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ABSTRACT

This thesis considers in detail the dynamics of two oscillators
with weak nonlinear coupling. There are three classes of such problems:
non-resonant, where the Poincaré procedure is valid to the order
considered; weakly resonant, where the Poincaré procedure breaks
down because small divisors appear (but do not affect the O(l) term)
and strongly resonant, where small divisors appear and lead to O(1)
corrections. A perturbation method based on Cole's two-timing pro-
cedure is introduced., It avoids the small divisor problem in a straight-
forward manner, gives accurate answers which are valid for long times,
and appears capable of handling all three types of problems with no
change in the basic approach.

One example of each type is studied with the aid of this
procedure: for the nonresonant case the answer is equivalent to the
Poincaré result; for the weakly resonant case the analytic form of the
answer is found to depend (smoothly) on the difference between the
initial energies of the two oscillators; for the strongly resonant case
we find that the amplitudes of the two oscillators vary slowly with time
as elliptic functions of €t, where € is the (small) coupling parameter,

Our results suggest that, as one might expect, the dynamical
behavior of such systems varies smoothly with changes in the ratio of
the fundamental frequencies of the two oscillators. Thus the pathological
behavior of Whittaker's adelphic integrals as the frequency ratio is
varied appears to be due to the fact that Whittaker ignored the small
divisor problem. The energy sharing properties of these systems

appear to depend strongly on the initial conditions, so that the systems
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are not ergodic.

The perturbation procedure appears to be applicable to a

wide variety of other problems in addition to those considered here,
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Introduction

Problems involving systems of oscillators with weak nonlinear
(polynomial) coupling have long been of interest in connection with the
ergodic problem of statistical mechanics (see Appendix A) and as simple
models of nonlinear interactions. In the present work we will consider
in detail problems of two such oscillators, with our objective being to
determine the long-term behavior of the gross properties and the detailed
dynamics of such systems,

One question of particular interest in connection with the
ergodic problem is whether a particular coupled system permits signif-
icant energy to be exchanged among the degrees of freedom., " Since
energy sharing is a necessary (but not sufficient) condition for ergodicity
and presumably easier to establish than ergodicity, it can be used as a
preliminary test - no energy sharing implies no ergodicity. Energy
sharing is also of interest with respect to the question of equipartion -
is a simple nonlinear coupling sufficient to insure that the time averaged
energies of the degrees of freedom will be approximately the same?

Of course the direct relevance of these questions and indeed
of these systems to statistical mechanics is describable only in terms

of the thermodynamic limit, where the number of degrees of freedom of

"We will use the term degrees of freedom with reference to coordinate
systems in which the subsystems remain weakly coupled, e.g. particle
coordinates, mode coordinates.



.
the system goes to infinity, but we suggest that it will be easier to
understand large systems if we understand clearly the behavior of small
ones. At the same time, we hope that the information obtained by our
examination of small systems will shed some light on the behavior of
large ones,

In addition to being model systems for statistical mechanical
problems, the examples we will study here are directly relevant to
understanding the long-time behavior of simple nonlinear systems,
Perturbation methods have frequently been applied to such systems with
varying degrees of success; however, a significant question has been
left open, presumably because the answer is not obtainable by most
usual approaches. This difficulty has been mentioned frequently in the
literature, and is generally referred to as the small divisor problem.

The first chapter of this thesis describes some interesting
results of the work of previous investigators of systems of coupled
oscillators, Chapter II discusses the small divisor problem, points out
certain of the other difficulties inherent in applying various standard
perturbation procedures to coupled oscillator systems, and introduces

and describes "N-timing,"

the approach which is to be used in the
present work. In Chapter III we work a non-resonant problem which can
be done equally well by other methods (e.g. Poincaré, Wigner-Brillouin),
and in Chapter IV we work a problem which explicitly demonstrates the
ability of N-timing to remove small divisors. Chapter V will present
our solutién of a "strongly resonant" problem, where the energy-

sharing can be O(l). Chapter VI discusses our results and their

relevance to some of the questions raised in the foregoing paragraphs.
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Appendix A examines the importance of ergodicity in statistical
mechanics, and Appendix B presents some algebraic details omitted

from the text.
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Chapter I

Discussion of Previous Literature on Coupled Oscillators.

E. T. Whittaker and Henri Poincaré were prominent among
early workers contributing to the theory of nonlinear oscillations.
Poincare (1893)>l< devised a useful and ingenious perturbation procedure
which we shall discuss in Chapter II. Whittaker (1916) studied in detail
the problem of two oscillators with weak nonlinear coupling, and found

that for such a system one can always, at least formally, construct a

constant of the motion
dx dy
(P (x’ dt ’ y’ dt t] €)

different from the total energy and analytic in the dynamical variables
and e.**

To construct these constants, which he called "adelphic
integrals," Whittaker found it necessary to distinguish three cases

depending on the frequencies w; and w, of the two oscillators and the

form of the coupling:

Casel) w;/w, is irrational;

*A name followed by a date is used to refer to an entry in the list of
references,

**Throughout this thesis, € will generally be a small dimensionless
parameter of the order of the coupling term in the Hamiltonian; i.e. -
we are considering systems with

n 2 =
k dx —
- —= 2 2 dx
H= E_ [ dt) +w] %) :|+€H' Slt’x> 5 €<€L],

1
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Case 2) /wz is rational, and the system is "weakly resonant";
Case 3) o /w, is rational, and the system is "strongly resonant."

Here we have used our own terminology as to the types of resonance in
order to avoid reference to and transformation to action angle variables
of a specific problem. We will discuss weak and strong resonance in
more detail lg.ter; for now it will be sufficient to state that, phenomeno-
logically speaking in terms of applying the Poincaré procedure to the
problem in question, by weak resonance we mean that there are no O(l)*
additive corrections to the O(l) term of the solution arising from higher
iterations - by strong resonance we mean that there are such corrections.
Each of the three cases distinguished above leads, in Whittaker's
formalism, to a different analytic form for the adelphic integral.
Whittaker's work raises two questions: do the series defining
the adelphic integrals converge, and if they do what is implied by the
fact that the series change form drastically over arbitrarily small
changes in the frequency ratio? With regard to the first question, we
suspect that one can think of examples where Whittaker's formalism
will lead to apparently divergent adelphic integrals. As to the second,
we suggest that if Whittaker attempted to eliminate small divisors, the
series for an irrational frequency ratlo. would resemble that for a neigh-
boring rational ratio, since we expect a much smoother dependence on

the frequency ratio than Whittaker's results appear to indicate., These

*In this thesis ¢(€,t) =O(¢(€)> will mean 3:—%%&-) and %%é—;l both remain

bounded as € tends to O(t fixed) for "almost all" t (except possibly
for a set of measure zero of t's).
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questions are still open, but even if the adelphic integrals diverge it
appears likely that one can find functions which are constant to some
order, say e?, then variable only by an amount of order €p+1.

More recently, several authors have considered problems
involving two or more oscillators with the aid of mechanical computation
as well as analytic techniques, the former giving these authors, in a
sense, experimental results to check their theoretical solutions. Among
the significant contributions of this type are those of Fermi, Pasta and
Ulam (1955), Ford and Waters (1963) and E. A. Jackson (1963a,1963b).

FPU performed computer studies of a one dimensional chain of
identical particles connected by identical, weakly nonlinear springs. The

configuration of their system is represented in Fig. 1.

Yi Y2 V3 Yn-1 YN
¥o=0 N4t =0

Fig. 1. Configuration of FPU System

Vi is the displacement of the kth particle from its equilibrium position.
The potential energy of the spring connecting the kth particle to the

k+ 1 st is (in dimensionless coordinates)

2 3
g™ H O 5 G- %)
kkel™ 2 \Vk+1™ Yk 3 Yks1™ Yk
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Thus the FPU Hamiltonian is (still in dimensionless

coordinates)
dY 2 3
k 1 } g( .
Hppy = ( > *Z { 2 <Vk+1 Vk) + 3 k1 Yk) } ()

Transforming to mode coordinates (based on the linear normal modes),

the Hamiltonian becomes:

g:‘{( dt)“’ g }”i f: i T T el (2)

N]o—

k=1 £=1 m=1

with

We will refer to systems with Hamiltonians of the form (2) as "FPU-
type systems."

Contrary to their expectations, FPU found that their system
was not ergodic since energy was not shared uniformly among the modes
- when the system was started with all the energy in the first mode only
the first few modes became appreciably excited. This interesting result
was the starting point for several subsequent studies of coupled oscil-
lators, promifxent among which were the work of Ford and Waters (1963)
and of Jackson (1963a), (1963Db).

Ford and Waters used the Wigner-Brillouin perturbation
theory (which is similar to Poincaré's method) and mechanical compu-
tation o study conservative systems of from two to fifteen oscillators with
weak cubic coupling in the Hamiltonian. Their theoretical work and

supporting machine computations showed that such systems can exhibit
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significant (i.e., O(1) ) energy sharing among all the modes only if the
fundamental frequencies w, are respectively near certain integral

- multiples of some basic frequency. Furthermore, they found that even
when the frequencies are in the right ratios there exist certain sets of
initial conditions which do not permit significant energy exchange. This
being the case, they concluded that nonlinear systems of the type they
studied are not ergodic.

They also examined the behavior of a particular five-oscillator
system which had the appropriate frequencies and initial conditions for
energy sharing and found that in such a system, the amount of time a
single oscillator (mode) spends with energy between E and E+ §E is
roughly proportional to exp (-E/E,), where E, is the total energy in
the system divided by the number of oscillators, Thus, the remaining
oscillators form a "heat bath" for the one under consideration and the
canonical distribution appears without benefit of ergodicity.

Ford and Waters' analytiq results for non-resonant systems
were in agreement with their mechanical computations and the results of
our N-timing procedure. However, the Wigner-Brillouin procedure,
like the Poincaré technique, is inherently incapable of handling strongly
resonant systems, since terms of O(l) will generally appear in an
infinite number of iterations. As we shall see later, such behavior
means we are putting the answer in the wrong analytic form; the slow
variation of the solution is not necessarily a frequency shift, butpossibly
a different function of the slow time variables.

Jackson used a modified Wigner-Brillouin procedure to study

FPU-type systems with moderate values of the coupling parameter (e.g.
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14, Y2, 3/s). He found that the sizes of the frequency shifts due to the

nonlinear coupling were significant in determining the amount of energy
exchanged among the modes and the recurrence time of the initial distri-
bution of energy, and his theoretical results for these quantities agreed
rather well with his machine calculations. Like Ford and Waters,
Jackson pointed out that the energy sharing behavior of such systems
depends strongly on initial conditions, and an FPU-type ensemble
starting with all its energy in the low modes will tend to keep most of

its energy in the low modes. Finally he pointed out that smali changes
in the initial conditions will not cause substantial changes in the gross
properties of the solution.

Jackson's perturbation approach, while effective in predicting
the gross behavior of the systems he studied, is somewhat less usefulin
giving explicit solutions to the dynamical problems. One reason is that
his coupling constants are too large to permit the terms of his series to
decrease in size rapidly, but more important, the same observations
apply to his method as to Ford's method described above; the Wigner-
Brillouin approach breaks down near resonances, and as an FPU system
tends to a large number of degrees of freedom, the frequencies of the
lower modes approach the resonant ratios. Thus Jackson's method is
not useful for studying the detailed dynamics of large systems. More-
over, for certain classes of initial conditions higher order resonances
are possible for systems of as few as two oscillators, even with in-
commensurable frequencies, and neither does Jackson's method apply

to this problem.
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Chapter II

The "N-timing" Perturbation Procedure

A.TheNecessity for Uniform Validity and the Small Divisor Problem,

The problems to be studied in the present work are members
of a class of problems involving small forces which are active for along
time. The basic systems we shall consider are derivable from Hamiltonians

of the form (in dimensionless units):

N 2
B = %gl{(%) ’ wk’xkz}'fg("v"z---' %)

with corresponding equations of motion

dz
el
-at—z-+wk2xk =€-37-kg Xps Xgs wees Xy eens XI\D (1)

and

0<lel<<1, x <o), a—axisou)

The initial conditions to be satisfied are

d
00 = a5 (5E) WL

g1 is a polynomial in the xk's and at first we are thinking about the
d
limit € — 0, ¢t fixed. The dynamic variables % and T will usually

correspond to the amplitudes and time rates of change of the amplitudes
of the normal modes of oscillation of a system which is linear if € = 0.
We assume that we know by physical or other considerations that the
dynamical variables X and 3t are bounded.

The solutions of such systems are for times t < O(1)

equivalent to O(l) to the solutions of the uncoupled equations; i.e., to
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the solutions of equations (1) with €=0. As time passes, however, the
weak forces will cause the exact solutions of equations (1) to driftaway
or bifurcate from those of the uncoupled equations, and eventually the
error engendered in using the initially valid solutions in place of the
exact solutions-will be O(l). Alternatively, if we look at the solution of
system (1) in the time interval 7 <t< T+ 67, where 7T > O(1/€2) and
67 = O(l), to O(l) the motion will look like the solution of the uncoupled
equations with initial conditions different from equations (2) butofcourse
located on the same energy shell). Thus, to O(l) the solutions of
equations (1) look like those of the uncoupled equations with slowly
varying initial conditions.

A consequent difficulty often encountered in applying pertur-
bation procedures to such problems is that the resulting solutions are
only valid initially - after a certain initial time the magnitude of the
higher correction terms becomes equivalent to or larger than that of the
lowest order terms, and consequently an infinite number of terms is
needed to adequately describe the answer. The classical procedure for
eliminating this difficulty, and the one which has generally been applied
to the kind of systems we are studying here,is the well-known Poincaré
technique, which seeks to allow for the nonlinearity by introducing small
shifts in the fundamental frequencies of the oscillators.

The Poincaré procedure works effectively if the frequencies

' and in many cases for a certain

are "sufficiently incommensurable,'
delimited span of time when they are commensurable. However, trig-
onometric terms of various combination frequencies appear on the right

handsides of all iterations subsequent to the first, and if one of these
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combination frequencies is "sufficiently close" to the fundamental
frequency of the equation in which it appears, the corresponding small
resonance denominator can push the amplitude of the resulting term in
the solution to a larger order than it was originally thought to be. Further-
more, once such a small divisor appears, it frequently appears in
successively higher powers in subsequent interactions, raising a term
from each of these iterations to the increased order of the term where
the small divisor first appeared. The appearance of such terms in the
solution thus tends to break down the uniform validity of the solution and
raise questions about the convergence of the expansion.

