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Abstract 

The temporal structure of neuronal spike trains in the visual cortex can provide 

detailed information about the stimulus and about the neuronal implementation of 

visual processing. Spike trains recorded from the macaque motion area MT in pre­

vious studies (Newsome et al., 1989a; Britten et al., 1992; Zohary et al., 1994) are 

analyzed here in the context of the dynamic random dot stimulus which was used 

to evoke them. If the stimulus is incoherent, the spike trains can be highly modu­

lated and precisely locked in time to the stimulus. In contrast, the coherent motion 

stimulus creates little or no temporal modulation and allows us to study patterns 

in the spike train that may be intrinsic to the cortical circuitry in area MT. Long 

gaps in the spike train evoked by the preferred direction motion stimulus are found, 

and they appear to be symmetrical to bursts in the response to the anti-preferred 

direction of motion. A novel cross-correlation technique is used to establish that the 

gaps are correlated between pairs of neurons. Temporal modulation is also found in 

psychophysical experiments using a modified stimulus. A model is made that can 

account for the temporal modulation in terms of the computational theory of biolog­

ical image motion processing. A frequency domain analysis of the stimulus reveals 

that it contains a repeated power spectrum that may account for psychophysical and 
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electrophysiological observations. 

Some neurons tend to fire bursts of action potentials while others avoid burst 

firing. Using numerical and analytical models of spike trains as Poisson processes 

with the addition of refractory periods and bursting, we are able to account for peaks 

in the power spectrum near 40 Hz without assuming the existence of an underlying 

oscillatory signal. A preliminary examination of the local field potential reveals that 

stimulus-locked oscillation appears briefly at the beginning of the trial. 
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Chapter 1 

Introduction 

Our brains process information transmitted from our senses in the form of brief elec­

trical impulses (action potentials), typically less than one millisecond in duration, 

that are propagated along fibers (axons) . In vision, audition, and somatic sensation, 

the trains of action potentials that arrive from the sensory periphery are imprinted 

with the temporal pattern of the stimulus following its interaction with the sensory 

apparatus. For example, as you drive a car, fixate in the distance, and listen to the 

radio, your optic nerve carries a volley of action potentials each time a white dashed 

line crosses your retina, your auditory nerve impulses are locked in rhythm with the 

music on the radio, and the peripheral nerves in your spine relay the vibrations of 

the car to the thalamus and then on to the cerebral cortex. 

It is not generally known to what extent these patterns are preserved or modi­

fied in the cerebral cortex. Nor is it known to what temporal resolution an action 

potential must be precise to fulfill its function. If we could add a delay randomly 

chosen between zero and five milliseconds to every action potential leaving the spike 

generating zone on the axon of all cells in your visual cortex, how much would your 

vision degrade? Whether the visual cortex has intrinsic rhythms, as a computer 's 
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processing is locked to a clock, whether information is elaborately encoded for pro­

cessing and transmission, as in Morse code, or whether the neuronal activity is best 

conceptualized as arising from a dynamical system is also not generally known. 

This thesis attempts to address some of these fundamental issues by studying 

temporal patterns in spike trains (sequences of action potentials) that were recorded 

from single neurons of the middle temporal area (area MT or V5). Area MT lies 

in the prestriate visual cortex of the macaque monkey, roughly seven synapses away 

from the photoreceptors in the retina. We looked for evidence of rhythmic firing 

patterns and examined how precisely the spike trains were locked to fluctuations in 

the visual stimulus. We also compared the patterns that occurred simultaneously in 

spike trains of pairs of nearby neurons and measured population signals, called local 

field potentials, that are believed to reflect the activity of many nearby neurons. Our 

major findings are summarized in this thesis. 

1.1 Mean Rate and Temporal Structure, a Moti­

vation 

Because the mean firing frequency in response to a sensory stimulus is reproducible 

under identical stimulus conditions and varies predictably and smoothly with such 

stimulus parameters as velocity, contrast, orientation, etc., it is commonly assumed 

to be the primary variable relating neuronal response to sensory experience (Adrian, 

1928; Lettvin et al., 1959, or the fifth dogma of Barlow, 1972). Therefore, most 

studies of visual cortical neurons are not concerned with the temporal structure of 

spike trains and describe the output of the neuron using "tuning curves," which 

summarize the mean firing rate as a function of a stimulus parameter and show a 

peak at the preferred parameter value. This practice is supported by the existence 
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of a quantitative relationship between the mean firing rates of single cortical neurons 

and psychophysical judgements made by behaving monkeys (Werner and Mountcastle, 

1963; Parker and Hawken, 1985; Barlow et al., 1987; Vogels and Orban, 1990; Zohary 

et al., 1990; Newsome et al., 1989a; Britten et al., 1992). 

However, some electrophysiologists have focussed on the idea that the detailed 

dynamics of the neuronal response may carry significant information (e.g. Poggio 

and Viernstein, 1964; Chung et al. , 1970; Strehler and Lestienne, 1986; Optican and 

Richmond, 1987; Abeles, 1990; Eskandar et al., 1992; Zipser et al., 1993; Bialek et al., 

1991). At the time our work began, a great deal of attention had been given to the 

reports of stimulus-induced semi-synchronous neuronal oscillations in the 30- 70 Hz 

range in the visual cortex of the anesthetized cat (Eckhorn et al., 1988; Gray and 

Singer, 1989; Gray et al. , 1989; Ghose and Freeman, 1992) and the awake monkey 

(Kreiter and Singer, 1992; for a review see Singer, 1994). 

Motivated by these findings and proposals, we set out to analyze how temporal 

structure in cortical spike trains could encode information regarding the stimulus 

or behavior. An additional motivation for studying temporal modulation developed 

during the course of this work. This was the idea that the detailed temporal structure 

of spike trains could be at least as intimately linked to the cortical architecture as 

tuning curves had been. Functional regions of the cortex, and even layers, have been 

distinguished based on the mean rate tuning of neurons. It is a powerful abstraction. 

However, visual neuroscience has a history of assuming that a region of the brain is 

homogeneous when there are not yet techniques to distinguish its sub-regions (Zeki, 

1993). Therefore, we have undertaken this study of temporal structure of spike trains 

in the hope that it will provide a probe into the dynamics of cortical processing that 

will aid the fine dissecting of functional regions of the cortex, particularly at the level 

of individual neurons and the local cortical circuitry. 
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1.2 A Brief History of Our Approach 

Our investigation of temporal structure relied almost exclusively on data that was 

collected in an ongoing series of experiments linking the responses of neurons in ex­

trastriate area MT to the psychophysical performance of trained monkeys (Newsome 

et al. 1989a,b; Britten et al., 1992; Zohary et al., 1994). This database was ideal 

because the spike trains could be linked to both the stimulus and the response of the 

animal. Details of the original studies are presented in Chapter 2. 

At the outset, we wanted to study the time structure of the spike trains with an 

eye toward the presence of 40 Hz oscillation, and therefore we relied on the power 

spectrum and the interspike interval (ISI) statistics. In these early analyses, we 

conceptualized the spike trains as somewhat stationary responses in which the mean 

rate was roughly constant over time, except for adaptation, and was determined by 

the strength of the stimulus (explained in Chapter 2). At one point, however, we 

made an observation that greatly changed our conceptualization of the data. We 

realized that the responses of many of the neurons were coupled to the dynamics of 

the stimulus at a time scale on the order of milliseconds. Maybe this was not initially 

obvious because the stimulus, by design, was dominated by white noise over a large 

range of parameters. But maybe, also, we had been lulled by the appealing concept 

that the neuron magically gleaned from the network the stimulus parameter setting 

and then set its mean firing rate according to its tuning curve for that parameter, 

but with the prescribed, well-documented, amount of noise for visual cortex. 

We gradually learned that before going hunting for temporal patterns in spike 

trains that might result from an elaborate coding scheme, it would be prudent to 

first understand the output of the neurons in as much detail as possible based on 

their purported function. This eventually lead us to construct a simple computa­

tional model based on motion energy (Adelson and Bergen, 1985) that would help 
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us interpret spike trains in area MT, an area specialized for the analysis of visual 

motion, as indicated by its preponderance of directionally selective neurons (Zeki, 

1974; Maunsell and Van Essen, 1983) and by the motion-specific effects of lesions and 

electrical microstimulation (Newsome and Pare, 1988; Salzman et al., 1992) . 

However, before constructing the computational model, we attempted to address 

the cause of the temporal modulation using human psychophysical experiments. It 

seemed likely that fluctuations in the spike trains of MT neurons would be reflected 

in fluctuations in the monkey's psychophysical response to the motion signal provided 

by the stimulus because of the link established in the original studies between the 

psychophysical performance and the neuronal spike count. Using modified stimuli in 

human psychophysics, we were able to verify that the stimulus induced measurable 

changes in the psychophysical response over time, but it was not clear from these 

preliminary psychophysical results what factor in the stimulus most contributed to 

these changes. 

Finally, when we constructed the lineaments of a computational model of motion 

processing, the model necessitated a numerical description of the stimulus which, 

because of the fast modulation in the MT spike trains, had to be accurate down 

to the millisecond. The model was able to account for the presence of stimulus­

locked temporal structure in terms of fluctuations in the stimulus, and it lead us to a 

better understanding of those fluctuations. A Fourier domain analysis of the stimulus, 

spurred by results from the model, provides insights that are consistent with salient 

observations from the psychophysics and analysis of the temporal modulation. These 

insights need to be studied further. 

From this brief account, it should be obvious that our approach was exploratory 

in nature, and this was largely because of the uncertainties regarding the presence 

and significance of temporal structure in spike trains. In total, this thesis provides 

a foundation on which we can conduct further studies of the temporal properties 
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of neuronal spike trains, particularly within area MT. It represents a modest step 

in examining the details of neuronal spike trains and an attempt to relate them 

to both computational theory and biophysical properties of neurons. Much of our 

analysis was descriptive and does not yet directly tie to either. The results should be 

interpreted with the understanding that this analysis was for the most part limited 

to data collected in previous experiments; therefore, we had little opportunity to test 

the implications of our findings through further experimentation. A list of the specific 

results and the chapters in which they appear are given in the outline at the end of 

this chapter. 

Finally, part of designing an elegant experiment is doing so in a way that pre­

cludes unforeseen, or at least unquantified, effects from changing the results of that 

experiment in the near future. A reader that is familiar with the original and ongoing 

studies based on this data (Newsome et al, 1989a; Britten et al., 1992; Zohary et al. , 

1994) may wonder how the results here bear on those studies. We believe that the 

results of our analysis of the stimulus-induced temporal modulation are consistent 

with all of the major conclusions of the earlier reports. Often these consistencies oc­

cur in subtle ways, and unfortunately there is not space in this document to carefully 

outline all of the connections between this analysis and the past studies. In fact, it is 

the exactness and the elegant design of the original experiments that have made the 

study of the temporal structure in this database both fruitful and enjoyable. 

1 .3 An Outline of Chapters 

The following outline summarizes each chapter and indicates references for material 

that has been published. 

• Chapter 2 describes the original electrophysiological studies of Newsome et 

al. It is necessary to cover in detail the generation of the dynamic random 
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dot stimulus because the spike trains of the MT cells depend on its temporal 

dynamics. Here we point out a fundamental observation regarding the temporal 

precision of responses of the MT neurons which lead to much of the work in 

this thesis. 

• Chapter 3 covers preliminary psychophysical studies that demonstrated the 

presence of temporal modulation in the psychophysical responses which may 

serve as a correlate for the modulation in the neuronal response. 

• Chapter 4 summarizes the analysis of the temporal modulation induced in the 

spike trains by the stimulus. Here we show that the area MT cells often locked 

to features of the stimulus with a temporal resolution on the order of 2- 10 msec. 

However, this modulation does not appear to be present for coherently moving 

patterns. Material from this chapter has been submitted for publication in the 

journal Neural Computation and has been published in preliminary form in Bair 

and Koch (1995). 

• Chapter 5 contains analysis which focuses on the lack of stimulus-locked mod­

ulation in the response to coherent motion. This case is interesting because in 

the absence of structure imposed by the stimulus, the spike trains reveal to us 

structure that may be generated locally by cortical circuitry. We also briefly 

examine cross-correlation between simultaneously recorded neurons here. Part 

of this chapter has been accepted for publication in Advances in Neural Infor­

mation Processing, 1995. 

• Chapter 6 presents a model of integration of motion signals that tests whether 

the modulation reported in Chapter 4 can be made consistent with simple spa­

tial integration over the spatia-temporally constrained responses of directionally 

selective V1 neurons, which are believed to contribute a major input to area 
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MT. 

• Chapter 7 contains results from some of our earliest analyses. We found that 

some neurons fire bursts of action potentials while others do not, and we linked 

burst firing to the observed peak near 40 Hz in the power spectrum of the spike 

trains. This chapter includes a signal detection theory analysis which varies 

how bursts are weighted by an ideal observer. This chapter has been published 

in The Journal of Neuroscience (Bair et al., 1994; see also Bair et al., 1993) . 

• Chapter 8 summarizes results from an analytical model of the power spec­

trum of spike trains in the presence of a refractory period. We demonstrate 

that the Fourier power spectra of the spike trains could be accounted for from 

the lSI statistics under the assumption of a renewal process. This chapter has 

appeared, with additional derivations, in the SIAM Journal on Applied Mathe­

matics (Franklin and Bair, 1995). 

• Chapter 9 contains an analysis of a small set of local field potential data 

collected in a pilot study. Stimulus-locked oscillatory patterns are observed 

following stimulus onset and lasting roughly 100 msec. 

• Chapter 10 contains our conclusions and suggests directions for future re­

search. 
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Chapter 2 

Experimental Methods 

This thesis relies heavily upon data recorded in previous studies conducted in Prof. 

William Newsome's lab. Knowledge of the details of the stimulus and experimental 

paradigm is crucial for the reader to understand the results presented in later chapters. 

Therefore, this chapter is devoted to the essential details of the experimental paradigm 

and the visual stimulus. For a full account of the electrophysiological methods, see 

Britten et al., (1992). The final section of this chapter introduces a fundamental 

observation about the responses of the MT neurons to the dynamic dot stimulus. This 

observation changed the way we thought about the spike trains, and subsequently lead 

to a better understanding of the neuronal as well as the psychophysical response to 

the dynamic dots stimulus. 

2.1 Original Electrophy siological Experiments 

The original experiments were designed to compare the psychophysical performance 

of monkeys on a two-alternative forced choice direction discrimination task to the 

output of neurons recorded in area MT during that task. These studies took the 

neuronal response to be the total spike count during the two second presentation 
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of the visual stimulus, a dynamic random dot pattern that is described in detail 

below. It was found, using signal detection theory, that the spike count from a single 

MT neuron provided enough information to support a theoretical performance that 

was on average as good as the actual performance of the monkey. In Chapter 7 

we make use of the feature that both psychophysical and neuronal responses were 

recorded simultaneously. However, much of the analysis here does not depend upon 

this aspect of the paradigm. 

In the previous analysis (Britten et al., 1992), psychophysical data were compiled 

into psychometric functions relating percent correct choices to the strength of the 

motion signal. A psychophysical threshold, Csystem, was measured for the animal in 

each experiment, where threshold was considered to be the motion coherence level 

that supported 82% correct performance. This psychophysical threshold character­

izes the perceptual sensitivity of the monkey to the motion signals under the specific 

conditions of each individual experiment. Neuronal sensitivity was measured from the 

responses to preferred and null direction motion obtained over a range of coherence 

levels. Using a method based on signal detection theory, a "neurometric function" 

was computed that expressed the theoretical performance of an ideal observer who 

judges the direction of motion in the visual stimulus based only on the responses of 

the MT neuron being analyzed. Computed performance of the ideal observer was 

plotted as percent correct choices as a function of motion coherence, and "neuromet­

ric" thresholds, Ccetl, were extracted in the same manner described for psychometric 

thresholds, i.e., as the c value that supported 82% correct performance. In general, 

MT neurons were remarkably sensitive to the motion signals in the stochastic display. 

For roughly half of 216 cells, the neurometric function was statistically indistinguish­

able from the psychometric function measured on the same set of trials. Across the 

entire set of experiments, information based on counting the total number of spikes 

correlated well with the monkeys' behavior, and the geometric mean ratio of neu-
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ronal threshold to psychophysical threshold was 1.19 (Britten et al., 1992). One goal 

of the present study is to determine whether some temporal characteristics of MT 

spike trains correlate with either the monkeys' perceptual performance or the prior 

measurements of neuronal sensitivity based on integrated spike counts. 

2.2 Experimental Paradigm 

Three adult macaque monkeys were trained to report the direction of motion in a 

dynamic random dot display (described in detail in the next section) in which a certain 

fraction, c, the motion coherence or just coherence, of the dots moved coherently at 

a common speed in one direction, while the remaining dots were plotted randomly. 

For a given block of trials, the random dot stimuli were placed within the receptive 

field of a single MT neuron, and the coherent motion signal was presented in either 

the preferred direction of the MT neuron or in the direction 180 degrees opposite to 

the preferred direction, i.e. , the null direction. The direction of motion as well as 

the coherence were chosen randomly from trial to trial. We used the convention that 

c > 0 indicates preferred direction stimuli while c < 0 indicates null direction stimuli. 

Thus, at c = 0 all dots moved randomly and the stimulus had no bias on average 

in the preferred or null direction. For c = 1 all dots moved together in the neuron's 

preferred direction, and for c = -1, all dots moved in the opposite direction. The 

c = 0 and c = ±1 stimuli are important to our analysis, and are considered in more 

detail in the Chapter 6. 

The coherence c was taken from a pre-specified range of coherence values that 

included the psychophysical threshold. In many cases, this range included both 0 and 

±1; however, it was not uncommon to exclude the c = ±1 stimulus because coherent 

motion was often correctly discriminated in 100% of trials both by the monkey and 

by the neuron, from the standpoint of the ideal observer. For a typical experiment, 
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at least 210 trials were performed: 15 trials at each of 6 preferred and 6 null direction 

motion coherence levels plus 30 trials at c = 0. Far more data were obtained for some 

experiments since additional blocks of trials were run as long as the cell remained 

well isolated. It was not uncommon to record from a neuron over the course of 1-2 

hours. 

An individual trial began with the onset of a fixation point presented on an os­

cilloscope 57 em distant from the animal. After the monkey directed its gaze toward 

the fixation point, the random pattern appeared within the receptive field of the MT 

neuron for two seconds. The monkey attended to the random dot display and judged 

the direction of the coherent motion signal while maintaining its gaze on the fixation 

point. Computer monitoring ensured that eye movements were within 0.5° of the 

fixation point. At the end of the viewing interval, the fixation point and the ran­

dom dot stimulus were extinguished, and two light emitting diodes (LEDs) appeared 

corresponding to the two possible directions of the coherent motion signal. The mon­

key indicated its decision regarding the direction of motion by making a saccadic eye 

movement to the appropriate LED; correct choices were rewarded with water or juice. 

A correct choice was defined as one that matched the direction used to generate the 

coherent motion signal in the stimulus. The monkey's eye movements were monitored 

continuously throughout the experiment using a scleral search coil system (Robinson, 

1963). 

Action potentials were recorded extracellularly from 216 MT neurons while mon­

keys performed the direction discrimination task. Thus physiological data and psy­

chophysical data were obtained on the same trials. On each trial the physiological data 

consisted of a spike train (action potential occurrence times) recorded continuously 

during the fixation interval, the 2 sec visual stimulation interval and the inter-trial 

interval. Spike times were recorded with a resolution of one millisecond. The analysis 

here concerns mainly the data recorded during the 2 sec visual stimulus. 
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2.3 The Sparse Dynamic Dot Stimulus 

At first pass, this description of the stimulus may seem excessive, but we would not 

have to consider the generation of the stimulus in such detail if cortical neurons were 

not so exquisitely sensitive to seemingly minute aspects of the retinal image. 

The generation of the dynamic dot stimulus is described first in the case of a c = 0 

stimulus, and then the method of adding the coherent motion signal is described 

afterwards. We do not give a full account of the statistics of the stimulus, but only 

try to point out what artifacts are present that could potentially affect the neuronal 

response. 

The c = 0 dynamic dot stimulus consisted of 0.1° diameter dots plotted at a 

density of 16.7 dots/degree2 /sec on a large-screen CRT monitor (Hewlett-Packard 

1321B or XYtron A21-63; P4 phosphor, 0.2 cd/m2 mean luminance). The dots were 

plotted randomly (with a uniform distribution) in space in a 400 degree2 area of 

the screen. Each dot was lighted for 150 fLSec but appeared to be present for longer 

because of the persistence of the visual system. Only a circular aperture of the screen, 

optimized for the size of the MT receptive field , was exposed, so although the dot 

plotting was locked to a 6.67kHz clock, the appearance of dots within the visible 

stimulus aperture was effectively asynchronous. Also, because the dots were plotted 

at a constant rate, the stimulus was not Poisson in time. Note that the violation from 

Poisson statistics increases for larger apertures, reducing the variance in the number 

of dots during a fixed time period. At one extreme, the complete 400 degree2 area 

would have zero variance, but a very small aperture would have Poisson statistics. 

A typical aperture size was 10° in diameter, having an area of about 79 degrees2
. 

Neurons requiring aperture diameters of 15° or more, revealing nearly 50% of the 

entire screen, were encountered infrequently in these studies. 

The coherent motion signal was introduced by plotting dots with a particular 6.x 
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and fly, i.e., flr and fl(), and flt with respect to previously plotted dots. The time 

step, flt, was fixed at 45 msec, a value near optimal for humans and monkeys (Morgan 

and Ward, 1980; Newsome and Pare, 1988). Because 300 dots can be plotted in a 

45 msec period, it is useful to think of the stimulus as consisting of 300 dots that were 

continuously cycled through and replotted. A e = 1 stimulus would appear to the 

human observer as a sparse, rigid, spatial pattern that translates behind a circular 

aperture; however, each individual dot could be described as jumping at 22.2 Hz 

(1/ flt) but with random phase relative to the other dots. Since it is known that the 

sum of sine waves with a fixed frequency and random phases is also a sine wave of 

the same frequency, it is no surprise that some MT cells were found to have a 22.2 Hz 

component in their response to thee= 1 stimulus (see Fig. 6.9). 

Lower coherence stimuli, lei < 1, consisted of a mixture of dots carrying a random 

signal, "noise dots ," and dots carrying the coherent motion signal "signal dots." Such 

a stimulus may be conceptualized in a sequence of 45 msec epochs. In the first epoch, 

300 dots are plotted at random spatial locations (only some of which appear within 

the stimulus aperture). During the next 45 msec, with probability lei, each dot in 

turn is replotted at the appropriate spatial location, i.e. , shifted by flx and fly, to 

yield the velocity preferred by the cell, or, with probability 1 - lei, is plotted at a 

random location within the 400 degrees2 area. Notice that regardless of e, the first 

45 msec of each stimulus is the sequential plotting of a random pattern. This is true 

even fore= ±1. Only in the second 45 msec epoch of the stimulus can the coherent 

signal appear, and the lower the coherence and the smaller the aperture size, the 

longer it will be before a "signal dot" occurs. 

Another aspect of the stimulus is the "lifetime," or number of 45 msec epochs for 

which a signal dot persists. Because in each epoch the fate of each dot is independently 

determined based on c, the lifetimes are distributed geometrically-the probability of 

a dot moving for n steps in the same direction being lcl(n-l). 
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The diameter of the circular aperture (between 5° and 15°) in which the dots 

appeared was optimized for the receptive field of the neuron, so neurons having smaller 

receptive fields were stimulated with fewer total dots. This probably did not cause 

a noticeable change in the level of stimulation for the MT cell since it was reported 

that these cells saturate with only a few dots in their receptive fields (Snowden et al., 

1992). 

From trial to trial, not only were the direction and coherence of the stimulus 

randomized, but also the exact pattern of dots was controlled by a "seed" that was 

used to initialize the random number generator (a pseudo-random m-sequence). This 

seed can be held constant to cause each stimulus, at a particular c, to be identical, or 

it may be changed during the course of the experiment to sample from the ensemble of 

all possible coherence c stimuli. Thus, if for any particular c value, the same seed was 

used on different trials, the monkey saw on each of these trials the identical random 

dot pattern. The seed values, thus the identity of the stimuli, were not stored. In 

Chapter 4 we consider how this limits the type of analysis which can be performed 

on the associated neuronal responses. 

Finally, there are important differences between the dot stimulus used here and 

those of other studies. Some studies always plot dots with apparent matches, but vary 

the distribution of velocities. Note that in Fig. 1 in Britten et al. (1992), the arrows 

attached to the noise dots should not be taken to mean that the noise dots have 

been intentionally replotted to create apparent motion. In the study by Snowden et 

al. (1992), the dot lifetime was 0.5 sec, making the stimulus appear highly coherent, 

approximating c = 96%. 
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2.4 Other Experimental Paradigms 

The majority of the data examined in this thesis was collected using the stimulus and 

paradigm explained above, but we occasionally depended on results collected in other 

experiments. Those experiments are briefly described below, with focus on how each 

differs from the standard paradigm. 

Data are included here from the "split-field" experiments (see Fig. 5.6) in which 

the stimulus was presented in a frame-based fashion at 40Hz (Britten and Newsome, 

unpublished experiments). This is in contrast to the effectively asynchronous plotting 

used for the experiments described above. The cases considered here correspond to 

those in which the right and left halves of the stimulus were matched and the stimulus 

was c = ±1. Our interest in these experiments is related to the 40 Hz modulation 

that the frame-based stimulus induced :in the responses of the cells. 

Data are included from studies in which pairs of neurons were recorded simultane­

ously from a single electrode (Zohary et al., 1994). In these studies, the stimulus was 

generated on a 60 Hz frame refresh device and the ~t was 50 msec (three frames). 

It was found that the spike counts of neurons tend to be correlated if the spatial 

locations of the receptive fields overlap and if the direction preferences of the neurons 

are similar. 

Local field potential data was collected in experiments conducted in collaboration 

with Greg Horwitz and the author using the same 60 Hz frame-based stimulus as 

described for the pairs study. This method of recording is described in Chapter 7. 

2.5 Temporal Structure: A Motivation 

In the original work by Newsome et al., the neuronal response was defined to be the 

spike count during the 2 sec stimulus. Knowledge of the finer detail concerning the 
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organization of the action potentials in time during the spike train was not necessary, 

and therefore not studied. In our study of the temporal structure of these spike 

trains, we observed that when stimulated on multiple occasions with the identical 

random dot stimulus, a neuron gave a response that could be reliable on the order of 

milliseconds. This observation is apparent in Fig. 2.1. The left side of the figure shows 

the responses to 90 different c = 0 stimuli, while the right side shows 90 responses to 

the same c = 0 stimulus. 

This observation prompted us to ask whether the variance of the stimulus affects 

the monkey's decision, and whether the decision of the psychophysical observer is 

changing over time. This issue is covered in the next chapter. It also prompted us 

to ask whether such temporal modulation is consistent with current models of area 

MT. This question is dealt with in the Modeling chapter. In Chapters 4 and 5, we 

analyze the character of the temporal structure in more detail. 
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Figure 2.1: The neuronal response of one cell in area MT in a behaving macaque 
monkey to randomly seeded dynamic dot stimuli at c = 0 presented for 2 sec (left) 
appears to be well described by a point process with a mean rate of 3.4 Hz (excluding 
the initial transient). However, when a dynamic dot stimulus formed with a particular 
seed was repeated (but interleaved with different stimuli) many times, the reliability 
of the response becomes apparent (right). Viewing this figure from an acute angle 
reveals the precision of the pattern; for example, nearly all spikes in the final 400 msec 
of the response cluster in six vertical streaks. Below each set of spike trains is a post­
stimulus time histogram (PSTH) computed from each set of 90 trials using an adaptive 
square window centered at each point and widened to capture 10 spikes. The set of 
data on the left is referred to as control data. 
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Chapter 3 

Psychophysical Evidence for 

Temporal Modulation 

Once the observation was made that the spike trains of the MT neurons show a 

marked rate modulation that was locked to the random dot stimulus, it was natural 

to ask whether the perception of motion also varied over time, particularly because of 

the match between neurometric and psychometric curves established in the original 

studies (Newsome et al., 1989a; Britten et al., 1992). In this chapter, we describe a 

few pilot psychophysical studies that were performed to verify that the psychophys­

ical response on the two-alternative forced choice discrimination task did vary with 

the stimulus. These experiments are exploratory in the sense that more subjects 

and additional controls need to be run. The results here, however, are qualitatively 

consistent with the observed modulation in the MT spike trains (Chapter 4) and 

with the output of a motion energy model responding to the dynamic dot stimuli 

(Chapter 6.1). The difficulty of quantifying the psychophysically relevant motion 

signals in the stimulus was the primary factor that limited the scope of these early 

psychophysical experiments. 
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Originally, we believed that the trial-to-trial vanance created by changing the 

randomization seed for the stimulus had little or no influence on the psychophysical 

responses and that noise of biological origin was dominant (Britten et al. , 1992). 

However, in light of the variance induced in the neuronal response by seed changes 

(Fig. 2.1 ), we conducted further tests for variance in the psychophysical response. 

These results are described in the three sections that follow. 

For the psychophysics described below, the dynamic dot stimulus was presented on 

a 60Hz frame refresh monitor. The stimulus could be thought of as a movie because it 

was a sequence of frames of dots. The subjects sat 57 em from the screen in complete 

darkness. The stimulus was presented at high contrast in a 5° diameter aperture 

centered along the horizontal axis 5° to the right of the fixation point. The speed of 

the signal dots was 1.67° /sec, the direction of motion was either up or down, and the 

stimulus duration was 2 sec. The subjects fixated a red "x" during the presentation of 

the stimulus and indicated their response with a keypress. A "beep" was sounded for 

incorrect responses, i.e., those that did not match the intended direction of motion of 

the stimulus. Out of habit, we will refer to a stimulus moving in particular direction 

as "preferred" and to a stimulus moving in the opposite direction as "null." Keep in 

mind that these are arbitrary designations to the psychophysical observer and have 

meaning only with respect to a neuron. 

3.1 Human Psychophysics 

A psychophysical observer of the random dot stimuli is defined by his performance 

(fraction correct) at each coherence level 0 :::; c:::; 1. (We assume performance is equal 

for preferred and null directions of motion.) If the stimulus variance from changing 

the seed is drowned in the noise of the system, the response to a particular stimulus 

pattern on one trial will give no additional information about the response to that 
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same pattern on a later trial over and above that provided by the knowledge of c. 

To test the hypothesis that two responses to a particular stimuli are uncorrelated 

for a particular c, we had human subjects perform the two-alternative forced choice 

direction discrimination paradigm (described in Chapter 2) on two separate occasions 

using the same set of stimuli on both occasions. Formally, let X be a random variable 

representing the subject's decision after viewing a stimulus of a particular coherence 

c, and let Y represent the subject's decision after viewing the identical stimulus at 

another time, possibly the next day. The particular outcomes of a given trial, x and 

y, take values of 0 and 1 depending whether the response was the null direction or the 

preferred direction, respectively. We computed the correlation coefficient (Pearson's 

r) between X and Y over a set of stimuli at a particular coherence level. (Note, it 

is trivial that the responses would be correlated if the coherence level was allowed to 

vary, since for large c the subject will answer correctly so that x = y = 1, and for c 

near zero, the subject will guess so that x and y are randomly assigned 1 or 0.) At a 

particular coherence level, the correlation coefficient, rc, is 

E(xy)- E(x)E(y) 
(3.1) 

where Cis the covariance, E indicates expected value, and IJx and 17y are the standard 

deviations of X and Y. This correlation coefficient is known as Pearson's r. It is not 

difficult to show that r is linear in the number of component matches, i.e., the number 

of times Xi = Yi. 

Fig 3.1 (top) shows the distributions of rc values accumulated over three subjects 

(whose performance had asymptoted) for c values from nearly zero to above threshold 

(roughly 5%). Each rc was computed from the pairs of x andy values for 15 different 

stimuli at the specified c. These data were extracted from two blocks of typically 300 

trials (sometimes 360) where both blocks consisted of the same set of stimuli, but 
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30 
~=0.24, cr=0.30 

-1 -0.5 0 0.5 1 
Corr. Coef. (within subj.) 

30 
~=0.12, cr=0.28 

-1 -0.5 0 0.5 1 
Corr. Coef. (between subj.) 

Figure 3.1: Correlation coefficients for the relationship between motion discrimina­
tions made by subjects on identical motion stimuli. Top: The histogram shows the 
distribution of r values between the subjects' decision at one time and then at a later 
time (typically the next day) on sets of 15 different stimuli at the same direction and 
motion coherence. The individual subjects' means were 0.26 (WN), 0.21 (KB), and 
0.22 (WB). Bottom: The same is shown for correlation between the decisions of two 
different subjects for the same stimulus patterns. The mean r value was half as much 
for between-subject correlations. The dips near zero are due to the limited possible 
values of rc with 15 trials. 
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ordered randomly. The average rc was 0.24 (SD 0.30). The significant (p < 0.000001, 

t-test) rightward shift in the distribution of rc away from the zero value expected 

under the null hypothesis was present at all coherence levels tested, as shown in 

Fig. 3.2. The distributions of rc for the three subjects individually had significant 

(p < 0.001) rightward shifts, but the mean shifts (given in the caption of Fig. 3.1) 

were not significantly different between any pair of subjects. This result demonstrates 

that some stimuli at a particular coherence c give stronger impressions of motion, in 

either the preferred or null direction, than an average stimulus at coherence c, and 

that this trial-to-trial variation is not lost in the biological noise. 

Computing the correlation coefficient at high motion coherence values becomes 

impossible if the subject gives the same, i.e., correct, answers on all trials. Without 

variation in the response due to mistakes, r c is undefined. However, as long as a few 

mistakes are made, the correlation coefficient will remain a valid measure of whether 

those mistakes are induced by a particular stimuli or whether they occur at random 

across the ensemble of stimuli, in particular, under the null hypothesis that mistakes 

are uncorrelated, rc still has an expected value of zero. 

If the observed within-subject correlation for particular motion stimuli is the re­

sult of excessive motion signals in the stimulus, we would expect there to also be 

a between-subject correlation when different observers viewed the same (but ran­

domly interleaved) sets of stimuli. Fig 3.1 (bottom) shows that there is a significant 

(p < 0.000003, t-test) but smaller rc (mean 0.12, SD 0.28) between subjects. The 

between-subject correlation may be less because the subjects have consistent but 

different guessing strategies or simply because they process motion differently. 
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14 
....... 

11.11% t:: 
:::s 7 8 J.L-0.27. o-0.40 

0+-~~~~~~~~~~~~~-+~ 
-1 -0.5 0 0.5 1 

Corr. Coef. (within subj.) 

