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ABSTRACT

The theory of bifurcation of solutions to two=-point boundary
value problems is develpped for a system of nonlinear first order
ordinary differential equations in which the bifurcation parameter is
allowed to appear nonlinearly. An iteration method is used to
establish necessary and sufficient conditions for bifurcation and to
construct a unique bifurcated branch in a neighborhood of a bifurcation
point which is a simple eigenvalue of the linearized problem. The
problem of bifurcation at a degenerate eigenvalue of the linearized
problern is reduced to that of solving a system of algebraic equations.
Cases with no bifurcation and with multiple bifurcation at a
degenerate eigenvalue are considered.

The iteration method employed is shown to generate
approximate solutions which contain those obtained by formal
perturbation theory. Thus the formal perturbation solutions are
rigorously justified. A theory of continuation of a solution branch
out of the neighborhood of its bifurcation point is presented. Several
generalizations and extensions of the theory to other types of
problems, such as systems of partial differential equations, are
described.

The theory is applied to the problem of the axisymmetric
buckling of thin spherical shells. Results are obtained which

confirm recent numerical computations.
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CHAPTER I

INTRODUCTION

Bifurcation is a change in the number of solutions u of an
equation

g(h,u) =0 (1)

produced by a small change in the real parameter A. Those values -
of A at which bifurcation takes place are called the bifurcation
points of the equation. Bifurcation theory deals with the existence
and numerical values of the bifurcation points, and with the behavior
of solutions in neighborhoods of the bifurcation points.

Bifurcation theory is of great practical importance in the
analysis of nonlinear mathematical models of physical systems.
Bifurcation in the model can correspond to such physical phenomena
as buckliné of engineering structures [_41 1%, ignition and extinction
in reactors [13], change of phase of a solid, liquid or gas [50],
and change of dynamical mode in mechanical systems [4] [27]

(29 ].

Equation (1) can represent any type of mathematical equation;
in this thesis we are primarily concerned with systems of nonlinear
first order ordinary differential equations with two-point boundary
conditions, as defined in Chapter III. Bifurcation in nonlinear

integral equations has been studied by M. A, Krasnosel'skii [30],

:'a
"Numbers in square brackets refer to the list of references at the end
of the thesis.
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T, W, Lastech [327] and & 1L Plabley, T (371, and i
nonlinear partial differential cquations by H. B, Keller [21]
M. S. Berger [ 5] and others,

The systems of first order ordinary differential equations
considered here contain a wide range of interesting problems.
For example, systems of nth order ordinary differential equations
can easily be transformed to systems of first order equations and
hence are included in our theory. Even nonlinearities involving the
derivatives up to order n~1 are permitted. Systems of partial
differential equat{ons can also be treated by the methods presented
here, as we indicate in § V. 3.

Our results are obtained by means of an iteration technique
which is based on the work of H. B, Keller [21], here extended
to include systems of equations and degenerate eigenvalues., This
iteration method has the advantage over formal perturbation methods
of giving mathematically rigorous results with little extra effort.
We show in § V.5 that our solutions contain those obtained by the
perturbation method. Compared to other mathematically rigorous
studies of bifurcation, which generally are either more abstract
than our work [30] [37], or are limited to a single problem [ 4]
[29], we are able to obtain more useful information about the
bifurcation of solutions to a wider range of nonlinear boundary-value
problems of practical interest,

We assume that u= 0 1is a "trivial" solution of the boundary~
value problem, and that the problem can be linearized about this

solution, (Of course we could as well consider a nontrivial solution,
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say w, and then rewrite the problem in terms of v= u - w 8o
that v=0 is again a trivial solution). We then investigate the
possibility of nontrivial solutions branching away from u=0 at

a bifurcation point 7&0, using the linearized problem as the starting
point of our analysis. The problem of finding nontrivial solutions
to the nonlinear problem in a neighborhood of a bifurcation point is
reduced to that of solving a sequence of linear inhomogeneous
problems and associated bifurcation equations.

We show thaf 7\0 can be a bifurcation point of the nonlinear
problem only if it is an eigenvalue of the linearized problem, and that
if 7\0 is a simple eigenvalue then it is always a bifurcation point.

If 7\0 is a degenerate eigenvalue of the linearized problem, then
we can construct a distinct bifurcation branch for each simple root
of an associated system of algebraic equations (usually quadratic)
which we call the algebraic bifurcation equations. We show by an
example that there may be no nontrivial solution at all bifurcating
from a degenerate eigenvalue 7\0.

The contents of each chapter are adequately described in
the Table of Contents and in the introduction at the beginning of each
chapter. We only point out here that Chapter I1 is a review of
well known linear theory and may be skipped at the reader's
discretion, Chapters III, IV and V present the bifurcation theory,
and Chapter VI applies the theory to a problem of current interest.
The conventions followed in the use of symbols, and some important

definitions, are listed in Appendix A. Proofs of the convergence of
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the sequences which arise in the iteration technique are greatly
simplified by the use of the contracting mapping theorem, which
is stated for ease of reference in Appendix B. Appendices C
and D contain some results required for the application of the
bifurcation theory to the problem of Chapter VI.

Numbering of equations and of theorems begins with 1 in
each chapter, When a reference is made to an equation or theorem
in a different chapter, the other chapter is named explicitly.
Similarly symbols are uniquely defined within each chapter, but

may have different meanings in different chapters.
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CHAPTER 11

LINEAR TWO-POINT BOUNDARY-VALUE PROBLEMS

II, 1. Introduction

This chapter contains a summary of well-known results from
the theory of systems of first order ordinary differential equations
with two-point boundary conditions, which are required for the
developments of chapters III and IV, These results are stated as
theorems in order to facilitate easy reference in the later chapters.
Proofs of theorems are either outlined briefly or omitted entirely
when they can be found in standard reference books on ordinary
differential equations such as [127] and [17 ]_‘.

Self-adjointness is assumed nowhere in this chapter since it is
not required for our bifurcation theory. This broadens the useful-
ness of the theory, since in the applications self-adjointness is less
commonly a property of systems of differential equations than it is
of scalar differential equations,

We consider linear problems of the form
y'(E) = [A(E) + NI(E, M) ] y(E) a< E< B (1)
My (a) + Ny (B) = 0, (2)

where y(£) is an n-component column vector, A(£) and J(£,\) are
nxn matrices continuous in £ e[ a,B ], \ is a parameter in some
open interval J (possibly unbounded) of the real line, o and B are
finite real constants with a < B, and M and N are n x n constant

matrices such that rank [M,N ]= n., All scalars are assumed real.
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II. 2. The Adjoint Problem

The adjoint problem corresponding to (1) and (2) is defined to
be

z'(€) = -[A(E) + NT (§,N) ]* =z(§) a< £E<B (3)

Pz{a) + Qz (B) = 0. (4)

Here P and Q are any two constant nx n matrices satisfying
rank [P,Q]=n and MP* - NQ* = 0, (5)
This definition is justified by the following lemma:

Lemma 1

Matrices P and Q exist which satisfy (5), and the set of all
pairs of vectors z(a) and z(B) satisfying (4) is independent of
the choice of such P and Q satisfying (5).

Furthermore =z(£) satisfies (4) if and only if
z*(B)y(B) - z*(a)y(a) = O (6)

for all y(§) satisfying (2); and conversely, y(§) satisfies (2) if
and only if (6) holds for all z(f) satisfying (4).

For proof of this lemma, see [8] page 564, [17] page 407,
and [12] chapter 11, 7

Define the operator L and its adjoint operator L* by

Ly = y' -LAE) + NT(E,N) ] v (7)

Lz z' + [A(E) + NJI(E,N) ]%* =, (8)

The following thecorem now follows by integration by parts and (6).
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For all y(£) satisfying (2) and all z(§) satisfying (4),

(z, Ly) = (L*z,y) . (9)

See Appendix I for the definition of this inner product.

Let Y(£) be the fundamental matrix solution of equation (1)
with

Y(a) =1, (10)
and define the boundary matrix

B=MY(a) + NY (8). (11)
Similarly let Z(£) be the fundamental matrix solution of (3) with

Z(a) =1, (12)
and define

C=PZ(a) + QZ(B). (13)

The existence and uniqueness of Y(£) and Z(£) on [a, g ] are
guaranteed by the elementary theory of ordinary differential
systems [127]. We can now state the following well known results,

For proofs see [8] and [17] page 62.

Theorem 2

Z(£)* = v(£) ! - (14)

Theorem 3

If det B# 0, problem (1) (2) has only the trivial solution
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v(£&) 0, and similarly for ¢ and problem (3) (4).

Thcecorem 4

Il B bhas rank n-p, then problem (1) (2) has exactly p
linearly independent solutions, and similarly for C and problem

(3) (4).

Theorem 5

Rank (B) = Rank (C), and hence the problems (1) (2} and

(3} (4) have the same number of independent solutions.

II. 3. The Basic Alternative Theorem

The inhomogeneous problem corresponding to (1) (2) is
u'(g) = [A(E) + NI(E, M) Tu(E) + f(§) a< § < 8 (15)
Mu(a) + N u(B) =0, (16)

where f(£) € G, [a,B]. Note that an inhomogeneity in the boundary
condition (16) could be removed by a transformation which would
simply alter f(£); hence (15) (16) represents the general case,

All questions as to the solvability of this inhomogeneous
problem are answered by the following standard theorem, known as

the basic alternative theorem. [ 8 ] [14 ].
Theorem 6

Exactly one of the following two cases must hold with regard

to problem (15) (16).
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Case I: The inhomogeneous problem (15) (16) has a
unique solution for all f(§) & Cn [0, B]. This is true if and only
if the problem (1) (2) has only the trivial solution y(£) 0.

Case II: If (1) (2) has p>0 linearly indcependent non-

trivial solutions, then (15) (16) has solutions if and only if

. fed - iz, sies b (17)

where z(l)(é), i=1, ..., p are the linearly independent solutions

1l

to the adjoint problem (3) (4). The most general solution, if (17) is

satisfied, is

() = v (&) +f1 vy v (&) (18)
. 1=

where v(§) is a particular solution and y(l) SV iE 1, savy B ATE

the linearly independent solutions of (1) (2).

II. 4, Dependence on the Parameter A

In general, all the solutions considered so far are functions
of N as well as of £. The matrices B and C and their rank
also depend on A. Our bifurcation theory will use Case II of the
basic alternative theorem, in which problem (1) (2) has nontrivial

solutions. Hence we are led by Theorem 3 to consider the equation
det B (\) = 0. (19)

The roots A = ?\i of this equation are precisely the values of \ for
which (1) (2) has nontrivial solutions. We call these ki the eigen-
values of problem (1) (2) and call the corresponding nontrivial solutions

the eigensolutions.
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Theorem 7

If the components of the matrix J(§,\) can be expanded in
convergent power series in Aed for each fixed tcla,B), and if
there exists a point p € 4 such that the problem (1) (2) has only
the trivial solution for X = W, (i.e., if det B(p) # 0), then the
eigenvalues in 4 of problem (1) (2) are isolated points, and are
finite in ﬁumber if & is bounded, or at most denumeré.bly infinite
in number if £ is unbounded.

Proof:

The power series representation of .Tij(g,?\.) gives its analytic
continuation into some neighborhood 77 of the real interval J in the
complex A-plane. Clearly the right-hand side of (1) is then an
analytic function of X\ and y. Hence by standard theory ([12]
page 36), any solution y(§,\) of (1) satisfying an arbitrary initial
condition is an analytic function of A for Ae 7 and for each
£Ec [a,B ], and so the fundamental matrix Y(£,\) has this same
analyticity property. It follows that det B(\) is an analytic function
of N for ANe?, and the conclusion follows from the well-known

properties of the zeros of an analytic function.

Note that Theorem 7 does not guarantee the existence of
eigenvalues in J, nor does it guarantee that the eigenvalues are
real. Neither of these is true in general. It does guarantee that
any eigenvalues which do exist are isolated, and this is crucial to the
development in Chapter III. Since we will be concerned with only

one eigenvalue at a time, the '"global" dependence on M\ is of no
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importance to the bifurcation theory, and we can take the interval J/
to be just & neighborhood of an eigenvalue Xo, say. On this small
ncighborhood it may be easicr to check the analyticity of J(§, \)
as a function of X, Of course, in many cases of interest, J(&, \)
will be analytic in A for all A, and if J is independent of \ the
theorem is trivially satisfied.

Note also that if M and N are analytic functions of A\, the
theorem still holds. In fact much less than analyticity of J, M, and
N in N is required for the result to hold, but we will not pursue this.

From now on, )\0 will represent an isolated eigenvalue of (1)
(2) with 7\06 4. Liet p be the number of linearly independent
solutions to (1) (2) with \ = ?\o. By hypothesis p > o0, and clearly
p < n since equation (1) has exactly n linearly independent solutions.
We call p the multiplicity of the eigenvalue 7\0.

From Theorems 5 and 7 it follows that the adjoint problem (3)
(4) has the same real eigenvalues with the same multiplicities as the
problem (1) {2), and hence that the eigenvalues of the adjoint problem
are also isolated points in £ if the hypotheses of Theorem 7 are
satisfied.

If problem (1) (2) is self-adjoint as defined in [2] or [8 ],

then the eigenvalues are necessarily real.

II. 5. The Green's Matrix

The inverse of the operator L. is given most conveniently

in terms of the Green's matrix denoted G(§,T). For Case I of
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the basic alternative theorein, in which problem (1) (2) has only the
trivial solution, the existence and uniqueness of a Green's matrix
is well known. (See [8)] page 577, [ 17] page 408 and [ 14]

page 393). It is usually defined by the following four properties:

G(£,T) is an nxn matrix of functions of § and T
defined and continuously differentiable on the rectangle (20)

a< §<B, a< T<B, except on the line £= T,

each column of G(§,T) as a function of £ is a solution

(21)
of (1) (2) except at £=T,
G(tt,T) - G(v-,7) =1, (22)
MG(a,T) + NG(B,T)= 0, (23)

The following theorem is proven in [ 8.

Theorem 8

If Det B(\)#0, a Green's matrix G(£,T) exists satisfying
(20) through (23) and it is unique. The solution to the inhomogeneous

problem (15) (16) is given by
u(€) = ]?G(E,T) f(r) d=. (24)
Q

This Green's matrix for problem (1) (2) may be written explicitly as

-Y(6) BINY(B) Z¥(T)  for < E<TeB

1 (25)

G(gsT) =

Y(E) BT " MY(a) Z*(7) for a< T<E< B

or equivalently as
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G, ™) = L Y(&) [Isgn (6-7) + B" D1 ¥~ 1 (), (26)

1 if E>7
where sgn (£-T) = (27)
-1 if §<T

and D=MY(a) -NY(B). (28)

Theorem 9

The unique Green's matrix H(§, T) for the adjoint problem

(3) (4) is given by

Hij (giT)= -Gji (ng) Lo B L weerar s ; (29)

Clearly formulae (25) and (26) are no longer valid in Case II
of the basic alternative theorem, since then B-1 does not exist.
Fortunately it is possible to define a generalized Green's matrix
which plays the same role as the Green's matrix for Case LI of the
alternative, The following development of a generalized Green's
matrix is based on the original paper by W.T. Reid [40], See

also [39]1, [9], and [33].

1I. 6. The Generalized Green's Matrix

Assume that X\ =\_ is an eigenvalue of problem (1) (2) with

multiplicity p. That is we now assume that the problem

y'(€) = [A(E) + A JT(E,r0)] y(£) (30)

My(a)+ Ny(B) =0 (31)
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has exactly p linearly independent solutions y(i) (E) i=1l,.00e; Ps
where 1< p< n. From any such linearly independent set we can
construct an orthonormal set by the Gram-Schmidt process, say.
Therefore, we assume that the set {y(i)(g) }Ii)zl is orthonormal.
Now define the nxp matrix R(£) with columns R(i)(é) 2= 1, wnww Py
by ,
riMgy =y ey , i=1,...,p (32)

Similarly the adjoint problem with A\ = ?\0,

a'(£) = - [A(E) + 2 T (6,2 ) 1" z(£) (33)

Pz(a)+Qz(B8) =0, (34)

has exactly p linearly independent solutions z(i)(g) i=1, sies Dy
which, without loss of generality, we can assume to be orthonormal,

Define the nxp matrix S(§) by

) TR, O [ S G S (35)

The general solution of (30) (31) can now be written

21
y(€) = R(£) a, where a =f1"1}, (36)

a
P

and the orthogonality condition of the basic alternative theorem can

be written



s

B
[ S*(E)£(E) AE = O, (37)

We seek an nx n matrix G(§,T) which has properties (20),
(21) with k= 7\0, and (22), and is such that every solution of the

inhomogeneous system
ul(€) = LA(E) + N J(E.2 ) ] w(g) + £(€) (38)

Mu(a) + Nu(B) =0 (39)

may be written as

| 8
u(f) = [ G(E, M () ar + R(E) a. (40)
We define any such G(£,T) to be a generalized Green's matrix for
the problem (30) (31).

Let :I (E) be an nxn fundamental matrix solution to (30) such

that the first p columns of SN{'(ﬁ) are just those of R(£). Then

1

z(g) = v+ g (41)

is a fundamental matrix solution of the adjoint equation (33) but does
not necessarily have the same first p columns as S(£). Note also
that :SE'(OL) and Z{a) no longer equal the identity matrix in general.

The matrix

B =MY(a)+ NY(8) (42)

has its first p columns identically zero, and has rank n-p. We may

choose n-p rows of B, say the rows numbered !;1, LZ’ 3 518 & ‘f'n-p’ such
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that the (n-p) x (n-p) matrix F has rank n-p, where

B +1 B CECR) B
!,19 »{,lp+2 !‘ln
F = = 2 . (43)
B B ... B
+2 £ n’.
&n_p P+1 ’Ln_pp n-p

Matrix F has a unique (n-p) X(n-p} inverse, F-l. Now define the

nx n matrix E= (Eij) by

Eij=0 if-i< p or jof Lm’ m=1l,..., n-p.

(44)

| B )
Ep-l—i,;f/j_ CF )'i_j fOI‘ 1,_]—' 1:--': n P.

Theorem 10

A generalized Green's matrix for (30) (31) exists and may be

written as

G(E,7) = % Y(£) [Isgn (t-1) + ED] ¥ 1(n), (45)

where §(§) and E are defined above and ]5 =MY(a) - N‘;’(B) .

Piroof: See [40].

Theorem 11

The generalized Green's matrix for (30) (31) is not unique,.
1f Gl(g,'r) is one generalized Green's matrix, then every

generalized Green's matrix is of the form

G (E,7) = G, (&, T) + R(E)TH(7) + V(E)s*(T), (46)
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where U(T) and V() are nxp matrices continuously differentiable
on [a, B]. Furthermore, c¢very G(£,T) of the form (46) is a
generalized Green's matrix (or (30) (31).
Proof:

It is obvious that every G(&,T) of the form (46) is a generalized

Green's matrix. For the proof of the converse, see Reid [407.

