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ABSTRACT 

This paper is in two parts. In the first part we give a quali­

tative study of wave propagation in an inhomogeneous medium principally 

by geometrical optics and ray theory. The inhomogeneity is represented 

by a sound-speed profile which is dependent upon one coordinate, namely 

the depth; and we discuss the general characteristics of wave propaga­

tion which result from a source placed on the sound channel axis. We 

show that our mathematical model of the sound- speed in the ocean 

actually predicts some of the behavior of the observed physical phenom ­

ena in the underwater sound channel. Using ray theoretic techniques we 

investigate the implications of our profile on the following characteristics 

of SOF AR propagation: (i) the sound energy traveling further away 

from the axis takes less time to travel from source to receiver than 

sound energy traveling closer to the axis, (i:l) the focusing of sound 

energy in the sound channel at certain ranges, (iii) the overall ray 

picture in the sound channel. 

In the second part a more penetrating quantitative study is done 

by means of analytical techniques on the governing equations. We study 

the transient problem for the Epstein profile by employing a double 

transform to formally derive an integral representation for the acoustic 

pressure amplitude, and fr om this representation we obtain several 

alternative representations. We study the case where both source and 

receiver are on the channel axis and greatly separated. In particular we 

verify some of the earlier results derived by ray theory and obtain 

asymptotic results for the acoustic pressure in the far-field. 
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Introduction 

This paper is in two parts. In the first part we give a 

qualitative study of wave propagation in an inhomogeneous mediwn by 

geometrical optics and ray theory. In part two a more penetrating 

quantitative study is done by means of analytical techniques on the 

governing equations. 
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PART I 

In the first part we give a qualitative study of acoustic wave 

propagation in an inhomogeneous m .edium principally by geometrical 

optics and ray theory. The inhomogeneity is represented by a sound­

speed profile which is dependent upon one coordinate, namely the depth. 

The particular profile that will be analyzed in this paper can be used to 

describe several of the stratified media which occur in nature: for 

example, the ionesphere, the troposphere, and the deep ocean-. We 

are primarily interested in this profile as a model for the speed of 

sound in the ocean. 

The speed of sound in the ocean is principally a function of 

temperature, hydrostatic pressure, and salinity; and all of these 

quantities varywith depth. Several experimentally-determined sound­

speed profiles for the Mid-Atlantic are illustrated in Figure 1-l. Above 

the level of minimum. sound speed, temperature has the greatest 

influence; and since the temperature varies inversely with depth (the 

effect of solar radiation), the sound speed increases as the depth 

decreases. Below the sound speed minimum, the primary effect is 

due to the increase of hydrostatic pressure with depth; thus the sound 

speed increases with depth. With few exceptions, the salinity does not 

affect the character of the sound-speed. This type of profile leads to 

the formation of an acoustic waveguide (often called the underwater 

sound channel or SOFAR* sound channel), which allows sound to 

*Sound Fixing and Ranging 
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propagate considerable distances with relatively little dissipation. 

Consider the wave propagation resulting from a point source 

of spherical waves on the channel axis. Then a receiver placed on the 

axis detects the following characteristics of SOF AR or long-range 

wave propagation: (i) the transmission of sounds over extremely large 

distances (in the neighborhood of 10,000 miles for small explosions), 

(ii) a signal which grows in amplitude after its initial detection and 

terminates abruptly, (iii) the duration of the SOF AR signal, depending 

upon the distance in such a way that the distance from source to receiver 

can be measured very accurately, (iv) the sound energy traveling 

further away from the axis takes less time to travel from source to 

receiver than sound energy traveling closer to the axis, (v) the focusing 

of sound energy in the sound channel at certain ranges. 

In this first part we will apply ray theory to illustrate the above 

properties of SOF AR wave propagation. In Section 2 we describe the 

mathematical model used to represent the SOF AR sound channel. In 

each of the succeeding sections we use ray theoretic techniques to 

investigate the implications of our profile on the above-mentioned 

properties (ii) - (v). 
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2. The Mathematical Model. 

We first discuss several general characteristics of SOFAR 

propagation in the ocean. Rays emanating from a source located at the 

depth of minimum sound speed (called the channel axis) are refracted 

toward the axis as illustrated in Figure 2-1. Those rays that leave the 

source at small angles (we shall be more precise later) undergo total 

refraction. Those rays leaving at large angles are reflected from 

surface . or bottom boundaries, and in the case of a source and receiver 

FIG. 2.1 RAY DIAGRAM FOR A TYPICAL ATLANTIC 
OCEAN SOUND CHANNEL (REPRODUCED 
FROM [9]) 
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both on the axis, these rays are unimportant at long ranges because of 

high attenuation at the boundaries. Therefore it is justif iable to assume 

that the main part of the SOF AR signal is composed of contributions 

from small-angle rays which oscillate about the channel axis. The 

path of these rays is determined only by the structure of the sound­

speed profile in the region of the minimum. 

When the source (SOF AR bomb) and receiver are both on the 

channel axis, it is known that the last of the SOFAR arrivals travels 

along the axis (see [5], [9], [21]), and that ray tubes which deviate 

most from the axis arrive first. A typical SOF AR record is sketched 

in Figure 2-2. 

Time (Seconds) 

FIG. 2 . 2 
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We shall study the situation in an inhomogeneous medium 1n 

which the sound speed c (z) is given by 

-Yz 
(2.1) c(z)=coo[l+cosh~}mz)] • M>O, 

where and M are constants (see Figure 2-3). 

z 

----------+---------~----~~~c--------------C(z) 
,oo 

FIG . 2.3 
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Thus we have an axisymmetric situation in which the sound speed 

changes only with depth. The sound speed given by (2.1) is known as 

the Epstein symmetric profile. It was first used by P. Epstein [8] in 

1930, and has been studied periodically since then in various wave 

propagation problems in several fields; see [1] , [2] , [ 4], for example. 

Another sound speed profile which has been frequently used 

(E. T. Kornhauser [12], P. Hirsch [6)) is given by 

(see Figure 2-4). However, this profile leads to results which contra-

diet the physical situation. Not only does the sound speed become 

·ru· ·t t 1 
1 1n1 e a z = ± 0 , but also this profile leads to rays where the axial 

arrival precedes the off-axis arrivals (see P. Hirsch and A. Carter [5) ). 

z 

C(z) 

FIG. 2.4 
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3. Determination of Ray Arrival Times. 

We will show that, for the Epstein profile ( 2.1), the off -axis 

arrivals precede the axial arrivals. Also we will show that, for small 

initial angles, the rays which deviate most from the axis arrive first . It 

should be pointed out that this property is not shared by all profiles 

having a pronounced minimum.. For example, the profiles treated by 

P. Hirsch and A. Carter [5], and used by P . Hirsch [6] and E. T. 

Kornhauser [12], qualitatively represent the Epstein profile around the 

channel axis. However, as shown by P. Hirsch and A. Carter [5], the 

time arrivals are not correct for SOF AR wave propagation, and thus 

it is not clear a priori that their quantitative results are correct . Later 

in Part II we give another reason to question the use of their profile. 

Consider a ray which is emitted from a point source on the 

channel axis and is observed at a point P(r,z) (see Figure 3-1). Each 

of these rays is characterized either by the angle that it makes with the 

channel axis or by the number of times that it crosses the axis. 

z 
z max 

r 

FIG. 3.1 

P ( r,z) 

I 

~ g(8,z) 
I 
I 
I 
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In order to form a general expression for r as a function o f e a nd z, 

we define the following quantities which are illustrated in Figure 3- 1: 

e = initial angle between the ray and the channel axi s' 

f:l.(9) =distance between successive intersections with t he channel 

axis, 

g ( 9, z) = projection on z = 0 of a ray from point P( r, z) to the 

nearest intersection of the ray and the axis, 

N =number of intersections of the ray with the axis after 

leaving the source, 

z = turning point of the ray. max 

If the point P ( r, z) is on the rising portion of the ray and z > 0, or o n 

the descending portion of the ray and z < 0, then we can wri t e: 

( 3.1) r = N l:l. ( 9) + g ( 9, z ) , N = 0, 1, 2, ... 

On the other hand if the point P(r,z) is on the descending port i on of 

the ray and z > 0, or on the rising part of the ray and z < 0, then 

(3.2) r = (N+l) f:l.(9)- g(S,z), N = 0, 1, 2, ... 