Figure 3.2: Within-subject decision correlation shown by stimulus coherence. There 
is no strong variation with c in the mean correlation coefficient relating a subject's 
decision on two presentations of the identical stimulus (see text for details). The 
artifactual peaks at 11.1% result from the small number of r values which are possible 
from 15 trials when the subjects make few (typically 1 or 2) mistakes. The coherence 
levels here span the range from chance to above threshold levels. 
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3.2 Monkey Psychophysics: A Look Back 

Once it was clear that the stimulus variance affected human psychophysical decisions, 

we went back to analyze the monkey data. As mentioned in Chapter 2, in recordings 

from 25 cells in monkey E, c = 0 stimuli having a particular seed were interleaved 

with other trials. Data were also collected from trials at c = 0 across varying seeds. 

We are interested only in the psychophysical responses here; the neuronal responses 

will be analyzed in Chapter 4. 

For the set of trials at c = 0 in which the seed varied, we computed the probability 

Pvar that the monkey chose the preferred direction. If the monkey has no bias to 

guess a particular direction, Pvar should be 0.5. We computed a similar measure 

Pnovar for the c = 0 trials on which the stimulus seed was not varied. If an individual 

stimulus has substantially more preferred or null direction signal due to its random 

generation, then we expect Pnovar to differ significantly from Pvar. Fig. 3.3 (top) shows 

with vertical lines the change in performance from Pvar (filled circles) to Pnovar (open 

squares). The abscissa of each data pair is the statistical significance of the difference 

between the two probabilities computed using the G-test for independence, a log­

likelihood ratio test. Six of 25 cases are more significant than 0.05. High significance 

values are driven jointly by a large number of trials and a large difference, Pvar- Pnovar · 

For the six most significant (left-most) pairs on the plot, Pvar is near 0.5 as expected, 

while Pnovar is pulled away from 0.5 . For one of the 25 patterns, the c = 0 stimulus 

caused the monkey to guess the preferred direction on 93% (28 out of 30) of trials, 

which is greater than the 82% performance achieved by a threshold level preferred 

stimulus. 

We tested the results of the statistical G-test using a simple Monte Carlo simula­

tion. The bottom panel of the Fig. 3.3 shows pairs of data points generated under the 

null hypothesis that Pvar and Pnovar had a similar mean (the average of the measured 
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Figure 3.3: Significant differences in monkey psychophysics between the probability of 
preferred response across the ensemble (with respect to randomization seeds) of c = 0 
stimuli, which is expected to be 0.5, and the probability of preferred response for a 
particular c = 0 stimulus pattern. Top: The difference between Pvar (filled circles) 
and Pnovar (open squares) is shown as a vertical line plotted at the significance value 
associated with this difference based on the G-test for independence. Six of 25 cases 
are significant (p < 0.05). Bottom: A Monte Carlo simulation shows that the 
statistical test appears to be accurate and does not find highly significant differences 
between two arbitrarily divided samples. 
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individual means). Effectively, an identical, biased coin was flipped twice and the two 

data points are shown connected with vertical lines. The G-test was applied to this 

data, and the abscissa indicates that only one point in 25 fell above 0.05 significance 

by chance. 

Conceptually, the ensemble of c = 0 stimuli may be distributed along an axis which 

measures preferred direction motion. We expect this distribution to be centered at 

zero, having no bias to the preferred or null direction, and we only expect the members 

of the ensembles at the tails of the distribution to bias the psychophysical decision 

significantly. This agrees qualitatively with what we observe here and is consistent 

with the results from the human psychophysics. 

3.3 The Cut Experiments 

Returning to human psychophysics, the question of trial-to-trial variance induced 

by changing the stimulus seed is considered in terms of variations during a single 

trial. Does a two second stimulus at coherence level c provide a relatively constant, 

but possibly weak , signal that is corrupted by noise in the biological system as it is 

integrated to yield a final decision for the direction discrimination task? If so, at low, 

i.e., subthreshold, c, the observer would be guessing- performing at 50%- if forced to 

respond after viewing only a short portion of the stimulus. Alternatively, the stimulus 

might contain signals that are registered with great precision, relatively uncorrupted 

by the noise of the biological system. An extreme, non-biological example of this 

alternative is a digital computer. It never guesses; given the same set of points defining 

a dynamic dot stimulus, it will always produce the same answer, right or wrong. That 

answer may well be wrong if the digitization of the stimulus is a manifestation of noise, 

but for no particular stimulus (a string of bits) can its performance be 0.5. 

To test for temporal modulation in the psychophysical decision, we devised the 
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"cut" experiments. In these experiments, only a few different stimuli were used, but 

the presentation of the stimuli were cut short at one of 7 predetermined locations, at 

which time the subject responded. For these blocks, 12 stimuli with different seeds 

were used, 6 (3 upward and 3 downward) at each of two (5.6% and 11.1 %) coherence 

levels. Each stimulus had 7 different cut versions which were repeated five times each. 

Thus one block had 12*7*5 = 420 stimulus presentations, randomly shuffled. 

Fig 3.4 shows the performance of one human subject (the author) from 4 blocks 

of cut experiments performed on the same day. The top shows the performance over 

time, i.e. at each of the seven cut times, for 3 stimulus movies at 5.6% coherence. Two 

striking features are the lack of convergence to correct performance over time and the 

occurrence of large fluctuations in decision probability with time during the movies. 

For the stimulus plotted with the thick line and open squares, the subject answered 

correctly on 18 of 20 stimulus presentations when the movie stopped at 0.5 sec (30 

frames), but the subject answered incorrectly on 18 of 20 times at the 1 sec cut . 

Later, at the 1.75 sec cut, the subject answered 20 of 20 correctly. Apparently, the 

stimulus appeared to be moving upward initially, and later, at 1 sec, moved downward 

even though it was generated at 5.6% upward coherence. The performance on two 

other stimuli are shown in Fig 3.4 (top). For one, performance was consistently 

high throughout the stimulus, while the other was marked by a progressive decline 

in performance. These fluctuations in decision cannot simply be caused by noise 

because the results from the four individual blocks are consistent. Fig 3.4 (bottom) 

shows the individual block results that contributed to the thick line in the top part of 

the figure. (The lines in the bottom panel are shifted for clarity, each line represents 

5 repetitions). 

The psychophysical subject in Fig. 3.4 is below threshold performance at c = 5.6%, 

achieving only 70% performance for the full 2 sec stimuli. The results from 11.1% 

coherence stimuli (not shown) indicate faster convergence to perfect performance, but 
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Figure 3.4: Results from "cut" experiments for c = 5.6% stimuli. Top: Psychophys­
ical performance varies consistently over time for three different stimuli. The heavy 
line shows that after viewing a particular stimulus for 0.5 sec the subject gives the 
correct answer on 18 of 20 trials, but at t = 1 sec, the subject chooses the preferred 
direction on 2 of 20 trials. Later, at 1.75 sec, the subject decides correctly on 20 of 20 
trials. For a second stimulus generated from a different random seed, the performance 
remains relatively constant at above 0.80 during the entire trial. A third stimulus 
produces a wide swing in performance during the trial, dropping to 1 out of 20 correct 
at 1.5 sec into the stimulus. Bottom: Results from the 4 separate blocks that make 
up the heavy line in the top plot. Notice the consistency from one block to another. 
Each block contained 5 trials at each of 7 different cut locations during the stimulus 
movie. The subject received auditory feedback for incorrect responses. 
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even at this above threshold level, particular stimuli can induce large fluctuations in 

performance or .can result in a progressive decline in performance over 2 sec. 

The stimulus in the cut experiments was centered along the horizontal axis. By 

inverting the stimulus about this axis, t he direction of all relevant motion signals in 

the stimulus are reversed, but all parts of the stimulus pattern remain at the same 

eccentricity from the fixation point. This stimulus inversion results in an inversion of 

psychophysical response (thus an identical response in terms of probability correct) 

as expected if a motion signal is driving modulation in the response. However, if the 

stimulus is mirrored about the vertical axis, thus swapping far for near eccentricities, 

the response pattern changes. This may be in part due to the known variations in 

spatio-temporal sensitivity with eccentricity. 

3.4 Summary and Future Work 

The preliminary psychophysical observations here suggest that the noise dots (which 

far outnumber the signal dots for c near and below threshold) carry signals that can 

supersede those carried by the signal dots alone. The noise dots do not, therefore, 

simply act in a way to suppress the coherent signal down to the level of biological 

noise in the system. This appears to be true even at coherence levels above threshold. 

We thought it best to gain an understanding of the stimulus and its interaction with 

a candidate biological motion system (see Chapter 6.1) before pursuing more rigorous 

psychophysical experimentation. 

In the future, more subjects must be tested and some controls need to be per­

formed. For one, the cut experiments should be performed in a block-wise fashion 

where each block consists of equal length stimuli to determine whether knowledge 

of the stimulus duration influences the decision process. Also, the cut experiments 

should be performed with larger aperture stimuli. In this case, one prediction is 
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that a larger field will provide both a more consistent coherent motion signal and a 

more balanced noise signal, increasing the chance of 0.5 performance early during a 

cut trial and decreasing the systematic fluctuations between up vs. down decisions. 

However, if the system is highly non-linear or if it weights the coarsest spatial scale 

most heavily, the same results may be obtained. 

For this motion discrimination task, it is evident that an observer may not be 

exclusively leaning to integrate subtle motion signals over space and time, but may 

also be learning to suppress types of motion signals that are not associated with the 

signal dots in the apparent motion display (e.g., Vain a et al., 1995). The analysis 

of the stimulus in Chapter 6 demonstrates that the signal dots have a characteristic 

sinusoidal structure in the frequency domain that might be learned. If the correct 

response-that which provided a reward to the subject- was determined by analysis 

of each particular stimulus using a biologically based motion detection system, the 

subjects are likely to perform better. It would be interesting to test whether such a 

system, if tuned for each observer, would vary substantially from one person to the 

next. Training and testing the motion system on a task that it does naturally, i.e., 

one based on smooth rather than apparent motion, might better assess the underlying 

reliability and noise level of the neural substrate of visual motion processing. 

Similar work regarding the reliability of responses in the face of noise is being 

conducted in the auditory system for noisy inter-aural time difference stimuli (H. S. 

Colburn, personal communication). 
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Chapter 4 

Precise and Reliable Temporal 

Modulation 

Originally we conceptualized the MT responses to the dynamic random dot stimuli 

as random spike trains whose mean rate was set by the coherence c used to generate 

the motion stimulus, and we were not aware that the trial-to-trial variation in the 

stimulus, caused by changing the randomization seed, was reflected in the spike trains 

(Britten et al., 1992; Britten et al., 1993; Softky and Koch, 1993; Bair et al., 1994). 

The observation that first revealed the cells' ability to follow variations in the 

stimulus was a rather puzzling one. When the post-stimulus time histograms (PSTHs) 

for a preferred and a null direction stimulus were plotted together, as in Fig. 4.1, they 

shared common peaks. The algorithm that generated the random dot stimuli was 

such that, when two oppositely directed stimuli are generated from the same random 

seed, as is the case here, the signal dots start at the same points in both stimuli but 

move in opposite directions , while the noise dots simply occur at the same points in 

both stimuli. If variations in the number or spatial distribution of the signal dots 

were dominant in setting the instantaneous firing rate of the cell, then we would have 
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expected the time courses of the null and preferred PSTHs to be inverted, not similar. 

Thus, the conclusions drawn from the psychophysical experiments in Chapter 3 were 

consistent with this observation- the noise dots seemed to play a significant role in 

creating modulation. We will take up this line of thought again in Chapter 6 when 

we discuss the frequency domain analysis of the stimulus. 

200 

700 900 1100 1300 

Time (msec) 

Pref36% 
Null36% 

1500 1700 

Figure 4.1: Responses of cell w038 to a particular stimulus pattern at c = 0.36 and 
c = -0.36. The noise dots were identical in both stimuli while the signal dots moved 
in opposite directions (preferred- thin line, null- thick line). If the modulated firing 
rate was caused by variations in the number of signal dots over time, then we would 
expect the modulation to be inverted for the null direction. The presence of peaks 
at similar times in both responses suggests that the noise dots create signals that 
strongly influence the firing rate of the MT cell. (Each PSTH was computed from 
15 trials using an adaptive window to capture 10 spikes.) 

This chapter will focus on quantifying the temporal modulation, without further 

questioning its origin. The temporal structure studied here is similar to a stimulus­

locked response sometimes referred to as a "grain" response which has been reported 

in earlier studies of mammalian visual cortex (Tomko and Crapper, 1974; Hammond 

and MacKay, 1977; Gulyas et al., 1987; Snowden et al., 1992). However, the time scale 

and stimulus dependency of this type of modulation has not been characterized at the 
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trial-to-trial level. Other types of stimulus-locked modulation have been studied as 

well. Stimulus-locked modulation has been shown to exist in visual cortex for static 

patterns (Richmond et al., 1987, Richmond et al., 1990). Also, studies have explicitly 

tested the temporal frequency tuning of LGN and visual cortical neurons (Derrington 

and Lennie, 1984; Foster et al., 1985; Lee et al., 1989; Levitt et al., 1994) using drifting 

sinusoidal gratings- stimuli that rarely induce temporal modulation in the output of 

MT cells (Sclar et al., 1990; J. Anthony Movshon, personal communication). The 

stimulus used in the present study is different from those of most previous studies 

that have focussed on temporal properties of neurons because it is both random and 

dynamic. We will characterize the modulation of the neuronal response in both the 

time and frequency domains so that our results may be compared to those from other 

studies of temporal modulation. 

4.1 Data Analy sis Methods 

All trials having a constant seed were grouped together and analyzed, but the values 

of the constant seeds were not stored, precluding stimulus reconstruction or the use 

of reverse correlation methods (McLean and Palmer, 1989; Bialek et al., 1991). 

We analyzed 54 cells in three monkeys: 26 for E, 9 for J, and 19 for W. (For 

monkey E, 22 of the 25 cells recorded in the old experiments were used here, plus 4 

cells recorded in later experiments on pairs of neurons.) Not all cells were recorded 

under all experimental conditions, so the number of cells involved in each analysis will 

be stated in the text. Cells with mean responses that changed by more than 100% 

during recording sessions were not included. In all computations, the PSTH for a set of 

spike trains was the average number of action potentials plotted as a function of time 

relative to stimulus onset and was computed at the same millisecond resolution as the 

original recordings- the data were not smoothed. The PSTHs shown in the figures , 
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however, were smoothed using an adaptive square window that was widened to include 

a criterion number of spikes. A one-sided estimate of the power spectral density of 

the PSTH was computed using the standard Fast Fourier Transform (FFT) algorithm 

and overlapping data segments with windowing (Press et al., 1988). To avoid biasing 

our statistics with the initial transient response, we restricted our analysis, except 

where noted, to the 1600 msec "sustained" portion of the spike trains that follows 

the 400 msec "transient" period beginning at stimulus onset, t = 0. Bursts of action 

potentials (consecutive spikes occurring with inter-spike intervals of 3 msec or less) 

can create excessive power at low frequencies for some neurons and therefore were 

replaced by single action potentials using the technique described in Chapter 7. 

This analysis focuses on properties of sets of spike trains that were recorded from 

single neurons using the same dynamic dot sequence. Sets of responses for randomly 

seeded stimuli, with all other parameters held constant, are referred to as "control" 

data. Ideally, the trials in a set of control data will have the same statistical prop­

erties as the responses to any particular pattern, but will not show stimulus-locked 

modulation in the sustained period of the PSTH. An example of a set of control data 

is shown at the left in Fig. 2.1. 

The following simple test for a violation of Poisson statistics was used to determine 

the presence of stimulus-locked modulation in a set of spike trains. The average firing 

rate was determined for the 1600 msec sustained period and taken to be the mean rate 

of a homogeneous Poisson point process. If the observed firing rate in any segment of 

the sustained period was improbably high at the 10-6 significance level, the response 

was considered to have stimulus-locked modulation. The stringent significance level 

reflects the inadequacy of the Poisson process to account for the refractory period, 

burst firing, and non-stationarities which are frequently found in spike trains. Of 

the 54 cells, 49 were found to respond to a dynamic dot sequence with significant 

temporal modulation based on 30 trials at c = 0. When run on 54 sets of control 
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data taken from the same number of cells in the same animals, The test for significant 

modulation yielded 2 false positives. Visual inspection of these false positives revealed 

that the spike rate changed slowly over the course of the trial and that this change 

was independent of the particular dot pattern. 

4.2 Results of Temporal Analysis 

A neuron presented with 90 different random dot stimuli at c = 0 produced an 

ensemble of responses (Fig. 2.1, left) that, except for the initial transient, can be 

approximated by a point process with a time-invariant mean rate, such as a homo­

geneous Poisson process modified by a refractory period (Bair et al., 1994). The 

right side of Fig. 2.1, showing 90 responses of the same cell to one particular c = 0 

random-dot stimulus, reveals that the neuron's firing pattern was very tightly locked 

to the stimulus. Thus, much of the apparent randomness of the ensemble on the left 

is caused by the fact that a different random dot pattern was presented on each trial. 

The firing pattern on the right can be modeled to first order by a random process 

with a time varying mean rate, such as an inhomogeneous Poisson process. The time 

varying modulation, estimated by the post-stimulus time histogram (PSTH, bottom 

right), is characterized by narrow peaks, often produced by single action potentials 

occurring at precise instants across trials. A second neuron responded to a dynamic 

dot sequence at c = 0 with a much higher firing rate but was still highly modulated 

(Fig. 4.2). 

After characterizing the temporal modulation in the time and frequency domains, 

we will contrast the patterned responses in F ig. 2.1 and Fig. 4.2 with the case of 

c = 1 stimulation, i .e. coherent motion, in which modulation is not present when an 

identical stimulus is repeated. 
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Figure 4.2: The neuronal response of cell e093 to c = 0 dynamic dot stimulation on 206 
trials using a particular stimulus pattern. This neuron produces a highly modulated 
response, like the neuron in Fig. 2.1, but has a much higher firing rate (113 Hz, SD 
15 Hz, 206 trials) . While the responses of most cells contained occasional clearly 
isolated epochs of elevated firing rate, this cell never dips down to its background 
firing rate (2Hz). The temporal precision of the response peak indicated by the thick 
bar below the PSTH is shown in Fig. 4.3, and the power spectra for both PSTHs are 
shown in Fig. 4.4. The lower, flat PSTH corresponds to 210 trials of control data. 
The adaptive window used to smooth the PSTHs was widened to include 40 spikes. 
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4.2.1 Precis ion and R e liability 

For the 49 cells which had statistically significant stimulus-locked modulation (see 

Data Analysis Methods), we quantified the temporal precision of the spike trains 

using the standard deviation (SD) in time of the onset of periods of elevated firing 

such as those indicated by peaks in the PSTH at the bottom right of Fig. 2.1. This 

technique is similar to that used by Sestokas and Lehmkuhle (1986). The standard 

deviation measure will be referred to as temporal "jitter" and has a small value for 

a highly precise response. Occurrence times of action potentials were recorded with 

a 1 msec resolution. In the worst case, this discretization would add 0.5 msec to 

the temporal jitter. Other sources of error in the recorded time of action potentials 

relative to stimulus onset were small compared to the discretization error. 

A peak in the PSTH corresponding to a period of significantly elevated firing 

probability (see Data Analysis Methods) was accepted as well enough isolated for 

analysis if an arbitrary point in time preceding the peak existed such that the mean 

time to the first spike in the response was greater than twice the standard deviation 

of the distribution of first spike times. For example, one statistically significant peak 

is marked by a thick line near 1740 msec in the PSTH at the bottom right of Fig. 2.1. 

Considering a period of 70 msec surrounding that peak, we measure the time from the 

beginning of the period to the first spike on each trial. The distribution of first spike 

times is shown in Fig. 4.3A. The SD, or jitter, is 3.3 msec and yet no action potential 

occurs for at least 25 msec prior to the response. The distribution achieved by this 

method is different from the shape of the peak in the PSTH which includes all the 

spikes, not just the first one in a response. In addition, by considering only the first 

spike in an isolated response period on each trial, our measurement is less likely to be 

biased by a refractory period or the inter-spike interval statistics for the neuron. For 

a few neurons, such as the one in Fig. 4.2, the significant peaks in the PSTH were not 
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well enough isolated to perform the jitter analysis for individual action potentials. In 

those cases, we searched for the first occurrence of a pair of spikes with less than a 

specified inter-spike interval (6 msec in Fig. 4.2) . The distribution of the occurrence 

of these pairs is shown in Fig. 4.3B . 
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Figure 4.3: MT neurons are temporally precise on the order of milliseconds. We 
measured precision as the standard deviation (SD), or jitter, of the beginning or 
ending time of a period of elevated firing, e.g. the periods indicated by the thick lines 
below the PSTHs at 1750 msec in Fig. 2.1 and near 1600 msec in Fig. 4.2. A . The 
distribution across trials of the occurrence time for the first action potential in the 
response during the period 1710- 1780 msec in Fig. 2.1. B. The distribution of the 
occurrence t ime of the first pair of action potentials fired within 6 msec in the time 
period 1570- 1640 msec in Fig. 4.2. C . The jitter for the most precise response periods 
is plotted against the response reliability (probability) for 49 cells (solid circles). In 
80% of cells, the minimum temporal jitter during the sustained portion of the response 
was less than 10 msec, with the smallest values near 2- 3 msec. For comparison, 
crosses indicate the jitter of initial transients (present in only 32 of 49 cells). At least 
30 repeated trials were used for each cell. Four points exceeded the horizontal scale, 
with jitter values of 16, 19, 27 and 69 msec. 

Reliability was measured as the probability that a response occurred during the 

periods described above. For the response period analyzed in Fig. 4.3A , the cell 
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responded (fired any number of action potentials within the response peak) on 24% 

of trials (see Fig. 2.1, right, for spike trains). The same cell had other, more reliable 

responses-the reliability for the response near 1000 msec was 84%. Within the 

response period marked on the PSTH for the neuron in Fig. 4.2, two spikes with 

inter-spike interval ~ 6 msec occurred on 95% of the trials. The distributions shown 

in Fig. 4.3A and B correspond to the most precise responses for the spike trains shown 

in Fig. 2.1 (right) and Fig. 4.2. For all 49 cells, the scatter plot in Fig. 4.3C shows 

reliability versus jitter for the most precise response during the sustained period (filled 

circles) and for the initial transient, present in only 32 of 49 cells (crosses). For 80% 

of cells, the most precise response during the sustained period had jitter less than 

10 msec and in some cases the jitter was as small as 2- 4 msec. The initial transients 

typically had less jitter than the most precise sustained period response. 

4.2.2 Frequency Profile 

The previous analysis focussed only on the most precise period of the responses in 

the time domain, but we now examine the entire sustained period response in the 

frequency domain. Temporal frequency profiles of the responses of the MT cells were 

computed as the power spectra of the PSTHs for c = 0 stimuli. Spectra are shown 

in Fig. 4.4 for the PSTHs in Fig. 2.1 (right) and Fig. 4.2. The power spectra are 

consistent with the notion that the cells act as low pass filters for the white noise dot 

stimulus; however, it is important that these profiles are not mistaken for temporal 

frequency tuning curves (see Discussion). There were no systematic peaks in the 

spectra at particular frequencies; for example, there was no stimulus refresh artifact 

as the dots were plotted asynchronously. Note that in Chapter 6 stimulus artifacts 

were observed for c = 1 stimulation. 

To compute an upper cutoff frequency for individual cells, we compared the power 
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spectrum for a particular stimulus pattern to that for a PSTH computed from control 

data in which all trials resulted from different c = 0 stimuli. The cutoff frequency 

was taken to be the lowest frequency at which the control power spectrum intersected 

the response power spectrum. The histogram of cutoff frequencies for 22 cells from 

monkey E reveals a range of values from 0 to 150 Hz (mean ± standard deviation 

= 58± 38 Hz, Fig. 4.4 bottom). Response data and control data from the same cell 

was only available for monkey E, but data recorded for individual coherent ( c = 1) 

motion stimuli for J and W served as a control because, as reported in the next 

section, modulation was virtually absent for coherent motion. The distribution of 

cutoff frequencies for nine cells from monkey J had a mean (46±10 Hz) that was not 

significantly different than that forE (t-test, p = 0.19), while the mean (23±12 Hz) for 

six cells from W was significantly lower than that for both E and J (t-test, p < 0.005). 

The distribution of cutoff frequencies shown in Fig. 4.4 is consistent with our 

analysis of data from other experiments, using a different display, in which 73% of 

cells (22 of 30) in monkey J showed a peak in their power spectrum at 40 Hz when 

a coherent dot stimulus (c = 1) was presented in frames at 40 Hz. In an experiment 

using moving bars, 24% of cells (12 of 49) in a fourth monkey (R) showed peaks in 

their spectra at 60 Hz when the bar moved on a 60 Hz frame-refresh monitor. 

Because the autocorrelation of a function is the Fourier transform of its power 

spectrum, these results may be interpreted in the time domain from the autocorrela­

tion of the PSTH. The autocorrelations (computed after subtracting the means from 

the PSTHs) displayed a single peak before falling to zero with a width at half-height 

of 36 ±20 msec (means for individual animals were: E 25±9.2, J 33±16, W 50±24). 

Note that both the autocorrelation function and the power spectrum are computed 

from the PSTH, and this is different from computing these functions for individual 

trials and averaging afterwards (as done by Bair et al., 1994). 
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Figure 4.4: Temporal frequency cutoffs for area MT cells in response to dynamic ran­
dom dots. The upper panels show the power spectra of the PSTHs for the neuronal 
responses shown in Fig. 2.1 (right) and Fig. 4.2. We defined the cutoff frequency 
for each cell as the lowest frequency at which the control spectrum intersects the re­
sponse spectrum. The lower panel shows the distribution of frequency cutoffs for 22 
cells from monkey E. Temporal frequency cutoff (defined as inducing 50% of the opti­
mal response) distributions for MT cells based on sine wave gratings are concentrated 
below 32 Hz (Michael J. Hawken, personal communication) . A cell-by-cell compari­
son of the temporal frequency profile based on sine waves and the power spectra in 
response to the random dot stimulus would be revealing but has never been made. 
(Monkey E was the only animal for which control data was available, see text .) 
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4.2.3 Response to Coherent Motion 

The presence of temporal modulation depended on the motion coherence of the stim­

ulus. While it was apparent for low coherence stimuli as shown in Figs. 2.1 and 4.2, it 

was absent for highly coherent motion, i.e. c = 1 (Fig. 4.5) . We defined a measure M 

of the overall modulation strength based on the power spectrum of the PSTH. M was 

the integral of the power spectrum in the 4- 30 Hz band divided by the mean spike 

rate across the PSTH. As shown in Fig. 4.6 and by the range of cutoff frequencies in 

Fig. 4.4, temporal modulation showed up as excessive contributions to this frequency 

band. In monkeys J and W, repeated stimulation using a particular dot pattern was 

performed at higher coherence levels, c = 0.5 and 1.0, in addition to c = 0.0. In both 

animals, the modulation strength M was not significantly different at c = 0 versus 

c = 0.5 (p > 0.20, paired t-test). Yet, for both animals, M was significantly less at 

c = 1 compared to c = 0.5 (statistical significance: p < 0.005 for monkey J, p < 0.05 

for monkey W) .1 

We note that M was not significantly correlated with spike rate (r = 0.09, p = 
0.50, M vs. log of spike rate) nor with the diameter of the stimulus aperture, which 

was optimized for the receptive field of each cell (r = 0.15, p = 0.31) . 

4.2.4 Discussion 

We have observed that a dynamic dot stimulus can produce periods of precisely timed, 

stimulus-locked modulation in the spike trains of neurons from area MT. While it is 

common practice to seek the stimulus that causes the "largest activity" (Lettvin et 

al., 1959), we have sought those periods in which the stimulus caused the most precise 

activity to form an estimate of the temporal precision with which the cortical network 

1 Because c = 1.0 stimulation was not used for a ll cells, these computations were based on nine 
cells in monkey J and six cells in monkey W. In all computations, the average M computed for 
control data from other cells within the same animal was subtracted. 
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Figure 4.5: Temporal modulation disappears for highly coherent stimuli. The spike 
trains and PSTHs demonstrate that the stimulus-locked temporal modulation present 
for incoherent motion ( c = 0) and for partially coherent motion ( c = 0.5) was virtually 
absent during the sustained period of the response to coherent motion (c = 1). This 
suggests that temporal dynamics beyond those found in rigid translation are necessary 
to induce a specific and unique time course in the spike discharge pattern. 
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Figure 4.6: Power spectra of the PSTHs in Fig. 4.5. The temporal modulation, 
reflected by excess power at frequencies below 60 Hz, was similar for c = 0 and c = 0.5 
but was absent for coherent motion. The PSTHs were expressed as instantaneous 
firing probabilities and the resulting power spectra were normalized by the mean 
firing rate. Our measure M of temporal modulation was the integral of the scaled 
spectrum in the 4-30 Hz band. Fifty-nine spike trains were included at each c. 
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can trigger an action potential within a neuron. Using the standard deviation measure 

of temporal jitter, we found that 80% of cells were capable of responding with jitter 

less than 10 msec, and the most precise responses had jitter less than 2 msec. The 

reliability of the cell, its probability of contributing to a peak in the PSTH on a 

particular trial, varied widely from 0 to 1 (Fig. 4.3). 

The output frequency profiles of the averaged responses of MT cells (Fig. 4.4) 

are all low-pass with a broad range of cutoffs, some above 100 Hz, while the visual 

input provided by the incoherent dynamic dot stimulus has a flat temporal frequency 

spectrum.2 Studies that used drifting sinusoidal gratings to determine the temporal 

frequency sensitivities of LGN and visual cortical neurons (Derrington and Lennie, 

1984; Foster et al., 1985; Lee et al., 1989; Levitt et al., 1994) found cutoff frequencies 

distributed lower than the distribution of cutoff frequencies reported here; however, 

we emphasize that the frequency profiles of the responses reported here should not 

be interpreted as temporal frequency tuning curves. We do not know, for example, 

whether power near 50 Hz in the response is caused by 50 Hz components in the 

stimulus or arises from a computation such as squaring or rectifying a 25 Hz input 

component.3 This could be tested if the seeds to the stimuli were known. However, it 

is not unreasonable to assume that area MT processes information that has frequency 

components in the 100's of Hz since temporal order, i.e., apparent motion, can be 

perceived for temporal separations down to 3 msec for a pair of optimally positioned 

bars (Westheimer and McKee, 1977). In addition, apparent vernier offsets can be 

perceived for temporal intervals as short as 1.9 and 2.2 msec (Burr, 1979). Even 

under the assumption that all inputs to area MT have relatively low temporal cutoff 

frequencies, high frequency signals may still be reconstructed from the spatial distri-

2In practice, the approximate 150J,tsec lifetime of the dots is so short that the departure from a 
fiat temporal spectrum is not significant to the monkey visual system. 

3Squaring a sine wave causes frequency doubling, and rectification introduces even higher 
harmonics. 
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butions of the inputs, in analogy to spatial hyperacuity. But there is evidence that 

precise and high frequency responses are carried by single neurons earlier on. Fast 

initial transients (having 50- 100 Hz oscillations) are observed in magnocellularly de­

rived responses in V1 (Maunsell and Gibson, 1992) and, in the cat, retinal ganglion 

cells can lock their output to 100 Hz flicker (Eysel and Burandt, 1984). 

The stimulus-locked temporal modulation that accompanies incoherent and par­

tially coherent motion is not present for coherent motion, even though the same dots 

are flashed at the same time and location from one presentation of the coherent stim­

ulus to the next and in a manner such that only a single dot is likely to be within a V1 

sub-unit of an MT receptive field at any time (within 50 msec or longer). In terms of 

the output, spatial inhomogeneities in the MT receptive field (so called "hot spots"), 

if they exist, are not apparent for this type of rigid pattern translation. Snowden et 

al. (1992), using a smaller and more dense stimulus (3° aperture), estimated that 

90% of MT cells did not modulate to a moving random dot stimulus; however, be­

cause the motion coherence of their stimulus is approximately equivalent to that of 

a c = 0.96 stimulus here, their results are consistent with the lack of modulation 

that we find at c = 1.0. For coherent motion in the neuron's preferred direction, we 

return to the simplest statistical description of the output of the cell: the mean spike 

count during the stimulus. In this case, the timing of individual action potentials 

may be governed by noise, but if more careful experimentation reveals that the spikes 

are precisely locked to internal fluctuations in the cortical network, we may realize, 

as Barlow (1972) observed for individual nerve cells, that " ... their apparently erratic 

behavior was caused by our ignorance, not the neuron's incompetence." In Chap­

ter 5, we study the response to coherent motion more carefully and find evidence for 

modulation that is not directly stimulus locked, and correlation between the signals 

of nearby neurons. 

What we find remarkable about these data is not primarily their relationship to 
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motion and motion energy models (Adelson and Bergen, 1985; Britten et al., 1993) 

but what they might imply about the significance of individual action potentials in 

cortical cells. It is a challenge to theories of cortical processing (Stevens, 1994) to 

explain how the observed low probabilities of synaptic transmission in cortical brain 

slices (Smetters and Nelson, 1993; Thomson et al., 1993; Allen and Stevens, 1994), 

combined with single synaptic contacts among pyramidal cells in mammalian cortex 

(Freund et al., 1985; Andersen, 1990; Gulyas et al., 1993), can give rise to these 

highly reproducible spike patterns in cells 7 to 8 synapses remote from the sensory 

periphery over a two hour long experiment in a behaving animal (see also Lestienne 

and Strehler, 1987; Abeles et al., 1993). Mainen and Sejnowski (1995) report that 

sustained current injection into cells in neocortical slice leads to a variable spike 

response, while repeated stimulation with a particular white noise current evokes a 

highly reliable spike pattern. Their findings in cortical cells suggest that the spike 

triggering mechanism itself is capable of accurately encoding temporally modulated 

input into spike trains, possibly providing the biophysical substrate of our results. 

However , it remains to be determined to what extent the rapid temporal modulation 

reported here carries any detailed information of behavioral significance. 

In Chapter 6, we show that a motion energy model (Adelson and Bergen, 1985), 

when driven by the dynamic dot stimulus, can produce precise and high frequency 

temporal modulation. However, the model does not attempt to represent sources of 

jitter that might affect the neuronal computation and, therefore, does not explain how 

the transmission from retina to area MT remains so crisp. The argument presented in 

Chapter 6 will depend upon the connection, derived in the final section of this chapter, 

between the temporal frequency content of the signal and our precision measure. 
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4.3 Temporal Precision in the Frequency Domain 

This section provides an analytical expression that links the measure of precision in 

the time domain to the frequency domain analysis. This analysis considers the special 

case in which the probability of firing an action potential is described by a half-wave 

rectified sine wave of a particular amplitude. The analysis predicts that even if only 

low frequencies are passed by the system, the appropriate normalization, consisting 

of truncation and rescaling, can lead to highly precise responses. 

The probability density for the first spike time that is generated from an inhomo­

geneous Poisson process with mean rate A(t) is 

(0 ::::; t). (4.1) 

The numerator is related to the product of the probability that a spike occurs at 

time t and the probability that no spike occurs before time t. The denominator is 

related to the probability that at least one spike occurs at any time, i.e., one minus 

the probability that a spike never occurs. If A(t) = A0 , f(t) is simply the decaying 

exponential distribution, 

(4.2) 

which describes the inter-spike interval distribution of a homogeneous Poisson process. 

