive € there is a positive number 

such tha t if I B- A l < ~ then the matrix B 
r 
0 

has 

exactly iY>j eigen values in the disk of radi-.J.s E 

about Aj 

Proof: See Franklin [ 3} , page 191. 

Lemma 4. 4 : (Spectral Projection) Let A be as described 

in Lemma 4. 3 , and 'e a contour which enclo3es 

the eigen va lues ft,41,s Then the matrix: 

'P : ~ § (~I-A)' d.~ 
'E 

has the following properti es: 

(a) The matrix ""P is idempoten t: c ommutes with 

A , and has rank h.~ ~~111j. 
(b) Let U be any nonsingula~· mat rL"'{ which 

diagonalizes "P as follows: 

PU: U ( :r, ' 

:) 
Then the 

follow s: 

AU 
where: 

A ... .. 

matrix u diagonalizes A as 

u ( A-\- 0 
} : 

0 A .. 

a square matrix whose eig envalues 

are {"A~1~ with multiplicitie s -ma" 
a square matrix whose eigenvalues 

are {~· }l:, with multiplicities 11\i 

'' .l! Ttrr 

( 4 ) 

(5) 

(6a) 

(6b) 

Proof: The proof of (a) may be found in Lancaster t41 , chapters 

four and five. Since P is idempotent we know it is 

simple. Furthermore, since "P has rank b we know 



P has 1 

''""') \ .L tJ4., 

as an e~genvalue Ps tirnes and 
I 

eigenvalue N- ~s times. Define: 

17:: l~\) ··· · 1 ~N] 

From (5) we deduce: 

-p,.... . ~ 
1,l.· 

: -J 
-l g 

( 0 Q 'U. ': i --a -vl. -a 
Fur thermo r e: 

... , 
1ru - I =) -

and so from (7}: 

\ ~a"~ Ps 
p,-4-, ~ i ~ N 

' {.i ~ r3 

'rs~' ~ i ~ N 

0 a:> an 

commute with A we deduce from (8): 

(7) 

(8) 
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~N 'T 

All).::: AQ"":!;. ~ ~A.,~J. = Tr,+ ~ t~iAlt.J.)~i· h~~~i~N (9•) 

Therefore, ior son1e rDatrices A+l A_ 

Au = 1J f A-+ 0 ) 
\ o A .. ) 

Suppose A were an eigenvalue of A+ that lies outside 

the contour ~ Then for some ~ F Q 

Consider the vector: 

From (5, 6) we conclude: 

(1 0 ) 

Thus ? is an eigenvector of A belonging to the eigen-

value A Since A lies outside 'e we deduce from 

(4) that: 

which contradicts ( 1 0). Therefore, every eigenvalue o f 

A., lies within t> 
every eig envalue of A_ 

In an analogous m anner we deduce 

lies outside Since the 

totality of all eigenvalues of and are the 
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eigenvalues of A we conclude ( 6) is true . ## 

P roof of Theorem 4. l: 

S ince l J.ld~> I is a continuous function of ~ on the compact 

set K , it ia bounded. Therefore, A<:o exists. 

For each ~ l: 'r< let { ),d (~) : 1 ~a'~ f\'\(~11 be the distinct 

eigenvalues of At~ > , each of multiplicity l'i\i l~) . Define: 

I . I I'Re "ila" l~d \ ~ i ~ (h( ~ )} ,...,~) : ~ 11\.l/'-. 
. . 

~l~l :. l. ~~ 3 \A.. ()( 1 -/\. · (Xl \ a - l -
~ iit ~ mt~l ~ 

Since every eigenvalue of At~ J has non-zero real part it 

( 0 C ~~Co ) and ! > 0 such follow st'!lat f~D· . boose~~ > E(~l ~ 

that Lemma 4. 3 holds. By the continuity of A 
we may choose Sr~) ~ 0 such that: 

at )( -

From Lemma 4. 3 we then conclude that for ~£ 13t ~.~l!_l) n }( 

the matrix A(ff). has exactly 711i eigenvalues, counting 

multiplicities, in the disk of radius E (~) about ·~p~> . 
Since l13t! , ~l~>) : ~ ~ K 1 is an open cover of the compact set 

K there must exist a finite subcove r f B..t ="B .... c~,~~~> ) : l ~ ~ ~ L1 
of K We may then choose : 
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Therefore, ( la) has been established. 

