
BIFURCATION THEORY OF 

NONLINEAR BOUNDARY VALUE PROBLEMS 

Thesis by 

William Finlay Langford 

In Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasade!la, California 

1971 

(Submitted July 9, 1970) 



-ii-

ACKNOWLEDGEMENTS 

The author wishes to thank Professor Herbert B. Keller for 

suggesting the problems considered in this thesis, and for giving 

fre e ly of his time to many invaluable discussions throughout the 

course of the work. 

He also wishes to thank Mrs. Linda Palmrose, Mrs. 

Virginia Conner and Mrs. Elizabeth Fox for their painstaking work 

in typing the thesis, and Mrs. Betty Wood for drawing the figure. 

H e is grateful to the National Resea rch Council of Canada for 

fellowship assistance, and to the California Institute of Technology 

for tuition scholarships. 



-iii-

ABSTRACT 

The theory of bifurcation of solutions to two -point boundary 

value problems is developed for a system of nonlinear first order 

ordinary differential equations in which the bifurcation parameter is 

allowed to appear nonlinearly. An iteration method is used to 

establish necessary and sufficient conditions for bifurcation and to 

construct a unique bifurcated branch in a neighborhood of a bifurcation 

point which is a simple eigenvalue of the linearized problem. The 

problem of bifurcation at a degenerate eigenvalue of the linearized 

problem is reduced to that of solving a system of algebraic equations. 

Cases with no bifurcation and with multiple bifurcation at a 

degenerate eigenvalue are considered. 

The iteration method employed is shown to generate 

approximate solutions which contain those obtained by formal 

perturbation theory. Thus the formal perturbation solutions are 

rigorously justified. A theory of continuation of a solution branch 

out of the neighborhood of its bifurcation point is presented. Several 

generalizations and extensions of the theory to other types of 

problems, such as systems of partial differential equations, a r e 

described. 

The theory is applied to the problem of the axisymmetric 

buckling of thin spherical shells. Results are obtained which 

confirm recent numerical computations. 
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CHAPTER I 

INTRODUCTION 

Bifurcation is a change in the number of solutions u of an 

equation 

g(A.,u)=O (1) 

produced by a small change in the real parameter A.. Those values 

of A. at which bifurcation takes place are called the bifurcation 

points of the equation. Bifurcation theory deals with the existence 

and numerical values of the bifurcation points, and with the behavior 

of solutions in neighborhoods of the bifurcation points. 

Bifurcation theory is of great practical importance in the 

analysis of nonlinear mathematical models of physical systems. 

Bifurcation in the model can correspond to such physical phenomena 

as buckling of engineering structures [ 41 ] >'.<, ignition a nd extinction 

in reactors [ 13] , change of phase of a solid, liquid or gas [50], 

and change of dynamical mode in mechanical systems [ 4] [ 27] 

[29 J. 

Equation ( 1) can represent any type of mathematical e quation; 

in this thesis we are primarily concerned with systems of nonlinea r 

first order ordinary differential e quations with two-point boundary 

conditions , as defined in Chapter I I I. Bifurcation in nonlinear 

integral equations has been studied by M.A. Krasnos el'skii [ 30], 

>~ 
Numbers in squa re brackets r efer to the list of references at the end 

of the thesis . 
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T. W. Lae t sch [ 32] a nd G. H. Pimbley, Jr. f 37], a ud in 

nonlinear partia l diffe rential equations by H. B. Keller [ 21] 

M. S. Berger [ 5] and other s . 

The systems of first order ordinary differential equations 

considered h e re contain a wide range of interesting problems. 

For example, systems of nth order ordinary differential equations 

can easily be transformed to systems of first order equations and 

hence are included in our theory. Even nonlinearities involving the 

derivatives up to orde r n-1 are permitted. Systems of partial 

differential equations can also be treated by the methods presented 

here, as we indicate in § V. 3. 

Our results are obtained by means of an iteration technique 

which is based on the work of H. B. Keller [ 21], here extended 

to include systems of equations and degenerate eigenvalues. This 

iteration method has the advantage over formal perturbation methods 

of giving mathematically rigorous results with little extra effort. 

We show in § V. 5 that our solutions contain those obtained by the 

p e rturbation method. Compar e d to othe r mathe matically rigorous 

studies of bifurcation, which generally are either more abstract 

than our work [30] [ 37] , or are limited to a single problem [ 4] 

[ 29], we are a ble to obtain more useful information about the 

bifurcation of solutions to a wider range of nonlinear boundary-value 

problems of practical interest. 

We assume tha t u = 0 is a "trivial" solution of the boundary-

value proble1n, and that the problem can be linearized a bout this 

solution. (Of course we could as well consider a nontrivial solution, 
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::~ay w, and thl'n rewrite the· problum in tcl."mB of v = ll - w so 

that V "'" O is again a trivial solution). We then investigate the 

possibility of nontrivial solutions branching away from u= 0 at 

a bifurcation point A , using the linearized problem as the starting 
0 

point of our analysis. The problem of finding nontrivial solutions 

to the nonlinear problem in a neighborhood of a bifurcation point is 

reduced to that of solving a sequence of linear inhomogeneous 

problems and associated bifurcation equations. 

We show that A can be a bifurcation point of the nonlinear 
0 

problem only if it is an eigenvalue of the linearized problem, and that 

if A is a simple eigenvalue then it is always a bifurcation point. 
0 

If A is a degenerate eigenvalue of the linearized problem, then 
0 

we can construct a distinct bifurcation branch for each simple root 

of an associated system of algebraic equations (usually quadratic) 

which we call the algebraic bifurcation equations. We show by an 

example that there may be no nontrivial solution at all bifurcating 

from a degenerate eigenvalue A • 
0 

The contents of each chapter are adequately described in 

the Table of Contents and in the introduction at the beginning of each 

chapter. We only point out here that Chapter I I is a review of 

well known linear theory and may be skipped at the reader's 

discretion, Chapters III, IV and V present the bifurcation theory, 

and Chapter VI applies the theory to a problem of current interest. 

The conventions followed in the use of symbols, and some important 

definitions, are listed in Appendix A. Proofs of the convergence of 
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the sequences which arise in the iteration technique are greatly 

simplified by the use of the contracting mapping theorem, which 

is stated for ease of referenc e in Appendix B. Appendices C 

and D contain some results r e quired for the application of the 

bifurcation theory to the problem of Chapter VI. 

Numbering of equations and of theorems begins with 1 in 

each chapter. When a reference is made to an equation or theorem 

in a different chapter, the other chapter is named explicitly. 

Si.milarly symb ols are uniquely defined within each chapter, but 

may have different meanings in different chapters. 
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CHAPTER II 

LINEAR TWO-POINT BOUNDARY-VALUE PROBLEMS 

I I. 1. Introduction 

This chapter contains a summary of well-known results from 

the theory of systems of first order ordinary differential equations 

with two-point boundary conditions, which are required for the 

developments of chapters I I I and IV. These results are stated as 

theorems in o rder to facilitate easy reference in the later chapters. 

Proofs o.f theorems are either outlined briefly or omitted enti rely 

when they can be found in standard reference books on ordinary 

differential equations such as [ 12] and [ 17 }. 

Self-adjointness is assumed nowhere in this chapter since it is 

not required for our bifurcation theory. This broadens the useful

ness of the theory, since in the applications self-adjointness is less 

commonly a property of systems of differential equations than it is 

of scalar differ entia l equations. 

We consider linear problems of the form 

y'(~)= [A(~)+A.J(~,A.)] y(~) 

My (a) + Ny ( [3 ) = 0, 

where y(~) is a nn-component column vector, A(~) and J(i;, A.) are 

(I) 

(2) 

n x n matrices continuous in s e: [a, f3 ] , A. is a parameter in some 

open interval .11 (possibly unbounded) of the real line, a and f3 are 

finite real constants with a < f3 , and M and N are n x n constant 

matrices such that rank [ M, N ] = n . All scalars ar e assumed real. 



I I. 2. The Adjoint_l?robh·~ 

The adjoint probl.('lll curl"l'Sponding to (1) ;1nd (L) 1 s d,·fi.lll 'd l.<l 

be 

z'{s) = -[A(£)+ t..J (£,t..)]>:< z{s) 

P z( a) + Qz { 13 ) = 0. 

Here P and Q are any two constant nx n matrices satisfying 

rank [ P, Q] = n 

This definition is justified by the following lemma : 

Lemma 1 

(3) 

( 4) 

( 5) 

Matrices P and Q exist which satisfy (5), and the set of all 

pairs of vectors z{a) and z( 13) satisfying {4) is independent of 

the choice of such P and Q satisfying (5). 

Furthermore z{ s) satisfies { 4) if and only if 

z ':' ( l3 )y( l3 )- z':'(a)y(a) = 0 

for all y{s) satisfying { 2 ); and conversely, y{s) satisfies (2) if 

and only if {6) holds for all z{s) satisfying (4). 

(6) 

For proof of this l emma, see [ 8] page 564, [ 17 ] page 407, 

and [ 12] chapter ll. 

Define the op e rator L and its adjoint operator L':' by 

Ly = y' -[A{s) + t..J(£,t..)] y 

L>:<z ~- z' + [A{s) +f.. J(£, f..)]':' z . 

The followin g theor em now follows by i nt eg ration by parts and {6). 

( 7) 

( 8 ) 
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Theorem 1 

For all y(~) satisfying (2) and all z(~) satisfying (4), 

(z, Ly) = (L>~z, y) • ( 9) 

See Appendix I for the definition of this inner product. 

Let Y(~) be the fundamental matrix solution of equation (1) 

with 

Y(a)=I, ( 1 0) 

and define the boundary matrix 

B = MY(a) +NY (13). ( 11) 

Similarly let Z(~) be the fundamental matrix solution of (3) with 

z (a) = r~ ( 12) 

and define 

C = PZ(a) + QZ(S). ( 13) 

The existence and uniqueness of Y(~) and Z(~) on [a, B] are 

guaranteed by the elementary theory of ordinary differential 

systems [ 12]. We can now state the following well known results. 

For proofs see [ 8] and [ 17] page 62. 

Theorem 2 

Z(s)>!< = Y(~) -l ( 14) 

Theorem 3 

If det B;i 0, problern (1) (2) has only the trivial solution 
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y(i;) 0, and similarly for· C <trHI pr<>bl.,'nl (~) (4). 

Thcorcrn 4 

If B has r<1nk n-p, then problem ( 1) (2.) has cx;u:tly p 

linearly independent solutions, and sirnilarly for C and problem 

(3) (4). 

Theorem 5 

Rank(B) = Rank (C), and hence the problems (l) (2) and 

(3) ( 4) have the same number of inde pendent solutions. 

I I. 3. The Basic Alternative Theorem 

The inhomogeneous problem corresponding to (l) (2) is 

u'(€) = [A (€} + A.J(€, A.)] u(€} + f (s) a.< s < i3 ( 1 5) 

M u{ a. } + N u ( i3 } = 0, { 16) 

where f(s) E: Cn [a., B] . Note that a n inhomogeneity in the boundary 

condition {16) could b e removed by a transformation which would 

simply alter £(£);hence (1 5 ) (16} represents the general case. 

All questions as to the solvability of this inhomogeneous 

problem are answered by the following standard theorem, known as 

the basic alte rnative theorem. [ 8 ] [ 1 4 ] • 

Theorem 6 

E xactly one of the following two cases must hold with r egard 

to problem (1 5 ) (1 6 }. 



-9-

Case I : The inhomogeneous problem {15) (16) has a 

unique solution for all f{s) r-: Cnla, 13 ]. This is true if and only 

if the probJem (1) (2) has only the trivial S<)lution y(s) 0. 

Caoe II: If (1) (2) h<.~s p > 0 linearly indcpelldl~llt non-

trivial solutions, then {15) (16) has solutions if and only if 

{ 
( i) 

z ' f) = 0 i=l, .•. ,p ( 1 7) 

where z{i)(s), i = 1, ... , p are the linearly independent solutions 

to the adjoint problem (3) {4). The most general solution, if {17) is 

satisfied, is 

{ 18) 

where v(£) is a particular solution and y{i) (s) i = l, ••• , p are 

the linearly independent solutions of (l) (2). 

I I. 4. Dependence on the Parameter A. 

In general, all the solutions considered so far are functions 

of A. as well as of £. The matrices B and C and their rank 

also depend on A.. Our bifurcation theory will use Case I I of the 

basic a lt ernative theorem, in which problem (l) (2) has nontrivial 

solutions. Hence we are 1 ed by Theorem 3 to consider the equation 

det B {A. ) = 0. ( 19) 

The roots A. = A.. of this equation are precisely the values of A. for 
1 

which (l) (2) has nontrivial solutions. We call these A.. the eigen -
1 

values of problem (l) (2) and call the corresponding nontrivial solutions 

the e igensolutions . 
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Theoretn 7 

If the components of the matrix J( ~, :\) can be expanded in 

convergent power series in >-. € ,P for each fixed €. € [a., 13 ] , and if 

there exists a point 1-l. € ,P such that the problem ( 1) (2) has only 

the trivial solution for >-. = j.J., (i.e. , if det B(j.J.) :f. 0), then the 

e igenvalues in ,P of problem ( 1) (2) are isolated points, and are 

finite in number if ,P is bounded, or at most denumerably infinite 

in number if ,P is unbounded. 

Proof : 

The power series representation of J . . (€., A.) gives its analytic 
lJ 

continuation into some neighborhood 'Tl. of the real interval ,P in the 

complex >-.-plane. Clearly the right-hand side of (1) is then an 

analytic function of A. andy. Hence by standard theory ( [ 12] 

page 36), any solution y(€,, :\) of (1) satisfying an arbitrary initial 

condition is a n analytic function of >-. for A. € 'Tl. and for each 

€. € [a., f3l, and so the fundamental matrix Y(€,, >-.)has this same 

analyticity property. It follows that det B(A.) is an analytic function 

of >-. for A. € 'Tl., and the conclusion follows from the well-known 

properties of the zeros of an analytic function. 

Note that Theorem 7 does not guarantee the existence of 

eigenvalues in ,P, nor do e s it guarantee that the eigenvalues are 

real. Neither of these is true in general. It does guarantee that 

any eigenvalues which do exist are isolated, and this is crucial to the 

development in Chapter I I I. Since we will be concerned with only 

one eigenvalue at a time, the "global" dependence on >-. is of no 
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importance t o the bifurcation theory, and we c an take the interval ..fl 

to b e just a neighborhood of an eigenvalue A. , say. On this Hnmll 
0 

nt~ighborhoud it may b e eas"i ~!r to check thv analyticity o( J(~. >..) 

as a function or A.. Of course, i.n many cases of interest, J(;, >..) 

will be analytic in >.. for all A., and if J is independent of A. the 

theorem is tri vially satisfied. 

Note also that if M and N are analytic functions of A., the 

theorem still holds. In fact much less than analyticity of J, M, and 

N in A is required for the result to hold, but w e will not pursue this. 

From now on, A will repres e nt an isolated eigenvalue of (1) 
0 

(2) with A. E: .,;. Let p b e the numb e r of linearly independent 
0 

solutions to ( 1) (2) with A.= A. • By hypothesis p > o, and clearly 
0 

p "::: n since equation (1) has exactly n linearly independent solutions. 

We call p the multiplicity of the eigenvalue A • 
0 

From Theorems 5 and 7 it follows that the adjoint problem (3) 

(4) has the same real e igenvalues with the same multiplicities as the 

problem (1} (2), and henc e that the e igenvalues of the adjoint problem 

are also isolated points in .,; if the hypotheses o f Theorem 7 are 

satisfied. 

If problem (1) (2) is self-adjoint as defined in [ 2] or [ 8 J, 

then the eigenvalues are n ecessarily real. 

I I. 5. The Gr e en's Matrix 

The inverse of the operator L is given most conveniently 

in terms of the Green's matrix denoted G(g,T}. For Case I of 
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the basic alternative theorem, in which problem (1) (2) has only the 

trivial solution, the existence and uniqueness of a Gree n's matrix 

is well known. (See [ 8] page 577, [ 17] page 408 and [ 14] 

page 393). It is usually defined by the following four properties: 

G(~,T) is an nxn matrix of functions of . ~ and T 

d efined and continuously differentiable on the rectangle (20) 

a-::; ~ -::; B , a":: T ""S B. except on the line ~ = T, 

each column of G(~. T) as a function of ~is a solution 
(21) 

of (1) (2) except at ~=T, 

(22) 

MG(a,T) + NG( i3 ,T) = 0. (23) 

The following theorem is proven in [ 8]. 

Theorem 8 

If Det B (A.)f 0, a Green's matrix G(~, T) exists satisfying 

(20) through (23) and it is unique . The solution to the inhomogeneous 

problem (15) (16) is given by 

u(~) = ! G(~, T) f(T) dT. 
a 

(24) 

This Green's matrix for problem (1) (2) may be written explicitly as 

G(~,T)= 

or equivalently as 

-Y(~) B-1 NY( i3 ) Z >:C (T) 

Y(~) B-
1

MY(a) Z*(T) 

for o:: ~ < T ~ B 

fora~T < €,<13 
(25) 
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(l6) 

·l-: if i; > T 
where sgn (i;-T) ( 2 7) 

if i; < T 

and D = MY(a) -NY([3). (28) 

Theorem 9 

The unique Green's matrix H(s, T) for the adjoint problem 

(3) (4) is given by 

H . . <s. T) = -G .. <,.., s> 
lJ Jl 

i, j = 1, • .•• , n. (29) 

Clearly formulae (25) and (26) are no longer valid in Case I I 

of the basic alternative theorem, since then B -l does not exist. 

Fortunately it is possible to define a generalized Green's matrix 

which plays the same role as the Green's matrix for Case I I of the 

alternative. The following development of a generalized Green's 

matrix is based on the original paper by W. T. Reid [ 40]. See 

also [39], [9], and [33 ]. 

II. 6 . The Generalized Green's Matrix 

Assume that A.= A.
0 

is an eigenvalue of problem (1) (2) with 

multiplicity p. That is we now assume that the proble m 

y'(s) = [A(s) + "-
0 

J <£. >..o) J y <s> ( 3 0) 

My( a)+ N y ( [3) = 0 ( 31) 
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has exactly p linearly independent solutions y (i) (£) i == 1, ••• , p, 

where l'S p 'S n. From any such linearly independent set we can 

construct an orthonormal set by the Gram-Schmidt process, say. 

Therefore, we assume that the set [y(i)(s) Jf=l is orthonormal. 

Now define the nxp matrix R(s) with columns R(i)(£) i= 1, •.• , p, 

by 

Similarly the adjoint problem with A. = A. , 
0 

z'(£) = - [A(£) + A. J (£,A. } J* z (£) 
0 0 

p z (a.) + Q z ( s) = 0 , 

(32} 

(33} 

(34) . 

has exactly p linearly independent solutions z(i)(£) i = 1, ••• , p, 

which, without loss of generality, we can assume to be orthonormal. 

Define the n x p matrix S ( £) by 

i = 1, •••• p. (35) 

The general solution of (30) (31) can now be written 

y(£) = R(s) a, where (36) 

and the orthogonality condition of the basic alternative theorem can 

be written 
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13 Ja S* (£) f(£) d£ = o. (37) 

We seek an nx n matrix G(£, T) which has properties (20), 

(21) with X.= X. , and (22), and is such that every solution of the 
0 

inhomogeneous system 

u'(£) = [A(s) +A. J(£, X. ) ] u(s) + £(£) 
0 0 

M u( a) + N u ( (3) = 0 

may be written as 
I 

I 
i 

13 
u(s) =Sa G(s,T)f(T)dT + R(s) a. 

(38) 

(39) 

( 40) 

We define any such G(£, T) to be a generalized Green's matrix for 

the problem (30) (31). 

-Let Y (£) be an nxn fundamental matrix solution to (30) such 

-
that the first p columns of Y(s) are just those of R(£). Then 

is a fundamental matrix solution of the adjoint equation (33) but does 

not necessarily have the same first p columns as S(£). Note also 

-
that Y( a) and Z( a) no longer equal the identity matrix in general. 