To calculate g ( 9,z) we consider an infinitesimal element of 

a ray as illustrated in Figure 3-2. 

z 
dz 

-------+-----------------------------------------' 

FIG. 3. 2 
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We can write 

r 

g(8,z) = sr dr , 
0 

and since dr = dz/tana 

z 

(3.3) g(8,z) s dz 
= tan a 

0 

We can express tana in terms of 8 and z by noting Snell's Law 

( 3.4) cosa cos e -..,.--....;. = ---c ( z) c 0 

where Cg = c (0). Therefore, we obtain 

( 3. 5) 

Obviously 

z dz 

g ( e. z > = cos e J -;::::;::=======­
o I c~fz) - cosZ e 

~ < e) = z g < e, z > m.ax 

Applying the above expressions to the case where both source 

and receiver are on the axis, we obtain for the distance, R, between 

source and receiver 

or 

R = N ~ (e) , 

z 
max 

R = 2Ncosef I c•, ~z 
cosze 

0 CZ{Z) 

( 3.6) 

To determine z max 
for a given ray leaving the source at an angle 8, 

we use Snell's Law, noting the fact that at z=z (a turning point of max 

the ray), a = 0. Thus 



(3.7) 

(3. 8) 

where 
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( ) 
Cg 

c zmax = cos 0 

for our profile (2.1): Now, we determine R = R (N, 0) 

zmax 

1 dz 
R = 2N cos 0 ----------------.,... 

o r{ 1-+1 M} { 1-+ ---,-M-,---: 1. - c o s z 0 J Yz 
~ cosh2(imz}J 

2 -1 [{ M }Yz] 
zmax = m cosh (l+M) cos 2 0-1 • 

Upon letting 

y =sinh (r) r 2 ( 0) = (M+l)(l-cos 2 0) 
(M+l) cos 2 0-1 

(3. 8) becomes 
mz 

(3. 9) 

. h( max) 
Sln l 

R = 4N(l-+M)Yzcos 0 1 dy _ 

m [ (l-+M)cos 2 0-1]% o [ r 2 ( O)-y2 ] ~-
2?TNcosO 

Next, we calculate the time that it takes for a ray to trave 1 

from the source to receiver (again the source and receiver are both on 

the axis and separated by a distance R). This travel time can be 

expressed by 

(3.10) T = 2N -r, 

where 7 is the time that it takes for a ray to go from point A to 

point B in Figure 3-1. Noting Figure 3-2, we have 
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z z 

(3.11) ! max dS /max 
T = = dz 

0 c\z) 0 c(z)sina ' 

and upon using Snell's Law, (3.11) becomes 

z 

(3.12) 
fmax dz 

T = Co 0 cZ(z) ~~- COSZ 8 

For our profile, given by (2. 1), 

( 3.13) 
T = __ 2_N __ jmax ___ [_l_+_c_o_s_h_~_<_m_2_z_)_J_d_z ____ -,-

coo/l+M 0 ~(~)(1+ _M_ mz ) - cosz a] Yz 
L coshz(---z--) 

Now we note that the first term. in the above integrand is identical to 

the integrand of ( 3. 8). Thus, we can write 

(3.14) 

+ 2NM dz 

By setting 

h z ( m .z ) s z ( 8) - M 
X = COS -or- , - ( ) ~ 

G l+M cos .. 8-1 

the above integral becomes 
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( 3. 15) I = 

Hence, we obtain finally that 

(3.16) 

By eliminating N from the expressions ( 3 . 9) and ( 3 . 16) we 

obtain T as a function o f R and 9: 

(3 .17) 

Yz Yz 
T = ~ { ( (M+l) cos 2 9-1] M t 1 } 

Co (l+M) cos 9 

Since we are primarily interested in the small-angle rays we expand 

(3.17) forsmall 9: 

( 3.18) T = ~ { 1 - 8
1
M 9

4 + 0 ( 9
6 

) } • 

From obvious considerations, the travel time for the "direct arrival" 

(the ray traveling exclusively along the axis) is R/c 0 . Clearly, ( 3 .18) 

implies that it takes less time for a ray to travel from source to 

receiver when the ray has a non-zero initial angle 9, and furthermore, 

the larger the initial angle of the ray the faster the time of travel, with 

the direct arrival being the last ray to arrive at the receiver. Thus we 

conclude that for any values of m and M > 0 the sound-speed profile 

( 2.1) adequately accounts for this aspect of SOF AR wave propagation. 

We can also calculate the duration of a signal received on the 
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axis. Solving (3.9) for cos 9, 

(3 .19) cos e = l 

and upon substituting this into ( 3.17) we obtain 

( 3. 20) R ~ 2?TNMYz ( 4?TzNz)Yz~ T =- + 1- z Z N c mR mR 
00 

for the travel tim.e of a ray going through N cycles from source to 

receiver. Since we are considering only those rays with initial angles 

such that 

we find that 

1 
L/ < cos e < 1 , 

(M + l)?z 

O<N<N , max 

where N = greatest integer less than (mR {1::1 ) 
max ""27T ../ Mtl · Thus we 

see that there are a finite number of rays going from. source to receiver, 

and that number depends on the parameters of the profile ( 2.1) and the 

distance between the source and receiver . Now the duration of the 

signal is the time interval between the arrival of the ray going through 

one cycle (N = l) and the direct arrival, thus 

( 3. 21) 

In the far-field (as R - oo), we see that 

T = R { (.l__ ~ + 2?TMYz + oE:,) ~ 
d \c 0 me R Rz 

00 

thus the duration of the signal is proportional to the distance between 
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source and receiver. 
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4. Focusing of Rays. In this section the phenomenon of focusing is 

illustrated using ray theory. More precisely, we will show that 

paraxial (i.e., small angle) rays converge periodically along the 

channel axis. Later in Part II we will sho~ using normal mode theory, 

that we obtain a resonance effect along the axis at exactly the same 

positions. 

We recall that the path of a ray with initial angle e is given by 

cos e cos a 
= 

co CTZT 

Noting from Figure 3-2 that 

we find on using our profile ( 2 .1) that this becomes 

( 4.1) 
dz 
dr 

1 [ J-Yz = A 1 - Az + z~ , 
cosh (zmz) 

where A z = (l+M) cos z e. Since the ray emanates from r = 0, z = 0, then 

(4.2) 

where 

Now upon setting 11 

(4.3) 

1 
zmz 

1 
r = "T' f cosh 1;. d!;. 

[ M+B coshz s) liz 

m 
T =n 

0 

z M-B 
=cosh s + ~· (4.2) becomes 

ndz) 

~ 
1 

r = dn 



where 

M+B 
D = --zi3 
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( ) 2 ( 1 ) M-B 11 1 z =cosh z-mz +-zB. 

After evaluating the integral in (4 . 3) and some algebraic manipulation, 

we obtain 

(4.4) 
( M + B ) cos ( r m j B ~ 1 ) - ( M- B ) 

= 
ZB 

In general the equation for ray paths is specified by 

( 4. 5) z = z(r;e) 

therefore focusing is expected at those values of r such that 

( 4.6) 
oz as = o 

(where the envelope of the family of rays crosses the axis). Since w e 

are primarily interested in the axial focusing of paraxial rays (small 

angle rays), we differentiate expression (4.4) with respect to e, 

assume e << l, and solve for those values of r making (4. 6) valid. 

Upon differentiating (4.4) and setting ~ = 0, we obtain 

( 4. 7) B[cos( rm/ B ~ 1 )+( M+B )sin( rm./7-1)+1] -( M+B)cos{rmj ::-1)t(M-B) =O ; 

and upon letting e- 0, B- - M, (4.7) becomes 

cos (rm~) = l, 

or 

m 
jl+M 

-. M , i. = 0, l, z, . . . . (4.8) r =--Zi.rr 

Thus we have shown that the paraxial rays exhibit focusing at equally 



-19-

spaced points on the channel axis. 

It is interesting to note that P. Hirsch [6], and E. T . Kornhaus e r 

[12] have shown focusing for the parabolic profile (2.2). Observing the 

two profiles (2.1) and (2.2), if we set c = .Jl+M c 0 and equate the 
00 

second derivitives at z = 0, then focusing occurs at the same points on 

the axis for both profiles. Also if we assume M >> 1, then our result 

agrees with E. T. Kornhauser and A. D. Yaghjian [ 3]. 
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5. Complete Ray Picture. 

In order to obtain a better qualitative understanding of our 

sound speed profile, we will now look at the complete ray picture . In 

particular we will show that there are no shadow zones f or our profile. 

In contrast, we will analyze the ray picture resulting from the bilinear 

profile. In this case we will show that there are shadow zones. Finally, 

we will show what class of profiles leads to wave propagation where 

there are no shadow zones. 

Consider the Epstein profile 

( 5.1) 

-~ 

cosh~tmz)] 
From Section 3 we note that z , the coordinate at which a ray 

max 

turns back toward the axis, is given by 

(5.2) 

Now since 

co = 
c 
ro 

:s:;c(z) < c 
ro 

we obse r ve that those rays which have turning points are such that their 

initial angles, e. obey the following relation: 

(5.3) 
l 

< cos e < 1 

and the limiting ray (the ray with initial angle e1 such that all rays 

with initial angles e > fl have no turning points) has an initial angle 

(5.4) 
-1 

cos 
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Since the profile is symmetric, we confine our attention to 

those rays having an initial angle between 0 and 11'/2. F rom Section 

3 we note that 

(5.5) z =~cosh- 1 {[ M JYz}, 
max m (M+l) cos?. e-1 

and for the limiting ray 

= 00 

Now we can determine r , 
max the distance from the source (along the 

channel axis) at which a ray goes through its first turning point: 
z 

(5.6) 

For the above profile 

(5.7) 

max 

r -[ max 0 

dz 

r m.ax 

1r cos a 
= m[cos 2 e--1 -J-Yz Mtl 

and for the limiting ray (as 1. e- e ), z -oo 
max ' and r - oo. max 

The result of the above analysis is illustrated in Figure 5-l, 

and we can see that there is no zone of geometrical shadow. 

Now consider the following sound-speed profile which is 

illustrated in Figure 5-2: 



-N -
------==~--------~u J -----:::::::;::::::==--

N 
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For this profile 

{5.9} 

therefore the rays which have turning points are such that their initial 

angles are in the range 

{5.10} 
co 

~ cos e < 1. 