To establish ( 1 b), def ine p\~) to be the number of eigen

values of Al~l , counting multiplicities , with posidve real 

part. We consider f to be a mapping of K into lR. . 
From the above arguments we deduce p i s integer-'ralued 

and constant on the sets 'BJ 11 K . By considering sequent:al 

limits we find p'~ l is a continuous function . Since K i s 

star- shaped we know it is connected , therefore p t K) is 

connected since p is continuous. vre recall the only 

connected subsets of 1R are the intervals . S ince p(K ) is 

connected and yet consists solely of integ er vaiues we deduce 

plKJ consists of a single intege r, that is p is constant 

on K Therefore, ( 1 b) has been e stablished. 

Let us recall 1·1 is the infinity vector or matrix norm. 

From Gerschgorin' s Theorem , see Franklin 131 , we 

deduce for every ~ E K and 1 ~ j ~ rn C?S) : 

Therefore, as shown in Figure 4. 1, ~i(~) must lie in 

either z+ or ~ From ( 1 b ) we also know the 

number of eigenvalues of Alxl ' 
counting multiplicities, .. 

in is independent of )( - Let 'e~ be the 

contour enclosing h;. shown in Figure 4. l. Define : 

( 11 a) 
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2:_ 

Figure 4. 1 

By considering sequential limits we deduce )l~I- Atl(lf' I i s 

a continuous function of ('Z 1 ~) 

Therefore, for some K0 'J' 0 

on the compact set CO+ )(, K 

(ll b) 

We know R~) is idempotent by Lemma 4. 4, and from the 

remarks above we also deduce the rank of "Pt!) is 

independent of for For 

we find: 

_, r• ' A -• lli-A'~') - (~1-Ac~J ~ (ti-A(~!) (A I ~ l -A'Jl}(~I- t~J) 

l f>c~1 - -p, ~) I '= 1i K~ j IJ.e 1 I A 1~1- A ~~~ I 
d t'+ 

Hence, we deduce "f>cx\ is a continuous function of ~ on 



K For 2S .3 f K define : 

s(~. 1 ) ~ I + l -p,~, - -p,a) Jl-z.-P,1)--:r) 
SiLce I Z. "Pra>- I I i.s a continuous function o£ t on the 

compact set K we know for some constant Kl -z 0 

14 tK 
r 

From the uniform continuity of Pt!> on the compact set 

K we deduce fer some h"> 0 : 

An application of the Banach Lel'Th."Tla ( l. 20) then tells us 

S (~, l} is a non singular matrix for } £ 'B (~,h) We 

also note, for ~. ~ £ K 

( 12) 

Since K is a compact set there exists an integer N 
such that: 

·~· < ~/h 
Define: 

From the fact that K is star-shaped with respect to the 

origin and the estimate: 

I 0{ i-+-' ~ - C( i ~ l < h 
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we deduce the matrix: 

. . . 
(13} 

is a well-defined, continuous, nonsingular matrix for all 

~ E. K Furthermore, :frorn ( 12) we find: 

( 14} 

Let Vl!2.l be any nonsingular matrix which diagonalizes 

l>t~l as in (5}. Define: 

X E K ( 15) 

• 
Then Uc~) is a continuous non singular matrix for all ~ t K 

Furthermore, from (5, 14, 15} we find : 

~ t: K. 

Therefore, by applying Lemma 4. 4 we deduce: 

a square matrix, depending continuously on X 

for ~ l K , whose eigenvalues lie in ~+ . 
a square matrix depending continuously on >c 

for ~ l K whose eigenvalues lie in 2: . 

By considering ( 11} we deduce Ac~) and "Pt~l share the same 
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continuity properties (diffe:rentiate under the int egral sign). 

Therefore, since K is star-shaped with respect to the 

origin the matrices S (eli'; 1 'tli;.' ~} share 
,.. 

the continuity properties of . /'\('! l Therefore (2) has 

been established. ## 

Vfe recall the existence of the matrix $(~ 1 ~) allowed us to 

construct the matrix 1Jt~ l Other interesting u ses of the mat!"i..x 

Sl~ 1 ~l may be found in Coppel {5, 6) 

To prove Theorem 1. 5 w e note the cor!"espondence: 

Therefore , Theo rem 1. 5 follows as a corollary o :f Theorem 4. l. 