II. 7. The Principal Generalized Green's Matrix

The generalized Green's matrix of Theorem 10 lacks three
desirable features. First it is not unique; second it does not

necessarily satisfy the boundary conditions (23) (although

2
u(g) = [ G(E, T)£(E) dr | (47)

does if f(T) satisfies (37)), and third neither G(§, T) nor u(£)
defined by (47) are necessarily orthogonal to the solutions

y(i) (§), i=l,..., p of {(30) (31). The third feature is especially
important for our bifurcation theory. Fortunately it is easy to
construct a generalized Green's matrix with these properties,

through the use of the projection operators W and X defined by
B
Wu= R(£) [ R*(7) ulr) dr (48)
B
and Xu = S(&) f S* (T) u(r) dr. (49}
Y

Here W projects the space Cln[cx, B] onto the solution space of
problem (30) (31), and X projects onto the solution space of the

adjoint problem (33) (34). Following Reid, we call a generalized
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Green's matrix with the above three properties the principal
generalized Green's matrix, although the construction we use is
due to Loud [33][34]. For an alternate approach sce [39] [40]
and [9].

If G(§E,T) is any of the generalized Green's matrices of

Theorems 10 and 11, define the matrix G-r (E,T) by

GY(g,m =GE,7) -R(E) [PR¥(0)Glo, mas - [PG(E, o) S(r) doS()
(50)
+ R(&) [P [P Ri(0)G(e,€) S(0 dod ¢ 5% (7).

Theorem 12

The matrix G*(g,-r) defined by (50) is a generalized

Green's matrix for problem (30) (31) and has the following properties:

Gf(g, T) is continuously differentiable in [a, 8] x [(a, B ]

(51)
except on £ = T,
£ G (EM=TAE A J(EA) ] GT(E, 7 + 18(8-7) - 5(8) s* (1),  (52)
a'«t,n - gl m=1 (53)
MGJr il _
(a,T) + NG (B,T) =0, (54)
B s 3
J o BR*(6) G (&,7) dE =0, (55)
Every solution to problem (38) (39) may be written
in thé form (56)

u(€) =R(&) a+ [F &7 (5,7 £(r) ar,
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The matrix GT(Q, T) is independent of the choice
(57)
of the matrix G(£,T) in the definition (50).

The matrix GT(E,,T) defined by (50) is the only matrix which
satisfied properties (51) through (56).

We call GT(f;,T) the principal generalized Green's matrix of
problem (30) (31).
Theorem 13

The principal generalized Green's matrix of the adjoint
problem (33) (34) is

t i ”

H (§,7) = -G (7,&)*. (58)
Proof: See [40],

It is convenient to summarize our results in the following:
Theorem 14

If f(£) is any function in C, [a,B] satisfying (37), then
there is a unique solution uw(f) to problem (38) (39) which satisfies

[ E R ug) at = o, (59)
and this u(§) is given by

T

wey = [P a’ (& in ar (60)

Furthermore, there is a constant ¢® > 0 such that

lall< @ [I£]] (61)
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for all such £(§) and u(£).
Proof: Take ¢ ”GT” ,» which, for example in the maximum noecm,

is given by

t 85~ |t
G' s max  wmax [fY |GT. (.m|ar (62}
a<f<p 1giga TFL M

Then HGT” is guaranteed to exist by the continuity properties (51)

and (53).



o
CHAPTER II1

SIMPLE BIFURCATION
III. 1. Introduction

In this chapter we consider two-point boundary-value problems

u’(8) = A(Z)u(€) + Lf(E,%,u) a<E=<p , (1)

Mu(a) + Nu(p) = 0 . (2)

Here )\ is a parameter in some open real interval J, u(g) € C; la,.Bl,

A(E) is an nXn matrix continuous on [a,B], and M and N are nXn constant

matrices such that rank [M, N] = n. The n-vector function f(§, A, u) is

assumed to be 2-times Fréchet differentiable in u and A with its second
Fréchet derivatives Lipschitz continuous in u and X on the set g
defined by (15), and with f and its derivatives continuous in E . (Fréchet
derivatives are used mainly for notational convenience and are defined in

Appendix A). We further assume that

f(E,N\,0) = 0

for all £ € [a,B] and A € 4. Clearly then problem (1) (2) has the

trivial solution u(g) =0 for all A € 3. Linearizing problem (1) (2)

about this trivial solution gives the linearized problem or variational

problem

v/ (E) - [A(E) + » J(E, )] y(E) = 0 (4)

My(a) + Ny (B)

0 , (5)

where J(E,)\) is the nXn matrix defined by
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9 f(B, N ) o
Jl_](g")\) = —"_5_{';;#"'_ ’ ,) = 1:"'; n . (6)

u=0

The linearized problem (4) (5) is exactly the problem studied in Chapter
II. Therefore, from Theorem 3 and §II.4, X\ is an eigenvalue of (4) (5)

if and only if A is a root of the equation

det B(A\) = 0 . (7)

We assume )\ = A, is a real, isolated, nonzero eigenvalue of (4) (5),
and throughout this chapter we make the additional assumption that },
is a simple eigenvalue. Under this assumption we are able to show
that Ay is a bifurcation point of problem (1) (2), and we construct a
nontrivial solution branch in a neighborhood of ;.

Let vy, (E) be a normalized solution of (4) (5) with X\ = )\, ; then

yo( €) satisfies

Vo () - [A(E) + g J(B,%)] vo(E) = O (8)
M yo(a) + N ys(B) = O (9)
/fyo*(g) Vo (B)dE = 1 ' (10)

and yo(E) is unique within a sign. The corresponding adjoint problem

is
25/ (E) + [A(E) + Ao J(E,2o)] " 25(E) = O (11)
Pzy(a) + Qzg(B) = O (12)

B
[, 28t (B) 20(B)dE =1 (13)



= 2R
as defined in 1.2, According to Theorcem 5 of Chapter I1, this
problem has a solution zg(g) which is unique within a sign.

The matrix J(€, Ay) defined by (6) is assumed to be such that

p
y = [, 2o%(58) J(B, o) yo(B)AE * 0 . (14)

Since the eigenvalue )\, is isolated, we can assume without loss
of generality (rescale ) if neces sary) that there is no other eigenvalue
of problem (4)(5) in the interval [A\o-1,\o+1], and that this interval is
contained in J.

Let § be the nt2 dimensional domain

s ={(&,n,u)|E €la,B], |A-%| =1, ueC _[a,pl llullsllyoll + 13 .  (15)

The norm ||ul|, ||ye]] and all other norms which we use, are defined in
Appendix A, The function (&€, )\, u) in equation (1) is assumed to be
2-times Fréchet differentiable in u and \ for each E in this set §, and

its second Fréchet derivatives fuu and fu are assumed Lipschitz

A
continuous on S .
We impose one final restriction on f, which in effect says that

its variation with X must be mild. Assume that

£ Il = Lyl ; (16)

2 l)\ol HZOHI |l vo H

In § 2 we show that a necessary condition for A to be a bifurca-
tion point of (1)(2) is that \ be an eigenvalue of (4)(5). In § 3 we present
an iteration scheme, which we claim generates a continuous branch of

nontrivial sclutions to problem (1)(2) in a (possibly one-sided)
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neighborhood of A5, and which intersects the trivial solution at A = ).
All these claims are verified in §4, by an application of the contracting
mapping theorem. In § 5 we show that the solution branch constructed
by the iteration scheme contains all possible nontrivial solutions in a
neighborhood of the bifurcation point, and we remove the ambiguity in
the choice of sign of y,. Finally, in § 6 we calculate the asymptotic

behavior of the solution branch near the bifurcation point.

I1I.2. The Necessary Condition for Bifurcation

We prove that bifurcation of nontrivial solutions from the
trivial solution of problem (1)(2) can occur only at an eigenvalue of
the linearized problem (4)(5). This result has been established for
similar problems by M. A. Krasnosel'skii [30],‘ J. B. Keller [25]

2

M. S. Berger [57], and others.

Theorem 1
If A € [Ao-1, Aot+1] is not an eigenvalue of the linearized
problem (4)(5), then (1)(2) can have no nontrivial solution in a suffi-

ciently small neighborhood of the trivial solution u(g) = 0.

Proof:

Rewrite (1)(2) in the form
u’(g) - [A(g) + % J(E,1)]1u(8) =2f(E, %\, u} - A J(E,\)u (17)
Mu(a) + Nu(p) = 0 ¢ (18)

For 0<6& =< ||Ay]| + 1, define the neighborhood Mg by
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Ng = {weC [a,B]]|w] =61 . (19)
Consider the inhomogeneous problem, for w € 7;:
u’(E) - [A(E) + 1 J(E,2)] u(B) = % f(E, X, w) - X J(B, A)w (20)
Mu(a) + NUB) = O (21)

From Theorems 6 and 8 of Chapter II it follows that this inhomogeneous
problem has a unique solution u(g) given in terms of the Green's

matrix G(E, 1) by

g
wE) = A [ G(E7) [f(T, A wiT)) - H7,M)w(r) Jdr . (22)

Let equation (22) define the mapping

T: R =€ [a,p] (23)

where Tw = u
Since (T,\A,w) €S, we have

1
£, A, w(T)) - J(1, A)w(T) = f1 [ £,,{T: % p o wlpdodp w (1) . (24)
o] o

Taking norms as defined in Appendix I, (22) and (24) give

Il = a] Gl 3 gy llg Iwll”

) . (25)
<2 (o] +1) |Gl lig )l 8

Hence “u” <6 if

< & ; (26)

(Iro [+ 1) 1G] N1£,,llg
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() in ";76, define u(l) 2 T W(l ) and u(a) = T w(z ).

(»)

Similarly for w and w

Then

[ - u® = ) el el 6 W wB g (27)

aul

Now define, for any 0 < & < 1,

& = min {HYOH + 1, i s (28)
| (I [+D || G|l ||fuulls

and it follows that
Hu(l )_ u(B )” < 8 ” W(1 )__ W(2 ) H . (29)

Thus, for 6. defined by (28), T maps 7’(6 into itself and is contrécting on
726, so it follows from the contracting mapping theorem of Appendix II
that T has a unique fixed point in ')’26.

But clearly the trivial solution u{g) = 0 is already a fixed point
of T in 726. Hence there cannot exist any nontrivial solution to (1) (2) in

7’26 , since it wouid be a fixed point of T,  violating the uniqueness result.

From Theorem 1 it clearly follows that the only possible candi-~
date for a point of bifurcation of problem (1)(2) (from the trivial solu-
tion) in the interval [A\y-1, Ag+1] is the eigenvalue )\, of the linearized
problem (4) (5). If the differentiability assumptions on f hold for all
A in 4 instead of just in S, the same argument applies to any closed
bounded subinterval of 4 by redefining S suitably. Then we conclude
that bifurcation from the trivial solution in problem (1) (2) can occur

only at the eigenvalues in J§ of problem (4)(5).
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111, 3. T_l'_xe Iteration Scheme

We seek a continuous branch of nontrivial solutions to problem

(1)(2) in the form

u(g, €) e yo(BE) + €® v(E, ) (30)

Ae) Ao + € mle) g (31)

I

where ¢ is a small scalar which parameterizes the solution branch, and
v(E, ), n(e) are functions to be determined. A possible source of non-
uniqueness in this representation is removed by assuming that v(g, ¢) is

orthogonal to y,(E), that is

fij(E) v(E,e)dg = 0 . (32)

We claim that such a solution branch exists and is given, for sufficiently
small |e| , by the limit of the iteration scheme which we are about to
define.

The aﬁsatz (30)(31) is a solution of problem (1) (2) if and only if
v{E, ¢) and n(e) satisfy
v (8) - [A(E) + Ao T(E, 20)T¥(B) = — (hotem) [E(E, hoten, € yote®v)

e
(33)

- J(E, N\g) (e yot €2v)] + m J(E, Ao Myote V)
M v(a) + N v(B) =0 : (34)

By Theorem 6 of Chapter II, problem (33)(34) has a solution only if the

right-hand side of (33) is orthogonal to z,(§). This gives the condition
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p
n fa Z:(g)J(%, Ao ) (¥o (B)+ev(E) )d§+—1§()\5+€1’\) fz:(g)[f(g, Ao tEM, €yo +€° V)

€
- J(g, lo)(ﬁ YO{ F:BV)]([g. = 0 . (35)
Hypothesis (3) implies that for A €l\g -1, Ag+l],

£(8,%0)= £,(610) = 0 . (36)

Then the assumed differentiability and continuity properties of f give

the Taylor expansion, for (§, X, u) €8,

£(E, X, u) = fu(g, Yo, 0)u + ;{.—fuu(g, Xs, 0)m® +£ 5 (5, Ao; 0) Di-Aa)n

(37)
+ Ey (B, uju® + Ep(E, A, u) (A-do)u ,

where
1 1
By (G =[ [ [f (8, pCu)-f, (5 ko, 0)]C dpdC , (38)
and
1 1
Ez(8, A uw) = [ [ L€, (5 dotp(h-ho), Cu)-f 5 (8, %0,0)]dCdp. (39)

Note that E; (€, 0) = Ez(E, Ag, 0) = 0. Furthermore, from the assumed
l.ipschitz continuity of fuu and fu)\ there exist constants &,, &5 and %5

such that for (&, K(i), u(i )) es, 4=1,2,
1B B u®)-Ez 8, «®)|| < &y |u)-u® (40)

and

1208 1), 0 )y 2, A®) (2] 52, [l 524 | H0) 23|
(41)
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We use the expansion (37) for f to rewrite (35), grouping terms

according to their order of magnitude in the small parameter € :
B s
Ly 1% /g 7a (8645 (8 ke, 0) o (B)4E |
1 ]p % 2 p *
+ 3% [, 20 (B)E, (8, X0, 0)ys (B)AE +e [ zo (B)h(5,€,m,YB))d2

=0 (42)

where
h(E, &, v) =nlf (§ ho, 0)v(E) + 3£ (E, ho, 0)yd (B)4N L, (8, Xo, O)yo(8)]

+ho+eM) [ 3£ (B, Xo, 0)(2yov+ev®) + M £ . (E, Ao, 0)v(E)
uu ul

1

2
+ =By (5, u)lyotev) + 5 Ea (5, A, uin(yotev)] . (43)

Similarly (33) becomes

v (E)- [A(E)+Ao T(E, Mo )]v(E) = nLT(E, Xo )yo (B)+Ae fu)\(g’ Ao, 0)yo (B) ]
(44)
+3 0o £,,(E, ko, 0)yq” (E)+e h(E, &,m, V).

Now we set up the iteration scheme for m and v according to the follow-
ing rule: Wherever M or v appears in a term of (42) or (44) which is

O (e), we label it with the superscript '"£'" to indicate that it is the old
iterate, ard when mn or v appears in a O(l) term, we label it with the
superscript '""(£+1)" to make it the new iterate. This yields the

£ 4
sequence of linear problems for T]( +hd and v( 1)

(g)y£:011!2:"')
in equations (45) to (49). Note that the denominator in (46) is guaran-

teed nonzero by hypotheses (14) and (16).
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n =0, v = 0 4 (45)

p p
(B [, 20 (B)E, (8,00, 0)y& (B)dE +e [ 7o (B)n(E, e, n ") #he))ag

3

P x
Y+ o [, zo (B (8, 10,0)¥o(8)dE Bl

A () [A(E)H6 (8, 10) 1T NE) = BT (8, hodyol®) Hho £y (B, ko Oyo(D]

+ 1%L (82, 00y& (8) +en(E,e, 8 t¥he)), (a7)

M v @) s n v gy = 0 (48)
Pow (1)
[, vo (8) v"T )(E)dE =0 , (49)
L = 0,1,2...
(4+1)

With n defined by (46), the basic alternative theorem guarantees
that the linear problem (47) (48) has a solution vu’+1)(§). The ortho-

gonality condition (49) makes this solution unique. Thus the iteration

scheme (45) to (49) uniquely defines the sequences of iterates

{nt¥3, {3, B X W vy (50)

(1'), € yo +€2\$E )) remains in S for all £, so

provided only that (§, Ao +€N
that h remains defined. Assuming this to be so, the unique solution

of problem (47) (48) (49) can be written in terms of the principal

generalized Green's matrix GT(E, T) of Chapter II §7 as

p
ey = LGt ) I, de dye (1) 420 £,(T, Ao, 0)yo ()

(£)

+ Bhof_ (T, %o, 0y ()+eh(r, &,nt4) vBhr)ylar

‘6:051:2!"' & (51)



B
The iteration scheme defined by (45) to (49) is the optimum
one in the following sense. If the A iterates were allowed to appear
in any of the O(l) terms, the convergence would be slower than the
order € convergence which our scheme gives. On the other hand, if
(£ +l)-§'—t iterates appeared in any O(€) terms, we would have to impose

additional restrictions on the range of € in order to insure the solva-

bility of (42) and (44) for the (2+1)§-t~ iterates.

II1. 4. The Convergence Proof

We now verify the claims which have been made for the itera-
tion scheme (45) to (49). Rather than work with the iterates directly,
) 2 4 (2+1

) B g PR ALY

Fl

we consider the mapping [’r]( We show that
this mapping is contracting on a domain which we define, and then all
the desired properties follow from an application of the contracting
mapping theorem.

Define bounds as follows. They are not the finest possible

bounds, but have occasionally been chosen instead to simplify the

calculations.

2 ||z - 2
- —”‘—I"L (201 1 g Hlivoll+ 1] 2)
‘)/
|
Q= AlcH el lvoll +”l~y_' (53)

= a[lleda s 2le ol + & el livoll]
+ (ol 1)L, l@llyo +1)0 + A g, | @

3 2
+ 21 (lyo ||+1) +82(||lyol|41) A+ & (||yof| +1) A ] (54)



2

vo =l o+ 3 e )l dysll+n) +2 4 fig, Il lyoll+1)
+2a(lyoll+1) +2 Aga(llyell+)

¥a = MEN + (e [+D[IE Nl Alyve [[+1) + Al Ao [+1) Tl |
+ |le| (38, (HyoH+1)B+2A§2(l|y°||+1) + A® 85 ]
2z, |

@ = | ‘l’l (¥o+¥s) max{l, %}
y

i

o= Wl g« Y - I8
Define the Banach space {8, || |} by
P
g8 = {[nvl|ner, vec [ pl, [ yo (E)v(E)dE=0} ,
1En, w31 = max (Il Ilvll} -
Define the closed subset 8 Cf by
5= (Inviee |l o ln] =)
Assume
le] = e
and define the mapping Te : 878 by

T Invl= [%.+] .,

where

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)
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, £
o fz“*(z)fuu(%, Ao, O)yd (B)AE + & [ ug (Dh(B,€,m, v(E))dE
T - - 5 . (64)
*
v+ Ao [, 7o (3)0 5 (B, ko, O)ya (B)dE

~ P 5
H(@) = [, GT(E 1) LTI, Rodyo (1) + Ao £, (T, Ao, O)yo(T) )

(65)
+ % }o (£, (T, ho, 0)ys (T) + eh(T, €, 1, v(T))1dT .

Now we show that for lel = €0, T, maps 8 into itself. Note

that [n,v] €8, E€ [e,B], and le:l < €q together imply that
(E,ho €M, €yo+€°v) €S . (66)

Hence h(€,e, n, v ) is still defined and continuous. From hypotheses

(14) and (16), the denominator of (64) is = J%—L in absolute value.