The lim.iting ray has an initial angle 

{5.11} 

We can easily solve for z by substituting ( 5. 8} into ( 5.2). max 

{5.12) 

and for the limiting ray, 

{5.13) 

For the above profile, 

{5.14) 

and for the limiting ray 

{ 5. 15} 

z m.ax 

The actual ray paths are given by Brekhovskikh [ 4]: 

co z 
{ r - 13 tan 8} 

c 0 z 
+ (z + 13} 

Thus 

These rays, which are produced by the above profile, are illustrated in 



N 
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Figure 5-2; and we see that there is a geometrical shadow for this case. 

Q) 
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c: -E 
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From the previous analysis we can see that ther e is no shadow 

zone if as then r -oo; andobviously, if e-e1 , max and 

r approaches a finite number, we would expect a shadow zone . W e 
max 

will apply this observation quantitatively to obtain a condition on the 

sound-speed profile which dictates whether or not there is a shadow 

zone. 

. ( 5.15) 

We analyze the following integral: 

z.£ 

1 !max dz 
r max = tan a 

0 

Using Snell's Law, we can write the above integral as 

z.£ 

(5.16) 1 !max c(z) 
rmax = 

0 
~ 

where 

f(z) 

Expanding f ( z) about z = z 1 gives 
max 

(5.17) f(z) = -2[c(z)c' (z)l (z-z 1 )-[c' 2 (z)+c(z)c"(z)J'(z-z 1 t + j max t max 

z=z1 z=z 1 
max max 

O(z-z 1 ) 
max 

From this expression we see that a sufficient condition for 

be infinite is 

de 
dz = 0. 

r .£ to 
max 
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1. Thus we can conclude that if c '( z ) = 0, then there are no shadow m.ax 

zones present in the sound channel duct; and if c'(z 1 ):# 0, then w e max 

would expect shadow zones. 
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PART II 

In this part a more penetrating quantitative study is done by 

means of analytical techniques on the governing equations. Several 

people have derived expressions for the acoustic field in the underwater 

sound channel from a CW (continuous wave) source. E. T. Kornhauser 

[12] has used the parabolic profile in expression (2.2), Part I, as a 

model for the sound speed. R. L. Deavenport [l], Iu L. Gazarian [2], 

and E. T. Kornhauser and A. D. Yaghjian [3] have used either the 

Epstein profile or similar profiles to derive expressions for the acoustic 

field. 

These expressions for the acoustic field from a CW source 

are too cumbersome to give much insight into the physical phenomena 

which result in the ocean. Thus we will study the transient problem 

which is more complex analytically; however, the results are much 

simpler to interpret and are much more relevant to the acoustic field 

produced by an actual explosion in the ocean. P. Hirsch [6) has investi­

gated the problem for the parabolic duct; but as we have already pointed 

out in Part I, there are several reasons to doubt the validity of this 

model for acoustic wave propagation in the ocean. We shall study here 

the transient problem for the more rea lis tic Epstein profile. 

In Section 2 we employ a double transform to formally derive 

an integral representation for the acoustic pres sure amplitude, and from 

this representation we obtain several alternative representations. The 

case where both source and receiver are on the channel axis and greatly 
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separated is studied in Sections 3 and 4. In particular, we v e rify some 

of the earlier results derived by ray theory in Part I, this time , of 

course, giving them by means of a more quantitative formulation. 

Furthermore, complete asymptotic results are obtained for the far - field. 

Hence our problem is to determine the acoustic pressure field 

p = p(r,z,t) satisfying 

(1.1) 

(1.2) p(r,z,O) = O,r ~ 0, -oo < z < oo , 

(1. 3) pt(r,z,O) = 0, r ~ 0, -oo < z < oo, 

where 

- 1 

(1.4) c2 (z) = c ~ [1 + M J .......... cosh 2 a mz) 

Later in our analysis we shall explicitly use the conditions that 

p (r, z, t)- 0 as r-oo, z-± oo, for any fixed t , and p (r, z, t) i s 

regular at r = 0 for all z and t; of course, these conditions are 

implicit in the formulation (1.1), (1.2), (1.3) . 
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2. Formal Solution. 

We now derive several representations of the solution of 

problem (1.1), (1.2), (1.3). For the time-harmonic case where f (t) = eiwt 

problems have been solved by Iu L. Gazarian (2], L. M. Brekhovskikh 

[4], R. L. Deavenport [1], and E. T. Kornhauser and A. D. Yaghjian [3]. 

In principle the solution for a general time dependence is achieved 

merely by taking a Fourier transform of these previously derived 

s elutions. Such an integral representation, however, does not yield 

even a superficial understanding of the properties of the solution, and 

in fact the forms generally given for the time-harmonic solution are in-

complete in the sense that not enough is known for a study of a Fourier 

integral of the representation. 

We present a complete derivation of the solution, carefully 

stressing certain pertinent details needed in our subsequent analysis. 

For the time harmonic case our results agree with those of (1] - [ 4] . 

Our first representation is obtained by applying first a Fourier 

transform in t and then a Hankel transform in r. Define 

00 oo+i<T' 

( 2 .1) 1 f iwt P(r, z, w) = 
2

'71" p(r ,z ,t)e dt, 
-00 i -iwt 

p(r,z,t)= ~r,z,w)e dw, 
- +HT 

where <T > 0 and p(r ,z ,t) = 0 for t< 0. In the standard way we find that 

the boundary value problem (1.1), (l.l) , (1.3) transforms to 

(2.2) 

where 

(2.3) 

- o(r) o(z) F(w) 
27!'r 

00 

r ~ 0, -oo < z < oo, 

F (w) = 2~ J e+iwt f (t) dt, 

0 
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and where, as usual, we append to (2.2) the boundary conditions that 

P satisfy either the Sommerfeld radiation condition or appropriate 

decay conditions at infinity. Now, define 

00 00 

(2.4) <I> (z ,u,w) = J rP(r ,z ,w) J 0 (ru) dr, 
0 

P(r ,z,w) =I u<j> (z,u,w)J0 (ru)du, 
0 

and apply these in the usual way to find that <1> satisfies 

(2.5) 

(2.6) 

where k(z) = c{z)· 

Now, let 

( 2. 7) 

lim [.1.] = 0 , 
z-±oo 't' 

Then, (2.5), (2.6) become 

(2.8) 

(2.9) 

d
2 d> + [ v (v-1) _ z].~,. = -o(t)F(w) _ 00 < r < oo, 
~ cosh2 z: tJ. 't' m1r ' ., 

lim [ J s-±oo <1>_=0. 

It is shown in Appendix A that two linearly independent solutions <1> 1 and 

<l>z of the homogeneous equation corresponding to (2.8) are given by 

(2.10) 

(2.11) 

where F (a,b; c; z) is the hypergeometric function. With the choice that 

Re {tJ.} > 0, we have <!>1- 0 as t,--oo and <1> 2 - 0 as t,- oo . Thus, by 

standard techniques we find that the solution of (2.8), (2.9) is 



-31-

(2.12) 
- F ( w) 4> 1 ( t;,<) 4> z ( t;,>) 

4> ( t;, ) = m'lf W (4> 1 ' 4> z) ' 

where t;, < and t;,> are respectively the lesser and greater of o and t;,. 

Here W(cp 1 ,cp 2 ) is theWronskianof 4> 1 and cp 2 which, as we showin 

Appendix B, is given by 

(2.13) 

where r (z) is the Gamma function. Thus, we have finally that the 

solution of (2.5), (2.6) is given by 

- ~f.J.Izl -mlzl v -Mzl 
..!.. ( ) = F(w) r(f.J.+l-v) r(f.J.+v)e (l+e ) F(!J.+V,V;f.J.+l;e )_ 

(2.14) 'I' z,u,w 

Therefore, using ( 2 .14) and inverting the Hankel and Fourier transfOrms, 

we conclude that the solution of our boundary value problem (1.1), (1. 2), 

(1.3) is given by 

cotio- ~ co (l) ] 
p(r ,z ,t) =if.~ Ju<t> (z ,u,w) H 0 (ru)du 

-cottcr- -co 

-iwt 
e dw, ( 2 .15) 

where H~)(x) is the Hankel function of the first kind. In inverting the 

Hankel transform we have used the fact that 

co co 

f 1! (1) P(r,z,w) = ucp(z,u,w)J0 (ru)du = z ucp(z,u,w)H0 (ru)du, 

o -co 

which easily follows by using the properties that (i) 4> (z ,u,w) and J 0 (ru) 

are even functions of u, (ii) J 0 (z) = i H~l)(z) + i HF)(z), and (iii) 

H (2)( ) _ H(l)( 'lfi) 
0 z - - 8 ze . 
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While (2.15) does provide an exact answer to the problem, it 

does not lend itself, in its present form, to any sort of analysis for the 

extraction of properties of the solution. Hence, we now derive alter-

native representations. First, it will be convenient to make the following 

changes of variables: Let 

me 
a-~ 

- 4.../M ' y -

Then, (2 .15) becomes 

(2.16) p(r,z,r) 

c 
00 

where, in the new variables, 

(2.17) 

w=a£,u=yv, r =at, 
(J" 

f3 = ­a 

Complex contour integration will now be used to evaluate the 

integrals in (2.16) . First , it is advantageous to formally interchange 

orders of integration, and thus we first consider the integral Q give n by 

oo+if3 

(2 .18) Q =! 
- oo+if3 

Vz Vz Vz 
Initially, we assume v is a real variable . Let o = (1+£ 2) = (~-i) (~ +i) , 

and define the square roots so that - ~ < arg(~-i), arg(~+i) < 3
; . This 

together with our previously imposed requirement that Re{f.t} > 0 i mplie s 

that we take branch cuts as illustrated in Figure 2-1. From (2.14) we 

see that poles of the integrand in (2.18) can result only from singularities 

of r(f.t+l-v), r(!J.+v), and F (as), the Fourier transform of f (t). For 

all reasonable functions f (t), the poles of F(as ) lie in the half-plane 
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Im{£} ~ 0; and as shown in Appendix C, the poles from the Gamma 

functions lie on the real axis in the £-plane between -v and v and in 

fact are given by the solutions £ of 
n 

1-1+ i + i 5 = -t (t= 0,1,2, ... ) for -v ~Re{£} < 0, 

(2.19) 

1-1+ i- i 5 = -s (s = 0,1,2, ... ) 

Thus, we can write (2. 18) as 

ro+ij3 

for O<Re{£} ~v. 

