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Abstract

Swapping sequence elements among related proteins can produce chimeric proteins with

novel behaviors and improved properties such as enhanced stability. Although homologous

mutations are much more conservative than random mutations, chimeras of distantly-related

proteins have a low probability of retaining fold and function. Here, I introduce a new

tool for protein recombination that identifies structural blocks that can be swapped among

homologous proteins with minimal disruption. This non-contiguous recombination approach

enables design of chimeras and libraries of chimeras with less disruption than can be achieved

by swapping blocks of sequence. Less disruption means that one can generate libraries with

higher fractions of functional enzymes and enables recombination of more distant homologs.

Using this new tool I design and construct many functional chimeric cellulases. I il-

lustrate the structurally conservative nature of this recombination by creating a functional

prokaryotic-eukaryotic chimera and solving its structure. I also show how non-contiguous

recombination can be used to efficiently identify stabilizing mutations that have been in-

corporated into homologs in nature.
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recombination
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1.1 Introduction

The large diversity of natural proteins provides many highly optimized sequences that en-

code specific functions. How can we use nature’s solutions to engineer proteins with im-

proved properties or novel functions? One approach is to transfer sequence elements and

their functions from one protein to another. This chapter focuses on methods and appli-

cations of site-directed recombination that generate new functions or enhance particular

characteristics in a protein of interest.

Early work on DNA shuffling of homologous genes enabled the quick construction of

libraries of novel sequences that are combinations of the parental genes [1]. This is a simple,

effective way to produce diverse libraries of proteins for directed evolution [2, 3, 4, 5]. Many

of these recombined sequences are functional because mutations from homologous sequences

are conservative [6, 7]. More recently there has been substantial work recombining specific

sequence elements between more distantly-related proteins (Figure 1.1), producing chimeras

with hybrid properties. This site-directed recombination presents an opportunity to rapidly

engineer proteins when a desired property is known to exist in another sequence.

The first part of this chapter outlines available computational tools for identifying swap-

pable protein fragments that will generate folded, functional proteins. I follow this with

several studies that have recovered function and stability in chimeric proteins by mutating

residues at fragment interfaces. The second part of the chapter provides recent examples

that have used site-directed recombination to introduce or enhance specific protein func-

tions. Finally, I look at a few examples that recombine distantly-related or non-homologous

proteins and I discuss the potential of this strategy for engineering proteins with new func-

tions.
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1.2 Swapping sequence elements while preserving protein

function

It is easy to shuffle homologous gene sequences at defined points, and there are a number

of published methods to do so [8, 9, 10, 11, 12, 13]. However for homologs with a DNA

sequence identity below 70% it is difficult to swap sequence elements and retain protein

function and stability. Domains and small structural pieces such as loops can often be

easily identified from a protein structure as suitable fragments to recombine. For swapping

subdomain protein fragments, several labs have developed scoring functions that try to

quantify the likelihood a given chimera will be functional. Residues can then be grouped

into swappable blocks based on optimizing one of these metrics.

One method pioneered by Voigt et al. uses structural information to break up homolo-

gous sequences at specific crossover points [14]. SCHEMA scores a chimera based on how

many native residue-residue contacts are disrupted. Less disruption increases the proba-

bility a chimera will fold and function [15]. Optimal crossover points can be found that

minimize the average disruption to a library of chimeras [16], enriching a library in func-

tional sequences. Rather than swapping contiguous elements of sequence, a recent approach

identifies fragments of structure that minimize SCHEMA disruption upon recombination

[17].

Bailey-Kellogg and colleagues have published a similar method that accounts for higher-

order multi-residue interactions within chimeras [18]. If structural information is not avail-

able, an alternative scoring function developed by the Maranas lab uses information from a

multiple sequence alignment to count conserved residue-residue properties that deviate in

a chimera [19].
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1.3 Swapping sequence elements and recovering protein func-

tion

Site-directed recombination often does not produce functional proteins. While computa-

tional methods for choosing crossovers (see previous section) can improve the probability

the progeny proteins are functional, it is still a challenge to swap sequence elements be-

tween distantly-related proteins and retain high levels of protein activity. Several labs have

recently explored mutating the interfaces between fragments of protein structure to recover

chimera function.

Work from the Koide lab improved the binding affinity of an Erbin PDZ binding domain

fused to a fibronectin type III domain more than 500-fold towards a specific peptide sequence

by mutating residues on the interface [20]. Inspired by this, Zhou et al. mutated interface

residues of their insoluble acylpeptide hydrolase / carboxylesterase chimera [21]. Changing

seven newly exposed hydrophobic residues to hydrophilic residues resurrected the chimera’s

solubility and activity. Similarly, Geitner et al. introduced disulfide bonds at linker regions

between domains to rescue the activity, solubility, and stability of their isomerase-chaperone

chimeras [22].

Hoi et al. improved the brightness and Ca2+ response of a chimeric Ca2+-dependent

fluorescent protein by mutating residues between the chimera’s Ca2+ indicator domain and

its photoconvertible fluorescent protein domain [23]. Additional random mutagenesis of the

chimeric gene and screening produced a final protein that exhibits a 4.6-fold increase in

fluorescence upon binding Ca2+ which could be valuable for studying Ca2+ signaling.

In a follow-up experiment to building a chimera from different protein folds [24], Eisen-

beis et al. used computationally guided mutations (Rosetta) to improve the stability and
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adjust the fold of their chimera [25]. Interestingly, the five most favorable mutations selected

by Rosetta were all localized to the interface between the parental fragments (Figure 1.2).

Introducing these mutations stabilized the chimera, improved solubility and corrected the

(βα)8-barrel fold. Furthermore, two additional mutations improved the chimera’s phosphate

binding 10-fold.

Considering the importance of residues on the interface between swapped sequence ele-

ments, it may be beneficial to design recombination experiments to allow amino acid vari-

ability at these regions. Ochoa-Leyva et al. explored varying residues either side of inserted

loops [26]. Seven loops (3 homologous, 3 non-homologous and 1 computationally designed)

were each tested as a replacement for loop 6 of N-(5’-phosphoribosyl)anthranilate isomerase

from E. coli (ecTrpF). As one might expect, homologous loop insertions were much more

likely to result in functional chimeras. However, functional ecTrpF variants were found for

all seven loop replacements, demonstrating the value of recombination designs that accom-

modate mutations at interface regions.

1.4 Swapping sequence elements to transfer protein function

Many recent examples have emerged that use site-directed recombination to transfer spe-

cific properties, including stability, substrate specificity, and allostery between two or more

proteins. This strategy offers a fast way to engineer desirable properties into a protein of

interest by borrowing solutions from other proteins in nature (Figure 1.3).

Thermostable enzymes are desirable for many industrial applications and there have

been many examples in which site-directed recombination has led to stabilized enzymes.

Clusters of residues are known to contribute additively to thermal stability [7, 27] and

in SCHEMA site-directed recombination libraries, the stabilities of chimeric proteins can
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be accurately predicted by simply summing the stability contributions from each block of

sequence [28]. This approach can be used to engineer highly stable proteins by piecing

together stabilizing protein fragments from homologous parents. In addition, testing the

individual mutations within a stable block of sequence can reveal highly stabilizing amino

acid substitutions [29]. More recently, Heinzelman et al. presented a useful strategy to

identify stabilizing pieces of sequence from proteins with poor heterologous expression by

substituting one piece at a time into a well-expressed homolog [30].

An alternative approach to generate stable enzymes with a specific activity is to engineer

the desired activity in a highly stable homolog. Campbell et al. replaced three substrate-

binding loops from P. furiosus alcohol dehydrogenase D (AdhD) with those from a human

aldose reductase (hAR) homolog [31]. This chimera retains the extreme thermostability

of AdhD (elevated activity at 100◦C) and was able to reduce DL-glyceraldehyde, a model

substrate for hAR, albeit with a three orders of magnitude lower catalytic efficiency. In-

terestingly, while AdhD primarily used NAD(H) as a cofactor, the chimera, like hAR, had

a strong preference for NADP(H), indicating that the enzyme cofactor was also switched

upon recombination.

Similarly, van Beek et al. recombined a thermostable phenylacetone monooxygenase

(PAMO) and two homologs with broader substrate specificities, a cyclohexanone monooxy-

genase (CHMO) and a steroid monooxygenase (STMO) [32]. These Baeyer-Villiger monooxy-

genases (BVMOs) are potential industrial biocatalysts. However, PAMO is the only known

stable BVMO and it accepts a narrow range of substrates. Guided by the structure, the au-

thors replaced a subdomain from PAMO with the corresponding elements from CHMO and

STMO. These two chimeras had higher stabilities than the parents CHMO and STMO

and exhibited broad substrate specificities. Not all parental activities were present in
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the chimeras, but on some substrates chimeras had improved catalytic properties over the

parental enzymes. In addition, PAMO was recombined with a putative BVMO gene from

a metagenomic sample. This third chimera exhibited effective oxidation of substrates that

are poorly converted by the other chimeric and parental monooxygenases, and is a good

example of using protein recombination to explore metagenomic sequences.

Jones shuffled six specific loop regions between seven serine proteases from the subtilisin

family [33]. Regions of sequence were selected for their known functional importance in sub-

strate binding, metal ion binding and catalysis, and the chimeric proteases displayed novel

specificities for a range of peptide substrates. Chen et al. altered the product specificity

of cytochrome P450 CYP102A1 on farnesol to produce 12-hydroxyfarnesol by exchanging

small regions of sequence involved in substrate recognition with P450 CYP4C7, which nat-

urally produces 12-hydroxyfarnesol [34].

There are several examples of engineering allosteric interactions through chimeragene-

sis. Most notably, the Lim lab generated chimeric regulatory proteins that were activated

by different input ligands [35]. Ostermeier and colleagues created a chimera from a mal-

tose binding protein and a beta-lactamase that binds Zn2+, and this binding switches off

enzymatic beta-lactam activity [36]. More recently, Duret et al. transferred allostery be-

tween distantly-related proteins by combining the extracellular domain (ECD) of a bacterial

ligand-gated ion channel (LGIC) with the transmembrane domain (TMD) of the human α1

glycine receptor (α1GlyR) [37]. The chimera, like the bacterial LGIC, was activated by pro-

tons but exhibited a similar allosteric regulation to the human α1GlyR. Additionally, Cross

et al. recombined two distant homologs of the first shikimate pathway enzyme (DAH7PS)

[38]. By transposing the regulatory domain of a tyrosine-regulated bacterial DAH7PS onto

the catalytic domain of an unregulated archaeal DAH7PS, the authors created a chimera
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that was inhibited by tyrosine.

1.5 Swapping sequence elements can probe sequence-function

relationships

Swapping defined sequence fragments can improve our understanding of sequence-function

relationships and guide engineering efforts. Romero et al. recently introduced a general

strategy for modeling protein characteristics that uses Gaussian processes to predict the

protein fitness landscape from experimental data (Figure 1.4) [39]. A Gaussian process

landscape identified cytochrome P450s that are more thermostable than any previously

engineered, demonstrating that such models can accelerate searches through sequence space

for desirable proteins.

Protein recombination has also been used to probe protein biochemistry. Patel et al. ex-

plored melanocortin receptor selectivity with the antagonistic ligands Agouti-related protein

(AgRP) and agouti signaling protein (ASIP) by methodically swapping sequence elements

between these two homologs and measuring binding to three melanocortin receptors [40].

Recombination revealed that binding to one of these receptors was dependent on six amino

acids present in ASIP but not in AgRP. Ohtomo et al. investigated β-lactoglobulin dimer-

ization through chimeragenesis of the monomeric equine β-lactoglobulin (ELG) with the

dimeric bovine β-lactoglobulin (BLG) [41]. While swapping nine mutations of the BLG

dimer interface did not make ELG dimerize, a chimera with BLG secondary structure did

dimerize indicating that secondary structure is important for β-lactoglobulin dimerization.

Other recent biochemical relationships elucidated by protein recombination include a cor-

relation between a protein’s isoelectric point and its stability [42] and a higher tolerance to
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thermal denaturation leads to catalysis at elevated temperatures [43].

1.6 Pushing the limits of protein recombination

Distantly-related homologs are more likely to have divergent properties than closely-related

sequences, and recombination of these diverse proteins can provide quick access to new

properties. Proteins can be engineered by transferring desirable properties from distant

homologs provided one can preserve function when exchanging elements of sequence.

Recent work has produced chimeras constructed from proteins in different kingdoms

of life by swapping domains [37, 44], shuffling substrate binding loops [31], and through

exchanging structural elements within a protein domain [17]. These chimeras acquire prop-

erties from their distantly-related parents: switched cofactor specificities [31], new allostery

[38], and altered backbone conformations [17]. Interestingly, in the latter case the fragments

of structure that make up the chimera maintain the backbone conformations found in their

respective parental structures.

Pushing the limits of protein recombination further, there has been substantial work on

generating chimeras of unrelated proteins. Several recent examples are discussed here. For

older examples we refer the reader to an excellent review on recombining non-homologous

domains [45].

Edwards et al. fused a heme-binding cytochrome b562 to the middle of a β-lactamase

and produced a number of active chimeras with a novel allosteric property [46]. Cytochrome

b562 undergoes a significant structural rearrangement upon binding heme and Edwards et

al. use this property to disrupt the structure of the β-lactamase chimeras. Several of the

chimeric β-lactamases exhibited over a 100-fold decrease in activity upon the addition of

heme.
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Rather than combining whole domains, Shanmugaratnam et al. built a highly stable

chimera from two proteins with different folds and no obvious substructure [24, 47]. Part

of a (βα)8-barrel imidazole glycerol phosphate synthase (HisF) was swapped with three

proteins that have a flavodoxin-like fold: a chemotaxis response regulator (CheY), a ni-

trogen response regulator (NarL) and a methylmalonyl CoA mutase (MMCoA). While the

MMCoA-HisF chimera was insoluble, both the CheY-HisF and NarL-HisF chimeras are

soluble and stable suggesting that this recombination is somewhat generalizable. Although

the chimeras have no known catalytic activity, the ability to produce a novel protein fold

using recombination opens up a new avenue of exploration for protein engineers.

1.7 Summary

Site-directed recombination can transfer properties between proteins and generate chimeras

with novel functions and enhanced characteristics, including increased thermostability, al-

tered substrate specificity, switched cofactor specificity, and new allosteric interactions.

Computational tools are available to guide recombination; scoring functions and design al-

gorithms reduce structural disruption to chimeras and sequence-based models help identify

protein fragments that encode desirable protein properties. Recombination will continue to

expand the variety of chimeric proteins with novel properties and directed evolution will be

increasingly used to optimize these new functions [48].

1.8 This work

In this thesis I study site-directed recombination by constructing many functional chimeric

cellulases. Chapters 2 and 3 describe swapping contiguous elements of protein sequence and
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how this can be used to identify desirable protein fragments and probe protein biochemistry.

In chapters 4, 5, and 6, I present a new computational tool for identifying structural blocks

that can be swapped among homologous proteins with minimal disruption and I offer several

examples of enzyme engineering using this approach.
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1.9 Figures

Figure 1.1: Site-directed homologous recombination. Two or more proteins are fragmented
into well-defined pieces. These protein fragments are recombined to form chimeric proteins.



13

Figure 1.2: Interfacial mutations stabilize a chimera made from fragments of different folds.
The chimera is made from fragments of a response regulator CheY (green) and an imidazole
glycerol phosphate synthase HisF (blue). Five stabilizing mutations predicted by Rosetta
are highlighted in red and a model of the structure is in gray. Reproduced with permission
from reference [25].



14

Figure 1.3: Different protein fragments can be responsible for different protein functions.
The ability to identify and successfully recombine these fragments enables the transfer of
function between proteins. This approach can rapidly engineer improved protein properties
and novel functions.
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Figure 1.4: A 1-dimensional example of a protein fitness landscape, predicted from exper-
imental data using Gaussian processes. Experimental measurements are represented by
red dots, the green line illustrates the Gaussian process models mean predictions, and the
model’s 95% confidence intervals are in gray. Predictions close to experimental data have
much lower uncertainties. Figure reproduced from reference [40]. Copyright 2012 National
Academy of Sciences, U.S.A.
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Chapter 2

Designing libraries of chimeric
proteins using SCHEMA
recombination and RASPP
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2.1 Summary

SCHEMA is a method for designing libraries of novel proteins by recombination of homolo-

gous sequences. The goal is to maximize the number of folded proteins, while simultaneously

generating significant sequence diversity. Here, we use the RASPP algorithm to identify

optimal SCHEMA designs for shuffling contiguous elements of sequence. Our design recom-

bines 5 fungal cellobiohydrolases (CBH1s) to produce a library of more than 390,000 novel

CBH1 sequences.

2.2 Introduction

SCHEMA recombination shuffles sequence elements (blocks) defined by a set of crossover

locations in homologous proteins to generate novel chimeric proteins [1] (see Figure 2.1).

Despite that fact that homologous mutations are more conservative than random muta-

tions, a chimera containing many mutations is less likely to be functional than one closer

in sequence to one of its parent proteins. SCHEMA recombination seeks to maximize the

probability that a library of chimeric proteins will be functional by using structural infor-

mation to pick crossover locations that minimize disruption of the folded structure. Our

metric for disruption is the number of non-native residue-residue contacts, which we refer to

as a chimeras SCHEMA energy (E). Minimizing the average SCHEMA energy (< E >) of

all the chimeras in a library increases the fraction of functional chimeras [2]. For sequence

elements that are contiguous along the polypeptide chain, we developed the RASPP [3]

computational tool to identify crossovers that minimize < E >.

Because chimeric proteins retain sequence elements (e.g. catalytic residues) that are

shared among the parents, properly folded chimeras usually retain the overall function of
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the parents. The new combinations of amino acids in other parts of the protein, however,

can lead to significant changes in key properties such as stability [4, 5], expression level [6],

or substrate specificity [7]. By analyzing a subset of the possible chimera sequences we can

build predictive models and identify the chimeras having useful changes in those properties

[8].

In this chapter, we design a SCHEMA library that recombines 5 fungal cellobiohydro-

lases (CBH1s). We use RASPP to identify optimal libraries having 7 crossover sites (8

blocks). Shuffling these blocks among the 5 homologs generates a recombination library of

58 = 390, 625 possible sequences. We previously designed a very similar library [6], and

analysis of a subset of chimeras led us to identify chimeric CBH1s that are more stable than

any of the 5 parents.

2.3 Materials

1. A Unix-based computer that can run python scripts (see Note 1). Python can be

downloaded from: http://www.python.org/download/

2. Download and unpack the RASPP toolbox. This is available from:

http://cheme.che.caltech.edu/groups/fha/media/schema-tools.zip

3. A multiple sequence alignment of the parental sequences that are to be recombined

(see Note 2). This alignment should be in ALN format (such as that produced by

ClustalW), without a header (see Note 3). As recombination parents, we picked the

CBH1 sequences from C. thermophilum, T. aurantiacus, H. jecorina, A. thermophilum,

and T. emersonii, which share approximately 60% sequence identity. These CBH1s

have a catalytic domain, a linker and a cellulose-binding domain. The available crys-
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tal structures are for the catalytic domain, thus we only considered this domain for

recombination (see Note 4). To eliminate the possibility of generating unpaired disul-

fide bonds, we mutated two residues in the T. emersonii and T. aurantiacus CBH1

sequences to cysteine (see Note 5). We used ClustalW2 [9] to align the parental

sequences and we named our alignment file ‘CBH1-msa.txt’.

4. A PDB structure file of one of the parental sequences (see Note 6). We used the T.

emersonii structure, ‘1Q9H.pdb’.

5. A sequence alignment of one of the parental sequences with the sequence from the

PDB structure file (see Note 7). We used ClustalW2 to align the parental sequences

and we named our alignment file ‘Temer-1Q9H.txt’.

2.4 Methods

1. Place the parent sequence alignment file (CBH1-msa.txt), the PDB structure file

(1Q9H.pdb) and the PDB alignment file (Temer-1Q9H.txt) in the ‘schema-tools’

folder.

2. Run the following command (see Note 8) in the ‘schema-tools’ directory:

python schemacontacts.py -pdb 1Q9H.pdb -msa CBH1-msa.txt -pdbal

Temer-1Q9H.txt -o contacts.txt

This generates a file containing the SCHEMA contacts called ‘contacts.txt’ (see Note

9).

3. Run the following command (see Note 10) in the ‘schema-tools’ directory:

python rasppcurve.py -msa CBH1-msa.txt -con contacts.txt -xo 7 -o
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opt.txt -min 15

This RASPP script identifies a set of 8-block candidate libraries with low < E > (see

Note 11). Each block is required to have at least 15 mutations. These libraries are

saved to the file ‘opt.txt’ (see Note 12) (Figure 2.2).

4. Pick a library from the results file ‘opt.txt’ (see Note 13). In this case, we pick

the library with crossover points [33 73 107 175 264 366 415], < E >= 21.2 and

< m >= 74.7 (Figure 2.3).

5. Create a text file called ‘CBH1-xo.txt’ that contains the crossover points of the chosen

library each separated by a space (see Note 14). The contents of the text file should

be the following:

33 73 107 175 264 366 415

6. Run the following command (see Note 15) in the ‘schema-tools’ directory:

python schemaenergy.py -msa CBH1-msa.txt -con contacts.txt -xo

CBH1-xo.txt -E -m -o energies.txt

This generates a list of all the chimeras in the chosen library along with their SCHEMA

energies and number of mutations (see Note 16). This list is saved to the file ‘ener-

gies.txt’.

7. At this point we constructed a small chimera test set by substituting each block from

each parent into the parental sequence from T. emersonii ; the corresponding genes

were synthesized (see Note 17). We could also have synthesized the genes encoding

a different subset of the library (see Note 18) or even constructed the entire library

(see Note 19). Before expressing the CBH1 chimeras, we add a linker and cellulose-

binding domain to the recombined catalytic domains.
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2.5 Notes

1. The RASPP toolbox ‘schema-tools’ is written for python 2.6 on a Unix-based system.

We recommend using this python release for the RASPP toolbox.

2. As a general rule, when picking sequences for SCHEMA recombination we try to en-

sure the sequence identity between the homologs is not lower than ∼55% if individual

genes are to be synthesized. In our experience, recombining sequences with much

lower identities results in libraries with a high proportion of non-functional chimeras,

even using SCHEMA. (This may not be a problem if the whole library is constructed

and screened for functional chimeras.) The parental sequences are assumed to share

the same fold; homologs with >55% identity are likely to have very similar structures.

If a structure is available for multiple parental sequences, we confirm they have the

same fold by aligning the parental structures.

3. Lines starting with ‘#’ are ignored in the multiple sequence alignment file. Sequence

similarity symbols and trailing numbers are also ignored.

4. SCHEMA library designs require a protein structure. If no structural information

is available for a parent sequence, but there are structures of homologs, we can use

MODELLER to build a structure model [10]. An inaccurate homology model hinders

SCHEMA library design; an actual structure is preferred.

5. We assumed but did not verify that broken disulfide bonds are destabilizing. In this

case, C. thermophilum, H. jecorina, and A. thermophilum CBH1s have 10 disulfide

bonds while T. aurantiacus and T. emersonii have 9 disulfide bonds. If the cysteines

from the missing disulfide bond are in separate sequence blocks, chimeras with un-
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paired cysteines can result. We avoided this by modifying the parental sequences of

T. aurantiacus and T. emersonii to include the remaining cysteine pair.

6. A structure is necessary to identify the residue-residue contacts. When possible, we

pick a high-resolution structure (< 2.0 Å).

7. The sequence of the PDB file can be extracted with the following (run from the

‘schema-tools’ directory):

python -c "import pdb; pdb.get(‘1Q9H.pdb’)"

We aligned this PDB sequence with the corresponding parent sequence (T. emersonii

CBH1) from the parental alignment. The parent sequence must have the same iden-

tifier in both alignment files (‘Temer’) and the identifier of the PDB sequence must

be the name of the PDB structure (‘1Q9H’). The PDB sequence can be identical to

the parent sequence, but this is not always the case; often the PDB sequence will be

truncated or contain several point mutations. In our case we have mutated several of

the residues in T. emersonii CBH1 to cysteine (see Note 5).

8. The python script ‘schemacontacts.py’ calculates all of the SCHEMA contacts. Several

arguments need to be provided when running this script:

• ‘-pdb 1Q9H.pdb’: name of the PDB structure

• ‘-msa CBH1-msa.txt’: name of the parental sequence alignment

• ‘-pdbal Temer-1Q9H.txt’: name of the PDB sequence alignment

• ‘-o contacts.txt’: name of an output file to store the contacts

9. Each contact is represented as a pair of residue numbers in ‘contacts.txt’. Numbering

is given in terms of both the parental sequence alignment and the PDB sequence
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alignment.

10. The python script ‘rasppcurve.py’ finds crossover points that minimize the average

SCHEMA energy for a library. Several arguments need to be provided when running

this script:

• ‘-msa CBH1-msa.txt’: name of the parental sequence alignment

• ‘-con contacts.txt’: name of the contacts file

• ‘-xo 7’: number of crossovers

• ‘-min 15’: minimum number of non-identical residues in a block (prevents trivial

solutions)

• ‘-o opt.txt’: name of an output file for the results

This script may take several hours to complete, depending on protein size and com-

puter specifications. Increasing the number of crossovers in a library increases library

size and reduces the average number of mutations in a block. The user may want

smaller blocks if searching for properties from single point mutations. However, it

is harder to find desirable chimeras in larger libraries and increasing the number of

blocks increases a library’s < E >. We chose to split our 5 parent proteins into 8

blocks.

11. There is a trade-off between the average SCHEMA energy of a library (< E >) and

the average number of mutations from the closest parent (< m >), which depends on

the relative block sizes (see Figure 2.2b). If all the blocks are evenly sized, < m > is

very high but the solution space of possible libraries is very small and so < E > is

large. As block sizes become uneven, the solution space of possible libraries increases.
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This enables RASPP to find libraries with lower < E > but these libraries have lower

< m >. RASPP is designed to find low < E > libraries for a range of < m >.

12. Each library is defined by 7 crossover points. The crossover points are given by the first

residue of each new fragment (excluding the first fragment, which is always 1) based

on the numbering of the parental sequence alignment. The results file ‘opt.txt’ also

gives < E > and the average number of mutations from the closest parent (< m >)

for each library.

13. RASPP returns a set of candidate libraries with a range of < m > values. A lower

< E > implies more functional chimeras in the library. For moderately sized proteins

(250-500 amino acids) we try to pick SCHEMA libraries with < E > less than 30.

Protein-specific biochemical and structural knowledge may help users pick from the

candidate libraries.