A related situation is the case where the frequencies are
commensurable but not in a ratio which will cause strong resonance
(i.e., O(l) corrections to the solution due to small divisors). In this
case one can obtain combination frequencies whose O(l) terms vanish
identically. However, the small corrections to the combination frequen-
cies usually do not vanish, so if an appropriately modified Poincaré
scheme is used, this situation reduces to the usual small divisor
problem. In the work that follows, we shall call cases where no small
divisor appears to the order considered non-resonant, and where they do
appear, weakly resonant. We suggest, however, that there is not
necessarily a sharp dichotomy between the two cases - the small

e
B3

divisors in the latter case may just take longer to appear.

*

It is not difficult to see how small divisors can appear at some point in
the Poincaré expansion for any given pair of frequencies w;, w,. Given
any pair of incommensurable numbers «; and w, andany §>0, there
exist infinitely many pairs of (positive) integers n, m such that
Inw, -me, | <6. However, for polynomial coupling, the larger the values
of n and m, the further out in the series the corresponding combination
frequency will appear. It does not seem a priori obvious (without actually
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In some cases, near particular frequency ratios which corres-
pond to the form of the nonlinearity, one finds that small denominators
occur in the initial iterations of the Poincaré scheme and raise the
corresponding terms to O(l), thus causing O(l) corrections to the
answer. In such cases, to which we will refer as '"strongly resonant,"
the Poincaré procedure is useless (except for establishing that the
strong resonance exists) and one usually attempts to establish the O(1)
solution by other means, most of which involve certain transformations
of the original equations,

Sev}eral sophisticated techniques have been developed to deal
with the difficulties mentioned in the foregoing paragraphs, including
Krylov and Bogoliubov's method of averaging (Bogoliubov and
Mitropolsky, 1961), Struble's general asymptotic method (Struble 1962)
and Cole's two-timing procedure (Cole 1968). This chapter will intro-
duce N-timing, which is an extension of two-timing.

In the work that will follow, we will find that the small divisor
problem can be eliminated with the assistance of a sufficiently flexible
perturbation procedure. N-timing appears to be such a procedure, and
it will be used to study a non-resonant example which is also tractable

by Poincaré's method, as well as weakly and strongly resonant examples

(continued from preceding page)

calculating the expansion) how to tell whether or not a particular com-
bination frequency (nw, -muw;) will appear but we can easily provide a
bound for the order of the term in which a small divisor will firstappear
by the following procedure. Suppose H' (the perturbing Hamiltonian)

is a polynomial of order k. Let the term where a small divisor first
appears in the Poincaré expansion of the solution of the equations of
motion resulting from the perturbed Hamiltonian Hy; + €eH' be O(et).

Let (N,M) be the pair of integers satisfying |nw,-mw;|= O(e) and
having the smallest value |n+m| of all such pairs. Then (£ = (smallest
integer =>(N+M-1/k-2)-1),
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which are not.

B. The Method of N-timing.

The simplest perturbation procedure we can apply to a problem

like (1) is a limit-process expansion wherein we let

x () = 90 + exPi0) + e2xP o)+ .. (2)

substitute (2) for X in (1), and set the coefficient of each eP in each
of the N resulting equations separately equal to zero. This yields a
system of N equations of each order in € which in turn leads to a
sequence of problems which can be solved in series (because of the

limit process € — 0). The equations of orders 1 and € are:

& (0)

o) —— + xf) =0 (3)
@ x) W_ g ,_(© ) ®

Ofe) T*“ﬁ"kw_xi("l ORI N T T

This system can be solved by first solving (3), then replacing the xlio)'s
in the right-hand side of (4) with the corresponding solutions of equations
(3). However, one will generally find terms proportional to t appearing
in the solutions for xlil) or xliz). Moreover, once such terms start to
appear, one will find a higher power of t in each succeeding term, so
that although these solutions may be valid to O(l) for t=0(1), itis
clear that the exact solutions cannot be represented accurately to O(1)
by a finite number of terms for t = O(l/e) or O(l/(ez) (depending on
whether the t first appears in the O(e) or O(€?) term of the expression
for xk). This difficulty is clearly connected with the difficulty described

in the introduction above, the fact that the solutions of (1) to O(1)
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resemble the solutions of the uncoupled equations with slowly varying
initial conditions. The solutions obtained by this simple limit process
expansion always have as an O(l) term the solutions of the uncoupled
equations with constant initial conditions. The divergent terms are
telling us that we must allow for some change in the form of the O(1)
term due to the presence of the weak forces.

The classical procedure for eliminating this difficulty was
developed by Poincaré (1893). He suggested that the effect of the weak

forces is to cause a slight shift in the frequencies w Thus he proposed

K-

that one replace the w,'s by

k

i (5)

S'Zk=wk+€wk

where the wlii)'s and Qk are constants to be determined. Then equation
(1) becomes

dz

—qe O % = (Qﬁ-wﬁ)xk-l'Eg}%k‘ (X1 3 5 e Xy s X ) (6)
where Qli - mﬁ = O(e). Substituting expansions of the form (2) for the
X in equations (5) and setting the coefficients of each e? in each of
the resulting equations equal to zero, we obtain a system of N equations

of each order in €. The equations of order 1 and € are now:

dz (0)

o) —k+az %9 =0 (7)
dz (1)

d)} v 5= Zwkwlil)xlio)‘kgi—k g(x”, 7, ... D) (8)

Solving equation (7) we obtain:

(0)

X = Ol.k cos{th - <p1£0)} (9)
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Replacing each xlio) by its solution on the right hand side of (8) with
its value (9), we obtain a set of linear oscillators with forcing terms

whose frequencies are appropriate combinations of the The term

K
© () () - : .
Zwk Wy X has a frequency identical to the fundamental, Qk' This
and other of the driving terms which have frequency Qk (e.g., a term

like le xk) are called secular terms and will lead to terms of the form

(0) )

ts1n(ﬂkt N

in the expression for x;, unless the sum of the co-
efficients of such driving terms vanishes. Since a useful perturbation
theory requires that the terms be uniformly ordered - i.e., that the
terms of O(e) remain smaller than the terms of O(l), etc. - and we
are free to choose the wlil)'s to suit our convenience, we choose the
wlil)'s such that the secular terms vanish. We then choose the w]iZ)'s
by repeating this procedure with the O(e?) equations and so forth.

The Poincaré procedure is quite useful for studying systems
that reduce to a single oscillator, Unfortunately, it will generally break
down in some order when N = 2. For example, suppose N=2, w =1,
w, =2, and a term x?2x, appears in the Hamiltonian. This leads to a
term %al(o)z cos (2 Qt- Z(pl(o) ) in the right-hand side of the equation for

1)

%, . This is not a secular term, so it leads to a term like

2,02 cos {29t - 29,7}

2 QZZ i 4(212
in the expression for xz(l). However, Q, =2+€ wz(l)+ «es ‘and
Q =1l+e w1(1)+ ... sothat QF- 4Q2 =€ (4(»2(1)- 8w1(1)) 4+ O(e?), and thus one

of the terms supposedly of O(e) makes an O(l) contribution to the
expression for x,. Furthermore, subsequent higher order terms may
also make contributions in O(l) and the Poincaré theory thus becomes

useless for this case.
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In cases where such a breakdown does not occur in the O(e€)
solution it may still occur later. For the case N =2, it is easy to see
how this can happen if «; and w, are commensurable. Of course, if
they are incommensurable, it may also occur if we have nw;- mw,=O(€)
and one of the iterations, say O(er) leads to a term with frequency
n$; -mQ,. This implies a term contributing to O(er_1 ) and the further
validity of the procedure becomes doubtful. The solution is probably
valid to O(er-z) but questionable thereafter; thus we can follow the

: : r-2 2 :
oscillator for a time Ye but since we are not sure of the frequencies

o (re1)

k , we losetrack of it for larger times. This is the famous problem

of small divisors,

The N-timing procedure which we shall now introduce and
describe avoids the difficulties described above by anticipating that the
slow changes with time of the solutions of equations (1) may be more
complicated than simple frequency shifts.

To employ the N-timing procedure we assume that the slow
variation of the solutions of equations (1) can be represented by formally
considering the solutions to be functions of a sequence of related but

(formally) independent variables; t;,t; ,...,t where the new

K?

3
variables are related to t by the relations b = kt, We then use

expansions for the X of the form:

m (6 = w0 (g by s wee sty v J b e b, by s 1PN 100 (10)

“A more general plan would have tk = <pk(e) t, where the (pk(e) form an
asymptotic sequence,
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Derivatives with respect to t now become:

d 9 9 9 e
e & Ak B Ll o B YR o (11)
dt ~ 9ty ot ot, k§0 at,
so that
(0) (1) () () (1) (0)
dxk(t) - axk Bxk . 8xk } o B { axk . Bx.k N 8xk }+ -
dt - ot TE1 By at, € ot, © ot ' o, J T
and
dz Xk(t) 32 xl(:) 82 xl((l) az Xl(:) 82 Xl(:) 32 X1(<1) az X.}:) ale(:)
de = g Tl tanan Tl e t2anant o tlanan

42
We now replace xk(t) and T in equations (1) by their correspond -

ing expansions, equations (10) and (12). Setting the coefficients of each
power of € 1in each equation separately equal to zero we obtain a system
of N equations of each order in €. The equations of O(l) and Of(e€)

are respectively,

Bzx(o)
0() Fra wﬁxl((o) = G (13)
(1) (0)
8 ¥x' 4
Ole) T +<.oli xlg)=-2-5€'5—tl +8—ng-(x1(0), xz(o),...,xl(:),...xlg))) (14)

The fundamental principle of expansion is that each term appearing in a
solution of a particular order must be uniformly of that order. This
excludes terms increasing like t, as well as terms with coefficients
such as 1/6 that raise a term to a 1arger* order. Such terms must be

eliminated by choosing the proper dependence of larger order terms on

the slow time variables, in the spirit of the procedure for removing

*Throughout, to avoid ambiguity, larger order will mean larger
magnitude - i.,e,, O(l) is larger order than Of(e).
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secular terms in the Poincaré technique,

The N—timing method is capable of handling all problems
which can be done by the Poincaré technique, but more important, it
provides a method for solving problems with resonant or near resonant
frequencies where the Poincaré technique is manifestly inapplicable.
N-timing also has the aesthetic feature that with no modification it is
applicable to a variety of problems including both resonant and non-
resonant systems like equations (1). In the present work we shall apply
N-timing to three examples, one where no resonance appears to the
order considered, and two others where resonances become significant
early and lead to interesting consequences.

For a more detailed discussion and examples of the two-
timing procedure, of which N-timing is an extension, refer to Cole (1968,
Chapter III), and Kevorkian (1966). Unknown to the present author at
the time this work was done similar expansions were proposed by Sandri
(1966) previous to and Lick (1968) simultaneously with the present work.
However, neither author applied the procedure to problems of the type
we are considering. Lick applied it to singular problems and some
partial differential equations from fluid mechanics and Sandri to some

) *
quantum mechanical examples.

>kIt should also be noted that Eckstein, Shi and Kevorkian (1964) studied
an orbital mechanics problem which required the use of three time
variables for solution. However, it appears that the third variable was
used because the problem involved matching of solutions in two regions
which required different slow variables. Therefore the approach used
does not seem to be directly comparable with N-timing.
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Chapter III

A Non-resonant Example

The first example we will consider is a non-resonant case, a
two-oscillator FPU system, where to the order considered the Poincaré

procedure will give the same result as N-timing.

The system of equations to be solved is derived from the

. sk
Hamiltonian .

e 3

. u L & T 1 1 1
H(x,,%;,%,,%,;) =3 2,2+3 2,24+ 32,2+32,2+3 (2,2, +€ [z +(z,-2,)-2,%]
@

For convenience, the equations will be solved in normal mode

coordinates x,y where:

Z,+ 2z,

V2

X =

is the amplitude of the symmetric mode and
(2)

¥ = EL‘[-_—Zl is the amplitude of the antisymmetric mode.
2

Applying transformation (2) to the Hamiltonian (1) and

letting:
T (3)
JZ 3
we obtain:
. dx2 ; dy2
Hix,y.%,%) = + (G5 +3GD +ix*+3yi+eyly?-x). (4)

The equations of motion are thus:

2
%—t—:-{ + x = 2€xy x(0) = a (-g—}: = b (5a)

{1

* p_ di(t)
= Tdt
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a2 d
azx + 3y = €(x%- 3y?) y(0)=c —éit =d (5b)

le=0

A, Solution of the Equations of Motion by N-timing.

We shall apply the N-timing procedure to equations (5). Let

= Uk
x(t) =), € x (E, by, o) (6a)
k=0
S
y(t) = ) € Vyltostys -..) (6b)
£=0
where
= 9
t = € 7
q (7)
The operator
(0 0]
$-REt
=0 %%
so that
k
£ i)
=3z = Z € E (8)
dt =0 p=0 at_ot, Btk
Using expressions (6a) and (6b) for x and y and equation
2
(8) for aqt—z in equations (5) and equating the coefficient of ek in each

of the resulting equations to zero, we obtain a double sequence of

equations of decreasing order in €., The equations we shall need are:

02 x

R e
O(1)

0%y,

Bhf * 30 =0 (9b)
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82, %%

T2 3 %, =25 Vg~ Lol 10

Btz | 17 %o Yo~ S Th Hi0e)
Ole)

9%y, S 2 _ _82_Y_0_

Btg2 T Y17 %"~ 3Yo* -2 F 5 (10b)

8z, . 8%x0  9%xo 9%x, ,

Bty T X2 T 2Xo¥17 &YoXim S5 Ttz ~2 B, ot Wia)
O(€e?)

o’y 92 92 92

el s _ _ Yo Yo _ Y1

Bige T e = 2% X =6¥0 Y1 2 Fi-5¢-" “Be,2” 2B, BE, (11b)

%%y ,0%xq 0%xg _, 0%, %%, ,0%%,

Bty Xo=ExeY e FERNY 1 ¥ Exg¥o ~ 25p 5 258 Bk, " 2hto0t, ” Bb 2 by o)
o(e?)

yq

2. 2
%%%32+3y3=2x0x2+x12—6y0y2— 3y 25 -2 Fvo _, PV, By , 0¥ (15,

ot,ot, “otedt, ot~ Bty ot,

In solving these equations we shall use the following notation

for resonance denominators:

S T - 1
Rm,n = 1- (my3+4n)? Sm,n 3- (m+/3+n)? (3)
The solutions of equations (9) are*:
xg (Eg) = ag (t))cos(ty -¢q (ty) ) (14a)
Vo (to) = by (t;)cos (V3 ty- 0 (t,) ) (14b)

Substituting equations (13a) and (13b) in (10a) and (10b), we obtain:

2 dag(ty) . deol(t
aato)§1+xlz & Fa&(—l)sln(to-%(tl))-zao(tl) —5—’%’1(—12008(%-% (t))

+ag(ty)bo(t,)cosd (V3 +1)tg - By(t,)- ot}

+ag(t)bo(t;)cos{ (V3 -1ty - Oy (t,)+ @g(t,) | (15a)