The matrix 

-B = MY(a)+NY( I3 ) (42) 

has its first p columns identically zero, and has rank n-p. We may 

choose n-p rows of B, say the rows numbered t 1 , t 2 , ••• , t , such 
n-p 
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that the (n-p) x (n-p) matrix F has rank n-p, where 

(43) 

Matrix F has a unique (n-p) x(n-p) inverse, F- 1 • Now define the 

nx n matrix E= (E . . ) by 
lJ 

E . . = 0 if i < p or j =/ {, , m = 1, ••• , n-p. 
lJ - m 

-1 
E. =(F) .. for i,j=l, ••• , n-p. 

Ptl, {, . lJ . J 

Theorem 10 

(44) 

A generalized Green's matrix for (30) (31) exists and may be 

written as 

- - -1 
G(~,T)= f3 Y(~)[Isgn(~-T) tED) Y (T), ( 45) 

where Y(~) and E are defined above and D = MY(a.) -NY( 13). 

P:roof: See [ 40] . 

Theorem 11 

The generalized Green's matrix for (30) (31) is not unique. 

If Gl(~,T) is one generalized Green's matrix, then every 

generalized Green's matrix is of the form 

(46) 
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where U(T) and V(s) are n x: p matrices continuously differentiable 

on [ a. , ~ ]. Furthermore, ('Very G(g,T) of th e form (46) i 1:1 a 

generalized Gre en's matrix fo r (30) (31). 

Proof: 

It is obvious that every G(£, T) of the form (46) is a generalized 

Green's m a trix . For the pro of of the converse, see Reid [ 40]. 

I I. 7·. The Pri ncipal Generalized Green's Matrix 

The generaliz ed Green's matrix of Theorem 10 lacks three 

de s irable features. First it is not unique; second it do e s not 

necessarily satisfy the boundary c onditions (23) (although 

!3 
u(s) = Sa. G(LT) f(s) dT 

does if f(T) s atisfi e s (37)), a nd third n e ither G(£, T) nor u(£) 

defined by (47) are necessarily orthogonal to the solutions 

y(i) (s). i=l, ••• , p of (30) (31). The third feature is especially 

important for our bifurcati on theory. Fortunately it is easy to 

construct a g e n e ralized Green's matrix w ith these prope rties, 

through the us e of the projection operators W and X defined by 

a nd 

i3 
w u = R(s) sa. R * (T) u(T) dT 

i3 
Xu = S(s ) f S* (T)u(T)dT. 

· a. 

( 47) 

( 48) 

( 49) 

Here W projec ts the space C~ [a., 13] onto the solution space o f 

problem {30) (3 i), and X pro j ects onto the solution spa ce of th e 

adjoint probl e m {3 3 ) (34). F o llowing Reid, we c a ll a generaliz e d 
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Green's matrix with the above three properties the principal 

generalized Green's matrix, although the construction we use is 

due to Loud [ 33 ] [ 34]. For an alternate approach see [39] [ 40] 

and [ 9]. 

If G(~, T) is any of the generalized Green's matrices of 

Theorems 10 and 11, define the matrix G t ( ~, T) by 

Theorem 12 

The matrix G t (~. T) defined by (50) is a generalized 

(50) 

Green's matrix for problem (30) (31) and has the following properties: 

G t (~. T) is continuously differentiable in [a, S ] x [a, S] 
(51) 

except on ~ = T, 

t MG {a,T) + (54) 

{55) 

Every solution to problem {38) (39) may be written 

in the form 

u(~) = R(~) a+ s~ Gt (S,T) f(T) dT, 
(56) 
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Th e 1natrix G t(s, T) i. s independent of thl~ c lwi.ce 
(57) 

of the matrix G(i;,,T) in th e d e finition (50). 

The m a trix 
t 

G (s, T) d e fined by (50) i s the only matrix which 

satisfied prope rties (51) throug h (56). 

t W e call G (s, T) the principal generalized Green's m a trix of 

problem (30) (31) . 

Theorem 13 

The principa l generalized Green's matrix of the adjoint 

problem (33) (34) is 

t 
H(s,T)= 

Proof: S e e [ 40 J. 

(5 8) 

It is c o nven i ent to sum mari ze our r e sults in the following: 

The orem 14 

If f(~) lS a n y function in en [ a., S ] satisfying ( 3 7), the n 

ther e i s a uniq u e solution u( s ) to problem ( 38) (39 ) whi c h sati s fi es 

( 59 ) 

a nd this u( s ) i s g i ven by 

u( s ) = rs Gt ( s ,T) f (T) d T. 
· a. 

(60) 

Furthermo r e , the r e i s a const a nt ii> > 0 such tha t 

( 6 1) 
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[ur all such f(~) and u(~). 

Proof: Take iJ> II G til, which, for cxarnple in l11< ~ 111axi lltll.nl 110 rill, 

1::> given by 

max 
a:s~S 

max 
l < i < n 

S n 
Ja L 

j= 1 
(62) 

Then II G t II is guaranteed to exist by the continuity properties (51) 

and (53). 
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CHAPTER III 

SIMPLE BIFURCATION 

In this chapter we consider two-point boundary-value problems 

u I ( s ) = A( s) u ( s) + A f ( s, A, u) 

Mu(a)+Nu(l3) = 0 

( 1) 

(2) 

Here A. is a paramete r in some open real interval c9, u( s) E C~ [a, 13], 

A(s) is an nxn matrix continuous on [a, 13], and M and N are nXn constant 

matrices such that rank [M, N] = n. The n-vector function f(S, A., u) is 

assumed to be 2-times Fr~chet differentiable in u and A. with its second 

Fr~chet d erivatives Lipschitz c ontinuous in u and A. on the set S 

defined by (15), and with f and its d erivative s continuous ins . (Frechet 

d e riva tives are used mainly for notationa l convenience and are defined in 

Appendix A). We further assume that 

f ( S, A., 0) = 0 (3) 

for all S E [ a, 13] and A E c9. Clearl y then proble m ( 1) (2) has the 

triv i a l solution u( s ) = 0 for all A. E c9. Linearizing problem (1) (2) 

about this trivial solution gives the linearized problem or variational 

problem 

y'<s>- [A<s> +" J( s, "- >J y ( s > = o (4) 

My(a)+Ny(l3) = 0 (5 ) 

w h ere J(s .• A.) is the nXn m a trix d efined by 
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a fi(~. A., u)l 
au. 

J u=O 

i, j = 1, ... , n • (6) 

The linearized proble m (4) (5) is exactly the problem studied in Chapter 

II. Therefore, from Theorem 3 and §II. 4, A. is an eigenvalue of ( 4) (5) 

if and only if A. is a root of the equation 

det B(A.) = 0 (7) 

We assume A.= A. 0 is a real, isolated, nonzero eigenvalue of (4) (5), 

and throughout this chapter we make the additional assumption that A.0 

is a simple eigenvalue. Under this assumption we are able to show 

that A.0 is a bifurcation point of problem (1) (2). and we construct a 

nontrivial solution branch in a neig hborhood of A.0 • 

L e t y 0 (S) be a normalized solution of (4) (5) with A.= A.0 ; then 

y
0
(s) satisfies 

M Yo (a) + N Yo (!3) = 0 

[ Yo~<s> Yo (s)ds = 1 

(8) 

(9) 

( 1 0) 

and y 0 (s) is unique within a sign. The corresponding adjoint problem 

is 

( 11) 

( 12) 

( 13) 
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as defined j n II . 2. According to Theorem 5 of Chapl.··r Il, thi:-; 

problern has a ~•olutim1 z 0 (~) which is uniqul~ wHhin a :-~ign. 

The matrix J(~. :\0 ) ddined by (6) is assumed to be :-~uch that 

y - * 0 ( 14) 

Since the eigenvalue :\0 is isolated, we can assume without loss 

of generality (rescale:\ if necessary) that there is no other eigenvalue 

of problem (4) (5) in the interval [:\0 -1, :\0 +1], and that this interval is 

contained in J. 

L et S be the n+2 dimensional domain 

The norm \\u\1, \IYo II and all other norms which we use, are defined in 

AppendixA. The function f(S, :\, u) in equation (1) is assumed to be 

2-times Frtfchet differentiable in u and:\ for each sin this setS, and 

its second Frtfchet derivatives f and f '\ are assumed Lipschitz 
UU UA. 

continuous on S . 

We impose one final restriction on f, which in effect says that 

its variation with:\ must be mild. Assume that 

lrl ( 16) 
2 I "-o I \\zo 11

1 
II Yo II 

In § 2 we show that a necessary condition for :\ to be a bifurca-

tion point of (1) (2) is that:\ be an eigenvalue of (4) (5). In§ 3 we present 

an iteration scheme, which w e claim generates a continuous branch of 

nontrivial solutions to proble m ( 1) (2) in a (possibly one- side d) 
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neighborhood of Ao, and which inter sects the trivial solution at A = Ao. 

All these claims are verified in § 4, by an application of the contracting 

mapping theorem. In § 5 w• : show that the solution branch constructed 

by the iteration scheme contains all possible nontrivial solutions in a 

neighborhood of the bifurcation point, and we remove the ambiguity in 

the choice of sign of y 0 • Finally, in § 6 we calculate the asymptotic 

behavior of the solution branch near the bifurcation point. 

III. 2. The Necessary Condition for Bifurcation 

We prove that bifurcation of nontrivial solutions from the 

trivial solution of problem (l) ( 2 ) can occur only at an eigenvalue of 

the linearized problem (4) (5). This result has been established for 

similar problems by M. A. Krasnosel'skii [30], J. B. Keller [25] , 

M. S. Berger [5J, and others. 

Theorem l 

If A. E [A0 -1, A0 +1] is not an eigenvalue of the linearized 

problem (4) (5), the n (1) (2 ) can have no nontrivial solution in a suffi -

ci e ntly small neighborhood of the trivial solution u (s) = 0. 

Proof: 

Rewrite (I) (2) in the form 

u'(s)- [A(s) +A J(s,A))u(s) =Af(S,A,u)- AJ(s,A)u 

M u(a) + N u(p) = 0 

For 0 < 6 S: IIAo II + 1, define the n e ighborhood 71 by 
6 

(17) 

(18) 
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'no = [ w E C n [a., {3] I I I w I I ::; o ) 

Consider the inhomog e neous problem, for w E 7{
0

: 

u'(~)- [A(~)+:\ J(~. :\)] u(~) = :\ f(~. :\,w)- :\ J(~, :\)w 

M u(a) + N U({3) = 0 

( 19) 

(20} 

(21) 

From Theorems 6 and 8 of Chapter II it follows that this inhomogeneous 

problem has a unique solution u(s) given in terms of the Green's 

matrix G(s, T) by 

u(s) = 
{3 

). I G(s, T) [f(T, \, w('T) ) - J(T, :\}w(T) J dT 
a 

(22) 

Let equation (22) define the mapping 

T:7{0 -+C~ [a,{3] (23) 

where Tw = u 

Since (T, \, w) E S, we have 

1 l 

f(T, :\, w(T)) - J(T, :\)w(T) = I I f (T, \, p a w)pdadp w 2 (T) • (24) 
0 0 uu 

Taking norms as defined in Appendix I, (22) and (24) give 

\lull~ l:\1 IIG\1 -k \lfuulls llwl \ 
2 

::; i (I :\o I +1) 1\G\\ \\fuulls 6
2 

• 

(25) 

Hence \\u \\ ~ o if 

2 
(26) 
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Similarly for wh) and w( a) jrr 71.

6
, define u(1 ) c: T w(l) and u(:i!) -· (2 ) 

T w • 

Then 

(2 7) 

Now define, for any 0 < 9 < 1 , 

min ~\Yo\\ + I, (28) 

and it follows that 

(29) 

Thus, for o defined by (28), T maps '17.
0 

into itself and is contracting on 

'17.
0

, so it follows from the contracting mapping theorem of Appendix II 

that T has a unique fixed point in '17.
0

• 

But clearly the trivial solution u( s ) = 0 is already a fixed point 

of T in '17.
0

. H e nce there cannot exist any nontrivial solution to ( 1) (2) in 

'17.
0 

, since it would be a fixed point of T.- violating the uniqueness result. 

From Theorem 1 it clearly follows that the only possible candi-

date for a point of bifurcation of problem ( 1) (2) (from the trivial solu-

tion) in the interval 0 .0 -1, :\0 + 1] is the eigenvalue :\0 of the linearized 

problem (4) (5 ). If the diffe rentiability assumptions on f hold for all 

A. in J instead of just in S , the same argument applies to any closed 

bounded subinterval of J by redefining S suitably. Then we conclude 

that bifurcation from the trivial solution in problem (1) (2) can occur 

only at the eigenvalues in J of problem (4) (5). 
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III. 3. The Iteration Scheme 

We seek a continuous branch of nontrivial solutions to problem 

(1)(2) in the form 

u(s,e:) = e:y0 (s}+e:av(s,e:) (30) 

A. ( e } = A.o + e: fl ( e: ) (31) 

where E: is a small scalar which parameterizes the solution branch, and 

v(s, E:), fl(e:} are functions to be determined. A possible source of non-

uniqueness in this representation is removed by assuming that v(s. e:) is 

orthogonal to Yo ( s), that is 

!13 * 
a Yo (s) v(s, e:) ds = 0 (32} 

We claim that such a solution branch exists and is given, for sufficiently 

small I e: I . by the limit of the iteration scheme which we are about to 

define. 

The ansatz (30){31) is a solution of problem (1)(2) if and only if 

v( S, e:) and fl(e:) satisfy 

{33) 

M v(a) + N v(l3) = 0 (34) 

By Theorem 6 of Chapter II, problem (33) (34) has a solution only if the 

right-hand side of (33) is orthogonal to z 0 (s). This gives the condition 
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Hypothesis (3) implies that for A E[A0 -1, Ao +1], 

(36) 

Then the assumed differentiability and continuity properties of f give 

the Taylor expansion, for (S, A, u) E S, 

f(s, A,u) = f (s, 'Ao, O)u +if (S, 'A0 , O)u2 +f ,(s, A0 , O)(A-Ao)u 
U UU . Ull. 

+ E 1 (S, u)u
2 + Ea (S, A, u) (A-Ao )u , 

(3 7) 

where 

1 1 

E1 (S, u) =I f [f (S, Ao, p{;u)-f (~, A0 , 0)]1.: dpd{; , (38) 
0 0 uu uu 

and 

l l 

E:a(S, A, u) = I f [f, (S, A0 +p(A-A0 ), {;u)-f, (S, A.o.O)]d{;dp. (39) 
0 0 U 11. U11. 

Note that E 1 (~. O) = Ea (S, A0 , O) = 0. Furthermore, from the assumed 

Lipschitz continuity off and f , ther e exist · constants ~ 1 , ~a and ~ 3 
UU U11. 

such that for (S, A (i), u(i )) E S, i = 1, 2, 

(40) 

and 

(41) 
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We use the expansion (37) for f to rewrite (35), grouping terms 

according to their order of tnagnitude in the small parameter e: : 

= 0 (42) 

where 

+(A.o+E:fl) [if (S, Ao, 0)(2yov+€v2
) + 'T1 f '\ (S, Ao, O)v(S) 

uu u~ 

1 .a 1 
+ z El (S, u)(yo +e:v) + € E:a (S, A., u)Tl(y0 +e:v)] . (43) 

Similarly (33) becomes 

(44) 

Now we set up the ite ration scheme for fl and v according to the follow-

ing rule: Whe rever 'T1 or v appears in ,a term of (42) or (44) which is 

0 (e: ), we label it with the superscript ".t" to indicate that it is the old 

iterate, and when fl or v appe ars in a 0(1) term, we label it with the 

superscript "(1.+1 )"to make it the new iterate. This yields the 

' (1.+1) (.t+l) 
sequence of hnear problems for fl and v (S) , 1, = 0, l , 2, . .. , 

in equations (45) to (49). Note that the denominator in (46) is guaran -

teed nonzero by hypotheses (14) and (16). 
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Tl (o) = 0, )o) = 0 (45) 

) .t+l) 
1

(S)- [A(s )+A.o J (~. "-o ) ]v(.t+ 
1 

)(s) = ~+ 1 ) [J ( s. Ao )yo( S )+A.o fuA.(s, "-o ,O)yo( ~] 

1 ~ 2 ~ ~ (.t) (.t) +2A.0 f (?,Ao,O)yoh)+e:h{':>,e:,fl ,v (S)), 
uu 

(4 7) 

M v(.t+l) (a) + N ).Hl) ({3) = 0 (48) 

/ Yo*<s> ).t+l)(s)ds 
a = 0 (49) 

.t = 0, 1' 2, ... 

With Tl(t+l) defined by (46), the basic alternative theorem guarantees 

that the linear problem ( 47) (48) has a solution J.t+l)(S). The ortho-

gonality condition (49) makes this solution unique. Thus the iteration 

scheme (45) to (49) uniquely defines the seque~ces of iterates 

.t=O,l, •.• , (50) 

provided only that (S, A.o +e:fl(.t)' e: yo +e: 2 ~.t)) remains inS for all .t, so 

that h remains defined. Assuming this to be so, the unique solution 

of problem (47) (48) (49) can be written in terms of the principal 

generalized Green 1s matrix Gt(S, T) of Chapter II §7 as 

(£+1) !{3 t (.t+l) 
v (S) = G (S, T) [ Tl (J (T, A.0 )yo (T) + A.o f , (T, A.0 , 0 )yo (T) 

a UA 

1 2 (.t) (.t) J + 2 A.0 f (T,A0 ,0)y0 (T)+E:h(T,E:,fl ,v (T)) dT, 
uu 

.t = 0, 1' 2, ... (51) 
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The iteration scheme defined by (45) to (49) is the optimum 

one in the following sense. H the ;,tE ih)rates were allowed to appear 

in any of the 0(1) tcrn1s, the conve t·gence would be slower than lht) 

order E: convergence which our scheme gives. On the other hanrl, if 

(.R- +1 )st iterates appeared in any O(E:) terms, we would have to impose 

additional restrictions on the range of E: in order to insure the solva

bility of (42) and (44) for the (.hl)st iterates. 

III. 4. The Convergence Proof 

We now verify the claims which have been made for the itera-

tion scheme (45) to (49). Rather than work with the iterates directly, 

r (.R,) (.R-)]-+[ ( -t+l) l.t+l)J 
we consider the mapping t.'rl , v 1l •v . We show that 

this mapping is contracting on a domain which we define, and then all 

the desired properties follow from an application of the contracting 

mapping theorem. 

Define bounds as follows. They are not the finest possible 

bounds, but have occasionally been chosen instead to simplify the 

calculations. 

A = 
2 

Jl z 0 Ill [ i I Ao I II fuu II II Y 
0

11
2 

+ 1 ] 
I Yl 

0 = A JIGtll [11£ IIIIYo ll + IYI ] 
u llzo II 

1 

'¥1 = 

+ (lAo I +1 )[ill£ II (2IIYo 11+1 )0 + A II£ , II 0 
UU UA 

3 2 

+ qil(IIYoll+l) +ii> «diiYoll+l) A -+ ii>3(11Yoll+l)A
2 J 

(52) 

(53) 

(54) 
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:a 
'±'ra =II r)l 0 + t llfuull <IIYoll+l) + 2 A llfuA.II<IIYoll+l) 

::l 

+ ~2 <IIYo 11+1) + 2 A~:,~ <\lYe 1\+1) 
(55) 

'¥3 =A\~ II+ <IA.o!+l)!l£ 11<1\Yol\+l) + A(!A.o!+l) II£ ., II u UU U/\. 

(56) 

(57) 

(58) 

Define the Banach space [3, II II} by 

~ * 3 = Un, v] I n E R, v E Cn[a, ~], fa Yo (S)v(S)d s = 0} • (59) 

I!Cn, vJII = max [In!, llv\1}. (60) 

Define the closed subset [;) c 3 by 

( 61) 

Assume 

je:j ~ E:o , (62) 

and define the mapping T e: tJ -+ 3 by 

w h ere 
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1 j3 * 4 1[3 * z"-o!, Zn (t;)f (t;, "-o . O)yo (t;)dt; + € . Zo(S)h(t;,E:,Yi,V(~))d~ 
" uu u 

1l :,: - --- !3 ··-
')' + Ao 1 "'o* (1; )f , (t;, Ao, 0 )yo (t; )d ~ 

Q' U/\ 

(64) 

,.._, 1!3 t [~ 
v(t;) = G (t;, T) n(J(T, Ao)yo(T)+ "-of ,(T, "-o . O)yo(T)) 

Q' U/\ 

+ i A.o(f (T, "-o. O)yo
2

(T) + e:h(T , e:, D,v(T))]dT. 
uu 

(65) 

Now we show that for IE: I :5:: e:0 , T 
8 

maps '[;)into itself. Note 

that ['!1, v] E '[;) , S E [a, f3], and I € I :5:: e:0 together imply that 

(S, "-o + e: '11, e: Yo + e:
2 

v) E S (66) 

Hence h(~. e:, '11, v ) is still d e fined and continuous. From hypotheses 

(14) and (16), the d enominator of (64) is ~ ~~~ in absolute value. 

