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Abstract 

Using neuromorphic analog VLSI techniques for modeling large neural systems has several advan­

tages over software techniques. By designing massively-parallel analog circuit arrays which are 

ubiquitous in neural systems, analog VLSI models are extremely fast, particularly when local inter­

actions are important in the computation. While analog VLSI circuits are not as flexible as software 

methods, the constraints posed by this approach are often very similar to the constraints faced by . · 

biological systems. As a result, these constraints can offer many insights into the solutions found by 

evolution. This dissertation describes a hardware modeling effort to mimic the primate oculomotor 

system which requires both fast sensory processing and fast motor control. A one-dimensional hard­

ware model of the primate eye has been built which simulates the physical dynamics of the biological 

system. It is driven by analog VLSI circuits mimicking brainstem and cortical circuits that con­

trol eye movements. In this framework, a visually-triggered saccadic system is demonstrated which 

generates averaging saccades. In addition, an auditory localization system, based on the neural . 

circuits of the barn owl, is used to trigger saccades to acoustic targets in parallel with visual targets. 

Two different types of learning are also demonstrated on the saccadic system using floating-gate 

technology allowing the non-volatile storage of analog parameters directiy on the chip. Finally, a 

model of visual attention is used to select and track moving targets against textured backgrounds, · 

driving both saccadic and smooth pursuit eye movements to maintain the image of the target in the 

center of the field of view. This system represents one of the few efforts in this field to integrate 

both neuromorphic sensory processing and motor control in a closed-loop fashion. 
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Chapter 1 Introduction 

The dream of building intelligent machines has been with us since the dawn of technology. The 

pursuit of understanding how the brain works has been with us nearly as long. Every new tech­

nological age has tried to view the brain in t he dominant technology of the day, from hydraulics, 

to gears, to telephones, to digital computers. Perhaps for the first time in history, however, we 

are beginning to understand the operation of many different neural circuits ·and their functional 

significance in behavior. As such, we are less dependent on the dominant technology as a metaphor. 

It is our hope that the rapidly expanding knowledge of neuroscience will drive the creation of an 

entirely new technology based on computational principles utilized by the brain. Digital computers 

have excelled in the problems of mathematical logic, database manipulation, and repetitive number 

crunching with extremely high precision; problems difficult to perform by biological systems. On the 

other hand, visual perception, navigation, and sensorimotor control, problems easily solved by bio­

logical systems, have not been satisfactorily solved by engineering systems. Notably, the successful 

computing architectures in these two problem domains are markedly different . 

As more neurobiological details emerge and models become significantly more complicated, com­

putational modeling will become an invaluable tool, providing an interactive test of the many as­

sumptions we put into our models. Using traditional software methods to model neural systems is 

often difficult because most neural systems are composed of very large numbers of interconnected 

elements with non-linear characteristics and a wide range of time-constants. Their mathematical 

behavior can rarely be solved analytically and simulations slow dramatically as the number and 

coupling of elements increases, especially in cases where capturing the details of fast dynamics is 

important. While quite a few user-friendly, neural-simulation software packages are now available 

(e.g. Neuron, Genesis), they are not very appropriate for fast, efficient simulation of very largesys­

tems. In particular, modeling sensorimotor systems to understand their interaction with the natural 

world often requires simulating the real world, which can often be more difficult or time-consuming 

than simulating the model itself. Modeling some aspects of t he world is not always intractable; some 

research groups have begun experimenting with virtual-reality environments developed by others for 

developing robotic sensorimotor control models. These virtual environments, however, still fall short 

of the realism needed for certain problem domains to be certain of a model's ability to operate in 

the real-world. 
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1.1 N euromorphic Analog VLSI 

In the early 1980s, Prof. Carver Mead at the California Instit ute of Technology began a research 

effort to investigate the use of the latest silicon fabrication technology to emulate and understand 

neurobiological circuits. While parallel, analog computers have been used before to simulate ret inal 

processing and other neural circuits (Fukushima et al. , 1970), t he significant difference was the use 

of the latest silicon technology which allowed engineers to cheaply integrate a few million transistors 

onto a centimeter of silicon. Meanwhile, the rapidly growing body of knowledge in neuroscience 

was helping to fuel the field of computational neuroscience, which highlighted the need for faster 

simulation engines. 

The approach taken by Mead's group was to model the analog parallel processing of neural · 

circuits by building analog parallel processing circuits on silicon using commercial digital VLSI 

(very-large-scale integration) processes. By utilizing analog techniques which exploit elementary 

physical phenomena as computational primitives, the efficiency of computation promises to be up . 

to 100 times more efficient in silicon area and up to 10,000 times less power hungry (Mead, 1990). 

This approach of designing computational systems which emulate the function and morphology of 

nervous systems has come to be known as neuromorphic engineering. Neuromorphic analog VLSI 

systems thus utilize the analog VLSI medium to implement these computational architectures. 

This approach has incorporated many of the features of neural circuitry such as: processing 

strategies that are fast and redundant, circuits that are tolerant to noise and component variability, 

and adaptive behavior using local parameter storage. All of these advantages do not come without 

cost; there are many constraints in building such systems. These constraints are, however, well 

matched to those of biological systems and may provide greater insight into the design of neural 

systems than alternative methods of modeling. This effort has been growing and considerable 

progress has been made in the development of circuits well-matched to this type of circuit design. 

Examples include models of: cortical pyramidal neurons, the cochlea, the outer plexiform layer of 

the retina, auditory localization, long-term sensorimotor adaptation, and the primate oculomotor 

system (Douglas et al., 1995). 

1.1.1 Benefits: Neural Modeling 

Perhaps the most common question encountered in this field of research is: "Why use analog VLSI for 

modeling when more flexible software approaches can simulate anything?" The two main arguments 

for utilizing analog VLSI for modeling are its speed and the potential benefits of ...;orking within the 

design constraints. 

The human brain contains on the order of 1011 neurons; while most simulations do not yet 

attempt to simulate whole brains, even of the common house-fly which has a modest 340,000 neurons 
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(Strausfeld, 1976) , eventually such simulations will be desirable. Nearly all neural models are fine­

grained parallel-processing arrays and implementing such models on a serial machine can result in 

very low simulation speeds. Slow simulations are difficult to work with and difficult to gain any 

intuition from. Sensorimotor systems are particularly difficult to investigate since the interaction 

with the real world must either be adequately simulated inside the computer, or the simulation 

must run fast enough to interact with the time-constants of the real world . . Typically, a sufficiently 

realistic simulation of the real world is impractical. Spike-based circuit modeling can be particularly 

slow since large, fast swings in voltage are frequent. Mixing widely disparate time scales within 

the same simulation is even slower (e.g. learning in spiking networks). Provided the analog VLSI 

circuitry can provide the proper level of detail and is configurable for the types of models under 

investigation, the neuromorphic analog VLSI models can provide the speed desirable for large-scale 

simulations. In addition, t he growth of a hardware-based simulation does not affect the speed of 

operation and thus encourages the implementation of detail wherever necessary. 

While the speed issue is perhaps the most compelling argument, there is another interesting 

argument: similarity in constraints. The constraints for designs in analog VLSI and biological 

neurons are similar and force the modeler to consider and solve similar problems. Although software 

modelers can include these constraints into their model, it is often the case that these details are 

left out in an effort to simplify and speed up the simulation. The design constraints in analog 

VLSI circuitry are many, however, most of them raise interesting questions about t he solutions that 

biology has employed. 

As in biological systems, each component in the fabricated chip, while nominally identical, is 

not fabricated identically. Differences in transistor parameters can be significant (Pavasovic et 

al., 1994) and can create large errors if the algorithm does not account for them or is not robust 

enough to tolerate them. By utilizing redundant representations, such as population encoding or 

place encoding, or by using adaptation based on performance, many of these offset problems can be 

alleviated. 

All neural systems are adaptive to some degree, either exhibiting habituation, synaptic modifi­

cation, or morphological change. Analog VLSI devices have also begun to demonstrate adaptation 

and have recently attained the capability of compact, local, non-volatile parameter storage (Diorio 

et a!., 1995). 

Noise in physical systems occurs in every device and often becomes a design issue that affects 

both neural circuitry and analog VLSI design. Most components in an analog VLSI circuit exhibit 

thermal noise (Sarpeshkar et al., 1993). While still quite a controversial topic, noise in neural systems 

is believed to be considerable, although to what extent this precludes the use of precise timing in 

cortical processing is still hotly debated (Shadlen and Newsome, 1994). Noise is known to arise from 

sources such as: temperature-sensitive channel kinetics, low synaptic reliability, channel current 
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noise, extrasensory input activity, and for vision, photon noise (Hessler et al., 1993; Longtin and 

Hinzer, 1996). Noise is not necessarily detrimental and may play an important role in the detection 

of subthreshold signals (Stemmler, 1996). 

While not utilized in the work described here, the address-event-representation communications 

protocol (AER) (Sivilotti, 1991; Lazzaro et al., 1993; Mahowald, 1994; Mortara et al. , 1995; Boahen, 

1996), has been developed for communication between chips where large numbers of units must 

communicate with each other across chip boundaries. The AER protocol is based on the idea that 

units communicate events (spikes) asynchronously to their downstream partners. By communicating 

the address of the sending-unit on a common output bus, the downstream units decode the address 

from which they receive events and acknowledge the receipt of the event. With the current generation 

of circuits, this cycle of event communication is performed fast enough to communicate more than 

2 million events per second (Boahen, 1996). For spike-based simulations where the neurons' peak 

firing rates are about 1 kHz, this protocol could handle about 2000 units at maximum output 

with some loss of temporal accuracy. Aside from the obvious purpose of enabling high-bandwidth 

communication between chips, the AER protocol enforces a powerful constraint on the method 

of communications, namely, events. While the actual technique for communication involves more 

traditional high-speed digital techniques, this system nominally delivers spikes aSynchronously with 

minimal temporal jitter. By requiring long-distance communication to travel via spikes, there are 

now real advantages to sparse representations and temporal encoding of information. 

Finally, wiring is a serious issue in neural circuits, occupying a large volume in the brain. Long 

distance wiring is expensive metabolically and requires significant volume. Brains tend to minimize 

long-distance communication and emphasize local connectivity. Wiring is also expensive in VLSI 

and local connectivity is thus favored. 

There are, of course, some constraints in analog VLSI which are not found in the biological 

substrate (e.g. ability to grow and extend processes) and some constraints in the biological substrate 

which are not found in analog VLSI (e.g. low-resistance wiring) . By understanding these differences 

and utilizing them carefully, it is possible to maintain the relevance of these circuits to biological 

modeling. 

1.1.2 Benefits: Engineering 

Aside from raw computational speed, the energy per unit of computation has become a critical 

issue for engineering systems, driving technological advances in low-power techniques for portable . 

electronics. While most of the portable devices in the market today are small versions of the . 

traditional digital computer, efficient analog solutions which are better-matched to the problems of 

real-world interface are still being sought. 

Very few of these commercial devices currently attempt to solve the perceptual and sensorimotor ·· · 
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tasks that portable biological computers commonly perform (e.g., rats, owls, and penguins). This 

is primarily due to the lack of truly successful algorithms and the lack of computational resources 

to make them practical. The neuromorphic analog VLSI approach attempts to match the compu­

tational architecture with the computational function, which leads to a considerably more efficient 

implementation. While sensory perception and sensorimotor control are presently not part · of the 

repetoire of commercial products, they may yet be. Because this research is currently carried out on 

commercial fabrication processes, the final product of this research is already close to a marketable 

implementation. 

From a mobile robotics standpoint, the development of analog VLSI sensory processing chips rep­

resents a tremendous advance, moving from large, bulky, power-hungry sensory systems to cheaper, 

smaller, and lower-power replacements. ·while the ultimate goal might be to completely control a 

robot with neuromorphic analog VLSI processors, even modest advances will significantly contribute 

to mobile robotics. 

Another important engineering aspect of neuromorphic analog VLSI research involves adaptive 

behavior and the development of self-calibrating components as part of an integrated system. At 

the circuit level, adaptation can be used to remove the effects of component offsets; at the system 

level, adaptation can be used to modify behavior based on experience. While one motivation to 

have adaptation in a system is that components age, drift, and become damaged, perhaps a more 

immediate concern is that the optimal calibration of a system or component that is intended to 

work in the real-world is often best calibrated in the real-world, and not on the lab bench. This 

is particularly important in mobile robotics where the environment changes frequently as the robot 

moves. In addition to basic behavioral adaptivity, the robustness of redundant, analog processing 

algorithms combined with smart adaptation techniques may someday allow circuits to learn how to 

bypass fabrication defects, increasing yield and facilitating successful wafer-scale circuits. 

1.2 Oculomotor Systems 

In the neurophysiological literature most neural modeling efforts have focused on the explanation of 

the phenomena of small, manageable systems . . The simulation of the larger system in which these 

models operate are typically "beyond the scope" of the work. This dissertation focuses on building a 

large-scale, systems-level model of the primate oculomotor system with the goal of uniting the many 

neural models into a functioning whole. In particular, active vision is a realm of research where high­

speed visual processing is important. By working with analog VLSI techniques, the implementation 

will be allowed to grow in complexity and scope without sacrificing the speed necessary for interaction 

with the natural world. 

The orientation response in most animals can be triggered by a sudden change in the environment 
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such as a sharp sound, a sudden movement, or an unexpected tactile sensation. The movement 

takes on many different forms depending on the particular animal and situation: from body turns 

to head turns to eye or pinna movements. What they all have in common is the goal of optimizing 

their sensory inputs by active positioning of their eyes or ears. Studies of active positioning of 

cameras in machine vision have shown that this can significantly reduce the computational cost 

of scene analysis as well as reduce the need for huge, high-resolution sensors (Ballard 1991). On 

an even faster time scale, in some animals, this same task is performed without movement by 

attentional processes, enhancing only a selected portion of the world, constituting an internalized 

form of orientation. In both bottom-up, reflexive movements and in top-down, volitional movements, 

orientation is intimately tied to attention. 

The study of attention may prove to be extremely fruitful in our search for a basic understanding 

of the brain since it appears to lie on the interface between bottom-up, reflexive, sensorimotor · 

control, which has been extensively studied via neurophysiology, and top-down, intentional control 

of perception, which has been studied primarily via psychophysics. In addition, attention extends 

beyond vision to all of our sensory modalities, tying the neural activity of different sensory maps 

into a single, multi-modal, perceptual experience. 

While we typically think of brains as quintessential examples of massively parallel information 

processing, there are many areas within these systems where the sheer volume of sensory information 

is overwhelming for a system with limited computational resources and limited time in which to 

react. In the human visual system, it is estimated that there is between 108 - 109 bits per second 

of information flowing down the optic nerve - far more than what the brain is capable of processing 

and integrating into our conscious experience. The strategy that many animals have adopted for 

this problem is one of spatially-focused, serial processing, moving quickly from one part of the 

image to the next, fusing together our perception of the world over time. While our fovea limits 

our high-resolution vision to the direction of gaze, visual attention further limits what we actively 

scrutinize. The metaphor most frequently used to describe visual attention is a spotlight which . 

enhances processing of information from a subregion of the visual field. The information within 

the subregion is also thought to be passed on to higher visual areas for further processing. This 

attentional spotlight is guided by early sensory processing (bottom-up) and by cognitive (top-down) 

influences. 

This strategy of spatially-focused, serial processing is seen in two forms in the primate: covert 

and overt attentional shifts. Covert attentional shifting refers to the movement of the attentional 

spotlight around the field of view in the absence of eye movements. Overt attentional shifting 

refers to eye movements, shifting the fovea to center and view objects with higher spatial resolution. · 

Given both methods of extracting visual information about our environment, how we decide when 

and where to saccade next is still an open question. It is the interplay of these two systems which 
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is the focus of this work. 

1.3 Eye Movements: Behavior and Metrics 

Although our eye has a field of view of about 170° (Dusenbery, 1992), we see best in the central 

1 o, or fovea, where the density of photoreceptors is the greatest. As we move around in t he world 

and as the world moves around us, our view of the world is constantly in motion. Because our 

photoreceptors have relatively long impulse-response durations (200 msec for cones, 500 msec for 

rods; Schnapf and Baylor, 1987), it has been argued that our eye movements are concerned with 

keeping retinal image motions below 2-3 degjsec at all times in order to allow our photoreceptors 

to fully respond and preserve our visual acuity (Westheimer and McKee, 1975). When motion is 

necessary, however, fast eye movements are employed to reduce the duration of blurred vision. 

There are generally considered to be five types of eye movements: the vestibulo-ocular reflex 

(VOR) , the opto-kinetic reflex (OKR), saccades, smooth pursuit, and vergence eye movements. The 

first two, VOR and OKR, are general stabilization eye movements which are activated when the 

head is moved. Saccades, smooth pursuit, and vergence eye movements are considered to be target 

acquisition and stabilization movements more often tied to the target's motion. In all of these eye 

movements, both eyes move at the same t ime and with the same t imecourse. While the first four 

types are conjugate eye movements, meaning that both eyes move in the same direction, vergence eye 

movements are disconjugate, driving the two eyes in opposite directions to compensate for changes 

in fixation distance. 

1.3.1 VOR and OKR 

The vestibula-ocular and opto-kinetic reflexes are, phylogenetically, the oldest eye movements. 

Their function in the primate is to detect movements of the head and rotate the eyes to compensate 

for the movement, prevent image blur on the retina (See Figure 1.1). The vestibula-ocular reflex 

operates by sensing rotational velocity and acceleration using the vestibular organs in the inner ear. · 

In contrast, the opto-kinetic reflex senses rotational velocity visually. These two reflexes complement 

each other by operating in different velocity ranges and at different latencies. 

The vestibula-ocular reflex has a short latency of 14 msec and is most effective for large, transient 

head movements. For stimulus frequencies from 0.1 and 1.0 Hz, the phase of the VOR does not 

deviate by more than a few degrees from perfect compensation. The VORis able to accurately drive 

the eyes to stabilize head turns up to 300 degjsec (Keller, 1978). 

The opto-kinetic reflex has a longer latency of about 80 msec and is most effective for small, 

sustained head movements. The opto-kinetic reflex is known to have two components: a fast response 

(early-component OKR) and a slower response· (delayed OKR) . The fast response drives the eyes 
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Figure 1.1: Vestibulo-Ocular Reflex: Rapid changes in head velocity were presented in darkness 
with the eyes and head initially stationary. The monkey fixated a stationary target which was 
extinguished before the head began to move. The small, brief deflections in the eye velocity are 
caused by small corrective saccades. (From Lisberger and Pavelko ,1986) 

first , allowing the stabilization of motions up to 100 deg/sec. The delayed component builds slowly 

over seconds and allows the stabilization of much higher speeds. · 

1.3.2 Smooth Pursuit 

Similar to the opto-kinetic reflex, the smooth pursuit eye movement uses visual motion detection 

to stabilize the image; unlike the opto-kinetic reflex, motion extraction is performed on a subregion 

of the field of view. Smooth pursuit allows the primate to track small objects even across patterned 

backgrounds. Interestingly, smooth pursuit ability, while not strictly limited to primates, is un­

common in other vertebrates. This ability is believed to have evolved to serve the special visual 

stabilization needs of frontally-eyed animals with a fovea manipulating objects in the world (Land, 

1995). 

Smooth pursuit eye movements cannot be voluntarily generated in the absence of a moving visual 

stimulus(Kowler, 1990). In addition to the need for a visual stimulus, smooth pursuit movements 

are believed to require attentive fixation of the target (Khurana and Kowler, 1987; Tam and Orio, 

1994). 

Smooth pursuit eye movements occur with a latency of 80-130 msec after the onset of smooth 

target motion and can attain speeds as high as 180 degfsec, however, accurate tracking is limited 

to target speeds below 30 degfsec. The gain of the smooth pursuit movement, while ideally equal 

to one, is typically below that value, triggering saccades as the target leaves the vicinity of the 

fovea. Values often range from 0.6 to 0.95 with the gain decreasing with target speed (Collewijn 

and Tamminga, 1984). Also, the presence of a textured background, typical for natural situations, 

produced a 10% reduction of the gain during smooth pursuit (Collewijn and Tamminga, 1984; 
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Figure 1.2: Example of monkey smooth pursuit of a constant-velocity target at 15 degjsec (From 
Goldreich et al., 1992). 

Masson et al., 1995). This interaction of the background is thought to be a result of incomplete 

suppression of the opto-kinetic reflex. 

Due to the visually-driven nature of the smooth pursuit movement, delays in the visual system 

and the phase lag of the pursuit controller support the possibility of oscillations in the eye velocity 

during tracking. Figure 1.2 shows an example of this oscillation during pursuit of a constant velocity 

target. This oscillation is seen in primates and is approximately at 6 Hz (Goldreich et al., 1992). 