*Throughout this thesisywe shall use the notation ()=t by 2oty 37 )
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2
—a—Y = 2V3 __,_sm(\/‘to Bo (t ) 243 byt —l-cos<J't0 B, (t )
ato at] 8t1
2
aq (t 2(t
+ 02( l) + aoz( 1) cos (ZtO—Zq)o(tl))
2 g2 [ky)~2 bkt 23t -20
- 5 bo? (t))-5bo? (t))cos to-26o(t,) (15b)

The condition that the solutions of these equations be uniformly bounded
requires the coefficients of sin[ty-¢o(t,)] and cos[ty-go(t,)] in the first
equation and sin[\/gto - Go(tl)] and cos[\/—g to - Bo(tl)] in the second

equation to vanish. Thus,

9 .
aaot(lt]) =0 _‘/éot( D _ =0 ag=ag(t,) ®o =@o(t,) (16a)
Obo(t 90,(t

bgélx) =0 aot(1 1) =0 bg=Dbylt,) 6o = Bo(t,) (16b)

The solutions of (15a) and (15b) are:

al(tl)cos(to-q;l(tl» + ag(ty)bo(t,)R; cos{(W3 +1)te- 6y (t,)- @ (t,)}

X

+ ag(t,)bo(ty) Ry-y cos{(V3 -1)to- By (t,)+ee(t,)} (17a)

b,(t;)cos Q’i to- 91(‘:1)>+ (% ag?(ty)- %boz(tz)> Soo

+ ';_. aOZ(tZ)SOZ COS{ZtO-Z(Po(tz)}

Y1

. %boz(tz)szo cos{2V3 to-26o(t,) } (17b)

Using equations (14), (16) and (17) in equations (11) we obtain:
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92 deq(t
'a_t}:% + X2= ao(tz)[‘ 2_%052_2)“’ a’OZ(SOO+% SOZ)+b02{R11+Rl—l 3000}}COS (to ¢0(t

9a, () . 9¢,(t,) t, .
2 8(;:2Sln(tf¢o(tz))‘2a1(t1)——alt—l—l'Cosélo“¢1(tl))+2 21':11 sin| to—¢1(tl»
1.3
+3ag(t,)Sp,cos <3to- 3<Po(tz»+ao(t2) (t )cos{(J—+1)to (t))- o (tz)}
+a, ;)b ;) cos{W/3+1)tg-0ot,) -0, 1)} +20(t,)b, (£ ) cos{W/3Dto-6 )+ @0 t,)}

+ay (t)bg(ty)cos{(V3-1)ty - 6 (t,)+¢,(t;) }

+ g (£)b¢ (£){Ry; -3 Sz} cos{(2V3+1)tg-265(t2)- po(tz) }

+ag(t)bR(t) {R,_,- % Sy } cos{(2V3-1)ts-20p(t2)+9o(t2) } (18a)
and
ZZZZ+3yv—bo [ t2HRy 1+ Ry 1-3S 00+ 9B, XS 00+ 3520} - 2/3° = 2)};03{/” to-6o (t2)}
+z«/§8 s1n{\/_ tgBo( z)}+2\/— sm{/’ to-0 1}—2\/§b,(t1)
+ag(ty)a,(t;)cos{e,(t;)-po(t,)} - 3bo(t,)b,(t,)cos{0,(t,)- Bo(t,) }
+ag(ty)a;(t)cos] 2ty - @g(ta)- @, (t)}-3bg (k)b (t,)cos{ 2V3ty- By(t,)-0,(t )}

ad(ty)by(t,){R 1y~ Zsoz}cos{\/’u to-6o(t2)- 20 (t2)}

+ad(t,)bo(t){R Soz}cos{\/— 2ty Bylta)+ 2w0(b2)}

112

+ 2 b3 (t,)S 20 cos{ 3V3 o= 36,(t,)} (18b)

3ty-6,(t,))
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Setting the secular terms equal to zero in each equation we obtain:

0 t . B9, (t;)
2 __astil_)_) sln{(pl(tl)—(po(tz)} + Za‘l(tl) _%lt_;—l_ COS{‘Pl(tl)'¢0(t2)}

9gq(t;)
= ao(t2)|:—2. ——8952— + a@(t;)(Seo+ L So2)+bE(ta) {Ry+ R s 3s00}-| (19a)

da,(t 9¢ ,(t 9 )
2 B o5 0,60 g0t} - 22,0 T2 sinf gy(t,) - golty)} = -2 20 10
1 1 2

ab t,) 96, (t
23 /L ( sin{ 6,(t,) - 6p(te) } +2V3b,(t;) alt(ll)cos{el(tl)- Bo(to) }
_ 890( 86o(ty) . 1
=by(t)| - 243 ad (R 1+ R 1= 3500 | +9bE(t,{So0+3 S 5ot |(19¢)
b, (t 90,(t,
2V3 ! l)cos{el(tl t,)} -2v3Db,(t at( )s1n{6 - 6o(t,) }
)
- -243 ba"t(t"') (194)
2

Let A,Jt))=a,(t))cos{o,(t))-oolt,)} , Ag(t))=a,(t))sin{e,(t,)-00(t,) } (20a)

Biclty)= by(t)cos{8,(t;)- Bp(ty)} , B,g(t,)=b,(t,)sin{6,(t,)-6,(t,)} (20b)

Equations (19) become:

2 a—Ayt—le(t) = ao(tz)[—z?%%—it—z—)+ ad(t;){ Soot3 Soz} +bE(t2){R +R ;- 3500}} (21a)
BA(};;itl) . Baéot(ztz) -
23 2 ( )—bo(t )[ J?a:‘;(t )+a0 2(t,) {R 1+ R 1-1-3S00 } +9b@(t, ] Soot L szo}—l(mc
g

The right hand side of each of these equations is independent of t,, so

to keep Ac, A B,c and B,s bounded on the t, time scale we need:

1s»
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9go(ty)
T ad(t;){Soo+ 3 So2} + b(t)){R,;+R;_;-3Sg0 } (22a)
dag(ty)
o, 0 (22b)
8 6,(
R 0 = ad(t){R ), +R -1 - 3Sgo | + IbF(t,){ Soo + 35,0} (22¢c)
9by(t,)
B, - (22d)
0A . (ty) _ BAys(ty) 8B, (t)) 9B 4(t)) ;
so that at, = at, = at, = at, =0 (23)
Equation (23) together with equations (20) implies:
a,=a,(t,) ®1 = @,(t,) b, =b,(t,) 0, = 6,(t,) (24)

Equations (22b) and (22d) imply:
ag = aglts); by = bylk) (25)
so that, integrating (22a) and (22c),
@o(t3) =[ {Soo+ S0z} ad(ts) + 3 {R;; +R ;- 3Se0 | b ( t3]tz+q)0( )(tj) (26a)
and
0o(tz) = [%{R11+R1_1—3Sw} ao-’-(ta)+3i2—3—{500+%520}b02(t3)}t2+ 60> (t;).  (26b)
Integrating equations (18) we obtain:
%o = az(tl)cos(to— (pz(tl)>
+3 a3 ()R 350,08 {3tg-300(t,)} +a0(ts) b, (£,) R cos] (V3+1)te-0,(t,)- @o(t,)}
+a,(t,)bg(ty )R ;cositV31 1) t-00(t,)- ¢t} ag(ty)by ) R, cos{W/3Dty-0,¢, i t,)}

(t,)bo(t5)Ry_; cos{ (V3-1)to- By(t,)+e,(t,)}
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+ ag(t)bE(t)R;1 {R ;- 3820} cos{(293+1)to- 265(t,)- po(t,)}
+a0(t5 )bt ) Raoy { Ry - 2 S0} cos{(2V3-1)to- 265(t)+0(t,)} (27a)
and
¥2=b,cos {3 to- 0,(t,)}
+ag(ty)a;(t;)S00cos{p;(t)-o(ty)}-3bg(ts )b (t,)Se0 cos{ 6,(t,)- B(t,)}
+ag(t3)a;(t;)So, cos{2te- @y (ty)- @o(ty)}-3bo(ts )by (t,)S ,0c08{2V3te-6,(t,) -6, ;) }
+ad(t)bo(t5)S1,{R 11-3502} cos {W342)to-Bp(t2)- 2eo(t,)}
+a02(t3)b0(t3)sl_z{R1_1-% Soz} c0s{(/3-2)tg-6o(t2)+ 29, (t;)}
+ 2 bg (£5)S50S 5 cos {33 to- 36,(t)} (27b)

Substituting equations (14),(17) and (27) in equations (12) we
obtain the equations for x; and y,;. The algebra involved in writing
these equations is rather tedious but completely straightforward. The

secular terms are:

da

51n{to @,(t,)}

da
)cos{to @4 2)}‘+2 s1n{(:0 goo(tz)} Zaoa‘/’o% cos{to (po(tz)}

5 824 9¢,(t,)
z 51n{t0 -, (t )}—Zaz(tl)Ttl——cos{to oot} +2 —5

1(E2

2a1(tz)a‘;
+a1(tz)[aoz(t3 WS o02+S00 } +b02(t3){R“'+Rl_1— 3500}}cos{t0- @4t}

[Zao t3)a(t;)cosfp (t,)-0o(ty)}-6a4(ts)bo(ts )b, (t,)cos{0,(t,)- eo(tz)}:[Soocos{to-%(tz)}
+ % ag(ty)a,(t;)Se, cosq{to- 2¢(t,)+e,(t,)}

+ ao(t3)bo(t3)bl(tz)[Rn+ Rl_l]cos{to-<p0(tz)+91‘(tz)—60(tz)} =0 (28a)
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and
ab,(t, (
2V3 ——— T 51n{\/_to t)}-2/3b (t) cos{J—to 0,(t))}
ZﬁE)—%‘t(—tﬁsin 3 to- 8,(t,)} - 2v3b,(t,) gt( cos{V3ty-0,(t,)}
2
dby (t 90o(t2)
b 2\/——3-51n{\/_t0 Bo(t)} - 2V3 by(ty) 2 ag 0s{V3tg-0,(t

+bl(tz)[aoz(t3){Ru+R1_l—3500}+9b02(t3){800+ SZO}}cos{ﬁto—Gl(tz)}
+’_18b02b1cos{91(tz)-eo(tz)}—6a1(tz)ao(t3)b0(t3)C05{<P1('32)-‘Po(tz)}jlsoocos{/—gto‘eo(tz)}
+a,(t;)ag(ts )byl t3)‘: 1+R1_1]cos{\/_3- to- Bo(t,)+ e, (t,)- oolt,)}

+a,(t,)ag(t; )by(ts) { 1+R1_1]cos{\/§to— Bo(t,)+@o(ty)- @, (t,)}

+ 285 b(ty )by (£5)c08 {3 to-265(£2)+ 0, (t,)} = 0 (28b)

Setting the coefficients of cos{t0-<p0(t2)} and sin{toqpo(tz)} in
(28a) and of cos{@to—eo(tz)} and sin{\[gto—eo(tz)} in (28b) separately

equal to zero, we obtain:

BaZ(t )
ot,

aﬁaz(t )

sin{ey(tr)-golta)} + 2a2(ty) 5y —— cos{pa(ty)- wo(t)}

8(/)0( tz)

‘01( "‘)cos{mtzm(t2>}—2ao<t3) o,

da
= -Z—ajt(—2~51n{go1 (t;)- ot 2} 2a,(t,)

+al(t2)!r3aoz(f3){ Sootz Soz} +b02(b3){R11+R1-1‘ 3800}]COS{¢1(t2)—¢0(t2)}

+ 229 (t;)by(ts )b,(tz)[R“JrRl_l- 3soo]cos{el(tz)- Bo(t,)} (29a)
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9a, (t 99,(t1)
gfl( Y cos {p(t)- polta)} + 2a,(t) e sin{,(t1)-po(ty)}

0 .
3éit2) COS{(Pl(tZ)'(Po(tZ)} - zal(tz) <P1( 2)

. daq(ts)
at, 51n{<p1(tz)—goo(tz)}+ 2 —as—

=2

+a1(tz)[aoz(%)[Soo“*%SOz]+boz(t3){Rn+R1-1' 3Soo}lein{‘P1 2)-9o(ty)} (29b)
505 db,(t,)

5t sin{0,(t;)- 0o(t,)} +2V3 b,(t;) 2( l)cos{ez(tl)—eo(tz)}

23 MLsm{e (t,)- Bo(t,)} - 2V3 b (t,) ‘( 2)

cos{0,(t,)-0,(t,)}

+b,( tz)lzaoz( t3){R 11+ R -1~ 3Sgop+ 27 (E:H{Se0+ %Szo}}cos{%z)'%z)}

+ Zal(tz)ao(t3)bo(%)[R11+R1_1— 3Soo]cos{(p1(tz)—<po(tz)} (29¢)

b
2V3 —a?‘t(—lt-l-)-cos{ez(tl)—eo(tz)}+ 2v3b,(t,) 821:( L sin{0,(t,)-8o(t,)}

=+2V3 ﬂ)éxt(_:z_ cos{0;(t;)-0,(t,)F2V3 by (t, ) ( sm{e (t,)-Bo(t,)}

+b,(t;) [aozu3 {R;#R -1~ 3Sg0 } +9bg( t3){Soo+—Szo}j|s1n{eltz)—Q,(tz)}

(294)
The right hand sides of equations (29) are all independent of

2c(ty) = az(tl)cos{¢z(t1)'¢o(tz)}

(30a)
2s(ty) = az(t1)51n{¢z(t1)"/’o (tz)}

B,c(ty) = by(t)cos{0,(t;)-0,(t,)}

(30b)
B,s(t;) = b,(t,) sin{ 0,(t;)- 0o(t,)}
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Then to keep A A,g, B,c, B,g bounded on the t,

2¢c
scale we must have for each of equations (29)
Right-hand side = Left-hand side = 0

aAZC(tl) - aAzs(tl) _ aBzC(tl) ast(tl)
—ot,  at; ot ot

Then

So that a, = a,(t,); b, b,(t); @, = @,(t,); 0, = 6,(t,)

and equations (29) become:

9A . (t,)
_5_::2_2 + Alc(tz)[{soo*‘ 3502} ad(ts)+{R ;#+R ;- 3Sgo } boz((-,,)]

= Ajc(ty) [3{5004' S‘oz} aoz(t3)+{R11+R1 §~ 3300}b “3}

¥ ZaO(t-")bo(‘%)[Ru'*Rl-l' 3500:| B (kz)-2a4(t;) —a-—aq"étz)