(2.20) 
Q =I =! +! +! +! 

- ro+ij3 

The meaning of the integrals on the right in (2.20) is clear from Figure 

2-2. In the usual way, the integrals on the contours p
3

L, p
3
R, pp 

vanish in the appropriate limits (see Appendix D). 

At this point it is convenient to confine ourselves to the case 

where z = 0. (i.e., both source and receiver on the channel axis)'. Thus, 

(2.20) and (2.16) imply 

( 2. 21) 

where 

(2.22) 
ro (1) 

G (r,s) =/ vH0 ( yrv) q, (0, yv,a ~) dv, 

-co 

and where FR = plL + p 2 L + p 2R + plR' We now evaluate G (r, £) as 

given by (2.22); clearly, this must be done in each of the four cases 

corresponding to ~ on plL' p 2 L' P 2R' In all cases there is 

a branch point at v = 0 due to the Hankel function, and in all cases we 



-35-

lmt 

(.-,Pp 
I I) 

1 1 r 

t p3L ! t 
p2L 1 p2R 

I I 

I 

~ p3~ 
I 
I 

I .: : 

L __ j ____ ~~-----J 
I I 
I PIR I 

poles of 
r (p.+ v) 

l_ ---~----- -------' Ret 
poles of v 
r(p.+l-v) 

-I 

FIG. 2.2 



-36-

-n 3n 
choose the branch cut in the v-plane as T < arg(v) <z-. There will 

also be branch cuts from the requirement that Re{f-l} > 0, where f-1 is 

defined in (2.17), and clearly, here the position of the cuts depends on 

the values of ~. 

For ~ on plL the requirement that Re{f-l} > 0 implies that 

we take branch cuts as illustrated in Figure 2-3. In addition, for ~ on 

plL' the only poles in the v-plane are at those v for which r(f-1+v) is 

singular. For fixed ~ on plL' these consist of a finite number of 

1 0 simple poles given by those vt for which f-L+ z +z = -t, t = 0,1,2, ... ,M(;), 

where M(~) is the greatest integer less than Re{ -t o-i}. Thus, by 

deforming our contour into the upper half of the complex v-plane as 

shown in Figure 2-3, we proceed in the usual way to obtain 

(2.23) G (r,~) = f vH~l)(yrv)<\> 
bt+bz 

~~) 
dv+2ni l (residue at v = v t). 

t=O 

We now confine ourselves to the far field. It is well known (see [ 4] , 

pp,466) that in the limit as r-oo the contribution of the integrals in 

(2.23) is of a smaller order of magnitude than that from the series. (As 

r-oo the integral is 0 (.!.) while the series is 0 ( \ 1 ) ) . Thus, we 
r r / 2 

have that, for ; on plL' as r-oo, 

(2.24) 

where a=-Re{o} and b=Im{o}. Asimilartreatmentcanbegiven 

for ; on plR' This contour integration is illustrated in Figure 2-4 

(see Appendix E). We now let E- 0 (see Figure 2-2) so that plL' plR 
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approach the real axis, and henceforth we assume i is real. In 

summary, we obtain (as r-oo) 

(2.25) 

M(~) 

G(r,z) = 2. 
s=O 

(1) 
g ( ~) H 0 ( ± r jus j} + o ( \-; ) , 

s · r / 2 

where the plus or minus sign is taken for ~ on the positive or negative 

real axis, respectively (see Appendix F), and where 

= 8MTTi ( -l}s zs -1-a 
gs (~) 

2 {a -1- 2 s } r {a - s } F { ai ) 
r(l+s )rz (l~s) rz (a+

2
1- s) m 

(2.26) a = ..fl+ ~z 

luI 
m ( £ [ a-1 r) 

s =-z 4M + 2 -s 

and M(~) is the greatest integer less than (ail). It is shown in App e ndix 

1 
G that for ~ on PzL or p 2R we have G (r,~) = o(1f) as r- oo . 

r / 2 

Therefore, (2.22) provides the desired evaluation of G(r,~) asymptot -

i cally as r-oo. 

Now, we use the following well-known properties of the Hankel 

function: 

Then, as r-oo, 

(l) ;-; i(z-:!J.) 1 
H (z) = j- e <± + o(-) as z-oo, 

O TTZ ~ 
z 

(2) 
H 0 (z) =r;. TTZ 

-i(z-~) + (_1_) e o 11 as z-oo, 
z / 2 
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(2.27) 

M(~) 

=I ±i(r lu 1- ~) 1 
h (~) F (a~) e s + o(11) , 

s r ' z 
s=O 

where the plus or minus sign is taken for ~ on the positive or negative 

real axis, respectively, and where 

(2.28) 

We now substitute (2.27) into (2.21) which we write as 

(2.29) p(r,O,r) = "Y~ I G(r,~)ei~r d~ + -y~a I G(r,~)ei~T d~. 
IlL P1R 

Finally, we make the change of variable ~ = -x in the first integral of 

* (2.29) and use the facts that M(~) =M(-~), hs(~) =hs(-;),F(-a~)=F (a~). 

and r(1~s) is singularfor s=l,3,5 , . . . , toobtainthatas r-eo, 

p(r,O,'T)- -am/;r Im 

(2 . 30) 

a-1 
where N(~) is the greatest integer less than (4) . 

In order to interchange orders of summation and integrati on 

in (2 . 30) we observe that 

A 
s 

where H [x] is the Heaviside function defined as 1 for x ~ 0 and 

0 for x < 0. Then, (2.30) becomes finally 
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(2.31) 

where 

(2.32) 

-a a-1 2 (-z-2s) r (a-2s) F (a~) H[ N(~)-s) j(r jUgj-~r) 

rz(a~1-s)j juzsl d~. 
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3. Asymptotic Evaluation of The I (r ,t). 
s 

In order to determine properties of the far field we shall 

evaluate the integrals I (r,t), given by (2.32), asymptotically. From 
s 

the definition of N (i) in (2 .3 0) we see that N (i) = n when 

Thus, the integrand of I is identically zero 
s 

for 0 < ~ ~ .../ (4s+l)Z -1 because N (~) ~s for ~ > .../ (4s+l) 2 -1. There-

fore, 

( 3 .1) 

where 

(3.2) 

I can be written as 
s 

irf (i) 
(X) 

Is(r,t) = J s 
q (i)e di, s 

.../ (4s+l) 2 -1 

-aca-1 ) = 2 --z -2 s r (a- 2 s) F (a;) 

rz (a;l -s) /luzs I 

In the present section we shall be primarily interested in the 

time history of the acoustic pressure p (r,O,t) at any fixed point in the 

far field. Since p (r ,0, t) undergoes significant changes in both its 

quantitative and qualitative behavior, we shall need different asymptotic 

expansions for several different time intervals. Furthermore, in the 

remainder of this section~ assume that M >> 1 for the purpose of 

simplifying many of the necessary algebraic manipulations . This 

assumption implies that the sound velocity profile possesses a very 

pronounced "well" near the channel axis (see Figure 2-3, Part I). 

First, we apply the principle of stationary phase for fixed 

as r-oo. 
r 

The stationary points are the zeroes of f' (s). s Now, (2.26) 
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and (3.2) imply that 

(3.3) 

Then, 

by 

( 3.4) 

f (~) =.!!! [~z(l+ Ml) -2a .J'i"+P+ 1+ aZ l -5..:!: s 4 zs zs r 
-' 

I -
M>>l and f (s)=O implythatthestationarypoint g isgiven s 

1 s = 
..JM x-1 

where 

If this stationary point g lies within the range of integration in ( 3 .1), 

then, as is well known, I = 0( \ 1); if g does not fall within the range 
s r ; z 

of integration, then I = 0(1). Since the integration range is s>..f(4s+lf -1, s r 

the stationary point does lie within this range if g>..f(4s+l2 -1, that is,if 

(3.5) s < ~ [ j ~;l -!]=~[ <-~ -1 J ~ Q(r,t,M). 

/ 1 
Mr 2 

Therefore, for fixed r,t the modes (i.e., terms of the series in (2.31)) 

corresponding to s = 0,1,2, ... , Q(r ,t,M) dominate the rest of the modes. 