We consider the case where the mean rate, A(t) , of the inhomogeneous process is given 

by one half period of a half-wave rectified sine wave having frequency fo and producing 

on average N spikes per lobe, i.e, 

A(t) = N1r fo sin(27r Jot) (0 ::=; t ::=; l/(2Jo)). (4.3) 



Substituting this into Eqn. 4.1 yields the probability of first spike time 

N-Ncos(27rfot) 
2 
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(4.4) 

This probability distribution is plotted in Fig. 4. 7 for the case N = 5 spikes and 

f o = 32 Hz. This distribution is designed to model those in Fig. 4.3 A and B. As 

in Fig. 4.3, the temporal precision is computed here as the standard deviation of the 

distribution of first spike times. The standard deviation depends upon the frequency 

and amplitude, i.e. , firing rates, of the sine wave in Eqn. 4.3. Fig. 4.8 shows the 

precision that can be achieved for varying frequencies (fo) and varying spike rates 

(N). In Chapter 6, we show that given the frequencies passed through a quadrature 

energy model, and depending on the type of normalization, one can achieve highly 

precise spike trains. 

o~--~----~~------~ 
0 5 10 15 20 

Time (msec) 

Figure 4. 7: The probability density function for the first spike time for one lobe of a 
half-wave rectified sine wave of frequency f o = 32 Hz and spike density N = 5. The 
standard deviation of the probability density function is 2.3 msec, corresponding to 
the most precise events observed in the stimulus locked temporal modulation of the 
MT spike trains. 
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Figure 4.8: The temporal precision (standard deviation) of distributions like that 
shown in Fig. 4.7 (Eqn. 4.4) are plotted for fo = 8, 16, 32, and 64 Hz (from top to 
bottom) as a function of mean spikes per event (N). 
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Chapter 5 

The Response to Coherent Motion 

Coherent motion, i.e., c = ±1, is usually the strongest stimulus for the MT neurons 

in terms of elevating or suppressing mean spike rate during the sustained period 

of the response, and the neuronal discharge evoked by this stimulus condition is the 

most likely to resemble that evoked by a natural environment. Results of the previous 

chapter suggest that the coherent motion stimulus caused little, if any, stimulus-locked 

modulation during the sustained period of the response, in marked contrast to the 

incoherent motion stimulus. Following this observation, the c = ±1 spike trains were 

analyzed as a separate group, with the idea that any remaining temporal modulation 

could be intrinsic to the cortical processing and not due to stimulus variations. 

This chapter begins by describing the occurrence of excessively long inter-spike 

intervals, or gaps, that occur in the brisk response to preferred motion and excessively 

dense clusters, or bursts, of spikes that occur in the suppressed response to null motion. 

(The bursts described here occur at a longer time scale than those described later in 

Chapter 7.) In the second section of this chapter, a novel cross-correlation technique 

reveals that the gaps tend to occur at similar times in pairs of neurons that were 

recorded from a single electrode in a previous study (Zohary et al., 1994). Common 
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inhibition is discussed as a possible mechanism underlying the gaps. 

In the absence of stimulus induced modulation, the c = 11 data are also ideal 

for estimating the variability of the spike trains. A renewed interest in spike train 

variability (Softky and Koch 1993; Shadlen and Newsome, 1994; Usher et al., 1994; 

Bell et al., 1995) has in part been sparked by a different analysis of this MT database 

(Softky and Koch, 1993). The final section of this chapter compares the variability 

of the inter-spike intervals for c = 1 stimulation to that for incoherent stimulation. 

Variability of spike count is also examined, and a statistical model reveals that the 

presence of long gaps in the spike train can create a power-law dependence of the 

variance upon the mean spike count, consistent with previous reports from cat and 

monkey visual cortex. The chapter ends with a discussion of variability and specula­

tion about the nature of the signal that is supplied to the axon initial segment under 

coherent motion stimulation. 

5.1 The Symmetry of Gaps and Bursts 

The response of an MT neuron to a random dot stimulus moving coherently in its 

preferred direction can roughly be broken into a transient and a sustained period. 

The transient period can be highly variable, but is marked by adaptation which leads 

to a sustained firing rate within the first 600 milliseconds (Allman et al., 1985). Early 

in the sustained period, typically 600- 900 msec post-stimulus onset, we have observed 

excessively long ISis, or gaps. Fig. 5.1 (top) shows an example of a neuron's brisk 

response to preferred motion being interrupted by gaps that are roughly 100 msec 

long and occur predominantly in the second quarter of the 2 sec response. This is not 

accounted for by the slow, steady adaptation (presumably due to potassium currents) 

1 At c = -1, the firing rate is often too low for analysis. 
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which is observed under current injection in neocortical pyramidal neurons, e.g., the 

RS1 and RS2 neurons of Agmon and Connors (1992). 
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Figure 5.1: The appearance of long inter-spike intervals near 600- 900 msec in the 
brisk response to preferred direction motion (top) is mirrored by clusters of action 
potentials in the weak response to null direction motion (bottom). 

The bottom of Fig. 5.1 shows a symmetrical phenomenon which occurs for null 

direction motion. Clusters of action potentials occur during the null stimulus at nearly 

the same time as the gaps did for preferred motion. In some neurons, the clusters 

are even more highly characterized and restricted in time than the gaps, but over all, 

the gaps appear to be a more robust feature. Two additional examples, Fig. 5.2 and 

Fig. 5.3, show the diversity of the gaps and bursts. 
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Figure 5.2: The bursts in response to null, c = -1, motion (bottom) can have a 
duration that is as characteristic as that for the gaps in the response to preferred 
motion (top), as shown here for cell e039. 
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Figure 5.3: The bursts (bottom) and gaps (top) occur at roughly the same t ime, 
600- 900 msec for cell jOOl, however, there is no cell-by-cell correlation across the 
database. The bursts rarely are more localized in time than shown here. 
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We analyzed the 84 neuron subpopulation of the 216 neuron database for which 

both c = 1 and c = -1 stimuli were presented and for which the spike rate in 

response to c = 1 was at least 20 Hz (since gaps would not be detectable at low firing 

rates). For each neuron, we determined the peak time of occurrence of gaps during 

preferred trials and the peak time of bursts during null trials. Because the long ISis 

can be hidden in a post-stimulus time histogram (PSTH) by the surrounding high 

firing rate (particularly if adaptation has not subsided), we converted the spike trains 

to their interval representation. The interval representation at each millisecond is 

simply the length of the lSI encompassing that sampling point. This representation 

(an example of which is shown later in Fig. 5.9) looks like the a city skyline where 

skyscrapers are long ISis. IPSTHs (interval PSTHs) were computed for preferred 

responses by summing the interval trains, and regular PSTHs were computed for 

the null responses by summing the spike trains. Both are shown smoothed with a 

Gaussian of u = 40 msec in Fig. 5.4 for the spike trains in Fig. 5.1. 

1 
IPS TH (Pref.) PSTH (Null) 

0~~~~~~~~~~~ 0~~~~~~~~~~ 
200 800 1400 2000 200 800 1400 2000 

Time (msec) Time (msec) 

Figure 5.4: The normalized interval PSTH (IPSTH) for preferred motion and the 
regular PSTH for null motion. The peak of each plot is summarized in Fig. 5.5. for 
the subpopulation of neurons studied here. 

Frequency histograms of the time of the peak in the preferred IPSTH and the 

null PSTH are shown in the left and right, respectively, of Fig. 5.5. The left panel 

of Fig. 5.5 shows that 76% of cells have their longest ISis before 1200 msec, with a 
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Figure 5.5: Across the population of neurons, the longest ISis occur more often 
between 600- 900 msec for preferred direction motion (left). This is mirrored by the 
densest occurrence of action potentials at nearly the same time for null motion (right). 
The dip at 1200 msec appears in both plots also. In the null motion case, twenty 
neurons had highest firing rates closer to the beginning of the trial (open bar, right). 
In some cells, the distinction between the initial transient and the burst response 
becomes ambiguous. 

preference for 600- 900 msec. The right panel indicates that the clusters of spikes in 

the null responses also occur most densely before 1200 msec, with a preference for 

600- 900 msec. Analysis of the null data is complicated by a trend for the firing rate 

to decay throughout the first quarter of the trial. Thus, 13 of the 20 cells in the first 

bin actually had their highest firing rate earlier than 400 msec, but this portion of 

the response is dominated by initial transients. The similarity of the time courses of 

the gaps and the bursts across the population lead us to describe these phenomena 

as symmetrical; however, we find that there is no correlation (r = 0.06, p = 0.66) on 

a cell-by-cell basis between the times of the peaks in the IPSTH and PSTH. 

Gaps occurred in the previous examples for c = 1 stimulation, a condition which 

does not impose stimulus-locked temporal modulation on the spike train. Fig. 5.6 

shows data from other experiments2 in which the dot stimuli were shown in syn-

2These data were recorded in the "split-field" experiments (unpublished data of K. H. Britten 
and W. T. Newsome). 
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chronous "movie" frames at 40 Hz. This induced a structured firing pattern composed 

of bursts of spikes with 25 msec center-to-center spacing. The gaps tend to destroy 

two cycles of response, but very rarely three- indicating that the mechanism causing 

the gaps lasted less than 75 msec for this cell. The lSI distribution in Fig. 5.7 for these 

data shows more directly that the gap duration tends to cluster below 75 msec (3 

cycles* 25 msec/cycle, minus about 8 msec to account for the lengths of the bursts) 

with some around 50 msec, and only very few near 100 msec. This suggests that, if 

created in a controlled manner, precise temporal modulation may provide a tool for 

revealing properties of neurons. For example, it would be interesting to induce bursts 

every 80 msec to test whether the gaps would remain visible by destroying the bursts 

or whether they would disappear or possibly lie between the bursts. 

Our final example violates two rules of conduct: (1) do not argue based on a 

single neuron, and (2) do not analyze data from an injured neuron. Nevertheless, 

Fig. 5.8 shows that in the early trials (within each block, trials are shown in the order 

collected, with the first trials at the top) long gaps appear by 500 msec into the trial. 

On later trials these gaps are not present. Such a drastic non-stationarity is often 

taken as an indication that the cell, or its inputs, were damaged by the electrode; 

however, we cannot definitely rule out that these changes might be related to normal 

cortical function . The trials in the lower block were recorded at c = -1 and, in the 

original experiment, were interleaved with the trials of the upper block, so it is clear 

that the cell maintained its direction selectivity. For example, if only the data from 

0- 300 msec are considered, the cell is strongly and consistently directional. This 

example is consistent with the notion that the gaps arise from a mechanism that 

is independent of the one that carries the signals that account for the directional 

selectivity of the neuron. The signals providing direction selectivity are likely to 

arise somewhat directly from V1 inputs, while the signal creating the gaps may be 

generated by connections intrinsic to area MT. Of course, this is speculation, and 
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Figure 5.6: In the "split-field" experiments, 1.5 sec duration coherent dot stimuli were 
presented in frames at 40Hz. This induced 40Hz modulation in 22 of 30 cells studied. 
Bursts and gaps appeared under these experimental conditions as well, even though 
the temporal structure was under the control of the stimulus, unlike the previous 
c = 1 examples. Superposed on a known firing pattern, the time course of the gaps 
may be better characterized. The lSI distribution for the response to preferred motion 
(top) is shown in Fig. 5.7. (Data for ecode 5500- full field- was merged from left, 
right, and transparent files for cell j337.) 
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Figure 5.7: The lSI histogram (smoothed with a Gaussian of a = 1 msec) shows 
the typical length of the gaps for cell j337 (Fig. 5.6, top). ISis taken from t=300-
1500 msec. 

it is possible that the observed non-stationarity has nothing to do with the gaps in 

healthy neurons. 

It would be particularly interesting to know if the gaps, and bursts, are correlated 

across neurons. If so, this could lead to identifying a mechanism to account for the 

correlation that is known to exist in spike counts from pairs of MT neurons (Zohary 

et al., 1994). In the next section, we look at the correlation between pairs of neurons 

with an analysis that emphasizes the gaps. 

5.2 Interval Cross-correlation 

If inhibition causes the gaps in the response to preferred motion, based on what is 

known about the architecture of inhibitory interneurons in cortex (Berman et al., 

1992), it is likely that the gaps are correlated between nearby MT neurons. For 

instance, it was suggested early on (Somogyi et al., 1982) that axoaxonic interneurons, 

known to project to the axon initial segment of hundreds of pyramidal neurons within 

a 100- 200J.Lm diameter cylinder, would be useful for synchronizing the output of 

pyramidal neurons, and this has been demonstrated in models (Lytton and Sejnowski, 

1991). 
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Figure 5.8: The discharge from an apparently injured neuron (j258) displays gaps that 
occur near the usual time in the first few trials recorded but occur less frequently on 
later trials. (The trials are displayed in the order recorded, but preferred (top) and 
null (bottom) blocks were interleaved .) If only the first 300 msec of the response is 
analyzed, the cell is strongly and consistently directional, in spite of the waning of 
the gaps. 
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To test this hypothesis , we analyzed spike trains from pairs of MT neurons that 

were recorded in a previous study (Zohary et al., 1994) . These cells were recorded 

simultaneously using a single extracellular electrode. The standard motion discrim­

ination paradigm was used, but the stimulus was generated on a 60 Hz raster scan 

device. 

Standard cross-correlation analysis of extracellular spike trains is equivalent to rep­

resenting the action potentials as 1 's in an array of O's, typically sampled at 1 msec or 

finer resolution, and computing the discrete cross-correlation function. This method 

is ideal for detecting relationships due to common sources of excitatory input, but 

common inhibition is notoriously more difficult to detect (Perkel et al., 1967; Aertsen 

et al., 1989). This is because at a millisecond resolution with typical firing rates of 

20 spikes/sec in two neurons, it is unlikely that spike trains are cross-correlated at 

random; the probability of a spike in neuron 2 lining up with a given spike in neuron 

1 is 1/50. Such low chance probabilities makes even a weak correlation in the timing 

of action potentials stand out above the background. However, the probability of 

there being no action potential from neuron 2 at a time when neuron 1 did not fire 

is 49/50. Thus inhibition can be very difficult to detect (and almost impossible to 

detect if it acts for only a short time). 

We have developed a technique that can isolate and emphasize the contribution 

to the cross-correlation made by long ISis. To emphasize the presence of long ISis, 

the spike trains are transformed into interval trains as described above and shown 

in Fig. 5.9. This removes some of the information regarding the precise occurrence 

times of action potentials. For example, if two spike trains are perfectly regular at 

40 Hz, the interval trains will be flat. The interval cross-correlation (ICC) between 

each pair of interval trains is computed and averaged over all trials, and the average 

shift predictor is subtracted. Fig. 5.10 shows ICCs (thick lines) for two different pairs 

of neurons. In 17 of 31 pairs (55%), there were peaks in the raw ICC that were at 
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Figure 5.9: Simultaneously recorded spike trains (upper) and their interval represen­
tations (lower, amplitude in msec). Long ISis transform to large boxes. The longest 
intervals seem to occur at similar times. This correlation is evident in Fig. 5.10 
(Recording site emu084). 

least 4 standard errors above the level of the shift predictor. The peaks were on 

average centered (mean 4.3 msec, SD 54 msec) and had mean width-at-half-height of 

139 msec (SD 59 msec). The negative-going lobe in Fig. 5.10 (left) is caused by dense 

firing following the long ISis in one of the cells. This occurs in roughly 6 cases, and 

is consistent with the notion that one cell fires above its mean rate directly following 

the gap, as would be the case for post-inhibitory rebound. 

To isolate the cause of the peaks, the long intervals in the trains were set to the 

mean of the short intervals. The long intervals were defined as those that accounted 

for 30% of the duration of the data and were longer than all short intervals. Note that 

this is only a small fraction of the number of ISis in the spike train (typically less than 

about 10%), since a few long intervals consume the same amount of time as many 

short intervals. Data from 300- 1950 msec were processed, avoiding the transient 

portion of the response and the end of the spike train where the final inter-spike 

interval is unknown. With the longest intervals neutralized, the peaks were pushed 

down to the level of the noise in the ICC (thin lines, Fig. 5.10). Thus, 90% of the 

action potentials are serving to set a mean rate, and it is a few periods of long ISis 
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Figure 5.10: Peaks in the interval cross-correlations for two pairs of neurons (thick 
lines) are extinguished when the longest ISis are removed (thin lines), leaving 70% 
of the data (over 90% of ISis) intact. This demonstrates that long ISis can provide a 
dominant source of correlation. 

that dominate the ICC peaks. 

5.3 Implications of Gaps and Bursts 

We have identified a symmetry in the time course of the responses to preferred and 

null direction motions in area MT neurons which occurs in the absence of stimulus 

pattern induced temporal modulation. The occurrence of bursts during the coherent 

null direction motion is the less robust phenomenon but might be easier to explain 

than the gaps. One hypothesis is that the bursts result from the activation of a 

transient low threshold ca++ current, IT, from which inactivation has been removed 

by the strong inhibition of opponent inputs. This is known to elicit burst discharge. 

We know of no internal mechanism that would cause the gaps, and therefore hy­

pothesize that they may be the result of inhibition applied externally. The gaps seem 

to be a veto on the brisk firing induced by preferred motion; they appear in the midst 
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of high firing with no apparent gradual slowing down of the firing rate that is char­

acteristic of adaptation. The gaps are unlikely to be caused by cessation of activity 

in the excitatory fibers coming from V1 because a motion energy model applied to 

the sparse dot stimulus shows that the excitation to individual V1 cells is transient in 

nature (see Chapter 6). We propose that the gaps arise from a computation organic 

to area MT. In Chapter 6, we show that the dynamic dot stimulus activates both 

null and preferred direction motion energy units, thus providing a possible drive for 

inhibition to the neuron during its preferred direction stimuli. 

The observation that long ISis, i.e., gaps, are correlated in 55% of pairs of neurons 

simultaneously isolated from a single electrode is also consistent with a common source 

of inhibition acting on both cells. A number of studies have proposed that inhibition 

plays an important role in giving MT cells their tuning properties (Mikami et al., 

1986; Mikami, 1992). If inhibition causes the gaps, it may be from a different source 

than that proposed by Snowden et al. (1991) and Qian et al. (1994) if it comes from 

axoaxonic or basket cells making synapses onto the axon initial segment or soma, since 

this is unlikely to come from individual motion energy subunits. It has been reported 

recently that axoaxonic cells do show adaptation (Han, 1994) , and this adaptation 

could be responsible for the limited time course of the gaps. Inhibition from large 

basket cells is believed to be non-specific for orientation in primary visual cortex 

based on anatomical evidence (Kisvarday and Eysel, 1993), so it would be interesting 

to see if the correlation between gaps varies with direction preference between pairs 

of MT neurons. 

Neither the gaps nor the bursts display traits that are indicative of a stimulus 

artifact. They appear in data recorded over the course of 8 years for stimuli created 

by different software and displayed on different types of CRTs. The diversity of their 

time course and time of occurrence is characteristic of natural phenomena in cortex. 

However, it is necessary to find gaps in the response to other moving patterns if these 
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observations are to be taken seriously. 

The monkey was awake and maintaining fixation during these experiments; there­

fore, it is worth questioning whether the gaps could be created by eyelid blink or by 

small saccades within the fixation window. It may be unlikely that the animal would 

blink during the stimulus presentation and risk breaking fixation. Also, variability of 

the timing of the gaps from neuron-to-neuron is inconsistent with eye blink; it is un­

likely that the animal would consistently blink earlier for one neuron than for another. 

If the animal does blink, there is no obvious advantage to suppressing the response 

in area MT to stimulus motion during the blink. However, there is evidence that 

eye blinks are accompanied by a suppression of low spatial frequency vision which 

is of neuronal origin (Volkmann et al., 1982). It has been hypothesized that blink 

suppression and saccadic visual suppression may operate through the same pathways 

(Ridder and Tomlinson, 1993), and there is a clear advantage to suppressing responses 

to motion induced by saccadic eye movements. Although eye blink seems to be an 

unlikely cause for the gaps, it would not make the observation less interesting but 

would change some of our interpretations. Small saccades are more likely to account 

for the gaps than eyelid blink, and this possibility cannot be ruled out with the cur­

rent data. Data from anesthetized monkeys, unable to blink or make saccades, could 

settle this issue. 

We are pursuing further analysis to compare the correlation induced by the gaps 

to the correlation which causes narrow peaks, typically less than 10 msec wide, in 

standard cross-correlograms (for example, see Fig 6.18) that are often attributed to 

excitatory input (Ts'o and Gilbert, 1988; Kreiter and Singer, 1992). Both are sources 

of correlated spike count between pairs of cortical neurons. Correlation in spike 

count is an important factor that can limit the useful pool-size of neuronal ensembles 

(Zohary et al., 1994; Gawne and Richmond, 1993). Also, the long ISis can provide an 

explanation for the power-law increase in variance of spike count with mean firing rate 
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that has often been reported in monkey (Vogels et al. , 1989; Snowden et al. , 1992). 

We have demonstrated this with a simple statistical model (unpublished results). 

5.4 Response Variability 

The high variability of spike trains has been noted in a number of recent studies 

(Softky and Koch, 1993; Shadlen and Newsome, 1994; Bell et al., 1995) and many 

older studies, some of which will be noted below. In this section, we briefly consider 

the variability of the MT spike trains in terms of spike count and inter-spike interval. 

Now that we have recognized the lack of stimulus-locked temporal modulation in the 

response to coherent motion stimuli (c = 1), we thought it is worth reconsidering 

variability in these terms. 

We show that a statistical model motivated by the presence of long gaps in the 

spike trains can account for a power-law relationship between the mean and variance 

of spike count . We also consider implications of the small difference between the 

variability of c = 1 and c < 1 data in terms of coefficient of variation. 

5.4.1 Variability of Spike Count 

When spike count in a fixed time interval is used as the response measure for a neuron, 

the plot of variance versus mean response has revealed slopes on a log-log plot that 

are typically larger than 1.0 (Tolhurst et al., 1981; Dean, 1981; Bradley et at., 1987). 

Vogels et al. (1989) were the first to estimate response variability of striate neurons 

in behaving monkeys (using stationary square wave gratings). T hey reported a power 

of 1.11 and a variance that was 1.9 times the mean. Snowden et al. (1992) were 

the first to do a similar computation in an extrastriate area of a behaving monkey 

(using moving random dot patterns). They reported a power of 1.21 in V1 (intercept 
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1.08) and a power of 1.10 in MT (intercept 1.37). Softky and Koch (1993), in a 

different analysis of the MT database studied here, reported an exponent of 5/4 in 

the relationship between variance and mean of spike count. 

0 

100L---~--~~~~~----~--~~~~~----~~--~~~~ 
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Mean Spike Count 

Figure 5.11: Response variance plotted agains response mean for spike count during 
400- 2000 msec. The dotted line shows the prediction from a Poisson process, while 
the solid line shows a prediction based on Eqn. 5.5 with r = 0.15. 

According to numerous studies, this relationship appears to hold irrespective of 

what stimulus is used to achieve the mean rate (Dean, 1981; Tolhurst et al., 1981; 

Vogels et al. 1989). Vogels et al. (1989) stated, "This finding suggests that the 

relationship between response strength and response variance is a very general one 
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and is unrelated to the stimulus variable responsible for determining the response 

strength." Snowden et al. (1992) reiterated this statement. 

We have found that a statistical model using compound distributions can account 

for a higher power in the relationship between variance and mean spike count. The 

motivation for this model comes from the observation of long gaps reported at the 

beginning of this chapter. A formal description is given below. 

Let the spike count SC on a trial be the sum of the spike counts Xi from N 

independent time intervals of length T. 

(5.1) 

Let the number of spikes X i be Poisson distributed, with mean rate >.. Then, 

E(X) = VAR(X) = >.T. (5.2) 

Now let N be distributed with mean I" and standard deviation a-. From the result in 

the Appendix of Chapter 7, 

E(SC) 

VAR(SC) 

E(N)E(X) = f.LAT, 

E(N)VAR(X) + VAR(N)E2 (X) = f.LAT + a-2 (>.T) 2
• 

(5.3) 

(5.4) 

Defining M = f.LAT , the mean spike count, and r = a-/ f.J,, the coefficient of variation 

of the number of intervals (or length of time, as T -+ 0) during which the Poisson 

process operates, then 

(5.5) 

Choosing r = 0.15, a reasonably small value, produces the solid line in Fig. 5.11. The 

dotted line shows the result expected for a Poisson process (mean = variance). The 
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points show data from all MT cells with more than 5 trials at c = 1. Therefore, we 

conclude that the presence of long gaps, as reported above, can cause the relationship 

between variance and mean spike count to have an apparent power-law dependence, 

with exponent between 1 and 2. Usher et al. (1993) have previously accounted for 

variability in terms of a network model using feedback and inhibit ion that generate 

spike trains having statistics indicative of fractal processes. 

5.4.2 Variability of Inter-spike Interval 

Another commonly used method for characterizing variability is through the compu­

tation of Cv, the coefficient of variation (the ratio of the variance to the mean) of the 

inter-spike interval distribution (see references in Softky and Koch, 1993). Since there 

is little, if any, stimulus-locked temporal modulation for c = 1 stimuli, we wondered if 

the signal arriving at the spike generating zone might be less variable for c = 1 than 

for c = 0. For c = 0 stimulation, there must clearly be large fluctuations to produce 

the temporal modulation noted in Chapter 4. By analogy to the results of Mainen 

and Sejnowski (1995), is it possible that the apparently constant input, c = 1, gener­

ates a more regular (although less stimulus-locked) spike train? Since Cv is known to 

vary with spike rate, we computed the Cv at a fixed spike rate for c = 1 stimuli and 

separately for all other stimuli, c ~ 0.5. Fig. 5.12 shows that there is only a small, 

but statistically significant, reduction in the Cv of the lSI for coherent stimulation, 

indicating that the spike trains are slightly less variable for coherent motion. This is 

somewhat at odds with the proposals of past studies which indicated that variability 

was a function of spike rate, and was independent of the stimulus used to obtain that 

spike rate. However, the difference in the Cv is small, 0.06 on average across all spike 

rates, and we will consider the implications of this in the final section of this chapter. 

Our Cv values, computed from the sustained period of the response, range from 0.8 
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to 1.0 for lei < 1 stimulation (Fig. 5.12), and are somewhat less at c = 0 stimulation. 

Thus, we find that MT neurons, even when stimulated with random input, produce 

spike trains that are on average slightly more regular than a Poisson process. This is 

most likely related to the refractory period, discussed in Chapter 7 and Chapter 8. 
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Figure 5.12: The variability of the ISis, quantified by Cv, is plotted as a function 
of spike rate for coherent motion stimuli (c = 1, dots) and for non-coherent motion 
(c ~ 0.5). Each point is averaged over all cells. Bursts of spikes are eliminated by 
changing the spike trains to event trains as described in Chapter 7. The Cv is on 
average 0.06 less for coherent stimulation. This difference is statistically significant 
(p < 0.005), but small. 

5.4.3 Unexplained Variability? 

What sort of signal does the high-contrast coherent preferred motion stimulus supply 

to the spike initiating zone of the MT neuron? The first answer might be that the cell 

is saturated by its optimal stimulus, and should be receiving a constant, high level 

of excitation. There are two problems with this answer. First, cross-correlograms 

between pairs of neurons should be flat if either of the cells is saturated. Second, 

constant current injection to neocortical pyramidal cells in vitro produces a regular 
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train of action potentials with regular adaptation (although this is not true in vivo­

see Holt et al., 1995). Neither of these conditions are satisfied here. However, a 

modulated, e.g. white noise, signal injected in vitro produces a spike train that is 

irregular but precisely locked to the injected signal (Mainen and Sejnowski, 1995). 

The apparent answer is that the MT cells receive a highly modulated signal, but one 

that is not locked to the visual stimulus. Narrow peaks in the cross-correlograms 

due to excitation is one method for identifying modulation in the input signals. The 

peaks reported here, caused by what might be common inhibition, may result from 

input supplied separately to the soma or initial segment of the axon and act as a 

veto on the signals originating in the dendrites. This is nevertheless still a source 

of modulated input to these MT cells. We cannot yet tell whether this modulation 

is an amplification of noise or whether it carries signals that are important for the 

functioning cortical network. 
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Chapter 6 

Modeling Spike Trains from Area 

MT 

This chapter describes the application of a motion energy model to the dynamic dot 

stimulus. We wanted to know whether the precise temporal modulation reported in 

Chapter 4 was consistent with the output of this class of computational model, which 

has been widely compared to electrophysiological data from both area MT and its V1 

inputs (Heeger, 1987; Grzywacz and Yuille, 1990; Emerson et al., 1992; Qian et al., 

1994; Nowlan and Sejnowski, 1994 and 1995). This model has led us to two major 

conclusions. First, the integration of the outputs of motion energy units can be made 

consistent with the presence of precise temporal modulation in the MT spike trains. 

Output from the model is shown, and the motion energy mechanism is analyzed in 

the frequency domain. Without knowing the exact stimulus patterns that were used 

in the original experiments, we cannot directly link the peaks in the PSTHs to the 

model output. Therefore, further experimentation is necessary to decide whether a 

motion energy model is an accurate description of the modulation. 

The second major conclusion is an offshoot of the model. By varying the stimu-
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lus speed, it became apparent that the stimulus was activating motion energy units 

tuned to motion in the opposite, or null, direction. An analysis of our numerical 

representation of the stimulus shows that its power spectrum is distributed in bands 

across the frequency domain. We compute an analytical expression for the power 

spectrum of the dynamic dot stimulus and show that it stimulates both preferred and 

null direction motion energy units within the optimal range of human psychophys­

ical and V1 cell sensitivities, even at slow to moderate velocities for MT cells, i.e., 

5- 10° /sec. We discuss the difference between the power spectra of the signal dots 

and the noise dots and link this to the psychophysical observations from Chapter 3 

and the stimulus-locked temporal modulation reported in Chapter 4. 

6.1 Architecture of the Model 

The model described here is similar to that of Adelson and Bergen (1985), and is 

therefore closely related to the Reichardt type of correlation motion detectors (Re­

ichardt, 1961; van Santen and Sperling, 1984). Our model differs from that of Adelson 

and Bergen (1985) in that it is implemented in two spatial dimensions and has a final 

stage which integrates the output of opponent motion energy units across the spatial 

extent of an MT receptive field. For completeness, the next section describes the 

implementation of the motion energy filters. See Adelson and Bergen (1985) for a 

more thorough motivation. The second section describes the integration stage of our 

model. 

6.1.1 Motion Energy Units 

A motion energy unit consists of a pair of spatio-temporally oriented linear filters 

that are 90° out of phase, i.e., a quadrature pair. The output of the unit, called 
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motion energy by Adelson and Bergen (1985), is the sum of the squared output of 

the filters. The motion energy signal is directional and has the advantage that it 

does not depend on the phase of the stimulus, consistent with physiological results 

for directionally selective complex cells in V1 of macaque monkey (Emerson et al., 

1992). One motion energy unit is encircled by the dotted line in Fig. 6.1. 

The oriented linear filters of the motion energy units are often taken to be Gabor 

functions in space and time (Heeger, 1987; Grzywacz and Yuille, 1990). However, we 

followed the method of Adelson and Bergen (1985) and constructed quadrature pairs 

of oriented filters from sums and differences of separable linear filters composed of a 

Gabor function in space (two-dimensional in our case) and a causal temporal filter, 

which is mathematically less convenient but which is more biologically plausible. The 

construction of the four linear filters is diagramed at the top of Fig. 6.1, and the point 

along the flow of the diagram that corresponds to the convolution of the image with 

those filters is labeled by the filter names, / 111 and / 712 for the inputs to the preferred 

direction motion energy unit and fn1 and fn2 for the null direction unit. The equations 

describing the oriented filters and their separable components are given below. The 

temporal filters are characterized in the frequency domain because the frequencies 

which these filters pass will be related to the precision of the temporal modulation. 

The construction of the oriented linear filters from two-dimensional spatial filters, 

91 and 92, and from causal temporal filters, h1 and h2, is described by 

/ 111(x, y, t) 9I(x,y)hi(t) + 92(x,y)h2(t) (6.1) 

f 112(x, y, t) 91(x,y)h2(t)- 92(x,y)h1(t) (6.2) 

fni(x , y, t) 9I(x,y)hi(t)- 92(x,y)h2(t) (6.3) 

fn2(x, y, t) 91(x,y)h2(t) + 92(x,y)h1(t), (6.4) 

where f 111 and f 112 are tuned to the preferred direction of motion, while fni and fn2 
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Figure 6.1: The structure of the motion energy model. One opponent energy MT 
sub-unit is shown contributing to our model "M-unit." The dotted circle indicates 
the null direction motion energy unit. The filters for the preferred and null motion 
energy units are constructed as prescribed by Adelson and Bergen (1985; Fig. 18b). 
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are tuned to the null direction (180° opposed to the preferred). The power spectrum 

of these three-dimensional filters is discussed in Section 6.4. The spatial filters are 

the even and odd Gabor functions, 

91 (x, Y) 

9z(x, y) 

:¥ cos(21r isx )e- "• 

¥ sin(21r isx )e- "• , 

(6.5) 

(6.6) 

where is is the spatial frequency and Us is the spatial spread. Ideally, these parameters 

are set to match those of V1 neurons. The model that results from these equations 

will be tuned to upward motion. To achieve other orientations, the stimulus is rotated 

in space before the filters are applied. The spatial extent of the receptive field is a 

function of the preferred spatial frequency, 

1 
f7s = 2is. (6.7) 

This is consistent with reports that macaque V1 receptive fields contain typically 

1- 2 cycles of their optimum spatial frequency (Foster et al., 1985). The spatial filters 

91(x,O) and gz(x,O) are shown in Fig. 6.2 (left) for the values is= 1.0 cycl/degr 

(us= 0.5 degr). 

Our model uses a causal temporal filter, unlike the more analytically tractable 

Gabor functions used by Heeger (1987) and Grzywacz and Yuille (1990). The tem­

poral filter is derived from the difference of two multi-stage low-pass filters, one with 

n + 1 stages and the other with n + 3 stages. Each low-pass filter has a decaying 

exponential impulse response function (like that of an RC filter), so an m-stage filter 

has impulse response 

1 (t)m-1 
am(t) = T(m- 1)! -:;. e-t/T (t 2: 0). (6.8) 
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Figure 6.2: Spatial and temporal filter waveforms. The spatial filters are Gabor 
functions along the dimension shown, and simply Gaussian along the orthogonal 
dimension. The temporal filters are differences of multi-stage low-pass filters, used 
by Adelson and Bergen (1985). 