1.3.3 Saccades 

Saccades are rapid, ballistic eye movements which can reach peak velocities of 600 degjsec and 

last between 25 and 200 msec dependent upon the saccade amplitude (For examples, see Figure 1.3). 

Saccades are the only conjugate eye movement that humans can generate as voluntary acts (Becker, 

1989). We are able to trigger saccades to visual targets, auditory targets, as well as memorized 

targets. While saccades are fast , they have a relatively long latency, requiring on average 180-220 

msec from the onset of a visual t rigger tci the beginning of the observed movement (Becker, 1989). 

The peak velocity during the saccade initially increases with saccade amplitude until it begins 

to saturate for saccades greater than about 15 degs. The saturation is complet~ for saccades greater 

than 50 degs. In contrast, the saccade duration shows a linear relationship with amplitude for 

saccades from a range of 5 to 60 degs (Becker , 1989) . 
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Figure 1.3: Family of saccades of sizes 5° , 10°, 20°, 30°, 40°, 50°. (From Becker, 1989) 

1.3.4 Vergence 

Vergence eye movements are smooth eye rotations used to maintain fixation of a target with both 

eyes as a target's distance changes. As the target distance increases, the eyes diverge; when the 

target distance decreases, the eyes converge. 

Vergence eye movements are known to be strongly driven by retinal disparity. Since stereopsis 

has a limited range of disparity in which fusion can be maintained, the role of vergence is to find 

and maintain the angle of the eyes to ensure stereo fusion. The range of retinal disparity t hat drives 

the vergence system is much larger than that which drives stereopsis. Presumably because there 

are such strong correlations between image focus and object distance and between image size and 

object distance, vergence can also be stimulated by blurring of the retinal image and by dynamic 

changes in size of a target shape (Collewijn and. Erkelens, 1990). 

1.3.5 Eye Movement Coordination 

In comparison to the behavior of the VOR, OKR, vergence, saccadic and smooth pursuit move­

ments, relatively little is known about the neural mechanisms used to coordinate these different eye 

movements. Some of these movements have goals which are directly in conflict with each other, such . 

as saccades which reorient the eye and the OKR, smooth pursuit, or VOR which all seek to stabilize 

an image. In addition to the interactions between eye movements, there are many influences of the 
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eye movement on the visual processing itself. 

Perhaps the best studied interactions involve the combination of saccades and smooth pursuit 

movements which are both involved in visual tracking, (MacKenzie and Lisberger, 1986) and the 

combination ofVOR and saccadic eye movements which seem to work together in parallel (Guitton et 

al. , 1984). Because the smooth pursuit system is stabilizing only a part ofthe image, it must suppress 

the OKR, which is attempting to stabilize the entire scene. In animals where the pursuit system is not 

well-developed, the OKR prevents smooth movement and saccadic tracking is observed (Kirshfeld, 

1993; Ilg and Hoffman, 1993; Masson et al., 1993). Behaviorally also, smooth pursuit movements 

reduce the perceived blurring of stationary background objects, compared to the equivalent retinal 

blur of a moving object (Bedell and Lott, 1996). 

Saccadic suppression of the visual processing system has been found in the superficial layers of 

superior colliculus, pulvinar Robinson et al., 1991) Psychophysically, it seems that the magno system 

is selectively suppressed (Ilg and Hoffman, 1993). This, of course, impacts motion processing which 

could account for suppression of OKR and smooth pursuit during saccades. 

1.4 What Has Been Done 

The work presented here focuses on using neuromorphic analog VLSI techniques to model the primate 

oculomotor system to solve specific oculomotor tasks, such as performing saccades to visual and 

auditory targets, learning saccadic motor parameters, and using attention to control smooth pursuit 

eye movements. The goal was to construct a large system of interconnected sensory and motor 

processes to solve a task in the physical world. 

• The central focus to date has been the construction of a one-dimensional model of the primate 

oculomotor system. The mechanical system described in Chapter 2 was designed to emulate 

the physical dynamics of the primate oculomotor plant. This mechanical system is controlled 

by an analog VLSI model of the primate brainstem burst generator circuits and is used to 

control both saccadic and smooth pursuit eye movements (Horiuchi et al., 1994) . 

• Chapter 3 describes a model of auditory localization developed from experimental work with 

barn owls to compute the direction of a sound source (Horiuchi, 1995). This system was 

also designed to trigger saccades to auditory targets after performing the required coordinate 

transformation from head to motor coordinates. This work builds off of the pioneering work 

of Lazzaro (1990) in analog VLSI models of the cochlea and auditory localization. 

• Chapter 4 describes several schemes for extracting motion-related information from an image. 

One is a pulse-based, correlation method which utilizes delay lines and results in a population of 

velocity-tuned units (Horiuchi et al., 1991). Two other gradient-based methods for extracting 



12 

the direction of motion are presented (Horiuchi and Koch, 1996; Horiuchi et al., 1997). These 

motion circuits are used in the circuits and systems of later chapters. 

• In Chapter 5 two different projects utilizing floating-gate circuits for non-volatile, on-chip 

analog memories is presented. These devices are used to demonstrate learning in the saccadic 

eye movement system. In the first project, we demonstrated the use of a sensitive direction-of­

motion chip from Chapter 4 to provide error signals for tuning a motor control parameter to 

reduce post-saccadic drift in our system (Horiuchi and Koch, 1996). A second system focuses 

on the learning of a look-up-table mapping from retinal positions to motor commands. In 

this system an array of floating-gate storage circuits were trained in a supervised-learning 

paradigm. This system can learn to compensate for non-linearities in the optics or offsets 

within the saccadic burst generator circuit (Horiuchi and Koch, 1997) . 

• Chapters 6 and 7 jointly describe the use of an attentional model to perform target selection 

and extract the position and motion of the target to control saccadic and smooth pursuit eye 

movements (Horiuchi et al., 1997). 

• Finally, in Chapter 8, having explored the design and performance of this multi-faceted ocu­

lomotor system, the contributions of this work to both neuroscience and to engineering will 

be discussed. In addition, the future of both this project and the neuromorphic analog VLSI 

field will be discussed. 
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Chapter 2 Modeling Saccades 

The keystone of this dissertation is the hardware model of the oculomotor plant. Understanding 

its implementation and performance are important to understanding where some of the limitations 

in our system lie. While a large number of variations of both the oculomotor plant and the burst 

generator have been tested, only the most successful version will be described. 

The first section discusses the oculomotor plant implementation and its performance, the second 

section discusses the saccadic burst generator and its performance in driving the plant, and the third 

section describes a vision-based, saccadic targeting chip. 

2.1 The Oculomotor Plant 

The primate eye is driven by 3 sets of muscles: the horizontal recti, the vertical recti, and the 

superior and inferior oblique muscles. These muscles and other suspensory tissues hold the orb in 

the eye socket, producing mechanical dynamics which the control circuits in the brainstem must 

control. Both the muscles and the suspensory tissues are elastic and, in the absence of motorneuron 

activation, return the orb to the primary, or center, position. Both muscles and suspensory tissues 

provide significant viscosity, creating an over-damped mechanical system. 

The measured time-constant has been found to be approximately 250 msec (Robinson, 1964). 

The force-length relationship of the eye muscles was first measured by Collins et al. (1975) by 

measuring the tension on the antagonistic eye muscles as a function of eye position. While this 

relationship was fit well with a parabolic function, the combination of the two antagonistic muscles · 

tend to cancel the non-linearity, producing a much more linear relationship. 

The oculomotor plant model we have constructed is a one degree-of-freedom turntable which 

is driven by a pair of antagonistically-pulling DC (direct-current) brush motors . In the biological 

system where the agonist muscle pulls against the passive viscoelastic force of the antagonist muscle 

and suspensory tissues, the fixation position is determined by the balance point of these two forces. In 

order to maintain fixation away from the center position, a tonic signal to the motor controller must 

be maintained. In our system, the viscoelastic properties of the oculomotor plant are simulated 

electronically and the fixation point is set by the shifting equilibrium point of these forces. As 

the biological dynamics are not too far from linear (Collins et al., 1975), the system's dynamics 

have been modeled as linear, to simplify analysis and construction. The circuit schematics for the 

electronically-simulated mechanical dynamics are given in Appendix A. 

The DC-brush motors are used to generate torque on the eye, by pulling on a thread attached · 
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Figure 2.1: Diagram of the basic saccadic eye movement system. The physical dynamics of the 
primate oculomotor plant are simulated in electronics, implementing a heavily over-damped spring­
mass system. 

at the front of the turntable. Since the eye is stationary most of the time, static friction is a major 

problem, requiring a minimum amount of power to overcome the static frictional force. Once the eye 

is in motion, however, this minimum amount of power is considerably larger than the force needed 

to overcome sliding friction. Due to this problem, the motors are driven with a pulse-frequency­

modulation (PFM) system in which every pulse to the motors is capable of moving the eye a tiny 

bit. In this way, arbitrarily-low average speeds can be achieved. At the slow end of the speed range, 

the eye is operating more like a stepper motor, with each pulse moving the eye a tiny fixed angle. 

As the frequency increases, the pulses begin to come before the eye has come to a complete stop, 

thus avoiding the effects of static friction. Each pulse is now more effective in driving the eye and 

the torque vs. input frequency curve follows a steeper slope. Note also that as the motor begins to 

spin, internally it acts as a generator, reducing the e ffective driving voltage of the controller. This, 

in turn, reduces the torque. A reduction in driving force due to velocity is also seen muscles (Kandel 

et al. , 1991). The one-dimensional eye position is measured by a potentiometer which also serves as 

the bearing for the turntable. This position signal is used by the electronic dynamics simulation to 

simulate the following torque (T) relationship: 

T(8,iJ) =Text - k8- mil= I· jj (2.1) 

where k is the spring constant, m is the damping coefficient, I is the rotational inert ia, and Te;t is the 

externally-applied torque. Using the theory of Laplace transforms, equation 2.2 can be transformed 

into: 
8(s) 

Text(s) 

1 
(2.2) 
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Figure 2.2: Passive decay and time constant measurement. The eye was moved from its equilibrium 
point to six different positions and released. The eye position is linear with the potentiometer 
voltage. 

(2.3) 

For this passive case with no external torques (i.e. Text = 0), this equation results in the equations 

of motion for the eyeball as a function of two exponentials: 

(2.4) 

The two time-constants, 7 1 and 72 , are functions of I, k, and m : 

1 1 
7 1 = - ,72 = -

Ct1 Ct2 

For the case of the heavily over-damped eyeball, where m 2 » 4kl, one of the two time-constants is 

much larger than the other. By using the initial conditions, 

0(0) = C1 + C2 

the variables, c1 and c2 can be determined. When the eye is released from an off~center position (i.e . 
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Figure 2.3: Linearity and repeatability of the oculomotor plant system. The eye position was 
perturbed away from the equilibrium point between each measurement. N = 11 

B(O) = A, B(O) = 0) , the eye initially accelerates (both time-constants) and then slowly decelerates 

as it approaches the center position (long time-constant). Figure 2.2 shows the temporal relaxation 

response of the oculomotor plant from six different initial positions and the inset shows an exponential 

fit, late in the response, for the larger time-constant. The mechanical system has been tuned such 

that the larger time-constant has been set to be approximately 200 msec. 

The oculomotor plant model is driven by two signals, Viett and Vright, which represent the torques 

generated by the two antagonistically-pulling lateral rectus muscles of the eye. The difference in 

these two inputs represents the net torque delivered to the eye. Figure 2.3 shows the position 

linearity of oculomotor plant as a function of the difference in the two command voltages. 

One consequence of generating the dynamics electronically is that in steady-state, the eye is 

constantly vibrating. The damping forces are implemented by adjusting the motor control signals 

before they drive the mechanical system. Since the motors are ultimately driven with current pulses, 

the torque generated by the motors are not damped except by the compliance of the final mechanical 

system. This pulsing creates a low-amplitude oscillation around the steady-state eye position. 
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Figure 2.4: Excitatory burst neuron during a saccadic eye movement. The upper trace is the 
horizontal eye position, the middle trace is the vertical eye position and the lower trace is the 
intraaxonal recording of the membrane potential. (From Strassman et al., 1986) 

2.2 The Saccadic Burst Generator Model 

To drive the oculomotor plant described in the previous section, the control circuitry must 

provide the proper signals to overcome the tissue elasticity and viscosity. In order to maintain 

fixation off-center, a sustained pulling force must be generated. Also, in order to complete an eye 

movement faster than the eye's natural time-constant , a large, transient, acceleration force must also 

be generated (see Figure 2.4). Both the transient and sustained component signals can be found 

in brainstem areas which drive the motorneuron pools. Accurate balancing of these two signals 

is necessary and is observed in the motorneurons driving the eye muscles (See Figure 2.5). If the 

transient pulse is too large, the eye will overshoot and if the pulse is too small, the eye drifts onward 

after the saccade. 

The analog VLSI burst generator model (Figure 2.6) receives, as its input, the desired change in 

eye position and creates a two-component signal, a pulse (signal (A), Figure 2.7) and a step (signal 

(B), Figure 2.7) in muscle innervation. A pair of these pulse/step signals drive t he two muscles of 

the eye. The burst generator model is a double integrator model based on the experimental and 

modeling work of Jurgens et al., (1981), McKenzie and Lisberger (1986), and Nichols and Sparks 

(1995). The first integrator, which we call the burst integrator, is used to control the burst duration; 

the second integrator, known as the neural integrator; holds a dynamic memory of the current eye 

position. Unlike the original Robinson saccadic burst generator model (Robinson, 1975), this model 

uses initial motor error as the input to the system. The motor error is compared to the output of . 

the burst integrator which integrates the burst unit 's spike train. The burst neuron keeps bursting . 

until the difference is zero. This arrangement has the effect of firing a number of spikes proportional 

to the initial value of motor error, consistent with the behavior of short-lead burst neurons found 

in the saccade-related areas of the brainstem (Hepp et al., 1989). In the circuit, this integrator 
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Figure 2.5: · Motor neuron spike train with horizontal and vertical eye position shown d~ring an 
oblique saccade. (From King et al., 1986) 

is implemented by a 1.9 pF capacitor. After the burst is over, the integrator is reset. This burst 

of spikes serves to drive the eye rapidly against the viscosity. The burst is also integrated by the 

"neural integrator" (another 1.9 pF capacitor) which holds the local estimate of the current eye 

position from which the tonic signal is generated. The neural integrator provides two output spike 

trains, driving the left and right sustained components of the motor command. The motor units 

receive inputs from both the burst units and the neural integrator and outputs the sum of these two 

signals. Figure 2. 7 shows output data from the burst generator chip which is qualitatively similar to 

spike trains seen in the motor neurons of the abducens nucleus of the brainstem (King et al., 1986). 

Figure 2.8 shows the circuit used to control the burst generator activity. The inputs to the burst 

generator are an analog voltage representing the initial motor error (Vin) and a digital trigger signal 

(active-low) to initiate the burst. The Vin voltage level must be maintained throughout the duration 

of the burst. A control logic circuit is used to suppress bursting unless a trigger signal has been 

received. Once triggered, however, the control logic circuit keeps the burst going until the difference 

between Vin and Vbi is zero. The core of the control logic circuit is a latch circuit with SET and 

RESET inputs. In the quiescent state (no burst), the latch circuit is in the RESET mode and the · 

burst units are prevented from firing spikes by keeping the "GO-L" and "GO-R" signals logic-low. 

Also in this state, the burst-integrator reset is held high, resetting the integrator voltage (Vbi) to 

the zero reference level. When the trigger signal goes low, the latch goes active and the appropriate 

"GO" line is driven high. As the burst proceeds, Vbi approaches and then passes the Vin voltage. 
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Figure 2.6: System block diagram of the burst generator, neural integrator, and motor units. The 
input to the system is an analog voltage representing initial motor error. This input is compared 
against the output of an integrator, and the difference signal drives either the left or right burst unit. 
The burst unit, however, is inhibited until triggered by the GO-L or GO-R signals. Once triggered, 
the burst spikes are integrated, and as the integrator value approaches the input value, the burst 
is reduced and then shut down. This "pulse" signal (A) drives the eye against the viscosity. This 
signal is a lso integrated by the neural integrator which contributes the "step" portion of t he motor 
command (B) to hold the eye in its final position. See Figure 2. 7 for example signals. The neural 
integrator has additional velocity inputs for other oculomotor behavior such as smooth pursuit, VOR 
and OKR. This circuitry has been implemented on a single silicon die. 

As it passes, the comparator changes state and the zero-crossing detector shuts the latch off. 

Figure 2.9 shows the burst generator circuit: The input to the burst unit is the initial motor error 

voltage Vin which is compared to the burst integrator voltage Vbi· If Vin is larger than Vbi, then the 

lower burst circuit is activated when the GO-L line is activated by the burst control circuitry. If Vin 

is less than Vbi, the upper circuit is active. During periods of no burst activity, the burst integrator 

reset line is high, driving Vbi towards the reset value, which is the zero-reference voltage. When one 

of the "GO" lines go high, the corresponding differential pair drives a bias current, determined by 

the burstbias input, into its spike-generating circuit (the current labelled Ibu in Figure 2.9). 

where 

B(t) = J(Vin - Vbi) 

-yeKx 

f( x) = eKx + 1 

vbi = vbi(o) + fot B(t)dt 

(2.5) 

(2.6) 

(2.7) 
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Figure 2.7: The eye position, burst unit, neural integrator output, and motor unit spike trains during 
a small saccade. The initial eye position is off-center with the neural integrator providing the tonic 
holding activity. All three spike trains are digital outputs (0 to 5 volts). Note that only the motor 
unit output (C) is used externally. The small oscillation seen in the eye position trace is due to the 
pulse-frequency modulation technique used to drive the eye. 

The output of the spiking unit is sent back to the burst integrator as well as to the neural integrator 

and motor stages. The pulses generated by the spiking unit are converted to current pulses which 

are then integrated. As the burst integrator is driven towards Vin, the differential pair supplying 

the spiking unit reduces its current and the spike frequency drops. If the initial difference in voltage 

between Vin and Vbi is larger than 200 m V, the differential pair is saturated and supplies its 

maximum current. When Vbi equals Vin (the state in which the burst is shut down by the control 

circuitry) the differential pair supplies half of its maximum current. Figure 2.10 shows the simulated 

burst current (Ibu) vs. time for six different saccades. Figures 2. 7 and 2.12 both show this decrease 

in firing rate. This arrangement creates increasing spike frequencies with increasing amplitude 

saccades, with the frequency saturating as Vin exceeds 200 mV. This is ultimately reflected in the 

peak-velocity of the eye during saccades, increasing with amplitude until it saturates near jVin -

Vbil > 200 mV. (See Figure 2.14.) 

Experiments by Nichols and Sparks (1995) support the resettable-integrator model by 'demon­

strating the effect of triggering two saccades in quick succession such that the burst integrator does 

not have sufficient time to completely reset. In their experiments, the integrator was shown to grad­

ually reset with a time-constant of about 250 milliseconds. Figure 2.12 shows a similar experiment 
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Figure 2.8: Logic circuitry for controlling the operation of the burst generator. Before a saccade, 
the burst integrator (Vbi) is reset to the reference voltage and the comparator uses the initial motor 
error (Vin) to determine whether a leftward or rightward saccade is required. The latch circuit, 
constructed from a pair of current-limited inverters, is initially set with the output logic-low. When 
the trigger signal goes low, the latch becomes active and t he burst-integrator reset line goes low. One 
of the "GO" lines is active and the burst proceeds, driving Vbi towards Vin. When the comparator 
crosses zero and the output flips state, the zero-crossing detector circuit drives the latch to the "off" 
state. This occurs as the comparator's output voltage passes through the mid-range of the inverter, 
drawing a large current through the p-type mirror, activating the n-type transistor, and resetting 
the latch. 

with the analog V1SI burst generator. 

Figure 2.11 shows the neural integrator circuit . The two inputs to the circuit are the digital 

signals in-Rand in-1, which are the spike trains from the burst generator circuit . . The spikes from 

in-1 increase the integrator value and the spikes from in-R decrease the integrator value. The input 

spike trains are converted to current pulses by the transistors biased by voltages synR and syn1. The 

remainder of the circuit linearly converts this analog voltage into two currents which drive the left 

and right spike generator circuits. This function is performed by a population of differential pairs 

comparing the neural integrator voltage (Vni) with the local tap voltages along a biased, resistive 

line. If Vni is at the voltage midway between Vres-high and Vres-low, both currents are zero. If Vni 

rises, the differential pairs in the upper half sequentially turn on and saturate, adding their currents 

together. This recruitment of units generates a staircase function of current if the Vres-high and 

Vres-low voltages are set too far apart, but more modest settings of Vres-high and Vres-low generate 

a more linearly changing current as a function of Vni. As the current increases, the output spiking 
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Figure 2.9: Circuitry of the resettable-integrator burst generator. 

unit increases its firing frequency. Note that at high firing rates where the duty cycle approaches 

50%, the pulse width begins increasing, but the effective duty cycle continues to rise linearly until 

the duty cycle reaches 100%. Not shown are several circuits used to reset the neural integrator 

voltage and to keep the integrator voltage between user-definable upper and lower limits. 