8A . (t)  9ag(ts)
ot, 0t

B
23 2 15‘2’ Bm(tz)[{Rle-l—ssw}a&<t3>+ 9{soo+%szo}b02(rgﬂ

=B lc(tz)[{R11+R1-1‘3Soo} ad(ty)+ 27 {Soo*’% Szo} be’(ts )_J

Bo(t2)

+ Zao(%)bo(%)[R11+R1-1'3soo] 1c(tz)- 2v3by(t 3) at,

time

(31)

(32a)

(32b)

(32¢)

(324d)

To keep A, ‘and B,. bounded on the t, time scale we must

have for equations (32b) and (32d),
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Left-hand side = Right-hand side = zero
Thus,

Ajc= Ac(ty); By =Bclt); ag=ag(ty); bo=bglty) (33)

and equations (32a) and (32c) become:

A 4 (t '
—"al:z( 2 = {Soo+ %Soz} aoz(t4)A1c(t3)+{R11+R1—1'3Soo} ag(ts)bo(ty) B (t5)
(3)
0
- aglty) T (34a)

B
a—é—gfﬁ) = "’—2 ao(t4)b0(t4)[R11+R1_1 -3500]A1C(r3)+3\/§ b@(te){Seot3 Sz0f Bic(ts)
()

006 '
- bo (ty) —a"%ﬁ) (34b)

The right hand sides of (34a) and (34b) are independent of

t,, so to keep A,;g and B,y bounded on the t, time scale, we must

have:
aAls(tz) aBls(tz) '
ot, T at, =0 (35)
so that
Ag = Aglts) , B,s = Bys(t;)
and

(3)
0
v '%—at(:}_) = {S00™% Soaf 20(te)Asc(ta)H{R 1 +R 11-3S g0 o (t4) B¢ (t3) (36a)

3)
890( (t3)

a ‘-3 = L;_’ {R11+R”1—1-3SOO} ao(t4)A1c (t3)+ 3J§{SOO+%SZO} bO(t4)B lc(t3) (36b)
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o . , dA,.(t;) _ 9B ,.(t;)
It is possible, although tedious, to show S = 2= 0
p g = Al
by considering the O(€*) equations. Assuming A,;.=A,.(ty), B, =B, (t)
we have
3 4
fP(o )(ta) = li{SooJr%Soz}ao(tx;)Alc(t4)+{R11+R1-1'3500} bo(t4)Blc(t4):lt3+‘P(() )(t4) (37a)
6(3)

o (t3) = [\/_E{R11+R1-1‘3Soo} ao(t4)A10(t4)+3‘/-3—{Soo+% S sof bo(t4)Blc(t4ﬂ t3+9(o4)(t4)(37b)

Collecting all the results, letting t,=0, assuming the fre-
quency shifts in ¢, and ¢, are the same as those in go;:, and the

a,'s and b 's are constants, we have to O(€?);
x(t) = aq(0) cos{ty-go(t,)}

+e[a1<0>oos{to—wo(t2)+<po<0>—<p1<0)}
+20(0)bg(0)R ;; cos{W/3+1)te-B(t,)- @o(t,)}
+24(0)bg(0)R,_; cos{(V3-1)ty- 8, (t,)+¢p (tz)}—’

+ €2 [az(O)cos{t0—¢o(tz)+(p0(0)—goz(O)} +3a@(0)Ro3S0,c089 3t-30,(t,)}
+20(0)b,(0)R;cos{ (V3+1)tg- Bo(t,)- @o(t,)+8, (0)-6,(0)}
+2,(0)bg(0)Ry; cos{(V3+1)te-0g(t,) @0 (ts)+0,(0) -y (0)}
+24(0)b;(0)R;_; cos{(V3-1)te-Bo(t,)+ee(t,)+0,(0)-0,(0)}
+2,(0)bo(0)R;_; cos{(V3-1)te- By (t,)+eo(t,) - 9o(0)+e,(0)}
+20(0)b@(0)R 5, {R ;-3 20 F cos{ (2v3+1) o 200(t;)- po(t,)}

3

+a9(0)bP(0)R 1 {R ;=58 20} cos{(2V3-1)tp- 260(t2)+¢0(t2)}—l (38a)

One can demonstrate this by computing further terms in the
approximation.
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and:

y{B1=bo(0)cos{V3te-0o(t,)}
+€ [b 10 cos{VBto-0,(t,)+00(0) -0,(0} +5{ad(0) -3bFO)} S0
+3a@(0Sg,cos{ete-200(t,)} —%boZ(O)Szoc os{ 2v3ty-20,(t, )}]
+ €2 [bz(O)cos{\Bto-eo(QH 00(0) - 0,(0)}
+20(0)a;1(0Sgoc 05{ #1(0) - 9o(0)} -3bo(0b1(0)Seoc 05 0,(0) - 6(0)}
+a0(0)a (0S¢ 08{2to-2 9ot 1)+ 2o(0) - @1 (0)} -3bo(0b 1(0)S ,oc 05{2vBte-260(t )
+ 80(0)-0,(0)}
+ ag(Obo(0S 1, {R 11- 350z } cos{(V3to-0(t;) - 2eo(t2)}
+ ad(Obo(0S ;AR 11 - 3 Soz } cos {(V3-2)te- 0ol t2)+ 2g0(t,)}

+%b@(O}SwSZOcos{3\ﬁ’:t0—360(t?_)}] (38b)

with
poltz)= 3 [{Soo+ 3 Soaf ¢ (OHR 11 +R; 1 -3S0o} bdz(O)J €2t
+ l{sm % Soaf 20(021(0)cos{ 91(0) - 9o(O} H{ Ry 1+ Ry 1 -3S00} bol0)by(0)c 0s{6,(0)

-00(0)} JeS t + o(0) (39a)

Bolty) = ‘?" [{R11+R1 4" 3Soo}a02(0)+9{5 oo'%szo} bOZ(O)] €4t
+ l/; [{Ru+ R, -1~ 3S00} 20(02,1(0cos{ ¢4(0) - 9 (0)} +H S0+
+ 3 S,0f bo(0)b;(0)c0s{6,(0)- 90(0)}]63 t + 0,(0) (39b)

These expressions should be uniformly valid to O(¢?) for

l
times t = O(zl—), to Olg) for L= O(é) and to O(l) for t= O((—,) .
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We can differentiate these expressions with respect to t and

obtain:

d(;{t(t) = —ao(O)sin{to —q)o(tz)}

+€ [-al(O)sin{to-¢o(tz)+ 20(0) - 9,0}
-(3+1)ag(0)b(OR;, sin{(V3+1)tg-0o(t,) - @olt2)}
-(V3-1)ag(0)be(OR, ; sin{(v3-1)te-6o(t, )+¢o(tz)}]

+€2 [g 20(0{(Soot 5 S02)2&(0+(Ry 14+ Ry - 3S00)b @O} sin{to-eo(ts)}
~a,(0)sin{to-go(ts)+ 0(0) - 2;(0} - 3 23(0R g3 Szsind 3to-3e0(ta)}
-(vB+1)ag(0b 1 (0R,;sin{ (V3+1)to- Bo(t,) - ol t,)+ 06(0) - 0,(0)}
~(+B+1)a;(0)bo(0Ry; sinf(V3+1)t-0o(t;) - gol t;)+¢o(0) -9, (O}
~(V3-1)a(0)b4(OR, y sin{(v3-1)to-0(t;)+o(t;)+00(0)-0,(0}
-(¥3-1)a,(0bo(OR, ; sin{(V3-1)to-0g(t2)+ ol tz) - 2o(0)+01(0)}
~(2/3+1)as(ObEOR 51 { Ryy - %slo} sin{(2V3+1)t-200(t,)-volt2)}

~(2V3-1)a,(ObFOR , 4 {R; - %szo} sin{(Z\B-l)to-zeo(tz)ﬂl’o(tz)}] (402)

and
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D) = B bo(@sin{VB to-0o(t,)}
tE [-ﬁ by(0sin{V3to-0o(t,)+ 0o(0)-0,(0)}
~a@(0)Sg,5in{2to-2¢4(t,)} + 3v3 bFH0S,0 sin{ 23 to-ZGO(tZ)}]
+ €2 {ig’-bc(O){(Rm R, -1-3S00)ad(0+ 9(Soo+ % S20)bFO)} sin{y3to-0o(t,)}
V3 b,(0) sin{V3 to-Bo(t;)+0o(0) - 0,(0}
-22,(0)2,(0)So, sin{2te-2¢o(t2)+@o(0) - @2(0)}
+ 6v3 bo(0)b1(0)S 0 sin{ 2v3 to-26,(t,)+0,(0)-6,(0)}

~(V3+2)ad Obo(0S15{Ry1- 5 Soa} sin{(v3+2)te- 0ol t2)- 2ol t2)}

~(¥3-2)a¢(0bo(01S) { Ry -1~ 2 ozt sin{ (V3 -2)to-Bg(ts)+ 2ol 12)}

273

S=b¢ (00530 520 sin{3v3 t0-390(t2)}] (40b)
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B. Comparison with Computer Experiments.

Equations (5) were solved numerically on the CIT IBM 7094
computer in order to compare the numerical results with the predictions
of the theory. Several sets of parameters (i.e., € and the initial
conditions) were studied and for relatively small t (t ~ el—z) were found
to yield results agreeing with the theory. One case was then selected as
an example to study the longer-time behavior of the system. The

particular set of parameters chosen was:

%(0) = 0.00 ... (-d—’c‘l%lé =1.00 ...
-0

y(0) = 0. 00 . .. (%ﬁ) =1.00...
t=0

€ =0.10 ...

System (5) with these parameters was integrated numerically for
0 <t < 2946.40, corresponding to about 470 cycles of the w=1
oscillator and 800 cycles of the w=+3 oscillator. The step size taken
was At = 0.10 and the maximum error per step was o , so that the
total error accumulated was negligible and the numerical results can be
considered an exact solution. To illustrate the accuracy of the theory
some numerical and theoretical results for this case are presented in
Tables 1 and 2.

Table 1 compares theoretical predictions of the values of the
dynamical variables x(t), %ﬂ s Y (E)s —d—:[i—éﬂ at various representative
times t with "exact" values of the same quantities. The theoretical

results used for the comparison, equations (38) and (40), include only
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terms through O(e3 in time variation and O(€?) in magnitude. Thus
the theoretical solution can be expected to be accurate through O(e?)
for t < O(l/¢). However, when t becomes O(1/€?), the neglected
frequency shift of O(c*) in the O(1) term becomes O(e?), thus causing
phase shifts and errors of O(€?) in the various quantities. Similarly,
for t=O(1/€4), error = O(e) and when t= )(1/64), the error becomes
O(1) and we have completely lost track of the motion. Table one shows
that the agreement between theoretical and exact values is well within
these allowable errors.

Table 2 compares theoretical predictions of the time average
energy "in each mode" and the energy of interaction with exact values

of the same quantities. The quantities considered are:

2
E, = energy "of symmetric mode" = i (%}f) + 3x2 .
2
E, = energy "of antisymmetric mode" = %(%%) +—§'y"‘ 5
E, = energy " of interaction" = € y(y%-x°) .

The theoretical values of the barred quantities in Table 2 are obtained

by computing the quantities under the bars to O(e?) from equations (38)
and (39), then averaging these quantities for a time = O(%g). If we
assume that the next few time variations of each term are just additional
frequency shifts, E,, E, and EI then consist of sums of constantterms

and sinusoidal terms. The time averages of the sinusoidal terms are

< O(l/e3), so we are just left with the constant terms. We have:
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E, = 3a20+€ a,0a, (Ocos{p, 0-¢,0}
+€? [az(O)aO@)cos{(pz(O)-wo(O)} +3a2(0+za2(0bZ 0 (%E)Rf,
+322 ObZO & -V3)R -1 (Sget L Sez)adt0)
i (R +R,_; -35¢0)a¢ Ob¢ (0)1 + O(e3)
E, =2 0+ 3¢ by ()b, 0cos {0, 00,0}
+e? |:3b2 ObyO)cos{6,(0)-0 }+—b1 {ad’- 0)-3b¢ (0) (o} s(,0

+TEat0Sg, + 122 bA0S,5-+ag ObF O(Ry, +R,_; - 35)

- %b(;*(ousm%szo)} Ofe?)

E, = | -4 So0{ad 0-35¢ Of 50z a0~ H(Ry; +R,.) 33 0b¢ 0352 b0 |+ O(e?)

The "exact" wvalues of the time-averaged quantities are not really
terribly exact, since the time averages have not yet settled down to
precisely constant values in the duration of the machine computation,

However,they are constant to O(1/€3) by the time the numerical inte-

gration is completed, and that is sufficient for our purposes.
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Table 1. Comparison of Theory and Exact Values for Dynamical

Variables at Selected Times ¢t

t 1.00 10. 00 100.00  1000.00  2945.00
*theory .8541 - .3675 -. 8001 . 0578 1.080
% mich . 8538 -.3685 -.7973 . 0656 1.0718
B ey Sesast .0003 . 0010 -.0028 -.0078 .008
e ET— 582 -1.026 7703 1.124  -.3141
g’}f exact .582  -1.022 172 1.120 5. 335
dx dx
dt theory dtexact - 000 -. 004 -. 002 . 004 .021
7 N .5615 -.5210 113 -. 4631 . 4468
) SRR .5616 -.5194 L1131 -.4618 . 4463
Ytheory Yexact - 0001 -. 0016 .0000  -.0013 . 0005
%% - -.1805 =, 1631 -. 8625 . 3433 -.4700
%%;exact -.181 -,.159 -.863 . 347 -.476
g—‘{ theory %Yt exact - 000 -. 004 . 000 <. 004 . 006
Allowable Error 0(. 001) 0(.001) 0(.01) 0(.1) 0(.1)

Table 2. Comparison of Theory and Exact Values for Time Averages of

sk
Mode Energies and Interaction Energy

E, ol B,

Theoretical . 5210 .4809 -.0019
Exact . 5206 .4813 -.0019
Error .0004 -.0004 . 0000

Allowable Error O(.001) O(.001) O(.0001)

sl

“"Exact" values are based on mechanical calculations of averages for
about 470 cycles of slower oscillator .
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Chapter IV

"Weakly Resonant" Example

A simple model example of a "weakly" resonant case is the

system with Hamiltonian

2 2
dx dy) - 1 dx) L (ﬂ s -, B x? 27‘
H(X, —a—t-, Vs -——) = -a-—t- + 2 ar + 2 X +EY +€ >

dt

The equations of motion for this system are:

4% B B dx(t) _
S5t == Ry’ X0 =2, 5 =0 °
d? dy(t

gt%i +9y = -ex?y y(0) = ¢ —ayg(—llt_o =d

(1)

(2a)

(2b)

Let

¥ = moltos tys tos wes Y EX AR Brs Tau oo 3 €8ty bis B4 voe )4 0OE3)

i) = Voltos by tos woo JH €Filtan Thatay woe JFE* Wl By a tys Tay «on JHOf?)