Thus, using the stationary phase formula, we find that as r-oo for 

fixed r 
.,. ' 

(3.6) I 8'1T 
I (r t)- -

s ' rm 

( 
mcoll) 3 m 1 'IT 

/z r(n-2s)(n-a )F .fY i[-(--a )r+-] 
11.._ zs 4M X 4 n zs 4 

zn rz(t+~-s) e ' 

so that (2.31) yields 

f) <n) -4s 
Cf)n3/2 '\ 2 r(ry-2s)(n-a

2
s) 

p(r ,O,t)- n L 1 _J. 1+ Im 
;nc n) i[m4 cl -a )r+'IT] 
F\~ e n zs 

(3 .7 ) r2 s=O r(l.+2s)r("z- -s)r <7-s) 

where 

a = 1+4s, 
28 

-jMx n- Mx-I 

4M..fX 
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and fj(n) is the greatest integer less than Q(r,t,M). 

Several observations must now be stated. First, we recall that 

the method of stationary phase is not valid near those points for which 

f~ (~) = 0. In the present problem this occurs for n = 0 (i.e., for Mx=l) , 

Hence , we conclude that (3.6) and (3.7) are not valid near t = .JM.r = T . 
c 
00 

(Note that for M > > 1, T is the arrival time for a ray traveling along 

the channel axis; see Part I of this paper.) 

Next, we note that for t <<.JM.r (i.e., Mx>>l), (3.4) implies 

~ = -
1

- [1+ 0(~ )] , so that Q(r,t,M;: siA [1+ O(J )l Thus, in the 
../Mx X X )( ., 

time range t < < T, the only mode present in the series in ( 3. 7) is the 

zeroth mode (in fact, this mode is always present and yields the familiar 

precusor effect associated with the integral transform - stationary phase 

type of treatment). As time goes on (still satisfying t < T), more and 

more modes of the series in (3.7) come into play. The time 1c at 

which the kth mode comes into play is clearly given by Q(r •1c•M) = k, 

which yields , upon solving for 1c• that 

t:_ = .JM r j(4k+l) 2 -1 
-k c 4k+l . 

00 

We have found that for t < T the far-field is adequately 

described by (3.7). (An interesting alternative derivation is given in 

Appendix H.) It now remains to study I (r,t) for t in the range t:::::T . 
s 

In order to discuss the behavior of I (r,t) in the neighborhood 
s 

of t = T, we use a method similar to that used by C. L. Pekeris [9] m 

studying Airy waves. This analysis arose in the study of the propagation 

o f a pulse in a liquid layer, and is used where the method of stationary 

phase becomes invalid . Again we study I (r,t) for r large and fixed. 
s 
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Actually from purely physical reasoning one would expect some kind of 

change in the behavior of I (r ,t) for t near T, because a wave tail 
s 

should begin at a time corresponding to the direct. arrival of energy 

along the channel axis. 

We will show that the dominant behavior of I (r,t) is dependent 
s 

on the behavior of its integrand for high frequencies and is critically 

dependent upon the high frequency behavior of the Fourier transform of 

the forcing function f (t). This is analogous to Pekeris' result where 

II 

the dominant behavior is dependent on the frequency so such that f (s 0 )=0. 

To begin the analysis we note that the phase function in the 

integrand of (3.1) can be written as 

(3.8) 

where 

(3.9) 

Recalling the definition of group velocity, U = ~ , we obtain 

( 3 .10) u<s) = ..i. .rl+P 
m s 

and we observe the group velocity as a function of frequency from 

II 

Figure 3-1. Thus U(s) has a minimum at s = oo (k (s ) = O). Also 
m m 

we note that the point of stationary phase ~- oo as t-T. 
II 

In order to evaluate I (r ,t) about t = T (where f (s ) = 0, s 
s m m 

infinite) it will be instructive to recall the analysis done by Pekeris [9] 

and summarized by Brekhovskikh [ 4]. For this case, the group velocity 

as a function of frequency is illustrated in Figure 3-2. We observe that, 
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for r large and fixed, the method of ~tationary phase breaks down at 

that t = t (where the point of stationary phase f = ~ ). Thus we 
m m 

observe that the main contribution to the integral arises from the point 

~ (finite) for t - t , and we expand the integrand of I (r ,t) about 
m m s 

~ = ~ . Thus setting ~ = ~ + u, we obtain 
m m 

q(~)-q(~ )+O(u), 
s s m 

( 3 .ll) 

<I>(~)=<!>(~ )+[t-k'(~ )r]u--6rk"'(~ )u3+0(u4 ). 
s s m m m 

We note that the derivatives of k(~) evaluated at ~ are independent 
m 

of r and t, whereas using stationary phase they would be dependent 

upon r and t. Therefore,if we substitute (3.ll) into (3.1), we find 

that, for sufficiently large r and for t sufficiently close to t , I (r ,t) 
m s 

is asymptotic to an Airy function. These are the so-called Airy waves. 

In principle we should be able to do the same type of analysis for ~ 
m 

infinite. 

Now we evaluate I (r ,t) in the far-field for t- T = r / c 0 • We 
s 

recall from expressions (3.4) that the point of stationary phase goes 

to infinity as t- T; thus we can write 

(3.12) I
9

(r,t) ~I+ l 
;l(4s+l) 2-l N 

where N >> 1 and is such that N < f < oo. Therefore, in the far-field 

(3.13) 
00 i4> (~) 

I (r,t) = r Q (~)F(a~)e 8 d~+O(L). 
s JN s r 

Assuming that Q (~) is slowly varying as ~-co (we have shown that 
s 
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lim Q (~) =A ) F(w) - g(w) as w-oo, and noting that 
~-oo s s' 

(3.14) 

then 

00 

( 3.15) 

. rn . (r ._, 
-1r-:-a I 1w- -11 4 zs c 0 e g(w)e 

aN 

as £-oo, 

. a 2 r 
I--

2coW e dw. 

Since as r-oo, for f fixed, there is no point of stationary phase in 

the above integrand in the interval 0 ~ ~ ~ aN, then to within 0(!._) 
r 

( 3.16) 

where 

00 

\; (r ,t) - e f g(w) e-iw T ei B/w dw. 

0 

. m -1r- a 
Q (oo)e 4 zs 

s e = a 

Assuming that g(w) = ~+l , 0 < X. < 1, •r > 0, and letting 
w 

y = JB/"T' 

we ob tain 

( 3 .17) 

X = 2/B"T , w = Y7'J , 

1 
A.+l 

7') 

drj . 

From G . N . Watson [22], we recognize the above integral as the 

integral representation of the Bessel function K (X), thus 
v 

( 3 .18) 

.( m A ) -1 r -a -- 1f' 
Q (oo) e 4 zs 2 

I ( r , t ) - __.;;;s_--::---=-~-~---
s a 2A.-lbA. rA. 
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2 

b = !!l_..£o - mco 
32 ' a - 4 x=2/br(t-..!:_), O< A < l. 

co 

In summary, we have evaluated I (r,t) in the far-field for 
s 

t - T = r / c 0 for any forcing function f(t) such that its Fourier trans-

form, F(w) = o( ~~~l3 ), as w-oo 1 < 13< 2. 

such functions is 

(3.19) f ( t) 1 
= r(l3) 

One reasonable class of 

We wish to point out explicitly that our result depends critically upon 

the assumption that our forcing function f (t) has a Fourier transform 

F (w) which behaves like 

(3.20) F (w) = 0 (-
1
-) 

lwl 13 

as w- oo. It is well known that the high frequency components of any 

function play a very important role in the Fourier synthesis of that 

function, and thus, since our analysis in the range t- T corresponds to 

the point of stationary phase moving off to infinity in the frequency 

domain, it is reasonable that we must make an assumption sue~ as (3.20). 

For an interesting calculation of I (r,t) as r-oo for t = T, 
s 

see Appendix I. 
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4. Focusing from Normal Mode Theory. 

Since this convergence phenomenon is time-independent, it will 

be illustrated using the time-independent solution to our problem. There­

-iwt 
fore, we seek the solution to (1.1) with f (t) = e Assuming that 

p(r,z,t) 
-iwt = P(r,z,w) e 

then P(r,z,w) is determined from (2.2) with F(w) = 1. Since we are 

interested in focusing along the channel axis we want P(r,O,w), and 

this has been calculated previously in expression (2.25): 

(4 .1) P(r ,O,w) as lu I r-oo. s 

Since the quantity (Ius I r) is large we can use the asymptotic form of 

the Hankel function; therefore for 

(4.2) 

where 

N#) 
P(r,O,w) ~ L 

s=O 

lu lr- oo, s 

i( r lu 1- 1!:.) 
2S 4 

e 

and N(s) is the greatest integer less than (a~1 ). In obtaining (4.2) 

1- s 
from (4.1) , we have also used the fact that r(z} = oo, s =1,3,5, · ·· . 