Therefore,
15 s 2 T2 nol llzoll, eyl livell®+ lel llzoll, In]i3
vl 3 ’

But an easy calculation shows that for |e| 6,

k]| =¥ , (see (54)) (67)

and since €4 ¥1 £ 1, we have

. 2||zoll,

Al | v |

L3 10l lig, Nl llyo P + 13

(68)
= ik

Similarly, for le l £ €4

]
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=G eadlel o ll + 1ol leg, Il livo 42120 | I

= a6 | g, el +J1L]

“ ZoHl

Hiyo l*+1e ] In(l]

uu
(69)
=
Thus Te: 8- 9

Finally we show that T€ is contracting on 8 for lel < €q5. It
follows from (66) and the Lipschitz continuity hypotheses (40) and (41)
that h(g, €, 1, v) is Lipschitz continuous in 1 and v for [N, v] € 8. Take

arbitrary [n, v] and (4, w] € 8. Then
In(g, e, n, v)-h(g, e, u, W) =¥z |n-p| + ¥ | v-w|| (70)

where ¥ and Y3 are defined by (55) and (56).

Therefore,
e 2|zl
|70 | s el —22 (¥ In-pl+ ¥a | v-w] 1, (71)
v
and

1590 <0Gt Tl yo ll+ 1o | g, IAalD 1R 1+ L€ ] h(5 €,m, (8, &1 wl] 1,

(72)
which reduces to
aE % ZH ZOH Q
I¥-%| = le] ﬁl 7 L inul + ¥ lv-w |1 . (73)
Y

From (71), (73), (57), and |e| = eo, it follows that

IR, S1-[H, %1l < lel@) Invl-Tu,wl] . (74)
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But €4 O <« 3, so ’I‘e is contracting on 8 for IE‘I ¥ €4, and the contract-
ing mapping thecorem of Appendix II tells us that T€ has a unique fixed
point in . Note that our iterates [n(‘e), v(m], £=0,1,... are pre-
cisely the elements of the sequence defined in the statement of the
contracting mapping theorem. Also, a fixed point of Te is a solution

of problem (32) (35) and vice versa. Thus we have established

Theorem 2.

The inhomogeneous problem (32)(33)(34)(35) has a unique solu-
tion [N, v(€)] in D, for |€| < €9. The iteration scheme of §3 defines
a sequence [T](ﬁ‘), V('E)(E)] £=0,1,..., of elements of ¥ which con-
verges to a unique limit in §, and this limit is the solution [n,v (§)]
of the inhomogeneous problem. Furthermore, the convergence of this
sequence is given by

A
ITn, v&)1 - [, «+®@y1)l < 1e] ©F max, o),

. 1 . . . .
Since €5 ® = 3, this convergence is uniform in € for |€| < €y

(2)_, (£)

It is easily shown by induction that the iterates m'"=1""'(¢) and
vu') = v(‘“(g, €) are continuous in € for |€| < €. Hence the limits
n(e) and v(E, €) are also continuous in € for ‘e‘ < g5.

With n(e) and v(E, €) so determined, (30) (31) is a continuous
branch of nontrivial solutions of problem (1) (2) for [e| < €5 and

€ # 0, and this branch intersects the trivial solution u(§) = 0 at the

bifurcation point A = Ag.
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III. 5. Uniqueness

The uniqueness part of the contracting mapping theorem, as
used in Theorem 2, implies that there is only one nontrivial solution
branch of problem (1)(2) which has the form of (30)(31) with given
yo(B) and A5. It remains to show that there are no nontrivial solution
branches of any other form bifurcating from )\,. One obvious candi-
date is the solution branch obtained by choosing - y,(E) instead of y, (E)
for the normalized solution of the linearized problem, and then pro-
ceeding as in the previous two sections. This does indeed yield a
branch of nontrivial solutions; but it coincides identically with the
branch (30)(31). Similarly, any different normalization of y,(E) just
gives the same branch with a new parameterization. The only other
possibility is a solution which is orthogonal to y,(£€). Such a solution
could not be obtained from our iteration scheme. We now show that
nontrivial solutions orthogonal to y,(€) cannot exist in a sufficiently
small neighborhood of the bifurcation point. Define the neighborhood

ma'for G<8<1 by
me, = {1xul [r €8 wecC [a,pl, |A-r| =6 llull =51 . (76)
Then

[o,pl XM= 8 (77)

Let u(€) be any nontrivial solution of (1) (2) for some value of \ such

that

[\, ul €mg : (78)
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Define

P =
o = [ vy, (B)u(E)dE . (79)

a

Then u(g) can be written

wWE) = 0 ys(E) + w(E) (80)

where w(E) satisfies

Po»

[, vo (8) w(E)aE = 0 . (81)
Here we are allowing the possibility o = 0.,

Lemma

If u(E) is a nontrivial solution of problem (1) (2) such that (78)

holds with § defined by (88), then u(g) cannot be orthogonal to y,(E) .

Proof:

From the hypotheses that u(g) satisfies (1)(2) and y,(E) satisfies

(4) (5), it follows that w(g) must satisfy

w'(E) = [A(E) + Ao J(E, Xo)IW(E) = AE(E, X, u) = Ao J(E, Ao)u (82)
Mw(a) + Nw(B) = 0 g ; (83)

And so, from the basic alternative theorem,

A ffz:(@) [A£(E, X, 0 yo (EHW(E)) ~ Ao T(E, Ao )0V (E)+w(E))]dE = 0  (84)

Clearly g = 0, w(g) = 0 gives a solution of (84)., If (84) has no other

solution, then (1) (2) has no nontrivial solution for this value of A,
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contradicting our hypothesis. Therefore we assume (84) is satisfied
for some w(g) = 0 .

Then (81)(82)(83) together are equivalent to the integral equa-

tion
F
w(E) = [ G (E,7)IME(T, X, u) = Ao (T, Ao luldT , (85)
where G t(£,T) is the principal generalized Green's Matrix of SETL Ta

By virtue of (77),

1

l3 + 'z
w(E) = [LG (B, )N [ £ 4(T, hotp(X-Do), Cu)dpdh (X-2o)
0o
' 1 ]
+ {(A-2o) £(T, %, Culdl + %o Lk £ (T 2o, pCu)C dpdCu]
(o YO(T) + w(T)) dT (86)
Taking norms as in Appendix I and using (78) gives
ol = 16T thho 140l 0+ HEN_+ x| 4l 1 8llo yewl- ®7)
- ulg ullg A uu'lg !

Now for any 0 < 6 < 1, define § by

6 = 2 > (88)
MRS RN g e e P |
and we have

lwll <6l cy+w| . (89)

But it follows from (89) that ¢ = 0 implies w(§) = 0 and so u(§) is

orthogonal to yo(g) only if u(€) = 0, which proves the lemma.
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On the strength of this lemma, we can make the following

definitions
¢ =0 = ff Yo (E) u(f)dE (90)
(&, €) E-i;(u(g) - € yo(8)) (91)
i) = (-n) . (92)

It is clear that [, v ] must satisfy the same equations as
[n,v] in Theorem 2, and so if [n,v ] € §, the two must coincide by
the uniqueness part of the contracting mapping theorem.

Now we consider the ambiguity in the choice of normalization

of yo(E). Suppose instead of y,(E) we had chosen the eigenfunction
% (E) = wyo(E) (93)

for any real w* 0 .

Then, for sufficiently small ¢ # 0, we could proceed as in §3 and §4

to construct the solution branch

1l

u(g) o %5 (E) + 0® w(E, o) (94)
A = Ag + 0 u(o) . (95)

By inspection, the equations (32)(33)(34)and (35) which define v and

n in §3 are unchanged by the substitution
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Yo (B) = wys(E)

6
n-own =
v = W v

Hence the solution branch (94) (95) coincides with (30)(31) in a neighbor-

hood of the bifurcation point with the equivalence

I
Yo F PR} X0
e = Wo
i (97)
n = ai-l
1l .
\'% = — W .

L

Thus (94)(95) yields no new solutions, but is just a new parameter-
ization of the unique solution branch of Theorem 2.

We summarize these results in

Theorem 3

Problem (1)(2) has no small nontrivial solutions in a suffi-
ciently small neighborhood of )\, , other than those on the branch
(30)(31) given by Theorem 2. This branch is unique at least for

€< c*, where
E:*Emin{eo, L, . ———Q—————-}
o Iy Il +1

Here & is defined by (88).
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I11. 6 Asymptotic Behavior

It is useful for the applications to have an asymptotic expan-
sion of solution branch (30) (31) in the neighborhood of its bifurcation
point. Such asymptotic expansions are often computed formally,
without rigorous justification. On the basis of Theorem 2, we are
able to obtain the first terms of an asymptotic expansion with very
little effort, to estimate the error, and to confirm that the expansion
is indeed asymptotic. For a much deeper freatment of this subject,
see §V.5. For the definition of the order symbol O, see Appendix A.

From (30) and Theorem 2 we have immediately that

u.e) - ey (&) = o(e?), e — 0. (100)
since

“v“SQ for Je|$50. (101)

From (42) we have

B -
Ing [z (E), (N, 0)yo(E)aE+e [ o (E)h(E, €, m, v(E))dE
a

Qa

nie) = ~ B
v Ny [ B (E) £, (BL N, O)y (E)dE
“ (102)
Define 7\1 by
1 P x
g [ B (B (BN, 0)y (E)y (£)dE
N = - & 5 ) (103)
v n [ oz (B) (B, X, 0)y (E)dE
a

Hypotheses (14) and (16) guarantee that the denominator of (102) and

(103) is = -I%—L Therefore
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2
[l - 3y | = == u] iy Tl
v
2 ‘
s |ef “I_;I Iz, ¥, (104)

from (67) and (54), assuming |a | < €y Thus we have proven

n(a)=-7\1+0(5), e —~0, (105)

which we substitute in (31) and get

2

)\(s):?\o+ eN, + O(e ), e — 0. (106)

1

Then (105) énd (106) give the asymptotic behavior of the nontrivial
solution branch up to 0(82).

In order to calculate higher order terms in the expansion,
in general we need to know more about the behavior of v(¢,¢). How-
ever, in the special case when g )\o, 0) = 0 and higher derivatives
of f exist, we can easily get higher order terms in (31) without
knowing v(£, €). In fact, let us assume that f is m-times Fréchet

differentiable, and in the notation of Appendix A,
fk(é,?\,O):O fork=2,...,m-=1, (107)
- o
f i («E,,)\O,O)¢O, (108)
u
where m = 3. Furthermore let us assume that f m is Lipschitz
u

continuous in u, as defined in Appendix A, for (§, ?\o, u)eE S,

Now (107) implies that
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}gl = 0 (109)

so (102) becomes

B
e f oz (E)h(E, e, m, v(E)AE
” ) (110)

P
fa Zo(g)fu)\(gy XO’ O)Yo(g)dg

n(e) =

v+ 7\0

Now by inspection of (43), we can rewrite h as

h(g,e . v) = nl£ (6, N, 00 + £, (6, %, O)(my _+(\_+en)v) (111)

)\0+en }\O+£11 2
+ 2 B (6, N uly )] + —2— B (€, u)(y _tev)® .
But El(g, u) defined by (38) is now equal to
1 m-2 m m-2
By (6) = g7 f (600G, 0w E™) (g, uyu (112)
where
(zx1) 1 1 1
E-Eme [ [ [ £ 18 pyege cop ) (113)
o O o u
2 m-1
-fum (é,?\o,O)] PoP3 - P dpl...dpm.

Define s and t to represent terms which appear in h as follows

A _te

ol
s(E) = £ (A, 0)v + £, (E, X, O)(my +A_v) + E, (£, N\, )y,

]

(114)

nf

1l

B(E) = nE (6, A, O+ (A_tem) By (£, N, w)v

u
(115)

50 now



wd -

h(E,e,m,v) = ns(E) +ent(E) + (A ten) %3fum(€' Ngr Oy tev)™
L reme ™ B g wyy_1en)™, (116)
and (110) can be written
-(nrem)e ™ fj z:@)[ﬁ L mlE g 0)+E‘m’(§,u)] (y tev)™de

n(e) = B . f
v+ [ z;‘(é)[xofuh@,xo,0)yo+es<§)+s2t(§>]d§
a
(117)

provided the denominator is nonzero. But this is assured if | £ |s "

where
~ _ . 1
fy ey 2o bl + Bl fra
IZo 1
\ 2 -1
+ &, (fy, [+1) +A<I)3(”y0”+1)] ; (118)
Define B
sk
Nt S Zo®I mlEhg Oy, TENE
R 15 F . . (119)
YN fu zo (B, (B, X, 0)y (£)dE
Then we can write
Hah o= g e - her o L ey (120)

where



-45=~

B . (N _+em)
-f Z:,(&)[m m& A, 0)+—°€—— g (E, u)](y tev) dg+j z (g)
ne)= —2
Y + f z. (E, [kofu)\(g,)\o, 0)y0+es(§)+£2t(§)] dg
m aj—ly'm_jvj
[f m(g,xo,O)(Z T My (s(g)ﬁt(g))]dg
u N\j=1

. (121)

~

It is clear that :1(9) is bounded for [el < € because the Lipschitz

continuity of £ — implies
u

1 pm < (m)

—ET(Eu) < 7 (y [+ 1) (122)
for (€, \,u)€E S.
Hence we have prdven that

m-2 m-1

£ N1t Ole ), e =0 (123)

]

n(e)

or that

X(g)

I
>
+
)
>
+
O
™
B
m
|
o

(124)

The qualitative behavior of the solution is now clear from

(124) and (100). Let Am be a bound on IT’](E) I for ls | < €40 and

. { lhm_ll}
£0=m1n EO,A—-‘

m

define

Then the following two types of behavior can arise in a neighborhood

of e See Figure 1 for illustrations.
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Case (1): m is even.

Then a nontrivial solution u exists lor all N in an open interval
containing A, as an interior point, except for the point )\o itself (where
of course u = 0). In a sufficiently small interval containing )\o as an
interior point, the "amplitude" ¢ of the solution is monotone increas-
ing or decreasing, depending on whether )\m—l is positive or negative
respectively.

Case (ii) m is odd.

Then if A is positive (negative) there is no small non-

m-1
trivial solution for \ in some interval below (above) Ko and containing
)\0 as its upper (lower) end point. There are exactly two small
nontrivial solutions for each A in the open interval (7\0, 7\(:0)) if

N 1 is positive, or in (7\(?0), 7\0) if Km—

is negative.
m- 1 g



T

A

Case(i)
m is even )\m_i> 0 )\m_|<o
\ .
/{ N A
“A
Case (ii) AL *0 A =0
m is odd / \
X .
Ao~ o

FIG. | ASYMPTOTIC BEHAVIOR NEAR A
BIFURCATION POINT
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CHAPTER 1V

DEGENERATE BIFURCATION THEORY

IV. 1. Introduction

Throughout Chapter III, 7\0 was assumed to be a simple
eigenvalue of the linearized problem. Now we remove this
restriction and assume that 7\0 is an eigenvalue with any
multiplicity p. From the linear theory in Chapter II we know
that p is finite, in fact p<n. When p>1, the eigenvalue )\o
is said to be degenerate; we extend this terminology and define
"degenerate bifurcation theory' to be the theory of bifurcation at
eigenvalues of the linearized problem which have multiplicity p,
where 1<p< n. The simple case p=1 is of course included in
the theory of this chapter, but the theory of Chapter 111 gives
stronger results for this case so we ignore it here.

| The problem considered in this chapter is identical in form

to that of Chapter III:

ul(£) = A(E) u(€) + NE(E, N, u(£)) a< £< B (1)

Mu(a) + Nu(B) = 0. (2)

The matrices A, M and N, the vectors u and f and the scalars
a,B, £, and X are all defined at the beginning of Chapter IIL
We seek nontrivial solutions u(g) to problem (1) (2) for N in a
neighborhood of an isolated degenerate eigenvalue )\O of the

linearized problem



=) =
y'(£)-[A(E) + XOJ(é,?\O)] y(€)=0 a< g < B (3)
My (a) + Ny (B) = 0. (4)

Since )\.0 now has multiplicity p where 1<p < n, there exists a
set of p linearly independent eigenfunctions of (3) (4) which we can

choose to be orthonormal, and which we designate

vy , j=1, ..., p (5)

Any solution to (3) (4) may be expressed as a linear combination

of these y(j)(g).

From Chapter II, Theorem 5, the problem adjoint to (3) (4)

also has exactly p orthonormal solutions

2B, =L, ey Pu (6)
where

008 + tax@ 2 x50 )1 D@ =0 ectcs (@

p) + @2 (8) =0,
(8)
12 lyasay De

The hypothesis (14) of Chapter III is replaced by the

following generalization: define the p xp matrix C by

By -
G5 = Jo 2@ men) yDe ag (9)

and assume

det C # 0. (10)
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A bound on ”fu)\” , analogous to (16) of Chapter 111, is assumed in
section 5.

Theorem 1 of Chapter II1 still applies to problem (1) (2),
s0 bifurcation cannot occur for values of A other than the eigen-
values of (3)(4). In §IV.2 we show that sometimes bifurcation
does not occur even at an eigenvalue, if this eigenvalue is
degenerate. A simple example is given to demonstrate this
possibility. Then in §IV.3 we define the algebraic bifurcation
equations, and present an iteration scheme which generates a
nontrivial solution to the problem (1) (2), given a simple root of
the algebraic bifurcation equations. Section IV.4 contains the
proofs of the statements made in §IV. 3, and in 8IV.5 we present
conditions under which the algebraic bifurcation equations are
solvable. Finally in §IV.6 we indicate an extension of the theory of
the preceding three sections to problems with nonlinearities for

which the lowest order term has degree higher than two.

IV. 2. Non-existence Example

Unlike the case of a simple eigenvalue, for which we proved in
Chapter III that bifurcation always occurs, bifurcation does not
always occur at a degenerate eigenvalue. The following example,

based on one by Berger [ 5], demonstrates this point. Let

ul ()= A (8) + ) (8)]

(11)
uh () = -\ [uy(6) -u (£)]
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for 0 £ <1 and N rcal, and
(3u1(o) = ul(l)
(L2)

le(o) = euz(l).

Clearly this has the form of problem (1) (2). The linearized problem
has the eigenvalue )\o = 1 of multiplicity 2 and corresponding

linearly independent eigensolutions

£
e 0
Y(l)(g) =(0 ) , Y(Z)(‘i) :( _g) - (13)
e

Now if we multiply the two equations in (11) by u, and uy s

respectively, integrate by parts, use (12) and add, we get

A j"(l) [u‘;(g) + u‘ll(ﬁ)] d§ = 0. (14)

But (14) implies that u(§)=0 for A ¥ 0, and so problem (11) (12) has
no nontrivial solution for A near the eigenvalue )\0 = 1, (or in

fact for any real A). Thus bifurcation does not occur at ?\O.