The burst and neural integrator digital outputs are connected to the motor output units by a 

pair of transistors, similar to t he inputs to the neural integrator circuit, one acting as a switch for 

a current defined by the other, converting the digital voltage pulse trains into current pulse trains. 

The transistors are biased such that each input spike triggers an output spike from the motor unit . 

2.2.1 System Integration 

By connecting the burst generator output to the oculomotor plant, saccadic eye movements were · 

generated. Figure 2.13 shows an overlay of 20 saccadic trajectories. Figure 2.14 shows the peak 

velocity of these 20 saccades as a function of the input command. Similar to the peak-velocity 

vs. amplitude relationship in primate saccades, the peak velocity increases for increasing saccade 

amplitude and then saturates. As the peak velocity of the saccades saturate, the duration of the 

saccades increase linearly with amplitude. These characteristics are qualitatively consistent with 

primate saccades (Becker, 1989). 

Careful tuning is necessary to match the relative strengths of the burst component and neu-



Figure 2.10: Circuit simulation of the burst current for 6 different saccade amplitudes. Using the 
circuit in Figure 2.9, the output current which is used to drive the burst neuron circuit is shown 
for 6 different Vin values. Vbi is initially reset to 2.0 volts. Note that with increasing saccade 
amplitudes, the initial burst current increases and then saturates. The burst current is converted to 
burst frequency by the burst neuron and then to eye velocity by the oculomotor plant. 

ral integrator component in the motor output. While the data shown here were manually-tuned, 

Chapter 5 presents an example of self-adaptation possible within this system. 
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Figure 2.11: The neural integrator circuit consists of two pulse inputs, in-L and in-R, which generate 
current pulses to increase or decrease the neural integrator voltage Vni. Vni is linearly converted 
to current via a population of differential pairs which are sequentially turned on such that their 
output currents add together. The act ual circuit contains ten differential pairs for each direction. 
PW controls the pulse width of the neural integator output pulses. 

3.0 10 

Burst Integrator 
2.8 Voltage 

8 
<l) 

2.6 01) 
o:s 

-=§ 6 "S > 2.4 .... .& 
~ 

;:s 
0 .... ·a 01) 

2.2 4 <l) 

.s ~ 

~ 
t; 

2.0 Burst Unit !:3 
:t:l Spike Train 2 ~ 
<l) 
Vl 

~ 1.8 

0 
1.6 

1.4 -2 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

time (sec) 

Figure 2.12: Due to the reset latency of the burst integrator (upper trace), burst commands issued 
before the integrator has fully reset result in reduced amplitude saccades which vary systematically 
with command latency. 
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F igure 2.13: Angular eye position vs. time for 20 different saccades triggered from t he center 
position. T he differential-inputs were swept uniformly for different saccade amplitudes from leftward 
to rightward. Peak angular velocity achieved for the approximately 44 degree saccade to the left was 
approximately 450 degrees per second. Peak velocities of up to 870 degrees/sec have been recorded 
on this system with different parameter settings than used here. The small oscillations in t he eye 
position are due to the discrete pulses used to drive the eye motors; at rest, the pulses are at their 
lowest frequency and thus most visible. 
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were computed by performing a least-squares fit to the center region of the saccade trace. The input 
voltage of 2.0 is the internal voltage reference for zero amplit ude saccades. 
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Figure 2.15: Plot of the peak velocity vs. saccade amplitude for human saccades. The different plots 
are different subjects. (Modified from Becker , 1989) 
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2.3 Visually-Guided Saccades 

The superior colliculus, (SC) located on the dorsal surface of the midbrain, is a key area in the 

behavioral orientation system of mammals. The superficial layers have a topographic map of visual 

space and the deeper layers contain a motor map of saccadic vectors. Microstimulation in this 

area initiates saccades whose metrics are related to the location stimulated. During saccades, a 

large region of the superior colliculus is active; the activity is centered such that the average of 

the saccade vectors for each active cell generates the correct saccade. This type of representation 

is known as population coding. In addition, many neurons in the deeper layers of the superior 

colliculus are multisensory and will generate saccades to auditory and somatosensory targets as well 

as visual targets . 

2.3.1 The Change-Detection Chip 

In order to trigger saccades to visual stimuli, a temporally-sensitive vision chip was designed to model 

the visually-sensitive, deep-layer neurons of the primate superior colliculus (Sparks and Hartwich­

Young, 1989). While it is clear that the superior colliculus performs a multitude of integrative 

functions between sensory modalities and attentional processes, the initial model of the SC simply 

computes the centroid of activity from the population of active photoreceptors. 

Figure 2.16 shows the circuit for one cell in the one-dimensional array. Each cell has an adaptive 

photoreceptor circuit (Delbriick, 1989) which moves its operating point to remain sensitive to small­

amplitude temporal changes in intensity. The photoreceptor adapts rapidly (milliseconds) for large 

amplitude swings and slowly (seconds) for small amplitude swings. The temporal-derivative of the 

photoreceptor voltage is passed through a full-wave rectifying circuit to detect changes in image 

intensity. The output drives a centroid circuit (DeWeerth, 1992) to output a voltage unique to each 

pixel position. When a group of pixels are activated, as expected with any realistic stimulus, the 

output voltage becomes a weighted-average of the different pixels' position, where the weighting 

is given by the amplitude of the temporal-derivative. Figure 2.17 shows the output of circuit in 

response to a flashed LED at different angular positions in front of t he chip. 

This temporal-derivative photoreceptor array has been mounted on the oculomotor system to 

drive saccades. Since the resistive line providing the centroid circuit with local reference voltages is 

linear, the mapping between retinal positions and motor commands is linear. Chapter 5 describes 

a learning system using this triggering circuit in which non-linear mappings can be trained. A 

close-up photograph of the photoreceptor array mounted on the eye movement system is shown in 

Figure 2.18. 
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Figure 2.16: Schematic of the temporal-derivative photoreceptor cell. On the far left , the adaptive 
photoreceptor circuit converts photodiode current to an output voltage, Vphoto. The rectifying 
bump circuit compares Vphoto with the lowpassed version of Vphoto. The circuit generates zero 
current when the two inputs are the same and increasing currents as the difference in the inputs 
increase. The centroid circuit uses the input current to drive the motor command voltage onto the 
output line. 
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Figure 2.17: Centroid output voltage as a funct.ion stimulus angle. A red LED was flashed at different 
angles in the field of view and the centroid output voltage was sampled 1 msec after stimulus onset 
to account for capacitive delays. 
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Figure 2.18: Photoreceptor array mounted on the saccadic eye movement system. Potentiometers 
for setting various chip parameters are visible on the board next to the photoreceptor chip. Note: 
only the pulleys mounted on the motor shafts are visible on the box. The motor casings are inside 
the box. 
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Chapter 3 Auditory Localization 

While the visual localization system described in Chapter 2 enables a creature to detect poten­

tial predators or prey efficiently within the field of view, many realistic environmental conditions 

can confound this ability. The visual sense is most useful during the day, whereas the auditory 

localization system is perhaps most useful at night. When vision becoll).eS ineffective due to dark­

ness, camouflage, or a limited field of view, the auditory localization system can continue to locate 

potential predators or prey, albeit at lower resolution. Barn owls, dolphins, humans, and many 

echo-locating bats are notable examples of creatures that can successfully use auditory cues to lo­

cate sound sources quite accurately. While most birds can resolve the location of sounds to only 10 

to 20 degrees, the barn owl is able to orient to sound sources with an accuracy of 1 to 2 degrees 

which is comparable with humans (Dusenbery, 1992). Neurophysiologically, auditory localization 

has been studied perhaps most extensively in barn owls. 

There are two main acoustic cues for localizing sounds: interaural intensity differences (liD) 

at higher frequencies and interaural time-of-arrival differences (ITD) at lower frequencies (see Fig­

ure 3.1). For the measurement of lTD, a neural delay-line architecture first proposed by Jeffress 

(1948) has been shown to exist in the barn owl auditory localization system (Konishi, 1986). In 

addition, a topographic direction map of auditory space has been mapped in the inferior colliculus 

(IC). 

In comparison to the barn owl, the neurophysiology of auditory localization in primates is not 

as well understood and a clear map of auditory space does not appear to be present in the inferior 

colliculus as it is in the owl. However, like the owl, auditory localization information is combined 

with visual information at the level of intermediate and deep layers of the superior colliculus. For 

primates, there is growing evidence that cortical auditory regions may hold the topographic map of 

auditory space (Groh and Sparks, 1992). 

In primates, where much of the early visual and oculomotor system is based in retinotopic 

coordinates, any information in head-coordinates must ultimately be transformed before it can be 

used. Several models of coordinate transformation have been proposed for visual information (e.g. , 

Zipser and Andersen, 1988; Krommenhoek et al., 1993) and for auditory information (Groh and 

Sparks, 1992) which can be used for this purpose. 

This chapter describes an auditory localization system based on a subset of the analog VLSI 

modelling work of Lazzaro (1990) which has been extended to include a transformation of auditory 

target information from head coordinates into retinal coordinates. The system is then used to 
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Figure 3.1: Angular localization of sound sources in the horizontal plane can be estimated by 
measuring the difference in arrival times of the acoustic waveforms to the two ears. 

provide audition-based, target information to the analog VLSI-based saccadic eye movement system 

described earlier in Chapter 2 for multimodal operation. 

3.1 The Localization System 

The localization system consists of an analog preprocessing stage and an analog VLSI-based local­

ization system (Figure 3.3). The discrete-component, analog preprocessing of the system consists of 

three basic components, the microphones, the filter stage, and the thresholded, zero-crossing stage. 

Two microphones are placed with their centers about 2 inches apart. For any given time difference 

in arrival of acoustic stimuli, there are many possible locations from which the sound could have 

originated. These points describe a hyperbola with the two microphones as the two foci. If the sound 

source is distant enough, we can estimate t he angle since the hyperbola approaches an asymptote. In 

contrast to the full spectrum cochlear model used by Lazzaro, the current system operates on a single 

frequency and the inter-microphone distance has been chosen to be just under one wavelength apart 

at the filter frequency. The filter frequency chosen was 3.2 kHz because the author's finger snap, 

used extensively during development, contained a large component at that frequency. Figure 3.4 

shows examples of the delay in the filtered waveforms. The next step in the computation .consists 

of triggering a digital pulse at the moment of zero-crossing if the acoustic signal is large enough 

(See Figure 3.5). The circuit schematics of the preprocessing used in this system are described in 

Appendix B. 
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Figure 3.2: From J effress (1947): Hypothetical mid-brain mechanism for the localization of low­
frequency tones. By using t he slow rate of conduction of small nerve fibers, a difference in time can 
be represented as a difference in space. If impulses arrive at the left and right auditory tracts at t he 
same moment in time, they will arrive at X andY respectively. Traveling further , they arrive at t he 
same moment at the neuron which sends out tertiary fiber #4, but arrive non-coincidentally at all 
other neurons. If t he neurons require coincident stimulation from both fibers , then only neuron #4 
will be active. Differences in impulse arrival times will selectively stimulate different neurons. 

3.1.1 Phase Detection and Coordinate Transform 

The analog VLSI component of the system consists of two axon delay lines (Mead, 1989) which 

propagate the left and right microphone pulse signals in opposing direct ions in order to compute the 

cross correlation (see Figure 3.6.) The location of the peak in t his correlation technique represents 

the relative phase of the two signals. This technique is described in more detail and with more 

biological justification by Lazzaro (1990) . The current implementation contains 15 axon circuits in 

each delay line. This is shown in Figure 3.6. At each position in the correlation delay. line are logical 

AND circuits which output a logic one when there are two active axon units at that location. Since 

these units only turn on for specific time delays, they define auditory "receptive fields." The output 

of t his subsystem are 15 digital lines which are passed on in par allel to t he coordinate transform 

circuitry. 

For the one-dimensional case described in this project, t he appropriate transform from head to 

retinal coordinates is a rotation which subtracts t he eye posit ion . T he eye position information 
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Figure 3.3: Block diagram of the auditory localization system. The analog front end consists of 
external discrete analog electronics. 

on the chip is represented as a voltage which activates one of the eye position units. The spatial 

pattern of activation from the auditory output units is then "steered" .to the output stage with the 

appropriate shift (See Figure 3. 7). This is similar to a shift scheme proposed by Pitts and McCulloch 

(1947) for obtaining pitch invariance for chord recognition. The eye position units are constructed 

from an array of "bump" circuits (Delbriick, 1991) which compare the eye position voltage with its 

local voltage reference and output a current when the two voltages are similar. The two-dimensional 

array of intermediate units take the digital signal from the auditory units and switch the "bump" 

currents onto the output lines. The output current lines drive the inputs of a centroid circuit. 

This implementation of the shift can be viewed as a basis function approach where a population 

of intermediate units respond to limited circular regions in the two-dimensional space of horizontal 

eye position and sound source azimuth (head-coordinates). The output units integrate the outputs 

of only those intermediate units which represent the same retinal location. It should be noted that 

this coordinate transformation is closely related to the "dendrite model" proposed for the projection 

of cortical auditory information to the deep SC by Groh and Sparks (1992) and to the basis function 

approach of Pouget and Sejnowski (1995). 

The final output stage converts this spatial array of current-carrying lines into a single output 

voltage which represents the centroid of the stimulus in retinal coordinates. This centroid circuit 

(DeWeerth, 1991) is the same circuit used in Chapter 2 for the model of visual processing in the 

superior colliculus. 
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Figure 3.4: Bandpass filtered (3.2 kHz) signals of the left and right microphones from three different 
angles. 
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Figure 3.5: Example of output pulses from the external circuitry. Zero phase is chosen to be the 
positive-slope zero-crossing. Top: Digital pulses are generated at the time of zero phase for signals 
whose derivative is larger than a preset threshold. Bottom: 3.2 kHz Bandpass filtered signal for a 
finger snap. 
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Figure 3.6: Diagram of the double axon delay line which accepts digital spikes on the left and right 
inputs and propagates them across the array. Whenever two spikes meet, a pulse is generated on the 
output AND units. The position of the activated AND circuit indicates the relative time of arrival 
of the left and right inputs. NOTE: the actual circuit contains 15 axon units. 
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Figure 3.7: (a) Coordinate Transform Block Diagram: The cross-bar switching network shifts infor­
maton coming from the axon delay-line correlator left or right, dependent upon which eye-position­
tuned bump circuit is active. (b) Bump circuits on the right-hand edge of the array, each t uned for 
different eye positions, encode currents along its row which are switched onto the diagonal summing 
wire only at columns receiving correlation pulses from the delay line above. 
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3.1 Output vs. Arrival Time Difference (3 eye positions) 
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Figure 3.8: Chip output vs. input pulse timing: The chip was driven with a signal generator and the 
output voltage was plotted for three different eye position voltages. Due to the discretized nature 
of the axon, there are only 15 axon locations at which pulses can meet. This creates the staircase 
response. 

3 .2 Results and Conclusions 

Figure 3.8 shows the chip's output voltage as a function of the inter-pulse time interval for three 

different eye positions (left, center, and right) . This data was taken using artificially-generated 

pulses to test the chip's performance under ideal conditions. Figure 3.9 shows the performance of 

the system using real signals (a signal generator driving a speaker which was moved to different 

angles) processed through the microphones. The full system's output voltage are again shown for 

three different eye positions. To test the linearity of the coordinate transform, a fixed temporal 

difference, generated by a pulse-generator, was fed to the chip and the eye position voltage was 

varied. The output voltage was recorded for two different lTD values (Figure 3.10) . The output is 

roughly linear with both azimuth and eye position (Figure 3.10). 

The auditory localization system described here is currently in use with the analog VLSI-based 

model of the primate saccadic system to expand its operation into the auditory domain. The output 

voltage of the centroid circuit provides the burst generator input and a logical OR is performed on 

the two thresholded zero-crossing signals to provide the saccadic t rigger. 

By using an analog multiplexing chip, the burst generator chip operates on either the · visual 

target, the auditory target, or the average position of the two. One of these three options is chosen 

by the state of the visual and auditory trigger inputs. Figure 3.11 shows a photo of the ·fully­

integrated system. 

While this particular implementation has focused on the integration of acoustic information with 

the saccadic system, this project demonstrates the practicality of neurobiologically-plausible models 
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3.6 Localization Output vs. Sound Source Azimuth 
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Figure 3.9: Performance of the full system on continuous sinusoidal input delivered by a speaker 
from different angles. Note that 90 degrees denotes the center position. Output plots for three 
different eye positions are shown. 

of coordinate transform and multi-modal sensory convergence. 
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Figure 3.10: Coordinate 'Iransform Linearity: The linearity of the shifting network was tested by 
using a fixed lTD input and sweeping the eye-position input voltage. Sweeps for two different lTD 
values are shown. 

Figure 3.11: Photo of the visually and acoustically-triggered saccadic system. 
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Chapter 4 Motion Chips 

Image motion is one of the most directly useful visual features in our environment. From the 

humblest insect to the not-so-humble human, visual motion detection systems are used to provide 

information about how our environment is changing around us , sometimes in response to our own 

actions and sometimes by the actions of other objects. We use it for detection of moving objects, 

guidance of our movements and stabilization, and even for discerning form and distance. Another 

use which is addressed in Chapter 5 is the use of motion as a training signal for learning motor 

control parameters. 

While visual motion detection in biological systems is ubiquitous, successful analog VLSI imple­

mentations are not. Many attempts have been made to build them into integrated, smart sensors; 

only a few integrated motion detection chips have been generally successful. (For a full review, see 

Sarpeshkar et al. , 1996.) 

Most proposed short-range intensity-based motion detection schemes fall into t wo major cate­

gories: gradient models and correlation models. In gradient models, computation begins from local 

image qualities such as spatial gradients and temporal derivatives that can be vulnerable to noise 

or limited resolution. Correlation models, on the other hand, use a filtered version of the input in­

tensity multiplied with the temporally delayed and filtered version of the intensity at a neighboring 

receptor. Many biological motion detection systems have been shown to use some type of correlation 

model (Grzywacz and Poggio, 1990). 

Both gradient models and correlation models for computing short-range visual motion have been 

explored in analog VLSI technology with many designs focused upon computing the velocity at each 

pixel (Tanner and Mead, 1986; Sarpeshkar et al., 1993; Etienne-Cummings et al., 1993; Kramer et 

al., 1995; Kramer, 1996; Arreguit et al. , 1996; Arias et al., 1996). In certain applications, however, 

the direction of the motion alone can be used, often resulting in a simpler circuit (Andreou et al., 

1991; Benson and Delbriick, 1992; Delbriick, 1993; Moore and Koch, 1991). 

In this chapter, three different motion circuits are presented: a pulse-correlation model, and 

two similar image-gradient models. The pulse-correlation method detects the time-of-passage of an 

image feature (edges) from one pixel to the next . The two gradient circuits utilize image intensity . 

gradients and differ mainly in their implementation of a sensitive, direction-selective, motion model. 
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4.1 A Delay-Line Based Motion Chip 

Inspired by biological motion detection models in the rabbit (Barlow and Levick, 1965) and by a 

computational architecture found in early audition (Konishi, 1986), a full-field motion detection chip 

has been designed that contains a large array of velocity-tuned "cells" that correlate two temporal 

events, using a delay-line structure. The chip contains a linear photoreceptor array with 28 elements 

and reports the dominant velocity detected in the field of view. 

4.1.1 System Architecture 

Figure 4.1 shows the block diagram of the chip. The input to the chip is a real-world image, focused 

directly onto the silicon via a lens mounted over the chip. The one-dimensional array of on-chip 

hysteretic photoreceptors (Delbriick and Mead, 1989) receives the light and reports rapid changes 

in the image intensity for both large and small changes. Each photoreceptor is connected to a half­

wave rectifying neuron circuit (Lazzaro and Mead, 1989) that fires a single pulse of constant voltage 

amplitude and duration when it receives a quickly rising (but not falling) light-intensity signal. 

