
Various Algorithms for Optimization and
Learning in Adaptive Systems

Thesis by

Brooke P. Anderson

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1993

(Defended Sept. 29, 1992)

11

To Richard D. and Dorothy L. Anderson, my parents.

Ill

Acknowledgements

I would like to thank Professor John Hopfield for his support and for allowing

me freedom in choosing my research. Thank you, John, for being an excellent

advisor and for making my graduate work at Caltech so gratifying.

I would also like to thank Douglas Kerns for always giving me expert advice on

hardware and for helpful discussions on many other matters; David MacKay for

turning me into a Bayesian; Ron Benson, Carlos Brody-Pellicer, Andreas Herz, and

Marcus Mitchell for insightful discussions and for providing an intellectually stim­

ulating environment; Mike Hasselmo for teaching me about experimental methods

in neurobiology; and Joe Bryngleson, Dawei Dong, and Zhaoping Li for help in

years past.

Thanks also go to the organizations that gave me financial support: the Office

of Naval Research, the Ralph M. Parsons Foundation, and the Department of

Health and Human Services.

IV

Abstract

This thesis discusses various methods for learning and optimization in adaptive

systems. Overall, it emphasizes the relationship between optimization, learning,

and adaptive systems; and it illustrates the influence of underlying hardware upon

the construction of efficient algorithms for learning and optimization. Chapter 1

provides a summary and an overview.

Chapter 2 discusses a method for using feed-forward neural networks to filter

the noise out of noise-corrupted signals. The networks use back-propagation learn­

ing, but they use it in a way that qualifies as unsupervised learning. The networks

adapt based only on the raw input data- there are no external teachers providing

information on correct operation during training. The chapter contains an analysis

of the learning and develops a simple expression that , based only on the geometry

of the network, predicts performance.

Chapter 3 explains a simple model of the piriform cortex, an area in the brain

involved in the processing of olfactory information. The model was used to explore

the possible effect of acetylcholine on learning and on odor classification. Accord­

ing to the model, the piriform cortex can classify odors better when acetylcholine

is present during learning but not present during recall. This is interesting since it

suggests that learning and recall might be separate neurochemical modes (corre­

sponding to whether or not acetylcholine is present). When acetylcholine is turned

v

off at all times, even during learning, the model exhibits behavior somewhat simi­

lar to Alzheimer's disease, a disease associated with the degeneration of cells that

distribute acetylcholine.

Chapters 4, 5, and 6 discuss algorithms appropriate for adaptive systems imple­

mented entirely in analog hardware. The algorithms inject noise into the systems

and correlate the noise with the outputs of the systems. This allows them to

estimate gradients and to implement noisy versions of gradient descent, without

having to calculate gradients explicitly. The methods require only noise genera­

tors, adders, multipliers, integrators, and differentiators; and the number of devices

needed scales linearly with the number of adjustable parameters in the adaptive

systems. With the exception of one global signal, the algorithms require only local

information exchange.

Contents

Acknowledgements

Abstract ..

1 Summary

Vl

1.1 Optimization, Learning, and Adaptive Systems.

1.2 The Influence of Underlying Hardware

1.3 Summary of Chapter 2

1.4 Summary of Chapter 3

1.5 Summary of Chapters 4, 5, and 6

2 A Method fo r Noise Filtering with Neural Networks

2.1 Description of the Method

2.2 Analysis and Problem Conditions

2.2.1 Analysis

2.2.2 Problem Conditions .

2.3 Computer-Simulation Results

2.3.1 Signals and Noise ...

2.3.2 Other Methods Used for Comparison

2.3.3 Results .

2.4 Conclusions . .

111

IV

1

1

2

4

4

5

8

9

11

11

16

17

18

19

19

21

Vll

3 A Model for Learning in the Piriform Cortex 30

3.1 Experiments . 31

3.2 Modeling ... 32

3.2.1 Specifics of the Model 33

3.2.2 Training of the Model 34

3.2.3 Performance Measure for the Model . 35

3.2.4 Testing the Model . 37

3.2.5 Results of Testing . 38

3.3 Conclusions 39

4 Low-pass Filters and Multiplicative Noise 44

4.1 Analysis .. 45

4.2 Conclusions 50

5 Gradient Estimation in Analog Hardware 51

5.1 Analysis 52

5.1.1 Method 1 52

5.1.2 Method 2 55

5.1.3 Comparing the Two Methods 56

5.2 Experiments 57

5.2.1 The Definition of "Small" 57

5.2.2 Method 1 58

5.2.3 Method 2 and Comparison 59

5.3 Generalization to Higher Dimensionality 61

5.3.1 Method 1 61

5.3.2 Method 2 63

Vlll

5.4 Conclusions

6 Optimization in Analog Hardware

6.1 The Method .

6.2 Minimization

6.3 Convergence Time vs. Number of Parameters

6.4 Implementation Issues

A Optimization Through Gradient Descent

Bibliography

64

71

73

74

77

79

84

85

IX

List of Figures

2.1 Use of a network for data smoothing. 24

2.2 Mean and standard deviation of y · n. 25

2.3 Graphical depiction of filtering by projection. 26

2.4 Ru for the two-sine-wave case 27

2.5 Rv for the Mackey-Glass case 28

2.6 Mackey-Glass equation at 1:3 29

2.7 Mackey-Glass equation . . 29

2.8 Mixture of two sine waves 29

3.1 Schematic representation of piriform cortex . 41

3.2 Synaptic potentials ... 41

3.3 Situation in which p > 1 42

3.4 Sample test run 43

3.5 Maximum average performance vs. acetylcholine leve 43

5.1 A gradient estimator based on method 1 66

5.2 Breadboard construction of the function f 67

5.3 Experimental results from method 1 . . . 68

5.4 A gradient estimator based on method 2 69

5.5 Experimental results from method 2 . . . 70

X

6.1 A schematic representation of CALOPEX 83

XI

List of Tables

2.1 Filtering comparison . 21

1

Chapter 1

Summary

This thesis is based on the results of several diverse research projects. It is there­

fore not monolithic. Nevertheless, there are two overriding themes: the relationship

between optimization, learning, and adaptive systems; and the inffuence of under-

lying hardware upon the structure of algorithms for learning and optimization.

This chapter introduces these two themes, relates them to the other chapters in

the thesis, and then summarizes the other chapters in the thesis.

1.1 Optimization, Learning, and Adaptive Sy s­
tems

Adaptive systems (both manmade and biological) adjust internal variables or struc­

tures in response to feedback from the environment. Presumably, this adjustment

results in better performance for the systems- hence the link between optimiza-

tion and adaptive systems. In this thesis, such adjustment is called "learning" or

"adaption." The following paragraph explains more precisely how it is related to

optimization.

Optimization is clearly a part of many manmade adaptive systems. Back­

propagation networks and systems that use LMS learning are two examples that

2

are built around optimization (57, 44, 58]. In biological systems, however, the

role of optimization is less clear. For example, not enough is known about most

biological nervous systems to say precisely what, if anything, is being optimized

on the neuronal level during learning. Nevertheless, on a macroscopic or system

level, there usually exist measures by which one judges the quality or effectiveness

of learning. When a rat learns to navigate a maze, the length of time it takes

to navigate can serve as a measure of learning. When a person learns calculus,

his ability to solve calculus problems can serve as a measure. Thus, adaption or

learning in manmade systems is often linked to optimization right from the design

phase while learning in biological systems is, at our current level of knowledge,

often linked to optimization less directly through the definition of measures by

which the learning is judged.

This thesis illustrates these ideas. Chapter 2 explains a method that uses an

optimization algorithm to adjust the weights of a feed-forward network. Chapter

6 discusses an optimization algorithm for implementation in analog hardware. In

both cases, optimization is intrinsic to the construction of the adaptive systems.

Chapter 3 explains a simplified model of the piriform cortex, which involves opti­

mization indirectly. In order to judge the effectiveness of learning, a performance

measure was created that increases during learning. This measure is almost cer­

tainly not the same function the piriform cortex maximizes during learning (if there

even is such a function), but the result- that learning increases some measure of

performance--is an example of optimization.

1.2 The Influence of Underlying Hardware

The effectiveness of an algorithm depends on the type of hardware on which it is

3

implemented. For example, digital computers are excellent at performing sequen­

tial operations and at executing long lists of logical operations, but they are not

very fast at simulating large dynamical systems (like air flow around entire air­

planes) compared to the native analog implementation (i.e., the real thing oper­

ating in real time). Analog computers are excellent at solving certain differential

equations quickly but are not very good at processing lists of logical operations.

Biological nervous systems are excellent at producing adaptive behavior but are

not very good at multiplication and division.

Thus, hardware influences the construction of algorithms from the start. It is

clear, for example, that many of the techniques from traditional artificial intel­

ligence are for digital computers. Such techniques are dominated by operations

that search lists or other structures or that test to see whether conditions are true

or false, and the corresponding solutions to problems are broken down into series

of logical statements. (For examples, see standard texts on artificial intelligence,

such as [49], [7], and [60].) Conversely, algorithms meant for implementation in

analog hardware can often be written compactly as differential equations. They

usually lack the equivalent of "if-then" statements and the accuracy and flexibility

of digital programs. (See [39], [54], or [51] for discussions of analog computa­

tion.) Biological hardware is different still. Biological nervous systems (even those

of insects) cannot currently be functionally duplicated in either digital or ana­

log hardware-not enough is known about how they function. It is unclear if all

the computations being performed in such systems will translate well to another

medium.

This thesis discusses topics that involve all three of the types of hardware men­

tioned above. Chapter 2 explains a method that uses conjugate-gradient descent-

4

an optimization algorithm designed for efficiency on digital computers. Chapter 3

discusses a simplified simulation of an algorithm running on biological hardware, an

algorithm that certainly does not run as efficiently on a digital computer. Chapters

4, 5, and 6 all present algorithms meant specifically for analog hardware, and none

of these algorithms would be the best choice for implementation on digital com­

puters. Thus, for efficiency, hardware considerations cannot be totally separated

from algorithmic considerations- the two are interdependent.

1.3 Summary of Chapter 2

Chapter 2 discusses a method that uses feed-forward neural networks for filtering

the noise out of noise-contaminated signals. Specifically, the method uses networks

in which the number of input neurons and the number of output neurons are the

same but that have fewer middle-layer neurons (i.e., the networks pinch down in the

middle). The chapter also presents an analysis of the performance of such networks.

This analysis leads to a simple equation that, based only on the geometry of the

network and under certain conditions, correctly predicts performance.

It is interesting that the networks discussed in this chapter are trained only

with the data available from the environment- there is no external teacher telling

the networks what they should produce. Thus, even though the networks adapt by

back-propagation learning the adaption in this case is an example of unsupervised

learning.

1.4 Summary of Chapter 3

The piriform cortex is the cortical region of the brain that processes olfactory

information coming from the olfactory bulb via the lateral olfactory tract. It is

5

composed of several layers. One layer, layer Ia, contains connections from the

lateral olfactory tract to the neurons in the piriform cortex. Another, layer lb,

contains connections among the neurons in the piriform cortex. There is a clear

anatomical separation of these connections. Recently, Hasselmo and Bower found

that acetylcholine affects the synapses in layers Ia and lb completely differently:

it shuts down the lb connections and hardly affects the Ia connections [25].

Chapter 3 discusses a simple model of the piriform cortex used to investigate

the possible effect of acetylcholine on learning and to explore the computational

utility of a differential effect on layers Ia and lb. In order to judge effect, one needs

a measure of performance. This chapter presents a performance measure based on

signal-to-noise ratios (which are widely used in the field of signal processing).

By this measure, the model performs better when acetylcholine is present while

learning new odors and is absent while recalling odors. This result is interesting

since it suggests that learning and recall might be separate modes (corresponding

to whether or not acetylcholine is present). It is also interesting since a lack of

acetylcholine results in a decreased ability to learn new patterns but not to recall

old patterns. This is somewhat similar to the effects of Alzheimer's disease, a

disease associated with the degeneration of cells that distribute acetylcholine to

the cortex.

1.5 Summary of Chapters 4, 5, and 6

There are many excellent algorithms for optimization, learning, and adaptive sys­

tems for use on digital computers. Hone must use analog hardware, however, the

options are considerably restricted. With analog hardware, the designer no longer

has a general-purpose computing machine at his disposal and must be concerned

6

with how well the necessary computations match the capabilities of the hardware.

Storage is not as straightforward and convenient; iterative loops and logical rules

are not as easy to implement; division is difficult except in cases where very low

precision is tolerable; etc. (See [39], [54], [51], and references therein for general dis­

cussions of analog computation.) As a result, algorithms that are straightforward

to implement on a digital computer can be prohibitively difficult to implement in

analog hardware.

It might seem that one should simply use microprocessors and sidestep this

problem, but there are areas in which analog devices, specifically analog VLSI de­

vices, have advantages. For example, analog VLSI devices typically require very

little power, are very compact, and can easily implement certain highly parallel op­

erations [39, 53]. These properties are useful in devices such as pacemakers (where

low power consumption results in longer time between replacement), hearing aids

(where compactness is important), and neural networks (where the fundamental

computations are highly parallel). Also, some analog VLSI devices are naturally

damage resistant because of parallel or other damage-resistant algorithms. (See

[39], [55], and [56] for examples.) This property is useful for systems such as

space-probe control systems, which need to be resistant to radiation damage.

Chapters 4, 5, and 6 discuss several adaptive algorithms specifically designed

for ease of implementation in analog hardware. Chapter 4 first discusses the use

of low-pass filters as expectation operators for use on signals contaminated by

multiplicative noise. This is necessary for material that follows . Chapter 5 dis­

cusses two methods for estimating gradients. These can be useful for adaptive

systems that require gradient information to tune internal parameters (as is often

the case). Chapter 6 discusses an algorithm based on some of the ideas in Chapter

7

5 and specifically designed to implement optimization, which is the key operation

of many adaptive systems.

8

Chapter 2

A Method for Noise Filtering
with Neural Networks

One of the appealing aspects of neural networks is that they are not programmed

like traditional computers. With back-propagation learning, for example, networks

are given input/output pairs during learning [57, 44]. The network is, in effect,

shown what it should output for each given input, and it adjusts itself to do so

as well as it is able. Thus, the role of program and programmer is replaced by

that of adaptive system and trainer. This is an easier task because the trainer

need not explain or even know how to solve a given task; he must merely know

what the correct responses are. For this reason, as long as there are enough data

available for training, neural networks are often useful in situations where methods

of solution are unknown.

Such is the case with Klimasauskas' method for noise filtering using neural

networks (34]. Here, neural networks are trained to filter out the noise in noise­

contaminated signals. Moreover, the neural networks in the Klimasauskas method

are trained with input/output pairs taken directly from the environment, so the

technique does not even require a trainer. This is an example of unsupervised

0 Most of the information in this chapter was originally reported in [2].

9

learning, and it requires even less knowledge on the part of the person implementing

the network than is required in the case of supervised learning described above.