V. 3. The Iteration Scheme and the Algebraic Bifurcation Equations

By analogy with Chapter III, we seek a nontrivial solution

branch of small norm in a neighborhood of 7\0, of the form

ok, g= 65 a; (e)yD (e + v e (15)
=
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Ne) = A+ en(e), (16)

p i
Here 2 qj( €) y(‘]) (£) is some element (to be determined) of the
j:

eigensolution space of problem (3) (4), normalized such that

$ afte) =1 (17)
1

The summation convention will frequently be used to abbreviate

this term
q-vm = i qj(e)y(j)(é)- (18)

J j=1

As before, € is a small parameter, v(£, €) and n(€) are functions

to be determined, and v is made unique by imposing

,fﬁy(j)*(ﬁ) v(i€,e)dE=0 , i=1,..., p. (19)

Substituting (15) (16) into (1) (2) and using (3) (4) gives the following

boundary value problem which g, n and v must satisfy:

A 3
VHE) ~LA) + A I(6,2 )T V() =~ [HE A+ em, eqyV+ e%v)

'J(‘f”)\o)(e‘lliy(j)+ 1+ —:; n £(E, X _ten, €q, y(j)+ 5 %)

a<E<B (20)
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Mv(a) + Nv(B) = 0. (21)

From the basic alternative theorem of Chapter 1L, problem (20) (21)
has a solution only if the right hand side of (20) is orthogonal to

B T 175 TR

A ok ’
_(-.:%- IS z(l)(g) [f(g,?\o-i- en, eqjy(J) + EZV)‘

-3g N eqy I oy g

(22)

B 3 )% :
s 20l 2@t r eq vy s Py ag=o

i=l! lti’pn

The n+ 2 dimensional domain S of Chapter III, on which
f is assumed Fréchet differentiable with Lipschitz continuous

second derivatives, is now defined by

55{(5,)\.,11) g€ La, B]: I}\ = )\OI <1, uecn[aa B]:
(23)
lull < 8+ 1}

where

o= 3 |yY

j:
Therefore f has the Taylor expansion with remainder for (§,\,u)e S,

just as in Chapter III:
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E(E, N w =L (68,00 ut B £ (E,0,00 u® + £, (6,1, 0)(A-A_)u

(24)
+ B (6w e’ + B, (6,00 () )u,

where E1 and EZ are defined by (38) and (39) of Chapter II11 and
have the Lipschitz continuity properties (40) and (41) of Chapter III,
for (E,\,u)e S as defined above.

Now rewrite the orthogonality conditions (22), grouping terms
according to their order of magnitude in the small parameter €.

This gives

gi(%'ﬂ) T B hi(s, g, 7 V) =0 (25)

i= 11---,Pr

where

B )k 3 B 3
gilasm =n [ [ =@ 36 ey @rag + x [0 @) £ (62,0

(26)
s v B s :
ayPerag] +x 2 [ 2@ (6,0 qyP 8 a Mo a,

and
B ieid :
hy(e,a,m, v=n [ 2@ I (68 0v(E) +1 2 (80, 0)a,y N E)g, M)

+ 1 fu)\(é.ho,o)qjy(j)(é)] d§
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B .
g +em) {20 (1, (80 00 @ayPier+ev®e))
# (6,0, 0) VIE) + T E (€, eq;y) 5855 (qjy('j)+ev)2

+ 3 Eplfh rem, sq iyt e miagyeev) Jag,

(27)

Setting €= 0 in (25) gives us the ""algebraic bifurcation equations',

defined by
g;(a,m) =0 ; i=1,..,p
P 2 (28)
2, % 1
i=1 1
Define the following arrays which appear in (26)
B )%k 3
c;;= Jo 2 ® 3 ) yhe ag (29)
B iy :
p,; = [, 20 £,06.2,0 yP(e) ag (30)
B .. ;
Fo 3l 2 e 0 0y y g at (31)

Then the algebraic bifurcation equations (28) can be written
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p
mi [Cij + )\oDij] *; + ?\0 Z Fijk xjxk= 0,3% 1, e.e; Ds
J=d 4 el
(32)

~ a2 = 1,

J
j=1

Here (x, w) denotes a simple root of (32). Note that the algebraic
bifurcation equations are independent of v and €. They are a system
of p+1 quadratic equations in the p+1l unknowns XKys aee ,xp, and w.
We assume throughout this section that a simple root (x, w) of (32)
has been found, and show how to construct a nontrivial solution
branch to (1) (2), given this root.

This iteration scheme, which we now present, is really a
double iteration scheme, consisting of "inner'" and '"outer! iterations.
The outer iterations correspond roughly to the iteration scheme of
Chapter III, and the inner iterations generate the new value of
q and m at each step of the outer scheme,

The outer iteration scheme is defined by the following

equations, which come directly from (17) (19) (20) (21) and (22).

V(O) = 0, (33)
Mo oP () (4+1) __(L+1) (), 2 (2)
5 Tz ote.n et T, eqtt TN L B g0 )
[
(€q§“1)h(i) % ezv(“ﬂdg (34)

B =) sk .
+—;-1'|(L+1)Iaz(1) (E)E(E, N _+ en”’“), qu&+l)y(J)+ Pt dgen, d=1, o0t » D>



-H7~

P qj(x,+1)2= , (35)

=1

1 ‘)\ j
S ey LA I(EN ) 1Y 1’(g)=-%~[f(g.>\o+en‘*’“’. ety o244
g

-3 (8. ) (eql Y ezv‘*’)l (36)

. %n(“l)f(%,komnu’ﬂ), eqj(&+1)y(j)+ezv(1,))’

M V({'.H) (a) + NV(&H) (B) = 0, (37)
By (241)

AR (R (£) dE = 0, iz 1,000, (38)

where £ =0,1,2,... .

At each step of the iterations, (34) represents p

transcendental equations in the pt+l unknowns q1(£+1). . qéff*—l)
and 1']({'+1). We call (34) together with (35) the transcendental

bifurcation egquations. They are solved using the inner iteration
scheme, which we define shortly, using the assumed root of the
algebraic bifurcation equations as a starting point. When (34) is
satisfied, the basic alternative theorem guarantees that (37) (37)

(RHLY 1oy,

has a solution v and (38) makes this solution unique.
This unique solution of (36) {37) (38) can be written in terms

of the generalized Green's matrix of §IL. 7 as
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V(!(,+1) (&+1)’

€ q.y(j) + ¢ ZV(”)

A
B .
(£) = faG*(@-T)[ —;E—[t('r.ko+€n ;

-3trang) (edl MY 2 s
2 Lo W g s orffBEH1, eqj(&+1)y(j)+€2.v(£))]dT.

Now we define the inner iteration scheme. In order to
simplify the notation, we define the augmented vectors % and
q to be the ptl dimensional vectors with first p components
the same as x and q respectively, and (p+1)St components
and m respectively. Similarly we define the augmented vector
functions g and h to be the pt+l dimensional vectors with
first p components the same as g and h respectively, and

(p+1)St components defined by

- . 2
8oty (D = jf;l 9y -ls (40)
Ep+1(€, Q.9 B 0, (41)

Now the algebraic bifurcation equations are equivalent to

g(x) =0, (42)
and the transcendental bifurcation equations are equivalent to

i PN 4 p Be, UMY, MM g, (43)
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as can be scen from the equivalence of (22) and (25).

The inner iteration scheme consists of solving (43) by the
chord method, using X as an initial guess. Wece usce subscripts in
parentheses to number the iterates in the inner iteration scheme,
and in the following discussion we suppress the superscripts of
the outer iteration scheme, for convenience, since they do not

change anyway. Define a by
q = x + a. (44)

Then the inner iteration scheme is defined by

() = 0 (45)

s 1) = P

m= 0, 1,..

-Klg(xta )+ eh(e, x+ &y V) (46)

where
K = [é;{(z’;)}'l’ (47)

and K exists by the hypothesis that x is a simple root. (By
"simple' root we mean that the Jacobian é}—{ is nonsingular at
the root x).

In the following section we prove that the inner iterates
defined by (45) (46) converge to a limit a for sufficiently
small ¢ , and this gives the root = x +a of the transcendental
bifurcation equations at each step f of the outer iteration scheme.

"Then the outer iterates defined by (33) to (38) converge to a solution
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of the boundary valuce problem (17) (19) (20) (21) for sulliciently

small {e], and hence give a nontrivial solution to problem (L) (2).

IV, Convergence Proofs

Define the following bounds.

po=lwl+l (48)

0 =l a1y + allgg,llo+ allg ll 1 c2 +n)

(49)

ay =G lle (340 + Al Il + 2 llg) (50)

8= NG T lieg lly (2 41y + alleg, Il + NIl (51)

ag=llalitzlle, i + I, 0] (52)

€, = min {1 _l-. —L} (53

1 A Q0 . )
Define the Banach space {® , || ||} by

EEINE

Bs‘v(g) € Cn[u,B]l‘rs yUE) w(E) dE =0, i=1,...,p |, (54)

and let ” || be the maximum norm. Let

& ={v(g) e |HvaO}. (55)
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First we show that the inner iteration scheme defined by (45)
(46) converges for any v €.% and sufficiently small «. Itis
clear from (32) that é)—(}-{ exists and is a (p+1) x (p%l) x (pt1)
array of real constants. Define the norms I éi}—c” and ||k ||

according to the conventions in Appendix A. Then let

1
p = min {1, = = (56)
i AN ]
Define the p -neighborhood of x by
wp(£)={£ef"“ Hi-illspl- (57)

Just as in Chapter I1I, the assumed differentiability and Lipschitz
continuity of f implies that E( €,(-1, v) 1is bounded for
lel < €5 q e Wp(i) and ve, and is Lipschitz continuous in q

and v there. Therefore there exist positive constants A, and A

4 5
such that
”E(G,c-l,v) —E(E:, ;, W)” 'E A4”a' ;” + AS ”V"W” (58)
for | el < €1s Qs T € ?'zp(}_;), and v, w €.&,
Define
mpz{iee"“ x+aoen (@) (59)

Now for a € sz and a fixed ve# , define the mapping U which

generates the inner iteration scheme (46) by
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U(a) a-Klg(x+a)+ eh(e, x+a, v)]. (60)
Clearly

lu]| =llo-K[0+ eh (¢, x,v) ]

< lel K] | & (61)

If a and b are any two points in mp, then
lu@@ -u®) | <l a-b -Klgxta)-g (x +b)
+eh (e,x+a,v) - eh (e,x+b,v) ]|

<1 = K,rcl) gz (X+0d+ (1-0) Bdol|]|Z - B

(62)
+lel||K| ||R{e,x+a,v) -h(e,x +b,v)||
<&l lgzzllp lla-nll + 1elllx| &, [la-5]
= lxll Ulggzlle + tet a,1]a - B]
With p defined by (56), define
e, = min { e, N S : PN (63)
3[Klla, 31K Inl

and it follows from (61) and (62) that for |e|< €55

|u)l < %p, (64)
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and

l .

Hence the contracting mapping theorem of Appendix B applies to

lu@ -udl < &lla-5

U, and U has a unique fixed point 5.# in mp. But a fixed point
of U clearly is equivalent to a solution

ﬁ#= g4 2% (65)

of the transcendental bifurcation equations. Thus we have proven:

Theorem 1:

If the algebraic bifurcation equations have a simple root X,
and if |e|< €55 then the transcendental bifurcation equations with a
given ve have a unique root (65) in %p(;:), where 5.# is the
limit of the inner iteration scheme (44) (45).

Now we see how this root El# depends on the choice of ve%,
Let g=x+a and r=x+ b be solutions in Wp(;:) of the
transcendental bifurcation equations, corresponding to v and w

respectively in %. That is,

I
o

g(q) + eh(e,q,v) (66)

g(r) + eh(e,r,w)

; (67)

Subtract (67) from (66) and manipulate as in (62) to get
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[1+K [§ [ Bzz (R+oCa+ o(1-C)B) (CA+ (1-0)B)dod C1(3 - T)

(68)
+eK[h(e,q,v) ~h(e,r,w)] =0

From (56) it follows that the matrix coefficient of (q -r) in (68) is

invertible. Define

B=[I+K __l‘é J‘(l) gzz (X +ola+ o (1-0)B) (Ca + (1-C)B) dod( 7L (69)

Therefore from (68)

la-=zll < tet|B]l K]l [&(e,q,v) -h (e, 7, W)
(70)
< lel [IB]l lixll ta lla -zl +agllv-wl1.

Define

(71)

.5 min e, , 1
3% ™% STEITRN A,

and the following lemma is obvious.
Lemma:

If le|l < €31 then the roots of the transcendental bifurcation

equations considered as functions of ve %, satisfy

la-zll <tel 2 Bl Ix]l a5 llv - wll (e

where q and r are the roots in ﬂp(i) corresponding to v and w

respectively in &.
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Finally we turn our attention to the outer iteration scheme.

Define the mapping

T : & R (73)

by

A : :
T v= J‘E G ’f(g . T)[ ?9— Lf(r, ?\.o +en, quy(‘])+ ezv) - J(, 7\0)( €qjy(3)+ ezv)]

(74)

3 i A ten, eqy + P ar,

where (q,n) =q is the corresponding root of the transcendental
bifurcation equations given for each ve4 by Theorem 1., That

is, q and m satisfy, for the given v,

A 5 : :
% I% z“’*(g)lf(f;,x;en, eayy D 4 v - atgn )(eq; vV e"‘v)] at

Sy . ‘ (75)
#2082 e ren, eq iy 4 Py at = 0

P2
. = Ly
2. 9
gel
Then, using definitiens (48) to (53), it is easy to show that T satisfies
| Tvll < 0 (76)

ITv-Twll<lela, [lv-wll +a,ll a-=ll +a51n-nl (77)
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where v and w are in & and (q,n) (r,n) are the corresponding

roots of (75), assuming |€]| < ey Combining (77) with (72) gives

ITv-Twl < lefTay+2 B K] aga,+a) ) lv-wl.  (78)

Hence T : #—.% and is contracting on % for

p -1
| el< € = min e, [Al-}-ZHB” HKHA5 (A, + 8177t (79)

An application of the contracting mapping theorem now yields

Theorem 2.

Corresponding to each simple root of the algebraic
bifurcation equations (32), there is a nontrivial solution branch of
the form (15) (16) for |€]<_ eo s satisfying the nonlinear boundary-
value problem (1) (2) near A= 7\0. This solution branch is the
limit of the sequences defined by the iteration schemes of §IV. 3.

Continuity of this solution branch in € follows just as in
Theorem 2 of Chapter I11.

Distinct roots of the algebraic bifurcation equations lead to
distinct solution branches, at least in a small neighborhood of X\,

o)
since we may choose p as small as we please and thus make

n p(}-:(l)) and 7 P(:::(Z)) disjoint sets where x(l) and x(z) are

distinct simple roots of the algebraic bifurcation equations.
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IV. 5. Roots of the Algebraic Bifurcation Equations

The problem of solving the algebraic bifurcation equations is
not a trivial one, although it is much easier than solving the original
nonlinear boundary value problem. Without going into the
computational aspects of the problem, we present sets of sufficient
conditions which guarantee existence of a root, If these conditions
are not met, of course it is still possible for the algebraic bifurcation

.equations to have a root. Recall that the equations are

Koi 1_]k xk-i-wi(c +XD)x=

Jr k=1 j=1
(80)

i=1, 4005 P»

P

2
3 4= (81)
j=1

The arrays Fijk Cij and Dij are defined by (29) (30) and (31) in
¢ IV.3. Recall that the matrix C is nonsingular, by (10). The

matrix D is identically zero if £(£,\,u) is independent of \; we

make the assumption that f varies slowly with X\, specifically that

Fe Il < S : (82)

This condition allows us to rewrite (80) as

T (x) = wx, (83)
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where T is the homogeneous quadratic operator defined by

T(x)= - _[1+xr ¢ 'DI'C Fxx. (84)

The problem (81) (83) looks remarkably like an eigenvalue problem.
Problems of this type have been studied by Birkhoff and Kellogg [ 7]
and Berger and Berger [ 6] under the name of invariant direction
problems, and we adopt this terminology. The problem is now to
find a unit vector x whose direction remains unchanged under

the mapping T. The scalar w just gives the length of the image
vector T(x) (within a sign). It is traditional not to include a solution
with w= 0 as an invariant direction, since then clearly T(x) has

no direction. Therefore we first dispose of this case,

Case (i)

If (82) holds and there exists a unit vector x# such that
T(x#) = 0, then the algebraic bifurcation equations (80) (81) have the
solution x = x#, w=0,

I_f p is even, then (83) need not have a solution, for example

take p=2 and T(x) a pure rotation., However, for odd p we

have the important Birkhoff~-Kellogg invariant direction theorem:

Case (ii)
If (82) holds, p is odd, and T(x) # 0 for all x on the unit

sphere, then there exists a unit vector x# such that

T{x#) = wx# (85)
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with w# 0, and these x# and w solve (80) (81).
Another interesting case arises when T(x) is a gradient

system, that is when there exists a scalar ''potential function' wo(x)

such that

T, (x) = af. © (%) iy Ly see s Po (86)

¥

Then we have the following result of Berger [ 6] (page 63).

Case (iii)

If (82) holds, T(x) #0 for all unit vectors x, and T(x) is
a gradient system, then T(x) has at least two invariant directions
and (80) (81) correspondingly has two solutions,

The proof of this is simply that o(x) being a continuous
function on a closed bounded set must have a maximum and a
minimum there,

There is an important type of bifurcation problem which
always gives rise to a mapping T(x) whichis a gradient system.
This is the case of a scalar self-adjoint boundary value problem,
for example the elliptic problems studied in [13], [15], [22]
and [45] . We assume that f is independent of A so that D=0,
Then the matrix C can be made equal to the identity and the array

F becomes
o= 3 £, 6.0 0% o ol e ag (87)
()

where « i=1l,...,p are the orthonormalized scalar

eigenfunctions of the linearized problem. Then clearly Fijk is
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symmetric in its indices ijk, i.e., 1is unchanged by any

permutation of them., Whenever this is the case, we have

P
T(x)= -% N, grad( Z Fijk x, X, xk) (88)

ijk=1
so T(x) is a gradient system.
Another invariant direction theorem, which we will apply in

the next section, is also due to Berger [ 6] (page 85).

Case (iv)
If T is a continuously differentiable gradient system

defined and nonzero on the unit sphere, and

T (-x) = -T(x) (89)

then T has at least 2p distinct invariant directions.
Clearly (89) is never satisfied by T(x) defined by (84).
However, the higher degree algebraic bifurcation equations of the

next section can give rise to such mappings.

IV. 6. Higher Degree Nonlinearities

If the array Fij defined by (31) is identically zero, then

k
none of the theory of §Iv.3 and 8IV.4 is applicable. This case
is analogous to the situation discussed in ¢111.6 when

fuu(E,KO, 0) = 0 at a simple eigenvalue. There we were able to

calculate the next higher degree term in the expansion of X\(E€)



=71~

assuming only the existence of higher derivatives of f. We can
proceed along the same lines in the degenerate case and obtain a
higher degree algebraic bifurcation equation.

Without going into any details or proofs, we state that if
fuk(g:)\oao) ‘_‘0: k':z, R m -1 (90)

and
£.m (£:2,,0) # 0 (91)

then the relevant algebraic bifurcation equation is

NEF. . i X, «0s%. +w (C..+\x D, )x.=0 2
BRI (G5 + N Dy, (92)
m m

(summation convention understood) where Cij and Dij are as

before, and

e 3
ij J ml!