It is interesting to note that this is the gamma probability density function that is 

used in Chapter 8 to model the refractory period for neuronal firing (set a = m, 

b = 1/T, and note that f(m + 1) = m! for integers). Both are the result of multi­

fold convolution of the decaying exponential function. In the case of the refractory 

period, the convolution is related to summing independent random variables with 

the decaying exponential distribution, while in this case the convolution derives from 

cascading linear filters based on a simple RC circuit . The filter transfer function, 

Am(!), is 

(6.9) 

The temporal filter used by Adelson and Bergen (1985) is the difference between an 

n+1 and n+3 stage low-pass filter, as defined in Eqn. 6.8, with the definition k = 1/T, 

where T is the time constant of the exponential decay for a single stage. This is the 

temporal filter of our model. Parameterized by ni and k, the filter is 

an;+I(t)- an,+3(t) 
k 

(6.10) 
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Figure 6.3: The frequency response of the temporal filters h1 (n = 3, solid line) and 
h2 (n = 5, dashed line). For both, k = 100. 

(6.11) 

The factor of 1/k keeps the equation consistent with Adelson and Bergen (1985) but 

makes no difference to the model. A similar temporal filter is used by Watson and 

Ahumada (1985) and Emerson et al. (1992), and they claim that it provides a good 

fit to human psychophysical data (reported by Robson, 1966) and to the temporal 

responses of V1 cells. The transfer function corresponding to Eqn. 6.11 is 

(6.12) 

The temporal filters h1 (t) and h2 (t) are shown in Fig. 6.2 for the values n1 = 3, 

n2 = 5, and k = 100 (T = 10 msec). Fig. 6.3 shows the modulus of H(f) for the same 

parameters. Scaling h(t) by changing the value of k will cause an inverse scaling of 

H(f), so the filters can be adjusted in this way to have cutoff frequencies in the range 

observed for V1 neurons, typically 4- 16 Hz (Foster et al., 1985). 
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6.1.2 Integration of Motion Energy 

The next stage of the model involves the integration of the outputs of many motion 

energy units. Our approach will be to average the outputs of opponent energy units 

across an area the size of an MT receptive field. This is described in detail below, 

but first a few other approaches are noted. 

A number of models have combined motion energy outputs to create velocity tuned 

units with some similarities to MT neurons (Heeger, 1987; Grzywacz and Yuille, 1990; 

Nowlan and Sejnowski, 1994 and 1995). The models of Heeger (1987) and Grzwacz 

and Yuille (1990) begin with three-dimensional Gabor functions to extract motion 

energy. Heeger,s model estimates the amount of energy across a local region of space 

for a small set of motion energy filters (12) arranged as a cylinder in the spatia­

temporal frequency domain. To achieve velocity tuning, the strong assumption is 

made that the power spectrum of the input is flat. This allows the model to sample 

so few points in the frequency domain. The model of Grzywacz and Yuille (1990) 

does not make assumptions about the power spectrum of the input and computes 

a velocity estimate at each point in space, i.e. , without spatial averaging, from a 

weighted average across a plane in the frequency domain (their "ridge strategi,). 

The resulting velocity tuned units have non-separable sensitivities in the frequency 

domain. Neither of these models account for the large receptive fields of MT cells. 

In Heeger,s model, which performs spatial averaging, the local spatial integration 

region is much smaller than the extent of an MT receptive field, being only four 

times larger in area than the Gabor filters that represent V1 cells. MT receptive 

fields may be 50-100 times the area of V1 receptive fields at a similar eccentricity, 

since the MT receptive field diameters are about 10 times those of V1 cells at all 

eccentricities (Gattass and Gross, 1981; Albright and Desimone, 1987; Maunsell and 

Newsome, 1987). Grzywacz and Yuille (1990) make no explicit account for the size 
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of MT receptive fields. 

The model of Nowlan and Sejnowski (1994, 1995) uses two parallel pathways 

to estimate not only the local velocities across spatiotemporal frequency channels 

but also the validities of those estimates. Their model of selective integration of 

signals derived from local motion energy is able to replicate the psychophysical and 

physiological findings of Britten et al. (1992) and does account for the integration of 

information across realistic MT receptive field sizes. It would be interesting to test 

how their model would account for the temporal modulation reported here. 

In a fourth model, at the level of MT sub-units rather than velocity tuned units, 

MT responses to transparent and non-transparent stimuli were accounted for by in­

tegrating motion energy locally in an opponent, or "suppressive," stage (Qian et al., 

1994). In this model, the opponent stage of Adelson and Bergen's motion energy 

model constituted an MT sub-unit. The output of such a sub-unit, shown at the bot­

tom of Fig. 6.1, is the preferred minus the null direction motion energy. (We think 

this suppression might occur earlier than the inhibition that might be responsible for 

the gaps in the spike trains reported in Chapter 5.) Our "MT sub-unit" is similar to 

that of Qian et al., except we use a causal temporal filter in the motion energy stage, 

as given in Eqn. 6.11. 

How an MT neuron is endowed with its direction and speed tuning is still uncer­

tain, so we will not attempt to make a complete model of an MT cell. Our model 

unit, called an M-unit, is an artifice that will be compared to an MT neuron in terms 

of the data analyzed here and clues from the literature. The M-unit simply averages 

the outputs of opponent MT sub-units across the extent of its circular receptive field. 

An M-unit is defined by the following parameters 

1. Receptive field diameter, dRF 

2. Spatial frequency of the sub-units, fs 

3. Spatial orientation of the sub-units, (} 
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4. Temporal filters of the sub-units, k, n 1 , n 2 

One important difference between the M-unit and some models of MT neurons 

(for example, the velocity cells of Grzywacz and Yuille, 1990) is that the M-unit is 

not velocity tuned. The M-unit inherits the tuning of its opponent motion energy 

sub-units, and that tuning, in the frequency domain, consists of two volumes with 

roughly teardrop shaped contour surfaces aligned with the temporal frequency axis. 

(Projections of these are shown later in Section 6.4.) The M-unit, therefore, has ap­

proximately separable tuning within one frequency domain octant, i.e., the response 

is approximately the product of three one-dimensional functions, one along each fre­

quency domain axis. The dependency of optimal velocity on spatial frequency for a 

separable filter is demonstrated in Fig. 6.4. Of the few area MT cells that have been 

recorded with varying spatial and temporal frequency sinusoids, most have tuning 

that would be better described as separable than as aligned on an iso-velocity con­

tour ( J. Anthony Movshon, unpublished data), implying that the preferred velocity 

does change as spatial frequency (or temporal frequency) changes. 

The model includes an explicit representation of the population of sub-units which 

contribute to the M-unit. The sub-units are spaced Us degrees apart on a rectangular 

grid within the M-unit receptive field. This is shown in Fig. 6.5 for an M-unit with 

dRF =5° and Us= 0.5°. Adding more sub-units between the ones shown in the figure 

will not change the output of theM-unit. This follows from the sampling theorem and 

the approximate band-limiting that is performed by the spatial filters in the motion 

energy computation. 

The final output of the M-unit is the half-wave rectified average of the sub-unit 

outputs. The output can be plotted as a probability of firing an action potential as 

a function of time. This can then be used as the time varying rate parameter of an 

inhomogeneous Poisson process to generate spike trains. Only here, at the generation 
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Figure 6.4: Motion energy filters are not tuned for velocity. The circles represent a 
contour plot of the tuning of a motion energy filter that is separable in spatial and 
temporal frequency-the preferred spatial and temporal frequencies are the coordi­
nates of the center of the iso-amplitude contours. The solid line shows the preferred 
velocity of a pattern with spatial frequency concentrated at s1 , while the dotted line 
shows the slower preferred velocity for a higher spatial frequency, s2 . The velocity 
lines are chosen to intersect the spatial frequency lines at the maximum point with 
respect to the tuning surface of the filter. However, for an image with a flat spa­
tial frequency spectrum, this motion energy filter will prefer the velocities that are 
constrained to pass through the center of the tuning contours. 
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Figure 6.5: The locations of the centers of the 69 opponent motion energy sub-units 
which contribute input to one 5° diameter M-unit. The Gaussian receptive field (not 
shown) of each sub-unit has standard deviation a 5 = 0.5°. The sub-unit spatial 
frequency is fs = 1.0 cycl/degr (see Eqn. 6.7). 

of Poisson distributed action potentials, is noise introduced into the model. In the 

next section, we compare the output from theM-unit to MT data. 

6 .2 Results from the Model 

Three points are illustrated using the model. First, the output of the motion energy 

stage, corresponding to directionally selective V1 complex cells, is highly modulated 

for both coherent , c = 1, and incoherent, c = 0, motion, as argued in Chapter 5. 

Second, theM-unit output is relatively unmodulated at c = 1 but is highly modulated 

at c = 0, showing a qualitative consistency with spike trains and PSTHs produced 

by the MT cells. Third, low frequency modulation remaining in the M-unit response 

to c = 1 motion is inconsistent with the MT data and implies that a normalization 

stage is necessary. 
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The input to the M-unit was a set of points in three dimensions representing the 

dynamic dot stimulus, reproduced exactly as described in Chapter 2. In particular, 

the 45 msec tlt and the distribution and density of dots were consistent with the 

actual experiments. (It turned out that exactly reproducing the stimulus led us to an 

important observation that is developed analytically in Section 6.4.) The parameters 

used for theM-unit are as follows: dRF = 5.0°, fs = 1.0 cycl/degr, a8 = 0.5° , ()=goo , 

n1 = 3, n2 = 5, and k = 100 (T = 10 msec). 

A speed tuning curve and two direction tuning curves are shown in Fig. 6.6 aver­

aged over 10 trials with randomly seeded stimuli. The preferred speed is 6° /sec and 

the preferred direction is, as defined, () = goo. The direction preference is reversed at 

16° /sec (thick line, right panel, Fig. 6.6). This is explained in Section 6.4. The re­

maining output in this section was computed at the preferred velocity, 6° /sec, unless 

otherwise noted. 

1 1 
90 degr 

16 degr/sec 

0+-~~~~-r~~,-~~ 
1 4 16 64 0 90 180 270 360 

Velocity (degr/sec) Direction (degr) 

Figure 6.6: The M-unit velocity tuning (left) for c = 1 stimuli and the direction 
tuning (right) at the preferred velocity (6° /sec) and a higher velocity (16° /sec, thick 
line). The reversal of preferred direction at 16° j sec can be explained from the filter 
profiles in the frequency domain shown in Fig. 6.14. Ten trials with differently seeded 
stimuli were used to create these curves. Error bars show the standard deviation. 
The response is given in arbitrary units proportional to spike rate. 

We argued in Chapter 5 that V1 cells were likely to have modulated responses to 



87 

the dynamic dot stimulus because of its low dot density. The V1 response is taken to 

be the output of a (non-opponent) motion energy unit. Fig. 6.7 shows a typical model 

V1 response to the dynamic dot stimulus at c = 0 and at c = 1. Both responses are 

modulated, but the modulation at c = 1 has more low frequency components due to 

the time it takes the coherently moving pattern to traverse the V1 receptive field. 

These responses are consistent with the sparse dot density. 

~o:L~~~ .~.,, .: 
§ 0.3l . ~- c=O 

~ 0~ ~-+'~~ ,cd\ j~9 I 

0 500 1000 1500 2000 

Time (msec) 

Figure 6.7: The normalized response of a preferred direction motion energy unit (like 
a V1 complex cell) to a c = 1 stimulus (top) and a c = 0 stimulus (bottom). The V1 
receptive fields are small relative to the dot density of the stimulus, so the responses 
are highly modulated even for c = 1 in spite of the quadrature filters. 

Now we examine the temporal structure of theM-unit response. Spike trains and 

PSTHs are shown for theM-unit in Fig. 6.8 and for an MT neuron in Fig. 6.9. The 

M-unit spike trains are generated from the time varying firing probabilities shown 

at the bottom of Fig. 6.8 (thick line c = 0, thin line c = 1). Both the M-unit and 

the MT cell have 22.2 Hz oscillations due to the 45 msec f::lt of the dot stimulus, 

although not all MT cells respond to the 22.2 Hz signal. Both the M-unit and the 

MT cell have higher frequency modulation in the response to c = 0 motion. Fig. 6.10 

compares the power spectra of the PSTHs from the spike trains for c = 0 and c = 1 

for the MT neuron (left) and the M-unit (right). Both the cell and the model have 
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less low frequency modulation in response to coherent motion, and both have a peak 

at 22.2 Hz. 

The frequencies observed in the spectra and the modulation in the spikes trains 

is largely due to the temporal frequency cutoff of h1 (t) and h2 (t). The filters used 

have higher than average cutoffs for Vl cells, but are not unrealistic. However, the 

half-wave rectification is also responsible for producing high frequencies. In the next 

section, we will compute the effect of the quadrature energy computation on the fre­

quency spectrum of the signal and argue that the model can be made quantitatively 

consistent with precision values observed in the data in Chapter 4. Therefore, quan­

titative analysis of the temporal structure of the model output will not be pursued 

here. 

The final point of this section is related to spike count rather than temporal 

structure. Although the output of the model is easily made consistent with the 

stimulus-locked temporal modulation, it does not match well the variability of the 

mean spike count averaged over the entire trial, particularly for coherent motion. 

Fig. 6.11 shows that the variance-to-mean ratio for the spike count during the sus­

tained period of the trial (400- 2000 msec, here) for MT neurons is roughly constant 

at 2 across all coherence levels (Fig. 6.11, right). The output of the model in terms 

of spike count, however, becomes variable for coherent stimuli (Fig. 6.11, left). The 

increase in variance-to-mean ratio at c = ±1 is more dramatic for a non-optimal veloc­

ity stimulus (filled circles) than for the optimal velocity stimulus (triangles, 10° /sec). 

The exaggerated variance for coherent motion is due to the relatively fixed spatial 

structure of the highly coherent stimulus, and its interaction with the locality of the 

motion energy filters in the frequency domain. For c = 1, the distribution of power 

in the spatial frequency domain changes slowly as the stimulus translates across the 

receptive field. In contrast, for c = 0 stimuli, the spatial structure is completely 

uncorrelated after 45 msec, since all dots have been replotted randomly in that time. 
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Figure 6.8: Output from theM-unit in response to a particular dynamic dot pattern 
at c = 1 and another at c = 0. Spike trains and PSTH for c = 1 (left) and c = 0 
(right) were generated from the two curves at the bottom, which are the output of 
theM-unit for the c = 1 stimulus (thin line) and the c = 0 stimulus (thick line). 
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Figure 6.9: Data from an MT neuron (j025) for comparison against the model output 
in Fig. 6.8. Spike trains are shown in response to a particular dynamic dot pattern 
at c = 1 (left) and a pattern at c = 0 (right). 
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Figure 6.10: Power spectrum of PSTHs from the model (Fig. 6.8) and from the MT 
neuron j025 (Fig. 6.9). Both have a peak at 22.2 Hz for coherent motion, and both 
have more modulation at low frequencies, i .e., less than 60 Hz, for c = 0 than for 
c = 1. 

The exaggerated variance is most likely the result of the narrow region of spatia­

temporal frequency domain that is measured by an M-unit. This is likely because the 

variance in the number of dots from stimulus to stimulus is nearly the same regard­

less of the coherence, so the variance of the total power in the frequency domain also 

must be the same (by Parseval's theorem). This actually argues in favor of models 

that are velocity tuned, since these models compare the distribution of motion energy 

across the spectrum rather than measuring an absolute amount locally (Heeger, 1987; 

Grzywacz and Yuille, 1990). 
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Figure 6.11: Variance-to-mean ratios for spike count in the model (left) and the 
MT data (right). At c = ±1 the variance-to-mean ratio increases for the model 
but not for the neuronal data. The model was tested at an optimal speed, 6° /sec 
(triangles), and a non-optimal speed, 10°/ sec (filled circles) . For the neuronal data, 
the parameters of the dynamic dot stimuli were optimized by the experimenter. Error 
bars show standard deviation for the MT data. Typically, data from 130 MT cells 
were included at each point (right). 
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6.3 Effect of Quadrature Energy on the Power 

Spectrum 

This section presents an argument on analytical grounds that precise and high fre­

quency stimulus-locked temporal modulation can be achieved using the motion energy 

model, and the computational model does not need to be tested further simply to 

make this point. This argument consists of an examination of the effect of the quadra­

ture energy mechanism on the power spectrum of its input followed by an appeal to 

the results from Chapter 4 linking sinusoidal modulation of firing rate to temporal 

precision in terms of the jitter measure. 

Consider a one-dimensional signal in time, f(t) , which is passed through a filter 

with impulse response h(t) and, in parallel, through the quadrature filter of h(t). 

The quadrature filter, h9 (t), is obtained by computing the Hilbert transform of h(t), 

i .e., convolving h(t) with -1/('Trx). In Fourier space, this amounts to multiplying by 

zsgnw. 

If the output of the filter h(t) applied to the input f(t) is called s(t), 

s(t) = f(t) * h(t), (6.13) 

then the quadrature energy output, q(t), is 

q(t) = [s(tW + [s(t) * (- :t) r (6.14) 

In the frequency domain, this is 

Q(w) = S(w) * S(w) + [S(w)isgnw] * [S(w)isgnw] , (6.15) 
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which may be rewritten as the integral 

I: S(u)S(w- u) [1- sgnusgn(w- u)] du. (6.16) 

1-sgn(u)sgn(w-u) 
,------- · 

w 

Figure 6.12: The effect of quadrature energy in the frequency domain. The factor 
involving "sgn" (dotted line), which comes from the Hilbert transform, prevents low 
frequencies from contributing to higher frequencies in the convolution integral. Auto­
convolution in the frequency domain is the result of squaring in time. 

This integral represents a modified auto-convolution of the Fourier transform of 

s(t). The factor containing the sign function suppresses the auto-convolution within 

the window from zero to w. This is shown graphically in Fig. 6.12. The nature of 

this windowing assures that frequencies at w are not created by the product of two 

lower frequencies because only the portion of S(u) in Fig. 6.12 that exceedsw (and the 

portion of S(w- u) that is more negative than -w) can contribute to the amplitude 

at w in the resulting Fourier transform, Q(w). In addition to introducing no new 

high frequency components, the operation creates a DC response that is equal to the 

auto-convolution of S(w) evaluated at zero, which is the integral of S 2 (w) (since S(w) 

is hermitian, S(w) = S*( -w), given that s(t) is real and asymmetrical, see Bracewell, 

1978). 

This analysis demonstrates that the quadrature energy mechanism will not shift 

power to higher frequencies than those originally passed by the temporal filter un-
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derlying the mechanism. Because the operation is similar to convolution, power is 

spread out. For example, a band-pass spectrum will become low-pass, and a low­

pass spectrum will become more concentrated around the origin but will still contain 

power out to its original cutoff frequency. Therefore, frequencies that are passed by 

the temporal filter will be present in the output, and when converted to spike trains, 

can cause high frequency, precise temporal modulation. Fig. 4.8 in Section 4.3 shows 

that simply scaling the amplitude of a truncated signal can produce higher temporal 

precision. Truncation alone introduces higher harmonics; the spectrum of a truncated 

sine wave contains odd harmonics. Therefore, we conclude that the normalization and 

truncation of the signal can be as important as the transfer function of the tempo­

ral filter in determining the frequencies in the power spectrum of the output of the 

M-unit. 

6.4 The Dynamic Dot Stimulus in the Frequency 

Domain 

A frequency domain analysis of the random dot stimulus reveals that it spreads power 

across frequency space, and the spreading becomes more homogeneous as velocity 

increases. By modeling the details of the stimulus generation in both space and time, 

we extend the analysis which was first performed by Britten et al. (1993), who did 

not take into account the stroboscopic nature of the stimulus. 

It is known that translation over time of a three-dimensional image results in 

a three-dimensional Fourier transform which falls along a plane in the frequency 

domain (Watson and Ahumada, 1983). It is also known that stroboscopic motion is 

represented in the frequency domain by a set of equally spaced parallel planes which 

includes the plane of the corresponding smooth motion. The slope of the plane is the 
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velocity of the motion. 

The implementation of the dynamic dot stimulus, as described in Chapter 2, is 

not strictly stroboscopic, in the sense that samples are not taken at the same time 

across all space. Therefore, the analytical model of the stimulus used here will consist 

of two components. The signal component consists of pairs of 8-functions in space 

and time for which ~x and ~y are specified by the stimulus velocity, given that ~t is 

fixed at 45 msec, as in the experiments. The signal component comprises these pairs 

placed randomly in space and time, i.e., in accordance with Poisson statistics. The 

noise component consists of single 8-functions placed randomly in space and time. 

A stimulus with N dots at coherence c has eN dots in the signal component and 

(1 - c)N dots in the noise component. 

Each pair of dots in the signal component can be described as a pair of 8-functions, 

¢>(x, y, t) = 8(x, y, t) + 8(x + ~x, y + ~y, t + ~t). 

The Fourier transform, <I>(u,v,w), of ¢>(x,y,t) is 

<I>(wx, Wy, Wt) j j j [8(x, y, t) + 8(x- ~x, y- ~y, t- ~t)] 
e-i(w..-x+wyy+wtt) dx dy dt 

1 + cos(wx~X + Wy~y + Wt~t) 

-i sin(wx~X + Wy~Y + Wt~t). 

The power spectrum is given by the square of the modulus, 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 
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This is the power spectrum for one pair of dots. For low coherence stimuli, most of 

the signal component consists of pairs of dots. Assuming c 2:: 0, the probability of a 

dot being refreshed once only, making a signal pair, is c(1 -c), while the probability 

of a dot being refreshed at least once, being involved in a signal of any length, is c. 

Therefore, the fraction of the signal dots that are in the form of pairs is 

c(1 -c) 
Pr{pair} = = 1 - c. 

c 
(6.22) 

Thus, at c = 0.1, 90% of the signal dots take the form of pairs. The pairs of dots 

have essentially random placement in space and time, so the signal component can 

be modeled as Poisson shot noise in three-space, convolved by </>(t). Poisson shot 

noise has a flat power spectrum (Champeney, 1973), each pair of signal dots has 

a cosine spectrum (Eqn. 6.21), and convolving in space and time corresponds to 

multiplication in the frequency domain. Therefore, the mean of the spectrum of the 

stimulus at low coherence is approximated by a cosine. At high coherence, the signal 

component is approximated as regularly sampled motion of many moving dots at 

random phases. The spectrum in this case is a series of planes, as expected for phase­

locked stroboscopic motion. The peaks in the spectrum, however, fall along the same 

planes for both high and low coherence. 

To compare this result to the two-dimensional projections in Fig 6.13 and Fig 6.14, 

we assume .6.x = 0 since motion was in the upward direction. The maximum values 

of Eqn. 6.21 occur when the argument of the cosine is an integer multiple of 21r; 

therefore, when 

(k = 0,±1,±2 ... ). (6.23) 

The stimulus had .6.t = 0.045 sec, and considering the case for k = 1, there should 
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32 

c=0.13 

c=0.51 

c=l.O 

-5 0 5 

Vert. SF (eye/de g) 

Figure 6.13: Power spectrum of the numerical representation of the dynamic dot 
stimulus for three coherence levels. The parallel planes for the c = 1 stimulus (C) 
blurs into the cosine shape described by Eqn. 6.21 for lower coherence values (A and 
B). 
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be a peak in the spectrum along the line 

Wt = -VyWy + 22.2, (6.24) 

where Vy = !:l.y / !:l.t is the speed. This equation predicts a peak along a line with 

y-intercept 22.2 Hz and having slope equal to the negative of speed. This matches the 

projections in Fig. 6.13, which were computed from our numerical representation of 

a 10° /sec stimulus at c = 0.13, c = 0.51, and c = 1.0. In the figure, the parallel lines 

(projections of planes) for c = 1.0 are blurred into the cosine form at low ( c = 0.13) 

coherence. Fig. 6.14 shows power spectra for c = 1 stimuli at 5° /sec (C) and 10° /sec 

(D). As the speed increases, the slope becomes steeper and the peaks get closer 

together. At 10° /sec, a number of peaks along lines other than the line through the 

origin traverse spatia-temporal frequencies within the range of V1 sensitivity. 

The spectra here appear somewhat different than those reported by Britten et al. 

(1993, Fig. 10). It appears that they approximated their stimulus by moving the dots 

only one discrete step at a time in their numerical representation. This puts the first 

copy of the spectrum at the cutoff frequency which is at the edge of the plot. As the 

parallel planes spread into a cosine pattern for low coherence motion, the copies of 

the spectrum appear at the corners of their plots F and G. Their plots look like the 

plots here if one considers that their temporal frequency axis extends to ± 11.1 Hz 

(given the sampling was set to 45 msec) and their spatial frequency axis extends to 

±11.1/v cycl/degr, where vis the velocity of the stimulus. It appears to be common 

practice to choose the discrete step size of the numerical simulation to be equal to 

the !:l.t of the stroboscopic motion; this appears to be the case in the Fig. 5 of Qian et 

al. (1994). In general, it would be desirable to use a numerical sampling rate higher 

than the stroboscopic rate so that the copies of the power spectrum appear below the 
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Figure 6.14: Motion energy in the frequency domain. A and B show the results of 
summing the power spectra of the 3D filters along the horizontal spatial frequency 
axis (A) and the temporal frequency axis (B). The spatial filter (B) is symmetrical 
and has narrower band width, as expected for the Gabor function, while the temporal 
filter has broader bandwidth and is asymmetrical. C and D show the power spectra of 
c = 1 dot stimuli at 5 and 10° /sec, respectively. Copies of the spectrum are replicated 
because the stimulus is pulsatile. The 45 msec flt used for the stimulus constrains the 
first replicated copy of the spectrum to pass through (0,22.2) in C, while the velocity 
determines the slope. From this, one can see how the spectrum sweeps through the 
frequency domain, intercepting the filter profiles, as the velocity is changed. 
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cutoff frequency in the output. 

Kelly (1979) measured the human contrast sensitivity to drifting sinusoidal grat­

ings of various spatial and temporal frequencies. The maximum sensitivity at each 

velocity is redrawn from Kelly's Fig. 15 as a thick line ("max") in Fig. 6.15 here. The 

peaks of the bands in the power spectrum for our dynamic dot stimulus traveling 

upward at 10° /sec are shown by dotted lines. For a similar but continuously mov­

ing stimulus, no power would fall in the quadrant shown here; this quadrant would 

have energy from continuous motion stimuli for downward motion only. The strik­

ing feature demonstrated by the figure is that there are roughly similar amounts of 

motion energy in all quadrants even at low velocities and for low spatial and tempo­

ral frequencies. The region of the quadrant shown in Fig. 6.15 includes the optimal 

spatial and temporal frequencies for nearly all V1 cells (Foster et al., 1985) and is 

a sub-region of Watson and Ahumada's (1983) "window of visibility." Using a two­

alternative forced choice paradigm, Watson and Ahumada verified that, at 10° /sec, 

humans could distinguish sampled from continuous motion at flicker rates as high as 

75- 150 Hz (see the critical sampling frequency curves in their Fig 5). 

Because the dynamic dot stimulus with 45 msec fl.t spreads power in oriented 

bands throughout the region of sensitivity for human psychophysics and macaque 

V1 neurons, and because the spreading, or filling in, becomes locally more dense at 

higher velocities , it is possible that the optimal velocities determined for MT cells 

using this stimulus might be underestimated. Fig. 6.16 shows the preferred speeds 

for the dynamic dot stimulus for of some of the MT neurons.1 . Other studies that 

used smooth motion have reported higher preferred stimulus speeds in MT cells. 

For example, Zeki (1974) reported that most cells had speed preferences between 5-

500 /sec. In the anesthetized monkey, Maunsell and Van Essen (1983) found optimal 

1The cells used here are those which were recorded with identically seeded stimuli. 
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Figure 6.15: The human spatio-temporal frequency threshold surface (solid lines, 
redrawn from Kelly, 1979) is intersected by the peaks of the power spectrum (dotted 
lines) of the dynamic dot stimulus. A vertical intercept at 22.2 Hz (see Eqn. 6.24) 
results from the 45 msec 6.t and the slope of the dotted lines is the negative speed. 
This is a null direction quadrant for the corresponding continuous motion. The peak 
of the spectrum for continuous motion would be parallel to the lines shown here and 
would intersect the origin, traversing quadrants II and IV. The thick line shows the 
maximum human contrast sensitivity for moving gratings at each velocity, i.e., along 
radii through the origin, while the thin lines show a contour curve approximately one 
order of magnitude below maximal sensitivity. The entire region here covers most of 
the optimal sensitivities of Vl cells in macaque monkeys (Foster et al. , 1985). 
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speeds in the range 2- 256° /sec (mean 32° /sec). Mikami et al. (1986) 2 found a similar 

distribution, with a small shift toward faster speeds, in the awake monkey. Rodman 

and Albright (1987) reported optimal speeds between 5- 150° /sec. Lagae et al. (1993) 

report median velocities near 60° /sec for light and dark bars in MT cells within 23° 

of the fovea, and they claimed that optimal speed did not depend on eccentricity. 

{I} 10 E (n=24) 10 J (n=13) 20 W (n=42) 
§ 
~ 5 5 10 ::s 
CD z 0 0 0 

0 5 10 15 0 5 10 15 0 5 10 15 

Speed (degr/sec) 

Figure 6.16: Preferred speeds for MT neurons from 3 monkeys (E, J, and W). Most 
cells preferred speeds below 10° /sec. These low values may be a result of the dy­
namic dot stimulus having power distributed across the frequency domain, as given 
by Eqn. 6.21. 

Area MT may derive a substantial amount of its input from directionally selective 

complex cells, and many of these cells are reasonably well modeled by motion energy 

units (Emerson et al., 1992). Motion energy units are tuned to a particular region 

of the spatio-temporal frequency domain, as demonstrated with Fig. 6.4. Such units 

will be excited by the bands of energy from the dynamic dot stimulus; therefore, it is 

quite possible that V1 cells will be excited that contribute to MT cells at all velocity 

preferences. Given the frequency domain analysis of the random dot stimulus and 

the mismatch between the distribution of speeds reported in the literature and speeds 

used to collect the MT data studied here, there is a reasonable possibility that many of 

the MT neurons studied here were stimulated with non-optimal speeds for continuous 

motion. Mikami et al. (1986) state, " ... we have observed a suppressive mechanism, 

2They used stroboscopic motion but changed the tlt to find the optimal speed. 
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possibly inhibitory, which acts in the preferred direction to limit the response of 

MT neurons to motion of nonoptimal speeds" [original emphasis]. Thus, it is not 

unreasonable to consider that inhibitory connections onto preferred direction cells 

may be activated during the coherent c = 1 motion studied here. Whether these 

connections are similar to those postulated to be responsible for the gaps at c = 1 

reported in Chapter 5 is uncertain. 

However, we point out that among the class of dynamic dot stimuli used in the 

original experiments, the parameters were optimized, and because MT cells are known 

to have high contrast sensitivity (Sclar, et al., 1990) and show firing rate saturation 

with only a few dots in their receptive fields (Snowden et al., 1991) , it is likely that 

the firing rates recorded for the c = 1 stimuli were as high as those for more globally 

optimal stimulation, for example, continuous motion- if that is indeed more optimal. 

We believe the observation of the banded structure of the power spectrum is im­

portant because it may offer a clearer explanation for the stimulus-locked modulation 

and for some of the psychophysical observations. If the signal dots provide a sub­

optimal stimulus for a particular neuron, when a more optimal stimulus occurs at 

random due to noise dots (or signal-noise dot interactions), the neuron may give a 

strong and transient response. This is consistent with the suggestion from Chapter 3 

that the noise dots play a strong role in modulations of the psychophysical response. 

It is also highly consistent with data shown in Fig. 4.1 in which many of the largest 

peaks persist for preferred and null direction stimulation, in which signal dots move 

oppositely but noise dots remain the same. For c = 1 motion, when there is very little 

competition from potentially more optimal stimuli, i.e. , there are no noise dots, the 

firing rate may be determined mainly by the relative strength of activation of the pre­

ferred and null direction pathways provided by the banded spectrum of the dynamic 

dot stimulus. Increasing or decreasing the number of signal dots could change only 

the absolute level of activation of each pathway. Therefore, fluctuations in the number 
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of signal dots may be removed through a normalization procedure which compares 

the relative strength of activation across directions of motion. This is consistent with 

the absence of stimulus-locked temporal modulation for the c = 1 stimulus that is 

reported in Chapter 4. Further tests of these predictions can be performed to some 

extent with the current database. 

6.5 Future Use of the Model 

The model described in this chapter has led to the conclusion that a standard motion 

energy model is consistent with the presence of stimulus-locked temporal modulation 

observed for incoherent motion. An analysis of the dynamic dot stimulus indicates 

that it may yield the best responses from MT neurons at slower than their optimal 

velocities. Under some normalization schemes, this may make the random motion 

energy contributions from the noise dots responsible for the temporal modulation. 

This hypothesis can be tested further with the model by including normalization 

across spatial frequency channels and across directions of motion. 

We would like to have a model of an MT cell that could predict the exact locations 

and sizes of the peaks in the PSTH for the response to a particular dot pattern. More 

recently, the software that controls the stimulus generation and data collection in the 

Newsome lab has been modified to save the random seed. We have written software 

to recompute to dot patterns from the seed. The recomputed stimulus pattern was 

used as input to theM-unit with various parameter settings and the response is shown 

at the bottom of Fig. 6.17. Whether there is any correlation between the neuronal 

output and the M-unit output is debatable. If more data can be collected, or if a 

more controlled stimulus is used, a model that predicts the neuronal responses may 

be constructed. 

Another aspect of the data which we would like to model is the shapes and pa-
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Figure 6.17: The PSTH of neuron k520 in response to a particular c = 0.13 stimulus 
pattern (top) and four superposed responses to the same stimulus from M-units having 
different parameters (bottom). 
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rameter dependencies of peaks in the cross-correlations between pairs of MT neurons. 

Fig. 6.18 shows cross-correlograms that have been computed using the joint post­

stimulus time histogram method (Aertsen et al., 1989) for three pairs of MT neurons 

recorded in a previous study (Zohary et al., 1994). If MT neurons can be described 

by a collection of motion energy filters, and if neighboring MT cells share similar 

populations of motion energy sub-units, what predictions does this make about the 

cross-correlation? 

Finally, we would like to model the psychophysical data from the cut experiments 

in Chapter 3. This will require the model to at least take into account anisotropies 

of the spatial frequency sensitivity with respect to eccentricity. It is our belief that 

judicious use of the model can lead to more efficient psychophysical and electrophys­

iological experimentation. 
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Figure 6.18: Cross-correlations between three pairs of MT neurons. This is the "nor­
malized" version of the joint post-stimulus time histogram method (Aertsen et al. , 
1989) collapsed (averaged) parallel to the central diagonal. The value is an average 
correlation coefficient for all bins corresponding to the given lag. 
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Chapter 7 

Power Spectrum Analysis of 

Bursting Cells 

This chapter contains the text from Bair et al. (1994) which summarizes the earliest 

work reported in this thesis. The introduction and the methods section have been 

modified, but the rest of the text is presented in nearly its original form. The ana­

lytical models of the power spectrum presented here are reworked from a different, 

more rigorous, perspective in Chapter 8. 