.. lfe now examine the range-dependent part of the above expression 

d e*. and focusing will be exhibite for some values of s The range-depenrent 

part can be written as liz 

. I I iriE4 [s2(MM+l)- 2a .Jl+£2 + 1+ a2 J . 
(4 . 3 ) 

1r u 2s 2s 
e 2s = e 

-:-:::::-:-.;.._---:--:-:-
*The variables is the normalized frequency. To get a "real"frequency 
range, we must consider the real frequency w . 
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Assuming that ~ > > 1, then 

and upon assuming that 

we find that 

-[ 2a M Yz 
(4.4) 

ir lu I zs 
e 

. m M+l zs ~ elr 4 ~~~ 1- ~(M+l) J 
2a M 

zs 
Finally if we assume that ~ >> M+l the range dependence becomes 

asymptotic to the following 

(4. 5) 

a M J zs 
s(M+l) + · · · 

and the time independent solution can be written: 

(4.6) 

where 

(4. 7) 

NI) 
P ( r , 0 ,w) ~ K ( r; s ) h ( s ) 

zs 

. /M 
-1mr v' Mt-l s 

e 

s=O 

K(r;~) 

-1mr -- s 

= e i [~r (s/M~l- j M~l) - ~ J 
. jM 

we see that if e M+l = + 1 for all s, Observing (4 .6), 

we would have constructive interference from all terms in the series, 

and thus would have focusing . This is indeed the case when 

(4.8) mr ~~l = 2111', J. = 1,2, · ·· , 

or 

(4.9) r = 217r JM+f J. = 1,2, . .. . 
m { ~ · 
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These positions of convergence along the channel axis are the same as 

those which were predicted using ray theory in Section 4, Part I. 

It must be noted that for a given frequency of the forcing 

function, 

such that 

(4.10) 

-iwt 
e 

(i) 

(ii) 

we have demonstrated focusing only for the modes s, 

w > > 
me 

00 

4.JM' 
(1+4s+8s 2 ) 

(1+4s) 

me ...fM. (1+4s) 
w > > _ __:;;00~-----

Z(M+l) 

From the above conditions we see that for fixed m and c , the larger 
00 

the parameter M, the greater the number of modes that are known to 

produce focusing. 
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Appendix A 

We will find two linearly independent solutions of 

(A. 1) d 2 cb + [v(v-1) _ z] A- = 0 ~ cosh2~ ~ ~ ' 
-oo<r,<oo 

(P. Epstein [8] ). 

Let 

(A. 2) 

and note that 

d = d!;, 

Then (A. 1) becomes 

(A. 3) 

Now let cp(T)) be of the form 

(A.4) 

where a. and 13 are arbitrary constants. Upon substituting (A.4) into 

(A.3) and letting a.= t, 13 = v, we find that H(T)) satisfies the hyper-

geometric equation 

(A. 5) v( 1-v) H " ( T)) + [ C- (A+ B +1) v J H' ( T)) -A B H ( T)) = 0 

where 

v = -T), A = ~tv, B = v, C = ~+1. 
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Thus one solution of (A.l) is 

{ 1 lim [ ] If we assume that Re IJ.J> 0, we see that 1;.--oo <f> 1 = 0. 

Similarly, if we let 

-Zr 
Tj=e '=', 

we find that 

_.,y _zrV -2Y 
<f>z = e r-'::> (l+e '=') F (!J.+v, v; j.i.+l; -e '=') 

is a solution of (A.l); this solution is such that ~~00[¢z] = 0. 
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Appendix B 

To evaluate the Wronskian W ( cp 1 , cp 2 ) we adopt the following 

notation: 

F+ = F ( tJ.+ v, v; 
-21;, tJ.+l; -e ) , 

F = F(tJ.+v, v; fJ.+l; -e 
2 1;.), 

G+ = F(tJ.+v+l, v'+l; tJ-+2; -e- 2 ~), 
(B.l) 

tJ-+2; -e2s), G = F(tJ.+v+~, v'+l; 

f = 
2(f.1+v)v 

tJ.+l 

g = 1-1+ 2v 

Then in terms of the above notation: 

-ur -2rv 
¢2 = e r"'(l+e "') Ft • 

r 2 r v -l 2 1;, ( 2+ ) r 2 r v 
cJ> ~ = e tJ. "' ( 1+ e "' ) [ f.1 + g e ] F _ - f e f.1 "'( 1+ e "') G , 

and W(cp 1 , cp 2 ) can be written as 

Since the system is self,adjoint W(cf>p cp 2 ) = constant, and we will 

evaluate it as ~ - + oo. 

From. the series definition of the hypergeometric function 

F (a, b ; c ; z) , 

-2r -2r 
F = 1 + 0 ( e "'), G = 1 + 0 ( e "') + + 
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as s- + oo. Using the analytic continuation •:>f the hypergeometric 

function (see [11] ), we can express F_ and G_ in terms of hyper­

geometric functions with argum.ent e -
2 s: 

F = B -2(f.1+v ){, F + B -2v {, K 
- le + ze ~, 

(B. 3) 

where 

and B 11 B 2 , B 3 , B 4 arefunctionsof f.1 and v. Substituting (B . 3) 

into (B. 2) we obtain for W(cp 11 cpz), 

4 v 
v[1 -2{, e- {,] [{-2{, -2f.1{, (B . 4) W(cp 1 , cp·J = 2 2 + e +-z f e (B 1 e ~G++BzK+Gt) + 

(B3 e 2
f.1sH+F+ +B4I+F+)} -(f.1+g)(B 1 e 2

f.1sF: + BzK+F+)J 

and noting that 

-2r -Zr -Zr 
K+ = 1 + 0 ( e '='), H = 1 + 0 ( e '='), I = 1 + 0 ( e '=') + + 

as {, - oof we find that 
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Appendix C 

It will be shown that the poles of the gamma functions r (fJ.+l-v) 

and r (fJ.+v) lie on the real axis of the . £-plane in the range -v ~ Res ~ v. 

In order to carry out this analysis we must know where in the £-plane 

the real and imaginary parts of fJ. and o assume positive and negative 

values. This is illustrated in Figure C -1. 

Im£ 

RefJ. >0 Reo<O Reo>O 

Irn o> 0 Imo >O 

Reo<O Reo>O 

Imo<O Im o < O 

Figure C.l 

First we will show that there are no poles in the first quadrant 

(Re£>0 , Im£>0) . Since , in this quadrant , RefJ.>O and Reo > O, the 

only possible poles are at those £ such that fJ. + ~ - f = - s, s = 0, 1, 2, ... ; 

0 
however, since Im f.l< 0 and Im o> 0, Im fJ.,;: Im 2· Therefore, 

1 0 h fJ. + z - 2 * -s, s = 0, 1, 2 , . . . in t e first quadrant and there are no 

poles . In the second quadrant Re fJ. > 0 and Reo < 0; therefore,the only 

1 0 possible poles are at those £ such that IJ. + z + 2 = -t, t = 0, 1, 2, .... 

But here lmtJ.<O and Imo>Oi thus lmfi* -Im f: again we observe 
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that there are no poles. Similarly, it can be shown that there are no 

poles of the gamma functions in the third or fourth quadrants. Now 

consider the portion of the imaginary axis Im s > 1. Here Re 6 = 0, and 

Re f.l> 0; therefore, (2.19) cannot be satisfied for any S· Thus there 

are no poles. For the portion of the imaginary axis 0 < Im s ~ 1 we 

have two cases to consider. First we approach the axis from the right. 

For this case Im fJ. = Im 6 = 0, Re fJ. > 0, 0 ~ 6 ~ 1; therefore, (2.19 ) 

cannot be satisfied. Similarly, as the axis is approached from the left, 

lmf.l = Im6=0, RefJ.>O, -1 ~ 6 ~ 0; again (2.19) is not satisfied. On 

the portion of the real axis Res >v, Re fJ. = 0 and Re 6> 0; therefore, 

poles may exist at those s 1 6 such that fJ. + z - 2 = - s , s = 0, 1, 2 , ... 

However, Im 6 = 0, and Im fJ. < O or Im>O, depending upon the direction 

from which the axis is approached. Again there are no poles. Similarly 

it can be shown that there are no poles on the portion of the real axis 

Res < -v. Finally, upon applying the above analysis for those s on 

the remaining part of the real axis,we find that there are poles of r (j.J.+v) 

on -v ~Res< 0 and poles of r(fJ.+l-v) on 0 < Re s ~ v . 
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Appendix D 

We will show that if F (ag)- 0( lgl-e) as lgl- oo where E > 1, 

then 
-R 

(D.l) I -J R-
i£ 'T cp ( 0, yv, a g) e dg - 0 , as R-oo 

-R+i~ 

The same analysis can be used to show that the integrals over p
3

R and 

p p vanish in the appropriate limits. 