4. 2 Exponential Dichotomy 

Let us prove the exponential dichotomy mentioned in 1 . 29, 

2 . 5, 2 . 10, 3. 9 exists. First, make the following: 

Definition: Let K ( Aco,f), ior f 1 AC/b> 0 , be the set of all 

N.,. N complex-valued matrices A satisfying: 

I A I ~ Aoo ( 16) 

Here, /..(A} is any eigenvalue of A 

. With the definition of K{A M.~ we now prove the following : 
CS> IJ 

Lemma 4 . 17: T'h~ set \<(Aar,r l is a compact subset of 

N-a. 
(' . ( 17 ) 
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trill~ 
Prcof: The compact subsets of ..,_ a!'e those which are closed 

and bounded. Clearly K<Ate,r)is a 

is closed let { A,J~ be 

bounded set. To show 

K (Ac..,r) 

K{Aaa,r}. 
any Cauchy sequ-=nce in 

~~ " 0 Since c is complete f\ ::: urn A(l'\ 
"'-)DO 

exists. 

From the continuity of the norm I · I we deduce : 

Furthermore, if some eigenvalue ;\ ( 1\) of A satisfies the 

condition: 

'Re "A{A),..- u. 
I 

we conclude from Lemma 4. 3 that some eig envalue A.{AM) o£ 

A...,._ , where 11\ is sufficiently la:..·ge, also satisfies the 

condition: 

But this contradicts the fact that A~ E K ( Aa:n tA.) . Therefore: 
I 

for all eigenvalues 7\{Al o£ A Thus and 

hence K (Aoo,J'·J is a closed subset of ## 

Since 1•1 is the infinity norm we deduce from Gerschforin ' s 

Theorem (see Franklin { 3} ) that the eigenvalues of any matrix 

L! illustrated in Fig ure 4. 1 .,_ 

From this fact we have the follow ing: 
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Lemma 4. 18: There exists a constant K, ";>' 0 s·..:.ch that for 

any 

(18) 

Proof: Since hlt-Af' I is a continuous function of (~ 11\) on the 

compact set 

since '"€_ 
'e )!. \<(~-co 1 14} we know it is bounded. 

- I 
There"fore, 

has finite length 1 (18) immediately follows. 

Note the constant k, depend.s only on A ' A.~ , LA • 
1 

Using these lemmas we now prove the follow i ng: 

Theorem 4. 19: Let t 0~ 0 , I~ [0, 11 , E ~ (o, tz). Suppose 
0 

1\lx~ is a square matrix, depend in g continuously 

on X and E for ()(,E ) t I-.E , with the property 
0 

that for each ( J', ~ ) £ I x E every eigenvalue oi P. tX 1 ~) 
0 

has its real part neg ative. Then for sorne positiv e 

constants Ko , ~' , ~~ and all €. ~ ( 0, ~ 1 1 the 

F. S.M. Y<x,7:> for t Al~,E:J satisfies the bound: 

Proof: Let r , A t:e be as given in Theorem 4. l and "e_ 

path illustrated in Figure 4. 1. We know: 

.u.u 
11ii 

( 19) 

the 

Let x f I, then we may writ~ the above differential equation 
0 

as: 

By the V . 0. P. fo rm.ula ( 1. 25) we therefo r e d educe: 



We know : 

and so from Lemma 4. 18 we deduce: 

X.-'t ~ 0 ( 21) 

Since Alx.,f:.) is a continuous function on I~ E its modulus 
0 

of continuity ex:sts. Therefore, there is a continuous 

increasing function lo {~) for ~ E I such that: 

I Al'( 1"~ -AtJ 1t , I s to(l~-d'> 

£t.7J\ w (~) -= D 
'->o+ 

We extend the definition of Lv as follows: 

w(~) :. wet) 8 '> I 

Choose G( £ ( 0, 1) and set ~: \-c( . Def ine : 

(23) 

If we t ake X0 -:o X in (20) and consider only O~t~X~ \ then 

from (20, 21, 22, 23) it follows that: 

Define the constants t~ , E.l as follows : 



=-'-.., -
Then for 0!: "t~ 1. ~ \ and E £ {0, E1 ] · we estimate: 

(25 ) 

Hence for 0~ 't!: X~ l and € < ( 0, €1] we find (24, 25) imply : 

Therefore using (23) we deduce for E E (o, E1] : 

Choosing A 1 =o(~ and k0o:::£.K, we recognize (19)holds. 