7.1 Introduction 

It is widely held that visual cortical neurons encode information primarily in their 

mean firing rates. Some proposals, however, emphasize the information potentially 

available in the temporal structure of spike trains (Optican and Richmond, 1987; 

Bialek et al., 1991) , in particular with respect to stimulus-related synchronized oscil­

lations in the 30- 70 Hz range (Eckhorn et al., 1988; Gray et al., 1989; Kreiter and 

Singer, 1992) as well as via bursting cells (Cattaneo et al., 1981a; Bonds, 1992) . We 

investigate the temporal fine structure of spike trains recorded in extrastriate area 
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MT of the trained macaque monkey, a region that plays a major role in processing 

motion information. The data were recorded while the monkey performed a near­

threshold direction discrimination task so that both physiological and psychophysical 

data could be obtained on the same set of trials (Britten et al., 1992). We identify 

bursting cells and quantify their properties, in particular in relation to the behavior 

of the animal. 

We compute the power spectrum and the distribution of interspike-intervals (lSI) 

associated with individual spike trains from 212 cells, averaging these quantities across 

similar trials. (1) About 33% of the cells have a relatively flat power spectrum with a 

dip at low temporal frequencies. We analytically derive the power spectrum of a Pois­

son process with refractory period and show that it matches the observed spectrum of 

these cells. (2) About 62% of the cells have a peak in the 20- 60Hz frequency band. In 

about 10% of all cells, this peak is at least twice the height of its base. The presence 

of such a peak strongly correlates with a tendency of the cell to respond in bursts, i.e. 

2- 4 spikes within 2- 8 msec. For 93% of cells, the shape of the power spectrum did not 

change dramatically with stimulus conditions. (3) Both the lSI distribution as well 

as the power spectrum of the vast majority of bursting cells is compatible with the 

notion that these cells fire Poisson distributed bursts, with a burst-related refractory 

period. Thus, for our stimulus conditions, no explicitly oscillating neuronal process 

is required to yield a peak in the power spectrum. ( 4) We found no statistically 

significant relationship between the peak in the power spectrum and psychophysical 

measures of the monkeys' performance on the direction discrimination task. (5) For 

cells firing bursts, ROC analysis shows that the "event" rate, where an event is either 

a single burst of spikes or an isolated spike, is on average a more sensitive measure of 

visual stimulus direction than the total number of spikes, used previously (Britten et 

al., 1992), implying that the number of spikes in a burst is less stimulus-dependent 

than the overall firing rate or the rate of bursts. 
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Only a few papers have focussed on the possible significance of bursting for neu­

ronal coding. Cattaneo et al. , (1981a,b) report that complex (but not simple) cells in 

area 17 of the anesthetized and alert cats frequently respond with bursts. They show 

that the frequency of bursts (or "grouped spikes") varies strongly with the spatial fre­

quency and orientation of sinusoidal drifting gratings, while the frequency of "isolated 

spikes" only weakly depends on these parameters, encoding rather the contrast of the 

stimulus. Bonds (1992) found in his analysis of cat striate neurons that the structure 

of spike trains- in his case the frequency and duration of bursts- can vary substan­

tially on the basis of how the firing rate was generated. For instance, presentation 

of stimuli at non-optimal orientations at high contrasts yields bursts that are shorter 

than those generated by lower contrast stimuli at optimal orientations. Legendy and 

Salcman (1985) hypothesized functional significance for burst firing patterns in spon­

taneously active striate neurons of alert cats, but by their definition, bursts included 

mostly long periods (0.5- 2.0 sec) of significant elevation in firing rate. Finally, Crick 

(1984) postulated that the neuronal expression of selective visual attention is the 

production of bursting in a subset of thalamic neurons. This bursting, in combina­

tion with a short-term and transient alteration in the synaptic strength (as proposed 

by von der Malsburg, 1981), could lead to the short-term formation of transient cell 

assemblies at the level of cortex (see also Crick and Koch, 1990, 1992) . 

We now analyze this single-cell database with an eye towards describing the tem­

poral structure of MT responses and uncovering any relationship between the tem­

poral structure and the psychophysical performance of the animal. We only consider 

data from well-isolated single neurons. We find that the temporal structure of MT 

responses is characteristic for each neuron and does not change in a stimulus-specific 

manner. Spikes are distributed almost randomly in time for some neurons, but are 

highly non-random for other neurons, being characterized by occasional "bursts" in 

which spikes are tightly clustered in time. Both firing patterns are well-described 
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by simple models that require no intrinsically oscillatory process. A signal detection 

analysis indicates that bursting neurons convey more information about the direction 

of motion in the stimulus if bursts are considered to be individual signaling events. 

7.2 Data Analysis 

From the initial database of 216 cells, four are not considered here. Three of these 

were not recorded for the full 2 sec ( w044, w045, w046), and the fourth cell showed an 

abrupt change in firing rate during the experiment and was presumed to be damaged 

(j036). 

The experimental methods are described in Chapter 2, and only the computa­

tional methods are described here. Given the importance of applying the underlying 

mathematical transformations correctly, we justify our analysis in detail. 

7.2.1 Computation of Power Spectra 

For a real and continuous function F(t) observed between t = -T and t = +T, the 

associated continuous Fourier transform Fat the frequency f is given by 

F(f) = j_:= e-i21r!t Fr(t)dt , (7 .1) 

where Fr(t) = F(t) for ltl ~ T and 0 outside the observation interval. The autocor­

relation function associated with Fr is given by 

1 l+T R(t) = lim -T Fr(t1)Fr(t1 + t)dt1. 
T-+oo 2 -T 

(7.2) 
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Following the Wiener-Khintchine theorem, the Fourier transform of the autocorrela­

tion is equal to the power spectrum, that is 

J
+oo 

S(f) = - oo e-i21rftRT(t)dt, (7.3) 

or, 

S(f) = lim 
2

1
TF(f)F*(f), 

T-+ oo 
(7.4) 

where * denotes the complex conjugate. It can be seen that the power spectrum is 

always real and symmetric. 

However, given the discrete sampled nature of our spike trains, we require the use 

of the discrete Fourier transform with the two associated problems of (i) the variance 

inherent in the estimate of the discrete power spectrum and (ii) aliasing due to a 

finite sampling interval. We perform Fourier transforms on spike trains using the 

standard Fast Fourier Transform (FFT) algorithm and compute one-sided estimates 

of the power spectral density using overlapping data segments and windowing (Press 

et al., 1988). To emphasize the difference between the true power spectrum S(J) and 

the one we compute on the basis of the sampled data, we denote the latter by S'(f). 

The data submitted to the FFT algorithm is a sequence of 1's and O's, where each 

1 represents an action potential in a spike train sampled at 1 kHz. Transforming a 

2 sec long spike train yields a one-sided spectrum with a frequency resolution of about 

0.5 Hz from 0 up to the Nyquist frequency of 500 Hz. 

Because we are only interested in studying broad trends in the data over a rel­

atively wide band of frequencies, we do not require such high frequency resolution. 

Furthermore, the variance associated with the estimation of the power spectrum can 

be reduced by using larger frequency bins, i.e. by sacrificing frequency resolution. 

Thus, we break the 2 sec long trial into smaller segments, typically using 12 overlap­

ping data segments of 256 msec duration, thereby utilizing 1664 msec of the 2000 msec 
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spike train. We always begin the first segment at 336 msec to eliminate from analysis 

the transient response to the onset of the stimulus; however, we find essentially no 

difference in the results when the analysis is performed using the entire 2 sec spike 

train (not reported here). For each 256 msec segment, a two-sided power spectrum 

was computed. Given the fact that the power spectrum is always symmetric, we 

normalize the two-sided spectrum to a one-sided spectrum with 128 entries lying at 

equally spaced intervals between 0 and 500 Hz (with b.f ~ 4 Hz). 

To further improve the spectral estimate, a triangular Parzen window was applied 

to each segment to reduce spectral leakage arising due to the finite duration of spike 

trains (Harris, 1978). Since windowing would otherwise throw away data at the ends 

of each segment, it becomes important to use overlapping segments. In addition to 

the averaging due to data segmentation and symmetry for a single 2 sec long trial, 

we usually-except if otherwise stated-average the power spectra over all trails for 

a particular c for an individual cell. Since we average in the frequency domain, our 

method is not sensitive to the exact phase relationship of the response with respect 

to stimulus onset. When computer generated data is shown, averages are over the 

equivalent of 1000 trials of 2000 msec duration each. 

While we can reduce the variance in the spectra by averaging, we cannot avoid 

aliasing due to temporally sampled data. To what extent does aliasing play a domi­

nant role in shaping our spectra? A continuous abstraction of a spike train is a set of 

occurrence times for action potentials which are idealized as Dirac 8(t) impulse func­

tions. In recording these occurrence times, the continuous function is not sampled in 

the usual manner, rather the action potentials are shifted to nearby sampling points. 

If this were not the case, then most action potentials would be missed altogether. 

This type of sampling is a form of data binning in which each bin has width equal 

to the sampling interval and the assumption is made that at most one event occurs 

per bin. Given a sampling interval of 1 msec, this is a reasonable assumption for 
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most neurons. We present a modification of Schild and Schultens' (1986) analysis of 

aliasing in binned data for post-stimulus time histograms to understand what effect 

this has on the spectrum. 

Figure 7.1 summarizes this analysis for a special case which has a simple and 

revealing solution. The left side illustrates how the binning process that converts the 

continuous spike train (in a) into sampled data (in e) is described as a convolution 

with a boxcar function (in b) followed by multiplication with a comb function (in 

d). We assume the special case where the continuous spike train is totally random 

(Poisson) and therefore has a flat power spectrum (in A) with a delta function at 

the origin (which we ignore here; see Modeling section). Convolving with the boxcar 

in the time domain corresponds to multiplying the power spectrum by the square 

of a sine function (sinc(x) = sin(x)/x; in C). Multiplying by the comb function in 

time corresponds to convolving the power spectrum with a comb with inverse spacing, 

which replicates and sums copies of the sinc2 function at 1kHz intervals (Fig. 7.1C). 

The sum of the original sinc2 plus the infinite number of sinc2 functions shifted by 

1 kHz is a flat spectrum, which is what we started with; however, only the copy of 

the sinc2 centered at zero is contributing to the true power spectrum while the other 

shifted copies are contributing aliased frequencies (Fig. 7.1E). In this case, frequencies 

below about 200 Hz are relatively uncorrupted and this is the frequency range which 

concerns us. As discussed later, the power spectrum of most cells in the database is 

relatively flat, especially at higher frequencies. The worst cases of aliasing occur for 

neurons with interspike intervals at least an order of magnitude more regular than 

we observe here (Schild and Schultens, 1986). 
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Figure 7.1: Aliasing in the power spectrum S(f) of a spike train. The ideal spike train 
(a) is a sequence of 8-functions at arbitrary time instants, but in recorded spike train 
data (e), spikes are assigned to sampling points. To go from (a) to (e) we convolve with 
a 1 msec wide binning function (b) to yield (c) and then multiply by a 1kHz sampling 
function (d) to yield (e). On the right side are power spectra for the special case where 
(a) is random (Poisson). Ignoring the DC component, (A) is flat. Convolving with 
(b) multiplies the power spectrum by the square of the sine function , yielding (C) as 
the spectrum of (c). Sampling in this special case corresponds to adding up infinitely 
many copies of the sinc2 at 1 kHz intervals (E) which yields a flat power spectrum 
(not shown) like (A). The dark curve in (E) demonstrates the contribution to the 
final power spectrum from the true spectrum, while the light curves (shifted sinc2 

functions) show the contribution from aliasing. There is relatively little aliasing for 
lfl <200Hz. 
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7.2.2 Quantification of Spectrum Shape 

In the Results section, we utilize a scheme for classifying cells based on the shape 

of their power spectra (for a related approach, see Ghose and Freeman, 1992). The 

classification of a cell depends upon the classification of its set of power spectra, one 

at each c value. Here we describe in detail how to compute the set of spectra for a 

cell, and how to classify the cell based on that set. 

The estimated power spectral density for a cell at a given c, S~(f), is computed 

as the average of the spectra for all spike trains recorded at that c value normalized 

by their average spike rate. For this normalization, the computation of average spike 

rate must take into account the effect of the overlapping data windows and the shape 

of the Parzen window. These corrections are particularly important for spike trains 

with very few spikes. If the individual spike trains were Poisson, then the expected 

value of each normalized spectrum would be 1.0 at all non-zero frequencies. This 

normalization reduces the variance in S~ due to fluctuations in spike rate from trial 

to trial while preserving relationships between peaks and dips within each spectrum. 

As discussed in the Results section, many cells have peaks in their spectra in 

the region below 60 Hz (see Fig. 7.2a and b, bottom row) , and we wish to measure 

the height of that peak with respect to the associated dip or lowest baseline level 

at higher frequencies (see arrows on S'(f), Fig. 7.2 cell a) and at the same time 

determine if the peak is present for all c. The location of the peak (if one exists) is 

computed by sliding a fixed-width window along the set of spectra while looking for 

the frequency fp (at the center of the window) which maximizes the integral within 

the window summed over all S~. The constraint 20 Hz < JP < 60 Hz is used to keep 

the window away from the peak at f = 0 (i.e. the DC component) and to avoid 

scanning higher frequencies where peaks are absent. The average value of S~ within 

the window will be called the peak level, Pp . A second sliding window is used in a 
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similar, but minimizing, procedure to find the lowest point, or baseline level, at higher 

frequencies. The location of the lowest point is quantified by /b, the center of the 

window, and the average value within the window, Pb, will be called the baseline level. 

We constrain /b to be greater than JP and less than the cutoff frequency, 500 Hz. All 

windows are seven spectral bins wide (3.9 Hz/bin) and therefore sacrifice accuracy of 

localization for noise immunity. 

Once the peak frequency JP and the baseline frequency fb are determined, a cell 

is classified as a burst cell (later we explain the link between peaks and burst firing) 

if for at least 90% of all c values Pp > Pb, i.e., if at nearly all coherence levels, the 

spectrum has a peak in the 20- 60 Hz range. If a cell fails to be classified as a burst 

cell, then we attempt to localize a dip in the power spectrum (see arrow on S'(f), 

Fig. 7.2 cell d), bottom left, which has a dip near 20Hz) using another sliding window. 

We take /d to be the center frequency of the seven bin window which minimizes the 

integral within the window summed over all c, where 20 Hz < !d < 500 Hz. We 

take the average value of the spectra within a window centered at !d to be Pd. We 

classify a cell as nonburst if for at least 90% of all c values Pd < 1.0, i.e., if at nearly 

all coherence levels the spectrum has a dip below the expected baseline level (which 

manifests itself at high frequencies) for a Poisson-like spike train, which is 1.0 due to 

our spike rate normalization. This definition would result in classifying a cell with 

Poisson distributed spikes (that therefore has a flat power spectrum) as neither burst 

nor non burst, but since all cells studied here show evidence of refractory periods, this 

case does not occur in practice. Note that for a pacemaker cell "oscillating" in the 

20- 60 Hz band, P can become arbitrarily large as the oscillation becomes increasingly 

regular. 

If a cell fails to be classified as either burst or nonburst it is classified as mixed 

since at some c values it lacks a significant peak, while at others it lacks a significant 

dip, in the 20- 60 Hz range. To avoid classifying a cell based on too little data, trials 
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with less than 5 spikes in the 336-2000 msec time window are discarded, and c values 

with less than 8 valid trials are not represented in the set of spectra. Finally, a 

classification is made only when there are at least 3 different c values with valid S~. 

Typically, there are six S~ for c < 0, six for c > 0 and one for c = 0. 

A measure of the shape of the power spectrum, P, is associated with each classified 

neuron. For burst cells, the ratio of the peak to the baseline is used, P = Pburst = 
Ppf Pb. For nonburst cells, the ratio of the dip level to the ideal baseline, 1.0, is used, 

P = Pnonburst = Pd. The value for mixed cells depends on the subcategorization, i.e. 

p follows the definition for burst if s~ had a peak for the majority of c values but 

follows the definition for nonburst otherwise. When discussing the shape of power 

spectrum, we will simply refer toP when the particular definition is understood from 

context . 

7.2.3 Other Methods 

The post-stimulus time histograms (PSTH) are computed from the single trial data 

by averaging over all trials with identical stimulus conditions, using a bin width of 

10 msec. They are normalized to show spike rate rather than counts per bin. Inter­

spike interval (ISI) distributions are computed with 1 msec bin width. Power spectra, 

S'(f), are usually normalized to match continuous spectra under the assumption that 

spikes can be described as Dirac 8-functions. In this case, the vertical offset is roughly 

proportional to the spike rate, and for nonburst cells, the flat level at higher frequen­

cies is usually an accurate reflection of the spike rate, as in Fig. 7.12. Under the 

second spike-rate normalization (discussed above), spectra are divided by the average 

spike rate so that all are nearly the same height to allow comparison of shapes, as in 

Fig. 7.5. 

Vertical truncation of histogram plots is indicated by open histogram bars near 
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the top of the graph. 

7.3 Experimental Results 

We begin by describing the population of MT cells with respect to two statistical 

measures of the temporal fine structure of spike trains: the lSI distribution and the 

power spectrum S'(f). The first measure is an order-independent statistic since it 

contains no information about the temporal order in which the intervals occur. For 

instance, all short intervals could have occurred at the beginning of each trial and all 

long intervals at the end, or each short interval could have been followed by a long 

one. The estimate S'(f) is order-dependent since it depends on temporal relationships 

between events at scales beyond single intervals. Although many different S'(f) may 

be associated with a particular lSI distribution, we find for this database that the 

shape of the lSI distribution predicts the shape of the power spectrum quite well, 

and that the tendency of a cell to fire bursts of action potentials is the basis for the 

prediction. 

Estimates of the lSI and S'(f) are shown in Fig. 7.2 for four cells from the database. 

Segments of typical spike trains from each cell are shown at the top, and below them, 

the PSTHs show that the average firing rate is relatively constant throughout the 

period over which we compute the ISis and power spectra, from 336- 2000 msec. 

Although not shown here, including the initial transients had little effect on the 

shape of S'(f). The autocorrelation functions, R'(t), (not shown) for these cells do 

not show ringing, even when the associated spectrum S'(f) has a prominent peak of 

the type seen in Fig 7.2 (cell a, bottom). Only a single cell showed strong ringing in 

R'(t) and this was for c = 1. 
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Figure 7.2: Spike train statistics for four area MT neurons responding to c = 0.256 
motion. Each column corresponds to a different cell, and the cells are arranged from 
most bursting (a) to least bursting (d) . The top row shows 500 msec segments of 
spike occurrence times. The distribution of intervals between spikes are shown by the 
lSI histograms in third row. Over 50% of intervals fall in the 1,2 or 3 msec bins in 
lSI (a) while less than 2% do so in lSI (d). (Note scale change for lSI (c) and (d).) 
For (a) and (b) lSI insets (horizontal axes begin at 10 msec and remain aligned with 
main histogram) expand the vertical axis to show the peak near 20-30 msec which 
corresponds to intervals between bursts. Power spectral densities, S'(f), (bottom 
row) have peaks in the 20- 60 Hz range for the cells (a,b,c) which have peaks in the 
lSI below 4 msec. The dip in S'(f) at low frequencies (arrow in (d)) indicates the 
presence of a refractory period for spikes or bursts. All four cells fire at roughly 
similar average rates (40- 60 spikes/sec, see PST histograms, second row) and the 
response is relatively maintained following the transients during the first 200 msec 
of stimulation. Plots are based on averages from 15 trials (a,b), 60 trials (c), and 
30 trials (d). Frequent burst firing causes PST (a) and (b) to be excessively noisy. 
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7 .3.1 Bursting Cells 

We were intrigued by the persistent tendency of certain cells to burst frequently, 

that is to discharge a group of 2- 4 tightly clustered action potentials with interspike 

intervals of no more than 3 msec (see, in particular, the lSI histogram in Fig. 7.2a 

and b). Cells that respond frequently in this manner to the visual stimulus show a 

bimodal lSI histogram with a pronounced peak at short, i.e. 1- 3 msec, intervals and 

a second, much lower and broader, peak at longer intervals (see lSI insets in Fig 7.2, 

cells a and b). The first peak is caused by the interval distribution within a burst , 

while the second peak is partly due to intervals between bursts (interburst intervals) 

and partly due to intervals between isolated spikes. 

Figure 7.2 illustrates the trend in burstiness observed in our data, from strongly 

bursting (cell a), to weakly bursting (cell c ) and non-bursting cells (cell d). Figure 7.2 

also reveals a second and correlated trend, that some cells have a peak in their power 

spectrum between 20 and 60 Hz (cells a and b, somewhat in cell c) , while others 

(cell d) have a spectrum that is fiat with a dip at low frequencies (except at the 

origin f = 0) . The mean center frequency of the peak in the estimated spectrum 

S' for all cells with such a peak is 41 Hz (with a standard deviation of 9 Hz) , so in 

the remainder of this manuscript, we will refer to this frequency range as the 40 Hz 

band, with the understanding that the location of the peak varies from cell to cell. 

Of 212 cells analyzed, 71 had relatively flat averaged spectra, S'(f), with a dip at 

low frequencies, and 131 had peaks in the 40 Hz range of their averaged spectra. The 

remaining 10 cells had too little data to judge accurately the shape of the spectrum. 

As described in the Methods section, we classified the cells as either b u rst or 

nonburst based on the shape of their power spectra using a scheme that takes into 

account the possibility that the spectra might change as the stimulus motion coher­

ence c varies. The criteria for this classification were designed to be strict so that 
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cells which did not always, regardless of stimulus direction and coherence, behave as 

burst or nonburst would be classified as mixed. Of 212 cells, 10 were eliminated 

from classification because they did not meet the minimum standards for number of 

spikes, trials, and coherence levels. Of the remaining 202 cells, 125 were classified as 

burst, 61 as nonburst, and 13 as mixed (in 3 cases, visual inspection disagreed with 

the classification algorithm, so these cells were dropped from consideration). It is 

striking that 93% of the cells were classified as either burst or nonburst because it 

indicates that this rough categorization is stimulus invariant. 

As also discussed in the Methods section, we define a measure P of the shape of 

the power spectrum. For burst cells, Pis defined as the ratio of the height of the peak 

in the 40 Hz range to the level of the baseline dip at higher frequencies (see arrows 

on 5'(!), Fig. 7.2 cell a). For nonburst cells, P is defined as the ratio of the level 

of the dip at low frequencies (see arrow on 5'(!), cell d) to the flat level at higher 

frequencies. For an ideal Poisson cell, p = 1 regardless of the classification as burst 

or nonburst; for a pacemaker cell "oscillating" in the 20- 60 Hz band, P becomes 

arbitrarily large as the oscillation becomes increasingly regular. 

With P as a measure of the shape of 5', we developed a measure of burstiness 

based on the lSI. Given the well known distinction between bursting and non-bursting 

cells based on intracellular current injections in rodent slice preparations (McCormick 

et al., 1985; Connors and Gutnick, 1990), we attempted to find a metric that would 

classify all of our cells into two (or more) segregated groups according to the degree 

of burstiness. For this purpose, we introduce the measure B as the percent of the lSI 

histogram in the 1, 2, and 3 msec bins. 

The variable B is similar to other proposed measures of burstiness which are based 

on the proportion of the lSI distribution below a cutoff value (Cattaneo et al., 1981b; 

Abeles, 1982). We also considered another measure of burstiness, B, based on the 

ratio of the number of intervals in the 2 msec lSI bin to the 5 msec lSI bin. This 
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variable has the potential advantage that it is able to distinguish between a bursting 

cell with a bimodal lSI histogram and a very fast firing cell that has a unimodal 

lSI histogram concentrated below about 10 msec. However, B is quite sensitive to 

fluctuations in the trough between the peaks of a bimodal histogram, and its value 

is less stable. We will use B as the measure of burstiness here but point out that B 

and B tend to be highly correlated, at least for our database. 

Figure 7.3 shows the frequency distribution for these three statistical measures for 

all cells averaged over all stimulus conditions. We interpret the histogram for P to 

represent a unimodal distribution. The dip at unity is an artifact of our classification 

system because P is based on regions of the power spectrum that are chosen for 

maximizing the peak-to-trough ratio or minimizing the trough-to-baseline ratio for 

burst and nonburst cells, respectively. The long left tail of the distribution for B 

shows that many cells have less than 1% of their intervals shorter than or equal to 

3 msec, such as cell d of Fig. 7.2. The distribution forB is spread over many orders of 

magnitude and shows a hint of bimodality. Overall, however, it is difficult to segment 

the data into two classes based on these histograms, since many burst and nonburst 

cells fall in overlapping regions in the histograms for B and B. We stress, therefore, 

that the burst and nonburst classifications are primarily tools for defining two ends 

of what appears to be a continuum. 

For burst cells, P changes relatively little with stimulus condition and appears to 

reflect primarily an intrinsic property of these cells in an alert and trained monkey. 

As we show next, in such cells P is highly correlated with B. For non burst cells, B 

often changes systematically with spike rate and is therefore not as revealing about 

intrinsic properties. 

The close connection between bursting and the shape of the power spectrum is 

illustrated in Fig. 7 .4. Here the value of B for individual cells is plotted against the 

associated P. The values shown here are averaged over trials at c = 0 and trials at 
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Figure 7.3: Frequency histograms for our database of 212 MT cells for P, the measure 
of the shape of S'(f), and two measures of burstiness, B and B, averaged over trials 
for all c. The upper two plots show that the distribution of cells with respect to the 
statistics P and B (the fraction of the lSI in the 1, 2 and 3 msec bins) is primarily a 
continuum. The dip near 1.0 in the distribution of P is an artifact of the classification 
of cells as burst or nonburst (see text). All burst cells have P > 1.0, nonburst cells 
P < 1.0, and mixed cells that are neither one or the other have P near 1.0. The 
distribution of B has a long left tail due to cells which rarely fire a second spikes 
within 3 msec. The bottom plot shows the distribution for a second measure of 
burstiness, B, the ratio of the 2 msec bin to the 5 msec bin in the lSI histogram. B 
and B are highly correlated for our database, but we use B since it is less sensitive 
to noise than the ratio measure. 
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Figure 7.4: log(P) is plotted against B for burst (filled circles), nonburst (x's), and 
mixed (large open circles) cells. Among burst cells, the correlation is strong between 
log(P) and B , as shown by the fit from linear regression (line). Hypothetical cells 
firing Poisson spike trains would fall along the horizontal line P = 1, separating the 
burst and nonburst cells. Mixed cells straddle this line and are neither strongly burst 
nor nonburst. Since B often has a small but systematic variation with spike rate, 
values shown here are computed by averaging only over trials with responses that 
are statistically indistinguishable from those at c = 0. Results are very similar when 
values are averaged over trials for all c. The arrows show the points corresponding to 
the four cells of Fig. 7.2. 
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other low c values for which the monkey's and the neuron's responses were statistically 

indistinguishable from responses at c = 0. T he three groups, burst, nonburst, and 

mixed, are plotted together in F ig. 7.4. For the burst cells (filled circles), there is an 

obvious strong correlation between log P and B , with the line indicating an empirical, 

exponential fit : P = e0·038. Thus, the more a cell tends to fire action potentials in 

tight bursts rather than as isolated spikes, the higher the peak in its power spectrum 

in the 40 Hz band. We will explore the reasons for this behavior further in the 

Modeling section. Cells with purely Poisson-distributed spikes would fall along the 

horizontal line P = 1.0, with low firing rates near the origin, and higher firing rates to 

the right . The strong correlation evident here between B and P justifies classifying 

cells as either "burst" or "nonburst" based on the shape of the power spectrum. 

7.3.2 Relation of the 40 Hz Peak to Prior Measures of N en­

ronal and P sychophysical P erformance. 

Previous analyses of this data set have identified several interesting parallels between 

the psychophysical performance of the monkeys and the responses of single MT neu­

rons. In all of these analyses, the response of a neuron was considered to be the total 

number of spikes occurring during the period of visual stimulation (Newsome et al., 

1989a,b; Britten et al., 1992). We now consider to what extent temporal structure, 

here the presence and amplitude of the 40 Hz peak in the power spectrum, reflects 

any aspect of the visual stimulus or the monkey's behavior. Specifically, we ask the 

following questions: 1) Does the prominence of the peak vary with the strength of the 

motion signal, c? 2) Is the peak affected by the behavioral state of the animal? 3) 

Does the spectral peak develop or change with time during the course of a two second 

long trial? 4) How is the peak correlated to prior measurements of cell sensitivity 

based on total spike counts? 5) Is the size of the peak correlated with the monkey's 
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decisions concerning direction of motion for a particular stimulus condition? 

We suggested in a previous section that the burstiness of a cell, quantified by 

the ratio P, is largely independent of the strength of the motion signal in the visual 

stimulus c. Qualitatively, this point is supported by the spectra illustrated in Fig. 7.5, 

computed for one burst and one nonburst cell, which appear fairly constant in shape 

for varying values of c, and by Fig. 7.6 which shows the mean and standard deviation 

for P as a function of c for a burst and nonburst cell. 

To analyze the relationship of P and c quantitatively, we first conducted a one­

way analysis of variance (ANOVA) for each neuron to determine whether P varied 

significantly within the range of c's tested. 118 of 202 neurons (58%) failed to show 

heterogeneity by this test (p > 0.05), and we conclude that P is completely indepen­

dent of c for these cells. For the remaining neurons we performed a multiple regression 

analysis to determine whether c influenced P in a systematic manner. For the great 

majority of our neurons, the mean response increased with c, causing changes in the 

shape of the power spectrum that are related to the presence of the refractory period 

(see Modeling Section below). We therefore included mean firing rate as a co-regressor 

in our multiple regression analysis to disentangle the effects on P of c and mean firing 

rate. 

Only 20 of 202 MT neurons (10%) showed a significant relationship of P and c 

(multiple regression, p < 0.05); the slope of this relationship was negative for 13 cells 

and positive for the remaining 1 cells. For all neurons, furthermore , the slope of the 

regression line relating P to c was sufficiently small that the classification of a cell as 

burst (mean P > 1) or non-burst (P < 1) was unambiguous. It appears, therefore, 

that c has no strong or systematic impact on P for our population of MT neurons 

considered as a whole. In most of our subsequent analyses, therefore, P is averaged 

across c to obtain a single index of burstiness for each cell. 

Is the spectral peak influenced by the behavioral state of the animal? To answer 
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Figure 7.5: Power Spectra, S'(j), are shown for motion coherence values ranging 
from highly coherent preferred direction motion (c = 0.512) to highly coherent null 
direction motion (c = -0.512) for the burst cell (a) and the nonburst cell (d) from 
Fig. 7.2. Spectra are also shown for background, i.e. spontaneous activity, and 
fixation conditions. The spectra vary little, except that the dip below 20 Hz becomes 
more prominent when spike rate increases. This can be explained by the potentially 
greater effect of a refractory period at higher spike rates. These spectra are normalized 
by spike rate. 
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to values well above the threshold level. The average value of P over all trials at each 
coherence level is plotted for a strongly bursting cell (top) and a strongly non burst 
cell (bottom). Error bars show standard deviations. 
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this question, we computed the index of burstiness, P , for spike trains obtained under 

three different behavioral conditions. In the "choice" condition, the animals attended 

to the random dot stimuli with the intent of making a discrimination. The same 

visual stimuli were presented in the "fixation condition," but the animals were only 

rewarded for maintaining fixation on a visual target; no discrimination was required. 

Finally, the "background" refers to spontaneous neuronal activity that was acquired 

during the interval between trials. 

The index of burstiness, P , did not vary between the "choice" and "fixation" 

conditions for the 82 cells for which "fixation" data was available (paired t-test, 

p > 0.05), suggesting that the monkey's intent to make a discrimination had no 

effect on the spectral peak. There was a significant change in P between the choice 

and background conditions (paired t-test, p < 0.05) , but the effect was quite small: 

P decreased by an average of 3% for burst cells ( n = 122) and increased by an 

average of 8% for nonburst cells (n =59). We therefore infer that P is substantially 

independent of behavioral state, a conclusion that is supported by visual inspection 

of power spectra like those illustrated at the bottom of Fig. 7.5. 

We next inquired whether the spectral peak developed or changed with time during 

the course of a two second trial. Analyzing the evolution of the shape of the power 

spectrum is difficult due to the small amount of data that most spike trains contain 

in a period as short as a few hundred milliseconds. The average spike rate over 

our entire database is 19 Hz (with a standard deviation of 18 Hz), so the exact 

placement of any one spike will have a large contribution toward the overall shape of 

the power spectrum for short windows. Because of this, we address a special case of 

this question which allows averaging over trials. This method is therefore limited to 

detecting changes which are locked to the stimulus onset . 

We divided each trial (starting 336 msec after the onset of the stimulus to eliminate 

initial transients) into 6 equal time windows which overlapped by 1/3 of their width. 
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The average value of P was computed from individual spectra for all windows of 

similar time lags which fulfilled a minimum spike criterion of 5 spikes per window. 

Only 10% of burst cells and 21% of non burst cells showed a significant correlation 

between P and time (Spearman rank-order correlation coefficient, p < 0.05). Of 

those cells, P increased by an average of 11% and 14% for burst and non burst cells, 

respectively. Because P shows no correlation with time during the trial for 86% of 

cells and changes little for the other cells, we compute only one spectrum per trial in 

other analyses. 

In a prior analysis of this data set, signal detection theory was used to compute a 

neuronal "threshold" that expressed the sensitivity of each neuron to motion signals 

in the display (Britten et al., 1992; see Methods). Threshold was defined to be the 

coherence value at which the neuron signaled the direction of motion with a criterion 

level of reliability. Thresholds varied widely among neurons in the data set, and we 

therefore tested for the hypothesis that burstiness as measured in the present analysis 

could be systematically related to the measure of sensitivity computed in the prior 

study. Fig. 7. 7 shows cell threshold plotted against the index of burstiness, P, for all 

neurons that yielded a reliable estimate of P. The scatterplot contains no structure 

signifying a relationship between the two measures, an impression that is confirmed 

by calculation of a correlation coefficient (r = 0.045, p=0.61 ). 

Psychophysical threshold also varied across these experiments since the testing 

conditions were changed to match the preferences of each cell (Britten et al., 1992). 

For some purposes, therefore, it is useful to express the sensitivity of each neuron 

relative to psychophysical sensitivity by calculating for each experiment the ratio 

of neuronal to psychophysical threshold. To determine whether P is related to cell 

sensitivity expressed in this manner, we calculated a correlation coefficient between 

the log of the "threshold ratio" and log P, but again we found no relationship (r = 

0.097, p=0.28) . Thus, the prominence of a peak in the 40 Hz region of the power 
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Figure 7.7: A comparison of neuronal threshold to the shape of the power spectrum. 
There is no significant correlation (r = 0.045, p = 0.61) between log(ccell) and log(P). 
Neuronal threshold, Ccell, is the coherence level which supports 82% correct decisions 
by an ideal observer counting total number of spikes. P is the ratio of the height of 
the peak (dip) in the 40 Hz band of S'(f) to the baseline level for burst (non burst) 
cells. We obtain similar results when correlating P against measures of the animal's 
psychophysical performance on motion discrimination (not shown). 
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spectrum does not correlate with prior measures of cell sensitivity. 