Therefore, 

But an easy calculation shows that for I e: I :5:: EO , 

II h\1 :5:: '±'1 , (see (54)) (6 7) 

and since € 0 '¥1 :5:: 1' we have 

I Ti'l 
2\\ zo ll1 

c i I "-o I \If 11\IYoli+r] :5:: 

I, I uu 

(68 ) 

= II. 

Similarly, for I e: I s: E:o 
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II';! I ~ II G t 1\ [ J\ (\\full II Yo 1\ + I '-o I 1\fut-11 II Yo II>+-! I '-o I llfu)IIIYo II'\ I e: lllh\1 J 

~ AI\Gtlllr II £ II IIYoll + lrl J 
u II zo ll1 (69) 

Thus 

= 0 . 

T : fi) _, ~ 
e: 

Finally we show that T e: is contracting on /;) for I e: I ~ e: 0 • It 

follows from (66) and the Lips chitz continuity hypotheses (40) and (41) 

that h(S, e:, T), v) is Lips chitz continuous in T) and v for [T), v] E fJ. Take 

arbitrary [ T); v] and [IJ, w] E ~. Then 

(70) 

where 'i';a and '¥3 are defined by (55) and (56). 

Therefore, 

(71) 

and 

II ~-wll ~ II G t II [(\\fu 11\ IYo II+ I '-o I llfu,_l\11 '-oil> 111-~ ! + I e: I I~(S, e:, T), v) -h(~, e:, IJ, w) II], 

(72) 

which reduces to 

ll ,...,v -"'w\1 ..... 1,.. 1 
211 

z oll 0 c I I II II J ""' "' 71. '!';a T)-IJ + '!'3 v-w 
I y\ 

(7 3) 

From(71), (73), (57), and l e: l :;;; e:o, itfollowsthat 

II c T1, ~j - c ~,-;:, J II :;;; I e: I e II c T), v J - c 1J, w J II (74) 
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But E: o e ~ t so T E: is contracting on ~for I €1 ~ Co, and the contt·act-

ing mappjng theorem of App e ndix II t e lls us that T has a uniqtw fixl'd 
€ 

point in~. Note that our i t erates [11(1,), ).t)], 1, = 0, 1, ... a rl~ pL·c-

cisely the elements of the sequence defined in the statcn1ent of the 

contractinfY mapping theorem. Also, a fixed point of T is a solution 
E: 

of problem (32) (35) and vice versa. Thus we have established 

Theorem 2. 

The inhomogeneous proble m (32)( 3 3)(34)(35) has a unique solu

tion [11, v(s)] in D, for IE: I s E:o. The iteration sche me of §3 defines 

1, = 0, l, ... , of elements of ~. which con-

verges to a unique limit in ~. and this limit is the solution [ 11. v (S)] 

of the inhomogeneous problem. Furthermore, the convergence of this 

sequence is given by 

.t=O,l,Z, ... 

Since E:o e $ t. this convergence is uniform in E: fo r I e: l $ E:o . 

It is easily shown by induction that the iterates 11 (1,)=11(1,)(€) and 

).t) = )L)(S, E:) are continuous in e: for IE: I s e: 0 • H e n ce the limits 

11(€ ) and v (S, E: ) are also continuous in E: for I e: 1 s E: 0 • 

With 11(€) and v(S, E: ) so determined, (30) (31) is a continuous 

branch of nontrivial solutions of problem ( l) (2) for I E: I s E: 0 and 

e: :f 0, and this branch inte r sects the trivial solution u(S) = 0 at the 

bifurcation point A. = A. 0 • 
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III. 5. Uniqueness 

The uniqueness part of the contracting mapping theorem, as 

used in The orem 2, implies that there is only one nontrivial solution 

branch of problem ( 1) (2) which has the form of (30) (31) with give n 

y0(~) and A. 0 • It remains to show that there are no nontrivial solution 

branches of any other form bifurcating from A.0 • One obvious candi-

date is the solution branch obtained by choosing - y 0 (s) instead of y0 (s) 

for the normalized solution of the linearized problem, and then pro-

ceeding as in the previous two sections. This does indeed yield a 

branch of nontrivial solutions; but it coincides identically with the 

branch (30) (31 ). Similarly, any different normalization of y 0 (!;) just 

gives the same branch with a new parameterization. The only other 

possibility is a solution which is orthogonal to y 0 (s). Such a solution 

could not be obtained from our iteration scheme. We now show that 

nontrivial solutions orthogonal to y 0 (s) cannot exist in a sufficiently 

small neighborhood of the bifurcation point. Define the neighborhood 

'71 O f O I' 0 < 01 ~ 1 by 
I 

Then 

[a, l3] X ?J'i
0 

C S 
I 

(76) 

( 77) 

Let u(s) be any nontrivial solution of (1) (2) for some value of A. such 

that 

[A., u] E ?n
0 I 

(78) 
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Define 

~ . 
a = f Yo (~) u (~)ds a (79) 

Then u( ~) can be written 

u(s) = a Yo (S) + w(s) (80) 

where w(s) $atisfies 

(81) 

Here we are allowing the possibility a = 0 • 

Lemma 

If u( s) is a nontrivial solution of problem ( 1) (2) such that (78) 

holds with 6
1 
defined by (88), then u(s) cannot be orthogonal to y 0 (S) • 

Proof: 

From the hypotheses that u(l;) satisfies (1) (2) and y 0 (s} satisfies 

(4) (5), it follows that w(s) must satisfy 

(82} 

M w(a) + N w(~) = 0 (83 ) 

And so, from the basic alternative theor em, 

~ 
:>...[ z*(s)[Af(s, A. ,ayo(s)+w(s)) -A.oJ(s,A.o)(ayo(s)+w(s))]ds= 0 (84) 

a o 

Clearly a= 0, w (s) = 0 g ives a solution of (84). If (84) has no other 

solution, the n (1) (2) has no nontrivial solution for thi s value of A_, 
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contradicting our hypothesis. Therefore we assume (84) is satisfied 

for some w(~) ::f 0 • 

Then (81 )(82)(83) together are equivalent to the integral cqua-

tion 

f3 t 
w(~) = / G (S,T)[Af(T, A., u)- A.0 J(T, A.0 )u] dT , a 

(85) 

where Gt(£,T) is the principal generalized Green's Matrix of §II. 7. 

By virtue of (77) , 

f3 t i ~ 
w(s)= f G (S,T)[A.// f ,(T,A.0 +p(A.-A.0 ), Cu)dpdA.(A.-\0 ) 

a o o ul\ 

(0" y (T) + W(T)) dT 
0 

Taking norms as in Appendix I and using (78) gives 

(86) 

llwll ~ liGtll[<lA.o l+l)l\f , II + llf II + \A.lillf II ] o,llcry+w11· (87) 
- ul\ S u S o uu S 

Now for any 0 < 9 < 1, define 5
1 
by 

o, = e 
(88) 

11 G til 0 I Ao I +l >llfuA.II s+ II fu.l l s+~l Aolll fuu li s ] 

and we have 

1\wll ~ e II cr Y + w11 • (89) 

But it follows from (89) that cr = 0 implies w(s) = 0 and so u(£) is 

orthogonal to y 
0

(£) only if u( £) = 0, which proves the lemma. 
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On the strength of this lemma, we can make the following 

definitions 

e: - a = (90) 

( 91) 

Ti(e:) - _l (A. - A. ) 
E: 0 

(92) 

It is clear that [Ti, v] must satisfy the same equations as 

['Jl,v] in Theorem 2, and so if ['Jl,V] E S, the two must coincide by 

the uniqueness part of the contracting mapping theorem. 

Now we consider the ambiguity in the choice of normalization 

of y 0 (J;). Suppose instead of y0 (~) we had chosen the eigenfunction 

(93) 

for any real w :f 0 

Then, for sufficiently small a * 0, we could proceed as in §3 and §4 

to construct the solution branch 

(94) 

= /...0 + a u(a) (95) 

By inspection, the equations (32)(33)(34)and (35) which define v and 

'll in §3 are unchanged by the substitution 
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Yo(!;) -t W Yo(!;) 

1 
E: ... s 

w 

Tl ... w Tl 
(96) 

v ... CAtv 

Hence the solution branch (94) (95) coincides with (30) (31) in a neighbor-

hood of the bifurcation point with the equivalence 

1 
Yo = Xo w 
E: = wa 

1 (97) 
'1'1 = - 1-1 w 

1 
v = w 

uf 

Thus (94) (95) yields no new solutions, but is just a new parameter-

ization of the unique solution branch of Theorem 2. 

We summarize these results in 

Theorem 3 

Problem ( 1} (2) has no small nontrivial solutions in a suffi-

ciently small neighborhood of }... 0 , other than those on the branch 

(30) (31} given by Theorem 2 . This branch is unique at least for 

E: < E: "'"• where 

E: >:< = min ( E: , 
0 

Q, } . 

Here 61 is defined by (88}. 
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Ill. 6 Asymptotic Behavior 

It is us eful for the applic ations to have an asymptotic expan-

sian of solution branch (30) (31) in the neighborhood of its bifurcation 

point. Such asymptotic ex pansions are often computed formally, 

without rigorous justification. On the basis of Theorem 2, we are 

able to obtain the fi r st t e rms of an asymptotic expansion with very 

little e ffort, to estimate the error, and to confirm that the expansion 

is inde ed asymptotic. For a much d e eper treatment of this subject, 

se e §V. 5. For the definition of the order symbol 0, see Appendix A. 

From (30) and Theorem 2 we have immediately that 

since 

for 

From (42) we have 

e: 
0 

e: -o. ( l 00) 

( l 01) 

13,~ 2 13 .... 
i>-.

0
j z (£)f (£,>.. ,O)y (£)d£+e:j z"'(s)h(s ,e:, ,,v(s))d£ 

0 uu 0 0 0 
a a 

T)(E)- -

y+ >.. j 13 
z*(£) f , (£, >.. , O)y (s)ds 

0 0 Ul\. 0 0 
a 

(1 02) 

Define >..
1 

by 

( 103) 

Hypothes e s (14) and (16) gua rantee that the denominator of (102) and 

(103) is ~ lil. The refor e 
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/ll( £) - A- 1 I ~ 

( 1 04) 

from (67) and (54), assuming 1£ I~ £ • 
0 

Thus we have proven 

£ -o, ( l 05) 

which we substitute in (31) and get 

2 = )1.0 + £ )1.1 + O(£ ), £ __..., 0 . (l 06) 

Then ( l 05) and (l 06) give the asym.ptotic behavior of the nontrivial 

2 solution branch up to 0(£ ). 

In order to calculate higher order terms in the expansion, 

in general we need to know more about the behavior of v(£, £ ). How-

ever, in the special case when f ( £, X. , 0) = 0 and higher derivatives 
uu 0 

off exist, we can easily get higher order terms in (31) without 

knowing v(£, £ ). In fact, let us assume that f is m- times Frechet 

diHerentiable , and in the notation of Appendix A, 

f k (s, )1.
0

, o> = o 
u 

f (£,)... ,0)1:-0, 
n1 o 

u 

for k = 2, ... , m-l, (l 07) 

( l 08) 

where m ?- 3. Furthermore let us assume that f is Lipschitz 
um 

continuous in u, as defined in Appendix A, for ( £, )... , u)E S. 
0 

Now (l 07) implies that 
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A - 0 1 - (10?) 

so (102) b ecome s 

13 >'< 
- E J z~(~)h(~, E, TJ, v(~)d~ 

a ( 11 0) 

Now by inspection of (43), we can rewrite has 

h(~,E , TJ , v) = TJ( f (~,X. , O)v + f , (~,X. , O){TJY +(A + ffll)v) (lll) 
U 0 U/\. 0 0 0 

But E
1 
(~, u) d efined by (38) is now equal to 

E
1 
(~, u) = - 1-, f (~,X. , 0) um- 2 + E(m)(~, u)um- 2 

m. m o ( 112) 
u 

where 

( 113) 

Define s and t to represent t erms which appe ar in has follows 

( 11 4 ) 

t ( ~) = T1 f , ( ~ , A , 0 )v+ (X. + E T1) E 2 ( ~, A, u )v , 
· U/\. 0 0 

( 115) 
so now 
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m-3 
h(s,E,TJ .• v> =TJs(s)+ETJt(s)+ (;>... +t.:TJ)-E-1 £ (£.;>... ,o)(y +Ev)m o m. m o o 

u 

m-3 (n1) m i(;>..+E,..,)E .E: (s,u)(y~t:v), 0 ., 0 ( 116) 

and (110) can b e writte n 

m-2 Jl3 * [ 1 (m) J m -(A. +ET])E z (s) -,- f (£, ;>... ' O)+ E (s. u) (y +Ev) d£ o o m. m o o 
a u 

T]( E) = 

J l3 * [ 2 ] y + z <s> ;>... £ "<£. ;>... , o)y +Es(s)+E t(£) d£ 
0 0 Ul\. 0 0 

a 
(11 7) 

provided the denominator is nonzero. But this is assured if I E I~-; 
0 

where 

-; o "min {' o' II :
0 11
J !:2( II fu 11+>-o ll£u)J) + II fu)J diY0 II+ I )A 

+ <!;2 ( II y 0 II+ d + A <!; 3 ( II y 0 II+ l)l 1 

} (118) 

Define 
1 Jl3 * m - ;>...

0 
m! z

0
(s)f m(s, }..

0
, O)y

0 
(s)ds 

;>... = ____ a_---::;: __ u ________ _ 
m-1 A 

I t-' * y + A. z <s>£ "<s. ;>... • o)y <s>ds 
0 0 Ul\. 0 0 

( 119) 

a 

The n we can write 

(120) 

where 
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f3>:< [ (A. + ET]) () ~ f3• -J z ( g ) ~ f ( £, A. , 0 )+ 
0 E m ( g , u) ( y + EV) m d g + j' z ,\ g ) 

o m . m o E o o 
a u a -T] (E ) ::: 

. Jf3 >!< [ 2 ] y + z (g) A f ' ( g' }.., ' 0 )y + E s (; )+ E t(;) d; o o u~ o o 
a 

It is clear that TJ(E} is bounded for le:l ~ E
0

, bec ause the Lipschitz 

continuity of f implie s 
m 

u 

( 122) 

for (£,A., u)C ~ . 

H e n ce w e have proven that 

m-2 m-1 
T](E) = E A.m-1 + O(E ), (123) 

or that 

m-1 m 
A.(E) = A.o + E A.m-1 + O(E ), (124) 

The qualitative behavior of the solution is now clear f rom 

(124) a nd (100). Let Am be a bound on l':;l(e:) I for IE I ~ E
0

, and 

define 

~ . ~ IA.m-1 I } 
Eo =min {Eo' Am 

Then the following two types of behavior can arise in a neighborhood 

of A. . See Figure 1 for illustra tions. 
0 
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Cas c (i) : m is even. 

Tht~n a nontrivial Holution u exists ror all >..in il ll open interval 

containing >.. a:; an inte rior point, except for the point >-. itself (wher e 
0 0 

of c ours e u = 0). In a sufficiently small interval containing >-. as an 
0 

interior point, the "amplitude 11 
£ of the solution is monotone increas-

ing or d ec r e asing, depending on whether >.. 1 is positive or negative 
m-

respe ctive ly. 

Cas e (ii) m is odd. 

Then if >..m_ 1 is positive (negative) there is no small non

triv ial solution for A. in some interval below (above) >.. and containing 
0 

>.. as its upper (lower) end point. There are exactly two small 
0 

nontrivial solutions for each >.. in the open interval (>.. , A.(; )) if 
0 0 

-A. 
1 

is positive, or in (>..(c: ), >.. ) if >.. 1 is negative. 
m- o o m-



Case ( i) 

m is even 

Case (ii) 

m is odd 

E 

E 
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~m-1< 0 

Am-I> 0 ~m-1 < 0 

FIG . I ASYMPTOTIC BEHAVIOR NEAR A 

BIFURCATION POINT 
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CHAPTER IV 

DEGENERATE BIFURCATION THEORY 

IV. 1. Introduction 

Throughout Chapter I I I, A was assumed to be a simple 
0 

eigenvalue of the linearized problem. Now we remove this 

restriction and assume that A is an eigenvalue with any 
0 

multiplicity p. From the linear theory in Chapter I I we know 

that p is finite, in fact p-:;:n. When p> 1, the eigenvalue A 
0 

is said to be degenerate; we extend this terminology and define 

"degenerate bifurcation theory'' to be the theory of bifurcation at 

eigenvalues of the linearized problem which have multiplicity p, 

where 1 < p ~ n. The simple case p = 1 is of course included in 

the theory of this chapter, but the theory of Chapter I I I gives 

stronger results for this case so we ignore it here. 

The problem considered in this chapter is identical in form 

to that of Chapter I I I: 

u'(s) = A(s) u(s) + Af(s, A, u(s)) 

Mu( a) + N u( i3 ) = 0. 

The matrices A, M and N, the vectors u and f and the scalars 

a, [3 , ;, and A are all defined at the beginning of Chapter I I I. 

We seek nontrivial solutions u(s) to problem (1) (2) for A in a 

neighborhood of an isolated degenerate eigenvalue A of the 
0 

line arized problem 

(1) 

(2) 
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y I ( i;)- [A ( s) + X. J (;' X. ) J y ( ~) = 0 
0 0 

( 3) 

My(a) + Ny ( 13 ) = 0. ( 4) 

Since X.
0 

now has multiplicity p where 1 < p -:;:· n, there exists a 

set of p linearly independent eigenfunctions of (3) (4) which we can 

choose to be orthonormal, and which we designate 

(j)((:.} . 1 y '::> ' J = ' ••• , p. 

Any solution to (3) (4) may be expressed as a linear combination 

of these y(j)(s). 

( 5) 

From Chapter II, Theorem 5, the problem adjoint to (3} (4} 

also has exactly p orthonormal solutions 

z(i}(g}, i = 1, o••• p, (6) 

where 

z(i)' (£) + [A>:<(£) + X.
0 

J * (£, X.
0
)] z(i}(£) = 0 a< £~ 13 (7} 

Pz(i)( a } + Q z(i} (13) =0,~ 
( 8) 

i = 1 ' • 0 0 ' Po 

The hypothesis (14) of Chapter I II is replaced by the 

following generalization: define the p xp matrix C by 

(9) 

and assun1. e 

det C f. Oo (l 0) 
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A bound on II fu>-. II, analogous to (16) of Chapter I I I, is assumed in 

section 5. 

Theorem 1 of Chapter I I I still applies to problem (l) ( 2), 

so bifurcation cannot occur for values of >-. other than the eigen-

values of {3) (4). In §IV. 2 we show that sometimes bifurcation 

does not occur even at an eigenvalue, if this eigenvalue is 

degenerate. A simple example is given to demonstrate this 

possibility. Then in §IV. 3 we define the algebraic bifurcation 

equations, and present an iteration scheme which generates a 

nontrivial solution to the problem ( 1) (2), given a simple root of 

the algebraic bifurcation equations. Section IV. 4 contains the 

proofs of the statements made in §IV. 3, and in §IV. 5 we present 

conditions under which the algebraic bifurcation equations are 

solvable. Finally in §IV. 6 we indicate an extension of the theory of 

the preceding three sections to problems with nonlinearities for 

which the lowest order term has degree higher than two. 

IV. 2. Non-existence Example 

Unlike the case of a simple eigenvalue, for which we proved in 

Cha pter I I I that bifurcation always occurs, bifurcation does not 

always occur at a degenerate eigenvalue. The following example, 

bas ed on one by Berger [ 5], demonstrates this point. Let 

u]_ (s) = 

( 11) 

u 2 <s> = 
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for 0 ,.. £ < 1 dnd f.. real, and 

( 12.) 