- . ’
P8y e sontiDee) . yUmdgrae.  (93)
In particular if m = 3 and the homogeneous cubic mapping T
defined analogously to (84) is a gradient system nonzero on the unit
sphere, then Case (iv) of the previous section applies and {(92) has

2p distinct solutions.
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CHAPTER V

GENERALIZATIONS AND EXTENSIONS

V.1. Introduction

The bifurcation theory of Chapters III and IV can be generalized
in a number of ways. In the following section we present several
rather trivial generalizations of the theory. In § V.3 we show how the
techniques of this thesis can be applied to systems of nonlinear partial
differential equations. The important problem of the extension of a
solution branch out of the neighborhood of its bifurcation point is dealt
with by the continuation theory in § V.4. Finally in § V.5 we compare
the appro.ximate solutions from our iteration scheme with the asymp-
totic solutions obtained from formal perturbation theory, and show that

the former contain the latter.

V.2. Generalizations

The generalization to include complex coefficients is straight-
forward. It involves only redefining the norms, inner products, and
adjoints in the obvious way. For example, given a matrix A with
complex components, A"; would represent the complex conjugate trans-
pose instead of just the transpose.

As indicated after Theorem 7 of Chapter II, the eigenvalues of
the linearized problem may be complex even when all the coefficients
are real. Bifurcation at these complex eigenvalues may be studied
with no additional difficulty, except of course that the two-dimensional

graphs of Figure 1 are no longer valid.
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The assumption that all the coefficients appearing in the non-
linear boundary-valuc problem be continuous functions of § € [a, f]can
be weakened considerably. The existence and all the properties of the
Green's matrix and principal generalized Green's matrix presented in
Chapter II ilave been shown to hold for the case of Lebesgue integrable
coefficients by W. M. Whyburn [51] and W, T. Reid [40]. We need
only relax our definition of a '"'solution' of a boundary value problem
to mean an absolutely continuous function (see page 90 in [437]) which
satisfies the differential equations '""almost everywhere.' Our bifur-
cation theory then remains valid if equations are understood to hold
""almost everywhere' where necessary, and our norms are replaced
by the £oo and £, norms, where appropriate. This generalization
to include Lebesgue integrable coefficients contains several subcases
of practical importance, such as piecewise continuous coefficients
and certain mild singularities.

Problems in which the matrices A(E) and J(E, \) are analytic in
€ € [a,p] except for simple poles at a or § or both, lead us to the
theory of regular singular end points as discussed in [12] and [17].
Then a fundamental solution matrix exists for the linearized differen-
tial equations, and is analytic for a < § < 3, but it either has poles or
is non-invertible at a and B. Thus the choice of boundary conditions
is severely restricted. However, for suitable boundary conditions it
is often possible to construct a Green's matrix and a generalized
Green's matrix for the linearized problem, and to apply the bifurcation
theory of Chapters III and IV. The theory of generalized Green's

matrices for systems with singular end points is not well developed,
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but in [11] and Chaptcer 10 of [127, a Green's function has been con-
structed for scalar problem: consgisting of a singular nl'h order sgelf-
adjoint differential equation and suitable boundary conditions. An
example of a problem with regular singular end-points, for which both
the Green's matrix and the generalized Green's matrix exist, and to

which the bifurcation theory can be applied, is given in Chapter VI.

V.3. Systems of Elliptic Partial Differential Equations

Often the techniques used to study ordinary differential equations
cannot be extended to partial differential equations. Our iteration
method does not have this limitation. We now discuss a special class
of systems of partial differential equations to which the method of
Chapter IV is particularly applicable. Our approach is very similar to
that in [217]. For another approach, see [5].

Let @ be a closed bounded domain in @ with smooth boundary.
Let ip(x) € C®[]. Define the uniformly elliptic self-adjoint second

order partial differential operator L by

o B ae(x)
Lot = -3 52— [a;00 8L 4,00 w0 (1)
i, j=1 1 J
where
m m 2
iEjzlaij(X) qiquaiZ:}l i e a -
for all x € Zand q eR™
a.:(x) = a.(x) € C'{d] (3)
ij Ji

and ap(x) 20, agix) €C [g] . (4)
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Let the function g(x, \, ®), together with its derivatives gqo,‘gk, gcptp' gcp)\

be defined and continuous on some set S defined by
So = {lx, o) |x €@ €4 peclal, ol <8} , (5)
and assume
g(x,%,0) =0, gcp(x, X 0)>0 , (6)
forx €@ and X € &
Then we consider the problem
L ofx) = \ glx, A, ®) x €d (7)
o(x) = 0 . x€odad . (8)

This problem is one of a class studied in [21] and shown there to
give rise to a nontrivial bifurcation branch at each simple eigenvalue

of the linearized problem

L ¥(x) A gcp(X, X, 0) y(x) xed (9)

0 x€da . (10)

Y(x)

Now consider the following generalization of problem (7)(8) .
Let T be the nxn diagonal matrix with all diagonal elements equal to
L. Letu(x) € Cj [@], and let f(x, A, u) be an n-dimensional vector
function satisfying the same hypotheses as f(§, X, u) in Chapter IV with

[, B] replaced by & Then we have the vector problem
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T u(x) A f(x, A, u) x ed (11)

x€pd (12)

il
o

u(x)

Now assume that the nxn matrix fu(x, X, 0) is independent of x, and

write it as J(1). Then the linearization of (11)(12) is
T y(x) = X J(L) Ax) x €d (13)
y(x) = 0 X €ad (14)

Assume further that J()\) is diagonalizable, so that there exists a non-
singular matrix S, in general depending on A , such that

My (N)
Mz (A) o

sTIns = “ . (15)
(0] o))

Then (13)(14) can be separated into n scalar problems similar to

(9)(10), i.e.

[L - (N, (x) = 0 x €q (16)

\Iri(X) = 0 xeod (17)
1 = .2 mesy B
‘i’l(x)

where w(x) = . = S'ly(x) . (18)
¥ ()

Therefore the linearized problem (13)(14) has a nontrivial solution if
and only if X\ ui(l) is an eigenvalue of L for some ui()\) 1= Ay w1

which is an eigenvalue of the matrix J()\).
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Degeneracy may arise in two ways. Either a given )\ p,i()\)
may be a degenerate eigenvalue of L with linearly independent

normalized eigenfunctions

)

(k&
(x) . (19)

W, Ve,
or more than one of the )\ ui(X) may be eigenvalues of L for the same
value of \ but different values of i, say iy,ig, ..., iE .

Now assume that A = Xy is such that the total number of such
eigenfunction solutions to the problems (16) (17) is p > 0. Define the
linearly independent n-vector functions wi(‘j)(x), 1=1y,iz,.0., iy

2

j= 1:"'Jki: bY

Wi(j)(x) = gj)(x) (20)

DO DD

where \|I§‘])(X) occupies the ith position in the n-vector indicated. Then

a set of linearly independent solutions of problem (13)(14) is
s ) = 8060w e

y(2)(x) : S(Xo) wiia)(x)

[k § * (k e

: . )
y T(x)= Sho)w, T (x)
1

) (k)
yPlx) = SO) w, & (x)
!

We call Ay an eigenvalue of degeneracy p of the linearized problem
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(13) (14).
The basic alternative theorem for the inhomogeneous form
of (13)(14) is the same as for ordinary differential equations. The

adjoint problem to (13)(14) is
[T-AJMT ]z = 0 xea (22)
z(x) = 0 x € 894 (23)

Clearly for A = Ao, problem (22)(23) also has p linearly independent

solutions
z(l)'(x) L2 lyiway P s (24)

Now we assume that the domain ¢ is such that we can construct
Green's function and generalized Green's function for L satisfying
the boundary condition (8). We do this only to preserve the analogy
with Chapter IV; it is not really necessary to construct these Green's
functions. All that is necessary is that L have a bounded inverse,
which is true quite generally. See [21] and [317.

Let G(i)(x, t), i=1,..., n be the Green's functions and

generalized Green's functions determined by the problems

k.
a 1 o .
[-ro ;00016 M 0= 5000 - T vk 4 Ve), t e, (25)
J'_."‘
ol o = o, x€8 4 , (26)

Here \ygj)(x) =0 if A, ui(ko) is not an eigenvalue of L. Then a
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gencralized Green's matrix for (13)(14) is given by
G Nx, t)
g @1
Glix.t) = 8 g S . (27)
O & .
G x, 1)

Return now to consider the nonlinear problem (11)(12). It can

be rewritten as

[T- )Lo J(o )] u(x) = A(x, A, u) - Xo J(‘}\o Ju(x) x €d (28)

ulx)= © x€04. (29)

Try a solution of the form considered in Chapter IV, namely

2 () g
ulx,e) = e 2 qj(e)y (x) + €2 v(x, e) (30)
j=1
Ae) = Ay + enle) , (31)
where
5
521 qu = 1 . (32)

Now we can proceed as in Chapter IV: Set up an iteration scheme and
prove its convergence, for sufficiently small |el , using Gf(x, t) and
the contracting mapping theorem,to a solution (q, n, v) with q and n
in a neighborhood of an isolated root of the appropriate algebraic
bifurcation equations.

The algebraic bifurcation equations for this problem are

P
wj%l LGyt RoDylny* xojzkzl Fapp 7555 € » Bl esul (33)

rJ? = 1 (34)
sl

™Mo
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where C.., D.., and F,. are defined by
ij ij ijk

Gy =/ 207 (x) T3y (x)dx (35)
g ® jdz(“*(x) fuk(x,)\o,O)yU)(x)dx (36)
Fie = L 2W%a0 1 000, 0y 60 y*(ax (37)

Ldeks Lyssaw D 4

Thus the class of partial differential equation problems defined
here can be treated by the same method as the ordinary differential

equation problems of Chapter IV.

V.4. Continuation of Solution Branches and Secondary Bifurcation

In Chapters III and IV we constructed a nontrivial solution
branch (or branches) in a small neighborhood of a bifurcation point.
We mow show how such a branch can be extended out of this small
neighborhood.

Any process which extends the domain of a function beyond its
original domain of definition, while preéerving certain characterizing
properties, is called a continuation. In our case, the continued
function must be a solution of the nonlinear boundary-value problem,
be continuous in A, and coincide with the solution of Chapter III or IV
in its neighborhood of definition. The question of continuation of solu-
tions of bifurcation problems has been studied by many authors, in-
cluding Hildebrandt and Graves [18], Simpson and Cohen [45],

Pimbley [37], and H. B. Keller [22]7,
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It may happen that a nontrivial solution branch itself splits into
two or more new branches at some value of \ # \y. We refer to this

as secondary bifurcation. Clearly the bifurcation theory of Chapters

III and IV applies equally well to secondary bifurcation if we linearize
the nonlinear boundary-value problem about this nontrivial solution
instead of abcut the trivial solution. Each new branch can often be
continued by the methods of this section. Thus, by repeated applica-
tions of the bifurcation and continuation theorems, we can in many
cases obtain a global solution consisting of many branches, all of which
are ultimately connected to the trivial solution. Of course, this pro-
cess fails to yield any solution branches which are not connected to the
trivial solution.

The nonlinear boundary-value problem is the same as that con-

sidered in Chapters III and IV, namely

u’(E) = A(E) u(B) + A £(E, A, u(E)) , asE<p (41)
Mu(a) + Nu(p) = 0 . (42)

All the hypotheses of Chapters III or IV are assumed true here, and
we will later extend the domain of X and u values on which (g, A, u) is
assumed to be defined.

We assume that a branch of nontrivial solutions to (41)(42) has
been found by the methods of Chapter III or IV in a neighborhood of a

bifurcation point. This solution branch is represented parametrically

by
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p ]
u(E, )= e > r.j(e)y“’(a) + e®v(E, ¢) (43)
=1
XMe) = Ay tEnle) (44)

Here we assume |el < e, where e, is as defined in Chapter III or IV

respectively, and

(45)

where p is the multiplicity of the eigenvalue ), of the linearized
problem (49)(50) below. If p= 1, then define q,(g) =1 and y(l)(g) =yo(E)
and we have the solution branch of Chapter III. Otherwise, (43)(44)
represents a solution branch as constructed in Chapter IV.

We further assume that the parameter ¢ can be eliminated from
the equations (43){44) of the nontrivial branch, that is that we can

solve (44) for ¢ to obtain the single valued function

e = el}) (46)
for each X in some open interval, say §,, where.

#o < {x|r= rle) and ‘e‘ <€} (47)

Then we substitute (46) into (43) to obtain a single-valued function
defined on [a, ] X§,, which we write as u(g, e(\)), or simply as

u = u(g,A) . (48)
d A(e)

de

and is nonzero. In particular, if n(0) # 0, then (48) is valid in a

This will be true in a neighborhood #, of any ¢ for which exists
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neighborhood of ),.
The linear problem obtained by linearizing (41) (42) about the

trivial solution is
v/(E) - [A(B) + o J(E,0)y(B)= O (49)
My(a) + Ny(g) = 0 . (50)

The linear problem obtained by linearizing (41)(42) about the
nontrivial solution plays a more important role in the continuation

theory. Using (48), this problem can be written
w'(E) - [A(E) + X £ (8,2, u(E,2))] w(E) = 0 (51)
M w(a) + Nw(pB) = 0 < (52)

Any value of )\ for which this problem has a nontrivial solution w(g)
will be called an eigenvalue of (51) (52).

The fundamental continuation theorem which we shall prove
(Theorem 3) is valid only at those values of )\ which are not eigenvalues
of problem (51)(52). In this regard we have the following theorem.
(The set S of this theorem is defined by (15) of Chapter III or by (23)

of Chapter IV depending on whether p= 1 or p > 1 respectively.)

Theorem 1

If £(E, A, u) is analytic in \ and u for each & with (§,),u) €8, if
(46) is valid for A€ &o: and if u(g€, e (\)) is a solution of (41)(42) for
A E#‘o, then the linearized problem (51)(52) satisfies the following

dichotomy: either a nontrivial solution of (51)(52) exists for all A € &,
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or at most a finite scet of isolated cigenvalues oxists in (?’0'

Proof:
From the contracting mapping thcorem, the sequences

{v('“, ‘n(z) } Exio of Chapter III and {V(E)’q(ﬁ),n(.ﬂ) of Chapter

0
Yin
IV converge uniformly in ¢ for lel £ e,. DBut an easy inductive

(£) _(2)

argument on the respective iteration schemes shows that v'"',q

(4)

and n are analytic in ¢ for each 4 and for each £ € [a,B]. Therefore
the limits of these sequences, v, q, and m are analytic in ¢ for each
E € [a,B]. From the implicit function theorem and hypothesis (46),
u(g, \) defined by (48) is an analytic function of )\ Eg—o for each £ €[a,B],
and so f(€, X\, u(g, \) ) has this same property. We can now proceed as
in the proof of Theorem 7 of Chapter II, using the fact that SLO is finite,
to reach the stated conclusion.

For continuation to be possible, the soluti;)n branch (43) (44)

(or (48)) must fall in the second case of the dichotomy.

The following result is now obvious.

Corollarzz
If £f(€, A, u) is analytic in A and u for each £ with (§, A, u) € g,

and if there exists a point (E,T) on the solution branch (43)(44) such
that 27(e) # 0 at x = % and X is not an eigenvalue of (11)(12), then
there exists an open )-interval containing % throughout which problem
(51)(52) has no nontrivial solutions.

In case linearized problem (51)(52) can have only simple eigen-
values, for example if (51)(52) is equivalent to a second-order seclf-

adjoint Sturm-Lionville problem, then we are in an especially
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fortunate position. The uniqueness theorein of § IIIL 5 can always

be applicd to the solution branch (43)(44) and yiclds the result that

no secondary bifurcation occurs on (43)(44) for |e|-;€*. Thus, since
simple eigenvalues always result in bifurcation, the linearized

problem (51)(52) can have no simple eigenvalues on the branch (43) (44)
with 0 < ‘e] <e¥ Because of its importance, we state this as atheorem.

First we define the set

F = [x] a=me), 0<le] <e*) (53)
where \(e) is defined by (44) and €*ig defined in § III. 5.
Theorem 2:

If the linearized problem (51)(52) is defined and can have

only simple eigenvalues on 9’1, then it has no eigenvalues at all there,

For any point (Q(E)T) € Cn[a, B] x ®, define the following sets:

=& rw |2 elepl IN-K]<1, u e C_ln,8],[[u-d]<1]} (54)
Nﬁl(ﬁ) = {u(€) € C_la, {3]| lu-w || =8,3 (55)
»5, = {w(g) e CnEa,ﬁ]l |w| <8, } (56)
ns(%) = {x en] |2-% | =8 3 . (57)

We now state and prove the basic continuation theorem.
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Theorem 3:

If £(B, \,u) is defined in § and f,, 2nd £, exist and are con-
tinuous there; if U(E) is a nontrivial solution of the nonlinear boundary-
value problem (41)(42) for A = X; and if the linear problem (51)(52)
has no nontrivial solution for A = % and u = Ti‘; then there exist con-

stants 6 and 61 in (0, 1], such that the nonlinear boundary-value problem
(41) (42) has a unique solution u(g, 1) *E“NS(T,{) for each \ E?‘ZG(T) . This solu-
0q
tion u(g, A\) has the following properties:
w(g,%) = W(E), (58)

u{E, \) is continuous in A for A\ € 7?6(3:) and for each € € [a, B], (59)

o0
and u(E, ) is the limit of the sequence {u(E, )\)u’)} defined by the

£=0

iteration scheme

g, W = We) (60)
WD raE) ¢ T 6T DT < a g, e XD (e

Mu (o, O s NV 20, p=0.1,2,... . (62)
Proof:

Choose some u{g) E?(B (d) and define

1

w(g) =u(8) - u(§) . (63)

Then w 6%6 , and u 1is a solution of (1)(2) iff w satisfies
1

w(B)-[A(E) + T £ (8, T, W)Iw(E) = M(E. %, u)-RE(E,X,T)-Xf (X 0w (64)

M wf{a) + Nwp)=0 . (65)
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By hypothesis, the lincar problem obtained from (64) (65) by setting
the right-hand side of (64) cqual to zero has no nontrivial solutions,
so a Green's matrix (8, 1) exists by which (64) (65) may be transformed

to the equivalent integral equation:

w(g) = E G(E, m) [ £, A, Whw) =X (T, T, W)X £ (1, X, D w(T)ldT . (66)
Let the operator on the right side of (66) be represented by T)\w. Then
Tk: %61 - Cn[a, B]l for each X\ € 7?6(35) . (67)

and w is a solution of (66) iff w is a fixed point of T

A
Defining norms in the usual way with respect to the set S s, we

have, for w, w(l) and w(a) in ¥ and \ € 7?6(7),
1

T, 0l < [ G CNe) + IXTNg, I3 (=R

< (1-8)8, 3 (68)

if
(1-0)8,
5 < . (69)

0 e+ 1Tl 3

Also,
I, w o W@ <& g, 0 Tt 1, v as (e L)

< G Che e + 1X] Yeg, o+ %] [lg 160 3l w-wl@y)

So,

HT)\W(:")-TK w(l)H <8 | w(l)-w(B)H for any 0<9 <1, (70)
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if

9
2L G AN+ IXT e, I3

<

and

< 8 .