This rising light intensity signal is interpreted to be a moving edge in the image passing over the 

photoreceptor. It is this signal that is the "feature" to be correlated. Note that the choice of the 

rising or falling intensity as a feature, from an algorithmic point of view, is arbitrary. Each neuron 

circuit is in turn connected to an axon circuit (Mead, 1989) that propagates the pulse down its 

length. By orienting the axons in alternating directions, as shown in Figure 4.1, any two adjacent 

receptors will generate pulses that will "race" toward each other and meet at some point along the 

axon delay-line. Correlators between the axons detect where pulses pass each other, indicating the 

detection of a specific time difference. The width of the pulses in the axon circuits is adjustable 

and determines the axon's speed (i.e., detectable velocity range). From the summing of "votes" for 

different velocities from correlators across the entire chip, a winner-take-all circuit (Lazzaro et al., 

1989) determines the velocity. 

4.1.2 Reading Between the Lines 

The basic signal quantity that we are measuring is the time a "feature" takes to travel from one 

photoreceptor to one of its neighbors. By placing two delay lines in parallel that propagate signals 

in opposing directions, a temporal difference in signal start times from opposite ends will manifest 

itself as a difference in the location where the two signals will meet. Between the axons, correlation 

units perform a logical AND with the axon signals on both sides. If pulses start down adjacent axons 

with zero difference in start times (i.e., infinite velocity), they will meet in the center and activate 

a correlator in the center of the axon. If the time difference is small (i.e., the velocity is large), 

correlations occur near the center. As the time difference increases, correlations occur further out 



42 

Time-Multiplexing Scanner 

Figure 4.1: Block diagram of t he chip, showing information flow from the photoreceptors (P), to the 
time-multiplexed winner-take-all output . Rising light signals are converted to pulses t hat propagate 
down the axons. Correlators are drawn as circles and axons are piecewise denoted by D.t boxes. See 
the text for explanation. 

toward the edges. The two halves of the axon with respect to the center represent different directions 

of motion. When a single stimulus (e.g., a step edge) is passed over t he length of the photoreceptor 

array with a constant velocity, a specific subset of correlators will be activated that all represent the 

same velocity. A current summing line is connected to each of t hese correlators which is passed to a 

winner-take-all circuit. The winner of the winner-take-all computation corresponds to the line that 

is receiving t he largest number of correlation inputs. The output of the winner-take-all is scanned off 

the chip using an external input clock. Because t he frequency of correlation affects the confidence of 

the data, scenes that are denser in edges provide more confident data as well as a quicker response. 

4.1.3 Single Vs. Bursting Mode 

Until now, the circuit described uses a single pulse to indicate a passing edge. Due to the statistical 

nature of this system, a large number of samples are needed to make a confident statement of the 

detected time difference, or velocity. By externally increasing t he amplitude of the signal passed 

to the neuron during each event, t he neuron can fire multiple pulses in quick succession. With an 

increased number of pulses travelling down the axon, t he number of correlations increase, but with 
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a decrease in accuracy, due to the multiple incorrect correlations. The incorrect correlations are not 

random, however, but occur closely around the correct velocity. The end result is a net decrease in 

resolution in order to achieve increased confidence in the final data. 

4.1.4 Velocity Range 

The chip output is the measured time difference of two events in multiples of;, the time-constant 

of a single axon section. The time difference (measured in seconds/pixel) is translated into velocity, 

by the equation V = 1/ b.t, where V is velocity in pixels/sec and b.t can be positive or negative. 

Thus t he linear measurement of time difference gives a non-linear velocity interpretation with the 

highest resolution at the slower speeds. At the slower speeds, however, we tend to have decreased 

confidence in the data due to the relatively smaller correlation frequency. This is expected to be 

less troublesome as larger photoreceptor arrays are used. The variable velocity resolution in the 

computation is often an acceptable feature for control of robotic motion systems since h igh velocity 

motions are often ballistic or at least coarse, whereas fine control is needed at lower velocities. 

4.1.5 Performance 

The chip has 17 velocity channels, and an input array of 28 photoreceptors. The output voltages 

from the winner-take-all cir cuit are scanned out sequentially by on-chip scanners, the only clocked 

circuitry on the chip. 

In testing the chip, gratings of varying spatial frequencies and natural images from newspaper 

photos and advertisements were mounted on a rotating drum in front of the lens. Although the 

most stable data was collected using the gratings, both images sources provided satisfactory data. 

Figure 4.2 shows oscilloscope traces of scanned winner-take-all channels for 12 different negative 

and positive velocities within a specific velocity range setting. The values to the right indicate the 

approximate center of the velocity range. Figure 4.3(a) shows the winning time interval channel vs. 

actual time delay. The response is linear as expected. Figure 4.3(b) shows the data from Figure 4.3( a) 

converted to the interpreted velocity channel vs. velocity. T he horizontal bars indicate the range 

of velocity inside of which each channel responds. As described above, at t he lower velocities, 

correlations occur at a lower rate, thus some of the lowest velocity channels do not respond. By 

increasing the number of parallel photoreceptor channels, it is expected that this situation will 

improve. The circuit, currently with only eight velocity channels per direction, is able to reliably 

measure, over different parameter settings, velocities from 2.9 pixels/sec up to 50 pixels/sec. 



_jl ______ -3.7 

_JL__ -5.8 

~-7.8 
----l ...._ _____ -10 

------' .__ ____ -1 6 

Unit Position 
(a) 

-27 

44 

rL _______ _J 4.1 

fL_ ------....J 6.0 

_n_ 
___f1_ 

Unit Position 
(b) 

7.6 

9.0 

13 

22 

Figure 4.2: Winner-take-all oscilloscope traces for 12 different positive (a) and negative (b) velocities. 
The value to the right of each plot represents the approximate center of the velocity range. 
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Figure 4.3: (a) Plot of winning time interval channel vs. actual t ime delay. (b) Plot of interpreted 
velocity channel vs. velocity (same data as in (a)). 

4.2 Direction-Selective Gradient Models 

In some tasks where t he visual motion is used to determine an error signal for some adaptive 

sensorimotor control system, the direction of motion is often sufficient for guiding a learning process. 

The problem of reducing post-saccadic drift falls into this category. The particular task of correcting 

post-saccadic drift of the eyeball requires a visual motion signal that is sensitive to very low velocities 

and accurately reports the sign. The lowest detectable velocity will thus determine t he lower limit 

of correctable drift. 

If direction and sensitivity are the most important features of the motion detector required, then 

the product of the temporal derivative (It) and spatial derivative (Ix) gives an appropriate signal, 

since (for Ix =f. 0) sign( f;) = sign (It · I x ) . 

In this section, two implementations of this multiplicative computation are presented. The first 

circuit is a voltage-mode circuit which computes the product directly and the second circuit is a 
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Figure 4A: Voltage-mode circuit for computing the direction of visual motion. lout = (t emporal 
derivative) - (spatial derivative). The two t ransconductance amplifiers on the left are configured as a 
current-sense amplifier, providing t he temporal derivative w.r-t. a reference voltage. This differential 
signal is fed into the Gilbert multiplier on the right. The other differential input comes from the two 
neighboring photoreceptors to provide the spatial derivative. Biases B1 and B2 are strong while BO 
is set weakly and determines the sensitivity of the circuit. 

current-mode circuit which computes a normalized product utilizing low-offset derivative circuits. 

4.2.1 Voltage-Mode Direction Selectivity 

Similar in aim to the analog VLSI-based circuit implemented by Moore and Koch (1991) , t he result is 

an output which is Ix · It, or velocity· I;, for non-zero contrast and rigid motion in a one-dimensional 

image. Two benefits of this circuit are: 1) t he lower limit of velocity is limited by t he sensitivity 

and noise of the temporal derivative circuit, and 2) the output goes to zero as the image's spatial 

derivat ive goes to zero, thus avoiding the divide-by-zero problem in the gradient-model. 

Figure 4.4 shows t he circuit used to compute It · Ix. See t he caption for a description. A linear 

array of 20 elements has been fabricated on a TinyChip (2220ttm x 2250ttm) in a 2ttm n-well CMOS 

process through the MOSIS Service. The motion circuit width on the chip is 63 JLm per cell. 

Since the circuit reports velocity-!; the output depends on the stimulus used. Although the 

circuit computes t he direction of motion at each pixel, it is possible to integrate information from 

across the entire array to obtain a better estimate of a full-field motion stimulus such as post-saccadic 

drift. In order to quantify the performance of the circuit, the motion outputs from across the array 

were summed and compared for different speeds. Figure 4.5 shows this data for a drifting grating 

stimulus which had three full cycles visible on the array. 

There are two main problems wit h this detector: offsets and dynamic range. Offsets in the 

temporal derivative computation, generated in both amplifiers, create a non-zero output current 

even when there is no motion. The upper amplifier in the current-sense amplifier circuit nominally 
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Figure 4.5: Voltage-mode Gradient Model: Spatially-integrated motion output signal vs. stimulus 
velocity. Note that the specific value of the integrated output is also dependent on the contrast and 
spatial frequency of the stimulus. The stimulus used was a high-contrast grating which fit 3 bars 
onto the 20 pixels of the array. The lowest discriminable speed was at +1.1 pixelsjs. The vertical 
bars represent one standard deviation. 

acts as a resistor when the voltage difference between the input and the output stays within 200 

m V. If this range is exceeded, the input capacitor on the sense-amplifier is not properly held at 

the reference voltage Vref, creating a lag in the temporal derivative computation. This produces an 

incorrect direction output when the input's temporal derivative suddenly changes sign. 
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Figure 4.6: Current-mode circuit for computing the direction of visual motion. 

4.2.2 Current-Mode Direction Selectivity 

Adaptive photoreceptors (Delbriick, 1989) transduce the incoming pattern of light into an array 

of voltages. These appear in Figure 4.6 on the left side as the three voltages Vphoto(i-1, i, i+1). 

The temporal (TD) and spatial (SD) derivatives are computed from these voltages and are used to 

compute the direction of motion. In this chip, a more compact circuit than in section 4.2.1 was used 

in place of the multiplier. The direction-of-motion (DM) signal is now a normalized product of the 

two derivatives: lrW+ffnt· An example stimulus is shown in Figure 4.7. 

Figure 4.8 shows the response of a single detector to the bidirectional passage of a grating. Each 

bar generates two pulses of output indicating the direction of each edge. The fast oscillations seen 

on the peaks of each output are due to the weak 120 Hz oscillations in the incandescent light-source 

used. To test the contrast-sensitivity of the detector, gratings of different contrasts were presented 

at a fixed speed and the peak output current during a 260ms window (4 output pulses) was plotted. 

Figure 4.9 shows these results. 

As a comparison to the voltage-mode motion detector in the previous section, the output currents 

were integrated from across the entire chip and the same stimulus conditions were tested. Three 

cycles of a moving high-contrast grating were presented to the chip and the output current was 

averaged over a 500 ms. window. Figure 4.10 shows the data for the range from -6 pixels/s to 4 

pixelsfs. A close-up view of the data near zero motion reveals the system's ability to discriminate 

leftward and rightward motions from zero for velocities as slow as 0.06 pixelsfs. This motion detector 

is considerably more sensitive than the voltage-mode gradient model due to its low-offset temporal 

derivative circuit. The signal-to-noise ratio is therefore considerably better when summing the 

outputs from across the chip. It should be noted that the stimulus used is nearly optimal for this 
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Figure 4. 7: Current-mode Gradient Model: Example stimulus - Traces from top to bottom: Pho­
toreceptor voltage, absolute value of the spatial derivative, absolute value of the temporal derivative, 
and direction-of-motion. The stimulus is a high-contrast , expanding bar, which provides two edges 
moving in opposite directions. The signed, temporal and spatial derivative signals (TD+, TD-, SD+, 
SD-) are used to compute the direction-of-motion shown in the bottom trace. 

type of measurement and natural scenes would not be expected to generate such a low threshold of 

detection. Note also that at the lowest speeds tested, the adaptive photoreceptor circuit tended to 

adapt to the image, effectively reducing the contrast. 

This motion detector has proven to be quite successful in determining the direction-of-motion 

and has been integrated into the smooth pursuit system described in Chapter 6. 
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Figure 4.8: Current-mode Gradient Model: A single motion detector's response to the bi-directional 
passage of a medium-contrast grating. 
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Figure 4.9: Current-mode Gradient Model: The contrast sensitivity of t he detector was measured for 
a fixed velocity using a drift ing grating stimulus. In this detector, for a fixed velocity, t he contrast 
dependence should roughly be linear before t he spatial derivative computation saturates. 
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Figure 4.10: Current-mode Gradient Model: The full-field motion measurement was computed by 
summing the output currents from all of the motion detectors in the array. The lowest discriminable 
velocity was at 0.06 pixelsjs. At the lowest speeds, only certain velocities were obtainable due to 
the stochastic nature of the stimulus generator used. The low-offset temporal derivative circuit in 
this model has improved the signal-to-noise ratio of the motion measurement. 
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Chapter 5 Adaptive Circuits 

5.1 Introduction 

Adaptation and learning are ubiquitous in neural systems. Through repeated experience in the 

world, nearly all animals modify their behavior on the basis of some type of memory. Unlike digital 

memory, neural memory is distributed throughout the computational architecture by many different 

mechanisms and on many different time scales. Memory is found in the charge stored on a neuron's 

membrane capacitance; in the concentration of free calcium in a neuron's dendrites, soma, and 

presynaptic terminals; in the density of available neurotransmitter vesicles; and, in the morphology 

of the dendritic tree and its connections to other neurons. While the design and management of 

such an extensive network of adaptive mechanisms makes its analysis difficult, the resulting system 

is able to operate under a wide range of conditions while maintaining optimal performance. For this 

reason, how and where adaptation is used in neural systems is of great interest to both biologists 

and engineers. 

Neural systems are fast and efficient in both power and space because they use dedicated analog 

hardware which is well matched to the task. This approach, however, suffers from the vagaries of 

component mismatch and changes over time. The neuromorphic analog VLSI community has been 

able to mimic some of the power and space efficiency, but unlike the biological system, it has suffered 

from the inability to compensate for these inaccuracies with learning. 

The ability to adapt is not simply an added feature of neural systems, it is a fundamental mech­

anism which drives the development of the brain. The use or disuse of a neuron leads either to 

physical growth or degeneration of neural connectivity. The keys to understanding why neurons or­

ganize in a certain way or which features are important to the computation may lie in understanding 

the role that adaptation and learning plays in neural systems. 

From an engineering viewpoint, the analog VLSI model of the primate saccadic system described 

in previous chapters is a multi-chip system which continues to grow as we improve its capabili­

ties. The number of parameters in this model has been growing rapidly, highlighting the need for 

automatic parameter adjustment. Additionally, component mismatch and real-world nonlinearities 

which have always plagued analog VLSI processing are ripe for adaptive techniques to eliminate their 

effects on signal precision. Utilizing known neural representations and physical embodiment, our 

system is ideal for investigating the system-level effects of integrating biologically-realistic adaptation 

at multiple locations and time scales. 
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Figure 5.1: From Optican and Robinson (1980): Saccadic adaptation in the monkey GS. The effect 
of tenectomy is shown in A. The normal eye makes a 10 deg saccade to the target (dashed lines). 
The weak eye makes a hypometric saccade with postsaccadic drift. Immediately after t he patch is 
switched to cover the normal eye in B, saccades in the weak eye are still hypometric with drift and 
the monkey must make a staircase of saccades to get on target. C: effects of five days of visual 
experience with t he weak eye. The saccade in t he weak eye now is essentially accurate and without 
drift. Note also t hat in t his experiment the adaptation was expressed in both eyes because the 
normal eye was patched and did not have any visual feedback. 

The first section describes two types of adaptation seen in the primate saccadic system that have 

been implemented. In the second section, previous work on adaptation in neuromorphic analog VLSI 

systems is discussed. T he third and fourth sections describe in detail, two adaptation projects which 

address t he issues of eliminating post-saccadic drift and learning to trigger saccades accurately. 

5.1.1 Adaptation in the Primate Saccadic System 

During saccades our eyes often reach speeds up to 750 degfsec during which our visual acuity 

is severely impaired. In fact, retinal velocities exceeding even 3 degfsec can significantly degrade 

our performance. It is therefore important to minimize the time during which the eye is moving. 

While typical human saccades last between 40 msec and 150 msec, changes or damage to either 

the oculomotor plant or the underlying neural circuitry can cause significant errors in accuracy 

and eye drift following a saccade, lengthening the period of poor acuity. Changes in the optics 

can also create saccadic inaccuracies, requiring multiple saccades to acquire the target. Primates 

demonstrate an impressive ability to adapt to such physical changes and restore their original per­

formance. This chapter deals with several examples of how this adaptation might take place wit hin 

the neurobiological models we have been describing 

There have been many types of adaptive behavior identified in the primate oculomotor system 

in response to various induced deficits. For example, Optican and Robinson (1980) showed that 

weakening of the horizontal recti muscles in the rhesus monkey caused saccades which fell short and 
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Figure 5.2: From Frens and van Opstal (1994): (Left) The adaptation paradigm. While a human 
subject fixates the central position, a target appears in the periphery at Tl. The goal-directed eye 
movement serves as a trigger for the displacement of this target to position T2, 40 msec after the 
velocity of the saccade exceeds a threshold of 75 deg/sec. (Right) Gradual decrease of saccadic 
amplitude. Typical eye position traces measured ·during the gain-shortening paradigm. Numbers 
indicate trial number in which the saccades were made. 

exhibited post-saccadic drift of the eyeball (See Figure 5.1). Recovery from this type of damage, 

which affects all saccades in a given direction, requires about 3-5 days of practice with visual feedback. 

In contrast to this long adaptation period, which involves hundreds of thousands of saccades, 

experiments in which saccadic targets within one part of the visual field are moved a short distance 

during the saccade show that adaptation to this type of perturbation can occur within several hun­

dreds of trials. See Figure 5.2. This type of visually-induced modification of the saccade amplitude 

is known as short-term adaptation. Further, experiments by Frens and van Opstal (1994) show this 

adaptation to be confined to a limited range of saccade vectors around the adaptation target. 

5 .1.2 Adaptation in Neuromorphic Analog VLSI 

Previous work on analog VLSI modeling of neural adaptation has focused on the use of integrated 

capacitors due to their ease of use. The junction-leakage from the connected circuitry, however, is 

significant and limits its retention time to a few seconds, particularly for analog parameters. Models 

of spike rate adaptation in neurons (Mahowald and Douglas, 1995; Boahen, 1996; Lazzaro, 1992; 

Lazzaro et al., 1991), photoreceptor adaptation (Mahowald, 1992; Delbriick and Mead, 1989), time­

constant adaptation (Liu and Mead, 1996), and habituation (Wang and Akers, 1995) have all been 

modeled using capacitors for analog memory. While integrated capacitors are capable of holding 

their charge for many seconds, adaptation on longer timescales (minutes and upwards) requires the 

use of a longer term analog memory. 

Floating-gate structures in VLSI (aMOS transistor gate completely insulated from the circuit by 
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silicon dioxide) provide an extremely effective charge storage technique with retention measured in 

years. Until recently, however, the use of floating-gates required the use of either ultra-violet (UV) 

radiation (Glasser, 1985; Mead, 1989; Kerns, 1993) or bidirectional tunneling processes (Carley, 

1989; Lande et al. , 1996) to modify the charge on the floating node, both of which have significant 

drawbacks, impeding their widespread use. The recent development of a complementary strategy 

of tunneling and hot-electron injection (Hasler et a!., 1995; Diorio et a!., 1995) in a commercially­

available BiCMOS process has alleviated some of these difficulties. In addition, adding and removing 

electrons from the floating-gate can be performed at extremely low rates, making it possible to create 

very long time constants with small capacitances. 

One of the first system-level uses of the floating-gate structure for analog parameter storage in 

a neuromorphic design was in the adaptive retina (Mead, 1989) where the goal was offset removal. 

This system used UV light to adapt offsets during an explicit calibration step. Since then, a number 

of researchers have also used the floating-gate structures to correct for fixed pattern noise in imaging 

chips (Devos eta!., 1993). Lazzaro eta!. (1994) used floating-gate circuits to store analog parameters 

for his cochlear modeling. Parameters were loaded onto the chip via a computer. In addition, many 

artificial neural network chips have also been constructed which utilize the floating-gate storage 

technique for analog weight storage (Castro et al. , 1993; Kramer et al., 1996; Berg et al., 1996) . 

More recently, Hasler eta!., 1995 have demonstrated arrays of very small, single-transistor Hebbian­

learning synapse circuits. 

5.2 Reduction of Post-saccadic Drift 

In the biological oculomotor plant, the eye is suspended in the eye socket both by suspensory 

tissues and the eye muscles which create an overdamped spring-mass system. In order to hold 

the eyes off-center, it is therefore necessary to provide a sustained pulling force on the muscles 

to counter the elastic properties of the muscles which would passively return them to the center 

position. In addition, quick eye movements require a large, transient, driving force to overcome the 

long time-constant of the system due to the viscosity in both the muscles and the eye socket. 

