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Abstract 

Data were taken in 1979-80 by the CCFRR high energy neutrino experiment at 
Fermilab. A total of 150,000 neutrino and 23,000 antineutrino charged current events in the 
approximate energy range 25 < Ev < 250GeV are measured and analyzed. The structure 
functions F2 and :r:F3 are extracted for three assumptions about crL/crr: R=O., R=O.l and R= 
a QCD based expression. Systematic errors are estima-ted and their significance is discussed. 
Comparisons of the :r: and Q2 behaviour of the structure functions with results from other 
experiments are made. 

We find that statistical errors currently dominate our knowledge of the valence quark 
distribution, which is studied in this thesis. xF3 from different experiments has, within errors 
and apart from level differences, the same dependence on x and Q2 , except for the HP'WF 
results. The CDHS F2 shows a clear fall-off at low-x from the CCFRR and EMC results, again 
apart from level differences which are calculable from cross-sections. 

The result for the the GLS rule is found to be 2.83±.15±.09±.10 where the ftrst error 
is statistical, the second is an overall level error and the third covers the rest of the systematic 
errors. QCD studies of xFa to leading and second order have been done. The QCD evolution of 
xFa, which is independent of R and the strange sea, does not depend on the gluon distribution 
and fits yield 

ALo = 88±}:3 _-Jrb 13 MeV 

The systematic errors are smaller than the statistical errors. Second order fits give somewhat 
different values of A, although as (at Q~ = 12.6 GeV2) is not so different. 

A fit using the better determined F2 in place of xF3 for x > 0.4 i.e., assuming q = 0 
in that region, gives 

A - 266+ 114 +ss MeV LO- -104 -H 

Again, the statistical errors are larger than the systematic errors. An attempt to measure R 
was made and the measurements are described. Utilizing the inequalit.y q(x)~O we find that in 
the region :r: > .4 R is less than 0.55 at the 90% confidence level. 
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Ch.upteT 1 

Introduction 

§1.1 Motivation and Physics 

Just as Rutherford's experiments proved that the positive charge in the atom is 
concentrated in the nucleus, electron experiments have shown that charge in the proton is 
not. uniformly diffused over the nucleus but instead is concentrated in very small regions. These 
experiments were pioneered by Hofstadter and others at SLAC and MIT. The electron is a 
good probe because it is a point particle and is well understood in the framework of the highly 
successful theory, QED(ll. In 1967, a SLAC-MIT collaborative effort began which used the 
SLAC linac to study the scattering of electrons from nucleons at different energies and angles(2). 

The incident electron beam had energies ranging from 4.5 GeV to 20 GeV. The incident beam 
energy spread was less than 0.5%. Two spectrometers were used to scan the scattered beam in 
energy at fixed angles. As the sampled energy was decreased at fixed angle, the cross section did 
go through an elastics peak and resonances as expected. The elastics peak had the characteristic 
l/q4 dependence expected from the photon propagator; in additidn it showed a rapid fall with 
rf ascribed to a form factor . Beyond the resonances was found the deep inelastic scattering 
cross section, which was surprisingly fiat in q2 except for the 1/ q4 from the propagator. Such 
a cross section suggests a point scatterer since the form factor is the Fourier transform of the 
charge density or scatterers. 

Such behaviour of the cross section has since come to be known as "scaling" and 
was first explained by Bjorken and Paschos(4l and by Feynman(3). Since then interest in the 
structure of the nucleon has grown considerably, especially with the identification of these point 
scatterers, or partons, with quarks. The behaviour of quarks within the nucleus is expected to 
tell us more about QCD, the heir-apparent to the mantle of theory of strong interactions. It 
is also expected that experiments performed with leptons as probes of the nucleus will further 
confirm the by now accepted "\Veinberg-Salam-Glashow theory of electroweak interactions. 

It is precisely because we have so much faith in the theory of weak interactions that 
leptons are used as probes of the nucleus. And because, as far as is known, leptons are point 
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particles. Charged leptons suffer from the disadvantage that their interactions with quarks are 
principally electromagnetic, giving rise to the 1/q'* photon propagator. On the other hand, 
they are easier to use as a tool since momentum selection of charged particle beams is simpler. 
The experiment described in this thesis utilized neutrinos as probes instead; this was facilitated 
by the advent or energy-selected neutrino beams first suggested by Sciulli(s), Peterson<6l and 
others. Neutrinos have no electric or colour charge and consequently interact only weakly with 
the quarks in a nucleon, a fact that enables us to study -the Q2 behaviour or nucleon structure 
without the large 1/Q4 modulating effect of the photon propagator. 

Neutrino interactions with the nucleon are shown in figure 1.1. The standard model or 
electroweak interactions describes the lepton vertex completely, the hadron vertex is unknown. 
By studying the x-distributions of cross sections we hope to learn more about the nucleon. For 
example, the integral of the structure function 2xF1 (=q+q), is approximately 1/2. This leads 
us to believe that the remaining half of the nucleon momentum is carried by something other 
than quark-partons and these particles are expected to be the colour force carrying gluons. 
Since there are three valence quarks in the nucleon according to standard hadron spectroscopy, 
we expect the valence quark structure function, xFa , to peak at roughly a third of the available 
momentum, i.e., around 1/6. This indeed seems to be the case. 

In the picture accepted now, valence quarks are accompanied by gluons that bind 
them and a sea of quark-antiquark pairs that are constantly being created and annihilated. 
Figure 1.3 illustrates these structure functions. The scaling hypothesis is violated by QCD 
processes shown in figure 1.2. They change the relative momentum fractions carried by the 
valence quarks, sea and gluons as the nucleon is probed to shorter and shorter distances (Q2 

increases: see fig . 1.2). It is the aim of this experiment to study the structure of the nucleon 
well. 

An introduction to the theories relevant to neutrino-induced charged current interac­
tions is presented in the first part or Chapter 7. Briefly, in the ~ark-parton model point-like 
quarks are confined by forces within nucleons but behave as though they are free when probed by 
high energy particles. Quantum numbers or the quarks are assigned in a way that explains the 
spectrum or hadrons. To simplify calculations the quarks are frequently assumed to be massless; 
this cannot be done for the more massive quarks {charm and beyond). QCD attempts to explain 
the interactions between quarks on the basis or a property known as "colour" . Colour charge 
is responsible for the attractive forces between quarks and their consequent confinement within 
hadrons. The property or asymptotic freedom explains the basic parton model assumption of 
interactions with free quarks. Thus, deviations from the parton-model predictions are small 
corrections at high energies. Quantitatively, the predictions about charged current analysis 
that can be tested are: 

i. From the quark-parton model: 

a. The total cross section should be linearly proportional to the incident neutrino energy, 
Ev. 

b. They-dependence or the differential cross-sect ions is dictated by spin considerations {see 
Appendix C). For example, the differential cross section for antineutrinos on quarks is 
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(1.1) 

e. There are no spin-zero constituents in the nucleon, therefore 2xF1 ( = q + q) is equal 
to F2 (~ q + q + 2k). The only contribution toR, defined by 

(1.2) 

comes from target mass, transverse momentum and binding effects, and R"' 1/Q2 , 
i.e.,(3) 

(1.3} 

d. The total number or quarks in a proton is 3 (the Gross-Llewellyn Smith sum rule}: 

(1.4} 

e. The scaling hypothesis!3•4) i.e., the structure functions are functions or x alone, not x 
and Q2 • 

f. F2 in electron and muon scattering experiments is not q + q since the virtual particle 
exchanged there is the photon. The photon coupling amplitude is proportional to the 
charge or the quark, hence 

(1.5} 

5/18 is the mean square charge or quarks in a nucleon. The factor in curly brackets is 
a small correction. 

ii. From QCD: 

a. The structure functions depend on Q2 as well as x; to leading logs in the pertur­
bative expansion the dependence is like 1/ ln(Q2 }. QCD prescribes the evolution 
or structure functions (see chapter 7). The evolution or xF3 is described by an 
independent integra-differential equation while that or F2 is coupled to the (as yet 
unknown) gluon structure function. 

fJxFa = !( F} 
fJ In Q2 x a (1.6} 

(1.7) 
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b. R, t o leading order, behaves as 1/ In Q 2 , is large at small x and small at large x: 

(1.8) 

In addition to the above, Regge theory predic~s that as x tends to zero xFa behaves 
like .jX. 

§1.2 Experiment E616 

This experiment was done at the Fermi National Accelerator Laboratory located in 
Batavia, lllinois (near Chicago). The experiment consisted or a large steel target on which were 
impinged neutrinos and antineutrinos or energies ranging from 30 GeV to 300 GeV. Charged 
current interactions change the neutrinos to muons when they leave a nucleon and also produce 
a shower or hadrons. The neutrinos can also interact without transforming into a muon, the 
study of these so-called ~neutral-current" interactions is vast and complicated by itself and 
does not form part or this thesis. Thanks to some earlier experimentsC7l done by this group at 
FNAL, the detector was essentially completely built by the time the run started in early June 
1979. In the 8 months that followed we used a total of 5.87xl018 protons from the main ring. 
The neutrinos produced from the decay of secondary pions and kaons created by the interaction 
of the proton beam with a target gave rise to approximately 150,000 charged current neutrino 
events, the antineutrinos producing a smaller total or 23,000 events. 

The antineutrino data and about half the neutrino data have already been subjected 
to analysis for purposes or measurement or the total cross section - this work is described 
in an earlier thesisC8 l. Since E616 is a high statistics experiment with a dichromatic beam 
the data not only yield normalized cross-sections, but can also 1le exploited for a relatively 
accurate measurement or structure functions. While this data set was being analysed our 
group carried out another experiment to investigate the possibility of neutrino oscillations.<109l 
Another experiment is planned Cor the Tevatron at Fermilab, it will, in main, study structure 
functions at the much higher energies possible there. Combined with E616 data all these data 
add up to an invaluable bank for the study or the nucleon and QCD. 

§1.3 Organization of Thesis 

As mentioned earlier, a whole Ph.D. thesis has been written on the measurement or 
total cross sections in E616. An earlier experiment (E356) by the same group has also produced 
a thesisC9l. Consequently the description of the apparatus for the detector and the monitors 
requires no more repetition and can be looked up in the above-mentioned references. This thesis 
will state the bare minimum in these areas except to describe recent advances in understanding 
(such as with the C-counter) and to emphasize those aspects of the beam monitoring that are 
particularly relevant to structure function analysis and/or have not received adequate treatment 
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elsewhere. Also included is a discussion or the calibration or our ion chamber, in which the 
author played a major role. 

Another thesis(10) is being written on similar material from E616. Much or the analysis 
has been done in common and it is not possible to unambiguously divide it in two. Two methods 
or analysis were used by this group with this author consistently preferring maximum likelihood 
techniques. This applies to the extraction of structure functions and extraction of R. For the 
Gross-Llewellyn Smith sum rule and QCD analysis we restrict ourselves to xF3 . The reader may 
find more detailed descriptions or some topics in one thesis as opposed to the other, re.H.ecting 
the history of the analysis . Most of the topics are clearly outlined in the table of contents and 
the reader should be able to navigate his/her way through with facility. 

' 
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The Neutrino Beam 

§2.1 The Dichromatic Beam 

High energy neutrino beams can be produced by the decay of charged pions and kaons 
generated in the interaction of hadrons with hadrons. At Fermilab part of the 400 GeV proton 
beam in the main ring is extracted and impinges on a BeO target 10.5 in thick. Typical 
intensities during the E616 running period were around 1013 protons per pulse. The proton 
beam was extracted in two spills: in a fast spill or "' 2ms and a slow spill of "' 500ms. We 
used only the fast spill (which minimizes cosmic ray events) for antineutrino running, the data 
taking not being rate limited there. Typical per pulse secondary beam intensities were about 
5 x 109 for negative settings and 2 x 1010 for the positive setting!. The proton beam and the 
dichromatic train are shown in figure 2.1. Listed below are total proton and secondary beam 
intensities achieved during the ten energy settings at which we took data. 

The proton beam produces many charged hadrons on ineraction with the target, chiefly 
pions, kaons and protons. Charged pions decay 99.97% of the time into muons and muon 
neutrinos; charged kaons do the same only 63.5% or the time. More interesting is the fact that 
these are two-body decays, so the energies of the decay products are fixed in the centre-of-mass 
frame. Therefore we isolate pions and kaons in a narrow momentum range to obtain neutrinos 
in a narrow energy range. The desirability of a thin momentum slice must be balanced against 
high-flux requirements. Since neutrinos from kaon decays have much higher energies t han those 
from pion decays (see App. A), the neutrino beam is really dichromatic. The pions and kaons 
are removed by a 20 ft steel and aluminum beam dump, the muons range out in 930m of steel 
and earth. 
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Eser Fast Spill Slow spill 

(GeV) Open slit Cl. Slit Open Slit Cl. Slit 

Protons Secondaries Protons Protons Secondaries Protons 

(X 1012) (x10°) (X 1Q12) (x1012) (X lOg ) (X 1012) 
-250 1121000 202000 93800 0 0 0 

-200 531000 264000 25600 0 0 0 

-165 3i9000 270000 22700 0 0 0 

-140 288000 283000 32800 0 0 0 

-120 199000 232000 15500 0 0 0 

120 110000 484000 17000 151000 642000 17600 

140 138000 673000 11600 187000 837000 12900 

165 207000 1155000 15100 295000 1641000 15100 

200 301000 2068000 45800 353000 2444000 44500 

250 556000 5243000 56700 542000 4894000 42100 
Total - ves 2516000 1252000 181000 0 0 0 

Total +ves 1312000 9623000 146000 1529000 10460000 132000 
Total 3828000 10880000 327000 1529000 10460000 132000 

Table 2.1. Accumulated beam intensities over running period 

Here it seems appropriate to mention different kinds of neutrino beamsJ12l The 
simplest kind of beam, or course, would be one in which no attempt is made to select the 
sign, momentum or direction or the decaying mesons. Such a beam is clearly not very useful 
for any precise normalized measurements. Examples or beams that sign-select but still manage 
to use most or the flux of mesons are horn and quadrupole triplet beams. Simple focussing 
magnets can be used to collect more mesons into the forward direction than with a bare target 
beam. This improves the neutrino flux. Horn focussed beams have good sign selection and 
high flux, but have a relatively high flux of low energy neutrinos. The quad-triplet beam on 
the other hand compromises flux and sign selection in order to improve the relative content of 
higher energy particles. 

Our dichromatic beam (fig. 2.2) is sign-selected in a narrow momentum bite (Ap/p ~ 
±9%) and has an angular divergence of ±.15mrad in the horizontal and ±.18mrad in the 
vertical direction. The secondaries are then allowed to decay in an evacuated decay-pipe 340m 
in length. As shown in appendix A, neutrinos from a thin monochromatic beam of secondaries 
will have a fixed, known energy for a given angle of decay. This means that as one goes away 
from the centre or the neutrino detector in Lab E, the energy of neutrinos falls off as a known 
function of transverse direction (see Appendix A). Such a dichromatic beam is very desirable 
since it is easy to measure its flux. Increasing the length of the decay pipe, the momentum 
spread or the angular spread all increase the flux at the price of uncertainty in knowledge or 
the intensity as a function or energy and radius . 

Shown in figure 2.3 is a scatter-plot of neutrinos observed as a function of radius and 
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energy with the E616 secondary beam set at 250 GeV fc at Lab E (muon triggers). Notice 
the clean separation of neutrinos from pion and kaon decay. Figure 2.4 is a projection of this 
scatter-plot at a .ll.xed radius (10 in < r < 20 in ), showing agaip the separation. For details 
beyond those in appendix A the reader is encouraged to read references 9 and 12. Particle 
production by a 400 GeV beam is described in ref.l3 which includes the particle content of 
the secondary beam (pions dominate negative energy settings and the lower positive energies, 
gradually giving way to protons at higher positive settings}. 

Pion and k:aon production cross--sections fall otr steeply going away from 0°, while 
their relative content does not show as sharp a variation. For this reason the production 
angle in the E616 beam is zero degrees. In order to minimize background from the decay of 
secondaries before sign and momentum selection, the proton beam strikes the target at an angle 
or 12.0lmrad. This background, called the wide band background is therefore mainly at low 
energies (hadrons produced at~ 12mrad have lower energies}. There is a like background from 
the large-angle decays of forward going hadrons. Measurement of these wide-band backgrounds 
is easily accomplished: one simply cuts off the secondary beam by closing a slit and the wide­
band neutrinos are the only ones to reach the detector. Their flux can be estimated well by 
using the neutrino cross--section measured by this and earlier experiments.l7•9 •30) 

Another background arises from 3-body decays of kaons (K,..3 and K.3: K±-JJ±'v~ 7r
0

, 
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K± __,. e±1v~ 1r0 ). This background is small, lower in energy with a larger spread and is estimated 
via linkage to the main neutrino flux by a Monte Carlo program. 

§2.2 Beam Flux Monitors 

As mentioned earlier, one or the better distinctions of a dichromatic beam lies in 
our ability to measure its tlux with relative ease. This may be accomplished either by the 
measurement or the secondary beam flux or by the measurement of the decay muons produced 
along with the neutrinos. The latter approach did not prove to be consistent and accurate, at 
least to the level at which it was pursued, and will not be discussed further. Both methods 
involve tying t~reads or information about total tlux, mean momentum, angular dispersion, 
beam composition, direction and background together into one consistent unit. Several devices 
were used to monitor one or more or these quantities, the dependence or the final flux as a 
function or energy and radius at Lab E being predicted by a Monte Carlo program that utilized 
all available information. Other programs were used to perform cross-checks and to estimate 
the total cross-section. Calibration (esp. of the ion-chamber) and analysis (particularly that of 
the Cerenkov counter) of all the devices was done by yet other programs. It is not possible, as 
mentioned earlier in the introduction, to go into every detail here - the cross-section theses(8,9l 
are again to be referred to. 

As is usually the case, one of several devices used to measure a quantity ends up being 
its primary monitor, the rest serving as useful checks. The total flux comes primarily from the 
ion chambers at the expansion port (fig. 2.5) which is just before the decay pipe (see fig. 2.2), 
and the target manhole (towards the end or the decay pipe). It was mainly the expansion port 
ion chamber that was used, with the manhole ion chamber acting as a backup. 

The expansion port ion chamber (fig. 2.6) consists or three ion chambers in one: one to 
measure the total flux, one to monitor the beam direction, and a tb.ird for calibration purposes. 
All three consist or a central high voltage plate 18 in in diameter (the beam is contained within 
a 4 in radius at the expansion port and within an 8 in radius at the manhole) flanked by two 
similar signal plates. In the case of the calibration chamber the HV plate is separated from its 
neighbours by an inch; the HV plate in the flux-measuring chamber being separated by a 1/4 in 
from the signal plates. The signal plates in the beam-direction monitoring chamber are split in 
two at lines through their centres, with one plate split into top and bottom halves and another 
into east and west halves. The idea, similar to tracking devices in telescopes, is to ensure spill 
by spill that both halves receive equal amounts of charge and the beam is thus centered. The 
larger the gap, the more the signal collected, a total gap or 1/2 in being sufficient for regular 
flux monitoring. The inner diameter of the chamber plates is 16 in as opposed to 22 in for 
the manhole ion chamber (which has an outer diameter of 30 in ). The manhole ion chamber 
has a total flux gap of 1/4 in. The operating voltage on the expansion port ion chamber is 600 
V. The plates are .003 in aluminum foils. There is also a 2 in gap containing an Americium 
source for relative calibration due to temperature and pressure fluctuations. 

In order to calibrate the ion chamber using particle counting techniques one must go 
to lower beam intensities than those of the real beam (typical secondary beam intensity varies 
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between 2 and 40 times 10" particles/pulse). Since one cannot use the total flux planes for 
calibration anyway (at low intensities noise is sufficiently high for them), it was decided to use 
a small model ion chamber instead. But more about ion chamber calibration later . 

.. 
The other major total flux monitors are the RF cavity at the expansion port (fig. 2.5) 

and the toroid in the proton beam. These were primarily used as checks on the ion chambers, 
with plots of the ion chamber vs. the RF cavity (XR) and the toroid (NT) showing a remarkable 
linearity (figs. 2.7,2.8). It is also relevant to point out that the expansion port and manhole 
ion chambers tracked each other to within 2%, a fine example or how well these devices work 
(fig. 2.9). A current. transformer in the beam was not used because of its sensitivity to halo 
particles in the beam. 

The RF cavity is a resonant cavity through which the beam passes. Since the beam 
is accelerated in the main ring by RF cavities, it has an RF structure, i.e., it comes in pulses 
separated by 19 ns, corresponding to a frequency of about 53 MHz to which the cavity is 
tuned. The cavity may be used to calibrate the ion chamber because its response is calculable 
directly from Maxwell's equations. In practice however the observed stability and the readout 
electronics limit this to 5%. 

Another major parameter of the beam is its angular dispersion. This is measured 
by two segmented wire ion chambers (SWICs), one at the expansion port and another at the 
manhole. These provided projections of the secondary beam in x and y views at two points 
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separated by 154m (fig. 2.10). The increase in width can be related to the angular dispersion or 
the beam. A check on the SWIC profile is the small1/4 in x 1/4 in scintillation counter in the 
expansion port. It could be placed at different positions in the beam, enabling us to spatially 
sample the beam. 

For a detailed description or all the flux devices and the accuracies to which one 
determines beam properties the reader is referred to reC.8, particularly its appendix A. We 
continue with the ion chamber calibration and the Cerenkov counter analysis. 

§2.3 Ion Chamber Calibration 

The ion chamber was calibrated in several ways. One technique employed was to 
irradiate a copper foil, place it in the decay pipe and measure its residual radioactivity. 
For this purpose a 200 GeV proton beam was sent through the decay pipe with the target 
removed. After about 1013 protons the roil was removed and this led to a calibration constant 
or (3.45 ± .22) x 10-18 Coulombs/particle. An old calibration against a 275 GeV pion beam 
using particle counting gave a result or (3.57 ± .18) x 10-18 Coulombs/particle. 

A better calibration can be obtained from the RF Cavity. As mentioned earlier, this 
device has an accuracy of about 5%. The calibration constant varies from (3.31 ± .11) x 10-18 

for negatives to numbers around 3.7 x 10-18 for positives. This systematically larger constant 
(about 10%) Cor positives puzzled us. One clue was the difference in proton content (zero ror 
negatives; between 25% at +90 GeV and 92% at +250 GeV Cor ~ositives) . The dE fdx energy 
loss due to protons is slightly different from that due to pions, however the energy loss from pions 
is Cl little greater . This means that the observed difference is opposite to that expected from 
dE/ dx losses. This phenomenon clearly presented a puzzle and a particle counting measurement 
was planned, this time with 1% accuracy. 

Using the expansion port ion chamber itself was out or the question, since its large size 
and G-10 separated gaps lead to leakage and noise levels incompatible with a 1% measurement 
at low intensities. A fairly similar ion chamber was built with 1/4 in gaps like the expansion 
port ion chamber, except for the use or ceramic spacers instead of G-10 and the smaller diameter 
(6 in ). The signal plates were still made or .003 in thick aluminum foil. The windows were 
made or .022 in or titanium. 

The ion chamber (fig. 2.11) was put in the M2 beam line of the meson lab at FNAL in 
May, 1982. This meson beam was operated at different energy settings and with positively and 
negatively charged particles selected. The initial proton beam impinged on a 15 in target and 
particles were extracted at a production angle of 2.1 mrad. The beam composition or course 
varied with energy setting and sign selection and is tabulated below. 
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Proton Fraction Calibration Constant Averaged Cal. Const. 

(10 18C/particle) (10 18C/particle) 
29% 3.468±.050 
29% 3.468±.063 3.468±.039 
53~ 3.448±.050 3.448±.050 
82% 3.468±.127 

82% 3.619±.050 

82% 3.679±.059 3.630±.037 
97Jb 3.569±.050 3.569±.050 
-0% 3.380±.050 
,....,o% 3.385±.050 3.383±.035 

Table f .f . M2 line beam composition and ICH calibration results 
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A!ter toying with various combinations or counters we settled on the configuration 
shown in fig. 2.13. The ion chamber was placed upstream or all the counters in order to 
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count only primary particles. The scintillation counters were of varying thickness, with the fat 
counter (F) being used as input to a QVT analyzer. The beam spot size as seen in Polaroid 
tUm exposed to the beam was used to centre the various pieces of apparatus. The counter was 
situated 10 tt downstream of the .005 in thick beam pipe window in an effort to simulate 
actual conditions in the expansion port. 

The counters were plateaued and discriminator levels set to be above noise levels. The 
fat counter output went to a QVT analyzer which was triggered by a coincidence pulse. The 
idea was to try and determine the fraction of particles that arrived in pairs or higher-order 
bunches. A typical pulse height analysis by the QVT is shown in figure 2.12. (If 2 or more 
particles arrive in a single RF bucket of ~ 2ns durat ion, the counters with a width of 25 ns 
counted them as one). As suspected, the number of such coincidences never exceeded 1%, at 
least at the intensities used {from 2K to 800K particles per pulse). Helium gas was slowly 
injected into the chamber and bubbled out. A record of pressure was kept at all times. 

Output from the ion chamber itself was integrated and the total charge collected 
across a capacitor was converted into a voltage which was then amplified and input into an 
ADC. This ADC was sampled by sending interrupts between 80 to 100 times every spill from 
an on-line PDP 11/45 computer. Data acquisition and on-line analysis were also handled by 
this computer. The ADC, when calibrated against a very accurate DC voltage calibrator, was 
found to be extremely linear. The ion chamber calibration consisted, of course, of measuring 
the drop of the ADC output due to the passage or a beam pulse through the chamber and 
comparing it with the counted number of particles corrected for RF-bucket pairing, randoms 
and counter inefficiencies. 

We know from coincidence rates that counter efficiencies were all always greater than 
0.9995. Singles and coincidence rates suffice to extract the randoms rate; this small correction 
was applied to all the data. 

Ideally, if one plotted the charge from the ion chamber as a function of time {fig. 2.14) 
the curve should be flat before and after the beam spill, with the slope of the drop in between 
being proportional to the beam intensity. Noise, leakage and even possibly pickup from magnet 
currents ramped in the vicinity lead to slight slopes for the curv~ before and after every spill 
{fig. 2.15). The true charge collected during a beam spill must be determined. At least three 
different ways of doing this were tried: fitting straight lines to the portions before and after 
the beam spill, subtracting an averaged no-beam curve and subtracting a "no-beam" fit to the 
curve spill by spill. 

Then, 

Let AV be the measured voltage difference in volts (see fig. 2.14) and 

x = the number of ion pairs/em/particle, 

D = the gap size for the M2 ion chamber, 

d = the gap size for the exp. port ion chamber, 

Q - the total charge collected at the ion chamber, 

f = the cal. const. in pCoul./106 particles. 

Q = (nxD)1.6xl0-1°C = .16nxDx10-6 pC. (2.1) 
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Q 
I= (D/d)(n/106) = .16xd 

(2.2) 

Since the charge is collected across a capacitor of 995 pF and since the voltage 
generated is amplified by 500.3 before measurement, 

12 -
Q = 995x10- Fx.6.V = 1.989 .6.V pC. 

500.3 

Thus, combining (2.1),(2.2) and (2.3), 

Also note that if 

then 

I= 0.4975 .t.. v. 
(n/106 ) 

Pz = pressure of gas in the X I.Ch. 

PM= pressure of gas in the M2 I.Ch. 

Tz = temperature of gas in the X I.Ch. 

TM =temperature of gas in the M2 I.Ch. 

I= 0.4975.6.V. Pz _TM 
(n/106 ) PM T" 

(2.3) 

(2.4) 

(2.5) 

The mean pressures and temperatures are used to effect the above conversion for Lab 
E purposes; the pressure variation during the calibration run is also incorporated in the analysis. 
Since both the X I.Ch. and the M2 LCh. were deep inside "caves", the temperatures varied 
very little. 

There were slight differences in the .6.V as obtained by the three different methods. 
Our suspicion fell on a spurious pedestal coming from noise, making .6.V depend on the intensity 
I in the form (al +b) where the first term is the true ~V and the b the noise that varied from 
method to method. Clearly, this problem could be solved by extrapolating a = (.6.V- b)/ I 
to infinite intensity (1/I=O) and indeed, all three methods tend to converge on one calibration 
constant. 

The QVT is a hardware histogramming device (a multichannel analyzer) that was 
triggered on the coincidence of the two channels Al and A2. Fig. 2.12 shows the typical 
QVT response to a pulse of beam. There is a small second peak due to 2 particles in one 
gate. These pairs may occur because 2 RF buckets occur in one 25ns period, because there 
may be 2 particles within a single bucket or because of the interaction of a particle with 
the beam pipe window or the 10 tt of air upstream of the chamber. In any case, the 
scintillation counters count them as one particle and a correction must be applied. The 
number or extra particles to be added can be expected to be proportional to the intensity 
itself for any or the above effects, and indeed a fit of the form 
(l.l77x 10-8 ! 2 + 153.7) was added to the intensity I. 
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Finally, extra material (.042 in of titanium) was placed upstream of the ion chamber 
for 2 energy settings, +90 and +200 GeV fc, to see if any interactions with the material caused 
a change in the calibration constant. The final results of the analysis are tabulated in table 
2.2. There is no measurable difference between material "in" and "out" for the two energy 
settings at which the effect was studied. This cannot explain the approximately 10% effects 
seen with the RF cavity. The only explanation that meets the bill is a proton-pion difference 
in the calibration constant. 

When the results of table 2.2 are plotted (fig. 2.16) as a function of proton content, 
one sees a definite increase in the calibration constant as the number of pions in the beam 
decreases. This is attributed to the lower cross-section of interaction for a pion as opposed 
to the proton (at approx. 200 GeV, the 1rp cross-section is ~ 24mb, the pp ~ 42mb). The 
low energy particles created in interactions (~ 17M eV) ionize very heavily due to their low 
velocity. Thus, one can conclude that protons have an ~ 6~% higher response than pions 
in helium-filled ion chambers, and the calibration constants used for protons and pions are 
(3.63±.06) and (3.38±.05) x 10-18 C/particle respectively. 
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§2.4 The Cerenkov Counter 

The Cerenkov counter is a veritable cornucopia of information. In principle it is 
capable of telling us the total Hux, the Hux due to each particle type, the mean momentum of 
each particle type and even information on the momentum and angular dispersion or the beam. 
We shall see in this section how it is used to provide information about all but the total Hux, 
for which this particular Cerenkov counter cannot be used while simultaneously measuring the 
other quantities of interest. 

The principle of operation of a Cerenkov counter is simple; if a charged particle of 
speed f3 goes through a medium of refractive index n, and if {3 is greater than 1/n, coherent 
light is emitted at an angle Be with respect to the direction or motion of the particle, where Be 
is given by 

1 
cosec= {Jn . 

For the highly relativistic particles we are considering, 

The refractive index of gases is related to their pressure P by 

n ~ 1 + teP. 

(2.6) 

(2.7) 

(2.8) 

te for helium has been measured to be 4.37xl0-8 jmmHg. Combining (2.7) and (2.8) with 
(2.6) gives, for small angles (cos Be ~ 1- 8~ /2), 

(2.9) 

' 
Many important consequences follow from this central relation, as we shall shortly discover. 

The secondary beam consists of different particle types all at the same momentum. 
From (2.9) we see that at a fixed pressure, P, and a fixed momentum, p, the lightest particles 
have the largest angles. If a lens or focussing mirror is used to focus this light, one obtains rings 
of different radii corresponding to each particle type. The angular separation or two particle 
types of masses m 1 and m2 is obtained by differentiating (2.9) to yield 

(2.10) 

Thus, in order to obtain as wide a separation as possible, it is best to minimize Be. The ring 
imaging possibility also gives us a means of clearly separating particle types: in the ring image 
plane is an annular iris that permits only one ring at a time, the light that passes through 
being measured by a phototube. Instead of varying the annulus, we vary the pressure or the 
gas (Helium), with a fixed annulus. 