14. Lines starting with ‘#’are ignored in the crossover file.

15. The python script ‘schemaenergy.py’ lists the chimeras in a library. Several arguments

need to be provided when running this script:

• ‘-msa CBH1-msa.txt’: name of the parental sequence alignment

• ‘-con contacts.txt’: name of the contacts file

• ‘-xo CBH1-xo.txt’: name of the crossover file that defines the library

• ‘-E -m’: specifies that the chimeras should be listed with their E and m values

• ‘-o energies.txt’: name of an output file for the results

16. Chimeras are numbered according to the parental sequence of each block with the

numbers ordered from the first block to the last block. Parents are numbered based
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on the order they appear in the parental sequence alignment. For example, chimera

‘14221313’ has parent 1 as the sequence of its first block, parent 4 as its second block,

etc.

17. The fungal CBH1 enzymes have poor heterologous expression in S. cerevisiae. Because

T. emersonii CBH1 expresses much better than the other parents, we analyzed the

blocks one at a time in the background of T. emersonii CBH1. These chimeras

tend to have low SCHEMA energies and they can be easily constructed via overlap

extension PCR. Using this ‘monomera’ approach, we identified stable CBH1 chimeras

in a SCHEMA library similar to the one presented here [6].

18. We pick a subset of the library to analyze. We ensure every block from every parent

is represented independently of one another in this subset. This enables us to model

the effect blocks have on biochemical properties such as stability [5].

19. It is possible to construct an entire SCHEMA library in the laboratory by assembling

blocks of sequence with specific overhangs [11, 12]. This approach is appropriate for

searching for chimeras with specific properties that cannot be predicted from a small

library sample.



33

2.6 Figures

Figure 2.1: SCHEMA recombination. Homologous protein sequences are split into blocks
at fixed crossover locations. These blocks are shuffled to generate novel chimeric proteins.
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# <E>! !<m> ! !crossover points!
16.6800 !63.5313 !33 73 105 152 206 374 415 !
16.0000 !64.9914 !33 73 107 149 204 366 415 !
16.2800 !65.6751 !33 73 107 149 206 366 415 !
16.6400 !66.6670 !33 73 107 149 212 366 415 !
17.4000 !67.9348 !33 73 107 149 204 359 415 !
17.6800 !68.5816 !33 73 107 149 206 359 415 !
18.8000 !70.0666 !33 73 107 149 212 356 415 !
19.6000 !70.8609 !33 73 107 175 221 356 415 !
20.4000 !72.3239 !77 107 149 212 351 374 415 !
20.8800 !73.1818 !33 73 107 175 250 366 415 !
20.9600 !73.8879 !33 73 107 149 254 366 415 !
21.1600 !74.6592 !33 73 107 175 264 366 415 !
22.2800 !75.6126 !33 73 107 175 271 366 415 !
22.5600 !76.6614 !33 73 107 175 264 359 415 !
22.5600 !78.2912 !33 73 107 149 264 346 366 !
22.6400 !78.6867 !33 73 107 149 264 344 366 !
23.5600 !79.6392 !33 73 107 175 264 338 366 !
25.2000 !80.7276 !73 107 175 271 329 366 415 !
26.6800 !81.5644 !43 107 175 264 317 356 406 !

A B 

Figure 2.2: Libraries returned by RASPP. (a) The contents of ‘opt.txt’, which lists the
crossover locations of candidate libraries identified by RASPP. (b) A graph of the possible
libraries plotting average SCHEMA energy (< E >) of each library against the average
number of mutations (< m >). The trade-off between < E > and < m > is apparent. The
chosen library is highlighted with an arrow.
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QQACSLTAENHPSLTWKRCTSGGSCSTVNGAVTIDANWRWTHTVSGSTNCYTGNQWDTSLCTDGKSCAQT!
QQACTVTAENHPSLTWQQCSSGGSCTTQNGKVVIDANWRWVHTTSGYTNCYTGNTWDTSICPDDVTCAQN!
QSACTLQSETHPPLTWQKCSSGGTCTQQTGSVVIDANWRWTHATNSSTNCYDGNTWSSTLCPDNETCAKN!
QAACSLTAETHPSLQWQKCTAPGSCTTVSGQVTIDANWRWLHQTNSSTNCYTGNEWDTSICSSDTDCATK!
QQACTATAENHPPLTWQECTAPGSCTTQNGAVVLDANWRWVHDVNGYTNCYTGNTWDPTYCPDDETCAQN!
!
CCVDGADYSSTYGITTSGDSLNLKFVTKHQYGTNVGSRVYLMENDTKYQMFELLGNEFTFDVDVSNLGCG!
CCLDGADYSGTYGVTTSGNALRLNFVTQ-SSGKNIGSRLYLLQDDTTYQIFKLLGQEFTFDVDVSNLPCG!
CCLDGAAYASTYGVTTSGNSLSIGFVTQ-SAQKNVGARLYLMASDTTYQEFTLLGNEFSFDVDVSQLPCG!
CCLDGADYTGTYGVTASGNSLNLKFVTQGPYSKNIGSRMYLMESESKYQGFTLLGQEFTFDVDVSNLGCG!
CCLDGADYEGTYGVTSSGSSLKLNFVT----GSNVGSRLYLLQDDSTYQIFKLLNREFSFDVDVSNLPCG!
!
LNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDAQCPRDLKFINGEANVGNWTPSTNDANAGFGRYGSC!
LNGALYFVAMDADGGLSKYPGNKAGAKYGTGYCDSQCPRDLKFINGQANVEGWQPSANDPNAGVGNHGSC!
LNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDSQCPRDLKFINGQANVEGWEPSSNNANTGIGGHGSC!
LNGALYFVSMDLDGGVSKYTTNKAGAKYGTGYCDSQCPRDLKFINGQANIDGWQPSSNDANAGLGNHGSC!
LNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPRDLKFIDGEANVEGWQPSSNNANTGIGDHGSC!
!
CSEMDVWEANNMATAFTPHPCTTVGQSRCEADTCGGTYSSDRYAGVCDPDGCDFNAYRQGDKTFYGKGM-!
CAEMDVWEANSISTAVTPHPCDTPGQTMCQGDDCGGTYSSTRYAGTCDPDGCDFNPYRQGNHSFYGPGQ-!
CSEMDIWEANSISEALTPHPCTTVGQEICEGDGCGGTYSDNRYGGTCDPDGCDWNPYRLGNTSFYGPGSS!
CSEMDIWEANKVSAAYTPHPCTTIGQTMCTGDDCGGTYSSDRYAGICDPDGCDFNSYRMGDTSFYGPGK-!
CAEMDVWEANSISNAVTPHPCDTPGQTMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPGK-!
!
-TVDTNKKMTVVTQFHKNS---AGVLSEIKRFYVQDGKIIANAESKIPGNPGNSITQEYCDAQKVAFSNT!
-IVDTSSKFTVVTQFITDDGTPSGTLTEIKRFYVQNGKVIPQSESTISGVTGNSITTEYCTAQKAAFGDN!
FTLDTTKKLTVVTQFETSG--------AINRYYVQNGVTFQQPNAELGSYSGNELNDDYCTAEEAEFGGS!
-TVDTGSKFTVVTQFLTGS---DGNLSEIKRFYVQNGKVIPNSESKIAGVSGNSITTDFCTAQKTAFGDT!
-IIDTTKPFTVVTQFLTDDGTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFGDT!
!
DDFNRKGGMAQMSKALAGPMVLVMSVWDDHYANMLWLDSTYPIDQAG-APGAERGACPTTSGVPAEIEAQ!
TGFFTHGGLQKISQALAQGMVLVMSLWDDHAANMLWLDSTYPTDADPDTPGVARGTCPTTSGVPADVESQ!
S-FSDKGGLTQFKKATSGGMVLVMSLWDDYYANMLWLDSTYPTNETSSTPGAVRGSCSTSSGVPAQVESQ!
NVFEERGGLAQMGKALAEPMVLVLSVWDDHAVNMLWLDSTYPTDST--KPGAARGDCPITSGVPADVESQ!
DDFSQHGGLAKMGAAMQQGMVLVMSLWDDYAAQMLWLDSDYPTDADPTTPGIARGTCPTDSGVPSDVESQ!
!
VPNSNVIFSNIRFGPIGSTVPG----!
YPNSYVIYSNIKVGPINSTFTAN---!
SPNAKVTFSNIKFGPIGSTGNPSGGN!
APNSNVIYSNIRFGPINSTYTGT---!
SPNSYVTYSNIKFGPINSTFTAS---!

A B 
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Figure 2.3: Visualizing the chosen RASPP design. (a) The multiple sequence alignment of
the parent CBH1s with each of the 8 blocks highlighted in a different color. (b) The blocks
highlighted on the CBH1 structure ‘1Q9H.pdb’.
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Chapter 3

A diverse set of family 48 bacterial
cellulases created by
structure-guided recombination

A modified version of this chapter appears in: Smith M. A., Rentmeister A., Snow C. D.,

Wu T., Farrow M. F., Mingardon F., and Arnold F. H. (2012) A diverse set of family

48 bacterial cellulases by structure-guided recombination, FEBS J. 279, 4453-4465, and is

reprinted with permission from Wiley-VCH.



39

3.1 Abstract

Sequence diversity within a family of functional enzymes provides a platform for elucidating

structure-function relationships and for protein engineering to improve properties impor-

tant for applications. Access to natures vast sequence diversity is often limited by the

fact that only a few enzymes have been characterized in a given family. Here, we recom-

bine the catalytic domains of three family 48 bacterial cellulases (Cel48, EC 3.2.1.176),

Clostridium cellulolyticum Cel48F, Clostridium stercorarium Cel48Y, and Clostridium ther-

mocellum Cel48S, to create a diverse library of family 48 cellulases having an average of 106

mutations from the closest native enzyme. Within this set we find large variations in prop-

erties such as the functional temperature range, stability, and specific activity on crystalline

cellulose. We show that functional status and stability are predictable from simple linear

models of the sequence-property data: recombined protein fragments contribute additively

to these properties in a given chimera. Using this, we correctly predict sequences that are

as stable as any of the native Cel48 enzymes described to date. Characterizing 60 active

Cel48 chimeras expands the number of characterized family 48 cellulases from 13 to 73.

Our work illustrates the role structure-guided recombination can play in helping to iden-

tify sequence-function relationships within a family of enzymes by supplementing natural

diversity with synthetic diversity.

3.2 Introduction

Cellulolytic anaerobic bacteria use macromolecular structures known as cellulosomes to hy-

drolyze recalcitrant cellulosic substrates [1]. Within the cellulosome, cellulases and other

glycoside hydrolases [2, 3] are assembled onto multidomain scaffoldin proteins for efficient
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degradation of cellulosic substrates [4]. Cellulosome assembly is achieved by binding dock-

erin domains from enzymes with cohesin domains in scaffoldin, while interaction with the

substrate is mediated by one or more carbohydrate binding modules (CBMs) on the scaf-

foldin [1, 5].

The modularity of cellulosomes has spurred interest in ‘designer cellulosomes’ [4,6],

where different cellulases are synthetically combined for a specific application. Within a

given glycoside hydrolase family, a diverse pool of potential cellulases would be beneficial

for designer cellulosomes by providing a suite of enzymes with differing properties and an

extensive platform for further enzyme engineering. Family 48 cellulases (Cel48) are ideal

candidates for designer cellulosomes. As one of the most important families of bacterial

cellulases [7, 8], they are usually a major constituent of bacterial cellulosomes [9, 10]. Of the

116 bacterial Cel48 genes currently predicted in the CAZy database (http://www.cazy.org/)

[11], only 13 have been characterized.

Here, we use SCHEMA recombination to synthesize a diverse set of new family 48 se-

quences. SCHEMA [12] is a structure-guided, site-directed protein recombination method

that has been used to generate thousands of novel P450s [13], β-lactamases [14], and fungal

cellulases [15, 16]. SCHEMA identifies optimal crossover locations for shuffling homologous

genes, based on minimizing structural disruption in the resulting chimeric proteins. The

chimeric proteins that are made by recombining natural sequences differ from the parent

sequences at many amino acid positions and provide a convenient platform for structure-

function studies. The new Cel48 enzymes described here are chimeras of the catalytic do-

mains of three native Cel48 enzymes from mesophilic and thermophilic Clostridia. Sequence-

function analysis of this synthetic enzyme library demonstrates a high degree of additivity

in the sequence-stability relationship, as observed in previous studies [15, 17]. This simple
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relationship between the sequence block identity and its contribution to chimera stability

has allowed us to predict highly stable, highly active Cel48 enzymes. We have also inves-

tigated the relationship between thermostability and optimal catalytic temperature in this

enzyme family.

3.3 Results

3.3.1 Cel48 parental enzymes

Three extensively characterized Cel48 cellulases were chosen as parents for construction of

the SCHEMA recombination library: Cel48F [10] from the mesophile Clostridium cellu-

lolyticum ATCC 35319, Cel48Y [18] from the thermophile Clostridium stercorarium, and

Cel48S (also known as Cel48A) [19] from the thermophile Clostridium thermocellum ATCC

27405. All three enzymes are known to act on crystalline cellulose in a processive manner

[10, 11]. Crystal structures of CelF and CelS show that the family 48 catalytic domain is an

(α/α)6 barrel fold. The sequence and structural similarities of the catalytic domains (Sup-

plementary Figure 3.10) suggest that these enzymes can be recombined to make functional

catalytic domain chimeras.

Outside of the catalytic domain, however, the parent enzymes exhibit significant struc-

tural variations. C. cellulolyticum CelF and C. thermocellum CelS consist of a 70kDa

catalytic domain connected to their organisms’ respective dockerin domains, whereas C.

stercorarium CelY is a non-cellulosomal 103 kDa protein with its N-terminal catalytic do-

main attached via a 10 kDa domain of unknown function (DUF) to a 17 kDa cellulose

binding domain (CBM3) [18]. Thus CelY can directly bind cellulose, whereas CelF and

CelS bind their respective scaffoldins.
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Since the non-catalytic domains (dockerin, scaffoldin, CBM) differ among the parent

enzymes, we chose to construct the library using the C. thermocellum architecture. Having

a single architecture for the cellulases enables fair comparison of the chimeric cellulase

catalytic domains. A miniscaffoldin consisting of a C. thermocellum cohesin and a cellulose

binding module (CBM) was constructed as described [20], and the C. thermocellum CelS

dockerin was fused to the C-terminus of the catalytic domains of CelF, CelS, and CelY (see

Materials and Methods). The parental constructs, with the added C. thermocellum dockerin

domain, are referred to as CelF-1, CelS, and CelY-2 and are highlighted (boxed) in Figure

3.1. These constructs can attach to the miniscaffoldin to produce minicellulosomes. Another

CelY construct was created with the addition of its domain of unknown function (DUF).

Because the presence or absence of this DUF did not affect activity of the CelY constructs

(Supplementary Figure 3.11B), the DUF was excluded in constructing the recombination

library.

We first characterized and compared the activities on crystalline cellulose of the parental

enzymes with and without the miniscaffoldin. For all cellulases having a dockerin, activity

was substantially higher in the presence of miniscaffoldin than without it (Figure 3.2A-C).

Thus cohesin-dockerin binding occurs, and CBM-mediated attachment to cellulose enhances

the rate of sugar release from crystalline cellulose, as observed previously [21]. Figure 3.2D

directly compares the activity profiles for the dockerin-containing cellulases in the presence

of C. thermocellum miniscaffoldin. Under these conditions, CelY and CelS displayed the

highest activity at 70 - 80◦C and very low activity below 50◦C. In contrast, CelF is most

active at ∼50◦C, but quickly loses activity at higher temperatures. In a previous study we

compared the activities of three homologous bacterial glycoside hydrolase family 9 CBM3c

cellulases from mesophilic and thermophilic organisms over a range of temperatures. They
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all displayed similar activities at lower temperatures, and that activity increased with tem-

perature until the enzyme was no longer stable [20]. Here, in contrast, the Cel48 cellulase

from the mesophilic organism is significantly more active than its two thermophilic homologs

at the lower temperature.

3.3.2 SCHEMA recombination library design

A structure-guided computational approach to designing a library of chimeric genes, SCHEMA

identifies crossover sites for recombination of homologous proteins that maximize the like-

lihood that proteins in the resulting library will retain their folded structure [12]. Contacts

(residues that are less than 4.5 Å from one another) are identified from one or more of the

crystal structures, and SCHEMA energy E for a given chimera is calculated by counting

the number of residue-residue contacts that are disrupted by recombination. Recombination

sites are chosen to minimize the average SCHEMA energy, < E >, of all possible sequences

made by recombining those sequence fragments.

We designed the recombination library of glycoside hydrolase family 48 catalytic domains

using the RASPP algorithm [22] to identify crossover sites that minimized < E > [12].

RASPP returned a set of candidate library designs (Supplementary Figure 3.12). The chosen

library has crossovers located before residues Pro122, Ala260, Asp292, His348, Gly396,

Asn437, Leu556, based on the numbering of CelS (pdb 1L2A). This library has an average

SCHEMA energy < E > of 31 and an average number of mutations from the closest parent

< m > of 106. The individual structural elements (‘blocks’) for this design, shown in Figure

3.3A, are not obvious based on secondary or domain structure. Crossovers between blocks

B-C, C-D, and G-H, for example, lie within α-helices. This design, however, sequesters

as many residue-residue contacts as it can within blocks, given limitations on block size



44

(Figure 3.3B).

Chimeric genes were assembled from 24 gene fragments, representing the 8 blocks

from each of the 3 parents, using the Sequence-Independent Site-Directed Chimeragenesis

(SISDC) method [23] to generate a gene library of 38 = 6, 561 different sequences (Sup-

plementary Table 3.1 and Supplementary Figure 3.13). A C. thermocellum dockerin was

attached to the C-terminus of each chimeric sequence during reassembly. Methods used to

express, purify and identify functional chimeras are described in detail in the Materials and

Methods.

3.3.3 Characterization of chimeric family 48 cellulales

Upon screening 4,872 library members using a 96-well plate cellulase activity assay (see

Materials and Methods), we identified the functional enzymes, from which we purified and

characterized 50 unique, novel family 48 cellulases. As shown in Figure 3.4, these enzymes

have, on average, more than 80 mutations from the closest parent cellulase. Their SCHEMA

E values range from 8 to 36, and they have 12 to 142 mutations from the closest parent

cellulase. Sequences from all three parental enzymes are well represented at each block in

the functional chimeras, except for CelF, which is underrepresented in blocks E, G and H.

We measured the thermostabilities (T50) and optimal catalytic temperatures (Topt) of

the 50 Cel48 chimeras and their three parents; these values are reported in Figure 4. T50 is

the temperature at which an enzyme loses 50% of its activity after a 10-minute incubation

(see Materials and Methods) and is a measure of its ability to resist temperature-induced

irreversible inactivation. Topt is the temperature at which a cellulase is most active over a

2-hour assay (see Materials and Methods) and is a measure of its ability to remain active at

elevated temperature. Thermostability, the ability to withstand denaturation, is necessary
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but not sufficient for increasing an enzymes optimal catalytic temperature. In the chimeras,

both these measured properties extend beyond the range of the parents. Many of the

chimeras are very stable: indeed, this experiment has added 35 new Cel48 enzymes with

a Topt > 60◦C to the 6 natural thermostable cellulases that have been characterized to

date: Clostridium thermocellum ATCC 27405 CelS [24], Clostridium thermocellum F7 CelS

[25], Clostridium thermocellum ATCC 27405 CelY [26], Thermobifida fusca YX CelF [27],

Clostridium stercorarium CelY [28], and Anaerocellum thermophilum DSM 6725 CelA [29].

We also measured the specific activities of all the Cel48 chimeras at their respective

optimal catalytic temperatures (Figure 3.4 and Figure 3.5A). The chimeras tend to have

specific activities that are similar to or slightly less than the parent enzymes. We did

not observe a correlation between Topt and specific activity at that temperature for all of

the sampled chimeras (Figure 3.5B). However, recombination may have compromised the

activities of many of the chimeras. If only the most active enzymes are considered, there

does appear to be a correlation between Topt and specific activity (Figure 3.5B, dotted line),

where increasing temperature leads to higher specific activity.

3.3.4 Modeling and predicting function of chimeric cellulases

As previously demonstrated for fungal CBHI and CBHII cellulases [15, 16], we can use

information from a small number of sequences to predict properties of all the chimeras in

the recombination library. To demonstrate this for Cel48, we built predictive models of

T50 and Topt based on the sequences and SCHEMA E values of the 50 functional chimeric

cellulases and the 3 parental enzymes. We modified the simple sequence-stability linear

regression model first used by Li et al. [17] to include an additional parameter for second-

order SCHEMA contacts in the chimeras (Supplementary Equation 3.1). As shown in Figure
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3.6A, the thermostability model fits the T50 measurements of all 53 enzymes well (r2 = 0.88)

and is an improvement over the simpler model that does not include the SCHEMA E

parameter (r2 = 0.82), as illustrated in Supplementary Figure 3.14.

With this model we were able to identify the contribution that each sequence block

makes to stability (Figure 3.6B). When trained on Topt measurements, the same block-

additive model also accurately predicts the measured values (Figure 3.6C), and the block

contributions to optimal catalytic temperature are very similar to their contributions to

thermostability (Figure 3.6D). These models trained on data from the sample set can be

used to predict the T50 and Topt of all the remaining chimeras in the library.

We wished to construct and test the chimeric cellulases that are predicted to be the

most thermostable. Not every chimeric cellulase, however, is functional. To investigate how

recombination leads to nonfunctional sequences, we analyzed 28 unique inactive chimeras

identified during the activity screen. A chimera was defined as nonfunctional if upon a

five-fold increase in enzyme concentration, from 0.2 µM to 1 µM, no detectable activity was

measured between 45◦C and 80◦C. These nonfunctional cellulases are all soluble proteins

of the correct length on an SDS page gel (data not shown). Using circular dichroism, we

analyzed 17 of the 28 non-functional chimeras at 25◦C and found that all gave a similar

signal to the parent enzymes (Supplementary Figure 3.15), suggesting that nonfunctional

chimeras are folded and have a similar secondary structure to functional ones.

Inspired by the success of the additive block models for thermostability and thermoac-

tivity, we took a similar approach to modeling and predicting chimera functional status.

We constructed a linear model where each block contributes independently to whether a

chimera is functional or not. As with thermostability, we also included the SCHEMA E

value as a parameter. The output from the model should be a value between 0 and 1 to



47

represent the probability that a chimera is active. To do this we augmented the output of

the linear model using a linking function, flink, which scales outputs of the model to the

required range (Supplementary Equation 3.2). The coefficients for this model can be found

by linear regression (Supplementary Table 3.2), although, unlike the thermostability model,

the block contributions are only additive under the linking function.

We trained the activity model on 81 cellulases (53 active, 28 inactive) and assessed its

predictive ability by cross-validating the predictions of functional chimeras to the measure-

ments of functional chimeras. The model successfully predicted the functional status of 88%

of the chimeras (Supplementary Table 3.3). A low SCHEMA E value is known to increase

the likelihood of a chimera being active [14], but E alone correctly predicted the functional

status of only 77% of these chimeras under the same cross-validated conditions. Running

the functionality model on all block combinations, we predict that the library contains more

than 3,000 unique active Cel48 cellulases.

Using the T50 model trained on the 53 experimentally active sequences in combination

with the functionality model, we predicted the 13 most stable enzymes that are also expected

to be catalytically active. These were constructed and characterized. Ten of the 13 were

active; these sequences and their stabilities are reported in Figure 3.4. As shown in Figure

3.7A, their stabilities closely matched the predictions. Five of these variants were slightly

more stable than the most stable parental enzymes. Interestingly, two of the highly stable

chimeras also hydrolyze more cellulose than the most active parental enzyme, CelY-2 both

in a 1-hour assay (Figure 3.5, Figure 3.7C and D) and in a 48-hour assay (Figure 3.7B),

demonstrating the potential utility of these chimeric enzymes for designer cellulosomes.
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3.3.5 Probing biochemistry with synthetic diversity

With 60 active cellulase chimeras in hand, we next examined the relationship between the

optimal temperature for catalytic activity (Topt) and resistance to temperature-induced de-

naturation (T50) over a broad range of temperatures. These two properties are closely

correlated (Figure 3.8), indicating that engineering Cel48 enzymes for greater thermosta-

bility increases their optimal catalytic temperatures. Some of the chimeric cellulases have

a Topt value higher than their T50. We believe this reflects the stabilizing effect of cellulose

substrate, because the substrate is present in the Topt assays but not in the denaturation

step of the T50 assays. This effect can be seen in Supplementary Figure 3.16, where T50

values in the presence of cellulose are ∼ 2◦C higher than in its absence.

3.4 Discussion

The dearth of characterized family 48 cellulases with different properties is an impedi-

ment to their use in designer cellulosomes for specific engineering applications, and inhibits

the discovery of sequence-function relationships for this important enzyme. We have used

structure-guided protein recombination to expand the diversity of characterized family 48

bacterial cellulases. Using SCHEMA to identify suitable crossover locations for shuffling

sequence blocks among the three parent Cel48 catalytic domains, we have generated a large

set of novel, active cellulases which have the same architecture and express under the same

conditions in the same E. coli host, where they are straightforward to characterize and

compare. As expected, we find that properties such as Topt (the ability to remain active

at elevated temperature), T50 (the ability to withstand denaturation at high temperature),

and the specific activity at Topt vary greatly among these novel enzymes. We also find
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that functional status, T50, and Topt can be predicted from simple linear models built from

sequence-function data from a small sample of the library. This has enabled us to efficiently

identify stable chimeras, some of which have high cellulolytic activities.

This set of related enzymes can contribute to our understanding of how sequence affects

family 48 cellulase properties. The thermostability model illuminates stabilizing blocks of

amino acids, whether they exist in the most stable proteins or not. Two of the most sta-

bilizing blocks are predicted to be from parent CelS at positions F and G. These blocks

are located in the C-terminus of the catalytic domain, close to where the dockerin attaches,

which suggests an important stabilizing interaction between these blocks and the C. thermo-

cellum dockerin. When the dockerin binds the cohesin, the linker between catalytic domain

and dockerin is pleated, and this brings the dockerin in close contact with the catalytic

domain [30]. A CelS-dockerin-cohesin crystal structure would be valuable for identifying

specific stabilizing interactions between these two domains.

With this work we also address another biochemical question with important engineering

implications. Using this accessible set of related enzymes, we investigated the correlation

between the temperature at which an enzyme is most active and the temperature at which

it denatures irreversibly. We find that Cel48 chimeras with greater thermostability also

have their activity optima at higher temperatures, and that these temperatures are closely

related. In other words, the ability to withstand temperature-induced denaturation at ever-

higher temperatures leads to increases in the optimum temperature for activity. It is not

necessarily the case that increased structural stability and resistance to denaturation and

irreversible inactivation will result in the ability to catalyze the reaction efficiently at higher

temperature, particularly if local instability or dynamics influence catalysis [31]. Among

the Cel48 chimeras, however, there is sufficient structural stability in key catalytic regions
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to render T50 a good surrogate for Topt.