This chapter gives an analysis of the Klimasauskas method, compares the

method's performance to that of low-pass and optimal filtering, and discusses some

advantages and disadvantages of the method. One interesting result of the analysis

is that the filtering performance can, under certain conditions, be predicted purely

by the geometry of the network. This and the performance comparisons are the

central results of the chapter.

Note: For simplicity, this chapter discusses signals corrupted only by additive,

Gaussian white noise. Also, there is a technical distinction between noise filtering,

which refers to estimation of the signal for the current time using past data, and

data smoothing, which refers to estimation of the signal for some earlier time using

past and present data. This technical distinction will often be relaxed, and the

chapter refers to both processes simply as "noise filtering" or "filtering."

2.1 Description of the Method

The Klimasauskas method uses layered, feed-forward neural networks. The net­

works are restricted to three layers, and each layer sends outputs only to the

adjacent layer (the next higher layer in the network). The neurons all have sig­

moidal transfer functions. The networks have m input neurons, k middle-layer

neurons, and m output neurons, with k < m. Thus, the networks pinch down in

the middle. Weights and thresholds adapt by the back-propagation learning rule

[57, 44]. During training, the input and target vectors are identical and consist of

sequential samples from the corrupted signal. If c(t) denotes the corrupted signal

10

and if the network has m input neurons, the input vectors to the network are

where

t0 is an initial time, fl.t > 0 is a sampling interval, and NP is the number of training

patterns. One uses the trained network for data smoothing by running sequential

samples from the corrupted signal into the network and taking sequential values

from the central neuron of the last layer as the smoothed output (see Figure 2.1).

This chapter deals with a method identical to the Klimasauskas method ex­

cept for three differences whose rationales are as follows. First, the transfer func­

tions of the output-layer neurons are linear rather than sigmoidal so that the

output is not restricted to (0,1). This no longer requires the rescaling of all noise­

contaminated signals to the range (0,1). Second, the networks can have more

than three layers. This allows more complicated and perhaps more effective net­

work structures. Third, the networks adapt using conjugate-gradient descent [42]

rather than gradient-descent-like back propagation. This is important for speed of

adaption. Our implementation of conjugate-gradient descent was from two to ten

times faster than our implementation of standard back propagation when training

large networks (networks with tens or hundreds of weights). Conjugate-gradient

descent does have more difficulty with local minimae, but this problem can be

circumvented. 1

While Klimasauskas did use his networks for data smoothing, he did not test

1 When the algorithm stopped, indicating it had reached a minimum, we added noise to the
weights, restarted the algorithm, and allowed it to converge to another stopping point. We
repeated this process until, after several tries, the stopping points failed to reduce the error (the
mean-square difference between the output and the target vectors) .

11

their abilities to perform noise filtering. We also studied the noise filtering task,

which was accomplished by taking sequential values from the last neuron in the

output layer. Data smoothing was accomplished as described above.

2 .2 Analysis and Problem Conditions
....

A key assumption of this chapter, one central to the following analysis, is that the

signals are deterministic. This is not as restrictive as it might seem both because

it admits the possibility of chaotic signals (even those with large dimensionality

that are similar in many respects to stochastic signals) and because deterministic

signals are common. As mentioned above, the noise is additive, Gaussian white

noise, which is not deterministic.

Information that is fed into a network starts out being represented as an m-

dimensional vector (at the network's input layer) and eventually gets represented

as a k-dimensional vector (at the network's middle layer) . Since the networks pinch

down in the middle (i.e., since k < m), this situation suggests that projection of

manifolds onto manifolds of reduced dimensionality plays a role in the process.

As the analysis shows, this is the case. Under certain conditions, training causes

a network to approximate a projection operator that preserves the signal and

attenuates the noise.

2.2.1 Analysis

Before analyzing the operation of the Klimasauskas method, we discuss attrac-

tors and the noise-filtering properties of projections. The term "attractor" is used

here as in the field of chaos. For example, if s(t) is an N-dimensional state vec­

tor evolving in time, the attractor is the structure formed from the set of points

{ s(t) I t E [t0 , oo)}, where t0 is large enough for all of the start-up transients to

12

have died out. The space RN is called the "embedding space." The important

aspects of the attractor can be reproduced by the time series

where Si is any component of s, m > 2Da + 1, Da = dimensionality of the original

attractor, flt1 > 0 is any sampling interval, and fltL > 0 is any time lag. Also,

the attractor can almost always be reproduced with Da < m :::; 2Da + 1. Thus,

the input vectors described in Section 2.1, where flt1 = fl.tL = fl.t, approximate

an attractor if m is large enough. (See [48], [15], and [50] for proofs of the validity

of and explanations of such reproductions of at tractors.)

In [35], Kohonen describes the noise-filtering properties of linear orthogonal

projections. Consider an m-dimensional vectors that evolves on a k-dimensional

linear subspace L of Rm (k < m), that is corrupted with additive noise n, and

that is orthogonally projected back onto L. Let the corrupted vector x = s + n,

and define P as the orthogonal projection operator. Kohonen shows that, for a

spherically symmetric noise distribution,

(2.1)

where(-)= f(·)p(nt, n2, ... , nm)dn1 dn2 · · · dnm is an ensemble average, an average

over the noise distribution. Thus, P is a filtering operator because Px is closer to

s than xis.

Kohonen also shows that any vector x in Rm can be uniquely decomposed into

x = x + x where x E L and x is orthogonal to L. One can use this as follows to

show that linear orthogonal projections filter out more noise than any other linear

projection. Again, let P be the orthogonal projection onto L, and let x = s + n

where s E L. Then, Px = Ps + P(n + ii) = s + n, and (IIPx- sll2
) = (llnll2

) .

13

For a nonorthogonal projection P' that projects onto L, P'x = P's + P'(n + n) =

s + n + P'n, and (IIP'x- sll2
) = (lin+ P'nll2

). Assume that the noise distribution

is spherically symmetric and that n and n are independent. This is the case for

Gaussian white noise, where the components of the noise vector are independent in

any orthonormal basis. Then (lin+ P'nll2
) > (llnll2

), (IIPx- sll 2
) < (IIP'x- sll2

),

and the orthogonal projection filters out the most noise.

This same principle can work for orthogonally projecting noise-corrupted vec­

tors onto nonlinear attractors. If the attractor is smooth enough so that small

regions of it appear linear and if the amplitude of the added noise is not larger

than this scale of linearity, the above noise-reduction ratio will still approximately

hold. This is because each small region of the at tractor will appear as a hyperplane

onto which the corrupted vector is projected.

With the above introduction, we can now analyze the Klimasauskas method.

Since the network takes m-dimensional vectors as inputs, represents them as k­

dimensional vectors at the middle layer (where k < m), and finally gives m­

dimensional vectors as outputs, it is taking m-dimensional vectors and mapping

them onto a k-dimensional surface embedded in Rm. Thus, the network is doing a

projection onto a surface. If that surface is similar to the pure signal's attractor,

if the projection is approximately orthogonal, and if the conditions in the previous

paragraph hold, (2.1) will approximately hold where Px is the output vector of

the network. This turns out to be the case.

The reason that the surface of projection is similar to the pure signal's at tractor

and that the projection is approximately orthogonal can be illustrated by consid­

ering the optimization done during training. The error function to be minimized

14

IS

1 /Vp 1
E =- L IIY(P)- s(p)- n(p)ll2 =-2:::[11y- sW + llnll 2

- 2(y- s) · n]
NPp=l Np p

where sis the pure part ofthe target vector, n is the noisy part ofthe target vector,

y is the output vector, pis the training-pattern number, and NP is the number of

training patterns. Assuming that NP is large,

E ~ (IIY- sll2 + llnll 2
- 2(y- s) · n) = (IIY- sll 2

) + (llnll2
) + 2(s · n)- 2(y · n).

Since s and n are by definition independent, (s · n) = 0. Since the network

projects m-dimensional vectors onto a k-dimensional surface where k < m, ac-

cording to the projection arguments given above, any noise present in the input

is not reproduced exactly at the output. (White noise has an attractor of infinite

dimensionality, and some information must be lost in the projection operation.)

This suggests that n and the output, y, are not completely correlated. If they are

not very strongly correlated, (y · n) ~ 0, which simplifies the analysis. In fact,

Figure 2.2 shows that, for various trained networks, the mean of y · n is near zero,

and its error bars (out to one standard deviation) straddle zero. Thus, (y · n) ~ 0

is a good approximation, and

This function is minimized when y = s.

We already know that the network projects input vectors onto a surface. Since

the training process works to minimize E, i.e., to produce y ~ s as closely as the

network is able, the training process must work to mold that surface onto the pure

signal's attractor. If the network used a significantly different surface, the output

would be significantly different from s. s projected onto its own attractor is stills,

15

but s projected onto a different surface is no longer s, and the projection would in-

troduce error. Likewise, for linear patches of the surface, an orthogonal projection

reduces more noise than any other projection, so the training process must work to

produce an orthogonal projection in order to minimize (IIY- sll 2
). Thus, assuming

that the network has a rich enough structure so that it can represent the pure sig-

nal's attractor (i.e., that k ~ Da and that the network has enough layers and large

enough layers), the training process produces a projection for which y ~ s, and

the network is projecting approximately onto the pure signal's attractor. Then,

assuming that the conditions in paragraph 4 of this section hold, the projection is

approximately orthogonal, and (2.1) is approximately valid.

Since time averages were more convenient than ensemble averages in the com-

puter simulations, they are used to express the left-hand side of (2.1). Call the

resulting expression "Rv." Rv is a measure of the reduction in the noise present in

the input vectors. Since white noise is ergodic, time averages are equal to ensemble

averages [18]. Then, altogether for the network,

(2.2)

Because the network reduces the vector noise, it is reasonable to expect that

it reduces the noise in each component of the output vector as well. Thus, take

Yi(t) as a filtered version of Xi(t) = c(t + (i -1).6.t). Figure 2.3 graphically depicts

this operation. The left side of the figure shows traditional filtering: a signal is

contaminated with noise and then filtered. The filtered version is closer to the pure

signal than the noise-contaminated version. The right side of the figure shows how

an attractor can be filtered: an attractor is contaminated with noise and then

projected. The projected version is closer to the pure attractor than the noise­

contaminated version. The arrows linking the two sides show how to use projection

16

to filter a scalar signal: a noise-corrupted attractor is formed from the noise­

corrupted signal, the noise-corrupted attractor is projected, and the appropriate

component of the projected version is taken as the output. This component is then

the filtered version of the noise-corrupted scalar signal.

2.2.2 Problem Conditions

As discussed above, k must be ~ Da, and m must be of sufficient size for the

neural network to perform effectively as a noise filter. Although necessary, these

conditions are not sufficient to ensure that the network can do the correct mapping.

Obviously, one finite layer of neurons and weights cannot perform all possible

mappings. Thus, additional layers (between the input layer and the middle layer

and between the middle layer and the output layer) or layers that are larger than

the minimum size based on the criteria above might be required. (See [17] and

[27] for discussions of the network structures that are necessary for approximating

arbitrary mappings.)

Inadequate simulation of the Klimasauskas method on a digital computer can

cause problems. Roundoff error and digitization of continuous values can produce

small wrinkles and flat spots in the error surface in weight space. Let w be a vector

representing the network's weights. Let w* denote the weights that minimize E.

Even if the network is capable of perfect filtering with w = w* (i.e., y(x(t); w*) =

s(t)), the wrinkles can cause learning to stop when w = wf =f. w* . When this is

the case and letting !:l.y = y(x(t); wf)- y(x(t); w*), (2.2) becomes

where u is the standard deviation of the noise. As u -+ 0 , Rv -+ oo, and the filtering

performance is poor. However, at large noise levels, the network should operate as

17

expected because, as u increases, y(x(t); w*) = y(s(t) + n(t); w*) will on average

deviate more and more from s(t) and perfect filtering. Thus, lly(x; wf) -y(x;w*)ll

will at some point become negligible compared to lly(x; w*) - sll, and one can

neglect any difference between the true minimum of E and the point where learning

actually stops.

Also, the analysis in this chapter relies on the noise's having an infinite dimen­

sionality. This is true for white noise, but it is not true for practical noise sources

(because of finite bandwidths or because the noise is actually from a dynamical

system with a large but finite attractor dimensionality, for example). H the noise

does not have an infinite dimensionality, it is possible that it could be exactly

reproduced at the outputs of a network even though k < m. Consider the case in

which each neuron in a network can represent B bits of data and in which a single

sample c(t) of the noise-corrupted signal contains C bits of data. If Cm ::;; Bk, it

is possible that the network would learn to reproduce everything- including the

noise-at its output, and the analysis in Section 2.2.1 would be invalid. However,

this seems to be a pathological case: a network would probably require many large

layers between the input and middle layers and between the output and middle

layers in order to do the complicated encoding and decoding required. The com­

puter simulations described below used a pseudorandom-number generator (with

an attractor of finite dimensionality) apparently without disrupting the predictive

power of the analysis.

2.3 Computer-Simulation Results

The measure for comparison of the various filtering techniques is based on a ratio

of root-mean-square Euclidean distances. Define it as

18

D. /r:.T=l(y;(t)- b(i- 1 + t))2 j((y;- b)2}t
R = ~ (2.3)

/'L-t(c(i- 1 + t)- b(i- 1 + t))2 j((c- b)2}t

where b(t) is the scalar signal (as distinguished from the vector s), c(t) is the

noise-corrupted scalar signal (as distinguished from x), y(t) is the vector output

of the filter, t is a discrete-time variable, and T is large (....., 104
). In the case of

filters other than the network type, the filter generally has only one output, and

the subscript ion y;(t) is meaningless.

2.3.1 Signals and Noise

Four signals were used for testing: (1) a sum of two random-frequency sine waves,

(2) a sum offour random-frequency sine waves, (3) the output of the Mackey-Glass

equation, and (4) the output of the logistic mapping. The Mackey-Glass signal was

generated from a discrete-time version of the Mackey-Glass equation with a= .2,

b = .1, and T = 30 [38]:

.2s(t- T)
s(t + 1)- s(t) = 10() - .1s(t).

1+s t-T

The continuous-time version of this equation is chaotic and has an attractor of

dimension 3.5. The logistic signal was generated from the function b(t + 1) =

4b(t)(l - b(t)). b(t) is chaotic and has an attractor of dimension .54 [19]. Figures

2.6, 2. 7, and 2.8 display plots of some of these signals, demonstrating the noise­

filtering effects of various networks. In terms of notation, all of the computer

simulations had t E {1, 2, 3, . .. } and fl.t, referred to in Section 2.1, set to 1.