The counter is shown in fig. 2.17. At one end is a spherical mirror of focal length 
119.02 in and 10 in in diameter. It is tilted slightly and the Cerenkov light is rellectcd off 
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a couple of plane mirrors before going through the iris after which it is reflected off a fourth 
mirror (also plane) and goes through a lens and enters the pbototube. An alternate transducer, 
the photodiode, can be used with the help of a light splitting mirror. Since the typical number 
or particles in a pulse is very large, a weak signal is definitely not a problem (Cerenkov counters 
are capable of detecting single particles). Consequently the counter is short, with a radiative 
medium of length 74.3 in . The phototube accepts light roughly within the limits 3300 Aand 
5000 Awith a mean accpeted wavelength of~ 4400 A. The iris has several apertures of which, 
for ring imaging, we used the annular aperture from .7 to 1. mrad (at the focal plane or the 
primary mirror). Bafiles before the iris cut down stray light and a shutter between the second 
and third mirrors can be closed to measure background light. Helium gas is used in the counter 
as the Cerenkov medium. Its pressure is constantly monitored by a pressure gauge. 

The ray optics of the counter in a plane containing the optic axis is shown in fig. 2.18. 
From the figure it is clear that if the beam were parallel to the axis but shifted a small distance 
from it, light would still be focussed at the same ring in the focal plane. Consequently not much 
attention is paid to the precise coincidence of the beam and optic axes. The counter is placed 
on a movable table and may be moved in and out of the beam (see fig. 2.5). The alignment of 
the directions of the optic and beam axes is, or course, very important and is done before every 
pressure curve is taken by remotely adjusting two orientations of the counter until the signal 
goes through a maximum, where the counter is then set. A Cerenkov curve is then taken by 
varying the pressure from zero by filling the counter with helium. A typical Cerenkov curve is 
shown in fig. 2.21. The number of photons emitted by a particle in a length L of medium in a 
wavelength range ['A,).. + d'A) is given by 

21l'a . 2 dN = L.V. sm Bed'A . (2.11) 

Not surprisingly, the amount or light is proportional to the length, L. At small angles, it is 
also proportional to 8~. From (2.9), we can plot the Cerenkov counter response with respect to 
8~ or, equivalently, pressure and the area under each of the bumps will, apart from diffraction 
effects, be proportional to the number or particles of the corresponding type. Before this is done 
however, various backgrounds must be subtracted, a procedure drscussed later in this section. 

The Cerenkov rings may be broadened for several reasons. There is chromatic disper­
sion in the gas which produces an angular broadening ~8 ~ ~8ew where w is a constant of 
the gas. Helium was chosen because it has a fairly small w (4.5%), does not scintillate and 
has the right magnitude of gas constant for our counter and iris dimensions. Another cause of 
broadening is the ......., 10% momentum bite or the beam. ~8 due to this is given by 

(2.12) 

For our counter, 1/8~ ~ 1.37x106 which means ~8/8 = ~pfp(= 10%) for 1 ~ 1170. Clearly, 
~8/8 can be very large for kaons and protons (see table in Appendix A for typical values or 
/). From (2.10) we see that the momentum broadening and the angular separation maintain 
a fixed ratio. Angular dispersion of the beam causes a fixed broadening ......., .18mrad, which is 
the magnitude or the dispersion. In order to minimize this e[ect the angular separation or the 
particle types must be made large i.e., the Cerenkov angle Be must be made smalL 

Before the Cerenkov curves can be analyzed they must be corrected for various ex­
perimental effects. Since any pressure scan extends over many beam spills, the spill-to-spill 
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variations must be relatively normalized by one or the ion chambers. The expansion port ion 
chamber is so close to the Cerenkov counter that it, was reared that the halo or secondaries 
produced by beam-primary mirror interactions would make it unreliable. Consequently, the 
downstream manhole ion chamber was used. Another variable that can affect analysis is tem­
perature. At 300K, a 3°C variation can cause " to change by 1%. However, the counter was 
in a cavity buried fairly deep and consequently temperature variations were not severe. They 
were monitored by a thermocouple affixed to the counter itself. 

One unfortunate consequence of pressure changes in the counter was a variation in 
alignment or the iris with respect to the central axis. This effect was measured after the run by a 
theodolite through a transparent hole in the beam window aimed at a cross-hair on the iris plate. 
The deflection t:..Oiri• in milliradians was fairly linear with pressure and could be parametrized 
as t:..Biri•(mr) = (.001318±.000050)P, P being in mm of mercury. Such a pressure dependent 
alignment can cause a very significant change in the amount or light collected, especially at 
high pressures. Since the correction can be easily calculated, this effect is safely accounted for. 
Studies were also made of the calibration of the pressure and total response of the counter. The 
counter is filled by opening a valve for a fixed short time repeatedly. This procedure can be 
shown to make the counter pressure 

P = Po(1 - e-an ), (2.13) 

where Po is the (fixed) pressure of the gas before the valve and n is the number of fills. This 
relation was directly checked against a pressure gauge that monitors the counter pressure and 
the two agree to less than 0.8%. 

After the end or the data taking run, a 200 GeV beam from the accelerator with an 
extremely small momentum dispersion (::::::: 0.1 %) was fed through the train, with the target 
removed. The iris of 0.7 mrad to 1.0 mrad aperture was replaced by a circular bole of 2.0 
mrad aperture. In this mode, the counter functioned as a total light measuring device, and 
when its response was plotted against the manhole ion chamber, the linearity or the phototube 
and digitizer was checked and found good to 0.6%. The primary 200 GeV beam intensity was 
varied by almost an order of magnitude for this test. Inverting (2'.9), one can also use the 200 
GeV beam to measure tc. The value thus obtained is 4.37xl0-8 /mmHg, very close to the 
book value of 4.35x1o-s fmmHg. Another method of obtaining K. is to measure the threshold 
pressure at which light is emitted for the 200 GeV proton beam; " can be obtained by solving 
(2.9) for Be = 0. tc obtained this way agrees with the above method and is included in the 
average. 

Once the Cerenkov curves have been corrected for all the effects mentioned above, 
there are still some backgrounds to be subtracted: 

( 1 )Shutter-closed background: 
interactions outside the main body of the counter e.g., near the iris or phototube can 
cause extra Cerenkov light. This light is easily isolated by closing the shutter and taking 
Cerenkov curves. Such a Cerenkov curve is shown as the lower curve in fig. 2.19, and is 
subtracted from all raw curves. 

(2)Beam-material interaction background: 
Upstream or the gas is the counter window which is made of .020 in thick titanium. 
Including air and other material, there was an equivalent of .080 in or titanium upstream 
or the gas. Interaction or the beam with all this material produces additional particles 
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Figure 1l19. Cerenkov curve with a shutter-closed curve underneath. 

which in turn give rise to extra Cerenkov light. The easiest way to account for this is to add 
even more material, obtain another curve and subtract the pcoperly normalized difference 
as a background correction to the Cerenkov curves. Unfortunately beam-material curves 
were not taken at all energy settings and some interpolation had to be performed. 

(3)Light-scattering Background: 
After subtracting the above backgrounds it is found that some background light persists. 
One possibilty was scattering or light off dust on some mirror. Evidence for this possibility 
came from the monotonic increase with time of this background, observation of dust on 
the second mirror and a dramatic decrease in the background when the second mirror was 
cleaned with a nitrogen jet. It is possible in theory to accurately calculate this background 
(if the position, size, amount and albedo of dust were well known) by applying the optics 

or diffraction and scattering. Such an attempt was made<17) and the qualitative conclusion 
was a background that rises from zero at zero pressure and ultimately flattens out, being 
dominated at high pressures by scattering. Since our knowledge of the quantity and 
properties or dust in the counter are necessarily limited, it was decided to try the simple 
form shown in fig. 2.20. Po is held fixed for all energy settings, L is allowed to vary from 
setting to setting.The resulting fits are then subtracted from each energy setting. 

(4)Counter Diffraction: 
The broadening or the Cerenkov ring due to diffraction (the counter has an effective 
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aperture or L8c where L is the counter length) is approximately 

A 
118difl = LBc = 0.27 mrad. (2.14) 

This is obviously significant for our counter and in fact is the dominant broadening effect 
for the lighter particles (pions, muons, electrons). The number of photons in the range 

[A, A+ dA) and (8, 8 +dO) where 8 is the angle with the beam direction is given by(lS) 

dN =21ro(~)
2

• 28(sin,P)
2 

dA dcos e A A SID tP (2.15) 

where 

,P(O) = ;~[1- {P + 82
- 2KP]. (2.16) 

In the limit (L/A)-+oo, (2.15) reduces to (2.12). It is clear from (2.15) and (2.16) that there 
will be some Cerenkov light even below the Cerenkov thresh9ld. This is due to transition 
radiation when the beam crosses the counter windows and is the correct explanation for 
the mysterious zero pressure background that plagued earlier Ceren.kov analyses.!9) 

A!ter the shutter-closed and beam-material backgrounds are accounted for and removed, 
a Cerenkov curve looks like the one shown in fig. 2.21. Apart from diffracted light, particle frac­
tions are directly proportional to the areas under their respective peaks. There is a small con­
tribution to Cerenkov light from electrons (or posit rons) at the lowest pressures. These arise due 
to 1r0 production at the target with the 1r0• subsequently decaying into two photons which then 
pair-produce. Corrections are made to the particle fractions for this effect and also for the 
small changes in fractions due to decays before the counter (fractions are quoted at the tar­
get). The final results are to be found in table 2.3. Since the kaon and proton peaks are 
dominated by the momentum bite, their peaks can be translated into momentum probability dis­
tributions and their mean momentum is thus obtained. The pion peaks are broadened by 
iris acceptance, diffraction and angular dispersion. Consequently the energy of neutrinos 
from pion decays as measured in Lab E is used to estimate the mean momentum or the 
pions rather than the Cerenkov data. The final mean momenta are tabulated in table 2.3 below. 
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I EsET I 1rjtotal I K/total 111" mean p I K m~an p I J < e; > I J < e; > I u,Jp I 

(GeV) (GeV/c) (GeV/c) (mrad) (mrad) (%) 
-250 .954±.006 .0419±.0018 239.0 238.0 .16 .20 8.7 
-200 .939±.009 .0486±.0018 194.0 194.6 .15 .20 9.2 

-165 .915±.009 .0615±.0019 164.3 165.3 .13 .20 9.5 

-140 .891±.012 .0647 ±.0025 137.8 138.9 .15 .21 9.4 

-120 .881±.014 .0600±.0032 118.4 119.6 .16 .23 9.7 

+120 .529±.022 .0545±.0033 119.5 122.4 .16 .23 10.1 

+140 .424±.014 .0485±.0024 139.2 142.2 .15 .21 9.9 

+165 .313±.012 .0388±.0018 166.3 169.8 .13 .20 10.0 

+200 .193±.007 .0263±.0013 197.0 200.6 .15 .20 9.6 

+250 .0773±.0027 .0124±.0007 243.8 247.0 .16 .20 9.4 

Ta.ble 1!..8. Particle fractions, momenta and dispersions 

.. 
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Flux Analysis 

In this chapter we shall discuss how data from the monitoring devices is actually used, 
and how the final flux and various backgrounds are parametrized. 

§3.1 WBB Parametrization 

At every momentum setting, some beam time was spent on accumulating data with a 
slit in the secondary beam closed. The slit is prior to magnets D4 and DS (fig.1) and consequently 
the only neutrinos that can then reach Lab E are those that arise from large angle hadron decays 
or from decays of hadrons themselves at large angles. This background is thus primarily a low 
energy neutrino source and is known as the wide band background. Since the background is 
negligible except at low energies, an easy way to parametrize it is simply to count the number 
or events as a function or energy and radius at Lab E, and use the neutrino cross-section<8l to 
obtain the flux. Any systematic errors introduced by this technique are bound to be small ( < 
""'1%), in any case much smaller than the statisical error. 

We assume that the background uniformly illuminates the detector at Lab E, and 
that the background is the same ror all negative energy settings. Since the beam dumpi.ng 
depends on proton fraction, the background is estimated separately for positive settings but 
all the negative energy settings are lumped together. Also, since bare target beam fluxes go 
through a peak(12l at a low energy (approx. 15 GeV in our case), a form for the flux that peaks 
at a low energy is assumed. \Ve use the form 

{
(1 _ e-E/Eo) 

f(E) = (1 _ e-E/Eo)e-(E-b)/c (3.1) 

The number or neutrino events in the energy range [E, E +dE), N(E)dE, is given by 

N(E)dE = k /(E) dEAn da(E) (3.2) 
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where, 

where 

A= the area in which events are counted 

n d = the number of nucleons per unit area of the target 

u(E) =the assumed neutrino (or antineutrino) cross-section 

k = the overall normalization (varies with energy setting) 

Thus, integrating over energy for a given energy setting, 

N= f N(E)dE 

= k{! f(E)a(E)dE} 5361.8x6.0221x 1023 xl0-38 x(7r502
) 

(E)= 0.669E (v)} 
a 0.340E (i7) 

E in GeV. 
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(3.3) 

5361.8 is the target density for the fiducial volume used in gmf cm2 • The fiducial volume is 
cylindrical with a radius of 50 in . The above equation can now be solved for k, giving 

k = N 3.9432x106 

f f(E)a(E) dE 
(3.4) 

Hence, we first find Eo, b and c by fitting the energy distribution of wide band 
background events and then evaluate k. k must be normalized to the number of protons on 
target so that this parameter can be used for real open slit data correction. The final values 
for k are then normalized to 10Q secondary beam particles. The constants k, Eo, band c are 
tabulated below. 

.. 

EsEr(GeV) k Eo b c 
-250 74.72 17.47 12.96 12.63 

-200 26.98 17.47 12.96 12.63 

-165 18.88 17.47 12.96 12.63 

-140 13.68 17.47 12.96 12.63 

-120 11.48 17.47 12.96 12.63 

+120 4.961 1.18 7.36 21.01 

+140 3.668 1.20 8.15 14.68 

+165 2.502 0.89 8.07 21.81 

+200 2.722 1.78 9.87 19.26 

+250 1.603 1.32 7.50 22.97 

Table 3.1. Wide band background constants. 
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§3.2 Beam Centering and Other Cuts 

During the E616 run, a constant effort was made to ensure that the beam centre 
coincided with the centre of the apparatus. The strictest off-line cut was a requirement that 
the fractional difference between the two split plates in the manhole ion chamber not exceed 0.1 
for open slit data. This corresponds to a 1.2 in deviation from the nominal centre at Lab E. 
Pulses or very low intensity were also thrown out. U either the expansion port or the manhole 
ion chamber disagreed with the rest or the flux monitors for a run, that run was discarded. 
The digitizers for the ion chambers were calibrated pulse by pulse with a fixed current being 
fed in for 3 different lengths of time. The calibration constant and pedestal used were derived 
from a running average using all previous pulses, most recent pulses being weighted the most. 
Finally, the calibration corrected sum or ion chamber response for each run was written out on 
to a ftle for analysis use. 

The spark chambers in Lab E had a recovery time in tens or milliseconds, during 
which the apparatus was 'dead' for any possible additional events. The flux was measured for 
the duration or the 'live' periods by sending a pulse on a fast cable to the monitor electronics. 
Checks have been made on this procedure e.g., it was checked that the trigger rates during 
livetime and deadtime were equal. 

§3.3 The Beam Monte Carlo 

All the information extracted from the monitors was used to generate flux distributions 
at Lab E. We first use a program to generate rays or pions and kaons before the decay pipe 
using a production modell8) at the target. Another program then 'decays' these rays using the 
measured particle fractions, angular dispersion and beam centre. The beam centre is measured 
by averaging the position or high energy pions at Lab E (since they are wholly contained). Alter 
producing all two and three body decays using the beam kinematics described in appendix A, 
distributions at Lab E are binned in 5 in radial bins around thll beam centre. Calculated in 
each bin are the total flux in the bin, the error on the flux, the mean neutrino energy and its 
error, separately for pions and kaons. Figure 3.1 shows the resulting flux distributions at Lab 
E for 1000,000 secondaries in the decay pipe. 

§3.4 Flux Parametrization 

To use the fluxes for analysis, it is necessary to have a fast function that returns the 
flux in a specified energy interval at a given radius at Lab E. Since the radial bins used are 
small (5 in ), the exact form or fluxes within a bin is unimportant. A form a- br2 was used 
for the flux distribution and Eo/(1 + b2 r 2 ) for the energy distribution. The total flux within 
a bin and the average energy were normalized to the beam Monte Carlo output mentioned in 
the previous section. Two checks on the entire procedure were made. Firstly, the flux thus 
generated was combined with finer binned higher statistics output from the beam Monte Carlo 
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at one energy setting. Also, the entire structure function analysis was done with the latter. No 
significant differences were round. 
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The Lab E Detector 

§4.1 Requirements 

1.1 km downstream or the decay pipe is a 1000 metric ton detector, roughly 60% or 
which serves as the target for the neutrinos. Any neutrino detector must necessarily be massive, 
given the small cross section or the neutrino-nucleon interaction. The neutrino can only interact 
with quarks in the nucleon through the w± or Z 0 as shown in figure 1.1. Only the charged 
current interactions are studied in this thesis, and thus there is always a muon in the final state. 
The detector must therefore be capable of measuring both the hadron shower energy and the 
momentum or the muon. Therefore the target steel is part of a calorimeter, with scintillation 
counters sandwiched between steel plates. To measure the momentum or the muons there is a 
toroid magnet spectrometer downstream or the target equipped with spark chambers. The vast 
majority or muons have su.fflcient energy to penetrate the entire spectrometer. The angle or the 
muon at the interaction vertex is measured by spark chambers il\. the target. The calorimeter 
counters double as trigger counters with the system or triggering designed to accomodate almost 
all charged and neutral current events. The enormous quantities of information produced in 
every event necessitate an on-line data acquisition system that writes all the data onto magnetic 
tape. 

§4.2 Layout, Fiducial Volume and Alignment 

A schematic diagram or Lab E appears in fig . 4.1. The target and toroid sections are 
clearly separated. The target consists of six carts on rollers. Each contains 14 counters and 6 
spark chambers. The mean separation between counters is 8.16 in and that between chambers 
18.79 in . Counters were separated by two steel plates ( 2.01 in x 10 ft x 10 ft ) and chambers 
by four . The toroidal magnet consists of 3 toroids. Each of these three is further divided into 
two half-toroids which have a set or chambers covering their downstream ends. Each half-toroid 
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is itselr made or 4 segments equipped with a counter each. Coils go in close to the axis of the 
toroid and generate a toroidal field averaging approximately 17kG. 

For reasons appearing below, the fiducial volume is restricted to the region between 
the 3rd and the 63rd counters (counting downstream). Meticulous counting of all intervening 
matter leads to a target thickness of 5361.8gm/cm2 . This includes the steel plates, counters 
(6.5%) and chambers (0.8%). 

For accurate physics analysis the longitudinal and transverse positions of the counters 
and chambers must be well known. Alignment is first done optically, using a theodolite which 
leads to measurements good to .01 in . This is good enough for the z-positions of the chambers 
(the Lab E coordinate system has z increasing downstream, y increasing upwards). Translating 
the tranS\'erse position or a chamber as measured from outside into the position of a spark 
inside inYolves uncertainty much larger than the intrinsic resolution of a chamber(""' 1/2 mm). 
T_he sparks themselves must be used for chamber alignment . This is done by utilizing muons 
produced upstream of Lab E and going right through it as reference straight lines. 

§4.3 Spark Chambers 

There were two sizes of spark chambers in Lab E: 10 ft x 10 ft chambers in the target 
and 5 ft x 10 ft chambers in the toroid carts and in the gaps between toroids. Two 5 ft x 10 ft 
chambers with a slight overlap made up a single spark plane in the toroids . The chambers had 
wires spaced a little less than 1 mm apart in both transverse directions. Chambers were pulsed 
on a trigger with a voltage of""' 6.5 kV. Sparks occured where ionization had been produced in 
the chamber gas and currents in the nearest wires were caused. T-hese currents in turn caused 
an acoustic pulse in the magnetostrictive wire laid perpendicular to the wires (see fig. 4.2). 
At the time the chamber is pulsed, two fiduci al pulses are generated in each wire to serve as 
reference marks. The time taken by an acoustic pulse travelling at ""' 5mm/ J.l S with reference 
to the fiducial pulses was measured by a 20MHz clock. The pulses have a peak at the spark 
position and were differentiated to improve centre finding. Up to 16 sparks per chamber per 
direction could be measured in this way. 

The gas circulated through the chambers was about 89% Ne, 10% He and 1% C2 H5 0H. 
Purity of the gas was maintained at all times by a purifier that removed contaminants (mainly 
N2 and 0 2 ) by condensing them out of the system using liquid nitrogen temperatures. 

While the dead time of Lab E depended in part on the data taking of the computer 
("-' 20ms), it was determined mainly by the spark chambers. The 5 ft x 10 ft chambers for 
example, had a HV recharge time of ""'6ms. l\"lore importantly , clearing fields were applied 
to all chambers to clear ions after a spark discharge. The DC field on the target chambers 
was 90V. the toroid chambers used 30V. In addition a~ 600V pulse clearing field of ,....., lOmsec 
duration was applied. The memory time due to t hese fields was reduced to ""'30ms. 
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§4.4 Scintillation Counters 

As with spark chambers, the counters come in two kinds: liquid scintillation counters 
for the target and acrylic scintillation counters for the toroids. The target counters are 10 tt 
x10 ft x1 in in size. Mixed with the liquid scintillator is wavelength shifter which converts the 
UV light produced into blue light. From each corner to the middle or the two corresponding 
sides are shifter bars (see fig. 4.3) which serve to 'shift' the wavelength of light further to 
green and to collect the light for detection by a phototube at the corner. Wavelength shifter 
is necessary to reduce attenuation. There is an air gap between the bars and the counter to 
increase the total internal reflection of light on its way to the phototube. The toroid counters 
have the more complex arrangement with a total of 10 phototubes and 14 shifter bars per plane. 
As explained in chapter 5, the toroid counters were not used for hadron energy measurements 
and we will therefore concentrate on the target counters. 

The output from the phototubes for a minimum ionizing particle is a function of 
several variables. It depends on where through the counter the particle went, which counter 
it went through and when during the 8-month run this happened. Variation with real time 
over the course of the experiment was essentially a deterioration in counter gain of ,....._ 2.5% as 
measured by pulse heights from muons. Counter to counter gain variations were removed by 
requiring the mean hadron energy for events to be independent of counter location. To correct 
for an imbalance in the gains of the four phototubes for each counter, light from spark gaps was 
carried to the centre of each counter by light fibres. Phototube voltages could thus be adjusted 
periodically to get equal gains for all the tubes. 

By far the most important effect to account for is the variation of output with position. 
The important physical effects are attenuation of light in the counter, transmission across the 
air gap and attenuation in the shifter bar. The transmission across the gap is a function of two 
angles: 0, with respect to the plane of the counter and ifJ, from the normal to the bar (see fig. 
4.4). Because of multiple internal reflections, one can integrate over 0 to get 

~ 

T(¢) = /, T(ifJ, 0) dO, 

an 'averaged' transmission coefficient for every ¢. Now one considers all possible light paths into 
a given shifter bar. For the subset of paths between AD and AB for example, the path length 
for a given path characterized by an angle ¢ is AC /cos¢. One thus divides up all possibilities 
into dist.inct groups of ¢ allowed by Jack of total internal reflection. Reflected light paths such 
as AED are accounted for by extending the shifter bar BG to GB'. In each segment an average 
cos¢ is calculated from tables of J: T(¢)d¢ and J0¢ cos¢T(¢)d¢J. A factor e-AC/<cos¢>).. and 
a similar one for Ay combine to give 

for the ith segment. An additional exponential exp(- ri/>.bar) is inserted for attenuation in 
the bar. A6ar turns out to be large and the maps are insensitive to it, so it is fixed at a mean 
nominal value of 115 in . >., and Ay are parameters to be determined experimentally for each 
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counter, as are x0 and y0 • Almost all x 0 , y0 are less than 3 in from the centre of the counter 
and >.,., Ay ~ 70 in . Fits to the physical model were done using hadron showers, their mean 
position determined by the spark chambers; x 2 minimization is used. 
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§4.5 EHAD Calibration 

It is possible to move the target in Lab E so that another beam, the N5 hadron 
beam, goes through it. We ran a beam of incident pions through at 5 different energy settings: 
25GeVJc, 50GeVJc, 90GeVJc, 200GeVfc and 250GeVfc. Means and sigmas for the hadron 
energy were determined at each energy setting. The best fit gave 

Eh = {0.2157 ± .0006)GeV x (pulse height in shower in terms of min. ionizing) 

and a e. = (0.72±.20) + (0.81±.03)y'E;;' 

(see figs . 4.5 and 4.6). 

§4.6 Electronics 

The output of every counter is used for two purposes: triggering and shower energy 
measurement. To cover the whole range of energies possible, ADCs of different ranges were 
used. The output of each tube went to a "low" ADC, the sum of the 4 target tubes in a counter 
to a "high", and a combination or various tubes to a "superlow". The highs saturated very fast 
and are used for minimum ionizing muons; the lows for pulse height measurements. IT a low 
saturated, the pulse height for that tube could be extracted using the superlows (see fig. 4.7). 

§4. 7 Triggers 

The apparatus is designed to trigger on charged current events, neutral current events 
and straight throughs. Neutral currents do not concern us. The straight throughs are triggered 
by muons that enter Lab E, fire the wall of veto counters, T2 and T3 (see fig. 4.1). The veto 
may at times fail; a fiducial cut at 80 counters eliminates such spurious events. 

The triggers that are most relevant are the two charged current triggers- trig.1 (muon 
trigger) and trig.3 (penetration trigger). The logic Cor these events is shown in figs. 4.8 and 
4.9. Essentially, the muon trigger is meant for those events in which the muon is produced at 
a small angle such that the muon passes through enough of the toroid for its momentum to 
be measurable. The penetration trigger tries to cover the rest of the charged current events 
while maintaining a significant amount of overlap with the muon trigger. It requires the muon 
to penetrate at least 16 counters and has a modest energy requirement of 4 GeV to eliminate 
cosmic ray muons. The muon trigger requires that the muon originate in the target and fire 
either T2 or T3. The two triggers use independent logic and independent counters, thus allowing 
for constant monitoring of efficiencies in the overlap region. 



4. The Lab E Detector 

tube 

I 

c 

far>.Dut 

Faaia 

Target Front End 

Hlgh ADC 

Toroid Front End 

Figure 4. 7. Target and toroid front end electronics 

Triuer 
Level 

s 
T 

~er 
Level 

s 
T 

48 



4.7. Triggers 49 

' 
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Event Analysis 

The kinematics for a charged current event are described in detail in Appendix B. From 
that discussion it is clear that there are three independent variables which can be measured; 
they are the energy of the hadron shower, the energy of the muon at the event vertex and the 
angle the muon makes with the incident neutrino direction. It is possible to measure the mean 
angle of the hadron shower instead of the muon angle; for reasons cited below this was not 
attempted. 

Shown in fig. 5.1 is a typical muon trigger event. To analyze this event one must 
identify the first and last counter where the hadron shower is detected, recognize the muon track 
beyond the shower and track it through the magnetized toroids. To get the muon angle at the 
vertex, the track must be followed backwards through the shower using a multiple scattering 
matrix technique described below. 

§5.1 E~ ' 

The software for finding the muon momentum is by far the most complicated part 
of the analysis of this experiment. A crude vertex position is determined by a routine that 
picks up most or the sparks near the vertex and does a simple linear fit. Next, sparks from 
both wands on all the chambers are decoded and converted into position measurements . A 
least squares fit is then done using chambers in the target with only one spark. Now that a 
reasonable vertex position is known, we search for tracks by looking in angular bins away from 
the vertex for a cluster of sparks. Sparks are thus assigned to probable track candidates. Bad 
sparks are then eliminated if they lie outside a window determined from the spark scatter of 
a least squares fit. The longest track thus found is used to obtain a better vertex position 
and the whole procedure is then repeated. At this point bad sparks are removed and then an 
attempt is made to correlate tracks in the x and y views, if there are more than one in any, 
by correlating chamber hits. By now the track in t he target is well established and only the 
problems of recognition in the toroid and momentum determination remain. 
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Figure 5.1. A muon trigger event. 
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Sparks are picked up in the toroid by trying to follow the principal target track into 
the toroid. Of course, this is impossible unless the vector momentum p is known. Neglecting 
multiple scattering and energy loss and assuming small angles with the beam direction it can 
be shown however that 

dt/J 
r 2 dz = constant, (5.1) 

where we use cylindrical polar coordinates around the beam direction. This follows from the 
toroidal nature of the magnetic field, B = B(r)¢ and the equation of motion. Actually the iron 
in the magnet is fairly saturated, so B(r) is a weak function of r; this does not affect the result 
(5.1) above in any significant way. 

Using sparks thus round a preliminary estimate of momentum may be obtained. This 
momentum is used to treat errors due to multiple scattering correctly and a still better estimate 
or the momentum is obtained. It is now time for the final fit. 

Three major processes affect the muon as it traverses the apparatus. Energy is lost 
due to the usual dE I dx losses at the rate, very roughly, of about 11.6 MeV I em of steel. It is 
straightforward to account for this effect and the action of the magnetic field. At the same time 
the particle undergoes multiple scatterings from nuclei leading to a small, random, uncalculable 
contribution to its path. As is common in all such random walk problems(20l the most probable 
path remains the one without the scattering but the root mean square deviation from it is 
proportional to the square root or time. Consider the element shown in fig.5.3. It is possible to 
show(21l, for small angles, that < 82 >'"" LIIPI2 ; in fact, for the projection on to a plane, 

.015{;f V<82>~- --=ao 
IPI LRAD 

(say) (5.2) 

where pis the muon momentum and LRAD, the radiation length in steel (=1.76cm). Also, 

L ' 
<85> = 2a~ {5.3) 

<8d> =0 {5.4) 
L2 

{5.5) <52 >= -a~ 
3 

L2 
{5.6) and <d2 > =-a~ 

12 

Thus, to parametrize multiple scattering in any one view, two variables such as 8 and 
dare needed. It would seem that given two planes or perfect spark chambers before and after 
a 'scattering centre' it would be possible to determine these two variables exactly in both views 
and thus efficiently parametrize the track. This is true but for the magnetic field. We consider 
the entire target to be divided into 12 scattering centres (6 in the cart. closest to the toroid, 2 
in the next, 1 each in the rest) and each half-toroid a scattering centre as well. 

Let Sz be the slope in the x-view, x0 the intercept at zo, Zi the position of the ith 
scattering centre, p; the multiple scattering momentum kick, q, the momentum kick due to the 
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magnetic field and x; the displacement (either d or o above). Then if p is the momentum of 
the muon, 

L;i = 0 

=1 

i < j , 

i?:. j. 

(5.7) 

The unknown parameters are !PI, xo , s., , p; and Xk . The p; are known almost exactly 
if we know the path in the magnets well. The problem is a linear least squares one except for 
IPii we use an old guess for 1/IPI and solve that part it.erativelyl22l. To form the error matrix 
< x;Xj > we use the expressions (5.2) through (5.6) above. The technique works very well , at 
least to trace the muon path, i.e., eliminate bad sparks, obtain the p; and x; and get a good 
estimate or the momentum. As 1/IPI was varied to minimize x2 , the other parameters were 
varied as well. This led to a small bias in the momentum which was corrected by an unbiased 
routine that merely fit slopes, intercepts and momentum. Appendix D describes some or the 
mathematical machinery of multiple scattering fits. 

A x2 distribution that results is shown in fig.5.4. T his distribution is for all the events 
that pass our structure function extraction cuts (about 68000). While the peak is at 1. as 
it should, the distribution has a long tail on the high side which arises partly from a weak 
dependence or the mean x2 on the number of degrees of freedom and mainly from a few bad 
sparks. 

The deflection due to a uniform magnetic fie ld B(kG) after the muou traverses a 
distance d (em) is given by 

where the momentum pis in MeVfc. 