We found two of the predicted thermostable chimeras had higher specific activities at

Topt than the most active parental enzyme, CelY-2. When assayed over a 48-hour period,

they hydrolyzed twice as much cellulose as CelY-2. These chimeric enzymes, which we have

analyzed in a cellulosomal construct, may find potential uses in designer cellulosomes. An

important next step will be to determine if they provide an enhanced cellulolytic capability

to a system such as the C. thermocellum cellulosome.

3.5 Materials and methods

3.5.1 Parental enzyme constructs

Cel48 genes from CelF and CelS were PCR-amplified using Phusion-polymerase from ge-

nomic DNA using primers CTHE312.40, CTHE2453.40 for CelS and CCEL786.41 and

CCEL2864.41 for CelF, introducing HindIII and SacI sites at the 5’-end as well as a NotI

site at the 3’-end (Supplementary Table 3.5). Taq polymerase was used to add A-overhangs

for TA-cloning into pGEM-T Easy (Promega). The resulting plasmids were called pGEMT-

CTHEwt and pGEMT-CCELwt. The CelS dockerin was added to the CelF catalytic domain

to create the plasmid pGEMT-CCELmut1. These constructs were cloned into pET-22(+)

using NdeI and NotI sites.

We designed a synthetic gene for CelY from C. stercorarium based on available sequence

information but removed restriction sites NdeI, HindIII, BsaXI, PstI, SapI. The gene was

codon-optimized for expression in E. coli by DNA 2.0. The CelY gene was cloned into

pET-22(+) using NdeI and NotI restriction sites. The resulting construct was termed

pET22b+CSTEwt and contains the catalytic domain, the domain of unknown function, and
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the CBM. Two more constructs were made from the CelY gene: CelY-1 containing only the

catalytic domain and C. thermocellum dockerin and CelY-2 containing the catalytic domain

and the domain of unknown function (DUF) and the C. thermocellum dockerin. Products

were cloned into pET-22(+) using NdeI and NotI restriction sites.

An XbaI site was introduced by overlap extension PCR into all parental constructs

between the catalytic domain and the dockerin. Introducing an XbaI restriction site between

the catalytic domain and the dockerin allowed swapping catalytic domains and dockerins.

The XbaI site did not affect activity (Supplementary Figure 3.11A).

3.5.2 Recombination library design

The SCHEMA library was designed using the tools available on the Arnold group home-

page (http://www.che.caltech.edu/groups/fha/). The catalytic domains of CelF, CelY, and

CelS were aligned using ClustalW from Tyr40Phe661, based on numbering of CelS. We an-

alyzed all available structures without point mutations of the catalytic domains of CelS

and CelF (CelF pdbs: 1F9O, 1FAE, 1FBO, 1FCE, 1G9G; CelS pdbs: 1L1Y (6 chains),

1L2A (6 chains); a total of 17 chains). Of the 3035 unique residue-residue contacts in all 17

structures, on average 73% are conserved between any CelF structure and CelS structure.

This compares to an average of 80% of contacts conserved between any two CelF structures

and 80% of contacts conserved between any two CelS structures. Since contacts between

structures of the same enzyme vary almost as much as contacts between structures of CelF

and CelS, we made use of all 17 available structures in designing the library. The average

SCHEMA energy for a library (< E >) was calculated for each structure and libraries

were evaluated based on the average < E > from all 17 structures. Seven crossover sites

were chosen using the RASPP algorithm [22] with a minimum fragment size of 30 residues.
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RASPP returned a set of candidate libraries characterized by < E > (the average number

of contacts broken within a library for a given structure), << E >> (the average of < E >

for a given library across all 17 different structures), and < m > (the average number of

amino acid substitutions from the closest parent within a library). Supplementary Figure

3.12A shows << E >> as a function of < m >. We removed solutions without a conserved

amino acid at the designated crossover sites (Supplementary Figure 3.12B). To obtain li-

braries with mutations more evenly distributed into blocks, we also calculated the standard

deviation of the average number of mutations per block for each library. Lower numbers

indicate more evenly distributed blocks. Supplementary Figure 3.12C shows << E >> as

a function of the standard deviation of block mutations. From this set we picked a library

that would contain a large number of active enzymes with high sequence diversity: the

chosen library has an << E >> of 31.3 and < m > of 106. Calculated for each of the 17

structures, < E > for the library varies from 28 to 34.

3.5.3 Construction of chimeras

Chimeric genes were assembled from 24 gene fragments, representing the 8 blocks from each

of the 3 parents, using the Sequence-Independent Site-Directed Chimeragenesis (SISDC)

method [23]. The following consensus sites were used for the crossover sites: 1) CCG,

2) GCC, 3) GAC, 4) CAT, 5) GGT, 6) AAC, 7) TTA (Supplementary Table 3.6). Mini-

libraries were cloned into pGEMT using SpeI and Sac II sites. Full libraries were made

by isolating large amounts of DNA from plasmids digested with SpeI and SacII, not by

PCR amplification. Instead of SapI, the isochizomer LguI was used. A C. thermocellum

dockerin was attached to the C-terminus of each chimeric sequence during reassembly. The

genes were expressed in pET-22(+) under the control of an IPTG-inducible T7 promoter
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in E. coli BL21(DE3). A similar approach was taken for constructing the specific chimeras

predicted to be thermostable, but with the difference that only the specific blocks for the

desired chimera were used in the ligation steps.

3.5.4 Quality of library

We completely sequenced 61 randomly-chosen chimeras in order to assess the frequency of

library construction artifacts, including point mutations, deletions, and insertions. 89% of

the library (54 out of 61) contained no amino acid mutations, no insertions and no deletions.

We found one single insertion, and two sequences were missing one-half of the library. Two

sequences were back-to-front in the vector, and two sequences contained one remaining tag.

Every block from every parent was found in the randomly sequenced chimeras, but CelF

block E appears to be underrepresented in the library. The distribution of each block is

displayed in Supplementary Table 3.7.

3.5.5 Protein expression in 96-well plates

In 96-well shallow-well plates, 300 µL of LB medium (10 g tryptone, 5 g yeast extract,

10 g NaCl) containing 100 mg/L ampicillin were inoculated with a single colony of E. coli

BL21(DE3) having the cellulase gene on a pET-22(+) plasmid. Plates were grown overnight

in an orbital shaker at 37◦C, 250 rpm. In a 96-well deep-well plate, 900 µL of TB medium

(12 g tryptone, 24 g yeast extract, 4 mL glycerol, in 1L H2O with 17 mM KH2PO4 and 72

mM K2HPO4) containing 100 mg/L ampicillin were inoculated with 50 µL and grown in

an orbital shaker at 37◦C until the OD600 reached 1.6-1.8. Plates were cooled to < 17◦C,

induced with a final concentration of 50 µM IPTG and grown at 17◦C for 16 hours. Cultures

were harvested by centrifugation and stored at -20◦C.
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3.5.6 Cellulase activity assay in 96-well plates

Cells were resuspended in 300 µL lysis buffer (10 mM Tris, pH 8.0, 10 mM MgCl2, 0.7

mg/mL lysozyme, 4 U/mL DNase) per well and incubated for 60 min at 37◦C. Plates were

centrifuged for 5 min at 5,000 g at 4◦C. From the supernatant 100 µL were transferred to

a 96-well PCR plate with 50 µL of a 10 g/L Avicel suspension in reaction buffer (50 mM

succinate, pH 6.0, 1 mM CaCl2) and 0.2 µM purified miniscaffoldin (Supplementary Figure

3.17). Hydrolysis proceeded overnight at both 50◦C and 75◦C. Plates were centrifuged for

3 min at 200 g at 4◦C, and from each well 50 µL of supernatant were transferred to a new

plate. The amount of reducing ends was determined using the Park-Johnson assay.

3.5.7 Park-Johnson activity assay [32]

Reagent A: 0.5 g/L K3Fe(CN)6, 0.2 M K2HPO4, pH 10.6. Reagent B: 5.3 g/L Na2CO3,

0.65 g/L KCN. Reagent C: 2.5 g/L FeCl3, 10 g/L polyvinylpyrrolidone, 1 M H2SO4. In a

96-well PCR plate, 50 µL of test sample was mixed with 150 µL of a 2:1 A/B mixture (i.e.

100 µL A and 50 µL B). The plate was sealed and heated to 95◦C for 15 min, then cooled

to 4◦C. Out of this plate 180 µL were transferred to a transparent flat-bottom screening

plate containing 90 µL reagent C. The plate was incubated in the dark for 1-3 min before

the OD at 520 nm was measured in a TECAN plate reader. If glucose equivalents were

determined, a calibration curve made from solutions of defined glucose concentrations was

included on each plate.

3.5.8 Enzymatic glucose activity assay

BG: 0.25 g/L almond beta-glucosidase in 50 mM sodium acetate, pH 5.0. TMB: 0.8 g/L

tetramethylbenzidine in ddH2O. HRP: 0.15 g/L horseradish peroxidase in 50 mM sodium
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acetate, pH 5.0. GOX: 0.1 g/L glucose oxidase in 50 mM sodium acetate, pH 5.0. In a

transparent flat-bottom screening plate, 100 µL of test sample was mixed with 50 µL of BG.

If glucose equivalents were determined, a calibration curve made from solutions of defined

glucose concentrations was included on each plate. The plate was sealed and incubated for

16 h at 37◦C. For development, 50 µL of TMB, and 20 µL each of HRP and GOX were

added to the plate. After 5 minutes, the OD at 650 nm was measured in a TECAN plate

reader.

3.5.9 Protein purification

Each cellulase was purified from E. coli BL21(DE3) which contains the cellulase gene with

a C-terminal his-tag on a pET-22(+) plasmid under the control of an IPTG- inducible

promoter. The cells were grown in TB medium (12 g tryptone, 24 g yeast extract, 4 mL

glycerol, in 1 L H2O with 17 mM KH2PO4 and 72 mM K2HPO4) at 37◦C with 100 mg/L

ampicillin. Cells were induced with a final concentration of 50 µM IPTG, grown for 16 hours

at 17◦C and harvested by centrifugation for 10 min at 5000 g. Pellets were resuspended

in buffer A (20 mM Tris, pH 7.4). The solution was lysed by sonication and centrifuged

at 75,000 g for 30 min to sediment cell debris. The supernatant was loaded onto a 1 mL

Ni-NTA His-trap column (GE Healthcare) and purified by washing with 1% buffer B (20

mM Tris, pH 7.4, 100 mM NaCl, 300 mM imidazole) for 15 column volumes (CV), followed

by a gradient elution (increase to 80% buffer B in 10 CV). Cellulase-containing fractions

were pooled and concentrated using protein concentrators with cellulose-free membranes

(Vivaspin). Buffer was exchanged to 10 mM Tris, pH 8.0 by repeated refills. Purified

proteins were flash frozen and stored at -20◦C for up to 3 months. Protein concentration

was determined using the Bradford assay and bovine serum albumin as protein standard.
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Protein purity was determined from SDS-polyacrylamide gels. Isolated protein was 1560

mg/L for dockerin-containing constructs and 120 mg/L for CelY.

3.5.10 Thermostability assay (T50 measurements)

For each well of a 96-well PCR plate, 50 µL of a 20 g/L Avicel suspension in reaction buffer

(50 mM succinate, pH 6.0, 1 mM CaCl2) was mixed with 25 µL of 0.8 µM miniscaffoldin

and spun down for 10 min at 5,000 g. In a different PCR plate, 30 µL of 0.8 µM cellulase

in reaction buffer were pipetted per well. Plates were incubated for 10 min in a gradient

PCR cycler at indicated temperatures, and then placed on ice. Heat-treated cellulases were

transferred (25 µL per well) to the Avicel-containing PCR plate and the reaction was run

for 60 min at the indicated temperature. Plates were spun down for 3 min at 200 x g. Then,

50 µL of supernatant were transferred to a new 96-well PCR plate and tested with either

the Park- Johnson assay or the enzymatic glucose assay.

3.5.11 Temperature profiles (Topt measurements)

A final concentration of 0.2 µM enzyme or 0.2 µM enzyme plus 0.2 µM miniscaffoldin was

added to a preheated suspension of 10 g/L Avicel in reaction buffer (50 mM succinate, pH

6.0, 1 mM CaCl2). The hydrolysis was performed at a range of temperatures for 2 hours

in duplicate. Samples were spun down for 1 min at 200 x g at 4◦C. From each well, 50

µL of the supernatant were transferred to a 96-well PCR plate and analyzed using either

the Park-Johnson assay or the enzymatic glucose assay. The Topt was determined from the

temperature profiles of the chimeras.
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3.5.12 Forty-eight hour activity assay

A final concentration of 0.2 µM enzyme plus 0.2 µM miniscaffoldin was added to a preheated

suspension of 10 g/L Avicel in reaction buffer (50 mM succinate, pH 6.0, 1 mM CaCl2) at

75◦C. At regular intervals, the Avicel was resuspended and a sample of the reaction mixture

was removed and cooled to 4◦C. Samples were spun for 1 min at 200 x g and 50 µL of a 1:10

dilution of the supernatant were analyzed using the Park-Johnson assay. The measurements

were performed in triplicate.

3.5.13 Circular dichroism

Circular dichroism measurements were carried out using an Aviv Model 62DS spectrometer

with 6 µM protein sample concentration. Wavelength scans to determine the ellipticity

were carried out at 25 ◦C.

3.5.14 Linear regression

Regression models for T50 and Topt were trained using Matlab’s ‘regress’ function. The

regression model for functionality was trained using L1 regularized logistic regression from

the toolbox glmnet for Matlab [33, 34].
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3.6 Figures

CelS + miniscaffoldin 

CelF-1 + miniscaffoldin 

CelY-2 + miniscaffoldin CelY-1 CelY 

CelF 

Figure 3.1: Architectures of parent family 48 glycosyl hydrolases and derived constructs.
Wild-type CelS and CelF consist of an N-terminal catalytic domain and a C-terminal dock-
erin that binds specifically to its cohesin. Miniscaffoldin (black) consists of a C. thermocel-
lum cohesin and CBM. Construct CelF-1 contains a C-terminal C. thermocellum dockerin
and binds to the miniscaffoldin. CelY from C. stercorarium consists of an N-terminal cat-
alytic domain, a domain of unknown function (DUF) and a CBM. CelY constructs CelY-1
and CelY-2 contain the CelY catalytic domain and a C-terminal dockerin from C. thermo-
cellum. CelY-1 also contains the DUF. CelY-1 and CelY-2 bind to the miniscaffoldin. All
constructs used to prepare the chimera library (boxes) have the C. thermocellum dockerin
and bind the C. thermocellum miniscaffoldin.
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Figure 3.2: Activities of purified family 48 cellulases as a function of temperature, in the
presence and absence of equimolar amounts of miniscaffoldin. Activities were determined
from the total glucose equivalent released, using the enzymatic glucose assay (see Materials
and Methods), in a 1-hour reaction with 0.2 µM enzyme and 10 g/L Avicel. All activities
are normalized to the activity of CelS at its maximum, at 80◦C. A) CelF-1, B) CelS, C)
CelY-2, along with the native CelY enzyme. D) Temperature profiles of CelF-1, CelS,
and CelY-2 constructs with miniscaffoldin. CelS and CelY-2 are most active at 75 - 80◦C,
whereas CelF-1 is most active at 50◦C.
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Figure 3.3: Sequence blocks in family 48 chimeras designed by SCHEMA. A) Structure of
CelS with color-coded blocks A-H. B) Residue-residue contact map showing the combined
contacts from 17 Cel48 structures. The positions of the blocks are indicated with colored
squares. Most contacts are sequestered within the blocks and cannot be broken upon
recombination.
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A B C D E F G H SCHEMA E m T50 (°C) Topt (°C) Arel

0 0 75.1 ± 0.2 77.7 ± 1.1 1.00
0 0 52.3 ± 0.3 50.2 ± 2.1 0.58 ± 0.03
0 0 76.1 ± 0.2 77.0 ± 2.1 1.06 ± 0.04
8 12 50.0 ± 0.2 48.6 ± 3.1 0.48 ± 0.06
17 34 52.3 ± 0.3 50.0 ± 2.5 0.46 ± 0.03
17 111 53.9 ± 1.2 52.5 ± 1.1 0.74 ± 0.04
20 32 54.5 ± 0.6 50.8 ± 3.4 0.20 ± 0.05
27 86 54.6 ± 1.3 57.5 ± 1.1 0.33 ± 0.02
22 90 55.8 ± 0.5 56.2 ± 0.7 0.40 ± 0.02
26 68 55.9 ± 0.8 51.1 ± 0.8 0.40 ± 0.03
20 72 56.9 ± 0.2 58.2 ± 2.1 0.40 ± 0.04
32 142 57.2 ± 0.3 57.5 ± 1.1 0.45 ± 0.03
24 89 57.8 ± 0.4 62.8 ± 1.3 0.35 ± 0.01
21 100 58.4 ± 0.4 57.5 ± 1.9 0.53 ± 0.01
32 141 58.7 ± 0.5 61.0 ± 1.2 0.34 ± 0.03
36 129 59.2 ± 1.4 59.6 ± 3.1 0.37 ± 0.08
32 108 59.5 ± 0.5 58.6 ± 0.4 0.33 ± 0.06
22 126 59.6 ± 1.0 59.3 ± 1.2 0.53 ± 0.10
21 120 60.1 ± 0.6 57.5 ± 1.1 0.53 ± 0.02
26 120 61.6 ± 1.2 62.8 ± 3.3 0.57 ± 0.02
9 86 61.7 ± 0.2 59.6 ± 2.0 0.86 ± 0.01
21 99 61.9 ± 1.1 58.8 ± 2.5 0.38 ± 0.02
30 106 63.4 ± 0.4 70.8 ± 1.6 0.22 ± 0.04
31 117 63.5 ± 0.4 67.5 ± 1.0 0.21 ± 0.04
34 110 64.0 ± 0.2 68.7 ± 3.7 0.48 ± 0.16
24 87 64.1 ± 0.4 68.0 ± 0.9 0.46 ± 0.01
13 93 64.1 ± 0.6 70.5 ± 1.2 0.37 ± 0.02
28 111 65.4 ± 1.2 68.0 ± 4.7 0.51 ± 0.03
13 64 66.2 ± 0.4 59.9 ± 2.3 0.49 ± 0.02
15 63 66.4 ± 0.8 71.4 ± 0.6 0.51 ± 0.06
21 99 66.9 ± 0.4 65.9 ± 0.4 0.48 ± 0.02
19 66 67.7 ± 0.2 67.1 ± 2.1 0.60 ± 0.01
24 85 68.1 ± 0.3 67.2 ± 5.4 0.51 ± 0.03
14 95 68.5 ± 0.1 71.8 ± 0.1 0.58 ± 0.01
18 54 68.5 ± 1.1 71.4 ± 0.6 0.53 ± 0.01
15 88 70.3 ± 0.8 70.2 ± 2.3 0.51 ± 0.07
25 121 70.6 ± 0.6 74.7 ± 1.6 0.43 ± 0.01
12 92 71.4 ± 0.4 75.9 ± 0.1 0.43 ± 0.02
14 52 71.7 ± 0.5 68.8 ± 1.1 0.48 ± 0.01
23 111 71.8 ± 1.0 75.3 ± 0.8 0.91 ± 0.07
28 108 72.1 ± 0.6 68.8 ± 0.8 0.60 ± 0.08
21 65 72.1 ± 0.6 77.9 ± 0.9 0.65 ± 0.04
12 25 72.6 ± 0.3 76.5 ± 0.4 0.78 ± 0.08
39 69 73.2 ± 1.1 69.5 ± 1.8 0.10 ± 0.03
27 74 73.3 ± 0.4 75.5 ± 1.1 0.74 ± 0.07
22 77 73.7 ± 0.2 74.7 ± 2.1 0.60 ± 0.05
11 42 73.8 ± 0.3 72.1 ± 0.8 0.55 ± 0.03
21 78 74.0 ± 0.4 77.4 ± 1.6 0.55 ± 0.01
6 12 74.0 ± 1.0 70.8 ± 1.9 0.78 ± 0.03
20 121 75.3 ± 0.2 76.1 ± 2.0 0.60 ± 0.01
16 99 75.7 ± 0.2 75.5 ± 1.1 0.41 ± 0.02
11 31 75.7 ± 0.5 76.1 ± 0.1 0.32 ± 0.10
43 115 77.3 ± 0.5 74.7 ± 1.7 0.18 ± 0.07
29 97 72.7 ± 0.1 74.6 ± 1.1 0.11 ± 0.02
13 73 73.3 ± 0.2 71.2 ± 0.8 0.04 ± 0.02
20 54 73.5 ± 0.4 73.8 ± 0.4 0.14 ± 0.02
9 28 76.0 ± 1.9 72.8 ± 0.6 0.06 ± 0.03
16 71 77.5 ± 0.5 75.2 ± 1.0 0.58 ± 0.03
21 82 77.8 ± 0.4 75.8 ± 0.1 0.11 ± 0.02
14 52 78.2 ± 0.4 79.3 ± 1.1 1.37 ± 0.07
3 9 78.4 ± 0.3 75.8 ± 0.1 0.41 ± 0.04
19 63 78.9 ± 0.3 80.5 ± 0.6 1.48 ± 0.05
8 20 78.9 ± 0.2 75.8 ± 0.1 0.08 ± 0.03

parents 

chimeras 
identified 
from 
screen 

predicted  
active  
stable  
chimeras 

Figure 3.4: Representation of three Cel48 parents and 60 active chimeras, with CelF in
white, CelY in gray, and CelS in black. SCHEMA E values, number of mutations from
closest parent (m), T50, Topt, and Arel are also provided. T50 is the temperature at which
an enzyme loses 50% of its activity in a 10-minute incubation. Topt is the temperature at
which a cellulase liberates the most glucose from crystalline cellulose in a 2-hour hydrolysis
assay. Arel is the cellulases specific activity at its respective optimal temperature measured
in a 1-hour assay with 0.2 µM enzyme and 0.2 µM miniscaffoldin in 10 g/L Avicel. Values
are normalized relative to the specific activity of CelS.
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A B 

Figure 3.5: Specific activities of chimeric cellulases. A) Specific activities of the Cel48
enzymes at their respective optimal catalytic temperatures (tabulated in Figure 4). The
activities are measured in a 1-hour assay, with 0.2 µM enzyme and 0.2 µM miniscaffoldin
in 10 g/L Avicel at the respective optimal catalytic temperature. The activities are nor-
malized to the maximum specific activity of CelS (Topt = 77.7◦C). The parent enzymes
are highlighted in bold. B) The normalized specific activities versus the optimal catalytic
temperatures of the cellulases. The parent enzymes are highlighted as black diamonds and
the possible correlation among the most active cellulases is indicated with a dotted line.
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Figure 3.6: Modeling thermostability and thermoactivity. A) Predicted T50 values from
a simple linear model closely correlate with the measured T50 for 53 bacterial family 48
cellulases over a range of almost 30◦C. B) Stabilizing or destabilizing effects of each sequence
block, for CelF (gray) and CelS (white), relative to CelY for the T50 model. Most blocks are
destabilizing with respect to the most thermostable parent, CelY. Blocks A, F and G from
CelS and, to a lesser extent, blocks C, F and G from CelF are predicted to be stabilizing.
Effect of the SCHEMA E value on the T50 predictions is -0.29◦C per disrupted structural
contact (black). C) Predicted Topt values from the same linear model also correlate with
the measured Topt over a similar range. D) Stabilizing or destabilizing effects of each block,
for CelF (gray) and CelS (white), relative to CelY for the Topt model. Block contributions
are similar in magnitude to those in the T50 model.
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Figure 3.7: Predicting the most stable Cel48 chimeras. A) T50 model trained on all 53 active
parent and chimeric test cellulases (crosses) was used to predict 10 very stable chimeras that
were subsequently constructed. All 10 are very stable (triangles). B) Activities of the two
most stable, most active chimeras and the most stable, most active cellulosomal parent
sequence, CelY-2. Activities were measured in the form of reducing-end sugars released
(reported as cellobiose equivalents released) over a 48-hour period, with 0.2 µM enzyme
and 0.2 µM miniscaffoldin in 10 g/L Avicel at 75◦C. All measurements were carried out in
triplicate. C) Temperature-activity profiles for the two most stable, most active chimeras
and the most stable, most active cellulosomal parent sequence, CelY-2. Activities were
measured in a 1-hour assay, with 0.2 µM enzyme and 0.2 µM miniscaffoldin in 10 g/L Avicel.
The activities are normalized to the maximum activity of CelS. D) The maximum activities
of the three parent constructs and two of the most stable, most active chimeras. The
activities are measured for a 1-hour assay, with 0.2 µM enzyme and 0.2 µM miniscaffoldin
in 10 g/L Avicel. The activities are normalized to the maximum activity of CelS. Activities
are measured both by the number of reducing-end sugars released and the total glucose
released.
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Figure 3.8: The correlation between optimum operating temperature for a 2-hour assay
(Topt) and thermostability (T50) for all 63 chimeric and parent Cel48 cellulases in this study.
There is a strong correlation (r2 = 0.83): chimeras with greater stability tend to be most
active at higher temperatures. The parents are highlighted in black.
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3.8 Supplementary information

1"
"

Supporting information 
 
Doc. S1 CelY synthetic gene complete sequence (synthesized by DNA2.0, Menlo Park, CA, 
USA) 