The pure signal was corrupted with computer-generated, zero-mean Gaussian

noise added to the signal at each time step. The amount of noise is reported in

decibels (db), where db = 10 log SNR and SNR is the signal-to-noise ratio defined

19

as (signal power)/ (noise power). Signal power is Ps = ~ 'L;{=1 b
2

(t) - (~ L:t b(t))
2

.

One calculates noise power the same way.

All of the signals were tested at a sampling ratio of 1:1. The two-sine-wave

and Mackey-Glass signals were also tested at sampling ratios of 1:19 and 1:3,

respectively, where A:B means A points were used out of every B points generated.

With these ratios, the sampling frequency is closer to the maximum frequency

component in the signal (as shown by an FFT power-spectrum analysis), and

filtering is more challenging.

2.3.2 Other Methods Used for Comparison

The following sections compare the Klimasauskas method to low-pass filtering,

optimal filtering, and the predictions of (2.2). For low-pass filtering, optimal RC

time constants (time constants that gave the best filtering) were used. Optimal

filtering was accomplished in the frequency domain using FFT's [42].

2.3.3 Results

Test of the Analysis

To examine the predictive power of (2.2), various networks were trained on the

first 5% ("" 500 data points) of a noise-corrupted signal. Then the entire series

was run through the network, and Rv was calculated. Figures 2.4 and 2.5 display

the results graphically, showing Rv vs. ~ for two different signals.

As Figure 2.4 shows, a three-layer network with two middle-layer neurons seems

capable of mapping vectors onto the attractor of the two-sine-wave signal. This

is reasonable as the attractor is the surface of a 2-torus and as sine waves can be

reproduced by single-layer neural networks. With a single middle-layer neuron,

20

however, k < Da and the network cannot map vectors onto a 2-dimensional sur­

face. This suggests that the network will have problems accomplishing the needed

projection and that it will not behave according to (2.2). Indeed, Figure 2.4 shows

that, in this case, Rv rapidly deviates from ~ as k/m becomes small. It is

interesting that, even though one of the necessary conditions for the analysis is

violated, Rv is still ~ ~as long as kfm is not too small.

For the Mackey-Glass signal, Figure 2.5 shows that a three-layer network with

one or three middle-layer neurons seems unable to accomplish the needed mapping.

This is expected since k < Da. Again it is interesting that, even though k < Da,

Rv ~~as long as k/m is not too small. The networks with five middle-layer

neurons produce Rv ~~to as low a value of k/m as we were able to handle.

On the computers we had access to at the time, the training took too long for

smaller k/m (i.e., larger m).

Note that the networks occasionally achieve an Rv better than ~· This

is interesting since it is better than a linear orthogonal projection can do. The

nonlinear mapping that the network does is clearly of benefit here.

Comparison with Low-pass and Optimal Filtering

Here, various networks were trained and given data as in the previous section. Then

R (see (2.3)) was calculated for the networks and the other methods. Figures 2.6,

2. 7, and 2.8 display plots of signals corrupted with 6 db noise, pure signals, and

sample network outputs (in smoothing mode) for some of the cases tested. Table

2.1 summarizes the comparative results.

There are several features in Table 2.1 that merit comment. First, the data-

smoothing mode of the Klimasauskas method routinely achieves better R values

21

Table 2.1: Filtering comparison . signal = signal name, db = SNR in decibels,
LP = R value for low-pass filtering, opt = R for optimal filtering, net-s = R for
Klimasauskas method in smoothing mode, net-f = R for Klimasauskas method
in filtering mode, SW = sine waves, MG = Mackey-Glass, LM = logistic map,
and config = network configuration listed as number of neurons in the consecutive
layers.

signal db LP opt net-s net-f config
2SW 0 .32 .057 .14 .26 100-2-100

6 .37 .082 .16 .25 100-2-100
20 .61 .15 .22 .37 100-2-100
40 .93 .20 4.8 5.7 100-2-100

2 SWat 1:19 6 .82 .15 .49 .48 100-2-100
4SW 6 .38 .11 .41 .51 21-4-21
MG 0 .48 .25 .34 .56 35-5-35

6 .60 .30 .38 .60 35-5-35
20 .86 .42 .42 .69 35-5-35
40 1.0 .54 1.9 2.8 35-5-35

MG at 1:3 6 .77 .46 .58 .87 21-5-21
LM 6 .94 .81 .79 .95 3-6-2-6-3

than does the noise-filtering mode. Thus, not all output neurons have equal ef­

fect. Second, the Klimasauskas method is not effective for low noise levels (e.g.,

SNR ~ 40 db) as predicted in Section 2.2.2. Third, the smoothing mode of the

Klimasauskas method compares well to optimal filtering on the chaotic signals and

generally outperforms low-pass filtering.

2.4 Conclusions

The Klimasauskas method performs well on chaotic signals. For mixtures of sine

waves, optimal filtering is much better. The Klimasauskas method does a much

better job for data smoothing than for noise filtering. However, even if the per­

formance were better than all other methods, the Klimasauskas method is more

cumbersome to implement. It cannot currently be implemented in readily avail-

22

able special-purpose hardware. Also, the digital-computer implementation of the

method is slower than low-pass filtering. Other methods discussed in signal­

processing literature, such as Kalman filtering and the adaptive line enhancer,

would generally be faster as well since they require fewer computations than the

Klimasauskas method does.

The attribute of the Klimasauskas method most likely to lead to its use in spite

of the disadvantages is that it requires very little knowledge about the signal and

noise. Of course, knowledge about the dimensionality and complexity of the sig­

nal's attractor is useful in deciding which network configuration to employ for best

effect. However, the Klimasauskas method will generally do some useful filtering as

long as kfm is not too small. Optimal filtering, Kalman filtering, and many others

require the estimation of noise spectra, of parameters for the process emitting the

signal, etc. Thus, the Klimasauskas method is potentially most useful in cases

where very little information about the signal or noise is available and where one

wants a "smoother" version (in a qualitative sense) of a suspected noise-corrupted

signal.

The analysis shows that the Klimasauskas method operates by building up a

representation of the signal's attractor and then by projecting inputs onto that

representation. Assuming that the network employed has a rich enough structure

to represent the at tractor, and assuming that the conditions in paragraph 4, Section

2.2.1 are met, the noise-filtering properties of the network are predicted solely by

~(see (2.2)).

The Klimasauskas method should be able to handle signals with slowly chang­

ing characteristics as long as: first, the characteristics are approximately constant

over the length of time required to gather one training set, and second, the signal's

23

at tractor does not eventually violate the necessary conditions (conditions such as

Da ::; k). A rough rule of thumb is that a network with N adjustable param­

eters (weights and thresholds) needs N independent training vectors in order to

determine the correct values of the parameters and more than that if the vectors

are not independent (as will likely be the case) . Thus, the Klimasauskas method

should be able to handle signals whose characteristic time for change is an order of

magnitude or two greater than N fl.t where fl.t is the sampling interval discussed

in Section 2.1.

24

Smoothed Output

0

Input Signal

0 0-Neurons

~Weights
0\

Figure 2.1 : Use of a network for data smoothing.

25

1.0

y•n

-1.0

= C"
~ ~

1'1} 1'1}
Cl) Cl)

1'1} = > > 1'1}
~ = = = - to) ~ ~ 0

Cl) Cl) I
~ 1'1} = = Cl)

.!:C:
'bl) 00 00 0 to)
~ ~ ~ = ~

Figure 2.2: Mean and standard deviation of y • n .

26

1 add noise

1 add noise

form vectors

l Itlter

l
projection

- ·-----
component

Figure 2.3: Graphical depiction of filtering by projection.

-'-0 -CJ
QJ
~ -
~

27

1.2 .--------------------------..

1.0

0.8

0.6

0.4

0.2

, ,
, , ,

, , , ,

, , ,

, , , , , , , , , , ,

--D-- 1 neuron

• 2neurons

o.oL--._-~-----L-_.-~----~~----~----~
0.0 0.2 0.4 0.6 0.8 1.0 1.2

(k/m)"l/2

Figure 2.4: Rv for the two-sine-wave case (one vs. two middle-layer neurons).

28

1.2r---~

1.0 , , , , , , , , ,

0.8 -'-
0 -c.J
~
> - 0.6
~

0.4 , , ,
-G- lneuron , , , , , , • 3neurons ,

0.2 , , , , ,
-o-, 5neurons , , , , , ,

0.0
0.0 0.2 0 .4 0.6 0.8 1.0 1.2

(k/m)" 112

Figure 2.5: Rv for the Mackey-Glass case (one vs. three vs. five middle-layer
neurons.)

29

1 . 5 ..

- 1 . .· co
c
~
en . 5

..
0.

0 50 100 150 200
Time

Figure 2.6: Mackey-Glass equation at 1:3. Dots = 6 db noise-corrupted signal,
dashed lines = pure signal, and solid lines = smoothed signal.

1 . 5 ..

- 1 . «<
c:
~ -C/) . 5

0.0 100 200 300 400

Time
Figure 2. 7: Mackey-Glass equation. Dots = 6 db noise-corrupted signal, dashed
lines = pure signal, and solid lines = smoothed signal.

1 .

. 5 -«'
c 0. ~ -C/)

-.5

-1.0
200 400

Time
600 BOO

Figure 2.8: Mixture of two sine waves. Dots = 6 db noise-corrupted signal, dashed
lines = pure signal, and solid lines = smoothed signal.

30

Chapter 3

A Model for Learning in the
Piriform Cortex

A wide range of behavioral studies support a role for acetylcholine in memory

function [37, 21]. However, researchers have not linked specific neuropharmaco­

logical effects of acetylcholine to its influence on memory function. With this goal

in mind, Hasselmo and Bower recently studied the effect of acetylcholine on the

piriform cortex [25].

The piriform cortex is the cortical region of the brain that processes olfactory

information coming from the olfactory bulb via the lateral olfactory tract. It has

several layers. One layer, layer Ia, contains the afferent fibers, the connections from

the lateral olfactory tract to the neurons in the piriform cortex. Another, layer lb,

contains the intrinsic fibers, the excitatory connections among the neurons in the

piriform cortex. Figure 3.1 shows this structure schematically. The piriform cortex

has widely distributed input and intrinsic connections. Assuming that it also has

modifiable synapses (as suggested by experiments that show it exibits long-term

potentiation [30, 29]), it has the main elements of abstract associative-memory

models [20]. (For descriptions of such models, see, for example, [3] and [36] .) Thus,

0 Most of the information in this chapter was originally reported in [23].

31

researchers have explored cerebral-cortical associative-memory function using the

piriform cortex as a model system, and they have developed computational models

of the piriform cortex that show such associative-memory function (59, 6, 24].

This chapter presents a theoretical exploration of the consequences of Hasselmo

and Bower's results in the context of associative-memory function. Section 3.1

explains Hasselmo and Bower's experimental results, and Section 3.2 explains the

computational model used in the research. The model predicts that perfusion

of acetylcholine into the piriform cortex during learning (but not during recall)

enhances memory function.

3.1 Experiments

The afferent-fiber and intrinsic-fiber systems of the piriform cortex are physically

separated in the piriform cortex. To study differences in the effect of acetylcholine1

on these two fiber systems, Hasselmo and Bower applied the pharmacological agent

carbachol (a chemical analogue of acetylcholine) to a brain-slice preparation of pir­

iform cortex while monitoring changes in the strength of synaptic transmission as-

sociated with each fiber system (25]. In these experiments, both extracellular and

intracellular recordings demonstrated clear differences in the effects of carbachol

on synaptic transmission. The results in Figure 3.2 show that synaptic potentials

evoked by activating intrinsic fibers in layer lb were strongly suppressed in the

presence of 100 J.tM carbachol, while, at the same concentration, synaptic poten­

tials evoked by stimulation of afferent fibers in layer Ia showed almost no change.

Hasselmo and Bower found that 100 J.tM acetylcholine (mixed with 1 J.tM of the

1 Acetylcholine is the neurotransmitter in some areas of the nervous system, but research
suggests that either glutamate or aspartate is instead the neurotransmitter in the piriform cortex.
[9, 10]

32

acetylcholinesterase blocker neostigmine) produced similar results.

These experiments demonstrate that there is a substantial difference in the neu­

rochemical modulation of synapses associated with the afferent-fiber and intrinsic­

fiber systems within piriform cortex. Acetylcholine selectively suppresses intrinsic­

fiber synaptic transmission without affecting afferent-fiber synaptic transmission.

While interesting in purely pharmacological terms, these differential effects are

even more intriguing when considered in the context of computational models of

memory function in this region.

3.2 Modeling

There are two aspects to modeling the effects of cholinergic suppression in the

piriform cortex. First, obviously, a specific model of the piriform cortex must be

developed. Second, a performance measure must be developed so that one has a

basis for judging the effects of cholinergic suppression on computational function.

These tasks are complicated conceptually by the limited understanding of the exact

function of the piriform cortex and, in simulations, also made difficult by limited

computer resources. Estimates must be made concerning which aspects will be

important and which will only add complication. Otherwise, one is left with the

task of modeling the system from the molecular dynamics on up. Even if this were

possible, the limited understanding of the piriform cortex would then result in an

unworkably large number of undetermined, adjustable parameters in the model.

This chapter presents a simple model of the piriform cortex, one biased to­

wards the assumption that the piriform cortex operates similarly to an associative

memory. This model is based on the schematic diagram of the piriform cortex

(Figure 3.1), which serves as the schematic diagram of the model. The neurons

33

in the model have nonlinear transfer functions, but they are nonspiking (i.e., the

classic mean-firing-rate representation is used). The synapses have linear transfer

functions. The set of odors that the model is to learn is represented by a randomly

generated set of input vectors. The learning is modelled as a Hebbian process.

More precise details are given below.

A performance measure must also be defined. Associative memones learn

mappings between sets of memories, and they tend to reject noise in the in­

puts. For example, if an associative memory is trained on the set of vector pairs

{ (xm, ym) I m = 1, 2, .. . , M} and if a noise-corrupted version of xk is given as the

input, the model should still give an output that is close to yk. One can quantify

this with signal-to-noise ratios, and these ratios form the basis for the performance

measure used for testing. The details are given in Section 3.2.3.

3.2.1 Specifics of the Model

Figure 3.1 shows a schematic representation of the model. At each time step, a

neuron was picked at random, and its act ivation was updated as

N

ai(t + 1) = Ai(t) + L)(1- c)Bii- Hij]g(ai(t))
j=l

where N = the number of neurons; t = time E {0, 1, 2, ... }; c = a parameter

representing the amount of acetylcholine present E [0, 1]; ai = the activation or

membrane potential of neuron i; g(ai) =the output or firing frequency of neuron

i given ai; Ai = the input to neuron i, representing the afferent inputs from the

olfactory bulb; Bii =the weight matrix or the synaptic strength from neuron j to

neuron i; and Hii = the inhibition matrix or the amount that neuron j inhibits

neuron i. To account for the local nature of inhibition in the piriform cortex,

Hii = 0 for li - il > r, and Hij = h for li-il ~ r, where r is the inhibition radius.