8 
= 0.3Bd 

p 

(5.8) implies 
A.p -A.8 
-p = -8-

Combining (5.9), {5.8) and (5.2) gives143l 

A.p 50 
- = ~:::;:;:::== A:i 9% 
p B..jdLRAD 

Cor Lab E. 

(5.8) 

(5.9) 

{5.10) 

Spark chamber efficiencies, spark position resolution and non-uniformitites in B actually make 
A.pfp closer to 12%. 

Some small fraction of muons do not go through the magnet but range out due to 
energy loss. Their momentum is determined from their range to about 0.4 GeV, which is much 
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A range-out event. Shown are the sparks in two views and the counter pulse 
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better than 12%. These muons are easily identifiable as their tracks stop in the apparatus 
(chambers that should have sparks do not) and a string of counters with minimum ionizing 
pulse heights comes to an end at the same spot. A sample 'range-out' event is shown in figure 
5.5. 

' 

The muons may also suffer small-angle collisions in which they lose significant amounts 
of energy due to deep inelastic scattering, high energy 6-rays or bremsstrahlung before their 
momentum is measured in the toroids. Using an algorithm based on the observed distribution 
of energy loss by the muons in the counters, any set of contiguous counters with an excessive 
deposition of energy is identified and that energy is added to the muon energy. Effects due 
to such losses within the shower and hence indistinguishable from it are removed by a Monte 
Carlo simulation of the effect. Listed in tables 5.1 and 5.2 below is the magnitude of such losses 
in the form of the cumulative probability of energy Joss for a given energy muon. 
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Loss O<Es,~<20 20<Es,~<40 40<Es,~<60 60<Es,~<80 80<Es,~<100 100<Es,~<120 

Range 

(GeV) 
0-2 9.172 27.359 39.270 49.552 55.218 62.789 

2-4 4.855 18.100 29.374 38.575 43.072 50.442 
4-6 0.875 6.995 14.698 22.377 25.455 28.152 
6-8 0.159 3.047 8.631 15.004 18.005 18.351 

8-10 0.020 1.202 5.299 11.306 13.775 12.635 
10-12 0.000 0.468 3.266 8.333 10.283 9.848 
12-14 0.000 0.203 1.893 6.367 8.537 7.879 
14-16 0.000 0.070 0.963 4.915 7.140 6.582 

16-18 0.000 0.049 0.541 3.581 5.821 5.573 

18-20 0.000 0.042 0.260 2.411 4.812 4.804 
20-22 0.000 0.021 0.184 1.779 4.346 4.083 
22-24 0.000 0.000 0.119 1.147 3.686 3.363 
24-26 0.000 0.000 0.065 0.585 3.027 2.930 
26-28 0.000 0.000 0.065 0.351 2.328 2.498 
28-30 0.000 0.000 0.065 0.164 1.863 2.306 
30-32 0.000 0.000 0.043 0.140 1.203 2.210 
32-34 0.000 0.000 0.022 0.047 0.621 1.922 
34-36 0.000 0.000 0.022 0.023 0.427 1.681 

36-38 0.000 0.000 0.022 0.023 0.116 1.537 

38-40 0.000 0.000 0.022 0.023 0.116 1.153 
40-42 0.000 0.000 0.022 0.023 0.039 0.865 

42-44 0.000 0.000 0.011 0.023 0.039 0.769 

44-46 0.000 0.000 0 .011 0.023 ' 0.039 0.528 

46-48 0.000 0.000 0.000 0.023 0.000 0.240 

48-50 0.000 0.000 0.000 0.023 0.000 0.096 

50-52 0.000 0.000 0.000 0.023 0.000 0.048 

52-54 0.000 0.000 0.000 0.023 0.000 0.048 

54-56 0.000 0.000 0.000 0.023 0.000 0.000 

56-58 0.000 0.000 0.000 0.023 0.000 0.000 

58-60 0.000 0.000 0.000 0.023 0 .000 0.000 

Table 5.1 

1000 times the cumulative energy loss probability per metre of st eel: Part 1. 



5. Event Anajysis 60 

Loss 120<E11 <140 140<E11 <160 160<E11 <180 180<E11 <200 200<E11 <220 220<E11 <240 

Range 
GeV) 
0-2 70.963 77.594 81.518 87.047 91.010 85.652 

2-4 58.117 65.118 68.428 77.491 79.023 75.919 
4-6 35.198 41.460 48.081 54.223 58.158 58.399 
6-8 23.767 27.691 35.510 39.888 39.956 52.559 

8-10 16.411 20.235 27.475 28.670 33.296 43.799 

10-12 12.280 16.356 22.550 21.814 25.749 39.906 

12-14 8.941 13.693 18.273 18.282 21.754 35.040 
14-16 7.074 10.726 15.163 15.789 19.534 31.146 
16-18 6.225 9.357 13.219 14.127 17.758 29.200 

18-20 5.150 8.292 10.886 12.673 16.870 23.360 
20-22 4.131 7.227 9.850 11.011 15.094 22.386 
22-24 3.395 5.782 9.202 10.180 14.206 19.466 
24-26 2.660 5.097 8.554 9.141 13.762 18.493 
26-28 2.207 4.640 7.776 8.310 12.431 16.546 
28-30 2.037 4.032 6.869 7.271 11.543 14.600 
30-32 1.754 3.880 6.480 6.440 10.655 12.653 
32-34 1.471 3.652 5.702 5.402 9.767 12.653 
34-36 1.245 3.119 4.795 4.986 9.767 10.707 

36-38 1.075 2.663 3.629 4.363 9.323 9.733 

38-40 0.905 1.978 3.240 3.947 8.879 7.787 

40-42 0.792 1.674 2.722 3.740 8.879 5.840 
42-44 0.679 1.598 2.333 3.324 7.103 4.867 

44-46 0.679 1.521 1.944 2.285 .. 6.215 3.893 

46-48 0.566 1.217 1.814 1.870 6.215 2.920 

48-50 0.453 1.141 1.685 1.662 4.883 1.947 

50-52 0.340 0.989 1.555 1.454 4.440 1.947 

52-54 0.283 0.989 1.296 1.247 4.440 0.973 

54-56 0.113 0.761 0.778 1.039 3.996 0.973 

56-58 0.000 0.456 0.778 0.623 2.664 0.973 

58-60 0.000 0.304 0.259 0.208 1.332 0.000 

Table 5.2 

1000 times the cumulative energy loss probability per metre of steel: Part 2. 
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The initial track finding and fitting in the target is described in the previous section, 
here we shall concentrate on extrapolation of the muon track upstream into the shower. 95% 
of the shower is typically contained in 70 to 100 em of steel which means between 3 and 7 spark 
chambers. In order to extrapolate upstream into the shower, we first choose a best spark in 
each view arid each chamber on the basis of closeness to the track. Sparks with bad second 
differences (kink in track at spark) are then thrown out, the window being twice the expected 
scatter from zero or the second difference. A regular multiple scattering fit is then done, again 
using (5.2) through (5.6) to obtain the error matrix. The procedure is considerably simpler 
than the toroid case because the momentum is now known and there is no magnetic field. The 
z = 0 plane is first taken to be the downstream-most chamber in the shower. Solving the x2 

problem gives an expected position for the muon spark there in both views with an error, say 
u0. Let the spark chamber resolution be s. Then the closest spark is picked up within a radius 
2.80' from the expected position, where u = y'u~ + s2 , the sigma for the probability of a real 
spark occurring in the neighbourhood of the predicted position. This procedure is repeated 
with z = 0 being the next. upstream chamber and so on until the 'vertex' chamber is reached, 
if Ehad < 25 GeV. If 25 GeV < Ehad < 100 GeV we only go down to the 'vertex+ I' chamber 
and if 100 GeV < Ehad < 200 GeV only to 'vertex+2'. This energy dependent selection of 
chambers is due to the increase of background hadron sparks with hadron energy. 

How did we arrive at the above criterion! Assume, for the sake of simplicity, that 
there is a uniform background of n0 sparks per unit area due to the hadron shower. Then 
the distribution or sparks around the expected posit ion will look like that in fig. 5.6. The 
probability of picking up a good spark is, approximately, the upper shaded area (n2) and that 
or picking up a bad spark n 1. n 1 can be determined by looking at large distances from zero. n2 
will not be one because of the 2.80' cut and also because of spark chamber inefficiency. In table 

' 5.3 we list n 1 and n2 for different Ehad ranges and at different d istances from the vertex. The 
dotted line indicates that a cut was made when n2 fn 1 was less than 2. The multiple scattering 
fit also predict s the error on the space angle 8w Clearly this should be proportional to 1/p, 
and there may be a slight worsening of the error with an increase or Ehad due to the higher 
probability of mistaking a hadron shower spark for a muon spark. Tabulated in table 5.4 are 
the coefficients a and b for a linear fit in different Eha d ranges: 

b u1 =a+­
p 

a is indistinguishable from zero. As a rough summary, 68 ~ 100/pp mrad-GeV /c. 

(5.11) 
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EHAD Quantity VTX IVTX+1 i\'TX+2 VTX+3 VTX+4 tvTX+5 VfX+6 VTX+7 
nl/n 0.056 0.034 0.045 0.027 

O<E,.. < 10 

n2fn ~.674 0.797 0.760 0.806 1.000 

ntfn 0.119 0.061 0.047 0.046 0.026 0.000 0.081 0.000 
10<E,.. <25 

n2/n 0.492 0.691 0.733 0.701 0.869 1.000 0.419 1.000 ---
ntfn 0.172 : 0.092 0 .066 0.044 0.034 0.044 0.000 0.033 

' 25<E,.. <SO ' 

n2/n 0.261 : 0.558 0.654 0.676 0.742 0.725 1.000 0.867 

ntfn [o.159 : 0.125 0.075 0.056 0.056 0.049 0.026 0.014 

50<E,.. < 100 ' ' 
n2/n 0.185 : 0.480 0 .598 0.719 0.672 0.651 0.869 0.903 ----
n1/n 0.137 0.130 : 0.092 0.053 0.050 0.041 0.022 0.000 

100<£,.. <200 : 
I 

n2fn 0.127 0.206 : 0.513 0.664 0 .728 0.813 0.887 1.000 

Table 5.3. n1 and n2 in planes away from vertex. See fig. 5.6. 

EHAD Range a b 
(GeV) (mrad} (mrad-GeVfc) 

O<Eh < lOGeV .162 84.35 

10<E,.. <25GeV .257 80.25 

25<E,..<50GeV .111 105.38 

50< Eh < 100 GeV .111 106.23 

100 < E,.. < 200 GeV .126 ' 129.22 

200 < E,.. < 400 GeV -.031 156.10 

Table 5.4.. Angular resolution fit parameters. See eqn. 5.11. 

A description or the counters and hadron energy calibration has been given in the 
previous chapter. Here we shall describe how the shower limits are located and how Ehad 
is obtained. A software bit is set for all target counters if at least 2 out of the following 3 
conditions are satisfied: 

(i) The hardware bit is on and the pulse height is > 3 times minimum ionizing. 

(ii) The pulse height is > threshold. 

(iii) The 'high' pulse height is > threshold. 
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Then we sweep all the counters starting from the downstream-most. Whenever the 
software bit is turned 'on' a new possible event is logged. When the bit turns 'off' in this 
sweeping process, the event is taken as beginning just before that particular counter if none or 3 
counters upstream also have bits set. The first counter to fire in an event is designated 'PLACE', 
and the last, 'CEXIT'. Ir (CEXIT-PLACE+l) is~ 5, we define CEXIT to be also 'SHEND', the 
last counter to see shower particles. Ir not, another sweep is made from (PLACE-I) to CEXIT. 
If the sweep ends at the second counter upstream of the toroids, SHEND is set to 2. Otherwise, 
if 3 successive downstream counters have pulse heights less than 4 times minimum ionizing (and 
3 even further downstream have an average pulse height < 4 min. ionizing), that counter is 
labeled SHEND. The shower thus lies between PLACE and SHEND, the muon continues to 
CEXIT (see fig.5 .1). The hadron energy is obtained by summing up the pulse heights in the 
shower, subtracting the contribution of the muon and multiplying by the calibration constant 
described in the previous chapter. As mentioned there, 

AEhatt = .72 + .81 ~-

The question bas been asked "Do we miss any hadron energy in the longitudinal 
direction!" This can happen if SHEND is one or two counters too close to PLACE. The mean 
energy is computed (in terms of minimum ionizing) in different Ehad bins in the 6 counters 
downstream of SHEND and compared with that in 6 counters even further downstream. Only 
about (0.16 ± .03) GeV is being lost and is corrected for. Another worry regarding Ehad is the 
possibilty that fluctuations due to 1r

0 decays in the shower might increase the error, AEhad · A 
method has been suggested(23) which involves using E~ = E;(l- ~E;) as the response of the 
ith counter instead of E;. ~ is defined by 

c 
<=~~~~==;==;=;;=~ JE; E; (in min. ionizing) 

(5.12) 

Shown in figure 5.7 is AEhad/ Ehad for different values of c for 90 and 250 GeV /chadron beams 
used for our hadron energy calibration. Clearly the preferred value is c = 0, i.e ., we see no 
such improvement. This may be due to the coarseness or sampling (lOcm Fe) being enough to 
average over electromagnetic fluctuations. 

§5.4 Vertex, e~~., Acceptance, etc. 

Some miscellaneous aspects of analysis will be covered in this section. The z-position of 
the vertex is simply taken to be midway between the first counter of the event and the previous 
one. We considered the possibility that back scattering faked a more upstream z-position. An 
algorithm based on typical shower behaviour was employed to improve the vertex z position; 
it failed to show any significant change in cross-sections ( +0.2% for pions, - 0.7% for kaons; 
3000 pions, 1900 kaons). The transverse position of the vertex is determined well by the shower 
probing algorithm - the error in the position is about 0.1 in in each view. 

Studies were also made of the possibilities of using 8h instead of 8JJ and recovering 
PJJ from multiple scattering in the target. The best achievable value for AOh turns out to be 
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50mrad, at the highest Ehad· This corresponds to a low Oh region which means very large 
t:.8h/8h, ruling out the possibility of using eh. p,.. may be obtained from multiple scattering, in 
fact this method works well if the true p,.. is less than about 40 GeV. However, momenta larger 
than 40 GeV are estimated to be smaller than they really are, making such a technique highly 
unreliable. 

An interesting quantity to measure is the resolution of the target spark chambers. 
At higher momenta, this is as significant as multiple scattering. Using the x2 from the 
upstreamward extrapolation or the muon track into the hadron shower we find that for muon 
momenta above 40 GeV fc the x2 I DF is 1 if the resolution is set to 0.53 mm. This value is also 
confirmed by comparing predicted and observed spark positions while extrapolating upstream 
into the shower. 

A very important quantity is the geometric acceptance of the detector. For charged 
current structure function analysis only muon trigger events were used. Penetration triggers 
were used to complete the set by adding candidate muon triggers that never made it to T2 (see 
flg.4 .1) because of ranging out. Consider the straight line projection or the muon track into the 
toroids. Since the magnet is focussing, any muon will tend to be 'accepted' if this projection is 
'accepted'. Our 'software trigger' then accepts only t hose events for which the muon projection 
is within a 110 in -side apparatus-centred square at T2, a 69 in -radius apparatus-centred circle 
at the front-face of the magnet (TF; see fig.4.1) and spends less than 30% or its time in the 
magnet hole. Since we pick up all rangeouts, the acceptance depends only on the muon angle 
e,.. and the vertex position. As described later, a cut is applied and only events with e,.. < .2 
are used. The geometric acceptance is calculated as the fraction of times an event with a given 
e,.., v~, Vy would be accepted if V.z and ¢,.. took on all possible values with equal probability. 
( v~, vy, V.z) is the vertex position. V.z can take on all values between the z-limits of the fiducial 
volume; ¢,.. can take on all values on [0, 27r]. The problem, as illustrated in figure 5.8, reduces 
to the intersection of a circle with a cirlce (at TF), a circle with a square (at T2) and a cone 
with a cylinder. ... 



Chapter 6 

Extraction of Structure Functions 

§6.1 An Overview of the Physics 

Let us take a look at the result of Appendix C which is reproduced here for con-
venience: 

(6.1) 

It would be best if all the structure functions utr ,4- ;rf' ;t', sP, and kP could be 
independently and accurately measured as functions or x and Q2 ., From (6.1) it is clear though 
that only certain combinations or these are measurable. The three main functions or interest 
are 

2xF1 = q+q 
xFa = q-7j 

and F2 = q + 7j + 2k, 
(6.2) 

or, equivalently, xF3 , F2 , and R (defined by F2 = 2xF1{1 + R)/(1 + 4m2 x2 /Q 2
))). The 

neutrino and antineutrino differential cross-sections provide two independent measurements, 
yielding F2 and xF3 with an assumption about R, which, as we shall see, is expected to be 
small. The nature or the term containing F2 and R clearly indicates the necessity of using 
y-dependences in extracting R. 

Partly to get a 'feel' for the structure functions and the problems associated with 
their extraction, a brier description is presented here; excellent refcrencesf25-2Q) may be found 
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elsewhere. At the very outset it should be noticed that xF3 is the 'valence' quark distribution 
while F2 is the 'total' quark distribution. Clearly, if quarks were all a proton contained, then 
/ 0

1 F2 dx would be 1. This means that a" should be G 2 s/2rr implying 

(6.3) 

The measured value is closer to 0.67 x 10-38 cm2 /GeV<30l, indicating that a little over half 
the nucleon momentum is carried by objects other than quarks. Current wisdom has it that 
these are gluons, carriers or the strong 'colour' force. Present understanding and calculational 
abilities prevent us from predicting the structure functions as functions or X and Q2 • However, 
there are many clues. At the high Q2 values in this experiment the distance and time scales 
or the neutrino-quark interaction are small enough to justify the 'quasi-free' nature or quarks 
assumed by the parton model. Consequently quark distributions appear to 'scale', i.e., depend 
on x alone. 

Since xF3 is x times the valence quark probability density, we expect / 0
1 

xFafx dx 

to be 3. The 1/x forces xFa to go to zero as x-+0. In fact, valence quark contributions are 
expected to be nondifl'ractive in Regge theory, which predicts that Regge exchanges with a~ 
1/2 will dominate, giving<29l xFa"' Jx as x--.0. The sea arises from virtual pair production by 
gluons, and is consequently confined to low x. Quark counting rules<29l and comparison with 
the electromagnetic form factor in turn indicate<26l that F2 (x ),..__ (1 - x )3 as x-+ 1. Shown in 
figure 6.1 are the functions xFa, F2 and 7j that satisfy these predictions. 

QCD suggests that quarks bremsstrahlung to give gluons and gluons in turn produce 
more gluons or qij pairs (fig. 1.2). These processes are more and more visible as one goes to 
higher Q2 • This means that the valence quarks should lose momentum, which appears in the 
form or extra sea quarks (mostly) and gluons (small increase). All 3 distributions (valence, sea, 
gluons) should have lower mean x values. In particular, the sea sh~uld see an increase at low x. 
These QCD deviations from the parton model are illustrated in fig. 1.3. One of the objectives 
of this experiment is to measure such scaling violations and compare the results with QCD. In 
the limit of very large Q2 (not reached by this experiment), only sea quarks are significant, and 
a" and av are equal. In the energy range or E616 however (30-+ 240 GeV), we only expect 
a slow fall in the neutrino cross-section slope and a slow rise in that from antineutrinos. The 
onset or charm production tends to reverse any fall with Q2 • 

§6.2 Total Cross Sections 

As an illustrative example, let us calculate the total cross section of neutrinos and 
antineutrinos a.ssuming that the slope with energy is constant. The detailed references are, of 
course, (8) and (30). This section is meant as an introduction to the problem or extracting 
structure functions by way of the conceptually simpler problem of obtaining a cross-section. 
An explanation of the mechanics of event counting for cross-sections is included in appendix 
E. 
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The event sample is restricted to lie in the fiducial volume-defined between PLACE=20 
(see §6.5} and PLACE=80 (§4.7}, which implies a target density of 5361.8 gmfcm2

• Neutrinos 
from pion decays are only accepted in a beam-centred circle of 30 in radius at Lab E, while 
neutrinos from kaon decays are accepted in a beam-centred square with a 100 in side. This 
is necessary since fluxes are not well understood at large radii for neutrinos from pion decays 
(Chapter 3; Appendix A}. Only those spills in which the beam centre was within a 2.4 in sided 
box around the centre of Lab E are accepted. Also, if either the expansion port ion chamber 
or the manhole ion chamber disagreed with the rest of the flux monitors for any run, that run 
was discarded. 

It is useful to separate the neutrinos from pion and kaon decays because they have 
very different energies. Since the penetration trigger penetration requirement is 16 counters, 
the apparatus is fully efficient (after geometric inefficiency is corrected for) out to about 600 
mrad. We thus safely make a cut at 370 mrad, the outer events being corrected for by a Monte 
Carlo as described below. The 'software' triggers used can therefore be summarized as follows: 
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Clearly the S3 cuts are less restrictive and therefore define the kinematic boundaries 
as depicted in fio<T\ll'e 6.2. The angle beyond which the muon trigger efficiency cannot be 
geometrically recovered is the angle a line from the apparatus centre at z=-167 in (closest 
event to the toroids) to a corner of T2 (55 in square, z=142.5 in ) makes with the apparatus 
axis; this is 251 mrad. As described in appendix E, we can establish categories or events, 
containing either muon or penetration triggers, and thereby obtain the total number or 'pion' 
and 'kaon' events. 

Assuming that the neutrino cross section is cv(E) = kEx10-38 cm2 , where E is in 
GeV, we can use our knowledge of the neutrino flux (/-.:,/k; chapter 3) to predict the number 
or 'kaon' and 'pion' events, e.g., 

Nv(7t) = 100 

Cv(E)f-.:(E).Area.Target density.Avogadro's no. dE (6.5) 
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Comparison with the experimental value gives k. 

A high statistics Monte Carlo generation of events is used to correct for smearing and 
unsampled regions which are the regions excluded in (6.4). Our final result, obtained after 
properly averaging over various energy regions to handle systematic errors correctly is(30l 

and 
Uv/E = (.669±.003±.024)x10-38 cm2 fGeV 

u;;/E = (.340±.003±.020)x10-38 cm2 /GeV (6.6) 

Note that the dominant error is systematic, resulting from flux level and particle fraction 
uncertainties. The slopes as a function of energy are plotted in fig. 6.13. While both slopes 
are consistent with being flat, there is a slight tendency, at high energies, for the neutrino 
slope to rise and for the antineutrino slope to fall. This affects the Q2 behaviour or the 
structure functions, especially that of xFa, which is related to the difference of the neutrino 
and antineutrino differential cross-sections. 

Extraction or structure functions involves an increase in the dimensionality of the 
problem, since events must now be binned in x and Q2 as well. We can therefore use only 
muon trigger events for which a muon energy is known. In the next few sections the structure 
function extraction procedure is described, with its cuts and corrections, and is followed by a 
discussion of systematic errors. 

§6.3 Cuts, Resolutions and Binning: 

From the cross-section discussion it is already clear that cuts must be made; the cuts 
made for the structure function analysis are listed below. 

Fiducial Cuts 

1) 205PLACE580 
2) Beam radius5 30 in for neutrinos 

from 1r decays 
3) Beam position within a 100 in square 

for neutrinos from K decays. 

' 

Kinematic cuts 

1) 8" < 200mrad 
2) Eh > 10GeV 

3) Ep > 4GeV 
(6.7} 

The beam position requirements in the fiducial cuts reflect the limits beyond which 
only flux tails exist which are not well understood. PLACE cannot be greater than 80 (i.e., 81 
or 82) because one might then be including straight through muons. If PLACE < 20, there are 
too few position measurements before the toroids and after the hadron shower for track finding 
to be fully reliable (see (iv) in §6.5}. 

As pointed out in the previous section, beyond Op = 25lmrad, the muon trigger 
efficiency falls irrecoverably and we thus make a conservative cut of 200 mrad. Below Eh = 
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25 GeV there are no calibration data and therefore the calibration curve is extrapolated only 
down to E11. = 10GeV. A minimum E,. requirement of 4 GeV is ample for the muon to 
penetrate the longest shower and be identified. 

Not mentioned above are the cuts which remove 'stray events' such as those with no 
track round (very few; see track finding efficiency below). Also eliminated are events with track 
fitting failures and track fitting x.2 / df greater than 9. The correction for this is also described 
below. or course, only muon trigger events are used. Penetration trigger events which satisfy 
the 'software trigger 1' requirements (radius at magnet front face < 69 in , position at T2 
within a 110 in -sided square and less than 30% of time spent by muon track when projected 
from vertex into toroid) and do not fire the muon trigger are presumed to be range--outs and 
are picked up and classified as muon triggers. Table 6.1 illustrates the effects or all the cuts as 
they reduce the raw number of events for each energy setting. 

Cut -250 -200 -165 - 140 -120 120 140 165 200 250 
Raw evts, PLACE~ 20 4241 4507 4374 3972 2857 16241 20235 31785 38224 45822 

Event Gate 4156 4441 4324 3950 2830 16000 19200 31330 37565 43854 
Muon trigger 3541 3821 3706 3344 2324 11487 13926 23806 29413 35697 

Good trg 1 3211 3443 3332 3002 2071 10043 12279 21237 26340 32287 
Good fit 3211 3437 3331 3000 2060 10033 12230 21091 26220 32182 

X.~or < 9 3210 3426 3329 2999 2040 9979 12120 20749 25910 31932 

Xtar < 9 3208 3425 3328 2999 2040 9955 12096 20699 25846 31836 

85.2 3197 3418 3322 2996 2032 9862 11986 20525 25625 31578 

8 > .0071 if r11 < 511 3195 3417 3322 2996 2032 9860 11984 20524 25618 31566 

Eh.ad ~ lOGeV 1989 2034 1870 1519 889 5513 7565 14192 18810 24440 

E,.~4GeV 1875 1957 1810 1476 858 5456 7500 14067 18680 24232 

r6 5 30'' if from 1r 1610 1690 1517 1193 653 4322 6289 12534 17090 22587 

In 100'' square if from K 1576 1642 1482 1162 631 4157 6063 12054 16426 21756 

05x<1 1573 1638 1481 1160 631 4146 6048 12024 16374 21685 

1 GeV2 < Q2 < 251.2 GeV2 1468 1531 1365 1065 556 3881 5711 11499 15790 21009 

Table 6.1. Effect of structure function cuts 

From the expressions 

(6.8) 

and (6.9) 

it is easy to calculate the resolutions in x and log10 Q2 , given those in E,.,Eh. and 8,. (see chapter 
5). 

The x-resolution worsens with increasing x but improves with increasing Q2
. Listed 

in table 6.3 are the x and log10 Q
2 resolutions for a fixed neutrino energy of 120 GeV. Clearly, 
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at low x (x......, .015) the x resolution can be as good as 0.005 which helps the determination of 
the low-x behaviour of xF3 tremendously. Table 6.2 clearly shows that the low-x resolutions 
are dominated by the o,. resolution and the high-x ones byE,. (except at lower Q2 where the 
effect or the Ehad resolution eclipses that of the E,. resolution). 

The binning scheme could be adapted to the resolutions, but it was thought best to 
use the binning shown in table 6.7 to facilitate easy comparison with CDHS who use the same 
binning except for their log10 Q2 bins, which are twice as fine. For the low-x behaviour or xFa, 
finer binning is used. 

X %from %from %from loglo Q2 %from %from %from 

resol. EIJ Ehad OIJ resol. EjJ Ehad o,. 
X-.015 (,} .. - 2.51 .006 21.82 1.16 77.02 .164 21.23 3.84 14.93 

X=.045 Q2= 3.98 .Oll 61.09 10.43 28.47 .103 64.95 4.79 30.26 

X=.080 Q2= 6.31 .019 68.13 14.28 17.59 .098 75.67 4.77 19.56 

x=.150 Q2
' 15.85 .031 78.34 9.77 11.88 .089 80.07 7.98 11.94 

x=.250 Q2
' 15.85 .060 72.83 21.06 6.12 .095 88.40 4.13 7.48 

x=.350 Q2 : 25.12 .080 76.86 18.59 4.55 .093 89.90 4.87 5.23 

x=.450 Q2 39.81 .095 82.06 14.12 3.81 .088 89.39 6.45 4.16 

x=.550 Q2 = 39.81 .125 78.35 18.70 2.95 .091 91.45 5.12 3.43 

x=.650 Q2 = 63.10 .132 85.06 12.11 2.82 .085 89.70 7.33 2.97 

x=.850 Q2 = 63.10 .190 79.90 18.16 1.94 .089 92.71 5.02 2.27 

Table 6.~. Resolutions in typical bins and where they come from (E11=120 GeV) . 

.. 
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x-resolution 

x=.015 :r=.045 x=.080 :r=.150 :r=.250 :r=.350 :r=.450 :r=.550 x=.650 :r=.850 
Q"~ 1.26 .005 .016 .033 .075 .152 .245 .351 .468 .596 .883 

Q2 = 2.00 .004 .014 .028 .063 .125 .199 .284 .379 .481 .709 

Q2 = 3.16 .007 .012 .024 .053 .104 .164 .233 .309 .391 .574 

Q2 = 5.01 - .010 .021 .045 .088 .137 .193 .254 .321 .468 

Q2 = 7.94 - .010 .018 .039 .075 .116 .162 .213 .267 .386 

Q2 12.59 - - .015 .034 .065 .100 .139 .181 .225 .324 

Q2 = 19.95 - - - .028 .056 .087 .120 .155 .193 .274 

Q2 = 31.62 - - - .028 .047 .074 .103 .134 .167 .237 
Q:l= 50.12 - - - - .040 .061 .087 .115 .144 .205 

Q2 = 79.43 - - - - - - .070 .094 .120 .175 

Q2 =125.89 - - - - - - - - .094 .142 

Q2 =199.53 - - - - - - - - - -
log10 Q"-resolution 

x=.015 X=.045 X=.080 x=.150 :r=.250 x=.350 x=.450 x=.550 x=.650 :r=.850 
Q"= 1.26 .131 .128 .129 .130 .130 .129 .130 .130 .. 129 .130 

Q2 = 2.00 .124 .118 .118 .120 .120 .120 .120 .121 .121 .120 
Q2 3.16 .203 .107 .111 .113 .114 .114 .114 .115 .115 .115 

Q2 = 5.01 - .099 .102 .106 .108 .109 .110 .110 .110 .110 
Q:l 7.94 - .097 .094 .099 .102 .105 .106 .106 .107 .108 

Q2 = 12.59 - - .086 .093 .097 .100 .102 .103 .103 .105 

Q2 = 19.95 - - - .084 .092 .097 .099 .098 .101 .103 

Q2 = 31.62 - - - .090 .082 .088 .092 .096 .096 .099 

Q2 = 50.12 - - - - .076 .079 .083 .086 .089 .093 

Q2 = 79.43 - - - - - - .074 .078 .081 .086 

~2=125.89 - - - - - - - - .070 .075 

Q2 =199.53 - - - - - - - - - -

Table 6.3. x and Q2 resolutions at E 11=120 GeV. 

§6.4 Method of Extraction 

The equation to be solved is (6.1). Assuming that all correction terms are calculable, 
there are three unknowns in any small x and Q2 bin (integrating over energy), which may be 
F2 , 2:rF1 and xF3 . With only 2 equations, one of the unknowns must be fixed beforehand. The 
similarity of the term containing F2 in both the equations demands that xF3 not be fixed; it 
must be F2 orR. F2 being the most interesting quantity and R being small ("" 0.1), we chose 
to fix R while analyzing the data. The values chosen were 
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.73(1- x)a.es 
R = 0., 0.1 and ln(Q2f.242) (6.10) 

the last or which derives from calculations based on our results for the QCD evolution of 
F2(X, Q2 ). 