CATATGGCCAGCAGCGATGATCCGTATAAGCAACGTTTCTTGGAACTGTGGGAAGAGTTGCACGATCCGAGCAACGGTTATTTCAG
CTCCCATGGTATTCCGTACCACGCGGTCGAGACGCTGATCGTTGAGGCACCTGATTATGGCCACCTGACCACCAGCGAAGCGATGT
CTTACTATCTGTGGCTGGAAGCGCTGTACGGCAAATTTACGGGTGATTTTAGCTATTTCATGAAGGCCTGGGAAACCATTGAGAAG
TACATGATTCCGACCGAGCAGGATCAACCGAACCGCTCCATGGCTGGTTACAATCCGGCTAAACCAGCGACCTATGCCCCTGAATG
GGAAGAACCGAGCATGTATCCGTCTCAGCTGGACTTCAGCGCACCGGTGGGCATTGACCCGATTTACAATGAGCTGGTGTCCACCT
ATGGTACCAATACGATTTACGGTATGCACTGGCTGCTGGATGTGGATAACTGGTACGGCTTTGGCCGTCGTGCGGACCGTATCAGC
AGCCCAGCCTATATCAACACCTTCCAACGTGGCAGCCAAGAGTCCGTGTGGGAGACGATCCCGCAACCGTGCTGGGATGATCTGAC
CATCGGTGGCCGTAACGGTTTTCTGGACCTGTTTGTCGGCGATAGCCAGTACTCGGCACAATTTAAGTACACGAATGCACCGGACG
CGGATGCGCGTGCCATCCAGGCGACGTACTGGGCGAACCAGTGGGCGAAAGAGCACGGCGTGAATTTGAGCCAGTATGTTAAGAAG
GCAAGCCGCATGGGCGACTACCTGCGCTATGCAATGTTCGACAAATACTTTCGTAAAATTGGTGATTCCAAACAAGCAGGTACCGG
CTACGACGCAGCCCATTACCTGCTGTCCTGGTACTATGCGTGGGGTGGTGGCATCACGGCTGATTGGGCATGGATTATTGGCTGTT
CCCACGTTCATGCAGGCTACCAGAATCCGATGACGGCGTGGATTCTGGCCAACGATCCGGAGTTTAAACCGGAAAGCCCGAACGGT
GCTAATGATTGGGCGAAAAGCCTGGAGCGCCAGCTGGAGTTCTATCAATGGCTGCAGAGCGCTGAGGGTGCAATCGCAGGTGGTGC
GACGAATAGCTACAAAGGTCGCTACGAAACCCTGCCAGCAGGTATCAGCACGTTCTATGGCATGGCGTATGAAGAACATCCGGTGT
ACCTGGATCCGGGTAGCAACACGTGGTTTGGCTTTCAGGCGTGGACGATGCAGCGCGTGGCGGAATACTACTATCTGACCGGTGAT
ACGCGTGCAGAGCAACTGTTGGACAAATGGGTCGATTGGATCAAGTCCGTTGTTCGTCTGAACAGCGACGGCACCTTCGAGATTCC
GGGTAACCTGGAGTGGTCGGGTCAACCGGACACCTGGACCGGTACTTACACGGGTAATCCGAACCTGCATGTCAGCGTTGTTTCTT
ATCGTACGGACTTGGGTGCAGCGGGTTCTCTGGCAAATGCTCTGCTGTACTATGCCAAAACCAGCGGTGACGACGAAGCACGTAAT
CTGGCGAAAGAATTGCTGGACCGTATGTGGAACCTGTACCGTGACGACAAAGGTTTGTCCGCACCGGAGACTCGCGAAGATTACGT
CCGCTTTTTCGAACAAGAGGTTTACGTTCCACAGGGTTGGTCTGGTACGATGCCTAACGGCGATCGTATCGAACCGGGTGTTACTT
TCCTGGACATCCGCTCGAAATACCTGAACGACCCGGACTACCCGAAGCTGCAGCAGGCGTATAACGAAGGCAAAGCGCCAGTGTTC
AACTATCACCGTTTCTGGGCTCAATGCGACATCGCTATCGCGAACGGCTTGTATAGCATTCTGTTTGGCAGCGAGCAAGCCAATGA
TAGCTTCATCACCCCGACCAGCGCGACGTTCGACAAGAATAACCAGGAAGACATTTCTGTTACGGTCACCTACAATGGTAATACCC
TGCTGGGCATCAAGAGCGGTAGCAGCTATCTGATTGAGGGTGTCGACTACATTGTGAACGGCGATGTGATTATCATTAAGAAAGAA
TTTCTGGCAGGCCAGGCTACCGGCAGCATTAGCCTGCTGTTCGATTTCAGCGCAGGTCTGGACCGCACCCTGACCATTGATATTAT
CGATACGGGTGGCGGTGAAGAACCTGTCGAGCCGGTGGAGCCTGTGGAGGGCGTCCTGATCATCCAAAGCTTCAATGCCAACACTC
AAGAGATTAGCAACTCGATCATGCCACGTTTCCGTATCTACAATAGCGGCAATACCAGCATTCCGTTGAGCGAGGTCAAGTTGCGC
TATTACTACACCGTGGACGGTGACAAGCCGCAGAACTTCTGGTGTGACTGGGCGAGCATTGGTAGCAGCAATGTGACTGGCACCTT
TGTTAAGATGGATGGTGCGACTACCGGTGCCGATTATTATCTGGAGATTGGCTTCACCCCACAGGCTGGTACGCTGGAACCGGGTG
CAAGCATCGAGGTCCAGGGTCGTTTTAGCAAGATTGACTGGACCGACTACACCCAAACCAATGACTACAGCTTTAATCCGACCGCG
TCTAGCTATGTTGACTTTAACAAGATCACCGCGTACATCAGCGGTAATCTGGTTTATGGTATCGAGCCGTGAGCGGCCGC 
 

Supplementary Figure 3.9: CelY synthetic gene complete sequence (synthesized by DNA2.0,
Menlo Park, CA, USA)
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Supplementary Figure 3.10: Catalytic domains of CelY, CelF, and CelS and their sequence
identities.
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Supplementary Figure 3.11: CelS Xba1 site and CelY DUF do not affect cellulolytic ac-
tivities. A) Comparison of CelS with (dashed line) and without (solid line) an additional
XbaI site between the catalytic domain and the dockerin in the presence of miniscaffoldin.
Measurements were taken in duplicate from a 2-hour end point assay. B) Comparison of
cellulosomal constructs CelY-1 (triangles) and CelY-2 (squares) in the presence (filled) and
absence (empty) of miniscaffoldin. Measurements were taken as duplicates from a 2-hour
assay.
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Supplementary Figure 3.12: SCHEMA library designs with eight blocks and a minimum
block length of 30 amino acids. Multiple RASPP curves are calculated from contacts maps
based on 17 available structures. << E >> is the average < E > for a certain library
based on different contact maps. A) Initially RASPP returned more than 600 libraries
and there were several solutions with comparable characteristics. B) Solutions are removed
that did not contain the same amino acid at the designated crossover sites. The chosen
library has an << E >> of 31.3 (highlighted in gray). C) << E >> as a function of
the standard deviation of block mutations. A low standard deviation of block mutations
indicates a more homogenous distribution of mutations and more equal contribution of each
block. The chosen library (<< E >> = 31.3) has a standard deviation of block mutations
of 19 and is highlighted in gray.
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Supplementary Figure 3.13: Naming scheme for primers used for SCHEMA library con-
struction. Each primer is named by the parent species (CCEL for CelF, CSTE for CelY,
or CTHE for CelS), the crossover site, and direction, as indicated.
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A B 

Supplementary Figure 3.14: Comparison of T50 thermostability models for the three par-
ents and 50 chimeras. A) Simple thermostability model without SCHEMA E value as a
parameter, r2 = 0.82. B) Modified thermostability model with the SCHEMA E value as a
parameter, r2 = 0.88.
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Supplementary Figure 3.15: CD measurements of several functional (filled diamonds) and
non-functional (open diamonds) chimeras. The ellipticity profiles are similar for both the
functional and non-functional chimeras.
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Supplementary Figure 3.16: Examples of T50 measurements, with incubation in the absence
(filled diamonds) and presence (open diamonds) of miniscaffoldin and substrate. Binding
to the cellulose substrate increases the T50 of the cellulases by approx. 2◦C. A) CelY-2. B)
Chimera 22222332.
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Supplementary Figure 3.17: High-throughput screen for activity of Cel48 chimeras on crys-
talline cellulose. Cellulase chimeras are overexpressed in E. coli in 96-well plates and har-
vested. Cell lysate is transferred to a solution of miniscaffoldin on crystalline cellulose. In
our setup, cellulases bind to the cohesin of the miniscaffoldin via their dockerin. The whole
complex attaches to the solid substrate via the CBM of the miniscaffoldin. Non-binding
proteins are removed by washing thereby purifying cellulases bound to the solid substrate.
Cellulases are incubated overnight at both 50◦C and 75◦C. Enzymatic hydrolysis of cellu-
lose releases soluble sugars. These sugars are transferred to a new plate and the amount of
reducing ends is determined using the Park-Johnson assay.
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Block A CelS YKDLFLELYGKIKDPKNGYFSPDEGIPYHSIETLIVEAPDYGHVTTSEAFSYYVWLEAMY
GNLTGNWSGVETAWKVMEDWII

CelF YQDRFESMYSKIKDPANGYFS-EQGIPYHSIETLMVEAPDYGHVTTSEAMSYYMWLEAMH
GRFSGDFTGFDKSWSVTEQYLI

CelY YKQRFLELWEELHDPSNGYFS-SHGIPYHAVETLIVEAPDYGHLTTSEAMSYYLWLEALY
GKFTGDFSYFMKAWETIEKYMI

Block B CelS PDSTEQP--GMSSYNPNSPATYADEYEDPSYYPSELKFDTVRVGSDPVHNDLVSAY-GPN
MYLMHWLMDVDNWYGFG----TGTRATFINTFQRGEQESTWETIPHPSIEEFKYGGPNGF
LDLFTKDR-SYAKQWRYTNAPDAEGR

CelF PTEKDQPNTSMSRYDANKPATYAPEFQDPSKYPSPLDT-SQPVGRDPINSQLTSAYGTSM
LYGMHWILDVDNWYGFGARADGTSKPSYINTFQRGEQESTWETIPQPCWDEHKFGGQYGF
LDLFTKDTGTPAKQFKYTNAPDADAR

CelY PTEQDQPNRSMAGYNPAKPATYAPEWEEPSMYPSQLDF-SAPVGIDPIYNELVSTYGTNT
IYGMHWLLDVDNWYGFGRRADRISSPAYINTFQRGSQESVWETIPQPCWDDLTIGGRNGF
LDLFVGDS-QYSAQFKYTNAPDADAR

Block C CelS AIQAVYWANKWAKEQGKGSAVASVVSKAAKMG
CelF AVQATYWADQWAKEQGK-S-VSTSVGKATKMG
CelY AIQATYWANQWAKEHGV-N-LSQYVKKASRMG

Block D CelS DFLRNDMFDKYFMKIGAQDKTPATGYDSAHYLMAWYTAWGGGIGASWAWKIGCSHA
CelF DYLRYSFFDKYFRKIGQPS-QAGTGYDAAHYLLSWYYAWGGGIDSTWSWIIGSSHN
CelY DYLRYAMFDKYFRKIG-DSKQAGTGYDAAHYLLSWYYAWGGGITADWAWIIGCSHV

Block E CelS HFGYQNPFQGWVSATQSDFAPKSSNGKRDWTTSYKRQLEFYQWLQSAE
CelF HFGYQNPFAAWVLSTDANFKPKSSNGASDWAKSLDRQLEFYQWLQSAE
CelY HAGYQNPMTAWILANDPEFKPESPNGANDWAKSLERQLEFYQWLQSAE

Block F CelS GGIAGGATNSWNGRYEKYPAGTSTFYGMAYVPHPVYADPGS
CelF GAIAGGATNSWNGRYEAVPSGTSTFYGMGYVENPVYADPGS
CelY GAIAGGATNSYKGRYETLPAGISTFYGMAYEEHPVYLDPGS

Block G CelS NQWFGFQAWSMQRVMEYYLETGDSSVKNLIKKWVDWVMSEIKLYDDGTFAIPSDLEWSGQ
PDTWTG--TYTGNPNLHVRVTSYGTDLGVAGSLANALATYAAATERWEGKLDTKARDMAA
E

CelF NTWFGMQVWSMQRVAELYYKTGDARAKKLLDKWAKWINGEIKFNADGTFQIPSTIDWEGQ
PDTWNPTQGYTGNANLHVKVVNYGTDLGCASSLANTLTYYAAKS------GDETSRQNAQ
K

CelY NTWFGFQAWTMQRVAEYYYLTGDTRAEQLLDKWVDWIKSVVRLNSDGTFEIPGNLEWSGQ
PDTWTG--TYTGNPNLHVSVVSYRTDLGAAGSLANALLYYAKTS------GDDEARNLAK
E

Block H CelS LVNRAWYNFYCSEGKGVVTEEARADYKRFFEQEVYVPAGWSGTMPNGDKIQPGIKFIDIR
TKYRQDPYYDIVYQAYLRGEAPVLNYHRFWHEVDLAVAMGVLATYF

CelF LLDAMWNNYSD--SKGISTVEQRGDYHRFLDQEVFVPAGWTGKMPNGDVIKSGVKFIDIR
SKYKQDPEWQTMVAALQAGQVPTQRLHRFWAQSEFAVANGVYAILF

CelY LLDRMWNLYRD--DKGLSAPETREDYVRFFEQEVYVPQGWSGTMPNGDRIEPGVTFLDIR
SKYLNDPDYPKLQQAYNEGKAPVFNYHRFWAQCDIAIANGLYSILF

Supplementary Table 3.1: Library blocks of the Cel48 SCHEMA library. The blocks are
from the catalytic domains of the parental enzymes: CelS, CelF, and CelY.
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Constant
Blocks

CelF-1 block CelS block
contribution (a0) contributions (ai2) contributions (ai3)

A 0.00 -1.40
4.2 B 1.20 -0.62

C -1.20 0.21
E value D 0.56 0.00

contribution (aE) E 0.00 -0.96
F 0.00 0.00

-0.11 G -0.52 1.80
H 0.00 -0.44

Supplementary Table 3.2: Coefficients of the functionality model, as determined by regu-
larized logistic regression on data from all chimeras.

Correctly predicted active chimeras 50/53
Correctly predicted inactive chimeras 21/28
False positives 3/53
False negatives 7/28
Percentage correctly predicted 71/81 = 88%

Supplementary Table 3.3: The functionality model. Using block-sequence and the SCHEMA
E value to predict which chimeras are functional. The data presented use ‘leave one out’
cross-validation.

Construct
Predicted Measured

Predicted T50(◦C) Measured T50(◦C)
functionality functionality

32322322 1 1 80.1 73.5
22223312 1 1 79.0 73.3
32322332 1 1 80.7 72.7
22223322 1 1 77.6 76.0
22223332 1 1 78.9 77.5
22123332 1 1 78.0 77.4
22222322 1 1 80.3 78.1
22122322 1 1 79.4 77.8
22222332 1 1 80.2 78.2
22122332 1 1 79.3 78.9
32222322 1 0 78.3 -
22123312 1 0 78.1 -
22123322 1 0 76.8 -
32222222 1 0 75.1 -

Supplementary Table 3.4: Cellulosomal chimeras constructed, along with the predicted
functionality and T50s of the chimeras and measured functionality and T50s. The constructs
are identified using a set of 8 numbers that represent the parental identity of each block (A
to H) in the chimera: 1 for CelF-1, 2 for CelY-2, and 3 for CelS. Thus 32132322 is CelS
block A, CelY-2 block B, etc.
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Primer name Sequence (5’ to 3’)
CTHE312.40 ACGAAGCTTGAGCTCATGGGTCCTACAAAGGCACCTACAA
CTHE2453.40 ACGCTGCGGCCGCGTTCTTGTACGGCAATGTATCTATTTC
CCEL786.41 ACGAAGCTTGAGCTCATGGCTTCAAGTCCTGCAAACAAGGT
CCEL2864.41 ACGCTGCGGCCGCTTGGATAGAAAGAAGTGCTTTCTTTAAA
XbaIinCTHEfwd GCTACATACTTCCCGGATTCTAGAATGACATATAAAGTACCT
XbaIinCTHErev AGGTACTTTATATGTCATTCTAGAATCCGGGAAGTATGTAGC
pGEMTfwd1 ATTGGGCCCGACGTCGCATGCTCC
pGEMTrev1 CTCTCCCATATGGTCGACCTGCA
CCELcdCTHEdoc+XbaIfwd GCAATACTCTTCCCAGATTCTAGAATGACATATAAAGTACCTGGTA

CTCCTTCTACT
CCELcdCTHEdoc+XbaIrev AGGTACTTTATATGTCATTCTAGAATCTGGGAAGAGTATTGCATAA

ACTCCATTTGC
CCELcdCTHEdocfwd GCAATACTCTTCCCAGATATGACATATAAAGTACCTGGTACTCCTT

CTACT
CCELcdCTHEdocrev AGGTACTTTATATGTCATATCTGGGAAGAGTATTGCATAAACTCCA

TTTGC
CCELfwdNdeI ATCACGCTCATATGGCTTCAAGTCCTGCAAACAAGGT
CCELfwd470mut ACAAACCGGCTACATACGCACCGGAATTTCAGGACCC
CCELrev470mut GGGTCCTGAAATTCCGGTGCGTATGTAGCCGGTTTGT
CCELfwd515mut TCTCCGTTGGATACCAGTCAACCTGTTGGT
CCELrev515mut ACCAACAGGTTGACTGGTATCCAACGGAGA
CCELfwd788u818mut AAAGGATACAGGTACACCGGCAAAGCAATTCAAATATACAAATGCA

CCAGATGCTGATGC
CCELrev788u818mut GCATCAGCATCTGGTGCATTTGTATATTTGAATTGCTTTGCCGGTG

TACCTGTATCCTTT
CTHEfwdNdeI ATCACGCTCATATGGGTCCTACAAAGGCACCTACAA
CTHEfwd470mut CAAACAGCCCTGCCACGTATGCTGACGAATATG
CTHErev470mut CATATTCGTCAGCATACGTGGCAGGGCTGTTTG
CTHEfwd779u809mut TACAAAGGACAGATCCTATGCAAAACAGTGGCGTTATACAAACGCA

CCTGACGCAGAAGG
CTHErev779u809mut CCTTCTGCGTCAGGTGCGTTTGTATAACGCCACTGTTTTGCATAGG

ATCTGTCCTTTGTA
CTHEfwd1322mut CGTTCTATGGTATGGCCTATGTTCCGCATCCTG
CTHErev1322mut CAGGATGCGGAACATAGGCCATACCATAGAACG
CSTEfwdNde1 ATCACGCTCATATGGCCAGCAGCGATGATCCGTATAA
CSTEcdCTHEdoc+XbaIrev AGGTACTTTATATGTCATTCTAGAGCTGCCAAACAGAATGCTATAC

AAG
CSTEdufCTHEdoc+XbaIrev AGGTACTTTATATGTCATTCTAGATGGCCTGCCAGAAATTCTTTCT

TAAT
CSTEcdCTHEdoc+XbaIfwd TAGCATTCTGTTTGGCAGCTCTAGAATGACATATAAAGTACCTGGT

ACTCCTTCTACT
CSTEdufCTHEdoc+XbaIfwd AATTTCTGGCAGGCCAGTCTAGAATGACATATAAAGTACCTGGTAC

TCCTTCTACT
CSTEwt-rev-nostop TCGAGTGCGGCCGCCGGCTCGATACCATAA

Supplementary Table 3.5: Primer names and primer sequences used for parent constructs.



83

Primer name Sequence (5’ to 3’)
CCEL0fwd CCGACTAGTGACTCATATGGCTTCAAGTCCTGCAAAC
CTHE0fwd CCGACTAGTGACTCATATGGGTCCTACAAAGGCACC
CSTE0fwd CCGACTAGTGACTCATATGGCCAGCAGCGATGATCCG
CCEL1fwd TGGCAGAACGGACTCTCCGCTAGCCCCGACAGAAAAGGATCAGCCCAATA
CCEL1rev GGAGAGTCCGTTCTGCCAGACGGGATCAAATACTGTTCGGTAACAG
CTHE1fwd TGGCAGAACGGACTCTCCGCTAGCCCCGGACAGCACAGAGCAGCCGG
CTHE1rev GGAGAGTCCGTTCTGCCAGACGGAATTATCCAATCCTCCATAACTTTC
CSTE1fwd TGGCAGAACGGACTCTCCGCTAGCCCCGACCGAGCAGGATCAACCGAA
CSTE1rev GGAGAGTCCGTTCTGCCAGACGGAATCATGTACTTCTCAATGGTTTC
CCEL2fwd CAACCGTACCGGTACTCCGCTAGCGGCCGTTCAAGCAACTTACTGGGC
CCEL2rev GGAGTACCGGTACGGTTGCCGGCACGAGCATCAGCATCTGGTG
CTHE2fwd CAACCGTACCGGTACTCCGCTAGCGGCCATACAGGCTGTTTACTGGGC
CTHE2rev GGAGTACCGGTACGGTTGCCGGCACGGCCTTCTGCGTCAGGTG
CSTE2fwd CAACCGTACCGGTACTCCGCTAGCGGCCATCCAGGCGACGTACTGGGC
CSTE2rev GGAGTACCGGTACGGTTGCCGGCACGCGCATCCGCGTCCGGTG
CCEL3fwd GCACGATATACCACGTCTCCGCTAGCAGACTACCTTAGATATTCATTCTTTGATAAG
CCEL3rev GGAGACGTGGTATATCGTGCGTCACCCATCTTTGTTGCCTTACC
CTHE3fwd GCACGATATACCACGTCTCCGCTAGCAGACTTCTTGAGAAACGACATGTTCG
CTHE3rev GGAGACGTGGTATATCGTGCGTCACCCATCTTTGCAGCCTTGGA
CSTE3fwd GCACGATATACCACGTCTCCGCTAGCAGACTACCTGCGCTATGCAATGTT
CSTE3rev GGAGACGTGGTATATCGTGCGTCGCCCATGCGGCTTGCCTTCT
CCEL4fwd CCGCACTAGTGCTCTTCTCATTTCGGTTACCAGAACCCATTT
CCEL4rev TTTTCCGCGGGCTCTTCTATGATTATGACTGCTACCGATTATCC
CTHE4fwd CCGCACTAGTGCTCTTCTCATTTCGGATATCAGAACCCATTCC
CTHE4rev TTTTCCGCGGGCTCTTCTATGTGCGTGGCTGCATCCGATCT
CSTE4fwd CCGCACTAGTGCTCTTCTCATGCAGGCTACCAGAATCCGAT
CSTE4rev TTTTCCGCGGGCTCTTCTATGAACGTGGGAACAGCCAATAAT
CCEL5fwd TGGCAGAACGGACTCTCCGCTAGCCGGTGCTATTGCCGGTGGAGCTAC
CCEL5rev GGAGAGTCCGTTCTGCCAGAACCTTCTGCTGACTGCAACCACT
CTHE5fwd TGGCAGAACGGACTCTCCGCTAGCCGGTGGTATTGCCGGTGGAGCAAC
CTHE5rev GGAGAGTCCGTTCTGCCAGAACCTTCAGCCGACTGCAACCACT
CSTE5fwd TGGCAGAACGGACTCTCCGCTAGCCGGTGCAATCGCAGGTGGTGCGAC
CSTE5rev GGAGAGTCCGTTCTGCCAGAACCCTCAGCGCTCTGCAGCCATT
CCEL6fwd CAACCGTACGCCATCTCCGCTAGCGAACACTTGGTTTGGTATGCAGGTAT
CCEL6rev GGAGATGGCGTACGGTTGCCGTTACTACCTGGGTCAGCATATACA
CTHE6fwd CAACCGTACGCCATCTCCGCTAGCGAACCAGTGGTTCGGATTCCAGGC
CTHE6rev GGAGATGGCGTACGGTTGCCGTTACTACCCGGGTCAGCGTATA
CSTE6fwd CAACCGTACGCCATCTCCGCTAGCGAACACGTGGTTTGGCTTTCAGGC
CSTE6rev GGAGATGGCGTACGGTTGCCGTTGCTACCCGGATCCAGGTACA
CCEL7fwd GCACGATATACCACGACTCCGCTAGCATTACTTGACGCTATGTGGAATAACT
CCEL7rev GGAGTCGTGGTATATCGTGCTAATTTCTGTGCATTCTGCCTTGA
CTHE7fwd GCACGATATACCACGACTCCGCTAGCATTAGTTAACCGTGCATGGTACAAC
CTHE7rev GGAGTCGTGGTATATCGTGCTAATTCAGCAGCCATGTCTCTTG
CSTE7fwd GCACGATATACCACGACTCCGCTAGCATTACTGGACCGTATGTGGAACCT
CSTE7rev GGAGTCGTGGTATATCGTGCTAATTCTTTCGCCAGATTACGTG
CTHEdocrev TTTTCCGCGGTTTGCGGCCGCGTTCTTGTACGGC
CSTE4rev TTTTCCGCGGGCTCTTCTATGAA
CSTE4fwd CCGCACTAGTGCTCTTCTCATG

Supplementary Table 3.6: List of primers used for construction of SCHEMA library.
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Block A B C D E F G H
CelF 26 7 29 24 1 14 9 11
CelY 11 6 7 5 25 27 34 31
CelS 17 41 18 25 28 13 11 12

Supplementary Table 3.7: The quality of the built library: distribution of blocks for 54
randomly picked, and correctly assembled, chimeras. Every parent is present in every
position. CelF block E appears to be underrepresented in the library.

T50 = a0 + ⌃8
i=1⌃

3
j=2aijxij + aEE

where P (active) is the probability a chimera is active
a0 is a constant
aij is the contribution to functionality of block i from parent j
xij is a dummy variable representing that block i either comes from CelF-1

xi2 = 1 or from CelS xi3 = 1
aE is the contribution to functionality of each SCHEMA contact

flink() is the logistic function, that returns a value between 0 and 1

1

Supplementary Equation 3.1: The thermostability model. a0 is a constant (in this case the
T50 of CelY-2), aij is the contribution to activity of block i from parent j, xij is a dummy
variable representing that block i either comes from CelF-1 xi2 = 1 or from CelS xi3 = 1,
aE is the contribution to stability of the E value per contact broken, E is the E value (the
number of contacts disrupted in a chimera).
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P (active) = flink(a0 + ⌃8
i=1⌃

3
j=2aijxij + aEE)

where P (active) is the probability a chimera is active
a0 is a constant
aij is the contribution to functionality of block i from parent j
xij is a dummy variable representing that block i either comes from CelF-1

xi2 = 1 or from CelS xi3 = 1
aE is the contribution to functionality of each SCHEMA contact

flink() is the logistic function, that returns a value between 0 and 1

1

Supplementary Equation 3.2: The functionality model. P(active) is the probability a
chimera is active, a0 is a constant, aij is the contribution to activity of block i from parent
j, xij is a dummy variable representing that block i either comes from CelF-1 xi2 = 1 or
from CelS xi3 = 1, aE is the contribution to activity of the E value per contact broken, E
is the E value (the number of contacts broken in a chimera), flink() is the logistic linking
function that scales the output to a value between 0 and 1.
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Chapter 4

Chimeragenesis of distantly-related
proteins by non-contiguous
recombination

A modified version of this chapter appears in: Smith M. A., Romero P. A., Wu T., Brus-

tad E. M., and Arnold F. H. (2013) Chimeragenesis of distantly-related proteins by non-

contiguous recombination, Protein Sci. 22, 231-238, and is reprinted with permission from

Wiley-VCH.
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4.1 Abstract

We introduce a method for identifying elements of a protein structure that can be shuffled

to make chimeric proteins from two or more homologous parents. Formulating recombina-

tion as a graph partitioning problem allows us to identify non-contiguous segments of the

sequence that should be inherited together in the progeny proteins. We demonstrate this

non-contiguous recombination approach by constructing a chimera of β-glucosidases from

two different kingdoms of life. Although the proteins alpha-beta barrel fold has no obvi-

ous sub-domains for recombination, non-contiguous SCHEMA recombination generated a

functional chimera that takes approximately half its structure from each parent. The x-

ray crystal structure shows that the structural blocks that make up the chimera maintain

the backbone conformations found in their respective parental structures. Although the

chimera has lower β-glucosidase activity than the parent enzymes, the activity was easily

recovered by directed evolution. This simple method, which does not rely on detailed atomic

models, can be used to design chimeras that take structural, and functional, elements from

distantly-related proteins.