Substituting these expressions in equations (2) and setting the coefficients

of ek separately equal to zero we obtain:

2

o) G2 4+ xp = 0 i)
0%vo
oté to = 0 (3b)
gex 5. 1023

O(€) atozl +x;, =-2 51—0'50?1 - %o V& (4a)
9%y; 02
=d 0y =2 Feoor ¢ Yo (4b)
9%x g 8% 0%x 02 x

Ol€?) T+ %2 = 4 3edr,” Tt7 % Ftoar; 1 Y6 " P%ovom (52)
2%y, 9%y 9%y 92

4 = w2 Q0 _ 0_209°V1 _2 .

Bty Iy2 0to 0tz At 2 9ty 0F, ~“X0YoX1 ™ Xd V1 (5b)
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92x g%x% 0%x 0%2x; 92x 02
3 3 0 0 1. 1. 0°%; .
) atg2 3 Y PR I Y Ty =B =~ 2R Yoy
-2Xq Yo Yz %o Y1 (6a)
22ys 20%Y0 ,28%y0 _,8%y; _2%yy p0%ya _
At ¥ 99 = aat ot ?‘atlatz éto‘ELtZ a7 Tto ot Bk % Vo
-x{ yo ~2%o%X1y; -%X{ ¥, (6b)
The solution of equations (3) is
xg = ao(t;) cos{to - @o(ty)} (72)
Yo =bg(t;) cos{3ty -0o(t;)} (7b)

Substituting equations (7) into equations (4) we obtain:

082y o, = 2 988 2olty)
_EEI tx; =2 7{2 sin{to - go(t,)} -2a0 —3_‘%;-1_ cos{to - oolt:)}

EOT"- cos{to-golta)} - 2028 cos{5ts-200(t,)+golts)}

- a°4b° cosq{ 7ty -20,(t;)-olt)} (8a)
and
2
2—38—ty—§ ¥ 9Y1 = 6'aa—bq Sll’l{3t0 eo(t )} 6b0 05{3t0 90(1:1)}
0 1

z2h 2b
- ._Z—_ao 9 cos{3tg-0(t,)} '104—0 cos{to-0o(ty)+2po(t1)}

- aozbocos{Sto—eo(tl)—Z<po(tl)} (8b)
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For a uniformly bounded solution, the underlined terms in each equation

must vanish. This requires

dag _ 0 9¢g(ty) - bJ‘?;
at, ot 4
9bg _ o 90e(t) _ _ 2a¢
3L, Bt 12
so that:
. t _—rpy ¢t ()
ag(tys tyy oo ) = ag(ty,.ot) ®o (ty) T+ @o (t2) (9a)
by (t;, t —a o (Z)
gtys Lan =en S oltzy.en) 0o (ty) T+ 0o ‘(t2) (9b)

Actually, if a, and by turned out to depend upon t, or some higher
order time scale, we would have some difficulties with the present
procedure. If, for example, a, depended on tk’ we would have

%%’.{ = - 362 %—at'—li t;. Since our procedure of writing a hierarchy'of
equations ordered in € and solving the equations sequentially depends
upon our ability to separate the variables in the equations of various
order, and terms such as t, E;T would make the equations inseparable,
we would be unable to uniformize the expansion. However, we shall
find that ay and by are independent of time for time scales up to t,

which is as far as we shall carry the present calculation. Solving

equations (8) with the underlined terms eliminated, we obtain:

bZ
%, tos eee ) = ay(ty) cos{to-ey(t,) } +%i cos{5te-200(t;) + ¢ (t,)}

aobz

+ T§2'0‘ cos{7to -200(t;) - @olty)} (10a)
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2h
Yiltor - )= By(ty) cos{3to-0,(t1)} - 2552 cos{te-0o(ty) +200(t,)}

2
agb
—5— cos{5to-00(ty)-2¢0(t,)} (10b)

Substituting equations (7), (9) and (10) in equations (5), we obtain

0¢x
otg

24 x, =2 %—Q sin{to-golt,)} - ~Za, o2y 5e 220 cos{to-golty)} + —QBJ-cos{to @olty)}

+2.%?lsin{to-¢1(t1)} -2a, %cos{to—gﬂl(tl)}

Eif‘.Q_Q.{ i}cos{Sto‘&eo(t1)+‘Po(t )}+—Q6—92—{a45+%i}cos{7to
~200(t1) - golty)}

4
- %‘i al(tl)cos{to—gol(tl)} - ia-‘i’gio—cos{Sto—Zeo(tl)hpo(tl)}

agbd & b
- 3?84(}). COS{?tO_Zeo(tl)'¢0(tl)}“—%COS{StO‘Zeo(tl)ﬂ“Pl(tl)}

2 4 4 =
- a4,. bo.cos{7to-zeo(t1)-¢l(t1)} - %Cos{to'%(tl)} - %Cos{fo‘%ﬁl)}

agbg agbg
-2920 cos{13t9-400(t,) -9o(ty )} - 23z cos{11tg-260(t; )+ po(ty )} -

- %9_31 cos{t0+ el(tl)-eo(tl)-fl’o(tl)}

’i@lCOS{7to'91(t1)‘eo(tl)‘¢o(t1)} aoboblcos{to 1(t1)+60(t1)‘§00(t1)}

4 —QTIa 2h cos{5t0-91(t1)-00(t1)+Gﬂo(tl)}+i%%icos{3t0“3%(tl)}



and

2vo
ot

+9yz—6
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3 3 L2
,a 2°Zcos{5to—290(t1) +%(t1)}+%()—‘]fn'cos{3to-260(t1)+3<po(tl)}

agdbd

3
+ 04 cos{t0-<p0(t1)}—2l‘-’2%—cos{to goo(tl)} °b

¢ cos{9to—290(t1)'3¢b(t1)}

b b
%COS{3tO-3(po(tl)} -—a’—].()ZTQ-COS{‘?tO—Zeo(tI)-gDo(tl)} (lla)
. 0
T 31n{3t0—eo(t2)} -6b, g—tf(:os{?.sto—E)c,(‘cl)}'-i~ -ngo-cos{ho—eo(tl)}

+6 %—2i~sin{3to‘91(t1 } -6b, %%t—cos{%o-el(ﬁ)}

2 2 2 2 2 2
- %%m{%% - %‘L} cos{to-0o(t1)+2¢0(t )} + z%%—t"’{%% %"-} cos{5tg-O(t;)

- 2 go(ty)}

b b "
—aLZO—aJcos{5t0—eo(tl)—¢o(t1)—¢1(tl)} r 20—203‘1(303{3%“90(%)‘?0“1)*?1(%)1’

b b
= ﬂfo—al'tos{%o'eo(tx)Jr ¢o(t1)'¢’1(t1)}‘ é—ozﬁlcos{to‘eo(HH Polty)+ ‘P1(t1)}

23
a—%zg—cos{to—eo(tlH 290t} - 10—920—cos{9t0—390(t1)}

21, 3 3
__9_.__3'1930 cos{3t0-eo(t1)} —Ef;—t—’zf?—cos{7t0-3eo(t1 )+ 20(t )}

21 3
aogz cos {9t0—300(t1)}

2
- 3608 cos{5to-o(t:)- 2eolt )} -

ad¢bg
-—oﬁ—o—cos{:sto eo(tl)} —-398445-COS{11t0—390(t1)‘2(p0(t1)}
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ad adb
- —Zibl(tl)cos{3to—el(t1)} + ——%Tocos{to—eo(tIHZ(po(tl)}

&b b
—%"—cos{Sto—eo(tl)—Z%(tl)} - E%—n'lcos{Sto—el(tl)—Zgoo(tl)}

2h 4b
- a%l cos{to—el(t1)+2¢o(t1)} + el%ggcos{3t°-e°(tl)}

& B b0

4
—Wcos{to + Bo(t;)-4eo(ty)} - 3295%2cos{3t0-90(t1)}

4
- 25 29 cos{ 7to- 0ol t;)-40(t,)} (11b)

The requirement that the solutions be uniformly bounded implies that
we must set the terms of frequencies 1 and 3 respectively in the two
equations equal to zero. The coefficients of sin(ty-¢g), cos(ty-¢p)s

sin(3ty-0y) and cos(3ty-0y) are respectively:

8a 8 8
772 COS(‘Pl"Po)‘ 2a, at =L sin(g;-pg)- —zism(m ®0)=0 (12a)

0 aobgd b2 bA
-2a, 82020+ fad Fedt B ZTiSIn((Pl ®o) - Za cos(gol-cpo)—-ZJlalcos(gol—gao)—a-'-QZ—S-%-

3K 2
—aoboblcos(el‘eo)+ é’% = O (].Zb)
6ab° +6 1(rlab cos(0,;-6¢)-6b, ﬂé—lsm(e -0p)- —2—1311'1(6 -0g) = 0 (12¢c)
5t2 tl 1 0 1 0 1~ Y0

s) b b 21,3
-6b0-% -al—gﬁ 68—151n(el 0p)-6b, 8? cos(el—eo)—aoboalcos(<p1—(po)—3192-g°—

—Zoiblcos(el 00) + 39;-22 = 0 (12d)

To simplify equations (12),
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let
Ajc = ac1(t1)C0${f/’l(fq)“l’o (tl)} Ayg = al(tl)Sin{‘P1(t1)"Po(t1)}
Bic =b;(t)cos{0,(t;)-00(t1)} B,g = by(t;)sin{0,(t;)-00(t,)}
The equations (12) then become respectively

0A;c(ty) 8ao(tz)

ot, ot, * Vsl
A
0 altsl(tl) 8§00(t1) _Q_Zi'{j’%_ b +'1—12%'302}‘%.‘ao bo Bydt;) (13b)

LBéxtcl_(hlJ,E’%%ﬁ =0 (13¢)

0B
811?1(1:1)"' 860(t1) _%J{m_ao Té'gboz} - '61'a° bo Ajc(t;) (134)

Consider equation (13a). We have from (9a) that a, is in-

dependent of t;. Then, integrating

Ac(ty) =t a_?a_ot(_:z_) + A(:Z:(tz) .

But this would prevent our expansion from being uniform unless

dag(t,) 9A,(t;)
0 = =
Similarly, equation (13c) vyields
Bhalta) = ¢ 3Bielty) _ g (14b)
t, Bt,

Thus only the first terms on the left-hand sides of equations (13b) and
(13d) depend on t;, sotokeep A;g and B;g uniformly bounded we

must have

9B,s(t;)

0A,.(ty) _ e
5 =0 2t -0
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and
2) 2
8(gotz(t = 70'{'2% b + % ad } - boBic(ts) (15a)
TEZ—L 3 {507 aF - mE bé) - T a0 Asclty) (15b)

From equations (11) we obtain
1 pl 1
x, = a,(t;)cos{ty - @a(t,)} -ﬂ{%ag b¢-55aobdfcos{5to-200(t;)+eo(t, )}
1 5
“m +m a.o boz+ }COS{?to Zeo(tl) (po(tl)}

ag bd ag bo*
+87‘5?-'—]%ECOS(91:0-290—3§00)+ 1790—00_3@(:05{111:0_490(t1)+(Po(tl)}

a.bo

¥ 7 8C°S{13to 40o(ty)-@olty)}

b2 3be
—%ﬁcos{%o—&po(tl)} - 9—§Tzicos{3to—260(t1 )+ 300(t )}
a boz aobob
+ cos{5to—zeo(t1)+qo1(t1)}+Tg—lcos{Sto—eo(tl)-el(tlHcpo(tl)}

+2 bozcos{?to—Zeo(tl)-<pl(t1)}+2'0—9%0—1-3-1cos{7t0~Go(tl)—el(tl)-gao(tl)} (16a)

ath 5a¢bg
vz =bay(ty)cos{3to-0,(t)f +{+ 235 + T2z Feos{to-Bo(t1)+ 200ty )}

+1 54 cos {tot Bo(t1)-4eo(ty)} - ‘g{—zao bo + -3-8—3-0 btcos {5teBolt1) -2 0ol t,)}

abg

as b
*30-192 C05{7to"390(t1)+ 200(ty)} +?h%gcos{—]to'eo(ﬁ)-‘l%(tl)}

__%_la 1b0a cos{to-0o(t;)+@o(ty)+ @s(ty)} - —Jcos{to-el(t1)+ 2¢0(t1)f

+-Tla°bga cos{5tg-0(t,)-@olty)- ¢1(t1)}+TELC°s{5t0 01(t1)-2¢0(t1)}

zb alb3
+72° 3 zcos{9t,- 360(t1)}+Tl%_—?)°87}cos{11to—3eo(t1)—2¢0(t1)} (16b)
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However, we do not yet know the t, dependence of A;. and B so

lcs
we cannot integrate equations (15) without looking at equations (6).
Substituting the appropriate expressions for x4,% ,% ,¥,,¥V: »y, and
their derivatives in the right-hand sides of equations (6) and setting the

coefficients of sin(ty-¢,) on the right-hand side of equation (6a) and of

sin(3t;- 6y) on the right-hand side of (6b) equal to zero, we obtain

respectively:
o} & 0A, - (t 2] 3 . 1
Loc()y Bcll)y Ban . B ap b sin{F (ad- 904)n +6ee1)-2007 A} (172)
B, (t 0B, ¢ (t ob 1 s il
2821( L altz( £ atg = 24576 ag’bo Sln{g (a02—9b02)t1+6¢0(2)(r2)—290(2)(tz)} (17b)

The arguments of the sin on the right-hand sides of equations
(17) comes from secular terms like cos{t0—290+5qoo} on the right-hand
side of (6ba); the sin on the right—hand side of (17b) comes from a
term like cos(3ty+6,-6¢,) on the right-hand side of (6hH. These are
basically terms whose combihation frequencies are to O(l) identical to
the fundamental frequencies of the equations in which they appear - those
which give rise to "vanishing" or small divisors in the Poincaré pro-
cedure, or contribute to the nonuniformity of the expansion in Jackson's
modified Wigner-Brillouin theory. (For details, see Appendix B.)