The number of events in a given x and log10 Q2 bin is given by 

(6.11) 

A(v,., Vy, 811 ) is the acceptance and ¢v,v(v,., vy, E)dv,.dvydE the flux of neutrinos or 
antineutrinos in a small area dv,.dvy and a small energy interval [E, E +dE). v,. and vy are 
the transverse coordinates of an event. The acceptance A(v,., vy, 811 ) is integrated over all v.z: 
values within the fiducial volume and hence is not a function or vz. We now assume that F2 

and xFa are linear in the bins used (see section on corrections below). Then, using the value at 
the bin centre as a fixed unknown, the neutrino and antineutrino equations may be integrated 
to give 2 simultaneous equations in 2 unknowns which are then easily solved. 

If F2 and xFa be the (constant) unknowns in a given bin, then the expected number 
or events is 

Nv = aF2 + ~ xFa + c} 
N-v = aF2 + bxFa +c (6.12) 

where the 6 constants a,b,c,a,b and care known from the integral6.11. The likelihood Lor 
seeing N 11 neutrino and N-v antineutrino events in the bin is then simply the product or two 
Poissons with the expected values or N 11 and N-v as the means: , 

(6.13) 

Maximizing L or, equivalently, minimizing -In L gives 

(6.14) 
and, 

It is obvious that (6.12) is indeed a solution of (6.14). To speed up the integration, 
the product A(v,.,vy,Bp)¢v,v(v,.,vy,E)dEdv,. dvy is evaluated first after integrating over ¢11 

and is stored in tabulated form as a function or E,Bp, and r . This reduces the problem to a 
4-dimensional integral of which at least one integration, over rbeam, is easily performed without 
including the y-dependent terms. The kinematic cuts described earlier are applied during the 
integration, thereby restricting it to allowed regions only. 
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Another technique is used by D.B. MacFarlane as described in his thesis(10). That 
technique eliminates two integrals by utilizing the fact that it is also possible to take A( v~, vy, 911 ) 

to the lett-hand side of (6.11) before the integrations (i.e., in the differential expression) and 
sum up weights (!/acceptance) instead or 1 for each event. It is easily checked that this leads 
to a larger fractional error for the left hand side or (6.11); the fractional error increases from 
1/VN to 

(6.15) 

-where wand C1 are the mean and standard deviation respectively of the weights of theN events 
in the bin. A large dispersion of weights in a bin will therefore lead to a larger error on the 
extracted structure functions. However, since we keep A(v~, vy, 811 ) on the right hand side of 
(6.11) a 5-dimensional integral has to be performed as opposed to a 3-dimensional one otherwise. 
We effectively reduce the integration to a 4-dimensional one (see above) and with the help of 
some programming short cuts find that the integration takes less than 50% longer than the 
other technique. 

Apart from the completely independent computer implementations, other differences 
also exist between the two methods. We choose to parametrize the flux as a function of energy 
and radius at Lab E, instead of binning it in an energy histogram. This allows greater flexibility 
and ease of use. We also choose to make all the corrections in an additive fashion as opposed 
to multiplicatively in the other technique. It has been verified that none or these differences is 
quantitatively significant. 

§6.5 Corrections 

' Several corrections, most of them tiny, must be made before structure functions can be 
extracted. These fall into two kinds: those that arise from experimental inefficiencies and those 
that are either theoretically motivated or require prior knowledge of the structure functions; 
the former are described fl.rst. 

L Veto deadtime correction 
An unbiased loss of events occurs because some of the flux is vetoed by the veto wall. The 
magnitude of the effect is small (~ 2%) and is tabulated in table 6.4. 

ii. x2 -failures 
There are two fits to the track: one in the toroids for momentum finding, and one in the 
target for the muon angle. In either case it was felt that events with a bad x2 fd.f. would 
lead to worse resolutions, hence only events with x2 fd.f. < 9 were accepted. The effect 
of this cut is ,...., 1% after kinematic cuts, as evidenced in table 6.4. A setting by setting 
correction is computed by making all possible cuts in a 30 in beam centred radius including 
the E 11 cut for events with a good x2 • 
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Energy Setting Veto Deadtime x2 > 9 
(GeV) correction correction 
-250 1.016 1.0025 

-200 1.004 1.0080 
-165 1.006 1.0014 
-140 1.016 1.0009 
-120 1.020 1.0250 

120 1.012 1.0059 

140 1.010 1.0123 
165 1.009 1.0265 

200 1.011 1.0169 

250 1.014 1.0072 

Table 6.4. Corrections (i) and (ii) described in the text. 

iii. Trigger inefficiencies 
One may ask whether the muon trigger is really 100% efficient. A way to determine this 
is to examine small-8,.. events for which both the muon trigger and the penetration trigger 
should be 100% efficient. Such an analysis has been performed for fast-spill eventsC42l with 
no significant difference from 100% detected. 

We have also investigated the o,.. behaviour or the muon trigger efficiency and the Ehad 

behaviour or the penetration trigger efficiency. Arter geometric efficiency corrections both 
are equal to unity in the expected regions. Beyond o,.. = 251 mrad the muon trigger 
efficiency shows a fall oft'. The penetration trigger efficiency is only relevant for the purposes 
or picking up rangeouts and reaches one well before the hadron energy cut or 10 GeV. 
These dependences are shown in fig 6.11. 

iv. Track finding efficiency 
The track-finding efficiency is virtually 100% . This was directly checked by asking how 
many muon triggers underwent successful track finding. The result if plotted as a function 
or PLACE is fiat at 100% except for PLACE < 14 where it rapidly begins to fall to zero. 
We impose a cut to eliminate PLACE < 20 and hence there is no correction to be made. 

v. Wide band background 
This correction is made by including the wide band .flux correctly scaled to the number or 
open slit protons and has already been discussed in chapter 3. 

vi. Cosmic rays 
When the structure function analysis cuts are applied to events in the cosmic ray gates, 
only 2 events (one at +200 GeV/c, one at +250 GeV/c) make it through. Allowing for a 
slow spilllivetime ratio or 3.7, this number translates into 7.4 events out of,..., 30,000 slow 
spill events. This is an extremely small fraction and hence the cosmic ray background will 
be ignored. 

vii. Flat cross-section correction 
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Due to experimental uncertainties the slope of the cross-section measurements with energy 
is not a smooth curve (references 8,30; figure 6.13). QCD scaling violations, charm 
production etc. make this curve not flat. Figure 6.14 shows a prediction from QCD 
using a Buras-Gaemers(·U) kind of fit (A = 0.1 GeV) and charm production assuming 
me = 1.5GeVfc2 • Since neither A nor me is really well known, our assumption to 
force the cross-section slope to be flat is adequate. This serves to remove experimental 
fluctuations. 

There are many ways of applying this correction. The most obvious is to use, at each 
energy, a multiplicative factor that changes figure 6.13 to a horizontal flat line. Another 
way is to separately alter the pion and kaon flux at each energy setting so that the pion 
and kaon decay neutrino cross-section is the same at all energy settings. 

A third technique, the one we used, involves adjusting the relative flux levels of each 
momentum setting so that the structure functions integrated over the measured x and 
Q2 range of that setting agree with the averaged structure functions in that range. A "' 
0.5% correction was then applied for consistency with the cross-section measurement. The 
constants we multiplied the fluxes with are listed below. Presumably they remove errors in 
particle fractions i.e., the fluctuations in the cross-section slope measurement are mainly 
due to errors in particle fractions and partly due to inaccuracies in flux measurements (we 
fl.nd that the rms for the adjustment constants is roughly equal to the expected errors on 
particle fractions). Our technique would be the same as assuming a QCD cross-section 
slope if all the fractions in fig. 6.14 were 100% , since the model is an approximation to 
QCD. Since the total cross-section is insensitive toR, we do not expect the uncertainty 
in R to affect the adjustment constants. 

250 GeV 200 GeV 165 GeV 140 GeV 120 GeV 
-Pions .963±.034 .964±.034 1.04.3±.039 ,1.126±.055 1.004±.064 

+Pions .964±.014 .973±.015 .947±.016 .938±.022 .967±.026 

- Kaons .901±.050 .896±.047 .964±.051 1.071±.065 .970±.081 

+ Kaons 1.112±.012 1.042±.014 1.028±.016 .986±.023 .993±.030 

Table 6.5 

Flux adjustment constants- they flatten the cross-section in regions where 
structure functions are measured. 

All the following corrections require prior knowledge or the structure functions. For 
this reason we iterate. Starting from an approximate set or structure functions, corrections can 
be calculated, made and then the newly obtained set of structure functions used to repeat the 
process. Experience has shown that one iteration is enough. The strucuture functions used for 
corrections are really fl.ts, and we used two different models (see appendix F). 

For the purpose or smearing corrections and external radiative corrections, the empiri-
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cal model forms the kernel or a Monte Carlo which generates events. The generated variables 
E 11 , E11 and 811 are then smeared using the resolutions described in section 6.3. This Monte 
Carlo is very fast and ample events at each energy can be quickly generated. 

Figure 6.3 illustrates the following physics corrections in the form of their contributions 
to the neutrino and anti-neutrino cross-sections. Clearly F2 and xF3 dominate at all but the 
lowest x values where the strange sea, radiative and other corrections begin to get large as z-+0. 

viii. Smearing corrections 
Ideally, an integral in an x and Q2 bin over x,Q2 and E, say 

(6.16) 

can be transformed into an integral over E11 ,E11 and 811 as 

(Two other integrations that are performed over v., and Vy, the transverse event coor­
dinates, are understood here). It is now easy to include the effect of non-zero resolutions. 
Ir the probability that a given variable, say q, truly lies in [q, q + dq) when the measured 
value is r/ is R 9(r/; q) dq, then the above integrals should change to 

' f(x, Q2 ,E)J(x, Q2
, E; E11 , E11, 811)RE,. (E11 ; E'11 )RE,. (Ell; ~,)R,,.(811 ; 8'11 ) 

(6.18) 
where the integrals over E~, E'11 and 8~ are over all space. Given the complexity or 
f(x, Q2 , E), the problem of evaluating these 8-dimensional integrals with the available 
CP time was insuperable. We settled for the alternative technique of generating much 
higher statistics than the data using the Monte Carlo described above, and using the 
ratio of unsmeared to smeared events in every bin to multiply the number of data events 
in each bin. Ir ni be the number or events initially in a bin, with n: entering due to 
smearing and n~ leaving, the number or events after smearing in the bin will be 

(6.19) 

The smearing correction is then defined by 

n'· n1. n~ . ' . /i=-=1--+-
ni ni n, (6.20) 
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n1 is independent or ni and n~. However, ni is binomially split up into events that remain 
in the ith bin and those that leave the bin. Thus the error on nUni is the error on an 
e.fficiency, giving 

(6.21) 

By generating a large number or events this error is kept at a fraction of the statistical 
error but is nevertheless propagated into the statistical error on the structure functions. 
Kinematic, fiducial and acceptance cuts applied during the calculation of smearing cor­
rections are identical to those used on the data. Corrections for large muon energy 
depositions within the hadron shower are simultaneously made by randomly simulating 
such processes utilizing the data collected outside the shower (see end of §5.1). 

ix. Bin centr~ corrections 
Within every :r and Q2 bin, the flux is not necessarily uniform, and the structure functions 
are not linear either. Further, parts of the bin may lie outside the kinematicaiJy allowed 
region after cuts. Therefore, the evaluated value or a structure function is only guaranteed 
to be the value somewhere in the bin. To obtain a value at the bin centre, say F20 for F2 , 

we must calculate the above effects using a fit . The integral within a bin, 

(6.22) 

The subscript zero refers to the bin centre. The derivatives are evaluated using the fit; the 
integrals Of (:r- Xo), (loglO Q2 -loglO Q~), (:r- Xo)2 , (:r- Xo)(loglO Q2 -loglO Q~) and 
(log10 Q

2 - log10 Q~)
2 are evaluated using the correct flux and kinematic cuts. Thus we 

find Io = J dV{ · · · }F:w, where F2o is the unknown to be determined. As shown in figure 
6.5, bin centre corrections are usually small, except in edge bins where cuts imply larger 
corrections. 

x. Isoscalar correction 
Easily the most straightforward of corrections, this one is also small ($ 5%). It is the 
±(1- 2/)((l~y)2)(u~- dn term in (6.1). Clearly it goes to zero iff= 1/2 ( < Z >= 
<A> /2) or if ue =de. For our target, f is close to 1/2 (f= 0.466). The models we use 
for corrections are explained in appendix F, where the difference between ue and de is 
described. The correction is plotted in figure 6.6. 

xi. Radiative corrections 
There are electromagnetic corrections to the basic weak interaction charged current process. 
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y 

Figure 6. 7. Diagrams ror radiative corrections. 

These involve photon bremsstrahlung from the muon and hadron legs or the diagram, selr­
energy terms and interference terms which could include the '\V-boson. Some or these 
diagrams are shown in figure 6. 7. 

Radiative corrections are most important for the lightest particles (here muons), since 
they tend to go like In Q2 fm2 • or course a rigorous discussionC32.33) must include all 
diagrams and calculational results must be gauge-invariant. Unknown quark masses and 
unknown details or the hadron leg are potential problems. Howeyer, as de Rujula et al.C33) 

show, most or the corrections are quark-mass independent. They show that to leading 
log order calculations may be perrormed because the lepton leg factorizes. The observed 
cross-section C111 &s, can be written in terms or the 'bare' cross-section aa, as 

a Q2 a Q2 a 
Uoh = aa + -ln-F(aa)+ - ln-H + -G 

21T m~ 21T M 2 21r 
(6.23) 

The lepton 'log', hadron 'log' and remaining terms are clearly separated. G is small, and 
even H may be neglected. F(aa) is a calculable function. 
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The end result is 

dCT0 &. = daB + .!!__In s(1- y + xy)2 x 
dx dy dx dy 211" m; 

{1 
dz 1 + z2 

{y8(z- Zmin)[ dCTB I - -]- dCTB } + 0( .!!__) lo 1- z z(y + z- 1) dx dy x- x dx dy 211" 
y=y 

(6.24} 

Here, 
- xy 
X = --:---~-:-

z+y-1 
_ z+y-1 y=-:.......:;. __ 

z 

(6.25) 

Radiative corrections are large(-.. 10%) at very low and very high x, also at very low y. 
They are plotted in figure 6.8. Note that our Ehad > 10 GeV cut effectively excludes the 
very low y region. 

xii. Strange sea correction 
This is the (1- (i- y)2)sN term in (6.1} above. They-dependence is exactly the same 
as for xF3 , but the sign remains positive even for antineutrinos. Hence this correction has 
virtually no effect on xF3 • Assuming that sN is some fraction of q, which can be iteratively 
well extracted, the only uncertainty is in the fraction. Dimuon data(34•35l suggest that 
sN must be half of u or d, a value which we used. This correction is obviously significant 
only at low x, since q -.. (1 - x )8 ·5 • It is shown in figure 6.9. 

xlil. Charm-mass correction 
A correction arises due to the heavy mass of the charm quark. Because of its mass, 
charm is not produced at low energies and production sets i~ as described in reference 24. 
Parton model kinematics prescribes a change from the variable X toe= x+m~f2mpEh . 
Whenever a light quark changes into a heavy one, the differential cross-section remains 
the same if Q2>m~, except for the replacement everywhere of Q2 by Q2 + m'i£, where 
fflH is the mass of the heavy quark. Also, the structure function scales in e, where 
e = X+ m1£ f2mpEy is now the fraction of the nucleon momentum carried by the struck 
quark. These changes are included in the differential cross-section expression of appendix 
3. The resulting effect is depicted in figure 6.10. 

xiv. Fermi motion correction 
If nucleons are bound in the nucleus, but freely move within it, and they resemble a 
Fermi gas, we can calculate(36•37l the effect of this motion on structure functions and 
total cross-sections. For example, for an average momentum < p2 >= (250MeV)2 , a 
number close to that for nucleons in iron nuclei, it is easy to show that s can increase 
by -.. 3%. Detailed calculations(37l assume a fiat Fermi-gas-like momentum distribution 
from zero to the limit, say Kp, and then a tail that falls off as 1/p4 • Corrections to 
both F2 and xFa have thus been calculated. However the assumption of free nucleon 
motion is not valid for iron nuclei. Deuterons have a much smaller binding energy (-.. 
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2.5 MeVfnucleon as opposed to ....... 8.7 MeVfnucleon in Fe) and the nucleons in them are 
expected to be closer to being free. Data from EMC and the SLAC-MIT experiments 
show that the ratio or cross-sections for iron and deuterium is markedly different from 
predictions (fig. 6.12, refs. 38,39). Aluminum data show virtually the same x dependence 
as iron data. Experiments have recently been performed{SO} to study the A-dependence 
or lepton-nucleon cross-sections and better theoretical understanding should result. For 
our purposes we shall be satisfied with the observation that the Q2 dependence in both 
cases is minimal (fairly flat in Q2 ) and therefore should not affect QCD stuclies. At this 
point in time it does not seem wise therefore, to make Fermi motion corrections and we 
have not made them. 

§6.6 Systematic Errors 

Estimation of systematic errors is limited by two important factors. One is the usual 
obstacle that systematic errors are only estimated for effects not completely understood. The 
other is the tendency or the statisitical errors to creep into the systematic errors if the data are 
used for their estimation. We try to guard against the latter as far as is possible. Some or the 
topics listed below are not necessarily 'errors', but are included as this is a convenient place to 
group them with the rest. The numbers in tables H.6 and H.7 (appendix H) are the errors in 
individual x and Q2 bins with no attempt to remove correlations i.e., they are the 'diagonal 
terms'. 

i. Ehad shift 
From the hadron beam data used for Ehcld calibration we estimate a 0.41% possible error 
on Ehad· Along with a 0.25% error that could come from map corrections, a total error of 
0.5% is estimated. Comparisons or the predicted neutrino energy as a function or radius at 
Lab E with the measured energy in y-bins indicates that the systematic error on both Ehad 

and E10 is less than or equal to 1% . " 

This 1% is propagated into the structure functions by evaluating them with and without a 
1% shift in Ehad in the integrations. Instead of using the data for the number of neutrinos 
in a bin we use an integration or the 'Buras-Gaemers' model to predict these numbers, 
thereby eliminating the possibility of statistics dominating the result. We shall call this 
the 'unlimited statistics' technique for future reference. As can be seen in tables H.6 and 
H.7, this error is extremely small except at the bigbest x-values where it still is negligible 
compared to the statistical error. 

ii. E11 shift 
The magnetic field in our toroids was measured at 3 different radii (10 in , 30 in , 50 in ) 
with a Hall probe. We obtained J B · dl using these data as input points and a computer 
program and estimate the uncertainty to be around 1% . Another experiment {E595)<78•70) 

used the same toroids for muon momentum measurement. They had a muon beam (with 
momentum known from bending magnets) go through the toroids and the mean ratio or 
the two momentum measurements at different momentum settings (between 100 and 278 
GeV /c) was different from 1 by (0.7 ± 0.6)% . Taken together with the estimate in (i) 
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above, we conclude that there is possibly a 1% error on Ep and study its effect as for En ad 
above (i.e., using 'unlimited statistics'). Again, the error is very small and gets larger at 
high x where it is still smaller than the statistical error. 

Notice that a simple Taylor expansion of the structure functions may also be performed to 
obtain this and the previous error (x and Q2 are expanded in E,., enabling an expansion 
of the structure functions in E,). We have checked that both procedures lead to the same 
nlues for the errors. 

iii. Uncertainty in R 
There is no accurate measurement of R in our Q2-range spanning all x. Hence we have 
extracted structure functions using three different values of R (see §6.5) and we take the 
standard deviation of the three values obtained in every bin as a measure of the error. or 
course, such an estimate is subject to statistical fluctuations and yet the effect is small 
except at low x for F2 as expected (see tables in appendix H). The structure functions for 
R = RQcD and R = 0.1 are listed in table 6.7 and G.1 respectively. 

lv. Extraction technique 
As mentioned in §6.4, structure functions have been extracted using two different tech­
niques and with completely independent software. We fl.nd that the resulting integrals of 
F2 and xF3 differ by 2% and 0.3% respectively. If the difference between the two tech­
niques weighted with statistics is plotted for all the available points, we fl.nd a mean shirt 
of 0.8% for F2 and 0.7% for xF3 with standard deviations of 2.1% and 5.6% respectively. 
Monte Carlo studies indicate an even smaller difference: about 0.5% for the difference in 
the integrals of F2 and xF3 . Clearly, statistics plays a limiting role here. It is emphasized 
that in all results we use a set of structure functions that is an average of the results of 
the two techniques. 

v. Model dependence 
The dependence of the extracted structure functions on the two models used for iterating 
the correction terms is found to be insignificant as evidenced in tables H.6 and H.7. 

Ti. SU(3) symmetry of the strange sea 

Analysis of our dimuon dataC35) indicates that the error on the 1/2 SU(3) assumption 
about the strange fraction of the sea is about 35% () ... = .5o±Jg). CDHS quote a smaller 
errorC34) i.e., >-. = .52±.09. Using our value and 'unlimited statistics' we fl.nd the errors 
on F2 and xF3 (tables H.6 and H.7). Because of the similar y-dependence of the strange 
sea correction term and the xF3 term we don't expect a sizeable error on xF3 • Even for 
F2 it is significant only at low x where it less than 2% . 

vii. Smearing corrections 
High statistics were used to calculate these corrections making them free of statistical 
errors. Errors on the resolutions of Ehad, E, and Bp and on the parameters contributed 
even less to the errors as was verified by changing them by one standard deviation. 
Therefore, no error is assumed from this source. 

viii. Angular dispersion or the beam 
The uncertainty in the angular dispersion of the secondary beam is discussed in the 
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appenclix to reference 8. There it is pointed out that no obvious correlation exists among 
the angular dispersion errors at clifferent momentum settings. However it appears that, 
in the y-view at least, the measured angular clispersion is uniformly higher than the 
clispersion calculated by a Monte Carlo. Since this difference was used to estimate the 
error, we calculate the effect or the angular dispersion in two ways: assuming perfect 
correlation between all dispersions and assuming no correlations between them. 

The perfect correlation case is easy: we perform the integrals necessary for structure 
function extraction and use 'unlimited statistics' with and wihout all the clispersions ott 
by one standard deviation in the same direction. The uncorrelated case is handled by 
randomly throwing an angular dispersion at each energy setting using a Gaussian clis­
tribution with the known mean and standard deviation and then evaluating the integrals. 
This procedure was repeated 26 times and the standard deviation or the resulting struc­
ture functions in each bin was taken to be the error. The two assumptions about the 
correlations bracket the error from this source; in summary we find that it is less than 
2% and always much smaller than the statistical error. 

ix. Flux level uncertainties 
Both correlated and uncorrelated uncertainties in the fiux levels or neutrinos and an­
tineutrinos contribute to systematic uncertainties in the values or F2 and xF3 . The corre­
lated parts or the errors clirectly translate into errors on F2 and xF3 or the same magnitude. 
The error on F2 due to the uncorrelated errors on the v and i7 fiux levels lies between the 
two (since F2 is related to the sum or the differential cross-sections). However, the same 
is obviously not true or xF3 • As can be seen in table H.7, for x = 0.15 and x = 0.25 this 
error is roughly equal to the statistical error and therefore must be heeded in any higher 
statistics experiment. 

v v 
Correlated Uncorrelated Correlated Uncorrelated 

1.5% Ion ch. calib. 1.5% 
2.0% Connection to 2.0% 

ion ch. calib. run 

+ to - changeover 3% 
I% Ion ch. temperature I% 
I% Proton fraction 

I% E., error I% 
0.5% Veto deadtime 0.5% 
2.3% Lab E livetime 0.7% 
0.5% x2 losses 0.5% 

Table 6. 6. Sources or systematic errors on fiuxes 

Most sources of Hux level uncertainties are described in reference 8. We list in table 
6.6 all the errors assumed. The error due to temperature comes from the variation in 
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the temperature or the Cerenkov counter (which is close to the ion chamber) during the 
running period. For the positive momentum settings, protons were a major fraction in the 
flux and the uncertainty in the proton fraction is added as a source of error. We have 
added a 0.5% error on the events lost due to a bad x2 (x2 /DF > 9) in the fluxes, a.s this 
is the most convenient place to include this error. Similarly, a 1% systematic error on Ev 
is also added here. The error on the Lab E livetime comes from a comparison or the live 
muon trigger rate at Lab E and the livetime proton fraction in the BCT. 

In summary, the overall error on the neutrino flux level is 3.9% , that on the antineutrino 
flux level is 4.3% and the correlation coefficient is 0.57. The uncertainties on the structure 
functions were calculated using the same technique as for the Ehad error, i.e., using 
simulated 'unlimited statistics'. 

x. Flat cross-section correction 
As described in §6.5, we correct for particle fraction errors using the constraint that the 
structure functions from different energy settings be the same. As for the uncorrelated 
angular dispersions we randomly throw the flux adjustment factors and use simulated 
unlimited statistics to estimate the errors shown in tables H.6 and H.7. These are, again, 
much smaller than the statistical errors. In a higher statistics experiment with precisely 
measured particle fractions, presumably there will be no need for such a correction. 

§6. 7 Results and Comparisons 

The final results for R=RQcD are displayed in figures 6.15 and 6.16 and in table 
6.7. Appendix G contains the R = 0.1 results. In both cases a.s well as in all the analysis 
we use the average of the results from the two extraction techniques. The statistical errors on 
the structure functions are, or course, easily estimated from (6.12). We eliminate bins with a 
statistical error greater than 50% . Not unexpectedly, most of theie bins are also the ones with 
larger systematic errors. As is clear from the previous section, the magnitude of the various 
systematic errors is not the major limitation for us - it is the statistical errors. 
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X Q2 F2 AF2 xFa t:J.xF3 
1.259 T.28722 .05054 .16496 .05778 
1.995 1.34295 .05850 .36558 .05555 

.015 3.162 1.53678 .08391 .30329 .07627 
5.012 1.40248 .11610 .43061 .10614 
7.943 1.58422 .26887 - -
1.259 1.13355 .05026 .44017 .14347 
1.995 1.35851 .04696 .61983 .08875 
3.162 1.36325 .04445 .60818 .06233 

.045 5.012 1.54465 .05858 .50844 .07176 
7.943 1.66153 .08052 .69292 .09354 
12.589 1.53078 .11347 .64604 .11634 
19.953 1.07091 .19650 .63074 .18162 
1.259 1.24351 .12804 - -
1.995 1.44496 .05454 .61452 .18234 
3.162 1.48738 .04635 .76930 .10337 
5.012 1.46410 .04393 .66560 .06999 

.080 7.943 1.54460 .05137 .65504 .06895 
12.589 1.59056 .06787 .78069 .08524 
19.953 1.57623 .08978 .77118 .09767 
31.623 1.22757 .16582 .66213 .16162 
1.995 1.18261 .10895 - -
3.162 1.18013 .03634 .73186 .13484 
5.012 1.28000 .02828 .68901 .07346 
7.943 1.23488 .02545 .87850 .04599 

.150 12.589 1.23209 .02815 .85483 .04166 
' 19.953 1.29159 .03614 .79031 .04853 

31.623 1.26979 .04625 .84719 .05516 
50.119 1.16089 .07534 .79934 .07985 
79.433 0.88873 .25122 .70402 .23871 
3.162 1.86830 .72375 - -
5.012 1.02552 .03873 .62307 .16119 
7.943 0.98540 .02647 .79386 .07627 
12.589 0.93337 .02412 .79652 .04805 

.250 19.953 0.92345 .02640 .76972 .04247 
31.623 0.95203 .03339 .79887 .04974 
50.119 0.83999 .03383 .74736 .04232 
79.433 0.74729 .05295 .65042 .05688 

125.893 0.56844 .27936 - -
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X Q2 F2 !:1F2 xFa l:ixFa 
5.012 0.88210 .18935 -
7.943 0.67603 .02730 .58361 .10834 

12.589 0.64851 .02250 .55283 .05959 

19.953 0.63772 .02381 .46873 .04743 

.350 31.623 0.62709 .02743 .51247 .04784 
50.119 0.58736 .02812 .56287 .04116 

79.433 0.59725 .03720 - .50031 .04531 

125.893 0.68446 .07624 .26579 .08257 

7.943 0.49786 .04114 - -
12.589 0.41907 .01975 .45220 .06766 
19.953 0.39458 .01866 .30636 .04320 

31.623 0.38217 .02039 .31889 .03833 
.450 50.119 0.34730 .02115 .33956 .03577 

79.433 0.37452 .02649 .31687 .03652 
125.893 0.27919 .02780 .30267 .03180 
199.526 0.28974 .13247 .30152 .13921 
12.589 0.24078 .01712 .21779 .07091 
19.953 0.23066 .01550 .16832 .04358 

31.623 0.20599 .01434 .20865 .02944 
.550 50.119 0.19837 .01807 .17112 .03260 

79.433 0.19854 .02046 .16888 .03086 
125.893 0.14983 .01905 .16956 .02377 
199.526 0.11988 .04019 .12987 .04402 
12.589 0.14994 .01762 .16284 .07990 
19.953 0.12042 .01044 ... 17144 .03326 
31.623 0.13803 .01507 .12170 .03943 

.650 50.119 0.11095 .01453 .07206 .03036 
79.433 0.09837 .01613 .05842 .02795 

125.893 0.09249 .01350 .09891 .01817 
199.526 0.06768 .02048 .07645 .02343 

Table 6. 7. F2 and ::Fa with statistical errors for R=RQcD 

We shall defer the comparison or F2 from different experiments until its natural place 
among the tests or the quark parton model {§7.4). Comparison of the integrals of F2 and 
xFa with the total neutrino and antineutrino cross-sections is complicated by the fact that 
the former covers only a subset of the region in :: and Q2 covered by the latter. The total 
cross-section results include events out to larger angles and smaller hadron energies (§6.2 and 
appendix E). For this reason, we cannot make an exact comparison. Approximately, however, 
the results of the R=O and R=0.1 extractions can be used with the relation between the total 
cross-section slopes and the structure function integrals. In the scaling approximation and 
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Figure 6.15. The structure function F2(x, Q2
) for R=RQcD 
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neglecting the effects or a non-zero charm quark mass, 

(6.26) 

where, 

(6.27) 

These approximate relations serve as a useful check on the internal consistency of 
data sets. For R=0.1 and f(s + s) dxf f(q + q) dx = .05, cl = 1. This corresponds to the 
assumption of a 1/2 SU(3) symmetric sea. In table 6.8 we make a comparison or the various 
available high statistics data sets. Different experiments make different assumptions about R 
as listed. To facilitate comparisons we have homogenized the data sets by making appropriate 
corrections (very small) in each case to obtain data with the following uniform assumptions in 
all cases: 

(i) A 1/2 SU(3) symmetric strange sea. 
(ii) A mass or 80 GeVfc2 for theW boson. 
(iii) Complete coverage or the 0 < x < 1 region. 
{iv) A zero mass for the charmed quark. 

.. 

All the data sets seem internally consistent, within errors, except for the CDHS data set 
where the integrals or the structure functions, especially the integral or F2 , are not compatible 
with the prediction from the cross-sections. 

With this in mind, we now compare the xF3 results for the different data sets. As is 
clear from table 6.8, there are differences in the overall levels of xF3 from the four experiments, 
with our data and the HPWF data having the largest integrals followed by CHARM 
(12.3% ) lower and then CDHS (16.3% lower). The CHARM level difference is covered by 
systematic errors, and the CDHS difference is 1.4u away from zero, still plausible. If we take 
the prediction for J xF3 from the cross-sections as the best measure of J xF3 , then all the 
experiments are consistent with each other within errors. 
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CCFRR CCFRR CDHS CHARM HPWF 
q.,jE .669±.024 .669±.024 .62±.022 .604±.032 .63±.02 

av/E .340±.020 .340±.020 .30±.013 .301±.018 .30±.01 

R 0. 0.1 0.1 0. 0. 