4.2 Introduction

Swapping sequence elements among related proteins [1] can produce chimeric proteins with

novel behaviors [2,3] and improved properties such as enhanced stability [4]. Although

homologous mutations are much more conservative than random mutations, chimeras of

distantly-related proteins have a low probability of retaining fold and function [5]. Selecting

crossover locations that minimize disruption of the folded structure increases the likelihood

that a chimeric protein will be functional.
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To design libraries of chimeric proteins we have used structural information to select

crossover locations that minimize the average number of non-native residue-residue contacts

in the resulting chimeras [6]. The sequence elements are then shuffled and reassembled in the

correct order to generate the chimeric progeny. We have used this SCHEMA recombination

method to make large numbers of functional enzyme chimeras, with which we have explored

the benefits and costs of recombination [3, 7-9]. We have also shown that stabilities and

other properties of these recombined enzymes - the ‘recombination landscape’ - can be

predicted with high accuracy using models built by sampling small numbers of chimeras [4,

10].

To date, we have only considered recombination of sequence blocks that are contiguous

along the polypeptide chain. Sequence blocks that are contiguous in the primary structure,

however, are not necessarily optimal elements for recombination [11]. Here, we introduce

a new tool for protein recombination that identifies structural blocks that can be swapped

among homologous proteins with minimal disruption. Because elements that are distant in

the primary structure are often brought together in the folded protein, structural blocks may

not be contiguous in the polypeptide chain. This non-contiguous recombination approach

enables design of chimeras and libraries of chimeras with less disruption than can be achieved

by swapping blocks of sequence. Less disruption means that we can generate libraries with

higher fractions of functional enzymes and enables recombination of more distant homologs.

We demonstrate this new tool by constructing a functional β-glucosidase that derives

approximately half of its sequence from each of two distantly-related parents. The crystal

structure of this prokaryote-eukaryote chimera illustrates the structurally conservative na-

ture of this recombination: the hybrid structure retains the overall function as well as the

detailed structural features of the parental enzymes.
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4.3 Results

4.3.1 Non-contiguous protein recombination

The goal is to identify blocks that can be shuffled among related parent proteins to create

chimeras with minimal disruption. The overall process is illustrated in Figure 1 for the

simple case of 2 parents, but can be extended easily to any number of parents. Starting from

one or more structures and a parental sequence alignment (Figure 4.1a), non-contiguous

recombination involves splitting the proteins into a set of blocks (Figure 4.1b) which are

swapped to create chimeras (Figure 4.1c). Similar to previous work with recombination of

contiguous sequence elements, our disruption metric is the number of non-native residue-

residue contacts that are broken in the recombined sequence; we call this the SCHEMA

disruption [6]. To minimize disruption, the residue-residue contacts that are not shared

among the parents and therefore could be broken upon recombination are converted into

a graph, with residues as nodes and non-native contacts as edges (Figure 4.1d). Assigning

residues to blocks is then equivalent to partitioning the graph to minimize the number of

edges that are cut (Figure 4.1e). This is an NP-complete problem [12], but there are heuristic

algorithms that can find near optimal solutions very quickly [13]. We use hmetis [14, 15], a

suite of graph partitioning tools. The hmetis suite assigns each node to a partition, which

corresponds to assigning each residue to a block. The non-contiguous chimeras are then

assembled from the shuffled blocks, where a block can comprise multiple sequence fragments

that should be inherited together (Figure 4.1f).
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4.3.2 Chimeric β-glucosidase design

We chose to test this non-contiguous SCHEMA recombination approach by making a

chimera of two distantly-related GH1 β-glucosidases, one from a prokaryote, the ther-

mophilic T. maritima BglA [16, 17] (TmBglA), and the other from a eukaryote, the

mesophilic T. reesei Bgl2 [18, 19] (TrBgl2). These enzymes share 41% sequence identity,

with a conserved active site. The TIM-barrel enzyme fold has no obviously interchangeable

subdomains.

We generated various 2-block chimera designs that are predicted to have low disruption

and picked the one shown in Figure 4.2 for construction and characterization. Chimera

NcrBgl would have approximately half its sequence from TmBglA and half from TrBgl2; it

would have 144 mutations, corresponding to ∼31% of its sequence, from the closest parent

(TmBglA). Figure 4.2a shows NcrBgl on the sequence alignment of TmBglA and TrBgl2.

The non-contiguous nature of the two blocks on the polypeptide chain is readily apparent

- the red TrBgl2 block has 7 separate sequence fragments, and the green TmBglA block

has 8. These blocks are contiguous, however, on the 3-dimensional structure, as shown in

Figure 4.2b.

We predicted that this choice of crossovers should be minimally disruptive. The number

of residue-residue contacts in NcrBgl that are not found in any of the parent contact maps

is only 27.5, an average of 25 broken contacts based on TmBglA’s structure 2WBG.pdb

and 30 based on TrBgl2’s structure 3AHY.pdb. By comparison, swapping half the proteins

structure randomly breaks on average 155 contacts (Figure 4.3a), and the best design of

10,000 random designs breaks more than 70 contacts (see Materials and Methods). Designs

with many broken contacts are unlikely to lead to properly folded, functional enzymes [7].

Figure 4.3b shows the optimized non-contiguous chimera design on a plot of the residue-
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residue contacts that could be broken (SCHEMA contacts). Most SCHEMA contacts are

sequestered within a block in this design, and thus few contacts are disrupted upon recom-

bination.

4.3.3 Structural conservation

The gene encoding the eukaryotic-prokaryotic NcrBgl chimera was synthesized and ex-

pressed under the control of an arabinose-inducible promoter in Top10 E. coli cells. TrBgl2

and TmBglA break down cellobiose and other short oligosaccharides into glucose. Both

parent enzymes are active over a range of pH, from 4 to 7, and TrBgl2 is active between

30◦C and 55◦C [19], while TmBgl2 is highly thermostable with significant activity between

60◦C and 100◦C [16]. NcrBgl is catalytically active over the temperature range 30◦C to

60◦C and is approximately a factor of 103 less active than TrBgl2 at 37◦C. The activity

is easily recovered, however, to TrBgl2 levels, by directed evolution (see below). We also

synthesized the gene for the ‘mirror’ chimera (with the parental identities of each block

swapped), but it was not expressed as a functional protein in E. coli.

For structure determination, the NcrBgl chimera was expressed in E. coli BL21 DE3

with an N-terminal his6 tag and purified from cell lysate on a Ni-NTA column followed

by an anion exchange column. Crystals were grown using the vapor-diffusion method,

and NcrBgl’s structure was solved from x-ray diffraction data using MOLREP [20] and

REFMAC5 [21] (see Materials and Methods).

The crystal structure of NcrBgl (4GXP.pdb), determined at 3.0 Å, shows that both

blocks retain the structures of their respective parents. Chimera NcrBgl has the TIM-

barrel fold and catalytic residues E170 and E374 (numbering based on the alignment shown

in Figure 4.2a) of the parent enzymes. Figure 4.4a illustrates the blocks on the parent struc-
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tures and the structure of the chimera. The structural independence of recombined blocks

is pronounced: there are significant differences between the aligned structures of the parents

(Figure 4.4b), particularly on the surface where there are multiple insertions and deletions

in loop regions (Figure 4.4c). These structurally disparate regions are apparently unaffected

by the chimeragenesis and maintain their backbone conformations when reassembled in the

chimera.

We tested whether we could model the structure of the chimera by combining the

parental structures of the chimeras blocks, using an alignment of the parental structures

to position each block. Thus, for NcrBgl we combined the structures of the TrBgl2 block

and the TmBglA block to predict the structure of NcrBgl. This model does a good job at

capturing variations in the backbone and loops (Figure 4.4d). Our ability to predict finer

structural features is limited by the current low resolution of the chimera structure.

4.3.4 Recovering activity with directed evolution

We performed five rounds of random mutagenesis and screening for higher activity on

the fluorescent β-glucosidase substrate, 4-nitrophenyl β-D-glucopyranosidase (pNPG) (see

Materials and Methods). Figure 4.5 shows the activity of the best mutant from each round,

relative to NcrBgl. Activity increased almost 1000-fold in just five rounds. The resulting

mutant has 149 mutations from the closest known natural sequence (TmBglA) and activity

comparable to TrBgl2.

4.4 Discussion

Structure-guided recombination is a powerful tool for generating novel enzymes with diverse

sequences. We have presented a new method that splits proteins into elements of sequence
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that should be inherited together in order to minimize structural disruption. The resulting

blocks can be non-contiguous along the polypeptide chain. We have developed tools to

efficiently design chimeras and chimera libraries. These non-contiguous block designs dis-

rupt far fewer SCHEMA contacts than equivalent designs that require contiguous sequence

blocks. Indeed, contiguous block designs are a (suboptimal) subset of the non-contiguous

block design space.

This approach does not rely on detailed atomistic models of the parent and progeny

proteins. Indeed the only structural information used is a set of residue-residue contacts,

which, with the parent sequences, is sufficient to design functional chimeras of distantly-

related proteins that do not have obvious subdomains. Simply minimizing the number of

broken parental contacts seems to be sufficient to generate functional chimeras with a good

success rate, as has been shown for contiguous SCHEMA recombination [7].

To test the method, we designed and constructed a chimeric β-glucosidase that takes

large blocks from a prokaryotic parent and a eukaryotic parent. While we designed a 2-block,

2-parent chimera for this example, the graph partitioning method can easily produce non-

contiguous designs for libraries of chimeric proteins having multiple parents and multiple

blocks.

On solving the crystal structure of the chimeric enzyme, we discovered that each block

retains the structure of its corresponding parent (within the limits of the 3.0 Å resolution),

suggesting that it may be possible to predict the structures of chimeric enzymes from the

parent enzymes by simply combining the known parent structures. Alternatively, structures

of the chimeric proteins could provide detailed and accurate information on the structures of

the parent proteins. This can be very useful for eukaryotic protein structure determination,

for example, where chimeragenesis enables production in a microbial recombinant host [22,
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23]. The fact that the recombined blocks retain their parental structure could also be very

useful for creating protein chimeras that acquire the functions (e.g. allosteric regulation,

interactions with other proteins, or substrate specificity) of their parent blocks.

That the chimera is somewhat compromised in β-glucosidase activity compared to its

parents is not surprising, considering the simplicity of the design approach and also that

144 mutations were introduced. However, the chimera was easily fine-tuned for native-like

activity levels in just five rounds of random mutagenesis and screening. This example offers

promise for exploring distant parts of sequence space, perhaps never explored by nature,

for novel enzymes.

4.5 Materials and methods

4.5.1 Non-contiguous recombination

A structure-based sequence alignment of the parental enzymes T. maritima BglA [16, 17]

(TmBglA) and T. reesei Bgl2 [18, 19] (TrBgl2) was created using PROMALS3D [24]. For

a given structure, two residues are in contact if any atoms from each residue were within

4.5Å of each other, excluding hydrogen atoms. A SCHEMA contact map contains those

contacts that are not conserved among the parental enzymes. Since the TmBglA and TrBgl2

structures vary considerably, a SCHEMA contact map was built for each parent, and a final

average SCHEMA contact map weighted each contact depending on the number of parents

in which it was present (0.5 if in a single parent, 1 if in both parents). PDB structures

2WBG.pdb chain A and 3AHY.pdb chain A were used to create the TmBglA and TrBgl2

SCHEMA contact maps, respectively.

The SCHEMA contact map was abstracted as a graph. Each non-conserved residue rep-
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resented a node, and each edge represented an average weighted SCHEMA contact between

two residues. Finding crossover locations that minimize the average number of SCHEMA

contacts in the chimeras was reformulated as a problem of minimizing the cut edges when

partitioning a graph. The hmetis graph partitioning suite [14, 15] was used to find 2-way

partitions of the SCHEMA contact map - these partitions gave designs for 2-block chimera-

genesis of TmBglA and TrBgl2. A design was selected that would produce a chimera with a

SCHEMA energy (number of disrupted contacts) of 27.5 and 144 mutations from the closest

parent.

4.5.2 Random chimeragenesis designs

This analysis was carried out with PDB structure 2WBG chain A. The structure was par-

titioned into two blocks by a randomly-generated cut plane through the protein’s center.

Each residue was assigned to one of the two blocks based on the coordinates of its alpha

carbon. Swapping the residues of the blocks among the parents TmBglA and TrBgl2 cre-

ated two possible chimeras with equal SCHEMA energies. The chimera SCHEMA energies

were calculated using the SCHEMA contact map from 2WBG chain A.

4.5.3 Gene synthesis

The NcrBgl gene (Supplementary Figure 4.6) was optimized for expression in E. coli and

synthesized by DNA2.0, Menlo Park, CA, USA.

4.5.4 Protein preparation and crystallization

A 1L baffled flask of Luria broth (LB) with 100 mg/L ampicillin was inoculated with 5

mL of an overnight culture of E. coli BL21 DE3 cells containing the NcrBgl gene with an
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N-terminal his6 tag on a pET-22(+) vector. The flask was grown for 4 hours at 37◦C, 250

rpm before being induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final

concentration of 10 µM and incubated for 16 hours at 16◦C and 250 rpm. The cells were

pelleted by centrifugation at 5000 g and frozen at -20◦C. The cells were resuspended in 10

mM Tris, pH 7.4 and lysed by sonication. The lysate was spun at 60,000 g for 20 minutes

and the supernatant filtered with a Nalgene 0.2 µm aPES filter. The supernatant was loaded

onto a 5 mL Ni-NTA His-trap HP column (GE Healthcare) and purified by washing with 1%

elution buffer (20 mM Tris, pH 7.4, 100 mM NaCl, 300 mM imidazole) for 15 column volumes

(CV), followed by a gradient elution (increase to 80% elution buffer in 10 CV). Fractions

containing the NcrBgl protein were buffer exchanged to 20 mM Tris, pH 7.4 and loaded onto

a 5 mL HiTrap Q HP column (GE healthcare). The column was washed with 1% elution

buffer (20 mM Tris, 1 M NaCl, pH 7.4) for 15 column volumes (CV) and the protein purified

by a gradient elution (increase to 80% elution buffer in 10 CV). Fractions containing the

NcrBgl protein were pooled and concentrated using 30,000 molecular weight cut-off protein

concentrators with cellulose-free membranes (Vivaspin). Buffer was exchanged to 10 mM

Tris, pH 8.0 by repeated refills and the protein flash frozen and stored at -20◦C. The protein

was crystallized by vapor diffusion of a 4:3 mixture of 20 g/L protein in 10 mM Tris, pH 8.0

and 20% polyethylene glycol 3350, 0.4 M sodium malonate, pH 7.0 in 24-well sitting drop

plates (Hampton Research). Crystal growth occurred over a period of 2-3 days and larger,

higher-resolution crystals were obtained by microseeding with pieces of sonicated crystals.

Crystals were frozen in 25% glycerol for structure determination.
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4.5.5 Structure determination and refinement

X-ray diffraction data were collected on a Dectris Pilatus 6M detector at 100K at the

Stanford Synchrotron Radiation Lightsource, beamline 12-2. The wavelength of the beam

was 0.9795 Å. Diffraction data were integrated using XDS [25] and scaled using SCALA [26].

A homology model of the NcrBgl was constructed in MODELLER [27] using 2WBG.pdb,

chain A and 3AHY.pdb, chain C. This model was used by MOLREP [20], a molecular

replacement tool that is part of the CCP4 crystallography software [28], to determine the

initial phases of the X-ray data. The structure was refined with several rounds of manual

model building within Coot [29] and automated refinement using REFMAC5 [21] within

CCP4. Data refinement and collection statistics are given in Supplementary Table 4.1.

4.5.6 Error-prone library construction

For expression in E. coli TOP10 cells, the NcrBgl gene and N-terminal his6 tag was sub-

cloned into the arabinose-inducible pBAD vector using Gibson assembly [30]. A library

of mutants with 3.4 nucleotide mutations per gene was generated by error-prone PCR us-

ing 50 µM MnCl2 and Applied Biosystems AmpliTaq polymerase. The pBAD backbone

was amplified by regular PCR. Both PCR products were digested for 30 minutes by Dpn1

(New England Biolabs), purified on an agarose gel and ligated together using Gibson as-

sembly. The library was transformed into electrocompetent E. coli TOP10 cells and plated

on LB-agar media with 100 mg/L ampicillin.

4.5.7 Library expression in 96-well plates

Individual mutant colonies from the library plates were picked into 96-well plates containing

300 µL LB with 100 mg/L ampicillin and grown at 37◦C, 250 rpm, and 80% humidity.
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Each plate contained four null-control wells with an empty pBAD plasmid, four wells with

the NcrBgl gene and four wells with the parent gene from the previous round of directed

evolution. After 16 hours, 50 µL of each culture was expanded into 96-well plates containing

900 µL LB with 100 mg/L and grown at 37◦C for a further 4 hours. The plates were then

induced with 50 µL of 0.8% arabinose to give a final concentration of 0.04% arabinose.

The plates were incubated for 16 hours at 16◦C and 250 rpm and the cells pelleted by

centrifugation at 4000 g and frozen at -20◦C.

4.5.8 Enzyme activity screen

The cell pellets were lysed by adding 300 µL of 10 mM HEPES pH 8.0, 10 mM MgCl2, 0.7

mg/L lysozyme and 0.1 units of DNAase I (Sigma) to each well and incubating at 37◦C for

1 hour. 50 µL of lysate was transferred to a PCR plate containing 150 µL of 10 mM 4-

nitrophenyl β-D-glucopyranosidase (pNPG) and incubated at 37◦C for 1 hour. The reaction

was stopped by adding 20 µL of 1M sodium hydroxide and absorbance was read at 410 nm.

Twenty plates were screened in each round. The best mutants were streaked onto an LB

plate with 100 mg/L ampicillin and individual colonies used to rescreen in quadruplicate.
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4.6 Figures

Figure 4.1: Non-contiguous recombination. A) One or more structures and a parental
sequence alignment are used to identify contacts that are not conserved and can be disrupted
upon recombination (SCHEMA contacts). B) Sequence elements that should be inherited
together (blocks) are identified based using the SCHEMA contact map. Optimal blocks are
often non-contiguous along the polypeptide chain but are contiguous on the 3D structure.
C) The chimeras are reassembled using blocks from different parents. D) The SCHEMA
contact map can be reformulated as a graph, where nodes represent residues and edges
represent SCHEMA contacts. E) To design non-contiguous recombination chimera libraries,
the graph is partitioned, with each residue assigned to a block. Partitions are chosen to
minimize the edges between blocks. F) Graph schematic of a chimeric protein.
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Figure 4.2: β-glucosidase non-contiguous chimera design chosen for construction. A) Num-
bered sequence alignment of the eukaryotic (top) and prokaryotic (bottom) β-glucosidases.
Conserved residues are in gray, the block of eukaryotic mutations are in red, and the block
of prokaryotic mutations are in green. B) The 2-block design illustrated on the structure of
the prokaryotic enzyme, TmBglA (2WBG.pdb).
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Figure 4.3: The optimal non-contiguous design breaks far fewer contacts than random 2-
block partitions of the structure. A) A histogram of the SCHEMA energies of 10,000 random
2-block chimeragenesis designs. The SCHEMA energy of the optimized non-contiguous
design is highlighted with a red arrow. B) The SCHEMA contact map for the optimized
non-contiguous 2-block design. Most of the SCHEMA contacts are within the two blocks
and thus are not disrupted upon recombination. The numbering is based on the parent
alignment, and SCHEMA contacts are shown in black. Red and green areas show the two
blocks. (For greater clarity, the conserved residues have been assigned to one of the two
blocks based on structural proximity.)
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Figure 4.4: Structural elements are conserved upon recombination. A) The structure of
chimera NcrBgl (4GXP.pdb), bottom, is nearly identical to the assembled structure of its
component blocks from TrBgl2 (3AHY.pdb) and TmBglA (2WBG.pdb), top. The eukary-
otic TrBgl2 residues and the prokaryotic TmBglA residues are highlighted in red and green,
respectively. (For greater clarity, the conserved residues have been assigned to one of the two
blocks based on structural proximity.) B) A structural alignment of TmBglA 2WBG.pdb
and TrBgl2 3AHY.pdb (RMSD = 3.34 Å) shows significant variation between these two
homologs. C) An example of significant variations in loop regions. D) Model of NcrBgl
constructed simply by stitching together the parental blocks closely aligns with NcrBgl’s
actual structure (RMSD = 1.15 Å).
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Figure 4.5: Directed evolution recovers the activity of NcrBgl to wild-type levels. Activity
is measured in lysate with a 1-hour assay on pNPG at 37◦C and normalized relative to
NcrBgl. The new mutations found at each round are listed (numbering based on the parental
alignment). Five rounds of directed evolution increased the activity of NcrBgl almost 1000-
fold.
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4.8 Supplementary information

2 

Supplementary Table 1 DNA sequence of NcrBgl. 
 
ATGCATCACCACCACCATCACATGAACGTTAAGAAATTCCCAGAAGGCTTCCTGTGGGGCGTTGCGACC
GCGTCTTACCAGATTGAGGGTTCCCCGCTGGCAGATGGTGCGGGCATGAGCATTTGGCACACCTTTAGC
CATACCCCGGGTAATGTTAAGAATGGCGATACGGGCGATGTTGCTTGCGACCATTACAATCGTTGGAAA
GAAGATATTGAGATTATCGAAAAGCTGGGCGTCAAGGCGTACCGCTTCAGCATCTCCTGGCCGCGTATC
CTGCCGGAAGGCACGGGCCGTGTCAATCAGAAAGGTCTGGATTTCTATAACCGCATCATTGACACCCTG
CTGGAGAAAGGTATTACCCCGTTTGTCACCATCTTCCACTGGGATCTGCCGTTTGCGCTGCAACTGAAG
GGCGGTTTGCTGAATCGTGAGATTGCCGATTGGTTCGCAGAGTACAGCCGCGTGCTGTTCGAGAACTTC
GGCGACCGTGTCAAGAATTGGATTACCTTTAACGAACCGCTGTGTAGCGCGATTCCGGGTTACGGTTCT
GGCACGTTCGCTCCAGGTCGTCAAAGCACGAGCGAGCCGTGGACGGTGGGTCATAACATTCTGGTGGCC
CACGGTCGTGCGGTCAAGGTCTTTCGTGAAACGGTTAAGGACGGTAAAATCGGTATTGTTCTGAACGGC
GACTTCACGTACCCGTGGGACGCAGCGGACCCGGCAGACAAAGAGGCCGCAGAGCGCCGTCTGGAGTTC
TTCACTGCATGGTTTGCAGACCCGATCTATCTGGGCGACTATCCAGCCAGCATGCGTAAGCAGTTGGGT
GACCGTCTGCCGACCTTTACCCCGGAAGAACGTGCGCTGGTTCACGGTAGCAACGACTTTTACGGTATG
AACCATTATACCTCGAACTATATCCGCCACCGCTCCAGCCCTGCGTCTGCGGACGATACGGTTGGCAAT
GTTGATGTGCTGTTTACCAATAAACAAGGTAACTGCATTGGCCCGGAGACTGCGATGCCGTGGCTGCGT
CCGTGTGCGGCTGGTTTCCGCGACTTTCTGGTTTGGATTAGCAAACGTTATGGTTATCCTCCGATCTAT
GTGACCGAAAATGGTGCGGCCTTCGATGATGTGGTTAGCGAGGATGGTCGCGTTCACGATCAGAATCGT
ATCGACTACCTGAAAGCATATATCGGTGCAATGGTGACCGCCGTGGAATTGGACGGTGTGAATGTAAAA
GGTTACTTTGTCTGGAGCTTGCTGGATAACTTCGAGTGGGCGGAAGGTTACAGCAAGCGTTTTGGCATC
GTGTACGTGGATTACAGCACCCAAAAACGCATCGTGAAGGACAGCGGTTATTGGTACTCCAATGTCGTC
AAAAACAACGGCTTGGAGGACTGA 
 

Supplementary Figure 4.6: DNA sequence of NcrBgl.
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Data collection
Space group P 31 1 12
Cell dimensions

a, b, c (Å) 115.38, 115.38, 282.54
a, b, g (◦) 90.0, 90.0, 120.0

Resolution (Å) 37.8 - 3.0 (3.00 - 3.15)
Rmerge 5.2 (3.8)
I / sI 5.2 (3.8)
Completeness (%) 99.6 (99.6)
Redundancy 4.9 (4.8)

Refinement
Resolution (Å) 37.4 - 3.0
No. reflections 41124
Rwork / Rfree 0.24 / 0.29
No. atoms

Protein 9869
Ligand/ion -
Water 2

B-factors Protein 13.1
Ligand/ion -
Water -

R.m.s. deviations
Bond lengths (Å) 0.014
Bond angles (◦) 1.73

Supplementary Table 4.1: Data collection and refinement statistics for 4GXP. All data were
collected from a single crystal. Values in parentheses are for highest-resolution shell.
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Chapter 5

Non-contiguous SCHEMA protein
recombination
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5.1 Summary

SCHEMA is a method of designing protein recombination libraries that contain a large

fraction of functional proteins with a high degree of mutational diversity. In the previous

chapter we illustrated the method for designing libraries by swapping contiguous sequence

elements. Here, we introduce the NCR (“noncontiguous recombination”) algorithm to iden-

tify optimal designs for swapping elements that are contiguous in the 3-D structure but not

necessarily in the primary sequence. Our design recombines 3 fungal cellobiohydrolases

(CBH1s) to produce a library containing more than 500,000 novel chimeric sequences.

5.2 Introduction

As discussed in Chapter 2, SCHEMA [1] seeks to maximize the probability that a library of

chimeric proteins will be functional by using structural information to identify swappable

sequence elements (“blocks”). We want to minimize the average SCHEMA energy (< E >)

of all the chimeras in a library, as this increases the fraction of functional chimeras [2].

When recombining sequence elements that are contiguous along the polypeptide chain, we

use RASPP [3] to identify optimal crossovers that minimize < E >.

In this chapter, we design SCHEMA libraries with even lower < E >s by removing the

constraint that blocks be contiguous along the polypeptide chain. These non-contiguous

blocks of sequence are still contiguous blocks of structure in the folded protein. We use

non-contiguous recombination (NCR) (Smith et al. submitted) to computationally search

for optimal non-contiguous SCHEMA library designs. This approach to chimera design has

become feasible now that the genes can be made by total gene synthesis.