34

The function g(a,) was set to 0 if a, < Oa, where Oa = a firing threshold; otherwise,

it was set to Ia tanh(a, - Oa) where Ia = a firing gain.

The weights were updated every N time steps according to the following Heb­

bian learning rule.

B,; = f(W,;)

~Wii = W;3(t + N)- W;3(t) = (1- c)/t(a;- Ot)g(aj)

The function f(·) is a saturating function, similar to g(·), used so that the weights

could not become negative or grow arbitrarily large (representing a restriction on

how strong synapses could become). It is a parameter that adjusts learning speed,

and Ot is a learning threshold. The weights were updated every N time steps

to account for the different time scales between synapse modification and neuron

settling. The same thing can be accomplished by updating the weights every time

step and using a smaller It· However, by updating the weights only every N time

steps, one reduces the amount of processor time required.

3.2.2 Training of the Model

During learning, the model was presented with various vectors (taken to represent

odors) at the input, A;(t). The network was then allowed to run and the weights

to adapt. The input vectors were created randomly, constrained to have no com­

ponents with values less than zero, and then normalized. Without normalization,

some input vectors are much more excitatory than others. For such vectors, a; and

g(a3) in the learning rule are on average larger than for other vectors, and learning

proceeds more rapidly. Normalization makes the learning rates more even.

Specifically, the procedure for creating the set of training vectors {Am I m =

1, 2, ... , M} was: first, set Af' = max{O, G(JJ., o-)} where G = Gaussian with aver-

35

age J.l and standard deviation u, and second, normalize the whole vector so that

11Amll2 = N(u2 + J.L 2). M = number of memories or odors presented to network

during training, and Ai = the input to neuron i while odor m is present.

During learning, in the asynchronous update equation, A(t) = A~ for r time

steps, then A(t) = A~ for the next r time steps, and so on; i.e. , the various odors

were presented cyclically.

3.2.3 Performance Measure for the Model

The piriform cortex receives inputs from the olfactory bulb and sends outputs to

other areas of the brain. Assuming that during recall the network receives noisy

versions of the learned input patterns (or odors), we presume the function of the

piriform cortex is to reduce the noise present in its outputs, creating a more stable

representation as a basis for classification or recognition of the odors. Thus, the

term "recall" here does not mean that the piriform cortex retrieves an exact copy

of a learned input pattern. Recall is simply the process during which the piriform

cortex receives a noisy input and produces an output vector which is more suitable

for further computation.

One can use signal-to-noise ratios as a quantitative measure of this, but care

must be taken in defining the "signal" part of the ratio. For example, consider

the vector x corrupted by noise with standard deviation u. u is a measure of the

amount of noise, but what measures the amount of signal? One might use llxll,
but this is not a good measure if x's being near zero conveys a lot of information.

One might assume that all points in space convey equal information, in which case

one could define the signal-to-noise ratio as SNR ~ const/u. However, once one is

dealing with more than a single point, there is a more useful relationship. Consider

two vectors, x 1 and x2
, which are corrupted by noise with standard deviation u.

36

What really matters in terms of resolution of the two points is how a compares to

the distance between the two points. Define d ~ II x1
- x2 ll· If d/ a is large, the

points seem well resolved- it is easy to tell one from the other. If dfa is small,

the noise will blur the two points together. Thus, d/ a is a reasonable measure of

the SNR for a pair of points. Likewise, one reasonable measure for more than two

points is the average of df a over all pairs of points:

2 E llx'- xi II
M(M - 1) *<i a

where M is the number of points. 2

With these plausibility arguments in mind, define the performance measure

(call it "p") as the average dfa over pairs of outputs (SNRout) divided by the

average d/ a over pairs of inputs (SNRsn)· d is the distance between the means of

two vectors, and a is the standard deviation of the vectors. Thus,

SNRsn = 2 E IIA'- Ail!
M(M- 1) *<i a,n

where A' is training vector i (i.e., the vector that represents odor i) and where

O'in is the standard deviation of the noise added to the odor vectors to simulate

environmental noise. SNRout is more complicated to compute since the standard

deviations of the output vectors are not constrained to be all the same. Thus, use

the average standard deviation for each pair:

where V' is the mean of output vector i and where O'out,i is the standard deviation

2The above ideas about resolving points are similar to those used in the analysis of error­
correcting codes. There, one is interested in resolving one code from another in the presense
of transmission noise, and the codes can be represented as points in code space. See texts on
information theory, such as (1] and (4], for details.

37

measured for output vector i. Finally,

SNRout
P = SNRn.

p > 1 means that the average SNR for the outputs of the model is greater than that

for the raw inputs , and the model is performing a useful function: it is creating a

more easily resolved representation of the odors. Figure 3.3 illustrates a situation

in which p > 1.

3.2.4 Testing the Model

The purpose of the model is to show the influence of acetylcholine on learning

performance. To that end, the model was allowed to learn for a time with various

levels of acetylcholine present; then acetylcholine was turned off (c = 0) , and the

model was tested. Acetylcholine was not left on during testing because it shuts

down the intrinsic connections, which results in poor performance during recall.

For testing, weight adaption was turned off, acetylcholine influence was turned

off (c = 0), and p was calculated as follows. Gaussian noise was added to A\ and

the resulting vector was given as an input to the trained network. The network

was allowed to settle into a stable state (which it did routinely even though its

connection matrix was not constrained to be symmetric), and the corresponding

output was noted. This process was repeated for A1 so that a mean and standard

deviation for the output could be estimated. The same was done for A 2 , A3 , and so

on. Then SNRn, SNRout, and p were calculated. Finally, the state of the network

could either be reset (for a new learning run) or be set to what it was before the

test (so that learning could continue as if uninterrupted).

38

3.2.5 Results of Testing

A typical example of a t est run is shown in Figure 3.4. The figure shows p = p(c, t)

as a function of time, t, and acetylcholine concentration, c. The z-axis values for

each c and t are represented by the sizes of the black rectangles- white space

represents p :::; 1, and the largest rectangles represent p ~ 2. c varied from 0 (no

acetylcholine) to .9 (a large concentration). The various other parameters were:

N = 10, M = 10, r = 2, h = .3, 'Ya = 1, Oa = 1, r l = 10-3
, f)l = 1, and T = 10. f.L

and a for the memory vectors (see Section 3.2.2) were 1 and .5, respectively. For

testing, ain = .1.

Notice that, for a fixed amount of acetylcholine, the model's performance rises

and then falls over time. Ideally, the performance should rise and then flatten

out, as further learning should not degrade performance. This is a problem with

pure Hebbian learning where .6.Wij ex g(ai)g(aj) and where there is nothing in

the learning rule that prevents the weights from growing arbitrarily large. For the

model used in this chapter, the function f(-) could possibly be used to control

growth, perhaps in conjunction with a weight-decay term, so that weight change

would stop near the peak in p; or other features could be added to the model to

achieve this. However, since the peak performance is what indicates whether or

not acetylcholine has a useful effect, little effort was invested in fiddling with the

model to get it to stop weight change at a convenient point. Note also that the

more acetylcholine was present, the longer the learning took. This is reasonable

since .6.W = 0(1-c), which means that learning time scales at least like 1/(1-c)

near c = 1.

Since the tests (the measurements of p(c, t)) were stochastic in nature, Figure

3.4 is not used as the final measure of the effectiveness of acetylcholine in the model.

39

Averages, J.Lp(c, t), and standard deviations, o"p(c, t), of p(c, t) were estimated by

repeating the entire testing procedure many times, keeping the odor vectors and

other parameters fixed, and gathering statistics. Then, a maximum average perfor-

mance measure was calculated as PM(c) = maxtJ.Lp(c,t), and a standard deviation

for this measure was calculated as aM(c) = aP(c, tM(c))j...[Jil; where tM(c) is the

time value at which {tp(c,t) achieves its maximum and where NT is the number

of times the testing procedure was repeated. Figure 3.5 shows the maximum av­

erage performance and its standard deviation for various values of acetylcholine.

Obviously, the larger values of acetylcholine enhance performance. 3

3.3 Conclusions

The results from the model show that suppressiOn of connections among cells

within the piriform cortex during learning enhances the performance during recall.

(See the beginning of Section 3.2.3 for a definition of "recall.") Thus, acetylcholine

released in the cortex during learning might enhance associative-memory function.

These results might explain some of the behavioral evidence for the role of acetyl­

choline in memory function, and they predict that acetylcholine might be released

in cortical structures preferentially during learning. Further biological experiments

are necessary to test this prediction. If acetylcholine is released preferentially dur-

ing learning, learning and recall can be considered as two separate modes, with

acetylcholine being the switch that toggles between them.

Since reduction in acetylcholine does not affect the recall of previously stored

memories but does affect the learning of new memories, the model can exhibit

3 Note: in signal processing, the common units for measuring SNR are decibels (db). For the
SNR measure used in this chapter, db = 20 log SNR, and 20 log p = 20 log SNRout - 20 log SN~n.
Thus, P = 1.7 {the largest value of PM) corresponds to an improvement in SNR of 4.6 db, which
is a significant improvement.

40

symptoms somewhat similar to Alzheimer's disease. Alzheimer's disease is asso­

ciated with the degeneration of cells that distribute acetylcholine to the cortex.

While the causal relationship between the disease and the degeneration is not

known, the disease does affect memory. Both the learning of new memories and

the recall of old memories are impaired. However, of the two, the learning of

new memories is more strongly affected. See [43), [40), [11], and (28) for more

information on Alzheimer's disease.

41

} Afferent fiber
synapses (layer la)

Ai ----- Afferent input =

} Intrinsic fiber
synapses (layer 1 b) = B . .

l.J

+- Neuron activation = ai(t)

} Lateral inhibition
(via intemeurons) = Hij

Neuron output= g(ai(t))

Figure 3.1: Schematic representation of piriform cortex, showing afferent input Ai
(layer Ia) and intrinsic connections Bij (layer lb)

Connor 1a 1o·•M Carbachol Waahoul

2 3

LAYER 1A v-v-v
O.&mV

2 ___ 3 v-v -v, .. ,
20ma I

LAYER 18

Figure 3.2: Synaptic potentials recorded in layer Ia and layer lb before, during, and
after perfusion with the acetylcholine analogue carbachol. Carbachol selectively
suppresses layer lb (intrinsic fiber) synaptic transmission.

42

input

piriform

cortex
output

0
0 0
00

Figure 3.3: An illustration of a situation in which p > 1. The circles on the
left represent noise-corrupted odor vectors. The circles on the right represent the
corresponding output vectors . The centers of the circles represent the pure vectors,
and the boundaries of the circles represent noise out to one standard deviation.
The output vectors are more easily resolved than the input vectors.

-u
'-'
t:
0 -~
'--t:
C1)
u
t:
0
u
C1)
t:

0
~

~
>.
C1)
u
<

0.9

0

43

......•.. ••......... •····· ··································· ·······•·· 1.

········· ········· ····························• ·· ·· -~ ·•·•• •••• ,.~•••+llttat•n•mll
..................... ~ tw•••ttll•lll 1111 I I
..........., •• ., ,1 I I I I I I I I 111M·••••· ~at•l·• ·
.............. , 1111111•1•••tiJ•I•--ill •· ·I , .. 14 .. 111 olll•·lotl•l•••
....................... ~ .. ·1·11·1·1·41t -
............... - JIIIU (oH ~ -11.4111•1 ·l·l• .. ollol. ·I .,.,, · ~ ~ ,
............................... ...
...
...
.. , .. ~
..
..... ...
..................
..
..

0
Time (t)

4.5xlOS

Figure 3.4: Sample test run, with time on the horizontal axis (x axis), acetylcholine
level on the vertical axis (y axis), and p on the z axis. The z-axis value is represented
by the size of a black rectangle. White space indicates p $ 1, and the largest
rectangles represent p ~ 2.

1.7

~
lo.o 1.6

~ ~
c.tc:
C'l: Col

1.5 lo.o 5 Col
;..

~ C'l: c.o 1.4
5 ; = 5 5 lo.o

·~~
1.3

C'l: lo.o

::;~ 1.2

1.1
0.0 O.l 0.4 0.6 0.8 1.0

Acetylcholine concentration (c)

Figure 3.5: Maximum average performance vs. acetylcholine level. Acetylcholine
increases the performance level attained.

44

Chapter 4

Low-pass F ilters and
Multiplicative Noise

Analog hardware (especially analog VLSI) typically has several advantages over

digital hardware, such as compactness and low power consumption [39, 53]. How­

ever, analog hardware also has disadvantages, the most prominent being that it

cannot easily embody as wide a range of algorithms as can digital hardware. Thus,

algorithms developed for digital hardware are often prohibitively difficult to imple­

ment in analog hardware. This chapter and the two that follow discuss algorithms

for signal processing and optimization that are specifically designed for easy and

compact implementation in analog hardware.

This chapter deals with the filtering of signals contaminated by multiplicative

noise. The study of such filtering is a fairly well-established subfield of signal

processing since it has applications in a variety of areas such as control systems,

image reconstruction, and adaptive systems [16, 46, 5]. Many algorithms for such

filtering already exist; but current methods, while well suited to implementation

on digital computers, involve complicated recursive algorithms that are ill suited

to implementation in analog hardware [5, 8, 41].

Out of all the possible problems to consider (each application adds its own com-

45

plications), this chapter concentrates on the approximation of the expected value

or expectation of signals contaminated by multiplicative noise. There are two rea­

sons for such a choice. First, it is a very basic and common form of filtering- such

approximations are used as smoothed versions of contaminated signals. Second,

some adaptive systems (such as those in (16) and, more importantly for this thesis,

those built using the techniques discussed in Chapter 5) require the expectations.

Through a simple analysis, this chapter shows that the expectations can be ap­

proximated using only low-pass filters (which are extremely simple to implement

in analog hardware), and it gives a bound on the accuracy of the approximation.

Since the bound involves only parameters that are easily estimated or easily mea­

sured, it can be useful for design work.

The analysis below assumes that noise n(t) contaminates a signal s(t) to give

n(t)s(t) . All are scalars evolving in time. Let the operator E denote the expecta­

tion (the average over the probability distribution of the noise). Let the operator

A denote the low-pass filter. The goal, then, is to find out how closely A(ns]

approximates E[ns] and to quantify the disparity.