Thus we have reached the point where the standard Poincaré
procedure breaks down. It would continue to work only if the right-hand
sides of equations (17) vanished identically. Equaﬁons (17) are also
interesting because we can begin to see the relation between the strength
of the resonance é,nd the relative amplitudes of the two oscillators, There
are basically two ways we must now proceed, depending upon the value of

(ag -9b#), the difference between the O(l) energies of the two oscillators.
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Case A, If (af-9b¢) = O(1), the right-hand sides of (17a) and (17b)

depend upon t; and we have, applying the uniformity requirement;

f’;‘\éztf(_i)_ 553 a6 bsin{f ad- 9@t +6ai () 202 L)} (18a)
ifigfl(_tl_) =i act b sin{E (ag- 96t +696At,)-20,t, )} (18b)
ohclty) . SBiclt)_ g (19)

From equations (18) we obtain:

5
A20=—40?96 303“—“—2_3;02 COS{lg(aoz-9b02)t1+6rpo(z)(tz)—260(2)(t2)} +8,%4) (20a)

Byc= 43% 4 9boz cos {F (ag2- 9b?)tr+ by Aty)- 200 Kty )} + B, (ty) (20b)

and since equations (19) imply A;. and B,;. are constant on the ¢,

time scale, we have, integrating equations (15),
2 be r_15 1 3
990( )(tz) 5 [:"2'{ 556 P +'12_8302} - 2bo Blc:|f2 +‘Po( )(ta) (2la)

g -
00 Atz) = [%‘{2304 2’ - 128 bt} ‘gaoAxc_fz +06 A1) (21b)

Since these solutions correspond to additional sinusoidal terms, they
could probably be obtained by Jackson's modified Wigner-Brillouin
method. However, we notice that if (af-9b¢) were O(€), A,c and B,¢
would be O(é—) which would imply that x, and y, were O(€) instead
of O(€?), and the expansion would no longer be uniform. Thus a different
separation of equations (17) must be used if ag-9bf is O(e), which

brings us to:
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Case B, (ag -9b¢) = O(e) = \e A =0(1)
In this case the argument of the sin on the right-hand sides of

equations (17) becomes:

sin{ € 6 + 695 At,) -20,2Uty)} .

To avoid an € in the denominator and thus keep the expansion uniform

we must use the fact that the time variables are related and write:

Now the right-hand sides of equations (17) are independent of t; and we

must have:

T e @
Oa, _ 9by _ 0
ot; oty
and
aAléaCéz('é_) = - 5 92 ag b 31n{ﬁ+ 6(,00( )(t?_) 26, 2)(“2)} (23a)
2Buca) - iz ad o sin{ 32+ 60 e 200 )} (23D)

These equations cannot be integrated as they stand, but must be solved

simultaneously with equations (15)

8_<p0(2)(tz) 15

o, F+ 128 128 a} - 2bo Biclty) (15a)
(2)

20y () _ 3 1 1
ot, {2304 ?- 155 PE} - ¢ a0 Arclty) (15b)

Taking BaT of equations (15) and using (23) we obtain respectively
2 :

(dropping arguments of the unknown functions except where necessary):
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o2 g, 9B 1

el -3by 8(:; = - 19152 al b# 51n{—5 +6qu - 26, )}
2, (2)
50 1 BA 1 At 2, @
T =% i = Tosa o b sin{ g+ 6e0” 2007}

Subtracting two times (24b) from six times (24a) and letting
u =u(t) = 6<p(£z)—26(§2)

we obtain:

Setting

we obtain finally

9% z

otf

+ gsinz =0,

the equation of motion of a simple pendulum!

Multiply by -g-f— and integrate, obtaining:
2

2
0z B
<8tz> = 2gcosSz 4+ c

Suppose that when z is at the lowest point of the circle (i.e. z
2 N
2g b

Then c = 2g(h-1), and (29) becomes:

z¢2=2g [h-(1-cos z)|=2g[h-2 sin? z/2]

F01 conveniencein the remainder of this discussionwe shall write;

0z

0),

(24a)

(24Db)

(26)

(27)

(28)

(29)

(30)

(31)

o]}

___? Pttt B

ot

at,

=q.
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Making the substitution

q = sin z/2 (32)

we obtain, finally,

4% = q(3-q2)(1-q?) (33)

The pendulum (see e.g.,Whittaker, 1937) has two basic motions:
"oscillating" and "circulatory" - in the first the "gravitational"
attraction dominates the initial angular momentum and the pendulum
oscillates back and forth about the bottom point of the circle (refer toc
Fig.2 ), z=0; in the second the energy is sufficient to carry it over
the highest point of the circle and it rotates about its center, always in
same sense. These features can be seen easily from the phase diagram
(Fig. 3 ). A third possible situation - where the pendulum has just
enough energy to reach z =7 with zero momentum - is usually referred
to as the separatrix.

Let us now examine the solutions of our system for these
three cases:

Oscillatory Case

Equation (33) will have an oscillatory-type solution if }_Zl < 1.
Let h=2k? where k? is less than 1. The resulting solution of equation
(33) is

q = ksn{/g (t,-7),k} = sinz/2 (34)

where k and 7T are arbitrary constants which must be determined from
the initial conditions.

Then
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Fig. 2. Coordinate System for Simple Pendulum

N

h>2 - \\/
-7\\\\0/ ™
h>2 //\

Fig. 3. Phase Plane Diagram for Simple Pendulum - Equation (28)
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cosz/2 = \/l-kz sin?{Vg (t,-7),k} = dn{Vg(t,- 1)k} (35)

Equations (23) thus become respectively:

9A 3 . At 2
e = - iy = b sin{ 32 reuln) 200 )

IR S P P

= - 89z %o by sin z

= = Zf)%(; ag bg sinz/2 cosz/2

& x #{;6 ag b¢ sn{Vg(t,- ),k dn{Vg(t,-7),k} (36a)

and 8BlC = + k ao6 bO sn{\/g(tz—'T) ,k} dn{‘/g(tz"r),k} (36b)

9, 12288

Performing the quadratures, we obtain:

3k

Ac(t,) = —=— af b cn{Vg(t,-7),k} + y, (37a)
4096g
B(ty) = - —— afby cn{Ve(t-7), K + s (37b)
12288+g

M1 > M2 are constants.

Using equations (37) in equations (15) and integrating we obtain (using

equation (27) for g):

2 s

‘Po(z)(tz) :{122_ (121—8- aZ+ ?}26 b)- Lbg st ty +% cos ' l:dn{«/g(bl—'r) ,k}1+v1 (382)
Z -

Béz)(tz)={%”‘(2§g4 ad- 1128 bo?.)--é-aoul} t, -3cos ' [dn{\/g(tz—'r) ,k}‘l+vz (38b)

We originally had four first order differential equations so we are entitled
to four constants - however we have six, so we must eliminate two. Also,

it would be useful to express our constants in terms of the values of A,
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2
B ‘Po(z) and 90( ) at t,=0, which in turn are obtainable from the

initial conditions.

From equation (34) we have at t=0:

- 90(2)(0) = sin” " [k sn{-vg T, k}] (39a)

308 (0)

However from equations (38), since cos ™ [dn{ }]: isin"l[k sn{ }]

3(p°(2)(0) B 60(2)(0) . Sil’l—l [ksn{_& T k}]+ 3v1 =¥ ( 39b)

2 2
Since both of the expressions for 3¢ )(tz) -00( )(tz) must have the same

dependence on t,, the first terms on the right hand sides of (39a) and

(39b) must be identical. Thus we have:

3v; ~v, =0

and therefore:

Ifat t, = 0 we have
(40)

then

so that
oo = tgcos [dn{‘\/é 'T,k}]-l-%-

T [dn{-\fg T,k}] +7

R0

Similarly, by again comparing 3<p02)(t2)-90(2)(tz) from equations (34)
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and (38), we find:

1 15 ag A
756 (25 26 +z5506) - oo ks~ 3 (Frpg od- 1ambé) g 2ot = 1

So that

25 5 135
aoP1~‘2’ 7305 20 g7 a6 bd - 755 bo + 9Ibo b (41)

This eliminates the two redundant constants. Now we have to solve for
. 2)
w1, T and k interms of Auc(0) =@, Bycl0) = By o N0) = 0po, BAD=04g.

We have from (40)

£2 = 3950 + Ooo (42)
from (39a) + ksn{-Vg Tk} = sin{3¢y" 600 | (43)
from (37)
N, 25 5 13:5
ap+9by _-—+mag Zz 26 bd - 557 bo +18bg (44)
and
+ 3k X, 25 5 135
agQ-9bg B =— m ag bd cn{-vg Tk} -2 230520 ~ 5326 PS- 355 bo
O V8

= — + —O-—-BTao bo Cn{ ‘\/é 'T,k} aoa 9b0ﬁ+2— -2-3-0—3.0 +E—a) b2+23-6- bo

_ a2b
k= 2
25 4.5 135

=>-+—kcn{—\/é '/",k}: #{aoa-‘)boﬁ-}% mao aaozboz nb4}(45)
g

Adding the squares of equations (43) and (45), we obtain:

; 1024 25 185, 41
kZ = Slnz(3§0oo'Q)0)+_é_a—'oé_b_oz{aoa—gboﬁ‘*‘ mao‘}'mao bo +-2——6-b4} <1 (46)

Taking the positive sign for k, 7 must then be chosen appropriately so
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that the phases come out right in (43) and (45).

Circulatory Case.

Equation (33) will have a circulatory solution if h > 2: Let
hi? = 2 (47)
so that k% <1, The solution of (33) in this case is:
q= sn{% (ty- 7), k} = sin z/2 (48)

where k and 7 are again constants which must be determined from

the initial conditions. We have
Ve
cosz/2 = en{Y(t,- 7), k} (49)

Substituting (48) and (49) in (23) and performing the quadratures we

have:
Ay = 320b¢ dn{ (t, -7k} + 1y (50a)
4096 Vg k
Bic=r-—+—— ag b dn{ (tz‘T)’k}+ M2 (50Db)
12288 vg k

Substituting (50) in (23) and integrating:

EXe,) :{%ﬁ ao _12528_ boHz}t2+lgsin_l[sn{-{g-(tz—’r),k}]-f vy (51a)

2 2 25 il 1 " >
60( )(tz):{.af')_o 304 aoz -128 boz) -Z 2o p,l}tz —%81n1 [sn{\[ﬁ(tz-'r),k}]+ vV, (51b)

Using the same procedures as in the previous case to eliminate the
extraneous constants and put the remaining constants in terms of the

initial conditions given, we obtain (using similar notation):
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aom = 315+ 2%34%4 24%2b02 ;gg’b4+a0a+ 9by B} (524)
9bou, = %{%‘ 2534 ao4+62 ad by + 55+ 256 bo +ag a+ 9by B (52b)
v, = é— (3000 + Boo) (53a)
vy = 330 +00) (53b)

. 1024 N 25 135 !
k2 :{sln2(3¢00—900)+ bo[ a- 9b0,3+2 5304 20 4‘+'—- ag bf+ 256b°‘,} (54)

= (55)
_TVe __3_ék(_ A__25 21354)
daf- Sk = 5 e (200 9ot - 3307 2 + 720 o' + 30 b
k2 <1
As a simple check, we have for both the circulatory and
oscillatory case
B g 1024 _ 25 135 (56)
b = 2{sin*(3¢g- %00) 55 ¥t [aoa Ibop +3 2 2304 %t 64a3b0 ;a&’;éb_lZJL
Separatrix
If h=2, equation (33) becomes:
- Z _
q? = g(l-q% (57)
which has the solutions:
q = sin z/2 = tanh{Vg (t,-7)} (58)
Then
; 5 b2
A 2 Sl Sy (59a)

1c = %
s 4096 \/_g‘cosh l\/_); (t,7)|
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6
1 ag by
+ U2 (59b)
12288 \/-g_cosh[\/g (tp- 'r)]

Bie =%

O‘I:O

(60a)

2)_ b2 ;15
o 2)= [-g-{z% bg+128ao"‘} aboIJz tz:i:6 tan’ Slnh[‘/—(tz ]

)= [ {5237 a5 - 158} -Raom| o e sinklVGt 1 S (60b)

The initial conditions u, ,u, ,v, ,v, are the same as those for the

previous case, equations (52) and (53); 7T is determined by
tanh{ -7Vg} = sin (3 ggo - 8go) (61)

and since h=2 we have from (56) as the c_;ondition for the separatrix

case

1024 oie) b 135
cos? (3¢9 ~0gg) = {aoa 9b05+2 2304a0+aa§b§+256b{;} (62)

Thus, to recapitulate, we have four possible situations;

writing solutions valid to O(l) for a time O(-e—lz), we have:
A. ay-9b=0(1) => cos{t(l+——“ ce2| RIS e Loz} dn B )+ Gho}
3o~ Xo 3o 256 20" 128 i Po
B. ag -9bf =\e, A =0(1)
. €by 1
a.Circulatory Case: x0=a0cos{t<1+ 2 ez[bu-{zsf; 02+-12—8ag}-%b0p2]>

h> 2
toun' [snlf |- v}

1
b. Oscillatory Case: x; = a,ocos{t(1+—°- 62[—‘1—{256b§+1—2—8'aé}-%b0 sz>

h<2
-%—;cosﬂl [dn{\/—é(t;_-'f) ’k}:l 8 V'l}
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- _ €bg ., [bF 115
c.Separatrix: xo—a.ocos{t(1+4 € 2{2_56
h=2

)

1
b(%'*' 128 aé}'%bo H&_
- 15 tan [sinh\/'g-(tz—'r)_‘— %}

and the N-timing procedure and its requirement of uniformity leads to
different analytic forms for the solutions of the same pair of equations,

depending on the initial amplitudes of the two oscillators.



vl

Chapter V

A Strongly Resonant Example

In the two cases we have studied so far, we have found that the
phases of the- O(l) solutions can change with time, but their amplitudes
remain constant. For certain frequency ratios depending upon the form
of the nonlinearity, it has been found (e.g., Ford and Waters, 1963) that
successive iterations of the Poincaré procedure lead to O(l) corrections
to the motion, since the small divisors appear immediately. Thus the
amplitudes of the O(l) terms are no longer constant, but vary slowly
with time. These problems, which we have called "strongly resonant,"
also appear to be amenable to our procedure, but due to the early
appearance of complicated functions we have been unable to carry the
calculations very far. However, for one such problem we have deter-
mined the first two time variations of the O(l) terms and will present
our results here, It should be noted that our use of only two time scales
means that for this example our procedure is identical to Cole's two-
timing method.

We will consider a system of equations which are similar to
those of the non-resonant case studied in Chapter III, equations IIL-(5)

but we willlet w, =2 instead of V3. Then we have:

4w = 2exy %l0)=2 (g—’z =b (1a)
=0

§+ay=eod-3y) y)=c  (§) | =d (1b)
t=0

Ford and Waters examined this system using the Wigner-Brillouin

approach and found that there would be one term of O(l) from each
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iteration, so that little information could be obtained about the dynamics
of the system, except that with appropriate initial conditions there could
be O(l) energy sharing.

Applying the N-timing procedure to equations (1), we obtain

O(1)

Qizg_
Bt + 4y, =0

so that

Yo = 3 cos(ty ~7p) (2a)
Yo = bg cos(2t; - 6y) | (2b)

where ag,by,,qp, and 6, are thus far undetermined functions of ¢t ,t,,..