Clea rly this has the form of probl e m (1) (2). The linea riz ed problem 

has the e igenvalue A. = 1 of m ultiplicity 2 and corresponding 
0 

linearly independent e igensolutions 

Now if we multiply the two e quations in (11) by u
2 

and u
1

, 

respectively, integrate by parts, use (1 2) and a dd, we get 

( 13 ) 

( 14) 

But (14) i m pli e s that u(s) = O for A. " 0, and so problem (11) (12) has 

no nontrivial solution for A. near the eigenvalue A. = l, ( o r 1n 
0 

fact for any real A.). Thus bifurcation does not occur at A. • 
0 

IV. 3 . The Iteration Scheme and the Algebraic Bifurcation Equations 

By . analogy w i th Chapter I I I, we seek a nontrivi a l sol ution 

branch of small n orm in a neighborhood of A. , of the form 
0 

u( l; .. E:) = E: t 
j = l 

q . ( e ) YU) ( s) . + 
J 

2 
E: v(s, € ) ( 1 5 ) 



A.( € ) = A. + E: 11 ( E: ). 
0 
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Here j~ q/ € ) y(j) (s) is some element (to be determined) of the 

eigensolution space of problem (3) (4), normalized such that 

:t qf ( € ) = 1. 

j= 1 

The summation convention will frequently be used to abbreviate 

this term 

- i 
j= 1 

( 16) 

( 1 7) 

( 18) 

As before, E: is a small parameter, v(s, E: ) and 11 ( E: ) are functions 

to be determined, and v is made unique by imposing 

r13y (j)* <s> v(s, E: ) ds = 0 , 1 = 1, ••.• p. 
·· a ( 19) 

Substituting (15) (16) into (1) (2) and using (3) (4) gives the following 

boundary value problem which q, 11 a nd v must satisfy: 

A. 
v'(s) -[A(s) +A. J(£,A. )J v(s) =-4- [f(s,A. + e ll, E: q.y(j) + e 2 v) 

0 0 E: G 0 J 

( ") 2 1 ( ") 2 
-J(s, A. ){ E:q.y J + E: v)]+ - 11 f(S,A + E: T"j, Eq.y J + E: v) 

0 1 € 0 J 

(20) 
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M v( a.) + N v ( 13 ) = 0. ( 21) 

From. the basic alternative theorem of Chapter I I, problem (20) (21) 

has a solution only if the right hand side of (20) is orthogonal to 

z(i)(£), i = 1, ... , p, that is, 

~ J ~ z(i){£) [f(£, A.o+ E: 11• E:qjy(j) + E:2v) 
E: 

i = 1 , ••• , p. 

-J(£, A. )( E:q. y(j)+ E:2 v)] d£ 
0 J 

(22) 

The n + 2 dimensional domain S of Chapter I I I, on which 

f is assumed Frechet differentiable with Lipschitz continuous 

second derivatives, is now d efined by 

S = {( £, A., u) I £ E: [a, 13 ] , I A. - A. I < 1, u E: C [a, 13] , 
o n 

(23) 

!lull'S iii+ 1} 

where 

Therefor e f has the Taylor expansion with remainde r for ( £ ,A., u) E: S , 

jus t a s in Chapter I I I: 
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2 
f(f,;,A.,u)=f (~,A. ,0) u+ ~- f (£,A. ,0) u + f ,(£,A. ,O)(A.-A. )u 

u o uu o u~ o o 

(24) 

where E
1 

and E
2 

are define d by (38) and (39) of Chapter I I I and 

have the Lipschitz continuity properties ( 40) and (41) of Chapter I I I, 

for (£,A., u) E: S a s defined above. 

Now rewrite the orthogonality conditions (22), grouping terms 

according to their order of magnitude in the small parameter E: . 

This gives 

g.(q,l]) + E: h.(E:,q,1"],V) = 0 
1 1 

(25) 

i=l, ••• ,p. 

w h e re 

[ 
13 (") >:< (") 13 (")* 

g .(q, '1) = 11 r z 1 
( s ) J(£, A. )q .y J (s)d£ + A. r z 1 

(s) f , (£,A. ,0) 
1 ·· a. o J o ·· a. u~ o 

and 
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1 . 2 ( ") 2 
+ 11 f , (~.A. , 0) v(~) + -E1 (~. e q.y-1 + e v) (q .y J + e v) 

U/\. o e J J 

1 . 2 ( ") 
+- E2(~,A. + e 11, e q .yl+ e v) 11(q.yJ +ev)]d~, 

e o J J 

i = 1 ••••• p. (27) 

Setting e = 0 in (25) gives us the ••algebraic bifurcation equations 11 , 

defined by 

g .(q,"l) = 0 1 . 

p 2 
"" q = 1. L...Ji 
i= 1 

i= l, •.•• p. 

Define the :following a rrays whi ch appear in (26) 

C .. = Jf3 z(i) >\~) J (~.A. ) y{j)(~) d~ 
lJ a. 0 

Dij = s: z(i)>l< ( ~ ) fuA.( ~ , A-
0

0) y(j)(s) d~ 

F .. = 1. rf3 z(i) * ( ~)f (~,A. ,O) y(j)(s)y(k)(~)d~ 
lJk 

2 
·- a. uu 0 

i. j. k = 1 •• • •• p. 

Then the a l gebraic bifurcati on e quations (28) can be w ritten 

(28) 

(29) 

(30) 

(31) 



[C . 0 + A D . 0 J X. + A 
lJ 0 lJ J 0 

p 

L: 
2 

X. = 1. 
J 

j=1 
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p 

L F ijk xj xk = 0, i = 1, ••• , p, 

j, k= 1 
( 32) 

Here (x, w) denotes a simple root of (32). Note that the algebraic 

bifurcation equations are independent of v and E: . They are a system 

of p+ 1 quadratic equations in the p+ 1 unknowns x
1

, •.• , x , and w. 
p 

We assume throughout this section that a simple root (x, w) of (32) 

has been found, and show how to construct a nontrivial solution 

branch to (1) (2), given this root. 

This iteration scheme, which we now present, is really a 

double iteration scheme, consisting of "inner" and "outer" iterations. 

The outer iterations correspond roughly to the iteration scheme of 

Chapter I I I, and the inner iterations generate the new value of 

q a nd 'I"J at each step of the outer scheme. 

The outer iteration scheme is defined by the following 

equations, which come directly from (17) (19) (20) (21) and (22). 

)0) = 0, 

~ s:z(i)*(s}[f(s, A
0 

+ E: 'I"J(-t+l), e q~-t+l)y(j) + lv(-t)) -J(s, A.
0

) 

€ 

< E: q~-t+I>hu> + €2)-t>~ds 

(33) 

( 34} 

+l_'I"J(-t+l)JS z(i)>!'(s)f(s, A + € '1"J(-t+1)' e q~-t+l)y(j)+ €2v(-t})ds=O, 
E: a o J i= 1' ..• 'p' 



. p 

I: 
j=l 

q.<·t+l) 2 = l 
J 
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+.!.. (.t+l)f(C A + € {.t+l) € (.t+l) (j) + 2 (.t)) 
€ TJ ""' 0 TJ ' qj y € v ' 

M v(.t+l) (a.) + N).t+l) { 13) = 0, 

i= l, ••• ,p, 

where .t = 0, l, 2, ••• 

At each step of the iterations, (34) represents p 

transcendental equations in the p+l unknowns q
1
{t+l) ••• q;.t+l) 

and TJ(t+l). We call (34) together with {35) the transcendental 

bifurcation equations. They are solved using the inner iteration 

scheme, which we define shortly, using the assumed root of the 

algebraic bifurcation equations as a starting point. When (34) is 

satisfied, the basic alternative theorem guarantees that (37) (37) 

has a solution v(t+l) (£), and {38) makes this solution unique. 

(35) 

(37) 

{38) 

This unique solution of (36) (37) (38) can be written in terms 

of the generalized Green1 s matrix of §I I. 7 as 
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-J(T, A.o) ( E: q~.f . +l)y(j)+ e 2)t)) J (39) 

+ .!. (t+l)f( "+ (t+l) C' (t+l) (j)+,_2 (t))]d 
€ 'r) T, 1\.0 E:'r) , "'qj y "' V T. 

Now we define the inner iteration scheme. In order to 

simplify the notation, we define the augment ed vectors :X and 

q to be the p+l dimensional vectors with first p components 

the same as x and q respectively, and (p+l)st components 

and 11 respectively. Similarly we define the augmented vector 

functions g and h. to be the p+ 1 dimensional vectors with 

first p components the same a s g and h respectively, and 

(p+l) st t d f . db compone n s e 1ne y 

gp+ 1 ( q} = t q ~ -1 ' 
j = 1 J 

Now the a lgebraic bifurcation e quations are equivalent to 

and the transcendental bifurca tion equations are equivalent to 

- - ( t + 1 ) - - ( t + 1 ) ( t ) g (q ) + € h ( € , q , v ) = 0, 

w 

( 40} 

( 41) 

( 42) 

( 43) 
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aH can be seen from the equivalence of (22) and (25). 

The inner iteration ~H.:heme consist:-; o( solving (41) by th(' 

chord rnethod, using ;:;_ as an initial guess. We use subscripts in 

parentheses to number the iterates in the inner iteration scheme, 

and in the following discussion we suppress the superscripts of 

the outer iteration scheme, for convenience, since they do not 

change anyway. Define a by 

q = x + a. 

Then the inner iteration scheme is defined by 

where 
m=O,l, ••• 

[ - - J-1 K = g- (x) 
X ' 

and K exists by the hypothesis that x is a simple root. {By 

"simple " root we mean that the Jacobian 

the r oot ~). 

g- is non singular at 
X 

In the following section we prove that the inner iterates 

defined by (45) (46) con verge to a limit a for sufficiently 

- - -small E: , and this gives the root q = x +a of the transcendental 

( 44) 

( 45) 

(46) 

{ 47) 

bifurcation equations at each step .f of the outer iteration scheme . 

· Then the outer iterates defined by ( 33) to ( 38) converge to a solution 



of the boundary v;due proul('lll (17) (1 9 ) ( 20) ( 2 1) ror s urri ci,· ldly 

sm.all I E: I, and hence give a nontrivial so.Lution t o pt·ohlv ln (1) ( 2 ). 

IV. Convergence Proofs 

Define the following bounds. 

~ = l wl +l ( 48) 

0 = II G II [f. I X. 
0
1 11 fuu II S ( ~ + 1 ) + A II fuX. 11

8 
+ II II fu 1!

3 
J ( ~ + 1) 

( 49) 

D.l = IIGII[jx. jllf II (~ + l)+ A IIf ,II + All £ II J 
0 UU S U/\. ~ U S 

(50) 

D. 2 = 11 G I! [!x. Ill£ II ( ~+ 1) + Allf, II + II £ II J 
0 UU S U/\. S U S {51) 

(52) 

(53 ) 

D e fine the Banach space [ IB , II II } by 

and let II II be the maximum norm . L et 

.il={v(~) E:~ l llvll :o } . (55) 
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First we show that the inner iteration scheme defined by (45) 

( 46) converges for any v e .fl/ and sufficiently small •: . It is 

clear from (32) that g-- exists and is a (p+l) x (p+l) x (p+l) 
XX 

array of real constants. Define the norms II g--11 and 
XX 

according to the conventions in Appendix A. Then let 

Define the p -neighborhood of x by 

- !- p+1 '!I p (x) = r e R II ;: - X II -:: p I . 

Ilk II 

(56) 

(57) 

Just as in Chapter I I I, the assumed differentiability and Lipschitz 

continuity of f implie s that h ( e , q, v) is bounded for 

I e I ::· E: 1 , q E: 'riP (i) and v e:J< , and is Lipschitz continuous in q 

and v there . Ther efore there exist positive constants .6-4 and .6 
5 

such that 

for l ei .-=: e: 1 , q, r, e '!l p(x), a nd v, w e ~. 

Define 

m P = r a e l? p+ 
1 I :X + a e '11 <i> 1 . p 

(58) 

(59) 

N ow for a e 7ll and a fix ed v e: J< , define the mapping U whi ch 
p 

g enerates the i nner ite ration s c h e me ( 46) by 
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U(a) a - K [ g (~+a) + <: h ( f·: ' X+ a, v) J. 

Clearly 

jjU (O)j j = II 0- K [ 0 + t. h ( c-: , ~,v)JII 

If a and b are any two points in 'Tri. ' then 
p 

(60) 

( 61) 

< II I - K r l g - ( i + cr a + (l - cr) b) dcr II II a -b II 
- '· 0 X (62) 

With p defined by ( 56 ), define 

"z • min I o 1' 3/l K ,; "4 

and it follows from (6 1) and (62 ) that for I E: I"'S e2 , 

II U(O) II ::: ]. 
3 p, 

( 63) 

( 64) 
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a nd 

Hence the contracting mapping theorem of Appendix B applies to 

U, and U has a unique fixed point a# in m • But a fixed point p 

of U clearly is equivale nt to a solution 

q#: X+ a* {65) 

of the transc endental bifurcation equations. Thus we have prove n: 

Theorem 1: 

If the algebraic bifurcation equations have a simple root x, 

and if IE: I -:;, E:
2

, then the transcend ental bifurcation 

given v E:~ have a unique root (65) in np (x). where 

limit of the inner iteration scheme (44) {45). 

equations with a 

-# a is the 

- # Now we see how this root q d epends on the choice of v €..Bt . 

Let q = i + a and r = X+ b be solutions in 'Tl {x) of the 
p 

transcendenta l bifurcation e quations, corresponding to v and w 

respectively in ~. That is, 

g ( q) + € h ( € , q, v) = 0 

g(r) + di ( E: ,r,w) = o. 

Subtract (67) from (66) and manipulate as in (62) to get 

(66) 

(67) 



-64-

c r + K J ~ J ~ g:Xx <:X+ IT c a + <T( 1- c >6 , < c a + < 1- (. > £> da-d c J <Ci _ i-> 

(68) 

+ E: K [h ( E:, q, v) - h ( E: , r, w) ] = 0 

From (56) it follows that the matrix coefficient of (q - r) in (68) is 

invertible. Define 

Therefore from (68) 

(70) 

Define 

(71) 

a nd the f ollowing lemma is obv ious. 

L emma: 

If IE: I ":: E:
3

, the n the roots of the transcend ental bifurcation 

equa tions considered as functions of v € Jl;t , satisfy 

where q and r are the roots in 'fl. (x) corresponding to v and w 
p 

r e spectively in ,/;t. 
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Finally we turn our attention to the outer iteration scheme. 

Define the mapping 

( 73) 

by 

(74) 

-where (q, 11) = q is the corresponding root of the transcendental 

bifurcation equations given for each v E;..!J,- by Theorem l. That 

is, q and 11 satisfy, for the given v, 

(7 5) 

p 2 L: qj = l. 
j = l 

Then, using definitions (48) to (53), it is easy to show that T satisfies 

II T vii ':: 0 (76) 

IITv -Twll < l€1.t. 1 llv-wll + ~ 2 1 1 q-rll + .t- 3 111- fJ.I (77) 
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where v a nd w are in .1!1 a nd (q,l')) (r, l')) are the corresponding 

roots of (75), a ssuming IE: I -: E:3 • Combining (77) with (72) gives 

Hence T Jt_. Jt and is contracting on Jt for 

An a pplication of the contracting mapping theorem now yields 

Theorem 2. 

Corresponding to each simple root of the alg e braic 

bifurcation equations (32), the r e is a nontrivial solution branch of 

the form (15) (16) for 1€1-: € , 
0 

satisfying the nonlinear boundary-

value problem (1) (2) near A. = A • 
0 

This solution branch is the 

limit of the sequences def ine d by the itera tion schemes of §IV. 3. 

Continuity of this solution bra nch in E: follows just as in 

Theorem 2 of Chapter I I I. 

Distinct roots of the a lgebraic bifurcation equations l ead to 

distinct solution branches, at l east in a small neighborhood of A, 
0 

since we may c hoos e p as small as we please and thus make 

71 (x (l)) and 71 (x( 2)) disjoint sets where x(l) and x{ 2 ) are 
p p 

distin::t simple roots of the a l gebraic bifurcation e qua tions. 
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IV. 5. Roots of the Algebraic Bifurcation Equations 

The problem of solving the algebraic bifurcation equations is 

not a trivial one , although it is much easier than solving the original 

nonlinear boundary value problem. Without going into the 

computational aspects of the problem, we present sets of sufficient 

conditions which guarantee existence of a root. If these conditions 

are not met, of course it is still possible for the algebraic bifurcation 

. equations to have a root. Recall that the equations are 

X. 
0 

p 

L 
j = 1 

t F .. k 
. k-1 lJ J, -

2 
X. : l. 

J 

wt 
j = 1 

(C .. + X. D .. ) x . = 0 
lJ 0 lJ J 

i=l, ••• ,p, 
(80) 

( 81) 

The arrays F. "k C .. and D .. are defined by (29) (30) and (31) in 
lJ lJ lJ 

§ IV. 3. Recall that the matrix C is nonsingular, by {10). The 

matrix D is identically zero if f(£, X., u) is independent of A.; we 

make the assumption that f varies slowly with X., specifically that 

< £ II yu> II> 
j= 1 

(82) 

This condition allows us to rewrite (80) as 

T (x) = w x, (83) 
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where T is the homogeneous quadratic operator defined by 

T(x) = -1 ]-1 -1 -\[I+\ C D C Fxx. 
0 0 

(84) 

The problem (81) (83) looks remarkably like an eigenvalue problem. 

Problems of this type have been studied by Birkhoff and Kellogg [ 7] 

and Berger and Berger [ 6] under the name of invariant direction 

problems, and we adopt this terminology. The problem is now to 

find a unit vector x whose direction remains unchanged under 

the mapping T. The scalar w just gives the length of the image 

vector T(x) (within a sign). It is traditional not to include a solution 

with w = 0 as an invariant direction, since then clearly T(x) has 

no direction. Therefore we first dispose of this case. 

Case (i) 

If (82) holds and there exists a unit vector x # such that 

T(x#) = 0, then the algebraic bifurcation equations {80) (81) have the 

# solution x = x , UJ =0. 

If p is even, then (83) need not have a solution, for example 

take p = 2 and T (x} a pure rotation. However, for odd p we 

have the important Birkhoff-Kellogg invariant direction theor em: 

Case (ii) 

If (82) holds, p is odd, and T(x) f. 0 for all x on the unit 

sphere, then there exists a unit vector x # such that 

# # 
T (x ) = w x (85) 
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with * wi 0, and these x and Ill solve (HO) (81). 

Another interesting case arises when T(x) is a gradient 

system, that is when there exists a scalar ••pot ential function•• cp (x) 

such that 

T . (x ) = 
1 ox. 

1 

cp (x) i, 1, • • • • p. 

Then we have the following result of Berger [ 6] (page 63). 

Case (iii) 

(86) 

If (82) holds, T(x) -f. 0 for all unit vectors x, and T(x) is 

a gradient system, then T(x) has at least two invariant directions 

and (80) (81) correspondingly has two solutions. 

The proof of this is simply that cp (x) being a continuous 

function on a closed bound ed set must have a maximum and a 

minimum there. 

There is an important type of bifurcation problem which 

always gives rise to a mapping T(x) which is a gradient system. 

This is the case of a scalar self-adjoint boundary value problem, 

for example the elliptic problems studied in [13 J , [ 15 ] , [22 ] 

and [ 45]. We assume that f is independent of A. so that D = O. 

Then the matrix C can be made equal to the identity and the array 

F becomes 

Fijk = ~ S fuu (£,o> cp (i)<£> cpU><£> cp(k)<£> d £ 

where cp(i) i = 1, ••• , p are the orthonormalized sca lar 

eigenfunctions of the lineariz e d problem. Then clearly F . . k is 
1J 

(87) 
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symmetric in its indices ijk, i.e. • is unchanged by any 

permutation of them. Whenever this is the caHe, we have 

p 

T(x) = -~ >-..
0 

grad( 2: Fijk xi xj ~) 
ijk=l 

( 88) 

so T(x) is a gradient system. 

Another invariant direction theorem, which we will apply in 

the next section, is also due to Berger [ 6] {page 85). 