4.1 Analys is

Let x(t) = n(t)s(t) where s(t) is the signal, n(t) is the noise, and both are scalars

evolving in time. Let y(t) = A[x(t)] be a low-pass filtering of x(t). The goal in

analog hardware is to have y(t) ~ E[n(t)]s(t) where E is the expectation operator

for the noise. This section examines this approximation.

The following are some conditions on n, A, and s. Let n(t) have a stationary

(i.e., time-independent) probability density P(n), and formally define the expecta­

tion as E(·] ~ f(·)P(n)dn. Define the average as p. ~ E[n(t)], which is a constant

46

because P(n) is stationary. n must be independent of s. Let A be a linear, time­

invariant low-pass filter defined by A[x(t)] 6. f~oo a(T)x(t- T)dT where a(T) is

real for all T. Let A[const] = const (i.e., f~oo a(T)dT = 1). The only restric­

tion on s is that it is bandlimited to within the bandwidth of the filter so that

IA[s(t)]- s(t)l2 ~ 1.

One quantitative measure of the accuracy of the approximation is the mean-

square error:

From the conditions in the previous paragraph, E[y] = E[A[ns]] = A[E[n]s] =

J.LA[s(t)], and the MSE can be rewritten as

MSE = V[y(t)] + 112
{ A[s(t)]- s(t)}

2

(4.1)

where V[y] = E[y2] - (E[y]) 2 is the variance of the output of the filter. The two

important terms are the variance V[y(t)] and the ability of the low-pass filter to

pass the signal (as quantified by IA[s]- sl 2
). Since the latter is small, the low-pass

filter is a good approximation to the expectation operator as long as the variance

of the output is also small.

The variance is

V[y(t)] - E[{y(t)- E[y(t)]rJ = E[{ A[n(t)s(t)- J.Ls(t)Jr]

E [J.: L: a(T)a(T1)s(t- T)s(t- T1)[n(t - T) - J.L] x

[n(t- T1
)- J.L]dTdT']

- L: i: a(T)a(T')s(t- T)s(t- T1)¢>nn(T- T1)dTdT1

where ¢>nn(tJ.t) = E[(n(t)-p)(n(t+tJ.t)-p)] is the autocovarianceofthe noise at lag

47

flt . Since n is stationary, <f>nn is independent of time, and E[(n(t1)- J.L)(n(t2)- J.L)]

depends only on lt1 - t2l·

Since most filters are more easily specified in the frequency domain, we will use

the Fourier transforms of all the variables.

V[y(t)] = _1_ 100 ;= ... ;= ei'T (Wt-wa+w~>) ei'T1(W2-W4-W5) X

(27r)5 -oo -oo -oo

eit(w3+w•) A(wi)A(w2)S(w3)S(w4) X

il>nn(ws)dwldw2 · · · dws

~ ;= j oo ;= eit(wt+W2) A(wi)A(w2) X
(27r) -co -oo -co

S(w3)S(w1 + w2- w3)il>nn(w3- w1)dw1dw2dw3

~ ;= j oo j oo eit(w'+w") A(w)A(w' + w"- w) X
(27r) -oo - oo - oo

S(w')S(w")il>nn(w'- W)dwdw' dw"

Now we can develop a bound.

IV[y(t)]l ~ (
2
:)3 j_: j_: j_: IA(w)A(w' + w"- w)l X

IS(w')IIS(w")ll<l>nn(w'- w)ldwdw'dw"

< (:;)3 /_: /_: [/_: IA(w)A(w' + w"- w)ldw] X
IS(w') IIS(w") ldw' dw"

where il>m ~ maxw lil>nn(w)l. The Cauchy-Schwarz inequality for integrals is

(4.2)

48

Thus,

j_: IA(w)A(w' + w"- w)ldw ~ j_: IA(wWdw.

/::,. /::,.

Define Am= ma:xw IA(w)l, and 2A~Wa = f~oo IA(w)i2dw. For most filters , Am (the

maximum amplitude of the transfer function) is equal to or very close to one. The

definition involving Wa is merely an alternative definition of the filter's bandwidth.

Now,

IV[y(t)]l ~ (
2
!)3A;.Wa4>m [/_: IS(w)ldwr

Define Ps ~ [2~ f~oo IS(w) ldw r. This is just an alternative definition of the power

in the signal. Since V[y(t)] 2::: 0, we can drop the absolute value and get

(4.3)

As long as the characteristics of the noise are best known in the frequency domain,

this is the final expression.

However, if the time-domain characteristics of the noise are easiest to determine

(as is often the case if one has to determine the properties experimentally), a differ­

ent expression is more convenient. Bound 4>m as follows. 4>m = maxw l4>nn(w)l ~

f~oo I<Pnn(r)idr. Define 2a2Tac ~ f~oo I<Pnn(r)idr. Since in hardware cPnn(O) is fi­

nite, let a 2 = <Pnn(O) = the variance of the noise. Then, Tac is simply a measure

of how quickly the autocovariance of the noise decays with increasing lag. In any

case, the final expression for the bound is

(4.4)

Note that many of the factors in (4.4) can be easily estimated if one needs

only a rough estimate of the variance. For most low-pass filters, Am ~ 1. Wa can

be estimated as any usual measure of the filter's bandwidth, such as the cutoff

49

frequency. Many processes driven by white noise have an autocovariance that dies

out exponentially with increasing lag (see [45] for examples). In such cases, <l>nn(O)

is finite and Tac can be estimated as the lag at which the autocovariance of the

noise has decayed by a factor of 1/ e. If <l>nn (Llt) has an oscillatory component, use

the decay of an exponential bound (i.e., choose Tac such that l<l>nn(Tac + .6.t)i ::=;

<l>nn(O)/e V Llt ~ 0). Ps can be estimated as follows.

max is(t)i =max~~ j oo eiwtS(w)dwl ::=; ~ joo IS(w)ldw = {P:
t t 27r -oo 27r -oo

Since [maxt js(t)j]2 = maxt s2 (t), Psis at least as large as [maxt s2 (t)], and this can

serve as a quick estimate.

(4.3) and (4.4) become tighter bounds when the bandwidth of the signal is very

small and the bandwidth of the noise is large. In this case, ci>nn(w) ~ ci>m over the

bandwidth of the filter and IS(w)I is sharply peaked. Thus, the S terms in (4.2) are

appreciable only when jw'l and lw"l are small, A(w' + w"- w) ~A(-w) = A*(w),

and (4.2) becomes

V[y(t)] ~ ci>m3 [joo IA(w)j2dw] joo joo eit(w'+w")S(w')S(w")dw'dw"
(27r) -oo -oo -oo

1 2 2() -Am Waci>ms t .
7r

Because IS(w)I is sharply peaked, Ps ~ maxt s2(t). Because ofthe broad bandwidth

of ci>nn' </>nn(r) is a sharply peaked, positive function, and ci>m ~ f~oo 1</>nn(r)ldr.

Thus, under these conditions, the maximum over time of (4.2) is approximately

the same as the right-hand sides of (4.3) and (4.4), and the bounds are tight.

Overall, since P8 ~ maxts2(t) and Am~ 1 for most low-pass filters, Wa, u 2
,

and Tac are the parameters to reduce in order to reduce the variance and the MSE

of the approximation. However, one must be careful not to reduce Wa so far that

50

the filter no longer passes the signal well (i.e., that IA(s] - sl 2 ceases to be small,

increasing the MSE as shown in (4.1)).

4.2 Conclusions

In the case of multiplicative noise, a linear, time-invariant low-pass filter is a good

approximation to an expectation operator as long as the filter passes the signal

well and the variance of the output is small. A bound for this variance is given by

(4.4) (or by (4.3) if the frequency-domain properties of the noise are more easily

discovered than the time-domain properties).

51

Chapter 5

Gradient Estimation in Analog
Hardware

Many adaptive systems require the compu tation of gradients that are difficult to

calculate directly in analog VLSI. As an example, consider back-propagation learn­

ing in neural networks. The back-propagation algorithm uses the gradient-descent

method ·of optimization (see Appendix A) to minimize an objective function (the

squared error between actual and desired outputs) [57, 44]. While the algorithm

is straightforward to implement on a digital computer, exact computation of the

objective function's gradient is very difficult in analog VLSI. Any algorithm that

requires the computation of gradients- this includes many adaptive systems and

optimizers- is susceptible to the same problem.

However, there are techniques to estimate the gradients of objective functions,

techniques that are easy to implement in analog VLSI. This chapter discusses two

such techniques and the results of implementing them in analog hardware.

0 A portion of the research done for this chapter was done in collaboration with Douglas A.
Kerns.

52

5.1 Analysis

The following three sections describe the two methods, indicate why the methods

should work, and give conditions under which one method is superior to the other.

5.1.1 Method 1

The first method is an extension of work described in [13] and [16]. Dembo and

Kailath recently applied this method to learning in neural networks [12].

Assume that we would like to find the gradient of f(x), where x is a scalar

and f is a scalar-valued function. (Section 5.3 discusses the the case where x is a

vector.) Let x = s + n, where s(t) is the point at which we would like to evaluate

the gradient (this point may vary in time) and where n(t) is noise (a stochastic

scalar evolving in time). If lnl ~ 1, and assuming that f and its derviatives exist,

f can be expanded in a Taylor series:

1
f(x) = f(s) + f'(s)n + 2t"(s)n2 + O(n3

).

Now, compute E[nf(x)] where E is the expectation operator for the noise. As­

sume that n has a stationary (i.e., time-independent) probability density P(n).
1::.

Then, E can be formally defined as E[·] = f(·)P(n)dn. Assume that s and n are

independent and that E[n] = E[n3
] = 0. Let a 2 = E[n2

], which is a constant since

P(n) is stationary. Then,

1
nf(x) = nf(s) + n2 f'(s) + 2n3 f"(s) + O(n4

), (5.1)

and

E[nf(x)] = a2 f'(s) + O(E[n4
]). (5.2)

Thus, E[nf(x)] IS approximately proportional to the gradient as long as lnl is

small.

53

However, there is a problem. While most of (5.2) can be computed in analog

hardware (a noise generator can generate n, an adder can compute x = s + n, and

a multiplier can compute nf(x)), there is no way to make an expectation operator

exactly. That would require either an ensemble average or, if the noise is ergodic,

a time average with an infinite time interval (18]. Nevertheless, Chapter 4 shows

that it is possible to approximate E by a linear, time-invariant low-pass filter; and

low-pass filters are easy to build in analog hardware.

Denote the low-pass operator by A. The object now is to approximate a 2 f'(s)

by A[nf(x)], instead of by E[nf(x)] as in (5.2). Define y0 r:,. a 2 f'(s) and y r:,.

A[nf(x)]. If IY- Yol ~ IYol, the approximation is good. A quantitative measure of

this is the signal-to-noise ratio: SNR = y6f E[(y - y0) 2]. The denominator is the

mean square error, MSE. It can be expanded as

MSE = E[(y- Yo) 2
] = V[y] +(Yo- E[y])2

where V[y] = E[y2
] -(E[y])2 is the variance of y. The MSE is computed as follows.

First, find E[y]. Since A is linear,

E[y] = E[A[nf(x)]] = A[E[nf(x)]] = a 2 A[f'(s)] + O(E[n4
]).

Assume that the signal s is bandlimited so that I A[f' (s)] - f' (s) I is small; 1.e.,

A[f'(s)] = f'(s) + ~8 where l~sl ~ 1. Then,

Now, find V[y]. In (5.1), nf(x) is expanded into terms that factor into a noise

component and a signal component. Thus, consider the case of filtering a signal

contaminated by multiplicative noise: A[mr] where m(t) is noise with a stationary

54

probability distribution, r(t) is an independent signal, and A is a linear, time­

invariant low-pass filter. From (4.4) in Chapter 4,

(5.3)

where A.n is the maximum amplitude of the filter's transfer function, Wa is the

bandwidth of the filter, Tac is the autocovariance time for the noise, and Ps is a

particular measure of the power in r(t). Assuming that Am ~ 1, which is true for

most simple low-pass filters, V[A[mr]] = O(Wa V[m]TacPs) · From (5.1), it is clear

that the term that will contribute the most variance (lowest order in n) is the first .

Setting m(t) = n(t) and r(t) = f(s(t)) , V[A[nf(s)]] = O(Waa2TacPs) where Tac

is the autocovariance time for nand where Psis a measure of the power in f(s) .

Thus, to lowest order in n ,

Putting all of this together,

(5.4)

Before continuing, it will be useful to develop the following notation. Let x

be called the "order parameter" (i.e., we are interested in expansions where lxl is

small), and let y be another adjustable parameter that can be made arbitrarily

small. If z = O(yxP) and p > 0, denote the situation by z < O(y). Conversely, if

p < 0, denote the situation by z > O(y). Also, it will be useful to express final

results in terms of only one adjustable parameter. For example, for z = O(xy),

since y is arbitrarily adjustable, let y be a convenient function of x, say, y = xq

where q is a constant. In that case, z = O(x(l+q)).

Now back to the problem at hand. Using a as the order parameter in (5.4),

the SNR should be > 0(1) so that it can be increased to acceptable levels by

55

decreasing the amplitude of the noise. To achieve this, the denominator in (5.4)

should be < 0(0.4) because the numerator is 0(0.4). Adjust .6.8 so that it is

< 0(1). (It is already small, so its role in the SNR should be minimal anyway.)

Then, since E[n4
] = O(a4

), the second term in the denominator is < O(a4
). As

Ps ~ maxt(J(s(t))]2 (see Chapter 4), P8 is not in general small. Thus, we must have

WaTac < 0(a 2
). If all of these conditions are satisfied and if the noise amplitude

is made small enough, A[nf(x)] ~ a2 f'(s).

5.1.2 Method 2

Method 2 is quite similar to method 1. However, instead of computing E[nf(x)]

in order to find the direction of the gradient, one uses E[nj(x)], where the dots

represent differentiation in time. It works as follows. Using the same symbol

definitions as in Section 5.1.1 and again assuming that lnl ~ 1 (although lnl will

not in general be small),

j(x) = (n + s)J'(x) = (n + s)[J'(s) + nf"(s) + O(n2
)],

and

nj(x) = n2 j'(s) + nsf'(s) + n2nf"(s) + nnsf"(s) + O(n2
). (5.5)

Since n is independent of s, since E[n] = ftE[n] = 0, and since E[nn] = ~ ftE[n 2
] =

0,

where v 2 = E[n2
] = a constant (because the noise has a stationary probability

distribution). Under these conditions, E[nj(x)] is approximately proportional to

the gradient as long as lnl is small.