Noting that 

(D.Z) F (t.J.+ v, v; J.L+l;-1) = 
2-(~-L+v){.; r(!J.+l) 

r(l + 1:!:..:Y.) r(1+1-L+v) 
2 2 

upon setting z = 0 in (2.14) we obtain 

(D.3) 

Substituting (D.3) into (D.l) and letting g = -R+ir), we obtain 

(D.4) I -R - z!.; J 
0 

where o and 1-1 are functions of (-R+ in) . It is obvious that 

o = (l+g Z) Yz - £ as lgl - oo, thus o - -R+in as R-oo. To evaluate 

1.1 as Ig l-oo on p 3 L' refer t o Figure D-1. 
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lm( 

-R -tiT) 

Ret 
-R -v v 

-I 

FIG. 0.1 

Therefore, 

(D.5) jJ. = -- (s+v)l'< (s-v)l'2 = 1 z Sln( 1 z )-1 cos(~) , 1 ~~ ~~ .JP;P: [ . 9 +9 . 9 +9 J 
2~ 2VJM 2 2 

where 

pI = .Jr,Z+(R-v)Z, 

Expressing tJ. in terms of the angle 9 1 + 9 2 , we find that 

(D.5) 

and noting that 
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then 

(D. 6) 

Letting R- oo, 

and 

fJ. - l ( YJ + iR] . 
z..(M 

Thus 

fJ.+l-v - ~ [1 + ~ J 
R [~ -1 J fJ.+V 2 

(D.7) 

1+ !J.+V R 
[1+ ~ J 2 4 

l+!J.+V - E Gri -1 J 2 4 

as R- oo. Using the asymptotic expansion o f the gamma function: 

r(z) - fz; -z z-1.. 
e z 2 as z- oo in I a r g z I < 11' , 

we obtain as R-oo 

r(f.l.+1-v) r(tJ.+v) 

Finally 
A 1 iR ,..... --n -

I __ l _ /M+l ( F [ot(-R+in)] Z..JM_ efl'T l..JM_ eiRT Rdn 
R 161!'m {MJ 

0 
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as R- co; therefore,if F [ a(-R+in)]- 0 (R -e) as R-oo (E >1), then 

IR- 0. 
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Appendix E 

We will calculate the residues from the contour integration 

(E.l) 

for two separate cases: Re ~ < 0 and Re ~ > 0. 

We consider the case Re ~ > 0, which is illustrated in Figure 

2-3. It has been noted that the poles of the above integrand are at 

(E.2) ) 
1 0 

fl. (v t + z + 2 = -t ' t = 0,1,2, ... , M(~) 

or 

(E.3) 

Since the poles of the gamma function are simple poles, we obtain for 

the residue, Rt• at the pole v = vt: 

(E.4) 

where 

1 0 To evaluate the denominator of (E.4), we let n = z-- z-- fl. and note the 

identity 

r(l-n) 
..,. 

= r(n) sin ( "'Yl) 



-64-

Then 

and 

(E.S) ..A ( 1 
) = d~ (r(n) sin (11" n)) 

dv r (..-.+%+ ~) ., 
n=l+t v=vt 

(~) 

since at v = vt' Y) =l+t. Using the expressions: 

z 

._..z = ( i- ~ - n) 

~ 
dv 

ihl 
dv 

we obtain 

(E.6) 

Finally upon substituting (E.6) into (E.4), we obtain 

(E.7) 4M 
R =-

t m 

For the case Res> 0, which is illustrated in Figure 2-4, we 

use the same analysis; however, now the poles of the integrand in (E.l) 

are at those v = v such that s 
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(E.8) - s. s = o. 1, 2, ...• M <s) • 

or 

Vz 
V

8 
= [ s z + M ( o - 1 - 2 s) z J . 

In this case we obtain for the residues, 

5 2s-1-a-bi (1) 
4

M (-1) 2 (a-1-2s+bi) r(a-s+bi)H
0 

(yrv
5

)F(a£) 
Rs = m ,s=O,l,Z, ... ,M(£). 

r (1+s) rz (1-2s) rz (a+1-:+bi) 
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Appendix F 

We will show that the poles of r(tJ.+V) lie in the 'second quadrant 

of the v-plane for those s on the path plL in the s -plane; and as e- 0, 

the poles approach the negative real axis. For those s on the path plR, 

we will show that the poles of r(tJ.+l-v) lie in the first quadrant of the 

v-plane; and as e-O, these poles approach the positive real axis. 

We recall from Appendix E that the poles of r(tJ.+v) are 

(F .1) for Res < 0 (s on p 1L) , 

and the poles of r(tJ.+l-v) are 

Yz 
(F.Z) vs = [sz+M(.o-1-Zs)z] , for Res> 0(£ on plR). 

Letting 

at= 1+2t, 

we can write (F .1) and (F .2) as 

(F . 3) 

and 

(F .4) 

Onpath plR' £ =s 1 +isz (£ 1>0,£ 2 >0); andfromFigureF-1, wenote 

that (1 + s 2 ) Yz = .J p 1 Pz ein . Assuming that n < < 1, we can show that 

(F .5) 
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On path plL' s = -£1+is2, (l+s 2>Yz=-~ -in e . 
' and for Y7 << 1, p 1 p 2 

and s 2 are given by (F .5). 

Noting that for n < < 1, 

(F .6) 

we obtain 

2 2 

(F.7) Yt=Bs~+l-2at...fl+s~+ a~-B(l~~~) n-2...fl+s 2
1 n(BV1+s 2

1 -at)i, 
1 

2 2 

(F .8) Zs = Bs ~ + 1- 2a ...fl+s i + a 2 -B ( l~i 1 ) n +2...fl+ s i n(B...f l+s f -a ) i 
s s 1 s 

Now 

z 

Bs~+l- zat...fl+sl +a~> (v'l+sl-at) > o, 

therefore, for € < < 1 (n < < 1), Yt and Zs can be represented by the 

complex numbers: 

Yt = a - if3 , zs = 01. + if3 (a> o, 13 > O) . 

Thus the poles of r(tJ.+v) lie in the second quadrant and the poles of 

r(tJ.+l-v) lie in the first quadrant; and in the limit as €-O(n- 0), 

v-
t 

v­s 

- j (l+M) sf + 1- 2at ...f 1 + s l + at2 

+ j (l+M) s l + 1- 2a ...f l+sl + a 2 
s s 
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lm! 

Ree-

FIG. F.l 
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Appendix G 

We will show that, for £ on the path PzL' then 

00 

(G .1) G (r, £) = J vH~l)(yrv)¢(0,yv,O'£)dv = o (Yz) 
-oo 

as r-oo. On PzL' £ =i£z (0<£ 2 <1), and 6 = -vl-£l. As before, we 

will evaluate G (r,£) by contour integration in the v-plane. From the 

requirement that Re {f.L}> 0 , we take the branch cuts as illustrated in 

Figure G-1. 

lm v ---, ,---
.- I - - .... 

I / I / 

' "' I ' / 

' / I / I 
/ 'f ' bs / b51 ' I I I 

I I ' I J l 
: (2 I f 

I I 

' ~ I 
bp3 I 

I 

... 
\ 

FIG. G.l 

...... 
'-4. .... 

' ' ' 
' ' ' 

' ' \ 
' ' \ 

\ 

\ 

\ 
I 
I 
I 

'Rev 
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Since -1 < 6 < 0, the integrand of (G. 1) does not have any poles in the 

complex v-plane; therefore we proceed in the usual way to obtain 

(G.Z) G (r,£) = j vH~) (y rv) cf> dv . 

1!'i 

Now if we let v = e 2 v, and note that 

and 

then G(r,£) canbewrittenas 

(G.3) 

where 

00 i1!' 

G(r,£) = 2F(a£)ij vH~l)(yre2 v)Sdv, 

Sz 

Confining ourselves to the far field we obtain 

00 

(G.4) G (r,£) - Js- F(a£)/ vYz .;-:;ryr e-yrv e dv· , 

Sz 
and since 

00 

£ v Yz e -y rv e d v - 0 as r - 00' 

then 
G (r,£) = o(Yz) . 

By the same analysis we can show that as r- oo, 

G (r,£) - o(r4) , 

for £ on the path PzR. 
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Appendix H 

The asymptotic expansion obtained in Section 3 for t < T 

breaks down as t- T. We will develop an expansion which can be used 

for those t approaching T but not equal to T. Again we consider the 

integral for I 
s 

00 

(H.l) Is = £ Qs (s) F (as) 

Cs 
where 

We have previously found that the stationary phase point of the 

above integral is s = b 
~ 

and our immediate interest is to deter-

mine how large r must be to obtain an asymptotic expansion of I for 
s 

b near 1 and fixed. We will now manipulate the above integral (H .1) to 

make the · point of stationary phase independent of b. Let 

s = sinhp, 
b -=-- = cosh S• 

v'r:P 
= sinh -l(C ) 

Ps s 

therefore, (H.l) becomes 

(H.2) I 
s 

im r-v'l- b 2 cosh(p-~ 
F[asinhp]e 4 coshpdp. 

Now upon letting 

we obtain 
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(H.3) 

00 
ir .J1-"bZ 7 cosh'/' 

J =j Q [sinh( q>+ ~)] F [a sinh('/'+~)] e s s 
p-~ s 

Now we apply stationary phase as the new variable . r.Jl-bZ- oo, obtaining 

J 
s j 81!' 

mr.Jf:"h'Z 
[ 

b j ~b J 1 i(Tr'-'l-b 2 '1-~) Q F -- --e . 
s ~ 1-b ~ 

This expansion is valid if F (w)- 0 ( 
1a) • a~ 1 as w-oo, since 

w 
Oshd - constant as X- oo. 

In summary, the above analysis shows how large r must be in 

order to obtain an asymptotic expansion for I for t near T . s 
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Appendix I 

We will evaluate expression (3.1) as r- oo for t = T, and 

we will show that the series in (2.31) converges for all r (large) except 

possibly at a denumerable number of points. 