This proof differs from that given in Flatto and Levinson 

l7J only in the fact that f:l, may be chosen to lie anywhere 

in the interval ( 0, ~). ## 

Suppose "Bl~ 1E.) were a square matrix, depending continuous-

ly on l( and E for (X, E ) E. I)( E , with the property that for 
0 

each ( x, ~ ) 'I x. E every eigenvalue of "B<x,E.) has positive real 
0 

part. Define WtliT) to be the F. s. M. for r'B<x,"), that is: 



( 114) 

If we define: 

1- ~ s = 1-~ 

A,~ lf: } = 'B ti-~)EJ 

y, '~~/~.) - We '1-'a J ,_ s) 

then we conclude: 

Ycs,s} -::. .L 

B y applying Theorem 4 . 19 we conclude for some p ositive 

constants and all ~t (O, ~ ,] 

o r in terms of W l 'l.; t l 

(26) 

Combining ( 19, 26) we obtain the continuous versions of the 

exp onentia l dichotomy used in l. 29, 2. 5, 2 . 10 . The derivation of 

the discrete version of the exponential dichotomy 3 . 9 is only 

s lightly more comp licated. 

Theor em 4. 27 : Let A tx,~ ) be as described in Theorem 4 . 16. 

The n for some po s itive constants Ko , a. , Et and 

all ~ £ ( 0, EJ the matrix Ylj,~l defined by: 

"\.& l t '1-satisfie s , for all D ~ o S. I and f\. "' the bound: 
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IYla,k) I~ Ko/t1+a~1i-~ (27) 

Proof: Let r ' Ace be as given in Theorem 4. 1 and ~- the path 

illustrated in Figure 4.1 . Since the proof below works for 

any (f E to,•] we choose to carry it out for 'f <: 0 . We 

a nd so from Lemma 4. 18 : 

(28 ) 

We note: 

(29) 

Therefore, for K, 1: \ the bound (27) easily follows from 

(28,29). If K\ '> I we proceed as follow s . Define: 

a nd note : 

[I+ Ax } 

--~-------------+---------------------•X 

co 
Figure 4. 2 
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Therefore, for ; ~ Co 

and from (29) we conclude : 

(30) 

For t {, C0 we carry out the discrete version of the proof 

given in Theorem 4. 19. Write the d ifference equation for 

y,i,kl as follows: 

By the discrete version of the V.O.P. formula we have: 

By Lemma 4. 18 we deduce: 

(3 2) 

Choose fif (O,J.) and define: 

(3 3) 



We note for } S lc 
\.. 

l+ l(a(; 

( 11 7) 

(34) 

Let w be as desc!Toed in the proo: of Theorem 4. 19 and 

choose in (31) . Combining (31, 32, 33, 34) we deduce: 

If we note the function ftk> defined by: 

tl"-> ': 
'f h. R;.._ 
' t I+~ At: J p,~, ~~~ >0 

is an increasing function of h then: 

t (~\ ~ '/ 'leofE1 b. ~ cb Ll4- ~~co 1 E: 

As ~-=> o-+ this upper bound on f!\..) decreases. This 

means we may choose £ 1 ~ 0 such that: 

.l 
1.. 
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If we define: 

(38) 

then we deduce from (35, 37) for t~ C0 and E~ (o1e 1] 

Recalling (33,38) we therefore have for all E£ (0 ,€ 1) 

(3 9) 

If we then define: 

\ 
we deduce from (30, 39) that for all h ==~ and ~r (o 1t 1 ] 

This establishes (27). ## 

Suppose "B<x,C:> were a square matrix, depending continuously 

on )( and € for ('X , ~ ) E I x E , with the property that for each 
0 

(x,' ) t. IxE every eigenvalue of thx1~) has positive real part. 
0 

Let the matrix W'j,'td satisfy: 

where 0 ~ 'Jf-' \ By following steps analogous to those used to 
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derive (26) we conclude for some positive constants Ko , b, , ~, 

and all 

(40) 

Of course, in the proof of (40) we appeal to Theorem 4. 27 . 

This completes the derivation of the exponential dichotomies 

used in the previous chapters. 
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