Here, we design a SCHEMA library that recombines 3 fungal cellobiohydrolases (CBH1s)
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splitting each homolog into 12 blocks. Shuffling these blocks generates a chimera library of

312 = 531,441 possible sequences. We have previously designed a library very similar to this

one (Smith et al. in preparation) and identified several stabilizing sequence elements. NCR-

designed libraries can have significantly lower disruption than RASPP (contiguous) designs

from the same parent sequences. Alternatively, NCR enables recombination of parents with

lower sequence identity. We recommend analysis of NCR-designed libraries by making an

informative sample set of genes and using those to build predictive models, as we have done

for RASPP-designed libraries [4].

5.3 Materials

1. A Unix-based computer that can run python scripts (see Note 1). Python can be

downloaded from:

http://www.python.org/download/

2. Download and unpack the NCR toolbox. This is available from:

http://cheme.che.caltech.edu/groups/fha/media/ncr.zip

3. Download MUSCLE (see Note 2). This is available from:

http://www.drive5.com/muscle/downloads.htm

Unpack the compressed file and place the executable in the directory ‘ncr/tools/muscle’

(see Note 3).

4. Download hmetis (see Note 4). This is available from:

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download

Unpack the compressed file and place the hmetis folder in the directory ‘ncr/tools’

(see Note 3).
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5. A multiple sequence alignment of the parental sequences we wish to recombine (see

Note 5). This alignment should be in FASTA format (see Note 6) and the file should

be named ‘alignment.fasta’. As recombination parents, we pick the CBH1 sequences

from C. thermophilum, H. jecorina, and T. emersonii, which have about 60% pairwise

sequence identity. These CBH1s have a catalytic domain, a linker and a cellulose-

binding domain. The available crystal structures are for the catalytic domain, thus

we only considered this domain for recombination (see Note 7). To eliminate the

possibility of generating unpaired disulfide bonds, we mutated two residues in the T.

emersonii CBH1 sequence to cysteine (see Note 8). We used PROMALS3D [5] to

align the parental sequences.

6. A PDB structure file of one of the parental sequences (see Note 9). We use the T.

emersonii structure, ‘1Q9H.pdb’. Alternatively, if no structure is provided, the NCR

tools can search for suitable structures from the PDB database (see Note 10).

5.4 Methods

1. Place the parent sequence alignment file (alignment.fasta) in the ‘ncr’ folder. Place

the PDB structure file (1Q9H.pdb) in the directory ‘ncr/structures’.

2. Set the ‘Number of blocks’ to 12 and ‘Find all PDB structures’ to 0 in the ‘init.txt’

file (see Note 10).

3. Run the following command (see Note 11) in the ‘ncr’ directory:

python ncr.py

This NCR script identifies a set of candidate libraries with low < E > and sends these

results to the terminal window (see Note 12) (Figure 5.1). These libraries are saved
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in the directory ‘ncr/output’ and listed in the text file ‘library12 result list.csv’ (see

Note 13).

4. Pick an NCR library (see Note 14). In this case, we pick the library ‘library12 2.output’,

with < E > = 16.8 and < m > = 83.9 (Figure 5.2).

5. Certain non-conserved residues still need to be assigned to blocks (see Note 15).

Open ‘ncr/output/library12 2.output’ and assign residues 41, 175, 197, 199, 202, and

442 to blocks G, C, A, A, A, and J, respectively (see Note 16).

6. Run the following command (see Note 17) in the ‘ncr’ directory:

python picklibrary.py library12 2

This generates a list of all the chimeras in the chosen library along with their SCHEMA

energies, number of mutations, and sequences (see Note 18). This list is saved as a

text file ‘chimeras.output’ in the directory ‘ncr/picked libraries/library12 2’.

7. We synthesize the genes encoding a subset of the chimera library (see Note 19).

Before expressing the CBH1 chimeras, we add a linker and cellulose-binding domain

to the recombined catalytic domains.

5.5 Notes

1. The NCR toolbox ‘ncr’ is written for python 2.6 on a Unix-based system. We recom-

mend using this python release for the NCR toolbox.

2. Ensure you download the correct distribution of MUSCLE for your system. For

example, on Apple OS X it might be ‘muscle3.8.31 i86darwin64.tar.gz’. The NCR

tools were written for MUSCLE 3.8.
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3. The NCR toolbox unpacks as a folder called ‘ncr’. Directories are given relative to

this folder. For example there is a folder in ‘ncr’ called ‘tools’ and the directory would

be ‘ncr/tools’.

4. Ensure you download the correct distribution of hmetis for your system. For example,

on Apple OS X it might be ‘hmetis-1.5-osx-i686.tar.gz’. The NCR tools were written

for hmetis 1.5.

5. We assume the parental proteins share the same structural fold. If structures are

available for more than one parental protein, we confirm the parents have the same

fold by aligning the parental structures. It is important that the sequence alignment

is accurate, especially when the parent sequence identities are low.

6. In FASTA format, the name of each sequence begins with ‘>’, for example, ‘>Temersonii’.

After each name there should be a return, followed by the corresponding aligned se-

quence.

7. SCHEMA library designs require a protein structure. If no structural information

is available for a parent sequence, but there are structures of homologs, we can use

MODELLER to build a structure model [6]. An inaccurate homology model hinders

SCHEMA library design; an actual structure is preferred.

8. We assumed but did not verify that broken disulfide bonds are destabilizing. In

this case, C. thermophilum and H. jecorina CBH1s have 10 disulfide bonds while T.

emersonii has 9 disulfide bonds. If the cysteines from the missing disulfide bond are

in separate sequence blocks, chimeras with unpaired cysteines can result. We avoided

this by modifying the parental sequence of T. emersonii to include the remaining

cysteine pair.
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9. One or more structures is needed to identify the residue-residue contacts. When

possible, we pick high-resolution structures (< 2.0Å). If a PDB file contains more

than one chain, each chain is split into its own structure file labeled XXXX.A.pdb,

XXXX.B.pdb, etc. The NCR tools can handle multiple structures. Residue-residue

contacts from multiple structures of the same parent form a parental contact map if

these contacts are present in at least 50% of the structures. If structures from multiple

parents are used, each contact is weighted by the fraction of parental contact maps it

appears in.

10. The ‘init.txt’ file is in the ‘ncr’ folder. It specifies two parameters for the NCR toolbox:

• ‘Number of blocks’: The number of blocks in the designed libraries. It can either

be a number (e.g. 8) or a range of numbers (e.g. 2-6) for designing a range of

libraries with different block sizes.

• ‘Find all PDB structures’: If 1, the NCR script will search, download and use

all suitable structures from the PDB database. If 0, the user will provide one or

more structures.

Increasing the number of blocks in a library increases library size and reduces the

average number of mutations in a block. The user may want smaller blocks if searching

for single mutations that cause specific functional changes. However, it is harder to

find desirable chimeras in larger libraries and increasing the number of blocks increases

a library’s < E >. We chose to split our 3 parent proteins into 12 blocks.

11. The python script ‘ncr.py’ generates one or more parental contact maps, calculates the

SCHEMA contacts and searches for low < E > libraries. This script may take several

hours to complete, depending on protein size and computer specifications. Progress
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is displayed in the terminal window. The script uses heuristic algorithms to find near

optimal solutions, thus results will vary each time ‘ncr.py’ is run.

12. In the terminal window, NCR lists < E > and < m > for each library as well as

the distribution of mutations among the 12 blocks. This distribution is given as a

list of 12 numbers, each referring to the number of mutations in a block with blocks

counting A, B, C, etc. There is a trade-off between the average SCHEMA energy of

a library (< E >) and how evenly distributed mutations are among the blocks. If

all the blocks are evenly sized, the solution space of possible libraries is small and so

< E > is large. As block sizes become uneven, the solution space of possible libraries

increases. This enables NCR to find libraries with lower < E >, but libraries with

very unevenly sized blocks may not be useful. NCR is designed to find low < E >

libraries for a range of block sizes.

13. In non-contiguous recombination, a library is defined by assigning every non-conserved

residue to a block. In the library text file ‘library12 2.output’, a designated block

(named ‘A’, ‘B’, ‘C’, etc.) appears beside every non-conserved residue. A dash (‘-’) is

placed next to every conserved residue. Residues are numbered based on the parental

sequence alignment. The results file ‘library12 result list.csv’ lists < E > and < m >

for each library.

14. NCR returns a set of candidate libraries with a range of < m > values. A lower

< E > implies more functional chimeras in the library. For moderately-sized proteins

(250-500 amino acids) we try to pick SCHEMA libraries with < E > less than 30. For

non-contiguous recombination of homologs with >55% sequence identity, often all the

candidate libraries have < E > below 30. In our case, we pick a library with evenly
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sized blocks. This will make it easier to identify stabilizing point mutations within

a stabilizing block. Protein-specific biochemical and structural knowledge may also

help users pick from the candidate libraries. Note that the < E > value is lower and

the < m > value higher in this NCR design than the previously described RASPP

design.

Blocks are not always one contiguous piece of structure. Sometimes, a group of

residues will only have SCHEMA contacts with one another and not with the rest

of the protein. These ‘disconnected blocks’ can belong to any block without altering

< E >. NCR will assign these disconnected blocks to blocks such that < m > is max-

imized. This can result in a block comprising two separate pieces of structure. These

disconnected blocks are apparent when blocks are visualized on the PDB structure.

In this case, blocks ‘A’, ‘G’, and ‘J’ each contain a disconnected block.

15. Some non-conserved residues do not have any SCHEMA contacts. These residues

often appear on the surface of the protein, in a region that is highly conserved or in

a region where structural information is missing. NCR does not assign these residues

to a block and instead the decision is left to the user. Unassigned residues are printed

to the terminal. In this case residues 41, 175, 197, 199, 202, and 442 have not been

assigned a block.

16. Looking at the structure ‘1Q9H.pdb’, we designate each unassigned residue to the

same block as one of its neighboring residues. This will slightly alter < m > for the

library, but leave < E > unaffected. We can alter the block assignments by editing

the text file ‘ncr/output/library12 2.output’. In this file unassigned residues, like

conserved residues, have a dash (‘-’) in place of a block (‘A’, ‘B’, ‘C’, etc.).
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17. The python script ‘picklibrary.py’ generates all the chimeras in a given library. The

name of the library ‘library12 2’ needs to be provided as an argument. Any non-

conserved residues that have not been assigned to a block will be automatically as-

signed to block A. For a large library such as this one (more than 500,000 chimeras),

this script may take several hours to complete.

18. Chimeras are numbered according to the parental sequence of each block with the

numbers ordered from the first to the last block. Parents are numbered based on

the order they appear in the parental sequence alignment. For example, chimera

‘132213131322’ has parent 1 as the sequence of its first block (‘A’), parent 3 as its

second block (‘B’), etc. The amino acid sequence provided alongside each chimera

in ‘chimeras.output’ is built from the parent sequence alignment. It contains dashes

(‘-’) where there are gaps in the alignment. These dashes should be removed when

ordering the synthetic genes.

19. These chimeras are very difficult to construct with traditional cloning techniques.

We pick a subset of the library to synthesize and analyze. We ensure every block

from every parent is represented independently of one another in this subset. This

enables us to model the effects of the different blocks on biochemical properties such as

stability [7]. We pick a set of chimeras to be most informative using the Submodular

Function Optimization Matlab toolbox [8, 9]. Alternatively, we could have picked a

set of chimeras that substitute one block at a time into the background of a parent

that expresses well, such as T. emersonii CBH1 [10].
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5.6 Figures

Designing libraries...!
  library12_1: E = 18.222, m = 84.035, blocks = [17 17 19 15 17 19 17 17 17 17 19 17 ]!
  library12_2: E = 16.778, m = 83.929, blocks = [15 19 16 16 20 20 15 19 17 15 18 18 ]!
  library12_3: E = 17.667, m = 83.588, blocks = [15 15 20 16 18 18 17 21 18 19 14 17 ]!
  library12_4: E = 16.778, m = 83.779, blocks = [14 16 19 17 20 20 14 17 19 15 19 18 ]!
  library12_5: E = 16.222, m = 83.589, blocks = [14 19 17 14 18 20 21 21 18 17 16 13 ]!
  library12_6: E = 16.444, m = 83.422, blocks = [14 18 18 15 20 17 21 22 16 13 17 17 ]!
  library12_7: E = 16.222, m = 83.412, blocks = [12 17 17 21 22 17 13 17 20 16 18 18 ]!
  library12_8: E = 13.556, m = 82.819, blocks = [10 20 17 28 22 19 12 15 18 10 17 20 ]!
  library12_9: E = 15.444, m = 82.939, blocks = [11 21 14 26 17 22 12 17 22 11 17 18 ]!
 library12_10: E = 13.556, m = 82.682, blocks = [10 19 17 10 12 18 16 17 20 30 17 22 ]!
 library12_11: E = 13.778, m = 82.635, blocks = [10 17 20 30 17 22 11 20 14 11 18 18 ]!
 library12_12: E = 15.889, m = 82.777, blocks = [10 17 22 11 23 19 17 15 9 26 22 17 ]!
 library12_13: E = 13.333, m = 82.507, blocks = [9 13 13 10 22 17 18 20 17 30 22 17 ]!
 library12_14: E = 13.778, m = 82.545, blocks = [12 18 18 10 20 19 30 22 17 11 20 11 ]!
 library12_15: E = 12.222, m = 81.440, blocks = [11 15 24 10 20 22 12 35 22 6 20 11 ]!

Figure 5.1: Libraries returned by NCR. The average SCHEMA energy (< E >) and average
number of mutations (< m >) for each library is printed to the terminal window. In addi-
tion, the output displays the distribution of the mutations among the 12 blocks. Libraries
with higher < E > have more evenly sized blocks. The chosen library is highlighted with
an arrow.
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Figure 5.2: Visualizing the chosen NCR design. A) The multiple sequence alignment of the
parent CBH1s with each of the 12 blocks highlighted in a different color. Conserved residues
are colored gray. It is clear that the blocks are non-contiguous along the polypeptide chain.
B) The blocks highlighted on the CBH1 structure ‘1Q9H.pdb’. Most of the blocks are
contiguous structural elements in 3-D.
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Chapter 6

H. jecorina cellobiohydrolase I
stabilizing mutations identified
using non-contiguous
recombination
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6.1 Abstract

Non-contiguous recombination (NCR) is a simple method to identify pieces of structure

that can be swapped among homologous proteins. These ‘blocks’ are encoded by elements

of sequence that are not necessarily contiguous along the polypeptide chain. We used NCR

to design a library in which blocks of structure from H. jecorina cellobiohydrolase I (Cel7A)

and its two thermostable homologs from T. emersonii and C. thermophilum are shuffled to

create 531,438 possible chimeric enzymes. We constructed a maximally informative subset

of 35 chimeras to analyze this library and found that the blocks contribute additively to the

stability of a chimera. Within two highly stabilizing blocks, we uncovered six single amino

acid substitutions that each improve the stability of H. jecorina cellobiohydrolase I by 1 -

3◦C. The small number of measurements required to find these mutations demonstrates that

non-contiguous recombination is an efficient strategy for identifying stabilizing mutations.

6.2 Introduction

Highly thermostable cellulases are desirable for the production of sugars from cellulosic

substrates. Thermo-tolerant mixtures of fungal cellulases have been shown to degrade cel-

lulose faster at elevated temperatures than mixtures from mesophilic fungi [1]. At elevated

temperatures, cellulolytic processes can benefit from reduced contamination and viscosity

of the biomass slurry as well as increased cellulase hydrolysis rates.

The success of the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei)

as an industrial cellulase producer derives from its ability to secrete cellulases at up to 100

g/L. Cellobiohydrolase I (CBHI, Cel7A) is one of the most important cellulase components.

Removal of the cbh1 gene reduces the cellulolytic activity of the fungus by 70% and the
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total secreted protein by 40% [2]. Low expression levels and altered glycosylation patterns

[3, 4], however, make this enzyme difficult to engineer in heterologous expression systems.

There have been various efforts to engineer improved CBHI variants, including screening

random mutants [5], engineering disulfide bonds [6], and DNA shuffling [7]. In addition, we

have sought to enhance CBHI stability through protein recombination [8] and predictive

methods [9]. The most stable CBHI enzymes from these latter works have more than 150

mutations from H. jecorina CBHI, which could adversely affect the high titers of secreted

protein in fungal expression systems. We therefore sought to stabilize the H. jecorina CBHI

with minimal mutation to its sequence and in a way that does not decrease its activity.

We recently introduced a method for non-contiguous protein recombination [10] that

identifies elements of structure (‘blocks’) that can be shuffled among homologous proteins.

Unlike previous SCHEMA recombination libraries that swap elements of sequence [11], these

elements of structure are not necessarily contiguous polypeptide sequences. Here we show

how non-contiguous recombination can be used to efficiently identify stabilizing mutations

that have been incorporated into CBHI homologs in nature.

Swapping structural blocks among H. jecorina CBH1 and two thermostable homologs

from T. emersonii and C. thermophilum, we analyze a subset of CBHIs from a library

containing more than 500,000 possible chimeric sequences. We predict the thermostabilities

of all library members using data from a maximally informative subset of just 32 chimeras

(and 3 parents) and identify several blocks that are predicted to stabilize H. jecorina CBHI.

Searching within these blocks, we find six single amino acid substitutions that stabilize

H. jecorina CBHI by more than 1◦C. One previously undiscovered mutation improves its

thermostability by 3◦C.
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6.3 Results

6.3.1 Non-contiguous protein recombination library design

We wish to shuffle elements of sequence among homologous proteins to create a library

of chimeras highly enriched in functional sequences. A good metric for the functional im-

pairment of a chimeric protein is its SCHEMA disruption [12], which is the number of

non-native residue-residue contacts formed in the recombined sequence. We have used this

metric previously to design recombination libraries that shuffled contiguous blocks of se-

quence [11, 13]. Recombination of structural elements can be significantly less disruptive

than recombining sequence elements. We recently presented a method for finding the op-

timal structural blocks for any given set of parent proteins, based on a graph partitioning

algorithm [10].

For NCR, we create a graph from the non-native residue-residue contacts, with nodes

corresponding to residues and edges corresponding to non-native contacts. NCR minimizes

the SCHEMA disruption by identifying minimal cuts that partition the graph [10]. We

partition the graph with hmetis [14, 15], a suite of graph partitioning tools. Residues are

assigned to blocks based on how nodes are assigned to partitions. Blocks can have non-

contiguous sequences but will be contiguous pieces of structure in 3 dimensions. Shuffling

these blocks generates a library of non-contiguous chimeras.

As parental enzymes we chose the catalytic domains of three fungal CBHI cellulases:

H. jecorina CBHI (P1), T. emersonii CBHI (P2), and C. thermophilum CBHI (P3). T.

emersonii CBHI has one fewer disulfide bond than H. jecorina CBH1 and C. thermophilum

CBH1, which each have 10. To ensure unpaired cysteines do not appear in the chimeras, we

mutated P2 to include the missing cysteine pair (G4C, A72C). This extra disulfide bond is
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known to increase the stability of P2 [6]. These three cellulase catalytic domains were used

in a previous study to create a contiguous block SCHEMA recombination library [8].

For ease of identifying stabilizing point mutations within a block, we divided mutations

among blocks so each block contained only a small number of mutations. We also required

the blocks to be of equal size to ensure a fair comparison of block stability contributions.

We designed a 12-block library where each block contained approximately 18 non-conserved

residues (see Materials and Methods). The design has an average SCHEMA disruption

(number of disrupted contacts) of 24.8 and an average of 83.4 mutations from the closest

parent. Most non-native residue-residue contacts are sequestered within blocks (Figure

6.1A), which increases the fraction of the library that is likely to be folded and functional.

While almost all the blocks are contiguous pieces of structure (Figure 6.1B), they each

comprise many fragments of the polypeptide chain (Figure 6.1C).

Some groups of residues only have SCHEMA contacts with one another and not with the

rest of the protein. These disconnected ‘sub-blocks’ can belong to any block without altering

the SCHEMA disruption and they appear separate from the rest of the block. Blocks ‘A’,

‘D’, ‘E’ and ‘J’ contain disconnected sub-blocks and thus contain several separate pieces of

structure.

6.3.2 Stabilities of an informative subset

Our 3-parent, 12-block library contains more than half a million chimeras. The nature

of non-contiguous recombination makes it very difficult to construct these chimeras with

traditional cloning techniques. Because it is neither feasible nor necessary to synthesize

and analyze the entire library, we selected a highly informative subset of 35 chimeras to

construct and characterize. These chimeras were chosen to maximize mutual information
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about the sequences (see Materials and Methods), as described previously for a library

of chimeric arginases [16]. At the same time, the chosen sequences had low SCHEMA

disruption in order to enrich the chimera subset in functional sequences. To the C-terminus

of each chimeric catalytic domain we added the linker and carbohydrate binding module

from H. jecorina CBHI.

Of the 35 chimeras synthesized, 32 (91%) were expressed with detectable levels of ac-

tivity. We quantified the thermostabilities of the 32 chimeras and three parents using two

measures. We define TR50 as the incubation temperature at which an enzyme loses half

its (unincubated) activity. We incubated the enzymes at a range of temperatures for 10

minutes without substrate and measured the residual activities. These TR50s are plotted in

Supplementary Figure 6.7. Most of the chimeras have stabilities that lie between those of

the parents, but several were more stable than the most stable parent, P2.

We define TA50 as the elevated temperature at which an enzyme loses half its activ-

ity measured at its optimum temperature. We ran a 2-hour activity assay at a range of

temperatures and measured the total enzyme activities. Whereas TR50 is a measure of en-

zyme tolerance to thermal stress, TA50 measures an enzyme’s ability to function at elevated

temperature.

Values of TA50 are plotted in Figure 6.2A. TR50s and TA50s are correlated for the chimeras

(Figure 6.2B), but there are some outliers where the TR50 greatly exceeds the TA50. Even

though the enzymes are incubated in 1 mM DTT, these are cases where the CBHIs are able

to refold and regain activity once the temperature is reduced for the assay (Supplementary

Figure 6.8).
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6.3.3 Modeling thermostability

We have previously shown that contiguous blocks of sequence contribute additively to the

stabilities of chimeras and that these stabilities are predictable with simple additive block

models trained on a small sample of a library [17, 18]. Here we used the same linear

regression model to demonstrate that contiguous blocks of structure (with non-contiguous

blocks of sequence) also contribute additively to the stabilities of recombined enzymes. We

constructed predictive models of TR50 and TA50 based on the sequences of the 32 functional

chimeras and three parental cellulases (see Materials and Methods). As shown in Figure

6.3A, the TR50 model accurately predicts the stabilities of the library sample (r2 = 0.81).

This model provides the predicted contributions of each structural block to TR50 (Figure

6.3B). Similarly, we trained a model that fits the TA50 stability data (r2 = 0.74, Figure

6.3C). The predicted block contributions to TA50 are shown in Figure 6.3D. In both models,

block G appears to be highly stabilizing to parent P1 when taken from either parent P2 or

P3. There are two mutations common to P2 and P3 in this block, T360A and F362M.

With the stability models constructed from this highly informative sample set, we can

predict the TR50s and TA50s of all the untested chimeras in the library. We correctly iden-

tified seven chimeras from the library expected to have both high TR50s and TA50s (Figure

6.4A and B). While two of the predicted chimeras had TR50s 2◦C higher than the most

stable parent (P2), none of the chimeras had TA50s above the most stable parent.

6.3.4 Stabilizing point mutations

We wish to stabilize H. jecorina CBHI (P1) with minimal disruption to its amino acid

sequence. Using linear regression, we have identified two highly stabilizing blocks, block

G from P2 and block G from P3. We placed each of these blocks in place of block G in
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H. jecorina CBHI and found they were indeed stabilizing, improving H. jecorina CBHI’s

TR50 by 1.7◦C and 1.1◦C, respectively (Supplementary Table 6.3). Given that a single

block is made up of a combination of stabilizing and destabilizing mutations, we wanted to

identify the individual amino acids that have the most significant positive contribution to

stability. Similar to the approach we used on Cel6 cellulases [19], we searched these blocks

for individual mutations that stabilize P1 by substituting each of the 23 point mutations into

P1 and measuring the TA50 (Figure 6.5A and B). Most of the amino acid substitutions have

only a slight effect on H. jecorina CBHI thermostability (less than 1◦C). Of the remaining

mutations, three are destabilizing and six are stabilizing. One of the stabilizing mutations,

F362M, present in both P2 and P3, is stabilizing by a full 3◦C. This mutation allows H.

jecorina CBHI to retain higher levels of activity at elevated temperatures (Figure 6.6).

We created seven mutants that were combinations of the most stabilizing mutations.

None were more stable than the F362M single mutant (Supplementary Table 6.4).

6.4 Discussion

We have utilized a new non-contiguous recombination method to design a library with more

than 500,000 sequences enriched in functional family 7 cellobiohydrolases. NCR identifies

swappable elements of structure that are not necessarily contiguous pieces of polypeptide.

Because library designs with contiguous sequence elements are a small subset of the large

number of possible non-contiguous designs, this approach identifies libraries that disrupt

fewer SCHEMA contacts and therefore contain more functional chimeric proteins than

contiguous block design algorithms such as RASPP [20]. Indeed, in the library 39 of the 42

synthesized chimeras were functional even though on average they had 79 mutations from

the closest parent.
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By measuring the thermostabilities of a maximally informative subset of 32 chimeras,

we showed that the structural blocks identified by NCR contribute additively to protein

stability. Furthermore, we used a block-additive stability model to correctly identify several

stable chimeras in the library.

H. jecorina CBHI, T. emersonii CBHI, and C. thermophilum CBHI differ at 213 residues.

It is difficult to identify the stabilizing mutations from just analyzing the sequences, and

it would be cumbersome to construct and test all 273 single mutants. The ‘divide and

conquer’ method we present first measures the stabilities of functional groups of mutations

(blocks) and then identifies stabilizing single mutants within the most stable blocks. With

a small number of experimental measurements, we identified two blocks that significantly

stabilize H. jecorina CBHI and uncovered a single amino acid substitution that stabilizes

this important industrial enzyme by 3◦C.

Despite much previous work on stabilizing H. jecorina CBHI, the F362M mutation has

not been described previously. The mutation is located close to the surface of the protein

facing inwards and the sulfur atom is proximal to the sulfur of another methionine residue.

The enhanced stability may come from interaction of these two residues, possibly a hydrogen

bond if one of the methionines is oxidized to methionine sulfoxide.

NCR identifies elements of structure that, when swapped, preserve protein function

[10]. Splitting the CBHI structure into a relatively large number of equally sized blocks

and swapping these structural elements with stable homologs has proven to be an efficient

strategy to search for stabilizing mutations. While we tested all 23 single mutations from

the two most stabilizing blocks, the most stable single mutation was present in both blocks.