Again, let's use a low-pass filter A to approximate E. Define y ~ A[nj(x)] and

56

E[y] = E[A[nj(s)]] = A[E[nj(x)]] = v 2 f'(s) + O(E[nn2
]) + v2~s

where ~s = A[f'(s)] - f'(s). Assume that sis slowly varying so that lsi is small and

so that l~sl ~ 1. From (5.5), again it is clear that the first term contributes the

most variance. (All other terms are higher order inn except the second, and the

second is smaller because lsi is small.) From (5.3), V[A[n2 f'(s)]] = O(Wa7]2TacPs)

where Wa is the bandwidth of the filter, Tac is the autocovariance time of n, Ps is

a measure of the power in f'(s), and 772 = E[n4]. Thus, to lowest order inn,

Altogether,

(5.6)

The numerator is 0(1)- remember that vis not small. To get SNR > 0(1),

the denominator has to be < 0(1). (See the end of Section 5.1.1 for an ex-

planation of inequalities involving order parameters.) Adjust ~s so that it is

< 0(1). (It is already small, so its role in the SNR should be minimal anyway.)

Then, since E[nn2
] = 0(u), the second term in the denominator is < 0(1). As

Ps ~ maxt[f'(s(t))]2 (see Chapter 4), Ps is not in general small, so we must have

WaTac < 0(1). If all of these conditions are satisfied and if the noise amplitude is

made small enough, A[nj(x)] ~ v 2f'(s).

5.1.3 Comparing the Two Methods

From the previous two sections, note that one needs WaTac < 0(1) for method

2 and WaTac < 0(u 2) for method 1. Obviously, as u -+ 0, WaTac must be much

smaller for method 1 than for method 2. Using the following approximations, one

57

can examine what happens to the SNR's for the two methods when WaTac is small

enough to satisfy the conditions for both methods yet is the same for both. We

have already assumed that s varies slowly enough so that l.6.sl is small. Assuming

further that the bandwidth of s is very small and that the bandwidth of n is very

large, (5.3) becomes a tight bound (as explained in Chapter 4). Thus, for method

1, to lowest order in a ,

Similarly, for method 2,

Since the signal bandwidth is assumed to be very small, Ps1 ~ [f(s)]2
, and Ps2 ~

[f'(s)]2
• The relative performance at the same value of s, Wa, and Tac is

(5.7)

Thus, method 1 should be superior near f If' = 0, and method 2 should be superior

when 1la is large enough to overwhelm the other terms (i.e., when f is far enough

away from zero). As a is reduced, method 1 will outperform method 2 in a smaller

and smaller region around f If' = 0.

5.2 Experiments

The following sections describe the results of implementing both methods in hard-

ware.

5.2.1 The Definition of "Small"

In hardware implementations of the methods, the values of J, n, etc. are not

dimensionless. This brings up the problem of deciding which values of In! (and

58

hence u) are small: u = 0.1 V is a number smaller than 1 when measured in

volts but much larger than 1 when measured in millivolts. The key to the correct

interpretation comes from the Taylor expansions-of f(s + n) for method 1 and

of f'(s + n) for method 2 . Regardless of units, lnl is small if the first-order and

higher-order terms in the expansions are small compared to the zeroth-order terms

(at least away from the regions where the zeroth-order terms are zero):

l
f(s+n)-f(s)l

f(s) ~ 1

for method 1 and

l
f'(s + n)- f'(s) I

f'(s) ~ 1

for method 2.

5.2.2 Method 1

Figure 5.1 shows a block diagram of the implementation of A[Bnf(x)] where B is an

adjustable gain parameter described below. This system was built on a breadboard

using standard discrete components. Specifically, LM324 op-amps were used for

summing, gain, and low-pass operations , and an MC1495L multiplier was used for

multiplication. The operator A was a single-pole low-pass filter. The function f

was built of several CA3080 transconductance amplifiers, as shown in Figure 5.2.

The noise n(t) was generated by a custom analog-VLSI chip built to amplify the .

intrinsic noise in MOS devices [32].

To t~st the circuit, a slow triangular waveform was applied to the s(t) input.

Thus, s swept over the range of interest. The output of the system was examined as

a function of s rather than as a function oft since this allowed better visualization

of the gradients involved.

59

Figure 5.3 shows the best result we were able to obtain by varying the noise

amplitude and the gain parameter B. The gray plot shows a single sweep of the

output of the system vs. s. Note that it is still noisy and not very symmetrical.

The black plot is an average, performed by the digital oscilloscope, of many sweeps.

One might think that the black plot could be obtained merely by decreasing the

bandwidth, Wa, of the low-pass filter. Unfortunately, one can reduce Wa only so

far until it starts to interfere with the transmission of f'(s). In other words, for a

given s(t), which varies in time, Wa can be made only so small before ~s becomes

large enough to spoil the SNR (see (5.4)).

It was also difficult to keep the multiplier from clipping. The multiplier clips

if IBnl or lf(x)l or both are too large. On the other hand, IBnl and lf(x)l cannot

be too small, or the multiplier gives no appreciable output. B was used to balance

these two effects.

5.2.3 Method 2 and Comparison

Figure 5.4 shows a block diagram of the implementation of A[Bnj(x)] where B

is an adjustable gain parameter as discussed in Section 5.2.2. The construction

of this circuit was identical to that used for method 1 except for the insertion of

differentiators. The method of testing was likewise identical.

Figure 5.5 shows the results. Again, the gray plot is a single sweep, while the

black plot is an average of many sweeps. The results are clearly much better than

those obtained from method 1 (see Figure 5.3).

Also, compared to method 1, the parameters had a much broader range of

acceptable settings. The insertion of the time-derivative operators in the paths

leading to the multiplier greatly reduces the scaling and clipping problems en­

countered during the implementation of method 1. This is because both inputs

60

to the multiplier are approximately centered around zero. Also, the differentiation

reduces any low-frequency components present in the noise, making the low-pass

filter , A, all the more effective without having to reduce its bandwidth. Thus, one

can more easily avoid the problem of making Wa so small that l~.s I ceases to be

small, as discussed in Section 5.2.2.

There can still be problems with method 2, however. If lsi is large, Ps and l~sl

can become large, spoiling the SNR (see (5.6)). Also, one might still encounter clip­

ping under two conditions. First, if lsi is too large, Iii can become large, and the

multiplier might clip. Second, if the noise spectrum extends to very high frequen­

cies, IBnl can be large, and again the multiplier might clip. However, for practical

noise-generation circuits- especially in low-power analog VLSI- limitation of the

noise bandwidth is essentially free, as the dominant noise source is usually flicker

noise with a !/(frequency) spectrum.

J, Wa, Tac, and a were approximately the same for the implementations of

methods 1 and 2. Also, in each case, s was slowly varying and had a bandwidth

of about 1 Hz, while n had a bandwidth of about 1 kHz. Thus, (5.7) should

approximately hold. ((5. 7) remains unchanged for values of B =/= 1, as B cancels

in the SNR expressions. Using B is equivalent to scaling J, and so it appears to

the same power in P8 , the denominator, in p, the numerator for method 1, and in

(!')2
, the numerator for method 2.) From the bottom traces in Figures 5.3 and 5.5,

one can find values for f(s) and f'(s) and can estimate SNR1 (s) and SNR2 (s) as

the mean square of the outputs divided by the variance of the outputs at specific

values of s . As can be seen from the figures, the only place where method 1 matches

or outperforms method 2 is near f(s) = 0. At most other places (i.e., away from

f(s) = 0), method 2 significantly outperforms method 1. This agrees with the

61

discussion in Section 5.1.3.

5.3 Generalization to Higher Dimensionality

Both methods can be generalized to the case where xis a vector. There is one added

complication, however. Both methods rely on sending perturbation information

through a single channel (namely, the value of f(x), which is broadcast down a

single wire). In terms of information theory, if there are N adjustable parameters

(i.e., if xis anN-dimensional vector), if each perturbation of a parameter transmits

M bits of information, and if the channel is bandlimited so that it can transmit at

most L bits of information per second, one expects to wait N M f L seconds in order

to extract all the information for estimating the gradient. All hardware will have

such bandwidth limitations. Thus, according to information theory, the settling

times for the methods (the time it takes to get gradient estimates) should be at

best proportional to N. The following two sections describe the generalization to

higher dimensionality.

Note: the following two sections involve many approximations and rely on

scaling relationships. The symbol " c5c " means "approximately proportional to."

5.3 .1 Method 1

Assume that x, n, and s are now N-dimensional vectors. Assume that ni is inde-

pendent of ni for all i =f:. j and that all the noise sources ni have the same statis­

tics, each one satisfying the conditions given for the !-dimensional case. Now, for

method 1,

62

8f 1 82 f 4
nkf(x) = nkf(x) + ~ nkni &xi + 2 ~ nkninj &xi&Xj + O(llnll),

' •,J

E[nkf(x)] = 0 + ~ u2 bi,k :~ + 0 + O(E[IInll4
]) = CT

2
:;k (s) + O(E[IInW]),

'
and thus

Similarly to the !-dimensional case, define y0 g u2'\i' f(s) and y g A[nf(x)].

Now, MSE = E[IIY- y0 ll2], and SNR = IIY0 II2/MSE. One can rewrite the MSE as

MSE - E[IIYII2 + IIY0 II2- 2y0
• y] = IIY0

- E[y)ll2 -IIE[y)ll2 + E[IIYII2]

- L {E[yl]- (E[yi])2} + IIY0
- E[y)ll2 = L {V[yi] + (Y?- E[yi])2} .

Thus, the MSE scales likeN times the MSE of the !-dimensional case, and

SNR = u4ll'\i' f(s)ll2
O(NWaTacCT2 Ps) + Li{ O(E[nt]) + u2~s,iF

(5.8)

where ~s = A['\lf(s)]- "\lf(s).

(5.8) contains N, but it does not yet explicitly show all of its dependence on N.

We now have to take into account the finite bandwidth of f . Call this bandwidth

WI and define it by the condition j(x) ~ W1. This is just a convenient way to

define the bandwidth for what follows . Since j = '\1 f · (n + s), this condition

implies that ni must typically be bounded. This is true in hardware. Nevertheless,

ifni were unbounded but had a finite variance, one could still define a bandwidth

condition in terms of variances.

Since Wa is the limiting bandwidth of the gradient estimation process, one

should look at how Wa changes with N while all other aspects are held constant.

1/Wa is the characteristic or settling time of the estimation process.

Assume that f and ll"\1 /11 2 remain constant as N changes. This is reasonable in

that f and ll'\1 /11 2 will remain within certain limits when implemented in hardware

63

and will not grow to be arbitrarily large. Also, assume that the bandwidth of s is

very small and that l.0.s I is small so that various simplifying approximations hold

as in Section 5.1.3.

Then, to lowest order in a-,

Now, take into account the bandlimit on f .

j(x) = x · "Vj(x) ~ n · "Vj(s)

Since a- scales the size of ni and thus also of ni,

N

II n 112 = 2::: n~ &. N a-2,
i=l

and j(x) &. a-../N. At the bandlimit, j(x) = W1 &. a-../N. Thus, to stay within

the bandwidth, one must have a-&. 1/../N. Altogether,

2 1
SNR& :w &. N2W' a a

and to keep the SNR constant, one must have Wa ex 1/ N 2
• The settling time,

1/Wa, is thus &. N 2
, which is not optimal.

5.3.2 Method 2

Following steps similar to those in the previous section, one finds for method 2

that

SNR= v411"Vf(s)W

E~t [o(WaTac172Ps,i) + {E[ntni] + v2.0.s,iP]
(5.9)

where, again, the noise components all have the same statistics . .0.3 = A["V J(s)]-

"Vf(s), and PlJ,i is the power in ltCs).

64

When the bandwidth of s is very small, Ps,i ~ (8 f I 8xi)2
, and assuming that

l~sl is small,

Here, the bandwidth condition on j gives

WI= j ~ n. '\7f(s) &: vVN,

and one must have v &: 1IVN. To find an estimate of how TJ 2

consider the following.

""" . 4 - (""" • 2)2 - """ . 2 • 2 L...J ni - L...J ni L...J ni ni
i:f.j

E[ntJ scales,

(5.10)

The left-hand side of (5.10) is &: NTJ 2 , the first term on the right-hand side is

&: N 2 v\ and the second term on the right-hand side is &: N 2 v4
• Since v &: 1 I VN,

the right-hand side is &: 1, and thus so must the left-hand side be; i.e., TJ &: 1IVN.

Altogether,

SNR& N~a'
and for a constant SNR, the settling time scales approximately linearly with N,

which is the best possible scaling relationship.

5.4 Conclusions

The experimental results show that method 2 is more robust and easier to imple-

ment than method 1. Both of the methods use only a noise generator, an adder,

a multiplier, and a low-pass filter. Method 2 also requires two differentiators.

Method 1 approximates u 2 f'(s) by computing A[nf(x)] where u 2 = E[n2
], n is the

65

noise, x = s + n, s is the point where the gradient is to be evaluated, and A is

the low-pass filter. Method 2 approximates v2 f'(s) by computing A[n}(x)] where

v2 = E[n2]. The final expressions for the accuracy of the two approximations are

given by (5.4) and (5.6). The analysis requires the following assumptions: f and

its derivatives exist; the noise and the point of interests are independent; the noise

has a stationary, zero-mean probability distribution; a 2 is small; the low-pass filter

used to approximate the expectation operator is linear and time-invariant; and s

is slowly varying. Both methods can be generalized to the case where f has more

than one adjustable parameter. (5.8) and (5.9) are the multidimensional analogues

of (5.4) and (5.6). In this case, assuming that all other aspects are constant, the

settling or characteristic time for method 1 is approximately proportional to N 2 ,

while for method 2 it is approximately proportional to N.

66

A

n(t)

Figure 5.1: A gradient estimator based on method 1. The system computes
A[Bnf(s + n)].

67

l

Figure 5.2: Breadboard construction of the function f.

68

2~--------~--------~--------~---.----.----.----.

1

-4+----+----+----+----+----+----+----+----+----+----+
-1.00 -0.50 0.00

s (V)
0.50 1.00

200

160
.-
>

120 g-
I<

~
80 B

<

40
~
.g
~

0
d

~
0

-40

-80

Figure 5.3: Experimental results from method 1. Digital-oscilloscope traces show
f(x) (top) and the gradient estimate A[Bnf(x)) (the output of the system, shown
at bottom) as functions of the applied signal s(t). The gray line is a single sweep,
and the solid line is an average of many sweeps.

69

A
n(t)

Figure 5.4: A gradient estimator based on method 2. The system computes
A[Bnj(s + n)].

-1.00 -0.50

70

0.00
s (V)

0.50 1.00

300

250

200 ~
'-" ,......... ,......_
~

150·~
B
<

100 ~

50
.§
Jj
...... s::
a) :a

0 e
c.:>

-50

-100

Figure 5.5: Experimental results from method 2. Digital-oscilloscope traces show
f(x) (top) and the gradient estimate A[Bnj(x)] (the output of the system, shown
at bottom) as functions of the applied signal s(t). The gray line is single sweep,
and the solid line is an average of many sweeps.