Finally, we asked whether the prominence of the peak varied in a systematic way 

with the decision made by the monkey on successive presentations of a given motion 

condition. Previous analyses have demonstrated a trial-to-trial covariation between 

neuronal response and psychophysical decision when the response is considered to be 

the integrated spike count (Newsome et al., 1989b; Britten et al., 1995). We therefore 

wondered whether a measure of temporal structure in the spike train, P, would be 

similarly correlated with performance. 

As in the prior analysis, we eliminated the influence of the visual stimulus itself on 

the monkey's decisions by carrying out the analysis only for c = 0 (completely random 

motion) and other small coherence levels for which neither the monkey nor the neuron 

discriminated the direction of motion at greater than chance levels (effectively random 

motion). On these trials, the monkey "guessed" the correct direction since the visual 

stimulus itself contained no effective information about the correct choice. For each 

cell we computed the difference between the average value of P for trials on which the 

monkey decided in favor of the neuron's preferred direction and the average value of 

P when the monkey decided in favor of the null direction. We found no statistically 

significant difference in P between these two conditions for either burst or nonburst 

cells (paired t-test, p > 0.05), and we therefore conclude that the prominence of the 

spectral peak in our data set and for our stimulus conditions is not related to the 

monkey's behavioral choice. 

We found a similar result when testing whether P was correlated with correct 

versus incorrect decisions by the monkey at the coherence level closest to the monkey's 

psychophysical threshold, Csystem (typically at c = 0.128). At this level, there are a 

significant number of incorrect response trials, and yet the monkey is not simply 

guessing. Again, we found no statistically significant difference (paired t-test, p > 

0.05) for either burst or nonburst cells, and therefore conclude that the prominence 
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of the spectral peak is not related to correct and incorrect responses by the monkey. 

Since it is a widely held belief that changes in temporal structure (such as an 

increase in burstiness) can result from cell damage caused by the electrode, we tested 

for a change in P from trial to trial over the course of the experiment. We found 

that 13% of burst cells showed a significant increase in P, 67% on average, during the 

experiment, while 12% showed a significant but small (only 8% on average) decrease 

in P. Among nonburst cells, 20% showed a significant increase, while 18% showed 

a significant decrease in P. The magnitudes of the increase and decrease among the 

nonburst cells were both 10% on average. 

7.3.3 Treating Bursts as Events 

We previously appealed to the neuronal threshold, Cce/1, as a measure of an ideal 

observer's ability to decide the direction of motion of the stimulus based on the output 

of the neuron (Newsome et al., 1989a; Britten et al. , 1992), assuming that the relevant 

neuronal output is the number of spikes fired during the stimulus period without 

considering whether those spikes occurred in bursts or as isolated action potentials. 

What happens if we quantify the neuron's output by the number of "events," where 

an event is either a burst or an isolated spike, and recompute an associated neuronal 

threshold, CceJI? One could well argue on biophysical grounds that a burst of spikes 

could be more powerful in evoking a postsynaptic response than the same number of 

isolated spikes. 

Consistent with our definition of B, events are defined as the longest sequences 

of spikes with all interspike intervals less than or equal to 3 msec (values between 

3 and 8 msec give very similar results). With this definition, single isolated spikes 

as well as bursts are counted as individual events. A nonburst cell will have nearly 

the same number of events as spikes, while a burst cell will have many fewer events 
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than spikes. Fig. 7.8a compares the tuning of a strongly bursting cell's response 

measured in spikes/sec (upper curve), events/sec (middle curve) and spikes/event 

(lower curve). Typical of our database, spikes/event is not tuned with c; therefore, 

the curve for events is similar to that for spikes, but scaled down by the average 

number of spikes per event, here 2.5. In Fig. 7.8b, the thick line shows the events/sec 

curve scaled up by 2.5 spikes/event so that it overlays the spikes/sec curve. From 

the relatively smaller standard deviations for normalized events/sec, it is clear that 

for this cell events/sec is a more useful neuronal signal for predicting the direction of 

coherent motion. 

Because the neuronal code that carries motion information in cortex is not known, 

and since likewise we do not know whether neurons post-synaptic to the one recorded 

differentiate between bursts and isolated spikes, we tried various schemes for weighting 

the contribution of events to the output signal based on a function of the number of 

spikes per event. First, we weighted isolated spikes, i.e. single spike events, as 1 and 

bursts, events of multiple spikes, as a, with a varying between 0.5 and 8. We also 

used a different weighting scheme, where each event, irrespective of whether burst 

or isolated spike, is weighted according to its number of spikes raised to a power, (3. 

Note that f3 = 0 corresponds to the first weighting scheme with a = 1, and f3 = 1 

corresponds to our original scheme which does not differentiate between bursts and 

isolated spikes. In addition, we consider f3 = 1/2 and f3 = 2. 

To assess the advantage of these schemes, we recomputed neuronal thresholds 

based on the modified output signals for the 41 burst cells where the peak in the 

power spectrum was at least 50% above the baseline (P 2:: 1.5). More weakly bursting 

cells are ignored because we expect no effect when isolated spikes greatly outnumber 

bursts. Fig. 7.9 shows the frequency histogram of Ccell/ccell, where Ccell is the neuronal 

threshold based on the modified signal. The shifts of the distributions are significant 

(p < 0.05) for all histograms shown except for a = 0.5 . Leftward shifts indicate 
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Figure 7.8: One example of how counting events rather than spikes can yield better 
direction discrimination. Events are defined to be either isolated spikes or bursts 
(groups of spikes with all intervals :::; 3 msec) . (a) The tuning of mean spike rate 
(J.Ls(c)), mean event rate (J.LN(c)) and the number of spikes per event (J.L x(c)) are 
plotted relative to motion coherence for the strongly bursting cell jOO 1. J.Ls (c) and 
J.LN( c), are tuned with c, but J.Lx (c), is flat at about 2.5 and is treated as a constant, 
J.Lx, in the text. (b) Focusing on the region around c = 0, J.Ls(c) (thin line) is 
plotted against J.LM(c) (thick line, offset), computed by multiplying J.L N(c) from (a) by 
J.Lx = 2.5 spikes/event. It is apparent by the smaller standard deviations and similar 
slope that J.LM(c), and thus event rate, is a better basis for predicting c than is raw 
spike rate. Error bars show standard deviations. 
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that the thresholds improved (became lower) when the modified signal was used in 

place of spike count . The greatest improvement occurred for a= 1 (i.e. f3 = 0) and 

corresponds to a 7.5% decrease in threshold. For three cells, thresholds were roughly 

cut in half. In other words, allowing an ideal observer to count bursts as single events 

enhances his ability to predict the direction of motion of the stimulus, on average. 

Weighting bursts more (a > 1) or less heavily (a = 0.5) than single spikes did 

not improve thresholds. Squaring the number of spikes within the burst also lead to 

higher (worse) thresholds, while taking the square root yielded an improvement. 

Based on these results, and on the relative variance-to-mean ratios for event count 

and spike count seen in Fig. 7.8, we believe that the improvement, particularly for 

a= 1, is due to a reduction in relative variance which occurs by ignoring the number of 

spikes within events. This effect is easily demonstrated by a simple stochastic model. 

Consider the model that a bursty spike train is governed by two distributions, that of 

the number of events N and that of the number of spikes per event X. Assume that 

N is Poisson distributed with rate parameter J.LN(c), a function of stimulus coherence, 

and that X is distributed with mean J.Lx and variance a-}. Using basic results from 

the theory of branching processes (Feller, 1968), the mean of S, the number of spikes 

per trial, is then 

J.Ls(c) = J.LN(c)J.Lx (7.5) 

and the variance is (see Appendix for proof) 

(7.6) 

where we use the fact that J.LN(c) is both the mean and variance of the Poisson 

distribution for N. Rather than comparing the neuronal output signal S, based on 

spikes, directly to the event count N, we consider the random variable M = J.Lx N 
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Figure 7.9: Comparing neuronal thresholds based on spike rate to those based on 
weighted event counts . For 41 burst cells (P ~ 1.5), frequency histograms show the 
threshold ratio Ccell / Ccell· In the upper six histograms, Ccell is computed from ROC 
analysis based on the number of single spikes plus a times the number of bursts. 
The greatest leftward shift in the distribution (numbers in parentheses show means), 
representing the largest average improvement in neuronal threshold, is achieved for 
a= 1, which corresponds to using f.1N(c), event count, as the neuronal signal. (The 
counts near 0.5 indicate cells for which the neuronal thresholds were roughly halved 
by this procedure.) For 2 :::; a :::; 3, this procedure is very similar to counting 
individual spikes, since bursts are composed of typically 2- 3 spikes. Histograms for 
a= 0.75, 1.5, 3.0 (not shown) have means 0.944, 0.940, 1.02, respectively. As a-too, 
single spikes are ignored and only bursts are counted. The bottom histograms show 
results from two schemes which weight events based on the number of spikes/event 
raised to the power {3. The square-root yields an improvement in threshold since 
it reduces the effect of variance in the number of spikes per event, while squaring 
emphasizes the variance, and worsens the thresholds. Overall, these plots indicate 
that an ideal observer with knowledge of the arrangement of spikes in bursts will 
be better able to predict the direction of motion, particularly at near-zero coherence 
levels, than an observer knowing only the total number of spikes. 
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which has the same mean as S, that is 

(7.7) 

This corresponds to multiplying the event/sec curve in Fig. 7.8a by 2.5 spikes/event 

so that it lies directly on top of the spikes/sec curve and allows direct comparison of 

the sizes of the standard deviations (i .e. Fig. 7.8b). The variance of the scaled-up 

event count M is given by 

<7~(c) = J.LN(c)J.L'i:, (7.8) 

which no longer has the term from eq. 7.6 involving the variance of the number of 

spikes within an event. Therefore, counting events rather than spikes should allow an 

observer to better predict the direction of motion of the stimulus under the conditions 

of this model. The critical condition here is that the number of spikes per event is 

independent of stimulus condition, and this appears to be the case, as demonstrated in 

Fig. 7.8, for most of the bursting cells, particularly at near-threshold coherence levels. 

This is further supported by our observation that P changes little with coherence level. 

7.4 Stochastic Models 

What stochastic models of neuronal firing can give rise to the observed power spectral 

densities and lSI distributions? To answer this question completely would require a 

detailed understanding of the biophysics of individual cortical cells as well as the 

dynamics and connectivity of the network in which the MT cells from which we 

recorded are embedded. Instead, we focus on the statistical properties of the discharge 

frequency of individual cells in a qualitative manner, bypassing the need for detailed 

single cell or network models. We believe that this method is justified by our results; 

we can model the power spectra and lSI distributions using very simple two- or four-
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parameter distribution functions . 

7.4.1 Poisson-Distributed Action Potentials 

Our starting point is the fundamental result that the power spectrum of a random, 

Poisson train of action potentials is flat at all frequencies except for a delta peak at 

the origin. This agrees with our intuition that all spectral components should be 

equally represented in a completely random spike train. To be more precise, we will 

model a spike train as a shot-noise process f(t) , where the function h(t) describes 

the shape of a single shot, here at first a single action potential, and Sh(f) is the 

associated energy spectrum. A train of infinitely many action potentials is given by 

+oo 
g(t) = 2: h(t- ti)· (7.9) 

t=-oo 

If the spikes occur at random, that is without any memory of the previous spike, but 

with an average firing rate >., the power spectrum of such a random spike train is 

(Champeney, 1973) 

(7.10) 

where the average value of g is related to h(t) by (g(t)) = >. J h(t)dt. In the familiar 

case where we assume that an individual action potential is adequately described by 

a delta impulse function, i .e. h(t) = 8(t), Sh(f) = 1, the above equation reduces to 

(7.11) 

The interspike interval probability density function (lSI) for this case is given by 

ISI(b..t) = >.e--XIlt b..t > 0. (7.12) 
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Thus, if we observe a Poisson spike train for a sufficiently long time, its interspike 

intervals should be distributed according to a single decaying exponential. 

We will also make use of a more general expression for the power spectrum which 

includes cases where the occurrence of an action potential is dependent on the last 

time an action potential was initiated. We embody this dependency in the renewal 

density function p(t). Assume that a spike was generated at time t 1 • The probability 

for the next spike to occur between t 1 + t and t 1 + t + dt is given by p(t)dt (for details, 

see Perkel et al., 1967). The power spectrum of shot-noise with this dependency 

among the "shots" is 

(7.13) 

for all values f =/:- 0 (see Appendix L in Champeney, 1973) . For a Poisson process, 

the probability of spiking per unit interval is always constant and is characterized by 

the mean rate; thus p(t) = >.. 

Neurons, however, do not fire totally without memory, because for a variable 

time following the generation of an action potential the spiking threshold is elevated, 

making it more difficult to discharge the cell (absolute and relative refractory periods). 

The effect of a refractory period can be modeled analytically with the help of the 

renewal density function. The shape of p(t) can, indeed, be measured directly by 

computing the probability for the observed cell to fire an action potential in the short 

time interval t1 + t and t1 + t + dt, assuming that it had fired at time t 1 . For the 

binary data we have here (per sampling interval of .0..t = 1 msec, either zero or one 

spike can occur), p(t) is directly proportional to the auto-correlation function R(t). 

For our non-bursting cells (e.g. cell d , Fig. 7.2), R(t) (not shown) is well fitted by a 

constant minus a small Gaussian around the origin, indicating a reduced probability 
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of firing around t = 0. We therefore assume for the renewal density 

(7.14) 

Replacing p(t) into eq. 7.13 yields the power spectrum of an infinite train of Poisson­

distributed 8 impulses with refractory period 

(7.15) 

for f =I 0. In order to ensure that SPoisson is always positive, the maximum firing rate 

must be limited: ). ~ 1/( v'2iia). This spectrum, parameterized by two parameters, 

the mean rate). and the width of the refractory period a, is constant for large values 

off but dips towards its minimum at f = 0. Fig. 7.10 shows SPoisson(J) for).= 40Hz 

and for a= 1, 2, 4, 8 msec. A longer refractory period causes a deeper trough at low 

frequencies. Note that this result appears at odds with intuition, since a refractory 

period seems to demand a peak in the neighborhood of the inverse of the smallest 

interspike interval. However, this is only true if the firing rate ). is so high that the 

mean time between spikes approaches the refractory period. In that case, eq. 7.15 

no longer describes the resulting spectrum. Clearly, in the case of a fixed absolute 

refractory period, the mean spike rate must be no greater than the inverse of the 

refractory period. The additional factor of 1/ v'2if arises because of the Gaussian 

depression in the renewal density used to model a stochastic refractory period. 

We also numerically simulated this situation using Poisson generated shot-noise 

(with a mean spiking rate). =58 Hz) and a Gaussian distributed absolute refractory 

period (of 5 msec mean, 2 msec standard deviation and truncated below zero). In 

other words, each time a spike was generated, the Gaussian distribution specified the 

refractory period associated with that particular spike. After this refractory period, 
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Figure 7.10: Derived power spectra SPoisson for a random (Poisson) spike train with 
refractory period. The power spectrum SPoisson for a Poisson process with a refractory 
period modeled as a Gaussian-shaped depression in the renewal density (see eq. 7.15) 
is plotted for u = 1, 2, 4, 8 msec at ). = 40 Hz. As the length of the refractory period 
increases, the trough becomes deeper at lower frequencies. This model for S(f) only 
holds if).::; 1/(V27fu). Outside of this range (i.e. if the inverse of the mean spike 
frequency is on the order of the refractory period) the spectrum develops a peak at 
that inverse of the mean refractory period, and the renewal density can no longer be 
modeled as a constant minus a Gaussian. 
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the probability for the next spike to occur is a constant )..~t. We compare in Fig. 7.11 

the spectrum and lSI distribution from an MT cell with a relatively flat spectrum 

and a dip at low frequency against this simple model. Both the synthetic and the 

experimentally recorded spike trains (see top portion of Fig. 7.11) are subject to 

the same analysis. The associated post-stimulus time histogram (PSTH) is flat for 

the computer-generated process since our model does not account for the transient 

component of the neuron's response. It is obvious that the lSI distribution and power 

spectrum for the synthetic process are very similar to those for the MT cell. In 

particular, both spectra show a dip at low frequencies. 

We superimposed the analytical expression SPaisson(f) (with ).. = 58 msec, a = 

3.5 msec) onto the power spectrum for the neuron (Fig. 7.11); it appears to provide an 

excellent fit to the computer-generated and the measured spectra. We performed this 

fitting procedure of S'(f) against the two parameter function SPoisson(f) of eq. 7.15 

for 61 nonburst MT cells. Six examples of the fits are shown in Fig. 7.12 for neurons 

with various firing rates, and the values of).. and a for all nonburst cells are shown in 

Fig. 7.13. As expected, the refractory period shortens as firing frequency increases. 

Altogether, we find it remarkable that such a simple stochastic model of cell firing 

accounts for the shapes of the power spectra of many cells in our database. 

7.4.2 Poisson-Distributed Bursts 

Can we use a similar model to account for the 41 MT cells with a peak in their power 

spectrum whose amplitude is at least 50% higher than the baseline? To answer this 

question, we consider the interburst interval (IBI) distribution; if bursts occur at ran­

dom but with a fixed absolute refractory period, their distribution should correspond 

to a shifted exponential, that is IBI(~t) = le-,.(.t..t-to) for t ;::: t 0 and 0 elsewhere, 

where t0 is the duration of the absolute refractory period and 1 is the mean rate for 
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Figure 7.11: Comparison of spike train statistics for nonburst cell e047to those for a 
simple numerical model. The statistics for the neuron (left column) were computed 
by averaging over 15 trials at c = 0.128. The spikes (top trace) are less clustered than 
random, as demonstrated by the absence of short intervals in the lSI and the dip at 
low frequencies in S'(f) . The corresponding numerical model (right column) consists 
of a computer generated Poisson process (mean rate 86 Hz) superimposed with a 
Gaussian distributed refractory period (mean 5 msec, standard deviation 2.0 msec, 
truncated at 0 and renormalized). The model does not account for initial transients 
in the data and averages over the equivalent of 1000 two second long trials, so the 
PSTH is flat and all plots are less noisy for the model. The levels of PSTH and power 
spectrum (above 200Hz) demonstrate that the resulting process has an overall mean 
rate matching that of the neuron. The absence of short intervals in the ISis and the 
dips at low frequencies in the power spectra are in close agreement between the neuron 
and the model. This model is not intended to be a best fit for the data, but rather a 
demonstration that the location and size of the dip are qualitatively accounted for by 
a random process with a stochastic refractory period of appropriate duration. The 
solid curve superimposed on the neuron's spectrum (bottom left) corresponds to the 
analytical power spectrum for a Poisson process with a refractory period (eq. 7.15) 
with A= 58 Hz and a-= 3.5 msec. Again, this qualitatively accounts for the dip. 



147 

Cell .X a 

Name (Hz) (msec) 
w014 80.3 2.0 
j233 56.0 1.5 
j200 46.8 1.0 
e085 39.3 7.5 
w213 30.6 6.5 
j129 10.8 13.0 
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Figure 7.12: A comparison of power spectra, S'(f), (points) for six nonbursting MT 
cells and their corresponding analytical curves, S Poisson (f), (solid lines) based on the 
expression for a process with randomly (Poisson) distributed spikes and a refractory 
period (eq. 7.15). These examples illustrate the ability of the simple analytical model 
to account qualitatively for the location and size of the dip in t he power spectrum 
over a broad range of firing rates. The particular shape of the dip is often fit poorly 
since the form of the renewal density may not match the Gaussian shape imposed 
by analytical model (see eq. 7.14) . The different levels of the various power function 
reflect the different mean spikes rates. The parameters of the analytical expressions 
are shown in the table. 
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Figure 7.13: The distribution of parameters for fits of nonburst cells' spectra to the 
analytical model of the power spectrum of a Poisson process with a refractory period 
(see eq. 7.15). The refractory period parameter a is plotted against the mean firing 
rate A for 61 non burst cells (points). The solid line shows the boundary outside of 
which the model no longer holds, i.e. for which A > 1/( V'iia). To the upper right 
of this line, the firing rate becomes too high to support the corresponding refractory 
period under our model of the renewal density. 
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bursts. If, on the other hand, bursting cells are pacemakers, that is if they regularly 

fire in bursts at a fixed interval , the IBI should be sharply peaked around I· Fig. 7.14 

shows the average normalized IBI distribution for 37 cells (those with P :2: 1.5 and 

more than 200 interburst intervals). The logarithm of the distribution appears linear 

in the normalized (see Fig. 7.14 legend) time range of 40- 160 msec and falls off at 

shorter intervals, consistent with a numerical model (thick curves) of Poisson dis­

tributed bursts with a burst-related refractory period which we develop in the next 

paragraph in terms of a single neuron. 

To emulate the data for a single neuron shown in the left column of Fig. 7.15, we 

synthesize the following point process. Similar to the previous section, we generate 

"events" using a Poisson process (with). =32Hz) with a Gaussian distributed refrac­

tory period (of mean 16 msec and 7 msec standard deviation; this distribution was 

truncated below zero and renormalized). Each event was then replaced with a burst 

of action potentials, i.e. 8-functions, where the length of the burst in milliseconds 

was approximately Gaussian distributed (mean 5.2, standard deviation 1.1 msec) and 

the spikes within the burst were chosen with approximately Gaussian spacing (mean 

1.8, standard deviation 0.5 msec). The mean rate ). and the Gaussian refractory 

distribution were chosen to fit the measured IBI distribution. The parameters of the 

Gaussian distribution for the length of the burst and the density within the burst 

were also chosen to fit the neuronal data. If this model is simplified by assuming that 

the spikes within the bursts are generated by a Poisson process (similar to a model 

proposed by Smith and Smith, 1965), then the power spectrum would remain fiat 

above 200 Hz, rather than gradually rising as seen at the bottom of Fig. 7.15. 

The right side of Fig. 7.15 shows the resultant lSI and power spectrum, which 

are matched against similar functions for a bursting MT cell (left side of Fig. 7.15). 

What is surprising is that the synthetic data shows a peak in the power spectrum at 

about 31 Hz, without any underlying oscillations. How can this occur? A simple 
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Figure 7.14: The average interburst interval (IBI) distribution for 37 burst cells (P ~ 
1.5, 4 cells with too little data were discarded) and a numerical model. Individual 
IBis were computed from all trials at c = 0.512 ( c = 0.256 for 4 cells) using the 8 msec 
criterion (see text) , normalized to have mean IBI equal to 60 msec (the population 
mean) by compressing or stretching the abscissa while preserving area, and smoothed 
with a Gaussian (0' = 3.0 msec) to eliminate isolated zero values. The average of 
logarithm of the IBI (thin line, error bars show standard deviation) is roughly linear 
from 40- 160 msec. Since the mean IBI varied from 20- 100 msec over the 37 cells, the 
linear range of 40- 160 msec in the plot corresponds to ranges from 13- 53 msec to 65-
265 msec in actual time. Two thick curves show IBI distributions from a numerical 
model of a Poisson burst-generating process with Gaussian distributed burst-related 
refractory period (J.L = 17 msec, O" = 8 msec, as in Fig. 7.15, see text). Model curves 
are shown for >. = 10 and 100 bursts/sec. By varying >. , the model accounts for 
the slope and approximate shape of the normalized IBis while holding constant the 
parameters of the stochastic refractory period. The variance of the data is smallest 
near the intersections of the model curves, consistent with the notion that varying 
the model parameters induces little change in the IBI in these regions. The model 
somewhat over-estimates the fraction of intervals in the linear range of 40- 160 msec. 
Beyond 160 msec, values become undefined due to frequent zeros in the individual 
IBI histograms. 
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Figure 7.15: Comparison of spike train statistics for burst cell j001 to those from a 
simple numerical model. The statistics for the neuron (left column) were computed 
by averaging over 15 trials at c = 0.256. The spikes (top trace) are more clustered 
than random, as demonstrated by the excess (62%, truncated on plot) of intervals in 
the 1, 2 and 3 msec bins of the lSI. The PSTH is particularly noisy because spikes 
occur in bursts. The corresponding numerical model (right column) is an extension 
of that used for nonburst cells (see Fig. 7.11) in which each spike generated from 
an underlying Poisson process with refractory period is now replaced by a burst of 
spikes where the burst length and the temporal structure of spikes within the burst 
are chosen to match the data (see text). Similar to the non burst model, this is 
not intended to be a best fit to the data, but a demonstration that a process firing 
bursts randomly with a burst related refractory period can account qualitatively for 
the location, size, and shape of the peak near 33 Hz and the dips near the origin 
and at higher frequencies. The solid curve superimposed on the neuron's spectrum 
(bottom left) corresponds to the analytical power spectrum given by eq. 7.17 with 
..\ = 20.4 events/sec, CT = 12.5 msec, A = 550 spikes/sec, and L = 2.55 msec. This 
cell is one of the 10% of cells whose peak in the 40 Hz range is twice as tall as the 
dip at higher frequencies. 
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analytical model proves to be insightful. 

We again appeal to the power function of an infinite train of shot noise (where each 

individual shot is described by h(t)), with refractory period modeled with the renewal 

density p(t) (eq. 7.13) . While before we assumed that individual spikes can best be 

described using a 8(t) function, we now model a burst by a boxcar of amplitude A 

and half-width L centered around the origin. We set L to the half-width of the typical 

burst and A to normalize the area of the boxcar to account for the number of spikes 

within the typical burst. The energy spectrum associated with such an event is given 

by the square of a sine function, i.e. by 

(7.16) 

The power spectrum of such Poisson events with a refractory period is 

(7.17) 

for f =J 0. 

We superimposed SburstU) onto the neuron's spectrum in Fig. 7.15 (lower left) 

and find that both functions show a peak at the same frequency. The reason for 

the peak is the fact that Sburst is the product of sinc(f)2 , a decreasing function of f 

around the origin, and a monotonically increasing function, 1- e-1
2

• Fig. 7.16 shows 

the estimated power spectrum S'(f) as well as the associated best-fit on the basis 

of eq. 7.17 for five burst cells. The analytical model does not account for variations 

in the burst width and occasional isolated spikes. Also, due to the use of the box­

car function to mimic bursts, we have no control over the fine structure of the spikes 

within the burst and therefore Sburst(f) does not match well at high frequencies. What 

is important in this model is that the spectrum of this point process shows a peak, in 
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the absence of any underlying oscillator model. A similar result may be obtained in 

this case by using interburst intervals drawn from a broad Gaussian distribution with 

a mean value close to 25 msec. More neuronal data would be required to distinguish 

between the appropriateness of these models. 

To emphasize the fact that the presence of bursts-in combination with a refrac­

tory period-can lead to a peak in the power spectrum, we used all 210 trials at 

different values of c for one particular cell, j001, and replaced every occurrence of a 

burst by a single spike, located at the center of the burst (Fig. 7.17). The associated 

power spectrum changes dramatically in character, from the usual peaked one to a flat 

spectrum with a dip at low frequency, compatible with the notion that once bursting 

has been accounted for , what remains are Poisson-distributed events modulated by 

the presence of a refractory period. If bursts would tend to occur every 25 msec or so, 

then this procedure should have led to a spectrum with a large peak around 40 Hz. 

For our data, bursts account satisfactorily for the peaks in the power spectrum. This 

is also witnessed by the rate of burst occurrence .A, shown in the table in Fig. 7.16, 

where A is distributed between 10- 20 Hz, below the range where the peaks appear in 

the corresponding spectra. 

7.5 Discussion 

The intent of the research reported here is to study some aspects of the time structure 

of spike trains recorded in cortex of the behaving monkey on the basis of the power 

spectral density, an order-dependent measure, and the interspike interval (ISI) his­

togram, an order-independent measure. Furthermore, we would like to assess whether 

knowing anything about the time-course of the cell's discharge can lead to more ac­

curate predictions concerning the stimulus or the monkey's response than simply 

counting spikes. In this investigation, we have confined our analysis to data from 
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Figure 7.16: A comparison of power spectra, S'(f), (points) for five strongly bursting 
MT cells and their corresponding analytical curves, SburstU) (solid lines), based on 
the expression for a shot noise process with randomly (Poisson) distributed bursts 
(modeled as boxcar functions) with a burst-related refractory period (eq. 7.17). The 
parameters of the fits are shown in the table: A is the mean rate of the shot noise, 
a is the refractory period parameter, A is the height of the boxcar function (i.e. the 
spike rate within bursts), and L is the half-width of the boxcar function (i.e. the 
half-width of the burst). The analytical curves do not follow the spectrum at higher 
frequencies because they do not model individual actions potentials (see text) . 
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Figure 7.17: A demonstration that a peak in the power spectrum may be due to the 
presence of bursts, rather than regularity in their temporal alignment. When bursts 
from a neuron (upper impulse plot) are replaced by single spikes (lower impulse 
plot)~ the peak in the original power spectrum (upper spectrum) disappears (lower 
spectrum). A burst is defined as the longest subtrain of consecutive action potentials 
with no interspike interval greater than 8 msec (using 3 msec gives a very similar 
result). Each burst is considered to be an event at the mean occurrence time of 
all action potentials within that burst. This supports our notion that the burst 
themselves are randomly placed (with a burst-related refractory period) and are not 
locked to a regular oscillatory pattern. 



156 

well-isolated single units . 

7.5.1 Random, Non-Bursting Cells 

We found that about one-third (71) of our MT cells can be adequately described 

by a Poisson process of mean spiking rate .A with a refractory period (modeled here 

by a Gaussian distributed refractory period), in the sense that the experimentally 

determined power spectra S'(f) and ISI distributions match the analytically (and 

numerically) determined ones (eq. 7.15 and Fig. 7.11). In particular, the power spectra 

are flat, with a dip towards low temporal frequencies. Spikes from these cells do not 

occur in bursts, that is they are almost always at least 4 msec (and usually much 

more) apart. We wish to point out that a Poisson process with refractory period is 

almost the simplest statistical description possible, with only two degrees of freedom. 

Yet, it appears to describe the measured discharge patterns relatively well. To our 

knowledge this is the first time that such a process is identified by its characteristic 

power spectrum. 

In a related study (Softky and Koch, 1992, 1993), we computed the coefficient of 

variation Cv associated with the spike trains from the same data set of non-bursting 

MT cells (normalized for their non-stationary firing rates) as well as from V1 cells 

in the behaving monkey responding to bars and other textured stimuli (Knierim and 

Van Essen, 1992) and find values of Cv ~ 1, consistent with a Poisson process. We 

also analyzed the number of spikes occurring in different trials in response to the same 

stimulus and find that the variance in the number of spikes scales approximately as 

the average number of spikes to the 5/4 power (Softky and Koch, 1993). In a pure 

Poisson process, the variance should be equal to the mean, while for a fractal point 

process the variance can be larger than the mean (Teich, 1992; Usher et al., 1994). A 

number of studies have used this measure as indicative that the firing of cortical cells 
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in striate and extrastriate monkey cortex are consistent with a description of spiking 

as a Poisson process (Tolhurst et al., 1983; Parker and Hawken, 1985; Vogels et al. , 

1989; Zohary et al. , 1990; Snowden et al. , 1992). Thus, at least for long spike trains 

in the trained monkey, the associated lSI and the power spectrum are compatible 

with the notion that the underlying point process can be described by an almost 

memoryless Poisson process with refractory period. 

7 .5.2 Bursting Cells 

More complex temporal dynamics are shown by the large fraction of cells (131 out of 

212) that frequently discharge in bursts, i.e. 2- 4 spikes within 2- 8 msec or less (see the 

raster plots in the top row of Fig. 7.2). The fraction of the total number of spikes in a 

train which are less than 3.5 msec apart (our measure of "burstiness" B) ranges from 

an extreme value above 60% to 0. Unfortunately, we were not able to separate our 212 

cells into two clearly segregated subpopulations using this or a related measure, since 

the distribution of cells varies continuously from strongly bursting to non-bursting 

(Fig. 7.3). Thus, any grouping of cells into "bursting" and "non-bursting" will be 

arbitrary to some extent. However, the amount of burstiness associated with individ­

ual cells remains relatively constant for all visual stimuli tested, and, in particular, is 

independent of motion coherence (Fig. 7.5, Fig. 7.6 and our definition of P). Further­

more, we found no systematic relationship between burstiness and the onset or the 

duration of the experiment for the majority of cells. Finally, it should be remembered 

that due to the perceptually demanding nature of the experiment, the monkey had to 

be highly alert throughout each trial. These observations argue against the possibility 

that the bursting is related to the onset of drowsiness or sleep. 

Intracellular current injection into cells in rodent slices of sensory-motor cortex 

has revealed three distinct types of neurons (McCormick et al. , 1985; Connors and 
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Gutnick, 1990; Agmon and Connors, 1992). The majority of these in vitro cells 

respond to the sustained current by a train of action potentials, which adapt within 

50-100 msec to a more moderate discharge rate ("regular spiking" cells). A second 

class of neurons, only infrequently recorded from, is capable of high discharge rates 

with little or no adaptation ("fast spiking" cells). A third set of neurons respond 

to the depolarization by generating a short burst of 2-4 spikes, followed by a long 

hyperpolarization. This cycle of burst and hyperpolarization persists for as long as the 

current stimulus persists ("intrinsically bursting"). In slice tissue, the regular spiking 

cells correspond to pyramidal neurons, fast spiking cells to GABAergic non-spiny 

stellate cells and the intrinsically bursting cells to layer V pyramidal cells (Agmon 

and Connors, 1992). Because only little is known about the distribution of these cell 

types in the monkey, we can at present only speculate to what extent our "bursting" 

cells in MT correspond to these layer V intrinsically bursting cells characterized in 

slice preparations. However, the evidence presented above certainly suggests that the 

propensity of our MT cells to respond with bursts is not dependent on the nature of 

the visual stimulus, but rather appears to be an intrinsic property of certain cells. 

What is the statistical distribution of bursts? We converted spike trains of some 

bursting neurons into "bursting trains" by the simple rule that a burst was defined 

as the longest sub train with no interspike interval greater than 8 msec (using values 

as low as 3 msec here made only very little difference in the result). The resulting 

interburst interval distributions (IBI; see Fig. 7.14 for average) are not readily com­

patible with a neuronal process that generates bursts at any fixed temporal interval. 