Since the sustained (or tonic) component of the command determines the final eye position, the 

ideal transient (or burst) component should bring the eye to exactly that position by the end of 

the burst. Mismatch of the burst and tonic components leads to either an onwards or backwards 

drift following an undershoot or overshoot of the final eye position. This motion is known as post­

saccadic drift. Studies in both humans and monkeys show that these deficits can be compensated 

for by some type of learning process which have time constants on the order of 1.5 days. Ablation 

studies ( Optican and Robinson, 1980) have further shown that control of the burst and tonic gains is 

independent and that their control depends on different areas of the cerebellum. In addition, retinal 
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Figure 5.3: System block diagram of the burst generator, neural integrator, motor unit, and pause 
units. This system generates the motor signals used to drive the motors in the model oculomotor 
plant. Initially, the neural integrator is providing a tonic signal to the motor unit to hold t he eye in 
its starting posit ion. The initial motor error input to the system (far left) is applied and a trigger 
signal disinhibits the burst unit via the pause unit. The burst integrator activity (starting from 
zero) rises and is compared against the input activity to drive the burst unit. When the difference 
goes to zero, t he pause unit shuts down the burst. Downstream, the burst unit provides the burst 
component and is also integrated via the neural integrator to provide the tonic component. These 
two signals are combined at the input to the motor unit. The parameter being trained in this system 
is burst gain. The burst gain is the weighting between the (burst + smooth pursuit) output and the 
input to the motor unit. The gain parameter is stored in the floating-gate device. 

slip was shown to be necessary and sufficient to elicit these adaptive changes (Optican and Miles, 

1985) . 

This section describes a system which reduces the post-saccadic drift in the hardware model 

based on detected post-saccadic visual motion. In the first section, the floating-gate device and 

how it is used for on-chip storage in the burst generator model is presented. The second section 

demonstrates the system's capability of improving its performance through repeated trials. 

5.2.1 The Resettable-Integrator Burst Generator Chip 

As described earlier in Chapter 2, the burst generator model used in this system (See Figure 5.3) is a 

double integrator model based on the work by Jurgens et al. (1981), MacKenzie and Lisberger (1986), 

and Nichols and Sparks (1995) t hat uses initial motor error as input to the system and requires a 

reset period following the saccade. The basic operation of the model is described in Figure 5.3. The 

saccadic motor command consists of the tonic component (that determines the final eye position) 

and t he burst component (that provides the initial acceleration). These two components must be 

balanced to provide t he shortest duration eye movement. Figure 5.4 shows eye movement traces for 

three example saccades on the analog VLSI system with different burst gains. 

5.2.2 Non-volatile Analog Voltage Storage 

In this system, the burst gain parameter (the connection weight between the burst unit and the 

motor unit) is stored in a floating-gate device acting as a current r eference (Hasler et al., 1995). The 
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Figure 5.4: Eye movement t races for three small saccades with the same input command and tonic 
component gain but with different hand-tuned burst component gains. The upper trace shows an 
example of an overshoot condition caused by excessive gain and the lower trace shows an example 
of an undershoot condition caused by insufficient gain. Note that the overshoot case generates a 
backward post-saccadic drift and the undershoot case generates an onward post-saccadic drift. The 
middle trace is an example of a properly set gain. This st ep shape is what the adaptation system is 
trying to achieve. 

storage circuit used in this system is shown in Figure 5.5. This device utilizes high-voltage tunneling 

in order to remove electrons from the floating node and hot-electron injection to put electrons onto 

the floating node. The tunneling occurs through a high-quality gate oxide ( ~ 420 A thickness) 

between a well-region and the Poly! layer floating node. Usable tunneling currents for this circuit 

occur with approximately 27 volts across these two nodes. The hot-electron injection process is 

performed using a p-base substrate transistor. This heavily doped n-type MOSFET has a threshold 

voltage of approximately 6 volts, allowing the gate voltage to be higher than the drain voltage 

for subthreshold current levels. As the drain voltage is increased, the field in the drain-t o-channel 

depletion layer increases, accelerating more electrons in t he channel to the required 3.1 eV energy 

level necessary to jump through the gate oxide onto t he gate. 

The tunneling was operated by driving the high-voltage node from 25 volts up to 33 volts, 

generating a tiny pulse of current across the tunneling oxide. The injection was controlled by moving 

t he source-follower transistor gate from 1.50 volts up to 4.28 volts. T he source-follower technique 

allows cont rol over the drain voltage (VD) of the inject ion transistor which, in turn, modulates the 

rate of injection. The standard pulse length of both t he injection and tunneling processes was 10 

seconds. Adaptation was performed between saccades, following evaluation of the motion circuit . 

5.2.3 Training Results 

To demonstrate the learning, the direction-selective motion detector chip described in Chapter 4, 
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Figure 5.5: The floating-gate circuit used for storage of an analog current reference. The floating 
node potential is raised by tunneling electrons off of the node with high voltage and lowered by 
injecting electrons onto the node via the pbase injection transistor. The hot-electron injection 
process is modulated by controlling the drain voltage (VD) with a source-follower transistor. The 
current flowing through the mirror is used as the output. 

section 4.2.1, was mounted on the one-dimensional eye and motion information was read from the 

chip 100 msec after the end of the saccadic burst activity. The burst activity period (lower trace 

in Figures 5.6 and 5.7) is detected by reading a signal representing the suppression of the pause 

circuitry on the burst generator chip. A standard leftward saccade amplitude of about 23 degrees 

was programmed into the burst generator input and a saccade was repeatedly triggered. The motion 

sensor was facing a stationary stripe stimulus which would elicit a motion signal during and after 

the saccade burst. 

The direction-of-motion information was summed from across the motion detector array and a 

simple, fixed-learning-rate algorithm was used to determine which direction to change the gain. One 

hundred msec after each trial saccade, the motion detector output current was compared against two 

threshold values. If the output value was greater than the rightward motion threshold, indicating 

overshoot, a unit hot-electron injection pulse was issued which would reduce the floating-gate voltage 

and thus reduce the burst gain. If the integrated value was less than the leftward motion threshold, 

indicating undershoot, a unit tunneling pulse was issued which would increase the floating-gate 

voltage and thus increase the pulse gain. At present, the activation of both tunneling and injection 

pulses is performed manually; t he criterion for the direction of t he adaptation pulse is strictly based 

on the scalar value reported by the motion detection chip and could be automated. 

Figure 5.6 shows an experiment where the pulse gain was initialized to a value near zero. Within 

eight trials (not all traces are shown), the pulse gain was raised sufficiently to eliminate the post­

saccadic drift. Figure 5. 7 shows a similar experiment where the pulse gain was initialized to a large 

value. In this case, 41 trials (not all traces are shown) were required before the gain was reduced 

sufficiently to eliminate the post-saccadic drift. The difference in learning rates is not important 

and can easily be balanced. 
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Figure 5.6: Saccade trajectories showing the reduction of an onward post-saccadic drift by increasing 
the burst gain via a t unneling process. See text for description. The lower digital trace indicates 
t he t ime of burst unit activity. The arrow indicates the progression from early saccade trials to later 
saccade trials where performance has improved. 

5.3 Learning Saccadic Accuracy 

In contrast to the systematic changes in saccadic accuracy across the ent ire visual field discussed 

above, position-specific offsets can also be tested. In these experiments, the target is moved during 

the subjects' saccadic eye movement. In humans, Frens and van Opstal (1994) have shown that the 

adaptation timecourse to learn the offset is short (requiring only a few hundred presentations) and 

that the adaptation is confined to a limited range of saccade vectors around the target. This type 

of learning can be explained by a mapping similar to that of a look-up table . 

5.3.1 Vector-Specific Adaptation 

In Chapter 2, visual stimuli were mapped linearly from pixel position to motor command in a func­

tional model of the deep layers of superior colliculus. Any non-linearities in the optics, photoreceptor 

triggering circuit, burst generator , or motor plant would create errors in proper programming of the 

saccade. A modified visual-triggering circuit from Chapter 2 has been used to use the output of a 

floating-gate circuit to determine the proper motor command for each pixel. 

As shown in Figure 5.8, an array of adaptive photoreceptor circuits (P) are used to drive a 

temporal-derivative circuit (TD) , activating circuits where the image intensity is changing. These 

temporal derivative signals trigger three circuits: one which activates a slowly decaying memory of 

which unit s have been active (U/D), another which drives a centroid circuit (C) to map the pixel's 

position to a motor command voltage, and finally a triggering circuit which compares the total 

activity on the chip to a threshold (not shown). The trigger circuit provides a binary output signal 
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Figure 5.7: Saccade trajectories showing the reduction of a backward post-saccadic drift by de­
creasing the burst gain via a hot-electron injection process. See text for description. The lower 
digital trace indicates the time of burst unit activity. The arrow indicates the progression from early 
saccade trials to later saccade trials where performance has improved. 

from the chip, indicating that something has occurred in the image and that the centroid output 

information is "valid." The centroid circuits (DeWeerth 1992) require reference voltages (motor 

command voltages) at each pixel which represent the saccade vector required to center the stimulus 

on the array. 

In previous versions of this visually-based, triggering circuit, the motor command voltages were 

provided by a resistive line running across the array. Each end of t he resistive line was held at . a 

different voltage, providing each pixel in the array with a unique voltage reference, which changed 

linearly across the array. In contrast, the pixels in this new system are provided with the output 

voltage of a floating-gate circuit, each of which can, in principle, be set to arbitrary values, making 

it similar to a programmable look-up table. 

The training input to the system is a global signal indicating whether the system's output was 

too high or too low. Pixel locations which contributed to the output remain active for a short 

amount of time (about 3 sec) via the U /D circuit. When the training signal becomes active, after 

evaluating the centroid output voltage, only those units which contributed to the output are trained 

in the appropriate direction. Since the triggering stimuli may activate a neighborhood of pixels, the 

learning is similar to Kohonen's stochastic learning algorithm where the topology of the network 

is preserved by training a node and its neighborhood at the same time. This technique has been 

explored in software in the context of saccadic learning by both Ritter et al. (1992) and by Rao and 

Ballard (1995). 
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Figure 5.8: System Block Diagram: This chip consists of an array of 32 pixels which consist of an 
adaptive photoreceptor (P), a temporal derivative circuit (TD) , a centroid circuit (C), a floating-gate 
circuit (FG) which provides reference voltages to the centroid circuit, and a control circuit (U /D = 
"up/down") for training the floating-gate. 

The training system consists of a workstation which flashes visual stimuli (bars) at different 

locations on its monitor. The chip, with a lens, is positioned to image the stimuli on its photore­

ceptor array. The centroid output voltage is measured after each flash using a computer-controlled 

oscilloscope. Each stimulus position on the monitor is assigned a target centroid output value. If 

the measured value is lower than the target value, the training input voltage (driven by a computer­

controlled voltage source) is lowered to a pre-determined training voltage for a fixed amount of time 

to increase that stored value by increasing the tunneling rate. Similarly, if the measured value is 

higher than the target value, the training input is raised. After repeated t rials, a target function 

can be learned to a level of accuracy limited primarily by the system noise. 

5.3.2 The Temporal-Derivative Triggering Circuit 

The implementation of the architecture described above was fabricated on a TinyChip (2.25mm x 

2.22mm) using a 2.0 Jl-m, n-well, double-poly, BiCMOS process. The chip contains a one-dimensional 

array of 32 pixel elements. 

Figure 5.9 shows the combined circuit schematics for the adaptive photoreceptor (P) (left), the 

t emporal-derivative (TD) (middle), and the centroid circuit (C) (right). The adaptive photoreceptor 

(Delbriick and Mead, 1989) is a high-gain photoreceptor circuit which slowly adapts to the average 

light level to prevent saturation. The temporal derivative circuit combines a lowpass filter with 

a "bump" circuit (Delbriick, 1991) to signal the absolute-value of the temporal-derivative. The 

centroid circuit (DeWeerth, 1992) computes the weighted-average, motor command voltage. Since 

every cell in the array would connect to an n-type mirror, the gray box in the figure denotes the 
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Figure 5.9: Temporal Triggering Circuit (P+TD+C): On the far left, t he adaptive photoreceptor 
circuit amplifies temporal change in the light intensity while slowly adapting to the mean light level. 
The temporal-derivative (TD) circuit acts as a high-pass filter by measuring the difference in voltage 
between the original photoreceptor value and a low-passed version of it. The signal is then full-wave 
rectified and mirrored to the U / D, centroid, and thresholding circuits. The centroid circuit (on the 
right) operates as a follower powered by t he current from the temporal derivative circuit. The motor 
command reference voltage is received from the floating-gate amplifier circuit (FG) . 

use of a single, common mirror on the edge of the array to reduce capacitance on the output node. 

An amplifying ratio of 6 to 1 was used on the mirror for inverting the bump current to cancel the 

tail currents of the differential pair. Overall, these circuits map t he retinotopic location of temporal 

change to a motor command voltage. 

5.3.3 Non-Volatile Analog Voltage Storage 

The floating-gate circuit (Figure 5.10) is a modification of the circuit used by Hasler et al. (1995) 

to train a 2x2 array of floating-gate synaptic elements. A tunneling process is used to remove 

electrons from the floating node and a hot-electron injection process is used to put electrons onto 

the floating node. The tunneling current is controlled by manipulating t he difference in voltage 

between the floating-node and the high-voltage tunneling line. Larger voltage differences produce 

larger tunneling rates. Injection of electrons is performed in an n-type transistor fabricated in the 

Phase layer provided for the construction of bipolar transistors. Due to the heavier doping, the 

threshold voltage for this type of transistor is near 6 volts, which allows the gate to capture high­

energy electrons flowing through the drain while the transistor is still operating in the subthreshold. 

Since the injection current is the product of the injection efficiency (controlled by the drain voltage) 

and the source current, injection current can be adjusted by manipulating the source current in the 

Phase transistor. 

The floating-gate circuit (Figure 5.10) uses two Phase transistors, one used as an electron injector 

(PB1) a nd t he other used as the current source for the amplifier (PB2). Since PB2 is only setting 
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Figure 5.10: Floating-gate amplifier circuit (FG): The floating node defines a subthreshold current 
in transistor PB2 which is mirrored and used in a high-gain amplifier stage which has variable . 
output limits. Source-follower transistor N1 defines PB2's drain voltage to prevent hot-electron 
injection. Nodes Vd1, Vs1, and the high-voltage tunneling node are fixed global values which define 
an equilibrium floating-gate value, and a decay rate towards this value. Modification of the floating­
gate voltage is performed by capacitively moving the floating-gate up or down transiently to either 
increase injection or increase tunneling. 

the amplifier current (and not injecting) , its drain voltage Vd2 can be set to a low voltage allowing 

the upper limit of the amplifier's output range to be fairly large. Modification of the floating-gate 

charge is performed by transiently increasing the rate of either the tunneling or injection. This is 

performed by capacitively raising or lowering the floating-gate using the Up/Down control input. 

Raising the floating-node both increases the source current in PB1 and reduces the float ing-gate to 

tunneling voltage. Likewise, lowering the floating-node both increases the floating-node to tunneling 

voltage and decreases the source current in PBl. 

As in the system described by Hasler et a} _ (1995), the tunneling and hot-electron injection 

currents are both active, but extremely low and in opposite directions. Since both processes operate 

in a negative-feedback fashion (e.g., the tunneling process raises the floating-gate which tends to 

reduce the rate of tunneling), the system reaches an equilibrium value when the tunneling current 

equals the injection current. When the floating-gate voltage is larger than the equilibrium ·voltage, 

the hot-electron injection current dominates the tunneling current and the floating-gate voltage 

drops. Conversely, when the floating-gate voltage is lower than the equilibrium voltage, tunneling 

dominates and the voltage rises. 

While this technique avoids high-voltage switching circuits, it suffers (or possibly benefits) from 

the eventual loss of stored information as t he floating-gate decays back to its equilibrium voltage. 

This decay rate, however, can be set to be extremely slow by using a low Vd1 (transistor PB1) 

and a low tunneling voltage. Since the tunneling and injection parameters are kept constant, the 

equilibrium voltage should not depend on the stored value and the memory should decay towards an 

equilibrium determined solely by these parameters. Memory decay tests of the floating-gate circuits, 
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Figure 5.11: Up/ Down learning control circuit (U /D): This circuit consists of two competing voltage 
followers: a weak follower carrying the center reference voltage and a stronger follower which receives 
the training voltage from off-chip. When a given pixel in the array generates a pulse of current in 
the TD circuit, t his current is mirrored onto t ransistor P1 , charging the capacitor node up towards 
V dd. A small leak current discharges the capacitor slowly. This node acts as a switch to turn on 
the strong amplifier to drive the floating-gate control node towards the globally-received, training 
voltage. In t his fashion, only those circuits which participated in generating the output centroid 
voltage receive the training signal. 

with the parameters used for data collection, exhibited low tunneling-dominant rates (less than 0.07 

m V /hour), while the injection-dominant rates showed a decay of about 1.0 m V / hour. For more 

details of t he physics of these float ing-gate devices, see Hasler et al. (1995) and Diorio et al. (1995) 

The "learning" can also be turned off by bringing Vd1, Vs1 , and the tunneling voltage down to 

zero. Unfortunately, the absolute voltage level of all the floating-gates will be DC-shifted downwards 

as the tunneling voltage drops due to capacitive coupling. This shift can easily be countered by 

increasing the U /D circuit 's cent er reference voltage until the values have returned to their trained 

state. This step , however, may introduce a DC shift error since it is done manually. 

To train the chip for a certain mapping, pixels ar e ·stimulated and t he resultant centroid output 

voltage is determined to be either too high, too low, or inside a window of tolerance around the 

target value. Since t he pixels which contributed to the output value are the ones that need to be 

modified, some mechanism is required to remember those pixels. The Up/Down circuit shown in 

Figure 5.11 performs t his function by storing charge at each pixel location that contributed to the 

centroid output. If t he pixel has not been active, the circuit holds t he output to a global reference 

voltage. If the pixel was just used to drive t he centroid output, the U /D circuit drives the output to 

an externally-provided voltage level for approximately five seconds (with our current leak settings). 

This external signal is the training voltage which is used to increase or decrease the floating-gate 

voltages at those locations which contributed to the previous output. 

Figure 5.12 shows some of the relevant signals during a pulse of light at one pixel on the array. 

Although not visible in this plot, t he rising centroid output reaches a stable value approximately 2 

msec after the beginning of the temporal change. 
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Figure 5.12: Top trace: Photoreceptor voltage, Middle trace: Centroid output voltage (analog), 
Bottom trace: trigger signal (digital). The photoreceptor output voltage jumps from 0.96 volts 
to 1.30 volts during the flash of the stimulus. The oscillation riding on the step response of the 
photoreceptor is due to the flicker induced by the monitor. The centroid circuit also shows some 60 
Hz noise, resulting from feed-through of noise from the high-gain floating-gate circuits. 

The data was taken using a tunneling voltage of about 26 volts, Vd1 = 3.1 volts, Vs1 = 0.2 volts 

with the floating-gate values centered around 5.5 volts. The Up/Down control line was moved from 

4.0 to 7.0 volts for increased hot-electron injection and from 4.0 to 0.0 volts for increased tunneling. 

The coupling coefficient between the U /D control line and the floating-gate was measured to be 

about 0.6. In order to scan off the floating-gate values, we operated the chip using a Vdd of 8 volts. 

5.3.4 Training Results 

In training, the chip is aimed at a computer monitor which flashes vertical bars at different 

positions in the field of view. While the current chip has only 32 pixels, the training system flashes 

stimuli at the maximum line resolution of the screen. Our current optics configuration allows for 

approximately 75 different locations at which we can stimulate the array of 32 pixels. This is done 

both to map the subpixel behavior as the stimulus moves from one pixel location to the next and 

to train the pixels individually rather than as groups of pixels. 