Case {iv) 

If T is a continuously differentiable gradient system 

defined and nonzero on the unit sphere, and 

T ( -x) = -T(x) (89) 

then T has at least 2 p distinct invariant directions. 

Clearly (89) is never satisfied by T{x) defined by (84). 

However, the higher degree algebraic bifurcation equations of the 

next section can give rise to such mappings. 

tv. 6. Higher Degree Nonlinearities 

If the array F .. k defined by {31) is identically zero, then 
lJ 

none of the theory of §IV. 3 and §IV. 4 is applicable. This case 

is analogous to the situation discussed in §r I I. 6 when 

f (£,A. , 0) = 0 at a simple eigenvalue. There we were able to 
uu 0 

calculate the next higher degree term in the expansion of A.( E:} 
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assuming only the existence of higher derivatives of f. We can 

proc eed along the same lines in the degenerate case a nd obtain a 

higher d e gr e e algebraic bifurcation equatio n. 

Without going into any details or proofs, we state that if 

fk(£,A ,0) = 0, 
u 0 

k=2, ..• ,m-l (90) 

and 

f m (£, A , 0) :/ 0 
u 0 

(91) 

th en the rele vant algebraic bifurcation equation is 

A F.. . • • X . . ••• X. + w (C . . + A D .. ) X . = 0 
o 1Jl jm Jl Jm lJ o lJ J 

(92) 

( s ummation convention unde rstood) where C . . and D . . are as 
lJ lJ 

b e fore, and 

F .. •••. 
l J J 

l m 

( 93) 

In particular if m = 3 a nd the homogeneous cubic mapping T 

d efined a nalogously to (84) is a gradient system nonzero on the unit 

sphere, then Case (iv) of the previous section applies and (92) has 

2p distinct solutions. 
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CHAPTER V 

GENERALIZATIONS AND EXTENSIONS 

V. I. Introduction 

The bifurcation theory of Chapters III and IV can be generalized 

in a number of ways. In the following section we present several 

rather trivial generalizations of the theory. In§ V. 3 we show how the 

techniques of this thesis can be applied to systems of nonlinear partial 

differential equations. The important problem of the extension of a 

solution branch out of the neighborhood of its bifurcation point is dealt 

with by the continuation theory in § V. 4. Finally in §: V. 5 we compare 

the approximate solutions from our iteration scheme with the asymp

totic solutions obtained from formal perturbation theory, and show that 

the former contain the latter. 

V.2. Generalizations 

The generalization to include complex coefficients is straight

forward. It involves only redefining the norms, inner products, and 

adjoints in the obvious way. For example, given a matrix A with 

complex components, A* would represent the complex conjugate trans

pose instead of just the transpose. 

As indicated after Theorem 7 of Chapter II, the eigenvalues of 

the linearized problem may be complex even when all the coefficients 

are real. Bifurcation at these complex eigenvalues may be studied 

with no additional difficulty, except of course that the two-dimensional 

graphs of Figure 1 are no longer valid. 
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The aH sun1ption that all the coefficients appearing in the non-

linear boundary-value problern be continuous functionH of ~ E [a, P J can 

be weakened considerably. The existence and all the properties of the 

Green 1 s matrix and principal generalized Green 1 s matrix pre sen ted in 

Chapter II have been shown to hold for the case of Lebesgue integrable 

coefficients by W. M. Whyburn [51] and W. T. Reid [40J. We need 

only relax our definition of a "solution" of a boundary value problem 

to mean an absolutely continuous function (see page 90 in [ 43]) which 

satisfies the differential equations "almost everywhere." Our bifur-

cation theory then remains valid if equations are under stood to hold 

"almost everywhere" where necessary, and our norms are replaced 

by the S, and S- 1 norms, where appropriate. This generalization 
00 

to include Lebesgue integrable coefficients contains several subcases 

of practical importance, such as piecewise continuous coefficients 

and certain mild singularities. 

Problems in which the matrices A(s) and J(t;, A.) are analytic 1n 

t; E [a, f3 J except for simple poles at a or f3 or both, lead us to the 

theory of regular singular end points as discussed in [12] and [17]. 

Then a fundamental solution matrix exists for the linearized differen-

tial equations, and is analytic for a< s < (3, but it either has poles or 

is non-invertible at a and (3. Thus the choice of boundary conditions 

is severely restricte d. However, for suitable boundary conditions it 

is often possible to construct a Gree n's matrix and a generalized 

Green's matrix for the linearized problem, and to apply the bifurcation 

theory of Chapters III and IV. The theory of generalized Green's 

matrices for systems with singular e nd points is not well developed, 
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but in [11] a11d Chapter 10 of [12], a Grt!en's fw1ction ha~ bt!C'Il con-

d f l bl . . f . l th I l . structc or sc;t ar pro em :; cons1:;tlng o a s1ngu ar· 11 or·c e .r· H(~ J-

adjoint differential equation and suitable boundary conditions. An 

example of a problem with regular singular end-points, for which both 

the Green's matrix and the generalized Green's matrix exist, and to 

which the bifurcation theory can be applied, is given in Chapter VI. 

V. 3. Systems of Elliptic Partial Differential Equations 

Often the techniques used to study ordinary differential equations 

cannot be extended to partial differential equations. Our iteration 

method does not have this limitation. We now discuss a special class 

of systems of partial differential equations to which the method of 

Chapter IV is particularly applicable. Our approach is very similar to 

that in [21 ]. For another approach, see [5 ]. 

Let a be a closed bounded domain in 6lm with smooth boundary. 

Let q:> (x) E C 2 [a]. Define the uniformly elliptic self-adjoint second 

order partial differential operator L by 

L cp (x) - -f: a [a .. (x) a:(x) J + ao (x) cp(x) . 
.. 1 ax. lJ x. 
1, J= 1 J 

( 1) 

where 

m m 
~ 

i, j= 1 
a . . (x)q .q·~a~ q~ 

1J 1 J i= l 1 
a>O (2) 

m 
for all X E a and q E ~ , 

a .. (x) = a .. (x ) E C1 [a] 
lJ J1 

(3) 

and ao (X) ~ 0 , a 0 (X) E c [a] ( 4) 
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Let the function g(x, A., cp), together with its derivatives g~gA., gcpcp' gcpA. 

be defined and continuous on some set S defined by 
0 

S0 = ((x,A.,cp)lx Ef'J, A. EJ, cpEC[a], llcp\1 ~t}, 

and assume 

g(x, A., 0) = 0 , 

for X E a and A E J 

g (x, A., 0) > 0 , 
cp 

Then we consider the problem 

L cp(x) = A. g(x, A.,cp) 

cp(x) = 0 

This problem is one of a class studied in [21 J and shown there to 

(5) 

(6) 

(7) 

(8) 

g ive rise to a nontrivial bifurcation branch at each simple eigenvalue 

of the lineariz ed problem 

L t(x) = A. gcp(x, A., 0) t(x) xE a (9) 

t(x) = 0 x E aa ( l 0) 

Now consider the following generalization of problem (7) (8) • 

Let T be the n xn diagonal matrix with all diagonal elements equal to 

L. Let u{x) E C 2 [a] , and l e t f{x, 'A, u) be an n-dimensional vector 
n 

function satisfying the same hypotheses as f{S, A., u) in Chapte r IV with 

[a, f3 ] replaced by a. Then we have the vector problem 
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T u(x) = A. f(x, A., u) xEa 

u(x) = 0 xE=:aa 

Now assume that the nxn matrix f (x, A, 0) is independent of x, and 
u 

write it as J(\). Then the linearization of ( 11) (12) is 

T y(x) = A. J(A.) A.(x) xEO 

y(x) = 0 x E aa 

( 11) 

(12) 

(13) 

( 14) 

Assume further that J(A.) is diagonalizable, so that there exists a non-

singular matrix S, in general depending on A. , such that 

I--Ll (A.) 
\-l2 (A.) 0 

= (15) 

The n (13) (14) can be separated into n scalar problems similar to 

(9)(10), i.e. 

xEO (16) 

-f.(x) 
1 = 0 (17) 

i = 1, 2, .•• , n , 

wher e w(x ) - = -1 S y (x) • (18) 

Therefore the linearized problem (13) (14) has a nontrivial solution if 

and only if A. IJ.(A.) is an eige nvalue of L for some IJ.(A.) i = 1, ••• , n 
1 1 

which is an eigenvalue of the matrix J(A.). 
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Degeneracy may arise in two ways. Either a given A. 1-1· (A.) 
1 

may be a degenerate eigenvalue of L with linearly independent 

normalized eigenfunctions 

( ) (z ) (ki) 
\jr.1 (x), \jr . (x ), ••• , 'II· (x) , 

1 1 1 
(19) 

or more than one of the A. 1-1· (A.) may b e eigenvalues of L for the same 
1 

value of A. but different values of i, say i 1 , i:a, .•• , i .t • 

Now assume that A. = )..0 is such that the total number of such 

eigenfunc tion solutions to the problems ( 16) ( 17) is p > 0. Define the 

linearly independent n-vector functions wi(j)(x). i = i 1 , i:ao, •••• i.t, 

j = l, ... , k. , by 
1 

w. (j)(x) 
1 

= (20) 

where \jr~j)(x) occupies the ith position in then-vector indicated. Then 
1 

a set of linearly independe nt solutions of problem ( 13) ( 14) is 

y(l) (x ) = S()..0 ) w. (l) (x) 
11 

y(z)(x) = S()..0 ) w. (z ) ( x ) 
11 

(k. ) • (k. ) 
(21) 

y 11 ( x ) = S()..o) w. 11 (x ) 
11 

(k . ) 
1 S( )..0 ) w. .t ( x ) 

1.t 

W e call )..0 an eigenvalue of deg e neracy p of the linearized problem 
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(13) (14). 

The basic alternative theorem for the inhomogeneous form 

of ( 13) ( 14) is the same as for ordinary differential equations. The 

adjoint problem to (13) (14) is 

[T - A J(A)*] z(x) == 0 xEa (22) 

z(x) == 0 x E aa (23) 

Clearly for A== Ao, problem (22) (23) also has p linearly independent 

solutions 

i == 1, •.• ' p • (24) 

Now we assume that the domain a is such that we can construct 

Green's function and generalized Green's function for L satisfying 

the boundary condition (8). We do this only to preserve the analogy 

with Chapter IV; it is not really necessary to construct these Green's 

functions. All that is necessary is that L have a bounded inverse, 

which is true quite generally. See [21] and [31]. 

Let G(i)(x, t) , i == 1, .•• , n be the Green's functions and 

generalized Green's functions determined by the problems 

k. 

~ t~j)(x) t~j )(t ), x, tEa, 
. 1 1 1 
J= 

(i) 
[L-Ao 1J.(A0 )] G (x, t) = cS(x-t)-

1 . 
(25) 

x E a a , (26) 

i = 1, ..• , n. 

Her e 'lt~j)(x) = 0 if A. 0 1Ji(A0 ) is not an eigenvalue of L. Then a 
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matrix for (13) (14) 

G (1 ) ( x., t) 

G(:a)(x, t) 

0 

is given by 

0 

(27) 

Return now to consider the nonlinear problem (11) (12). It can 

be rewritten as 

[T- A.0 J(A.0 )] u(x) = Af(x, A, u) - Ao J(A.0 )u(x) xEa 

u(x) = 0 x E a a. 

Try .a solution of the form considered in Chapter IV, namely 

where 

u(x, e) 
p 

= € ~ 
j= 1 

A J e) = A.0 + e n( e) 

p 

'E q~ = 1 
j= 1 J 

(28) 

(29) 

(30) 

(31) 

(32) 

Now we can proceed as in Chapter IV: Set up an iteration scheme and 

prove its convergence, for sufficiently small l € l , using G t (x, t) and 

the contracting mapping theorem, to a solution (q, T), v) with q and 11 

in a neighborhood of an isolated root of the appropriate algebraic 

bifurcation equations. 

The algebraic bifurcation equations for this problem are 

wf 
j= 1 

[C . . +A. 0 D . . Jr .. + 
1J 1J 1] 

p 
~ r~ = 1 
j= 1 J 

p 
A.0 ~ FiJ"krJ.rk=O,i=l, ••• ,p, 

j,k= 1 
(33) 

(34) 
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where C . . , D .. , and F . . k are defined by 
lJ lJ lJ 

C . . 
lJ 

D . . 
lJ 

F . . k lJ 

(" )~ ( ") - f z 
1 

(x) J(A.0 )y J (x)dx 
a 

- J z(i)~(x) fuA. (x, A.
0

, O)y(j)(x)dx 
a 

i, j, k = 1, •.• , p • 

(35) 

(36) 

(37) 

Thus the class of partial differential equation problems defined 

here can be treated by the same method as the ordinary differential 

equation problems of Chapter IV. 

V. 4. Continuation of Solution Branches and Secondary Bifurcation 

In Chapters III and IV we constructed a nontrivial solution 

branch (or branches) in a small neighborhood of a bifurcation point. 

We rDN show how such a branch can be extended out of this small 

neighborhood. 

Any process which extends the domain of a function beyond its 

original domain of definition, while preserving certain characterizing 

properties, is called a continuation. In our case , the continued 

function must be a solution of the nonlinear boundary-value problem, 

be continuous in A., and coincide with the solution of Chapter III or IV 

in its neig hborhood of d e finition. The question of con tinuation of solu-

tions of bifurcation problems has been studied by many authors, in-

eluding Hildebrandt and Grave s [ 18 ], Simpson and Cohen [ 45], 

Pimbley [37], and H. B. Keller [22]. 
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It may happen that a nontrivial solution branch itself splits into 

two or more new branches at some value of A =I= Ao· We refer to this 

as secondary bifurcation. Clearly the bifurcation theory of Chapters 

III and IV applies equally well to secondary bifurcation if we linearize 

the nonlinear boundary-value problem about this nontrivial solution 

instead of about the trivial solution. Each new branch can often be 

continued by the methods of this section. Thus, by repeated applica

tions of the bifurcation and continuation theorems, we can in many 

cases obtain a global solution consisting of many branches, all of which 

are ultimately connected to the trivial solution. Of course, this pro

cess fails to yield any solution branches which are not connected to the 

trivial solution. 

The nonlinear boundary-value problem is the same as that con

sidered in Chapters III and IV, namely 

u'(s) = A(s) u(s) +A f(s, A, u(s)) , (41) 

M u(a) + N u(f3) = 0 (42) 

All the hypotheses of Chapters III or IV are assumed true here, and 

we will later extend the domain of A and u values on which f(s, A, u) is 

assumed to be defined. 

We assume that a branch of nontrivial solutions to (41)(42} has 

been found by the methods of Chapter III or IV in a neighborhood of a 

bifurca.tion point. This solution branch is represented parametrically 

by 
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p 
u( ~, €) = e: ~ (43) 

j= 1 

A.(e) = A. 0 + e: n(d (44) 

Here we assume I e: I ~ e:0 where e: 0 1s as defined in Chapter III or IV 

respectively, and 

p 
~ 
j= 1 

q~ = 
J 

1 (45) 

where p is the multiplicity of the eigenvalue :>...0 of the linearized 

problem (49) (50) below. If p = 1, then define q 1 (€) = 1 and y(J.)(s) =y0 (s) 

and we have the solution branch of Chapter III. Otherwise, (43) (44) 

represents a solution branch as constructed in Chapter IV. 

We further assume that the f>arameter e: can be eliminated from 

the equations (43) (44) of the nontrivial branch1 that is that we can 

solve (44) for e: to obtain the single valued function 

€ = e:(A.) (46) 

for each A. in some open interval, say j-0 , where 

P.o c {A. 1 A.= A.(e:) and I e: I ~ e: 0 } (47) 

Then we substitute (46) into (43) to obtain a single-valued function 

defined on [a, i3] x j 0 , which we write as u( ~. 8 (A.)). or simply as 

u = u(s. A.) (48) 

This will be true in a neighborhood U"o of any 8 for which ddA.~E:) exists 

and is nonzero. In particular, if 11(0) ::f 0, them (48) i s valid in a 
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neighborhood of 'A0 • 

The linear problem obtained by linearizing (41) (42) about the 

trivial solution is 

y'(s)- [A(~)+ 'Ao J(s, 'A0 )]y(~) = o 

My( a) + Ny(J3) = 0 

(49) 

(50) 

The linear problem obtained by linearizing (41) (42) about the 

nontrivial solution plays a more important role in the continuation 

theory. Using (48), this problem can be written 

w'(s) ~ [A(s)+ 'Afu(s,'A,u(s,'A))] w(S) = 0 (51) 

M w(a) + N w(J3) = 0 (52) 

Any value of 'A for which this problem has a nontrivial solution w(s) 

will be called an eigenvalue of (51) (52). 

The fundamental continuation theorem which we shall prove 

(Theorem 3) is valid only at those values of 'A which are not eigenvalues 

of problem (51) (52). In this regard we have the following theorem. 

(The set S of this the orem is d e fined by ( 15) of Chapter III or by (2.3) 

of Chapter IV depending on whether p = 1 or p > 1 respe ctively.) 

Theorem 1 

If f(s, 'A, u) is analytic in 'A and u for each s with (s, 'A, u) E S, if 

(46) is valid for 'AE 10 , and if u(s, t: ('A)) is a solution of (41) (42) for 

'A El-0 , then the linearized proble m (51)(52) satisfies the following 

dichotomy: either a nontrivial solution of (51) (52) exist s for all 'A E fjo, 
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or at rnost a finite S(~t of isolated vig(!nvalues ('Xists 111 io· 

Proof: 

Frorn the rontracting map1>ing t heorem, tlw svquvnct·!;' 

IV converge uniformly in e: for I e: I $: e: 0 • But an easy inductive 

argument on the respective iteration schemes shows that)!.) ,q(t), 

and 11(!.) are analytic in e: for e ach t and for each s E [u, j3]. Therefore 

the limits of these sequences, v, q, and 11 are analytic in e: for each 

s E [a, j3]. From the implicit function theorem and hypothesis (46), 

u(s, A.) defined by (48) is an analytic function of A. Ef0 for each s E [u,j3], 

and so f(S, A., u(s, A.)) has this same property . We can now proceed as 

in the proof of Theore m 7 of Chapter II, using the fact that 1o i s finite, 

to reach the stated conclusion. 

For continuation to be possible, the solution branch (43) (44) 

(or (48)) must fall in the second case of the dichotomy. 

The following result is now obvious. 

Corollary: 

If f(s, A., u) 1s analytic in A. and u for each s with (s, A., u) E S, 

and if ther e exists a point(~, 't) on the solution branch (43 ) (44) such 

I ~ ~ 

that A. (€) :!= 0 at A. = A. and A. is not an e igenvalue of ( 11) ( 12), then 

there exists an open A.-interval containing r throughout which proble nl 

(51)(52) has no nontrivial solutions. 

In case linearized problem (51) (5 2 ) can have only simple eig e n-

values, for exan1pl e if (51) (5 2 ) is e quivalent to a second-order self-

adjoin t Sturm-Lionvill e problc1n, then we arc in an e specially 
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fortunate position. The uniqttl'lless tlworc1n of§ III.') l'dll always 

be applied to the solution branch (4 3 ) (44) and yil'lds thl' result that 

no secondary bifurcation occurs on (43 ) (44 ) for IE: I ~ €':' . Thus, sinCl' 

simple eigenvalues always result in bifurcation, the linearized 

problem (51}(52) can have no simple e i genvalues on the branch (43) (44) 

with 0 < IE; I ~ e>l<. Because of its importanc e, we state this as a theorem. 

First we define the set 

f/-1 - [A. I A.=A.(e), 0 < lel <8*} (5 3) 

where A.(e) is defined by (44) and E:':<is defined in§ III. 5. 

Theorem 2: 

If the linearized problem (51) (5 2) is defined and can have 

only simple eigenvalues on ~l, then it has no eigenvalues at all there. 