A method of prioritizing point mutations within a stable block, such as using consensus

mutagenesis, may further improve the speed with which valuable mutations are identified.
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6.5 Materials and methods

6.5.1 Non-contiguous recombination

PROMALS3D [21] was used to create a structure-based sequence alignment of the catalytic

domains from H. jecorina CBHI (P1), T. emersonii CBHI (P2), and C. thermophilum CBHI

(P3). Residues that have (non-hydrogen) atoms closer than 4.5Å are considered to be in

contact with one another. All residue-residue contacts were identified in PDB structure

1Q9H.pdb chain A. Contacts not conserved among the three parent enzymes form the

SCHEMA contact map.

Designing libraries that minimize the average number of SCHEMA contacts in the re-

sulting chimeras was reformulated as a graph partitioning problem. The SCHEMA contact

map was transformed into a graph with each node representing a non-conserved residue

and each weighted edge representing an average SCHEMA contact between two residues.

Residues were assigned to blocks such that the sum of weighted edges between blocks was

minimized. For the 12-block library designs, the hmetis graph partitioning suite [14, 15]

was used to perform a series of 12-way partitions of the SCHEMA contact map. A library

design was chosen with an average SCHEMA energy (number of disrupted contacts) of 24.8

and an average of 83.4 mutations from the closest parent. Residues 41, 175, 197, 199, 202,

and 442 have no SCHEMA contacts and were not partitioned into blocks; we assigned these

residues to blocks D, G, B, A, A, J, respectively, based on their spatial proximity to those

blocks. The C-terminal linker and carbohydrate binding module from H. jecorina CBHI

was appended to each chimera.
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6.5.2 Optimal experimental design

A greedy algorithm was employed to find a subset of sequences from the library with low

SCHEMA disruption and maximized mutual information, as described [16]. Due to com-

putational constraints, the informative set of chimeras was identified from 50,000 randomly

chosen chimeras with a SCHEMA disruption below 30, rather than the entire library. This

optimized experimental design was carried out with the Submodular Function Optimization

Matlab toolbox [22].

6.5.3 Gene synthesis

The chimeric CBHI genes were optimized for expression in S. cerevisiae and synthesized by

DNA2.0 (Menlo Park, CA, USA).

6.5.4 Protein expression

The genes encoding parental and chimeric CBHI catalytic domains were cloned into the

yeast expression vector Yep352/PGT91-1-αss with an N-terminal His6 tag and the H. jeco-

rina CBHI linker and cellulose binding domain attached to the C-terminus. These vectors

were transformed into yeast strain YDR483W BY4742 (Matα hus3∆1 leu2∆0 lys2∆0

ura3∆0 ∆kre2, ATCC No. 4014317) as described [23] and plated on synthetic dropout-

uracil medium with 10 g/L agar. The plates were incubated for 2 days at 30◦C. 5 mL of

synthetic dropout-uracil medium was inoculated by a single yeast colony from a plate and

incubated for 1 day at 30◦C, with shaking at 250 rpm. Cultures were expanded at a 1:10

ratio into either 10 mL or 50 mL of yeast peptone dextrose (YPD) medium (10 g yeast

extract, 20 g peptone, 20 g dextrose) and incubated for 2 days at 30◦C, with shaking at 250

rpm. The cells were pelleted by centrifugation at 5000 g for 10 min and the supernatant,
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containing the secreted cellulases, was decanted and separated through a 0.20 µm pore size

conical filter unit from Nalgene (Rochester, NY, USA). The supernatant was concentrated

up to 4-fold using Vivaspin 20 spin columns with a 30 kDa MWCO PES membrane from

GE Healthcare (Little Chalfont, UK) and stored at 4◦C with 0.02% sodium azide and 1

mM phenylmethanesulfonyl-fluoride.

6.5.5 Thermostability residual activity assay (TR50 measurement)

In a 96-well PCR plate, 100 µL of supernatant is added to 25 µL of 625 mM sodium acetate,

pH 4.8 with 5 mM dithiothreitol (DTT), giving a final concentration of 125 mM sodium

acetate, pH 4.8 and 1 mM DTT, as described [9]. The plate is incubated in a gradient

thermocycler for 10 min at a range of temperatures, and then cooled to 4◦C. To each well,

25 µL of 1.8 mM 4-methylumbelliferyl lactopyranoside (MUL) from Sigma-Aldrich (St.

Louis, MI, USA) dissolved in 18% DMSO and 125 mM sodium acetate was added. The

heat-treated cellulases were incubated in a thermocycler for 90 min at 45◦C. The reaction

was quenched by adding 150 µL of 1 M Na2CO3 and cellulase activity was quantified by

measuring the fluorescence of released 4-methylumbelliferone with excitation at 364 nm and

emission at 445 nm.

6.5.6 Thermostability activity assay (TA50 measurement)

In a 96-well PCR plate, 100 µL of supernatant is added to 25 µL of 625 mM sodium acetate,

pH 4.8, and 25 µL of 1.8 mM 4-methylumbelliferyl lactopyranoside (MUL) dissolved in 18%

DMSO and 125 mM sodium acetate. The plate is incubated in a gradient thermocycler

for 90 min at a range of temperatures, and then cooled to 4◦C. The reaction was quenched

by adding 150 µL of 1 M Na2CO3 and cellulase activity was quantified by measuring the
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fluorescence of released 4-methylumbelliferone with excitation at 364 nm and emission at

445 nm.

6.5.7 Linear regression

Stability models for TR50 and TA50 were constructed as described previously [17] and trained

using Matlab’s ‘regress’ function.
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6.6 Figures

Figure 6.1: Non-contiguous recombination library design. A) A graph view of the blue
block and neighboring residues. Nodes represent residues and edges represent residue-
residue contacts. Colored, dashed lines define the graph partitions for each block. Contacts
to residues from other blocks (highlighted) will be broken upon recombination. B) The
12-block design displayed on the structure of P2 (1Q9H.pdb). Each block (labeled A to
L) is represented by a different color and conserved residues are in gray. C) The 12-block
design displayed on the numbered sequence alignment of the catalytic domains of the three
parental enzymes.
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Figure 6.2: Thermostabilities of a maximally informative subset of the library. A) TA50:
the elevated temperature at which a chimera’s activity is half its maximum. Measurements
were performed in duplicate. The parental enzymes are highlighted. B) A plot of the
elevated temperature at which an enzyme loses half its activity (TA50) against the incu-
bation temperature at which an enzyme loses half its (unincubated) activity (TR50). The
parental cellulases are highlighted with black squares. While most of the TR50 and TA50

measurements are similar, several cellulases have significantly higher TR50 than TA50.
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Figure 6.3: The thermostability of a chimera can be predicted with a simple linear model
that sums the contributions from each block. A) A linear thermostability model trained on
the TR50s of the chimeras accurately predicts the measured values (r2 = 0.81). Blocks G
and B from T. emersonii and C. thermophilum are predicted to be significantly stabilizing
relative to those blocks from H. jecorina. B) The predicted TR50 contributions of each block
from parents P2 and P3 relative to parent P1. C) A linear thermostability model trained
on the TA50s of the chimeras accurately predicts the measured values (r2 = 0.74). D) The
predicted TA50 contributions of each block from parents P2 and P3 relative to parent P1.
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Figure 6.4: The thermostability models identify stable CBHI chimeric cellulases in the
library. A) Predicted TR50 against measured TR50 for seven chimeras predicted to have
high stabilities (crosses). The original data used to train the model are represented as filled
diamonds. B) Predicted TA50 against measured TA50 for seven chimeras predicted to have
high stabilities (crosses). The original data used to train the model are shown as filled
diamonds.
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Figure 6.5: The effect on H. jecorina CBHI thermostability (TA50) for a series of point
mutations from two of the most stabilizing blocks. A) Block G, parent P2. B) Block G,
parent P3. Two of the mutations (T360A and F362M) are present in both blocks. F362M
is stabilizing by 3◦C.
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Figure 6.6: Effect of the mutation F362M (x) on the activity of H. jecorina CBHI (o) in
a 90-minute assay on MUL over a range of temperatures, performed in quadruplicate. To
account for differences in levels of secreted cellulase, CBHI activity was normalized by the
activity at 40◦C.
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Supplementary Figure 6.7: Thermostabilities of a maximally informative subset (32
chimeras) of the library. The TR50 is the incubation temperature at which a chimera’s
residual activity after 10 minutes is half its activity before incubation. Measurements were
performed in duplicate. The parental enzymes are highlighted.
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A B 
T. emersonii CBH1 Chimera 222211222322 

Supplementary Figure 6.8: TR50 measurements for a range of DTT concentrations. A)
Parental cellulase T. emersonii CBHI recovers some activity after incubation if there is no
DTT present. The enzyme does not recover activity when incubated with 1 mM DTT. B)
Chimeric cellulase 222211222322 is able to recover some activity after incubation with 1
mM DTT.
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123113322331

QQACTLQSETHPPLTWKRCSSGGTCSTVNGSVTIDANWRWTHTVSGSTNCYDGNTWDT
SLCTDDKSCAQTCCLDGADYSSTYGITTSGDSLNLKFVTQSAQKNVGSRVYLMASDTTYQ
MFELLNREFTFDVDVSNLPCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDAQC
PRDLKFIDGEANVEGWQPSSNNANTGIGDHGSCCSEMDVWEANSISEAVTPHPCTTVGQT
MCSGDDCGGTYSDNRYGGVCDPDGCDFNPYRMGNTSFYGPGMTVDTTKKMTVVTQFL
TDDGTDTGTLSEIKRFYVQDGKIIAQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRKG
GLAQMSKALAGPMVLVMSVWDDYYAQMLWLDSTYPTNETSSTPGAVRGSCPTDSGVPA
QVESQSPNSNVIFSNIRFGPIGSTVPGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGG
IGYSGPTVCASGTTCQVLNPYYSQCL

211213233112

QSACTLQSETHPPLTWQKCTAPGSCTQQTGSVTIDANWRWVHATNSSTNCYTGNTWSS
TLCPDNETCAKNCCLDGADYSSTYGITTSGNSLNLKFVTGSNVGSRVYLMASDTTYQIFK
LLGNEFSFDVDVSNLPCGLNGALYFVAMDADGGVSKYPTNTAGAKYGTGYCDSQCPRDL
KFINGQANVEGWEPSSNNANTGIGGHGSCCAEMDVWEANSISNAFTPHPCDTPGQEICEG
DGCGGTYSDNRYGGTCDPDGCDFNPYRQGNTSFYGPGSSFTLDTTKKLTVVTQFHKNSA
GVLSEIKRYYVQNGVTFQQPNSKIPGNPGNSITQEYCDAQEVAFGGSSFSDHGGMAKMGA
AMQQGMVLVMSVWDDYAANMLWLDSDYPTDADPTTPGIARGTCSTSSGVPSDVESQSP
NSNVIFSNIKFGPIGSTGNPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGY
SGPTVCASGTTCQVLNPYYSQCL

232232332132

QQACSLTAENHPSLTWQKCTAPGSCTQQTGAVVLDANWRWVHDVNGYTNCYTGNTW
DPTYCPDGETCAQNCCLDGADYEGTYGVTTSGNSLKLNFVTGSNVGSRLYLMENDTKYQ
MFELLGNEFSFDVDVSNLPCGLNGALYFVSMDADGGVSKYPNNKAGAKYGTGYCDAQC
PRDLKFINGEANVGNWTPSTNNANTGIGRYGSCCSEMDVWEANSISNAVTPHPCTTVGQ
SRCEADTCGGTYSSDRYAGVCDPDGCDFNPYRMGNTSFYGPGMTVDTTKKMTVVTQF
HKNSAGVLSEIKRFYVQDGKIIAQPNSDISGVTGNSITTEFCTAQEQAFGGSSFSDKGGLAQ
MSKALAGPMVLVMSLWDDYAANMLWLDSDYPTDADPTTPGIARGTCPTTSGVPSDVES
QSPNSYVTYSNIKFGPIGSTVPPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCG
GIGYSGPTVCASGTTCQVLNPYYSQCL

322321222212

QQACTATAENHPPLTWQECTSGGSCTTQNGAVVIDANWRWTHDVNGYTNCYTGNQWD
PTYCPDDETCAQNCCVDGAAYASTYGVTSSGSSLSIGFVTKHQYGTNVGARLYLLQDDST
YQIFKLLNREFSFDVDVSQLPCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQ
CPRDLKFIDGEANVEGWQPSSNDANAGFGDHGSCCAEMDVWEANSISNAVTPHPCDTPG
QTMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPGSSFTLDTTKKLTVVT
QFLTDDGTDTGTLSEIKRYYVQNGVTFQQPNSDISGVTGNSITTEFCTAQKQAFGDTDDF
SQHGGLAKMGAAMQQGMVLVMSLWDDHYAQMLWLDSTYPIDQAGAPGAERGTCPTDS
GVPAEIEAQSPNAKVTFSNIKFGPIGSTGNASPPGGNRGTTTTRRPATTTGSSPGPTQSHY
GQCGGIGYSGPTVCASGTTCQVLNPYYSQCL

Supplementary Table 6.1: Amino acid sequences of the maximally informative subset of 35
chimeric cellulases. The H. jecorina CBHI linker and cellulose binding domain are attached
to the C-terminus. The chimera nomenclature is a series of numbers, each representing
a parent for the blocks A-L. For example, chimera 123113322331 has parent 1’s sequence
for block A, parent 2 for block B, etc. The three chimeras with no detectable activity are
highlighted with an asterisk.
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331212211233 *

QSACTLQSETHPPLTWQECTAPGSCTTQNGSVVLDANWRWVHATNSSTNCYTGNQWSS
TLCPDGETCAKNCCLDGADYEGTYGVTTSGSSLKLNFVTGSNVGSRLYLMASDTTYQIFK
LLGNEFSFDVDVSNLGCGLNGALYFVAMDADGGVSKYPTNTAGAKYGTGYCDSQCPRD
LKFINGEANVGNWTPSTNDANAGFGRYGSCCAEMDIWEANNMATALTPHPCDTPGQSR
CEADTCGGTYSDNRYGGTCDPDGCDWNAYRLGDKTFYGKGMTVDTNKKMTVVTQFE
TSGAINRFYVQDGKIIANAEAELGSYSGNELNDDYCTAEKAEFGDTDDFSQHGGLAKMGA
AMQQGMVLVMSLWDDHYANMLWLDSTYPIDQAGAPGAERGACPTTSGVPSDVESQVPN
SYVTYSNIKFGPIGSTVPASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYSGPT
VCASGTTCQVLNPYYSQCL

311112222333

QSACTLQSETHPPLTWKRCSSGGTCSTVNGSVVLDANWRWTHATNSSTNCYTGNQWSS
TLCPDNETCAKNCCLDGADYEGTYGVTTSGDSLKLNFVTQSAQKNVGSRLYLMASDTTY
QIFKLLNREFTFDVDVSNLGCGLNGALYFVAMDADGGVSKYPTNTAGAKYGTGYCDSQC
PRDLKFINGQANVEGWEPSSNDANAGFGGHGSCCAEMDVWEANNMATAVTPHPCDTPG
QEICEGDGCGGTYSDNRYGGTCDPDGCDFNAYRMGDKTFYGKGMTVDTNKKMTVVTQ
FLTDDGTDTGTLSEIKRFYVQDGKIIANAESDISGVTGNSITTEFCTAQKQAFSNTDDFNR
HGGLAKMGAAMQQGMVLVMSLWDDHYANMLWLDSTYPIDQAGAPGAERGACSTSSGV
PAQVESQVPNSYVTYSNIRFGPIGSTVPGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQ
CGGIGYSGPTVCASGTTCQVLNPYYSQCL

331211323222

QSACTLQSETHPPLTWQECTAPGSCTTQNGSVVIDANWRWVHATNSSTNCYTGNQWSS
TLCPDGETCAKNCCLDGAAYASTYGVTTSGSSLSIGFVTGSNVGARLYLMASDTTYQMFE
LLNREFSFDVDVSQLPCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDAQCPRD
LKFINGEANVGNWTPSTNDANAGFGRYGSCCSEMDVWEANSISNAFTPHPCTTVGQSRC
EADTCGGTYSDNRYGGVCDPDGCDFNPYRQGNTSFYGPGKIIDTTKPFTVVTQFLTDDG
TDTGTLSEIKRFYIQNSNVIPQPNSKIPGNPGNSITQEYCDAQKVAFGDTDDFSQKGGMAQ
MSKALAGPMVLVMSLWDDHYANMLWLDSTYPIDQAGAPGAERGTCPTTSGVPSDVESQ
SPNAKVTFSNIKFGPINSTFTASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYS
GPTVCASGTTCQVLNPYYSQCL

211331132321

QSACSLTAENHPSLTWKRCTSGGSCSTVNGAVVIDANWRWTHATNSSTNCYTGNTWSST
LCPDNETCAKNCCVDGAAYASTYGVTTSGDSLSIGFVTKHQYGTNVGARLYLMENDTKY
QEFTLLGNEFTFDVDVSQLPCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDSQC
PRDLKFINGQANVEGWEPSSNNANTGIGGHGSCCSEMDVWEANSISEAVTPHPCTTVGQE
ICEGDGCGGTYSSDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFHKNS
AGVLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRKGGLTQFKK
ATSGGMVLVMSLWDDYAANMLWLDSDYPTDADPTTPGIARGSCSTSSGVPAEIEAQSPN
AKVTFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYSGPT
VCASGTTCQVLNPYYSQCL

Supplementary Table 6.1: Amino acid sequences of the maximally informative subset of
35 chimeric cellulases (continued).
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212322323311

QQACTATAENHPPLTWKRCTSGGSCSTVNGAVVLDANWRWTHDVNGYTNCYTGNTW
DPTYCPDNETCAQNCCVDGADYEGTYGVTSSGDSLKLNFVTKHQYGTNVGSRLYLLQDD
STYQMFELLNREFTFDVDVSNLPCGLNGALYFVSMDADGGVSKYPNNKAGAKYGTGYC
DAQCPRDLKFINGQANVEGWEPSSNNANTGIGGHGSCCSEMDVWEANSISEAFTPHPCTT
VGQEICEGDGCGGTYSNDRYAGVCDPDGCDFNPYRQGNTSFYGPGSSFTLDTTKKLTVV
TQFLTDDGTDTGTLSEIKRYYVQNGVTFQQPNSKIPGNPGNSITQEYCDAQKVAFSNTDD
FNRKGGMAQMSKALAGPMVLVMSLWDDYAANMLWLDSDYPTDADPTTPGIARGSCSTS
SGVPAEIEAQSPNSYVTYSNIRFGPIGSTGNGPPGGNRGTTTTRRPATTTGSSPGPTQSHY
GQCGGIGYSGPTVCASGTTCQVLNPYYSQCL

323212111312

QQACTLQSETHPPLTWKRCTAPGSCSTVNGSVVLDANWRWVHTVSGSTNCYTGNQWD
TSLCTDDKSCAQTCCLDGADYEGTYGVTTSGDSLKLNFVTGSNVGSRLYLMASDTTYQE
FTLLGNEFTFDVDVSNLPCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDSQCP
RDLKFIDGEANVEGWQPSSNDANAGFGDHGSCCSEMDIWEANSISNALTPHPCTTVGQT
MCSGDDCGGTYSDNRYGGTCDPDGCDWNPYRLGNTSFYGPGSSFTLDTTKKLTVVTQF
ETSGAINRYYVQNGVTFQQPNAELGSYSGNELNDDYCTAEKAEFSNTDDFNRKGGLTQF
KKATSGGMVLVMSLWDDHYAQMLWLDSTYPIDQAGAPGAERGTCPTDSGVPSDVESQS
PNSYVTYSNIRFGPIGSTGNGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYSG
PTVCASGTTCQVLNPYYSQCL

312223311121

QQACTATAENHPPLTWQKCTAPGSCTQQTGAVTIDANWRWVHDVNGYTNCYTGNQW
DPTYCPDNETCAQNCCLDGADYSSTYGITSSGNSLNLKFVTGSNVGSRVYLLQDDSTYQM
FELLGNEFSFDVDVSNLPCGLNGALYFVSMDADGGVSKYPNNKAGAKYGTGYCDAQCPR
DLKFINGQANVEGWEPSSNDANAGFGGHGSCCSEMDIWEANSISEALTPHPCTTVGQEIC
EGDGCGGTYSNDRYAGVCDPDGCDWNPYRLGNTSFYGPGKIIDTTKPFTVVTQFETSGA
INRFYIQNSNVIPQPNAELGSYSGNELNDDYCTAEEAEFGGSSFSDKGGLAQMSKALAGPM
VLVMSVWDDHYANMLWLDSTYPIDQAGAPGAERGSCSTSSGVPSDVESQSPNSNVIFSNIK
FGPINSTFTPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYSGPTVCASG
TTCQVLNPYYSQCL

221221333333

QSACTATAENHPPLTWKRCTAPGSCSTVNGAVVIDANWRWVHATNSSTNCYTGNTWSS
TLCPDDETCAKNCCLDGAAYASTYGVTSSGDSLSIGFVTGSNVGARLYLLQDDSTYQMFE
LLGNEFTFDVDVSQLGCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDAQCPRD
LKFIDGEANVEGWQPSSNNANTGIGDHGSCCSEMDVWEANNMATAFTPHPCTTVGQTM
CSGDDCGGTYSNDRYAGVCDPDGCDFNAYRQGDKTFYGKGMTVDTNKKMTVVTQFHK
NSAGVLSEIKRFYVQDGKIIANAESKIPGNPGNSITQEYCDAQKVAFSNTDDFNRKGGMAQ
MSKALAGPMVLVMSLWDDYAAQMLWLDSDYPTDADPTTPGIARGACPTDSGVPSDVES
QVPNAKVTFSNIRFGPIGSTVPGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGY
SGPTVCASGTTCQVLNPYYSQCL

Supplementary Table 6.1: Amino acid sequences of the maximally informative subset of
35 chimeric cellulases (continued).



152

322132333121

QQACSLTAENHPSLTWQKCSSGGTCTQQTGAVVLDANWRWTHDVNGYTNCYTGNQWD
PTYCPDDETCAQNCCLDGADYEGTYGVTTSGNSLKLNFVTQSAQKNVGSRLYLMENDTK
YQMFELLGNEFSFDVDVSNLPCGLNGALYFVSMDADGGVSKYPNNKAGAKYGTGYCDA
QCPRDLKFIDGEANVEGWQPSSNDANAGFGDHGSCCSEMDVWEANSISEAFTPHPCTTV
GQTMCSGDDCGGTYSSDRYAGVCDPDGCDFNPYRQGNTSFYGPGKIIDTTKPFTVVTQF
HKNSAGVLSEIKRFYIQNSNVIPQPNSKIPGNPGNSITQEYCDAQEVAFGGSSFSDKGGMA
QMSKALAGPMVLVMSLWDDHYAQMLWLDSTYPIDQAGAPGAERGSCPTDSGVPAQVES
QSPNSYVTYSNIKFGPINSTFTPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCG
GIGYSGPTVCASGTTCQVLNPYYSQCL

231123332212

QSACTATAENHPPLTWQECSSGGTCTTQNGAVTIDANWRWTHATNSSTNCYTGNTWSS
TLCPDGETCAKNCCLDGADYSSTYGITSSGSSLNLKFVTQSAQKNVGSRVYLLQDDSTYQ
MFELLGNEFSFDVDVSNLPCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDAQC
PRDLKFINGEANVGNWTPSTNNANTGIGRYGSCCSEMDVWEANSISNAVTPHPCTTVGQ
SRCEADTCGGTYSNDRYAGVCDPDGCDFNPYRMGNTSFYGPGSSFTLDTTKKLTVVTQF
HKNSAGVLSEIKRYYVQNGVTFQQPNSDISGVTGNSITTEFCTAQKQAFGDTDDFSQKGG
LAQMSKALAGPMVLVMSVWDDYAANMLWLDSDYPTDADPTTPGIARGTCPTTSGVPAQ
VESQSPNSNVIFSNIKFGPIGSTGNASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGI
GYSGPTVCASGTTCQVLNPYYSQCL

121233122211

QSACSLTAENHPSLTWQECTAPGSCTTQNGAVTIDANWRWVHATNSSTNCYDGNTWSS
TLCPDDETCAKNCCLDGADYSSTYGITTSGSSLNLKFVTGSNVGSRVYLMENDTKYQEFT
LLNREFSFDVDVSNLPCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDSQCPRDL
KFIDGEANVEGWQPSSNNANTGIGDHGSCCSEMDVWEANSISEAVTPHPCTTVGQTMCS
GDDCGGTYSSDRYAGTCDPDGCDFNPYRMGNTSFYGPGSSFTLDTTKKLTVVTQFLTDD
GTDTGTLSEIKRYYVQNGVTFQQPNSDISGVTGNSITTEFCTAQKQAFGDTDDFSQKGGL
TQFKKATSGGMVLVMSVWDDYYAQMLWLDSTYPTNETSSTPGAVRGSCPTDSGVPSDV
ESQSPNSNVIFSNIKFGPIGSTGNASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIG
YSGPTVCASGTTCQVLNPYYSQCL

221332311112

QSACSLTAENHPSLTWQKCTSGGSCTQQTGAVVLDANWRWTHATNSSTNCYTGNTWSS
TLCPDDETCAKNCCVDGADYEGTYGVTTSGNSLKLNFVTKHQYGTNVGSRLYLMENDT
KYQMFELLGNEFSFDVDVSNLPCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCD
AQCPRDLKFIDGEANVEGWQPSSNNANTGIGDHGSCCSEMDIWEANSISNALTPHPCTTV
GQTMCSGDDCGGTYSSDRYAGVCDPDGCDWNPYRLGNTSFYGPGSSFTLDTTKKLTVV
TQFETSGAINRYYVQNGVTFQQPNAELGSYSGNELNDDYCTAEEAEFGGSSFSDKGGLAQ
MSKALAGPMVLVMSLWDDYAAQMLWLDSDYPTDADPTTPGIARGTCPTDSGVPAEIEA
QSPNSYVTYSNIKFGPIGSTGNPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCG
GIGYSGPTVCASGTTCQVLNPYYSQCL

Supplementary Table 6.1: Amino acid sequences of the maximally informative subset of
35 chimeric cellulases (continued).
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212312332233

QQACTLQSETHPPLTWQECTSGGSCTTQNGSVVLDANWRWTHDVNGYTNCYTGNTWD
PTYCPDNETCAQNCCVDGADYEGTYGVTTSGSSLKLNFVTKHQYGTNVGSRLYLMASDT
TYQMFELLGNEFSFDVDVSNLGCGLNGALYFVSMDADGGVSKYPNNKAGAKYGTGYCD
AQCPRDLKFINGQANVEGWEPSSNNANTGIGGHGSCCSEMDVWEANNMATAVTPHPCT
TVGQEICEGDGCGGTYSDNRYGGVCDPDGCDFNAYRMGDKTFYGKGMTVDTNKKMTV
VTQFHKNSAGVLSEIKRFYVQDGKIIANAESDISGVTGNSITTEFCTAQKQAFGDTDDFSQ
KGGLAQMSKALAGPMVLVMSLWDDYAANMLWLDSDYPTDADPTTPGIARGACSTSSGV
PAEIEAQVPNSYVTYSNIKFGPIGSTVPASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQ
CGGIGYSGPTVCASGTTCQVLNPYYSQCL