The O(€) equations are:

92x 82}_(0

- e
at2 + x5 2 3t, of, + 235 Yo
2y -2 LYo 4 iz 342
e + 4y, =-2 3ty ot + x5 - 3y4

Substituting equations (2) for x, and y, on the right-hand sides of
these equations, eliminating the secular terms and solving the resulting

equations, we obtain:

b,

x; = a; cos(ty-¢) - 3%-& cos (3t; -6y -¢g) (3a)
=3 b2 .

y1 = b; cos(2t,-6;)+ a&_sboz + ‘%‘COS(‘NO - 26) (3b)

and from the secular terms we obtain:

2 -g—i'f = ay by sin(2¢g- ) (4a)
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2a, %‘éﬂ = ay by cos (29, - 6,) (4b)
2
48 = 20 sin(g, - 2¢y) (4c)
1
2
aby 0o = B4 o5 (0y- 205) (4d)
1

To determine the O(l) behavior of the solutions of equations (1) on the
t, time scale, we need to solve system (4). Multiplying (4a) by ay/2,

(4c) by by, and adding the resulting equations, we obtain:
ag %ﬂ- + 4Dy, gz 0
=> 3(ad + 4b@) = Ey(t,) - constant on t, time scale, (5)
Comparing with equations (2) we see that
saf (t;) is to O(l) the energy in the w=1 mode

and %[4b0z ()] is to O(1) the energy inthe w= 2 mode.

Squaring equations (4c) and (4d), adding the resulting equations and

using equation (5), we obtain:

[ (a_.bo) & bo a_GD)J = (E, - Zbo) (6)
. : 96 :
If we can obtain another expression for —Dat in terms of b,, we can
1
eliminate -g—f“ and be left with an equation for by(t;). From equations
1

(4b) and (4d) we have:

al %
6y = ;fbo(;z' ?'o (7)

*For the remainder of this section we will use the notation ()' = a_a(-tl
1
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Using this relation and those equations, we obtain

2gp'by! _ 2ay'
2¢" bo i (2<Po 4b02 ‘Po') 20

so that

" _bo' _ 23!, 2g3q

%' b 2y 4by?
But from equation (5),

agag' = -4by by’
so that

@ _ _ 229"

@' 20
which implies that

@' = ’332’ Ao = No(ty) (8a)
a0 hat 6, = ﬁj‘? (8b)

3k
which is the desired relation. Substituting (8b) in (6), we have
2
16 bZ by'? + A\¢ = b (E, - 2b¢)

This equation can be simplified slightly be setting E2(0)= 2bg =O(l) energy

in second mode. Then EZ(O)' = 4by by' and we have:
0)!2 (0) 0) 2
Ez() = %Ez(Eo‘Ez()) - No? (9)

The solutions Ez(o) of this equation are Weierstrass elliptic functions but

" Note that Ao corresponds to the first term of Whittaker's adelphic
integral for this case,
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for our purposes we can obtain sufficient information by studying their
behavior in the (EZ(O), EZ(O)') phase plane.
Physical solution curves must have E,; > E, =2 0. The cubic

(0)

form in E'’ on the right-hand side has:

. s : 2
(1) two positive real roots < E, and one real root > E; if (0<)\} <ﬁEo3

(ii) onedouble rootat Eg)= E, /3 and one real root > E, if \¢ = % Es

(iii) two complexconjugate and one real root > E, if \¢ > -22—7 Eg

Case (iii) clearly corresponds to a non-physical situation, since (Ez(o)')
must have a positive real root < E, if E, is to remain bounded. Case
(ii) corresponds to a singular solution at E2(°)= —;—Eo . Case (i) corres-
ponds to a family of simple closed curves in the (EZ(O)', E(;)) plane sym -
metric about the Ez(o) axis (with the curve corresponding to A\ =0
forming an envelope for the family) and having zeroes of EZ(O' at Ez(o)=E0

and Eéo) =0. Thus the family of physical solutions looks like Fig. 4.

. '
Fig. 4. (Ez(o), E,_(O) ) Phase Plane Diagram for Equation (9)
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The range of EZ(O) for the various values of A\f should correspond to
O(1) to the actual range of the energy in the second mode, at least for a
time O(l/e) and possibly for all time. However, the range of E,'

cannot be determined without considering the O(e) terms in the equations

for E,, since

(0) (1)
dE, [eE OE
—a—zt —e[ Btf + até ]+O(€Z)

Unfortunately, we can go no further without looking at the
secular terms in the O(e?) equations. These become quite involved, so
instead we will check the predictions we have made so far by considering
the computer solutions of equations (la) and (lb) for two special cases,
One will be the case where \; =0. In this case our theory predicts
complete energy sharing so that E, should have a range from zero to
E,. We can start anywhere on the curve described by A\ =0. For
conveneience we choose the initial conditions a=0, b=1,c=0, d=1, so
that Ey =1. This leads to the (E,,E,') phase plane diagram shown in
Fig.5 which resembles a martini glass embedded in a fishbowl. *

The other interesting limiting case is where A\ =2—%?E03 . This

case requires

sin (290 (0)- 6 (0))= 0 (10a)
and if we want E = E;j=1 we need

ad cos? g, = b cos? g, (10b)

% Patent pending.
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Since E&(o)= 1 we need ag= % and by = 1g Substituting these values
in (10b) we obtain the system
sin (2¢4(0) - 64(0) = 0 (11a)
PPN | 2
cos®¢y = gcos 6o (11b)
one solution of which occurs when:
a=0.3382 (12a)
b =1.104 (12b)
¢ = =0,3382 (12¢)
d = 0.457 (12d)

These initial conditions should lead to %- O(e)< E, < % + O(e) for at
least a time O (1/€) and perhaps for all time.

We performed a computer experiment, solving equations (1)
with initial conditions (12) and € =0.1 for a time O(l/e"-) and the energy
sharing was less than 0.1 ).260 < E, < .380). The region of the E,-E,'
phase plane covered by the motion is shown in Figure 6 .* We conclude
that the approximations obtained by integrating equations (4) appear to
lead to an estimate of the motionvalid for times O (l/e).

Another computer experiment was run, comparing the
solutions for identical initial conditions but different €'s. For one case
€ =0.1 and for the other € =0.01. We find by comparing the resulting
plots of E, against €t for the two cases that the two results are nearly

identical. These curves are presented superimposed in Fig. 7. Thus

we see that the slow time variation of the energy in a given mode

%

- The reader can decide for himself what this one looks like.
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is indeed a function of €t. One would expect these curves to drift slowly
apart for times sufficiently large that the €?t dependence becomes

important.
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Chapter VI

Summary and Conclusions

This‘ chapter will summarize our results, attempt to answer
the questions raised earlier in this thesis, mention some of the successes
and difficulties of the N-timing procedure and consider some of the
possible directions that this work suggests for future research.

N-timing appears to be a procedure which is applicable to
each of the three types of conservative systems we have considered
without modification of the general approach. For nonresonant problems
the slow time variation of the solution due to the nonlinearity can be
described by simple frequency shifts. The accuracy of our represen-
tation in predicting the long term "exact" dynamics of nonresonant
systems is demonstrated by the magnitude of the error in the approxi-
mation given by our theory for the problem considered in Chapter III.
After about 800 cycles of the faster oscillator the average error in the
dynamical variables is about 0.1, which coi‘reSponds to an error in the
shifted frequency of about one part in 5X10%, and three terms in the
energy series predict the average energy of each mode with error of
less than one part in 103,

The weakly and strongly resonant cases studied in Chapters
IV and V respectively were not motivated by consideration of simple
spring-mass systems, but were chosen because they were relatively
simple examples of the kinds of problems we wished to study. The
weakly resonant problem yields what we believe is a new and interesting

result by explicitly demonstrating the dependence of the analytic form
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of the solution upon the relative amplitudes of the two oscillators. This
example shows at the same time that the small divisor problem presents
no special conceptual difficulty within the framework of the N-timing
formalism,

The strongly resonant case considered in Chapter V was
studied primarily to demonstrate that that problem can also be discussed
in terms of a multiple time scale expansion. It is unfortunate that the
fur;ctions describing the €t wvariation of the O(l) solutions are suffic-
iently complicated that we have thus far been unable to carry out calcu-
lations of the €?t variations of the O(l) terms. However, the validity
of our approach is confirmed by two computer experiments. The first of
these shows that our theory is capable of predicting within the allowable
error initial conditions which will lead to maximum and minimum energy
sharing - the second, that for a time O(l/e) the energy of each mode
indeed varies as a function of €t as our theory predicts. The invariants
of the motion we found for this case are in agreement with those obtained
by other authors using various methods (e.g., Whittaker 1916: Ford and
Waters 1963: Jackson 1963 b: Kronauer and Musa 1966); however, most
of these authors handled this problem in different ways from the ways in
which they handled nonresonant problems and to our knowledge none
actually solved for the dynamics of the system.

We have found that two oscillators with weak nonlinear
coupling share energy significantly within a "reasonable" length of
time only if the ratio of the frequencies of the uncoupled system is near
certain special values and the initial conditions belong to a special class.

However, it should be noted that constructive procedures such as
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N-timing have certain limitations with regard to answering the question
of whether the oscillators will "ever" share energy. N-timing is
intended to solve problems where t_ . and the allowable error are
specified in advance; that is, it can at best be expected to provide
solutions valid to a certain specified order for a certain specified time,
Therefore, none of our calculations can be considered proofs of the non-
existence of energy sharing even where our results indicate that energy
does not appear to be shared. The strongest statement we can make is
that the nonresonant and weakly resonant examples considered in Chapters
III and IV respectively will not exhibit O(l) energy sharing within any
length of time where a uniform expansion* of the form we have chosen
is a valid representation of their solutions.

To see this, consider for example the solution of the non-
resonant problem discussed in Chapter III. The energy of the first
mode is, to O(1), —12—a0Z , and of the second mode,3/2. b . Thus there can
be O(l) energy sharing only if a; and by, vary with time. Suppose a,
and b, vary on some tk time scale; i.e., a0=a0(ekt), b0=b0(€kt).

Recall to O(l) we ha\}e:
x(t) = agcos [ to -y (tz,...)]
y(t) = by, cos [\/gto - 6p(ty,...)]

Recalling also equations (39) for ¢,(t;) and 6,(t;), we see that the

expressions for % and %xt involve terms like:

A uniform expansion, for our purposes, will mean an expansion having
the property that the term of each order remains of that order and never
becomes larger.
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const €k+2 Ag %" t sin [ t - go(ts,... )]
k
and
const €k+2 Ay %)0 t sin [\/gt— Bo(tz, ... )]
k

respectively. Unless such terms add up to zero, which appears unlikely,

the O 2

) terms of the expansions for %{H and i%(tﬁ would not be
uniform. Thus the condition of uniformity requires that a;,b, andthus
to O(l) the energy in each mode be constant on all relevant time scales.

In Chapter I we raised the question of whether the change in
the analytic form of the adelphic integrals as the frequency ratio varies
from rational to irrational values is significant in describing the motion.
By studying systems similar to those considered here but with slightly
shifted frequency ratios (e.g., -:—f-——-» gll + O(e) ), one finds that the
analytic form of the motion depends rather smoothly on the frequencies.
For instance, in the strongly resonant system studied in Chapter I, if
one shifts w, from 2 to 2 + O(e), significant energy sharing is still
obtained, and the amount of energy sharing decreases smoothly as w,
is varied away from 2. This behavior was also exhibited in a series of
computer calculations done by Ford and Waters (1963). The existence
of a band width for resonance and the generally smooth dependence of
the analytic form of the motion upon the frequency ratio suggest that the
pathological variation of the analytic form of Whittakers' adelphic inte-
grals is probably due to the fact that Whittaker ignored the small divisor
problem and did not require his expansions to be uniform.

The N-timing procedure has turned out to be effective for

attacking the various types of conservative weakly nonlinear problems

considered in this thesis and appears to eliminate the problem of small
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divisors in a direct and apparently meaningful way. It predicts
accurately the exact dynamics of such systems for very long times. Per-
haps most important, it provides a conceptually straight-forward frame-
work within which one can seek bounded solutions of a class of problems
containing small parameters which is probably much broader than that
considered in this thesis and includes damped, conservative and singular
systems of ordinary and in some cases partial differential equations.

To pay for these advantages we find that for the present weare
required to accept certain technical difficulties of the method. The most
obvious of these is that the number of terms grows rapidly as we carry
out calculations to smaller and smaller order. Part of this difficulty can
be eliminated by leaving out the homogeneous solutions of the equations of
lower order, but we have found it useful to include them for two reasons:
first, they enable one to write down the initial conditions directly from
those given with the problem without requiring the solution of possibly
complicated algebraic equations, and second, slow variations of the
smaller order homogeneous terms may differ in analytic form from one
another, as in the example in Chapter IV,

The second and more significant difficulty is that essentially
no proofs are presently available of the validity of solutions obtained by
multiple variable procedures (except the empirical evidence that such
solutions appear to be correct) or the ability of the procedure to yield
uniform approximations, in principle, to arbitrary order. This difficulty
is not just a mathematical fine point desirable for logical completeness,
but can present real and as yet unresolved difficulties, such as the one

mentioned at the end of Appendix B in carrying the weakly resonant



L
problem beyond a certain order. The resolution of such difficulties
would be an interesting and useful direction for further study.

There are several other classes of problems which this thesis
suggests for further work. One obvious extension would be to continue
solutions beyond the point where complicated functions begin to arise
(e.g., to solve for the €2t variation of the O(l) solution of the strongly
resonant case). Another would be to attempt to analyze systems of three
or more oscillators where the frequencies are such as to lead to strong
resonance. A third and probably most interesting would be to apply N-
timing to physical situations such as, for example, classical formulations
of nonlinear optics and orbital mechanics where nonlinear problems with

small parameters tend to arise.
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Appendix A

The Significance of Ergodicity in Statistical Mechanics

The fundamental problem of statistical mechanics is to predict
the macroscopic behavior of dynamical systems which have so many
degrees of freedom that their equations of motion cannot be solved,
Statistical techniques are useful for this problem in that they appear to
give correct answers when we are able to do the mathematics, but their
applicability is. based on an assumption which has not yet been shown to
be valid for any realistic system. The present section will discuss
briefly the significance of this assumption, the so-called ergodic hypoth-
esis,

For purposes of illustration, let us focus attention on a system
which is typical of those to which statistical mechanics is usually applied.
Consider a classical-mechanical system S consisting of a large number
N of particles, each particle having 2m degrees of freedom, contained
in a box of volume V., Suppose we know how the particles interact with
the walls and with one another, and would like to predict the functional
dependence of certain macroscopic quantities describing the system upon
other such quantities,

In most treatments of statistical mechanics, it is assumed
either explicitly or implicitly that the system S is interacting in some
way with another system. Therefore, let us suppose S is interacting
"weakly" with some much larger system S' in.such a ‘way that the

following conditions hold:
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a) The total energy

Hy [ps’ g Pgr- qs'] = Hg (pg> ag)tHg (Pgn a1 )+ H; (P A P dg1)

constant = ET (15

b) Hint is sufficiently small that each of the systems can be thought
of as having instantaneously its own "private'" energy, depending only
on the values of its own dynamical variables.

c) S and S' are free to exchange energy but not particles.

d) S' is supposed to be so much "larger" than S that its macro-
scopic variables are not significantly affected by its interaction with §S.