J F2 predicted .466±.015 .478±.015 .436±.012 .418±.017 .430±.010 
from cross-sections 
J :r;F3 predicted .312±.030 .312±.030 .303±.024 .287±.035 .313±.021 

from cross-sections 

J F2 from data .474±.003 .482±.003 .402±.002 .412±.006 .458±.003 
(statistical errors only) 

J xFa from data .328±.005 .326±.005 .273±.003 .285±.012 .322±.005 
(statistical errors only) 

Table 6.8. Comparison of integrals of data sets 

Apart from level differences, we can compare the x and Q2 behaviour of xF3 • First 
we make linear fits in log Q2 to data in a given x bin (since scaling violations are expected to 
depend on log Q2 ). 

{6.28) 

10 GeV2 is chosen as it is roughly the central point in Jog Q2 for the data. To make the 
comparison or the x-behaviour or the structure functions, we then fit a form to our xF3 data 
at Q2 = 10GeV2 : 

The resulting fit parameters are 

with a x2 /DF = 1.05. 

A= 3.49±.61 

a = .511±.069 

fJ = 2.96±.24 

{6.29) 

(6.30) 

We then divide the values or xFa at a given X for a given data set by the value or this 
fit at that x. The resulting ratios are plotted in fig. 6.17. Systematic errors are not included on 
the points since we are ignoring overall level differences; they are shown at the right with the 
dashed lines indicating the ratios expected from the integrals of xF3 averaged over Q2 • Clearly, 
the HPWF data show a marked rise with x. Although this is in the right direction expected 
from the EMC effect<38) (since HPWF have a mixture of iron and scintillator as a target) we 
do not expect that effect to be quite as large as the observed variation. However, no definite 
quantitative statement can be made until the EMC effect has been studied in materials other 
than deuterium, aluminum and iron, the only substances for which data are presently available. 
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The CHARM ratios suffer from poor statistics and are consistent with being fiat. The 
CDHS data show a slight rise with x, but not as marked as in the F2 case (§7.4). The ratios at 
high x, or course, track those or F2. We conclude that there is a rise in the ratio as X increases 
but keeping in mind the additional systematic errors not associated with level differences, the 
rise appears to be smaller than for F2. 

The fractional slope (b/a- eqn. 6.28) or xF3 in various bins is shown in figure 6.18. 
Again, the errors displayed are only statistical and again the errors on the CHARM data are 
too large to warrant any firm conclusions about that data set. Clearly, the HPWF data exhibit 
the largest scaling violation. That data set spans a range with slightly lower Q2 values (.7 GeV2 
< Q2 < 125 GeV2), where non-perturbative effects are expected to be larger, but this does 
not seem enough to explain the observed magnitude, especially at high x where Q2 values are 
higher. The CCFRR and CDHS data sets both show a smaller Q2 dependence and are clearly 
consistent with each other, except at x = .045, with CDHS showing a slightly larger scaling 
violation. A more rigorous QCD analysis or the scaling violations in our data are presented in 
§7.5. 

More graphic displays of the differences between the data sets are shown in figures 
6.19, 6.20 and 6.21. In these plots, the dashed lines are the fits to our data and the solid lines 
are these same fits with the overall level adjusted so as to best fit the data set displayed. Thus 
the difference in levels or the two lines indicates the degree or x-dependent differences and the 
goodness or fit or the solid line indicates the level or agreement between the Q2 behaviours. 
There are insufficient data from the CHARM group at all their x values. The observations 
above about CDHS and HP\VF remain the same. We conclude that xF3 from the CDHS group 
is in agreement with our values for xF3 , but it will be interesting to see if this holds true when 
higher statistics data are available. 

.. 
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xF3 from the CDHS group with fits to our data (dashed Jines) and the same 
fits adjusted to the level of the CDHS data (solid lines) in our Q2 range. 
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xFa from the HPWF group with fits to our data (dashed lines) and the same 
fits adjusted to the level or the HPWF data (solid lines) in our Q2 range. 



ChapteT 7 

Physics Analysis and Conclusions 

In the first three sections or this chapter we present a brier theoretical outline or the 
physics or charged current neutrino interactions. Comparisons of the data with theory begin 
with §7.4. 

§7.1 Weak Interactions 

In 1934 Fermi proposed(48•49) a current-current interaction theory of weak interactions 
which together with universality, explained a whole range or weak processes. In this theory the 
weak interactions occured at a point, with one current interacting with the other directly, and 
not through a mediating quantum. 

Later, a couple of modifications had to be made. The intermediate vector bosons 
were introduced to mediate the current-current interaction. Since they were not observed in 
decays and high-energy neutrino interactions, they were assigned a high mass, ~ 5 GeV. Recent 
neutrino scattering experiments pushed this limit up to ""30 GeV. The massive nature of 
these bosons implies a short-distance weak interaction, as opposed to QED. The predktion and 
discovery of parity violation<50•51) further changed the theory. Only left-handed neutrinos and 
right-handed antineutrinos were allowed, and leptonic weak currents could only have a V-A 
nature. Subsequently, universality was extended to the non-leptonic (quark) weak currents 
by Cabibbo.C52) The weak charged current changed u-quarks into a state that is a mixture of 
d-quarks and s-quarks: 

de= d cosec+ s sinec 

Sc = -d sinec + s cosec 

This extension seemed to imply the presence or weak neutral currents, but the experimental 
absence of strangeness-changing neutral currents discouraged much progress. By this time 
Glashowl53) (1961), and then Weinbergl54) (1967) and Salam(55) (1968) had proposed a model 
or weak interactions. Glashow, lliopoulos and Maianil56) proposed a mechanism in 1970 which 
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completed the &c doublet by adding a fourth-quark, called "charm". This also explained the 
very small K1-.p+p- decay rate, expected to be or the same order as K+-.p+v11 • In ract 
this was used to predict me to be between 1 and 3 GeV. 

The Fermi t~eory involving point interactions could not handle higher-order correc­
tions to processes like v11e--.v11e-: in every order infi.nities appear and we need an infinite num­
ber or parameters to correct for them. For this reason the Fermi theory is non-renormalizable 
and in spite or its dimensionless coupling constant, so is the intermediate vector boson model. 
In 1971 't Hooft(ST) showed that gauge theories with massive fields introduced by spontaneous 
symmetry breaking, as in the standard model, were renormalizable. In the early 1970s neutral 
currents were discovered in high energy neutrino scattering experiments ( 1973, 197 4) and by 
November 1974 the charmed quark had been inferred to exist. Hence by this time the standard 
model had been accepted. Today we believe that the w± and Z 0 have been observed<45•46l 
leaving only the Higgs scalar to complete the triumph or the GSW theory. 

In this now accepted theory, the charged current couplings are still strictly V-A: 

Joe= "" 7l,.., (1- 'Ys) I+ U .,.., (1- 'Ys)M· ·L . 
IS ~ l IP 2 l IP 2 ,, 3 

l={e,p,r} 
(7.1) 

u = (tt, c, t) (7.2) 

L = (d,s,b) (7.3) 

and M;i connects them (the Kobayashi-Maskawa<58) matrix). For example the familiar Cabibbo 
mixing angle is now 

Mud = cos 01 = cos Oc (7.4) 

Experimentally, cos00 = 0.9737±0.0025,47>. (7.5) 

The neutral current couplings are no longer strictly V- A, they are in general some 
linear combination or V and A which depends on sin2 Ow, where Ow is the Glashow-Weinberg 
angle. 

sin2 Ow R:j 0.23 (7.6) 

The standard model is based on the observation that only left-handed components 
of charged current lepton waverunctions interact as weak charged currents, their right-handed 
counterparts do not. Of course, only left-handed neutrinos exist. This suggests consideration of 
the left-handed lepton and its neutrino as a doublet under some symmetry and the right-handed 
lepton as a singlet. In the quark sector, the left handed components or +2/3 quarks and their 
K-M rotated -1/3 counterparts form weak doublets, the right-handed parts all falling into 
singlets. 

This symmetry leads to a SU(2) gauge invariance and associated is a weak isospin. 
For example, the neutrino has J!fk. = + 1/2 and the lett handed lepton has J!fk. = -1/2. An 
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SU(2) gauge theory has only 3 gauge fields however, and associating this triplet with w± and 
Z 0 gives the same V-A nature for both charged and neutral currents. Consequently, a weak 
hypercharge is introduced with a corresponding U(1) group. In order that thew± and Z 0 are 
massive and the photon remains massless the mechanism or spontaneous symmetry breaking is 
invoked. In the resulting model, the weak charge g turns out to be related to e by 

gsinDw = e 

Also, the masses or the w± and zo come out as 

e 1 
mw = R:S 80GeV 

2 sin Dw r-;;:-

and 

y.f2GF 

mw 
mz = -- R:l 90GeV 

cos Ow 

(7.7) 

(7.8) 

(7.9) 

The mw along with a propagator term for the w± contribute a factor 
1/(1 + Q2 /m~)2 that modifies the current-current expression for charged current neutrino 
scattering. This fact and the V-A nature or charged current interactions are the most important 
features or the standard model relevant to us. 

§~ .2 The Parton Model 

We now turn from the nature of the interaction vertices to the object being probed 
viz., the nucleon. Traditionally, the parton model is introduced via charged lepton scattering 
and we do the same. Consider the scattering diagram in fig. 7.1. The cross-section for this 
process is given by ' 

(7.10) 

The matrix element squared is 

2 

u(k' s')l"u(ks)u(ks)ivu(k' s')~4 <p,spll"IX><XIJ"!p,sp > (2rr)4 64 (p+q- p') 
(7.11) 

This can be separated into a lepton tensor L"" which is evaluated to be 

2 

Ll'" = 2[k~kv + k~kl' + q
2 

g~ow] (7 .12) 

and a hadron tensor W~'". Since we do not know the final state X, we use gauge invariance, 
Lorentz invariance and the symmetry of L,..v to write W"" in t erms of only 2 structure functions, 
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Figure 7.1. Diagram for electron-nucleon scattering. 

' 
W1 and W2 which are functions of Q2 (=-!(!)and v (= ko- k~): 

(7.13) 

This leads finally to 

(7.14) 

Bjorken argued<59) that the structure functions W1 and W2 are functions of x = Q2 f2mv alone 
in the limit in which Q2 -+ oo and v-+oo. This is the celebrated phenomenon or scaling in which 
the structure functions F2 (= vW2 ) and 2xF1 (= 2mxWt) are functions of x alone and do not 
depend on Q2 • Feynman interpreted this<3) as evidence that the nucleon is composed or point 
scatterers, called partons. Scattering of leptons from these partons then imposes an elastic 
scattering condition, Q2 = 2m9 v where m 9 is the mass or the parton. 
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It is instructive to work out the kinematics of parton scattering. If the parton carries 
a fraction { of the initial nucleon momentum p then 

{7.15) 

where m1 is the mass or the final state quark, giving 

(7.16) 

Clearly, {is identified-with x above (we neglect all masses.) 

By now, it has become natural to identify these partons with quarks, the constituents 
or a nucleon. The parton model or the nucleon assumes that the quarks are confined within 
the nucleon, but that this confining force acts over a sufficiently long time scale so it doesn't 
interfere with probe-parton scattering at high Q2 • The identification of partons as quarks is 
further established by the discovery that the partons have spin-1/2. The essential advantage 
o( the quark-parton model is that the wl and w2 are no longer specific to this process but 
are related to the %-distributions of quarks and antiquarks in the nucleon and all processes 
involving nucleons see the same structure functions. 

A relevant example is the very similar case of neutrino scattering. Here, the exchanged 
virtual boson is a w+, not a photon. The hadron tensor W'"111 now contains 4 more structure 
functions. Three of these contribute as (mr /m!) and are neglected; the parity violating fourth 
must be included however. The differential cross-section is 

cf2a(v,V) G'lE'2
( 1 )

2
{ .28 28 (E+E').28} 

dO dE' = 21r2 1 + Q2 /mw 2Wl sm 2 + w2 cos 2Tw3 mp Sin 2 (7.17) 

The charged lepton and neutrino scattering structure fu'nctions W1, W2 and W3 may 
be abandoned in favour or 3 other variables. One conventional choice is the cross sections Cor 
the three virtual boson polarizations (two transverse: +, - and one longitudinal: L). In both 
the charged lepton and the neutrino case one obtains 

(7.18) 

(7 .19) 

(7.20) 

where the constant k is different in the two cases. In the electromagnetic case, a+ = a_ 
(parity conservation), and W3 = 0. We define the transverse cross-section as 

(7.21) 
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-& 
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Collision or parton and photon in frame in which the 3-momentum or the 
parton is reversed. 

and Rby 

R=UL = W2(1 + ~) _1 
UT W1 Q2 

In terms of F2 and 2xF1 defined above (xF3 = vxW3 ), 

For aL = O, this gives R = 0. Including transverse momenta or the partons one gets 

m2 x2 + Pl may be interpreted as a transverse mass squared = Pl· 

R becomes(63) 
4<p1_> 

where the average is over the parton density. 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

We can examine what happens toR given that quarks all have spin 1/2. Both vector 
and axial vector currents conserve the helicity or massless particles. Now consider a frame in 
which the boson and parton are collinear and the 3-momentum or the parton is reversed, fig. 
7.2. 

For the boson to be absorbed, and helicity conserved, only (anti)quarks with spin 1/2 
can absorb a transverse boson (helicity=±l) and only spin zero quarks can absorb longitudinal 
bosons (helicity=O). Experimental observations(60•61 •62) support UL = 0, implying spin 1/2 
quarks. This can also be expressed as the Callan-Gross relation, which in the limit 4m2 x2 /Q2 < 
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Figure 7.3. Spin considerations in a neutrino-antiquark collision. 

1 gives 

(7.26) 

The question orR in QCD will be discussed in the next section. 

The quark parton model makes additional basic predections. The y-distributions or 
the differential cross sections (or angular distributions in the c.m. frame) follow quite naturally 
in the massless model. From (B.ll), 

' 
(7.27) 

Consider a neutrino-antiquark collision, as in figure 7.3. The initial state helicity 
and final state helicity are dictated by the V-A interaction; they are both -1. The angular 
distribution is governed by ld~ 1 (8)1 2 = (1 +cos o•)2 /4. Similarly, the helicities for a neutrino 
quark collision are both zero, and lead to a jdg0(8)12 or isotropic distribution. Thus, 

dav 
- = k[q(x) + (1- y)2q(x)] 
dy 

(7.28) 

Here, q(x) and q(x) are the x distributions or quarks and antiquarks. Actually, a nucleon has 
both valence quarks and a "sea" of quark-antiquark pairs, and all these come in more than 
one fiavour. These have already been described in the introduction. Here we merely point out 
that using the y-distributions above, it is possible to proceed as in appendix C and heuristically 
derive the cross section. It is clear from (C.23) that the total cross section rises linearly with 
neutrino or antineutrino energy, apart from scaling violations expressed as a weak dependence 
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or I F2 dx and I xF3 dz on Q2 • The ::-distributions can, in the quark-parton model, be described 
as obeying sum rules, for example 

fo
1 

F3(z)dz=3 the GLS sum rule (7.29) 

which merely expresses the fact that there are 3 valence quarks in a nucleon. The identification 
or zF3 with the valence quark distribution is clear from (7.20). Other sum rules which are 
similarly obvious include, for the proton, 

fol (u(z)- u(z)) dx = 2 

fo
1 

(d(x)- d(x)) dx = 1 

fo
1 

(s(x)- :S(x)) dx = 0 

(7.30) 

(7.31} 

(7.32} 

Combinations of these give rise to the Gross-Llewellyn-Smith sum rule and the Adler 
sum rule. One important conclusion can be formed for the comparison of charged and neutral 
lepton-nucleon scattering. Since charged lepton scattering occurs via a photon, the parton 
distributions are multiplied by their charge squared, and F~- m. should be F2k. times the mean 
square charge in a nucleon: 

(7.33} 

What can be said about the x shapes or the parton distributions! As x tends to zero, 
one expects more and more quark-antiquark pairs to be produced, possibly by gluon bremsstrah­
lung followed by pair creation. Thus the sea dominates at z d 0, with the bremsstrahlung 
distribution dk/ E"' dxjx implying a 

number density"'.!. 
X 

(7.34) 

and a momentum distribution '"""' 1 i.e., approaching x = 0 as a constant. This is also explained 
by associating the sea with difl'ractive components (cr = 1; Pomeron exchange) and the valence 
quarks with non-difi'ractive components (cr R1 1/2; /, A2 exchanges). We then predict in 
addition that 

1 
xF3""~x.-----.f"i 

,fX 
as :t-+0 

Quark counting rules<2g) and form factor arguments<3•26l suggest that 

F2(x)"' (1- x)3 

and q(x)----(1-x)n 5~n~7 

(7.35) 

(7.36) 

(7.37) 
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§7.3 Quantum Chromodynamics 

It is actually quite surprising that the parton model described in the previous section 
works so well; after all, it says nothing at all about the strong force between the quarks. The 
current candidate theory or strong interactions is QCD and as it turns out, deep inelastic 
scattering is one of the few processes where it makes definite predictions. 

There are many pointers to an additional degree or freedom in quarks, colour. If 
quarks did not possess this degree or freedom, the ratio 

R 
_e+ e--+ hadrons 

e+e- e+ e--+ p.+ p.-
(7.38) 

would be a factor or 3 smaller than experimentally observed. Similarly, the rate for 1r0 -+'Y'Y 
can be calculated exactly; for no coloured quarks the rate is 1/3 smaller than observed. Baryon 
spectroscopy breaks down for tl. ++ (spin 3/2) unless an antisymmetric colour wavefunction 
is introduced since without it the wavefunction is symmetric under an interchange or any 2 u 
quarks. Other evidence for 3 colours includes the roughly 20% branching ratio for r- -+e-ilellr 
and r--+ p.-il Jj llr as opposed to the "' 33% expected without colour. 

QCD utilizes this extra degree of freedom and coloured quarks experience a strong 
force mediated by coloured gluons. Unlike SU(2)r., colour symmetry is exact, even for massive 
quarks. There are 8 gluons, all massless, and since they are themselves coloured (unlike QED 
where the photon is neutral), they couple to each other (fig. 1.2). Baryons and mesons are 
colour singlets. 

Evidence for gluons lies in gluon jets in e+ e- scattering and the fact that quarks carry 
only about half the momentum of nucleons- the other half is presumably carried by gluons. In 
QED, the coupling constant a is a function or Q2 because vacuum polarization contributions 
modify even lowest order diagrams. o(Q2 ) increases extremely slowly with Q2 from the value 
ao at Q2 = 0, the dominant contributions giving, for Q2 >m2 , " 

o(Q2
) = 

00 
(7 39) 

1- (oo/37r)lnQ2fm2 · 

For example, at Q2 = 1000GeV2 , a has changed by only about 1.7% The denominator 
in (7.39) becomes zero around Q2 ~ 10555 Gey2. In QED we can thus safely do all low 
energy calculations with a well defined Q2 = 0 limit to start from. In QCD however, as(Q2 ) 

gets large as Q2 -+0, and one must use the Q2 -+oo region for perturbative theory. That is, 
QCD is an asymptotically free theory and at low Q2 confinement of quarks and gluons occurs. 
The unproven attribute of confinement explains why no free quarks or gluons are seen and 
asymptotic freedom is the reason for the applicability of QCD to deep inelastic scattering, 
where Q2 is presumably high enough. Since we do not have a definite mass-scale in the high Q2 

region to normalize to (unlike QED where Q2 = 0 serves well), an arbitrary mass-scale must 
be introduced. Normally, this is exchanged for a parameter A and the dominant contributions 
to as(Q2 ) can be summed up to give 

2 41r 
as(Q ) = f3o ln(Q2fA2) 

(7 .40) 
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2 
flo= 11- -nf 

3 
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'nf is the number or quark flavours. 

Since several excellent reviews of QCD exist<6""68), we will not dwell on generalities any 
further and move on to perturbative QCD and its applications to deep inelastic scattering{68-T3). 

Given that confinement is yet unproven, the absence or calculations to all orders in 
deep inelastic scattering and a lack or a clear point in Q2 beyond which perturbative QCD can 
be guaranteed to apply, why do we adopt this approach at all! Perhaps the most compelling 
reason is the closeness of the high Q2 data to zeroth order QCD (quark-parton model) e.g., 
Re+e- is close to 3 I:e; and deep inelastic structure functions very nearly scale. Perturbative 
QCD also has been successful (albeit to varying degrees) in explaining jet production in e+ e­
collisions and large momentum transfer processes. 

Perturbative QCD makes predictions for several high energy processes, but only 
prescribes their Q2 dependence. The hope therefore is that parton distributions (q(x, Q2 ), 

q(x, Q2 ), G(x, Q2 )) and their fragmentation functions be measured in a few processes and then 
be used to predict quantities in others. In other words, another check on the applicability of 
perturbative theory is the extraction of the same value or os(Q2 ) from different processes. 

Specializing to deep inelastic scattering, the processes involved to first order are shown 
in figure 7.4. The first process describes the creation or gluons and lower momentum quarks 
by bremsstrahlung. The second and third are pair creation of gluons (unique to non-Abelian 
theories) and q7j pairs. Consider the moments of a general structure function Y: 

(7 .41) 

Y may be F2 or :r:F3 • In reality, all high energy processes are mixtures of high and low energy 
subprocesses making it hard to make predictions. In QCD we cannot as yet calculate all the 
Mn(Q2 ), however, wonderfully we are able to separate the higb--Q2 (perturbative) and non­
perturbative parts of Mn(Q2 ). This property is known as factorization and enables us to write 

M"(Q2) = ~A~(JS2)c~( ~:, 92) 
I 

(7.42) 

The summation is over all the non-singlet, singlet and gluon pieces. J.l is the mass scale at which 
the theory is renormalized and g2 is related to os by 

(7 .43) 

In (7 .42) the A~(J.l2) are non-perturbative and must be determined from experiment at some 
Q2 = J.l2 • The perturbative parts C~ can be evaluated explicitly. For example, in the non­
singlet case we may write(60), to order g2 , 
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q 

Figure 7 . ..(.. First order QCD corrections to deep inelastic scattering. 

The coefficients dt;;5 ,zr;;s and Bt;;5 are all calculable and g is the effective coupling 
constant. The term 'singlet' refers to flavour. The sum of all quark distributions is a singlet 
distribution O:i(q, + qi)); non-singlet structure functions, like xF3 , involve differences of quark 
distributions and the singlet contributions cancel. ' 

These predictions can all be restated directly in density space. Before doing that we 
will mention that in leading order all parton densities are the same as in the naive quark-parton 
model. The ambiguities or renormalization scheme dependence only develop in next to leading 
order. There are many schemes in existence. The momentum subtraction scheme MOM, 
minimal subtraction MS, and modified minimal subtraction MS are the most common; we 
use MS throughout. (MOM seeks to minimize third order terms, while MS is closest to 
leading order, with a minimum or corrections.) One reason for using next to leading order 
calculations is the ambiguity in the leading order expression for as(Q2

): 

In general, 
2 47r 

as(Q ) = f3o(lnQ2jA2 +c) 
(7.45) 

For large Q2 this becomes 

2 47r ( c ) 
as(Q ) = f3o lnQ2fA2 1 - lnQ2fA2 

(7 .46) 
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The second order expression in fact is 

where 
38 

f3t = 102- -n, 
3 
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(7.47) 

(7.48) 

The quark distributions at a given z receive contributions from bremsstrahlung of 
higher z quarks and pair production or qq pairs from gluons; gluon distributions from bremsstrah­
lung and g-+ gg diagrams. Let z denote the fraction of the parent's momentum carried by the 
resultant object. Then P119 , P99 , P, and P99 are the probability densities or "splitting func­
tions" or the above processes. Defining qi(z, Q2 ) as the density or a given flavour of quark 
(or antiquark) and g(z, Q2 ) as the gluon density, the leading order evolution equations are simply 

dq,(z,Q
2

) =o(Q
2
) t dy[ ·( Q2)P (~)+ ( Q2)P (~)] (7.49) 

dIn Q2 2tr lz y q, y, qq y g y, qg Y 

and dg(z,Q2) =o(Q2) fl dy[~qi(y,Q2)p (~)+g(y, Q2)P (~)] (7.50) 
d lnQ2 2tr }., y ~ gq y 99 y 

' 

Utilizing the convention 

A®B =I: d: A(y)B(~) = B®A 

the above equations (7.49) and (7.50) can be cast in matrix form 

The non-singlet equation is not coupled with the gluon density: 

In leading order, 

(7.51) 

(7.53) 

(7.54) 

(7.55) 

(7.56) 

(7.57) 
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The + definition implies a singularity at x = 1 which is removed by integration: 

fo 1 

dx g(x)(!(x))+ = fo
1 

dx [g(x)- g(1)]/(x) 

4 
Cp=3· CA=3, 

nl 
T=- and 

2 
b=11CA-4T 

1211" 

119 

(7.58) 

(7.59) 

Interestingly, in the high x region (but not too close to 1 i.e., 1/(1 - x)> 1 and 
(as(Q2 )/7r)ln(1/(1- x)) < 1) the valence quark equation is satisfied in the leading log order 
by a A(1- x)8 form, where(66) 

(7.60) 

In the same region, the gluon and sea densities fall by one and two extra powers of (1 - x) 
faster than the non-singlet case. 

The ambiguities that arise in going from the leading log approximation to the next­
to-leading order can be resolved in several ways. Most commonly, the quark number and 
momentum sum rules receive no corrections to all orders in as(Q2 ) and the quark-densities are 
then process-dependent. \Ve may, for example, use an F2 which satisfies the Adler sum rule 
to all orders {this is motivated by the independent derivation of this sum rule from current 
algebra): 

(7.61) 

In this definition F2 is still q + q, but xF3 is (q- q) convoluted with an order a 
addition to a a-function. Of particular interest to us is the resulting GLS sum rule: 

(7.62) 

The most important result of a QCD analysis of our data is then the value of ALo 
and AMs• but all the preceding caveats and details should be borne in mind while interpreting 
these values. U the result agrees with all other experiments exploring the same region of Q2 we 
may be past the higher twist and non-perturbative regions. One reason to settle on a value of 
A is the critical dependence of the proton lifetime on A in some grand unification models. The 
mass scale at which the falling o5 (Q2 ) meets the weak-electromagnetic a(Q2 ) gets larger with 
decreasing A; since this mass-scale is the propagator mass for decays, 

{7.63) 

Any analysis leading to a value of A must correctly include non-perturbative and 
higher-twist effects. The former arise because of effects like primordial p .L (from quark 
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confinement within a hadron's radius) which contributes,.... pj_ fQ2 • Such effects are negligible 
at higher Q2 • Higher-twist effects rrom coherent phenomena ( diquark scattering, elastic scat­
tering, resonance production etc.) add to (7.42) or (7.44) whole new series down by powers of 
Q2 . Higher twist moments are expected to increase with n (greater importance or higher-twist 
as x-+ 1 ). Consequently, structure functions are sometimes parametrized as 

2) 2 [ a b I 
F(x,Q ~ Fo(x,Q ) 1 + Q2 ( 1 - x) + Q4(l- x)2 + ··· (7.64) 

In any case, barring new calculational results, these terms are unknown. Some terms have been 
calculated, in the bag model for example, and have a negative sign leading to speculation that 
A might increase and not necessarily decrease with the inclusion or these terms. 

Finally, we examine QCD predictions regarding R. The longitudinal structure func­
tion FL is, to order as, 

(7.65) 

Since R is defined by R = FL/2xF11 R is expected to be small at large x and large at small 
x (from the integral). Also, apart rrom the parton model contributions to aL, we expect R to 
fall with Q2 like 1/ln Q2 . Integrating (7.65) over x one gets 

(7.66) 

where the bar indicates an average (or integral) over x. For example, assuming F 2 = G = 0.5 
(at Q2 = 10GeV2 , say), gives, for n1 = 4, 

R ~ .35as ' 

§7.4 Tests of the Quark-parton Model 

7.4.1 F2 Comparisons 

As mentioned in §7.2, F'!f."· and F2·m. are related by the simple relation 

18 
F'!f."· = -F2·m· 

5 

(7.67) 

(7.68) 

Actually, there is a correction term, which comes from the strange sea correction, leading to 

(7.69) 
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F2 ratios with EMC. The numbers on the right are mean values of the ratios 
with systematic errors. 

' We use this to convert EMC data<86) into a neutrino F2 and then compare that data 
set with CDHS data<81) and our data. Again, 've shall assume a 1/2 SU(3) sea and make 
corrections to the CDHS data set to include an 80 GeV W-boson propagator and slow rescaling 
with me = 1.5 GeV. Also, as in the xF3 case, we interpolate all data sets linearly in log Q2 to 
Q2 = 10 GeV2. Since all three data sets involve an iron target, the comparison is independent 
of Fermi motion effects. Also, since EMC quote results for R=O. and R=0.2, we have used 
R=O.l in all three data sets. 

The ratio of our data to those of EMC and similar ratios for CDHS are shown in 
figure 7.5. On the average our points lie 9.5% higher than EMC but exhibit no x dependence. 
The combined systematic errors (3% for EMC and 5% for us) come close to explaining the 
level difference. A recent measurement<82l of F~N indicates that the EMC data may be 
systematically low by as much as 4.7% . On the other hand, the CDHS ratios are not only 
6.1% lower than 1, they also show a striking low-x fall off, i.e., are not explainable by overall 
level systematics. Note that the strange sea correction can at most be ,...., 12% at x = 0, with 
an error of,...., 2% using the CDHS value<34l for the strange fraction of the sea. The correction 
gets much smaller as x increases and q(x) dominates q(x). 
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The reader interested in greater details or F2 comparisons is referred to ref. 10. 

7.4.2 The Gross-Llewellyn-Smith Sum Ru]e 

We now examine the integral of F3 (x), which is expected to be 3 in the quark-parton 
model. QCD predicts, in next to leading order, 

(7.62) 

The obvious thing to do is to sum up xF3 fx times the bin width for all x bins. The 
problem with this approach is illustrated in fig 7.6. or the total integral, equal to 3, about 
1.5 comes from the region x < .06 of which about 0.5 is from x < .01. As mentioned before, 
our good angular resolution enables us to make a meaningful attempt to measure xFa below 
x = .06. However, as xF3 tends to zero, the statistical errors get large, leading to large errors 
for J; F3 dx . Further, since most of the integral is from low x, it is also from low Q2 (Q2 < 
6Ge"0!), thereby casting doubt on a QCD conclusion. 
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Figure 7. 7 

:rF3 in fine :r bins at Q2 = 3 GeV2 with the fit (7.70). Also shown is I: F3 d:r 
from the fit with points from the simple summation t echnique superimposed. 
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xFa Error fxFa Error I Fa Error 
-.012 .307 .365 .016 2.339 .623 

.324 .092 .365 .016 2.364 .095 

.466 .062 .362 .015 2.148 .072 

.462 .064 .357 .015 1.961 .068 

.603 .066 .353 .015 1.829 .065 

.690 .083 .347 .015 1.695 .064 

.553 .100 .340 .015 1.570 .062 

.544 .123 .334 .015 1.484 .060 

.790 .126 .329 .015 1.412 .058 

.829 .148 .321 .015 1.319 .056 

.796 .075 .313 .015 1.231 .054 

.721 .093 .281 .015 .966 .047 

.959 .097 .252 .014 .786 .041 

.865 .103 .214 .014 .594 .036 

.780 .111 .179 .013 .449 .032 

.602 .073 .148 .012 .338 .028 

.390 .064 .087 .010 .166 .019 

.236 .054 .048 .008 .079 .012 

.187 .047 .025 .006 .036 .008 

.021 .009 .007 .003 .007 .003 

Table 7.1 

xFa interpolated to Q2 = 3 GeV2 in fine x bins; cumulative integrals of xFa 
and Fa from x = 1 to lower limit or each bin obtained by simple summation, 
with statistical errors. 
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As shown in table 7 .3, we get our best estimate of / 0
1 

Fa dx around Q2 = 3 GeV2
• 

We therefore make fine bins in x at low x and interpolate our data to Q2 = 3 GeV2 after 
making linear fits in log Q2 , as usual. As is clear from table 7.1, a simple summation of xFafx 
from x = 1 leads to good errors for all except the lowest x bin. There we must use a fit. As 
mentioned before, a Regge theory prejudice suggests a form ,....._ a ..(X for xFa as x--+ 0. vVe have 
tried several forms and feel that it is valid to use all x provided a high-x behaviour term is 
included. The results of these attempts are displayed in table 7 .2. Clearly, including all x with 
a (1 - x ).8 term, i.e., 

xFa(x) = Ax<l'{1- x)tl {7.70) 

does not significantly shift the result. We can therefore state that 

h1 

Fa dx = 2.83± .146, Q2 = 3GeV2
, statistical errors only. (7 .71) 

Figure 7.7 shows the fit to xF3 and the resultant f; Fa dx with the values from simple summa­

tion superimposed. 
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Fit Integr A Q fJ J; Fa x2 /DF 
limit.s limits 

0 1 0 1 3.91±.73 .577±.064 2.86±.27 2.83±.15 12.2/17 
0 .1 2.83±.14 

0 .02 2.84±.15 
0 .06 0 .06 3.55±2.09 .575±.177 0 2.79±.28 1.58/4 

0 .02 2.80±.28 
0 .01 2.80±.25 

0 .06 0 .06 2.78±.17 0.5 0 2.92±.10 1.76/5 
0 .02 2.93±.09 
0 .01 2.92±.10 

Table 7.2 

f0
1 

Fa with statistical errors by making fits of the form (7.70). The regions 
for the fit and for the integration are specified. The rest of the integral is 
done by the simple summation technique. Fit parameters without errors 
indicate that they were fixed. The binning in xis the same as in table 7.1. 