For any point (u(t;),\) E C [a, j3] x ~. define the following sets: 
n 

(54) 

il o1 (';1') - (u(s) ECn[a,j3JI 1\ u-u II ~ 01} (55) 

'Jfol 
- [ w( s) € Cn[a,j3JI lwl ~ 01 } (56) 

?16 (\ ) - [A E ~ I l A-r I ~ o 1 (5 7) 

W e now state and prove the basic continuation theorem. 
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Theorem 3 ~ 

Iff(~. A., u) is defined in ~ and f and f ~ exist and are con-
uu UA 

tinuous there; ifu(~) is a nontrivial solution of the nonlinear boundary-

value problem (41) (42) for A.= A,'; and if the linear problem (51) (52) 

has no nontrivial solution for A. = t and u = 'i'i; then there exist con-

stants o and o in (0, 1 ], such that the nonlinear boundary-value problem 
1 

(41) (42) has a unique solution u(t;, A.) 1€ ' ')1
0

/;;_) for each A. E71
0 

(A'). This solu

tion u(S, A.) has the following propertie s: 

u(t;,1') = 7i'(t;), (58) 

u(t;, A.) is continuous in A. for A. E 71
0
(!) and for each~ E [a., [3], (59) 

and u(~, A.) is the limit of the sequence [u(~. A.)( t)} 
00 

defined by the 
1·:;::0 

ite ration scheme 

u(t;, A.)(o) = u(t;) (60) 

u(£.+ 1 )'- [A(t;)+'tfu(t;,'t,u)]u.(l,+l)= A.f(t;,A.,u(t))-tfu(e;,t,u)u(t) (61) 

Proof: 

Mu (a., A.)(£,+ 1 ) + N u(f3,A.)(t+l) = 0, t = 0, 1, 2, . o o 

Choose s ome u( ~) E 110 (u) and define 
l 

w(E;) = u(~) - u(t;) 

The n w E ')f 
0 

, and u is a solution of {1) (2) iff w satisfies 
l 

(62) 

(63) 
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Dy hypotlwsis, the li1war p1· ob"l< ·1n obtai1H·d fro111 ((,•J)((• '1 ) l>y .•wlliiiJ..: 

lh<' right-hand side of (64) t~qtt<.Ll to :t.<~ro has no lllllllrivi:tl solutio••~•, 

so a Green's matrix C'(~, T) exists by which (64) (65) lllay bv transfonn<•d 

to the e quivalent integral equation: 

w(S) = l Qs, T) [Af(T, A, ~+w)-Af(T, t, ~)-A f (T, t, u)w(T)]d'f • 
a u 

(66) 

Let the operator on the right side of (66) be represented by TAw. Then 

(67) 

and w i s a solution of (66) iff w is a fixed point of T A. 

Defining norms in the usual way with respect to the set S , we 

have , for w, w(l) and w(:a) in ')f-
01 

and A E 71
0

(1:'), 

(68) 

if 

(69) 

\\~II {\\f\\+ 1'):11\f)\} 

Also, 

\ITA.w(
1

)-TA.w(a)\\ ~lle'\\ {\\Af(T, A,u+J
1

>)-A.f(T, A, u+w(2 ))-Afu(T,'X,u)(J1 ~J2~\l} 

~ \\G\1 { \\ful\o + 11:1 \\fuA\\o+ l'AI\lfuu\161 } \\ wh>_w(
2
)\\. 

So, 

for any 0 < e < l , ( 70) 
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if 

b < e 

and 

e 

The r efor e we define, for any 0 < 8 < 1 , 

and 

== min { ____ e ______ _ 
2 lle;\1 I'X I \\fuu\1 

(72) 

With these definitions the con t racting mapping the orem applies and we 

conclude that T A. has a unique fixed point in ')f 
01 

for each A. E ??.
0 

();.') . 

This fixe d point w is a unique solution of (66) in ')1-
01 

and is continuously 

differ e ntiable and so is the unique solution of (64) (65) in')l-
01

. Therefor e 

u(~, A.) ==u+w is a unique solution of (41) (42) in U"
01

, for A. E~0 • 

Furthermore, it follows from the contracting mapping theorem 

that u(S, A.) is the limit of the sequence of iterates (60){61)(62). and the 

convergence of this sequence is uniform in A. 0 71
0 

{):.}. The continuity 

of u(s, A.) in A. follows from the continuity of these iterates and their 

uniform convergence. Also, from (69). A.= I when 61 == 0, thus ver ify -

ing (58), and the theorem is proved. 

It is now clear how to proceed with the continuation of a non -

trivial solution branch away from its bifurcation point. We start with 

the branch (43)(44) given in a neig hborhood of the bifurcation point (0, A.0 ) 



-89-

by the theory of Chapter III or IV, and, if possible, find a point ('il', 1.) 

on that branch to which Theorem 3 applies. Then the iteration scheme 

(60)(61)( 62 ) generates a solution u(t;, A) for A in the neighborhood 71
0

(1'), 

and by the uniqueness, it must coincide with the original branch where 

there domains of definition overlap. Call 'r = A(l) and71
0

<'tF-71 (1). Then 

we can pick a point A (:'J) which is further from the bifurcation point Ao 

than A(l.) was, and if it is not an eigenvalue of (11) (12), apply Theorem 

3 again to extend the definition of u(~, A) into the new neighborhood 

71 (:a ) = 71
0

(:a) (A (z \. This process may b e repeated indefinitely, provided 

no eigenvalue of the linearized problem (51) (52) is encountered. In this 

regard we are helped by Theorems 1 and 2. 

However, even if problem (51) (52) has no eigenvalues, we have 

not yet shown that thi s process will take us anywhere. That is, suppose 

that, for some n ~ 1, 

for a ll m ~ n (73) 

In such a case , the points A (k) will still be a monotone sequence moving 

away from Ao, but they w ill be bounded above, and the neighborhoods 

?i (k ) will shrink in such a way that the domain of definition of u(s, A) 

is not extended at all. We prove in the next theorem that such a 

frustrating situation can occur only for very good reasons. 

W e note in passing that the iteration scheme (60)(61)( 62 ) may 

not be the b est way to compute the continuation in practice. The 

method of Poincar~ continuation, described by H. B. Keller C23], 

pages 146 -149, is m ore practical. 
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In the following theorem we assume, for convt!nicnce, lhat 

the solution branch is b e ing continued to the right; that is in the 

di r·t:ction of in c n:asing A. ,frorn A. 0 • The case of decreasing A. i::-; of 

course equivalent. 

Theorem 4 

Assume f(s, A., u) is continuous in (S, A., u) and f , f , and f '\ 
U UU U11. 

are defined and continuous in (S, A., u), for e ach s E [a, f3], for all 

A.> A. 0 and for all u E C [a, f3]. Suppose the continuation process of 
n 

Theorem 3 is carried out on a monoto:1.e increasing sequence of A. (k), 

k = 1, 2, .•. , thus defining the continued solution branch u(s, A.). Let 

A. ::;c be the least upper bound of all possible such A. (k). Then exactly one 

of the following thre e possibilities must occur; 

(a) A.*= oo, (that is, u(s, A.} exists for a ll finite A.); 

(b) 

(c) 

Proof: 

'\ 'lc 
II. < oo, and II u(s, A.)\\ .... oo as 

'\* 
II. < 00, 

of the linearized 

= lim u(s, A.) exists, and A.* 
A.->A.* 

problem ( 11)(12). 

Clearly (a), (b) and (c) a re mutually exclusive. 

1s an eig e nvalue 

Suppos e neither (a) nor (b) occur, and A.* is not an eigenvalue 

" * of problem (51)(52). Then A. ' is finite, and u(s, A. ) =lim u exists. 
A.__. A.* 

From Theorem 3, u(t;, A.) is continuous in A. for A. (l) :s: A. <A.*, so this 

definition makes u(s, A.) continuous in A. for A. (l) :s: A. ~ A.*. 

Choose one sequence out of the many possible monotone in

cr easing sequences [A. (k) }~= 
1 

with A. (k) -> A.* and A. (k) :fA.*, k = 1, 2, .•• 
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The n clearly u(~, f... (k)) is continuous in S E [a, f3] for k = 1, l, ... 

The continuity of u(s, t...*) in s E [a, f3] then follows from the < ~ qui

continuity of the seque nc e (u(s, f...(k))}:=
1 

which is prove n in the L<,n una 

below. 

By the hypothesis that t...* is not an e igenvalue of (51)( 52), a 

Green's matrix G(s, T, A.) e x ists for (51)(52), and it follows from the 

continuity of u(s, f...) that G( s, ,-,f...) is continuous in f... for /...1 ~ f... ~ /...:>;< • 

Consider the following integral equation which is e quivale nt to ( ~i1)(42) 

* for /...1 ~ f... <f... ; 

f3 . 
u(s. f...)= A ! G(s, T, f...)[f(T, f..., u(T, A.))- f (T, A, u('T", f...) )u(-r, f... ) ]dT (74) a u 

Both sides of (74 ) are continuous in f... and uniformly continuous in s 

for f... .... t...*, so (74) remains valid if we let f... = t...*. Hence u(s, t...*) is the 

unique solution of (74) with f... = t...*, and by Theorem 8 of Chapter II, 1 s 

the unique continuously differentiable solution to proble m (41 )(42), 

whe r e by unique we now mean unique in a sufficiently small n e ighbor ... 

hood of the solution branch under consideration. 

But now Theorem 3 is a pplicable at f...;;.c and so the solution branch 

can be continued beyond t...* into an open neig hborhood of t...*, which con

tradicts the hypothesis that f..."~ is the l e ast upper bound. The r e for e a t 

least one of (a), (b), or (c) must occur, but since they a r e mutually 

exclusive, exactly one occur s . 

L emma 

Suppose that the hypotheses of The or e m 4 are satisfied, and 

that t..."-c is finit e and u(s , t...*) exi s ts as define d in Theorem 4. L e t (tk)}
00 

k= 1 
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bc the monotone increasing sequence of Thcorem4 with A. {k) .... A.~ a nd 

A{k)* A.*, k = 1, 2.,... TlH ~n the scquc11Cl' of functions u(lq(~)iEu(~,A(k)), 

k = 1, 2., ••• , is cquicontillUUliS in ~for s E ru, j-3]. 

Proof: 

Choos e any t such that A(~) ~ t < A*; this t will remain fixed 

throughout the proof. Define u{S) = u{s, !). Clearly tis not an e igen-

value of (51){52). 

For each k = 1, 2, ••. , )k){s) is the solution of the problem 

u(k){s)'- [A(s)+X fu{s,t.~)]u{k)(S) = A(k)f(s, A.(k),u{k))-'rfJs;1,U.')u(k){S) 

{75) 

{76) 

which is equivalent to 

(77) 

where the Green's matrix G{S, 'T) is define d by 

(78) 

which exists. Now, 

13 ' II u (k) { S ll))- u {k) ( S {z) II ~ fa II Ci( ~1 ), T )- e;( ~{a), T) II d T II A.(k) f( T, 'A{k >, J k))-tfu( T, 1',';:1') 

u(k)\1 (7 9 ) 

Since A {k) and \lu (k)l\ are bounde d for all k, and for k-. en, there exists 

a constant ~, such that 

for all k (8 0). 
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Use a tilde to d e note that the quantities so marked are to be evaluated 

I"'J 

at A. = A.. Then, from (26) of Chapter II, 

1: \\e'(!;<1 >, 'f) .. G'( t;<1 >, 'f >II d'f s: i 1:\1 Y( s <d) [I sgn( sh >_'f)+ E:-1DJ-Y <~a~ 

[I sgn(~(a)_'f) + ~-l'j)J~ll?'-l('f)\ld'f 

f3 
~11\Y(!~(l)) -?'(s(2 ))\l /a II I sgn(s(l)_'f)+B-1 D \1 \1?'-1 (1")\ld'f 

+-!- \\?'(!;(a))l\ • 21 S(l)_S(a)l \IY-1 1\ 

Since 7 and ?'-1 are continuously differentiable in s (or 'f), there exists 

a constant ~ 2 such that 

Let ip = .P 1 ipQ, and we have from ( 39). (40) and (41) ·that 

with ip independent of k = 1, 2, .• . 

Thus the sequence {u(k)(s)(
1 

i s equicontinuous ins for~ E [a, f3] • 

V. 5. Comparison with the Perturbation Method 

Formal perturbation theory is often used to obtain very useful 

approximations to solutions of bifurcation problems. This method 

originated in the work of Lindstedt and Poincar~ [ 38] on p eriodic 

tnotions in celestial mechanics. It has recently been appli e d by 

J. B. K e ller and others [ 26], [27], [36] to a numbe r of physically 

important nonlinear boundary- value probl.en1s, which arise in such 

diverse areas as nonlinear optics, heat conduction, vibrations, and 
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su pe rconducti vj ty. 

In this section we will show how the iteration method which we 

have presented can be used to justify rigorously the approximate solu-

tions obtained formally by p e rturbation theory, and furthermore we 

prove that the nth iterate obtained by means of our iteration scheme 
; 

contains the first (n+l) terms of the perturbation expansion. 

First we define what we mean by "the formal perturbation 

method" for a class of bifurcation problems. This definition is 

essentially that presented in [27]. Let L be a linear differential 

ope rator of one of the types which has been discussed in this the sis; 

that is 

L u - u 
1 + A(~)u as 1n Chapter II; or (83) 

Lu (84) 

a s in ~V. 3. 

L e t B repr e sent the appropriate boundary operator, viz 

Bu M u(a) + N u([3) = 0 or (85) 

B u - u(s) = 0, (86) 

respective ly. Let f(s. \, u) b e the appropriate nonlinearity as previous-

ly defined for each of the above operators. Then we can represent 

any of the above problems as 

L u = \ f( S, \, u) (87) 
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B u = 0 ~ E 8 ~ (88) 

The formal perturbation method for problen1 (87) (BH) proct•eds a::~ 

follows. Clearly u = 0 is a trivial solution of (87) (88) for all A • A 

one-parameter family of nontrivial solutions of (87) (88) is sought, 

which splits off of this trivial solution at some value of A , say A = Ao. 

Assume that such a one-parameter family exists and that it can be 

expressed in the form 

. . . , (89) 

A(€) (90) 

These power series in E: are not assumed to be convergent, but are 

generally assumed to be asymptotically valid, uniformly in S· That is, 

it is assumed that for each n = 1, 2, •••• m (m may be finite or infinite), 

the following is true uniformly in s 

( 91) 

(92) 

as E: _, 0. (The order symbol O(e:n) is defined in Appendix A.) Sub-

stitute (89) (90) into (87) (88) , differentiate repeatedly with respect to 

e , and set e: = 0. Then the following sequence of linear problems is 

obtained, assuming of course that the indicated derivatives of f exist: 

(93) 



e tc., with boundary conditions 

B X. = 0 
1 

1 = 1, 2, .•• 

(94) 

(95) 

The first of these is just the familiar linearized problem and 

so A.0 must b e an eigenvalue and xt the corresponding eigenfunction 

Yo (s) of ( 13) ( 14). We assume throughout this section that A. 0 is a simple 

e igenvalue. The subsequent linear problems are inhomogeneous, and 

so A.. is determined by applying the basic alternative theorem to the 
1 

(i+1)th problem, which is then solved for xi+
1 
(s). The solution xi+

1
(s) 

is made unique by the condition fy
0

(E;)xi+
1 

(!;)ds = 0, i = 1, 2, ••• 

This method fails when the derivatives off fail to exist or when the 

coefficient of A.. in the (i+1)th equation is zero. For example, (94) 
1 

yields 

W e. now compare the asymptotic forms of the approximate 

solutions obtained b y the iteration scheme presented earlier and the 

perturbation method ju s t describe d. Note that the contracting mapping 

the orem as used in Chapt ers III and IV to prove that the iteration schemes 

converge, also tells us that thi s convergence is ge ome tric in e: . That i s : 

\\ v (E;, e:)-v(j)(s. e: ) \\ 

I Tl<d - Tlu> <e:> I 

= 

= 

and (97 ) 

(98) 
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for j = 1, 2, .•• , as E: -+ 0. Here v(~, E:) and T)( r:: ) are tltc exact solu

tion and v(i)(t;, E:)~T)(j)(E:) are the /h iterates. If we define 

(99) 

( 1 00) 

for j = 1, 2, ••• , and jej ~ E: 0 , then we have from (97)(98) that 

( 101) 

= (1 02) 

Combining (101) (102) with (91) (92) we have the following theorem. 

Theor em 5 

If the pe rturbation method is valid, that is if it generates ex-

pansions of the form (89) (90) which have properties (91) (92), then the 

perturbation expansions (89) (90) are related to the iterates (99) (100) 

by 

( 103) 

j >I -- O(,_j+1) + E: x. <;. 

J 
( 1 04) 

for each j = 1, • • • , m- 1 • 

This leaves open the question of whether or not the formal per-

turbation method is "valid" for a given problem. In many case s the 

validity can b e proven by a simple extension of the iteration method. 

In fact, in § III. 6 we have already done this for ( 104) with j = 1, or 

greater in some special cases . More generally, we could take as our 
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ansatz 

a n n+1._. 
u(E;. e): € ~ (s) + e x~(s) + ••• + e xn(E;)+e v(s, e) ( 105) 

= '-. 0 + e '-.1 + ••• + enJ. 1A. +en T)(~) , 
n-1 ( 1 06) 

where x . (E;) and A.. are determine d by the perturbation method, and 
1 1 

with sufficiently differentiable f(s, A., u), we could find the equations 

which v and n must satisfy and then attempt to prove as we did 

with v and T], via the contracting mapping theorem, that';; and Ti' exist 

and are unique and bounded, which would verify (91) and (92). However, 

this approach can become very t edious and we do not attempt it here. 

An entirely different approach is to prove (103) ( 1 04) by indue-

tion, and then use (97) (98) to verify (91) (92). We now outline this 

inductive argument. For convenience in the notation, we assume that 

f and u are scalar functions and f is independent of A. Assume that 

f(E;, u) has continuous derivatives with respect to u up to order m :2: 3, 

uniformly in S. Then define the functions 

f (s, O)x.(s)+!f (s, O)(x1 x. 2 + ~x. 2+ ••• +x . 1~) u J uu J- J- J-

1 ( a a + 7 f ~. 0)(~ x. 2 + x 1 x.. x. 3+ ••• + x. 2 x 1 ) 
0 uuu J- ., J- J-

+ .. . 

+ - 1
- f . (S, 0) xj 

. I ll:J 
J . 

( 1 07) 

for j = 1, . • • , m • 

We a lso define 

j = 1, ..• , m . ( 108) 
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Then the equations which dete.nltilll! the COI!fficicnts in the perturbation 

expansion are: 

[L- 'Ao f (s, o>J~ = 0 
u 

( 1 09) 

[L 'A0 f u ( s, 0) ] X:a = "-o g(:a) (s) + "-1 gh>(s> 

( 11 0) 

[L - A. 0 f (s .. O)J Xs = 'Ao g (3 ) + 'A
1 

g(:a) + 'A:a g(l) 
u 

or in general , 

[L-1\.ofu(s .. O)]xJ.+1= 'A g(j+1)+A. g(j)+ ••• +A.. g~:a)+'A . gh) ·=o -1 o 1 J-1 J , J ....... m • 

The boundary conditions in each case are 

= 0 .. j = 0, 1, ••• m-1 .. 

and for uniqueness we require 

j = 1, 2, ••. 

The orthogonality condition applied to (32) (33) determines 

A. = 
J 

( 111) 

( 112) 

( 113) 

( 114) 

for j = 1, 2, ..... m-1. Here z 0 (S) is the eigenfunction of the adjoint 

problem corresponding to ( 1 04)_( 112) • 

Now we consider the iteration method. By hypothesis, f(s. u) 

satisfies the identity 
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1 2 1 m-1 
f(~, u) = O+fu(~, O)u +a fuu(~, 0) u + .•• + (m-l)t fum_ 1 (~, O)u 

so 

1 1 /1 2 m-1 
+ I I ·: · · f ( ~- P P 1 • • • Pt u) P 1 P 2 • • • P1 

0 0 0 um m m- m- m-

m 
dp ••. dpl u n 

1 2 1 ( m-1 m 
f(~, u) = f (~, O)u +a f (!;, O)u + ..• + ~)1 f 1 ~. O)u +O(u ) u uu m- m-· u 

( 115) 

{ '+1) ('+1) 
as 1\u\\ - 0, uniformly in ~. The iterates v'J and 'Tl J are deter-

mined by the equations 

f y
0 
(~)v(j+ 1 )(S)d~ = 0, j = 0, 1, • •. , ( 11 7) 

B v(j+ 1) = 0 ( 118) 

for j = 0, 1, ••. , where the integrals are taken over the appropriate 

set~ E [a, f3] or ~ E ~. say, and whe re 

)o) = 'Tl (o) 0. ( 120) 

Now w e take for our ind u c tion hypothesis the following equa tions: 
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)j)(s' E:) = X;a (~) + E: X(3 (S) + ... + E:j-
1 

xj·l 1 (~) + O(E)) ( l 21 ) 

' ' j-1' ·! O("'j) = 11.1 + E: 11.~ + . . . + E! 11.. "' 
J 

(122) 

It is easily se·~n that (121) (122) is valid for j := l. We assume (121) 

( 122) valid for j = 1, ... , n and prove the validity for j = n+ 1, where 

n ~ m-3. Substitute (115) and (121)(122) into (119) with j = n. Then 

Tl (j + 1) = 

{1),3 m-3 
+ _6E: f (~, 0) (yo +E:V'' )+ •• • +(~1 If 1 (E;, 0) uuu m- .. 1 m-

u 

+ ... 