We recall that for t = T 

(1.1) 

where Q (£) and C have been defined in Appendix H, and h(s)=Vl+s z_ s. 
s s 

Also let 

(I.2) 

where 

00 

J= I 

A 
s 

s=O 

A I 
s s 

Observing the behavior of the phase function h(£) in Figure I-1, 

we see that (i) h'(s)< 0 for all finite ;, (ii) s~ h'(s) = s~h(£) = 0, 

(iii) h(C ) = a
2 

- v'a 2 -1 s s zs 

h(~) 

h(C 5 } ------------~ 

I, 
I ....... 

...... 
...... .......__ -------- ~ -+----~~----------------=-~----~ 

Cs FIG. I.l 



Letting 

and noting that 

then 

(I. 3) 

e - .!.:..!C 
"" - 2n 

ns 
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ds = 

J 5 = tf os[~JF[a~)] 
0 

Now if we assume that as n- 0, 

(1.4) 

lim J for 1 <X< 2 , and where n- 0 (YJ) = const :f. 0, then J s becomes 

Yls 

(1.5) Js =/ 
0 

where 

and 

O<A.<l. 

The above integral is merely a Fourier integral with a singularity 

at one end and can be evaluated asymptotically as i=-oo (ErdtHyi [15)): 

J s 

11'>--· -1 

r(A.) e 2 ~ (0) 
s 



or 

(I .6) J s 

-75-

Now using the expansions as z - co: 

(I. 7) 

(1.8) 

we find that 

(I. 9) 

1 
r (z) ~ e -z ZZ-z ffi 

z+~ a 
~ z ~"' e 

limo (s) = s- co (fixed s) 

-Zs 
2 

Finally we can write for the first term in the asymptotic expansion for 

I as r- co: 
s 

(1.10) 

where 

(1.11) 

- Zs -irms 
I ~e(r)2 e 

s 

e (r) 

i mr -(11'}...--) 
= e

2 2 
r(}...)] (O) 

2%-2}... %+}... % }.._ 
m 7T r 

Now that I has been determined asymptotically we return to 
s 

the original series in expression (I. 2), and investigate the convergence 

of this series: 

(1.12) 

Define 

(1.13) 

co 

J ~E>(r) L 
s.=O 

s=O 

A 2 -zs e -irms 
s 
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co 

(I.l4) -Zs I -zs A 2 cos(rms)- i A 2 sin(rms) 
s s 

s=O 

and note the following test for convergence: 

Let u 0 + u 1 + 

N 
is indeterminate ( ~ 

s=o 

· · · + u + · · · be a series which converges or n . 

us < A, independent of N). Let €0 ,E 1 ,···,En,. .. 

be a monotonically decreasing sequence of positive numbers which 

approach zero as n becomes infinite. Then the series 

co 

I 
s=O 

converges. 

E u s s 

We will apply this test to both series in (I.l4). First we will 

show that the quantity 

(I.l5) B = A 2-zs 
s s = r(l+2s) r 2 (f -s) 

forms a decrea.sing sequence of numbers. Using the identity 

we obtain 

(I.l6) 

r (1-YJ) 

B 
s 

=2zsrz(s+lh) 
11'l r (l+s) 

B 
and upon examining the 

. s+ 1 
raho ~ we find that 

(I.l7) 

for all s. 

s 
B 1 
~- s+z 

B - s+l 
s 

< 1 

Thus the B form a decreasing sequence of numbers and 
s 



as s- co, 

(1.18) B -s 
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1 

Now we must show that 

(1.19) 

and 

(1.20) 

N L cos(rms) < Ac 

s=O 

N I sin(rms) <As . 

s=O N 

* 

C . d h . . H -- '\ eies onst er t e geometrtc sertes L with sum 

(1.21) 

Manipulating 

N 

(1.22) '\ Lj 
s=O 

s=O 

l-eie(N+l) 
H = ie 

1-e 

(1.21) , we find that: 

sin(es) = ImH =sine- sin[ (N+l)e]+ sin(Ne) 
2 (1-cos e) 

(1.23) ~ cos (es) = Re H = 1-cose- cos[ (N+l) e)+ cos (Ne) 
0 2 (1-cos e) 
s=O 

Therefore,upon using the identities: 

(i) 1-cose = 2 sin2 ~ 

(ii) . e 2 . e e stn = stn 2 cos 2 , 

(iii) sin (e+cp) = sine coscp + cos9 sincp , 

(iv) cos(e+cp) = cose coscp - sine sincp , 
N 

*Obviously for mr=2k1!',k=O,l,2, ... , s~ 0 cos(rms)=N+l; thus the sum is 

not independent of N and we cannot prove convergence. In fact, for 

this case the first series in (1.14) diverges and the second one is zero. 
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we can easily show that 

and thus 

N 

N l sin(es) = 

s=O 

. Ne . [(N+l)e J s1n z-sln 2 
. e s1n2 

I ~;in (6s) I .; -~-s.....;i~;;_--~-~ = As (independent of N) . 

Similarly, a bound for the cosine series can be determined which is 

independent of N. 

In summary, we have taken the series in expression (1.2) and 

evaluated it asymptotically as r- oo for t = T. We determined that 

00 

J ~ e ( r) I As 2- zs 

s=O 

-irms 
e 

which converges for all r except for r = 2k?r, k = 0, 1, 

result is valid for all forcing functions f (t) such that 

F {a~) = F [a(~~rzz) J ~ rzX as rz- 0, where 1 < x < 2 . 

This 
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APPENDIX J 

We will show that the wave equation is a good approximation of 

the equation which is satisfied by the acoustic pres sure in the ocean (see 

P. Bergmann [ 22] ) . 

(.J .1) 

(J.2) 

(J . 3) 

We consider the following equations for a perfect fluid: 

2.e_ + div(pu) = 0 
at 

p [ ~~ + (~. \7) ~ J + \lp + p g = 0 

p = p(p ,S) 

Continuity Equation 

Equations of Motion 

Equation of State 

where the density p, pressure p , velocity u , and entropy S are 

functions of position x and time t; and g i s the acceleration due to 

gravity . 

Now, if we assume a reference state p = p0 (x) , p = p0 (x), 

u = 0 , S = S0 (x) , we observe that the equation o f continuity is identically 

satisfied, and the equations of moti on and the equation of state become 

(J.4) 

(J.S) 

(J . 6) 

where 

Po = Po (Po , So ) • 

Assuming constant entropy we can show that 

QE.- cz. (p)~ 
dt - dt 

A- ..£. + (~. \7) 
dt- at 
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Thus the continuity equation becomes 

(J .7) 

(J.8) 

!!£+ p cZ(p) divu = 0. 
dt 

We now linearize 

[
au - -J -p at+ (u · \7)u + V'p + p g = 0 

about the above static solution. Therefore let 

(J.9) 

where 

p(x, t) = p0 (x) + PI (x, t) 

p(x, t) = Po (x) + p1 (x, t) 

u(x, t) = u 1 (x, t) , 

£!. <<1. 
Po 

Upon substituting (J .9 ) into (J.8), and noting that cZ(p} = cz(p0 )+0(p1 ), 

the terms of highest order are: 

8pl (- "'} z d" - = <rt + u 1 • v Po + Po c 0 1 v u 1 0 , 

{J.lO) aul "' Po at + vpl + P1 g = 0, 

w + ul · V'Po - ccf [ .?£1 + ul . \7 Po J = 0 , 

where c 0 = c{p0 }. These five equations determine the acoustic quantities 

p1 (~,t), p1 (~,t), and u 1 (x,t). 
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We now study the time harmonic solution of the system of 

equations (J.lO). Let 

(J .11) 

- - iwt 
ul (x, t) = ul (x)e 

(- t) = pl (-x)eiwt Pt x, 

( t) . rl (-x) eiwt Pt x, = 

Then the system (J.lO) becomes: 

(J.l2) 

(J.l3 ) 

(J .14) 

Solving (J .13) for U1 , we obtain 

(J . l5) 

and upon substituting this into (J .14), we determine r 1 

(J .16) 

where 

g = - '5ZEo 
Po 

as a function 

After substit uting (J.l5) into (J.l2) and (J.l4) and taking a linear 

combination of the results, we obtain 
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(J.l7) \72 pl + w2 rl - m \7 r.l = 0 . 
Po 

Finally, upon substituting (J.l6) into (J.l7) we obtain 

(J .18) 
2 [ P1 -~ G · 'VP1] n [1 Pl- sf G · 'VP1 ] 

\72P + ~ w - :LEo \7 -{ w } = 0 
1 c2 - p cZ - • 

o G • \lp o o G . 'VPo 1 - - 0 - 1- ..:::..,----!..J:_:.U 

wZ Po w2 Po 

IGI 
Now we assume that the frequency w is such that the ratio is 

small. (This can be done by either considering very high frequencies or 

assuming that the layer of fluid is in adiabatic equilibrium). Then the 

effect of gravity waves is negligible and (J.l8) becomes 

Since 2Qo, \leo <<1, we can neglect the last two terms; therefore, we 
Po Co 

finally obtain that 

We have been considerigg relatively high frequency propagation, and 
IGI 

thus for our problem --z- is negligible on the basis of a high frequency 
w 

assumption. Hence for a time dependent forcing function f(t) composed 

of comparatively high-frequency components we expect by the usual 

Fourier synthesis that the time dependent pressure field p 1 (~, t) satisfies 

1 
-~ 

0 

where F(~, t) is proportional to f(t). 

= F(~, t) 
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