313322332122

QQACTATAENHPPLTWQKCTSGGSCTQQTGAVVLDANWRWTHTVSGSTNCYTGNQWD
TSLCTDNKSCAQTCCVDGADYEGTYGVTSSGNSLKLNFVTKHQYGTNVGSRLYLLQDDS
TYQMFELLGNEFSFDVDVSNLPCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCD
AQCPRDLKFINGQANVEGWEPSSNDANAGFGGHGSCCSEMDVWEANSISNAVTPHPCTT
VGQEICEGDGCGGTYSNDRYAGVCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQ
FHKNSAGVLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQEQAFGGSSFSDKGGLA
QMSKALAGPMVLVMSLWDDHYANMLWLDSTYPIDQAGAPGAERGTCSTSSGVPAEIEAQ
SPNSYVTYSNIKFGPINSTFTPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGI
GYSGPTVCASGTTCQVLNPYYSQCL

213131232211

QQACSLTAENHPSLTWQECSSGGTCTTQNGAVVIDANWRWTHTVSGSTNCYTGNTWDT
SLCTDNKSCAQTCCLDGAAYASTYGVTTSGSSLSIGFVTQSAQKNVGARLYLMENDTKYQ
IFKLLGNEFSFDVDVSQLPCGLNGALYFVAMDADGGMSKYSGNKAGAKYGTGYCDSQCP
RDLKFINGQANVEGWEPSSNNANTGIGGHGSCCAEMDVWEANSISEAVTPHPCDTPGQEI
CEGDGCGGTYSSDRYAGTCDPDGCDFNPYRMGNTSFYGPGSSFTLDTTKKLTVVTQFHK
NSAGVLSEIKRYYVQNGVTFQQPNSDISGVTGNSITTEFCTAQKQAFGDTDDFSQHGGLA
KMGAAMQQGMVLVMSLWDDYAANMLWLDSDYPTDADPTTPGIARGSCSTSSGVPAQV
ESQSPNAKVTFSNIKFGPIGSTGNASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGI
GYSGPTVCASGTTCQVLNPYYSQCL

131232232321

QSACSLTAENHPSLTWKRCTAPGSCSTVNGAVVLDANWRWVHATNSSTNCYDGNTWSS
TLCPDGETCAKNCCLDGADYEGTYGVTTSGDSLKLNFVTGSNVGSRLYLMENDTKYQIF
KLLGNEFTFDVDVSNLPCGLNGALYFVAMDADGGVSKYPTNTAGAKYGTGYCDSQCPR
DLKFINGEANVGNWTPSTNNANTGIGRYGSCCAEMDVWEANSISEAVTPHPCDTPGQSR
CEADTCGGTYSSDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFHKNS
AGVLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRHGGLAKMG
AAMQQGMVLVMSLWDDYYANMLWLDSTYPTNETSSTPGAVRGSCPTTSGVPSDVESQS
PNSYVTYSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYSGP
TVCASGTTCQVLNPYYSQCL

Supplementary Table 6.1: Amino acid sequences of the maximally informative subset of
35 chimeric cellulases (continued).
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112131322322

QQACSLTAENHPSLTWKRCSSGGTCSTVNGAVVIDANWRWTHDVNGYTNCYDGNTWD
PTYCPDNETCAQNCCLDGAAYASTYGVTTSGDSLSIGFVTQSAQKNVGARLYLMENDTK
YQMFELLNREFTFDVDVSQLPCGLNGALYFVSMDADGGVSKYPNNKAGAKYGTGYCDA
QCPRDLKFINGQANVEGWEPSSNNANTGIGGHGSCCSEMDVWEANSISNAVTPHPCTTV
GQEICEGDGCGGTYSSDRYAGVCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQF
LTDDGTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRKG
GLAQMSKALAGPMVLVMSLWDDYYANMLWLDSTYPTNETSSTPGAVRGTCSTSSGVPA
QVESQSPNAKVTFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCG
GIGYSGPTVCASGTTCQVLNPYYSQCL

111122332232

QSACTATAENHPPLTWQECSSGGTCTTQNGAVVLDANWRWTHATNSSTNCYDGNTWSS
TLCPDNETCAKNCCLDGADYEGTYGVTSSGSSLKLNFVTQSAQKNVGSRLYLLQDDSTYQ
MFELLGNEFSFDVDVSNLPCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDAQC
PRDLKFINGQANVEGWEPSSNNANTGIGGHGSCCSEMDVWEANSISNAVTPHPCTTVGQ
EICEGDGCGGTYSNDRYAGVCDPDGCDFNPYRMGNTSFYGPGMTVDTTKKMTVVTQF
HKNSAGVLSEIKRFYVQDGKIIAQPNSDISGVTGNSITTEFCTAQKQAFGDTDDFSQKGGL
AQMSKALAGPMVLVMSLWDDYYANMLWLDSTYPTNETSSTPGAVRGTCSTSSGVPAQV
ESQSPNSYVTYSNIKFGPIGSTVPASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGI
GYSGPTVCASGTTCQVLNPYYSQCL

311211331111

QSACTLQSETHPPLTWQKCTAPGSCTQQTGSVVIDANWRWVHATNSSTNCYTGNQWSS
TLCPDNETCAKNCCLDGAAYASTYGVTTSGNSLSIGFVTGSNVGARLYLMASDTTYQMF
ELLGNEFSFDVDVSQLPCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDAQCPRD
LKFINGQANVEGWEPSSNDANAGFGGHGSCCSEMDIWEANSISEALTPHPCTTVGQEICE
GDGCGGTYSDNRYGGVCDPDGCDWNPYRLGNTSFYGPGSSFTLDTTKKLTVVTQFHKN
SAGVLSEIKRYYVQNGVTFQQPNAELGSYSGNSLNDDYCTAEEAEFGGSSFSDKGGLAQM
SKALAGPMVLVMSLWDDHYANMLWLDSTYPIDQAGAPGAERGSCSTSSGVPSDVESQSP
NAKVTFSNIKFGPIGSTGNPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIG
YSGPTVCASGTTCQVLNPYYSQCL

122122133333 *

QQACTATAENHPPLTWKRCSSGGTCSTVNGAVVLDANWRWTHDVNGYTNCYDGNTW
DPTYCPDDETCAQNCCLDGADYEGTYGVTSSGDSLKLNFVTQSAQKNVGSRLYLLQDDS
TYQEFTLLGNEFTFDVDVSNLGCGLNGALYFVSMDADGGVSKYPNNKAGAKYGTGYCD
SQCPRDLKFIDGEANVEGWQPSSNNANTGIGDHGSCCSEMDVWEANNMATAFTPHPCTT
VGQTMCSGDDCGGTYSNDRYAGTCDPDGCDFNAYRQGDKTFYGKGMTVDTNKKMTV
VTQFHKNSAGVLSEIKRFYVQDGKIIANAESKIPGNPGNSITQEYCDAQKVAFSNTDDFNR
KGGMTQFKKATSGGMVLVMSLWDDYYAQMLWLDSTYPTNETSSTPGAVRGACPTDSG
VPAQVESQVPNSYVTYSNIRFGPIGSTVPGPPGGNRGTTTTRRPATTTGSSPGPTQSHYG
QCGGIGYSGPTVCASGTTCQVLNPYYSQCL

Supplementary Table 6.1: Amino acid sequences of the maximally informative subset of
35 chimeric cellulases (continued).
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233122223223

QQACTATAENHPPLTWQECSSGGTCTTQNGAVVLDANWRWTHTVSGSTNCYTGNTWD
TSLCTDGKSCAQTCCLDGADYEGTYGVTSSGSSLKLNFVTQSAQKNVGSRLYLLQDDSTY
QIFKLLNREFSFDVDVSNLGCGLNGALYFVAMDADGGMSKYSGNKAGAKYGTGYCDSQC
PRDLKFINGEANVGNWTPSTNNANTGIGRYGSCCAEMDVWEANNMATAFTPHPCDTPG
QSRCEADTCGGTYSNDRYAGTCDPDGCDFNAYRQGDKTFYGKGKIIDTNKPFTVVTQFL
TDDGTDTGTLSEIKRFYIQNSNVIPNAESKIPGNPGNSITQEYCDAQKVAFGDTDDFSQHG
GMAKMGAAMQQGMVLVMSLWDDYAANMLWLDSDYPTDADPTTPGIARGACPTTSGV
PAQVESQVPNSYVTYSNIKFGPINSTFTASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQ
CGGIGYSGPTVCASGTTCQVLNPYYSQCL

333222211111

QQACTATAENHPPLTWQKCTAPGSCTQQTGAVVLDANWRWVHTVSGSTNCYTGNQW
DTSLCTDGKSCAQTCCLDGADYEGTYGVTSSGNSLKLNFVTGSNVGSRLYLLQDDSTYQI
FKLLGNEFSFDVDVSNLPCGLNGALYFVAMDADGGMSKYSGNKAGAKYGTGYCDSQCP
RDLKFINGEANVGNWTPSTNDANAGFGRYGSCCAEMDIWEANSISEALTPHPCDTPGQSR
CEADTCGGTYSNDRYAGTCDPDGCDWNPYRLGNTSFYGPGSSFTLDTTKKLTVVTQFE
TSGAINRYYVQNGVTFQQPNAELGSYSGNELNDDYCTAEEAEFGGSSFSDHGGLAKMGA
AMQQGMVLVMSLWDDHYANMLWLDSTYPIDQAGAPGAERGSCPTTSGVPSDVESQSPN
SYVTYSNIKFGPIGSTGNPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYS
GPTVCASGTTCQVLNPYYSQCL

231333111132

QSACSLTAENHPSLTWQKCTSGGSCTQQTGAVTIDANWRWTHATNSSTNCYTGNTWSST
LCPDGETCAKNCCVDGADYSSTYGITTSGNSLNLKFVTKHQYGTNVGSRVYLMENDTKY
QEFTLLGNEFSFDVDVSNLPCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDSQC
PRDLKFINGEANVGNWTPSTNNANTGIGRYGSCCSEMDIWEANSISNALTPHPCTTVGQS
RCEADTCGGTYSSDRYAGTCDPDGCDWNPYRLGNTSFYGPGMTVDTTKKMTVVTQFE
TSGAINRFYVQDGKIIAQPNAELGSYSGNELNDDYCTAEEAEFGGSSFSDKGGLTQFKKAT
SGGMVLVMSVWDDYAANMLWLDSDYPTDADPTTPGIARGTCPTTSGVPAEIEAQSPNSN
VIFSNIKFGPIGSTVPPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYSGP
TVCASGTTCQVLNPYYSQCL

233232323133

QQACSLTAENHPSLTWQKCTAPGSCTQQTGAVVLDANWRWVHTVSGSTNCYTGNTWD
TSLCTDGKSCAQTCCLDGADYEGTYGVTTSGNSLKLNFVTGSNVGSRLYLMENDTKYQM
FELLNREFSFDVDVSNLGCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDAQCP
RDLKFINGEANVGNWTPSTNNANTGIGRYGSCCSEMDVWEANNMATAFTPHPCTTVGQ
SRCEADTCGGTYSSDRYAGVCDPDGCDFNAYRQGDKTFYGKGMTVDTNKKMTVVTQF
LTDDGTDTGTLSEIKRFYVQDGKIIANAESKIPGNPGNSITQEYCDAQEVAFGGSSFSDKG
GMAQMSKALAGPMVLVMSLWDDYAANMLWLDSDYPTDADPTTPGIARGACPTTSGVP
SDVESQVPNSYVTYSNIKFGPIGSTVPPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHY
GQCGGIGYSGPTVCASGTTCQVLNPYYSQCL

Supplementary Table 6.1: Amino acid sequences of the maximally informative subset of
35 chimeric cellulases (continued).
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333112122312 *

QQACTLQSETHPPLTWKRCSSGGTCSTVNGSVVLDANWRWTHTVSGSTNCYTGNQWDT
SLCTDGKSCAQTCCLDGADYEGTYGVTTSGDSLKLNFVTQSAQKNVGSRLYLMASDTTY
QEFTLLNREFTFDVDVSNLPCGLNGALYFVSMDADGGMSKYSGNKAGAKYGTGYCDSQ
CPRDLKFINGEANVGNWTPSTNDANAGFGRYGSCCSEMDVWEANSISNAVTPHPCTTVG
QSRCEADTCGGTYSDNRYGGTCDPDGCDFNPYRMGNTSFYGPGSSFTLDTTKKLTVVT
QFLTDDGTDTGTLSEIKRYYVQNGVTFQQPNSDISGVTGNSITTEFCTAQKQAFSNTDDF
NRKGGLTQFKKATSGGMVLVMSLWDDHYANMLWLDSTYPIDQAGAPGAERGTCPTTSG
VPAQVESQSPNSYVTYSNIRFGPIGSTGNGPPGGNRGTTTTRRPATTTGSSPGPTQSHYG
QCGGIGYSGPTVCASGTTCQVLNPYYSQCL

133331223212

QQACSLTAENHPSLTWQECTSGGSCTTQNGAVVIDANWRWTHTVSGSTNCYDGNTWDT
SLCTDGKSCAQTCCVDGAAYASTYGVTTSGSSLSIGFVTKHQYGTNVGARLYLMENDTK
YQIFKLLNREFSFDVDVSQLPCGLNGALYFVAMDADGGMSKYSGNKAGAKYGTGYCDSQ
CPRDLKFINGEANVGNWTPSTNNANTGIGRYGSCCAEMDVWEANSISNAFTPHPCDTPG
QSRCEADTCGGTYSSDRYAGTCDPDGCDFNPYRQGNTSFYGPGSSFTLDTTKKLTVVTQ
FLTDDGTDTGTLSEIKRYYVQNGVTFQQPNSKIPGNPGNSITQEYCDAQKVAFGDTDDFS
QHGGMAKMGAAMQQGMVLVMSLWDDYYANMLWLDSTYPTNETSSTPGAVRGTCPTT
SGVPAEIEAQSPNAKVTFSNIKFGPIGSTGNASPPGGNRGTTTTRRPATTTGSSPGPTQSH
YGQCGGIGYSGPTVCASGTTCQVLNPYYSQCL

131112222121

QSACTLQSETHPPLTWQKCSSGGTCTQQTGSVVLDANWRWTHATNSSTNCYDGNTWSS
TLCPDGETCAKNCCLDGADYEGTYGVTTSGNSLKLNFVTQSAQKNVGSRLYLMASDTTY
QIFKLLNREFSFDVDVSNLPCGLNGALYFVAMDADGGVSKYPTNTAGAKYGTGYCDSQC
PRDLKFINGEANVGNWTPSTNNANTGIGRYGSCCAEMDVWEANSISEAVTPHPCDTPGQ
SRCEADTCGGTYSDNRYGGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFLT
DDGTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQEQAFGGSSFSDHGGLA
KMGAAMQQGMVLVMSLWDDYYANMLWLDSTYPTNETSSTPGAVRGSCPTTSGVPAQV
ESQSPNSYVTYSNIKFGPINSTFTPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQC
GGIGYSGPTVCASGTTCQVLNPYYSQCL

322211223233

QQACTLQSETHPPLTWQECTAPGSCTTQNGSVVIDANWRWVHDVNGYTNCYTGNQWD
PTYCPDDETCAQNCCLDGAAYASTYGVTTSGSSLSIGFVTGSNVGARLYLMASDTTYQIF
KLLNREFSFDVDVSQLGCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPR
DLKFIDGEANVEGWQPSSNDANAGFGDHGSCCAEMDVWEANNMATAFTPHPCDTPGQT
MCSGDDCGGTYSDNRYGGTCDPDGCDFNAYRQGDKTFYGKGMTVDTNKKMTVVTQFL
TDDGTDTGTLSEIKRFYVQDGKIIANAESKIPGNPGNSITQEYCDAQKVAFGDTDDFSQHG
GMAKMGAAMQQGMVLVMSLWDDHYAQMLWLDSTYPIDQAGAPGAERGACPTDSGVPS
DVESQVPNAKVTFSNIKFGPIGSTVPASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQC
GGIGYSGPTVCASGTTCQVLNPYYSQCL

Supplementary Table 6.1: Amino acid sequences of the maximally informative subset of
35 chimeric cellulases (continued).
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223311222322

QQACTLQSETHPPLTWKRCTSGGSCSTVNGSVVIDANWRWTHTVSGSTNCYTGNTWDT
SLCTDDKSCAQTCCVDGAAYASTYGVTTSGDSLSIGFVTKHQYGTNVGARLYLMASDTT
YQIFKLLNREFTFDVDVSQLPCGLNGALYFVAMDADGGMSKYSGNKAGAKYGTGYCDS
QCPRDLKFIDGEANVEGWQPSSNNANTGIGDHGSCCAEMDVWEANSISNAVTPHPCDTP
GQTMCSGDDCGGTYSDNRYGGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQ
FLTDDGTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRH
GGLAKMGAAMQQGMVLVMSLWDDYAAQMLWLDSDYPTDADPTTPGIARGTCPTDSGV
PAEIEAQSPNAKVTFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQC
GGIGYSGPTVCASGTTCQVLNPYYSQCL

121213333323

QSACTLQSETHPPLTWKRCTAPGSCSTVNGSVTIDANWRWVHATNSSTNCYDGNTWSST
LCPDDETCAKNCCLDGADYSSTYGITTSGDSLNLKFVTGSNVGSRVYLMASDTTYQMFEL
LGNEFTFDVDVSNLGCGLNGALYFVSMDADGGVSKYPTNTAGAKYGTGYCDAQCPRDL
KFIDGEANVEGWQPSSNNANTGIGDHGSCCSEMDVWEANNMATAFTPHPCTTVGQTMC
SGDDCGGTYSDNRYGGVCDPDGCDFNAYRQGDKTFYGKGKIIDTNKPFTVVTQFHKNS
AGVLSEIKRFYIQNSNVIPNAESKIPGNPGNSITQEYCDAQKVAFSNTDDFNRKGGMAQMS
KALAGPMVLVMSVWDDYYAQMLWLDSTYPTNETSSTPGAVRGACPTDSGVPSDVESQV
PNSNVIFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYSGP
TVCASGTTCQVLNPYYSQCL

123333232233

QQACSLTAENHPSLTWQECTSGGSCTTQNGAVTIDANWRWTHTVSGSTNCYDGNTWDT
SLCTDDKSCAQTCCVDGADYSSTYGITTSGSSLNLKFVTKHQYGTNVGSRVYLMENDTKY
QIFKLLGNEFSFDVDVSNLGCGLNGALYFVAMDADGGMSKYSGNKAGAKYGTGYCDSQC
PRDLKFIDGEANVEGWQPSSNNANTGIGDHGSCCAEMDVWEANNMATAVTPHPCDTPG
QTMCSGDDCGGTYSSDRYAGTCDPDGCDFNAYRMGDKTFYGKGMTVDTNKKMTVVT
QFHKNSAGVLSEIKRFYVQDGKIIANAESDISGVTGNSITTEFCTAQKQAFGDTDDFSQHG
GLAKMGAAMQQGMVLVMSVWDDYYAQMLWLDSTYPTNETSSTPGAVRGACPTDSGVP
AEIEAQVPNSNVIFSNIKFGPIGSTVPASPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQC
GGIGYSGPTVCASGTTCQVLNPYYSQCL

Supplementary Table 6.1: Amino acid sequences of the maximally informative subset of
35 chimeric cellulases (continued).
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222233221322

QQACSLTAENHPSLTWKRCTAPGSCSTVNGAVTIDANWRWVHDVNGYTNCYTGNTWD
PTYCPDDETCAQNCCLDGADYSSTYGITTSGDSLNLKFVTGSNVGSRVYLMENDTKYQIF
KLLNREFTFDVDVSNLPCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPR
DLKFIDGEANVEGWQPSSNNANTGIGDHGSCCAEMDIWEANSISNALTPHPCDTPGQTMC
SGDDCGGTYSSDRYAGTCDPDGCDWNPYRLGNTSFYGPGKIIDTTKPFTVVTQFLTDDG
TDTGTLSEIKRFYIQNSNVIPQPNAELGSYSGNSLNDDYCTAEKAEFSNTDDFNRHGGLAK
MGAAMQQGMVLVMSVWDDYAAQMLWLDSDYPTDADPTTPGIARGTCPTDSGVPSDVE
SQSPNSNVIFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYS
GPTVCASGTTCQVLNPYYSQCL

232233222322

QQACSLTAENHPSLTWKRCTAPGSCSTVNGAVTIDANWRWVHDVNGYTNCYTGNTWD
PTYCPDGETCAQNCCLDGADYSSTYGITTSGDSLNLKFVTGSNVGSRVYLMENDTKYQIF
KLLNREFTFDVDVSNLPCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPR
DLKFINGEANVGNWTPSTNNANTGIGRYGSCCAEMDVWEANSISNAVTPHPCDTPGQSR
CEADTCGGTYSSDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFLTDD
GTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRHGGLAK
MGAAMQQGMVLVMSVWDDYAANMLWLDSDYPTDADPTTPGIARGTCPTTSGVPSDVE
SQSPNSNVIFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYS
GPTVCASGTTCQVLNPYYSQCL

222211222322

QQACTLQSETHPPLTWKRCTAPGSCSTVNGSVVIDANWRWVHDVNGYTNCYTGNTWD
PTYCPDDETCAQNCCLDGAAYASTYGVTTSGDSLSIGFVTGSNVGARLYLMASDTTYQIF
KLLNREFTFDVDVSQLPCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPR
DLKFIDGEANVEGWQPSSNNANTGIGDHGSCCAEMDVWEANSISNAVTPHPCDTPGQTM
CSGDDCGGTYSDNRYGGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFLTDD
GTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRHGGLAK
MGAAMQQGMVLVMSLWDDYAAQMLWLDSDYPTDADPTTPGIARGTCPTDSGVPSDVE
SQSPNAKVTFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGY
SGPTVCASGTTCQVLNPYYSQCL

Supplementary Table 6.2: Amino acid sequences of 7 chimeric cellulases predicted to be
stable. The H. jecorina CBHI linker and cellulose binding domain are attached to the
C-terminus. The chimera nomenclature is a series of numbers, each representing a parent
for the blocks A-L. For example, chimera 123113322331 has parent 1’s sequence for block
A, parent 2 for block B, etc.
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222223222322

QQACTATAENHPPLTWKRCTAPGSCSTVNGAVTIDANWRWVHDVNGYTNCYTGNTWD
PTYCPDDETCAQNCCLDGADYSSTYGITSSGDSLNLKFVTGSNVGSRVYLLQDDSTYQIFK
LLNREFTFDVDVSNLPCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPRD
LKFIDGEANVEGWQPSSNNANTGIGDHGSCCAEMDVWEANSISNAVTPHPCDTPGQTMC
SGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFLTDDG
TDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRHGGLAK
MGAAMQQGMVLVMSVWDDYAAQMLWLDSDYPTDADPTTPGIARGTCPTDSGVPSDVE
SQSPNSNVIFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYS
GPTVCASGTTCQVLNPYYSQCL

222211221322

QQACTLQSETHPPLTWKRCTAPGSCSTVNGSVVIDANWRWVHDVNGYTNCYTGNTWD
PTYCPDDETCAQNCCLDGAAYASTYGVTTSGDSLSIGFVTGSNVGARLYLMASDTTYQIF
KLLNREFTFDVDVSQLPCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPR
DLKFIDGEANVEGWQPSSNNANTGIGDHGSCCAEMDIWEANSISNALTPHPCDTPGQTMC
SGDDCGGTYSDNRYGGTCDPDGCDWNPYRLGNTSFYGPGKIIDTTKPFTVVTQFLTDDG
TDTGTLSEIKRFYIQNSNVIPQPNAELGSYSGNSLNDDYCTAEKAEFSNTDDFNRHGGLAK
MGAAMQQGMVLVMSLWDDYAAQMLWLDSDYPTDADPTTPGIARGTCPTDSGVPSDVE
SQSPNAKVTFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGY
SGPTVCASGTTCQVLNPYYSQCL

322211222322

QQACTLQSETHPPLTWKRCTAPGSCSTVNGSVVIDANWRWVHDVNGYTNCYTGNTWD
PTYCPDDETCAQNCCLDGAAYASTYGVTTSGDSLSIGFVTGSNVGARLYLMASDTTYQIF
KLLNREFTFDVDVSQLPCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPR
DLKFIDGEANVEGWQPSSNDANAGFGDHGSCCAEMDVWEANSISNAVTPHPCDTPGQT
MCSGDDCGGTYSDNRYGGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFLTD
DGTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRHGGLA
KMGAAMQQGMVLVMSLWDDHYAQMLWLDSTYPIDQAGAPGIARGTCPTDSGVPSDVES
QSPNAKVTFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYS
GPTVCASGTTCQVLNPYYSQCL

122211222322

QQACTLQSETHPPLTWKRCTAPGSCSTVNGSVVIDANWRWVHDVNGYTNCYDGNTWD
PTYCPDDETCAQNCCLDGAAYASTYGVTTSGDSLSIGFVTGSNVGARLYLMASDTTYQIF
KLLNREFTFDVDVSQLPCGLNGALYFVAMDADGGVSKYPNNKAGAKYGTGYCDSQCPR
DLKFIDGEANVEGWQPSSNNANTGIGDHGSCCAEMDVWEANSISNAVTPHPCDTPGQTM
CSGDDCGGTYSDNRYGGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFLTDD
GTDTGTLSEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFSNTDDFNRHGGLAK
MGAAMQQGMVLVMSLWDDYYAQMLWLDSTYPTNETPTTPGIARGTCPTDSGVPSDVES
QSPNAKVTFSNIRFGPINSTFTGPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYS
GPTVCASGTTCQVLNPYYSQCL

Supplementary Table 6.2: Amino acid sequences of 7 chimeric cellulases predicted to be
stable (continued).
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Chimera TA50 (◦C)
111111211111 48.3 (± 0.5)
111111311111 47.8 (± 0.1)

Supplementary Table 6.3: TA50 measurements of H. jecorina CBHI with block G from T.
emersonii CBHI and C. thermophilum CBHI.
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Mutations TA50 (◦C)
wild-type 46.9 (± 0.1)
F362M 49.6 (± 0.2)

E120I, T122K 47.4 (± 0.5)
E120M, T122K 46.6 (± 0.1)
E120M, F362M 48.8 (± 0.1)
S175A, K356H 48.4 (± 0.1)
S175A, F362M 48.3 (± 0.2)
K356H, F362M 49.3 (± 0.1)

S175A, K356H, F362M 49.1 (± 0.4)

Supplementary Table 6.4: Stability of H. jecorina CBHI with the single mutation F362M
and other stabilizing point mutations.