In real-world situations, however, the pixels will be activated in groups and the subsequent output 

will be an appropriate average of the individual pixel values. Although training the system with 

large stimuli does work, the training time dramatically increases since the training must rely on 

the uniform statistics of the training set to sort the proper values out. The training stimulus size 

also sets the minimum size for which the array will report the proper value. For this reason it is 

important to also train at the appropriate resolution. A multi-resolution training schedule may be 

the best strategy since training can occur in parallel, yet the smaller stimuli can fill in the details at 
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Figure 5.13: When a bar of one line-width (defined by t he graphics board) is flashed at the chip, it 
stimulates a single photoreceptor as shown in the top plot and the one pixel is trained for a mean 
duration of 2.75 seconds. This timing is primarily determined by the leak bias (see Figure 5.11). 
When the bar is widened to three line-widths (middle plot), two adjacent pixels are stimulated and 
they are trained together in the same direction. A bar width of five line-widths stimulates three 
pixels as shown in the bottom plot. In t he multi-scale training regime, all three types of bars were 
used randomly interleaved in the training set. The bar of five line-widths was also used to generate 
Figure 5.17. These plots show the results of measuring the mean time each pixel spent training for 
bars of different widths flashed at a position on the monitor near pixel #7. The mean was computed 
over seven trials. 

each position. The training positions are chosen by shuffling a list of positions and selecting them 

from the list without replacement. Once the list is exhausted, the whole list is reshuffled . This sets 

an upper bound on the inter-example training time and guarantees a uniform distribution. 

After training, the array can be "probed" with either a bar of one line-width or a bar of five 

line-widths to stimulate output values. The one line-width bar will stimulate individual pixels and 

the 5 line-width bar will stimulate the average of a group of three pixels. (See F igure 5.13.) The 

effects of averaging can be seen in Figure 5.17 for the case of the sinewave mapping, which is a 

particularly difficult case to learn , since individual pixels cannot satisfy the wide range of values 

occurring on a steep part of the function. 

The first test of system level operation we discuss is an experiment in which we attempt to 

load a flat target function. With t his function it is easiest to see the accuracy with which the 

system can learn a specific value. Figure 5.14 shows the results after extended training. From initial 

conditions where the floating-gate amplifier outputs were sitting at fairly random voltages, the system 

was presented approximately 20,000 examples at 75 different stimulus locations (approximately 625 

examples per pixel) and then t he system was probed at the 75 stimulus locations to evaluate the 

mapping. Noise in the chip and in the testing system contribute to the variations seen in repeated 

trials. It should be noted that the floating-gate amplifiers are non-linear and the highest gain occurs 

in the center of the range. Since t he target value for the flat function in Figure 5.14 is in the center 
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Figure 5.14: Flat Target Function - In t his case, all stimulus positions were t rained to lie at 2.500 
volts. This plot shows t he performance of the chip after approxima tely 20,000 presentations spread 
over 75 posit ions . The floating-gate outputs were initially spread between 2.4 and 2.6 volts . After 
t raining, t he centroid array was "queried" sequentially from left to right five t imes wit hout training. 
The error bars represent one standard deviation . T he t raining procedure continued to modify the 
floating-gate until the voltage was within 1 m V of t he target voltage. 

of the range, we expect t he largest reporting variance here due to noise. T he error tolerance of the 

training system for this mapping was 1 m V. 

T he linear target function (Figure 5.15) is t he mapping which was previously used to map retinal 

posit ion to motor command, where 2.60 volts represented a full-scale saccade to the right and 2.40 

volts represented a full-scale saccade to t he left. In this case and in the following mappings, the 

error tolerance for learning was 2.5 m V. 

In order to challenge t he system, we also t ested a sinewave t arget function (Figures 5.16 and 

5.17) whose spatial derivative was difficult to match with the resolution of the current system. The 

expected final value in this situation when training wit h a uniform distribut ion of examples and 

balanced step sizes is the average of the different target values associated wit h the same pixel. T his 

behavior is seen most clearly in F igure 5.16. Convergence of this mapping function takes much 

longer due to t he statistical nature of t he equilibrium, and t he final value is not very stable since 

nearly all the training examples drive the pixel away from its current value. 

During the testing process, it was determined t hat modifications should be made to reduce the 

gain of t he floating-gate output amplifier. The measured DC gain from the floating-gate to t he 

output of t he amplifier was found to be approximately 60. This created many problems with noise, 

particularly at 60 Hz due to electrical noise in the laboratory and t he 60 Hz light flicker coming 

from the monitor. This problem was partially solved by using a considerably smaller output voltage 

range (2.4 volts to 2.6 volts) to push the amplifier's output t ransistors partially out of saturation for 

the subthreshold current regime. This had the effect of reducing t he gain down to about 2.0, but 

left a very small signal range with which to work. 
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Figure 5.15: Linear Target Function- This function most closely represents a realistic sensorimotor 
mapping function for triggering saccades to a visual target. The training and testing procedure is 
the same as in the previous graph. The error bars represent one standard deviation. 

By storing information locally about which units contributed to a computation, the distribution 

of the training signal back through the system has been made simpler. The hardware approach to 

this problem of delayed assignment-of-error may provide a valuable testbed in which to consider how 

t his problem is solved in biological systems. 

The neurobiological substrate for this adaptation is still unknown. Both the superior colliculus 

and the frontal eye fields are attractive areas for investigation of this adaptation due to their vector­

specific organization for driving saccadic eye movements. While both areas are capable of driving 

of saccadic eye movements, the frontal eye fields are implicated in t he generation of "volit ional" 

saccades and the superior colliculus has been implicated in the generation of reflexive, visually­

guided saccades. Experiments by Deubel (1995) indicate that there are context-dependent differences 

in vector-specific, short-term adaptation. Adaptation performed during reflexive, visually-guided 

saccades was not expressed during volitionally-driven saccades. The converse has also been found to 

be true. Frens and van Opstal (1994) also demonstrated the transfer of vector-specific adaptation 

to saccades triggered by auditory cues. T hese experiments together point to the interpretation that 

the adaptation is occurring at a stage after integration of these different sensory modalities, but 

before the parallel streams of information from the superior colliculus and frontal eye fields have 

converged. 

5.3.5 Discussion 

In t he coming years, we will be switching to a 1.2 11-m process for prototyping circuits. Initial tests 

(C. Diorio, personal communication) have indicated t hat the phase injection transistor does not 

operate with the same desirable characteristics as the same structure in t he 2.0 11-m process. A 
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Figure 5.16: Sinewave Target FUnction - In this case, the target values followed a sinewave. Pho­
toreceptor granularity is evident by the "staircasing" seen in the plot. Stimulus locations where the 
flashed bar occurs on the boundary of two pixels exhibit large variations in output voltage due to 
the narrow (one line-width) stimuli being used. Figure 5.17 shows the same pattern being probed 
with a much wider stimulus (three line-widths). The training and testing procedure is the same as 
in the previous graphs. The error bars represent one standard deviation. 

good alternative to using the pbase transistor for injection is to use the standard p-type MOSFET 

transistor for injection. 

The intermingling of memory and computation is an important and powerful aspect of neural 

architectures which has not yet been well exploited in neuromorphic analog VLSI designs. Smaller 

designs have been manageable by the use of external sources of parameters or by array structures 

which share global parameters. With the advent of large, multi-chip, neural systems, however, the 

automatic selection, storage, and maintenance of these parameters will become an unavoidable issue 

as it is in biological systems. 
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Figure 5.17: Sinewave Target Function- In this case, the evaluation of the pattern in Figure 5.16 
was performed using a bar which spanned three pixels. The training and testing procedure is the 
same as in the previous graphs. The error bars represent one standard deviation. 
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Chapter 6 Attention-Based Tracking 

Given that we see our world through foveated retinas, it is remarkable that our perception of the 

world is both stable and in sharp focus. Our eyes are constantly moving, gathering information 

relevant to our current task. When we examine static scenes, we typically trigger saccades, fixating 

sequentially on different parts of the image. When we search for a familiar face in a moving crowd, 

we select candidate faces and track them smoothly to stabilize their image for recognition. Eye 

movements are an integral part of the way we perceive objects in the world and are more than just 

another way to shift our gaze. For this reason it is important to understand how eye movements are 

controlled and how they contribute to perception. 

This chapter describes a one-dimensional tracking chip which incorporates a saliency-based model 

of attention to select a target with the goal of driving eye movements. Chapter 7 describes the use 

of this chip in performing eye movements. 

6.1 Attention and the Control of Eye Movements 

Visual attention is the process of focusing sensory and computational resources on a spatially-limited 

part of the visual field. Visual attention is often discussed as two components, the overt and the 

covert systems. The overt visual attention system physically moves the position of highest acuity 

(eye movements) and the covert visual attention system internally controls the location of spatially­

focused image analysis. While we typically keep the two attentional systems together at the center 

of gaze, our covert attention can be moved anywhere within the field of view at the cost of reduced 

resolution but with much shorter latency than with eye movements. 

While visual attention is best understood in the context of visual search during fixation, relatively 

little research has been devoted to the understanding of how attentional selection is involved in the 

control of eye movements. While these are typically studied separately, in practice it is often difficult 

to treat tracking independently from the selection process since the tracking problem involves the 

continuous selection of the target. 

Visual search has been heavily studied using experiments designed to discriminate between search 

tasks that require attention and those that do not. Search times which are fast and independent of 

the number of distractors ("pop-out") generally occur in tasks where there are differences in only a 

single feature type, while linearly increasing search times as a function of the number of distractors 

("serial search") appear most often in tasks where the conjunction of two features is sought. The 

linear search time is believed to be due to the requirement of sequential attentional fixations. It 
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has been suggested by Treisman and Gelade (1980) that attention serves to bind together various 

features of an object, such as color, form , and motion as in the conjunction task. In addition, 

experiments by Posner (1980) showed that the performance of an observer in the simple detection 

of a signal changes as a function of where the observer is instructed to attend. These experiments 

have suggested that we are able to preferentially enhance the processing of a spatially-limited region 

of the scene, at the cost of perceiving the full scene one piece at a time. 

In recent years, many studies have also indicated that selective visual attention is involved in 

the generation of saccadic (Kowler et al., 1995; Hoffman and Subramaniam, 1995; Rafal et al., 1989; 

Shimojo et al., 1995) and smooth pursuit eye movements (Khurana and Kowler, 1987; Ferrera and 

Lisberger, 1995; Tam and Ono, 1994). These studies have shown that attentional enhancement 

occurs at the target location just before a saccade as well as at the target location during smooth 

pursuit. In the case of saccades, attempts to dissociate attention from the target location has been 

shown to disrupt their accuracy and latency. It has been proposed that attention is involved in 

programming the next saccade by highlighting the target location. For smooth pursuit, attention 

is believed to be involved in the extraction of the target's motion. Studies have shown that the 

smooth pursuit system is driven by visual motion in a negative feedback loop (Rashbass, 1961). If 

the motion-sensitive, middle temporal area of the cortex (MT) is involved in driving pursuit, as 

several studies have shown (Lisberger et al., 1987), some mechanism must exist to preferentially 

extract the activity of neurons associated with the target at the correct place and time. Indeed, 

strong attentional modulation of motion information has recently been demonstrated in areas MT 

and MST (Treue and Maunsell, 1996). 

Neurophysiological studies have revealed a wide variety of brain areas underlying visual attention. 

Many areas in cortex, superior colliculus, and a large part of the thalamus called the pulvinar all 

seem to be involved in various aspects of visual attention, as discerned by single cell, lesion, and 

imaging studies. Several studies have shown modulation of neural activity in favor of attended 

stimuli (Moran and Desimone, 1985; Motter, 1993; Treue and Maunsell, 1996). In these studies, 

attentional cues can significantly modulate a neuron's response to a stimulus in one part of its 

classical receptive field over another. 

6.1.1 Models 

Many neurally-plausible computational models have been proposed for the various mechanisms of 

selective attention. Koch and Ullman (1985) proposed a model of attentional selection using an image 

saliency map by combining the activity of elementary feature maps in a topographic manner. The 

most salient locations are where activity from many different feature maps coincide, or at locations 

where activity from a preferentially-weighted feature map, such as temporal change, occurs. A 

winner-take-all (WTA) mechanism, acting as the center of the attentional "spotlight," selects the 
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location with the highest saliency. Olshausen et al. (1993) proposed a neurobiological model for 

the dynamic routing of visual information from the attended location. This model also provided a 

mechanism for position and size invariance. Niebur et al. (1993) proposed a different mechanism for 

routing information in a spike-based model using a "temporal-tagging" strategy which modifies the 

timing of the spikes in the spike train, without changing the average spike rate. This entrainment 

allows the attended neurons' spike trains to preferentially pass through subsequent attentional filter 

stages. In contrast, Desimone and Duncan (1995) have proposed an attentional model which does 

not utilize any explicit saliency map, rather a distributed one. 

6.1.2 Hardware Modelling 

While the machine vision and robotics communities have implemented many systems which utilize 

moveable cameras, very few systems have been used to model biological active vision. None have 

attempted to replicate the mechanical plant or the neural control of these eye movements. 

Recently, however, Etienne-Cummings et al. (1996) have built a two-dimensional analog VLSI­

based visual tracking chip which performs pursuit movements using focal-plane motion detectors in 

the central region to drive stepper-motors for tracking. The periphery of the chip is used to trigger 

target acquisition. This system does not have a dynamic mechanism for figure-ground discrimination 

of the target. 

In addition to the overt form of attentional shifting, covert attentional selection and tracking has 

been modelled by DeWeerth and Morris (1995) using analog VLSI circuits based on the Koch and 

Ullman WTA model. These circuits also demonstrate the use of delayed , long-lasting inhibition in 

the saliency map at the selected location to model the phenomenon of inhibition-of-return (Shimojo 

et al., 1995). 

In order to extend the visually-triggered oculomotor system beyond the reflexive, averaging 

saccades described in Chapter 2, an attentional model was incorporated into the imaging array to 

allow the selection of a single target for saccades as well as to extract motion information for smooth 

pursuit . 
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Figure 6.1: System Block Diagram: P = adaptive photoreceptor circuit, TD =temporal derivative 
circuit, SD = spatial derivative, DM = direction of motion, HYS WTA = hysteretic winner-take-all, 
P2V =position to voltage, ST =saccade trigger. The T D and SD signals are summed to form the 
saliency map from which the HYS WTA finds the maximum. The output of the HYS WTA steers 
both the direction-of-motion and t he SD information onto global output lines. The HYS WTA also 
drives the P2V and ST circuits to convert the winning position to a voltage and to indicate when the 
selected pixel is outside a specified window located at t he center of t he array. The SD input control 
modulates the relative gain of the positive and negative spatial derivatives used in the saliency map. 
See the text for details. 

6.2 An Attention-based, Visual Tracking Chip 

Utilizing an analog VLSI model of selective visual attention (Morris and DeWeerth, 1996) , this 

chip incorporates focal-plane processing to compute image saliency and to select a target feature for 

tracking. The target position and direction of motion are reported as t he target moves across the 

array, providing control signals for tracking eye movements. 

The computational goal of t he attentional t racking chip is the selection of a target, based on 

a given measure of saliency, and t he extraction of its retinal position and direction of motion. 

Figure 6.1 shows a block diagram of this computation. Thefirst few stages of processing compute 

the saliency map from simple feature maps which drive t he WTA-based selection of a target to 

track. The circuits at the selected location signal their position, t he computed direction-of-motion, 

and t he type of target being tracked. The saccadic system uses the position information to foveate 

the target and t he smooth pursuit system uses the motion information to match the speed of the 

target. 
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Chip Motion Hysteresis Target ID & WTA Input Pixel 
Name Detector SD Input Smoothing Count 

Control 
TRACK1 No Resistive No No 23 
TRACK2 Yes Nearest Neighbor No No 21 
TRACK3 Yes Nearest Neighbor Yes No 21 
TRACK4 Yes Nearest Neighbor Yes Yes 23 

Table 6.1: Tracking chip versions and their capabilities. 

All of the chips appearing in this chapter were fabricated as TinyChips (2220 J.Lm x 2250 J.Lm die 

size) through the MOSIS silicon brokerage service using the Orbit 2.0 J.Lm CMOS, n-well, double­

poly process. Four versions of the tracking chip have been fabricated (see Table 6.1) and their data 

appear in this chapter. At the end of each figure caption, the chip from which the data was taken 

is indicated. While TRACK4 is clearly the most sophisticated and includes nearly all features from 

the earlier versions, some of the earlier data was not retaken for presentation. 
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Figure 6.2: Circuits used to compute the spatial and temporal derivatives. The signals TD+, TD-, 
SD+, SD- are used in Figure 6.4 to generate the saliency map. Note: This figure is the same as 
Figure 4.6 in Chapter 2. 

6.2.1 Chip Description 

Adaptive photoreceptors (Delbriick 1993) (at the top of Figure 6.1) transduce the incoming 

pattern of light into an array of voltages. The temporal (TD) and spatial (SD) derivatives are 

computed from these voltages (Figure 6.2) and are used to generate the saliency map and direction 

of motion. Figure 6.3 shows an example stimulus and the computed features. The saliency map is 

formed by summing the absolute-value of each derivative (ITDI + ISDI) . The direction-of-motion 

(DM) circuit, as described in Chapter 4, computes a normalized product of the two derivatives: 
TD·SD 

ITDI+ISDI" 
Figure 6.4 shows the circuitry used at each pixel for creating the saliency map and performing 

the attentional selection. The inputs TD+, TD-, SD+, and SD- encode the temporal and spatial 

derivative currents computed in Figure 6.2 which are regenerated and summed to produce t he 

saliency map. In the saliency map, the signed spatial derivatives can be differentially weighted to 

emphasize one type of edge over another (SD input control) . This weighting is performed by the two 

differential pairs controlled by the Vrefand Vctrl voltage inputs. The saliency map provides the input 

to a winner-take-all (WTA) circuit (transistors M1 and M2) which finds the maximum in the saliency 

map across all the pixels in the array. Spatially-distributed hysteresis is incorporated in this winner­

take-all computation (DeWeerth and Morris, 1995) by adding a fixed current to the winner's input 

node (transistors M3 and M4) and to its neighbors (transistors M5 and M6). This nearest-neighbor, 

distributed hysteresis (NN-hysteresis) is motivated by the following two ideas: 1) Once a target has 

been selected, it should continue to be attended even if another equally interesting target comes 

along, and 2) targets will typically move smoothly across the array. Hysteresis reduces oscillation of 



76 

~ , 0.5V .s:::. Vphoto a. 
> 
E 

t ~ ::; 
0 lsoo nA 'Spatial I Cl 

(fJ Derivative 
E 
~ 
:::1 I Temporal I 0 

Cl Derivative f-

E Stimulus 
~ ~ :::1 

' 
0 0 

' ' ' ' ' ' 
·~· · 

0 = ' 
Direction 0 .,....,... I ..,... . 

:::E of Motion 
Cl 

4 7 10 13 16 19 22 
Pixel Position 

F igure 6.3: Example stimulus - Traces from top to bottom: P hotoreceptor voltage, absolute value 
of the spatial derivative, absolute value of the temporal derivative, and direction-of-motion. The 
stimulus is a high-contrast, expanding bar (shown on the right) , which provides two edges moving 
in opposite directions. The signed, temporal and spatial derivative signals are used to compute the 
direction-of-motion shown in the bottom trace. T he three lower traces were current measurements 
which shows some clocking noise from t he scanners used to obtain the data. Note: This figure is t he 
same as Figure 4.7 [Chip: TRACK2]. 

the winning status in the case where two or more inputs are very close to the winning input level 

and the local distribution of hysteresis allows the winning status to freely shift to neighboring pixels 

rather than to another location further away. 

The WTA output voltage is used to drive three different circuits: the position-to-voltage (P2V) 

circuit (DeWeerth, 1992), the DM-current-steering circuit (for the outputs of these circuits, see 

Figure 6.5.), and t he saccadic triggering (ST) circuit (see Figure 6.6). The only circuits that are 

active are those at the winning pixel locations. The P 2V circuit drives the common posit ion-output 

line to a voltage representing its position in the array, the DM-steering circuit puts the local DM 

circuit's current onto t he common motion output line, and the ST circuit (Figure 6.6) drives a 

position-specific current onto a common line to be compared against an externally-set threshold 

value. By creating an inverted- "V" shaped profile of ST currents centered on the array, winning 

pixels away from the center will generate currents below t he threshold and send saccade requests 

off-chip. Figure 6. 7 shows the saccade request outputs as a function of winning position for four 

different thresholds. 

6.2.2 P erformance 

Figure 6.5 shows t he direction of motion of the target (DM, upper trace) and the position of the 

target (P2V, lower trace) for a swinging edge stimulus. As the target moves across the array, different 
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Figure 6.4: Schematic of the hysteretic winner-take-all circuit (HYS WTA). The signed spatial and 
temporal derivative signals from Figure 6.2 are shown at the top as inputs. The spatial derivative 
currents are modulated by Vctrl such that when Vctrl is equal to Vref, the SD+ and SD- currents are 
equally represented in the saliency map. When Vctrl is larger than Vrej, the SD+ current is amplified 
and the SD- current is attenuated. The TD input control voltage modulates the contribution of the 
temporal derivative to the saliency map. This can be used to disable the temporal derivative during 
smooth pursuit eye movements. The input smoothing transistor is used to spread both the input 
and hysteresis currents. This smoothing deemphasizes smaller regions and helps to reduce the effects 
of circuit offsets. 

direction-of-motion circuit outputs are switched onto the common output line. This switching is the 

primary cause of the noise seen on the motion output trace. At the end of the trace, the target 

slipped off the array and the winning-status jumped to a pixel centered on a small, stationary 

background edge. 