2[GI IR 11,

Therefore we define, for any 0<6<1 ,

& = min/{l, - ) e L) _ (71)
|G NI e, NS 2 WGP TRY e, JJEUEN+IRT )
and
6, = min{ 6 ) 1} ) (72)

NN

With these definitions the contracting mapping theorem applies and we
conclude that T?\ has a unique fixed point in’)#61 for each \ € %6(3:) .
This fixed point w is a unique solution of (66) in 2}61 and is continuously
differentiable and so is the unique solution of (64) (65) ing{»al . Therefore
u(€,\) =U+w is a unique solution of (41) (42) in 2{51, for \ G‘T{a.

Furthermore, it follows from the contracting mapping theorem
that u(€, \) is the limit of the sequence of iterates (60)(61)(62), and the
convergence of this sequence is uniform in )\ G‘néﬁ} . The continuity
of u(g, A\) in A follows from the continuity of these iterates and their
uniform convergence. Also, from (69), A = % when &, =0, thus verify-
ing (58), and the theorem is proved.

It is now clear how to proceed with the continuation of a non-

trivial solution branch away from its bifurcation point. We start with

the branch (43)(44) given in a neighborhood of the bifurcation point (0, Ay)
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by the theory of Chapter III or IV, and, if possible, find a point (1, %)
on that branch to which Theorem 3 applies. Then the iteration scheme
(60)(61)(62) generates a solution u(g, )\) for X in the neighborhood ‘)’Zaﬁ),
and by the uniqueness, it must coincide with the original branch where
there domains of definition overlap. Call X = 7\(1) and ﬂﬁﬁkﬂ (l). Then

(2)

we can pick a point 2" which is further from the bifurcation point A,
than }\(1) was, and if it is not an eigenvalue of (11)(12), apply Theorem
3 again to extend the definition of u(g, \) into the new neighborhood
n (=) = 726(2) ()\(2)), This process may be repeated indefinitely, provided
no eigenvalue of the linearized problem (51)(52) is encountered. In this
regard we are helped by Theorems 1 and 2.

However, even if problem (51)(52) has no eigenvalues, we have

not yet shown that this process will take us anywhere. That is, suppose

that, for some n =1,

(m)

n = ,n(n) for all m=n . (73)

In such a case, the points X(k) will still be a monotone sequence moving
away from A,, but they will be bounded above, and the neighborhoods
N (s will shrink in such a way that the domain of definition of u(g, )\)
is not extended at all. We prove in the next theorem that such a
frustrating situation can occur only for very good reasons.

We note in passing that the iteration scheme (60){61)(62) may
not be the best way to compute the continuation in practice. The
method of Poincaré continuation, described by H. B. Keller rzsj,

pages 146-149, is more practical.
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In the following theorem we assume, for convenience, that
the solution branch is being continued to the ri ght; that is in the
dircction of increasing A, from Ag. The casc of decrceasing A is of

course equivalent,

Theorem 4

Assume f{(E, )\, u) is continuous in (g, A\, u) and fu’ fuu’ and fu)\
are defined and continuous in (£, A, u), for each € € [a, ], for all
A > Ao and for all u € Cn[a, B]. Suppose the continuation process of
Theorem 3 is carried out on a monotone increasing sequence of )\(k},
k=1,2,... , thus defining the continued solution branch u(g, A). Let

2™ be the least upper bound of all possible such )\(k). Then exactly one

of the following three possibilities must occur:

(a) A® = o, (that is, u(g, \) exists for all finite \);

(b) 2\ <o, and |u(E, V)| > o as A =2

(c) )L* < o, ulg, )\*) = 1im* u(g, ) exists, and 7\* is an eigenvalue
A=A

of the linearized problem (11)(12).

Proof:

Clearly (a), {(b) and (c) are mutually exclusive.

Suppose neither (a) nor (b) occur, and A\* is not an eigenvalue
of problem (51)(52). Then )\* is finite, and u(g, )\*) =1im u exists.

A=K
02\ <3, so this

From Theorem 3, u(g, \) is continuous in )\ for A
definition makes u(€, \) continuous in X for k(l) <% '831%
Choose one sequence out of the many possible monotone in-

creasing sequences {)\(k)}f: , Wwith )\.(k) - 3* and l(k) X, k= 1,2,.0. .
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Then clearly u(g, )\(k)) is continuous in € € [a,p] for k=1,2,... .
The continuity of u(E, X") in £ € [a,p] then follows [rom the cqui-
continuity of the sequence {u(g, k(k))};z;l which is proven in the Lemuma
below.

By the hypothesis that A is not an eigenvalue of (51)(52), a
Green's matrix G(E, T, \) exists for (51)(52), and it follows from the
continuity of u(g, \) that G(§, 7,1} is continuous in X for }; <)\ < .
Consider the following integral equation which is equivalent to («1)(42)

for Ay <A <N
u(g, ) =1 ffG(g, T, W, A wlT, A)) - £ (T X ulr, A))a(r, Aiddr . (74)

Both sides of (74) are continuous in A and uniformly continuous in £
for A - l*, so (74) remains valid if we let \ = \*. Hence u(g, \*) is the
unique solution of (74) with A = X*, and by Theorem 8 of Chapter II, is
the unique continuously differentiable solution to problem (41)(42),
where by unique we now mean unique in a sufficiently small neighbor-
hood of the solution branch under consideration.

But now Theorem 3 is applicable at A* and so the solution branch
can be continued beyond K* into an open neighborhood of X*, which con-
tradicts the hypothesis that )\* is the least upper bound. Therefore at
least one of (a), (b), or (c) must occur, but since they are mutually

exclusive, exactly one occurs.

Lemma
Suppose that the hypotheses of Theorem 4 are satisfied, and

0
that X* is finite and u(E, 7\*) exists as defined in Theorem 4. Let {)(‘k)}k—l
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i =™ and

be the monotone increasing scquence of Thecorem4 with )
k(l():g " , k=1,2,... . Then the sequence of functions u(k)(E)Eu(F_?,,k(k)),

k=1,2,..., is equicontinuous in € for £ € [a,p].

Proof:

Choose any X such that )\(l) <% <2\™ this X will remain fixed
throughout the proof. Define u(g) = u(g, 3:). Clearly % is not an eigen-
value of {(51)(52).

For each k=1,2,..., u(k)(g) is the solution of the problem

ole) - LAl £, (5, X1 ) = 2, a0 ) 3¢ et

(75)
By + 8 u®@y=0 | (76 )
which is equivalent to
u(e) = f & &, e, 20, B3 ¢ A %, TS r)1ar (77)
where the Green's matrix G(E, T) is defined by
&g, m = G, 7.0 (78)

which exists. Now,

19 (0 g @) < 1) ) axe @), oy far e, 0 69 Rt (35
alkhy (79)

(k) (k)”

Since ) and ||u are bounded for all k, and for k - o, there exists

a constant &, such that

13 8r, 20, W8N Te (0, X B0 55 for ank (80).
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Use a tilde to denote that the quantities so marked are to be evaluated

at A\ =X. Then, from (26) of Chapter II,

£ 181e®), n)-&e®), ryllar <4 £ T ogn(g® B 15w &)
[1sgn(z®r) + BB L2 r)||ar
<% -7 ff 11 sgn(E e BB [T (r)jar
+ 3P| 2 [s¥e®) rry

Since ¥ and ¥7* are continuously differentiable in € {(or T), there exists

a constant 8, such that
faﬁ”f}'(g(l),T)-a(g(z),T)HdT < 3, [e0)g®
Letd = &, 85, and we have from (39), (40) and (41) that
a2y (g« 5 |26 gl
Wil 3 Jndependent ol k= L% s
Thus the sequences {u(k)(g)}:;l is equicontinuous in E for £ € [a, B] .

V.5. Comparison with the Perturbation Method

Formal perturbation theory is often used to obtain very useful
approximations to solutions of bifurcation problems. This method
originated in the work of Lindstedt and Poincaré [38] on periodic

motions in celestial mechanics. It has recently been applied by
J. B. Keller and others [26], [27], [36] to a number of physically
important nonlinear boundary-value problems, which arise in such

diver se areas as nonlinear optics, heat conduction, vibrations, and
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superconductivity.

In this section we will show how the iteration method which we
have presented can be used to justify rigorously the approximate solu-
tions obtained formally by perturbation theory, and furthermore we
prove that the nth iterate obtained by means of our iteration scheme
contains the first (n+l) terms of the perturbation expansion.

First we define what we mean by "the formal perturbation
method" for a class of bifurcation problems. This definition is
essentially that presented in [27]. Let L be a linear differential

operator of one of the types which has been discussed in this thesis;

that is
Lu = u’+ A(E)u asin Chapter II; or (83)
Lu = i: —a-—g—i—(aij(f;) BT“E‘jﬁn a_(£) u(t) (84)
ij=
asin §V.3.

Let B represent the appropriate boundary operator, viz

Bu = Mu(a)+ Nu(g)=0 or (85)

Bu=u(§) =0, (86)

respectively. Let f(g, ), u) be the appropriate nonlinearity as previous-
ly defined for each of the above operators. Then we can represent

any of the above problems as

L.t = X flE X, a) g e (87)
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Bu = 0 . Ee€o s . (88)

The formal perturbation method for problem (87)(88) procceds as
follows. Clearly u = 0 is a trivial solution of (87)(88) for all A\ . A
one-parameter family of nontrivial solutions of (87)(88) is sought,
which splits off of this trivial solution at some value of A\, say X\ = )A,.
Assume that such a one-parameter family exists and that it can be

expressed in the form

u(g, ¢)

g m (8 + e® (B} + P8} ¥ v (89)

Ae) ke BB 3 5 ke F new o (90)

These power series in € are not assumed to be convergent, but are
generally assumed to be asymptotically valid, uniformly in €. That is,
it is assumed that for eachn= 1,2, ..., m (m may be finite or infinite),

the following is true uniformly in £ :

I

ntl
e

u(g, e)-(ex (B) + ... + e™x_(g))]| = O (™) (91)

n+1

[Ate) - (o + Xy # oo + "2 ) | = O (™) (92)

as ¢ » 0. (Theorder symbol O(en) is defined in Appendix A.)} Sub-
stitute (89) (90) into (87)(88) , differentiate repeatedly with respect to
e, and set € = 0. Then the following sequence of linear problems is

obtained, assuming of course that the indicated derivatives of { exist:

[L = )\-o fu(g: Xo: 0)]X1 =0 ) (93)
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[L - % fu(.f;, No» O)Ixa = My [ (B, R, O)3g 420 £n (B hos 00y ]
ko £, (B0, 00 X (94)
etc., with boundary conditions
Bx, = 0 1 L. 2,50 = (95)

The first of these is just the familiar linearized problem and
so Ay must be an eigenvalue and x, the corresponding eigenfunction
yo(B) of (13)(14). We assume throughout this section that A\, is a simple
eigenvalue. The subsequent linear problems are inhomogeneous, and
50 7\.1 is determined by applying the basic alternative theorem to the
(:1+1)th problem, which is then solved for Xi-{-l(g)' The sclution xi+l(§)
is made unique by the condition fyo(g)xi+1(§)d§ =0y 3= 1,2 eve
This method fails when the derivatives of f fail to exist or when the
coefficient of )Li in the (i+l)th equation is zero. For example, (94)
yields

Ao [ 23(B) £ (8, ko, 01 (E)AE

)\1 = 7 s -(96)
[ 7o (B (B, Ao, )3y (B)AE + g [26 (B) 5 (B, N0, 0)%, (E)dE

We now compare the asymptotic forms of the approximate
solutions obtained by the iteration scheme presented earlier and the
perturbation method just described. Note that the contracting mapping
theorem as used in Chapters III and IV to prove that the iteration schemes

converge, also tells us that this convergence is geometric in €. That is:

It

(vg e)-vYe, )| = o(ed), and (97)

]

| nte) - n ey | o)) (98)
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for j=1,2,... , as ¢ # 0. Here v(g,¢) and n(ec) are the exact solu-

Hgn end PO eln'is) ave the I fterates, I we define
wig, o) = ey, + e vz, o) (99)
X(j?(e) = dAg t e 'n(j)(e) (100)
for j=1,2,... , and |el =¢,, then we have from (97)(98) that
(3)

[u(g, ) - u o(ei*?) - (101)

I

(2, e)||

| me) - A9 (e O™y, ase -0 . (102)

Combining (101)(102) with (91) (92) we have the following theorem.

Theorem 5

If the perturbation method is valid, that is if it generates ex-
pansions of the form (89)(90) which have properties (91)(92), then the

perturbation expansions (89) (90) are related to the iterates (99)(100)
by

”u(j)(%, €) - (exy +e®x + ... + elt! 0(ej+2) , (103)

Xj+1)H =

Do) - e dat.nn +olxp] = 0l (109

for each j=1, ... , m-1.

This leaves open the question of whether or not the formal per-
turbation method is ''valid' for a given problem. In many cases the
validity can be proven by a simple extension of the iteration method.
In fact, in § IIl. 6 we have already done this for (104) with j= 1, or

greater in some special cases. More generally, we could take as our
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ansatz

wE,e) = € 1 (E) + c® xp(B) + ... + e"x (9)+ET V(G 0)  (105)

n-+1

Me) = dgtedr tooo e AL +e” HE), (106)

n-1

where xi(g) and A; are determined by the perturbation method, and
with sufficiently differentiable f(£, )\, u), we could find the equations
which ¥ and 'ﬁ must satisfy and then attempt to prove as we did
with v and 1, via the contracting mapping theorem, that v and Fﬁ exist
and are unique and bounded, which would verify (91) and (92). However,
this approach can become very tedious and we do not attempt it here.
An entirely different approach is to prove (103)(104) by induc-
tion, and then use (97)(98) to verify (91)(92). We now outline this
inductive argument. For convenience in the notation, we assume that
f and u are scalar functions and f is independent of A\. Assume that
f(E, u) has continuous derivatives with respect to u up to order m = 3,
uniformly in §. Then define the functions

glihe) = (8 onxj(E)+ 1, (8, 0)my x;_, + mam_yten by 1m)

1 3 2
#+ B— fuuu(g', 0)()& XJ_Z + Xq Xa Xj-3+.- B +Xj_le )

+ oue

+ £ (8,00 %) (107)

!
for jo liwwes; TR &

We also define

) = U - £,(8, 0) x,(€) i Teasn, H s (108)
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Then the equations which determiine the cocfficients in the perturbation

expansion are:

il
o

(L - % £,(8,0)]x (109)

1}

[L - % £,(5, 00T = %o B (8) + 2y g9M®)
(110)

Xo ’é"(a) + )\ g(z) + Az g(l)

[L = kofu(gs O)] }C3

or in general ,

i . |
[L-kof (8, 01x;, = A B oo gy et n g8 so, e,

(111)
The boundary conditions in each case are
ij+1 = 0 , j=0,1,... m-1, (112)
and for uniqueness we require
[yo(B)x;, 1 (B)AE = 0, §= LZans « (113)
The orthogonality condition applied to (32)(33) determines
~(j+1 j
. -[20@) DY) + 0 g . a e Phe)lan
i @)
[ 25(8) g™ (8)aE rii 4}

for j=1,2,..., m-1. Here z,(E) is the eigenfunction of the adjoint
problem corresponding to (104) (112) .
Now we consider the iteration method. By hypothesis, f(g, u)

satisfies the identity
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£(2,u) = O+ (5,00 + $ £ (8,00 v? +... mfl)!fum_l(g, o™ 1

¥R ; 2 m-1
+£ fo '/c‘,furn(g‘ pmpm-l"'plu)pm 1Pm-2"-P1
m

dpn...dp111 ;

50

£(E, ) = £,(8, 0)u + § £ (8, 0)u® +... +

e TR AL 0™ +0(u™)

(115)
as ||u]| = 0, uniformly in §. The iterates Jitl)

mined by the equations

and n(3+l) are deter-

[L-%of (8, 0)]‘/(‘]+1)~ 1 ()\o+en3))[f(§, 3Yo+€2V(j))‘fu(g,o)(eyc+€3v(j))]
e?
: (116)
n(.]“*‘l)fu(g’ 0)_ Y0+€ﬂ(‘])f (g, O)V(J) ,
u
[y, e gyae =0, j=0,1,..., -
B V(J+l) =

(118)
,n(J'H)

- {L00te ) feolizeygren V)
fzo(g)f (go)yo(g)dF

-fu(g, 0)(e yo+e® v(j))]dg

t ent fag(ere (2, 0 g)ag}, (119)

for j= 0,1, ..

where the integrals are taken over the appropriate

set £ € [a,B] or E € 8, say, and where

S _ T1(0) = 0, (120)

Now we take for our induction hypothesis the following equations
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v E €)= xp (@) + e ke (B) + ... + &7

xiy ) (9 4 o(ed) (121)
nhey  a +erg ... +e] A ol) . (122)

1t is easily secn that (121)(122) is valid for j = 1. We assume (121)
(122) valid for j = 1, ..., n and prove the validity for j = ntl, where

n <m-3. Substitute (115) and (121)(122) into (119) with j = n. Then

(j+1) _ T

n
f zofu vodg

{Ootertens oot dnro@ ) gm0

C 2
X (yo+€V(J )

rn3

€
i (§, 0) y°+6vm)+ +(——1)’ um_l(g, 0)

6 uuu

% G ¥

+ 0™ ) (e b e ha .ttt ) 2o B0 kpag)

= ""“"“"“——"{)\ofzo g )dg"’e[?\ol Zp g( )dEJfM on g d%]
fzof Yodg

(4)

+€3[)\0 ong d@ & )\.1 IZD g(a )d§ 2 )\a on g(z)dg:]

e s

(j+2) (G+1)

+€J[)\szo g d€+k [z, g d&€+... + )\j [ zo g(z)dg}

+O(ej+l)}

Hence

jtl

A WS Y L WY o1 o (123)

&

Using this in (116) we get
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2 = oy 2
[L-xof E, 0)]v ("” B) = (Ag tedy +. . a ¥ t-:J)\,]bO(eJII))[ ﬂru“(rf,, 0)(ye IEV(J))

»
Z; uuu(' )(yo+cv('))

l“r1r1—3

. j -1 -2
+ (m-l)!fum—l(g’ Q)(Yo-!-ev(”)m +O(€m )I
+0a els +.. . +ed Ths0(ENE (8 0)(yo+e vU))
& g%, £ (€, O)yo

j+l

= [ E(E) b e g(l)] + e[ E(S) ¥ % g(g) + kg g(l)]

¥ e® e B h 22 #3502 4 5% o™ (124)
+ v w

+ el g J+2)+7\1 g(j+1)+)\gg(j)+. e +)\j g(2)+lj+l g(l)]
+o(dth

Since this is true for all sufficiently small €, we get from (111) that

Cha-dif 08, 007 M sy cpmy o guy = e:jxj+2) ot . 2s)

But now, since V(J*l) and the x, are orthogonal to yo and satisfy the

same boundary conditions, a trivial argument involving the principal

eneraliz een ction giv :
ralized Green's funct es

V(j+1) €J+l

(5, 6) = (8) + €35 (8) +...+ Ix, 5420940 ; (126)

which, with (123), is what we set out to prove.
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I"inally, (123) and (126) can be combined with (99) and (100) to prove
(103)(104), which together with (101) (122) verifies (91)(92). We have

thus proven:

Theorem 6

1f (€, u) has continuous derivatives up to order m with respect
to u, uniformly in g, for some m 23, then the two approximate solu-
tions obtained by the iteration method and the formal perturbation

method are related by the equations

Wi a=en @ eme@rn. 4 @06l aen
Ay =g ten +...tedn +0dT (128)

J

as € =0, foreachj=1,2,..., m-2, Furthermore, the perturbation

method is ''valid' in the asymptotic sense previously defined.
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CHAPTER VI
AXISYMMETRIC BUCKI.ING OF THIN SPHERICAL SHELLS

VI.1l. Introduction

One of the outstanding problems of applied mechanics is that
of finding a mathematical theory for reliably predicting the buckling
behavior of thin structures. By buckling we mean, roughly speaking,
a large change in the displacement of some part of the structure
caused by a small change in the magnitude of the applied load,
occurring while all parts of the structure are well below the elastic
limit of the material.