If S' has a total of 2¢ degrees of freedom we can visualize
a 20+ 2m dimensional phase space whose coordinates correspond to the
degrees of freedom of S and S'. Each state (_CIT’—I;T) of the combined
systems ST =S+8S' corresponds to a single point in this phase space,
and as the dynamical processes associated with HT take place, the
points corresponding to the successive states through which ST passes
trace out a curve STGT (£), ;T(t) ) on the 2f£ + 2m N-1 dimensional
"surface" corresponding to HT = constant.

Let us now consider the curve sS(—cIS (&), ;S (t) ), which we
define to be the projection of s on the 2Nm dimensional reduced
manifold whose coordinates correspond to the degrees of freedom of S.
A complete solution of the equations of motion of ST would give us the
functional forms of the _CIS (t) and —55 (t) and we could then compute the
time averages of functions of the —CIS and ;S' However, for the systems

in which we are interested, let us suppose this is impossible, and in

order to get any answers it is necessary to make another assumption.
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This is where the ergodic hypothesis comes in.
The ergodic hypothesis amounts essentially to the assumption

sk
that for "almost all" trajectories , the proportion of the time s

d

spends in a region of the surface ET =HT is directly proportional to

the "area" of that region. That is:

ek 4k

> - A
If the ergodic hypothesis applies to ST’ we must have:
J £pg: dg)dPgddgdpg, ddg, 8 (E-Hy)

J dpgdagdpg,dag, 8(E -H)
(2)

f(qs,ps)-thmtf T qS(tl

Furthermore, one can also show that if S' is a perfect gas

B3 o2
oo < )
= 2
= i=1
_13},10] dpg,ddg, 6(E-H,) = exp{-BH B, g )} (3)
where 1/[3 is the average energy per particle of S'. Thus we must
have:
f(pg.qg) = (4)

J exo{-pHglPg. dg)} dpgddg

The distribution function exp{-ﬁHs(ps,qS)} is called the canonical
distribution, and the integral in the denominator of the right hand side of
equation (4) is known as the canonical partition function.

As we have seen from the foregoing discussion, equation (4)

can be applied only if the ergodic hypothesis is valid for the system ST

* Except possibly for a set of measure zero.
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There are in principle at least two methods by which one can decide
whether it is valid for a particular system ST' One way would be to
solve completely the equations of motion of ST’ but that would bring us
back to the problem we had hoped to avoid through the use of statistical
techniques. The other possible approach is to show that ST satisfies
the hypotheses of the ergodic theorems of Birkhoff.

Birkhoff's theorem applied to ST states essentially that on
the energy shell ET = HT(—P;T’-q’T)’ time averages of dynamical quanti-
ties exist and are equal to phase averages for "almost all" trajectories

if and only if the energy shell ET = H.. is metrically indecomposable.

T
Metrical indecomposability means essentially that the surface ET = HT
cannot be divided into two or more regions, each of non-zero measure,
such that trajectories starting in one region cannot enter the other.
Physically, metrical indecomposability implies that there is no function

g(pT,qT) = constant except for H,, (Khinchin, pp.55-6). As one can

T
guess, it is an extremely difficult problem to show that any realistic
system has metrically indecomposable energy surfaces (although it has
been demonstrated by Sinai (1963) for a system of rigid spheres).

The intractability of realistic systems to application of
Birkhoff's theorem has led various workers (Fermi, Pasta and Ulam
1955: Jackson 1963a, 1963b: Ford and Waters 1963: Northcote and Potts
1964) to study systems which are sufficiently simple that one can in
some sense solve their equations of motion. For such a purpose, itis
sufficient to study "closed" systems since, referring to our example, it

is really the closed system ST which is required to be ergodic.

Most of these workers have studied one dimensional chains of
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coupled oscillators, since these are relatively simple systems toanalyze.
Work with polynomial coupling and identical springs (FPU systems) has
led to the conclusion that such systems are not ergodic; most of the
energy remains in the low modes if the system starts with the energy in
the low modes. However, Northcote and Potts performed a computer
experiment, studying a model consisting of hard rods of finite diameter
connected by linear springs, and found that energy was indeed shared
equally among the modes. This model is more realistic than polynomial
coupling for gases at reasonably high temperatures where the inter-
actions look like collisions; however,one would expect the polynomial
model to correspond more or less to solids at relatively low temperatures.
Certainly the results of Northcote and Potts imply that the form taken for '
the coupling is an important determinant of ergodicity. In addition, we
should consider the possibility that the nature of the model is important -
oscillator models do not allow the particles to migrate from one lattice
site to another in the polynomial model - the particles are drawn back to
their original equilibrium positions even if they have exchanged positions

by passing through one another,
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Appendix B

Algebraic Details of and Comments on Chapter IV

Terms on the right hand sides of equations IV-(6) which can
cause non-uniformities in the solutions are terms from (6a) whose
frequencies to O(l) are 1 and terms from (6b) whose frequencies to
O(l) are 3. To keep our solutions uniform we must therefore set the
sum of these terms from each equation separately equal to zero. Thus:

) . ) ¢y O
2 E)—ZD sin(ty-¢p)-229 —a—g)cos(to-cpo)-k 2 .E_)_(éo 5?20 ag cos(ty -¢g)

2
+ 2 %il sin(ty-¢;) -2a, i(’-(glcos(to«pl)%- (-@-‘m-l> a, cos(ty-¢;)
t, ot, ot,

o) b
+ 2 3%12 sin(to"‘#'z) = Zaz%zglz Cos(to_¢z)__g—a2COS(t0_<pz)

1 19 1 1 5 1
+5g 20 bo' (57 adt - 330 Hcos (t-00) 757 20 {1753 af t5 7 bt cos(to-a)

a, b 3b a, bt
—ﬁgi-cos(to-cpl)-%i—goz—lcos(to—%w%)l-90)- _%_63- cos(ty-¢,)

a b3
) 38)1D cos(ty-pgt0-0,)-2a, by by cos(ty-¢,)cos (6, -6,)

3 3
= mcos(to'(p0+90'91)‘m Cos(to-(po+61-60)

192 384
as b aZ b 31,4
+ 64_96C05(t0‘</90)+ 64 3 Cos(t()'¢o+<P1 -(,00)-]?%’8—.!-’;.‘%9—2cos(t0-(p0)
B 2 é sz

bé 5,2
128 cos (ty -yt - @) - %f-cos(to—goo)- a—éﬂojfgcos(to-cpo)

a_5b7- ag bl §3}_3 b
" 2096 €08 (to=260+5¢) - 8192 cos(ty-gg)t+ =g cos(to-¢o+6-6;)

3by b
- 5—‘01—2%—1 cos(tg-pg+6; -0g)-ag by b, cOs (ty-¢y)cos (0,-6,)

gsz 5g 3b, Esz
{1836 * 3052 c08(to=90)- SH7E cos(ty-2600+5¢,)

145 1 29 {bfa
351753 2t bo + 557 28be F ag by cos(to-%)+ 522 cos(iy-¢,)

+

ag 2212 3
1 6]::1 b cos(to—(p0+()1—00)—}“—“—L(t)4 = cos(ty-¢,)- %‘]’%‘hl cos(ly=@g16-0;)

e 10 (1a)
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6 i)-‘9’3-51n (3ty=8y) = 6by g—eocos(3t0-60)+6 Oy sin (3t5-0,)

oty at; ot,
06 ob .
~6by —8—;‘-605(3%'91) -i‘i—zlblcos 3ty-6,) +6ﬁf_ sin(3t,-0,)
06
“6bz #COS 31‘0‘92) {2304 aO 128 a'Ob()z a01(\'1(;}(:05 3‘:0 60

-ag by a2, cos(3ty-6y)cos (¢, )+ 48a(,b {576 as’ b 32 ==ashd }cos (3tg-6q)

b3
9630b {115&%% i 7 30 bef} cos(3t5-0,)- 258D cos (3t -0+ 91 - o)

21 2 3 22
- Ba il cos(3ty-0,) - a—lio-l—)‘]-cos(Bto—Goﬂoo—%)-a-‘lih—b‘-cos(%o—el)

96 38 192
2 ZbS 2b5
= a_-.xz_bo cos(3t0—90)-%‘%)71°§zcos(3to—80)~ 13'902‘—.%—82005(3%-90)

) 2 b 3
- 384 Cos(3t0‘90+¢1‘¢o)’a"—%“;—b‘l— cos(3ty-0g +9o-¢1)

3
- aga, by cos(3ty-0,)cos(p; ~¢gy)+ 3:_1_%12_]20 cos(3ty-0g+ ¢y -¢;)

g 23 2 b2b 413
= —11—3308—b° cos(3t,~0g +¢, ~¢p) - %1—;)2—1005(3%-290-1—61)— éé)llizlt‘l‘,‘zcos(%o—9,:,)

2h2b 4b3 2h
384 1 COS(3t0'260+61)_?4—-2§Z cos(3t0-90)-%2—2—cos(3t0—92)

6
{ 2+—b02}COS (3tg-6p) - 29 by cos(3ty +0,5-6¢;)

) 307a 2096
{192 385 b} cos 3t 90)+3°—‘L—Lcos(3to Oot 1 - %)+21°Z%Cos(3to—el>
b 41
- énlz%a, cos(3to'90+¢o‘¢1)'%°§gl cos(3ty-6,) = 0 (1b)
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In equation (6ba) set the coefficients of sin(ty-¢y) and cos(ty-¢g)
separately equal to zero and in (6b) set the coefficients of sin(3ty-6,)
and cos(3t,-6,) separately equal to zero.

For convenience, let

A = 3y cos(e;-gp) Ajg = 2, sin(e;-¢o)
Ay = a, cos(e, -¢g) Ayg = a, sin(e,-¢g)
(2)
BIC = bl COS(Bl—eo) B].s = bl Sin(el'eo)
B, = b, cos(6,-6,) B,s = b, sin(6,-6,)
We then obtain from the coefficients of:
; 9 A, 0
sin(ty-¢p)=0 => —ﬁac+%:c+ ﬁ: 8192 ag bZsin{bg,-26,} (3a)
9 0A e}
cos(ty-¢p)=0 = a‘:?s'* atls+ao 8{0 128 aobo{a0+15b0}Blc+12830b Ase
- $30B&-52B1d-33,b By
__:i__ 5 H2 (6 20 )
_819230 0 COS 0@y -4by
8192{61b04+3ao bg +— 4 (3b)
: _— 0B, , 9By, Oby _ adby . )
sin(3ty-6,) = 0 => oL, - BEs ——1C + Bt. = 24576 sin(6¢y-20q) (3c)

9B, + BBJS 20 |

b
cos(3tg-0g) = 0= 2 + S8+, S0 = -357 % b Bict 3y 12525 - 908 | A

1 1 1
12 by A - ﬁboAlé ~% 20 Po Azc

181 41 )
- 186- 4096 20 Potg 192 G927 20 P60~ 36204820

6
- 2B o5 (6g,-20,) (3d)

Note that bgy -26, = ¢ (a ~9b)t + 6@y t,)-20,7(t,) so that equations (3a)
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and (3c) areidentical with equations IV-(17). Notice that equations (3b) and (3d)
can be solved for the t; dependence of A,5 and B,,, but not for the t,
dependence of A, and B;g without knowing the t, dependence of AZ(CZ)
and BZC(Z), which comes from the Of(e*) equations.

For convenience, suppose we have case A, so that (6¢y-26,)
depends on t . The condition that B,. and B,g be uniform requires

that the terms not depending on t add up to zero. Thus, rewriting (3b)

and (3d), leaving out terms depending on t; we obtain:

0A. 0oy 1 1 1 13
ot T % Bt =128 0 Po (g +15b5)Bict ogag b’ Aic-d20 Bid - 520 By

2H2
- Lag by B, - WRL {6108 4308 b +2 0t} (42)

0B o6 il 1
Fos 1o 0 = - 557 a8 b Biot 3958 {2508 -9b¢ } Arc-1y by 4

e 2 1 () __ 181 17 4y3
12 by Ay 620 by Ay 486-4096 20 bo+6.(492)zao bg
_4a 2 5
" 36.2048 20 % b

The following quantities are known not to depend on t,:

ag, by s A, By

Our experience suggests that Azéz) and BZC(Z) will also be independent
of t,, and this will be assumed to avoid writing out the terms of the
next higher order. Then the only terms depending on t, in equations
(4) are:

A, oB
Bt 5] 2 1s 2
o, B:S , B, Al
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Lumping all other terms in equations (4a) and (4b) into ¢, (t3)=c,

and c, (t3) = ¢, respectively, we obtain:

dA
Lis - o -}y, (52)
2

dB 1
dt,. = %2 "1z PoAd (5b)

a pair of coupled nonlinear first order differential equations.
It would be obvious how to proceed if these equations had a

single stable solution and the condition for stability of A;g and Blsm

were describable in terms of a pair of algebraic equations involving ¢,

and c,. However, life is not that simple, as we can see by dividing
(5b) by (5a).
We obtain:

1 2
B, _ Sz 12 Pofis
dhis ¢~ % 2 BlsZ

(6)

Examining this equation in the (A;g4, B,;s) phase plane, we find that for
2 2
c, > 11—2 bo Ay and ¢ > % ag B,g there is a continuum of solutions which

are apparently stable centered about:

12¢,

Als:i/bo
4c

Bls‘*/:g‘

This means that there is a range of values of ¢; and ¢, which will

yield stable solutions, and we have two difficulties. The first is that it

3
is not clear what values of ¢; and ¢, to choose, so that <p0() and 90(3)

“Needed to maintain uniformity of the O(e) terms in the expansion of
the solutions of the original equations.
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are not uniquely determined, and the second is that even if we can
decide on some values for ¢, and c¢,, the resulting functions
describing the t, wvariation of A;g and B,g will be difficult to
represent analytically.

One obvious procedure for choosing particular special
values for «¢; and c, is‘ to assume d—:?tlzi = .qa]?és.= 0. This
choice is necessary when a similar difficulty arises in the case of
a single nonlinear oscillator and seems like the most reasonable
thing to try in the present example. A detailed consideration of
this difficulty will, however, have to await furthe'r study, since the

algebra involved in the analysis of further terms is extremely

complicated.
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