To demonstrate the chip's ability to ignore the background, a test stimulus with distractors was 

presented (Figure 6.8). A high-contrast stimulus with a low-contrast background moving in the 

opposite direction was tested. Once the high-contrast target is being tracked, the lower-contrast 

background stripes are ignored. When the high-contrast target is no longer visible, one of the 

background stripes is chosen and tracked . . 

To t est the speed of the tracking circuit, we reduced the time~constant of the photoreceptor 

circuit and a single edge was passed in front of the array at varying speeds. Figure 6.9 shows the 

ability of the tracking chip to follow even fast stimuli moving in excess of 2300 pixels/sec. 

The "target identification" signal available on the later versions of this chip allows external 

signalling of the t arget edge's polarity. Figure 6.10 shows the output for a stimulus containing 
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Figure 6.5: Extracting the target's position and direction of motion: The WTA output voltage is 
used to switch the DM current onto a common current-sensing line. The output of this signal is 
seen in the top trace. The zero-motion level is indicated by the flat line shown at 2.9 volts. The 
lower trace shows the target's position from the position-to-voltage encoding circuits. The target's 
position and direction of motion are used to drive saccades and smooth pursuit eye movement during 
tracking. [Chip: TRACK3, NN-hysteresis] 

both types of edges. In addition to the identification signal, the saliency map can be controlled by 

an input voltage (SD input control) to differentially modify the gains of the positive and negative 

spatial-derivative inputs to the saliency map (see signals Vctrl and Vref in Figure 6.4). Figure 6.11 

shows the effect of switching this control input in the presence of an input image. By controlling the 

saliency map to favor the edge polarity being tracked, a simple type of feature-based hysteresis (F­

hysteresis) is created. This significantly improves the stability of tracking performance. In the layout 

of the chip, the target identification signal is sent off-chip as a current on the same physical wire as 

the SD input control voltage ( VctrQ. By connecting the control wire to the reference voltage ( Vref 

Inputs from the Winner·Take·AII 

_r 
trigger out 

Pixel Position 
Vedge Vcenter Vedge 

Figure 6.6: Schematic of the saccadic triggering (ST) circuit. 
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Figure 6.7: Saccadic triggering (ST) circuit output as a function of winning position. Plots have 
been shown for four different t hreshold levels. [Chip: TRACK2] 

) through a resistor, t he target identificat ion current can directly modify the saliency map control 

voltage and induce the feature-based hysteresis (see Figure 6.12) . Further, by placing a capacitor 

on the control voltage, it is possible to create a short-term memory of target type to improve target 

reacquisition across saccades or large jumps of the target. 

The power consumption of the chip (23 pixels and support circuits) varies between 0.35 mW and 

0.60 m W at a supply voltage of 5 volts. This measurement was taken with no clock signal driving 

the scanners since this is not essent ial to the operation of the circuit. It is expected that the power 

requirements of this one-dimensional circuit will scale linearly with size. 

6.2.3 Discussion 

An analog VLSI model of visual attention has been successfully used for the selection and tracking 

of a target against a non-uniform background using a saliency map model for target selection. 

This selection mechanism allows the chip to dynamically isolate information about the target from 

information about the background. 

The selection circuit is based on the winner-take-all principle, selecting the most salient location. 

At first glance, this appears sufficient to solve the problem, even for moving targets. Experience 

with real moving stimuli, however, shows that as edges move across the imaging array, the saliency 

measurement on a short-timescale is highly variable due to temporal noise, circuit offsets, image 

discretization, and lighting fluctuation. This causes the winning status to jump freely between dif­

ferent targets in the image. The combination of locally-distributed hysteresis (Morris and Deweerth, 

1996), input smoothing, and feature-based hysteresis has improved the tracking performance to the 
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Figure 6.8: The HYS WTA's ability to ignore background activity is demonstrated in this test where 
a low-contrast background is moving in the opposite direction as the high-contrast target. At the 
beginning of the trace, a background edge is being tracked until the high-contrast edge appears. 
The edge is tracked to the end of the array and the trailing edge is selected next . After the trailing 
edge has left the image, another background edge captures the winning status. [Chip: TRACK4, no 
feature-based hysteresis] 

point where reliable tracking can be achieved. 

From a biological perspective a number of issues are raised by the analog VLSI model. First, 

the speed of attentional shifts in the analog VLSI model are extremely fast , allowing it to follow 

rapidly moving objects or jump across the array. Psychophysical experiments, while certainly not in 

complete agreement as to the actual speed if such a thing can be truly be defined, suggest a modest 

speed of 33 msec per shift (Saarinen and Julesz, 1991). Presumably, a neural implementation of the 

winner-take-all function will be slower. 

Finally, the method of extracting the target motion on the chip is a simple gating mechanism 

controlled by the attentional process. On the chip, the direction of target motion is computed 

everywhere and only one output is gated off-chip, whereas in the biological system, as has been 

suggested by the Treue and Maunsell results, the motion output (MT) itself is modulated by the 

attentional system, and not just gated downstream; The saccadic suppression of the inputs to the 

pursuit integrator is a similar situation. 
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Figure 6.9: Position vs. time traces for the passage of a strong edge across the array at five different 
speeds. The speeds shown correspond to 327, 548, 1042, 1578, 2294 pixels/sec. [Chip: TRACK1, 
R-hysteresis] 
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Figure 6.10: Target Identification: The chip is also capable of reporting the polarity of the edge 
being tracked. The upper trace shows the passage of two edges of different polarity moving in the 
same direction and the lower trace shows the chip output indicating the polarity. By adjusting the 
weights of the different-polarity SD inputs to the saliency map, the system can improve tracking by 
reducing the effects of opposite-polarity edges. This can also be used to improve reacquisition of the 
target after saccades. [Chip: TRACK3, NN-hysteresis] 
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Figure 6.11: The control input for the saliency map (lower trace) is switched between allowing only 
positive spatial derivatives and only negative spatial derivatives. The WTA position voltage (upper 
trace) is seen to switch between the two positive-derivative edges and the two negative-derivative 
edges. In the example image, after the photoreceptor circuits begin to adapt, the strengths of the 
four edges become similar and the switching pattern begins to appear random. The input image is 
displayed on the right edge of the plot. The control voltage is given relative to the reference voltage 
( Vref) in this case equal to 2.6 volts. [Chip: TRACK4, no feature-based hysteresis] 
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Figure 6.12: In t his experiment, a tracked blob jumps from one location on the array to another. 
In the left panel, t he chip begins tracking t he negative-derivative edge (left edge of the blob) and 
the target identification current is inward, pulling the control input ( Vctrl, or SD input control) 
below Vref. This differentially-increases the gain on the negative-derivative inputs over t he positive­
derivative inputs. When the target jumps, the capacitor on Vctrl serves as a short-term memory 
and the chip finds another negative-derivative edge. The right panel shows a similar experiment for 
a positive-derivative edge. (Chip: TRACK4, feature-based hysteresis] 



84 

Chapter 7 System Integration 

Normally, when we track moving objects in the world, our eyes respond with a combination of 

saccadic and smooth eye movements , dependent upon the background, speed, trajectory, and size of 

the target. The integration of t hese two behaviors gives rise to a number of interesting interactions 

between their respective control systems and the retina. Because our visual acuity is impaired when 

the retinal image is moving, t he control of eye movements must be orchestrated to maximize t he 

ability to extract information from the scene. 

In t his chapter the interactions between eye movements and the visual processing which control 

them are studied by mounting the attention-based tracking chip described in Chapter 6 on the eye 

movement system. 

7.1 System Integration 

The attention-based t racking chip from Chapter 6 has been mounted on the hardware model of the 

primate oculomotor system described in Chapter 2 and is being used to track moving visual targets. 

Special boards for mounting have been constructed to carry t he chip, a lens, and potentiometers 

for biasing. The lens current ly in use is a 2.5 mm focal-length lens (2.5 mm in diameter) which is 

secured in front of the chip by a light-weight clamping system. Approximately ten wires are fed off 

the back of the board to provide information to the saccadic and smooth pursuit controller boards. 

These wires provide additional mass and mechanical elasticity to t he oculomotor plant. 

Although the desired field of view for the system is closer to 140 degrees, the field of view allowed 

by the current lens is approximately 35 degrees. See Figure 2.18, page 29, for a photo of t he lens 

system. 

7 .1.1 Saccadic Tracking 

Figure 7.1 shows the behavior of the system when the WTA-position output voltage of the track­

ing chip is used as the input to the saccadic burst generator for recentering saccades. Saccades 

are triggered when the selected pixel is outside of a specified window centered on the array (i.e. 

Vhigherthreshold < VwrA, or VwrA < Vlowerthreshold)· The visual target, a single vertical edge, is 

mounted to a swinging apparatus to generate an oscillatory motion. 

Unlike the reflexive, saccadic triggering system (Chapter 2) which saccades to the centroid of 

change, this attention-based saccadic system selects a single target even in a field of distractors. 
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Figure 7.1: Saccadic Tracking: In this example, a swinging target - consisting of a single edge with 
no distractors - is tracked over a few cycles. The top trace shows the WTA position voltage which 
encodes the position of the tracked target on the retina and the bottom trace shows the eye position. 
Re-centering saccades are triggered when the target leaves a specified window centered on the array. 
[Chip: TRACK2, no hysteresis] 

7 .1.2 Smooth Pursuit Tracking 

In contrast to saccadic tracking, smooth pursuit attempts to match the eye's velocity with the target 

velocity in order to hold the image stationary for further scrutiny. In humans, smooth pursuit is 

most effective when the target speed is less than 30 degjsec and does not change directions quickly. 

The latency of smooth pursuit is between 80 msec and 130 msec. Smooth pursuit eye movements 

have two notable characteristics: they are visually-controlled and they display velocity memory when 

the target is stabilized or disappears. 

The model used to drive smooth pursuit is based on the model proposed by McKenzie and 

Lisberger (1986) using only the target velocity input. This model mathematically integrates visual 

motion over time and drives the oculomotor plant in parallel with the saccadic burst generator. 

In order to implement smooth pursuit in this system, an external circuit was constructed to model 

the pursuit integrators. Figure 7.2 shows the basic information flow in this circuit . The actual circuit 

is described in Appendix C. The transconductance amplifiers drive current into the capacitors to 

perform the integration from eye acceleration to eye velocity and the capacitor voltage drives the 

pulse generator circuits. The integrator leak time constant has been set to 1 sec. The input switch 

is driven by the saccadic burst generator to suppress the integrator input during saccades, allowing 

the integrator value to continue unmodified during and after the saccade. The output of the smooth 
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Figure 7.2: Smooth Pursuit Integrators: This integrator circuit is an external circuit constructed 
from discrete parts, taking the target motion signal (eye acceleration) from the tracking chip ( Vin) 
and integrating the positive and negative components (eye velocity) before generating spikes to drive 
the burst generator chip. The input switch prevents the motion induced by the saccade from being 
integrated. 

pursuit integrators drive the two inputs on the burst generator chip (Figure 2.6 on page 19), driving 

both the motor units and neural integrator in parallel with the saccadic burst signal. A test of the 

pursuit system is seen in Figure 7.3. 

Figure 7.4 shows the behavior of the smooth pursuit system (chip: TRACK2) successfully using 

only the motion output to drive eye movements. The hysteresis spreading circuit on TRACK2 was 

disabled by a design error and shows oscillation in the winner's location on the array (top trace). 

Figure 7.5 shows the improved TRACK4 smooth pursuit system which utilizes nearest-neighbor 

hysteretic spreading and feature-based hysteresis. 

Although not readily visible in Figures 7.4 and 7.5, oscillation in the pursuit velocity around the 

target velocity is a common occurrence in primates (see Figure 7.9) and is also seen in this system. 

By modelling the control of smooth pursuit as a negative-feedback system with a delay in the visual 

system, an analysis of the stability can be performed. In the simple case where no delay is assumed, 

the control-systems model of the pursuit system (see Appendix C) lends itself to oscillation under 

conditions of large gain in the integrator stage. This is caused by the lag in response by the inertia 

of the eyeball. If we assume an eye with a rotational inertia, I, a damping coefficient, m, and a 

pursuit integration constant, C, then to prevent oscillation in the case of no delay: 

m2 
C<­- 4! 

If we introduce a delay in the visual system of td, the criterion for preventing oscillation becomes: 

which is similar to the delay-free condition, but C must be smaller as td increases. Satisfying 
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Figure 7.3: Example Smooth Pursuit: The downward-going pulse on the lowest trace is a fictitious 
motion input placed on t he input to the pursuit system by a pulse generator. The motion input is 
mathematically integrated by the pursuit integrator and the resultant spiking output is shown in 
the second trace, labelled "Smooth Pursuit Input." This signal represents the desired eye velocity 
and is used as an input to the burst generator chip. Note the visible decay in the output of the 
pursuit integrator. The "Motor Unit Output" trace shows the steady increase in innervation as the 
eye (eye position: top trace) moves steadily onward, long after the motion input has ceased. 

the condition for avoiding oscillation by keeping C small, however, means that the pursuit system 

response will be sluggish. The time to integrate the eye velocity up to the target velocity is inversely 

proportional to C. Any delay in the visual sensing will make the situation worse. Perhaps for this 

reason, the biological system sacrifices a little stability for responsiveness. 

7.1.3 Integration of Saccades and Smooth Pursuit 

When we view natural scenes mixed with both stationary and moving objects, we combine saccades 

and smooth pursuit in an attempt to quickly take in a scene and scrutinize moving objects. While it is 

known that the circuitry that mediates these two movements are largely separate, some interaction, 

particularly in the form of saccadic suppresion, is required. How these two eye movements are 

behaviorly combined is still unclear. Figure 7.6 shows an example eye position trace of a monkey 

pursuing a sinusoidally-moving target. The eye movement is occasionally punctuated with catch-up 

saccades as well as saccades which take the eye away from accurate tracking. Although primates 

have a strong smooth pursuit system (Lisberger et al., 1987) , it is not true that smooth pursuit 

is always employed. Experiments with primates have shown t hat t racking a small target on an 

unstructured (uniform) background elicits smooth eye movements while tracking the same target on 

a structured (textured) background can sometimes elicit saccadic tracking instead of smooth pursuit 

behavior (Ilg et al., 1992). 

In this project, the saccadic system is driven by a retinal position error and t he pursuit system 

is driven by a retinal velocity error. While these two motor control systems operate essentially 
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Figure 7.4: Smooth Pursuit Tracking: In this example, a swinging target consisting of a bar with 
no distractors is tracked over a few cycles. T he top trace shows the WTA position voltage which 
encodes the position of t he tracked target on the retina. T he bottom trace shows the eye position. 
In this particular chip the hysteresis function was disabled. Although the attention jumps back 
and forth between the left and right edges, the reported direction of motion is consistent. [Chip: 
TRACK2, no hysteresis, TD active in the saliency map.) 

independently, the target motion generated by the saccade must be suppressed at the input of the 

smooth pursuit integrator in order to maintain the smooth pursuit eye velocity between saccades. 

Figure 7.7 shows an example of the integration of both saccadic and smooth pursuit eye move­

ments during the tracking of a sinusoidally swinging target. When the velocity of the target exceeds 

t he peak velocity of the pursuit system, the target slips out of the central region of the chip's field 

of view and saccades are triggered to recenter the target. 

In a second experiment used to show the separation of the saccadic and smooth pursuit systems, 

a step-ramp stimulus was used to drive both systems at once, but in different directions. Figure 7.8 

shows some of these results. In the top panel, t he integrated system, as described above, is used 

to track the jumping target. As there is no explicit delay in the saccadic triggering system, the 

saccade is triggered immediately and t he pursuit system's influence is only seen afterwards due to 

t he saccadic suppression. In primates, visually-t riggered saccades show latencies from 150 to 250 

msec, revealing the shorter latency (80 to 130 msec) of the pursuit system (Lisberger et al. , 1987) . . 

The second panel of Figure 7.8 shows the effect of adding an artificial delay of 100 msec in the 

saccadic trigger. This has t he effect of separating the responses of the saccadic and smooth pursuit 
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Figure 7.5: Smooth Pursuit Tracking: This experiment is similar to that of Figure 7.4, except that the 
TRACK4 chip is being used, utilizing both spatially-distributed and feature-based hyst eresis. Also, 
in this case, the target was moved in an oscillating trajectory by hand. The temporal derivative has 
been disabled to allow tracking across non-uniform backgrounds. [Chip: TRACK4, NN-hysteresis, 
F-hysteresis, TD disabled in saliency map] 

systems. The apparent improvement in tracking in the lower panel is believed to be coincidental. 

Increasing t he latency of the saccadic system has the general effect of increasing t he saccade size and 

decreasing the reliability of tracking since the target typically moves further away from the center 

of the array during the delay period and sometimes escapes off the array before the saccade occurs. 

The latency of t he pursuit system without adding additional delays is approximately 50 to 60 msec. 

Figure 7.9 shows a comparison with primate step-ramp experiment data. 
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Figure 7.6: P ursuit eye movements of a monkey in reponse to sinusoidal target motion at approx­
imately 0.27 Hz, peak-to-peak amplitude 20 deg. The target and eye position traces have been 
displayed with an offset for clarity. (From Collewijn and Tamminga, 1984). 
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Figure 7.7: Integration of saccadic and smooth pursuit tracking: In this example, a swinging target 
consisting of a bar with no distractors is tracked over a few cycles. The top trace shows the eye 
position over time and the bottom trace shows the eye velocity. [Chip: TRACK2, no hysteresis] 
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Figure 7.8: Step-Ramp Experiment : (A) The target jumps from the fixation point to a new location 
and begins moving with constant velocity. (B) Same experiment as in (A), but with a 100 msec 
delay in the saccadic trigger. Note: only the saccadic t rigger is delayed; t he t arget information is 
current. [Chip: T RACK4, NN-hysteresis, F-hysteresis] 
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Figure 7.9: Pursuit eye movements of a monkey in response to a step-ramp target motion. Eye 
velocity records were obtained by electronic differentiation of eye position records. The upward 
arrow indicates the intiation of pursuit, which preceded the first saccade. (From Lisberger, Morris, 
and Tychsen, 1987). 
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7.1.4 Discussion 

While attentional selection and tracking is fairly straightforward in the absence of eye movements 

as shown in Chapter 6, saccades and smooth pursuit eye movements violate the assumptions used 

to select targets in the first place. 

When t he eyes are stationary, moving objects draw our attention and thus the temporal derivative 

is an integral part of the saliency map. During successful smooth pursuit movements, however, the 

target is relatively stationary and the background is moving. If the temporal derivative is not 

disabled, the background will immediately draw the attention off the target. For this reason, the 

temporal derivative input to the saliency map must be attenuated or disabled in response to eye 

movements. For most of the data shown, however, it was left disabled. Ideally, the temporal 

derivative should be suppressed only during eye movements, but this requires a distinction between 

pursuit and static fixation. Currently, in the hardware model, the pursuit system is always active. 

This suggests the need for a fixation state during which the pursuit system is disabled and the 

saliency map can reinstate the temporal derivative input. Although fixation and pursuit share many 

characteristics (e.g. saccadic reaction time and gap-overlap paradigm effects, Boman et al., 1996), 

pursuit velocity oscillations are not commonly seen around a stationary fixation point. The current 

hardware model, without a fixation system, pursues the fixation point and exhibits these oscillations. 

During saccades, our eyes often reach speeds up to 750 degfsec where vision is severely impaired 

due to blurring. This can cause a loss of proper tracking. To deal with this problem, the tracking 

chip has two predictive mechanisms to improve the successful reacquisition of the correct target: a 

memory of the feature type being tracked (feature-based hysteresis) , and a saliency map input to 

draw the attention to the center of the array. The latter input has not yet been utilized in the system 

due to the ability of the tracking circuit to follow targets even during saccades. In addition to this 

attentional prediction across saccades, saccadic suppression has successfully been used to prevent 

the pursuit integrators from integrating the saccade-induced motion transient. This is critical for 

the smooth operation of the pursuit system. 

Having completed a functional saccadic and smooth pursuit system, a number of discrepancies 

with the known neurophysiology need to be mentioned. Delays in the oculomotor control system 

are an important factor in understanding the stability of the closed-loop biological syst em. While 

the long saccadic latency is not inherent in the VLSI model, an artificial delay of 100 msec has 

recently been added to simulate the saccadic latency seen in primates. This delay is believed to 

be due to the decision-making process and the mechanisms of disinhibition in the saccadic system. 