Estimating a systematic error for the above number requires knowledge or all correla-
tions between errors. The statistical error indicates that such an effort is not warranted. Instead, 
we assume that all systematic errors except the 3.2% correlated overall error on the v and I7 
fluxes enter in the same way as the statistical errors, i.e., as uncorrelated errors. Weighting 
the ratio or these errors to the statistical error with f Fa in every bin, we find the contribution 
from this source to be 70% of the statistical error. Thus we conclude that at Q2 = 3 Ge V.Z, 

' 
(7.72) 

where the first error is statistical, the second is the correlated level error and the third includes 
the rest or the systematic errors. At the 1a level we can say that A < 525 MeV. 

It is noteworthy that at this time this is the best available value for the GLS rule. The 
measurement derives mainly from low x, and hence a reasonably high Q2 implies a high energy 
experiment. We have such high energy data with high statistics and good angular resolution, 
which dominates the x-resolution at low x. Other results include that of CDHS who quote<89l 
3.2±.5, and CHARM<92) (2.66±.41). These values are from data averaged over Q2

• ABCLOS 
report<107) 2.89±.45 in the range 1 < Q2 < 10 GeV2 . CDHS use a fit below x = .005, CHARM 
use one below x = .01 and ABCLOS use a fit below € = 0.1, where € is the Nachtmann 
variable (7 .77), not too different from x at these x and Q2 values. Only CHARM do not assume 
a ..jX behaviour as x-+0, but instead fit the power of x, like us. Our values for the power or 
x at low-x are quite consistent with 0.5 (table 7.2). Also notice that the power of (1 - x) at 
high-x from the global fit is consistent with 3, as expected on theoretical groundsJ3

•
26

•
29l 
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Q2 !0
1 

Fa dz 
(GeV2) 

2 2.63±.142 

3 2.83±.146 
4 2.95±.167 

5 3.03±.180 
6 3.09±.198 
8 3.18±.224 

10 3.27±.265 

Table 1.8 

J; Fa with statistical errors by making a fit of the form (7.70) in the region 
0 < z < 1. At high Q2 (Q2 > 5 GeV2 ) the integral involves large extrapola­
tions in the important low-z regions and therefore becomes unreliable. We 
emphasize that no meaning should be attached to the Q2 variation, this 
table only shows where the minimum error is to be found. 

§7.5 QCD Analysis 

7 .5.1 Leading Order Non-singlet Analysis 

126 

The QCD evolution of the non-singlet structure function zF3 is independent of the 
largely unknown gluon z-distribution. Also, the extraction of z F3' is, as we have seen, indepen­
dent of R and the strange sea. Therefore, analysis of zF3 is an excellent and unbiased way to 
extract the QCD parameter A. We therefore proceed to quantify the observed scaling violations 
of xF3 (and briefly, of F2 ) in the framework of QCD. The literature is replete with articles of 
interest(64-TT, 83-104). There are several approaches to the problem, including fitting moments 
of structure functions to QCD expectations and fitting functions known to satisfy QCD moment 
evolution expressions, at least for some first n moments. 

We choose to evolve the structure functions directly using the Altarelli-Parisi(92l 
equations. The procedure used to determine A begins with parametrizing the structure functions 
zF3, F2 and the gluon distribution Gat some Q~: 

zF3(x, Q~) =a3x63(l- x)"3 

F2(x, Q~) =a2(l- x)02 (1 + 12x) 

G(x, Q~) =ac(l- x)"0 (1 +'rex) 
(7.73) 
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Either :zF3 or the coupled pair F2 and G (or both, simultaneously) are then evolved 
using the general formalism described in §7.3. Target mass corrections, if to be applied (see 
below), are made at this point. The resulting structure functions are compared to the measured 
values, with errors, to form a x2 which is then minimized with respect to the parameters at Q~ 
and A. 

The leading order evolution equation for xF3 at fixed :z is, 

d xFa(x, Q
2

) = as ~[1 1 

d (1 + z2
) {=-F (:_ Q2 ) _ F ( Q2 )} _ F ( Q2 ) r d (1 + z2

)] 
d lnQ2 2tr 3 ~ z (1- z) z 3 z' x 3 x, x 3 x, lo z (1- z) 

(7.74) 

The prescription or Georgi and Politzer(24• 104) may be applied to make target mass 
corrections. In this prescription, the observed xFa is reconstructed from an evolved one, say 
F(x,Q2 ), by 

where 

and 

is the N achtmann variable. 

1 
v = ~======== }1 + 4m~x2 fQ2 

2x 
{ = ----;======= 1 + }1 + 4m~x2fQ2 

(7.75) 

{7.76) 

(7.77) 

However, as pointed out by Devoto et at.<83), the expressions for target mass correc­
tions are inconsistent, to order of 1/Q2 terms, with the equality of the regular moments or F 
and the Nachtmann moments of the corrected function. We resolve this problem by restricting 
our analysis to regions where these effects are small. We cut out the high-x region (x > .7) 
where non-perturbative effects, Fermi motion, bin centre corrections and smearing corrections 
are large as well as the low Q2 region (Q2 < 5GeV2 ) where non-perturbative effects are large. 
The Q2 cut effectively eliminates the low-x region and we therefore also cut out x < .03. 
The change in xF3 over the resulting Q2 -range at any given x-value from (7 .75) can easily be 
estimated. In every x-bin, we find it to be less than ,...., 10% or the observed change and less 
than 3% of the observed change for x < .5. We have also verified that the value or as changes 
by"' 3% due to the inclusion of {-scaling as in (7.75). Therefore, we have decided not to make 
any target mass corrections in the xF3 analysis. We also do not apply the GLS rule constraint 
to the fits since the low-x region is excluded. To further minimize non-perturbative effects,(GS} 
the low W2 region (W2 < 10 GeV2 ) is eliminated (W2 = Q2(1 - x)fx + m;; it is the square 
of the invariant final state hadronic mass). In all our analysis we have assumed that there are 
4 flavours of quarks. 
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The result or the leading log analysis is 

ALo = 88:t*~3 _-f.r~13 MeV 

as = .204±.079 for Q~ = 12.6 GeV2 

b3 = .672±.058 

ca = 3.29±.24 

aa = 4.34±.24 

x2 = 44.2 for 45 DF 
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The x2 indicates a good fit. x2 is plotted versus A and versus as in figures 7.8 and 7.9 
(the curves labeled xF3 ). Notice the striking asymmetry of x2 around the minimum in fig. 7.8 
-this arises due to the nonlinear nature of the A dependence of as. On the other hand, the x2 

plot versus as is quite symmetric and quadratic since d xF3 / dIn Q2 is proportional to as (7.7 4). 
In recognition of this fact we feel that at low values or A it is better to quote statistical and 
systematic errors on as rather than A, where as is evaluated at Q2 = 12.6 Gey2 (roughly the 
mid-point of our Q2-range). We shall henceforth use the symbol a~ for as(Q2 = 12.6 GeV2). 
In figures 7.10 -7.12 we see that the strongest correlation of a~ is a negative correlation with 
the power of (1- x) indicating some feedthrough of the x-dependence into the Q2 evolution. 

' 
Despite the absence of x < .03 data in the fit, the best fit values above correspond to 

(7.78) 

This value is at Q2 = 12.6 GeV2 and is in good agreement with the value quoted in the previous 
section for Q2 = 3 GeV2 by a global fit (7 .72). The statistical error from the global fit is also 
0.15, indicating that adding a Q2-dependence parameter A does not affect the error on the 
integral of F3 , as expected. 
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Systematic effect xF3 xF3/F2 

.6-o~ .6-o~ 
Flux smoothing .027 .010 
Flux level errors .047 .006 

Angular disp. .018 .024 
Angular disp. (uncorr) .028 .011 

Systematic error in Ehad .Oll .011 
Systematic error in E,. .014 .009 

Different R assumptions .004 .015 
1/2 SU(3) changed to SU(3) .002 .002 

Different models for correction .008 .006 
terms in F2, xF3 extraction 

n1 = 4 changed to n1 = 3 .001 .003 
Inclusion Of (1 +'}.,X) term .0003 .002 

Change in Q~ (12.6-+ 5 GeV2) .001 .001 

Table 1.4 

Effect of systematics on o~ and changes in o~ due to other assumptions in 
leading order. 
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Systematic errors on o~ are as shown in table 7.4. The sources of error have already 
been discussed (§6.6); here we only touch upon points pertinent to the QCD analysis. The 
'unlimited statistics' technique is extended to QCD by extracting o~ for the 26 data sets and 
using the standard deviation as an estimate of the error. This applies to the first three errors 
listed, which are among the largest. Clearly, xF3 is most sensitive to uncorrelated flux leYel 
errors. The two assumptions about beam angular dispersion serve to bracket the error from 
that source. 

Again, the error due to R comes from analyzing data extracted with three different 
assumptions for its value (6.10). The error is small, as expected, despite the fact that real 
data (limited statistics) are used. The effect of changing the assumption regarding the strange 
fraction of the sea is also small, again as expected. The models used for structure function 
extraction also make little difference. 

We have also tried to change certain assumptions regarding the QCD analysis. 
Changing the assumed number of quark flavours to 3 and changing the value of Q~ (starting 
point for evolution) have no significant effect. The functional form for xF3 at Q~ (7.73) was 
modified to multiplicatively include a (1 + '}3X) term but again the change in o~ is slight. 
We conclude therefore that the most significant problem in extracting a value for A from xF3 
presently is statistics, since the combined systematic error on o~ is .06, as compared to .08 
for the statistical error. This corresponds to systematic errors of +113 MeV and -70 MeV on 
our value for ALO· In a high statistics quad-triplet run at the Tevatron, which would cover 
roughly the same energy range as this experiment, the uncorrelated error on the flux levels may 
be further reduced by using da / dy at y = 0. Thus the systematic errors can be reduced too 
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when statistics increases, even for an unnormalized wide-band run. 

Following a standard technique(83), we have analyzed our data in the same non-singlet 
framework using F2 or 2xF1 instead or xF3 in the high-x region. The major justification for 
this procedure comes from the fact that 7j = 0 when x > .4. Table 7.5 lists values of F2 and 7j 
in x bins and the CDHS values(81) or 7j, which they determined by adding to their narrow-band 
data another 155,000 Ii and 35,000 v wide-band events with Ev > 20GeV. Clearly, above 
x = .4 both data sets imply ij = 0. Notwithstanding the difference in the ij values from the 
two experiments at low x, which arise mainly from overall level differences, we can set q = 0 
for x > .4. This is because adjusting the values of 7j for the level difference in cross-sections 
beyond x = 0.4 does not change the result ij = 0. The Q2 range over which the two data 
sets are averaged for table 7.5 is virtually identical except for x < .4, where the CDHS data 
displayed cover a range about 0.1-0.2 lower in log10 Q2 • In the region of interest the errors on 
the CDHS q values are much smaller than our F2 errors, thereby facilitating the procedure of 
Cl,lmbining F2 or 2xF1 and xF3. 

X F2 q CDHS q 
.015 1.36±.033 .477±.023 .344±.016 
.045 1.37±.023 .354±.021 .321±.013 
.080 1.49±.022 .341±.021 .277 ± .010 
.150 1.24±.013 .159±.012 .155±.0058 
.250 0.93±.012 .034±.012 .054±.0040 
.350 0.64±.011 .033±.012 .013±.0027 

.450 0.38±.009 .0021±.0092 .00076±.00197 

.550 0.20±.007 - .00094± .007 4 - .00128±.00160 

.650 0.11±.006 - .0018±.0061 -
.. 

Table 7.5 

Values of F2 , q and the high-statistics CDHS q averaged over Q2 with 
statistical errors. 

The result or combining F2 for x > .4 and xF3 for x < .4 and doing a non-singlet 
analysis is the following set of values for the parameters: 

ALo = 266±g! ±nMeV 
as = .291±.047 for Q~ = 12.6 GeV2 

b3 = .635±.049 

c3 = 2.90±.13 

a3 = 4.29±.22 

x2 = 50.0 for 46 DF 

One important point is served in doing this analysis . We get an idea of how much the 
systematics are improved (except those due to R) by a glance at table 7.4 which also lists the 



7 .5. QCD Analysis 

>< 
'1:j 

tr.l 
~ 

..... 0 
'...::; 

'1:j 
Q) 

h 
ro 
& 
tiJ ...... 

,..q 
u 

Cll 
td 

0 
0? 

CCFRR 
co 
C\i 

c:o 
Cll 

"<t 
C\i 

Cll 
C\i 

.00 0.10 0.20 0.30 0.40 
O:g 

Figure 7.12 

Correlation between J; dx F3 and a~; xF3 , leading order. Displayed are la 

and 2a contours. 

q 
0 
c:o 

0 
l() 
10 

0 
0 
lO 

q 
LD 
"<t 

q 
0 

"<~'.00 

MS QCD fit 

CCFRR 

0 .10 0.20 0.30 0 .40 

Figure 7.13. x2 vs. as; MS analysis of xF3. 

133 

0.50 

o.ou 



T. Physics Analysis &nd Conclusions 134 

errors from this analysis. As expected, the relative insensitivity of F2 to the flux smoothing 
procedure and to the '"V 4% level fluctuations reduces those errors dramatically. The error on 
a~ is .035, which translates into errors of +85 MeV and -79 MeV on the value of A. 

However, in doing such an analysis we are confronted with the uncertainty in R. Since 
q = 0 implies xF3 = 2xF1 , we should use 

(7.79) 

instead or F2 in the high-x region. Fixed values of R and QCD values of R induce minor 
Q2 variations, but the 4m;x2 JQ2 term induces large (up to '"V 10% ) variations in 2xF1 with 
respect to F2. This changes the value of A, or as, significantly as seen by the result of a fit 
with 2xF1 used instead of F2 for x > .4 and R = RQco: 

ALo = 426:!:U~ MeV 

as = .355±.046 for Q~ = 12.6 GeV2 

b3 = .627 ±.047 

ca = 2.76±.13 

aa = 4.45±.22 

x2 = 51.9 for 47 DF 

Perhaps the wisest approach in attempting to substitute F2 for xF3 at large x is to 
wait until data are available in regions where 4m~x2 JQ2 < 1. 

7.5.2 MS Non-singlet Analysis 

We have also done a second order analysis or the xF3 data. We choose to work in 
the MS scheme; the value of A in a different scheme can be obtained from the MS result. 
We have used the programs or Duke et ai.,(83) and of Barnett!84). The latter parametrizes 
xF3 at Q~ as in the leading order case while using the second order evolution equation, or 
course. The other approach, that or Duke et al., uses a definition or parton densities that 
makes them 'universal' i.e., the same densities apply in all processes. In this method, the 
parton densities are first evolved and then the structure function is constructed from them at 
any given Q~. Effectively, this is a two-step procedure. In the Barnett approach the coefficient 
functions that are convoluted with the parton densities to obtain xF3 in the two-step procedure 
are absorbed into the xF3 evolution equation (7 .80). In order to get the same value for AMs 
from both procedures, the parametrization of xF3 at Q~ in one case must be different from 
the parametrization of the parton densities at Q~ in the other, and both must be the true 
functional forms. Since those forms are unknown, both Barnett and Duke et al. have chosen to 
parametrize their distributions at Q~ by the same functional form, the one in (7 .73). Thus, the 
result is two different AMs values. However, the difference in as (Q2 = 12.6 GeV2

) is small 
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in comparison to the statistical error and both values of a~ agree with the leading order result 
(table 7.6). The zFa evolution equation in second order is 

d x:~~zQ~
2

) = as~~
2

) {<2 + ~ ln{1- z))zF3 (z, Q2 ) 

+ {
1 

4((1 + z2)~Fa{t,Q2)- 2zFa(x,Q2 ))dz 
ls 3 (1- z) 

+ as~Q2 ) t dz(.:.Fa(.:.,Q2)- xF3 (x,Q 2 ))W(z) 
1r ls Z Z 

(7.80) 

- as~~
2

) xFa(z, Q2 ) los dz W(z)} 

where, as(Q2
) is the second order expression {7.47) and 

W(z) = -2{30 ((1 + z
2 )(1n(l- z) _ ~) + (9 + 5z) _(I+ z)) 

3 {1- z) z 4 4 

16( 2 ln(1- z) ( 3 ) 1 ) +- -2(1+z )lnz ( ) - --+2z lnz- -(1+z)ln2 z-5(1-z) 
9 1-z 1-z 2 

(
(I + z2

) 2 11 67 rr2 40 ) 
+2 {I )(In z+-Inz+---)+2(1+z)ln z +-(1-z) 

-z 3 9 3 3 

16((1 + z
2

) 5 ) + - (- In z - -) - 2( 1 - z) 
9 (1-z) 3 

4(1+z
2 

{* (-lny) ) 
+g 1 +z Jl/zdy 1 +Y +{l+z)lnz+2(1-z) 

{7.81) 

The x2 versus as curve for the Duke et a!. technique is displayed in figure 7.13. The 
' fit is plotted through the data in figure 7 .14. The best fit parameters, it is emphasized, for the 

two techniques are for xFa in the Barnett case and for the universal parton distribution in the 
other. ·we do not show the {fractional) systematic errors in the MS case which would merely 
be a duplication of the fractional errors in the leading log case. 

Parameter Leading Order MS Barnett (ref.84) MS Duke et al. (ref. 83) 
A 88:!:i8;j 120::!:1()6 193::!:156 

as(Q2 = 12.6GeV2) .204±.079 .176±.062 .201±.070 

ba .672±.058 .631±.059 .664±.058 

ca 3.29±.24 3.36±.22 3.54±.20 

a a 4.34±.24 5.05±.35 5.94±.46 

x2 /DF 44.2/45 44.0/45 43.5/45 

Table 7.6 

Best fit parameters resulting from first and second order (M S) fits to zFa . 
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7 .5.3 Non-singlet Analysis Summary 

The hypothesis or no scaling violations (A = 0) is clearly ruled out by all the leading 
order and second order results (see figs. 7 .8, 7.9 and 7.13). Also, an attempt was made to 

look for higher twist effects by the multiplicative inclusion of the term (1 + h/Q2 ) in the xFa 
evolution, but the values or h thus obtained had large errors, with h consistent with zero and 
no improvement in x2 • For example, an MS analysis yields h = 26±23. 

After Barnett<98) we have also attempted to look for W2 dependence in as. Our 
present statistics prevent us from corroborating his evidence that the value or as falls if the 
lower limit for W2 is raised. The same conclusion is reached with a search for Q2 dependence 
(table 7.7). 

Q2 cut W2 cut ALo x2 /DF AMS x2 /DF 
(GeV'2) (GeV'2) (MeV) (MeV) 

5 

5 

5 
5 

10 

15 

25 

10 88±111 44.2/45 193±206 43.5/45 

20 24±93 34.8/38 67±163 34.6/38 

30 131±254 27.3/32 197±346 27.5/32 
10 88±111 44.2/45 193±206 43.5/45 

10 135±181 31.7/36 144±197 32.2/36 

10 62±115 29.8/29 64±124 30.1/29 

10 410±512 16.7/21 327±477 17.5/21 

Ta.ble 7. 7 

Variation in ALo and AMs due to Q2 and W2 cuts. The MS values are 
for the technique of Duke et al. The errors are quadratic errors; despite 
appearances they do not really permit A = 0, e.g., the,true errors for the 
leading order value in the first row are +163 MeV and -78 MeV. 

We conclude that the determination or A from xF3 is presently limited by statistics. 
Higher statistics experiments will need more precise fiux calibrations as the uncorrelated error 
on v and i7 fluxes leads to significant uncertainties in xF3 . 

7.5.4 Singlet Analysis 

The QCD analysis or F2 is the subject or another thesis( to); we merely summarize the 
situation here. The evolution or F2 depends on the gluon distribution, and its extracted values 
depend on the value orR and the strange fraction of the sea, particularly at low x. By using 
the momentum sum rule: 

(7.82) 
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Best fit points in the A-ce plane, for different values of 'YG· The shaded area 
indicates the reasonable range of values for the parameters co and 'YG· 

we put a powerful constraint on the gluon distribution. The regions used for the F2 analysis 
in x and Q2 are the same as those for xF3 except we eliminate x < .1 and thus decrease the 
sensitivity to R and the strange sea. A remains highly correlated t~ other parameters, especially 
to co w hlch is poorly determined. 

The statistical precision and lower sensitivity of F2 to scale errors enable us, however, 
to extract a value of A for various assumptions about the gluon distribution. The reasonable 
assumptions "fo~O and 4~ co~8lead us to a range of values for A with different R assumptions 
(table 7.8). Figure 7.15 shows the correlation between parameter values and A for R = RQcD 
and helps delineate the allowed range. 

The best fit A values for the three different R assumptions are listed in table 7.8. As 
noted earlier, most systematic errors on A are smaller for F2 - the values in leading order are 
±25 MeV for the flux smoothing procedure, ±30 MeV from flux level uncertainties, ±10 MeV 
from the beam dispersion and ±15 MeV each from the hadron and muon energy calibration 
errors. However, as evidenced from table 7.8, the The uncertainty from the gluon distribution 
is estimated at ±50 MeV. In future a more precise value of A from xF3 could be used in the 
F2 analysis to measure the gluon distribution. At present, our value implies, albeit weakly, a 
high value for co i.e., a soft gluon distribution. Using the CDllS measurement of q, we find 
that the value and error on A do not change significantly, but a much better determination of 
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the gluon distribution is possible. The gluon distribution now has no freedom beyond x = .25, 
and is essentially the same as the CDHS distribution in that region, but the difference in the F2 
integrals from the two experiments forces their gluon distribution to be much larger at low-z. 

ALo AMS" 
R=O.O 360± 100MeV 390 ± llOMeV 
R=0.1 200± 90MeV 230 ± 100MeV 

RQcD 300 ± lOOMeV 340± llOMeV 

Table 7.8. F2 fits with ca = 4.6 , 1o = 9.0 

7.5.5 Comparison with Other Experiments 

Other experiments have attempted to measure A (see table 7.9), notably EMC(8~81) 
who obtain AMs = 173±~~4 MeV from F2 using iron data, in good agreement with our result 
from xF3. CDHS{SI) obtain a value of AMs = .2±:~ GeV, from a non-singlet analysis of 
their xF3, again for iron and also in good agreement with our result. Clearly, the values 
for A from F2 lie within errors of the xF3 results, perhaps because of the somewhat large 
errors. We can however rule out the older high A values obtained by BEBC(88) at lower Q2 

(ALo = .74±.05 GeV) and the older CDHS Buras-Gaemers style analysis<89) which led to 
ALo = .47 ±-1±.1 GeV. In fact, at the 90% confidence level, using statistical errors, we can 
state from our zF3 analysis that 

.2 < ALo < 420 MeV 

The BFP muon experiment<82) at Fermilab, also in our Q2-range, reports a preliminary result 
with leading order A values between 160 MeV and 230 MeV, depending on assumptions made. 
The CHARM collaboration bas done a fit{llO,lll) of the non-singlet structure function and 
obtain a leading order result that is consistent with ours: A =187±~~g±70MeV. 

Recent results from angular energy correlations in e+e- experiments indicate values 
of A in the same range: the Mark-J group reports<90) AMs = 180±:g MeV and AMs from two­
photon scattering has a comparable value<91l: AMs ~ .2±.1 GeV. The Mark-J result depends 
on Monte Carlo assumptions about fragmentation, however. Thus it appears that the high­
statistics neutrino and muon experiments outside the low-Q2 region all have values of A in the 
100 - 300 MeV range, an encouraging sign. Values of A from neutrino and muon experiments 
agree to a remarkable level and singlet and non-singlet analyses lead to the same result within 
errors. The e+ e- results are similarly heartening, especially the higher Q2 result, but error 
bars prevent us from concluding that the similarity in A values from different experiments at 
different Q2 values implies that perturbative QCD has been proven beyond doubt. 
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Experiment Order A 
(MeV) 

BEBC,loo1 lower Q~ LO 740±50 

CDHS,l89l old result LO 470±100±100 
CCfo'RRpurp2 MS 340±110 

CCFRR, xFa LO ss+}~3 :175 i3 

CCFRR, xFa MS 193+n~ 
EMC,l87l iron data MS 173:!:~~4 

CDHS,l111l xF3 MS 200:!:~88 
BFP,l82l preliminary LO 160 to 230 
CHARMlllO,lllJ' :r:Fa LO 1s1±in± 10 

Mark-J{90l MS 180+~g 
Two-photonl91 l MS 200±100 

(JADE) 

Table 7.9 

Comparison or A. values from different experiments with emphasis on values 
from non-singlet distributions. The two older values (first two columns) are 
higher than recent results which all agree within errors. Our M S value is 
for the Duke et al. method, with statistical errors only. 

§7.6 Extraction of R 

7 .6.1 R from y-dependence of Differential Cross-sections 
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The dependence or the differential cross-sections on R is not very strong (6.1). Further, 
F2 and Renter as one term, identical for both neutrinos and antineutrinos, and the small value 
of R makes it harder to measure. We have to utilize the different y-dependence or R and 
F2 in (6.1) for extraction. A simple technique would be to fit a second order polynomial to y­
distributions in x and Q2 bins and extract F2 , Rand xF3 from the coefficients of the powers or 
y. Given the level of our statistics, we have chosen the maximum likelihood technique instead, 
which is essentially an extension or the structure function extraction method. 

Each x and Q2 bin is now further divided into 20 y bins, and the number of neutrino 
and antineutrino events in every such bin is accumulated and corrected for resolutions, as 
before. If there are n, neutrino events in the i 1" y-bin and n, antineutrino events, then 

ni =a, F2 + bi 2xF1 + c, xFa + di 

ni =ai F2 + bi 2xF1 + Ci xFa + di (7 .83) 
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a, b, c and d have to be obtained, as in the structure function case, by integrating over the 
appropriate coefficients (see 6.11). The integration would require even more CP time to maintain 
the same accuracy in these integrals as before, since we have carved out 20 bins out of each x and 
Q2 bin. This becomes impossible to handle by simple techniques and therefore we resorted to 
a Monte Carlo integration. The integration uses stratified sampling with partitioning to reduce 
variance. We have verified that summing the integrals over the y bins returns the integrals in 
each x and Q2 bin evaluated for structure function extraction. 

We now form a likelihood for the numbers or v and v events in y bins and maximize 
it by varying F2, 2xF1 and xFa. R is then extracted using (7.23). We check to ensure that 
xF3 thus obtained agrees with xF3 extracted with an assumption about R (as it should because 
of its independence of R). The results still suffer from poor statistics and it is impossible to 
detect any meaningful Q2 dependence orR in an x-bin (see fig. 7.16). Averaging Rover Q2 , 

w.e obtain the values listed in table 7.10. The errors are still large. We can only say that R 
appears lower in the x > .4 region than in the x < .4 region- the averages for 0 < x < .1, 
.1 < x < .4 and .4 < x < 1. are .12±.08, .16±.09 and -.65±.13. Averaged over all x, we 
obtain R= - .01±.05. 

x-bin R 
(stat. errors) 

0 <X< .03 .04±.15 
.03 <X< .06 .27±.16 

.06 <X< .1 .08±.12 

.1 <X< .2 .30±.13 

.2 <X< .3 .20±.16 

.3 <X< .4 -.12±.17 

.4 <X< .5 -.21:!;.27 

.5 <X< .6 2.7±5.7 

.6 <X< .7 -.77±.14 

.7 <X< 1. 1.7±10.3 

Table 7.10 

Values of R in x bins are averaged over Q2 • The errors are statistical only. 

or course, we have completely ignored systematic effects in obtaining the above num­
bers. They may therefore be misleading. R is sensitive to anything that affects y-distributions. 
Therefore flux levels and the energy dependence or cross-sections have to be better understood. 
We shall leave this task to some future student. 

Lacking an estimate or systematic errors, it is improper to draw conclusions from a 
comparison of our R value with other measurements in the same Q2 -range; suffice it to say 
that the values from c.mo! 105l, SLACI106l , EMCI6 1l and CDHSI62l lie between 0 and .5 and 
are consistent with each other because of large errors (see fig7 .17}. 
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R in the bin .2 < x < .3 as an illustration of the fluctuations and errors. 
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7.6.2 Limit on R 

An attempt was made to obtain an upper limit on R from the condition that q(x)~O. 
If q(x) is set to zero, only t'vo unknowns remain in every x and Q2 bin viz., xF3 and R. Ignoring 
correction terms and using (7. 79), equation 6.1 gives 

(7.84) 

Integrating over flux and acceptance, the left hand side represents the number of v and II events 
in a bin. The rest or the procedure follows the details of the structure function extraction 
technique. xFa, as before, comes from the difference or the numbers of v and I7 events: 

nv- nv= k <(1- (1- yf)> xFa (7.85) 

where k is the overall constant and <> denotes integration over bin limits. Along with the 
equation that comes from summing neutrinos and antineutrinos, we get 

( nv + nv) <(1- (1- y)2)>- <(1 +(1- y)2)> + <y2 > 2m~x2 = 2R <(1- y)> 
nv- nv Q2 (1 + 4m~z2 jQ2) 

(7 .86) 
Now the left hand side is almost zero, since R is small, leading to large errors on the extracted 
limit for R. Thus we are again limited by statistics - the limit, if averaged in the region x > .4 
is .55 at the 90% confidence level. The CDHS collaboration(8 l) used narrow-band and wide-band 
data in the region .4 < x < .7 to obtain R~ .04±.03. We conclude that the measurement of R 
has serious statistical and systematic problems that require further investigation and content 
ourselves for the present with extracting structure functions with three different assumptions 
about R (6.10), all of which are consistent with our attempt to eY,tract R . 

§7. 7 Conclusions 

Data were taken during the run of experiment 616 at Fermilab using neutrino and 
antineutrino dichromatic beams at five momentum settings: 120, 140, 165, 200 and 250 GeV /c. 
The flux of neutrinos was monitored, allowing a normalized measurement. The absolute level 
of fluxes was calibrated to 3% with further uncorrelated uncertainties of 1.4% and 3.2% for 
neutrinos and antineutrinos respectively. With 5.9x 1018 protons on target, we measured a total 
of 150000 neutrino and 23000 antineutrino charged current events using the Lab E detector. 
The 640 ton instrumented target was used to measure the angle of the outgoing muon and 
the energy of the hadron shower. Downstream, a toroidal spectrometer measured the muon 

momentum. 