In most cases, the IBI distributions can be fitted assuming a Poisson distribution of 

bursts combined with a Gaussian distributed burst refractory period (e.g. cell j001; 

see Figs. 7.14 and 7.15). In some cases, the IBI has a long tail, arguing against 

a simple exponential decay. We suspect that occasional excesses of long interburst 

intervals is partly the reason that the Poisson IBI model (thick curves, Fig. 7.14) 
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somewhat over-estimates the fraction of IBis in the range of 40- 160 msec. The rela­

tively short duration of the trials considered here does not allow a conclusive study 

of intervals that fall beyond the 160 msec (normalized) value in Fig. 7.14. We never 

observed narrowly peaked IBis, suggesting that individual MT cells are not acting 

as pacemakers. This is partly, however, a question of linguistic convention, since any 

cell having an IBI distribution with a single peak (such as that shown in Fig. 7.14), 

might in principle be considered to "oscillate" at the inverse of this peak. We do not , 

however, find this to be a very helpful definition. 

7.5.3 Cells with a Peaked Spectrum 

About two-thirds of all our MT cells (131 out of 212) have a single peak in their 

power spectra in the 40 Hz range (mean 41 Hz, standard deviation 9 Hz; top row 

in Fig. 7.2 and Fig. 7.15). Such a peak in the power spectrum is not, however, 

associated with ringing or oscillatory behavior in the Fourier transform of S'(f), i.e. 

the autocorrelation function R'(t). Only in a single cell (jOOJ) during very high levels 

of motion coherence did we ever observe an oscillatory response in R'(t) . This appears 

to be quite different from the study of Kreiter and Singer (1992), who report that a 

large fraction of MT cells in the awake monkey show oscillations. 

What simple statistical model of neuronal firing can give rise to a peak in the 

power spectrum? We show that the power spectrum of a Poisson process with a 

Gaussian distributed refractory period is monotonic increasing, leveling off towards 

a constant value at higher frequencies (eq. 7.15). The spectrum associated with a 

boxcar-like burst is [sin(!)/ f]\ a monotonic decreasing function around the origin. 

The power spectrum of a process which randomly fires bursts followed by a refractory 

period, is then given by the product of these two equations (eq. 7.17). Given that one 

function is increasing with f and the second one decreasing, the product of the two 
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will have a local maximum. In our case, if bursts are treated as boxcar functions that 

are about 4 msec wide, occur at a frequency of between 10-20Hz, and are followed by 

a refractory period of between 10- 25 msec (see table, Fig. 7.16), the peak in S'(f) lies 

in the 20- 50 Hz range (Fig. 7.15). These values were obtained from the distribution 

of the bursts themselves and can also be justified on biophysical grounds (Connors 

and Gutnick, 1990). We find it surprising to what extent simple analytical models 

can account for the observed interspike interval distributions and power spectra of 

bursting cells at frequencies less than 100 Hz. Our computer simulation of such a 

firing process, which differs from the analytical model by resolving the boxcar bursts 

into individual impulses and the renewal density into a stochastic refractory period, 

gives a better match of S'(f) at higher frequencies. 

If the occurrence of every burst in a spike train is replaced by a single action 

potential throughout the entire spike train (and isolated action potentials remain sin­

gle spikes) the power spectrum S'(f) totally changes its character (Fig. 7.17), from 

a spectrum with a peak to a flat spectrum with a dip at low frequencies, compat­

ible with our notion that bursts themselves are distributed according to a Poisson 

distribution with a burst-related refractory period. If, for instance, the peak in the 

spectrum is due to periodically occurring bursts, our procedure should have revealed a 

spectrum with a clear peak, rather than the flat spectrum with a dip. We believe that 

our method of replacing bursts with "events" is a useful diagnostic tool for removing 

the confounding influence of bursts on the power spectrum, revealing the underlying 

dynamics. 

Another way m which a neuronal "oscillator" model differs from our "random 

burst" model is in the distribution of interburst intervals; the former gives rise to an 

interburst interval distribution tightly clustered around the inverse of the oscillation 

period, while the latter model is associated with a decaying exponential IBI modified 

by a refractory period. 
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As discussed in the previous section, our data are consistent with the random 

burst model (Fig. 7.14) ; however, the two models are difficult to distinguish when 

the oscillator model becomes less regular. We can show using computer generated 

data what is expected in the case of the oscillator model. Fig. 7.18 demonstrates 

the appearance of the lSI and spectrum S'(J) in the case of a neuron which fires 

isolated spikes (top) or bursts (bottom) with an approximately Gaussian lSI or IBI. 

In the case of isolated spikes, the power spectrum remains flat with a dip related 

to the apparent refractory period induced by the Gaussian lSI for distributions with 

a broad range of standard deviations (a ~ 12 msec). Once the standard deviation 

becomes smaller (top Fig. 7.18, a= 7 msec), a prominent peak arises in the spectrum 

(see arrow on figure) related to the inverse of the mean of the Gaussian IS I. The 

bottom portion of Fig. 7.18 shows a similar result , except that the isolated spikes 

are replaced by bursts (see the bimodal lSI distributions) and the peak due to small 

values of a is superimposed on the peak due to bursts, explained earlier. The narrow, 

i .e. more localized, peak should be associated with oscillations since it arises due to 

the regularity of the lSI and not due to the interaction of bursting with the refractory 

period. Localized peaks in the power spectrum, although not observed in our data, 

are associated with ringing in the cross-correlogram which has been reported in data 

from other laboratories. 

7.5.4 Treating Bursts as Signaling Events 

Because of the possible special relevance of bursts to signaling in the brain (e.g. Koch 

and Crick, 1994), we evaluated to what extent bursts convey a different message from 

that conveyed by a collection of individual spikes. Following Cattaneo et al. (1981a,b) 

and Bonds (1992), we plotted the tuning curve as a function of motion coherence for 

three different measures of cell response (Fig. Sa) : spikes per second, events per 
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Figure 7.18: The difference between peaks in the power spectrum due to regular 
oscillation and peaks due to bursts . The top six plots show computer generated data 
for the Gaussian lSI model with mean 25 msec. The left side shows a series of lSI 
histograms in which the standard deviation, u, of the Gaussian distribution is varied. 
For u > 12 msec, there is no observable peak in the power spectra (right side) , only a 
dip due to the apparent refractory effect imposed by the Gaussian. At u = 12 msec, a 
peak is just beginning to form at 40 Hz (the inverse of the mean of the lSI) , and as u 
decreases further, the peak (shown by arrow for u = 7 msec) rapidly increases in size. 
A similar progression occurs for the Gaussian IBI model (bottom set of six plots) in 
which spikes from the Gaussian lSI model are replaced by bursts. However, in the 
Gaussian IBI model, the spectrum has a broad bulge that sweeps up to a peak near 
40Hz due to the structure of the bursts (see Fig. 7.17), and this peak is present for all 
values of CT. A narrower peak appears above the broad peak due to bursts only when 
the variance of the Gaussian IBI becomes small. We therefore make a distinction 
between a peak in the power spectrum that is due to the local temporal structure of 
bursts and a peak that is due to a very narrow lSI or IBI distribution, which is a sign 
of regularity, i.e. oscillation, in the timing of spikes or bursts. It is common to see 
sharp peaks of the type pointed to by the arrows when neurons respond to artifacts 
in a stimulus, such as the 60 Hz refresh rate of a cathode-ray tube. 
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second-where an event is either a burst of spikes or an isolated spike--and spikes 

per event. Different from Bonds (1992), the average spikes per event (which includes 

individual spikes) does not vary with motion coherence c. Furthermore, if the event 

per second response is scaled up by the mean number of spikes per event, it closely 

follows the spike rate tuning curve (Fig. 7 .8b ). Thus, events or bursts per se have the 

same overall dependency on c as does the spike rate. However, due to elimination of 

the variability in the number of spikes per event when using event count, the variance 

of the scaled up curve, J.LM(c) , is less than the variance associated with the mean spike 

rate, J.Ls( c), in particular around low values of motion coherence. 

Because of the reduced variability of this measure, we expect it to be a more 

reliable indicator of the direction of motion of the stimulus. This intuition is confirmed 

by our analysis. We repeated the original ROC analysis (based on signal detection 

theory) of Newsome et al. (1989a) but allowed more flexibility in defining the signal 

on which the ideal observer would operate. They assumed that an ideal observer 

(referred to as the "Stanford" observer) counts each action potential in the 2 sec long 

spike train from an MT cell and uses this number as the basis for his analysis. We 

added a twist to this by weighting bursts differently from single spikes. While each 

isolated action potential contributed 1 towards the final sum, all spikes in a burst 

make a total contribution of a. Setting a = 1 implies that the entire burst only 

contributes as much as a single, isolated action potential towards the final decision. 

The result, as shown in Fig. 7.9 , is unambiguous. Setting a = 1, corresponding 

to using the event rate as the neuronal signal, improves the neuronal threshold for 

most of the 41 strong burst cells we analyzed here. The mean improvement was 

7.5%, and in 3 cells, the thresholds dropped by roughly a factor of 2. In other 

words, the "Caltech" ideal observer who distinguishes spikes from bursts can-for 

these cells- determine the correct direction of motion (using a statistical criterion) at 

a lower level of coherence c than the "Stanford" observer. a = 0.5 and 2 gave smaller 
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improvements (as did a= 0.75 and 1.5; not shown). As a is made larger (a---+ oo), 

bursts are more and more emphasized at the expense of single isolated spikes and the 

thresholds increase by 53%. The threshold also increases when bursts are weighted 

by the square of the number of spikes in each burst (/3 = 2). Weighting events by the 

square-root of the number of spikes per event, (/3 = 0.5) on the other hand, decreases 

thresholds (Fig. 7.9), since it decreases the variability contributed to the final signal. 

From the point of view of our fictitious pair of ideal observers, the Caltech ob­

server does better than his Stanford counterpart by replacing each occurrence of a 

burst of spikes by a single spike. In this sense it can be said that a crude measure 

of the temporal organization of spike trains does better in terms of signal detection 

theory than a simple spike count. This is not to say, however, that more sophisti­

cated measures of temporal organization, possibly taking account of the simultaneous 

activity of many neurons, cannot do better yet (e.g. Richmond and Optican, 1992; 

Aertsen et al., 1989; Singer, 1994). 

We do not know at this point the code that neurons postsynaptic to MT cells use 

to decide whether the stimuli move in one or the other direction. The fact that the 

neuronal threshold of many cells is frequently lower than the psychophysical threshold 

of the entire animal (Newsome et al., 1989a) requires an explanation as to why the 

animal does not do better than it does (invoking correlated activity among cells and 

population coding; Britten et al., 1992). Our results point to an additional expla­

nation: if bursts are substantially more efficient in elevating postsynaptic firing rate 

than isolated spikes, corresponding to a~ 1, thresholds would increase and averaging 

over many cells would be required in order to mimic the psychophysical thresholds. 

It is important at some point that this question be resolved experimentally, possibly 

using a combination of in vivo slice techniques with behavioral studies. 
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7 .5 .5 Functional Considerations 

What is the function of bursts? Why should cortex have two types of long-range 

projection cells, one signaling isolated spikes and the other responding frequently 

with bursts of spikes? It has been argued (Koch and Crick, 1994) that bursting 

neurons are much more efficient at accumulating calcium in their axonal terminals 

than cells that fire isolated spikes (that is, four spikes within a 10 msec interval cause 

a much larger increase in intracellular calcium at the end of the last spike than four 

spikes within a 40 msec interval). Because intracellular calcium accumulation in the 

presynaptic terminal is thought to be mainly responsible for various forms of short­

term potentiation (in particular facilitation and augmentation; Magleby, 1987), it may 

well be that the primary function of bursting neurons is to induce this non-Hebbian 

(that is, non-associative) type of synaptic plasticity at its postsynaptic targets outside 

of the cortical system. In essence, the burst of spikes could turn on short-term memory 

which would then decay over several seconds (see also Crick, 1984). One might then 

expect there to be a relationship between bursting and short-term learning. 

It is important to know whether our "bursting" cells correspond to the "intrin­

sically bursting" cells identified by intracellular current injection. The latter cells 

appear to be confined (at least in rat and guinea pig slice) to layer V ( Agmon and 

Connors, 1992). In rat area 17, these cells have been shown to project outside cortex, 

in this case to the ipsilateral superior colliculus, while the remaining pyramidal cells 

in layer V project to the contralateral striate cortex (Kasper et al., 1991). Recent in 

vivo recordings in awake cat motor cortex has revealed that cells at or below a depth 

of 800 J.Lm (corresponding to layer 5) show strong bursting activity (Baranyi et al., 

1993) . It is not known to what extent such cells exist or are localized to particular 

layers in primate cortex. 
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7.5.6 Correlation to Behavior 

Finally, we return to a question that provided primary motivation for this study. Is 

the animal's perception of the stimulus, as evidenced by performance, influenced by 

temporal structure in the spike trains, particularly with respect to the peak in the 

power spectrum near 40 Hz? We correlated the presence and strength of the peak 

in the spectrum to both the stimulus and the behavior of the monkey. As witnessed 

by Figs. 7.5 and 7.6, we found no significant correlation between the fraction of dots 

moving in one or the other direction and P, the measure of the peak in the power 

spectrum, for most cells. We repeated this measurement using the integral of power 

in the 40 Hz band of S'(f) with similar results. Furthermore, if the monkey is not 

forced to respond to the stimulus or even in the absence of the motion stimulus, the 

basic propensity of a cell to show this peak remains. This is related, of course, to our 

earlier result that bursting in these cells does not depend on stimulus conditions. 

We find a similar lack of correlation between P and the various measures of be­

havior used in a previous comparison of neuronal responses and psychophysical per­

formance (Newsome et al., 1989a; Britten et al., 1992). For instance, we tested for 

significant changes in the distribution of P when the monkey made correct vs. incor­

rect decisions at near-threshold coherence levels and when the monkey made preferred 

vs. null guesses for zero coherence motion, but we found no significant (paired t-test, 

p > 0.05) correlations. 

Fig. 7. 7 shows another attempt at studying the relationship between the peak in 

the spectrum and the behavior of the monkey. As is evident, no correlation exists 

between P and the level of the neuronal threshold, Ccelt, that is the fraction of dots 

moving in the cells preferred direction at which the cell can "decide" the correct 

direction of motion (using an ROC criterion; Newsome et al., 1989a; Britten et al., 

1992). A similar lack of correlation exists between P and the ratio of single cell 
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thresholds to the threshold of the animal ( Cce/1 / Csystem) and between P and the decision 

related probability of each neuron (not shown). Thus, for our stimulus conditions, 

the presence or strength of a peak in the power spectrum of well-isolated units does 

not tell us anything about the behavior of these animals. 

When analyzing our data set, it should be kept in mind that the three monkeys 

from which the MT cells were recorded were extensively trained using operant con­

ditioning techniques. In order to perform correctly the motion discrimination task 

at threshold levels, up to 6 months of training were required (Britten et al., 1992). 

We analyzed in a preliminary manner data from MT cells from one naive monkey 

who was only trained to fixate (Zohary and Bair, personal communication) , and we 

found no significant difference in the distribution of burst and nonburst cells or in 

the shape of the associated power spectra. However, it is possible that more subtle 

differences in the temporal fine-structure exists between cells in the naive and in the 

trained animal. 

Although we cannot say how well our results will generalize to other cortical 

areas or other behavioral tasks , we believe that the approach taken here-correlating 

temporal structure in spike trains to the simultaneous behavior of an awake animal­

is a necessary step in establishing the role played by temporal firing patterns in the 

animal's perception of visual stimulation. 

7.6 Appendix 

Here we assume that a cell fires N events during the course of a fixed duration stimulus 

and that the ith event is composed of X i spikes, where N and X i are independent 

random variables, 1 < i < N. All of the Xi are mutually independent and drawn 

from a common distribution, and we use X to refer to a variable drawn from this 

distribution with no reference to a particular event. The total number of spikes fired 
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and we will prove for the random variable S N that 

E(N)E(X) 

E(N)VAR(X) + VAR(N)E2 (X). 

We use E for expectation, VAR for variance and P for probability. 
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which, when substituted into eq. 7.25, completes the proof of eq. 7.19 

00 

E(SN) = E(X) L nP{N = n} = E(X)E(Y). (7.27) 
n=O 

To compute the variance of the number of spikes, we first compute E(S}v ). Rea­

soning as in eqs. 7.22-7.25 above, but now for S}v rather than SN, we get 

00 

E(SJ.,) = L P{N = n}E(SJ.,IN = n). (7.28) 
n=O 

Evaluating the conditional expectation from the previous line, we get 

E(SJ.,IN = n) = E (~x;) 
2 
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nE(X2

) + (n2
- n)E2 (X), 

which on substitution into eq. 7.28 yields 
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) L nP{N = n} + E2 (X) L n2P{N = n}- E2 (X) L nP{N = n} 
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E(X2 )E(N) + E2 (X)E(N2
) - E2 (X)E(N) 

E(N)VAR(X) + E2 (X)E(N2
). 

Using the expressions for E( S N) and E( S}v), the variance of the number of spikes is 

E(SJ.,)- E2 (SN) 

E(N)VAR(X) + E2 (X)E(N2
)- E2 (X)E2 (N) 

E(N)VAR(X) + E2 (X)VAR(N), 

which completes the verification of eq. 7.20. 
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In eq. 7.6, E(N) and VAR(N) are replaced by the mean (which is equal to the 

variance for a Poisson distribution) number of events, f.LN( c), and the mean and 

variance of the number of spikes per event are 11-x and a 2 (X). 
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Chapter 8 

Effect of the Refractory Period on 

Power Spectrum 

This chapter summarizes an analytical treatment of the effect of the refractory period 

on the power spectrum that begins directly from the inter-spike interval distribution, 

unlike the analytical results in Chapter 7 which assumed that the renewal density 

was known. The work here is based on derivations by Prof. Joel N. Franklin in the 

Applied Mathematics Department at Caltech. The full mathematical derivations are 

given in Franklin and Bair (1995). 

The interspike intervals in steady-state neuron firing are assumed to be indepen­

dent, identically distributed random variables. In the simplest model discussed, each 

interval is assumed to be the sum of a random neuron refractory period and a sta­

tistically independent interval due to a stationary external process, whose statistics 

are assumed known. The power spectral density (hence the autocorrelation) of the 

composite neuron-firing renewal process is derived from the known spectrum of the 

external process and from the unknown spectrum of the neuron-refraction process. 

Two models are demonstrated that may produce peaks in the power spectrum near 
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40 Hz. The results are applied to the MT database. 

8.1 Introduction 

There has been recent interest in the use of the Fourier power spectrum for analyzing 

temporal structure in trains of action potentials recorded from neurons (Chose and 

Freeman, 1992; Bair et al., 1994). This is largely due to the reports of stimulus­

induced oscillation near 40 Hz in neural activity recorded in the visual cortex of the 

anesthetized cat (Eckhorn et al., 1988; Gray and Singer, 1989; Gray et al., 1989; 

Chose and Freeman, 1992) and the awake monkey (Kreiter and Singer, 1992). 

In Chapter 7 we found that most of the spike trains are well modeled by a Pois­

son shot-noise process modulated by a refractory period where the shots are either 

8-functions or boxcar functions, representing individual action potentials or bursts 

(temporal clusters) of action potentials, respectively. In both cases, the refractory 

period is implemented in the model using a Gaussian depression in the renewal den­

sity function (see Perkel et al., 1967) for the shot-noise process, and the results of 

Champeney (Champeney, 1973) are used to compute the resulting power spectrum. 

In the present work, instead of relying on the renewal density to model the re­

fractory period, we begin with a function that is explicitly designed to model the 

absolute and relative refractory period of the neuron. This density function describes 

the neuron's stochastic dead time following an action potential and is the first of two 

contributions to the period between successive action potentials. The remaining con­

tribution depends on the underlying process describing the input to the cell. We allow 

this input process to be any stationary renewal process, not just the Poisson process 

used in Chapter 7. Using the refraction function and the probability density function 

for the intervals of the underlying process, we can derive the power spectrum. 

The results allow quantitative comparisons of neuronal spike trains to a variety 
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of stochastic models. In particular, they enable us to determine how much of the 

regularity in successive interspike intervals in a spike train can be explained by a 

renewal process with a refractory period or to what extent it is necessary to assume 

some underlying oscillatory mechanism to explain regularity. In addition, because our 

model distinguishes between the contribution to the interspike interval from refraction 

and the contribution from input to the neuron, we believe that it provides a framework 

for separately characterizing a neuron's refractory period and providing a stochastic 

description of its inputs. 

We apply the mathematical results to neuronal spike trains recorded in a previ­

ous study (Britten et al. , 1992) to demonstrate four points. (1) A fixed stochastic 

description of a refractory period is adequate to describe the output of some neurons 

even when the input stimulation and the output firing rate vary dramatically. (2) The 

assumption of a renewal process for the generation of interspike intervals is consistent 

with data. (3) Spike patterns such as bursts are accounted for by the theory and 

result in predictable peaks in the power spectra of spike trains that are not due to 

regular timing. (4) If spike rate (or burst rate) becomes fast relative to the refractory 

period duration, peaks may develop in the power spectrum near the inverse of the 

peak in the interval density, and these peaks are the result of regular timing. 

Many others have studied the effect of refraction on neuronal spike train statistics. 

Teich et al. (1978) considered the model of a Poisson process modified by a variable 

dead time which is very similar to that used in Chapter 7 and which is encompassed in 

the theory developed here. Teich and Diament (1980) modeled the relative refractory 

period using a gradual recovery function. Related mathematical models concerning 

the power spectra of impulse processes appear in Lukes (1961), Beutler and Leneman 

(1968), and Heiden (1969). 
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8.2 Mathematical Model 

We outline the model and summarize the mathematical results. This model will be 

applied to the MT data in Section 8.3. For complete mathematical derivations, see 

Franklin and Bair (1995). 

We will analyze the steady-state firing of a single neuron. We shall suppose that 

the output potential is a renewal process 

+oo 
x(t) = L h(t- tk), (8.1) 

k=-oo 

where the tk are the successive firing instants and where h(t -tk) is the output of the 

single firing at the instant tk· The function h(t) is given. The ensemble { tk} is random. 

The successive positive lags Tk = tk - tk-l are assumed to be statistically independent 

with the same p.d.f. (probability-density function) f( T) for T > 0. Although the 

successive lags Tk are random, their p.d.f. f( T) is assumed to be known. 

We suppose that f(r) is continuous for T 2: 0 except for isolated simple jump 

discontinuities, and we will assume that f( T) has finite moments 

(8.2) 

for k = 0, 1, 2, and preferably also for k = 3 and 4. We assume that the wave form 

h(t) has a finite Fourier transform 

H(w) = i: h(t)e-iwt dt, (-oo < w < oo). (8.3) 

We do allow h(t) to be the Dirac 8-function. We expect, but do not require, that 

h(t) = 0 fort < 0. 

To study neuron refraction, we shall hypothesize a simple model for the successive 
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lags Tk = tk- tk-l · We shall suppose that each lag Tk is the sum of two parts 

(8.4) 

where Tk1 arises from refraction, and where Tk2 arises from all other causes, for example 

from an assumed random input potenbal. 

We shall suppose that the parts Tk1 and Tk2 are statistically independent, with 

probability densities j 1 ( T) and h( T) that are independent of k. Thus, the sum T has 

the p.d.f. 

(8.5) 

The ensemble of random variables { Tk
1

} is supposed to be statistically independent 

for -oo < k < oo and j = 1, 2. 

We assume that the random variables Tk1 and Tk2 have finite means Jh, J1. 2 and 

finite variances O"~ and O"i. Then the total lags Tk = Tk1 + Tk2 have the common mean 

J.l = J.lt + ft2 and the common variance 0"
2 = O"~ + O"i. 

We will show how the mean J.l and the variance 0"2 appear in the power spectral 

density of the steady-state neuron output potential x(t). 

The power spectral density Sx(w) is defined as the Fourier transform of the auto­

correlation Rx ( T): 

(8.6) 

where the autocorrelation Rx( T) is defined as the expected value 

Rx(T) = E [x(t)x(t- T)], (-oo < T < oo). (8.7) 

The autocorrelation is independent oft, by the assumption that the ensemble of firing 

instants { tk} is a stationary random process. 
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It can be shown (Franklin and Bair, 1995) that x(t) has the power spectral density 

(8.8) 

where v is the average firing frequency v 

transform of the lag p.d.f: 

Jl- \ and where j ( s) IS the Laplace 

(Res~ 0). (8.9) 

The limit can be derived (Franklin and Bair, 1995) 

(8.10) 

and we will use this value at w = 0 in equation (8.8) for Sx(w). Then we may write 

(8.11) 

Here o(1) is the generic symbol for some function of w that tends to zero as w ---+ 0; 

if the lags T have finite fourth moment E(r4 ), it can be shown (Franklin and Bair, 

1995) that 

(8.12) 

In any case, the lag mean and variance, J1 = v-1 and u 2 , appear in the power 

spectral density Sx(w) at small frequencies, w. For the contribution of refraction and 

other, independent causes, we now recall the formulas 

(8.13) 
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where the refraction lag Tk
1 

has mean and variance J.ll and a?. 
Example 1. To see how these results might be used, suppose that the random 

refraction lags Tk1 have a gamma distribution with the common p .d.f. 

ba 
f ( ) a-1 -b-r 

1 T = r(a) T e , (8.14) 

where a and b are unknown positive constants. Then 

(k=0,1,2, . .. ). (8.15) 

Then the first and second moments are J.ll = ab-1 and a( a+ 1 )b-2 • Since the second 

moment must equal the variance plus the square of the mean, we find 

b-1 d 2 b-2 J.l1 =a an a 1 =a (8.16) 

for the common mean and variance of the refraction lags Tj1 ( -oo < j < oo ). 

For instance, if J.L1 is fixed and if a 1 -+ +0, then fi ( T) becomes just 8( T- J.L1 ). 

Suppose the total lag Tj is the sum of the refraction lag Tj1 and the independent 

source lag Th, where the source lag has the Poisson p.d.f. 

(8.17) 

Then the source lags Tj2 have the common mean and variance 

-1 d 2 -2 
J.l2 = 112 an a 2 = 112 • (8.18) 

Therefore, the total lags Tj have the common mean and variance 

(8.19) 
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The p.d.f. j(T) is the convolution f 1(T) * h(T). The Laplace transform j(s) is the 

product 

(Re s ~ 0) . (8.20) 

To compute the power spectral density of the neuron output potential x(t), we 

must use the expression 

G(w) = 2Re j(i:U) , 
1- f(iw) 

(-oo < w < oo) (8.21) 

where G(O) is defined as the limit as w --+ 0 (Lemma 1 in Franklin and Bair, 1995): 

(8.22) 

(8.23) 

The full power spectral density is 

Sx(w) = IH(w)l 2 v [27rv8(w) + 1 + G(w)]. (8.24) 

For w near zero, we recall the assertion 

(8.25) 

For instance, if the neuron-firing wave form is just the Dirac 8-function h(t) = 8(t), 

then H(w) = 1, and so 

(8.26) 

From experimental data, we can find the power spectrum Sx(w) . If the graph of 
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Sx ( w) near w = 0 indicates that 

Sx(w) = A8(w) + C + o(1) as w --t 0, (8 .27) 

then we may observe the spike strength, A, and the constant C. Knowing A and C, 

we may write the equations 

(8.28) 

or, equivalently, 

(8.29) 

Now, if we know the mean f.l2 and the variance o-i of the source lags, we can solve the 

two equations for the mean f.l1 and the variance o-i of the refraction lags. 

By the way, to obtain the lag mean and variance, 1-l and o-2 , we do not need the 

power spectral density. If we observe a long sequence of firing instants t0 < t 1 < t 2 < 

· · · < tN, then we may approximate the mean and variance by the empirical mean 

and variance, 
T1 +···+TN 

f=------
N 

(8.30) 

and 

(8.31) 

where Tj = tj- tj_1 . 

More general models of neuron firing lags. We have assumed that each firing lag Tj 

is the sum T j
1 
+ r 32 , where T j

1 
comes from refraction and TJ2 comes from independent 

sources. We have supposed that the variates Tj1 , TJ2 ( -oo < j < oo) are statistically 

independent , where each variate Tj
1 

has p .d.f. / 1 ( T) and each variate TJ2 has p.d.f. 

h(r). 
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More generally, each lag Tj may need to be considered as the sum of m parts: 

(-oo < j < oo). (8.32) 

Since we still have a stationary renewal process, the lags { Tj} are still i.i.d. , with a 

common p.d.f. f(r) (r 2: 0). 

Suppose that the partial lag Tjr has p.d.f. fr ( T) ( r = 1, ... , m). Let the partial 

lags have expected values and variances 

and (r = 1, ... ,m). (8.33) 

For m = 2 we assumed that the partial lags were independent, so that the total lag 

Tj had mean and variance 

f.l = 1-"1 + · · · + f.lm and (8.34) 

Of course, these formulas remain true for m > 2 if the partial lags are independent; 

and the Laplace transform }( s) of the p.d.f. f( r) is just the product of the Laplace 

transforms fr ( s): 

}(s) = A(s) · · · fm(s). (8.35) 

Even if m = 2, these formulas must be changed if the partial lags Tj1 , ••• , Tjm are 

dependent. Then we have 

m m 

f.l = f.lt + · · · + f.lm but u
2 

= I:: I:: O"af3 (8.36) 
a=lf3=l 

where { u af3 } are the covariances; and now the Laplace transform}( s) generally cannot 

be expressed as the product A(s) · · · fm(s). 
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8 .3 Application 

We will now apply the results stated in the previous section to neuronal spike trains 

and will use the equations presented in Example 1 of the previous section as our 

model. 

8.3 .1 Methods 

A segment of a spike train is shown across the top of Fig. 8.1. In all analysis pre­

sented here, the first 336 msec of the neuronal response during the 2 sec stimulus are 

discarded to avoid processing the early transient portion of the response. The prob­

ability density function for the time between consecutive spikes is estimated from 

the neuronal data by the interspike interval (lSI) histogram. lSI histograms show 

the percent of all intervals at each discrete time length (integer values in msec) and 

are plotted using bars (see Fig. 8.1, left side). The Fourier power spectrum Sx ( w) is 

estimated for neuronal spike trains using the methods described in Chapter 7. All 

power spectra are normalized so that the ordinate value 1.0 corresponds to the mean 

neuronal firing rate. This normalization is analogous to dividing Eqn. 8.8 by v. The 

analytical curves superposed on neuronal power spectra in the figures are described 

by Bx(w), a normalized version of Sx(w), which is defined in the Appendix. 

8.3.2 Results 

The model presented in Example 1 of the previous section defines each interspike 

interval to be the sum of a refractory component with a gamma density and an 

input component with an exponential density. Given the lack of spatial and temporal 

correlation in the stimulus signal, it is reasonable to first model the neuron input 

component with the exponential density, consistent with a Poisson process. 
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Figure 8.1: Neuronal data vs. theory assuming a fixed refractory period as firing 
rate changes for cell e085. The top trace shows a one second segment of a spike 
train recorded at c = 0 stimulation. The lSI histogram (left column, bars) and the 
neuronal power spectrum (center column, bars) were computed from 2 sec duration 
trials (120 trials at c = 0; 30 trials at c = ±0.51) with the first 336 msec, containing 
on-transients, discarded. The upper right plot shows the output firing rate of the 
neuron over the range of input levels tested, and the points mark the cases that 
are studied here (error bars show standard deviation). Analytical curves for f( T) 
(combine Eqns. 8.5, 8.14, and 8.17) were fitted by eye to the lSI histograms for all 
11 input levels plotted in the upper right panel under the constraint that a and b 
are fixed. For a particular a and b, the parameter v2 was set for each input level 
so that the overall mean firing rate v matched the values shown for the cell. The 
lower right plot shows the refraction density, f1(T) (Eqn. 8.14), and input densities, 
h(T) (Eqn. 8.17), for the fit. Here a = 4.0, b = 250.0, and the values for v2 may be 
read from the plot as the maximum values , at T = 0, of the exponential densities. 
Analytical curves for Sx(w) (see Eqn. 8.42) based on the parameters from the lSI fits 
are superposed in the center column. (h(t) is taken to be the 8-function). 
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For a given neuron, we determine the values of the refractory period parameters 

a and b which give the best fit by eye to the series of lSI histograms at all c values 

available. Note that a and b do not vary as a function of the input c-only 112 is 

allowed to vary but is constrained so that 

(8.37) 

where J.Lest is the measured mean spike rate as a function of input strength c (Fig. 8.1, 

upper right) and the notation 112 (c) indicates the input dependence of 112 • Fig. 8.1 

shows the lSI histograms and their fits j(T) (left column) for a = 4.0, b = 250.0 

(where afb is the mean lSI in seconds and afb2 is the variance) at the three c values 

indicated by dots in the upper right plot. The lower right panel of Fig. 8.1 shows 

the refractory period density, !I ( T ), and the three input densities, !2( T ), for the fit 

parameters. Roughly half of 58 cells examined showed fits qualitatively similar to 

that shown here. 

The center column of Fig. 8.1 shows the measured power spectra of the neuronal 

spike trains (bars) and Sx(w) (smooth curve) based on the parameters a , b, 112 (c) (see 

Eqn. 8.42 in the Appendix for an explicit formula for Sx(w)). The refractory period 

causes a dip in the power spectra at low frequencies- without the refractory period, 

the spectrum, that of Poisson impulses, would be flat. 

Fig. 8.2 shows the results of applying a similar analysis to a neuron that has a 

shorter refractory period (a/ b = 4. 7 msec rather than 16 msec) and a wider range 

of output firing rates (upper right panel). It is striking that the left (rising) sides of 

the lSI histograms are well fit by the same fixed refractory period (a = 8, b = 1700, 

thus J.L1 = 4. 7 msec, a1 = 1. 7 msec) over a broad range of spike rates, particularly 

for c = 1.0 where the firing rate appears, based on the upper right plot (Fig. 8.2), to 

be saturated. The analytical power spectra (smooth curves on center column plots) 
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predict the shape change observed in the neuronal power spectra (bar plots, center 

column Fig. 8.2) as c changes. Again, the values of the theoretical inputs, v2, are 

observed as they-intercept of the decaying exponentials in the lower right plot. Some 

small systematic errors appear in the fits, in particular, the right side of the lSI 

histograms tends to have a faster than exponential fall off. 

Some cells tend to fire bursts of action potentials (see Chapter 7), as shown in the 

top spike train of Fig. 8.3, which may violate the assumption that the spike train x(t) is 

a renewal process. The theory can still be applied by considering bursts to be "events" 

and operating on inter-event intervals (lEis) rather than ISis. As in Chapter 7, an 

event is defined as the longest train of consecutive action potentials that have no ISis 

greater than d msec (d = 8 msec here). We define the process y(t), composed of 8-

functions at the center of each event, to be the event train corresponding to the spike 

train x(t). The event train is plotted beneath the spike train at the top of Fig. 8.3. The 

spike train power spectrum (Fig. 8.3, center) has a substantial peak near 40Hz which 

is not present in the spectrum for events. The lEI histogram (lower left, bars) was 

fitted to the same mathematical model used in the previous figures, and the analytical 

power spectra Sy(w) (smooth curves) from this model match closely those estimated 

from the event trains. To derive an analytical spectrum for the spike trains, we define 

h(t) to be the boxcar function (see inset below the event train in Fig. 8.3) which 

serves as a model for the prototypic event. The analytical spectrum, JH(w)i2Sy(w), 

using a deterministic approximation to the variable event shape, provides an excellent 

prediction to the location and shape of the peak in the power spectrum. This example 

shows that the presence of bursts and an inter-burst refractory period can combine 

to produce a maximum in the power spectrum. 