An elementary example is the buckling of a slender elastic
column due to axial compression. This problem was first analyzed
theoretically by Bernoulli and Euler. Experimentally it is well
known that as the axial load is increased from zero, the column at
first shortens and thickens slightly, but remains straight. How-
ever a critical load is soon reached at which the slender column
begins to buckle; that is it bends into a curved state. If the load is
increased further, the column bends more sharply until the elastic
limit is passed at some point in the material, and the column
eventually breaks. However, if the load is removed before this
occurs, that is while the column is still behaving elastically, then
the column returns to its original straight condition. This elastic
transition between the straight and curved states caused by a small
change in the axial load is what we call buckling. The mathematical
theory of column buckling is well developed; see for example [19]

and [ 41,
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A nontrivial example of buckling in which therc is much cur-
rent interest is the buckling of spherical shells subjec‘t to a uniform
external pressure, T. von Karman and H.S, Tsien [ 48 ], having
observed experimentally that the buckling deformation is usually a
"dimple" confined to a small region of the sphere, initiated the
theoretical investigations of a clamped spherical cap, which would
correspond to the region of the sphere in which the dimple occurs.
This approach was developed in [ 10] [24] and elsewhere. In
recent years interest has returned to the theory of buckling of
complete spherical shells, see [3],[287, [42], [46] and [49].
The agreement between theoretically predicted and experimentally
measured buckling behavior is still relatively poor. In most cases
the discrepancies are attributed to unavoidable imperfections in the
real shells used in the experiments, and some attempts have been
made to include the imperfections in the theory.

Without attempting to solve the outstanding problems in the
theory of shell buckling, we show in this chapter how the bifurcation
theory of the previous chapters can be applied to a mathematical
model of the buckling of a spherical shell under a uniform external
pressure., We do not exploit the full potential of the bifurcation
theory for predicting buckling behavior, and in fact the theory is
capable of providing much more information than is presented here.
However, sﬁch data are abundantly available in [3]. The theory is

admittedly unphysical in that we make the following two assumptions:
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first that the shell is [ree of imperfections, and sccond that only
axisymmetric deformations occur.

The mathematical model (1) (2) (3) is that derived by
E. Reiss in [ 3]. The nonlinearities come from the strain-
displacement relations and thus are geometric in origin. It is
assumed that the linear stress-strain relations are valid, that is
that Hooke's Law is valid, Other customary assumptions
of shell theory made here are: the shell is thin, normals to the
midsurface remain normal to the deformed midsurface, the normal
stress in the radial direction is negligible compared to the other
normal stresses, and the strains are small compared to 1. The
derivatianr in [ 3] is based on the variations of the energy integral,
Equivalently, equations (1) (2) (3) can be obtained from the equations
of equilibrium of forces and moments as is done for the linearized
model by Timoshenko [47].

The resulting mathematical model of sphere buckling is the

nonlinear boundary value problem

a®x (8)  dx(&) 2
(-6 —— -2t —g— +(v - =) =02 —E— =2 ()
dt 1-£ g2
(1)
4%, (8) dxz(g) 1-2 £ -5
(1 g ) == + - -~ — X =
T e 1-5;7) ~(15-)
(xl(gw—é-— 1 (£)x,(8)) (2)
1+§2
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xl(-l) = xl(l) =0
(3)
xz(-l) = xz(l) =0
The symbols in these equations have the following definitions and
physical interpretations:

£ = cosH, where 6 is the polar angle measured

from the north pole, 0 <6<,
xl(é) is proportional to the shear strain,

xz(«‘_?,) is proportional to the rotation of a tangent to a

meridian,

V= Poisson's ratio,

2 . ; : -
) is the dimensionless thickness parameter,

=
Ii
=

|

where h = thickness of shell and R = radius

of sphere,

-
HI*U
=g e

is the dimensionless load parameter,
where E = Young's modulus and P is the
uniform external pressure.
Our xl(g) and xz(g) are identical to q and v respectively
in [37].

Clearly x(£) =0 is a solution of (1) (2) (3) for all values
of p. We call this the trivial solution; physically it corresponds to
uniform radial contraction of the sphere due to the load p.

Experimentally it is well known that for a sufficiently large load
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the shell buckles into a non-spherical shape. In the mathematical
model (1) (2) (3) there are values of the load parameter p at which
bifurcation occurs, that is nontrivial solutions appear. These
nontrivial solutions describe possible buckled states of the sphere.
Whether or not a physical sphere actually buckles onto one of these
states depends on its relative energy; in general a structure buckles
into states of lower energy. We do not go into such energy
considerations here; see [31.

The radial displacement of the uniformly contracted unbuckled
sphere is (1-V) p. Superimposed on this is the buckling displacement
of a point on the sphere at polar angle 0 given by the 2~component

vector u(6) where

tangential displacement in 6 direction,

u, (8)

radial displacement toward center.

i

We may neglect azimuthal displacement by the axisymmetry
assumption. The displacement components are given in terms of

x, and X5 by

1

2
. x5 (cosw)
0,(8) = ~(1+v) x (o) - 228 71 2

5]
o —sme— (4)

2
dx.(cosb) 8 x5(coswy)
1 $) 2
uZ(G) = —xl(cose) cot 6 - B ccés <r0 A do. (5)
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The theory of the preceding chapters cannot be applied
directly to the sphere buckling problem (1) (2) (3). These equations
can easily be reformulated as a system of first order equations
which have the form of the problem of Chapters III and IV except
that the coefficients are singular at the end points £= 1 and § = -1,
Therefore none of the linear theory of Chapter 11 is applicable,
since there we required that all coefficients be continuous (or at
least integrable -- see Chapter V), and so it is necessary to verify
that the basic alternative theorem still holds and the generalized
Green's matrix exists for this problem. This is done in Appendices
C and D.

Since the linearizations of equations (1) and (2) are closely
related to Legendre's differential equation, it is convenient to keep
the problem in the form (1) (2), rather than in the form of a first-
order system, so that the well-known properties of Legendre's
equation may be utilized. Once the necessary linear theory is
verified, the nonlinear bifurcation theory follows in the same general
manner as it did in the previous chapters. This demonstrates the
power and generality of the method.

For convenience, we rewrite the problem (1) (2) (3) as follows.

Define
2 2
_ 2 d d £
L =-(1-&7) + 2§ +
ag> dg 1-£%

(6)
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L O
o ( ) . )
O L
x; (€)
x(£) -‘( ; (8)
x5 ()

v 1
A(p) =< , ) (9}
(=5 . (_1_-_\)_2_)_\, ,

b = (B"
> 2
Vit
£E,%(E)) = (10)
2
() = 0 =0
1%
Then (1) (2) (3) is
Tx (€)= A (p) x(£) + HE,x(£))—1 <E<1, (11)
x(=1) = x(1) = 0. (12)

VI. 2. The Linearized Problem

The linearized problem corresponding to (11) (12) is clearly

T y(£) = A(p) y(£) (13)
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o {=dym gy 1, (14)
v, (€)
where y(E) = .
(YZ(E))

We seek values of the load parameter p for which this problem has
nontrivial solutions. When suitably normalized, we call such
solutions eigensolutions, and the corresponding values of p the
eigenpressures,

Legendre's differential equation for a scalar function ®©(§) is

2
(1-£%) @'(E) - 26 NE) + [n(n+1> -2 ] e =o, (15)

and has linearly independent solutions called the associated Liegendre

functions and designated

- (o) (o)

B . e g,
Setting o =1, (15) becomes

Lo(€) = [n(ntl) -1] o (£), (16)

and (16) has solutions Pn(l) (E) and Qn(l)(ﬁ). If n is an integer,

Pr(ll) (€) satisfies the boundary conditions

P .= Py =o, (17)
n n

and QI(ll)(g) blows up at £ = *1, If n is not an integer, neither
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P(l) (€) nor Q(ri) (£) satisfies the boundary conditions (17). Further-
n

more %(1)('5) = 0 and

(1} e o b
U6 = P (e (18)

Hence the scalar problem consisting of differential equation (16)

with boundary conditions of the form (17) has the eigenfunctions

Px(ll) (g) s n= lsds wes
and corresponding eigenvalues

?\nE nntl) =1 ; 82 1525 caee . (19)

Now consider the matrix A(p) defined by (9). It can have
two eigenvalues, say 7\+(p) and X\ (p) which are functions of p

and are given by the roots of the characteristic equation

2 2 2
= 5 p(-i:-l’-—) f e @ p(l'V )v-\)2=0. (20)

U

Assume for the moment that (20) had unequal roots. Then A(p) can
be diagonalized, that is there exists a non-singular matrix S such
that

N (p) 0
s~la(p)s = . (21)
0 X" (p)
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Define
wit) = s1 y(e). (22)

Then problem (13) (14) is equivalent to

L o o (€) oo w, ()
= _ (23)
w(-1) = w(l) = 0, (24)

which is just two independent scalar problems which have a
nontrivial solution if and only if one of the eigenvalues ud or \~
of A(p) is equal to an eigenvalue }\n of 1. defined by (19)., If
for some value of p, exactly one of 7\+(p) and X\ (p) is an
cigenvalue of L, say X' =X and X\~ ¥ N, forall m, then (13)

(14) has exactly one eigensolution given by

(1)
P U(E)
y(E) = S (25)

0

In this case we write p = p and we call P, 2 simple eigenpressure
of (13) (14). If both MN'(p) and \7(p) are eigenvalues of L for the
same p, say )\+ = )\n and A\ = Xm, then (13) (14) has a two-~-
dimensional space of eigensolutions spanned by
(1)
P (E) 0

S and S , (26)
(1)
0 P (€)
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and we call this value of p a degenerate eigenpressure,
The simple eigenpressure Py is easily determined by

substituting A\ = )\n in (20), which gives

pn = (——K—Z—) ()\.n+ v) + TE!:—\T n= 1;2; ses . (27)

l1-v

Then the condition for a degenerate eigenpressure to exist is that

P = P for some n and m with n# m, which yields

(A = V) (A =V) ( ) = 1. (28)

1-w

In most of what follows we assume that P, is a simple eigen-
pressure (i. e., that (28) is false for all m) and that A(pn) has
distinct eigenvalues.

Now suppose that (20) has a double root, so that A(p) has
two equal eigenvalues. Then we can easily show that A(p) cannot
be diagonalized and that problem (13) (14) can have at most one
independent eigensolution, which exists only if this double root
equals some Kn, 0 = @y was @ Thus a double root does not lead
to a degenerate eigenpressure.

Define the matrices

A= Alp ) (29)

for each simple eigenpressure P Then the eigenvalues of An,
from (20) are

A= a = n(ntl) -1 (30)



= 1.1 B

- l—\)&

A — I Vo = —1-‘--(—)'\——_'\7) - (31)
n

Here p is defined to be the positive root of

p(pt+l) -1 = By (32)

and P is not an integer when P, is simple.
The normalized eigensolution of (13) (14) corresponding %o

a simple eigenpressure p_ is

n
41
yer =y = e (33)
S
n+2 %
where a = [ 2] (34)
1 n(nt+1) (1+ (A_-v)°)
n
a, = ()\n - V) a; . (35)
Here we have normalized y(n)(ﬁ) by
,J“ll(yl(’“’(g)z oy e)®) ag=1 (36)
using
1 T 2 _  n{ntl)
(’_1 P 8" dz = gl (37)

A matrix Sn which diagonalizes An is



S5 = ] (38)

and its inverse is

— 1
Sn = 2 . (39)

. iy 1 1"(1 _sz)(ln*\))

Corresponding to the eigenvalue Ap of An is the function
P:Ll) (§) which is a solution to the equation (16) with n = p,
but does not satisfy the boundary conditions. We use Pil)(g)

in constructing the Green's matrix in Appendix D,

The problem adjoint to (13) (14) is

T z(€) = A*(p) =z(§) (40)

z (-1) = z (1) = 0. (41)

This problem has the same eigenpressures as (13) (14) and the

normalized eigensolutions

b
(€)= 2 5( 1) p1) (g (42)
bZ n
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=

where b, = n+t 3 (43)
1 n(n+1)(1+(jrfiz_)2(Kn-v)2)
T n _
b, = (—-l—-_-—\;.z-) ()\n V) b1 G (44)

The properties of Legendre's functions which are used throughout this
chapter, and many useful formulae, may be foundin [17, [16]

and [20].

VI. 3. Bifurcation at a Simple Eigenpressure

In this section we indicate very briefly how a slight
modification of the proof of Theorem 2 in Chapter III enables us
to prove that bifurcation actually occurs in the nonlinear problem
(11) (12) at the simple eigenpressures Py of the linearized problem

(13) (14). We seek a nontrivial solution branch of the form

x(£, €) = ey(E) + e gl-£% w(&, e) (45)

ple) = p_+ en(e). (46)

Here y(§) is the normalized eigensolution of (13) (14) corresponding
to the simple eigenpressure Pye Note that we have written an
explicit factor of 4 1—&,2 in the second term of x. This stratagem
knocks out the singularities which otherwise appear in f, The

function v 1is no longer required to satisfy the boundary conditions
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but only to be continuous and hence bounded in [ =1,1]. Since the
eigensolutions behave likcJ:E; at +1, it is not unrecasonable to
hope that x does too.

Define An as in (29) and Bn( €) by

0 0
B_(¢) = = (Alp) - A_) = L2 (47)
o (255) nte

Substitute (45) (46) into (11) (12) and use (13) (14) to obtain the

equation which v must satisfy:

[T-a,141-6° W, e)=B (y+ cqfl-£2 )

(48)

+71— £(E, ey+ e” yl-£ )
(]

Writing f out explicity, (48) becomes

[T-An ] Jl—ﬁ v = Bn (y + 641—6, v)

o
[\¥]

2
e 2 ()

e _(1-\)2

+
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5t1)
+ € an (&)

3 v
+ ezg‘ﬂl-g
‘(‘1 -‘:"2") L . (49)

Note that every term on the right side of (49) behaves like 1-g2

at £1 if v is bounded. From the basic alternative theorem
in Appendix C, (49) can have a solution only if the right hand side is

orthogonal to z(§). Therefore n(€e) must satisfy:

> :
(l-n\) ) n(e) tf_i zz(g) [yz + c 4 1-£ vy ] d§

(50)
“"“e“lf F_i z*(E)E(E, ey + ~ “l-gzv)d(g:o,
Define
y= [z, (&) v, (&) dt (1"\’2)
sl y 2 2 =
2 (51)

(A=)

T .
=

R AL
-V
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Now definc a mapping

M:[n,v]) -Td7, ¢] (52)
by
A= -—I-I[—-}z-trlz*f(g,ey+ ez 1-£7 v) d§
¥ € -1
(53)

2
+ e(l'u\) ) n J".ll Z, Vy d§]

2 0 0
G (E) = ——— __Fle*(&,-r)[(l';’ )[ﬁ( >+€n(v> 1-¢% ]
=1 T2 2

1-¢
' (54)

+i2 f(T, ey + 62 ‘)1-g2 v] dr,
€

where Cx'r(ﬁ,'r) is the generalized Green's matrix from Appendix D.

Now the iteration scheme

N T (I -

PLEZR N CL 00 PO €2 R £ 0 & R U8 TR (56)

is formally the same as that defined in Chapter III. Define vector

functions r(§€, €,H1,m,v) and s(&, €,mn,v) by rewriting (53) and (54) as

3

='§ L a(E) s(E, €, m,v) dE (57)

<t
1]

—L— [l = (v e d, v an (58)
b
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Then a careful inspection verifies that s is just the right hand side
of (49) with the term Bn y vemoved, and r is the right hand side of
(49) with the term Bny replaced by ﬁny. where Eﬁ indicates the metrix B
defined by (47) with m replaced by fi. Then r and s have the
following properties. They are continuous in 7,v, and £ and

behave like ’1-&2 as E-» + 1 provided v(f) is bounded, and

they satisfy the Lipschitz conditions:

ls(&s esmv) = s(g, e, Cowll < lel &) n-C | + |e| g, [lv-w] (59)

*

|z (£, e,mm,v) = 2(€, €, C, C,w |

~ ' (60)
‘E%In* gl +lel g, l n~g| +lef &gl v-wll.
Finally we note that the Green's matrix is so well behaved at =1
that the norm
1
l—— &'l (61)

1k e

exists. Thus the procedure usedin Chapter III to prove Te
contracting works also for M, with [|G1* H replaced by (61). It
follows that M has a bounded fixed point and hence (11) (12) has
a solution branch of the form (45) (46).

The asymptotic form of this solution branch is easily obtained

for -0,
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% 1
x(g, €) = « [ nt: fJ ) P + o(e? (62)
zﬂn+1ﬂ1+(xn-v)‘) "
n
5 gk HE 1 1 ST
pLel = pn+€—2-(n(n+l)) "rl _Tn (&dé
41+(xn-v) h L~§
(63)
+ Of ez).
When n is odd, the integral in (63) is zero, but we are able to
calculate the next term in the expansion for p(¢),
ple)= p+ % e p'" (o) + O (63), (64)
where
(n+3)% (n_-v)*
p"(0) = - (65)
n”(nt1) % [( 12)(xn-v)2 1101+ -2 ]

] =

S pM)? [ L=r" (| ;2o PerMo
1-¢ "1—g2

m[R(—L) (0 -v)F 1]
1-v

(1) (1) ¢
® p(e + 1) sinm p PH (g)Pp (-C) 4ac¢

1_ ¢ pgd 3 pllg o)
= |2 e ol (o)
1-¢
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w[#(—25) (Kn-v)?‘ +1]
1-v

(1) (1)
¥ L(k+1) sinmp PV (-€) P\) (C)f d4C { dg.
(65)
Note that p'{o) blows up when
&8 2
(i) tamw® = 1. (66)
l-w

which is the condition that A have equal eigenvalues, (see 28)). The
n

numerical solutions in[ 3] appear to confirm this singular behavior.

VI. 4. Degenerate Eigenpressures

As was pointed out in §VI. 2, the maximum possible
degeneracy in this problem is 2, and this occurs when B = P
for some n# m, which is equivalent to saying that n and m

satisfy (28) with n#¥ m. We now assume this to be the case.