Initial experiments with the model have shown that this delay creates a noticeable impairment in its 

saccadic tracking ability. Part of the problem in the current system may lie in the fact that during 

this 100 msec, the target can escape the chip's small field-of-view, triggering incorrect saccades. A 

similar latency exists in the pursuit system which, together with the pursuit integrator gain, creates 
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the oscillations seen in the eye velocity. 

Although the motion detection circuit used for driving smooth pursuit is intended to be a model 

of the magnocellular-dominated cortical motion areas (MT and MST), the circuit only extracts the 

direction of motion and is more 11ke the shorter-latency direction-selective responses from Vl. This 

type of input is believed to drive the initiation of smooth pursuit, while the responses of MT are 

believed to drive the maintenance of pursuit (Lisberger et al., 1987). This is believed to be one 

source of the exaggerated oscillations in eye velocity seen with this system. 

In spite of the many improvements and details which need refinement, the basic integrated 

tracking system performs well, using only the direction of target motion to guide the smooth pursuit 

eye movements. 
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Chapter 8 Conclusions 

The primate oculomotor system model presented in this dissertation is an exploration into the issues 

of systems-level modeling using neuromorphic analog VLSI. This work focuses primarily on feedback 

systems which involve sensory and motor interaction with natural environments. Within the analog 

VLSI framework, it has touched on various examples of sensorimotor control, learning, sensory 

fusion, coordinate transformation, and the integration of different eye movements. 

There are clearly two goals wit hin the neuromorphic analog VLSI community: 1) to demonstrate 

useful modeling systems which can offer an advantage over current software techniques and 2) to 

develop novel computational architectures useful for industrial or commercial applications. While 

both goals have been a consideration in this work, the primary goal of the research presented here 

has been to develop a useful tool for modeling biological systems. 

The primate oculomotor system is an excellent sensorimotor system to study with analog VLSI 

for many different reasons. From the motor control perspective, the primate oculomotor system is a 

good system to investigat e due to its relatively simple musculature and the extensive knowledge of the 

neural substrate driving it. Behaviorally, the primate eye shows a diversity of movements involving: 

largely open-loop movements (saccades) , mechano-sensory-driven feedback movements (VOR ), and 

visually-driven feedback movements (smooth pursuit and the opto-kinetic reflex). Finally, from a 

visual processing point of view, the visual information needed for the control of eye movements is 

relatively simple. Perhaps the most important aspect of eye movements is that the input and output 

representations are both relatively well known and their purpose is fairly clear. 

The contributions of this research to the biological modeling and engineering communities will 

be presented first , then the future of this line of research and the field of neuromorphic analog VLSI 

will be discussed. 

8.1 Contributions 

As with most scientific endeavors, this work stands proudly on the research of those who came 

before. This work has not focused on the development of new circuits; it has focused on the large­

scale integration of many different neural models into a functional system. 
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8.1.1 Contributions to Biological Modeling 

Computational modeling is a quantitative tool for exploring the consequences of the assumptions 

and details we place into a model system. As such, our measure of success lies in producing a 

system which can lend insight into previously observed or unobserved phenomena and can guide 

future experiments . 

The main contribution of this system thus far has been the demonstration of a real-time modeling 

system that brings together many different neural models to solve real-world tasks. To date, there are 

no other oculomotor modeling systems that use realistic burst generator circuits to drive an analog 

oculomotor plant with similar dynamics to the biological system. While other research groups have 

built biologically-inspired, visual tracking systems, the problems they encounter are generally not 

the problems faced by biological systems because they do not solve t he task with hardware that has 

similar properties. 

By building circuits which compute with the representations of information found in the brain, 

the modeling system presented here is capable of replicating many of the behavioral, lesion, stim­

ulation, and adaptation experiments performed on the primate oculomotor system. Saccadic and 

smooth pursuit eye movements have been integrated in the system, which has raised many ques­

tions about how to model their interaction. Auditory localization based on neural models has been 

demonstrated in conjunction with the saccadic system to trigger saccades to auditory targets. This 

work has raised many questions about computations across different coordinate frames and sensory 

modalities. Adaptation of saccadic parameters based on biologically-constrained error measures has 

been demonstrated. A crude model of visual attention for target selection and selective motion 

extraction has been demonstrated, raising many questions about the interaction between reflexive 

(collicular) and volitional (cortical) eye movement systems. 

Additionally, as a physical embodiment of many of the neural models developed for the primate 

oculomotor system, it serves as an excellent hands-on demonstration system for the various principles 

involved in the control of eye movements. 

While the system has not yet been involved in any modeling efforts with specific experiments in 

mind, it is our hope that further development of the system will lead to progress in that direction. 

8.1.2 Contributions to Engineering 

While one large category of engineering is the design of general computational engines, another 

important category of engineering is the design of efficient, dedicated systems. Neuromorphic analog 

VLSI circuits fit well into this latter category. 

Much of t he work presented here has centered on visuo-motor functions which directly affect an 

animal's ability to survive. The chips designed for modeling active vision are directly applicable to 
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a wide range of security, surveillance, and robotics applications. 

The visual-triggering chip described in Chapter 2 and the tracking chip described in Chapter 6 

are both well-suited for intruder or occupancy detection systems. Unlike most sensors in use to­

day, these chips can report the direction of a disturbance. Additionally, the silicon photodetectors 

make it suitable for operation under near-infrared illumination. The auditory localization system 

described in Chapter 3, while not yet fully integrated onto a single chip, also holds much promise in 

detecting speaker direction for improving voice-recognition systems, teleconferencing trackers. This 

localization system could be used to construct a sonar module capable of reporting angle as well as 

distance. 

Due to the use of a commercially-available VLSI process and the integration of both sensor and 

computational circuitry, these chips are fast, low-power (e.g., 0.6 mW in the case of the tracking 

chip, TRACK4), and potentially very cheap to produce in quantity. 

8.2 The Future 

There are two futures to consider with regard to this dissertation: the future of continued modeling 

of the primate oculomotor system, and the future of neuromorphic analog VLSL In the first section, 

a short list of potential projects based on this work are suggested. In the second section, a number 

of reasons why neuromorphic analog VLSI will continue to thrive are given. 

8.2.1 Modeling the Primate Oculomotor System 

As the oculomotor system becomes more sophisticated, there are many more interesting experi­

ments to try. While the first design focused on creating a functional system based on the basic 

representations found in the brain, many of the details can now be refined. 

There are a number of interesting projects within the framework of the existing system which 

were not addressed in this dissertation, but can be considered without too much ·modification or 

development: 1) Exploring various models of fixation, attentional engagement and disengagement, 

and how express saccades can be performed with the system (Fischer and Weber, 1993). This can 

also involve the integration of the reflexive saccadic system (Chapter 2) and the attentive saccadic 

system (Chapter 7) 2) Exploring how delays in both the saccadic and smooth pursuit systems affect 

tracking performance and how it compares with biological data (Wolpert et al., 1993; Ringach, 1995). 

3) Exploring the issues of saccadic suppression, predictive shifting of attention across saccades, and 

interference of the opto-kinetic response with smooth pursuit (Masson et al., 1995). 4) Using the 

tracking chip in conjunction with the floating-gate look-up-table circuits to achieve on-line learning 

based on real world experience. 

In considering the longer-term expansion of the current system, there are many intriguing projects 
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to consider, such as: 1) The integration of the inhibition-of-return circuits developed by Morris and 

DeWeerth (1996) for implementing conjunction search with the target identification function de­

scribed in Chapter 6. 2) The integration of the object-based selection circuits which select contigu­

ous salient regions instead of single pixels (Morris, 1996). 3) Conversion of the existing circuitry to 

a multi-chip system using the address-event-representation communication protocol (Boahen, 1996) 

to facilitate the continued growth of the system. 4) Perceptual grouping of pixels based on neigh­

borhoods of similar directions of motion. 5) Construction of the attentional selection mechanism in 

a higher coordinate frame. 

8.2.2 Neuromorphic Analog VLSI 

The use of neuromorphic analog VLSI in both neural modeling and engineering seems very promising. 

While we typically view these two fields as separate endeavors, the path to understanding how the 

brain computes will probably involve the goals of both fields. It seems clear that the simulation 

of large neural systems will require considerably more powerful machines than exist today. If we 

consider that the human brain does its job with only a few watts of power, it becomes clear that 

engineering has something to learn from biology about power efficiency. 

Vision, audition, olfaction, and somatosensation, all involve massive amounts of parallel pro­

cessing, particularly near the sensory surfaces. What we know about the cortical architecture and 

known processing streams also point to massively parallel computation. While it is possible to 

simulate parallel computation with a serial machine, if we consider that the human brain contains 

approximately 1011 neurons and that we require only about 30 msec to identify complex visual 

stimuli (Tovee, 1994), the computational power of the required computer is so high, that a serial 

implementation doesn't make sense. For this reason massively-parallel computing architectures are 

likely to be the most appropriate for this task. Efficiency is another extremely important issue to 

understanding the brain's construction. It has been estimated that the brain only consumes a few 

watts, yet it performs on the order of 1016 operations per second (Mead, 1990). Analog circuitry, 

while limited in computational precision compared to digital circuits, is extremely efficient in both 

space and power. Many studies support the idea that neurons do not compute at signal precisions 

higher than 7-8 bits. For this reason, analog computing architectures are likely to be the most 

appropriate approach for these new computers. 

Much of the utility in the analog VLSI approach for biological modeling is in its speed of com­

putation. Speed is necessary for real-world sensorimotor interactions and for developing intuitions 

about models. The speed of computation is particularly important for simulations where behavior 

at multiple time scales is being simulated. Tuning the system to properly capture the behavior at 

sub-millisecond time scales makes modeling adaptation time scales of days extremely slow. It is our 

hope that as these systems continue to grow, the ability to simulate behavior on a larger scale in real 
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time will exceed the fastest digital systems available. The challenge to the designer is not simply 

to make such systems work, but to make them detailed enough to provide insight into biological 

problems and easy enough to experiment with. 

There are many lessons about biological systems to be learned from attempting to build hardware 

to operate in the real world. From the very start, one must deal with real noise and real images. An 

intangible contribution of analog VLSI design to modeling neural circuits has been the constraints 

under which the designer must work. Manufacturing offsets, limited silicon real estate, and noise 

are perhaps the main considerations in the design process. This has resulted in the development 

of circuits which utilize adaptation wherever possible, operate on signal differences instead of abso­

lutes, and incorporate spatial averaging to reduce the effects of offsets. With the incorporation of 

the address-event representation (AER) communication protocol, spike-based circuitry will become 

commonplace, tying designs even closer to the details of the neurons we are attempting to simulate. 

Another lesson learned from building large systems is that adaptation at every level is very 

important if we hope to continue building larger and larger systems. Many of the circuits presented 

here require tens of bias inputs each, with perhaps five critically-adjusted parameters. As these 

systems evolve into large, multi-chip projects, managing these hand-tuned parameters will become 

increasingly impractical, particularly with mobile systems which frequently change locations in t heir 

environment and need to optimize their sensors accordingly. 

Software modelers typically begin with complex models using simple stimuli and struggle to 

make them simulate faster by removing detail or by waiting for faster machines to be available. 

Neuromorphic analog VLSI designers typically work with simple models, real-world stimuli, and do 

not worry about speed; rather they struggle to increase the complexity of the model to accomplish 

the given task. The latter approach is perhaps closer to the evolutionary process which created the 

brain and may hold the key to progress in our understanding of intelligence and its development in 

the years to come. 
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Appendix A Oculomotor Plant Circuits 

Figure A.1 shows the external motor control circuits used in the oculomotor system. The two 

inputs to the system, LEFT and RIGHT, are shown on the far left at the J1 connector. These inputs 

are intended to be positive analog voltages between zero and 3.0 volts. The two spike trains from 

the burst generator are low-passed before driving these inputs. The right input is inverted and then 

summed to the left input to create a bipolar signal (Command Voltage). 

The eye position is measured by the potentiometer on the left side of the circuit. This is first 

buffered and then passed into a filter summing the eye position and the derivative of the eye position 

(Modified Eye Position Voltage). Potentiometer #1 provides an offset current to allow adjustment 

of the output. Potentiometer #2 controls the gain of the reported eye position. 

The difference between these two voltages is used to drive the left .and right motors. The two dif­

ferential amplifiers, with the Command Voltage and Modified Eye Position Voltage as their inputs, 

act as transconductance amplifiers which supply current to the spike generator circuits. Poten­

tiometers #3 and #4 control the amount of transconductance and affect the gain of the spiking 

output. 

The spike generator circuit consists of a spike capacitor, which receives current from the transcon­

ductance circuit, a threshold comparator, and a pulse generator chip (MC14538, monostable multi­

vibrator chip). The bleed-resistors, potentiometers #5 and #6, and the input current charge up the 

spike capacitor until the voltage exceeds the threshold at 2.5 volts, generating a pulse in the output 

and discharging the capacitor via then-channel FETs (VN10KM). Two pulses are triggered at the 

same time, a long pulse (1 msec) for driving the motor, and a shorter pulse (10p.sec) to discharge 

the capacitor. 

The bleed-resistors are used to provide a tonic input to the system to keep both motors slightly 

active and to keep tension in the string connecting the motors and the eye. The longer pulse is 

critically adjusted to slightly move the eye with each pulse. This keeps the motor commands above 

the static friction limit where the motor control signals are lost. In equilibrium, both motors are 

"idling" sufficiently to continuously keep the eye moving. The potentiometer was specially chosen 

due to its extremely low friction and bearing strength (10 kOhm "Green Pot," Model CP-2FB(b) 

Midori Precision). 

Figure A.2 shows the mechanical drawings of the box containing the dynamics simulation elec­

tronics (Figure A.1) and motors. Figure A.3 is a description of the lens-mount parts. 
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Appendix B Auditory Circuits 

Figure B.1 shows the auditory pre-filtering circuit for the localization system described in Chap­

ter 3. Two copies of this circuit are used to provide the left and right input channels to the chip. 

This circuit receives acoustic input from a microphone, performs a bandpass filtering operation at 

3.2 kHz, a thresholded zero-crossing detection stage and generates digital pulses as its output. 

The microphone used is a Panasonic electret condenser microphone which is buffered, amplified, 

and then high-pass filtered at 100 Hz to remove the DC component then sent to the 3.2 kHz 2nd 

order bandpass active filter. The filter has a gain of 10 and a "Q" of 10. 

The goal of the next stage is to trigger output pulses on the positive-going zero-crossing of the 

filtered waveform when the signal amplitude is large enough. The signal strength is determined by 

effectively measuring the time-derivative of the signal. Since the frequency is known, a high-pass 

filter with a sufficiently high cutoff frequency will produce a 90 degree phase-shifted signal. The 

simple RC filter chosen for this purpose was centered at 100 kHz, phase-shifting frequencies below 

10 kHz by 90 degrees. This signal will have a positive peak on the rising phase of the original 

waveform. By comparing this "derivative" with a threshold, zero-crossing-triggered output pulses 

are only allowed when the original amplitude is large enough. 

The output of the circuit is a pulse generator (MC14538) which connects to the analog VLSI 

chip using the reset function to shut off the output immediately after the chip has acknowledged 

receipt of t he input pulse. Note that for every cycle of the waveform above threshold, a single pulse 

is injected into the localization chip. 

The temporal derivative circuitry presented here was originally chosen to obtain the 90 degree 

phase-shift and limit the high-frequency gain due to noise in one step. The low-gain from the 

filter ultimately resulted in another gain stage which nullified any advantage. This could clearly be 

simplified by the appropriate use of high-pass filtering before an explicit temporal derivative circuit. 

Differences in the left and right circuit gains were heuristically determined to balance the differ­

ences in the left and right microphones. 
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Appendix C Smooth Pursuit 

C.0.3 Circuits 

Figure C.1 shows the circuit used to model the smooth pursuit integrators in Chapter 7. The 

two inputs (far left) are Vin and GO. The GO signal is received from the burst generator chip 

and indicates the duration of the out-going saccadic motor activity. The effective GO signal is 

extended by a fixed-duration pulse (MC14538, monostable multivibrator chip) triggered by the 

end of the GO pulse. During normal operation, Vin is compared to an internal reference voltage, 

Vref, by the upper and lower diffferential amplifiers. These amplifiers split the bipolar direction-of­

motion signal into the leftward and rightward signal streams. The differential amplifier acts as a 

transconductance amplifier charging the 1 uF capacitor. During saccades, the GO signal switches 

the analog multiplexer (MC4051) such that both differential amplifiers have Vref on both inputs and 

the integrator remains at its current value. 

The integration capacitor voltage is buffered and then compared to ground by a second differential 

amplifier which also acts as a transconductance amplifier, charging the 0.01 uF spike-generator 

capacitor. As the 0.01 uF capacitor charges up and exceeds 2.5 volts (determined by the 10K 

resistor-divider) , the LM324 (operational amplifier) , acting as a comparator, triggers a pulse in the 

output MC14538. The output pulse is fed back and discharges the 0.01 uF capacitor through the 

VN10K (n-channel FET) and the cycle begins again. 

It is interesting to note that this circuitry would have been considerably easier to implement 

directly on-chip. 
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retinal motion 
signal 

target 

+I 
D(s) H(s) 

velocity Pursuit Oculomotor eye velocity 

x(t) z(t) Control u(t) Plant w(t) 
I 

/ 

control signal 

Figure C.2: The smooth pursuit control model is a negative feedback system which attempts to 
match eye velocity with target velocity. The visual motion system is assumed to be ideal, converting 
retinal motion to a motion signal linearly with unity gain. This is represented by t he signal z(t). 

C.0.4 Control Systems Analysis 

If we consider the case of an eye velocity controller (Figure C.2) , the relevant terms in the 

equations of motion (assuming that the position-dependence is being compensated by the neural 

integrator) are the damping and the control signals. When we consider the system of an eye with 

rotational inertia, I , a damping coefficient, m, and a forcing function, u(t) , the equation of motion 

is: 

Iw(t) = -mw(t) + u(t) 

where w(t) is the eye velocity. Computing t he Laplace transform of this equation, we have: 

IsW(s) = -mW(s) + U(s) 

Solving for the t ransfer function of the oculomotor plant, ~l;l: 

H 
8 

_ W(s) _ _ 1_ 
()-U(s)-sl+m 

The integral control law used in the smooth pursuit system is: 

u(t ) = C [
00 

z (t)dt 

leading to the Laplace transform: 
1 

U(s) = C(- )Z(s) 
s 

Solving for the control law transfer function, we obtain: 

D(s) = U(s) = C 
Z(s) s 

(C.1) 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 
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From Figure C.2, we solve for the overall transfer function for the eye velocity as a function of the 

t t ' l "t W(s) arge s ve oc1 y, X(s) . 

W(s) = D(s)H(s)[X(s)- W(s)] 

W(s) 
X(s) 

D(s)H(s) 
1 + D(s)H(s) 

(C.7) 

(C.8) 

Plugging equations C.3 and C.6 into C.8, to solve for the overall transfer function , we obtain: 

W(s) q.(~) C 

X ( s) = 1 + q. ( sl ~m) = s2 I + sm + C 

Solving for the poles of this transfer function , we find: 

In order to avoid complex poles, 

-m±vm2 -4IC 
s = 21 

m2
- 4IC ~ 0 

m 2 ~ 4IC 
m2 
->C 41-

(C.9) 

(C.10) 

(C.ll) 

(C.12) 

(C.13) 

So in order to prevent oscillation, the integration constant must be kept low. This of course means 

that the integrator will take much longer to reach the desired target velocity. However, even if the 

system is operated with complex poles, the real part of the poles are negative, providing a damped 

oscillation. 

Now, considering the case of a time-delay in the visual processing, we place a delay in the control 

law: 

u(t) = C [
00 

z(t- td)dt 

leading to the Laplace transform: 
1 U(s) = C(-)Z(s)e-std 
s 

Solving for the new control law transfer function, we obtain: 

U(s) Ce-std 
D(s) = Z(s) = -s-

Solving again for the overall transfer function, 

W(s) 
X(s) 

(C.14) 

(C.l5) 

(C.l6) 

(C.l7) 
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2 

Solving for the poles of this new equation, we use the approximation: e"' ~ 1 + x + "'2 and obtain: 

(C.l8) 

In order to avoid complex poles, 

(C.l9) 

This result means t hat C must be kept even smaller than in t he delay-less case to avoid oscillation. 

Note also that in the case of complex poles, the real part of the poles have become less negative and 

therefore the damping of the oscillation will be smaller. 
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