+O(E:j+1)} 

Hence 

( 12 3) 

Using this in (116) we g e t 
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("11) . " I I (")d 
[L-A.0f)~. O)]v·.J · (~) = (A. 0 1e: A.1 +. . . + ~:J~ ·IO(e1 ))[~l"u 11 (1~, O)(y0 i € v.J) 

1 i- f ( ~. 0) ( y 0 tE: ).i ) ) 
3 

0 uuu 

m-3 . 
,.; ( ~ 0 ) ( (J ) m- 1 m-2 ) ] 

+ (m-1)!f m-1 -;,, , Yo+E:v ) +O(e 
· u 

+ 0'-1 +e A.:a + ... +ej -
1

A..+O(J))f (~, O)(y0 +e )j)) 
J u 

+ E)A.j+ 1 fu (S , O)y0 

(124) 

+ ... 

+ e)[A.o g(j+2)+ A.l g(j+1)+A.2g(j)+ ..• +A.jg(2)+\j+l g(l)] 

+O(ej+l) 

Since this is true for all sufficiently small €, we get from (111) that 

[ J (j + 1 ) j j + 1 
L-\0 fu(S, 0) (v - x2 -e x 3 - ••• - e xj + 2 ) = O(e ) • (125) 

But now, since v(j+ 1 ) and the x. are orthogonal to y 0 and satisfy the 
1 

same boundary conditions, a trivial argume nt involving the principal 

generalized Green's function gives: 

(" + 1) . "+ 1 
v J (f;, e) = X2 (S) + e X3 (~) + ... + elxj+2(~)+0(eJ ) , ( 126) 

which, with (123), is what we set out to prove. 



-103-

.Finally, (L2 3 ) and (1 26 ) c a1o l>c ccnnbincd with ((J9) and (100) l:o prove 

(103 )(104), w hich tog e the r with (101) (122) verifies (9L) (92). We have 

thus proven: 

Theorem 6 

If f(S, u) has c ontinuou s derivatives up to order m with respect 

to u , unifo rmly i n s, for s ome m ~ 3, then the two approx imate solu-

tions obtained by the iteration m eth o d and the forma l p e rturbation 

method a re r e lated by the equations 

(12 7) 

(128) 

as E: - 0, for each j = 1, 2, . .. , m-2 . Furthermore, the perturbation 

method is " valid" in the asymptotic sense previously d efined. 



-104-

CHAPTER VI 

AXISYMMETRIC BUCKLING OF THIN SPHERICAL SHELLS 

VI. 1. Introduction 

One of the outstanding problems of applied mechanics is that 

of finding a mathematical theory for reliably predicting the buckling 

behavior of thin structures. By buckling we mean, roughly speaking, 

a large change in the displacement of some part of the structure 

caused by a small change in the magnitude of the applied load, 

occurring while all parts of the structure are well below the elastic 

lim.it of the material. 

An elementary example is the buckling of a slender elastic 

column due to axial compression. This problem was first analyzed 

theoretically by Bernoulli and Euler. Experimentally it is well 

known that as the axial load is increased from zero, the column at 

first shortens and thickens slightly, but remains straight. How

ever a critical load is soon reached at which the slender column 

begins to buckle; that is it bends into a curved state. If the load is 

increased further, the column bends more sharply until the elastic 

limit is p assed at some point in the material, and the column 

eventually breaks. However, if the load is removed before this 

occurs, that is while the column is still behaving elastically, then 

the column returns to its original straight condition. This elastic 

transition between the straight and curved states caused by a small 

change in the axial load is what we call buckling. The mathe matical 

theory of column buckling is well developed; see for example [19 J 

a nd [ 41 ]. 
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A nontrivial example of buckling in which there is much cur

rent interest is the buckling of spherical ohells subject to a unifonn 

external pressure. T. von Karman and H. S. Tsien [ 48], having 

observed experimentally that the buckling deformation is usually a 

"dimple" confined to a small region of the sphere, initiated the 

theoretical investigations of a clamped spherical cap, which would 

correspond to the region of the sphere in which the dimple occurs. 

This approach was developed in [ 10] [24] and elsewhere. In 

recent years interest has returned to the theory of buckling of 

complete spherical shells, see [ 3], [28], [ 42] , [ 46] and [ 49]. 

The agreement between theoretically predicted and experimentally 

measured buckling behavior is still relatively poor. In most cases 

the discrepancies are attributed to unavoidable imperfections in the 

real shells used in the experiments, and some attempts have been 

made to include the imperfections in the theory. 

Without attempting to solve the outstanding problems in the 

theory of shell buckling, we show in this chapter how the bifurcation 

th e ory of the previous chapters can be applied to a mathematical 

model of the buckling of a spherical shell under a uniform external 

pressure. We do not exploit the full potential of the bifurcation 

theory for predicting buckling behavior, and in fact the theory is 

capable of providing much more inf,ormation than is presented here. 

However, such d a ta are abundantly available in [ 3]. The theory is 

adrnittedly unphysical in that we make the following two as smnptions: 
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first that the shell is free of i .mpcrfections, and second that only 

axisyn1metric clcforrnations occur. 

The rnathernatical mode l (l) (2) (3) is that derived by 

E. R eiss in [ 3 ]. The nonlinearities come from the strain-

displacement r e lations and thus a re geometric in origin. It is 

assumed that the linear stress-strain relations are valid, that is 

that Hooke's Law is valid. Other customary assumptions 

of shell theory made here are: the shell is thin, normals to the 

midsurface remain normal to the deformed midsurface, the normal 

stress in the radial direction is negligible compared to the other 

normal stresses, and the strains are small compared to 1. The 

derivatim in [ 3] is based on the variations of the energy integral. 

Equivalently, equations (1) (2) (3) can be obtained from the equations 

of equilibrium of forces and moments as is done for the lineariz e d 

model by Timoshenko [ 4 7]. 

The resulting mathematical model of sphere buckling is the 

nonlinear boundary value problem 

( 1) 

(2) 
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The symbols in these equations have the following d efinitions and 

physical i nterpretations: 

~ = cos e, where e is the polar angle measured 

from the north pole, 0 < e < 'IT, 

x
1 
(~) is proportional to the shear strain, 

x2(~) is proportiona l to the rotation of a tangent to a 

meridian, 

v ·- Poisson's ratio, 

u = .J.. 
" - 3 

( .!:..) 2 
R 

is the dimensionless thickness parameter, 

w here h = thi ckness of shell and R = radius 

of sphere, 

p - % i~ is the dimensionless load parameter, 

where E = Young's modulus and P is the 

uniform external pressure. 

Our x 1 ( ~) and x 2 ( ~) are i dentical to q and v respectively 

in [ 3 ] • 

Clearly x (s) = 0 is a solution of (1) (2) (3)" for all values 

(3) 

of p. W e call this the trivi a l solution; physically it corresponds to a 

uniform radial contraction of the sphere due to the load p. 

Experimentally it is well known that for a sufficiently large load 
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the shell buckles into a non-spherical shape. In the mathematical 

model ( 1) (2) (3 ) there are values of the load parameter p at which 

bifurcation occurs, that is nontrivial solutions appear. These 

nontrivial solutions describe possible buckled states of the sphere. 

Whether or not a physical sphere actually buckles onto one of these 

states depends on its relative energy; in general a structure buckles 

into states of lower energy. We do not go into such energy 

considerations here; see [ 3 J. 

The radial displacement of the uniformly contracted unbuckled 

sphere is ( 1- V) p. Superimposed on this is the buckling displacement 

of a point on the sphere at polar angle 8 given by the 2-component 

vector u( 8) where 

ul ( e ) - tangential displacement in 8 direction, 

u
2

( 8 ) ;: radial displacement toward center. 

We may neglect azimuthal displacement by the axisymmetry 

assumption. The displac e ment components are given in terms of 

x
1 

and x
2 

by 

2 

u 1(8) -(l+v) x
1

(8) sin 8 r 8 
x

2 
(coscp) 

dcp, ( 4) = - ---z- ·-0 sin cp 

dx1(cos8) 8 
2. 

uz( 8 ) -xl(cos 8) cot 8 -
cos 8 Jo 

x
2

(coscp) 
d co . (5) = d8 2 sin c:p 
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The theory of the preceding chapters cannot be applied 

directly to the sphere buckling problem (1) (2) (3). These equations 

can easily be reformulated as a system of first order equations 

which have the form of the problem of Chapters I I I and IV except 

that the coefficients are singular at the end points s = 1 and s = -1. 

Therefore none of the linear theory of Chapter I I is applicable, 

since there we required that all coefficients be continuous (or at 

least integrable -- see Chapter V), and so it is necessary to verify 

that the basic alternative theorem still holds and the generalized 

Green's matrix exists for this problem. This is done in Appendices 

C and D. 

Since the l inearizations of equations (1) and (2) are closely 

related to Legendre's differential equation, it is convenient to keep 

the problem in the form (1) (2), rather than in the form of a first-

order system, so that the well -known properties of Legendre's 

e quation may be utilized. Once the necessary linear theory is 

verified, the nonlinear bifurcation theory follows in the same general 

manner as it did in the previous chapters. This demonstrates the 

power and generality of the method. 

For convenience, we rewrite the problem (1) ( 2 ) (3) as follows . 

Define 

2 d 2 
L = -( 1-s > -::-::-z + ds 

d 
2£ dr + 

(6) 

d { 2 d ] -cit (1- s > crs + 
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(7} 

( 8} 

A(p) (9) 

£(£,x<s> > - ( 1 0) 

Then (1) (2) (3) is 

Tx ( s ) =A (p) x ( s ) + f(s,x(s)}. - 1 <s< 1, ( ll) 

x ( -1) = x( 1) = 0. ( 12} 

VI. 2. The Linearized Problem 

The linearized problem corresponding to (11) (12} is clearly 

T Y<s> = A(p) Y<s> ( 13} 
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y ( -1) = y( 1) = (). ( 14) 

where 

We seek values of the load parameter p for which this problem has 

nontrivial solutions. When suitably normalized, we call such 

solutions eigensolutions, and the corresponding values of p the 

eigenpressures. 

Legendre's differential equation for a scalar function cp(£) is 

( 15) 

and has linearly independent solutions called the associated Legendre 

functions and designated 

Setting 0"= l, (15) becomes 

L cp (s) = [n(n+l) -1 J cp (£), (16) 

and (16) has solutions P(l) (s) and Q {1)(£). If n is an integer, 
n n 

P(l} (£) satisfies the boundary conditions 
n 

p(l) (-1) 
n 

= p(l) (1) = 0, 
n 

and Q {l)(s) blows up at s = :±-1. If n is not an integer, neither 
n 

( l 7) 
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p( 1) (£) nor Q(l) (£) satisfies the boundary conditions (17). Further-
n n 

more p (!)(£) = 0 and 
0 

p(1) . (~) 
-n-1 

= p(l) (£). 
n 

Hence the scalar problem consisting of differential equation (16) 

with boundary conditions of the form (17) has the eigenfunctions 

p(l) (~) 
n 

n= 1,2, ••• 

and corresponding eigenvalues 

( 18) 

A = n ( n+ 1) -1 , n = l , 2, ( 1 9) 
n 

Now consider the matrix A(p) defined by (9). It can have 

two eigenvalues, say A+ (p) and A -(p) which are functions of p 

and are given by the roots of the characteristic equation 

A + 
2 

+ p ( 
1 

- ~ ) v - v
2 = 0. (20) 

Assume for the moment that (20} had unequal roots. Then A(p} can 

be diagonalized, that is there exists a non-singular matrix S such 

that 

= ( 
A +o(p} 

s-1A(p)S (21) 
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Define 

-1 
w(s) = s y(£). 

Then problem (13) (14) is equivalent to 

= 

w ( -1 ) = w( 1 ) = 0 , 

which is just two independent scalar problems which have a 

nontrivial solution if a nd only if one of the eigenvalue s A+ or A 

of A(p) is equal to an eigenvalue A of L defined by (19). If 
n 

+ -for some value of p, e xactly one of A (p) and A (p) is an 

(22) 

(23) 

(24) 

eigenvalue of L, say A+ = A and A- =/ A for all m, then ( 13) 
n m 

( 14) has exactly one eigensolution given by 

y(s> ( 25) 

In this case we write p = Pn and w e call pn a simple eigenpressure 

of (1 3 ) (14). If both A+(p) and A -(p) are eigenvalues of L for the 

+ s ame p, say A = A and A-= A , then (1 3} (14} has a two-
n m 

dimensional space of e igensolutions spanned by 

a nd ( 26) 
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and we call this value of p a degenerate eigenpressure. 

The simple eigenprE'ssure P is easily detern1ined by 
n 

substituting X.= X. in (20), which gives 
n 

(X. + v) + 
n 

1 
n= 1,2, ••• 

{X. - v) 
n 

Then the condition for a degenerate eigenpressure to exist is that 

pn = pm for some n and m with n f. m, which yields 

(X. - v) (X. -v) 
n m 

In most of what follows we assume that pn is a simple eigen-

pre ssure (i.e., that (28) is false for all m) and that A(p ) has 
. n 

distinct eigenvalues. 

(27) 

(28) 

Now suppose that (20) has a double root, so that A(p) has 

two equal eigenvalues. The n we can easily show that A(p} cannot 

be diagonalized and that problem (13) (14) can have at most one 

independe nt eigensolution, which exists only if this double root. 

e quals some X. , n = 1, 2, 
n 

Thus a double root does not l e ad 

to a deg e nerate eigenpressure. 

D efine the matrices 

for each simple eigenpressure p • Then the eigenvalues of A , 
n n 

from (20) are 

X.+ = X. = n(n+ 1) -1 
n 

(30) 



v + I - v 

-IJ S 

l 

- Ji -fl--=·V) . 
11 

H e r e f.!. is defined to be the po s itive root of 

a nd f.!. i s not a n integ e r w h en P is simpl e . 
n 

( ~ I ) 

( 3 2) 

The normalized e i gensolution of ( 13) ( 14) corr esponding t: o 

a simple e ig e npres sure 

where 

p is 
n 

H e r e w e h ave norma lized y (n)( ~ ) by 

using 

n(n+ 1) 
n+ 2 

A matrix S which diagonaliz es A i s 
n n 

( 3 3 ) 

( 3 4) 

( 3 5) 

( 36) 

( 3 7) 
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(38) 

and its inverse is 

s-1 = ( 1 

n -(A. -v) 
n 

-c _:12) (A.n -v)) ____ 1 ___ ---....2. 
1-( rt )<>-.. -v) 

1 2 n - \) 

(39) 

Corresponding to the eigenvalue A. f.L of 

P(l) (£) which is a solution to the equation (16) 

A is the function 
n 

f.L 
with n = f.L, 

but does not satisfy the boundary conditions. 

in constructing the Green's matrix in Appendix D. 

The problem adjoint to (1 3 ) (14) is 

( 40) 

z(-l)=z(l)=O. (41) 

This problem has the same eigenpressures as (13) (14) and the 

normalized eigenso1utions 

( 42) 
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where 
( 43) 

b = -( rt ) (f-. - v) b . 
2 1 2 n 1 - v 

(44) 

The properties of Legendre's functions which are used throughout this 

chapter, and many useful formulae, may be found in [ 1], [ 16] 

and [ 20] . 

VI. 3. Bifurcation at a Simple Eig e npressure 

In this section we indicate very briefly how a slight 

modification of the proof of Theorem 2 in Chapter I I I enables us 

to prove that bifurcation a ctually occurs in the nonlinear problem 

(11) (12) at the simple eigenpres s ures p of the lin earized problem 
n 

( 13) (14). We seek a nontrivial solution branch of the form 

x(£, E:) = E: y(£) + £
2 ~ v(£, E: ) ( 45) 

p( €) = p + E: Y] ( € ) . 
n (46) 

Here y(s) is the normalized eigensolution of (13) (14) corresponding 

to the simple eigenpressure p • Note that we have written an 
n 

explicit factor of P in the second term of x. This stratagem 

knocks out the singulariti e s which otherwise appear in f. The 

f unction v is no longer r e quired to satisfy the boundary conditio ns 
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but only to b e continuous and henc e bounded in [ -1, 1 ·1 • Since the 

e i gensolutionl:l b e have like~ l- ~ r at ± 1, i t i:; not unreasonable to 

hope that x does too. 

D efine A as in (29 ) and B (e) by 
n n 

Substitute (45) (46} i nto (11} (12} and use (13} (14} to obtain the 

equation which v must satisfy: 

v(£, e )= Bn (y + ep v) 

++ £(£, ey+ e
2 P v) 

€ 

Writing £ out explicity, (48} becomes 

[T-A11 ] P v=Bn(y+ e:pv) 

+ 

( 4 7) 

(48} 
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( 49) 

Note that every term on the right side of (49) behaves like P 
a t ± 1 if v is bounded. From the basic alternative theorem 

in Appendix C, ( 49) can have a solution only if the right hand side is 

orthogonal to z{s). Therefore 11( E:) must satisfy: 

Define 

= 
2 (A. ~v) 

n 

(50) 

(51) 
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Now define a n•apping 

M : [T), v]- [ ff, v] (52) 

by 

f1 = . -
Y

1' [ 1 1 2 _r:;-;z--2 J z >:< f( ~, E: y + E: , 1- ~ v) d~ 
E: -1 

(53) 

(54) 

where G t (~, T) is the generalized Green's matrix from Appendix D. 

Now the iteration scheme 

, v(o) = 0 (55) 

[TJ( t +1), v(-t+1) J = [ ( t ) (t)] M TJ ,v ,,f=0,1, ••• , (56) 

is formally the same a s that d e fined in Chapter I I I. Define vector 

functions r(£, E:,jJ:',T),v) and s(~. E:,T),v) by rewriting (53) and (54) as 

f1 = -.!. s 1 
z * ( s) s ( s • E: ' T]' v) d ~ 

y -1 
(57) 

1 
v= (58) 
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Then a careful inspection v e rifies that s i.s just the right hand side 

of ( 49} with the term Bn y l'emove d, and r is the right hand side of 

- ~ 
( 19} with the tc em By replao!d by B Y• ~-e B indicab · ::; the tl'EI:rix 13 

n n n n 

ridined by ( 4 7) with T) rep] a ced by fj. Then r and :-.1 have the 

following properties. They are continuous in T), v, and s and 

b e have like p ~s ; ...... ± 1 provided v(s) is bounded, and 

they satisfy the Lipschitz conditions: 

(59) 

llr (£, E:,,;,T),v)- r(£, E:, [. (,w>ll 

: 131~-~~ +leli1?4 {T1-c(+leli!!5 llv-w ll . 
(60) 

Finally we note that the Green's matrix is so well behaved at ±1 

that the norm 

II 
1 

p 
( 61) 

exists. Thus the procedure used in Chapter I I I to prove T 
E: 

contracting works also for M, with I!Gtl l replaced by (61). It 

follows that M has a bounded fixed point and hence ( 11) ( 12) has 

a solution branch of the form (45) (46). 