71

Chapter 6

Optimization in Analog
Hardware

This chapter discusses an algorithm for optimization that is specifically designed for

ease of implementation in analog hardware. The basic idea behind the algorithm

is as follows. Assume that you are given a black box that has one output and one

adjustable knob, and you are told to minimize the output of the box. Assume

further that you are not given gradient information (since exact computation of

the gradient might be very difficult in analog hardware). One intuitive solution

is simply to adjust the knob and to note the change in the output . If the output

goes up, turn the knob in the opposite direction; if the output goes down, keep

turning the knob in the same direction. The quantitative details are more involved,

but the basic idea is to perturb the parameters, to note the correlations between

the changes in the parameters and the changes in the output, and to use that

correlation to indicate the direction the parameters should be moved.

The use of perturbation and correlation in optimization has an interesting his­

tory. In the 1950's, Draper and Li studied the optimization of adaptive control

systems with one adjustable parameter [13]. They used sine waves and triangle

waves for perturbation. Eykhoff and Smith extended the method to systems with

72

two parameters, adapted the method to other problems m control theory, and

showed how noise can be used as the perturbation (16]. In (47], Stromer gives a

bibliography of other work done in this area until1959. Although it was concerned

mainly with control systems, this work pointed the way to general-purpose opti­

mization algorithms for analog hardware. However, by the mid-1960's, much of the

research had stopped. According to Dembo and Kailath, this was due to concerns

that perturbation could cause a loss of stability in control systems (12]. Perhaps

another reason is that digital computers became more prevalent and allowed the

implementation of more efficient algorithms. In the 1970's, Harth, Tzanakou, and

Michalak independently developed a general-purpose, discrete-time optimization

algorithm, called "ALOPEX," 1 which uses perturbation and correlation (22, 52].

Working to discover the strongest stimulus for a neuron in a frog's visual cortex,

they put a frog in front of a video monitor, put a probe into a neuron in the frog's

brain, and used the ALOPEX algorithm to adjust the pixels on the video monitor

so that the output of the neuron was maximized. ALOPEX has many desirable

features for analog implementation; for example, it requires only multiplication

and addition operations, and it does not require the explicit computation of gra­

dients. Also, it uses noise as its source of perturbation, which might be helpful for

avoiding phase locking of the sources (as might happen more readily with periodic

sources in analog VLSI). However, ALOPEX is a discrete-time algorithm, and (22]

and (52] do not discuss hardware time delays or give conditions under which the

algorithm converges.

This chapter explains an algorithm that resembles a continuous-time version

of ALOPEX- thus the algorithm is called "CALOPEX." This chapter gives an

analysis of CALOPEX, taking into account time delays in the hardware, and gives

1This is an acronym for "ALgorithm Of Pattern EXtraction."

73

conditions under which the expected output of the system decreases. Section 6.1

gives a mathematical description of CALOPEX. Section 6.2 shows that CALOPEX

approximately minimizes the expected output of the system. Section 6.3 explains

how the convergence time scales with the number of adjustable parameters. Sec­

tion 6.4 summarizes the conditions for convergence and discusses the suitability of

CALOPEX for implementation in analog VLSI.

6.1 The Method

Let f(x) be a scalar-valued function to be minimized. x is a vector whose com­

ponents represent adjustable parameters. Let x(t) = s(t) + an(t), where n is a

stochastic vector, a is a small constant, and s represents the part of x adjusted by

CALOPEX. Under certain conditions, which will be described below, the following

dynamical system approximately minimizes the expectation of f.

(6.1)

r1 and r2 represent time delays in the system (due perhaps to limitations in hard­

ware implementation), 17 is a positive constant (which adjusts adaption speed), and

f(t) is a short notation for J(x(t)). See Figure 6.1 for a schematic representation

of (6.1).

From the discussion of method 2 in Chapter 5, one can see that the right-hand

side of (6.1) develops a noisy estimate of '\lj, at least as long as r2 is negligible.

Thus, one might expect CALOPEX to operate on average qualitatively like gradi­

ent descent. This is indeed the dominant behavior as can be seen from (6.5). (See

Section 6.2 for more details on the similarity.)

74

6.2 Minimization

The goal of this section is to show that, under certain conditions, the expectation

of f decreases over time and that the expectation of f is approximately minimized.

This section will develop an expression for the change in the expectation of f and

then will show how various approximations simplify the expression.

To begin, let n be a stochastic vector with a stationary (i.e., time-independent)

probability density P(n). Assume that n has a mean of zero, has a finite variance,

and can be integrated (i.e., n = f ndt exists). Define the expectation as E[·] ~

f(·)P(n)dn. Since ;tE[fl = E[j], first find an expression for j. Using (6.1) and

assuming that V" f exists,

j(t) j(s(t) + an(t)) = [an(t) + s(t)jT'\7 j(t)

anT(t)V"j(t)- ard(t- TT)nT(t- T1)V"j(t)

(6.2)

- anT(t)V"j(t)- a7][anT(t- TT) + sT(t- TT)]V"j(t- TT)nT(t- T1)V" f(t)

- OnT(t)V"j(t)- a27]'\7jT(t- TT)n(t- TT)nT(t- T1)Y"j(t)

-Q7]'\7jT(t -'TT)s(t- TT)nT(t- T1)Y"j(t)

where the "T" superscript represents the transpose of a vector, and TT = r1 + r2.

(6.2) is complicated. Nevertheless, there are approximations that will cause

terms in E[j] to factor conveniently, revealing the underlying behavior of the

method. Assume that a can be made small and that correlations in n(t) die out

exponentially in time, as is the case with Ornstein-Uhlenbeck processes. (Ornstein­

Uhlenbeck processes are often used as realistic noise models. See [18] for rigorous

mathematical details.) Specifically, assume that

75

where 91 and 92 are arbitrary scalar-valued functions, Cov[a, b] = E[(a- E[a])(b-

E[b])], and Tac is the characteristic time for the decay, called the "autocorrelation

time." Then, assuming that aTac is small, terms which involve products of func­

tions of n and functions of an will approximately factor under the expectation

operator.

E[9t (n(tt))92(an(t2))]

= E [9t(n(tt)) { 92(0) + v 9f(o)a J~: nT(t')dt' + O(a2)}]

= E[9t(n)]92(0) + aV9f(O) j E[9t(n(tt))nT(t')]dt' + O(a2
)

= E[9t(n)]92(0) + 0 (a j E[91(n)llnll]e-ltt-t'I/Tocdt') + O(a2)

= E[9t(n)]92(0) + O(aTac) + O(a2)

where 91 and 92 are arbitrary differentiable functions. Since

we have 92(0) = E[92(an)] + 0(a 2) and

Now, after E operates upon (6.2) and after using (6.3), various terms will factor

and others will be negligible. The first term in (6.2) becomes

The second term becomes

E[a2TJVJT(t- TT)n(t- TT)nT(t- Tt)Vf(t)]

= a 2TJE[VJT(t- TT)E[n(t- rT)nT(t- rt)]Vf(t)] + O(a3TJTac) + O(a4 TJ)

= a271E[VjT(t- TT)C(r2)Vf(t)] + O(a3 TJTac) + O(a4'7)

76

where C(T2) = E[n(t- TT)nT(t- Tt)] is the autocorrelation matrix for n. (It

depends only on T2 = TT - Tt because P(n) is independent of time.) Assuming

that TT is small and that 'V f is differentiable in time, 'V f(t- TT) = 'V f(t) + 0(TT),

and the second term becomes

Since

the third-and-final term becomes

TJ, Tac, Tt, and r2 remain in the order expressions because they are also adjustable

during construction of the hardware. Altogether,

!E[f] = E[j] -O?TJE['V JT(t)C(T2)'V f(t)]

+0(0:3fJ2) + 0(o:3) + 0(0:2TJTT)

+0(o:2 Tac) + O(o:3 rJTac) + O(o:4rJ).

(6.5)

The first term in (6.5) will be the dominant term if: r2 :::; Tac' so that C(r2) =

O(e-'1"2/Toc) is not small; fJ = O(o:") where -1 < p < 1; TT = O(o:q) where

q > 0; and Tac = O(o:r) where r > p. Assume that o: =/= 0 (so that f is being

perturbed) and that f is not exactly flat (so that the perturbation insures that

'V f is not always 0--otherwise x is already at a local minimum). Assume that 'Iii

and n; are independent for all i =/= j so that C(O) will be diagonal and positive

definite. Assume that T2 is small enough so that C(T2) is positive definite. Then,

E['V JT C'\7 !] > 0, and ft E[f] < 0 until the formerly small terms overwhelm the

77

first term. Thus, f decreases on average towards a local minimum (where "\7 f = 0)

until II"V Jll 2 becomes too small. This is not an exact optimization of E[f] since

x = s + n will wander around the local minimum point (call it "s*") as long as noise

is added to the system, causing E[f] to be > f(s*). Nevertheless , since the first

term in (6.5) is of lower order in a than the other terms, (6.5) becomes closer to pure

gradient descent and thus to exact optimization as a---+ 0. limt-+oo IE[f(t)]-f(s*)l 2

quantifies the imperfection of the minimization- call it the "mismatch." Since

a ---+ 0 leads to a mismatch of zero, a can serve as a qualitative measure of

mismatch.

The leading-order behavior of (6.5) is similar to gradient descent. If C is a

scaled version of the identity matrix (as would be the case if all the noise generators

were independent and had the same statistics), (6.5) becomes to leading order

E[j] ex -E[II"Vfll2]. This is similar to (A.l) in Appendix A- i.e. , it is similar to

gradient descent. If C is not a scaled version of the identity matrix, the direction

of descent is skewed away from the gradient, but it is still downhill as long as C is

positive definite.

6.3 Convergence Time vs. Number of Parame­
ters

In terms of information theory, CALOPEX relies on sending information (the per­

turbations) down a single channel (the wire leading from f). If each perturbation

carries M bits of information, if there are N adjustable parameters (i.e., if s is an

N-dimensional vector), and if the channel can transmit L bits of information per

second, one expects to wait M N / L seconds in order to gather all the information

necessary for one complete update of s. Thus, bandwidth limitations force one

78

to wait longer as N increases; and at best , the convergence time for CALOPEX

should scale linearly with N.

The scaling relationship for CALOPEX is complicated by the presence of"'· In

Figure 6.1, one can see a channel leading from f to -"'(dfdt) and another leading

from -"'(dfdt) to the multiplier. These channels cannot be lumped together and

be considered as one because, according to the previous section, "' can be extremely

small or extremely large as a becomes small, depending on whether p > 0 or p < 0.

Since f can be small while ,.,j is large (or vice versa), one has to keep track of both.

Define the bandwidth limitations for the two channels as j(x) ~ W1 and ,.,j ~

W2. These are just convenient ways to define bandwidths for what follows. Since

j = "\1 f 0

(s + mi), these conditions imply that ni must typically be bounded.

This will be true in hardware. Nevertheless, ifni were unbounded but had a finite

variance, one could still develop bandwidth limitations in terms of variances.

Assume that IIV fll 2 remains constant as N changes. This is reasonable in that

f and IIV fll 2 will remain within certain limits when implemented in hardware and

will not grow to be arbitrarily large as N increases.

Then, at the bandlimit, the first condition gives

to first order in a. Since
N

llnll2 =En~~ Nc2

i=l

where c2 is a typical maximum size for n~, W1 & aVN where " & " means

"approximately proportional to." Thus, a 6c 1/ .JN. Similarly, for the condition

involving w2, ,.,a 6c 1/ .JN.

Note that, from (6.4) and (6.5), both Si and E[j] exhibit their dependence on N

by being 6c a 2
,.,. Thus, 1/(a2"1) is the characteristic time for CALOPEX- define

79

this as Tc. Since TJ ex aP, the two bandwidth conditions give

(6.6)

and

(6.7)

One must satisfy whichever is the most restrictive condition in order to stay within

both bandwidth conditions. For -1 < p < 0, (6.7) is the most restrictive; for

0 < p < 1, (6.6) is the most restrictive. The best scaling relationship occurs at

p = 0, where the two conditions are identical and where Tc 5c N. Thus, at best,

the convergence time for CALOPEX scales approximately linearly with N, which

is the optimal scaling relationship.

6.4 Implementation Issues

The following is a summary of conditions that ensure the operation of the method:

(1) f must be bounded from below; (2) f and its derivatives must exist; (3) P(n)

must be stationary; (4) n must be integrable, have a finite variance, and have

a mean of zero; (5) correlations in n must die out exponentially; (6) it must be

possible to make a and TT small; (7) r 2 must be ::; Taci and (8) C(r2) must be

positive definite.

Conditions 1 and 2 are not very restrictive. Conditions 3, 4, and 5 will be

satisfied for many noise generators. H the noise n has a stationary probability

distribution, so will that of n. H n is generated by hardware that does not have

an infinite bandwidth, n will exist, and its variance will be finite. If E[n] = 0,

E[n] = ;tE[n] = 0. If correlations in n die out exponentially, the same will be

true of correlations in n. It should not be difficult to build noise generators with

80

these properties. Then, one needs only to run n through a differentiator to obtain

a suitable n. Conditions 6 and 7 will be achievable if one has enough latitude

in setting a, Tac, 7 11 and 7 2 during hardware construction. Condition 8 will be

satisfied if 72 is small enough compared to Tac (condition 7 will likely insure this

for most well-behaved noise generators) and ifni and ni are independent for all

i =f. j. Thus, not surprisingly, independent noise generators should be used for the

components of the noise vector.

CALOPEX needs only adders, multipliers, differentiators, integrators, and

noise generators. Most of these devices are straightforward to implement in analog

hardware, but noise generators and suitably long-term integrators might be diffi­

cult to build. In (32], Kerns shows how to build an analog-VLSI noise generator

that is compact and that requires only a small number of devices. However, it is

not yet clear how resistant a collection of such noise generators is to phase locking

or to the pickup of 60 Hz oscillations from the power supply, both of which would

cause CALOPEX to fail. [31] and [26] discuss storage devices that are appropriate

for constructing integrators in analog VLSI that have very long time constants.

However, these devices use ultraviolet light, which can interfere with other circuit

components if the chip is not correctly laid out. This also might cause CALOPEX

to fail.

Nevertheless, there are four features of CALOPEX that are especially helpful

for implementing the method in hardware. First, CALOPEX does not require ex­

plicit computation of any gradients. This is useful in cases where \7 f is difficult to

compute. Second, the inputs to the multiplier in Figure 6.1 are time derivatives.