After making model independent acceptance corrections the data were analyzed to 
extract the structure functions F2 and xF3 or nucleons in iron (with no Fermi motion correc­
tions) under three different assumptions about the value of R . We covered the range 0 < x < .7 
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and 1 < Q2 < 250 GeV2 • Corrections were made for resolutions, the strange sea, the onset of 
charm production, radiative effects, and a correction for the mildly non-isoscalar nature of the 
target nuclei. Statistical and systematic errors on the result have been studied. Statistical errors 
dominate uncorrelated systematic errors for both xF3 and F2 . Correlated flux systematic errors 
are 3.2% but do not affect determinations of quantities that come from a combined analysis of 
all bins. e.g., of A. 

The major conclusions from analysis of the structure functions can be summarized as 
follows: 

(1) Both F2(x, Q2 ) and xFa(x, Q2 ) have been compared with results from other experiments. 
Apart from level differences expected from total cross-section differences, the low-x be­
haviour of the structure function F2 is markedly different from the CDHS measurement, 
but is in agreement with that of the EMC and BFP collaborations. In a comparison of 
xFa as a function of x, only the HPWF results show a striking dissimilarity. 

(2) Being the best experiment to measure the GLS sum rule we find 

at Q2 = 3 Gey2. This is consistent with the quark-parton model value of 3 and QCD 
expectations with A < 525 MeV. 

(3) The QCD evolution of xF3 , which is independent of R and the strange sea, does not 
depend on the gluon distribution and fits yield 

ALo = gg+163 +113 MeV 
-78 -70 

The systematic errors are smaller than the statistical errors. Second order fits give 
somewhat different values of A, although cxs (at Q~ = 12.6 Gey2) is not so different. 

(4) A fit using the better determined F2 in place of xFa for x > 0.4 i.e., assuming q = 0 in 
that region, gives 

Again, the statistical errors are larger than the systematic errors. 

(5) QCD fits to F2 with a particular choice of the gluon distribution and R give(IO) 

ALo =360± 100 MeV 

AMs =340±110MeV 

Variations in the gluon distribution parameters indicate an additional rms variation of ,..., 
50 MeV. The combined systematic uncertainty from the flux and from assumptions about 
R is comparable to the statistical error. Using the constraint q ~ 0 for x > .4 enables us 
to make a significant determination of the gluon distribution. 
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(6) An attempt to measure R was made. The value of R suffers from serious statistical and 
systematic uncertainties. The value is shown in figure 7.17 as a function of x. The upper 
limit on R from the condition q{x)~O is 0.55 at the 90% CL in the region x > 0.4. 

During the course of this analysis there has been an ongoing effort to upgrade the Lab 
E detector. Drift chambers will replace the spark chambers used in E616. This will permit a 
higher data taking rate, with the detector essentially not limited by deadtime (""' 10 psec per 
trigger) at projected trigger rates. 

With the availability of a 1000 GeV proton beam it will become possible to study the 
neutrino and antineutrino cross-sections at higher energies. Another high-statistics dichromatic 
run is planned (E652). The higher energy will make possible an accurate measurement of the 
GLS rule in a high Q2 region for the first time. The most interesting question will be the 
Q2 dependence of structure functions - has A changed with the increase in Q2? It will be 
important to measure flux levels with higher precision for F2 comparisons. Higher statistics 
will improve the A value from xF3 • 

A better value of A in the present energy range is needed to be able to draw any 
conclusion about a change in its value as one goes to Tevatron energies. Since our numbers 
are statistically limited, an extra four to five times the present data will be very useful. An 
experiment to measure neutrino oscillations with the Lab E detector(109l and the same beam 
collected roughly an equal number of events during 1981- 1982. Further, a wide-band run at 
the Tevatron (which will mean neutrinos between 100 GeV and 300 GeV) can add an extra 
million or so events. Such a data set will have to use either our cross-sections or cross-sections 
measured in the future using a dichromatic beam. Even so, the systematic errors on A from 
xF3 will come mainly from the cross-sections, and therefore not be the limiting factor nntil 
several times the present number of events have been collected. 



Appendix A 

Beam Kinematics 

The flux of neutrinos at Lab E is a function of position and energy setting. As 
mentioned in the main text, for a dichromatic beam, there is a correlation between radius and 
neutrino energy; here we derive this and other illustrative quantities. 

Most or the decays are 2-body decays ( 1r± ~ JJ±<vt; K± ~ JJ±<v~). The few 3-
body decays that produce, on the average, somewhat lower energy muon neutrinos are a small 
correction. For a 2-body decay, the energy or the neutrino in the zero-momentum frame is 
given by 

• • mM P 
( ( 

m )2) E = p = -2- 1- mM , 

where mM = the mass or the parent meson. For pions, p• is 29.79 MeV, for kaons it is 235.53 
MeV. The lab energy or neutrinos depends, or course, on the energy of the decaying meson in 
the lab frame and the centre-of-mass decay angle of the neutrino. Defining the z-axis to be the 
direction of the meson momentum, let rt be the angle the neutrino makes with the z.-axis in 
the zero-momentum frame. Then, ' 

Clearly, the maximum and minimum lab energies or the neutrino will be 

Emin= 'YP•(1- /3) 
and Ema:z= 'YP•(1 + /3), 

spanning almost the whole range from zero to 2"fp• . The lab angle 0 corresponding to o• given 
by 

coso• = cosO - {3 . 
1- f3 cosO' 

q/ = ¢. (A.l) 
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Thus, at a fixed radius at Lab E, 

EM mM ( ( m,. )
2

) ( 1- {J2 ) 
= mM_2_ 1 - mM 1- {3cos0 

= EM(1 - (~)
2

) ((mtt/Ett)) 
2 m M 1 - /3 cosO 

(A.2) 

The maximum radius attainable for a neutrino occurs when 0 = 0, giving in the limit 
PM>mM, 

(A.3) 

The factor ( 1 - ( :;::, Y) is 42.7% for pions and 95.4% for k:aons, clearly showing that 

k:aon neutrinos have larger energies. Equation (A.2) also clearly establishes an energy versus 
radius relationship for neutrinos at Lab E. If the beam were infinitely thin, monochromatic 
and decayed at a point, fixed cosO would correspond to a fixed energy E at Lab E, and so 
energy would fall off with radius (r). Such an ideal E vs. r plot is shown in figure A.1 for all 
our secondary energy settings. Continuing with this simplification for a moment, let R be the 
distance of the decay point from Lab E. If the dimensions of Lab E are always small compared 
toR, 

R r 2 

cosO= ::::s 1--
JR2 + r2 2R2" ' 

Substituting this in (A.2) it is not hard to show that 

Em a., 
E = 1 +(r/R)2'72' 

(A.4) 

which gives us the energy vs. radius expression. Notice the characteristic r-dependent fall-off 
which comes from the (1- f3 cosO} term in (A.2}. The full width at half-maximum is given by 

2R 
TI'WHJW = - . 

'7 
(A.S} 

Since pions are lighter than k:aons, they have larger '7, and thus their energy falls off much more 
rapidly with radius. 

The other important factor in the kinematics is the flux variation as a function of 
angle. Since both pions and k:aons are spin-zero (there would be no spin selection anyway} the 
decays in the rest frame are isotropic. If C(O, ¢>}is the probability density for decay in [0, 8 +dB) 
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Figure A.1. Ideal Energy-radius relationship at Lab E 

and[¢,¢+ d¢} (spherical polar coordinates}, then 

Combining 

with (A.l) and (A.6) gives 

C(B ¢) = (1- p2) 
' 41T(l - p cos8)2 

'(G.O 

(A.6) 

(A.7) 

(A.8} 

The quantity (1 - p cosO} occurs twice in the denominator as opposed to once in (A.2}; thus 
the !lux falls off even faster with radius at Lab E. Indeed, rewriting (A.8) as 

F(O} 
F(r) = (1+ (r/R)2'Y2)2' 

(A.9) 

we see that the F\VHM or the fiux occurs when 

V r.: R 1.29R 
TrwHW = (2 V2- 1)- = --. 

'Y 'Y 
(A.IO) 
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Figure A.f. Ideal Flux-radius relationship at Lab E 

A plot of flux vs. radius for an ideal beam is shown in figure A.2. 

' The real neutrino beam differs from the one described above in four major respeets: 

(i) The beam decays over an extended region in z, in fact the decay pipe is 351.5m long and 
at a mean distance of 1113.7m from Lab E. A factor e<"-"2 )/'J>. • must be multiplied into 
the flux expressions above and integrated over the z..limits (z1, z2) of the deeay pipe. >. • is 
the centre-or-mass decay length. In fact, the R in above expressions is now z..dependent. 
In as much as the z..dependence can be separated, the fraction of particles that decay in 

the decay pipe are ( 1 - e-("2-"1)/'J>. •). The fiducial volume of Lab E itself has a spread 

in z of 12.7m, small compared to the above dimensions. >. • for pions is 7.804m and is 
3.709m for k:aons. Listed in table A.l are various interesting parameters for the beam. 
Since the decay pipe length is a significant fraction of the distance to Lab E, there will 
now be a range or energies at any radius r at Lab E instead of a fixed energy as given by 
(A.4). This fractional spread in energy is easily shown to depend on the fractional z-spread 
(=351.5/1113.7) as 

6E 6R 2 
E = R ·1 +R2fr2'Y2 

(A.ll) 
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Thus this effect introduces a tl.E/E from zero at r = 0 to 37% for pions at 250 GeV and 
r = 30 in . Similarly, (A.9) may be differentiated to give 

tl.F tl.R 4 
F=R.1+R2fr2'2 · (A.12) 

(ii) The beam has a momentum spread or ±9%. The effect on the radius and flux is straightfor­
ward: E as obtained in (A.4) develops the same ±9% spread, the flux spread is less than 
±1%. 

(iii) The beam has an angular spread of between .1 and .2 milliradians. Clearly this affects 
both the energy and flux relations. For kaon neutrinos at 250 GeV the flux FWBM angle 
(see table A.1) is 2.55 mrad, large compared to the angular dispersion, and consequently 
the effect is small for kaons. For pions, this effect begins to become significant at the 
higher energies. Differentiating (A.9) it is easy to show that 

tl.F tl.B 4 

F ~ T 1 +R2fr2 , 2 
(A.13) 

and differentiating (A.4), 

tl.E tl.B 2 
E ~ T1 +R2fr2'2 

(A.14) 

(iv) Two major background sources exist: the background of muon neutrinos from Kp3 decays 
and from the wide band background. The latter is described in section 3.1. The decay 
K± -+ JJ±!vt 1r0 has a branching fraction of 3.2% and contributes a small number of low 
energy neutrinos that are estimated by the beam Monte Carlo (see chapter 3). 

Table A.l of secondary beam related quantities 

Energy settings for secondary beam: 120, 140, 168, 200, 250 GeV. 
Momentum acceptance ~ ± 9.4%. 

Angular divergence, horizontal~± 0.15 mrad 

vertical~ ± 0.19 mrad 

Length of decay pipe = 351.5m 
~ Gaussian width= 101.47m. 
Mean distance to Lab E = 1113.7m. 

EseT = Energy setting 
rJJJ.rwau = FWH}.f radius for the energy versus radius at Lab E. 
Tr.rwHu = FWHM radius for the flux versus radius at Lab E. 
Br .rwHu = FWHM angle for the flux versus angle distribution. 
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The following spreads are computed at a radius of 30 in for neutrinos from pion 
decays and 70 in for neutrinos from kaon decays (the limits or acceptance cuts). 

(tl.E/E)z: fractional energy spread due to finite decay length. 
(tl.E/ E), :fractional energy spread due to angular dispersion of beam, assumed to be 0.18 mrad. 

(tl.F f F)~ : fractional flux spread due to angular dispersion of beam, assumed to be 0.18 mrad. 

EsET Neutrinos from 1r decays 
(GeV} TII.I'WHM TI'.I'WHM Br.rwHM (t:..Ef E)z (tl.E/ E), (t:..FfF)~ ,.., Emc.r. DF 

(inches) (inches) (mrad) (%) (%) (%) (GeV) (%) 
120 102.0 65.64 1.50 4.68 13.53 27.05 859.8 51.2 5.10 
140 87.4 56.26 1.28 5.83 16.85 33.70 1003.1 59.8 4.39 
165 74.2 47.74 1.09 7.21 20.81 41.62 1182.2 70.4 3.74 
200 61.2 39.38 0.90 8.93 25.79 51.58 1433.0 85.4 3.09 
250 49.0 31.51 0.72 10.94 31.59 63.17 1791.3 106.7 2.48 

EsET Nelltrinos from K decays 
(GeV) Tli.FWHM TI'.I'WHM BI'.FWHM (t:..Ef E)z (t:..Ef E), (t:..F/F), ,.., Emc.z DF 

(inches} (inches) (inrad) (%) (%) (%} (GeV) (%} 
120 360.8 232.2 5.30 2.39 2.95 5.90 243.1 114.5 32.29 

140 309.2 199.0 4.54 3.10 3.84 ,7.67 283.6 133.6 28.41 

165 262.4 168.9 3.85 4.04 5.00 10.00 334.2 157.4 24.69 

200 216.5 139.3 3.18 5.37 6.65 13.30 405.1 190.8 20.86 

250 173.2 111.4 2.54 7.20 8.91 17.83 506.4 238.5 17.07 
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Event Kinematics 

Consider the diagram below. 

' 

Figure B.1. Charged current process 

The 4-momentum or the incident neutrino is k and that or the outgoing muon, k' . 
The proton is initially p, the final hadron shower r/. 

(B.l) 

(B.2) 
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v = p · (k- k') = m,(Ev- Ep) = m,(Eh- m,) .. (B.3) 

v m,(Eh- m,) Eh Ep 
y = - = ~ - ~ 1- - (B.5) 

p· k mpEv Ev Ev 

Ir the struck quark has negligible mass but produces another quark with possibly 
significant mass m9 , 

(q + xp)2 = m; 

or, -Q2 + 2xq · p + x2 m; = m; · 

Neglect x2 m; to give 

Neglecting mg, m, gives 

or 

AJso, from (B.l), 

Thus, or directly from (B.l), 

It is easy to see that 

• 8 IPpl . 8 1- y • 8 
SID h = -, -, SID p ~ --SID p • 

Ph Y 

(l _ y) = (1 + coso•) . 
2 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

(B.lO) 

This follows trivially if we assume that all centre-of-mass energies are equal to f and all particles 
are massless. Ir 1 be the boost from the centre-of-mass to the lab frame, 

Ep = 1f + 1Hose• 

Ev = 1f+1f, (B.ll) 

from which and (B.5) the result is obvious. 
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Differential Cross-sections 

Presented here is the expression for the differential cross-sections for neutrino and anti­
neutrino scattering off nucleons, central to extraction or structure functions. A brier explanation 
precedes the formula. 

The total cross section for a neutrino-quark collision, barring spin considerations, is 

2G2 s 
(C.1) 

Both the neutrino and the quark are spin-1/2 particles, glVmg rise to 4 possible 
situations. However, standard theory tells us that only lett-handed neutrinos exist, and at 
high energies, interact only with lett-handed quarks and right-handed antiquarks. We also 
consider the possibility of spin-zero constituents or nucleons. So all possible situations can be 
summarized as in fig. C.l. 

& shown in appendix B, 

(1 _ y) = (1 + coso•) 
2 

(C.2) .. 
IC x be the fraction or the nucleon momentum carried by the struck quark, the 

differential cross-section for neutrino quark collisions is 

cPa" G2 s 
-- = -·x·q(x) 
dxdy 1r 

(C.3) 

The s in (C.1) must be replaced by sx, the square or the centre-of-mass energy for 
the neutrino-quark system as opposed to that or the neutrino-nucleon system. Since only left­
handed quarks can interact, a factor of 1/2 appears. q(x) dx is the probability of finding a 
quark with momentum fraction in [x, x + dx). Because J = 0, there is no y factor in this case. 
In general though, one must include the appropriate power of (1 + cosB.)/2 or equivalently, or 
(1 - y). For example, the antineutrino quark cross-section can be written 

cf2ali G2 s 
-- = - · X q( X) • (1 - y )2 

dxdy 1r 
(C.4) 
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Neutrinos 

II q 
8;a = -1/2 8;a = 1/2 

J=O 
1 

II q ]=1 

s, = -1/2 s. = -1/2 ((1 +coso• )/2 }
2 

II k 
8;a = -1/2 s. = 0 

J = 1/2 
((I +cosB.)/2) 

Antineutrinos 

I1 q 
s, = 1/2 s, = 1/2 

I1 q 
s, = 1/2 s, = -1/2 

I1 k 

8;a = 1/2 s, =0 

Figure C.!. Spin considerations diagram 

J=1 
((l+coso•)/2)

2 

J=O 
1 

J = 1/2 
((l+coso•)/2) 
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Let u, d, s and c represent x times the probability density of finding au, d, s or c quark 
in [x, x+dx). The subscript v refers to valence quarks only. The superscripts p,n and N refer to 
the proton, neutron and nucleon respectively. k(x)dx is x times the probability that a spin-zero 
object lies in the interval [x, x + dx). Since the target is not exactly isoscalar, we introduce 

z !=<->. 
A 

We assume eN = eN = 0,} 
ue = d~' de = u~ 

and 

(C.5) 

' 

(C.6) 

(C.7) 

Also, the strange sea is expected to have the same x dependence as tr and d, therefore 

- t -s=s= -~ · q, 
2+t 

(C.8) 

where t is a constant expressing the fraction of "SU(3) symmetric" content due to the strange 
sea. 

- 1 
(u= d= - -v 

2+ t 

For a "half SU(3) symmetric" sea, 

(C.9) 

t = 1/2 (C.lO) 
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Ignoring charm mass corrections ror the moment, we then get 

rPav G
2 s { N N 2-N } - = -. (d + s ) + (1- y) u + {1 - y)k , 

dxdy 1r 

Clearly, dN = f(df, + (/) + (1- f)(d~ +d)= !elf,+ (1- /)u~ + (/ 

uN = f(u~ +uP)+ {1- /)(u~ + u") = fu~ + (1- f)d~ +uP 

Defining 

2xFt= q+lf=u~+d~+2l' +2sP } 
F2= q + q + 2k = u~ + d~ + 2dP + 2sP + 2k 

xFa= q- q = u~ + d~ 
we can reduce (C.13) and (C.14) to 

uP + dP (uP - dP) D ( d ) 
dN = u u + (1- 2/) v u + dp = ~ + (1 _ 2/) Uu - u + dp 

2 2 2 2 

Similarly, 

Using (C.15) and (C.l6) we may rewrite (C.ll} as .. 
rPav = G2s {xFa +(1- 2/)(uu- du)+ {2xFl - xFa + sN} 
dxdy 21r 2 

2{2xFt- xFa N} +(1-y) 
2 

-s +(1-y)(F2-2xFt)} 

= G
2

s {xF3 (
1 - (1 - y)

2
) + F2(l- y) + 2xFt · Y

2 

2'1f' 2 2 
+ (1- (1- y)2 )sN + (1- 2/)(uv- du)} 

Target mass effects make the (1- y)F2 into (1- y- mxyf2E}F2. 

Thus, since R is defined by 
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(C.ll) 

(C.12) 

(C.13) 

(C.l4) 

(C.15) 

(C.l6} 

(C.17} 

(C.l8} 

(C.l9} 

(C.20) 
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rflav,v G2s ( y2 (1 + 2m2x2 /Q2)) (1- (1- y)2) 
--=-{ 1-y+-· F2± xFa 
dx dy 211'" 2 (1 + R) 2 

±(1- 2/)((1 ~ y)2 }u~- ~) + (1- (1- y)
2
)sN} 

(C.21) 

Also, in reality me =j:. 0, making it necessary to recalculate (C.21). This has been 
done<24) and the prescription is that 

(i) e must be used instead of X where e = (Q2 + m~)/2mEh (see Appendix B). 

(ii) Only the region where { :5 1 is allowed. 

(iii) The y distribution coefficients 1 and (1 - y)2 become 

{(1- y) + x; }e(l- e> 

respectively. 

For our purposes it will be simplest to rewrite (C.21) in such a way that only a 
"correction term" gets added. In what follows the subscript e implies that the quark density 
in question is a function of{, not of x. For example, (C.13) may be written as 

dN = (fd~+(l- f)u~+dN )cos2Be+Ud~+(l-f)u~+dN )e sin2 8e(l- Y+ xy )8(1- {) (C.22) e 
One can add and subtract (fd~ + (1- f)u~ + dN) sin2 Be; the final expression works 

out to be 

rflav,v = G2mpEv {(1- Y+ f · (1+2m2z2/Q2))F. ±(l-(l-y)2)xF 
dx dy 1r(l + Q2 /mw )2 (t+R) 2 2 a 

±(1- 2/)((l~y)2)(u~- d~) + (l- (1- y)2)sN 
+R11,r;(x, Q2 ,E)+ C11,r;(x, Q2 , E, me)} 

(C.23) 

where the isoscalar and strange sea correction terms are explicit, R 11,r;(x, Q2 ,E) is the 
radiative correction term, and the charm mass correction terms are: 

Cv = 2[- sin2 Be(/dv+(l- J)uv+dN)+Udv+(l- /)uv+dN)e sin2 Be(l- Y + =[-)8(1- {) 

- cos2 8eSN +sN, cos2 Be(1- y + =(-)8(1- OJ 

and, 

- 2 C;;- = 2[- dNsin Be 

- SN cos2 8e 

(C.24) 

+ilN, sin2 Be(l - y + =[-)8(1- {) 

+sN, cos2 Be(l - y + =(-)8{1- OJ 

(C.25) 
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The l/{l+Q2 fm'tv)2 in (C.23) comes from theW-boson propagator which we neglected 
in earlier expressions for simplicity. Notice that here we neglect W4 and W5 since they come in as 

-(::r. 



Ap'Pendi:t D 

Multiple Scattering 

Multiple scattering enters both the track fitting procedures - in the determination 
or p11 and or 811 at the vertex. The two are quite different problems; the physics and logic is 
discussed in Chapter 5. 

Here we present the mathematical mechanics starting with the simpler case or 811 • 

Both problems are linearized i.e., the displacements (or, in general, measurements), written in 
vector form as y, are linearly related to the parameters c by 

y=Ac (D.l) 

Ir we knew the true set or parameters c, t: would be the 'error' vector where 

c=y-Ac (D.2) 

The covariance matrix or the measurements y is 

' 
(D.3) 

For the general case or correlated errors and unequal weights, u ij is a symmetric 
matrix and the problem is to minimize 

S = (y- Acf (u-1 )(y- Ac) 

with respect to the parameters c. This minimization is satisfied by 

In the shower penetration case (811 ), we merely use (5.2), (5.3) and (5.4) along with 

i 

y; =Yo+syz;+ I:<ot+B~cz~c;) 
k=l 

(D.4) 

(D.5) 

(D.6) 



D . Multiple Scattering 

where 

to get 

Yo =they-view intercept 

.sy = the y-view slope 

z, =the z..coordinate for the ith scattering centre 

o1e = kth multiple scattering induced displacement 

81e = kth multiple scattering induced angle 

Zlei =distance between scattering centres k and i, 

i i 
a,i =<(y,- y~)(y;- yJ)> =< L L(o~e + B~ez~e,)(ol + Olzl;)> 

le=ll=l 
. 2 
~ 2 Lk L~e 

= LJ ao[3 + T(z~e; + z~ei) + ZlciZiej} 
le=l 
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{D.7} 

(D.8) 

L1c is the thickness or the kth scattering centre, z~e; is 0 if k > j and y 0 is the (straight line) 
path without multiple scattering. The parameters are merely y0 , sy, x0 and s,.; no attempt is 
made to recover all the o1c and O~e. A is thus a trivial 2x2 matrix and the main problem is to 
invert a. Calculating a~ , including dEfdx losses, is easy since p11 is known. 

For the muon momentum tracking, we need not only the slopes and intercepts but 
also all the o~e, 81e and the muon momentum. As mentioned in section 5.1, the problem is first 
linearized by iteratively using the last estimate of IPI· The matrix A is enormous- it couples, 
in general, 36 angles, 36 deltas, and all the sparks in both views to the slopes, intercepts, 1/lpl, 
and the 36 angles and 36 deltas (there are 18 scattering centres). Most of the CP time is spent 
in matrix multiplication of A in spite of some or its blocks being diagonal. It is necessary to 
obtain all 01e, 81c because the magnetic field is a function of position and good tracking helps 

' get the correct magnetic kicks and eliminate bad sparks. 

Note that for both fits an intrinsic spark resolution, s2 , is added to the diagonal 
elements aii. For the linearized problem, one application of (D.5) gives the best estimates of 
the parameters. In the case of Bp, we repeat the procedure getting closer to the vertex by 
adding one plane at a time, as described in section 5.2. For pp, there is no hadron shower to 
contend with, but we iterate to improve Pp {the problem is artificially linearized). 



A-ppendix E 

Event Counting for Total Cross-sections 

In this appendix we describe the separation or events into various categories for 
evaluating cross-sections. For events with En < 10 GeV, we can calculate a maximum angle. 

' 
2 y 1 e ,.....2mx---

I- yEv 

( 
(10/Emin) 1 )1/2 

ema~ = 2m v 
1 - (10/ E~in) E~in 

(E.1) 

But E~in = 28.5 GeV ema~ Rj 189 mrad. (E.2) 

The angle beyond which the muon trigger efficiency cannot be geometrically recovered is the 
angle a line from the apparatus centre at z=-167 in (closest event to the toroids) to a corner 
or T2 (55 in square, z=l42.5 in ) makes with the apparatus axis; this is 251 mrad. Hence 
(E.l) indicates that for En < 10 GeV, all events fire the muon trigger and the muon energy is 
measured. At every radius, an energy Esep can be defined that separates neutrinos from pion 
and kaon decays. One can safely assume that if En > .85 Esep, the event is from a neutrino 
from kaon decay. This leaves the region 10 GeV < En < .85 Eup in which to distinguish pion 
and kaon induced events. In this region it is possible to show using the energy versus radius 
expressions outlined in appendix A, that at every radius the maximum possible muon angle 
from kaon-decay-neutrinos is smaller than the maximum needed for Cull geometrically corrected 
acceptance. Consequently, events with Ev > Eeep are identified by 81 as kaon-decay-neutrino 
events. For Rbeam <30 in and Rbeam > 30 in , their muon trigger geometric weights (WMUZ) 
can be added up to give the total kaon-decay-neutrino events. The penetration trigger geometric 
weights (WPEN) are summed up for all 83 events with Rbeam <30 in . We can thus make 6 
categories of events: 
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No. Category Weight summed 
1 Eh < 10GeV, R <30 in, E < E••P• S1 WMUZ. 

2 Eh < 10GeV, E > Eup, S1 WMUZ 
3 10 < Eh < .85E••P• R <30 in , S3 WPEN 
4 10 < Eh < .85E,.p, R <30 in, E > Esep, S1 WMUZ 
5 10 < Eh < .85E••P• R >30 in , E > E••P• S1 WMUZ 
6 Eh > .85E••P• S3 WMUZ 

Table E.1. Event categories for cross section analysis. 

Clearly, 

neutrinos from pions= L Cat.1 + L Cat.3- L Cat.4 

neutrinos from kaons = L Cat.2 + L Cat A+ L Cat.5 + L Cat.6 

A few words about corrections to cross-sections: 

The correction for unsampled regions described in §6.2 is typically ,..... 1% and is 
never larger than 2.6%. The basis for our Monte Carlo is a parametrization of structure 
functions which is also used to make the isoscalar correction {,..... - 1.7% for neutrinos, + 1.1% 
for antineutrinos). The wideband events are directly eliminated by using events !rom closed 
slit runs scaled to the correct number of open slit protons. The assumptions made for the wide 
band background are that it has no position dependence and that, because of the way the beam 
is dumped, it is the same for all antineutrino settings but different for neutrino settings. Table 
E.2 lists various features or this background. 

Momentum 2:WBB NcR 2:WBB-Nclt 2:WBB-NOR E Open slit WBB 
Setting Rescaled to With Fraction 
{GeV/c) Open slit Protons WBB cuts {%) 

-250 38.8±6.9 .125±.125 38.7±6.9 462.5±82.5 3066 15.1 ±2.7 

-200 12.1±4.0 .5±.25 11.6±4.0 262.3±90.4 3664 7.2 ±2.5 

-165 10.3±3.9 0. 10.3±3.9 188.2±71.3 3607 5.2 ±2.0 

-140 20.0±5.2 .15±.15 18.8±5.2 227.3±62.9 2949 7.7 ±2.1 

-120 9.4±3.4 .16±.16 9.2±3.4 117.5±43.4 2054 5.7 ±2.1 

120 80.3±10.3 13.8±7.8 66.5±12.9 504.1±97.8 11496 4.4 ±0.9 

140 3·0.9±5.9 22.7±10.5 8.2±12.0 109.0±159.5 14479 0.8 ±1.1 

165 56.6±8.7 20.7±9.2 35.9±12.7 597.7±211.5 23123 2.6 ±0.9 

200 176.2±15.0 55.3±17.1 120.9±15.6 876.5± 113.1 27998 3.1 ±0.4 

250 189.0±15.9 50.3±14.5 138.7±21.5 1550.0±241.0 33338 4.'6 ±0.7 

Table E.£. Wide band background fraction analysis. 

Using the cosmic ray gates, we find less than ,....., 0.1 % of fast spill events are due to 
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cosmic rays. Neutrinos during slow spill have a significant cosmic ray background however ("-' 
2.8%), which is subtracted for each momentum setting and category using the properly scaled 
number of cosmic ray events from cosmic ray gates. We know that events are not being double 
counted because the DSTs contain events in strictly increasing order. 

To summarize, table E.3 contains the number or raw events, the corrected number 
or pion and kaon events, and the predicted number or pion and kaon events with a/ E -
1 x 10-38 cm2 /GeV. The final result (with statistical averaging alone) is 

and 

Uv = (.691±.0036)xl0-38 cm2 fGeV 

Uv = (.685±.0036)xl0-38 cm2 fGeV 

av = (.339±.0034)xl0-38 cm2 fGeV. 

(slow spill) 

(fast spill) 

This agrees with the detailed calculations involving more correct averaging or energy settings 
(using the estimated systematic errors) that led to the published resuit(30) or 

' 

a 11 = (.669±.003±.024)x 10-38 cm2 fGeV 

and av = (.340±.003±.020)x 10-38 cm2 fGeV 
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Momentum Neutrino Corrected# 'Predicted' # Cross section 
Setting type or events or events x10 38 cm2 /GeV) 

-250 1T 2100.13±52.90 6433.05 .326±.0082 

K 449.74±23.66 1489.56 .301±.0158 

-200 1T 2453.75±54.70 7283.42 .336±.0075 

K 520.46±25.26 1674.97 .310±.0150 

-165 1T 2227.52±51.65 6393.15 .348±.0080 

K 542.04±25.50 1661.65 .326±.0153 

-140 1T 1948.66±48.30 5465.21 .356±.0088 

K 449.52±23.47 1335.91 .336±.0175 
-120 1T 1339.34±40.23 3673.43 .364±.0109 

K 247.56± 17.58 761.49 .325±.0231 

120 1T 7268.38± 100.16 10540.67 .689±.0095 

K 2301.68±56.10 3417.80 .673±.0164 

140 1T 9474.95±122.29 13551.28 .699±.0090 

K 3654.11±69.95 5376.74 .679±.0130 

165 1T 14715.43±148.45 21984.93 .669±.0067 

K 7638.39±104.36 10851.70 .703±.0096 

200 1T 16777 .58± 158.68 24805.42 .676±.0064 

K 10773.90±124.48 15503.35 .694±.0080 

250 1T 16682.83± 156.72 24986.88 .667±.0062 

K 15989.53± 147.35 21954.82 .728±.0067 

Table E.S. Events for elementary cross-section analysis. 