The asymptotic form of this solution branch is easily obtained 

for E:-> 0. 
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3 n+ i 3/2 
p(E:)= pn+ E:Z(n(n+l)) 

2 + 0( E: ) • 

When n is odd, the integral in (63) is zero, but we are able to 

calculate the next term in the expansion for p( E:), 

(62) 

(63) 

. 1 2 3 
p( E: ) = Pn + 2 E: p'' (o) + 0 ( E: ), (64) 

where 

p"(O) = 
2 2 

(n+ ~) (A. - v) 
' · n 

(65) -2 2 1-1. 2 2 
n (n+l) [(--

2
)(}.. -v) -1][1+(>... - v ) ] 

1 n n -v 
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1T [ ·fr. (~) (:>-. - \! )
2 

+1 ~ I 
. 1- \J n p(\!1) (-t:.) p(\!1) ( (; )] d C J dt:. • 

+ f.L (f.L + 1) sin 1T f.L - "' "' 

(65) 

Note that p''( o ) blows up when 

( 11. 2\(:>-.n-\!)2 =1, (66) 
1- \) J 

which is the condition that A have equal e igenvalues , (see 28) ). The 
n 

numerical solutions in [ 3] appear to confirm this singular behavior. 

VI. 4. Degenerate Eigenpressures 

As was pointed out in §V I . 2, the maximum possible 

degeneracy in this problem is 2, and this occurs when pn = pm 

for some n;f m, which is equivalent to saying that n and m 

satisfy (28) with n -:j m. W e now assume this to be the case. 

Then the algebraic bifurcation equations for this problem a re: 

2 

L; F ijk qj qk + 
. jk= 1 

2 wL: 
j= 1 

c . . q. = 0 
lJ J 

where the coefficients are defined by 

( 6 7) 

(68) 
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(69) 

i.,j,k = 1, 

and we define n 1 = n, n
2 

= m. 

Now C is a diagon al matrix, so we can divide through and get the 

equivalent equations 

2 2 
ql + q2 = 1, (72) 

Define constants r 4i and B ( n , m) by 
n n 

r ~~ n+ t 
n - n (n+l) 

4i = n 

@ (n, m ) = sl 
-1 

1 

T h e n the A .. k can b e written 
lJ 

(73) 

( 74) 

(7 5) 
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= 2
2 

<p r 3 
8 (n, n) 

n n 

A 3 qi ( A.m-v) r· 2 r IHl (n,m) 
l 12 = t:" m 5\:

11 
- v n m 

<p 2 
m = ~ 

2 1 r (H) (m, n) 
n m 

ip 
n = 7 

(>-.. -v) [% (>-.. - v )+ (>-.. -v)] 
n . n m r 2 r 8 (n, m) 

n m 
m 

(A. - v ) 
m 

~ (>-.. - v ) + ( >-.. -v) 
- n m r r2 

A212 = ipn (A. -v) n m@ (m,n) 
m 

3 3 
A222 = 2 <pm 1m 8 (m, m) 

( 76) 

If n and m are both odd, the coefficients A . . k a ll vanish, which 
lJ 

implies UJ = 0. If n and m are both even, the coefficients are all 

nonzero and (70) (71) (72) does not simplify. However if n is 

odd and m is even, we h ave 

(77} 

so the proble1n reduces to 
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( 78) 

= 0 ( 79) 

( 80) 

One solution to this is 

, ll l = -A222' ( 81) 

and a second solution is 

(82) 

So the algebraic bifurcation equations have in general two distinct 

roots when n is odd and m is even. 

Of course, the analogous situation occurs when n is even 

and m is odd. 
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VI. 5. Numerical Results 

We take v= 0. 3 and consider rt= 10-
3 

(thick shd 1) and 

-5 
~. ::: 10 (thin she ll). Then the eigenpressu:res p are easily 

n 

e vaulated from (27) and (19) . The numerical values of p are 
n 

given in Table I of [ 3], wh e re the symbol P is used instead of 
n 

our Pn· 

From § VI. 3 we see that the simple p are the bifurcation 
n 

points of (11) (12). 

The asymptotic formula of § VI. 3 gives us the slopes of 

the nontrivial branches at the bifurcation points. 

designate ~ e: p ( e: ) I e: =O for each n. Then 

' = 3 [ n+ .J.. ] 3/2 pn(O) 2 

2 n(n+i) 
1 

Use p' (0) to 
n 

Physically, it is of more interest to know how the radial displacement 

u
2

( 8) defined by (5) varies with the pressure near a bifurcation point. 

This is easily calculated from 

(84) 

where from (5) and (62), using formulae in [ 16], 
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n 
_ [1T n(n+l) (n+ -i!) L 
- ( 1+ (,A. _ \) ) 2) 2 4n+ I 

n k=O 

Here II 11
2 

designates the norm defined by 

(2k)! 
2
(2n- 2k)! 

2 

k! 
4
(n- k)! 

4 

which is used in [ 3]. The slopes (84) have also been evaluated 

(85) 

(86) 

from the numerical solutions presented in [ 3], which were computed 

using a "shooting•• method. We tabulate the values obtained by a 

direct evaluation of {84) using (83) and (85), a long with the values from 

the numerical solutions in [ 3] for comparison. 

zero for all odd n, so odd n are not tabulated. 

Note that p 1{0) is 
n 

Note also that 

formulae (83) (84) (85) are all independent of the thickness 

parameter 11. . 
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dl l u 2 11
2 

Slope from 

d llu2 ll
2 

Numerical 

p~(O} dp p=pn solutions n 
d E: E: =O from (84) in [3] 

2 • 2590716 • 5922635 2. 28611 2. 286 

4 • 0922344 • 2965424 3.21510 3. 214 

6 • 0514012 .2051203 3.99058 3.984 

8 • 0339498 .1585912 4.67135 4.67 

10 • 0245807 • 1299478 5.28658 5.27 

12 • 01886128 .110395 5. 85300 5.84 

14 • 01506605 • 0961394 6.38119 6.38 

16 . 01239492 • 085257 2 6.87840 6.88 

18 • 01043059 • 0766628 7.34981 7.35 

20 • 00893603 7 • 0696946 7.79928 7. 81 
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APPENDIX A 

Notation Conventions and D(~finitions 

Except for one or two c a ses where standard usage dictates 

otherwise, the following notation conventions have been adopted: 

Greek capital letters represent positive real bounds. 

Greek small letters represent real numbers. 

Roman capital letters represent matrices and operators. 

Script Roman capital letters represent sets and spaces. 

Roman small letters a to h represent known or 

constant column vectors. 

Roman small letters i to p represent integers. 

Roman small letters q to z represent unknown or 

variable column vectors. 

I is the nxn identity matrix. 

>:< denotes the transpose for real matrices and vectors, 

and the adjoint for operators. 

denotes differentiation with respect to ;. 

means "is identically equal to" or "is defined by". 

R is the set of all real numbers. 

Rn is the n-dimensional real vector space. 

ci [a.. f3 J is the set of real n-dimensional vector 
n 

functions with components i times continuously 

differentiable on [a., 13 ] • 
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The scalar product of two rf:'al vectors in Rn is 

n 

z*y =-= :L 
i= l 

The inner product of z(~) and y(~) in C [o:., i3 ] is 
n 

The orde r symbols 0 and o are defined as follows: 

i]( E: } = O(e) as E: ->0 

iff there exist positive constants q; and 6 such that 

for all I E: I:;: 6 ; 

i]( E: )=o( e ) as E: -+0 

iff 1) ( E: ) ..... 0 as E: _, 0. 
E: 

If M and N are nxn matrices, then [ M, N] represents the 

n x 2 n matrix consisting of the n columns of M followed by the n 

c olumns of N. 

W e define 

a nd 

f(T+) -- lim £(s) 
~ -> T 

s> T 

f( T -) - lim f(~) 
~->T 
s < T 
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Frcchet Differ<·ntials and D<'ri.vatives 

The Fre'chet derivative (or strong derivative) is defined as 

follows. For a thorough and rigorous treatment, see chapter VI 

lll [35 ]. 

Let .£ and .£1 
be normed linear spaces, x and h be 

elements of .£ , and g be a mapping of .£ into .£ 1
• Then g is 

said to be Fr~chet differentiable at x 0 E: .£ iff there exists a 

1 
linear operator G: .£ _, .£ , 

that 

which depends in general on 

g (x +h) - g (x ) = G h + a (x , h) 
0 0 0 

where 

such 

Then G h is called the Fr~chet differential of g at the point x 
0 

for the increment h, and is designated by D g(x , h). The linear 
0 

operator G is called the Fr~chet derivative of g at the point x 
0 

= g (x )h = G h. 
X 0 

If J: and .£
1 

are n-dimensional linear spaces and we have the 

r e presentations 

g(x) = G:)' 
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then g (x ) has the matrix representation J(x ) , where 
X 0 0 

J .. (x ) -
1J 0 

a g. (x ) 
1 0 

ax. 
J 

i, j = 1, . . . , n, 

and J(x ) h is defined by the usual matrix multiplication. 
0 

Before we can define higher order differentials and 

derivatives, we must define homogeneous forms and polynomials 

in h, as in [35 ] . If h 1 ,h2 , ... ,hm are in J:, then a function 

taking values in J: 
1

, is called a m-termed linear form if it is 

linear and homogeneous in each of its arguments h., i = 1, ..• , m. 
1 

It is called symmetric if 

= a (h. , h. , ••• , h . l 
m 1 1 t 2 tm 

where i
1

, ••• , im is an arbitrary permutation of the indices 

1 , z, ... , rn. The norm of 

II a II = sup m 

llan(hl' h2, •.• 'hm) II 
l lh 1 11 llh2 11 •••• II hm II 

Clearly the totality of m-termed linear forms 

linear space. 

a 
m 

is a normed 

The form a (h, h, •.• , h) obtained from a symmetric form 
m 

am(h1 , h 2 , .••• , hm) by setting h 1= h 2 = ••• = hm = h, is called a 

homog eneous form of degree m. It is generally abbreviated 



m 
a {h, h, •.• , h) = a h • 

m n• 
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Clearly a (~ h)m ::: ~m a hm, a nd 
1n n• 

A sum 

p (h) 
m 

of homogeneous forms, a ll of w hich take values in S- \ is called a 

polynomial in h of degree m. 

Now we can define higher order differentials and derivatives. 

Let x , h, a nd g b e as before. Suppose there exists a polynomial 

in h, P (h), and a function r (h) : S- -+ S- 1 
s uch that 

· m m 

P (h) + r (h) 
m m 

Then g is said to b e :: time s Frechet differentiable a t x 0 • The 

polynomi al P n(h) i s calle d Taylor'~ sum of degree ~ for g(x
0

+h} 

and the m th t erm multiplied by m! is calle d the m th F r echet 

differenti a l o f g at the point x
0

, and is designated 

Dmg(x ,h) - n! a hm. 
o rn 
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The corresponding symmetric m-termed linear form is 

fo .rm rn! a i s called the th F "' h t d . t " f •n rec e e r1va 1ve o 
m 

is designated by g m (x ). Thus 
X 0 

Dmg(x ,h)= g m(x) hm = m! a hm. 
o x o m 

The Taylor sum for g(x +h) gives therefore 
0 

g(x +h) - g(x ) = g (x ) h + ~ gxx(x
0

) h 
2 + 

0 0 X 0 

g at and 

If g is a function with more than one argument, the definitions are 

extended in the obvious way; see §43 in [35]. 

If S- and S-
1 

are n-dimensional and x, h, and g have vector 

representations as before, then y = Dm g(x ,h) is an n-vector with 
0 

components 

h . ••• 
Jz 

th / The norm of the m Frechet derivative is defined b y 

- sup 
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In the n dimensional case, using maximum norms, this gives 

The Maximum Norms 

max 
l<i<n 

n 

L: 
j . • jz·· •• j 

1 m 

= 1 

8x. 8x . • • • x . 
J 1 Jz Jm 

Throughout this thesis we use the maximum norm and its 

r e lated norms. They are defined as follows: 

n 
For x, z E: R , 

The n 

llxll -- max lxil' 
l < \ <n - .... . 

n 

II z II 1 ,= :E I Z
1
- l . 

0 1 1= 

z*x <S" ll zll 1 II xji. 

For x, z t. C [a., S ] , 
n 

[[xll = max 
1 <i < n 

max lx.(s)l 
s E:[a.,S] 1 
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Then 

{z , x} ~ II z 11 1 II x II. 

F or a constant matrix M, 

II M II = max £: I M. ·I • 
1 ~ i ~ n J= 1 lJ 

For a Green's matr ix G(~, T), 

IIGII - max 
1< i < n 

The norn~s of t h e nonlinearity f{~, A., u) in the boundary - value problem 

of chapters I I I and IV, and its derivatives, are evaluat ed at A.= A. 
0 

and u = 0, and defined as follows: 

II £11 - max max l fi <~·"-o• 0>1 
1 < i < n ~ E: [a ' i3 J - -

n I 8 £. 1 llfull ·- max max .2: 8~. ( ~. "-o• O) 
1 < i < n ~ e [a , i3 ] J = 1 l - -

2 I n n 8 f. 
llfuu ll - max m a x 2: 2: l au . a: (S,A.oO) 

1 < i < n ~ e[a , i3] j=l k =l J k - -

n I az £. 

((;,'o' 0) I II fUA II max 2: l 
- max 8u.ay 

1 < i < n ~ E: [ a , i3 ] j:;: 1 J 

Som etimes we n e ed b o unds on £ and its d e rivatives when the 

argumen ts a r e a llowed to ran ge over a clo s e d bounde d set S . 



Therefore we defin e 

- max II fll s 
l < i < n 

II full -
s 

II f II = 
uu s 

- -

max 
1 < i< n 

max 
1 < i < n - -

max 
1 < i < n 
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max I fi ( €., A, u) I 
( g, ~. u) € S 

n I a£. I max ;l: ~ (s,A,u) 
(£ ,A , u)E:S J= 1 J 

2 I n n a f. 
max 7= 2::: I au.a~ (£,A, u) 

(s, A, u) ~S J=1 k= 1 J k 

These bounds exist if the corresponding derivatives are defined and 

continuous on S . They satisfy the char acteri stic property of 

operator n orms, e . g . : 

The mth Frechet derivative gxm(x ) is said to b e 

Lipschitz continuous irl: x on some set [;) iff 

f or a ll x (1 ) and x ( Z) € ~9 . 
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APPENDIX B 

The C ontracting Mappi~Thcorcm 

Let "&- be a B a nach space (compl ete normed linear space) 

and '!/ be the neighborhood of the origin 0 of .ll defined by 

llxll-:~ }. ( 1) 

Let T be a mapping of 'll into JJ. Suppose that for some constant 

0 < a. < 1, T satisfies the Lipschitz condition 

1/ Tx- Ty II < a. II x -y II x, y E: '11. ( 2) 

and a lso satisfies 

II T • 0 II < (1 - a.) ~ • (3) 

Then T has exactly one fixed point, say x, 1n '!/, and furthermore 

x i s the limit of the sequence defined by 

x ( o) = 0 

x (n+l) = T x(n) n= 0,1,2, ... , . 

The convergence of thi s sequence is giv e n by 

II x (n) - x II < a. n ~ . 

For proof of this the orem, see page 30 in [ 23] or p age 27 in [3 5] . 

Note that if T is known to map '!! into it self, that is if 
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T x E: 7l for all x E: 7l , ( 4) 

then condition ( 3) is no long1·r needed. 
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.APPENDIX C 

BASIC ALTERNATIVE T!IEOREM FOR THE BUCKLING SPHERE 

PROBLEM 

Let T and A be as defined in Chapter VI, and take 
n 

g(s) E: c
2 

[a, S]. Consider the inhomogeneous problem 

[ T - A ] x(s) = g(s) 
n 

x ( -1) = x( 1) = 0 , 

and the homogeneous adjoint problem 

(1) 

( 2) 

[T-A>:<] z(s)=O (3) 
n 

z (-1) = z(l) = 0. (4) 

Define inner products as in Appendix A. The following result is 

used in Chapter VI. 

Theorem: 

Problem (1) (2) h as a solution if a nd only if 

(z,g)=O (5) 

for all solutions z(s) of problem (l) (2). 

Proof: 

The proof of necessity is trivial. Assume x is a solution 

to (1) (2) and z is a solution to (3) (4). Then 



(z,g) = (z, [T- An]x) 

= ( [ T - A~' ] z, x.) 
n 

= 0. 
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(6) 

To prove sufficiency, diagonalize A using the nonsingular matrix 
n 

S defined in §VI. 2, and consider the scalar problems 
n 

w
1 

( - 1 ) = w 
1 

( l ) = 0 , 

[ L - A.tJ. J w 2 (s> = h 2 (s> 

w
2

( -1) = w
2

(l) = 0. 

Here A is an eigenvalue of L 
n 

-l 
a nd A is not and h = S g. 

fJ. n 

Let co(s) be an eigensolution of the self-adjoint problem 

[L - A. ] cp( s) = 0 
n 

co (~l) = co (l) = o. 

Then co (s) = P (l )(£). 
n 

( 7) 

(8) 

(9) 

( 1 0) 

(ll) 

(1~) 

Proceeding formally by the method of variation of parameters, 

we get as a candidate for the solution of ( 7) (8) 
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Q (1) (~) 
n 

J ( p ('~1....--)' -Q....,..( ........ 1)-) 
n n 

r ~ h (£) p(l) (~) d£ 
·. 1 n 

-1 

(13) 

p(l) (€,) 
n 

- J(P{l) Q(l)) 
n ' n 

where 

( 14) 

= -n(n+l) 

is the conjunct of P( 1 ) and oP>. 
n n 

A consideration of the asymptotic properties of P( 1 )(€,) and 
n 

Q(l)(s) as €,- ± 1, a.s given in [16 ], verifies that both terms in (13) n . 

are bounded on [ -1 , 1] • In fact the second term vanishes at ± 1 

without any special conditions on h 1 (£) other than continuity. 

Similarly the first term vanishes as £--> -1, using only the 

asymptotic properties of Q~l)(S) a nd P~l) (£). Howe ver, we use 

the orthogonality condition 

to show that the f irst t e rm in (1 3 ) vanishes as s- + l: 

( 15) 
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liin l Q(l) (~) l S h (a-) P(l) (o-) do-\ 
€,-+1 n ·-1 1 n 

=lim lo- a(l)(s) J1 
h 1 (o-) p< 1

> (o-) do-l s-+1 n s n 

( 16) 

=1~~ - [- J~ e + 0(1) J f ~ [h1 (1) + o ( 1)] [ -n(n+1)#+0(S) Jdo 

=lim [1 E: _, 0 - 3 h
1 

( 1) n(n+ 1) E: + o ( E:) ] 

= 0 

A straightforward substitution shows that (1 3 ) satisfies (7). Hence (13) 

satisfies (7) (8) provided that the orthogonality condition (15) holds. 

Similarly we can show that (9) (10) has a solution w 2(s) for 

all h 2 (s)e C [ -1 , 1], assuming A.!-i is not an eigenvalue. 

Now transform back to the original problem (1) (2). Then 

a solution of ( 1) (2) is 

x (s) = s w(s) n , ( 1 7) 

and the orthogonality condition ( 15) becomes 

0 = (p, h) 

-1 ( 18) = (p,Sn g ) 

-1 :!< 
= {Sn p, g ) 
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where we have defined p(~) 
-- (P~ol) <£>). 

_p.c 
But S p is just an eigensolution of ( 3 ) (4), so the theoren1 is 

n 

proved. 
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APPENDIX D 

GENERAJ,IZED G REEN'S MATRIX FOR THE BU CKLING 

SPH I~RE PROBLEM 

We calculate a generalized Green's malrix for problem ( 13) 

(14) of Chapter VI, with p equal to a simple eigenpressure p . The 
n 

procedure is to first diagonalize (13) (14), then find the appropriate 

Green's functions for the two scalar problems in (23) (24), and then 

transform back to the original problem. 

T y (£) = A(p ) y(£) n 

y(-1) = y(l) = 0. 

Let y = S w, then 
n 

Lw1 = An w 1 , w
1

(-1) =w
1
(l) = 0 

Lw
2 

==A w 
f.!. 2' 

The generalized Green's function for (3) is 

n(n+ 1) 

n(n+ 1) 

( 1 ) 

(2) 

( 3) 

( 4) 

-l~'T~£~1 

-1~£~'T~ 1 
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The Green's function for (4) is 

1TP ( 1 ) ( ~ ) p ( 1 ) ( _ 'T) 
fJ. fJ. 

2 p. ( p. + 1 ) s in 17'fJ. 

(6) 

2p.(p.+ 1 )sin1rp. 

Then the generalized Green's matrix for (1) (2) :ls 

( 7) 

where Sn is define d by (38) of Chapt er VI. 
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