This makes it easier to adjust the hardware so that the multiplier does not clip,

since the inputs are approximately centered around zero (because E[n] = 0 and

81

E[j] = O(a27J), which is small). If instead the inputs had large offsets, the dynamic

range of the multiplier would be reduced. Third, the computation of (6.1) involves

only local information except for one global signal. In other words, the change in

parameter Si requires only the local values ni and Si and the global signal j (which

is transmitted identically to all sites of adaption). This means that the hardware

construction does not require complicated transmission of signals among all the

sites of adaption. Fourth, CALOPEX needs only one differentiator for f and one

differentiator, one adder, one multiplier, and one noise generator for each compo­

nent of the vector x. Thus, the complexity of the algorithm (measured in number

of devices needed) scales linearly with the number of adjustable parameters.

Also, when implemented in analog hardware, CALOPEX uses parallel compu­

tation since it adjusts all the parameters off at the same time. This increases the

convergence speed of the optimization compared to serial execution, but it also

provides CALOPEX with a measure of damage resistance. The damage resistance

comes from the fact that destruction of one site of adaption does not necessarily

destroy the other sites' abilities to adapt. Thus, while damage might cause Sk to

become frozen, all the other Si, i =/:- k, could keep adapting and would naturally

adjust themselves to take into account that sk is fixed. In other words, CALOPEX

would minimize f subject to the constraint sk =a constant. This degradation be­

cause of accumulated damage is closer to that exhibited by biological systems than

to that exhibited by digital computers.

Of course, the convergence time for CALOPEX increases as the number of

parameters increases, all other aspects being constant. Section 6.3 shows that,

at best, the convergence time scales approximately linearly with the number of

adjustable parameters (the dimension of s). According to information-theoretical

82

arguments, this is the best possible scaling relationship.

Lastly, the end of Section 6.2 defines mismatch and shows that a can serve as

a qualitative indicator of the amount of mismatch. If a is adjustable during the

course of optimization, it is possible to perform a sort of simulated annealing by

starting with larger a (for faster adaption) and gradually reducing it (for smaller

mismatch). (See [33] for a discussion of simulated annealing.) a is similar to the

temperature parameter in simulated annealing, and its adjustment might likewise

be useful as a technique for avoiding local minimae.

d
dt

83

d
-1] dt f

J

Figure 6.1: A schematic representation of CALOPEX. f is the function to be min­
imized; n is a stochastic vector; a is a small constant; 11 is a constant that adjusts
convergence speed; and s is a vector that represents the adjustable parameters in
f. CALOPEX can tolerate small time delays in the computation off and in the
multiplier /integrator path.

84

Appendix A

Optimization Through Gradient
Descent

Assume that we would like to minimize the function f (x), where f is bounded

below and where both f and x are scalars. This might be necessary as part of an

adaptive-control system where f is an error between actual and desired outputs or

as part of a learning system (such as a neural network). One common approach

to optimization is gradient descent, where one sets

dx df
-=-a-
dt dx

and where a> 0 is a constant. Using these dynamics,

df df dx 1 dx = 0 if x = 0
()

2

dt = dx dt = -a dt =* { < 0 otherwise.

Thus, f decreases until x stops changing, at which point df / dx = 0. This point is

at least a local minimum.

Likewise, for the case where x is a vector and where x = -a"\! f, one can find

df = "\lf. dx = _ _.!:.lldxll2 = -aiiV/112 =} { = 0 if "\lf = 0 and x = 0 (A.l)
dt dt a dt < 0 otherwise.

85

Bibliography

[1] N. Abramson, Information Theory and Coding. New York: McGraw-Hill,

1963.

[2] B. P. Anderson and D . D. Montgomery, "A method for noise filtering with

feed-forward neural networks: analysis and comparison with low-pass and

optimal filtering," in Proceedings of the International Joint Conference on

Neural Networks, San Diego, '90, vol. 1. New York: IEEE, 1990, pp. 209- 214.

[3) J. A. Anderson, J. W. Silverstein, S. A. Ritz and R. S. Jones, "Distinctive

features, categorical perception, and probability learning: some applications

of a neural model," Psychological Review, vol. 84, pp. 413-451, 1977.

(4] R. Ash, Information Theory. New York: Wiley, 1965.

[5) D. S. Bernstein and D. C. Hyland, "Optimal projection equations for reduced­

order modeling, estimation, and control of linear-systems with multiplicative

white noise," Journal of Optimization Theory and Applications, vol. 58, no.

3,pp. 387-409,1988.

[6] J. M. Bower, "Reverse engineering the nervous system: an anatomical, phys­

iological and computer based approach," in An Introduction to Neural and

Electronic Networks, S. Zornetzer, J. Davis, and C. Lau, Eds. San Diego:

Academic Press, 1990.

86

[7] E. Charniak, C. K. Riesbeck, and D. V. McDermott, Artificial Intelligence

Programming. New York: Wiley, 1980.

[8] B. S. Chow and W. P. Birkemeier, "A new recursive filter for systems with

multiplicative noise," IEEE Tronsactions on Information Theory, vol. 36, no.

6, pp. 1430- 1435, 1990.

[9] G. G. S. Collins, J. Anson, and G. A. Probett, "Patterns of endogenous amino

acid release from slices of rat and guinea-pig olfactory cortex," Brain Research,

vol. 204, no. 1, pp. 103-120, 1981.

[10] A. Constanti, J . D. Connor, M. Galvan, and A. Nistri, "Intracellularly­

recorded effects of glutamate and aspartate on neurones in the guinea-pig

olfactory cortex slice," Brain Research, vol. 195, no. 2, pp. 403- 420, 1980.

[11] J. T. Coyle, D. L. Price, and M. R. DeLong, "Alzheimer's disease: a disorder

of cortical cholinergic innervation," Science, vol. 219, pp. 1184- 1190, 1983.

[12] A. Dembo and T. Kailath, "Model-free distributed learning," IEEE Transac­

tions on Neural Networks, vol. 1, no. 1, pp. 58- 70, 1990.

[13] C. S. Draper and Y. T. Li, Principles of Optimalizing Control Systems and

an Application to the Internal Combustion Engine. New York: ASME, 1951.

[14] R. Duda and P. Hart, Pattern Classification and Scene Analysis. New York:

Wiley, 1973.

[15] J. Eckmann and D. Ruelle, "Ergodic theory of chaos and strange attractors,"

Reviews of Modern Physics, vol. 57, pp. 617- 619, 1985.

87

[16) P. Eykhoff and 0. J. M. Smith, "Optimalizing control with process-dynamics

identification," IRE Transactions on Automatic Control, vol. AC-7, pp. 140-

155, 1962.

[17] K. Funahashi, "On the approximate realization of continuous mappings by

neural networks," Neural Networks, vol. 2, no. 3, pp. 183- 192, 1989.

[18] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and

the Natural Sciences. Berlin: Springer-Verlag, 1985.

[19) P. Grassberger and I. Procaccia, "Characterization of strange attractors,"

Physical Review Letters, vol. 50, no. 5 , pp. 346- 349, 1983.

[20] L. B. Haberly and J . M. Bower "Olfactory cortex: model circuit for study of

associative memory?" Trends in Neurosciences, vol. 12, no. 7, pp. 258-264,

1989.

[21] J. J. Hagan and R. G. M. Morris, "The cholinergic hypothesis of memory: a

review of animal experiments," in Handbook of Psychopharmacology, vol. 20,

L. L. Iversen, S.D. Iversen, and S. H. Snyder, Eds. New York: Plenum Press,

1989.

[22] E. Harth and E. Tzanakou, "ALOPEX: a stochastic method for determining

visual receptive fields," Vision Research, vol. 14, pp. 1475- 1482, 1974.

[23] M. E. Hasselmo, B. P. Anderson, and J. M. Bower, "Cholinergic modulation

may enhance cortical associative memory function," in Advances in Neural

Information Processing Systems 3, R. P. Lippmann, J. E. Moody, and D. S.

Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp. 46- 52.

88

[24] M. E. Hasselmo, M.A. Wilson, B. P. Anderson and J. M. Bower, "Associative

memory function in piriform (olfactory) cortex: computational modeling and

neuropharmacology," in Cold Spring Harbor Symposia on Quantitative Biol­

ogy, vol. LV. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1990,

pp. 599- 609.

[25] M. E. Hasselmo and J. M. Bower, "Cholinergic suppression specific to intrin­

sic not afferent fiber synapses in rat piriform (olfactory) cortex," Journal of

Neurophysiology, vol. 67, no. 5, pp. 1222- 1229, 1992.

[26] M. Holler, S. Tam, H. Castro, and R. Benson, "An electrically trainable artifi­

cial neural network (ETANN) with 10240 'floating gate' synapses," in Proceed­

ings of the International Joint Conference on Neural Networks, Washington

D.C., '89, vol. II. New York: IEEE, 1989, pp. 191- 196.

[27] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks

are universal approximators," Neural Networks, vol. 2, no. 5, pp. 359- 366,

1989.

[28] B. T. Hyman, A. R. Damasio, G. W. Van Hoesen, and C. L. Barnes, "Cell

specific pathology isolates the hippocampal formation in Alzheimer's disease,"

Science vol. 225, pp. 1168- 1170, 1984.

[29] M. W. Jung, J. Larson, and G. Lynch, "Long-term potentiation of monosy­

naptic EPSPs in rat piriform cortex in vitro," Synapse, vol. 6, no. 3, pp.

279- 283, 1990.

89

(30] E. D. Kanter and L. B. Haberly, "NMDA-dependent induction of long-term

potentiation in afferent and association fiber systems of piriform cortex m

vitro," Brain Research, vol. 525, no. 1, pp. 175- 179, 1990.

(31] D. A. Kerns, J. E. Tanner, M. A. Sivilotti, and J. Luo, "CMOS UV-writable

non-volatile analog storage," in Advanced Research in VLSI: Proceedings of

the 1991 University of California/Santa Cruz Conference, C. H. Sequin, Ed.

Cambridge, MA: MIT Press, 1991, pp. 245--261.

(32] D. A. Kerns, "A compact noise source for VLSI applications" (work m

progress).

(33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated

annealing," Science, vol. 220, no. 4598, pp. 671-680, 1983.

(34] C. Klimasauskas, "Neural nets and noise filtering," Dr. Dobb 's Journal, p. 32,

Jan. 1989.

(35] T. Kohonen, Self-Organization and Associative Memory. Berlin: Springer­

Verlag, 1984, pp. 35--41.

(36] T. Kohonen, P. Lehtio, J. Rovamo, J. Hyvarinen, K. Bry, and L. Vainio, "A

principle of neural associative memory," Neuroscience, vol. 2, pp. 1065- 1076,

1977.

(37] M.D. Kopelman, "The cholinergic neurotransmitter system in human memory

and dementia: a review," Quarterly Journal of Experimental Psychology, vol.

38A, pp. 535-573, 1986.

90

(38] A. Lapedes and R. Farber, "How neural networks work," in Neural Informa­

tion Processing Systems, D. Z. Anderson, Ed. New York: American Institute

of Physics, 1988, pp. 442- 456.

(39] C. Mead, Analog VLSI and Neural Systems. New York: Addison-Wesley, 1989.

(40] R. G. Morris and M. D. Kopelman, "The memory deficits in Alzheimer-type

dementia: a review," Quarterly Journal of Experimental Psychology, vol. 38A,

pp. 575-602, 1986.

(41] Y. A. Phillis, "A smoothing algorithm for systems with multiplicative noise,"

IEEE Transactions on Automatic Control, vol. 33, no. 4, pp. 401- 403, 1988.

(42] W . Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes:

the Art of Scientific Computing. London: Cambridge University Press , 1986.

(43] D. L. Price, "New perspectives on Alzheimer's disease," Annual Review of

Neuroscience, vol. 9, pp. 489-512, 1986.

(44] D. Rumelhart, G. Hinton, and R. Williams, "Learning internal representations

by error propagation," in Parallel Distributed Processing: Explorations in the

Microstructures of Cognition, vol. 1, D. Rumelhart et al., Eds. Cambridge,

MA: MIT Press, 1986, pp. 318- 362.

(45] T. L. Saaty, Modern Nonlinear Equations. New York: Dover, 1981 , pp. 393-

408.

(46] T. Simchony, R. Chellappa, and Z. Lichtenstein, "Relaxation algorithms for

map estimation of gray-level images with multiplicative noise," IEEE Trans­

actions on Information Theory, vol. 36, no. 3, pp. 608- 613, 1990.

91

(47] P.R. Stromer, "Adaptive or self-optimizing control systems-a bibliography,"

IRE Transactions on Automatic Control, vol. AC-4, pp. 65- 68, 1959.

(48] F. Takens, "Detecting strange attractors in turbulence," in Dynamical Sys­

tems and Turbulence, Warwick, '80, D. Rand and L. Young, Eds. Berlin:

Springer-Verlag, 1981, pp. 366- 381.

(49] S. L. Tanimoto, The Elements of Artificial Intelligence: An Introduction Using

LISP. Rockville, MD: Computer Science Press, 1987.

(50] J. Theiler, "Estimating fractal dimension," Journal of the Optical Society of

America A-Optics and Image Science, vol. 7, no. 6, pp. 1055- 1073, 1990.

(51] R. Tomovic and W. J. Karplus, High-speed Analog Computers. New York:

Wiley, 1962.

(52] E. Tzanakou, R. Michalak, and E. Harth, "The alopex process: visual recep­

tive fields by response feedback," Biological Cybernetics, vol. 35, pp. 161-174,

1979.

[53] E. Vittoz, "Future of analog in the VLSI environment," in Proceedings of the

IEEE International Symposium on Circuits and Systems, New Orleans, '90,

vol. 2. Piscataway, NJ: IEEE, 1990, pp. 1372- 1375.

[54] C. A. A. Wass and K. C. Garner, Introduction to Electronic Analogue Com­

puters. London: Pergamon Press, 1965.

(55] L. Watts, R. Lyon , and C. Mead, "A bidirectional analog VLSI cochlear

model," in Advanced Research in VLSI: Proceedings of the 1991 University of

California/Santa Cruz Conference, C. H. Sequin, Ed. Cambridge, MA: MIT

Press, 1991, p. 156.

92

[56] L. Watts, Cochlear Mechanics: Analysis and Analog VLSI Simulation, Ph.D.

Thesis, Department of Electrical Engineering, California Institute of Technol­

ogy, 1992.

[57] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in

the Behavioral Sciences, Ph.D. Thesis, Department of Applied Mathematics,

Harvard, 197 4.

[58] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs,

NJ: Prentice-Hall, 1985.

[59] M. A. Wilson and J. M. Bower, "A computer simulation of olfactory cortex

with functional implications for storage and retrieval of olfactory information,"

in Neural Information Processing Systems, D. Z. Anderson, Ed. New York:

American Institute of Physics, 1988, pp. 114- 126

[60] P. H. Winston, Artificial Intelligence. Reading, MA: Addison-Wesley, 1977.