' 



Ap-pendb: F 

Models for Fitting Structure Functions 

Structure function extraction requires some iteration since the correction terms depend 
o~ the structure functions themselves. We have used two models to fit the structure functions 
and these are described below. In the empirical model, we are motivated by standard forms for 
2:r:F1 and :r:Fa at fixed Q2 , namely 

2:r:F1(Q2 = 10GeV2
) = d(1 + e:r:)(1- x)f 

:r:Fa(Q2 = 10 GeV2
) = a(1 + c'd(1 - :r:)):r:6(1- xY 

(F.l) 

(F.2) 

In the above, a, b, c, d, e and f are parameters. c'd reflects the faster (1 - x) fall-off expected 
for d-quarks(3 l). At fixed x, in the restricted regions or Q2 explored by any experiment, it is 
reasonable to fit straight lines to 2xF1 and xF3 as functions of log Q2 : 

b 
2:r:F1 (fixed :r:) =a+ b log10 Q

2 /10 = a(1 + -log10 Q
2 /10) 

a 
(F.3) 

If bfa is plotted as a function of x, one finds in generalll parabola with its minimum 
pointing towards -:r:. Thus, a Q2-dependence of the type (1 + (g - h,fii) log10 Q

2 /10) is used 
to multiply (F .1) and (F .2) above, giving the forms 

2:r:F1= d(1+ex)(1-:r:)f(1+(g-h,fii}log10 Q2 /10) } (F.4) 
:r:Fa =a(1 + c'd(1 - :r:))x6(1- x)c(1 + (g- hvfx)log10 Q2 /10) 

where a, b, c, d, e, f, g and h are parameters obtained by a simultaneous fit to 2xF1 and xFa. 
We fix c'd with the requirement that there be twice as many u quarks as d quarks in a proton. 
This leads to 

2c'd= 

(f(b)f(c+1)/f(b+c+1))(1+g log10 ~)-(r(b+1/2)r(c+1)/f(b+c+3/2))h log10 ~ 
(f(b)f(c+2)/f(b+c+2))(1 +g log10 ~ )- (f(b+ l/2)f(c+2)/f(b+c+S/2})h log10 ~ 

(F.S) 
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The constants after the final iteration were, for R = 0.1, 

a = 2.083±.218 

b = 0.482±.421 

c = 2.459±.134 

d = 1.654±.203 

e = 0.283±.190 

f = 2.440±.106 

g = 0.445±.038 

h = 1.043±.075 

J66 

{F.6) 

The other model is a QCD-inspired fit like that of Buras and Gaemers(·U}, which we 
have altered slightly in order to keep the number of paramters to a minimum. It should be 
emphasized that this fit is not an attempt to extract a value for A from the data, but rather 
is just another model used as a basis for the corrections to be applied in structure function 
extraction. Both models yield a x2 of approximately 210 for 152 degrees of freedom for their 
best fits and thus neither seems intrinsically superior. For our published results we use the 
'Buras-Gaemers' model. 

In this model the valence quark distribution is approximated by 

{F.7) 

where 

and 

17i(s) = 17io + S7Jil, i = 1,2. (F.8) 

Again, we have chosen to separate the {1- x) dependence of u and d quarks. As before, this 
implies that 

(F.9) 

vVe assume that the gluon distribution has the form 

(F.10) 

where Ao is fixed by the momentum sum rule: 

(F.ll) 



F. Models for Fitting Structure Functions 

where 

The sea or antiquarks and quarks is modeled by two moments as 

xS(x, Q2 ) = Ps( 
1 

- 1)(1- x)(l/c>.)-2 

<x>s 

Ps =<S(Q2)>2 

and 
1 < S(Q2 )>2 

<x>s <S(Q2)>a 

< S( Q2 ) >,. are moments or the sea distribution, defined by 

<S(Q2 )>,.= fo 1 

dxx"- 1 S(x,Q2
). 

Because or the coupling or the Q2 evolutions or F2 and G, 

< S(Q2) >n= ~D&">(Q2 ) + !_D~"l(Q2 ) 
4 4 

where 

D~">(Q2)= <S(Q~)>n e-7 •-; 

D&"l(Q2
) ={(1- o,.) < q5(Q~) >n -fJ,. < G(Q~)>,.}e-'1+8 

+{on < ~(Q~) >n +fln < G(Q~) >n}e-7~8- < zFa(Q~) >n e-,•• 

o,., fJ,., '1", '1+ and 1::. are known constants and 

< q5(Q~) >,.=< S(Q~) >,. + < xFa(Q~)>,. 

Thus, the parameters are A, A, 1J1o, 1J11, 1J2o, 1121, < S(Q~) >2 and < S(Q~) >a. 
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(F.12) 

(F.13) 

(F.14) 

(F .15) 

(F.16) 

(F.17) 

This model was fit for all three values of R and the final values of the parameters are 
quoted in table F.l. For this fit we did not throw out points with.. large systematic errors as in 
the QCD fits described in the chapter 7; nevertheless, the value or A is consistent with our final 
result. 

Parameter R=O. R=0.1 R = .73{1- x)3 ·6 l:S /ln(Q2 /.242 ) 

{QCD) 
A (MeV) 202.1±133.6 194.7 ±126.0 247.4±114.58 

A 1.838±.113 1.679±.129 1.702±.105 

7110 0.4382±.0277 0.4003±.0341 0.4079±.0273 

7111 -0.1507 ±.0540 -0.2066±.0685 -0.2156±.0557 

7120 2.285±.0648 2.271±.0813 2.225±.0642 

7121 1.849±.4278 1.861±.4309 1.742±.3174 

<S(Q~)>2 0.1671±.0055 0.1453±.0056 0.1494± .0053 

<S(Q~)>a 0.0202±.0019 0.0167 ±.0011 0.0180±.0012 

Table F.1. Best parameters for Buras-Gaemers model; different R values. 



:r Q2 F2 
1.259 1.25582 
1.995 1.30798 

.015 3.162 1.49922 
5.012 1.36980 
7.943 1.54774 
1.259 1.13397 
1.995 1.35019 
3.162 1.34836 

.045 5.012 1.52800 
7.943 1.64677 
12.589 1.51965 
19.953 1.06799 
1.259 1.24675 
1.995 1.44714 
3.162 1.48609 
5.012 1.46027 

.080 7.943 1.54216 
12.589 1.59194 
19.953 1.58351 
31.623 1.24093 
1.995 1.19379 
3.162 1.18550 
5.012 1.28368 
7.943 1.24077 

.150 12.589 1.24165 
19.953 1.30537 
31.623 1.29031 
50.119 1.18841 
79.433 0.91729 

APl>endi:t G 

R==O.l Structure Functions 

AF2 xF3 AxFa 
.04923 .17085 .05995 
.05698 .37642 .05721 
.08192 .30911 .07770 
.11360 .43427 .10700 
.26328 - -
.05011 .44840 .14579 
.04659 .62746 .08976 
.04393 .61455 .06288 
.05793 .51304 .07227 
.07982 .69616 .09385 
.11269 .64685 .11640 
.19609 .63006 .18132 
.12790 - -
.05451 .62005 .18380 
.04624 .77359 .10383 
.04377 ' .66828 .07019 
.05127 .65696 .06910 
.06791 .78149 .08531 
.09018 .77123 .09766 
.16773 .66191 .16152 
.10906 - -
.03639 .73272 .13496 
.02832 .68936 .07349 
.02554 .87819 .04599 
.02834 .85393 .04163 
.03650 .78867 .04845 
.04696 .84621 .05511 
.07711 .79932 .07983 
.26105 .70531 .23941 
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X Q2 F2 ~F2 xFa ~xFa 
3.162 1.87372 .72552 - -
5.012 1.02767 .03878 .62169 .16070 
7.943 .98905 .02655 .79181 .07607 
12.589 .94128 .02431 .79395 .04792 

.250 19.953 .93629 .02674 .76636 .04233 
31.623 .96817 .03391 .79476 .04956 
50.119 .86187 .03467 .74495 .04222 
79.433 .77668 .05556 .64935 .05738 

125.893 .59753 .29864 - -
5.012 .88153 .18938 - -
7.943 .67718 .02735 .58121 .10778 
12.589 .65216 .02262 .55024 .05929 
19.953 .64518 .02406 .46626 .04723 

.350 31.623 .63736 .02784 .50918 .04765 
50.119 .60015 .02871 .55930 .04092 
79.433 .61857 .03848 .49863 .04520 

125.893 .71853 .08329 .26618 .08603 
7.943 .49761 .04115 - -
12.589 .42063 .01982 .44968 .06724 
19.953 .39816 .01881 .30443 .04292 
31.623 .38788 .02067 .31655 .03809 

.450 50.119 .35372 .02151 .33689 .03554 
79.433 .38524 .02722 .31495 .03635 

125.893 .29228 .02978 .30254 .03242 
199.526 .30656 .14743 .29994 .14598 
12.589 .24130 .01716 .21663 .07035 
19.953 .23222 .01559 .16722 .04326 
31.623 .20861 .01451 .20694 .02921 

.550 50.119 .20174 .01835 .16959 .03231 
79.433 .20319 .02093 .16740 .03059 

125.893 .15649 .02045 .16856 .02440 
199.526 .12753 .04488 .13031 .04641 
12.589 .14995 .01762 .16111 .07902 
19.953 .12099 .01048 .17002 .03294 
31.623 .13931 .01519 .12085 .03925 

.650 50.119 .11247 .01471 .07132 .03014 
79.433 .10015 .01641 .05793 .02771 

125.893 .09539 .01427 .09799 .01844 
199.526 .07128 .02238 .07628 .02425 

Table G.t . F2 and xF3 with statistical errors for R=0.1 



A-p'Pen.dix H 

Tables of Statistical and Systematic Errors 

% Q2 F2 Stat Shape Shape Flat xsec Level Ehad 
(GeV2) error uncorrel correl correction error di.ff 

(%) (%) (%) (%) (%) (% ) 
1.3 1.287 3.92 .67 2.22 .69 3.86 ·.18 

-
2.0 1.342 4.35 .57 1.95 .70 3.93 ·.12 

.015 3.2 1.536 5.46 .38 1.15 .89 4.00 -.09 
5.0 1.402 8.27 .24 .72 1.31 4.08 ·.05 
7.9 1.584 16.97 .37 .90 1.55 4.12 .01 
1.3 1.133 4.43 .66 2.11 .71 3.57 -.17 
2.0 1.358 3.45 .76 2.41 .69 3.66 ·.16 
3.2 1.363 3.26 .75 2.50 .64 3.73 ·.12 

.045 5.0 1.544 3.79 .52 1.70 .64 3.79 -.08 
7.9 1.661 4.84 .26 .74 .99 3.87 -.06 
12.6 1.530 7.41 .29 .83 1.25 3.93 -.01 
20.0 1.070 18.34 .43 .69 1.45 3.92 .03 
1.3 1.243 10.29 .64 2.04 .72 3.55 ·.09 
2.0 1.444 3.77 .65 2.09 .70 3.51 -.08 
3.2 1.487 3.11 .75 2.37 .68 3.58 ·.10 
5.0 1.464 3.00 .79 2.58 .62 3.67 - .07 

.080 7.9 1.544 3.32 .57 1.85 .60 3.73 -.04 
12.6 1.590 4.26 .27 .71 .87 3.79 -.03 
20.0 1.576 5.69 .28 .82 1.12 3.86 - .00 
31.6 1.227 13.50 .47 .77 '1.22 3.84 .03 
2.0 1.182 9.21 .69 2.21 .76 3.77 .01 
3.2 1.180 3.07 .69 2.19 .70 3 .55 .07 
5.0 1.280 2.20 .75 2.39 .66 3.52 .07 
7.9 1.234 2.06 .78 2.55 .60 3.59 .05 

.150 12.6 1.232 2.28 .59 1.91 .56 3.63 .05 
20.0 1.291 2.79 .32 .83 .73 3.68 .06 
31.6 1.269 3.64 .24 .71 .91 3.74 .05 
50.1 1.160 6.49 .44 .85 .85 3.62 .05 
79.4 .888 28.26 .08 ·.15 .91 3.43 .04 
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X Q2 F2 Stat Shape Shape Flat xsec Level Ehad 
(GeV2) error uncorrel correl correction error diff 

(%) (%) (%) (%) (%) (%) 
3.2 1.868 38.73 .74 2.36 .76 3.85 .30 
5.0 1.025 3.77 .71 2.26 .68 3.49 .40 
7.9 .985 2.68 .77 2.44 .63 3.45 .36 
12.6 .933 2.58 .76 2.50 .57 3.54 .28 

.250 20.0 .923 2.85 .57 1.75 .54 3.60 .25 
31.6 .952 3.50 .30 .68 .72 3.65 .25 
50.1 .839 4.02 .24 .73 .81 3.73 .19 
79.4 .747 7.08 .55 .89 .72 3.71 .12 

125.9 .568 49.14 .56 -.84 .78 3.49 .07 
5.0 .882 21.46 .77 2.46 .73 3.77 .70 
7.9 .676 4.03 .74 2.36 .64 3.41 .78 
12.6 .648 3.46 .77 2.52 .59 3.44 .68 
20.0 .637 3.73 .66 2.20 .53 3.52 .56 

.350 31.6 .627 4.37 .47 1.18 .59 3.57 .52 
50.1 .587 4.78 .18 .53 .75 3.64 .48 
79.4 .597 6.22 .37 .90 .70 3.73 .32 

125.9 .684 11.13 .52 .56 .69 3.71 .19 
7.9 .497 8.26 .75 2.39 .65 3.44 1.28 
12.6 .419 4.71 .76 2.47 .60 3.38 1.23 
20.0 .394 4.72 .70 2.37 .54 3.45 1.04 
31.6 .382 5.33 .54 1.57 .53 3.52 .92 

.450 50.1 .347 6.09 .28 .62 .69 3.57 .89 
79.4 .374 7.07 .23 .70 .72 3.66 .72 

125.9 .279 9.95 .59 .94 ' .64 3.74 .44 
199.5 .289 45.72 .58 - .83 .77 3.64 .25 
12.6 .240 7.11 .75 2.44 .61 3.36 2.00 
20.0 .230 6.72 .72 2.42 .55 3.40 1.79 
31.6 .205 6.96 .57 1.83 .51 3.47 1.57 

.550 50.1 .198 9.10 .37 .82 .63 3.52 1.49 
79.4 .198 10.30 .18 .57 .73 3.60 1.35 

125.9 .149 12.71 .46 .96 .64 3.71 .92 
199.5 .119 33.52 .33 .21 .72 3.72 .56 
12.6 .149 11.75 .75 2.44 .60 3.33 3.16 
20.0 .120 8.67 .73 2.43 .55 3.35 2.98 
31.6 .138 10.91 .59 1.99 .51 3.42 2.64 

.650 50.1 .llO 13.09 .42 1.02 .59 3.48 2.47 
79.4 .098 16.39 .18 .52 .74 3.55 2.35 

125.9 .092 14.59 .34 .87 .68 3.67 1.77 
199.5 .067 30.26 .57 .66 .67 3.73 1.14 
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:z; Q2 F2 Stat E" R SU(3) Model Extraction 
(GeV2) error d.itr error symmetry error techniques 

(%) (%) (%) (%) (%) (%) 
1.3 1.287 3.9 0.39 2.10 -1.51 1.67 0.15 
2.0 1.343 4.4 0.42 2.57 -1.74 1.90 1.65 

.015 3.2 1.537 5.5 0.41 2.78 -1.94 1.63 2.38 
5.0 1.402 8.3 0.36 3.19 -2.22 1.08 -0.78 
7.9 1.584 17.0 0.27 3.96 -2.50 0.26 -7.09 
1.3 1.134 4.4 0.33 0.24 -0.65 2.04 -1.50 
2.0 1.359 3.5 0.37 0.85 -0.98 1.89 0.55 
3.2 1.363 3.3 0.33 1.60 -1.26 1.92 -0.33 

.045 5.0 1.545 3.8 0.28 1.97 -1.44 1.84 0.22 
7.9 1.662 4.8 0.24 2.19 -1.69 1.51 0.48 
12.6 1.531 7.4 0.16 2.98 -2.01 0.82 0.16 
20.0 1.071 18.3 0.06 3.98 -2.17 0.70 -13.41 
1.3 1.244 10.3 0.20 0.31 -0.40 1.82 1.14 
2.0 1.445 3.8 0.16 0.11 -0.49 1.60 -0.42 
3.2 1.487 3.1 0.16 0.51 -0.75 1.50 -0.68 
5.0 1.464 3.0 0.11 1.16 -1.02 1.51 -1.42 

.080 7.9 1.545 3.3 0.04 1.59 -1.19 1.66 -0.22 
12.6 1.591 4.3 0.00 1.74 -1.36 1.65 1.60 
20.0 1.576 5.7 -0.06 2.49 -1.67 1.09 -0.96 
31.6 1.228 13.5 -0.15 3.37 -1 .83 0.95 4.31 
2.0 1.183 9.2 -0.08 1.12 -0.35 1.51 0.95 
3.2 1.180 3.1 -0.26 0.38 -0.37 1.14 0.40 
5.0 1.280 2.2 -0.34 0.26 -0.51 0.96 0.48 

' 7.9 1.235 2.1 -0.38 0.72 -0.70 1.09 0.87 
.150 12.6 1.232 2.3 -0.45 1.14 -0.82 1.39 1.04 

20.0 1.292 2.8 -0.50 1.34 -0.93 1.55 1.95 
31.6 1.270 3.6 -0.54 1.91 -1.12 1.24 -0.25 
50.1 1.161 6.5 -0.64 2.72 -1.17 1.00 -2.17 
79.4 0.889 28.3 -0.76 3.37 -1.10 1.03 9.05 
3.2 1.868 38.7 -0.82 0.43 -0.23 0.56 4.67 
5.0 1.026 3.8 -1.12 0.23 -0.22 0.43 0.73 
7.9 0.985 2.7 -1.19 0.17 -0.29 0.50 0.72 
12.6 0.933 2.6 -1.18 0.51 -0.41 0.75 0.18 

.250 20.0 0.923 2.9 -1.21 0.86 -0.49 1.15 1.84 
31.6 0.952 3.5 -1.27 1.04 -0.55 1.40 1.73 
50.1 0.840 4.0 -1.25 1.65 -0.68 1.08 1.61 
79.4 0.747 7.1 -1.27 2.57 -0.74 0.81 1.53 

125.9 0.568 49.1 -1.37 3.34 -0.66 0.94 -3.66 
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:z; Q2 F2 Stat Ep R SU(3) Model Extraction 
(GeV2) error diff error symmetry error techniques 

(%) (%) (%) (%) (%) (%) 
5.0 0.882 21.5 -1.83 0.45 -0.14 0.22 4.70 
7.9 0.676 4.0 -2.15 0.13 -0.13 0.12 0.23 
12.6 0.649 3.5 -2.15 0.25 -0.18 0.38 3.18 
20.0 0.638 3.7 -2.11 0.55 -0.24 0.73 0.71 

.350 31.6 0.627 4.4 -2.15 0.80 -0.27 1.18 -0.32 
50.1 0.587 4.8 -2.18 1.04 -0.31 1.17 3.60 
79.4 0.597 6.2 -2.08 1.82 -0.38 0.69 2.41 

125.9 0.684 11.1 -2.05 2.70 -0.39 0.41 1.13 
7.9 0.498 8.3 -3.33 0.15 -0.06 0.15 1.30 
12.6 0.419 4.7 -3.45 0.16 -0.08 0.05 0.57 
20.0 0.395 4.7 -3.36 0.38 -0.10 0.44 3.13 
31.6 0.382 5.3 -3.34 0.63 -0.12 0.90 0.97 

.450 50.1 0.347 6.1 -3.40 0.81 -0.13 1.20 -1.57 
79.4 0.375 7.1 -3.31 1.29 -0.16 0.77 0.71 

125.9 0.279 10.0 -3.12 2.26 -0.18 0.52 1.47 
199.5 0.290 45.7 -3.11 3.09 -0.16 0.42 5.43 
12.6 0.241 7.1 -5.26 0.12 -0.03 0.43 1.60 
20.0 0.231 6.7 -5.22 0.29 -0.04 0.10 2.72 
31.6 0.206 7.0 -5.13 0.51 -0.04 0.62 4.87 

.550 50.1 0.198 9.1 -5.19 0.68 -0.05 0.99 5.75 
79.4 0.199 10.3 -5.16 0.97 -0.06 0.80 9.21 

125.9 0.150 12.7 -4.84 1.81 -0.06 0.46 -6.62 
199.5 0.120 33.5 -4.65 2.78 -0.07' 0.42 -3.89 
12.6 0.150 11.8 -8.09 0.07 -0.01 0.75 1.66 
20.0 0.120 8.7 -8.19 0 .22 -0.01 0.27 3.28 
31.6 0.138 10.9 -8.05 0.40 -0.02 0.41 0.49 

.650 50.1 0.111 13.1 -8.09 0.56 -0.02 0.82 -1.60 
79.4 0.098 16.4 -8.15 0.76 -0.02 0.72 -4.64 

125.9 0.092 14.6 -7.72 1.39 -0.02 0.32 2.24 
199.5 0 .068 30.3 -7.29 2.37 -0.03 0.10 -0.56 

Table H.1 . F2 errors. See note at end of appendix. 
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:r Q2 :rF3 Stat Shape Shape Flat xsec Level Ehad 

(GeV2) error uncorrel correl correction error difl' 
(%) (%) (%) (%) (%) (% ) 

1.3 .1649 35.0 4.01 0.61 4.10 15.35 0.08 
2.0 .3655 15.2 3 .23 0.82 3.63 12.85 0.05 

.015 3.2 .3032 25.1 2.01 0.77 4.26 11.80 0.05 
5.0 .4306 24.6 1.04 0.90 5.72 10.82 0.08 
1.3 .4401 32.6 4.65 0.54 5.10 18.26 0 .28 
2.0 .6198 14.3 3.36 1.33 3.15 11.89 0.19 
3.2 .6081 10.2 2.80 1.77 2.32 9.07 0 .12 

.045 5.0 .5084 14.1 2.05 1.26 2.29 8.23 0.07 
7.9 .6929 13.5 0.82 0.69 3.06 7.78 0.08 
12.6 .6460 18.0 0 .86 0.88 3.71 6.99 0 .08 
20.0 .6307 28.8 1.00 0.84 4.31 6.52 0.07 
2.0 .6145 29.7 4.05 0.73 4.37 15.81 0.38 
3.2 .7693 13.4 2.98 1.45 2.74 10.54 0.29 
5.0 .6656 10.5 2.49 2.05 1.92 7.84 0.18 

.080 7.9 .6550 10.5 1.89 1.58 1.81 7.00 0.13 
12.6 .7806 10.9 0.72 0.67 2.30 6.72 0.12 
20.0 .7711 12.7 0.69 0.83 2.75 6.02 0.09 
31.6 .6621 24.4 0.92 0.88 3.09 5.57 0.07 
3.2 .7318 18.4 3.47 0.98 3.57 13.16 0.54 
5.0 .6890 10.7 2.72 1.62 2.38 9.38 0.47 
7.9 .8785 5.2 2.22 2.17 1.65 7.02 0.33 
12.6 .8548 4.9 1.63 1.79 1.43 6.10 0.25 

.150 20.0 .7903 6.1 0 .74 0.81 ,1.63 5.79 0.23 
31.6 .8471 6.5 0.49 0.73 1.88 5.27 0.18 
50.1 .7993 10.0 0 .74 0.93 1.82 4.73 0 .12 
79.4 .7040 33.9 0 .15 -0.05 1.88 4.36 0.06 
5.0 .6230 25.9 3.26 1.25 3.14 11.80 0 .89 
7.9 .7938 9.6 2.57 1.86 2.10 8.47 0 .79 
12.6 .7965 6.0 2.03 2.34 1.45 6.38 0.59 

.250 20.0 .7697 5.5 1.39 1.80 1.23 5.55 0.47 
31.6 .7988 6.2 0.57 0.71 1.40 5.26 0.45 
50.1 .7473 5.7 0.43 0.71 1.42 4.74 0.34 
79.4 .6504 8.7 0.75 0.96 1.33 4.31 0 .19 
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% Q2 :rF3 Stat Shape Shape Flat xsec Level Ehad 
(GeV2) error uncorrel carrel correction error ditr 

(%) (%) (%) (%) (%) (%) 
7.9 .5836 18.6 2.93 1.62 2.55 9.92 1.29 
12.6 .5528 10.8 2.29 2.22 1.69 7.18 1.10 
20.0 .4687 10.1 1.69 2.24 1.27 5.75 0.87 

.350 31.6 .5124 9.3 0.98 1.30 1.16 5.23 0.76 
50.1 .5628 7.3 0.32 0.51 1.35 4.87 0.71 
79.4 .5003 9.1 0.54 0.93 1.14 4.37 0.47 

125.9 .2657 31.1 0 .62 0.63 1.09 4.03 0.25 
12.6 .4522 15.0 2.58 2.04 2.00 8.14 1.75 
20.0 .3063 14.1 1.94 2.35 1.41 6.21 1.45 
31.6 .3188 12.0 1.25 1.72 1.16 5.38 1.23 

.450 50.1 .3395 10.5 0.52 . 0.68 1.29 5.04 1.17 
79.4 .3168 11.5 0.37 0.68 1.18 4.50 0.95 

125.9 .3026 10.5 0.71 1.01 0.99 4.11 0.56 
199.5 .3015 46.2 0.63 -0.78 0.98 3.81 0.31 
12.6 .2177 32.6 2.87 1.92 2.29 9.11 2.60 
20.0 .1683 25.9 2.19 2.32 1.60 6.81 2.29 
31.6 .2086 14.1 1.48 1.95 1.25 5.66 1.96 

.550 50.1 .1711 19.1 0.73 0.95 1.25 5.22 1.82 
79.4 .1688 18.3 0.31 0.54 1.29 4.71 1.66 

125.9 .1695 14.0 0 .60 1.01 1.01 4.22 1.10 
199.5 .1298 33.9 0.38 0.27 0.96 3.92 0.66 
12.6 .1628 49.1 3.05 1.88 2.45 9.58 3.83 
20.0 .1714 19.4 2.43 2.25 .. 1.80 7.47 3.56 
31.6 .1217 32.4 1.70 2.08 1.37 6.03 3.11 

.650 50.1 .0720 42.1 0.92 1.18 1.28 5.44 2.86 
79.4 .0584 47.8 0.34 0.51 1.40 4.97 2.72 

125.9 .0989 18.4 0.51 0.91 1.11 4.37 2.02 
199.5 .0764 30.6 0.67 0.74 0.96 4.02 1.28 
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X Q2 xFa Stllt Ep R SU(3) Model Extraction 
(GeVZ) error diff error symmetry error techniques 

(%) (% ) (%) (%) (%) (%) 
1.3 .1649 35.0 0.67 2.20 0.48 3.26 -35.16 
2.0 .3655 15.2 0.67 1.05 0.47 1.60 6.75 

.015 3.2 .3032 25.1 0.63 1.77 0.35 2.34 -12.16 
5.0 .4306 24.6 0.59 0.64 0.18 1.06 -2.19 
1.3 .4401 32.6 0.42 0.10 0.41 1.11 18.87 
2.0 .6198 14.3 0.46 0.37 0.41 1.06 -0.43 
3.2 .6081 10.2 0.47 0.61 0.41 1.13 2.32 

.045 5.0 .5084 14.1 0.44 1.26 0.40 1.99 -8.77 
7.9 .6929 13.5 0.41 0.69 0.21 1.40 3.96 
12.6 .6460 18.0 0.38 0.36 0.06 0.41 -3.12 
20.0 .6307 28.8 0.34 0.13 0.01 0.10 8.55 
2.0 .6145 29.7 0.11 0.06 0.27 1.59 12.34 
3.2 .7693 13.4 0.15 0.20 0.28 1.02 8.14 . 
5.0 .6656 10.5 0.20 0.48 0.29 1.07 0.13 

.080 7.9 .6550 10.5 0.19 0.78 0.29 1.53 -0.31 
12.6 .7806 10.9 0.16 0.63 0.20 1.51 1.36 
20.0 .7711 12.7 0.16 0.34 0.05 0.50 -7.05 
31.6 · .6621 24.4 0.14 0.16 0.00 0.08 -15.51 
3.2 .7318 18.4 -0.35 0.05 0.17 1.64 0.72 
5.0 .6890 10.7 -0.36 0.13 0.16 1.34 -1.16 
7.9 .8785 5.2 -0.29 0.23 0.17 0.91 1.89 
12.6 .8548 4.9 -0.29 0.38 0.16 1.19 0.97 

.150 20.0 .7903 6.1 -0.32 0.48 0.11, 1.49 -2.09 
31.6 .8471 6.5 -0.30 0.24 0.02 0.72 -3.79 
50.1 .7993 10.0 -0.33 0.09 -0.01 0.15 2.18 
79.4 .7040 33.9 -0.40 0 .07 -0.01 0.00 -24.75 
5.0 .6230 25.9 -1.24 0.08 0.09 2.33 -1.65 
7.9 .7938 9.6 -1.24 0.04 0.09 1.22 1.61 
12.6 .7965 6.0 -1.11 0.15 0.09 0.99 -2.49 

.250 20.0 .7697 5.5 -1.07 0.27 0.10 1.25 -0.35 
31.6 .7988 6.2 -1.11 0.29 0.07 1.49 2.40 
50.1 .7473 5.7 -1.03 0.17 0.03 0.69 3.35 
79.4 .6504 8.7 -0.97 0.06 -0.01 0.17 3.89 
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z Q2 zFa Stat Ep R SU(3) Model Extraction 
(Ge¥-2) error ditr error symmetry error techniques 

(%) (%) (%) (%) (%) (%) 
7.9 .5836 18.6 -2.34 0.08 0.04 1.86 -0.42 
12.6 .5528 10.8 -2.24 0.05 0.05 1.30 -1.30 
20.0 .4687 10.1 -2.09 0.19 0.05 1.29 0.13 

.350 31.6 .5124 9.3 -2.07 0.27 0.05 1.55 1.48 
50.1 .5628 7.3 -2.09 0.23 0.03 1.35 -6.07 
79.4 .5003 9.1 -1.90 0.14 0.01 0.48 -0.01 

125.9 .2657 31.1 -1.81 0.09 0.00 0.26 -2.97 
12.6 .4522 15.0 -3.72 0.06 0.02 1.36 9.00 
20.0 .3063 14.1 -3.52 0.08 0.03 1.47 -2.60 
31.6 .3188 12.0 -3.41 0.20 0.03 1.49 2.04 

.450 50.1 .3395 10.5 -3.45 0.19 0.02 1.58 5.10 
79.4 .3168 11.5 -3.30 0.19 0.01 0.86 -0.05 

125.9 .3026 10.5 -3.02 0.06 0.00 0.25 -3.50 
199.5 .3015 46.2 -2.96 0.02 0.00 0.16 5.76 
12.6 .2177 32.6 -5.72 0.21 0.01 2.39 -1.31 
20.0 .1683 25.9 -5.56 0.07 O.Dl 1.72 6.19 
31.6 .2086 14.1 -5.37 0.09 0.01 1.33 7.84 

.550 50.1 .1711 19.1 -5.38 0.24 O.Dl 1.85 -9.71 
79.4 .1688 18.3 -5.33 0.22 0.01 1.24 -0.92 

125.9 .1695 14.0 -4.89 0.08 0.00 0.34 3.02 
199.5 .1298 33.9 -4.63 0.03 0.00 0.19 -3.67 
12.6 .1628 49.1 -8.73 0.17 0.00 1.77 31.12 
20.0 .1714 19.4 -8.72 0.09 0.00, 1.22 10.41 
31.6 .1217 32.4 -8.46 0.07 0.00 1.33 15.51 

.650 50.1 .0720 42.1 -8.42 0.17 0.00 1.77 17.35 
79.4 .0584 47.8 -8.47 0.31 0.00 1.76 -26.72 

125.9 .0989 18.4 -7.91 0.12 0.00 0.46 6.09 
199.5 .0764 30.6 -7.36 0.05 0.00 0.12 0.26 

Table H.2. xF3 errors. 

The errors on some quantities were obtained as rms values after generating 26 data sets 
(see text in §6.6). The rest were obtained by subtracting the base data set from one obtained 
after shirting the relevant quantity by + 1cr: hence the signs. The errors in all bins are only the 
diagonal terms, i.e., no bin-to-bin correlations are quoted. 
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