Then the algebraic bifurcation equations for this problem are:

2 2
zFijkqjqur W), Gy = O
_.jk=]. j:]_

(67)

where the coefficients are defined by

2
oy =(2) 1125 @ yge at (68)
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1

| 2
g () ey (02 ey (1) 1-v
L P -1_————[% z 1“1 (E)y, (é)vznk (E} ~l=5~]
s (69)
"L?"Z)Zéni)@wl‘“j’(g)yz‘“k’(g) dt k=1,

and we define nlE n, nz = m.

Now C is a diagonal matrix, so we can divide through and get the

equivalent equations

2 2
Agqp g Tyt B iy 8y, G, F I E; S 0 (70)
A 2 AL+ A) + A 2 4 & W (71)
211 41 212 2217 919, 2z 9z T WY =
2 2
gz ¥ g =k (72)

Define constants Fn @n and ®(n,m) by

- f + B
Fn= nnn+ . (73)

1

5 (74)
Vl + (Xn-\))z :

{15 0 2 . 00)
P () ag. (75)
1-¢ ‘

Then the A.. can be written
ijk
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_ 3 3
A = -z@n?n O(n,n)

A=V
m

3 - T
% v ¢m( = -v) Fa T ® (nsm)

n

L " -
A i za(Km V)"’()\n V)

r® T B {n,m)

121 m >\n -\ n m
2
% (N_=v) [2(x_=v)+ (\  -V)]
_ m m m n 2 .
i 7 2 N -\))2 L, @(m,n)
n
) (A=v) B -v)+ (x_-V]
_ n n ) m 2 o
Bpyg & 3 z oL@ (n,m) (76)
& (A -wv)
m m
1
(A -v)+ (A _-V) >
Bona = By o) L T, ®(m,n)

3 xn-\) 2
A1 20 lx ) W mn
222

If n and m are both odd, the coefficients Ai'k all vanish, which
implies w= 0. If n and m are both even, the coefficients are all
nonzero and (70) (71) (72) does not simplify. However if n is
odd and m 1is even, we have

Byqg Bhyos T e B lan, =0 (77)

so the problem reduces to
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(A112+A121) q q2 + W ql=0 (78)
A 5 A 2 4w = 0 79)
i1 U 222 92 9 = (

2 g
q1 + q; = 1. (80)

One solution to this is
9 =0 Gy=1 5 WE=Agam e

and a second solution is

o2 Aqiz ¥ Bqa1 B3
1 7 A T80 78,178,2,
(82)
o 4211
2 At Ay, YA mAgss
y:y
W = =(Ap;,+ Ajyg) sen (Gl 7% +§x“ A
1127821811782

So the algebraic bifurcation equations have in general two distinct
roots when n is odd and m is even.

Of course, the analogous situation occurs when n is even

and m is odd.
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VI. 5. Numerical Results

Wie takis = 8.3 gnd consides ne 10 (fhick-shell) and
H,-‘-IIO—S (thin shell). Then the eigenpressurcs p, are casily
evaulated from (27) and (19). The numerical values of p, are
given in Table I of [3], where the symbol P is used instead of
our p .

From $VI. 3 we see that the simple p, are the bifurcation
points of (11) (12).

The asymptotic formula of § VI.3 gives us the slopes of
the nontrivial branches at the bifurcation points. Use pl',1 (0) to

for each n. Then

: d
designate -3— P {e) -

3 nt+2 13/2 (13
= [._..__.a.._ (€) d&. (83)

s 1 J\l £ P
n(n+ n
‘fl TS L " L=£*

Physically, it is of more interest to know how the radial displacement
U‘Z( 8) defined by (5) varies with the pressure near a bifurcation point.

This is easily calculated from

alla, |
dlfu, | i} - A | e=0 (84)
dp Py (O)
p=p_

where from (5) and (62), using formulae in [16],
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n
dllu,l N|ra@tl) (at+ 3) Z (21! *2n-2112 ]*
= | o . T T % i

{1+ ()\n-\)) ) 2 k=0 k! (n - k)!
(85)
Here || HZ designates the norm defined by
2 i '
u,ll, = [%,,rg u,(6) de]~ (86)

which is used in [3]. The slopes (84) have also been evaluated

from the numerical solutions presented in [ 3 1, which were computed
using a "shooting'' method. We tabulate the values obtained by a
direct evaluation of (84) using (8) and (85), along with the values from
the numerical solutions in [ 3] for comparison. Note that prl(O) is
zero for all odd n, so odd n are not tabulated. Note also that
formulae (83) {84) (85) are all independent of the thickness

parameter x.
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Slope from

d| u2”2, Numerical
1 d| - Hz “dp | p=p solutions
= Pnl0) T de |e=0 from (84) in {3 ]
2 .2590716 . 5922635 2.28611 2.286
4 . 0922344 . 2965424 3.21510 3.214
6 .0514012 . 2051203 3.99058 3.984
8 . 0339498 « 1585912 4,67135 4.67
10 . 0245807 . 1299478 5.28658 5.27
12 .01886128 .110395 5. 85300 | 5.84
14 . 01506605 . 0961394 6.38119 6.38
16 .01239492 . 0852572 6.87840 6.88
18 .01043059 . 0766628 7.34981 7.35
20 . 008936037 . 0696946 7.79928 7.81
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APPENDIX A

Notation Conventions and Decfinitions

Except for one or two cases where standard usage dictates

otherwise, the following notation conventions have been adopted:

Greek capital letters represent positive real bounds.

Greek small letters represent real numbers,

Roman capital letters represent matrices and operators,

Script Roman capital letters represent sets and spaces.

Roman small letters a to h represent known or
constant column vectors.

Roman small letters i to p represent integers.

Roman small letters q to z represent unknown or
variable column vectors,

I is the nxn identity matrix.

* denotes the transpose for real matrices and vectors,

and the adjoint for operators.

denotes differentiation with respect to §.

= means ''is identically equal to'" or 'is defined by'.

R is the set of all real numbers.

R"is the n-dimensional real vector space.

C;[a, B] is the set of real n-dimensional vector
functions with components i times continuously

differentiable on [a, B J.
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The scalar product of two real vectors in R™ is

z*y =

1

Zs Vi o

n
1
=1 %

The inner product of z(£) and y(£) in Cn[(x, B is

B
(z,y) = [, 2z* () y(£) d&.

The order symbols O and o are defined as follows:

n(e) = O(e) as €~ 0

iff there exist positive constants ¢ and & such that
In(e)|< 8 le| foran |e|<b;

n(e) = ole) as €=0

N g L - I

€
€
If M and N are nxn matrices, then [M,N] represents the

nx2n matrix consisting of the n columns of M followed by the

columns of N,

We define

ftrt) = lim £(&)
E>T

and

1

lim (&)
E—T
g=<v

f(T -)
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Firdéchet Differcntials and Derivatives

The Fréchet derivative (or strong derivative) is defined as
follows. For a thorough and rigorous treatment, see chapter VI
in [35].

Let £ and .531 be normed linear spaces, x and h be
elements of £, and g be a mapping of £ into £1. Then g is

said to be Fréchet differentiable at Xg€ L iff there exists a

linear operator G: &£ - £1 » which depends in general on X such
that

g(xo+h) - g(xo) =Gh + a(xo,h)
where

la@_. )l = o(linlh as [l ~o.

Then Gh is called the Fréchet differential of g at the point X,

for the increment h, and is designated by Dg(xo,h). The linear

operator G is called the Fréchet derivative of g at the point X

and is denoted g_(x ). Thus
x'"o
Dg ()%.h) = gx(xo)h =Gh.

If £ and £1 are n-dimensional linear spaces and we have the

representations
%y iy g1
x .}, h ={ : » glx) =" "
*h hn €n
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then gx(xo) has the matrix representation J(xo), where

9g.(x)

T i,j'-:l,...,n,
J

1]

and J(xo) h is defined by the usual matrix multiplication.
Before we can define higher order differentials and

derivatives, we must define homogeneous forms and polynomials

in h, as in [35]. If hi,hy, ... ’hm arein £, then a function

am(hl,hz, o i B hm)

taking values in £1, is called a m-termed linear form if it is
linear and homogeneous in each of its arguments hi’ 1= Xy pomy D

It is called symmetric if

am(hl,h hm) = am(hi ,hi o

3 s e
s 1 2 'm

where il, - im is an arbitrary permutation of the indices

1,2, ..., m. The norm of g = am(hl’hZ’ s ,hm) is defined by

| - Han(hl,hz, ,hm)H
lagll =swp W e T

Clearly the totality of m-termed linear forms 2 is a normed
linear space.

The form am(h,h, ... 5h) obtained from a symmetric form
am(hl’hZ’ e ,hm) by setting h1= hZ. — SR hm = h, is called a

homogeneous form of degree m. It is generally abbreviated
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a (h,h, ...,h)=a n,

m ni

Clearly a.]n(E,h)m = £ a h'"', and

la_n™ <lla_[ [Inl™.
A sum
m
- k
P_(h) :kgl a, b,

of homogeneous forms, all of which take values in .Sll, is called a
polynomial in h of degree m.

Now we can define higher order differentials and derivatives.
Let x, h, and g be as before. Suppose there exists a polynomial

in h, P_ (h), and a function r_ (h): £ - £l such that
m m
glx +h) - gx ) = P_(h) + r_(h)

where [x_(h)] = ol &™) as [n]~o.

Then g is said to be n times Fréchet differentiable at x5. The

polynomial Pn(h) is called Taylor's sum of degree m for g(xo+h)

th

and the m term multiplied by m! 1is called the m'? Fréchet

differential of g at the point X and is designated

m — e
D g(xo,h) ni a ho.
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The corresponding symmetric m-termed linear form is
L g(xo,hl,hz, A hm) = m! am(hl,hz, oo is 0y hm). This linear

form m! a is called the mth Fréchet derivative of g at Xo and

is designated by gxm(xo)' Thus

m _ m _ 5
D g(xo,h)—gX Xo)h = ml a_ h,

mf -

The Taylor sum for g(x0+h) gives therefore

glxgh) - glxy) = g (x ) b+ 2g_(x ) h%+ ...

1 m
+ ;I-l-'!- gxm(xo)h + I‘m(h).
If g is a function with more than one argument, the definitions are
extended in the obvious way; see §43 in [35].
If £ and £I are n~dimensional and x,h, and g have vector
representations as before, then y = Dmg(xo,h) is an n-vector with

components

9g.lx )
= E i’o o, B seal o
4 b, 0%, ..0% ) 9y 9y

1 I2 Im

Jysdareeedpg®1

th

The norm of the m Fréchet derivative is defined by

m
su H gxm(xo)h
P ™ )

]

eyl
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In the n dimensional case, using maximum norms, this gives

n
l Bmg.(x)
lg (x| = max i’o
%™ O jeidy . ) 0x, 0X. ...0x, |.
=" Jypdgeeed | Jg1 J2 Jey
=1

The Maximum Norms

Throughout this thesis we use the maximum norm and its

related norms. They are defined as follows:

n
For x,z € R,

Ixl = max |xl.
1<i<n '
n

lzll, =25 |=].
1=t

Then
zx <zl Il
For x,z ¢ C_la,B],
lell = max max =0

149 <y Eela, B

lally =5 Jo lagel ac.
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Then

(< Nlall, Il

For a constant matrix M,

[|MH =  max i lMijl .

l1<i<n Jl
For a Green's matrix G(§, 1),

n

G|l = _ 2 [Plo, (&) ar
lcll l_x;iai_cn wi¥e 57 +o 5 ij T|

The norms of the nonlinearity £(§,\,u) in the boundary-value problem
of chapters III and IV, and its derivatives, are evaluated at \ = )\O

and u = 0, and defined as follows:

[£]] = max ma e e, )|
l1<i<mn a’_:]e[o: B8 ]

i af. l
1

Hf ” max max 1
= I=idm Eelo, B]J_

n n] azf l
Buau €7\0)

f ”E max max
l<i<n Ee¢la,Bl j=1 k=1

I 8 f

au ay. (g’K 4

max max Y.
1<i<n Eela,B]j=1

mn

Sometimes we need bounds on f and its derivatives when the

arguments are allowed to range over a closed bounded set 5 .
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Therefore we define

||f|| ¥ max max f.(E, N\, u) |
S 1<i<n (& X\ues' ]

e, A |2

f =  max max (E, N, u)
s l<i<n (&N, uw)es =109

Bzf

W—S% (gs)":u)
i Tk

Hf ” = max max ?T, i

s 1<i<n (&, u)eS j=1 k=1
2
n
”fuk” = max max la fi (&, Roya)
b= 1< (E,N,u)esS j=1 Bujak -

These bounds exist if the corresponding derivatives are defined and

continuous on S. They satisfy the characteristic property of

operator norms, e.g.:

e, gnm w®l] < g llg lall® for (gn,w es.

The mth Frechet derivative gxm(x) is said to be

Lipschitz continuous ir; x on some set B 1iff

&, m

P e B |

(1) 2 g

for all x and x
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APPENDIX B

The Contracting Mapping Thecorem

L.et & be a Banach space (complete normed linear space)

and 7 be the neighborhood of the origin 0 of & defined by
n= fxes Ixll < 2} . (1)
Let T be a mapping of 7 into .% Suppose that for some constant
0<a <1, T satisfies the Lipschitz condition
ITx-Tyll < o llxyll v =vyen, (2)
and also satisfies
IT- ol <(1-a) 2. (3)

Then T has exactly one fixed point, say X, in 7, and furthermore

X is the limit of the sequence defined by

(o) _

x = 0

X(n+1)= T ™ e B le s von o »

The convergence of this sequence is given by

142 -2} c«® 8,

For proof of this theorem, see page 30 in [ 23] or page 27 in [35].

Note that if T is known to map 7 into itself, that is if
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Txe?N forall xe 7N, (4)

then condition (3) is no longer needed.
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APPENDIX C

BASIC ALTERNATIVE THEOREM FOR THE BUCKLING SPHERE

PROBLEM

Let T and An be as defined in Chapter VI, and take

g(&) € C, [a, B]. Consider the inhomogeneous problem
Lo -An] x(€) = g(§) (1)

x (-1) = x(1) = 0, (2)
and the homogeneous adjoint problem

[T -A%] z(€)=0 (3)

z {~1) = z(1) = 0. (4)

Define inner products as in Appendix A. The following result is

used in Chapter VL

Theorem:

Problem (1) (2) has a solution if and only if
(z,g) =0 (5)

for all solutions =z(£) of problem (1) (2).

Proof:
The proof of necessity is trivial. Assume x is a solution

to (1) (2) and =z is a solution to {3) (4). Then
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(z,g) = (z, [T ~ A, ]x)
= ([T - A% 2, %) (6)
= 0.

To prove sufficiency, diagonalize A using the nonsingular matrix
n

Sn defined in § VI, 2, and consider the scalar problems

(L -2 1w, (E) = h () (7

w (-1) = w;(1) = 0, (8)

L= 2, wal6) = hy() (9)

w,(-1) = w,(1) = 0. (10)
=3

Here kn is an eigenvalue of L and )\P- is not and h = Sn g.

Let ©(§) be an eigensolution of the self~adjoint problem
L ~ }\n] (€)= 0 (11)
©(-1) = ©(l) = 0. (12)

Then o(§) = Pn(l)(ﬁ)-

Proceeding formally by the method of variation of parameters,

we get as a candidate for the solution of (7) (8)
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(1),.
2 - n < . -
w () = FESOPNON _Y_l h) (§) P 7 (£) db
n n
(13)
(1)
. = n (&) @M (g) at,
J(Plgl), QS)) I'l 1 -
where
(1) (1), _ 2. (1) (1) (1) (1)
e, oy = _agf) (el ol ) ol h J1)
' (14)

= -n(n+1)
is the conjunct of Pr(11) and Qill).

A consideration of the asymptotic properties of Pr(ll)(g) and
Qill)(g) as £- +1, as given in [16], verifies that both terms in (13)
are bounded on [-1,17]. In fact the second term vanishes at +1
without any special conditions on hl(ﬁ) other than continuity.
Similarly the first term vanishes as £- -1, using only the
asymptotic properties of Q;l)(é) and Pf_ll) (). However, we use

the orthogonality condition
1 1
[oe P (g) ag= o (15)
-1

to show that the first term in (13) vanishes as &- +1:



-144-

‘ (1) £ 5(1)
1 Q' (E) h, () P/ (¢) do
g1 \ " f~1 ' z }

- lim o-QSHg)fzhﬂg)Pg”(g)dg

(16)

: 1 € &
ﬂef(l) « [— = + o,(l)] fo [hl(l) + o(l)][—n(n+l)€+0(5)]d6

=1lim

qu—E%hlﬂjxﬂn+l)€4—o(e)]

A straightforward substitution shows that (13) satisfies (7). Hence (13)
satisfies (7) (8) provided that the orthogonality condition (15) holds.

Similarly we can show that (9) (10) has a solution wz(g) for
all hz(g)e Ccl[-1, 1], assuming RP» is not an eigenvalue.

Now transform back to the original problem (1) (2). Then

a solution of (1} (2) is

x(£) = S, wlE), (17)

and the orthogonality condition (15) becomes

0 = (p,h)

= (p, 5 g) (18)

'
5 ~ 1%

S, Ppsg)

I
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(1)
pit (g)

where we have defined p(£) = .
0

1%
But Snlﬁ p is just an eigensolution of (3) (4), so the theorem is

proved.
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APPENDIX D

GENERALIZED GREEN'S MATRIX FOR THE BUCKLING

SPHIER] PROBLEM

We calculate a generalized Green's matrix for problem (13)
(14) of Chapter VI, with p equal to a simple eigenpressure Py- The
procedure is to first diagonalize (13) (14), then find the appropriate
Green's functions for the two scalar problems in (23) (24), and then

transform back to the original problem.

Ty (§) = Alp,) y(£) (1)

wl(—l)=wl(1)=0 (3)
WZ(—].) = Wz(l) =0. (4)

The generalized Green's function for (3) is

LR
el

n(nt+1l)
(1)
G (g9T) = =
P )M ir)
n(n+1) —15&57’51
n+% £ 1
¥ 1:’2511)(’1‘) {Ql(,ll)(ﬁ) f P;l)(c)2d0+13£11)(§) f Pl(,ll)(U)QLl)(c)dg}
n (ntl) i 3
' (5)
+1 T 1
R Px(f)(g){gn”(” [P oac+pMir) fPI(ll)(a)Ql(,ll)(c)dc}
n (nt+l) 9 T
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2
(nt}) 1
2 ”)(;;)Q(”

1
f p1)g)p
n n n

e 1) (1)
rzpM ey pWiry
m 1 2tmel) 21 ‘e

n

The Green's function for (4) is

(1) (1)
WPH (“Q:)PH (-7)

Zp(ptl)sinmp
a@g,r) =
' (-g)p (i)

A -lstsTs< 1
2p(ptl)sinm

Then the generalized Green's matrix for (1) (2) is

oLl 0

el w2 s_ s-1

0 a®he, )

where Sn is defined by (38) of Chapter VI.

(L)dtdo .

(6)

(7)
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