Fig. 8.4 demonstrates a case in which a peak in the power spectrum develops from 

regular firing rather than from burst firing. Again we reduce x(t) to the event trains 

y(t), fit the model to the lEI histograms (left column), and plot the derived power 
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Figure 8.2: Neuronal data vs. theory for a neuron (j117) with a short refractory 
period and a broad range of output firing rates. The arrangement is similar to that 
in Fig. 8.1. Under the assumption of a fixed refractory period (a= 8.0, b = 1700.0), 
the left sides of the fits to the lSI histograms (left column) match the data well as 
firing rate changes (upper right) and even after the firing rate appears to saturate 
at c = 1.0. The analytical curves for Sx(w) (solid lines, center column) give good 
approximations to the shape of the neuronal power spectrum. (Forty trials of data 
were used at each stimulus level, except 80 trials were used at c = 0.) 
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Figure 8.3: Modeling bursts of action potentials as single "events" allows the theory 
to predict the peak in the power spectrum which occurs for cells that fire bursts. The 
top trace shows a spike train fired by neuron jOOl. Directly below it is the event train, 
a series of 8-functions at the center of each event, where an event is defined as the 
longest train of consecutive action potentials with no ISis greater than d msec ( d = 8 
here). The power spectrum of the spike trains at c = 0.51 has a peak near 40 Hz 
(upper spectrum) while the power spectrum of the corresponding event trains is flat 
at frequencies higher than 40 Hz (lower spectrum). This indicates that the large peak 
observed in the power spectrum is due to the shape, not the t iming, of the events. A 
model of the inter-event interval (IEI) h istogram (lower left) based on a refractory lag 
and an input lag (lower right) leads to an analytical prediction Sy(w) (smooth curve) 
of the event power spectrum. When events are modeled by setting h(t) to the boxcar 
funct ion shown in the inset below the event train, the analytical expression Sx ( w) for 
the spike power spectrum predicts the peak observed in t he data (upper spectrum) . 
Note, Eqn. 8.42 in the Appendix must be modified to account for the boxcar h(t) . 



187 

spectra Sy(w) against the neuronal spectra (right column) . The peak in the event 

power spectrum is observed to grow as the event firing rate v2 increases. The values 

of v2 for c = 0.0, 0.51, 1.0 are approximately 25, 50, and 100 events/sec, respectively 

(see y-intercepts of the exponential densities in the inset, Fig. 8.4). In the limit as 

v2 -too, f(T) -t f1(T), i.e. the interval p.d.f. becomes the refractory period p.d.f. 

If h( T) is regular enough to produce a peak in the power spectrum in this limiting 

case, then we may observe peaks as seen in the right column of Fig. 8.4. However, if 

h(T) is, for example, an exponential distribution (a = 1), the power spectrum will 

remain flat even as v2 -t oo. 

A comparison of the refractory period p.d.f. 's for the four neurons analyzed in the 

previous figures is shown in Fig. 8.5. The means, afb, of the gamma densities range 

from 4. 7- 24 msec. Although the means for cell e039 and e085 are 12 and 16 msec, 

their standard deviations are 3.5 and 8.0 msec, respectively, indicating the usefulness 

of having two parameters for the refractory p.d.f. The range of values here are typical 

of those for the 58 cells analyzed. 

8 .3.3 Discussion 

Fig. 8.1 and Fig. 8.2 demonstrate that a fixed stochastic refractory period can be 

adequate to account for the distribution of interspike intervals across a wide range 

of firing rates when the input is assumed to induce the neuron to fire at Poisson 

time instants. (However, Turcott et al., 1994, report that the refractory period can 

change over time in auditory neurons.) The power spectra of the neuronal data in 

Fig. 8.1 and Fig. 8.2 are consistent with the analytical curves from the formula derived 

here, Eqn. 8.8, for the power spectrum of a renewal process with a specified interval 

density, f(T). In particular, the presence of a refractory period causes a dip in the 

power spectrum at low frequencies, consistent with the results of Chapter 7. 
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Figure 8.4: Spectral peaks due to regular firing are different from those caused by 
bursts and may occur for a renewal process as the input rate becomes fast with respect 
to the refractory period. The methods of Fig. 8.1 and Fig. 8.3 are combined to model 
the lEI and event power spectrum for neuron e039. The power spectra (bars, right 
column) are computed for event trains, and the analytical predictions Sy(w) are based 
on the 8-function model of events to eliminate the peak due to bursts. As the event 
rate increases for stronger stimuli, a peak, predicted by the model, develops in the 
power spectra near the inverse of the mean lEI. Peaks in the power spectra such as 
these result from the regularity of the timing of the events, rather than from the event 
shape as seen in Fig. 8.3. 
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Fig. 8.3 and Fig. 8.4 show two ways for peaks to arise in the power spectrum of 

spike trains. First, a peak may arise due to the compound effect of a dip at low 

frequencies created by a refractory period and the attenuation at high frequencies 

induced by firing bursts of action potentials (Fig. 8.3). The frequency of the peak is a 

function of the refractory period parameters and the shape of the bursts, i.e. events, 

and is not related to regularity in the inter-event interval. The second type of peak is 

caused by regularity in the lSI or lEI density, and this regularity is well modeled as 

the result of an increasing firing rate with a fixed refractory period density. Fig. 8.4 

demonstrates this for inter-event intervals of a neuron that fires bursts; however, we 

have observed the same effect in neurons that fire isolated action potentials. 

+-a=8, b=1700 

20 40 60 
Time (msec) 

Figure 8.5: A comparison of the refractory period densities, f 1 ( T ), for the four cells 
studied in the previous figures. Although the mean /-Ll and the standard deviation u1 

of the refractory period often rise or fall together, the middle two examples here have 
somewhat similar means, 12 and 16 msec, but quite different standard deviations, 3.5 
and 8 msec. Recall /-Ll = a I b, ui = a I b2

• 

We have presented two mathematical models of spike trains which can lead to 

peaks near 40 Hz in the power spectrum based on the formulas derived here and which 

both incorporate the notion of a refractory period. We emphasize that the concept 

of refractory period used here is not restricted to a neuron's intrinsic limitations for 
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quickly firing a second action potential; we do not know the pre-synaptic input to 

these neurons and cannot distinguish intrinsic from network or input effects which 

may cause a paucity of short ISis. 

8.4 Appendix 

The spike-rate normalized power spectrum Sx(w) is derived from formula (8.8) by 

setting h(t) = 8(t), dividing by the mean spike rate, v, and subtracting the 8-function 

term. Thus, 

- ](iw) 
Sx(w) = 1 +2Re A , 

1- f(iw) 
( -00 < w < oo, w # 0), (8.38) 

where Sx(O) = v 2 a 2
, as defined by continuity in equation (8.10). Let the interval 

density f(r) be defined as the convolution of a gamma density, given in (8.14), and 

an exponential density, given in (8.17) so that its Laplace transform }( s) is, as given 

in formula (8.20), 

](s) = (__}!__)a. _v2 ' 
b + s v2 + s 

(Res;:=:: 0). (8.39) 

Then, ]( iw )-1 = peirf>, where 

(8.40) 

and 

(8.41) 
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Under the previous assumptions and definitions, an explicit expression for Sx(w) is 

s X ( W) = 1 + 2 p COS <P - 1 ' 
p2 - 2p cos <P + 1 

( -oo < w < oo, w-=/:- 0). (8.42) 

Equation (8.42) depends on only a, b, and v2 and is the expression for the analytical 

curves superposed on the neuronal power spectrum histograms in the figures in this 

paper (except for the top spectrum in Fig. 8.3, which uses a different definition for 

h(t)). 
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Chapter 9 

The Local Field Potential 

This chapter summarizes analysis of a small database of local field potential (LFP) 

signals that were recorded in areas MT and MST of a behaving macaque monkey. 

Experiments were conducted by Gregory Horwitz in Prof. William Newsome's Labo­

ratory at the Stanford University School of Medicine. As mentioned in Chapter 1, our 

initial motivation for studying the temporal structure of spike trains was to examine 

40 Hz oscillation. Kreiter and Singer (1992) reported that oscillation was present in 

area MT and MST of the awake macaque monkey, but was more variable in frequency 

and duration than the 40 Hz oscillation in cat. We found no striking evidence for 

oscillation in our analysis of single unit data in Chapter 7, but because oscillations 

are more frequently observed in the LFP than in single spike trains (e.g., Eckhorn et 

al., 1988), we wanted to examine LFP data. 

9.1 Background and Summary 

Local field potentials are signals recorded between 1-100 Hz from a single extracellular 

electrode that presumably reflect the integration of membrane currents in a local 

region of cortex (e.g., Mi tzdorf, 1985). In the anesthetized cat, LFP receptive fields 
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are usually smaller than 1.2 mm of cortex in diameter, and it has been argued that 

oscillation in the LFP is of cortical origin and may result from superposition of local 

excitatory dendritic potentials (Eckhorn et al., 1988; Gray and Singer, 1989). It 

is not uncommon that the stimulus specificity of the LFP is different than that of 

single units recorded from the same electrode (Gray and Singer, 1989). A recent 

report demonstrated that the LFP is orientation-tuned with 2° receptive fields at 

most parafoveal sites in anesthetized macaque V1 (Victor et al , 1994). However, 

Mitzdorf et al. (1994) reported that diffuse luminance changes are more effective 

than oriented bars in driving LFPs in rabbit visual cortex. Oscillatory LFPs in V1 

shown in the literature are commonly on the order of 100 J.LV peak-to-peak. 

This analysis covers three aspects of the data: (1) the relationship between the 

average LFP and the post-stimulus time histogram (PSTH) for an isolated neuron, 

(2) the relationship between the LFP and the spike occurrence times within a single 

trial, including spike-triggered averages of the LFP, and (3) the power spectrum of 

the LFP. 

We found that the LFP had stimulus-locked fluctuations near 50 Hz in the first 

100 msec of the response. Spike-triggered averaging revealed a characteristic hi-phasic 

LFP waveform lasting about 10 msec that was associated with the occurrence of an 

action potential. The amplitude of this waveform varied greatly across sites recorded 

here. A prediction of the LFP based on the PSTH and the spike-related LFP waveform 

did not account well for the actual LFP. The power spectra of the LFP were greatly 

contaminated by electrical interference at 60 and 180 Hz, and there was an undesirable 

attenuation of low frequencies due to filters in the recording setup. Because of the 

small database examined here and the 60 Hz interference in the recording setup, we 

could not, unfortunately, draw conclusions about the presence of 40 Hz oscillation in 

the LFP. 
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9 .2 Methods 

The LFP was recorded at 5 sites (2 MT, 3 MST) in a behaving macaque monkey. The 

visual stimulus was a dynamic random dot display as described in Chapter 2, except 

that the stimulus duration was typically limited to 1 sec. Electrodes were Parylene 

insulated tungsten with 1 kHz impedances typically in the range of 0.5-2.0 Mn. The 

LFP signal was sampled at 500 Hz. The absolute scale of the LFP plots in this report 

is unknown-there were a number of variable gain amplifiers between the electrode 

and the A/D converter which sampled the data. 

A low pass filter was added to the recording setup to prevent aliasing in the 

digitized LFP signal. A schematic of the setup is shown in Fig. 9.1. A characterization 

of the low pass filter is presented in Fig. 9.2. The filter causes a delay of 5-6 msec 

between the spike train recordings and the LFP recording; therefore, the LFP plots, 

for example in Fig. 9.3, are shifted to the left by 6 msec. 

9.3 Stimulus-Locked LFP Fluctuations 

Figs. 9.3- 9.5 show examples of PSTHs and average LFPs for varying levels of motion 

coherence at four recording sites. The fifth recording site was not included in this 

discussion because the LFP was dominated by the action potentials of a single cell 

(see the top of Fig. 9.8, and the section on spike-triggered averaging). Histograms 

are used to represent the PSTH for c = ±1.0, and the corresponding LFP plots are 

superimposed below the PSTHs. The thick bars at t = 0 on the LFP indicate a 

typical standard deviation above and below the mean. In Fig. 9.3, stimulus-locked 

modulation of the LFP begins at t = 55 msec. 1 The time course of the modulation 

1 Greg Horwitz has estimated that the stimulus onset is biased by 25 msec; therefore, the LFP 
response occurs with a latency of 30 msec. The 25 msec offset is not taken into account in this 
report. Maunsell and Gibson (1992) report that the shortest latencies to striate cortex were 20 msec 
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Figure 9.1: The recording setup. The signal from the electrode (left) was first am­
plified by the head-stage pre-amplifier. Further amplification and high pass filtering 
occurred and a notch filter was used to eliminate the eye-coil signal. Action poten­
tials were discriminated from this signal using a time-amplitude window; only the 
occurrence times were recorded. A low pass filter (for a characterization, see Fig. 9.2) 
further processed the signal before the LFP was digitized. Aluminum foil shielding 
was placed around the head-stage pre-amplifier to reduce the amplitude of 60 Hz 
n01se. 
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Figure 9.2: Characterization of the low pass LFP filter. This filter was between the 
notch filter and the LFP recorder. A 200 mY peak-to-peak sine wave was used to 
characterize the gain and time delay of the filter. The low pass filter box was set to 
100 Hz. At this setting, the LFP was sampled at 500 Hz, since anything below half 
that frequency was highly attenuated (left). The filter introduced an approximately 
constant 5- 6 msec time delay over the frequency range of interest. This filter was 
responsible for the high-frequency attenuation observed in Fig. 9.11. 
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is similar for motion in either direction for approximately 100 msec, and therefore is 

not directional. 

tlOOl 

50 100 150 200 250 300 

-220+-~~~~~~~~~~~~~~--~~~--~~~ 
0 50 100 150 200 250 300 

Time (msec) 

Figure 9.3: PSTHs (upper plots) for cell tl001 and accompanying LFPs (bottom) for 
coherent motion in the preferred and null directions at site tl001 in area MT. The 
cell's response begins at 160 msec and is directional (see PSTHs). Earlier evidence 
of the stimulus appears in the average LFPs which show large amplitude fluctuations 
starting at 55 msec. These fluctuations appear non-directional from 55-160 msec. 
After 160 msec, the LFP shows larger amplitude fluctuations for c = 1 than for 
c = -1, and is in this sense directional. The thick bar at the left on the lower plot 
indicates a typical standard deviation above and below the mean LFP ( n = 11 for 
c = 1, n = 12 for c = -1). 

A detailed description of each site will not be given, but a few general observations 

for sites tl001- 4 can be made. (1) The LFP has a non-directional, stimulus-locked 

pattern of modulation during the period from approximately 50 to 150 msec. (2) 

The modulation of the LFP during this period shows no strong resemblance to the 

single cell PSTHs, which are also non-directional during this time. (3) There is some 

consistency in the pattern of the modulation across sites, and this is demonstrated 

in Fig. 9.6 which shows the LFP averaged across all c values for each recording site. 

in one animal (M. fascicularis) and 30 msec in another (M. mulatta). 
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Figure 9.4: Site tl003, area MST. The top is similar to Fig. 9.3. The bottom two 
plots show the average for all coherence values. The PSTHs and LFPs show a non­
directional response from 60-150 msec. The averages for all c show that the oscillation 
in the LFP is not present in the PSTH for the cell. (Ten trials for each of 8 coherence 
levels.) 
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Figure 9.5: Site tl004, area MT. Three coherence levels (c = 1, 0, -1) are used 
here. Responses are non-directional from 50- 135 msec. The LFP fluctuations are 
not present in the PSTH. (Twenty trials at each coherence level.) 

In Fig. 9.6, the initial LFP peaks for sites tl001, tl002, and tl004 occur at similar 

times (top), while the initial peak for tl003 occurs somewhat later (bottom). There 

is a typical 20 msec spacing between LFP peaks, which corresponds to 50 Hz. This 

is apparent from the peaks at 60 and 80 msec (top) and 100, 120, 140, and 160 msec 

(bottom). 

Is there stimulus-locked modulation in the LFP after the initial non-directional 

period? For site tl003, a single neuron was well isolated and repeated trials were 

performed with the same stimulus seed. Stimulus-locked modulation is present in the 

PSTHs in Fig. 9.7,2 but the noise level is too high to conclude whether the LFP is 

related to the PSTH during the sustained period of the response. 

2 Notice the preferred and null direction stimuli yield similar time courses, as in Fig 4.1. 
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Figure 9.6: The LFP averaged across all cat 4 sites. The top shows sites 1, 2, and 
4, which had similar time courses from 60- 90 msec. The lower plot shows (using the 
same vertical scale) the LFP for site 3 which had its initial peak near 70 msec. It 
is interesting that the initial peaks near 60 and 80 msec in the upper plot and the 
later peaks in the lower plot at 100, 120, 140, and 160 msec all had approximately a 
20 msec separation, corresponding to 50 Hz. Site 5 was not included since the LFP 
was merely a reflection of the PSTH for the single unit (see Fig. 9.8). 
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Figure 9.7: PSTH and LFP for repeated identical stimulation of tl003. The upper 
two plots show the PSTH and average LFP for c = 0.128, while the lower two plots 
show data for c = -0.128. The PSTHs (bars) are somewhat similar for the preferred 
and null direction of motion because only 13% of the stimulus dots, the signal dots, 
are different. There is no strong relationship between the amplitude of modulation 
of the LFP and the peaks in the PSTH. The visual stimulus ends at 1000 msec. 
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9.4 Spike-Triggered Average LFP 

For recording site tl005, the LFP is dominated by the action potentials of a single 

neuron. When the single unit spike train is aligned with the LFP recorded on the 

same trial, as in Fig. 9.8 (top), a one-to-one correspondence is noted between spikes 

and large peaks in the LFP. This was not the case with the other four recording sites, 

and one example of this is shown for comparison at the bottom of Fig. 9.8. For each 

site, the spike-triggered average LFP was computed to show explicitly the average 

modulation in the LFP associated with an individual action potential. Our spike­

triggered averages, shown in Fig. 9.9, had a peak centered at the spike time (once the 

5- 6 msec filter delay is subtracted) and a negative-going lobe of smaller amplitude 

following the spike. This is similar to data shown in Fig. 6A of Eckhorn et al. (1988). 

t1005 I I I II I I I I 

~ ~; : 
0 50 100 150 200 250 300 

~-:~1: 
0 50 100 150 200 250 300 

Time (msec) 

Figure 9.8: For single trials at two sites, the spike trains are plotted above the LFPs. 
Top: site tl005, area MST. The LFP for tl005 has prominent peaks that align with 
each action potential recorded for the single unit. The average LFP and the PSTH 
therefore look very similar and are not shown. Part of a single trial from site tl003 is 
shown (bottom), for which there is no obvious correspondence between peaks in the 
LFP and action potentials. 

Using the time of occurrence of each action potential as the origin, the average 

LFP is computed for 5 sites and plotted in Fig. 9.9. For site tl005, where each action 

potential appears unmistakably in the LFP, the spike-triggered average LFP is the 
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Figure 9.9: The average LFP is shown triggered on action potentials of single units for 
the 5 recording sites. The spike-triggered LFP averages were scaled to the have the 
same peak value (top) and unsealed (bottom left). The error bars in the lower right 
panel show one standard deviation above and below the mean for t1003. The tallest 
peak (lower left) corresponds to tl005, while the second tallest is from tl004 (recorded 
with the same electrode, believed to be of lower impedance than the electrode used 
at the other 3 sites). The low pass filter between the notch filter and LFP recorder 
caused a 5- 6 msec delay between the spike time, t = 0, and the recorded peak in the 
LFP. 



203 

tallest waveform in the bottom left of Fig. 9.9. However, at the other four sites where 

action potentials are not apparent in the LFP (as seen in Fig. 9.8, bottom), the spike­

triggered waveform is smaller. In the top of Fig. 9.9, the spike-triggered averages are 

scaled to have the same peak height, demonstrating that the ratio of the peak to 

the subsequent dip is variable across sites. At the bottom right of the same figure, 

the mean waveform for tl003 is shown with error bars indicating plus and minus one 

standard deviation. 

The waveforms of action potentials recorded extracellularly are typically less than 

1 msec in duration, while these spike-triggered averages are on the order of 10 msec. 

Also, the 5- 6 msec delay of the low pass filter is noted on the upper panel of Fig. 9.9. 

Taking this into account, the peaks of the spike-triggered LFP waveforms align with 

the peak of the recorded action potential. We are uncertain of the origin of the shape 

of the spike-triggered averages. 

9.5 LFP Prediction from Spike Trains 

Using the spike-triggered average LFP waveforms from the previous section, a pre­

diction can be made of the average LFP based on the PSTH (binned at the original 

millisecond sampling resolution) at a given coherence level. Data from site tl003 is 

used because the single unit isolation was excellent and repeated trials were performed 

with identical stimuli. The predicted LFP waveform is computed in essence by re­

placing each action potential in the spike trains with a model of the spike-triggered 

LFP waveform (see Fig. 9.10, top) and averaging over all spike trains resulting from a 

particular stimulus. Fig. 9.10 (bottom) shows a segment of the predicted LFP (thick 

line) superimposed on the actual LFP. The predicted LFP over 50- 170 msec is sugges­

tive of the modulation in the actual LFP, but severely underestimates the modulation 

amplitude. This indicates that the LFP signal is not likely to be associated with only 
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Figure 9.10: Attempted prediction of the LFP from t he PSTH using the spike­
triggered average LFP. The line in the upper plot is a model of the contribution 
of each action potential to the LFP. The dots show the spike-triggered average LFP 
computed for the sustained period of tl003's response to visual stimulus (averaged 
across motion coherence levels) . The lower plot shows the average LFP across all 
coherence levels (thin line) and the prediction (thick line) based on the convolution 
of the PSTH and the model kernel in the upper plot. The prediction greatly under­
estimates the amplitude of the oscillations in the early portion of the response. This 
is consistent with the notion that stimulus-locked signals other than those directly 
related to the occurrence of an action potential in tl003 are contributing to the LFP 
signal. 
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the action potentials of this single unit, as is consistent with the mismatch in shape 

between the PSTHs and LFPs in Fig. 9.4. Indeed, the majority of the LFP is likely 

to be dendritic in origin, given active dendritic currents and the fact that up to 98% 

of the neuronal membrane is in the dendrites. 

9.6 LFP Power Spectra 

Fig. 9.11 shows power spectra of the LFP for two recording sites . The two most 

striking features of these spectra are peaks due to electrical interference and the 

envelope created by analog filters (see Fig 9.1) . The most prominent peaks occur at 

60 and 180 Hz. The envelope of the spectrum is a result of a high pass filter that 

precedes action potential discrimination and a subsequent low pass filter recently 

added for LFP recording. (Fig. 9.2 shows a characterization of the low pass filter 

made using at 200 mY peak to peak sine wave.) 

The top of Fig. 9.11 shows average spectra at site tl003 for 8 coherence levels, 

c = ±1.0, ±0.51, ±0.26, and ±0.13. The lower part of the figure shows spectra for 

c = 0 and for c = ±1.0 at site tl004. For tl004 there appears to be a relationship 

between the motion coherence, thus the firing rate of the cell, and the integrated 

power. Note that tl004 was stimulated with a fixation paradigm that had a 2 sec 

motion stimulus and no delay period. 

The electrical interference and the undesirable low frequency attenuation due to 

filtering make the data unsuitable for drawing conclusions about the presence of 40 Hz 

oscillation. 
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Figure 9.11: Sites 3 and 4. Power spectra are shown for 8 coherence levels for t l003 
and for 3 coherence levels for tl004. For t l004, the thick line indicates c = 0, the upper 
line indicates c = 1, and the lower line indicates c = -1. For t l004, the temporal 
sequence included 2 sec of visual stim ulation. The 60 and 180 Hz interference are 
prominent, and there is no sign of a peak near 40 Hz. 
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9. 7 Discussion 

This preliminary study suggests that there is stimulus-related information in the LFP 

signal, but the signal quality was too poor to warrant rigorous analysis of the current 

data. There seems to be a stimulus-locked oscillation near 50 Hz associated with the 

onset of the stimulus. 

To improve the quality of LFP data, a number of modifications should be made 

to the recording setup. First, an output should be added to the first stage Bak filter 

in the rack that bypasses the high pass filter. This output could then be used as the 

input to the new low pass filter. Also, the low pass filter could be modified to include 

a variable gain amplifier. Second, shielding should be added to reduce the amount of 

60 Hz and other low frequency interference. Once these modifications are made, it 

would be desirable to measure the transfer function of the recording setup by direct 

methods and also to determine a calibration for the amplitude of the LFP signal. 
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Chapter 10 

Conclusions 

The results of this thesis fall into three mam categories: (1) the stimulus-locked 

temporal modulation in both the spike trains and the psychophysics, (2) the gaps 

and bursts in the unmodulated response to coherent motion and the correlation of 

gaps between pairs of neurons, and (3) the power spectrum analysis of burst and 

non-burst cells. Other minor results come from the ROC analysis of bursts and a 

preliminary examination of the local field potential. These are summarized in the 

first section, interpretations are given in the second section, and directions for future 

research are described in the third section. 

10.1 Summary 

Through a long path which included psychophysical experiments, analysis of previous 

electrophysiological data, and computational analysis, we have arrived at a firmer 

conceptualization of the dynamic random dot stimulus and its influence on neurons 

and behavior. The stimulus is well approximated in the frequency domain as an 

oriented, three-dimensional cosine, contributed by the signal dots, superposed on 

a white-noise (flat, only on average) spectrum, contributed by noise dots and the 
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interaction between signal and noise dots. This can be pictured as a set of louvers, 

each an infinite plane, that is open at low speeds and begins to close at higher speeds. 

Each signal dot pair contributes power across the spectrum, while the incidental 

spatiotemporal interactions of the dots can contribute power to an isolated portion 

of the spectrum, and may be the cause of the precise temporal modulation that is 

observed in the spike trains in response to incoherent motion stimulation. 

Because we do not know the exact stimulus patterns that generated the modulated 

responses, our analysis of the temporal structure is incomplete. We have found that 

neurons will respond with temporal precision between 5-10 msec to the dynamic dot 

stimulus, and the modulated patterns do not change over time. The autocorrelation 

of the PSTHs is consistent with these neurons being described by filters that rarely 

extend beyond 100 msec. 

For coherent motion there is virtually no stimulus-locked temporal modulation. A 

numerical model suggests that the MT response remains unmodulated while the V1 

responses are highly modulated because of evenly distributed and appropriately dense 

spatial sampling, as specified by the Nyquist theorem. Also, because the stimulus 

contributes power to the preferred as well as null regions in the frequency domain, it 

is possible that increases and decreases in the number of dots is normalized out. 

In the absence of precise stimulus-locked modulation, excessively long gaps appear 

in the brisk response to coherent, preferred direction motion. A symmetrical bursting 

phenomenon occurs in the suppressed response to null direction motion. These are, 

in a crude sense, stimulus-locked also, but they may arise from intrinsic connections 

in MT rather than directly from the time-varying stimulus. We have argued that the 

gaps might be due to inhibition and have shown that they are correlated between 

nearby neurons, but they might also arise from eye movements that cause motion 

of the scene on the retina. Data from anesthetized animals could help to rule out 

such eye movements. There is no way to establish solely from the data analyzed here 
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whether inhibition is actually at play; future experiments will decide. 

This thesis began as an investigation into t he possibility that oscillations in the 

40 Hz range might be related to the coherence of the stimulus or to the monkey's 

decision. With the propensity that MT cells have for following the dynamics of the 

stimulus, it is not clear that they would also be able to lock to an underlying 40 Hz 

rhythm. Of course, if a neuron does not fire on each cycle of the oscillation and if 

the firing is only loosely locked to the oscillation, then an oscillatory signal may still 

exist at a population level. This has been demonstrated in a model by Usher et al., 

(1994). 

The final two chapters have elucidated the relationship between burst firing, the 

refractory period, and peaks in the power spectrum in the 40 Hz range. We show that 

a simple model using a refractory period, a Poisson process, and with the addition of 

burst firing is adequate to account for the observed peaks in the power spectrum. It 

is the length and abruptness of the apparent refractory period and the width of the 

bursts which determines the shape and location of the peak. 

Additionally, we find that counting bursts as single events is better than counting 

individual spike in terms of an ideal observer who tries to predict the direction of 

stimulus motion. Finally, we have examined the local field potential at 5 sites and 

found that there are stimulus locked modulations near 50 Hz during the transient 

portion of the response, before directional tuning sets in. 

10.2 Philosophy and Interpretation 

It is not our philosophy that all neurons in one area are performing the same function 

and can be averaged across and described adequately by a few statistics. We believe 

each neuron plays a specific role within the cortical microcircuit, and we wish to 

understand neurons within that context as we try to deduce more about the context 
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itself. To do this, we need to be familiar with the various types of neurons and their 

characteristic behaviors. We also need to work on an area of the brain which is well 

enough understood that computational models exist to guide our search. 

One thing that we have learned by examining the temporal structure of the spike 

trains is how heterogeneous a population of neurons can be. Area MT is considered to 

be one of the most homogeneous areas, because 90% of cells are directionally selective, 

but cortical architecture is known to be diverse and more and more is becoming known 

about this diversity (Agmon and Connors, 1992). 

Many successful neuroscientists downplay the usefulness of a highly computational 

approach. Computational and analytical methods have played an important role in 

bringing an understanding to phenomena studied here, in particular, in the modeling 

of the power spectrum and in the analysis of the stimulus in the frequency domain. 

The model of spatial integration for an MT cell is still being developed, but we think it 

will prove invaluable for guiding future experimental design. However, we do believe 

that extra caution may be advisable when using methods that are not intuitive. 

Another valuable lesson that has been learned here is the importance of under­

standing completely the visual stimulus when analyzing fine temporal structure or 

variability in spike trains, particularly because visual cortical neurons are exquisitely 

sensitive to fluctuations in the stimulus of which we are probably not aware (Crick 

and Koch, 1995) . Small changes in the stimulus appear in the temporal structure 

of the cells and may potentially effect the outcome of analysis. The most natural 

stimuli may not always be the most revealing, and we may be able to do better than 

traditionally applied stimuli, especially because it has been realized for many years 

that seemingly complex effects are exerted from beyond the classical receptive field 

(Allman et al., 1985) . 

This study separates stimuli into two major classifications: (1) those that induce 

time modulation in the neuronal response and (2) those that induce an elevated rate 
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with no time modulation. Some may argue that this difference is merely a matter of 

time scale, but it has been a useful distinction here. 

At the outset, we believed that cortical neurons were highly nmsy and unpre­

dictable beyond their mean rate, but this view has been tempered by the observation 

that the neurons can reproduce firing patterns precisely from trial to trial over the 

course of hours. With regard to noise, Kelly (1979) has showed that eye movements 

change perception of spatial frequencies; this also makes each stimulus unique to some 

extent and can contribute to what might otherwise be considered biological noise. We 

must accept that even when we present identical stimuli, the neuron under study may 

receive different signals, but ones that are not necessarily noisy to the extent that 

they are different. 

10.3 Future Research 

Examining temporal modulation without having access to the stimulus has whet our 

appetite to provide a controlled stimulus and link it directly to the time-varying 

neuronal spike train. For example, one could provide a coherently moving pattern in 

accordance with a band-limited white-noise velocity signal and then attempt to recon­

struct the velocity signal from the spike train, a method first used by de Ruyter van 

Steveninck and Bialek (1988) to analyze movement-sensitive neurons in the blowfly 

and more recently to analyze spike trains from electric fish (Gabbiani and Koch, in 

press). By varying parameters, such as spatial frequency content, in the stimulus and 

comparing the quality of the reconstruction and by comparing the information that 

is reconstructed for similar stimuli in V1, we may be able to understand better the 

transformations within MT and between V1 and MT. One must be careful with this 

method because it, like many other methods, assumes that the behavior of the neuron 

is stationary over the analysis window and, in practice, requires the experimenter to 
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choose the stimulus signal that will be reconstructed. 

We believe that cross-correlation analysis will be critical to gain more insight to the 

function of neurons, and believe that it will be particularly useful in area MT because 

of the foundations that exist on which to base predictive models. If cells very reliably 

transform their synaptic inputs to output spike trains, then knowledge of the visual 

stimulus alone would not allow a complete characterization of the cell 's function in 

conditions where a substantial non-stimulus locked synaptic contribution came from 

nearby cells, for example, from inhibitory interneurons. As two cells are modulated 

together, the correlation in the modulation may reveal more subtle differences than 

that revealed by stimuli that induce no patterning. Many studies concentrate only 

on the stimulus independent portion of the correlation, i.e., the "shift predictor" is 

subtracted. We believe that a comparison of the stimulus dependent and the stimulus 

independent portion of the correlation may prove interesting. In particular, we would 

like to know which provides more predictive information regarding the spike train of 

a cortical neuron, the visual stimulus or the spike train from another cortical neuron? 

We would like to know how the answer varies across pairs of neurons and across 

stimuli. 

With respect to cross-correlation, we also want to develop a quantitative compar­

ison between the effect of common excitatory input which produces narrow peaks, 

typically less than 10 msec wide, and the effect of correlated gaps, which leads to 

peaks that are typically 100 msec wide in the interval cross-correlations discussed in 

Chapter 5. 

Our hope for the future is that stimuli can be designed to control the firing of 

neurons in even more precise ways that will help reveal the functional architecture 

of the visual cortex. We envision developing a set of stimuli that would allow the 

characterization of a cell as inhibitory or excitatory, just from the neuronal firing 

pattern. Work along these lines has already been done in vitro (Connors and Gutnick, 
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1990). The ability of the experimenter to control the firing of the cell with great 

precision may be an important tool in testing the connections of the cortex. We have 

tried to demonstrate, based on Fig. 5.6, that imprinting a known pattern in the spike 

train may be useful. 

One part of the temporal analysis that has not been treated here and which we 

believe holds great promise is the transient part of the response, typically 0-400 msec. 

This part is highly variable across neurons, sometimes consisting of a slow onset, a 

sharp peak, or two or three sharp peaks. This temporal structure of the on-transients 

must arise from the setting up of the cortical network to process the stimulus and may 

depend on effects from outside the outside the classical receptive field in potentially 

non-linear ways. The initial observations in local field potentials (Chapter 8.3) are 

grounds for further investigation. One model has been proposed that attempts to 

interpret the initial transients in terms of acceleration information (Lisberger and 

Movshon, 1994). 

Many computational models utilize units called "neurons." If these artificial units 

are individually endowed with computational capabilities similar to their neurobio­

logical counterparts, and if they are connected in networks with similar configurations 

as, for example, neocortex, then we should expect to see similar behavior on a fine 

time scale, i.e. , at the millisecond time scale. We believe that continued study of fine 

temporal structure in spike trains will reveal the details of how neurons are connected 

and how they acquire their tuning properties. 
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